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Chapter 1 General Introduction Introduction française

Résoudre des équations non-linéaires est un problème fondamental en mathématiques qui a une longue histoire dans la littérature. Son importance est due au fait que les équations non-linéaires apparaissent dans de nombreux domaines d'applications, non seulement en mathématiques appliquées mais aussi en physique, sciences de l'ingénieur, biomathématique. De nombreuses méthodes numériques ont été étudiées pour l'approximation de solutions de tels problèmes. Il est bien connu dans la littérature que la méthode de Newton (ou Newton-Raphson ou Newton-Raphson-Simpson) classique ainsi que ses extensions sont parmi les plus efficaces. Ce succès est lié notamment à la vitesse de convergence de la suite itérative générée pour un choix approprié de point de départ. Pour plus de détails, le lecteur pourra consulter les livres suivants [START_REF] Dedieu | Points Fixes, Zéros et la Méthode de Newton[END_REF][START_REF] Deuflhard | Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms[END_REF][START_REF] Kelley | Iterative Methods for Linear and Nonlinear Equations[END_REF][START_REF] Kollerstrom | Thomas Simpson and 'Newton's method of approximation': An enduring myth[END_REF][START_REF] Ortega | Iterative Solution of Nonlinear Equations in Several Variables[END_REF].

Un système d'équations non-linéaires est un système de la forme f (x) = 0 où f : R m -→ R n est une fonction lisse donnée. Localement, la théorie classique de la méthode de Newton indique que si f (x * ) = 0, si le gradient Df (x * ) de f au point x * est inversible et si Df est lipschitzienne autour de x * , alors il existe un voisinage Ω * de x * ayant la propriété suivante : pour chaque point de départ x 0 ∈ Ω * , l'algorithme est défini par

x k+1 = x k -[Df (x k )] -1 f (x k ) (1.1) converge Q-quadratiquement vers x * .
En général, lorsque Df n'est pas lipschitzienne, le taux de convergence est simplement sur-linéaire (cf. [START_REF] Izmailov | Newton-Type Methods for Optimization and Variational Problems[END_REF]).

La convergence locale exige des informations autour de la solution x * , ce qui est généralement inconnu. Il est donc important d'étudier d'autres types de résultats de convergence avec des hypothèses ne nécessitant pas d'informations locales autour de x * . L'un des plus célèbres résultat dans ce sens est le théorème de Kantorovich (voir, par exemple, [START_REF] Ciarlet | On the Newton-Kantorovich theorem[END_REF][START_REF] Kantorovich | Functional Analysis[END_REF][START_REF] Ortega | The Newton-Kantorovich theorem[END_REF]). Selon l'article [START_REF] Ortega | The Newton-Kantorovich theorem[END_REF], il semblerait que L.V. Kantorovich ait donné deux preuves de ce théorème. Il a d'abord utilisé les relations de récurrence pour le prouver, puis ensuite reformulé par la technique de fonction majorante. Ce théorème fournit des conditions suffisantes imposées sur les données initiales seulement 1 assurant à la fois l'existence de la suite de Newton ainsi que des bornes d'erreur pour la convergence (généralement nommé R-quadratique). Plus tard dans l'article [START_REF] Gaydu | A Newton iteration for differentiable setvalued maps[END_REF], les auteurs ont établi ce résultat avec borne d'erreur optimale en utilisant l'approche de Kantorovich. Nous renvoyons à Galántai [START_REF] Galántai | The theory of Newton's method[END_REF] pour plus de détails sur le théorème de Newton- Kantorovich. Il existe de nombreuses applications et extensions de ce théorème dans différentes situations (voir, par exemple, [START_REF] Ferreira | Local convergence of Newton's method in Banach space from the viewpoint of the majorant principle[END_REF][START_REF] Ferreira | Kantorovich's majorants principle for Newton's method[END_REF][START_REF] Ferreira | Convergence of the Gauss-Newton method for convex composite optimization under a majorant condition[END_REF][START_REF] Wang | Convergence of Newton's method and uniqueness of the solution of equations in Banach space[END_REF][START_REF] Zabreiko | A generalization of the Newton-Kantorovich method on an equation with nondifferentiable operators[END_REF]).

En ce qui concerne la méthode de Newton classique, le régularité de f autour de la solution x * est essentielle. Dans un contexte plus large, il existe des généralisations pour la résolution d'équations impliquant des fonctions non-lisses telles que la méthode semismooth de Newton ( [START_REF] Klatte | Nonsmooth Equations in Optimization: Regularity, Calculus, Methods and Applications[END_REF][START_REF] Qi | A nonsmooth version of newton's method[END_REF][START_REF] Ulbrich | Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces[END_REF]). De plus, ces résultats peuvent être généralisés pour être appliqués à un modèle plus général appelé équations généralisées 2 . Historiquement, ces études remontent aux travaux de Bakushinskii [START_REF] Bakushinskii | A regularization algorithm based on the Newton-Kantorovich method for solving variational inequalities[END_REF], Josephy [START_REF] Josephy | Newton's method for generalized equations[END_REF], et Robinson [START_REF] Robinson | Point-to-Set Maps and Mathematical Programming, chapter Generalized equations and their solutions, part I: Basic theory[END_REF][START_REF] Robinson | Strongly regular generalized equations[END_REF][START_REF] Robinson | Optimality and Stability in Mathematical Programming, chapter Generalized equations and their solutions, part II: Applications to nonlinear programming[END_REF]. Le lecteur est renvoyé au monographe de Izmailov et Solodov [START_REF] Izmailov | Newton-Type Methods for Optimization and Variational Problems[END_REF] ainsi qu'à l'article récent [START_REF] Izmailov | Newton-type methods: A broader view[END_REF] pour plus de détails où un survol des derniers résultats est donné au lien avec l'optimisation et l'analyse variationelle.

Dans une forme abstraite, une équation généralisée est définie comme suit trouver x ∈ X tel que 0 ∈ f (x) + F (x).

(

Ici, f : X -→ Y est une fonction continue entre deux espaces de Banach X, Y tandis que F : X ⇒ Y est une multi-application. Tout au long de cette thèse, f est supposée être de classe C 1 au moins sur un sous-ensemble convexe ouvert de X et F est supposée avoir un graphe fermé. Le modèle (1.2) couvre un grand nombre d'applications en mathématiques et ingénierie. Selon la forme spécifique de la multi-application F , le problème (1.2) devient un problème d'admissibilité (F (x) ≡ K), une inéquation variationnelle ou un problème de complémentarité (le cas où F (x) coïncide avec le cône normal à un ensemble fermé convexe ou un cône convexe fermé, respectivement). D'autres discussions sur ces sujets peuvent être 1. General Introduction trouvées dans la littérature, par exemple [START_REF] Facchinei | Finite-Dimensional Variational Inequalities and Complementarity Problems[END_REF][START_REF] Facchinei | Finite-Dimensional Variational Inequalities and Complementarity Problems[END_REF][START_REF] Klatte | Nonsmooth Equations in Optimization: Regularity, Calculus, Methods and Applications[END_REF].

Dans certaines situations, il est possible de transformer le problème (1.2) en une équation, en utilisant par exemple les fonctions normales introduites par S.M. Robinson [73] pour résoudre les inéquations variationnelles. Par exemple, le solveur PATH, l'un des solveurs le plus populaire pour résoudre numériquement les problèmes de complémentarité mixtes [START_REF] Ferris | Complementarity problems in GAMS and the PATH solver[END_REF], est basé sur les fonctions normales et la méthode de Newton non-lisse. Malheureusement, cette technique ne peut pas être adaptée pour l'équation généralisée de la forme (1.2) avec une application multivoque arbitraire F (•). Il serait peut-être naturel de traiter le problème (1.2) directement au lieu de le transformer en une équation. En particulier, une méthode de type Newton pour traiter (1.2) dans le cas des inéquations variationnelles (VIs) a été proposé dans [START_REF] Bakushinskii | A regularization algorithm based on the Newton-Kantorovich method for solving variational inequalities[END_REF] (sous l'hypothèse de monotonie de f ) et [START_REF] Josephy | Newton's method for generalized equations[END_REF]. Dans l'approche des articles [START_REF] Bakushinskii | A regularization algorithm based on the Newton-Kantorovich method for solving variational inequalities[END_REF][START_REF] Josephy | Newton's method for generalized equations[END_REF], nous constatons que le cône normal pourrait être remplacé par un opérateur quelconque F (à graphe fermé).

L'algorithme de type Newton appliqué à une forme abstraite (1.2), connu sous le nom méthode de Josephy-Newton (JNM), est paru dans les travaux de A.L. Dontchev [START_REF] Dontchev | Local convergence of the Newton method for generalized equations[END_REF][START_REF] Dontchev | Uniform convergence of the Newton method for Aubin continuous maps[END_REF]. Plus précisément, l'algorithme commence en un point x 0 à proximité d'une solution et génère une suite d'approximation (x k ) en résolvant le sous-problème 0 ∈ f (x k ) + Df (x k )(xx k ) + F (x) (1.3) pour obtenir une nouvelle itération x k+1 . L'approximation linéaire f (x k ) + Df (x k )(•x k ) de f peut être traitée dans un cadre plus général et abstrait

0 ∈ A k (x k+1 , x k ) + F (x k+1 ), k = 0, 1, . . . (1.4) 
où A k : X × X ⇒ Y est une suite de multi-applications, satisfaisant certaines hypothèses générales pour approcher f dans un voisinage de la solution. Le cas particulier où A k dans (1.4) est un opérateur univoque a été discuté dans le monographe [START_REF] Dontchev | Implicit Functions and Solution Mappings: A View from Variational Analysis[END_REF], alors que le cas général d'approximation multivoque a été étudié dans l'article Adly et al. [START_REF] Adly | Newton's method for solving inclusions using set-valued approximations[END_REF]. Pour plus d'informations sur les méthodes de type Newton (exacte et inexacte) pour les équations généralisées, nous renvoyons le lecteur aux références suivantes [START_REF] Bonnans | Local analysis of Newton-type methods for variational inequalities and nonlinear programming[END_REF][START_REF] Dias | On the Newton method for set-valued maps[END_REF][START_REF] Dontchev | Convergence of inexact Newton methods for generalized equations[END_REF][START_REF] Izmailov | The Josephy-Newton method for semismooth generalized equations and semismooth SQP for optimization[END_REF][START_REF] Uko | Generalized equations and the generalized Newton method[END_REF][START_REF] Xiao | A nonsmooth Newton method for variational inequalities, I: theory[END_REF][START_REF] Xiao | A nonsmooth Newton method for variational inequalities, II: numerical results[END_REF].

Dans [START_REF] Dontchev | Local analysis of Newton-type method based on partial linearization[END_REF], A.L. Dontchev a donné des résultats (locales et semi-locales) impliquant une version étendue du théorème de Kantorovich dans le cadre de (1.2). Les preuves étaient basées sur la notion de régularité métrique locale pour les applications multivoques, qui joue un rôle similaire à l'inversibilité de la dérivée du premier ordre dans la version originale donnée par Kantorovich. Une approche similaire se trouve dans [START_REF] Rashid | Convergence analysis of the Gauss-Newton-type method for Lipschitz-like mappings[END_REF]. Cependant, l'approche de Dontchev, dans son théorème semi-local, nécessite les informations non seulement sur le point de départ x 0 mais aussi sur x 1 . Alors que dans [START_REF] Rashid | Convergence analysis of the Gauss-Newton-type method for Lipschitz-like mappings[END_REF], les auteurs se sont concentrés sur le comportement de f + F autour du point de référence (x, ȳ) ∈ Gr(f + F ). Nous discuterons dans le Chapitre 3 de notre théorème de type Kantorovich pour résoudre (1.2) ainsi que d'une comparaison avec les approches présentées dans [START_REF] Dontchev | Local analysis of Newton-type method based on partial linearization[END_REF] et [START_REF] Rashid | Convergence analysis of the Gauss-Newton-type method for Lipschitz-like mappings[END_REF]. Pour le cas local, nous montrons que sous les hypothèses relatives à la régularité métrique de Df (x * )(•) + F (•) (x * est supposé être une solution de (1.2)) ainsi que des informations sur la dérivée seconde D 2 f dans un voisinage de x * , il existe une suite (x k ) générée par (1.3) qui converge Q-quadratiquement vers x * . D'autre part, en invoquant la régularité métrique de Df (x 0 )(•) + F (•) (ici x 0 indique le point de départ) et le comportement de D 2 f autour x 0 , l'algorithme (1.3) induit une suite qui converge R-quadratiquement vers x * .

Outre le théorème de Kantorovich, les théories de (α, γ)-Smale [START_REF] Blum | Complexity and Real Computation[END_REF][START_REF] Smale | The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics[END_REF] représentent également des résultats fondamentaux en analyse numérique. Appliquée à une équation f (x) = 0, où f est supposée être une fonction analytique, les (α, γ)-théories de Smale fournissent des critères suffisants garantissant la convergence quadratique (vers une solution) pour la suite de Newton avec une estimation seulement en la solution (pour la γ-théorie) et au point de départ (pour la α-théorie). A titre de comparaison, le théorème de Kantorovich utilise les informations des dérivées du premier et second ordre Df et D 2 f dans un voisinage de x 0 , tandis que celle de α-Smale exige l'analyticité de f en x 0 et utilise toutes les dérivées d'ordre supérieurs D j f (x 0 ), j ∈ N. Dans certaines situations, la seconde approche est plus commode en pratique que la première car le maximum de la norme D 2 f (•) sur un voisinage du point de départ x 0 ne peut-être calculé facilement.

Après le travail fondateur de S. Smale, de nombreux chercheurs ont essayé d'améliorer et d'étendre les (α, γ)-théories classiques pour une grande classe de problèmes, voir par exemple [START_REF] Deren | The theory of Smale's point estimation and its applications[END_REF][START_REF] Shen | Smale's α-theory for inexact Newton methods under the γ-condition[END_REF][START_REF] Wang | Convergence of Newton's method and inverse function theorem in Banach space[END_REF][START_REF] Yakoubsohn | Finding zeros of analytic functions: α-theory for secant type methods[END_REF]. Néanmoins, il n'existe pas de résultats, à notre connaissance, qui étudient le problème (1.2) lié à l'approche de Smale. Ce sera l'objet du Chapitre 3, qui est basé sur le papier [START_REF] Adly | Newton's method for solving generalized equations: Kantorovich's and Smale's approaches[END_REF], considéré comme le premier à adapter les théories de Smale pour les équations généralisées (1.2).

Comme mentionné ci-dessus, la méthode de Josephy-Newton utilise une certaine linéarisation partielle de la somme f + F à chaque itération. Plus précisément, lorsque x k est connu, on remplace f par sa linéarisation en ce point 1. General Introduction et on considére le problème auxiliaire (1.3) au lieu de (1.2). Ceci est également le cas pour d'autres méthodes appliquées aux équations généralisées (1.2), comme la méthode de Newton inexacte [START_REF] Dontchev | Convergence of inexact Newton methods for generalized equations[END_REF] et les méthodes de type quasi-Newton [START_REF] Aragón Artacho | Local convergence of quasi-Newton methods under metric regularity[END_REF]. Dans la plupart de ces travaux, la linéarisation partielle n'est effectuée que sur la partie univoque f . Dans leur article [START_REF] Gaydu | A Newton iteration for differentiable setvalued maps[END_REF], M. Gaydu et M.H. Geoffroy ont proposé une méthode numérique locale pour laquelle à la fois f et F pourraient être approximées. Ceci a été rendu possible en utilisant le concept de différenciation généralisée introduite par C.H.J. Pang [START_REF] Jeffrey Pang | Generalized differentiation with positively homogeneous maps: Applications in set-valued analysis and metric regularity[END_REF]. L'algorithme produit une suite (x k ) en résolvant successivement les sous-problèmes de la forme .5) où H : X ⇒ Y est une multi-application positivement homogène, qui est une dérivée stricte de F [START_REF] Gaydu | A Newton iteration for differentiable setvalued maps[END_REF][START_REF] Jeffrey Pang | Generalized differentiation with positively homogeneous maps: Applications in set-valued analysis and metric regularity[END_REF] à la solution x * ∈ X de (1.2). La stratégie clé de (1.5) est de prendre f (x k ) + Df (x k )(•x k ) + H(•x k ) + F (x k ) comme une approximation pour f + F tout au long du processus itératif. Notons que dans l'algorithme (1.5), H(•), dérivée de la multi-application de F en x * , ne dépend pas de k (constante tout au long des itérations). Néanmoins, une telle solution est couramment inconnue dans la pratique.

0 ∈ f (x k ) + Df (x k )(x k+1 -x k ) + H(x k+1 -x k ) + F (x k ), k = 0, 1, . . . ( 1 
En ce qui concerne nos travaux dans cette thèse, nous proposerons au Chapitre 4 une extension de (1.5) pour résoudre l'équation généralisée (1.2). Soit H : X -→ PH (X, Y ) une application donnée de X vers l'ensemble PH (X, Y ) de toutes les applications homogènes entre X et Y . A partir de x k , on met à jour le prochain itéré x k+1 en résolvant le problème auxiliaire

0 ∈ f (x k ) + Df (x k )(x -x k ) + H(x k )(x -x k ) + F (x k ).
( 1.6) Il est clair que (1.5) peut être regardé comme un cas particulier de (1.6) en posant H(x) ≡ H. Observons que le terme d'approximation H(x k )(xx k ) + F (x k ) dans (1.6) varie à chaque itération. En supposant certaines hypothèses sur l'uniformité de la "composante homogène" de H(•) ainsi que la propriété de régularité métrique de Df (x 0 )(•x 0 ) + H(x 0 )(•x 0 ), nous prouvons que le schéma numérique (1.6) génère au moins une suite convergente R-linéairement vers une solution (pour la convergence semi-locale, voir le théorème 4.6). La même conclusion est également valide dans l'analyse locale, lorsque une solution x * de (1.2) est considérée au lieu de x 0 . Un raffinement de la convergence linéaire locale est obtenue si une hypothèse plus forte sur la différentiabilité en x * est vérifiée.

Au cours des dernières décennies, l'idée d'étudier des méthodes itératives sur les variétés riemanniennes a été développée par de nombreux auteurs. Ces recherches ont été motivées par de nombreux problèmes apparaissant dans plusieurs applications, telles que l'optimisation avec contraintes, la décomposition singulière, ou l'approximation matricielle. Par exemple, le problème de valeurs propres peut être reformulé sous la forme de minimisation d'une fonction à valeurs réelles lisse définie sur une variété appropriée (le quotient de Rayleigh sur la sphère unité [1]). En ce qui concerne les motivations et les applications des méthodes sur les variétés, voir les livres [1,[START_REF] Udrişte | Convex Functions and Optimization Methods on Riemannian Manifolds[END_REF] et aussi les articles suivants [2,3,[START_REF] Edelman | The geometry of algorithms with orthogonality constraints[END_REF][START_REF] Hosseini | Nonsmooth optimization techniques on Riemannian manifolds[END_REF][START_REF] Li | Weak sharp minima on Riemannian manifolds[END_REF][START_REF] Ring | Optimization methods on Riemannian manifolds and their application to shape space[END_REF][START_REF] Smith | Optimization techniques on Riemannian manifolds[END_REF].

Jusqu'à présent, il existe un grand nombre de résultats concernant les méthodes de type Newton ainsi que leurs extensions sur des variétés lisses. Par exemple, les articles [START_REF] Alvarez | A unifying local convergence result for Newton's method in Riemannian manifolds[END_REF][START_REF] Ferreira | Local convergence of Newton's method under a majorant condition in Riemannian manifolds[END_REF][START_REF] Ferreira | Kantorovich's theorem on Newton's method in Riemannian manifolds[END_REF] étendent le théorème de Kantorovich et [START_REF] Dedieu | Newton's method on Riemannian manifolds: covariant alpha theory[END_REF] affine la théorie de Smale afin de trouver une singularité d'un champ de vecteurs lisse. Si f est une fonction à valeurs réelles lisse définie sur une variété M, alors tout point critique de f est une singularité de son gradient grad f , ce qui résout l'équation grad f (p) = 0. En outre, l'article [START_REF] Wang | Extended Newton's method for mappings on Riemannian manifolds with values in a cone[END_REF] considére l'inclusion 0 ∈ f (p) + C, où C ⊂ R n est un cône et f : M -→ R n est au moins de classe C 2 . En utilisant la méthode introduite dans [START_REF] Robinson | Extension of Newton's method to nonlinear functions with values in a cone[END_REF] et la technique dans [START_REF] Wang | Convergence of Newton's method and inverse function theorem in Banach space[END_REF], les auteurs de [START_REF] Wang | Extended Newton's method for mappings on Riemannian manifolds with values in a cone[END_REF] ont étudié les théorèmes de Kantorovich et Smale pour la suite d'approximation d'une solution du problème 0 ∈ f (p) + C. Avec les motivations mentionnées ci-dessus, nous traitons le problème de résolution numérique d'une inclusion de la forme 0 ∈ ϕ(p) + Φ(p),

où ϕ : M -→ R n est une application lisse et Φ : M ⇒ R n est une multi-application ayant un graphe fermé. Remarquons que, (1.7) est réduite à celle étudiée dans [START_REF] Wang | Extended Newton's method for mappings on Riemannian manifolds with values in a cone[END_REF] en prenant Φ(p) ≡ C. En posant dans (1.7), Le Chapitre 3 est consacré aux théorèmes de convergence de Kantorovich et de Smale pour les équations généralisées. Ceci a fait l'objet d'une publication dans la revue internationale "Journal of Mathematical Analysis and Applications" [START_REF] Adly | Newton's method for solving generalized equations: Kantorovich's and Smale's approaches[END_REF], en collaboration avec S. Adly et H.V. Ngai. Le Chapitre 4 introduit une méthode de type Newton de résolution des équations généralisées (1.2) en approximant à la fois la partie univoque et multivoque. Des résultats concernant la convergence de l'algorithme proposé ont été prouvés. (Ce chapitre est basé sur le manuscrit [START_REF] Adly | Stability of metric regularity with set-valued perturbations and application to Newton's method for solving generalized equations[END_REF] soumis à la revue internationale "Set-Valued and Variational Analysis"). Le Chapitre 5 prend en compte un algorithme de Newton-type pour la résolution des inclusions qui impliquent des applications multi-valuées définies sur des variétés riemanniennes. Les ingrédients principaux de ce chapitre sont basés sur la géométrie riemannienne, ainsi que des outils de l'analyse variationnelle, où la propriété de régularité métrique est un point clé. (Ce chapitre est basé sur le manuscrit [4] soumis à la revue internationale "Journal of Convex Analysis").

Φ(p) = {0} où ϕ = (V 1 , . . . , V m ), avec V 1 , .

English Introduction

Solving nonlinear equations is a basic problem which has a long history in the literature. Its importance is due to the fact that, nonlinear equations appear in many fields of applications, not only mathematics itself. There were many techniques seeking the solutions of such a problem. It is well-known in the literature that the classical Newton's method and its extensions are among of the most popular and efficient ones. This success is related to the good behavior of convergence of the Newton iterative sequence under a good choice of suitable starting point. We refer to the textbooks e.g. [START_REF] Dedieu | Points Fixes, Zéros et la Méthode de Newton[END_REF][START_REF] Deuflhard | Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms[END_REF][START_REF] Kelley | Iterative Methods for Linear and Nonlinear Equations[END_REF][START_REF] Kollerstrom | Thomas Simpson and 'Newton's method of approximation': An enduring myth[END_REF][START_REF] Ortega | Iterative Solution of Nonlinear Equations in Several Variables[END_REF] for more details.

Because the phrase "Newton's method" frequently appears in this text, it is advantage for us to abbreviate it as "NM". Particularly, let's consider the equation f (x) = 0 where f : R m -→ R n is a given smooth map. Locally, the classical theory for NM states that, if f (x * ) = 0, the derivative Df (x * ) of f at x * is invertible (resp. the Jacobian Jac f (x * ) is nonsingular ) and Df is Lipschitz continuous around x * , then there exists a neighborhood Ω * of x * having the following property: for each starting point x 0 ∈ Ω * , the algorithm defined by

x k+1 = x k -[Df (x k )] -1 f (x k ) (1.9) 
converges Q-quadratically to x * . Otherwise, without the Lipschitz continuity property on Df , the rate of convergence might be just superlinear (cf. [START_REF] Izmailov | Newton-Type Methods for Optimization and Variational Problems[END_REF]).

The local convergence requires the informations around the solution x * , which is usually unknown. So, it is important to study other type of convergent results with different assumptions. One of the most famous ones is the classical Kantorovich's theorem (see e.g. in [START_REF] Ciarlet | On the Newton-Kantorovich theorem[END_REF][START_REF] Kantorovich | Functional Analysis[END_REF][START_REF] Ortega | The Newton-Kantorovich theorem[END_REF]). Following the paper [START_REF] Ortega | The Newton-Kantorovich theorem[END_REF], it seems that L.V. Kantorovich had given two proofs for this theorem. Firstly, he used recurrence relations to prove it, and then reformulated it by the technique of majorizing function. The reference theorem provides some sufficient conditions imposed on the initial data only 4 , which ensure both the existence of the Newton sequence and the error bounds for the convergence (usually named as R-quadratic). Later in the paper [START_REF] Gragg | Optimal error bounds for the Newton-Kantorovich theorem[END_REF], the authors reestablished that result with an optimal error bound using the approach of Kantorovich. A survey about Newton-Kantorovich theorem can be found in the paper by Galántai [START_REF] Galántai | The theory of Newton's method[END_REF]. There are many successful applications and extensions of such a theorem in different situations, for instance, see [START_REF] Ferreira | Local convergence of Newton's method in Banach space from the viewpoint of the majorant principle[END_REF][START_REF] Ferreira | Kantorovich's majorants principle for Newton's method[END_REF][START_REF] Ferreira | Convergence of the Gauss-Newton method for convex composite optimization under a majorant condition[END_REF][START_REF] Wang | Convergence of Newton's method and uniqueness of the solution of equations in Banach space[END_REF][START_REF] Zabreiko | A generalization of the Newton-Kantorovich method on an equation with nondifferentiable operators[END_REF].

Concerning the classical NM, the smoothness of f around a solution x * is 1. General Introduction essential. In more wider context, there were some generalizations for handling with equations involving nonsmooth maps, such as, the semismooth Newton method (see e.g. Klatte and Kummer [START_REF] Klatte | Nonsmooth Equations in Optimization: Regularity, Calculus, Methods and Applications[END_REF], Qi and Sun [START_REF] Qi | A nonsmooth version of newton's method[END_REF], Ulbrich [START_REF] Ulbrich | Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces[END_REF]). Furthermore, these frameworks can be generalized to be applied to an extensive model named as generalized equations5 (GE). Historically, such studies trace back to the works of Bakushinskii [START_REF] Bakushinskii | A regularization algorithm based on the Newton-Kantorovich method for solving variational inequalities[END_REF], Josephy [START_REF] Josephy | Newton's method for generalized equations[END_REF], and Robinson [START_REF] Robinson | Point-to-Set Maps and Mathematical Programming, chapter Generalized equations and their solutions, part I: Basic theory[END_REF][START_REF] Robinson | Strongly regular generalized equations[END_REF][START_REF] Robinson | Optimality and Stability in Mathematical Programming, chapter Generalized equations and their solutions, part II: Applications to nonlinear programming[END_REF]. The readers are referred to the monograph by Izmailov and Solodov [START_REF] Izmailov | Newton-Type Methods for Optimization and Variational Problems[END_REF] and also the recent paper [START_REF] Izmailov | Newton-type methods: A broader view[END_REF] for an overview. In general form, a GE is defined as follows find x ∈ X such that 0 ∈ f (x) + F (x).

(1.10)

Here, f : X -→ Y is a continuous map between two Banach spaces X, Y while F : X ⇒ Y is a set-valued map (or multifunction). Throughout this thesis, f is always assumed to be C 1 at least on some open convex set of X and F has a closed graph. The model (1.10) covers a lot of applications in mathematics, engineering and sciences. Depending specific form on the set-valued term F , problem (1.10) becomes a feasibility problem (F (x) ≡ K), a variational inequality or a complementarity problem (F (x) coincides with the normal cone to a closed convex set or closed convex cone, respectively). Further discussions on those subjects can be found in the literature, e.g. [START_REF] Facchinei | Finite-Dimensional Variational Inequalities and Complementarity Problems[END_REF][START_REF] Facchinei | Finite-Dimensional Variational Inequalities and Complementarity Problems[END_REF][START_REF] Klatte | Nonsmooth Equations in Optimization: Regularity, Calculus, Methods and Applications[END_REF].

In some situations, it is possible to transform problem (1.10) into an equation, by using for example the normal maps introduced by S.M. Robinson [73] for solving variational inequalities. For instance, the PATH solver, based on normal maps and nonsmooth Newton method, is one of the most popular solver for solving numerically mixed complementarity problems [START_REF] Ferris | Complementarity problems in GAMS and the PATH solver[END_REF].

Unfortunately, this technique can not be adapted for GE of the form (1.10) with an arbitrary set-valued F (•). As an alternative solution, it may be natural to deal directly with (1.10) instead of transforming it to an equation. In particular, a Newton-type method for solving (1.10) in the case of variational inequalities (VIs) was proposed in [START_REF] Bakushinskii | A regularization algorithm based on the Newton-Kantorovich method for solving variational inequalities[END_REF] (under the monotonicity assumption of f ) and [START_REF] Josephy | Newton's method for generalized equations[END_REF]. We notice that in the approach of the papers [START_REF] Bakushinskii | A regularization algorithm based on the Newton-Kantorovich method for solving variational inequalities[END_REF][START_REF] Josephy | Newton's method for generalized equations[END_REF], the normal cone could be replaced by any set-valued F .

Newton-type algorithm applies to an abstract GE (1.10), known as the Josephy-Newton method (JNm), appeared in the works by Dontchev [START_REF] Dontchev | Local convergence of the Newton method for generalized equations[END_REF][START_REF] Dontchev | Uniform convergence of the Newton method for Aubin continuous maps[END_REF]. Precisely, the algorithm starts at a point x 0 nearby a solution, and generates an approximating sequence (x k ) by solving the subproblem

0 ∈ f (x k ) + Df (x k )(x -x k ) + F (x)
( 1.11) to obtain new iteration x k+1 . The linear approximation f (x k ) + Df (x k )(•x k ) for f can be treated in a more general abstract setting .12) where A k : X × X ⇒ Y is a sequence, which should satisfy some general assumptions to approximate f in a neighborhood of the solution. The special case where A k in (1.12) is single-valued has been discussed in the monograph [START_REF] Dontchev | Implicit Functions and Solution Mappings: A View from Variational Analysis[END_REF], while a general consideration for set-valued maps approximation was studied in the paper Adly et al. [START_REF] Adly | Newton's method for solving inclusions using set-valued approximations[END_REF]. Much more on Newton-type schemes (exact and inexact) for GEs can be found in [START_REF] Bonnans | Local analysis of Newton-type methods for variational inequalities and nonlinear programming[END_REF][START_REF] Dias | On the Newton method for set-valued maps[END_REF][START_REF] Dontchev | Convergence of inexact Newton methods for generalized equations[END_REF][START_REF] Izmailov | The Josephy-Newton method for semismooth generalized equations and semismooth SQP for optimization[END_REF][START_REF] Uko | Generalized equations and the generalized Newton method[END_REF][START_REF] Xiao | A nonsmooth Newton method for variational inequalities, I: theory[END_REF][START_REF] Xiao | A nonsmooth Newton method for variational inequalities, II: numerical results[END_REF].

0 ∈ A k (x k+1 , x k ) + F (x k+1 ), k = 0, 1, . . . ( 1 
In [START_REF] Dontchev | Local analysis of Newton-type method based on partial linearization[END_REF], A.L. Dontchev has stated some results (both local and semi-local versions) involving extended Kantorovich theorem for the framework of (1.11). His proofs were based on the concept of local metric regularity property for set-valued maps, which played a similar role as the invertibility of the first-order derivative in the original version by Kantorovich. A similar approach is able to be found in [START_REF] Rashid | Convergence analysis of the Gauss-Newton-type method for Lipschitz-like mappings[END_REF]. However, Dontchev required in his semi-local theorem the informations not only about the starting point x 0 but also x 1 . While in [START_REF] Rashid | Convergence analysis of the Gauss-Newton-type method for Lipschitz-like mappings[END_REF], the authors focused on the behavior of f + F around the reference point (x, ȳ) ∈ Gr(f + F ). We shall discuss in Chapter 3 our Kantorovich-type theorems for solving (1.10) together with a brief comparison with the ones presented in [START_REF] Dontchev | Local analysis of Newton-type method based on partial linearization[END_REF] and [START_REF] Rashid | Convergence analysis of the Gauss-Newton-type method for Lipschitz-like mappings[END_REF]. We show that, for local case, under the assumptions related to metric regularity of Df (x * )(•)+F (•) (x * is assumed to be a solution of (1.10)) as well as the information on the second derivative D 2 f in a neighborhood of x * , there exists a sequence (x k ) by (1.11) which converges Q-quadratically to x * . On the other hand, by invoking the metric regularity of Df (x 0 )(•) + F (•) (here x 0 indicates the starting point) and the behavior of D 2 f around x 0 , the algorithm (1.11) induces a sequence converging R-quadratically to a solution.

Beside the theorem of Kantorovich, the so-called (α, γ)-Smale's theories [START_REF] Blum | Complexity and Real Computation[END_REF][START_REF] Smale | The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics[END_REF] are also fundamental results in numerical analysis. Applied to an equation f (x) = 0, where f is supposed to be analytic, the (α, γ)-Smale's theories provided some sufficient criteria guaranteeing the quadratic convergence (to a solution) for the Newton sequence under estimation only at the solution (for γ-theory) and respectively the starting point (α-theory). As a comparison, Kantorovich's theorem used the information of the first and second order derivatives Df and D 2 f in a neighborhood of x 0 , while the Smale's α-theorem requires the analyticity of f at x 0 and used all derivatives D j f (x 0 ), j ∈ N. In some situations, the second approach is more convenient in practice than the first one since the maximum of the norm D 2 f (•) over a neighborhood of starting point x 0 could not be easy to compute. After Smale's work, many researches have tried to improve and extend the classical (α, γ)-theorems into a large class of problems, see e.g. [START_REF] Deren | The theory of Smale's point estimation and its applications[END_REF][START_REF] Shen | Smale's α-theory for inexact Newton methods under the γ-condition[END_REF][START_REF] Wang | Convergence of Newton's method and inverse function theorem in Banach space[END_REF][START_REF] Yakoubsohn | Finding zeros of analytic functions: α-theory for secant type methods[END_REF]. Nevertheless, there are almost very few results, to the best of our knowledge, that study problem (1.10) related to Smale's approach. This will be the purpose of Chapter 3, which is based on the paper [START_REF] Adly | Newton's method for solving generalized equations: Kantorovich's and Smale's approaches[END_REF], considered to be the first one to adapt Smale's theories for GE (1.10).

Following the aforementioned discussion, the Josephy-Newton framework used some representation of a partial linearization of the sum f + F at each iteration. More precisely, when x k is known, one replaces f by its linearization at this point and consider the auxiliary problem (1.11) instead of (1.10). This is also the case for other methods applied to GE (1.10), such as inexact Newton method [START_REF] Dontchev | Convergence of inexact Newton methods for generalized equations[END_REF] and quasi-Newton method [START_REF] Aragón Artacho | Local convergence of quasi-Newton methods under metric regularity[END_REF]. In most of these works, the partial linearization is operated only on the single-valued part f . In their paper [START_REF] Gaydu | A Newton iteration for differentiable setvalued maps[END_REF], M. Gaydu and M.H. Geoffroy proposed a local scheme for which both f and F could be approximated. This was achieved by using the concept of set-valued differentiation introduced by C.H.J. Pang [START_REF] Jeffrey Pang | Generalized differentiation with positively homogeneous maps: Applications in set-valued analysis and metric regularity[END_REF]. The algorithm produces a sequence (x k ) through solving successively subproblems of the form .13) where H : X ⇒ Y is a positively homogeneous mapping, which is a strictly derivative of F [START_REF] Gaydu | A Newton iteration for differentiable setvalued maps[END_REF][START_REF] Jeffrey Pang | Generalized differentiation with positively homogeneous maps: Applications in set-valued analysis and metric regularity[END_REF] at solution x * ∈ X of (1.10). The key strategy of (1.13) is to take

0 ∈ f (x k ) + Df (x k )(x k+1 -x k ) + H(x k+1 -x k ) + F (x k ), k = 0, 1, . . . ( 1 
f (x k ) + Df (x k )(• -x k ) + H(• -x k ) + F (x k
) as an approximation for f + F throughout the iterative process. Otherwise, the algorithm (1.13) requires keeping a same mapping H(•) for all iterations, which itself must be a set-valued derivative of F at x * . Nevertheless, such a solution is commonly unknown in practice.

Concerning with the current work, we will propose in Chapter 4 an extension of (1.13) for solving GE (1.10). Let H : X -→ PH (X, Y ) be a given map from X to the set PH (X, Y ) of all homogeneous mappings between X and Y . Then, at any step x k , one updates the next iteration x k+1 by solving the auxiliary problem

0 ∈ f (x k ) + Df (x k )(x -x k ) + H(x k )(x -x k ) + F (x k ).
( 1.14) It is clear that (1.13) can be subsumed as a particular case of (1. In recent decades, the idea of iterative method on Riemannian manifolds have been developed by many authors. These researches were motivated by problems appearing in many applications, such as, constrained optimization, singular decomposition, matrix approximations, independent component analysis, etc. For example, the eigenvalue problem can be reformulated into the form of minimizing a smooth real-valued function defined on some suitable manifolds (e.g. the Rayleigh quotient on unit sphere [1]). Regarding the survey about motivation and applications of the methods on manifolds, see the books [1,[START_REF] Udrişte | Convex Functions and Optimization Methods on Riemannian Manifolds[END_REF] and also [2,3,[START_REF] Edelman | The geometry of algorithms with orthogonality constraints[END_REF][START_REF] Hosseini | Nonsmooth optimization techniques on Riemannian manifolds[END_REF][START_REF] Li | Weak sharp minima on Riemannian manifolds[END_REF][START_REF] Ring | Optimization methods on Riemannian manifolds and their application to shape space[END_REF][START_REF] Smith | Optimization techniques on Riemannian manifolds[END_REF].

Up to now, there exists a lot of results concerning the Newton-type method as well as its extension applied to smooth manifolds. For instance, the papers [START_REF] Alvarez | A unifying local convergence result for Newton's method in Riemannian manifolds[END_REF][START_REF] Ferreira | Local convergence of Newton's method under a majorant condition in Riemannian manifolds[END_REF][START_REF] Ferreira | Kantorovich's theorem on Newton's method in Riemannian manifolds[END_REF]] extend Kantorovich's theorem, and [START_REF] Dedieu | Newton's method on Riemannian manifolds: covariant alpha theory[END_REF] refines the Smale's theory in order to find a singularity of a smooth vector field. If f is a smooth real-valued function defined on a manifold M, then any critical point of f is a singularity of its gradient grad f , which solves the equation grad f (p) = 0. Furthermore, the paper [START_REF] Wang | Extended Newton's method for mappings on Riemannian manifolds with values in a cone[END_REF] considered the inclusion 0 ∈ f (p) + C, where C ⊂ R n is a cone and f : M -→ R n is at least C 2 . Using the method introduced in [START_REF] Robinson | Extension of Newton's method to nonlinear functions with values in a cone[END_REF] and the technique in [START_REF] Wang | Convergence of Newton's method and inverse function theorem in Banach space[END_REF], the authors of [START_REF] Wang | Extended Newton's method for mappings on Riemannian manifolds with values in a cone[END_REF] have investigated Kantorovich's and Smale's theorems for the approximating sequence of a solution of problem 0 ∈ f (p) + C.

With the motivation mentioned above, we deal with the problem of solving an inclusion of the form 0 ∈ ϕ(p) + Φ(p), (1.15) in which ϕ : M -→ R n is a smooth map and Φ : M ⇒ R n has a closed graph.

General Introduction

Noticing that, (1.15) is reduced to the one studied in [START_REF] Wang | Extended Newton's method for mappings on Riemannian manifolds with values in a cone[END_REF] by taking Φ(p) ≡ C.

Otherwise, by setting in (1.15) Φ(p) = {0} along with ϕ = (V 1 , . . . , V m ), where V 1 , . . . , V m are the components of representation for the vector field V with respect to some chosen frame {E 1 , . . . , E m } 6 , the considering model (1.15) again recovers problem of singularity for vector field in the literature.

In the same spirit of (1.10), we shall make use of partial linearization in order to generate the successive approximations of a solution to (1.15). Precisely, when having an iteration p k , let's follow a retraction R k at the current step, and replace (1.15) by the following inclusion

0 ∈ ϕ(p k ) + Dϕ(p k )(u) + (ΦR k ) (u), (1.16) 
to obtain a search direction u k . Then, we update p k+1 = R k (u k ) as the new iteration. Thanks to a suitable choice of the set-valued part Φ and the retractions R k , ( 1.16) can be viewed as a continuation of Newton's method presented in [START_REF] Dedieu | Newton's method on Riemannian manifolds: covariant alpha theory[END_REF][START_REF] Ferreira | Kantorovich's theorem on Newton's method in Riemannian manifolds[END_REF][START_REF] Wang | Extended Newton's method for mappings on Riemannian manifolds with values in a cone[END_REF]. Following the same strategy, we prove in Chapter 5 the local and semilocal convergence of ( 1.16) with some assumptions imposed on the structure of the manifold as well as the behavior of the retractions R k . Again, the notion of metric regularity property for set-valued map plays an important role in our analysis.

The whole content of this dissertation is organized as follows. The current chapter is an introduction. Chapter 2 recalls some basic backgrounds and notations which will be used throughout the thesis. Chapter 3 is devoted to the Kantorovich's and Smale's convergence theorems for generalized equations studied in [START_REF] Adly | Newton's method for solving generalized equations: Kantorovich's and Smale's approaches[END_REF]. Chapter 4 introduces a kind of Newton-type method solving GE (1.10) by approximating both single and multi-valued parts. In addition, we provide some results concerning the convergence of the proposed algorithm. (This chapter is based on the manuscript [START_REF] Adly | Stability of metric regularity with set-valued perturbations and application to Newton's method for solving generalized equations[END_REF]). The next chapter takes into account a Newton-type algorithm for solving inclusions which involve set-valued maps defined on Riemannian manifolds. The main material for that chapter is based on Riemannian geometry as well as variational analysis, where metric regularity property is a key point. 6 as knew from the basis of differential geometry, such a frame is natural Chapter 2

Preliminaries

We recall in this chapter some preliminaries and notations that will be used throughout the thesis. The basic tools come from variational analysis and Riemannian geometry, where the metric regularity property of set-valued maps is a key concept. The author prefers to adopt the notations given in [START_REF] Dontchev | Implicit Functions and Solution Mappings: A View from Variational Analysis[END_REF][START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation I: Basic Theory[END_REF][START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation II: Applications[END_REF] for basic background of variational analysis and those used in [START_REF] Carmo | Riemannian Geometry. Mathematics: Theory & Applications[END_REF][START_REF] Sakai | Riemannian Geometry[END_REF] for the notion of differential geometry.

Elementary Notations and Concepts

Unless other specifications, throughout this text, the term "space" is meant to be Banach space, which is usually denoted by upper characters X, Y , etc. The dual of X will be written as X * while •, • will be the general duality pairing between X and X * . For simplicity, all norm are denoted by a common notation • , and d(•, •) stands for the distance function. There might be no confusion when using

• , and d(•, •) to indicate norm and distance of any Banach space. In fact, the space will be determined by the context or by the objects on which either norm or distance function acts. Functions (also, single-valued maps) are conventional written by normal character f , g while capital ones like F , G are often regarded set-valued maps. As usual, the open (closed) ball in X with center x and radius r is denoted by B X (x, r) (resp. BX (x, r)). When dealing with the unit balls, we write B X (open) and BX (closed) respectively. In a certain situation, the space is itself clear by the context, so we frequently omit the subscripts in these notations.

The basic notions of Banach space theory are assumed to be familiar, details are referred to the textbooks [START_REF] Fabian | Functional Analysis and Infinite-Dimensional Geometry[END_REF][START_REF] Fabian | Banach Space Theory: The Basis for Linear and Nonlinear Analysis[END_REF] and references therein.

One may also need some set operators on Banach space. Let K and K ′ be two subsets of X, then their sum is defined by

K + K ′ = u + u ′ : u ∈ K, u ′ ∈ K ′ , and K + ∅ = ∅. If u ∈ X, then u + K ′ represents the sum K + K ′ with K = {u}.
Furthermore, for a scalar λ and a subset ∅ = K ⊂ X, the product λK is meant to be the set λu : u ∈ K . K is called a cone if λK ⊂ K whenever λ 0. If λK + (1λ)K ⊂ K holds for every λ ∈ [0, 1], the reference set is convex.

Given now two Banach spaces X and Y , and let f : X -→ Y be a (singlevalued) map. If f is Fréchet differentiable at a point x ∈ X (see [START_REF] Fabian | Banach Space Theory: The Basis for Linear and Nonlinear Analysis[END_REF]), then by Df (x) we mean the first derivative of f at x. Otherwise, we use the notation D k f for the k-order Fréchet derivative whenever it exists. If D k f is well-define, and v ∈ X, then expression D k f (x)(v) k stands for the value of k-linear operator

D k f (x) taken at k-multiple (v, . . . , v) ∈ X k .
To end this section, we introduce the concept of analytic maps.

Definition 2.1 ([15]

). A map f : X -→ Y is called to be analytic at x ∈ X if all derivatives D k f (x) exist, and there is a neighborhood B(x, ε) of x such that

f (y) = k 0 1 k! D k f (x)(y -x) k , for all y ∈ B(x, ε). (2.1) 
If f is analytic at every point of an open set U , then one says that f is analytic on U .

When f is analytic at x, then the radius of convergence for Taylor's series in the right-hand side of (2.1) can be given as follows [START_REF] Dedieu | Points Fixes, Zéros et la Méthode de Newton[END_REF] R(f, x) -1 := lim sup

k→∞ 1 k! D k f (x) 1/k . ( 2.2) 

Set-Valued Map, Generalized Differentiation

Throughout this dissertation, we frequently work with set-valued maps, which assign each element in the source space to a subset (maybe empty) of destination space. In the scope of this text, the terminologies mapping, multivalued map and multifunction are used as the same meaning with set-valued map while "map" is itself used for single-valued one. Any mapping T : X ⇒ Y can be identified to its graph Gr T := (x, y) ∈ X × Y : y ∈ T (x) . The domain Dom T of T is the set of all elements whose image by T is nonempty. If Gr T is a closed set, then we say that T is closed itself. When Gr T is a cone in X × Y , T is called to be a positively homogeneous mapping. Sometimes, the notation PH (X, Y ) will refer to the collection of all positively homogeneous mappings. For each T ∈ PH (X, Y ), one defines its outer norm as the quantity [START_REF] Jeffrey Pang | Generalized differentiation with positively homogeneous maps: Applications in set-valued analysis and metric regularity[END_REF][START_REF] Rockafellar | Variational Analysis, volume 317 of Grundlehren der mathematischen Wissenschaften[END_REF] |T | + := sup

w 1 sup z∈T (w) z . (2.3) 
Notice that, |T | + < +∞ implies T (0) = 0 (cf. [START_REF] Jeffrey Pang | Generalized differentiation with positively homogeneous maps: Applications in set-valued analysis and metric regularity[END_REF]). The rest of this section is left to present some concepts related to generalized differentiation for multifunctions. Firstly, we recall the notion of coderivative. Definition 2.2 (normal cones, [START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation I: Basic Theory[END_REF]). Given a nonempty subset Ω of a Banach space X.

For ε 0, the ε-normal cone of Ω at x ∈ Ω is defined by

N ε Ω (x) = x ⋆ ∈ X * : lim sup y→x,y∈Ω x ⋆ , y -x y -x ε , (2.4) 
and N ε Ω (x) := ∅ for x / ∈ Ω. In the case ε = 0, the corresponding cone is usually called as Fréchet normal cone N Ω (x) to Ω at x.

The following set

N Ω (x) := x ⋆ ∈ X * : ∃x k → x, ε k ց 0, x ⋆ k ∈ N ε k Ω (x k ) with x ⋆ k w * -→ x ⋆ (2.5)
is said to be limitting normal cone to Ω at x ∈ X.

In (2.5), expression x ⋆ k w * -→ x ⋆ means that, the sequence x ⋆ k converges to x ⋆ in the weak-star topology of X * . So, when X is finite dimension, this simply reads

x ⋆ k → x ⋆ .
According to the Definition 2.2, it is clear that N Ω (x) ⊂ N Ω (x). If the opposite inclusion is also true, which is the same as N Ω (x) = N Ω (x), the set Ω is said to be (Clarke) regular at reference point x.

Definition 2.3 (coderivative). Let T : X ⇒ Y be a given mapping between two Banach spaces X, Y and (x, ȳ) ∈ Gr T . The regular (Fréchet) coderivative D * T (x, ȳ) : Y * ⇒ X * and limitting coderivative D * T (x, ȳ) : Y * ⇒ X * are setvalued maps determined as follows. One has x ⋆ Ω x (b): Ω fails to be regular, x ⋆ is in N Ω (x), while N Ω (x) = {0}. According to [START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation I: Basic Theory[END_REF], if f : X -→ Y is differentiable at x then D * f (x) = Df (x) * , where A * is the dual of linear and continuous operator A. One similar relation also holds for limitting coderivative under restricted condition that f is strictly differentiable at x. Recalling strict differentiability means that lim sup

x ⋆ ∈ D * T (x, ȳ)(y ⋆ ) ⇐⇒ (x ⋆ , -y ⋆ ) ∈ N Gr T (x, ȳ) (2.6) and x ⋆ ∈ D * T (x, ȳ)(y ⋆ ) ⇐⇒ (x ⋆ , -y ⋆ ) ∈ N Gr T (x, ȳ) . ( 2 
x =x ′ →x f (x)-f (x ′ )-A(x-x ′ )
x-x ′ = 0 for A = Df (x). Concerning the computation of coderivatives, let us present now a sum rule proved in [START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation I: Basic Theory[END_REF].

Theorem 2. 4. Given a map f : X -→ Y and a mapping F : X ⇒ Y . Let (x, ȳ) ∈ Gr F and suppose f is differentiable at x. Then

D * (f + F )(x, z)(y ⋆ ) = Df (x) * (y ⋆ ) + D * F (x, ȳ)(y ⋆ ), z = f (x) + ȳ, (2.8) 
where (f + F )(x) := f (x) + F (x). Furthermore, in the case f is strictly differentiable at x, then (2.8) is still valid with respect to the limitting coderivative.

Finally, we end-up this section by recalling the notion of set-valued differentiability in the sense of C.H.J. Pang [START_REF] Jeffrey Pang | Generalized differentiation with positively homogeneous maps: Applications in set-valued analysis and metric regularity[END_REF]. This will be an essential material for the developments in Chapter 4.

Definition 2. [START_REF] Adly | Newton's method for solving inclusions using set-valued approximations[END_REF]. Consider two multivalued maps S : X ⇒ Y and T : X ⇒ Y where T ∈ PH (X, Y ).

S is called to be outer T -differentiable at x ∈ Dom(S) if for any δ > 0 there exists a neighborhood V of x such that S(x) ⊂ S(x) + T (xx) + δ xx B, for all x ∈ V.

(2.9)

S is inner T -differentiable at x if (2.9
) is replaced by

S(x) ⊂ S(x) -T (x -x) + δ x -x B, x ∈ V.
(2.10)

S is T -differentiable if it is both outer and inner T -differentiable.
We say that S is strictly T -differentiable at x if for any δ > 0 there exists a neighborhood V of x such that

S(x ′ ) ⊂ S(x) + T (x ′ -x) + δ x -x B, for all x, x ′ ∈ V.
(2.11)

x x y S(•) T (•) Fig. 2.3: S is T -differentiable at x S(•) T (•)
x x y Fig. 2.4: S fails to be T -differentiable at x

Lipschitz Continuity and Metric Regularity

It is well-known that a map f : X -→ Y is Lipschitz continuous on a set D ⊂ X along with a modulus κ provided that f (x)f (x ′ ) κ xx ′ holds for any pair x, x ′ in D. In order to extend such a property to a set-valued map, we need the excess as well as Hausdorff distance defined for two subsets of a space. (2.12)

Lipschitz Continuity and Metric Regularity

with convention e ∅, K ′ = 0 when K ′ = ∅ and e ∅, ∅ = +∞. Here, as usual, the distance d x, K ′ is given by the infimum d x, K ′ = inf xu : u ∈ K ′ . The Hausdorff distance between K and K ′ is defined as

d H K, K ′ = max e K, K ′ , e K ′ , K . (2.13) 
Alternatively, we can represent the expression (2.12) in the other form e K, K ′ = inf τ > 0 : K ⊂ K ′ + τ B . Analogously, one has (see e.g. [START_REF] Dontchev | Implicit Functions and Solution Mappings: A View from Variational Analysis[END_REF]) 

d H K, K ′ = sup x∈X d x, K -d x, K ′ . e(K, K ′ ) d H (K, K ′ ) e(K ′ , K) K K ′ Fig.
d H S(x), S(x ′ ) κ x -x ′ , for all x, x ′ ∈ Ω. ( 2.14) 
One says that S : Y ⇒ X has the Aubin property around (ȳ, x) ∈ Gr S providing there are a constant κ > 0 along with some neighborhoods V of ȳ and U of x such that e S(y) ∩ U, S(y ′ ) κ yy ′ , whenever y, y ′ ∈ V .

( .15) This property is also known in the literature as pseudo-Lipschitz or Lipschitzlike. For brevity, we write κ ∈ Lipmod S, Ω to indicate a Lipschitz modulus κ > 0 with respect to the data S, Ω satisfying (2.14). In addition, we also denote Lip S(ȳ, x) the infimum of all parameter κ > 0 for which (2.15) holds under some neighborhoods V of ȳ and U of x. Conventionally, we set Lip S(ȳ, x) = +∞ in the case (2.15) is absent.

It is evident to see that, the notion of Lipschitz continuity defined by (2.14) covers the usual one for a single-valued case. On the other hand, pseudo-Lipschitz property was also known to be equivalent to another important concept which is presented below. Definition 2.8 (metric regularity, [START_REF] Ioffe | Metric regularity and subdifferential calculus[END_REF]). Let T : X ⇒ Y be a given mapping. T is called to be metrically regular on a set V ⊂ X × Y with a modulus τ > 0 if

(x, y) ∈ V =⇒ d x, T -1 (y) τ d y, T (x) . (2.16) 
The mapping T is (locally) metrically regular around (x, ȳ) ∈ Gr T if there exists τ > 0 so that (2.16) holds in the case V is a neighborhood of (x, ȳ). Infimum of all such moduli τ > 0 is denoted by Reg T (x, ȳ).

For shortness, let's write τ ∈ Regmod(T, V) to indicate the property (2.16). Also, the infimum of all τ > 0 for which (2.16) fulfills will be denoted by Reg V (T ).

Local metric regularity property of a mapping T around a point (x, ȳ) implies the validity of pseudo-Lipschitz continuity for S = T -1 at (ȳ, x) and vice versa. More precisely, one has (see [START_REF] Dontchev | Implicit Functions and Solution Mappings: A View from Variational Analysis[END_REF][START_REF] Ioffe | Metric regularity and subdifferential calculus[END_REF][START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation I: Basic Theory[END_REF])

Reg T (x, ȳ) = Lip T -1 (ȳ, x).
(2.17)

Ultimately, we discuss a well-known characterization of regularity modulus through coderivative. According to the complication of its full proof, it will be skipped here and left to the references e.g. [START_REF] Mordukhovich | Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions[END_REF][START_REF] Rockafellar | Variational Analysis, volume 317 of Grundlehren der mathematischen Wissenschaften[END_REF].

Theorem 2.9 (Mordukhovich criterion). For a closed multifunction Φ : R m ⇒ R n and a pair (x, ȳ) in Gr Φ, then Φ is metrically regular around (x, ȳ) if and only if

0 ∈ D * Φ(x, ȳ)(y ⋆ ) =⇒ y ⋆ = 0, (2.18) 
or equivalently,

|D * Φ -1 (ȳ, x)| + < +∞. In such a case, one has Reg Φ(x, ȳ) = |D * Φ -1 (ȳ, x)| + .
In terms of normal cone, Mordukhovich criterion can be reformulated as (see an illustration shown in Figures 2.6 and 2.7)

Reg Φ(x, ȳ) < +∞ ⇐⇒ ({0} × R n ) ∩ N Gr Φ (x, ȳ) = {(0, 0)} . ( 2 

.19)

A similar criterion treating with semi-local 1 modulus of regularity around any point has been investigated in the work [START_REF] Mordukhovich | Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions[END_REF]. The readers are referred to [START_REF] Mordukhovich | Differential characterizations of covering, metric regularity, and Lipschitzian properties of multifunctions between Banach spaces[END_REF] for 2. 4. Backgrounds from Riemannian Geometry complete characterization of metric regularity property in infinitely dimensional case. As a direct consequence, a C 1 map f : R m -→ R n admits the metric regularity property at x if its derivative Df (x) is surjective, i.e., the Jacobian Jac f (x) has full-row rank (Graves theorem [24, Chapter 5]). 

Backgrounds from Riemannian Geometry

This section is devoted to some basic backgrounds of differential geometry which will be needed for the developments of Chapter 5. With the goal of unifying the notations, the manifolds are written by calligraphic uppercases like M, N , etc. The term "map" always indicates single-valued map defining on some manifold, and "function" is meant to be a map takes value in the real line R. In addition, the word "smooth" will be differentiable up to a necessary order (at least C 1 ).

Fundamentals on Smooth Manifolds

Definition 2.10 (smooth manifold, [START_REF] Carmo | Riemannian Geometry. Mathematics: Theory & Applications[END_REF][START_REF] Sakai | Riemannian Geometry[END_REF]). Let M be a nonempty set. It is a smooth manifold (or variety) of dimension m if there exists a family of injective maps

x α : U α -→ M where U α is an open subset of R m such that: (i) α U α = M; (ii) for any α and β, if W = x α (U α ) ∩ x β (U β ) = ∅, then both x -1 α (W ) and x -1 β (W )
are open sets in R m , and the composition x -1 β • x α is smooth; (iii) the family x α , U α is maximal relative to properties (i) and (ii).

Such a collection x α , U α satisfies (i) and (ii) is called a smooth structure on M. If p ∈ x α (U α ), then the pair x α , U α (or x α for shortness) is a parametrization (equivalently, a system of coordinate) of M at p. Smooth structure forms a topology on M (see [START_REF] Carmo | Riemannian Geometry. Mathematics: Theory & Applications[END_REF]). A few important examples for smooth manifolds are vector spaces; m-unit sphere S m , orthogonal group O m [1]; manifold of positively definite matrices P os m [START_REF] Bhatia | Positive Definite Matrices[END_REF][START_REF] Lang | Fundamentals of Differential Geometry[END_REF]; the real RP m projective spaces [START_REF] Carmo | Riemannian Geometry. Mathematics: Theory & Applications[END_REF]; the Lie groups [START_REF] Lee | Manifolds and Differential Geometry[END_REF].

Definition 2.11 (smooth maps, [START_REF] Carmo | Riemannian Geometry. Mathematics: Theory & Applications[END_REF]). Given two smooth manifolds M and N . A map ϕ : M -→ N is said to be smooth at p ∈ M provided that for each parametrization y : V -→ N of N at ϕ(p), there exists a corresponding one

x : U -→ M of M at p such that the composition y -1 • ϕ • x is well-defined on a neighborhood of x -1 (p)
and is smooth at that point.

Hence, a function f : M -→ R is smooth at p if for some local coordinate

x : U -→ M with p ∈ x(U ) one has f • x is smooth (by considering the natural smooth structure (id, R) on R). We will denote by F(p) the collection of all functions defined on a neighborhood of p and smooth at p. Similarly, notation F(Ω) indicates the set of all smooth functions whose domains contain Ω. A tangent vector (or velocity) of smooth curve γ : I -→ M at t 0 ∈ I is a derivation γ ′ (t 0 ) defined by the following rule

γ ′ (t 0 )f := d dt (f • γ) t=t 0 , ∀f ∈ F(M). (2.20) 
A tangent vector to M at p is defined as γ ′ (0) for some smooth curve γ on M with γ(0) = p. The set of all such vectors is the tangent space T p M of M at p (see Fig. 2.8).

Sometimes, the velocity γ ′ is also denoted as γ or dγ dt . All tangent spaces are vectorial of the same dimension as the original manifold M. Definition 2.13 (tangent bundle and vector field). For a given manifold M of dimension m, its tangent bundle T M can be viewed as the disjoint union of all tangent spaces T M := (p, v p ) : v p ∈ T p M . T M endowed a natural smooth structure with dimension 2m (cf. [START_REF] Carmo | Riemannian Geometry. Mathematics: Theory & Applications[END_REF][START_REF] Lee | Riemannian Manifolds: An Introduction to Curvature[END_REF]).

A vector field on M is a smooth map V : M -→ T M so that V (p) ∈ {p} × T p M, i.e., its valued at p is a tangent vector at the reference point p. To avoid some undesired complexity, we usually write V p ∈ T p M as the value of V at p so that V (p) = (p, V p ). We also denote by V(Ω) the set of all smooth maps defined on Ω ⊂ M whose values are in the tangent bundle of M.

Given now V ∈ V(Ω) and f ∈ F(Ω). The action of V on f is a function V f defined on Ω as follows. For each p ∈ Ω, the value of V f at p is V p f . Recall that V p f ∈ R makes sense due to Definition 2.12, since V p ∈ T p M.
Let W be another smooth vector field and f ∈ F(Ω), then we can apply V to the function W f and obtain a new object V W by the rule (

V W )f := V (W f ). Finally, the Lie bracket [V, W ] of V and W is a vector field defined by [V, W ] = V W -W V .
We finish this subsection by recalling the differential of a smooth map.

Definition 2. [START_REF] Ciarlet | On the Newton-Kantorovich theorem[END_REF]. Let ϕ : M -→ N be a map which is smooth at p. The differential of ϕ at p, written as dϕ p (or also dϕ(p)), is a linear map from T p M into T ϕ(p) N . This map is given by the formula

[dϕ p (v)]f := v(f • ϕ), v ∈ T p M, f ∈ F(N ). Alternatively, taking a smooth curve γ with γ(0) = p and γ ′ (0) = v, then dϕ p (v) = (ϕ • γ) ′ (0).

Riemannian Metric, Covariant Derivative and Parallelism

Until now, we have dealt with basic objects on Riemannian geometry. Firstly, we discuss the metric structure on a manifold. Definition 2.15 (Riemannian metric). A Riemannian metric g on M is a correspondence which assigns to each p ∈ M an inner product •, • p on T p M varies smoothly in p by the sense described as follows. Let x : U -→ M be a local coordinate at p, and ∂ i = ∂ ∂x i be the vector field such that

(∂ i ) q f = ∂(f •x) ∂x i (x -1 (q)). Then all maps g i,j (u) := (∂ i ) x(u) , (∂ j ) x(u) x(u) are smooth on U .
A manifold endowed with a Riemannian metric becomes a Riemannian manifold (of the same dimension). Here and in the sequel, the term "manifold" always refers to Riemannian sense. For a given smooth path γ : [a, b] -→ M, one defines its arc length (shortly, length) as the quantity

ℓ(γ) = b a γ ′ (t) γ(t) dt = b a γ ′ (t), γ ′ (t) 1/2 γ(t) dt, (2.21) 
where

• z = •, • 1/2 z
stands for the norm induced on T z M. If such a path γ is just piecewise smooth, i.e. there is an partition

t 0 = a < t 1 < . . . < t k = b in I for which γ| (t i ,t i+1 ) is smooth, then ℓ(γ) is the sum taken over all components ℓ γ| [t i ,t i+1 ] .
The distance function on M will be defined as follows

d R (p, q) := inf ℓ(γ) : γ is a piecewise smooth path connecting p to q . (2.22)
It is well-known in the literature that M endowed with distance d R (•, •) is a metric space whose topology coincides with the initial topology of the variety [START_REF] Lang | Fundamentals of Differential Geometry[END_REF][START_REF] Lee | Riemannian Manifolds: An Introduction to Curvature[END_REF]. Definition 2.16 (connection). An affine connection ∇ is a map ∇ : V(M) × V(M) -→ V(M) which sends a pair of vector fields (X, Y ) into another one ∇(X, Y ) := ∇ X Y satisfying the three conditions below:

(i) ∇ f 1 X 1 +f 2 X 2 Y = f 1 ∇ X 1 Y + f 2 ∇ X 2 Y ; X j , Y ∈ V(M), f j ∈ F(M) (ii) ∇ X (Y + Z) = ∇ X Y + ∇ X Z; X, Y, Z ∈ V(M) (iii) ∇ X (f Y ) = (Xf )Y + f ∇ X Y ; X, Y ∈ V(M), f ∈ F(M).
Here the operator f Y means a vector field that (f

Y ) p = f (p)Y p . Additionally, ∇ is said to be a Riemannian (or, Levi-Civita) connection if it is symmetric (i.e. [X, Y ] ≡ ∇ X Y -∇ Y X) and is compatible with the Riemannian metric X Y, Z = ∇ X Y, Z + Y, ∇ X Z . (2.23) 
In what follows, all connection under consideration are always Riemannian connection. This kind of concept plays an essential roles for further analysis later. In particular, it allows us to develop the covariant theory for vector fields and for functions as an extension of usual differentiation on Euclidean spaces. A vector field V along a curve γ : I -→ M is a correspondence assigning each t ∈ I to V (t) ∈ T γ(t) M. One says that a vector field V is smooth iff any map f V (t) := V (t)f 2. 4. Backgrounds from Riemannian Geometry is smooth for all f ∈ F(M). The set of all such objects is denoted by V(γ).

Proposition 2.17 (covariant derivative of vector field, [START_REF] Carmo | Riemannian Geometry. Mathematics: Theory & Applications[END_REF][START_REF] Lee | Riemannian Manifolds: An Introduction to Curvature[END_REF]). Given a smooth curve γ : I -→ M. There exists a (unique) operator D γ dt assigning V ∈ V(γ) to

D γ dt (V ) = D γ V dt ∈ V(γ) such that: (i) D γ dt (aV + bW ) = a D γ dt (V ) + b D γ dt (W ); V, W ∈ V(γ), a, b ∈ R. (ii) D γ dt (f V ) = f ′ V + f D γ dt (V ); V ∈ V(γ), f : I -→ R is smooth. (iii) If V (t) = Y γ(t) for Y ∈ V(M) then D γ dt = ∇ γ ′ Y .
The field D γ V dt in Proposition 2.17 is the covariant derivative of V along γ. It allows us to define the notion of parallellism along a curve as in the next definition.

Definition 2.18 (parallelism). A vector field V along the curve γ

: I -→ M is parallel if its covariant derivative is vanishing D γ dt V ≡ 0. For a, b ∈ I, the associated parallel transport P a,b γ : T γ(a) M -→ T γ(b) M along γ is a map determined as follows. If v ∈ T γ(a) M, then the initial value problem V (a) = v, D γ V dt (t) = 0, V ∈ V(γ) (2.24) 
has a unique solution (see [START_REF] Lee | Riemannian Manifolds: An Introduction to Curvature[END_REF]), and one sets

P a,b γ (v) := V (b)
, where V is solution of the system (2.24). Finally, we describe a short survey of covariant derivation corresponding to a smooth map which takes value in an Euclidean space. Let f be a smooth function, one defines its covariant derivative Df by setting

Df (p)(u) = (∇ X f ) (p) := (Xf )(p), u ∈ T p M, (2.25) 
for X ∈ V(M) such that X p = u. The gradient grad f (p) of f at p is a vector given by grad f (p), u := (Xf )(p), X ∈ V(M), X p = u.

(2.26)

Let F = (f 1 , . . . , f m ) : M -→ R n be a smooth map. The covariant derivative DF (p) of F at p ∈ M satisfies the expression DF (p)(u) := Df 1 (p)(u), • • • , Df n (p)(u) . The map DF (p) is a linear transformation from T p M into R m [16].

Geodesic, Retraction, Vector Transportation

Definition 2.19 (geodesic). Let γ : I -→ M be a given smooth curve on a manifold M. γ is said to be a geodesic if and only if its velocity is parallel along γ itself, i.e., ∇ γ ′ γ ′ ≡ 0.

On R m endowed with Euclidean metric, any geodesic is just a straight line. On the unit sphere S 2 with the metric inherited from Euclidean distance, then geodesic is one of its great circles.

It is well-known that, for each pair (p, u) of the tangent bundle, there exists a geodesic passes through p with velocity u which is defined on an open interval of the real line numbers. If such a geodesic can be extended onto the whole R, we say that it is a geodesic line. The manifold having property that all geodesics are defined on R is said to be geodesically complete (shortly, complete). Due to the Hopf-Rinow theorem [START_REF] Carmo | Riemannian Geometry. Mathematics: Theory & Applications[END_REF][START_REF] Lee | Riemannian Manifolds: An Introduction to Curvature[END_REF][START_REF] Sakai | Riemannian Geometry[END_REF], such a situation takes place if the corresponding metric space M, d R is complete (and vice versa). In the scope of this dissertation, all manifolds under consideration are assumed to be complete. where γ(p,u,•) stands for the geodesic on M going through p at the instance t = 0 with velocity dγ(p,u,•) dt (0) = u. For q ∈ M, the exponential exp q (•) at q is the restriction of Exp onto tangent space T q M. More precisely, exp q (v) := Exp(q, v) for v ∈ T q M. The exponential maps are very important objects (for instance, smooth curves minimizing the arc length are geodesic [START_REF] Carmo | Riemannian Geometry. Mathematics: Theory & Applications[END_REF]). At any point p of M there exists a normal neighborhood which is convex [START_REF] Carmo | Riemannian Geometry. Mathematics: Theory & Applications[END_REF][START_REF] Lang | Fundamentals of Differential Geometry[END_REF]. Convexity means that, for any pair of points (p, q) there is a geodesic joining p to q. Alternatively, a subset Ω ⊂ M is said to be strongly convex if the minimizing geodesic linking two points p and q is contained in Ω whenever p ∈ Ω and q ∈ Ω.

Definition 2.20 (exponential map). Given a complete Riemannian manifold M of finite dimension. The exponential map is defined by sending

(p, v) ∈ T M into Exp(p, u) = γ(p, u, 1) ∈ M,

Backgrounds from Riemannian Geometry

Although they have many fine properties, the exponential maps might be often expensive to compute in practice due to the complexity of solving ordinary differential equations on manifolds. Instead of that, one can consider some other replacing objects named as retraction. In fact, most of the developments presented in Chapter 5 are based on those. Definition 2.21 (retraction, [1]). Let p be in a manifold M. Retraction at p is a smooth map R p from the tangent space T p M into M itself such that:

(i) R p (0 p ) = p, where 0 p is the origin of T p M; (ii) under the canonical identification T 0p T p M ≃ T p M, one has dR p (0 p ) = id TpM . (2.27) If R p is defined for every p in M, we call R : (p, u) -→ R p (u) is the retraction of tangent bundle.
Condition (ii) in Definition 2.21 can be seen as local rigidity condition (see more in [1]). Together with (i), it tells us that, for each u ∈ T p M, the correspondence t -→ R p (tu) forms a smooth curve passing to p with velocity u. Rigidity permits us to establish the local property below, which is motivated from the existence of normal neighborhoods above.

Proposition 2.22 (retraction normal pair). Suppose that the domain of retraction R contains a set of the form (q, v) : q ∈ Ω, v ∈ T q M , where Ω ⊂ M is open. Then, there exists a pair of real-valued functions λ R , ι R : Ω -→ (0, +∞) for which the following statements hold. Given p ∈ Ω, and d R (q, p) < λ R (p), then the map R q is injective in the ball ι R (p)B q of the tangent space T q M. In addition, the ball in M with center p and radius λ R (p) is contained into the image R q (ι R (p)B q ) for every q with d R (p, q) < λ R (p).

Here, B q stands for the open unit ball of the tangent space T q M associated with the norm • q induced by Riemannian metric on M. A pair of functions in Proposition 2.22 is said to be a R-normal pair (shortly, normal pair) for Ω.

Proof. Fix p ∈ Ω and let x : U -→ M be a local coordinate at p = x(z). Then, it is possible to use (z, z) ∈ U ×U -→ (x(z), x(z)) as a local coordinate of M×M at (p, p). Consider the map given by F (q, v) := (q, R q (v)), q ∈ Ω, v ∈ T q M. We have F (p, 0 p ) = (p, p), and by virtue of the rigidity condition, the Jacobian matrix of F with respect to the parametrization above at (p, 0 p ) ∈ T M can be represented as Hence, the inverse mapping theorem is applicable. Based on this fact, we can follow the arguments of proving the existence theorem for normal neighborhood into our situation here. Because of this analogousness, the details should be omitted, and we refer to [START_REF] Lee | Riemannian Manifolds: An Introduction to Curvature[END_REF]Lemma 5.12] and [START_REF] Carmo | Riemannian Geometry. Mathematics: Theory & Applications[END_REF]Theorem 3.7] for full arguments.

It is easy to see that the exponential map is of course a retraction. Another general class of retractions which is generated from variation of exponential map was introduced in [START_REF] Ring | Optimization methods on Riemannian manifolds and their application to shape space[END_REF]. Those have a very interesting property, which represents the parallel transport in terms of differential of retraction. According to [1] 

and p R p (u) u u ′ T u (u ′ )
Fig. 2.11: Vector transportation on manifold [START_REF] Ring | Optimization methods on Riemannian manifolds and their application to shape space[END_REF], it might be reasonable to introduce the wide collection of transformations, that is, the so-called vector transport. An abstract transport is a map T (•) (•) defined on the Whitney sum T M ⊕ T M satisfying some certainly complement conditions. Up to the current text, we at most handle only the ones induced by the differential of a retraction. The next definition is in this sense.

Definition 2.23 (differentiated transportation). Given a retraction R p and let q be in M. We defines a vector transport T p,q R :

T p M -→ T q M by T p,q R (w) = (dR p ) ū (w) = d dt R p (ū + tw) t=0 , for R p (ū) = q.
(2.28)

If it has at least two vectors for ū in (2.28), then the chosen element will be specified clearly in the context.

Chapter 3

Josephy-Newton Method under Kantorovich's and Smale's Approaches

The current chapter deals with the convergence of Josephy-Newton method (JNm) applied to generalized equations with assumptions of type Kantorovich and Smale. Kantorovich-type convergence analyses for solving inclusions was studied by many authors e.g. in [START_REF] Dontchev | Local analysis of Newton-type method based on partial linearization[END_REF][START_REF] Rashid | Convergence analysis of the Gauss-Newton-type method for Lipschitz-like mappings[END_REF], whereas it seems to have very few papers which extend the Smale's theories to this universal context. The main results of this chapter concentrate on four convergent theorems in Section 3.2 and Section 3. 3. Recall that a generalized equation (GE) is of the form

0 ∈ f (x) + F (x), (3.1) 
while the JNm with respect to (3.1) is represented by recurrent procedure

0 ∈ f (x k ) + Df (x k )(x k+1 -x k ) + F (x k+1 ), k = 0, 1, . . . (3.2) 
A typical property of the scheme described in (3.2) is that, not all resulting sequences are convergent. For instance, Figure 3.1 shows a simple situation where (3.2) may produce a divergent Josephy-Newton sequence (JNseq). Nevertheless, if one of those converges, then the corresponding limit will be a solution of problem (3.1). This is due to the closedness of Gr(F ) which preserves the inclusion after letting the limit in (3.2).

At the beginning, let us examine a few results concerning the stability of metric regularity which play an essential role in our results.

x 0 x 2 x 1 x 4 x 3 -f (x) F (x)
x y Fig. 3.1: A Josephy-Newton sequence does not converge

Stability of Metric Regularity

The first theorem of this section is stated as follows. Considering some positive constants α, β such that

2α + βτ < min {a, δ/2} , β(τ + κ) < δ, 2cα + β(1 + cτ ) < b, (3.3 
)

with c := max {1, κ -1 }. If g : X -→ Y is a map satisfying L ∈ Lipmod(Ω, g)
for Ω = B(x, δ), and the sum Ψ = Φ + g has closed graph, then one has τ ∈ Regmod Ψ, V α,β , where V α,β = B(x, α) × B(ȳ + g(x), β).

The next theorem concerns with semi-local metric regularity property. For the convenience of reading, we introduce a useful notation. Corresponding to a given mapping T : X ⇒ Y , a point x ∈ X and two constants r > 0, s > 0 we define

V (T, x, r, s) := (x, y) ∈ X × Y : x -x r, d y, T (x) < s . (3.4) 
Using this notation, we are now in position to assert the result mentioned above.

Theorem 3.2 (semi-local stability). Let Φ : X ⇒ Y be a given closed mapping, and let x ∈ Dom(Φ). Let r > 0, s > 0, and suppose κ > 0 being such that κ ∈ Regmod Φ, V (Φ, x, r, s) . For some L ∈ (0, κ -1 ), we set τ = κ/(1 -κL). If g : X -→ Y is Lipschitz continuous on B(x, r) with a modulus L, and Ψ := Φ + g has closed graph, then it holds that τ ∈ Regmod Ψ, V (Ψ, x 0 , r ′ , s ′ ) , with r ′ = r/4 and s ′ = min s, r 5τ . Both Theorems 3.1 and 3.2 can be subsumed as particular cases of the ones proved in [START_REF] Adly | Newton's method for solving inclusions using set-valued approximations[END_REF]. Precisely, we just apply [5, Theorem 3.2] and [5, Theorem 6.2] with respect to a single-valued perturbation g. In the rest of this section, the author would suggest some developments based on two preceding theorems which follow a little different approach from [5, Theorem 3.2] and [5, Theorem 6.2]. Theorem 3.3 (local stability revisited). Given two closed mappings Φ : X ⇒ Y and G : X ⇒ Y from X to Y (both of them are Banach spaces). Assume that (x, ȳ) ∈ Gr(Φ) and V = B(x, r)×B(ȳ, s) is a neighborhood on which Φ is metrically regular with a modulus κ > 0. Consider some constants η > 0, L > 0, r ′ > 0 and

s ′ > 0 satisfying          κL < 1, 2 1-κL r ′ + κ 1-κL s ′ + κ 1-κL η < r, 2L 1-κL r ′ + 1 1-κL s ′ + 1 1-κL η < s. (3.5 
) Proof. Let κ ′ > κ and L ′ > L such that

Let z ∈ G(x) be such that e G(x), z η. If L ∈ Lipmod G, B(x, r) and the sum Ψ = Φ + G has closed graph, then Ψ is metrically regular on neighborhood V ′ = B(x, r ′ ) × B(ȳ + z, s ′ ) together with a modulus τ = 1 1-Lκ κ.
         κ ′ L ′ < 1, 2 1-κ ′ L ′ r ′ + κ 1-κ ′ L ′ s ′ + κ 1-κ ′ L ′ η < r, 2L ′ 1-κ ′ L ′ r ′ + 1 1-κ ′ L ′ s ′ + 1 1-κ ′ L ′ η ′ < s. (3.6) 
Pick (x, y) ∈ V ′ and suppose d y, Ψ (x) > 0 (the other case is trivial). Let R > d y, Ψ (x) and take a point w 0 ∈ G(x) with d yw 0 , Φ(x) < R. By setting x 0 = x and y 0 = yw 0 , we claim (x 0 , y 0 ) ∈ V. In fact, it is sufficient to verify y 0ȳ < s only. We have

y 0 -ȳ = y -(ȳ + z) -(w 0 -z) y -(ȳ + z) + w 0 -z y -(ȳ + z) + d w 0 , G(x) + e G(x), z ,
where the last inequality is due to the definition of e G(x), z . Since

w 0 ∈ G(x 0 ), 3.1. Stability of Metric Regularity it holds that d w 0 , G(x) d H G(x 0 ), G(x) L x 0 -x .
Consequently,

y 0 -ȳ y -(ȳ + z) + L ′ x 0 -x + e G(x), z < s ′ + L ′ r ′ + η < s.
From the assumption of metric regularity, we deduce

d x 0 , Φ -1 (y 0 ) κd y 0 , Φ(x 0 ) = κd y -w 0 , Φ(x) < κR. (3.7) 
On the other hand, we also have (x, y 0 ) ∈ V, which yields

d x, Φ -1 (y 0 ) κd y 0 , Φ(x) κ y 0 -ȳ < κ (s ′ + L ′ r ′ + η) .
Hence, the quantity d x 0 , Φ -1 (y 0 ) can be estimated as follows

d x 0 , Φ -1 (y 0 ) x 0 -x + d x, Φ -1 (y 0 ) < (1 + κL ′ ) r ′ + κs ′ + κη. (3.8) 
Thanks to (3.7) and (3.8), there is a point x 1 ∈ Φ -1 (y 0 ) satisfying

x 0 -x 1 < min κR, (1 + κL ′ ) r ′ + κs ′ + κη = β. (3.9) 
To see that x 1 is not outside the ball B(x, r), we use (3.9) and invoke (3.6)

x 1 -x x 1 -x 0 + x 0 -x < (1 + κL) r ′ + κs ′ + κη + r ′ = (2 + κL)r ′ + κs ′ + κη < r.
Remind w 0 ∈ G(x 0 ). By virtue of Lipschitz continuity for G, one has

d w 0 , G(x 1 ) d H G(x 0 ), G(x 1 ) L x 0 -x 1 < L ′ β.
Thus, there exists one element

w 1 ∈ G(x 1 ) such that w 0 -w 1 < L ′ β.
Passing to the inductive step, let's assume x 0 ∈ X, . . . , x k ∈ X and w 0 ∈ G(x 0 ), . . . , w k ∈ G(x k ) to be given. Additionally, suppose that

• x i+1 ∈ Φ -1 (y i ), with y i = y -w i , i = 0, . . . , k -1; • x i -x i+1 < (κ ′ L ′ ) j β, for each i k -1; • w i -w i+1 < L ′ (κ ′ L ′ ) j β, i = 0, . . . , k -1. If x k = x k-1
, we simply define x k+1 = x k . Otherwise, the next iteration x k+1 is obtained via the following procedure. First, according to the induction hypothesis, triangle inequality yields

x k -x k-1 j=0 x j+1 -x j + x 0 -x < k-1 j=0 (κ ′ L ′ ) j β + r ′ 1 1 -κ ′ L ′ (1 + κ ′ L ′ ) r ′ + κs ′ + κη + r ′ = 2 1 -κ ′ L ′ r ′ + κ 1 -κ ′ L ′ s ′ + κ 1 -κ ′ L ′ η < r.
This means x k ∈ B(x, r). Denoting y k = yw k , we get

y k -ȳ k-1 j=0 y j+1 -y j + y 0 -ȳ = k-1 j=0 w j+1 -w j + y 0 -ȳ < k-1 j=0 L ′ (κ ′ L ′ ) j β + s ′ + Lr ′ + η L ′ 1 -κ ′ L ′ (1 + κL ′ ) r ′ + κs ′ + κη + s ′ + L ′ r ′ + η = 2L ′ 1 -κ ′ L ′ r ′ + 1 1 -κ ′ L ′ s ′ + 1 1 -κ ′ L ′ η < s.
Based on the fact κ ∈ Regmod Φ, V , it follows that

d x k , Φ -1 (y k ) κd y k , Φ(x k ) κ y k -y k-1 = κ w k -w k-1 .
Taking into account

w k-1 -w k < L ′ (κ ′ L ′ ) k-1 β, the set Φ -1 (y k ) contains an element x k+1 satisfying x k -x k+1 < κL ′ (κ ′ L ′ ) k-1 β (κ ′ L ′ ) k β.
At last, from the Lipschitz continuity hypothesis of G, the evaluations

d w k , G(x k+1 ) d H G(x k ), G(x k+1 ) L x k -x k+1 < L ′ (κ ′ L ′ ) k β permit us to select w k+1 ∈ G(x k+1 ) with w k -w k+1 < L ′ (κ ′ L ′ ) k β.
Thanks to the construction above, both (x k ) and (w k ) are Cauchy sequences, so there exist the limits x * = lim

k→∞ x k and w * = lim k→∞ w k . Recalling y-w k = y k ∈ Φ(x k ) and w k ∈ G(x k ), we obtain y -w * ∈ Φ(x * ) and w * ∈ G(x * ) after letting k → ∞. Thus, y ∈ Φ(x * ) + G(x * ) = Ψ (x * ). By (3.9), the inequalities d x, Ψ -1 (y) x -x * = x 0 -x * k 0 x k -x k+1 k 0 (κ ′ L ′ ) k β 3.1. Stability of Metric Regularity tell us d x, Ψ -1 (y) 1 1-κ ′ L ′ κR.
Observe that κ ′ and L ′ are taken independently from x and y, whereas the quantity R can be arbitrarily close to d y, Ψ (x) . Thus, we deduce

d x, Ψ -1 (y) 1 1 -κL κd y, Ψ (x) = τ d y, Ψ (x) ,
and the proof is thereby completed.

To end up the current section, we consider a continuation version of Theorem 3.2. More precisely, we have the following theorem.

Theorem 3.4 (semi-local stability with additive perturbation). Consider a closed multifunction Φ between two Banach spaces X and Y , and let r > 0, s > 0 and κ > 0 be such that κ ∈ Regmod Φ, V (Φ, x, r, s) with x ∈ Dom(Φ). Let L, r ′ and s ′ be some positive constants fulfilling

Lκ < 1, r ′ + κ 1 -Lκ s ′ < r, s ′ s. Consider a set-valued map G : X ⇒ Y so that both G and Ψ = Φ + G are closed mappings. If L ∈ Lipmod (G, B(x, r)) then τ ∈ Regmod Φ, V (Ψ, x, r ′ , s ′ ) with τ = (1 -Lκ) -1 κ.
Obviously, by taking r ′ = r 4 and s ′ = min s, r 5τ in Theorem 3.4, we recover Theorem 3.2 immediately.

Proof. We are able to select α > 0 such that

λ = (L + α)κ < 1, r ′ + κ 1 -(L + α)κ s ′ < r. Fix a pair (x, y) ∈ V (Ψ, x, r ′ , s ′ ) with y / ∈ Ψ (x). Pick a constant R > 0 satisfying d y, Ψ (x) < R < s ′ .
The strategy is analogous as in proof of Theorem 3.3, that generates a sequence x k → x * and x * verifies the constraints below

y ∈ Ψ (x * ), x -x * κ 1 -(L + α)κ R. (3.10) 
Indeed, let x 0 = x, and choose some w 0 ∈ G(x 0 ) with d y, w 0 + Φ(x 0 ) < R. By setting y 0 = yw 0 , inclusion (x 0 , y 0 ) ∈ V Φ, x, r, s is valid as well. Thus,

d x 0 , Φ -1 (y 0 ) κd y 0 , Φ(x 0 ) < κR,
which shows that there is a point, says x 1 , such that x 0x 1 < κR. Thanks to the triangle inequality

x 1 -x x 1 -x 0 + x 0 -x < κR + r ′ < κ 1 -λ s ′ + r ′ < r, so x 1 lies inside the ball B(x, r).
Proceeding by induction, let's suppose that x 1 , . . . , x k ∈ B(x, r) are given points for some k 1. Moreover, according to the arguments above, it is possible to assume that the following conditions hold

• x j -x j+1 < λ j κR; j = 0, . . . , k -1; • x j+1 ∈ Φ -1 (y j )
, where y j = yw j and w j ∈ G(x j ), for j k -1.

If x k = x k-1 , we simply define x k+1 = x k . Otherwise, by using the Lipschitz continuity property for G, one has

d w k-1 , G(x k ) d H G(x k-1 ), G(x k ) L x k-1 -x k . Recalling x k-1 = x k , there exists an element w k ∈ G(x k ) agreeing with w k-1 -w k < (L + α) x k-1 -x k . Setting now y k = y -w k , we find d y k , Φ(x k ) y k -y k-1 = w k -w k-1 < (L + α) x k-1 -x k < (L + α)λ k-1 κR = λ k R < s.
This implies (x k , y k ) ∈ V Φ, x, r, s . Hence,

d x k , Φ -1 (y k ) κd y k , Φ(x k ) < κ(L + α) x k-1 -x k = λ x k-1 -x k .
Consequently, the set Φ -1 (y k ) must contain some point, called by x k+1 , which satisfies the estimate below

x k -x k+1 < λ x k-1 -x k < λ k κR.
Moreover, invoking triangle inequality many times, we deduce

x k+1 -x k j=0 x k -x j+1 + x 0 -x < k j=0 λ k κR + r ′ < κ 1 -λ s ′ + r ′ < r.
That is, x k+1 belongs to B(x, r). By inductive principle, the sequence (x k ) is well-defined, and indeed convergent. The rest of proof is analogous to the one of Theorem 3.3.

Local Convergence Analysis

Local Convergence Analysis

This section is left to the local convergence results for Josephy-Newton framework under conditions of type Kantorovich and Smale. First of all, we deal with the Kantorovich-type theorem. If 2K(τ, x * , r)r < 1, then for each x ∈ B(x * , ε), the algorithm (3.2) generates a sequence (x k ) initiating at x 0 = x and converging quadratically to

x * x k+1 -x * 1 2r x k -x * 2 , k = 0, 1 , 2, . . . (3.12) 
Proof. For shortness, let us denote K * = K(τ, x * , r). By using the mean value theorem for f , we achieve the following estimations

Df (x) -Df (x ′ ) τ -1 K * x -x ′ (3.13) and f (x) -f (x ′ ) -Df (x ′ )(x -x ′ ) 1 2 τ -1 K * x -x ′ 2 (3.14)
whenever x and x ′ are in B(x * , ε). We define

L = K * r τ 1 2τ , τ = τ 1-τ L and ν = ε 4τ . Then, it is possible to check that ν τ < r/2, ν(τ + τ ) < r, ν(1 + cτ ) < s, for c = max{1, τ -1 }.
Let's take a parameter µ > 0 for which the following relations are fulfilled 2µ + ν τ < r/2, ν(τ + τ ) < r, 2cµ + ν(1 + cτ ) < s.

Fixing now x 0 ∈ B(x * , ε). We set

z 0 = Df (x 0 )(x * ) -f (x * ) and Φ 0 (•) = Df (x 0 )(•) + F (•), then Φ 0 = Φ + g 0 , where g 0 = Df (x 0 ) -Df (x *
) is a linear perturbation. Invoking (3.13), we conclude g 0 L. So, by applying Theorem 3.1 with the data a = r, b = s and δ = r, one has τ ∈ Regmod(Φ 0 , V 0 ) for the neighborhood V 0 = B(x * , µ) × B(z 0 , ν). Put y 0 = f (x 0 ) -Df (x 0 )(x 0 ), we obtain

y 0 -z 0 = f (x * ) -f (x 0 ) -Df (x 0 )(x * -x 0 ) 1 2 τ -1 K * x * -x 0 2 < 1 2 τ -1 K * rε ν
after including (3.14). This shows that (x * , y 0 ) ∈ V 0 , and consequently, one gets

d x * , Φ -1 0 (y 0 ) τ d y 0 , Φ 0 (x * ) τ y 0 -z 0 K * 2(1 -τ L) x * -x 0 2 .
Taking into account 2rK * < 1 and τ L 1/2, we can select an element x 1 in the set Φ -1 0 (y 0 ) such that x *x 1 < 1 2r x *x 0 2 . The inclusion x 1 ∈ Φ -1 0 (y 0 ) can be rewritten as f (x 0 ) -Df (x 0 )(x 0 ) ∈ Df (x 0 )(x 1 ) + F (x 1 ), which implies that x 1 is generated by the Josephy-Newton scheme (3.2). Furthermore, since x *x 0 < ε r, we deduce x *x 1 < x *x 0 . Therefore, using x 1 as a new starting point, we obtain x 2 by a same way.

Repeating these arguments, we have a sequence (x k ) determined through (3.2) satisfying the recurrence (3.12). Thanks to the fact x *x 0 < r, (3.12) gives us x *x k 1 2 2 k -1 x *x 0 , and hence, the quadratic convergence follows. 

* = Df (x * )(x * ) -f (x * ). Suppose that τ ∈ Regmod Φ, V , for some τ > 0 and Φ(•) = Df (x * )(•) + F (•), V = B(x * , r) × B(y * , s). Define γ = γ(τ, f, x * ) = sup k 2 τ D k f (x * ) k! 1 k-1 . Let ψ(t) = 2t 2 -4t + 1 and let ρ = 3- √ 7 2
≈ 0.17712 . . . be the smallest root of the equation 2tψ(t) = 0. Pick a number ε > 0 such that B(x * , ε) ⊂ U and

ε < min 1 2θ r, 1 1 + θ r ′ , τ 1 + θ r ′ ; with θ = (1 -ρ) 2 ψ(ρ) > 1.
If x 0 ∈ B(x * , ε) and x 0x * γ < ρ, then there exists a sequence (x k ) produced by (3.2) which obeys the following recurrent relation

x k -x * γ ψ(ρ) x k-1 -x * 2 , k = 1, 2, . . . (3.15) 
In other words, x k converges Q-quadratically to x * .

Proof. Observe that if (3.15) is fulfilled, then we can prove that

x k -x * γ ψ(ρ) x 0 -x * 2 k -1 x 0 -x * ρ ψ(ρ) 2 k -1 ε.
Thus, under the hypotheses of Theorem 3.7, the convergence is straightforward.

Let's go back the main proof. We shall need some auxiliary estimations

Df (z) -Df (x * ) τ -1 γ 2 -γ z -x * (1 -γ z -x * ) 2 z -x * , (3.16a) f (x * ) -f (z) -Df (z)(x * -z) τ -1 γ (1 -γ z -x * ) 2 z -x * 2 , (3.16b) for z ∈ U ∩ B x * , γ -1 ρ . Indeed, by using D j f (x * ) j! τ -1 γ j-1 , it is possible to verify that lim sup j→∞ D j f (x * ) j! 1/j γ . Thus, when z ∈ U ∩ B x * , γ -1 ρ , the expression f (z) = j 0 D j f (x * ) j!
(zx * ) j holds. As a result, we find

Df (z) -Df (x * ) = j 2 j D j f (x * ) j! (z -x * ) j-1 , (3.17a) f (x * ) -f (z) -Df (z)(x * -z) = j 2 (j -1) D j f (x * ) j! (z -x * ) j , (3.17b) 
after differentiating with respect to z. Since D j f (x * ) j!

τ -1 γ j-1 , (3.16a) and (3.16b) are induced from (3.17a), (3.17b) and the expansions below

j 1 (j + 1)q j = 1 (1 -q) 2 -1, j 1 jq j = q (1 -q) 2 ; |q| < 1.
Now let x 0 be in assertion of Theorem 3.7. We follow the same idea as the previous theorem. We use again the notations Φ 0

(•) = Df (x 0 )(•) + F (•), g 0 = Df (x 0 ) -Df (x * ), z 0 = Df (x 0 )(x * ) -f (x * ) ∈ Φ 0 (x * ) and y 0 = Df (x 0 )(x 0 ) -f (x 0 ). Set L = τ -1 ρ(2-ρ) (1-ρ) 2 < τ -1 , τ = τ 1-Lτ , c = max {1, τ -1 } and pick ν = τ -1 ε > 0.
Then, by a few simple computations, the following inequalities

ν τ < r 2 , ν(τ + τ ) < r, ν(1 + cτ ) < r ′
are concomitantly valid. This permits us to select µ > 0 satisfying

2µ + ν τ < r/2, ν(τ + τ ) < r, 2cµ + ν(1 + cτ ) < s.
In view of (3.16a), one has g 0 L, so Theorem 3.1 gives us τ ∈ Regmod(Φ 0 , V 0 ). Here, V 0 indicates the neighborhood B(x * , µ) × B(z 0 , ν). Denoting σ 0 = x 0x * , we infer from (3.16b) that

y 0 -z 0 = f (x * ) -f (x 0 ) -Df (x 0 )(x * -x 0 ) τ -1 γ (1 -γσ 0 ) 2 x 0 -x * 2 < τ -1 ρ (1 -ρ) 2 ε < ν.
In other words, the pair (x * , y 0 ) belongs to V 0 . As a result, we obtain

d x * , Φ -1 0 (y 0 ) τ d y 0 , Φ 0 (x * ) τ 1 -τ L y 0 -z 0 1 1 -τ L γ (1 -γσ 0 ) 2 x 0 -x * 2 < γ ψ(ρ) x 0 -x * 2 .
Therefore, Φ -1 0 (y 0 ) possesses an element x 1 such that x *x 1 < γ ψ(ρ) x 0x * 2 . To continue, let's notice that γ ψ(ρ) x 0x * < ρ (1-ρ) 2 < 1, which implies x 1 ∈ B(x * , σ 0 ). Thus, the preceding process can be reiterated by starting at the new point x 1 instead of x 0 . Consequently, there exists a sequence (x k ) being completely defined through Josephy-Newton scheme (3.2) for which the recurrence relation (3.15) is valid at all. According to (3.15), the quadratic convergence for (x k ) follows.

Remark 3.8. Let us notice that both Theorem 3.5 and 3.7 used the informations around the solution x * . Generally, it is not easy to localize such a solution and to have information about the local behavior of the sum f + F around x * . So, it seems to be more useful to concentrate the assumptions only on data around a chosen starting point. This is the goal of the next section.

Extensions of Kantorovich's and α-Smale's

Theorems

The current section is devoted to present some convergence results which involve only the informations imposed on the starting data. The first one is a Kantorovichtype theorem for Josephy-Newton framework of (3.2). Theorem 3.9 (Kantorovich-type theorem). Let f and F be similar as in Theorem 3. [START_REF] Adly | Newton's method for solving inclusions using set-valued approximations[END_REF]. For τ > 0, ε > 0 and z ∈ U with B(z, ε) ⊂ U we define

β(τ, z) := τ d 0, f (z) + F (z) , K(τ, z, ε) := τ sup z ′ -z ε D 2 f (z ′ ) .
Let x ∈ U and α ∈ (0, 1] be given. Suppose that the following conditions are fulfilled:

(i) the mapping Φ(•) = Df (x)(•) + F (•) is metrically regular on the set V = V (Φ, x, 4r, s) with a modulus τ > Reg V (Φ), and B(x, r) ⊂ U ; (ii) d 0, f (x) + F (x) < s; (iii) 2β(τ, x)K(τ, x, r) α; (iv) 2ηβ(τ, x) r, with η = 1 1+ √ 1-α .
Then, problem (3.1) admits a solution x * such that xx * 2ηβ(τ, x). Moreover, starting at x 0 = x, algorithm (3.2) generates a sequence x k → x * satisfying the next statement: if α < 1, then one has

x k -x * 4 √ 1 -α α θ 2 k 1 -θ 2 k β(τ, x), θ = 1 - √ 1 -α 1 + √ 1 -α , (3.18) 
while in the case α = 1 it holds that

x k -x * 2 -k+1 β(τ, x). (3.19) 
Proof. Let x satisfy the hypotheses of Theorem 3.9. For simplicity, we denote K = K(τ, x, r), β = β(τ, x). If β = 0, then there is nothing to prove. Skipping this trivial case, we consider β > 0. The proof will be subdivided into several steps.

• Generating a majorizing sequence (t k ).

Let ω(t) = α 4β t 2t + β be a quadratic polynomial accepting t * = 2 1+ √ 1-α β as the smallest real root. Following the work [START_REF] Gragg | Optimal error bounds for the Newton-Kantorovich theorem[END_REF], the Newton method applied to equation ω(t) = 0 with t 0 = 0 induces a strictly increasing sequence by relation

t k+1 = t k -ω ′ (t k ) -1 ω(t k ). Furthermore, when α < 1, the error bound      t * -t k 4 √ 1-α α θ 2 k 1-θ 2 k (t 1 -t 0 ) = 4 √ 1-α α θ 2 k 1-θ 2 k β, 2(t k+1 -t k ) 1+ 1+4θ 2 k (1+θ 2 k ) -2 t * -t k θ 2 k-1 (t k -t k-1 ) (3.20) is valid. Otherwise, if α = 1, then (3.20) is replaced by    t * -t k 2 -k+1 (t 1 -t 0 ) = 2 -k+1 β, 2 √ 2 -1 (t k+1 -t k ) t * -t k t k -t k-1 . (3.21) 
Particularly, we can prove by induction that

t k+1 -t k α 1 + √ 1 -α -2 β; k = 1, 2, . . . (3.22) 
• Constructing a sequence (x k ) such that x k+1x k < t k+1t k .

Let

x 0 = x, Φ 0 (•) = Df (x 0 )(•) + F (•), τ 0 = τ , r 0 = r and s 0 = s. Denoting V 0 = V (Φ 0 , x 0 , 4r 0 , s 0 ), then there is τ0 ∈ Regmod Φ 0 , V 0 with τ0 < τ 0 . For y 0 = Df (x 0 )(x 0 ) -f (x 0 ), one has d y 0 , Φ 0 (x 0 ) = d 0, f (x 0 ) + F (x 0 ) = d 0, f (x) + F (x) < s,
which implies (x 0 , y 0 ) ∈ V 0 . Invoking τ0 ∈ Regmod Φ 0 , V 0 , we find

d x 0 , Φ -1 0 (y 0 ) τ0 d y 0 , Φ 0 (x 0 ) < τ d 0, f (x) + F (x) = β.
Thus, there exists x 1 ∈ Φ -1 0 (y 0 ) satisfying x 0x 1 < β = t 1 -t 0 . In addition, the inclusion

x 1 ∈ Φ -1 0 (y 0 ) gives us Df (x 0 )(x 0 ) -f (x 0 ) ∈ Φ 0 (x 1 ), which is equivalent to Df (x 0 )(x 0 ) -f (x 0 ) ∈ Df (x 0 )(x 1 ) + F (x 1 )
. In other words, x 1 is obtained via the scheme (3.2).

We proceed to the inductive step. Assume that x 1 , . . . , x k are generated by the framework of (3.2) and x j+1x j < t j+1t j for j k -1. We have

x k -x k-1 j=0 x j+1 -x j < k-1 j=0 (t j+1 -t j ) = t k < t * = 2ηβ r. Set Φ k (•) = Df (x k )(•) + F (•), and g k = Df (x k ) -Df (x), then Φ k = Φ + g k . Using the mean value theorem for f , we can check that g k τ -1 K x k -x < τ -1 Kt k . Since t k < t * = 2ηβ r, we get g k < τ -1 Kt k 1 2 τ -1 .
Define some parameters 3.3. Extensions of Kantorovich's and α-Smale's Theorems

L k = Kt k , τ k = (1 -L k τ ) -1 τ , r k = r
4 and s k = min s, 4r 5τ k . Applying either Theorem 3.2 or Theorem 3.4, the mapping Φ k is metrically regular on the set

V k = V Φ k , x, r k , s k with modulus τ k . Let y k = Df (x k )(x k ) -f (x k ), we claim (x k , y k ) ∈ V k . Indeed, it is sufficient to prove only d y k , Φ k (x k ) < s k . Recall that x k satisfies (3.2), we deduce d y k , Φ k (x k ) y k -[-f (x k-1 ) + Df (x k-1 )(x k-1 )] = f (x k ) -f (x k-1 ) -Df (x k-1 )(x k -x k-1 )
.

Because of τ -1 K = sup z-x r D 2 f (z) , the mean value theorem applied to f yields

d y k , Φ k (x k ) 1 2 τ -1 K x k -x k-1 2 < τ -1 α 4β (t k -t k-1 ) 2 .
According to (3.22), it holds that t kt k-1 β. Thus, from the hypothesis that β = β(τ, x) < τ s, the estimation d y k , Φ k (x k ) < α 4 s < s is evident. Next, expanding the polynomial ω at center t k-1 , and exploiting the relation

t k - t k-1 = -ω ′ (t k-1 ) -1 ω(t k-1 ) one gets ω(t k ) = α (t k -t k-1 ) 2 /(4β). Thanks to the facts that 2K β -1 α and ω ′ (t k ) = αt k /(2β) -1, we obtain d y k , Φ k (x k ) < τ -1 ω(t k ) = -τ -1 ω ′ (t k ) (t k+1 -t k ) τ -1 (1 -Kt k ) (t k+1 -t k ) = τ -1 k (t k+1 -t k ) . Remind β 1+ √ 1-α 2
r. By invoking (3.22) once more, we deduce

d y k , Φ k (x k ) τ -1 k α 1 + √ 1 -α -2 1 + √ 1 -α 2 r < 4r 5τ k .
As a summary, d y k , Φ k (x k ) < s k .

Let us now apply the metric regularity property for

Φ k d x k , Φ -1 k (y k ) τ k d y k , Φ k (x k ) < t k+1 -t k .
Thus, it is possible to define x k+1 as an element in Φ -1 k (y k ) such that x kx k+1 < t k+1t k . The construction is thereby completed.

To finish the proof, we observe that Remark 3. [START_REF] Bakushinskii | A regularization algorithm based on the Newton-Kantorovich method for solving variational inequalities[END_REF]. A homologous result with Theorem 3.9 was established by Dontchev [START_REF] Dontchev | Local analysis of Newton-type method based on partial linearization[END_REF]. The assumptions and the conclusion of Theorem 3.9 are different from the ones proved in [21, Theorem 2]. Our hypotheses concern only the starting point x 0 , while in [21, Theorem 2] the author requires the informations depending not only on x 0 but also x 1 .

x k -x k+n n-1 j=0 x k+j -x k+j+1 n-1 j=0 (t k+j+1 -t k+j ) = t k+n -t k . ( 3 
Remark 3.11. Kantorovich-type result was also presented in [START_REF] Rashid | Convergence analysis of the Gauss-Newton-type method for Lipschitz-like mappings[END_REF]Theorem 3.2]. The difference between Theorem 3.9 and [67, Theorem 3.2] lies essentially on the used assumptions. In fact, the involved parameters as well as the region of the metric regularity are different. For Theorem 3.9, one needs the metric regularity property of Φ(•) = Df (x)(•)+F (•) on the set V (Φ, x, r, s), where x is the starting point. While, the authors supposed in [67, Theorem 3.2] the Lipschitzlike hypothesis for

Q -1 x (equivalently, Q x is metrically regular around (x, ȳ) ∈ Gr(f + F )), where Q x(•) = f (x) + Df (• -x) + F (•).
Additionally, the authors also required in [67, Theorem 3.2] a condition that lim x→x d ȳ, f (x) + F (x) = 0 (a kind of lower semicontinuity of f + F , which is almost unnecessary in Theorem 3.9). An illustration for comparing the applicability of two those results will be shown in the last section of this chapter.

In the same spirit to Theorem 3.9, an extension of Smale's α-theory was also investigated. Specifically, one has the following theorem. Theorem 3.12 (α-Smale type theorem). Let's consider problem (3.1) where f is analytic on an open subset U of X. For t > 0 and z ∈ U we define

β(t, z) = td 0, f (z) + F (z) , γ(t, f, z) = sup k 2 t D k f (z) k! 1 k-1 , α(t, f, z) = β(t, z)γ(t, f, z).
Let ψ(t) = 2t 2 -4t + 1 and let ᾱ ≈ 0.1307169 . . . be the smallest real root of the equation 2t -[ψ(t)] 2 = 0.

Assume that:

3. 3. Extensions of Kantorovich's and α-Smale's Theorems

(i) τ > Reg V (Φ), in which Φ(•) = Df (x)(•) + F (•) and V = V (Φ, x, 4r, s), (ii) d 0, f (x) + F (x) < s, (iii) ηβ(τ, x) r, with η = ᾱ+1- √ ᾱ2 -6 ᾱ+1 4 ᾱ , (iv) α(τ, f, x) ᾱ.
Then, it has a solution x * of (3.1) such that xx * ηβ(τ, x) r. For the initial point x 0 = x, algorithm (3.2) induces a sequence (x k ) converging to x * and obeying the following estimation

x k -x * C[ψ(ᾱ)] k 1 2 2 k -1 β(τ, x); C = ∞ j=0 1 2 2 j -1 . (3.24) 
Proof. Fix some point x satisfying Theorem 3.12. To simplify the notations, we write briefly β = β(τ, x), and γ = γ(τ, f, x). Throughout this proof, the estimate below will be useful

D 2 f (z) τ -1 2γ (1 -γ z -x ) 3 , if z ∈ U and γ z -x < 1 - 1 √ 2 . (3.25)
As in the proof of Theorem 3.7, on open set U ∩ B x, (1 -√ 2/2)γ -1 , the Taylor's expansion f (z) = j 0 D j f (x) j! (zx) j holds. Since f is analytic, we are able to differentiate with respect to z term-by-term, and therefore

D 2 f (z) = j 2 j(j -1) D j f (x) j! (z -x) j-2 . ( 3.26) 
Let us note that D j f (x) j! τ -1 γ j-1 . Thus, (3.25) can be obtained by taking the norm in (3.26) and then using the identical relation j 2 j(j -1)q j-2 = 2

(1-q) 3 , which is valid for all |q| < 1. Returning the main proof, we shall separate it into a few steps.

• Majorizing function.

Define ω(t) = 1 1-γt -2γt + ᾱ -1 and consider the equation ω(t) = 0. Choose t 0 = 0 as a starting point, the classical α-theorem by Smale [START_REF] Blum | Complexity and Real Computation[END_REF][START_REF] Smale | The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics[END_REF] can be applied here. This guarantees the existence of a sequence t k+1 = t kω ′ (t k ) -1 ω(t k ) which is strictly increasing and converges to the smallest root t * = ᾱ+1- √ ᾱ2 -6 ᾱ+1 4γ

of the equation ω(t) = 0. To continue the process, we define some scalar sequences (β k ), (γ k ) and (α k ) as follows

β k = ω ′ (t k ) -1 ω(t k ) , γ k = sup j 2 ω ′ (t k ) -1 ω (j) (t k ) j! 1/(j-1) , α k = β k γ k .
A simple computation yields β 0 = β and α 0 = ᾱ. According to [15, Lemme 133], we obtain by induction that

β k+1 1 -α k ψ(α k ) α k β k , α k+1 min α 0 , 1 [ψ(α k )] 2 α 2 k . (3.27) 
Exploiting the recurrence (3.27), we simultaneously prove that α k

1 2 2 k -1 α 0 and β k [ψ(α 0 )] n 1 2 2 n -1 β 0 . Hence, α k 1 2 2 k -1 ᾱ, β k [ψ(ᾱ)] k 1 2 2 k -1 β. (3.28) 
• Constructing the Josephy-Newton's sequence.

We shall generate by induction a sequence (x k ) which satisfies the error bounds x kx k+1 < β k . Here, (β k ) is defined in the preceding step. To begin, let x 0 = x. By an analogous argument as in proof of Theorem 3.9, there exists x 1 satisfying (3.2) and x 0x 1 < β(τ, x) = β = β 0 .

Passing to the induction part. Suppose that the iterations x 1 , . . . , x k are generated by (3.2) and, in addition, let's assume x jx j+1 < β j for j = 0, . . . , k -1. We consider the subproblem of solving

0 ∈ f (x k ) + Df (x k )(x -x k ) + F (x). Put Φ k (•) = Df (x k )(• -x k ) + F (•) and g k (•) = Df (x k )(• -x k ) -Df (x)(•), then Φ k = Φ+g k . The perturbation g k is obviously Lipschitz continuous with a modulus L k = Df (x k ) -Df (x) . Observe that x j -x j-1 i=0 x i -x i+1 < j-1 i=0 β i = j-1 i=0 (t i+1 -t i ) = t j , (3.29) 
where the facts

β i = |t i+1 -t i | = t i+1 -t i are used. A direct computation gives us t * = ᾱ + 1 - √ ᾱ2 -6ᾱ + 1 4γ < 1 - 1 √ 2 γ -1 .

Extensions of Kantorovich's and α-Smale's Theorems

Thus, the monotonicity of the sequence (t k ) permits us to write

x k -x < t k t * < 1 -1 √ 2 γ -1 .
Taking into account (3.25), the mean value theorem yields

L k = 1 0 D 2 f x + t(x k -x) (x k -x) dt < τ -1 1 0 2γt k (1 -tγt k ) 3 dt = τ -1 -1 + (1 -γt k ) -2 .
We introduce some parameters

τ k = τ 1-τ L k , r k = r 4 , s k = min s, 4r 5τ k and denote V k = V (Ψ k , x, r k , s k ).
Then, using either Theorem 3.2 or Theorem 3.4, it follows

that τ k ∈ Regmod Φ k , V k . To continue, let's denote y k = -f (x k ), and v k-1 = x k -x k-1 . Since x k satisfies (3.2), we deduce d y k , Φ k (x k ) = d y k , F (x k ) y k --f (x k-1 ) -Df (x k-1 )(v k-1 ) .
Recall that f is analytic, so the expression 

f (x k ) = f (x k-1 ) + Df (x k-1 )(v k-1 ) + 1 0 (1 -t)D 2 f (x k-1 + tv k-1 )(v k-1 ) 2 dt
d y k , Φ k (x k ) τ -1 1 0 (1 -t) 2γ [1 -γ(t k-1 + tβ k-1 )] 3 β 2 k-1 dt. It is possible to check that ω ′′ (t) = 2γ 2 (1-γt) 3 and ω ′ (t) = -γ ψ(γt) (1-γt) 2 . Therefore, d y k , Φ k (x k ) 1 τ γ 1 0 (1 -t)ω ′′ (t k-1 + tβ k-1 )β 2 k-1 dt = 1 τ γ ω(t k-1 + β k-1 ) -[ω(t k-1 ) + ω ′ (t k-1 )β k-1 ] = 1 τ γ ω(t k ) -[ω(t k-1 ) + ω ′ (t k-1 )(t k -t k-1 )] = 1 τ γ ω(t k ) = τ -1 ψ(γt k ) (1 -γt k ) 2 (t k+1 -t k ).
Here, the last equality is due to

t k+1 -t k = -ω ′ (t k ) -1 ω(t k ). According to γt k γt * < 1 -1 √ 2 , it holds that ψ(γt k ) (1 -γt k ) 2 . Otherwise, inasmuch as β k [ψ(ᾱ)] k 1 2 2 k -1 β 1 2 β and β = τ d 0, f (x) + F (x) < τ s, the relation d y k , Φ k (x k ) < s is now clear. On the other hand, remind τ k = τ 1-τ L k and L k < τ -1 [-1 + (1 -γt k ) -2 ], we find 1 τ k > τ -1 2 -(1 -γt k ) -2 = τ -1 ψ(γt k ) (1 -γt k ) 2 .
Consequently,

d y k , Φ k (x k ) < 1 τ k (t k+1 -t k ) = 1 τ k β k 1 2τ k β 1 2τ k r η = 2r τ k ᾱ ᾱ + 1 - √ ᾱ2 -6ᾱ + 1 < 4r 5τ k .
In other words, the pair (x k , y k ) belongs to V k . Thus,

d x k , Φ -1 k (y k ) τ k d y k , Φ k (x k ) < τ (1 -γt k ) 2 ψ(γt k ) τ -1 ψ(γt k ) (1 -γt k ) 2 (t k+1 -t k ) .
In summary, there is

x k+1 ∈ Φ -1 k (y k ) with x k -x k+1 < t k+1 -t k = β k . The sequence (x k ) is well-defined.
To end up the proof, we show that x k converges to some x * obeying (3.24). In fact, the series k 0 β k is convergent, since

β k = |t k+1 -t k | = t j+1 -t j . By virtue of x k -x k+1 < β k , (x k ) is a convergent sequence. Letting x * = lim k→∞
x k and taking into account the following relations

x -x * = x 0 -x * k 0 x k -x k+1 k 0 β k = k 0 (t k+1 -t k ) = t * , the inequality x -x *
ηβ(τ, x) is evident. Finally, to obtain (3.24), we invoke x kx * j k x jx j+1 j k β j and then apply (3.28).

Remark 3. [START_REF] Bonnans | Local analysis of Newton-type methods for variational inequalities and nonlinear programming[END_REF]. Theoretically, we can improve slightly the value of ᾱ in Theorem 3.12. Indeed, it is possible to take ᾱ as any positive number a < 1 -

1 √ 2 such that sup 0 t a t [ψ(t)] 2 = q(a) < 1. ( 3.30) 
(Concerning Theorem 3.12, q(ᾱ) is equal to 1 2 .) In his work [START_REF] Wang | Convergence of Newton's method and inverse function theorem in Banach space[END_REF], the author has developed the notion of Lipschitz continuity with L-average, and then applied to the study of Smale-type theory. Towards this development, he obtained a very good value ᾱ′ = 3 -2 √ 2 ≈ 0.17157 . . . Observe that if ᾱ is replaced by ᾱ′ in Theorem 3.12, then the majorizing equation ω 1 (t) = 1 1-γt -2γt + ᾱ′ -1 = 0 will admit 1 -1 √ 2 γ -1 as the smallest real solution.

Remark 3.14. As a particular case, problem (3.1) becomes nonlinear equation f (x) = 0 under restriction F = 0. Thus, it will be very interesting to expect either Theorem 3.9 or Theorem 3.12 recovers the corresponding classical theorem for Newton's method of solving equation. Unfortunately, this seems to be impossible. More precisely, the Kantorovich theorem cannot be recovered from Theorem 3.9 by letting F = 0 directly. A similar argument is also true for Theorem 3.12. Those failures are due to the fact that our involved parameters might be not the same as the classical ones.

Some Examples

Example 3.15 (An illustration for Remark 3.11). The purpose of this example is to sketch a comparison mentioned in Remark 3.11. We test a simple case in one dimension including f (x) = 1 3 x 3x + 1 and F (x) = [0, +∞), x ∈ R. Let's choose the reference point x 0 = -2 and fix r = 0.5, s = 1. By setting Φ x 0 (u) := f ′ (x 0 )(u) + F (u), u ∈ R, it is easy to verify the following succession of equalities

d u, Φ -1 x 0 (v) = max 0, u - v f ′ (x 0 ) = max 0, u - 1 3 v = 1 3 max 0, f ′ (x 0 )u -v = 1 3 d v, Φ x 0 (u) .
As a result, Reg V (Φx 0 ,x 0 ,4r,s) (Φ x 0 ) = 1 3 . Pick τ = 0.5 > 1 3 , we are able to write β(τ, x 0 ) = 1 6 , K(τ, x 0 , r) 5 6 . Taking α = 5 18 < 1, one has 2ηβ = 1 3 1 1+ √ 1-α < 1 3 < r. These arguments show that all conditions of Theorem 3.9 are valid at initial point

x 0 = -2.
Let us check whether the assumptions of Theorem 3.2 in [START_REF] Rashid | Convergence analysis of the Gauss-Newton-type method for Lipschitz-like mappings[END_REF] hold at x 0 = -2.

Here, we have

Q x 0 (u) = f (x 0 ) + f ′ (x 0 )(u -x 0 ) + R + .
The same notations M , L, r x 0 , r y 0 , r 0 , δ, η and y 0 ∈ Q x 0 (x 0 ) as in [67, Theorem 3.2] will be used. To apply [67, Theorem 3.2] at x 0 = -2, the system of constraints below must be fulfilled

               r 0 = min r y 0 , -2Lr 2 x 0 , rx 0 (1-M Lrx 0 ) 4M , δ min rx 0 4 , ry 0 11L , 6r 0 , 1 , (M + 1)L(ηδ + 2r x 0 ) 2, |y 0 | < Lδ 2 4 . (3.31) 
We notice that y 0 ∈ f (x 0 ) + R + = 1 3 , +∞ , M Reg Q x 0 (x 0 , y 0 ) = 1 3 , while the 

L = sup |u-x 0 | rx 0 /2 |f ′′ (u)| = sup |u-x 0 | rx 0 /2 |2u| = 2 |x 0 | + r x 0 = 4 + r x 0 .
From the second and the last inequalities in (3.31), we deduce

1 3 |y 0 | < Lδ 2 4 L 64 r 2 x 0 = r 2 x 0 (4 + r x 0 ) 64 . (3.32) 
Otherwise, it follows from the third inequality of (3.32) that

(4 + r x 0 )r x 0 = Lr x 0 < 1 M + 1 3 4 . (3.33) 
However, (3.32) and (3.33) may not be simultaneously valid. In summary, the result in [67, Theorem 3.2] seems to be not applicable at x 0 = -2.

Example 3.16 (Feasibility problem with Kantorovich's approach). A feasibility problem associated with a C 1 function g : R m -→ R n and subset

∅ = K ⊂ R n is of the form find x ∈ R m such that g(x) ∈ K. (FP)
By simply setting f (x) = -g(x) as well as F (x) := K, (FP) becomes a GE 0 ∈ f (x) + F (x). The JNm applied to (FP) reads

g(x k ) + Dg(x k )(u k ) ∈ K, x k+1 = x k + u k . (JNFP) Let Ψ x (•) := -Dg(x)(•) + K.
Due to the sum rule in Theorem 2.4, one obtains

D * Ψ x (u, w)(w ⋆ ) =    -∇g(x) T w ⋆ , if -w ⋆ ∈ N K w + ∇g(x)u , ∅, if -w ⋆ ∈ N K w + ∇g(x)u ,
and concomittantly

D * Ψ x (u, w)(w ⋆ ) =    -∇g(x) T w ⋆ , if -w ⋆ ∈ N K w + ∇g(x)u , ∅, if -w ⋆ ∈ N K w + ∇g(x)u .
Here, ∇g(x) T is the transpose of the Jacobian ∇g(x). Thanks to [START_REF] Mordukhovich | Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions[END_REF], we get

Reg Ψ x (u, w) = D * Ψ x (u, w) -1 + , (3.34) 
3. 4. Some Examples

Greg Ψ x (u) = inf α>0 sup u ′ -u α, w ′ ∈Ψx(u ′ ) D * Ψ x (u ′ , w ′ ) -1 + , (3.35) 
where Greg Ψ k (u) is the infimum of all moduli κ > 0 for which the mapping Ψ k is metrically regular on some set (v, z) : vu µ, d z, Ψ k (v) ν .

g 2 (x) = 0

x(1) As an illustration, let us take Example 3.17 (Complementarity problem). A complementarity problem corresponding to a map h : R m -→ R m and a fixed cone ∅ = C ⊂ R m can be written as follows (see [START_REF] Facchinei | Finite-Dimensional Variational Inequalities and Complementarity Problems[END_REF])

g 1 (x ) = 0 x(2)
m = n = 2, K = R 2 + and g 1 (x) = x(1) 2 +x(2)-2, g 2 (x) = x(1) -x(2) 2 + 2 for x = (x(1), x(2)) T in R 2 .
d k = d(0, f (x k ) + F (x k ))
find x ∈ C such that h(x) ∈ C * , x ⊥ h(x).
(CP) Here, C * = v : v, u 0, for all u ∈ C is the dual cone of C, while expression u ⊥ v means that the vector u is perpendicular to v. Under assignments g(x) = (-x, -h(x), x, h(x) ) and K = C × C * × {0}, we transform (CP) into the form of a feasibility problem described in (FP). Therefore, a same strategy as in the previous example would be applicable.

Example 3.18 (Applicability of α-type theorem). In this simple example, we check

X = Y = R, f (x) = 1 3 x 3 -x 2 and F (x) =    1 2 x, x 2 -x , if x 0, ∅, otherwise. (3.36) 
The graph of set-valued map f + F is shown in Figure 3. [START_REF] Adly | Newton's method for solving inclusions using set-valued approximations[END_REF]. For the data f and F in the current case, it is not difficult to compute directly the quantities β(t, z), γ(t, f, z) and α(t, f, z). In details, one has 

β(t, z) = t min 1 3 z 3 -z 2 + 1 2 z , 1 3 z 3 -z , γ(t, f, z) = max |t(z -1)| , t 3 , 3.4. 
(u) = f ′ (x)u + F (u), u ∈ R, we deduce Greg Φ x (ū) = max {Reg Φ x (ū, v) : v ∈ Φ x (ū)} = max x 2 -2x + 0.5 -1 , 2ū + x 2 -2x -1 -1 (3.
d k = d(0, f (x k ) + F (x k ))
d k = d(0, f (x k ) + F (x k ))

Chapter 4 Newton-Type Method Using Set-Valued Differentiation

This chapter continues considering generalized equations between Banach spaces involving set-valued maps. However, we will approach them under another point of view. Roughly speaking, in contrast to Chapter 3, where the multivalued term is preserved during the iterative process, the current chapter suggests another kind of framework for which both single and set-valued parts are approximated. As a preparatory step, we first investigate in the forthcoming section some results dealing with metric regularity under set-valued perturbations.

Metric Regularity and Perturbed Set-valued

Maps

It is well-known in the literature, e.g. [START_REF] Adly | Newton's method for solving inclusions using set-valued approximations[END_REF][START_REF] Dontchev | The radius of metric regularity[END_REF][START_REF] Ioffe | Metric regularity and subdifferential calculus[END_REF] that if a given set-valued map Φ is metrically regular around a reference point (x, ȳ) ∈ Gr Φ then the sum Φ ′ = Φ+G, where G is a Lipschitz continuous mapping, is also metrically regular around (x, ȳ + z) ∈ Gr Φ ′ (z ∈ G(x)) under some suitable conditions. Unfortunately, as mentioned by A.D. Ioffe [START_REF] Ioffe | On perturbation stability of metric regularity[END_REF], the additive type of perturbation are by no means representative in the category of set-valued maps. And in the same paper, Ioffe had introduced another quantity of measuring given in the definition below.

Definition 4.1. Given two Banach spaces X and Y , and let T 1 , T 2 : X ⇒ Y be two set-valued maps. For x ∈ X and r > 0, one defines

σ T 1 ,T 2 (x, r) := sup ξ 2 ∈T 2 (x) inf ξ 1 ∈T 1 (x) sup d(x,u) r, ζ 1 ∈T 1 (u) inf ζ 2 ∈T 2 (u) ξ 2 -ξ 1 + ζ 1 -ζ 2 . (4.1)
Let's pay attention to a special case where T 2 = T 1 + G is the sum of T 1 and a set-valued map G : X ⇒ Y . According to the discussions in [START_REF] Ioffe | On perturbation stability of metric regularity[END_REF] and [START_REF] Ngai | Error bounds in metric spaces and application to the perturbation stability of metric regularity[END_REF], we have σ T 1 ,T 2 (x, r) sup d(x,u) r e G(x), G(u) . Therefore, if G is Lipschitz continuous with a modulus L around a point x ∈ X, then

σ T 1 ,T 2 (x, r) Lr (4.2)
whenever x is nearby x and r is small enough.

Up to the current work, let us now present the first statement related to semilocal metric regularity property. Proposition 4.2 (stability of semi-local metric regularity). Given two closed multifunctions Φ : X ⇒ Y and Ψ : X ⇒ Y between two Banach spaces X and Y . Let r, s, r ′ , s ′ , κ and µ be positively real numbers such that

κµ < 1, r ′ + κ 1 -κµ s ′ < r, s ′ < s. (4.3)
Suppose that:

(i) Φ is metrically regular on the set V r,s (Φ, x) = (z, w) ∈ X × Y : zx r, d w, Φ(z) s with a modulus κ;

(ii) σ Φ,Ψ (x, ν) µν, for all x ∈ BX (x, r) and ν κs.

If we set τ = 1 1-κµ κ, then τ ∈ Regmod Ψ, V r ′ ,s ′ (Ψ, x) , where V r ′ ,s ′ (Ψ, x) = (z, w) ∈ X × Y : z -x r ′ , d w, Ψ (z) s ′ .
Assuming Ψ = Φ + G, where G is Lipschitz continuous on the ball B(x, δ) for δ = κs + r. Then, assumption (ii) holds by (4.2). Hence, we recover Theorem 3.4 as a consequence of Proposition 4.2.

Proof. We choose some κ ′ > κ, µ ′ > µ such that

κ ′ µ ′ < 1, r ′ + κ ′ 1 -κ ′ µ ′ s ′ < r.
Let's fix a pair (z, w) belonging to the set

V ′ = V r ′ ,s ′ (Ψ, x). Pick a constant R satisfying d w, Ψ (z) < R < s, r ′ + κ ′ 1 -κ ′ µ ′ R < r.
At the first step, we set z 0 = z and ν 0 = κR < κs. By the choice of R, it is possible to take some v 0 ∈ Ψ (z 0 ) with wv 0 < R. Under assumption (ii), one has inf

ξ ′ ∈Φ(z 0 ) sup d(z 0 ,y) ν 0 , ζ∈Φ(y) inf ζ ′ ∈Ψ (y) v 0 -ξ ′ + ζ -ζ ′ σ Φ,Ψ (z 0 , ν 0 ) µν 0 .
Thus, there exists a point u 0 ∈ Φ(z 0 ) having property that sup

d(z 0 ,y) ν 0 ,ζ∈Φ(y) inf ζ ′ ∈Ψ (y) v 0 -u 0 + ζ -ζ ′ < µ ′ ν 0 . (4.4) 
Define w 0 = wv 0 + u 0 , we find d w 0 , Φ(z 0 ) w 0u 0 = wv 0 < R, which allows us to write d w 0 , Φ(z 0 ) < s. Particularly, this implies the inclusion (z 0 , w 0 ) ∈ V r,s (Φ, x). Invoking the hypothesis of metric regularity for Φ, we arrive

d z 0 , Φ -1 (w 0 ) κd w 0 , Φ(z 0 ) < κR = ν 0 . Let us select z 1 ∈ Φ -1 (w 0 ) with z 0 -z 1 < κR. Under the substitution y = z 1 , (4.4) gives us inf ζ ′ ∈Ψ (z 1 ) v 0 -u 0 + w 0 -ζ ′ < µ ′ ν 0 . Consequently, for some v 1 ∈ Ψ (z 1 ), the inequality v 0 -u 0 + w 0 -v 1 < µ ′ ν 0 is fulfilled.
We proceed to the induction step. Suppose z 0 = z, z 1 , . . . , z k and v 0 ∈ Ψ (z 0 ), . . . , v k ∈ Ψ (z k ) are given. Towards the preceding arguments, we should require the following conditions to be valid:

• there exist u 0 ∈ Φ(z 0 ), . . . , u k-1 ∈ Φ(z k-1 ) such that z j+1 ∈ Φ -1 (w j ) for w j = w -v j+1 + u j ; • v j -u j + w j -v j+1 < µ ′ ν j with ν j = (κ ′ µ ′ ) j ν 0 and j k -1; • z j -z j+1 < (κ ′ µ ′ ) j κR, j = 0, . . . , k -1.
Define a new parameter

ν k = (κ ′ µ ′ ) k ν 0 . Then, it is clear that ν k < ν 0 = κR < κs. By virtue of (ii), the inequality σ Φ,Ψ (x k , ν k ) µν k is straightforward. Observing v k ∈ Ψ (z k ), we conclude that inf η∈Φ(z k ) sup d(z k ,y) ν k , υ∈Φ(y) inf υ ′ ∈Ψ (y) v k -η + υ -υ ′ σ Φ,Ψ (z k , ν k ) µν k < µ ′ ν k .

Metric Regularity and Perturbed Set-valued Maps

This permits us to take an element u k ∈ Φ(z k ) such that sup

d(z k ,y) ν k ,υ∈Φ(y) inf υ ′ ∈Ψ (y) v k -u k + υ -υ ′ < µ ′ ν k . (4.5) Setting now w k = w -v k + u k , we claim (v k , w k ) ∈ V r,s Φ, x .
In fact, one has

z k -x k-1 j=0 z j -z j+1 + z 0 -x < k-1 j=0 (κ ′ µ ′ ) j κR + r ′ < 1 1 -κ ′ µ ′ κR + r ′ < r.
On the other hand, due to the choice of w k , it is possible to estimate the distance d w k , Φ(z k ) as follows

d w k , Φ(z k ) w k -u k = w -v k = w k-1 + v k-1 -u k-1 -v k < µ ′ ν k-1 = µ ′ (κ ′ µ ′ ) k-1 ν 0 = (κ ′ µ ′ ) k R < s. Hence, (v k , w k ) ∈ V r,s Φ, x . Since κ ∈ Regmod Φ, V r,s (Φ, x) , we obtain d z k , Φ -1 (w k ) κd w k , Φ(z k ) < κ(κ ′ µ ′ ) k R.
As a result, the set Φ -1 (w k ) must contain an element, written as z k+1 , such that z kz k+1 < (κ ′ µ ′ ) k κR. Remind ν k = (κ ′ µ ′ ) k κR, after substituting y = z k+1 and using w k ∈ Φ(z k+1 ), the estimation in (4.5) yields inf

υ ′ ∈Ψ (z k+1 ) v k -u k + w k -υ ′ < µ ′ (κ ′ µ ′ ) k κR.
From this, we can choose in the set

Ψ (z k+1 ) a point v k+1 satisfying v k -u k + w k -v k+1 < µ ′ (κ ′ µ ′ ) k κR.
The construction is done.

In order to obtain the necessary conclusions, we prove that the sequence (z k ) converges. Indeed, for every indices k and l with k > l, we have z kz l l-k-1 j=0 z k+jz k+j+1 . According to the construction above, the inequality z k+jz k+j+1 < (κ ′ µ ′ ) k+j κR holds. Thus, the term z kz l can be dominated as follows

z k -z l < l-k-1 j=0 (κ ′ µ ′ ) k+j κR < (κ ′ µ ′ ) k 1 1 -κ ′ µ ′ κR. (4.6)
Consequently, the sequence (z k ) is Cauchy, so it converges. Letting k = 0 and passing to the limit as l → ∞ in (4.6) we get zz * where z * = lim k→∞ z k . On the other side, taking into account v k ∈ Ψ (z k ) and

w -v k = w k-1 + v k-1 -u k-1 -v k < µ ′ (κ ′ µ ′ ) k R, we deduce w = lim k→∞ v k ∈ Ψ (z * ). Therefore, d z, Ψ -1 (w) z -z * 1 1 -κ ′ µ ′ κR.
Because the quantity 1 1-κ ′ µ ′ κR can be arbitrarily close to τ d w, Ψ (z) , we conclude d z, Ψ -1 (w) 1 1-κµ κd w, Ψ (z) , and the proof is thereby completed.

In their work [START_REF] Ngai | Error bounds in metric spaces and application to the perturbation stability of metric regularity[END_REF], the authors have established some stability results related to the local metric regularity. For studying the local behavior in the next section, it is sufficient to use a weaker form. The next statement is in this sense.

Proposition 4. 3. Let Φ : X ⇒ Y and Ψ : X ⇒ Y be two closed set-valued maps, and let (x, ȳ) ∈ GrΦ. Given some positive numbers κ, r and s such that κ ∈ Regmod Φ, V for a neighborhood V = B(x, r) × B(ȳ, s). Consider some parameters µ > 0, s ′ > 0 and δ > 0 with

κµ < 1, κ 1 -κµ s ′ < r, δ + (1 + κµ)s ′ < s. (4.7) 
Assume that there is z ∈ Ψ (x) for which the condition

inf v∈Φ(x) sup w∈Ψ (x) (w -z) -(v -ȳ) δ (4.8) holds whenever x ∈ B X (x, r). If σ Φ,Ψ (x, ε) µε, for x ∈ B(x, r) and ε < r, (4.9) 
then one has

d x, Ψ -1 (z) κ 1 -κµ d z, Ψ (x) ; z ∈ Y, z -z < s ′ . ( 4 

.10)

Proof. Let's first take κ ′ > κ and µ ′ > µ such that

κ ′ µ ′ < 1, κ ′ 1 -κ ′ µ ′ s ′ < r, (1 + κ ′ µ ′ )s ′ + δ < s.
Fix a point z ∈ B(x, s ′ ), our goal is that, to establish the inequality d x, Ψ -1 (z)

κ ′ 1-κ ′ µ ′ d z, Ψ (x)
. Thus, we shall produce a suitable approximating sequence (x k ) initiating at

x 0 = x. Denoting C = d z, Ψ (x) , then C z -z < s ′ . Let C ′
belong to the interval (C, s ′ ). We select an element w 0 ∈ Ψ (x 0 ) with zw 0 < C ′ and put ν 0 = κ ′ C ′ > 0. From (4.9), it is possible to write down inf

v∈Φ(x 0 ) sup x-x 0 ν 0 ,ξ∈Φ(x) inf ξ ′ ∈Ψ (x) w 0 -v + ξ -ξ ′ σ Φ,Ψ (x 0 , ν 0 ) µν 0 .
Therefore, it has some v 0 ∈ Φ(x 0 ) which satisfies the property below sup

x-x 0 ν 0 ,ξ∈Φ(x) inf ξ ′ ∈Ψ (x) w 0 -v 0 + ξ -ξ ′ < µ ′ ν 0 . (4.11)
Define a new point y 0 := z + v 0w 0 , then one has

y 0 -ȳ = z -v 0 -w 0 -ȳ z -z + z -v 0 -w 0 -ȳ z -z + w 0 -v 0 + ξ -ξ ′ + -ξ + ȳ + ξ ′ -z
for any ξ ∈ Φ(x 0 ) and ξ ′ ∈ Ψ (x 0 ). Particularly,

y 0 -ȳ z -z + sup ξ∈Φ(x 0 ) inf ξ ′ ∈Ψ (x 0 ) w 0 -v 0 + ξ -ξ ′ + inf ξ∈Φ(x 0 ) sup ξ ′ ∈Ψ (x 0 ) -ξ + ȳ + ξ ′ -z .
In view of (4.8) and (4.11), we obtain

y 0 -ȳ < s ′ + µ ′ ν 0 + δ = s ′ + κ ′ µ ′ C ′ + δ < (1 + κ ′ µ ′ )s ′ + δ < s.
Combining with x 0x < r ′ , the pair (x 0 , y 0 ) belongs to V. Thus, it infers from the metric regularity of Φ that

d x 0 , Φ -1 (y 0 ) κ ′ d y 0 , Φ(x 0 ) κ ′ y 0 -v 0 = κ ′ z -w 0 < κ ′ C ′ .
This ensures the existence of a point

x 1 ∈ Φ -1 (y 0 ) such that x 0 -x 1 < κ ′ C ′ = ν 0 .
We define now ν 1 := κ ′ µ ′ ν 0 . By virtue of y 0 ∈ Φ(x 1 ), relation (4.11) gives us d w 0v 0 + y 0 , Ψ (x 1 ) < µ ′ ν 0 . As a result, there is an element w 1 ∈ Ψ (x 1 ) for which the inequality w 0v 0 + y 0w 1 < µ ′ ν 0 is fulfilled. Continuing the current process, let's assume that the points x 0 , x 1 , . . . , x k are known. Furthermore, as suggested from the aforementioned arguments, we should include some other points v 0 ∈ Φ(x 0 ), . . . , v k-1 ∈ Φ(x k-1 ) and w 0 ∈ Ψ (x 0 ), . . . , w k ∈ Ψ (x k ) being such that:

• y i := z + v i -w i ∈ Φ(x i+1 ); • sup x-x i ν i ,ζ∈Φ(x) inf ζ ′ ∈Ψ (x) w i -v i + ζ -ζ ′ < µ ′ ν i , ν i := (κ ′ µ ′ ) i ν 0 ; • w i -v i + y i -w i+1 < µ ′ ν i = µ ′ (κ ′ µ ′ ) i ; • x i -x i+1 < (κ ′ µ ′ ) i κ ′ C ′ . Let us now set ν k := (κ ′ µ ′ ) k ν 0 . Because of w k ∈ Φ(x k ), we get inf v∈Φ(x k ) sup x-x k ν k ,ζ∈Φ(x) inf ζ ′ ∈Ψ (x) w k -v + ζ -ζ ′ σ Φ,Ψ (x k , ν k ) µν k
as a consequence of (4.9). Hence, we are able to select an element v k in Φ(x k ) such that sup

x-x k ν k ,w∈Φ(x) inf w ′ ∈Ψ (x) w k -v k + w -w ′ < µ ′ ν k . ( 4 

.12)

Denoting

y k = z + v k -w k , we claim (x k , y k ) ∈ V.
Indeed, thanks to the triangle inequality

x k -x k-1 i=0 x k-i -x k-i-1 k-1 i=0 (κ ′ µ ′ ) i κ ′ C ′ < κ ′ 1 -κ ′ µ ′ s ′ < r,
which verifies x k ∈ B(x, r). On the other hand, repeating the arguments as in the case k = 0, we obtain

y k -ȳ z -z + sup ξ∈Φ(x k ) inf ξ ′ ∈Ψ (x k ) w k -v k + ξ -ξ ′ + inf ξ∈Φ(x k ) sup ξ ′ ∈Ψ (x k ) (ξ -ȳ) -(ξ ′ -z) .
Consequently, the two relations (4.8) and (4.12) yield

y k -ȳ < s ′ + µ ′ ν k + δ = s ′ + µ ′ (κ ′ µ ′ ) k κ ′ C ′ + δ < 1 + (κ ′ µ ′ ) k+1 s ′ + δ < s.
In other words, inclusion (x k , y k ) ∈ V is now clear. Invoking again the supposition concerning regularity property of Φ, we deduce

d x k , Φ -1 (y k ) κd y k , Φ(x k ) κ y k -v k = κ z -w k .
Recalling

y k-1 = z + v k-1 -w k-1 , it holds that d x k , Φ -1 (y k ) κ w k-1 -v k-1 + y k-1 -w k < κ ′ µ ′ ν k-1 = (κ ′ µ ′ ) k κ ′ C ′ .
Hence, we can update x k+1 as a point which belongs to Φ -1 (y k ) and satisfies

x k -x k+1 < (κ ′ µ ′ ) k κ ′ C ′ .
Involving the evaluation in (4.12), and observing that

ν k = (κ ′ µ ′ ) k κ ′ C ′ , Ψ (x k+1 ) must contain an element w k+1 fulfilling w k -v k + y k -w k+1 < µ ′ ν k .
The construction is completed by induction.

Since κ ′ µ ′ < 1, an analogous argument as in proof of Proposition 4.2 shows that the sequence (x k ) converges to some x * ∈ X. Observing z -

w k = w k-1 -v k-1 + y k-1 -w k < (κ ′ µ ′ ) k-1
ν 0 , we arrive z ∈ Ψ (x * ) after passing to the limit in the inclusion w k ∈ Ψ (x k ). Thus, d x, Ψ -1 (z)

xx * . Nevertheless, according to the construction, triangle inequality gives us

x -x * = x 0 -x * k 0 x k -x k+1 k 0 (κ ′ µ ′ ) k κ ′ C ′ = κ ′ 1 -κ ′ µ ′ C ′ . This implies d x, Ψ -1 (z) κ ′ 1-κ ′ µ ′ C ′ . Because the right-hand side κ ′ 1-κ ′ µ ′ C
′ can be arbitrarily close to κ 1-κµ C, we reach to the conclusion (4.10). The proof is done.

Convergence of Newton-Type Algorithm with Differentiable Set-Valued Maps

We explore the problem of solving generalized equation in Banach spaces of the form 0 ∈ f (x) + F (x), (4.13) for a C 1 map f : X -→ Y and closed mapping F : X ⇒ Y . Chapter 3 has discussed the applicability of Josephy-Newton method in order to approximate a solution of (4.13). In this section, we shall proceed to another strategy based on set-valued differentiation. Specifically, we focus our consideration on the following scheme

0 ∈ f (x k ) + Df (x k )(x k+1 -x k ) + F (x k ) + H(x k )(x k+1 -x k ) (4.14) 
corresponding to a map H : X -→ PH (X, Y ). A typical and important class of such maps is induced by one predeclaring multifunction H : X ⇒ L(X, Y ) from X into the space L(X, Y ) of linearly continuous maps between X and Y (see, e.g. [START_REF] Adly | Newton's method for solving inclusions using set-valued approximations[END_REF])

H(x)(u) = Au : A ∈ H(x) ⊂ L(X, Y ) .
Returning back to the current section, the notion of set-valued differentiability in Definition 2.5 of Section 2.2 is a key point for our analysis. Observe that approximating mappings H(x k ) vary at each step of the iterative process. This motivates us to the following definition.

Definition 4. 4. Let H : X -→ PH (X, Y ) be a given map, and Ω ⊂ X be a nonempty open set. Consider some some set-valued map Φ : X ⇒ Y .

(4.4-1). Φ is said to be pointwise strictly differentiable with respective to H on Ω if and only if for any x ∈ Ω and ε > 0, there exists δ = δ(x, ε) > 0 such that

Φ(z ′ ) ⊂ Φ(z) + H(x)(z ′ -z) + ε z ′ -z B; ∀z, z ′ ∈ B(x, δ) ∩ Ω. ( 4.15) (4.4-2) 
. Φ is differentiable with respective to H uniformly on Ω provided for all ε > 0 there is δ = δ(ε, Ω) > 0 satisfying

Φ(z ′ ) ⊂ Φ(z) + H(z)(z ′ -z) + ε z ′ -z B; if z, z ′ ∈ Ω, z ′ -z δ. (4.16) 
If x ∈ Ω is fixed, then (4.15) covers the concept of H(x)-strict differentiability for Φ while (4.16) implies that Φ is H(x)-outer differentiable. However, the requirement of uniformity in (4. [START_REF] Dedieu | Newton's method on Riemannian manifolds: covariant alpha theory[END_REF]) asserts something being stronger.

Associated with a map H : X -→ PH (X, Y ), we define a new real-valued function by the following formula 

Λ H (x, x ′ , t) := sup u t e H(x)(u) + H(x ′ )(-u), 0 ; x, x ′ ∈ X, t 0. ( 4 
(x)(u) ⊂ |H(x)| + u B Y along with H(x ′ )(-u) ⊂ |H(x ′ )| + u B Y . Consequently, e H(x)(u) + H(x ′ )(-u), 0 |H(x)| + + |H(x ′ )| + u .
That is, when |H(•)| + is bounded, all real-valued functions Λ H (x, x ′ , •) can be majorized by one linear map.

The main results of this section are presented in the two next Theorems 4.6 and 4. [START_REF] Bakushinskii | A regularization algorithm based on the Newton-Kantorovich method for solving variational inequalities[END_REF]. We begin first with the semi-local version for the convergence of algorithm (4.14).

Theorem 4.6 (semi-local analysis).

Let Ω be an open convex subset of X on which Df is Lipschitz continuous with a modulus L > 0. Let H : X -→ PH (X, Y ) be a map that F is differentiable with respect to H uniformly on Ω. Fix some x ∈ Ω with |H(x)| + < +∞ and consider a ball Ω x = B(x, r) contained into Ω. Suppose that ρ 0 and ε 0 are some positive numbers satisfying

F (z ′ ) ⊂ F (z) + H(z)(z ′ -z) + ρ 0 z ′ -z B X ; z ′ , z ∈ Ω x , z ′ -z ε 0 . (4.18)
In addition, we also involve the following assumptions:

(i) it holds that τ ∈ Regmod Ψ x , V r,s (Ψ x ) , where Ψ x (•) := Df (x)(•) + H(x)(•) and V r,s (Ψ x ) = (v, w) : v r, d w, Ψ x (v) s ; (ii) d 0, f (x) + F (x) < min {s, τ -1 ε 0 };
(iii) it has some (strictly) increasing function

̺ : R + -→ R + such that σ H(z),H(z ′ ) (u, δ) ̺( z -z ′ )δ, (4.19) 
for z, z ′ ∈ B(x, r), u r and δ τ s;

(iv) we have Λ H (z, z ′ , t) ϕ(t) for all z, z ′ ∈ Ω x and t ε 0 , where ϕ : R + -→ R + is a nondecreasing convex function with ϕ(0 + ) = lim sup tց0 ϕ(t) = 0;

(v) τ [Lr + ̺(r)] < 1 and K 0 = 1 2 Lε 0 + ρ 0 + ϕ(ε 0 ) ε 0 < 1 τ -[Lr + ̺(r)]. If either 1-τ [Lr+̺(r)] 1-τ K 0 -τ [Lr+̺(r)] ε 0 r or 1-τ [Lr+̺(r)] 1-τ K 0 -τ [Lr+̺(r)
] τ s r is valid, then there exists a solution x * of problem (4.13) such that

x -x * 1 -τ [Lr + ̺(r)] 1 -τ K 0 -τ [Lr + ̺(r)] min ε 0 , τ s r. (4.20) 
Additionally, algorithm (4.14) generates a sequence (x k ) which starts at x 0 = x and converges R-linearly to x * , i.e., lim sup

k→∞ x k -x * 1/k < 1.
Before proving this theorem, we note that under assumption (iii) the function |H(•)| + is bounded on B(x, r). The next technical lemmas will be useful for our proof.

Lemma 4. [START_REF] Adly | Stability of metric regularity with set-valued perturbations and application to Newton's method for solving generalized equations[END_REF]. Keep in mind the hypotheses of Theorem 4. [START_REF] Adly | Newton's method for solving generalized equations: Kantorovich's and Smale's approaches[END_REF]. For each z and z ′ in B(x, r), we set

Ψ z (•) := Df (z)(•) + H(z)(•) and Ψ z ′ (•) := Df (z ′ )(•) + H(z ′ )(•). Then one has σ Ψz,Ψ z ′ (u, δ) [L z -z ′ + ̺( z -z ′ )] δ, (4.21) 
has σ Ψx,Ψ k (u, δ) [L x -x k + ̺( x -x k )] δ = β k δ,
where the parameter

β k = L x -x k +̺( x -x k ) satisfies β k Lr +̺(r) < τ -1 . Based on Proposition 4.2, if (u, z) ∈ X × Y fulfills u + τ 1 -β k τ d z, Ψ k (u) < r, d z, Ψ k (u) < s, (4.22) 
then the estimation below

d u, Ψ -1 k (z) τ k d z, Ψ k (u) , τ k = τ 1 -β k τ (4.23) 
follows immediately.

We shall generate x k+1 through the scheme (4.14). By inductive hypothesis, there exists a point y k-1 ∈ F (x k-1 ) for which w k-1 ∈ H(x k-1 )(u k-1 ) and

w k-1 = -f (x k-1 ) -Df (x k-1 )(u k-1 ) -y k-1 . Since α k-1 q k-1 α 0 ε 0 , (4.18 
) can be applied to z ′ = x k-1 and z = x k . Consequently, there are some elements

y k ∈ F (x k ) and w ′ k-1 ∈ H(x k )(-u k-1 ) such that y k-1 -y k -w ′ k-1 ∈ ρ 0 u k-1 B.
Define z k = -f (x k )y k and u * k = 0, we claim that (u, z) = (u * k , z k ) obeys (4.22). In fact, it is possible to represent z k into another form as follows

z k = [-f (x k ) + f (x k-1 ) + Df (x k-1 )(u k-1 )] + [y k-1 -y k -w ′ k-1 ] + w k-1 + w ′ k-1 . Remind y k-1 -y k -w ′ k-1 ∈ ρ 0 u k-1 B, one has y k-1 -y k -w ′ k-1 < ρ 0 α k-1 . In addition, because of w k-1 + w ′ k-1 ∈ H(x k-1 )(u k-1 ) + H(x k )(-u k-1 ), assumption (iv) yields w k-1 + w ′ k-1 Λ H (x k-1 , x k , α k-1 ) ϕ(α k-1 ).
Because Df is Lipschitz continuous, the Taylor's expansion for f at x k-1 gives us

-f (x k ) + f (x k-1 ) + Df (x k-1 )(u k-1 ) = 1 0 [Df (x k-1 + tu k-1 )(u k-1 ) -Df (x k-1 )](u k-1 ) dt 1 0 L u k-1 2 t dt < 1 2 Lα 2 k-1 .
Thus, we reach to the following estimation for d z k , Ψ k (0)

d z k , Ψ k (0) = d z k , H(x k )(0) = z k < 1 2 Lα 2 k-1 + ρ 0 α k-1 + ϕ(α k-1 ).
Let us verify that

τ 1 -β k τ 1 2 Lα 2 k-1 + ρ 0 α k-1 + ϕ(α k-1 ) < r, (4.24a) 
1 2 Lα 2 k-1 + ρ 0 α k-1 + ϕ(α k-1 ) < s. (4.24b) 
Since β k Lr + ̺(r), the left-hand side of (4.24a) is dominated by

τ 1 -γ 3 1 2 Lα 2 k-1 + ρ 0 α k-1 + ϕ(α k-1 ) = h(α k-1 ) = α k α 0 .
Note that α 0 = min ε 0 , τ s < r, we derive (4.24a). Proof of (4.24b) is similar to the one of (4.24a), since α 0 τ s and

1 2 Lα 2 k-1 + ρ 0 α k-1 + ϕ(α k-1 ) = 1 -γ 3 τ h(α k-1 ) = 1 -γ 3 τ α k 1 -γ 3 τ α 0 .
According to (4.24a) and (4.24b), we can show that u = u * k = 0 and z = z k fulfill (4.22). Hence, (4.23) implies

d 0, Ψ -1 k (z k ) τ k d z k , Ψ k (0) < τ 1 -β k τ 1 2 Lα 2 k-1 + ρ 0 α k-1 + ϕ(α k-1 ) .
As a result, there is an element

u k ∈ Ψ -1 k (z k ) such that u k < τ 1 -β k τ 1 2 Lα 2 k-1 + ρ 0 α k-1 + ϕ(α k-1 ) h(α k-1 ) = α k .
Let us set x k+1 = x k + u k . As similar to the case k = 0, we conclude that x k+1 is obtained through algorithm (4.14). By inductive principle, the sequence (x k ) is well-defined.

Step2: Convergence. Recalling q ∈ (0, 1), the series k 0 α k converges. Because x kx k+1 is majorized by α k , (x k ) is thereby a Cauchy sequence. Let x * = lim k→∞ x k , we find

x k -x * i k x i -x i+1 i k α i i k q i α 0 = q k 1 -q α 0 . (4.25) 
Lemma 4. [START_REF] Bhatia | Positive Definite Matrices[END_REF]. Keeping all statements in the hypotheses of Theorem 4. [START_REF] Bakushinskii | A regularization algorithm based on the Newton-Kantorovich method for solving variational inequalities[END_REF]. For a given point x ∈ B(x * , α), we set

Ψ x * (•) = Df (x * )(• -x) + H(x * )(• -x), Ψ x(•) = Df (x)(• -x) + H(x)(• -x).
Suppose Df is Lipschitz continuous on B(x * , r) with a modulus L, then we have the estimation

σ Ψ x * ,Ψx (x, ε) [L x -x * + ̺ ( x -x * )] ε, ∀x ∈ B(x, r), ε r. ( 4.26) 
Proof. Using triangle inequality in Y , the definition of σ Ψ x * ,Ψx (u, ε) provides us

σ Ψ x * ,Ψx (x, ε) sup x ′ -x ε [Df (x) -Df (x * )] (x -x) + [Df (x * ) -Df (x)] (x ′ -x) + sup ζ∈H(x)(x-x) inf ζ ′ ∈H(x * )(x-x) sup x ′ -x ε, ξ∈H(x * )(x ′ -x) inf ξ ′ ∈H(x)(x ′ -x) ζ -ζ ′ + ξ -ξ ′ sup x ′ -x ε [Df (x) -Df (x * )] (x -x ′ ) + σ H(x * ),H(x) (x -x, ε) sup x ′ -x ε Df (x) -Df (x * ) x -x ′ + σ H(x * ),H(x) (x -x, ε) L x -x * ε + ̺ ( x -x * ) ε.
Hence, the proof is done. Lemma 4.12. Suppose that Φ x * is metrically regular on some neighborhood rB×sB with modulus τ . Let 0 < δ < r and 0 < δ ′ < s be given. For x ∈ B(x * , rδ), we consider the mapping

Φ x(•) = Df (x * )(• -x) + H(x * )(• -x). If z ∈ Φ x(x * ) satisfies z s -δ ′ , then one has τ ∈ Regmod Φ x, V δ,δ ′ , where V δ,δ ′ = B(x * , δ) × B(z, δ ′ ).
Proof. Pick (x, z) ∈ V δ,δ ′ . By the definition of Φ x, it is easy to check that andz xz + z < s, the metric regularity property for Φ x * can be applied to (xx, z). Thus, we get

Φ x(x) = Φ x * (x -x), Φ -1 x (z) = x + u : z ∈ Φ x * (u) = ū + Φ -1 x * (z). Since x -x x -x * + x * -x < r
d x -x, Φ -1 x * (z) τ d z, Φ x * (x -x) = τ d z, Φ x(x) .
Equivalently, the latter is rewritten as follows d x, Φ -1 x (z) τ d z, Φ x(x) . Hence, we reach to the conclusion of Lemma 4.12. Lemma 4. [START_REF] Bonnans | Local analysis of Newton-type methods for variational inequalities and nonlinear programming[END_REF]. Keep in mind all assumptions of Theorem 4. [START_REF] Bakushinskii | A regularization algorithm based on the Newton-Kantorovich method for solving variational inequalities[END_REF]. Let x ∈ B(x * , r) and u < r. If r is a number such that xx * < r < r, then one has

H(x)(u) ⊂ |H(x * )| + + ̺(r) u B. (4.27) 
As a consequence, the following estimation holds

inf υ∈H(x * )(u) sup ω∈H(x)(u) (ω -ω) -(υ -ῡ) 2 |H(x * )| + + ̺(r) u + ω -ῡ . (4.28) 
Proof. Fix some constant b with u < b < r, and take

ε = ( u + b)/2. Since ε < r, we have σ H(x * ),H(x) (u, ε) ̺( x -x * )ε < ̺(r)ε. If w ∈ H(x)(u), then inf υ∈H(x * )(u) sup u ′ -u ε, ζ∈H(x * )(u ′ ) inf ζ ′ ∈H(x)(u ′ ) w -υ + ζ -ζ ′ σ H(x * ),H(x) (u, ε) < ̺(r)ε.
Thus, there is

w ′ ∈ H(x * )(u) such that sup u ′ -u ε,ζ∈H(x * )(u ′ ) inf ζ ′ ∈H(x)(u ′ ) w -w ′ + ζ -ζ ′ < ̺(a)ε.
By replacing u ′ with 0, and using the fact H(x)(0) = H(x * ) = {0}, we deduce ww ′ < ̺(r)ε. Alternatively, we take r ∈ (0, r) and s > 0 so that Ψ * is metrically regular with modulus τ on the neighborhood V = rB × sB. Next, one searches a value 0 < α < r/2 satisfying simultaneously three constraints (4.29a), (4.29b) and (4.29c) below ρ(t) λt when 0 t α; (4.29a)

τ 3 2 Lα + ̺(α) + λ < 1; (4.29b) Lα + 3̺(α) + 4 |H(x * )| + + ν * α + 2 1 2 Lα 2 + ρ(α) < s. (4.29c) 
Let x be in the ball B(x * , α). The case x = x * is trivial. Otherwise, we set x 0 = x and denote

u 0 = x 0 -x * , Φ 0 (•) = Df (x * )(• -x 0 ) + H(x * )(• -x 0 )
. Define some parameters α 0 = u 0 and µ 0 = Lα 0 + ̺(α 0 ). By assumptions of Theorem 4.10

-f (x * ) ∈ F (x * ) ⊂ F (x 0 ) + H(x 0 )(-u 0 ) + ρ( u 0 )B,
which permits us to select y 0 ∈ F (x 0 ) and w 0 ∈ H(x 0 )(-u 0 ) such that

-f (x * ) ∈ y 0 + w 0 + ρ(α 0 )B.
Because of α 0 = u 0 < r, one has σ H(x * ),H(x 0 (-u 0 , α 0 ) ̺(α 0 )α 0 . So, we derive from the relation

w 0 ∈ H(x 0 )(-u 0 ) that inf ξ∈H(x * )(-u 0 ) sup u+u 0 α 0 ,υ∈H(x * )(u) inf υ ′ ∈H(x 0 )(u) w 0 -ξ + υ -υ ′ ̺(α 0 )α 0 .
Observing α 0 < α, there is an element

w * 0 ∈ H(x * )(u 0 ) with sup u+u 0 α 0 ,υ∈H(x * )(u) inf υ ′ ∈H(x 0 )(u) w 0 -w * 0 + υ -υ ′ < ̺(α)α.
Hence, after substituting u = 0 and using the fact

H(x * )(0) = H(x 0 )(0) = {0}, we get w 0 -w * 0 < ̺(α)α. Next, we denote Ψ 0 (•) = Df (x 0 )(• -x 0 ) + H(x 0 )(• -x 0 )
and consider some new points z 0 = -f (x 0 )y 0 , z0 = -Df (x 0 )(u 0 ) + w 0 and z * 0 = -Df (x * )(u 0 ) + w * 0 . By virtue of w 0 ∈ H(x 0 )(-u 0 ), z0 is in Ψ 0 (x * ). Remind w * 0 ∈ H(x * )(-u 0 ), the following estimation is fulfilled

z * 0 Df (x * ) u 0 + |H(x * )| + u 0 = ν * α 0 .
Thanks to (4.29c), it is easy to see that ν * α 0 ν * α < s. Using Lemma 4.12, the mapping Φ 0 is metrically regular with modulus τ on the neighborhood

V 0 = B(x * , α) × B(z * 0 , s -ν * α 0 ) of (x * , z * 0 )
. We shall apply Proposition 4.3 to produce the next iteration x 1 .

For this goal, define with respect to x ∈ B(x * , α) the quantity γ(x, x 0 ) := inf

υ∈Φ 0 (x) sup υ ′ ∈Ψ 0 (x) (υ ′ -z0 ) -(υ -z * 0 ) .
Then, it is possible to verify the following estimation

γ(x, x 0 ) [Df (x 0 ) -Df (x * )](x -x * ) z∈H(x * )(x-x 0 ) sup w∈H(x)(x-x 0 ) (w -w 0 ) -(z -w * 0 ) .
Nevertheless, for x ∈ B(x * , α), Lemma 4.13 gives us inf

z∈H(x * )(x-x 0 ) sup w∈H(x)(x-x 0 ) (w -w 0 ) -(z -w * 0 ) 2 |H(x * )| + + ̺(α) x -x 0 + w 0 -w * 0 . (4.30) 
Observing xx 0 xx * + x *x 0 < 2α, so the Lipschitz continuity of Df and (4.30) yield

γ(x, x 0 ) αL x 0 -x * + 2α 2 |H(x * )| + + ̺ (α) + w 0 -w * 0 = αα 0 L + 2α 2 |H(x * )| + + ̺ (α) α + ̺(α)α, x ∈ B(x * , α). (4.31) 
Let x ∈ B(x * , α) and ε α, we obtain from Lemma 4.11 that

σ Φ 0 ,Ψ 0 (x, ε) [L x 0 -x * + ̺ ( x 0 -x * )] ε = µ 0 ε.
According to (4.29b), τ µ 0 is evident less than 1. Thus, if the group of estimates below is valid

   τ 1-τ µ 0 z -z0 < α, sup x∈B(x * ,α) γ(x, x 0 ) + (1 + τ µ 0 ) z -z0 < s -ν * α 0 , (4.32) 
then Proposition 4.3 implies

d x * , Ψ -1 0 (z) τ 0 d z, Ψ 0 (x * ) τ 0 z -z0 , τ 0 = 1 1 -τ µ 0 τ . (4.33) 
We are now going to claim that z = z 0 satisfies (4.32), and then apply (4.33). Indeed, thanks to the triangle inequality, z 0 -z0 is majorized by

z 0 -z0 = -f (x 0 ) -y 0 + Df (x 0 )(u 0 ) -w 0 f (x * ) -f (x 0 ) -Df (x 0 )(-u 0 ) + -f (x * ) -y 0 -w 0 .
Using the Taylor's expansion for f at center x 0 , we obtain

f (x * ) -f (x 0 ) -Df (x 0 )(-u 0 ) = 1 0 [Df (tx * + (1 -t)x 0 ) -Df (x 0 )] (-u 0 ) dt 1 0 Lt x * -x 0 u 0 dt = 1 2 Lα 2 0 .
Recalling -f (x * ) ∈ y 0 + w 0 + ρ(α 0 )B, the term -f (x * )y 0w 0 is less than ρ(α 0 ). Combining these arguments, we arrive

z 0 -z0 < 1 2 Lα 2 0 + ρ(α 0 ) 1 2 Lα 2 0 + λα 0 . (4.34) 
Therefore, three relations (4.29b), (4.29c) and (4.31) ensure that z = z 0 satisfies the property described by (4.32).

Letting z = z 0 in (4.33), and invoking (4.34), the evaluation

d x * , Ψ -1 0 (z 0 ) < τ 1 -τ [Lα 0 + ̺(α 0 )] 1 2 Lα 2 0 + λα 0 is fulfilled.
As a consequence, we are able to select an element

x 1 ∈ Ψ -1 0 (z 0 ) such that α 1 = x * -x 1 < τ 1 -τ [Lα 0 + ̺(α 0 )] 1 2 Lα 2 0 + λα 0 . (4.35) 
Taking into account (4.29b), the assignment ψ(t) = To see that x 1 is generated by (4.14), we recall that z 0 ∈ Ψ 0 (x 1 ). Because of

z 0 = -f (x 0 )-y 0 and Ψ 0 = Df (x 0 )(•-x 0 )+H(x 0 )(•-x 0 ), the inclusion y 0 ∈ F (x 0 ) give us 0 ∈ f (x 0 ) + Df (x 0 )(x 1 -x 0 ) + H(x 0 )(x 1 -x 0 ) + F (x 0 ).
Observe that (4.36) implies x *x 1 < ψ(α) x *x 0 < α. This allows us to take x 1 as the new starting point instead of x 0 , and continue the construction.

Repeating this process, we obtain the sequence (x k ) satisfying (4.14) and

x * -x k+1 ψ ( x * -x k ) x * -x k ψ (α) x * -x k . (4.37) 
Linear convergence for (x k ) follows directly from (4.37). The proof is thereby completed.

Remark 4. 14. As in Theorem 4.6, the function ̺(•) also controls the growth of measure quantities σ H(x * ),H(x) (•, •), which guarantees the stability of the metric regularity property when the current iteration is nearby x * . Such a property itself permits to obtain x k+1 from x k as well as to give an estimation for x k+1x k . The presupposition (A2) concerning with ̺(•) might be acceptable in some situations of applications, e.g., when H is determined through some set-valued map from X to L(X, Y ).

On the other side, the rate of convergence for the approximating sequence (x k ) seems to be mostly induced by the behaviour of ρ(•) around 0. If F is differentiable with respect to H uniformly on a neighborhood Ω * of x * , then it is sufficient to take ρ(•) as a linear function ρ(t) = εt (and choose r δ small enough, where δ = δ(ε, Ω * ) occurred in Definition 4.4). In general, assume that F is pointwise H-strictly differentiable around x * while the assertion (A2) of Theorem 4.10 is involved. Using (A2), σ H(x * ),H(x) (0, ǫ) ̺( xx * )ǫ, so by a similar technique as in the proof of Lemma 4.13, we can establish that

H(x * )(u) ⊂ H(x)(u) + 2̺( x -x * )ǫB,
with u < ǫ < r and xx * < r. Consequently, for x and x ′ being sufficiently close to x * , one has

F (x ′ ) ⊂ F (x) + H(x * )(x ′ -x) + ε x ′ -x B ⊂ F (x) + H(x)(x ′ -x) + [2̺( x -x * ) + ε x ′ -x ]B ⊂ F (x) + H(x)(x ′ -x) + [2̺( x -x ′ + r) + ε x ′ -x ]B.
Taking ρ(t) := 2̺(t + r) + εt, (A1) follows.

According to the proof of Theorem 4.10, the behavior of remainder function ρ(•) plays a significant role for the analysis of convergence. If a stronger condition is imposed on ρ (i.e., on the order of approximation for F ), then Theorem 4.10 can be refined a little bit. The next corollary is in this sense. Proof. Let ρ(t) = ρ 1 (t)t for some real-valued function ρ 1 : R + -→ R + satisfying lim sup t→0 ρ 1 (t) = 0. Then there exists a parameters 0 < α < r/2 such that

   3 2 Lα + ̺(α) + sup 0 t α ρ 1 (t) < 1 τ , ∀t α, Lα + 3̺(α) + 4 |H(x * )| + + ν * α + 2 1 2 Lα 2 + ρ(α) < s. (4.38) 

A Numerical Illustration

Here, the positive constants τ , r, s and ν * are selected as similar as the proof of Theorem 4. [START_REF] Bakushinskii | A regularization algorithm based on the Newton-Kantorovich method for solving variational inequalities[END_REF].

Now, let x be in B(x * , α). Following the construction as in the proof of Theorem 4.10, we obtain sequence (x k ) induced by (4.14) for which x 0 = x and, in addition,

x * -x k+1 ψ 1 ( x * -x k ) x * -x k , k = 0, 1, . . . (4.39) 
Here, ψ 1 (t) := 

1 1-[τ Lt+τ ̺(t)] 1 2 τ Lt + τ ρ 1 (t) , t ∈ [0, α].

A Numerical Illustration

We examine a simple example sketching the applicability of the convergence theorems in Section 4.2 before. Let's consider a cubic polynomial of real variable f (x) = -(x -1) 3 + x -1. Choosing X = Y = R and

F (x) =    [exp(-2x), +∞), if x 0, ∅ , otherwise, (4.40) 
where exp(•) denotes the usual exponential function exp(x) = n 0

x n n! . Figure 4.1 plots the graphs of -f and F . To apply the results proved in the previous section, we let

H(x)(u) =    -2u exp(-2x) , if x 0, ∅ , otherwise. (4.41) 
According to the definition in (4.17), it is possible to check that Furthermore, after some direct computations, under the following data 

Λ H (x, x ′ , t) = 2 |exp(-2x) -exp(-2x ′ )| t,
ρ(t) = exp(2t) -2t -1, ̺(t) = 2 [exp(2t) -1] , (4.43 

Newton-Type Algorithm in Riemannian Manifolds

As an overview, this chapter deals with the developments related to the inclusions of the form 0 ∈ ϕ(p) + Φ(p).

(

Here, the variable p is in some manifold M of dimension m, ϕ : M -→ R n is a smooth map, and Φ : M ⇒ R n is a set-valued map. As in other chapters, we require that the graph Gr Φ := (p, w) : w ∈ Φ(p) is closed with respect to the product topology of M × R n .

For the aim of solving (5.1), we start at a guess point p 0 which is often expected to be nearby some proper solution, and generate an iterative sequence of approximation points. In details, suppose at k-step the iteration p k is known, we choose a suitable retraction R k : T p k M -→ M, and then update the succeeding term p k+1 through the subproblem We notice that, when M = R m , by setting R k (u) = p k + u the usual translation, (5.2) recovers the Josephy-Newton method mentioned in Chapter 3. The concept of metric regularity property again plays a crucial role in order to analyze the convergence of algorithm (5.2). As a preparation, we begin by discussing the stability of metric regularity for mappings whose domains are in tangent spaces.

0 ∈ ϕ(p k ) + Dϕ(p k )(u k ) + (Φ • R k ) (u k ), p k+1 = R k (u k ). ( 5 

Some Preliminaries on Metric Regularity

Let p and q be two points in M such that d R (p, q) is sufficiently small. This section will focus on the question how we can link the regularity property of two some mappings which are given on T p M and T q M respectively. For the purpose of studying the scheme (5.2), we may only work with a family of mappings

Dϕ(z)(•) + (Φ • R z ) (•)
, where R z is a retraction at z. The following assumption will be essential and this will be kept throughout the whole of this chapter.

Standing Assumption. We suppose that all retractions R z are well-defined on an open set Ω of M for which the next regularization condition holds. There is some subset Ω ′ ⊂ Ω along with some real functions ρ, ̺, δ : Ω ′ -→ (0, +∞) such that

ρ(z) d R R z (v), R z (v ′ ) v -v ′ ̺(z); if z ∈ Ω ′ and v = v ′ in δ(z)B z . ( 5.3) 
Conventionally, we always fix the manifold M as well as an open (and convex) subset Ω ⊂ M. In addition, we simply write R ∈ URC ρ, ̺, δ, Ω ′ to indicate the property described by (5.3).

Such a restriction like (5.3) is fulfilled in a wide range of practical applications. It is easy to see that when M = R m and R z (v) = z + v, (5.3) holds itself without setting more, just taking Ω ′ = Ω = R m , ρ(•) = ̺(•) ≡ 1. Another simple case being less of triviality is shown in Example 5.1 below. On any Riemannian variety with geodesic retraction R = Exp, it also holds due to the local property of exponential map (cf. [START_REF] Dedieu | Newton's method on Riemannian manifolds: covariant alpha theory[END_REF][START_REF] Helgason | Differential Geometry, Lie Groups, and Symmetric Spaces[END_REF][START_REF] Lang | Fundamentals of Differential Geometry[END_REF]). Otherwise, a criterion ensures the validity of (5.3) was suggested in [START_REF] Ring | Optimization methods on Riemannian manifolds and their application to shape space[END_REF], where the collection of retractions R z are assumed to have equicontinuous derivatives.

Example 5.1 (unit sphere). Let S m-1 = p ∈ R m : p T p = 1 be the unit sphere in R m . S m-1 is endowed with the Riemannian metric inherited from Euclidean distance on R m [1]. For each p ∈ S m-1 , the tangent space T p S m-1 can be identified to p ⊥ := u ∈ R m : u T p = 0 . Consider the retraction given by R p (u) = p+u p+u for u ∈ p ⊥ and • is Euclidean norm. The case m = 3 was depicted in Figure 5. 1. We are able to check that d R (p, q) = arccos p T q , which yields d R p, R p (u) = arctan u . As a result, R p is injective in the whole tangent space T p S m-1 . Let q ∈ S m-1 and v, v ′ ∈ T q S m-1 . Abbreviating d = d R R q (v), R q (v ′ ) , then cos d = (q+v) T (q+v ′ ) q+v q+v ′ , which is equivalent to cos d =

1+v T v ′ √ (1+ v 2 )(1+ v ′ 2 )
. Thus,

sin 2 d = v -v ′ 2 + v 2 v ′ 2 -v T v ′ 2 (1 + v 2 )(1 + v ′ 2 ) . (5.4) 
Using the inner inequality v T v ′ v v ′ , (5.4) implies

sin 2 d v -v ′ 2 (1 + v 2 )(1 + v ′ 2 ) . (5.5) 
On the other hand, thanks to the equality 2v

T v ′ = v 2 + v ′ 2 -v -v ′ 2 , we get v 2 v ′ 2 -v T v ′ 2 = v 2 v ′ 2 - 1 4 v 2 + v ′ 2 -v -v ′ 2 2 = 1 2 v 2 + v ′ 2 v -v ′ 2 - 1 4 v -v ′ 4 + v 2 -v ′ 2 2 1 2 v 2 + v ′ 2 v -v ′ 2 .
Consequently,

sin 2 d 1 + 1 2 v 2 + v ′ 2 1 + v 2 1 + v ′ 2 v -v ′ 2 v -v ′ 2 . ( 5.6) 
Observe that one has 2 π sin t t 1 as long as 0 < t 2 π . Based on (5.5) and (5.6), we deduce

1 1 + r 2 v -v ′ d R R q (v), R q (v ′ ) π 2 v -v ′
whenever v r and v ′ r, with 0 < r 1. Fix r ∈ (0, 1). Under the substitution δ(z) = r, ρ(z) = 1 1+r 2 and ̺(z) = π 2 , we find R ∈ URC ρ, ̺, δ, S m-1 .

Stability results for a class of multifunctions of the form Dϕ(z)(•) + (Φ • R z ) (•) were recently established in [4,Propositions 3.1] and [4,Propositions 3.3]. They are based on the suppositions that both functions ρ and δ are bounded from below whereas sup z∈Ω ̺(z) < +∞. The next Propositions 5.2 and 5.5 are going to provide the refinements of those aforementioned results. However, as we will see in Section 5.2, when applying these propositions for the study of algorithm (5.2), it seems necessarily to impose some conditions on ρ, ̺ and δ used in [4]. Consider some positive constants α, β, σ > 0, ρ 0 and ̺ 0 fulfilling

θ = ̺ 0 κ (α + β Dϕ(p) ) < ρ 0 , ̺ 0 ū p + σ < ρ 0 ι R (p), ρ 0 ρ(p) ̺(p) ̺ 0 .
Choose a point q ∈ W p with d R (p, q) σ so that the conditions (i) and (ii) below are satisfied for each geodesic path χ : [a, b] -→ W p connecting χ(a) = p to χ(b) = q:

(i) Σ χ,q,p = R -1 p R q -P b,a χ is Lipschitz continuous on the ball ι R (p)B q with modulus β;

(ii) G χ,p,q α, where G χ,p,q := Dϕ(q)P a,b χ -Dϕ(p) is a linear map.

If ι R (p) min {δ(p), δ(q)}, ρ 0 ρ(q) ̺(q) ̺ 0 and ̺ 0 ū p < λ R (p), then we obtain Reg Ψ q (v, ȳ)

1 1-θ κ.
Here, v is a tangent vector in ι R (p)B q such that R q (v) = R p (ū), ȳ = x-Dϕ(p)(ū)+Dϕ(q)(v) whereas Ψ q (•) = Dϕ(q)(•)+(ΦR q ) (•).

Before proving the preceding statement, we recall first all norms of linear operators in Proposition 5.2 are taken with respect to the scalar products of the corresponding spaces. Lemma 5.3 below will be useful for the proof of Proposition 5.2.

Lemma 5. 3. Define Λ q,p := Dϕ(q) -Dϕ(p)R -1 p R q . If p can be linked to q by a geodesic segment which totally lies inside W p , then for each r ι R (p) the map Λ q,p is Lipschitz continuous on rB q with a modulus L q = Dϕ(p) β + α.

Proof. Let χ be a geodesic such that χ(0) = p, χ(1) = q and χ([0, 1]) ⊂ W p . Then, we have the expression Λ q,p = -Dϕ(p)Σ χ,q,p + G χ,p,q P 1,0 χ . Recall that P 1,0 χ has unit norm, so the conclusion of this lemma follows by using simultaneously properties (i) and (ii).

Proof of Proposition 5.2. Without lost of generality, we can assume W p to be a convex neighborhood of M at p [START_REF] Carmo | Riemannian Geometry. Mathematics: Theory & Applications[END_REF]. For simplicity, we denote µ p = Dϕ(p) , λ 0 = λ R (p), η 0 = ̺ 0 /ρ 0 , ι 0 = ι R (p), and δ 0 = min{δ(p), δ(q)}. Alternatively, because the spaces are specified in the context, we use the common notations • and d(•, •) respectively for any norm and distance function. Pick some parameters κ ′ κ, r > 0 and s > 0 so that Ψ p is metrically regular with respect to a modulus κ ′ on the neighborhood V = (u, x) : uū < r, xx < s and that θ ′ = κ ′ (α + βµ p ) η 0 < 1. Let us now take r ′ > 0 and s ′ > 0 for which the group of four coming inequalities (5.7a), (5.7b), (5.7c) and (5.7d) is valid as well

η 0 2 1 -θ ′ r ′ + κ ′ 1 -θ ′ s ′ < r, (5.7a) 
(η 0 ) 2 (α + βµ p ) 2 1 -θ ′ r ′ + 1 1 -θ ′ s ′ < s, (5.7b 
)

η 0 ū + σ/ρ 0 + η 0 2 1 -θ ′ r ′ + κ ′ 1 -θ ′ s ′ < ι 0 , (5.7c 
)

̺ 0 ū + ̺ 0 η 0 2 1 -θ ′ r ′ + κ ′ 1 -θ ′ s ′ < λ 0 .
(5.7d)

We are going to show that Ψ q is metrically regular with modulus τ

′ = η 0 1 1-θ ′ κ ′ on the neighborhood V ′ = (v, y) : v -v < r ′ , y -ȳ < s ′ . Indeed, fix (v, y) in V ′ , and write C = d y, Ψ q (v) . By setting v 0 = v, one has v 0 v 0 -v + v . Recalling R ∈ URC ρ, ̺, δ, W p and v < ι 0 δ(q), we get v ρ(q) -1 d q, R q (v) ρ(q) -1 d(q, p) + d p, R p (ū) ρ(q) -1 [σ + ̺(p) ū ] σ/ρ 0 + η 0 ū .
Thus, the value of quantity v 0 can be majorized as follows

v 0 v 0 -v + ρ(q) -1 σ + ρ(q) -1 ̺(p) ū < r ′ + ρ(q) -1 σ + ρ(q) -1 ̺(p) ū < ι 0 min{δ(p), δ(q)}. Denoting z 0 = R q (v 0 ) ∈ W p , z = R q (v) = R p (ū).
In terms of normal pair, there exists a unique u 0 ∈ ι 0 B p with R p (u 0 ) = R q (v 0 ). Since R ∈ URC ρ, ̺, δ, W p and ι 0 δ(p), we deduce d z 0 , z ̺(q) v 0v and u 0ū ρ(p) -1 d(z 0 , z). Particularly, these arguments give us

u 0 -ū d(z 0 , z)/ρ 0 ̺ 0 v 0 -v /ρ 0 = η 0 v 0 -v . (5.8) 
Consequently, (u k , x k ) belongs to V, since

x k -x < (η 0 ) 2 (α + βµ p ) 2 1 -θ ′ r ′ + η 0 θ ′ 1 -θ ′ s ′ < s.
Invoking the fact κ ′ ∈ Regmod Ψ p , V once more, we find

d u k , Ψ -1 p (x k ) κ ′ d x k , Ψ p (u k ) κ ′ x k -x k-1 .
The set Ψ -1 p (x k ) is closed and nonempty in T p M, so it contains an element, written as u k+1 , such that u ku k+1 = d u k , Ψ -1 p (x k ) . Repeating the same arguments as the preceding cases of x kx and v kv , it is possible to prove that

   x k -x k-1 (α + βµ p ) v k -v k-1 , v k -v k-1 η 0 u k -u k-1 .
In summary, we derive from these arguments

u k -u k+1 κ ′ (α + βµ p )η 0 u k -u k-1 (θ ′ ) k u 0 -u 1 (θ ′ ) k κ ′ C.
To see that u k+1 ∈ ι * B p , we estimate as follows

u k+1 ū + k j=0 u j -u j+1 ū + k j=0 (θ ′ ) j u 0 -u 1 < ū + 1 1 -θ ′ [η 0 (1 + θ ′ ) r ′ + κ ′ s ′ ] ū + 2η 0 1 -θ ′ r ′ + κ ′ 1 -θ ′ s ′ < ι * .

Thus, by virtue of ι

* δ(p), it holds that d R p (u k+1 ), p ̺ 0 u k+1 ̺ 0 ū + 2η 0 1 -θ ′ r ′ + κ ′ 1 -θ ′ s ′ < λ * ,
where the last inequality is due to (5.7d). This means, the point z k+1 = R p (u k+1 ) lies into W p . As a result, it has a unique tangent vector v k+1 ∈ ι * B q satisfying R q (v k+1 ) = z k+1 . The sequences (u k ) and (v k ) are completely determined.

According to the construction, one has u ku k+1 (θ ′ ) k κ ′ C. Since θ ′ < 1, the positive series j 0 (θ ′ ) j κ ′ C is convergent. Therefore, u k converges in T p M to some u * . Furthermore, we also infer v kv k-1 η 0 u ku k-1 from the construction above, so the limit lim

k→∞ v k = v * exists in T q M. following conditions θ = ̺ 0 κ(α + βµ p )/ρ 0 < 1, (5.12a) σ/ρ 0 + ̺ 0 r ′ /ρ 0 + κ 1 -θ s ′ < min {ι R (p), δ(p), δ(q), r} , (5.12b) 
(̺ 0 ) 2 r ′ /ρ 0 + ̺ 0 σ/ρ 0 + ̺ 0 κ 1 -θ s ′ < λ R (p), (5.12c) 
where µ p = Dϕ(p) , ρ 0 = min {ρ(p), ρ(q)} and ̺ 0 = max {̺(p), ̺(q)}. In addition, we require the both suppositions (i) and (ii) in Proposition 5.2 hold with respect to each geodesic segment χ :

[a, b] -→ W p having χ(a) = p, χ(b) = q. Then Ψ q := Dϕ(q) + (ΦR q ) is metrically regular with modulus τ = ̺ 0 ρ 0 1 1-θ κ on the set V r ′ ,s ′ (Ψ q ) := (v, y) ∈ T q M × R n : v r ′ , d y, Ψ q (v) s ′ . Proof. Keeping the notations ι 0 = ι R (p), λ 0 = λ R (p), δ 0 = min{δ(p), δ(q)} and η 0 = ̺ 0 /ρ 0 . Interchanging ι * R (z) = min {ι R (z), δ(p), δ(q)} with ι R (z) if necessary, we can assume ι 0 = min {ι R (p), δ(p), δ(q)}. Let's fix (v, y) ∈ V r ′ ,s ′ (Ψ q ) with y / ∈ Ψ q (v).
The strategy of this proof is similar to the one of Proposition 5.2. At first, we set C = d y, Ψ q (v) > 0, v 0 = v and z 0 = R q (v 0 ). From (5.12b), we have v 0 r ′ < δ(q). Thus, the fact R ∈ URC ρ, ̺, δ, W p gives us d(z 0 , q) = d R q (v 0 ), q ̺(q) v 0 ̺ 0 r ′ .

Observing η 0 = ̺ 0 /ρ 0 1, it follows from (5.12c) that d(z 0 , p) d(z 0 , q) + d(q, p) ̺ 0 r ′ + σ < λ R (p).

Hence, z 0 belongs to W p . In terms of normal pair, there exists tangent vector

u 0 ∈ ι 0 B p satisfying R p (u 0 ) = R q (v 0 ). Put x 0 = y + Dϕ(p)(u 0 ) -Dϕ(q)(v 0 ), one has d x 0 , Ψ p (u 0 ) = d y -Dϕ(q)(v 0 ), (ΦR p ) (u 0 ) = d y, Dϕ(q)(v 0 ) + (ΦR q ) (u 0 ) = C s ′ s.
Moreover, the fact R ∈ URC ρ, ̺, δ, W p provides

u 0 1 ρ 0 d z 0 , p η 0 r ′ + 1 ρ 0 σ < r.
Therefore, (u 0 , x 0 ) ∈ V r,s (Ψ p ). Invoking the metric regularity property for Ψ p , we the next assertion is fulfilled. If d R (p, q) λ R (p) and d R (p, q ′ ) λ R (p), the map Σ q ′ ,q := R -1 q R q ′ -P b,a χ is Lipschitz continuous on the ball ι R (p)B q ′ with a modulus L (ℓ(χ)) for any geodesic χ : [a, b] -→ Ω having χ(a) = q, χ(b) = q ′ . Example 5.7 illustrates a situation where the property R ∈ ELC L p might be satisfied. ≈ 0.6662 . . .

We will show that for each geodesic χ on S m-1 satisfying ℓ(χ |[0,1] ) < r max , the map Σ χ := R -1 χ(0) R χ(1) -P 1,0 χ is Lipschitz continuous on the unit ball of T χ(1) S m-1 together with a modulus L ℓ(χ) . Indeed, according to [1], the geodesic χ can be written as follows

χ(t) = cos (ℓt) χ(0) + sin (ℓt) ℓ χ(0), ℓ = χ(0) = ℓ(χ). (5.14) 
It is possible to check that for each t 0 and v ∈ T χ(t 0 ) S m-1 , the field ξ(v, t 0

; t) = ℓ -2 χ(t 0 ) T v χ(t) + v -ℓ -2 χ(t 0 ) T v χ(t 0 ) adopts the following properties ξ(v, t 0 ; t 0 ) = v, ξ(v, t 0 ; t) ∈ T χ(t) S m-1
and ∇ χξ(v, t 0 ; •) ≡ 0. Thus, we obtain the following expression for parallel transport .15) From the definition of R, one gets R -1 p (q) = p T q -1 qp whenever d R (q, p) = arccos q T p < π 2 . Consequently, by deriving the differentiation, we deduce

P 1,0 χ v = ℓ -2 χ(1) T v χ(0) + v -ℓ -2 χ(1) T v χ(1) , v ∈ T χ(1) S m-1 . ( 5 
   d (R p ) u (u ′ ) = p + u -1 u ′ -p + u -2 u T u ′ R p (u); u, u ′ ∈ T p S m-1 , d R -1 p q (v) = -p T q -2 p T v q + p T q -1 v; q T p > 0, v ∈ T q S m-1 .
(5.16)

Convergence of Newton-Type Algorithm

Let Σ χ = R -1 χ(0) R χ(1) and w, w ′ ∈ T χ(1) S m-1 . Thanks to the chain rule, we have

DΣ χ (w) = d R -1 χ(0) R χ(1) (w)
d R χ(1) w . So, after including the second expression in (5.16), the differential DΣ χ (w) satisfies

(DΣ χ (w)) (w ′ ) = -χ(0) T R χ(1) (w) -2 χ(0) T d R χ(1) w (w ′ ) R χ(1) (w) + χ(0) T R χ(1) (w) -1 d R χ(1) w (w ′ ).
Using again (5.16), we reach an explicit representation for DΣ χ (w) as follows

(DΣ χ (w)) (w ′ ) = χ(0) T R χ(1) (w) -1 χ(1) + w -1 w ′ -χ(0) T R χ(1) (w) -2 χ(1) + w -1 χ(0) T w ′ R χ(1) (w).
(5.17)

Observe that R χ(1) (w) = χ(1) + w -1 [(cos ℓ) χ(0) + (ℓ -1 sin ℓ) χ(0) + w], which yields χ(0) T R χ(1) (w) = χ(1) + w -1 cos ℓ + χ(0) T w . Since w ∈ T χ(1) S m-1 , it holds that 0 = χ(1) T w = cos ℓ χ(0) T w + ℓ -1 sin ℓ χ(0) T w . Therefore, χ(0) T w = - sin ℓ ℓ cos ℓ χ(0) T w = - tan ℓ ℓ χ(0) T w. (5.18) 
Similarly, we also have

χ(0) T w ′ = - tan ℓ ℓ χ(0) T w ′ . (5.19) 
As a result,

(DΣ χ (w)) (w ′ ) = (cos ℓ) ν 1 χ(0) + sin ℓ ℓ ν 1 χ(0) + ν 1 w + ν 2 w ′ , (5.20) 
where

   ν 1 = tan ℓ ℓ cos ℓ -tan ℓ ℓ χ(0) T w -2 χ(0) T w ′ , ν 2 = cos ℓ -tan ℓ ℓ χ(0) T w -1 . (5.21) 
Taking into account (5.15), and using χ(t) = -ℓ sin (ℓt) χ(0) + cos (ℓt) χ(0), we obtain .22) Here, ν 3 and ν 4 are given by

(DΣ χ (w)) (w ′ ) = (DΣ χ (w)) (w ′ ) -P 1,0 χ w ′ = (ν 2 -1)w ′ + (ν 1 cos ℓ -ν 3 ) χ(0) + sin ℓ ℓ ν 1 -ν 4 χ(0) + ν 1 w. ( 5 
ν 3 = ℓ -1 sin ℓ (cos ℓ + sin ℓ tan ℓ) χ(0) T w ′ , (5.23a) 
each other by a minimizing geodesic which totally lies in W * . Considering the composition f = ϕ • γ, one has f ′ (t) = Dϕ(γ(t)) (γ ′ (t)). Thus,

ϕ(q) = f (1) = f (0) + 1 0 Dϕ(γ(t)) (γ ′ (t)) dt = ϕ(p) + 1 0 Dϕ(γ(t)) (γ ′ (t)) dt, which implies that ϕ(q) -[ϕ(p) + Dϕ(p)(u)] 1 0 Dϕ(γ(t)) (γ ′ (t)) -Dϕ(p)(u) dt. (5.26) Let χ t (•) be a minimizing geodesic such that χ t (0) = γ(t), χ t (1) = p and χ t ([0, 1]) ⊂ W * . We define G t = Dϕ(γ(t))P 1,0 χt -Dϕ(p) and Σ t = R -1 γ(t) R p -P 1,0 χt . Then it holds that L 2 (ℓ(χ t )) ∈ Lipmod Σ t , ι * B p whereas G t L 1 (ℓ(χ t )). Because of R p (tu) = γ(t) and u ∈ ι * B p , we get (dΣ t ) (tu) L 2 (ℓ(χ t )). Through a simple computation (dΣ t ) (tu) = dR γ(t) -1 0 γ(t) (dR p ) tu -P 1,0 χt = (dR p ) tu -P 1,0 χt ,
and this yields γ ′ (t) -P 1,0 χt (u) = (dR p ) tu (u) -P 1,0 χt (u) L 2 (ℓ(χ t )) u .

(5.27)

Nevertheless, it is possible to see that (G t + Dϕ(p)) P 0,1 χt = Dϕ(γ(t)). Henceforth, taking into account (5.26), we deduce

ϕ(q) -[ϕ(p) + Dϕ(p)(u)] 1 0 G t (u) dt + 1 0 G t + Dϕ(p) P 0,1 χt γ ′ (t) -P 1,0 χt (u) dt.
( 

1 ρ * τ L(η * α * ) 1 -τ η * L(η * α * ) α * < r, (5.29b 
)

1 ρ * L(η * α * ) 1 -τ η * L(η * α * ) α * < s, (5.29c 
)

1 ρ * 1 + τ L(η * α * ) 1 -τ η * L(η * α * ) α * < ι R (p * ), (5.29d 
) .30) and choose U * = B M (p * , α).

η * τ L(η * α * ) 1 -τ η * L(η * α * ) α * < λ R (p * ). (5.29e) Let's pick a value 0 < α min ρ * ρ * + ̺ * α * , λ R (p * ), ι R (p * ) ( 5 
Fixing p 0 = p * in U * and we call by χ 0 the minimizing geodesic path joining

p * = χ 0 (0) to p 0 = χ 0 (1). Let u * 0 ∈ T p 0 M such that u * 0 < ι R (p * ) and R p 0 (u * 0 ) = p * . We denote α 0 = d(p * , p 0 ) < α, x 0 = -ϕ(p * ) + Dϕ(p * )(u * 0 ), y 0 = -ϕ(p 0 ) and Ψ 0 (•) = Dϕ(p 0 )(•)+(Φ • R p 0 ) (•).
Then it follows from the assumptions of Theorem 5.8 that

G χ 0 ,p * ,p 0 L 1 (α 0 ), L 2 (α 0 ) ∈ Lipmod Σ χ 0 ,p 0 ,p * , ι R (p * )B p 0 ,
in which the notations G χ 0 ,p * ,p 0 = Dϕ(p * ) -Dϕ(p 0 )P 0 , Σ χ 0 ,p 0 ,p * = R -1 p * R p 0 -P -1 0 , P 0 = P 0,1 χ 0 were involved. Consider the retraction segment γ 0 (t) = R p 0 (tu 0 ) for 0 t 1. Observing u * 0 1

ρ * d p 0 , R p 0 (u * 0 ) = 1 ρ * α 0 , so one has a 0 (t) := d p 0 , γ 0 (t) ̺ * t u * 0 t ̺ * ρ * α 0 = η * α 0 t η * α 0 , 0 t 1.
Hence, d p * , γ 0 (t) (1 + η * )α 0 . According to (5.30), the image γ 0 ([0, 1]) thereby lies in B M (p * , α * ). By Proposition 5.9, we get

y 0 -x 0 = ϕ (R p 0 (u * 0 )) -[Dϕ(p * )(u * 0 ) + ϕ(p 0 )] u * 0 1 0 L 1 η * α 0 t L 2 η * α 0 t + 1 + Dϕ(p * ) L 2 η * α 0 t dt 1 ρ * α 0 1 η * α 0 η * α 0 0 L 1 (t) [L 2 (t) + 1] + µL 2 (t) dt = 1 ̺ * η * α 0 0 L(t) dt.
In particular, it holds that .31) Remind L 1 (η * α 0 ) + L 2 (η * α 0 )µ * L(η * α 0 ), the following inequalities are fulfilled by the choice of α

y 0 -x 0 1 ̺ * η * α 0 L(η * α 0 ) = 1 ρ * α 0 L(η * α 0 ). ( 5 
                     θ 0 = η * τ [L 1 (η * α 0 ) + L 2 (η * α 0 )µ * ] < 1, τ 1-θ 0 d 0 < r, 1 1-θ 0 d 0 < s, α 0 /ρ * + τ 1-θ 0 d 0 < ι R (p * ), ̺ * τ 1-θ 0 d 0 < λ R (p * ), for d 0 := 1 ρ * α 0 L(η * α 0 ) and µ * = Dϕ(p * ) .
Consequently, we are able to add some positive parameters r 0 > 0 and s

0 > 1 ρ * α 0 L(η * α 0 ) such that η * 2 1 -θ 0 r 0 + τ 1 -θ 0 s 0 < r, (η * ) 2 [L 1 (η * α 0 ) + L 2 (η * α 0 )µ * ] 2 1 -θ 0 r 0 + 1 1 -θ 0 s 0 < s, α 0 /ρ * + η * 2 1 -θ 0 r 0 + τ 1 -θ 0 s 0 < ι R (p * ), ̺ * η * 2 1 -θ 0 r 0 + τ 1 -θ 0 s 0 < λ R (p * ).
Following the proof of Proposition 5.2, one has τ 0 ∈ Regmod Ψ 0 , V 0 for τ 0 = τ 1-θ 0 and V 0 = (u, x) : uu * 0 < r 0 , xx 0 < s 0 . By virtue of (5.31), the pair (u * 0 , y 0 ) is in V 0 . Thus, after applying the metric regularity property to Ψ 0 , we can find u 0 ∈ Ψ -1 0 (y 0 ) such that

u * 0 -u 0 τ 0 d y 0 , Ψ 0 (u * 0 ) τ 0 y 0 -x 0 τ 1 -θ 0 1 ρ * α 0 L(η * α 0 ) τ L(η * α 0 ) ρ * -̺ * τ L(η * α 0 ) α 0 .
( .32) To continue the construction, we define p 1 = R p 0 (u 0 ). Based on the choice of u 0 , the inclusion -ϕ(p 0 ) = y 0 ∈ Ψ 0 (u 0 ) is evident. But it can be rewritten in an In view of (5.34), the rate of convergence seems to concern the behavior of real function L around the origin. If a stronger hypothesis is simultaneously imposed on L 1 and L 2 , then it might be possible to refine the conclusion of Theorem 5.8 slightly. The next statement is in this sense. = O(t) are fulfilled. This permits us to subsume the corresponding statement attained in [4] as a particular case of the one in Theorem 5. [START_REF] Bakushinskii | A regularization algorithm based on the Newton-Kantorovich method for solving variational inequalities[END_REF].

To end up the current section, we introduce a result of global type compared to Theorem 5.10. 

u k-1 1 0 L 1 a k-1 (t) L 2 a k-1 (t) + 1 + Dϕ(p k-1 ) L 2 a k-1 (t) dt 1 ρ * β k-1 1 0 L 1 η * β k-1 t L 2 η * β k-1 t + 1 + µL 2 η * β k-1 t dt 1 ̺ * η * β k-1 0 L 1 (t) [L 2 (t) + 1] + µL 2 (t) dt.
Taking into account η * β k-1 η * β r, the fact that 0 t η * β k-1 implies L j (t) K j (r)t. As a result, we obtain (5.41)

In order to use Proposition 5.5, we first establish the following inequalities

θ k = η * τ L 1 η * t k + µ p L 2 η * t k < 1, (5.42a 
)

η * t k /ρ * + τ 1 -θ k d k < min ι, δ * , r , (5.42b 
)

̺ * η * t k /ρ * + ̺ * τ 1 -θ k d k < λ, (5.42c) 
for d k := 1 2τ ̺ * Kβ 2 k-1 and µ p = Dϕ(p) µ. Indeed, based on the assumptions of Theorem 5.12, it is possible to check that the quantity L 1 η * t k + µ p L 2 η * t k 5. Newton-Type Algorithm in Riemannian Manifolds satisfies the estimations below L 1 η * t k + µ p L 2 η * t k η * t k [K 1 (r) + µK 2 (r)] (η * ) -1 t k τ -1 K.

(5.43)

As a result, (5.42a) follows immediately from (5.43), since

(η * ) -1 t k τ -1 K < τ -1 (η * ) -1 Kt * = τ -1 (η * ) -1 α 1 + √ 1 -α τ -1 (η * ) -1 .
For (5.42b), we observe Kβ 2 k-1 = ω ′′ (t k-1 )β 2 k-1 . Expanding the polynomial ω at center t k-1 , and including relation ω(t k-1 ) + ω ′ (t k-1 )β k-1 = 0, we arrive

d k = 1 τ ̺ * 1 2 ω ′′ (t k-1 )β 2 k-1 = 1 τ ̺ * ω(t k ) -ω(t k-1 ) + ω ′ (t k-1 )β k-1 = 1 τ ̺ * ω(t k ) η * τ ρ * ω(t k ).
Due to (5.43), we conclude θ k Kt k = ω ′ (t k ) + 1. So, the left-hand side of (5.42b) does not exceed in η * t k /ρ * +ω ′ (t k ) -1 η * ρ * ω(t k ), which gives us

η * t k /ρ * + τ 1 -θ k d k ̺ * (ρ * ) 2 (t k + β k ) = ̺ * (ρ * ) 2 t k+1 < ̺ * (ρ * ) 2 t * min ι, δ * , r .
Similarly, (5.42c) is verified as follows

̺ * η * t k /ρ * + ̺ * τ 1 -θ k d k (η * ) 2 t k -ω ′ (t k ) -1 ω(t k ) = (η * ) 2 t k+1 < (η * ) 2 t * = (η * ) 2 2 1 + √ 1 -α β = (η * ) 2 νβ < λ.
In summary, we can select some parameters r k > 0 and s k > d k such that 

   η * t k /ρ * + ̺ * r k /ρ * + τ 1-θ k s k < min ι, δ * , r , (̺ * ) 2 r k /ρ * + ̺ * η * t k /ρ * + ̺ * τ 1-θ k s k < λ.
u k = d 0 p k , Ψ -1 k (x k ) τ k d k 1 ρ * -ω ′ (t k ) -1 ω(t k ) = 1 ρ * (t k+1 -t k ).
Let's define p k+1 = R p k (u k ). Since β k β, we derive from the assumption (iv) that

u k 1 ρ * β 1 ρ * 1 + √ 1 -α 2 (ρ * ) 2 ̺ * ι R (p) < ι R (p).
Hence, the fact R ∈ URC ρ, ̺, δ, W could be applicable Ultimately, p k+1 is still in the neighborhood W . The induction step is thereby completed.

• Convergence and error bounds. Résumé : Le but de cette thèse est d'étudier la méthode de Newton pour résoudre numériquement les inclusions variationnelles, appelées aussi dans la littérature les équations généralisées. Ces problèmes engendrent en général des opérateurs multivoques. La première partie est dédiée à l'extension des approches de Kantorovich et la théorie (α, γ) de Smale (connues pour les équations nonlinéaires classiques) au cas des inclusions variationnelles dans les espaces de Banach. Ceci a été rendu possible grâce aux développements récents des outils de l'analyse variationnelle et non-lisse tels que la régularité métrique. La seconde partie est consacrée à l'étude de méthodes numériques de type-Newton pour les inclusions variationnelles en utilisant la différentiabilité généralisée d'applications multivoques où nous proposons de linéariser à la fois les parties univoques (lisses) et multivoques (non-lisses). Nous avons montré que, sous des hypothèses sur les données du problème ainsi que le choix du point de départ, la suite générée par la méthode de Newton converge au moins linéairement vers une solution du problème de départ. La convergence superlinéaire peut-être obtenue en imposant plus de conditions sur l'approximation multivaluée. La dernière partie de cette thèse est consacrée à l'étude des équations généralisées dans les variétés Riemaniennes à valeurs dans des espaces euclidiens. Grâce à la relation entre la structure géométrique des variétés et les applications de rétractions, nous montrons que le schéma de Newton converge localement superlinéairement vers une solution du problème. La convergence quadratique (locale et semi-locale) peut-être obtenue avec des hypothèses de régularités sur les données du problème.

Mots clés : analyse variationnelle, régularité métrique, équations généralisées, méthode de Josephy-Newton, différenciation multivoque, méthode de Newton sur les variétés Riemaniennes, convergence linéaire/superlinéaire/quadratique.

Titre thèse anglais: Newton-type Methods for Solving Inclusions.

Abstract: This thesis is devoted to present some results in the scope of Newtontype methods applied for inclusion involving set-valued mappings. In the first part, we follow the Kantorovich's and/or Smale's approaches to study the convergence of Josephy-Newton method for generalized equation (GE) in Banach spaces. Such results can be viewed as an extension of the classical Kantorovich's theorem as well as Smale's (α, γ)-theory which were stated for nonlinear equations.

The second part develops an algorithm using set-valued differentiation in order to solve GE. We proved that, under some suitable conditions imposed on the input data and the choice of the starting point, the algorithm produces a sequence converging at least linearly to a solution of considering GE. Moreover, by imposing some stronger assumptions related to the approximation of set-valued part, the proposed method converges locally superlinearly. The last part deals with inclusions involving maps defined on Riemannian manifolds whose values belong to an Euclidean space. Using the relationship between the geometric structure of manifolds and the retraction maps, we show that, our scheme converges locally superlinearly to a solution of the initial problem. With some more regularity assumptions on the data involved in the problem, the quadratic convergence (local and semi-local) can be ensured.

Keywords: variational analysis, metric regularity, generalized equations, Josephy-Newton method, set-valued differentiation, Riemannian Newton method, linear/superlinear/quadratic convergence.
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 21 Fig. 2.1: Illustration for normal cones and Clarke regularity
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 22 Fig. 2.2: Example for three mappings: T , D * T (x, ȳ) and D * T (x, ȳ)
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 26 Hausdorff distance). Suppose K and K ′ are two subsets of a Banach space. The excess of K beyond K ′ is the quantity e K, K ′ := sup x∈K d x, K ′
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 261027 Fig. 2.6: Validity of metric regularity
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 2 12 (smooth curve and tangent vector). A curve on some variety M is one continuous map γ : I -→ M, where I is an open interval of the real line R. If [a, b] ⊂ I, then the restriction of γ on [a, b] is a path (or sometimes segment) joining γ(a) to γ(b). γ is called a smooth curve if it is smooth at every point of I.
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 42829 Fig. 2.8: An illustration for the tangent space
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 2101 Fig. 2.10: A parallel field and the corresponding transportation

Theorem 3 . 1

 31 (local stability). Given two Banach spaces X and Y , and let Φ : X ⇒ Y be a closed mapping. Suppose (x, ȳ) ∈ Gr(Φ) and κ ∈ Regmod Φ, V a,b , where V a,b = B(x, a) × B(ȳ, b). Let δ > 0, L ∈ (0, κ -1 ), and set τ = κ/(1 -κL).

  Suppose a = r, b = s, α, β and δ fulfill (3.3), then for η > 0 small enough, the constraint (3.5) holds with r ′ = (1 -κL)α, s ′ = β. Contrarily, when r = min a, δ/2 , s = b, r ′ and s ′ obey (3.5), then α = 1 2 min {r ′ , c -1 Lr ′ } and β = 1 2(1+cτ ) s ′ satisfy (3.3). Thus, the two Theorems 3.1 and 3.3 can be subsumed together.

Theorem 3 . 5 (

 35 Kantorovich-type version of local analysis). Consider problem (3.1) where f : X -→ Y is C 2 in an open convex subset U of X. Let x * ∈ U be a solution of (3.1) and y* = Df (x * )(x * )f (x * ). Suppose that τ ∈ Regmod(Φ, V r,s ), where Φ(•) := Df (x * )(•) + F (•) and V r,s = B(x * , r) × B(y * , s), with B(x * , r) ⊂ U . Define a few quantities K(τ, x * , r) := τ sup z-x * r D 2 f (z), and ε = min r, s, τ s .(3.11) 

Remark 3 . 6 .

 36 A similar result to Theorem 3.5 was obtained by A. Dontchev in [21, Theorem 1]. It is possible to see that the assumptions here are slightly different from the ones used in [21, Theorem 1] and the conclusion of Theorem 3.5 is more precise in the sense that it gives an explicit region for starting points. Theorem 3.5 requires the knowledge about a solution x * to problem (3.1) as well as the Lipschitz continuity of Df around x * . When f is analytic, one can extend the classical γ-theory in order to attain a local behavior of convergence for the scheme (3.2). The next statement is in this sense.

Theorem 3 . 7

 37 (γ-type theorem for GE). Keep in mind the assumption that f is analytic in an open convex set U ⊂ X. Let x * ∈ U be a solution of problem (3.1) and y

  holds. Taking into account (3.25) and (3.29), we are going to estimate the value of d y k , Φ k (x k ) as follows

3 .

 3 Josephy-Newton Method under Kantorovich's and Smale's Approaches constant L should satisfy

Fig. 3 . 2 :

 32 Fig. 3.2: The feasible set g(x) ∈ K in Example 3.16

Figure 3 . 2

 32 depicts the feasible set corresponding to such g and K. We carry out the tests by applying the Kantorovich-type theorems (i.e. Theorem 3.5 and Theorem 3.9). Figures3.3 and 3.4 describe the numerical results under several certain choices of starting point.
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 33 Fig. 3.3: Numerical test in Example 3.16: x 0 = (-0.903, 0.77) T

Fig. 3 . 4 :

 34 Fig. 3.4: Numerical test in Example 3.16: x 0 = (0.039, 0.481) T

Fig. 3 . 5 :

 35 Fig. 3.5: The sum f (•) + F (•) in Example 3.18

  [START_REF] Ferris | Complementarity problems in GAMS and the PATH solver[END_REF] with the convention 1/0 = +∞. The first equality in(3.37) is due to[START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation I: Basic Theory[END_REF] Proposition 1.50]. Let's apply the α-type theorem (Theorem 3.12) using in turn the starting points x 0 = 0.2 and x 0 = 0.4. The tests are illustrated in the next Figures3.6 and 3.7. 

Fig. 3 . 6 :

 36 Fig. 3.6: Numerical test in Example 3.18: x 0 = 0.2, x kmax = 1.4354e -12

Fig. 3 . 7 :

 37 Fig. 3.7: Numerical test in Example 3.18: x 0 = 0.4, x kmax = 0.6339746 . . .

  Furthermore, it follows from the inclusion w ′ ∈ H(x * )(u) that w ′ |H(x * )| + u . The latter implies w |H(x * )| + u + ̺(r)ε. But b can be arbitrarily close to u without depending on w, we conclude w |H(x * )| + + ̺(r) u . In other words, inclusion (4.27) is proved. At last, (4.28) is inferred from (4.27). Proof of Theorem 4.10. Let L ∈ Lipmod Df, B(x * , r) and let ν * = Df (x * ) + |H(x * )| + . Choose some parameters τ > τ * and λ > λ * such that τ [λ + ̺(0)] < 1.

  + τ λ defines a function from the interval [0, α] into [0, 1). Using this function, (4.35) is rewritten as follows x *x 1 < ψ( x *x 0 ) x *x 0 . (4.36)

Corollary 4 .

 4 [START_REF] Dedieu | Points Fixes, Zéros et la Méthode de Newton[END_REF] (local convergence revision). Keep in mind all assumptions of Theorem 4.10, where λ * = lim sup t→0 (t -1 ρ(t)) = 0. Then, the value α mentioned in Theorem 4.10 can be chosen such that the sequence (x k ) converges superlinearly to the solution x * of (4.13).

FFig. 4 . 1 :

 41 Fig. 4.1: The graphs of -f (•) and F (•) in numerical illustration
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 4243 Fig. 4.2: Numerical results: starting point x 0 = 0.4

Fig. 5 . 1 :Fig. 5 . 2 :

 5152 Fig. 5.1: Retraction on the sphere S 2

Proposition 5 . 2

 52 (local stability). Let R z : z ∈ Ω be a given family of retractions and (λ R , ι R ) be a normal pair for Ω. Fix a point p ∈ Ω and suppose R ∈ URC ρ, ̺, δ, W p where W p = B M p, λ R (p) . Pick a tangent vector ū ∈ T p M such that κ = Reg Ψ p (ū, x) < +∞ with Ψ p (•) = Dϕ(p)(•)+(ΦR p ) (•) and x ∈ Ψ p (ū).

5

 5 Secondly, let f : Ω -→ R n be a smooth map and Df be its covariant derivative. Let L : [0, +∞) -→ [0, +∞) be an increasing function. By the notation Df ∈ L ip L (Ω) we mean for each geodesic path χ : [a, b] -→ Ω it holds that Df (χ(a)) -Df (χ(b))P a,b χ L ℓ(χ) . When L is linear (i.e. L = κ id R ), such a property reduces the notion of Lipschitz continuity for covariant derivative used, e.g. in [34]. Example 5.7. Consider again the unit sphere S m-1 along with the retraction R(p, u) = 1 p+u (p + u) in Example 5.1. Define L(r) = 1cos r + tan r cos rtan r + sin r (1 + tan r) (cos rtan r) 2 + 1cos r + sin r cos r , 0 r < r max (5.13) where r max ∈ 0, π 2 is solution of the equation cos rtan r = 0. The numeric value is about r max = arcsin √

5 . 0 as follows u * 0 1 ρ 1 ρ * α 0 .

 50110 Newton-Type Algorithm in Riemannian Manifolds equivalent form 0 ∈ ϕ(p 0 ) + Dϕ(p 0 )(u 0 ) + (Φ • R p 0 ) (u 0 ).That is, p 1 satisfies (5.2). Thanks to the triangle inequality in T p 0 M, it holds that u 0 u * 0 + u 0u * 0 . Recalling R p 0 (u * 0 ) = p * and u * 0 ∈ ι * B p * , it is possible to estimate the value of u * (p 0 ) d(p 0 , p * ) By taking into account (5.29d), (5.30) and (5.32), we arriveu 0 1 ρ * α 0 + τ L(η * α 0 ) ρ * -̺ * τ L(η * α 0 ) α 0 = 1 ρ * 1 + τ L(η * α 0 ) 1η * τ L(η * α 0 ) α 0 < ι R (p * ).Therefore,d(p * , p 1 ) ̺ * u * 0u 0 ̺ * τ L(η * α 0 ) ρ * -̺ * τ L(η * α 0 ) α 0 .(5.33)Due to (5.33) and (5.29a), d(p * , p 1 ) α 0 , and the new point p 1 belongs to U * . So, we can apply all arguments above into p 1 instead of p 0 and continue the current process. As a result, algorithm (5.2) produces a sequence (p k ) in U * which satisfies the relationd(p * , p k+1 ) ̺ * τ L(η * α k ) ρ * -̺ * τ L(η * α k ) d(p * , p k ), k = 0, 1, . . .(5.34)Here, α k indicates the quantity d(p * , p k ). If p k = p * at some index k, then from (5.34) we have p j = p * for j k. Otherwise, taking into account L(t) → 0 as t → 0,(5.34) shows that lim sup k→∞ d(p * ,p k+1 ) d(p * ,p k ) = 0. This completes our proof.

Theorem 5 . 10 .

 510 Involving all assumptions of Theorem 5.[START_REF] Alvarez | A unifying local convergence result for Newton's method in Riemannian manifolds[END_REF]. Suppose in addition that L 1 (t)t→0 = O(t) and L 2 (t) t→0 = O(t).Then the resulting sequence (p k ) obtained in proof of the preceding theorem converges quadratically to p * . Here, notation L j (t) t→0 = O(t) means lim sup t→0 L j (t) t < +∞. Proof. The proof is totally analogous to the one of Theorem 5.8. Quadratic convergence is inferred from (5.34), just substitute lim sup t→0 L(t) = 0 with the fact that lim sup t→0 L(t) t < +∞. Remark 5.11. In [4], the authors have proved a similar result as Theorem 5.10 in the case where both L 1 and L 2 are C 1 . It is clear that in such a situation the conditions L j (t) t→0

Theorem 5 . 2 τ K 1 * 2 λ 4 √ 1 -α α b 2 k 1 -b 2 1 ρ

 521241121 [START_REF] Blum | Complexity and Real Computation[END_REF] (semi-local analysis). Keep in mind ϕ, Φ, L 1 and L 2 as similar as in Theorem5.8, where p and Ω are replaced by p * and Ω * respectively. LetΨ (•) := Dϕ(p)(•) + (ΦR p ) (•) and suppose that τ ∈ Regmod Ψ, V , in which V = (u, x) : u r, d x, Ψ (u) sand the parameters r, s, τ are positive. Being stronger than in Theorem 5.8, we restrict on the case where both L 1 , L 2 are C 1 only. Put K j (r) = sup 0 t r L ′ j (t) , and µ = sup q∈Ω Dϕ(q) . Let's defineK = ρ * ̺ * (r)[1 + L 2 (r)] + µK 2 (r) , β(τ, p) = τ ρ * d 0, ϕ(p) + Φ(p) ,in which ρ * = inf z∈Ω ρ(z), ̺ * = sup z∈Ω ̺(z). We assume the conditions below are valid as well:(i) W := B M (p, λ R (p)) is a convex neighborhood; (ii) d 0, ϕ(p) + Φ(p) < s; (iii) α := 2Kβ(τ, p) 1; (iv) νβ(τ, p) < min r, (ρ * ) 2 ̺ * r, (ρ * ) 2 ̺ * δ * , ρ * ̺ R (p), (ρ * ) 2 ̺ * ι R (p) for ν := and δ * := inf z∈Ω δ(z).Under those hypotheses, problem (5.1) admits a solution p * such that d(p, p * ) νβ(τ, p). Alternatively, starting at p 0 = p, algorithm (5.2) produces a sequence p k ∈ M fulfilling the estimation   d(p k , p * ) k β, if α < 1, d(p k , p * ) 2 -k+1 β, if α = 1,(5.35)with b := 1- √ 1-α 1+ √ 1-α .the set Φ(p k ). Therefore,d x k , Ψ k (0 p k ) = d x k , Φ(p k ) ϕ(p k ) -[ϕ(p k-1 ) + Dϕ(p k-1 )(u k-1 )] .(5.40)We have known in the previous partβ k-1 β, so u k-1 * β. Define γ k-1 (t) := R p k-1 (tu k-1) and a k-1 (t) := d p k-1 , γ k-1 (t) . The function a k-1 can be dominated in the interval [0, 1] as follows a k-1 (t)̺ * u k-1 t η * β k-1 t. Consequently, d p, γ k-1 (t) k-2 i=0 d(p i , p i+1 ) + a k-1 (t) t i ) + η * β k-1 t η * (t k-1 + β k-1 ) = η * t k < η * t * < λ,which means that γ k-1 is not out of the neighborhood W . Then, repeating the Proposition 5.9 and letting p = p k-1 , we deduce ϕ(p k ) -[ϕ(p k-1 ) + Dϕ(p k-1 )(u k-1 )]

1 0K 1

 11 ϕ(p k ) -[ϕ(p k-1 ) + Dϕ(p k-1 )(u k-1 )] 1 ̺ * η * β k-(r) [L 2 (r) + 1] + µK 2 (r) t dt = 1 2τ ̺ * Kβ 2 k-1 .

Because of d(p, p k ) k- 1 i=0

 1 d(p i , p i+1 ) η * k-1 i=0 (t i+1t i ) = η * t k , Proposition5.5 shows that, the mapping Ψ k is metrically regular with a modulusτ k = η * 1 1-θ k on the set V k = (u, x) : u r k , d x, Ψ k (u) s k .According to(5.40) and (5.41), the pair (0p k , x k ) belongs to V k . Consequently, we obtain d 0 p k , Ψ -1 k (x k ) τ k d x k , Ψ k (0 p k ) τ k d k . Recalling the previous evaluations d k = 1 τ ̺ * ω(t k ) and θ k Kt k = ω ′ (t k ) + 1, the closed set Ψ -1 k (x k) contains one element, written by u k , which satisfies

Using relation ( 5 . 38 ) 53 )

 53853 many times, we get d(p k , p k+j ) j-1 i=0 d(p k+i , p k+i+1 ) η * j-1 i=0(t k+i+1t k+i ) = η * (t k+jt k ) .(5.44) Based on(5.44), we conclude that (p k ) is a Cauchy sequence. Thus, there exists the limit p * = lim k→∞ p k in M. By letting j → ∞ in (5.44), and invoking both error bounds(5.36) and (5.37), we obtain(5.35).At last, we claim 0 ∈ ϕ(p * ) + Φ(p * ). In fact, recall that0 ∈ ϕ(p k ) + Dϕ(p k )(u k ) + (ΦR p k ) (u k ) (5.45) holds for every index k. According to the convexity, there is a minimizing geodesic segment χ k whose image belongs to W with χ k (0) = p * and χ k (1) = p k . Let G k = Dϕ(p * ) -Dϕ(p k )P 0,1 χ k be a linear operator. Thanks to the hypotheses of Theorem 5.12, the norm of G k does not exceed in L 1 (ℓ(χ k )) = L 1 d(p * , p k ) . Since Dϕ(p k ) = (-G k + Dϕ(p * )) P 1,0 χ k , the sequence of linear operators {Dϕ(p k )} in which γ 1 and γ 2 indicate the components of γ. Taking into account γ(1) = (cos ℓ) γ(0) + (ℓ -1 sin ℓ) γ(0), we deduceG γ (v) = G 1 (v) + G 2 (v) + G 3 (v).(5.50)Here, the linear maps G 1 , G 2 and G 3 are given byG 1 (v) = 2 (1cos ℓ)γ 2 (0)ℓ -1 sin ℓ γ2 (0) v 2 , Noticing that [γ 1 (0)] 2 +[γ 2 (0)] 2 = 1 and ℓ = γ(0) = [ γ1 (0)] 2 +[ γ2 (0)]2 . According to (5.50), (5.51), (5.52) and (5.53), we obtain G γ L 1 (ℓ), and this give us Dϕ ∈ L ip L 1 (S 1 ). Figures 5.4 and 5.5 sketch some practical computations corresponding to various guess points.

Fig. 5 . 4 :Fig. 5 . 5 :

 5455 Fig. 5.4: Numerical test: starting point p 0 = (-0.9997, 0.0229) T

  . . , V m les composantes de la représentation du champ de vecteurs V par rapport à un certain cadre bien choisi {E 1 , .. . , E m } 3 , le modèle considéré (1.7) recouvre à nouveau le problème de singularité pour le champ de vecteur dans la littérature.Dans le même esprit de (1.3), nous allons faire usage de linéarisation partielle afin de générer les approximations successives d'une solution à (1.7). Plus précisément, en ayant une itération p k , nous allons suivre une rétractation R k 1. General Introduction à l'étape en cours, et de remplacer (1.7) par l'inclusion suivante0 ∈ ϕ(p k ) + Dϕ(p k )(u) + (ΦR k ) (u),(1.8) pour obtenir une direction de recherche u k . Ensuite, nous mettons à jour p k+1 = R k (u k ) comme la nouvelle itération. Grâce à un choix approprié de la partie multivaluée Φ et les rétractions R k , (1.8) peut être considérée comme une continuation de la méthode de Newton présente dans [16, 34, 82]. En suivant la même stratégie, nous montrons dans le Chapitre 5 la convergence locale et semilocale de (1.8) avec quelques hypothèses imposées sur la structure de la variété ainsi que le comportement des rétractions R k . Encore une fois, la notion de la régularité métrique pour les applications multivoques joue un rôle important dans notre analyse. L'ensemble du contenu de cette thèse est organisé comme suit. Le Chapitre 1 est une introduction à la problèmatique. Le Chapitre 2 rappelle quelques résultats de base ainsi que les notations qui seront utilisées tout au long de notre travail.

  Under some assumptions on the uniformity of the "homogenous component" H(•) as well as the metric regularity property for Df (x 0 )(•) + H(x 0 )(•), we prove that the scheme in(1.14) generates at least one sequence converging R-linearly to a solution (for semi-local convergence, see Theorem4.6). The same conclusion also holds in the local analysis, when a solution x

14) by letting H(x) ≡ H. Observe that the approximating term H(x k )(•x k ) + F (x k ) in (1.14) varies for each iteration. * of (1.10) is considered instead of x 0 . A refinement of local linear convergence is presented if a stronger estimate for differentiability at x * is verified.

  2.5: Excess and Hausdorff distance in two dimension

	Definition 2.7 (set-valued Lipschitz continuity). A multifunction S : Y ⇒ X
	(here both Y and X are Banach) is said to be Lipschitz continuous on a set Ω ⊂ Y if there exists a constant (Lipschitz modulus) κ > 0 such that

  .23) Since t k → t * , (3.23) allows us to conclude that (x k ) is a Cauchy sequence. Let x * = lim k→∞ x k and let n → ∞ in (3.23), we obtain (3.18) and (3.19) from (3.20) and (3.21).

  Some Examples for t > 0 and z ∈ R. Otherwise, by setting Φ x

  By induction, we can provex *x k α and 0 sup k ψ 1 ( x *x k ) < 1.Particularly, (4.39) shows that x k converges to x * as k → ∞. Taking into account

	lim sup t→0	ψ 1 (t) = lim sup t→0	1 1 -[τ Lt + τ ϕ(t)]	1 2	τ Lt + τ ρ 1 (t)	= 0,
	the superlinear convergence is involved. This completes the proof of Corollary
	4.15.					

  for all x, x ′ 0 and t 0. (4.42) 

  ) the conditions(4.18) and(4.19) in Theorem 4.6 are fulfilled at any reference point x > 0. Similarly, the same conclusion is also valid for the assumptions (A1), (A2) and (A3) of Theorem 4.10 for any solution x * > 0 (if exists) of the inclusion 0 ∈ f (x) + F (x). Some numerical performances are depicted by Figures 4.2and 4.3.

  .28) Thanks to the minimality of χ t , ℓ(χ t ) = d p, γ(t) . Thus, one obtains (5.25) by combining (5.27) with (5.28) . of Theorem 5.[START_REF] Alvarez | A unifying local convergence result for Newton's method in Riemannian manifolds[END_REF]. At the begining, we denote ρ * = inf z∈Ω * ρ(z), ̺ * = sup z∈Ω * ̺(z), η * = ̺ * /ρ * 1 to simplify the notations. Let r > 0 and s > 0 so that, Ψ * is metrically regular on V = B p * × B R n (-ϕ(p * ), s) together with a modulus τ τ * . Next, we look for a positive number α

	Proof

* λ R (p * ) such that B M (p * , α * ) ⊂ Ω * is a convex neighborhood at p * . Put µ = sup d(p,p * )<α * Dϕ(p) and L(t) = L 1 (t) [L 2 (t) + 1] + µL 2 (t).

The quantity µ is finite according to the fact Dϕ ∈ L ip L 1 (Ω * ). Making α * smaller if necessary, we require the following constraints are fulfilled 2̺ * τ L(η * α * ) < ρ * , (5.29a)

  . Specifically, it yieldsd(p k , p k+1 ) = d p k , R p k (u k ) ̺ * u k η * β k ,so p k+1 obeys (5.38). Due to the triangle inequality, we find d(p, p k+1 )

k i=0 d(p i , p i+1 ) η * k i=0 (t i+1t i ) = η * t k+1 < η * t * r.

Méthode de Newton Revisitée pour les Equations Généralisées

dans la théorie de la géométrie différentielle, un tel cadre est naturel

it does not involve any information about solution itself

this terminology is due to S.M.Robinson 

the terminology semi-local is due to[START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation I: Basic Theory[END_REF] 

2.4. Backgrounds from Riemannian Geometry

1-κ ′ µ ′ κR,

Acknowledgements

whenever u ∈ r B and δ τ s.

Proof. Pick z, z ′ ∈ B(x, r) and u ∈ r B. Let u ′ with u ′u δ τ s and let w ∈ Ψ z (u), w ′ ∈ Ψ z ′ (u), υ ∈ Ψ z (u ′ ), υ ′ ∈ Ψ z ′ (u ′ ). Based on triangle inequality, it holds that

). Thus, according to Definition 4.1, we obtain

This completes the proof of Lemma 4. [START_REF] Adly | Stability of metric regularity with set-valued perturbations and application to Newton's method for solving generalized equations[END_REF].

Lemma 4. [START_REF] Alvarez | A unifying local convergence result for Newton's method in Riemannian manifolds[END_REF]. Let L, τ , ρ 0 , λ and r be in the statement of Theorem 4. [START_REF] Adly | Newton's method for solving generalized equations: Kantorovich's and Smale's approaches[END_REF]. Define some parameters γ 1 = 1 2 τ L, γ 2 = ρ 0 τ and γ 3 = τ [Lr + ̺(r)] < 1. Let h(t) = 1 1-γ 3 γ 1 t 2 + γ 2 t + τ ϕ(t) , where ϕ is the function appeared in Theorem 4. [START_REF] Adly | Newton's method for solving generalized equations: Kantorovich's and Smale's approaches[END_REF]. Then, under the initial condition h(α 0 ) α 0 , the recurrence α k+1 = h(α k ) generates a sequence converging linearly.

Proof. If h(α 0 ) = α 0 , then it is easy to see that α k = α 0 for all k. In this case, the conclusion is straightforward. Otherwise, suppose α 0 = qh(α 0 ) with q ∈ (0, 1). ϕ is a convex function, so is h. Thus, the function h 1 (t) = h (t) t is increasing (see e.g. [START_REF] Hiriart-Urruty | Fundamentals of Convex Analysis[END_REF]), which implies h(t) qt for t ∈ [0, α 0 ]. Note that α 1 = h(α 0 ) < α 0 , thus α 2 = h(α 1 ) makes sense, and α 2 qα 1 . Repeating this procedure, the sequence (α k ) is well-defined and obeys the relation α k+1 qα k . The proof is done.

Proof of Theorem 4. [START_REF] Adly | Newton's method for solving generalized equations: Kantorovich's and Smale's approaches[END_REF]. We separate the proof in several parts.

Step1: Approximation sequence. At the beginning, let's set x 0 = x, Ψ 0 = Ψ x , r 0 = r, s 0 = s and V 0 = V r,s (Ψ x ). Then the mapping Ψ 0 is metrically regular on the set V 0 together with a modulus τ 0 = τ . Assumption (ii) permits us to select in F (x 0 ) an element y 0 such that -f (x 0 )y 0 < min s, τ -1 ε 0 . Denoting z 0 = -f (x 0 )y 0 , we have

Convergence of Newton-Type Algorithm with Differentiable Set-Valued Maps

This means (0, z 0 ) ∈ V 0 , which implies

Therefore, the set Ψ -1 0 (z 0 ) contains an element u 0 such that u 0 < min τ s, ε 0 . Define

Because of y 0 ∈ F (x 0 ), we reach to the following inclusion

In other words, x 1 is produced by scheme (4.14) and

Put α 0 = min τ s, ε 0 . We include the function h as mentioned in Lemma 4. [START_REF] Alvarez | A unifying local convergence result for Newton's method in Riemannian manifolds[END_REF]. Then, the hypothesis (v) gives us h(ε 0 )

Invoking Lemma 4.8, the sequence (α k ) given by α i+1 = h(α i ) is well-defined and α k+1 qα k . In particular, we have α k q k α 0 for k = 0, 1, . . . Let's proceed to the induction process. Suppose that the iterations x 0 , x 1 , . . . , x k are given. As suggested in the preceding part, we require the following relations are fulfilled:

Observe that all terms x i are in the ball B(x, r). Indeed, this is a consequence of subsequent estimations

min ε 0 , τ s r.

If x k-1 = x k , we simply set x k+1 = x k . Otherwise, we write Remark 4.9. In the manuscript [START_REF] Adly | Stability of metric regularity with set-valued perturbations and application to Newton's method for solving generalized equations[END_REF], the authors have proved a statement which subsumes as a particular case to Theorem 4. [START_REF] Adly | Newton's method for solving generalized equations: Kantorovich's and Smale's approaches[END_REF]. The corresponding one in [START_REF] Adly | Stability of metric regularity with set-valued perturbations and application to Newton's method for solving generalized equations[END_REF] is based on a stronger assumption than the aforementioned theorem, which confine ̺ to a linear map (i.e., ̺(t) = λt for some λ > 0). However, the linearity property of ̺(•) does not play any extraordinary role. Indeed, the importance of function ̺(•) is that, it permits us to control the magnitude of measuring quantity σ H(x),H(x ′ ) (u, δ) when x ′ varies around x. As we have seen above, for such a purpose, it is sufficient to exploit only the monotonicity property imposed on ̺(•).

The rest of the current section is devoted to study the local behavior of algorithm (4.14). Precisely, we have the theorem below.

Theorem 4.10 (local convergence). Suppose that problem (4.13) admits x * ∈ X as a solution. Let H : X -→ PH (X, Y ) be a given map so that F is pointwise strictly differentiable with respect to H at x * . Additionally, we assume that there are two increasing continuous functions ρ, ̺ : R + -→ R + and a positive number r > 0 for which the following assumptions hold:

On the other hand, suppose that:

Then, there exists a constant 0 < α < r having the property below. For any guess point x ∈ B(x * , α), the framework of (4.14) generates a sequence (x k ) such that x 0 = x and x k → x * at least linearly.

We will need some preparatory lemmas to prove this theorem.

According to (5.7a), it holds that u 0ū < r. Define x 0 = y + Df (p)(u 0 ) -Df (v 0 ), then we have

Remind R p (u 0 ) = R q (v 0 ) and R p (ū) = R q (v), Lemma 5.3 can be applied. As a result, we obtain

Inasmuch as η 0 1, (5.7b) and (5.9) show that x 0x < s, which implies (u 0 , x 0 ) ∈ V. By invoking κ ′ ∈ Regmod Ψ p , V , we deduce

Then, the latter yields

To continue, we set z 1 = R p (u 1 ) and claim z 1 ∈ W p . Thanks to the triangle inequality in T p M, we find

Observe that the pair (ū,

In combination with (5.8) and (5.9), (5.10) gives us

Hence, the following estimation is valid

In the space T p M, one has u 1 ū + u 0u 1 , which provides

, we go to the next step of finding u 2 , v 2 and so on.

We proceed to the inductive process. Suppose the tangent vectors u 0 , . . . , u k ∈ ι * B p and v 0 , . . . , v k ∈ ι * B q are known. Additionally, as suggested from above, we assume those elements admit the following relations:

For the goal of generating u k+1 and v k+1 , let's consider the pair (u k , x k ), where

In view of (5.8), it follows from the estimation u 0 -

Otherwise, thanks to x k = Λ q,p (v k ), Lemma 5.3 yields

) and note that all smooth maps are continuous, we arrive R q (v * ) = R p (u * ). Taking into account y + Dϕ(p)(u k ) -Dϕ(q)(v k ) ∈ Ψ p (u k-1 ), we obtain y + Dϕ(p)(u * ) -Dϕ(q)(v * ) ∈ Ψ p (u * ) after passing to the limit in k. Equivalently, this means

However, by using the triangle inequality and the relation

(5.11) Thus, Ψ q is metrically regular on V ′ with a modulus τ ′ = η 0 κ ′ 1-θ ′ . Since τ ′ can be arbitrarily close to τ , we reach to the conclusion Reg Ψ q (v, ȳ) τ .

Remark 5. 4. By adding inf z∈Wp ρ(z) > 0, inf z∈Wp δ(z) > 0 and sup z∈Wp ̺(z) < +∞, then Proposition 5.2 subsumes to the corresponding one proved in [4]. Indeed, we have only to replace ι * R (z) := min ι R (z), inf z∈Wp δ(z) with ι R (z) if necessary. Although these restrictions seem to be more than enough for the validity of Proposition 5.2, we shall need them when analyzing the behaviour of algorithm (5.2) in the next section. The reason is that, in order to get the succeeding point p k+1 from the current step p k , we have to invoke the metric regularity property for Df (p k )(•) + (ΦR p k ) (•) (which assume that such a property should be stable over elements of approximating sequence). 

is also assumed to be a convex neighborhood at p. Suppose that the mapping Ψ p :=

together with a modulus κ > 0. Consider a point q ∈ W p with d R (p, q) σ for some σ > 0. Let s, r ′ , s ′ s, α and β be positive real numbers which adopt the can find an element u 1 ∈ Ψ -1 p (x 0 ) such that u 0u 1 κd x 0 , Ψ p (u 0 ) . But d x 0 , Ψ p (u 0 ) = C, so we obtain u 0u 1 κC. Noticing κC κs ′ < κ 1-θ s ′ and u 0 η 0 r ′ + 1 ρ 0 σ, the supposition (5.12b) implies u 1 η 0 r ′ + 1 ρ 0 σ + κs ′ < ι 0 . Define a new point z 1 = R p (u 1 ), we get

In other words, z 1 is in W p . As a result, there exists a tangent vector v 0 ∈ ι * B q satisfying R q (v 1 ) = z.

Passing to the induction step, let u 0 , . . . , u k ∈ ι * B p and v 0 , . . . , v k ∈ ι * B q be given tangent vectors. Furthermore, based on the preceding arguments, it should be required that those vectors obey the constraints below:

Towards the aim of generating u k+1 ∈ T p M and v k+1 ∈ T q M, we set x k = y + Dϕ(p)(u k ) -Dϕ(q)(v k ) and consider the pair (u k , x k ) in T p M × R n . Thanks to the triangle inequality, we have

By virtue of R ∈ URC ρ, ̺, δ, W p , we deduce

Following the same arguments as in the proof of Proposition 5.2, we can prove

Since R p (u j ) = R q (v j ), assumption R ∈ URC ρ, ̺, δ, W p allows us to write

Consequently, involving the condition u ku k-1 θ k-1 κC, one has

Taking into account C s ′ s and η 0 (α

Hence, the metric regularity property of Ψ p applied to (u k , x k ) guarantees the existence of a vector

According to the fact R ∈ URC ρ, ̺, δ, W p , we obtain

Thus, there exists an element v k+1 ∈ ι * B q with R q (v k+1 ) = R p (u k+1 ), the sequences (u k ) and (v k ) are well-defined. The rest of proof is similar to the one of Proposition 5.2.

Remark 5. [START_REF] Adly | Newton's method for solving generalized equations: Kantorovich's and Smale's approaches[END_REF]. If the set-valued part Φ is invariant, i.e. Φ(x) ≡ K for a fixed set K ⊂ R n , conclusions of both Propositions 5.2 and 5.5 are valid without conditions imposed on the maps R -1 p R q -P b,a χ . Indeed, since all parallel transports P a,b χ are linear isometry, the validity of metric regularity for Ψ q implies the one for Ψ q P a,b χ , and vice versa. However, it is not difficult to verify that Ψ q P a,b χ = Ψ p + G χ,p,q , so Theorem 3.3 and Theorem 3.4 in Section 3.1 can be used.

Convergence of Newton-Type Algorithm

We describe some notations that will be necessary in the sequel. Firstly, for simplicity, we use a convention that retraction R z is well-defined when z varies in the manifold M . (The map sending (z, v) ∈ T M to R z (v) is called a global retraction on M.) Given an open subset Ω of M, and let (λ R , ι R ) be a normal pair on Ω in the sense of Proposition 2. [START_REF] Dontchev | Local convergence of the Newton method for generalized equations[END_REF]. Additionally, let L : [0, +∞) -→ [0, +∞) be an increasing function. Global retraction R is said to be of an equi-Lipschitz class around a point p ∈ Ω with respect to L, written as R ∈ ELC L p , provided that

(5.23b) Suppose ℓ < r max and w < 1. Then we infer ν -1 2 cos ℓ -tan ℓ ℓ χ(0) = cos ℓtan ℓ > 0 by (5.21). Invoking χ(0) T w ′ χ(0) w ′ = ℓ w ′ , the relations (5.21), (5.22), (5.23a) and (5.23b) give us .24) In summary, the expected conclusion holds.

We are now in position to present the main results of this chapter. Local convergence analysis for algorithm (5.2) will be in the next theorem.

Theorem 5.8 (local analysis). Let p * ∈ M be a solution of problem (5.1) and let L 1 , L 2 : [0, +∞) -→ [0, +∞) be increasing continuous functions with L 1 (0) = L 2 (0) = 0. Suppose that Dϕ admits the relation Dϕ ∈ L ip L 1 (Ω * ) for some open neighborhood Ω * of p * while R ∈ ELC L 2 p * in the sense described at the beginning of this section. We assume in addition that τ

then there is a neighborhood U * of p * satisfying the following statement. Starting at p 0 = p ∈ U * , algorithm (5.2) generates a sequence (p k ) converging to p * at least superlinearly.

The proof of this theorem needs some technical estimates. Proposition 5.9 is in this sense. Proposition 5.9. Keep in mind the assumptions of Theorem 5.8. Let p ∈ Ω * and u ∈ ι R (p * )B p so that the retraction segment γ

for q = R p (u), a(t) = d p, γ(t) and µ p = Dϕ(p) .

Proof. For shortness, let's abbreviate ι * = ι R (p * ) and λ * = λ R (p * ). Without loss of generality, we suppose

That means, any two points γ(t 1 ) and γ(t 2 ) (0 t 1 , t 2 1) can be joined to Proof. We briefly write λ = λ R (p), ι = ι R (p) and η * = ̺ * /ρ * . As similar as in Theorem 3.9, the case β = β(τ, p) = 0 is trivial. We separate the proof in several parts.

• Majorizing equation.

The majorizing function is a quadratic polynomial ω(t) = 1 2 Kt 2t + β. ω has two positive roots of which t * = 2 1+ √ 1-α β is the smallest one. We also apply the result in [START_REF] Gragg | Optimal error bounds for the Newton-Kantorovich theorem[END_REF] to conclude that, under initial datum t 0 = 0, the classical Newton method generates a sequence t k+1 = t kω ′ (t k ) -1 ω(t k ) being strictly increasing. Furthermore, if α < 1 it satisfies the error bound .36) When α = 1, (5.36) is replaced by

(

In particular, by induction with respect to k, we can see that t k+1t k β.

• Construction of the approximating solution.

Let us start with a guess point p 0 = p satisfying all conditions in statement of Theorem 5.12. We shall look for p 1 , p 2 , . . . such that d(p i , p i+1 ) η * β i , for β i := t i+1t i .

( 5.38) It is sufficient to carry out the induction step only, because p 1 can be analogously obtained from the metric regularity of mapping Ψ 0 (•) := Dϕ(p 0 )(•) + (ΦR p 0 ) (•) as in the proof of Theorem 3.9. Assume that p 1 , . 

Let us pass to the limit as k → ∞ in (5.45), we deduce 0 ∈ ϕ(p * ) + Φ(p * ). The proof of Theorem 5.12 is thereby completed.

Remark 5. [START_REF] Bonnans | Local analysis of Newton-type methods for variational inequalities and nonlinear programming[END_REF]. In the three Theorems 5.8, 5.10 and 5.12, the existence and the convergence of a Newton sequence (p k ) depend upon the assumptions related to covariant derivative Df as well as the retraction R. When the higher order covariant derivatives D k f (see, e.g. [START_REF] Dedieu | Newton's method on Riemannian manifolds: covariant alpha theory[END_REF][START_REF] Wang | Extended Newton's method for mappings on Riemannian manifolds with values in a cone[END_REF]) are included in the hypotheses of those theorems, we can obtain Dϕ ∈ L ip L 1 (Ω * ) from the informations on D k f . Therefore, it is possible to achieve some new versions of both Theorems 5.10 and 5.12 under conditions of type Kantorovich and Smale.

In the case F (x) ≡ C and R = Exp, Theorem 5.10 and Theorem 5.12 can be slightly improved. Indeed, as noticed in Remark 5.6, it is sufficient to adapt only the constraint of Df in order to obtain the conclusion of both Propositions 5.2 and 5.5. On the other hand, by letting L = L 1 , the essential estimation in Proposition 5.9 still holds, since P 0,t χ (χ ′ (0)) = χ ′ (t) for any arbitrary geodesic χ. Consequently, Kantorovich-type versions of Theorem 5.10 and Theorem 5.12 like in [START_REF] Wang | Extended Newton's method for mappings on Riemannian manifolds with values in a cone[END_REF] can be recovered. Now, we keep assuming Φ(p) ≡ C in Theorem 5.12. Furthermore, by interchanging the transportations T p,q R with parallelism P a,b χ and considering ϕ along the retraction curve γ(t) = R p (tu), (5.25) in Proposition 5.9 simply reads

Let us omit all conditions related to L 2 , and involve just the ones for L = L 1 in Theorem 5.12. If the family of transportations T p,q R are assumed to be invertible and bounded norm, then we can recover Kantorovich-type results for retraction Newton's algorithm (5.2). Those might be viewed as extensions of the corresponding ones studied in the work [START_REF] Wang | Extended Newton's method for mappings on Riemannian manifolds with values in a cone[END_REF].

An Example of Numerical Application

We illustrate the applicability of the preceding results by considering the problem of solving numerically a simple inclusion defined on 1-sphere S 1 (see more details the hypothesis Dϕ ∈ L ip L 1 (S 1 ) is valid as well. Indeed, let γ(t) = cos (ℓt) γ(0) + ℓ -1 sin (ℓt) γ(0) be an arbitrary geodesic on S 1 . Based on the arguments in Example 5.7, parallel transport along γ admits an explicit expression below

Consider the linear map G γ := Dϕ (γ(0)) -Dϕ (γ(1)) P 0,1 γ . We have Dϕ(p)(u) = u 1 + 2p 2 u 2 for p = (p 1 , p 2 ) T ∈ S 1 and u = (u 1 , u 2 ) T ∈ T p S 1 . Thus, for v ∈ T γ(0) S 1