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Résumé étendu

Afin de redonner de la mobilité et une certaine autonomie aux personnes ayant subi une amputa-

tion, différents types de prothèses sont disponibles. En fonction de leurs besoins et de leurs projets

de vie, les personnes amputées peuvent choisir entre des prothèses cosmétiques (complètement pas-

sives), des prothèses mécaniques (actionnées par des câbles) et des prothèses robotiques (actionnées

par des moteurs). Ces dernières suscitent beaucoup d’intérêt : elles pourraient offrir une plus grande

autonomie grâce aux nombreuses possibilités de mouvement qu’elles rendent possibles. Véritables

bijoux technologiques, elles sont néanmoins limitées par le contrôle qu’en a l’utilisateur : capter

l’intention motrice du porteur de prothèse pour actionner cette dernière est encore à ce jour un

problème non entièrement résolu. Cette question du contrôle est particulièrement importante pour

les prothèses de membre supérieure, qui ont de nombreux degrés de liberté disponibles. Plusieurs

pistes ont été explorées pour y répondre mais aucune ne remporte une adhésion massive de la part

des utilisateurs.

L’approche la plus répandue enregistre un signal auxiliaire, i.e. indépendant du mouvement du

sujet nécessaire pour effectuer la tâche, qui code directement pour un mouvement de la prothèse.

Le signal majoritairement utilisé est un signal musculaire (électromyogrammes, dans le contrôle

myoélectrique); la contraction d’un muscle (ou d’un groupe de muscles) code pour le mouvement

d’une articulation prothétique. Efficace pour un degré de liberté, cette technique est vite limitée

lorsque le nombre d’articulations à contrôler augmente, car les muscles disponibles sont souvent peu

nombreux. De plus, en séparant le mouvement de la prothèse de celui du sujet, elle crée une double

tâche pour l’utilisateur (contrôler son mouvement et contrôler la prothèse), amplifiant la charge

cognitive. Une deuxiême approche propose d’éviter cette double tâche en prédisant le mouvement

de la prothèse à partir du mouvement du membre résiduel du sujet, grâce aux synergies articulaires.

Une fois modélisées, ces relations prédictibles entre le mouvement de différentes articulations per-

mettent en effet de compléter le mouvement de l’utilisateur avec celui de sa prothèse. Il suffit

au sujet d’initier le mouvement pour que la prothèse bouge en accord. Cependant, les synergies

dépendent de la tâche. Pour donner un nombre suffisant de mouvements, essentiel à un minimum

d’autonomie, un contrôle basé sur les synergies nécessiteraient donc une architecture d’algorithmes

complexe, non exemptée de problèmes de précision, et inadaptée à la multiplicité des mouvements

du membre supérieur.

Partant du constat que toutes les approches existantes sont en boucle ouverte pour la prothèse,

i.e. qu’aucune étape dans le contrôle ne vérifie si le mouvement de l’appareil correspond à celui
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souhaité par l’utilisateur, nous proposons dans cette thèse de construire un mode de contrôle en

boucle fermée. Cela permettra de décharger l’utilisateur de l’attention permanente qu’il doit porter

à la position de sa prothèse et de la correction éventuelle à apporter. Pour se faire, il est tout

d’abord nécessaire de définir un signal d’erreur, qui ne peut être, dans un environnement domes-

tique, ni sur la tâche ni sur la position de la main prothétique, toutes les deux inconnues a priori.

Un message d’erreur accessible semble être celui que donne l’utilisateur par le biais des mouvements

de compensations. Lorsque la position de la prothèse doit être corrigée, on remarque en effet que la

personne amputée a tendance à faire appel à ses articulations fonctionnelles pour terminer le mou-

vement, plutôt qu’à envoyer un nouveau signal de contrôle. La correction est ainsi plus rapide et le

mouvement plus fluide. Bien connues du corps médical, ces compensations sont souvent considérées

comme devant être évitées car elles peuvent entrâıner des troubles musculo-squelettiques. Le con-

cept développé dans cette thèse est de détecter ces mouvements de compensation puis d’actionner

la prothèse de sorte à les éliminer; un couplage cinématique est ainsi créé entre l’utilisateur et

sa prothèse. Avec ce mode de contrôle, baptisé Contrôle par Suppression de Compensations (ou

CCC pour Compensations Cancellation Control en anglais) le sujet humain est responsable de la

bonne position de la main prothétique, pendant que la prothèse est responsable de la bonne posture

de l’utilisateur. Il reste important de noter qu’un tel contrôle est applicable aux articulations in-

termédiaires (poignet, coude, épaule) mais pas à la main, puisque la saisie ne peut être compensée

par aucune autre articulation.

De nombreux travaux ayant déjà caractérisé les mouvements compensatoires pour le poignet (prono-

supination), il nous semblait tout d’abord nécessaire de complétér cette connaissance par la car-

actérisation des mouvements compensatoires pour le coude (flexion/extension), avant de pouvoir

étudier CCC en détails. Une première preuve de concept a ensuite été réalisée pour le contrôle

d’un poignet prothétique, avec des sujets sains portant un dispositif adapté puis avec des personnes

amputées transradiales portant leur propre prothèse. Nous avons ainsi montré (i) que le couplage

cinématique créé entre l’utilisateur et sa prothèse, via les mouvements compensatoires, permet de

corriger ces derniers pendant que le sujet réalise une tâche; (ii) que CCC est indépendant de la

tâche à accomplir, autorisant ainsi une grande possibilité d’utilisation.

Suite à ces premiers résultats encourageants, nous proposons une formulation générale de CCC,

à partir de laquelle pourront être déclinés tous contrôles de prothèse de bras, quelque soit leur

nombre d’articulations intermédiaires. Nous menons ensuite une étude théorique de CCC, afin de

mieux analyser le couplage cinématique et de déterminer les valeurs des paramètres de la loi de

contrôle nécessaires à l’établissement d’un système stable. L’humain étant particulièrement com-

plexe à modéliser, nous avons choisi de considérer pour cette étude un système linéaire composé

d’un robot proximal et d’un robot distal (contrôlé avec CCC à partir du robot proximal). Deux

exemples développés en simulation permettent de confirmer l’intérêt du couplage tout en soulignant

l’importance du réglage du gain de la loi de contrôle de CCC pour avoir un système stable. Cette

observation est complétée par une étude de stabilité du système robotique considéré, aboutissant à
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un critère sur le gain, qu’on veille à respecter par la suite.

Afin de valider les conclusions de l’étude théorique sur un système réel homme-prothèse, un ensem-

ble de trois expériences complémentaires est mené, dans lequel CCC est implémenté pour contrôler

un coude prothétique. Les deux premières expèriences sont réalisées avec des sujets sains portant

une prothèse adaptée, la troisième avec une personne amputée transhumérale portant sa prothèse.

Le premier volet valide le critère de stabilité sur le gain de la loi de contrôle avec un sujet; le

deuxième vérifie que ce critère est indépendant de l’utilisateur et il analyse à quel point CCC peut

être mâıtrisé par ce dernier sans aucune connaissance sur son fonctionnement. Nous montrons ainsi

que, puisque les mouvements de compensation sont une réaction naturelle du sujet humain à une

mobilité réduite, les utiliser comme entrée du contrôleur de la prothèse permet une prise en main

de CCC sans apprentissage particulier. Ceci est un bénéfice notable en comparaison des modes de

contrôle avec un signal auxiliaire, et du contrôle myoélectrique en particulier, qui demandent jusqu’à

plusieurs mois d’entrâınement avant d’être mâıtrisés. Le troisième volet valide ces conclusions avec

une personne amputée.

De par sa formulation générique, CCC peut théoriquement être implémenté pour contrôler plusieurs

degrés de liberté simultanément. La dernière expèrience présentée dans cette thèse, dans laquelle

CCC est utilisé par une personne amputée transhumérale pour contrôler la pronosupination du

poignet et la flexion/extension du coude, permet de confirmer cette affirmation. La charge cogni-

tive mobilisée par CCC est également évaluée par la réalisation d’une double tâche de calcul et par

un questionnaire. Pour le sujet participant à l’expèrience, cette charge n’est pas plus importante

que celle demandée par un contrôle myoélectrique pour un seul degré de liberté.

Le travail effectué au cours de cette thèse pose les fondements d’un nouveau concept de contrôle

pour les prothèses robotiques de membre supérieur. Celui-ci présente d’importants avantages : une

prise en main facile, une formulation indépendante de la tâche et de l’utilisateur ou encore un

contrôle simultané de plusieurs articulations. De nombreux aspects demandent maintenant à être

approfondis pour s’approcher d’une implémentation réaliste au quotidien, comme la caractérisation

de l’absence de mouvement compensatoire ou la possibilité d’utiliser uniquement des capteurs em-

barqués pour mesurer la posture du sujet. Enfin, ce schéma de contrôle semble être transposable à

d’autres dispositifs robotiques de réhabilitation, tel que les exosquelettes ou les robots d’assistance,

ouvrant ainsi de multiples perspectives d’application.
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Abstract

In recent years, the development of advanced mechatronics for upper-limb prostheses has led to

technological improvements such as a better fixation system to the body with osseointegration or a

larger number of degrees of freedom. However, providing these devices with a natural and efficient

control is still a major challenge.

Current approaches, such as myoelectric control, all show limitations, that can lead prosthetic users

to abandon the active dimension of the device, use it as a rigid tool and perform the desired task

with body compensations. To avoid such a behavior, we propose in this PhD thesis to employ body

compensatory motions as an error signal to control the prosthetic device. With this concept, the

human subject is in charge of the end-effector task, while the prosthesis is in charge of its users

posture.

This proposition is implemented and tested to control prosthetic wrist and elbow joints, first indi-

vidually and then simultaneously. A theoretical study completes this work and analyzes in details

the human-robot coupling created. The presented experiments first confirm that using body com-

pensations as controller input does not enhance them. They then show the easy learning of the

control scheme by naive subjects, its task-versatility and its scalability. The foundations thus laid

open exciting perspectives for a natural prosthesis control.
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J’adresse un merci tout spécial à Christophe Huchet, membre invité de ce jury, notre pilote du

Cybathlon et testeur officiel de nos manips. Merci de nous avoir rejoints pour cette aventure du
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Chapter 1

Limb losses and amputation

Limb loss dramatically affects the quality of life, since it severely reduces one’s autonomy. To
help amputated people to recover some limb functionality, engineering – especially mechatronics
and robotics – develops technical aids, which range from simple mechanical tools to advanced bionic
replacement limbs.
This chapter briefly reviews the etiology and some important figures of Lower-Limb (LL) and Upper-
Limb (UL) amputation, before focusing on UL prostheses equipment and issues, starting point of
this research.

1.1 General information on amputation

To have a quantitative idea of number of people affected by a limb loss, they were almost 1.6
million in the US in 2005, and this number will more than double by 2050 [1]. Affected population
and causes differ between LL and UL losses, and are detailed in this section. It is important to
keep in mind that precise figures are difficult to obtain1, which explains that most known studies
rely on estimations and that some of them date from more than ten years.

1.1.1 Overview of amputations

Among the approximate 1.6 million people living with a limb loss in the US in 2005, around
65% underwent LL amputation (≈ 1 million). In occidental countries, men are usually more
affected than women, since the men-to-women ratio is 2:1 [2, 3]. The majority of affected people
are 60 years and above, which can be explained by the fact that the first cause of LL loss is vascular
diseases (more than 50% of LL amputations), especially diabete. The two main other causes are
trauma and tumors [1–4]. Twelve different levels of LL amputation are identified [2, 5]: 4 for the
foot, 1 for the ankle, transtibial, 2 around the knee, transfemoral (2 levels) and 2 for the hip (see
Figure 1.1(a)). The three most common ones are toe disarticulation, transtibial and transfemoral
[2, 3, 6].

UL loss is less common. It affected only an estimated 41.000 people in the US in 2005 [7],
which approximately represents 14 UL amputees per 100.000 inhabitants. This is more or less the
proportion in european countries since it was 11.6 per 100.000 inhabitants in Norway in 2010 [8].
Among them, 0.1% are congenital amputees (born without a limb) [9]. Like LL loss, men are more
affected than women. On the contrary, the population mainly affected by UL loss is not the elderly
but the young people (mean age between 20 and 36 years [8]), since the main cause is trauma (from
occupational or traffic accidents). Other prevailing factors are cancer (especially for high-level
amputations) and vascular diseases [6, 8, 9]. There are seven levels of UL amputation [5, 7]: partial
amputation of the hand, disarticulation of hand and wrist, transradial amputation, disarticulation
of the elbow, transhumeral amputation, disarticulation of the shoulder and forequarter amputation
(see Figure 1.1(b)). Apart from partial amputation of the hand, the most common UL amputations

1This lack of data is mainly due to a limited follow-up of amputated people, who are little monitored by Healthcare
systems once leaving hospital with their initial prosthetic prescription.
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Toe and its metatarsal amputation
Transmetatarsal amputation
Mid-tarsal disarticulation
Calcaneotibial disarticulation

Ankle disarticulation

Transtibial amputation

Knee disarticulation

Gritti's amputation

Transfemoral amputation (middle)

Transfemoral amputation (high)

Hip disarticulation
Hemipelvectomy

(a) The 12 levels of LL amputation
(inspired from [5]).

Wrist disarticulation

Elbow disarticulation

Shoulder disarticulation

Partial hand amputation

Transradial amputation

Transhumeral amputation

Forequarter amputation

(b) The 7 levels of UL amputation.

Figure 1.1: Levels of amputation for LL and UL losses; the most common ones are indicated with
a brown rectangle

are transhumeral and transradial [7–10].
LL and UL losses are similar in their consequences on daily life: psychological aftereffects of the
amputation, decrease of the quality of life and the autonomy, remaining pain, etc. [11]. They are
thus sometimes gathered in what could be called the amputation issue. However, their etiology
and the affected population differ, as well as the limb function lost. LL amputation affects walking
functions, essential to be independent to move around, while UL amputation affects prehension
abilities, which may be considered as a less severe impairment. This distinction greatly influences
both how amputated people view the need for prosthesis wear and the research works related to
either disability.
This PhD thesis focuses on upper limb amputation. The rest of the manuscript will
therefore only detail this case and its dedicated prosthetic technology.

1.1.2 From amputation to prosthesis wear

Be it for LL or UL amputation, the path from surgery to homecoming follows the same stages
[10, 12]. A pre-surgical step consists in deciding the level of amputation, usually together with the
patient, depending on the medical situation, but also on his/her life plan [10, 12]. It can be decided
to amputate at a higher level than necessary to allow the wear of a prosthesis. Once the surgical
operation is performed, a period of healing and post-operative care is obviously required. This time
is necessary for stump stabilization, muscle strenghtening (through exercise), pain management and
also for psychological monitoring, to help the patient to conceive his/her life after the surgery. If
the patient wants to wear a prosthesis, this post-operative phase is useful to prepare the stump for
this purpose; the socket is molded at the end, when the stump is completely healed and its volume
stable. All these surgical and recovery processes finish with rehabilitation: the patient works with
occupational therapists to learn personnalized tricks to get back some autonomy, with or without
the help of a prosthesis, and to adapt his/her home or work environment accordingly.
While it is hardly conceivable not to wear a LL prosthesis – because of the impossibility to stand
without –, the question of prosthesis wear is much more discussed for the UL. Some amputated
people deliberately choose not to wear one, from the beginning, while others abandon it because it
does not suit them [10, 13–15]. For example, among the 486 UL amputees questioned in [13] and
[14], there were 20% of abandon and 20% of non-wear. According to [15], 30 to 80% of all prosthesis
users worldwide end rejecting their device. Device abandonment is not homogeneous among the UL
amputated population; predisposing factors are the level of limb loss (abandon is more common for
high-level amputees), the origin of limb absence (congenital amputees tend not to wear prostheses
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compared to people with acquired limb absence) and the gender (female are more likely to reject
their prosthesis) [13]. The causes of UL prosthesis rejection are thus diverse; they also depend on
the type of device used.

1.2 Different types of upper-limb prostheses

UL prostheses are composed of two main parts: the physical interface between the user and the
device, which can be a socket held by straps and/or harness or an implanted fixture (see Section
1.4.1 for more details), and the artificial limb, which can be more or less sophisticated. In the
following, I will often use the term prosthesis to refer to the artifical limb only.
Three types of artifical limbs are available: motionless, body-powered and active. UL amputees
commonly own at least two prostheses, generally of two different types, since their use can be
complementary. The choice depends on the life plan and the needs of each person.

1.2.1 Motionless

Motionless is not traditionally employed in UL prosthesis terminology. I use it here to gather all
prostheses that are rigid structures and have no joints to move; they can be cosmetic or functional.
Cosmetic prostheses are gloves of silicon or PVC [16], put on to hide the limb absence (see Figure
1.2(a)). Their main purpose is esthetics but they can also be used as a tool to help the contralateral
arm. In a questionnaire study performed in Norway in 2007-2008, cosmetic prostheses were chosen
by 23% of users as their first device, and by 20% as alternative device [14]. Their rejection rate
is high because of the discomfort (gloves easily cause sweating), the artifical appearance and the
advent of active devices [7, 17]. The motionless but functional prostheses have an end-effector
specifically designed to perform a given task, such as holder for cuttlery or universal holder (see
Figure 1.2(b)) [18, 19]. They date back to the end of World War I and are more considered as
tools; they are thus anecdotal and hardly considered in studies. However, motionless but functional
prostheses are undergoing a renewal in sport, with an end-effector specifically designed to suit one
activity [20].

(a) Examples of cosmetic UL prostheses (from [21]). (b) Examples of functional but motionless prostheses
(from [19]).

Figure 1.2: Examples of motionless UL prostheses

1.2.2 Body-powered

Body-powered prostheses were some of the first movable prostheses to exist [22]. Their joints
can be moved: the end-effector can open and close, the wrist can rotate or the elbow can flex for
instance. They are controlled with a system of cables and harness, tensioned via body motions (see
Figure 1.3) [10, 18]. In the questionnaire study of [14], they represent 30% of the first device chosen
by UL amputees and 28.6% of the alternative one.
Body-powered prostheses bring new opportunities with the possible activation of the joints. They
are reported to be very reliable and give a good feedback on prosthetic joints positions, with the
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Figure 1.3: Example of body-powered prostheses (from [23] and [24]). Prosthetic joints can be
moved by tensioning the cables with body motions

prosthetic forces applied back by the harness onto the body of users [13, 17, 25]. The harness yet
quickly becomes uncomfortable and the user has to expend high energy to control the prosthetic
joints with his/her body. Moreover, functions are restricted by the number of cables that can be
actuated with body motions (the hand is often the only movable joint). Body-powered prostheses
users also complain about the appearance of the device, not very esthetic with the apparent cables,
and the abrasion of clothes it causes [7, 17, 25].

1.2.3 Active

In active (or externally-powered) prostheses, cables and harness are replaced by electric motors
with an embedded power source; the assistive devices become true robotic tools (see Figure 1.4)[10,
18]. Motors can be controlled by different means as detailed in Chapter 2. While 34% of prosthesis
users of the study in [14] select them as their first device, only 11.4% select them as their alternative
one. Indeed, controlling these devices is not innate and they become worthwhile only when used
regularly. Compared to body-powered prostheses, it is easier to grasp heavy objects, since the
grasping force does not depend on body motions but on the motors that can be more powerful.
The removal of the cables is also a great benefit [13, 17, 25]. Yet, three drawbacks still prevent a
more extensive use of active prostheses: the weight of the devices, increased by the motors, their
cost, which goes up due to the addition of electronic components and sensors, and the robustness
of their control, which will be discussed in the next chapter.

Elbow 
motor

Hand motor

Wrist motor

Figure 1.4: Example of active prosthesis (from [21]). Prosthetic joints are activated with electric
motors
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1.3 Different types of active upper-limb prostheses

Active devices have known considerable progresses since their emergence: they are more and
more anthropomorphic, have more Degrees of Freedom (DOF) and have become absolute gem of
technology with a well advanced mechatronics.

1.3.1 From tool to anthropomorphic prosthetic arm

(a) Examples of prosthetic hooks and grippers. From
left to right: Hosmer 5A hook [26], RSL Steeper

Carbon Gripper [19] and Ottobock Axon hook [21]

(b) Examples of human-like active devices. From left
to right: body-powered Steeper VO Hand [19] and

active Ottobock MyoFacil hand [21]

Figure 1.5: Towards anthropomorphic UL prostheses

For a long time, UL prostheses were considered as tools, with an utilitarian function only; the
end-effector was thus a simple hook or a gripper (see Figure 1.5(a)). These kinds of devices are
often associated to body-powered prostheses, that have limited DOF, but some are also offered as
externally-powered devices (like the Axon hook and the Electric greifer from Ottobock [21]). De-
spite their simplicity, these kinds of tools are sometimes more adapted than more refined devices for
what they are used for (e.g.,farming). The prosthesis-tool is also featured in recreational activities,
where convenience and efficiency are more important than anthropomorphism [20]. The desire for
a more natural appearance, which participates to a better integration of the prosthesis into users’
body image [23], then led to the development of more human-like devices (see Figure 1.5(b)). The
choice between function and esthetics now depends on individual needs [16]. Surprisingly, hiding the
prosthesis under an anthropomorphic appearance (e.g., with a hand-like silicon glove) has become
less common with the advent of fine robotic arms; more and more amputated people are proud of
showing their cyborg limb.

Besides the esthetic goal, drawing inspiration from human limb is also a way to efficiently in-
crease the number of feasible motions. Active devices indeed offer possibilities to go beyond the
limit of one DOF of body-powered prostheses. For the hand for instance, the latter is often re-
stricted to one grasp (power grip), whereas able-bodied subjects frequently use 3 or 4 different types
of grasp [16, 29]. With the development of individually powered digits, some active prostheses can
move fingers separately and thus perform multiple grasps (power grip, tripod, tip pinch, lateral grip,
etc., see Figure 1.6(a)) [16, 30]. Users now have the choice between simple open/close hand (Speed
Hand from Ottobock for instance) and individual mobile fingers (Michelangelo and BeBionic from
Ottobock or I-limb Quantum and I-limb Ultra from Össur) [7]. Some of these devices are shown
Figure 1.6(b).
The increase of active DOF is also visible on the other prosthetic joints: 2-DOF wrist (prono-
supination and flexion) [31, 32], motorized elbow (like the Utah) [33, 34] and full mobile arm with
powered shoulder, elbow and wrist [35, 36] are now available. Hardware for high level amputation
(upper-arm and shoulder) yet remains little developed compared to the multitude of propositions
for prosthetic end-effectors (hands or hooks). Only three prosthetic elbows are commercialized (Dy-
namic Arm from Ottobock, the Utah and LTI Boston, see Figure 1.7) and have not greatly evolved
since the 1980s. As for whole arm devices, only the Luke Arm has been recently commercialized
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(a) Four commonly used types of grasps (from [27])

(b) Examples of available hands, from simple open/close to individual mobile
fingers. From left to right: Speed Hand, Michelangelo (from [21]) and I-limb

Ultra (from [28])

Figure 1.6: Towards more mobile prosthetic hands

[37]; the other devices are still in development in research laboratories. The complex control of
more than one DOF indeed limits the real use of active upper-arm devices, which can sometimes
be more disabling than helpful.
Theoretically beneficial to prosthesis mobility and thus users’ autonomy, a large number of DOF
will not be practically worthwhile while the control and the device’s weight will remain an issue.

Figure 1.7: Commercialized elbow prostheses. From left to right: Utah Arm (from [38]), Boston
Arm (from [39]) and Dynamic Arm (from [21])

1.3.2 From rigid to compliant joints

The addition of motors to increase the number of DOF of UL prostheses increases also the weight
of the device. To have a fine control of each finger, the user has to accept a more expensive and
heavier device. For example, a Michelangelo hand (2 actuators) weighs 420g, whereas a BeBionic
hand (5 actuators, one by finger) weighs 500g [7]. This difference is enough to be felt and to
affect the user. For comparison, a human hand is around 400g, but it is even recommended that
an artificial limb should be lighter than the human limb, because of the discomfort caused by
suspension and the binding system [16, 40]. Moreover, a growing number of motors makes the
prosthesis more rigid, whereas the human hand and arm are compliant; hitting a hard surface with
a rigid device can indeed be painful and damage the device. An increasing number of works thus
focus on designing more compliant or flexible prosthetic joints. A well-known example in the UL
prosthetics community is the PISA/IIT SoftHand [41, 42], a compliant hand with an adaptive grip
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(i.e. its fingers conform to the object’s shape). Its actuation is inspired from muscular synergies
and human tendons repartition and allows to move all digits with only one motor. In the same
vein, some flexible wrists are developed, like the flexible AxonWrist from Ottobock and the ones
proposed in [32] and [43].
Various active devices are thus proposed to UL amputees. It can be noticed that the advent of
sophisticated prostheses has not evicted basic ones, which are reported to be as appreciated [25, 44].
Indeed, the offer must correspond to the needs of amputated people, which are diverse.

1.3.3 Towards democratization of active prostheses?

Figure 1.8: Examples of personnalized 3D-printed UL prostheses, from [40], body-powered (left)
and esthetic (right)

As pointed out above, active UL prostheses are much more expensive than cosmetic or even
body-powered devices, due to the associated mechatronics and electronics. When a cosmetic pros-
thesis costs between 3.000$ and 5.000$, a body-powered around 10.000$, active prostheses available
on the market range from 20.000$ to 100.000$, depending on the amputation level and the included
technology (number of motors, grasping sensors, etc.) [40, 45, 46]. To democratize the access to
UL prostheses, a do-it-yourself community has grown, around 3D-printed devices [40, 47]. Besides
a lower price (between 5$ and 500$ when the only cost is the material and maximum 3.000$ for an
active prosthesis to be sold by a company), making or buying a 3D-printed prosthesis gives access
to a community, and allows a wide freedom of design, leading to very personnalized prostheses
(see Figure 1.8). 3D-printing is not employed only to build active devices but also cosmetic and
body-powered since the price is well decreased for all. When actuated, the majority have two basic
grasps available but some have adaptive grip, which allows more possibilities.
In spite of its attractive benefits, the following criticisms are addressed to 3D-printed prostheses
[40]. As 3D-printing has a weak accuracy when shaping a device, there can be material shrinkage,
which degrades the overall quality of the prostheses. As the mechanical properties of the devices
are hard to predict correctly, it is also difficult to rely on their robustness and to know the force
they can apply. Poor mechanical transmission also makes the actuation of 3D-printed prostheses
complex. Note that, until now, these kinds of device have mainly been designed for hand and fore-
arm amputation. They still require some improvements but open new perspectives for a broader
and easier access to UL prostheses.

1.4 Current issues of active upper-limb prostheses

A large panel of active UL prostheses exists, from basic to more sophisticated. Even if weight
and cost sometimes still raise problems, the mechatronics can now offer many motion possibilities,
very close to the human arm. However, three key issues prevent a really convenient and effortless
usage of these devices: socket, sensory feedback and control.
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1.4.1 Socket

(a) Examples of traditional socket for transradial amputation (left, from
[48]) and transhumeral amputation (right)

(b) Example of osseointegration
for transhumeral amputation

(from [48])

Figure 1.9: Interfacing human body and UL prostheses: traditional sockets and osseointegration

The socket is the binding system, i.e. the physical interface between the remaining limb and
the prosthesis (see Figure 1.9(a)). It is actually crucial for comfort and for the integration of the
device by the user. A prosthesis can be a perfect copy of the human arm, with a natural control,
it would be useless if the socket was not appropriate.
Socket technology evolution has truly begun one century ago. First, improvement was realized on
the design and the materials (from wood and leather to aluminium, laminates and now thermo-
plastic); then, through the specialization of the socket makers, the ortho-prosthetists, who became
skilled experts [49]. Albeit valuable ameliorations, socket remains a persistent issue. It causes sweat,
skin irritation and thus discomfort [50]; it restricts the range of motions of the remaining limb [49];
and the distribution of forces is not equally spread, which induces pain [49, 51, 52]. The existing
socket techniques are also still inappropriate when the stump is short [53]. To improve comfort,
some works propose adaptive sockets, that automatically adjust the distribution of internal forces,
either with pressure-adjustable chambers [54] or with a soft robotic actuator driven by temperature
changes [51]. Yet, none of them are advanced enough to be clinically used.
A noteworthy alternative to traditional socket is osseointegration, which allows a direct rigid fixa-
tion of the prosthesis on human body, without a socket, via implantation of a titanium fixture into
the bone (see Figure 1.9(b)) [55]. Currently available for partial hand, transradial and transhumeral
amputations, it removes the need for hand cover or harness and thus improves comfort. The arm
motion amplitude is well increased because there is no thermoplastic cover blocking it. Osseoin-
tegration also allows some sensory feedback on prosthesis motion through osseoperception [55–57],
and does not encounter problems if the stump is short, since there is no need for a socket to be
fitted. It yet has to be cautiously considered: clinically approved less than ten years ago, studies
about long term use and possible complications are still lacking. Indeed, choosing osseointegration
is not mild; the fixing of the implant requires two surgery procedures and the integration of a foreign
object into the human body.

1.4.2 Sensory feedback

Integration of the prosthesis by UL amputees can be enhanced by the physical interface but
also by the feedback the device gives to the user. A significant difference between a human and a
prosthetic arm is indeed the sensory feedback one gets from it. When human arm has the sense of
touch – which informs about the shape of an object, its roughness, the temperature, the grip force,
etc. – and proprioception – the ability to know self-movements and body position without vision
–, prosthetic arm only transmits information through its mechanical components. To perceive the
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Figure 1.10: The different feedback information pathways (inspired from [58], [59] and [60]). In
navy blue, the intrinsic feedback within the prosthesis; in light green, sensory information directly
fed back to the Central Nervous System (CNS); in red, sensory information sent to the sensory
motor system either invasively (examples of implanted electrodes) or noninvasively (example of
skin stretch feedback)

surrounding in contact with their prosthesis, amputated people only rely on vision, sounds emitted
by the device and socket pressure (or osseoperception). Research studies are thus conducted to
develop prosthetic sensory feedback. Making the device feeling its surroundings is not that difficult
with pressure, force or temperature sensors; the challenging part is to transmit these information
to the wearer. Two alternatives exist: mimicking physiological sensory input or using sensory
substitution (see [58] for a review). The first one aims at litterally repairing human and being as
natural as possible, to avoid learning and cognitive charge. It communicates touch and position
via electrical signals that directly stimulate the nerves, through implanted electrodes [61–63]. Yet,
despite the use of natural pathways, this technique is not a straightforward sensory rehabilitation:
nerves stimulation creates new feelings that have to be decrypted by the user and this decoding has
to be learnt. As the signal to send to restore touch and proprioception is not known in advance,
multiple trials can be required before finding the correct one [64]. The second alternative is easier to
implement since it does not need any implant. Touch and position information from the prosthetic
hand are transformed into vibrations, skin stretch or mechanical pressure performed on the user’s
skin (see [65] for a review). The latter has thus to learn a new language to interpret the signals
sent by the device. Figure 1.10 shows an overview of the available sensory information a user can
receive.
Although prosthetic sensory feedback could seem to be a great advance, its benefits are still being
debated. While some promote it, arguing a real need, in particular to perform delicate grasping and
to control slippage, and a better embodiment [66, 67], others draw attention on excessive amount
of information given to users [53]. Explicit feedback (nerves stimulation or sensory substitution)
may not be more efficient than implicit feedback (force applied on the stump, sounds of prosthesis’
motors) to transmit touch and prosthesis position [68–70]. This could be subject to change with
improvement of explicit feedback technology.

1.4.3 Control

The last important issue, and one of the main concern of UL amputees [13, 44], is the control of
active prosthetic devices. While passive prostheses do not have any movable part (thus do not need
any control interface) and while the DOF of body-powered are actuated through cables tensioned
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with body motions, the control of externally-powered prostheses is not fully solved yet. Indeed, how
to drive all their DOF in a simple, robust and natural way? How to collect, decode and transfer
the motion intention of the user to the device? Transforming UL prostheses into limbs implies to
find a way to properly control them, so that active devices have a real asset over body-powered
ones. The main challenge of UL prostheses control is that arm motions are plentiful, difficult to
predict from antecedent motions, and varying; they are thus hard to automatize, contrary to LL
motions. The most widespread method is myoelectric control (with muscular signals), which can
take different forms, but other techniques are also explored. Their functioning, pros and cons are
described in-depth in the next chapter, since UL prosthetic control is the area of interest of
this PhD.

1.5 Chapter summary

The loss of a limb highly modifies the autonomy and quality of life of affected people. In
addition to surgery improvements, mechatronics, electronics and robotics have brought piece of
solutions in more efficient prostheses design. In this chapter, after a quick insight into amputation
problematics, be it for LL or UL, focus was made on UL prostheses, field this PhD falls within. The
three available types of UL prostheses (passive, body-powered and active) were depicted, and the
evolution of active devices were discussed in more details. Finally, the three major challenges that
prevent externally-powered prostheses to be broadly used were discussed, including control which is
the one tackled in this work. While many research studies focus on prosthetic hands, be it for more
advanced devices or grasping control, I will focus here on intermediate joints for high amputation
level (wrist and elbow), which are little covered in prosthetics research.
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Chapter 2

Controlling an upper-limb prosthesis: trick or treat?

Among the main challenges to improve UL prosthetics – and thus amputated people’s quality
of life – , control is the focus of many studies and research works. Indeed, the benefits of active UL
prostheses are annihilated if their user cannot properly control them.
In this chapter, existing control schemes, either available on commercialized prostheses or still under
development in research laboratories, are described in detail, to allow a deep understanding of the
prosthetic control challenge and of how the proposition of this PhD, exposed in Chapter 3, fits in. I
chose to classify the existing control schemes into three categories, depending on the role they give
to the user, and finally explain why none of them currently manage to meet amputees’ expectations
and what can be missing to build a robust and efficient UL prosthesis control.

2.1 Auxiliary Signal Control

Human sensory system
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motor 
control

Human body 
dynamics
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Figure 2.1: Auxiliary Signal Control scheme. x, xgoal and xestim are the real end-effector position,
the desired one and the one estimated by the human sensory system, respectively; ẋ is the end-
effector velocity. s is an auxiliary signal generated by the human, measured through a sensor. ˜̇qp
and q̇p are the command and the actual prosthesis joint velocity respectively. τh is the torque of
the human joints (for simplicity, dynamic coupling between human body and prosthetic joints is
not modeled). q̈h and q̇h are the acceleration and velocity of the human joints respectively. Jx|h
and Jx|p are the jacobian matrices of the human and the prosthesis part respectively

Before introducing the dominant approach, let us first consider the scheme presented on Figure
2.1 and detail how human user must adapt to prosthesis wear.
When performing a task with a prosthesis, the first important point to take into account is the
serial character of the human-and-device kinematics (green path on Figure 2.1). Arm and
hand motions of the prosthetic side indeed depend on both human and prosthesis movements.
When the latter is passive (q̇p = 0), the end-effector motion is the result of human movement only
(blue path on Figure 2.1); the prosthesis user compensates the acquired mobility loss with residual
functional joints. S/he takes advantage of body redundancy – that makes possible the realization
of a same task in different ways – and achieves the desired task with, e.g., trunk or shoulder, that
substitute motionless wrist or elbow [8, 71, 72]. When the prosthesis is active, human and device
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Chapter 2. Controlling an upper-limb prosthesis: trick or treat?

joint velocities add up and participate altogether to the end-effector motion:

ẋ = Jx|hq̇h + Jx|pq̇p (2.1)

with ẋ the end-effector velocity, q̇h and q̇p the human and prosthesis joint velocity vector respec-
tively, Jx|h and Jx|p the jacobian matrices mapping the human and the prosthesis joint movements
into end-effector movements. Upper-arm prostheses are mainly controlled in speed (yellow path on
Figure 2.1), since it allows multiple prosthesis positions with binary signal inputs, easier precision
and is less noisy than control in position [73–75].

To control the prosthesis joint velocities, the most widespread approach consists in creating a
direct connection between an auxiliary signal, generated by the user, and the motion of the device
(red path on Figure 2.1). Auxiliary means here that the generation of the signal does not naturally
contribute to the intended task. Signals may be of various kinds but they are all independent of
the control of user’s healthy body motions required for the upper-limb task. The control of the
prosthesis and the control of human kinematics are totally decoupled. Auxiliary Signal
Control (ASC) approaches actually create a double task for the user: (i) controlling the prosthetic
joints (red path on Figure 2.1) and (ii) controlling his/her functional joints (blue path on Figure
2.1). These approaches yet assume that, after a learning phase, the generation of the auxiliary sig-
nal becomes fully integrated into the user’s motor control scheme, which is far from being obvious
[76, 77].
Auxiliary signals currently in use and examples of connection between these generated signals and
the prosthesis motions are detailed below.

2.1.1 Auxiliary signal with individual contractions of remaining muscles

Healthy motions are produced by muscle contractions. To control an UL prosthesis, it thus
seems appropriate to exploit this natural source of information and link remaining muscle activity
to prosthetic motions. In conventional myoelectric control, muscular activity is captured through
Electromyograms (EMG), whose amplitude is extracted and used as input of the prosthetic con-
troller. This approach was developped at the very beginning of active UL prostheses in the 1960s
(see [78] for instance, or [77, 79] for a short review) and is still predominant nowadays.
Most of the time, EMG are measured with surface electrodes located on two antagonistic muscles
[80], each controlling one of the two opposite motions of a same prosthetic DOF, such as hand
opening and hand closing. This pair of muscles is typically composed of the wrist flexor and the
wrist extensor for transradial amputees and the biceps and triceps for transhumeral amputees. Two
control options can be considered: on/off and proportional [73, 80].
On/off control is a simple threshold detection: as soon as the EMG amplitude of one muscle
exceeds a predefined threshold, the corresponding motion of the DOF is activated, with a constant
velocity. For example, when the wrist flexor amplitude is higher than its threshold, the hand opens
and when the wrist extensor amplitude exceeds its threshold, the hand closes, with the same speed
whatever the level of contraction. Proportional control proposes a finer solution since, once the
threshold is exceeded, the velocity of the prosthetic joint motion is proportional to the EMG ampli-
tude. It allows to perform both slow and fast motions, depending on the tasks and situations. The
speed of hand closing can thus be fast at the beginning and then slower to grasp objects cautiously.
When there are more than one prosthetic DOF to control (which happens frequently in high UL
amputation levels), the same pair of muscles is used for all of them. A finite state machine is
thus required, with each DOF corresponding to a different state [81]. The DOF are individually
controlled as explained above (with on/off or proportional law) and, to switch from one to another,
the amputated user has to perform a co-contraction, i.e. to contract both muscles, higher than
their thresholds, at the same time (see Figure 2.2(a)) [67, 80]. Sometimes, the amputation surgery
outcomes do not allow to have access to two muscles but only one. In this case, on/off control with
more than one threshold is implemented: the activated DOF and its motion depend on the level of
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2.1. Auxiliary Signal Control

muscular activation [79, 80]. For instance, when the EMG amplitude is lower than all the thresh-
olds, the prosthesis does not move; when the first threshold is exceeded, the hand closes and when
the second is exceeded, the hand opens. The user must produce a contraction that stays into the
range corresponding to the desired motion (see Figure 2.2(b)). To add more controllable motions
or DOF, more thresholds should be defined. However, the number of thresholds reasonably man-
ageable by the user, and thus the number of prosthesis functions, is limited to two according to [82].
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Figure 2.2: Illustration of on/off myoelectric control (with EMG signals recorded during our
experiments in the lab)

If conventional myoelectric control remains the most common approach for active UL prosthe-
ses, it is mainly due to its robustness and its easy functioning: the user contracts his/her muscle,
the prosthesis moves as expected. The implementation is also straightforward as there is no surgery
required and the electrodes are placed once and for all in the socket of the subject. Its natural
character is also claimed for transradial amputees since the employed muscles (wrist flexor and
extensor) are the ones that are responsible for wrist and some hand motions in able-bodied subjects
[80]. For transhumeral amputees, though, biceps and triceps are not naturally linked to wrist and
hand motions, which removes this benefit. Moreover, as soon as there is more than one DOF to
control, it quickly becomes a burden to perform a motion because of the co-contraction switching
between joints, which is cumbersome and creates a slow and sequential global prosthetic movement
[77, 79, 80].
Conventional myoelectric approach is, indeed, easy to understand but not as easy to handle. In-
dividual muscle contractions are not natural nor intuitive, in the sense that a long and heavy
training of several months is necessary to master the prosthesis control [12, 80], training that
can be a factor of device abandonment [13, 79]. The robustness is earned with great efforts. The
permanent use of only two muscles also leads to muscular fatigue, which affects muscle activity and
make more difficult to reach the defined thresholds [76]. Eventually, EMG signals depend on the
skin impedance, which is modified by sweat (generated by the socket), and on electrodes placement
with respect to the considered muscles (even if the electrodes are placed once and for all in the
socket, the positioning of the socket relatively to the stump can vary). These dependances can alter
the signals and modify the benchmarks of the user [76].

2.1.2 Auxiliary signal with electromyograms: recent evolutions

To increase the natural character of more-than-one-DOF control and remove the need for co-
contraction switching, pattern recognition-based methods are proposed. They rely on the obser-
vation that each natural motion is characterized by a specific activation pattern of the muscles
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Figure 2.3: Illustration of pattern recognition-based myoelectric control functioning. (a) Clas-
sification algorithms interpret time and frequency EMG features to send a motion class to the
prosthesis. (b) Regression algorithms take continuous muscular signal as input and send a weighted
combination of motion to the prosthesis

involved. Machine learning algorithms are developed to recognize these patterns from EMG mea-
surements of amputees’ remaining muscles and identify the corresponding intended motion. This
motion is then performed by the prosthesis [80, 81]. Two main types of algorithms are employed:
classification [83, 84] (see also [80, 81] for a review) and regression [73, 85, 86] (see Figure 2.3).
Classification generally differentiates the patterns with time and frequency features of EMG, such
as mean, variance or zero crossings, while regression takes continuous signals as input, such as the
EMG envelopes. Both techniques are supervised, meaning that the algorithms need to be trained
before being used in real time, in order to know which pattern is associated to which motion. This
training can be performed with data from movements of the sound limb or from phantom move-
ments with bilateral mirroring [73, 85]. The algorithms can thus only recognize the motions they
were trained for. The number of motions that can be identified is limited, for two main reasons: a
high number (i) leads to a complex and less robust algorithm and (ii) requires more EMG informa-
tion and thus more recording sites (i.e. more electrodes). Depending on the number of motions to
identify, it requires from 4 [87] to 16 [80] electrodes, which applies only if the subject has enough
residual functional muscles. This is often a problem for transhumeral amputees, who can then be
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proposed Targeted Muscle Reinnervation (TMR), a surgery that reroutes the nerves of arm muscles
to the chest, which can increase the number of recording sites [88, 89] (see Figure 2.4). This asks
for a heavy surgical operation though.

Figure 2.4: Illustration of TMR for prosthetic control in high-level amputation [89]

Besides the removal of inter-DOF switching, pattern recognition-based approaches allow for a more
natural control since the user does not have to learn to contract his/her muscles individually. In-
deed, it is the natural muscular activity, generated by the user when s/he intends to perform
a motion, that is considered. Moreover, simultaneous motions of different prosthetic DOF can
be performed: with regression, since it allows a combination of the movements used for training
[85, 86], but also with classification, if a 2-DOF motion class is defined [90, 91]. Pattern recognition
thus seems more appropriate for UL prosthetic control. However, even if this approach has been
explored since the 1960s (see [84, 92] for instance), it was lately commercialized and in two devices
only (MyoPlus from Ottobock [21] and CoApt [93]). This is due to many shortcomings that are
not solved yet, such as identification of an efficient electrodes placement or good accuracy of the
classification algorithms.
Indeed, in addition to the increase of required recording sites and the limited number of recognized
motions, a major issue is the low robustness of the algorithms. Muscular activation patterns
depend on many factors, such as limb position, electrodes placement and muscular fatigue [15, 67],
that vary in everyday life, while algorithm training is often performed with EMG data recorded in
static conditions. The robustness is also altered by muscle redundancy, the fact that one movement
can be obtained with numerous muscle contraction patterns. Moreover, lots of works analyze the
performance of the algorithms with classification accuracy whereas a proper accuracy does not nec-
essarily go hand in hand with a good prosthesis usability [77, 94, 95]. The variation of EMG across
time and subjects is rarely taken into account during algorithms evaluation. Pattern recognition
developments lack clinical studies, where the conditions are closer to the daily-life ones with
non-ideal muscle contractions, possible fatigue of the subject and electrodes repositioning [67].

Algorithms optimization and sensor fusion
To face this question of robustness, a lot of work is being done to optimize the algorithms and gain a
few percent accuracy: from Linear Discriminant Analysis to Multi-Layer Perceptron, via Artificial
Neural Networks, fuzzy logic or evidence accumulation (see [81] for an extensive review). Some
algorithms are also built to be robust to limb position or electrodes shift, or to be easily adapted
to individual subjects, in particular with deep-learning methods [96–98]. Hybrid approaches are
also becoming more and more popular. Myoelectric signals have been combined with kinematics
data –obtained with Inertial Measurement Units (IMU) [87, 99–101], goniometers [102] or motion
capture systems [103]–, with vision [104] or with Electroencephalograms (EEG) [105], in order to
decrease the number of required electrodes while improving the accuracy (see [106] for a review
on hybrid myoelectric control systems). Yet, too many of these works are still offline studies or
realized in the monitored environment of the labs. In this race for a few percent optimization, the
hot coffee problem (as named in [81]) may be raised: if an algorithm succeeds in 99% of the cases,
but the time when it fails causes the slipping of a hot coffee cup (or another annoying disaster), will
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this high accuracy be considered as satisfactory? Or will prosthesis users find the slightest error of
motion recognition unacceptable and abandon their device? If so, can 100% accuracy be reached,
whatever the techniques and the data combination?

Beyond surface EMG
In parallel to algorithm optimization, complementary works are performed on the muscular signals
employed. Indeed, EMG recorded with surface electrodes are of low quality: the resulting signal
largely depends on skin impedance (that varies across time and subjects), on electrodes shift, mus-
cular fatigue, sweat, etc. and crosstalks (interference between the measures) are common when
electrodes are too close [15, 77, 95]. To improve the capture of motion intention through muscular
activity, other characteristic signals and other recording techniques are explored:

- implanted electrodes [18, 107], an invasive solution to measure EMG without the skin impedance
or electrode shift issues;

- sonomyography, which measures the actual movement of the muscles with ultrasound (see
[15, 66, 80] for brief reviews), but the current instrumentation cannot be integrated in a
prosthesis;

- myokinemetry, which detects the displacement of the superficial tendons and muscle bulge,
induced by muscle contractions [15, 73, 108]. This measure can be obtained with pressure
differential [109] or Hall effect [110]. There is no clinical outcomes yet;

- myokinesy, or force myography, which measures the change of pressure distribution produced
at the skin surface by the muscle contraction [111–113];

- and mechanomyography, which measures the vibrations generated at the skin surface by
muscle fibers activation, with accelerometers or microphones [114–116].

However, none have proven to be efficient and pratical enough to really supplant surface EMG for
a daily application.

2.1.3 Non-muscular auxiliary signals

(a) EEG, from [105] (b) Joint-to-joint, from [36]. (c) Speech recognition, from [117]

Figure 2.5: Examples of auxiliary signal other than EMG. (a) EEG, recorded with surface elec-
trodes. (b) Joint-to-joint linkage, with foot motions recorded with an IMU on the shoe. (c) Speech
recognition, with the voice recorded by a microphone

Muscular signals, and surface EMG in particular, are by far the most employed and studied
auxiliary signal in the search for improvement of UL prostheses control, despite the previously
mentioned drawbacks. Some works are still looking for another signal, independent from the user’s
own motion, that could be a transmitter of the movement intention and control UL prostheses.
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We can first cite EEG, which have been employed alone [118–121] or combined with other data,
like EMG or eye-tracking [105, 122]. The use of EEG was brought about by the same reasoning
as EMG: in the natural process of movement generation, the main contributors are the brain, that
sends the command, and the muscles, that execute it. With EEG, the idea is to go to the source
and directly use brain activity to detect the motion intention; it would allow a natural and very
intuitive control, the prosthesis would move only by thinking to the desired motions. Theoretically,
this is flawless but again, signal recording and processing in real life are not that plain. Existing
methods only allow to decode very simple cerebral states, which imposes a discrete prosthetic con-
trol with few motion states. Moreover, the redundancy issue is greater than with muscles, since
there are many ways to generate a “thought”. Accessing EEG is also cumbersome for the user,
since s/he has to permanently wear a headset with many electrodes (see Figure 2.5(a)) or to accept
to be implanted with intracranial electrodes. This solution thus still requires sensoring and signal
processing developments to be more appropriate.
Another explored solution is joint-to-joint control, where a linkage is created between an healthy
joint, that does not take part in the arm motions, and the prosthetic joints. For instance, the foot
motions have been linked to elbow, wrist or hand motions in [36] and [123] (see Figure 2.5(b)). We
can also imagine to link the head motions with the prosthesis ones, as proposed in [124] with a robot
arm for tetraplegic people. Two drawbacks limit this approach: the need for learning (nobody is
used to coordinate feet and arm motions to reach or grasp an object), and the linkage itself that
prevents independent motions of the healthy joint. This last issue can be avoided by adding a
switch that turns on and off the direct connection between functional and prosthetic joint motions,
but this reduces the movement fluency.
Incidentally, speech recognition has been tested for UL prostheses control in [117] (coupled with
foot linkage). This could be relevant in a very quiet place but it is quickly limited in a noisy
environment. More importantly, using voice commands to move the prosthesis not only leads to a
high delay between the motion intention of the user and the realization by the prosthesis, but also
increases the cognitive load required from the user.

The sub-optimality of Auxiliary Signal Control approaches

Whatever the auxiliary signal and the algorithms exploited, every ASC approaches follow the
scheme of Figure 2.1: the user is entirely in charge of the prosthetic control and transmits
his/her motion intention via the auxiliary signal. This signal generally codes for one joint
motion at a time, except with some pattern recognition algorithms.
ASC approaches create a double task for the user: (i) generating the auxiliary signal, in-
dependent of the human arm kinematics, and (ii) moving his/her functional joints. This
disconnection between the signal generation and the body kinematics of the user tends to
forget the yet obvious fact that the motion of the human-prosthesis system is the result of
the combination of both human and device kinematics (as expressed in Equation 2.1). To
perform an efficient motion with such a human-robot combination, the two participating
kinematics must be equally easy to control. Yet, as controlling prosthetic motions with the
previously described techniques is much slower and cumbersome than controlling one’s proper
body motions, and because the redundancy of the human-prosthesis system often gives the
user the possibility to perform a desired task with his/her own functional joints only, human
kinematics tends to be preferentially employed at the detriment of prosthetic one. Indeed, as
the CNS is known to adopt a slacking behaviour – it continuously attempts to reduce efforts
– [125], prosthesis users will choose the easiest and fastest way and perform the intented
task with his/her body only. The device motion possiblities are thus often neglected, while
the prosthesis, albeit motorized, is used as a rigid tool. When the task is not feasible with
human joints only, robotic DOF are mobilized by the user but, in that case, an asynchronous
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sequence is often observed: a joint-by-joint reconfiguration of the prosthesis, followed by a
mobilization of human joints inducing postural compensatory motions [126, 127].

2.2 Partially automatic control

To ease and speed up the control of the prosthesis and unburden the user, some works propose
to partly automate joint motions: the amputee does not have to send an individual signal for every
prosthetic joints. Both alternatives presented below are also classified as ASC approaches, since a
signal, parallel to the human kinematics, must be generated. The control of the prosthesis is yet
facilitated, thanks to the partial automation, which reduces the double task signal generation +
human kinematics.

2.2.1 Eye-tracking

It is very rare to reach and grasp an object without looking at it. Moreover, the size and the
shape of the object condition the orientation of the hand and the type of grasping. Eye-tracking
thus proposes to collect all these visual information to automatize part of the UL prosthesis control.
Thanks to cameras that follow the prosthesis user eye motions, the object s/he is looking at,
its shape and its position in 3D space can be identified and the appropriate prosthesis motion
computed. The cameras can be in-hand or worn by the subject on glasses (see Figure 2.6). This
technique has particularly been explored for automatic grasping [128–130] and semi-automatic [131]
or fully automatic hand orientation [132–134]. The other prosthetic joints motions and the possible
corrections of eye-tracking algorithms errors are the responsibility of the user.
Eye-tracking solutions have only recently been studied thanks to progress on sensors and vision
recognition algorithms. Now, they are still not very effective, especially to measure the vision depth
[135]. When these sensors and algorithms will be fully capable, the benefits of eye-tracking-based
control will have to be balanced against the discomfort of permanently wearing cameras-mounted
glasses or the inconvenience to have in-hand cameras, and against the effort to lock one’s gaze on
the target before it is finally reached.

Figure 2.6: Examples of in-hand camera, from [134] (left) and cameras on glasses, from [104]
(right)

2.2.2 Endpoint control

In healthy subjects, the coordination of joints is learnt in such a way that it becomes natural
and unconscious. Subjects focus on their hand position or motion rather than on the movement
of their individual joints. With a robotic device, it seems impossible to learn and control such
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Figure 2.7: Illustration and comparison of joint control and endpoint control approaches

coordinations by using joint control auxiliary inputs. For this reason, researchers have proposed to
rather use endpoint control inputs (see Figure 2.7).
This proposition has been formulated for a long time [136] but is not as simple to achieve. To
control a robotic system in task-space (endpoint control), inverse kinematics of the system is used to
compute the motions of each joint that allow to realize the desired end-effector motion (displacement
and orientation). For a human-prosthesis system, the end-effector (i.e. the prosthetic hand) motion
is a combination of human and prosthesis motions. The inverse kinematics of the system can
be known, appropriate joint motions computed, the prosthetic joints can be moved according to
this computation but it is impossible to be sure that the human will also move his/her joints
accordingly. If the human motion does not correspond to the computation with inverse kinematics,
the prosthesis command is useless since the state of the system has changed. That’s why endpoint
control has been developed only for entire prosthetic arm, with active shoulder, elbow, wrist and
hand [36, 137–139], when there is no human joints in the motion loop. Moreover, this approach aims
to generate human-like motions with a redundant system, which is an inverse kinematics problem
with an infinite number of solutions.
With endpoint control, the user has to focus on the position and orientation of the hand only and
does not have to decompose the end-effector movement into intermediate joint sub-motions. This
is directly performed by the prosthesis controller, which reduces a lot the cognitive charge. By
nature, endpoint also allows simultaneous motions of prosthetic joints, which is a property highly
desired by amputated people [7].
To control the end-effector, several propositions of inputs have been made:

- with a joystick in the contralateral hand [137]. Very few studies exist, since constraining the
functional arm is not convenient at all in everyday life;

- with a joystick on the shoulder stump [138];

- with a joystick activated by a healthy limb that does not take part in the arm motion, like
the foot [36];

- with eye-tracking that gives the 3D position and orientation of the object to reach and thus
the corresponding position and orientation of the hand [139] (preliminary study).
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Endpoint control has thus many benefits but is limited to shoulder disarticulation prostheses.

A limited enthusiasm for (partial) automatic control approaches

Eye-tracking and endpoint control are ASC approaches that both aims at reducing the double
task between prosthesis control and human body motion. They bring new perspectives for
an easier UL prosthesis command, by automating some prosthetic motions. Compared to the
previous approaches presented in Section 2.1, for which the user is in charge of every individ-
ual joint motions, they reduce the user’s burden by reducing the dimension of his/her control
space: either the hand or the intermediate joint motions are automatized. They are inspired
by the natural human motor control: eye-tracking considers the gaze, signal embedded into
the natural realization of the task, and endpoint control lets the user focusing on the end-
effector only. However, these prosthesis control schemes are still constraining, either because
the user has to fix the gaze on the object s/he wants to grasp, or because s/he has to con-
trol a joystick with movements unrelated to the prosthesis desired motion. Gaze jumps and
approximate arm models can also be source of errors, whose correction has to be performed
by the user. Last, it can be beneficial for some tasks to have a separate control of individ-
ual joints – in particular when the computed prosthetic motion is not achievable because of
environment constraints –, which is not possible with (partial) automatic approaches.

2.3 Motion Completion Control

In the search towards a more appropriate UL prosthesis control, some approaches propose to
unburden the user by taking his/her natural body motion as source of information, which removes
the double task present in ASC.
Contrary to EMG- and EEG-based schemes which collect the motion intention signals from the
root, Motion Completion Control (MCC) opts for considering the last level in the motion chain,
claiming, among others, for a simpler signal acquisition and processing. Note that, except for partial
hand amputation, it is exclusively applied to the control of the intermediate prosthetic joints (i.e.
shoulder, elbow, wrist). As reaching and grasping are two very different tasks, MCC approaches
chose to separate the two; they control the intermediate joints but keep myoelectric control for
grasping. Indeed, while reaching results from a combination of the intermediate joint motions,
grasping results from the hand motions only, and is rarely related to the other joints.
MCC has emerged in the last decades, in order to bring solutions to some significant shortcomings of
ASC approaches (in particular those using EMG). Besides a less problematic signal acquisition and
processing, it removes the need for an auxiliary signal which does not contribute effectively to the
task; the input of the prosthetic controller is now the healthy body motions, naturally
generated to realize the task. Figure 2.8 shows the corresponding block diagram: it is clear
that there is no double task, the prosthesis motion is directly infered from its user natural motion.
Moreover, while it is difficult for a person to know which muscle or which cerebral area s/he is
exactly activating, or where s/he is precisely looking at, proprioception allows a perfect knowledge
of the motions performed. Mastering the prosthesis control is thus straightforward. To link the
prosthesis and its wearer motions appropriately, the main approach uses healthy joint motions with
models of joint synergies (detailed in the next Section). Some studies also employ residual bone
motions: in [140], wrist pronosupination for transradial osseointegrated amputees is deduced from
the percutaneous portions of the implants, while in [141], Li et al. propose to deduce arm rotation
from the humerus motion, with a magnet implanted into the bone.
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Figure 2.8: Motion Completion Control scheme. The red bold arrow indicates the difference with
ASC scheme

2.3.1 Modeling joint synergies

The most widespread MCC approach takes advantage of joint synergies, specific coordinations
between human joints, established by the CNS.
The human body is redundant, which means that there are more DOF than the 6 DOF of space
(3 for translation and 3 for rotation). To perform a movement, there is thus not a single but an
infinite number of possibilities. To deal with this redundancy, the CNS combines together the mo-
tions of some joints in synergies, coordinations which are constant across different performances of
a same motion (see Figure 2.9). These coordinations can be visible with joints positions [142–145],
angular velocities [143, 144] or angular accelerations [146]. For the UL, shoulder-elbow [143, 147],
shoulder-wrist [142, 144] and elbow-wrist [144] coordinations can be found. Synergies are invariant
characteristics of the human motions and are similar between individuals [142–145, 147]. For these
reasons, they can be modeled, i.e. the relationship which links the joint kinematics can be analyti-
cally or numerically expressed: k1 = f(k2), with k1,2 the position, angular velocity or acceleration
of the considered joints and f , the function that models the synergy. With such a model, it is pos-
sible to compute a joint position, angular velocity or acceleration (k1), if those of the coordinated
joint(s) (k2) are known. This is the fundamental principle of joint synergy-based MCC: modelling
UL synergies allows to obtain prosthetic joint motions from human residual joint mo-
tions. With a model of the shoulder-elbow coordination for instance, prosthetic elbow motions can
be infered from user’s shoulder motions [148]: prosthetic intermediate joint motions automatically
complete a natural body action.
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Figure 2.9: Illustration of shoulder-elbow synergy. The coordination of these two joints motions
is visible through an invariant law that connects the shoulder abduction and elbow flexion angular
velocities. The two colors corresponds to two different performances of the same motion
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Chapter 2. Controlling an upper-limb prosthesis: trick or treat?

The concept of synergies for prosthetic control may yet define different realities, since it is widely
employed to refer to a coordination between joints, in a general way. The implemented models are
thus very diverse, and do not necessarily reflect the accurate joints relationship. The most simple
mapping is a proportional law between the angular velocity of a human functional joint and the
one of the prosthetic joint to control [149, 150]. It is easy to understand for the prosthesis user but
does not correspond to the real synergies, which are a bit more complex. It creates a systematic
link between a functional and a prosthetic joint, which prevents any independent motion of the first
one. In [149] for instance, the angular velocity of the prosthesis elbow joint is proportional to the
angular velocity of the human upper-arm. Moving the upper-arm only is thus impossible since the
slightest motion makes the prosthetic elbow moving. To model joint synergies with more accuracy
and avoid such a systematic linkage, many studies have developed supervised machine learning
algorithms such as regression with Principal Components Analysis (PCA) [145], Multi-Layer Per-
ceptron (MLP) [151, 152] or Radial Basis Functions Network (RBFN) [146, 153, 154]. The two last
methods have been tested for the purpose of prosthetic elbow control, via shoulder-elbow synergy.

The main benefit of MCC is the absence of learning on the subject’s side: motions of the interme-
diate prosthetic joints and of the user’s joints are coordinated like those of able-bodied subjects. The
amputee initiates the movement with his/her residual joints (e.g., shoulder), as able-bodied would
do, and the prosthetic joints complete it. However, the development of synergy-based approach is
restrained by two issues. First, building a synergy model requires to train the algorithm with data
from all involved joints. For instance, shoulder and elbow motions must be known to then derive
the coordination law that links them. This is, obviously, only feasible with able-bodied motions or
with motions of the contralateral arm of an amputated subject. Yet, although similar, synergies
between individuals – especially between able-bodied and amputated people – and between the
two arms of a same person, are not exactly identical [155–157]. The difference in dynamics and
mass repartition between a prosthetic and a human arm also affects the amputated limb motions,
which can change from natural motions. These variations prevent to have a very accurate human-
prosthesis joints coordination and can limit the user’s satisfaction. Indeed, recursively missing the
intended target by a few centimeters is an understandable cause of prosthesis rejection. Second,
synergies are task-dependent; they can even depend on the direction and distance of targets to
reach [142, 145]. These two points call for the addition of supplementary layers in the algorithm,
that would deal with model personalization and task versatility.
Garcia Rosas et al. have recently explored the model personalization part [158, 159]. Their studies
first confirm the subject-dependence of the synergies. Starting from an algorithm trained with
other subjects data, they then propose to add an online training of the algorithm parameters for
individuals, with an optimization scheme, which was tested in virtual reality environment for elbow
joint control.

2.3.2 Versatility: an illustrative study

Task versatility of synergy-based MCC is a different type of problem. While the personalization
is a parallel step performed once and for all, versatility must be a permanent stage embedded into
the control algorithm. The first logical question to ask is whether different tasks can be processed
by the same model. Yes, synergies are task-dependent but can several of them be modeled by one
function? As explained in Section 2.3.1, the regression algorithms employed to build synergy model
need to be trained before being used for prosthetic control. Training consists in identifying the
algorithm parameters from example input-output pairs, before using this now identified mapping
to compute output from new input data. We could imagine to build a global model, able to manage
different synergies, by taking a training data set with various movements.
A short illustration study was realized to see if state-of-the-art algorithms could permit that. RBFN
and Gaussian Mixture Regression (GMR) [160] were implemented to model shoulder-elbow synergy
(see Appendix A for some details on these implementations). They were trained and tested on
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2.3. Motion Completion Control

different data sets from able-bodied subjects. Figure 2.10 shows typical results. On Figure 2.10(a),
the two algorithms are trained and tested with data from the same task, composed of one synergy;
on Figure 2.10(b), training and testing data sets come from two tasks, composed of one common
and one different synergy; on Figure 2.10(c), training data set gathers a group of different tasks,
which contains the one of the testing data set.

-50

0

50

0 1 2 3 4 5 6
Time (s)

80

100

120

140

A
n

g
le

 (
d

e
g

)

Reference
Prediction RBFN
Prediction GMR

A
n

g
. 

ve
lo

ci
ty

 
(d

e
g

.s
-1

)

(a) Training and testing data set coming from the
same task.

-150

-100

-50

0

50

0 1 2 3 4 5 6
40

60

80

100

120

Reference
Prediction RBFN
Prediction GMR

A
n

g
le

 (
d

e
g

)
A

n
g

. 
ve

lo
ci

ty
 

(d
e
g

.s
-1

)

Time (s)

(b) Training and testing sets coming from two
different tasks

-100

-50

0

50

0 1 2 3 4 5 6
60

80

100

120

Reference
Prediction RBFN
Prediction GMR

A
n

g
le

 (
d

e
g

)
A

n
g

. 
ve

lo
ci

ty
 

(d
e
g

.s
-1

)

Time (s)

(c) Training data set containing various tasks,
including the one of the testing data set.

Figure 2.10: Results of RBFN and GMR modeling, with different training and testing data set.
For each figure, upper graph is elbow angular velocity output, lower graph is the reconstructed
elbow flexion angle. The blue dotted line corresponds to the true elbow motion (reference to
which compares the models output), red and green lines correspond to RBFN and GMR output
respectively

We see on Figure 2.10(a) that the output of the model corresponds to the true elbow motion. A
single synergy is thus well modeled by RBFN and GMR. On Figure 2.10(b), the beginning of the
sequence is well predicted (which corresponds to the common synergy, included in the training data
set), but the models diverge from the second sub-movement, whose corresponding synergy is not
in the training set. This confirms that a model trained on one synergy cannot be extended to
another one. Figure 2.10(c) shows that a global model is also not feasible with the two considered
algorithms. The task (and thus the synergies) of the testing set may be included into the training
set, the outputs of the models do not coincide with the expected elbow motion. Indeed, training an
algorithm on too many various synergies might build a mixture model, that does not correspond
to any natural synergy.
Versatility thus requires to consider a new algorithm structure: a high-level classification
layer to select the appropriate synergy model among an index, and a lower-level layer to execute
the selected model and command the prosthesis motion (as proposed in [161, 162] for instance).
Figure 2.11 illustrates the difference between a simple one-layer (as implemented in most of current
studies) and a two-layers algorithm, that could be more appropriate for a versatile MCC.
To explore the possibility to add a classification layer for prosthetic elbow control, with shoulder-
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Figure 2.11: Illustration of possible algorithm structures for synergy-based MCC. (a) One-layer
algorithm. (b) Two-layers algorithm, that could be more appropriate for a versatile control. The
first layer is for task recognition with classification; the second for motion execution with the proper
loaded model

elbow synergies, I conducted a short feasibility study (see Appendix B for details on the set-up, data
collection and features definition). A data set from one able-bodied subject performing various tasks
was collected and two state-of-the-art classification algorithms were considered: Bayesian Decision
Making (BDM) and Support Vector Machine (SVM) [163] (see Appendix A for some details on the
algorithms and their implementation). They were implemented on Matlab MathworksR©, which was
also used to study the classification results. Four motion classes were defined by hand: reaching,
return, change height and bring-to-mouth; the features were computed in a sliding window of 100ms
or 500ms, with an increment time of 10ms.

Size of sliding window tw = 100ms tw = 500ms

BDM 45.2% 62.8%

SVM 61.1% 60.2%

Table 2.1: Mean classification accuracy of BDM and SVM, with two different sizes of sliding
window, tw.

Table 2.1 shows the mean classification accuracy (percentage of correct outputs) for both clas-
sification algorithms, with two sizes of sliding window. A brief study of the results shows that
increasing the size of the sliding window improves the performance for BDM and that BDM with
a 500ms window and SVM have similar accuracies. Results are in acceptable range, compared to
similar works [164, 165], but we are still far from 100%.

Multiple options can be explored to get improvements – changing the choice of features or the
windowing techniques, optimizing some algorithm settings, automatically identifying motion classes
with an other algorithm, using a more suitable algorithm [164, 166] – but too many questions are
raised to rush headlong into this. Indeed, even if it seems logical to build a two-layers algorithm, is it
really appropriate? Adding a classification layer first increases the computation time, which creates
an additional delay between user’s intention and prosthesis motion (classification time is usually
around few 100ms, depending on the selected algorithm and its corresponding parameters, see [90]
for instance). Then, even if few percents of accuracy can be earned by optimizing the algorithms,
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2.4. Necessity for a new control approach

the same hot coffee problem as raised in Section 2.1.2, remains. Can we, one day, achieve 100% of
correct output: (i) whatever the situation, also on impredictable actions for which no data could be
collected? (ii) in everyday life environnement and without a precise measure with a motion capture
system (which is restricted to the laboratories)? If some classification errors can still occur, they
will be added to the potential errors of the regression algorithms which model the synergy. By
accumulating layers, we accumulate errors and the overall benefit can then be questioned. Finally,
to have enough data to correctly train classification algorithms, data from different subjects may
be required and the same issue of personalization as the one of the synergy models arrises. Is it a
viable path, for UL prostheses control, to build a hierarchical algorithm, with multiple layers, each
of them requiring an additional personalization step, without the assurance of a full accuracy? Such
a complexity also builds black-box algorithms, incomprehensible for the user, which can reduce the
trust s/he has in the prosthesis control and make the integration of the device into the body image
difficult.

The accuracy issue of Motion Completion Control approaches

With MCC, the user has, in theory, only one task to be focus on: controlling her/his func-
tional joints, whose motion is then completed by the prosthesis. Yet, the approximate syn-
ergy models can make prediction errors on prosthesis motion, which necessarily requires to
let some control for the user to correct these possible errors. This correction first transforms
the single task of MCC into a double task for the user, who has to both control her/his proper
joints and beware of prosthesis motions. It then promotes compensatory motions, that the
user tends to exhibit to rectify prediction errors. This accuracy issue is even more of concern
when considering a versatile control scheme: the multiple synergy models required and the
classification layer to select the appropriate one for each human motion ineluctantly increase
the error probability of prosthetic motions. This lack of confidence in the device could here
also be a source of frustration for the user, who would tend to favour his/her proper body
motions at the expense of prosthesis mobility.

2.4 Necessity for a new control approach

The wide variety of control approaches for active UL prostheses can be classified into three main
groups:

- ASC, which induced a double task for the user through the auxiliary signal generation, coming
in addition to her/his body kinematics;

- ASC with automation of some prosthetic joints, which reduces the double task burden;

- MCC, which theoretically removes the double task by using the user natural motions as input
of the prosthesis controller. The approximate models yet impose to let the user correcting the
possible prediction errors, which nearly changes the single task into a double one.

None of these control schemes acquires a mass adhesion from the users [7, 13–15]. The one that
predominates on the market is conventional myoelectric control, which has not much evolved for
more than 60 years and requires a long learning phase, is cumbersome for the user, allows only
sequential movements and becomes quickly limited with an increasing number of prosthetic DOF.
But it is the most robust, and robustness is one of the first property desired by prosthesis’ users
[7, 13, 81]. Since the emergence of active UL prostheses, their control remains a major challenge.
Why none of the existing approaches seems appropriate?
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Figure 2.12: Simplified diagram of prosthesis control with existing approaches. The control loop
of the system is closed by the user, who has to reverse-engineer the controller of the prosthesis to
generate the signal corresponding to his/her motion intention

The problem of open-loop control

Besides the specific drawbacks of each previously described approach, a plausible reason is
that, with all of these control schemes, the prosthesis control is open-loop. Once the output
of the controller is computed, it is accomplished without any feedback. How the motion
is performed and whether it corresponds to the real user’s intention is not considered. As
shown in Figure 2.12, the control loop is only closed by the user. To be satisfying,
existing approaches must be absolutely accurate and allow no error. That is why most of
current works are focusing on the search for the best control algorithms. In the meantime,
before the – possible – advent of algorithms that are perfectly accurate in every situations
of everyday life, no time-consuming, compact enough to be run in a microcontroller, and
personalized (be it for pattern recognition, eye-tracking or joint synergies), the posssibility
of a correction by the user is required.
To correct the prosthesis motion, there is no choice but to generate a new control signal, be
it an auxiliary signal for ASC approaches or a body motion corresponding to the appropri-
ate synergy for MCC. This requires understandable control scheme and algorithm, that can
be reverse-engineered by the user, so that s/he knows what to do to correct the prosthesis
motion. If the user is not able to predict the output of the controller, s/he will not be able to
generate the proper signal. Black-box algorithms, such as those used in pattern recognition
or joint synergies, do not seem suitable as long as they are not fully accurate.
Since generating a new control signal usually slows down the overall human-prosthesis mo-
tion, the user tends to correct the prosthesis position with his/her residual functional joints
and neglect the device motion possibilities. This preference is at the origin of body compen-
sations (further detailed in Chapter 3). A transhumeral amputee, for instance, will tend to
adjust the reaching of an object on a table by bending his/her trunk forward rather than by
switching between the different prosthetic DOF with co-contractions until controlling the el-
bow, or by performing a new stump motion to trigger the corresponding joint synergy. More
precisely, prosthesis users exhibit compensations with ASC because they prefer to mobilize
their residual functional joints rather than prosthetic joints with auxiliary signals; with MCC
because they correct the inaccuracy of the synergy model predictions.
Another issue of existing control schemes is that the only way for the user to close the control
loop is through visual feedback, since proprioception is unavailable and sensory feedback is
in its early days (see Section 1.4.2). This increases the mental burden of the user, who has to
manage both prosthesis control (sometimes unnatural) and correction, based on vision only.
The demand for a reduced visual attention in UL prostheses control is indeed recursive [7].
Prosthesis control thus asks either for super algorithms or for means to reduce the cognitive
charge of the user and discharge her/him from the correction of the prosthesis motion. The
latter is the way I chose to explore in this PhD.
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2.5. Chapter summary

2.5 Chapter summary

In this chapter, I gave an overview of the existing control schemes available for UL prostheses, be
it on the market or still under development in research laboratories, for reaching and grasping and
for all amputation levels (except partial hand amputation which is a special case). A classification of
these approaches, depending on the link they create between the user and the device, was proposed
and it was explained how this link can influence the intuitiveness of the prosthesis control. Pros and
cons of each were detailed, and it was concluded that none of them is fully satisfactory for amputated
people (see Table 2.2 for a recap). While auxiliary signal approaches decorrelate prosthesis and
human motions and create a double task for the user, joint synergies-based approach requires a
complex algorithm structure, with multiple layers, which will never be default-free. The variability
of human motor behavior and of daily lifetasks, the redundancy of human body and thus of motor
strategies are indeed all factors which challenge the advent of an ideally suitable algorithm for
synergy-based control.

Type of prosthesis control Advantages Limitations

ASC control with indi-
vidual muscle contractions
(conventional myoelectric
control) – Section 2.1.1

• robustness • heavy training
• straightforward implemen-
tation

• increased mental burden
when more than one DOF to
control (state machine with
co-contractions)
• sequential motion

ASC control with pattern
recognition – Section 2.1.2

• no learning for the user • algorithm learning
• simultaneous multi-DOF
motions

• lack of robustness

• limited number of motions

Partially automatic control
– Section 2.2

• dimension of user’s control
space reduced

• controller input not conve-
nient

• simultaneous multi-DOF
motions

• individual prosthetic joint
motions not allowed

MCC – Section 2.3
• no learning for the user • task-dependency of joint

synergies
• synchronous prosthesis and
human motions

• limited number of motions

Table 2.2: Recap of main advantages and limitations of the existing UL prosthesis control schemes

All the presented schemes also share the same open-loop nature at the device level; the user is
the only one in charge of the correction of the prosthesis motion, which increases her/his mental
burden. My proposition is to tackle this open-loop issue: the following chapter describes how it is
suggested to close the control loop at the prosthetic level, in order to minimize the cognitive charge
of the user and improve the robustness of prosthetic control.
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Chapter 3

Closing the control loop with body compensations

The main goal of closing the control loop at the device level is to avoid charging the user of the
device configuration correction; this correction is directly performed by the prosthesis’ controller.
But this requires an error signal in order to compare the output with the user’s command. This
is the tricky aspect when applying this method to UL prostheses control: how to measure error?
In this chapter, I probe this issue and outline the idea to employ human body compensations as
error signal to close the prosthesis control loop. I then describe two experiments that confirm the
feasibility of this idea.

3.1 Finding an appropriate error signal

Arm motions are mainly produced to reach and/or grasp a target; their predominant goal is a
position and an orientation of the hand. A natural error signal would thus be the difference between
the desired and the current hand positions and orientations. To access the defined hand location,
a straightforward method is obviously to know the target of the user, but this is not possible in
everyday life environment. Indeed, it is complex to know a priori the goal of a person among all
the objects of her/his surroundings, and motion capture systems, that can give the coordinates of a
target, are not usable in daily scenarios because of the cumbersomeness of their utilization. Another
way to access the desired hand position and orientation would be to read in the user’s brain the
motor intent. Yet, as exposed in Section 2.1.3, neural signals decoding techniques are still far from
such a capacity. A third option is a paradigm shift: instead directly measuring the user’s goal, we
measure whether the prosthesis is positionned or moves as s/he wants. For that, the user’s reaction
to the prosthesis motion (or non-motion) can be tracked.

3.1.1 The message of body compensations

As explained in Section 2.3.1, the human body is redundant. This redundancy leads the CNS
to create joint synergies but it also makes possible to perform a same task in different ways. For
example, we can either extend the elbow or flex the trunk to reach something on a table; or we
can either flex the trunk or bend the knees to reach something on the floor. When the mobility of
some joints is reduced, the CNS takes advantage of the body redundancy. If the wrist or the elbow
are affected, the subject will tend to naturally use other joints, fully functional (like the hip, the
shoulder, etc.), to compensate the arm mobility loss; this can be observed in post-stroke subjects
for instance [167, 168]. This strategy is also visible for UL amputated subjects, even if the mobility
may be considered as restored with an active prosthesis. Indeed, as exposed in Section 2.4, the
inconvenience and slowness of prosthetic control are often bypassed by the user who rather performs
the task with her/his residual functional joints [127]. This substitution of distal joint motions by
proximal joint motions, thanks to body redundancy, is called body compensations. Their usage
expresses a mismatch between the current prosthesis posture and the one desired by the user.
So far, these compensatory movemements have been regarded as motions to avoid because they
cause musculoskeletal disorders [8, 72]; they have recently been integrated into procedures that
assess prosthesis motion quality and control performance [126, 169]. The concept developed during
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W/o compensation With compensationsInitial  posture

Figure 3.1: Illustration of typical body compensations for wrist pronosupination

my PhD proposes to go further: instead of studying body compensations once the prosthesis con-
trol scheme is built, only for evaluation, they could be employed in the control law. Since body
compensations express errors in the position of the prosthesis, they could define the
error signal of the closed-loop controller.
To do so, a first step is to identify these compensations: what are they? Which human functional
joint compensate for which prosthetic joint? Are they similar between subjects? Many studies
have investigated this topic for transradial amputees [71, 170–172]. They show that pronosupina-
tion is supplanted by trunk lateral bending or rotation (depending on the task), shoulder abduc-
tion/adduction and that elbow flexion is increased (see Figure 3.1). For transhumeral amputees,
there are less data available [127]. I thus conducted an experiment to determine the compensatory
movements associated to elbow mobility loss.

3.1.2 Characterization of induced body compensations

1 2
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CodaMotion

IMU

WiiBoard

Reaching Bring-to-mouth

Elbow 
orthosis

Free elbow Elbow blocked with the orthosis

Figure 3.2: Experimental set-up to characterize body compensations in response to elbow mobil-
ity loss. Able-bodied subjects performed a reaching-and-return and a bring-to-mouth tasks, with
an orthosis letting the elbow free of moving or locking it at 90 deg. The numbers identify the
different movements (6 reaching targets and 2 heights for bring-to-mouth). CodaMotionR©, IMU
and WiiTMFit Balance Board were used for motion analysis.
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This experiment aims at studying the compensations exhibited when the elbow mobility is re-
duced.

Materials and Methods
Ten able-bodied subjects were asked to perform 3D motions with their right arm, with their elbow
either free of moving or blocked at 90 deg (angle between humerus and forearm) with an orthosis,
as shown in Figure 3.2. The shoulder aperture mobility was also limited, with a strap, to mimick
the socket of transhumeral amputees. The task was divided into two parts: (i) bringing an object
to 6 locations and going back to the initial position; (ii) reaching an object on a table, at two
different heights, bringing it close to the mouth, putting it back to the table and going back to the
initial position. For the first part, there was no grasping, the object was already in the hand (see
Figure 3.2). The whole task was repeated four times. Subjects were asked to be initially standing,
with the arm along the trunk and the elbow flexed at 90 deg. For post-experiment analysis, three
IMUs were placed, one at the back of the head, one on the sternum, the other on the shoulder,
to measure head, trunk and shoulder angles; CodaMotionR© motion capture system was used with
markers on the hand, the forearm, the elbow, the shoulders and the sternum to measure body seg-
ment movements; and a WiiTMFit Balance Board measured subjects balance [173]. The Range of
Motion (ROM) of the head Euler angles in the trunk frame, of the trunk angles and of the humerus
aperture angle (see Figure 3.3), the acromion displacement and the weight repartition were an-
alyzed. Statistical analysis was conducted on the metrics averaged over trials for each condition
(natural and blocked elbow) and subject. Normality of the data was assessed with Lilliefors test
[174]. Then, general linear models were used for normally distributed data and the nonparametric
Friedman test was used for the others [175].

Trunk 
flexion

Humerus 
aperture

Trunk 
rotation

Trunk 
lateral bending

Yaw

Pitch

Roll

Euler
angles

Figure 3.3: Definition of Euler angles, trunk angles and humerus aperture.

Results
Figure 3.4(a) shows the mean of trunk and humerus angular trajectories for one typical subject
and two typical movements. As expected, humerus aperture decreases a bit when the elbow is
blocked, since the shoulder mobility was also limited, to mimick socket constraint. We see that
all trunk angles increase to compensate for elbow mobility loss and shoulder mobility reduction,
whatever the task performed. This is confirmed Figure 3.4(b) for all subjects. Depending on the
side, the distance and the height of the targets, one of the three trunk angles is particularly en-
hanced. A distant target enhances trunk flexion while a target on the contraleteral side (left side)
enhances trunk rotation and lateral bending, for instance. To avoid considering too many mea-
sures but dealing with one compensatory metric, we can look at the acromion1 displacement, which
accounts for all three DOF of the trunk. It also indicates the possible scapular translations (retrac-

1Acromion is the lateral extension of the spine of the scapula, forming the highest point of the shoulder.
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Figure 3.4: Trunk and shoulder motions, for natural and elbow-blocked motions. (a) Mean and
confidence interval of angular trajectories of the trunk angles and humerus aperture (normalized in
time), for one typical subject. Trajectories are presented for one reaching and one bring-to-mouth
motion (see Figure 3.2 for the corresponding numbers). (b) ROM of trunk angles and humerus
aperture, averaged over trials and subjects.

tion/protraction, elevation/depression), which was not limited in this experiment and was observed
on the participants. Figure 3.5 shows a typical example of acromion displacement for one subject,
and the maximum acromion displacement, averaged over all subjects for the 8 movements. It is
clear that the acromion displacement significantly increases when the elbow mobility is lost. Head
motions and weight repartition were also enhanced when the elbow was blocked, even if head angles
ROM have a high variability between trials and subjects (see Figures C.1 and C.2 in Appendix C).
While they both express a change in subjects’ motor strategy, they are not considered here as body
compensations since they are not a substitute to distal impaired joints (moving the head does not
help to move the hand and weight repartition is only an image of upper body motions, reflecting
trunk compensations).
Body compensations exhibited when the elbow flexion/extension is impaired are thus characterized
by trunk and scapula motions. Interestingly, they can be gathered into acromion displacement.
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3.2. Proposed concept

Other parts of the body, like the head, also participate to modify motor strategies but are not
identified as compensatory according to the definition used here. These observations are valid for a
broad variety of tasks, be it reaching in 3D or bring-to-mouth. This experiment could have deserved
to be complemented with amputated participants, but the main outcomes are similar to what was
observed in [127] on three transhumeral amputees performing reaching tasks.
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Figure 3.5: Acromion displacement, for natural and elbow-blocked motions. (a) Mean and con-
fidence interval of acromion displacement (normalized in time), for the same typical subject and
motions as in Figure 3.4. (b) Maximum acromion displacement, averaged over trials and subjects.
** indicates p < 0.005.

3.2 Proposed concept

Results from cited works on wrist, as well as those from the experiment described in Section 3.1.2
on elbow, point out that, when a distal joint mobility is reduced or missing, the CNS recruits the
next more distal functional joint(s) that can perform the desired task. The wrist pronosupination
is thus replaced by shoulder and trunk motions, while the elbow flexion/extension is replaced by
trunk and scapula motions (shoulder motions cannot substitute elbow flexion). As explained in
Section 3.1.1, these compensatory movements express an error in the device posture that may be
used as error signal for the closed-loop controller we want to set-up. Before proceeding further,
it must be noticed and kept in mind two points: (i) what is meant by closed-loop control at the
prosthetic level is not a traditional position servoing of the prosthesis (which can be implemented
additionally) but a servoing of the device on its user movements; (ii) no compensatory movement
substitutes grasping; the proposed approach thus seems valid for all intermediate joints, responsible
for positioning and orientating the end-effector, but not for finger configurations.
Now that compensatory motions are identified, the next step is to determine a prosthesis motion
from their error signal.
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Chapter 3. Closing the control loop with body compensations

Reducing body compensations with prosthesis reconfiguration

Since body compensations allow the prosthesis user to still perform the task in case of un-
efficient device motion or position, the idea proposed in this PhD thesis is to let the user in
charge of the end-effector task, while reconfiguring the prosthesis kinematics with the aim of
reducing the exhibited compensatory motions. Contrary to what is usually considered, the
function of our prosthesis is not to perform a specific task in joint- or end-effector space but to
control and optimize its user’s posture using internal (null-space) joint motions,
while the latter is in charge of the task. The prosthesis is servoed to its user’s body
compensations in order to reduce them. This assumes a human-robot coupling, in which the
user reacts to the prosthesis motions.
The proposed prosthesis control works in three steps: measuring body motions and detecting
compensations – defined as a deviation from an objective posture –; computing the prosthesis
position error expressed by the detected compensatory motion; from this error, generating a
velocity command for the prosthetic joints (see Figure 3.6). Following the velocity command,
the device motion should make the user go back to the objective posture via human-robot
coupling. This is embedded in a closed loop with relatively high frequency (e.g., 100Hz) to
avoid the user exhibiting large compensations for the prosthesis to react.
The proposed prosthesis control is an integral control: the velocity of the device’s joints is
triggered by a change in user’s posture. This is much more appropriate than a proportional
control; the latter would rigidly link human joint positions and prosthetic joint positions and
would force the user to keep a compensatory posture while achieving the task. All the bene-
fits of the proposed concept would be removed. An integral control avoids this and allows the
user to only initiate a compensatory motion and come back to a non-compensatory posture
to obtain a proper prosthesis motion.

2 3

Objective on human
body position

Body compensations Motion of the prosthetic joint

1

Motion of the user to come back 
to the objective position

Figure 3.6: Illustration of the three steps of the proposed control scheme – closing the control
loop at the prosthetic level with body compensations of the user – for a pouring task with a lower-
arm prosthesis (in black). 1. Detecting compensations; 2. computing the corresponding prosthesis
position error; 3. generating a velocity command from this error, which then allows the user to
come back to the objective posture

A great benefit of this concept is that all intermediate prosthetic joints move simultaneously,
while the user only takes care of the end-effector. The proposed control scheme indeed provides
a human-robot coordination by distinguishing their objectives: while the human’s goal is to
position the prosthetic hand, the device’s goal is to position back the human body in
a comfortable posture by reconfiguring the prosthesis kinematics. Moreover, the user has
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Figure 3.7: Proposed control scheme, named Compensations Cancellation Control. x, xgoal and
xestim are the real end-effector position, the desired one and the one estimated by the human
sensory system, respectively. ˜̇qp, q̇p, qp are the command prosthesis joint velocity, the prosthesis
joint velocity and position respectively. τh is the torque of the human joints; q̈h, q̇h, qh are the
acceleration, velocity and position of the human joints, respectively. εp is the prosthesis position
error and λ a scalar gain. Red and bold arrows indicate the differences with ASC and MCC

nothing to learn to control the device, since body compensations are natural CNS strategies. From
now on, this closed-loop control based on body compensations will be refered to as Compensations
Cancellation Control (CCC).

Figure 3.7 shows CCC diagram. When compared to Auxiliary Signal Control (ASC) and Motion
Completion Control (MCC) control schemes (Figures 2.1 and 2.8 respectively), several differences
appear. First, because the input of their controller is human motion, MCC and CCC get rid of the
double task induced by the generation of the auxiliary signal in ASC. Then, while ASC and MCC
approaches are open-loop for the device – the block diagram of the entire human-robot system is
only closed by the human sensory feedback–, CCC indeed closes the control loop at the prosthesis
level, which discharges the user from the potential correction of the device position. An estimate
of the prosthesis position error is obtained with user’s compensatory motions.

The objective on human body position – also named reference posture later on–, from which
compensatory motions are deduced, can be defined as a non-compensatory and comfortable pos-
ture for the user. It is a body position s/he would be in to perform the task with a healthy limb;
body compensations are thus deviations from this posture. It is obviously varying with time, and
sometimes with the intented task. As a first step in this PhD, we will yet always consider situations
where it can be viewed as constant. The generalization of the objective position to an everyday life
use of CCC is a key limiting point of this approach. As it is not fixed, means to define a varying
objective will have to be found. Via this objective, it must be possible to distinguish between func-
tional and compensatory motions. Indeed, one joint is not either functional or compensatory, its
role depends on the task and the context. A varying definition of the reference posture must take
this into account. The way CCC is presented also allows to imagine other types of objectives than
body posture, as soon as deviating from them indicates a prosthesis position error: a minimization
of energetic cost, a minimization of some muscular groups activity or a stable balance for instance.
All these remarks will be further discussed in Chapter 7.

3.3 Feasibility study on the wrist joint

Several questions are raised by the proposed concept: does the user react as expected in human-
robot coupling? Namely, if a body position is detected as compensatory and a prosthesis movement
is generated as a result, will the user naturally go back to the objective posture and cancel the
compensation once the prosthesis is moving? Is the same implementation suitable for several
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Chapter 3. Closing the control loop with body compensations

subjects? To answer these points, I first studied the feasibility to close the prosthesis control loop
with body compensations for wrist pronosupination. The control law is detailed and is then applied
to a prosthetic wrist control in two experiments, one with able-bodied subjects wearing an adapted
device and the other with transradial amputees. An open-loop and direct control was also employed
during these experiments to have a point of comparison to study control performance.

3.3.1 Control law

Pronosupination 
blocked

Trunk 
compensations

Shoulder 
compensations

(a) Illustration of wrist pronosupination compensations,
for a pouring task

θp

forearm longitudinal
axis

Y

X

Z

θfa

(b) Definition of forearm rotation (Z-Euler
angle), θfa, and prosthetic wrist

pronosupination, θp.

Figure 3.8: Measuring forearm rotation to detect wrist pronosupination compensations. (a) When
the wrist pronosupination is blocked, it is compensated by trunk and/or shoulder motions. (b) To
gather all compensatory motions in one measure, the forearm rotation around its longitudinal axis
is considered

Studies on compensatory movements related to wrist pronosupination show that this DOF is
generally compensated by trunk and shoulder motions [71, 170–172]. However, these compensations
may differ depending on the subject’s posture. Additionally, all trunk and upper arm motions
are not compensations. To avoid approximate and rigid mappings between trunk, shoulder and
prosthetic wrist motions and to limit the number of sensors, I propose to work at a more distal
level and directly measure the rotation of the forearm around its longitudinal axis. If the forearm
orientation is modified, it means that trunk and/or upper arm are moving to compensate and
substitute wrist pronosupination (see Figure 3.8(a)). To define the error signal, a frame is attached
to the prosthetic forearm, where Z axis is the forearm longitudinal axis, Y axis is perpendicular
to Z axis in the forearm-arm plane, X axis is the cross-product of Y and Z (see Figure 3.8(b)).
The Euler angle around Z axis of this frame, here called θfa, is then used to compute the error
signal, defined as the difference between its current value and an objective value, θ0 (as stated in
the previous Section, this reference/objective posture defines the non-compensatory posture to go
back to and can depend on the context):

ε(t) = θfa(t)− θ0 (3.1)

When this error ε is not null, prosthetic wrist has to move to make the subject go back to the
objective posture θ0. To keep the hand orientation θhand = θp + θfa constant while θfa goes back
to θ0, the prosthetic wrist has to rotate. The pronosupination of the prosthesis supplants the user’s
compensations. ε is thus used as the input of the control law, which pilots the prosthetic wrist
angular velocity, θ̇p, as defined in the following equation:

θ̇p(t) =

{
0 if |ε(t)| < ε0

λ(ε(t)− δε0) otherwise,
(3.2)
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where ε0 is a deadzone threshold (set to avoid unwanted motions around the reference posture),
δ = sign(ε(t) − ε0), and λ is a scalar gain that tunes the rate of correction. Considering the law
of Equation 3.2, it can be anticipated that the values of λ and ε0 will influence the time response
and the speed of the prosthesis, on which depend the reaction of the human user, and thus the
human-robot system stability. Their role will be analyzed in details in Chapter 4. For the following
experiment, ε0 and λ were chosen empirically to ensure stability, and are set to 5 deg and 2 s−1

respectively.
This control law may seem close to the ones proposed in [176] and [150], which have also suggested
to take compensations into account to control prosthetic wrist. Yet, in [176], the wrist rotation
angle is merely proportionnal to a weighted combination of shoulder angles. Wrist is controlled
in position, which limits the overall mobility of the user: for a large pronation or supination,
large shoulder movement shall be produced by the user. Even if the aim of the controller is
to minimize shoulder compensations, there is no error evaluation. In [150], Bennett et al. take
only shoulder abduction/adduction as compensatory motion and do not consider trunk and other
shoulder possibilities, which compensatory roles depend on the arm position. Moreover, none of
these works present any human-robot coupling or closed-loop considerations.

3.3.2 Preliminary evaluation with able-bodied participants

This work has been published in Proceedings of the 2020 IEEE International Conference on
Robotics and Automation (ICRA) [177].

With this first experiment, we aim at demonstrating that a human-robot coupling actually estab-
lishes when a CCC law is implemented to control a prosthetic joint. We tested that this coupling
allows human subjects to perform a task without a reinforcement of body compensations and com-
pared CCC performance with the one of an open-loop control.

Materials and Methods

Figure 3.9: Cybathlon wire-loop task with the emulated prosthetic device. The upper left insert
shows the handle hold by the prosthetic hand.

The first experiment performed to validate the proposed concept involved five healthy subjects (22
to 25 years old, one left-handed and four right-handed), wearing an emulated prosthesis on their left
arm. They were asked to complete the wire-loop task of the Powered Arm Prosthetic Race of the
Cybathlon c©[178], particularly designed to challenge wrist pronosupination. The goal is to bring
the handle through the wire-loop in a minimum time and without touching the wire (see Figure
3.9). The shape of the wire requires the participants to continuously adjust their hand orienta-
tion with pronosupination. To emulate UL prosthesis, the subjects wore a prosthetic prototype,
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composed of a Touch Bionics hand (I-LimbTMUltra) and a motorized wrist rotator. The hand was
pre-positioned holding the handle and kept grasped over it during the experiment (see Figure 3.9);
the wrist angular velocity was controlled by a DC motor driver (Ion motor control, Ltd), itself
controlled by a Raspberry Pi 3 c©. To measure body motions (mainly for post-experiment analyses),
an OptiTrack (NaturalPoints Inc.) motion capture system and two IMU were used. Seven rigid
bodies (or clusters), made of OptiTrack markers, were tracked: two on the hips, one on the torso,
two on the shoulders, one on the device’s forearm and one on the handle; the IMU were placed on
the trunk and the upper-arm respectively (see Figure 3.10).
The prosthetic wrist was controlled with two different modes successively:

1. Open-Loop Control (OLC). A pair of push-buttons mounted on a handle was grasped by the
free hand of the subjects (see Figure 3.10(a)). One push-button controlled the forward wrist
rotation (pronation), the other the backward rotation (supination). When no push-button was
pressed, the device stayed still. This command was used as a reference as it is an open-loop
and direct control; the auxiliary signal here is the pressure on the buttons. It mimicks most
of the myoelectric controllers currently available (on/off, proportional switch or even pattern
recognition, see Section 2.1), while avoiding all the practical problems of EMG measurements.
The joint angular velocity was fixed at 50 deg.s−1, which is representative of values used for
myoelectric control.

2. CCC. The forearm rotation, θfa, was computed in the initial forearm frame, from quaternions
of the OptiTrack cluster placed on the device’s forearm and sent in real time to the prosthesis.
OptiTrack was convenient in lab environment and for post-experiment analyses but θfa could
have also easily been obtained by gyroscope data from an IMU (see next Section). The
objective θ0 was supposed to be fixed and was set as the initial orientation of the forearm
(θ0 = 0 deg).

Optitrack markers

Inertial Measurement
Units

(a) OLC set-up (b) CCC set-up

Figure 3.10: Experimental set-up of the Cybathlon wire-loop task.

Before each recording session, subjects were allowed to train a few times on the wire-loop task.
They trained between two and five times. A recording session consisted in five trials, and there
were three recording sessions: one natural (N), with the own left forearm of the subjects, which
provides a baseline from natural motions, one with OLC, one with CCC. Subjects always began
with N while CCC/OLC order was randomized, to avoid measuring any effect of task learning. The
initial position of the participants was imposed by the task: body parallel to the wire-loop plane
and elbow flexed enough to reach the handle with the prosthetic hand. Post-experiment analyses
were conducted with Matlab Mathworks R© scripts. This experiment was carried out in accordance
with the recommendations of Université Paris Descartes ethic committee CERES, who approved
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the protocol (NIRB: 20163000001072). All participants gave their written informed consent in ac-
cordance with the Declaration of Helsinki.

Results
Concept validation
Before any comparison with OLC, the supposed coupling induced by CCC must be analyzed. Figure
3.11 shows the shoulder abduction and the trunk lateral bending, that contribute to compensate for
default of pronosupination, and the prosthetic wrist angular velocity, output of CCC. Red circles
indicate the deadzone visible effect: perfect zero wrist velocity while the prosthesis error is less than
the threshold ε0. It is clear that there is a human-robot coupling: the user begins to compensate
to achieve the task; once compensatory motions are detected, the prosthetic wrist rotates, which
makes the user go back to the objective posture. It can be noticed that shoulder abduction is less
coupled to the wrist angular velocity. Indeed, shoulder is also functional for this task (it is required
to achieve it naturally), contrary to the trunk which is only compensatory. User-prosthesis coupling
thus behaves as expected: the device corrects its user’s posture, while the task stays accomplished.
To complete the analysis and observe whether closing the control loop is indeed valuable, CCC is
compared to OLC, on several criteria. The metrics characterize the good realization of the task
but also the smoothness of the prosthetic motion, the easiness of the control and the amount of
generated body compensations.
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Figure 3.11: Human-prosthesis coupling induced by CCC, for one typical subject. Once the
prosthetic wrist begins to rotate, the user reacts and stops compensating.

Task realization
The task performance is described with the time of the task and the number of touches (see Figure
3.12). Figure 3.12(a) shows the time for each trial of the two modes, with the mean difference
between the two modes and the 95% Confidence Interval (CI). This representation was selected
for the experiment because it allows for a more transparent statistical analysis than the p-value,
especially for a small population [179]. If the 95% CI of the mean difference does not cross the zero
dotted line, the two modes are statistically significantly different. The blue dashed lines are the
minimum and maximum times obtained during natural achievement of the task by each subject.
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Figure 3.12: Task realization performance metrics of the Cybathlon wire-loop task. (a) Time
of the task: all trials of each of the five subjects, with the 95% confidence interval and the mean
difference between the two control modes. (b) Number of times the handle touched the wire, for
each trial. The blue dashed lines are (a) the maximum and minimum values of the time and (b)
the maximum number of touches of the natural sessions.

It can be noticed that the natural times of the task are shorter for S1 because this subject was
left-handed, but handedness did not affect any other results. We see here that for three out of
five participants (S1, S2 and S4), the time is statistically significantly shorter with CCC than with
OLC. For S5, the time with CCC is longer but without a real significant difference. S3 stands
out from the others as CCC times are significantly longer than OLC ones. On Figure 3.12(b),
we observe that the number of touches does not really distinguish OLC and CCC, except for S1.
The latter touched the wire in four out of five trials with OLC and never with CCC, but this
is partly due to the fact that this subject wanted to be fast more than being precise. Overall,
it can also be noticed that CCC generates touches in only one trial out of the 25 (total of all
trials for all subjects) whereas OLC does in 7 trials. Participants thus tended to be as good or
better to realize the Cybathlon wire-loop task when controlling the wrist with CCC than with OLC.

Wrist motions
While healthy motions are naturally smooth [180], prosthetic motions are often jerky, due to the
discrete nature of the command [181]. Since CCC allows for a continuous control of the movements,
the smoothness of prosthetic motions with CCC may be improved, which would be a significant
benefit. Figure 3.13 shows the wrist pronosupination angle and the wrist angular velocity of the
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Figure 3.13: Prosthetic wrist pronosupination angle and angular velocity for one trial of one
typical subject with (a) OLC and (b) CCC. The red and black lines indicate when the push-
buttons are pressed (for OLC) or when the subject’s forearm angle went out of the deadzone (for
CCC)

prosthesis for one typical subject, for OLC and CCC respectively. We see on Figure 3.13(a) that the
OLC wrist angular velocity must be a series of pulses to obtain a motion as continuous as possible.
It is clear that the wrist angular trajectory with OLC is jerky (it is a step function) while the one
with CCC is smooth and continuous (see Figure 3.13(b)).
To quantitatively evaluate smoothness, we used the spectral arc length of the wrist angular velocity
[182] (Figure 3.14(a), the more negative, the less smooth). The same statistical representation as
above, with 95% confidence intervals and difference mean, is employed. There is no doubt that for
the five participants, CCC wrist motions are significantly smoother than OLC wrist motions.
Yet, one can argue that the low smoothness of OLC is intrinsic to its binary nature. As often done
in on/off prosthetic control, finer velocity profiles, e.g., trapezoidal, could have been implemented.
However, this would not have created a fully continuous control, as enabled by CCC.

User’s involvement
When the concept of CCC was exposed above, less user’s involvement in the prosthetic control was
claimed, due to the closure of the control loop at the prosthetic level. This reduction is first due to
the removal of the double task of auxiliary signal generation. It can also be illustrated by comparing
the low number of deadzone crossings with CCC to the high number of times the push-buttons were
pressed with OLC (except for S3 who, here again, stands out from the other participants). Figure
3.14(b) shows these two metrics, with their mean and CI, for all trials of the five participants. It
highlights the fact that the prosthesis user is more involved when using OLC than when using CCC.
Indeed, with OLC, (i) s/he has to focus on individual wrist motions while CCC allows to focus only
on the end-effector motion and (ii) s/he is her/himself the corrector that closes the control loop.

Body compensations
Using compensatory motions as input of the prosthesis controller with CCC may also promote
them, which is not a desirable effect. It is essential to check if the action of the prosthesis can be
correctly set to prevent any important and undesirable compensations or if the latter are favored
with CCC. With the wire-loop task, identified compensations are shoulder abduction and trunk
lateral bending (see Figure 3.3 page 31 for angles definition); they are thus the two motions to
analyze in details.
Figure 3.15 shows the mean and confidence interval of the two angular trajectories, normalized
in time, for each participant. Blue dashed lines represent the maximum and minimum values of
each subject’s natural angular trajectories. We first note that the timing of the angular variations
are similar between the two modes of control. The shoulder abduction angle (up panel) is similar
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Figure 3.14: Smoothness and user’s involvement induced by OLC and CCC. (a) Motion smooth-
ness measured by the spectral arc length of wrist angular velocity. The more negative, the less
smooth. (b) Involvement of the subjects measured by the number of times the push-buttons are
pressed (OLC) and the number of deadzone crossings (CCC).

between OLC and CCC, except for S3, for which the abduction is higher with OLC.
Contrary to shoulder abduction, trunk lateral bending is a bit heightened with CCC, especially for
left-side bending (negative values). This can be explained by the fact that we chose the reference as
the initial position of the subject, with the arm along the body. The amplitude of shoulder adduc-
tion was thus very limited. The latter was so difficult to perform that it was nearly not exhibited
(mean shoulder adduction never goes under 6 deg, see Figure 3.15); to induce wrist pronation, the
subjects used only left lateral bending (see Figure 3.16). If the arm was not along the body but a
bit abducted at the reference position, wrist pronation could have been compensated by shoulder
adduction. This observation points out the issue of the objective definition, which can affect the
exhibited compensatory motions. It must thus be carefully defined to optimize the use of CCC.

This first experiment confirms that the human-robot coupling induced by CCC indeed allows the
device to correct user’s posture. Moreover, CCC performance – in terms of task realization, mo-
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Figure 3.15: Mean and confidence interval of shoulder abduction and trunk lateral bending
angular trajectories (normalized in time), for each subject. Blue dashed lines are the maximum
and minimum values of the subject’s natural joint trajectories.
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Initial posture
Adduction impossible

Pronation compensated with 
trunk lateral bending

Figure 3.16: Illustration of participants behavior that can explain higher trunk lateral bending
with CCC

tion smoothness, user’s involvement and body compensations–, compared to a standard open-loop
control, is promising.

3.3.3 Preliminary evaluation with amputated participants

This work has been published in Proceedings of the 5th International Symposium on Wearable
Robotics (WeRob) [183].

The last encouraging results call for a test with amputated subjects and a comparison with true
myoelectric control. A second experiment was thus performed, in collaboration with the Institut
Régional de Réhabilitation (IRR) UGECAM Nord-Est of Nancy, with two transradial amputees,
who were both regular prosthesis users, used to proportional myoelectric control for 2 DOF (hand
and wrist), for several years.

Materials and Methods

Left arm Right arm
Upwards UpwardsDownwards Downwards

(a) Order of the pins to move

Vertical
clothespin
positions

IMU

Timer
box

Horizontal
clothespin
positions

(b) Set-up

Figure 3.17: Refined Rolyan Clothespin test. (a) Pins order and (b) set-up with transradial
amputees, controlling wrist pronosupination either with proportional myoelectric control or with
CCC

The task proposed was the Refined Rolyan Clothespin test [184, 185], a standard upper limb func-
tional test. It consists in bringing three clothespins, initially located on an horizontal bar, to a
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Chapter 3. Closing the control loop with body compensations

vertical bar and vice-versa. The order of pins to move is predefined to facilitate inter-subjects
analysis (see Figure 3.17(a)). Both grasping and wrist pronosupination are required to properly
achieve this task. The Rolyan was successively performed with the usual myoelectric control of
each participant and with CCC. For CCC, the participants’ wrist rotator was replaced with one
from the laboratory, including an encoder, and controlled with an external Raspberry Pi 3 c©. As
CCC cannot be implemented for the hand (see Section 3.2), the usual myoelectric control of each
participant was conserved for the grasping function. For this experiment, θfa was obtained with
an IMU located on the prosthetic forearm (instead of an OptiTrack marker as previously), that
sent quaternions in real time to the Raspberry Pi 3 c©. The OptiTrack motion capture system was
used for post-experiment analysis of body motions (see Figure 3.17(b)), which was conducted with
Matlab Mathworks R© scripts.
The Rolyan was performed 5 times with each control mode and without any specific training ses-
sion. For CCC, a brief explanation was given to the participants: they were told that the prosthetic
wrist would move depending on their body compensations. The reference posture was defined as
the initial one: standing, with the arm along the body, with no constraint on the elbow position.
In light of the previous observation on the significance of the objective definition, the subjects
were asked to begin with the arm slightly abducted. Before each trial and between upwards and
downwards motions, they had to press a push-button as a timer, with their prosthetic hand. This
experiment was carried out in accordance with the recommendations of Université Paris Descartes
ethic committee CERES, who approved the protocol (NIRB: 20163000001072). All participants
gave their written informed consent in accordance with the Declaration of Helsinki.

Results
As above, prosthetic control performance is assessed on the task achievement and on wrist and
compensatory motions.

Task performance
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Subject 2
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Figure 3.18: Time of the task of the two transradial amputated participants, for the Refined
Rolyan Clothespin test.

The Refined Rolyan Clothespin test is assessed with the time of the task, which was measured
distincly for upwards and downwards motions. Figure 3.18 shows the mean of the time over trials,
for the two control modes and both subjects. The total time for Subject 1 (around 30s) is com-
parable to the time obtained with transradial users in [185]; the one of Subject 2 is a bit higher.
For both participants, the time is clearly similar between the direction of the motion (upwards or
downwards) and the control modes. It can also be noticed that the standard deviation is small for
both control modes, which indicates that there is no noticeable learning phase. This is particularly
noteworthy for CCC, which was totally unknown from the participants. CCC is thus as good as
myoelectric control to complete the task although it was completely new for the participants.
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3.3. Feasibility study on the wrist joint

Wrist motions
Figure 3.19 shows the mean and CI of the wrist pronosupination angular trajectory, normalized in
time, for the two control modes and both subjects. The timing of the variations is very similar
between myoelectric and CCC. For Subject 2, the amplitudes are also very close; for Subject 1, the
amplitude with CCC is a bit smaller than the one with myoelectric control. Actually, it seems that
the wrist is over-used with myoelectric since a rotation of 90 deg (obtained with CCC) is widely
sufficient to perform the Rolyan task correctly. CCC would allow a finer control of the prosthetic
joint. Motion smoothness is not significant here because the spectral arc length is only meaningful
for discrete movements (like reaching or circle-drawing) [186], which clothespin rearrangement is
not. Even if smoothness of a rythmic movement can be computed by segmenting it into discrete
sub-movements, this procedure is not really relevant here. Indeed, the segmentation is far from
being obvious because subjects made many sub-movements during clothespin positionning.

0

Subject 1
Upwards

Myoelectric
CCC

10 20 30 40 50 60 70 80 90 100

0

50

100

150

Downwards

0

50

-50

-100

-150

A
n

g
le

 (
d

e
g

)
A

n
g

le
 (

d
e
g

)

0 10 20 30 40 50 60 70 80 90 100

Subject 2

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

0

50

100

150

0

50

-50

-100

-150

% movement % movement

Figure 3.19: Mean and confidence interval of prosthetic wrist pronosupination trajectory (nor-
malized in time), for myoelectric control and CCC, for the two transradial amputated participants.

Body compensations
With the Refined Rolyan clothespin test, subjects have much more freedom to move, compared
to the Cybathlon wire-loop task; there is no imposed trajectory. It is thus more delicate to know
whether, among the three trunk angles, one is especially responsible for pronosupination compen-
sations, as was done for the wire-loop task. Shoulder abduction and all three trunk angles are thus
analyzed to confirm that, for this task and with amputated people, CCC does not enhance compen-
satory motions. As there is no natural reference here, they are only compared to the ones exhibited
with myoelectric control. We first analyze the maximum ROM of shoulder abduction and the three
trunk angles (flexion, rotation and lateral bending) with myoelectric control and CCC respectively
(see Figure 3.20). The maximum is computed over all trials and motion directions (upwards or
downwards). For each participant, this maximum value is similar between myoelectric and CCC,
showing that the latter does not enhance compensatory motions compared to myoelectric. For both
control modes, the ROM stays in acceptable ranges [187]. However, even similar between control
modes, joint motion strategies differ between the two subjects: Subject 2 solicited his shoulder and
trunk much more than Subject 1 (+ 20 deg for the shoulder and + 10 deg for the trunk angles).
Collecting data with more participants would allow us to have an overview of these strategies.
To have a compact metric to compare control modes at a glance, the difference between myoelectric
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Figure 3.20: Body compensations: maximum ROM over trials and direction of motion of shoulder
abduction (Abd.), trunk flexion (T.Flex.), rotation (T.Rot.) and lateral bending (T.Lat.Bend.).

and CCC maximum ROM, over all trials, is computed:

δ = maxtrials(ROMmyo)−maxtrials(ROMCCC) (3.3)

It was decided to keep apart the two direction of motions here, to allow a more detailed analysis.
Figure 3.21 shows δ for shoulder abduction and trunk angles. As visible on Figure 3.20, the dif-
ference of compensations between myoelectric and CCC is small (maximum 10 deg), with slightly
more compensations with myoelectric, except for Subject 2 trunk flexion for upwards motions and
Subject 2 shoulder abduction and trunk lateral tilt for downwards motions. This means that Sub-
ject 2 tended to solicit more his shoulder and trunk with CCC than with myoelectric for downwards
motions. These compensations were yet not higher than compensations with myoelectric for up-
wards motions, since the overall maximum ROM is obtained with myoelectric, as illustrated on
Figure 3.20. CCC thus does not heighten body compensations compared to myoelectric control
when used with a real UL prosthesis.
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Figure 3.21: Body compensations: δ is the difference between the maximum ROM with myo-
electric and the maximum ROM with CCC. (a) Shoulder abduction. (b) Trunk angles. Positive δ
means that the ROM with myoelectric control is higher (more compensations).

Validation of the concept of Compensations Cancellation Control

This evaluation with amputated participants confirm and extend the results of Section 3.3.2.
The concept of CCC – closing the prosthesis control loop with body compensations – is
efficient in real life: the induced human-robot coupling allows the prosthesis to correct its
user’s posture while s/he is performing a task, and the body compensations are not enhanced
even if they are input of the controller. CCC for wrist pronosupination was successfully
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tested on two very different tasks (constraint path-tracking with the Cybathlon wire-loop,
and free reaching and positionning with the Refined Rolyan Clothespin test), which shows
the versatility of this control scheme. Indeed, as the prosthesis function is not to perform
a specific task in space but to correct its user’s posture, the range of possible motions is
much larger. CCC implemented for wrist pronosupination is also valid for many subjects,
able-bodied and amputated, without any individualization or algorithm training, which is a
great benefit. The two transradial amputees also reported that CCC reduces the cognitive
load, compared to myoelectric control, when controlling the prosthesis.

3.4 Chapter summary

Albeit negative on the long term, body compensations are often exhibited by prosthesis users
as they allow them to perform a task or correct prosthesis position or motions in an easier and
faster way than with prosthetic control. We thus identify them as accessible error messages, which
indicate that the UL prosthesis position is not the one desired by the user. Instead of trying to
reduce them with decorrelated control schemes, I proposed to use them to close the control loop
at the prosthesis level. Once some compensations for wrist pronosupination and elbow flexion were
identified, the proposed concept was described: while the user takes care of the end-effector task,
the prosthesis regulates the human posture to avoid significant compensatory motions. A first feasi-
bility study for wrist pronosupination control was conducted, both with able-bodied and transradial
amputated participants. In spite of the simple formulation of the control law, the results were very
promising and showed that the coupling created by CCC allows to achieve different tasks with the
prosthesis, without increasing body compensations.
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Chapter 4

Compensations Cancellation Control: general formula-

tion

The previous chapter described how it is proposed to employ body compensations of the user to
close the prosthesis control loop. CCC has then been implemented to control prosthetic wrist prono-
supination. Two evaluations, conducted with able-bodied and amputated participants, confirm the
potential of this concept and call for further exploration of compensations usage for a prosthetic
closed-loop controller. How then to extend CCC to multiple joints control? In this chapter, a
theoretical framework for a unified control of all intermediate prosthetic joints is proposed.

4.1 Model and control law

Human sensory system

Human 
motor 
control

Human body 
dynamics

∫ ∫

∫

Velocity 
controlled 
prosthesis
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xgoal

qh
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.
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xτh
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position error
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∫
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Jx|h

Jx|p

+

+
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x

Js|h
s

.
s

Figure 4.1: Block diagram of CCC. x, xgoal and xestim are the real end-effector position, the
desired one and the one estimated by the human sensory system, respectively. q̇p,c, q̇p, qp are the
command prosthesis joint velocity, the prosthesis joint velocity and position respectively. τh is the
torque of the human joints; q̈h, q̇h, qh are the acceleration, velocity and position of the human joints,
respectively. εp is the prosthesis position error and λ a scalar gain. sref , s and ṡ are the reference
sensor signal, the current sensor signal and its velocity respectively. Jx|h and Jx|p are the jacobian
matrices mapping the human and the prosthesis joint movements into end-effector movements

As explained in Section 3.2, CCC relies on the hypothesis that the user correctly positions
the hand, while the prosthesis is in charge of her/his posture. We could nearly consider that it
is the prosthesis that controls the user and not the opposite: prosthetic joint motions aim
at maintaining the user at the objective posture. The solution exposed in the previous Chapter,
that maps the prosthesis pronosupination to the body compensations, is very specific for the wrist
joint. To generalize CCC for the control of any intermediate prosthetic joint and find an appropriate
mapping between prosthesis motions and body compensations, the human and prosthesis kinematics
are modeled as multi-joints and linear (see Figure 4.1).
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Chapter 4. Compensations Cancellation Control: general formulation

The human kinematic chain and the prosthesis one are serial (similar to Equation 2.1):

ẋ = Jq̇ =
(
Jx|h Jx|p

)(q̇h
q̇p

)
= Jx|hq̇h + Jx|pq̇p (4.1)

where qh and qp are the vectors of human and prosthesis joint positions respectively, Jx|h and Jx|p
the jacobian matrices mapping the human and the prosthesis joint movements into end-effector
movements, and ẋ is a parametrization of the user’s end-effector (subscript e) position/orientation
with respect to a fixed frame (subscript 0). In other words, ẋ is a parametrization of the twist
Ve/0 =

(
ve/0 ωe/0

)
expressed at an arbitrary point E of the end-effector:

ẋ = JparxVe/0 (4.2)

Jparx denoting the parametrization matrix.
Starting from here, I will now detail the three steps of the control: (i) human posture measurement
and analysis, (ii) prosthesis error computation, (iii) generation of a prosthesis motion.

Human posture measurement and analysis
The human posture is measured by a set of sensors, attached to the human body and not on the
prosthesis (the motion of the prosthesis have no direct effects on the measures). Any change of
posture induces a change in the sensor signals s, modelled as:

ṡ = Js|hq̇h (4.3)

The posture analysis allows to detect compensatory movements, which are defined as deviations
from the objective posture. This objective may vary with the context. As human posture is accessed
via sensor signals, the reference is also defined in term of sensors sref ; compensations are detected
each time the error signal εεεs,

εεεs = sref − s (4.4)

is not zero. In other words, the objective of installing a set of sensors on the prosthesis wearer is to
be able of measuring a signal associated with a nominal value corresponding to a non-compensated
posture. We will see in the applications how this assumption can be verified in practice.

Prosthesis error computation
As said above, the set of sensors is voluntary positioned in such a way that ṡ is not directly affected
by q̇p; it may therefore seem impossible to reduce εεεs to zero by controlling the prosthesis movement.
However, a coupling is operated by the subject who wears the prosthesis: if the prosthesis moves,
s/he has to move in reaction in order to keep the hand at a desired x. A movement q̇p of the
prosthesis joints will thus generate a change of posture from the user and then a non null ṡ:

ṡ = Mq̇p (4.5)

where M accounts for the measured human movement generated in order to maintain ẋ = 0,
governed by

Jx|hq̇h + Jx|pq̇p = 0 (4.6)

Obviously, the method for computing M strongly depends on the nature of the signal s. We give
hereafter two examples.

• Direct measurement: the wearer joint configuration is directly accessed: s = qh. Such an
option can be implemented from real time body posture tracking coupled with a skeleton
reconstruction, see e.g. [188] or [189]. In this case, M can be computed from Equation 4.6.
If Jx|h is full rank,

q̇h = −J−1
x|hJx|p︸ ︷︷ ︸
M

q̇p (4.7)
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4.1. Model and control law

If the human kinematics is redundant with nh > 6 DOF, a general solution is

q̇h = −J+
x|hJx|pq̇p + (I − Jx|hJ

+
x|h)ζ (4.8)

with ζ an arbitrary human joint velocity vector and J+
x|h the pseudo-inverse of Jx|h. A possible

option is to assume that the internal human reconfiguration velocity is low, (I−Jx|hJ
+
x|h)ζ ≈ 0

and therefore
q̇h ≈ −J+

x|hJx|p︸ ︷︷ ︸
M

q̇p (4.9)

Finally note that if the human kinematics has nh < 6 DOF, then the parametrization x has
to be chosen in such a way that Jx|h is square and of full rank, to be able to compute M from
Equation 4.7.
In case the wearer posture cannot be directly accessed, it might be possible to model the
relationship between the change of sensor signal and the change of human posture as given
in Equation 4.3. In this case, M = −Js|hJ

+
x|hJx|p.

• Measurement of stump position/orientation: a second example is when s comes from a sensor
that measures the position and orientation of the prosthesis base body (i.e. the human
stump, subscript t). In this case, s is a parametrization of body t position and orientation
and, similarly to Equation 4.2, one has

ṡ = JparsVt/0 (4.10)

with Jpars the parametrization matrix.
We write Equation 4.6 as

Ve/0 = Ve/t + Vt/0 = 0 (4.11)

to get
ṡ = −JparsVe/t = JparsVt/e (4.12)

Considering now the prosthesis backwards, i.e. with the hand as the base body and the stump
as its end-effector, one can straightforwardly obtain its natural jacobian matrix defined by

Ve/t = JN (qp)q̇p (4.13)

We finally obtain
ṡ = JparsJN (qp)︸ ︷︷ ︸

M

q̇p (4.14)

Note that the model of M depends only on the prosthesis kinematics and the parametrization
of the sensor signal.

Generation of a prosthesis motion
The last step consists in generating a joint velocity command from the prosthesis error εεεp as followed:

q̇p,c = λZq0 (εεεp) = λZq0
(
M+εεεs

)
(4.15)

with λ a scalar gain and Zq0 a deadzone function centered around 0 with a width of 2q0. As
observed in Section 3.2, generating a velocity command is much more appropriate than generating
a position command since it avoids a rigid link between prosthesis and human joint positions. To
make CCC operational, three functions or parameters have to be determined: M, the mapping
between the sensor error signal and the prosthesis error; the gain λ, which can impact the stability
of the human-robot system, and the width of the deadzone q0. A great choice of sensors is also
available; practical issues (such as cost, number of sensors, wearability) will obviously matter.
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Chapter 4. Compensations Cancellation Control: general formulation

4.2 Simulation examples

The CCC formulation described above is very general. Before implementing and adapting it to
a real human-and-prosthesis system, let us consider some simulation examples in simple situations:
we will consider robotic systems, with a well-defined kinematics, composed of a distal part controlled
with CCC from the motions of a proximal part. The coupling between robotic parts and the stability
of the entire system will be carefully analyzed. The bandwidth of the proximal part is taken as
2Hz, the one observed for human subjects [190].

4.2.1 Linear 2P

qh qp

X

qr

(a) Illustration of the 2-DOF system.
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(b) Block diagram of the system, as implemented in Simulink,
Matlab Mathworks R©.

Figure 4.2: Linear 2P example: (a) illustration of the system and (b) block diagram.

The first example is a 2-DOF linear system, redundant, composed of two slide links in series
(see Figure 4.2(a)). It has to perform a 1D translation task, with its two DOF qh, the proximal
part, and qp, the distal part (qh and qp notations are conserved to match the ones of the previous
Section). Noting x the coordinate, the kinematics of the system is:

x = qh + qp (4.16)

The aim of the task is to bring x, the end-effector, to a desired position, xd. The controller of qh
is chosen as a second order with a cut-off frequency at 2Hz (transfer function p

1+0.16p+0.0063p2
); qp

is controlled with CCC from qh. The “compensations” of the first joint is any position different
from the reference qr. In this ideal example, qh is not measured with a sensor but is directly and
precisely accessed (s = qh). We thus have Jx|h = Jx|p = Js|h = 1, M = −1 and εp = qh − qr.
This system was implemented in Simulink, Matlab Mathworks R©, following the block diagram of
Figure 4.2(b) with a fixed time step of 0.0001. xd was set to 1, qh and qp are initially set to 0.
On Figure 4.3, an example of x, qh and qp evolution is shown, with λ set to 1 and two different
reference qr. The coupling between qh and qp is obvious: the task is firstly achieved with qh, which
goes back to qr once supplanted by qp. xd is reached after a small overshoot, due to the response
time of qh controller. Note that the behaviour of the system is similar whatever the value of qr.
It could be now of interest to study the influence of λ on the system stability. Intuitively, it can
be anticipated that if λ is too high, qp will move so quickly that qh controller will not manage to
stabilize at qr; if λ is too low, CCC is not beneficial because the task will be mainly achieved with
compensations. The response of the system is thus computed with qr = 0 and λ varying between
0 and 14s−1. Results are displayed Figure 4.4. When λ = 0s−1, there is no coupling, the task is
only performed by qh. The more λ increases, the higher is the overshoot, until the system becomes
completely unstable, which happens for λ > 12s−1. When λ = 12s−1, the system permanently
oscillates around qr; for higher values, it diverges. This confirms that the value of the gain must
be carefully determined for CCC to properly work; in particular, a high gain destabilizes
the coupling.
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Figure 4.4: Stability study of the linear 2P system, depending on the value of the gain λ. qr = 0
and xd = 1.
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Figure 4.5: Model of a reaching task with a planar 3R system. (a) Definition of the parameters.
(b) Illustration of the reaching task, without any compensations. I: initial position. F: final position.
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Chapter 4. Compensations Cancellation Control: general formulation

The second example is a planar 3R; qh1, qh2 are the proximal part and qp is the distal part (see
Figure 4.5(a)). The task is a reaching task in 2D. CCC is implemented to control qp.

With x =

(
x
y

)
the current position of the end-effector, lh1, lh2 and lp the lengths of the three

segments (as indicated Figure 4.5(a)), we have:

x =

(
lh1 cos(qh1) + lh2 cos(qh1 + qh2) + lp cos(qh1 + qh2 + qp)
lh1 sin(qh1) + lh2 sin(qh1 + qh2) + lp sin(qh1 + qh2 + qp)

)
(4.17)

and

ẋ =

(
−lh1 sinh1−lh2 sinh1h2−lp sinh1h2p −lh2 sinh1h2−lp sinh1h2p

lh1 cosh1 +lh2 cosh1h2 +lp cosh1h2p lh2 cosh1h2 +lp cosh1h2p

)(
q̇h1
q̇h2

)
+

(
−lp sin1h2p

lp cosh1h2p

)
q̇p

= Jx|h

(
q̇h1
q̇h2

)
+ Jx|pq̇p

(4.18)
with sinh1 = sin(qh1), sinh1h2 = sin(qh1 +qh2), sinh1h2p = sin(qh1 +qh2 +qp), and similarly for cosine
function.
In this example, we consider joint h2 as functional to perform the task, whereas joint h1 is a
compensatory joint. In other words, h1 is redundant with h2 and p, and shall not be used to
perform the task with an optimal control. Correcting compensatory motions thus means moving
h1 back to its objective value, noted qr.
The error signal is now chosen to give an example of a non-direct access to the exhaustive posture:
we take the displacement of the upper extremity of segment lh1. The error is thus

εs = sref − s = 2lh1 sin(
qr − qh1

2
) (4.19)

In the case considered here, the kinematics of the system is perfectly known, we can precisely assess
M.
Following the approach presented in Section 4.1, we write

ṡ = Js|hq̇h =
(
−lh1 cos( qr−qh12 ) 0

)(q̇h1

q̇h2

)
(4.20)

As the h1-h2 chain is not redundant, Jx|h is square and: M = −Js|hJ
−1
x|hJx|p where

J−1
x|h =

1

det(Jx|h)
×
(

lh2 cosh1h2 +lp cosh1h2p lh2 sinh1h2 +lp sinh1h2p

−lh1 cosh1−lh2 cosh1h2−lp cosh1h2p −lh1 sinh1−lh2 sinh1h2−lp sinh1h2p

)
(4.21)

Jx|p =

(
−lp sinh1h2p

lp cosh1h2p

)
(4.22)

and finally,

q̇p,c = λZq0
(
M−1εs

)
= λZq0

(
−
(
Js|hJ

−1
x|hJx|p

)−1
εs

)
(4.23)

with Js|h, J−1
x|h and Jx|p given by Equations 4.20, 4.21 and 4.22 respectively. In this case, the

deadzone threshold q0 is set to 0.
To test this formulation, this example is implemented in Matlab, Mathworks R©. qp is controlled
with CCC, following the formulation established from Equations 4.20 to 4.23, with qr = 0. qh1 and
qh2 are controlled with standard inverse kinematics, as a non-redundant 2D system, according to

q̇h =

(
˙qh1

˙qh2

)
= J−1

x|hv (4.24)
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4.2. Simulation examples

where v = k(xd − x), with k a gain set to 2 and xd the position of the target to reach.
This CCC formulation is also compared to another scheme where the whole system is controlled
with standard inverse kinematics for a redundant system, with a postural condition on the more
proximal DOF, qh1, according to

q̇ =

 ˙qh1

˙qh2

q̇p

 = J+v + (I3 − J+J)

−γqh1

0
0

 (4.25)

with J the jacobian of the entire system, v = k(xd − x), I3 the 3x3 identity matrix and γ = 5.
This control scheme is to illustrate the achievement of the task with a redundant system, where the
motion of h1 is penalized (compensatory motion).
For the simulation, the values of the length parameters are lh1 = 44, lh2 = 37, lp = 48, the initial
values of the angles are qh1 = π

2 , qh2 = π, qp = π
2 and qr is set to π

2 . The target to reach is

xd =

(
75
44

)
, which is attainable with a negligible qh1 (see Figure 4.5(b)). The time step is 0.01 and

the simulation loop is stopped when the joint velocities fall under a given threshold (set to 0.02
rad.s−1).
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Figure 4.6: Results of CCC applied to planar 3R system. (a) with λ = {0; 0.2; 2; 4}; (b) with
λ = {4; 10; 15}

Figure 4.6 shows the trajectories of qh1, qh2 and qp obtained with the redundant model and with qp
controlled with CCC, with varying gain λ. First thing to notice is that qh2 is very similar, between
CCC and the redundant model, whatever the value of λ. qh1 and qp are coupled in such a way
that the kinematics of the remaining part of the system stays unchanged. Translating to
human application, this is a great advantage since it means that no new motion strategies would
need to be learnt. Second, we see that, when λ = 0s−1, the whole task is performed with qh1;
then, the higher λ, the lower qh1 since it is replaced by qp. Yet, here again, the value of λ has a
great influence on the system stability: for λ ≤ 4s−1, the system is stable; for λ > 4s−1, it starts
oscillating around qr. It confirms the necessity to study more in depth the system stability with λ
to identify the possible range of the gain. A last element to observe is the time required to stabilize
qh1 and qp. With a low value of λ (0.2s−1 in this case), the angular velocities meet the stop criteria
after an increased delay compared to the one obtained with the other values of λ. The global task
(reaching the target) is achieved in a similar timing but h1 and p keep moving until stabilization of
the robot. A too low value for λ indeed requires the robot to wait for qp to reach the position that
allows a non-compensatory posture for h1. There is indeed a trade-off to find between stability and
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Chapter 4. Compensations Cancellation Control: general formulation

velocity. On Figure 4.6, it seems that the best value for λ is around 2s−1, since it allows a response
of the system very close to the redundant model with postural condition on h1.

These two examples illustrate the coupling created by CCC between proximal and distal joints,
as well as the role of λ on the response of the non-“prosthetic” (proximal) joints and on the stabil-
ity of the considered robotic systems. A theoretical stability study has thus been conducted to get
general conditions for an appropriate choice of λ.

4.3 Stability study

This theoretical study was performed by Alexis Poignant, who did an internship in the lab, under
the supervision of Guillaume Morel, Nathanaël Jarrassé and myself.

H(p) ∫
qh

.

qp

.~
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.

x

A

λ
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εp

+

+

s

-

+

xd

+

-

P(p)

Js|h

Jx|h

Jx|p

∫

Figure 4.7: Block diagram of the dual robot system, with the distal part controlled with CCC.
H(p) is the closed-loop transfer function of the proximal part, P(p) is the transfer function of the
distal part, A = M+, Jx|h, Jx|p, Js|h and λ are defined in the equations developped Section 4.1

The general control scheme of CCC (see Figure 3.7) cannot be analyzed with standard tools of
automation, because of the highly non-linear human system and the unknown transfer function
of the human-robot coupling. It is thus proposed to consider, as in previous examples, a robotic
system composed of a proximal robot coupled to a distal one; we have two linear systems, following
the scheme of Figure 4.7.
We note H(p) the closed-loop transfer function of the proximal part (playing the role of human sub-
ject), P(p) the transfer function of the distal part (playing the role of the prosthesis) and A = M+

the mapping matrix between εεεp and εεεs. λ, Jx|h, Jx|p and Js|h are the gain of CCC and the different
jacobian matrices respectively, as defined in Section 4.1. In the first instance, we take P(p) = 1,
assuming that the response time of the distal part is very short compared to the response time
of the proximal part (in the human-prosthesis case considered forward, P indeed represents the
prosthesis motors, controlled in speed with a closed-loop, whose response time is usually very short
compared to human one).
As the block diagram has two inputs, the desired end-effector position/orientation Xd, and the
objective posture defined at sensors level sd, the superposition theorem is used: X

Xd
is first studied

and then X
sd

.
Considering that sd is zero, the open-loop transfer function of the entire system is

[
X

Xd

]
OL

=
H(p)

p
(Jx|h − Jx|pAJs|h

λ

p
) (4.26)
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4.3. Stability study

As a first step, we consider a single-input single-output case, for which there is no redundancy;
Equation 4.8 has only one solution. It follows

A = M−1 = −
(
Js|hJ

−1
x|hJx|p

)−1
(4.27)

and Jx|h = −Jx|pAJs|h (4.28)

Then, the open-loop transfer function becomes[
X

Xd

]
OL

=
H(p)

p
Jx|h

(
1 +

λ

p

)
=

[
X

Xd

]
HOL

p+ λ

p
=

[
X

Xd

]
HOL

F (p, λ)

(4.29)

with
[
X
Xd

]
HOL

= H(p)
p Jx|h the open-loop transfer function of the proximal part (in blue on Figure

4.7), and F (p, λ) = p+λ
p .

For the following, MGh, Mφh and ωc identify the gain margin, the phase margin and the cut-off

pulse of
[
X
Xd

]
HOL

respectively. The proximal part of the robotic system is given the observed

bandwidth of human subjects, with a cut-off frequency, fc = ωc
2π that ranges from 2 to 5 Hz [190]

and thus a cut-off pulse ωc that ranges from 12.6 to 31.4 rad.s−1.

Gain margin

Assuming that the dephasing induced by F is not too high, the total gain margin of
[
X
Xd

]
OL

is

MG = MGh + |F (ωc, λ)|dB (4.30)

As |F (p, λ)| = 0dB for p� λ, a sufficient condition to respect the gain margin is

Stability condition

ωc � λ (4.31)

Phase margin
Assuming that the cut-off pulse of the entire system is close from the one of the proximal part
alone, we have

Mφ = Mφh −Arg (F (ωc, λ)) (4.32)

with a dephasing induced by F of 90 deg when p� λ and 0 deg when p� λ. To avoid a deterio-
ration of the phase margin, it is thus necessary to have ωc � λ. From λ = ωc

10 , a degradation of the
behaviour could be observed.

If we now consider that Xd = 0, the open-loop transfer function is[
X

sd

]
OL

=
λ

p
Jx|pAJs|h

H(p)
p

1 + H(p)
p Jx|h

=
λ

p

H(p)
p Jx|h

1 + H(p)
p Jx|h

=
λ

p

[
X

Xd

]
HCL

(4.33)
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where
[
X
Xd

]
HCL

is the closed-loop transfer function of the proximal part. The gain and phase mar-

gins of
[
X
Xd

]
HCL

are similar to the ones of the open-loop transfer function. From the stability in[
X
Xd

]
, we have λ � ωc so the module is 0dB for ω = λ and the phase margin is -90deg. The gain

margin is high since we have an integrator. The condition found above, ωc � λ, is thus also valid
to ensure the stability of this loop.

This condition can be confronted to the results of the examples proposed in the previous Section.
In the first one (1D translation), the cut-off frequency of the system is fc = 2Hz, which corresponds
to ωc ≈ 12.6rad.s−1. We indeed observed that the system begins to oscillate from λ = 4s−1 and
becomes unstable around λ = 12s−1. The second example (planar 3R) is a first-order system, so it
does not exactly correspond to the theoretical analysis detailed above, but oscillations of the system
is also observed from λ = 4s−1. These results are thus consistent with the theory, which predicts
that the system response is deteriorated when λ is not small enough compared to the cut-off pulse.
However, if λ is too small, the distal part will move slowly and enhance compensations, as seen in
the two examples; a trade-off is thus necessary between stability of the entire system and response
of the distal (“prosthetic”) part.
The analysis performed above relies on many simplifications. The condition on λ yet stays valid
for more complicated cases, such as a multivariate system, imperfect motors command (P(p) 6= 1),
or the addition of a deadzone. The justifications are detailed in Appendix E.

4.4 Chapter summary

Following the proof of concept of Chapter 3, a more theoretical framework was presented, which
generalizes CCC to the control of several prosthetic joints simultaneously. Two simulation examples
were described to apply the general formulation to simple situations. They confirmed the beneficial
role of the coupling induced by CCC, but only when the parameters are correctly tuned. The
stability of the considered systems indeed relied on the good choice of the gain of the integrator λ.
To establish a criterion that guarantees stability, an analysis was performed on a simplified scheme;
this criterion was consistent with the simulation outcomes.
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Chapter 5

Validation of Compensations Cancellation Control on

one prosthetic joint

Part of the work presented in this Chapter has been published in IEEE Transactions on Medical
Robotics and Bionics (Early Access) [191].

A general formulation of CCC and the condition for stability with a simplified robotic system
have been theoretically established in Chapter 4. The results obtained shall now be tested exper-
imentally, with a human-prosthesis system. This validation is all the more important that many
assumptions that may be correct for a robot are not for a human. A validation experiment on one
joint, the elbow, is presented in this chapter: the influence of the parameters on the human-robot
system stability is first analyzed, then followed by the evaluation of prosthetic elbow control with
CCC on different tasks and on a large population. We aim at answer three main questions:

- is the tuning of the controller actually valid for every subject (as suggested by the theoretical
study) or will a personalization be required?

- how natural is the prosthesis manipulation for a naive subject, or more precisely, is a naive
subject able to use a prosthesis equipped with CCC without any explanation on the concept?

- is CCC valid to perform different tasks, as long as the objective posture stays the same?

A more complete validation, on two joints, will be the topic of Chapter 6.

5.1 Material and methods

The validation experiment described in this chapter is composed of three steps: parameters
tuning with one subject, in order to study their overall influence on a human-prosthesis system
behavior; a functional test on three different tasks with able-bodied subjects wearing an emulated
prosthesis and a functional test on one task with a congenital arm amputee. The control law
implemented in the prosthetic elbow case is first introduced, followed by the experimental set-up
common to the three validation steps.

5.1.1 Control law

Applying the general formulation of CCC implies to define the matrix M, i.e. to map prosthesis
motions to sensor signals, which capture the change in user posture. In the specific case of elbow
joint, we can bypass the modelling stage and directly access the prosthesis position error, εp, without
the need to determine M. Indeed, with geometrical considerations, we can get the elbow angle
required to keep the prosthetic hand where the user placed it, without any body compensations.
The error between this value and the current elbow angle can then be computed and used as input
of the prosthesis controller.

It has been observed, in Section 3.1.2, that a loss of elbow mobility is compensated by trunk

59



Chapter 5. Validation of Compensations Cancellation Control on one prosthetic joint

lua lfa lref(t)

w/o compensation w/ compensations

qp,d(t)

qp(t)

Figure 5.1: Anatomical parameters definition for the elbow CCC law

and scapula motions, which can be gathered into acromion motions. Body compensations
are thus identified through the latter. Let us note xAref

the reference position of the acromion,
which corresponds to a non-compensatory posture; xEE(t) the current position of the end-effector
(i.e. the hand), and qp,d ∈ R the desired position of the elbow angle, corresponding to the hand at
xEE(t) and the acromion at xAref

(task achieved in a non-compensatory posture). We first estimate
lref (t), the distance between the acromion position in the reference posture and the current end-
effector position

lref (t) = ||xEE(t)− xAref
|| (5.1)

where ||.|| is the euclidian norm. Given this distance lref (t), and knowing lua and lfa the lengths of
the subject’s upper-arm and forearm (see Figure 5.1), standard inverse kinematics, in the upper-arm
plane, yields:

qp,d(t) = π − acos

(
l2fa + l2ua − lref (t)2

2lualfa

)
(5.2)

Note that this computation requires to measure the user’s limb lengths and to integrate them into
the controller parameters. The prosthesis position error is thus

εp(t) = qp,d(t)− qp(t) (5.3)

with qp(t) the current prosthetic elbow angle, and the velocity of the prosthetic joint is controlled
according to Equation 4.15:

q̇p(t) = λZq0(εp(t)) = λZq0(qp,d(t)− qp(t)) (5.4)

In this 1DOF case, Zq0() is defined by:

∀ε ∈ R, Zq0(ε) =

{
0 if |ε| 6 q0

ε− sign(ε)q0 otherwise

This formulation is equivalent to the one described Section 4.1, for small displacements, where
εp is expressed as a function of εεεs, an error of posture measured by the sensors. Here, εεεs could be
defined as the acromion displacement to take into account both trunk and scapula compensations.
We can write

lref (t) = ||xEE(t)− xAref
|| = ||xEE(t)− xA(t) + xA(t)− xAref

|| (5.5)

where xA(t) is the current position of the acromion.

With xEE(t) =

(
e1

e2

)
, xA(t) =

(
a1

a2

)
and

−−−−−−−→
xAref

xA(t) = −εεεs = −
(
εs,1
εs,2

)
, εs,1 � 1, εs,2 � 1,
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5.1. Material and methods

Equation 5.5 is equivalent to

lref (t)2 = (e1 − a1 − εs,1)2 + (e2 − a2 − εs,2)2

≈ (e1 − a1)2 + (e2 − a2)2 − 2 (εs,1(e1 − a1) + εs,2(e2 − a2))

≈ (l(t))2 − 2 (εs,1(e1 − a1) + εs,2(e2 − a2))

(5.6)

with l(t) = ||xEE(t)− xA(t)||.
Hence,

qp,d(t) ≈ π − acos

(
l2fa + l2ua − l(t)2

2lualfa
+
εs,1(e1 − a1) + εs,2(e2 − a2)

lualfa

)

≈ π − acos

(
l2fa + l2ua − l(t)2

2lualfa

)
+
εs,1(e1 − a1) + εs,2(e2 − a2)

lualfa

√
1−

(
l2fa+l2ua−l(t)2

2lualfa

)2

≈ qp(t) +
εs,1(e1 − a1) + εs,2(e2 − a2)

lualfa

√
1− [cos(qp(t))]

2

≈ qp(t) + Aεεεs

(5.7)

and

εp = Aεεεs (5.8)

with

A = M−1 =
1

lualfa| sin(qp(t))|

(
e1 − a1 0

0 e2 − a2

)
(5.9)

With this CCC formulation applied to the elbow joint, acromion (and thus trunk and
scapula) motions are mapped into one prosthetic DOF motion. Note that the latter does
not depend on individual compensatory motions but on the user’s whole body posture. For instance,
if the arm is in the sagittal plane, a flexion of the trunk or a scapula protraction will lead to an
elbow extension (to straighten up the user), while a trunk lateral rotation will not lead to any elbow
motion; neither elbow flexion nor elbow extension will allow to correct the user’s posture in this
case. However, if the arm is in the frontal plane, a trunk flexion will not lead to any elbow motion
while a trunk lateral rotation will lead to elbow flexion or extension, depending on the rotation
side.

5.1.2 Experimental set-up

The three stages of the validation study (parameters tuning, evaluation with able-bodied and
amputated participants) have some common elements in their protocol, which are described in this
Section. The specific details will be described later on, in the corresponding Sections. All three
steps were carried out in accordance with the recommendations of Université Paris Descartes ethic
committee CERES, which approved the protocols (NIRB: 20163000001072). The participants gave
their informed consent, in accordance with the Declaration of Helsinki.
The first two experiments were performed with able-bodied participants, aged 20-24, without any
previous experience on prosthetic devices. A prosthesis prototype was adapted to imitate the
wearing of a prosthesis. The prototype is a 1-DOF robotic joint (actuated by a 9W Faulhaber
2232U006S, fitted with 1:1000 gear ratio reducer) controlled by a Raspberry Pi 3 c©, through a DC
motor driver running a low level velocity control loop. The maximum angular velocity is limited
to 50 deg.s−1 because of the actuation capacities. The device was fixed on an orthosis, attached
to the participants’ arm (see Figure 5.2(a)). The elbow is not backdriveable so that elbow motions
of the subjects were fully controlled by the prosthesis movements, as for a prosthetic elbow. The
third experiment was performed with a congenital amputee, wearing his own prosthesis which has
a motorized elbow (see Figure 5.2(b))
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Chapter 5. Validation of Compensations Cancellation Control on one prosthetic joint

(a) Emulated elbow prosthesis prototype for
able-bodied subjects

(b) Prosthesis of the
amputated subject

Figure 5.2: Prosthesis prototypes (a) mounted on an able-bodied subject’s arm, in such a way
that his elbow motions are totally governed by the prosthesis; (b) for the amputated subject, for
which only the elbow joint was actuated

During the experiments, subjects were sitting and were asked either to follow a moving target in
their sagittal plane, or to reach fixed targets in 3D space. In order to observe whether they were
compensating, acromion and end-effector positions were recorded with the motion capture system
OptiTrack NaturalPoint Inc. These positions were transmitted in real time to the prosthesis during
the experiment to implement the proposed controller. The movements of the body segments were
also recorded for post-experiment analysis, with clusters placed on the end-effector, forearm, elbow,
upper-arm, right and left acromions and trunk. Two IMU were also placed one on the sternum and
one on the upper-arm, to measure the humerus aperture angle in trunk frame. Post-experiment
analysis was conducted with Matlab Mathworks R© scripts.
At the beginning of the experiment, the reference acromion position – corresponding to the initial
one – was measured while the subjects were sitting with a vertical torso and the upper arm along
their body. No instruction nor any explanation on how CCC works were given to any
subject. They were only told that they had to focus on the achievement of the task (positioning
the tip of the prosthesis) and that the prosthetic device would “move to try helping them”. The
targets to reach and trajectories to follow for the different experiments were materialized with a
WAMR© Arm (Barrett Technology).

5.2 Parameters tuning for human-in-the-loop stability

Section 4.3 shows that the choice of the gain λ is crucial for coupling dynamics and that a
condition to ensure the overall system stability is λ� ωc, with ωc the cut-off pulse of the proximal
part of the system. It is now essential to test this stability condition with a human-prosthesis
system, by determining λ experimentally. The proximal part of the system is now the human user
(with a cut-off frequency fc between 2 and 5 Hz) and the distal part is the prosthesis. The influence
of the deadzone must also be validated in real situation, with user in the loop.

5.2.1 Specific protocol

One able-bodied subject participated in the experiment. The participant had to follow a target
moving along a 20 cm straight line, carried by the WAMR© Arm. When arrived at one extremity of
the line, the WAMR© paused for 2 seconds before leaving again in the opposite direction (see Figure

62



5.2. Parameters tuning for human-in-the-loop stability

20 cm

WAM Arm

Assistive device

Figure 5.3: Set-up of the tuning study. The participant had to follow a target moving along a 20
cm straight line, carried by the WAMR© Arm

5.3). The prosthesis motions were controlled with CCC, with λ ∈ {0.4; 2; 10} [s−1]. For each value
of λ, the task was repeated five times. First, we studied the influence of the gain with no deadzone
(q0 was set to 0 deg). Then, in a second time, we set q0 to 5 and 15 deg to evaluate its impact on
compensatory motions reduction. Here again, five trials were performed for each value of q0.

5.2.2 Results
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(b) Impact of the deadzone threshold on compensatory
motions reduction

Figure 5.4: Mean and confidence interval of elbow angular velocity profile and of acromion dis-
placement (body compensations) during a back and forth of the moving target, with (a) different
λ and (b) different q0. Black dashed lines are examples of one trial for the corresponding λ and q0.
Grey areas are when the target stops before leaving again

Human acromion displacement and elbow velocity are observed in order to evaluate their coupled
dynamic evolution. Figure 5.4(a) shows the mean and confidence interval of the robotic elbow
angular velocity and the acromion displacement (marker of compensations) over the five trials,
for the different values of λ and q0 = 0 deg (no deadzone). When λ = 0.4s−1 (first row, cyan),
the velocity command magnitude is very small, leading to a slow movement of the elbow. As the
prosthesis is not reactive enough, the subject largely mobilizes compensatory movements to perform
the task; mean acromion displacement goes up to 15cm. When λ = 10s−1 (second row, yellow), the
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Chapter 5. Validation of Compensations Cancellation Control on one prosthetic joint

magnitude of the compensatory acromion displacement is drastically reduced (5 cm, at most, for
the mean plot). However, the prosthesis velocity command is jerky and quickly reaches high values,
as illustrated with the black line plot corresponding to an example trial. Notice that the mean
plot smooths this oscillatory behavior as the time-reproducibility between trial is low: the velocity
commutes at different times between trials, leading to large variability. All in one, the movement
of the prosthesis is not mastered, as it oscillates even when the WAM arm is still (gray areas).
With λ = 2s−1 (last row, red), the profile is much gradual and smoother, the confidence interval
is small and the subject can monitor the prosthesis motion. Yet, the subject does not mobilize
large compensations, as the maximal acromion displacement, for the mean plot, is limited to about
7.5 cm. These results thus confirm the outcomes of the theoretical study. Note that λ = 2s−1

was also the gain used in the wrist pronosupination control law in Chapter 3. It corresponds to a
frequency f = λ

2π ≈ 0.32Hz, one order of magnitude smaller than fc, the frequency of the human
hand position controller [190]. As viewed by the human controller, the prosthesis position can thus
be considered as a slowly varying – or quasi-static – disturbance. Following these results, λ is
now set to 2s−1 to have a good trade-off between command stability and prosthesis
response time.
On Figure 5.4(a), we see that, with q0 = 0 deg, the prosthetic device never stops in practice. Indeed,
the subject is never totally still with a perfectly null acromion displacement. This can be seen in
Figure 5.4(a), where the velocity commands hardly stay at zero when the WAM does not move. A
perfectly null deadzone necessarily leads to a permanent (even slow) oscillation of the prosthesis,
which is not desirable. A non-null deadzone has thus to be added so that the device can stop
without requiring the subject to be exactly at the reference position. Yet, a too high threshold will
increase the zero-velocity zone around the reference posture, which may lead to higher acromion
displacement for a same prosthesis motion. Two values of q0 were tested: 5 and 15 deg. Figure
5.4(b) shows that, compared to q0 = 0 deg (first row), q0 = 5 deg (middle row) only increases
the acromion displacement by 3 cm (≈40%) while slightly decreasing the elbow joint velocity, and
without altering the motion dynamics. With q0 = 15 deg (last row), the maximum elbow angular
velocity is similar to the one with q0 = 5 deg (≈ 25 deg.s−1) but with higher acromion displacement
(+5 cm, ≈50%, compared to q0 = 5 deg and +8 cm, ≈100%, compared to q0 = 0 deg). The
motion dynamics is also affected since the temporal evolution of the elbow angular velocity is less
smooth. A deadzone threshold of 5 deg is thus selected. To further support this choice, it
can be noticed that a gap of 5 deg is never considered as uncomfortable in posture assessments (see
[187, 192] for instance).

Impact of parameters tuning

This first step of validation highlights the impact of the two parameters of CCC, λ and
q0, on human-in-the-loop stability and body compensations reduction. To ensure both, we
propose to set λ to 2s−1 and q0 to 5 deg. This tuning, performed with one subject only, is
applied for all participants of the following validation steps, in order to verify that it is not
individual-dependent.

5.3 Evaluation of CCC for elbow joint control

Once the gain and the deadzone threshold are chosen to ensure an appropriate human-robot
coupling, functional tests of CCC, for elbow joint control, can be performed. Two evaluations
were conducted: one with able-bodied participants and one with a congenital amputee participant.
Besides the validation of the individual-independent tuning of the parameters, this
evaluation experiment aims at studying how natural CCC is as well as its potential
versatility. By natural, we mean that a naive subject can master the prosthesis control without any
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specific knowledge on the control scheme; by versatility, we mean that different tasks (trajectories
and/or dynamics) can be performed with CCC without any modification. Indeed, it was criticized
in Section 2.3 that model-based control approaches, especially MCC with joints synergies, were
task-dependent (until now, they have only been developed for fast reaching tasks [145, 146, 151–
154]). To give the user the ability to perform different tasks, a classification layer that chooses
the model to load would be required, increasing algorithm complexity and errors eventuality (see
Section 2.3.2). Since CCC does not rely on a task but on human posture, one can think that a same
implementation can allow the user to achieve several tasks, with different trajectories or different
dynamics. The only condition to fulfill is that the objective posture remains the same.

5.3.1 Specific protocol

WAM Arm

Assistive device

Upper-arm height

90% arm length

(a) Path tracking task

1
2

390% arm length 30 cm

30 cm

(b) Reaching task

Figure 5.5: Tasks for the evaluation of CCC. (a) Path tracking task for able-bodied participants
(left) and congenital amputated participant (right). Dimensions of the rectangle are adjusted to
the subjects’ morphology. Green and blue lines distinguished the two trajectories, rectangle and
diagonal. (b) Reaching task for able-bodied participants. The target positions are defined according
to the subjects’ morphology

Tasks
Ten able-bodied subjects, aged 20-24, and one congenital arm amputee subject participated to the
evaluation experiments. They all performed a path tracking task: they had to follow a material
target carried by the WAMR© Arm, that slowly moved along a rectangular trajectory in their sagittal
plane (see Figure 5.5(a)). The moving target paused briefly at each corner. The dimensions of the
rectangle were adapted to the subjects’ morphology; for the amputated participant, the dimensions
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Chapter 5. Validation of Compensations Cancellation Control on one prosthetic joint

were smaller to be adjusted to the reduced accessible space due to the socket (see Figure 5.5(a), on
the right).
To study the potential versatility of CCC, able-bodied participants were asked to perform another
path tracking task as well as a reaching task. This allows to examine versatility through two
aspects: trajectory of the end-effector and dynamics of the task. The second path track-
ing trajectory was still in the participants’ sagittal plane and passed through the diagonals of the
first trajectory rectangle (see blue arrows on Figure 5.5(a) on the left). The moving target also
paused briefly at each corner. The reaching task was in 3D and consisted in attaining three fixed
targets (without any path or time constraint), whose positions were defined according to subjects’
morphology. All targets are at shoulder height, with target 2 in the middle and target 1 and 3 at
30cm from target 2 (see Figure 5.5(b)). The path tracking tasks were deliberately made slow to
ensure a progressive reconfiguration of the subjects’ posture during the task, while reaching is a
faster movement that calls for a different motor control strategy. Path tracking seems to suit better
to CCC framework but we assume that the latter also allows to correctly perform reaching. For
all three tasks, the initial position was the upper-arm along the trunk and the elbow flexed at 90 deg.

Prosthesis control
Able-bodied participants successively controlled the prosthetic elbow with three modes:

1. natural (mode N), without wearing the device. This was used as a reference;

2. with the elbow joint Locked at 90 deg (mode L), preventing from any movement of the
elbow. This mode was chosen to evaluate the magnitude of compensations when the elbow is
inoperative. This mode was not used during the diagonal path tracking task;

3. CCC, with the law described in Section 5.1.1. q0 was set to 5 deg and λ to 2s−1.

A full session included five trials for rectangular path tracking and reaching, and two trials for
diagonal path tracking ((5 × 2 tasks) × 3 modes + 2 × 1 task × 2 modes = 34 trials in total). For
CCC, subjects could also train ten times on the rectangular path tracking task; the data are not
considered in the presented results. There was no training on the diagonal path tracking and the
reaching tasks, in order to test CCC use on totally new tasks.
The congenital amputee participant successively controlled the elbow joint of his prosthesis with
two modes:

1. myoelectric control (MYO): a conventionnal myoelectric control with two electrodes (one on
the biceps and the other on the triceps) was used to control the elbow flexion/extension.
MYO controls the angular velocity with a trapezoidal profile. The participant was not used
to myoelectric control because he began to wear a prosthesis shortly before the experiment.
He had tested this mode only twice, in a different context, few days before the experiment;

2. CCC, with the law described in Section 5.1.1. q0 was set to 5 deg and λ to 2s−1.

The prosthetic wrist and hand were locked during the whole experiment. The rectangular path
tracking task was repeated five times with each control mode and there was no specific training
with CCC. Tables 5.1 and 5.2 sum up the tasks and the prosthesis control schemes for able-bodied
and amputated participants.

5.3.2 Evaluation with able-bodied subjects

Before any inter-modes comparison, it is worthy to validate CCC behavior on the different
tasks. To analyze human-robot coupling and joint trajectories, let us first consider one example
participant. On Figure 5.6, the end-effector trajectories for both path tracking tasks are presented.
Two significant points can be noticed: the tasks are correctly performed (the end-effector of the
subject follows the moving target quite well) and the control is mastered (the confidence interval is
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Tasks
Rectangular path

tracking
Diagonal path tracking Reaching

Able-bodied
participants

x x x

Amputated participant x

Table 5.1: Tasks performed by the participants of the evaluation experiments

Prosthesis control
Natural Blocked Myoelectric CCC

Able-bodied
participants

x x x

Amputated
participant

x x

Table 5.2: Control modes used by the participants to control the prosthesis
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Figure 5.6: Mean and confidence interval of the end-effector and WAM trajectories, for one
representative subject, when prosthetic elbow is controlled with CCC. (a) Rectangular and (b)
diagonal trajectories. Numbers indicate movement phases
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very small). Regarding motion characteristics, Figure 5.7 shows the mean trajectories of humerus
aperture, elbow flexion angle and acromion displacement for the three tasks; CCC is in yellow.
The expected human-robot coupling is clearly visible, whatever the trajectories or the tasks: the
subject begins to perform each task with compensatory motions (acromion displacement increases),
the prosthetic elbow is activated, which reduces body compensations without stopping the achieve-
ment of the task. In this example, the response of the user-prosthesis system with CCC
is thus faithful to the theoretical prediction.
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Figure 5.7: Mean over trials and confidence interval of shoulder and elbow angles and acromion
displacement, for one subject, for the three control modes. (a) and (b) are the path tracking tasks.
Grey areas and numbers indicate the motion phases (see Figure 5.5(a)). (c) is the reaching task of
the target 1

When comparing CCC with modes N and L, we can first observe that the acromion displacement
induced by CCC is much lower than the one with mode L and very close to the natural one, what-
ever the task achieved (Figure 5.7). As for shoulder motions, the trajectory is similar between the
three modes. This means that the shoulder joint is not compensatory but fully functional and that
its motion is little affected by CCC. This human behavior is similar to the simulated planar 3R
example in Section 4.2. Concerning the elbow joint, we can observe that the angular trajectory
with CCC is also close to the natural one, with continuous variations allowed by the closed-loop.
Yet, a more accurate analysis of the path tracking tasks shows that humerus aperture and elbow
flexion are increased when the subject arrived at the furthest bottom corner of the trajectory (third
and beginning of fourth phases for the rectangular trajectory, second and beginning of third phases
for the diagonal one). We indeed noticed that some subjects (including the example one) tended
to lean towards prosthetic side around this location to have a better vision of tracking error; this
induced an acromion displacement which led to an important elbow extension. This points out the
fact that trunk motions are not always compensatory but can also be functional (e.g., to position
the head); our approach does not yet separate these two situations. As shoulder and elbow motions
are connected to achieve the task, an over-extension of the elbow may be corrected by a higher
shoulder angle to place the end-effector in a desired position. Once our approach will distinguish
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functional and compensatory roles of trunk and scapula, shoulder and elbow motions with CCC shall
be close to natural ones during the entire task. This was actually already observed for the partici-
pants who did not need to lean towards the prosthetic side to improve their vision of tracking error.
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Figure 5.8: Task performance, joint motions and body compensations metrics, for the two path
tracking trajectories. Metrics are averaged over trials and subjects. (a) and (b) show metrics for
the overall task; (c) and (d) show metrics for each movement phase. * indicates p < 0.05

Figures 5.8 and 5.9 complement the example, displaying the mean over trials and subjects of
different metrics that respectively characterize the task performance, the prosthetic and human
joint motions as well as the body compensations (see Appendix D for the individual results of each
subject). Task performance is characterized by the trajectory error (mean distance between the
WAM and the subject’s end-effectors) for the path tracking tasks and by the time of the task for
reaching (final position error was not relevant here since the targets were always reached). Joint
motions are characterized by the ROM of the shoulder angle (humerus aperture) and the ROM
of the elbow flexion angle; body compensations are measured with the maximum acromion dis-
placement. For path tracking tasks, joint motions and body compensations are also assessed with
task-phases dependent metrics: the final shoulder angle, the final elbow flexion angle and the max-
imum displacement of the acromion, computed for each of the four phases (see Figures 5.8(c) and
5.8(d)). Indeed, as the four corners of the trajectories are at different depths and heights from the
subject, joint motion strategies may vary with movement phases, as already observed on Figure
5.7. While we can compare the prosthetic control modes at a glance with global metrics, we may
miss some variations in joint motion strategies. Both global and more accurate metrics are thus
necessary.
Statistical analysis was conducted on the metrics averaged over trials for each mode and subject.
Normality of the data was assessed with Lilliefors test [174]. Then, general linear models were used
for normally distributed data and the nonparametric Friedman test was used for the others [175].
Tests were performed with Statistica c©, Statsoft. Statistics were not performed for diagonal path
tracking, as there were only two trials per mode.
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Figure 5.9: Task performance, joint motions and body compensations metrics, for the reaching
task. Metrics are averaged over trials and subjects. * indicates p < 0.05

Task performance
The tasks are correctly achieved with all three control modes, even with the elbow locked, owing
to human body redundancy. There is no statistical significant difference between the trajectory
errors for path tracking tasks, and the targets were always reached. Yet, it can be noticed that the
time of the reaching task is significantly higher with modes L and CCC than with natural motions
(p < 0.05) while there is no significant difference between both (see Figure 5.9). The slower motion
with L may be due to the large use of trunk motions that compensate for the locked elbow; the
slower motion with CCC is both a limitation of the prosthesis and a limitation of the command.
Indeed, on the one hand, the angular velocity of the prosthesis is limited to 50 deg.s−1, while natural
elbow angular velocity went up to 100 deg.s−1. On the other hand, when CCC-controlled elbow
motion is triggered, the reaching movement, which is very fast, is nearly finished. The activation
delay can be reduced by tuning the deadzone threshold q0 but the main part could not be shortened
because of the integrator in the command, essential to create a smooth angular velocity. CCC thus
allows to achieve multiple tasks, even if it is less appropriate for reaching than path
tracking because of the fast dynamics required. For a more extensive validation, it would
be relevant to study to which extent prosthesis users accept a longer reaching time.

Body compensations
For path tracking, the compensations exhibited with mode L are significantly larger than for the
other modes (p < 0.05), be it for the global motion or for the different phases; with CCC, they are
comparable to natural values (no significant difference with mode N, see Figure 5.8).
For reaching, the acromion displacement is significantly increased with CCC compared to mode
N: as the response time of the prosthesis was too slow compared to the natural speed of reaching,
participants tended to perform the task with body compensations instead of waiting for the pros-
thesis to move. Compared to mode L, compensatory motions are, in average, smaller with CCC but
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this difference is not statistically significant across the ten subjects (see Figure 5.9). CCC thus
reduced body compensations, up to natural body motions for path tracking, a bit less
for reaching.

Prosthetic and human joints motions
For path tracking, the observations made on Figure 5.7 are confirmed. The shoulder angle with
CCC is globally close to the natural one (see Figure 5.8(a) and Figure 5.8(b)) but a phase-dependent
analysis with Figures 5.8(c) and 5.8(d) shows a higher angle when attaining the furthest bottom
target (end of phase 3 for the rectangular trajectory and end of phase 2 for the diagonal one). The
over-extension of the elbow is directly visible with the global ROM (p < 0.05 between CCC and
mode N) while the final angle at each phase allows to refine the analysis: elbow motions induced
by CCC are close to the natural ones except around the identified corner. For the corresponding
movement phases, there is an important variability of shoulder and elbow metrics across subjects,
since they did not all lean over the prosthetic side at the same extent.
Concerning reaching (see Figure 5.9), the shoulder angle is similar between CCC and mode N.
Elbow ROM is also similar between CCC and mode N for the first two targets; it is significantly
lower with CCC for the third one. Note that standard deviations are high, for both N and CCC,
illustrating that reaching motion strategies can vary a lot between subjects.

This first validation experiment, with ten able-bodied participants, confirms the results of Chapter
4 and adds also new elements. CCC is not limited to one task: it works for different trajecto-
ries and different dynamics, maybe with some modifications to tackle the triggering issue observed
with the reaching task. It is also natural, in the sense that subjects quickly mastered prosthesis
control without any knowledge on the controller behavior and with very short training.

5.3.3 Evaluation with an amputated subject

CCC theoretical properties have been validated with ten able-bodied subjects. However, it is
necessary to perform such a validation with final end users, since the reaction of an amputated
person might differ (because of distinct motion strategies or the wear of a real prosthesis, among
other possible reasons).
A second validation experiment was thus conducted with a congenital arm amputee, who realized
the rectangular path tracking task. CCC was here compared to a conventional on/off myoelectric
control, with biceps and triceps contractions controlling flexion and extension of the elbow joint.
Figure 5.10(a) shows the trajectories of humerus aperture, elbow and acromion, averaged over the
5 trials. It can be observed that shoulder motions are indeed a bit different from the ones of able-
bodied subjects. The coupling between acromion and elbow motions is still efficient to control the
prosthetic joint.
When analyzing the same metrics as for able-bodied participants (see Figure 5.10(b)), we see that
the trajectory error is similar between the two control modes, with a very small standard deviation.
The prosthesis user adapted and managed to perform the task whatever the control mode, but the
comfort and easiness of the motion can change. The joint metrics actually differentiate the two
modes. Concerning the shoulder joint, it is not solicited at the same movement phases with MYO
and CCC; this solicitation may depend on the elbow motion. The maximum displacement of the
acromion is much higher with myoelectric control than with CCC, while the ROM of the elbow is
smaller. With the first mode, the participant underused the prosthetic elbow and prefered to use
body compensations to move his hand; this is also visible Figure 5.10(a). As stated at the end
of Section 2.1, when the prosthesis user is not familiar with myoelectric control, s/he
does not intuitively use it because of the cognitive burden induced by the parallel
loop. S/he rather uses body motions, to bring the hand to a desired position. Comparatively,
CCC reduces compensations and allows for an increased use of elbow joint, while the
user focuses only on the task. A fifth metric is analyzed to compare myoelectric control and
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Figure 5.10: Comparison of conventional on/off myoelectric control and CCC for the rectangular
path tracking task, performed by one congenital amputee. (a) Joint trajectories and (b) performance
metrics

CCC: the smoothness of the elbow angular velocity, measured by the spectral arc length [182]. The
smoothness is the sum of the spectral arc lengths computed for each of the four sub-movements
which composed the rectangular trajectory. Figure 5.10(b) -5 shows that motions performed with
CCC are smoother than the ones performed with the on/off myoelectric control. While the closed-
loop character of CCC induces continuous and smooth joint motions, on/off myoelectric is much
more sequential. CCC could have also been compared to proportional myoelectric control, which
allows more continuous motions than on/off, but this scheme is rarely implemented for prosthetic
elbow.

A conclusive evaluation

This experiment, evaluating CCC implementation for one joint, with both able-bodied and
amputated participants, confirms that the user reacts as expected to the human-prosthesis
coupling induced by the closure of the control loop at the device level. The subject can stay
focused on the task while the prosthesis takes care of his/her posture, which allows a natu-
ral control; CCC was indeed mastered by all participants, without any information on the
prosthesis motion law. This validation also shows that CCC is suitable for various tasks: it
is very well adapted for path tracking tasks, whatever the trajectories; it also allows –maybe
with some adjustments– to perform reaching, despite its faster dynamics. This is a valuable
benefit in comparison with pattern recognition-based ASC and MCC. Even if body compen-
sations are input of the controller, compensatory motions are reduced with CCC compared
to a fully-locked elbow joint but also compared to conventional myoelectric control. They are
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not completely inexistent either according to the general paradox in control theory: the error
signal shall be minimized; yet, if it was always null, the controller would not be of any help.
The evaluation with able-bodied participants still shows that trunk and scapula motions are
very close to natural ones for slow and continuous motions (like path tracking).
Another noteworthy advantage of CCC now becomes perceptible: the individual-
independence of the parameters. This is highlighted by the fact that the exact same law,
with the same two parameters λ and q0, has been used for every participants, able-bodied
and amputated, and for the three tasks of the experiment. Even if a finer tuning around
the values found in Section 5.2 could be performed, it seems that there is no critical need to
train any algorithm or to personalize a set of parameters.

5.4 Chapter summary

The general formulation of CCC, presented in Section 4.1, has been implemented in this chapter
for the control of an elbow prosthetic joint. A human-in-the-loop experimental validation has been
realized with able-bodied subjects wearing an emulated prosthesis and an amputated subject wear-
ing his own prosthesis. The stability condition on the gain λ found for a coupled robotic system
in Section 4.3 has been tested on a human-prosthesis system, and the deadzone threshold impact
on compensations reduction has been analyzed with one able-bodied subject. An evaluation study
has then been conducted both on able-bodied and amputated subjects, to study the individual-
dependence of the parameters, the natural character (ease of discovery without any knowledge on
the control scheme) and the versatility of CCC. It has been confirmed that the same set of parame-
ters suits to all participants, that the latter managed to use CCC without any explanation and for
tasks with different trajectories and dynamics.
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Chapter 6

A simultaneous control of two prosthetic joints: experi-

mental validation

In the previous Chapter, CCC has been validated for the control of one prosthetic joint, the
elbow. Its general formulation, developed in Section 4.1, is yet not limited to one DOF and can be
adapted to as many DOF as the device has.
The experiment presented in this Chapter aims at validating the use of CCC with two DOF,
extending CCC study to more amputated participants 1 and assessing the cognitive load it induces.

6.1 Materials and Methods

Following CCC validation on wrist and elbow joints distincly, it is now relevant to test its use
to control two prosthetic joints on a same device. As UL prostheses for transhumeral amputees
are mainly composed of hand, wrist pronosupination and elbow flexion, we decided to apply CCC
to control the last two DOF (we remind that CCC concept is not valid for grasping control, since
this motion cannot be compensated by any other proximal joint). The experiment performed for
that purpose focuses on the feasibility, on the potential reduction of the induced cognitive load,
compared to a traditional open-loop Auxiliary Signal Control (ASC), and on the participation of
final end users in the validation.

6.1.1 Control law

As in Chapter 5, the general formulation of CCC must be adapted to the case considered here:
a prosthesis with two DOF, elbow flexion/extension and wrist pronosupination. We decided not to
merely combine the 1-DOF control laws of Section 3.3 (wrist) and Chapter 5 (elbow), in order to
get a single unified formulation for both joints.
To implement the control law, we consider the case where the sensor signal s is the position and/or
the orientation of the stump, which was tracked through acromion. As prosthetic joints (wrist and
elbow) are revolute, we decided to work with orientation only. It allows to work in 2D and thus
have a square natural prosthetic jacobian matrix JN , as explained below.

Prosthetic arm model and simplification of the jacobian expression
Figure 6.1 shows the 2-DOF prosthetic arm model considered in this Chapter. θ1 is wrist prono-
supination (θ1 > 0 is pronation) and θ2 is elbow flexion/extension (θ2 > 0 is flexion). The different
frames are defined as followed:

• frame 0 (attached to the palm): z0 is the forearm axis, y0 is perpendicular to the plane of
the hand, pointing left and x0 is the cross-product of y0 and z0;

• frame 1 (attached to the forearm): y1 = z0, axis of rotation of the wrist pronosupination,
z1 = −y0 and x1 = x0 when there is no wrist rotation (θ1 = 0 deg). The rotation matrix

1Due to Covid-19 restraints, several scheduled experiments have been canceled. As it is, results from only one
subject are presented here but we hope to be able to add extra results prior to the defense.
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Figure 6.1: 2-DOF prosthesis model

from frame 0 to frame 1 is:

R0→1 =

cos(θ1) sin(θ1) 0
0 0 1

sin(θ1) − cos(θ1) 0

 (6.1)

• frame 2 (attached to the upper arm): z2 = z1, axis of rotation of the elbow, y2 is the upper-
arm axis (y2 = y1 when θ2 = 0 deg) and x2 is the cross-product of y2 and z2 (x2 = x1 when
θ2 = 0 deg). The rotation matrix from frame 1 to frame 2 is:

R1→2 =

cos(θ2) − sin(θ2) 0
sin(θ2) cos(θ2) 0

0 0 1

 (6.2)

As only the orientation part is considered, the natural prosthetic jacobian matrix is:

JN =
(
z0 z1

)
∈ R3×2 (6.3)

with z0 and z1 expressed in frame 0. Assuming that the sensor signal is a direct measure of the
stump orientation (Jpars = I3), the prosthesis error εεεp is then given by:

εεεp = M+εεεs =
(
z0 z1

)+
εεεs (6.4)

with εεεs, the sensor error signal, in R3.
An equivalent and simpler solution can be considered by projecting εεεs in the 2D-base defined by
the jacobian vectors: (z0, z1). In this case, the projected error signal εεε

′
s is in R2 and JN = I2

the identity matrix, in R2×2. The pseudo-inverse of JN becomes the inverse, namely the identity
matrix.
The velocity commands of the prosthetic joints were the ones described Equation 4.15:

q̇p,c = λZq0 (εεεp) = λZq0

(
εεε
′
s

)
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6.1. Materials and Methods

6.1.2 Experimental set-up

One congenital amputee participated to this experiment, that was performed in accordance with
the recommendations of Université Paris Descartes ethic committee CERES, which approved the
protocol (NIRB: 20163000001072). The participant gave his informed consent, in accordance with
the Declaration of Helsinki. This participant does not daily wear a prosthesis but has already tested
myoelectric control; he trained for the Cybathlon, during which he used an array of six electrodes
to control his three prosthetic DOF (hand, wrist and elbow) with different muscles pairs. Here,
we reproduced the generic two electrodes (biceps and triceps) set-up used in arm amputees. He
had also tested CCC for elbow joint control before the present experiment and knew the general
principle of CCC.

Task
CCC was tested for the control of wrist pronosupination and elbow flexion/extension on the Refined
Rolyan Clothespin test [184, 185], as described in Section 3.3.3. The protocol was slightly modified
to adjust to the restrained reachable space of transhumeral amputated people: instead of moving
three clothespins from horizontal to vertical bars (and vice-versa), the participant was asked to
move only two (see Figure 6.2).

Vertical
clothespin
positions

Horizontal
clothespin
positions

Push
buttons for

hand
control

Horizontal
clothespin
positions

(a) Adapted Refined Rolyan
Clothespin test, with remote hand

control

OptiTrack
clusters required

for the control
law

OptiTrack clusters
and IMU for post-

experiment analysis

OptiTrack 
clusters required 

for the control 
law

OptiTrack clusters 
and IMU for post-

experiment analysis

(b) Sensors for control and
post-experiment analysis

Figure 6.2: Experimental set-up of the Refined Rolyan Clothespin test adapted to transhumeral
amputated people. See also Figure 3.17 for a better visibility of pin locations

Prosthesis control
The prosthetic intermediate joints (wrist and elbow) were successively controlled by a conventional
on/off myoelectric control, using the contraction of the biceps and triceps as inputs (MYO, see
Section 2.1), and by CCC. MYO was implemented with a trapezoidal velocity profile for each joint;
co-contraction was required to switch from the wrist control to the elbow one and vice-versa. As
explained just below, the hand was not included in the myoelectric sequence, contrary to what
it would be in a real life scenario. CCC law was the one described in the previous Section. To
homogenize wrist and elbow velocity during the task, λ was different for the two joints: it was set
to 4s−1 for the wrist and to 2s−1 for the elbow, which still fulfills the stability condition given in

Section 4.3. The deadzone threshold vector q0 was

(
5
5

)
deg.

The control of the prosthetic hand was chosen to be the same for the two control modes. Like
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Chapter 6. A simultaneous control of two prosthetic joints: experimental validation

most of UL prostheses functional assessments, the Refined Rolyan Clothespin test involves hand
grasping. Yet, as the evaluation of this function is out of purpose here, it was decided to set it
apart, with a simplified control: the fingers of the polydigital hand (Quantum from Touch Bionics
Ossur) were preliminarily positioned in pinch and the closing/opening of the hand was controlled
with two push-buttons hold in the contralateral hand of the participant. Functional assessment
thus focused on wrist and elbow mobility only and was not biased by the difficulty of myoelectric
grasping. This was particularly helpful for MYO, for which the usual 3-DOF control is complex
(see Section 2.1): adding a third DOF in the myoelectric sequence indeed increases the number of
co-contractions and thus muscle fatigue and mental burden.
The Refined Rolyan Clothespin test was performed six times with both modes; MYO and CCC
were alternated to avoid any effect of task learning with one of the two modes.

Cognitive load
The cognitive load was evaluated with both objective and subjective means. The objective measure
was a double task, performed in parallel to the Rolyan test: participant was asked to perform serial
3 or 7 subtraction [193]. The serial 3 (resp. 7) subtraction consists in substracting from a random
number by 3 (resp. 7); the outcome is the number of errors produced and the number of subtrac-
tions performed. Serial 3 subtraction was performed in parallel of the Rolyan during the fourth and
fifth trials of each control mode; serial 7 subtraction during the last trial. Subjective measure was
the Raw-TLX score [194, 195], in which the participant rates six categories (mental, physical and
temporal demands, frustration, effort and performance, see Appendix F) after completing the task;
the final score is the sum of the six sub-ratings. Each control mode is given a score and the smaller
the score, the less demanding the control mode. Table 6.1 provides an overview of the entire set-up.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 After

Main Task (Rolyan)
CCC x x x x x x
MYO x x x x x x

Double task
Serial 3 subtraction x x x x
Serial 7 subtraction x x

Raw-TLX x

Table 6.1: Summary of the experimental set-up

Implementation of CCC

The sensor error signal projected into (z0,z1) base, εεε
′
s, was defined as the rotation of the hip-

acromion vector around z0 and z1, obtained as follows.
Two OptiTrack clusters were placed, one on the hip, the other on the acromion, to extract the

spatial coordinates of the hip-acromion vector. Denoting
−−−→
H0A0 and

−−→
HA the (normalized) initial

and current hip-acromion vector respectively, in the global laboratory frame, we have the successive
computation steps:

t = acos(
−−−→
H0A0.

−−→
HA) (6.5)

u = Rlab→i

−−−→
H0A0 ×

−−→
HA

||
−−−→
H0A0 ×

−−→
HA||

(6.6)

qi =
(
qi1 qi2 qi3 qi4

)
=
(
cos( t2) sin( t2)uxi sin( t2)uyi sin( t2)uzi

)
, i ∈ {0; 1} (6.7)

Ri =

1− 2((qi3)2 + (qi4)2) 2(qi2q
i
3 − qi1qi4) 2(qi2q

i
4 + qi1q

i
3)

2(qi2q
i
3 + qi1q

i
4) 1− 2((qi2)2 + (qi4)2) 2(qi3q

i
4 − qi1qi2)

2(qi2q
i
4 − qi1qi3) 2(qi3q

i
4 + qi1q

i
2) 1− 2((qi2)2 + (qi3)2)

 , i ∈ {0; 1} (6.8)

εεε
′
s =

(
atan2(R0(1, 2), R0(1, 1))
atan2(R1(1, 2), R1(1, 1))

)
(6.9)
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6.2. Results and discussion

where t is the angle between the initial and the current hip-acromion vector, u =
(
uxi uyi uzi

)T
the rotation vector expressed in frame i ∈ {0; 1}, qi and Ri the corresponding quaternion and
rotation matrix. Rlab→i is the rotation matrix from the global laboratory frame to frame i of the
prosthetic arm.
Rlab→0 was obtained from the quaternion of an OptiTrack cluster located on the prosthetic hand
and Rlab→1 = R0→1Rlab→0 (with R0→1 defined in Equation 6.1) was computed at each time step
with θ1 given by the prosthetic wrist encoder. OptiTrack data (hip and acromion coordinates
and hand quaternion) were sent in real time to the prosthesis and processed by a Rasperry Pi
3 c©. The OptiTrack system as well as an IMU on the trunk were also used to measure motions of
body segments for post-experiment analysis (see Figure 6.2(b)), that were performed with Matlab
Mathworks R© scripts.
εεε
′
s as defined above is a parametrization of the acromion orientation for which it is an approximation

to consider that JN is the identity matrix. It was adopted for practical reasons of implementation
but it would have been more exact to consider the rotation of a rigid body attached to the acromion.
It has been checked on Matlab that the prosthesis command was not significantly different with
one or the other.

6.2 Results and discussion

The same assessment framework as in previous chapters is considered: task achievement, pros-
thetic joint motions and body compensations are analyzed. The double task outcome and the
Raw-TLX score completed the overview with cognitive load evaluation. No statistical study was
conducted as results come from one subject only.
As in Section 3.3.3, upwards and downwards motions are disassociated for each metric. One down-
wards trial with CCC and one with MYO were removed, as prosthetic wrist motions were totally
different from the other trials, due to unintended upper pin slippage within the fingers of the
prosthetic hand.

6.2.1 Task performance

The task performance is assessed with the duration of the task. Figure 6.3 shows the mean
and standard deviation of this metric over all trials (6 for upwards motions and 5 for downwards
motions), for the two control modes. The average time is higher than the ones reported in [185] but
comparable to those of S2 in Section 3.3.3. It is clear that there is no difference between CCC
and MYO, both control modes allow completing the task with similar performance.
This metric does not allow to discriminate CCC and MYO here and nothing can be concluded on
control modes efficiency without analyzing prosthetic joint motions and body compensations.
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Figure 6.3: Time of the task for the Refined Rolyan Clothespin test adapted for transhumeral
amputees, averaged over all trials performed by the participant
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Chapter 6. A simultaneous control of two prosthetic joints: experimental validation

6.2.2 Prosthetic joint

In this experiment, both prosthetic wrist and elbow were active; many points can be raised on
the strategy developed by the participant with CCC and MYO, be it for individual joint motions
or for simultaneous prosthetic joint or prosthetic-and-human joint activation.
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Figure 6.4: Prosthetic wrist motions, with CCC and MYO. (a) Angular trajectory, normalized in
time and averaged over trials. (b) Mean over trials and standard deviation of wrist ROM

Figure 6.4 shows metrics for wrist pronosupination: the angular trajectory (Figure 6.4(a)), nor-
malized in time and averaged over all trials, with the corresponding confidence interval (CI) and
the ROM (Figure 6.4(b)). On Figure 6.4(a), wrist rotations corresponding to clothespin reorienta-
tions from the horizontal to the vertical bar (and vice-versa) are easily identifiable. We can notice
that the timing of motion variations is similar between CCC and MYO: the wrist strategy to
perform the Rolyan Clothespin test is not altered with one control mode compared
to the other. Moreover, the CI is small (maximum 30 deg while the ROM is more than 100 deg
for upwards motions and maximum 23 deg while the ROM is more than 70 deg for downwards
motions), meaning that the wrist angular trajectory has a good repeatability between trials. The
mean trajectory yet shows some differences in amplitude between control modes. For upwards
motions, pronation (negative values) is higher for the second clothespin with CCC, which leads to
a higher global ROM (see Figure 6.4(b)). For downwards motions, pronation is higher with MYO
for the first clothespin and with CCC for the second one, giving a global ROM higher with CCC.
This still did not affect the realization of the task; it could be a consequence of the way the subject
took the clothespin in the hand (which is not invariant).

Elbow flexion/extension
While prosthetic wrist motions do not really discriminate CCC and MYO, motions of the prosthetic
elbow make the difference. Indeed, with MYO, the participant used the elbow joint during the first
trial only; then, he kept the elbow still (see Figure 6.5(a)). This confirms that the participant
tended to minimize the global effort made for MYO and avoid co-contractions whenever possible.
Even when used, the elbow joint with MYO has a minimalist motion. With CCC, it was activated
at each trial since no additional effort was required. Moreover, the angular trajectory is repeatable
between trials (the CI is less than 20 deg). Figure 6.5(b) supports this observation. Elbow is thus
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Figure 6.5: Prosthetic elbow motions, with CCC and MYO. (a) Angular trajectory, normalized
in time and averaged over trials. For MYO, the first trial –in light green– was not included to
compute the mean, as it was the only time the participant used the prosthetic elbow. (b) Mean
over trials and standard deviation of ROM. For MYO, the first trial –in light green– is separated
from the others.

less solicited with MYO, to minimize muscular fatigue. The absence of voluntary switching
between prosthetic joints with CCC allows the use of multiple prosthetic joints while
the user tends to only move the most helpful with MYO.

Simultaneous activation

A possible significant advantage of CCC is the simultaneous activation of several prosthetic DOF
within a same control law, when the sequential pattern of prosthesis movements with conventional
myoelectric control is often criticized [7, 15]. It thus seems relevant to analyze whether wrist and
elbow were activated together with CCC for this task. Figure 6.6(a) shows the time during which
both wrist and elbow were activated (joints were considered as active when their angular velocity
was higher than 3 deg.s−1), expressed in percentage of the total time of the task, and averaged over
trials. While it is zero for MYO, due to the intrinsic sequential nature of this control, it goes up
to 24% and 13% for CCC, for upwards and downwards motions resp. This value has no specific
significance since it depends on the task but it confirms that CCC eliminates the sequential
pattern of intermediate prosthetic joint motions and allows coordination.
It is also of interest to look at a similar simultaneity metric for prosthetic hand and wrist motions.
CCC does not directly allow for hand motions – since the latter cannot be compensated by any
other joints – but it discharges myoelectric control which is now dedicated to the hand. For the
experiment considered here, we recall that a pair of push-buttons supplanted myoelectric control
of the hand, to avoid being biased by myoelectric grasping for the task assessment. The prosthetic
hand is thus considered as activated when one push-button is pressed (wrist activation is still when
the angular velocity is higher than 3 deg.s−1). Figure 6.6(b) shows that the time of simultaneous
hand-wrist activation is not null for CCC (9 and 8 % of task time for upwards and downwards
motions resp.); it is nearly zero with MYO. We observed that the simultaneous activation occured
when releasing clothespins; the participant anticipated and began to open the hand before the wrist
stopped. Even if simultaneous hand-wrist activation was possible with both MYO and CCC due to
remote hand control with push-buttons, the participant only made use of it with the second. My-
oelectric control actually requires the user to focus on the individual joint s/he is moving whereas
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Chapter 6. A simultaneous control of two prosthetic joints: experimental validation

CCC is built to allow prosthesis user to focus on the end-effector, which eases coordinated hand and
wrist motions. In addition to the simultaneous activation of the prosthetic intermediate
joints, CCC thus seems to enable grasping while moving the end-effector.
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Figure 6.6: Simultaneous activation of arm joints (human and/or prosthetic), in % of total task
time. Mean and standard deviation over trials. (a) Prosthetic wrist and elbow. (b) Prosthetic hand
and wrist. (c) Prosthetic elbow and human shoulder. For MYO, the first trial –the only one where
the elbow was used– is represented in light green, while the other are in deep green

Simultaneity is not only important between prosthetic joints but also between prosthetic and hu-
man joints. Indeed, transhumeral myoelectric users often struggle to move the prosthetic arm in
coordination with their residual limb, which leads to a global motion in two steps: (i) prosthesis
motion followed by (ii) human motion [126], which is inefficient. The natural coordination between
joints is missing. The same simultaneity metric as for prosthetic joints is considered, but between
prosthetic elbow and human shoulder (see Figure 6.6(c)). For MYO, it is divided into the first
trial, in light green, for which the elbow was activated and the four other trial, in deep green, for
which the elbow was kept still. For these four last trials, the simultaneity metric is obviously zero,
as there was no motion of the elbow. For the MYO trial using the elbow joint, we can observe that
the time of simultaneous activation between human shoulder and prosthetic elbow is much smaller
than the mean over trials with CCC (1.7% vs 14.6% for upwards motions and 8.1% vs 20.9% for
downwards motions). This suggests that it is easier to recover coordination between human
and prosthetic joints with CCC than with MYO.

Besides the control of two prosthetic joints with the same input (the acromion orientation change),
CCC thus allows simultaneity between prosthetic joints and between prosthetic and human joints.
It recreates coordinations that were missing, which tends to give a more natural aspect to the
prosthesis and its user’s motions.
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6.2.3 Body compensations

Due to the use of body compensatory motions as controller input, the validation of CCC is
not exhaustive without the analysis of the compensations of the participant. As we do not have a
natural reference here, CCC upper body motions are compared to the one exhibited with MYO, as
in Sections 3.3.3 and 5.3.3.

20

15

10

5

0

25

30

35

40

45

R
O

M
 (

d
e
g

)

Myoelectric
CCC

DownwardsUpwards

Flexion

DownwardsUpwards

Rotation Lateral tilt

DownwardsUpwards

(a) ROM of trunk angles

Trunk flexion
Trunk rotation
Trunk lateral tilt

Upwards Downwards

More compensations 
with CCC

More compensations 
with myoelectric

-10

-5

0

5

(d
e
g

)

-15

-20

(b) δ for trunk angles

Figure 6.7: Trunk motions analyzed with (a) the mean of ROM and (b) δ between MYO and
CCC

As shoulder is fully functional for the Refined Rolyan Clothespin Test, the only compensatory
joint considered here is the trunk (see Figure 6.7). Figure 6.7(a) shows the mean and standard
deviation of the ROM of the three trunk angles (flexion, rotation and lateral bending); Fig-
ure 6.7(b) shows the metric δ, defined in Section 3.3.3, of these angles. As a reminder, δ =
max(ROMmyo)−max(ROMCCC). There is no clear difference for trunk flexion and lateral bending
(δ is less than 5 deg for both upwards and downwards motions), neither for trunk rotation for down-
wards motions. Yet, there is much more rotation with CCC for upwards motions (δ = −19 deg). For
the Rolyan Clothespin test, rotation is actually not a body compensation since it is not redundant
with any prosthetic DOF. It was increased with CCC because of the motor strategy adopted by
the participant, which differed with the one adopted with MYO.
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Figure 6.8: Acromion motions. Mean and standard deviation of marker displacement and ROM
of angles around z0 and z1 axes

As trunk motions are very often simultaneous, studying separately the three anatomical angles
is incomplete. To complete the analysis, Figure 6.8 shows some metrics related to the acromion.
It captures all trunk motions as well as those of the scapula, which are also exhibited in upper
body compensatory motions. That is why its orientation change was chosen to be the controller
input. Acromion motion is studied through the displacement of the OptiTrack marker from initial
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to current position in hip frame (not to take into account the marker displacement due to potential
feet adjustement) and the ROM of orientation changes around z0 and z1 axes. We see that there
is no clear difference between MYO and CCC for the displacement. For the angle around z0 axis,
responsible for wrist pronosupination, the ROM with CCC is 10 deg and 7 deg higher than the
ROM with MYO, for upwards and downwards motions resp. This could be due to MYO settings
of the participant which allowed to quickly reach high wrist velocity compared to CCC. To be as
fast with MYO as with CCC, the participant thus compensated more with the latter. This might
be fixed by increasing the gain λ for CCC. For the angle around z1 axis, responsible for elbow
flexion/extension, there is no difference for upwards motions between the two control modes; for
downwards motions, the ROM is higher with MYO. This can be explained by the minimalist use of
the elbow joint with this control mode, which was then compensated by upper body motions. This
is less visible for upwards motions since elbow was less requested. It can finally be noticed that the
compensations used as controller input were good candidates since they were naturally exhibited
with MYO and prefered to prosthetic elbow motion.
Body compensations are thus not significantly enhanced with CCC, compared to MYO.
Controlling a 2-DOF prosthesis with CCC is not worst than the conventional control approach. Yet,
even if trunk angles stayed in an acceptable range to prevent musculoskeletal disorders [187], a com-
parison with natural motions would be of interest.

6.2.4 Cognitive load

By closing the control loop at the prosthesis level and using motions naturally exhibited by
the user – rather than requesting the generation of an independent auxiliary signal – CCC may
reduce the cognitive load. To assess this claim, the participant was asked to perform a double task
in parallel to the Rolyan during the three last trials of each control mode. Be it with serial 3 or
serial 7 subtractions, no major difference was observed between the control modes (see Table 6.2).
This was completed by a Raw-TLX2; the participant’s sub-ratings and the corresponding overall
workload, given in Table 6.3, do not clearly discriminate MYO and CCC either.

Trial 4 (serial 3) Trial 5 (serial 3) Trial 6 (serial 7)

CCC 18 17 and 1 error 10

MYO 18 15 12

Table 6.2: Double task assessment: the score is the number of subtractions performed

Mental
Demand

Physical
Demand

Temporal
Demand

Nonsuccess Effort Frustration Overall
Workload

CCC 10% 20% 20% 10% 20% 10% 15%

MYO 15% 5% 10% 5% 10% 5% 8%

Table 6.3: Raw-TLX: sub-ratings and overall workload (mean of the six sub-ratings)

No decrease of cognitive load with CCC is measured. Yet, the participant used only one prosthetic
DOF with MYO (the wrist), avoiding co-contractions, which decreases the mental demand. We
can assume that, if the subject was forced to use both prosthetic joints with MYO, the cognitive
load of the task would increase. It would be even higher with the addition of the hand, third DOF
in the myoelectric sequence, which would be the case in real life. CCC and MYO are thus
as demanding for the Refined Rolyan Clothespin Test considered here. MYO was
used to control one prosthetic DOF only, which is acknowledged not to require special

2I am not aware of similar use of Raw-TLX for myoelectric prostheses and thus cannot compare with other ratings.
This is yet not so relevant since we are only interested in the subjective comparison of MYO and CCC.
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attentiveness [77, 79, 80]; more DOF were controlled with CCC but without increasing
the cognitive load. This is certified by the small Raw-TLX score.

A low demanding control for simultaneous prosthetic joint motions

The results of this experiment on 2-DOF control with CCC are rich: the task is well per-
formed, with a simultaneous activation of the prosthetic joints, a restored human-prosthesis
coordination, and without increased body compensations. The concept of CCC, validated in
the previous chapter with one DOF, can thus be extended to two DOF. The cognitive load
induced by CCC has now been assessed: it is as low as the one required to control one DOF
with myoelectric control for an experienced user.
When completing the same Refined Rolyan Clothespin Test with a conventional myoelectric
control, the prosthesis mobility was used at a minimum: only the most useful joint, the
wrist, was moved. By allowing simultaneous wrist and elbow motions without more effort,
CCC restores a better upper arm mobility. While elbow joint with myoelectric prostheses is
usually moved upstream to modify the overall arm posture (lift or lower down forearm) and
then locked, it recovers its genuine role and actually participate to arm motions with CCC.
We also noticed that, with myoelectric control, the same body compensations as considered
for CCC controller input were prefered to prosthetic elbow motions, which confirms that
these compensatory motions were good candidates for our controller.
All these trends were obtained for one subject only; more participants are expected to con-
firm them. Next subjects will be fully naive, contrary to the first participant, to verify in
depth the easy-learning character of CCC with 2-DOF.
As it is scalable, CCC could potentially handle n DOF (n > 2) simultaneously, which is hardly
achievable with myoelectric signals. Simultaneous prosthetic motions are indeed impossible
with conventional myoelectric control and their number is quickly limited with pattern recog-
nition (see Section 2.1.2). Moreover, while it is commonly admitted that adding more DOF
increases the control complexity and thus the induced cognitive load with myoelectric con-
trols [66, 77, 80], it does not seem to be the case with CCC. The latter could thus be more
appropriate for the upcoming UL prostheses, biomimetic and with more than two DOF.
Note that, in the Refined Rolyan Clothespin test set-up, wrist flexion is undoubtedly re-
quired when performing the task with a natural arm. As this DOF is not provided on the
prosthesis, participants may compensate for this lack. It could be of interest to study the
impact of these compensations on the good functioning of CCC.

6.3 Chapter summary

In this Chapter, CCC was tested to control two prosthetic joints, the wrist and the elbow, on
the Refined Rolyan Clothespin Test. Preliminary results obtained with one participant validate
that the concept proposed in this PhD indeed allows a simultaneous control of two DOF, without
any specific training, and with a low cognitive load. The addition of DOF does not increase the
control algorithm complexity and does not seem to increase the difficulty for the user, contrary to
ASC. This still has to be supported with more participants.
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Chapter 7

Perspective

7.1 Conclusion

7.1.1 Summary

UL prosthetics faces various challenges to give back autonomy to amputated people. Cosmetic,
body-powered and motorized devices coexist to meet the different users’ needs. Particularly ad-
dressing mobility, motorized prostheses have nowadays a well advanced mechatronics, with more
and more available DOF. Their overall benefit is yet still discussed because of their high price
compared to the limited functions to which everyday users really access. As exposed in Chapter
1, important issues such as socket, sensory feedback and control remain. The work presented here
has focused on the last one, prostheses control.
The numerous existing control approaches all present significant drawbacks, that prevent them to
be solidly accepted among the UL amputees population. A broad overview as well as an analysis
of their control schemes were drown up in Chapter 2. The most common type, named Auxiliary
Signal Control in this PhD manuscript, asks the user to generate an auxiliary signal, independent
from healthy arm motions, that is directly connected to prosthesis joint motions. This creates a
double task for the user: controlling healthy body motions and controlling prosthetic motions. To
unburden the user, a partial automation of prosthetic joints can be proposed but this is still in the
early stages. Motion Completion Control approaches propose to infer the device motions from the
healthy arm motions of the user, through joint synergy models. The user is thus only in charge of
one task: controlling his/her body, the prosthesis then follows. Because synergies are not exactly
similar between subjects, a personalization of the models shall be required. The versatility is also
limited since synergies are task-dependent: a distinct model must then be built for each task, which
complexifies the algorithm and weakens its robustness. Even if the adopted approach differs, both
Motion Completion Control and Auxiliary Signal Control are open-loop at the prosthesis level: once
the prosthetic motion is performed, there is no examination to check whether it corresponded to
the user’s intent. The only way to detect errors is through the user, who has to send a new signal
or trigger a new synergetic motion if a correction is needed. As control algorithms and synergy
models are not perfectly accurate, this requires a permanent and high attention from the user for
each motion to be performed. The aim of my work was to build a new prosthetic control scheme,
that tackles the double task and open-loop issues. The controller input signal must then fulfill two
criteria: (i) its generation must not create a double task and (ii) it must allow to estimate the
prosthesis position error, to close the control loop at the device level.
Given the nearly impossibility to know in advance the arm motion or the intended target, the only
reliable information available in daily life is the user’s reaction to the prosthesis motion. When the
latter is not the one desired, the user tends to correct it by soliciting his/her healthy joints rather
than moving the device through its control path. The idea proposed in Chapter 3, developed
and validated all along this PhD, is to use these compensatory motions to close the control loop at
the prosthesis level. They will define the researched error signal, taken as input of the prosthesis
controller. As they are body motions naturally exhibited by the user, their generation does not
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create any double task. In this concept, the role of the prosthesis is not to perform a given task but
to monitor its wearer’s posture; the wearer is in charge of the end-effector task while the prosthesis
moves to regulate his/her posture and reduce body compensations. This can be achieved thanks to
the creation of a human-robot coupling via the servoing of the prosthesis on user’s compensatory
movements. A feasibility study with able-bodied and transradial amputated participants was con-
ducted on wrist pronosupination and validates the proof of concept.
Chapter 4 further elaborates the theory of Compensations Cancellation Control (CCC). A general
framework, that models the human-prosthesis coupling, allows to write a generic implementation
of CCC law. When applying this algorithm to various simulation examples with coupled robotic
systems, it appears that the stability of the overall system is sensitive to the tuning of the gain λ. To
determine the appropriate value of this parameter, a theoretical stability study was accomplished
and confirms what was observed on the simulations: λ has to be largely lower than the cut-off pulse
of the proximal robotic part.
This general implementation has then been tested and validated experimentally on human-prosthesis
system, with able-bodied and transhumeral amputated participants for elbow flexion/extension con-
trol, in Chapter 5. First, the influence of λ and its value ensuring stability were verified with a
human user in the loop. Then, it was shown that subjects managed to perform slow path tracking
tasks with different trajectories but also faster reaching motions with a prosthesis controlled with
CCC. No adjustment was required for the amputated participant, the same controller parameters
suited.
Chapter 6 finally extends the experimental validation of CCC to the control of two prosthetic
DOF (wrist pronosupination and elbow flexion/extension) with one transhumeral amputee. CCC
was compared to conventional myoelectric control for the realization of the Refined Rolyan Clothes-
pin test. While the participant minimized effort with myoelectric control and commanded only one
DOF, he could benefit from a simultaneous activation of wrist and elbow with CCC, without being
distracted from the task. The cognitive load was assessed: CCC was found to be as low demanding
as the control of one DOF with myoelectric control for an expert user.

7.1.2 Benefits of Compensations Cancellation Control

Closing the prosthesis control loop with body compensations offers various benefits that ease
prosthesis control and shall unburden the user.
First, compensatory motions are strategies naturally employed by the CNS: when the device posi-
tion is not correct, they are the first motor strategy mobilized by the wearer. No training is thus
required for human subjects, since they naturally exhibit the signal used as controller input. CCC
is natural in the sense that no specific knowledge on the implementation is necessary to make
it work. There is also no need for algorithm training since no machine learning techniques are
employed. The only parameters to define in CCC are the gain λ and the deadzone threshold q0.
No individual adaptation was required: λ and q0 were set once and for all for each experiment and
kept equal for all participants, able-bodied and amputated, which shows the robustness of CCC.
These parameters can potentially be tuned around the values chosen in this work if the user wants
a slightly more (or less) reactive device. CCC is also intuitive: there is no need to learn new
motor strategies or to contract individual muscles.
CCC is simple: besides the very small number of parameters to tune, which are the same for ev-
eryone, the control algorithm is not a black box for the user. It only uses kinematics models,
which are easy to understand, and for which everything is monitored. This could facilitate the
prosthesis integration into the user’s body image. Moreover, CCC removes the need for the user
to be able to reverse-engineer the prosthesis control since the device position does not have to be
corrected any more: the end-effector is properly placed by the user while the device is in charge of
the user’s posture. This also ensures that no unwanted prosthetic motions happen, reducing user’s
frustration.
In addition, the fact that the device joint positions do not have to be intentionally corrected any
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more decreases the mental burden of the wearer. The latter does not have to constantly watch
out for prosthesis motions but only focuses on the end-effector position. S/he is not even in charge
of individual prosthetic joints, which are controlled simultaneously, which is less demanding and
much closer to natural motions generation. Another natural character restored by CCC is mo-
tion continuity: closing the loop not only allows to eliminate the need for the user to take care of
prosthesis position correction but also allows to produce continuous prosthetic motions. These
motions are coordinated with user’s ones, prosthesis and user’s body are synchronous, while
they work sequentially with ASC approaches.
Finally, CCC is scalable: controlling one, three or more DOF does not modify user’s required
behavior (compensatory motions to exhibit) or algorithm complexity nor increase the induced cog-
nitive load. This is much more appropriate for the upcoming multi-DOF and biomimetic devices.

7.2 Future directions

This work has set up CCC framework and validated its use to control one and two DOF of
UL prostheses. Promising results have been obtained but there is still a long way to go to achieve
everyday prosthesis control with CCC.

7.2.1 First upcoming complements

Cognitive load assessment
Because CCC employs natural compensatory strategies, allows the user to focus on the end-effector
only and makes simultaneous prosthetic joints control possible, it is claimed that the mental burden
of the user is reduced. This has been assessed via Raw TLX and secondary task but on one subject
only. To support the preliminary results on this topic, it is planned to involve more subjects but
also to assess cognitive burden with EEG activity [196, 197], in order to complete this analysis with
more objective and quantitative measures. A long-term study with daily use of CCC compared to
daily use of an Auxiliary Signal Control (such as myoelectric) shall also be considered, to evaluate
cognitive charge on a regular basis but also muscular fatigue.

Controlling more than two prosthetic degrees of freedom
CCC has been implemented for the control of one DOF and two DOF simultaneously but the gen-
eral formulation presented Chapter 4 is theoretically valid for much more DOF. A next step will
thus be to test the control of more than two prosthetic DOF with CCC. Preliminary tests have
been runned on a 3-DOF prosthetic device (elbow flexion/extension, wrist pronosupination and
wrist flexion/extension).

7.2.2 Definition of the reference human posture

The prosthesis position error, used to compute the velocity command, is computed from a hu-
man posture error, which is defined as a deviation from an objective (or reference) posture (see
Chapter 3). This objective has not been studied in details in this work since the first step was to
validate the concept of CCC: compensatory motions can be used as controller input to close the
prosthesis control loop. Yet, the definition of the objective human posture is crucial to determine
whether a body motion is compensatory. CCC does not depend on the task but on this objective,
which varies with the context (subject sitting or standing, position of the target with respect to the
subject, etc.). Note that the objective human posture can change for a same task and be similar
between different tasks.
The experiments performed during this PhD had all a specific setup for which the reference posture
could be easily determined; the latter was defined as the initial position of the participants and kept
constant during the experiment. This is obviously a simplification; some limitations were already
visible in the experiments presented Section 3.3.2 (enhancement of the trunk lateral bending for
wrist pronation because shoulder adduction was hardly feasible from certain objective postures)
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and Section 5.3 (over-extension of the elbow because the objective posture was not updated). The
definition of this reference is a key element for an everyday-life functioning of CCC and is the next
fondamental step to explore. Indeed, if the reference posture is not correctly defined, the body
motions considered as compensatory will actually not be compensatory, the prosthesis motions will
not fulfill its intended purpose – correct the user’s posture – and will not be understood by the
user; the natural character and the intuitiveness of the control will be totally removed.

To define a correct objective human posture, many ideas can be investigated. The first and simplest
one is that the objective would be regularly updated by the user, with a specific signal. Yet, this
would induce a double task for the user (positioning the end-effector and defining the reference
posture), which is not beneficial at all. The second one is to implement machine learning algo-
rithms which would update the reference posture or recognize in real time whether a body motion
is compensatory (see [198] for a pilot study on this topic); but this would raise again the issues of
black-box algorithms and accuracy (discussed Chapter 2) we wanted to avoid when building CCC.
To tackle that, it could be imagined to implement reinforcement learning algorithms to update the
reference, whose reward function would be user’s compensatory movements. A third possibility
could be to define an evolving objective posture that would follow the user’s body motion with a
certain delay (with a low-pass filter for instance). Finally, a human model could be built to optimize
in real time the posture that allows the current positioning of the end-effector. This posture could
be obtained with inverse kinematics methods, with some imposed constraints on joint motions, and
would then define the reference human posture. This last suggestion seems the more promising and
is the one we have begun to explore. In [199], a null-space optimization approach with a RULA-
inspired score [200] has been proposed, for a human upper body model, and validated through a
preliminary experimental campaign.

CCC relies on body compensatory motions of the user but its control scheme could be adapted to
other continuous metrics that indicate a discomfort linked to a prosthesis position error: metabolic
cost, muscular fatigue or balance for example. The objective would be defined accordingly but all of
them seem to require a varying objective needed to be regularly updated, depending on the context
(physical demand of the task, stable balance to perform the task, etc).

7.2.3 Wearable motion sensors for ecological application

Another essential point for an everyday use of CCC by amputated people, in their home and
work environments, is the wearability of the required sensors. A prosthesis control scheme, even
excellent, is useless if it is limited to laboratory environment only. In this work, the main sensor
employed to measure body compensations was the motion capture system OptiTrack. It was chosen
because of the easy body reconstruction and the precise measure of motions it gives. This allows
to focus on the proof of CCC concept by bypassing the issue of body motions measurement in
ecological situations. However, a motion capture system such as OptiTrack requires markers on
the human body and/or the prosthesis, at least four cameras to be sure to capture the markers
whatever the subject position, specific light conditions to avoid reflections on untracked objects, as
well as a computer that runs the corresponding software. It is thus completely unsuitable to daily
living environments. There is an imperious need to replace it with a wearable alternative.
To go incrementally towards a wearable and ecological solution for an every-day use, it is essential
to set up a way to employ wearable sensors only. A widespread option is to use IMU, which are low
cost, small and light. Many works indeed explore the feasibility to track human motions with IMU
[201–203]. In UL prosthetics, these sensors can even be integrated into the socket or the prosthesis,
which avoids adding specific tools to be worn by the user (as it can be the case with eye-tracking).
For the wrist pronosupination formulation of CCC (described Section 3.3.1), the transfer between
OptiTrack and IMU is direct since the data employed to compute body compensations, via the
forearm rotation, are quaternions, which can be accessed with both sensors. Fixing an OptiTrack
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marker or an IMU on the prosthetic forearm gives the same information. The OptiTrack-IMU
transfer is not as easy for the general formulation of CCC. Indeed, recreating a human skeleton
with IMU only is not a simple task since IMU provide orientation and rotation but not translation.
Measuring the acromion displacement created by trunk motions is thus feasible but measuring
the acromion displacement caused by scapula motions is much more difficult. Some solutions are
proposed to measure scapula translations with IMU [204, 205] but this would require at least three
sensors in the socket; a special attention should be paid to the well-known issues of multiple IMU
fusion, with calibration and drift reduction challenges [202, 206]. A complementary alternative
could be to use smart textiles to have more information on body motions, without being a burden
for the user. There are still in early development though [207]. We finally plan to explore the
possibility to use Microsoft HoloLens smartglasses to retrieve hand positions and reconstruct user’s
posture with prosthesis internal data.
It has to be noticed that a very precise measure of body motions is not necessarily required for a
good functioning of CCC, because of the integration part. As the prosthesis is controlled in speed
and not in position, the direction of its motion and an approximate velocity amplitude are enough
to ensure an adequate control.

7.2.4 Generalization of Compensations Cancellation Control

This PhD focuses on UL prostheses control; CCC has thus been developed for this purpose.
Yet, controlling a robotic device via body compensations is a concept that can be extended to other
rehabilitation devices or even cobots. The concept of CCC is indeed valid as soon as human and
robot work in coordination. The general formulation of CCC can be adapted to different situations;
the only essential element required is that the user exhibits body compensations to express device
position error.
In many pathologies, like stroke or tetraplegia, compensatory motions of the patients are observed
when they want to realize a task, alone [167, 168, 208, 209] or with a rehabilitation robot [210–212].
For able-bodied people, body compensations are also largely observed at work [200, 213]. This thus
supports the possible implementation of CCC for rehabilitation robots and cobots. Note that the
use of compensatory motions for cobot control is not totally new since it has begun to be explored,
in [214, 215] or [216].
The transfer of CCC to robots other than UL prostheses will depend on the type of the device.
The easiest one is for UL exoskeletons for which nearly no changes are needed: the human joints
guided by the exoskeleton can be considered as the prosthetic joints in the CCC formulation used
in this work. The exact same theoretical framework can thus be reemployed. For cobots or other
rehabilitation robots (e.g., assistive robotic arms such as Jaco from Kinova [217]), more adaptation
will be necessary. The theoretical framework will differ since the end-effector is not an extension
of a user’s limb; the end-effector motion will not result from a combination of human and robotic
movements but from robotic movements only. In these cases, the device does not replace part of
a human limb and is not included into the human body but is totally distinct. The coupling still
exists because both human and robot focus on a same target but the language of body compensatory
motions will be modified compared to the one with prostheses or exoskeletons: a mirrorring effect
can be expected. Another point to consider to adapt CCC to cobots and rehabilitation robots
is that the relative position of human and robot could be varying if the robot is not worn by
the user, which should also require some framework modifications. The transfer will thus not be
straightforward but it opens large possibilities for Compensations Cancellation Control.
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Appendix A

Few details on some regression and classification algo-

rithms

In Section 2.3.2, two machine learning algorithms were employed to model joints synergies and
two to illustrate the difficulty to classify motions. This appendix exposes some details on their
theory and implementation.

A.1 Regression algorithms for synergy models

As briefly explained in Section 2.1.2, regression algorithms predict continuous output(s). Prior
to the online use of the algorithms, a training process is required to learn the relationship between
inputs and (continuous) outputs from example data; the relationship is a function f : X → Y ,
which depends on the model employed. This then enables predictions from new inputs.
In the case considered here, the output is the elbow flexion angular velocity (1D) and the input
is the shoulder Euler angular velocities (3D). Two different algorithms were implemented: Radial
Basis Function Network (RBFN) and Gaussian Mixture Regression (GMR).

A.1.1 Radial Basis Function Network

Theory
RBFN defines the output as a weighted sum of radial functions of the input (see Figure A.1(a))

y = f(x) =
E∑
e=1

we.φ(x, θθθe) (A.1)

with φ the radial basis functions (∀e ∈ J1, EK, φ(x, θθθe) = φ(||x − θθθe||), E the number of radial
functions, θθθe (e ∈ J1, EK) the centers of the basis functions and we (e ∈ J1, EK) the weights. φ
are often Gaussian functions; they are here defined as followed:

∀e ∈ J1, EK, φ(x,θθθe) = e−(||x−θθθe||)2 (A.2)

E, θθθe and we (e ∈ J1, EK) are all determined during the training phase. Different methods are
available to set them; in this work, the number of radial basis functions, E, was optimally chosen
with cross-validation and set to 5, θθθe, e ∈ J1, EK were defined with equidistant spacing – results
were similar as when defining them with k-means clustering –, and we (e ∈ J1, EK) were obtained
with Linear Least Square.

Implementation

RBFN was implemented on Matlab Mathworks R©, be it for the training or the testing phases. Even
if some predefined RBFN functions are available on Matlab, the code used for the analysis of Section
2.3.2 was entirely re-written (by a previous PhD student and myself). As the training set came
from different subjects, the data were centered and normalized, which thus involves a processing
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step at the end of the testing phase to get back unormalized output.
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(a) RBFN relationship between inputs and outputs,
adapted from [160]. D is the dimension of the

inputs, E is the number of radial basis functions.

(b) GMM and GMR with 3 Gaussians, from [160].

Figure A.1: RBFN and GMR illustrations.

A.1.2 Gaussian Mixture Regression

Theory
With GMR, it is assumed that the data in the joint input×output space can be represented by a set
of Gaussians, the Gaussian Mixture Model (GMM) (see Figure A.1(b)). The training phase is un-
supervised, which means that there is no distinction between inputs and outputs, concatenated into
one vector. This phase consists in fitting the data with a GMM with the Expectation-Maximization
algorithm. A k-means clustering was here applied to initialize the centers of the Gaussians. The
GMM gives a model of the density of the concatenated inputs-outputs vectors as a weighted sum
of E Gaussian functions:

[xTn yn]T = zn =
E∑
e=1

πeN (zn,µµµe,ΣΣΣe) (A.3)

with n the number of samples of the training data set and πe(e ∈ J1, EK) the prior probabilities,∑E
e=1 πe = 1. The Expectation-Maximization algorithm adjusts the prior πe and the parameters

of the Guassians µµµe and ΣΣΣe. The number of Gaussians E was determined with the Bayesian
Information Criterion [163, 218] and was set to 5.
Once the GMM parameters are determined, a new output can be predicted from a new input,
through GMR. To do so, we distinguish the input and output components of µµµe and ΣeΣeΣe:

µµµe = [µµµTe,X ,µµµ
T
e,Y ]

and ΣΣΣe =

(
ΣΣΣe,X ΣΣΣe,XY

ΣΣΣe,Y X ΣΣΣe,Y

)
(A.4)

The expected output is then defined as

y =
E∑
e=1

he(x)
(
µµµe,Y + ΣΣΣe,Y XΣΣΣ−1

e,X(x−µµµe,X)
)

(A.5)

with he(x) =
πeN (x,µµµe,X ,ΣΣΣe,X)∑E
l=1 πlN (x,µµµl,X ,ΣΣΣl,X)

(A.6)

and x the vector of input data.

Implementation
As RBFN, all the steps for GMR were implemented on Matlab MathworksR©, without using the
ready-to-use Matlab functions, in order to manage the smallest implementation choice. The inputs
and outputs were also centered and normalized for the training phase.
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A.2 Classification algorithms for motions recognition

Contrary to regression, classification algorithms give discrete outputs, labels of motions in our
case. For the illustrative study of Section 2.3.2, two algorithms were implemented: Bayesian Deci-
sion Making (BDM) and Support Vector Machine (SVM).

A.2.1 Bayesian Decision Making

Theory
BDM is one of the simplest classification algorithm. The decision of the class of one input is taken
comparing the relation between posterior probabilities. Samples x are classified belonging to class
k if

P (Ck|x) > P (Cj |x) ∀j 6= k (A.7)

Given Bayes theorem, this is equivalent to

p(x|Ck)P (Ck)

p(x)
>
p(x|Cj)P (Cj)

p(x)
∀j 6= k

or p(x|Ck)P (Ck) > p(x|Cj)P (Cj) ∀j 6= k

(A.8)

with p(x|Ck) the conditional probability, P (Ck) the prior probability and p(x) the probability
density, p(x) =

∑
k p(x|Ck)P (Ck); prior probabilities can be estimated from training data. Any

monotonic function can also be used to take the decision.
It is assumed, in the case considered in Section 2.3.2, that probabilities are normal distributions,
with mean µk and arbitrary covariance matrices for each class, ΣΣΣk. It gives for a new input x and
a class k

p(x|Ck) =
1

(2 ∗ π)d/2|ΣΣΣk|1/2
exp

(
−1

2
(x− µk)TΣΣΣ−1

k (x− µk)
)

(A.9)

with d the dimension of input vector x.
The training phase of BDM allows to compute the covariance, ΣΣΣk, and mean, µk of each class, as
well as P (Ck):

P (Ck) =
Nk

N
(A.10)

with Nk the number of training data belonging to class k and N the total number of training data.
During online use, the quantity p(x|Ck)P (Ck) is computed for all class k (k = 4 in our case, the
four tasks considered), the highest one gives the class assigned to the input x.

Implementation
This naive Bayesian classifier was also implemented from scratch on Matlab MathworksR©.

A.2.2 Support Vector Machine

Theory
SVM is originally a two-class classifier that separates data with a decision boundary. This boundary,
the max-margin hyperplane, is the one for which the smallest distance between the boundary and
the samples – called the margin – is maximized [218]. It is determined during the training phase
and is completely defined by the support vectors, the training samples that lie nearest to it (see
Figure A.2). To determine the hyperplane equation, linear but also non-linear methods with kernel
functions can be used; we chose the second one. SVM then deals with new inputs by identifying
whose side of the hyperplane they are on.
When the classification problem has more than two classes, various methods are available. The
one employed here is the one-versus-one approach, which trains 2-class SVM on all possible pairs
of classes and then classifies new inputs in the class which has the highest number of “votes”.
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Margin

Decision
boundary
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Figure A.2: Illustration of a 2-class SVM classifier functioning, inspired from wikipedia.org

Implementation
For the illustrative study of Section 2.3.2, the 4-class SVM classifier was implemented on Matlab
MathworksR©, with predefined Matlab functions: fitcecoc performs the one-versus-one training of the
multi-class SVM, with kernel functions; predict then used the trained algorithm to classify samples
of the testing data set.

102



Appendix B

Data collection for movement classification

This appendix describes the data collection, as well as their processing, for the movement clas-
sification illustrative study whose results are presented Section 2.3.2.

Figure B.1: Set-up of the data collection for the movement classification illustrative study. One
able-bodied subject reached an object and moved it to the next position, as indicated by the arrows:
reach-and-place at the same height (left), reach-and-place at two different heights (middle). The
last task consisted in reaching the object and bringing it to the mouth (right).

The collected data set is from one able-bodied subject performing various tasks: reach-and-place, at
nine different heights and positions, and bring-to-mouth (see Figure B.1). Four trials were recorded
for each task. Euler angles of the trunk, as well as humerus aperture and elbow flexion angles, were
measured with two IMUs and the motion capture system Codamotion R©. Four motion classes were
defined by hand: reaching, return, change height and bring-to-mouth. Data were segmented with
zero-crossings of the elbow marker velocity and classes were manually labeled. The features used as
input of the classification algorithms were mean and variance of the trunk Euler angular velocities,
trunk rotation and trunk flexion angles. They were computed in a sliding window of 100ms or
500ms, with an increment time of 10ms. Three trials (over four) composed the training set, and
the remaining one composed the testing set. In Section 2.3.2, the mean classification accuracy for
each algorithm is presented, Table B.1 shows the results for each testing set.

Trial used for testing trial 1 trial 2 trial 3 trial 4

BDM, tw = 100ms 46.50 % 46.80% 40.10% 47.20%

BDM, tw = 500ms 65.20% 67.90% 54.30% 63.90%

SVM, tw = 100ms 67.70% 58.40% 52.40% 65.80%

SVM, tw = 500ms 65.60% 59.80% 47.60% 67.80%

Table B.1: Classification accuracy of BDM and SVM, with two different sizes of sliding window,
tw, depending on the trial used as testing set.

In addition to the optimization means listed in Section2.3.2, it can also be considered to increase
the amount of data, since they are from four trials and one subject only.
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Appendix C

Characterization of body compensations with reduced

elbow mobility: head and balance metrics

This appendix contains complementary figures of the body compensations characterization
study, from Chapter 3.

Experimental set-up reminder
This experiment aims at characterizing the body motions exhibited to compensate a loss in elbow
mobility. Ten able-bodied subjects were asked to perform 3D tasks with their right arm, naturally
and with their elbow blocked at 90 deg with an orthosis. Eight reaching and object-moving tasks
were achieved; the whole sequence was repeated four times.

Complementary figures
Trunk angular trajectories and acromion displacement for the different tasks were analyzed in de-
tails, along with representative Figures, in the main text. Head Euler angles and weight repartition
have been more briefly discussed, as not considered compensatory since their motions do not di-
rectly participate to the task. Below are the corresponding results.
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Figure C.1: ROM of head Euler angles, computed in the trunk frame, averaged over subjects,
for natural and blocked motions. Numbers indicates the different movements performed during the
experiment, illustrated on Figure 3.2
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Figure C.2: Weight repartition, defined as force on the ipsilateral foot
total force applied on the feet , expressed in percent, for

natural and blocked motions. Results are averaged over subjects. Numbers indicate the different
movements performed during the experiment, illustrated on Figure 3.2
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Appendix D

Evaluation of Compensations Cancellation Control for

elbow joint control: individual results

This appendix displays the individual results of task performance, body compensations and
global joint motions metrics, from the validation experiment with able-bodied participants of Chap-
ter 5.

Experimental set-up reminder
In Section 5.3.2, the general formulation of CCC is tested to control a prosthetic elbow joint.
Ten able-bodied subjects, without any previous experience on prosthetic devices, wore an emu-
lated elbow prosthesis attached to their right arm with an orthosis. They were asked to perform
path tracking tasks with two different trajecories (rectangular and diagonal) and a 3D reaching task.

Individual results
The results given in the main manuscript are averaged over the ten participants. As mean over
participants can hide some inter-subjects variations, the individual results are shown below, for
each subject, averaged over trials.
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Figure D.1: Individual results for the rectangular path tracking task. Results for each subject are
the mean of the metric over the five trials. The last column is the mean over subjects; * indicates
p < 0.05.
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Figure D.2: Individual results for the diagonal path tracking task. Results for each subject are
the mean of the metric over the five trials. The last column is the mean over subjects; * indicates
p < 0.05.

0

1

2

3

4

T
im

e
 (

s)

Time of the task

ROM Acromion

ROM Elbow

R
O

M
 (

cm
)

R
O

M
 (

d
e
g

)

40

30

20

10

0

60

40

20

0

80

Subjects
1 2 3 4 5 6 7 8 9 10 All

*
*

*
*

N
L
CCC

Figure D.3: Individual results for the reaching task, Target 1. Results for each subject are the
mean of the metric over the five trials. The last column is the mean over subjects; * indicates
p < 0.05.

108



Time of the task

ROM Acromion

ROM Elbow

Subjects
1 2 3 4 5 6 7 8 9 10 All

R
O

M
 (

cm
)

40

30

20

10

0

R
O

M
 (

d
e
g

)

60

40

20

0

80

100

0

1

2

3

4

T
im

e
 (

s)

*
* *

*
*

Figure D.4: Individual results for the reaching task, Target 2. Results for each subject are the
mean of the metric over the five trials. The last column is the mean over subjects; * indicates
p < 0.05.

Subjects
1 2 3 4 5 6 7 8 9 10 All

R
O

M
 (

cm
)

40

30

10

R
O

M
 (

d
e
g

)

60

40

20

0

80

0

1

2

3

4

T
im

e
 (

s)

Time of the task

ROM Elbow

20

0

ROM Acromion

*
*

*

*

Figure D.5: Individual results for the reaching task, Target 3. Results for each subject are the
mean of the metric over the five trials. The last column is the mean over subjects; * indicates
p < 0.05.

109





Appendix E

Stability of Compensations Cancellation Control: addi-

tional proofs

In Section 4.3, the stability of CCC was studied, in a simplified linear and monovariate case, for
a robotic system. Even if the conclusions of this Section have been validated on human-in-the-loop
experiments, a more detailed analysis has been conducted by Alexis Poignant; some elements are
presented in this Appendix. Figure E.1 reminds the diagram and the notations employed for the
analysis. The kinematics of the robotic system is still considered as linear.

H(p) ∫
qh

.

qp

.~
qp

.

x

A

λ

sd

εp

+

+

s

-

+

xd

+

-

P(p)

Js|h

Jx|h

Jx|p

∫

Figure E.1: Block diagram of the simplified case of a robotic system with distal joints controlled
with CCC. H(p) is the closed-loop transfer function of the proximal part, P(p) is the transfer
function of the distal part, A is the mapping matrix between the error measured by the sensors and
the error of the distal joints, Jx|h, Jx|p, Js|h and λ are defined in the equations developped Section
4.1. The red rectangles help to visualize the double integrator in the proximal robotic part.

E.1 Addition of a deadzone

To avoid unwanted motions of the distal part when the proximal part is around the objective
posture, a deadzone is added on εεεp. This is similar to the addition of a deadzone before H(p).
Considering an harmonic input, X sin(ωt), the deadzone can be represented as a complex gain
N(X), assuming that it is followed by a low pass filter (H(p)). N is defined by

N(X) =
U + jV

X
(E.1)

with U = 2
T

∫ T
0 w(t) sin(ωt)dt and V = 2

T

∫ T
0 w(t) cos(ωt)dt, w(t) being the non-linearity of input

X sin(ωt). In the case analyzed here, N is real

N(X) =


0 if X < Xt

2
π arcsin(Xm

X + 2Xm
πX

√
1−

(
Xm
X

)2
if Xt < X < Xm

1 if X > Xm

(E.2)
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where Xt and Xm are the threshold and saturation values respectively. The open-loop transfer
function becomes [

X

Xd

]
OL

=
H(p)

p
Jx|h (1 + F (p, λ))N(X) (E.3)

In free regime, studying this non-linearity is equivalent to studying stable oscillations and analyzing
the closed-loop denominator:

1 +
H(p)

p
Jx|h (1 + F (p, λ))N(X) = 0 (E.4)

or
H(p)

p
Jx|h (1 + F (p, λ)) =

−1

N(X)
(E.5)

According to Loeb’s criteria, as N(X) is at the left of the critical point (-1,0), the system stays
stable.
To analyze the deadzone in forced regime, we lack information on H(p).

E.2 Imperfect internal prosthesis command

In Section 4.3, it was assumed that P(p) = 1, i.e. the response time of the distal part’s internal
command (the control of prostesis’ motors in real life application) was very short compared to the
response time of the proximal part (playing the role of the human user). To be more exact, P can
be written as a closed-loop transfer function

P(p) =
B(p)

1 +B(p)
(E.6)

and we presume that the open-loop transfer function B(p) has good enough phase and gain margins.
The open-loop transfer function of the entire system becomes[

X

Xd

]
OL

=
H(p)

p
Jx|h

(
p+ P(p)λ

p

)
=

H(p)

p
Jx|h

(
p+ pB(p) + λB(p)

p+ pB(p)

) (E.7)

For high-frequencies, we have [
X

Xd

]
OL

≈ H(p)

p
Jx|h (E.8)

and for low frequencies [
X

Xd

]
OL

≈ H(p)

p
Jx|h

p+ λ

p
(E.9)

This thus corresponds to the ideal case studied in Section 4.3, where the entire system behaves
as the proximal part in high frequencies and as the proximal part multiplied by a proportional-
integrator in low frequencies. The only case for which the stability is at risk is around the critical
point between p and B(p). Assuming the static gain of pB(p) or λB(p) is relatively low, this critical
point will always be at low frequencies, where the entire system is far from critical points. It can
thus be considered that stability is still ensured.
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E.3. Multivariate case

E.3 Multivariate case

Until now, the analysis was performed on a monovariate case. Considering now a multivariate
case (which is of great interest for CCC), where proximal and distal robotic parts have two DOF
each,

q̇h =

(
qh1

qh2

)
∈ R2×1

q̇p =

(
qp1
qp2

)
∈ R2×1

and thus

Jx|h ∈ R2×2

Jx|p ∈ R2×2

Js|h ∈ R2×2

A ∈ R2×2

We still assume that M, the mapping between sensor and prosthesis error signal, can be written as

M = −Js|hJ
+
x|hJx|p (E.10)

Thus,

A = M+ = −
(
Js|hJ

+
x|hJx|p

)+

and Jx|h = −Jx|pAJs|h

(E.11)

In this case, the open-loop transfer function of the system is[
X

Xd

]
OL

=
H(p)

p
Jx|h

(
1 +

λ

p

)
(E.12)

with four transfer functions similar to the one of the monovariate case. The condition for stability
is thus the same as the one found in Section 4.3:

λ� ωc (E.13)

with ωc the cut-off pulse of the proximal robotic part.
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Appendix F

Raw-TLX questionnaire

Name  Task  Date

Mental Demand How mentally demanding was the task?

Physical Demand How physically demanding was the task?

Temporal Demand How hurried or rushed was the pace of the task?

Performance How successful were you in accomplishing what
you were asked to do?

Effort How hard did you have to work to accomplish
your level of performance?

Frustration How insecure, discouraged, irritated, stressed,
and annoyed wereyou?

Figure 8.6

NASA Task Load Index

Hart and Staveland’s NASA Task Load Index (TLX) method assesses
work load on five 7-point scales. Increments of high, medium and low
estimates for each point result in 21 gradations on the scales.

Very Low Very High

Very Low Very High

Very Low Very High

Very Low Very High

Perfect  Failure

Very Low Very High

Figure F.1: TLX scale.
Available at http://humansystems.arc.nasa.gov/groups/TLX/downloads/TLXScale.pdf
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[177] M. Legrand, N. Jarrassé, F. Richer, and G. Morel, “A closed-loop and ergonomic control for
prosthetic wrist rotation,” in Proceedings of the IEEE International Conference on Robotics
and Automation, 2020.

[178] Race Task Description Cybathlon 2020, ETH Zürich, 2020.
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Résumé: Les récents progrès de la mécatronique pour les
prothèses de bras ont permis divers avancées, comme un plus
grand nombre de degrés de liberté contrôlables ou un meilleur
système de fixation de la prothèse au corps de la personne via
lostéointégration. Assurer un contrôle naturel et efficace de ces
dispositifs de pointe reste néanmoins un défi majeur.
Les approches actuelles présentent toutes des limites qui con-
duisent souvent les porteurs de prothèse à abandonner la dimen-
sion active de lappareil. Ils vont lutiliser comme un outil rigide et
réaliser la tche avec des mouvements compensatoires. Pour éviter
cela, nous proposons dutiliser ces mouvements comme un signal
derreur pour contrôler la prothèse. Lhumain est alors responsable

de la réalisation de la tche pendant que la prothèse est responsable
de la posture de son porteur.
Cette proposition est implémentée pour contrôler un poignet et un
coude, individuellement puis simultanément. Les expériences con-
firment que lutilisation des mouvements compensatoires en entrée
du contrôleur prothétique ne les accrot pas. Elles montrent aussi
la facilité de la prise en main, la polyvalence et la scalabilité
du mode de contrôle proposé. Une étude théorique complète ce
travail et analyse en détails le couplage homme-robot ainsi créé.
Les résultats obtenus ouvrent dintéressantes perspectives pour un
contrôle intuitif de prothèse.

Title: Upper limb prostheses control based on user’s body compensations
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Abstract: In recent years, the development of advanced mecha-
tronics for upper-limb prostheses has led to technological improve-
ments such as a better fixation system to the body with osseoin-
tegration or a larger number of degrees of freedom. However,
providing these devices with a natural and efficient control is still
a major challenge.
Current approaches, such as myoelectric control, all show limita-
tions, that can lead prosthetic users to abandon the active dimen-
sion of the device, use it as a rigid tool and perform the desired
task with body compensations. To avoid such a behavior, we pro-
pose in this PhD thesis to employ body compensatory motions as
an error signal to control the prosthetic device. With this concept,

the human subject is in charge of the end-effector task, while the
prosthesis is in charge of its users posture.
This proposition is implemented and tested to control prosthetic
wrist and elbow joints, first individually and then simultaneously.
A theoretical study completes this work and analyzes in details
the human-robot coupling created. The presented experiments
first confirm that using body compensations as controller input
does not enhance them. They then show the easy learning of the
control scheme by naive subjects, its task-versatility and its scal-
ability. The foundations thus laid open exciting perspectives for
a natural prosthesis control.
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