
HAL Id: tel-03361344
https://theses.hal.science/tel-03361344

Submitted on 1 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bridging the gap between Privacy by Design and mobile
systems by patterns

Karina Sokolova

To cite this version:
Karina Sokolova. Bridging the gap between Privacy by Design and mobile systems by patterns.
Cryptography and Security [cs.CR]. Université de Technologie de Troyes, 2016. English. �NNT :
2016TROY0008�. �tel-03361344�

https://theses.hal.science/tel-03361344
https://hal.archives-ouvertes.fr

Thèse
de doctorat

de l’UTT

Karina SOKOLOVA PEREZ

Bridging the Gap between
Privacy by Design

and Mobile Systems by Patterns

Spécialité :
Ingénierie Sociotechnique des Connaissances, des Réseaux

et du Développement Durable

2016TROY0008 Année 2016

THESE

pour l’obtention du grade de

DOCTEUR de l’UNIVERSITE
DE TECHNOLOGIE DE TROYES

Spécialité : INGENIERIE SOCIOTECHNIQUE DES CONNAISSANCES ET
DES RESEAUX

présentée et soutenue par

Karina SOKOLOVA PEREZ

le 27 avril 2016

Bridging the Gap between Privacy by Design
and Mobile Systems by Patterns

JURY

M. B. NGUYEN PROFESSEUR DES UNIVERSITES Président (Rapporteur)
M. M. CONTI PROFESSORE ASSOCIATO CONFERMATO Examinateur
M. D. LE METAYER DIRECTEUR DE RECHERCHE INRIA Rapporteur
M. M. LEMERCIER MAITRE DE CONFERENCES Directeur de thèse

Personnalités invitées

M. J.-B. BOISSEAU INGENIEUR
M. A. VERNIER INGENIEUR

Acknowledgments

I would like to express my special appreciation and thanks to my advisor Dr. Marc
Lemercier, who has been an exceptional mentor for me. I would like to thank you for
encouraging my research and for allowing me to develop as a research scientist. Your
advice on my research, as well as on my career, and your trust in me have been beyond
price.
I would like to thank all the team of Eutech SSII and Alpix, who were always available to

share their knowledge and professional experience with me and always willing to discuss
and exchange opinions. I would especially like to thank my advisor : Jean-Baptiste
Boisseau, one of the co-founders of Eutech SSII, who was enthusiastic about my work and
research from the first day we met. During the most difficult times during the writing of
this thesis, my advisors gave me moral support and freedom I needed to move on.
I would especially like to thank everyone from University of Technology of Troyes who

had trust in me me and who helped me to integrate a French university and French society.
I am also very grateful to all the professors who gave me the possibility of expressing myself
as a lecturer and lecturer assistant.
A special thanks to my family: words cannot express how grateful I am to my mother,

and father for all the sacrifices they have made on my behalf. I would also like to thank
all of my friends, in particular my dear friend Natalia Sirina who was always there when
no one would answer my queries. Finally, I would like to express my appreciation to
my beloved husband Charles Perez sustained me through sleepless nights and pushed me
towards my goal. I cannot find the words to thank you for your encouragement all through
this adventure.

i

Contents

Contents iii

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Context . 1
1.2 Problematic . 2
1.3 Contributions . 3
1.4 Document organization . 4

I State-of-the-art 7

2 Privacy, Privacy by Design and European regulation 9
2.1 Privacy in European Union . 10
2.2 Privacy by Design . 11
2.3 Conclusion . 13

3 Architectural design patterns and mobile development 15
3.1 Introduction . 16
3.2 Architectural design patterns . 16

3.2.1 Model-View-Controller (MVC) . 16
3.2.2 Presentation-Abstraction-Control (PAC) 18
3.2.3 Model-View-Presenter (MVP) . 18
3.2.4 Hierarchical-Model-View-Controller (HMVC) 19

3.3 iOS system and architecture . 20
3.4 Android system and architecture . 20
3.5 Mobile architecture related works . 22
3.6 Conclusion . 22

4 Mobile permission systems 25
4.1 Introduction . 26
4.2 Limits of modern mobile permission systems 29
4.3 Mobile permission analysis . 31

4.3.1 Permission request analysis . 32
4.3.1.1 Benign applications . 32

iii

CONTENTS

4.3.1.2 Malicious applications . 33
4.3.2 Permission use analysis tools . 33

4.4 Permission-based decision support systems 34
4.5 Improvement of modern mobile permission systems 35

4.5.1 Revoke permissions and mock data tools 35
4.5.2 Conditional granting . 35
4.5.3 Usage model and Digital rights management (DRM) technologies . 36
4.5.4 Finer-grained mobile permissions 36

4.6 Code analysis and data flow control . 37
4.6.1 Static analysis . 37
4.6.2 Dynamic analysis . 38

4.7 Other works . 39
4.7.1 Model . 39
4.7.2 User interface . 39
4.7.3 Permissions as an attack vector . 40

4.8 Conclusion . 40

II Quality and Security 41

5 Development of mobile applications of quality: Android Passive MVC archi-
tectural pattern 43
5.1 Introduction . 44
5.2 Research methodology . 45
5.3 Developers’ experience and difficulties . 46
5.4 Android Passive MVC . 49

5.4.1 Presentation . 49
5.4.2 Implementation . 52

5.4.2.1 Fragments usage . 52
5.4.2.2 Java classes . 55

5.5 ’Tweetle’ Android application and Android Passive MVC 56
5.5.1 Fragment mediate Activities . 57
5.5.2 Fragment/Activity mediate Fragments 58
5.5.3 Advantages and disadvantages . 58

5.6 Android Domain Model . 59
5.7 Architecture evaluation . 60

5.7.1 Code quality requirements . 61
5.7.2 Scenario-based evaluation . 61

5.7.2.1 Scenario 1: adapt the phone version to the tablet 62
5.7.2.2 Scenario 2: add new tab to the main menu 63
5.7.2.3 Scenario 3: move the main menu to the separate screen . . 63
5.7.2.4 Scenario 4: modify the appearance of the list 63
5.7.2.5 Scenario 5: add new interface element 64

5.7.3 Evaluation by developers . 64
5.8 Discussion and future work . 66

5.8.1 Android and MVP . 66
5.8.2 Android and AM-MVC . 67

5.9 Conclusion . 67

iv

CONTENTS

III Security and Privacy 69

6 Detecting abusive applications: permission usage patterns for applications’
classification and anomaly detection 71
6.1 Introduction . 72
6.2 Related works and limits . 74
6.3 Research methodology . 75

6.3.1 Dataset . 75
6.3.2 Permission usage pattern construction 76
6.3.3 Classification of applications into categories 79

6.3.3.1 The application classification problem 79
6.3.3.2 Features selection . 80

6.3.4 Privacy score and risk metrics . 81
6.4 Results . 82

6.4.1 The category patterns obtained . 83
6.4.2 Graph centrality features vs. occurrence 85
6.4.3 Classification and features accuracy 87
6.4.4 Risk warning for suspicious applications 90
6.4.5 Category similarity . 94

6.5 Discussion and future work . 96
6.6 Conclusion . 97

7 Respecting user’s privacy by default: a PbD permission system for mobile
applications 99
7.1 Introduction . 100
7.2 Related works and limits . 100
7.3 Privacy-respecting permission system overview and vocabulary 101

7.3.1 Definition . 101
7.3.2 Object: private data . 103
7.3.3 Permission use restrictions . 105
7.3.4 Permission state . 106
7.3.5 User control . 106
7.3.6 Permissions interconnection . 107

7.4 The permission system in action . 108
7.5 Application Example . 110
7.6 Discussion and future work . 114
7.7 Conclusion . 115

8 Conclusion 117
8.1 Problematic . 117
8.2 Contributions . 117
8.3 Future work . 118

9 Publications 121

10 Appendix 123

v

CONTENTS

11 Résumé 139
11.1 Contexte . 139
11.2 Problématique . 140
11.3 Questions de recherche . 140
11.4 Vue sur le respect de la vie privée et « Privacy by Design » 141
11.5 Contribution . 143

11.5.1 Android Passive MVC . 143
11.5.2 Indicateur du respect de la vie privée 146
11.5.3 Système de permissions « Privacy by Design » 149

11.6 Conclusion . 151

Bibliography 153

vi

List of Figures

3.2.1 a) Classic MVC, b) Application Model MVC 17
3.2.2 Passive Model MVC . 17
3.2.3 PAC architecture . 18
3.2.4 Supervising controller and Passive view 19
3.2.5 Hierarchical-Model-View-Controller . 19

4.1.1 Java ME MIDlet asks for a permission. 27
4.1.2 iOS (left) and Android (right) systems ask for permissions. 28

5.2.1 Research methodology for Android passive MVC 46
5.3.1 Activity as ’View-Presenter’ of MVP or a ’Controller’ of MVC 46
5.3.2 Activity as ’View’ of MVP with additional Presenter component 47
5.3.3 Activity as ’View’ of MVC with additional Controller component. 48
5.3.4 Activity as ’Presenter’ of MVP with additional View component. 48
5.4.1 Activity as an intermediate component between Views and Controllers. . 50
5.4.2 Android Passive MVC. 51
5.4.3 Communication between Controllers. 51
5.4.4 AP-MVC impose the creation of Fragment event if the only one is cur-

rently used within Activity . 53
5.4.5 Mediate Fragment corresponding to the possible menu that exchange 2

Fragments depending on intercepted action 53
5.4.6 A chain of dependent Fragments or Activities. a) Direct calls make de-

pendent Fragments b) Mediate Controller makes components independent 54
5.4.7 Communication between Fragments and Activity. 54
5.4.8 Circular dependency between Fragments a) Direct calls, dependent Frag-

ments b) Mediator Controller makes Fragments independent 55
5.4.9 Android Passive MVC implementation . 55
5.4.10 Login implementation example . 56
5.5.1 ’Tweetle’ application user interface . 57
5.5.2 Activity by screen initialisation calls . 58
5.5.3 Activity as Main Menu . 58
5.6.1 Domain Model Architecture . 60

6.3.1 The summary of 3-step methodology . 75
6.3.2 Five steps of pattern construction methodology. 76
6.3.3 Example of feature construction for one application, one metric and patterns. 81
6.3.4 Risk threshold representation for different settings of α; applications col-

ored in red would raise the warning for α > 1 82

vii

LIST OF FIGURES

6.4.1 Examples of obtained permission patterns for fours categories. Colors rep-
resent the modularity classes, node size represents betweenness centrality
score and edge thickness represents the weight. 84

6.4.2 Performance gain brought while adding all metrics one by one to between-
ness centrality . 89

6.4.3 Binary vector and pattern-related features comparison regarding F-measure
and all categories . 91

6.4.4 Performance for risky application detection in ’Photography’ category.
ROC curves for for different β (denoted Beta on the graph) and thresholds
for the equation 6.3.7. 92

6.4.5 Graph representing how the minimal likeness and beta affects risky appli-
cation detection. 94

6.4.6 Optimal threshold for detecting risky applications β = 3, threshold =
0.108, LN0 = 10 . 95

6.4.7 Category similarity graph . 96

7.3.1 Different actions can be made on the data and included into the proposed
permission system. 102

7.3.2 Summary of the the proposed permission system definition 104
7.3.3 Example of state modification diagram for a given permission 106
7.3.4 Activity diagram for the rule definition 107
7.3.5 Activity diagram: permission management. 109
7.4.1 Example of a permission request . 109
7.4.2 Sequence diagram: first use of one permission or a use or permission in

’user check’ mode. 110
7.4.3 Sequence diagram: use of one permission without user confirmation. . . . 110
7.4.4 Example of usage modification diagram for a given permission 111

viii

List of Tables

3.1 Comparison table between architectures 24

4.1 Desktop and mobile permission systems comparison 26
4.2 Comparison of iOS and Android permission systems. 29

5.1 Evaluation criteria by scenario . 62
5.2 TaskProjectManager statistics: the difference between the original and

the ’Android Passive MVC’ implementation and the corresponding gain
in metrics. 64

6.1 Set of node measures tested in this study 78
6.2 Confusion matrix for category classification 79
6.3 Number of permissions and co-required permissions by pattern. 83
6.4 Top 10 of permissions usage. Each permission is originally prefixed by

’android.permission”. 86
6.5 Top 5 frequent permissions for the ’Finance’ category 86
6.6 Top 5 permissions according to betweenness centrality for the ’Finance’

category . 86
6.7 Classification results for each metric and combinations of metrics 88
6.8 Best results for F-measure, F2-measure and F0.5-measure for different β 94

7.1 Table recapitulating permissions needed for the application (last column
is a permission group number) . 114

10.1 Permissions extracted from Android 4.4.2 123

ix

Chapter 1

Introduction

1.1 Context

The first mobile phone was invented in 1908 and has since evolved from a simple voice
transmission device into a complex smart piece of equipment offering a number of services.
The first mobile phones did not contain much data, but with the evolution of mobile net-
works, data transfer has been made possible; the connection speed has increased rapidly
bringing new services and new data along with hardware and data storage capacity im-
provement. Nowadays, smart-phones can not only call, send short messages and simple
multimedia, provide Internet access like their predecessors, but also propose services for
every possible users’ need with easily installable programs. Mobile applications - a gen-
eral name for any small mobile device program - propose personal and business services
including media management and sharing, browsers, online magazines, file management,
games, weather, travel, calendar, financial, banking, healthcare, lifestyle, social applica-
tions, and much more. Easy application search, easy installation via mobile application
stores and a large choice of services attract users of all ages and professions.
Smart devices are also equipped with an increasing number of sensors: Near Field

Communication (NFC), Global Positioning System (GPS), gyroscopes, orientation, ther-
mometers, proximity and light sensors, pedometers, fingerprints, pressure, rotation and
others, enabling the smartphone to have precise information about his owner’s state and
environment at any given time. This huge amount of personal and business data generated
by mobile applications and sensors is not only stored on the device, but also transferred
to servers: with accessible fast data transmission smartphones being almost always con-
nected.
The data is precise, the quantity increases every day and the data flow is high and hard

to control, and that makes smart devices attractive for malicious actors. Two market
leaders face the problem differently. Apple limits the attack vector for iOS 1 devices by
restricting the access to the data and by carefully verifying and testing each application
before it become available on the official application market - AppStore. Apple’s policy
is strict about bugs, abusive data usage and also security. Android - a mobile operating
system owned by Google - is based on a principle of sharing. Android applications have
access to nearly all the native applications’ data and can make their data accessible that
allows creating a larger variety of services, but giving opportunities to malicious actors

1Originally iPhone OS. Mobile operating system created by Apple Inc. and used on mobile devices
manufactured by Apple Inc.: iPhone, iPod, iPad.

1

Chapter 1 Introduction

and greater responsibilities to developers.
Moreover, Google verifies applications only for known malware fingerprints, but never

checks the application’s behaviour for legitimacy. As a result, GooglePlay - the official
Android market - contains not only bug-ridden applications, but vulnerable and even
abusive ones, that collects massive amounts of the user’s data even if it is not related to
the proposed service. It is often considered normal for application providers to require
personal data in exchange for cheap or even free service, while users do not always agree.
Mobile users are becoming extremely concerned about privacy: there has never been so
much private data generated, stored and shared as now, in the era of smart devices and
social networks [1].
Dr. Ann Cavoukian observed this massive data usage tendency and reactive, rather

than proactive security approach by patches. Back in 2001, she proposed ’Privacy by
Design’ (PbD) principles that would help to build privacy-respectful systems. The main
idea of ’Privacy by Design’ is to consider privacy as a key principle at the design stage,
building privacy-respecting, secure and proactive systems [2]. Although those principles
were successfully applied in some projects, the application of ’Privacy by Design’ is limited.
First, principles are considered vague and do not offer concrete solutions but have to be
adapted to each technology. Second, ’Privacy by Design’ is sometimes seen as an obstacle
to innovation or the massive adoption of some technologies. For example, the German
system ’ELENA’ followed ’Privacy by Design’. It was based on an electronic signature
card to protect privacy and separate the database-stored data from the individual, while
keeping the possibility of authentification, but was abandoned due to the limited adoption
of such cards. Finally, information nowadays creates value and revenue, therefore why
would system designers and, more precisely, mobile application developers apply ’Privacy
by Design’ if it is not enforced?
Personal data security and the respect of user’s privacy haunt users, developers and also

lawmakers. In Europe, the European Data Protection Directive (Directive 95/46/EC) was
adopted in 1995. Although at the time the directive was not designed to protect users
of the rapidly evolving technologies, it includes ’Privacy by Design’ principles such as
notification, purpose limitation, etc. A draft of new unified General Data Protection
Regulation was adopted in 2015. The General Data Protection Regulation aims to su-
persede the European Directive and to unify, strengthen and enforce data protection
throughout Europe making ’Privacy by Design’ not only a benefit for users, but a legal
obligation for system designers and developers.
Privacy regulation aiming to control personal data use is also in place outside the EU.

United States regulation includes the Children’s Online Privacy Protection Act (COPPA)
[3] and the California Online Privacy Protection Act of 2003 (OPPA) [4]. Canada has the
Personal Information Protection and Electronic Documents Act (PIPEDA) [5] concerning
privacy. Although those regulations have similarities with European regulation, they are
less severe: for example, PIPEDA does not oblige data controllers and data processors
to notify data owners before processing the data and the opt-out method, where user is
automatically subscribed for services, is a common practice in the US (Europe enforces
an opt-in method, where user must explicitly subscribe to a service).

1.2 Problematic
Information systems often neither follow ’Privacy by Design’ principles no the European
Union regulation principles. The main reason is a gap between those high level princi-

2

1.3 Contributions

ples and concrete systems and developers [6]. Many reports such as [7] propose recom-
mendations on mobile privacy improvement repeating basic privacy notions (e.g., data
minimization, clear notices) but the exact patterns or technical solutions are often miss-
ing. Concrete patterns and guidelines should translate ’Privacy by Design’ and European
regulation principles into developer-understandable language. This gap is also present in
mobile systems.
Mobile privacy was discussed in ’Opinion 02/2013 on apps on smart devices’ by the

Article 29 Data Protection Working Party [8] adopted on 27 February 2013, giving opin-
ions on mobile privacy and some general recommendations were given. The article states
that both the Data Protection Directive and the General Data Protection Regulation are
applicable to mobile systems and to all user-dedicated applications within EU. The article
clearly highlights four main problems related to mobile privacy: lack of transparency, lack
of consent, poor security and disregard for purpose limitation.
The goal of this thesis is to propose pattern-oriented solutions to cope with mobile

privacy problems identified by [8] and to give mobile systems more Privacy by (re) Design.
This thesis focusses on European Union General Data Protection regulation because, first,
this regulation is the most up to date and enforces ’Privacy by Design’ principles. Second,
the European regulation is more severe and widespread, than Canadian or US laws. This
thesis work proposes only client-side mobile solutions (mobile application-oriented). The
server side models, software and implementations as well as client-server communication
are out of scope of this work.
There are a number of reasons for choosing the Android system for case studies. First,

Android is one of the leaders of the modern mobile market. Second, Android is an open
system: on one hand, it can be accessed, analyzed and modified freely providing more
information for research purposes, on the other hand, the Android openness attracts
more malicious actors than other systems. Finally, a number of state-of-the art works
have shown that the Android system is weak. We note that, in spite of the fact Android
is used for the proof of the concept in this thesis, the proposed methodologies are general
and can be applied to any future systems.

1.3 Contributions
Four mobile system problems identified in [8] are the core of the thesis problematic. The
main research question to be answered in the dissertation is ’Can we propose developer-
and user-oriented patterns to give mobile systems more ’Privacy by Design’ and reduce the
lack of transparency, lack of consent, poor security and disregard for purpose limitation
problems?’
This thesis investigates two axes: (1) the architecture of mobile applications and (2)

mobile permission systems.
The following gaps were identified from the state-of-the-art study:

1. Android’s poor code quality: lack of unified architecture (axe 1)

2. Poor mobile permission systems and an absence of user-friendly security notifications
on Google Play (axe 2)

Based on the identified gaps, this dissertation investigates following research questions:

• What architectural design pattern is suitable for Android application development?

3

Chapter 1 Introduction

Poor code can be a major source of security faults. Enterprises, such as EUTECH SSII2,
dealing with iOS and Android application development reported that Android application
developers have more difficulties than iOS developers not only with security aspects, but
also with implementating simple functionalities and clear code. This can reduce the
quality of an application and raise costs. Unlike Apple, Google does not enforce any
architecture or development guidelines for Android, and developers code according to their
experience and knowledge which is often incomplete. Chapter 4 presents an architectural
pattern proposed during the thesis and specially adapted for Android: Android Passive
MVC. This pattern permits even a novice developer to have a good quality code. Following
a concrete pattern developers save time and can focus on system privacy and security,
instead of trying to organize a readable and maintainable code.

• Can a user-friendly privacy indicator be generated using application-related data?

Mobile markets propose similar information about each application available on the mar-
ket to help users choose the most suitable application. This information includes name,
description, note, comments, screenshots, icons and, sometimes, privacy policy. Android
also includes the list of required access to some sensitive interfaces or data - permissions.
State-of-the-art studies showed users cannot evaluate the security or privacy level of mo-
bile applications with the proposed information and need a simpler indicator provided
systematically. Chapter 5 presents a risk warning indicator obtained following an anal-
ysis of permission usage of Android applications from different categories. The pattern
identifies normal permission requests by category and penalizes permissions that are not
representative for a particular category. The permission score built on those patterns
permits a simple security/privacy level of applications to be determined and leverages the
warnings for abnormal applications.

• Can currently used permission systems be improved to cope with European Union
law and Privacy by Design?

State-of-the-art studies showed current permissions systems are not adapted to resolving
the four problems outlined in [8], but, suitably modeled, permissions system should be
able to work those problems out. Chapter 6 presents a novel permission system model
including ’Privacy by Design’ and European Union law notions such as transparency,
purpose limitation and control.

1.4 Document organization
This document is organized as follows.
Part I is dedicated to the context and a study of the state-of-the-art related to the

propositions of this dissertation. Chapter 2 presents the current state of Android applica-
tions development quality and known architectural design patterns. Chapter 3 presents
permission systems and related studies.
Part II presents the methodology and the results of this dissertation in three chapters.

Chapter 4 explains the proposed architectural pattern for Android developers. Chapter
5 details the Android permission usage analysis, category patterns construction and its’

2This thesis is a project of program CIFRE between EUTECH SSII and University of Technology of
Troyes

4

1.4 Document organization

application to Android application classification and risk warning. Chapter 6 presents the
novel permissions system model for mobile devices.
This document ends with the conclusion, a list of related publications and an appendix.

5

Part I

State-of-the-art

Chapter 2

Privacy, Privacy by Design and
European regulation

Abstract

In European Union privacy is recognized as a fundamental human right. This chapter
proposes necessary privacy-related definitions and briefly explains legal principles included
into the Directive 95/46/EC and European Data Protection Regulation. We also present
Privacy by Design principles and make parallels with the Directive and similar principles
and concepts known in computer science and computer security fields. We conclude that
Privacy by Design is now become a legal obligation in European Union and not simply a
benefit. System developers, including mobile developers, must integrate Privacy by Design
into their design and development process and need privacy empowering options to be able
to understand and to follow Privacy by Design.

9

Chapter 2 Privacy, Privacy by Design and European regulation

2.1 Privacy in European Union
The right for privacy is currently protected in many countries. United States regulation
includes the Children’s Online Privacy Protection Act (COPPA) [3] and the California
Online Privacy Protection Act of 2003 (OPPA) [4]. Canada has the Personal Information
Protection and Electronic Documents Act (PIPEDA) [5] concerning privacy. In European
Union privacy was originally protected by European Data Protection Directive 95/46/EC
[9] that was adopted in 1995 and is dedicated «to protect the fundamental rights and
freedoms of natural persons and in particular their right to privacy, with regard to the
processing of personal data». To homogenize the privacy protection law over the Euro-
pean Union it was decided to supersede the Directive by the European Data Protection
Regulation [10] that will be applicable in European Union without a need for national
implementing legislation. On 25 January 2012, the European Commission unveiled a
draft for European Data Protection Regulation enforcing the same principles all over the
European Union [11]. The regulation enforcement should begin in December 2017.
The personal data is defined in the Directive 95/46/EC as follows: «Personal data

shall mean any information relating to an identified or identifiable natural person (“data
subject”); an identifiable person is one who can be identified, directly or indirectly, in
particular by reference to an identification number or to one or more factors specific to
his physical, physiological, mental, economic, cultural or social identity». Additionally
to personal data, the Directive defines particular type of personal data named sensitive.
The «data revealing racial or ethic origin, political opinions, religion or other beliefs and
health or sexual life», are considered sensitive by the Directive and require additional
protection, because such data, if revealed, could «pose a risk to the data subject» .
Any processing (accessing, storing, modifying, transferring, etc.) of personal data is

protected by the EU law. A controller is defined by the Directive as a natural or legal
person or an authority who «alone or jointly with others determines the purposes and
means of the processing of personal data». Processor is someone who «processes personal
data on behalf of a controller». Controller and processor have a legal responsibility of
being compliant with the law.
The personal data cannot be processed without the consent or the data subject. Data

Protection Directive define consent as «any freely given specific and informed indication
of the data subject’s wishes». The consent should be rather given explicitly (required for
sensitive data) or in a way that leave no doubt about the fact the person agrees with the
data processing. For consent to be valid, data subject:

• must have been under no pressure and must have a real choice without any «negative
consequences if he/she does not consent»

• must have been informed about the data usage it’s purpose and consequences with
adapted language

• must have the possibility to withdraw consent (even if this right is not directly
defined by the Data Protection Directive, it is widely presumed)

Directive 95/46/EC defines five principles for private data processing: lawful processing;
purpose specification and limitation; data quality; fair processing; accountability [12].
Any system processing personal data should integrate those principles to be compliant
with the European law.

10

2.2 Privacy by Design

• Lawful processing means the data must be processed «in accordance with the law»;
if it «pursues a legitimate purpose»; and «is necessary in a democratic society in
order to achieve the legitimate purpose».

• Purpose specification and limitation principle states that the purpose should be
clearly defined and visible before any data processing starts. Personal data cannot
be used beyond the defined purpose.

• According to the data quality principle, data must be «adequate, relevant and not
excessive in relation to the purpose for which they are collected and/or further
processed» (the data relevancy principle), «accurate and up to date» «in the content
of the purpose» (the data accuracy principle) and must be deleted, anonymized1 or
pseudonymised2 as soon as the goal is achieved (principle of limited retention).

• The fair processing principle state the data processing must be transparent: data
subject should clearly understand what of his private data is used, how, who is using
this data and for what purpose. System should ask user’s valid consent. Finally,
user should have a free access to the collected data.

• Accountability principle state controller must ensure the security of the personal
data and must be able to demonstrate the compliance of the data processing with
the data protection principles.

Principles defined by the Directive are based on the Fair Information Practice Principles
proposed in 1973 by a U.S. government advisory committee and adopted by some U.S.
states and some countries. Fair Information Practice Principles includes eight principles:
purpose specification, use limitation grouped into the purpose specification and limitation
principle by the Directive; data quality and collection limitation that become data quality
principle; openness and individual participation grouped into fair processing principle;
security safeguards, and accountability are included in the accountability.

2.2 Privacy by Design
«Privacy by Design» was introduced by Dr. Ann Cavoukian in 2012. She claims any
system must integrate privacy principles and must do it at the software design stage.
Privacy by Design includes seven key principles [2]:
1. Proactive, not reactive
Privacy should be an important part of the system conception: privacy violation possi-

bilities should be identified during the design part of the system and the protection should
be anticipated. Effective privacy policy should be defined for each system using personal
data.
2. Privacy as the Default Settings
All systems must be made taking the privacy principles as the basic and the most

important. Principles as data minimization, unlinkability, data aggregation, use limitation
and purpose specification should be applied.

1The anonymized data is aggregated and do not contain any personal information and can not be linked
any more to any person.

2In pseudonymised data personal identifiers are replaced with pseudonymes most often by encryption.
Pseudonymised data is considered personal as the data can be relinked to the natural person when
the decryption key is known.

11

Chapter 2 Privacy, Privacy by Design and European regulation

• Data minimization refers to the concept the require to minimize the personal data
collection, storage, treatment, access, identifiability and disclosure to a strict nec-
essary to perform a task. This principle is implicitly included into the data quality
principle of the Directive 95/46/EC. This principle joins the principle of least priv-
ilege of information security stating that any system unit or user should have the
minimum privileges necessary to achieve the goal. The minimization principle re-
duce the possible damage could be done by a malicious actor and possibilities of
data or system misuse.

• Unlinkability refers to the concept making impossible to determine that two items
or users are related to each other and represent the same person. This principle
is implicitly included into the data quality principle of the Directive 95/46/EC.
This privacy principle is similar to the privilege separation principle in software
development and computer security. Privilege separation states that the software
should be divided into parts with limited privileges each that would permit to reduce
the damage from possible attack.

• Data aggregation in privacy refers to a summarizing of the initial data into a certain
statistic eliminating all information that may directly identify the person. This
principle joins the anonymity principles such a k-anonymity, l-diversity, t-closeness
and differential privacy and also joins the data quality principle of the Directive
95/46/EC.

• According to purpose specification principle (one of the Fair Information Practice
Principles), the collection and any usage of personal data must be limited to a
defined and limited purpose. The purpose should be specified before any usage
starts.

• Use limitation is also one of the Fair Information Practice Principles that states the
data cannot be used or disclosed beyond the predefined purpose without the user’s
consent.

3. Privacy embedded into design
Privacy features specific to the system must be identified and embedded from the con-

ception. Talking about the computer systems and security, this principle is related to the
idea of software design and design patterns. Software design is the process done before
the actual programming. During this phase developer analyses requirement for the future
software, defines needs, solves upcoming problems and plans the software and develop-
ment process. Software design covers algorithm design, architecture as well as security
and code quality questions. Design patterns define reusable solutions for common prob-
lems and allows gaining in development time and software quality. Software developers
dispose high number of predefined patterns for the design and development process, such
as creational, structural, behavioral and architectural patterns, but also security patterns
and user interface patterns. A few privacy patterns and architectures also exist. Based
on the data processing principles, the author of [13] proposes privacy design strategies to
be applied during the system design stage: minimise, hide, separate, aggregate, inform,
control, enforce demonstrate. The authors of [14, 15] propose a set of privacy design pat-
terns related to some of the proposed strategies. The summary of the privacy preserving
techniques and pattern can be found in [16].
4. Full functionality

12

2.3 Conclusion

This principle consists of the integration of privacy keeping the full functionality without
sacrificing neither security, nor privacy. The security of the systems must not be based
on privacy: privacy-respectful security solutions must be found.
5. End-to-end security
The proper security mechanisms should be applied to ensure the data safety though

the full data lifecycle. This idea implies the computer security Defense in Depth concept
(or Castle Approach) where system should have multiple layers of security and certain
redundancy in security control all over the system and it’s lifecycle. This way, if one
security measure fails, the next one still protects the system and allows to gain time to
be able detect and respond to an attack.
6. Visibility and Transparency
The service and data usage should be clear for the user: he should understand what

data is used for what purpose and should be able to control his private information. This
principle is clearly referred in the Directive 95/46/EC by the fair processing principle, the
purpose specification and limitation principle and the definition of consent. In information
technology, this principle gives particular importance to the user interface, as the user
should understand clearly what happens with his data.
7. Respect for the user
System should propose a number of privacy-empowering options for the user. This

«Privacy by Design» principle reflects the «Privacy by Default» principle: default param-
eters of the system should respect the privacy and the user should change them himself to
be more exposed. By default the user privacy should be protected without any additional
action from the user. In computer security, this principle joins the principle of «Security
by default» that states that the default security of the system must provide the maximum
level of security even if the system becomes less user-friendly. User should make explicit
actions to reduce the security level. This principle also rise the importance of the user
interface. The user interface design as well as privacy and security-related notifications
must be clear to not misguide the user.

2.3 Conclusion
This chapter provided an overview of privacy law in European Union and linked the legal
principles with Privacy by Design principles and some computer system and computer
security concepts. Most of Privacy by Design principles are integrated into the Directive
95/46/EC and to the European Data Protection Regulation but some principles go beyond
legal obligations such as «proactivity» and «respect for the user» even if they are implicit
for the Directive. One can see that Privacy by Design become not only a benefit for the
final users, but also a legal obligation in European Union.
Both the Directive 95/46/EC and the European Data Protection Regulation are ap-

plicable to mobile systems and mobile applications [8]. This thesis investigate existing
mobile systems regarding Privacy by Design and propose a number of privacy and security
empowering options covering all seven «Privacy by Design» principles.

13

Chapter 3

Architectural design patterns and
mobile development

Abstract

The code quality is important for fast development, group work, performance, project
evolution and even security. Developers, even using different programming languages,
meet similar problems over and over. To save time and ensure quality, the predefined solu-
tions called «design patterns» are often used. This chapter explains and compares the state
of the art of the architectural design patterns such as model-view-controller, model-view-
presenter, presentation-abstraction-control and hierarchical-model-view-controller from the
state of the art. The background on Android development and iOS architecture is also given
as well as the state-of-the-art of the architectures and design patterns related to mobile
development.

15

Chapter 3 Architectural design patterns and mobile development

3.1 Introduction
The mobile market has grown rapidly in recent years. Many companies propose their
services with mobile applications, and the number of mobile applications available to
users increases every day. Compared to computer programs, mobile applications often
have limited functionalities, shorter shelf life and lower price. New applications must
be developed fast to be cost-effective and updated often to keep users interested. The
quality of the application should not be neglected, as mobile users are very pernickety
and competition is stiff. Moreover, the code quality directly affects the security of the
software.
In spite of the fact that most programs and applications seem different, developers meet

similar problems to be solved over and over again. Instead of reinventing a solution, the
faster way to produce good quality code is to apply already provided solutions, which are
often called «Design patterns». Design patterns were first described by the «Gang of Four»
in 1994 [17] and remain highly usable in different programming languages. Nowadays
many types of design patterns are available to developers: structural, behavioral, security
oriented, architectural, etc. Architecture choice is important to ensure quality for mobile
applications: mobile applications, as well as other systems, can be complex and evolve
over time.
Suitable predefined architecture can improve the development time and application

quality by liberating developers from some of the technical choices. It also improves the
three non-functional requirements of software structural quality: extensibility, maintain-
ability and performance. A defined architecture could additionally reduce the complexity
of the code, simplify the documentation and facilitate collaboration work [18].
This chapter provides a state-of-the-art of architectural design patterns in the order

historical appearance order and also gives an overview of iOS and Android development
components.

3.2 Architectural design patterns
In order to apply suitable architecture to Android development, the existing architecture
should be analyzed. This chapter presents the existing architectural design patterns in
order of appearance in the literature.

3.2.1 Model-View-Controller (MVC)
Presented in 1978, Model-View-Controller is the oldest design pattern and has been suc-
cessfully applied to many systems since its creation [19, 20, 21].
The goal of this model is to separate business logic from presentation logic. The business

logic modifications should not affect the presentation logic and vice versa [19]. MVC
consists of three main components: Model, View and Controller. The Model represents
data to be displayed on the screen. More generally, Model is a Domain model that contains
the business logic, data to be manipulated and data access objects. The View is a visual
component on the screen, such as a button. The Controller handles events from user
actions and communicates with the Model. The Controller also communicates with the
View directly if the Model does not need to be changed (e.g., scrolling action). The View
and the Controller depend on the Model, but the Model is completely independent. The

16

3.2 Architectural design patterns

design pattern states that all Views should have a single Controller, but one Controller
can be shared by several Views.

Figure 3.2.1: a) Classic MVC, b) Application Model MVC

The scheme of Classic MVC and Application Model MVC is shown in Figure 3.2.1. The
Classic MVC is shown on the left (a) and the AM-MVC is shown on the right (b). The
scheme of Passive Model MVC is shown in Figure 3.2.2.

Figure 3.2.2: Passive Model MVC

In Classic MVC and Passive Model MVC, Controller handles events and communicates
directly with a Model that is indicated by a black arrow. In the Classic MVC the Model
processes data and notifies the View. The View handles messages from the Model and
updates the screen using the data received from the Model. This behaviour is implemented
using the Observer pattern (grey arrow in Figure 3.2.1). Conversely, the communication
between the Model and the View in Passive Model MVC is done exclusively via the
Controller. The Model notifies the Controller which then notifies View and finally the
View makes changes on the screen [22].
The AM-MVC is an improved Classic MVC with an additional component. The Ap-

plication Model component was added for the presentation logic (e.g., change the screen
colour if the value is greater than 4) that was often previously added to View or Controller
previously and makes a bridge between the Model and the View-Controller couples.

17

Chapter 3 Architectural design patterns and mobile development

3.2.2 Presentation-Abstraction-Control (PAC)
The PAC architecture was introduced in 1987 [23]. This architecture aims to improve
the modularity of the system which is limited with MVC. PAC proposes that the sys-
tem functionalities be decomposed into hierarchically organised cooperating agents each
responsible for a particular task. Each agent manages part of the user interface and
maintains its data and state. Some agents could also exist without any particular user in-
terface but coordinating other agents. The system can be extended by additional agents,
the modification of one agent should not affect other agents.
Each agent of the PAC system consists of three components: Presentation, Abstrac-

tion and Control. Presentation component contains the presentation logic. Abstraction
component contains the functionality of the agent and the data it maintains. Control
component links the Presentation and the Control acting as an adapter and allows com-
munication between agents. One can see that the PAC agent is organised in the same
way as Passive MVC with the difference that the user events are intercepted by the Pre-
sentation component [24]. Figure 3.2.3 depicts the architecture.

Figure 3.2.3: PAC architecture

Agents are organised in a hierarchy where lower level agents depend on their parents.
High-level agents contain the core functionalities, manage the database and main interface.
Low-level agents maintain particular functionalities, particular interfaces, the information
about the interface and intercept actions from users. Lower level agents could, for example,
manage different sensors. Intermediate-level agents combine, maintain and coordinate
low-level agents.
The actions intercepted by the low-level agents can be redirected to the upper agents to

access their functionalities, the outgoing events such as an error event is also transferred
to the particular ’error manager’ agent via parentalControl components. The changes in
high-level agent’s data are also transferred to collaborators agents.
This architecture allows a very modular system with communicating agents to be con-

structed but the system can become very complex with a rapidly growing number of
agents. The organisation or communication between agents can also become complex.

3.2.3 Model-View-Presenter (MVP)
The Model-View-Presenter was introduced in 1996 as an MVC adaptation for the modern
needs of event-driven systems [25]. The model consists of three components: Model, View
and Presenter. In this model, the View represents a full screen and it handles events from
the user actions. The Presenter is responsible for the presentation logic. The Model is a
Domain model.

18

3.2 Architectural design patterns

Figure 3.2.4: Supervising controller and Passive view

There are two types of MVP: Supervising controller and Passive view. Both models are
shown in Figure 3.2.4. The Supervising controller uses the Observer-Observable pattern
for the communication between Model and View. The View can interact directly with
the Model to save the data if there is no change to be made on the screen. Otherwise, the
communication between the View and the Model is made via the Presenter. Interaction
between View and Model of the Passive View MVP is done exclusively via the Presenter
[25].

3.2.4 Hierarchical-Model-View-Controller (HMVC)
The Hierarchical-Model-View-Controller was first introduced in 2000 and is similar to PAC
architecture. HMVC is presented as a Classic MVC adaptation for Java programming
[26]. This model takes into account the hierarchical nature of Java graphical interface
components: the main window frame contains panes that contain components. The
authors propose creating layered architecture for the screen with Classic MVC triads for
each layer communicating with each other by Controllers. The HMVC model is shown in
Figure 3.2.5.

Figure 3.2.5: Hierarchical-Model-View-Controller

Thereby the child Controller intercepts methods from its View. If the View of the
upper hierarchy (parent View) needs to be changed, the child component informs the
parent Controller, which makes the changes. The communication between layers is made

19

Chapter 3 Architectural design patterns and mobile development

exclusively via Controllers. Unlike PAC, the Controllers of HMVC have direct access to
the Model and to core components without interacting with the high-level triad.

3.3 iOS system and architecture
The logic of iOS applications is similar to Android applications, therefore the iOS expe-
rience should be taking into account while choosing suitable architecture for Android.
iOS is an OS X based system adapted to mobile devices. It only runs on mobile devices

manufactured by Apple: iPod, iPhone and iPad. iOS developers use specific languages
called Objective-C and Swift to create mobile applications.
The base architecture for mobile iOS applications is an adapted Passive MVC. Like the

original Passive MVC, the iOS architecture is based on three components: View, Model
and Controller. Models and Views are independent and communicate with each other
only via Controllers. The communication between Controllers and Model is organized via
an Observer-Observable pattern.
Views and Models are highly reusable. Multiple Views are already provided by Apple:

SplitView, TableView, ImageView, PageView, CellView, WebView, MapView, TextView,
ButtonView, etc. Controllers are less reusable, they link Views with Models, set up the
Views (contain presentation logic), and intercept actions made on View to call meth-
ods from the Model. Many controllers are already predefined in iOS: ViewController,
SplitViewController, TableViewsController, etc.
There is a main controller for each screen or a group of screens exists in iOS applications.

For example TabBar represents a menu, and there are as many screens as tabs in this
menu. All screens are managed by the same controller - TabBarController. Each screen
can embed other Views that can have a corresponding Controller or can be managed by
the parent Controller.

3.4 Android system and architecture
Android is a Linux-based open source operating system designed for mobile devices. An-
droid was first presented by Google in 2007 and in spite of huge competition from Apple
has been the leading smartphone platform since 2010. Android is widely used on smart-
phones, tablets, smart watches and even smart TV of different suppliers. Google continues
to work on the system systematically integrating new features and correcting bugs. Many
manufacturers of smartphones and tablets adopted this open-source solution; the National
Security Agency (NSA) and National Aeronautics and Space Administration (NASA) also
chose Android for their projects.
Android applications are available for users via the market store - GooglePlay - that in

2015 contained about 1 860 000 applications. GooglePlay is a distribution system that
does not include any application verification or certification: the Google Play contract
states that the developer is fully responsible for the published application. Although,
Google propose many guidelines and tutorials, including security and privacy sugges-
tions, to help developers produce high quality application, Google Play does not control
any application nor its behavior. Applications are self-signed by developers and become
available on the market a short time after the publication.
Android applications can be also distributed via alternative markets as well as via

emails or the web; users need to allow the non Google Play application installation in

20

3.4 Android system and architecture

parameters.
Android applications are mainly written in Java using the Android SDK [27]. The code

is compiled to be executed on the Dalvic virtual machine on a smartphone. Additionally,
developers can use the Native Development Kit (NDK) to add a C or C++ written
code referred to as native. NDK allows more advanced features and better performance,
however, the complexity of the code increases with the quantity of native code [28] – hence
Google suggest minimizing the use of this kit.
Google do not impose any particular architecture on developers, but proposes different

types of components for different needs. An exhaustive description of Android develop-
ment environment and modules can be found in [29]. Principal Android components are
briefly explained below.
Four principal components of Android SDK are used in Android application devel-

opment: Activity, Service, Content provider and Broadcast receiver. Developers use
predefined extendable classes to implement those components.
Activity is a main mandatory component of Android applications created when the

application is opened. The simplest Android application can contain only the class im-
plementing the Activity. Activity is also the entry point to the application: to start the
application the system must launch the Activity component. Applications can make the
Activity public to share the proposed functionality.
There can be several Activities in the application but only one is active at a time. The

Activities history is saved: the system automatically maintains the stack of Activities and
opens the previous Activity with its last state when the button ’back’ is pressed. The
oldest Activities are deleted from the stack for other memory usage.
The Service works on the background of an application permitting the execution of long

tasks (e.g., file download) without freezing the screen. When the application is closed,
unlike Activity, the work of the Service is not interrupted. Service can communicate
directly with the Activity it is attached to.
The Content provider component gives access to the local data stored in SQLite databases.

Content provider is aimed to be used for the data sharing between applications but can
also be used internally.
The Broadcast receiver is a messaging system that enables communication inside the

application and between multiple Android applications installed on the phone.
In 2010, Google introduced a new component into the Android systems called Frag-

ment. Fragment is a new extendable class available in the Android SDK. Visible interface
elements can now be controlled by Fragments instead of Activity, which permits the elab-
oration of more flexible interfaces. Part of the interface can be changed by replacing one
Fragment with another Fragment. Each Fragment is attached to the Activity and main-
tains access to the Activity. Fragments main intention was to simplify the adaptability
of an application between smartphones and tablets where two screens on a smartphone
can become a single screen on a tablet due to the size difference. Fragments increase the
modularity of the Android applications.
Although there are no defined and named architectural patterns for Android, one can

observe that Android SDK already integrates many simple predefined View components
such as Button, TextView, ImageView, EditText and also more complex Views such as
ListView, GridView, etc. One can also find several Controller-like components such as
ViewFlipper, ViewSwitcher, etc. Views can be combined together on the screen using an
xml file helping to define a layout and can embed other Views, defining the appearance.

21

Chapter 3 Architectural design patterns and mobile development

3.5 Mobile architecture related works

The questions of mobile architecture and the mobile development process have been in-
vestigated since the first mobile devices, such as mobile phones and Personal Digital
Assistants (PDA), appeared.
Several works have been conducted on high-level aspects (software development method-

ology and project management) aspects studying the appropriateness of Agile method-
ology1 and proposing new methodologies for mobile application development: A Hybrid
Method Engineering Approach [30], MobileD [31], etc. Among other aspects, the reusabil-
ity of components was noted as a very important one.
Some authors were focused on web service-based mobile applications. The authors

of [32] proposes a Balanced MVC architecture to partition the core of the application
optimally between client and server for different types of application. In [33], the authors
study the gap in mobile service-oriented application and propose a mediator layer between
the mobile device and the server to fill the gap. Those authors do not include any concrete
client-side architecture.
Other works were conducted on the low-level (architecture) issues. The authors of [18]

conducted an experiment on the impact of design patterns on Agile mobile development
and proved that iterative development benefits from defined architectures and patterns.
The authors of [34] analyzed the possible cases of application of MVC and PAC archi-
tectures in mobile J2ME and Symbian development and concluded that PAC is slightly
more suitable due to the modularity of the interface. Authors such as [35] propose some
guidelines for designing and developing mobile applications based on a single concrete
implementation example.
Concerning Android systems, authors mostly concentrated on security and privacy

problems rather than on application architecture. The only work on Android development
proposes performing communication between all Android components via interfaces [36].
To our knowledge, no other work has been conducted on architectural design patterns on
Android.

3.6 Conclusion

Previous researches and development experience proposed numerous architectural pat-
terns: MVC, AM-MVC, MVP, PAC, HMVC. Although those architectures are well-known
and widely used for different programming languages, not many works on suitable archi-
tecture for mobile development have been carried out. Only a few works study the impact
of architectural pattern and design patterns on mobile development. Although the results
showed that patterns are beneficial for mobile development, the modern Android system
does not impose, explain or integrate clear architectural design patterns. iOS system
developers integrated the MVC-like architecture and hides the complexity from develop-
ers with the dedicated integrated development environment (IDE). Android developers
should choose suitable architecture instead of concentrating on functionalities, security
and usability that may decrease the application quality. The quality of the architecture
chosen by developers is highly dependent on their previous experience. The EUTECH

1Iterative methodology that split the full projects into small tasks and permits to deliver a part of fully
functional and tested software at the end of each iteration.

22

3.6 Conclusion

SSII company also reported that Android development is more costly and less evolutive
than iOS applications and one of the reasons is the architectural choice.
In this thesis, we bridge the gap of Android client-side architectural pattern choice. The

study analyses the existing architectural patterns and its current adoption by Android
developers and then propose a detailed architecture suitable for Android applications
named Android Passive MVC.
The summary of architectural patterns presented in this chapter is shown in the Table

3.1. Each column in the table represents the architecture in historical order from left
to right. Each row gives comparative attributes: components involved into the pattern;
hierarchy supports; responsibility for visualization, event interception and presentation
logic; responsibility for the data; involvement of core functionalities and, finally, the
communication mechanism between the components. The last column summarizes the
Android Passive MVC (or Android MVC) proposed in this thesis.
All architectures have similarities, but differ in the way the components are named,

the responsibility of each component and the communication between them. All archi-
tectures are based on three components with the exception of AM-MVC, which has four
components. PAC and HMVC are hierarchical, supporting hierarchical interfaces as well
as Android MVC. Most of the architectures do not explain the place of the core logic
regarding the components except PAC that explicitly divides all software into coopera-
tive agents where each agent is responsible for a piece of the core logic. Android MVC
includes an explanation of Domain Model and its position regarding other components.
We observe two types of communication processes in the proposed architectures: com-
ponents rather communication via Observer-Observable patterns or via an intermediate
component and choose the second for Android MVC.
All models presented in this chapter are general and the Android MVC proposed in this

thesis joins the family of the state-of-the art models. To distinguish the proposed model
from Android, it could be called Hierarchical Passive MVC.

23

Chapter 3 Architectural design patterns and mobile development

C
lassic
M
V
C

P
assive
M
V
C

A
M
-

M
V
C

Supervising
controller
M
V
P

P
assive
V
iew

M
V
P

PA
C

H
M
V
C

A
ndroid
M
V
C

C
om

ponents
M
odel

V
iew

C
ontroller

M
odel

V
iew

C
ontroller

A
pplication
M
odel

M
odel

V
iew

C
ontroller

M
odel

V
iew

Presenter

M
odel

V
iew

Presenter

Presentation
A
bstraction
C
ontrol

M
odel

V
iew

C
ontroller

M
odel

V
iew

,
C
ontroller

H
ierarchy

x
x

x
x

x
Triads

by
control

Triads
by

controller
Triads

by
controller

V
isual

com
ponent

V
iew

=
piece

of
screen

V
iew

=
piece

of
screen

V
iew

=
piece

of
screen

V
iew

=
fullscreen

V
iew

=
fullscreen

Presentation
=

piece
of

screen

V
iew

=
piece

of
screen

V
iew

=
piece

of
screen

E
vent

interception
C
ontroller

C
ontroller

C
ontroller

V
iew

V
iew

Presentation
C
ontroller

C
ontroller

P
resentation

logic
C
ontroller

C
ontroller

A
pplicationM

odel
Presenter

Presenter
Presentation

C
ontroller

C
ontroller

D
ata

M
odel

M
odel

M
odel

M
odel

M
odel

A
bstraction

M
odel

M
odel

C
ore

functionalities
x

x
x

x
x

A
bstraction,
high

level
triads

x
D
om

ain
M
odel

C
om

m
unication

V
iew

-
M
odelvia

O
bserver-

O
bservable

V
iew

-
M
odelvia

C
ontroller

V
iew

-
M
odelvia

A
pplica-

tionM
odel

V
iew

-A
M

via
O
bserver

O
bservable

V
iew

-
M
odelvia

O
bserver-

O
bservable

V
iew

-
M
odelvia

Presenter

Presentation-
A
bstraction

via
C
ontrol

V
iew

-
M
odelvia

O
bserver-

O
bservable

V
iew

-
M
odelvia

C
ontroller

Tableau
3.1:

C
om

parison
table

between
architectures

24

Chapter 4

Mobile permission systems

Abstract

One of the security mechanisms embedded into many systems is a so-called permissions
system or an access model providing a subject with rights over an object. We believe
that a well-designed permission system can be a proactive tool that assures transparency
and security. This chapter provides descriptions and comparisons of desktop and mobile
permission systems. The limits of current mobile permission systems are examined in
the light of European legal requirements. The detailed state-of-the-art related to mobile
permission system analysis, modeling and improvement is presented.

25

Chapter 4 Mobile permission systems

4.1 Introduction
A permissions system is a type of security system restricting or giving a right to access a
piece of data or a service and is generally represented as an Access Model where a Right
over an Object is assigned to a Subject.
Traditional desktop systems embed file permission security where a right to read, write,

delete and execute a file or a folder can be given to a particular user (file owner), group
of users or to the public. All programs have the same right as the logged-in user. Mobile
systems modify the logic of traditional permission systems considering that a mobile
device can only be owned by a single user. Therefore, rights are assigned to individual
applications instead of users. Mobile phones also possess particular capabilities such as
phone calls, camera, sensors, etc., and, therefore not only sensitive files are protected with
permissions, but also the application programming interfaces (API) exposing sensitive
services. The summary of desktop and mobile permission systems represented as an
Access Model is given in Table 4.1.
Mobile systems often build a mobile permissions system on top of a traditional file

permission system that allows sandbox security: each application is considered as a single
user that only allows one private folder to be accessed; assigning groups of applications
allows data to be shared between applications; additional mobile permissions allow an
application access to other data or services.

Desktop Mobile
Right Read, Write, Execute, Delete Access, Read,

Write
Object Folders and files Sensitive data:

folders and
databases tables,
Sensitive API

Subject User, user groups, public Application

Tableau 4.1: Desktop and mobile permission systems comparison

To mention some early mobile systems, Symbian OS embedded permissions for sensi-
tive services that were assigned to each application if needed. At earlier stages, Symbian
notified users about requested permissions and assumed the users would be personally
responsible for installing only reliable applications with legitimate permissions. As users
were not able to judge applications, Symbian, subsequently included professional verifi-
cation and mandatory signatures for sensitive rights requests. The Symbian system was
able to run non-signed applications that did not need any particular permission, signed or
system applications with limited capabilities and system applications having full access
[37].
Java Platform, Micro Edition (Java Me or formerly J2ME) is a Java platform designed

for mobile phones, personal digital assistants and other embedded systems. The Mo-
bile Information Device Profile configuration for Java ME is dedicated to mobile device
usage and integrates a permission-based security mechanism. By default, only network
connection-related permissions are available, such as permission to connect to a socket,
open http or https connections or establish ssl connections, but other permissions could
be integrated. All applications are run in one of four security domains created by manu-
facturers: untrusted, trusted, minimal or custom.

26

4.1 Introduction

• Untrusted domains prompt the user when a permission is required

• Trusted domains grant all permissions automatically when required

• Minimal domains reject all permissions automatically

• Custom domains can specify if the permission interaction mode is ’allowed’ - per-
mission should be granted automatically or ’user’ - permission should be prompted.
An example of prompted permission is shown in Figure 4.1.1.

All permissions that are not mentioned in the domain configurations are rejected. Per-
missions have three granting modes: oneshot, session and blanket.

• Oneshot means the user’s decision will be used only once and will not be remembered

• Session means the decision will be remembered until an application is closed

• Blanket means the decision will be kept in the memory until the application is
de-installed

Mobile applications named MIDlets are installed into different domains based on their
credentials: third party identified, non-identified, manufacturer, etc., thereby protecting
users from malicious third party applications.

Figure 4.1.1: Java ME MIDlet asks for a permission.

Modern mobile systems such as Android and iOS also include mobile permission sys-
tems. The iOS default systems can run only applications verified and signed by Apple.
The iOS platform allows non-native applications access to the functionalities listed in
privacy settings: location services, contacts, calendar, reminder, photos, microphone and
Bluetooth (sensitive data, such as SMS and e-mails are not shared at all) and sends push
notifications. The connection to Facebook, Twitter, Flickr and Vimeo was added to the
platform on iOS7. Apple controls and prohibits the abusive use of those APIs, accepting in
the Apple Store only the applications that passed the quality control. Some permissions,
such as contacts and calendar access, are automatically granted by Apple verification,
but other permissions such as location, push notification and Facebook access, require

27

Chapter 4 Mobile permission systems

he user’s decision. Developers should request permission in the code before the actual
permission usage; the application displays a pop-up explaining what permission is needed
when the code is reached. Developers can also add a custom text to each permission
to clarify the permission’s usage adding the custom message into Info.plist using corre-
sponding permission keys, but this is not mandatory. An example of permission request
on iOS is presented on the left in the Figure 4.1.2. The user can accept or decline the
permission. If permission is declined, the corresponding action is not executed. If the
permission is accepted, the application obtains access to the corresponding API. The user
is asked to grant permission only once, but he can enable or disable such permission for
each application in privacy settings integrated by default into the iOS.
Android applications are not certified by Google and do not need any particular sig-

nature to run on the Android system. To cope with malware, Google introduced the
‘Bouncer’ security feature that can verify any application just before its installation on
the device. Bouncer also scans Google Play for possible malware, but can be bypassed.
Concerning non-explicit malware applications, users must check all available information
themselves to judge if an application is legitimate and not potentially harmful or abusive.
The user is fully responsible for installed applications and Google only provides useful
information to help make the judgement: description, comments, notes and permissions
required.

Figure 4.1.2: iOS (left) and Android (right) systems ask for permissions.

The Android system remains a sharing principle: applications can have access to all
native applications’ data and services and can share the data themselves. Android has
a predefined list of permissions that developers can use. According to the extract from
Nexus 4 in November 2014, Android 4.4 contains 229 permissions of different levels: 30
normal, 48 dangerous, 11 development, 70 signature and 70 signature or system per-
mission. Third party application may only use 89 Android permissions as signature or
system permission are only intended to be used by manufacturers. If an application needs
access to a protected interface or data, developers should explicitly add permission into
a dedicated file called Android Manifest; this way, each application is associated with a
list of permissions. Normal permissions will be automatically granted during installation,

28

4.2 Limits of modern mobile permission systems

the user will be prompted about dangerous permissions, development permissions will
be granted if the corresponding developer option is active on the device. An example of
permission prompt is shown on the right in Figure 4.1.2. The user has to accept a full list
of permissions before installing an application and no permission can be revoked during
or after installation.
Android did not initially include a iOS-like default system permission manager (privacy

settings), therefore the user had to enable or disable the entire functionality to disable
access to related data (e.g., Wi-Fi or 3G for Internet connection; GPS for geolocation)
or to use additional privacy enhancing applications. This feature only appeared with
Android 6.0 Marshmallow in September 2015.
Native Android permissions have similar prefixes: ’android.permissions.{*}’. For exam-

ple the permission for the Internet access is defined as ’Android.permission. INTERNET’.
Only five Android permissions are prefixed by ’com.android.{*}’: browser, alarm, launcher
and voicemail related permissions. Custom permissions that developers define to protect
new interfaces to share services or data can be named freely: Google does not impose any
naming rules.
Table 4.2 sums up the iOS and Android permission systems. For each system, we

present the goal of the permission, the number, the type of application verification, noti-
fication, granting and revocation mechanisms as well as the types of rights protected by
permissions. The last line represents the requirements of privacy policy.

iOS Android
Goal Notification and control Security judgement

Number 10 89
Verification Apple certification Verification for

malware
Notification Some permissions by pop-up Dangerous

permissions on
pre-installation

Granting Apple or in-context All-or-nothing,
pre-installation

Revocation Individual, in-context, settings All-or-nothing,
de-installation

Rights Access Access, Read,
Write

Privacy policy Required for children’s apps Not required

Tableau 4.2: Comparison of iOS and Android permission systems.

4.2 Limits of modern mobile permission systems
Permission systems are embedded into mobile modern operating systems and manage
rights for all installed applications. In theory, the permission system should help ap-
plications to comply with the law and provide Privacy by Design. In this section the
permissions systems of Android and iOS are evaluated regarding Privacy by Design prin-
ciples and European Directive regulations.

29

Chapter 4 Mobile permission systems

• It states, that users should clearly understand what data is used, how and for what
purpose. The purpose should be clear, explicit and legitimate.

The authors of [38] analyzed 1 application from 10 categories and concluded that Android’s
permission system lack user’s consent and does not adequately protect user’s private data:
users need a simpler solution to make decisions about privacy and the security of Android
applications.
It is a recognised fact that users do not understand many default Android permissions

and fail to judge the application privacy and security correctly using the permission list
[39, 40, 41]. In [39], the authors found users often do not understand the terms used in
Android permissions (e.g. phone state, phone id, coarse location, account authenticator,
etc.) and are unable to judge the security and privacy aspects of displayed permissions.
Even people who are knowledgable about information technology and experienced at using
Android had difficulties understanding many permissions. Many users do not understand
why displayed permissions are needed for the application to function and cannot link the
functionality with a permission. The authors found users do not have enough background
to judge applications, moreover many users reported they thought all the applications on
the market were monitored and trusted.
In [41], authors studied the usage and comprehension of ACCESS_WIFI_STATE An-

droid permissions and found the the users do not understand the privacy risk related to
this permission. The same study shows, that ACCESS_WIFI_STATE is used by some
application to geolocalise users without requiring the dedicated permission.
In [40], the authors performed a survey and a laboratory study to see if users pay atten-

tion and understand Android permissions. The attention and understanding rates were
low for both studies, but a very small group of participants showed good comprehension
of permissions. Only 3% of participants could correctly identify 3 shown permissions. A
high proportion of the laboratory study participants did not know about permissions at
all. This study confirms that most users cannot judge Android applications with the help
of the current permission system and do not link a particular permission to a possible
risk: the current permission system lacks this information.
The authors of [42] studied the effectiveness of on-installation permission based systems

on Android. In principle, the list of permissions should warn users against installing
malicious applications, the impact of application’s vulnerability should be limited by
permissions and the application review ought to be simple and concentrate on dangerous
permissions. The authors found that the majority of Android applications have at least
one dangerous permission. Many of them allow access to personal information and to
the Internet at the same time, which can potentially generate data leakage. Manual
verification showed excessive permissions added in error and the functionalities that could
be developed with less permission. They also point out that during installation the user
is prompted about dangerous permissions and will not pay attention to frequently asked
permissions such as Internet.
Those studies show that the Android permission system is failing to provide adequate

information about data usage. Moreover, both iOS and Android default permission sys-
tems usually inform us about data access, but not about any other data processing. For
example, no permission is needed to transfer the data. Android and iOS include permis-
sions for functionalities that can be related to personal data transfer, such as Bluetooth
and Internet, but there is no indication of whether personal data is involved in a trans-
action; Internet access can be either harmless or harmful depending on the context.
Android and iOS permissions do not include purpose explanations. An iOS application

30

4.3 Mobile permission analysis

helps users to understand the purpose by asking some permissions in-context, but if an
application has been granted permission once for one functionality it could use it again for
a different purpose without informing the user. Moreover, the developer is not obliged to
ask for a permission just before the action and in the right context, the only condition of
the platform is to request the permission before the actual permission use. iOS developers
have the possibility of adding a custom message to the permission requested, but it is not
compulsory. Developers also tend to add unclear explanations about the purpose such as
“To improve the service” or “To improve the user experience”. Android users can only
guess what the permission is used for and whether the use is legitimate.

• Users should explicitly agree with a permission and to have a possibility to disagree
and revoke permissions.

Privacy for mobile users does not necessarily mean anonymity, but rather the possibility
of a choice of what to use, keep and share and when to stay anonymous [43, 44] and to
have a control over their data.
The control over permissions is very limited on Android. It has been shown that users

tend to install Android applications regardless of permissions, as they want the particular
service; users know that all permissions must be accepted to obtain it [45]. The Android
permission list looks like a license agreement on a desktop application which everybody
accepts but very few actually read [46].
Some iOS applications request many permissions on the first launch of applications,

therefore many pop-ups appear one after another. The repetition of notifications leads to
the fact the users do not read them. Moreover, until recently, Apple authorized the use
of device identification: this identification number was not considered private. Many ap-
plications used this number to uniquely identify their users, therefore, many applications
were considered privacy intrusive [47].

• Data treatment should be limited and adequate regarding the purpose. The data
storage should be limited and the minimization principles should be applied.

The authors of [48] studied the user perception of an application having permission to
access data at different moments of application usage. They found that if an application
needs user action to perform something (e.g. send sms), users expect the application to
only demand/request permission to perform an action when the user-event occurs. There
is one exception: users are less sensitive to geolocation access and assume applications
have permanent access. Currently, Android and iOS do not add any conditions to granting
permissions.
Neither permission system is very fine-grained. First, there are neither conditions,

nor limits assigned to permission usage once the permission is granted. Second, one
permission, such as address book access permission, actually manages a lot of data such
as full names, phone numbers, addresses, etc, where the application probably only needs
the full name to function.

4.3 Mobile permission analysis
This section gives an overview of studies related to Android and iOS permission analysis.
Subsection 4.3.1 presents studies related to permission list analyses of Android benign
and malware applications. Subsection 4.3.2 presents Android permission use analysis

31

Chapter 4 Mobile permission systems

tools. Subsection 4.4 details works dedicated to helping users to verify or to configure
Android and iOS applications. Subsections 4.5 detail all improvement to current permis-
sion systems already proposed by the state-of-the-art. Subsection 4.6 presents static and
dynamic analyses tools permitting analysis of the data flow in Android applications. The
final section presents some other permission-related works that did not belong to previous
subsections.

4.3.1 Permission request analysis
Many works analyzed permissions required by applications. The analysis of malware ap-
plications aimed to define permission patterns that help malware detection. The analysis
of benign applications aimed to find correlations between permission requests and other
parameters such as is price, category, rating, etc., and also to compare malicious and
benign application requests.

4.3.1.1 Benign applications

Several studies have been made on Android permission analyses.
In [49], the authors analysed the Android permissions of the top 50 free Android appli-

cations of 2009 using Self-Organizing Map (SOM). Results show that applications of same
category do not necessary require same permissions due to different functionalities but
similar sets of permissions were identified for applications from different categories. Some
permissions are very highly used, and some are rarely used. The most used permission
is for Internet access. The authors also identify sets of permissions used together, for ex-
ample “fine location” and “coarse location”. They found custom developer’s permissions
are rarely used, they propose working on another access restricting system for application
components, rather than including custom permissions in the permissions system. They
propose identifying a vocabulary for defining permissions systems to simplify developers’
work and enable finer grained permission definitions.
In [50], the authors analyzed permissions the most popular and newest Android appli-

cations from official and non official markets, as well as Facebook applications and Google
Chrome extensions. They found that popular applications request slightly more permis-
sions (possibly due to making more functionalities available) than new applications and
applications proposing a privacy policy request a slightly lower number of permissions.
Applications that do not have any associated developer web-site are observed to be more
intrusive. Free applications on average request more permissions than paying apps even if
permissions regularly used for advertisements are excluded from the study. Applications
that have look-alike names to popular applications request more permissions than the
average.
Several authors worked on permission usage patterns identification on Android. The

authors of [51] used probabilistic methods to identify patterns for high and low ranked
applications. They use unsupervised learning to identify 30 Android permissions patterns.
The patterns were more or less represented in different categories. The authors also note
that applications with a low rank in the store often deviate from identified patterns.
In [52], the authors used 999 Android applications to build a graph based on co-

occurrence of permissions in different applications by category. The most frequent groups
for each category were identified by a modularity optimization classification algorithm,
and considered as legitimate requests for an application in a given category. The authors
compared those groups with dangerous permission combinations from [53] and found the

32

4.3 Mobile permission analysis

combinations in some groups presumed to be legitimate. The authors note that the cluster
definition was unclear and the methodology would benefit from the integration of different
weightings for different permissions. A potential bias is based on the fact that the most
popular permissions were found in most groups.

4.3.1.2 Malicious applications

In [54], the authors propose scoring Android applications using permissions and Naive
Bayes Model, Naive Bayes with Informative Priors and, finally, a Mixture of Naive Bayes
with categories using Latent Dirichlet Allocation (LDA). The results in malware detection
are improved compared with [55] and [53].
In [56], the authors extracted permissions and API calls from benign and malicious

applications and ran machine learning techniques for malware detection: SVM, RaJ48
Decision Tree and the Bagging algorithm where the Bagging shows the best results.
In [57], the authors analysed the use of the permissions in a set of 1,227 clean and 49

families of malicious Android applications. As well as manifest permissions, the authors
used the available Andrubis tool [58] to recover used permissions for their analysis: some
permissions may be declared but not used by an application. The authors statistically
analysed and compared malicious and clean applications and the corresponding used
and required permissions. The results showed that the most frequently used Android
permissions are quite common to both application sets, but some permissions are used
uniquely by malicious apps, some only by clean apps. Finally, the possible patterns of 2
to 4 permissions were automatically generated and an occurrence frequency was assigned
to each pattern. The 4 permissions limit is assigned to the patterns due to the calculation
costs. Some unique patterns for malware detection were identified. The authors did not
extract permission patterns from clean applications.
Recent work [59] has proposed using statistical methods such as the correlation coef-

ficient, mutual information and the t-test to identify the top 40 risky permissions using
datasets with benign and malicious applications. The authors performed clustering tech-
niques to identify patterns and detect malicious applications.

4.3.2 Permission use analysis tools
Some authors analyzed how required permissions are used by applications. In [48], the
authors analysed permissions of the top 100 Android applications and found that most
permissions are used only in response to the action made on GUI. Many permissions are
used only for display purposes. Only 5% of applications legitimately require permanently
granted permissions.
The authors of [60] propose a permission use analysis tool called Permlyzer that not

only verifies what permission is actually used by an application, but also detects what An-
droid component (Activity or Service) is responsible for permission invocation as well as
what class, method and user interface components and events are related. Permlyzer also
reports what API calls result in a permission check which can reveal that a fine-grained
functionality such as getLastKnownLocation() call is more precise than the corresponding
ACCESS_FINE_LOCATION permission. Furthermore, the tool detects commonly used
permissions or recurrent permission use that can uncover some functionalities. They also
analyzed Android permissions use in normal and malicious applications with Permlyzer.
Results show that malicious applications tend to call protected API in the main Activ-
ity and also during the components creation. Knowing that Android applications can be

33

Chapter 4 Mobile permission systems

launched automatically, it shows that malicious applications can execute malicious behav-
ior without any user interaction or awareness. They also found 537 correlations between
permissions and also discovered the correlations between the same permission used many
times. The authors found that the device ID (IMEI) and location are generally recovered
without user interaction in free and not explicitly malicious applications. Finally, they
found that 4.2% of free applications in the dataset have similar behavior to malicious
applications.
Some works shows the abusive permissions declarations by Android developers. The

authors of [61] built a Stowaway tool analyzing the source code and detecting the per-
missions it requires. They found that developers often declare permissions they do not
need: breaking the principle of least privilege. The main reason for permission overuse
indicated by the authors is poor documentation: many permissions are not mentioned,
some permissions are required by the documentation but do not actually exist, some in-
formation about the needed permissions is confusing. Developers often use deprecated
permissions for retro compatibility or due to outdated sources.
The authors of [62] use the Stowaway tool built by [61] and checks the correlations

between the misused permissions, API calls related to those permissions and questions
on StackOverflow1. They found that many permissions are still misused (even more than
reported by the previous study [61]) and the misuse does not depend on the related API
calls. They also noted that the more popular a permission is (often used by applications),
the more questions related to this permission are found on StackOverflow and the less
is the misuse. They suppose that StackOverflow bridges the gap of documentation over
time proposing various examples.

4.4 Permission-based decision support systems
The authors of [55] proposed a risk warning system based on the occurrence of a total
of 24 permissions (manually identified by authors as dangerous) in each category of ap-
plications. A warning is issued if an application requires one of these permissions or two
dangerous permissions that are used by less than a certain percentage of applications.
The authors applied their risk metrics to applications collected from Android Market and
a malware dataset, and found that malware triggers many more risk warnings than be-
nign applications. The results for category-based risk warnings were similar to overall
occurrence-based warnings.
The authors of [63] created a crowd-sourced system named ProtectMyPrivacy that col-

lects and analyses iOS user’s configurations for different applications and returns privacy
recommendations about accesses that are necessary or unnecessary for the functionality.
The system is based on crowdsourcing and proved effective event with only 1% of users
being experts in the domain. The system was tested by 90,621 real users of jailbroken
phones on over 225,685 different iOS apps. Smartphone’s unique device identifier (UDID),
address book, location and music can be protected by the system returning shaded data.
The system is made extendable for further private data support.
Interestingly, many developers complained they did not access the address book as it

was detected by ProtectMyPrivacy. Investigation showed that the advertisement library
was downloading address book information and developers were not aware of this. A light

1One of the most popular crowdsourcing platform where developers ask and answer development-related
questions

34

4.5 Improvement of modern mobile permission systems

version of the system receiving recommendations about known applications is available
for non jailbroken devices.
The authors of [64] proposed searching for a justification of permissions usage in the

application description with natural language processing techniques and warning users if
it is not found. The proof of concept was done on three Android permissions. Further
work improved the detection and number of supported permissions [65].
Recent work proposed a recommendation system balancing the rating of applications

with privacy issues such as required permissions [66]. The authors build an application risk
score based on the number of required permissions and the occurrence of those permissions
in the category: the more permissions used in the category, the lower the penalty incurred
by this permission; the more permissions required by an application, the greater the risk
of that application.

4.5 Improvement of modern mobile permission systems
Many studies aimed to improve the current permission system by adding the possibility
of revoking permissions or granting them conditionally.

4.5.1 Revoke permissions and mock data tools
Many works concentrated on improving Android with an all-or-nothing approach by re-
voking Android permissions.
MockDroid is a modified Android OS allowing to mock the data (fake, empty or un-

available) requested by the application giving user the possibility of revoking Android
permissions [67].
Flex-P also permits users to revoke Android permissions. The system adds check boxes

to permission groups shown to users before installation, and also displays the same list
on the screen with the information about installed applications [68].
TISSA proposes the possibility of controlling the access to phone identity, location,

address book and call logs. Users can choose if an application can access the data or
should obtain the anonymized, empty version of fake data [69].
ProtectMyPrivacy can return shaded data instead of real one on iOS [63].
All these propositions modify the platform to integrate new functionalities. This func-

tionality was integrated into Android 6.0, introduced in September 2015.

4.5.2 Conditional granting
The authors of [70] worked on improving the J2ME permission system to make it possible
for the user to add additional constraints to accepted permissions, such as a number of sms
or mms that can be sent by time unit (day, week, month) and a limit on downloading using
Internet. They proposed the extended J2ME (xJ2ME) that can process new fine-grained
policy written on Security Policy Language (SPL).
Apex permits Android permissions to be revoked and adds conditions for permission us-

age, such as number of usage per day [71]. Users set permission constraints on applications
at installation time.
Saint adds policies to current Android custom permissions to restrict permissions usage

to applications that already have particular permission or have a trusted signature (white
lists) [72]. The authors provide a tool repackaging android applications to work with

35

Chapter 4 Mobile permission systems

the new permissions and also provide a tool verifying the use of new permissions. All
permissions are embedded into the verification tool. Users could also add new permissions
via provided GUI.
In [73], the authors propose an ontology where an actor is given the right to take an

action on data. Rules are defined using SWRL language. Complex rules forbidding or
allowing the data access on a particular condition can be added to the policy. It is not clear
what other action than "access" is supported by the ontology. A firewall was implemented
on Java and ported to Android. The perception of users and the applicability to real
applications is not discussed.
The authors of [74] propose a CRePE system permitting a list of access rules (grant

or revoke permissions) to be enforced for a resource using the context of phone usage:
time and location. Policies can be defined by users via a user interface or a third parties
through sms, wi-fi or bluetooth. The system is implemented as a middleware between the
Android permission verifier and an application.

4.5.3 Usage model and Digital rights management (DRM)
technologies

DRM technologies restricts the file usage and can be similar to permission systems despite
the different goals. DRM systems restrict the file access on certain conditions and mainly
protects intellectual property and commercial file usage and distribution.
The UCONABC is a usage control model combining the Access Model but also adding a

DRM conditional to control not only file access rights but also their usage [75]. This model
contains a decision module granting or revoking a Right over an Object to a Subject based
on attributes attached to both the Subject and the Object (such as price to open a file
and an amount of money available on the user account); obligations that are mandatory
pre-requirements (such as license agreement acceptance) and conditions (such as current
time regarding time period for accessing the file). Attributes can be mutable or non-
mutable: fixed or modifiable by the system. This model is very general and can express
either permissions or DRM, although it is more DRM-oriented.
The authors of [76] propose a UCONABC model based system named T-UCON to

enforce file policies across applications such as pay-per-use and N-time access policies.
T-UCON is made as a Java Virtual Machine extension to intercept file access calls and
verify policy compliance.

4.5.4 Finer-grained mobile permissions
Few works propose integrating finer-grained permissions. In [77], the authors propose
replacing some Android permissions with finer-grained permissions. They replace the
permission ’Internet’ with a new permission specifying the domain to which the appli-
cation is to connect, the new permission is named InternerURL(example.com). They
introduce 2 permissions for working with AdMob advertising service: AdsPrivate - send-
ing only a developer id to the server for advertisements - and AdsGeo - sending the user’s
geolocation alone with developer id. Permissions for geolocation are replaced with a new
permission whose method only gives an approximate to within 150 meters. They replace
‘write settings’ permission with ‘setRingtone’ permission, and ‘read contacts’ with ‘read
visible contacts’ permission. Finally, permission to access the unique device identifier is
replaced with a method returning a randomly generated unique identifier.

36

4.6 Code analysis and data flow control

The authors of [78] propose integrating additional ’Flow permissions’ corresponding
to the data transfer permissions. They propose linking data related permissions such as
access to sms, calendar, contacts, etc., to ’sink’ permissions such as Internet, logs, sms,
e-mail and sd-card.
Several works try to redefine permission systems. The authors of [48] (University of

Washington and Microsoft Research) propose rethinking the current permission granting
mechanism using permission lists (Android) or prompts to users (iOS). They introduce
user-driven access control where a permission is automatically given as a respond to a
user-event. ‘Access Control Gadgets’ are introduced, these are predefined user-interface
elements permitting certain permissions to be granted (for example: take photo button
with access to a camera). The granted permission can be ‘one-off’, limited-time (session),
scheduled or permanently. That allows in-context punctual permission granting, assures
least-privileges and reduces attack vectors. They envisage the possibility of linking hot
keys or a vocal control to permissions in the same way as ’Access Control Gadgets’.
The authors of [79] propose a per-data permission system: more fine grained than

android default permissions. Access permissions are granted to data stored in SQLite
databases and the access can be restricted to a piece of data or a column (only phone
number, only names from contacts) or to groups or rows (only work contacts can be
accessed) and mixed or a cell. Privacy policy is expressed with subject having (1) or
not having (0) an assess to an object. The prototype was implemented on Android and
included only contact list data access management.
PSiOS is a privacy granting policy enforcement tool for the iOS system where the

user or enterprise can define custom and fine-grained policies to control the use of all
Objective-C methods and API calls [80]. Per application policies are described as an xml
file, where the name of the method and arguments are added with the policy type: log
the usage, deny the usage, allow the usage but return shadow data. The exact name of
the API or method has to be known by a policy administrator to make the policy. A tool
is implemented as a shared library and can be used on jailbroken devices only.

4.6 Code analysis and data flow control
Many studies propose tools to perform static and dynamic analysis of the Android ap-
plications’ code. The main idea is to control the data flow and identify or prevent data
leakage.

4.6.1 Static analysis
To cope with unnecessary permissions, the authors of [81] propose a permission check
tool informing a developer about unnecessary permissions. The tool inspects the source
code, searching for known methods requiring permissions and compares the list obtained
with permissions already defined by the developer. The developer is then notified about
missing or excessive permissions.
Kirin tool analyzes manifest files to identify dangerous permission combinations to

flag potential malware before its installation [53]. Two dangerous permissions and some
combinations of permissions are identified by authors and added to the installation privacy
policy used by Kirin.
SCanDroid (University of Maryland) [82] is a static analysis tool permitting the certi-

fication of the application’s security. SCanDroid performs data flow analysis of Android

37

Chapter 4 Mobile permission systems

applications linking permissions use and flags some data flow as potentially dangerous.
The authors of [83] performed a static analysis of iOS applications to monitor the private

data flow on iPhones. They detect access to private data through the defined methods
calls and trace the use of the data. The authors found that applications on AppStore
and even the applications from the alternative market Cydia operated with respect to the
user’s privacy and very rarely transmitted sensitive information without user awareness.
As an exception, the UDID was often used and transmitted (especially to advertisers)
due to the fact that Apple did not consider this information as private. In 2013 Apple
forbade the usage of the unique device id by developers.
Similarly AndroidLeaks [84] (University of California) detects the possible privacy leaks

on Android by automated static analyses. Android permissions and corresponding API
calls are analyzed for possible sources of private data and sinks (outgoing transmissions).
Private data is tainted and followed till the sink. Applications need to be decoded from
Android Dalvic to Jar and then a call graph has to be built. The authors found Android
application leaks a lot of data, especially apps containing advertisement libraries leaking
phone id, location, SIM number, etc. Similar results were obtained by the Mobilitics
project [85].
In [86], the authors proposed a ScanDal static analysis tool to detect privacy leakage

within an Android application. They identified many privacy leaks in existing applica-
tions.
Further works ComDroid [87], Epicc [88] are static analysis tool focused on the de-

tection of inter-component communication vulnerabilities. DroidChecker concentrates on
privilege escalation attack detection [89].
The authors of [90] propose a static analysis-based framework for privacy data leakage

detection. The framework is based on a security type system and a defined privacy policy
where certain methods can only use data of a defined security type.
The authors of [78, 91] propose a static analysis tool named Blue Seal to monitor the

data flow between sources (Network, e-mail, IME, SMS, mic, calendar, accounts, sd-card,
contacts, camera, call log and sim-card) and sinks (network, email, sms, sd-card and log)
automatically defining flow permissions. Blue Seal also detects inter-applications data
flows.
Amandroid [92] is a static analysis framework detecting data leakage through inter-

component communication and vulnerabilities such as non protected authentication and
intent injection.
FlowDroid [93] is a static taint analysis tool with high data leakage detection.
Those automatic solutions can help with the manual investigation of an application and

its certification.

4.6.2 Dynamic analysis
Some works propose systems to improve the visibility of private data use for users. Taint-
Droid is an Android dynamic analysis data flow control system [94] that taints the data in
Dalvik VM and follows it to the sink (e.g. Internet). TaintDroid found many application
leaks of personal data without users being informed (The End User License Agreement
was often missing or uncompleted). Half of tested applications sent information to third-
parties’ publicity servers even if the advertisements are not displayed. The authors of [95]
analyzed the RATP Android application using TaintDroid and also dynamically analysed
its iOS version. The authors found that an application collects a number of private data

38

4.7 Other works

and personal identifiers even if the privacy policy of this application claim to not col-
lect any of it. Application also bypass the Apple restriction for advertising using user’s
personal identification instead of the dedicated id that can be controlled by the user.
AppFence is an improvement on the previously developed TaintDroid [96]. AppFence

proposes monitoring the private data flow and preventing transmission of data tagged
as ’device only’. In addition, AppFence can return shaded data (empty file, empty lists,
generated data, fixed numbers) to applications instead of real private data (device id,
location, camera, logs, sms, contacts, etc.).
The authors of [97] propose a solution for monitoring the private data flow on Android

without any modification to the Android system. The monitoring module is injected
into each application. The module search for calls of particular sensitive methods (get
contacts, send sms, etc.) and report the usage. The code injection fails regarding some
applications.

4.7 Other works

This section presents some other works related to the Android permission system.

4.7.1 Model

In [98], author models Android permissions using a state-machine. Author defines an
application needing an authorization (permission) and an application components inher-
iting application permission. One component at time can be on foreground. One state
is defined by the existence of foreground component, by the list of installed applications
and by the list of permissions granted to each application. The state is changed by the
lunched or terminated component or by an installed or uninstalled application. Some
security properties are also defined: such as “installed”, permission “requested”, permis-
sion “granted”, permission “authorized” for the application. Using those properties the
authors define security conditions for the application.

4.7.2 User interface

Some authors work on user interfaces and visualization of permissions. [99] have tested the
effectiveness of different permission visualization methods, including Android, Facebook,
Health-Vault and Twitter. They observed some systems only choose to include the access
to the resource permission (classified as a “resource”), others also include the action
that can be executed on the resource, such as display, modify, change, etc (classified as
“resource-action”). All permissions can be grouped by action or by resource. The display
can be organized in the outline, paragraph or table with images and icon. Authors found
people more easily absorb icons and images than simple text in permission displays.
Permissions grouped by action were absorbed more rapidly. Participants were asked to
note the best design for absorbing and searching the data and the highest scores were given
to icons and images. Users wanted icons, images and tables to be available in programs.
The paragraphs (Facebook) and outlines (Android) were disliked by participants.

39

Chapter 4 Mobile permission systems

4.7.3 Permissions as an attack vector
Some authors show vulnerabilities that can be exploited in Android permission systems.
The authors of [100] show the permission re-delegation attacks when one application
takes advantage of permissions and exposed interfaces of another application. In [101],
the authors show the type of attack attack where two applications can define permissions
with the same name but with different security levels, therefore one application requiring
permissions with lower security levels can bypass the system permission as a permission
of the same name has already been granted.

4.8 Conclusion
Access Control Model or permission system is a known security mechanism that was not
only already embedded into desktop systems, but also into older mobile systems such
as Symbian and J2ME. Although, many systems embed permission systems, the imple-
mentation differs from system to system. Modern systems did not take the experience
from previous systems and works, and, as a result, iOS and specially Android permis-
sion systems have many weaknesses and are highly criticized. Permissions themselves are
coarse-grained and not clear, their purposes are not always comprehensible by users, per-
mission control is limited as well as data protection. Numbers of works show the confusion
of users regarding modern permission systems.
Much research has been done on mobile permissions. Permissions usage of both benign

and malicious applications were analysed to discover correlations and malware-unique
patterns. Although no work has been conducted to define permission patterns of benign
applications to detect malware. Some works proposed scoring mobile application risk us-
ing permissions or provided permission verification mechanisms. A large number of studies
were focused on code analyses: static and dynamic. Such works showed many Android
applications leak, or may leak, personal data without user awareness (lack of security)
and propose monitoring all the data flow, although the adoption of such technologies by
users was not tested by any of the studies.
Some works proposed improving current permission systems by revoking permissions

(returning fake or empty data) or by adding custom or context-based conditions on permis-
sion granting. Few works proposed integrating new permissions into existing mechanisms,
such as flow permissions (transferring the data), Internet access permissions restricted to
a particular domain; advertisement permissions or a per cell/column/line permission for
the data stored in SQLite database. Finally, few works propose re-designing permission
systems and modern mechanisms. The PSiOS tool restricts the usage of any method call
instead of integrating a limited number of permissions. Another author proposed rethink-
ing the permission granting mechanism by introducing trusted pieces of the interface that
would grant a one-off permission in response to the user-event.
In spite of the the amount of investment and research done on mobile permission sys-

tems, the research topic remains open in terms of permission definition, granting mecha-
nism as well as permission visualization and technology adoption by users.

40

Part II

Quality and Security

Chapter 5

Development of mobile applications of
quality: Android Passive MVC

architectural pattern

Abstract

Nowadays, the demand for mobile application development is high. To be competitive,
a mobile application should be cost-effective and should be of good quality. The architec-
tural design pattern choice is important to ensure the quality of the application on the
design, development, integration and future update phases and to reduce development
time. Two main leaders are very represented on the mobile market: Apple (iOS) and
Google (Android). The iOS development is based on the Model-View-Controller design
pattern and is well structured. The Android system does not require any model: the
architecture choice and the application quality highly depends on the developer experi-
ence. Badly written code can not only be buggy and hard to maintain, but can also
affect security. Heterogeneous solutions slow down the developer, while the one known
design pattern could not only boost development time, but improve the maintainability,
extensibility and performance of the application. This work investigates widely used ar-
chitectural design patterns and proposes a unified architecture model adapted to Android
development. We provide implementation examples and test the efficiency of the proposed
architecture by implementing it on real applications.

43

Chapter 5 Development of mobile applications of quality: Android Passive MVC
architectural pattern

5.1 Introduction
The mobile market has grown rapidly in recent years. Many enterprises propose their
services with mobile applications, and the number of mobile application available to users
increases every day. Compared to computer programs, mobile applications often have
limited functionalities, shorter shelf life and lower price. New applications should be
developed fast to be cost-effective and updated often to keep users interested. The qual-
ity of the application should not be neglected, as mobile users are very pernickety and
competition is stiff.
The demand for smartphone application development is high especially for the two

market leaders: Google (Android) and Apple (iOS). While developing application for
both platforms, developer can choose either to develop two applications using dedicated
technologies or opt for a cross-platform tool that would compile the same code for different
target devices [102].
Cross-platform solutions, such as PhoneGap [103], Rhodes Rhomobile [104] and Ti-

tanium Appcelerator [105], are often web-based and are embedded into mobile applica-
tions as web-pages. Such solutions can have performance issues, use interface that is
not platform-adapted and limited functionalities. Native solutions enable use of all the
platform’s options with better performance and lighter code enabling the creation of an
application adapted to the platform.
This work is focused on native Android development and do not deal with cross-platform

propositions. First, mobile applications are not meant to be developed using web technolo-
gies that can be considered as a hook to get around the dedicated technologies. Second,
cross-platform are third party solutions that could be abandoned, for example, if the
native solutions forbids the usage of embedded web-pages.
Mobile applications development is totally different between Android and iOS. Android

is Java-based while iOS uses Objective-C and, recently, Swift. The iOS integrated de-
velopment environment (IDE) guides developers to follow an architecture predefined by
Apple. Developer can hardly deviate from the guideline and many of the architectural
aspects are hidden from the developer by the IDE. Therefore, iOS developers uses the
imposed Model-View-Controller (MVC) design pattern even if they do not realize it [106].
Android requires no particular architecture [107] – developers should choose and follow

a suitable architecture for their applications. This adds a level of complexity to the
Android development process as the developer should not only be focused on the final
product, but also on the architecture and code organization. This task can be especially
difficult for less experienced developers. Complex applications that do not follow any
architecture can end as a ’big ball of mud’: incomprehensible and unmaintainable [108].
Moreover, complex code could not only lead to bugs due to testing difficulties, but can
affects the security of an application [109].
In spite of the fact that the Java programming language used for Android application

development is well-known, the code organization and architecture choice are not trivial
for Android developers. EUTECH SSII - web and mobile application development com-
pany - reported that the development and evolution of equivalent applications is more
time-consuming and costly for Android that for iOS. They noted, that several Android
applications needed multiple hard refactoring work to integrate updates and maintain
performance while the maintenance of similar iOS application was done smoothly.
Android development books and tutorials are mostly focused on Android SDK technical

details and user interface design. Only a few works have been dedicated to the Android

44

5.2 Research methodology

application architecture, while the Android community identifies an architecture as an
important part of successful system design and development. Developers open many
discussions about suitable Android architecture on forums, blogs and groups.
This study aim to define an architecture and a set of design patterns especially suitable

and adapted for Android application development. This chapter presents the research
methodology and the proposed architecture named «Android Passive MVC»: an hier-
archical architecture based on Passive MVC. The proposed architecture join the family
of HMVC and PAC but have different communication mechanisms. This chapter gives
the general overview of the proposed architecture, explains and names the components
involved and the communication mechanisms between components. The chapter includes
an example illustrating the architecture implementation using simple Java classes. An
important part of the chapter includes the implementation examples using Android com-
ponents (Activities and Fragments) and a set of design patterns for some typical situations
can be met during application development. Finally, the possible extensions of the basic
architecture are presented. Although, the explication and examples are mostly focused on
Android system, the architecture is general similarly to the state-of-the-art architectures
and could be applied to other systems and programming languages including the currently
unknown.

5.2 Research methodology
This section detail the research methodology that led to the proposition of «Android
Passive MVC» and related patterns.
The first step was the literature analysis. First, we analyzed the existing architectural

design patterns to understand well their components, differences and advantages. We then
analyzed the use of existing patterns by Android developers community to understand
the primary difficulties met by developers while choosing an architectural solution. We
integrated the EUTECH SSII Android development team to observe solutions that was
already applied to existing applications and interviewed developers about architectures
and how are they used in the Android development process. We also searched for Android
architecture-related questions on StackOverflow - the largest community of software de-
velopers collaboratively answering software-related questions - and blog posts to come up
with a set of solutions and their disadvantages. Section 5.3 presents the obtained results
of this phase.
Based on the obtained data, we proposed an architectural design pattern that is pre-

sented in the section 5.4.1. The pattern effectiveness was then evaluated through multiple
examples and prototypes and was adjusted through multiple iterations. One of the last
applications prototype is described in section 5.5. The model was then applied to real
application development within EUTECH SSII and again reevaluated and readjusted
through multiple iteration. Typical situations and special cases were also identifies in this
phase that resulted as a set of implementation patterns. The implementation patterns
are presented in the section 5.4.2 and special cases are added into the discussion section.
Several evaluation method were applied to the proposed architecture. The prototyping

phase permits validating the solution by scenarios for maintainability, reusability and
extensibility: most common code quality cirterias. Real application implementation shows
the applicability of the architecture to real applications. Redevelopment of one existent
application using the proposed architecture allowed to obtain the code quality metrics
and measure the gain. Finally, the feedback from long architecture usage by Android

45

Chapter 5 Development of mobile applications of quality: Android Passive MVC
architectural pattern

Figure 5.2.1: Research methodology for Android passive MVC

developers showed the long term benefits of such pattern and the applicability of the
architecture to development of different applications.

5.3 Developers’ experience and difficulties
Activity causes major difficulties in implementing the known architecture: is it a View, a
Controller, a Presenter or none of them?
The most common way to develop Android application is to create one Activity per

screen. Naturally, Activity initialize Views and intercepts actions made on Views by the
user (methods corresponding to actions could be directly defined in layout.xml, Activity
should implement the defined methods). Presentation logic of the full screen and a com-
munication with the core of an application is often situated in the Activity making it very
heavy and complex [110]. Thereby Activity managing actions and the presentation logic
of the full screen behaves as a View-Presenter couple of MVP or a big Controller of MVC.
The simple schema is shown in Figure 5.3.1.

Figure 5.3.1: Activity as ’View-Presenter’ of MVP or a ’Controller’ of MVC

46

5.3 Developers’ experience and difficulties

We also found examples where a single Activity manages an entire application: all
possible actions of an application and the full presentation logic is managed by only one
class - Activity.
The View-Presenter or thick Controller implementation leads to multiple problems:

reutilization, maintenance, extensibility, code clarity, team development and even per-
formance. Parts of code integrated into single Activity cannot be reused, methods can
only be copied to another Activity making the redundant code. Any additional View and
action complicates the Activity. A modification of one action repeating on several screens
requires modification in all related Activities (assuming one Activity per screen). Activity
can contain the implementation of very different actions non related to each other, this
can make the Activity very complex, unreadable and incomprehensible. Activity is kept in
memory while the application is running, thereby a very big Activity affects performance.
Finally, the modification in the user interface and application logic can lead to the need
of full redevelopment of all Activities.

Figure 5.3.2: Activity as ’View’ of MVP with additional Presenter component

Some developers improve the architecture placing the Activity as a MVP View and put
the presentation logic to the Presenter component. It makes Activity lighter as it manages
only actions available on one screen, but reutilization and maintenance problems remain
the same as explained above. The simple schema is shown in Figure 5.3.2.
Another MVC implementation place Activity instead of View and creates the Controller

separately. Activity cannot be implemented as a View due to the particularity of the
component, but Activity can initiate and regroup all Views on the screen. Thereby we
obtain very thin Activity and thick Controller handling all screen events and managing
the presentation logic. The simple schema is shown on Figure 5.3.3.
Even if Controllers could be reused by other Activities the full object is needed to

reuse methods related to one View from the previous screen; the structure of application
becomes unclear due to the reutilization. Problems of extensibility and maintenance
persist.
This solution works for simple applications where one Activity represents one visual

block, while Activity usually manages several Views: main screen, menu, dialogue box,
lists, forms, etc. In complex visual applications Controllers becomes heavy.
Assuming the Activity cannot be a View, as Views are already available and extensible

on Android, few developers replace the MVP Presenter with Activity. The simple schema
is shown in Figure 5.3.4.

47

Chapter 5 Development of mobile applications of quality: Android Passive MVC
architectural pattern

Figure 5.3.3: Activity as ’View’ of MVC with additional Controller component.

Figure 5.3.4: Activity as ’Presenter’ of MVP with additional View component.

48

5.4 Android Passive MVC

This solution makes View intercept event of all visual components available in the
screen; presentation logic moves to Activity, but similar problems appear: reusability,
extensibility, code clarity, etc. Presentation logic cannot be reused, but should be copied
to another Activity if needed. The complexity of a single View increases with the number
of events. This is suitable only for very simple applications with very simple screens.
The appearance of Fragments could have solved the architecture ambiguity, but Google

proposes new components without suitable documentation about the utilisation of Frag-
ments, thereby creating new ambiguity instead of solving the problem. Now developers
ask themselves in what cases they should use the Fragments and not the simple Activity,
what component should handle actions and presentation logic, where to place the Frag-
ment management code, etc. We find previously explained MVC/MVP solutions, where
the component that is not implemented as Activity becomes a Fragment (e.g., MVP im-
plementation where Presenter is implemented as Activity and View is implemented as
Fragment).
Nowadays more and more developers use Fragments, often as Controllers of MVC,

but questions about presentation logic, communication between components, the actual
purpose of components and its logic remains unanswered.
The full code organisation needs to be clarified: what existing component should be

used and for what purpose, what type of code can be placed in those components and
when and for what purpose should additional components be created? We find many
applications where the part of core logic of an application is placed in the Activity or in
the Controller/Presenter making them even more complex. Developers are often unsure
about the decomposition of an application to Activities and Fragments and have problems
in core organisation.
Note that over the research, examples developed using HMVC or PAC architectures

were not found.

5.4 Android Passive MVC
This section gives the theoretical background on ’Android Passive MVC’. It presents the
architectural pattern as well as its vocabulary and also dives more details on special-cases
patterns helping to implement ’Android Passive MVC’ with Android specific components
- Fragments.

5.4.1 Presentation
The MVC model is taken as a base for the proposed architecture, as MVC is well-known
and widely used in desktop and web systems as well as in iOS mobile development.
Developers coming from other systems would be able to easily appropriate the Android
development architecture.
Activity is an inevitable component of the Android application. Previous experience

of the Android community shows Activity does not fit well on the MVC model, while
it seems to be well adapted to developers’ needs. Many View components are already
available on Android but Activity cannot be a Controller or a Model. From the previously
described development experiences one can see that the screen cannot be represented
entirely by one or two components. We observe that the screen should be decomposed into
many logical parts and each part should have the related components. For the proposed

49

Chapter 5 Development of mobile applications of quality: Android Passive MVC
architectural pattern

’Android Passive MVC’ architecture, the MVC triads are created around Activity making
the Activity the fourth component.
Activity can be seen seen as a main screen (parent) controller in HMVC model. The

simple schema is shown in Figure 5.4.1.

Figure 5.4.1: Activity as an intermediate component between Views and Controllers.

An observer-observable pattern is relevant for multi-screen systems but only one screen
is active at a time in Android applications. This pattern implies keeping in memory Views
and Models that appear heavy for the mobile environment, therefore the Passive Model
MVC was chosen as a basis for the architecture.
In the ’Android Passive MVC’, Activity becomes an intermediate component between

the Views and the Controllers. The Activity represents a screen controller or, in some
cases, a main controller for a group of logically conjoint screens.
Controllers take the event handling responsibility and the presentation logic making the

Activity lightweight. Controllers are also lightweight because one Activity can interact
with many small reusable Controllers. Controller handles events and presentation logic
only for a small number of views logically linked together. Controllers should not contain
any code related to the core application functionalities.
The Views are the interface components, such as a form, a menu or a list of elements.

View components contain methods that allow the setting or obtaining of data from the user
interface on Controller demand, the setting of event listeners on visual components and
the modification of visual components (set errors, change colours, etc.). Views are created
if necessary extending Android predefined Views, otherwise the Android predefined Views
can be used directly. Views are independent and do not communicate. Views should not
contain any application logic or data.
The Model in this architecture is a Domain Model containing the application core

logic and data. The simple scheme of the Android Passive MVC architecture with all
components is shown in Figure 5.4.2.
The starting Activity creates a link between a View and a corresponding Controller to

make them communicate directly. Controller set up the View it is responsible of: visual
presentation and the data. The Controller handles events from the user action (e.g.,
button click), calls necessary methods from the Model and then updates the View on
Model response.
Simple hierarchy of Activity and Controllers depending on this Activity will be suitable

for many simple applications, although Android interface is a modular interface similar

50

5.4 Android Passive MVC

Figure 5.4.2: Android Passive MVC.

to Java. The propose architecture to organises View-Controller couples in Hierarchy as
HMVC and PAC architectures. The actions of interface modules controlling another
interface module will be organised as parent-child controllers.
We define two type of controller: Mediate Controller and Coordinating Controllers.

The names are borrowed from iOS architecture also having two types of controllers.
Coordinating Controller is a simple Controller for an independent part of the screen

coordinating the presentation logic and events of its Views. This Controller can call the
Model, modify its View visualisation, show dialogues, call Activities but does not exchange
Controllers. The Coordinating Controllers do not have any child controllers. Coordinat-
ing Controllers are very reusable and make an application very modular. Coordinating
controllers can be perceived as low-level PAC agents.
Mediate Controller often corresponds to the part of the interface modifying or exchang-

ing Coordinating Controllers (part of the interface). Menus in the interface would often
correspond to the Mediate Controller. Mediate controllers can also initialise child Me-
diate Controllers (e.g., for a submenu). Activity Mediate Controller manages Activity
replacement. Mediate controllers are similar to the Intermediate-level PAC agents with
the difference that they have direct access to the Domain Model (application core).
Mediate Controllers are not very reusable as they need all their children to function,

although Mediate Controllers show the presentation logic of the application; the logic of
the interface can be modified by updating or changing the Mediator controller.
To keep components loosely coupled it is recommended to ensure communication be-

tween Controllers and Activity via interfaces. The communication schema is shown in
Figure 5.4.3.

Figure 5.4.3: Communication between Controllers.

Android Passive MVC makes Activity lightweight by moving all event handlers and

51

Chapter 5 Development of mobile applications of quality: Android Passive MVC
architectural pattern

presentation logic to Controllers and interface management to Views. Views and Con-
trollers created on demand avoid unnecessary objects, saving memory. Android predefined
View fits the model and new Views could be created by developer are reusable in future
applications. Coordinating controllers are very reusable and makes the application very
modular. Mediate Controllers are less reusable but enable easy modification of the logic
of the application only by modifying the Mediate Controllers.
Developers can easily modify or remove application components by only updating or

deleting the corresponding View-Controller couple. Application can be extended with
View-Controller couples. The Model is independent from the View, the Controller and
the Activity. The user interface could be replaced without any impact on Model, therefore
the maintainability of the application is high.

5.4.2 Implementation
This section presents some examples of Android Passive MVC implementation. It intro-
duces more details and special cases of architecture usage. Controllers of AP-MVC can
be implemented with simple Java classes or with the Android Fragment component.
Both implementations are suitable for the new manually created Activities. Some

predefined Activities, especially from third-party libraries, will possibly not fit the imple-
mentation.

5.4.2.1 Fragments usage

Fragments is an Activity-like component that can represent and control a part of the
interface. Fragments can be used to implement Controllers in Android Passive MVC.
Since the introduction of Fragments, Google insists on the high usage and integration of
Fragments into Android applications and deprecates Activity-based functionalities. Frag-
ments propose multiple advantages in Android Controller implementation versus simple
Java classes:

• Fragments are native Android components automatically linked to the Activity via
layout.xml having the native possibility to communicate with the Activity.

• Fragments have their life cycle linked to the Activity.

• Fragments are automatically linked to Views via layout.xml and can retrieve Views
to communicate directly.

• Android integrates the Fragment manager: Fragments can be easily replaced, deleted
or added to the Activity.

• Activity has access to all attached Fragments.

• Fragments integrate the back button gesture: option of saving the Fragment with
its state in the back stack and retrieving it on back button press. One can also
choose to retrieve the existing Fragment with its state or create a new Fragment
with the default state.

• Fragments can manage other Fragments.

52

5.4 Android Passive MVC

A Fragment is created for each piece of an interface having an action or several logically
linked actions. All actions should be distributed between Fragments and should not be
added directly to the Activity. Even for only one simple form (e.g., login form) the Android
Passive MVC imposes the use of the Controller (Fragment) along with the Activity. This
makes the application more modular and improves maintainability, the same independent
Fragment can be easily reused in the future. Figure 5.4.4 shows a single Activity with a
single Fragment and a single Activity with two independent fragments.

Figure 5.4.4: AP-MVC impose the creation
of Fragment event if the only
one is currently used within
Activity

Figure 5.4.5: Mediate Fragment corre-
sponding to the possible menu
that exchange 2 Fragments
depending on intercepted
action

Fragment is linked to corresponding Views via the layout.xml. Fragment should not
retrieve other Views available in the Activity to stay independent.
Fragment can play the role of Mediate Controllers and manage other Fragments or

change Activity. One Fragment cannot exchange itself with another Fragment therefore
it needs a parent Fragment (Mediate Controller) to perform the transaction. Figure 5.4.5
illustrates an example.
Android gives the option of adding a Fragment that is not directly linked to the inter-

face, permitting the creation of Mediate Controllers without visual components. In some
cases, actions from different screens and different Activities can be combined in one single
Mediate Controller if those screens are logically linked. For example, a form can have
several pages (screens) with ’next’ button or ’go to first page’ button; the appearance
of the screen changes on click event interception. In this case, rather than adding an
action to each fragment separately, making them dependent, the developer should create
a Mediate Controller combining those actions in one place. Figure 5.4.6 illustrates this
example. Therefore, in the case of user interface reorganisation (e.g., add new screen in
the middle of the chain) only the Mediate Controller needs to be modified. The same
should be done for a bundle of dependent fragments within a single Activity.
Fragment initialises itself with default data or the data recovered from the bundle (An-

droid mechanism to pass the data between Activities), therefore Fragments stay maximally
independent from other Fragments. Some Fragments can be initialised by an Activity
or parent Fragment (Mediate Controller) to increase reusability. The possible commu-
nication between Fragments and Activities is shown on Figure 5.4.7 with two Mediate
Controllers and one (the upper right) Coordinating Controller. Fragments should rarely

53

Chapter 5 Development of mobile applications of quality: Android Passive MVC
architectural pattern

Figure 5.4.6: A chain of dependent Fragments or Activities. a) Direct calls make depen-
dent Fragments b) Mediate Controller makes components independent

have a callback to parent Fragments but if necessary the callback can be implemented
with interfaces.
Developer should avoid high hierarchy between Fragments within a single Activity as

parent Fragment is linked to the child Fragments. Activities make components more
independent and simplifies the Fragment management.

Figure 5.4.7: Communication between Fragments and Activity.

In some cases, Fragments depend on each other (cannot be a parent-child, but should
initialise each other) - the circular dependency between Fragments is observed. Figure
5.4.8 shows an example: a list of folders and a file path to the parent folder. By clicking
on the folder in the file path, the folder list should be updated; by clicking on the folder in
the list, the file path should be updated. Another example is a mobile tablet with a large
screen that contains the statistics data represented in different Views: tables or graphs.
Changes in any of the Views should affect all other Views.
This is also a typical case where the Classic MVC is very pertinent where the Observer-

Observable pattern can be used instead of Mediate Controller: several Views represent
the data using the same Model, Controllers can modify the Model and all Views should

54

5.4 Android Passive MVC

be updated. Although Mediate Controller keeps components more independent.

Figure 5.4.8: Circular dependency between Fragments a) Direct calls, dependent Frag-
ments b) Mediator Controller makes Fragments independent

It is possible in Android to retrieve one Fragment from another Fragment and to call
the initialisation method. Although this makes very tight coupled components. A better
way is to make those Fragments communicate via listeners implemented by a parent
component: a Fragment playing the role of Mediating Controller.

5.4.2.2 Java classes

Controllers can be implemented as simple Java classes, the same as Views. Controller
should be linked to the Activity, therefore the Activity should implement a Controller
listener interface and pass it to the Controller to establish the communication. The
components communicating via listeners are loosely coupled and the communication of
Android components via interfaces is presented in [36].
As the Activity would initialise the Controller, it can communicate with Controller

directly, but the communication via interface is preferable. Activity should also retrieve
the View and pass this View to the Controller to establish a direct communication. The
communication between the Controller and the Model should be established via listeners
(interfaces).
Figure 5.4.9 shows the Android Passive MVC implementation diagram. Listeners in-

crease the performance of the application and create a weak coupling between components
that improve maintainability.

Figure 5.4.9: Android Passive MVC implementation

A login screen with a classic login form to enter the login and password represents an
example of architecture implementation without Fragments; if the login is successful the
user goes to the welcome page, otherwise an error message appears.
The example contains two Activities: Login Activity managing the login page and

Welcome Activity for the welcome page. The login form is managed by Login View and

55

Chapter 5 Development of mobile applications of quality: Android Passive MVC
architectural pattern

Figure 5.4.10: Login implementation example

Login Controller. Login Activity implements the LoginControllerListener interface to be
able to receive calls from the Login Controller. The schema is shown in Figure 5.4.10.
Login View contains methods for obtaining login and password (getters), methods to

set button listener and methods to set errors. Login Controller handles events from the
login form implementing the onClickListener; while the button is pressed, Controller calls
the model that launches simple verifications. If login is successful, Controller opens a
welcome screen. If login fails Controller sets up an error message.

5.5 ’Tweetle’ Android application and Android Passive
MVC

This section illustrates the implementation mechanism of ’Android Passive MVC’ on
the prototype: Twitter client (microblogging social network) application named ’Tweetle’.
’Tweetle’ allows users to see the messages that he sent to Twitter himself and the messages
of two types of friends from twitter: messages from profilyser that user reads (followees)
and messages from profilyser that read the user (followers). User can tweet using the
dedicated screen and also ’retweet’ any message from any list.
Application contains three screens, one mail menu with three buttons; one of the screens

has an additional submenu corresponding to followees and followers. The user can see
the Twitter timeline, send tweets and visualise the list of tweets of his followers and
followees. The bar with the copyright button showing the application author’s name
appears permanently on the up of the screen. The interface of ’Tweetle’ is depicted in
Figure 5.5.1.
One can see that all three screens are logically linked together by the main menu; one

screen is divided into two logically linked parts by the submenu. Main actions are clicks
on the main menu and clicks on the submenu. Additionally, by clicking on any of the list,
a user can retweet the message. Finally, the button sending the tweet is presented on the
last screen.
One can notice that two Mediate Controllers are required for the main menu and a

submenu and at least two Coordinating Controllers for the copyright bar and the list of
tweets.
Application can be implemented in two ways. Both implementations are presented and

advantages and disadvantages of each are discuss.

56

5.5 ’Tweetle’ Android application and Android Passive MVC

Figure 5.5.1: ’Tweetle’ application user interface

5.5.1 Fragment mediate Activities
Each different screen interface is managed by a separate Activity. This possibility is similar
to "before fragments appears" implementation solutions. In the example, the main menu
imposes three Activities with three buttons. One can also suppose to create one Activity
by submenu or to keep the single Activity for both submenu actions as was done in the
implementation example as modifications on the screen are minimal.
The screen can be decomposed into four Fragments: mostly repetitive elements on the

screen. Fragment should only contain the presentation logic and actions that are logi-
cally linked together. Different actions like "retweet" and "onMenuPressed" need different
Fragments.

• The bar containing the copyright button corresponds to a copyright Coordinating
Controller (Fragment). This controller is highly reusable even for different applica-
tions of the same developer. The bar and the button can be personalised with an
layout.xml, but the Controller containing copyright action calling the dialog or a
new Activity can be reused exactly in the same way in another application.

• The second Fragment is a main menu Mediating Controller. This controller will
change the screen (Activity) depending on the button pressed. Controller also man-
ages the presentation of the main menu: active and non-active buttons.

• The third Fragment is a list Fragment: retweet Coordinating Controller. The same
Fragment can be used for all lists as the user action is the same for all lists of the
application and there is no presentation logic.

• The fourth Fragment corresponds to the submenu Mediating Controller and man-
ages the changes in the data of the list (reinitialise the data or change the Fragment)
and the presentation logic of active and non-active buttons.

Last Fragment corresponds to the form permitting to send the tweet - tweet Coordinating
Controller.
Activity plays the role of an initialiser of child Controllers or a main Mediating Con-

troller. Mediating Controllers can also initialise themselves using the data from the bundle

57

Chapter 5 Development of mobile applications of quality: Android Passive MVC
architectural pattern

to be more independent. Copyright Fragment is attached only by the layout.xml and do
not need any additional initialisation. Activity initialise the main menu: call the Frag-
ment method to set up active button and event listeners. Activity also initialises the list
of tweets of the first screen: Activity as a main Controller can call the Model to retrieve
the data and to set it to the list Coordinating Controller. List Coordinating Controller
(Fragment) can retrieve the data itself either. For the Followers/Followees screen the
submenu Mediate Controller (Fragment) with its default state is attached automatically
to the Activity. Submenu Fragment initialises the list of tweets. Initialisation calls are
depicted in Figure 5.5.2.

Figure 5.5.2: Activity by screen initialisation calls

5.5.2 Fragment/Activity mediate Fragments
Activity is created for a group of logically linked screen thereby only one Activity is needed
for the current example. Fragments remains the same: one submenu Fragment, one list
Fragment and ’send message form’ Fragment. Menu actions can be implemented either
in the Activity or a Mediator Controller (Fragment). The main menu should better stay
independent in the Fragment instead of being in the Activity to enforce maintainability.
Main menu Fragment manages clicks on buttons, apply visual modifications on buttons
and exchanges other visible Fragments. The submenu Fragment have an child list fragment
to manage: the information shown by the list depends on the action made on the submenu.
Initialisation call schema is depicted in Figure 5.5.3.

Figure 5.5.3: Activity as Main Menu

5.5.3 Advantages and disadvantages
Both implementations are very similar but have advantages and disadvantages.

58

5.6 Android Domain Model

The first implementation is easy to set up and keeps the structure clear. Activities
are nearly empty thereby the only active fragments take place in memory, the number of
fragments is also limited and easy to manage. ’Back’ button is managed automatically.
Android integrates a bundle mechanism allowing information to pass between Activities;
Fragments could initialise themselves retrieving the information from the bundle while
the Activity is changed. Otherwise, this implementation is only suitable for lightweight
interfaces as all Fragments are reinitialised for each screen. The time response increases
significantly if heavy images appear on the interface.
The second implementation has a clear structure but could be trickier to manage. This

solution permits to reinitialise only necessary fragments, therefore can be used with more
heavy static images, for example with the background image. Although, developer should
assure to keep in memory only visible fragments. A large number of Fragments managed
by a single Activity can be complicated and heavy if all Fragments are kept in memory.
Fragment should be manually added to the back stack to manage the ’back’ button. The
second implementation is also useful for Activities aimed at being shared and at returning
messages to other applications: this type of functionality should be implemented within
a single Activity that another application could call for result.

5.6 Android Domain Model
The clear separation of presentation and business logic cannot ensure the application of
good quality alone. The core of the application should also be implemented through
patterns and gold architectures. Android application business logic structure is similar to
any Java application core logic, therefore all patterns that can be applied to Java could
also be applicable to the Android Domain Model, although the difficulties in Android
Domain Model organisation are observed in the community.
This section goes further and gives some guidelines of the business logic of the applica-

tion – the Model. Android applications have similar needs: internal database management
and access, web service access and reusable components use. Clear main architecture of
business logic is necessary to obtain the application of quality.
The Model of Android Passive MVC is a Domain Model containing business methods,

web service call methods, database access objects, reusable methods and data model
objects.
A Domain Model architecture should include components that are usual for Android

applications, such as Database manager, Web services manager and Business logic. Those
components should be independent, as the architecture should be adaptable. Reusable
components should be also separated. The basic model architecture is shown in Figure
5.6.1.
The architecture of Domain Model proposed in this document is inspired by 3-tier

architecture that separates the presentation, the business and the data access layers [111].
The business layer of the model regroups objects and methods that use web services,

business services and reusable tools. Business services contain business logic. If an appli-
cation works via Internet as well as locally, all necessary verifications are done in Business
services, which calls corresponding methods. The communication between a presentation
and a domain model layer are made via Business services.
The data layer contains Models, Data Access Objects (DAO) and Database Manager.

DAO and Model are the implementation of the Data Access Object pattern. Model
contains data being persisted in the database or retrieved by web services calls. Model

59

Chapter 5 Development of mobile applications of quality: Android Passive MVC
architectural pattern

Figure 5.6.1: Domain Model Architecture

is a simple Plain Old Java Object (POJO) that contains only variables and their getter
and setter methods. To avoid transcription of the Android Native Cursor object to Model
objects, Model can encapsulate the Cursor object proposing getters and setters for a
concrete value type available in Cursor. Data is manipulated and transferred through
the application using those lightweight objects that are often called Data Transfer Object
(DTO).
Persistence methods are organized in DAOs. DAO contains methods that enable the

data in a database to be saved, deleted, updated and retrieved. Even if Android proposes
an abstraction on the data access level with Content Provider, DAO simplifies the code of
the application. The DAO design pattern creates a weak coupling between components
and uses a Model object instead of an Android Cursor object in the application. DAO
can also be used for the data stored in XML or text files. Good practice is to make DAO
accessible via interfaces. It allows DAO modification (for example the change of SQLite to
XML storage) without any change in Business services, which increases maintainability.
Database manager is in charge of database creation. Database manager exists only if

SQlite database is used by the application. It stores the name of the database, and of its
tables and methods to be able to create, drop, open and close the database.
This architecture regroups logically similar methods together, increasing cohesion. High

cohesion facilitates the maintainability of the software. The final code of the application
could be organized in packages by architectural component: Activities, Views, Controllers,
Business Services, Tools, Web Services, Model, DAOs and Database. It gives the clear
structure of an application and limits the package number. Additional packages could be
created for interfaces, parsers (e.g., XML, JSON) and constants.

5.7 Architecture evaluation
The implementation of the model should improve the application and code quality: reduce
the complexity of an application, clarify the code and improve extensibility. The coupling
between components should be weak to avoid the modification of other components if one

60

5.7 Architecture evaluation

is modified. Modules should be reusable [112, 17]. A smartphone has a limited memory,
therefore the creation of unnecessary objects should be avoided. Objects remaining in the
memory should be lightweight [28]. Modification in user interface or in navigation logic
should involve the minimum modification of the application.
We evaluate the architecture in two steps. First subsection ensure that the architecture

fits the lists of code quality criteria proposed by [112, 28]. Second subsection propose
modification scenarios that can be applied to the ’Tweetle’ and discuss the impact of each
scenario on the implementation. Third, an experienced Android developer rewrites one
of his latest applications using Android Passive MVC, compare results and give feedback
regarding the model. Finally, two developers use the architecture for 10 months in their
real life projects and give their feedback.

5.7.1 Code quality requirements
The evaluation of the architecture is based on the following three code quality evaluation
criteria: maintainability, extensibility and reusability.
• Maintainability: option of modifying the system.

• Extensibility: option of adding new functionalities to the system.

• Reusability: option of reusing the same components in different functionalities of
the system or in different systems.

The use of standard platform techniques is important for the model: the support of
third-party functionalities could be interrupted making implementation of the model im-
possible. The Android Passive MVC could be implemented using Android SDK without
any additional libraries.
A high-quality application has high maintainability and extensibility: codes have weak

coupling between components, easy code suppression possibility and high testability. The
Passive MVC architecture ensures high maintainability. Clear separation between presen-
tation and business logic simplifies testability of components. Weak coupling between all
layers is carried out via listeners. One component (ex. interface, DAO, web service) could
be replaced or modified without changes in others. The extension or modification of the
user interface itself is done by simply adding, deleting or modifying the view-controller
couples.
The reusability of components make the code clearer and boost development time.

The view-controller components of the Android MVC model could be reused through
the application and could be easily embedded in other Android applications made with
Android Passive MVC.
Good performance is especially important in mobile environments: resource utilization

should be limited as mobile devices have little memory. Short response time is essential
for modern users. The Android MVC architecture makes a very lightweight Activity
component. Controllers, View and Model objects are also small and kept in memory only
if used, which minimizes resource utilization. The use of listeners also slightly increases
response speed.

5.7.2 Scenario-based evaluation
The scenario-based software architecture evaluation method is chosen to validate Android
Passive MVC; the overview of such methods can be found in [113]. Scenarios enable eval-

61

Chapter 5 Development of mobile applications of quality: Android Passive MVC
architectural pattern

uation of the architecture of a specific system and comparison of several architectures of
the same system regarding modifiability. Scenario-base evaluation are applied to previ-
ously described implementations of Android Passive MVC to show the benefits of this
architecture. Most scenario-based methods involve shareholders, software designers and
an evaluation team for the real project to define possible modification scenarios and the
ability of the architecture to support those modifications. The two architectures of ’Twee-
tle’ that are described in the Section 5.5 and the most likely modification scenarios for
the implementation are defined below.

1. Adapt the phone version to the tablet

2. Add new tab to the main menu

3. Move the main menu to the separate independent screen

4. Modify the appearance of the list

5. Add a bar containing the name of the active tab

The impact of each scenario on the both implementations is analysed and explained.
Table 5.1 presents the quality criteria evaluated for each scenario.

Scenario # Maintainability Reusability Extensibility
1 x x
2 x x
3 x
4 x
5 x

Tableau 5.1: Evaluation criteria by scenario

5.7.2.1 Scenario 1: adapt the phone version to the tablet

’Tweetle’ is an application dedicated to the smartphone usage, but can be adapted to
smart tablet. Tablets in landscape mode have enough space to keep all three screens
visible at one time, therefore the main menu becomes just an indicative name menu to
define each list without any action. Tablet in portrait mode will have a mobile application
behaviour.
The adaptation can be easily achieved with Android Passive MVC. Application should

only be adapted for the tablet landscape mode. The developer should define a new
layout.xml for the new tablet appearance: the new layout mainly consists of combining
the existing layouts into one. Developers do not need to define a Controller (Fragment) for
the main menu as there is neither action nor presentation logic needed. Other Controllers
remain the same. Developers should add to the Activity a verification of whether the
tablet landscape mode is active or not and set the corresponding layout. All Controllers
defined in the layout.xml will be attached automatically. One can see that a very few
modifications are needed to make the adaptable interface. This scenario shows the high
maintainability and reusability allowed by the Android Passive MVC.

62

5.7 Architecture evaluation

5.7.2.2 Scenario 2: add new tab to the main menu

It is very probable to add new tab to the existing menu. For example, ’Tweetle’ need
an extension with a map showing the newest geolocated tweets nearby. For both imple-
mentations, the developer should create a new map Fragment generating the map and
Controlling actions on the map. Then, the developer can modify the main menu Fragment
(controller) to add an action to the new button. For the first implementation the devel-
oper should also add a new activity-initialising fragment and an active button. Domain
Model would be enriched with several new components as a new web service recover-
ing geolocated tweets or a new DAO method recovering geolocated tweets from existing
database have to be used.
One can see that only one Controller should be modified for this extension and several

independent components are created. The modification of existing components is very
light in Domain Model, too.

5.7.2.3 Scenario 3: move the main menu to the separate screen

The client wants to change the style of the mobile application creating a Windows 8-style
menu screen with big square buttons and icons taking up the full screen. For the first
implementation, the developer should create a new layout for the main menu and attach
it to the new activity with the exact same Controller. The developer needs to check other
Activities corresponding to the menu tabs to delete the initialisation of the active button,
as it is not used any more if the initialisation was made in Activity.
The second implementation requires greater modifications: Activity can take a Mediator

Controller role and replace the main menu with another Fragment, as the Fragment cannot
replace itself. The developer could also pass to the first implementation modifying entirely
the main menu Controller and creating additional Activities reusing all other fragments.
This example shows that for maintenance reasons the developer should preferably

choose different Activities for the independent screens, as in the first implementation.
In spite of the common menu, all tabs are completely independent and could be arranged
differently in the interface while the application evolves. Fragment Mediate Controllers
are less reusable but as they are very small they can be reimplemented easily. This exam-
ple shows that the architecture resists extensive visual modifications and most Controllers
remain reusable.

5.7.2.4 Scenario 4: modify the appearance of the list

It is possible to improve the visualisation of messages: to add an avatar, nickname, and
make different colours for different lists. This can be done easily for both implementations.
The developer should create an adapter to adapt the Tweet object from the Domain Model
to the new visualisation in the list. The developer should only modify the adapter in the
list Controller to modify the visualisation of all Controllers. If different visualisations
are needed for different lists, the developer can create different Controllers or different
Adapters and set up the visualisation in parent controllers.
This example also shows the maintainability of an application made with Android

Passive MVC and the reusability of components.

63

Chapter 5 Development of mobile applications of quality: Android Passive MVC
architectural pattern

Original Android MVC % Gain
Number of Packages 25 17 32
Number of Classes 393 275 30

Number of Functions 2186 1683 23
Avg CCN 2,30 1,87 19
Max CCN 110 30 73

Tableau 5.2: TaskProjectManager statistics: the difference between the original and the
’Android Passive MVC’ implementation and the corresponding gain in met-
rics.

5.7.2.5 Scenario 5: add new interface element

A new name bar to the initial ’Tweetle’ application should be added. The visual appear-
ance of this bar is the same for all tabs; the name corresponds to the tab name. For
the first implementation, the easiest way is to add this bar directly into the layout.xml
without any modification in the code. This is not possible for the second implementation.
If the developer adds the modification of the view of the name bar to the main menu,
two interfaces becomes dependent and cannot be used separately. Main menu could also
notify the Activity to set up the name bar, but in this case the bar is not reusable in other
Activities. The most reusable way to carry out the second implementation is to create a
Fragment for the name bar. The main menu could pass the data to initialise the name
bar as it initialises the lists instead of manipulating the view directly.
This example shows how the first implementation has maintainability advantages over

the second implementation as the parent Fragments implementing Fragment transactions
could be trickier to manage in case of the interface modification, but child Fragments can
always be reused. This example also shows that Fragments have advantages even for the
interface having no action but presentation logic.

5.7.3 Evaluation by developers
An Android developer with three years’ experience agreed to test the Android Passive
MVC in real life projects. He chose to redevelop one of his latest applications which
had become complex and hard to maintain, extend and test. The application is called
’TaskProjectManager’ and it enables tasks to be assigned to different employees and to
view the full calendar of tasks on the screen by day, week and month. The application
also generates reports according to parameters.

The old version and the novel version of the application developed using the Android
Passive MVC without Fragments were compared. In spite of the fact that developers
produce slightly better code while redeveloping the same application due to greater expe-
rience, our measurements show the impact of Android Passive MVC on the redevelopment.
Measurements of both versions of the application are made with JavaNCSS [114], a

source measurement suite for Java, and the results are shown in Table 5.2. Android
Passive MVC reduces all code parameters.
For each comparison feature denoted i, the gain is calculated as the difference between

the original and the Android Passive MVC applications scores (resp. Originali and
AndroidMV Ci) divided by the original application score (i.e., Originali).

64

5.7 Architecture evaluation

Gaini = Originali − AndroidMV Ci
Originali

(5.7.1)

where:
Originali - measurement of the feature i taken on the originally implemented application
AndroidMV Ci - measurement of feature i taken on the Android Passive MVC implemen-
tation
i - the comparison feature

The Android Passive MVC helps with organizing classes in packages. The original
version of the application had many packages created partly using the MVP model, partly
with the application logic, and partly following the Android components’ names. The
limited number of packages of the Android Passive MVC version gives the application a
clear structure dividing the Domain Model from the interface management.
The full code became smaller: both the number of classes and the number of functions

were reduced. We observed the application had a main menu appearing while the calendar
was visible. Calendar had different modes of functionality managed by different activities
with a huge presentation method managing the appearance of different activities. Menu
actions were found multiplied in those activities. The Android Passive MVC enables high
reusability of components and structuration of presentation logic.
The code complexity is evaluated using Cyclomatic Complexity Number (CCN) [115].

‘Cyclomatic complexity measures the number of linearly independent paths through a
program module’ [18]. Normal method complexity without any risks is 1-10 CCN, with
11-20 CCN the complexity is moderate, with 21-50 CCN the complexity is very high
and with CCNs greater than 50 the program is untestable. Table 5.2 shows that the
average complexity of the application has decreased slightly. The maximum CCN dropped
significantly: an original version has methods with CCNs of 40, 50 and even 100 and 110
mostly for Activities handling a huge number of events, while the new version has the
only JSON parser with a CCN of 30 and several methods with a CCN of 10 to 15 in the
application core.
The developer’s feedback explained that the Android Passive MVC model is easy to un-

derstand and to follow. The final application was visibly more reactive: the response time
became almost nil, while the users of the original version complained about a very long
response time for each screen. The Android Passive MVC version is open to extensions
and easily modifiable. The developer said that he had already added more functionalities
to the new application before transmitting the code for the CCN analysis. Application
components are not only reusable in the application, but could also be reused in future
Android development.
The same developer and his colleague continued to use the Android Passive MVC in

their everyday job of Android application development for clients. They have tested the
version with Fragments and consider it even easier due to the many predefined Android
actions.
We obtained a new feedback after 10 months of testing. The developers recognise the

improvement of development process since the architecture was introduced: they were able
to test both types of Fragment implementations but mostly the first one. The software
design state became shorter. They were able to reuse components from one application
in another with slight controller modification: photo gallery, search views, 3D and PDF
visualizers, horizontal scroll view, etc. They reported the shorter development time due

65

Chapter 5 Development of mobile applications of quality: Android Passive MVC
architectural pattern

to the clear structure defined by the architecture and easier group work. The division of
projects on tasks became simpler and conflicts in code merges became less frequent.
They also noted that they were able to integrate updates rapidly while some old projects

without the architecture were redeveloped entirely because of updates demanded by the
client.
The developers also discovered that the architecture helps students in practical training

to do better and gives them more autonomy: the company offered Android development
practical training for two student during the experiment. In older project, students with-
out experience needed continual supervision and without it produced little maintainable
code: some applications that involved student needed a full redevelopment to suite new
client’s demands. Student, having a short practical training during the experimental An-
droid Passive MVC usage, showed better results while having the same background as
previous students involved into Android development.
The developers also noted that the architecture simplified the work with a colleague’s

code if he is absent, thanks to the common logic, naming and structure.

5.8 Discussion and future work

This section presents the possible extension of the ’Android Passive MVC’ with concepts
from MVP and AM-MVC.

5.8.1 Android and MVP
In the MVP, the View and the Presenter correspond to a full screen interface. It is not
suitable for Android, as visual block embedded into one View could be reused on several
screens. Although architecture similar to MVP can be implemented on Android around
the Activity making triads for each visual piece (such as Android Passive MVC).
The Presenter manages the presentation logic of the View and communicates with the

model. The difference between the implementation of both architectures is the event
handling.
Events in MVP are handled by Views and the action is transmitted to the Presen-

ter. Unlike the Android Passive MVC, in MVP View listens to the events and only calls
corresponding methods in Presenter instead of letting the Controller listen to events di-
rectly. This implies the creation of additional classes for each View (visual component)
implementing event listeners.
The code of Controller/Presenter remains the same. The only difference is that instead

of one method handling an event (e.g., click event) Presenter uses many methods cor-
responding to the action to be carried out on one particular event (e.g., click on search
button). This slightly reduces the Controller complexity and allows easier testing. The
initial event handling method is placed in the View and remains very simple and does not
need any tests.
The MVP implementation was not chosen as a base architecture as the implementation

of two models is very similar. The existence of Controller having a very complex event
handlers can justify the use of MVP instead of Android Passive MVC but it is a rare case.
The MVP implementation can be considered as an extension of Android Passive MVC
for the exceptional particular use.

66

5.9 Conclusion

5.8.2 Android and AM-MVC
The AM-MVC adds the Application Model (AM) component to triads moving the pre-
sentation logic to this component. This component can be used in Android Passive MVC
in some cases where the action of visual component remains the same but the visual
presentation changes. This kind of situation is visible on ’Tweetle’ implementation with
reusable lists. Instead of unambiguity as to whether the population of the list should be
done in the Controller or in the parent Controller, different AM components could be
created for each list then, depending on the screen, Controller can initialise the necessary
AM object.
This situation was not found very common and the improvement sufficient to include

this case directly into the Android Passive MVC. Similar to the MVP, the AM component
is considered as a possible extension for the exceptional use.

5.9 Conclusion
The architecture plays an important role in the development of good quality applications.
The Android developers were missing unified defined architecture that created a gap.
This study have analysed some well-known architectural design patterns and proposed

an Android architecture solution based on an MVC and PAC/HMVC design pattern. This
work also proposed the Domain Model organization for the Android application that helps
to structure the core functionalities. The implementation examples for several common
cases in Android development were provided as well as a concrete implementation of a
Twitter client mobile application - ’Tweetle’.
The architecture defined can simplify the work of novice and experienced developers

alike and enable the creation of less complex and well-structured applications.
The architecture was evaluated in several ways: scenario-based evaluation showed the

high maintainability of the ex- ample implemented with Android Passive MVC. One
existing Android application was reimplemented using Android Passive MVC, resulting
in better maintainability, extensibility and performance. The complexity of the new
implementation was considerably lower. Two developers were involved in long-term testing
of the architecture on real projects and collected positive feedback on Android Passive
MVC. The architecture explanation is available online to reach a larger population and
to collect more feedback.
It is important to note, that Android Passive MVC could also be applied to other sys-

tems similar to HMVC and PAC architectures. It requires the main component (main
Controller) implemented as Activity in Android but can be represented otherwise in an-
other system.
This work was presented on The Fifth International Conferences on Pervasive Patterns

and Applications PATTERNS 2013 [116] where obtained the best paper award. The
extended version of the article was published in the International Journal On Advances
in Software, volume 7 in 2014 [117].

67

Part III

Security and Privacy

Chapter 6

Detecting abusive applications:
permission usage patterns for

applications’ classification and anomaly
detection

Abstract
Android is one of the mobile market leaders, offering more than a million applications

on Google Play store. Google checks the application for known malware, but applica-
tions abusively collecting users’ data and requiring access to sensitive services not related
to functionalities are still present on the market. A permission system is a user-centric
security solution against abusive applications and malware that has been unsuccessful:
users are incapable of understanding and judging the permissions required by each appli-
cation and often ignore on-installation warnings. State-of-the-art shows that the current
permission system is inappropriate for end-users. However, Android permission lists do
provide information about the application’s behaviour and may be suitable for automatic
application analysis. Identifying key permissions for functionalities and expected permis-
sion requests can help leverage abnormal application behaviour and provide a simpler risk
warning for users. Applications with similar functionalities are grouped into categories
on Google Play and this work therefore analyses permission requests by category.
This study proposes a methodology to characterize normal behaviour for each category

of applications, highlighting expected permission requests. The co-required permissions
are modeled as a graph and the category patterns and central permissions are obtained
using graph analysis metrics. The obtained patterns are evaluated by the performance of
the application classification into categories. Finally, this study proposes a privacy score
and risk warning threshold based on the best metrics. The efficiency of the proposed
methodology was tested on a set of 9,512 applications collected from Google Play.

71

Chapter 6 Detecting abusive applications: permission usage patterns for applications’
classification and anomaly detection

6.1 Introduction
Mobile applications are extensively used worldwide and new mobile applications are added
every day to mobile markets - platforms for the distribution of mobile applications. An-
droid - one of the market leaders - offers more than 1,5 million applications on the official
Android application store named Google Play (June 2015).
The applications are grouped into 35 categories. When a developer adds an application

to Google Play, he should choose the most appropriate category from a list of categories
proposed by Google, such as weather, communication, heath and fitness, productivity,
tools, etc. A search by category or by keywords is offered to users.
Google Play provides certain information helping users to decide which application

to install: screenshots give an interface overview; users’ ratings and comments reflect
the stability and usability of an application. Although users are looking for attractive
and useful applications with no bugs, they should take into account other factors before
installing an application such as security and privacy, especially in the context of BYOD
(Bring Your Own Device). Furthermore, previous studies such as [45] show that users are
concerned about privacy and security and want to have applications with greater respect
for privacy.
Android applications can be written by any developer and do not require any certifica-

tion or validation before being made available on the store. As a result, poor, malicious or
applications abusively requiring and collecting personal data coexist with benign Android
applications on Google Play [118, 94, 96, 50, 60]. Google Bouncer1 now checks appli-
cations for malicious code, but no validation takes place for applications that abusively
require permissions and collect user data, even when it is unnecessary for the proposed
service.
One of the Android platform security mechanisms is the permission system. This list

is supposed to warn users about hazardous and abusive applications, but, unfortunately,
permission lists have been shown to be ineffective for this purpose. First, users see per-
mission lists as a repeated warning or a license agreement that must be accepted to obtain
a service. Permission lists are only shown in the final step before installation when other
criteria for the user’s decision have been met, and therefore the permission list is consid-
ered an obligation rather than a decision factor [46, 45]. Second, users often do not have
enough background to understand the meaning of permissions and their possible harm.
Third, permissions are shown entirely out of the context, which prevents the user from
understanding their purpose. Finally, some permissions are so frequently required that
users do not pay any attention to them [39, 40].
It can be seen that there is at present no system that helps users to take a decision aimed

at more privacy-respecting and secure Android applications. Users must either rely on the
community with comments and ratings, which rarely refer to possible security problems,
or manually verify permissions and rely on their personal knowledge and understanding.
Authors of previous studies, such as [89], suggest an integration of new security and
privacy indicators for users.
In spite of the ineffectiveness of permission list warnings, the Android permission system

seems to be a valuable source of information: 80 permissions are available to third-party
applications, and this number doubles for system applications; more permissions appear
with each new Android version. Information about required permissions is embedded into
each application and is always available.

1The antivirus system proposed by Google

72

6.1 Introduction

Instead of asking users to verify permission lists manually, we believe that an automatic
analysis can be used to detect expected permissions and anomalies. With less repetitive
warnings and easier indicators, users would be able to use permissions as a decision factor.
This chapter introduces the research on characterizing the behaviour of Android appli-

cations by permission requests and on permission-based risk warning system.
By this study, we test and verify multiple hypothesis:

• Application category contains similar applications that would use similar permis-
sions. Therefore, an average or ’normal’ category application could be represented
by a permission pattern.

• Different application categories contain different applications. Therefore, the pat-
terns that characterise one category should differ from the pattern characterising
another category. In this case, patterns should permit to identify the category of
an application by permissions this application requires.

• A pattern characterising ’normal’ applications of a category should permit to mea-
sure the risk level of an application and to detect abnormal applications: applica-
tions abusively requiring permissions, bad-quality applications, applications from
wrong categories and malware. By hypothesis, the more applications request per-
missions that are not normally observed in the category, the higher is its risk score.

The following research questions emerge from the highlighted hypothesis and are answered
by this work:

• Do Android applications of different categories require different permission patterns
and can be distinguished by patterns?

• Can a category pattern allow to measure an application risk/privacy level and permit
malware2 detection?

The final objective of the study is to propose a metric that evaluates the risk of a given
application within a defined category. Our contribution is threefold:
First, we analyse a large set of applications collected from GooglePlay. For each cat-

egory, we build a graph of ’normal’ permission requests and compute graph metrics ob-
taining behavioural patterns.
Second, we verify which of the obtained patterns characterise categories best. We build

pattern-related features and apply machine learning algorithms to classify applications
into categories. The patterns containing betweenness centrality and weighted degree
metrics showed better classification performances than others. Therefore, we conclude
that those patterns are the most descriptive and representative for categories.
Finally, we propose to measure a privacy level of an application regarding its category

and the previously obtained patterns. We suppose that normal applications will request
permissions following the pattern, and applications that deviate from the pattern would
more likely be abnormal: wrongly categorised, abusive or even malicious. We propose
to warn users of those abnormal requests and define a threshold permitting to separate
normal and abnormal applications. We evaluate the proposed warning system by inject-
ing malicious applications into the initial dataset and verifying the performance of the

2An application which is specifically designed to cause harm to a system or the user, gather sensitive
information, mislead user to obtain unauthorized access or to do other unwanted actions

73

Chapter 6 Detecting abusive applications: permission usage patterns for applications’
classification and anomaly detection

method in malware detection. We compare the performance of our proposition with the
most recent and relevant works on Android application risk evaluation and highlight the
obtained gain.
The reminder of the chapter is organized as follows: Section II reminds state-of-the-art

and highlight the limits of related works; Subsection III presents the methodology for
category permission patterns construction, application classification and privacy score;
Subsection IV presents the results of the proposed methodology; Subsection V discusses
the results and considers future works. The chapter ends with a conclusion.

6.2 Related works and limits

Some works have analysed Android permissions, but with a number of limitations we aim
to respond to here. Authors often use a very limited dataset for their analysis, while we
perform a larger analysis using 9,512 applications from Android Market.
Most authors such as [53] identify dangerous permissions manually, while our methodol-

ogy proposes an automatic pattern definition. Manual definition of dangerous permissions
and their combinations can be subjective, as some permissions can be useful and mali-
cious in different usage contexts. Some automatically identified patterns are based on the
occurrences of permissions that reflect the most and the least popular permissions overall
and do not describe any particular category: permissions such as Internet are highly rep-
resented in all categories [49, 55]. Rather than using the most frequent or the most rare
permissions, the proposed methodology leverages the most representative and essential
permissions for a particular category, maintaining the notion of functionality. We assume
that applications in the same category have similar functionalities and would require sim-
ilar groups of permissions, as was observed by the state-of-the-art works [55, 51]. The
proposed methodology aims to highlight expected permission requests for a given category
and to penalize broadly and frequently used permissions.
Many authors focus on malware detection and malware-specific patterns [57, 56, 59]. In

comparison to those works, our methodology results patterns for regular applications and
categories to measure the risk of applications available on the market that are not explic-
itly malicious but abnormal and probably abusive. Malware-based patterns uncover only
currently known malware, but malware evolves over time. Comparing all applications to
the expected behaviour could enable the detection of unknown malware and new abusive
applications. As the methodology is based on expected behaviour, deviant requests would
lead to a warning regardless of whether the given application is a malware, of poor quality,
abusively requiring permissions or simply classified in the wrong category.
The proposed patterns are based uniquely on the permissions that are available on

Google Play without any code extracted features that require additional computational
costs. The methodology is also not limited by the maximum number of permissions that
can be included in a pattern. The patterns of this work are graph-based and no previous
studies on Android permissions analysis, risk warning and malware detection have used
graph metrics. Finally, this study does not only evaluate the patterns in application
classification but also propose and evaluate a pattern-based privacy-friendly risk warning
system.

74

6.3 Research methodology

6.3 Research methodology
This section presents the research methodology and the dataset used in the study for
methodology evaluation. This methodology involves three main steps:
1) the construction of patterns of expected permissions for a given category
2) the application classification to highlight the relevance of the proposed patterns
3) the construction of risk metrics that aim to detect abnormal applications
The overall objective is to provide a warning system that remains within the proposed

patterns and risk metrics. The methodology is illustrated in the Figure 6.3.1.

Manifests

1 - Normal permission request for each category

perm1
perm2
perm3

z

2 - App classification into category
using patterns

3 - Abnormal application
detection using category

patterns

Category similarity

warning

Figure 6.3.1: The summary of 3-step methodology

6.3.1 Dataset
We collected application data from Google Play market store in 2013 using a publicly
available nonofficial API and a PHP script published under GNU General Public License
[119]. We modified this script to make it fit our goals and stored the harvested data
within a MySQL relational database. We note that this script became unusable the short
time after our collection was made due to important changes made on the Google Play
website.
Our database of applications contains name, description, package name, version, users’

note, number of downloads, price, category, number of screenshots, author and the list
of permissions as defined in the manifest. For each category, we obtained the category’s
name and related description.
Our crawler was able to obtain a sample of 9,512 applications related to 35 categories

that contain between 190 and 590 applications each. In our sample, we observed a
set of 2,133 unique permissions with 292 permissions identified as Android native per-
missions (263 matched the prefix “android.permissions.*” and 29 matched the prefix
“com.android.*”). The other permissions are supposed to be custom.
We compared the obtained list with a list of permissions extracted from Android 4.4

and found 157 permissions that do not match currently available Android permissions.
Those permissions were mainly the third party application permissions such as Mobile De-
vice Management permissions (e.g., android.permission.sec.*), old permissions of previous
Android versions (e.g., READ_SETTINGS), 2 permissions for Android in-app payment
and license libraries and many wrongly written permissions.

75

Chapter 6 Detecting abusive applications: permission usage patterns for applications’
classification and anomaly detection

To carry out further analysis, the dataset was filtered to omit custom, old and misspelled
permissions and only kept track of permissions embedded in the Android 4.4.2 operating
system - the most up-to-date Android system at the time of the study.

6.3.2 Permission usage pattern construction
We assume that applications grouped into categories provide similar functionalities and
would therefore require similar sets of permissions. This section presents the methodol-
ogy for building the permission patterns relevant to each category. Instead of analysing
individual permissions, the methodology investigates co-occurring pairs of permissions,
building permission graphs. The application of graph analysis metrics is, therefore, pos-
sible to build large patterns without limiting the number of nodes involved. An overview
of the pattern identification methodology is presented in Figure 6.3.2.

perm1
perm2
perm3

Manifests

1) Cooccurred permission
couples

3) Filter couples
by occurrence

mean

2) Compute edges
weight

using Z-score

4) Filter by
weight

5) Compute
graph

metrics

Figure 6.3.2: Five steps of pattern construction methodology.

First step - build permission pairs: if two permissions are seen together in the Android
Manifest of one application for a particular category, they are linked together (step 1 in
Figure 6.3.2).
For each category Cat, a graph denoted GCat(NCat, ECat) is created where the set of

nodes NCat represents the permissions, and the set of edges ECat represents two commonly
used permissions in the category.
To avoid over-represented couples, such as ACCESS_NETWORK_STATE and IN-

TERNET, the importance of a permission pair (i.e. edge) in the category is calculated
regarding its overall usage: mean and standard deviation. For this purpose, the second
step compute the Z − score (a.k.a. Standard score) for each pair of permissions observed
for each category. This score highlights not only the most commonly used permissions in
the category, but also the most representative permissions, thereby characterizing each
category. The calculated Z − score represents the edges weight in the graph (step 2 in
Figure 6.3.2) and is defined by equation 6.3.1.

ZCpp =
FCpp − µpp

σpp
(6.3.1)

Where :
pp is a permission pair ppεN2

Cat.
FCpp is the frequency of the pair of permissions pp in the category Cat: occurrence of

the pair pp weighted by the total occurrence of all pairs in the category.
µpp and σpp are the mean and standard deviation of the pair pp across all categories.
Manual investigation of the dataset revealed the presence of very poor and possibly

malicious applications, which would be the reason for unexpected permissions obtaining
a high Z − score. Google Play is known to host those types of applications, and as

76

6.3 Research methodology

such their presence in our dataset is not surprising. To avoid abnormal applications
and insignificant permissions during the pattern construction step, the third step omit
permission pairs with a mean occurrence below one (step 3 in the figure 6.3.2).
To extract patterns, the final graphs are filtered by edge weights, keeping only the most

category-relevant permissions (step 4 in the figure 6.3.2).
By definition, the Z − score will be negative if the observed frequency of a permission

pair in a category is below the mean. The Z − score will be equal to one if the observed
frequency is higher than the mean by exactly the standard deviation measure. Finally, the
Z − score will be higher than 1 if the frequency of a given permission pair is significantly
higher than the mean. The fourth step filter the category graph to only keep edges
weighted above 1; non-connected nodes are also omitted. The graph obtained for a given
category is referred to in this chapter as a pattern.
A pattern for a category Cat is denoted as:

PatternCat = GCat(NCat, ECat) (6.3.2)

For each node belonging to NCat, the fifth step computes the following graph analysis
metrics: node degree (denoted D), weighted degree (denoted WD), betweenness central-
ity (denoted B), closeness centrality (denoted C), PageRank score (denoted PR), Hub
(denoted Hub) and Authority (denoted Auth) scores [120] (step 5 in the figure 6.3.2).
The underlying assumption is that these metrics could provide more measurable values of
the importance of a given permission for a given category. These metrics provide different
ways to express the ’importance’ of a permission in a pattern, thus providing a potential
insight into what type of metric must be considered when addressing our research issue.
The degree of a node is the number of edges incident to the node. In the case of Android

permissions, the degree represents the number of relative pairs that the permission is a
part of. The underlying assumption is that the permissions often used in conjunction
with many other permissions are the most relevant.
The weighted degree of a node is a degree of a node weighted by the strength of

each edge. In this work, the strength is represented by the Z − score and the weighted
degree will show if the node is met in high or low scored relative pairs and/or in few or
many different pairs. The underlying assumption is that permissions significantly used
with many other permissions are the most relevant to our analysis.
The betweenness centrality of a node represents the number of shortest paths be-

tween all nodes that go through the given node. The relevant permissions are, in this
case, the permissions that often appear on the shortest path between any permissions.
These permissions may be viewed as a bridge between different communities. By assum-
ing that communities can be related to the functionalities of applications, the important
permissions are those that are required in many different functionalities of an application.
The closeness centrality represents how far a node is from all the other nodes. The

closeness centrality is calculated as a reciprocal of the sum of distances between a given
node and all other nodes. Under this assumption, the important permissions are often
used in combination with other permissions, and if not, they are only separated from
other permissions by a few intermediaries.
ThePageRank score is a recursive algorithm in which a high score of a node depends on

the incoming links from nodes that are themselves important [121]. Important permissions
are often used in common with important permissions. The assumption is that permissions
with a high PageRank cannot be circumvented.

77

Chapter 6 Detecting abusive applications: permission usage patterns for applications’
classification and anomaly detection

Node measure Formula m(p)

Degree D(i) =
|NCat|∑
j=1

ai,j

Where : ai,j is the element located at the ith row and
jth column of the binary adjacency matrix.

Weighted degree WD(i) =
|NCat|∑
j=1

wi,j

Where : wi,j is the weight between node i and node j.

Betweenness B(i) = ∑
s 6=i 6=t

σperms,permt (i)
σperms,permt

With : σs,t(i) is the number of shortest paths between
s, and t passing through i.
and σs,t is the number of shortest paths between s and
t.

Closeness C(i) = 1∑|NCat|
j=1 d(j,i)

With d(j, i) the distance between node i and node j.

PageRank PR(i) = α
∑
j aji

xj

L(j) + 1−α
N

With L(j) = ∑
j aij and α a predefined residual

probability.

Hub-Authority

Hub(i) =

∑
j

Auth(j)

Auth(i) =
∑
j

Hub(j)

With the following initial conditions :
∀i, Auth(i) = Hub(i) = 1

Tableau 6.1: Set of node measures tested in this study

78

6.3 Research methodology

TheHub andAuthority scores are the outputs of the Hyperlink-Induced Topic Search
(HITS) algorithm where a good hub has many outgoing edges to authorities and a good
authority node has many incoming edges from hubs [122].
The set of metrics that can be applied to a node belonging to NCat for a category Cat

is denoted as follows:

M = {D,WD,B,C, PR,Hub,Auth} (6.3.3)

Each metric mεM for a permission pεNCat is calculated using the formula m(p) as
summarized in Table 6.1.
The pattern construction methodology produces lists of relevant permissions for each

category, in which 7 graph analysis metrics are associated with each permission in each
list. The metrics m(p) are used as inputs for classification feature construction.

6.3.3 Classification of applications into categories
In order to ensure that the patterns represent a particular category, it was decided to
measure their efficiency in application categorization well. Multiple hypotheses related to
the pattern metrics were tested in order to identify the most relevant graph metric. The
performances are also compared with state-of-the-art work.

6.3.3.1 The application classification problem

The problem of application categorization can be formalized as follows: given an ap-
plication with an unknown category, can the system predict the actual category of this
application? Although the actual class of an application is known, in order to confirm the
efficiency of the proposed patterns, it is important to identify whether the actual class
corresponds to the predicted class.
Basic metrics for characterizing the quality of the prediction rely on true positives, false

positives, false negatives and true negatives. These values are often modeled in the form
of a confusion matrix, as shown in table 6.2.
Many performance metrics may be calculated from such confusion matrices, such as

the true positive and false positive rates. The True Positive Rate (TPR) is defined as
the number of correctly classified positive instances (TP) divided by the sum of the true
positives (TP) and false negatives (FN). For example, in terms of classifying applications
in the Finance category, this score equals the number of correctly identified finance ap-
plications divided by the total number of finance applications (TPR = TP/(TP +FN)).
The False Positive Rate (FPR) is defined as the number of false positive instances (FP)
divided by the number of False Positives (FP) and True Negatives (TN). For the finance
category, this score equals the number of applications correctly classified as not belong-
ing to the finance category divided by the total number of applications known as not
belonging to the finance category (FPR = FP/(FP + TN)).

Predicted class
Positive Negative

Actual class Positive True Positives (TP) False Positives (FP)
Negative False negatives (FN) True Negatives (TN)

Tableau 6.2: Confusion matrix for category classification

79

Chapter 6 Detecting abusive applications: permission usage patterns for applications’
classification and anomaly detection

The Receiver Operating Characteristics (ROC) curve captures the performances of
a classification by analysing the relationship between the False Positive and the True
Positive rates. This curve is obtained by plotting each point (TPR, FPR) for multiple
threshold value, thereby highlighting the global performance of the classifier. The Area
Under the ROC curve (AUC) is often used for performance comparison, and shows how
good a classifier is compared to a perfect classifier (AUC score of 1) and random classifier
(AUC score of 0.5) [123].
The F-measure (a.k.a F1 score) is another performance value of a classifier that is

calculated as the harmonic mean of precision (TP/(TP + FP)) and recall (TP/(TP +
FN)). The more general Fx measure allows to set up the relative importance of precision
with regard to recall.
The performances of the proposed methodology were tested using a 10-fold cross-

validation. The dataset was randomly divided into 10 equal subsets. The training was
performed on 9 folds and the actual classification was performed on the last fold. This
process is repeated for several rounds, and helps to avoid data overfitting problems.
The dataset contained different numbers of applications for different categories and a

misbalance in the number of class members can bias the classification. To avoid this
bias, the data was pre-processed with a distribution-based balancer [124]. This procedure
resulted with 300 members for each category.
Several classification methods were tested such as Random Tree, Support Vector Ma-

chine, Naive Bayesian, etc. Only the Naive Bayesian method is presented for clarity in
this chapter, as this method provided the best classification results.

6.3.3.2 Features selection

Classification features are typically the recurrent data found for all data entries, regard-
less of their class, such as profile data for a person’s classification, word occurrence for
document classification, or a presence of permission for Android application classification.
In this study, each class has a corresponding pattern and the data should be classified
into all categories according to those patterns, therefore a different approach for feature
construction is required to perform such a classification.
Similarity features denoted Sim are built for each application by comparing the list of

permissions required by an application with the patterns of each category.
Aperms is a set of permissions required by an application A and NCat is a set of permis-

sions belonging to a pattern in the category Cat. The first feature is a number of common
permissions between a given application and a category pattern defined as PermCount,
and its score is defined in equation 6.3.4.

SimPermCount(A,PatternCat) = |Aperms ∩NCat| (6.3.4)

Other features are built using the graph metrics presented in Table 6.1 and are measured
as a sum of scores for each metric for all common permissions between an application and
a pattern.
A similarity feature for a metric m corresponds to the normalized similarity between

an application permissions list and a pattern in category Cat as follows:

Simm(A,PatternCat) =

∑
pε{Aperms∩NCat}

m(p)∑
pεNCat

m(p) (6.3.5)

80

6.3 Research methodology

Games
ID 2653

p1
p2
p3

App 2653 0.9 0.3 0.2 ...

Games
p1 : 4
p3 : 5
p6 : 1

Finance
p1 : 3
p6 : 6
p7 : 1

Wallpaper
p2 : 2
p4 : 3
p8 : 5

...

Application Patterns (permission : metric)

∑

Games

/ ∑

Figure 6.3.3: Example of feature construction for one application, one metric and pat-
terns.

where mεM
For each application, a similarity feature for each category and each graph metric is

built. An example of a feature set for a metric is shown in Figure 6.3.3. The application
2653 originally from the ’Games’ category requires three permissions: p1, p2 and p3.
This permissions list is compared with the permissions for each category pattern; the
patterns for ’Games’, ’Finance’ and ’Wallpaper’ categories are represented in the figure.
The ’Game’ pattern contains three permissions: p1, p3 and p6, where two permissions p1
and p3 are common to the application. The similarity feature for the ’Games’ category
would be equal to the sum of scores for common permissions p1 and p3 (4 + 5) weighted
by the total pattern score (4 + 5 + 1). The ’Finance’ pattern contains only one common
permission p1, bringing the similarity to 3 out of 10. Likewise, the similarity score for the
’Wallpaper’ category is 2 (p2) out of a total 10.
Finally, one application and one metric obtain as many features as patterns (categories).

6.3.4 Privacy score and risk metrics
This section explains the methodology for building a privacy score using the best identified
features from the feature verification step, and discusses the risk warning.
A privacy score is based on the following assumptions:

1. The more an application is similar to a pattern, the higher the privacy score.

2. The score of an application must be high if an application requires central permis-
sions in the corresponding pattern.

3. If an application requires permissions that are not represented in the pattern, its
score must decrease.

Following those assumptions, the similarity between an application and a category should
be weighted by the number of permissions required by an application. As two features
were identified as the most valuable, a similarity between an application and a pattern is
defined as the likeliness LN combining the similarity of both features as shown in equation
6.3.6.

LN(A,Cat) = Simm1(A,PatternCat) + Simm2(A,PatternCat) (6.3.6)
where m1εM, m2εM (from the equation 6.3.3).

81

Chapter 6 Detecting abusive applications: permission usage patterns for applications’
classification and anomaly detection

The privacy score, denoted Privacy, of an application A in a given category Cat is
defined in equation 6.3.7.

Privacy(A,Cat) = LN(A,Cat)− LN0

|Aperms|β
(6.3.7)

Where βεR+ is a parameter permitting adjustment of the risk threshold and LN0 is a
minimal accepted likeness.
An ideal application will perfectly follow the corresponding category pattern: if such an

application requires only two permissions, it will use the top 2 permissions in the pattern
(the permissions with the highest ’importance’); if this application requires 5 permissions,
it will use the top 5 permissions in the pattern, etc. Even if real applications do not ideally
follow the pattern because of widely used permissions, some applications would be closer
to the pattern than others, and would be preferable for the user.
Figure 6.3.4 represents the risk thresholds for different β. The x axis represents the num-

ber of permissions |Aperms|, the y axis represents the pattern likeness score LN(A,Cat),
the red line represents examples of thresholds using different β, the red dotted line repre-
sents the risk threshold with a defined minimal likeness LN0, the bold black line represents
an ideal similarity score for an application following the pattern perfectly, the grey dots
are applications in the dataset and the red dots are the applications producing a warning.
When β is set to 0, the privacy score would be equal to the likeliness score and the risk

threshold would be fixed at a given likeliness. Setting β to 1 defines a linear separation: the
threshold would be determined by a given average likeliness score provided by permissions
in the application. When β is higher than 1, the risk threshold can be illustrated as in
figure 6.3.4. This threshold permits a risk to arise only for the least similar applications,
and more an applications have permissions, higher the similarity threshold.
An application having a Privacy score below a defined threshold would lead to a risk

warning.

Permission number

Li
ke

ne
ss

 s
co

re

Ideal
β = 1β

>
1

β = 0

LN0

Figure 6.3.4: Risk threshold representation for different settings of α; applications colored
in red would raise the warning for α > 1

6.4 Results
This section presents the result for the pattern construction, evaluation and application
methodology. First, the patterns obtained for each category are discussed and a sample
of 6 category-patterns are detailed. The graph-related metrics are then compared to a

82

6.4 Results

simple occurrence regarding the category representation: the finance category is used for
comparison. Then, the performance of metrics and classification results are presented
in subsection 4. Subsection 5 presents the result of the abnormal application detection
using the defined Privacy score and different thresholds. Finally, the secondary results
on category similarity obtained using the classification confusion matrix are presented.

6.4.1 The category patterns obtained
This section presents the results for the patterns obtained and discusses some central
permissions for a sample of categories.
Table 6.3 illustrates the number of permissions and permission pairs left for each pattern

after the execution of the methodology presented in Figure 6.3.2. First of all, two cat-
egories were dropped: ’brain’ and ’education’ which contained 228 and 244 applications
respectively. The applications in these categories required some very rare permissions
and/or non-relevant pairs. In the absence of the pattern, we assume that the normal
applications for the ’brain’ and ’education’ categories would not require any permissions.
We also note the possibility that at the time of data collection, those categories did not
contain high quality applications related to the categories. This hypothesis is supported
by the fact that the ’brain’ category no longer exists on Google Play, and more fine-
grained categories such as puzzle_games and educational_games appeared instead. In
the dataset, educational games are found in both the ’brain’ and ’education’ categories,
with puzzles and language learning applications.

Category Nodes Edges Category Nodes Edges
communication 59 835 weather 23 53
app_widgets 61 602 casual 17 52
productivity 61 475 photography 22 40

tools 58 436 finance 22 40
social 44 260 medical 26 40

personalization 37 221 media_and_video 22 39
app_wallpaper 29 183 health_and_fitness 21 35
entertainment 30 143 lifestyle 28 32

travel_and_local 37 140 game-wallpaper 19 29
business 49 138 transportation 19 24

music_and_audio 29 97 books_and_references 19 22
libraries_and_demos 21 79 cards 13 12

shopping 22 56 sports 12 9
comics 24 55 news_and_magazines 9 7
arcade 19 53 sports_game 7 7

game_widgets 20 53 racing 5 3

Tableau 6.3: Number of permissions and co-required permissions by pattern.

Some patterns, such as ’communication’ and ’app_widgets’ contain a large number
of nodes (permissions) and edges (relative pairs). This large number shows either that
applications in these categories are highly multifunctional and often require many per-
missions, or that the category contains many applications with different functionalities.

83

Chapter 6 Detecting abusive applications: permission usage patterns for applications’
classification and anomaly detection

This might be an indication that these categories are too broad, and could be divided
into subcategories.

a) Personalization b) Transportation

d) Photographyc) Health and fitness

f) App wallpapere) Finance

Figure 6.4.1: Examples of obtained permission patterns for fours categories. Colors rep-
resent the modularity classes, node size represents betweenness centrality
score and edge thickness represents the weight.

Figure 6.4.1 illustrates the patterns obtained for six different categories: personaliza-
tion, photography, transportation, health and fitness, finance and wallpaper. Each pattern
has been visualized by the Gephi graph visualization software [125]. For each pattern, the
colour of the nodes is defined by the modularity class of the node: permissions belonging
to the same modularity class have the same color. The size of the nodes is defined by
their betweenness centrality: further analysis shows the betweenness centrality to be the
most relevant metric for our methodology. The labels of nodes correspond to Android
permission names, and are proportional to the nodes’ size. We used the Fruchterman
Reingold [126] and the Force atlas 2 [127] algorithms for graph visualization, as well as
manual adjustments improving the labels’ visibility.

84

6.4 Results

The first pattern is related to the ’Personalization’ category (denoted a) in Figure 6.4.1.
’Personalization’ applications mostly involve screen personalization by wallpapers that is
expressed by the most central permission - set_wallpaper. Another central permission is
get_tasks that enables recently run applications to be obtained and proposes in-context
personalization. System_alert_window and vibrate permissions offer personalized notifi-
cations.
The ’Transportation’ category is denoted b) in Figure 6.4.1. Access_fine_location is

clearly the most important permission for transportation, as most applications in this
category are maps and GPS-related software. Access_mock_ location is a development
permission used for testing. It seems that most of applications in our dataset have kept
this permission in production and some applications offer a fake GPS position within an
application using this permission. Bluetooth_admins is one of the central permissions
in the ’Transportation’ category: GPS and car-related tools often use this permission to
connect with a hands free Bluetooth kit or specific car diagnostic devices.
Figure 6.4.1 c) shows the pattern obtained for the ’Health and fitness’ category. The

most central permissions - bluetooth and bluetooth_admin - clearly indicate the appli-
cations in this category are mostly used with health and sport-related devices such as an
accelerometer, heart and step monitor, etc.
The ’Photography’ pattern is shown as d) in Figure 6.4.1. The most central ’Photog-

raphy’ permission is camera for accessing and using a device-embedded camera to take
photographs. ’Photography’ applications use set_wallpaper permission with a camera
enabling the picture taken to be used as a wallpaper.
The wallpaper category (’app_wallpaper’) is shown as f) in Figure 6.4.1 and gives a high

number of significant permissions due to the diversity of animated wallpapers and func-
tionalities accessed and provided by animated wallpapers. ’Set_wallpaper’ is the central
permission; the other wallpaper-related permissions are also in the pattern. Filesystem
and package management permissions are related to different personalizations proposed
by single wallpaper application as well as shortcut and widget management permissions.
Many functionality-related permissions are seen permitting fast access from the wallpaper
to build in functionalities: phone calls, SMS, calendar, settings, application list, contacts,
bookmarks, cache. External storage permissions allow storing personalization images
locally and network related permissions allows getting additional information, such as
weather, and download new images.
The ’Finance’ category is represented as e) in Figure 6.4.1. The most central permissions

for finance category are ‘call_phone’ and ‘internet’. Permissions used for calls including
voip calls and SMS are often available for contacting the bank or a service manager. ’In-
ternet’ permission seem necessary to access to up-to-date banking information. One can
distinguish many account and authentication linked permissions due to the sensitivity of
the financial information and the necessity for a secure usage. Localization permissions
also appear in the pattern, probably to apply different location-dependent payment crite-
ria or to identify the nearest offline office. Camera is often used for QR-codes and cheque
deposit in finance applications.
The interactive graphs for all categories can be found in [128].

6.4.2 Graph centrality features vs. occurrence
The most commonly used permissions indicator from the state-of-the-art is the simple
occurrence of permissions in applications in different categories. To highlight the im-

85

Chapter 6 Detecting abusive applications: permission usage patterns for applications’
classification and anomaly detection

provement of the proposed methodology with respect to these works, the results for the
’Finance’ patterns are compared to the top 5 most frequent permissions obtained for the
same category.
Table 6.4 shows the top 10 permissions and the percentage of applications of the dataset

that require these permissions. INTERNET permission is the most frequently required
one as observed by previous works.

Permission Applications %
INTERNET 91,88%

ACCESS_NETWORK_STATE 83,31%
WRITE_EXTERNAL_STORAGE 60,39%
READ_EXTERNAL_STORAGE 60,29%

READ_PHONE_STATE 49,92%
WAKE_LOCK 33,01%

ACCESS_WIFI_STATE 31,47%
VIBRATE 30,07%

ACCESS_COARSE_LOCATION 27,73%
ACCESS_FINE_LOCATION 27,42%

Tableau 6.4: Top 10 of permissions usage. Each permission is originally prefixed by ’an-
droid.permission”.

Permission Occurrence % Betweenness
INTERNET 91,19 (Rank 1) 361 (Rank 2)
ACCESS_NETWORK _STATE 75,15 (Rank 2) 202 (Rank 6)
WRITE_EXTERNAL _STORAGE 49,32 (Rank 3) 98 (Rank 16)
READ_EXTERNAL _STORAGE 49,12 (Rank 4) 98 (Rank 17)
READ_PHONE _STATE 32,88 (Rank 5) 69 (Rank 19)

Tableau 6.5: Top 5 frequent permissions for the ’Finance’ category

Permission Occurrence % Betweenness
CALL_PHONE 11,74 (Rank 12) 470 (Rank 1)
INTERNET 91,19 (Rank 1) 361 (Rank 2)
CAMERA 10,96 (Rank 14) 360 (Rank 3)
USE_CREDENTIALS 3,52 (Rank 21) 257 (Rank 4)
ACCESS_COARSE _LOCATION 19,18 (Rank 8) 231 (Rank 5)

Tableau 6.6: Top 5 permissions according to betweenness centrality for the ’Finance’ cat-
egory

Tables 6.5 and 6.6 show the permissions of the ’Finance’ category with the corresponding
occurrence and betweenness centrality scores. One can see that top 5 Finance permissions
from the Tables 6.5 are equal to top 5 permissions for all categories presented in the Table
6.4. This shows that even if those permissions are highly used in the category they are
not representative of it. The proposed pattern contains those permissions but not as

86

6.4 Results

highly ranked. The top 5 permissions defining ‘Finance’ as shown in the proposed results
in Table 6.6 mostly propose online (internet) services and needs secure authentication
(use credentials). Banking applications prefer including direct contacts with the bank
in the application (call phone), allows check deposit (camera) and propose office or cash
withdrawal locations (access coarse location). The pattern is more accurate than simple
frequency analysis to define a particular category. The use of the Z−score is particularly
adapted for this purpose since it allows to measure how relevant a couple of permissions
is to a category with respect to its overall permissions use in units of standard deviation.

6.4.3 Classification and features accuracy
This section provides the results of the Naive Bayesian algorithm for classifying the ap-
plications into categories using pattern-related features. The suitability and efficiency
of these features are analysed separately and in combination. The obtained results are
also compared with the state-of-the-art method. The pre-processing and classification is
performed with WEKA [129].
The first step was to perform a classification using the state-of-the-art method. Our

patterns are built based on the permission lists, it is important to compare the per-
formance of those patterns in describing a category comparing to the initial permission
dataset as we can suppose the initial permission lists already contain all the information
and category description. Moreover, previous state-of-the-art works often include sim-
ple permission list while classifying Android applications [130, 131, 56]. A permission
binary vector of 229 Android 4.4 permissions in built for each application, in which a
value of 1 is attributed to permissions required by a given application and 0 otherwise.
The Naive Bayesian algorithm showed relatively poor results with only 15% of instances
correctly classified. The results are shown in the last line in Table 6.7 (average scores for
all categories).
The second step was to classify separately the applications using the proposed pattern-

related features for each metric. The middle block of lines in Table 6.7 shows the results
of this step. The betweenness centrality shows the best performance with an F-measure
equal to 0.417 and AUC of 0.941. This result confirms the hypothesis that permissions
with high betweenness centrality are necessary for the main functionality or common to
many functionalities of the category, and permissions with high betweenness centrality
represents the category well. Betweenness centrality outperforms weighted degree by 0.086
and 0.023 in the F-measure and AUC respectively. The PermCount feature, which only
uses patterns without integrating graph metrics, does not perform as well but surpasses
binary vectors by 0.118 in the F-measure and 0.171 in the AUC.
The third step combined features from the most to the least efficient to measure the

gain obtained by each metric. Table 6.7 combines all the classification results ordered by
true positive rate. The top six lines represent the combined features. Figure 6.4.2 shows
the gain in F-measure and AUC brought by each metric added one by one, starting from
the betweenness centrality. The highest gain in the AUC is brought by combining the
two best metrics: betweenness centrality and the weighted degree. The gain increases
with each additional metric, but the gain for the next 5 metrics is smaller than the gain
brought by the weighted degree alone. The most significant gain regarding the F-measure
is provided by the weighted degree (+0.148).
Figure 6.4.3 shows the F-measure results for each classification category and different

metrics. The results for the state-of-the-art method are denoted ’Binary’ (empty cross).

87

Chapter 6 Detecting abusive applications: permission usage patterns for applications’
classification and anomaly detection

Metric TP
Rate

FP
Rate

Preci-
sion

Re-
call

F-
mea-
sure

ROC
Area

Correctly
classified

(%)
All 7 metrics 0.809 0.006 0.818 0.809 0.809 0.995 80.86
Betweenness &

Weighted & Degree
& PageRank &
HubAuth &
PermCount

0.787 0.007 0.794 0.787 0.786 0.994 78.66

Betweenness &
Weighted & Degree
& PageRank &

HubAuth

0.769 0.007 0.78 0.769 0.77 0.993 76.87

Betweenness &
Weighted & Degree

& PageRank

0.712 0.009 0.731 0.712 0.715 0.99 71.21

Betweenness &
Weighted & Degree

0.653 0.011 0.681 0.653 0.657 0.985 65.34

Betweenness &
Weighted

0.559 0.014 0.599 0.559 0.565 0.973 55.85

Betweenness 0.412 0.019 0.46 0.412 0.417 0.941 41.23
Weighted Degree 0.338 0.021 0.329 0.338 0.331 0.918 33.75

Degree 0.322 0.022 0.312 0.322 0.315 0.914 32.20
PageRank 0.315 0.022 0.306 0.315 0.308 0.911 31.54

Authority/Hub 0.308 0.022 0.299 0.308 0.301 0.908 30.81
Closeness 0.27 0.024 0.26 0.27 0.263 0.89 27.04

PermCount 0.265 0.024 0.256 0.265 0.258 0.891 26.54
Binary 0.15 0.03 0.15 0.15 0.14 0.72 15.24

Tableau 6.7: Classification results for each metric and combinations of metrics

88

6.4 Results

Figure 6.4.2: Performance gain brought while adding all metrics one by one to between-
ness centrality

89

Chapter 6 Detecting abusive applications: permission usage patterns for applications’
classification and anomaly detection

The other lines represent the results for the previously presented metrics: the red line
illustrates betweenness centrality results (squares); the green line represents application
permissions and pattern intersection (triangles); the blue line illustrates the combination
of two best metrics (full cross), and finally, dark-blue shows the final results for all the
metrics combined (diamonds).
One can see that for most categories, the F-measure for pattern extracted features

is higher than the binary vector. Even the feature exploring only common permissions
between an application and patterns generally obtains higher results than the binary ap-
proach, and graph analysis metrics obtain a significantly better classification performance.
These observations show the relevance of patterns in category definition and the value
brought by graph modeling and analysis.
Some categories, such as ’Lifestyle’, ’Health and fitness’ and ’Racing’ have low scores in

binary classification; in spite of the improvement in accuracy, the same categories remain
the hardest to classify with betweenness centrality; other metrics help to significantly
raise the F-measure. Categories, such as ’Game_wallpaper’, ’Game_widgets’, ’Finance’
and ’App_widgets’ - one of the hardest to classify with binary features - obtain high gains
with the proposed pattern methodology. The classification for the ’News and magazines’
category is particularly boosted by the weighted degree metric. A similar boost is seen
for the ’Lifestyle’ and ’Business’ categories, while other metrics are added to betweenness
centrality and the weighted degree.
Those results allow us to conclude that among all metrics, patterns containing between-

ness centrality and weighted degree represent categories best. Combined together, those
patterns perform well in classifying Android applications and bring the biggest perfor-
mance gain comparing to other added metrics. The results for the initial permission list
is low that justifies the pertinence of the methodology of pattern construction. We con-
sider our second hypothesis as confirmed and the response to our first research question
as positive.

6.4.4 Risk warning for suspicious applications
This section presents the results related to suspicious application detection and risk warn-
ing using the privacy score. The classification results show that the best features are
betweenness centrality and weighted degree. The both features are used to obtain a more
accurate privacy score. By including both features in equation 6.3.6, each permission of
the pattern becomes considered.
In order to identify the best threshold and β values for equation 6.3.7, applications in

the photography category were manually tagged: ’1’ is attributed to applications that
seem abusive in terms of permissions or use abnormal permissions, and ’0’ otherwise.
Some applications that apparently should not belong to the ’photography’ category

were also tagged with ’1’ . For example, applications such as photo galleries for wallpapers
clearly belong to the ’wallpaper’ category and photo sharing social networks belong to the
’social’ category. The application name and description from the dataset and, in some
cases, the profile and screenshots from Google Play were used to identify suitable tags. To
obtain as more significant and diverse dataset of risky applications, we injected a sample
of 100 known malware applications into the photography dataset and tagged them as
’risky’ (tag ’1’).
We have tested different β and thresholds to evaluate the performance of the risk

warning using the tagged instances. Figure 6.4.5 depicts the best F-measure results for

90

6.4 Results

Fi
gu

re
6.
4.
3:

Bi
na

ry
ve
ct
or

an
d
pa

tt
er
n-
re
la
te
d
fe
at
ur
es

co
m
pa

ris
on

re
ga
rd
in
g
F-
m
ea
su
re

an
d
al
lc

at
eg
or
ie
s

91

Chapter 6 Detecting abusive applications: permission usage patterns for applications’
classification and anomaly detection

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Tr
ue

	 p
os
iti
ve
	 ra

te

False	 positive	 rate

Beta	 =	 0
Beta	 =	 1
Beta	 =	 2
Beta	 =	 3
Beta=	 4
Zhu	 et	 al.
Binary
Random

Figure 6.4.4: Performance for risky application detection in ’Photography’ category. ROC
curves for for different β (denoted Beta on the graph) and thresholds for
the equation 6.3.7.

different values of β and minimum likeness. We also compared our results with the
risk detection, using only the number of required permissions as a very high β becomes
equivalent to this indicator. It is apparent that the permission number indicator shows
low results, as many injected applications requested a small number of permissions. The
only likeness-based threshold also shows low results that are similar to permission number-
based detection. Privacy-based best results for the ’photoghrahy’ category are seen for
the minimal likeness of 10. The β value affects the performance, which increases for each
β until it reaches its peak at β = 3, and the performance then drops again with β = 4
and β = 5. The results justify the need for an adjustment parameter and a minimum
likeness parameter of the privacy score.
Figure 6.4.6 shows the optimal threshold curve. The x-axis represents the number of

Android 4.4 permissions used by an application. The y-axis represents the likeness of an
application calculated using equation 6.3.6. The black dots are ’non risky’ applications
located above the threshold; the red dots are ’risky’ applications situated below the risk
threshold. The labels indicate the manual tags: ’N’ for normal applications and ’R’ for
risky applications. There is a great diversity among risky applications, while normal
applications are similar in their permission requests. Normal applications often have
identical likeness as they require identical permissions. The more permissions required by
an application, the more severe the threshold; minimal likeness threshold enables leverage
of an application that requires few non-central permissions in common with the pattern.
Table 6.8 provides detailed results not only for the F-measure, but also for the F2-

measure and the F0.5-measure: the F2-measure gives more value to recall that is the
importance of not raising false negatives; the F0.5-measure gives more value to precision
that is the importance of not raising false positives. The best scores are shown in bold

92

6.4 Results

and the smallest scores are shown in italics. The permission number gives the best F2-
measure considering all applications having more than 9 permissions to be risky. In fact,
some popular applications request many permissions due to additional functionalities.
Users can find such assumptions simplistic and even annoying if the false positive rate is
high. Users are known not to pay attention to repetitive warnings, and so the number of
false positives should be reduced.
We compare the performance of the proposed risk warning system with the state-of-the-

art studies that measure the risk level of Android applications. The authors of the latest
study propose an approach based on random walk and an application-permission bipartite
graph [66]. The authors model Android applications as a bipartite graph where nodes
representing applications are linked to nodes representing permissions that are required
by each application. The edges are weighted using the equation 6.4.1 and the final risk
score is obtained by applying random walk. We apply the method proposed in [66] to
our dataset with the injected malware and keep ’Photography’ category for performance
comparison. The obtained performance is plotted in Figure 6.4.4 as a light-blue dotted
line.

wij = fij∑
eik∈E

fik
(6.4.1)

where fij is the number of Apps in category c(ai ∈ c) requesting permission pj.
Many studies use a selection of dangerous permissions or permission lists for risk and

malware detection [55, 54, 132, 131, 59]. Therefore, we also verify the performance of
detecting abnormal application using permissions as features. To compare results, we
use the same ’Photography’ application with the injected malware dataset. We build
binary vectors for all applications and perform Naive Bayesian classification to identify
risky applications. The performance of binary vector in represented on Figure 6.4.4 as a
dark-purple dotted line.
The bold lines in Figure 6.4.4 show the ROC curves for our methodology performance

for beta from 0 to 4. To simplify the comparison, we provide the performance of our
method for different β always keeping LN0 equal to 0. The purple line corresponding to
the β = 0 is inverted, as the original values were below the random. This means that in
the case of β = 0 , the best performance is obtained when applications with a privacy
score higher than a threshold are considered as risky. This happens due to the fact that
many risky applications require many permissions. In spite of the inversion, the results
are low. β = 1 represents a linear separation and shows better results, but the best results
are obtained for β = 3. The Figure 6.4.4 shows that the risk score and warning threshold
proposed in this paper becomes much more accurate than other approaches starting from
the β = 2. Even if the approach presented in [66] outperform the binary vector, it is
outperformed by our method with the β = 3. This comparison justifies the necessity of
the adjustment parameter β in the equation 6.3.7. From the results, we conclude that
that the hypotheses 1 and 3 of this study are confirmed and the answer for the second
research question is positive. To obtain the final warning system, the best β, threshold
and LN0 should be chosen in the same way for each category.

93

Chapter 6 Detecting abusive applications: permission usage patterns for applications’
classification and anomaly detection

Figure 6.4.5: Graph representing how the minimal likeness and beta affects risky appli-
cation detection.

Beta F-
measure

F2-
measure

F0.5-
measure

Min
Like-
ness

1 0.738 0.640 0.862 0
2 0.761 0.568 0.860 10
3 0.798 0.658 0.872 10
4 0.772 0.692 0.874 10
5 0.770 0.690 0.874 30
0 0.661 0.679 0.595 150

Perm 0.670 0.701 0.780 N/A

Tableau 6.8: Best results for F-measure, F2-measure and F0.5-measure for different β

6.4.5 Category similarity
A confusion matrix obtained by a Naive Bayesian classification of applications into cat-
egories using all graph features shows the original and the predicted class for the data
entries. Those data allows the creation of a category similarity graph by linking each
category with a wrongly predicted category. The aim of this representation is to highlight
the categories that are the hardest to predict and closest to other categories. Figure 6.4.7
shows the category similarity graph.
Some categories contain similar types of applications: ’media and video’ with ’enter-

tainment’; ’travel and local’ with ’transportation’; ’app wallpaper’ and ’personalization’;
’communication’ and ’tools’; ’productivity’ and ’business’; ’finance’ with ’books and refer-
ences’; ’sports’ with ’health and fitness’; games related categories and, surprisingly, books
and medical.
The applications are assigned into categories by developers and there are no rules for

assigning an application to a category. Some categories have similar names, and develop-

94

6.4 Results

Fi
gu

re
6.
4.
6:

O
pt
im

al
th
re
sh
ol
d
fo
r
de
te
ct
in
g
ris

ky
ap

pl
ic
at
io
ns
β

=
3,
th
re
sh
ol
d

=
0.

10
8,
L
N

0
=

10

95

Chapter 6 Detecting abusive applications: permission usage patterns for applications’
classification and anomaly detection

Figure 6.4.7: Category similarity graph

ers assign up to three categories to one application to make the applications more visible:
for example, wallpaper applications can also be found in the ’personalization’ category.
A few developers assign only the best category. This can lead to false positives between
similar categories, and reduce the automatic classification results. Some categories are
large and contain different types of applications. For example, the ’photography’ category
includes applications with different functionalities: camera, image processing and combi-
nations. Some camera applications enable users to take photos, such as simple camera,
panoramic photo and heat photo. Most photography applications are photo processing
apps, including an actual camera or otherwise, providing photo filters, adjustment set-
tings, photo frames, custom text, photo montage, etc. Finally, a few applications were
concerned with secure photo management. Under the hypothesis, normal applications
should use permissions found centrally in the pattern, but some image processing appli-
cations do not actually require camera access. Android does not include a permission
to access the photo gallery that would be central to both functionalities, therefore more
fine-grained and data oriented permissions would be beneficial for the proposed method-
ology. Google Play could also integrate more fine-grained and explicative categories and
subcategories, and clearly define what kind of application goes into each category. That
would be a benefit not only for automatic analysis, but also for users looking for specific
applications.

6.5 Discussion and future work
The pattern construction is based on the dataset, therefore it should be carefully prepared
and filtered. Google Play is supposed to have a majority of normal applications but to
ensure the quality of the pattern, in addition to the filters explained in the proposed
methodology, one can choose to consider only applications with a high rating/user note.
We also observed that some developers produce many similar applications, therefore the
dataset can be filtered to omit over-productive developers or to limit the number of
applications created by the same developer by category to ensure the diversity.
The proposed methodology treats all permissions that deviate from the pattern equally,

while a person may consider some permissions more risky. Known risks and the additional
penalty for dangerous permissions that are required but not in the pattern can be inte-
grated into the risk measurement.

96

6.6 Conclusion

Compared to data flow tools described in the state-of-the-art section, the proposed
solution is lightweight and based entirely on easily accessible data. Code analysis is a
complex and heavy task but those data flow analysis-related works could be complemen-
tary to the proposed approach. If the user is willing to control applications’ data flows,
he could choose to run tools to analyse and control particular risky application instead
of monitoring all applications and data flows. Those tools could also be used as a pre-
processing step to the proposed methodology for choosing only permissions that are really
used and not merely required, but it would add additional complexity to the methodology
(for example, those unused permissions should be removed from the application itself to
avoid permission escalation attacks).
This work can be continued by introducing an application recommendation system

that not only takes into account application ratings, but also privacy, using a normal
permissions request pattern. The proposed methodology allows us to measure risk of an
application using two axes: number of permissions and pattern likeness. Thereby, the
future recommendation system could propose applications that are similar to the one
chosen by the user, but having less risk. This can be rather an application requiring less
permissions for similar likeness, an application having a maximum likeness for the same
number of permissions or a balanced recommendation.

6.6 Conclusion
Permission system is one of the Android security mechanisms. A list of permissions
required by an application is supposed to warn users about abnormal or risky applications,
but the state-of-the-art showed it is ineffective. We suppose that permission list is an
important source of information that can be analysed automatically to propose a simpler
and more effective security indicator for users.
We observe that Google Play groups Android applications into categories. We suppose

that applications would be similar within a category and would require similar permis-
sions, but applications from different categories would have different permission requests.
Therefore, we could identify permissions patterns that characterise each category and a
typical application of each category. Knowing normal behaviour of an application of a
given category, we can identify applications that deviates from it: wrongly categorised,
poor, abusive or malicious. This study verifies the aforementioned hypothesis and con-
cludes that categories can be described by permission patterns, and a risk warning based
on such patterns allows malware detection.
In this study, we model normal permissions requests by category using graphs. We

propose a 5 step methodology to obtain patterns for each category. We verify the perfor-
mance of different patterns in application classification into categories to select the most
descriptive patterns. Betweenness centrality and weighted degree patterns were identified
as the best-performing for classification. When combined, they provide the highest gain in
application classification performance and also allow to consider each permissions of the
pattern. We, then, propose a privacy score based on the similarity between an application
and a given category-pattern and a risk warning threshold. We test our risk warning in
malware detection and it outperformed the similar works from the state-of-the-art.
The proposed study address several issues of the state-of-the-art. First, our methodol-

ogy is based on the information that can be easily obtained without using any complex
code analyses techniques. Second, out risk score is based on the expected behaviour of
benign applications in different categories, therefore the user could be warned about any

97

Chapter 6 Detecting abusive applications: permission usage patterns for applications’
classification and anomaly detection

abnormal permissions request and not only about the known malware. Third, the pat-
tern construction methodology is separated from the risk measure. This way, the risk of
any application in any category can be easily calculated without the need of rebuilding
patterns often. The same methodology could allow to chose the best category for new
applications arriving to the market.
The behavioral pattern explained in this work was presented at The Seventh Interna-

tional Conference on Pervasive Patterns and Applications PATTERNS 2015 [133]. The
full version of the study is under revision for the Decision Support System Journal, Else-
vier.

98

Chapter 7

Respecting user’s privacy by default: a
PbD permission system for mobile

applications

Abstract

The Privacy by Design concept proposes integrating respect for user privacy into sys-
tems managing user data from the early design stage. This concept has increased in
popularity and the European Union (EU) is enforcing it with a Data Protection Direc-
tive. Mobile applications have entered the market and the current law and future directive
are applicable to all mobile applications designed for the use in EU. It has so far been
shown that mobile applications do not suit Privacy by Design and lack transparency, con-
sent and security. Current permission systems are judged unclear for users. This chapter
introduces a novel permission system suitable for mobile application that respects Pri-
vacy by Design. Instead of predefined permissions, this chapter presents a permission
system vocabulary permitting the generation of permissions necessary for each piece of
personal data. The patterns for the definition of permissions and also for enforcement
implementation are given. Such an adapted permission system can improve not only the
transparency and consent, but also the security of mobile applications. Finally, an exam-
ple of a permission definition for a real mobile application using a lot of personal data
illustrates the model.

99

Chapter 7 Respecting user’s privacy by default: a PbD permission system for mobile
applications

7.1 Introduction
Mobile phones have significant data flow: information can be received, stored, accessed
and sent by applications. Data can be entered by the user, retrieved from the system
sensors or applications, come from another mobile application, arrive from servers or
from other devices. Data can be shared on the phone with another application, with
servers or other devices.
The ’Opinion 02/2013 on apps on smart devices’ by the Article 29 Data Protection

Working Party [8] defines four main problems with mobile privacy: lack of transparency,
lack of consent, poor security and disregard for purpose limitation.
One of the security mechanisms protecting data in mobile and other systems is the

Data Access Model or a permission system. Permission systems are embedded in mobile
operating systems and are a crucial part of mobile security and privacy. Well designed, it
makes a proactive privacy-respecting tool embedded in the system. Nowadays, permission
systems do not follow the Privacy by Design principles: a number of studies concluded that
the Android permission system fails to provide transparency, consent, purpose limitation
and security [39, 40, 38, 42]. Users cannot understand Android permissions and the related
functionalities or risks, ignore repetitive notifications and cannot control data access after
application installation. A redesigned permission system could address all four problems
of mobile privacy outlined earlier.
This chapter presents the permission system model and vocabulary where permissions

can be built for each piece of private data, each action and for each purpose. Such a
system can cope not only with security and control problems, but also with the trans-
parency, consent and purpose-disregard problems. The remainder of the chapter is orga-
nized as follows: Section II summarizes state-of-the-art studies and highlights the limits
of related works. Section III introduces the privacy-respecting permission system model:
an overview, the vocabulary and permission states. Section IV presents the permission
system in action: algorithms to define and to enforce permissions are included in this
section. Section V shows the application of the novel permission system to a real mobile
application. The paper ends with discussion, future work and conclusion.

7.2 Related works and limits

Many works proposed improvement to the Android permission system. Authors of [67, 68,
69, 63] proposed tools enabling the possibility of revoking permissions mostly by returning
the shaded data and authors of [71, 72, 74, 73] presented condition-based granting tools:
whitelist applications, context-based rules or user-defined rules such as the number of
times used and time of the day the permission can be used. It is not clear if users can adopt
those technologies as no studies have been done on the subject yet. It is known that users
do not understand many of the Android permissions and its purposes, therefore users are
not likely to be able to configure the current permission system, especially at installation
time. Moreover, the revocation of permission can break many applications that rely on
them and do not expect to be thrown an exception. The authors of [94, 96, 97] propose
dynamic analysis tools monitoring the data and preventing private data leakage. Although
such a system add transfer protection to the native access protection, it is not clear if
users can configure such tool. The authors of [78] also propose adding transfer permissions
linking data-related permissions to transfer-related permissions such as ’contacts -> sms’

100

7.3 Privacy-respecting permission system overview and vocabulary

or ’contacts -> Internet’. One can see that the presented tools tries to cope with the
control and security problems, but transparency and user’s consent seems limited.
The authors of [80] propose controlling each method call of Objective-C. This permission

mechanism is clearly fine-grained, but seems even more complex for users to adopt than
actual permission systems.
In [77], the authors proposed integrating new fine-grained permissions to restrict inter-

net access to a particular domain, clarify publicity-related permissions, anonymize and
reduce some permissions. The authors of [79] propose creating permissions not only for
an entire SQLite table, but also for certain lines, columns or cells. Although those works
considerably improve the permission system, it still remains incomplete.
The authors of [75, 76] proposed digital right management model and its implementation

adding constraints and restrictions to the file usage. Such works make per-file permission
systems and only protects the access action. The goal of such a system is to protect files
from unauthorized usage and distribution rather than to protect users.
To our knowledge no work has been conducted on redefining the mobile permission

system to fit the Privacy by Design principles or on adding purpose to permissions.

7.3 Privacy-respecting permission system overview and
vocabulary

This study proposes to focus on permissions concerning data and the actions that can be
carried out on this data, rather than on the technology used. The definition of purpose
of the data use is also included in the proposed permission system.
Privacy Policy should be short and clear. Users should have a global vision of the data

use and functionalities before they install an application. Users rarely read long involved
policies, especially when they want a service and feel they have no choice but to accept
all permissions. The proposed permission system enables a simple policy to be generated
with a list of permissions.

7.3.1 Definition
The permission system is modeled on an access control model. Discretionary access control
is chosen where only the data owner can grant access. The user should be able to control
the data, therefore, the user is considered as the unique owner of all information related
to him.
Rapp is a set of rules assigned to the application app. A rule is defined as an assignment

of the Right over an Object to a Subject. The rule triplet is defined as follows:

∀ rule ∈ Rapp, rule = (s, r, o) (7.3.1)

where s = Subject, r ∈ Right, o ∈ Objects
A mobile application is defined as a Subject. Each mobile application is associated

with the unique identification number that can be used as a Subject.

Subject = MobileApplication ID (7.3.2)

Objects are the user-related data, such as e-mail, contact list, name and surname, phone
number, address, social networks friend list, etc. As the permission system is data-

101

Chapter 7 Respecting user’s privacy by default: a PbD permission system for mobile
applications

Figure 7.3.1: Different actions can be made on the data and included into the proposed
permission system.

102

7.3 Privacy-respecting permission system overview and vocabulary

centered, the definition of data should be as precise as possible.

Objects = {Phone#, Name, Contacts, · · · } (7.3.3)

Each application needs to use a piece of personal data to perform a particular action with
a specific goal. Users give the Right to the application according to this action and this
goal. To define Right we have to introduce Action and Purpose.
Each action is one of all the actions, denoted Actions, that can be carried out on user

private data by the application: load, read, modify, store and transfer. We define the
Actions as follows:

Actions = {Read,Modify, Load, Store, Transfer} (7.3.4)

where
Read is a read-only access to the data that is already stored on the phone.
Modify is an action permitting the update of a piece of personal data already stored

in the system.
Load represents an action bringing new information to the phone from a distant server,

Internet or mobile sensor such as GPS, etc.
Store action indicates a new piece of private data will be saved on the device.
T ransfer action indicates some private data is transmitted from the device to the

server or another device.
Actions are depicted on Figure 7.3.1.
Purpose is assigned by the application developer and depends on the service. For

example, purpose could be ’retrieve forgotten password’, ’display on the screen’, ’calculate
the score’, ’send news’, ’retrieve nearest restaurant’ and ’attach to the message’.

Purpose = {Retrieve forgotten password, · · · } (7.3.5)

A permission right, denoted Right, for all actions except the Store action is defined as a
combination of one element of Actions and one element of Purposes.
To respect the minimisation principle (minimize the data usage and storage), any per-

sonal data should be stored on a mobile device only the period of time that is necessary
for the functionality. The set of rights, denoted Right, with the action equal to Store is
defined with an additional parameter, time, informing about the time storage.

∀r ∈ Right, r =

(action, purpose) if action ∈ Actions− {Store}
(action, purpose, time) if action = Store

(7.3.6)

where purpose ∈ Purposes, time ∈ [0, T]. The period [0, T] is an application lifetime.
The time storage can indicate the number of days, hours or months data is stored

or the time regarding the application lifecycle: until the application is closed, until the
application is stopped, until the application is uninstalled. All personal data available
during the removal of the application is deleted regardless of the defined period, as it
cannot exceed the application lifetime.
Figure 7.3.2 summarizes the definition explained above.

7.3.2 Object: private data
Existing mobile permissions and mobile forensic techniques on iOS and Android phones
are allowed to identify some private data that can be accessed on the smartphone by an

103

Chapter 7 Respecting user’s privacy by default: a PbD permission system for mobile
applications

Figure 7.3.2: Summary of the the proposed permission system definition

application. Below is a, possibly not exhaustive but, large list of personal information
that can be found on a mobile phone.

• Contact list: type (phone, Facebook, Twitter, Skype) or associated service names;
name; surname; nickname; e-mail; picture; address; website; company; birthday;
job title; significant other

• Calendar: name; appointments containing subject, location, starting date, ending
date, status, notes, attendees’ full names.

• SMS / MMS: type (incoming, outgoing); time; sender’s name; sender’s phone num-
ber; text content; multimedia content (SMS: small images; MMS: images, photos,
video, contact information, etc.)

• Call logs: type (incoming, outgoing, missed); caller’s name, caller’s phone number;
voice messages.

• Location: exact location (latitude and longitude); approximate location (latitude
and longitude), address, street, city, country.

• Stored Multimedia: type (image, audio, video); multimedia content; META data
(date, geolocation).

• Medical records: weight, height, sex, body mass index, nutrition, illnesses, blood
pressure, heart rate, sleep quality, sexual activities, etc.

• Other: multimedia sensors (newly created image, audio, video) and data from other
sensors (pressure, temperature, movement, etc.); mobile phone usage statistics (last
used applications, configurations); device unique id; SIM id; web browser history;
user accounts information (login, password, tokens); documents from external or
internal storages; currently displayed screen (screen shots), push messages; bank
account information; biometric information; sport activities; social networks and
other mobile applications’ data; list of installed applications.

Android includes only 26 permissions giving access to personal data including location,
accounts, SMS, MMS, camera, audio and video content, mobile user activities, calls,

104

7.3 Privacy-respecting permission system overview and vocabulary

contacts, calendar, saved documents, external storage data and screen shots. The Android
’Personal info’ permission group contains only 16 read and write permissions where only 5
permissions give read access to personal data. Other permissions are distributed between
’Location’, ’Messages’ and ’Hardware control’ permission groups. One can see that very
few permissions exist on Android to protect personal data, compared to the large amount
of personal data that can be available on a mobile device.
Note, that the o ∈ Objects can represent data of different granularity. For example,

the permission can be assigned to the ’Web browser history’, or to ’Today’s Web browser
history’; to ’Contact list’, to ’Business contact list’ or ’Personal Contact’s Names’; to
’Images’, ’Application-created images’, ’Image gallery folder’ or to ’JPG images’; ’latitude
and longitude’, ’ approximate latitude and longitude’, ’Street’, ’City’ or ’Country’, etc.
In the filesystem, the o ∈ Objects the permission is assigned to can represent a folder,
file or a certain type of files, to the database, database table or certain lines, columns or
cells.

7.3.3 Permission use restrictions
To reduce the flexibility of permission usage by an application and to give more control to
the user, the Privacy by Design permission system proposed in this study assign several
simple restrictions to each rule. Each permission is associated with permission restrictions
under which the user accepts the permission. Restrictions should be simple for the user
to set up.
EachRestriction contains an action type from the set of action types denotedActionTypes.

Two action types are defined: an action that will be explicitly launched by the user, de-
noted UserEvent, and automatic action, denoted Automatic.

ActionTypes = {UserEvent, Automatic} (7.3.7)

UserEvent action is launched via the user interface by the user triggering a particular
event. Automatic action is launched by an application and can include regular access,
update and transfer of the data or automatic insertion of a complementary piece of data
(e.g., automatic attachment of the geolocation data to the message, automatically fill in
the form, automatically synchronise the data with the server, etc.). Automatic action
can be triggered without any action by the user.
UserEvent restrictions attach the permission to a particular user event. We define
Restriction for the UserEvent action type as follows:

∀res ∈ Restriction,
res = (rule, action_type, user_trigger_event) (7.3.8)

where action_type = UserEvent, rule ∈ Rapp, action_type = UserEvent and user_trigger_event
is a concrete user event intercepted by an application.
Automatic action can be triggered by the system with a certain frequency or can be

associated with a trigger event (e.g., send message, create new message, etc.) or both.
We define Restriction for the Automatic action type as follows:

∀res ∈ Restriction,
res = (rule, action_type, frequency, event) (7.3.9)

105

Chapter 7 Respecting user’s privacy by default: a PbD permission system for mobile
applications

where action_type = Automatic, rule ∈ Rapp, frequency represents the number of times
per day/week/month the action can be performed by an application; event is an event
associated to the action launch: application is opened, screen is shown, message is sent
(button is clicked), form is filled in, etc.
Frequency is not a mandatory parameter. One permission can have several restrictions:

it can be associated with several different user or application events.

7.3.4 Permission state
The user should be explicitly asked to assign each rule. Thus, each rule has a State:
granted or revoked. The rule is granted with corresponding restrictions or the rule is
revoked entirely. To respect the ’Privacy by Default’ notion of Privacy by Design, the
default State of the permission in installed applications is Revoked. Only the user can
modify the State of permission with an explicit action via the user interface.
The State is defined as follows:

State(rule, time) =

Granted, user accepts the rule

Revoked, user declines the rule

State(rule, 0) = Revoked (7.3.10)

where rule ∈ Rapp, time ∈]0, T].
The State of a rule r1 ∈ Rapp changes over the application lifetime. The diagram in

Figure 7.3.3 shows an example of state modification.

Figure 7.3.3: Example of state modification diagram for a given permission

7.3.5 User control
User should have a choice of granting the permission permanently, of revoking the per-
mission permanently or of confirming the permission usage with the user each time. The
rule Check is defined as follows.

Check(rule, time) =

True, confirmation required

False, no confirmation

Check(rule, 0) = True (7.3.11)

where rule ∈ Rapp, time ∈]0, T]

106

7.3 Privacy-respecting permission system overview and vocabulary

If the Check parameter is set to True, than the State passes to Revoked and is ignored
by the system. The permission is granted or revoked each time by the user via the
user interface allowing execution of the functionality, thereby the Restriction of the
permissions is also ignored.
If the Check parameter is set to False, the system verifies the permission State and
Restriction in order to execute the functionality.
To respect the ’Privacy by Default’ notion, the default Check parameter is set to True.

Figure 7.3.4: Activity diagram for the rule definition

7.3.6 Permissions interconnection
Each permission is associated with the purpose, thereby each permission is associated
with one particular functionality. Several permissions may be needed to assure one func-
tionality, and the developer can give the user a choice of using one permission or another.
Several permissions can be grouped by functionality in two ways: all permissions are
needed to assure the functionality; only one permission is necessary to assure the func-
tionality.

107

Chapter 7 Respecting user’s privacy by default: a PbD permission system for mobile
applications

The GroupType parameter is defined as follows:

GroupType = {ALL, ONE} (7.3.12)

where ALL shows all permissions are necessary to assure the functionality. ONE shows
only one of the listed permissions is necessary to achieve the functionality.
The ALL parameter can be expressed as a single permission that should be accepted

or declined by the user or by one activation button grouping all permissions. To respect
the minimisation principle, all permissions linked to a particular functionality should be
Revoked if at least one permission was declined by the final user.
The ONE parameter can be expressed by the user interface as a group of radio buttons

or as one permission with a drop-down list(s) on parameters that differ from permission
to permission (e.g., data, usage frequency). If at least one permission is given by the user,
the corresponding functionality will be assured and other permissions will be Revoked.
For example, an application can assure the service with different types of geolocation
data: latitude and longitude, city and the street name and the city only. Developers can
propose that the user choose one of the types of geolocation data.
Several permissions can be grouped to add dependencies and an acceptance rule. We

define the Group parameter as follows:

∀group ∈ Group, group = (group_type, {rulex, ruley, · · · }) (7.3.13)

where group_type ∈ GroupType; rulex ∈ Rapp; ruley ∈ Rapp

7.4 The permission system in action
The developer should define the permissions for all personal data (Object) used in the
application (Subject) before making the application available on the market. Permis-
sion restrictions and permission groups should also be defined. Figure 7.3.4 shows the
recapitulative schema of the permission definition.
The permission (rule) is stored inside the application with its current State and Check

parameters. The default State is Revoked. The default Check is True. Developers
should verify that the permission is fully displayed with the corresponding object, action,
purpose and restrictions and requested at least once and that the user is able to grant or
revoke this permission. Finally, the user should stipulate the settings with all rule ∈ Rapp

to be able to Grant or to Revoke individual permissions later.
The activity diagram in Figure 7.3.5 shows the permission management cycle from the

permission request to the permission usage authorisation/non-authorisation. When one
permission is required by the application, the permission management system first verifies
the parameter Check. If Check is set to True the system generates the message including
all information about the required permission. Users can accept or decline the permission
as well as switch permission management to automatic (Set Check to False). An example
of such message is shown in Figure 7.4.1. According to the user answer the permission
is authorised or non-authorised. Check is set to False meaning an automatic permission
management is enabled. System verifies the permission’s Status. If permission Status
is Revoked, then the permission is non-authorised. If permission Status is Granted,
then the systems check corresponding Restrictions. If Restrictions are respected, the
permission is authorised, otherwise the permission is non-authorised.

108

7.4 The permission system in action

Figure 7.3.5: Activity diagram: permission management.

Figure 7.4.1: Example of a permission request

109

Chapter 7 Respecting user’s privacy by default: a PbD permission system for mobile
applications

Figure 7.4.2: Sequence diagram: first use of
one permission or a use or per-
mission in ’user check’ mode.

Figure 7.4.3: Sequence diagram: use of one
permission without user con-
firmation.

The sequence diagram in Figure 7.4.2 shows the case of permission management when
the permission is used for the first time or the Check parameter is set to True. For
example, the user wants to invite a friend to play a game together, the application needs
permission to access the list of contacts and full name with emails to send an invitation
mail. System verifies the parameter Check that is set to ’true’. System generates the
message for the user explaining the permission needed, the user accepts the permission.
Now user can choose the friend he wants to invite.
The sequence diagram in Figure 7.4.3 shows the patterns in action when the permission

is used automatically without user confirmation: Check parameter is set to False. Per-
mission that does not require user confirmation can be used by an application if, and only,
the permission status is Granted and all Restrictions are respected. For example, the
user wants to automatically attach his geolocation (city) to the first message it sends per
day. The permission to load the city from the GPS is needed to attach it to the message.
Permission is restricted to a particular event - create new message - and a frequency, once
per day. When the user creates a new message, the system verifies the Status of the de-
scribed permission. As Status is granted, the system verifies the Restriction - permission
was not used yet today, therefore, the permission use is authorised.
One can see that the time in which permission can be used by an application is shorter

than the time in which permission is Granted. UserEvent action-type permissions can
only be used following a particular user event, therefore, permission becomes active only
at a specific time. Automatic permissions are limited by the defined frequency or an
event. The usage diagram is depicted in Figure 7.4.4

7.5 Application Example
This section gives an example of the permission system made for the application of trust
evaluation of friends on social networks named Socializer 1.0 [134]. This application was

110

7.5 Application Example

Figure 7.4.4: Example of usage modification diagram for a given permission

chosen because its service is based on private information and cannot be anonymous, the
Privacy by Design notion should be integrated into this application.
This application needs user friend lists of different social networks (Facebook, Twitter,

LinkedIn) plus the contact list to view friends and mutual friends to calculate the over-
lap of friends in different social networks and contact lists and to evaluate the trust of
Facebook friends.
The following private data can be used by the application:

1. List of contacts from mobile address book: name, surname

2. Facebook friends list: name, surname

3. List of mutual Facebook friends for each Facebook friend: name, surname

4. Twitter friends list: Name, Surname

5. Daily Facebook messages for each Facebook friend

6. Calculated trust score

Contact list is found on the smartphone, therefore, the application needs a Read right.

rule1 = (s, (Read, purpose1), ContactList)

where s is a Subject defined as the application Socializer 1.0; purpose1 = calculate the
trust scores.
The application will load the user contact list on user event: onClick on the button

"load contact list".
restriction1 = (rule1, UserEvent, event1)

where event1 is a user event: onClick on the button ’load contact list’;
Social networking friends lists should usually be retrieved from the server of a given

social network, therefore, the load and store actions should be defined. The Facebook
friends list plus the contact list are essential to assure the overlap and trust functionality.

rule2 = (s, (Load, purpose1), FacebookFriendList)
rule3 = (s, (Store, purpose1, time1), FacebookFriendList)

restriction2 = (rule2, UserEvent, event2)
restriction3 = (rule3, UserEvent, event2)

111

Chapter 7 Respecting user’s privacy by default: a PbD permission system for mobile
applications

where time1 is a storage time defined as: while the application is installed; event2 is a
user event: onClick on the button "load Facebook friends list";
For each Facebook friend, the list of mutual friends with the user is necessary for trust

calculation.

rule4 = (s, purpose1), FacebookMutualFriendLists)
restriction4 = (rule4, UserEvent, event3)

where event3 is a user event: onItemClick on the user name in the list of users for trust
calculation;
A list of friends from other social networks improves the scores of overlap and trust.

rule5 = (s, (Load, purpose2), TwitterFriendList)

rule6 = (s, (Store, purpose2, time1), TwitterFriendList)
restriction5 = (rule5, UserEvent, event4)
restriction6 = (rule6, UserEvent, event4)

where event4 is a user event: onClick on the button "load Twitter friends list"; purpose2
= improve the trust score;

rule7 = (s, (Load, purpose2), LinkedInFriendList)

rule8 = (s, (Store, purpose2, time1), LinkedInFriendList)
restriction7 = (rule7, UserEvent, event5)
restriction8 = (rule8, UserEvent, event5)

where event5 is a user event: onClick on the button "load LinkedIn friends list";
The second functionality of the application is to evaluate the behaviour of Facebook

and Twitter friends to indicate potentially dangerous contacts. The behaviour evaluation
is calculated by analysing the messages published by the given friend over time. The
application needs a permission to load messages.

rule9 = (s, (Load, purpose3), NewTwitterFriendMessages)

restriction9 = (rule9, Automatic, ∅, event6)
restriction9 = (rule9, Automatic, f1, event7)

where purpose3 is a purpose defined as ’calculate the Twitter friends behavior’; f1 is
an action frequency: once per day; event6 is a user event: onSlideDown on the list of
messages; e7 is an application event: onApplicationStarted.

rule10 = (s, (Load, purpose3), NewFacebookFriendMessages)

restriction10 = (rule10, Automatic, ∅, event6)
restriction10′ = (rule10, Automatic, f1, event7)

where purpose3 is a purpose defined as ’calculate the Facebook friends behaviour’.
The third functionality proposes viewing today’s Facebook and Twitter messages on

the screen for the user.

112

7.5 Application Example

rule11 = (s, (Store, purpose4, time2), T odayTwitterFriendMessages)

restriction11 = (rule11, Automatic, f1 event7)

restriction11′ = (rule11, Automatic, ∅, event6)

where purpose4 is a purpose defined as ’view today Twitter messages’; t2 is a storage time
defined as: one day.

rule12 = (s, (Store, purpose5, time2), T odayFacebookFriendMessages)

restriction12 = (rule12, Automatic, f1, event7)

restriction12′ = (rule12, Automatic, ∅, event6)

where purpose5 is a purpose defined as ’view today Facebook messages’;
The user has the option of sharing the scores by posting new messages on Facebook

and Twitter. The user can also contribute to research by sending the anonymized trust
and behaviour statistics to the developer. Those actions should be taken with the user’s
express consent.

rule13 = (s, (Transfer, purpose6), FacebookFriendTrustScore)

restriction13 = (rule13, UserEvent, event7)

where purpose6 is a purpose defined as ’share results on Facebook’; event7 is a user event:
onClick on the button ’share’.

rule14 = (s, (Transfer, purpose7), FacebookFriendTrustScore)

restriction14 = (rule14, UserEvent, event7)

where purpose7 is a purpose defined as ’share results on Twitter’.

rule15 = (s, (Transfer, purpose8), AnonymizedTrust)

rule16 = (s, (Transfer, purpose8), AnonymizedBehavior)

restriction15 = (rule15, UserEvent, event8)

restriction16 = (rule16, UserEvent, event8)

where purpose8 is a purpose defined as ’contribute to the improvement of the methodol-
ogy’; event8 is a user event: onClick on the button ’help research’.
The final application has 16 rules required by the application for full functionality.

Rapp = {rule1, rule2, rule3, · · · , rule15, rule16}

Those rules can be combined into groups. The rules rule1, rule2, rule3 and rule4 have a
common purpose, all rules should be accepted to achieve the functionality mentioned in
the purpose: ’calculate the trust’.

group1 = (ALL, {rule1, rule2, rule3, rule4})

113

Chapter 7 Respecting user’s privacy by default: a PbD permission system for mobile
applications

Object Action Purpose #
Contacts list Read

Calculate Trust 1Facebook friends list Load; Store
Facebook mutual
friends Load

Twitter friends list Load; Store Improve Trust 2
LinkedIn friends list 3
Twitter messages Load Tw. friends behaviour 4
Facebook messages Fb. friends behaviour 5
Today Tw. messages Store; (1 day) View Tw. messages 6
Today Fb. messages View Fb. messages 7

Trust score Transfer Publish to Twitter 8
Publish to Facebook 9

Trust and behaviour Transfer Contribute to
research 10

Tableau 7.1: Table recapitulating permissions needed for the application (last column is
a permission group number)

Similarly, rule5 should be grouped with rule6 and rule7 with rule8.

group2 = (ALL, {rule5, rule6})

group3 = (ALL, {rule7, rule8})

The rules from rule9 to rule16 should be accepted one by one to achieve the aforementioned
purpose (to achieve the functionality). Finally, we obtain 10 permissions to be added to
the application and controllable by the user. Table 7.1 recapitulates permissions.
To compare with the actual permission systems, (a) iOS requires contact list, Face-

book and Twitter access permissions. (b) Android requires ’internet’, ’read_contacts’
and ’get_accounts’ access permissions. Facebook and Twitter connections are managed
with APIs that require permissions to be declared on the platform, but the permission
management will not be available by default for users in the mobile application. iOS
permissions give a certain transparency to the user but Android permissions are vague.
We obtained more fine-grained control of the application and the data including per-

missions to all necessary personal data, actions carried out on this data and corresponding
purposes. The recapitulation table (Table 7.1) clearly shows what data are used for what
purpose. This kind of table can be added to the privacy policy to improve transparency.

7.6 Discussion and future work
The work presented in this chapter is proposed as a conclusion for the thesis research and
is focused on the theoretical model and the objective of more transparent and privacy-
respectful permission system. This study is a starting point that opens many directions
for future researches.
The described system can be implemented as a middleware, for example, on Android.

The implementation can be based on a semantic file system: tags attached to files would
allow defining permissions for different types of data and different granularities. The

114

7.7 Conclusion

control can also be carry out on files and folders as it is currently made on desktop
systems. The system API calls should also be performed through the middleware. The
database-related permission implementation might need additional models to be able to
implement and enforce permissions by tables, columns, raws and cells.
The implementation would help to test the applicability of a such system by developer

and also to test the acceptance of such a system by users. The user interface is an
important axe for the future research. The user interface implementation can be based
on the mixed approach between the traditional pop-ups and tutorial-like screens. The
interface has an important role in permission systems influencing the user understanding
and adoption of the system but also the adoption of the system by developers.
The impact of new privacy-respective permission system on users and developers could

be measured by conducting real-life experiments. The impact of integration of the new
permission system on design and development time can be measured, as well as particular
situations and difficulties in applying the pattern. We have an additional hypothesis that
the explicative application with high transparency improves user experience and leads
to more positive perception of the same application, therefore the use of our permission
system benefits the application owner.
The proposed model can be merged with digital right management models and privacy

policy definition frameworks, such as [135, 136], to obtain a more powerful system. Ques-
tions of secure storage of permissions should be addressed. Permission themselves are
sensitive data and should be accessible and modifiable only by the system. Permissions
can be defined and stored using semantics that are already used in the state-of-the-art
studies for permission modeling and DRM (taxonomy languages, such as OWL).

7.7 Conclusion
This chapter introduced a Privacy by Design permission system for a mobile application.
This permission system is data-oriented, thus, the final user can easily understand what
personal data is involved. The system includes actions that are missing from current iOS
and Android permission systems, such as load and transfer, that improve transparency of
the application. The system also includes simple restrictions to better control data use.
The novelty is including the purpose of the data use in the permission system. This

clear purpose will help users to understand better why the data is used and to judge
whether this permission is needed. Purpose in permission also forces developers to apply
the minimization principle: a developer cannot use the data if he cannot define the clear
purpose of usage. The compulsory purpose definition should help guard against the
abusive permission declaration ’in case’. Finally, purpose gives the user more fine-grained
control, as he can allow the same data to be used for one functionality but not for another.
It is important for our system to integrate clear purpose and not a vague explanation (e.g.,
’measure the frequency of application utilization’ instead of ’improve user experience’).
PbD states that the user should have control over his data and have Privacy by Default,

therefore, permissions used in the application are revoked by default. Users should be
clearly informed and asked to grant permission. Moreover, users should keep control of
permissions during all the application use time, therefore, permission settings must be
available.
The proposed permission system helps developers to comply with the law: it defines

what permissions the developer should add to the application, but in the current state
it cannot ensure that all necessary permissions are really added. The proposed pattern

115

Chapter 7 Respecting user’s privacy by default: a PbD permission system for mobile
applications

indicates to the developer what should be added to the application to be more transparent,
but if the developer decides to transfer data without asking permission, the pattern allows
this (even if it is against the European law). The system verifying and enforcing such
permissions can be implemented to control dishonest developers. The privacy policy
generated can give the first indication permitting the evaluation of whether the data use
is reasonable and the purpose is clear. Manual verification of an application can show the
anomaly in permission system use.
The study presented in this chapter was validated by the research community. A short

version of the corresponding article was presented on the The Sixth International Confer-
ence on Pervasive Patterns and Applications PATTERNS 2014 international conference
[137] and the extended version was published in International Journal On Advances in
Security [138].

116

Chapter 8

Conclusion

8.1 Problematic
Privacy is a part of fundamental human rights. Nowadays, with rapid evolution of smart
and connected devices, users could feel their privacy is not always respected. Smartphones
collect massive amounts of the user’s data and store precise information about the device
owner at any time of the day.
In European Union, privacy is protected by the European Data Protection Directive

95/46/EC and upcoming unified European Data Protection Regulation. Any of data
controller and data processor should integrate privacy principles of the Directive to be
compliant with the law. Such principles are also often referred as «Privacy by Design».
«Privacy by Design» is a concept proposed by Dr. Ann Cavoukian that make respect
to the user’s privacy an important and compulsory part of the software design phase.
Seven principles promote proactivity, security, visibility and transparency, «Privacy by
Default» and respect of the user’s privacy can be integrated into all systems without giv-
ing up neither security no privacy. All notions are explicitly or implicitly integrated into
the Directive 95/46/EC. Although Directive 95/46/EC and European Data Protection
Regulation is applicable to mobile systems and mobile applications, developers do not al-
ways follow the imposed principles and systems and applications are rarely made «Privacy
by Design». Developers do not always know how to translate those high-level principles
into the «code» and «components» language and are not aware of the responsibility they
have over the user’s privacy. This thesis proposes a set of patterns that would give mobile
system more Privacy by Design.

8.2 Contributions
The contribution of this thesis is threefold. First, we propose an architectural design
pattern for Android application developers. Google do not define any architecture that
Android developers could follow. As a result, the quality of an application strongly
depends on developer’s experience; bad architecture can lead to incomprehensible and
unmaintainable code and is more susceptible to contain bugs and security breaches that
could lead to the data leakage. A good basic architectural pattern is needed to simplify
the software design phase for the developer. Therefore, the developer can concentrate on
functionalities, security and privacy without resolving code and architectural issues again
and again. We propose a basic architecture for Android that helps to obtain clear, reusable

117

Chapter 8 Conclusion

code and a better quality application. This contribution enforces «Privacy embedded into
design» and «End-to-end security» principles of «Privacy by Design» in mobile system.
The architectural design patters structures the code simplifying the use of other design
patterns and also helps to avoid bugs and security breaches due to the code clarity. This
work was presented on The Fifth International Conferences on Pervasive Patterns and
Applications PATTERNS 2013 where obtained the best paper award [116]. The extended
version of the article was published in the International Journal On Advances in Software,
volume 7 in 2014 [117].
Second, we observed that users do not have any user-friendly indicator showing the

applications legitimacy, riskiness or it’s privacy level. The currently used permission
system on Android was shown ineffective by the state of the art studies: users did not
understand the meaning of many permissions, was not able to judge the security or
legitimacy of permission requests and often ignored the permission lists. We propose
«privacy» score and «risk» indicator obtained following an analysis of permission usage of
Android applications from different categories. Each application is ranked according to the
pattern that defines permission requests presumed normal for a given category. A warning
is raised if the «privacy» score go beyond the predefined threshold permitting to detect
and inform user about abnormal, abusive or malicious applications before applications
installation. The proposed «Privacy» score also permits to compare similar applications
regarding they permission request more easily than by comparing permission lists. This
contribution enforces «Proactive, not reactive», «End-to-end security», «Visibility and
Transparency» and «Respect for the user» principles of «Privacy by Design» in mobile
system. The proposed methodology is not only dedicated to final users, but also to mobile
application markets owners that should integrate such a system for their users. The
behavioral pattern explained in this study was presented on The Seventh International
Conferences on Pervasive Patterns and Applications PATTERNS 2015 [133]. The full
version of the study is under revision for the Decision Support System Journal, Elsevier.
Third and final contribution of this thesis proposes new permission system model that

respects all seven «Privacy by Design» principles. The proposed model is very fine-grained
as it is data-oriented. The model integrated vocabulary for building permissions over each
piece of data that would clearly show the user what data is used, how and for what pur-
pose. We explain different states of such permissions and also the movement from one
state to another. We also propose an example illustrating such system using real ap-
plications needing many of private data. Such system embedded into mobile operating
systems can become a powerful proactive privacy-respecting and protecting tool and will
give mobile systems and mobile users more privacy by design. The study was validated
by the research community. Short version of the corresponding article was presented on
the The Sixth International Conferences on Pervasive Patterns and Applications PAT-
TERNS 2014 international conference [137] and the extended version was published in
International Journal On Advances in Security [138]. We also presented this study during
the French Privacy Workshop APVP in 2014.
The full thesis was presented as a poster on PhD forum «What’s up Doc!» organized

by University of Technology of Troyes in 2015.

8.3 Future work
This thesis proposes patters and models that improves security, visibility, transparency
and lack of consent of mobile systems. The future works can be conducted in evaluating

118

8.3 Future work

an impact of such pattern integration and developers and also in testing the technology
acceptance by users.
This thesis only focused on mobile clients, but the proposed permission system would

have an impact on client-server communication and a server side. New research can be
conducted on new web service protocols and privacy-friendly APIs. The smartphone
should be able to understand which arriving data is sensitive and private so as not to
track unrelated data (such as simple news) and to pay additional attention to sensitive
data (such as social network communications and profiles). The data tagging could be
based on crowd sourcing where users can occasionally verify the incoming data or APIs.
The certification and creation of the database of trusted APIs is another option.
The purpose verification system should be proposed as it is a crucial part of the sys-

tem. The list of goals, such as ’visualize’ or ’show personalized advertisements’ can be
predefined. Language processing techniques can be used to analyze custom purposes and
filter for non explicative goals, such as ’improve user experience’. The crowd sourcing
user-centric solution may also be tested.
The «Risk» indicator work can be extended by introducing an application recommen-

dation system that could be based on application ratings and privacy scores. Such system
could also propose more functional or more privacy-respecting applications in the category
according to the defined permission pattern and an application chosen by the user.
The proposed patterns can help mobile systems and developers to respect user’s privacy

and to be compliant with the european law although they do not force them to do so. A
new research can be focused on accountability principle of the Directive: the necessity of
the controller to show the compliance of the system with the law. Tools permitting to
verify the compliancy and to certify an application could be made as well as tools giving
the visibility on the system to verifiers.

119

Chapter 9

Publications

Peer-review journal articles

• Sokolova, K., Lemercier, M., & Garcia, L. (2014). Towards High
Quality Mobile Applications: Android Passive MVC Architecture
in International Journal On Advances in Software v7 (1&2), 123 –
138.

• Sokolova, K., Lemercier, M., & Boisseau, J-B. (2014). Respect-
ing user privacy in mobiles: privacy by design permission system
for mobile applications in International Journal On Advances in
Security v7 (3&4), 110 – 120.

Peer-review International Conference Inproceedings

• Sokolova, K., Lemercier, M., Garcia, L. (2013) Android Passive
MVC: a novel architecture model for the Android application de-
velopment. The Fifth International Conferences on Pervasive Pat-
terns and Applications. IARIA, PATTERNS 2013, Valensia, Spain.
Best Paper Award

• Sokolova, K., Lemercier, M., & Boisseau, J-B. (2014). Privacy by
Design Permission System for Mobile Applications (pp. 89-95).
IARIA, PATTERNS 2014, Vénice, Italie. Best Paper Award

• Sokolova, K., Perez, C., & Lemercier, M. (2015). Android Permis-
sions Usage: a First Step Towards Detecting Abusive Applications.
IARIA, PATTERNS 2015, Nice, France.

121

Chapter 9 Publications

National presentations without publication and posters

• Sokolova, K., Mobile apps must respect users’ privacy (poster).
PhD forum «What’s up Doc?». University of technology of Troyes.
2015.

• Sokolova, K., Perez, C., & Lemercier, M. Android Permissions
Usage: a First Step Towards Detecting Abusive Applications.
Recherche et de l’Enseignement de la Sécurité des Systèmes
d’Information (RESSI). University of Technology of Troyes. 19-22
Mai 2015.

• Sokolova, K., Lemercier, M., & Boisseau, J-B. Privacy by Design
Permission System for Mobile Applications. 5ème Atelier sur la
Protection de la Vie Privée (APVP), Cabourg, 15-18 Juin 2014

• Sokolova, K., & Lemercier, M. Privacy by Design in Mobile Devices.
4ème Atelier sur la Protection de la Vie Privée (APVP), Les Loges
en Josas, 17-19 Juin 2013

122

Chapter 10

Appendix

Tableau 10.1: Permissions extracted from Android 4.4.2

Permission Level Group Description

AUTHENTICATE_

ACCOUNTS

dangerous ACCOUNTS Allows the app to use the account

authenticator capabilities of the

AccountManager

USE_ CREDENTIALS dangerous ACCOUNTS Allows the app to request authentication

tokens.

MANAGE_ ACCOUNTS dangerous ACCOUNTS Allows the app to perform operations like

adding and removing accounts

CHANGE_ WIFI_

MULTICAST_ STATE

dangerous
AFFECTS_

BATTERY
Allows the app to receive packets sent to all

devices on a Wi-Fi network using multicast

addresses

GET_ TASKS dangerous APP_ INFO Allows the app to retrieve information

about currently and recently running tasks.

This may allow the app to discover

information about which applications are

used on the device.

BLUETOOTH dangerous
BLUETOOTH_

NETWORK
Allows the app to view the configuration of

the Bluetooth on the phone

BLUETOOTH_ ADMIN dangerous
BLUETOOTH_

NETWORK
Allows the app to configure the local

Bluetooth phone

READ_ HISTORY_

BOOKMARKS

dangerous BOOKMARKS Allows the app to read the history of all

URLs that the Browser has visited

WRITE_ HISTORY_

BOOKMARKS

dangerous BOOKMARKS Allows the app to modify the Browser’s

history or bookmarks stored on your phone.

This may allow the app to erase or modify

Browser data. Note: this permission may

note be enforced by third-party browsers or

other applications with web browsing

capabilities.

123

Chapter 10 Appendix

Permission Level Group Description

CAMERA dangerous CAMERA Allows the app to take pictures and videos

with the camera. This permission allows

the app to use the camera at any time

without your confirmation.

SYSTEM_ ALERT_

WINDOW

dangerous DISPLAY Allows the app to draw on top of other

applications or parts of the user interface.

They may interfere with your use of the

interface in any application

ACCESS_ FINE_

LOCATION

dangerous LOCATION Allows the app to get your precise location

using the Global Positioning System (GPS)

or network location sources such as cell

towers and Wi-Fi. These location services

must be turned on and available to your

device for the app to use them. Apps may

use this to determine where you are

ACCESS_ COARSE_

LOCATION

dangerous LOCATION Allows the app to get your approximate

location. This location is derived by

location services using network location

sources such as cell towers and Wi-Fi.

These location services must be turned on

and available to your device for the app to

use them. Apps may use this to determine

approximately where you are.

SEND_ SMS dangerous MESSAGES Allows the app to send SMS messages. This

may result in unexpected charges. Malicious

apps may cost you money by sending

messages without your confirmation.

SEND_ SMS dangerous MESSAGES Allows the app to send SMS messages. This

may result in unexpected charges. Malicious

apps may cost you money by sending

messages without your confirmation.

RECEIVE_ SMS dangerous MESSAGES Allows the app to receive and process SMS

messages. This means the app could

monitor or delete messages sent to your

device without showing them to you.

RECEIVE_ MMS dangerous MESSAGES Allows the app to receive and process MMS

messages. This means the app could

monitor or delete messages sent to your

device without showing them to you.

READ_ CELL_

BROADCASTS

dangerous MESSAGES Allows the app to read cell broadcast

messages received by your device. Cell

broadcast alerts are delivered in some

locations to warn you of emergency

situations. Malicious apps may interfere

with the performance or operation of your

device when an emergency cell broadcast is

received.

124

Permission Level Group Description

READ_ SMS dangerous MESSAGES Allows the app to read SMS messages

stored on your phone or SIM card. This

allows the app to read all SMS messages

WRITE_ SMS dangerous MESSAGES Allows the app to write to SMS messages

stored on your phone or SIM card.

Malicious apps may delete your messages.

RECEIVE_ WAP_ PUSH dangerous MESSAGES Allows the app to receive and process WAP

messages. This permission includes the

ability to monitor or delete messages sent

to you without showing them to you.

RECORD_ AUDIO dangerous MICROPHONE Allows the app to record audio with the

microphone. This permission allows the app

to record audio at any time without your

confirmation.

INTERNET dangerous NETWORK Allows the app to create network sockets

and use custom network protocols. The

browser and other applications provide

means to send data to the internet

CHANGE_ WIFI_ STATE dangerous NETWORK Allows the app to connect to and

disconnect from Wi-Fi access points and to

make changes to device configuration for

Wi-Fi networks.

CHANGE_ WIMAX_

STATE

dangerous NETWORK Allows the app to connect the phone to and

disconnect the phone from WiMAX

networks.

NFC dangerous NETWORK Allows the app to communicate with Near

Field Communication (NFC) tags

READ_ PROFILE dangerous PERSONAL_ INFO Allows the app to read personal profile

information stored on your device

WRITE_ PROFILE dangerous PERSONAL_ INFO Allows the app to change or add to personal

profile information stored on your device

READ_ CALENDAR dangerous PERSONAL_ INFO Allows the app to read all calendar events

stored on your phone

WRITE_ CALENDAR dangerous PERSONAL_ INFO Allows the app to add

PROCESS_ OUTGOING_

CALLS

dangerous PHONE_ CALLS Allows the app to process outgoing calls

and change the number to be dialed. This

permission allows the app to monitor

READ_ PHONE_ STATE dangerous PHONE_ CALLS Allows the app to access the phone features

of the device. This permission allows the

app to determine the phone number and

device IDs

125

Chapter 10 Appendix

Permission Level Group Description

CALL_ PHONE dangerous PHONE_ CALLS Allows the app to call phone numbers

without your intervention. This may result

in unexpected charges or calls. Note that

this doesn’t allow the app to call emergency

numbers. Malicious apps may cost you

money by making calls without your

confirmation.

USE_ SIP dangerous PHONE_ CALLS Allows the app to use the SIP service to

make/receive Internet calls.

DISABLE_ KEYGUARD dangerous SCREENLOCK Allows the app to disable the keylock and

any associated password security. For

example

READ_ CONTACTS dangerous SOCIAL_ INFO Allows the app to read data about your

contacts stored on your phone

WRITE_ CONTACTS dangerous SOCIAL_ INFO Allows the app to modify the data about

your contacts stored on your phone

READ_ CALL_ LOG dangerous SOCIAL_ INFO Allows the app to read your phone’s call log

WRITE_ CALL_ LOG dangerous SOCIAL_ INFO Allows the app to modify your phone’s call

log

READ_ SOCIAL_ STREAM dangerous SOCIAL_ INFO Allows the app to access and sync social

updates from you and your friends. Be

careful when sharing information – this

allows the app to read communications

between you and your friends on social

networks

WRITE_ SOCIAL_

STREAM

dangerous SOCIAL_ INFO Allows the app to display social updates

from your friends. Be careful when sharing

information – this allows the app to

produce messages that may appear to come

from a friend. Note: this permission may

not be enforced on all social networks.

WRITE_ EXTERNAL_

STORAGE

dangerous STORAGE Allows the app to write to the USB storage.

ACCESS_ MOCK_

LOCATION

dangerous SYSTEM_ TOOLS Create mock location sources for testing or

install a new location provider. This allows

the app to override the location and/or

status returned by other location sources

such as GPS or location providers.

INSTALL_ SHORTCUT dangerous SYSTEM_ TOOLS Allows an application to add Homescreen

shortcuts without user intervention.

UNINSTALL_ SHORTCUT dangerous SYSTEM_ TOOLS Allows the application to remove

Homescreen shortcuts without user

intervention.

SUBSCRIBED_ FEEDS_

WRITE

dangerous SYSTEM_ TOOLS Allows the app to modify your currently

synced feeds. Malicious apps may change

your synced feeds.

126

Permission Level Group Description

CLEAR_ APP_ CACHE dangerous SYSTEM_ TOOLS Allows the app to free phone storage by

deleting files in the cache directories of

other applications. This may cause other

applications to start up more slowly as they

need to re-retrieve their data.

READ_ USER_

DICTIONARY

dangerous
USER_

DICTIONARY
Allows the app to read all words

ADD_ VOICEMAIL dangerous VOICEMAIL Allows the app to add messages to your

voicemail inbox.

CHANGE_

CONFIGURATION

development
DEVELOPMENT_

TOOLS
Allows the app to change the current

configuration

WRITE_ SECURE_

SETTINGS

development
DEVELOPMENT_

TOOLS
Allows the app to modify the system’s

secure settings data. Not for use by normal

apps.

DUMP development
DEVELOPMENT_

TOOLS
Allows the app to retrieve internal state of

the system. Malicious apps may retrieve a

wide variety of private and secure

information that they should never

normally need.

READ_ LOGS development
DEVELOPMENT_

TOOLS
Allows the app to read from the system’s

various log files. This allows it to discover

general information about what you are

doing with the phone

SET_ DEBUG_ APP development
DEVELOPMENT_

TOOLS
Allows the app to turn on debugging for

another app. Malicious apps may use this

to kill other apps.

SET_ PROCESS_ LIMIT development
DEVELOPMENT_

TOOLS
Allows the app to control the maximum

number of processes that will run. Never

needed for normal apps.

SET_ ALWAYS_ FINISH development
DEVELOPMENT_

TOOLS
Allows the app to control whether activities

are always finished as soon as they go to the

background. Never needed for normal apps.

SIGNAL_ PERSISTENT_

PROCESSES

development
DEVELOPMENT_

TOOLS
Allows the app to request that the supplied

signal be sent to all persistent processes.

INTERACT_ ACROSS_

USERS

development SYSTEM_ TOOLS Allows the app to perform actions across

different users on the device. Malicious

apps may use this to violate the protection

between users.

SET_ ANIMATION_

SCALE

development SYSTEM_ TOOLS Allows the app to change the global

animation speed (faster or slower

animations) at any time.

127

Chapter 10 Appendix

Permission Level Group Description

GET_ APP_ OPS_ STATS development SYSTEM_ TOOLS Allows the app to retrieve collected

application operation statistics. Not for use

by normal apps.

GET_ ACCOUNTS normal ACCOUNTS Allows the app to get the list of accounts

known by the phone. This may include any

accounts created by applications you have

installed.

VIBRATE normal
AFFECTS_

BATTERY
Allows the app to control the vibrator.

FLASHLIGHT normal
AFFECTS_

BATTERY
Allows the app to control the flashlight.

WAKE_ LOCK normal
AFFECTS_

BATTERY
Allows the app to prevent the phone from

going to sleep.

TRANSMIT_ IR normal
AFFECTS_

BATTERY
Allows the app to use the phone’s infrared

transmitter.

REORDER_ TASKS normal APP_ INFO Allows the app to move tasks to the

foreground and background. The app may

do this without your input.

RESTART_ PACKAGES normal APP_ INFO Allows the app to end background processes

of other apps. This may cause other apps to

stop running.

KILL_ BACKGROUND_

PROCESSES

normal APP_ INFO Allows the app to end background processes

of other apps. This may cause other apps to

stop running.

PERSISTENT_ ACTIVITY normal APP_ INFO Allows the app to make parts of itself

persistent in memory. This can limit

memory available to other apps slowing

down the phone.

RECEIVE_ BOOT_

COMPLETED

normal APP_ INFO Allows the app to have itself started as

soon as the system has finished booting.

This can make it take longer to start the

phone and allow the app to slow down the

overall phone by always running.

MODIFY_ AUDIO_

SETTINGS

normal AUDIO_ SETTINGS Allows the app to modify global audio

settings such as volume and which speaker

is used for output.

SET_ ALARM normal DEVICE_ ALARMS Allows the app to set an alarm in an

installed alarm clock app. Some alarm clock

apps may not implement this feature.

ACCESS_ NETWORK_

STATE

normal NETWORK Allows the app to view information about

network connections such as which networks

exist and are connected.

ACCESS_ WIFI_ STATE normal NETWORK Allows the app to view information about

Wi-Fi networking

128

Permission Level Group Description

ACCESS_ WIMAX_ STATE normal NETWORK Allows the app to determine whether

WiMAX is enabled and information about

any WiMAX networks that are connected.

CHANGE_ NETWORK_

STATE

normal NETWORK Allows the app to change the state of

network connectivity.

EXPAND_ STATUS_ BAR normal STATUS_ BAR Allows the app to expand or collapse the

status bar.

READ_ EXTERNAL_

STORAGE

normal STORAGE Allows the app to read the contents of your

USB storage.

READ_ SYNC_ SETTINGS normal SYNC_ SETTINGS Allows the app to read the sync settings for

an account. For example

WRITE_ SYNC_

SETTINGS

normal SYNC_ SETTINGS Allows an app to modify the sync settings

for an account. For example

READ_ SYNC_ STATS normal SYNC_ SETTINGS Allows an app to read the sync stats for an

account

SET_ TIME_ ZONE normal SYSTEM_ CLOCK Allows the app to change the phone’s time

zone.

ACCESS_ LOCATION_

EXTRA_ COMMANDS

normal SYSTEM_ TOOLS Allows the app to access extra location

provider commands. This may allow the

app to to interfere with the operation of the

GPS or other location sources.

WRITE_ SETTINGS normal SYSTEM_ TOOLS Allows the app to modify the system’s

settings data. Malicious apps may corrupt

your system’s configuration.

GET_ PACKAGE_ SIZE normal SYSTEM_ TOOLS Allows the app to retrieve its code

BROADCAST_ STICKY normal SYSTEM_ TOOLS Allows the app to send sticky broadcasts

SUBSCRIBED_ FEEDS_

READ

normal SYSTEM_ TOOLS Allows the app to get details about the

currently synced feeds.

SET_ WALLPAPER normal WALLPAPER Allows the app to set the system wallpaper.

SET_ WALLPAPER_

HINTS

normal WALLPAPER Allows the app to set the system wallpaper

size hints.

WRITE_ USER_

DICTIONARY

normal
WRITE_ USER_

DICTIONARY
Allows the app to write new words into the

user dictionary.

ACCOUNT_ MANAGER signature ACCOUNTS Allows the app to make calls to

AccountAuthenticators.

REMOVE_ TASKS signature APP_ INFO Allows the app to remove tasks and kill

their apps. Malicious apps may disrupt the

behavior of other apps.

MANAGE_ ACTIVITY_

STACKS

signature APP_ INFO Allows the app to add

ACCESS_ ALL_

EXTERNAL_ STORAGE

signature
DEVELOPMENT_

TOOLS
Allows the app to access external storage

for all users.

HARDWARE_ TEST signature
HARDWARE_

CONTROLS
Allows the app to control various

peripherals for the purpose of hardware

testing.

129

Chapter 10 Appendix

Permission Level Group Description

BROADCAST_ SMS signature MESSAGES Allows the app to broadcast a notification

that an SMS message has been received.

Malicious apps may use this to forge

incoming SMS messages.

BROADCAST_ WAP_

PUSH

signature MESSAGES Allows the app to broadcast a notification

that a WAP PUSH message has been

received. Malicious apps may use this to

forge MMS message receipt or to silently

replace the content of any webpage with

malicious variants.

BLUETOOTH_ STACK signature SYSTEM_ TOOLS -

NET_ ADMIN signature SYSTEM_ TOOLS -

REMOTE_ AUDIO_

PLAYBACK

signature SYSTEM_ TOOLS -

INTERACT_ ACROSS_

USERS_ FULL

signature SYSTEM_ TOOLS Allows all possible interactions across users.

GET_ DETAILED_ TASKS signature SYSTEM_ TOOLS Allows the app to retrieve detailed

information about currently and recently

running tasks. Malicious apps may discover

private information about other apps.

START_ ANY_ ACTIVITY signature SYSTEM_ TOOLS Allows the app to start any activity

SET_ SCREEN_

COMPATIBILITY

signature SYSTEM_ TOOLS Allows the app to control the screen

compatibility mode of other applications.

Malicious applications may break the

behavior of other applications.

FORCE_ STOP_

PACKAGES

signature SYSTEM_ TOOLS Allows the app to forcibly stop other apps.

SET_ PREFERRED_

APPLICATIONS

signature SYSTEM_ TOOLS Allows the app to modify your preferred

apps. Malicious apps may silently change

the apps that are run

ASEC_ ACCESS signature SYSTEM_ TOOLS Allows the app to get information on

internal storage.

ASEC_ CREATE signature SYSTEM_ TOOLS Allows the app to create internal storage.

ASEC_ DESTROY signature SYSTEM_ TOOLS Allows the app to destroy internal storage.

ASEC_ MOUNT_

UNMOUNT

signature SYSTEM_ TOOLS Allows the app to mount/unmount internal

storage.

ASEC_ RENAME signature SYSTEM_ TOOLS Allows the app to rename internal storage.

DIAGNOSTIC signature SYSTEM_ TOOLS Allows the app to read and write to any

resource owned by the diag group; for

example

NET_ TUNNELING signature SYSTEM_ TOOLS -

BROADCAST_ PACKAGE_

REMOVED

signature SYSTEM_ TOOLS Allows the app to broadcast a notification

that an app package has been removed.

Malicious apps may use this to kill any

other running app.

130

Permission Level Group Description

CHANGE_

BACKGROUND_ DATA_

SETTING

signature SYSTEM_ TOOLS Allows the app to change the background

data usage setting.

GLOBAL_ SEARCH_

CONTROL

signature SYSTEM_ TOOLS -

READ_ DREAM_ STATE signature SYSTEM_ TOOLS -

WRITE_ DREAM_ STATE signature SYSTEM_ TOOLS -

STATUS_ BAR_ SERVICE signature - Allows the app to be the status bar.

FORCE_ BACK signature - Allows the app to force any activity that is

in the foreground to close and go back.

Should never be needed for normal apps.

INTERNAL_ SYSTEM_

WINDOW

signature - Allows the app to create windows that are

intended to be used by the internal system

user interface. Not for use by normal apps.

MANAGE_ APP_ TOKENS signature - Allows the app to create and manage their

own tokens

FREEZE_ SCREEN signature - Allows the application to temporarily freeze

the screen for a full-screen transition.

INJECT_ EVENTS signature - Allows the app to deliver its own input

events (key presses

FILTER_ EVENTS signature - Allows an application to register an input

filter which filters the stream of all user

events before they are dispatched.

Malicious app may control the system UI

whtout user intervention.

RETRIEVE_ WINDOW_

INFO

signature - Allows an application to retrieve

information about the the windows from

the window manager. Malicious apps may

retrieve information that is intended for

internal system usage.

TEMPORARY_ ENABLE_

ACCESSIBILITY

signature - Allows an application to temporarily enable

accessibility on the device. Malicious apps

may enable accessibility without user

consent.

MAGNIFY_ DISPLAY signature - Allows an application to magnify the

content of a display. Malicious apps may

transform the display content in a way that

renders the device unusable.

SET_ ACTIVITY_

WATCHER

signature - Allows the app to monitor and control how

the system launches activities. Malicious

apps may completely compromise the

system. This permission is only needed for

development

GET_ TOP_ ACTIVITY_

INFO

signature - Allows the holder to retrieve private

information about the current application

in the foreground of the screen.

131

Chapter 10 Appendix

Permission Level Group Description

READ_ INPUT_ STATE signature - Allows the app to watch the keys you press

even when interacting with another app

(such as typing a password). Should never

be needed for normal apps.

BIND_ INPUT_ METHOD signature - Allows the holder to bind to the top-level

interface of an input method. Should never

be needed for normal apps.

BIND_ ACCESSIBILITY_

SERVICE

signature - Allows the holder to bind to the top-level

interface of an accessibility service. Should

never be needed for normal apps.

BIND_ PRINT_ SERVICE signature - Allows the holder to bind to the top-level

interface of a print service. Should never be

needed for normal apps.

BIND_ NFC_ SERVICE signature - Allows the holder to bind to applications

that are emulating NFC cards. Should

never be needed for normal apps.

BIND_ PRINT_

SPOOLER_ SERVICE

signature - Allows the holder to bind to the top-level

interface of a print spooler service. Should

never be needed for normal apps.

BIND_ TEXT_ SERVICE signature - Allows the holder to bind to the top-level

interface of a text service(e.g.

SpellCheckerService). Should never be

needed for normal apps.

BIND_ VPN_ SERVICE signature - Allows the holder to bind to the top-level

interface of a Vpn service. Should never be

needed for normal apps.

BIND_ REMOTE_

DISPLAY

signature - Allows the holder to bind to the top-level

interface of a remote display. Should never

be needed for normal apps.

BIND_ DEVICE_ ADMIN signature - Allows the holder to send intents to a

device administrator. Should never be

needed for normal apps.

SET_ ORIENTATION signature - Allows the app to change the rotation of

the screen at any time. Should never be

needed for normal apps.

SET_ POINTER_ SPEED signature - Allows the app to change the mouse or

trackpad pointer speed at any time. Should

never be needed for normal apps.

SET_ KEYBOARD_

LAYOUT

signature - Allows the app to change the keyboard

layout. Should never be needed for normal

apps.

CLEAR_ APP_ USER_

DATA

signature - Allows the app to clear user data.

132

Permission Level Group Description

GRANT_ REVOKE_

PERMISSIONS

signature - Allows an application to grant or revoke

specific permissions for it or other

applications. Malicious applications may

use this to access features you have not

granted them.

ACCESS_ SURFACE_

FLINGER

signature - Allows the app to use SurfaceFlinger

low-level features.

CONFIGURE_ WIFI_

DISPLAY

signature - Allows the app to configure and connect to

Wifi displays.

CONTROL_ WIFI_

DISPLAY

signature - Allows the app to control low-level features

of Wifi displays.

BRICK signature - Allows the app to disable the entire phone

permanently. This is very dangerous.

DEVICE_ POWER signature - Allows the app to turn the phone on or off.

FACTORY_ TEST signature - Run as a low-level manufacturer test

CONFIRM_ FULL_

BACKUP

signature - Allows the app to launch the full backup

confirmation UI. Not to be used by any app.

COPY_ PROTECTED_

DATA

signature - copy content

MANAGE_ NETWORK_

POLICY

signature - Allows the app to manage network policies

and define app-specific rules.

C2D_ MESSAGE signature - -

BIND_ PACKAGE_

VERIFIER

signature - Allows the holder to make requests of

package verifiers. Should never be needed

for normal apps.

ACCESS_ CONTENT_

PROVIDERS_

EXTERNALLY

signature - Allows the holder to access content

providers from the shell. Should never be

needed for normal apps.

ACCESS_ KEYGUARD_

SECURE_ STORAGE

signature - Allows an application to access keguard

secure storage.

CONTROL_ KEYGUARD signature - Allows an application to control keguard.

BIND_ NOTIFICATION_

LISTENER_ SERVICE

signature - Allows the holder to bind to the top-level

interface of a notification listener service.

Should never be needed for normal apps.

BLUETOOTH_

PRIVILEGED

signatureOrSystem
BLUETOOTH_

NETWORK
Allows the app to pair with remote devices

without user interaction.

CAMERA_ DISABLE_

TRANSMIT_ LED

signatureOrSystem CAMERA Allows a pre-installed system application to

disable the camera use indicator LED.

MANAGE_ USB signatureOrSystem
HARDWARE_

CONTROLS
Allows the app to manage preferences and

permissions for USB devices.

ACCESS_ MTP signatureOrSystem
HARDWARE_

CONTROLS
Allows access to the kernel MTP driver to

implement the MTP USB protocol.

LOCATION_ HARDWARE signatureOrSystem LOCATION -

133

Chapter 10 Appendix

Permission Level Group Description

SEND_ RESPOND_ VIA_

MESSAGE

signatureOrSystem MESSAGES Allows the app to send requests to other

messaging apps to handle

respond-via-message events for incoming

calls.

RECEIVE_ EMERGENCY_

BROADCAST

signatureOrSystem MESSAGES Allows the app to receive and process

emergency broadcast messages. This

permission is only available to system apps.

CONNECTIVITY_

INTERNAL

signatureOrSystem NETWORK -

RECEIVE_ DATA_

ACTIVITY_ CHANGE

signatureOrSystem NETWORK -

LOOP_ RADIO signatureOrSystem NETWORK -

BIND_ DIRECTORY_

SEARCH

signatureOrSystem PERSONAL_ INFO -

RETRIEVE_ WINDOW_

CONTENT

signatureOrSystem PERSONAL_ INFO Allows the app to retrieve the content of

the active window. Malicious apps may

retrieve the entire window content and

examine all its text except passwords.

BIND_ APPWIDGET signatureOrSystem PERSONAL_ INFO Allows the app to tell the system which

widgets can be used by which app. An app

with this permission can give access to

personal data to other apps. Not for use by

normal apps.

BIND_ KEYGUARD_

APPWIDGET

signatureOrSystem PERSONAL_ INFO -

MODIFY_ PHONE_ STATE signatureOrSystem PHONE_ CALLS Allows the app to control the phone

features of the device. An app with this

permission can switch networks

READ_ PRIVILEGED_

PHONE_ STATE

signatureOrSystem PHONE_ CALLS -

BIND_ CALL_ SERVICE signatureOrSystem PHONE_ CALLS Allows the app to control when and how

the user sees the in-call screen.

WRITE_ MEDIA_

STORAGE

signatureOrSystem STORAGE Allows the app to modify the contents of

the internal media storage.

MANAGE_ DOCUMENTS signatureOrSystem STORAGE Allows the app to manage document

storage.

MANAGE_ USERS signatureOrSystem SYSTEM_ TOOLS Allows apps to manage users on the device

MOUNT_ UNMOUNT_

FILESYSTEMS

signatureOrSystem SYSTEM_ TOOLS Allows the app to mount and unmount

filesystems for removable storage.

MOUNT_ FORMAT_

FILESYSTEMS

signatureOrSystem SYSTEM_ TOOLS Allows the app to format removable storage.

WRITE_ APN_ SETTINGS signatureOrSystem SYSTEM_ TOOLS Allows the app to change network settings

and to intercept and inspect all network

traffic

134

Permission Level Group Description

BATTERY_ STATS signatureOrSystem SYSTEM_ TOOLS Allows an application to read the current

low-level battery use data. May allow the

application to find out detailed information

about which apps you use.

MODIFY_ APPWIDGET_

BIND_ PERMISSIONS

signatureOrSystem SYSTEM_ TOOLS -

GLOBAL_ SEARCH signatureOrSystem SYSTEM_ TOOLS -

SET_ WALLPAPER_

COMPONENT

signatureOrSystem SYSTEM_ TOOLS -

INSTALL_ LOCATION_

PROVIDER

signatureOrSystem - Create mock location sources for testing or

install a new location provider. This allows

the app to override the location and/or

status returned by other location sources

such as GPS or location providers.

SET_ TIME signatureOrSystem - Allows the app to change the phone’s clock

time.

WRITE_ GSERVICES signatureOrSystem - Allows the app to modify the Google

services map. Not for use by normal apps.

ALLOW_ ANY_ CODEC_

FOR_ PLAYBACK

signatureOrSystem - Allows the app to use any installed media

decoder to decode for playback.

MANAGE_ CA_

CERTIFICATES

signatureOrSystem - Allows the app to install and uninstall CA

certificates as trusted credentials.

STATUS_ BAR signatureOrSystem - Allows the app to disable the status bar or

add and remove system icons.

UPDATE_ DEVICE_

STATS

signatureOrSystem - Allows the app to modify collected battery

statistics. Not for use by normal apps.

UPDATE_ APP_ OPS_

STATS

signatureOrSystem - Allows the app to modify collected

application operation statistics. Not for use

by normal apps.

SHUTDOWN signatureOrSystem - Puts the activity manager into a shutdown

state. Does not perform a complete

shutdown.

STOP_ APP_ SWITCHES signatureOrSystem - Prevents the user from switching to another

app.

BIND_ WALLPAPER signatureOrSystem - Allows the holder to bind to the top-level

interface of a wallpaper. Should never be

needed for normal apps.

MANAGE_ DEVICE_

ADMINS

signatureOrSystem - Allows the holder to add or remove active

device administrators. Should never be

needed for normal apps.

INSTALL_ PACKAGES signatureOrSystem - Allows the app to install new or updated

Android packages. Malicious apps may use

this to add new apps with arbitrarily

powerful permissions.

DELETE_ CACHE_ FILES signatureOrSystem - Allows the app to delete cache files.

135

Chapter 10 Appendix

Permission Level Group Description

DELETE_ PACKAGES signatureOrSystem - Allows the app to delete Android packages.

Malicious apps may use this to delete

important apps.

MOVE_ PACKAGE signatureOrSystem - Allows the app to move app resources from

internal to external media and vice versa.

CHANGE_ COMPONENT_

ENABLED_ STATE

signatureOrSystem - Allows the app to change whether a

component of another app is enabled or

not. Malicious apps may use this to disable

important phone capabilities. Care must be

used with this permission

READ_ FRAME_ BUFFER signatureOrSystem - Allows the app to read the content of the

frame buffer.

CAPTURE_ AUDIO_

OUTPUT

signatureOrSystem - Allows the app to capture and redirect

audio output.

CAPTURE_ AUDIO_

HOTWORD

signatureOrSystem - Allows the app to capture audio for

Hotword detection. The capture can happen

in the background but does not prevent

other audio capture (e.g. Camcorder).

CAPTURE_ VIDEO_

OUTPUT

signatureOrSystem - Allows the app to capture and redirect

video output.

CAPTURE_ SECURE_

VIDEO_ OUTPUT

signatureOrSystem - Allows the app to capture and redirect

secure video output.

MEDIA_ CONTENT_

CONTROL

signatureOrSystem - Allows the app to control media playback

and access the media information (title

REBOOT signatureOrSystem - Allows the app to force the phone to reboot.

MASTER_ CLEAR signatureOrSystem - Allows the app to completely reset the

system to its factory settings

CALL_ PRIVILEGED signatureOrSystem - Allows the app to call any phone number

PERFORM_ CDMA_

PROVISIONING

signatureOrSystem - Allows the app to start CDMA

provisioning. Malicious apps may

unnecessarily start CDMA provisioning.

CONTROL_ LOCATION_

UPDATES

signatureOrSystem - Allows the app to enable/disable location

update notifications from the radio. Not for

use by normal apps.

ACCESS_ CHECKIN_

PROPERTIES

signatureOrSystem - Allows the app read/write access to

properties uploaded by the checkin service.

Not for use by normal apps.

PACKAGE_ USAGE_

STATS

signatureOrSystem - Allows the app to modify collected

component usage statistics. Not for use by

normal apps.

BACKUP signatureOrSystem - Allows the app to control the system’s

backup and restore mechanism. Not for use

by normal apps.

BIND_ REMOTEVIEWS signatureOrSystem - Allows the holder to bind to the top-level

interface of a widget service. Should never

be needed for normal apps.

136

Permission Level Group Description

ACCESS_ CACHE_

FILESYSTEM

signatureOrSystem - Allows the app to read and write the cache

filesystem.

CRYPT_ KEEPER signatureOrSystem - -

READ_ NETWORK_

USAGE_ HISTORY

signatureOrSystem - Allows the app to read historical network

usage for specific networks and apps.

MODIFY_ NETWORK_

ACCOUNTING

signatureOrSystem - Allows the app to modify how network

usage is accounted against apps. Not for

use by normal apps.

MARK_ NETWORK_

SOCKET

signatureOrSystem - Allows the app to modify socket marks for

routing

PACKAGE_

VERIFICATION_ AGENT

signatureOrSystem - Allows the app to verify a package is

installable.

SERIAL_ PORT signatureOrSystem - Allows the holder to access serial ports

using the SerialManager API.

UPDATE_ LOCK signatureOrSystem - Allows the holder to offer information to

the system about when would be a good

time for a noninteractive reboot to upgrade

the device.

ACCESS_ NOTIFICATIONS signatureOrSystem - Allows the app to retrieve

INVOKE_ CARRIER_

SETUP

signatureOrSystem - Allows the holder to invoke the

carrier-provided configuration app. Should

never be needed for normal apps.

ACCESS_ NETWORK_

CONDITIONS

signatureOrSystem - Allows an application to listen for

observations on network conditions. Should

never be needed for normal apps.

137

Chapitre 11

Résumé

11.1 Contexte
Le premier téléphone mobile a été inventé en 1908 et depuis, il a beaucoup évolué. Doréna-
vant, les smartphones et les tablettes reçoivent, stockent et transfèrent une large quantité
de données en proposant des services répondant à tous les besoins des utilisateurs à l’aide
d’applications mobiles facilement téléchargeables et installables. Un grand nombre des
capteurs intégrés dans un smartphone permet à l’appareil de récolter de l’information
très précise sur l’utilisateur et son environnement à tout moment.
Cette importante quantité de données privées comme professionnelles devient difficile

à gérer. De plus, elles attirent les acteurs malveillants. Les leaders du marché, Apple et
Google ont des stratégies différentes concernant leurs services. Les applications Apple dis-
ponibles sur le kiosque de distribution des applications officielles ne contiennent que les
applications vérifiées et certifiées par l’entreprise. Google propose seulement une vérifi-
cation automatique détectant les empreints de la malveillance connus sans pour autant
certifier les applications. De telle manière, Google Play - le kiosque de distribution des
applications proposé par Google - contient des applications qui peuvent collecter et utili-
ser des données des utilisateurs d’une manière abusive voire à des fins malveillantes. Les
applications contiennent aussi les failles de sécurité. Les utilisateurs mobiles se sentent
concernés car, auparavant, jamais les données privées n’étaient générées, collectées et
utilisées si massivement qu’actuellement avec les smartphones et les réseaux sociaux [1].
Dr. Ann Cavoukian a observé la tendance d’utilisation des données privées et l’approche

réactive de la sécurité en proposant les mises à jour rapides. En 2001, elle a proposé
l’approche « Privacy by Design » qui se résume à sept principes intégrant la notion de
respect des données privées dans les systèmes de phase de conception [2]. Ces principes
ne décrivent pas des solutions concrètes technologiques, mais expliquent les concepts qui
doivent être adaptés et appliqués à chaque technologie. L’adoption de ces principes est
assez limitée pour le moment, surtout en considérant que l’information créer de la valeur
et se monétise. La question se pose : « Pourquoi les développeurs des applications mobiles
vont appliquer ces concepts si cela n’est pas une obligation ? »
En Europe, la directive européenne de la protection des données privées (Directive

95/46/EC) a été adoptée en 1995 et elle intègre les principes du « Privacy by Design ».
La nouvelle loi européenne unifiée (General Data Protection Regulation) renforce la pro-
tection et le respect des données privées en prenant en compte des technologies modernes
et rend « Privacy by Design » une obligation légale dans l’Union Européenne.

139

Chapitre 11 Résumé

11.2 Problématique
Les systèmes d’information ne prennent pas toujours en compte les idées du « Privacy
by Design », principalement à cause d’un manque de compréhension des ces notions et
aussi d’un manque des patrons de conception et de développement liée à ces notions. De
nombreux rapports tels que [7] répètent des principes et des recommandations généraux
concernant le respect des données privées mais les solutions techniques sont guère évoqués
ou expliqués.

Concernant les systèmes mobiles, « Opinion 02/2013 on apps on smart devices’ by
the Article 29 Data Protection Working Party » [8] a été adopté en 2013 et indique
clairement que la régulation européenne est applicable aux systèmes et aux applications
mobiles. L’article souligne quatre problèmes principaux liés aux systèmes mobiles et au
respect des données privées : manque de transparence d’utilisation des données, absence
de consentement, sécurité faible et mépris de but d’utilisation des données.

Le but de cette thèse est de proposer des solutions pour améliorer les quatre points
évoqués dans [8] et de rendre les applications et les systèmes mobiles plus « Privacy by
(re)Design ».

Cette thèse s’appuie sur la régulation européenne car celle-ci est la plus récente et la plus
sévère, comparée aux régulations sur le respect des données privées existant au Canada
ou aux Etats-Unis. La thèse propose seulement des solutions mobiles client. Les modèles
liés au serveur et à la communication client-serveur sont hors-champ du travail mené.

Le système Android a été choisi pour les études de cas pour de multiples raisons. Tout
d’abord, Android est l’un des leaders du marché. Puis, le système est ouvert et accessible
en proposant plus de liberté et de l’information pour la recherche, mais attire en même
temps des acteurs malveillants. Finalement, les travaux de l’état de l’art ont montré de
nombreuses limites de ces systèmes. Notons que, même si les travaux de cette thèse ont
été menés sur Android, les solutions proposées sont génériques et peuvent être appliquées
aux autres systèmes.

11.3 Questions de recherche
La thèse se focalise sur quatre problématiques définies dans [8] et dont le but est de
répondre à la question de recherche suivante : « Pouvons-nous proposer des patrons de
conceptions visant à améliorer la transparence, la sécurité, le consentement qui aideront
aux applications et aux systèmes mobiles à mieux respecter la vie privée des utilisateurs
». La thèse se concentre sur deux axes : l’architecture des applications mobiles et les
systèmes de permissions mobiles. Les limites suivantes ont été identifiées dans l’état de
l’art :

1. La qualité du code des applications Android est médiocre : manque d’une architec-
ture unifiée

2. Un système de permission critiqué et un manque d’indicateur de risque compréhen-
sible par les utilisateurs

140

11.4 Vue sur le respect de la vie privée et « Privacy by Design »

En se basant sur ces limites, la thèse répond aux questions suivantes :

• Quel modèle d’architecture sera le plus adapté au développement des applications
Android ?

• Pouvons-nous générer un indicateur de respect de la vie privée en utilisant de l’in-
formation liée aux applications telles que les permissions requises ?

• Pouvons-nous améliorer les systèmes de permission existants pour les rendre plus «
Privacy by Design » ?

11.4 Vue sur le respect de la vie privée et « Privacy by
Design »

Le droit à la vie privée est protégé dans de nombreux pays comme, par exemple, les Etats-
Unis (« Children’s Online Privacy Protection Act » (COPPA) [3] et « California Online
Privacy Protection Act of 2003 » (OPPA) [4] et le Canada (Personal Information Protec-
tion and Electronic Documents Act (PIPEDA) [5]). En Union European, la protection de
la vié privée faite parti des droits fondamentaux de l’homme est protégé par la Directive
95/46/EC [9] adopté en 1995. La Commission Européenne a dévoilé un projet de règle-
ment sur la protection des données européennes qui fait appliquer les mêmes principes
dans toute l’Union européenne [11]. La Directive sera donc remplacée par « European
Data Protection Regulation » [10] pour homogénéiser et renforcer la protection de la vie
privée dans l’Union Européenne sans avoir besoin des implémentations locales des lois de
chaque pays. L’application de la réglementation doit être mise en place en en décembre
2017.

Une donnée personnelle est définie par la Directive comme une donnée liée à une per-
sonne identifiable directement ou indirectement. N’importe quel traitement des données
privées doit être fait en respectant les principes décrits dans la Directive. Une donnée per-
sonnelle liée à la santé, l’opinion politique, la vie sexuelle et d’autres données à risque est
définie comme étant sensible et nécessitant une protection supplémentaire. La Directive
définit cinq principes liés au traitement des données privées qui doivent être respectées par
un système : traitement licite ; spécification et limitation du but de traitement ; qualité
des données ; traitement équitable ; responsabilité.

• Le traitement licite signifie que le traitement poursuit un but légitime et conforme
à la loi.

• Le principe de spécification et limitation du but de traitement signifie que le
but de traitement doit être clair et visible avant que le traitement ne soit effectué.
Les données personnelles ne peuvent pas être utilisées au-delà du but défini.

• Le principe de la qualité des données signifie que les données doivent être adé-
quates, pertinentes et non excessives au regard but défini ; les données doivent être
exactes et rendues anonymes ou supprimées dès que l’objectif est atteint.

141

Chapitre 11 Résumé

• Traitement équitable signifie qu’une personne concernée doit pouvoir clairement
comprendre laquelle de ses données privées est utilisée, comment, qui utilise ces
données et à quelles fins. Le système devrait demander aux utilisateurs un consen-
tement valable (clair et sous aucune pression). Enfin, l’utilisateur doit avoir un libre
accès aux données recueillies.

• Finalement, le principe de la responsabilité signifie que l’organisme doit assurer la
sécurité des données personnelles et doit être en mesure de démontrer la conformité
du traitement de données avec les principes de protection des données.

La directive inclut d’une manière explicite ou implicite les sept principes du « Privacy
by design » :

• Proactive, et non réactive

La vie privée doit être une partie importante de la conception du système : des possibilités
d’abus des données privées doivent être identifiées au cours de la conception du système.

• Protection de la vie privée considérée comme un paramètre par défaut

Tous les systèmes doivent être conçus en utilisant les principes de protection des données
privées tels que la minimisation des données, la non-traçabilité, l’agrégation de données,
la limitation de l’utilisation et de la spécification de but d’utilisation.

• Respect de la vie privée intégré dans les systèmes de la conception

Les caractéristiques spécifiques au système lié à la protection des données privées doivent
être identifiées et intégrées de la conception par exemple à l’aide des patrons de conceptions
connus.

• La fonctionnalité complète

Ni les fonctionnalités du système, ni la sécurité, ni le respect de la vie privée des utilisateurs
ne doivent pas être sacrifiés.

• La sécurité des données à travers le cycle de vie complet des données

Les mécanismes de sécurité appropriés doivent être appliqués pour assurer la sécurité des
données à travers le cycle de vie complet des données.

• Visibilité et transparence

L’utilisateur doit savoir et comprendre quelles données sont utilisées à quelles fins et doit
être en mesure de contrôler ses données privées. Les paramètres par défaut du système
doivent respecter la vie privée et l’utilisateur doit les changer lui-même pour être plus
exposé.

• Respect de l’utilisateur

Par défaut, la confidentialité de l’utilisateur doit être protégée sans aucune action supplé-
mentaire de l’utilisateur.
Cette thèse analyse les systèmes mobiles vis-à-vis du concept « Privacy by Design » et

propose un certain nombre de modèles de sécurité et du respect de la vie privée pour les
systèmes mobiles couvrant l’ensemble des sept principes du « Privacy by Design ».

142

11.5 Contribution

11.5 Contribution
Cette section présente brièvement les travaux réalisés durant cette thèse. La première
sous-section décrit « Android Passive MVC » - une architecture adaptée dédiée aux dé-
veloppeurs Android. La deuxième sous-section présente la méthodologie de mesure du
respect des données privées ainsi que la méthodologie de détections des applications anor-
males et abusives. La troisième sous-section présente un nouveau système de permission
mobile qui respecte les notions du « Privacy by Design ».

11.5.1 Android Passive MVC
De nos jours, la demande de développement mobile est très élevée. Pour être compétitive,
une application mobile doit être rentable et de bonne qualité. Un code qui est mal écrit
peut non seulement avoir de bogues et être difficile à maintenir, mais il peut également
devenir une source importante de failles de sécurité. Les entreprises, telles que EUTECH
SSII, qui développe les applications iOS et Android pour ses clients, ont noté que les
développeurs d’applications Android ont plus de difficultés que les développeurs iOS, non
seulement avec des questions de sécurité, mais aussi avec l’architecture et l’organisation du
code. De ce fait, les applications Android, non seulement plus coûteuses et longues à déve-
lopper, mais aussi complexes à mettre à jour et à maintenir, surtout par les développeurs
différents.

Le choix de modèle de conception architecturale est important pour veiller sur la qualité
de l’application, pour assurer la maintenabilité, pour simplifier l’évolution et les mises à
jour, mais aussi pour réduire le temps de développement. Deux entreprises principales sont
largement représentées sur le marché du mobile : Apple (iOS) et Google (Android). Le
développement iOS est basé sur le modèle de conception Modèle-Vue-Contrôleur adapté
et bien structuré.

L’architecture Modèle-Vue-Contrôleur a été proposée en 1978 et depuis, elle est large-
ment utilisée et appliquée aux nombreux langages de programmation [19, 20, 21]. L’ob-
jectif de ce modèle est de séparer la logique métier de la logique de présentation ; les
modifications de la logique métier ne doivent pas affecter la logique de présentation et
vice versa [19]. MVC se compose de trois éléments principaux : Modèle, Vue et Contrô-
leur. Le Modèle représente les données à afficher sur l’écran. Plus généralement, le Modèle
est un Modèle de domaine qui contient la logique métier, les données à manipuler et des
objets d’accès aux données. La Vue est une composante visuelle sur l’écran, comme un
bouton. Le Contrôleur gère les événements liés aux actions de l’utilisateur et communique
avec le modèle. Deux types du MVC existent : MVC Classique et MVC Passif. Dans MVC
Classique, la communication entre la Vue et le Model est effectuée à l’aide du patron de
conception nommé Observateur-Observable. Dans MVC Passif, la communication entre
la Vue et le Model est effectuée via le Contrôleur.

L’architecture de base pour les applications mobiles iOS est un MVC Passif adapté.
Comme le MVC Passif original, l’architecture iOS est basée sur trois composants : Vue,
Modèle et Contrôleur. Les Modèles et les Vues sont indépendants et communiquent entre
eux uniquement par les Contrôleurs. La communication entre les Contrôleurs et le Modèle
est organisée via le patron de conception Observateur-Observable. Un nombre des Vues
et des Contrôleurs réutilisables est déjà disponible pour les développeurs iOS.

143

Chapitre 11 Résumé

Google n’impose aucune architecture particulière aux développeurs, mais propose des
composants différents pour des besoins particuliers. Une description exhaustive de l’en-
vironnement et des modules de développement Android peut être trouvée dans [29]. Les
développeurs Android ont quatre principales composantes à leur disposition : activité, ser-
vice, fournisseur de contenu et récepteur de diffusion. Les développeurs utilisent les classes
extensibles prédéfinies pour mettre en œuvre ces composants. Une activité est une compo-
sante principale et incontournable d’une application Android créée lorsque l’application
est ouverte. Une application Android simple peut contenir seulement une activité. L’ac-
tivité est également le point d’entrée dans l’application : pour démarrer une application,
le système doit lancer une activité.
Le système Android ne nécessite pas de suivre une architecture définie : le choix de

l’architecture et la qualité de l’application dépendent fortement de l’expérience de dé-
veloppeur. Cette tâche peut être particulièrement difficile pour les développeurs moins
expérimentés. Les applications complexes qui ne possèdent pas d’architecture peuvent fi-
nir comme une «grosse boule de boue» : incompréhensible et difficile à maintenir [108].
De plus, le code complexe pourrait non seulement conduire à des bogues car il est dif-
ficile à tester, mais peut aussi affecter la sécurité d’une application [109]. Les solutions
hétérogènes ralentissent le développeur, tandis que le modèle de conception uni et connu
pourrait non seulement améliorer le temps de développement, mais aussi améliorer la
maintenabilité, l’extensibilité et la performance de l’application.
Les livres et les tutoriels de développement Android sont principalement concentrés sur

les détails techniques du SDK Android et sur la conception de l’interface utilisateur. Seuls
quelques travaux ont été consacrés à l’architecture de l’application Android, tandis que
la communauté Android identifie une architecture comme étant une partie importante
de la conception du système et le développement réussis. Les développeurs ouvrent de
nombreuses discussions sur l’architecture appropriée pour les applications Android sur les
forums, les blogs et les groupes.
Cette thèse étudie les modèles de conception architecturale existantes et propose un mo-

dèle d’architecture unifiée et adaptée au développement Android : Android Passif MVC.
Nous avons d’abord analysé les patrons de conception architecturaux existants tels que
Model-Vue-Contrôleur, Model-Vue-Présenter et Présentation-Abstraction-Contrôle. Puis,
Nous avons étudié les choix d’architecture faits par des développeurs Android. Nous avons
intégré l’équipe de développement Android d’EUTECH SSII pour observer des solutions
utilisées pour les applications existantes. Nous avons interrogé les développeurs sur les
choix d’architecture et leurs utilisations dans le processus de développement Android.
Nous avons également effectué des recherches à propos des questions liées à l’architecture
Android sur StackOverflow - la plus grande communauté de développeurs de logiciels ré-
pondant aux questions relatives aux logiciels - et blogs pour lister un ensemble de solutions
et leurs inconvénients.
Après cette phase, Nous avons conclu que la difficulté principale des développeurs An-

droid réside dans le choix des rôles des composantes natives comme Activité et Fragment
dans une architecture telle que Model-Vue-Contrôleur. L’Activité est une composante
principale et incontournable sur Android qui est difficilement réutilisable. Le Fragment
est une composante réutilisable apparue dans le but de simplifier l’adaptabilité de l’in-
terface utilisateur aux appareils de tailles différents. Certaines Vues sont déjà intégrées
dans le SDK Android et les Vues sont souvent combinées à l’aide d’un code XML. Les
Activités et les Fragments sont aussi attachés aux Vues via un processus prévu par le sys-

144

11.5 Contribution

tème. Nous avons observé, que l’Activité qui joue le rôle d’un Contrôleur devient très vite
complexe du fait que la complexité de l’interface augmente ; cependant, les Fragments
aident à découper l’application et son interface en modules permettant de simplifier le
code. Après un nombre de modèles et prototypes créés, évalués et testés au sein de l’en-
treprise EUTECH SSII, nous proposons donc une architecture hiérarchique qui se base
sur Model-Vue-Contrôleur construit autour du composant Activité.

• Une Vue représente une partie de l’interface.

• Un Contrôleur intercepte des événements d’une Vue.

• Le Model représente des données et, plus généralement, le cœur de l’application.

L’Activité joue le rôle d’un Contrôleur principal ou d’un Contrôleur parent qui gère
l’écran entier et l’échange entre les Contrôleurs fils. Les triades MVC sont construites
autour de l’Activité et les Fragments peuvent jouer le rôle des Contrôleurs. La communi-
cation entre les Vues et le Model est fait à travers le Contrôleur. La communication entre
les Fragments, si c’est nécessaire, se doit d’être faite à l’aide du Contrôleur parent ou
de l’Activité pour rendre les composantes indépendantes. Nous intégrons deux types de
Contrôleurs dans l’architecture qui se diffèrent par leurs rôles : le contrôleur de coordina-
tion et le contrôleur médiat. Le contrôleur de coordination est un Contrôleur classique qui
correspond à un événement utilisateur issu d’une action faite sur la partie de l’interface
dédiée. Le contrôleur médiat gère les autres contrôleurs et permet, par exemple, d’échan-
ger une partie de l’interface avec une autre ou d’échanger les activités. Un menu est un
exemple du contrôleur médiat. Une activité peut jouer le rôle du contrôleur médiat dans
une application simple.
Android Passif MVC rend l’activité beaucoup moins complexe en déplaçant toute la

gestion d’événements, la logique de présentation dans le contrôleur et la gestion de l’in-
terface dans les Vues. Les Vues et les Contrôleurs créés à la demande aident à éviter la
création des objets inutiles en économisant la mémoire. Les Vues Android prédéfinies cor-
respondent à l’architecturé proposée et de nouvelles Vues qui pourraient être créées par le
développeur seront réutilisables dans des applications futures. Les contrôleurs de coordi-
nation sont réutilisables et rendent l’application très modulaire. Les contrôleurs médiats
sont moins réutilisables, mais permettent de modifier facilement la logique de l’application
qu’en modifiant ses contrôleurs.
Les développeurs peuvent facilement modifier ou supprimer des composants de l’appli-

cation en modifiant ou supprimant la couple Vue-Contrôleur correspondant. L’application
peut être étendue avec des nouvelles couples Vue-Contrôleur. Le modèle est indépendant
de la vue, le contrôleur et l’activité. L’interface utilisateur peut être remplacée sans aucun
impact sur le modèle, ce qui rend l’application plus maintenable.
Nous avons évalué l’architecture finale vis-à-vis des critères de la qualité du code par

scénarios et par des développeurs Android. Après de multiples tests, Nous avons établi
un prototype d’illustration de l’architecture et fixé plusieurs scénarios d’évolution du pro-
totype avec les modifications diverses de l’interface. Le prototype s’est montré résistant
aux changements en montrant que l’architecture facilité la maintenance, extensibilité et
réutilisabilité des composants dans une application. Nous avons aussi demandé à un dé-
veloppeur Android d’EUTECH SSII de redévelopper l’un de ses projets complexes et non

145

Chapitre 11 Résumé

maintenables en utilisant notre architecture. Nous avons pris des métriques diverses du
code telles que le nombre des méthodes, le nombre des classes et la complexité du code.
Toutes les métriques ont été considérablement réduites dans la version de l’application
implémentée avec Android Passive MVC. Une évaluation longue au sein d’EUTECH SSII
a montré que l’architecture a permis de simplifier le travail des développeurs Android et
d’améliorer la qualité des applications produites par les développeurs. Ces derniers ont
noté que l’architecture a facilité le travail en équipe en proposant un cadre connu par tous
les membres, mais a également simplifié le travail des stagiaires.

L’architecture proposée, même si elle a été adaptée pour Android, n’est pas dépen-
dante du système Android. Toutes les composantes peuvent être développées en utilisant
les classes simples sans activité ou fragment. L’architecture rejoint le groupe des architec-
tures comme Model-Vue-Contrôleur, Model-Vue-Présenter et Présentation-Abstraction-
Contrôle. Elle reste une architecture générale.

11.5.2 Indicateur du respect de la vie privée
Android est l’un des leaders du marché mobile, offrant plus d’un million d’applications
sur Google Play Store. Google vérifie les applications vis-à-vis des empreintes malveillants
connus. Cependant, les applications qui collectent abusivement les données des utilisateurs
et demandent les accès à des services sensibles non liés à des fonctionnalités sont toujours
présentes sur le marché.

Les informations sur chaque application disponible sur les kiosques des applications
mobiles aident les utilisateurs à choisir l’application la plus appropriée ; elles sont similaires
pour les différents kiosques. Ces informations comprennent le nom, la description, la note,
les commentaires, les captures d’écran, l’icône et, parfois, la politique de confidentialité. Le
kiosque des applications Android GooglePlay comprend aussi la liste des accès requis pour
certaines interfaces ou données sensibles nommées permissions. Un système de permissions
est une solution de sécurité centrée sur l’utilisateur contre les applications et les logiciels
malveillants ou abusifs. Cette liste des permissions est censée avertir les utilisateurs sur
les applications dangereuses et abusives.

L’état de l’art a montré que les systèmes de permissions actuelles ne sont pas adaptés
pour les utilisateurs finaux : les utilisateurs sont incapables de comprendre et de juger
les permissions requises par chaque application et souvent ignorent les avertissements lors
de l’installation. Tout d’abord, la liste des permissions est présentée uniquement à la
dernière étape avant l’installation de l’application lorsque les autres critères de la décision
de l’utilisateur ont été atteints, et, par conséquent, la liste des permissions est considérée
comme une obligation d’être vu plutôt qu’un facteur de décision [46, 45]. Souvent, les
utilisateurs ne disposent pas de suffisamment d’information pour comprendre le sens des
permissions, leur but d’utilisation et le mal possible si la permissions est donnée. Certaines
permissions sont requises si fréquemment que les utilisateurs ne font aucune attention à
celles-ci [39, 40]. On peut voir qu’actuellement, il n’y a pas de système efficace et simple
pour les utilisateurs qui leur permette de choisir une application en prenant en compte le
niveau du respect de sa vie privée et la sécurité de l’application Android. Les utilisateurs
doivent, soit compter sur la communauté avec des commentaires et des évaluations (qui se
réfèrent rarement à des problèmes de sécurité), soit vérifier manuellement les autorisations
et compter sur leurs connaissances et leur compréhension personnelle.Les travaux de l’état

146

11.5 Contribution

de l’art suggèrent l’intégration de nouveaux indicateurs de sécurité et de confidentialité
pour les utilisateurs [89].
Toutefois, la liste des permissions Android fournit des informations sur le comporte-

ment de l’application et peut être appropriée pour l’analyse automatique des applica-
tions. Android inclut environ 80 permissions disponibles aux développeurs tiers et encore
le double des permissions dédiées aux applications des fournisseurs des appareils mobiles.
Chaque nouvelle version Android contient de plus en plus de permissions liées aux nou-
velles fonctionnalités et aux nouveaux capteurs. L’information sur les permissions requises
est intégrée dans chaque application et elle est toujours disponible. L’identification des
permissions-clés pour des fonctionnalités différentes ainsi que des demandes de permis-
sions attendues peut aider à levier le comportement anormal de l’application et de fournir
un indicateur du risque simple qui peut avertir les utilisateurs. Les applications avec des
fonctionnalités similaires sont regroupées sur Google Play en différentes catégories. Cette
thèse analyse donc les demandes de permissions par catégorie. Cette étude propose une
méthodologie pour caractériser un comportement normal pour les applications de chaque
catégorie, en soulignant les demandes de permissions attendues. Cette étude vise à ré-
pondre aux questions de recherche suivantes :

• Est-ce que les applications Android de différentes catégories nécessitent des différents
groupes de permissions et est-ce que ces groupes des permissions représentent ainsi
la catégorie ?

• Est-ce qu’un groupe de permissions-clés par catégorie peut nous permettre de me-
surer le niveau de risque et le niveau de respect de la vie privée de l’utilisateur d’une
application ?

• Peut-on détecter les applications malveillantes et abusives en terme de permissions
à l’aide des groupes de permissions-clés des catégories ?

Pour réaliser cette étude, une collecte des applications mobiles a été effectuée sur le
kiosque officiel des applications Android - GooglePlay. Le crawler que nous avons réalisé
a pu obtenir 9.512 applications des 35 catégories différentes. Pour chaque application, on
a extrait un nom, une description et une liste de permissions associées. On a ensuite filtré
les listes de permissions afin de supprimer toutes les permissions erronées ou créées par
des développeurs pour ne garder que les permissions officielles intégrées dans Android 4.4.
Les données obtenues ont été utilisées pour extraire des patterns de permissions pour

chaque catégorie d’applications. Pour chaque catégorie, nous avons modélisé des permis-
sions sous forme de graphes. Deux permissions qui sont requises conjointement par une
application de la catégorie visée sont liées dans le graphe. On a calculé le pois les lient
des graphes obtenu en utilisant le Z-score. Il est connu que Google Play peut contenir
des applications de mauvaise qualité et même malveillantes ; à ce titre, leur présence dans
notre base de données n’a rien de surprenant. Pour éviter les permissions anormales et
négligeables dans notre modèle, la troisième étape omet des paires de permissions avec
une occurrence moyenne inférieure à 1.
Le graphe est ensuite filtré en se basant sur le Z-score pour obtenir que la permission

pertinente pour la catégorie par rapport à l’utilisation du couple des permissions dans les
autres catégories. Par définition, le Z-score sera négatif si la fréquence observée d’une paire

147

Chapitre 11 Résumé

de permissions dans une catégorie est inférieure à la moyenne. Le Z-score sera égal à 1 si la
fréquence observée est supérieure à la moyenne exactement par la mesure de l’écart type.
Enfin, le Z-score sera supérieur à 1 si la fréquence d’une paire de permissions donnée est
nettement supérieure à la moyenne. Pour obtenir le graphe final pour chaque catégorie,
on a filtré les paires de permissions pour ne garder que les couples dont le Z-score est
supérieur à 1. Les nœuds non connectés sont également omis.
Les permissions sont ensuite analysées avec les méthodes d’analyse de graphe. Les mé-

triques obtenues révèlent les permissions centrales pour chaque catégorie. Pour chaque
nœud, on a calculé les mesures telles que le degré, le degré pondéré, la centralité d’inter-
médiarité, la centralité de proximité, le Page Rank, le Hub et l’Autorité. De telle manière,
on a obtenu un motif de permissions pour chaque catégorie qui contient une liste de
permissions les plus représentatives pour une catégorie donnée.
Pour évaluer la représentativité d’un motif par rapport à une catégorie, on a vérifié

la performance de la classification des applications en catégorie en utilisant des motifs
obtenus. Pour effectuer la classification, on a proposé un attribut de similarités d’une
application par rapport à un motif d’une catégorie donnée et d’une mesure donnée. On a
ensuite évalué la classification par la validation croisée en utilisant les mesures obtenues
précédemment. La classification avec Naive Bayesien s’est montrée la plus performante, ce
qui a montré que les catégories sont bel et bien représentées par des motifs de permissions
centrales. Deux métriques se sont révélé comme étant les plus performantes : centralité
d’intermédiarité et degré pondéré. Certaines catégories étaient plus difficiles à prédire :
par exemple, certaines applications de la catégorie ’transport’ ont été classifiées comme
appartenant a la catégorie ’voyage’.
Nous avons aussi comparé les motifs obtenus avec l’indicateur le plus présent dans l’état

de l’art – l’occurrence d’une permission. Dans notre base de données, les permissions les
plus utilisées dans chaque catégorie se sont révélées identiques, ainsi que les motifs obte-
nus (par rapport à la centralité d’intermédiarité) permette de comprendre les catégories
d’applications et leurs fonctionnalités ainsi que mieux décrire la catégorie.
En se basant sur les motifs obtenus par catégorie et sur les deux métriques les plus

performantes, on a ensuite proposé un indicateur pour évaluer le niveau de respect des
données privées par l’application. L’indicateur montre à quel point l’application suit le
motif précedemment trouvé par rapport à sa catégorie. On a construit l’indicateur en se
basant sur les prérequis suivantes :

• Plus l’application tend vers le motif, plus la valeur est élevée.

• Si l’application requiert des permissions qui sont centrales dans le motif de sa caté-
gorie, plus la valeur doit être élevée.

• Si l’application demande des permissions qui ne sont pas présentes dans le motif, la
valeur de l’indicateur doit diminuer.

Enfin, cette étude évalue la performance de détection des applications malveillantes
par rapport à l’indicateur et le score du respect de la vie privée défini précédemment.
Pour cela, on prend un ensemble d’applications non malveillantes d’une catégorie et on
ajoute un ensemble d’applications connues comme étant malveillantes. On a effectué la
classification des applications dans deux catégories (malveillant et non-malveillant) en

148

11.5 Contribution

modifiant des variables d’ajustement de l’indicateur du respect de la vie privée. Ainsi, on
a obtenu un seuil à partir duquel l’application est considérée comme étant une application
à risque et une alerte est levée pour informer l’utilisateur.

11.5.3 Système de permissions « Privacy by Design »
Un des mécanismes de sécurité des données mobiles est le mécanisme de contrôle d’accès
appelé système de permissions. Un système de permissions est intégré dans les systèmes
d’exploitation mobiles et il est crucial pour la protection et le respect des données privées
des utilisateurs mobiles. Si le modèle d’un tel système est bien construit, un système de
permission peut devenir un outil de protection de la vie privée puissant et proactif faisant
partie du système d’exploitation.
Les nombreux travaux de l’état de l’art montrent que les systèmes de permission actuels

n’assurent ni le respect de la vie privée ni la sécurité [39, 40, 38, 42]. Les utilisateurs ne
peuvent ni juger le risque d’une permission ni le comprendre. Finalement, les alertes liées
aux permissions utilisées par l’application sont souvent ignorées par les utilisateurs. Un
nouveau système de permission peut donner aux utilisateurs non seulement le contrôle
sur leurs données, mais aussi la transparence et la visibilité sur l’exploitation de leurs
données.
Au lieu de définir une liste de permissions fix comme cela est implémenté dans les sys-

tèmes mobiles actuels, nous proposons dans cette thèse un modèle eu le vocabulaire pour
la création et l’utilisation des permissions. On se base sur un contrôle d’accès discrétion-
naire où le Sujet a un certain Droit sur un Objet donné par le propriétaire des données –
utilisateur.

• Le Sujet, dans notre contexte, est une application mobile représentée par son nom
ou identifiant unique.

• Un Objet est une donnée privée d’une certaine granularité : numéro de téléphone,
nom, prénom, mais aussi les photos, les médias, les listes d’amis, les données de
géolocalisation, les données de la santé, etc.

• Le Droit dans notre modèle est une combinaison de l’Action et du But d’utilisation.

L’Action représente les traitements différents qui peuvent être faits sur la donnée : téléchar-
ger, sauvegarder, modifier, accéder ou transmettre. Le But est défini par le développeur
et doit être précis. Les exemples du But bien défini sont les suivants :

• Afficher sur l’écran

• Calculer et afficher vos performances sportives

• Contacter vos amis

• Avoir les publicités personnalisées

• Calculer un score du risque

• Publier sur le mur du Facebook

149

Chapitre 11 Résumé

Le But ne doit par être vague, comme, par exemple, les buts suivants qui sont souvent
utilisés par les applications et les systèmes mobiles :

• Améliorer l’expérience utilisateur

• Pour faire fonctionner l’application correctement

Pour une permission liée à la sauvegarde de nouvelles données, le développeur doit aussi
définir le temps de stockage ou proposer à l’utilisateur de limiter le temps de stockage par
le nombre d’heures et le nombre de jours. La limitation peut aussi se baser sur le cycle
de vie de l’application en proposant des explications telles que :

• Jusqu’à la suppression de l’application

• Jusqu’à la fermeture de l’application

• Jamais

L’Utilisateur doit être notifié à propos de la permission et doit l’autoriser explicite-
ment. L’utilisateur peut choisir d’autoriser ou de révoquer d’une manière permanente la
permission. L’utilisateur peut dire s’il souhaite ou non avoir une confirmation à chaque
fois qu’il utilise cette permission. Pour les autorisations sans confirmation, l’utilisateur
doit pourvoir changer le statut de chaque permission dans les paramètres de l’applica-
tion. Les permissions peuvent être utilisées par l’application seulement en respectant les
conditions données par l’utilisateur. Une permission peut être utilisée suite à une action
utilisateur (par exemple, « appui sur un bouton précis ») ou à un évènement (par exemple,
« lancement de l’application » ou « envoi du message »). Une action automatique liée à
un événement de l’application peut être aussi restreinte par une fréquence d’utilisation
(par exemple « une fois par jour »).
Les permissions qui ont le même But d’utilisation peuvent être groupées ensemble. Le

groupe peut avoir un statut « tout » ou « un ». Si le statut du groupe est « tout », cela
signifie que toutes les permissions sont nécessaires pour assurer la fonctionnalité définie
par le But. Dans ce cas, si l’une des permissions est révoquée par l’utilisateur, toutes les
permissions sont révoquées. Si le statut du groupe est « un», cela signifie que seulement
l’une des permissions est nécessaire pour assurer la fonctionnalité définie par le But. Cela
peut être lié aux données de granularité différentes comme, par exemple, les données de
géolocalisation : position exacte, adresse, ville, pays. La fonctionnalité peut être assurée
en utilisant l’une de ces données. Si l’une des permissions est autorisée par l’utilisateur,
toutes les autres sont révoquées. Dans l’interface utilisateur, cela peut être représenté en
temps que menu déroulant pour choisir la granularité des données.
Le système de permissions proposé peut être implémenté en temps que composante

intermédiaire entre les applications et le système d’exploitation sur Android. Pour assurer
la gestion des fichiers et des dossiers ainsi que le niveau de granularité des différentes
données, le nouveau système peut se baser sur un système de gestion de fichiers séman-
tiques qui permettent de taguer les fichiers. Les appels aux interfaces systèmes issus des
applications mobiles doivent passer au travers du système de permissions. Un modèle sup-
plémentaire d’implémentation peut être nécessaire pour assurer la gestion des permissions

150

11.6 Conclusion

sur les données stockées dans les bases des données et sécuriser l’accès aux tables, lignes,
colonnes ou cellules.
Un autre axe d’investigation est le travail sur l’affichage des permissions et sur l’interface

graphique. L’interface joue un rôle important dans l’adoption d’un tel système par les
utilisateurs et aussi dans la compréhension des permissions. Le futur modèle d’interface
peut se baser sur un mélange de stratégies existantes comme les pop-up et les tutoriels.
L’impact d’intégration d’un tel système sur le processus de développement des applications
mobiles doit être évalué. On suppose que l’intégration du système plus respectueux de la
vie privée des utilisateurs doit aussi avoir un impact sur le comportement des utilisateurs,
le choix des applications, le nombre de téléchargements, etc.

11.6 Conclusion
Cette thèse dresse la problématique du respect et de la sécurité des données privées des
utilisateurs mobiles. Dans le cadre de la thèse, nous avons proposé plusieurs modèles pour
rendre les applications et les systèmes mobiles plus « Privacy by Design » et pour appor-
ter de la sécurité, de la transparence et du contrôle sur les données. Tout d’abord, on a
proposé un patron de conception architecturale pour les développeurs Android. Le patron
de conception définit une architecture de l’application et permet aux développeurs de se
concentrer sur les fonctionnalités et sur la sécurité en ayant un code structuré, mainte-
nable et extensible. Cette contribution prend en compte le concept « [du] respect de la
vie privée inclus de la conception » (en proposant une base claire permettant l’intégration
plus facile des autres patrons de conception) et « Sécurité sur le cycle de vie complète» du
« Privacy by Design » (en réduisant le nombre de bugs et de failles de sécurité potentielles
en clarifiant et structurant le code). Ce travail a été présenté à la conférence internatio-
nale PATTERNS 2013 (The Fifth International Conferences on Pervasive Patterns and
Applications) dans laquelle nous avons obtenu le prix de « meilleur article » . La version
étendue du travail a été publiée dans une revue internationale (International Journal On
Advances in Software, volume 7 in 2014).
La deuxième contribution de cette thèse propose une mesure de risque d’une application

Android vis-à-vis du respect de données privées ainsi que le seuil du risqué permettant
de détecter les applications malveillants et anormales par rapport aux applications dans
la catégorie donnée. Comme les utilisateurs ne sont pas capables de juges la sécurité
des applications en se basant sur les permissions demandé, Nous avons fait une analyse
automatique des demandes des permissions par catégorie pour proposer aux utilisateur
un indicateur plus simple. Par rapport aux principes « Privacy by design », cette pro-
position rend le kiosque de distribution des applications mobiles plus proactifs, sécuri-
sés, transparents et respectueux de la vie privée en indiquant le risque aux utilisateurs
avant l’installation des applications. Le motif comportemental propose a été présenté à la
conférence internationale PATTERNS 2015 (The Seventh International Conferences on
Pervasive Patterns and Applications). La version étendu de se travail est soumis dans le
journal Decision Support System Journal, Elsevier.
La dernière proposition de cette thèse est un nouveau système de permission qui prend

en compte toutes les notions du « Privacy by Design ». Avec un tel système de permissions,
l’utilisateur pourra clairement comprendre laquelle de ses données est utilisée, comment
et pour quel but. L’utilisateur aura aussi le contrôle sur ces données. Cette étude a été

151

Chapitre 11 Résumé

validée par la communauté scientifique. La version courte de l’article a été présentée à la
conférence internationale PATTERNS 2014 où le prix du meilleur article à été obtenu.
La version étendue a été publiée dans la revue internationale (International Journal On
Advances in Security). Ce travail a été aussi présenté au 5ème Atelier sur la Protection
de la Vie Privée en 2014.
Les travaux de recherche de cette thèse ont été présentés comme poster lors du forum

des doctorants organisé par l’Université de Technologie de Troyes en 2015.

152

Bibliography

[1] TRUSTe : Consumer Mobile Privacy Insights Report, avril 2011.

[2] A Cavoukian : Privacy by design: The 7 foundational principles, 2009.

[3] 15 U.S.C. 6501-6505 : Children’s online privacy protection act of 1998, 1988.

[4] Cal. Bus. et Prof. Code §§ 22575-22579 : The online privacy protection act of
2003, 2004.

[5] c. 5) (S.C. 2000 : Personal information protection and electronic documents act,
2015.

[6] Privacy and data protection by design – from policy to engineering. Rapport tech-
nique, European Union Agency for Network and Information Security (ENISA),
December 2014.

[7] Kamala D Harris : Privacy on the go. California Department of Justice, pages
1–27, janvier 2013.

[8] European data protection regulators : Opinion 02/2013 on apps on smart de-
vices. Rapport technique, EU, février 2013.

[9] Directive 95/46/EC of the European Parliament and of the Council on the Protec-
tion of Individuals with Regard to the Processing of Personal Data and on the Free
Movement of Such Data. European Union, 24 October 1995.

[10] Proposal for a Regulation of the European Parliament and of the Council on the
protection of individuals with regard to the processing of personal data and on the
free movement of such data (General Data Protection Regulation). Council of the
European Union, 2015.

[11] COM(2012) 11 final proposal for a REGULATION OF THE EUROPEAN PAR-
LIAMENT AND OF THE COUNCIL on the protection of individuals with regard
to the processing of personal data and on the free movement of such data (General
Data Protection Regulation). EUROPEAN COMMISSION, 2012.

[12] FRA : Handbook on european data protection law send with email share to google
share to del.icio.us share to stumbleupon share to facebook share to twitter hand-
book on european data protection law, June 2014.

[13] Jaap-Henk Hoepman : Privacy Design Strategies. CoRR, octobre 2012.

153

BIBLIOGRAPHY

[14] M Hafiz : A collection of privacy design patterns. Proceedings of the 13th Confer-
ence on Patterns . . . , 2006.

[15] Siani Pearson et Yun Shen : Context-Aware Privacy Design Pattern Selection.
In Trust, pages 69–80. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[16] George Danezis, Josep Domingo-Ferrer, Marit Hansen, Jaap-Henk Hoep-
man, Daniel Le Métayer, Rodica Tirtea et Stefan Schiffner : Privacy and
Data Protection by Design - from policy to engineering. CoRR abs/1501.03726,
cs.CR, 2015.

[17] Erich Gamma, Richard Helm, Ralph Johnson et John Vlissides : Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Pro-
fessional, 1 édition, novembre 1994.

[18] Tuomas Ihme et Pekka Abrahamsson : The Use of Architectural Patterns in the
Agile Software Development of Mobile Applications. In ICAM 2005 Internation
Conference on Agility, pages 155–162, août 2005.

[19] Glenn Krasner et Stephen Pope : A description of the model-view-controller
user interface paradigm in the smalltalk-80 system. Journal of object oriented pro-
gramming, 1:26–49, 1988.

[20] Patrick Sauter, Gabriel Vögler, Günther Specht et Thomas Flor : A Model–
View–Controller extension for pervasive multi-client user interfaces. Personal and
Ubiquitous Computing, 9(2):100–107, mars 2005.

[21] Matthias Veit et Stephan Herrmann : Model-view-controller and object teams:
a perfect match of paradigms. In AOSD ’03: Proceedings of the 2nd international
conference on Aspect-oriented software development, pages 140–149. ACM Request
Permissions, mars 2003.

[22] Steve Burbeck : Applications Programming in Smalltalk-80TM: How to use
Model-View-Controller MVC, 1997.

[23] Joëlle Coutaz : PAC. ACM SIGCHI Bulletin, 19(2):37–41, octobre 1987.

[24] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad et
Michael Stal : Pattern-Oriented Software Architecture, Volume 1: A System of
Patterns. Wiley, Chichester, UK, 1996.

[25] M Potel : MVP: Model-View-Presenter the taligent programming model for C++
and Java. Taligent Inc, 1996.

[26] J Cai, R Kapila et G Pal : HMVC: The layered pattern for developing strong
client tiers, 2000.

[27] Reto Meier : Professional Android 4 Application Development (Wrox Professional
Guides). Wrox Press Ltd., Birmingham, 3 édition, mai 2012.

[28] Ivo Salmre : Writing Mobile Code: Essential Software Engineering for Building
Mobile Applications. Addison-Wesley Professional, février 2005.

154

BIBLIOGRAPHY

[29] S Brahler : Analysis of the android architecture. Rapport technique, Karlsruher
Institute of Technology, 2010.

[30] V Rahimian et R Ramsin : Designing an agile methodology for mobile software
development: A hybrid method engineering approach. In Research Challenges in
Information Science, 2008. RCIS 2008., pages 337–342, 2008.

[31] Pekka Abrahamsson et al. : Mobile-D: an agile approach for mobile application
development. In OOPSLA ’04: Companion to the 19th annual ACM SIGPLAN
conference on Object-oriented programming systems, languages, and applications,
pages 174–175, octobre 2004.

[32] Hyun Jung La et Soo Dong Kim : Balanced MVC Architecture for Develop-
ing Service-Based Mobile Applications. In e-Business Engineering (ICEBE), 2010
IEEE 7th International Conference on, pages 292–299, 2010.

[33] Apostolos Papageorgiou, Bastian Leferink, Julian Eckert, Nicolas Repp et
Ralf Steinmetz : Bridging the gaps towards structured mobile SOA. In MoMM
’09: Proceedings of the 7th International Conference on Advances in Mobile Com-
puting and Multimedia, pages 288–294, décembre 2009.

[34] D Plakalovic et D Simic : Applying MVC and PAC patterns in mobile applica-
tions. Journal of Computing, 2(1):65–72, janvier 2010.

[35] Dimitrios Zissis, Dimitrios Lekkas et Panayiotis Koutsabasis : Design and
Development Guidelines for Real-Time, Geospatial Mobile Applications: Lessons
from ‘MarineTraffic’. In Mobile Web and Information Systems, pages 107–120.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[36] Woon-Yong Kim et Seok-Gyu Park : The 4-tier design pattern for the develop-
ment of an android application. Lecture Notes in Computer Science, 7105:196–203,
décembre 2011.

[37] Michael J Jipping : Smartphone Operating System Concepts with Symbian OS: A
Tutorial Guide. Wiley, Chichester, 2007.

[38] Michael Lane : Does the android permission system provide adequate information
privacy protection for end-users of mobile apps? . décembre 2012.

[39] Patrick Gage Kelley, Sunny Consolvo, Lorrie Faith Cranor, Jaeyeon Jung,
Norman Sadeh et David Wetherall : A Conundrum of Permissions: Installing
Applications on an Android Smartphone. In . . . Cryptography and Data . . . , pages
68–79. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[40] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin
et David Wagner : Android permissions: User attention, comprehension, and
behavior. In Proceedings of the Eighth Symposium on Usable Privacy and Security,
SOUPS ’12, pages 3:1–3:14, New York, NY, USA, 2012. ACM.

[41] Jagdish Prasad Achara, Mathieu Cunche, Vincent Roca et Aurélien Francil-
lon : WifiLeaks: underestimated privacy implications of the access_wifi_state
android permission. WISEC, pages 231–236, 2014.

155

BIBLIOGRAPHY

[42] Adrienne Porter Felt, Kate Greenwood et David Wagner : The effective-
ness of application permissions. In WebApps’11: Proceedings of the 2nd USENIX
conference on Web application development, pages 7–7. USENIX Association, juin
2011.

[43] Sunny Consolvo, Ian E Smith, Tara Matthews, Anthony LaMarca, Jason
Tabert et Pauline Powledge : Location disclosure to social relations: why, when,
& what people want to share. In CHI ’05: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. ACM, avril 2005.

[44] Alina Hang, Emanuel von Zezschwitz, Alexander De Luca et Heinrich Huss-
mann : Too much information!: user attitudes towards smartphone sharing. In
NordiCHI ’12: Proceedings of the 7th Nordic Conference on Human-Computer In-
teraction: Making Sense Through Design. ACM, octobre 2012.

[45] Serge Egelman, AdriennePorter Felt et David Wagner : Choice architecture
and smartphone privacy: There’s a price for that. In The Economics of Information
Security and Privacy, pages 211–236. Springer Berlin Heidelberg, 2013.

[46] Rainer Böhme et Stefan Köpsell : Trained to accept?: a field experiment on
consent dialogs. In CHI ’10: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, avril 2010.

[47] E Smith : iPhone applications and privacy issues: An analysis of application
transmission of iPhone unique device identifiers UDIDs, October 2010.

[48] F Roesner, T Kohno, A Moshchuk, B Parno, H J Wang et C Cowan :
User-Driven Access Control: Rethinking Permission Granting in Modern Operating
Systems. Security and Privacy (SP), 2012 IEEE Symposium on, pages 224–238,
2012.

[49] David Barrera, H Güneş Kayacik, Paul C van Oorschot et Anil Somayaji :
A methodology for empirical analysis of permission-based security models and its
application to android. In Proceedings of the 17th ACM conference on Computer
and communications security, CCS ’10, pages 73–84. ACM, octobre 2010.

[50] Pern Hui Chia, Yusuke Yamamoto et N Asokan : Is this app safe?: a large
scale study on application permissions and risk signals. In Proceedings of the 21st
international conference on World Wide Web, WWW ’12, pages 311–320. ACM,
avril 2012.

[51] M Frank, Ben Dong, A P Felt et D Song : Mining Permission Request Patterns
from Android and Facebook Applications. In IEEE International Conference on
Data Mining (ICDM), pages 870–875, 2012.

[52] I Rassameeroj et Y Tanahashi : Various approaches in analyzing Android ap-
plications with its permission-based security models. In Electro/Information Tech-
nology (EIT), 2011 IEEE International Conference on, pages 1–6, 2011.

[53] William Enck, Machigar Ongtang et Patrick McDaniel : On lightweight mobile
phone application certification. In CCS ’09: Proceedings of the 16th ACM conference
on Computer and communications security. ACM, novembre 2009.

156

BIBLIOGRAPHY

[54] Hao Peng, Chris Gates, Bhaskar Sarma, Ninghui Li, Yuan Qi, Rahul
Potharaju, Cristina Nita-Rotaru et Ian Molloy : Using probabilistic gener-
ative models for ranking risks of Android apps. In Proceedings of the 2012 ACM
conference on Computer and communications security, CCS ’12, pages 241–252.
ACM, octobre 2012.

[55] Bhaskar Pratim Sarma, Ninghui Li, Chris Gates, Rahul Potharaju, Cristina
Nita-Rotaru et Ian Molloy : Android permissions: a perspective combining
risks and benefits. In SACMAT ’12: Proceedings of the 17th ACM symposium on
Access Control Models and Technologies. ACM, juin 2012.

[56] N Peiravian et Xingquan Zhu : Machine Learning for Android Malware Detection
Using Permission and API Calls. In Tools with Artificial Intelligence (ICTAI), 2013
IEEE 25th International Conference on, pages 300–305, 2013.

[57] Veelasha Moonsamy, Jia Rong, Shaowu Liu, Gang Li et Lynn Batten : Con-
trasting Permission Patterns between Clean and Malicious Android Applications.
In Future Generation Computer Systems, pages 69–85. Springer International Pub-
lishing, Cham, 2013.

[58] International Secure Systems Lab : Andrubis.

[59] W Wang, X Wang, D Feng, J Liu, Z Han et X Zhang : Exploring Permission-
Induced Risk in Android Applications for Malicious Application Detection. Infor-
mation Forensics and Security, IEEE Transactions on, 9(11):1869–1882, 2014.

[60] Wei Xu, Fangfang Zhang et Sencun Zhu : Permlyzer: Analyzing permission usage
in Android applications. Software Reliability Engineering (ISSRE), 2013 IEEE 24th
International Symposium on, pages 400–410, 2013.

[61] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song et David Wagner
: Android permissions demystified. In CCS ’11: Proceedings of the 18th ACM con-
ference on Computer and communications security, pages 627–638. ACM, octobre
2011.

[62] Ryan Stevens, Jonathan Ganz, Vladimir Filkov, Premkumar T Devanbu et
Hao Chen : Asking for (and about) permissions used by Android apps. MSR,
pages 31–40, 2013.

[63] Yuvraj Agarwal et Malcolm Hall : ProtectMyPrivacy: detecting and mitigating
privacy leaks on iOS devices using crowdsourcing. In Proceeding of the 11th annual
international conference on Mobile systems, applications, and services, MobiSys ’13,
pages 97–110. ACM, juin 2013.

[64] Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck et Tao Xie : Whyper:
Towards automating risk assessment of mobile applications. In Proceedings of the
22Nd USENIX Conference on Security, SEC’13, pages 527–542, Berkeley, CA, USA,
2013. USENIX Association.

[65] Zhengyang Qu, Vaibhav Rastogi, Xinyi Zhang, Yan Chen, Tiantian Zhu et
Zhong Chen : Autocog: Measuring the description-to-permission fidelity in android
applications. In Proceedings of the 2014 ACM SIGSAC Conference on Computer

157

BIBLIOGRAPHY

and Communications Security, CCS ’14, pages 1354–1365, New York, NY, USA,
2014. ACM.

[66] Hengshu Zhu, Hui Xiong, Yong Ge et Enhong Chen : Mobile app recommenda-
tions with security and privacy awareness. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining, KDD ’14, pages
951–960. ACM, août 2014.

[67] Alastair R Beresford, Andrew Rice, Nicholas Skehin et Ripduman Sohan :
MockDroid: trading privacy for application functionality on smartphones. In Hot-
Mobile ’11: Proceedings of the 12th Workshop on Mobile Computing Systems and
Applications, HotMobile ’11, pages 49–54. ACM, mars 2011.

[68] Kurt Mueller et Kevin Butler : Poster: Flex-p: Flexible android permissions.
In IEEE Symposium on Security and Privacy, 2011.

[69] Yajin Zhou, Xinwen Zhang, Xuxian Jiang et Vincent W Freeh : Taming
Information-Stealing Smartphone Applications (on Android). In Trust and Trust-
worthy Computing, pages 93–107. Springer Berlin Heidelberg, Berlin, Heidelberg,
2011.

[70] I Ion, B Dragovic et B Crispo : Extending the Java Virtual Machine to Enforce
Fine-Grained Security Policies in Mobile Devices. In Computer Security Applica-
tions Conference, 2007. ACSAC 2007. Twenty-Third Annual, pages 233–242, 2007.

[71] Mohammad Nauman, Sohail Khan et Xinwen Zhang : Apex: extending Android
permission model and enforcement with user-defined runtime constraints. In ASI-
ACCS ’10: Proceedings of the 5th ACM Symposium on Information, Computer and
Communications Security, pages 328–332. ACM, avril 2010.

[72] M Ongtang, S McLaughlin, W Enck et P McDaniel : Semantically Rich
Application-Centric Security in Android. In Computer Security Applications Con-
ference, 2009. ACSAC ’09. Annual, pages 340–349, 2009.

[73] Johann Vincent, Christine Porquet, Maroua Borsali et Harold Leboulanger
: Privacy Protection for Smartphones: An Ontology-Based Firewall. In Informa-
tion Security Theory and Practice. Security and Privacy of Mobile Devices in Wire-
less Communication, pages 371–380. Springer Berlin Heidelberg, Berlin, Heidelberg,
2011.

[74] Mauro Conti, Vu Thien Nga Nguyen et Bruno Crispo : CRePE: Context-
Related Policy Enforcement for Android. In Information Security, pages 331–345.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[75] Jaehong Park et Ravi Sandhu : The UCONABC usage control model. Transac-
tions on Information and System Security (TISSEC, 7(1), février 2004.

[76] Srijith K Nair, Andrew S Tanenbaum, Gabriela Gheorghe et Bruno Crispo :
Enforcing DRM policies across applications. In DRM ’08: Proceedings of the 8th
ACM workshop on Digital rights management. ACM, octobre 2008.

158

BIBLIOGRAPHY

[77] J Jeon, K K Micinski, J A Vaughan, N Reddy et Y Zhu : Dr. Android and
Mr. Hide: Fine-grained security policies on unmodified Android. Digital Repository
at the University of Maryland (DRUM), 2011.

[78] Shashank Holavanalli, Don Manuel, Vishwas Nanjundaswamy, Brian
Rosenberg, Feng Shen, Steven Y Ko et Lukasz Ziarek : Flow Permissions
for Android. In Automated Software Engineering (ASE), 2013 IEEE/ACM 28th
International Conference on, pages 652–657, 2013.

[79] Sven Bugiel, Stephan Heuser et Ahmad-Reza Sadeghi : mytunes: Semantically
linked and user-centric fine-grained privacy control on android. Rapport technique
TUD-CS-2012-0226, Center for Advanced Security Research Darmstadt, novembre
2012.

[80] Tim Werthmann, Ralf Hund, Lucas Davi, Ahmad-Reza Sadeghi et Thorsten
Holz : PSiOS: bring your own privacy & security to iOS devices. ASIACCS, pages
13–24, 2013.

[81] T Vidas, N Christin et L Cranor : Curbing android permission creep. In
W2SP, 2011.

[82] Adam P. Fuchs, Avik Chaudhuri et Jeffrey S. Foster : Scandroid: Automated
security certification of android applications, 2009.

[83] M Egele, C Kruegel, E Kirda et G Vigna : PiOS: Detecting Privacy Leaks in
iOS Applications. NDSS, 2011.

[84] Clint Gibler, Jonathan Crussell, Jeremy Erickson et Hao Chen : Androi-
dLeaks: Automatically Detecting Potential Privacy Leaks in Android Applications
on a Large Scale. In Trust and Trustworthy Computing, pages 291–307. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012.

[85] Jagdish Prasad Achara, Franck Baudot, Claude Castelluccia, Geoffrey Del-
croix et Vincent Roca : Mobilitics: Analyzing Privacy Leaks in Smartphones.
ERCIM News 2013(93), 2013.

[86] J Kim, Y Yoon, K Yi, J Shin et S Center : ScanDal: Static analyzer for
detecting privacy leaks in android applications. MoST, 2012.

[87] E Chin, A P Felt, K Greenwood et D Wagner : Analyzing inter-application
communication in Android. In Proceedings of the 9th . . . , 2011.

[88] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bod-
den, Jacques Klein et Yves Le Traon : Effective inter-component communication
mapping in Android with Epicc: an essential step towards holistic security analy-
sis. In SEC’13: Proceedings of the 22nd USENIX conference on Security. USENIX
Association, août 2013.

[89] Patrick P F Chan, Lucas C K Hui et S M Yiu : DroidChecker: analyzing an-
droid applications for capability leak. In WISEC ’12: Proceedings of the fifth ACM
conference on Security and Privacy in Wireless and Mobile Networks. ACM, avril
2012.

159

BIBLIOGRAPHY

[90] Christopher Mann et Artem Starostin : A framework for static detection of
privacy leaks in android applications. In Proceedings of the 27th Annual ACM
Symposium on Applied Computing, SAC ’12, pages 1457–1462, New York, NY, USA,
2012. ACM.

[91] Feng Shen, Namita Vishnubhotla, Chirag Todarka, Mohit Arora, Babu
Dhandapani, Eric John Lehner, Steven Y Ko et Lukasz Ziarek : Information
flows as a permission mechanism. In ASE ’14: Proceedings of the 29th ACM/IEEE
international conference on Automated software engineering. ACM, septembre 2014.

[92] Fengguo Wei, Sankardas Roy, Xinming Ou et Robby : Amandroid: A Precise
and General Inter-component Data Flow Analysis Framework for Security Vetting
of Android Apps. In CCS ’14: Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security. ACM, novembre 2014.

[93] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre
Bartel, Jacques Klein, Yves Le Traon, Damien Octeau et Patrick McDaniel
: FlowDroid: precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for Android apps. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’14, pages 259–269.
ACM, juin 2014.

[94] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P Cox, Jaeyeon Jung,
Patrick McDaniel et Anmol N Sheth : TaintDroid: an information-flow tracking
system for realtime privacy monitoring on smartphones. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation, OSDI’10,
pages 1–6. USENIX Association, octobre 2010.

[95] Jagdish Prasad Achara, James-Douglass Lefruit, Vincent Roca et Claude
Castelluccia : Detecting privacy leaks in the RATP App: how we proceeded and
what we found. J. Computer Virology and Hacking Techniques (), 10(4):229–238,
2014.

[96] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter et David
Wetherall : These aren’t the droids you’re looking for: retrofitting android to
protect data from imperious applications. In Proceedings of the 18th ACM confer-
ence on Computer and communications security, CCS ’11, pages 639–652. ACM,
octobre 2011.

[97] Pascal Berthomé et Jean-François Lalande : Comment ajouter de la privacy
after design pour les applications Android? (How to add privacy after design to
Android applications?), juin 2012.

[98] Wook Shin, S Kiyomoto, K Fukushima et T Tanaka : Towards Formal Anal-
ysis of the Permission-Based Security Model for Android. In Wireless and Mobile
Communications, 2009. ICWMC ’09. Fifth International Conference on, pages 87–
92. IEEE Computer Society, 2009.

[99] J Tam, R W Reeder et S Schechter : Disclosing the authority applications
demand of users as a condition of installation. Microsoft Research, 2010.

160

BIBLIOGRAPHY

[100] Adrienne Porter Felt, Helen J Wang, Alexander Moshchuk, Steven Hanna et
Erika Chin : Permission re-delegation: attacks and defenses. In SEC’11: Pro-
ceedings of the 20th USENIX conference on Security. USENIX Association, août
2011.

[101] Wook Shin, Sanghoon Kwak, S Kiyomoto, K Fukushima et T Tanaka : A
Small But Non-negligible Flaw in the Android Permission Scheme. Policies for
Distributed Systems and Networks (POLICY), 2010 IEEE International Symposium
on, pages 107–110, 2010.

[102] Sarah Allen, Vidal Graupera et Lee Lundrigan : Pro Smartphone Cross-
Platform Development: IPhone, Blackberry, Windows Mobile and Android Devel-
opment and Distribution. Apress, Berkely, 1st édition, septembre 2010.

[103] Kerri Shotts : PhoneGap for Enterprise. PACKT Publishing, PhoneGap for
Enterprise Mastering Kerri Shotts December 2014 2014.

[104] Abhishek Nalwaya : Rhomobile Beginner’s Guide. PACKT Publishing, 2011.

[105] Michael Facemire, Jeffrey S. Hammond, Christopher Mines, Dominique Whit-
taker et Eric Wheeler : The engagement platform’s aggregation tier a closer
look at the heart of modern enterprise architecture. Rapport technique, Forrester,
2014.

[106] Dave Mark et Jeff LaMarche : More IPhone 3 Development. Tackling Iphone
Sdk 3. Apress, Berkely, janvier 2010.

[107] James Steele, Nelson To, Shane Conder et Lauren Darcey : The Android
Developer’s Collection. Addison-Wesley Professional, décembre 2011.

[108] Brian Foote et Joseph Yoder : Big Ball of Mud. In Pattern Languages of
Program Design, pages 653–692. Addison-Wesley, 1997.

[109] Yonghee Shin et Laurie Williams : Is complexity really the enemy of software
security? In Proceedings of the 4th ACM Workshop on Quality of Protection, QoP
’08, pages 47–50, New York, NY, USA, 2008. ACM.

[110] Florent Garin : Android - Concevoir et développer des applications mobiles et
tactiles (Android - Comprehend and develop mobile and tactile applications). Dunod,
2nd édition, mars 2011.

[111] Paul D Sheriff : Fundamentals of N-Tier Architecture. PDSA Inc., mai 2006.

[112] Steve McConnell : Tout sur le code : Pour concevoir du logiciel de qualité
(Everything about code: make software of quality). Dunod, 2nd édition, février
2005.

[113] M T Ionita, D K Hammer et H Obbink : Scenario-based software architecture
evaluation methods: An overview. In Workshop on Methods and Techniques for
Software Architecture Review and Assessment at the International Conference on
Software Engineering, 2002.

[114] Pkofler : A source measurement suite for java.

161

BIBLIOGRAPHY

[115] Thomas J. McCabe : A complexity measure. Software Engineering, IEEE Trans-
actions on, SE-2(2):308–320, 1976.

[116] Karina Sokolova, Marc Lemercier et Ludovic Garcia : Android Passive MVC:
a Novel Architecture Model for the Android Application Development. In IARIA,
éditeur : PATTERNS 2013, The Fifth International Conferences on Pervasive Pat-
terns and Applications, pages 7–12, 2013.

[117] Karina Sokolova, Marc Lemercier et Ludovic Garcia : Towards high quality
mobile applications: Android passive mvc architecture. International Journal On
Advances in Software, 7(12):123–138, June 2014.

[118] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna et David
Wagner : A survey of mobile malware in the wild. In the 1st ACM workshop,
pages 3–14, New York, New York, USA, 2011. ACM Press.

[119] Onder Vincent Koc : android-market-api-php.

[120] Linton C. Freeman : Centrality in social networks conceptual clarification. Social
Networks, page 215, 1978.

[121] Lawrence Page, Sergey Brin, Rajeev Motwani et Terry Winograd : The
pagerank citation ranking: Bringing order to the web. Technical Report 1999-66,
Stanford InfoLab, November 1999. Previous number = SIDL-WP-1999-0120.

[122] Jon M. Kleinberg : Authoritative sources in a hyperlinked environment. J. ACM,
46(5):604–632, septembre 1999.

[123] Andrew P. Bradley : The use of the area under the roc curve in the evaluation
of machine learning algorithms. Pattern Recogn., 30(7):1145–1159, juillet 1997.

[124] Pablo Bermejo, José A. Gámez et Jose Miguel Puerta : Improving the perfor-
mance of naive bayes multinomial in e-mail foldering by introducing distribution-
based balance of datasets. Expert Syst. Appl., 38(3):2072–2080, 2011.

[125] Mathieu Bastian, Sebastien Heymann et Mathieu Jacomy : Gephi: An open
source software for exploring and manipulating networks, 2009.

[126] Thomas M. J. Fruchterman et Edward M. Reingold : Graph drawing by
force-directed placement. Softw. Pract. Exper., 21(11):1129–1164, novembre 1991.

[127] Mathieu Jacomy, Sebastien Heymann, Tommaso Venturini et Mathieu Bas-
tian : Forceatlas2, a continuous graph layout algorithm for handy network visual-
ization. Medialab center of research, 560, 2011.

[128] Interactive permissions networks for each category.

[129] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann et Ian H. Witten : The weka data mining software: An update.
SIGKDD Explor. Newsl., 11(1):10–18, novembre 2009.

[130] Borja Sanz, Igor Santos, Carlos Laorden, Xabier Ugarte-Pedrero et
Pablo Garcia Bringas : On the automatic categorisation of android applications.
In CCNC’12, pages 149–153, 2012.

162

BIBLIOGRAPHY

[131] Asaf Shabtai, Yuval Fledel et Yuval Elovici : Automated static code analysis
for classifying android applications using machine learning. In Proceedings of the
2010 International Conference on Computational Intelligence and Security, CIS ’10,
pages 329–333, Washington, DC, USA, 2010. IEEE Computer Society.

[132] Borja Sanz, Igor Santos, Carlos Laorden, Xabier Ugarte-Pedrero, Javier
Nieves, Pablo G. Bringas et Gonzalo Álvarez : Mama: Manifest analysis for
malware detection in android. Cybern. Syst., 44(6-7):469–488, octobre 2013.

[133] Marc Lemercier Karina Sokolova, Charles Perez : Android permission usage: a
first step towards detecting abusive applications. In PATTERNS 2015, The Seventh
International Conferences on Pervasive Patterns and Applications, pages 1–7, 2015.

[134] Charles Perez, Babiga Birregah et Marc Lemercier : A smartphone-based
online social network trust evaluation system. Social Network Analysis and Mining,
3(4):1293–1310, 2013.

[135] Daniel Le Métayer : A Formal Privacy Management Framework. Formal Aspects
in Security and Trust, pages 162–176, 2008.

[136] Adam Barth, Anupam Datta, John C Mitchell et Helen Nissenbaum : Pri-
vacy and Contextual Integrity: Framework and Applications. IEEE Symposium on
Security and Privacy, pages 184–198, 2006.

[137] K Sokolova, M Lemercier et J B Boisseau : Privacy by Design Permission
System for Mobile Applications. In PATTERNS 2014, The Sixth International
Conferences on Pervasive Patterns and Applications, pages 89–95, 2014.

[138] K Sokolova, M Lemercier et J B Boisseau : Respecting user privacy in
mobiles: privacy by design permission system for mobile applications. International
Journal On Advances in Security, 7(34):110–120, December 2014.

163

Modèles pour les environnements de
terminaux nomades « Privacy by Design »

De nos jours, les smartphones et les tablettes génè-
rent, reçoivent, mémorisent et transfèrent vers des
serveurs une grande quantité de données en propo-
sant des services aux utilisateurs via des applications
mobiles facilement téléchargeables et installables. Le
grand nombre de capteurs intégrés dans un smart-
phone lui permet de collecter de façon continue des
informations très précise sur l'utilisateur et son envi-
ronnement. Cette importante quantité de données
privées et professionnelles devient difficile à supervi-
ser.
L'approche «Privacy by Design», qui inclut sept prin-
cipes, propose d'intégrer la notion du respect des
données privées dès la phase de la conception d’un
traitement informatique. En Europe, la directive euro-
péenne sur la protection des données privées (Direc-
tive 95/46/EC) intègre des notions du «Privacy by
Design». La nouvelle loi européenne unifiée (General
Data Protection Régulation) renforce la protection et
le respect des données privées en prenant en compte
les nouvelles technologies et confère au concept de
«Privacy by Design» le rang d’une obligation légale
dans le monde des services et des applications mo-
biles.
L’objectif de cette thèse est de proposer des solutions
pour améliorer la transparence des utilisations des
données personnelles mobiles, la visibilité sur les
systèmes informatiques, le consentement et la sécuri-
té pour finalement rendre les applications et les sys-
tèmes mobiles plus conforme au «Privacy by
(re)Design».

Mots clés : design patterns - systèmes informatiques,
mesures de sûreté - Google Android (système d'ex-
ploitation des ordinateurs) - droit à la vie privée -
smartphones, accès, contrôle.

Karina SOKOLOVA PEREZ
Doctorat : Ingénierie Sociotechnique des Connaissances, des Réseaux

et du Développement Durable
Année 2016

Bridging the Gap between Privacy by
Design and Mobile Systems by Patterns

Nowadays, smartphones and smart tablets generate,
receive, store and transfer substantial quantities of
data, providing services for all possible user needs
with easily installable programs, also known as
mobile applications. A number of sensors integrated
into smartphones allow the devices to collect very
precise information about the owner and his envi-
ronment at any time. The important flow of personal
and business data becomes hard to manage.
The “Privacy by Design” approach with 7 privacy
principles states privacy can be integrated into any
system from the software design stage. In Europe,
the Data Protection Directive (Directive 95/46/EC)
includes “Privacy by Design” principles. The new
General Data Protection Regulation enforces privacy
protection in the European Union, taking into ac-
count modern technologies such as mobile systems
and making “Privacy by Design” not only a benefit
for users, but also a legal obligation for system
designers and developers.
The goal of this thesis is to propose pattern-oriented
solutions to cope with mobile privacy problems,
such as lack of transparency, lack of consent, poor
security and disregard for purpose limitation, thus
giving mobile systems more Privacy by (re) Design.

Keywords: software patterns - electronic data pro-
cessing departments, security measures –
smartphones, access control - privacy, right of -
Google Android (operating system).

Ecole Doctorale "Sciences et Technologies"

Thèse réalisée en partenariat entre :

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Problematic
	1.3 Contributions
	1.4 Document organization

	I State-of-the-art
	2 Privacy, Privacy by Design and European regulation
	2.1 Privacy in European Union
	2.2 Privacy by Design
	2.3 Conclusion

	3 Architectural design patterns and mobile development
	3.1 Introduction
	3.2 Architectural design patterns
	3.2.1 Model-View-Controller (MVC)
	3.2.2 Presentation-Abstraction-Control (PAC)
	3.2.3 Model-View-Presenter (MVP)
	3.2.4 Hierarchical-Model-View-Controller (HMVC)

	3.3 iOS system and architecture
	3.4 Android system and architecture
	3.5 Mobile architecture related works
	3.6 Conclusion

	4 Mobile permission systems
	4.1 Introduction
	4.2 Limits of modern mobile permission systems
	4.3 Mobile permission analysis
	4.3.1 Permission request analysis
	4.3.1.1 Benign applications
	4.3.1.2 Malicious applications

	4.3.2 Permission use analysis tools

	4.4 Permission-based decision support systems
	4.5 Improvement of modern mobile permission systems
	4.5.1 Revoke permissions and mock data tools
	4.5.2 Conditional granting
	4.5.3 Usage model and Digital rights management (DRM) technologies
	4.5.4 Finer-grained mobile permissions

	4.6 Code analysis and data flow control
	4.6.1 Static analysis
	4.6.2 Dynamic analysis

	4.7 Other works
	4.7.1 Model
	4.7.2 User interface
	4.7.3 Permissions as an attack vector

	4.8 Conclusion

	II Quality and Security
	5 Development of mobile applications of quality: Android Passive MVC architectural pattern
	5.1 Introduction
	5.2 Research methodology
	5.3 Developers' experience and difficulties
	5.4 Android Passive MVC
	5.4.1 Presentation
	5.4.2 Implementation
	5.4.2.1 Fragments usage
	5.4.2.2 Java classes

	5.5 'Tweetle' Android application and Android Passive MVC
	5.5.1 Fragment mediate Activities
	5.5.2 Fragment/Activity mediate Fragments
	5.5.3 Advantages and disadvantages

	5.6 Android Domain Model
	5.7 Architecture evaluation
	5.7.1 Code quality requirements
	5.7.2 Scenario-based evaluation
	5.7.2.1 Scenario 1: adapt the phone version to the tablet
	5.7.2.2 Scenario 2: add new tab to the main menu
	5.7.2.3 Scenario 3: move the main menu to the separate screen
	5.7.2.4 Scenario 4: modify the appearance of the list
	5.7.2.5 Scenario 5: add new interface element

	5.7.3 Evaluation by developers

	5.8 Discussion and future work
	5.8.1 Android and MVP
	5.8.2 Android and AM-MVC

	5.9 Conclusion

	III Security and Privacy
	6 Detecting abusive applications: permission usage patterns for applications' classification and anomaly detection
	6.1 Introduction
	6.2 Related works and limits
	6.3 Research methodology
	6.3.1 Dataset
	6.3.2 Permission usage pattern construction
	6.3.3 Classification of applications into categories
	6.3.3.1 The application classification problem
	6.3.3.2 Features selection

	6.3.4 Privacy score and risk metrics

	6.4 Results
	6.4.1 The category patterns obtained
	6.4.2 Graph centrality features vs. occurrence
	6.4.3 Classification and features accuracy
	6.4.4 Risk warning for suspicious applications
	6.4.5 Category similarity

	6.5 Discussion and future work
	6.6 Conclusion

	7 Respecting user's privacy by default: a PbD permission system for mobile applications
	7.1 Introduction
	7.2 Related works and limits
	7.3 Privacy-respecting permission system overview and vocabulary
	7.3.1 Definition
	7.3.2 Object: private data
	7.3.3 Permission use restrictions
	7.3.4 Permission state
	7.3.5 User control
	7.3.6 Permissions interconnection

	7.4 The permission system in action
	7.5 Application Example
	7.6 Discussion and future work
	7.7 Conclusion

	8 Conclusion
	8.1 Problematic
	8.2 Contributions
	8.3 Future work

	9 Publications
	10 Appendix
	11 Résumé
	11.1 Contexte
	11.2 Problématique
	11.3 Questions de recherche
	11.4 Vue sur le respect de la vie privée et « Privacy by Design »
	11.5 Contribution
	11.5.1 Android Passive MVC
	11.5.2 Indicateur du respect de la vie privée
	11.5.3 Système de permissions « Privacy by Design »

	11.6 Conclusion

	Bibliography

