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Les récents changements majeurs dans la structure des marchés financiers, réactu-
alisent l’étude de l’efficience des marchés financiers ainsi que celle de la volatilité des prix.
Le travail conceptuel de cette thèse se concentre sur la modélisation de la dynamique des
prix sur les marchés financiers. En particulier, nous examinons les problèmes posés par
les formes institutionnelles d’organisation de marché, notamment la fragmentation des
ordres, ou encore le nombre d’agents économiques présents sur les marchés qui influen-
cent in fine la nature et la structure de l’information.

Ces travaux ont été menés avec le prisme de la littérature économique, mais aussi avec
l’aide de la théorie de l’information très utilisée en sciences informatique et ce qu’on ap-
pelle aujourd’hui l’éconophysique. Nous discutons également les propositions de l’analyse
économique visant à améliorer la qualité informationnelle qui sous-tend la formation des
prix à partir des deux types de modèles qui ont été construit. Le point de départ de ce
travail est l’étude de l’information diffusée sur les marchés financiers. À cet effet, nous
distinguons l’information qui peut être traitée à l’aide d’un algorithme (appelé informa-
tion effective) de l’information qui ne peut l’être. Nous considérons également que sur
certains marchés, comme les marchés de matières premières agricoles standardisées (ap-
pelées par l’anglicisme commodités) par exemple, le prix physique, et donc l’information
qu’il se doit en principe de contenir, n’est pas actualisée aussi fréquemment que le cours
des actions ou les cours des devises. En effet, la plupart des cours des actions sont mis à
jour presque en permanence, mais sur les marchés de commodités agricoles, le prix est
mis à jour relativement lentement. Ensuite, nous pouvons considérer l’information per-
tinente sur ces marchés comme n’étant pas continue (les données météorologique par
exemple). Dans ce travail, nous étudions la nature et la structure de l’information afin de
mieux comprendre la structure actuelle des marchés financiers, et leurs implications.

La typologie des actifs que nous utilisons dans ce travail repose sur la tangibilité ou
non de celui-ci. Elle nous permet notamment de définir un marché financier comme
un lieu ou s’échangent des actifs intangibles (voir définition 1 et 2). Sur ces marchés fi-
nanciers, les agents économiques passent des ordres d’achat ou de vente à un prix fixé. Se
sont ces ordres qui permettent l’émergence d’un prix de marché qui est donc défini par le
prix résultant d’au moins une transaction, qui elle même est générée par l’appariement
d’un ordre d’achat et d’un ordre de vente à des prix compatibles (voir définition 3). Un
algorithme étant défini par une séquence finie d’opérations ordonnées (voir définition
4), une transaction est exécutée par un algorithme qui apparie les différents ordres. Le
prix de marché sur un marché financier est donc déterminé par un algorithme qui a
pour point de départ les ordres des agents. Le prix de marché est un concept a priori
universel. Cependant, il dépend des règles d’échanges ou de transactions spécifiques à
chaque marché, et plus particulièrement sur la méthode utilisée pour déterminer le prix
(donc l’algorithme utilisé). Ainsi, le prix de marché du même actif peut être déterminé
différemment sur Euronext Paris et à la Bourse de Londres.

En pratique, sur la plupart des marchés organisés gérés par des entreprises de marchés,
deux algorithmes de détermination des prix sont utilisés: la détermination grâce au car-
net d’ordres à cours limités, dénommé Limit Order Book (LOB) en anglais et le fixing.
Depuis le début de l’utilisation de l’algorithme du LOB, qui est bien plus récent, certains
économistes célèbres ont mis en exergue son potentiel effet déstabilisateur.1

1A titre d’illustration, nous pouvons citer la réponse partielle au mini-crash du 13 octobre 1989 de Mau-
rice Allais, prix Nobel d’économie en 1988:

"Le marché en transactions continue est une aberration d’un point de vue économique et
génère une potentielle instabilité permanente favorisant la fraude et la manipulation de
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Les deux principaux algorithmes de détermination du prix actuellement utilisés sur
les marchés réglementés sont basés sur la centralisation des ordres d’achat et des ordres
de vente dans un carnet d’ordres. Ce dernier regroupe, à un moment donné, les ordres
d’achat et ordres de vente exécutables mais non exécutés (voir définition 5).

Le fixing, qui est devenu la méthode la moins utilisée, détermine le prix qui maximise
les quantités échangées un nombre de fois fixe par jour. Par conséquent, les quantités
échangées ont un impact direct sur le prix de marché dans cet algorithme.

Le LOB quant à lui, exécute une transaction à l’instant ou un ordre est compatible
avec un ordre existant. Le prix qui a permis cette transaction est immédiatement rendu
public et devient le prix de marché jusqu’à la prochaine transaction. Il est important de
souligner que la fréquence d’évolution du prix de marché est donc a priori inconnu si le
LOB opère sur un marché.

Nous nous concentrons maintenant sur la régulation des marchés financiers, établie
par les autorités nationales et supranationales.2 Ces institutions visent à promouvoir la
transparence de l’information et “le bon fonctionnement des marchés financiers” et de
rendre plus profonds les marchés financiers afin de garantir un haut niveau de liquidité
(voir définition 6). La liquidité revêt donc deux dimensions: la capacité à échanger im-
médiatement, qui augmente avec la fréquence des transactions, mais aussi la capacité à
échanger la quantité souhaitée sans subir de variation de prix, qui augmente avec la pro-
fondeur de marché. Plus un marché est profond, plus il sera a priori capable d’absorber
des ordres de grosses quantités sans subir de variation de prix.

L’un des plus grands consensus en économie financière repose sur les caractéristiques
d’un marché efficient (voir Fama [15], Fama et al. [16]). Un marché est dit efficient si la
dynamique de son prix intègre instantanément toute l’information disponible. La valeur
fondamentale d’un actif à un moment donné est égale au meilleur et immédiat traitement
de toutes les informations disponibles à ce même moment (voir définition 7). C’est cette
définition de la valeur fondamentale qui nous permet de poser la définition suivante: sur
une période donnée, un marché est dit efficient si le prix d’un actif est au plus près de sa
valeur fondamentale (voir définition 8). Cette définition nous fait prendre conscience que
ces travaux ne peuvent être déconnectés de l’étude de l’information économique (struc-
ture, quantité, fréquence, etc.) et de son évolution. Dans son travail, Fama introduit trois
niveaux d’efficience de marché différents:

• La forme d’efficience faible qui rend toute variation de prix de marché impossible à
prévoir grâce aux prix passés;

• La forme d’efficience semi-forte qui implique que le prix de marché contient l’ensemble
de l’information publique (incluant l’information passée);

• La forme d’efficience forte qui implique que le prix de marché contient l’ensemble
de l’information publique et privée.

marché. [Les marchés américains pourraient être améliorés] en éliminant le mécanisme de
transaction en continu et en le remplaçant partout par un unique et quotidien prix de marché
pour chaque actif dans chaque marché." – M. Allais (1989)

2Dans l’Union européenne, l’ European Securities and Markets Authority (ESMA) est en charge du con-
trôle du respect de ce règlement. Dans le cadre donné par l’ESMA, l’Autorité des Marchés Financiers (AMF)
“assure la protection de l’épargne, l’information des investisseurs et le bon fonctionnement des marchés”
en France.
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La structure des marchés financiers est le résultat de deux composantes hiérarchiques.
Premièrement, les institutions définissent un cadre général (voir infra pour la description
des institutions au niveau de l’Union européenne). Deuxièmement, la décision des en-
treprises de marché sur l’organisation des marchés, ainsi que pour les marchés gérés par
un Authorized Investment Services Provider (AISP).

L’objectif des entreprises de marché est de générer un profit maximum, tout en re-
spectant la réglementation; Ce profit est essentiellement proportionnel au nombre de
transactions (n.o.t) effectuées puisqu’elles facturent une commission par transaction ou
une commission pour accéder au marché. Par conséquent, elles ont aussi un intérêt
à ce que les marchés financiers soient liquides. Dans un marché efficient, le prix de
marché doit changer à chaque nouvelle information. La capacité d’échanger immédi-
atement l’actif doit être absolue si l’on ne connaît pas a priori la fréquence d’arrivée de
l’information. Une forte liquidité permet à l’acheteur ou au vendeur qui intègre les nou-
velles informations dans le prix de son ordre, de trouver une contrepartie sans délai. Cela
équivaut à considérer qu’au moins un acheteur et un vendeur doivent réagir simultané-
ment aux nouvelles informations et sans délai en passant des ordres compatibles. Á ce
titre, le LOB est donc l’algorithme de détermination du prix de marché qui maximise la
liquidité et est privilégié par les entreprises qui organisent les marchés financiers.

La multiplicité des marchés pour un même actif conjugués à des algorithmes de déter-
mination de prix parfois différents sont une des sources d’apparition des stratégies de
fragmentation des ordres. Cette dernière se définie par un découpage d’un ordre dit par-
ent en plusieurs sous-ordres dits enfants (voir définition 9).

La fragmentation des ordres (ou fragmentation lorsqu’il n’y a pas d’ambiguïté) peut
être effectuée sur un même marché dans le temps, et en même temps sur différents marchés
ou simultanément dans le temps sur différents marchés. Elle peut être volontaire ou con-
trainte. La réduction des coûts de transactions grâce aux avancées technologiques par
exemple, permet aux agents économiques de - volontairement - fragmenter leurs ordres.
Cependant, sur un marché opérant avec un LOB où la profondeur du marché est rela-
tivement insuffisante (c’est-à-dire si la taille des ordres limites n’est pas suffisante), si un
agent économique propose d’acheter ou vendre une grande quantité de l’actif, le prix
évoluera. On dit alors que l’ordre a un impact sur le prix. Cet impact diminue lorsque
la profondeur de marché augmente. La fragmentation des ordres apparaît comme une
contrainte pour les agents économiques qui souhaiteraient échanger des relativement
grandes quantités de l’actif. En d’autres termes, moins le marché est profond, plus un
agent économique voulant vendre ou acheter à un prix proche du prix de marché actuel
doit fragmenter son ordre. Les conséquences d’une telle pratique sont une diminution
des quantités échangées par transaction et une augmentation du nombre de transactions
(on utilisera l’abréviation Number of transactions (n.o.t) dans la suite de ce travail).

Sur les marchés financiers modernes cependant, l’information disponible est en par-
tie contenue dans le carnet d’ordres, continuellement mis à jour (voir Cont and Larrard
[8]). En plus de l’information passée et présente l’information disponibles aux opérateurs
sur les marchés financiers, le carnet d’ordres est une indication sur le souhait d’achat et
de vente des opérateurs;

Cette vision du carnet d’ordres comme vecteur d’information s’inscrit également dans
le cadre du travail de Stiglitz qui déclare que “ (...) les actions ou choix [des acteurs]
véhiculent de l’information. Les acteurs du marché le savent et agissent en conséquence.”
- Stiglitz [28], p.468. Certaines formes de marchés hybrides, que nous n’aborderons pas
dans cette thèse ont vu le jour pour permettre aux agents économiques de camoufler cer-
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taines informations aux autres acteurs du marché, tout en passant des ordres.
La régulation sur les marchés financiers doit donc avoir plusieurs sous-objectifs per-

mettant d’atteindre l’efficience:

• La transparence de l’information pertinente pour la détermination du prix de marché.
Sans cela, il est impossible pour les agents économiques de l’incorporer au prix de
marché à travers leurs ordres;

• La liquidité quant à elle, doit être suffisamment élevée pour permettre à toute nou-
velle information d’être incorporée immédiatement au prix de marché à travers une
transaction sur un marché fonctionnant en LOB. La séquence chronologique des
changements de prix doit idéalement être superposée sur la séquence chronologique
d’arrivée d’information nouvelle.

Dans ce travail, nous accordons une attention particulière aux commodités agricoles
qui sont le sous-jacent de contrats standardisés (nous utiliserons l’anglicisme commod-
ité agricole pour désigner une matière premières standardisée qui est sous-jacent d’au
moins un contrat standardisé). Historiquement, se sont leur capacité à être stockées et la
saisonnalité de leurs récoltes qui ont permis le développement d’actifs financier autour
de certaines d’entre-elles (voir définition 10).

Les marchés de dérivés de matières premières agricoles sont intrinsèquement dif-
férents des autres marchés dérivés. Le sous-jacent étant un actif tangible, cela implique
des coûts de transactions différents par rapport aux devises notamment, qui sont des
sous-jacents intangibles. Dans le cas d’un actif tangible, les coûts de transactions représen-
tent le coût à trouver un courtier et le payer pour s’assurer que la transaction ait lieu.
Dans le cas d’un actif intangible, les coûts de transactions représentent les coûts d’accès
au marché et de placement de l’ordre. Sur ce que nous définissons comme les marchés
de commodités agricoles (cf. définition 11), quatre principaux types de contrats sont
échangés:

• Le contrat forward qui est un contrat ou l’on s’engage à acheter ou vendre la com-
modité à une date future. Les caractéristiques de ce contrat (date, transport, qualité,
quantité) sont établies par les deux contractants. Cet actif financier est négocié sur
les marchés de gré à gré et leur négociation est souvent effectuée par le biais d’un
courtier;

• Le contrat futures qui est un contrat ou l’on s’engage à acheter ou vendre la com-
modité à une date future. Les caractéristiques de ce contrat (date, transport, qual-
ité, quantité) sont standardisées. Chaque position ouverte sur ce type de contrat
doit être suivie d’un dépôt de la part de l’agent économique, auprès de la cham-
bre de compensation. Chaque jour, le rendement du contrat à terme est payé par
l’opérateur perdant à la chambre de compensation et reçu par l’agent perdant auprès
de la chambre de compensation. Ce mécanisme se nomme l’appel de marge. À
une même date, plusieurs contrats à termes sont simultanément disponibles, pour
plusieurs maturités. Bien entendu, les prix de ces contrats sont liés par la structure
par terme;

• Le contrat swap qui est un contrat ou les deux contractants s’entendent pour échanger
le flux d’argent différentiel sur deux instruments financiers portant sur une com-
modité agricole ou plusieurs;
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• L’option qui est un contrat donnant à l’acheteur un droit spécifique. Les options les
plus connues sont l’option put et l’option call. Le put donne le droit de vendre à un
certain prix tandis que le call donne le droit d’acheter à un certain prix.

Alors que les contrats forward se terminent souvent par une livraison physique de la
commodité concernée, les contrats futures, eux, se terminent très majoritairement par
le versement du flux financier de l’agent économique perdant à la chambre de compen-
sation, et de la chambre de compensation vers l’agent économique gagnant (le contrat
futures étant un contrat dont les flux financiers sont à somme nulle). En effet, Working
[30] indiquait déjà en 1953 que “l’échange de contrats à termes peut se définir comme
des échanges effectués sous certaines régulations et conventions, plus restrictives que
celles appliquées à n’importe qu’elle autre classe de transactions sur les commodités, qui
servent en premier lieu à faciliter la couverture du risque et la spéculation d’une facil-
ité remarquable (...)” (p.315). Le bénéfice d’un contrat standardisé tel que le futures est
donc sa liquidité, ou tout du moins, la fréquence à laquelle on peut l’échanger. Il est donc
plus facile pour n’importe quel acteurs subissant le risque de prix sur une commodité de
céder ce risque de prix. C’est l’essence même de la création des premiers contrats futures
créés à Chicago. La fréquence dans les changements de prix du contrat futures est la rai-
son pour laquelle le prix à terme est souvent considéré comme le prix de référence (on
entend par la, le prix que les agents considère comme contenant le plus d’information).

Sur les marchés de commodités, la fragmentation des ordres peut également inter-
venir (autant sur les marchés physiques que les marchés dérivés). On peut également
concevoir que si les coûts de transactions diminuent, certains opérateurs fragmenteront
davantage leurs ordres. Néanmoins, la dimension intrinsèquement différente du marché
physique et du marché futures impliquera certainement une fragmentation différente et
donc une modification de la série de prix sur ces marchés, malgré une relation fonda-
mentalement étroite entre ces deux prix. Ce raisonnement conduit donc à supposer une
évolution de la dynamique de la base sur de tels marchés, qui représente pour une matu-
rité donnée, l’écart entre le prix futures à cette même maturité et le prix spot (voir défini-
tion 12). La probabilité pour que la fragmentation conduise à une évolution proportion-
nelle des fréquences de transaction sur ces deux marchés étant assez faible, on peut imag-
iner qu’un changement de stratégie de trading provoquera une évolution de la fréquence
d’échange relative (appelée Relative Trades Frequency (RTF) dans ce manuscrit) ainsi que
des quantités échangées à chaque transactions sur ces marchés. Un des objectifs centraux
de ce travail est d’étudier l’impact de tels changements.

Les marchés de commodités sont l’objet d’institutions spécifiques comme par exem-
ple le Système d’Information sur les marchés agricoles (Agricultural Markets Information
System (AMIS)) qui sont une réponse institutionnelle à la forte hausse des prix des com-
modités de 2007/2008. L’Union Européenne a également composé un Groupe d’Expert
sur les Dérivés et Marchés Spot de Commodités Agricoles (Expert Group on Agricultural
Commodity Derivatives and Spot Markets (EGDSM)). Leurs objectifs sont de permettre
l’efficience des marchés et de mettre à disposition des informations permettant de ré-
duire la volatilité des prix, mais aussi celle de la base, un déterminant fondamental des
décisions de productions des agriculteurs (cf. Moschini and Hennessy [24], Bégué Turon
et al. [5]).

Une des principales particularités des marchés agricoles est que le prix de marché
du sous-jacent des contrats futures n’est pas déterminé de la même façon que le prix de
marché du contrat futures. Ce dernier est déterminé à l’aide d’un LOB, en continu, ce
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qui n’est bien sûr pas le cas de la commodité sur le marché spot. On comprend immé-
diatement que cela provoque une dynamique de la base, l’écart entre ces deux prix, par-
ticulière sur ce point. L’information pertinente sur les marchés de commodités agricole
concerne les prévisions faites par les institutions sur les futures récoltes mais aussi les
prévisions météorologiques. Non seulement la fréquence d’arrivée de ces informations
est fixe, mais aussi connue à l’avance. Les caractéristiques de l’information pertinente
sur les marchés de commodités peut donc amener à modifier la perception de l’efficience
du marché sur ces marchés. Pour finir, le niveau des stocks joue également un rôle impor-
tant sur la dynamique de la base. Ce dernier étant directement impacté par la fréquence
des transactions sur le marché physique, une évolution de la fréquence des transactions
sur le marché physique influe au moins par deux canaux la dynamique de la base. Se sont
ces différences de fréquences de transaction, ainsi que leurs rétro-actions sur le marché
de la commodité auxquelles nous nous intéressons principalement dans ce travail.

Dans la plupart des travaux économiques contemporains, le cadre théorique du prix
d’équilibre est utilisé pour modéliser la formation du prix. Au sein de ce cadre théorique,
le prix d’équilibre se détermine en égalisant l’offre et la demande agrégés (définition 13).
Cette détermination du prix, unique dans le cadre originel Walrasien, donne lieu à des
transactions simultanées lorsque le prix est déterminé. Ce cadre originel efface donc to-
talement la notion de dynamique. L’information passée, présente et future est connue
par l’ensemble des agents et est parfaitement traitée avant que les échanges aient lieu.
De nombreux autres cadres théoriques ont été développés mais ont conservé l’idée que
le prix se détermine avant que les transactions n’aient lieu, ces derniers reposant toujours
sur le concept de l’équilibre. Certaines études ont également porté sur la convergence du
prix vers le prix d’équilibre un des aspects de la dynamique des prix (cf. Ezekiel [14], Gues-
nerie [17]). Ces travaux conservent néanmoins l’idée d’une fréquence des transactions
fixe.

Les travaux de Fama et al. [16] et Fama [15], peuvent ainsi être perçus comme l’extension
de ce raisonnement aux marchés financiers. La définition d’un marché efficient peut être
interprétée comme le passage à la limite d’un tel raisonnement. Si une période corre-
spond à la plus petite unité de temps possible, le prix doit refléter à chaque unité de
temps, l’ensemble de l’information disponible affectant l’offre et la demande agrégés.
Dans ce raisonnement, Fama relâche l’hypothèse de fréquence des transactions fixes puisque
la dynamique du prix doit être déterminée de façon endogène par la fréquence d’arrivée
de l’information nouvelle. Dans le même temps, aucune spécification n’est apporté sur
les moyens de déterminer le prix de marché. L’efficience d’un marché est donc appréhendée
par la qualité de sa production: le prix de marché.

Hayek [18] quant à lui, porte une attention toute particulière au procédé de formation
du prix de marché. En effet, ce sont les agents économiques, par leurs interactions, qui
permettent au prix de marché de véhiculer de la meilleure façon possible, l’information
disponible affectant la demande agrégée et/ou l’offre agrégée, présente et future. Nous
pouvons extraire de ce raisonnement que plus il est facile d’exprimer un vœu marchant
et de connaître le vœu des autres agents économiques, plus le prix de marché sera effi-
cace dans la découverte du prix. Cette idée est précisément celle que nous appelons dans
ce travail la force computationnelle. L’organisation de la société avec l’aide des marchés
permet l’interaction marchande entre les agents à travers leurs souhaits d’acheter ou de
vendre. Un prix de marché émergera tel qu’il véhiculera mieux l’information en moyenne
sur une durée spécifiée que n’importe lequel des agents prix séparément. Toutefois, dans
son travail, Hayek ne spécifie pas la séquence finie des opérations menant à la détermi-
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nation. Finalement, aucun algorithme de détermination du prix n’est ici donné.
Plus récemment, le champs de recherche de la microstructure des marchés dont Mad-

havan [23] a rétrospectivement daté le commencement au début des années 1980, a pro-
duit des résultats très intéressants quant à la formation des prix et le rôle de l’information.
Parmi ces champs de recherche, la compréhension de la formation du prix a mené les
économistes à de nombreuses études sur l’écart achat vente (c’est-à-dire le prix d’achat
proposé le plus élevé et le prix de vente le plus bas), mais aussi l’impact des Market Maker
(MM). La plupart de ces études considèrent néanmoins le prix de marché comme étant
un prix d’équilibre (voir Biais et al. [2]).

La comparaison de la théorie avec la formation des prix de

marché sur les marchés financiers

La vision théorique consensuelle de la dynamique des prix peut apparaître comme souf-
frant de contradictions avec la réalité sur deux principaux aspects. La première concerne
l’égalisation entre l’offre agrégée et la demande agrégée, qui ne peut être vérifiée par déf-
inition si l’algorithme du LOB est utilisé. La détermination du prix par fixing en revanche,
repose sur un algorithme de maximisation des quantités échangées sur l’ensemble des or-
dres compatibles. Ce dernier constitue donc la méthode de détermination du prix la plus
proche de la perception théorique de la détermination du prix de marché.3 La détermina-
tion du prix par le LOB étant majoritaire sur l’ensemble des marchés financiers, ce dernier
est davantage compatible avec les caractéristiques d’un marché efficient, la fréquence
d’évolution du prix n’étant pas fixée. Le second aspect repose sur le concept même de
dynamique. La théorie de l’équilibre général considère un prix de marché unique, ou une
dynamique dont la fréquence est fixée. La théorie des marchés financiers appréhende
une dynamique des prix contingente à l’arrivée d’information. Au contraire, la dynamique
d’un marché dont le prix de marché est déterminé selon le LOB est conditionné à la dy-
namique des transactions.

D’un autre côté, le carnet d’ordre est un moyen de faciliter les interactions marchan-
des, qui plus est parce qu’il est accompagné d’une assurance d’exécution à la meilleure
offre. Le raisonnement d’Hayek ne spécifiant pas l’égalisation de l’offre et de la demande
agrégée unique ou périodique, et ne présumant pas de fréquence fixe de transaction dans
son raisonnement, il semblerait que sa vision soit en adéquation avec les caractéristiques
actuelles des marchés financiers, peu importe l’algorithme de détermination de prix util-
isé. La dynamique d’un marché financier est donc par conséquent identifiée par la série
de prix de marché qu’il propose. Cette série de prix peut donc être considérée comme la
production, la résultante d’un marché financier organisé par un teneur de marché, con-
sidéré comme le producteur de l’algorithme de prix utilisé, et de l’organisation du marché
ou s’expriment les souhaits marchands. Ce raisonnement a pour conséquence d’inverser
la causalité de la dynamique du prix de marché. Alors que la théorie économique ap-
préhende un processus permettant l’émergence d’un prix d’équilibre en tant que prix de
marché qui permettra à toutes les transactions d’avoir lieu à ce prix donné, nous nous
retrouvons dans ce travail, sur une causalité inverse. Les transactions ont lieu et génèrent
une variation de prix de marché. En fait, les agents économiques qui passent des trans-
actions ne peuvent finalement pas être considérées comme purement “preneurs de prix”,
puisqu’ils influencent voire déterminent complètement le prix de marché en procédant à

3En fait, c’est la détermination du prix de marché par fixing qui inspira Walras dans sa représentation du
prix d’équilibre (cf. Dupuy [11]).
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l’expression de leurs vœux marchands. Chaque opérateur a par conséquent une probabil-
ité non-nulle de devenir “faiseur de prix”, lorsque le nombre d’opérateur sur un marché
est fini.

Le rôle clé de l’information sur les marchés financiers

En économie financière, la littérature est principalement divisée autour de deux courants:
La finance classique et la finance comportementale. Le premier, repose sur l’hypothèse
des marchés efficient. Sur de tels marchés, il n’y a pas d’arbitrage possible. Si les agents
sont parfaitement capable d’identifier toute opération d’arbitrage, et que les coûts de
transactions sont nuls, toute nouvelle information sera suivie d’une transaction. Le prix
de marché reflétera alors parfaitement et instantanément l’information disponible. Le
second courant a pour principale question de décrire les biais psychologiques dont peu-
vent faire preuve les agents économiques et d’exprimer la conséquence que cela peut
avoir sur les marchés financiers. Mais finalement, ces deux courants ont tous deux le
même point commun qui est que chaque actif a une valeur fondamentale (définition 7).
Cette dernière est empiriquement et conventionnellement considérée comme étant égale
au flux de trésorerie dégagés par l’actif actualisé à l’instant t . Alors que ces deux courants
sont souvent présentés comme étant incompatibles, le second chapitre de cette thèse
est construit sur l’idée qu’un cadre plus général peut être construit en partant non pas
du comportement des agents mais bien la nature et la structure même de l’information
qu’ils utilisent. Des recherches avaient déjà été menées en ce sens par Lo [22]. Dans son
cadre théorique nommé l’hypothèse des marchés adaptatifs, les agents évoluent et sont
capables de constater leurs erreurs a posteriori. Ils corrigent ainsi leurs comportements
en espérant atteindre l’efficience. L’idée clé dans ce travail est que les agents ont un com-
portement évolutif et qu’ils sont poussés à s’adapter pour “survivre” sur le marché. Ce
travail intègre un tel processus évolutif en considérant la survie comme étant la capacité
à exécuter un ordre, à travers les outils offerts par les sciences informatiques. La parti-
tion de l’information utilisée dans ce travail repose sur sa capacité à être traitée par le
biais d’un algorithme (information dite effective) ou non (information dite non effective).
Cette partition donne lieu à la définition 15. La finance classique considère que les agents
sont parfaitement rationnel et de façon latente, que l’information est parfaitement ef-
fective. Au contraire, la finance comportementale considère que toute l’information est
traitée par les agents eux-mêmes, et donc qu’elle est totalement non effective.

Les sources d’information se sont ces dernières années multipliées, posant le prob-
lème de la caractérisation des marchés financiers. Actuellement, la littérature économique
distingue les marchés financiers efficient de ceux qui ne le sont pas. Toutefois, un marché
non efficient est-il nécessairement un “mauvais” convoyeur d’information par rapport
aux agents pris séparément ? Cette simple question demande toutefois de définir ce que
l’on entend par “mieux” convoyer l’information que chaque agent séparément. Dans le
sillage des travaux d’Hayek, nous définissons cela sous le terme de force computation-
nelle du marché (définition 14, puis 22). Un marché dans une telle configuration im-
pliquerait qu’un marché non efficient ne serait pas détecté par les agents ou alors qu’ils
ne parviennent pas à l’exploiter. Dans le cas contraire, cela signifierait que l’on pourrait
laisser le/les agents qui véhiculent davantage d’information définir le prix de marché. Le
modèle développé dans le chapitre 2 démontre l’importance du souhait d’échanger des
agents économiques (i.e. leurs ordres) sur la détermination de la valeur d’un actif (voir
Schaden [26]). Ce modèle permet de prendre en compte les agents comme “preneur de
prix” mais aussi comme “faiseur de prix” avec une certaine probabilité (voir Choustova
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[6]). Alors que la littérature des modèles basés sur les agents constitue aujourd’hui, la
référence pour prendre en compte les interactions entre agents, le modèle construit ici
permet de considérer une interaction particulière. Non seulement chaque état du marché
est déterminé par l’ensemble des agents mais les anticipations des agents seront en re-
tour, impactées par l’état du marché, dans un cycle sans fin. En revanche, considérer que
l’information arrive continuellement est une hypothèse restrictive au regard de la réalité
sur certains marchés. Sur les marchés de commodités par exemple, une grande partie
de l’information peut être considérée comme exogène d’une part mais aussi relativement
peu fréquente par rapport à celle des marchés classiques les plus liquides. Ainsi, la double
typologie de l’information utilisée dans ce travail est donné dans le tableau suivant:

Exogène Endogène
Effective

Non effective

Les faits stylisés influençant l’information sur les marchés

financiers

Un ensemble de faits ou pratiques influence l’arrivée de l’information (rythme, fréquence,
nombre de sources...). À ce titre, la fragmentation des ordres est un challenge théorique
puisque le seul fait d’en considérer tous ses aspects empêche tout raisonnement basé
sur un prix d’équilibre. Une étude d’un tel phénomène peut être généralisée à l’étude
d’une variation dans les fréquences de transactions, une des dimensions de la liquid-
ité. Une telle question est encore plus intéressante lorsque l’on sait que la réponse des
prix à une variation des quantités n’est pas linéaire comme l’on montré Kempf and Korn
[20] puis Tóth et al. [29]. Puisque envoyer un ordre dans un carnet d’ordre véhicule de
l’information,les prix réagissent également aux quantités échangées. La fragmentation
des ordres est contingente à certaines caractéristiques de marché. Le travail empirique
de Ranaldo [25] sur les marchés Suisses souligne notamment que plus le côté opposé
du carnet d’ordre par rapport à la position de l’agent est étroit, plus les agents agres-
sifs vont placer des ordres de grande taille. Il montre également que l’agressivité des
agents économiques augmente lorsque la période est particulièrement volatile mais aussi
lorsque l’écart entre la meilleure offre et la meilleure demande est élevé. L’étude em-
pirique de Comerton-Forde and Tang [7] sur les marchés financiers Australien souligne
également que l’agressivité des ordres a diminué avec l’anonymisation des ordres passés,
en même temps que la profondeur des marchés s’est améliorée. Pourtant la taille moyenne
des ordres a elle augmenté. Cela peut s’expliquer par le fait que les agents sont plus enclin
a dévoiler leurs vraies préférences puisqu’elles sont rendues transparentes mais de façon
anonyme. Il est donc complexe d’identifier qui passe une même série d’ordre.

Ainsi, l’impact de la taille des ordres a également été étudié. Le travail empirique ma-
jeur de Easley and O’hara [12] montre que la taille des ordres peut être expliquée par une
sélection adverse. Les agents les mieux informés consentent plus facilement à passer des
ordres de grande taille à un prix donné lorsqu’ils jugent que cela est pertinent (c’est-à-
dire lorsque leurs informations induit une variation de prix de marché significative). Ce
résultat est cohérent avec le travail de Biais et al. [1] qui montre que des changements de
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la meilleure offre et de la meilleure demande ont lieu suite à des transactions de grande
taille. Ainsi, les agents ont intégré le fait que les transactions de grande taille véhiculent
beaucoup d’information et ils ajustent leurs positions en fonction de ces transactions.
Une extension de cela réside dans le fait que la fréquence des transactions véhicule égale-
ment de l’information (dans une organisation de marché ou les fréquences de transac-
tions sont libres). Une étude empirique de Easley et al. [13] montre notamment que les
agents extraient de l’information des intervalles à fréquence de transactions élevées mais
aussi des intervalles de temps ou les transactions sont absentes. Ces deux dimensions
font partie de la relation volatilité-volume définie comme la relation croissante entre la
volatilité des prix et les volumes échangés. Finalement, l’étude de l’impact de la fragmen-
tation des ordres fait émerger la question de l’existence d’une fréquence optimale des
transactions. Jusqu’ici, cette question a été posée par Du and Zhu [10]. Néanmoins, ce tra-
vail théorique est microfondé par un cadre d’enchère double, qui suppose que l’ensemble
des souhaits des agents sont centralisés par un commissaire priseur qui détermine en-
suite un prix d’équilibre qui égalise l’offre et la demande. Toutefois, ce cadre théorique se
réfère davantage à un fixing comme nous l’avons déjà expliqué, et l’information concer-
nant la valeur de l’actif est exogène au marché. Les travaux développé ici ont pour but de
comprendre l’impact des fréquences de transaction lorsque celles-ci évoluent en consid-
érant en particulier, que la fréquence des transactions et la taille des ordres sont source
d’information. Le même raisonnement s’applique au marchés de matières de commod-
ités et jusqu’ici, les spécificités des marchés agricoles n’ont pas été prises en compte dans
l’étude de cette question.

L’atomicité des agents est une des conditions de la compétition pure et parfaite. Si le
marché est bien atomistique, les agents n’ont aucun pouvoir de marché et par définition,
aucun impact individuellement sur le prix. Ils sont alors dit “preneur de prix”. Toutefois,
l’atomicité peut être interprétée différemment lorsque l’on considère que les actions des
agents véhiculent de l’information. Si un nombre fini d’agents est présent sur un marché
financier, tel qu’il n’y a pas atomicité, on peut de façon équivalente considérer que chacun
des agents pris séparément véhicule une information non redondante comparée à celle
fournie par les autres agents. En revanche, une infinité d’agents sur un marché financier
ou l’atomicité serait vérifiée impliquerait réciproquement que chaque agent véhicule une
information redondante comparée à l’information véhiculée par les autres agents. En
d’autres termes, la considération de l’absence d’atomicité sur les marchés financiers est
également en relation avec l’étude de l’information véhiculée par les agents selon les deux
dimensions que nous avons introduites. Le nombre d’agents impactera l’information ef-
fective et non effective qui sera véhiculée de façon endogène par rapport aux fréquences
de transactions qui évolueront également.

Ainsi, la crise financière de 2008 a été suivie par un pic des prix des commodités en
particulier énergétique et des principales commodités agricoles. L’hypothèse de Mas-
ters est que l’entrée massive des investisseurs institutionnels et par extension l’affluence
d’une soudaine liquidité considérable ont fait monter le prix de ces commodités de façon
artificielle. Un autre moyen de comprendre ce problème est qu’un choc soudain dans
le nombre d’agents économiques a pu altérer l’efficience des marchés selon leur impact
sur la fréquence et la taille des transactions effectuées. Si l’on se réfère une fois de plus
aux résultats de Du and Zhu [10], plus les agents sont nombreux sur le marché, plus
la fréquence de transaction optimale sur le marché est élevé. Néanmoins, la fréquence
de l’information est également impactée par une évolution de la structure du marché fi-
nancier sous le paramètre du nombre d’agents. La fréquence d’arrivée de l’information
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peut donc être considérée comme endogène sur les marchés ou l’arrivée d’information
ne peut être jugée comme continue. Ainsi, les chapitres de cette thèse s’articulent autour
de la problématique suivante:

Comment la nature et la structure de l’information affectent-elles l’algorithme

de détermination du prix de marché optimal garantissant l’efficience des

marchés et une volatilité fondamentale minimale ?

Chapitre 2: La nature et la structure de l’information évolue:

Les marchés financiers sont-ils toujours efficients ?

Le chapitre 2 de cette thèse présente une extension du modèle de Bretto et Priolon qui
vise à étudier l’impact d’une information arrivant continuellement et de façon exogène,
qui peut être effective ou non, sur un marché financier opérant grâce à un LOB. Cette
approche bénéficie de certaines propriétés du formalisme de la physique quantique et
surtout concernant les outils statistiques utilisés. Nous modélisons des agents indépen-
dants qui influencent par les ordres qu’ils passent dans le carnet d’ordre, le prix de marché
(au minima la distribution du prochain prix de marché) et chaque prix de marché en re-
tour, influence les agents uns à uns dans un processus sans fin. Dans ce travail, les typolo-
gies de l’information utilisées sont données dans le tableau suivant:

Exogène Endogène
Effective X

Non effective X

Ce travail est compatible avec le cadre de pensée développé par Lo [22], dont l’idée
est que les agents ont un comportement évolutif car ces derniers recherchent à attein-
dre l’efficience. Le premier résultat de ce modèle basé sur l’information est qu’il per-
met d’unifier le courant de la finance classique et celui de la finance comportementale
selon la quantité d’information effective et non effective. Ainsi, si la part de l’information
effective augmente parmi l’information totale, le marché financier verra sa force com-
putationnelle augmenter statistiquement (et tendra vers un marché efficient). Cela ne
veut pas dire que les agents ont des anticipations identiques du prochain prix de marché
mais le produit de leurs transactions (le prix de marché) sera aussi proche que possi-
ble de la valeur fondamentale de l’actif. Sous nos hypothèses, nous démontrons ainsi
que si l’information non effective est négligeable devant l’information effective, ou que
l’information est totalement effective, une fréquence des transactions très élevée per-
met au marché d’être semi-efficient (puisque nous considérons que l’information est
parfaite entre les agents). Nous démontrons finalement qu’un marché semi-efficient re-
pose sur des propriétés spécifiques de l’information lorsque la fréquence des transactions
est élevée. Nous étendons les résultats originels du modèle en montrant que sous une
croissance modérée de l’information non effective en comparaison de l’information ef-
fective, une bulle apparaît, et se termine par une crise (voir le chapitre pour les définitions
rigoureuses de bulle et crise). Nous introduisons également le concept de force computa-
tionnelle dont la formulation la plus proche réside sans doute dans les travaux de Hayek
[19]. Celui-ci nous permet de distinguer un marché sur lequel, la série de prix de marché
issue de l’algorithme de détermination du prix mis en place, véhicule une information
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plus complète que n’importe quel agent économique pris séparément. En d’autres ter-
mes, il nous permet de savoir si oui ou non, le marché rempli son rôle informationnel ou
non. Cette force computationnelle est calculée en utilisant une fonction zeta spectrale.
La figure suivante résume ce que change l’introduction du concept de force computa-
tionnelle quant à la caractérisation d’un marché financier:

Chapitre 2

Efficient

Non efficient

Force
computationnelle

Absence de force
computationnelle

Littérature
actuelle

Efficient

Non efficient

À la lumière de ce concept et de ces conséquences théoriques, nous proposons égale-
ment des indicateurs de la force computationnelle qui pourraient être implémentés par
le régulateur sur plusieurs durées différentes à rebours (puisque la force computation-
nelle est calculée sur un intervalle de temps). La principale contribution de ce travail est
de donner un argument supplémentaire à l’implémentation d’un algorithme de LOB sur
les marchés ou l’information arrive continuellement. Toutefois, le régulateur financier
se doit de limiter les sources d’information non effective afin d’éviter l’émergence d’une
bulle et sa transformation en crise.

Nous développons également les implications du concept de système de marché in-
troduit initialement par Bretto and Priolon [4]. Nous définissons le système de marché
adéquat à une situation de concurrence parfaite (avec un nombre d’agent fini ou infini).
Nous menons ensuite des simulations afin de montrer que l’estimation d’un processus
statistiques VARMA à partir des carnet d’ordres peut être utilisé pour anticiper le pouvoir
de marché des agents économiques. Nos résultats montrent que le régulateur pourrait
potentiellement anticiper le pouvoir de marché des opérateurs. Il faudrait alors distinguer
si les opérateurs avec le pouvoir de marché le plus fort ont des caractéristiques en com-
mun telles qu’être des traders à haute fréquence, échanger des volumes considérable,...

Les pistes de recherche possibles sont multiples. Des études empiriques pourraient
être menée en utilisant le formalisme de ce modèle. On pourrait calculer la force compu-
tationnelle du marché de certains marchés financiers a priori et estimer la quantité rela-
tive d’information effective ou non traitée sur ladite période. On peut également utiliser
des données de marché pour estimer le rythme de croissance d’une bulle dans le temps.
Sur le champ théorique, la principale extension du modèle serait de formaliser l’asymétrie
d’information.

Les deux chapitres qui suivent se concentrent sur les marchés de commodités. Nous
considérons alors que le marché financier de commodité est composé avec des contrats
à terme, c’est-à-dire les produits dérivés les plus liquides liés aux commodités, et côté en
utilisant l’algorithme du LOB. Nous écarterons donc les swaps de commodités ou encore
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les options sur commodités dans un souci de simplicité.

Chapitre 3: Volatilité de la base et efficience des marchés de

commodités: l’impact d’une différence des fréquences de trans-

actions sur les marchés spot et à termes

Le chapitre 3 présente un modèle permettant l’étude de l’impact des fréquence de trans-
action sur les marchés de commodités. En effet, ces marchés ont des structures partic-
ulières quant à l’information arrivante. En effet, la fréquence d’arrivée de l’information
sur ces marchés est particulièrement lente et fixe. La production de la commodité est
incertaine mais pas sa fréquence. Cette structure particulière de l’information est néan-
moins couplée à des contrats à termes dont l’algorithme de détermination du prix est
un LOB. Ainsi, la fréquence relativement lente d’arrivée de l’information réduit le coût
d’une perte de liquidité comme Du and Zhu [10] l’ont souligné. Nous introduisons égale-
ment dans notre modèle que les transactions vont générer à leur tour de l’information
(très exactement, dans notre modèle, les transactions vont influencer la loi de probabilité
d’arrivée de l’information). L’information est donc influencée par le degré de liquidité sur
les deux marchés considérés: le marché physique spot et le marché financier sur lequel
sont échangés les contrats à termes. La typologie de l’information utilisée dans ce travail
est donnée dans le tableau suivant:

Exogène Endogène
Effective X

Non effective

Les coûts de transactions du sous-jacent d’un contrat à termes sur les commodités
sont bien plus élevés que les coûts de transactions sur le contrat à termes en question.
C’est une des raisons pour laquelle la fréquence des transactions sur le marché physique
est significativement moins élevée que sur le marché à terme. Il est néanmoins légitime
et naturel de penser que leurs valeurs fondamentales évoluent conjointement. Il est donc
évident qu’une étude doit être menée sur la dissociation de l’évolution conjointe des
valeurs fondamentales, qui se distingue de l’évolution à deux rythmes différents des séries
de prix observées. Les schémas suivants illustrent ces deux dynamiques différentes.
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(b) Dynamique des prix de marchés réels futures ( ft ) et
spot (st )

Une des origines de cette différence de dynamique des prix réside dans la différence
des algorithmes de détermination du prix de marché utilisés. Sur les marchés spot le prix
de marché est en pratique déterminé sur plusieurs prix de transactions transmis par les
courtiers (mais pas tous). Dans ce travail, à des fins de simplification, nous supposons
que l’information sur le marché spot peut être centralisée par les agents et que le prix
de chaque transaction influence le prix de marché. Malgré le fait que la modification du
prix de marché sur chaque transaction sur le marché spot est une hypothèse relativement
forte, supposer que les agents sont capables de centraliser l’information du marché spot
ne semble pas l’être (cf. Simon [27]).

La base quant à elle, varie selon que le prix spot ou le prix à terme varient. Dans ce tra-
vail, nous étudions par extension l’impact d’une différence des fréquence de transactions
sur la base. Nous nous intéressons particulièrement à l’augmentation de la fréquence
des transactions, une dimension de la liquidité, résultant d’une fragmentation des ordres
croissante ou encore d’une augmentation de la vitesse de transmission des ordres, qui
peut avoir lieu sur les marchés de commodités. Nous étudions les conséquences de ces
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changements sur l’efficience informationnelle des marchés spot et à termes.
Nous avons construit pour cela, un modèle de pricing séquentiel simple dans l’esprit

de celui de Black and Scholes [3] ou encore de Cox et al. [9], qui intègre la théorie du
stockage. Ainsi, la base est fondamentalement déterminé par le convenience yield qui
correspond à l’avantage lié à la détention d’une unité de commodité sur le temps qui sé-
pare l’instant présent et la maturité du contrat à termes. Plus le stock disponible sera
rare à l’instant t , et plus détenir une unité de stock aura une valeur élevée. Dans ce mod-
èle, l’information qui a un impact sur le prix à termes est déterminée de façon endogène
par les transactions qui ont lieues sur le marché physique. Cela est du au fait qu’une
transaction ayant lieue sur le marché spot à un prix st génère une diminution du stock
disponible (noté Qt ) à l’instant t , à hauteur d’une quantité q si elle n’est pas spécula-
tive. Cette diminution du stock influence par extension la base à travers le mécanisme
de convenience yield, explicité précédemment. Cela est synthétisé par la figure qui suit,
en considérant que les fréquences de transaction sur le marché spot et sur le marché à
termes sont notées respectivement ωs et ω f :

(t )
Marché
futures

(t ′)
aléatoire

Marché
spot

Fréquence ω f

Fréquence ωs

Qt = Qt−1 −q (ωs)1{t }
(
t ′

)

f0 f1 f2 f3 fT. . .

s0′s1′ s3′

De la même façon, la loi de probabilité de l’information arrivant entre deux transac-
tions sur le marché à terme impactant le prix physique (et par absence d’arbitrage le prix à
termes), notée I]t−1,t ], est influencée de façon endogène par la fréquence des transactions
ayant lieues sur le marché à termes (plus précisément par des transactions sur le marché

à termes) dont la loi sera L

(
e
ω f

)
. Cela est synthétisé par la figure qui suit:

(t )
Futures
market

(t ′)
aléatoire

Spot
market

Frequency ω f

Frequency ωs

I]t−1,t ] ∼L

(
e
ω f

)

f0 f1 f2 f3 fT. . .
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Nous démontrons grâce à ce dernier que la volatilité fondamentale de la base peut
augmenter suite à une augmentation de liquidité sur les deux marchés, et ce, même si
cette augmentation est proportionnelle sur les deux marchés. La raison de cela est très
simple. L’absence de synchronisation des transactions sur les deux marchés génère mé-
caniquement un risque (selon la définition du risque de Knight [21]) concernant l’anticipation
de la dynamique du stock réel de la matière première. Cette idée est traduite par le graphique
suivant qui traduit la volatilité de l’occurrence de deux transactions sur le marché spot et
le marché à termes de la commodité à chaque transaction sur le marché à terme qui cor-

respond à une loi de Bernoulli de paramètre
(
ωs
ω f

)
:
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Or le niveau des stocks constitue une information primordiale afin d’évaluer la base.
Cela se répercute donc sur le risque d’évolution de la base au niveau fondamental. Nous
montrons également que la synchronisation des transactions sur les marchés de com-
modités et a fortiori de la fréquence de ces transactions peut permettre l’obtention de
deux séries de prix non biaisées sur les marchés spot et à termes, une condition sine qua
none pour l’efficience des marchés. Sous ces conditions, la volatilité fondamentale sur le
contrat à terme est également minimale. Ainsi, une augmentation non proportionnelle de
la fréquence des transactions sur les marchés spot et à termes peut augmenter la volatilité
de l’information sur le contrat à termes.

De ces résultats, nous extrapolons l’existence d’un arbitrage entre la liquidité sur les
marchés à termes d’une part et l’efficience informationnelle sur ces marchés ainsi que la
volatilité fondamentale de la base d’autre part. En effet, la politique optimale qui permet
la minimisation de la volatilité fondamentale de la base et la maximisation de l’efficience
informationnelle est la mise en place d’un algorithme de détermination de prix sur le
marché à termes qui opérerait à la même fréquence que les transactions sur le marché
spot associé. De façon équivalente, ce résultat souligne que l’algorithme de détermina-
tion du prix utilisé sur les marchés à termes, le LOB, n’est pas optimal au regard d’un ob-
jectif de maximisation de l’efficience informationnelle et de la minimisation de la volatil-
ité de la base d’autre part. Ce résultat n’est pas nécessairement en contradiction avec les
travaux empiriques statuant que plus de liquidité, i.e. une fréquence de transaction plus
élevée, permet une amélioration de l’efficience informationnelle (cf. O’Hara and Ye [9]?

]). En effet, selon la fréquence relative des transactions de départ, nous pouvons avoir
un effet bénéfique de l’augmentation de la fréquence des transactions sur le marché à
termes. Ce travail aboutit à la recommandation du passage d’un algorithme de déter-
mination du prix des contrats à termes en LOB, à un algorithme de fixing, ou au moins
un algorithme dont la détermination du rix ainsi que les transactions s’effectuent à une
fréquente fixe, opérant à la même fréquence que les transactions sur le marché spot as-
socié. Néanmoins, il nous permet aussi de mettre en exergue qu’une augmentation de la
fréquence des transactions sur le marché à termes est possible conjointement à une aug-
mentation de l’efficience informationnelle des marchés et la minimisation de la volatilité
de la base si l’élasticité fréquence des quantités échangées de la commodité sur le marché
spot est suffisamment élevée en valeur absolue (c’est-à-dire que lorsque la fréquence des
transactions sur le marché spot augmente, la diminution des quantités échangées doit
permettre de réduire le risque lié à la dynamique du stock disponible de la commodité).

Les pistes de travaux liées à ce modèle sont nombreuses. Sur un plan empirique
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tout d’abord, une calibration de ce modèle pourrait permettre d’évaluer l’arbitrage qui
est actuellement effectué entre liquidité (sous l’aspect fréquence des transactions) d’une
part et efficience informationnelle ainsi que volatilité fondamentale d’autre part. Bien en-
tendu, des tests de robustesses seraient à mener également. Sur la dimension théorique,
plusieurs extensions pourraient être apportées. Par exemple, une formulation de la fonc-
tion des quantités échangées sur le marché spot pourrait être faite en fonction de la fréquence
des transactions sur le marché à termes et non uniquement de la fréquence des transac-
tions sur le marché physique. De la même façon, ce modèle qui repose sur une déter-
mination des fréquences optimales de transactions sur des marchés de commodités pris
un à un pourrait être formulé pour plusieurs commodités simultanément. L’étude de la
fréquence optimale des transactions s’en trouverait certainement impactée. On pour-
rait également considérer que les transactions ont lieues de façon asynchrone malgré des
fréquences identiques (ce qui n’est actuellement pas le cas) par l’utilisation de lois de
Poisson. On pourrait ainsi tenter d’unifier ce modèle avec celui de Du and Zhu [10] par
une microfondation similaire mais en considérant que l’information nouvelle n’est pas
exogène et est fonction de la fréquence des transaction observée.

Chapitre 4: Volatilité de la base et efficience sur les marchés

de commodités: l’impact du nombre d’agents économiques

Le chapitre 4 correspond lui, à une des extensions possible du modèle construit et présenté
dans le chapitre 3. On introduit à ce titre, un paramètre représentant le nombre d’agents
sur le marché de la commodité et nous considérons l’impact de ce nombre d’agents sur
les fréquences de transactions. Étant donné la différence de coûts de transactions sur le
marché spot d’une commodité et sur le marché à termes, nous faisons l’hypothèse que les
fréquences de transactions ne réagissent ni identiquement, ni proportionnellement face à
l’entrée de nouveaux agents sur le marché de la commodité. En d’autres termes, les agents
influenceront à la fois les deux fréquences de transactions mais aussi la fréquence relative
des transactions. Enfin, nous considérons l’impact des agents sur les quantités échangées
de façon indirecte, puisque la taille des transactions sur le marché spot est une fonction de
la fréquence des transactions sur ce même marché. Par ce formalisme, nous supposons
que le nombre d’agents influence la loi de probabilité de l’information nouvelle sur le
marché spot mais aussi l’information nouvelle relative à la base, à travers leur impact
sur la dynamique du stock disponible de la commodité. De la même façon que Stiglitz
[28] statuait que les actions ou choix des individus véhiculent de l’information, nous sup-
posons que l’entrée d’agents supplémentaires influence la volatilité de l’information ar-
rivant sur le marché spot, pour une unité de temps donnée. Chaque agents sera finale-
ment considéré comme une source d’information non redondante comparée à l’information
apportée par les autres agents. Ici encore, une transaction générera en retour de l’information
nouvelle. Enfin, nous étudions l’introduction d’un biais d’interprétation de l’information
et de son impact sur le prix de marché de la commodité. Deux cas sont étudiés: la sous-
estimation de l’impact sur le prix et la sur-estimation de l’impact sur le prix. Nous consid-
érerons que ce biais sera corrigé par le nombre d’agents conformément à l’idée d’Hayek
qui est que plus les agents sont nombreux, plus la capacité du marché à intégrer l’information
par l’interaction des agents économiques est forte. La typologie de l’information utilisée
peut donc être illustrée par le tableau suivant:
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Exogène Endogène
Effective X

Non effective X

Tout comme dans le chapitre 3, nous considérons que chaque transaction sur le marché
spot sera reportée et que le prix de marché sera modifié conformément à cette transac-
tion. Nous nous intéressons particulièrement à l’impact de l’entrée de nouveaux agents
que l’on pourrait par exemple assimilé à l’entrée des investisseurs institutionnels sur les
principaux marchés de commodités en 2008. Nous étudions leur impact sur la volatilité
fondamentale de la base, et celui sur l’efficience informationnelle du marché.

Le premier résultat de ce formalisme est que la volatilité fondamentale de la base peut
augmenter suite à l’entrée de nouveaux agents. L’intégration de l’ensemble des nouveaux
paramètres nous empêche d’obtenir des expressions analytiques des valeurs optimales
pour la plupart des sous-ensembles de paramètres. Cela nous permet d’exprimer que
dans la plupart des cas, un arbitrage entre la liquidité (fréquence des transactions) et
l’efficience informationnelle ainsi que la minimisation de la volatilité fondamentale des
deux prix est obligatoire. Cet arbitrage est fonction de l’aversion au risque du décideur
politique. Nous effectuons une analyse de sensibilité quant au nombre optimal d’agents
sur le marché en considérant que chaque paramètre peut évoluer. Ainsi, un nombre fini
d’agents couplé à un algorithme de détermination du prix de marché qu’est le LOB sur le
marché financier est dans la plupart des cas optimal. S’il y a plus d’agents que le nom-
bre optimal en revanche, l’algorithme de détermination du prix optimal pourrait être un
algorithme contraignant la fréquence des transactions sur le marché à termes selon les
caractéristiques du marché considéré.

L’introduction d’un biais de sous-estimation ou de sur-estimation de l’impact de l’information
sur les valeurs fondamentales par les agents qui se résorbe avec le nombre d’agents est un
formalisme qui va venir influencer ces résultats. Un des premiers résultats de ce travail
est de constater l’asymétrie du problème posé par l’évaluation incorrect de l’impact de
l’information. Lorsque les agents sur-estiment cet impact, le biais généré sur le marché
spot par le retard de l’incorporation de l’information au prix peut finalement s’avérer
compensé par une sur-estimation de l’impact de l’information, ce qui n’est pas le cas dans
le cas ou les agents sous-estiment cet impact. Ainsi, le marché spot peut se retrouver avec
une une dynamique de prix non biaisée qui est le résultat d’un retard d’incorporation de
l’information dans le prix de marché parfaitement compensé par le fait que les agents
sur-estiment l’impact de l’information (et donc exacerbent la variation du fondamental).

Encore une fois, la complexité du problème nous empêche d’avoir des solutions an-
alytiques tractables, nous “obligeant” à mener des analyses de sensibilité du nombre op-
timal d’agents selon un set de paramètres. Le résultat global de cette recherche corro-
bore l’arbitrage entre la liquidité des transaction sur le marché à termes d’une part, et
la volatilité fondamentale et l’efficience informationnelle d’autre part. L’entrée de nou-
veaux agents sur le marché de la commodité augmente de facto la fréquence des transac-
tions sur le marché à terme lorsque l’on utilise un algorithme de détermination du prix de
marché qu’est le LOB. L’entrée de nouveaux agents favorise donc la liquidité sur le marché
de la commodité. Toutefois, l’utilisation d’un algorithme qui détermine à une fréquence
fixe un nouveau prix de marché, comme le fixing, pourrait être bénéfique pour l’efficience
informationnelle du marché ainsi que la stabilité fondamentale des prix selon les mêmes
mécanismes à l’œuvre que dans le chapitre 3. Toutefois, ce chapitre 4 met en évidence
une seconde boucle de rétroaction. Les agents augmentent la volatilité fondamentale du
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prix spot sur un temps donné mais réduisent en contrepartie le biais du prix spot ainsi que
celui de la base. Ces deux arbitrages différents sont pourtant tous deux liés sur un marché
qui opère avec un algorithme de LOB ou les agents influencent à la fois les fréquences
de transactions et l’information. L’implémentation d’un algorithme de détermination du
prix de marché à fréquence fixe tel le fixing, permet néanmoins de dissocier ces deux ar-
bitrages pour un nombre suffisamment élevé d’agents permettant d’être certain qu’un
transaction ait lieue à chaque fixing.

De la même façon que pour le chapitre 3, une calibration empirique du modèle pour-
rait être menée pour estimer dans un premier temps quel est l’arbitrage effectué entre la
liquidité et l’efficience informationnelle et la volatilité fondamentale. Les limites et pos-
sibles extensions de ce modèle quant à elles, sont identiques à celle du chapitre 3.

Finalement, la principale limite transversale de ces modèles basés sur l’information
réside dans le fait que l’information est parfaite entre tous les agents. Cette asymétrie
d’information serait complexe à formuler dans le cadre théorique développé dans le chapitre
2. Cela modifierait sans aucun doute l’ensemble des propriétés du modèle et apporterait
un nouveau niveau de complexité. Sur le chapitre 3 (et le chapitre 4 par extension), de
tels hypothèses pourraient être prises en compte par la microfondation de ce modèle et
plus particulièrement celle de l’occurrence des transactions sur les deux marchés. For-
maliser des coûts de transactions sur le marché physique supérieurs à ceux sur le marché
à termes permettrait d’obtenir une fréquence de transactions moins élevée sur le marché
physique.
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CHAPTER 1. GENERAL INTRODUCTION

Major changes in the structure of financial markets, have been reinvigorating the study
of financial markets efficiency and of prices volatility. Our work focuses on price dynam-
ics in financial markets. In particular, we examine the problems posed by the current
institutional forms of market organization: fragmentation of orders, structure of financial
information, nature of information, number of economic agents, etc. We analyze these
issues with the prism of economic literature, but also with the help of computer sciences
and what is called today econophysics. We also discuss proposals from contemporary
economic analysis to improve the informational quality that underlies the formation of
prices. The starting point of this work is the study of information that is released on fi-
nancial market. To this purpose, we distinguish the information that can be processed
with the help of an algorithm (also called effective information) from the information that
cannot. We also consider that in some markets, like agricultural commodity markets for
instance, the price, and so the information, of the underlying commodity is not updated
as frequently as equity prices or currency prices. Indeed, most of equities prices are up-
dated almost continuously, but in agricultural commodity markets, the underlying price
is updated relatively slowly. Then, we can consider the information that is displayed on
these markets as being not continuous. In this work, we study the nature and the struc-
ture of information in order to better understand the current financial market structure.

In this general introduction, we first proceed by depicting the current functioning of
financial market with a focus on agricultural commodity markets, and defining the main
terms of this thesis in section 1.1. Then, we expose the reasoning linking the chapters of
this thesis, with the help of the current economic literature in section 1.2. We finish with
a presentation of the three chapters of this thesis in section 1.3.

1.1 The context of this research

In this section we briefly present the contemporaneous functioning of financial markets
and we define some concepts or notions that we use in this thesis. We first focus on gen-
eral properties and characteristics of financial markets in subsection 1.1.1, and then we
pay a particular attention to the specificity of agricultural commodity markets in subsec-
tion 1.1.2.

1.1.1 The actual functioning of financial markets

Definition 1. An asset is an item of property. It has a value for its owner.

Hence, an asset is a resource that the owner controls and from which s/he expects
futures financial flows. Among several possible typologies, we choose to divide assets
between tangible assets, such as a commodity, and intangible assets, such as financial
assets.

Definition 2. A financial market is a market in which intangible financial assets are traded.

In these financial markets, economic agents place buy orders or sell orders.1When a
clearing house guarantees the completion of transactions the market is called an orga-
nized market or a listed market. In the absence of a clearing house the market is called an

1Orders may be placed “at any price”. In the case of a buy order for a quantity x, this order will have for
counterpart the sale orders which have no counterpart and whose prices are fixed, arranged in an increasing
way, until the quantity x is obtained.
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Over The Counter (OTC) market. In addition to these traditional organized or OTC mar-
kets, “hybrid” markets have been created over the last fifteen years and they are called
Multilateral Trading Facilities (MTF)s.2

Definition 3. A market price is a transaction price.

A transaction is generated by the matching of at least one buy order with at least one
sell order. In that case, the opposite orders are said to be compatible.

Definition 4. An algorithm is a finite sequence of ordered operations.

A transaction is generated by at least one compatible buy order and sell order. The
market price on a financial market is therefore the result of an algorithm whose aim is
the execution of compatible buy orders and sell orders.3 The market price is a priori a
universal concept. However, it depends on the trading rules specific to each financial
market, and more particularly on the method used to determine the price (therefore the
algorithm used). Thus, the market price of the same asset can be determined differently
on Euronext Paris and on the London Stock Exchange.

In practice, on most of the organized markets managed by MUs, two algorithms of
pricing are used: the LOB pricing and the fixing pricing.4 But these two pricing algo-
rithms have been processed with the help of computers relatively recently. Before, the
pricing algorithm was implicit since transactions were not processed by the mean of com-
puters but there was finite sequence of ordered operations systematically repeated (see
Faye et al. [31] for specific details on the french futures market (Marché à Terme Interna-
tional France)). Despite that the fixing algorithm exists for a long time, the emergence of
the LOB was more recent and can be approximately dated back to three decades ago on
average between the different stock exchanges. Since the beginning of the LOB establish-
ment, some famous economists argued that this pricing algorithm was a potential source
of price instability. As an illustration we can quote the partial response to the October 13,
1989 mini-crash from Allais, the 1988 Economic Nobel Price to the Los Angeles Times:

“The continuous trading market is an aberration from an economic viewpoint
and generates a potentially permanent instability favoring fraud and manipu-
lation of the market. [US markets could be improved] by eliminating the con-
tinuous market and replacing it everywhere with a single daily trading price
for each stock in each market.” – M. Allais (1989)

The two current pricing algorithms used (the fixing and the LOB pricing algorithms), are
based on the centralization of buy orders and sell orders in an order book.

Definition 5. For a given asset, at a given moment, the order book gathers buy orders and
sell orders that are executable. However, they have not found a counterpart yet.

2In the french case, in accordance with Article L. 424-1 of the Code Monétaire et Financier,
without being certified as a regulated market, MTFs can be managed by an AISP to provide the
investment service or by a Market Undertaking (MU). Source: https://www.amf-france.org/

Actors-and-Products/Financial-Market-and-Infrastructure/Other-Conflict-Services/

Multilateral-Systems-of-Negotiation
3On Euronext, the pricing is automatically ensured by the UTP com-

puter exchange system. Source: https://www.euronext.com/en/content/

questions-with-the-quality-changing-the-changing-of-values
4On Euronext, it can be a simple fixing (once a day at 03:00 P.M), or a double fixing

(twice a day at 11:30 A.M and 04:30 P.M). Source: https://www.euronext.com/en/content/

questions-with-the-quality-changing-services
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The fixing, which has become the minor method used, determines the price that max-
imizes traded quantities. Therefore, quantities traded have a direct impact on the market
price in that algorithm. We provide an example of this algorithm. Let us assume that the
following order book is available for a given asset:

Ask Bid
Quantities Price Quantities Price

400 At any price 400 At any price
200 156 250 150
250 155 400 151
500 154 500 152
850 153 600 153

1000 152 1250 154
3000 151 1700 155

Table 1.1 – Example of an order book.
Source : SBF, 1998, La Bourse de Paris

Hence, we aggregate ask orders quantities and bid orders quantities available for each
level of price:

Ask Bid
Quantities Price Quantities Price

400 At any price 400 At any price
600 156 650 150
850 155 1050 151

1350 154 1550 152
2200 153 2150 153
3200 152 3400 154
6200 151 5100 155

Table 1.2 – Example of a fixing algorithm first operation.
Source : SBF, 1998, La Bourse de Paris

Then, the following sequence of operations are processed:

• For a price of 151, there are 1050 quantities on the bid side and there are 6200 quan-
tities on the ask side. There would be 5150 quantities remaining from trades at that
price;

• For a price of 152, there are 1550 quantities on the bid side and there are 3200 quan-
tities on the ask side. There would be 1650 quantities remaining from trades at that
price;

• For a price of 153, there are 2150 quantities on the bid side and there are 2200 quan-
tities on the ask side. There would be 50 quantities remaining from trades at that
price;

• For a price of 154, there are 3400 quantities on the bid side and there are 1350 quan-
tities on the ask side. There would be 2050 quantities remaining from trades at that
price.
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As soon as the remaining quantities are increasing, this operation ends and the price
minimizing the remaining quantities (i.e. maximizing traded quantities) is known. Fol-
lowing our example, a price of 153 minimizes the remaining quantities and 2150 quanti-
ties will be traded at that price. The new market price resulting from the fixing algorithm
is 153.

The LOB is an algorithm that instantly executes two compatible orders; as soon as a
sell order is compatible with a buy order, a transaction is executed at the compatible price.
The stock exchange immediately displays the price at which the last transaction has taken
place and this price becomes the market price until the next transaction. The frequency
of price evolution is a priori unknown.

We now focus on the modern structure of financial markets. It has an intrinsic im-
pact on prices’ dynamics. Regulation of financial markets is voted by national and supra-
national institutions. In the European Union, the ESMA is in charge of monitoring the
compliance with this regulation.5 Within the framework given by the ESMA, the AMF
“ensures the protection of savings, investors’ information and the proper functioning of fi-
nancial markets” in France. These institutions aim to promote information transparency
and “the good functioning of financial markets” and to make “capital markets deeper” in
order to guarantee a high level of liquidity.6

Definition 6. Liquidity can be defined as the capability to buy or sell a desired quantity of
asset immediately, and with the smallest spread with its current market price.

Then liquidity has two dimensions:

(i) The capability to trade immediately which raises with trades frequency;

(ii) The capability to trade the desired amount which raises with market depth. Mar-
ket depth represents the capability of the market to absorb relatively large orders
without impacting the market price.

One of the largest consensus in financial economics is based on the characteristics of
an efficient market (cf. Fama [29], Fama et al. [30]). A market is said to be efficient if the
dynamics of its price incorporates instantly all the available information.7

Definition 7. The fundamental value of an asset at a given time, is equal to the best and
immediate computation of all available information at the given time.

Definition 8. Over a period of time, a market is said to be efficient if the price of an asset is
as close as possible to its fundamental value.

One immediately understands that our research cannot be disconnected from the
study of economic information (structure, quantity, frequency, etc.) and its evolution. In
his work, Fama (see Fama [29], Fama et al. [30]) introduces three different levels of market
efficiency:

5All missions of the ESMA are detailed at the following link: https://europa.eu/european-union/
about-eu/agencies/esma_en

6Sources: https://www.amf-france.org/L-amf/Missions-et-competences/Presentation
https://ec.europa.eu/info/policies/banking-and-financial-services_fr

7An original quote is: “(...) under the assumption that security prices at any time “fully reflect” all avail-
able information. A market in which prices always “fully reflect” available information is called “efficient”.”
– Fama et al. [30], p.1.
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(i) The weak efficiency implies that the future market price cannot be expected accord-
ing towards its past dynamics;

(ii) The semi-strong efficiency implies that the market price contains all public infor-
mation (including past prices);

(iii) The strong efficiency implies that the market price contains all public and private
information.

Hence, according to Fama, the typology of efficiency mainly relies on the availability
of information.

The structure of financial markets is the result of two hierarchical components.
First, institutions define a general framework (see infra for the description of institu-

tions at the level of the European Union). The objective of institutions is to establish a
transparent framework in order to allow agents operating on the markets to dispose and
to disclose correctly and without delay the information through their orders. In other
words, the objective is to enable the efficiency of financial markets. However, there are
some elements of the framework that can a priori limit market efficiency but have an-
other purpose. The position limit regulation for instance, prevents any economic agent
who has reached the limit for a given asset to buy a bigger quantity of the asset. This regu-
lation alters the capability of agents to disclose information through orders as soon as they
have reached the position limit. However, regulation aims at preventing any agents from
having a market power and so, from having a significant price impact. Of course, there are
other regulation representing a trade-off between the objective of “the good functioning
of financial markets” and the objective of making “capital markets deeper”.

Second, the decision of the MUs on the organization of markets, as well as for markets
handled by an AISP. We remind that MUs are private companies.8

The goal of MUs is to generate a profit, while respecting the regulation; This profit
is essentially proportional to the n.o.t made since MUs charge a commission per trans-
action or a commission to access the market. Therefore they also have an interest in the
maximum effective liquidity. To this end, some MM operates on some organized markets,
insuring the role of systematic counterpart. It is equivalent to being a provider of liquidity
when the timing of investors orders is asynchronous.

Formally, MUs develop market rules and pricing algorithms on these markets in re-
spect to the prior regulation. Liquidity plays a key role here. In an efficient market, the
market price must change as soon as a new information is released. The capability to
trade immediately must be absolute if we do not know a priori the frequency of arrival
of information. Liquidity allows the buyer or the seller that incorporates the new infor-
mation in his/her order’s price, to find a counterpart without delay. This is equivalent to
consider at least that a buyer and a seller must react to new information simultaneously
and without delay by placing compatible orders. This reasoning pushes institutions to
regulate financial markets in order to reach a maximal liquidity. The limit order book is
then the pricing algorithm that seems to maximize the liquidity.

Hence, MUs favor the LOB quotation of assets, and this is justified by the fact that we
do not know a priori the frequency of arrival of new information.9

8Some information on the property of Euronext Paris’ equity is available at the following link: https:
//www.euronext.com/en/products/equities/NL0006294274-XPAR/company-information

9Euronext authorizes any asset to be priced using a LOB as soon as a minimum of 2500 transactions are
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The regulation of the ESMA aims to favor competition on regulated financial markets.
The presence or increase in competition should reduce transaction costs and market ac-
cess costs set by the MUs to investors.10 As a result, the LOB was preferred and several
markets have been developed to compete with existing markets: MTFs, and among them,
some markets with specific rules that are commonly referred to as “dark pools”.11 The
main advantage of these MTFs is to avoid excessive fluctuations in market prices when
massive trades occur. They are often restricted to institutional operators, who are the first
to be exposed to such impacts because of the size of their portfolios (and in fine of their
trades). Nevertheless they can sometimes be open to investors via brokers.

Such a multiplicity of markets in order to trade and quote a given asset leads investors
to sometimes fragment their orders.

Definition 9. The fragmentation of orders can be defined as the split of a buying (respec-
tively selling order) – called parent order – into several smaller buying (respectively selling
orders) – called children orders.

Orders fragmentation (or fragmentation when there is no ambiguity) can be made on
the same market across time, at the same time on different markets (if the same asset can
be exchanged in different markets), or across time on different markets.12 This fragmenta-
tion can be voluntary or constrained. The reduction of transaction costs due to advances
in technology for instance, allow economic agents to – voluntary – fragment their orders.
However, within a LOB pricing where market depth (a dimension of liquidity) is relatively
insufficient (i.e. if limit orders size is not sufficient), an economic agent announcing a
large size order at a limit price will upward prices if s/he passes a buying order or a down-
ward if s/he passes a selling order. It is said that the order has a price impact. This price
impact reduces with an increasing market depth. Then agents may be forced to fragment
their orders to trade with the smallest spread with the current price, and enter multiple
orders on one or more market using a LOB pricing algorithm. In other words, the lower
the market depth is, the more an economic agent that wants to sell or buy at the smallest
spread with the current market price has to fragment her/his order. The consequences of
such a practice are a decrease in quantities exchanged per transaction and an increase in
the n.o.t.

In modern financial markets however, available information is partly contained in the
order book, continuously updated (see Cont and Larrard [18]). In addition to the past
and present information available to operators in financial markets, the order book is an
indication on the wish of buying and selling of operators;

“In contrast to looking at the volume traded, which shows what already hap-
pened, the order book provides an insight into the intention of the traders.” –
Galanos [33], p.10

made on this asset annually at the request of the owners of this asset. Source: https://www.euronext.
com/en/content/questions-with-the-quality-changing-services

10Source: http://www.parisschoolofeconomics.com/hautcoeur-pierre-cyrille/Revoir_MIF.

pdf
11The AMF defines the “dark pools” as “trading systems that operate without any pre-trade trans-

parency”. Source: https://www.amf-france.org/Presse-Space/Folders-and-presse-fiches/

The-games-lies-for-emergence-of-dark-pools-and-crossing-networks
12Orders fragmentation could also occur on physical markets for instance on spot agricultural commodity

markets (see infra).
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This vision of the order book as a vector of information is also in line with the work of
Stiglitz which states that:

“(...) market actions or choices convey information. Market participants know
this and respond accordingly.” – Stiglitz [71], p.468

Investors trading large volumes have integrated that the order book contains infor-
mation. So they use dark pools to trade, to avoid conveying information. These specific
market rules lead to a reduction in markets’ transparency since all or part of the informa-
tion is hidden there.13 This emergence of new platforms has finally “fragmented” liquid-
ity.14 Tóth et al. [75] show that in the vicinity of the market price, the financial markets
are illiquid in the sense that a slight evolution in quantities provokes a more than linearly
proportional price variation. To exchange a substantial volume of assets with the smallest
spread with the market price, operators are therefore forced to fragment their orders in
different markets, which leads to a rise in transaction costs.15 This result goes against the
results expected by the competition policy of the ESMA.

To sum up, fragmented markets also fragment information. They provide market
prices and order books. Nevertheless, quantities that appear in the order books do not
convey all information. Operators who want to pass large size orders – or block orders –
sometimes prefer to fragment their orders (thus fragmenting the information), or to pass
through a dark pool (thus hiding information).

A multitude of economic agents operates on financial markets. We could give several
typologies but economic theory focuses mainly on a distinction based on:

(i) The operators decision variables: Fundamentalists who look at their available in-
formation and try to estimate the fundamental value or chartists who try to guess
the movements of an asset price independently of the fundamental value;

(ii) The operators objectives when they pass orders: Arbitrageurs who identity arbitrage
opportunity, hedgers who act on financial market to hedge their output from a price
risk, processors who insure themselves for having the raw material for their pro-
duction, speculators who just try to make profit from price fluctuations, or spread
fluctuations...

Agents can also be segmented according to the speed of their orders, which is partic-
ularly important for market price dynamics. Indeed, an overwhelming majority of orders
now rely on information processing algorithms.16 What makes the operators heteroge-
neous is not only their access or not to an information processing technology but the

13Moreover, an asset can be quoted on multiple markets for the most traded assets (this has been favored
by the emergence of MTFs as well). Then a given asset can have multiple price dynamics. Theoretically,
however, these dynamics should be intricate, that is to say, should evolve exactly in the same way (frequency
and variation), regardless of markets’ efficiency. Otherwise it is possible to buy the asset on the market
where it is the cheapest and resell it on the market where it is the most expensive if the two markets use
a LOB pricing. This reasoning was already applicable between MUs but it is now accentuated. A same
regulated stock market can price the same asset according to different market rules whereas the price on
these two markets should be identical. We will not consider multiple quotations for assets in our work.

14Source: http://www.parisschoolofeconomics.com/heart-heart-cyrille/Review_MIE.pdf
15Source: AMAFI - 10-01 - MIF REVISION - FLEURIOT MISSION - AMAFI CONTRIBUTION (p.15) http:

//www.amafi.fr/topics/en/documentation/mif-1?page=1
16In 2009, the proportion of orders placed through algorithmic trading represented between 50% and

75% of United States (see Leshik and Cralle [49], p.4). In 2012, 85% of the market volume was traded using
algorithmic (see Glantz and Kissell [35])
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technology that will make it possible to place orders faster than other operators. High
Frequency Trading (HFT) is practiced by a handful of operators with sufficiently high
means, and makes it possible to place executable orders faster than other operators in
order to take advantage of the execution time of their orders – or simply react faster to
new information. Of course, this segmentation does not exclude the idea that operators
may be intrinsically different (arbitrageurs, portfolio managers, trend-followers etc.), but
nevertheless highlights a new form of competition between operators studied in recent
years (see Foucault et al. [32], Hoffmann [44], Roşu [65]). Among them, the technique of
spoofing, well documented since it was the subject of trials in the United States, partic-
ularly highlights the risks of this new competition. Spoofing is a market manipulation
technique that consists of offering an asset for sale (or buy), while the actual position is
respectively buying (or selling), with the intention of canceling the order just before it is
executed, to obtain a favorable movement of prices respectively downward (or upward). It
is therefore potentially practiced on markets where the order book is available, and where
a LOB pricing is implemented. The immediate consequence of such a practice is to blur
or even distort information on these markets.

Hence, the heterogeneity of traders on the markets can also be distinguished by com-
petition regarding their orders’ lead time in fragmented markets using a LOB pricing.

Then, financial market regulation has to take several intermediate objectives into ac-
count in order to achieve market efficiency:

(i) The transparency of information relevant to pricing: Otherwise it is impossible for
traders to incorporate it into the market price through their orders;

(ii) Liquidity: Any new information must be incorporated into prices by a transaction
at a new price into a LOB pricing. The chronological sequence of price changes
must ideally be superimposed on the chronological sequence of new information.
Therefore, the inherent objective is to identify the frequency of incoming informa-
tion. One can imagine, that the latest is different in the context of a stock belonging
to an index and in the context of a commodity futures contract;

1.1.2 On the specificity of agricultural commodity markets

In this work, we give a particular attention to agricultural commodity which are the un-
derlying of standardized contracts. Then, we exclude agricultural commodities, which are
not the underlying of standardized contracts, from our analysis. Historically, two main
characteristics of some agricultural commodities allowed the development of financial
assets: their capability to be stored, and their harvest’s seasonality. Hence, we give the
following definition of an agricultural commodity.

Definition 10. An agricultural commodity is a standardized tangible asset which is storable
and whose harvest is seasonal.

Agricultural commodities derivatives markets are intrinsically different of other deriva-
tives markets. Since the underlying asset is a tangible asset, that implies structurally dif-
ferent transaction costs when compared to currencies underlying which are an intangible
asset for instance. In the case of a tangible asset, transaction costs represent the cost to
find a broker and to pay her/him to insure that the transaction take place. In the case of
an intangible asset, transaction costs represent the costs to access the market and to place
the order.
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Definition 11. An agricultural commodity market is a market where an agricultural com-
modity can be exchanged within two types of markets:

(i) A spot market, where sellers and buyers trade the agricultural commodity itself;17

(ii) A financial market, where financial contracts whose underlying is the agricultural
commodity are traded.

The principle types of contracts exchanged on the agricultural commodity financial
market are the forward contracts, the futures contracts, the swap contracts and the op-
tion contracts.

A forward contract is a commitment to sell or buy the commodity at a later date, taken
by respectively a seller and a buyer. Characteristics of the contract (date, transport, qual-
ity, quantity) are decided by both counterparts. This financial asset is negotiated in an
OTC market and there often is a broker to facilitate transactions.

A futures contract is a commitment to sell or buy the commodity at a later date, taken
by respectively a seller and a buyer. It is negotiated on an organized market where a clear-
ing house operates and the characteristics of the contract (date, transport, quality, quan-
tity) are standardized. Each open futures contract implies the economic agent to make
a deposit to the clearing house. Each daily return is paid by the loosing operator to the
clearing house and received by the winning operator from the clearing house. It is called
the margin call mechanism. At a given date, several futures contracts are open at several
maturities. Of course, futures prices are linked by the price term structure also called the
“Samuelson effect” (cf. for instance Lautier and Simon [47]).

A swap contract is a contract through which two parties exchange the cash flows or lia-
bilities from two different financial instruments. Commodity swaps involve the exchange
of a floating commodity price for a set price over an agreed-upon period.

An option contract on an agricultural commodity is a contract giving to the buyer a
specific right at a given date or period relative to the agricultural commodity market. The
best known option contracts are the calls and the puts. The owner of a call has the right
– but is not obliged – to buy the underlying asset at a specific price at a given date or pe-
riod. The owner of a put has the right – but is not obliged – to sell the underlying asset at
a specific price at a given date or period.

In practice, forward contracts often end with an effective physical delivery of the agri-
cultural commodity whereas futures contracts often do not end with physical delivery. In
this case, they are said to be cash settled. As early pointed out by Working:

“Futures trading in commodities may be defined as trading conducted under
special regulations and conventions, more restrictive than those applied to
any other class of commodity transactions, which serve primarily to facilitate
hedging and speculation by promoting exceptional convenience and econ-
omy of the transactions.” – Working [78](p.315)

The benefit of a standardized contract such as the futures is its liquidity, or at least
the frequency of trades. At the opposite, a forward contract negotiated for the specific
needs of both counterparts is stricto sensu, not liquid. Hence, it is easier for farmers
or transformers to hedge their production (or respectively their input) to face price risk
by finding a counterpart who accepts to take this risk. This is the very starting point of

17Some authors consider – agricultural commodity – spot markets as a financial market. We do not.
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creation of futures contracts, created on the Chicago Board of Trade (which is now inte-
grated to the Chicago Mercantile Exchange (CME)). The relatively high frequency of trades
in futures contracts is the reason why futures prices is often considered as the reference
price. Indeed, this high frequency of price evolution is by extension assumed to provide
more frequently information to the valuation of the agricultural commodity. As stated by
Bégué Turon et al. [12], the use of futures market by operators is increasing and is either
direct (by operating on the futures market) or indirect (by referring to futures prices on
OTC contracts) in order to manage the price risk in the French grain market.

Within an agricultural commodity futures market, orders fragmentation could also
occur, leading to a rise of trades frequency. One can also assume that the reduction in
transaction costs on agricultural commodity spot markets could allow orders fragmenta-
tion on those markets. Thus, orders fragmentation could occur on these two markets and
lead to an evolution in prices’ dynamics despite the two markets are fundamentally intri-
cate. However, there are feedbacks between these two markets. As a consequence, orders
fragmentation would influence the basis.

Definition 12. The basis at a given maturity in an agricultural commodity market is de-
fined as the difference between the futures price at the same maturity and the spot price.

The basis’ volatility is a major stake for farmers and processors, and a major compo-
nent of their production and selling decisions (cf. Moschini and Hennessy [57], Bégué Turon
et al. [12]). Although fragmentation of orders can be used in both spot and futures mar-
kets, transaction costs in these two markets are not the same since they are intrinsically
different (cf. Working [78]). Ultimately, fragmentation of orders would be neither equal
nor proportional in these two markets, impacting both relative trade frequency (RTF) and
quantities exchanged per transaction in these markets. One of the objectives of this thesis
is to study the impacts of orders fragmentation.

Agricultural commodity markets are the topic of specific institutions with specific
goals. First the AMIS, which is a response of the G-20 Ministers of Agriculture to the global
food price hikes in 2007/2008.18 Its objectives are the following:

• Improve agricultural market information, analysis and short-term supply and de-
mand forecasts at both national and international levels;

• Collect and analyze policy information affecting global commodity markets, and
promote international policy dialogue and coordination;

• Report on critical conditions of international food markets, including structural
weaknesses, and strengthen global early warning capacity on these movements;

• Build data collection capacity in participating countries by promoting best prac-
tices and improved methodologies, providing training to national stakeholders and
facilitating the exchange of lessons learned among participating countries.

The AMIS achieves its goals by providing a “platform to coordinate policy action in times
of market uncertainty”.19

18The website of the AMIS: http://www.amis-outlook.org/home/en/
19Source : http://www.amis-outlook.org/amis-about/en/
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The European Union (EU) also set up a consultative EGDSM in 2012.20 Its role is to
provide advice to the European Commission about:

• The functioning of the agricultural commodity derivatives and spot markets;

• The implementation of existing EU legislation and policies;

• The preparation of legislative proposals and policy initiatives in this field.

This consultative group objectives are the same as those of the AMIS: the agricultural
markets’ efficiency and the minimization of the volatility of agricultural market’s prices.
However, this institution is not mainly focused on the information on agricultural com-
modity markets but on “all” their regulation policies and legislation. During the last meet-
ing of these consultative Expert Group, Cordier insisted on the need of an updated public
market information on agricultural commodity quantity and quality in order to reduce
the basis’ volatility.21

A particularity of agricultural commodity markets is the underlying asset market price
dynamics. The spot price is discontinuous (not quoted with a LOB mechanism) whereas
the futures price is quoted with a LOB mechanism (continuously by definition). One un-
derstanding that it gives to the basis, a peculiar dynamics. Then, the relevant information
concerns the previsions made (for instance the one on the monthly report of the USDA)
and meteorological data. Hence, not only the frequency of this kind of information is
fixed, but also known in advance. One can imagine that such information characteristics
can deeply modify the perception of the market efficiency on those markets. In the end,
the level of storage also plays a key role in the basis dynamics but storage directly depends
on the trades realized on the spot market. This difference in trades frequency on the spot
market and on the futures market, as well as their retro-actions on the agricultural com-
modity market is one of our main topics.

1.2 Thesis’ motivations: From academic contributions to

the scientific research question of this thesis

In this section, we highlight important questions emerging from the current state of the
art in financial economics. The first one concerns the modeling of the effective price for-
mation. We provide in subsection 1.2.1 a short literature survey in order to highlight the
evolution of the understanding of the formation of prices and compare it to actual pricing
algorithms. The second one relies on the key role of information in financial economics
(in particular Hayek [40] and Fama et al. [30]). We provide in subsection 1.2.2 a selective
literature survey of some major works in financial economics and understand them in a
information based reasoning to justify our approach. In the end, we highlight in subsec-
tion 1.2.3, how some stylized facts in both financial markets and agricultural commodity
markets, modify the released information on these same markets.

20Website : https://ec.europa.eu/agriculture/cereals/commodity-expert-group_en
21Presentation is available: https://ec.europa.eu/assets/agri/market-sectors/cereals/

commodity-expert-group/2018-04-18/benefits_otc.pdf
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1.2.1 The market price formation: A theoretical representation of pric-

ing algorithms

Most of the time economic theory uses an equilibrium framework but, paradoxically, it
gives little importance to the formation of market prices, if we except the literature ded-
icated to market microstructure.The way in which actual prices get closer to the equilib-
rium price is relatively unexplored.

The theoretical formation of the market price: The Equilibrium price

Economic theory focuses almost exclusively on the existence and determination of the
equilibrium price which is defined as follows:

Definition 13. The equilibrium price is the price that equalizes the aggregate supply and
the aggregate demand.22

In the framework of the “Walrasian” general equilibrium theory, this equalization is
unique (see Arrow and Debreu [1]) and is realized instantly as soon as the transactions
are opened (in fact the auctioneer realizes or authorizes the transactions when and only
when equilibrium prices are discovered); this model therefore rules out the very concept
of market price dynamics. Past, present, and future information is known to all agents
and is perfectly processed before the trades take place. The hypothesis of the uniqueness
of the moment of transactions is sometimes released; In this respect, Hicks [42] work is
emblematic. However, the assumption of equalization of aggregate supply and demand
is maintained. The dynamics of the price has a fixed frequency such that at each period,
the aggregate supply is equal to the aggregate demand and all information is incorporated
into the price. Recall that at the beginning of a period (a week in the Hicks’ vocabulary),
characteristics of the market are known: supply functions, demand functions, production
functions, utility functions. A balance is formed for the week and an equilibrium price is
determined; between the end of a period and the opening of the next one, new market
conditions may appear so a new price would be determined. This model, known as the
Hicksian traverse, combines the idea of market equilibrium with that of an evolutionary
process. But this model keeps the idea that trades take place after the equilibrium price
has been determined by processing all available information at the beginning of the pe-
riod. Works based on the same assumptions concern the study of the convergence of a
price towards its equilibrium price, an aspect of price dynamics (see Ezekiel [28], Gues-
nerie [37]). However, the dynamic aspect in these works still assumes a fixed frequency.

Fama et al. [30] and Fama [29] can be considered as an extension of these reasoning on
financial markets. The definition of market efficiency can be understood as the passage
to the limit of such reasoning. If we consider that a period is equal to the smallest unit
of time, the price must reflect at each unit of time (= at each moment), all the available
information affecting the aggregated supply and / or aggregated demand (present and fu-
ture). In his thinking, E. Fama relaxes the assumption of fixed frequency since the price
dynamics is endogenously determined by the frequency of new information. More pre-
cisely, a transaction is justified if and only if new information is released. It is therefore the
- exogenous - timing of arrival of information that explains the frequency of transactions.
On the other hand, no specification is made on the means for determining the market
price. The efficiency of a market is therefore considered here only by its final outcome,
the market price.

22Aggregate supply is the sum of sales intentions for a given price; Aggregate demand is the sum of the
buy intentions for a given price.
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Hayek [39] pays particular attention to the process of the market price formation. In-
deed, it is the market interactions between economic agents that allow the market price
to incorporate at best available information affecting aggregate supply and / or aggregate
demand (present and future). We can extract from this reasoning that the easier it is to
express a merchant wish and to have the wishes of other economic agents available, the
more effective the market will be in finding the “good” market price. This idea is precisely
what we refer to as the computational strength. The organization of the society with the
help of markets allows interactions between agents through wishes to buy or to sell. A
price will emerge such that it will better convey information on average than any agent
alone. However, in his work, Hayek does not precisely explain the finite sequence of or-
dered operations leading to the price determination. Hence, no pricing algorithm is given
here.

More recently, the market microstructure field of research, that Madhavan [55] retro-
spectively date to the early 1980, has produced some significant results about the forma-
tion of prices and the role of information. Within these field of research, the understand-
ing of the price formation leads economists to numerous study on the bid ask spread, the
difference between the best bid (i.e. the lowest price on the supply side), and the best
ask (i.e. the highest price on the demand side), and of course, the impact of MM. Most of
those studies are however, considering the price as being an equilibrium price (cf. Biais
et al. [8]).

The comparison with the modern formation of the market price on financial markets

The consensual theoretical view of price dynamics can suffer from a contradiction with
the reality of price dynamics in financial markets in two main respects. The first con-
cerns the equalization of aggregate supply and aggregate demand, that is not verified in
the context of a LOB pricing. The fixing quotation is made on an aggregated order book,
and the fixing algorithm deals with compatible orders only in order to determine the new
market price. Thus, the “fixing” pricing is closer to the theoretical view of the meeting
between aggregated supply and aggregated demand (determination of a repeated equi-
librium price) than the LOB pricing.23 Having a large majority on Euronext – but also on
all organized market managed by MUs – the latter is more compatible with characteris-
tics of the market efficiency because the frequency of the price dynamics is not fixed. The
second aspect lies in the very concept of dynamics. The general equilibrium theory con-
siders a single market price or even a market price dynamics whose frequency is fixed.
The theory of the financial markets apprehends a price dynamics contingent to the ar-
rival of information. On the contrary, the dynamics of a LOB pricing is conditioned to the
dynamics of transactions.

On the other hand, an order book is a mean to facilitate market interactions, especially
since it is accompanied by an execution insurance at the best offer. Moreover, Hayek’s rea-
soning does not postulate any equalization between single or periodic aggregated supply
and aggregated demand, and does not assume any fixed frequency in his reasoning, so
it seems in line with the current characteristics of the financial markets regardless of the
pricing method.

The dynamics of a financial market is therefore reflected in a series of market prices.
From an analytical point of view, it can be considered as an output of an organized fi-
nancial market (by a MU) considered as the producer of a pricing algorithm as well as a

23Actually, the fixing pricing algorithm inspired the work of Walras on the theoretical representation of
the auctioneer (cf. Dupuy [23]).
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market organization (which aims to maximize its profit). This reasoning has the major
consequence of reversing the causality of the market price dynamics. While economic
theory apprehends a grope process allowing the emergence of an equilibrium price as
a market price that will allow transactions to take place, we find ourselves in a reverse
causality; Transactions take place and generate a variation of the market price. We note in
fact that the economic agents carrying out a transaction cannot be considered as “price
takers”, since they determine the market price by carrying out a new transaction. Each
operator therefore has a non-zero probability of becoming “price maker” when the num-
ber of operators is finite.

1.2.2 On the key role of information in financial economics

In financial economics, the literature is mainly divided into two theoretical streams. The
first one is the classical finance which is based on the Efficient Market Hypothesis (EMH).
In such a market, there is “no free lunch” or identically no possible arbitrage. Poncet et al.
[63] define an arbitrage as an operation that guarantees a positive profit without risk of
loss. If agents are perfectly able to distinguish any arbitrage opportunity and there are
no transaction costs, then markets are efficient. As soon as new information is released,
agents exploit the possible arbitrage (since a new information implies that an asset price
becomes over-evaluated or under-evaluated) instantaneously, until the price reflects its
no arbitrage value. This set of hypothesis is central to classical finance and allowed some
major results to emerge. Among them, the derivatives asset pricing theory initiated by
Black and Scholes [9], Merton [56] and by Cox et al. [19].24 Classical finance developed
some useful tools in treating the question of the incorporation of private information into
prices such as the Bayesian theory. One can read the famous work of Vives [76] in this re-
search field. Results of such research and tools are that private information of economic
agents is perfectly integrated by a market price; But one must be aware that the market
price as intended here corresponds to an equilibrium price (see below).

The second stream of research is the behavioral finance whose main research question
is to describe psychological biases of agents in order to explain some characteristics of
financial markets. This research field has two blocks as it is underlined by Barberis and
Thaler:

“Limits to arbitrage, which argues that it can be difficult for rational traders to
undo the dislocations caused by less rational traders; and psychology, which
catalogues the kinds of derivations from full rationality we might expect to
see.” – Barberis [2], p.1054

Behavioral finance has revealed itself to be a powerful tool in explaining positively how
agents’ behavior conducted prices to diverge from their fundamental. One of the most
powerful extension of such work is that irrational traders are not necessarily evicted from
the market (since there are limits to arbitrage) leading to qualify as “persistent” mar-
ket price imperfection. This element of response is well explained by Mullainathan and
Thaler:

24We recall that the Cox Ross Rubinstein discrete time derivatives pricing is converging to the Black and
Scholes one when considering the time between two time-steps converging to zero. Proof has been given
by Cox et al. [19].
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“Behavioral Economics (...) investigates what happens in markets in which
some of the agents display human limitations and complications. We begin
with a preliminary question about relevance. Does some combination of mar-
ket forces, learning and evolution render these human qualities irrelevant?
No. Because of limits of arbitrage less than perfect agents survive and influ-
ence market outcomes.” – Mullainathan and Thaler [58], p.2

Finally, these two streams of research have the same starting point which is that assets
have a fundamental value (see definition 7). The latest is empirically and conventionally
considered to be equal to the discounted sum of future cash-flows. But in a surprising way,
these two complementary literature do not take the best from each other and often create
a gap between classical and behavioral finance as if their results could not be expressed
in a unique framework (i.e. as if they fundamentally disagree the other point of view).

From a theoretical point of view, financial economics is in most of the cases, micro-
funded by the behavior or utility functions of agents. The first chapter of this PhD thesis
is constructed with the idea that a more general framework can be expressed by micro-
funding it using not only the behavior or utility functions of agents but also the nature
and the structure of information itself. Of course, within this framework, both classical fi-
nance and behavioral finance could hold but not at a given time. A conceptual framework
unifying both streams of research named Adaptive Markets Hypothesis was developed by
Lo [51]. In such a model, agents evolve and are able to discern a posteriori their errors. As a
result, they correct their behavior with the objective of reaching the efficient one. The key
idea of this model is that agents have an evolutionary behavior and that they are pushed
to adapt themselves by the wish to survive the market. We integrate such an evolving pro-
cess into our model by considering that survival is the capability to execute an order. As
a consequence, agents try to guess the next transaction price (i.e. the next market price).
The need of a framework able to assess both the objective dimension of prices and the
subjective dimension of prices was early stated by Walter [77] who argue that the use of
Pareto laws can be a useful tool to this end. We propose in this work another tool, based
on computer sciences, to achieve this goal.

Then, information is a channel which can allow a conciliation between both streams
of research and to rethink the debate. This is the starting point of this PhD thesis: We aim
to identify what are the conditions for agents being able to integrate efficiently informa-
tion to prices, and we start from the nature of information itself. Later in chapter 2, we di-
vide information into two subsets: The effective information which can be rationally pro-
cessed by an algorithm, and the non effective information which can not be processed by
an algorithm (see definition 15 for a rigorous definition). For instance, a data-frame on the
harvest previsions can be processed by an algorithm. On the other hand, a central bank
governor statement must be at least partly processed by agents mind. On the first hand,
the classical finance usually considers perfectly rational agents combined to –implicitly
fully effective – information flows (also referred to as signals) leading to efficient financial
markets (for instance Vives [76]). On the other hand, the behavioral finance focuses on
the process of information by agents and often points at the limit of the market efficiency
through agents limited rationality or even irrationality (cf. Shiller [68]). This irrational-
ity takes many forms such as exuberance (cf. Shiller [69]), social moods (cf. Nofsinger
[59], and Olson [60] for a review), ... We assimilate the possibility of limited rationality
or even irrationality to the existence of non effective information, that requires a certain
process by agents’ mind only. Hence, a market can be non efficient according to agents
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rationality.25

Furthermore, information has evolved across time as explained in the previous section
1.1. Information sources are increasing more and more and transactions occur perma-
nently regardless of whether or not aggregate supply equals aggregate demand (O’Hara
[62], Schütz et al. [67], Tóth et al. [75]). Considering these facts, we are confronted to a
problem relative to the characterization of a financial market. Actual financial economics
is able to distinguish between an efficient market or not. However, does a non efficient
market display a price closest to the fundamental value than any agent alone ? This ques-
tion implies the definition of displaying “better” information than any agent separately.
Considering that series of prices result from agents anticipations when they process in-
formation and then pass sell or buy orders, Hayek studied the formation of prices, and
addressed the capability of markets to integrate information better than any agent con-
sidered individually (see Hayek [40]). In the wake of Hayek, we define the computational
strength of a financial market.

Definition 14. A financial market has a computational strength during a period of time if
and only if it better integrates information in the market price than any agent separately
during the period of time.

One can immediately see that if agents are perfectly rational, a market having a com-
putational strength is equivalent to having an efficient market, even if there is private
information. This very simple definition has a strong meaning: On a first hand, if a fi-
nancial market is not efficient, it is not enough to argue that it is useless. On the other
hand, a thought experiment suggests that if there is an agent able to better forecast the
fundamental value compared to the market on a given period, then it would be better to
let him/her evaluate the asset such as other agents would have to make their trade at the
price he/she gives (it could be an institutionally recognized analyst as well as a “simple”
trader). The framework developed in chapter 2 emphasizes the importance of the wish to
trade for determining the value of an asset (cf. Schaden [66]). This model also allows us to
consider agents not just as price takers, but also as price makers with a certain probability
(cf. Choustova [15]). As a consequence, agent’s atomicity cannot hold except if there is an
infinite n.o.a. The latest refinement is again the product of new tools whose starting point
is our perception of information and rationality.

Agent-based models are the most common tool to address the heterogeneity of agents
and to study how their interactions influence or determine prices on financial markets
(see for instance LeBaron [48] for a review of agents-based modelling in economics, Chakraborti
et al. [13] for a review of agent-based modelling in econophysics, Tesfatsion and Judd [72]
for a review of agent-based modelling in computational economics). The model built al-
lows us to consider a special case of heterogeneous agents’ interactions: Not only each
state of the market is determined by the set of agents’ expectations but expectations of
agents are – in turn – influenced by the state of the market, in a never ending movement.
Such a theoretical frame where we consider the human imperfection (which is not a syn-
onymous for irrational) in parallel to information which must be at least partly treated by
agents minds is appropriate to the study of the computational strength of the market.

New information arrives with increasing speed with technological advances, but also
the reduction of transaction costs. The number of sources of information also increases

25An almost similar segmentation of information can be find in the famous work of Hayek [39] under the
appellation of objective information and subjective information. He refers to objective information all the
facts and to subjective information all that is relative to agents minds.
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such that we can face exogenous sources of information and endogenous sources of infor-
mation. We also recall that information arrives at different frequencies in different mar-
kets. For agricultural commodity markets for instance, new information on the supply is
not as frequent as for the most liquid equity markets (cf. subsection 1.1.2). Hence, we
distinguish between financial markets whose information arrives essentially exogenously
to the transactions in the considered market, and financial markets whose information
arrives essentially endogenously to the transactions in the considered market.

The typology of information used in this thesis can be represented with the help of the
following table:

Exogenous Endogenous
Effective

Not effective

Table 1.3 – Typology of information

1.2.3 Some stylized facts influencing the information on financial mar-

kets

On financial markets, some facts or practices influence the release of information. Such
facts influence then, the fundamental values of the concerned assets as that value is con-
tingent to the information. We propose in this subsection a list – that we do not pretend
to be exhaustive – of such phenomenons. We present the way in which they are usually
studied in the literature but also, the principal results emerging from these studies.

The fragmentation of orders

The fragmentation of orders (cf. definition 9), that can be voluntary or forced, is a chal-
lenge for theoretical works as the simple fact of considering this practice prevents from
being in an equilibrium framework and to consider the price as being an equilibrium price
(cf. definition 13). The study of such a phenomenon can be generalized to the study of an
evolution in the trades frequencies, one dimension of the market liquidity. This question
is even more relevant when considering that the response of prices to quantities is not
linear, as early pointed out by Kempf and Korn [45] in their study of the intraday data on
German index futures and more recently by Tóth et al. [75] in their study of the futures
market.

Because sending an order to an order book provides information, prices react to it.
Hence, a stream of academic works started to investigate the problem of the optimal
placement of child limit orders (see for instance Bayraktar and Ludkovski [6], Hendricks
and Wilcox [41], Yam and Zhou [80]).

The fragmentation of orders, and equivalently the size of placed orders, are contin-
gent to some market characteristics. The empirical work of Ranaldo [64] on the Swiss
stock exchange underlies that the thinner the opposite side book is (opposite means the
buy side when a trader wants to sell and the sell side when the trader wants to buy), the
more patient traders place aggressive orders (i.e. large size orders). He also shows that or-
ders aggressiveness increases with a wider spread, and within temporary volatile periods.
The empirical study of Comerton-Forde and Tang [16] on the Australian stock exchange
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highlights that order aggressiveness declined with the introduction of anonymous trad-
ing. However, they show that the order book depth (i.e. the market depth) has also in-
creased, as well as the average limit order size. This is consistent with the fact that with
anonymity, agents convey less information and then are more incline to display their real
wish to trade.

The impact of the size of trades was then investigated. A major empirical work of
Easley and O’hara [24] shows that trade size can also be explained by an adverse selec-
tion. Informed traders are more inclined to trade large amounts at any given price when
relevant (i.e. when their private information induces a significant price variation). This re-
sult is consistent with the empirical study of Biais et al. [7], who shows that shifts in both
bid and ask quotes occur after large size transactions. Furthermore, Lin et al. [50] find
that the adverse selection component increases uniformly with trade size. Hence, traders
react accordingly to the displayed information. They integrated that large size orders of-
ten come from informed traders, and then, adjust their orders accordingly. An extension
of this relies on the frequencies of the trades that also convey information, as stated by
Easley et al. [25]. An empirical study of Easley et al. [26] also shows that information is
extracted from trading time intervals but also no-trading time intervals, in other words,
trades frequencies. These two dimensions of trading are parts of the volatility-volume re-
lation defined as a positive relation between prices volatility and trading volumes. The
empirical study of Chan and Fong [14] on the New York Stock Exchange (NYSE) and the
Nasdaq underlies a higher significance of the size of trades, beyond that of the number of
trades, in the volatility–volume relation.

Finally, the study of the impacts of orders fragmentation raises the question of the ex-
istence of an optimal frequency of trades. So far, to the best of our knowledge, this ques-
tion has only been treated by Du and Zhu [22]. This theoretical work is however micro-
funded with a double auction framework assuming that all wishes of economic agents
are centralized by an auctioneer who then determines the equilibrium price clearing the
market. However, as previously explained in subsection 1.2.1, this theoretical tool is more
adequate to a fixing pricing. Furthermore, in this work, information and signals about
the asset value are assumed to be exogenous to the market. Then, positive works on the
effect of an evolution in trades frequencies and normative works on the optimal trades fre-
quencies are necessary to improve the understanding of current financial markets where
trades frequencies evolve, particularly when considering that trades frequencies and size
also provide information themselves. Indeed, a crucial point is that trades frequencies
and sizes are a source of information for traders. Then, they also impact the fundamen-
tal value of the underlying asset. The same reasoning applies on agricultural commodity
markets. As stated by Working [78], transaction costs are structurally different between
the futures markets and the spot market of a given commodity. As a consequence, if liq-
uidity evolve on the two markets (due to orders fragmentation or not), it may not evolve
proportionally. To the best of our knowledge, no academic study deals with the latest
question.

The number of agents

Atomicity is one condition of pure competition. If atomistic, agents have no market power
and by definition, no impact on prices individually. They are said to be price takers. How-
ever, another interpretation of atomicity emerges when considering that agents actions
convey information. If a finite number of agents (n.o.a) is present on a (financial) market
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such that there is no atomicity, we can equivalently consider that each agent separately
convey a no redundant information when compared to the other agents. But if there is an
infinite n.o.a on the market such that there is atomicity, each agent separately conveys no
new information. Indeed, all information conveyed is redundant when compared to the
information conveyed by all the remaining agents. In other words, the consideration of
the absence of atomicity in markets also deals with the study of the information conveyed
by agents according to both dimensions that we introduced. The n.o.a influences the
presence of effective and non effective information that can be displayed endogenously
at a varying frequency. For instance, the more there are agents, the more information is
released with a high frequency (if agents display information asynchronously). Likewise,
the evolution of the n.o.a can naturally modify the relative quantity of effective and non
effective information.

This reasoning leads to numerous theoretical questions that are connected to some
empirical facts. For instance, the financial crisis of 2008 was followed by a spike of com-
modity prices, in particular on energy commodity markets and main agricultural com-
modity markets. The Masters’ hypothesis, referring to claims by investment manager
Michael Masters, argues that significant flows of cash coming from institutional investors
into commodity index funds is a possible explanation.26 Another way of understanding
the problem pointed out by Masters is that the entrance of a sudden n.o.a (i.e. a shock in
the n.o.a), has altered these markets’ efficiency.

A wide literature investigate both theoretically and empirically the impacts of intrinsi-
cally different economic agents but also the impacts of an evolution of the composition of
the market on financial markets and on commodity markets. On financial markets, sev-
eral kinds of typology of agents are used (as previously mentioned in subsection 1.1.1).

Hence, numerous academic works study the impacts of a change in the structure of
agents in a financial market, assuming that the n.o.a is fixed. Since the claim of M. Fried-
man that only irrational speculators are price destabilizing, a wide range of theoretical
works investigated the possibility of rational speculators to destabilize prices. The work
of De Long et al. [21] was one of the first (of a large series) to strongly invalidate this claim.
It lead to the distinction of several type of speculators, whose impacts were investigated.
Then, economists early studied how the market efficiency evolves according to the pro-
portion of chartists (cf. Lux and Marchesi [53]), or noise traders (cf. Lux and Marchesi
[54]), compared to fundamentalists traders on the financial market. These studies ar-
gued that the composition of the market matters, as the more chartists (respectively noise
traders) there are, the more episodes of high volatility are frequent.

The contemporaneous increase in the weight of the so called institutional investors
implied economists to introduce a new category of economic agents: institutional in-
vestors. They can be defined as traders who care about some prices indices and may have
a large amount of liquidity.27 If only the dimension of the large size of liquidity is selected,
we face a distinction between large traders and small traders, like in Glebkin [36]. In his
work, large traders do not act as price takers such that when increasing the market depth
of the market, they diminish the informational efficiency of the market. When consid-
ering that is their utility function they integrate the value of some prices indices, Basak
and Pavlova [4] showed that their presence induce an increase in indexed prices. Further-

26The testimony of Michael W. Masters before the Committee on Homeland Security and Governmental
Affairs of the United States Senate is available at the following link: https://www.hsgac.senate.gov/
imo/media/doc/052008Masters.pdf

27The OECD published in 1998 a consequent empirical study on institutional investors (see. Blommestein
et al. [10]).
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more, the more institutional investors represent a high proportion of the agents, the more
indexed prices increase.

Behavioral finance plays a major role in these studies. De Bondt and Thaler [20] early
showed the presence of overreaction traders in their study of NYSE monthly returns be-
tween 1926 and 1982. The major contribution of this work leads numerous theoretical and
empirical studies on the importance of such type of traders behavior. Among them Gar-
cía et al. [34] recently exposed that an increase in overconfidence makes rational traders
reduce their investment in information acquisition, the market price being less informa-
tive and not efficient in fine. Introducing a feedback loop between the information of
traders (composed with past prices, and some exogenous information) and the current
price through the price series, Wyart and Bouchaud [79] explain in this framework the oc-
currence of traders overreaction and show that it also leads to an excess volatility of the
price.

Another explanation of the behavioral finance is the possibility of having mimetic
traders, i.e. traders who consider past and present actions of other traders as the only
source of information. Orléan [61] early showed how mimetic contagion happens when
there is uncertainty. The latest pushes traders to copy the others as they are a certain
source of information. Topol [74] and Lux [52] also investigated the impacts of mimetic
contagion on prices. They respectively model the mimicry through the distance between
the actual returns to the average one, and the wish to "capture information not avail-
able for himself and that he expects to be known by other investors and included in their
prices" (Topol [74], p789). One of the most powerful tools to explain stylized facts on
financial markets such as excess volatility puzzle, volatility clustering addressed by the
behavioral finance is the Agent-Based Model as underlined in the work of Cont [17]. To
this extent, Barberis et al. [3] developed the X-CAPM model, able to consider not only het-
erogeneity between different types of traders but also heterogeneity within each type of
traders.

Last but not least, the heterogeneity between traders orders speed and their impact
on market efficiency have become an increasing field of research with the ongoing of high
frequency trading. As it is well explained in the work of Hoffmann [43], having the capa-
bility to place orders faster than other traders is a source of market power.

A particular attention was also given to commodity markets regarding the structure
of agents operating, starting with the impact of speculators. The famous work of Hart
and Kreps [38] early underscored the rational destabilization emerging from speculators
whose actions are the storage of commodity. Ekeland et al. [27], with the model they pro-
posed unifying the hedging pressure theory and the storage theory, highlight what are the
conditions for speculators to increase the benefits of hedging strategies. Finally, the major
commodity spike in 2007 and 2008 leads to some research on the impact of institutional
investors into prices. In the multi-commodity model that they build, Basak and Pavlova
[5] highlight the mechanism through which, the presence of institutional investors differ-
ent from the others by having a utility depending on wealth but also price index, lead to
an increase in all futures commodity prices – but even more for the indexed one – affect-
ing in turn all the associated spot prices for storable commodities. On these works, the
impacts on the fundamental commodity values are taken into account mainly through
the storage level which can be assimilated to the effective dimension of information. By
referring to the work of Du and Zhu [22], we recall that the more agents there are on a mar-
ket the higher optimal trade frequency on the (futures commodity) markets is. However,
we argue that frequency of displayed information is also impacted by an evolution of the
structure of the market in terms of agents. As a consequence, the frequency dimension of
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information released should be taken into account on markets whose information is not
necessarily continuous that is, on agricultural commodity markets for instance.

Ekeland et al. [27], with the model they proposed unifying the hedging pressure the-
ory and the storage theory, highlight what are the conditions for speculators to increase
the benefits of hedging strategies. Finally, the major commodity spike in 2007 and 2008
leads to some research on the impact of institutional investors into prices. In the multi-
commodity model that they build, Basak and Pavlova [5] highlight the mechanism through
which, the presence of institutional investors different from the others by having a utility
depending on wealth but also price index, lead to an increase in all futures commodity
prices – but even more for the indexed one – affecting in turn all the associated spot prices
for storable commodities. In these works, the impacts on the fundamental commodity
values are taken into account mainly through the storage level which can be assimilated
to the effective dimension of information. By referring to the work of Du and Zhu [22], we
recall that the more agents there are on a market the higher optimal trade frequency on
the (futures commodity) markets is. However, we argue that frequency of displayed infor-
mation is also impacted by an evolution of the structure of the market in terms of agents.
As a consequence, the frequency dimension of endogenous information released should
be taken into account on markets whose information is not necessarily continuous that
is, on agricultural commodity markets for instance.

Following the previous reflection, this thesis aims to answer the following question:

How do the nature and the structure of information affect the optimal pricing

algorithm to guarantee market efficiency and minimize fundamental prices

volatility ?

1.3 Thesis contributions to scientific literature

This work is an information based work, and the scientific research question mentioned
in section 1.2 can be decomposed in three stages. In chapter 2 we investigate the impacts
of a continuous and exogenous information that can be effective or not, within a mar-
ket where a LOB operates. A "big picture" of this chapter is given in subsection 1.3.1. In
the remaining of this manuscript, we will focus on agricultural commodity markets. The
following subsection 1.3.2 presents the chapter 3. That chapter deals with the specificity
of agricultural commodity markets that are translated into information properties. We in-
vestigate the impact of a variation in trades frequency, one dimension of the liquidity. The
last subsection 1.3.3 investigates the impact of an entrance of agents on the agricultural
commodity markets. Again, we model agents by their impacts on information properties.

Compared to our presentation of contemporaneous financial and agricultural com-
modity markets we highlight that we do not deal in this thesis with the multiplicity of
trading places – also called trading venues – as well as with dark pools and asymmetric
information.
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1.3.1 Investigating the impact of a continuous exogenous information

(effective or not) with a limit order book pricing algorithm (chap-

ter 2)

Markets where exogenous information arrives continuously must produce a price dynam-
ics whose frequency of variation is permanent. Thus, a LOB pricing seems adapted. It is in
this framework that we situate the first contribution of this thesis, starting from the theo-
retical work of Bretto and Priolon [11]. This approach takes advantage of some properties
of the formalism of quantum physics and specifically some of its probabilistic properties.
Then, each independent agent influences the price when s/he sends an order that is ag-
gregated in a central order book and each price influences in turn all independent agents
in a never ending process. In this work, information’s nature and structure is given by the
following table 1.4.

Exogenous Endogenous
Effective X

Not effective X

Table 1.4 – Typology of information used in chapter 2 (X represents the characteristics used)

Under our hypotheses, we demonstrate that if information is mainly or even fully
treatable using algorithms, a high frequency of trades allows the market to be semi-strong
efficient (information is publicly and freely available in the model). The capability of
the market to be semi-strong efficient fully depends on the nature and structure of in-
formation. We extend the outputs of the initial model by showing that under a moderated
growth of information that is non negligible compared to effective information, a bubble
appears, and ends up with a financial crisis (see chapter 2 for rigorous definitions of bub-
ble and financial crisis). We also introduce the concept of computational strength whose
closest formulation comes from Hayek [40], to the best of our knowledge, which allows
to distinguish between a computationally strong market and a no computationally strong
market; In a no computationally strong market there is always at least one agent who is
better at integrating relevant information into the price (its order price) than the market.
Figure 1.1 summarizes what the introduction of the concept of computational strength
changes to the description of a financial market.

In the light of this concept, within a period of bubble, the financial market can keep its
computational strength until the bubble turns into a crisis. Above this threshold, within
a financial crisis, it is impossible for the market to keep its computational strength. As a
consequence, above this threshold, a financial market is neither efficient nor computa-
tionally strong.

Aside this new concept and its theoretical consequences we also propose indicators of
the computational strength of a financial market that can be implemented by the financial
market regulator at several given real-time backward (since the computational strength is
computed on a given period).

We also develop the implications of the concept of market system introduced in Bretto
and Priolon [11]. We define the market system adequate to a perfect competition – with
a finite or infinite n.o.a. We proceed with simulations to show to what extent a VARMA
process estimation can be used to anticipate agents market power.

The main contribution of this work is that it gives another argument in favor of the im-
plementation of a LOB pricing for assets whose information arrives continuously. How-
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Figure 1.1 – Impact of the introduction of the computational strength concept on the characteri-
zation of a – financial – market.

ever, financial regulator must limit the sources of non effective information to avoid the
emergence of a bubble and its transformation into a financial crisis.

The next two chapters focus on agricultural commodity markets (cf. definition 11);
We consider that the financial commodity market is composed with futures contracts so
we do not study commodity swaps and option contracts.

1.3.2 Investigating the impact of trades frequencies on an agricultural

commodity market (chapter 3)

Agricultural commodity markets have a peculiar structure of information. Information
arrives with a relatively low and fixed frequency. The production is uncertain but not its
frequency. However, futures contract are priced with a LOB algorithm. However, the rel-
atively low frequency of new information diminishes the cost of losing liquidity as stated
by Du and Zhu [22]. Furthermore, we introduce the fact that a transaction generates, in
return, new information. Hence, information’s nature and structure are influenced by the
degree of liquidity on both spot and futures markets. The typology used in this work is
given by the following table 1.5.

Exogenous Endogenous
Effective X

Not effective

Table 1.5 – Typology of information used in chapter 3

Transaction costs of the underlying of a futures agricultural commodity contract (namely
the agricultural commodity itself) are higher than the transaction costs of the futures con-
tract, such that trades frequency on the spot market is significantly lower. However, one
can imagine that fundamental values have a synchronous dynamics. Figure 1.2 illustrates
the latest.
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Figure 1.2 – Representation of both the spot price and the futures contract price fundamental value
dynamics and real prices dynamics.
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Furthermore, the pricing algorithm used on the spot market is very different, as it is
computed as an average of several (but not necessary all) transactions prices. In our work,
we will assume that information of the spot market can be centralized by agents and that
each transaction modifies the market price. Despite the fact that the modification of the
spot market price at each transaction is a strong assumption, assuming that agents are
able to centralize the information relative to the spot market is adequate (cf. Simon [70]).
The basis (cf. definition 12) varies both according to futures price and to spot price. In
this work, we study the impact of such differences on the basis. We particularly focus on
the increase in liquidity resulting from fragmentation of orders, faster order transmission,
increase in the number of traders, that occurs on agricultural commodity markets; The
degree of liquidity results from trading behaviors as well as pricing methods and transac-
tion costs. We study the impacts of these strategies on the fundamental basis volatility. In
the wake of this study, we examine the impact of the increase in trade frequencies on the
efficiency of spot and futures markets.

We build an original and simple sequential pricing model in the spirit of Black and
Scholes [9], Cox et al. [19]. We demonstrate that the fundamental basis volatility can in-
crease even if the increase in liquidity is proportional on both markets. The idea is as
simple as it can be: Asynchronous trades on both spot and futures markets generate a
risk (according to the definition of Knight [46]). We prove and defend that synchroniza-
tion of transactions on agricultural commodity markets and a fortiori of the frequency
of these transactions can allow unbiased prices dynamics on spot and futures markets,
a sine qua non condition for having an efficient agricultural commodity market. Under
these conditions, the fundamental volatility of the futures contract is also minimal. Then,
a non-proportional increase in liquidity on spot market and futures market can increase
the volatility of information on the futures contract.

From these results, we extrapolate the existence of a trade-off between futures mar-
ket liquidity and either the fundamental basis volatility or the market efficiency. Indeed,
the optimal policy in order to minimize the fundamental basis volatility and maximize
the spot and futures market efficiency is to implement a pricing algorithm on the futures
market determining the market price at the same frequency than transactions on the spot
market.

1.3.3 Investigating the influence of the number of agents on an agricul-

tural commodity market (chapter 4)

In this chapter, we extend the model built in chapter 3. We introduce a parameter rep-
resenting the n.o.a and consider their impact on trades frequencies. As transaction costs
in these two markets are different (cf. Working [78]), the n.o.a can influence trades fre-
quencies in the two markets neither identically nor proportionally. In other words, agents
also influence the ratio between these trades frequency (namely the relative trades fre-
quencies). We also consider their impact on traded quantities which we assume to be
indirect (since trades size depends on adverse selection and information of each trader
as proved by Easley and O’hara [24]). We assume that the number of agents influence the
spot market information as "(...)market actions or choices convey information" – Stiglitz
[71], p.468.28 Each "new" agent is assumed to convey a not fully redundant information
when compared to the other agents. Again, a transaction generates in turn new informa-
tion. Last but not least, we consider in a first stage that agents correctly interpret avail-

28We could also link this idea with the rational destabilization mechanism in the work of De Long et al.
[21] that depends on the proportion of speculators.
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able information as well as they form rational expectations on the incoming information.
However, we later relax this assumption with the possibility of having underestimating
or overestimating biases. Hence, information’s nature and structure is influenced by the
n.o.a. The typology used in this work is given by the following table 1.6.

Exogenous Endogenous
Effective X

Not effective X

Table 1.6 – Typology of information used in chapter 4

In our work, we also consider that each transaction on the spot price is reported and
that the market price is modified accordingly. The basis (cf. definition 12) varies both
according to futures price and to spot price. In this work, we study the impact of such
differences on the basis. We particularly focus on the increase in the n.o.a, that we can
assimilate for instance to the entrance of institutional investors on the main agricultural
commodity markets in 2008. We study their impacts on the fundamental basis volatility.
In the wake of this study, we examine the impact of the increase in the n.o.a on the effi-
ciency of spot and futures markets. Our work is close to that of Glebkin [36] who showed
to what extent more large traders and then more market depth – a dimension of the liq-
uidity – can reduce the profit of every agent (small ones, and large ones).29 In the end, we
also consider that agents can form biased expectations on the spot market information
(see Thaler [73] to understand the impacts of all different types of biased traders). Even-
tually, we assume that this bias is corrected by the n.o.a acting on the market, i.e. the size
of the market. We defend this assumption by referring to Hayek [40]. The more there are
agents, the more the capability of the market to integrate information by agents economic
interactions increases.

We extend the simple sequential pricing model developed in chapter 3 and consider in
a first stage that agents form rational expectations and correctly interpret available infor-
mation. We demonstrate that the fundamental basis volatility can increase with the n.o.a.
The introduction of new parameters prevents us from having analytical solutions for most
of the subset of parameters values. In other words, there is in most of the cases, a manda-
tory trade-off between liquidity and the two objectives, according to the risk aversion of
the policy maker. We proceed with sensitivity tests to study the sensitivity of the optimal
n.o.a to the value of our parameters. In other words, we prove and defend that a finite n.o.a
coupled to the actual LOB pricing algorithm in financial markets is in most of the cases
optimal. If there are more agents than the optimal number however, the optimal pricing
algorithm may be a pricing algorithm reducing trades frequency on the futures market. In
other words, an entrance of agents on an agricultural commodity market can increase the
volatility of information on the futures contract and reduce the agricultural market effi-
ciency. When considering biased expectations and interpretation of information, we find
that underestimating bias and overestimating bias have asymmetric effects and are not
equivalent.30 Within an overestimating bias case, the difference in trade frequencies can
perfectly compensate the overestimation bias such that the spot price can be unbiased.
It is not the case within an underestimating bias case. The complexity of the problem
prevents us from having tractable analytical solutions. We proceed with sensitivity tests

29In his model, large traders receive an identical and exogenous private information. Small traders receive
a dispersed exogenous private information.

30The overestimating bias could have been named exuberance bias.
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to study the sensitivity of the optimal n.o.a to the value of our parameters. We study how
this a priori incentive – since the bias is a decreasing function of the n.o.a – to let agents
enter the market influences our results by comparing these sensitivity tests to the ones
with correct interpretations and rational expectations on the spot market information.

From these results, we confirm the existence of a trade-off between futures market liq-
uidity (which is an increasing function of the n.o.a on the agricultural commodity futures
market), and either the fundamental basis volatility or the agricultural commodity mar-
ket efficiency. This result is consistent with the one of Glebkin [36] who underscores the
trade-off between market liquidity (more exactly the market depth) and market efficiency
(namely informational efficiency in his work).
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Trading and Speed. The Journal of Finance, 71(1):335–382, February 2016. ISSN
00221082. doi: 10.1111/jofi.12302. URL http://doi.wiley.com/10.1111/jofi.

12302. 32

[33] T. Galanos. Order Book Visualization. Wilmott Magazine, 87:10–12, 2017. 30

53



CHAPTER 1. GENERAL INTRODUCTION

[34] Diego García, Francesco Sangiorgi, and Branko Urošević. Overconfidence and mar-
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2.1 Introduction

Our work is motivated by the following question: Do prices on modern financial mar-
kets fully and instantaneously reflect the huge, growing and accelerating flows of avail-
able information? If prices fully and instantaneously reflect information, then the market
is described as efficient. The market efficiency research programme proposed by Fama
[10], Fama et al. [11] fifty years ago has been reinvigorated because of the changes in the
nature and the "size" of information processed by economic agents. Information grows
more and more and transactions occur permanently regardless of whether or not aggre-
gate supply equals aggregate demand (cf. O’Hara [24], Schutz et al. [28], Tóth et al. [34]).
That evolution is a challenge for financial economists who:

"want to think of asset prices as being determined by the interaction of ratio-
nal agents – that is, as being determined as an economic equilibrium [...]" –
cf. LeRoy [23] (p.1584).

Agent-based models are the most common tool to address the heterogeneity of agents
and to study how their interactions influence or determine prices on financial markets
(see for instance Oldham [25]). In the model that we present below not only each state of
the market is determined by the set of agents’ expectations but expectations of agents are
– in turn – influenced by the state of the market, in a never ending movement.

For modern financial markets, the available information are mainly contained in the
order books that are permanently updated (cf. Cont and Larrard [6]). In addition, and
aside from past and present information, the series of order books provide a kind of in-
sight into agents’ expectations;

"In contrast to looking at the volume traded, which shows what already hap-
pened, the order book provides an insight into the intention of the traders" –
cf. Galanos [13] (p.10).

The order book contains agents decisions and we model it as a vector of information.
This idea is consistent with Stiglitz who argues that:

"(...) market actions or choices convey information. Market participants know
this and respond accordingly." – cf. Stiglitz [31] (p. 468)

Our conceptual framework spans three important fields of economics i) the formation
of prices ii) the market efficiency research programme iii) the economics of information.

Research about the formation of prices has produced some very significant results
(see Biais et al. [3] for a review). In our model, prices result from the resolution of an order
book which is regularly updated (cf. Cont et al. [7]). Series of prices result from agents ex-
pectations when they process information and then pass sell or buy orders. When Hayek
studied the formation of prices, he addressed the capability of markets to integrate in-
formation better than any agent considered individually (see Hayek [15]). In the wake of
Hayek, we call computational strength of the market the capability of the market to pro-
cess information better than any agent considered individually.

The computational strength of the market is indirectly studied by the market effi-
ciency research programme. Recall that a market is said to be efficient if all information is
instantaneously integrated into the price. Hence, if a market is efficient, it has necessarily
a computational strength. In this case, an agent can only "do as good as the market" but
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cannot "do better than the market" at integrating information into the price.1 This dis-
tinction leads to the following question: even if a market is not efficient, is it still better at
(correctly) integrating information than any agent alone? The latest does not implies that
if there is an agent doing "better than the market", s/he is making arbitrage operations.
S/he can be on the selling side with a price superior to the market price (her/his order
is not executed) and conversely. An illustration of the latest is the existence of rational
bubbles (cf. Diba and Grossman [9], Jang and Kang [19]).

Our work also deals with economics of information. More precisely, the research ques-
tion of this paper can be stated with the words of a synthetic work of Stiglitz (cf. Stiglitz
[31]) on the role of information:

"At the beginning of time, the full equilibrium was solved, and everything
from then on was an unfolding over time of what had been planned in each of
the contingencies. In the real world, the critical question was : How and how
well, do markets handle fundamental problems of information ?" – cf. Stiglitz
[31] (p.467)

Our research is partly based on a previous work (see Bretto and Priolon [4]); The use
of quantum tools allows to take the complexity of information into account (cf. Cotfas
[8]). The use of statistical tools to consider information complexity was early suggested
by Walter [36]. In our model, information is public and freely available at any time but
we introduce a crucial distinction: one part of it can be processed with the help of an
algorithm and it is called effective information but the other part cannot be processed
with the help of an algorithm and it is called non effective information. That latter part
has to be treated by agents’ minds directly.

Formally, we model the incorporation of information in a sequential order book af-
ter information has been processed by agents, and we give a mathematical status to that
information. Order book prices are considered as eigenvalues of a diagonal matrix that
influences the market. Therefore, order prices become mathematical objects that have
an influence on the market dynamics. In other words, an order book is not only a table
of prices and quantities, it also records the market dynamics, which, in turn, has an effect
on price’ dynamics. This framework emphasizes the importance of the wish to trade for
determining the value of an asset (cf. Schaden [27]). This model considers agents not
just as price takers, but also as price makers with a certain probability (cf. Choustova [5]).
From this consideration emerges what we refer to as the market system. The latest con-
tains information on the state of the market at each measurement of the market (measure
of traded quantities, measure of the new price and so on) and we can infer the statistical
market power of each trader in a way described below. For instance, the estimation of
the market system in a period of time and its prediction could help to study if the market
power of high frequency traders is significant compared to the one of slow traders accord-
ing to the work of Hoffmann [17].That model equally gives an original basis for formal
discussions about bubbles and crisis compatible with the existing literature. Finally, the
main theoretical question is: What are the conditions on the nature and on the relative
quantity of information in order to allow a financial market to be semi-strong efficient
or to be at least better at integrating correctly information into the price than any agent
considered individually?

1It means that we compare the financial market price considered to be the outcome of the market, and
the price entered by any agent individually into the order book of the same financial market. The first one
is the process of the financial market as a whole and the second is the process of one agent considered
individually.
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Section 2.2 presents all the hypothesis of the model and mathematical tools used while
section 2.3 underlines some of its intermediary outcomes. In section 2.4 we study the im-
pact of the nature and the structure of information on the characteristics of the financial
market. We demonstrate that information can generate a bubble or even a financial crisis.
We also study within each case, what is the computational strength of the market. Section
2.5 provides some possible applications of this theoretical model for trader on the first
hand, and for policy maker in the other hand. We conclude in section 2.6.

2.2 The model

We consider an order driven financial market on which one single asset is traded over a
period that we denote [0;T] ⊂N. We then denote t every instant of time when one trade
occurs with t ∈ [0;T]. The market evolves continuously under the influence of what we
call the market system (see subsection 2.3.2) but prices pt , quantities qt etc. are discrete
values observed at time t . Without loosing generality, we normalize any time interval
[t1; t2] by [1; t ].

In subsection 2.2.1 we define in a natural way the information nature and in a rigor-
ous way how we model it. Then, subsection 2.2.2 provide all the assumption we need
to model agents decisions. In subsection 2.2.3, we provide a definition and some useful
insight of what we call the market system to understand how we apprehend the market dy-
namics. Once the information based market is settled, we respectively define in a proper
way the fundamental value of the asset in subsection 2.2.4, and what we call a semi-strong
efficient market in subsection 2.2.5. By extension the latest subsection provides a formal
definition of a financial market in crisis or in a bubble. Subsection 2.2.6 provide a concep-
tual and formal definition of a market endue with a computational strength. At the end,
we provide some pure mathematical definitions that we need to extract results of such a
model in subsection 2.2.7.

2.2.1 The information’s nature

We denote by I([ti ; ti+1[) the information that is released during the period [ti ; ti+1[⊂ [0;T] ⊂
N. We suppose that I(;) =;, and also that all information is publicly and freely available;
However agents don’t know perfectly the future.

An information parameter of the market denoted by pa is represented by a function
capable of changing the state of the market through what we call the market system (see
below). Let the following function define and model those parameters:

pa : I ⊆ [0;T] ⊂N → V
t 7→ pa(t )

The set V is a linear space (with a finite dimension), and I is the union of disjoint seg-
ments.

We now distinguish a typology of the nature of information itself.2

Definition 15. Information parameters are characteristics of the market. They can be:

2A similar typology can be found in the work of F. Hayek, who uses the terms objective and subjective
information.
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(i) Effective information parameters if an algorithm can process it and produce a deci-
mal expansion with it (a price for instance);3

(ii) Non effective information parameters if not.

Financial economics are mainly divided into two streams of research and our dichoto-
mous typology of the nature of information can be understood by these two streams of
research. On the first hand, the classical finance theoretical framework usually considers
perfectly rational agents combined to –implicit– fully effective information flows leading
to efficient financial markets (for instance Vives [35]). On the other hand, the behavioral
finance theoretical framework focuses on the process of information by agents and of-
ten points at the limit of the market efficiency through agents limited rationality or even
irrationality (cf. Shiller [30]).

Both types of information parameters denoted by e f and ne f are represented by func-
tions capable of changing the market system. Let the following functions define and
model those parameters:

e f : I ⊆ [0;T] → V
t 7→ e f (t )

The function e f is an effective information parameter function belonging to the piece-
wise class C1.

ne f : I ⊆ [0;T] → V
t 7→ ne f (t )

The function ne f is a non effective information parameter function belonging to the
piecewise continuous functions class.

These two types of parameters have an impact on agents’ expectations (see Lang [21,
22], Rudin [26], Weihrauch [37]). This typology distinguishes information that can be
treated by an algorithm (for instance entering the volatility measure into the Black-Scholes-
Merton formula) from the information that can only be processed by the economic agent’s
mind (for instance the speech of a central bank governor). The structure of information
has a crucial role on the capability of economic agents to process it and in fine on the
capability of the market to be semi-strong efficient.

We denote respectively the linear space on R formed by the set of information pa-
rameters of the market, the linear space on R formed by the set of effective information
parameters of the market and the linear space on R formed by the set of non effective in-
formation parameters of the market equipped with zero function by PA (I;V), EF (I;V)
and N EF (I;V).

2.2.2 The individual decisions

Let i ∈ {1,2, . . .n} denote the i th agent acting on the market. Hence, n is the number of
agents on the market and n is also the rank of the order book. Agents stand for an or-
thonormal basis of the Hilbert space (denoted by ei ,∀ i ∈ {1, ...,n}) that constitutes the

3We recall that a real number is called effective, if there exists at least an algorithm which can produce its
decimal expansion.

62



CHAPTER 2. THE NATURE AND THE STRUCTURE OF INFORMATION EVOLVE: DO

FINANCIAL MARKETS REMAIN EFFICIENT ?

market, denoted by H .4 This point is very important in the model: A market is not an ex-
ternal object with an auctioneer processing information centrally according to the wish to
trade of agents. A market exists because agents are acting, they enter orders into the order
book. This view is consistent with the reasoning of agent based model (cf. Tesfatsion [32])
but also with the point of view of F.A. Hayek who defines the market as:

" (...) A system of the utilization of knowledge which nobody can possess as
a whole, which (...) leads people to aim at the needs of people whom they do
not know, make use of facilities about which they have no direct information;
all this condensed in abstract signals – cf. Hayek [16] (p. 80).

These agents are heterogeneous, independent, rational and equally informed. They
may be for instance portfolio managers who must optimize the risk-adjusted performance
of their portfolio (cf. Sharpe [29]); these agents have heterogeneous constraints so they
do not necessarily take homogeneous decisions even if they have the same analysis of the
state of the market. The objective function of any agent is simply defined: any successful
adjustment of the portfolio increases the gains of the portfolio manager. In other words
any manager must try to guess at what price the next trade will occur if s/he wants her/his
order to be executed.

At any given time t ∈ [0;T], each agent must make one decision which is entered into
the order book of the market and is treated at instant t : i can enter a sell order, a buy order
or choose to send no order. If the order fits with the instantaneous state of the market,
then it is executed. If the order does not fit, it is canceled. If i wants to repeat an order
which has not been executed, s/he must enter it again. Each agent has full and free access
to the set of information I([0; t ]) at time t . We call Mi ,t the model which allows i to decide
which order s/he will enter for execution at time t . This model is defined by a function
(see below). Agents may be heterogeneous; they do not need to use the same model to
process the economic information. The agents’ models are time evolving because agents
are able to adapt and improve regularly the model they use. Hence, the couple (i ;Mi ,t )
may be seen as an oracle machine. We write Ei

(
p̃t

)
= Mi ,t (I([0; t ])), where Ei represents

the expectation of agent i once s/he has processed information. The Mi ,t is a combination
of two components at time t :

(i) The effective dimension of the model denoted by Me f
i ,t . Agent i uses it to analyze the

effective subset of available information at time t , such that Me f
i ,t (I([0; t ])) =µi ,t ;

(ii) The non effective dimension of the model denoted by Mne f
i ,t . Agent i uses it to an-

alyze the non effective subset of available information. This means that the agent

has to rely on a qualitative judgment, such that Mne f
i ,t (I([0; t ])) = κi ,t .

Then, Mi ,t (I([0; t ])) = Ei
(
p̃t

)
= µi ,t +κi ,t . The well known dichotomy between clas-

sical finance and behavioral finance can be viewed with the help of that typology of in-
formation. Implicitly, classical finance considers almost only effective information under
scrutiny, and agents process it uniformly; in behavioral finance information is not totally
effective and it is not perfectly processed by agents. As we theorize the two kinds of infor-
mation in the same analytical framework we are able to jointly consider the two research
programmes.

4Within an economic reality, agents need to make calculations but we do not know in advance what
kind of calculations they have to do. They may be analytical, geometrical, topological, and so on. For this
purpose, we situate the economy and by extension the financial market in a Hilbert space where all types of
calculations can be done.
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At time t , n orders are entered looking for being executed. If at least one order is
compatible with the state of the market, a quantity qt is traded at the price pt . Prices and
quantities are quantifiable properties of the market (see below). mh

Definition 16. A quantifiable property (or quantifiable for short) of a market is a char-
acteristic of this market that can be evaluated, measured, read, . . . at time t . For instance
prices, quantities, discount rates, dividends, . . . are quantifiable properties. We denote them
by Qt (Q when there is no ambiguity).

Remark 1. As stock prices are positive real number, eigenvalues of the quantifiable price
also are. Hence the quantifiable matrix is positive-semidefinite.

To each order book we associate a diagonalized matrix assumed to be a quantifiable
Qt that acts on H ; the only possible outcome of the measurement of the quantifiable is
one of its eigenvalues. In other words, the next market price is necessary one of the price
that agents entered in the order book.

2.2.3 The market system

The concept of market system, denoted mst (ms when there is no ambiguity), is at the
heart of the model. We call market system a mathematical function which explains the
market dynamics over time. We consider that over [0;T], pt and qt form discrete se-
quences, whose properties are determined by ms. Then, a market is completely defined
at time t by a unitary vector mst belonging to the Hilbert space denoted by H .

Definition 17. Let Q be a quantifiable property of a market system whose eigenvectors are
(ei )i∈{1,2,...n}, an orthonormal basis of H . Hence, the market system is defined as follows:

mst =
∑

i
βi ,t ei , with βi ,t ∈ ]0,1] ⊂R+∀ (i , t ) , and

∑

i
βi ,t = 1 (2.1)

The probability that the result of the measurement of the quantifiable Qt at time t be
E j

(
p̃t

)
is then

∑n
i=1 1{Ei (p̃t )=E j (p̃t )}βi , where

∑n
i=1 1{Ei (p̃t )=E j (p̃t )} gives the number of eigen-

vectors linearly independent (i.e. the number of independent agents) associated with the
eigenvalue E j

(
p̃t

)
(i.e. the number of agents who entered on the order book an order at

the same price E j
(
p̃t

)
). In other words:

Pr(Measurement of Qt = E j
(
p̃t

)
) =

n∑

i=1
1{Ei (p̃t )=E j (p̃t )}βi

Eigenvalues are the predictions of agents, the price they enter in the order book; There-
fore, they have a probability strictly positive to be the measure of the quantifiable. These
probabilities give the coefficients of the vector ms. This shows that:

(i) The state of the market influences agents’ decisions because agents process the in-
formation they have on the state of the market;

(ii) All agents’ decisions modify the state of the market.

We extend this definition to define the effective market system denoted by mst ,e f (mse f

when there is no ambiguity), and the non effective market system denoted by mst ,ne f

(msne f when there is no ambiguity), such that:

mst ,e f =
∑

i β
′

i ,t ei with βi ,t ∈ ]0,1[ ⊂R+∀i , t and
∑

i βi ,t = 1

mst ,ne f =
∑

i β
′′

i ,t ei with βi ,t ∈ ]0,1[ ⊂R+∀i , t and
∑

i βi ,t = 1
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These different market systems have different coordinates βi ,t at time t (i.e. mst 6= mst ,e f 6=
mst ,ne f ). Despite the market system, ms, gathers theoretically all available information,
the effective market system, as well as the non effective market system only gather respec-
tively the effective part of information and the non effective part of information. There is
obviously a relation between those market system and their coordinates but we cannot
extrapolate it.

Remark 2. The market system is linked to the notion of market power and by extension
the degree of competition. If at a given period, the market system is such that βi = 1 and
β j = 0 ∀ j 6= i , j ∈ {1,n}, the market power of agent i is maximum, and others agent have
no market power since only agent i is able to influence the market price. We denote with
the exponent c characteristics of the perfect competition. A perfect competition situation
is then characterized by the following property:

(i) For a finite number of agents n, βc
i = βc = 1

n ∀i ∈ {1,n};

(ii) For an infinite number of agents (n →+∞), βc
i = βc = lim

n→+∞
1
n = 0 ∀i ∈ {1,n}.

This tool is consistent with the following reasoning:

"In [the] model, [Fast Trader]s are able to avoid being adversely selected. How-
ever, because agents trade directly with each other in a dynamic setting, this
effectively increases their market power and allows them to extract rents from
slower market participants." – cf. Hoffmann [17] (p.157)

Despite we do not integrate an adverse selection mechanism, the market system allows to
determine whose agents have statistically the more influence on prices and by definition,
whose agents have statistically the more market power.

2.2.4 The fundamental value

In order to define precisely the concept of market efficiency (see below subsection 2.2.5),
we first need to define or assume what the price of the asset should be, its so called fun-
damental value.

Definition 18. The fundamental value of the asset at time t , or equivalently its best possible
evaluation at time t , is equal to the processing of effective information parameters by the
economic agent (= the oracle machine) whose order is executed (= who gives the measure of
the quantifiable price) at time t .

Then, if the measure at time t of the quantifiable price is given by agent i , denoted by
Ei

(
p̃t

)
, the fundamental value at time t of the quantifiable price is given by the processing

of effective information by agent i ’s algorithm, denoted by µi ,t .

This definition is fully compatible with that of Fama [10], but is also a response to the
main critics that can be addressed to the standard definition of the fundamental value as
being the discounted value of future cash-flows (see Walter [36] for a review). We assume
that all information represent everything that may happen, i.e. the set of all possible out-
comes. The effective information can be processed by an algorithm and the non effective
information represents everything else and must be treated by human mind. However, no
agent can perfectly evaluate the probability of occurrence of any event that may happen.
Under that definition, the fundamental value of an asset results from the processing of
the effective information.

65



CHAPTER 2. THE NATURE AND THE STRUCTURE OF INFORMATION EVOLVE: DO

FINANCIAL MARKETS REMAIN EFFICIENT ?

2.2.5 The market semi-strong efficiency, the financial market crisis, and

the bubble

We can now give a formal definition of a semi-strong efficient market.5

Definition 19. A semi-strong efficient market between 1 and t is such that if the price at
time k is given by any agent ik (i.e. pk = Eik

(
p̃k

)
), we have:

∣∣Eik

(
p̃k

)
−µik ,k

∣∣≤ ǫik ,∀k ∈ [1; t ], with ǫik "small" 6 (2.2)

Then, we call semi-strong efficient a market in which, prices and other quantifiables be-
long to a neighborhood of their fundamental value over the period that is considered.

Latest definition allows the study of the conditions on the nature and relative quantity
of information which ensure that a market is semi-strong efficient.

We also define financial crisis as being a market whose characteristics are the oppo-
site of a semi-strong efficient market. We consider a financial crisis as a period where
the financial market (all quantifiable whose eigenvalues are positive) is as far as possible
of a semi-strong efficient market (i.e. as far as possible of a perfect market). The latest
assumption can also be understood as a financial market where there is a radical uncer-
tainty about the valuation of the asset.

Definition 20. A financial crisis is a period of time in which prices and other quantifiables
(whose all eigenvalues are positive) belong to a neighborhood of their non effective value. If
the price is given by the agent i at time t (i.e. pt = Ei

(
p̃t

)
), then, a market is in crisis at time

t if we have:
∣∣Ei

(
p̃t

)
−κi ,t

∣∣≤ ǫi , with ǫi "small" (2.3)

From this definition we have the real market system which is mspa , the semi-strong
efficient market system which is mse f , and the crisis market system which is msne f , such
as defined in subsection 2.2.3.

Our model makes it possible to give a formal definition of a bubble that is fully com-
patible with classical definitions given in Abreu and Brunnermeier [1], Allen and Gale
[2], Hugonnier [18], Tirole [33]. A bubble is commonly defined as an excessive spread be-
tween the market price and the fundamental value of the asset traded in this market. We
translate this definition by considering that if the financial market is neither semi-strong
efficient or in a crisis, it is in a bubble.7

Definition 21. A bubble is a period of time B ⊆ I such that ne fi (k) 6= o(e fi (k)) ,∀k ∈ B
for some i ∈ {1,2,3, . . .n}. We assume that the non effective parameters follow a moderate
growth with time such that:

ne fi (k) =O

((
e fi (k)

)k
)

(2.4)

5It is called semi-strong efficient because there is no private information (see Fama et al. [11]).
6In this case, the neighborhood is defined by a classical topology on R.
7Of course we can consider that a financial market in crisis is by extension within a period of bubble.
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2.2.6 The computational strength of the market

The concept of computational strength takes its origin in Hayek [15]. We now give it a
formal definition but we first need an intermediary function. Let (x1, . . . , xt ) ,

(
µ1, . . . ,µt

)
∈

R+t . We compute the sum of the inverse of distances between a source x whose funda-
mental value is µ and we add an ǫ to that distance (ǫ is "small"), powered by a factor s,
s ∈ S ⊂ R+\0. This function, denoted by ζx , is a spectral zeta function, and it is strictly
decreasing with the distance between the source and its fundamental, such that:

ζx : S× [1;T] → R

(s, t ) 7→ ζx(s, t ) =
∑t

j=1
1

(ǫ+|x j−µ j |)s
(2.5)

Among other possible refinements, the use of the spectral zeta links the sum of dis-
tances’ inverse to the determinant of the distance matrix between the source x and its
fundamental µ.8 By using this general function, we then give a basis to further definitions
of the computational strength.

Definition 22. The computational strength of the market between 1 and t, denoted by C,
is measured by the following function :

C : S× [1;T] → R

(s, t ) 7→ C(s, t ) =
{

ζp (s, t )−maxi ζi (s, t ) i f ζp (s, t ) 6= maxi ζi (s, t )
0 i f ζp (s, t ) = maxi ζi (s, t )

(2.6)

where p denote the price vector among time (i.e.
(
p1, p2, ..., pt

)
) and i the measurement of

quantifiable price by agent i vector among time (i.e.
(
Ei

(
p̃1

)
,Ei

(
p̃2

)
, ...,Ei

(
p̃t

))
).

The computational strength studies the information integrated by the price relatively
to its fundamental value and compare it to the agent that instantaneously integrates in-
formation at best relatively to the fundamental value. When an agent is able to anticipate
the fundamental price with more accuracy than the market on the period on average,
then the market has no computational strength (i.e. there is a computational strength
when C(s, t ) ≥ 0). Again an agent can expect with more accuracy the fundamental value
of a price without making profit. A counter example is the existence of rational bubbles.
An agent correctly expecting the fundamental price is going to loose money against every
remaining agents. This distinction is a pragmatic one. When agents are perfectly ratio-
nal and information is totally effective, a market logically becomes a useful tool and even
becomes efficient.9 However, if agents are not perfectly rational and information is not
fully effective, can the financial market be efficient ? And if not efficient, is it equivalent to
say that the market is useless ? The computational strength concept aims to highlight the
spread between our theoretical understanding of what is a perfect market and what is a
useless market. One can imagine that in some cases, a market can be useful is displaying
information better than any agent separately without being perfect when agents are not
perfectly rational and information is not fully effective.

8Let H be a matrix whose eigenvalues are λi , i ∈ [1;n]. We associate the spectral zeta function to these
eigenvalues (ζ(s)) =

∑n
i=1

1
λi

s . Then we have det (H) = exp(−ζ′(0)).
9In fact the following logic is a tautology. If each agent is perfectly rational and information is totally

effective and freely available, the market is useless. All agents have access to all information. They can then,
compute the fundamental value alone without interacting with each other which is the aim of a market.
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2.2.7 The mathematical formalism

In the sequel of the chapter we use mathematical tools that are not commonly used in
financial economics. These tools are not introduced for superfluous refinement but be-
cause we need to express some properties that are essential in our view:

• The state of the market at time t influences the decisions of agents;

• The decisions of agents modify the state of the market;

• We need a measure to make comparisons between different states of the market;

• We give a mathematical status to the notion of information.

In the sequel, map is equivalent to function.
This subsection is exclusively dedicated to a set of mathematical preliminaries and defi-
nitions which have no direct economic meaning but are necessary to develop the model
and to study its properties.
Our main task is to give a mathematical definition of what almost everywhere precisely
means: we define a measure that makes it possible to compare situations in which the
market is driven by effective parameters to situations where non effective parameters be-
come determinant. These two types of parameters have an impact on agents’ expecta-
tions. For more precision see Lang [21, 22], Rudin [26], Weihrauch [37].

Measure space

In the model, we need to use a measure space in order to compare different sets or sub-
sets. The object of this subsection is to give a definition of this type of space.

Let S be a non-empty subset of the power set of X closed under the union of pairs of
sets and under complementary set with X belonging to S . The couple (X;S ) is called a
field of sets or an algebra of sets. In other words (X;S ) is an algebra of sets if :

1) X ∈S ;

2) If A ∈S then A ∈S , where A = X \ A;

3) If A,B ∈S then A∪B ∈S .

Let X be a set and F ⊆ 2X; F is a σ-algebra if it verifies:

1) X ∈F ;

2) If A ∈F then A ∈F ;

3) If (Ai )i∈I is a countable family of elements of F then
⋃

i Ai ∈F .

The set (X;F ) is called measurable space. It is rather easy to prove the following:

Lemma 1. Let X be a set and let (S )i be a countable family of algebras of sets (resp. a
countable family of σ-algebras) on X, then ∩i Si is an algebra of sets (resp. is a σ-algebra).
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Let X be a set and F ⊆ 2X; the algebra of sets generated (resp. the σ-algebra generated) by
F is the intersection of all algebras of sets (resp. of all σ-algebras) containing F .

Let I = {I = [a,b[: [a,b[⊂R}. We will denote by B(R) the σ-algebra generated by I .

Let F be an algebra of sets (a σ-algebra) over a set X. A function µ from F to [0;+∞[
is called a measure if it satisfies the following properties:

a) Null empty set: µ(;) = 0;

b) Countable additivity (or σ-additivity): for all countable collections {Ai }i∈I of pair-

wise disjoint sets in F , we have µ
(⋃

i∈I Ai

)
=

∑
i∈Iµ(Ai ).

A measurable space (X;F ) with a measure µ is called a measure space; we denote it by:
(X;F ;µ).
Let (X;F ;µ) be a measure space; a subset Y of X is negligible if there is an element A ∈F

such that Y ⊆ A and µ(A) = 0.
For A ∈ X, if µ(A) <+∞ we say that A has a finite measure.

Let (X;F ;µ) be a measure space, then the measure µ is called finite if µ(X) is a finite
real number; the measure µ is called σ-finite if X can be decomposed into a countable
union of measurable sets of finite measure.

Properties true almost everywhere

Let (X;F ;µ) be a measure space. Let P(x), x ∈ X be a property on (X;F ;µ); This property
is true almost everywhere, (denoted by Pa.e.(x)) if the set Y = {x ∈ X} where this property is
not true is negligible i.e. there is A ∈F such that Y ⊆ A and µ(A) = 0.

Let
f , g : I ⊆ [0;1] −→ V

be two functions and V be a topological space.

The function f is negligible compared to the function g at a ∈ I if there is a neighbor-
hood W of a and a function

ǫ : W −→ V
t 7→ ǫ(t )

such that for all t ∈ W,
f (t ) = ǫ(t ).g (t ), limt−→a ǫ(t ) = 0 and limt−→a g (t ) 6= 0. We will denote this by f = o(g ).

We say that the function f is negligible compared to the function g almost everywhere
on I ⊆ [0;1] if there is a sequence (ak ), ak ∈ I and a sequence of neighborhoods (Wak ) with
I ⊆

⋃
ak

Wak where f is negligible for all ak ∈ I except on a set Y ⊆ I where there exists a
measure µ such that Y is negligible for µ.

We denote this by f = oa.e.(g ).

A function f is equivalent to a function g , denoted by f ∼ g at a ∈ I if there is a
neighborhood W of a and a function ǫ defined as above such that for all t ∈ W, f (t ) =
(1+ ǫ(t )).g (t ), limt−→a ǫ(t ) = 0. This relation is an equivalent relation. It is easy to see that
( f ∼ g ) ⇐⇒ ( f − g = o(g )) ⇐⇒ (g − f = o( f )). In the same way as above we say that a
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function f is equivalent to a function g almost everywhere on I ⊆ [0;1]; we will denote this
relation as follows: f ∼a.e. g .

Naturally we can extend these definitions to vector functions; it is enough to check the
conditions for all coordinates
( f1(t ), f2(t ), . . . fk (t )), where k is the dimension of the vector space.

More generally let H be a space of vectors with 2 bases (e1,e2, . . .en) and (a1, a2, . . . an);
two vectors depending of a variable t , (for example the time) are equivalent at t : v(t ) ∼
w(t ) ⇐⇒

∑n
j=1β j e j ∼

∑n
j=1α j a j if and only if β j ∼ α j and e j ∼ a j , (we drop the variable t

in order to alleviate the notation).

Piecewise effective functions

An algorithm is a finite sequence of finite instructions.
Recall that a real number is called effective, if there exists an algorithm which can pro-

duce its decimal expansion. By extension a complex number is effective if there exists an
algorithm which can produce the decimal expansion of both the real part and the imagi-
nary part. These definitions can also be extended to a vector function.

Let f : X −→ Y be a function such that X is a set of effective elements (real, complex,
vectors, . . . ). This function f is effective if ∀z ∈ X, f (z) is effective, i.e. the ordered pair
(z; f (z)) is an ordered pair of effective numbers for all z in the domain of f . We will also
say that f is computable. Note that we can combine this definition with the definition of
almost everywhere to get a definition of an effective function almost everywhere.
Addition, multiplication and composition of effective functions are effective functions.
Moreover, addition, multiplication,. . . of effective reals, complexes, vectors are effective
reals, complexes, vectors. So the set of real numbers, (complex numbers) forms a field
denoted by Re f , (Ce f ).
The zero function will be denoted by O: for all x in the domain of O, O(x) = 0.
A function f is piecewise effective on [a,b] if there exists a subdivision (ai ) of [a,b] such
that the restriction of f to each ]ai , ai+1[ can be prolonged by an effective function on the
corresponding closed set [ai , ai+1].

2.3 The intermediary outcomes of the model

In this section, some interesting intermediary outcomes of the model are discussed. In
subsection 2.3.1, we present an interesting result concerning the structure of information,
induced by our assumptions. In subsection 2.3.2, we use our framework to equivalently
define the market system as in subsection 2.2.3. Finally, we discuss in subsection 2.3.3 the
implications of our formalism concerning the interactions between quantifiables and the
market system.

2.3.1 The information’s structure

The linear spaces formed by the set of information parameters, the set of effective infor-
mation parameters, and the non effective set of information parameters are such that:

PA (I;V) = EF (I;V)⊕N EF (I;V)
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Proof. This proof is fully extracted from Bretto and Priolon [4].
The sum and the product by an effective number of effective information parameters

(effective functions) is an effective information parameter;
The sum and the product by an effective number of non effective information parameters
(non effective functions) is a non effective information parameter;
The sum and the product by an effective number of functions in piecewise class C

1 be-
long to piecewise class C

1.
So, these sets form linear spaces. It is the same for piecewise continuous functions.

Moreover, we have: EF (I;V); N EF (I;V) ≤PA (I;V).

An effective information parameter is not a non effective information parameter and
a non effective information parameter is not an effective information parameter. Hence,
EF (I;V)∩N EF (I;V) = {O}.

Any information parameter can be expressed as the unique sum of two components.
These two components are independent. For all parameters of the market system:

pai = e fi +ne fi

Where pa ∈ PA (I;V), e f ∈ EF (I;V), and ne f ∈ N EF (I;V). Let Qt be a quantifiable
property at time t ∈ I. To this quantifiable, we can now associate 3 linear operators: Qt ,pa ,
Qt ,e f and Qt ,ne f (Qpa , Qe f and Qne f when there is no ambiguity).

2.3.2 The market system

Let (pai )i∈{1,2,...n} be a family of parameters and (e fi )i∈{1,2,...n} (resp. (ne fi )i∈{1,2,...n}) be a
family of effective parameters (resp. non effective parameters) such that (pai )i∈{1,2,...n} =
(e fi )i∈{1,2,...n} + (ne fi )i∈{1,2,...n}. We can redefine a market system as a function f in the fol-
lowing way:

pa : [0;T] → Vn

t 7→ pa = (pa1(t ), . . . , pan(t ))

And:
f : Vn → H

(pa1(t ), . . . , pan(t )) 7→ f (pa1(t ), . . . , pan(t )) = f (pa, t )

The value of f (e f1(t ), . . . ,e fn(t )) = f (e f , t ) is the effective market system and the value of
f (ne f1(t ), . . . ,ne fn(t )) = f (ne f , t ) is the non effective market system. To each time t fixed,
when there is no ambiguity we can write ms = f (pa) (idem for mse f = f (e f ) and msne f =
f (ne f )). Hence we can assimilate a market system either to a vector or a function.

Remark 3. Since these n vectors are unitary, a market system is described on a sphere of
dimension n called market sphere either by a vector (see definition in subsection 2.2.3) or a
point (see present subsection).

Let Qt be a quantifiable price whose reading gives the eigenvalue E j
(
p̃t

)
at time t .

Then the state of the market instantaneously becomes:

f
(
pa, t

)
=

1∑n
i=1 1{Ei (p̃t )=E j (p̃t )}βi

n∑

i=1
1{Ei (p̃t )=E j (p̃t )}βi ei (2.7)

71



CHAPTER 2. THE NATURE AND THE STRUCTURE OF INFORMATION EVOLVE: DO

FINANCIAL MARKETS REMAIN EFFICIENT ?

If the reading of the quantifiable price Qt is the eigenvalue E j
(
p̃t

)
at time t , then the

market system is in the vector space spanned by the eigenvectors associated to the eigen-
value E j

(
p̃t

)
; That is, in the vector space spanned by agents that gave the same expecta-

tion of the next measure of the quantifiable price.

An illustration of this result can be the following: Suppose that a bookmaker knows
that a great champion runs in a race, her/his prognostication is that s/he will win the race
with a probability of 90%. A few minutes before departure the bookmaker learns that this
great champion just suffered a slight sprain, then her/his anticipation that this champion
wins the race passes instantaneously from 90% to nearly 0%.

Remark 4. This intermediary outcome applies to all market systems ms, mse f and msne f

(cf. subsection 2.2.3).

2.3.3 The interaction between quantifiables and the market

Let P be the quantifiable price and let Q be the quantifiable quantity. What happens the
quantifiable price is measured before the quantifiable quantity? What happens if it is the
opposite?
Both P and Q are positive-semidefinite diagonal matrix. These two matrix are commu-
tative, i.e. P .Q = Q.P if and only if these matrix are diagonalized in the same basis of
eigenvectors, i.e. if there is {ei , i ∈ {1,2, . . .n}} a basis of eigenvectors such that P .ei = λi .ei

where λi is an eigenvalue of P and Q.ei =µi .ei , where µi is an eigenvalue of Q. It means
that the eigenspaces of P are invariant under the action of Q and conversely. Indeed
P .Q.ei =Q.P .ei =Q.λi .ei = λi .Q.ei . Hence Q.ei is an eigenvector of P .

Another interpretation is that at time t the action of Q.P on the Hilbert space H is
exactly the same as the action of P .Q on the Hilbert space H , i.e. at time t , Q.P .ms =
P .Q.ms.

Consider for instance a commodity market where two categories of agents operate:
some dealers whose job is to purchase and sell the "real commodity" and some "pure"
speculators who trade on the futures market (see Johnson [20]). Dealers are mainly in-
terested in the quantifiable quantity while speculators are principally interested in the
quantifiable price. Consequently from our model the set of dealers represents a basis of
eigenvectors {di , i ∈ {1,2, . . .n}} and the set of speculators represents another (distinct) ba-
sis of eigenvectors {si , i ∈ {1,2, . . .n}}. Consequently matrix P and Q are not commutative
and the action at time t of P .Q on ms is not the same as the action at time t of Q.P on
ms. If agents are informed sequentially about the quantities on the first hand, and prices
on the other hand, the states of the market will be different than if information were given
in the opposite order.

2.4 The impact of information’s nature and structure on the

financial market

In this section, we present the major outcomes of the model which can give some insight
to actual financial markets functioning. We provide in subsection 2.4.1 the condition on
the nature and structure of information insuring a financial market where information
arrive continuously and transactions are frequent to be qualified as semi-strong efficient
as well as the study of the computational strength of such a financial market. Subsection
2.4.2 present what are the characteristics of information that explain a state of a financial
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market crisis as well as the study of the computational strength of such a financial market.
At the end, subsection 2.4.3 provides what the characteristics of information are within a
bubble as well as the study of the computational strength of such a financial market. As
the latest is time evolving, we provide some simulations which illustrate this dynamics.

2.4.1 The semi-strong efficient financial market: Condition on infor-

mation and computational strength

The semi-strong efficient financial market: Condition on information

Theorem 1. Let Qt be a quantifiable property at time k ∈ [1; t ], and let Qpa , Qe f be the di-
agonal matrix associated to Qt . If at time k, k ∈ [1; t ], the eigenvalues of Qpa are E1

(
p̃k

)
>

E2
(
p̃k

)
≥ E3

(
p̃k

)
≥ . . . ≥ En

(
p̃k

)
and the eigenvalues of Qe f are µ1,k > µ2,k ≥ µ3,k ≥ . . . ≥

µn,k then a "small" ǫi ,k such that |Ei
(
p̃k

)
−µi ,k | ≤ ǫi ,k ∀ i ∈ {1,2,3, . . . ,n} exists if and only if:

ne fi (k) = o(e fi (k)) ,∀ i ∈ {1,2,3, . . . ,n} (2.8)

Proof. This proof is constructed using the similar argumentation than Bretto and Priolon
[4].

Let k ∈ [1; t ] such that ne fi (k) = o(e fi (k)) ,∀ i ∈ {1,2, . . .n} and fpa(k) = f (pa1(k), . . . , pan(k)).
We have:

f (pa,k)
f (e f ,k) = f (pa1(k),...,pan (k))

f (e f1(k),...,e fn (k))

⇔ f (pa,k)
f (e f ,k) = f (e f1(k)+ne f1(k),...,e fn (k)+ne fn (k))

f (e f1(k),...,e fn (k))

⇔ f (pa,k)
f (e f ,k) = f (e f1(k)+o(e f1(k)),...,e fn (k)+o(e fn (k))

f (e f1(k),...,e fn (k))

According to subsection 2.2.7, ne fi (k) = o(e fi (k)) ⇔ ne fi (k) = ǫi (k)e fi (k). We get:

f (pa,k)
f (e f ,k) = f (e f1(k)+ǫ1(k)e f1(k),...,e fn (k)+ǫ1(k)e fn (k))

f (e f1(k),...,e fn (k))

⇔ f (pa,k)
f (e f ,k) ≃ f (e f1(a),...,e fn (a))

f (e f1(a),...,e fn (a)) = 1

⇔ f (pa,k) ∼ f (e f ,k)

Let (ei )i∈{1,2,...n} and (ai )i∈{1,2,...n} be the basis of orthonormal eigenvectors associated
to (Ei

(
p̃k

)
)i∈{1,2,...n} and (µi ,k )i∈{1,2,...n} respectively. For k ∈ [1; t ] we have: f (pa,k) ∼ f (e f ,k) ⇐⇒∑n

j=1β j e j ∼
∑n

j=1α j a j ⇐⇒ ms ∼ mse f ∼
∑n

j=1β j e j .

If Qpa =Qe f , it is over.

Assume that Qpa 6=Qe f .

msk = (Qpa)k ms

=
∑n

i=1

(
Ei

(
p̃

))k
βi ei

=
(
E1

(
p̃

))k
[
β1e1 +

∑n
i=2βi

[
Ei (p̃)
E1(p̃)

]k
ei

]

msk =
(
E1

(
p̃

))k
[
β1e1 +O

([
Ei (p̃)
E1(p̃)

]k
)]

msk
e f = (Qe f )k mse f

msk
e f =

(
µ1

)k
[
β1e1 +O

([
µi
µ1

]k
)]
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Let �msk = (Qpa )k ms

||(Qpa )k ms|| and �msk
e f =

(Qe f )k mse f

||(Qe f )k mse f ||
. We have:

�msk =

(
E1

(
p̃

))k
[
β1e1 +O

([
Ei (p̃)
E1(p̃)

]k
)]

∣∣∣∣
∣∣∣∣
(
E1

(
p̃

))k
[
β1e1 +O

([
Ei (p̃)
E1(p̃)

]k
)]∣∣∣∣

∣∣∣∣
≃

β1e1

β1

When k →+∞.

We also have, when k →+∞:
�msk

e f ≃
β1e1

β1

Consequently when k →+∞ we have:

�msk ≃�msk
e f

Hence:

(Qpa)k ms ≃
||(Qpa)k ms||.(Qe f )k mse f

||(Qe f )k mse f ||

When k →+∞, the latest expression is equivalent to
(
E1

(
p̃

))k
β1e1 ≃ t ×

(
µ1

)k
β1e1.

So
(
E1

(
p̃

))k ≃ k ×
(
µ1

)k .

Since E1
(
p̃

)
,µ1,k > 1 and k

1
k → 1 when k →+∞ we have:

E1
(
p̃

)
≃µ1

Let δ(Q) = Qpa −Qe f ; These two matrix are diagonal and Qpa 6= Qe f then δ(Q) is
diagonal and its eigenvalues are real. From inequality of WEYL, Franklin [12], Golub and
Loan [14] we have:

µi (Qe f )+λmin(δ(Q)) ≤ λi (Qpa) ≤µi (Qe f )+λmax(δ(Q))

We also have: E1
(
p̃

)
≃µ1 and λn ≃µn , so λmin(δ(Q)) ≃ 0.

From this we can conclude that:

Ei
(
p̃

)
≃µi , ∀ i ∈ {1,2,3, . . . ,n}

There is ǫi , ǫi "small", such that : |Ei
(
p̃

)
−µi | ≤ ǫi for all i ∈ {1,2,3, . . . ,n}.

It is immediate that this result does not hold when ne fi (t ) 6= o(e fi (t )), which proves
the equivalence between having a semi-strong efficient market and verifying the condi-
tion: ne fi (k) = o(e fi (k)) ,∀ i ∈ {1,2,3, . . . ,n}.

To achieve semi-strong efficiency, the market system must be mainly or even fully
determined by the effective information parameters; The non effective information must
be negligible when compared to effective information. More generally any quantifiable
(whose all eigenvalues are positive) tends to its optimal evaluation so theorem 1 gives the
conditions on the nature and structure of information to allow the quantifiable price but
also others quantifiables (whose all eigenvalues are positive) to be semi-strong efficient.
In other words, agents can rely on qualitative judgment on the value of an asset if the non
effective information is relatively negligible before the effective information treated by an
algorithm.
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The semi-strong efficient financial market: Computational strength

Corollary 1. If a market is semi-strong efficient, it has a computational strength.

Proof. From theorem 1, ne fi (k) = o(e fi (k)) ⇔ |Ei
(
p̃k

)
−µi ,k | ≤ ǫi ,k , with ǫi ,k "small" for

all i ∈ {1,2,3, . . . ,n}. For k ∈ [1; t ], price is given by one of the n agents denoted by "mk "
(i.e. pk = Emk

(
p̃k

)
).

If |Emk

(
p̃k

)
−µmk ,k | = 0∀k ∈ [1; t ], we get ζp (s, t ) = +∞. Hence, C (s, t ) = ζp (s, t )−

maxi ζi (s, t ) ≥ 0. It is over.

Assume that it exists at least one period k when |Emk

(
p̃k

)
−µmk ,k | = |pk −µmk ,k | 6= 0.

0 ≤ |pk −µmk ,k | ≤ ǫmk , j

⇔ ǫ ≤ ǫ+|pk −µmk ,k | ≤ ǫ+ǫmk , j

⇔ ǫs ≤
(
ǫ+|pk −µmk ,k |

)s ≤
(
ǫ+ǫmk , j

)s

⇔ 1(
ǫ+ǫmk , j

)s ≤ 1(
ǫ+|pk−µmk ,k |

)s ≤ 1
ǫs

⇔
∑t

k=1
1(

ǫ+ǫmk , j

)s ≤
∑t

k=1
1(

ǫ+|pk−µmk ,k |
)s ≤ 1

ǫs <+∞

Let ǭ be the maximal value of all ǫ+ǫmk ,k such that ǫ+ǫmk ,k ≤ ǭ ,∀ {k,mk } ∈ [1; t ]×[1;n],
and so ǭ is "small". We get:

⇔
∑t

k=1
1
ǭs ≤ ζp (s, t ) < +∞

⇔ t × 1
ǭs ≤ ζp (s, t ) < +∞

We also have t
ǭs →+∞, then:

ζp (s, t ) →+∞

Therefore, the probability of an agent i to "do better than the market", is :

Pr(C (s, t ) < 0) = Pr

(
ζp (s, t ) < max

i
ζi (s, t ) ≤+∞

)

But we have :

Pr

(
ζp (s, t ) < max

i
ζi (s, t ) ≤+∞

)
≤ Pr

(
t

ǭs
< max

i

t∑

j=1

1(
ǫ+|Ei

(
p̃ j

)
−µmk , j |

)s ≤+∞
)
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And,

Pr

(
t
ǭs < maxi

∑t
j=1

1(
ǫ+|Ei (p̃ j )−µmk , j |

)s ≤+∞
)

≃ Pr

(
maxi

∑t
j=1

1(
ǫ+|Ei (p̃ j )−µmk , j |

)s →+∞
)

⇔ Pr

(
t
ǭs < maxi

∑t
j=1

1(
ǫ+|Ei (p̃ j )−µmk , j |

)s ≤+∞
)

≃ Pr
(⋂t

j=1

(
Ei

(
p̃ j

)
≃µmk , j

))

⇔ Pr
(⋂t

j=1

(
Ei

(
p̃ j

)
≃µmk , j

))
=

⋂t
j=1 Pr

(
Ei

(
p̃ j

)
≃µmk , j

)

⇔ Pr
(⋂t

j=1

(
Ei

(
p̃ j

)
≃µmk , j

))
≃

∏t
j=1

(∑n
i=1 1{Ei (p̃t )=µmk , j }βi

)

Hence,

Pr

(
t

ǭs
< max

i

t∑

j=1

1(
ǫ+|Ei

(
p̃ j

)
−µmk , j |

)s ≤+∞
)
≃

t∏

j=1

(
n∑

i=1
1{Ei (p̃t )=µmk , j }βi

)

Since 0 <
∑n

i=1 1{Ei (p̃t )=µmk , j }βi < 1, then lim
t→+∞

∏t
j=1

(∑n
i=1 1{Ei (p̃t )=µmk , j }βi

)
= 0.

Hence, we have:

Pr(C (s, t ) ≥ 0) → 1 (2.9)

Then, corollary 1 is proved.

Consequently, one isolated agent can at best do "as good as the market" but s/he can-
not do better; This result is consistent with classical finance results. If a market is semi-
strong efficient, no agent can "do better than the market" since s/he has no private infor-
mation.

2.4.2 The financial market crisis: Condition on information and com-

putational strength

The financial market crisis: Condition on information

Theorem 2. Let Qt be a quantifiable property at time k ∈ [1; t ], let Qpa , Qne f be the di-
agonal matrix associated to Q. If at time k, k ∈ [1; t ], eigenvalues of Qpa are E1

(
p̃k

)
>

E2
(
p̃k

)
≥ E3

(
p̃k

)
≥ . . . ≥ En

(
p̃k

)
and eigenvalues of Qne f are θ1,k > θ2,k ≥ θ3,k ≥ . . . ≥ θn,k

then a "small" ǫi ,k such that |Ei
(
p̃k

)
−θi ,k | ≤ ǫi ,k ,∀ i ∈ {1,2,3, . . . ,n} exists if and only if:

e fi (k) = o(ne fi (k)) ,∀ i ∈ {1,2,3, . . . ,n} (2.10)

Proof. We first show that in a period of crisis, we face f (pa, t ) ∼ f (ne f , t ). The rest of the
proof is similar to Theorem 1.

During a semi-strong efficient functioning of the market, the real market system tends
towards the effective market system and during a financial crisis, the real market system
tends towards the non effective market system.
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The financial market crisis: Computational strength

Corollary 2. If a market is in crisis, it has no computational strength.

Proof. We start with a market without computational strength, i.e. C (s, t ) < 0. We have:

ζp < maxi ζi

⇔
∑t

k=1
1(

ǫ+|pk−µmk ,k |
)s < maxi

∑t
k=1

1(
ǫ+|Ei (p̃k )−µmk ,k |

)s

⇔
∑t

k=1

(
ǫ+|pk −µmk ,k |

)s > mini
∑t

k=1

(
ǫ+|Ei

(
p̃k

)
−µmk ,k |

)s

⇔
∑t

k=1

(
ǫ+|κmk ,k |

)s > mini
∑t

k=1

(
ǫ+|Ei

(
p̃k

)
−µmk ,k |

)s

Using properties of the absolute value we get:

|Ei
(
p̃k

)
−µmk ,k | = |Ei

(
p̃k

)
−κmk ,k +κmk ,k −µmk ,k |

⇔ |Ei
(
p̃k

)
−µmk ,k | = |Ei

(
p̃k

)
−κmk ,k −

(
µmk ,k −κmk ,k

)
|

⇔ |Ei
(
p̃k

)
−µmk ,k | ≥ ||Ei

(
p̃k

)
−κmk ,k |− |µmk ,k −κmk ,k ||

Finally, we get:

C (s, t ) < 0 ⇔
t∑

k=1

(
ǫ+|κmk ,k |

)s > min
i

t∑

k=1

(
ǫ+||Ei

(
p̃k

)
−κmk ,k |− |µmk ,k −κmk ,k ||

)s

Recall that within a financial crisis k ∈ [1, t ], we have |Ei
(
p̃k

)
−κi ,k | ≤ ǫi ,k ⇔ |µi ,k | ≤

ǫi ,k , with ǫi ,k "small" for all i ∈ {1,2,3, . . . ,n}. We get:

|Ei
(
p̃k

)
−κmk ,k | = |µi ,k +κi ,k −κmk ,k |

⇔ |Ei
(
p̃k

)
−κmk ,k | = |µi ,k +

(
κi ,k −κmk ,k

)
|

⇔ |Ei
(
p̃k

)
−κmk ,k | ≤ |µi ,k |+ |κi ,k −κmk ,k |

⇔ |Ei
(
p̃k

)
−κmk ,k | ≤ ǫi ,k +|κi ,k −κmk ,k |

Then, we have:

||Ei
(
p̃k

)
−κmk ,k |− |µmk ,k −κmk ,k || ≤ |ǫi ,k +|κi ,k −κmk ,k |− |µmk ,k −κmk ,k ||

⇔ ||Ei
(
p̃k

)
−κmk ,k |− |µmk ,k −κmk ,k || ≤ |ǫi ,k |+ ||κi ,k −κmk ,k |− |µmk ,k −κmk ,k ||

⇔ ||Ei
(
p̃k

)
−κmk ,k |− |µmk ,k −κmk ,k || ≤ ǫi ,k +|κi ,k −κmk ,k −

(
µmk ,k −κmk ,k

)
|

⇔ ||Ei
(
p̃k

)
−κmk ,k |− |µmk ,k −κmk ,k || ≤ ǫi ,k +|κi ,k −µmk ,k |

⇔ ||Ei
(
p̃k

)
−κmk ,k |− |µmk ,k −κmk ,k || ≤ ǫi ,k +|κi ,k −µmk ,k |

⇔ ||Ei
(
p̃k

)
−κmk ,k |− |µmk ,k −κmk ,k || ≤ ǫi ,k +|κi ,k |+ |−µmk ,k |

⇔ ||Ei
(
p̃k

)
−κmk ,k |− |µmk ,k −κmk ,k || ≤ ǫi ,k +|κi ,k |+ǫmk ,k
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Hence we can write that within a financial crisis, we have:

min
i

t∑

k=1

(
ǫ+||Ei

(
p̃k

)
−κmk ,k |− |µmk ,k −κmk ,k ||

)s ≤ min
i

t∑

k=1

(
ǫ+|ǫi ,k +|κi ,k |+ǫmk ,k |

)s

We now compute the probability of having no computational strength within a finan-
cial crisis and demonstrate that it converges to 1. We know that:

Pr

(
t∑

k=1

(
ǫ+|κmk ,k |

)s > min
i

t∑

k=1

(
ǫ+ǫi ,k +|κi ,k |+ǫmk ,k

)s

)
≤ Pr(C (s, t ) < 0) ≤ 1

Except if agents are homogeneous (i.e. κi ,k = κk for all i ∈ {1, ...,n} and k ∈ [1, t ]), we
face lim

t→+∞
Pr

(∑t
k=1

(
ǫ+|κmk ,k |

)s > mini
∑t

k=1

(
ǫ+ǫi ,k +|κi ,k |

)s)= 1. Finally, we get

lim
t→+∞

Pr
(∑t

k=1

(
ǫ+|κmk ,k |

)s > mini
∑t

k=1

(
ǫ+ǫi ,k +|κi ,k |+ǫmk ,k

)s)= 1.

We can finally write that within a financial crisis:

lim
t→+∞

Pr(C (s, t ) < 0) = 1

Corollary is proved.

Consequently, during a crisis, there is always at least one agent considered individu-
ally that can "do better than the market"; In other words, if a market is in crisis, agents
interactions provoke a price dynamic as far as possible from the perfect price dynamic.
Consequently it always exist at least one agent able to better forecast the fundamental
value without interacting with the financial market.

2.4.3 The bubble: Condition on information and computational strength

The bubble: Condition on information

According to the definition of a bubble, theorem 1 does not hold for k > 1. Therefore we
can say that quantifiables (whose eigenvalues are positive) do not reflect their fundamen-
tal values within a period of bubble. Hence, if non effective information becomes non
negligible when compared to effective information, the market is no more semi-strong
efficient.

Proposition 1. A bubble ends with a financial crisis.

Proof. At time k ∈ B, we have ne fi (k) =O

((
e fi (k)

)k
)

for some i ∈ {1,2, . . .n} and f (pa,k) =
f (pa1(k), . . . , pan(k)). We have:

f (pa,k) = f (pa1(k), . . . , pan(k))

⇔ f (pa,k) = f (e f1(k)+ne f1(k), . . . ,e fn(k)+ne fn(k))

⇔ f (pa,k) = f
(
e f1(k)+O

((
e f1(k)

)k
)

, . . . ,e fn(k)+O

((
e fn(k)

)k
))

Hence, f (pa,k) ≃ f
(
O

((
e f1(k)

)k
)

, . . . ,O
((

e fn(k)
)k

))
= f

(
ne f ,k

)
.

Consequently, it exists a number of periods tb ∈ B, such that∀ t ≥ tb , f (pa, t ) ∼ f (ne f , t ).
Hence, tb denotes the period when the bubble turns into a financial crisis.
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Our interest is to study the characteristics of the financial market before a bubble turns
up into a crisis. It is immediate that the market becomes non efficient (cf. Theorem 1).
However, is the financial market devoid of computational strength ? In our theoretical
framework, the concept of computational strength of the market allows to study the sta-
tistical capability of an agent to individually "do better than the market".

The bubble: Computational strength

Theorem 3. In a period of bubble B ⊆ I, and ∀ [1; t ] ⊂ [1; tb], the market can keep a com-
putational strength on the period [1; t ].

Proof. For [1; t ] ⊂ [1; tb], price is given by one of the n agents denoted by "mk " (i.e. pk =
Emk

(
p̃k

)
∀k ∈ [1; t ]).

If |Emk

(
p̃k

)
−µi ,k | = |pk −µi ,k | = 0∀k ∈ [1; t ], we get ζp (s, t ) = +∞. Hence, C (s, t ) =

ζp (s, t )−maxi ζi (s, t ) ≥ 0. It is over.

Assume that there exists at least one period k, k ∈ [1; t ] when |Emk

(
p̃k

)
−µmk ,k | =

|pk −µmk ,k | 6= 0. An agent i can "do better than the market" during the period, and the
probability of that event is:

Pr(C (s, t ) < 0) = Pr

(
ζp (s, t ) < max

i
ζi (s, t )

)

Then, ∀k ∈ [1; t ] ⊂ [1; tb], the probability of the price to be the highest distance with the
fundamental value is neither equal to 0 nor to 1 except if the market is perfectly deter-
mined (i.e. except if all agents model are the same at each period). Then:

0 < Pr


|pk −µmk ,k | ≥ max

i
Ei 6=Emk

|Ei
(
p̃k

)
−µmk ,k |


< 1

Then, we have:

0 < Pr


(
ǫ+|pk −µmk ,k |

)s ≤ max
i

Ei 6=Em

(
ǫ+|Ei

(
p̃k

)
−µmk ,k |

)s


< 1

⇒ 0 < Pr


 1(

ǫ+|pk−µmk ,k |
)s ≥ min

i
Ei 6=Em

1(
ǫ+|Ei

(
p̃k

)
−µmk ,k |s

)


< 1

The previous inequality is valid ∀k ∈ [1; t ], then it is valid for the sum of inequalities. With∑t
k=1

1(
ǫ+|p j−µmk , j |

)s = ζp (s, t ), we get:

0 < Pr


ζp (s, t ) ≥

t∑

j=1
min

i
Ei 6=Em

1(
ǫ+|Ei

(
p̃ j

)
−µmk , j |

)s


< 1
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⇒ 0 < Pr


ζp (s, t ) ≥ min

i
Ei 6=Em

t∑

j=1

1(
ǫ+|Ei

(
p̃ j

)
−µmk , j |

)s


< 1

⇒ 0 < Pr


ζp (s, t ) < max

i
Ei 6=Em

ζi (s, t )


≤ 1

⇒ 0 < Pr(C (s, t ) < 0) ≤ 1

But we also have ∀k ∈ [1; t ] ⊂ [1; tb],

0 < Pr


|pk −µmk ,k | ≤ min

i
Ei 6=Emk

|Ei
(
p̃k

)
−µmk ,k |


< 1

that leads to
0 < Pr(C (s, t ) ≥ 0) ≤ 1

But we have:
Pr(C (s, t ) ≥ 0)+Pr(C (s, t ) < 0) = 1

As both probabilities are strictly positive, we have 0 < Pr(C (s, t ) ≥ 0) < 1 and 0 < Pr(C (s, t ) < 0) <
1.

From theorem 3, we get that the probability for an agent to "do better than the mar-
ket" is neither equal to 0, nor to 1. Hence, we are able to distinguish the efficiency of a
market from its capability to "do better" than any isolated agent; semi-strong efficiency
and computational strength are not equivalent. Although the market is not semi-strong
efficient during a bubble, this does not necessarily means that an agent can be better at
discovering the fundamental price on the period. Hence, even during a bubble, the mar-
ket can be a better tool to correctly price an asset than any agent considered individually.
Indeed, it can have a computational strength. However, in this case, there is no proof that
another way to price the asset would not be better.

We want to illustrate how evolve the computational strength of the financial market
within a period of bubble. Among numerous simulations possibilities, we have chosen
to represent how the computational strength of the market evolves according to the time
horizon of the bubble and so does, its size (see definition 21). Recall that a bubble ends
with a financial crisis, and a market without computational strength (from proposition 1),
we want to represent how the computational strength decreases with the duration of the
bubble. For these simulations, we need a few more hypothesis.

Let s = 1. Information and interpretation parameters, respectively denoted by Ie f ]t −1; t ],

Ine f ]t −1; t ], γ
e f
i ,t and γ

ne f
i ,t , follow Gaussian laws.10 At time t , expectation of agent i is

given by Ei (p̃t ) = pt−1 + γ
e f
i ,t Ie f ]t −1; t ] + γ

ne f
i ,t Ine f ]t −1; t ]. The n agents’ expectations

have a probability of becoming the market price pt+1 according to distances between
all expectations and considering a Gaussian law centered in the current market price pt

10We have: Ie f ]t −1; t ] ∼ N
(
E

(
Ie f ]t −1; t ]

)
,σe f

)
, Ine f ]t −1; t ] ∼ N

(
E

(
Ine f ]t −1; t ]

)
,σne f

)
, γ

e f
i ,t ∼

N

(
E

(
γ

e f
i ,t

)
,σγe f

)
and γ

ne f
i ,t ∼N

(
E

(
γ

ne f
i ,t

)
,σγne f

)
. N (a,b) the Gaussian law with mean a and standard vari-

ance b.
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and with a standard deviation σβi assumed to be the βi ’s exogenous standard deviation.11

The fundamental value at time t , denoted by f v(t ), is unique for all agents and equal to
f v(t ) = p0 +

∑t
k=1 Ie f ]k −1;k]. The set of parameters values used is given in Table A.1. A

hundred simulations were run for each bubble duration in Figure A.1a. In Figure A.1b,
a thousand simulations were run for each bubble duration. As expected, the longer the
bubble is, the less computational strength tends to exist.12

2.5 Applications

This model can be used in different ways, either by traders or by the financial market
regulator. Subsection 2.5.1 reviews possible applications of the model for the traders and
subsection 2.5.2 discusses the possible use of the model by the financial market regulator.

2.5.1 Applications of the model for the traders

A trader’s objective can be to predict what the next order book will "look like". In our
model, predict the next market system is equivalent. Assuming a statistical distribution
to get the agents’ βi among time, a trader can characterize the coordinates of the market
system in the market sphere of dimension n. It can give her/him, who is the most likely
to give the next market price that is, who is going to make a transaction. However, it
supposes to be able to distinguish the actors on the market. Another possible way of
predicting the next order book can be to parameterize a VARMA model, in order to extract
information from the order book.

We provide an example of such an application.13 Information and interpretation pa-
rameters, respectively denoted by I]t −1; t ] and γi ,t , follow Gaussian laws.14 Let U (a,b)
denote the uniform law with parameters a and b.15 We define the model of agent i
such that at time t expectation of agent i is given by Ei (p̃t ) = pt−1 +U (γi ,t I ]t −1; t ] −p

3σγ,γi ,t I ]t −1; t ])+
p

3σγ. The n agents’ expectations have a probability of becoming
the market price pt+1 according to the distances between all expectations and consider-
ing a Gaussian law centered in the current market price pt and with a standard deviation
σβi assumed to be the βi ’s exogenous standard deviation.16 The fundamental value at
time t , denoted by f v(t ), is unique for all agents and equal to f v(t ) = p0+

∑t
k=1 I ]k −1;k].

The set of parameters values used is given in Table A.2.
We are interested in the capability of the model to predict the next agents βi . We pro-

vide all estimated coefficients values, variances, standard errors, and last but not least,
AIC and BIC values in appendix A.2.2 for a randomly chosen simulation (among a hun-
dred), for relevant couple (p, q). Appendix A.2.3, summarizes AIC and BIC values for all
tested couples (p, q) that we choose with the help of the p-values of table of Extended

11The construction of beta i’s agents depend on all prices given by agents. Distances between all dif-
ferent eigenvalues are used to construct classes and probability to be in each class in given according to
N

(
pt ,σβi

)
. Then, if x agents are on the same class, their βi at time t is equal the probability to be on the

class divided by x.
12We can provide the algorithm, david.batista-soares@unicaen.fr.
13We can provide the algorithm, david.batista-soares@unicaen.fr.
14We have: I ]t −1; t ] ∼N (E (I]t −1; t ]) ,σI) and γi ,t ∼N

(
E

(
γi ,t

)
,σγ

)
.

15Recall that the standard variance of a continuous uniform law U (a,b) is equal to (b−a)
2
p

3
16The construction of beta i’s agents depend on all prices given by agents. Distances between all dif-

ferent eigenvalues are used to construct classes and probability to be in each class in given according to
N

(
pt ,σβi

)
. Then, if x agents are on the same class, their βi at time t is equal the probability to be on the

class divided by x.
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Cross-Correlation Matrices, and that do not return NA values. Based on these two crite-
ria, our simulation of the βi time series, the market system most likely fits a VARMA(1,0).
Despite our a priori independent periods and evolving agents behavior, the next market
system evolution can be predicted.17

2.5.2 Applications of the model for the financial market regulator

Considering the financial market regulator, we can study the computational strength of
a market a posteriori if a MU provides all order books on a time period as well as the
identity of economic agents operating on the market (or at least distinguish actors who
pass orders). By computing the fundamental value by the discounted dividends (effective
information), we can study if at least an agent was better than the market in discovering
the fundamental value. This work could be compared to the one of Shiller [30].

Then, we also can schedule an experimentation when information is given in an ef-
fective format and a non effective format to calibrate the model. This could give us some
insights on the computational strength of financial markets by getting a statistical esti-
mation of the computational strength of the market evolution with time. Monte Carlo
simulations method can be used.

Finally, if a policy maker wants to study the market power of some agents, an estima-
tion of the market system using a VARMA model can also be used to parameterize the
market system dynamics aside with some Monte Carlo simulations for the βi ,t distribu-
tion. If an agent’s βi previsions are significantly higher than the one in perfect competition
(cf. remark 2, βc

i = βc = 1
n ), it means that this agent has a higher probability of driving the

market price. These tests can be made regarding the volumes of shares of a given asset
(or open positions for derivatives). If so, we should be able to estimate a threshold of
quantity above which an agent become significantly market driver if agents βi are indeed
correlated to volumes or open positions. It also can be done to estimate the market power
of fast traders compared to the one of slow traders following the statement of Hoffmann
[17]. The policy maker can regulate according to it by limiting the volumes or open posi-
tions to the threshold obtained.

2.6 Conclusion

This work underlines the major influence of information’s nature and structure on the
capability of a market to be a useful tool (having a computational strength) as well as to
be the best tool (being semi-strong efficient). We summarize the relation between the two
characteristics in table 2.1.

There are several possible further steps. One can compute the computational strength
of a financial market a posteriori and estimate the relative quantity of effective informa-
tion and non effective information processed during the period. One can also use market
data to test how a bubble evolves over time in order to parameterize its (moderate) growth.

We have established a condition on the nature and relative quantity of information
given the assumption of fast transactions and freely available information that make it
possible for financial markets to be semi-strong efficient. We also extended the implica-
tions of the concept of market system introduced in Bretto and Priolon [4]. We argued that
it could help both traders and financial regulators respectively by allowing them to pre-
dict who is statistically the trader that will give the next market price and by estimating

17We can provide the full algorithm, david.batista-soares@unicaen.fr
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∀ t ∈ [1; t ]∣∣pt −µi ,t
∣∣≤ ǫi

∃t ∈ [1; t ]∣∣pt −µi ,t
∣∣> ǫi

C(s, t ) ≥ 0 ⇐ ?

ne f = o
(
e f

) {
ne f 6= o

(
e f

)

e f 6= o
(
ne f

)

C(s, t ) < 0 ; ⇒
e f = o

(
ne f

)

Table 2.1 – Relation between the semi-strong efficiency and the computational strength of a finan-
cial market

if traders market power is equally distributed. These elements might help improve finan-
cial markets regulation, through the regulation of information flows on markets where
information is continuously updated. Such a model also corroborates the presence of
market makers allowing transaction’s frequency to raise within markets where informa-
tion is continuously updated. Regulators also can create some computational strength
index with different time horizon in order to study how is evolving the capability of the fi-
nancial market to price the asset. The policy maker has to regulate in order to achieve the
negligibility of non effective information in front of effective information, that is, obligate
all information providers to a certain type and format for their communications.

From scientist perspective, the main extension of this model would be to consider im-
perfect information. As we already proved it in subsection 2.3.3, the lecture of quantifiable
do not commute with time. Hence, having information on quantities and then on prices
is not equivalent to the opposite. Asymmetric information could also generate some un-
expected effect according to who is giving the market price first. Within this model we
cannot introduce a cost to get the information but we could consider that all agents have
a part of the information as for the bayesian equilibrium models (cf. Vives [35]). We also
can extend the model to financial markets whose information do not arrive continuously.
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3.1 Introduction

The spot and the futures markets of any agricultural commodity are connected by defini-
tion and there are complex feedbacks between the series of prices on the two markets. The
evolution of the basis is a source of risk, and its volatility is a major stake for farmers and
processors: it represents an important component of their production and selling deci-
sions (cf. Moschini and Hennessy [19]). However, the price on the futures market evolves
faster than the price on the spot market (cf. O’Hara [21], Working [27]) and thus, the basis
has a peculiar dynamics. A rich economic literature has empirically proved that the ba-
sis is significantly determined by the convenience yield (cf. Fama and French [9], Gorton
et al. [12], Wei and Zhu [25]), and so by the level of the available stocks but – to the best
of our knowledge – the dynamics of the basis has not been studied in terms of the differ-
ence in trade rhythms. In this view, the evolution in the market liquidity through splitting
orders strategies, available quantities of the commodity on the spot market, etc. plays an
important role in the evolution of trading dynamics.

A splitting order strategy – or also order fragmentation in this paper – is defined as
the division of one specific order – called a parent order – into several suborders – called
children orders – and it occurs on both markets. Order fragmentation entails a decrease
in quantities traded per transaction and an increase in the n.o.t (cf. O’Hara and Ye [20],
O’Hara [21], Wang [24], Yam and Zhou [28]). Consequently, on a given period of time,
trade frequency increases with order fragmentation. Although splitting order strategy is
both used on spot and futures markets, transaction costs are much lower on the derivative
market (cf. Working [27]) thereby order fragmentation is neither equal nor proportional
on these two markets thus the ratio between the two frequencies is also impacted. Several
empirical studies have analyzed the impact of order fragmentation on market liquidity
and price volatility (cf. Bennett and Wei [2], Boehmer and Boehmer [5], Kwan et al. [15]),
but only for equity markets. However, agricultural commodity markets differ in many
ways from equity markets (cf. Back and Prokopczuk [1] for a review). Our main origi-
nal contribution is that we show how an increase in the trade frequencies, resulting from
splitting orders strategy for instance either on the spot market, or on the futures market,
or proportionally on both markets modifies the fundamental prices (see below subsection
3.3.5 for a definition) and their fundamental volatility (see below subsection 3.3.6 for a
definition). The dissociation between the information on the spot market coming slower
than trades on the futures market leads agents to face a probabilistic risk (as intended by
Knight [14]) about the level of stock at the next transaction on the futures market.

Another original aspect of our work is the mathematical link that we establish between
information and prices. That link has been famously and originally formulated by Fama
et al. [11] and Fama [8]:

"I take the market efficiency hypothesis to be the simple statement that secu-
rity prices fully reflect all available information." – cf. Fama [8] (p.1575)

Once we have formally written the link between prices and information, we study the
impact of modern trading on market efficiency. In fact the market efficiency hypothesis
is a double one : first the market prices are supposed to be fundamentally determined
by information and, second, the process that turns information into prices is supposed
to be as efficient as it should be. The market efficiency research program belongs mainly
to empirical economics. In this work, we use the central part of Fama’s concept which
considers that market prices result from the processing of financial information. We can
sum up that idea in a very general manner: pt = g (It ) where pt is the price at period t , It
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is the set of available information and g is an economic function that turns information
into prices (see below subsection 3.3.5). The main difference with Fama’s tradition is that
we use the concept of market efficiency for a research that is, in a first stage, a theoretical
framework; that framework is dedicated to the study of the characteristics of two series
of market prices that are perfectly connected at the level of the underlying fundamental
values but which are not in fact perfectly correlated. Spot and futures prices normally
evolve in a like manner but they are not thoroughly linked at least because their dynamics
are not perfectly synchronized.

Our study aims to examine the extent to which the difference in trade frequencies be-
tween the two markets and the evolution of that difference influence market efficiency
as well as to examine the fundamental volatility of the basis. Thus, that study deals with
the market structure and design issues on market microstructure (cf. Madhavan [16]). Our
study of the trade frequencies depends directly on the mechanism that underlies the for-
mation of price. Within a limit order book, trade frequencies are not constrained; on the
opposite, in a periodic trading, like a fixing pricing, trade frequencies are by definition
fixed. Finally, we consider whether there is an optimal level of trade frequencies that sat-
isfies these two objectives. Hence, if optimal trade frequencies appear to be lower than
actual empirical ones, we must examine the actual continuous trading structure imple-
mented through a limit order book pricing. To some extent, our study is close to the work
of Du and Zhu [7] who theoretically study the optimal trade frequency on futures mar-
kets assuming an exogenous arrival of information from an allocative efficiency point of
view. However, our results differ because we introduce the spot market structure which
influences the release of information flows. Within that slightly alternative framework, we
first demonstrate that a proportional increase in liquidity on both spot and futures mar-
kets does not necessarily lead to a decrease in the fundamental basis volatility despite it
increases the spot market efficiency (and by extension improves the basis efficiency).

We finally argue that synchronization of trade frequencies allows unbiased prices and
a minimal fundamental basis volatility. From this result we extrapolate the existence of a
dilemma between market liquidity and the two objectives. That result suggests that the
implementation of a limit order book pricing in order to increase the liquidity on com-
modity futures market generates a higher fundamental basis volatility.

This work is organized as follows. Section 3.2 presents all parameters and variables
whereas section 3.3 presents the definitions and hypothesis of the model. Section 3.4 de-
rives the influence of trade frequencies and section 3.5 discusses in detail the impacts
of an increase in liquidity on whether the spot market ceteris paribus, the futures mar-
ket ceteris paribus, or on both markets proportionally ceteris paribus. In section 3.6, we
study the existence of optimal trade frequencies. Section 3.7 concludes and discusses the
limitations of the model.

3.2 Parameters and variables

Despite the mathematical simplicity of each element of the model, we need numerous
parameters and variables. In this section, we introduce all parameters (subsection 3.2.1)
and variables (subsection 3.2.2).

3.2.1 The parameters of the model

The following set of parameters is used for the futures and the spot agricultural commod-
ity markets:
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Futures market tr ω f e a ǫ Qop Tr

Spot market tr ωs e ǫ

Table 3.1 – Set of parameters used for the futures and spot markets

tr Unit of the clock time line (CTL) considered, such as a second.
ω f Historical trade frequency on the futures market per unit of clock time:(

Number of transactions on the futures market
tr

)

ωs Historical trade frequency on the spot market per unit of clock time:(Number of transactions on the spot market
tr

)

e Trend of the spot market information delivered in monetary value per unit
of clock time.

a Advantage of possessing a unit of the storable agricultural commodity in
monetary value, per unit of clock time.

ǫ Absolute value of the elasticity of quantities traded per exchange on the
spot market to the spot market trade frequency.

Qop Optimal stock level of the agricultural commodity for agents.
Tr Maturity of the futures contract, expressed in the CTL.

3.2.2 The variables of the model

The following set of variables is used for the futures and the spot agricultural commodity
markets:

Futures market t T I]t1,t2]

Spot market t t ′ I]t1,t2]

Futures market Qt CYt f̃t+1 ft FV ft

Spot market q Qt s̃t+1 st FVst

Table 3.2 – Set of variables used for the futures and spot markets

t Unit of the Transactions Time Line (TTL), which represents a trans-
action on the futures market: t = tr ×ω f , and t ∈N.

t ′ Latest period when there was a synchronized transaction in the spot
and futures markets until t , expressed in the TTL.

T Maturity expressed in the TTL: T = Tr ×ω f , and T ∈N.
I]t1,t2] Spot market information delivered in monetary value between t1 and

t2, t1 excluded.
q Quantities traded on the spot market at each transaction on the spot

market.
Qt Available stock of the commodity at time t .

CYt Convenience yield (advantage in detaining one unit of stock to face
risk or uncertainty) in monetary value at time t until maturity.

s̃t+1, f̃t+1, Q̃t Agents’ expectations of the spot price, futures price, and commodity
available stock, respectively, at time t .

st , ft Observed spot price and futures price, respectively, at time t .
FVst , FV ft Fundamental values of the spot price and futures price, respectively,

at time t .
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3.3 Definitions and hypotheses of the model

This section introduces all the definitions and hypotheses of the model. Despite their
simplicity, their combination deserves a meticulous presentation. We also justify all as-
sumptions that we make. A particular attention is given to the time lines and the trade
frequencies as they are the very essence of the model (subsection 3.3.1). Subsection 3.3.2
specifies the characteristics of the spot market information. In subsection 3.3.3, we de-
fine how quantities traded are determined and we justify their influence on the agricul-
tural commodity market through the convenience yield. Subsection 3.3.4 defines the way
agents form their expectations of prices dynamics and subsection 3.3.5 defines the ef-
fective prices and fundamental values dynamics. Finally, we define an efficient market
criteria and what we call the fundamental volatility and we justify these formulations in
subsection 3.3.6.

3.3.1 Time lines and trade frequencies

We define Fs and F f as the sets of all possible frequencies on the spot and futures markets.
We have 0 ∉

(
Fs ∪F f

)
, because the two markets exist. Therefore,

(
ωs ,ω f

)
∈ Fs×F f . Further-

more, we assume that ωs ≤ω f . Futures are more frequently traded than the commodity
itself since transaction costs are lower (cf. Working [27]). This explains why we choose the
transaction on the futures as the time step (the smallest one). We assume that transac-
tions on the futures markets are equally spaced out, according to the futures market trade
frequency (FTF). For the sake of simplicity, the clock time between two transactions on the
futures market is constant. The effective FTF during the period is known, and the effective
spot market trade frequency (STF), is unknown. We assume that the market existence du-
ration is sufficient to get a significant and robust value of the STF within a specific period
of time. Thus, we assume that the historical STF converges in probability to the current
STF. Hence, the historical STF, ωs , gives the probability of having a transaction on the
spot market per unit of clock time.

At each transaction on the futures market, there is an independent probability ωs
ω f

of

having a transaction on the spot market. This probability is equal to the historical RTF.1

For the sake of simplicity, we do not integrate a "catch up effect", that is, no one passes an
order on the spot market because there is no transaction since "a long time" or because
the actual delayed spot price is "far" from its actual value (i.e. since the last transaction on
the spot market, the released spot market information is very important). The introduc-
tion of such a boundary could have some effect depending on the criteria (detection of a
possible arbitrage, allocative efficiency operation according to the released information
etc.) that we do not develop in this work. It is a possible extension of the model.

Previous information is summarized by figure 3.1.

Since transactions on the spot market occur with a certain probability, t ′ is a (Discrete

1Let ⋖ defines a relation wherein t ′ represents the latest period when there was a synchronized transac-
tion on the spot and futures markets until t so that the following is true:
t ′⋖ t if t ′ ≤ t , and there is no element y ′ 6= t ′ nor y ′ 6= t such that t ′ ≤ y ′ ≤ t . Thus, (t −1)′ is the latest
period when there was a synchronized transaction on the spot market and futures market until t −1, and
(t −1)′⋖ t −1. However, we do not have (t −1)′⋖ t ′−1. Indeed, t ′ and (t −1)′ can both be equal to 0 such
that 0 ≤−1, which is impossible.
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(tr )Clock
time

(t )
Futures
market
time

(t ′)
(D.R.V)

Spot
market
time

Frequency ω f → t = tr ×ω f

Frequency ωs

ωs ≤ω f

0 Tr

0 T

0

Figure 3.1 – Model time lines

Random Variable (D.R.V)) which can take values in [0; t ] ⊂N. Hence, we have:




Pr
(
t ′ = k

)
= ωs

ω f

(
1− ωs

ω f

)t−k
∀ k ∈ [1; t ]

Pr
(
t ′ = 0

)
=

(
1− ωs

ω f

)t

We can then express its mean, denoted by E(.), such that:

E
(
t ′

)
=

∑t
k=0 kPr

(
t ′ = k

)
=−ωs

ω f

(
1− ωs

ω f

)t+1 ∑t
k=0−k

(
1− ωs

ω f

)−k−1

Let z =
(
1− ωs

ω f

)
, 0 ≤ z < 1. For a fixed t in the transaction time line (TTL), we have:

∑t
k=0−kz−k−1 =

∑t
k=0

d
[
(z−1)k

]

d z = (t+1)z−t−t z−(t+1)−1
(z−1)2

Then, we have:

E
(
t ′

)
= −ωs

ω f

(
1− ωs

ω f

)t+1 (t+1)

(
1− ωs

ω f

)−t

−t

(
1− ωs

ω f

)−(t+1)

−1
(
ωs
ω f

)2

⇔ E
(
t ′

)
= t −

(
1− ωs

ω f

) 1−
(
1− ωs

ω f

)t

1−
(
1− ωs

ω f

)

This can be rewritten as follows:

E
(
t ′

)
= t −

t∑

k=1

(
1−

ωs

ω f

)k

(3.1)

Remark 5. The D.R.V t ′ can be decomposed into two parts. First, t is the maximal value
of t ′ (since t ′⋖ t ). The second part is stochastic and can be assimilated to a truncated geo-
metric law with t experiences – maximum – starting from t in backwardation and ending
to 0.2 Hence, its mean is equal to its maximal value minus the average delay for having a
synchronized transaction looking backward in n.o.t on the futures market.

2This framework could have been modeled using a continuous clock time. If so, we would have used a
Poisson process with the same property of "lack of memory" of our truncated geometrical component. It
would also allow to integrate a catch up effect since the probability at each period won’t be independent
from the last one.
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3.3.2 Spot market information

Let us define what we refer to as the spot market information.
We assume that information on the spot market is intrinsically released at each unit

of the real time tr . However, we naturally consider that information about the spot price
is released at each transaction on the futures market. Then, we assume that the monetary
impact – or the price impact – of incoming spot market information delivered at time t ,
denoted I]t−1,t ], follows any probabilistic law L whose mean is E

(
I]t−1,t ]

)
= e

ω f
(t − (t −1)) =

e
ω f

. This mean is a strictly decreasing function of ω f . As spot market information is re-

leased when a transaction occurs on the futures market, we can naturally assume that if
transactions are more frequent on the futures market, spot market information between
two transactions on the futures market has, on average, a lower price impact. This infor-
mation can come from meteorological data, harvest prevision reports, etc. For the sake
of simplicity, we consider that there is no minimal trade frequency on the futures market
since we are reasoning at the scale of second or minutes despite the frequency of arrival of
this type of information is daily (meteorological data for instance) or even monthly (USDA
reports for instance). This decreasing mean is not in contradiction with the “Samuelson
effect” since on the clock time line (CTL), the mean of information released is identical.
Furthermore, we do not specify the impact of the FTF on the volatility of the spot market
information released. If we compare two markets where the average price impact of the
information is the same on the CTL, if a market has a higher trade frequency, it also has
the lower average price impact of information between two transactions. This is a first
feedback from the futures market to the spot market at a fundamental level. Hence, con-
trary to Du and Zhu [7], our spot fundamental value is endogenously determined by the
FTF.

Previous information is summarized by figure 3.2.

(t )
Futures
market

(t ′)
(D.R.V)

Spot
market

Frequency ω f

Frequency ωs

I]t−1,t ] ∼L

(
e
ω f

)

f0 f1 f2 f3 fT. . .

s0′s1′ s3′

Figure 3.2 – Influence of ω f on the spot market information, and so, on st

According to our definitions, I]t ′,t ] represents the spot market information delivered in
monetary value since the last transaction on the spot market at time t , denoted by t ′.

3.3.3 Traded quantities and influence of stock dynamics

We now define q , which indicates the quantities traded per transaction on the spot market
as a function of the STF, such that:

q : Fs → R+,∗

ωs 7→ q(ωs) =ω−ǫ
s ,ǫ ∈Q+ (3.2)
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From the above function, quantities traded per transaction on the spot market are
decreasing when the spot market trade frequency increases. Note that parameter ǫ corre-
sponds to the absolute value of the elasticity of quantities traded per transactions on the
spot market to the STF.3 If ǫ= 1, an increase in the STF of one percent leads to a decrease
in quantities traded at each transaction on the spot market of one percent. If ǫ > 1

2 , an
increase in the STF of one percent leads to a decrease in quantities traded at each trans-
action on the spot market of more than 1

2 percent. If the value of this elasticity were higher
than 0 (i.e. ǫ< 0), it would mean that an increase in the STF would lead to an increase in
quantities traded at each transaction on the spot market.

The available stock of the commodity at time t is defined using a D.R.V:

Q0 > 0 and Qt :=
{

Qt−1 i f t ′ 6= t
Qt−1 −q (ωs) i f t ′ = t

}
= Qt−1 −q (ωs)1{t }

(
t ′

)
∀ t ∈ [1,T] (3.3)

We assume that Q0 is such that for any ωs in Fs and any t in [0;T−1], Qt −q (ωs) ≥ q (ωs).
It is a constraint of non-negativity of the available commodity stock. We naturally assume
that the available commodity is only purchased on the spot market during the period
considered (at maturity, commodity is purchased and consumed according to the open
positions on the futures market which are not cash-settled).4 This simple aspect of the
model deals with another specificity of agricultural commodity markets when compared
to other underlying assets. Indeed, an equity share, or currencies cannot be consumed
such that agents choices do not influence their available stock. We assume that produc-
tion or harvest of the commodity is less frequent than its consumption and then, has a
symmetric effect to the stock consumption on expectations and fundamental values. For
the sake of simplicity, we do not model them. Hence, the model applies to all storable
commodity whose production frequency is lesser than the frequency of consumption.
Consequently, the available stock evolves when and only when there is a transaction on
the spot market. It is important to underline that this assumption requires us to neglect
the cases of pure speculation when the commodity is purchased. For the sake of sim-
plicity, there is no speculation on the spot market. Once again, we could integrate a con-
sumption/speculation Bernoulli D.R.V.5

We assume that storage cost per unit of clock time is linear with time: Consequently,
they are perfectly expected by agents under our assumption of rational expectations. For
the sake of simplicity, we do not model them.

Despite positive stocks, the futures’ price can be lower than the spot price because of
the necessity for processors to maintain their stocks to face risk or uncertainty (cf. Kaldor
[13]). This advantage (or disadvantage) to detain a unit of the agricultural commodity at

3This elasticity is given by:
d q(ωs )
q(ωs )
dωs
ωs

= d q(ωs )
dωs

× ωs
q(ωs ) =

(
−ǫ×ωs

(−ǫ−1)
)
× ωs

ωs
−ǫ =−ǫ. This function is a simple

Cobb-Douglas one.
4The fact that the agricultural commodity stock decreases each time there is a transaction on the spot

market does not imply that the commodity is only purchased. However, it means that someone is selling
the agricultural commodity and that the buying agent intends to consume it or to use it as an intermediary
good, that is, he is not buying it to speculate.

5We can include a D.R.V denoted by C such that the probability of having a consumption of the com-
modity is given by: {

Pr (C = 1) = γ

Pr (C = 0) = 1−γ

The following would be more accurate but does not alter the main outcomes on the impact of an increase
in liquidity. However, the integration of such a variable modifies the optimal trade frequencies. We explain
how, in the dedicated section 3.6.
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transaction t in monetary value until maturity, also called convenience yield and denoted
by CYt , is given by the following equation:

CYt :=
a

ω f
(T− t )

(
Qop −Qt

)
(3.4)

We assume that Qop is exogenous to the model and is equal for all agents. When the stock
is above this level, there is no advantage to detain more units, and the convenience yield
is negative. When the stock is under this level, there is an advantage to detain the units
of stock. This advantage also depends on the n.o.t on the futures market remaining un-
til maturity weighted by the advantage per unit of clock time between a transaction on
the futures market ( a

ω f
(T− t ) = a (Tr − tr )). Once again, this simple modeling has serious

consequences since it considers a second feedback from the spot market to the futures
market at the fundamental level. Contrary to Du and Zhu [7], our futures fundamental
value is also endogenously determined by the STF.

Previous information is summarized by figure 3.3.

(t )
Futures
market

(t ′)
(D.R.V)

Spot
market

Frequency ω f

Frequency ωs

Qt = Qt−1 −q (ωs)1{t }
(
t ′

)

f0 f1 f2 f3 fT. . .

s0′s1′ s3′

Figure 3.3 – Influence of ωs on the Convenience Yield, and so, on ft

3.3.4 Agents’ expectations

We assume that all information is freely available and that, at time t , all agents know all
the prices and all the market characteristics. Therefore, Φt = {st , ft , I]t ′,t ],Qt ,CYt } is the
common knowledge at time t . Furthermore, we assume that agents form rational expec-
tations in the sense that, on average, their expectations reflect fundamental prices. They
compute the average expected price evolution to do so.

The expectation of the spot price is computed by:

E (s̃t+1|Φt ) = st ′ + I]t ′,t ] +
e

ω f
(3.5)

Recall that t ′ represents the latest synchronized transaction on the spot market and fu-
tures market until t . Agents add to the current spot price (at period t , st = st ′), all spot
market information that should have been included in the spot price I]t ′,t ], and the ex-
pected incoming spot market information for its average value E

(
I]t ,t+1]

)
= e

ω f
.

Expectations of the stock dynamics are given by:

E
(�Qt+1|Φt

)
= Qt −q (ωs)

ωs

ω f
(3.6)

The expected stock evolution is given by quantities traded at each transaction on the spot
market (that we suppose to be consumed) weighted by the probability of having a trans-
action on the spot market at the next transaction on the futures market. The convenience
yield is expected such that:
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E
(�CYt+1|Φt

)
=

a

ω f
(T− (t +1))

(
Qop −E

(�Qt+1|Φt
))

(3.7)

To prevent an arbitrage operation (defined as an operation that guarantees a positive
profit without risk of loss; cf. Poncet et al. [22]), the basis must include the current level of
stock since the lower stocks are, the more agents have an interest in detaining it depend-
ing on the level of their optimal stock. Between each transaction on the futures market,
the advantage in detaining stocks decreases by a

ω f
for the same level of stock than at t .

However, there is a probability of ωs
ω f

of having a stock movement, and the average stock

evolution is equal to q . Thus, expected stock evolution affects the expected advantage in
detaining stocks until maturity.

Finally, expectations of the futures price for the next period are:

E
(

f̃t+1|Φt

)
:= E

(
s̃t+1 − �CYt+1|Φt

)
(3.8)

Equation (3.8) translates the fact that agents know what the no arbitrage condition is.

3.3.5 Prices dynamics and fundamental values

Prices evolve according to agents’ expectations if and only if a transaction occurs. Agents
expect the next prices but do not necessarily pass an order at these prices. In other words,
expectations are fulfilled when agents act according to them. Thus:

st+1 :=
{

st ′ i f (t +1)′ 6= t +1
E (s̃t+1|Φt ) i f (t +1)′ = t +1

}
= st ′ +1{t+1}

(
(t +1)′

)[
I]t ′,t ] + e

ω f

]

ft+1 := E
(

f̃t+1|Φt

) (3.9)

The fundamental value of a price corresponds to the instantaneous integration of all
available information on the price (cf. Fama and Miller [10]). Assuming that FVs0 = s0 and
FV f0 = f0, the fundamental values are naturally defined by:

FVst+1 := s0 + I]0,t+1]

FV ft+1 := FVst+1 −CYt+1
(3.10)

The futures’ fundamental value is classically computed using a classical view, by its
no arbitrage value (cf. Black [3], Black and Scholes [4], Cox et al. [6], Merton [18]). How-
ever, the main difference with these famous models is that our fundamental values are
endogenous to the model because they rely on feedbacks from one market to the other.

3.3.6 Market efficiency and fundamental volatility

We study prices bias and we refer to it as market efficiency, denoted by B. We are aware
that an unbiased price does not ensure that at each time l , l ∈ {t , tr }, the price fully re-
flects the information on the market, but unbiased price is a sine qua non condition to an
efficient market. We give the following function for the market efficiency:

B : R+ → R+

pl 7→ B(pl ) =
∣∣E

(
pl −FVpl

)∣∣ , pt ∈ {sl , fl } where | . | denote the absolute value
(3.11)
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Then, we consider the fundamental volatility criterion, denoted by V. It is computed
using a standard variance. We are aware that the variance is not the only way of com-
puting the volatility of a variable. We could have used a kurtosis measure, a value at risk,
the spread between the maximum price and the minimum price on the period etc. How-
ever, it is one possible tool allowing to explain what is at stake. Then, we have at time l ,
l ∈ {t , tr }:

V : R+ → R+

FVpl 7→ V(FVpl ) = Var
(
FVpl

)
, pl ∈ {sl , fl }

(3.12)

3.4 The impact of trade frequencies

In this section, we study the impact of trade frequencies on market efficiency and fun-
damental basis volatility. Market efficiency regarding splitting orders strategies and by
extension their impact on liquidity has already been studied empirically in previous lit-
erature (cf. Bennett and Wei [2], Kwan et al. [15], O’Hara and Ye [20], O’Hara [21]). We
provide a theoretical explanation of its impacts. Finally, we show within this framework
that trade frequencies also impacts fundamental basis volatility.

3.4.1 Impact of trade frequencies on the market efficiency

Theorem 4. Let SM and FM respectively be a spot market and a futures market under our
hypothesis. According to the time line considered, the price on SM is biased such that:

B(st ) =
|−e|
ω f

t∑

k=1

(
1−

ωs

ω f

)k

(3.13)

B
(
str

)
=

|−e|
ω f

tr ω f∑

k=1

(
1−

ωs

ω f

)k

(3.14)

This bias is null if one of the two following subsets of conditions is verified:

(i) For e = 0, B(st ) = B
(
str

)
= 0;

(ii) For ωs =ω f , B(st ) = B
(
str

)
= 0.

Proof. Using equation (3.9), we have:

s(1)′ = s0 +1{1}
(
1′)[I]0′,0] + e

ω f

]

⇒ s(2)′ = s1 +1{2}
(
2′)[I]1′,1] + e

ω f

]

⇔ s(2)′ = s0 +1{1}
(
1′)[I]0′,0] + e

ω f

]
+1{2}

(
2′)[I]1′,1] + e

ω f

]

Hence, we express s(t−1)′ according to s0 as follows:

s(t−1)′ = s0 +
(t−1)′∑

k=1
1{k}

(
k ′)

[
I](k−1)′,k−1]+

e

ω f

]
(3.15)

We express the dynamics of st according to s0 using equations (3.9) and (3.15):

st = s0 +
t∑

k=1
1{k}

(
k ′)

[
I](k−1)′,k−1]+

e

ω f

]
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Then, its average value is:

E (st ) = E
(
s0 +

∑t
k=1 1{k}

(
k ′)[I](k−1)′,k−1]+

e
ω f

])

⇔ E (st ) = s0 +
∑t

k=1 E
(
1{k}

(
k ′)[I](k−1)′,k−1]+

e
ω f

])

⇔ E (st ) = s0 +
∑t

k=1 E
(
1{k}

(
k ′))E

(
I](k−1)′,k−1]+

e
ω f

)

⇔ E (st ) = s0 + ωs
ω f

e
ω f

∑t
k=1

(
k −1−E

(
(k −1)′

)
+1

)

⇔ E (st ) = s0 + ωs
ω f

e
ω f

∑t
k=1

(
k −E

(
(k −1)′

))

We compute the average spot fundamental value at time t :

E
(
FVst

)
= E

(
s0 + I]0,t ]

)
= s0 + e

ω f
t

We have the following expression of the bias:

B(st ) =
∣∣∣s0 + ωs

ω f

e
ω f

[∑t
k=1

(
k −E

[
(k −1)′

])]
− s0 − e

ω f
t
∣∣∣

⇔ B(st ) =
∣∣∣ e
ω f

ωs
ω f

∑t
k=1

(
k − ω f

ωs
−E

[
(k −1)′

])∣∣∣
(3.16)

Replacing E
[
(k −1)′

]
by its value given in equation (3.1) in (3.16), we obtain the fol-

lowing expression of the spot price bias:

B(st ) =
∣∣∣∣ e
ω f

ωs
ω f

∑t
k=1

(
k − ω f

ωs
−

[
k −1−

∑k−1
j=1

(
1− ωs

ω f

) j
])∣∣∣∣

⇔ B(st ) =
∣∣∣∣ e
ω f

ωs
ω f

∑t
k=1

(
1− ω f

ωs
+

∑k−1
j=1

(
1− ωs

ω f

) j
)∣∣∣∣

⇔ B(st ) =
∣∣∣∣−e
ω f

∑t
k=1

(
1− ωs

ω f
− ωs

ω f

∑k−1
j=1

(
1− ωs

ω f

) j
)∣∣∣∣

⇔ B(st ) =

∣∣∣∣∣∣∣
−e
ω f

∑t
k=1


1− ωs

ω f
− ωs

ω f

(
1− ωs

ω f

) 1−
(
1− ωs

ω f

)k−1

1−
(
1− ωs

ω f

)




∣∣∣∣∣∣∣

⇔ B(st ) =
∣∣∣∣−e
ω f

∑t
k=1

(
1− ωs

ω f
−

(
1− ωs

ω f

)[
1−

(
1− ωs

ω f

)k−1
])∣∣∣∣

⇔ B(st ) = |−e|
ω f

∑t
k=1

(
1− ωs

ω f

)k

For e 6= 0 and ωs 6= ω f , B(st ) > 0. Hence, the spot price is biased, and SM cannot be an
efficient market.

To get B
(
str

)
, we explain t in the clock time line (i.e. t = tr ×ω f ). The expression of the

bias is null for the same subsets of conditions than B(st ).
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If e 6= 0 and ωs 6=ω f , trade frequencies have an impact on spot market efficiency. They
generate a bias on the spot price dynamics that results in an adjustment delay explained
in a n.o.t. However, spot market information is released between transactions on the fu-
tures market. The adjustment delay in monetary value is then, strictly positive.

Remark 6. For e = 0, B(st ) = B
(
str

)
= 0.

When incoming spot market information has no impact on average on the spot price, an
adjustment delay in the n.o.t does not generate a bias on the market. As the released spot
market information has on average no impact on monetary value, the adjustment delay in
monetary value corresponding to the bias is null independently of the time line considered.

For ωs =ω f , t ′ = t ∀ t ∈ [1,T], we have E
(
t ′

)
= t ; hence, B(st ) = B

(
str

)
= 0.

When transactions are synchronized between spot and futures markets, there is no adjust-
ment delay in n.o.t on the futures market. Thus, the rational expectations assumption en-
sures an unbiased spot price independently of the time line considered.

In reality, the futures market trade frequency (FTF) is higher than the spot market trade
frequency (STF) (cf. Working [26]). Furthermore, commodity prices have a seasonal ten-
dency such that e 6= 0 (cf. Back and Prokopczuk [1]). Then, the adjustment delay of the
spot market can be important.

Corollary 3. Let FM be a futures market under our hypothesis. FM is an unbiased market
such that:

B
(

ft
)
= B

(
ftr

)
= 0 (3.17)

Thus, FM can be an efficient market.

Spot market information arrives between two transactions on the futures market (im-
pact of the futures market on the spot market). Under the assumption of rational ex-
pectations, agents perfectly expect, on average, fundamental prices. As the futures price
always evolves according to expectations, futures price is unbiased independently of the
time line considered.

Remark 7. The futures market efficiency is independent from trade frequencies. However,
the STF has an indirect impact on stock dynamics and its expectations (cf. equations (3.3)
and (3.6)). One can infer that this indirect impact is, on average, equal on both futures’
price and fundamental value dynamics.

3.4.2 Impact of trade frequencies on the fundamental basis volatility

Theorem 5. Let SM and FM respectively be a spot market and a futures market under our
hypothesis. The available stock and the fundamental value of the basis have the following
properties:

(i) The volatility of the available stock expressed respectively in the transactions time line
(TTL), denoted by Var (Qt ), and in the clock time line (CTL), denoted by Var

(
Qtr

)
, are

impacted by both STF and FTF.

Var (Qt ) = t q (ωs)2
(
1−

ωs

ω f

)
ωs

ω f
(3.18)

Var
(
Qtr

)
= tr q (ωs)2

(
1−

ωs

ω f

)
ωs (3.19)
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This volatility is null if the following subset of conditions is verified:

• For ωs =ω f , Var (Qt ) = Var
(
Qtr

)
= 0.

(ii) The fundamental basis volatility in the TTL, denoted by Var
(
FV ft −FVst

)
, and in the

CTL, denoted by Var
(
FV ftr

−FVstr

)
, are impacted by both STF and FTF.

Var
(
FV ft −FVst

)
=

(
a

ω f

)2 ((
Trω f

)
− t

)2 q (ωs)2 t

(
1−

ωs

ω f

)
ωs

ω f
(3.20)

Var
(
FV ftr

−FVstr

)
= a2 (Tr − tr )2 q (ωs)2 tr

(
1−

ωs

ω f

)
ωs (3.21)

This volatility is null if one of the three following subsets of conditions is verified:

• For ωs =ω f , Var
(
FV ft −FVst

)
= Var

(
FV ftr

−FVstr

)
= 0;

• For a = 0, Var
(
FV ft −FVst

)
= Var

(
FV ftr

−FVstr

)
= 0;

• For t = T, or equivalently tr = Tr , Var
(
FV ft −FVst

)
= Var

(
FV ftr

−FVstr

)
= 0.

Proof. First, we compute Var (Qt ) and show that it depends on parameters ωs and ω f .

Var (Qt ) = Var
(
Q0 −q (ωs)

∑t
k=1 1{t }

(
t ′

))

⇔ Var (Qt ) = q (ωs)2 Var
(∑t

k=1 1{t }
(
t ′

))
= q (ωs)2 ∑t

k=1 Var
(
1{t }

(
t ′

))

⇔ Var (Qt ) = q (ωs)2 ∑t
k=1

(
1− ωs

ω f

)
ωs
ω f

= q (ωs)2 t
(
1− ωs

ω f

)
ωs
ω f

To get Var
(
Qtr

)
, we explain t in the clock time line. We respectively obtain expres-

sions (3.18) and (3.19).

For ωs 6=ω f , V (Qt ) > 0, and V
(
Qtr

)
> 0.

Thus, expressions of Var (Qt ) and Var
(
Qtr

)
depend on parameters ωs and ω f , which

proves the first assertion.
Then, we compute the fundamental variance of the spread between the futures price

and the spot price. We show that it also depends on parameters ωs and ω f .

V
(
FV ft −FVst

)
= Var (CYt ) = Var

(
a
ω f

(T− t )
(
Qop −Qt

))

⇔ V
(
FV ft −FVst

)
=

(
a
ω f

)2 ((
Trω f

)
− t

)2 Var
(
Qop −Qt

)
=

(
a
ω f

)2 ((
Trω f

)
− t

)2 Var (Qt )

Knowing the value of Var (Qt ) from the first assertion’s proof above, we obtain the
expression of equation (3.20).

To get V
(
FV ftr

−FVstr

)
, we explain t in the clock time line. Knowing the value of

Var
(
Qtr

)
from the first assertion’s proof above, we obtain the expression of equation (3.21).

For a 6= 0, t < T, and ωs 6=ω f , V
(
FV ft −FVst

)
> 0.

For a 6= 0, tr < Tr , and ωs 6=ω f , V
(
FV ftr

−FVstr

)
> 0.

Expressions of V
(
FV ft −FVst

)
and V

(
FV ftr

−FVstr

)
depend on parameters ωs and ω f ,

which proves the second assertion.
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If a 6= 0, ωs 6=ω f , and t < T (or equivalently tr < Tr ), trade frequencies have an impact
on the fundamental basis volatility, expressed either in the TTL or in the CTL. They gener-
ate a probabilistic risk as defined by Knight [14] on the dynamics of the commodity stock.
Furthermore, the STF has an impact on quantities traded on the spot market according to
the absolute value of the elasticity ǫ.

A representation of the sensitivity of the fundamental basis volatility to trade frequen-
cies according to the elasticity of quantities traded at each transaction on the spot market
to the STF is given in figures 3.7 and 3.9 for the TTL.

A representation of the sensitivity of the fundamental basis volatility to trade frequen-
cies according to the elasticity of quantities traded at each transaction on the spot market
to the STF is given in figure 3.13 for the CTL.

Remark 8. For a = 0, Var
(
FV ft −FVst

)
= Var

(
FV ftr

−FVstr

)
= 0. If there is no advantage in

detaining stocks until maturity both fundamental basis volatility and fundamental basis
are null.6 The latest mechanism is valid independently of the time line considered.

For ωs = ω f , Var
(
FV ft −FVst

)
= Var

(
FV ftr

−FVstr

)
= 0. There are only synchronized

transactions in the spot and futures agricultural commodity markets. Consequently, there
is neither risk nor uncertainty; There is a transaction of q unit(s) of the commodity at each
transaction on the spot market and de facto at each transaction on the futures market per-
fectly expected. The latest mechanism is valid independently of the time line considered.

For t = T, or equivalently tr = Tr , Var
(
FV ft −FVst

)
= Var

(
FV ftr

−FVstr

)
= 0. As a con-

sequence of the no arbitrage condition, at maturity, the basis must be null as well as its
volatility. The latest mechanism is valid independently of the time line considered.

In reality, the FTF is higher than the STF. Transaction costs on the spot market are
rather high, and they prevent the STF from increasing. Furthermore, the advantage of de-
taining stocks of the storable agricultural commodity is a major and significant compo-
nent of the basis, such that a 6= 0.7 Then, basis fundamental volatility increases because
of these market characteristics.

3.5 The impact of an increase in the liquidity

Theorems 4 and 5 prove that under our assumptions, trade frequencies influence the fun-
damental basis volatility and the spot price bias. In this section we study how this impact
evolves when these frequencies increase and then when liquidity increases. Aside of the
economic mechanisms, we provide all of the associated analytical results as well as some
illustrations. We study the impact of the increase in liquidity on the spot market and on
the futures market separately as well as the impact of a proportional increase in liquid-
ity on the two markets on first, the spot price bias (subsection 3.5.1) and second, on the
fundamental basis volatility (subsection 3.5.2).

6This result holds as we do not integrate storage costs. Otherwise, the basis would equal these storage
costs.

7Fama and French [9], Gorton et al. [12], Wei and Zhu [25] made an empirical study respectively on 21
commodities, natural gas market and 31 commodities; Back and Prokopczuk [1] made a review.
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3.5.1 Impact of an increase in the liquidity on the spot price bias

Theorem 6. Let SM and FM be respectively a spot market and a futures market under our
assumptions. For e 6= 0, a 6= 0, ωs 6=ω f , and according to the time line considered, the spot
price bias evolves such that:

(i) If the spot market trade frequency (STF) increases, the spot price bias strictly de-
creases, independently of the time line considered.

(ii) Within the transaction time line (TTL) (t), if the futures market trade frequency (FTF)
increases, we have:

• For ωs
ω f

∈
]

0;1−
( 1

t+1

) 1
t
[
⊂

]
0; 1

2

[
, the spot price bias strictly decreases;

• For ωs
ω f

∈
]

1−
( 1

t+1

) 1
t ;1

[
⊃

]1
2 ;1

[
, the spot price bias strictly increases.

Within the clock time line (CTL) (tr ), if the FTF increases the spot price strictly de-
creases if and only if the following condition is verified:

ω f +1

ω f
>

∑tr
(
ω f +1

)

k=1

(
1− ωs

ω f +1

)k

∑tr ω f

k=1

(
1− ωs

ω f

)k
(3.22)

(iii) Within the TTL, if both STF and FTF increase such that the relative trade frequency
(RTF), equal to ωs

ω f
, is unchanged, the spot price bias strictly decreases.

Within the CTL, if both STF and FTF increase such that the RTF, equal to ωs
ω f

, is un-

changed, the spot price bias strictly decreases if and only if the following condition is
verified:

ω f +1

ω f
>

∑tr
(
ω f +1

)

k=1

(
1− ωs

ω f

)k

∑tr ω f

k=1

(
1− ωs

ω f

)k
(3.23)

Proof. To prove the first assertion, we calculate the derivation of the spot price bias ex-
pressed in the TTL according to ωs , and we show that it is negative. Using equation (3.13)
we have:

∂B(st )
∂ωs

=
∂

[
|−e|
ω f

∑t
k=1

(
1− ωs

ω f

)k
]

∂ωs

⇔ ∂B(st )
∂ωs

= |−e|
ω f

[∑t
k=1 k

(
−1
ω f

)(
1− ωs

ω f

)k−1
]
< 0

The calculus is the same for
∂B(str )
∂ωs

, starting from equation (3.14).
Hence, first assertion is proved.

To prove the second assertion, we first calculate the derivation of the spot price bias
expressed in the TTL according to ω f , and we study its sign. Using equation (3.13) we
have:
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∂B(st )
∂ω f

=
∂

[
|−e|
ω f

∑t
k=1

(
1− ωs

ω f

)k
]

∂ω f

⇔ ∂B(st )
∂ω f

= | −e |
∂

[
1
ω f

∑t
k=1

(
1− ωs

ω f

)k
]

∂ω f

⇔ ∂B(st )
∂ω f

= | −e |
[
− 1

ω f
2

∑t
k=1

(
1− ωs

ω f

)k
+ 1

ω f

∑t
k=1 k

(
1− ωs

ω f

)k−1 ωs
ω f

2

]

⇔ ∂B(st )
∂ω f

= |−e|
ω f

2

[
−

∑t
k=1

(
1− ωs

ω f

)k
+

∑t
k=1 k

(
ωs
ω f

)(
1− ωs

ω f

)k−1
]

⇔ ∂B(st )
∂ω f

= |−e|
ω f

2


−

(
1− ωs

ω f

) 1−
(
1− ωs

ω f

)t

1−
(
1− ωs

ω f

) +

ωs
ω f




(
1−(t+1)

(
1− ωs

ω f

)t )(
1−

(
1− ωs

ω f

))
+

((
1− ωs

ω f

)
−

(
1− ωs

ω f

)t+1)

(
1−

(
1− ωs

ω f

))2







⇔ ∂B(st )
∂ω f

= |−e|
ω f ωs

[
−

((
1− ωs

ω f

)
−

(
1− ωs

ω f

)t+1
)

+
(
1− (t +1)

(
1− ωs

ω f

)t )(
ωs
ω f

)
+

((
1− ωs

ω f

)
−

(
1− ωs

ω f

)t+1
)]

⇔ ∂B(st )
∂ω f

= |−e|
ω f

2

[
1− (t +1)

(
1− ωs

ω f

)t ]

(3.24)

Equation (3.24) is strictly negative if and only if:

1− (t +1)
(
1− ωs

ω f

)t
< 0

⇔ 1 < (t +1)
(
1− ωs

ω f

)t

⇔ ωs
ω f

< 1−
( 1

t+1

) 1
t

Let h be a function such that:

h :
[
1;Tr ×ω f

]
⊂N → R

t 7→ h (t ) = 1−
( 1

t+1

) 1
t

(3.25)

It is easy to prove that h is a C1 class function. Then,
dh(t )

d t = −
(
− 1

t 2

)( 1
t+1

) 1
t −1 −1×1

(t+1)2 = − 1
t 2(t+1)2

( 1
t+1

) 1−t
t < 0. The maximal value of h is then

h (1) = 1
2 . The minimal value of h is then lim

t→Tr ×ω f →∞
h (t ) = 1−00 = 0.

Focusing on the price bias expressed in the CTL, the method used can not be the
same for B

(
str

)
, starting from equation (3.14). Indeed, ω f can not have an infinitesi-

mal evolution guaranteeing that trω f ∈ N, and then, guaranteeing that the sum exists.
That is, we use the simple difference to study the evolution of the bias. We denote by
B(sl ) |x , l ∈ {t , tr }, the value of the spot price bias with a FTF equal to x. It gives:
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B
(
str

)
|ω f +1 −B

(
str

)
|ω f =

|−e|
ω f +1

tr
(
ω f +1

)
∑

k=1

(
1−

ωs

ω f +1

)k

−
|−e|
ω f

tr ω f∑

k=1

(
1−

ωs

ω f

)k

Putting to the same denominator and factorizing by |−e|(
ω f +1

)
ω f

> 0, it gives:

B
(
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)
|ω f +1 −B

(
str

)
|ω f =ω f

tr
(
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∑
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(
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ωs
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) tr ω f∑
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(
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This difference is strictly negative if and only if:

ω f
∑tr

(
ω f +1

)

k=1

(
1− ωs

ω f +1

)k
<

(
ω f +1

)∑tr ω f

k=1

(
1− ωs

ω f

)k

⇔
∑tr

(
ω f +1

)

k=1

(
1− ωs

ω f +1

)k

∑tr ω f
k=1

(
1− ωs

ω f

)k < ω f +1
ω f

This proves the second assertion.

To prove the last assertion, we first focus on the TTL and we compute the total deriva-
tion of spot price bias and then study its sign. A proportional increase of the frequencies
implies that the RTF is unchanged such that ωs+dωs

ω f +dω f
= ωs

ω f
⇔ω f (ωs +dωs) =ωs

(
ω f +dω f

)
⇔

dω f =
ω f dωs

ωs
. This gives:

d (B(st )) = ∂(B(st ))
∂ωs

dωs + ∂(B(st ))
∂ω f

dω f

⇔ d (B(st )) = |−e|
ω f

[∑t
k=1 k

(
−1
ω f

)(
1− ωs

ω f

)k−1
]

dωs

+ |−e|
ω f

2

[
−

∑t
k=1

(
1− ωs

ω f

)k
+

∑t
k=1 k

(
ωs
ω f

)(
1− ωs

ω f

)k−1
]
ω f

ωs
dωs

⇔ d (B(st )) = |−e|
ω f

2 dωs

[
−

∑t
k=1 k

(
1− ωs

ω f

)k−1
− ω f

ωs

∑t
k=1

(
1− ωs

ω f

)k
+

∑t
k=1 k

(
1− ωs

ω f

)k−1
]

⇔ d (B(st )) = − |−e|
ωsω f

dωs
∑t

k=1

(
1− ωs

ω f

)k
< 0

We now focus on the CTL. Once again, we face the problem of the existence of the sum
and we can not use the derivation. A variation of ω f of one unit having a RTF unchanged

implies that ωs+∆ωs
ω f +1 = ωs

ω f
⇔ ∆ωs = ωs

ω f
. We denote by B(sl ) |x,y , l ∈ {t , tr }, the value of the

spot price bias with a FTF equal to x and a STF equal to y . Using the simple difference, we
get:

B
(
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)
|{ω f +1,ωs+ ωs

ω f
} −B

(
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)
|{ω f ,ωs } =
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(
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−
|−e|
ω f

tr ω f∑
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(
1−

ωs

ω f

)k

Putting to the same denominator and factorizing by |−e|(
ω f +1

)
ω f

> 0, it gives:

B
(
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)
|{ω f +1,ωs+ ωs

ω f
} −B

(
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)
|{ω f ,ωs } =ω f

tr
(
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∑
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(
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ωs
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−
(
ω f +1

) tr ω f∑
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(
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ωs
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Figure 3.4 – Representation of the spot price bias B(st ). Parameters used are e = 0.01 and t = 40.

This difference is strictly negative if and only if:

ω f
∑tr

(
ω f +1

)

k=1

(
1− ωs

ω f

)k
<

(
ω f +1

)∑tr ω f

k=1

(
1− ωs

ω f

)k

⇔
∑tr

(
ω f +1

)

k=1

(
1− ωs

ω f

)k

∑tr ω f
k=1

(
1− ωs

ω f

)k < ω f +1
ω f

This proves the last assertion.

Interpretation of the results for the transactions time line

An increase in the STF (i.e., in the liquidity on the spot market) decreases the average
adjustment delay in n.o.t on the futures market. As the average spot market information
impact between two transactions on the futures market is unchanged, the spot price bias
decreases in monetary value (cf. figure 3.4; the bias is strictly decreasing when ωs in-
creases). This explains the first assertion of theorem 6.

An increase in the FTF (i.e., in the liquidity on the futures market) increases the av-
erage adjustment delay in n.o.t on the futures market. However, the average spot market
information impact between two transactions on the futures market decreases. The first
effect overcomes the second one when the RTF is initially sufficiently low. The impact
of the FTF on the RTF and thus on the probability of having a transaction on the spot
market at each transaction on the futures market is not linear. Figure 3.4 represents the
upper level of the plan, wherein for a given (little) STF, there is an FTF above that the bias
decreases. This explains the second assertion of theorem 6.

Remark 9. Note that the above condition depends on the n.o.t on the futures market con-
sidered, denoted by t . To have an increase in the liquidity on the futures market that reduces
the spot price bias, the more we consider a high t , the lower the RTF must be (i.e., ω f >>ωs).
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Figure 3.5 – Representation of the spot price bias B
(
str

)
. Parameters used are e = 0.01 and tr = 40.

With a high initial FTF, an increase in the FTF has a small effect on the RTF. Figure 3.6 il-
lustrates the effect of t . Looking at the upper part of the plan (when ω f >>ωs), the higher
t is, the less the spot price bias decreases.

A proportional increase in both STF and FTF such that the RTF is unchanged does
not modify the probability of synchronized transaction’s occurrence. However, between
two transactions on the futures market, the average monetary impact of the spot market
information on the futures market strictly decreases. Thus, the spot price bias strictly
decreases. This result explains the third assertion of theorem 6, and figure 3.4 illustrates
it. When following a parallel of the first bisector, the RTF is unchanged and the spot price
bias decreases.

Interpretation of the results for the clock time line

An increase in the STF (i.e., in the liquidity on the spot market) decreases the average
adjustment delay in n.o.t on the futures market. As the average spot market informational
impact between two transactions on the futures market is unchanged, the spot price bias
decreases in monetary value. This result explains the first assertion of theorem 6.

An increase in the FTF (i.e., in the liquidity on the futures market) increases the av-
erage adjustment delay in n.o.t on the futures market for a given n.o.t (trω f ). This effect is

equal to
∑tr ω f

k=1

(
1− ωs

ω f +1

)k

/∑tr ω f
k=1

(
1− ωs

ω f

)k

. Furthermore, as we consider a fixed clock time, there

are more transactions on the futures market (exactly there are tr = tr (ω f +1)− trω f more
transactions). These two effects increase the spot price bias. They are jointly represented

by the multiplier of the average delay in n.o.t
∑tr

(
ω f +1

)

k=1

(
1− ωs

ω f +1

)k

/∑tr ω f
k=1

(
1− ωs

ω f

)k

. However,the

average monetary impact of the spot market information between two transactions on
the futures market decreases ( |−e|

ω f +1 < |−e|
ω f

). This effect diminishes the spot price bias ac-

cording to the multiplier of the FTF,
ω f +1
ω f

. The latest effect has to overcome the first one

to ensure that an increase in the liquidity on the futures market decreases the spot price
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(a) t = 20

(b) t = 60

(c) t = 100

Figure 3.6 – Representation of the spot price bias B(st ) according to the value of t . Parameter used
is e = 0,01.
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bias. Hence, the second assertion of theorem 6 and its condition are explained.

A proportional increase in both STF and FTF such that the RTF is unchanged does not
modify the average adjustment delay in n.o.t on the futures market at a given n.o.t (trω f ).

This effect is equal to
∑tr ω f

k=1

(
1− ωs

ω f

)k

/∑tr ω f
k=1

(
1− ωs

ω f

)k

= 1. However, as we consider a fixed clock

time, there are more transactions on the futures market (exactly there are tr = tr (ω f +
1)− trω f more transactions). This effect increases the spot price bias. It is represented

by the multiplier of the average delay in n.o.t
∑tr

(
ω f +1

)

k=1

(
1− ωs

ω f

)k

/∑tr ω f
k=1

(
1− ωs

ω f

)k

. Then, between

two transactions on the futures market, the average monetary impact of the spot market
information on the futures market strictly decreases (again according to the multiplier of

the FTF
ω f +1
ω f

). The latest effect has to overcome the first one to ensure that a proportional

increase in the liquidity on both spot and futures markets decreases the spot price bias.
Hence, the third assertion of theorem 6, and its condition are explained.

3.5.2 Impact of an increase in the liquidity on the fundamental basis

volatility

Theorem 7. Let SM and FM be respectively a spot market and a futures market under our
assumptions. For e 6= 0, a 6= 0, ωs 6= ω f , and according to the time line considered, the
fundamental basis volatility evolves such that:

(i) If the STF increases, independently of the time line considered, we have:

• For ωs
ω f

∈
]
0, 1

2

[
, the fundamental basis volatility strictly decreases if the following

condition is verified:

−ǫ<−
ω f −2ωs

2
(
ω f −ωs

) (3.26)

• For ωs
ω f

∈
]1

2 ,1
[
, the fundamental basis volatility strictly decreases.

(ii) Within the TTL, if the FTF increases, we have:

• For ωs
ω f

∈
]
0, 1

2

[
, the fundamental basis volatility strictly decreases if the following

condition is verified:

−
ω f −2ωs

2
(
ω f −ωs

) <−
t

Trω f − t
(3.27)

• For ωs
ω f

∈
[1

2 ,1
[
, the fundamental basis volatility increases.

Within the CTL, if the FTF increases, the fundamental basis volatility strictly in-
creases.

(iii) Within the TTL, if both STF and FTF increase such that the RTF, equal to ωs
ω f

, is un-

changed, the fundamental basis volatility strictly decreases if the following condition
is verified:

−ǫ<−
t

Trω f − t
(3.28)

Within the CTL, if both STF and FTF increase such that the RTF, equal to ωs
ω f

, is un-

changed, the fundamental basis volatility strictly decreases if the following condition
is verified:
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−ǫ<−
1

2
(3.29)

Proof. To prove the first assertion, we calculate the derivation of the fundamental basis
volatility according to ωs , and we study its sign. Using equation (3.20) we have:

∂V
(
FV ft −FVst

)

∂ωs
=

∂

[(
a
ω f

)2((
Tr ω f

)
−t

)2q(ωs )2t

(
1− ωs

ω f

)
ωs
ω f

]

∂ωs

⇔ ∂V
(
FV ft −FVst

)

∂ωs
=

(
a
ω f

)2 ((
Trω f

)
− t

)2 t 1
ω f

∂

[
q(ωs )2ωs−

q(ωs )2ωs 2

ω f

]

∂ωs

⇔ ∂V
(
FV ft −FVst

)

∂ωs
=

(
a
ω f

)2 ((
Trω f

)
− t

)2 t 1
ω f

[
q (ωs)2 +2ωs q (ωs) d q(ωs )

dωs

− 1
ω f

(
2ωs q (ωs)2 +2ωs

2q (ωs) d q(ωs )
qωs

)]

⇔ ∂V
(
FV ft −FVst

)

∂ωs
=

(
a
ω f

)2 ((
Trω f

)
− t

)2 tr q (ωs)×[
q (ωs)

[
1−2 ωs

ω f

]
+2ωs

d q(ωs )
dωs

[
1− ωs

ω f

]]

(3.30)

Equation (3.30) is strictly negative if and only if:

q (ωs)
[

1−2 ωs
ω f

]
+2ωs

d q(ωs )
dωs

[
1− ωs

ω f

]
< 0

⇔ q (ωs)
[
ω f −2ωs

ω f

]
< −2ωs

d q(ωs )
dωs

[
ω f −ωs

ω f

]

⇔
[
ω f −2ωs

ω f

][
ω f

2
(
ω f −ωs

)
]

< −
ωs

d q(ωs )
dωs

q(ωs )

⇔ −ǫ < − ω f −2ωs

2
(
ω f −ωs

)

(3.31)

This condition is always verified when
ω f −2ωs

2
(
ω f −ωs

) < 0 ⇔ ωs
ω f

> 1
2 . Otherwise, the relation

expressed in equation (3.31) must be verified. This proves the first assertion.

To prove the second assertion, we derive the fundamental basis volatility regarding ω f
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and study its sign.
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Trω f
)
− t

)2
(

4ωs−3ω f

ω f
5

)]

⇔ ∂V
(
FV ft −FVst
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ω f
5

)]

(3.32)

This term is strictly negative if and only if:

2Tr

(
ω f −ωs

ω f
4

)
+

((
Trω f

)
− t

)(4ωs−3ω f

ω f
5

)
< 0

⇔ 2Tr
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ω f −ωs

ω f
4

)
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Trω f
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)(4ωs−3ω f

ω f
5
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⇔ Tr ω f(
Tr ω f

)
−t

< −
(

4ωs−3ω f

ω f
4

)(
ω f

4

2
(
ω f −ωs

)
)

⇔ Tr ω f

Tr ω f −t < 1+ ω f −2ωs

2
(
ω f −ωs

)

⇔ − t
Tr ω f −t > − ω f −2ωs

2
(
ω f −ωs

)

(3.33)

For t ∈
[
0;Tr ×ω f −1

]
⊂N, t

Tr ω f −t ≥ 0. Then, this condition is never verified for:

ω f −2ωs

2
(
ω f −ωs

) < 0 ⇔
ωs

ω f
>

1

2
(3.34)

For a 6= 0, t < T, and ωs 6= ω f ,
∂V

(
FV ft −FVst

)

∂ω f
> 0 when ωs

ω f
> 1

2 . Otherwise, the relation

expressed in equation (3.33) must be verified. This proves the second assertion.

To prove the third assertion, we compute the total derivation of the fundamental basis
volatility considering a proportional increase of the two frequencies.

Using equations (3.30), (3.32), and the variation of ω f explained with the variation of
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ωs computed above, we get:
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(3.35)
Equation (3.35) is strictly negative if and only if:

−1+ ωs
q(ωs )

d q(ωs )
dωs

+ Tr
(Tr −tr ) < 0

⇔ −ǫ < 1− Tr
(Tr −tr )

⇔ −ǫ < − t(
Tr ω f −t

)

This proves the third assertion.

Interpretation of the results for the transactions time line

An increase in the STF (i.e., in the liquidity on the spot market) reduces the volatility of
the fundamental basis by two mechanisms if the RTF is superior to 1

2 (cf. figure 3.7, the
fundamental basis volatility curve decreases with an increasing STF when ωs

ω f
> 1

2 ). First,

the volatility of the occurrence of synchronized transactions decreases (cf. figure 3.8).
Second, quantities traded per transaction on the spot market are lower, and so smooth
the stock dynamics. If the RTF is lower than 1

2 , the first mechanism does not hold but the
second still holds. The volatility of the occurrence of synchronized transactions increases
(cf. figure 3.8). The "smoothing per trade traded quantities" effect must overcome the "in-
creasing occurrence of synchronized transaction volatility" effect. In other words, when
initial market characteristics imply that ωs

ω f
< 1

2 , more fragmentation on the spot market

increases the volatility of the futures contract through the increase of the convenience
yield volatility. However, more fragmentation on the spot market decreases traded quan-
tities on the spot market. According to the elasticity parameter ǫ, and the original trade
frequencies, the latest effect can overcome the first one but it is not always the case.
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Figure 3.7 – Representation of the fundamental basis volatility Var
(
FV ft −FVst

)
. Parameters used

are a = 0.01, t = 50, Tr = 2500, and ǫ= 0.2.

0 1
ωs
ω f

1
4

1
2

ωs
ω f

(
1− ωs

ω f

)

Figure 3.8 – Volatility of the occurrence of synchronized transactions at each transaction on the
futures market. Red arrow gives the evolution of the volatility with an increasing STF.

To smooth the stock dynamics enough, the elasticity must be under a threshold (suffi-
ciently high in absolute value) such that quantities traded per trade sufficiently decrease.
This condition is given by equation (3.26) and is illustrated in figures 3.7 and 3.9. For
ǫ = 0,8 (cf. figure 3.9b), the elasticity is high in absolute value, and the volatility is de-
creasing with an increasing ωs . On the contrary, for ǫ= 0,2 (cf. figure 3.7), the volatility is
increasing when the STF is originally low. These results explain the first assertion of the-
orem 7. A study of the condition is presented in remark 10, and highlights the following
remark.

Remark 10. Let f be a function such that:

f : Fs\
{
ω f

}
×F f → R(

ωs ,ω f
)

7→ f
(
ωs ,ω f

)
=− ω f −2ωs

2
(
ω f −ωs

)

It is easy to prove that f is a C1 class function.

For ωs
ω f

∈
]
0, 1

2

[
,
∂ f

(
ωs ,ω f

)

∂ωs
= −−2

(
2
(
ω f −ωs

))
−

(
ω f −2ωs

)
(−2)

(
2
(
ω f −ωs

))2 = ω f

2
(
ω f −ωs

)2 > 0. The higher ωs is, the
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(a) ǫ= 0,4

(b) ǫ= 0,8

Figure 3.9 – Representation of the fundamental basis volatility Var
(
FV ft −FVst

)
according to the

value of ǫ. Parameters used are a = 0.01, t = 50 and Tr = 2500.
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higher ǫ can be to verify equation (3.31).

For ωs
ω f

∈
]
0, 1

2

[
,
∂ f

(
ωs ,ω f

)

∂ω f
= −12

(
ω f −ωs

)
−

(
ω f −2ωs

)
2

4
(
ω f −ωs

)2 = − ωs

2
(
ω f −ωs

)2 < 0. The higher ω f is, the

lower ǫ has to be to verify equation (3.31).

Remark 11. This condition depends on the initial trade frequencies. The higher the STF
initially is, the lower quantities traded per transaction on the spot market are. Thus, the
higher the elasticity can be (the lower in absolute value) such that quantities traded will
decrease enough, and overcome the increasing volatility in the stock dynamics. Near the
first bisector, the fundamental basis volatility decreases with an increasing STF for all val-
ues of ǫ (cf. figures 3.7 and 3.9).

Based on the same reasoning, the higher the FTF is, the more restrictive the condition
given by equation (3.26) is. The increasing part of the curve for a given STF is more im-
portant when the FTF increases. To overcome this increasing effect, the elasticity must be
sufficiently high in absolute value to ensure a sufficient decrease in quantities traded per
trade on the spot market. The analytic condition is given in equation (3.27). In figures 3.7
and 3.9, the plan twists according to the value of ǫ, representing this threshold. We observe
that the higher ǫ is, the less the plan is twisted starting from low values of FTF.

An increase in the FTF (i.e., in the liquidity on the futures market) strictly increases
the volatility of the fundamental basis by two mechanisms if the RTF is superior to 1

2 (cf.
figure 3.7; the fundamental basis volatility plan increases with an increasing ω f when
ωs
ω f

> 1
2 ). The volatility of the occurrence of synchronized transactions increases (cf. fig-

ure 3.10). Furthermore, a transaction on the spot market long before the maturity has
more impact on the convenience yield than if it happens at maturity, as a consequence
of the no arbitrage value and the time remaining until maturity (cf. figure 3.11). Here,
we have the horizon t , expressed by a n.o.t on the futures market, to study the funda-
mental basis volatility. An increase in the FTF reduces the clock time at which the first t
transactions are made. Each transaction takes place earlier, and there is more clock time
remaining until maturity. An increase in the FTF gives more weight to the first t possible
transactions on the spot market. It consequently increases the fundamental basis volatil-
ity. However, when the RTF is lower than 1

2 , an increasing FTF decreases the volatility of
synchronized transaction’s occurrence. This effect overcomes the "clock time interval"
effect if the condition given by equation (3.27) is verified. Figure 3.12 illustrates the latest
condition. These results explain the second assertion of theorem 7.

A proportional increase in the STF and the FTF such that ωs
ω f

is unchanged does not

modify the occurrence of synchronized transaction’s volatility. However, for a given clock
time period, there are more transactions in the futures’ market. When considering a given
n.o.t on the futures market (or equivalently a given transaction time period) t , it reduces
the clock time considered.

Therefore, each potential evolution of the stock has more impact on the convenience
yield, since the clock time interval between the first t transactions and maturity is larger.
The increase of the STF reduces quantities traded per transaction on the spot market re-
ducing the stock dynamics volatility at an unchanged time horizon. To ensure that this
effect overcomes the higher importance of stock evolution until maturity, the elasticity of
quantities traded per transaction on the spot market to the STF must be under the thresh-
old given by equation (3.28) (i.e., sufficiently high in absolute value). This result explains
the third assertion of theorem 7. A study of this condition is presented in remark 12.
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0 1
ωs
ω f

1
4

1
2

ωs
ω f

(
1− ωs

ω f

)

Figure 3.10 – Volatility of the occurrence of synchronized transactions at each transaction on the
futures market. Blue arrow gives the evolution of the volatility with an increasing FTF.

t0

ft

T

st

(a) Transaction away from the maturity (t → 0)

t0

ft

T

st

(b) Transaction close to the maturity (t → T)

Figure 3.11 – Effect on the fundamental basis of a transaction of 1
2 Qt . For simplicity’s sake, we

exclude here the spot market information (sk = s0, ∀ k ∈ [0;T] ⇔ e = 0). The red dashed line repre-
sents the evolution of the futures price without transactions on the spot market
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(a) t = 25

(b) t = 100

(c) t = 200

Figure 3.12 – Representation of the fundamental basis volatility Var
(
FV ft −FVst

)
according to the

value of t . Parameters used are a = 0.01, ǫ= 0.2 and Tr = 250.
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Remark 12. Let g be a function such that:

g : F f ×
[
1;

(
Tr ×ω f

)
−1

]
→ R(

ω f , t
)

7→ g
(
ω f , t

)
=− t(

Tr ω f −t
) (3.36)

It is easy to prove that g is a C1 class function.

For ωs
ω f

∈
]
0, 1

2

[
,
∂g

(
ω f ,t

)

∂ω f
= −t (−Tr )(

Tr ω f −t
)2 > 0. Referring to remark 10, the left term of the condition

given by equation (3.27) is decreasing when ω f increases. The higher ω f is, the less restric-
tive the condition given by equation (3.27) is.

For ωs
ω f

∈
]
0, 1

2

[
,
∂g

(
ω f ,t

)

∂t = −1
(
Tr ω f −t

)
−t (−1)

(
Tr ω f −t

)2 = − Tr ω f(
Tr ω f −t

)2 < 0. The higher the n.o.t on the fu-

tures market considered t is, the more restrictive the condition of equation (3.27) is.

Remark 13. Equation (3.28) underlies the importance of the choice in the n.o.t considered
to study the effect of a proportional increase in the STF and the FTF.

This threshold firstly depends on the period t . The nearer to maturity time t is, the more
restrictive the condition given by equation (3.28) is. The "clock time interval" effect is higher
if the initial clock time interval considered is important. Consequently, the longest the ini-
tial horizon is, the higher the quantity effect has to be.

Second, this threshold depends on the FTF. The "clock time interval" effect relies on the
initial level of the FTF. Hence, a study of the condition shows that the higher the FTF is, the
less restrictive the condition given by equation (3.28) is. If the t transactions considered oc-
cur with a high FTF, only a small clock time interval is originally considered. Consequently,
an increase in the FTF reduces the clock time interval considered but not significantly, such
that the quantity effect does not have to be so high.

Remark 14. The condition given by equation (3.28) is independent from the RTF. Since in-
creases in the STF and in the FTF are proportional such that the RTF is unchanged, there is
no effect on the volatility of occurrence of synchronized transactions. Then, the only condi-
tion to ensure a reducing fundamental basis volatility relies on the elasticity of quantities
traded at each transaction on the spot market to the STF and the initial levels of both STF
and FTF.

The latest result has strong implications. In subsection 3.5.1, we demonstrated that
a proportional increase in the liquidity reduces spot market bias. One could think that a
proportional increase in the liquidity should reduce fundamental basis volatility. How-
ever, this intuition is unverified if the decrease in quantities traded per transaction on the
spot market is insufficient. This strong result shows the extent to which the spot market
and its structure influences the futures market and can reduce the benefit of a propor-
tional increase in liquidity on both markets. In other words, thinking that a proportional
fragmentation in both spot and futures markets will lead to a decreasing volatility is par-
tial. It is true that it decreases quantities traded per transaction and hence smooths the
stock dynamics. But according to initial levels of trade frequencies, this effect can be more
than compensated by an increase in the risk generated by the possibility of having more
transactions long time before the maturity.
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In our model, the elasticity of quantities traded per transaction on the spot market
to the STF is constant. Otherwise, we could have a condition (given by equation (3.28))
depending on the current level of the STF. Based on the same reasoning, one could as-
sume an elasticity depending on the FTF. Spot and futures markets are linked, and we
can imagine that when there are more trades on the futures market, producers and buy-
ers of the commodity adjust their orders and thus quantities traded. A further extension
of this work could be to study the evolution of these results according to the form of the q
function.

Interpretation of the results for the clock time line

An increase in the STF (i.e., in the liquidity on the spot market) at a fixed clock time con-
sidered tr , reduces the volatility of the fundamental basis by the two same mechanisms
than for a fixed n.o.t on the futures market t , if the RTF, equal to ωs

ω f
, is superior to 1

2 . First,

the volatility of the occurrence of synchronized transactions decreases. Second, quanti-
ties traded per transaction on the spot market are lower, smoothing the stock dynamics.

If the RTF is lower than 1
2 , the first mechanism does not hold but the second still holds.

The volatility of the occurrence of synchronized transactions increases. The "smoothing
per trade traded quantities" effect must overcome the "increasing occurrence of transac-
tion volatility" effect. To smooth the stock dynamics enough, the elasticity must be under
a threshold (sufficiently high in absolute value) such that quantities traded per trade suf-
ficiently decrease. These results explain the first assertion of theorem 7. Remark 10 also
applies.

An increase in the FTF (i.e., in the liquidity on the futures market) strictly increases
the volatility of the fundamental basis by two mechanisms if the RTF is superior to 1

2 . The
volatility of the occurrence of synchronized transactions increases; and there are more
transactions on the futures market for a given clock time. These two effects increase the
fundamental basis volatility.

When the RTF is lower than 1
2 , the first mechanism does not hold and conversely, an

increasing FTF reduces the volatility of occurrence of synchronized transactions. How-
ever, this effect is always more than compensated by the second, such that the funda-
mental basis volatility increases. These result explain the second assertion of theorem 7.

A proportional increase in the STF and the FTF such that the RTF is unchanged does
not modify the volatility of occurrence of synchronized transaction. However, for a given
clock time, there are more transactions in the futures’ market. This increases the funda-
mental volatility of the basis. But the increase of the STF reduces quantities traded and
consumed per transaction on the spot market such that it reduces the stock dynamics
volatility, Var

(
Qtr

)
. To ensure that this effect overcomes the increasing n.o.t on the fu-

tures market until tr , the elasticity of quantities traded per transaction on the spot market
to the STF must be under the threshold given by equation (3.29) (i.e., sufficiently high in
absolute value). This result explains the third assertion of theorem 7.
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(a) ǫ= 0.2

(b) ǫ= 0.4

(c) ǫ= 0.8

Figure 3.13 – Representation of the fundamental basis volatility Var
(
FV ftr

−FVstr

)
according to the

value of ǫ. Parameters used are a = 0.01, Tr = 250, and tr = 50.
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3.6 On the existence of an optimal spot market trades fre-

quency and futures market trades frequency

The objectives of a policymaker on commodity markets are to minimize the fundamen-
tal basis volatility and increase market efficiency on both spot and futures markets. As
the futures price is unbiased (cf. corollary 3), the policymaker focuses on spot market
efficiency. We consider here that trade frequencies are the policymaker’s tools, and thus
the policymaker can implement a fixing pricing and by extension, transactions frequency
on the futures market. The question of optimal trade frequency on futures market was
treated by Du and Zhu [7], aiming at allocative efficiency. However, they do not consider
the specificity of an agricultural commodity market in terms of trade frequency (i.e. on
the specificity of the associated spot market). Considering the feedbacks between these
two markets at the fundamental level, we find different levels of optimal trade frequency
considering our objectives. This section has major issues. At some point, it questions the
commodity futures pricing by limit order book; Optimal trade frequencies are lower than
the actual futures market trade frequency (FTF) where a limit order book pricing operates.

Definition 23. We define a utility function Ul ,∀ l ∈ {t , tr } in the following way:

Ul : Fs ×F f
U1−→ R+×R+ U2−→ R−

(
ωs ,ω f

)
7−→

(
B(sl ) ,V

(
FV fl −FVsl

))
7−→ Ul (B(sl ) ,V

(
FV fl −FVsl

)
)

(3.37)

Hence, we have Ul
(
ωs ,ω f

)
= U2 ◦U1

(
ωs ,ω f

)
, verifying the two following properties:

(i) U2 (0,0) = 0;

(ii)
∂U2

(
B(sl ),V

(
FV fl

−FVsl

))

∂B(sl )
< 0, and

∂U2

(
B(sl ),V

(
FV fl

−FVsl

))

∂V
(
FV fl

−FVsl

) < 0.

We assume that a policymaker uses the utility function Ul as defined above to max-
imize the agricultural commodity market efficiency and minimize its fundamental basis
volatility. Properties (i) and (ii) correspond respectively to the following natural insights:

(i) U2 reaches its maximal value on R− if and only if the spot price bias and the funda-
mental basis volatility are both null;8

(ii) If either the spot price bias or the fundamental basis volatility increases, the policy-
maker’s utility decreases.

Focus on the transactions time line (TTL)

The policymaker consequently has the following maximization program if l = t :




maxωs ,ω f Ut
(
ωs ,ω f

)
= Ut

(
|−e|
ω f

∑t
k=1

(
1− ωs

ω f

)k
,
(

a
ω f

)2 (
Trω f − t

)2 q (ωs)2 t
(
1− ωs

ω f

)
ωs
ω f

)

s.t. ω f ≥ωs
(3.38)

8This utility function does not verify the axiom of non satiety. Indeed, if the market efficiency is maxi-
mized and the fundamental basis volatility is minimized, the utility cannot be improved. We could have
used a more specified function as a mean-reverting one following Markowitz [17], Von Neumann et al.
[23] such that if we denote Θ the risk aversion parameter, we have Ul (B(sl ) ,V

(
FV fl

−FVsl

)
) = −B(sl ) −

ΘV
(
FV fl

−FVsl

)
. Our results are general and also apply with such a function.

121



CHAPTER 3. BASIS VOLATILITY AND EFFICIENCY ON AGRICULTURAL COMMODITY

MARKETS: THE IMPACT OF TRADE FREQUENCIES

Theorem 8. For t < T, and Fs ∩F f 6= ;, a policymaker whose utility function is Ut has an
optimal solution and an optimal solution by limit independently of market characteristics
(e, a, and ǫ):

(i) A policymaker does not have to fix trade frequencies of both spot and futures markets
but has to synchronize them. This implies a relative trade frequency (RTF) equal to 1

(the subset of optimal solutions is Ot =
{(
ωs ,ω f

)
∈

(
Fs ∩F f

)2 : ωs
ω f

= 1
}

);

(ii) For any value of ωs ∈ Fs except ωs →+∞, a policymaker can allow an infinite liquid-
ity in the futures contract. This implies an RTF converging to 0 (the subset of optimal

solutions by limit is Ot ,bl =
{(
ωs ,ω f

)
∈ Fs ×F f : ωs

ω f
7→ 0 with ω f 7→ +∞

}
).

Proof. The maximal value of the utility function is 0. According to properties (i) and (ii)
of Ut , the maximal value of Ut is reached if and only if B(st ) = V

(
FV ft −FVst

)
= 0 (or

B(st ) → 0 and V
(
FV ft −FVst

)
→ 0). From theorems 4 and 5 as well as remarks 6 and 8,

the only frequencies allowing B(st ) = V
(
FV ft −FVst

)
= 0 independently of the values of e,

a, and ǫ are the subset Ot =
{(
ωs ,ω f

)
∈

(
Fs ∩F f

)2 : ωs
ω f

= 1
}

. This proves the first assertion.

For e 6= 0, a 6= 0, t < T, and ωs 6=ω f , we have B(st ) > 0 and V
(
FV ft −FVst

)
> 0. We look

for optimal solutions by limit for the two arguments. For the second argument, it gives:

(
a
ω f

)2 (
Trω f − t

)2 q (ωs)2 t ωs
ω f

(
1− ωs

ω f

)
= 0

⇔ q (ωs)2 ωs
ω f

3

(
Trω f − t

)2 = 0

⇔
(
ω−ǫ

s

)2 ωs
ω f

3

(
Trω f − t

)2 = 0

⇔ ωs
1
2 −ǫ

ω f
3
2

(
Trω f − t

)
= 0

(3.39)

As lim
ωs
ω f

→ 0

ω f →+∞

ωs
1
2 −ǫ

ω f
3
2

(
Trω f − t

)
= 0, a subset of optimal solutions by limit exists for the

second argument of Ut . This subset is Ot ,bl =
{(
ωs ,ω f

)
∈ Fs ×F f : ωs

ω f
7→ 0, ω f 7→ +∞

}
, and

it is independent of the values of e, a, and ǫ.

Focusing on the first argument gives the following:

|−e|
ω f

∑t
k=1

(
1− ωs

ω f

)k−1
= 0

⇔ 1
ω f

∑t
k=1

(
1− ωs

ω f

)k−1
= 0

⇔ 1
ω f

(
1− ωs

ω f

)

(
1− ωs

ω f

)
1−

(
1− ωs

ω f

)t−1+1

1−
(
1− ωs

ω f

) = 0

⇔ 1
ωs

(
1−

(
1− ωs

ω f

)t )
= 0

(3.40)

122



CHAPTER 3. BASIS VOLATILITY AND EFFICIENCY ON AGRICULTURAL COMMODITY

MARKETS: THE IMPACT OF TRADE FREQUENCIES

The only subset of optimal solutions by limit for the second argument of Ut indepen-
dent from the values of e, a, and ǫ is Ot ,bl . We study the limit of the left term of equation
(3.40) within Ot ,bl . This gives the following:

lim
ωs
ω f

→ 0

ω f →+∞

1
ωs

= 1
ωs

lim
ωs
ω f

→ 0

ω f →+∞

ωs
ω f

= 0 ⇒ lim
ωs
ω f

→ 0

ω f →+∞

1−
(
1− ωs

ω f

)t
= 0

By product lim
ωs
ω f

→ 0

ω f →+∞

1
ωs

(
1−

(
1− ωs

ω f

)t )
= 0

Hence, Ot ,bl is also a subset of optimal solutions by limit for the first argument of Ut .
It is consequently the subset of all optimal solutions by limit independent from market
characteristics (values of e, a, and ǫ). This proves the second assertion of the theorem.

This result implies that independently of the absolute value of both spot market trade
frequency (STF) and FTF, the synchronization of trade frequencies ensures a minimal
fundamental basis volatility and a minimal spot price bias, at a given n.o.t on the futures
market t .

Remark 15. If ωs =ω f , there is neither risk nor uncertainty on the stock dynamics and no
unexpected elements on the basis (cf. equation (3.6); E (s̃t+1|Φt ) = st+1 ∀ t ). With synchro-
nized transactions and rational expectations, the basis is always equal to its fundamental
value.

The links between a spot market and a futures market of a commodity responding to
our framework prevent the spot market trade frequency (STF) and the FTF from being
disconnected in order to achieve agricultural commodity market efficiency and a mini-
mal fundamental basis volatility. More liquidity on the futures market (i.e., an increase in
the FTF) ceteris paribus can lead to an increasing spot price bias and an increasing fun-
damental basis volatility (cf. section 3.5), except if the liquidity is relatively infinite (i.e.
except if

(
ωs ,ω f

)
∈ Ot ,bl ). There are no optimal values for the STF and the FTF, but there

are co-dependent conditions.

Theorem 9. For e 6= 0, a 6= 0, and t < T, a policymaker whose utility function is Ut has other
optimal solutions by limit relying on the following market characteristics:

(i) For ǫ ≤ 1
2 , there is no conditional optimal solution different from unconditional op-

timal solutions to the policymaker’s utility maximization program given in theorem
8;

(ii) For ǫ> 1
2 , the policymaker’s utility is maximized by limit for all values in the following

subset: O
ǫ> 1

2
t ,bl =

{(
ωs ,ω f

)
∈ Fs ×F f : ωs

ω f
7→ 1, ωs 7→ +∞, ω f 7→ +∞

}
.
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Proof. We use the proof of theorem 8 to identify the subsets of optimal and optimal by
limit trade frequencies.

For e 6= 0, a 6= 0, t < T, and ωs 6=ω f , we have B(st ) > 0 and V
(
FV ft −FVst

)
> 0.

Equation (3.39) gives the conditions for the second argument to be equal to 0.

If 1
2 − ǫ> 0 ⇔−ǫ>−1

2 , no ωs exists that satisfies equation (3.39). However, the subset

O
ǫ< 1

2
t ,bl =

{(
ωs ,ω f

)
∈ Fs ×F f : ωs

ω f
7→ 0+ with ωs 7→ 0+

}
gives optimal solutions by limit for the

second argument of the utility function Ut . This subset is such that:

O
ǫ< 1

2
t ,bl ⊂ Ot ,bl

Hence, there is no other optimal solution by limit for the second argument in the case
of −ǫ>−1

2 .

If 1
2 − ǫ = 0 ⇔ −ǫ = −1

2 , there is no ωs satisfying equation (3.39). However, the sub-

set O
ǫ= 1

2
t ,bl =

{(
ωs ,ω f

)
∈ Fs ×F f : ωs

ω f
7→ 0, ω f 7→ +∞

}
gives optimal solutions by limit for the

second argument of the utility function Ut . However, this subset is such that:

O
ǫ= 1

2
t ,bl = Ot ,bl

Hence, there is no other subset of optimal solution by limit in the case of −ǫ = −1
2 . This

proves the first assertion.

If 1
2 − ǫ< 0 ⇔−ǫ<−1

2 , there exists no ωs satisfying equation (3.39). However, the sub-
set

O
ǫ> 1

2
t ,bl =

{(
ωs ,ω f

)
∈ Fs ×F f : ωs

ω f
7→ 1, ωs 7→ +∞, ω f 7→ +∞

}
gives optimal solutions by limit

for the second argument of Ut .

Equation (3.40) gives the condition for the first argument of Ut .

We study the limit of the left term of equation (3.40) within the subset O
ǫ> 1

2
t ,bl . We get:

lim
ωs
ω f

→ 1

ω f →+∞

1
ωs

= 0

lim
ωs
ω f

→ 1

ω f →+∞

ωs
ω f

= 1 ⇒ lim
ωs
ω f

→ 1

ω f →+∞

1−
(
1− ωs

ω f

)t
= 1

By product lim
ωs
ω f

→ 1

ω f →+∞

1
ωs

(
1−

(
1− ωs

ω f

)t )
= 0

Hence, within the subset O
ǫ> 1

2
t ,bl equation (3.40) is verified by limit. Hence, O

ǫ> 1
2

t ,bl is a
subset of optimal solutions by limit which maximizes Ut . This subset is such that:

O
ǫ> 1

2
t ,bl ∩Ot ,bl =;

This proves the second assertion.
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There is also a set of optimal values by limit for the policymaker that are conditional
to market characteristics (value of ǫ). The analytical proof of this result is presented in
theorem 9. If −ǫ≥−1

2 , there is no conditional optimal solution different from the uncon-
ditional optimal solutions of the policymaker’s utility maximization program. However, if
−ǫ<−1

2 , the optimal solution by limit for the policymaker can be to implement the cen-
tralization of orders by brokers and reduce transaction costs as much as possible on the
spot market such that ωs

ω f
→ 1,ωs →+∞ and ω f →+∞ independently of the FTF (the RTF

is converging to 1). However, despite the possibility of having a high elasticity ǫ, imple-
menting a market structure such that ωs → +∞ is far-fetched since there are structural
transaction costs. We can qualify this conditional subset of optimal solutions as a limit
case.

Remark 16. When considering the possibility of speculation on the spot market, the syn-
chronization of trade frequencies directly resulting from theorems 4 and 5 is not straightfor-
ward. There is still an ambiguity of having an available stock reduction at each transaction
on the spot market. In this case, both B(st ) and V

(
FV ft −FVst

)
cannot be simultaneously

minimized (B(st ) is unchanged but V
(
FV ft −FVst

)
is modified). The arbitrage between

market efficiency (with an increasing liquidity due to fragmentation on the spot market)
and fundamental volatility appears. In this case, we have to specify the policy maker utility
function. One can chose a mean-reverting utility function such as:

Ut : Fs ×F f
U1−→ R+×R+ U2−→ R−

(
ωs ,ω f

)
7−→

(
B(st ) ,V

(
FV ft −FVst

))
7−→ Ul (., .) =−B(st )− α

2 V
(
FV ft −FVst

)

(3.41)
Where α

2 represents the risk aversion of the policy maker. Notice that this mean reverting
utility function verifies the properties of definition 23. Within such a case, no optimal trade
frequencies exist independently of the market characteristics and we will have to calibrate
the model according to the market characteristics as well as the risk aversion of the policy
maker before estimating the optimal trade frequencies.

Focus on the clock time line (CTL)

The policymaker consequently has the following maximization program if l = tr :





maxωs ,ω f Utr

(
ωs ,ω f

)
= Utr

(
|−e|
ω f

∑tr ω f

k=1

(
1− ωs

ω f

)k
, a2 (Tr − tr )2 q (ωs)2 tr

(
1− ωs

ω f

)
ωs

)

s.t. ω f ≥ωs , trω f ∈ N∗

(3.42)

Theorem 10. For tr < Tr , Fs∩F f 6= ;, and independently of the market characteristics (e, a,
and ǫ), a policymaker whose utility function is Utr does not have to fix the trade frequencies
of both spot and futures markets but has to synchronize them. This implies an RTF equal

to 1 (the set of optimal solutions is Otr =
{(
ωs ,ω f

)
∈

(
Fs ∩F f

)2 : ωs
ω f

= 1
}

).

Proof. The maximal value of the utility function is 0. According to properties (i) and (ii)
of Utr , the maximal value of Utr is reached if and only if B

(
str

)
= V

(
FV ftr

−FVstr

)
= 0 (or

B
(
str

)
→ 0 and V

(
FV ftr

−FVstr

)
→ 0). From theorems 4 and 5 as well as remarks 6 and 8,

the only frequencies allowing B
(
str

)
= V

(
FV ftr

−FVstr

)
= 0 are the set Otr =

{(
ωs ,ω f

)
∈

(
Fs ∩F f

)2 : ωs =ω f

This proves the first assertion.
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For e 6= 0, a 6= 0, tr < Tr , and ωs 6=ω f , we have B
(
str

)
> 0 and V

(
FV ftr

−FVstr

)
> 0. We

look for optimal solutions by limit for the two arguments. For the second argument, it
gives:

a2 (Tr − tr )2 q (ωs)2 tr

(
1− ωs

ω f

)
ωs = 0

⇔ q (ωs)2
(
1− ωs

ω f

)
ωs = 0

⇔
(
ω−ǫ

s

)2
ωs

(
1− ωs

ω f

)
= 0

⇔ ωs
(1−2ǫ)

(
1− ωs

ω f

)
= 0

(3.43)

The only subset ensuring the second term to be equal to 0 is the subset Otr . The first
term value depends on the market characteristic ǫ. Hence, the only optimal solution in-
dependent from the market characteristics is the subset Otr .

The theorem is demonstrated.

This result implies that independently of the absolute value of both STF and FTF, the
synchronization of trade frequencies ensures a minimal fundamental basis volatility and
a minimal spot price bias at a given clock time tr . Remark 15 also applies.

This result also corroborates that links between a spot market and a futures market of a
commodity responding to our framework prevent the STF and the FTF from being discon-
nected in order to achieve market efficiency and a minimal fundamental basis volatility.
More liquidity on the futures market (i.e., an increase in FTF) ceteris paribus can lead to an
increasing spot price bias and always increases the fundamental basis volatility (cf. sec-
tion 3.5). There are no optimal values for the STF and the FTF, but there are co-dependent
conditions.

Theorem 11. For e 6= 0, a 6= 0, and tr < Tr , a policymaker whose utility function is Utr has
other optimal solutions by limit relying on the following market characteristics:

(i) For ǫ ≤ 1
2 , there is no conditional optimal solution different from the unconditional

optimal solutions to the policymaker’s utility maximization program given in theo-
rem 10;

(ii) For ǫ> 1
2 , the policymaker’s utility is maximized by limit for all values in the following

subset: O
ǫ> 1

2
tr ,bl =

{(
ωs ,ω f

)
∈ Fs ×F f : ωs

ω f
7→ 1, ωs 7→ +∞, ω f 7→ +∞

}
.

Proof. We use the proof of theorem 10 to identify the other optimal and optimal by limit
trade frequencies.

For e 6= 0, a 6= 0, tr < Tr , and ωs 6=ω f , we have B
(
str

)
> 0 and V

(
FV ftr

−FVstr

)
> 0.

Equation (3.43) gives the conditions for the second argument of Utr to be equal to 0.
We recall:

ωs
(1−2ǫ)

(
1−

ωs

ω f

)
= 0
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The first term is the one that we are interested in. If 1−2ǫ> 0 ⇔−ǫ>−1
2 , an optimal

solution by limit exists and is given by the following subset

O
ǫ< 1

2
tr ,bl =

{(
ωs ,ω f

)
∈ Fs ×F f : ωs

ω f
7→ 0+, ωs 7→ 0+

}
.

We study the limit of the first argument of Utr within O
ǫ< 1

2
tr ,bl . We get:

lim
ωs
ω f

→ 0+

ωs → 0+

|−e|
ω f

= |−e|
ω f

lim
ωs
ω f

→ 0+

ωs → 0+

(
1− ωs

ω f

)
= 1 ⇒ lim

ωs
ω f

→ 0+

ωs → 0+

(
1− ωs

ω f

)k
= 1 ⇒ lim

ωs
ω f

→ 0+

ωs → 0+

∑tr ω f

k=1

(
1− ωs

ω f

)k
= trω f

By product lim
ωs
ω f

→ 0+

ωs → 0+

|−e|
ω f

∑tr ω f

k=1

(
1− ωs

ω f

)k
=| −e | tr 6= 0

Hence, there is no other optimal solution by limit for the first argument of Utr under
the market characteristic −ǫ>−1

2 .

If 1−2ǫ= 0 ⇔−ǫ=−1
2 , there is no other optimal solution by limit satisfying equation

(3.43) and thus, for Utr . This proves the first assertion.

If 1−2ǫ< 0 ⇔−ǫ<−1
2 , the subset O

ǫ> 1
2

tr ,bl =
{(
ωs ,ω f

)
∈ Fs ×F f : ωs

ω f
7→ 1, ωs 7→ +∞, ω f 7→ +∞

}

gives optimal solutions by limit for the second argument of Utr (by satisfying equation
(3.43) by limit).

We study the limit of the first argument of Utr within O
ǫ> 1

2
tr ,bl . We get:

lim
ωs
ω f

→ 1

ωs →+∞
ω f →+∞

|−e|
ω f

= 0

lim
ωs
ω f

→ 1

ωs →+∞
ω f →+∞

(
1− ωs

ω f

)
= 0 ⇒ lim

ωs
ω f

→ 1

ωs →+∞
ω f →+∞

(
1− ωs

ω f

)k
= 0 ⇒ lim

ωs
ω f

→ 1

ωs →+∞
ω f →+∞

∑tr ω f

k=1

(
1− ωs

ω f

)k
= 0

By product lim
ωs
ω f

→ 1

ωs →+∞
ω f →+∞

|−e|
ω f

∑tr ω f

k=1

(
1− ωs

ω f

)k
= 0

O
ǫ> 1

2
tr ,bl is a subset of optimal solutions by limit for the first argument of Utr and thus,

for Utr . This set is such that:

O
ǫ> 1

2
tr ,bl ∩Otr =;

This proves the second assertion.
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There is also a subset of optimal values by limit for the policymaker that are condi-
tional to market characteristics (value of ǫ). The analytical proof of this result is presented
in theorem 11. If ǫ≤ 1

2 , there is no conditional optimal solution to the policymaker’s util-
ity maximization program. However, if ǫ> 1

2 , the optimal solution by limit for the policy-
maker can be to implement the centralization of orders by brokers and reduce transaction
costs as much as possible on the spot market such that ωs

ω f
→ 1, ωs →+∞, and ω f →+∞

(the RTF is converging to 1). Again, despite the possibility of having a high elasticity ǫ,
implementing a market structure such that ωs →+∞ is far-fetched since there are struc-
tural transaction costs. We can also qualify this conditional subset of optimal solutions as
a limit case.

Finally, remark 16 also applies, such that considering speculation on the spot market
prevents us from having analytical values on optimal trade frequencies. A calibration of
the model must be done in the following case, and simulations can be made if some pa-
rameters are assumed to be stochastic such as quantities traded per transaction on the
spot market.

Remark 17. Note that:

(i) Ot = Otr ; The subset of optimal STF and FTF independent of market characteristics
e, a and ǫ is independent from the time line considered;

(ii) O
ǫ> 1

2
t ,bl = O

ǫ> 1
2

tr ,bl ; The subset of optimal STF and FTF by limit depending on the market
characteristics e, a and ǫ is independent from the time line considered.

The only subset of optimal or optimal by limit trade frequencies conditional to the
time line is Ot ,bl . The "clock time interval" effect only appears when considering a fixed
n.o.t (i.e. considering the TTL) which is compensated when we consider a fixed clock
time (i.e. considering the CTL). The other subsets of optimal or optimal by limit trade
frequency are independent from the time line considered.

3.7 Conclusion

We have built a simple dynamics pricing model applied to an agricultural commodity
market (spot and futures); more generally, that model is an analytical tool that can be ap-
plied to any storable commodity for which the frequency of production is lesser than the
frequency of the consumption. As in Du and Zhu [7] we have studied the existence and the
level of optimal trading frequencies on an agricultural commodity market, and the impact
of the degree of liquidity on the market efficiency and on the fundamental basis volatil-
ity. In the model, information that determines the price of the futures is endogenously
determined by trades occurring on the spot market and, conversely, the information that
determines the price of the spot market is endogenously determined by trades occurring
on the futures market. This framework is borrowed to the storage theory and models the
links between the two markets. By feedback, the futures market trade frequency (FTF)
influences the probability law of incoming spot market information that impacts the spot
market. By extension the futures market will also be impacted by the no arbitrage con-
dition. Hence, we consider the specificity of the underlying of a futures contract on an
agricultural commodity.

This work has major implications. It shows that commodity futures pricing by limit or-
der book is not an optimal policy regarding the objectives of maximizing market efficiency
and of minimizing the fundamental prices’ volatility. Previous empirical studies argued
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that more liquidity allows for better market efficiency; their findings do not necessarily
contradict our results, depending on the initial relative trade frequency (RTF) (cf. O’Hara
and Ye [20], Yam and Zhou [28]). Our results recommend the implementation of a fixing
pricing operating at the same frequency as trades on the underlying spot market, inde-
pendently of the time line considered.9 From this result, we extrapolate a trade-off be-
tween liquidity on the futures market and achievement of the two objectives; we showed
in section 3.5 that a proportional increase in both frequencies could lead to an increasing
fundamental basis volatility according to the value of ǫ. A way to improve both liquidity
and market efficiency of the spot market could be a regulation of the spot market struc-
ture to facilitate transactions on this market, allowing an increase in the absolute value of
ǫ. To conclude, the simultaneous determination of spot and futures prices is optimal and
independent from the market characteristics.

We are aware that this model presents some limits. Some extensions of this work can
be made depending on the form of the q function as well as in the implementation of
several commodity markets (or other markets in general) where information is released
at different frequencies. Finally, we could also integrate the possibility of speculation on
the spot market, such that trades on the spot market would not necessarily imply a com-
modity consumption.

9Otherwise, the liquidity on the futures market must be relatively infinite to ensure the maximization of
the policy maker’s utility when considering the transaction time line (TTL).
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4.1 Introduction

The spot and the futures markets of any agricultural commodity are connected by def-
inition and there are complex feedbacks between the series of prices on the two mar-
kets. The evolution of the basis is a source of risk, and its volatility is a major stake for
farmers and processors: it represents an important component of their production and
selling decisions (cf. Moschini and Hennessy [15]). However, the price on the futures
market evolves faster than the price on the spot market (cf. O’Hara [17], Working [23])
and thus, the basis has a peculiar dynamics. A rich economic literature has empirically
proved that the basis is significantly determined by the convenience yield (cf. Fama and
French [3], Gorton et al. [6], Wei and Zhu [22]). In a static reasonning and within the as-
sumption of the simultaneity of determination of both spot and futures price, the work of
Stein [18], demonstrates the existing link between spot and futures price through the level
of the available stock. We already showed in the previous chapter 3 how the dynamics of
the basis depends on the difference in trade rhythms. The higher available stock is, the
lower is the basis. The idea is as simple as it can be: asynchronous trades on both spot
and futures markets generate a risk (according to the definition of Knight [10]). This risk
can be compensated or not according to the objectives of a policy maker. In this view, the
fragmentation of orders which is responsible for the increase in trades frequencies, plays
an important role in the evolution of trading dynamics and by extension in the evolution
of the ratio between these two frequencies. This ratio also relies on the number of agents
(n.o.a) on a market, except if an increase in the n.o.a is followed by a proportional increase
in these trade frequencies.

Fragmentation of orders, defined as the division of one specific order – called a parent
order – into several suborders – called children orders –, occurs on both markets. It entails
a decrease in quantities exchanged per transaction and an increase in the n.o.t on a mar-
ket (cf. O’Hara and Ye [16], O’Hara [17], Yam and Zhou [24]). Consequently, in order to buy
the same quantity, agents pass more orders and trade frequency increases. An entrance
of more agents on the market leads then, to an increase in these trade frequencies and
do not directly modify quantities traded at each transactions. Although such fragmenta-
tion of orders is used on both spot and financial markets, transaction costs in these two
markets are not the same (cf. Working [23]). Order fragmentation can be neither identical
nor proportional in the two markets. It can impact both relative trades frequency (RTF)
and quantities traded per transaction in these markets. An entrance of agents (traders,
hedgers, speculators, transformers) on a commodity market modifies both trade’s fre-
quencies but not necessarily proportionally such that it also modifies the RTF. Glebkin [5]
showed to what extent more large traders and then more liquidity, can reduce the profit
of every agent (small ones, and large ones). In an empirical study, Irwin and Sanders [8]
argued that the presence of index funds, which entered commodity markets massively
in 2006, did not fuel the 2008 commodity price bubble. However, the presence of more
agents on the market also impact fundamentally the commodity prices (spot and futures).
As stated by J. Stiglitz:

"(...) market actions or choices convey information. Market participants know
this and respond accordingly" – Stiglitz [19] (p. 468)

The latest assumption has strong implications. In the model that we build, we introduce
an effect of the n.o.a on the volatility of the spot market information itself – and then on
its price impact – and by extension on both the fundamental spot price and futures price
volatility (see below). To the best of our knowledge, there is no study that simultaneously
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links the n.o.a to the fundamentals volatility of both spot and futures prices, and the mar-
ket efficiency.

In the end, we also consider that agents can form biased expectations on the spot
market information. Early works such as the one of Thaler [20] emphasize the role of
biased traders. Eventually, we assume that this bias is corrected by the n.o.a acting on
the market, i.e. the size of the market. We defend this assumption by referring to the by
referring to the reasoning of Hayek [7]. The more agents they are, the more the capability
of the market to integrate information by agents economic interactions increases.

This study aims to examine to what extent the n.o.a acting on a commodity market
impacts the spot market efficiency and the futures market efficiency as well as to examine
its impact on the fundamental volatility of the spot price and on the fundamental volatil-
ity of the futures price. Thus, that study deals with the market structure and design issues
on market microstructure (cf. Madhavan [11]). Our study of the trade frequencies de-
pends directly on the mechanism that underlies the formation of price. Within a limit
order book, trade frequencies are not constrained; on the opposite, in a periodic trading,
trade frequencies are by definition fixed. Finally, we consider whether there is an optimal
n.o.a that satisfies the policy maker’s objectives regarding these elements. If not, free en-
trance on the commodity market (including futures) should be implemented. Otherwise,
the policy maker has to compare the current n.o.a with the optimal one to decide. We
finally introduce the possibility of having biased expectations from agents that are cor-
rected with an increasing n.o.a. We study how this incentive to let agents enter the market
influences our results.

To some extent, our study is close to the work of Glebkin [5] who theoretically exam-
ines the impact of large traders assuming that agents receive exogenous private infor-
mation, on the profit of all traders. Within that slightly alternative framework, we first
demonstrate that an infinite n.o.a does not necessarily ensure an unbiased market even
under the assumption of rational expectations. We also show that more agents can fun-
damentally increase the fundamental basis volatility. When considering biased expecta-
tions, we find that underestimating bias and overestimating bias have asymmetric effects
and are absolutely not equivalent. Within an overestimating bias case, the difference in
trade frequencies can perfectly compensate the overestimation bias such that the spot
price can be unbiased. It is not the case within an underestimating bias case. The com-
plexity of the problem prevents us from having tractable analytical solutions. As all mech-
anisms at stake are explained in the following, we proceed with sensitivity tests to study
the sensitivity of the optimal n.o.a to the value of our parameters. We also compare this
sensitivity within the absence or not of the expectation bias.

This work is organized as follows. Section 4.2 presents all parameters and variables
whereas section 4.3 presents the definitions and hypothesis of the model. Section 4.4
derives the influence of the n.o.a and section 4.5 discusses in detail the impacts of an
entrance of agents on the commodity market. In section 4.6, we study the existence of an
optimal n.o.a. In section 4.7, we introduce the possibility of having biased expectations
and we study how the latest modifies our previous results. Section 4.8 concludes and
discusses the limitations of the model.

4.2 The Parameters and variables of the model

Despite the simplicity of the model, we need numerous parameters and variables. In this
section, we introduce all parameters (subsection 4.2.1) and variables (subsection 4.2.2).

136



CHAPTER 4. BASIS VOLATILITY AND EFFICIENCY ON AGRICULTURAL COMMODITY

MARKETS: THE IMPACT OF THE NUMBER OF AGENTS

4.2.1 The parameters of the model

The following set of parameters is used for the futures and the spot agricultural commod-
ity markets:

Futures market tr ω f e ξ

Spot market tr ωs e ξ

Futures market a ǫ Qop Tr n σI Θ

Spot market ǫ n α σI Θ

Table 4.1 – Set of parameters used for the futures and spot markets

tr Unit of the clock time line (CTL) considered, such as a second.
ω f Minimal trade frequency on the futures market per unit of clock time

(i.e. with the minimal number of agents (n.o.a) trading normalized to 1):(
Number of transaction on the futures market

tr

)

ωs Minimal trade frequency on the spot market per unit of clock time (i.e. with

the minimal n.o.a trading):
(Number of transaction on the spot market

tr

)

e Trend of the spot market information delivered in monetary value per unit
of clock time.

ξ Bias of agents in the process and the expectation of the spot market infor-
mation.

a Advantages of possessing a unit of the storable agricultural commodity in
monetary value, per unit of clock time.

ǫ Absolute value of the elasticity of quantities traded per exchange on the
spot market to the spot market trade frequency.

Qop Optimal stock level of the agricultural commodity for agents.
Tr Maturity of the futures contract, expressed in the CTL.
n n.o.a on the market, n ∈N∗.
α Elasticity of the spot market trade frequency to the n.o.a on the market.
σI Maximal intrinsic volatility of the spot market information, per unit of clock

time.
Θ Risk aversion of the policy maker to the commodity fundamental value

volatility.

4.2.2 The variables of the model

The following set of variables is used for the futures and the spot agricultural commodity
markets:

Futures market t T I]t1,t2]

Spot market t t ′ I]t1,t2]

Futures market γn Qt CYt f̃t+1 ft FV ft

Spot market γn q Qt s̃t+1 st FVst

Table 4.2 – Set of variables used for the futures and spot markets
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t Unit of the transactions time line (TTL), which represents a transac-
tion on the futures market.

t ′ Latest synchronized transaction on the spot and futures markets until
t , expressed in the TTL.

T Maturity expressed in the TTL.
I]t1,t2] Spot market information delivered in monetary value between t1 and

t2, t1 excluded.
γn Capability of agents to process and expect the spot market informa-

tion.
q Quantities traded on the spot market at each transaction on the spot

market.
Qt Available stock of the commodity at time t .

CYt Convenience yield (advantage in detaining one unit of stock to face
risk or uncertainty) in monetary value at time t until maturity.

s̃t+1, f̃t+1, Q̃t Agents’ expectations of the spot price, the futures price, and the com-
modity available stock, respectively, at time t .

st , ft Observed spot price and futures price, respectively, at time t .
FVst , FV ft Fundamental values of the spot price and futures price, respectively,

at time t .

4.3 The definitions and hypotheses of the model

This section introduces all the definitions and hypotheses of the model. We also justify
all assumptions made. A particular attention is given to the time lines and the trade fre-
quencies as they are the very essence of the model (subsection 4.3.1). Subsection 4.3.2
specifies the characteristics of the spot market information. In subsection 4.3.3, we de-
fine how quantities traded are determined and we justify their influence on the agricul-
tural commodity market through the convenience yield. Subsection 4.3.4 defines the way
agents form their expectations of prices dynamics and subsection 4.3.5 defines the ef-
fective prices and fundamental values dynamics. Finally, we define an efficient market
criteria but also what we call the fundamental volatility and justify these formulations in
subsection 4.3.6.

4.3.1 Time lines and trade frequencies

We define Fs ⊂Q+ \ {0} and F f ⊂Q+ \ {0} as the sets of all possible frequencies on the spot
market and on the futures market. We have {0} ∉

(
Fs ∪F f

)
which means that the two mar-

kets exist. Therefore,
(
ωs ,ω f

)
∈ Fs×F f . Furthermore, we assume that ωs ≤ω f . Futures are

more frequently traded than the commodity itself since transaction costs are structurally
lower (cf. Working [23]). Both ωs and ω f depend on the technological advances allowing a
reduction of these structural transaction costs. This explains why we choose the transac-
tion on the futures as the time step (the smallest one). Then, we formally define the time
line t and its maturity T according to the clock time line, denoted by tr , and the frequency
of trades on the futures market such that:

t := tr ×ω f ×n , such that t ∈N∗

T := Tr ×ω f ×n , such that T ∈N∗ (4.1)

We investigate the impact of the n.o.a trading on a spot and futures agricultural commod-
ity market. We suppose the set N∗ to be the set of all possible number of agent, denoted
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by n according to its unit. Then n ∈N∗. Again, if n = 0, there is no market. We normalize
the n.o.a such that n = 1 represents the minimal n.o.a allowing for the market existence.
We assume that both historical frequency of trades on the spot market, and on the futures
market, are increasing functions of the n.o.a. However, transaction costs are higher on the
spot market than on the futures market. Hence, we normalize to 1 the elasticity of the fu-
tures market trades frequency (FTF) to the n.o.a on the market. It leads us to assume that
the increase in the spot market trades frequency (STF) is slower than the increase in the
FTF using the parameter α ∈ ]0,1], to denote the elasticity of the STF to the n.o.a on the
market. Hence, the STF is equal to ωs ×nα,α ∈ ]0,1], and the FTF is equal to ω f ×n.1 We
assume that transactions on the futures markets are equally spaced out, according to the
FTF. The time between two transactions on the futures market is constant. The effective
FTF on the period is known, and the effective STF, is unknown. The historical STF only
gives the probability of having a transaction on the spot market per unit of time. At each
transaction on the futures market, there is an independent probability ωs×nα

ω f ×n = ωs
ω f

×nα−1

of having a transaction on the spot market. This probability also represents the historical
relative trade frequency (RTF).2 For the sake of simplicity, we do not integrate "catch up
effect", that is, no one passes an order on the spot market because there is no transaction
since "a long time" or because the actual delayed spot price is "far" from its actual value
(i.e. since the last transaction on the spot market, the released spot market information is
very important). The introduction of such a boundary could have some effect depending
on the criteria (detection of a possible arbitrage, allocative efficiency operation accord-
ing to the released information etc.) that we do not develop in this work. It is a possible
extension of the model.

Remark 18. If α= 1, ωs×n1

ω f ×n1 = ωs
ω f

. Both STF and FTF evolve proportionally and so the RTF

is independent from the n.o.a.

Since transactions on the spot market occur with a certain probability, t ′ is a discrete
random variable (D.R.V) which can take values in [0; t ] ⊂N. Hence, we have:





Pr
(
t ′ = k

)
= ωs

ω f n1−α

(
1− ωs

ω f n1−α

)t−k
∀ k ∈ [1; t ]

Pr
(
t ′ = 0

)
=

(
1− ωs

ω f n1−α

)t

Proceeding identically as in the previous chapter 3, we have:

E
(
t ′

)
= t −

t∑

k=1

(
1−

ωs

ω f n1−α

)k

(4.2)

Remark 19. The D.R.V t ′ can be decomposed into two parts. First, t is the maximal value
of t ′ (since t ′⋖ t ). The second part is stochastic and can be assimilated to a truncated geo-
metric law with t experiences – maximum – starting from t in backwardation and ending
to 0. Hence, E

(
t ′

)
is equal to its maximal value minus the average delay for having a syn-

chronized transaction looking backward in number of transactions (n.o.t) on the futures
market.

1We have
∂(ωs×nα)

∂n /(ωs×nα)
n = α and

∂
(
ω f ×n

)

∂n /
(
ω f ×n

)

n = 1
2Let ⋖ define a relation where t ′ represents the latest period where there was a synchronized transaction

on the spot market and the futures market until t such that:
t ′ ⋖ t if t ′ ≤ t and there is no element y ′ 6= t ′ nor y ′ 6= t such that t ′ ≤ y ′ ≤ t . Thus, (t −1)′ is the latest
period where there was a synchronized transaction on the spot market and the futures market until t −1,
and (t −1)′⋖ t −1. However, we do not have (t −1)′⋖ t ′−1. Indeed, t ′ and (t −1)′ can be both equal to 0
such that 0 ≤−1 which is impossible.
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4.3.2 The spot market information

We assume that information on the spot market is intrinsically released at each unit of
the real time tr . However, we naturally consider that information about the spot price
is released at each transaction on the futures market. Then, we assume that the mone-
tary impact – or the price impact – of incoming spot market information delivered at time
t , denoted I]t−1,t ], follows any probabilistic law LI whose mean is E

(
I]t−1,t ]

)
:= E

(
I]0,t ]

)
−

E
(
I]0,t−1]

)
= e

ω f ×n t − e
ω f ×n (t −1) = e

ω f n . This mean is a strictly decreasing function of the

FTF. As spot market information arrives between each transaction on the futures market,
we can naturally assume that if transactions are more frequent on the futures market, the
spot market information released between two transactions on the futures market has,
on average, a lower price impact. This information can come from meteorological data,
harvest prevision reports, etc. For the sake of simplicity, we consider that there is no min-
imal trade frequency on the futures market since we are reasoning at the scale of second
or minutes despite the frequency of arrival of this type of information is daily (meteoro-
logical data for instance) or even monthly (USDA reports for instance). The entrance of
more agents on the market increases the frequency of the trades on the futures markets
and then diminishes the average price impact of the spot market information released
between two transactions such that:

lim
n→+∞

E
(
I]t−1,t ]

)
= lim

n→+∞

e

ω f n
= 0

The standard error of this law is
√

Var
(
I]t−1,t ]

)
= σIp

ω f ×n ×
p

np
1+n

= σIp
ω f

× 1p
1+n

,σI ∈ R+\{0}.

Indeed, we assume that the higher the n.o.a on the spot and futures market is, the higher
the volatility of the information released is. The idea is simple. The states of the mar-
ket at a given later date, are more volatile when there are 10 000 agents acting on the
market than when there are 2 agents. Then, the presence of more agents on the market
also impact fundamentally the commodity prices (spot and futures) by conveying a more
volatile information. It is consistent with the idea that market actions or choices convey
information borrowed to the economics of information (cf. Stiglitz [19]). In other words,
new agents do not convey a fully redundant information but at least partly a new one.
It is equivalent to consider agents to be heterogeneous and thus, conveying more infor-
mation. However, we can consider that this effect admit a limit such that the marginal
information conveyed by the last agent is decreasing with the n.o.a.3 There is also a fre-
quency impact smoothing the released information. This effect compensates the first one
such that when the n.o.a is infinite we face:

lim
n→+∞

√
Var

(
I]t−1,t ]

)
= lim

n→+∞

σI
p
ω f

×
1

p
1+n

=
σI

p
ω f

lim
n→+∞

1
p

1+n
= 0

Then, the monetary impact of incoming spot market information delivered at time t
is characterized by:

I]t−1,t ] ∼LI

(
e

ω f ×n
,

σI
p
ω f

×
1

p
1+n

)
(4.3)

So, I]t ′,t ] represents the spot market information delivered in monetary value since
the last transaction on the spot market (t ′). If there is an infinite n.o.a, we have I]t−1,t ] ∼
LI (0,0) ⇔ I]t−1,t ] ≈ 0. This result holds because the influence of agents on the FTF is in-
finite and overcome their limited influence on spot market information volatility. Notice

3This assumption can be considered as a Malthusian assumption if one is risk averse, but not if one is
risk neutral or risk lover.
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that considering the clock time line (CTL), agents have no impact on the average spot
market information delivered between two units of clock time such that:

E
(
I]tr −1,tr ]

)
:= e (4.4)

However, the influence of the n.o.a on the volatility of spot market information when con-
sidering the CTL is:4 √

Var
(
I]tr −1,tr ]

)
=σI ×

√
n

1+n
(4.5)

Notice that lim
n→+∞

Var
(
I]tr −1,tr ]

)
= σ2

I . Then, σ2
I represents the maximal fundamental

volatility of the spot market within a unit of clock time. Indeed, the infinite effect of agents
on the FTF is perfectly compensated by the fact that an infinite n.o.a leads to an infinite
n.o.t within a unit of the CTL. Considering the CTL then, agents only affect the intrinsic
volatility of the spot market information.

4.3.3 Traded quantities and influence of stock dynamics

We now define q , which indicates the quantities traded per transaction on the spot market
as a function such that:

q : Fs ×N∗ → R+,∗

(ωs ,n) 7→ q(ωs ,n) = (ωs ×nα)−ǫ ,ǫ ∈Q+ (4.6)

From the above function, quantities traded per transaction on the spot market are
decreasing when the STF increases. Note that parameter ǫ corresponds to the absolute
value of the elasticity of the quantities traded per transactions on the spot market to the
STF. Focusing on the -indirect- influence of the n.o.a, we derive from equation (4.6) that
the elasticity of quantities traded to the n.o.a on the market is also negative and equal to
∂q(ωs ,n)

∂n / q(ωs ,n)
n = − ǫα

ωs
. This elasticity is constant. The higher ωs is originally, the lower

this elasticity is in absolute value. In other words, if quantities traded are originally low
(because the STF is high), then the decreasing effect of more agents on quantities is low.
Proceeding identically, the higher α and ǫ are, the higher the impact of an increasing n.o.a
on the market is in absolute value.

The available stock of the commodity at time t is defined using a discrete random
variable (D.R.V.). The effect of an entrance of more agents is not characterized by a direct
evolution of quantities traded per transactions but only more frequent transactions.

Q0 > 0 and Qt :=
{

Qt−1 i f t ′ 6= t
Qt−1 −q (ωs ,n) i f t ′ = t

}
= Qt−1 −q (ωs ,n)1{t }

(
t ′

)
∀ t ∈ [1,T]

(4.7)
We assume that Q0 is such that for any (ωs ,n) ∈ Fs×N∗ and any t ∈ [0;T−1], Qt−q (ωs ,n) ≥
q (ωs ,n). It is a constraint of non-negativity of the available commodity stock. We natu-
rally assume that the available commodity is only purchased on the spot market during

4The calculus is the following:

Var
(
I]tr −1,tr ]

)
= Var

(
I]

t
ω f n −ω f n, t

ω f n

]
)
= Var

(
∑ t

ω f n

k= t
ω f n −ω f n+1

I]k−1,k]

)

=
∑ t

ω f n

k= t
ω f n −ω f n+1

Var
(
I]k−1,k]

)
=

∑ t
ω f n

k= t
ω f n −ω f n+1

σ2
I

ω f
× 1

1+n

Var
(
I]tr −1,tr ]

)
=

[
t

ω f n −
(

t
ω f n −ω f n +1

)
+1

]
σ2

I
ω f

× 1
1+n
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the period considered (at maturity, commodity is purchased and consumed according to
the open positions on the futures market which are not cash-settled). We assume that pro-
duction or harvest of the commodity is less frequent than the consumption.5 It has a sym-
metric – because the sign is opposite – effect to the stock consumption on expectations
and fundamental value. For the sake of simplicity, we do not model them. Hence, the
model applies to all storable agricultural commodity markets. Consequently, the avail-
able stock evolves when and only when there is a transaction on the spot market. It is
important to underline that this assumption requires us to not consider that commodity
is purchased only to be sold later. For the sake of simplicity, there is no speculation on the
spot market. Once again, we could integrate a speculation Bernoulli D.R.V.6

We assume that storage costs per unit of clock time are linear with time. Consequently,
they are perfectly expected by agents under our assumption of rational expectations. For
the sake of simplicity, we do not integrate them in the model.

Despite positive stocks, the futures’ price can be lower than the spot price because of
the necessity for processors to maintain their stocks to face uncertainty (cf. Kaldor [9]).
This advantage (or disadvantage) to detain a unit in stock at transaction t in monetary
value until maturity, also called convenience yield and denoted by CYt , is given by the
following equation:

CYt :=
a

ω f n
(T− t )

(
Qop −Qt

)
(4.8)

We assume that Qop is exogenous to the model. This is the same for all agents. When the
stock is above this threshold, there is no advantage to detain more units, and the conve-
nience yield is negative. When the stock is under this level, there is an advantage to detain
units of stock.

4.3.4 Agents’ expectations

We assume that all information is freely available and that, at time t , all agents know all
prices and market characteristics. Therefore, Φt = {st , ft ,Qt , I]t ′,t ],CYt } is common knowl-
edge at time t . Furthermore, we assume that agents form unbiased expectations in the
sense that they are able to perfectly process the incoming information on average. This
assumption is later relaxed on the paper. Then, we create a variable γn that denotes the
capability to correctly interpret the monetary impact of the information. It follows an un-
known probabilistic law Lγ with E

(
γn

)
= 1. A perfect capability to interpret information

implies γn = 1.
Agents expect the next spot price at time t , denoted by s̃t+1 according to their infor-

mation Φt such that:

E (s̃t+1|Φt ) = st ′ +γnI]t ′,t ] +γn
e

ω f n
(4.9)

Recall that t ′ represents the latest period when there was a synchronized transaction on
the spot market and futures market until t . Agents add to the current spot price (at pe-

5For most of agricultural commodities, there are a few harvests per year.
6We can include a D.R.V denoted by C such that the probability of having a consumption of the com-

modity is given by: {
Pr (C = 1) = γ

Pr (C = 0) = 1−γ

The following would be more accurate but does not alter the main outcomes on the impact of the n.o.a on
the market. However, the integration of such a variable modifies the optimal n.o.a. We explain how, in the
dedicated section 4.6.
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riod t ) all spot market information that should have been included in the spot price de-
noted by I]t ′,t ], and the expected incoming spot market information for its average value
is E

(
I]t ,t+1]

)
= e

ω f n according to their capability to process it given by the value of γn .

Expectations of the stock dynamics are given by:

E
(�Qt+1|Φt

)
= Qt −q (ωs ,n)

ωs

ω f
nα−1 (4.10)

The expected stock evolution is given by the quantities exchanged at each transaction on
the spot market (that we suppose to be consumed) weighted by the probability of having
a transaction on the spot market at the next transaction on the futures market. Agents
expect the next convenience yield at time t , denoted by �CYt+1 according to their informa-
tion Φt such that:

E
(�CYt+1|Φt

)
=

a

ω f n
(T− (t +1))

(
Qop −E

(�Qt+1|Φt
))

(4.11)

To prevent an arbitrage operation, the basis must include the current level of stock
since the lower the stocks are, the more agents have an interest in detaining it depend-
ing on the level of their optimal stock. Between each transaction on the futures market,
the advantage in detaining stocks decreases by a

ω f n for the same level of stock than at t .

However, there is a probability ωs
ω f

nα−1 of having a stock movement, and the average stock

evolution is not null. Thus, expected stock movement affects the expected advantage in
detaining stocks until maturity.

Finally, expectations of the futures price for the next period are:

E
(

f̃t+1|Φt

)
:= E

(
s̃t+1 − �CYt+1|Φt

)
(4.12)

Recall that we do neither integrate – linear – storage costs nor harvest, this equation trans-
lates the fact that agents know what the no arbitrage conditions are.

4.3.5 Price dynamics and fundamental values

Prices evolve according to agents’ expectations if and only if a transaction occurs. Agents
expect the next prices but do not necessarily pass an order at this price, i.e. their expecta-
tions are not necessarily followed by an action. Thus,

st+1 :=
{

st ′ i f (t +1)′ 6= t +1
E (s̃t+1|Φt ) i f (t +1)′ = t +1

}
= st ′ +1{t+1}

(
(t +1)′

)
γn

[
I]t ′,t ] +

e

ω f n

]
(4.13)

ft+1 := E
(

f̃t+1|Φt

)
(4.14)

The fundamental value of a price corresponds to the instantaneous integration of all
available information on the price (cf. Fama and Miller [4]). Assuming that FVs0 = s0 and
FV f0 = f0, the fundamental values are naturally defined by:

FVst+1 := s0 + I]0,t+1] (4.15)

FV ft+1 := FVst+1 −CYt+1 (4.16)

The fundamental value of the futures is classically computed by its no arbitrage value
(cf. Black and Scholes [1], Cox et al. [2], Merton [14]). However, the main difference with
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these famous models is that our fundamental values are endogenous to the model be-
cause they rely on permanent feedbacks from one market to the other. Notice that the
fundamental value of the spot market and the fundamental value of the basis do not co-
vary (i.e. Cov

(
FVst ,CYt

)
= 0). This independence relies on the fact that we assume e, the

trend of the monetary impact of information on the spot market to be exogenous and so,
uncorrelated to quantities exchanged on the market.7 However, spot and futures funda-
mental values are linked by the FTF. Another way to interpret the absence of correlation is
to consider that information on quantities exchanged on the spot market does not modify
the trend of the spot market information price impact. A way to make fundamental values
to covary is to endogenize the value of parameter e.

Remark 20. The fundamental value of the basis is equal to the opposite value of the con-
venience yield. Then, FV ft+1 −FVst+1 = −CYt+1. This result holds because of the absence of
storage costs.

4.3.6 Market efficiency and fundamental volatility

We study price bias and we refer to it as market efficiency, denoted by B. We are aware
that an unbiased price does not ensure that at each time l ∈ {t , tr }, the price fully reflects
the information on the market, but unbiased price is a sine qua non condition.8 We give
the following function for the market efficiency:

B : R+ → R+

pl 7→ B
(
pl

)
=| E

(
pl −FVpl

)
|, pl ∈ {sl , fl } where | . | denote the absolute value

(4.17)

Then, we consider the fundamental volatility criteria, denoted by V . It is computed
using a standard variance. The variance is not the only way of considering the volatility
of a variable. We could have used a kurtosis measure, a value at risk, the spread between
the maximum price and the minimum price on the period etc. However, it is one possible
tool allowing to explain for what is at stake. Then, we have at time l ∈ {t , tr }:

V : R+ → R+

FVpl 7→ V
(
FVpl

)
= Var

(
FVpl

)
, pl ∈ {sl , fl }

(4.18)

4.4 The impact of the number of agents

In this section, we study the impact of the number of agents (n.o.a) on market efficiency
and the fundamental basis volatility. We provide here a new theoretical insight consider-
ing the effect of agents on the trade frequencies, on the market efficiency in subsection
4.4.1. Then, we study in subsection 4.4.2, their effects on the spot and the futures funda-
mental values volatility.

7There is no harvest in the model. Then we also can consider the trend of information to be equal to the
average of quantities traded per unit of clock time on the spot market (q(ωs ,n)×ωs ).

8This result holds as we do not integrate any risk premium. Otherwise, we could have an efficient price
biased with a risk primum.
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4.4.1 Impact of the number of agents on spot market efficiency and fu-

tures market efficiency

In this subsection we study separately the effect of agents on the spot market efficiency,
and on the futures market efficiency.

Impact of the number of agents on spot market efficiency

Theorem 12. Let a spot market under our hypothesis, be called SM. According to the time
line considered, the price on SM is biased such that:

B(st ) =
| −e |
ω f n

t∑

k=1

(
1−

ωs

ω f n1−α

)k

(4.19)

B
(
str

)
=

| −e |
ω f n

tr ω f n∑

k=1

(
1−

ωs

ω f n1−α

)k

(4.20)

This bias is nul if one of the two following subsets of conditions is verified:

(i) For e = 0, B(st ) = B
(
str

)
= 0;

(ii) For ωs =ω f and α= 1, B(st ) = B
(
str

)
= 0.

Proof. As for the previous chapter, we first express the spot price dynamics according to
its initial value s0. It gives:

s(t−1)′ = s0 +γn ×
(t−1)′∑

k=1
1{k}(k ′)

[
I](k−1)′,k−1] +

e

ω f n

]
(4.21)

We express the dynamics of st according to s0 using equations (4.13) and (4.21):

st = s0 +γn ×
t∑

k=1
1{k}(k ′)

[
I](k−1)′,k−1] +

e

ω f n

]

Then, its average value is:

E (st ) = s0 +
ωs

ω f
nα−1 e

ω f n

t∑

k=1

(
k −E

(
(k −1)′

))

We compute the average spot fundamental value at time t :

E
(
FVst

)
= E

(
s0 + I]0,t ]

)
= s0 +

e

ω f n
t

Using the expression of E
(
(k −1)′

)
given in equation (4.2), we get:

E
(
st −FVst

)
=

−e

ω f n

t∑

k=1

(
1−

ωs

ω f n1−α

)k

Then, we compute the absolute value to express the spot price bias. It allows us to get
equations (4.19) and (4.20), according to the time line considered. Hence, both equations
(4.19) and (4.20) are equal to zero if and only if one of the two terms is equal to zero:

(i) It is immediate that e = 0 is the only condition ensuring that the first term is equal
to zero for both B(st ) and B

(
str

)
;
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(ii) It is also immediate that ωs =ω f and α = 1 is the only condition ensuring that the
second term is equal to zero for both B(st ) and B

(
str

)
.

Theorem is proved.

The n.o.a acting on the spot market influences the spot market efficiency when e 6= 0.
The n.o.a can generate a bias on the spot price dynamics that results in an adjustment
delay in a n.o.t if ωs 6= ω f and α 6= 1. Spot market information is released between two
transactions on the futures market and can not be included on the spot price by agents
since spot market trades frequency (STF) is lower on probability. The condition α 6= 1
prevents the n.o.a from having a proportional impact on both STF and futures market
trades frequency (FTF) and so, generates a variation of the relative trades frequency (RTF)
when the n.o.a evolves.

Remark 21. For e = 0, B(st ) = B
(
str

)
= 0. When incoming information has no impact on

average on the spot price (i.e. when spot market information has no trend), an adjustment
delay in n.o.t does not generate a bias on the market. In other words, as the released spot
market information has on average no impact in monetary value, the adjustment delay in
monetary value corresponding to the bias is null.

Remark 22. We have lim
ω f →+∞

B(st ) = 0. If intrinsic trade frequency on the futures market

is infinite, the first t transactions take place in a negligible clock time. Then, information
released is also negligible and the spot price is consequently unbiased.

Focusing on the spot price bias expressed in the clock time line (CTL), we have:

lim
ω f →+∞

(
1−

ωs

ω f n1−α

)
= 1 ⇒ lim

ω f →+∞

(
1−

ωs

ω f n1−α

) j

= 1

By sum and product, we respectively get:

lim
ω f →+∞

tr ω f n∑

k=1

(
1−

ωs

ω f n1−α

)k

= lim
ω f →+∞

tr ω f n

Hence:
lim

ω f →+∞
B

(
str

)
=| −e | tr > 0 ∀ e 6= 0 (4.22)

Remark 22 highlights to what extent technological advances that diminish the intrin-
sic transaction costs of the market (and allowing ω f to raise) influence the spot market
efficiency according to the time line. If a policy maker considers the transactions time
line (TTL), an intrinsic infinite FTF allows for an unbiased market since the clock time
line effect is infinite (the first t transactions take place in a negligible clock time). How-
ever, if s/he considers the CTL, it leads to a biased spot price despite the fact that spot
market information released between two transactions on the futures price is equal to 0
– on average and variance. There is an infinite n.o.t on the futures market until tr , and a
relatively limited n.o.t on the spot market. Hence, the spot price is biased.

Remark 23. We have lim
n→+∞

B(st ) = 0. If there is an infinite n.o.a on the market, the first t

transactions take place in a negligible clock time ( lim
n→+∞

ω f n = 0). Despite the RTF tends to

0, information released is negligible on average and the spot price is consequently unbiased.
Focusing on the spot price bias expressed in the CTL in the case α ∈ ]0,1[, we have the

same result than on remark 22:

lim
n→+∞

B
(
str

)
|α∈]0,1[=| −e | tr > 0 ∀ e 6= 0 (4.23)
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However, in the case where α= 1, we have:

lim
n→+∞

(
1−

ωs

ω f

)
= 1−

ωs

ω f

By sum and product, we respectively get:

lim
n→+∞

tr ω f n∑

k=1

(
1−

ωs

ω f n1−α

)k

= lim
n→+∞

(
1−

ωs

ω f

)
ω f

ωs

(
1−

(
1−

ωs

ω f

)tr ω f n)
=

(
1−

ωs

ω f

)
ω f

ωs

⇒ lim
n→+∞

|−e|
ω f n

tr ω f n∑

k=1

(
1−

ωs

ω f n1−α

)k

=
(
1−

ωs

ω f

) | −e |
ωs

lim
n→+∞

1

n

Hence:
lim

n→+∞
B

(
str

)
|α=1= 0 (4.24)

Remark 23 highlights to what extent an entrance of an infinite n.o.a on the market (al-
lowing for both STF and FTF to raise) influences the spot market efficiency according to
the time line. If a policy maker considers the TTL, an infinite n.o.a allows for an unbi-
ased spot market since the clock time line effect is infinite. However, if we consider the
spot price expressed in the CTL and an elasticity of the STF to the n.o.a α < 1, it leads to
a biased spot price despite the fact that spot market information released between two
transactions on the futures price is on average and variance equal to 0. There are an in-
finite n.o.t until tr , and an infinite n.o.t on the futures market between two transactions
on the spot market. Hence, the spot price is biased. But if the latest elasticity is equal
to 1 (α = 1), STF and FTF proportionally increases such that the RTF is unchanged. The
average n.o.t on the futures market is unchanged but the clock time between two transac-
tions on the spot market becomes negligible. Then, the released spot market information
becomes negligible too on average, allowing for the spot price to be unbiased. This result
underlies the major importance of the elasticity of the STF to the n.o.a α compared to the
elasticity of the FTF to the n.o.a (normalized to 1 in the model).

Impact of the number of agents on futures market efficiency

Theorem 13. Let a futures market under our hypothesis, be called FM. The price on FM is
unbiased such that:

B
(

ft
)
= B

(
ftr

)
= 0 (4.25)

Proof. We compute the average of the spread between the futures price and its funda-
mental value. Using equations (4.12) and (4.14), we have:

E
(

ft −FV ft

)
= E

[
E

(
s̃t − C̃Yt |Φt−1

)
−

(
FVst −CYt

)]

⇔ E
(

ft −FV ft

)
= E

[
E (s̃t |Φt−1)−FVst

]
−E

[
E

(
C̃Yt |Φt−1

)
−CYt

]

Using equations (4.8), (4.10) and (4.12), we have:

E
[
E

(
C̃Yt |Φt−1

)
−CYt

]
= E

[
a

ω f n (T− t )
(
Qop −E

(
Q̃t |Φt−1

))
− a

ω f n (T− t )
(
Qop −Qt

)]

⇔ E
[
E

(
C̃Yt |Φt−1

)
−CYt

]
= a

ω f n (T− t )E
[
Qt −E

(
Q̃t |Φt−1

)]
= 0

To compute the term E
[
E (s̃t |Φt−1)−FVst

]
, we proceed with a recurrence and recall

that s0 = FVs0 . The property P(t ) is: E
[
E (s̃t |Φt−1)−FVst

]
= 0∀ t ∈ [1,T].
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Initialization:

E
[
E (s̃1 |Φ0)−FVs1

]
= E

[
s0′ +γnI]0′,0] +γn

e
ω f n −

(
s0 + I]0,1]

)]

⇔ E
[
E (s̃1 |Φ0)−FVs1

]
= E

[
γn

e
ω f n − I]0,1]

]
= 0

P(1) is true. We assume that P(t ) is true (i.e. E
[

s(t−1)′ +γnI](t−1)′,t−1] +γn
e

ω f n −
(
s0 + I]0,t ]

)]
=

0), we show that P(t +1) is also true.

E
[
E (s̃t+1 |Φt )−FVst+1

]
= E

[
st ′ +γn

(
I]t ′,t ] + e

ω f n

)
−

(
s0 + I]0,t+1]

)]

⇔ E
[
E (s̃t+1 |Φt )−FVst+1

]
= E

[
s(t−1)′ +γn1{t }(t ′)

(
I](t−1)′,t−1] + e

ω f n

)
+γn

(
I]t ′,t ] + e

ω f n

)

−
(
s0 + I]0,t ] + I]t ,t+1]

)]

⇔ E
[
E (s̃t+1 |Φt )−FVst+1

]
= E

[
s(t−1)′ +γn

(
I](t−1)′,t−1] + e

ω f n

)
−

(
s0 + I]0,t ]

)]

+E
[
γn

(
1{t }(t ′)−1

)(
I](t−1)′,t−1] + e

ω f n

)
+γn

(
I]t ′,t ] + e

ω f n

)
− I]t ,t+1]

]

As we assumed that P(t ) is true, we get:

E
[
E (s̃t+1 |Φt )−FVst+1

]
= E

[
γn

(
1{t }(t ′)−1

)(
I](t−1)′,t−1] + e

ω f n

)

+γn

(
I]t ′,t ] + e

ω f n

)
− I]t ,t+1]

]

⇔ E
[
E (s̃t+1 |Φt )−FVst+1

]
= E

[(
1{t }(t ′)−1

)(
I](t−1)′,t−1] + e

ω f n

)
+

(
I]t ′,t ] + e

ω f n

)
− I]t ,t+1]

]

⇔ E
[
E (s̃t+1 |Φt )−FVst+1

]
= e

ω f n E
[(

1{t }(t ′)−1
)(

t −1− (t −1)′+1
)
+

(
t − t ′+1

)
− (t +1− t )

]

⇔ E
[
E (s̃t+1 |Φt )−FVst+1

]
= e

ω f n E
[(

1{t }(t ′)−1
)(

t − (t −1)′
)
+

(
t − t ′

)]

⇔ E
[
E (s̃t+1 |Φt )−FVst+1

]
= e

ω f n

(
E

[(
1{t }(t ′)−1

)(
t − (t −1)′

)]
+E

[
t − t ′

])

⇔ E
[
E (s̃t+1 |Φt )−FVst+1

]
= e

ω f n

(
E

[
1{t }(t ′)−1

]
E

[
t − (t −1)′

]
+ t −E

[
t ′

])

⇔ E
[
E (s̃t+1 |Φt )−FVst+1

]
= e

ω f n

((
ωs

ω f n1−α −1
)(

t −E
[
(t −1)′

])
+ t −E

[
t ′

])

⇔ E
[
E (s̃t+1 |Φt )−FVst+1

]
= e

ω f n

(
t ωs
ω f n1−α −E

[
(t −1)′

](
ωs

ω f n1−α −1
)
−E

[
t ′

])

⇔ E
[
E (s̃t+1 |Φt )−FVst+1

]
= e

ω f n

(
t ωs
ω f n1−α +

(
t −1−

t−1∑

k=1

(
1−

ωs

ω f n1−α

)k
)(

1− ωs
ω f n1−α

)
−E

[
t ′

]
)

⇔ E
[
E (s̃t+1 |Φt )−FVst+1

]
= e

ω f n

(
t −

t∑

k=1

(
1−

ωs

ω f n1−α

)k

−E
[
t ′

]
)
= 0

If P(t ) is true, P(t +1) is also true. As, P(1) is true, P(t ) is true for all t ∈ [1,T].
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Then, E
(

ft −FV ft

)
= 0+0 = 0. Computing the absolute value and expressing it in both

time lines leads to equation (4.25). Theorem is proved.

By assumption, agents form rational expectations on average (i.e. E(γn) = 1). Further-
more, spot market information arrives at the same rhythm than the transactions on the
futures market. Hence, futures price is unbiased independently of the time line consid-
ered.

Corollary 4 (Corollary of theorems 12 and 13). The basis on FM and SM is biased such
that:

B
(

ft − st
)

= B(st ) (4.26)

B
(

ftr − str

)
= B

(
str

)
(4.27)

Proof. Immediate from theorems 12 and 13.

We extract from corollary 4 that if agents reduce the spot price bias, they also reduce
the basis bias.

4.4.2 Impact of the number of agents on spot and futures fundamental

value volatility

In section 4.3.5, we expressed how the implication of an exogenous trend of spot market
information (e) on the fundamental values dynamics leads to a spot fundamental value
independent from the convenience yield. Then, the study of the volatility of the futures
fundamental value is equivalent to study separately the spot fundamental value volatility
on the one hand (cf. subsubsection 4.4.2), and the convenience yield volatility on the
other hand (cf. subsubsection 4.4.2).

Impact of the number of agents on spot fundamental value volatility

Theorem 14. On SM, the spot fundamental value volatility is such that:

V
(
FVst

)
= t ×

σI
2

ω f
×

1

1+n
> 0 (4.28)

V
(
FVstr

)
= tr ×σI

2 ×
n

1+n
> 0 (4.29)

Proof. Computing the variance of the spot price fundamental value at transaction t gives:

V
(
FVst

)
= Var

(
s0 + I]0,t ]

)
= Var

(
t∑

k=1
I]k−1,k]

)
=

t∑

k=1
Var

(
I]k−1,k]

)

⇔ V
(
FVst

)
=

t∑

k=1

σI
2

ω f
×

1

1+n
= t ×

σI
2

ω f
×

1

1+n

Explaining this volatility in the CTL gives equation (4.29). It proves theorem 14.

Theorem 14 underlies to what extent the n.o.a modifies the spot fundamental value
volatility according to the time line. If we are in the TTL (t ), we find that agents reduce this
volatility. The mechanisms is that the FTF increases and there is a clock time effect, i.e. a
compression of the clock time considered. It leads to an increase in the volatility of spot
market information overcompensated by the compression of the clock time considered,
constraining the spot volatility. This compensation does not hold when considering a
fixed clock time such that agents increase the spot price fundamental volatility.
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Impact of the number of agents on futures fundamental value volatility

Theorem 15. On SM and FM, the available stock and the fundamental value volatility of
the basis have the following properties:

(i) The volatility of the available stock expressed respectively in the TTL, denoted by
Var(Qt ), and in the CTL, denoted by Var(Qtr ), are impacted by the n.o.a on the mar-
ket, and we have:

Var(Qt ) = q (ωs ,n)2 t

(
1−

ωs

ω f n1−α

)
ωs

ω f n1−α (4.30)

Var(Qtr ) = q (ωs ,n)2 tr

(
1−

ωs

ω f n1−α

)
ωsnα (4.31)

These volatility are null if the following condition is verified:

• For ωs =ω f and α= 1, Var(Qt ) = Var(Qtr ) = 0.

(ii) The volatility of the fundamental value of the basis expressed respectively in the TTL,
denoted by V

(
FV ft −FVst

)
, and in the CTL, denoted by V

(
FV ftr

−FVstr

)
, are impacted

by the n.o.a on the market and we have:

V
(
FV ft −FVst

)
=

(
a

ω f n

)2 ((
Tr ω f n

)
− t

)2 Var(Qt ) (4.32)

V
(
FV ftr

−FVstr

)
= a2 (Tr − tr )2 Var(Qtr ) (4.33)

These volatility are null if one of the following condition is verified:

• For a = 0, V
(
FV ft −FVst

)
= V

(
FV ftr

−FVstr

)
= 0;

• For t = Tr ω f n = T ⇔ tr = Tr , V
(
FV ft −FVst

)
= V

(
FV ftr

−FVstr

)
= 0;

• For ωs =ω f and α= 1, V
(
FV ft −FVst

)
= V

(
FV ftr

−FVstr

)
= 0.

Proof. First, we compute Var(Qt ) and show that it depends on n.

Var(Qt ) = Var

(
Q0 −q (ωs ,n)

t∑

k=1
1{t }

(
t ′

)
)
= q (ωs ,n)2 t

(
1−

ωs

ω f n1−α

)
ωs

ω f n1−α

Thus, Var(Qt ) depends on n. By a time line transposition we get the expression of Var(Qtr ).
It also depends on n.

Hence, both equations (4.30) and (4.31) are equal to zero if and only if one of the
terms is equal to 0. It is immediate that ωs = ω f and α = 1 is the only condition ensur-
ing Var(Qt ) = Var(Qtr ) = 0. It proves the first assertion.

Then, we compute the fundamental variance of the spread between the futures price
and spot price. From remark 20, we get: V

(
FV ft −FVst

)
= V (−CYt ) = V (CYt ). We show

that it depends on n.

V (CYt ) = Var

[
a

ω f n
(T− t )

(
Qop −Qt

)]
=

(
a

ω f n

)2 ((
Tr ω f n

)
− t

)2 Var(Qt )

Thus, V (CYt ) depends on n. By a time line transposition we get the expression of V
(
CYtr

)
.

It also depends on n.
Hence, both equations (4.32) and (4.33) are equal to zero if and only if one of the terms

is equal to 0:
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(i) It is immediate that a = 0 is the only condition ensuring the first term to be equal to
0 such that V

(
FV ft −FVst

)
= V

(
FV ftr

−FVstr

)
= 0;

(ii) It is immediate that t = Tr ω f n = T ⇔ tr = Tr is the only condition ensuring the
second term to be equal to 0 such that V

(
FV ft −FVst

)
= V

(
FV ftr

−FVstr

)
= 0;

(iii) It is immediate that ωs =ω f and α = 1 is the only condition ensuring the last term
to be equal to 0 such that V

(
FV ft −FVst

)
= V

(
FV ftr

−FVstr

)
= 0.

Last assertion is proved.

Theorem 15 demonstrates that the n.o.a on the commodity market impacts the fun-
damental basis volatility – here equal to the convenience yield. Recall that theorem 14
demonstrates that agents also influence the fundamental spot price volatility. In the end,
we demonstrate that the n.o.a influences both spot and futures price volatility. In the
previous chapter 3, we argued that the RTF influences the fundamental basis volatility.
Here, we extend this result; Agents influence both RTF and the spot market information
itself. These results can explain to what extent and in which cases the futures funda-
mental volatility is higher than the fundamental spot volatility. It provides an additional
explanation to empirical tests showing the latest phenomena (cf. Matia et al. [13]).

4.5 The impact of the entrance of agents on the market

From theorems 12, 14 and 15, we proved that under the assumptions made, the number
of agents (n.o.a) influences fundamentals volatility and spot market efficiency. In this sec-
tion, we study how this impact evolves when the n.o.a increases. As the n.o.a is assumed
to be in the set of natural numbers (i.e. n ∈N∗), our main mathematical tool is the simple
difference. In subsection 4.5.1 we investigate the effect of an entrance of agents on spot
and futures market efficiency. In subsection 4.5.2 we investigate the effect of an entrance
of agents on spot and futures fundamental values volatility.

4.5.1 Impact of the entrance of agents on spot and futures market effi-

ciency

In this subsection we study separately the effect of an entrance of agents on the spot mar-
ket efficiency, and on the futures market efficiency.

Impact of the entrance of agents on spot market efficiency

Theorem 16. An entrance of one – unit of – agent on the market has the following impact
on the spot price bias of SM:

(i) Within the transactions time line (TTL) (t), the spot price bias strictly decreases if and
only if the following condition is verified:

n +1

n
>

t∑

k=1

(
1−

ωs

ω f (n +1)1−α

)k

t∑

k=1

(
1−

ωs

ω f n1−α

)k
(4.34)
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(ii) Within the clock time line (CTL) (tr ), the spot price bias strictly decreases if and only
if the following condition is verified:

n +1

n
>

tr ω f (n+1)∑

k=1

(
1−

ωs

ω f (n +1)1−α

)k

tr ω f n∑

k=1

(
1−

ωs

ω f n1−α

)k
(4.35)

Proof. We calculate the simple difference of the spot price bias according to n, and we
study its sign. Using equation (4.19) and factorizing by |−e|

ω f
> 0 we have:

B(st ) |n+1 −B(st ) |n=
1

n +1

t∑

k=1

(
1−

ωs

ω f (n +1)1−α

)k

−
1

n

t∑

k=1

(
1−

ωs

ω f n1−α

)k

Putting to the same denominator and factorizing by 1
n(n+1) > 0, we get:

B(st ) |n+1 −B(st ) |n= n
t∑

k=1

(
1−

ωs

ω f (n +1)1−α

)k

− (n +1)
t∑

k=1

(
1−

ωs

ω f n1−α

)k

This difference is strictly negative if and only if:

n
t∑

k=1

(
1−

ωs

ω f (n +1)1−α

)k

< (n +1)
t∑

k=1

(
1−

ωs

ω f n1−α

)k

It proves the first assertion.
Proceeding identically, we can prove the second assertion. Theorem is proved.

An increase in the n.o.a on the market not necessarily decreases the spot price bias.
Within the TTL, we found that the multiplier of the n.o.a

(n+1
n

)
, which equals the mul-

tiplier of the futures market trades frequency (FTF), must be higher than the increase of
the average delay in n.o.t between two transactions on the spot market relatively to the
FTF.

Within the CTL, this constraint is slightly modified. Indeed, an increase in the n.o.a
increases the FTF. But as the clock time is fixed, there are more transactions on the futures
market. This phenomena is translated on the terminal term of the sums ratio (tr ω f n and
tr ω f (n + 1)) of the average delay in n.o.t between two transactions on the spot market
relatively to the FTF. The left term still represents the increase in the n.o.t on the futures
market per unit of clock time through the multiplier of the FTF.

Then, we demonstrate the major role of the "current state" of the market in determin-
ing the optimal n.o.a on the market according to the spot price bias objective (i.e. allowing
for free entrance or not of more agents on the market).

Remark 24. If α = 1, both inequalities (4.34) and (4.35) are verified. If the spot market
trades frequency (STF) is proportionally modified by the entrance of agents compared to
the FTF, the free entrance of agents is an optimal policy. Linking this remark with remark
23, not only the free entrance is an optimal policy but an infinite n.o.a allows for the spot
price to be unbiased independently of the time line considered.
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Impact of the entrance of agents on futures market efficiency

Corollary 5 (Corollary of theorem 13). An entrance of one – unit of – agent on the market
has no impact on the futures price bias of FM. Hence, we have:

B
(

ft
)
|n+1 −B

(
ft

)
|n= B

(
ftr

)
|n+1 −B

(
ftr

)
|n= 0 (4.36)

Proof. Immediate from theorem 13.

In subsection 4.5.1, we demonstrated that an entrance of – a unit of – agents on a
commodity market under our assumptions does not necessary allow for the spot price
bias to decrease. In fact, if the increases in the FTF implied by this – unit of – agent does
not overcome the average adjustment delay in n.o.t on the futures market multiplier, it
leads to an increasing spot price bias. However, there is no trade-off between the futures
price efficiency and the spot price efficiency since agents do not modify the futures price
bias.

4.5.2 Impact of the entrance of agents on spot and futures fundamental

volatility

In this subsection we study separately the effect of an entrance of agents on the spot fun-
damental value volatility in subsubsection 4.5.2, and on the futures fundamental value
volatility in subsubsection 4.5.2.

Impact of the entrance of agents on spot fundamental value volatility

Theorem 17. An entrance of one – unit of – agent on the market has the following impact
on the fundamental spot price volatility of SM:

(i) Within the TTL (t), the fundamental spot price volatility strictly decreases such that:

V
(
FVst

)
|n+1 −V

(
FVst

)
|n=−t ×

σI
2

ω f
×

1

(n +2)(n +1)
< 0 (4.37)

(ii) Within the CTL (tr ), the fundamental spot price volatility strictly increases such that:

V
(
FVstr

)
|n+1 −V

(
FVstr

)
|n= tr ×σI

2 ×
1

(n +2)(n +1)
> 0 (4.38)

Proof. We calculate the difference of the fundamental spot price volatility according to n,
and we study its sign. Using equation (4.28) we have:

V
(
FVst

)
|n+1 −V

(
FVst

)
|n= t ×

σI
2

ω f (1+n +1)
− t ×

σI
2

ω f (1+n)
=−t ×

σI
2

ω f
×

1

(n +2)(n +1)

As σI > 0, V
(
FVst

)
|n+1 −V

(
FVst

)
|n< 0. Hence, first assertion is proved.

Proceeding identically, we can prove the second assertion. Theorem is proved.

Theorem 17 underlies again the major importance of the time line considered. Within
the TTL (t ), the spot price volatility decreases with an entrance of more agents despite the
increase of the spot market information volatility by agents, because there is a clock time
line effect. The clock time between two transactions reduces such that the fundamental
volatility of the spot price decreases. However, if the clock time is fixed, we only have
an increase in the spot market information volatility and on the fundamental spot price
volatility. Then, we extract from theorems 16 and 17 that a trade-off between decreasing
the spot price bias and decreasing the fundamental spot price volatility may exist.
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Impact of the entrance of agents on futures fundamental value volatility

Theorem 18. An entrance of one – unit of – agent has the following impact on the funda-
mental basis volatility of SM and FM:

(i) Within the TTL (t), the fundamental basis volatility strictly decreases if and only if
the following condition is verified:

(
n +1

n

)−2(1+αǫ) (Trω f (n +1)− t

Trω f n − t

)2

(
1− ωs

ω f (n+1)1−α

)
1

(n+1)1−α
(
1− ωs

ω f n1−α

)
1

n1−α

< 1 (4.39)

(ii) Within the CTL (tr ), the fundamental basis volatility strictly decreases if and only if
the following condition is verified:

(
n +1

n

)1−2αǫ

(
1− ωs

ω f (n+1)1−α

)
1

(n+1)1−α
(
1− ωs

ω f n1−α

)
1

n1−α

< 1 (4.40)

Proof. We calculate the difference of the convenience yield volatility according to n within
the TTL, and we study its sign. Using equations (4.30) and (4.32) and factorizing by a2t ωs

ω f
3 >

0 we have:

V (CYt ) |n+1 −V (CYt ) |n = (n+1)α−1

(n+1)2

(
Trω f (n +1)− t

)2 q (ωs , (n +1))2
(
1− ωs
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)
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n2

(
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)2 q (ωs ,n)2
(
1− ωs
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)

⇔ V (CYt ) |n+1 −V (CYt ) |n = (n +1)α(1−2ǫ)−3
(
Trω f (n +1)− t

)2
ωs

−2ǫ
(
1− ωs
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−nα(1−2ǫ)−3
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Trω f n − t
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−2ǫ
(
1− ωs
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Factorizing by ωs
−2ǫ > 0, this difference is strictly negative if and only if:

(
n +1

n

)α(1−2ǫ)−3 (
Trω f (n +1)− t

)2
(
1−

ωs

ω f (n +1)1−α

)
<

(
Trω f n − t

)2
(
1−

ωs

ω f n1−α

)

It proves the first assertion.
Proceeding identically, we can prove the second assertion. Theorem is proved.

Theorem 18 is a key result of this work. According to the elasticity of quantities traded
to the STF (ǫ) and the elasticity of the STF to the n.o.a (α), i.e. the spot market character-
istics, an entrance of more agents can lead to an increase in fundamental basis volatility.
This condition also relies on the current level of agents n.

Within the TTL (t ), there are four effects at stake:

(i) A quantity effect. The entrance of agents modifies the quantities traded at each
transaction on the spot market according to their effect on the STF. It is represented
by the square of the multiplier of quantities traded at each transactions on the spot

market (since V (ax) = a2V (x)), which is equal to
(n+1

n

)−2αǫ
;
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)

Figure 4.1 – Volatility of the occurrence of synchronized transactions at each transaction on the
futures market. Green arrow gives the evolution of the volatility with an increasing n.o.a, α ∈ ]0,1[.

(ii) A clock time line effect. The first t transactions occur in less clock time according to
the modification of the FTF. It is represented by the square of the multiplier of the

FTF, which is equal to
(n+1

n

)−2
;

(iii) A clock time line effect until maturity. The entrance of agents provokes more trades
on the futures market. The second effect compresses the clock time considered un-
til the t th transaction on the futures market. Then, the clock time until maturity is
more important. it is represented by the square of the multiplier of the n.o.t remain-

ing until the maturity, equal to
(

Tr ω f (n+1)−t
Tr ω f n−t

)2
;

(iv) A risk of occurrence effect. The entrance of agents modifies the relative trades fre-
quency (RTF) (if α 6= 1). In other words, it represents the fundamental risk induced
by the evolution of the RTF. It is represented by the multiplier of the volatility of
the occurrence of transaction on the spot market at each transaction on the futures

market induced by an increase in the n.o.a, equal to
(
1− ωs

ω f (n+1)1−α

)
1

(n+1)1−α /
(
1− ωs

ω f n1−α

)
1

n1−α .

The first two effects decrease the fundamental basis volatility despite the third one in-
creases it. However, the sign of the fourth is ambiguous and depends on current values of
both parameters ωs and ω f , and the initial n.o.a n. The product of these four multipliers
must give a multiplier strictly inferior to 1 in order to strictly decrease the fundamental
basis volatility with an entrance of one more – unit of – agent.

Within the CTL (tr ), there are three effects at stake:

(i) A quantity effect. The entrance of agents modifies the quantities traded at each
transaction on the spot market according to their effect on the STF. It is represented
by the square of the multiplier of quantities traded at each transactions on the spot

market (since V (ax) = a2V (x)), which is equal to
(n+1

n

)−2αǫ
;

(ii) A FTF effect. The entrance of agents increases the n.o.t on the futures market for a
given clock time. This effect takes into account the increase in the n.o.t until tr but
also between tr and the maturity Tr . It is represented by the multiplier of the n.o.t
on the futures market during each unit of clock time tr , equal to

(n+1
n

)
;
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(iii) A risk of occurrence effect. The entrance of agents modifies the RTF (if α 6= 1). In
other words, it represents the fundamental risk induced by the evolution of the
RTF. The evolution of the occurrence of synchronized transactions volatility with
an increase in the n.o.a is represented in figure 4.1. It is represented by the multi-
plier of the volatility of the occurrence of transaction on the spot market at each
transaction on the futures market induced by an increase in the n.o.a, equal to(
1− ωs

ω f (n+1)1−α

)
1

(n+1)1−α /
(
1− ωs

ω f n1−α

)
1

n1−α .

The first effect decreases the fundamental basis volatility despite the second one increases
it. However, the sign of the third effect is ambiguous and depends on current values of
both parameters ωs and ω f , and the initial n.o.a n. The product of these three multipliers
must give a multiplier strictly inferior to 1 in order to strictly decrease the fundamental
basis volatility with an entrance of one more – unit of – agent.

Remark 25. From theorem 15, the fundamental spot price and the convenience yield (i.e.
the fundamental value of the basis) do not covary. The fundamental spot price volatility
and the fundamental futures price volatility can evolve in opposite signs. From theorems 17
and 18, an increasing n.o.a on the market can have an opposite effect on the fundamental
spot price volatility and the fundamental basis volatility, such that an increasing n.o.a on
the market has an ambiguous effect on the fundamental futures price volatility.

4.6 On the existence of an optimal number of agents

The objectives of a policymaker on commodity markets are to minimize the fundamen-
tal values volatility and to increase market efficiency on both spot and futures markets.
As the futures price is unbiased (cf. corollary 4), the policymaker focuses on spot mar-
ket efficiency. We assume that the risk aversion of the policy maker is the same for both
fundamental spot price volatility and basis volatility, such that it is equivalent to con-
sider her/his risk aversion to the futures fundamental volatility (i.e. V

(
FV fl

)
= V

(
FVsl

)
+

V (CYl ) , l ∈ {t , tr }). We consider here that the number of agents (n.o.a) on the market is
the policymaker’s tool, and thus the policymaker can implement a limit in the n.o.a or not
(free entrance).

Considering the feedbacks between these two markets at the fundamental level, we
investigate the existence of an optimal n.o.a and if any, if it is in adequacy with the current
state of the market. As we explained all effects at stake within the transactions time line
(TTL), we focus on the clock time line (CTL), as it is the time line considered by the policy
maker. We find different levels of optimal n.o.a considering the objectives of the policy
maker, and particularly her/his risk aversion.

Definition 24. We define a mean-variance utility function Utr (following Markowitz [12],
Von Neumann et al. [21]) such that:

Utr : N∗ U1−→ R+×R+ U2−→ R−

n 7−→
(
B

(
str

)
,V

(
FV ftr

))
7−→ U2(., .) =−B

(
str

)
−Θ

[
V

(
FV ftr

)] (4.41)

Hence, we have Utr (n) = U2 ◦U1 (n), verifying the two following properties:

(i) U2 (0,0) = 0;

(ii)
∂U2

(
B(str ),V

(
FV ftr

))

∂B(str ) < 0, and
∂U2

(
B(str ),V

(
FV ftr

))

∂V
(
FV ftr

−FVstr

) < 0.
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We assume that a policymaker uses the utility function Utr as defined above to maxi-
mize the agricultural commodity market efficiency and to minimize its fundamental basis
volatility. Properties (i) and (ii) correspond respectively to the following natural insights:

(i) U2 reaches its maximal value on R− if and only if the spot price bias and the funda-
mental futures volatility are both null;9

(ii) If either the spot price bias or the fundamental futures volatility increases, the poli-
cymaker’s utility decreases.

In this section, we provide some analytical results in subsection 4.6.1. However, in most
of the cases, the optimal n.o.a depends on the set of all parameters of the model. Conse-
quently, we provide some sensitivity analysis according to main parameters when neces-
sary in subsection 4.6.2. All figures are also provided.

4.6.1 Analytical results

Theorem 19. If a policymaker whose utility function is Utr has no risk aversion (i.e. if Θ=
0), her/his utility function reaches its maximal value if one of the three following conditions
given by the subset O

tr
Θ=0 is verified:

O
tr
Θ=0 =

{(
n,Θ,α,ωs ,ω f ,e

)
∈N+× {0}× ]0,1]×Fs ×F f ×R | (e = 0,n ∈N∗)

⋃
(
ωs =ω f

(
Fs ∩F f 6= ;

)
,α= 1,n ∈N∗)⋃

(α= 1,n →+∞)
} (4.42)

Proof. Within the CTL (tr ), let Θ= 0. From theorem 12, we get
B

(
str

)
= 0 ⇒ (e = 0)

⋃(
ωs =ω f

(
Fs ∩F f 6= ;

)
,α= 1

)
. From remark 23, we also get lim

n→+∞
B

(
str

)
|α=1=

0.
Let O

tr
Θ=0 be the subset allowing lim

n→+∞
Utr (n) = 0,Θ= 0. Hence, O

tr
Θ=0 is as given in the

second assertion.
Let Θ 6= 0. From theorem 14 V

(
FVstr

)
> 0, the policy maker’s utility function can not

take its maximal value. Then, the optimal n.o.a on the market fully depends on the pa-
rameters values. Second assertion is proved.

Remark 26. When considering the possibility of speculation on the spot market, the opti-
mal n.o.a on the market may change. There is still an ambiguity of having an available
stock reduction at each transaction on the spot market, such that except if a = 0. In this
case, all three arguments of Utr cannot be simultaneously equal to 0. The arbitrage between
market efficiency and fundamental volatility becomes mandatory.

We only get analytical results when considering no risk aversion. In the next subsec-
tion 4.6.2 we provide sensitivity analysis to the parameters of the model when there is risk
aversion.

4.6.2 Sensitivity analysis

In this subsection, we provide some sensitivity analysis of the optimal n.o.a to different
changes in the parameters values. Indeed, we cannot get tractable analytical solution
from this model superimposing two kinds of complexity. The first one relies on the com-
plexity of the expression of all terms in the utility function. The second one relies on the

9This utility function does not verify the axiom of non satiety. If the market efficiency is maximized and
the fundamental futures volatility is minimized, the utility cannot be improved.
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Figure 4.2 – Representation of both utility function Utr (n) (on left side), and n∗ (on right side)
according to the variation of parameter e (e = {0,1, ...,20}).

introduction of the preference of the policy maker. Within the CTL, we consider a set of

parameter to be in ¯
O

tr
Θ=0. The set of parameters default value used is given by the following

table 4.3.

Parameter e a ω f ωs tr σI Θ Tr ǫ α

Value 5 0,25 15 10 41 0,05 0,05 100 0,5 0,5

Table 4.3 – Set of parameters default values used for the sensitivity tests in ¯
O

tr
Θ=0, within the CTL

In order to have clear charts, we consider that n∗ ∈ {1,11,21, ...,1001}.

Sensitivity analysis to e: We can observe on figure 4.2 that utility is a strictly decreasing
function of n for all tested values of e. Despite the potential reduction of the spot price
bias (cf. theorem 16) and the fundamental basis volatility (cf. theorem 18), the increase
in the fundamental spot price volatility (cf. theorem 17) with an increasing n.o.a, com-
pensate these effects. Then, the optimal n.o.a is always minimal (n∗ = 1). In this case, we
have:

max
n

Utr (n) = Utr (1) =−
| −e |
ω f

tr ω f∑

k=1

(
1−

ωs

ω f

)k

−Θtr

[
σI

2

ω f

1

2
+a2 (Tr − tr )2ωs

1−2ǫ
(
1−

ωs

ω f

)]

Sensitivity analysis to a: We can observe on figure 4.3 that utility is a strictly decreasing
function of n for all tested values of a 6= 0. If there is no convenience yield (i.e. a = 0), the
utility function fully depends on the spot price bias and on the fundamental spot price
volatility. From remark 23 and first assertion of theorem 17, an infinite n.o.a leads to a
biased spot price (but not necessarily maximal) and a maximal fundamental spot price
volatility by limit. Hence, according to the risk aversion of the policy makerΘ, the increase
in the fundamental spot price volatility is less important than the potential effect on the
spot price bias (which is ambiguous from theorem 16). Within our set of parameters’
default values, an entrance of an infinite n.o.a leads to a decrease in the spot price bias.
In other words, the policy maker utility is maximized with an infinite n.o.a. Then, the
optimal n.o.a is always minimal (n∗ = 1), except if a = 0 ⇒ n∗ →+∞.
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Figure 4.3 – Representation of both utility function Utr (n) (on left side), and n∗ (on right side)
according to the variation of parameter a (a = {0,0.05,0.1, ...,0.5}).

Figure 4.4 – Representation of both utility function Utr (n) (on left side), and n∗ (on right side)
according to the variation of parameter ω f (ω f = {10,11, ...,20}).
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(a) ωs = {1,2, ...,15}

Figure 4.5 – Representation of both utility function Utr (n) (on left side), and n∗ (on right side)
according to the variation of parameter ωs (ωs = {1,2, ...,15}).

Sensitivity analysis toω f : We can observe on figure 4.4 that utility is a strictly decreasing
function of n for all tested values of ω f . As α 6= 1, the spot price is biased and an increase
in the n.o.a increases the spot price bias in n.o.t. An increase in the n.o.a can secondly
lead to an increase in the volatility of occurrence of synchronized transactions. Lastly, the
increase in the n.o.a always increases the fundamental spot price volatility (cf. theorem
17).

Within our set of parameters’ default values, an entrance of any n.o.a leads to a de-
crease in the utility. In other words, the policy maker utility is maximized with a minimal
n.o.a. Then, the optimal n.o.a is minimal (n∗ = 1) and not sensitive to the value of ω f

within our set of parameters’ values. In this case, we get:

max
n

Utr (n) = Utr (1) =−
| −e |
ω f

tr ω f∑

k=1

(
1−

ωs

ω f

)k

−Θtr

[
σI

2

ω f

1

2
+a2 (Tr − tr )2ωs

1−2ǫ
(
1−

ωs

ω f

)]

Sensitivity analysis toωs : We can observe on figure 4.5 that utility is a strictly decreasing
function of n for all tested values of ωs . As α 6= 1, the spot price is biased and an increase
in the n.o.a increases the spot price bias in n.o.t. An increase in the n.o.a can secondly
lead to an increase in the volatility of occurrence of synchronized transactions. Lastly, the
increase in the n.o.a always increases the fundamental spot price volatility (cf. theorem
17).

Within our set of parameters’ default values, an entrance of any n.o.a leads to a de-
crease in the utility. In other words, the policy maker utility is maximized with a minimal
n.o.a. Then, the optimal n.o.a is minimal (n∗ = 1) and not sensitive to the value of ωs

within our set of parameters’ values. In this case, we get:

max
n

Utr (n) = Utr (1) =−
| −e |
ω f

tr ω f∑

k=1

(
1−

ωs

ω f

)k

−Θtr

[
σI

2

ω f

1

2
+a2 (Tr − tr )2ωs

1−2ǫ
(
1−

ωs

ω f

)]

Sensitivity analysis to tr : We can observe on figure 4.6 that utility is a strictly decreasing
function of n for all tested values of tr . Then, n∗ is not sensitive to the clock time targeted
by the policy maker tr . The optimal n.o.a is always minimal (n∗ = 1).
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Figure 4.6 – Representation of both utility function Utr (n) (on left side), and n∗ (on right side)
according to the variation of parameter t (tr = {1,11,21, ...,101}).

Figure 4.7 – Representation of both utility function Utr (n) (on left side), and n∗ (on right side)
according to the variation of parameter σI (σI = {0,0.01,0.02, ...,0.1}).
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Figure 4.8 – Representation of both utility function Utr (n) (on left side), and n∗ (on right side)
according to the variation of parameter Θ (Θ= {0,0.01,0.02, ...,0.1}).

Figure 4.9 – Representation of both utility function Utr (n) (on left side), and n∗ (on right side)
according to the variation of parameter Tr (Tr = {50,70, ...,500}).

Sensitivity analysis to σI: We can observe on figure 4.7 that utility is a strictly decreas-
ing function of n for all tested values of σI, such that n∗ is not sensitive to the maximal
intrinsic volatility of the spot market information (per unit of real time), σI, under our set
of parameters’ default values. Then, the optimal n.o.a is always minimal (n∗ = 1).

Sensitivity analysis to Θ: We can observe on figure 4.8 that utility is a strictly decreasing
function of n for all tested values of Θ 6= 0. If there is no risk aversion (i.e. Θ= 0), the utility
function fully depends on the spot price bias. From remark 23, an infinite n.o.a allows for
a biased spot price by limit. Under our set of parameters’ default values, the spot price
bias is minimized with a maximal n.o.a, such that the optimal n.o.a is always minimal
(n∗ = 1), except if Θ= 0 ⇒ n∗ →+∞.

Sensitivity analysis to Tr : We can observe on figure 4.9 that utility is a strictly decreasing
function of n for all tested values of Tr (cf. theorem 15, equation (4.33) allows to write
∂V

(
FV ftr

−FVstr

)

∂Tr
> 0). As for previous sensitivity analysis, the optimal n.o.a is minimal (n∗ =

1) within our subset of parameters default values.

Sensitivity analysis to ǫ: We can observe on figure 4.10 that utility is not a monotonous
function of n for all tested values of ǫ. For low values of ǫ, an increase in the n.o.a insuf-
ficiently smooths quantities traded at each transaction on the spot market. Then, it does
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Figure 4.10 – Representation of both utility function Utr (n) (on left side), and n∗ (on right side)
according to the variation of parameter ǫ (ǫ= {0,0.1,0.2, ...,1}).

not reduce sufficiently the fundamental basis volatility such that the optimal n.o.a is min-
imal (n∗ = 1). However, as soon as ǫ is above a threshold, a maximal n.o.a allows for the
fundamental basis volatility to tend to 0. All terms in equation (4.40) are strictly positive,
such we can apply a strictly increasing function to this inequality. Isolating parameter ǫ
we get the following threshold denoted by ǭ:

ǭ>
1

2
+

1

2α




ln
(
1− ωs

ω f n1−α

)
− ln

(
1− ωs

ω f (n+1)1−α

)

ln(n +1)− ln(n)


 (4.43)

This effect overcomes the increasing fundamental spot price volatility and the potential
increase in the spot price bias, such that the optimal n.o.a strongly depends on value of
parameter ǫ within the set of our parameters’ default values.

Remark 27. Let g be a function such that:

g : Fs ×F f × ]0,1]×N∗ → R

(
ωs ,ω f ,α,n
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ω f (n+1)1−α

)

ln(n+1)−ln(n)




It is easy to show that g is a C1 function. Then, we have:
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)

∂ωs
> 0 ∀α ∈ ]0,1[, and

∂g
(
ωs ,ω f ,1,n

)

∂ωs
= 0.

∂g
(
ωs ,ω f ,α,n

)

∂ω f
=

ωs

2αω f (ln(n +1)− ln(n))
×




[
1

n1−α−
1

(n+1)1−α

]
+ 1

ω f n2(1−α)(n+1)2(1−α)

[
(n+1)1−α

(
(n+1)1−α− ωs

ω f

)
−n1−α

(
n1−α− ωs

ω f

)]

(
1− ωs

ω f n1−α

)(
1− ωs

ω f (n+1)1−α

)
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We have
∂g

(
ωs ,ω f ,α,n

)

∂ω f
> 0 ∀α ∈ ]0,1[, and

∂g
(
ωs ,ω f ,1,n

)

∂ω f
= 0.

∂g
(
ωs ,ω f ,α,n

)

∂α
=

−1

2α2




ln
(
1− ωs

ω f n1−α

)
− ln

(
1− ωs

ω f (n+1)1−α

)

ln(n +1)− ln(n)


+

1

2α




− ωs ln(n+1)
ω f (n+1)1−α−ωs

ln(n +1)− ln(n)




We have
∂g

(
ωs ,ω f ,α,n

)

∂α
< 0.

∂g
(
ωs ,ω f ,α,n

)

∂n = 1
2α(ln(n+1)−ln(n))2







1
n2−α(n+1)2−α

[
(n+1)2−α−n2−α− ωs

ω f

]

(
1− ωs

ω f n1−α

)(
1− ωs

ω f (n+1)1−α

)


 (ln(n +1)− ln(n))

−
[

ln
(
1− ωs

ω f n1−α

)
− ln

(
1− ωs

ω f (n+1)1−α

)](
−1

n(n+1)

)]

We have
∂g

(
ωs ,ω f ,α,n

)

∂n > 0.
Then, the minimal value of g is g

(
ωs ,ω f ,1,1

)
= 1

2 , and g
(
ωs ,ω f ,α,n

)
≥ 1

2 .

From remark 27, the threshold ǭ above which the fundamental basis volatility de-
creases is such that:

(i) The higher the minimal trade frequency on the spot market ωs is, the higher the
elasticity of quantities traded to the spot market trades frequency (STF), ǫ, has to be
to allow an entrance of – a unit of – agents to reduce the fundamental basis volatility;

(ii) The higher the minimal trade frequency on the futures market ω f is, the higher the
elasticity of quantities traded to the STF, ǫ, has to be to allow an entrance of – a unit
of – agents to reduce the fundamental basis volatility;

(iii) The higher the elasticity of the STF to the n.o.a α is, the lower the elasticity of quan-
tities traded to the STF, ǫ, has to be to allow an entrance of – a unit of – agents to
reduce the fundamental basis volatility;

(iv) The higher the n.o.a n is, the higher the elasticity of quantities traded to the STF, ǫ,
has to be to allow an entrance of – a unit of – agents to reduce the fundamental basis
volatility;

Finally, we find that the threshold ǭ reaches its lower values when the relative trades fre-
quency (RTF) is not sensitive to the n.o.a, and when the number of agent is minimal.
Notice that it corresponds to the framework developed in previous chapter 3, such that
by assuming that the RTF is not sensitive to the n.o.a, we underestimates the elasticity
of quantities traded on the spot market to the STF necessary to allow a decrease in the
fundamental basis volatility.

Sensitivity analysis to α: We can observe on figure 4.11 that utility is a strictly decreas-
ing function of n for all tested values of α 6= 1. If the RTF is not sensitive to the n.o.a (i.e.
α= 1), the spot price bias is constant in n.o.t and the volatility of occurrence of synchro-
nized transaction is unchanged. From remark 23 and first assertion of theorem 17, an
infinite n.o.a leads to an unbiased spot price, a maximal fundamental spot price volatility
by limit, and a minimal basis volatility by limit (quantities traded per transaction on the
spot market tend to 0 by limit). Hence, according to the risk aversion of the policy maker

164



CHAPTER 4. BASIS VOLATILITY AND EFFICIENCY ON AGRICULTURAL COMMODITY

MARKETS: THE IMPACT OF THE NUMBER OF AGENTS

Figure 4.11 – Representation of both utility function Utr (n) (on left side), and n∗ (on right side)
according to the variation of parameter α (α= {0,0.1,0.2, ...,1}).

Θ, the increase in the fundamental spot price volatility is compensated by the decrease in
the spot price bias and in the fundamental basis volatility, within our set of parameters’
default values. The optimal n.o.a is always minimal (n∗ = 1), except if α= 1 ⇒ n∗ →+∞.

We introduced in this section a parameter of risk aversion for the policy maker such
that a possible trade-off appears between the market efficiency objective, and the mini-
mization of fundamental values volatility. We only got analytical solutions when the pol-
icy maker has no risk aversion. However, we conduct some sensitivity tests to study the
degree of this trade-off through the optimal n.o.a on the market that the policy maker
has to target. The optimal n.o.a is particularity sensitive to the risk aversion of the pol-
icy maker. As the entrance of agents can increase both spot and basis fundamental values
volatility (and then even more the futures fundamental value volatility which is the sum of
the two), the trade-off between the market efficiency and the fundamental values volatil-
ity influences the optimal n.o.a and decreases the optimal n.o.a on the market. We also
point at the importance of the elasticity of the quantities traded on the spot market to the
STF in determining the optimal n.o.a. Above a threshold, we find that the optimal n.o.a
pass from the minimal one (n∗ = 1), to the maximal one (n∗ = 1001 within our sensitivity
tests). Lastly, if the RTF is not sensitive to the n.o.a (i.e. if α= 1), the optimal n.o.a is also
the maximal one. If α ∈ ]0,1[, the RTF converges to 0 and the market efficiency decreases
with an increasing n.o.a, such that n∗ = 1.

4.7 Introducing biased expectations

In this section, we consider that agents are neither able to perfectly process the spot mar-
ket information, not to expect it. We introduce a parameter ξ measuring the interpreta-
tion’s bias and expectation’s bias such that:

E
(
γn

)
:= 1+

ξ

n
, ξ ∈ ]−1,1[ (4.44)

The more agents there are on the market, the more the bias of interpretation ξ
n tends to 0

(i.e. lim
n→+∞

ξ
n = 0), and so increases the capability of agents and by extension the market to

process spot market information and discover its fundamental price impact.
Under this assumption, theorems 14 and 15 hold, as well as theorems 17 and 18. We

present in subsection 4.7.1 the impact of biased expectations on the spot market effi-
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ciency, the futures market efficiency, and the basis efficiency. We study in subsection
4.7.2, the impact of an entrance of – a unit of – agents and how these impacts differ when
considering an expectation bias. The complexity of the problem prevents us from having
analytical results. Finally, we present some sensitivity tests to the parameters of the model
in subsection 4.7.3.

4.7.1 The impact of the number of agents

Theorem 20. Let SM and FM respectively a spot market and a futures market under our
hypothesis, be now submitted to agents biased expectations.

(i) The price on SM is biased such that:

B(st ) =
| −e |
ω f n

∣∣∣∣∣

(
1+

ξ

n

) t∑

k=1

(
1−

ωs

ω f n1−α

)k

− t
ξ

n

∣∣∣∣∣ (4.45)

B
(
str

)
=

| −e |
ω f n

∣∣∣∣∣

(
1+

ξ

n

) tr ω f n∑

k=1

(
1−

ωs

ω f n1−α

)k

− tr ω f ξ

∣∣∣∣∣ (4.46)

This bias is null if one of the three following subsets of conditions is verified:

(a) For e = 0, B(st ) = B
(
str

)
= 0;

(b) For ξ= 0, ωs =ω f and α= 1, B(st ) = B
(
str

)
= 0;

(c) For n ∈O
st
B =





(n,ξ) ∈N∗× ]0,1[ ,n =

ÌÌÌÌÊξ


 t

∑t
k=1

(
1− ωs

ω f n1−α

)k −1




ÍÍÍÍË





, B(st ) = 0, where

⌊.⌋ denote the integer part.

For n ∈O
str
B =





(n,ξ) ∈N∗× ]0,1[ ,n =

ÌÌÌÌÊξ


 tr ω f n

∑tr ω f n

k=1

(
1− ωs

ω f n1−α

)k −1




ÍÍÍÍË





, B
(
str

)
= 0.

(ii) The price on FM is biased such that:

B
(

ft
)

= t
| eξ |
ω f n2

(4.47)

B
(

ftr

)
= tr

| eξ |
n

(4.48)

This bias is null if one of the two following subsets of conditions is verified:

(a) For e = 0, B
(

ft
)
= B

(
ftr

)
= 0;

(b) For ξ= 0, B
(

ft
)
= B

(
ftr

)
= 0.

(iii) The basis is biased such that:

B
(

ft − st
)

=
| e |
ω f n

(
1+

ξ

n

) t∑

k=1

(
1−

ωs

ω f n1−α

)k

(4.49)

B
(

ftr − str

)
=

| e |
ω f n

(
1+

ξ

n

) tr ω f n∑

k=1

(
1−

ωs

ω f n1−α

)k

(4.50)

This bias is null if one of the two following subsets of conditions is verified:
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(a) For e = 0, B
(

ft − st
)
= B

(
ftr − str

)
= 0;

(b) For ξ= 0, ωs =ω f and α= 1, B
(

ft − st
)
= B

(
ftr − str

)
= 0.

Proof. Proceeding identically as for theorem 12’s proof, we have:

E (st ) = E
[

s0 +γn ×
∑t

k=1 1{k}(k ′)
[

I](k−1)′,k−1] + e
ω f n

]]

⇔ E (st ) = s0 +
(
1+ ξ

n

)
ωs
ω f

nα−1 e
ω f n

∑t
k=1

(
k −E

(
(k −1)′

))

Using the expression of E
(
(k −1)′

)
given in equation (4.2), we get:

E
(
st −FVst

)
=

−e

ω f n

[(
1+

ξ

n

) t∑

k=1

(
1−

ωs

ω f n1−α

)k

− t
ξ

n

]

Then, we compute the absolute value to express the spot price bias. It allows us to get
equations (4.45) and (4.46), according to the time line considered. Hence, both equations
(4.45) and (4.46) are equal to zero if and only if one out of the two terms is equal to zero:

(i) It is immediate that e = 0 is the only condition ensuring that the first term is equal
to zero for both B(st ) and B

(
str

)
;

(ii) It is also immediate that ξ = 0, ωs = ω f and α = 1 is a condition ensuring that the
second term is equal to zero for both B(st ) and B

(
str

)
;

(iii) Finally, equalizing the second term to zero for both B(st ) and B
(
str

)
gives us a con-

dition on n that can be verified if and only if ξ> 0. It respectively leads to the subsets
O

st
B and O

str
B for both B(st ) and B

(
str

)
according to the time line considered.

First assertion is proved.

Proceeding identically as for theorem 13’s proof, we have
E

(
ft −FV ft

)
= E

[
E (s̃t |Φt−1)−FVst

]
−E

[
E

(
C̃Yt |Φt−1

)
−CYt

]
, and E

[
E

(
C̃Yt |Φt−1

)
−CYt

]
=

0. To compute the term E
[
E (s̃t |Φt−1)−FVst

]
, we proceed with a recurrence and recall

that s0 = FVs0 . The property P(t ) is: E
[
E (s̃t |Φt−1)−FVst

]
= t × e ξ

ω f n ∀ t ∈ [1,T].

Initialization:

E
[
E (s̃1 |Φ0)−FVs1

]
= E

[
s0′ +γnI]0′,0] +γn

e
ω f n −

(
s0 + I]0,1]

)]

⇔ E
[
E (s̃1 |Φ0)−FVs1

]
= E

[
γn

e
ω f n − I]0,1]

]
=

(
1+ ξ

n

)
e

ω f n − e
ω f n = 1× e ξ

ω f n

P(1) is true. We assume that P(t ) is true (i.e. E
[

s(t−1)′ +γnI](t−1)′,t−1] +γn
e

ω f n −
(
s0 + I]0,t ]

)]
=

t × e ξ
ω f n ), we show that P(t +1) is also true.

E
[
E (s̃t+1 |Φt )−FVst+1

]
= E

[
s(t−1)′ +γn

(
I](t−1)′,t−1] + e

ω f n

)
−

(
s0 + I]0,t ]

)]

+E
[
γn

(
1{t }(t ′)−1

)(
I](t−1)′,t−1] + e

ω f n

)
+γn

(
I]t ′,t ] + e

ω f n

)
− I]t ,t+1]

]
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As we assumed that P(t ) is true, we get:

E
[
E (s̃t+1 |Φt )−FVst+1

]
= E

[
γn

(
1{t }(t ′)−1

)(
I](t−1)′,t−1] + e

ω f n

)
+γn

(
I]t ′,t ] + e

ω f n

)
− I]t ,t+1]

]

+t × e ξ
ω f n

⇔ E
[
E (s̃t+1 |Φt )−FVst+1

]
=

(
1+ ξ

n

)
E

[(
1{t }(t ′)−1

)(
I](t−1)′,t−1] + e

ω f n

)
+ I]t ′,t ] + e

ω f n

]

−E
[
I]t ,t+1]

]
+ t × e ξ

ω f n

⇔ E
[
E (s̃t+1 |Φt )−FVst+1

]
= e

ω f n

(
1+ ξ

n

)
E

[(
1{t }(t ′)−1

)(
t −1− (t −1)′+1

)
+ t − t ′+1

]

− e
ω f n (t +1− t )+ t × e ξ

ω f n

⇔ E
[
E (s̃t+1 |Φt )−FVst+1

]
= e

ω f n

(
1+ ξ

n

)
E

[(
1{t }(t ′)−1

)(
t − (t −1)′

)
+ t − t ′+1

]

− e
ω f n + t × e ξ

ω f n

⇔ E
[
E (s̃t+1 |Φt )−FVst+1

]
= e

ω f n

(
1+ ξ

n

)[(
ωs

ω f n1−α −1
)(

t −E
[
(t −1)′

])
+ t −E

[
t ′

]
+1

]

− e
ω f n + t × e ξ

ω f n

⇔ E
[
E (s̃t+1 |Φt )−FVst+1

]
= e

ω f n

(
1+ ξ

n

)[
t ωs
ω f n1−α +

(
1− ωs

ω f n1−α

)
E

[
(t −1)′

]
−E

[
t ′

]
+1

]

− e
ω f n + t × e ξ

ω f n

Let x =
(
1− ωs

ω f n1−α

)
E

[
(t −1)′

]
−E

[
t ′

]
, we have:

x =
(
1− ωs

ω f n1−α

)[
t −1−

∑t−1
k=1

(
1− ωs

ω f
nα−1

)k
]
− t −

∑t
k=1

(
1− ωs

ω f
nα−1

)k

⇔ x = −t ωs
ω f n1−α −

(
1− ωs

ω f n1−α

)
−

∑t−1
k=1

(
1− ωs

ω f
nα−1

)k+1
−

∑t
k=1

(
1− ωs

ω f
nα−1

)k

⇔ x = −t ωs
ω f n1−α −

(
1− ωs

ω f n1−α

)
−

∑t
k=2

(
1− ωs

ω f
nα−1

)k
−

∑t
k=1

(
1− ωs

ω f
nα−1

)k

⇔ x = −t ωs
ω f n1−α

Then:

E
[
E (s̃t+1 |Φt )−FVst+1

]
= (t +1)×

e ξ

ω f n

If P(t ) is true, P(t +1) is also true. As, P(1) is true, P(t ) is true for all t ∈ [1,T].
Then, E

(
ft −FV ft

)
= 0+ t × e ξ

ω f n = t × e ξ
ω f n . Computing the absolute value and express-

ing it in both time lines leads to equations (4.47) and (4.48). Hence, both equations (4.47)
and (4.48) are equal to zero if and only if one of the following conditions is verified:

(i) It is immediate that e = 0 is a condition ensuring that B
(

ft
)
= B

(
ftr

)
= 0;

(ii) It is also immediate that ξ = 0, is the only other condition ensuring that B
(

ft
)
=

B
(

ftr

)
= 0.
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Second assertion is proved.

Recall that E
[

ft − st −
(
FV ft −FVst

)]
= E

[
ft −FV ft

]
−E

[
st −FVst

]
. Using first and sec-

ond assertions, we get:

E
[

ft −FV ft

]
−E

[
st −FVst

]
= t eξ

ω f n2 − −e
ω f n

[(
1+ ξ

n

)∑t
k=1

(
1− ωs

ω f n1−α

)k
− t ξ

n

]

⇔ E
[

ft −FV ft

]
−E

[
st −FVst

]
= e

ω f n

(
1+ ξ

n

)∑t
k=1

(
1− ωs

ω f n1−α

)k

Then, we compute the absolute value to express the basis bias. We get equations (4.49)
and (4.50), according to the time line. Hence, both equations (4.49) and (4.50) are equal
to zero if and only if one out of the two terms are equal to zero:

(i) It is immediate that e = 0 is the only condition ensuring that the first term is equal
to zero for both B( ft − st ) and B( ftr − str );

(ii) It is also immediate that ξ= 0, ωs =ω f and α= 1 is the only condition ensuring that
the second term is equal to zero for both B( ft − st ) and B( ftr − str ).

Last assertion is proved

When e 6= 0, the number of agents (n.o.a) can generate a bias on the spot price dy-
namics that results in two possible effects. An adjustment delay if ωs 6=ω f and α 6= 1. Spot
market information is released between two transactions on the futures market and can
not be included in the spot price by agents since the spot market trades frequency (STF)
is lower on probability. The condition α 6= 1 prevents the n.o.a from having a propor-
tional impact on both STF and futures market trades frequency (FTF) and so, generates
a variation of the relative trades frequency (RTF). The second effect is linked to biased
expectations on information by agents if ξ 6= 0.

Remark 28. For ξ= 0, ωs =ω f and α= 1, B(st ) = B(str ) = 0. This condition can be decom-
posed into two subsets of conditions. ξ= 0 can be understood as an interpretation subset of
conditions. If agents have biased interpretations of the information, it obviously can lead
to a biased spot price. ωs = ω f and α = 1 can be understood as a frequency subset of con-
ditions. If the RTF is different from 1, it leads to a biased spot price. If these two conditions
are simultaneously verified, it ensures an unbiased spot price.

Remark 29. When agents underestimate the impact of spot market information on the
price (i.e. −1 < ξ < 0), there is no n.o.a allowing either B(st ) = 0 or B(str ) = 0. However,
when agents overestimate the impact of spot market information on the price (i.e. 0 < ξ <
1), it exists a subset of n.o.a respectively O

st
B and O

str
B allowing B(st ) = 0 and B(str ) = 0.

Furthermore, this optimal n.o.a is an increasing function of agents’ overestimation.10

The latest remark has strong implications. Overestimating the impact of the spot mar-
ket information can be compensated by an average delay between two transactions on the
spot relatively to transactions on the futures market. In other words, this delay allows for a
variation of the spot fundamental value such that the spread between the spot price and
the fundamental price on average is originally positive but becomes negative such that
the average spread is null.

10We have

∂ξ




t

∑t
k=1

(
1− ωs

ω f n1−α

)k −1




∂ξ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
0<ξ<1

> 0 and

∂ξ




tr ω f n

∑tr ω f n

k=1

(
1− ωs

ω f n1−α

)k −1




∂ξ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
0<ξ<1

> 0
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4.7.2 The impact of an entrance of agents on the market

Theorem 21. SM and FM have the following properties:

(i) Within the transactions time line (TTL) (t), an entrance of more agents on the markets
strictly decreases the spot price bias if and only if:

n +1

n
>

(
1+ ξ

n+1

)∑t
k=1

(
1− ωs

ω f (n+1)1−α

)k
− t ξ

n+1
(
1+ ξ

n

)∑t
k=1

(
1− ωs

ω f n1−α

)k
− t ξ

n

, n ∉O
st
B (4.51)

(ii) Within the CTL (tr ), an entrance of more agents on the markets strictly decreases the
spot price bias if and only if:

n +1

n
>

(
1+ ξ

n+1

)∑tr ω f n

k=1

(
1− ωs

ω f (n+1)1−α

)k
− trω f ξ

(
1+ ξ

n

)∑tr ω f n

k=1

(
1− ωs

ω f n1−α

)k
− trω f ξ

, n ∉O
str
B (4.52)

(iii) Within the TTL (t), an entrance of more agents on the markets strictly decreases the
futures price bias;

(iv) Within the CTL (tr ), an entrance of more agents on the markets strictly decreases the
futures price bias.

Proof. We calculate the simple difference of the spot price bias according to n, and we
study its sign. Using equation (4.45), and factorizing by |−e|

ω f
> 0 we have:

B(st ) |n+1 −B(st ) |n = 1
n+1

∣∣∣∣∣
(
1+ ξ

n+1

) t∑

k=1

(
1−

ωs

ω f (n +1)1−α

)k

− t
ξ

n +1

∣∣∣∣∣

− 1
n

∣∣∣∣∣
(
1+ ξ

n

) t∑

k=1

(
1−

ωs

ω f n1−α

)k

− t
ξ

n

∣∣∣∣∣

Putting to the same denominator and factorizing by 1
n(n+1) > 0, we get:
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B , more agents cannot strictly diminish the

spot price bias.
This difference is strictly negative if and only if n ∉O
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Let f be a function such that:

f : ]−1,1[ → R

ξ 7→ f (ξ) =

(
1+ ξ

n+1

) t∑
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(
1−
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− t
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(
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n

) t∑

k=1

(
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ω f n1−α

)k

− t
ξ

n

It is easy to show that f is a C1 function. Then, we have:

∂ f (ξ)
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= n
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It is easy to show that ∂ f (ξ)
∂ξ

> 0∀ξ ∈ ]−1,1[. Hence, the minimal value of f is given by
lim
ξ→−1
x>−1

f (ξ) and we have:

lim
ξ→−1
x>−1

f (ξ) =

n
n+1

t∑

k=1

(
1−

ωs

ω f (n +1)1−α

)k

+
t

n +1

n−1
n

t∑

k=1

(
1−

ωs

ω f n1−α

)k

+
t

n

> 0

Then, the previous inequality can be rewritten to get the condition given by equation
(4.51). It proves the first assertion.

We apply the same methodology to prove the second assertion and get condition
(4.52).

To prove the third assertion, we compute the simple difference of the futures price bias
according to n, and we study its sign. Using equation (4.47), and factorizing by t |eξ|

ω f
> 0

we get:

B
(

ft
)
|n+1 −B

(
ft

)
|n=

1

(n +1)2
−

1

n2
=

n2 − (n +1)2

(n(n +1))2 < 0

Third assertion is proved.

We apply the same methodology to prove the last assertion.

First and second assertions of theorem 21, highlight that an entrance of agents can
(but not necessarily) reduce the spot price bias either within the TTL or within the CTL.

Remark 30. One could think that underestimating or overestimating the fundamental
price impact of spot market information – in the same proportion – would have the same
effect on the spot price bias. However, it is not equivalent.
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Within the TTL, the more agents underestimate the fundamental price impact of spot
market information, the more an entrance of agents can reduce the spot price bias (i.e. the

less restrictive equation (4.51) becomes, since ∂ f (ξ)
∂ξ

> 0∀ξ ∈ ]−1,1[). On the contrary, the
more agents overestimate the fundamental price impact of spot market information, the
less an entrance of agents can reduce the spot price bias (i.e. the more restrictive equation
(4.51) becomes). Hence, if agents underestimate on average the price impact of spot market
information, the condition is less restrictive than when agents correctly interpret on average
the price impact of spot market information. It is the opposite for overestimating agents.

The same reasoning applies within the CTL.

This is a major result underlying to what extent the expectations bias influences the
impact of the entrance of more agents and then, later, the optimal policy for the policy
maker regarding its objectives for agricultural commodity markets.

Conditions (4.51) and (4.52) can be interpreted in the same way than (4.34) and (4.35).
The left term represents the multiplier of the FTF. However, the right term is different
within both time lines (except if ξ= 0) and represents the multiplier of the average delay
between two transactions on the spot market according to the frequency on the futures
market added to the spot price bias generated by biased agents expectations. The spot
price bias reduction induced by the CTL effect (multiplier of the FTF) must be higher
than the increase in this bias induced by the increasing average delay corrected by the
reduction of the agents expectations bias.

Third and fourth assertions of theorem 21 highlight that independently of market pa-
rameters and the time line, an entrance of agents on the market allows for the futures
price bias to decrease. This result comes with the fact that futures price bias is due to
biased expectations only. By assumption (equation (4.44)), this bias decreases with the
n.o.a.

Finally, remark 26 also applies, such that considering speculation on the spot mar-
ket prevents us from having an analytical optimal n.o.a. A calibration of the model also
must be done in the following case, and simulations can be made if some parameters are
assumed to be stochastic such as the spot market information or quantities traded per
transaction on the spot market.

4.7.3 On the existence of an optimal number of agents under expecta-

tion bias hypothesis

The objectives of a policymaker on commodity markets are again to minimize the fun-
damental values volatility and increase market efficiency on both spot and futures mar-
kets. As the futures price is biased (cf. theorem 20), the policymaker focuses on both spot
market efficiency and basis efficiency. It is not equivalent to focus on the futures market
efficiency alone.11 We assume that the risk aversion of the policy maker is the same for
both fundamental spot price and basis volatility, such that it is equivalent to consider the
futures fundamental volatility (i.e. V

(
FV fl

)
= V

(
FVsl

)
+ V (CYl ) , l ∈ {t , tr }). We consider

here that the n.o.a on the market is the policymaker’s tool, and thus the policymaker can
implement a limit in the n.o.a or not (free entrance). As in previous section 4.6, we focus
on the clock time line (CTL), as it is the time line considered by the policy maker.

11From properties of the absolute value, we have B
(

ft
)
≤ B(st )+B

(
ft − st

)
.
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Definition 25. We define a mean-variance utility function U′
tr

(following Markowitz [12],
Von Neumann et al. [21]) such that:

U′
tr

: N∗ U′
1−→ R+×R+×R+ U′

2−→ R−

n 7−→
(
B

(
str

)
,B

(
ftr − str

)
,V

(
FV ftr

))
7−→ U′

2(., ., .) =−
[
B

(
str

)
+B

(
ftr − str

)]
−Θ

[
V

(
FV ftr

)]

(4.53)
Hence, we have U′

tr
(n) = U′

2 ◦U′
1 (n), verifying the two following properties:

(i) U′
2 (0,0,0) = 0;

(ii)
∂U′

2

(
B(str ),B( ftr −str ),V

(
FV ftr

))

∂B(str ) < 0,
∂U′

2

(
B(str ),B( ftr −str ),V

(
FV ftr

))

∂B( ftr −str ) < 0, and
∂U′

2

(
B(str ),B( ftr −str ),V

(
FV ftr

))

∂V
(
FV ftr

−FVstr

) <

0.

We assume that a policymaker uses the utility function U′
tr

as defined above to maxi-
mize the agricultural commodity market efficiency and to minimize its fundamental basis
volatility. Properties (i) and (ii) correspond respectively to the following natural insights:

(i) U′
2 reaches its maximal value on R− if and only if the spot price bias, the basis bias

and the fundamental futures volatility are null;12

(ii) If either the spot price bias or the fundamental futures volatility increase, the poli-
cymaker utility decreases.

The complexity of the maximization does not allow us to extract analytical results. We
provide some sensitivity analysis according to main parameters within the CTL. All mech-
anisms at stake within both time lines are presented in previous section 4.6. Then, we
focus here on the impact of the bias in agents expectations, either underestimating the
spot price information incoming (i.e. ξ< 0) or overestimating the spot price information
incoming (i.e. ξ> 0).

The set of parameters default value used is given by table 4.4 within an underestima-
tion bias, and by table 4.5 within an overestimation bias.

Parameter e a ω f ωs

Value 5 0,25 15 10

Parameter tr σI Θ Tr ǫ α ξ

Value 41 0,05 0,05 100 0,5 0,5 −0,6

Table 4.4 – Set of parameters default values used for the sensitivity tests within the CTL, under
underestimation bias

In order to have clear charts, we consider that n∗ ∈ {1,11,21, ...,1001}.

Sensitivity analysis to e: We can observe on figure 4.12 that utility is not a monotonous
function of n for all tested values of e. The potential reduction of both the spot price bias
(cf. theorem 16) and the fundamental basis volatility (cf. theorem 18), and the reduction

12This utility function does not verify the axiom of non satiety. Indeed, if the market efficiency is maxi-
mized and the fundamental futures volatility is minimized, the utility cannot be improved.
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(a) ξ< 0

(b) ξ> 0

Figure 4.12 – Representation of both utility function Utr (n) (on left side), and n∗ (on right side)
according to the variation of parameter e (e = {0,1, ...,20}), with biased expectation.
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Parameter e a ω f ωs

Value 5 0,25 15 10

Parameter tr σI Θ Tr ǫ α ξ

Value 41 0,05 0,05 100 0,5 0,5 0,6

Table 4.5 – Set of parameters default values used for the sensitivity tests within the CTL, under
overestimation bias

of the fundamental spot price volatility (cf. theorem 17) depends on the n.o.a. In other
words, the decrease in the fundamental spot price volatility is not necessarily more than
compensated by the evolution in the two other elements. It the end, the spot price bias ar-
gument is more and more weighted with increasing values of e such that when e becomes
too high, the optimal n.o.a is higher in order to reduce the spot price bias.

Compared to the no expectation bias situation (cf. figure 4.2), the presence of a bias
increases the incentives of the policy maker to allow for the entrance of more agents on
the market.

Sensitivity analysis to a: We can observe on figure 4.13 that utility is not a monotonous
function of n for all tested values of a 6= 0 (contrary to the case when ξ= 0, cf. figure 4.3).
If the advantage to possess a unit of the storable commodity per unit of clock time is not
important and by extension, if the convenience yield in not important, i.e. for low values
of a, the utility function depends on the spot price bias, the basis bias and on the funda-
mental spot price volatility. From remark 23 and first assertion of theorem 17, an infinite
n.o.a leads to a biased spot price (but not necessarily maximal) and a maximal fundamen-
tal spot price volatility by limit. Hence, according to the risk aversion of the policy maker
(i.e. the value of Θ), the increase in the fundamental spot price volatility is less important
than the potential effect on the spot price bias (which is ambiguous from theorem 21).
Within our set of parameters’ default values, the entrance of – a unit of – agents leads to a
decrease in the spot price bias. Then the optimal n.o.a is strictly decreasing with a, which
increases the fundamental basis volatility.

Compared to the no expectation bias situation (cf. figure 4.3), the presence of a bias
increases the incentives of the policy maker to allow for the entrance of agents on the
market, such that for low values of a, the optimal n.o.a on the market is higher when
expectations are biased.

Sensitivity analysis to ω f : We can observe on figure 4.14 that utility is a strictly decreas-
ing function of n for all tested values of ω f . As α 6= 1, the spot price is biased and an
increase in the n.o.a increases the spot price bias in n.o.t. An increase in the n.o.a can
secondly lead to an increase in the volatility of occurrence of synchronized transactions.
Lastly, the increase in the n.o.a always increases the fundamental spot price volatility (cf.
theorem 17).

Within our set of parameters’ default values, an entrance of any n.o.a leads to a de-
crease in the utility. In other words, the policy maker utility is maximized with a minimal
n.o.a (n∗ = 1) and not sensitive to the value of ω f within our set of parameters’ values. In
this case, we get:
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(a) ξ< 0

(b) ξ> 0

Figure 4.13 – Representation of both utility function Utr (n) (on left side), and n∗ (on right side)
according to the variation of parameter a (a = {0,0.05,0.1, ...,0.5}), with biased expectations.
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(a) ξ< 0

(b) ξ> 0

Figure 4.14 – Representation of both utility function Utr (n) (on left side), and n∗ (on right side)
according to the variation of parameter ω f (ω f = {10,11, ...,20}), with biased expectations.
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(a) ξ< 0

(b) ξ> 0

Figure 4.15 – Representation of both utility function Utr (n) (on left side), and n∗ (on right side)
according to the variation of a parameter of the model (given in figure’s subtitle), with biased ex-
pectations.

maxn U′
tr

(n) = U′
tr

(1) = − |−e|
ω f

[∣∣∣∣(1+ξ)
∑tr ω f

k=1

(
1− ωs

ω f

)k
− tr ω f ξ

∣∣∣∣+ (1+ξ)
∑tr ω f

k=1

(
1− ωs

ω f

)k
]

−Θtr

[
σI

2

ω f

1
2 +a2 (Tr − tr )2ωs

1−2ǫ
(
1− ωs

ω f

)]

Compared to the no expectation bias situation (cf. figure 4.4), the presence of a bias
does not sufficiently increases the incentives of the policy maker to allow for the entrance
of agents on the market, such that the optimal n.o.a on the market is not sensitive to
agents bias of expectations.

Sensitivity analysis toωs : We can observe on figure 4.15 that utility is not a monotonous
function of n for all tested values of ωs . As α 6= 1, the spot price is biased and an increase
in the n.o.a increases the spot price bias in n.o.t. An increase in the n.o.a can secondly
lead to an increase in the volatility of occurrence of synchronized transactions. Lastly, the
increase in the n.o.a always increases the fundamental spot price volatility (cf. theorem
17).

Within our set of parameters’ default values, an entrance of agents has benefits when
the intrinsic RTF ( ωs

ω f
) is originally low. In this case, an entrance of agents reduces the

volatility of occurrence of synchronized transactions. In other words, the policy maker
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utility is maximized with a n.o.a decreasing with the intrinsic RTF. Then, the optimal n.o.a
strongly depends on ωs within our set of parameters’ default values.

Compared to the no expectation bias situation (cf. figure 4.5), the presence of a bias
increases the incentives of the policy maker to allow for the entrance of agents on the
market, such that for low values of ωs , the optimal n.o.a on the market is higher when
expectations are biased.

(a) ξ< 0

(b) ξ> 0

Figure 4.16 – Representation of both utility function Utr (n) (on left side), and n∗ (on right side)
according to the variation of parameter tr (tr = {1,11,21, ...,101}), with biased expectations.

Sensitivity analysis to tr : We can observe on figure 4.16 that utility is not a monotonous
function of n for all tested values of tr . Then, n∗ is sensitive to the clock time targeted by
the policy maker tr . The more tr is far from the maturity, the more the fundamental basis
volatility can be strong.13 However, the more tr is far from the maturity, the less clock time
is considered, such that the spot price bias and basis bias are limited, as well as the funda-
mental spot price volatility. The more clock time is considered, the more an entrance of
agents has a few impact on the fundamental basis volatility. We extract that the decrease
in the bias of expectations for the spot price and the basis increases the incentive of the
policy maker to allow for the entrance of agents, despite their increasing impact on the
fundamental spot price volatility within our set of parameters’ default values.

Compared to the no expectation bias situation (cf. figure 4.6), the presence of a bias
increases the incentives of the policy maker to allow for the entrance of agents on the

13By deriving the fundamental basis volatilty V
(

ftr − str

)
, it is easy to show that the fundamental basis

volatility is maximal for tr = 1
3 Tr .
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market, when the clock time is near the maturity (i.e. the fundamental basis volatility is
constrained but the fundamental spot price volatility can be more important, as well as
the spot price and basis biases), the optimal n.o.a on the market is higher when expecta-
tions are biased.

(a) ξ< 0

(b) ξ> 0

Figure 4.17 – Representation of both utility function Utr (n) (on left side), and n∗ (on right side)
according to the variation of parameter σI (σI = {0,0.01,0.02, ...,0.1}), with biased expectations.

Sensitivity analysis to σI: We can observe on figure 4.17 that utility is a strictly decreas-
ing function of n for all tested values of σI, such that n∗ is not sensitive to the maximal
intrinsic volatility of the spot market information (per unit of real time), σI, under our set
of parameters’ default values. Then, the optimal n.o.a is always minimal (n∗ = 1).

Compared to the no expectation bias situation (cf. figure 4.7), the presence of a bias
do not sufficiently increases the incentives of the policy maker to allow for the entrance of
agents on the market, such that the optimal n.o.a on the market is not sensitive to agents
bias of expectations.

Sensitivity analysis to Θ: We can observe on figure 4.18 that utility is not a monotonous
function of n for all tested values of Θ 6= 0 (contrary to the case when ξ= 0, cf. figure 4.8).
If there is no risk aversion (i.e. Θ= 0), the utility function fully depends on the spot price
bias. From remark 23, an infinite n.o.a allows for a biased spot price by limit.

If the risk aversion is not important and by extension, i.e. for low values of Θ, the
utility function depends mainly on the spot price bias and the basis bias. In this case, an
entrance of agents can allow for a decrease of both biases, such that n∗ > 1.
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(a) ξ< 0

(b) ξ> 0

Figure 4.18 – Representation of both utility function Utr (n) (on left side), and n∗ (on right side)
according to the variation of parameter Θ (Θ= {0,0.01,0.02, ...,0.1}), with biased expectations.

Compared to the no expectation bias situation (cf. figure 4.8), the presence of a bias
increases the incentives of the policy maker to allow for the entrance of agents on the
market, when the risk aversion is low (i.e. the spot price bias and the basis bias are more
weighted), the optimal n.o.a on the market is higher when expectations are biased.

Sensitivity analysis to Tr : We can observe on figure 4.19 that utility is not a monotonous
function of n for all tested values of Tr . As the maturity reduces, it also reduces the funda-
mental basis volatility, giving more weight to the fundamental spot price volatility, as well
as the spot price bias and the basis bias. Any entrance of agents increases the clock time
effect until maturity (cf. theorem 18), by increasing the n.o.t on the futures market until
maturity. The more the maturity of the futures contract increases, the higher this effect is.
Then, the optimal n.o.a is always decreasing with the maturity. Hence, if Tr is near from
the tr considered, the same mechanism than in the sensitivity analysis of tr is at stake.

Compared to the no expectation bias situation (cf. figure 4.9), the presence of a bias
increases the incentives of the policy maker to allow for the entrance of agents on the
market, when the maturity is near the clock time considered (i.e. the fundamental basis
volatility is constrained but the fundamental spot price volatility can be more important,
as well as the spot price and basis biases), the optimal n.o.a on the market is higher when
expectations are biased.
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(a) ξ< 0

(b) ξ> 0

Figure 4.19 – Representation of both utility function Utr (n) (on left side), and n∗ (on right side)
according to the variation of parameter Tr (Tr = {50,70, ...,500}), with biased expectations.

Sensitivity analysis to ǫ: We can observe on figure 4.20 that utility is not a monotonous
function of n for all tested values of ǫ. For low values of ǫ, an increase in the n.o.a insuffi-
ciently smooth quantities traded at each transaction on the spot market. Then, it does not
reduce sufficiently the fundamental basis volatility such that the optimal n.o.a is minimal
(n∗ = 1). However, as soon as ǫ is above a threshold, a maximal n.o.a allows for the funda-
mental basis volatility to tend to 0. The threshold denoted by ǭ, is unchanged and given by
equation (4.43). However the values of the market prices biases evolve such that the op-
timal n.o.a becomes infinite with a lower value of ǫ. This effect overcomes the increasing
fundamental spot price volatility and the potential increase in the spot price bias, such
that the optimal n.o.a strongly depends on the value of parameter ǫ within the set of our
parameters’ default values.

Compared to the no expectation bias situation (cf. figure 4.9), the presence of a bias
increases the incentives of the policy maker to allow for the entrance of agents on the
market, such that an infinite entrance of agents is optimal for lower values of ǫ (ǫ = 0,6
against ǫ= 0,7 without biased expectation cf. figure 4.10).

Sensitivity analysis to α: We can observe on figure 4.21 that utility is not a monotonous
function of n for all tested values of α. If the RTF is not sensitive to the n.o.a (i.e. α = 1),
the spot price bias is constant in n.o.t and the volatility of occurrence of synchronized
transaction is unchanged. An infinite n.o.a leads to an unbiased spot price, a maximal
fundamental spot price volatility by limit, and a minimal basis volatility by limit (quan-
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(a) ξ< 0

(b) ξ> 0

Figure 4.20 – Representation of both utility function Utr (n) (on left side), and n∗ (on right side)
according to the variation of parameter ǫ (ǫ= {0,0.1,0.2, ...,1}), with biased expectations.
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(a) ξ< 0

(b) ξ> 0

Figure 4.21 – Representation of both utility function Utr (n) (on left side), and n∗ (on right side)
according to the variation of parameter α (α= {0,0.1,0.2, ...,1}), with biased expectations.
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(a) ξ< 0

(b) ξ> 0

Figure 4.22 – Representation of both utility function Utr (n) (on left side), and n∗ (on right
side) according to the variation of parameter ξ (ξ = {−0.95,−0.9,−0.85, ...,0} (on the left side),
ξ= {0,0.05,0.1, ...,0.95} (on the right side)), with biased expectations.

tities traded per transaction on the spot market tend to 0 by limit). Hence, according to
the sensitivity of the RTF to the n.o.a (1−α), the increase in the fundamental spot price
volatility is compensated by the decrease in the spot price bias, the basis bias and in the
fundamental basis volatility, within our set of parameters’ default values. The optimal
n.o.a is an increasing function of α.

Compared to the no expectation bias situation (cf. figure 4.9), the presence of a bias
increases the incentives of the policy maker to allow for the entrance of agents on the
market. For high values of α, the policy maker has to authorize the entrance of a few
agent to decrease the bias in expectations, despite it is increasing the fundamental spot
price volatility and potentially increasing the spot price bias and the fundamental basis
volatility.

Sensitivity analysis to ξ: We can observe on figure 4.22 that utility is a strictly decreas-
ing function of n for all tested values of ξ. For the highest value of ξ in absolute value the
optimal n.o.a is n∗ = 1. Then, reducing the bias in expectations does not modify the op-
timal n.o.a on the market. An expectation bias has the effect of an incentive to let agents
enter the market. Our set of parameters’ default values is such that with the highest bias
of expectations (maximal underestimation of spot market information) n∗ = 1. Then, the
decrease in the bias does not reduce the optimal n.o.a.
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In this section, we studied how the introduction of biased expectations of the spot
price information does modify the mechanisms at stake considering the market efficiency
in sections 4.4, 4.5 and 4.6. We found that underestimating bias and overestimating bias
are not equivalent and have asymmetric effects on the spot market efficiency. In the end,
having an overestimating bias can allow the spot price to be unbiased for a certain n.o.a
and this number is an increasing function of the bias parameter ξ. We also studied what
are the conditions to allow an entrance of – a unit of – agents in order to increase the
market efficiency. We finally studied the existence of an optimal number of agent but the
complexity of the problem prevents us from having tractable analytical solutions. Then,
we proceeded with sensitivity analysis to each parameter and show that the introduction
of this bias in expectations makes the optimal n.o.a more sensitive to some parameters of
the model.

4.8 Conclusion

We have built a simple dynamics pricing model applied to an agricultural commodity
market (spot and futures), which is an extension of the model developed in the previous
chapter 3. That model is an analytical tool that can be applied to any storable commodity
for which the frequency of production is lesser than the frequency of the consumption.
We have assumed that agents generate more volatility on the spot market, and that they
influence the trade frequencies as well as quantities traded per transaction on the spot
market. Considering an objective of market efficiency and prices’ stability, we have stud-
ied the existence and the level of the optimal number of agents (n.o.a) on an agricultural
commodity market. In the model, information that determines the price of the futures
is endogenously determined by trades occurring on the spot market and, conversely, the
information that determines the price of the spot market is endogenously determined by
trades occurring on the futures market. This framework is borrowed from the storage the-
ory and models the links between the two markets. By feedback, the futures market trade
frequency (FTF) influences the probability law of incoming spot market information that
impacts the spot market. By extension the futures market will also be impacted by the no
arbitrage condition. Hence, we considered the specificity of the underlying of a futures
contract on an agricultural commodity. Eventually, we also introduced the possibility of
biased expectation of the spot market information, the latest being decreasing with the
n.o.a. We studied how this incentive to let agents enter the market influence the optimal
n.o.a.

We showed that an entrance of more agents not necessarily benefits the market effi-
ciency and the fundamental prices’ stability. Our results show that there is a threshold
above which, more agents are increasing the market prices’ bias and the fundamental
prices’ volatility. The latest depends on the values of the parameters of the model. From
this result, we also extrapolate that a possible trade-off exist between market efficiency
(which more agents can bring) and fundamental volatility; As in most of the cases, no an-
alytical solution exist, we conducted some sensitivity tests for all parameters of the model.
We find that the optimal n.o.a is strongly sensitive to the value of ǫ, the absolute value of
the elasticity of quantities traded per exchange on the spot market to the spot market
trade frequency. There is a threshold above which the entrance of agents will decrease
quantities traded enough to compensate all the other negative effects.

In the end, we surprisingly find that when considering biased expectations, underesti-
mating and overestimating bias has absolutely not the same consequences. The increas-
ing n.o.a increasing the average delay between two synchronized transactions on both
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markets, we showed that when agents overestimate the fundamental price impact of the
spot market information, the average delay between the transactions could allow for the
fundamental spot price to catch up the real overestimated one, such that on average, the
spot price could be unbiased. On the opposite, when agents underestimate the funda-
mental price impact of the spot market information, the two effect are cumulative.

We are aware that this model presents some limits. Some extensions of this work can
be made depending on the form of the q function as well as in the implementation of
several commodity markets (or other markets in general) where information is released
at different frequencies. Finally, we could also integrate the possibility of speculation on
the spot market, such that trades on the spot market would not necessarily imply a com-
modity consumption, and the possibility of stochastic quantities traded.
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The overall research question of this work was to study the optimal pricing algorithm
allowing market efficiency and a minimal prices volatility. It was conducted according
to two dimensions of characteristics of information given by table 1.3 (the capability to
process it using algorithms and the fact that information is exogenously or endogenously
modeled). In this thesis, we highlighted some incomplete points of contemporaneous
financial economics regarding the financial markets structure but we also underscored
the major potential of these academic works. Within an information-based reasoning, we
conceptualized a framework able to unify both Efficient Market Hypothesis (EMH) and
behavioral finance paradigms according to the nature of information. During this three
years work, we also paid a particular attention to agricultural commodity markets whose
information have peculiar characteristics as a frequency of public information known in
advance and an underlying asset not frequently traded. We considered that a financial
market has an evolutionary dynamics, as in Lo [8]. It lead us to assume that each transac-
tion displays new information. We investigated the impacts of these elements on market
efficiency and on prices volatility. Finally, we also investigated the influence of economic
agents, as they are a source of information by their actions (cf. Stiglitz [10]). Considering
the actual Limit Order Book (LOB) pricing algorithm used by Market Undertakers (MU),
we investigated the usually following consensual result: The more agents they are, the
more competition on the market there is. The less agents have market power and the
more they are atomistic, such that market efficiency increases. We also discussed their
impacts on prices volatility.

5.1 Investigating the impact of continuous information with

a limit order book pricing algorithm

In this part of the thesis, we extended the model of Bretto and Priolon [2]. This approach
takes advantage of some properties of the formalism of quantum physics and specifically
some of its probabilistic properties. We assume that each independent agent influences
the price when s/he sends an order that is aggregated in a central order book and each
price influences in turn all independent agents in a never ending process. In this work,
information is continuous and we consider that only a part of it can be processed by an
algorithm (information is said to be effective). This work is compatible with the Adaptive
Market Hypothesis developed by Lo [8], whose view is that agents have an evolutionary
behavior, trying to reach efficient actions.

The first outcome of this Information-Based model is that it can be a framework al-
lowing the unification of the Efficient Market Hypothesis (EMH) and behavioral finance.
Indeed, we highlight that the more information is effective, the more the financial market
tends to an efficient market. It does not mean that agents have the same expectations
of the next price but the outcome of their interactions is as close as possible from the
fundamental value of the asset.

We also define and develop the implications of the concept of market system intro-
duced in Bretto and Priolon [2]. We define the market system adequate to a perfect com-
petition – with a finite or infinite n.o.a.

We introduce the concept of computational strength whose closest formulation comes
from Hayek [6] to the best of our knowledge. It allows to distinguish between a market
fulfilling its informational role (providing in a better way information than any agent sep-
arately) or not. In the light of this concept, within a period of bubble, the financial market
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can keep its computational strength until the bubble turns into a crisis. Above this thresh-
old, within a financial crisis, it is impossible for the market to keep its computational
strength. As a consequence, above this threshold, a financial market is neither efficient
nor computationally strong. The pricing algorithm of this asset must be modified in this
case, in order to fulfill its informational purpose.

We demonstrate that if information is mainly or even fully processed by an algorithms,
a high frequency of trades allows the market to be semi-strong efficient in the sense of
Fama et al. [5] (information is publicly and freely available in the model). The capability
of the market to be semi-strong efficient fully depends on the nature and structure of in-
formation. Within this framework, we define a financial crisis as being a market whose
characteristics are at the opposite of a semi-strong efficient market. With the help of these
two definitions, we define a bubble. We extend the outputs of the model by showing that
under a moderate growth with time of non effective information compared to effective in-
formation, a bubble appears and ends up with a financial crisis. This work gives another
argument in favor of the implementation of a LOB pricing for assets whose information
arrives continuously and also agreed on the presence of Market Makers (MM) allowing
transaction’s frequency to raise within markets where information is continuously up-
dated. However, financial regulator must limit the sources of non effective information to
avoid the emergence of a bubble and its transformation into a financial crisis. This work
underlines the major influence of information’s nature and structure on the capability of
a market to be a useful tool (having a computational strength) as well as to be the best
tool (being semi-strong efficient). The relation between the two characteristics are sum-
marized in table 2.1.

Aside of these new concepts and their theoretical consequences we also propose indi-
cators of the computational strength of a financial market that can be implemented by the
regulator at several given real-time backward (since the computational strength is com-
puted on a given period) using a spectral zeta function. We provide a simulation of the
evolution of the computational strength of the market with time, in a period of bubble.
We also proceed with simulations to show to what extent a VARMA process estimation
can be used to anticipate agents market power (i.e. to anticipate the next market system)1.
The financial market regulator can use this tool to identify who are the agents with the
most market power and for instance, study if they have some characteristics in common
such as being fast traders, having considerable open positions (or a high volume of the
asset) and so on.

There are several possible further steps. Empirical studies using our model should be
carried on. One can compute the computational strength of a financial market a posteriori
and estimate the relative quantity of effective information and non effective information
processed during the period. One can also use market data to test how a bubble evolves
over time in order to parameterize its (moderate) growth. On the theoretical ground, the
main extension of this model would be to consider imperfect information. As we proved
it in subsection 2.3.3, the reading (also called the measure) of quantifiable does not com-
mute with time. Having information on quantities and then on prices is not equivalent
to the opposite. Asymmetric information could also generate some unexpected effect ac-

1We recall that the market system at time t gives the probability of each agent to give the transaction
price and by extension the market price at time t . These probability are constructed considering the price
given by the agent compared to the actual price, but also compared to the distribution of all agents orders’
prices.
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cording to who is giving the market price first. Within this model we cannot introduce a
cost to get the information but we might consider that all agents have a part of the infor-
mation as for Bayesian equilibrium models (cf. Vives [11]).

5.2 Investigating the impact of trades frequencies on an agri-

cultural commodity market

Agricultural commodity markets have a peculiar structure of information. The latest ar-
rives with a relatively low and fixed frequency. The production is uncertain but not its
frequency. However, futures contract are priced with a LOB algorithm. However, the
relatively low frequency of new information diminishes the cost of losing liquidity. Fur-
thermore, we introduce the fact that a transaction generates, in return, new information.
Hence, information’s nature and structure is influenced by trades frequencies (a dimen-
sion of liquidity) on both spot and futures markets. If trades frequency is infinite on the
futures market, it implies that information is also continuous on the spot market. We
build an original and simple sequential pricing model in the wake of the ones of Black
and Scholes [1], Cox et al. [3] applied to an agricultural commodity market (spot and fu-
tures); More generally, that model is an analytical tool that can be applied to any storable
commodity for which the frequency of production is lesser than the frequency of the con-
sumption. As in Du and Zhu [4] we have studied the existence and the level of optimal
trading frequencies on an agricultural commodity market, and the impact of the degree
of liquidity on the market efficiency and on the fundamental basis volatility. In the model,
information that have a futures price impact is endogenously influenced by trades occur-
ring on the spot market and, conversely, the information that have a spot price impact is
endogenously influenced by trades occurring on the futures market. This framework is
borrowed to the storage theory and models the links between the two markets. By feed-
back, the futures market trade frequency (FTF) influences the probability law of incoming
spot market information that impacts the spot market. By extension the futures market
will also be impacted by the no arbitrage condition. Hence, we consider the specificity of
the underlying of a futures contract on an agricultural commodity.

We demonstrate that the fundamental basis volatility can increase even if the increase
in liquidity is proportional on both markets. The idea is as simple as it can be: Asyn-
chronous trades on both spot and futures markets generate a risk, in the sense of Knight
[7]. We prove and defend that synchronization of transactions on agricultural commodity
markets and a fortiori of the frequency of these transactions can allow unbiased prices
dynamics on spot and futures markets, a sine qua non condition for having an efficient
agricultural commodity market. Under these conditions, the fundamental volatility of
the futures contract is also minimal. Then, a non-proportional increase in liquidity on
spot market and futures market can increase the volatility of information on the futures
contract if the decrease in quantities traded on the spot market is not sufficient.

We highlight the existence of a trade-off between futures market liquidity and either
the fundamental basis volatility or the market efficiency. Indeed, the optimal policy in or-
der to minimize the fundamental basis volatility and maximize the spot and futures mar-
ket efficiency is to implement a fixing pricing algorithm on the futures market operating
at the same frequency than transactions on the spot market. In other words, commod-
ity futures pricing by limit order book is not an optimal policy regarding the objectives of
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maximizing market efficiency and of minimizing the fundamental prices’ volatility. Previ-
ous empirical studies argued that more liquidity allows for better market efficiency; their
findings do not necessarily contradict our results, depending on the initial Relative Trade
Frequency (RTF) (cf. O’Hara and Ye [9]). Our results recommend the implementation of
a fixing pricing operating at the same frequency as trades on the underlying spot market,
independently of the time line considered.2 However, a way to improve both liquidity and
market efficiency of the spot market could be a regulation of the spot market structure to
facilitate transactions on this market, allowing an increase in the absolute value of ǫ.

There are several possible further steps. Empirical calibration of the model can be
done to estimate the current trade-off between liquidity and market efficiency and fun-
damental basis volatility as well as its robustness. On the theoretical side, some exten-
sions of this model can be made depending on the form of the q function as well as in
the implementation of several commodity markets (or other markets in general) where
information is released at different frequencies. We could consider the possibility of asyn-
chronous trades with identical frequencies (which is not currently the case) using Poisson
laws for instance. We could try to unify this simple model with the one of Du and Zhu [4]
by micro-founding it.

5.3 Investigating the influence of the number of agents on

an agricultural commodity market

We have extended the simple dynamics pricing model developed in the previous chapter
3. That extension is an analytical tool that can still be applied to any storable commodity
for which the frequency of production is lesser than the frequency of the consumption.
We have incorporated the number of agents into the market. Following the work of Stiglitz
[10], we consider that agents convey information through their transactions (i.e. through
their actions). By assuming that the more agents there are the more information there is
(i.e. each new agent conveys a no redundant information), volatility of information on the
spot market is an increasing function of the number of agents. We also assume that they
influence the trades frequencies as well as quantities traded per transaction on the spot
market which is natural. Considering an objective of market efficiency and prices’ stabil-
ity, we have studied the existence and the level of the optimal number of agents (n.o.a) on
an agricultural commodity market. In the model, information that determines the price
of the futures is endogenously determined by trades occurring on the spot market and,
conversely, the information that determines the price of the spot market is endogenously
determined by trades occurring on the futures market. By feedback, the futures market
trade frequency (FTF) influences the probability law of incoming spot market information
that impacts the spot market. By extension the futures market is also impacted by the no
arbitrage condition. Hence, we considered the specificity of the underlying of a futures
contract on an agricultural commodity. Eventually, we also introduced the possibility of
biased expectation of the spot market information, the latest being decreasing with the
n.o.a. Then, we introduce on this extension of the model, a non effective dimension to
information. We studied how this incentive to let agents enter the market influences the
optimal n.o.a.

2Otherwise, the liquidity on the futures market must be relatively infinite to ensure the maximization of
the policy maker’s utility when considering the Transaction Time Line (TTL).
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We demonstrated that an entrance of more agents not necessarily benefits the market
efficiency and the fundamental prices’ stability. Our results show that there is a threshold
above which, an entrance of more agents are increasing the market prices’ biases and the
fundamental prices’ volatility. This threshold depends on the values of the parameters of
the model and by definition, the market characteristics. From this result, we also extrapo-
late that a possible trade-off exists between market efficiency (that more agents can bring)
and fundamental prices stability; In most of the cases, there is no analytical solution. We
conducted some sensitivity tests for all parameters of the model. We find that the optimal
n.o.a is strongly sensitive to the value of the absolute value of the elasticity of quantities
traded per exchange on the spot market to the spot market trade frequency, denoted by
ǫ. There is a threshold above which the entrance of agents will decrease quantities traded
enough to compensate all the other negative effects.

In the end, we surprisingly find that when considering biased expectations and in-
terpretation of the spot market information (the only one that is partly non effective in
the model), underestimating and overestimating bias have absolutely not the same con-
sequences. An increasing n.o.a increases the average delay between two synchronized
transactions on both markets. We showed that when agents overestimate the fundamen-
tal price impact of the spot market information, the average delay between the transac-
tions can allow the fundamental spot price to catch up the real overestimated one. On
average, the spot price can be unbiased. On the opposite, when agents underestimate the
fundamental price impact of the spot market information, the two effects are cumulative
and the market efficiency decreases even more.

The overall result of this work corroborates the trade-off between futures market liq-
uidity and either the fundamental values volatility or the market efficiency. The n.o.a
increases de facto the trades frequencies in a LOB pricing algorithm. However, a fixing
pricing algorithm could benefit the market efficiency and prices stability according to the
same mechanisms than in chapter 3. However, another loop of effect is at stake. Agents
increase the fundamental volatility of the spot price but decrease in counterpart the spot
and basis biases. Hence, the consideration of non effective information in our model is
an incentive to let agents enter the market. But as they increase the spot market infor-
mation volatility, a trade-off between market efficiency (increasing with the n.o.a), and
fundamental prices stability (decreasing with the n.o.a) exists. Furthermore, these two
trade-offs are linked within a LOB pricing where agents influence both trades frequency
and information. Within a fixing pricing however, we can dissociate these two trade-offs
for a n.o.a sufficiently high ensuring that transactions take place at each fixing.3

Empirical calibration of the model can be done to estimate on the first hand the cur-
rent trade-off between liquidity and markets efficiency and fundamental prices volatility.
On the other hand, we can also estimate the trade-off between market efficiency and fun-
damental prices volatility inherent to the n.o.a. Limits and possible extensions of this
model are basically identical to the one explained in the previous chapter 3.

Commonly to all this research, the major limit of our theoretical Information-Based
Models is that all information is freely available. In chapter 2, assuming asymmetric in-
formation or investment to get information will be hard to model. It would change all

3Despite we do not model it, we can assume that an increasing n.o.a would increase market depth, an-
other dimension of market liquidity.
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the properties of information by definition and would bring a whole new level of com-
plexity. On chapter 3 (and chapter 4 by extension), such properties or mechanisms could
be implemented by micro-founding the model and more specifically the occurrence of
transactions on both markets. Modeling transaction costs higher on the spot market than
on the futures market, transactions on the spot market would be less frequent and infor-
mation would also be harder to acquire. The introduction of these mechanisms should
highlight some public policy but above all, some new mechanisms that could be tested
empirically.

That researches create opportunities for calibration of the models, but also for gen-
uinely original empirical tests.
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To conclude, in this thesis, we highlight that not only the structure of information (its
frequency) but also its nature (effective or not) fundamentally modify the optimal pricing
algorithm that should be implemented in financial markets.

When information is continuous and mainly or even fully effective, a LOB pricing, al-
lowing very frequent transactions (a dimension of liquidity), is adequate and allows the
market to be semi-strong efficient.

However, if information is continuous but not mainly or fully effective, a bubble ap-
pears, and a LOB pricing favors its growth until it turns into a financial crisis.4 It is then
very important for the regulator to be careful with the nature of displayed information.

Concerning agricultural commodity market, we find in chapter 3 (where information
is assumed to be fully effective) that an infinite FTF that requires a Central Limit Order
Book (CLOB) pricing, would lead to a biased spot price. The spot market trades frequency
(STF) is inferior in this case, such that fundamental volatility of the futures contract is
also not minimal.5 Then, the optimal pricing algorithm on the futures market ensures the
same frequency of trades on both the spot market and the futures market (for instance a
fixing). The latest market structure minimizes the risk on the basis as agents are certain
to face a decrease in the available stock at each transaction. It also ensures an unbiased
spot price since agents form rational expectations and information is synchronously dis-
played on both markets. This result is in contradiction with the one of Du and Zhu [4].
Indeed, we do not model inventory costs (guaranteeing a wish to trade back the futures
contract as soon as possible), and information is freely available and endogenous to our
trades frequencies in our model. In their model, information is exogenous and not freely
available such that trades are made respectively to agents private value of the asset. How-
ever, the introduction of speculation on the spot market nuances this result. A trade-off
between market efficiency and prices volatility becomes mandatory and according to the
risk aversion of the policy maker, the optimal FTF is higher than previously.

In chapter 4, information can be either effective or non effective or both effective and
non effective and is displayed according to trades frequencies.6 These frequencies are
increasing functions of the n.o.a when a CLOB algorithm is implemented on the futures
market and when transactions on the spot market are not constrained but the STF is grow-
ing slower than the FTF.7 In such a market, the spot price, the basis, and the futures price
are biased and the fundamental values volatility are not minimal. However, there are two
trade-offs at stake. First, a trade-off between trades frequencies (a dimension of liquidity)
and market efficiency (strongly dependent to the value of ξ for the spot market efficiency)
and fundamental values volatility (strongly dependent to the value of ǫ). Second, a trade-
off between market efficiency and fundamental values volatility (dependent to the values
of σI, α, and the ratio ωs/ω f .). In this framework, implementing a fixing algorithm allows to
dissociate the two trade-offs. According to the volatility aversion (which is modeled as a
risk aversion in the policy maker utility function borrowed from the mean-variance utily
functions) of the policy maker, the optimal FTF must be compared to the actual ones on

4For us, a financial crisis is a period of such uncertainty that the price would reach an infinite volatility
because measurement of the price would lead to random values.

5On the conclusion, we focus only on the results within the clock time line (CTL).
6We focus here on the most complete version of the model, with the possibility of biased interpretation

and expectation of the spot market information.
7We focus on the case α < 1, as α= 1 is a limit case.
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each agricultural commodity market. If inferior, the policy maker has to implement a fix-
ing algorithm calibrated on the optimal FTF. If superior the policy maker has to regulate
in order to increase the FTF as possible.

The introduction of speculation on the spot market nuance these two trade-offs, and
is an incentive to increase the optimal FTF, but all mechanisms remain valid. This discus-
sion applies more generally to any storable commodity for which the frequency of pro-
duction is lesser than the frequency of the consumption, where a futures contract exists.
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Appendix A

Annexes

A.1 Simulations of the computational strength of the mar-

ket within a period of bubble

A.1.1 Set of parameters values used

Parameter E
(
Ie f σe f E

(
Ine f σne f n E

(
γ

e f
i ,t

)
σγe f E

(
γ

ne f
i ,t

)
σγne f σβi

]t −1; t ]) ]t −1; t ])

Value 1,001
1000 0,3 1,001t

1000 0,3 50 1 0,2 0 0,3 0,2

Table A.1 – Set of parameters used for bubbles computational strength simulations

A.1.2 Evolution of the computational strength with bubble duration
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(a) A hundred simulations for each bubble du-
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(b) A thousand simulations for each bubble
duration

Figure A.1 – Computational strength of the market in a bubble of t periods. The box contains 50
percent of the simulations, and the whiskers extend to four times the interquartile range from the
box. Some extreme values do not appear for scale sake but are taken into account for the boxes
plot
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A.2 Simulations of market systems and estimation of a VARMA

model

A.2.1 Set of parameters values used

Parameter T n E (I]t −1; t ]) σI E
(
γi ,t

)
σγ σβi

Value 300 6 0 1 1 0.02 0.02

Table A.2 – Set of parameters used for market system simulations and its VARMA estimation

A.2.2 Algorithm of the market system simulations and VARMA model

estimation (software used: R studio)

III



> setwd("/media/batistasoare/DAVID B-S/Th~Aĺse/Chapitre 0/Documents R/ACP Quantita

We operate ”nb.simu” simulations in a row.

> nb.simu <- 100

Simulations are with n = 6 agents and T = 100 periods.

> T <- 300

> n <- 6

Creation of different objects to store simulations data.

> clearing.prices <- matrix(0, nrow = nb.simu, ncol = (T+1))

> fundamentals <- matrix(0, nrow = nb.simu, ncol = (T))

> agent.vectorsS <- matrix(0, nrow = nb.simu*(T-1)*n, ncol = n)

> beta.i.carre.tS <- matrix(0, nrow = nb.simu*(T-1), ncol = n)

> sum.beta.i.carre.tS <- matrix(0, nrow = nb.simu, ncol = (T-1))

> sum.probabilities.tS <- matrix(0, nrow = nb.simu, ncol = (T-1))

> order.booksS <- matrix(0, nrow = nb.simu*(T-1), ncol = n)

The simulation’s loop fot the ”nb. simu” simulations. At each simulation, we
save relevant information.

> for(j in 1: nb.simu){

+ source(file=✬One_price_VARMA_parameters.R✬)

+ clearing.prices[j,] <- clearing.price

+ fundamentals[j,] <- fundamental.value

+ agent.vectorsS[((T-1)*n*(j-1)+1) : ((T-1)*n*j),] <- agent.vectors

+ beta.i.carre.tS[((T-1)*(j-1)+1):((T-1)*j),] <- beta.i.carre.t

+ sum.beta.i.carre.tS[j, ] <- sum.beta.i.carre.t

+ sum.probabilities.tS[j, ] <- sum.probabilities.t

+ order.booksS[((T-1)*(j-1)+1):((T-1)*j),] <- order.books

+ }

Construction of the market system. We have the market system as a – dia-
gonal – matrix, we transform it as a vector. We do not loose information.

> marketsystem.matrix <- matrix(0, nrow = nb.simu*(T-1)*n, ncol = n)

> for(s in 1:nb.simu) {

+ for (t in 1:(T-1)) {



+ for (i in 1:n) {

+ marketsystem.matrix[(1+(n*(t-1))+((s-1)*(T-1)*n)):

+ ((n*t)+((s-1)*(T-1)*n)),i] <- beta.i.carre.tS[(t + (s-1)*(T-1)),i]*

+ c(agent.vectorsS[(1+(n*(t-1))+((s-1)*(T-1)*n)):

+ ((n*t)+((s-1)*(T-1)*n)),i])

+ }}}

> marketsystem.matrix.step2 <- matrix(0, ncol = nb.simu*(T-1), nrow = n)

> for (s in 1:nb.simu) {

+ for (t in 1:T-1) {

+ for (i in 1:n) {

+ marketsystem.matrix.step2[i,(s-1)*(T-1)+t] <-

+ sum(t(marketsystem.matrix)[i, (1 + (t-1)*n + (s-1)*(T-1)):

+ (n * t + ((s-1)*(T-1)))], na.rm = FALSE)

+ }}}

> marketsystem.matrix.final <- t(marketsystem.matrix.step2)

Lastly, I take randomly one simulation among the ”nb.simu” simulations,
denoted by ”r.s”. Then, I isolate the market system of the ”random.s”th si-
mulation, denoted by ”ms”. I multiply all probabilities by 100 to avoid short
round from the software.

> r.s <- sample(1:nb.simu,1)

> ms <- 100*marketsystem.matrix.final[((1+((r.s - 1)*(T-1))):(r.s*(T-1))),]

We make preliminary tests for the VARMA estimation. I need stationary
time series for my βi,t time series independently, i.e. I need to take out trend
and saisonality. For that, I operate augmented dick and fuller test (package
urca needed). We accept stationarity.

> library("urca")

> for (i in 1:n) {

+ print(summary(ur.df(marketsystem.matrix.step2[i,], type = "drift", lags = 0)))

+ }

###############################################

# Augmented Dickey-Fuller Test Unit Root Test #

###############################################

Test regression drift



Call:

lm(formula = z.diff ~ z.lag.1 + 1)

Residuals:

Min 1Q Median 3Q Max

-0.20154 -0.11444 -0.02453 0.08097 1.00968

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.201540 0.001271 158.6 <2e-16 ***

z.lag.1 -1.204976 0.005661 -212.9 <2e-16 ***

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Residual standard error: 0.1466 on 29897 degrees of freedom

Multiple R-squared: 0.6025, Adjusted R-squared: 0.6025

F-statistic: 4.531e+04 on 1 and 29897 DF, p-value: < 2.2e-16

Value of test-statistic is: -212.8698 22656.79

Critical values for test statistics:

1pct 5pct 10pct

tau2 -3.43 -2.86 -2.57

phi1 6.43 4.59 3.78

###############################################

# Augmented Dickey-Fuller Test Unit Root Test #

###############################################

Test regression drift

Call:

lm(formula = z.diff ~ z.lag.1 + 1)



Residuals:

Min 1Q Median 3Q Max

-0.20213 -0.11481 -0.02610 0.08318 0.96194

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.202128 0.001272 159.0 <2e-16 ***

z.lag.1 -1.202251 0.005664 -212.3 <2e-16 ***

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Residual standard error: 0.1457 on 29897 degrees of freedom

Multiple R-squared: 0.6011, Adjusted R-squared: 0.6011

F-statistic: 4.506e+04 on 1 and 29897 DF, p-value: < 2.2e-16

Value of test-statistic is: -212.2651 22528.24

Critical values for test statistics:

1pct 5pct 10pct

tau2 -3.43 -2.86 -2.57

phi1 6.43 4.59 3.78

###############################################

# Augmented Dickey-Fuller Test Unit Root Test #

###############################################

Test regression drift

Call:

lm(formula = z.diff ~ z.lag.1 + 1)

Residuals:

Min 1Q Median 3Q Max

-0.20123 -0.11358 -0.02403 0.08097 0.95236



Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.201226 0.001274 157.9 <2e-16 ***

z.lag.1 -1.194217 0.005673 -210.5 <2e-16 ***

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Residual standard error: 0.1457 on 29897 degrees of freedom

Multiple R-squared: 0.5971, Adjusted R-squared: 0.5971

F-statistic: 4.431e+04 on 1 and 29897 DF, p-value: < 2.2e-16

Value of test-statistic is: -210.4975 22154.6

Critical values for test statistics:

1pct 5pct 10pct

tau2 -3.43 -2.86 -2.57

phi1 6.43 4.59 3.78

###############################################

# Augmented Dickey-Fuller Test Unit Root Test #

###############################################

Test regression drift

Call:

lm(formula = z.diff ~ z.lag.1 + 1)

Residuals:

Min 1Q Median 3Q Max

-0.19527 -0.10905 -0.02647 0.07626 0.94287

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.195266 0.001238 157.8 <2e-16 ***



z.lag.1 -1.197449 0.005670 -211.2 <2e-16 ***

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Residual standard error: 0.1423 on 29897 degrees of freedom

Multiple R-squared: 0.5987, Adjusted R-squared: 0.5987

F-statistic: 4.461e+04 on 1 and 29897 DF, p-value: < 2.2e-16

Value of test-statistic is: -211.2031 22303.38

Critical values for test statistics:

1pct 5pct 10pct

tau2 -3.43 -2.86 -2.57

phi1 6.43 4.59 3.78

###############################################

# Augmented Dickey-Fuller Test Unit Root Test #

###############################################

Test regression drift

Call:

lm(formula = z.diff ~ z.lag.1 + 1)

Residuals:

Min 1Q Median 3Q Max

-0.20173 -0.10921 -0.02546 0.07732 0.85544

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.201732 0.001258 160.4 <2e-16 ***

z.lag.1 -1.210419 0.005655 -214.0 <2e-16 ***

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1



Residual standard error: 0.144 on 29897 degrees of freedom

Multiple R-squared: 0.6051, Adjusted R-squared: 0.6051

F-statistic: 4.581e+04 on 1 and 29897 DF, p-value: < 2.2e-16

Value of test-statistic is: -214.0292 22904.25

Critical values for test statistics:

1pct 5pct 10pct

tau2 -3.43 -2.86 -2.57

phi1 6.43 4.59 3.78

###############################################

# Augmented Dickey-Fuller Test Unit Root Test #

###############################################

Test regression drift

Call:

lm(formula = z.diff ~ z.lag.1 + 1)

Residuals:

Min 1Q Median 3Q Max

-0.20207 -0.11027 -0.02557 0.07847 0.86690

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.202068 0.001256 160.9 <2e-16 ***

z.lag.1 -1.214354 0.005649 -215.0 <2e-16 ***

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Residual standard error: 0.1439 on 29897 degrees of freedom

Multiple R-squared: 0.6072, Adjusted R-squared: 0.6072

F-statistic: 4.621e+04 on 1 and 29897 DF, p-value: < 2.2e-16



Value of test-statistic is: -214.9706 23106.17

Critical values for test statistics:

1pct 5pct 10pct

tau2 -3.43 -2.86 -2.57

phi1 6.43 4.59 3.78

If test were not validated, I would have to differentiate the time series until
time series are stationary.

> #If the first stationnary time series are x times lagged, hence,

> #we create the following object and we would have replace "ms" by

> #"ms.lagged.x" in the rest of the code.

> #ms.lagged.x <- matrix(0, nrow = n, ncol = (T-1 - x))

> #for (t in (1 + x):(T-1)) {

> # ms.lagged.x[,(t-1)] <- ms[,t] - ms[,(t-1)] - ... - ms[,(t-x)]

> #}

I choose the smaller orders possible of AR(p) andMA(q) processes first in the
VARMA estimation (package MTS needed), with the help of the Extended
Cross-Correlation Matrices.

> library("MTS")

> Eccm(ms)

p-values table of Extended Cross-correlation Matrices:

Column: MA order

Row : AR order

0 1 2 3 4 5 6

0 0.0000 0.0001 0.0001 0.0007 0.0069 0.0137 0.0376

1 0.0000 0.0106 0.9496 0.5647 0.6686 0.8679 0.9997

2 0.3867 0.9964 0.8797 0.9453 0.9147 0.9965 1.0000

3 0.9908 1.0000 1.0000 1.0000 0.9680 0.9999 1.0000

4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

> VARMA(da = ms, p = 0, q = 1)



Number of parameters: 42

initial estimates: 17.081 16.1561 16.9631 15.7994 17.2071 16.8025 -0.3342 -0.13 -

Par. lower-bounds: 15.2731 14.4629 15.1875 14.2068 15.4552 15.0531 -0.4779 -0.287

Par. upper-bounds: 18.8889 17.8492 18.7387 17.3921 18.959 18.552 -0.1905 0.0276 0

Final Estimates: 17.08757 16.16229 16.96678 15.76491 17.17211 16.81902 -0.38014

Coefficient(s):

Estimate Std. Error t value Pr(>|t|)

[1,] 1.709e+01 3.121e-04 54751.18 <2e-16 ***

[2,] 1.616e+01 1.825e-02 885.55 <2e-16 ***

[3,] 1.697e+01 2.590e-04 65509.47 <2e-16 ***

[4,] 1.576e+01 2.084e-02 756.51 <2e-16 ***

[5,] 1.717e+01 3.480e-03 4933.86 <2e-16 ***

[6,] 1.682e+01 1.083e-04 155306.24 <2e-16 ***

[7,] -3.801e-01 NA NA NA

[8,] -1.885e-01 NA NA NA

[9,] -1.246e-01 NA NA NA

[10,] -2.089e-01 NA NA NA

[11,] -1.303e-01 NA NA NA

[12,] -9.494e-02 NA NA NA

[13,] -1.714e-01 NA NA NA

[14,] -4.209e-01 NA NA NA

[15,] -1.884e-01 NA NA NA

[16,] -3.018e-01 NA NA NA

[17,] -1.849e-01 NA NA NA

[18,] -5.377e-02 NA NA NA

[19,] -1.229e-01 NA NA NA

[20,] -1.973e-01 1.780e-02 -11.08 <2e-16 ***

[21,] -3.665e-01 NA NA NA

[22,] -1.684e-01 NA NA NA

[23,] -5.364e-02 NA NA NA

[24,] -1.624e-01 NA NA NA

[25,] -1.927e-01 NA NA NA

[26,] -7.392e-02 NA NA NA

[27,] -1.739e-01 NA NA NA

[28,] -3.909e-01 NA NA NA

[29,] -1.066e-01 NA NA NA

[30,] -1.370e-01 NA NA NA



[31,] -8.413e-02 NA NA NA

[32,] -1.852e-01 NA NA NA

[33,] -1.576e-01 NA NA NA

[34,] -7.886e-02 NA NA NA

[35,] -4.236e-01 3.299e-06 -128381.68 <2e-16 ***

[36,] -1.521e-01 NA NA NA

[37,] -8.059e-02 NA NA NA

[38,] 1.286e-02 NA NA NA

[39,] -3.552e-02 NA NA NA

[40,] 9.122e-02 NA NA NA

[41,] -1.119e-01 NA NA NA

[42,] -3.910e-01 NA NA NA

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

---

Estimates in matrix form:

Constant term:

Estimates: 17.08757 16.16229 16.96678 15.76491 17.17211 16.81902

MA coefficient matrix

MA( 1 )-matrix

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.3801 0.1885 0.1246 0.2089 0.1303 0.0949

[2,] 0.1714 0.4209 0.1884 0.3018 0.1849 0.0538

[3,] 0.1229 0.1973 0.3665 0.1684 0.0536 0.1624

[4,] 0.1927 0.0739 0.1739 0.3909 0.1066 0.1370

[5,] 0.0841 0.1852 0.1576 0.0789 0.4236 0.1521

[6,] 0.0806 -0.0129 0.0355 -0.0912 0.1119 0.3910

Residuals cov-matrix:

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 242.03668 -50.72875 -25.22235 -32.65461 -39.17984 -44.44427

[2,] -50.72875 206.07691 -39.79410 -31.82979 -38.48864 -19.58631

[3,] -25.22235 -39.79410 225.36868 -32.32725 -36.82966 -35.70719

[4,] -32.65461 -31.82979 -32.32725 184.51425 -29.48130 -36.65791

[5,] -39.17984 -38.48864 -36.82966 -29.48130 220.33443 -52.72253

[6,] -44.44427 -19.58631 -35.70719 -36.65791 -52.72253 224.39283

----

aic= 31.47209



bic= 31.99188

> VARMA(da = ms, p = 1, q = 0)

Number of parameters: 42

initial estimates: 24.0828 31.6853 25.727 22.8796 30.2055 20.9837 -0.2524 -0.0274

Par. lower-bounds: 15.3737 23.6401 17.2544 15.2114 21.9815 12.5996 -0.3779 -0.158

Par. upper-bounds: 32.7919 39.7305 34.1995 30.5478 38.4295 29.3678 -0.1269 0.1039

Final Estimates: 24.99067 32.18709 25.4849 22.41207 29.94554 21.09988 -0.254916

Coefficient(s):

Estimate Std. Error t value Pr(>|t|)

[1,] 24.990668 4.355142 5.738 9.57e-09 ***

[2,] 32.187088 3.994743 8.057 8.88e-16 ***

[3,] 25.484900 4.202289 6.065 1.32e-09 ***

[4,] 22.412072 3.814621 5.875 4.22e-09 ***

[5,] 29.945545 4.083350 7.334 2.24e-13 ***

[6,] 21.099878 4.162934 5.069 4.01e-07 ***

[7,] -0.254916 0.063115 -4.039 5.37e-05 ***

[8,] -0.031771 0.065942 -0.482 0.629946

[9,] -0.007846 0.063971 -0.123 0.902381

[10,] -0.093686 0.071001 -1.319 0.187003

[11,] -0.031818 0.065325 -0.487 0.626210

[12,] -0.041320 0.066458 -0.622 0.534109

[13,] -0.095799 0.057889 -1.655 0.097952 .

[14,] -0.351402 0.060478 -5.810 6.23e-09 ***

[15,] -0.101098 0.058687 -1.723 0.084949 .

[16,] -0.219760 0.065121 -3.375 0.000739 ***

[17,] -0.135622 0.059915 -2.264 0.023601 *

[18,] -0.065536 0.060954 -1.075 0.282293

[19,] -0.056286 0.060899 -0.924 0.355363

[20,] -0.125215 0.063623 -1.968 0.049058 *

[21,] -0.230151 0.061738 -3.728 0.000193 ***

[22,] -0.053035 0.068507 -0.774 0.438837

[23,] 0.045753 0.063028 0.726 0.467896

[24,] -0.095143 0.064123 -1.484 0.137872

[25,] -0.060040 0.055281 -1.086 0.277439

[26,] 0.046979 0.057751 0.813 0.415943



[27,] -0.096365 0.056038 -1.720 0.085499 .

[28,] -0.241176 0.062183 -3.878 0.000105 ***

[29,] -0.011477 0.057223 -0.201 0.841043

[30,] -0.047479 0.058206 -0.816 0.414674

[31,] -0.009596 0.059182 -0.162 0.871191

[32,] -0.154534 0.061826 -2.500 0.012437 *

[33,] -0.132045 0.059995 -2.201 0.027742 *

[34,] 0.016818 0.066567 0.253 0.800538

[35,] -0.383593 0.061252 -6.263 3.79e-10 ***

[36,] -0.091225 0.062312 -1.464 0.143190

[37,] -0.073357 0.060324 -1.216 0.223969

[38,] 0.056818 0.063019 0.902 0.367271

[39,] 0.016678 0.061151 0.273 0.785055

[40,] 0.104661 0.067856 1.542 0.122976

[41,] -0.037457 0.062435 -0.600 0.548547

[42,] -0.311619 0.063515 -4.906 9.28e-07 ***

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

---

Estimates in matrix form:

Constant term:

Estimates: 24.99067 32.18709 25.4849 22.41207 29.94554 21.09988

AR coefficient matrix

AR( 1 )-matrix

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] -0.2549 -0.0318 -0.00785 -0.0937 -0.0318 -0.0413

[2,] -0.0958 -0.3514 -0.10110 -0.2198 -0.1356 -0.0655

[3,] -0.0563 -0.1252 -0.23015 -0.0530 0.0458 -0.0951

[4,] -0.0600 0.0470 -0.09637 -0.2412 -0.0115 -0.0475

[5,] -0.0096 -0.1545 -0.13204 0.0168 -0.3836 -0.0912

[6,] -0.0734 0.0568 0.01668 0.1047 -0.0375 -0.3116

Residuals cov-matrix:

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 249.11946 -43.29934 -20.65036 -26.47437 -34.31230 -47.12389

[2,] -43.29934 209.54588 -35.47388 -25.50914 -39.11067 -23.38615

[3,] -20.65036 -35.47388 231.91076 -26.78690 -32.36545 -35.79288

[4,] -26.47437 -25.50914 -26.78690 191.08051 -25.45630 -37.50001



[5,] -34.31230 -39.11067 -32.36545 -25.45630 219.01535 -49.52583

[6,] -47.12389 -23.38615 -35.79288 -37.50001 -49.52583 227.51033

----

aic= 31.91982

bic= 32.43962

We test again with an increasing order of AR(p) process until AIC and BIC
criteria according to the p-values table of Extended Cross-Correlation Ma-
trices. On the other hand, we test again with an increasing order of MA(q)
process until AIC and BIC criteria increase.

> VARMA(da = ms, p = 0, q = 2)

Number of parameters: 78

initial estimates: 17.0608 16.14 16.8686 15.7606 17.3092 16.8482 -0.3385 -0.1328

Par. lower-bounds: 15.2535 14.4622 15.1162 14.1715 15.5835 15.0994 -0.4832 -0.290

Par. upper-bounds: 18.8681 17.8178 18.621 17.3497 19.0349 18.5971 -0.1939 0.025 0

Final Estimates: 17.06261 16.14338 16.87696 15.75287 17.30524 16.85016 -0.37624

Coefficient(s):

Estimate Std. Error t value Pr(>|t|)

[1,] 1.706e+01 5.786e-04 29489.073 < 2e-16 ***

[2,] 1.614e+01 5.646e-04 28594.029 < 2e-16 ***

[3,] 1.688e+01 6.262e-04 26952.719 < 2e-16 ***

[4,] 1.575e+01 7.497e-04 21012.952 < 2e-16 ***

[5,] 1.731e+01 4.155e-04 41650.332 < 2e-16 ***

[6,] 1.685e+01 1.318e-04 127803.817 < 2e-16 ***

[7,] -3.762e-01 1.221e-03 -308.169 < 2e-16 ***

[8,] -1.777e-01 5.053e-02 -3.516 0.000438 ***

[9,] -1.180e-01 4.845e-02 -2.436 0.014862 *

[10,] -1.948e-01 2.369e-03 -82.247 < 2e-16 ***

[11,] -1.360e-01 3.526e-02 -3.856 0.000115 ***

[12,] -1.030e-01 3.132e-02 -3.289 0.001006 **

[13,] -4.513e-02 5.278e-02 -0.855 0.392471

[14,] -1.002e-01 8.119e-02 -1.234 0.217285

[15,] -7.532e-02 2.370e-02 -3.178 0.001484 **

[16,] -1.654e-02 2.298e-02 -0.720 0.471813

[17,] -7.021e-02 3.121e-02 -2.250 0.024461 *

[18,] -7.617e-04 1.259e-03 -0.605 0.545275



[19,] -1.543e-01 NA NA NA

[20,] -4.222e-01 8.675e-03 -48.674 < 2e-16 ***

[21,] -1.653e-01 2.204e-02 -7.499 6.44e-14 ***

[22,] -2.913e-01 1.152e-03 -252.871 < 2e-16 ***

[23,] -1.479e-01 2.550e-02 -5.800 6.65e-09 ***

[24,] -7.491e-02 2.842e-02 -2.636 0.008395 **

[25,] 2.806e-02 3.567e-02 0.787 0.431485

[26,] 1.130e-01 5.242e-02 2.155 0.031190 *

[27,] 3.697e-02 4.074e-02 0.908 0.364140

[28,] 1.003e-01 NA NA NA

[29,] 9.799e-02 2.723e-02 3.599 0.000319 ***

[30,] 1.661e-01 5.877e-02 2.826 0.004713 **

[31,] -1.253e-01 1.614e-02 -7.767 7.99e-15 ***

[32,] -1.923e-01 5.463e-02 -3.520 0.000432 ***

[33,] -3.150e-01 2.545e-03 -123.806 < 2e-16 ***

[34,] -1.659e-01 3.185e-03 -52.079 < 2e-16 ***

[35,] -7.430e-02 2.543e-02 -2.921 0.003485 **

[36,] -1.662e-01 4.964e-02 -3.348 0.000813 ***

[37,] 6.096e-02 5.146e-02 1.185 0.236170

[38,] 4.330e-02 5.799e-02 0.747 0.455218

[39,] -1.097e-01 3.124e-02 -3.512 0.000445 ***

[40,] 1.031e-03 1.386e-03 0.744 0.457168

[41,] -7.817e-02 3.029e-02 -2.581 0.009845 **

[42,] -9.012e-03 9.739e-03 -0.925 0.354826

[43,] -1.887e-01 NA NA NA

[44,] -6.495e-02 4.010e-02 -1.620 0.105307

[45,] -1.834e-01 3.725e-03 -49.241 < 2e-16 ***

[46,] -3.911e-01 1.141e-03 -342.654 < 2e-16 ***

[47,] -9.685e-02 4.052e-02 -2.390 0.016837 *

[48,] -1.530e-01 4.764e-02 -3.212 0.001318 **

[49,] -6.991e-02 3.695e-02 -1.892 0.058494 .

[50,] -8.884e-02 5.598e-02 -1.587 0.112536

[51,] 2.736e-02 4.215e-02 0.649 0.516280

[52,] -5.608e-02 4.794e-02 -1.170 0.242127

[53,] -2.383e-02 2.606e-02 -0.914 0.360500

[54,] -7.124e-02 2.318e-02 -3.074 0.002115 **

[55,] -7.637e-02 3.573e-02 -2.137 0.032578 *

[56,] -2.083e-01 5.847e-02 -3.562 0.000368 ***



[57,] -1.797e-01 1.696e-02 -10.595 < 2e-16 ***

[58,] -7.456e-02 3.117e-02 -2.392 0.016755 *

[59,] -4.541e-01 2.549e-05 -17813.074 < 2e-16 ***

[60,] -1.659e-01 4.455e-02 -3.723 0.000196 ***

[61,] 2.156e-03 NA NA NA

[62,] 1.351e-01 4.800e-02 2.814 0.004895 **

[63,] 1.230e-01 4.548e-02 2.704 0.006853 **

[64,] -2.988e-02 3.110e-02 -0.961 0.336608

[65,] 8.616e-02 2.950e-02 2.920 0.003496 **

[66,] -1.090e-03 1.825e-03 -0.597 0.550303

[67,] -1.163e-01 1.500e-02 -7.752 9.10e-15 ***

[68,] 4.948e-04 NA NA NA

[69,] -6.667e-02 3.334e-02 -1.999 0.045559 *

[70,] 6.035e-02 5.865e-02 1.029 0.303520

[71,] -1.028e-01 2.467e-02 -4.166 3.11e-05 ***

[72,] -4.094e-01 2.750e-03 -148.860 < 2e-16 ***

[73,] 2.001e-02 2.745e-02 0.729 0.466060

[74,] -7.826e-02 5.285e-02 -1.481 0.138682

[75,] -2.153e-02 3.560e-02 -0.605 0.545339

[76,] 1.841e-03 7.033e-03 0.262 0.793491

[77,] -9.108e-03 2.605e-02 -0.350 0.726671

[78,] 1.101e-03 NA NA NA

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

---

Estimates in matrix form:

Constant term:

Estimates: 17.06261 16.14338 16.87696 15.75287 17.30524 16.85016

MA coefficient matrix

MA( 1 )-matrix

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.3762 0.177684 0.1180 0.1948 0.1360 0.1030

[2,] 0.1543 0.422231 0.1653 0.2913 0.1479 0.0749

[3,] 0.1253 0.192280 0.3150 0.1659 0.0743 0.1662

[4,] 0.1887 0.064954 0.1834 0.3911 0.0969 0.1530

[5,] 0.0764 0.208272 0.1797 0.0746 0.4541 0.1659

[6,] 0.1163 -0.000495 0.0667 -0.0604 0.1028 0.4094

MA( 2 )-matrix



[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.04513 0.1002 0.0753 0.01654 0.07021 0.000762

[2,] -0.02806 -0.1130 -0.0370 -0.10030 -0.09799 -0.166073

[3,] -0.06096 -0.0433 0.1097 -0.00103 0.07817 0.009012

[4,] 0.06991 0.0888 -0.0274 0.05608 0.02383 0.071244

[5,] -0.00216 -0.1351 -0.1230 0.02988 -0.08616 0.001090

[6,] -0.02001 0.0783 0.0215 -0.00184 0.00911 -0.001101

Residuals cov-matrix:

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 240.63121 -50.16081 -25.86440 -33.34352 -37.51956 -44.44446

[2,] -50.16081 202.58509 -40.26305 -28.09830 -38.45038 -19.51139

[3,] -25.86440 -40.26305 223.00077 -30.29289 -34.95261 -35.87696

[4,] -33.34352 -28.09830 -30.29289 179.63272 -31.66058 -36.93944

[5,] -37.51956 -38.45038 -34.95261 -31.66058 214.18997 -51.58625

[6,] -44.44446 -19.51139 -35.87696 -36.93944 -51.58625 223.62178

----

aic= 31.60759

bic= 32.57292

> VARMA(da = ms, p = 2, q = 0)

Number of parameters: 78

initial estimates: 38.2175 40.4753 28.8049 24.6669 37.8677 31.8855 -0.3095 -0.105

Par. lower-bounds: 19.9562 23.6603 11.212 8.5182 20.5275 14.2935 -0.447 -0.2544 -

Par. upper-bounds: 56.4788 57.2903 46.3978 40.8156 55.2078 49.4776 -0.172 0.0438

Final Estimates: 38.55994 40.69883 28.76388 24.56109 37.8007 31.95405 -0.306867

Coefficient(s):

Estimate Std. Error t value Pr(>|t|)

[1,] 38.5599354 9.0669687 4.253 2.11e-05 ***

[2,] 40.6988257 7.8105772 5.211 1.88e-07 ***

[3,] 28.7638777 8.7234661 3.297 0.000976 ***

[4,] 24.5610930 8.0395650 3.055 0.002250 **

[5,] 37.8006989 8.5259575 4.434 9.27e-06 ***

[6,] 31.9540535 8.7184525 3.665 0.000247 ***

[7,] -0.3068674 0.0683459 -4.490 7.13e-06 ***

[8,] -0.1044585 0.0744411 -1.403 0.160546



[9,] -0.0517584 0.0693059 -0.747 0.455178

[10,] -0.1402392 0.0757317 -1.852 0.064056 .

[11,] -0.0697342 0.0748867 -0.931 0.351752

[12,] -0.0481383 0.0739714 -0.651 0.515195

[13,] -0.1368381 0.0689886 -1.983 0.047313 *

[14,] -0.1361312 0.0736214 -1.849 0.064447 .

[15,] -0.0962955 0.0697753 -1.380 0.167562

[16,] -0.1269806 0.0759895 -1.671 0.094716 .

[17,] -0.0623766 0.0748228 -0.834 0.404474

[18,] -0.0014979 0.0748301 -0.020 0.984030

[19,] -0.1220442 0.0620110 -1.968 0.049056 *

[20,] -0.3897511 0.0675731 -5.768 8.03e-09 ***

[21,] -0.1421044 0.0628217 -2.262 0.023696 *

[22,] -0.2701673 0.0687481 -3.930 8.50e-05 ***

[23,] -0.1381367 0.0677560 -2.039 0.041476 *

[24,] -0.0615271 0.0661609 -0.930 0.352391

[25,] -0.0639516 0.0614643 -1.040 0.298122

[26,] -0.0413482 0.0660084 -0.626 0.531047

[27,] -0.1384389 0.0625098 -2.215 0.026782 *

[28,] -0.1361943 0.0682038 -1.997 0.045839 *

[29,] 0.0154765 0.0664439 0.233 0.815819

[30,] 0.0004761 0.0585910 0.008 0.993517

[31,] -0.0483861 0.0656519 -0.737 0.461116

[32,] -0.1175617 0.0715092 -1.644 0.100174

[33,] -0.2680022 0.0665934 -4.024 5.71e-05 ***

[34,] -0.0741369 0.0727448 -1.019 0.308138

[35,] 0.0184186 0.0719365 0.256 0.797921

[36,] -0.1194046 0.0711519 -1.678 0.093315 .

[37,] 0.0586144 0.0662607 0.885 0.376371

[38,] 0.0552380 0.0707133 0.781 0.434712

[39,] -0.1713669 0.0669880 -2.558 0.010522 *

[40,] 0.0256831 0.0729484 0.352 0.724784

[41,] -0.0170904 0.0717784 -0.238 0.811803

[42,] -0.0490791 0.0718987 -0.683 0.494851

[43,] -0.0803209 0.0602644 -1.333 0.182595

[44,] 0.0439258 0.0656870 0.669 0.503678

[45,] -0.0910322 0.0611453 -1.489 0.136544

[46,] -0.2672869 0.0667695 -4.003 6.25e-05 ***



[47,] 0.0071605 0.0661665 0.108 0.913822

[48,] -0.0575473 0.0653458 -0.881 0.378503

[49,] -0.0561614 0.0608751 -0.923 0.356233

[50,] 0.0392916 0.0650414 0.604 0.545776

[51,] 0.0410027 0.0615456 0.666 0.505273

[52,] -0.0946342 0.0669787 -1.413 0.157685

[53,] 0.0090893 0.0660883 0.138 0.890610

[54,] -0.0325365 0.0662728 -0.491 0.623463

[55,] -0.0344147 0.0646238 -0.533 0.594353

[56,] -0.1769967 0.0701748 -2.522 0.011662 *

[57,] -0.1511397 0.0654986 -2.308 0.021025 *

[58,] -0.0150055 0.0715819 -0.210 0.833959

[59,] -0.4130061 0.0707585 -5.837 5.32e-09 ***

[60,] -0.1416117 0.0700241 -2.022 0.043142 *

[61,] -0.0308284 0.0650550 -0.474 0.635583

[62,] -0.0015525 0.0683510 -0.023 0.981878

[63,] -0.0138029 0.0658574 -0.210 0.833989

[64,] -0.0634274 0.0717013 -0.885 0.376369

[65,] -0.0618529 0.0705048 -0.877 0.380331

[66,] -0.1190956 0.0706131 -1.687 0.091682 .

[67,] -0.1106570 0.0654443 -1.691 0.090864 .

[68,] 0.0089904 0.0713653 0.126 0.899750

[69,] -0.0235446 0.0664132 -0.355 0.722952

[70,] 0.0943760 0.0725146 1.301 0.193096

[71,] -0.0985929 0.0717528 -1.374 0.169422

[72,] -0.3813630 0.0709732 -5.373 7.73e-08 ***

[73,] -0.0735066 0.0660722 -1.113 0.265915

[74,] -0.1091607 0.0705167 -1.548 0.121620

[75,] -0.0349510 0.0667889 -0.523 0.600762

[76,] 0.0589096 0.0727306 0.810 0.417957

[77,] -0.0833493 0.0716323 -1.164 0.244597

[78,] -0.1313317 0.0719433 -1.825 0.067927 .

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

---

Estimates in matrix form:

Constant term:

Estimates: 38.55994 40.69883 28.76388 24.56109 37.8007 31.95405



AR coefficient matrix

AR( 1 )-matrix

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] -0.3069 -0.10446 -0.0518 -0.1402 -0.06973 -0.0481

[2,] -0.1220 -0.38975 -0.1421 -0.2702 -0.13814 -0.0615

[3,] -0.0484 -0.11756 -0.2680 -0.0741 0.01842 -0.1194

[4,] -0.0803 0.04393 -0.0910 -0.2673 0.00716 -0.0575

[5,] -0.0344 -0.17700 -0.1511 -0.0150 -0.41301 -0.1416

[6,] -0.1107 0.00899 -0.0235 0.0944 -0.09859 -0.3814

AR( 2 )-matrix

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] -0.1368 -0.13613 -0.0963 -0.1270 -0.06238 -0.001498

[2,] -0.0640 -0.04135 -0.1384 -0.1362 0.01548 0.000476

[3,] 0.0586 0.05524 -0.1714 0.0257 -0.01709 -0.049079

[4,] -0.0562 0.03929 0.0410 -0.0946 0.00909 -0.032536

[5,] -0.0308 -0.00155 -0.0138 -0.0634 -0.06185 -0.119096

[6,] -0.0735 -0.10916 -0.0350 0.0589 -0.08335 -0.131332

Residuals cov-matrix:

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 242.18248 -48.66776 -18.76413 -26.99190 -33.10314 -46.86434

[2,] -48.66776 203.14472 -38.22320 -26.55864 -38.54999 -20.77618

[3,] -18.76413 -38.22320 223.07946 -24.31145 -32.91231 -35.74328

[4,] -26.99190 -26.55864 -24.31145 187.67570 -27.47700 -36.49828

[5,] -33.10314 -38.54999 -32.91231 -27.47700 216.67609 -51.46190

[6,] -46.86434 -20.77618 -35.74328 -36.49828 -51.46190 221.39423

----

aic= 31.90784

bic= 32.87318

> VARMA(da = ms, p = 0, q = 3)

Number of parameters: 114

initial estimates: 17.0551 16.1475 16.86 15.6173 17.2138 16.8454 -0.3401 -0.1346

Par. lower-bounds: 15.2623 14.501 15.1511 14.0824 15.5005 15.1104 -0.4849 -0.2927

Par. upper-bounds: 18.8479 17.794 18.5689 17.1522 18.927 18.5805 -0.1952 0.0235 0

Final Estimates: 17.10743 16.19529 16.90949 15.66714 17.2478 16.88176 -0.335934



Coefficient(s):

Estimate Std. Error t value Pr(>|t|)

[1,] 17.107432 0.027062 632.148 < 2e-16 ***

[2,] 16.195288 0.210609 76.897 < 2e-16 ***

[3,] 16.909487 0.008058 2098.393 < 2e-16 ***

[4,] 15.667140 0.228470 68.574 < 2e-16 ***

[5,] 17.247796 0.047923 359.908 < 2e-16 ***

[6,] 16.881756 0.001601 10543.538 < 2e-16 ***

[7,] -0.335934 0.014330 -23.443 < 2e-16 ***

[8,] -0.115701 0.073943 -1.565 0.117646

[9,] -0.074187 0.084429 -0.879 0.379568

[10,] -0.157344 0.057700 -2.727 0.006393 **

[11,] -0.093724 0.070928 -1.321 0.186372

[12,] -0.097785 0.062106 -1.574 0.115377

[13,] -0.023364 0.074773 -0.312 0.754682

[14,] -0.058420 0.078861 -0.741 0.458812

[15,] -0.033768 0.087342 -0.387 0.699037

[16,] -0.025505 0.066094 -0.386 0.699575

[17,] -0.034084 0.075829 -0.449 0.653086

[18,] 0.053568 0.082888 0.646 0.518100

[19,] -0.012034 0.067922 -0.177 0.859370

[20,] 0.021436 0.084296 0.254 0.799271

[21,] 0.003260 0.078046 0.042 0.966680

[22,] 0.154810 0.078594 1.970 0.048867 *

[23,] 0.031045 0.111387 0.279 0.780465

[24,] -0.038684 0.073012 -0.530 0.596229

[25,] -0.147674 0.051874 -2.847 0.004416 **

[26,] -0.417979 NA NA NA

[27,] -0.155020 0.059466 -2.607 0.009137 **

[28,] -0.261048 0.013496 -19.343 < 2e-16 ***

[29,] -0.147582 0.057761 -2.555 0.010617 *

[30,] -0.044659 0.046050 -0.970 0.332156

[31,] 0.025767 0.068655 0.375 0.707426

[32,] 0.099073 0.067781 1.462 0.143836

[33,] -0.011755 0.052967 -0.222 0.824372

[34,] 0.067057 0.054756 1.225 0.220709

[35,] 0.106374 0.061348 1.734 0.082929 .

[36,] 0.113649 0.053298 2.132 0.032981 *



[37,] -0.008315 0.072397 -0.115 0.908565

[38,] -0.029264 0.078396 -0.373 0.708939

[39,] 0.054599 0.081136 0.673 0.500988

[40,] 0.075575 0.079031 0.956 0.338939

[41,] -0.113768 0.085156 -1.336 0.181551

[42,] 0.064935 0.079305 0.819 0.412901

[43,] -0.103181 0.059241 -1.742 0.081556 .

[44,] -0.175927 0.064505 -2.727 0.006385 **

[45,] -0.298460 0.023745 -12.569 < 2e-16 ***

[46,] -0.149048 0.057085 -2.611 0.009028 **

[47,] -0.053984 0.061124 -0.883 0.377134

[48,] -0.178983 0.042166 -4.245 2.19e-05 ***

[49,] 0.097418 0.074722 1.304 0.192324

[50,] 0.094051 0.075417 1.247 0.212367

[51,] -0.157135 0.069581 -2.258 0.023926 *

[52,] 0.033068 0.074671 0.443 0.657871

[53,] -0.022299 0.070492 -0.316 0.751751

[54,] 0.039382 0.065796 0.599 0.549481

[55,] -0.108302 0.063118 -1.716 0.086188 .

[56,] -0.066047 0.072268 -0.914 0.360759

[57,] 0.018804 0.065737 0.286 0.774836

[58,] -0.181172 0.051280 -3.533 0.000411 ***

[59,] -0.031643 0.085153 -0.372 0.710187

[60,] -0.003576 0.142034 -0.025 0.979912

[61,] -0.154906 0.047792 -3.241 0.001190 **

[62,] -0.047488 0.059374 -0.800 0.423818

[63,] -0.170474 0.050062 -3.405 0.000661 ***

[64,] -0.371214 0.003701 -100.295 < 2e-16 ***

[65,] -0.077737 0.055903 -1.391 0.164356

[66,] -0.136866 0.049832 -2.747 0.006023 **

[67,] -0.056000 0.062516 -0.896 0.370382

[68,] -0.023583 0.071398 -0.330 0.741166

[69,] 0.040164 0.069459 0.578 0.563107

[70,] -0.054178 0.068944 -0.786 0.431972

[71,] 0.018652 0.083094 0.224 0.822390

[72,] -0.030904 0.082778 -0.373 0.708898

[73,] 0.039250 0.064352 0.610 0.541914

[74,] -0.107638 0.073261 -1.469 0.141768



[75,] -0.041052 0.065466 -0.627 0.530612

[76,] -0.027104 0.067730 -0.400 0.689023

[77,] 0.029764 0.070978 0.419 0.674972

[78,] -0.059543 0.066925 -0.890 0.373635

[79,] -0.097767 0.065245 -1.498 0.134014

[80,] -0.223073 0.066536 -3.353 0.000800 ***

[81,] -0.199641 0.056156 -3.555 0.000378 ***

[82,] -0.088210 0.069740 -1.265 0.205925

[83,] -0.466032 0.009285 -50.191 < 2e-16 ***

[84,] -0.172216 0.044197 -3.897 9.76e-05 ***

[85,] -0.001019 NA NA NA

[86,] 0.123046 0.073908 1.665 0.095942 .

[87,] 0.125467 0.081518 1.539 0.123774

[88,] -0.067321 0.080798 -0.833 0.404733

[89,] 0.090865 0.061344 1.481 0.138542

[90,] -0.031725 0.066014 -0.481 0.630818

[91,] -0.067837 0.092026 -0.737 0.461031

[92,] -0.066384 0.091184 -0.728 0.466598

[93,] 0.007481 0.098242 0.076 0.939303

[94,] -0.049669 0.108316 -0.459 0.646554

[95,] -0.090246 0.094994 -0.950 0.342106

[96,] -0.013811 0.064718 -0.213 0.831017

[97,] -0.136864 0.062902 -2.176 0.029569 *

[98,] -0.017236 0.073488 -0.235 0.814566

[99,] -0.079726 0.070678 -1.128 0.259313

[100,] 0.058238 0.078383 0.743 0.457482

[101,] -0.128716 0.039636 -3.247 0.001164 **

[102,] -0.388948 0.010396 -37.414 < 2e-16 ***

[103,] -0.027666 0.096977 -0.285 0.775424

[104,] -0.122505 0.105783 -1.158 0.246834

[105,] -0.036847 0.117895 -0.313 0.754629

[106,] -0.015272 0.094138 -0.162 0.871127

[107,] -0.026163 0.115466 -0.227 0.820746

[108,] -0.036998 0.094498 -0.392 0.695415

[109,] 0.089095 0.092990 0.958 0.338004

[110,] 0.074351 0.080558 0.923 0.356033

[111,] -0.038479 0.077146 -0.499 0.617937

[112,] -0.011770 0.090333 -0.130 0.896331



[113,] -0.005509 0.071237 -0.077 0.938356

[114,] -0.032641 0.096916 -0.337 0.736272

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

---

Estimates in matrix form:

Constant term:

Estimates: 17.10743 16.19529 16.90949 15.66714 17.2478 16.88176

MA coefficient matrix

MA( 1 )-matrix

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.3359 0.1157 0.0742 0.1573 0.0937 0.0978

[2,] 0.1477 0.4180 0.1550 0.2610 0.1476 0.0447

[3,] 0.1032 0.1759 0.2985 0.1490 0.0540 0.1790

[4,] 0.1549 0.0475 0.1705 0.3712 0.0777 0.1369

[5,] 0.0978 0.2231 0.1996 0.0882 0.4660 0.1722

[6,] 0.1369 0.0172 0.0797 -0.0582 0.1287 0.3889

MA( 2 )-matrix

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.02336 0.0584 0.0338 0.0255 0.0341 -0.0536

[2,] -0.02577 -0.0991 0.0118 -0.0671 -0.1064 -0.1136

[3,] -0.09742 -0.0941 0.1571 -0.0331 0.0223 -0.0394

[4,] 0.05600 0.0236 -0.0402 0.0542 -0.0187 0.0309

[5,] 0.00102 -0.1230 -0.1255 0.0673 -0.0909 0.0317

[6,] 0.02767 0.1225 0.0368 0.0153 0.0262 0.0370

MA( 3 )-matrix

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.01203 -0.0214 -0.00326 -0.1548 -0.03104 0.03868

[2,] 0.00831 0.0293 -0.05460 -0.0756 0.11377 -0.06494

[3,] 0.10830 0.0660 -0.01880 0.1812 0.03164 0.00358

[4,] -0.03925 0.1076 0.04105 0.0271 -0.02976 0.05954

[5,] 0.06784 0.0664 -0.00748 0.0497 0.09025 0.01381

[6,] -0.08910 -0.0744 0.03848 0.0118 0.00551 0.03264

Residuals cov-matrix:

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 234.33865 -50.51449 -18.50005 -30.31952 -34.19187 -44.94363

[2,] -50.51449 196.61893 -39.82807 -23.89376 -40.23841 -18.52192



[3,] -18.50005 -39.82807 215.02508 -30.68709 -37.29504 -35.98137

[4,] -30.31952 -23.89376 -30.68709 175.93246 -31.90710 -38.24146

[5,] -34.19187 -40.23841 -37.29504 -31.90710 214.48450 -51.12122

[6,] -44.94363 -18.52192 -35.98137 -38.24146 -51.12122 221.70895

----

aic= 31.73723

bic= 33.1481

> VARMA(da = ms, p = 0, q = 3)

Number of parameters: 114

initial estimates: 17.0551 16.1475 16.86 15.6173 17.2138 16.8454 -0.3401 -0.1346

Par. lower-bounds: 15.2623 14.501 15.1511 14.0824 15.5005 15.1104 -0.4849 -0.2927

Par. upper-bounds: 18.8479 17.794 18.5689 17.1522 18.927 18.5805 -0.1952 0.0235 0

Final Estimates: 17.10743 16.19529 16.90949 15.66714 17.2478 16.88176 -0.335934

Coefficient(s):

Estimate Std. Error t value Pr(>|t|)

[1,] 17.107432 0.027062 632.148 < 2e-16 ***

[2,] 16.195288 0.210609 76.897 < 2e-16 ***

[3,] 16.909487 0.008058 2098.393 < 2e-16 ***

[4,] 15.667140 0.228470 68.574 < 2e-16 ***

[5,] 17.247796 0.047923 359.908 < 2e-16 ***

[6,] 16.881756 0.001601 10543.538 < 2e-16 ***

[7,] -0.335934 0.014330 -23.443 < 2e-16 ***

[8,] -0.115701 0.073943 -1.565 0.117646

[9,] -0.074187 0.084429 -0.879 0.379568

[10,] -0.157344 0.057700 -2.727 0.006393 **

[11,] -0.093724 0.070928 -1.321 0.186372

[12,] -0.097785 0.062106 -1.574 0.115377

[13,] -0.023364 0.074773 -0.312 0.754682

[14,] -0.058420 0.078861 -0.741 0.458812

[15,] -0.033768 0.087342 -0.387 0.699037

[16,] -0.025505 0.066094 -0.386 0.699575

[17,] -0.034084 0.075829 -0.449 0.653086

[18,] 0.053568 0.082888 0.646 0.518100

[19,] -0.012034 0.067922 -0.177 0.859370

[20,] 0.021436 0.084296 0.254 0.799271



[21,] 0.003260 0.078046 0.042 0.966680

[22,] 0.154810 0.078594 1.970 0.048867 *

[23,] 0.031045 0.111387 0.279 0.780465

[24,] -0.038684 0.073012 -0.530 0.596229

[25,] -0.147674 0.051874 -2.847 0.004416 **

[26,] -0.417979 NA NA NA

[27,] -0.155020 0.059466 -2.607 0.009137 **

[28,] -0.261048 0.013496 -19.343 < 2e-16 ***

[29,] -0.147582 0.057761 -2.555 0.010617 *

[30,] -0.044659 0.046050 -0.970 0.332156

[31,] 0.025767 0.068655 0.375 0.707426

[32,] 0.099073 0.067781 1.462 0.143836

[33,] -0.011755 0.052967 -0.222 0.824372

[34,] 0.067057 0.054756 1.225 0.220709

[35,] 0.106374 0.061348 1.734 0.082929 .

[36,] 0.113649 0.053298 2.132 0.032981 *

[37,] -0.008315 0.072397 -0.115 0.908565

[38,] -0.029264 0.078396 -0.373 0.708939

[39,] 0.054599 0.081136 0.673 0.500988

[40,] 0.075575 0.079031 0.956 0.338939

[41,] -0.113768 0.085156 -1.336 0.181551

[42,] 0.064935 0.079305 0.819 0.412901

[43,] -0.103181 0.059241 -1.742 0.081556 .

[44,] -0.175927 0.064505 -2.727 0.006385 **

[45,] -0.298460 0.023745 -12.569 < 2e-16 ***

[46,] -0.149048 0.057085 -2.611 0.009028 **

[47,] -0.053984 0.061124 -0.883 0.377134

[48,] -0.178983 0.042166 -4.245 2.19e-05 ***

[49,] 0.097418 0.074722 1.304 0.192324

[50,] 0.094051 0.075417 1.247 0.212367

[51,] -0.157135 0.069581 -2.258 0.023926 *

[52,] 0.033068 0.074671 0.443 0.657871

[53,] -0.022299 0.070492 -0.316 0.751751

[54,] 0.039382 0.065796 0.599 0.549481

[55,] -0.108302 0.063118 -1.716 0.086188 .

[56,] -0.066047 0.072268 -0.914 0.360759

[57,] 0.018804 0.065737 0.286 0.774836

[58,] -0.181172 0.051280 -3.533 0.000411 ***



[59,] -0.031643 0.085153 -0.372 0.710187

[60,] -0.003576 0.142034 -0.025 0.979912

[61,] -0.154906 0.047792 -3.241 0.001190 **

[62,] -0.047488 0.059374 -0.800 0.423818

[63,] -0.170474 0.050062 -3.405 0.000661 ***

[64,] -0.371214 0.003701 -100.295 < 2e-16 ***

[65,] -0.077737 0.055903 -1.391 0.164356

[66,] -0.136866 0.049832 -2.747 0.006023 **

[67,] -0.056000 0.062516 -0.896 0.370382

[68,] -0.023583 0.071398 -0.330 0.741166

[69,] 0.040164 0.069459 0.578 0.563107

[70,] -0.054178 0.068944 -0.786 0.431972

[71,] 0.018652 0.083094 0.224 0.822390

[72,] -0.030904 0.082778 -0.373 0.708898

[73,] 0.039250 0.064352 0.610 0.541914

[74,] -0.107638 0.073261 -1.469 0.141768

[75,] -0.041052 0.065466 -0.627 0.530612

[76,] -0.027104 0.067730 -0.400 0.689023

[77,] 0.029764 0.070978 0.419 0.674972

[78,] -0.059543 0.066925 -0.890 0.373635

[79,] -0.097767 0.065245 -1.498 0.134014

[80,] -0.223073 0.066536 -3.353 0.000800 ***

[81,] -0.199641 0.056156 -3.555 0.000378 ***

[82,] -0.088210 0.069740 -1.265 0.205925

[83,] -0.466032 0.009285 -50.191 < 2e-16 ***

[84,] -0.172216 0.044197 -3.897 9.76e-05 ***

[85,] -0.001019 NA NA NA

[86,] 0.123046 0.073908 1.665 0.095942 .

[87,] 0.125467 0.081518 1.539 0.123774

[88,] -0.067321 0.080798 -0.833 0.404733

[89,] 0.090865 0.061344 1.481 0.138542

[90,] -0.031725 0.066014 -0.481 0.630818

[91,] -0.067837 0.092026 -0.737 0.461031

[92,] -0.066384 0.091184 -0.728 0.466598

[93,] 0.007481 0.098242 0.076 0.939303

[94,] -0.049669 0.108316 -0.459 0.646554

[95,] -0.090246 0.094994 -0.950 0.342106

[96,] -0.013811 0.064718 -0.213 0.831017



[97,] -0.136864 0.062902 -2.176 0.029569 *

[98,] -0.017236 0.073488 -0.235 0.814566

[99,] -0.079726 0.070678 -1.128 0.259313

[100,] 0.058238 0.078383 0.743 0.457482

[101,] -0.128716 0.039636 -3.247 0.001164 **

[102,] -0.388948 0.010396 -37.414 < 2e-16 ***

[103,] -0.027666 0.096977 -0.285 0.775424

[104,] -0.122505 0.105783 -1.158 0.246834

[105,] -0.036847 0.117895 -0.313 0.754629

[106,] -0.015272 0.094138 -0.162 0.871127

[107,] -0.026163 0.115466 -0.227 0.820746

[108,] -0.036998 0.094498 -0.392 0.695415

[109,] 0.089095 0.092990 0.958 0.338004

[110,] 0.074351 0.080558 0.923 0.356033

[111,] -0.038479 0.077146 -0.499 0.617937

[112,] -0.011770 0.090333 -0.130 0.896331

[113,] -0.005509 0.071237 -0.077 0.938356

[114,] -0.032641 0.096916 -0.337 0.736272

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

---

Estimates in matrix form:

Constant term:

Estimates: 17.10743 16.19529 16.90949 15.66714 17.2478 16.88176

MA coefficient matrix

MA( 1 )-matrix

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.3359 0.1157 0.0742 0.1573 0.0937 0.0978

[2,] 0.1477 0.4180 0.1550 0.2610 0.1476 0.0447

[3,] 0.1032 0.1759 0.2985 0.1490 0.0540 0.1790

[4,] 0.1549 0.0475 0.1705 0.3712 0.0777 0.1369

[5,] 0.0978 0.2231 0.1996 0.0882 0.4660 0.1722

[6,] 0.1369 0.0172 0.0797 -0.0582 0.1287 0.3889

MA( 2 )-matrix

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.02336 0.0584 0.0338 0.0255 0.0341 -0.0536

[2,] -0.02577 -0.0991 0.0118 -0.0671 -0.1064 -0.1136

[3,] -0.09742 -0.0941 0.1571 -0.0331 0.0223 -0.0394



[4,] 0.05600 0.0236 -0.0402 0.0542 -0.0187 0.0309

[5,] 0.00102 -0.1230 -0.1255 0.0673 -0.0909 0.0317

[6,] 0.02767 0.1225 0.0368 0.0153 0.0262 0.0370

MA( 3 )-matrix

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.01203 -0.0214 -0.00326 -0.1548 -0.03104 0.03868

[2,] 0.00831 0.0293 -0.05460 -0.0756 0.11377 -0.06494

[3,] 0.10830 0.0660 -0.01880 0.1812 0.03164 0.00358

[4,] -0.03925 0.1076 0.04105 0.0271 -0.02976 0.05954

[5,] 0.06784 0.0664 -0.00748 0.0497 0.09025 0.01381

[6,] -0.08910 -0.0744 0.03848 0.0118 0.00551 0.03264

Residuals cov-matrix:

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 234.33865 -50.51449 -18.50005 -30.31952 -34.19187 -44.94363

[2,] -50.51449 196.61893 -39.82807 -23.89376 -40.23841 -18.52192

[3,] -18.50005 -39.82807 215.02508 -30.68709 -37.29504 -35.98137

[4,] -30.31952 -23.89376 -30.68709 175.93246 -31.90710 -38.24146

[5,] -34.19187 -40.23841 -37.29504 -31.90710 214.48450 -51.12122

[6,] -44.94363 -18.52192 -35.98137 -38.24146 -51.12122 221.70895

----

aic= 31.73723

bic= 33.1481

> VARMA(da = ms, p = 0, q = 4)

Number of parameters: 150

initial estimates: 17.0209 16.1175 16.8432 15.6158 17.2289 16.7453 -0.3692 -0.160

Par. lower-bounds: 15.246 14.4809 15.1481 14.096 15.5278 15.0255 -0.5171 -0.321 -

Par. upper-bounds: 18.7957 17.754 18.5383 17.1355 18.9301 18.465 -0.2212 -1e-04 0

Final Estimates: 17.02086 16.11745 16.84315 15.61575 17.22894 16.74528 -0.36918

Coefficient(s):

Estimate Std. Error t value Pr(>|t|)

[1,] 17.0208551 NA NA NA

[2,] 16.1174517 NA NA NA

[3,] 16.8431513 NA NA NA

[4,] 15.6157509 NA NA NA



[5,] 17.2289429 NA NA NA

[6,] 16.7452829 NA NA NA

[7,] -0.3691800 NA NA NA

[8,] -0.1605305 NA NA NA

[9,] -0.1198674 NA NA NA

[10,] -0.1924934 NA NA NA

[11,] -0.1280118 NA NA NA

[12,] -0.1070864 NA NA NA

[13,] -0.0594227 NA NA NA

[14,] -0.0909700 NA NA NA

[15,] -0.0807205 NA NA NA

[16,] -0.0803675 NA NA NA

[17,] -0.0847654 NA NA NA

[18,] -0.0108178 NA NA NA

[19,] -0.0537088 NA NA NA

[20,] -0.0450547 NA NA NA

[21,] -0.0440276 NA NA NA

[22,] 0.1019318 NA NA NA

[23,] -0.0130665 NA NA NA

[24,] -0.1046756 NA NA NA

[25,] -0.1174081 NA NA NA

[26,] -0.0239203 NA NA NA

[27,] 0.0294889 NA NA NA

[28,] -0.0821846 NA NA NA

[29,] -0.0861803 NA NA NA

[30,] -0.1702660 NA NA NA

[31,] -0.1254994 NA NA NA

[32,] -0.3790385 NA NA NA

[33,] -0.0972574 NA NA NA

[34,] -0.2295878 NA NA NA

[35,] -0.1127032 NA NA NA

[36,] -0.0446148 NA NA NA

[37,] 0.0333602 NA NA NA

[38,] 0.1201009 NA NA NA

[39,] -0.0061985 NA NA NA

[40,] 0.0764093 NA NA NA

[41,] 0.1287304 NA NA NA

[42,] 0.1332082 NA NA NA



[43,] -0.0530742 NA NA NA

[44,] -0.0770644 NA NA NA

[45,] 0.0874328 NA NA NA

[46,] 0.0429783 NA NA NA

[47,] -0.1134411 NA NA NA

[48,] 0.0747375 NA NA NA

[49,] 0.0457877 NA NA NA

[50,] 0.0400902 NA NA NA

[51,] -0.0910974 NA NA NA

[52,] 0.0142849 NA NA NA

[53,] 0.0044488 NA NA NA

[54,] 0.0726181 NA NA NA

[55,] -0.1369927 NA NA NA

[56,] -0.1868080 NA NA NA

[57,] -0.3343318 NA NA NA

[58,] -0.1612709 NA NA NA

[59,] -0.0616532 NA NA NA

[60,] -0.2011680 NA NA NA

[61,] 0.0329598 NA NA NA

[62,] 0.0143967 NA NA NA

[63,] -0.1686445 NA NA NA

[64,] -0.0169385 NA NA NA

[65,] -0.0779866 NA NA NA

[66,] -0.0219579 NA NA NA

[67,] -0.1818525 NA NA NA

[68,] -0.1451735 NA NA NA

[69,] -0.0146626 NA NA NA

[70,] -0.2794560 NA NA NA

[71,] -0.1143499 NA NA NA

[72,] -0.1267478 NA NA NA

[73,] -0.0637562 NA NA NA

[74,] 0.0296499 NA NA NA

[75,] -0.1023721 NA NA NA

[76,] -0.1123319 NA NA NA

[77,] 0.0033234 NA NA NA

[78,] -0.0952843 NA NA NA

[79,] -0.1282258 NA NA NA

[80,] -0.0322163 NA NA NA



[81,] -0.1411407 NA NA NA

[82,] -0.3218872 NA NA NA

[83,] -0.0380005 NA NA NA

[84,] -0.1106148 NA NA NA

[85,] -0.0639976 NA NA NA

[86,] -0.0452716 NA NA NA

[87,] 0.0412492 NA NA NA

[88,] -0.0529058 NA NA NA

[89,] -0.0024267 NA NA NA

[90,] -0.0509877 NA NA NA

[91,] 0.0003873 NA NA NA

[92,] -0.1056882 NA NA NA

[93,] -0.0479571 NA NA NA

[94,] -0.0267506 NA NA NA

[95,] 0.0443057 NA NA NA

[96,] -0.1346379 NA NA NA

[97,] 0.0539895 NA NA NA

[98,] -0.0409914 NA NA NA

[99,] 0.0096585 NA NA NA

[100,] 0.0731891 NA NA NA

[101,] 0.0092356 NA NA NA

[102,] 0.1391648 NA NA NA

[103,] -0.0547291 NA NA NA

[104,] -0.1833405 NA NA NA

[105,] -0.1683858 NA NA NA

[106,] -0.0494505 NA NA NA

[107,] -0.4246831 NA NA NA

[108,] -0.1445278 NA NA NA

[109,] -0.0245223 NA NA NA

[110,] 0.1042128 NA NA NA

[111,] 0.0935169 NA NA NA

[112,] -0.0568948 NA NA NA

[113,] 0.0908082 NA NA NA

[114,] -0.0333148 NA NA NA

[115,] -0.0817539 NA NA NA

[116,] -0.0772539 NA NA NA

[117,] -0.0086847 NA NA NA

[118,] -0.0874917 NA NA NA



[119,] -0.1329053 NA NA NA

[120,] -0.0204599 NA NA NA

[121,] -0.0933581 NA NA NA

[122,] -0.0649545 NA NA NA

[123,] -0.1017486 NA NA NA

[124,] 0.0031242 NA NA NA

[125,] -0.0061118 NA NA NA

[126,] -0.1216622 NA NA NA

[127,] -0.1077692 NA NA NA

[128,] -0.0016106 NA NA NA

[129,] -0.0627058 NA NA NA

[130,] 0.0728175 NA NA NA

[131,] -0.1270681 NA NA NA

[132,] -0.3930464 NA NA NA

[133,] -0.0340759 NA NA NA

[134,] -0.1119153 NA NA NA

[135,] -0.0490553 NA NA NA

[136,] -0.0213924 NA NA NA

[137,] -0.0345754 NA NA NA

[138,] -0.0270147 NA NA NA

[139,] 0.0936256 NA NA NA

[140,] 0.0874633 NA NA NA

[141,] -0.0386226 NA NA NA

[142,] -0.0337279 NA NA NA

[143,] -0.0200017 NA NA NA

[144,] -0.0106433 NA NA NA

[145,] -0.1105260 NA NA NA

[146,] -0.1473139 NA NA NA

[147,] -0.0927002 NA NA NA

[148,] -0.0951108 NA NA NA

[149,] -0.1058074 NA NA NA

[150,] -0.0013223 NA NA NA

---

Estimates in matrix form:

Constant term:

Estimates: 17.02086 16.11745 16.84315 15.61575 17.22894 16.74528

MA coefficient matrix

MA( 1 )-matrix



[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.3692 0.16053 0.1199 0.1925 0.1280 0.1071

[2,] 0.1255 0.37904 0.0973 0.2296 0.1127 0.0446

[3,] 0.1370 0.18681 0.3343 0.1613 0.0617 0.2012

[4,] 0.1282 0.03222 0.1411 0.3219 0.0380 0.1106

[5,] 0.0547 0.18334 0.1684 0.0495 0.4247 0.1445

[6,] 0.1078 0.00161 0.0627 -0.0728 0.1271 0.3930

MA( 2 )-matrix

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.0594 0.0910 0.0807 0.0804 0.08477 0.0108

[2,] -0.0334 -0.1201 0.0062 -0.0764 -0.12873 -0.1332

[3,] -0.0330 -0.0144 0.1686 0.0169 0.07799 0.0220

[4,] 0.0640 0.0453 -0.0412 0.0529 0.00243 0.0510

[5,] 0.0245 -0.1042 -0.0935 0.0569 -0.09081 0.0333

[6,] 0.0341 0.1119 0.0491 0.0214 0.03458 0.0270

MA( 3 )-matrix

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.053709 0.0451 0.04403 -0.1019 0.0131 0.1047

[2,] 0.053074 0.0771 -0.08743 -0.0430 0.1134 -0.0747

[3,] 0.181853 0.1452 0.01466 0.2795 0.1143 0.1267

[4,] -0.000387 0.1057 0.04796 0.0268 -0.0443 0.1346

[5,] 0.081754 0.0773 0.00868 0.0875 0.1329 0.0205

[6,] -0.093626 -0.0875 0.03862 0.0337 0.0200 0.0106

MA( 4 )-matrix

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.1174 0.0239 -0.02949 0.08218 0.08618 0.17027

[2,] -0.0458 -0.0401 0.09110 -0.01428 -0.00445 -0.07262

[3,] 0.0638 -0.0296 0.10237 0.11233 -0.00332 0.09528

[4,] -0.0540 0.0410 -0.00966 -0.07319 -0.00924 -0.13916

[5,] 0.0934 0.0650 0.10175 -0.00312 0.00611 0.12166

[6,] 0.1105 0.1473 0.09270 0.09511 0.10581 0.00132

Residuals cov-matrix:

[,1] [,2] [,3] [,4] [,5]

[1,] 3.517474e+58 9.433449e+57 4.142231e+58 1.745148e+58 2.612773e+58

[2,] 9.433449e+57 2.529940e+57 1.110897e+58 4.680282e+57 7.007147e+57

[3,] 4.142231e+58 1.110897e+58 4.877955e+58 2.055114e+58 3.076841e+58

[4,] 1.745148e+58 4.680282e+57 2.055114e+58 8.658324e+57 1.296293e+58



[5,] 2.612773e+58 7.007147e+57 3.076841e+58 1.296293e+58 1.940762e+58

[6,] 2.183940e+58 5.857068e+57 2.571841e+58 1.083533e+58 1.622226e+58

[,6]

[1,] 2.183940e+58

[2,] 5.857068e+57

[3,] 2.571841e+58

[4,] 1.083533e+58

[5,] 1.622226e+58

[6,] 1.355971e+58

----

aic= NaN

bic= NaN

> VARMA(da = ms, p = 0, q = 5)

Number of parameters: 186

initial estimates: 17.0284 15.9837 16.8658 15.6064 17.2742 16.7432 -0.3744 -0.185

Par. lower-bounds: 15.2616 14.3845 15.1764 14.1046 15.5931 15.0399 -0.5225 -0.347

Par. upper-bounds: 18.7952 17.5828 18.5552 17.1082 18.9554 18.4465 -0.2263 -0.022

Final Estimates: 17.02844 15.98368 16.8658 15.60638 17.27424 16.74323 -0.374417

Coefficient(s):

Estimate Std. Error t value Pr(>|t|)

[1,] 17.0284367 NA NA NA

[2,] 15.9836785 NA NA NA

[3,] 16.8658044 NA NA NA

[4,] 15.6063822 NA NA NA

[5,] 17.2742405 NA NA NA

[6,] 16.7432293 NA NA NA

[7,] -0.3744170 NA NA NA

[8,] -0.1850377 NA NA NA

[9,] -0.1413030 NA NA NA

[10,] -0.2177214 NA NA NA

[11,] -0.1591193 NA NA NA

[12,] -0.1331454 NA NA NA

[13,] -0.0719351 NA NA NA

[14,] -0.0935207 NA NA NA

[15,] -0.0835662 NA NA NA



[16,] -0.0767819 NA NA NA

[17,] -0.0783845 NA NA NA

[18,] -0.0125157 NA NA NA

[19,] -0.0681742 NA NA NA

[20,] -0.0612584 NA NA NA

[21,] -0.0595493 NA NA NA

[22,] 0.0874161 NA NA NA

[23,] -0.0301725 NA NA NA

[24,] -0.1200443 NA NA NA

[25,] -0.1198624 NA NA NA

[26,] -0.0240460 NA NA NA

[27,] 0.0230844 NA NA NA

[28,] -0.0975997 NA NA NA

[29,] -0.0957801 NA NA NA

[30,] -0.1778450 NA NA NA

[31,] -0.0506640 NA NA NA

[32,] -0.0936597 NA NA NA

[33,] -0.1331854 NA NA NA

[34,] -0.0222905 NA NA NA

[35,] -0.0145831 NA NA NA

[36,] -0.0136009 NA NA NA

[37,] -0.1271770 NA NA NA

[38,] -0.3920291 NA NA NA

[39,] -0.0863961 NA NA NA

[40,] -0.2566778 NA NA NA

[41,] -0.1022252 NA NA NA

[42,] -0.0616963 NA NA NA

[43,] 0.0315711 NA NA NA

[44,] 0.0960394 NA NA NA

[45,] -0.0156084 NA NA NA

[46,] 0.0531986 NA NA NA

[47,] 0.1006035 NA NA NA

[48,] 0.1134274 NA NA NA

[49,] -0.0590547 NA NA NA

[50,] -0.0895368 NA NA NA

[51,] 0.0740345 NA NA NA

[52,] 0.0409164 NA NA NA

[53,] -0.1071139 NA NA NA



[54,] 0.0792286 NA NA NA

[55,] 0.0259824 NA NA NA

[56,] 0.0222540 NA NA NA

[57,] -0.0926326 NA NA NA

[58,] 0.0205007 NA NA NA

[59,] 0.0038317 NA NA NA

[60,] 0.0624852 NA NA NA

[61,] 0.0739064 NA NA NA

[62,] -0.0304251 NA NA NA

[63,] 0.0724402 NA NA NA

[64,] 0.0082186 NA NA NA

[65,] -0.0762422 NA NA NA

[66,] 0.1050246 NA NA NA

[67,] -0.1479764 NA NA NA

[68,] -0.1868693 NA NA NA

[69,] -0.3434091 NA NA NA

[70,] -0.1651417 NA NA NA

[71,] -0.0792257 NA NA NA

[72,] -0.2129735 NA NA NA

[73,] 0.0170955 NA NA NA

[74,] -0.0037785 NA NA NA

[75,] -0.1864947 NA NA NA

[76,] -0.0175100 NA NA NA

[77,] -0.0870611 NA NA NA

[78,] -0.0226647 NA NA NA

[79,] -0.1965507 NA NA NA

[80,] -0.1598921 NA NA NA

[81,] -0.0271826 NA NA NA

[82,] -0.2931622 NA NA NA

[83,] -0.1355663 NA NA NA

[84,] -0.1449411 NA NA NA

[85,] -0.0695264 NA NA NA

[86,] 0.0221660 NA NA NA

[87,] -0.1174761 NA NA NA

[88,] -0.1297208 NA NA NA

[89,] -0.0117509 NA NA NA

[90,] -0.1046712 NA NA NA

[91,] -0.1345552 NA NA NA



[92,] -0.0670988 NA NA NA

[93,] -0.0393914 NA NA NA

[94,] -0.0515222 NA NA NA

[95,] -0.0527838 NA NA NA

[96,] -0.0617041 NA NA NA

[97,] -0.1397763 NA NA NA

[98,] -0.0572289 NA NA NA

[99,] -0.1639064 NA NA NA

[100,] -0.3528426 NA NA NA

[101,] -0.0779397 NA NA NA

[102,] -0.1441470 NA NA NA

[103,] -0.0869822 NA NA NA

[104,] -0.0590553 NA NA NA

[105,] 0.0307828 NA NA NA

[106,] -0.0575768 NA NA NA

[107,] -0.0040348 NA NA NA

[108,] -0.0547300 NA NA NA

[109,] -0.0216499 NA NA NA

[110,] -0.1320106 NA NA NA

[111,] -0.0720214 NA NA NA

[112,] -0.0493996 NA NA NA

[113,] 0.0186683 NA NA NA

[114,] -0.1579013 NA NA NA

[115,] 0.0442016 NA NA NA

[116,] -0.0482646 NA NA NA

[117,] -0.0034273 NA NA NA

[118,] 0.0517409 NA NA NA

[119,] -0.0066642 NA NA NA

[120,] 0.1256617 NA NA NA

[121,] -0.1106914 NA NA NA

[122,] -0.1362525 NA NA NA

[123,] -0.1338438 NA NA NA

[124,] -0.0185286 NA NA NA

[125,] -0.0349454 NA NA NA

[126,] -0.0331622 NA NA NA

[127,] -0.0571474 NA NA NA

[128,] -0.1572987 NA NA NA

[129,] -0.1434921 NA NA NA



[130,] -0.0430481 NA NA NA

[131,] -0.4167509 NA NA NA

[132,] -0.1325047 NA NA NA

[133,] -0.0218396 NA NA NA

[134,] 0.0937434 NA NA NA

[135,] 0.0955276 NA NA NA

[136,] -0.0483043 NA NA NA

[137,] 0.0932208 NA NA NA

[138,] -0.0153416 NA NA NA

[139,] -0.0772291 NA NA NA

[140,] -0.0750545 NA NA NA

[141,] -0.0020402 NA NA NA

[142,] -0.0817549 NA NA NA

[143,] -0.1345794 NA NA NA

[144,] -0.0204648 NA NA NA

[145,] -0.0882027 NA NA NA

[146,] -0.0662244 NA NA NA

[147,] -0.1066107 NA NA NA

[148,] 0.0063220 NA NA NA

[149,] -0.0058521 NA NA NA

[150,] -0.1179475 NA NA NA

[151,] -0.0693235 NA NA NA

[152,] -0.0549225 NA NA NA

[153,] 0.1338211 NA NA NA

[154,] 0.0434313 NA NA NA

[155,] -0.0228435 NA NA NA

[156,] -0.0132541 NA NA NA

[157,] -0.0975601 NA NA NA

[158,] -0.0039723 NA NA NA

[159,] -0.0600795 NA NA NA

[160,] 0.0893678 NA NA NA

[161,] -0.1070519 NA NA NA

[162,] -0.3729925 NA NA NA

[163,] -0.0170690 NA NA NA

[164,] -0.0857892 NA NA NA

[165,] -0.0321930 NA NA NA

[166,] -0.0149533 NA NA NA

[167,] -0.0250271 NA NA NA



[168,] -0.0345515 NA NA NA

[169,] 0.1069098 NA NA NA

[170,] 0.1081081 NA NA NA

[171,] -0.0216174 NA NA NA

[172,] -0.0197991 NA NA NA

[173,] -0.0005303 NA NA NA

[174,] 0.0055084 NA NA NA

[175,] -0.1021724 NA NA NA

[176,] -0.1355792 NA NA NA

[177,] -0.0794440 NA NA NA

[178,] -0.0831417 NA NA NA

[179,] -0.0935676 NA NA NA

[180,] 0.0071428 NA NA NA

[181,] 0.1485339 NA NA NA

[182,] 0.1064247 NA NA NA

[183,] -0.0153134 NA NA NA

[184,] 0.0204893 NA NA NA

[185,] -0.0022572 NA NA NA

[186,] -0.0024555 NA NA NA

---

Estimates in matrix form:

Constant term:

Estimates: 17.02844 15.98368 16.8658 15.60638 17.27424 16.74323

MA coefficient matrix

MA( 1 )-matrix

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.3744 0.18504 0.1413 0.2177 0.1591 0.1331

[2,] 0.1272 0.39203 0.0864 0.2567 0.1022 0.0617

[3,] 0.1480 0.18687 0.3434 0.1651 0.0792 0.2130

[4,] 0.1398 0.05723 0.1639 0.3528 0.0779 0.1441

[5,] 0.0571 0.15730 0.1435 0.0430 0.4168 0.1325

[6,] 0.0976 0.00397 0.0601 -0.0894 0.1071 0.3730

MA( 2 )-matrix

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.0719 0.09352 0.0836 0.0768 0.07838 0.0125

[2,] -0.0316 -0.09604 0.0156 -0.0532 -0.10060 -0.1134

[3,] -0.0171 0.00378 0.1865 0.0175 0.08706 0.0227

[4,] 0.0870 0.05906 -0.0308 0.0576 0.00403 0.0547



[5,] 0.0218 -0.09374 -0.0955 0.0483 -0.09322 0.0153

[6,] 0.0171 0.08579 0.0322 0.0150 0.02503 0.0346

MA( 3 )-matrix

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.0682 0.0613 0.05955 -0.0874 0.03017 0.12004

[2,] 0.0591 0.0895 -0.07403 -0.0409 0.10711 -0.07923

[3,] 0.1966 0.1599 0.02718 0.2932 0.13557 0.14494

[4,] 0.0216 0.1320 0.07202 0.0494 -0.01867 0.15790

[5,] 0.0772 0.0751 0.00204 0.0818 0.13458 0.02046

[6,] -0.1069 -0.1081 0.02162 0.0198 0.00053 -0.00551

MA( 4 )-matrix

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.1199 0.0240 -0.02308 0.09760 0.09578 0.17785

[2,] -0.0260 -0.0223 0.09263 -0.02050 -0.00383 -0.06249

[3,] 0.0695 -0.0222 0.11748 0.12972 0.01175 0.10467

[4,] -0.0442 0.0483 0.00343 -0.05174 0.00666 -0.12566

[5,] 0.0882 0.0662 0.10661 -0.00632 0.00585 0.11795

[6,] 0.1022 0.1356 0.07944 0.08314 0.09357 -0.00714

MA( 5 )-matrix

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.0507 0.0937 0.1332 0.02229 0.01458 0.01360

[2,] -0.0739 0.0304 -0.0724 -0.00822 0.07624 -0.10502

[3,] 0.1346 0.0671 0.0394 0.05152 0.05278 0.06170

[4,] 0.1107 0.1363 0.1338 0.01853 0.03495 0.03316

[5,] 0.0693 0.0549 -0.1338 -0.04343 0.02284 0.01325

[6,] -0.1485 -0.1064 0.0153 -0.02049 0.00226 0.00246

Residuals cov-matrix:

[,1] [,2] [,3] [,4] [,5]

[1,] 1.737147e+75 5.967243e+74 1.995587e+75 1.231281e+75 8.527933e+74

[2,] 5.967243e+74 2.049797e+74 6.855007e+74 4.229552e+74 2.929415e+74

[3,] 1.995587e+75 6.855007e+74 2.292477e+75 1.414462e+75 9.796658e+74

[4,] 1.231281e+75 4.229552e+74 1.414462e+75 8.727259e+74 6.044556e+74

[5,] 8.527933e+74 2.929415e+74 9.796658e+74 6.044556e+74 4.186499e+74

[6,] 4.775073e+74 1.640277e+74 5.485475e+74 3.384548e+74 2.344160e+74

[,6]

[1,] 4.775073e+74

[2,] 1.640277e+74



[3,] 5.485475e+74

[4,] 3.384548e+74

[5,] 2.344160e+74

[6,] 1.312573e+74

----

aic= -Inf

bic= -Inf

> VARMA(da = ms, p = 0, q = 6)

Number of parameters: 222

initial estimates: 16.9598 15.9602 16.7868 15.6083 17.262 16.8082 -0.3878 -0.1797

Par. lower-bounds: 15.2262 14.3721 15.1032 14.1045 15.5845 15.127 -0.5368 -0.3437

Par. upper-bounds: 18.6934 17.5483 18.4705 17.1121 18.9395 18.4894 -0.2388 -0.015

Final Estimates: 16.95979 15.96019 16.78685 15.60828 17.26203 16.80823 -0.38783

Coefficient(s):

Estimate Std. Error t value Pr(>|t|)

[1,] 1.696e+01 NA NA NA

[2,] 1.596e+01 NA NA NA

[3,] 1.679e+01 NA NA NA

[4,] 1.561e+01 NA NA NA

[5,] 1.726e+01 NA NA NA

[6,] 1.681e+01 NA NA NA

[7,] -3.878e-01 NA NA NA

[8,] -1.797e-01 NA NA NA

[9,] -1.467e-01 NA NA NA

[10,] -2.396e-01 NA NA NA

[11,] -1.693e-01 NA NA NA

[12,] -1.454e-01 NA NA NA

[13,] -8.714e-02 NA NA NA

[14,] -1.111e-01 NA NA NA

[15,] -9.531e-02 NA NA NA

[16,] -8.293e-02 NA NA NA

[17,] -1.072e-01 NA NA NA

[18,] -1.714e-02 NA NA NA

[19,] -8.876e-02 NA NA NA

[20,] -4.895e-02 NA NA NA



[21,] -3.952e-02 NA NA NA

[22,] 7.552e-02 NA NA NA

[23,] -2.503e-02 NA NA NA

[24,] -1.243e-01 NA NA NA

[25,] -1.268e-01 NA NA NA

[26,] -3.405e-02 NA NA NA

[27,] 1.785e-02 NA NA NA

[28,] -1.090e-01 NA NA NA

[29,] -9.772e-02 NA NA NA

[30,] -1.881e-01 NA NA NA

[31,] -6.296e-02 NA NA NA

[32,] -9.704e-02 NA NA NA

[33,] -1.324e-01 NA NA NA

[34,] -2.375e-02 NA NA NA

[35,] -1.633e-02 NA NA NA

[36,] -1.741e-02 NA NA NA

[37,] -3.598e-02 NA NA NA

[38,] -4.912e-05 NA NA NA

[39,] -7.475e-02 NA NA NA

[40,] 1.850e-01 NA NA NA

[41,] -1.374e-02 NA NA NA

[42,] -8.914e-02 NA NA NA

[43,] -1.189e-01 NA NA NA

[44,] -3.915e-01 NA NA NA

[45,] -8.904e-02 NA NA NA

[46,] -2.468e-01 NA NA NA

[47,] -1.012e-01 NA NA NA

[48,] -6.265e-02 NA NA NA

[49,] 2.165e-02 NA NA NA

[50,] 9.777e-02 NA NA NA

[51,] -2.130e-02 NA NA NA

[52,] 6.586e-02 NA NA NA

[53,] 1.067e-01 NA NA NA

[54,] 1.148e-01 NA NA NA

[55,] -6.955e-02 NA NA NA

[56,] -1.092e-01 NA NA NA

[57,] 4.970e-02 NA NA NA

[58,] 3.255e-02 NA NA NA



[59,] -1.349e-01 NA NA NA

[60,] 5.931e-02 NA NA NA

[61,] 1.380e-02 NA NA NA

[62,] 1.661e-02 NA NA NA

[63,] -9.921e-02 NA NA NA

[64,] 1.158e-02 NA NA NA

[65,] -8.747e-03 NA NA NA

[66,] 5.272e-02 NA NA NA

[67,] 5.982e-02 NA NA NA

[68,] -4.267e-02 NA NA NA

[69,] 5.666e-02 NA NA NA

[70,] -6.678e-03 NA NA NA

[71,] -9.138e-02 NA NA NA

[72,] 9.156e-02 NA NA NA

[73,] -7.192e-02 NA NA NA

[74,] 3.964e-02 NA NA NA

[75,] -1.768e-02 NA NA NA

[76,] -8.105e-02 NA NA NA

[77,] -1.265e-01 NA NA NA

[78,] -7.327e-02 NA NA NA

[79,] -1.739e-01 NA NA NA

[80,] -2.277e-01 NA NA NA

[81,] -3.663e-01 NA NA NA

[82,] -1.947e-01 NA NA NA

[83,] -1.031e-01 NA NA NA

[84,] -2.323e-01 NA NA NA

[85,] 3.324e-03 NA NA NA

[86,] -3.002e-02 NA NA NA

[87,] -1.981e-01 NA NA NA

[88,] -5.578e-02 NA NA NA

[89,] -1.080e-01 NA NA NA

[90,] -5.786e-02 NA NA NA

[91,] -2.185e-01 NA NA NA

[92,] -1.958e-01 NA NA NA

[93,] -5.180e-02 NA NA NA

[94,] -3.104e-01 NA NA NA

[95,] -1.614e-01 NA NA NA

[96,] -1.658e-01 NA NA NA



[97,] -9.775e-02 NA NA NA

[98,] -9.214e-03 NA NA NA

[99,] -1.446e-01 NA NA NA

[100,] -1.534e-01 NA NA NA

[101,] -3.485e-02 NA NA NA

[102,] -1.268e-01 NA NA NA

[103,] -1.525e-01 NA NA NA

[104,] -8.506e-02 NA NA NA

[105,] -5.763e-02 NA NA NA

[106,] -6.569e-02 NA NA NA

[107,] -6.998e-02 NA NA NA

[108,] -7.647e-02 NA NA NA

[109,] -3.965e-02 NA NA NA

[110,] -1.118e-01 NA NA NA

[111,] -4.127e-02 NA NA NA

[112,] -5.029e-02 NA NA NA

[113,] -9.603e-02 NA NA NA

[114,] 3.265e-02 NA NA NA

[115,] -1.377e-01 NA NA NA

[116,] -4.564e-02 NA NA NA

[117,] -1.621e-01 NA NA NA

[118,] -3.514e-01 NA NA NA

[119,] -6.809e-02 NA NA NA

[120,] -1.435e-01 NA NA NA

[121,] -9.009e-02 NA NA NA

[122,] -6.295e-02 NA NA NA

[123,] 1.951e-02 NA NA NA

[124,] -5.077e-02 NA NA NA

[125,] -7.603e-03 NA NA NA

[126,] -5.573e-02 NA NA NA

[127,] -2.835e-02 NA NA NA

[128,] -1.337e-01 NA NA NA

[129,] -8.304e-02 NA NA NA

[130,] -5.552e-02 NA NA NA

[131,] 1.074e-02 NA NA NA

[132,] -1.694e-01 NA NA NA

[133,] 3.825e-02 NA NA NA

[134,] -5.176e-02 NA NA NA



[135,] -9.197e-03 NA NA NA

[136,] 4.485e-02 NA NA NA

[137,] -1.326e-02 NA NA NA

[138,] 1.174e-01 NA NA NA

[139,] -1.155e-01 NA NA NA

[140,] -1.387e-01 NA NA NA

[141,] -1.380e-01 NA NA NA

[142,] -2.849e-02 NA NA NA

[143,] -4.170e-02 NA NA NA

[144,] -3.897e-02 NA NA NA

[145,] -2.827e-02 NA NA NA

[146,] 1.377e-02 NA NA NA

[147,] -6.063e-02 NA NA NA

[148,] -5.293e-02 NA NA NA

[149,] -3.325e-02 NA NA NA

[150,] -5.527e-02 NA NA NA

[151,] -3.333e-02 NA NA NA

[152,] -1.396e-01 NA NA NA

[153,] -1.198e-01 NA NA NA

[154,] -1.235e-02 NA NA NA

[155,] -3.884e-01 NA NA NA

[156,] -1.137e-01 NA NA NA

[157,] -9.513e-03 NA NA NA

[158,] 1.052e-01 NA NA NA

[159,] 9.974e-02 NA NA NA

[160,] -3.065e-02 NA NA NA

[161,] 1.130e-01 NA NA NA

[162,] -3.282e-03 NA NA NA

[163,] -6.342e-02 NA NA NA

[164,] -6.183e-02 NA NA NA

[165,] 2.077e-03 NA NA NA

[166,] -8.618e-02 NA NA NA

[167,] -1.327e-01 NA NA NA

[168,] -1.578e-02 NA NA NA

[169,] -7.107e-02 NA NA NA

[170,] -5.120e-02 NA NA NA

[171,] -9.691e-02 NA NA NA

[172,] 2.123e-02 NA NA NA



[173,] 1.296e-02 NA NA NA

[174,] -9.671e-02 NA NA NA

[175,] -6.567e-02 NA NA NA

[176,] -5.078e-02 NA NA NA

[177,] 1.473e-01 NA NA NA

[178,] 5.601e-02 NA NA NA

[179,] -1.147e-02 NA NA NA

[180,] -6.529e-03 NA NA NA

[181,] 5.098e-02 NA NA NA

[182,] 9.167e-02 NA NA NA

[183,] 3.215e-02 NA NA NA

[184,] -1.971e-02 NA NA NA

[185,] 9.574e-02 NA NA NA

[186,] 5.173e-02 NA NA NA

[187,] -1.251e-01 NA NA NA

[188,] -3.727e-02 NA NA NA

[189,] -9.144e-02 NA NA NA

[190,] 5.719e-02 NA NA NA

[191,] -1.456e-01 NA NA NA

[192,] -3.887e-01 NA NA NA

[193,] -2.067e-02 NA NA NA

[194,] -8.662e-02 NA NA NA

[195,] -2.434e-02 NA NA NA

[196,] -4.162e-02 NA NA NA

[197,] -3.443e-02 NA NA NA

[198,] -4.969e-02 NA NA NA

[199,] 1.038e-01 NA NA NA

[200,] 8.377e-02 NA NA NA

[201,] -3.459e-02 NA NA NA

[202,] -7.374e-03 NA NA NA

[203,] 8.274e-04 NA NA NA

[204,] 1.084e-02 NA NA NA

[205,] -1.175e-01 NA NA NA

[206,] -1.498e-01 NA NA NA

[207,] -8.829e-02 NA NA NA

[208,] -9.433e-02 NA NA NA

[209,] -1.144e-01 NA NA NA

[210,] -1.149e-02 NA NA NA



[211,] 1.556e-01 NA NA NA

[212,] 1.050e-01 NA NA NA

[213,] -2.986e-02 NA NA NA

[214,] 1.131e-02 NA NA NA

[215,] -1.074e-02 NA NA NA

[216,] -4.551e-03 NA NA NA

[217,] -2.893e-02 NA NA NA

[218,] -1.556e-01 NA NA NA

[219,] 4.074e-02 NA NA NA

[220,] -6.618e-02 NA NA NA

[221,] -6.039e-02 NA NA NA

[222,] 2.917e-02 NA NA NA

---

Estimates in matrix form:

Constant term:

Estimates: 16.95979 15.96019 16.78685 15.60828 17.26203 16.80823

MA coefficient matrix

MA( 1 )-matrix

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.3878 0.1797 0.1467 0.2396 0.1693 0.1454

[2,] 0.1189 0.3915 0.0890 0.2468 0.1012 0.0626

[3,] 0.1739 0.2277 0.3663 0.1947 0.1031 0.2323

[4,] 0.1377 0.0456 0.1621 0.3514 0.0681 0.1435

[5,] 0.0333 0.1396 0.1198 0.0124 0.3884 0.1137

[6,] 0.1251 0.0373 0.0914 -0.0572 0.1456 0.3887

MA( 2 )-matrix

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.08714 0.1111 0.0953 0.0829 0.1072 0.01714

[2,] -0.02165 -0.0978 0.0213 -0.0659 -0.1067 -0.11481

[3,] -0.00332 0.0300 0.1981 0.0558 0.1080 0.05786

[4,] 0.09009 0.0630 -0.0195 0.0508 0.0076 0.05573

[5,] 0.00951 -0.1052 -0.0997 0.0306 -0.1130 0.00328

[6,] 0.02067 0.0866 0.0243 0.0416 0.0344 0.04969

MA( 3 )-matrix

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.0888 0.0490 0.03952 -0.07552 0.025026 0.1243

[2,] 0.0696 0.1092 -0.04970 -0.03255 0.134880 -0.0593

[3,] 0.2185 0.1958 0.05180 0.31043 0.161394 0.1658



[4,] 0.0284 0.1337 0.08304 0.05552 -0.010744 0.1694

[5,] 0.0634 0.0618 -0.00208 0.08618 0.132684 0.0158

[6,] -0.1038 -0.0838 0.03459 0.00737 -0.000827 -0.0108

MA( 4 )-matrix

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.1268 0.03405 -0.0179 0.1090 0.09772 0.1881

[2,] -0.0138 -0.01661 0.0992 -0.0116 0.00875 -0.0527

[3,] 0.0977 0.00921 0.1446 0.1534 0.03485 0.1268

[4,] -0.0383 0.05176 0.0092 -0.0448 0.01326 -0.1174

[5,] 0.0711 0.05120 0.0969 -0.0212 -0.01296 0.0967

[6,] 0.1175 0.14978 0.0883 0.0943 0.11435 0.0115

MA( 5 )-matrix

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.0630 0.0970 0.1324 0.02375 0.0163 0.01741

[2,] -0.0598 0.0427 -0.0567 0.00668 0.0914 -0.09156

[3,] 0.1525 0.0851 0.0576 0.06569 0.0700 0.07647

[4,] 0.1155 0.1387 0.1380 0.02849 0.0417 0.03897

[5,] 0.0657 0.0508 -0.1473 -0.05601 0.0115 0.00653

[6,] -0.1556 -0.1050 0.0299 -0.01131 0.0107 0.00455

MA( 6 )-matrix

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.0360 4.91e-05 0.0747 -0.1850 0.0137 0.0891

[2,] 0.0719 -3.96e-02 0.0177 0.0810 0.1265 0.0733

[3,] 0.0396 1.12e-01 0.0413 0.0503 0.0960 -0.0327

[4,] 0.0283 -1.38e-02 0.0606 0.0529 0.0332 0.0553

[5,] -0.0510 -9.17e-02 -0.0322 0.0197 -0.0957 -0.0517

[6,] 0.0289 1.56e-01 -0.0407 0.0662 0.0604 -0.0292

Residuals cov-matrix:

[,1] [,2] [,3] [,4] [,5]

[1,] 4.984786e+90 1.955260e+90 6.501544e+90 3.624902e+90 1.404073e+90

[2,] 1.955260e+90 7.669422e+89 2.550202e+90 1.421852e+90 5.507414e+89

[3,] 6.501544e+90 2.550202e+90 8.479817e+90 4.727878e+90 1.831301e+90

[4,] 3.624902e+90 1.421852e+90 4.727878e+90 2.636004e+90 1.021032e+90

[5,] 1.404073e+90 5.507414e+89 1.831301e+90 1.021032e+90 3.954876e+89

[6,] 2.037221e+90 7.990910e+89 2.657102e+90 1.481453e+90 5.738275e+89

[,6]

[1,] 2.037221e+90



[2,] 7.990910e+89

[3,] 2.657102e+90

[4,] 1.481453e+90

[5,] 5.738275e+89

[6,] 8.325874e+89

----

aic= -Inf

bic= -Inf

> VARMA(da = ms, p = 1, q = 1)

Number of parameters: 78

initial estimates: 15.9825 26.0047 14.8101 12.1987 24.3009 16.3615 0.1206 0.0332

Par. lower-bounds: 1.5615 12.6784 0.733 -0.5254 10.569 2.4713 -0.3457 -0.4185 -0.

Par. upper-bounds: 30.4035 39.331 28.8873 24.9229 38.0328 30.2518 0.5869 0.485 0.

Final Estimates: 15.96561 25.99479 14.79723 12.17174 24.28669 16.34921 0.153974

Coefficient(s):

Estimate Std. Error t value Pr(>|t|)

[1,] 15.965611 0.084240 189.526 < 2e-16 ***

[2,] 25.994788 0.024966 1041.196 < 2e-16 ***

[3,] 14.797227 0.003828 3865.874 < 2e-16 ***

[4,] 12.171742 0.150384 80.938 < 2e-16 ***

[5,] 24.286695 0.192989 125.845 < 2e-16 ***

[6,] 16.349205 0.004412 3705.523 < 2e-16 ***

[7,] 0.153974 0.057383 2.683 0.007290 **

[8,] 0.025391 0.070743 0.359 0.719660

[9,] 0.202280 0.069671 2.903 0.003692 **

[10,] -0.232418 0.066943 -3.472 0.000517 ***

[11,] 0.049054 0.059700 0.822 0.411269

[12,] -0.146935 0.078621 -1.869 0.061637 .

[13,] 0.105147 0.132470 0.794 0.427347

[14,] -0.449739 0.088327 -5.092 3.55e-07 ***

[15,] 0.004082 0.103217 0.040 0.968454

[16,] 0.100905 0.141940 0.711 0.477148

[17,] -0.179877 0.094943 -1.895 0.058149 .

[18,] -0.199110 0.112668 -1.767 0.077190 .

[19,] -0.036066 0.071256 -0.506 0.612750



[20,] -0.369212 0.062747 -5.884 4.00e-09 ***

[21,] 0.018871 0.091064 0.207 0.835831

[22,] 0.326887 0.101243 3.229 0.001243 **

[23,] 0.287046 0.050165 5.722 1.05e-08 ***

[24,] -0.116286 0.094476 -1.231 0.218378

[25,] 0.107525 0.052610 2.044 0.040971 *

[26,] 0.173648 0.024626 7.051 1.77e-12 ***

[27,] -0.224772 0.008015 -28.044 < 2e-16 ***

[28,] 0.143812 0.032498 4.425 9.63e-06 ***

[29,] -0.062385 0.027791 -2.245 0.024780 *

[30,] 0.116000 0.042793 2.711 0.006714 **

[31,] -0.085874 0.141818 -0.606 0.544834

[32,] -0.096547 0.094406 -1.023 0.306458

[33,] -0.292099 0.094301 -3.098 0.001951 **

[34,] 0.338713 0.113255 2.991 0.002783 **

[35,] -0.367564 0.051575 -7.127 1.03e-12 ***

[36,] 0.089955 0.097906 0.919 0.358206

[37,] -0.163547 0.143107 -1.143 0.253109

[38,] 0.042344 0.112888 0.375 0.707590

[39,] 0.255040 0.096723 2.637 0.008369 **

[40,] -0.090423 0.132887 -0.680 0.496220

[41,] 0.112841 0.134634 0.838 0.401956

[42,] -0.125235 0.137182 -0.913 0.361287

[43,] -0.529572 0.035950 -14.731 < 2e-16 ***

[44,] -0.239235 0.081114 -2.949 0.003184 **

[45,] -0.314464 0.050956 -6.171 6.77e-10 ***

[46,] 0.054588 0.087801 0.622 0.534125

[47,] -0.180111 0.073722 -2.443 0.014561 *

[48,] 0.065576 0.086259 0.760 0.447124

[49,] -0.289492 0.152127 -1.903 0.057046 .

[50,] 0.030459 0.123379 0.247 0.805005

[51,] -0.154475 0.118773 -1.301 0.193396

[52,] -0.443549 0.160490 -2.764 0.005715 **

[53,] -0.006705 0.106232 -0.063 0.949676

[54,] 0.121067 0.139101 0.870 0.384108

[55,] -0.075806 0.086215 -0.879 0.379253

[56,] 0.148252 0.078485 1.889 0.058900 .

[57,] -0.372773 0.103218 -3.611 0.000304 ***



[58,] -0.468896 0.138546 -3.384 0.000713 ***

[59,] -0.336432 0.042401 -7.934 2.22e-15 ***

[60,] -0.054793 0.123818 -0.443 0.658107

[61,] -0.253813 0.068982 -3.679 0.000234 ***

[62,] -0.284681 0.045023 -6.323 2.57e-10 ***

[63,] 0.004503 0.038807 0.116 0.907619

[64,] -0.496605 NA NA NA

[65,] -0.060338 0.046814 -1.289 0.197440

[66,] -0.254747 0.014010 -18.183 < 2e-16 ***

[67,] 0.030331 0.153703 0.197 0.843564

[68,] -0.118816 0.115834 -1.026 0.305011

[69,] 0.095987 0.104391 0.919 0.357837

[70,] -0.391207 0.145735 -2.684 0.007267 **

[71,] -0.085271 0.082506 -1.034 0.301365

[72,] -0.256792 0.119205 -2.154 0.031225 *

[73,] 0.084741 0.166204 0.510 0.610147

[74,] 0.001375 0.094617 0.015 0.988409

[75,] -0.277294 0.120365 -2.304 0.021235 *

[76,] 0.170491 0.154364 1.104 0.269387

[77,] -0.233294 0.152142 -1.533 0.125179

[78,] -0.264406 0.139503 -1.895 0.058046 .

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

---

Estimates in matrix form:

Constant term:

Estimates: 15.96561 25.99479 14.79723 12.17174 24.28669 16.34921

AR coefficient matrix

AR( 1 )-matrix

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.1540 0.0254 0.20228 -0.2324 0.0491 -0.147

[2,] 0.1051 -0.4497 0.00408 0.1009 -0.1799 -0.199

[3,] -0.0361 -0.3692 0.01887 0.3269 0.2870 -0.116

[4,] 0.1075 0.1736 -0.22477 0.1438 -0.0624 0.116

[5,] -0.0859 -0.0965 -0.29210 0.3387 -0.3676 0.090

[6,] -0.1635 0.0423 0.25504 -0.0904 0.1128 -0.125

MA coefficient matrix

MA( 1 )-matrix



[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.5296 0.23923 0.3145 -0.0546 0.1801 -0.0656

[2,] 0.2895 -0.03046 0.1545 0.4435 0.0067 -0.1211

[3,] 0.0758 -0.14825 0.3728 0.4689 0.3364 0.0548

[4,] 0.2538 0.28468 -0.0045 0.4966 0.0603 0.2547

[5,] -0.0303 0.11882 -0.0960 0.3912 0.0853 0.2568

[6,] -0.0847 -0.00137 0.2773 -0.1705 0.2333 0.2644

Residuals cov-matrix:

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 243.23877 -49.24012 -23.48982 -29.88374 -35.63205 -45.68374

[2,] -49.24012 201.96323 -40.68012 -32.80408 -40.66410 -17.07555

[3,] -23.48982 -40.68012 219.13218 -32.09658 -36.10435 -35.47741

[4,] -29.88374 -32.80408 -32.09658 181.77185 -31.47173 -34.17971

[5,] -35.63205 -40.66410 -36.10435 -31.47173 215.13551 -49.28117

[6,] -45.68374 -17.07555 -35.47741 -34.17971 -49.28117 222.49073

----

aic= 31.64853

bic= 32.61386

> VARMA(da = ms, p = 1, q = 2)

Number of parameters: 114

initial estimates: 43.9872 7.6804 39.1071 31.117 38.8757 23.9737 -0.6919 0.5072 -

Par. lower-bounds: -9.558 -40.9306 -12.1695 -15.5848 -11.873 -27.211 -2.8922 -1.4

Par. upper-bounds: 97.5324 56.2913 90.3837 77.8188 89.6245 75.1584 1.5083 2.4589

Final Estimates: 43.98724 7.680351 39.10711 31.11701 38.87574 23.97373 -0.69190

Coefficient(s):

Estimate Std. Error t value Pr(>|t|)

[1,] 43.987242 NA NA NA

[2,] 7.680351 NA NA NA

[3,] 39.107105 NA NA NA

[4,] 31.117013 NA NA NA

[5,] 38.875745 NA NA NA

[6,] 23.973728 NA NA NA

[7,] -0.691906 NA NA NA

[8,] 0.507174 NA NA NA



[9,] -0.150323 NA NA NA

[10,] -0.821897 NA NA NA

[11,] -0.453084 NA NA NA

[12,] 0.001204 NA NA NA

[13,] -1.982724 NA NA NA

[14,] 1.346682 NA NA NA

[15,] -0.459552 NA NA NA

[16,] 2.917051 NA NA NA

[17,] -2.160462 NA NA NA

[18,] 1.168655 NA NA NA

[19,] 0.995295 NA NA NA

[20,] -1.331241 NA NA NA

[21,] -0.452626 NA NA NA

[22,] -0.792219 NA NA NA

[23,] 0.878476 NA NA NA

[24,] -0.756849 NA NA NA

[25,] 1.828113 NA NA NA

[26,] -1.878065 NA NA NA

[27,] 0.087478 NA NA NA

[28,] -2.638919 NA NA NA

[29,] 2.093380 NA NA NA

[30,] -0.726144 NA NA NA

[31,] 0.049439 NA NA NA

[32,] -0.131636 NA NA NA

[33,] -0.200308 NA NA NA

[34,] 0.911318 NA NA NA

[35,] -0.956826 NA NA NA

[36,] -0.882031 NA NA NA

[37,] -0.365258 NA NA NA

[38,] -0.340103 NA NA NA

[39,] 0.508511 NA NA NA

[40,] 0.031863 NA NA NA

[41,] 0.353434 NA NA NA

[42,] -0.624847 NA NA NA

[43,] 0.343514 NA NA NA

[44,] -0.648815 NA NA NA

[45,] 0.056949 NA NA NA

[46,] 0.663713 NA NA NA



[47,] 0.359205 NA NA NA

[48,] -0.084442 NA NA NA

[49,] -0.277054 NA NA NA

[50,] -0.011942 NA NA NA

[51,] -0.211955 NA NA NA

[52,] -0.254071 NA NA NA

[53,] -0.223939 NA NA NA

[54,] -0.121960 NA NA NA

[55,] 1.841380 NA NA NA

[56,] -1.729835 NA NA NA

[57,] 0.343328 NA NA NA

[58,] -3.182834 NA NA NA

[59,] 2.039950 NA NA NA

[60,] -1.223786 NA NA NA

[61,] -0.164267 NA NA NA

[62,] -0.154987 NA NA NA

[63,] -0.082908 NA NA NA

[64,] 0.748203 NA NA NA

[65,] -0.633234 NA NA NA

[66,] 0.352861 NA NA NA

[67,] -1.097271 NA NA NA

[68,] 1.172962 NA NA NA

[69,] 0.170196 NA NA NA

[70,] 0.671932 NA NA NA

[71,] -0.892763 NA NA NA

[72,] 0.599398 NA NA NA

[73,] 0.063331 NA NA NA

[74,] -0.229786 NA NA NA

[75,] -0.350445 NA NA NA

[76,] -0.356777 NA NA NA

[77,] 0.143804 NA NA NA

[78,] -0.292484 NA NA NA

[79,] -1.949615 NA NA NA

[80,] 1.864218 NA NA NA

[81,] -0.222664 NA NA NA

[82,] 2.328118 NA NA NA

[83,] -2.147801 NA NA NA

[84,] 0.612962 NA NA NA



[85,] 0.084747 NA NA NA

[86,] -0.054767 NA NA NA

[87,] -0.043157 NA NA NA

[88,] -0.903418 NA NA NA

[89,] 0.680257 NA NA NA

[90,] -0.191275 NA NA NA

[91,] -0.087316 NA NA NA

[92,] -0.038543 NA NA NA

[93,] 0.049849 NA NA NA

[94,] -0.959999 NA NA NA

[95,] 0.536281 NA NA NA

[96,] 0.737260 NA NA NA

[97,] -0.066417 NA NA NA

[98,] -0.143266 NA NA NA

[99,] -0.041964 NA NA NA

[100,] 0.234496 NA NA NA

[101,] -0.388219 NA NA NA

[102,] -0.459267 NA NA NA

[103,] 0.270859 NA NA NA

[104,] 0.350530 NA NA NA

[105,] -0.558758 NA NA NA

[106,] 0.053054 NA NA NA

[107,] -0.465226 NA NA NA

[108,] 0.247085 NA NA NA

[109,] -0.205747 NA NA NA

[110,] -0.139116 NA NA NA

[111,] 0.081654 NA NA NA

[112,] -0.040261 NA NA NA

[113,] -0.023679 NA NA NA

[114,] -0.181994 NA NA NA

---

Estimates in matrix form:

Constant term:

Estimates: 43.98724 7.680351 39.10711 31.11701 38.87574 23.97373

AR coefficient matrix

AR( 1 )-matrix

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] -0.6919 0.507 -0.1503 -0.8219 -0.453 0.0012



[2,] -1.9827 1.347 -0.4596 2.9171 -2.160 1.1687

[3,] 0.9953 -1.331 -0.4526 -0.7922 0.878 -0.7568

[4,] 1.8281 -1.878 0.0875 -2.6389 2.093 -0.7261

[5,] 0.0494 -0.132 -0.2003 0.9113 -0.957 -0.8820

[6,] -0.3653 -0.340 0.5085 0.0319 0.353 -0.6248

MA coefficient matrix

MA( 1 )-matrix

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] -0.3435 0.6488 -0.0569 -0.6637 -0.359 0.0844

[2,] -1.8414 1.7298 -0.3433 3.1828 -2.040 1.2238

[3,] 1.0973 -1.1730 -0.1702 -0.6719 0.893 -0.5994

[4,] 1.9496 -1.8642 0.2227 -2.3281 2.148 -0.6130

[5,] 0.0873 0.0385 -0.0498 0.9600 -0.536 -0.7373

[6,] -0.2709 -0.3505 0.5588 -0.0531 0.465 -0.2471

MA( 2 )-matrix

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.2771 0.0119 0.2120 0.2541 0.2239 0.122

[2,] 0.1643 0.1550 0.0829 -0.7482 0.6332 -0.353

[3,] -0.0633 0.2298 0.3504 0.3568 -0.1438 0.292

[4,] -0.0847 0.0548 0.0432 0.9034 -0.6803 0.191

[5,] 0.0664 0.1433 0.0420 -0.2345 0.3882 0.459

[6,] 0.2057 0.1391 -0.0817 0.0403 0.0237 0.182

Residuals cov-matrix:

[,1] [,2] [,3] [,4] [,5]

[1,] 2.430951e+161 1.674770e+161 -2.077129e+161 -2.406541e+161 -1.405975e+161

[2,] 1.674770e+161 3.643109e+161 -2.662597e+161 -3.491302e+161 -1.448373e+161

[3,] -2.077129e+161 -2.662597e+161 2.384137e+161 2.963326e+161 1.438692e+161

[4,] -2.406541e+161 -3.491302e+161 2.963326e+161 3.732623e+161 1.745186e+161

[5,] -1.405975e+161 -1.448373e+161 1.438692e+161 1.745186e+161 9.056235e+160

[6,] -1.114076e+161 -2.786513e+160 7.100511e+160 7.428364e+160 5.501238e+160

[,6]

[1,] -1.114076e+161

[2,] -2.786513e+160

[3,] 7.100511e+160

[4,] 7.428364e+160

[5,] 5.501238e+160

[6,] 6.065788e+160



----

aic= Inf

bic= Inf



APPENDIX A. ANNEXES

A.2.3 Summary of the AIC and BIC criteria for all couple (p,q) tested

p \ q 0 1

0

1 AIC = 31.91982
BIC = 32.43962

2 AIC = 31.90784
BIC = 31.90784

Table A.3 – AIC and BIC for all estimated VARMA(p, q) except when production of NA
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Appendix B

List of Acronyms

AISP Authorized Investment Services Provider. 4, 26, 29

AMF Autorité des Marchés Financiers. 3, 28, 30

AMIS Agricultural Markets Information System. 6, 34, 35

CLOB Central Limit Order Book. 199

CME Chicago Mercantile Exchange. 34

CTL Clock Time Line. xi, 91, 94, 100–105, 109, 125, 128, 137, 141, 146, 147, 149, 150, 152–
158, 170–173, 175, 199

D.R.V Discrete Random Variable. 92, 93, 95, 139

EGDSM Expert Group on Agricultural Commodity Derivatives and Spot Markets. 6, 35

EMH Efficient Market Hypothesis. 38, 193

ESMA European Securities and Markets Authority. 3, 28, 30, 31

EU European Union. 35

FTF Futures market Trades Frequency. vii, 92, 94, 100–107, 109, 115, 116, 118, 119, 121,
123, 125, 126, 128, 139–141, 144, 146, 147, 149, 152, 153, 155, 169, 172, 186, 195, 196,
199, 200

LOB Limit Order Book. 2–4, 6, 8, 12–14, 17, 19, 20, 26, 28–32, 35, 37, 45–47, 50, 193–195,
197, 199

MM Market Maker. 8, 29, 37, 194

MTF Multilateral Trading Facilities. 26, 30, 31

MU Market Undertaking. 26, 29–31, 37, 82, 193

n.o.a Number of agents. vii, 40, 42, 43, 46, 49–51, 135–142, 144, 146, 147, 149–152, 154–
158, 160, 162–165, 169, 172, 175, 178–182, 185, 186, 193, 196, 197, 199
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LIST OF ACRONYMS

n.o.t Number of transactions. 4, 29, 30, 89, 93, 96, 100, 106, 107, 109, 115, 118, 119, 123,
128, 135, 139, 141, 146, 147, 152, 153, 155, 160, 164, 175, 178, 181, 182

NYSE New York Stock Exchange. 42, 44

OTC Over The Counter. 26, 33, 34

RTF Relative Trades Frequency. 6, 34, 92, 103, 105–107, 109, 112, 115, 118, 119, 122, 125,
128, 129, 135, 139, 146, 147, 151, 155, 156, 164, 165, 169, 178, 179, 182, 185, 196

STF Spot market Trades Frequency. vii, 92, 94–96, 100–103, 105–107, 109, 112, 113, 115,
118, 119, 123, 126, 128, 139, 141, 146, 147, 152, 154, 155, 164, 165, 169, 199

TTL Transactions Time Line. 91, 93, 100–103, 105, 109, 121, 128, 129, 138, 146, 147, 149–
154, 156, 170–172, 196

LXIV



Appendix C

List of Parameters and Variables

a Advantage of possessing a unit of the storable agricultural commodity in monetary
value, per unit of clock time. vii, viii, 91, 122, 123, 125, 128, 137, 158, 159, 173, 175,
176

α Elasticity of the spot market trade frequency to the number of agents on the market.
viii, 137, 141, 147, 154, 158, 164, 165, 173, 175, 182, 184, 185, 199

C Computational strength of the market. C (s, t ) represents the computational strength
of the market with parameter s for the spectral zeta function, between time 1 and t .
67

CYt Convenience yield (advantage in detaining one unit of stock to face risk or uncer-
tainty) in monetary value at time t until maturity. 91, 96, 137, 138, 142

e Trend of the spot market information delivered in monetary value per unit of clock
time. vii, viii, 91, 122, 123, 125, 128, 137, 144, 149, 158, 173–175

e f Effective information parameter of the market represented by a function capable of
changing the market system. 62

Ei
(
p̃t

)
Expectation of the asset price at time t by agent i or equivalently measure of the

quantifiable price at time t by agent i . 65

ǫ Absolute value of the elasticity of quantities traded per exchange on the spot market to
the spot market trade frequency. vii, viii, 91, 95, 102, 112, 114, 115, 120, 122, 123,
125, 126, 128, 129, 137, 141, 154, 158, 162–164, 173, 175, 182, 183, 186, 196, 197, 199

f̃t+1 Agents’ expectations of the futures price at time t . 91, 137, 138

s̃t+1 Agents’ expectations of the spot price at time t . 91, 137, 138, 142

Q̃t Agents’ expectations of the commodity available stock at time t . 91, 138

ft Observed futures price at time t . vii, 91, 96, 137, 138

FV ft Fundamental value of the futures price at time t . 91, 137, 138

FVst Fundamental value of the spot price at time t . 91, 137, 138

LXV



LIST OF PARAMETERS AND VARIABLES

γn Capability of agents to process and expect the spot market information. 137, 138, 142,
143

I]t1,t2] Spot market information delivered in monetary value between t1 and t2, t1 ex-
cluded. 91, 137, 138

Qt Quantifiable property of a market system at time t . 64, 71–73, 76

mst Mathematical function which contains all information about market dynamics at
time t . 64

mst ,e f Mathematical function which contains all effective information about market dy-
namics at time t . 64

mst ,ne f Mathematical function which contains all non effective information about mar-
ket dynamics at time t . 64

µi ,t Price impact expected by agent i of the effective information at time t . If agent mk

gives the measure of quantifiable price at time k, µmk ,k is the fundamental value of
the asset. 65

ne f Non effective information parameter of the market represented by a function capa-
ble of changing the market system. 62

n Number of agents on the market, n ∈ N∗. 62, 64, 65, 71, 75, 79–81, 137, 139, 150, 152–
156, 158, 160, 162, 164, 167, 170, 171, 173, 175, 178–182, 185

ω f Historical trade frequency on the futures market per unit of clock time:(
Number of transactions on the futures market

tr

)
. vii, viii, 16, 91, 94, 101, 103–105,

110, 111, 115, 118, 137, 146, 155, 156, 158–160, 164, 173, 175, 177, 199

ωs Historical trade frequency on the spot market per unit of clock time:(Number of transactions on the spot market
tr

)
. vii, viii, 16, 91, 92, 95, 96, 101, 103,

106, 110, 112, 113, 124, 137, 141, 155, 156, 158, 160, 164, 173, 175, 178, 179, 199

pa Information parameter of the market represented by a function capable of changing
the market system. 61

pt Asset price at time t or equivalently measure of the quantifiable price at time t . 61, 64,
81

Qop Optimal stock level of the agricultural commodity for agents. 91, 96, 137, 142

qt Quantity of asset traded at time t or equivalently measure of the quantifiable quantity
at time t . 61, 64

q Quantities traded on the spot market at each transaction on the spot market. 91, 94,
97, 102, 119, 129, 137, 138, 141, 187, 196

Qt Available stock of the commodity at time t . 91, 137, 138

σI Maximal intrinsic volatility of the spot market information, per unit of clock time. viii,
137, 158, 161, 162, 173, 175, 180, 199
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LIST OF PARAMETERS AND VARIABLES

st Observed spot price at time t . vii, 91, 94, 98, 137, 138, 145

t Unit of the transactions time line, which represents a transaction on the futures market:
t = tr ×ω f , and t ∈N. vii, viii, 91–97, 99, 101, 103, 106–108, 115, 117–119, 123, 137–
143, 145, 146, 149, 151, 153–155, 161, 170

T Maturity expressed in the transactions time line: T = Tr ×ω f , and T ∈N. 91, 137, 138

tr Unit of the clock time line considered, such as a second or a minute. viii, 91, 94, 103,
119, 126, 137, 138, 140, 146, 147, 152–155, 157, 158, 160, 170, 173, 175, 179, 181

Θ Risk aversion of the policy maker to the commodity fundamental value volatility. viii,
137, 158, 162, 165, 173, 175, 180, 181

t ′ Latest period when there was a synchronized transaction in the spot and futures mar-
kets until t , expressed in the transactions time line. 91–94, 96, 137–140, 142

Tr Maturity of the futures contract, expressed in the clock time line. viii, 91, 137, 155, 158,
162, 173, 175, 181, 182

ξ Bias of agents in the process and the expectation of the spot market information. ix,
137, 165, 173, 175, 185, 186, 199
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How do the nature and the structure of information affect the optimal pricing algo-

rithm to guarantee market efficiency and minimize fundamental prices volatility ?

Keywords: Market efficiency – Information – Price volatility – Commodity markets

Version française: Ce travail évalue la capacité des marchés financiers en général puis des
marchés financiers de matières premières agricoles standardisés (commodités) à agréger
l’information dans le prix de marché et à réduire la volatilité des prix. Cela est fait à l’aide
de deux nouveaux modèles basés sur la nature de l’information même. Nous distinguons
l’information qui est traitable à l’aide d’algorithme (dite effective) et l’information qui
ne l’est pas. L’impact de l’algorithme de détermination du prix majoritairement utilisé
qu’est le carnet d’ordres à cours limité est étudié au regard de la nature et de la structure
de l’information. Ces modèles soulignent que lorsque l’information est majoritairement
effective et continue, le carnet d’ordres à cours limité permet en effet au prix de marché
d’être au voisinage de sa valeur fondamentale. Au contraire, quand l’information non ef-
fective devient trop importante, ce mécanisme mène à une bulle, voire à une crise. En
revanche, nous démontrons que même dans une bulle, le prix de marché peut révéler da-
vantage d’information que n’importe quel agent pris séparément. Lorsque l’information
est discontinue en revanche, comme c’est le cas pour les marchés de commodités, la dis-
sociation des algorithmes utilisés sur les marchés physiques et les marchés à termes peut
entraîner une diminution de la capacité du prix de marché à véhiculer l’information mais
aussi générer un surplus de volatilité. Enfin, nous prenons en compte le nombre d’agents
comme variable déterminante de la fréquence des transactions et de l’information ar-
rivant sur le marché d’une part, et la possibilité d’avoir une information non effective
d’autre part. L’intuition que plus d’agents permettent au prix de marché de mieux agréger
l’information n’est pas toujours valable, et peut même générer davantage de volatilité.
Nous montrons également que sous-estimer l’impact de l’information non effective et la
surestimer n’ont pas des conséquences identiques sur les propriétés du prix de marché.

English version: This work assesses the capability of financial markets in general and
then of standardized agricultural commodity markets to aggregate information in the
market price and reduce the price volatility. This work presents two new models based
on the nature of the information itself. We split the information that is treatable using an
algorithm (effective) and the information that cannot. The impact of the predominantly
used price determination algorithm, the limit order book, is examined with regard to the
nature and structure of the information. These models underline that when the infor-
mation is mostly effective and continuous, the limit order book indeed allows the market
price to be close to its fundamental value. When non effective information becomes too
important, this mechanism leads to a bubble or even a crisis. But even in a bubble, the
market price can reveal more information than any agent taken separately. When infor-
mation is discontinuous, on the other hand, as it is the case in commodity markets, the
different pricing algorithms used in physical markets and futures markets can lead to a
decrease in the market price efficiency but also to a surplus of price volatility. Finally,
we take into account the number of agents as a determining variable of the frequency
of transactions and of the incoming information on the commodity market on the first
hand, and the possibility of having a non effective information on the other hand. The
intuition that more agents increase the market price efficiency is not mandatory in this
model. Moreover, it can generate more volatility. We also show that underestimating the
impact of the non efficient information and overestimating it do not have identical con-
sequences on the properties of the market price.
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