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Abstract

This thesis aims to propose new nonlinear unmixing models within the framework of

kernel methods and to develop associated algorithms, in order to address the hyperspec-

tral unmixing problem. First, we investigate a novel kernel-based nonnegative matrix

factorization (NMF) model, that circumvents the pre-image problem inherited from the

kernel machines. Within the proposed framework, several extensions are developed to

incorporate common constraints raised in hypersepctral images analysis. In order to

tackle large-scale and streaming data, we next extend the kernel-based NMF to an

online fashion, by keeping a fixed and tractable complexity. Moreover, we propose a

bi-objective NMF model as an attempt to combine the linear and nonlinear unmixing

models. The decompositions of both the conventional NMF and the kernel-based NMF

are performed simultaneously. The last part of this thesis studies a supervised unmixing

model, based on the correntropy maximization principle. This model is shown robust to

outlier bands. Two correntropy-based unmixing problems are addressed, considering dif-

ferent constraints in hyperspectral unmixing problem. The alternating direction method

of multipliers (ADMM) is investigated to solve the related optimization problems.

Keywords:

� Hyperspectral imagery

� Machine learning

� Nonlinear models

� Factorization (Mathematics)

� Non-negative matrices
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Résumé

Cette thèse vise à proposer de nouveaux modèles pour la séparation de sources dans le

cadre non linéaire des méthodes à noyaux en apprentissage statistique, et à développer

des algorithmes associés. Le domaine d’application privilégié est le démélange en im-

agerie hyperspectrale. Tout d’abord, nous décrivons un modèle original de la factori-

sation en matrices non négatives (NMF), en se basant sur les méthodes à noyaux. Le

modèle proposé surmonte la malédiction de préimage, un problème inverse hérité des

méthodes à noyaux. Dans le même cadre proposé, plusieurs extensions sont développées

pour intégrer les principales contraintes soulevées par les images hyperspectrales. Pour

traiter des masses de données, des algorithmes de traitement en ligne sont développés afin

d’assurer une complexité calculatoire fixée. Également, nous proposons une approche de

factorisation bi-objective qui permet de combiner les modèles de démélange linéaire et

non linéaire, où les décompositions de NMF conventionnelle et à noyaux sont réalisées

simultanément. La dernière partie se concentre sur le démélange robuste aux bandes

spectrales aberrantes. En décrivant le démélange selon le principe de la maximisation de

la correntropie, deux problèmes de démélange robuste sont traités sous différentes con-

traintes soulevées par le problème de démélange hyperspectral. Des algorithmes de type

directions alternées sont utilisés pour résoudre les problèmes d’optimisation associés.

Mots-clés :

� Imagerie hyperspectrale

� Apprentissage automatique

� Modèles non linéaires (statistique)

� Factorisation

� Matrices nonnégatives
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Résumé vi
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2 Chapter 1. Introduction

Data processing and analysis is an increasingly active research field with great oppor-

tunities in plenty of real-world applications. The main objective is to extract valuable

information and to infer hidden patterns from data of high dimension and/or of massive

volume. Of particular interest is blind source separation with the unmixing of hyperspec-

tral images in remote sensing for earth observation. These images have a spectrum for

each pixel, with high spectral resolution but limited spatial resolution. The former en-

ables the capacity of performing spectroscopic analysis to identify materials and describe

processes, while the latter leads to the fact that each pixel in the image is a mixture of

several pure materials, termed endmembers. The spectral unmixing consists in extract-

ing these endmembers and estimating their contributions, termed abundances, at each

pixel. It is an ill-posed inverse problem, and nonlinear unmixing remains an open and

challenging issue. This chapter first introduces the concepts of hyperspectral images and

spectral unmixing. Strategies to tackle separately or jointly the endmember extraction

and abundance estimation are discussed. Next, the prevalent linear mixing model and

several nonlinear models are presented. Finally, the structure of this manuscript and the

main contributions of the thesis are outlined.

1.1 General Background

Recent years have witnessed a great proliferation of the ability to collect sensory data,

including visual images, audio recordings, linguistic data, to name a few in the era of

Big Data. The processing and analysis of the captured data require innovative and

efficient approaches, thus presenting a great challenge to researchers. A prominent issue

to address is the extraction of valuable information and the inference of hidden patterns

from the raw data. These data, gathered from various sensors, are often stored in the

form of matrix or tensor. In most cases, they are essentially composed of a few inter-

related variables, or combined with several underlying factors or components [Cichocki

et al., 2009]. In order to explore the hidden structure and extract useful information,

one seeks to decompose or factorize the data into some relevant components to be

determined.
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Low-dimensional representations of high-dimensional data play a significant role in en-

hancing the data and extracting underlying components [Cichocki et al., 2009]. Of par-

ticular interest are the latent factor models based on matrix factorization (i.e., decompo-

sition). These models have been successfully applied for noise removal, model reduction,

signal reconstruction, and more generally for blind source separation (BSS) [Comon and

Jutten, 2010], with a wide range of real-world applications including recommendation

system [Koren et al., 2009], clustering [Ding et al., 2005; Xu et al., 2003], biomedical

signal processing [Wang et al., 2013a], audio signal processing [Févotte et al., 2008], and

hyperspectral data analysis [Jia and Qian, 2009]. In the discipline of linear algebra,

matrix factorization (or decomposition) consists in approximating a given data matrix

by a product of two (or more) matrices with lower rank.

In order to deal with different constraints arising in real-word applications, the model of

matrix factorization may vary by considering different assumptions with respect to the

component matrices and the latent structures. A typical example is encountered when

both the data under study and the unknown matrices under estimation are nonnegative,

for the sake of meaningful physical interpretation such as in spectral extraction. In

this case, one modifies the matrix factorization model by imposing the nonnegativity

constraints on the unknown components (matrices), leading to the so-called nonnegative

matrix factorization (NMF) [Lee and Seung, 1999, 2001]. Another difficulty arises when

dealing with large volumes of data, such as with streaming data. In this case, the batch

mode becomes inappropriate and inefficient for matrix factorization. Instead, matrix

factorization techniques adapted to large-scale data processing are required, leading

to online matrix factorization approaches [Mairal et al., 2010], and particularly online

NMF when the nonnegativity is imposed [Cao et al., 2007; Wang et al., 2011]. Other

constraints include promoting the sparseness [Kim and Park, 2007] or smoothness of the

representation [Pauca et al., 2006; Jia and Qian, 2009; Qian et al., 2011]. Usually, these

variations of the matrix factorization model provide more suitable models for discovering

the underlying components, and help to avoid meaningless or unreasonable results.

Within the framework of blind source separation, the linear mixtures have been inten-

sively investigated in the literature. In many real-word applications, it is however more

natural to consider the general case of nonlinear mixtures, since nonlinearities may occur

at different stages of the processing, including the mixing process and nonlinearities in
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the used sensors (e.g., post-nonlinear) [Comon and Jutten, 2010, Chap. 14]. In hyper-

spectral imagery, critical nonlinear effects often exist in the data under study, as reported

in several studies with either physically inspired models or ground truth information (See

Section 1.4) [Heylen et al., 2014]. Some efforts have been carried out to extend the lin-

ear NMF to the scope of nonlinear models, such as the quadratic NMF for bilinear

models [Yang and Oja, 2012]. Some attempts have been made to provide more gen-

eral nonlinear NMF variants, by investigating the framework of kernel machines [Zhang

et al., 2006; Ding et al., 2010; Li and Ngom, 2012]. Providing nonlinear models and

developing corresponding algorithms for NMF remain an open and challenging issue.

This thesis focuses on nonlinear spectral unmixing in hyperspectral imagery. The spec-

tral unmixing will be introduced in the next section, before providing an overview of the

linear and nonlinear models, respectively in Sections 1.3 and 1.4. Since the framework

of NMF is natural to solve the spectral unmixing problem, it will be revisited in Chap-

ters 3, 4 and 5 for nonlinear unmixing, while Chapter 6 studies a robust estimation. A

more detailed state-of-the-art of the NMF and its variants is given in Section 3.1.

1.2 Spectral Unmixing of Hyperspectral Images

A hyperspectral image details the scene under scrutiny with spectral observations of

electromagnetic waves emission/reflection. Typically, it corresponds to the acquisition

of a ground scene from which sunlight is reflected. A hyperspectral image is a three-

dimensional data cube, two of the dimensions being spatial, and the third one being the

spectral. In other words, a spectrum (i.e., reflectance vector) characteristic is available

at each pixel. Figure 1.1 gives an example of hyperspectral image.

Usually, the spectral dimension is up to several hundreds, corresponding to the spec-

tral bands across a continuous wavelength range. For example, the NASA airborne

visible/infrared imaging spectrometer (AVIRIS), in operation since 1989, has 224 con-

tiguous spectral bands, covering from 0.4 to 2.5 µm, with a ground resolution that varies

from 4 to 20 m (depending on the distance of the airborne to the ground). Due to such

spatial resolution, any acquired spectrum is a superposition of spectra of several distinct

underlying materials.
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# Asphalt 
# Roof 

# Grass # Tree 

Figure 1.1: In a hyperspectral image, each pixel is a (reflectance) spectrum that deals
with narrow spectral bands over a continuous spectral range. Such redundancy in the
information allows to identify the material present in the scene, namely endmembers.

The unmixing of a given hyperspectral image aims to extract the spectra of these “pure”

materials, called endmembers, and to estimate the fractional abundances of these end-

members in every pixel, i.e., every position of the area under scrutiny. The unmixing

is a challenging ill-posed inverse problem, in the same sense as blind source separation

problems [Comon and Jutten, 2010]. Its ill-posedness1 needs to be tackled by adopting

in advance the mixing model, either linear or nonlinear models, and incorporating con-

straints such as nonnegativity, sparseness, smoothness, and spatial regularization. Once

the model is fixed, the unmixing is addressed either in a divide-to-conquer scheme, by

separately extracting the endmembers prior to estimating their abundances, or jointly

estimating the endmembers and abundances.

1.2.1 Endmember extraction

Endmember extraction is a primary step in hyperspectral image unmixing, assuming

their number is known in advance, either from ground truth or estimated using for

instance [Halimi et al., 2016]. In some very rare cases, the endmembers can be known

from a ground truth examination of the scene, and using some spectral library. The

unmixing is then reduced to the abundance estimation step. However, the endmembers

are unknown in most of the cases; they have to be identified from the observed spectra

1According to Hadamard, a problem is well-posed if the following three conditions are satisfied: it
has a solution, the solution is unique, and the solution depends continuously on data and parameters.
If any of these conditions is not fulfilled, the problem is said ill-posed.
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within the hyperspectral image under study. Over the past decades, various endmember

estimation methods have been proposed, as presented in the overview [Plaza et al.,

2012]. Endmember extraction techniques can be split in two classes, depending if the

techniques are designed based on the pure pixel assumption, namely, the endmembers

are pure pixels (signatures) present in the hyperspectral image under study.

The first class brings together endmember extraction techniques that rely on the pure

pixel assumption. These techniques, as a consequence, search in the image for the purest

pixels in the spectral sense. Such methods include, but not limited to, the orthogonal

subspace projection (OSP) [Harsanyi and Chang, 1994], the N-Findr [Winter, 1999],

and the vertex component analysis (VCA) [Nascimento and Bioucas-Dias, 2005]. The

N-Findr and VCA techniques seek to inflate the simplex enclosing all the spectra, and

determines the endmembers as the vertices of the largest simplex. As a preprocessing

step for such algorithms, a dimensionality reduction technique often needs to be applied,

such as with the conventional principal component analysis (PCA).

Unfortunately, the assumption of pure pixels does not hold when the pixels are com-

pletely mixed. To this end, several recent works have been conducted to abandon this

assumption, by estimating endmembers that are not necessarily present in the image,

in the same spirit as estimating the abundances. This class of endmember extraction

techniques rely often on the joint estimation of the endmembers and abundances as

described in the upcoming Section 1.2.3. This class includes the NMF-based unmixing

techniques, as well as the iterative constrained endmembers (ICE) [Berman et al., 2004].

1.2.2 Abundance estimation in supervised unmixing

While the endmember extraction is relatively easy from geometry, the abundance es-

timation remains an open problem, also referred to as the supervised unmixing prob-

lem. Given the identified endmembers, the abundance estimation (referred as inversion

in [Bioucas-Dias et al., 2012; Dobigeon et al., 2014]) generally involves the minimization

of the residual error between the observed spectra (pixels) and the inferred spectra.

As to be explained next, the abundance nonnegativity constraint (ANC) and the abun-

dance sum-to-one constraint (ASC) are often required. Considering both constraints,

the fully-constrained least-squares (FCLS) [Heinz and Chang, 2001] yields the optimal
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abundances in the least-squares sense. A more recently proposed algorithm is the sparse

unmixing by variable splitting and augmented Lagrangian (SUnSAL) [Bioucas-Dias and

Figueiredo, 2010]. A fully-constrained variant of SUnSAL (SUnSAL-FCLS) addresses

the same optimization problem as FCLS by taking advantage of the alternating direction

method of multipliers (ADMM) [Boyd et al., 2011]. Besides the least-squares methods,

other strategies have been proposed by employing the geometric explanation of the un-

mixing process such as the barycentric coordinate approach [Honeine and Richard, 2012];

or by tackling the recently-raised nonlinearity issue such as the linear-mixture/nonlinear-

fluctuation model [Chen et al., 2013b], the post nonlinear model [Chen et al., 2013c] and

the generalized bilinear model [Halimi et al., 2011b].

1.2.3 Joint estimation or unsupervised unmixing

In hyperspectral unmixing problems, a prior knowledge on endmembers is often un-

available. Instead of identifying endmembers and abundances sequentially, unsupervised

unmixing provides an alternative by estimating the endmembers and abundances simul-

taneously from the observed data bulk, without much user interaction [Miao and Qi,

2007]. Assuming that the observed spectra are mixed by the linear model, the unsuper-

vised unmixing can be considered as a blind source separation (BSS) problem, where

typical BSS techniques are feasible [Comon and Jutten, 2010]. For example, indepen-

dent component analysis (ICA) has been applied to hyperspectral unmixing in [Wang

and Chang, 2006; Chang et al., 2002; Moussaoui et al., 2008]. However, the statistical

independence assumption is not satisfied in general for spectral unmixing [Chang et al.,

2002].

Among the BSS techniques, the nonnegative matrix factorization (NMF) [Lee and Se-

ung, 1999] is a crucial one that has been widely accepted for its effectiveness in un-

supervised hyperspectral unmixing [Jia and Qian, 2009; Lu et al., 2013; Huck et al.,

2010; Févotte and Dobigeon, 2015]. The basic idea of NMF is to approximate an input

nonnegative matrix (composed column-wise by the observed spectra) by the product

of two unknown lower-rank nonnegative matrices, the first recording the endmembers

and the second recording the abundances. A variant of the NMF is the semi-NMF,

where the nonnegativity is imposed on a single unknown matrix. In the context of the

hyperspectral unmixing problem, there are two main advantages of NMF over other
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unsupervised approaches, e.g., PCA and ICA. At first, the nonnegativity constraints on

the input and the two unknown matrices are consistent with the nature of unmixing,

where the observed pixels, the endmember spectra and the fractional abundances should

be nonnegative by nature, as to be explained next. Second, NMF is able to provide a

parts-based representation based on the additivity of the contributions of the bases

to approximate the original data [Lee and Seung, 1999], in opposition to the holistic

methods such as PCA and ICA.

These unmixing-driven NMF techniques include the minimum dispersion constrained

NMF (MiniDisCo) [Huck et al., 2010]. This method includes the dispersion regulariza-

tion to the conventional NMF, by integrating the sum-to-one constraint for each pixel’s

abundance fractions and the minimization of variance within each endmember. The

problem is solved by exploiting an alternate projected gradient scheme. Another ex-

ample is the robust nonnegative matrix factorization (rNMF) proposed in [Févotte and

Dobigeon, 2015]. To capture the nonlinear effect (outliers), this NMF-based method in-

troduces a group-sparse regularization term into the linear model. Accounting for both

constraints, the problem is optimized by a block-coordinate descent strategy. A more

detailed state-of-the-art of the NMF and its variants is given in Section 3.1.

1.3 Linear Mixing Model

Regardless of the different types of unmixing (supervised or unsupervised), the underly-

ing mixing mechanism needs to be defined properly, namely, how the observed spectrum

is generated from the endmembers. To this end, the main models and the corresponding

unmixing strategies are roughly divided into two categories: the linear-based model and

the nonlinear-based ones. This section describes the linear mixing model and the main

associated algorithms, while next section extends this definition to nonlinear models.

The linear mixing model (LMM) assumes the mixing in the so-called macroscopic scale,

namely each arriving photon interacts with only one endmember before reaching the

sensor [Bioucas-Dias et al., 2012]. The light reflected from distinct endmembers is then

mixed within the instrument. Consequently, each captured spectrum can be expressed

as a linear combination of a set of endmembers.
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Figure 1.2: Illustration of the linear mixing. The observed spectrum xt is a combination
of the endmembers e1, e2, e3, with the respective weights a1t, a2t, a3t called abundances.

Consider a hyperspectral image of T pixels, each being a reflectance spectrum of L

spectral bands in some given continuous wavelength range. Neglect for now the spatial

relations of its pixels by rearranging the three-dimensional data cube as a conventional

matrix where each column is an observed spectrum. Let X ∈ RL×T denote the matrix

of the T pixels/spectra of L spectral bands. Let x∗t be its t-th column representing

the observed reflectance spectrum of t-th pixel, and xl∗ its l-th row representing the

l-th spectral band over all pixels. For notation simplicity, we denote xt = x∗t, for

t = 1, . . . , T . The LMM can be written as

xt =
N∑

n=1

ant en + nt

= Eat + nt,

(1.1)

where E = [e1 · · · eN ] ∈ RL×R is the matrix composed by the N endmembers with

en = [e1n · · · eLn]⊤, at = [a1t · · · aNt]⊤ is the abundance vector associated with the

t-th pixel, and nt ∈ RL is the additive noise. In matrix form for all pixels, we have

X = EA+N , (1.2)

where X = [x1 · · · xT ] ∈ RR×T and N is the noise matrix. The matrix factorization

consists in estimating both matrices E and A, where E is often termed basis matrix

and at is termed the encoding vector.

The LMM holds for the flat scene with separated regions corresponding to distinct
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endmembers (referred as checkerboarder pattern in [Heylen et al., 2014]), as illustrated

in Figure 1.2. Under such assumption, the abundances represent the proportions of

regional surface occupied by the corresponding endmember at the pixel. Such physical

interpretation leads to two constraints that are commonly considered in unmixing: the

abundance nonnegativity constraint (ANC) given by

ant ≥ 0,∀ n and t, (1.3)

and the abundance sum-to-one constraint (ASC) given by

N∑

n=1

ant = 1, ∀ t. (1.4)

The ASC is a controversy due to the considerable signature variability present in a

real hyperspectral image, where at least a positive scale factor should be included at

each pixel [Iordache et al., 2011]. In this manuscript, we will make precise whether an

algorithm relaxes ASC or not. Representing reflectance spectra, the endmembers should

be nonnegative by nature, namely en ≥ 0, for n = 1, . . . , N , or equivalently in matrix

form

E ≥ 0,

where the nonnegativity is element-wise.

Statistical techniques to solve the unmixing problem are often based on the minimization

of the residual error, in terms of the quadratic loss function using the conventional

Euclidean norm ‖ · ‖, with
‖xt −Eat‖2

for each of the observed spectra, subject to the nonnegativity of the endmembers, to

the ANC (1.3) and possibly to the ASC (1.4). The above optimization problem can be

written in the following matrix form

arg min
A,E≥0

‖X −EA‖2F .

This is the classical NMF, where the conventional algorithms alternate the optimiza-

tion over each matrix while keeping the other one fixed, which is also called a two
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block-coordinate descent scheme. In a supervised unmixing strategy, namely when end-

members are already known or extracted, the abundances are estimated by solving the

following constrained optimization problem: argminat ‖xt −
∑N

n=1 ant en‖2, subject to
∑N

n=1 ant = 1 and ant ≥ 0, for all n and t. This is the so-called fully-constrained least-

squares (FCLS). The FCLS algorithm proposed in [Heinz and Chang, 2001] yields the

optimal abundances in the least-squares sense.

Besides the pixel-wise and the matrix-wise expressions, respectively in (1.1) and (1.2),

it is worth noting that the LMM can be formulated using two other expressions. In

an element-wise formulation, the l-th spectral band of the t-th pixel/spectrum can be

decomposed as follows

xlt = el∗ at + nlt, (1.5)

where el∗ is the row vector of the l-th spectral band over all the endmembers. This

formulation is investigated in Section 1.4.3.2. There exists another expression for the

LMM, by considering all the image pixels at each spectral band. In this case, the LMM

takes the form

xl∗ = el∗A+ nl∗,

for the l-th spectral band, where xl∗ is the l-th row of the data matrix X representing

the l-th band of all pixels. By considering all the pixels at each spectral band, this yields

the following least-squares optimization problem

min
A

L∑

l=1

‖xl∗ − el∗A‖2.

This formulation will be considered and revisited in Chapter 6 in order to derive unmix-

ing algorithms that are robust to outlier bands.

The LMM is the most investigated model over the past decades. Besides its simplicity,

the underlying light scattering mechanism approximated by LMM is often acceptable

[Bioucas-Dias et al., 2012]. Under the linear assumption, various algorithms have been

developed in the literature. For example, N-Findr [Winter, 1999] and VCA [Nascimento

and Bioucas-Dias, 2005] for endmember extraction; FCLS [Heinz and Chang, 2001]

and SUnSAL [Bioucas-Dias and Figueiredo, 2010] for abundance estimation, and the

NMF-based techniques [Jia and Qian, 2009; Lu et al., 2013; Huck et al., 2010] for joint

estimation. Recent works have also included the sparsity of the abundance vectors into
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LMM [Bioucas-Dias and Figueiredo, 2010; Iordache et al., 2011, 2012]. In this case,

each spectrum is fitted by a sparse linear mixture of endmembers, namely only the

abundances with respect to a small number of endmembers are nonzero [Bioucas-Dias

and Figueiredo, 2010; Iordache et al., 2014]. We refer to [Keshava and Mustard, 2002;

Bioucas-Dias et al., 2012] for overviews of unmixing algorithms proposed for LMM.

1.4 Nonlinear Mixing Models

The linear mixing model is the most prevalent due to its simplicity for both the physical

interpretation and algorithms design. As explained above, the linear assumption is valid

only when the mixing happens in the macroscopic scale, namely when each photon in-

teracts with only one endmember before reaching the remote sensors. However, serious

nonlinear effects may exist in hyperspectral images, where the LMM becomes inappro-

priate [Dobigeon et al., 2014]. In such cases, more accurate and complex models are

required to address the nonlinearities. The main categories of nonlinear models include

the bilinear mixing models, the intimate mixing models, and the recent kernel-based

ones.

1.4.1 Augmenting the linear model with a bilinear model

The bilinear mixing occurs when the photon scattered by a certain endmember reflects

off other endmembers before arriving to the sensor [Dobigeon et al., 2014]. This phe-

nomenon is obvious in particular for the hyperspectral images containing a forested

field, where the interactions between the soil and the canopy happen as illustrated in

Figure 1.3. By adding the second-order interactions between endmembers to the linear

model, most bilinear models can be analytically expressed as

xt = Eat +

N−1∑

i=1

N∑

j=i+1

βij,tei ⊙ ej + nt,

for t = 1, . . . , T , where ⊙ represents the element-wise product (i.e., Hadamard product).

Various models characterize differently the interaction coefficients between endmembers,

namely βij,t, as described in the following.
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Figure 1.3: In a bilinear mixing mechanism, second-order interactions between end-
members augment the conventional linear mixture.

The Nascimento model (NM) proposed in [Nascimento and Bioucas-Dias, 2009] considers

N∑

i=1

ant +

N−1∑

i=1

N∑

j=i+1

βij,t = 1,

where ant ≥ 0 and βij,t ≥ 0, for all t, n and i 6= j. It is obvious that the NM can be

viewed as LMM with N(N−1)
2 additional endmembers composed by ei ⊙ ej , thus most

abundance estimation (supervised unmixing) techniques that have been developed for

LMM remain feasible with NM.

The Fan model (FM) proposed in [Fan et al., 2009] assumes that βij,t = aitajt (i 6= j),

resulting

xt = Eat +

N−1∑

i=1

N∑

j=i+1

aitajtei ⊙ ej + nt,

subject to both ANC and ASC on abundances. In FM, the nonlinear effect between

endmembers is proportional to their abundance amplitudes. In particular, if ait = 0,

namely the i-th endmember does not contribute to the t-th pixel, the bilinear effects
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between this endmember and other endmembers vanish. A major drawback of FM is

that it is not a generalized model that includes LMM as a special case.

To overcome the limitations of FM, a generalized bilinear model (GBM) is proposed

in [Halimi et al., 2011a,b], given by

xt = Eat +

N−1∑

i=1

N∑

j=i+1

γij,taitajt(ei ⊙ ej) + nt, (1.6)

where 0 ≤ γij,t ≤ 1 controls the interactions between endmembers ei and ej at the

t-th pixel. Assuming the endmembers are known, Bayesian algorithms are developed

in [Halimi et al., 2011a,b] to estimate the abundances with GBM, considering both

ANC and ASC. Appropriate prior distributions are chosen for the parameters under

estimation, then the joint posterior distributions are derived. The unknown parameters

are then estimated by a Markov chain Monte Carlo algorithm [Halimi et al., 2011a]

or by a gradient descent algorithm [Halimi et al., 2011b], the algorithms of the latter

are referred as BayGBM. In [Yokoya et al., 2014, 2012], the abundances with GBM are

estimated by a semi-nonnegative matrix factorization (semi-NMF).

The polynomial post-nonlinear mixing model (PPNMM) proposed in [Altmann et al.,

2012] assumes that the pixel reflectances are nonlinear functions of endmembers using

xt = Eat + bt(Eat)⊙ (Eat) + nt, (1.7)

where the nonlinear terms are characterized by the nonnegative parameter bt ∈ R, and
both ANC and ASC are imposed. One good property of this model is that it boils

down to LMM when bt = 0. Compared with GBM, the PPNMM defines the nonlinear

terms for each pixel with a single parameter bt instead of a set of parameters γij,t.

This formulation has a less complex model than GBM which is easier for computation.

In the aforementioned paper, Bayesian-based algorithms are developed to estimate the

unknown abundances, referred as BayPPNMM.

1.4.2 Intimate mixing model

The intimate mixture, also termed microscopic mixture, happens when particles of differ-

ent endmembers are closely adjacent within a pixel. In this case, light will interact with
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Figure 1.4: With an intimate mixing model, an observed spectrum is composed of a
microscopic mixture of several endmembers.

the particles of several endmembers before reaching the sensor, as illustrated in Fig-

ure 1.4. The most well-known model to accurately characterize the intimate mixing

mechanism is proposed by Hapke in [Hapke, 1981].

The average single-scattering albedo (SSA) represents the ratio of the scattered pho-

tons over the total photons influenced by the particle (scattered or absorbed). For a

wavelength λ, it is defined by

wλ =
N∑

n=1

fnwnλ,

where wnλ are the material albedos and fn the corresponding fractional proportions.

Let H(c, wλ) be the approximation to Chandrasekhar’s function for isotropic scattering,

defined as

H(c, wλ) =
1 + 2c

1 + 2c
√
1−wλ

.

The Hapke’s bidirectional reflectance model is defined by

Rλ(wλ) =
wλ

4(ci + ce)
H(ci, wλ)H(ce, wλ), (1.8)

where Rλ represents the reflectance at wavelength λ, and ci and ce denote the cosines

of the angles of the incidence and emergence, respectively.
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Recent works aim to combine the macroscopic mixture (LMM) and the microscopic

mixture characterized by Hakpe’s model [Close et al., 2012a]. In [Close et al., 2012b;

Dranishnikov et al., 2013], the intimate mixture effect is taken as an additional end-

member to LMM, yielding

xt =

N∑

n=1

anten + aN+1,tR

(
N∑

n=1

fntwn

)
+ nt.

Here, wn denotes the vector of SSA at all wavelengths and R is a vector function at all

wavelengths, extended from the definition of Rλ in (1.8). While, en is the spectrum of

the n-th “linear” endmember in the reflectance domain, wn represents the spectrum of

the n-th “nonlinear” endmember in the albedo domain. Their corresponding proportions

at the t-th pixel are given by ant and fnt, and satisfy respectively

N+1∑

n=1

ant = 1, and ant ≥ 0

and
N∑

n=1

fnt = 1, and fnt ≥ 0.

More recently, a macroscopic-microscopic mixing model (Mac-Mic) is proposed in [Close

et al., 2014], where each pixel is assumed to be either macroscopically with LMM, or

microscopically with the model xt = R
(∑N

n=1 fntwn

)
+ nt, where fnt represents the

microscopic proportions. Applying a gradient-descent method, unsupervised algorithms

have been developed to identify the endmembers and to estimate the mixture type and

the abundance vector at each pixel.

1.4.3 Kernel-based models

Machine learning with kernel-based models allows to alleviate missing physical descrip-

tion of the underlying nonlinearity by defining a data-driven nonlinearity. This approach

has been largely investigated in the context of the hyperspectral unmixing problem, as

reviewed in the following [Broadwater et al., 2007; Chen et al., 2012, 2013b,c; Nguyen

et al., 2013]. It is worth noting that most of these kernel machines operate in super-

vised unmixing, namely by estimating the abundances with some nonlinear model while

assuming the endmembers were already identified (often with the linear model). The
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methods presented in Chapters 3, 4, and 5 propose a joint estimation of the abundances

and endmembers using data-driven kernel-based models.

Essentially, kernel machines operate by mapping the data (e.g., the spectra in the hy-

perspectral image) to a so-called feature space H, defined by the use of a kernel function

κ as a measure of dissimilarity between data. A kernel function allows to evaluate the

inner product between any pair of mapped data, without the need to explicit the non-

linear map function φ. Commonly-used kernels are the Gaussian kernel, the polynomial

kernel and the linear kernel, with expressions given in Table 2.1. More details on kernel

methods are provided in Chapter 2.

In the following, we outline the most known kernel-based unmixing methods.

1.4.3.1 Kernel fully constrained least squares

In [Broadwater et al., 2007], the kernel fully constrained least squares abundance method

(KFCLS) is proposed to estimate the abundances. To this end, the optimization is

performed in the feature space, by replacing the inner product with a kernel function in

the FCLS. This method generalizes FCLS by estimating the abundances as follows

min
at

κ(xt,xt)− 2

N∑

i=1

aitκ(xt,ei) +

N∑

i=1

N∑

j=1

aitajtκ(ei,ej),

subject to both ANC and ASC. The resulting constrained optimization problem is ad-

dressed by the active set method.

In [Broadwater and Banerjee, 2009], KFCLS is further developed by employing the

following physically inspired kernel

κ(xi,xj) = φ(xi, γ)
⊤φ(xj, γ),

where φ is the nonlinear function that maps a reflectance spectrum to its SSA measure-

ment (see Section 1.4.2) and γ represents the angle of incidence. This kernel is able

to mimic the physics of the microscopic mixing mechanism, as long as the parameters

are appropriately chosen. When tested on the RELAB2 data accounting for intimate

2RELAB data were acquired at the NASA Reflectance Experiment Laboratory, at Brown University.
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mixtures, KFCLS using the proposed kernel yields the best unmixing results, compared

with the conventional Gaussian, polynomial and linear kernels.

While the above kernelized variants of FCLS operate by mapping the observed spectra

with a nonlinear function, they fail to capture the interactions between the endmem-

bers and are often criticized to have less physical interest in the context of unmixing

hyperspectral images [Dobigeon et al., 2014; Chen et al., 2013b].

1.4.3.2 Nonlinear unmixing operating in a feature space

In order to characterize nonlinear interactions between the endmembers, one may define

a general model of the form

xlt = ψ(el∗) + nlt,

where ψ is a nonlinear function to be defined. While such nonlinear model is a general-

ization of the LMM given in (1.5), it cannot be explored as a nonlinear mixing model,

since neither it does reveal the abundances, nor it allows to force constraints on them,

namely the ANC and ASC. To overcome these difficulties, Chen, Richard and Honeine

proposed a nonlinear model that combines a linear mixture and a nonlinear fluctuation

defined in a kernel-induced feature space, as described in the following. It is worth noting

that this approach follows the same idea of bilinear models, which augment the linear

mixture with a nonlinear one, and extends it to other nonlinear mixing mechanisms.

The K-Hype model/algorithm introduced in [Chen et al., 2013b] explores a linear mix-

ture with an additive nonlinear fluctuation for abundance estimation, where the non-

linearity depends exclusively on the endmembers. To be more precise, the K-Hype

defines the function ψ as a partially linear function of abundance vector, combined with

a nonlinear fluctuation term, with

xlt = el∗at + ψnlin(el∗),

where both ANC and ASC could be imposed, and ψnlin is a real-valued function be-

longing to a kernel-induced feature space Hnlin. When a polynomial kernel is applied,

the nonlinearity term is characterized by interactions between endmembers of the form

ek11 ⊙ ek22 ...⊙ e
kN
N , where ⊙ is the Hadamard product.
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In [Chen et al., 2012], the above additive fluctuation is relaxed by considering a convex

combination between the linear model and the nonlinear one, namely by minimizing the

following regularized cost function

( 1
u
‖ψlin‖2Hlin

+
1

1− u‖ψnlin‖2Hnlin

)
+

1

µ

L∑

l=1

(
xlt − ψ(el∗)

)2
,

where ψ(el∗) = ψlin(el∗) + ψnlin(el∗) and ψlin(el∗) = el∗at with ‖ψlin‖2Hlin
= ‖at‖2. The

parameter µ balances the regularization term and the fitting term, and u controls the

tradeoff between the linear model ψlin(el∗) = el∗at and the nonlinear function ψnlin

defined in a kernel-induced feature space Hnlin. This optimization problem is solved in

the same spirit as multiple kernel learning.

This combination of the linear model and an additive nonlinearity defined with kernels

has been extended to other formulations. In [Chen et al., 2013c], the abundances are

incorporated in the nonlinear model with a post-nonlinear model of the form ψ(Eat),

and a Bayesian approach is used in [Altmann et al., 2014]. Based on the aforementioned

framework of K-Hype, the spatial information is taken into consideration in [Chen et al.,

2014] by introducing an ℓ1-norm spatial regularization.

1.4.3.3 Nonlinear unmixing by solving the preimage problem

One may also consider the nonlinearity on the abundances, where each spectrum xt is

obtained as a nonlinear function of the corresponding abundances, namely φ(at) for some

nonlinear mapping function φ. The unmixing problem consists in estimating the inverse

map, namely recovering the abundance at from any observed spectrum xt. In order to

get the inverse map, one needs a set of available pairs of data {(a1,x1), ..., (aT ,xT )}.

This approach of learning the inverse map is proposed in [Nguyen et al., 2013], and

operates by solving the so-called preimage problem. Section 2.4 is devoted to describe

this hard problem in kernel-based methods, and provides solutions to tackle this problem.

Basically, the inverse of the mapping function φ, such that φ : at 7→ xt, can be viewed

as a dimensionality reduction operation from the spectral space to the lower-dimension

space of abundances. The conformal map approach, initially introduced in [Honeine

and Richard, 2011] and described in Section 2.4.3.4, was successfully applied in [Nguyen

et al., 2013] to solve the unmixing problem.
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The idea of mapping the abundance vectors to the space of observed spectra is also

considered in [Altmann et al., 2013], where a kernel-based method for nonlinear unmixing

is investigated, with a particular interest to the bilinear mixing model. To this end, a

Gaussian process latent variable model is used to establish a smooth mapping from the

space of abundance vectors to the space of spectra, by preserving the dissimilarities in

both spaces.

1.5 Main Contributions

This thesis brings several original contributions, essentially to nonlinear NMF with ker-

nels, and focuses on the task of nonlinear hyperspectral unmixing. First, we introduce

a novel kernel-based model for nonlinear NMF that estimates jointly the endmembers

and abundances (as opposed to other techniques which suffer from the preimage prob-

lem; see Section 3.2.2). Second, we extend the proposed kernel-based nonlinear NMF

to an online fashion, in order to tackle large volumes of data, such as with streaming

data. We also revisit the NMF as a bi-objective problem which combines the linear

and kernel-based NMF models. Finally, independent from the kernel-based NMF, we

propose a supervised spectral unmixing approach that is robust to outlier bands, by

writing the unmixing problem as the maximization of the correntropy criterion. The

main contributions are outlined next.

1.5.1 Structure of the manuscript

The rest of the manuscript is organized as follows:

The second chapter reviews kernel-based methods in machine learning, and presents the

preimage problem as well as the most known techniques to solve it.

The third chapter introduces a novel kernel-based model for the NMF (referred to

“KNMF” throughout this manuscript) that does not suffer from the preimage prob-

lem, by investigating the estimation of the factorization matrices directly in the input

space. For different kernel functions, we describe two schemes for iterative algorithms:

an additive update rule based on a gradient descent scheme and a multiplicative up-

date rule. Within the proposed framework, we develop several extensions to incorporate
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constraints, including sparseness, smoothness, and spatial regularization with a total-

variation-like penalty. The effectiveness of the proposed method is demonstrated on the

problem of unmixing hyperspectral images using well-known real images.

The fourth chapter is dedicated to extend the proposed nonlinear KNMF to an online

fashion, which is necessary when dealing with streaming data. By exploring recent

advances in the stochastic gradient descent and the mini-batch strategies, the proposed

methods have a fixed – tractable – complexity independent of the increasing number

of samples. We derive several general update rules, in both additive and multiplicative

strategies, and present the case of the Gaussian kernel in detail. The performance of the

proposed framework is validated on unmixing synthetic and real hyperspectral images.

The fifth chapter revisits the NMF as a multi-objective problem, in particular a bi-

objective one, where the objective functions defined in both input and feature spaces

are taken into account. By taking the advantage of the sum-weighted method from the

literature of multi-objective optimization, the proposed bi-objective KNMF determines

a set of nondominated, Pareto optimal, solutions. Moreover, the corresponding Pareto

front is approximated and studied. Experimental results on unmixing synthetic and real

hyperspectral images confirm the efficiency of the proposed bi-objective KNMF.

The sixth chapter develops a robust spectral unmixing approach for hyperspectral im-

ages, in the context of supervised learning, i.e., the endmembers are known in prior.

The robustness is achieved by writing the unmixing problem as the maximization of the

correntropy criterion subject to the most commonly used constraints. Two unmixing

problems are investigated: the first problem considers the fully-constrained unmixing,

with both the nonnegativity and sum-to-one constraints, while the second one deals

with the nonnegativity and the sparsity-promoting of the abundances. The correspond-

ing optimization problems are solved efficiently using an alternating direction method of

multipliers (ADMM) approach. Experiments on synthetic and real hyperspectral images

validate the performance of the proposed algorithms for different scenarios, demonstrat-

ing that the correntropy-based unmixing is robust to outlier bands.

Finally, chapter seven concludes the thesis. The limitations of the work are discussed,

as well as several perspectives for future work.
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1.5.2 Publications

The research work of this thesis resulted in the following publications.

Peer-reviewed international journals

1. F. Zhu, P. Honeine. “Bi-objective nonnegative matrix factorization: Linear Ver-

sus Kernel-Based Models”. IEEE Transactions on Geoscience and Remote Sens-

ing, vol. 54, no. 7, pp. 4012-4022, July 2016.

2. F. Zhu, P. Honeine. “Online kernel nonnegative matrix factorization”. Signal

Processing, vol. 131, pp. 143-153, February 2017.

3. F. Zhu, A. Halimi, P. Honeine, B. Chen, N. Zheng. “Correntropy maximization

via ADMM - application to robust hyperspectral unmixing”. IEEE Transactions

on Geoscience and Remote Sensing, 11 pages, in revision.

Peer-reviewed international conferences with proceedings

1. F. Zhu, P. Honeine, K. Maya. “Kernel non-negative matrix factorization without

the pre-image problem”. In Proc. of the 24th IEEE workshop on Machine Learning

for Signal Processing (MLSP), pages 1–6, Reims, France, 21–24 September 2014.

2. F. Zhu, P. Honeine. “Pareto front of bi-objective kernel-based nonnegative matrix

factorization”. In Proc. of the 23rd European Symposium on Artificial Neural Net-

works, Computational Intelligence and Machine Learning (ESANN), pages 585–

590, Bruges, Belgium, 22–24 April 2015.

3. F. Zhu, P. Honeine. “Online nonnegative matrix factorization based on kernel

machines”. In Proc. of the 23rd European Conference on Signal Processing (EU-

SIPCO), pages 2381–2385, Nice, France, 31 August–4 September, 2015.

4. F. Zhu, A. Halimi, P. Honeine, B. Chen, N. Zheng. “ADMM for Maximum

Correntropy Criterion”. In Proc. of the 28th INNS and IEEE International Joint

Conference on Neural Networks (IJCNN), pages 1–8, Vancouver, Canada, 24–29

July, 2016.
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Peer-reviewed national conference with proceedings

1. P. Honeine, F. Zhu. “Eviter la malédiction de pré-image : application à la fac-

torisation en matrices non négatives à noyaux”. Dans les actes du 25-ème col-

loque du Groupe de Recherche et d’Etudes du Traitement du Signal et des Images

(GRETSI), France, 8–11 September 2015.





Chapter 2

Kernel Methods in Machine

Learning and the Preimage

Problem

Contents

2.1 Introduction to Machine Learning . . . . . . . . . . . . . . . 26

2.2 Reproducing Kernels and Associated Hilbert Spaces . . . . 28

2.2.1 Positive definite kernel, reproducing kernel and RKHS . . . . . 29

2.2.2 The Moore-Aronszajn Theorem . . . . . . . . . . . . . . . . . . 31

2.2.3 Kernels: Construction and examples . . . . . . . . . . . . . . . 32

2.3 Introduction to Kernel Methods . . . . . . . . . . . . . . . . 34

2.3.1 From linear to nonlinear models using kernels . . . . . . . . . . 34

2.3.2 The representer theorem . . . . . . . . . . . . . . . . . . . . . . 36

2.4 The Preimage Problem in Kernel Methods . . . . . . . . . . 38

2.4.1 The curse of the preimage problem . . . . . . . . . . . . . . . . 38

2.4.2 Formulation of the preimage problem . . . . . . . . . . . . . . 40

2.4.3 Typical techniques for solving the preimage problem . . . . . . 41

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

25



26 Chapter 2. Kernel Methods in Machine Learning and the Preimage Problem

Kernel methods have received considerable popularity in machine learning due to their

ability to extend the linear techniques to nonlinear ones. To this end, kernel methods

consist in mapping the samples from the input space into a high dimensional feature

space, implicitly defined by using a specified kernel, without explicit knowledge neither

on the mapping function nor on the feature space. However, several pattern recognition

tasks require the reverse mapping, from the feature space back to the input space, which

is an ill-posed problem. This is the curse of the preimage problem, a major drawback

inherited from kernel methods. In this chapter, we first introduce the framework of kernel

methods in machine learning, with the Moore-Aronszajn theorem that connects positive

definite kernels to reproducing kernels and their associated Hilbert spaces. We describe

two key properties which are the kernel trick and the represented theorem. The last part

of this chapter is mainly devoted to the preimage problem in kernel methods, from its

formulation to the techniques proposed to solve this problem.

2.1 Introduction to Machine Learning

Within the scarcity of information on a studied system, the extraction of relevant knowl-

edge from available data has become a key challenge for engineers and researchers in

many fields. Pattern recognition, data mining, classification and regression, all fall

under the aegis of machine learning, which explores many disciplines of science and

mathematics, including statistics, computer science, engineering, and optimization the-

ory [Ghahramani, 2004]. The core objective of machine learning is to infer, from a set of

available samples, a function that best describes the relationship within them, and thus

the underlying mechanism of the studied system. Roughly, machine learning is divided

as supervised learning and unsupervised learning [Burges, 1998; Mitchell, 2006].

The supervised learning, often in classification, regression and reinforcement learning,

consists in estimating the correct output of a system given some input. Let X ∈ RL

be the input space and Y the output space, e.g., Y = {−1,+1} for labels in a binary

classification task. The goal is to learn a general rule (function) ψ in order to predict

the output y ∈ Y of a given new input sample x, often given in a pairwise notation

(x, y). By considering some loss function L that measures the error between the correct

output y and the estimated one ψ(x) provided by the learning machine, the expected
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risk is minimized as following

argmin
ψ

∫

X×Y
L(ψ(x), y)P (x, y) dx dy, (2.1)

where P (x, y) denotes the probability distribution of the pair (x, y) ∈ X × Y. Since

this distribution is unknown in general, on needs to infer the function from a training

set of samples, with a finite number of independent and identically distributed samples,

namely N pairs of samples (xi, yi) ∈ X ×Y, i = 1, ..., N . Therefore, the optimal function

ψ∗ is determined by the minimisation of the empirical risk, namely

argmin
ψ

1

N

N∑

i=1

L(ψ(xi), yi), (2.2)

instead of working on the optimization problem (2.1).

The second class is the unsupervised machine learning, where only observations from the

input space are available. The task becomes to build relevant representations, by finding

patterns in the available data, namely by inferring a function that describes the hidden

structure from unlabeled data. For some arbitrary loss function L, the minimization of

the expected risk takes the form

argmin
ψ

∫

X
L(ψ(x))P (x) dx,

where P (x), the probability distribution for x ∈ X , is not available in general. Given a

finite number of training samples xi, i = 1, ..., N , the optimal function is estimated by

minimizing the empirical risk as follows:

argmin
ψ

1

N

N∑

i=1

L(ψ(xi)).

Classical examples of unsupervised learning are clustering, dimensionality reduction,

and blind source separation. The latter includes techniques such as principal component

analysis, independent component analysis, and nonnegative matrix factorization.

Both supervised and unsupervised learning are ill-posed problems, since there exists

an infinite number of functions that nullify the empirical risk function. However, the

minimization of the empirical risk does not always correspond to the minimization of

the expected risk, namely the gap between both risks could be potentially large. This
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is the so-called over-fitting problem. To overcome this problem, one should perform

the minimization of the empirical risk by restricting the search of the optimal solution

to an hypothesis space of regular functions. This is the regularization approach firstly

proposed in [Tikhonov and Arsenin, 1977]. In the succeeding section, we introduce a

particular case of the space of regular functions, namely the reproducing kernel Hilbert

space [Aronszajn, 1950].

2.2 Reproducing Kernels and Associated Hilbert Spaces

Kernel methods are a class of machine learning that includes nonlinear techniques, such

as support vector machine (SVM) for classification and regression [Vapnik, 1995; Burges,

1998], as well as conventional linear techniques, such as PCA. Before presenting kernel

methods, we first introduce in this section the concepts of reproducing kernels and

reproducing kernel Hilbert spaces, and the Moore-Aronszajn theorem which connect

them to positive definite kernels.

Functional analysis notations

Before proceeding, we need to introduce several important notations from functional

analysis, following the lecture notes [Lorenzo and Durrett, 2010]. Let F be a function

space, namely the space of real-valued functions defined from an input space X ⊂ RL,
i.e., F is the space of functions f : X → R.

Definition 2.1 (Inner product). Consider a function 〈·, ·〉 : F × F −→ R, that assigns

each ordered pair (u,v) a scalar 〈u,v〉. It is said to be an inner product if the following

conditions are satisfied:

1. 〈u,v〉 = 〈u,v〉, for all u,v ∈ F (Symmetry)

2. 〈αu+ βv,w〉 = α〈u,w〉+ β〈v,w〉, for all u,v ∈ F , and α, β ∈ R (Bilinearity)

3. 〈u,u〉 ≥ 0, for all u ∈ F , with 〈u,u〉 = 0⇐⇒ u = 0 (Positive definiteness)

Definition 2.2 (Norm). A norm is a nonnegative function ‖ · ‖ : F −→ R satisfying

the following conditions:
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1. ‖f‖ ≥ 0 and ‖f‖ = 0⇐⇒ f = 0, for all f ∈ F

2. ‖f + g‖ ≤ ‖f‖+ ‖g‖, for all f, g ∈ F

3. ‖αf‖ = |α| · ‖f‖, for all f ∈ F , for all α ∈ R

A norm can be defined from a given inner product, as follows: ‖f‖ =
√
〈f, f〉.

Definition 2.3 (Inner product space). An inner product space is a vector space with

an inner product structure.

Since an inner product naturally defines an associated norm, an inner product space is

also a normed vector space.

Definition 2.4 (Hilbert space). A Hilbert space H is an inner product space that is

complete (every Cauchy sequence converges in H) and separable (contains a countable

dense subset) endowed with an inner product. Let 〈u,v〉H be this inner product, for all

u,v ∈ H, then the norm in H is defined with ‖u‖H =
√
〈u,u〉H.

2.2.1 Positive definite kernel, reproducing kernel and RKHS

Definition 2.5 (Positive definite kernel [Aronszajn, 1950]). Let κ be a symmetric sim-

ilarity function from X × X to R, i.e., satisfying

κ(xi,xj) = κ(xj,xi).

It is said to be a positive definite kernel on X if, and only if,

N∑

i=1

N∑

j=1

cicjκ(xi,xj) ≥ 0,

for every N ∈ IN, xi ∈ X , ci ∈ R and i = 1, . . . , N .

Definition 2.6 (Gram matrix). Given a positive definite kernel κ and N observations

xi ∈ X , i = 1, ..., N , the N × N Gram matrix K associated with these observations is

defined by entries

Ki,j = κ(xi,xj),

for i, j = 1, ..., N .
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By definition, one can easily prove that the Gram matrix is positive definite.

Now we define the reproducing kernel and reproducing kernel Hilbert space (RKHS)

using the aforementioned notations. Let H be a Hilbert space of functions defined on a

set X . Denote by 〈f, g〉H the inner product and ‖f‖H =
√
〈f, f〉H the norm in H, for

any f, g ∈ H.

Definition 2.7 (Reproducing kernel). A function κ : X × X −→ R is called a repro-

ducing kernel of the Hilbert space H, if the following conditions are satisfied:

1. For all xi ∈ X , the function κ(xi, ·) belongs to H,

2. For all f ∈ H and xi ∈ X , f(xi) = 〈f(·), κ(xi, ·)〉H,

where the second propriety is often referred to the reproducing property in [Aronszajn,

1950].

Definition 2.8 (Reproducing kernel Hilbert space (RKHS)). A Hilbert space H is a

reproducing kernel Hilbert space (RKHS), if there exists a reproducing kernel whose

span is dense in H.

Next, we demonstrate the so-called kernel trick from the property of reproducing kernel

and RKHS.

Corollary 2.1 (Kernel trick). Any evaluation of the reproducing kernel κ of a Hilbert

space H can be expressed as an inner product in H, namely

κ(xi,xj) = 〈κ(xi, ·), κ(xj , ·)〉H. (2.3)

Proof. Replacing f(·) in Point 2. of Definition 2.7 with the function κ(xj , ·), which

belongs to H due to Point 1. of Definition 2.7, leads to

κ(xj,xi) = 〈κ(xj , ·), κ(xi, ·)〉H.

According to the kernel trick, the associated norm of the RKHS is expressed as

‖κ(xi, ·)‖H =
√
〈κ(xi, ·), κ(xi, ·)〉H =

√
κ(xi,xi), for all xi ∈ X ,
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from Definition 2.4. The kernel trick (2.3) is a primer property that has been applied in

almost every kernel-based methods, as described in Section 2.3.1.

2.2.2 The Moore-Aronszajn Theorem

The Moore-Aronszajn Theorem [Aronszajn, 1950] provides a one-to-one correspondence

between positive definite kernels and reproducing kernels.

Theorem 2.9 (Moore-Aronszajn Theorem). For every positive definite kernel κ on a

set X , there is a unique RKHS of functions on X for which κ is a reproducing kernel.

Conversely, every reproducing kernel is a positive definite kernel.

Proof. We give a sketch of proof of this theorem. First, given a reproducing kernel

κ(xi,xj) = 〈κ(xi, ·), κ(xj, ·)〉H of the RKHS H, one can show that it is a positive

definite kernel. The symmetry property is straightforward from the symmetry of the

inner product 〈·, ·〉H. The positive definiteness is proved as follows:

N∑

i=1

N∑

j=1

αiαjκ(xi,xj) =

N∑

i=1

N∑

j=1

αiαj〈κ(xi, ·), κ(xj , ·)〉H

=
〈 N∑

i=1

αiκ(xi, ·),
N∑

j=1

αjκ(xj, ·)
〉
H

=
∥∥∥

N∑

i=1

αiκ(xi, ·)
∥∥∥
2

H

≥ 0.

Second, given a positive definite kernel κ, one can construct the corresponding RKHS. To

this end, let H be the Hilbert functional space defined as a completion of the pre-Hilbert

space spanned by the set of functions

{
f : f =

N∑

i=1

αi κ(xi, ·), xi ∈ X , αi ∈ R
}
, (2.4)

where xi ∈ X , i = 1, . . . , N is a set of available samples.
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Given two functions of H, namely

f =
N∑

i=1

αiκ(xi, ·) and g =
N∑

j=1

βjκ(xj , ·),

one can endow H with the inner product defined as

〈f, g〉H =
〈 N∑

i=1

αiκ(xi, ·),
N∑

j=1

βjκ(xj , ·)
〉
H

=
N∑

i=1

N∑

j=1

αiβj〈κ(xi, ·), κ(xj , ·)〉H

=

N∑

i=1

N∑

j=1

αiβjκ(xi,xj),

where the last equality is established using the kernel trick (2.3). One can check that

the reproducing property carries over to the completion H. As for the uniqueness of H,
it is easy to prove the isometric isomorphism to any other Hilbert space with the same

reproducing kernel.

2.2.3 Kernels: Construction and examples

According to the Moore-Aronszajn Theorem (Theorem 2.9), positive definite kernels are

reproducing kernels, and vice versa. For notation simplicity, we shall refer to them as

kernels in the following. In this subsection, we present the operations to construct new

kernels from existing ones, and give some examples of the commonly used kernels [Shawe-

Taylor and Cristianini, 2004].

Denote κ1, κ2 : X ×X → R two (positive definite) kernels. The function κ : X ×X → R

is a valid kernel as well if, for all xi,xj ∈ X , it is defined in any of the following relations:

1. linear combination: κ(xi,xj) = β1κ1(xi,xj) + β2κ2(xi,xj), for β1, β2 ∈ R+.

2. shifting : κ(xi,xj) = κ1(xi,xj) + ℓ, for ℓ ∈ R+.

3. product : κ(xi,xj) = κ1(xi,xj)κ2(xi,xj).

4. power : κ(xi,xj) = κ1(xi,xj)
p, for p ∈ IN+.

5. exponential : κ(xi,xj) = exp
(
κ1(xi,xj)

)
.
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Table 2.1: Some common kernels and their gradients w.r.t. the first argument.

Name κ(xi,xj) ∇xi
κ(xi,xj)

P
ro
je
ct
iv
e Linear x⊤i xj xj

Polynomial (x⊤i xj + c)d d (x⊤i xj + c)(d−1)xj

Sigmoid tanh(γx⊤i xj + c) γsech2(γx⊤i xj + c)xj

R
B
F

Gaussian exp( −12σ2 ‖xi − xj‖2) − 1
σ2κ(xi,xj)(xi − xj)

Laplacian exp(−1σ ‖xi − xj‖) − 1
σκ(xi,xj)sgn(xi − xj)

Rational quadratic 1− ‖xi−xj‖2

‖xi−xj‖2+σ
−2σ(xi−xj)

(‖xi−xj‖2+σ)2

6. normalization: κ(xi,xj) =
κ1(xi,xj)√

κ1(xi,xi)κ1(xj ,xj)
.

It can be proven that the functions built from the above operations are valid kernels,

simply by checking their positive definiteness.

Generally, kernels defined on vector spaces can be divided into two categories: projective

kernels and radial basis function (RBF) kernels. The projective kernels measure the

similarity between samples using an inner product, and are of the form

κ(xi,xj) = f(xi
⊤xj). (2.5)

The RBF kernels, using distances as measures of dissimilarity, take the form

κ(xi,xj) = g(‖xi − xj‖). (2.6)

Of particular interest is the Gaussian kernel with

κ(xi,xj) = exp
( −1
2σ2
‖xi − xj‖2

)
,

where σ ∈ R∗ is the tunable bandwidth parameter. Table 2.1 lists the most commonly

used examples of projective and RBF kernels, with their expressions. The last column

presents, for each kernel, the expression of its gradient with respect to (w.r.t.) its first

argument, which will be required in the analysis given in this thesis.
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2.3 Introduction to Kernel Methods

In this section, we describe the underlying mechanism of kernel methods to build a

nonlinear model from the linear one, and explain the well-known representer theorem.

2.3.1 From linear to nonlinear models using kernels

Kernel methods provide a framework to capture the nonlinear patterns from the observed

data by first mapping them into a potentially high dimensional feature space, and then

applying a linear model on the transformed data [Shawe-Taylor and Cristianini, 2004].

A key property behind kernel methods is the kernel trick, which allows the formulation

of nonlinear variants from linear algorithms, under the assumption that the latter can

be expressed in terms of inner products only, involving pairs of observed data [Hein and

Bousquet, 2004], as described in the following.

The Moore-Aronszajn Theorem (Theorem 2.9) states that any (positive definite) kernel

κ on some input space X defines a RKHS H with an endowed inner product 〈·, ·〉H such

that

κ(xi,xj) = 〈κ(xi, ·), κ(xj , ·)〉H, for all xi,xj ∈ X .

For any given x ∈ X , the element κ(x, ·) of H can be viewed as a transformation of x,

thus defining a mapping function Φ as follows:

Φ: X → H

x 7→ Φ(x) = κ(x, ·).

As a consequence, the Moore-Aronszajn Theorem (Theorem 2.9) states that the evalu-

ation of any (positive definite) kernel κ at any pair of samples corresponds to the inner

product of their images in some feature space H, namely

κ(xi,xj) = 〈Φ(xi),Φ(xj)〉H,

for any xi,xj ∈ X . Figure 2.1 represents the mapping from the input space X to the

feature space H, i.e., the RKHS associated to the used kernel κ.
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x1

x2

Φ(x1)

Φ(x2)

Φ(·)

Φ(·)

X
H

Figure 2.1: Illustration of the mapping Φ from the input space X to the feature spaceH.

Most machine learning techniques can rely on these kernels to operate in the poten-

tially high-dimension space, without expliciting the mapping Φ, neither computing the

coordinates in that space, but rather by simply computing the inner products (via the

kernel) between pairs of images of the data. This is the idea of the kernel trick. Its

applicability can be easily illustrated when computing the quadratic distance between

any pair of images, Φ(xi) and Φ(xj), in the feature space, that can be evaluated using

the kernel trick, with

‖Φ(xi)− Φ(xj)‖2H = 〈Φ(xi),Φ(xi)〉H + 〈Φ(xj),Φ(xj)〉H − 2〈Φ(xi),Φ(xj)〉H

= κ(xi,xi) + κ(xj,xj)− 2κ(xi,xj).

As a consequence, any distance-based algorithm (e.g., k-nearest neighbors) can be eas-

ily generalized to the feature space by evaluating the distances with kernels as above.

Besides this simple illustration, it turns out that the kernel trick allows to provide non-

linear functions or decision boundaries based on linear ones. To this end, it is often used

in conjunction with the representer theorem.
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2.3.2 The representer theorem

A wide range of machine learning problems seek the optimal function which best charac-

terizes the relationship within training data, mainly by minimizing a regularized empiri-

cal risk function. Considering the aforementioned kernel-based framework, the optimiza-

tion problem needs to be solved in the RKHS, a space of potentially infinite-dimension,

e.g., the RKHS associated with the Gaussian kernel. The power of the representer theo-

rem is to provide an explicit form of the optimal solution, with a linear-in-the-parameter

expression that transforms the optimization problem into the estimation of the optimal

vector in a N -dimensional space, N being the number of available training data. This

subsection presents the representer theorem, first proposed in [Kimeldorf and Wahba,

1971] and generalized in [Schölkopf et al., 2001] for the wide class of kernel methods.

Theorem 2.10 (The Representer Theorem). Consider a kernel κ defined on an in-

put space X with its reproducing kernel Hilbert space H, and a set of training samples

x1, . . . ,xN ∈ X with possibly their associated labels y1, . . . , yN . For a loss function L
and a non-decreasing function Ω on R+, the minimizer of a regularized empirical risk

function of the form

1

N

N∑

i=1

L(ψ(xi), yi) + λΩ(‖ψ‖2H) (2.7)

admits the representation

ψ =
N∑

i=1

αi Φ(xi), (2.8)

where Φ(xi) = κ(xi, ·).

Proof. Let HN be the subspace spanned by the functions {κ(x1, ·), . . . , κ(xN , ·)},
namely for Φ(xi) = κ(xi, ·):

HN =

{
ψ : ψ =

N∑

i=1

αiΦ(xi), xi ∈ X , αi ∈ R
}
.

Thus, every ψ ∈ H admits a unique decomposition of two parts, one belonging to HN
and the other belonging to its orthogonal space, i.e.,

ψ =

N∑

i=1

αi Φ(xi) + ψ⊥, (2.9)
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where the orthogonal part ψ⊥ satisfies 〈ψ⊥,Φ(xi)〉H = 0, for i = 1, . . . , N . Considering

the evaluation of (2.9) at any xj ∈ X , we have from the reproducing property

〈ψ,Φ(xj)〉H =

N∑

i=1

αi κ(xi,xj) + 〈ψ⊥,Φ(xj)〉H

=
N∑

i=1

αi κ(xi,xj).

It turns out that the evaluation of ψ at every observed data depends only on a set of

coefficients αi, i = 1, . . . , N , thus the first term in the regularized empirical risk (2.7)

is independent of ψ⊥. Now, we consider the regularization term in (2.7). From the

Pythagorean theorem, it can be expressed by

Ω(‖ψ‖2H) = Ω
(
‖

N∑

i=1

αiΦ(xi)‖2H + ‖ψ⊥‖2H
)
. (2.10)

Since ψ⊥ is orthogonal to
∑N

i=1 αi Φ(xi) and Ω is non-decreasing, reducing ‖ψ⊥‖2H will

strictly reduce (2.10), while this operation has no influence on the first term of the

regularized risk in (2.7). Consequently, we set ψ⊥ = 0 and obtain the optimal solution

as given in (2.8). The representer theorem is then proven.

The significance of this theorem lies in the existence of a unique solution to a regular-

ized empirical risk; this solution can be expressed as a finite linear combination of the

kernels centered on the training data. As a consequence, minimizing the aforementioned

empirical risk boils down to an N -dimensional optimization problem, namely the esti-

mation of the optimal coefficients α1, . . . , αN ∈ R. To illustrate this idea, we consider

the least squares optimization problem with the Tikhonov regularization, namely with

the quadratic loss L(ψ(xi), yi) = (yi − ψ(xi))2 and the identity as the regularization

function Ω. By combining the resulting regularized risk with expression (2.8), we get

the ridge regression problem minα ‖y −Kα‖2 + λα⊤Kα, where α = [α1 · · · αN ]⊤,
y = [y1 · · · yN ]⊤ and K is the Gram matrix of entries κ(xi,xj) for i, j = 1, . . . , N .

Therefore, the optimal solution is given by the linear system (K + λ I)α = y, where I

is the identity matrix of appropriate size.

This is the essence of the representer theorem which, in conjunction with the kernel

trick, constitutes the foundations of the wide class of kernel methods, including SVM for
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classification and regression [Vapnik, 1995; Burges, 1998]. Indeed, only the parameters αi

and the evaluation of the kernel κ are required for a regression task where ψ is evaluated

at some given sample x, namely ψ(x) =
∑N

i=1 αiκ(xi,x), or for a classification task

where ψ(x) is compared to a threshold in order to categorize the sample.

2.4 The Preimage Problem in Kernel Methods

As described above, kernel methods for classification and regression tasks do not require

the explicit definition of the Φ(xi), namely the images of samples under the mapping

function Φ, or any other element from the feature space H. This is not the case when

dealing with kernel methods for pattern recognition, feature extraction and denoising,

for instance, where one needs the preimage of some ψ ∈ H, i.e., the element in X whose

image under Φ is ψ. It turns out that only seldom elements in the feature space have

an exact preimage in the input space [Mika et al., 1999]. To overcome these difficulties,

the preimage problem seeks the best approximation, namely the element x∗ in the input

space X whose image under Φ is the closest to the feature ψ. Before defining the preimage

problem and describing available techniques to solve it, we illustrate the importance of

the preimage through the denoising problem.

2.4.1 The curse of the preimage problem

Within the framework of kernel methods, consider a denoising task by projecting the

image Φ(x̃) of any given sample x̃ ∈ X onto a relevant manifold, such as the one obtained

from the principal axes in kernel PCA.

Consider a set of training samples xi, for i = 1, . . . , N . Following the representer

theorem, the principal axes take the form

ψk =
N∑

i=1

αk,iΦ(xi),

where the parameters αk,1, . . . , αk,N of the k-th principal axis are obtained from an

eigendecomposition of the Gram matrix of entries κ(xi,xj), for i, j = 1, . . . , N ; See

[Schölkopf et al., 1998] for more details. Once the subspace defined by considering K

principal axes, one can solve a denoising task [Mika et al., 1999]. To this end, the noisy
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Figure 2.2: Illustration of the preimage problem, namely the estimation of the element
x∗ in the input space X whose image is the closest to ψ in the feature space H.

sample x̃ from the input space X needs first to be mapped to the feature space H. The
resulting image Φ(x̃) is denoised by projecting it onto the aforementioned subspace,

which yields

K∑

k=1

〈ψk,Φ(x̃)〉H ψk =
K∑

k=1

〈 N∑

j=1

αk,jΦ(xj),Φ(x̃)
〉
H

N∑

i=1

αk,iΦ(xi)

=

K∑

k=1

N∑

j=1

αk,jκ(xj, x̃)

N∑

i=1

αk,iΦ(xi),

thus, by setting αi =
∑K

k=1

∑N
j=1 αk,jαk,iκ(xj , x̃), we get

ψ =
N∑

i=1

αi Φ(xi). (2.11)

Thus, the denoised pattern can be written as a linear expansion of the N images of

the training data. It turns out that this pattern is of little interest as it belongs to the

potentially infinite-dimensional RKHS. Of great interest is representing the denoised

pattern in the input space, as illustrated in Figure 2.2, since the denoised sample needs

to be reconstructed in the original space of input data.

Independent of the pattern recognition task (denoising, feature extraction, ...) and

the used algorithm (PCA or any manifold/machine learning algorithm), the resulting

pattern takes the form (2.11) due to the representer theorem in Theorem 2.10. This is
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the case for instance of the algorithm introduced in [Essoloh et al., 2008] for distributed

auto-localization in wireless sensor networks using a reproducing kernel Hilbert space,

the kernel-based autoregressive model for prediction in time series proposed in [Kallas

et al., 2013a], and the supervised nonlinear unmixing of hyperspectral images in [Nguyen

et al., 2013], to name a few.

All these machine learning techniques (and more, such as kernel-based variants of the

NMF; see Section 3.2.2 in Chapter 3) suffer from the so-called curse of the preimage

problem, namely require to estimate, in the input space, the counterpart of some element

of the RKHS. Most elements of the feature space RKHS, including the elements of

interest, are not valid images, i.e., the result of applying the map to some sample from

the input space. To overcome this limitation, one needs to operate an approximation,

by solving the so-called preimage problem.

2.4.2 Formulation of the preimage problem

The preimage problem is an ill-posed problem in the sense of Hadamard [Honeine and

Richard, 2011] (see footnote 1 in page 5.). Indeed, the feature space is often of higher

dimension than the input space, e.g., the RKHS associated with the Gaussian kernel

has infinite dimension. As a consequence, the exact preimages of almost all the elements

in RKHS do not exist, and even when an exact preimage exists, it may not be unique.

To this end, instead of identifying the exact preimage, one turns to an approximate

solution, the so-called preimage, by estimating the element x∗ in the input space whose

image under Φ is as close as possible to ψ in the feature space, namely Φ(x∗) ≈ ψ.

Mathematically, the preimage problem is formulated by minimizing the distance between

Φ(x∗) and ψ, namely

x∗ = argmin
x∈X
‖ψ − Φ(x)‖2H.

Besides this distance-based expression, other formulations can also be considered, such

as maximizing their inner product or their normalized inner product (i.e., correlation or

cosine), such as argmax
x∈X
〈ψ,Φ(x)〉H. In practice, all these formulations provide roughly

the same results; for this reason, we consider in the following the above distance-based

formulation without loss of generality.
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Let ψ =
∑N

i=1 αiΦ(xi) ccording to the representer theorem in Theorem 2.10, leading to

the following optimization problem

x∗ = argmin
x∈X

1

2

∥∥∥
N∑

i=1

αiΦ(xi)− Φ(x∗)
∥∥∥
2

H
,

where the factor 1/2 is added for convenience. By expanding this expression and applying

the kernel trick, the optimization problem boils down to minimizing the following cost

function

J(x) = −
N∑

i=1

αiκ(xi,x) +
1

2
κ(x,x), (2.12)

where the terms independent of x are removed. Moreover, this cost function can be

further reduced when dealing with RBF kernels such as the Gaussian and Laplacian

kernels since the last term of the right-hand-side becomes a constant independent of x.

2.4.3 Typical techniques for solving the preimage problem

The minimization of the cost function in (2.12) is generally nonlinear and nonconvex

for nonlinear kernels. To solve this optimization problem, a variety of techniques have

been developed. These techniques are essentially either based on classical optimization

schemes, such as gradient descent and fixed-point techniques, or learning-based tech-

niques that explore connections with dimensionality-reduction techniques, such as the

multidimensional scaling and the conformal map approaches, to name a few [Honeine

and Richard, 2011].

2.4.3.1 Gradient descent method

The gradient descent method is a first-order optimization tool that is feasible in versatile

optimization problems. Over the iterations, it takes steps proportional to the opposite

direction of the gradient of the objective function at current point, namely

xt+1 = xt − ηt∇xJ(xt), (2.13)

where t is the current iteration number and ηt is the tunable step-size parameter. For

the preimage problem, the gradient of the objective function J(x) in (2.12) w.r.t. x
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takes the form

∇xJ(x) = −
N∑

i=1

αi∇xκ(xi,x) +
1

2
∇xκ(x,x). (2.14)

Here, ∇xκ(·, ·) denotes the gradient of the kernel function w.r.t. its first argument, which

can be easily derived for most valid kernels, as given in Table 2.1.

Since the objective function under study is nonlinear and nonconvex, local minima can

be obtained using the gradient descent method. To alleviate this problem, several simu-

lations with different initial points should be performed in practice. Moreover, the choice

of an appropriate value of the step-size parameter, using for instance a line-search pro-

cedure, is cumbersome.

2.4.3.2 Iterative fixed-point method for particular kernels

In order to overcome the issue of tuning the step-size parameter, the principle of the

fixed-point method explores an expression of the form x∗ = f(x∗) for some function

f . In this case, the update rule takes the form xt+1 = f(xt). This approach can be

used to solve the preimage problem, as shown next for the Gaussian kernel [Mika et al.,

1999]. One can easily provide extensions to other RBF and projective kernels, as given

in [Kwok and Tsang, 2004].

The Gaussian kernel takes the form

κ(xi,xj) = exp
(
−1
2σ2
‖xi − xj‖2

)
,

and satisfies κ(x,x) = 1. After removing the constant term, the objective function (2.12)

becomes

−
N∑

i=1

αi exp
(
−1
2σ2
‖xi − x‖2

)
,

with its gradient expressed by

∇xJ(x) = −
1

σ2

N∑

i=1

αi exp
(
−1
2σ2 ‖xi − x‖2

)
(x− xi).
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By setting ∇xJ(x) to zero at the optimum, we obtain the fixed-point iterative scheme

xt+1 =

N∑

i=1

αi exp
(
−1
2σ2 ‖xi − xt‖2

)
xi

N∑

i=1

αi exp
(
−1
2σ2
‖xi − xt‖2

)
. (2.15)

The disadvantage of the fixed-point method is that it suffers local minima, as well as

numerical instabilities [Kwok and Tsang, 2004].

2.4.3.3 Multidimensional scaling approach

Another way to tackle the preimage problem is from the perspective of a dimensionality-

reduction problem, since one needs to construct samples in the input space from elements

in the larger-dimension feature space. From this connection between the two problems,

the authors of [Kwok and Tsang, 2003] propose to address the preimage problem us-

ing a multidimensional scaling (MDS) approach [Williams, 2002], namely by preserving

pairwise distances in input-feature spaces.

Consider the distance in the input space, namely ‖x − xi‖, and the corresponding

feature-space distance between the mapped data, namely ‖ψ − Φ(xi)‖H. In the ideal

case according to the MDS, these distances are preserved with

‖x− xi‖2 = ‖ψ − Φ(xi)‖2H, for all i = 1, . . . , N.

However, since the exact preimage does not exist in general, and the MDS assumption

inaccurate, one considers the approximated solution obtained by minimizing the least

square error between pairwise distances, namely

x∗ = argmin
x

N∑

i=1

∣∣‖x− xi‖2 − ‖ψ − Φ(xi)‖2H
∣∣2.

By setting the gradient of the above cost function to zero, one gets an iterative fixed-

point update rule with

xt+1 =

∑N
i=1 αi(‖xi − xt‖2 − δ2i )xi∑N

i=1(‖xi − xt‖2 − δ2i )
,
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where δi denotes the distance in the feature space between ψ and Φ(xi), namely δi =

‖ψ − Φ(xi)‖H. Under the assumption of centered data, a non-iterative approach is

established using linear algebra in [Kwok and Tsang, 2003]. Compared with the iterative

fixed-point method, the non-iterative method does not suffer from numerical instabilities.

2.4.3.4 Conformal map approach

A major drawback of the MDS approach is the assumption that the distances are pre-

served in both spaces, which is not the case in general. A way to overcome this drawback,

as proposed in [Honeine and Richard, 2009] with the conformal map approach, is to con-

sider the conservation of the inner products in both spaces, where the inner products in

the feature space are computed in an appropriate basis, namely the one that allows the

isometry with the input space.

To learn the preimage, the proposed approach operates in two steps. First, one con-

structs a basis in the feature space that is isometric with the input space basis. Second,

by representing ψ in this basis and the preservation of the inner products in both input

and obtained basis, one gets the inner products between the preimage and the available

data in the input space, thereby estimating the preimage.

Let N be the number of basis functions to be constructed in the feature space. Following

the representer theorem in Theorem 2.10, each of the basis functions in the feature

space H can be expressed as a linear combination of the N mapped samples, namely

Ψk =
∑N

i=1 αk,iΦ(xi), for k = 1, 2, ..., N , where αk,i are the coefficients to be determined.

Thereby, the coordinates of any image Φ(xi) in H are obtained by

Ψxi
= [〈Ψ1,Φ(xi)〉H 〈Ψ2,Φ(xi)〉H · · · 〈ΨN ,Φ(xi)〉H]⊤.

In the ideal case, the inner products are preserved in both input and feature spaces,

with

Ψ⊤xi
Ψxj

= x⊤i xj, for all i, j = 1, 2, ..., N.

To solve this problem, one seeks to minimize the quadratic error given by

min
Ψ1,...,ΨN

N∑

i,j=1

∣∣∣Ψ⊤xi
Ψxj
− x⊤i xj

∣∣∣
2
+ η

N∑

k=1

‖ΨN‖2H,
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where the second term is the regularization term penalizing large norm functions. By

writing the above minimization problem into the matrix form, which leads to the optimal

coefficients αk,i, and considering the preservation of the inner products in both spaces,

we obtain the preimage x∗ of any
∑N

i=1 αiΦ(xi) from the expression

x∗ = (XX⊤)−1X(X⊤X − ηK−1) [α1 α2 · · · αN ]
⊤,

where X = [x1 · · · xN ].

The conformal map approach is free from numerical instabilities or local minima as

opposed to classical optimization techniques, such as gradient descent and fixed-point

techniques. Compared to the MDS technique, the conformal map does not require any

assumption of preserving the distances in both input and feature spaces.

2.5 Conclusion

In this chapter, we have briefly reviewed the fundamental concepts and properties behind

kernel methods, including the kernel trick and the Moore-Aronszajn Theorem, as well

as the definition of nonlinear models with the representer theorem. These key properties

have been widely used to derive kernel methods for decisional tasks, with classification

and regression. We have also described the curse of the preimage problem, formulated

the preimage problem and presented the most-known techniques to tackle this problem.

The curse of the preimage problem is an inherent issue in kernel methods, due to the rep-

resenter theorem and the underlying nonlinear model. Many pattern recognition tasks

for unsupervised learning suffer from this issue, including auto-localisation in wireless

sensor networks [Essoloh et al., 2008] and kernel-based autoregressive modeling in time

series [Kallas et al., 2013a], as well as the nonlinear unmixing of hyperspectral images as

given in [Nguyen et al., 2013]. In the succeeding chapter, we show that kernelizations of

the nonnegative matrix factorization (NMF), as conducted in [Zhang et al., 2006; Ding

et al., 2010; Li and Ngom, 2012], also suffer from this curse. We propose an original

kernel-based framework for nonlinear NMF that does not suffer from the curse of the

preimage problem.





Chapter 3

Kernel NMF Without the

Preimage Problem

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 From the Linear NMF to its Kernelizations . . . . . . . . . 51

3.2.1 A primer on the NMF . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.2 On kernelizing the NMF: the curse of the preimage problem . . 52

3.3 A Novel Framework for KNMF . . . . . . . . . . . . . . . . . 55

3.3.1 Remarks on the physical interpretation . . . . . . . . . . . . . 56

3.3.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.3 Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Extensions of KNMF . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.1 Constraints on the endmembers . . . . . . . . . . . . . . . . . . 62

3.4.2 Constraints on the abundances . . . . . . . . . . . . . . . . . . 65

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5.1 State-of-the-art methods . . . . . . . . . . . . . . . . . . . . . . 70

3.5.2 Settings of the parameters . . . . . . . . . . . . . . . . . . . . . 71

3.5.3 Performance of the KNMF . . . . . . . . . . . . . . . . . . . . 72

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

47



48 Chapter 3. Kernel NMF Without the Preimage Problem

The nonnegative matrix factorization (NMF) is widely used in signal and image pro-

cessing, including bio-informatics, blind source separation and hyperspectral image anal-

ysis in remote sensing. A great challenge arises when dealing with a nonlinear formu-

lation of the NMF. Within the framework of kernel machines, the models suggested in

the literature do not allow the representation of the factorization matrices, which is a

fallout of the curse of the preimage. In this chapter, we propose a novel kernel-based

model for the NMF that does not suffer from the preimage problem, by investigating the

estimation of the factorization matrices directly in the input space. For several kernel

functions, we describe two schemes for iterative algorithms: additive update rules based

on a gradient descent scheme and multiplicative update rules in the same spirit as in the

Lee and Seung algorithm. Within the proposed framework, we develop several extensions

to incorporate constraints, including sparseness, smoothness, and spatial regularization

with a total-variation-like penalty. The effectiveness of the proposed method is demon-

strated with the problem of unmixing hyperspectral images, using well-known real images

and results from state-of-the-art techniques.

3.1 Introduction

The nonnegative matrix factorization (NMF) has become a prominent analysis technique

in many fields, owing to its power to extract sparse and tractable interpretable repre-

sentations from a given data matrix. The scope of application spans feature extraction,

compression and visualization, within pattern recognition, machine learning, and signal

and image processing [Comon and Jutten, 2010; Gillis, 2014]. It has been popularized

since Lee and Seung discovered that, when applied to an image, “NMF is able to learn

the parts of objects” [Lee and Seung, 1999]. Since then, the NMF has been successfully

applied in image classification [Buchsbaum and Bloch, 2002; Guillamet et al., 2001], face

expression recognition [Li et al., 2001; Buciu and Pitas, 2004], audio analysis [Smaragdis,

2004; Févotte et al., 2008], objet recognition [Liu and Zheng, 2004; Wild et al., 2004],

computational biology [Devarajan, 2008], gene expression data [Brunet et al., 2004; Kim

and Tidor, 2003], and clustering [Young et al., 2006]. Moreover, the NMF is tightly

connected to spectral clustering [Xu et al., 2003; Ding et al., 2005; Li and Ding, 2006].

See also [Cichocki et al., 2009] [Comon and Jutten, 2010, Chap. 13].
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The NMF consists in approximating a nonnegative matrix with two low-rank nonneg-

ative matrices. It allows a sparse representation with nonnegativity constraints, which

often provides a physical interpretation to the factorization thanks to the resulting part-

based representation, as opposed to conventional models. Typically, this idea is described

with the issue of spectral unmixing in hyperspectral imagery. As already explained in

Section 1.2, the spectral unmixing of a given hyperspectral image aims to extract the

spectra of “pure” materials, called endmembers, and to estimate the abundance of each

endmember in every pixel, i.e., every position of the area under scrutiny. It is obvious

that both abundances and spectra of endmembers are nonnegative. The NMF provides

a decomposition suitable for such physical interpretation.

The physical interpretation of the NMF is however not for free. To illustrate this,

consider the well-known singular-value-decomposition (SVD), which allows to solve effi-

ciently the unconstrained matrix factorization problem with orthogonality constraints,

under the risk of losing the physical meaning while providing a unique solution. It is

known that the SVD has polynomial-time complexity. As opposed to the SVD, the NMF

is unfortunately a NP-hard and an ill-posed problem, in general. In fact, it is proven in

[Vavasis, 2009] that the NMF is NP-hard; see also [Gillis, 2011]. The NMF is ill-posed,

as illustrated by the fact that the decomposition is not unique; see [Huang et al., 2014]

and references therein. In practice, the nonuniqueness issue is alleviated by including

priors other than the nonnegativity, the most known being sparseness and smoothness

constraints.

First studied in 1977 in [Leggett, 1977], the NMF problem was reinvented several times,

scilicet with the work of [Paatero and Tapper, 1994]. It has gained popularity thanks to

the work published in Nature by [Lee and Seung, 1999]. Many optimization algorithms

have been proposed for NMF, such as the multiple update rules [Lee and Seung, 2001]

and the nonnegative least squares [Kim and Park, 2008]. Sparseness, which allows the

uniqueness and enhances interpretation, is often imposed either with projections [Hoyer,

2004] or with ℓ1-norm regularization [Kim and Park, 2007]. Smoothness also reduces

the degrees of freedom, typically in the spectral unmixing problem, either by using

piecewise smoothness of the estimated endmembers [Pauca et al., 2006; Jia and Qian,

2009; Qian et al., 2011], or by favoring spatial coherence with a regularization similar to

the total-variation (TV) penalty [Iordache et al., 2012]. Additional constraints are the

orthogonality [Ding et al., 2006; Li et al., 2007], the minimum-volume [Zhou et al., 2011a],



50 Chapter 3. Kernel NMF Without the Preimage Problem

L

X··
·

1

≈ E ×
N

A

1

··
·

· · ·

1 · · · T 1 · · · N

1 T

Figure 3.1: The linear NMF model.

and the sum-to-one constraint which is often imposed on the abundances [Masalmah and

Veléz-Reyes, 2008]. As illustrated in all these developments with the unmixing problem

in hyperspectral imagery, the NMF and most of its variants are based on a linear mixing

assumption.

Providing nonlinear models for NMF is a challenging issue [Yang and Oja, 2012]. Re-

cently, a few attempts have been made to derive kernel-based NMF, for the sake of a

nonlinear variant of the conventional NMF [Zhang et al., 2006; Ding et al., 2010; Li

and Ngom, 2012]. To this end, the linear model in the latter is defined by writing each

column of the matrix under scrutiny as a linear combination of the columns of the first

matrix to be determined, the second matrix being defined by the weights of the linear

combination. By defining the input space with the columns of the studied matrix, these

columns are mapped with a nonlinear transformation to some feature space where the

linear model is applied. Unfortunately, the obtained results cannot be exploited, since

the columns of the first unknown matrix lie in the feature space. One needs to get

back from the (often infinite dimensional) feature space to the input space. This is the

curse of the preimage problem, a major drawback inherited from kernel machines as

described in Section 2.4. While the preimage problem was initially revealed in denoising

tasks [Mika et al., 1999], this issue yields an even more difficult problem when dealing

with the nonnegativity constraint, as demonstrated in [Kallas et al., 2013b].

In this chapter, we propose an original kernel-based framework for nonlinear NMF that

does not suffer from the curse of the preimage problem, as opposed to other techniques

derived within kernel machines (see Figure 3.2 and Figure 3.3 for a snapshot of this

difference). To this end, we explore a novel model defined by the mapping of the columns

of the matrices (the investigated matrix and the first unknown one), these columns lying

in the input space. It turns out that the corresponding optimization problem can be

efficiently tackled directly in the input space, thanks to the nature of the underlying
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kernel function. We derive two iterative algorithms: an additive update rule based on

a gradient descent scheme, and a multiplicative update rule in the same spirit of [Lee

and Seung, 1999]. We investigate expressions associated to the polynomial and Gaussian

kernels, as well as the linear one which yields the conventional linear NMF. Based on the

proposed framework, we describe several extensions to incorporate constraints, including

sparseness and smoothness, as well as a TV-like spatial regularization. The relevance

of the proposed approach with its extensions is shown on two well-known hyperspectral

images.

3.2 From the Linear NMF to its Kernelizations

This section presents the conventional linear NMF and its kernel-based counterparts,

illustrating the preimage problem.

3.2.1 A primer on the NMF

The conventional NMF consists in approximating a nonnegative matrix X with the

product of two low-rank nonnegative matrices E and A, namely

X ≈ EA (3.1)

subject to E ≥ 0 and A ≥ 0; See Figure 3.1 for notations. The former nonnegativity

constraint is relaxed in the so-called semi-NMF. The optimization problem is written in

terms of the nonnegative least squares optimization, with

arg min
A,E≥0

1

2
‖X −EA‖2F ,

where ‖ · ‖F is the Frobenius norm and 1
2 is included for convenience.

Under the nonnegativity constraints, the estimation of the entries of both matrices E

and A is not convex. Luckily, the estimation of each matrix, separately, is a convex

optimization problem. Most NMF algorithms take advantage of this property, with

an iterative technique that alternates the optimization over each matrix while keeping

the other one fixed. This is the so-called two block-coordinate strategy. The most
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commonly used algorithms are the gradient descent rule and the multiplicative update

rule (expressions are given in Section 3.3.3.1). For a recent survey of standard algorithms,

see [Comon and Jutten, 2010, Chapter 13], as well as [Gillis, 2014] and references therein.

It is easy to notice that the matrix model (3.1) can be considered vector-wise, by dealing

separately with each column of the matrix X. Let

X = [x1 x2 · · · xT ],

E = [e1 e2 · · · eN ],

and ant be the (n, t)-th entry inA. Then the NMF consists in estimating the nonnegative

vectors en and scalars ant, for all n = 1, . . . , N and t = 1, . . . , T , such that

xt ≈
N∑

n=1

ant en. (3.2)

Following this model, the resulting optimization problem is

min
ant,en≥0

J ,

where

J =
1

2

T∑

t=1

∥∥∥xt −
N∑

n=1

ant en

∥∥∥
2
. (3.3)

It is this vector-wise model that is investigated in deriving kernel-based NMF.

Without loss of generality, we illustrate the NMF with the problem of unmixing in

hyperspectral imagery. In this case and following the notation in (3.2), each spectrum

xt of the image is decomposed into a set of spectra e1,e2, . . . ,eN (i.e., endmembers),

while a1t, a2t, . . . , aNt denote their respective abundances. Such physical problem allows

us to incorporate additional constraints and impose structural regularity of the solution,

as detailed in Section 3.4.

3.2.2 On kernelizing the NMF: the curse of the preimage problem

Some attempts have been made to derive nonlinear, kernel-based, NMF. These methods

originate in mapping the columns of X with a nonlinear function Φ(·), namely trans-

forming xt into Φ(xt) for t = 1, . . . , T . Let H be the resulting feature space, with the
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Figure 3.2: When applying NMF directly in the feature space, each column xt of X is
mapped to the feature space H, where the basis elements eΦn are defined. Without any

access to these elements, one needs to estimate their preimages (shown with ?).

associated norm ‖Φ(xt)‖H and the corresponding inner product 〈Φ(xt),Φ(xt′)〉H. The

latter is evaluated with a kernel function κ(xt,xt′).

The NMF model is defined in the feature space with

Φ(xt) ≈
N∑

n=1

ant e
Φ
n , (3.4)

written in matrix form as

XΦ ≈
[
eΦ1 eΦ2 · · · eΦN

]
A,

where

XΦ =
[
Φ(x1) Φ(x2) · · · Φ(xT )

]
.

Here, the elements eΦn lie in the feature space H, since Φ(xt) belongs to the span of

all these elements eΦn . Essentially, all kernel-based NMF proposed so far have been

considering this model [Zhang et al., 2006; Buciu et al., 2008; Ding et al., 2010; Li and

Ngom, 2012; An et al., 2011]. Unfortunately, the model (3.4) suffers from an important

weakness, inherited from kernel machines: one has no access to the elements in the

feature space, but only to their inner products using the kernel function. The fact that

the elements eΦn lie in the feature space H leads to several drawbacks in NMF, as shown

next.

The first drawback of the model (3.4) is revealed when one computes the inner product

of the images of any pair (xt′ ,xt), in the feature space, namely

〈Φ(xt′),Φ(xt)〉H ≈
N∑

n=1

ant 〈Φ(xt′),eΦn 〉H.
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Here, the left-hand-side is equivalent to κ(xt′ ,xt). Unfortunately, the inner product

〈Φ(xt′),eΦn 〉H cannot be evaluated using the kernel function. To circumvent this diffi-

culty, one should restrict the form of all the elements eΦn , as investigated in [Lee et al.,

2009; An et al., 2011] by writing them in terms of a linear combination of the images

Φ(xt). By rearranging the coefficients of the linear combination in a matrix W , the

problem takes the form XΦ ≈XΦWA. While this simplifies the optimization problem,

it is however quiet different from the conventional NMF model (3.1).

Another downside of the model (3.4) is that one cannot impose the nonnegativity of the

elements in the feature space, and in particular eΦn . Therefore, the constraint eΦn ≥ 0

should be dropped. Only the coefficients ant can be set to nonnegative values. In this

case, one cannot tackle the NMF problem. For this reason, only the constraint A ≥ 0

could be imposed, which yields the relaxed semi-NMF problem [Li and Ngom, 2012].

The most important drawback is that one has no access to the elements eΦn , and therefore

cannot extract the endmembers. Having a given matrixX, only the abundance matrixA

is determined. To estimate the columns of the other matrix E, namely the endmembers,

one needs to solve the so-called preimage problem. This ill-posed problem consists of

estimating an input vector whose image, defined by the nonlinear map Φ(·), is as close
as possible to a given element in the feature space. In other words, one determines each

column en of E by solving Φ(en) ≈ eΦn , for all n = 1, . . . , N , which is a nonconvex,

nonlinear, ill-posed optimization problem. This issue is obvious in all previous works

on kernel-based NMF; see for instance [Pan et al., 2011]. Including the nonnegativity

constraint to the preimage problem is a challenging problem [Kallas et al., 2011, 2013b].

Few attempts were conducted to circumvent some of these difficulties. The polynomial

kernel (x⊤i xj + c)d with c = 0, is considered in [Buciu et al., 2008], restricting the

derivation to this kernel as argued by the authors. [Pan et al., 2011] approximates the

kernel by another one associated to a nonnegative map, which requires to solve another

optimization problem prior to processing the one associated to the NMF. Moreover, the

preimage problem needs to be solved subsequently.

For all these reasons, applying the nonnegative matrix factorization in the feature space

has been often limited to preprocessing data before solving a classification task. Still,

one has no access to the bases in the resulting relevant representation. Next, we propose

a framework where both matrices can be exhibited, without suffering from the curse
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Figure 3.3: Illustration of the proposed KNMF. In contrast to the one in Figure 3.2,
the proposed approach estimates the basis elements en directly in the input space X .

This strategy allows to overcome the curse of the preimage problem.

of the preimage problem. The core of the difference between these two approaches is

illustrated in Figure 3.2 and Figure 3.3.

3.3 A Novel Framework for KNMF

In this section, we propose a novel framework to derive a kernel-based NMF, referred

as KNMF, where the underlying model is defined by a basis in the input space, and

therefore without the pain of solving the preimage problem. To this end, we consider

the following matrix factorization model:

XΦ ≈ EΦA,

where

EΦ = [Φ(e1) Φ(e2) · · · Φ(eN )].

The nonnegativity constraint is imposed to A ≥ 0 and en ≥ 0 for all n = 1, . . . , N .

Therefore, we have the following model:

Φ(xt) ≈
N∑

n=1

antΦ(en). (3.5)

This means that we are estimating the basis elements en directly in the input space, as

opposed to the model given in (3.4) where the elements eΦn lie in the feature space.
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To estimate all en and ant, we consider a simple alternating technique to minimize the

corresponding cost function

J =
1

2

T∑

t=1

∥∥∥Φ(xt)−
N∑

n=1

antΦ(en)
∥∥∥
2

H
, (3.6)

thus yielding the optimization problem

min
ant,en

T∑

t=1

(
−

N∑

n=1

antκ(en,xt) +
1

2

N∑

n=1

N∑

m=1

antamtκ(en,em)
)
,

where κ(xt,xt) is removed from the expression since it is independent of ant and en. By

taking its derivative with respect to ant, we obtain the following expression:

∇antJ = −κ(en,xt) +
N∑

m=1

amt κ(en,em). (3.7)

By taking the gradient of J with respect to en, we obtain:

∇enJ =

T∑

t=1

ant

(
−∇enκ(en,xt) +

N∑

m=1

amt∇enκ(en,em)
)
. (3.8)

Here, ∇enκ(en, ·), which denotes the gradient of the kernel with respect to its argument

en, can be easily derived for most valid kernels, as given in Table 2.1. Expressions for

the linear, polynomial and Gaussian kernels are given in Section 3.3.3. But before, we

provide some insights on the physical interpretation of the proposed model, then we

derive two algorithms to solve the above KNMF.

3.3.1 Remarks on the physical interpretation

We study the interpretation of the proposed KNMF by connecting it to several state-of-

the-art models. The nonlinear model Φ(xt) ≈
∑N

n=1 antΦ(en) given in (3.5) is closely

related to the intimate mixture with Hapke model. This model for microscopic mixture is

described in Section 1.4.2, and summarized as follows. The Hapke model uses the widely

known bidirectional reflectance distribution function for microscopic mixtures, which de-

scribes the relationship of observed reflectance to the albedo of materials within the scene

under scrutiny [Hapke, 1981]. The single-scattering albedo (SSA) for a wavelength λ is
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Figure 3.4: Schematic illustration of the physical interpretation confronted to data-
driven nonlinearity in unmixing models.

defined as wλ =
∑N

n=1 fnwnλ, where ωnλ represents the material albedos and fn repre-

sents the corresponding fractional proportions. It is easy to see that this microscopic

mixing model is a linear model in the albedo domain, while it is nonlinear in the re-

flectance domain. Indeed, the model in the latter takes the form xt ≈ R
(∑N

n=1 fntwn

)
,

where R is the nonlinear Hapke’s reflectance function and wn is the vector of SSA at

all wavelengths. By mapping the reflectance data to the albedo domain, the unknown

microscopic proportions are estimated using the model R−1(xt) ≈
∑N

n=1 fntR
−1(wn),

where we have usedwn = R−1(en) as recommended in [Close et al., 2014]. The proposed

nonlinear model has the same structure, where the difference lies in a nonlinearity R−1

characterized by a nonlinear kernel.

Machine learning with kernel-based models allow to alleviate missing physical inter-

pretation of the underlying nonlinearity, as have been largely investigated in the liter-

ature (See 1.4.3 and references therein). Figure 3.4 attempts to categorize unmixing

models/techniques in terms of both their “level” of physical interpretation and their

data-driven modeling that describes the nonlinear relations. Consider for instance the

post-nonlinear model of the form ψ(Eat); while it has a physical interpretation as stip-

ulated in [Chen et al., 2013c], the nonlinear function ψ(·) is estimated from data with

kernel-based methods, thus without any physical interpretation. It is worth noting that

the linear and quadratic models can be viewed as special cases of kernel-based models.

3.3.2 Algorithms

In the following, we derive iterative techniques to minimize (3.6) using the two-block

coordinate descent strategy, namely by alternating over the matrices E and A, while

keeping the other matrix fixed.
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3.3.2.1 Additive update rule

In the first iterative algorithm, an additive update rule is presented to solve the opti-

mization problem. It is based on a gradient descent scheme, alternating over both ant

and en, and is followed by a rectification function to impose their nonnegativity. A

normalization step to impose the sum-to-one constraint on at can also be used.

By using a gradient descent scheme, we update ant according to ant = ant − ηnt∇antJ ,
where the stepsize ηnt can take different values for each pair (n, t). Replacing ∇antJ
with its expression in (3.7), we get the following update rule:

ant = ant − ηnt
( N∑

m=1

amt κ(en,em)− κ(en,xt)
)
. (3.9)

A similar procedure is applied to estimate the elements en. The obtained update rule

is given by

en = en − ηn∇enJ , (3.10)

where the stepsize ηn can depend on n, and the expression of ∇enJ is given in (3.8). To

impose the nonnegativity of the results, the negative values obtained by these update

rules are set to zero. This is done by using the rectification function x = max(x, 0) over

all ant and the entries in all the vectors en. The abundance vectors can be normalized

to have unit ℓ1-norm, by substituting at with at/‖at‖1 at each iteration.

Each of the above update rules followed by the rectification function can be expressed

in a single formulation with the projected gradient descent scheme (PGD), proposed

for the conventional NMF in [Lin, 2007b]. In this formulation, the update rule of the

endmember en is

en =
(
en − ηn∇enJ )+, (3.11)

where ( · )+ denotes the operator that projects its argument to the nonnegative set
{
en = [en1 en2 · · · enL]⊤, enl ≥ 0, l = 1, 2, . . . , L

}
. Likewise, the update rule for the

abundances is

ant =

(
ant − ηnt

( N∑

m=1

amt κ(en,em)− κ(en,xt)
))

+

, (3.12)

where
(
ant
)
+
= max(ant, 0) in this case.
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3.3.2.2 Multiplicative update rule

The additive update rule is a simple procedure, however, the convergence is generally

slow, and is directly related to the used stepsize value. In order to overcome these issues,

we propose a multiplicative update rule, in the same spirit as in the conventional NMF

[Lee and Seung, 2001].

To derive a multiplicative update rule for ant, the stepsize ηnt in (3.9) is chosen such

that the first and the third terms in its right-hand-side cancel, that is

ηnt =
ant∑N

m=1 amt κ(en,em)
.

Therefore, by substituting this expression in (3.9), we get the following update rule:

ant = ant ×
κ(en,xt)∑N

m=1 amt κ(en,em)
. (3.13)

A normalization at = at/‖at‖1 can be considered to force the sum-to-one constraint.

Compared with the additive rule, the above multiplicative rule has several interesting

properties, such as the absence of any tunable stepsize parameter and the nonexistence of

any rectification function. The latter property is due to the multiplicative nature which

ensures that elements cannot become negative when one initializes with a nonnegative

value.

A similar procedure is applied to estimate the basis elements en, for n = 1, . . . , N .

The trick is that the expression of the gradient (3.8) can always be decomposed as

∇enJ = P − Q, where P and Q are nonnegative. This is called the split gradient

method [Lantéri et al., 2011]. It is obvious that this decomposition is not unique. Still,

one can provide a multiplicative update rule for en, with an expression depending on

the used kernel function, as shown next for each of the most used kernels.

3.3.3 Kernels

All kernels studied in the literature of kernel machines can be investigated in the pro-

posed framework. In the following, we derive expressions of the additive and multiplica-

tive update rules for the most known kernel functions.
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3.3.3.1 Back to the conventional linear NMF

A key property of the proposed KNMF framework is that the conventional NMF is a

special case, when the linear kernel is used with κ(en,z) = z⊤en, for any vector z

from the input space. The gradient of the kernel is ∇enκ(en,z) = z in this case. By

substituting this result in the above expressions, we get the additive update rules





ant =

(
ant − ηnt

( N∑

m=1

amt e
⊤
men − x⊤t en

))

+

;

en =

(
en − ηn

T∑

t=1

ant

(
− xt +

N∑

m=1

amt em

))

+

,

as well as the multiplicative update rules





ant= ant × x⊤
t en

N∑

m=1

amt e
⊤
men

;

en = en ⊙

T∑

t=1

ant xt

T∑

t=1

ant

N∑

m=1

amt em

.

(3.14)

In the latter expression for updating en, the element-wise operations are used, with the

division and multiplication, the latter being the Hadamard product given by ⊙. These

expressions yield the well-known classical NMF. It is worth noting that in the case of

the linear kernel, namely when the map Φ(·) is the identity operator, the optimization

problem (3.6) is equivalent to the minimization of the (half) Frobenius norm between

the matrices X and EA.

3.3.3.2 The polynomial kernel

The polynomial kernel is defined as κ(en,z) = (z⊤en + c)d. Here, c is a nonnegative

constant balancing the impact of high-order to low-order terms in the kernel. The

kernel’s gradient is given by:

∇enκ(en,z) = d (z⊤en + c)(d−1)z.
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We consider the most common quadratic polynomial kernel with d = 2. Replacing

∇enκ(en,z) with this result, we obtain the additive update rules





ant =

(
ant − ηnt

( N∑

m=1

amt(e
⊤
men + c)2 − (x⊤t en + c)2

))

+

;

en =

(
en − ηn

T∑

t=1

ant

(
− 2(x⊤t en + c)xt + 2

N∑

m=1

amt(e
⊤
men + c)em

))

+

,

and the multiplicative update rules





ant= ant × (x⊤t en + c)2

N∑

m=1

amt (e
⊤
men + c)2

;

en = en ⊙

T∑

t=1

ant(x
⊤
t en + c)xt

T∑

t=1

ant

N∑

m=1

amt(e
⊤
men + c)em

.

(3.15)

The division in the latter expression is also component-wise.

3.3.3.3 The Gaussian kernel

The Gaussian kernel is defined by κ(en,z) = exp
(
−1
2σ2
‖en − z‖2

)
. In this case, its

gradient is

∇enκ(en,z) = −
1

σ2
κ(en,z)(en − z).

The update rules of ant can be easily derived, in both additive and multiplicative cases.

For the estimation of en, the additive rule is

en =

(
en − ηn

( 1

σ2

T∑

t=1

ant κ(en,xt)(en − xt)−
1

σ2

T∑

t=1

N∑

m=1

antamt κ(en,em)(en − em)
))

+

.

As for the multiplicative algorithm, we split the corresponding gradient into the subtrac-

tion of two nonnegative terms. This is possible since all the matrices are nonnegative,
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as well as the kernel values. We get the update rule:

en = en ⊙

T∑

t=1

ant

(
xtκ(en,xt) +

N∑

m=1

amtenκ(en,em)
)

T∑

t=1

ant

(
enκ(en,xt) +

N∑

m=1

amtemκ(en,em)
) , (3.16)

where the division is component-wise.

3.4 Extensions of KNMF

The above work provides a framework to derive extensions of the KNMF by including

additional constraints and structural information. Several extensions are described in

the following with constraints imposed on the endmembers and the abundances, typically

motivated by the unmixing problem in hyperspectral imagery.

3.4.1 Constraints on the endmembers

Different constraints can be imposed on the endmembers, essentially to improve the

smoothness of the estimates. It turns out that the derivatives, with respect to the

abundances, of the unconstrained cost function J in (3.6) and the upcoming constrained

cost functions are identical. Thus, the resulting update rules for the estimation of the

abundances remain unchanged, as described with (3.12) for the additive scheme and

(3.13) for the multiplicative scheme.

3.4.1.1 Smoothness with the ℓ2-norm regularization

In the estimation of the basis elements en, regular solutions with less variations are of

interest, e.g., less spiky [Piper et al., 2004]. This property is exploited by a smoothness

constraint, as described next.

In the input space, this constraint can be formulated with the minimization of the norm

of each endmember, namely 1
2

∑N
n=1 ‖en‖2. By combining this penalty term with the
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cost function (3.6), we get

J2-norm =
1

2

T∑

t=1

∥∥∥Φ(xt)−
N∑

n=1

antΦ(en)
∥∥∥
2

H
+
λ

2

N∑

n=1

‖en‖2.

The parameter λ controls the balance between the reconstruction accuracy (first term

in the above expression) and the smoothness of all the endmembers en (second term).

To estimate the endmember en, we consider the gradient of J2-norm with respect to it,

which yields the following additive update rule:

en =

(
en − ηn

( T∑

t=1

ant

( N∑

m=1

amt∇enκ(en,em)−∇enκ(en,xt)
)
+ λen

))

+

.

Using the split gradient method presented in Section 3.3.2.2, we get the corresponding

multiplicative update rule. It turns out that one gets the same expressions as in the

unconstrained case, with (3.14), (3.15) or (3.16), where the term λen is added to the

denominator.

Within the proposed KNMF framework, we can also consider a similar constraint in the

feature space. The cost function becomes

JH2-norm =
1

2

T∑

t=1

∥∥∥Φ(xt)−
N∑

n=1

antΦ(en)
∥∥∥
2

H
+
λH
2

N∑

n=1

‖Φ(en)‖2H. (3.17)

The gradient with respect to en yields the additive update rule

en =

(
en − ηn

( T∑

t=1

ant

( N∑

m=1

amt∇enκ(en,em)−∇enκ(en,xt)
)
+ λH∇enκ(en,en)

))

+

.

Depending on the used kernel, the expression of the multiplicative update rule is similar

to the one given in the unconstrained case, given in (3.14), (3.15) or (3.16), by adding

the term λH∇enκ(en,en) to the denominator. It is easy to see that, when dealing with

the linear kernel where∇enκ(en,en) = en, the corresponding update rules are equivalent

to the ones given with the constraint in the input space.

3.4.1.2 Smoothness with fluctuation regularization
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Virtanen [2003] imposed smoothness by reducing the fluctuations between successive

values. The resulting cost function of the KNMF with such constraint is

Jfluct =
1

2

T∑

t=1

∥∥∥Φ(xt)−
N∑

n=1

antΦ(en)
∥∥∥
2

H
+
γ

2

N∑

n=1

L−1∑

l=2

|eln − e(l−1)n|,

where γ is a tradeoff parameter and eln is the l-th entry of the vector en. The derivative

of the penalizing term with respect to eln equals to:





+γ when eln < e(l−1)n and eln < e(l+1)n;

−γ when eln > e(l−1)n and eln > e(l+1)n;

0 otherwise.

(3.18)

Adopting the descent gradient scheme (3.11) and incorporating the above expression

into ∇enJ given in (3.8), we can get the modified additive and multiplicative update

rules for the endmembers estimation.

3.4.1.3 Smoothness with weighted-average regularization

Another smoothness regularization raised by [Chen and Cichocki, 2005] aims to reduce

the difference between eln and a weighted average eln = αe(l−1)n + (1 − α)eln, where
α ∈ ]0 1[ is a tunable parameter that determines the local smoothness range. For each

endmember en, this weighted average can be written in a matrix form as en = Ten,

where

T =




(1− α) 0 · · · 0

α (1− α) (1− α) · · · 0
...

. . .
...

αL−1(1− α) · · · α (1− α) (1− α)



.

For each en, the cost function is defined as 1
L‖en − en‖2 = 1

L‖(I−T)en‖2, where I is the
identity matrix of appropriate size. By considering all N endmembers and introducing a

regularization parameter ρ that controls the smoothing process, we get the cost function:

Jav =
1

2

T∑

t=1

∥∥∥Φ(xt)−
N∑

n=1

antΦ(en)
∥∥∥
2

H
+

ρ

2L

N∑

n=1

‖(I −T)en‖2.
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The gradient of the penalty term with respect to en takes the form ρQen, where Q =

1
L(I−T)⊤(I−T). The additive update rule of the endmembers is easy to derive using

the descent gradient method. The multiplicative update rule depends on the used kernel,

with expressions similar to (3.14), (3.15) and (3.16), by adding the term ρQen to the

denominator.

3.4.1.4 Case of the Gaussian kernel

To sum up, consider for instance the Gaussian kernel. In this case, the multiplicative

update rule of any of the aforementioned smoothness constraints takes the form

en = en ⊙

T∑

t=1

ant∇enκ(en,xt)

T∑

t=1

ant

N∑

m=1

amt∇enκ(en,em) + f(en)

,

where the division is component-wise. In this expression, the function f(en) can be

λen, when dealing with the ℓ2-norm regularization in the input space, or ρQen when the

weighted-average regularization is used. When the smoothness is operated in the feature

space as given in (3.17), this function cancels since we have in this case ∇enκ(en,en) = 0.

This property is common to all RBF kernels, since ‖Φ(·)‖2 is constant.

3.4.2 Constraints on the abundances

To satisfy a physical interpretation, two types of constraints are often imposed on the

abundances, the sparseness and the spatial regularity. These constraints have no influ-

ence on the update rules for the endmembers estimation as given in Section 3.3. As a

consequence, we shall study in detail the estimation of the abundances.

3.4.2.1 Sparseness regularization

Sparseness has been proved to be very attractive in many disciplines, namely by penal-

izing the ℓ1-norm of the weight coefficients [Hoyer, 2004]. Typically for hyperspectral

unmixing, each spectrum xt can be represented by using a few endmembers, namely

only a few abundances ant are nonzero. Since the latter are nonnegative, the ℓ1-norm of
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their corresponding vector is
∑N

n=1 ant. This leads to the following sparsity-promoting

cost function

Jsparse =
1

2

T∑

t=1

∥∥∥Φ(xt)−
N∑

n=1

antΦ(en)
∥∥∥
2

H
+ µ

T∑

t=1

N∑

n=1

ant,

where the parameter µ controls the tradeoff between the reconstruction accuracy and

the sparseness level. By considering the derivative of Jsparse with respect to ant, the

additive update rule is obtained as follows:

ant =

(
ant − ηnt

( N∑

m=1

amt κ(en,em)− κ(en,xt) + µ
))

+

.

To get the multiplicative update rule, we set the stepsize to

ηnt =
ant

N∑

m=1

amt κ(en,em) + µ

,

which leads to

ant = ant ×
κ(en,xt)

N∑

m=1

amt κ(en,em) + µ

.

3.4.2.2 Spatial regularization

Spatial regularization that favors spatial coherence is essential in many image processing

techniques, as often considered in the literature with the total-variation (TV) penalty.

This penalty was recently studied in [Iordache et al., 2012] for the linear unmixing

problem in hyperspectral imagery. Motivated by this work, we derive in the following

a TV-like penalty for incorporating spatial regularity within the proposed framework.

It is worth noting that the derivations of the spatial regularization can be viewed as

the application on the abundances of the method given in Section 3.4.1.3, by extending

the one-direction smoothness (of eln) into the two-dimensional spatial regularization (of

ank).

When transforming (i.e., folding) a hyperspectral image of size T = a× b pixels into a

matrix X, the t-th column of X is filled with the (i, j)-th spectrum from the original

image, with i = ⌈ tb⌉ and j = t− (i− 1)b, where ⌈ · ⌉ denotes the smallest integer greater
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Mn(i, j) Mn(i, j + 1)Mn(i, j − 1)

Mn(i− 1, j)

Mn(i+ 1, j)

Figure 3.5: Schematic illustration of the spatial regularization.

than or equal to its argument. In the following, we denote by Mn the matrix of the n-th

abundance defined by the entries Mn(i, j) = ank, with k = (i− 1)b+ j for i = 1, 2, . . . , a

and j = 1, 2, . . . , b. For any inner element Mn(i, j) belonging to the n-th abundance

map, we shall use for spatial regularization the four geographical neighboring directions;

cf. Figure 3.5.

The four spatial weighted averages of Mn(i, j) from its left, right, up and down sides

are denoted as Mn(i, j)→, Mn(i, j)←, Mn(i, j)↓ and Mn(i, j)↑. They are expressed as

follows: 



Mn(i, j)→ = αMn(i, j − 1)→ + (1− α)Mn(i, j)

Mn(i, j)← = αMn(i, j + 1)← + (1− α)Mn(i, j)

Mn(i, j)↓ = αMn(i− 1, j)↓ + (1− α)Mn(i, j)

Mn(i, j)↑ = αMn(i+ 1, j)↑ + (1− α)Mn(i, j).

Rewriting in matrix form, we get





M
⊤
n (i, :)→ = T→M⊤

n (i, :)

M
⊤
n (i, :)← = T←M⊤

n (i, :)

Mn(:, j)↓ = T↓Mn(:, j)

Mn(:, j)↑ = T↑Mn(:, j),
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where T← = T⊤→, T↑ = T⊤↓ , with

T→ =




(1− α) 0 · · · 0

α(1− α) (1− α) · · · 0
...

. . .
. . .

...

αb−1(1− α) · · · α(1 − α) (1− α)



,

and

T↓ =




(1− α) 0 · · · 0

α(1 − α) (1− α) · · · 0
...

. . .
. . .

...

αa−1(1− α) · · · α(1 − α) (1− α)



.

For each abundance an, the associated cost function is:

Rn = 1
2

a∑

i=1

b∑

j=1

ωl
b
‖(I − T→)M⊤

n (i, :)‖2 +
ωr
b
‖(I− T←)M

⊤
n (i, :)‖2

+
ωu
a
‖(I − T↓)Mn(:, j)‖2 +

ωd
a
‖(I − T↑)Mn(:, j)‖2,

where ωl, ωr, ωu and ωd control the spatial effect ratios of left, right, up and down

direction. In particular, ωl = ωr = ωu = ωd denotes an average allocation of spatial

effects. Considering the regularization term
∑N

n=1Rn for all N abundance maps, the

cost function of the spatially-regularized KNMF is:

Jspatial =
1

2

T∑

t=1

∥∥∥Φ(xt)−
N∑

n=1

antΦ(en)
∥∥∥
2
+

N∑

n=1

Rn. (3.19)

The update rule of the abundances for this cost function is obtained by locating ant in

Mn using ant = Mn(i, j), with i = ⌈ tb⌉ and j = t− (i− 1)b. We get

∇ant

( N∑

n=1

Rn

)
= ∇Mn(i,j)Rn = G(i, j),

where

G = ωlMnQ→ + ωrMnQ← + ωuM
⊤
nQ↓ + ωdM

⊤
nQ↑,
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with 



Q→ = 1
b (I− T→)⊤(I − T→)

Q← = 1
b (I− T←)⊤(I − T←)

Q↓ =
1
a(I− T↓)

⊤(I− T↓)

Q↑ =
1
a(I− T↑)

⊤(I− T↑).

By computing the gradient of (3.19) with respect to ant, namely ∇antJspatial, we get the
additive update rule for ant:

ant =

(
ant − ηnt

( N∑

m=1

amt κ(en,em)− κ(en,xt) +G(i, j)
))

+

,

as well as the multiplicative update rule,

ant = ant ×
κ(en,xt)

N∑

m=1

amt κ(en,em) +G(i, j)

,

where we have used the stepsize

ηnt =
ant

N∑

m=1

amtκ(en,em) +G(i, j)

.

3.5 Experiments

In this section, the relevance of the proposed KNMF and its extensions is studied on real

hyperspectral images. The studied images are well-known hyperspectral images acquired

by the AVIRIS. The raw images consist of 244 spectral bands, with the wavelength

ranging from 0.4µm to 2.5µm. The first image is a sub-image of 50 × 50 pixels taken

from the well-known Cuprite image, where L = 189 spectral bands (out of 244) are

of interest. The geographic composition of this area is known to be dominated by

muscovite, alunite and cuprite, as investigated in [Clark et al., 1993]. The second image

is a sub-image of 50 × 50 pixels from the Moffett Field image. This scene is known to

consist of three materials: vegetation, soil and water. Before analysis, the noisy and

water absorption bands were removed, yielding L = 186 spectral bands as recommended

in [Dobigeon et al., 2008].
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We introduce two criteria to evaluate the unmixing performance. The reconstruction

error in the input space (RE) measures the mean distance between any spectrum and

its reconstruction using the estimated endmembers and abundances, with

RE =

√√√√ 1

TL

T∑

t=1

∥∥∥xt −
N∑

n=1

antet

∥∥∥
2
.

Similarly, the reconstruction error in the feature space is

REΦ =

√√√√ 1

TL

T∑

t=1

∥∥∥Φ(xt)−
N∑

n=1

antΦ(et)
∥∥∥
2

H
.

where

∥∥∥Φ(xt)−
N∑

n=1

antΦ(et)
∥∥∥
2

H
=

N∑

n=1

N∑

m=1

antamtκ(en,em)− 2

N∑

n=1

antκ(en,xt) + κ(xt,xt).

3.5.1 State-of-the-art methods

As described in Section 1.2, many state-of-the-art hyperspectral unmixing algorithms

either extract the endmembers (such as with VCA and N-Findr) or estimate the abun-

dances (such as with FCLS, and nonlinear K-Hype and GBM-sNMF). In this case,

solving the unmixing problem requires the joint use of two algorithms, one for end-

member extraction and one for abundance estimation. The proposed KNMF estimates

simultaneously the endmembers and the abundances, in the same spirit as some recently

developed algorithms (such as MiniDisCo and ConvexNMF). We succinctly present all

the comparing algorithms in the following.

Three supervised unmixing techniques are considered, where the endmembers are identi-

fied in prior using the endmember extraction technique VCA [Nascimento and Bioucas-

Dias, 2005] presented in Section 1.2.1. Concerning the estimation of the abundances,

we consider the techniques proposed for the linear mixing model, with FCLS [Heinz and

Chang, 2001] as described in Section 1.3, and two nonlinear methods K-Hype [Chen

et al., 2013b] and GBM-sNMF [Yokoya et al., 2014] presented in Section 1.4.

We also consider two non-kernel techniques that jointly extract the endmembers and es-

timate the abundances. The minimum dispersion constrained NMF (MiniDisCo) [Huck
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(a) Cuprite image
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(b) Moffett image

Figure 3.6: Influence on the reconstruction errors of the parameter c of the polynomial
kernel for the KNMF with the multiplicative update rules.

et al., 2010] integrates the dispersion regularity into the NMF, by minimizing the vari-

ance of each endmember and imposing the sum of abundance fractions for every pixel

to converge to 1. The resulting problem is solved with an alternate projected gradient

scheme. In terms of convex optimization, the convex NMF (ConvexNMF) proposed in

[Ding et al., 2010] restricts the basis matrix (endmember matrix in our problem) to a

nonnegative linear combination of the samples, thus facilitating the interpretation.

Furthermore, we compare to other kernel-based NMF approaches. Proposed in [Li and

Ngom, 2012], kernel convex-NMF (KconvexNMF) and kernel semi-NMF based on non-

negative least squares (KsNMF) are the kernelized versions corresponding respectively

to the ConvexNMF in [Ding et al., 2010] and the alternating nonnegativity constrained

least squares with the active set method in [Kim and Park, 2008]. Due to the curse of the

preimage in the methods studied in [Zhang et al., 2006; Li and Ngom, 2012], neither the

endmembers can be represented explicitly nor the reconstruction error can be evaluated.

As opposed to these methods, the Mercer-based NMF introduced in [Pan et al., 2011]

(MercerNMF) provides comparable results. It constructs a Mercer kernel that has a

kernel map close to the one from the Gaussian kernel, under the nonnegative constraint

on the embedded data. Conventional NMF is finally performed on these mapped data.

It is noteworthy that learning the nonnegative embedding is computationally expensive.

3.5.2 Settings of the parameters

To provide comparable results, we estimate the optimal values of the parameters by

conducting experiments on the KNMF with the multiplicative scheme (denoted by Poly⊙
and Gauss⊙, for the polynomial and Gaussian kernels, respectively), since these update

rules do not depend on the stepsize parameter as in the case of the additive scheme
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Figure 3.7: Influence on the reconstruction errors of the Gaussian bandwidth parameter
σ for the KNMF with the multiplicative update rules.

(denoted by Poly⊕ and Gauss⊕, respectively). In order to explore the influence brought

by the different regularizations to the unmixing performance, we use the same parameter

values for the constrained extensions as in the KNMF. Note that the number of iterations

is set to 200 for all experiments.

In the case of the polynomial kernel, we use the quadratic kernel with d = 2 since it

is related to the generalized bilinear model as suggested in [Chen et al., 2013b]. The

influence of the additive constant c in the kernel function is illustrated in Figure 3.6,

yielding c = 0.44 for the Cuprite and c = 0.72 for the Moffett scene. A similar process

determines the bandwidth parameter σ of the Gaussian kernel, employing the same set of

candidate values {0.2, 0.3, . . . , 9.9, 10, 15, 20, . . . , 50} for both images. The reconstruction

errors are shown in Figure 3.7. Therefore, we fix σ = 2.5 and σ = 3.3 for the Cuprite

and the Moffett images, respectively.

Concerning the stepsize parameter in the additive scheme, it is not only image-wise, but

also involves a tradeoff between the estimation accuracy and the convergence rate.

3.5.3 Performance of the KNMF

Experiments are conducted on the linear (Lin⊕/Lin⊙), polynomial (Poly⊕/Poly⊙) and
Gaussian (Gauss⊕/Gauss⊙) kernels. The endmembers and the corresponding abun-

dance maps estimated using these algorithms are shown in Figure 3.8 for the Cuprite

image and in Figure 3.9 for the Moffett image. The efficiency of the KNMF is compared

to the aforementioned well-known unmixing techniques, as presented in Table 4.5 in

terms of the reconstruction errors in the input and feature spaces.
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Table 3.1: Unmixing performance of the proposed KNMF

Cuprite Moffett

RE ×10−2 REΦ
×10−2 RE ×10−2 REΦ

×10−2

FCLS 3.20 - 15.61 -

K-Hype 2.12 - 5.27 -

GBM-sNMF 0.98 - 2.09 -

MiniDisCo 1.65 - 2.92 -

ConvexNMF 1.61 - 2.58

KconvexNMF - 25.64 - 35.95

KsNMF - 1.38 - 2.30

MercerNMF - 2.74 - 2.77

K
N
M
F

[t
h
is

th
es
is
] Lin⊕ 0.96 0.96 2.90 2.90

Lin⊙ 0.93 0.93 0.73 0.73

Poly⊕ 5.61 31.80 7.53 33.52

Poly⊙ 3.60 30.59 2.68 14.85

Gauss⊕ 2.16 0.94 2.12 0.98

Gauss⊙ 1.05 0.50 1.24 0.45

Despite the fact that the linear kernel leaded to small reconstruction error in the input

space, it does not outperform the Gaussian kernel in the feature space. As reflected in

Figure 3.8, the inherent nonlinear correlation of the Cuprite image is revealed using the

Gaussian kernel, which recognizes the three regions in the abundance maps; whereas the

linear kernel is only capable to distinguish two regions. Considering the reconstruction

error in the feature space, the unconstrained KNMF with the Gaussian kernel surpasses

not only its linear and polynomial counterparts, but also all other methods including

the kernel-based ones.

We also conduct an analysis on the different extensions. The results corresponding to the

proposed regularizations are detailed in Figure 3.10 and Figure 3.11 for the smoothness

of the endmembers, while constraints on the abundance maps are shown in Figure 3.12

for the sparseness regularization and Figure 3.13 for the spatial regularization. The

influence of the regularization parameter γ in the smoothness with fluctuation regular-

ization is shown in Figure 3.10 on an endmember estimated from the Cuprite image.

Similarly, the influence brought by the weighted-average regularization is apparent as

observed in Figure 3.11, where greater values of the regularization parameter ρ may

over-smooth endmembers. The relevance of the sparsity is illustrated in Figure 3.12,

where an increased value of the sparseness regularization parameter (up to µ = 2) al-

lows to better distinguish the regions in the abundance maps. Regarding the influence
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of the spatial regularization, it is observed in Figure 3.13 on the Cuprite image that the

larger the parameter ω is, the more homogeneous the abundance maps are.

3.6 Conclusion

In this chapter, we presented a new kernel-based framework for nonlinear NMF. The

proposed approach provided a matrix decomposition where all the entries can be esti-

mated, thanks to a model that circumvents the curse of the preimage problem. As a

consequence to the hyperspectral unmixing task, it allows to estimate simultaneously

the endmembers and abundances, as opposed to other kernel-based NMF where the

endmembers cannot be extracted. Additive and multiplicative update rules were pro-

posed with expressions depending on the used kernel functions, and several extensions

were derived in order to incorporate constraints such as sparseness, smoothness and

spatial regularity. The efficiency of these techniques was illustrated on well-known real

hyperspectral images, with a comparative analysis using state-of-the-art techniques.

The proposed framework for KNMF opens the way to new developments and challenging

issues. First, the algorithms developed in this chapter operate in a batch mode, namely,

the entire data is processed at once. Such mode is inappropriate when dealing with large-

scale and streaming data. In the succeeding chapter, we propose an online KNMF for

an online setting, by providing algorithms using the stochastic gradient descent scheme.

Secondly, one needs to choose the kernel function prior of applying the proposed KNMF.

This corresponds in confronting for instance the linear kernel and the Gaussian one, and

a fortiori the linear NMF in the input space and the KNMF in the corresponding feature

space. This issue is investigated in Chapter 5 where we propose to combine the linear

and kernel-based models and solve the corresponding optimization problem.

Although the proposed techniques to solve the KNMF are straightforward and simple

to implement, the stationary point is not guaranteed in general (besides for the trivial

linear kernel). This is due to the nonconvexity and nonlinearity of the optimization

problem, which requires more elaborated optimization techniques to ensure that at least

stationary points are attained. Some insights on this issue are given in Chapter 5 and a

deeper analysis will be examined in future works.
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(b) Polynomial kernel
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(c) Gaussian kernel
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Figure 3.8: Cuprite image: Endmembers and corresponding abundance maps, esti-
mated by the unconstrained KNMF with different kernels.
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(a) Linear kernel
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(b) Polynomial kernel
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(c) Gaussian kernel
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Figure 3.9: Moffett image: Endmembers and corresponding abundance maps, estimated
by the unconstrained KNMF with different kernels.
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Figure 3.10: Influence of the smoothness with fluctuation regularization, illustrated on
an endmember estimated from the Cuprite image, with different values of the regular-

ization parameter γ.
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Figure 3.11: Influence of the weighted-average regularization, illustrated on an end-
member estimated from the Cuprite image, with different values of the regularization

parameter ρ.
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Figure 3.12: Influence of the sparseness regularization of the abundance maps for the
Moffett image.
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Figure 3.13: Influence of the spatial regularization of the abundance maps for the
Cuprite image, with α = 0.5.
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Addressing large-scale and streaming data is a challenging issue in data analysis. For

this purpose, several online methods for NMF have been introduced recently, mainly re-

stricted to the linear model. In this chapter, we propose a framework for online nonlinear

NMF within the kernel-based framework described in the previous chapter. By exploring

recent advances in the stochastic gradient descent and the mini-batch strategies, the pro-

posed methods have a fixed complexity independent of the increasing number of samples.

We derive several general updating rules, in both additive and multiplicative strategies,

and present the case of the Gaussian kernel in detail. The performance of the proposed

method is validated on unmixing synthetic and real hyperspectral images, by comparing

to state-of-the-art online NMF techniques.

4.1 Introduction

To tackle the large-scale and streaming dynamic data, a couple of online NMF techniques

have been proposed for the conventional linear NMF and its variants, as investigated in

[Bucak and Gunsel, 2009; Wang et al., 2011; Guan et al., 2012; Cao et al., 2007]. For

instance, online NMF with a constrained volume was presented in [Zhou et al., 2011b],

while the projective online NMF (PONMF), analogue to its batch counterpart with an

orthogonal and sparse representation, was proposed in [Yang et al., 2012; Wang and

Lu, 2013]. Lefevre et al. [2011] studied an online version of the NMF with the Itakura-

Saito divergence. To the best of our knowledge, published studies on online NMF have

been mainly restricted to a linear model, whereas no online method exists for nonlinear,

kernel-based, NMF.

In an online setting, the computational complexity of the algorithm remains a main

concern to address. That is, the natural idea of performing sequentially batch NMF (or

its variants) becomes inefficient and unfeasible, due to a time complexity proportional

to the data number. To prohibit processing the whole data, early work presented in

[Cao et al., 2007] factorizes the matrix composed by the previous basis matrix and novel

samples. The incremental online NMF (IONMF) in [Bucak and Gunsel, 2009] makes

the assumption that the encoding for the past samples is fixed, thereby alleviating the

computational overhead. Since that published work, this assumption has been widely

applied in online NMF algorithms, e.g., [Wang et al., 2011; Guan et al., 2012; Zhou et al.,

2011b], to name a few. Moreover, as the online NMF has a separable cost function with
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respect to samples, Mairal et al. [2010] applied the stochastic gradient descent (SGD)

strategy, which is a crucial complexity-reduction approach for online learning [Bottou,

2012]. This technique consists in substituting the real (but difficult to compute) gradient

with the stochastic one, since the latter involves merely a single or a small subset of

samples. In [Guan et al., 2012], the recent robust stochastic approximation technique

is exploited for the linear model, where the SGD was improved with a smartly chosen

stepsize and an average step on the results.

It is worth noting that the online NMF is closely related to the online dictionary learning

and sparse coding, where the basic idea is to adaptably learn a dictionary from data,

and to represent each sample as a sparse combination of the dictionary elements. The

linear model considers an Euclidean least square loss function, with an ℓ1-norm sparsity

regularizer on the encoding vectors [Mairal et al., 2010]. Extensions include investigating

an alternative Huber loss function as presented in [Wang et al., 2013b], and a nonlinear

variation defined on a Riemannian manifold in [Ho et al., 2013].

In this chapter, we propose an online nonlinear NMF. In the same spirit of SGD, the

batch KNMF described in Chapter 3 is extended to the online mode by keeping a

tractable computational complexity. We provide the additive and multiplicative update

rules of the general form for the basis matrix, and describe in more details the case of

the Gaussian kernel. We also study the computational and memory complexity. Several

extensions within this framework are discussed including sparse coding and smoothness

of the basis vectors. The effectiveness of the proposed method is demonstrated on

unmixing synthetic and real hyperspectral images.

4.2 Online KNMF (OKNMF)

Before introducing the online model, we succinctly review the KNMF in batch mode

as proposed in Chapter 3. Consider the matrix factorization model XΦ ≈ EΦA, or

equivalently

Φ(xt) ≈
N∑

n=1

antΦ(en), (4.1)
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for all t = 1, . . . , T . In a batch mode, namely when all the samples x1, . . . ,xT are

available at once, the cost function is

J (E,A) =
1

2

T∑

t=1

∥∥∥Φ(xt)−
N∑

n=1

antΦ(en)
∥∥∥
2

H
, (4.2)

where the nonnegativity constraint is imposed on all the entries of the matrices E and

A. A two-block coordinate descent strategy was proposed in Chapter 3 to solve this

constrained optimization problem in a batch mode.

In the following, we describe an online learning framework for KNMF. In the online

setting, the samples arrive successively. An intuitive idea is to iteratively conduct the

KNMF as in the batch mode. Unfortunately, as the samples number continuously grows,

this approach suffers from an intractable computational complexity. By investigating

the stochastic gradient, we propose an online KNMF (OKNMF) with a controlled

computational complexity.

4.2.1 Problem formulation

Consider an online setting, where the samples are processed successively. Let xk be the

sample available at instant k. From (4.2), the cost function of the first k samples is

Jk(Ek,Ak) =
1

2

k∑

t=1

∥∥∥Φ(xt)−
N∑

n=1

antΦ(en)
∥∥∥
2

H
,

where Ek and Ak denote respectively the basis and encoding matrices obtained for the

first k samples. We adopt the following assumption, initially proposed in [Bucak and

Gunsel, 2009] and employed in online NMF methods such as [Wang et al., 2011; Guan

et al., 2012; Mairal et al., 2010]: from instant k to instant k+1, the encoding vectors for

the first k samples remain unchanged, i.e., the matrix Ak is appended at each instant

while keeping its entries unchanged: Ak+1 = [Ak ak+1].

As a new sample xk+1 is available, one needs to estimate the new basis matrix Ek+1,

by updating Ek, and the novel sample’s encoding vector ak+1, to be appended to Ak.

Therefore, one estimates Ek+1 and ak+1 by minimizing the following cost function,
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subject to the nonnegativity constraints:

Jk+1(E,A) =
1

2

k+1∑

t=1

∥∥∥Φ(xt)−
N∑

n=1

antΦ(en)
∥∥∥
2

H

=
1

2

k∑

t=1

∥∥∥Φ(xt)−
N∑

n=1

antΦ(en)
∥∥∥
2

H
+

1

2

∥∥∥Φ(xk+1)−
N∑

n=1

an(k+1)Φ(en)
∥∥∥
2

H
.

(4.3)

It is easy to see that this cost function is expressed as a sum of sub-loss functions

over data samples. By expanding this expression and removing the constant term

1
2

∑k+1
t=1 κ(xt,xt), the optimization problem becomes

min
ak+1,E

k+1∑

t=1

L(xt,at,E), (4.4)

subject to the nonnegativity constraints, where the sub-loss function L(xt,at,E) is

1

2

N∑

n=1

N∑

m=1

antamtκ(en,em)−
N∑

n=1

antκ(en,xt).

In the following, we adopt an alternating technique to minimize the cost function in

(4.4) over the unknown basis matrix E and encoding vector ak+1. While we consider

the general form in the following, the case of the Gaussian kernel is described in more

details in Section 4.2.4.

4.2.2 Basis matrix update

The gradient of (4.4) with respect to the vector en is:

∇enJk+1 =

k+1∑

t=1

∇enL(xt,at,E), (4.5)

where

∇enL(xt,at,E) = ant

( N∑

m=1

amt∇enκ(en,em)−∇enκ(en,xt)
)
. (4.6)

In this expression, ∇enκ(en, ·) denotes the gradient of the kernel with respect to its

(first) argument en. Expressions of the gradients of the most commonly-used kernels
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are presented in Table 2.1. In the following, we derive additive and multiplicative update

rules.

4.2.2.1 Additive update rules — SGD and ASGD

First, consider the projected gradient descent (PGD) update rule for KNMF, as pre-

sented in Section 3.3.2.1. The basis vectors en are updated according to

en =
(
en − ηn

k+1∑

t=1

∇enL(xt,at,E)
)
+
,

for n = 1, . . . , N , where ηn is the stepsize parameter. Unfortunately, this rule cannot

be considered in an online setting, since it deals with all the k+1 received samples and

has a computational cost proportional to the number of samples.

The stochastic gradient descent (SGD) update alleviates this computational burden, by

approximating the above gradient based on a single, randomly-chosen, sample xt at each

iteration, and is

en =
(
en − ηn∇enL(xt,at,E)

)
+
, (4.7)

for n = 1, ..., N . Despite a drastically simplified procedure, the SGD asymptotically

converges much slower than its batch mode counterpart [Bottou, 2012]. A compromise

between these two modes is the mini-batch mode, which aggregates the gradients corre-

sponding to a randomly picked set of samples. Let I be the subset of randomly picked

samples employed for updating at each iteration. The update rule in the mini-batch

mode takes the following form

en =
(
en − ηn

∑

xt∈I

∇enL(xt,at,E)
)
+
, (4.8)

for n = 1, ..., N , where the mini-batch size, pre-fixed, is denoted in the following by

p = card(I).

To accelerate the convergence of the SGD, we further consider an averaged stochastic

gradient descent (ASGD) strategy, as initially proposed in [Polyak and Juditsky, 1992].

By averaging the results obtained by the SGD (with mini-batch) over iterations, the
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ASGD is expressed as

e
j
n =

1

j − j0

j∑

j=j0+1

ejn,

or in the recursive form

e
j+1
n = (1− ξj)ejn + ξj e

j+1
n , (4.9)

where j denotes the current iteration number, j0 represents when to begin the averaging

process (we set j0 = 1), and ξj = 1/max(1, j − j0) stands for the averaging rate [Xu,

2011; Bottou, 2012]. The theoretical results in [Polyak and Juditsky, 1992] show that

the ASGD converges as good as the second-order SGD [Wang et al., 2011]. Whereas the

latter needs the costly computation of the Hessian, the averaging in ASGD with (4.9) is

implementation-friendly.

The stepsize parameters ηn should be appropriately set. One could be interested in revis-

iting the advanced optimization tools developed in the linear case, where the convexity of

the loss function enables robust stochastic approximation [Guan et al., 2012] and second-

order PGD [Wang et al., 2011], i.e., the use of the approximate inverse of the Hessian as

stepsize [Mairal et al., 2010]. However, the kernel-based loss function L(xt,at,E) may

be nonconvex in terms of en, such as when the Gaussian kernel is used. Following recent

theoretical results [Bottou, 2012; Xu, 2011], we adopt the stepsize ηj = η0(1 + η0λj)
−1,

equally for all the basis vectors. Hence, it starts at a predetermined value η0 and di-

minishes asymptotically as (λj)−1, λ being a tunable parameter. According to [Bottou,

2012], this form of stepsize proves to be effective in SGD algorithms. Moreover, it leads

to the best convergence speed when the loss function is convex, namely, its Hessian is

positive-definite, with λ being the minimum eigenvalue of the Hessian and η0 being a

constant [Bottou, 2012; Xu, 2011]. Regardless of the possible nonconvex loss function

under investigation, experiments show that such stepsize provides excellent results for

the proposed OKNMF.

4.2.2.2 Multiplicative update (MU) rules

We present below the multiplicative update rules for the OKNMF, by revisiting the batch

KNMF studied in Section 3.3.2.2. As opposed to the additive gradient descent update

rules, the resulting methods lead to NMF with neither the projection/rectification to

impose nonnegativity, nor the pain of choosing the stepsize parameter. To this end, we
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split the gradient in (4.6) as the subtraction of two positive terms, denoted G+(xt,at,E)

and G−(xt,at,E) such that

∇enL(xt,at,E) = G+(xt,at,E)− G−(xt,at,E). (4.10)

By setting the stepsize parameter as

ηn =
en∑

xt∈I

G+(xt,at,E)
,

this yields the following multiplicative update rule of the general form

en = en ⊙

∑

xt∈I

G−(xt,at,E)

∑

xt∈I

G+(xt,at,E)
, (4.11)

where the multiplication ⊙ and the division are component-wise. Analogous to the afore-

mentioned additive cases, three multiplicative update rules can be proposed, depending

on the pre-defined value p of the number of samples investigated at each iteration:

� If p = k+1, all the samples are proceeded and (4.11) reduces to the multiplicative

update rule for batch KNMF;

� If p = 1, then (4.11) uses a single randomly chosen sample, as with the stochastic

gradient descent (4.7);

� If 1 < p < k+1, then (4.11) operates with a mini-batch update of size equal to p,

as its additive counterpart (4.8).

4.2.3 Encoding vector update

To estimate the encoding vector ak+1 for the newly available sample xk+1, the basis

matrix E is fixed, as well as the previously estimated encoding vectors at, for t =

1, . . . , k. The optimization problem becomes

min
ak+1≥0

1

2

∥∥∥Φ(xk+1)−
N∑

n=1

an(k+1)Φ(en)
∥∥∥
2

H
. (4.12)
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The kernel-based model is linear-in-the-parameters, as shown in (4.1) with respect to

ant. As a consequence, we can investigate well-known algorithms from the classical least

nonnegative least square (NNLS), such as the active set method [Lawson and Hanson,

1987] as implemented in [Wang et al., 2011; Guan et al., 2012], and the multiplicative

update routine of NMF [Bucak and Gunsel, 2009; Zhou et al., 2011b].

Back to the cost function Jk+1(E,A) in (4.3), its partial derivative with respect to

an(k+1) is

∇an(k+1)
Jk+1(E,A) =

N∑

m=1

am(k+1) κ(en,em)− κ(en,xk+1).

Applying the gradient descent scheme yields the update rule

an(k+1) = an(k+1) − η′n∇an(k+1)
Jk+1, (4.13)

for n = 1, ..., N , where η′n denotes the stepsize parameter. Additionally, a rectification

is necessary at each iteration in order to guarantee the nonnegativity of the entries in

ak+1. By replacing the stepsize parameter η′n in (4.13) with

η′n =
1

∑N
m=1 am(k+1) κ(en,em)

,

the multiplicative update rule for an(k+1) can be expressed as

an(k+1) = an(k+1) ×
κ(en,xk+1)∑N

m=1 am(k+1) κ(en,em)
, (4.14)

for n = 1, ..., N . If the sum-to-one constraint needs to be satisfied, the resulting encoding

vector can be divided at each iteration by its ℓ1-norm, namely
∑N

m=1 am(k+1).

4.2.4 Case of the Gaussian kernel

The update rules for a given kernel (belonging to but not restricted to the ones given

in Table 2.1) can be derived, by appropriately replacing the expressions of κ(en,z) and

∇enκ(en,z) in (4.5)-(4.6) for the SGD/ASGD algorithms, and splitting the gradient

as in (4.10) for the MU algorithm. It is noteworthy that the trivial case of the linear

kernel corresponds to the linear NMF in the batch mode, and to the IONMF [Bucak

and Gunsel, 2009] in the online mode.
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In the following, we describe in detail the derivation of the update rules for the Gaussian

kernel, with κ(en,z) = exp( −12σ2 ‖en − z‖2) and ∇enκ(en,z) = − 1
σ2κ(en,z)(en − z), for

any z ∈ X . For the encoding vector update, the updating rule remains unchanged. For

the basis matrix, the mini-batch SGD update (4.8) becomes

en =
(
en −

η

σ2

∑

xt∈I

ant
(
κ(en,xt)(en − xt)−

N∑

m=1

amt κ(en,em)(en − em)
))

+
,

for n = 1, ..., N . The corresponding ASGD update is given by sequently addressing the

above output of SGD with (4.9).

Splitting the gradient of the loss function ∇enL(xt,at,E), as given in (4.10), yields the

following two nonnegative terms:





G+(xt,at,E) =
ant
σ2

(
κ(en,xt)en +

N∑

m=1

amtκ(en,em)em

)
;

G−(xt,at,E) =
ant
σ2

(
κ(en,xt)xt +

N∑

m=1

amtκ(en,em)en

)
.

Setting the stepsize parameter as

ηn =
σ2en

∑

xt∈I

ant

(
κ(en,xt)en +

N∑

m=1

amtκ(en,em)em

) ,

leads to the following multiplicative update rule for en:

en = en ⊙

∑

xt∈I

ant

(
xt κ(en,xt) +

N∑

m=1

amt en κ(en,em)
)

∑

xt∈I

ant

(
en κ(en,xt) +

N∑

m=1

amt em κ(en,em)
) ,

where the multiplication ⊙ and the division are component-wise.

4.2.5 Complexity

We analyse the computational complexity in terms of time and memory usage for the

proposed OKNMF framework, for the SGD, ASGD, and MU algorithms. Denote by
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p the number of samples used at each update, namely p = card(I), and assume N ≪
min (L, k).

The time complexity for updating each basis vector en is O(pNL) per iteration, which
holds for any commonly-used kernel listed in Table 2.1 due to a roughly equal time

complexity of L for computing κ(·, ·). Thus, the total time complexity for the basis

matrix update is O(ps1N2L), where N is the number of basis vectors and s1 is the

iteration number. In the online setting, the sequential batch update has an increasing

value O(ks1N2L), k being the current number of available samples, and therefore be-

comes unrealistic in view of the streaming data. On the other hand, the case with p = 1

(namely SGD) shows poor convergence property in experiments, despite the lowest com-

plexity O(s1N2L). The compromised mini-batch mode is most attractive not only for

its fixed — tractable — complexity O(ps1N2L), but also for its satisfying performance

in practice, as demonstrated with the experiments conducted in Section 4.4.2. The time

complexity for the encoding vector update is O(s2NL), s2 being the iteration number.

The total time complexity for the encoding matrix update remains unchanged, since the

matrix is not modified but only appended.

The complexity in terms of memory usage is O(Lk + Nk) at instant k, by keeping in

memory all the proceeded data and their encoding vectors. Since this quantity increases

along with the sample number k, it becomes impractical when the data size is large.

To alleviate this storage burden, a natural way is to retain in memory only the latest q

samples with their encoding vectors. Termed “buffering strategy” in [Guan et al., 2012],

this scheme can reduce the space complexity to a fixed value, with O(Lq +Nq).

4.3 Extensions of OKNMF

This section presents several extensions of the proposed OKNMF. We restrict the pre-

sentation to the most known regularizations, while other extensions can be conveniently

incorporated into the OKNMF framework, in the same spirit as in Chapter 3 for the

batch mode.
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4.3.1 Sparse coding (sOKNMF)

As demonstrated in Section 3.4.2.1, sparseness is of particular interest in the hyper-

spectral unmixing problem, since it allows to represent each spectrum xt with only few

endmembers, namely only certain values of ant are non-zero, for n = 1, . . . , N . Under

the nonnegativity constraint, the ℓ1-norm of the encoding vector at equals to
∑N

n=1 ant.

It is clear that adding such regularization in the initial cost function brings no effect to

the basis matrix updating, since it is independent of en, n = 1, ..., N . By revisiting the

optimization problem (4.12), a sparsity-promoting version is

min
ak+1≥0

1

2

∥∥∥Φ(xk+1)−
N∑

n=1

an(k+1)Φ(en)
∥∥∥
2

H
+ β

N∑

n=1

an(k+1),

where the positive parameter β controls the tradeoff between the factorization accuracy

and the level of sparsity. By taking the derivative with respect to an(k+1) and appro-

priately choosing the stepsize, the multiplicative update rule of encoding vector ak+1

becomes

an(k+1) = an(k+1) ×
κ(en,xk+1)

N∑

m=1

am(k+1) κ(en,em) + β

,

for n = 1, ..., N . It is easy to see the influence of sparse coding on the regularization of

the update.

4.3.2 Smoothness of the basis vectors

As demonstrated in the previous chapter, the smoothness regularization is of great

interest when dealing with hyperspectral unmixing, since the extracted bases need to

be less “spiky” in order to get relevant endmembers. Different regularizations were

proposed in Section 3.4.1 to promote the smoothness of the basis vectors in the batch

KNMF.

Following the developments given in Section 3.4.1.1 and [Piper et al., 2004], a natural

regularization is the commonly-used ℓ2-norm penalty, which leads to

J 2-norm
k+1 (E,A) =

k+1∑

t=1

L2-norm(xt,at,E),
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where

L2-norm(xt,at,E) = L(xt,at,E) +
δ

2

N∑

n=1

‖en‖2.

The gradient of this cost function with respect to en is

∇enJ 2-norm
k+1 =

k+1∑

t=1

∇enL(xt,at,E) +
δ

2
en.

Following a similar procedure described in Section 4.2 for the unregularized OKNMF,

additive and multiplicative updating rules for the basis vectors can be easily derived.

Another way to promote smooth solutions for KNMF is described in Section 3.4.1.2

following the work in [Virtanen, 2003], by penalizing variations between successive values

of the estimated vector, namely by minimizing
∑L−1

l=2 |eln − e(l−1)n| for all n = 1, . . . , N .

By adding such regularization term to the proposed OKNMF, the cost function becomes

J fluct
k+1 (E,A) =

k+1∑

t=1

Lfluct(xt,at,E)

=
k+1∑

t=1

L(xt,at,E) +
γ

2

N∑

n=1

L−1∑

l=2

|eln − e(l−1)n|.

The derivative of the regularization term with respect to eln is given in expression (3.18).

Other smoothness promoting regularizations can be included as well to provide con-

strained OKNMF, such as the weighted-average penalty described in [Chen and Cichocki,

2005]; see Chapter 3 for more details. Due to the added regularization terms that are

independent of the encoding vector ak+1, the update of the latter remains unchanged.

4.4 Experiments

In this section, the performance of the proposed algorithms is demonstrated on unmix-

ing synthetic and real hyperspectral images. Four metrics are considered to evaluate the

unmixing performance of the online NMF algorithms. The (root mean square) recon-

struction error in the input space (RE) and in the feature space (REΦ) are defined in

Section 3.5. When the ground-truth information is available, namely the real endmem-

bers and abundances, the unmixing quality can be further evaluated by the averaged
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spectral angle distance between endmembers (SAD) defined as

SAD =
1

N

N∑

n=1

arccos
e⊤n ên

‖en‖‖ên‖
, (4.15)

and the root mean square error of abundances (RMSE) defined as

RMSE =

√√√√ 1

NT

T∑

t=1

‖at − ât‖2. (4.16)

4.4.1 State-of-the-art online algorithms

We first revisit several existing online algorithms, of the conventional linear NMF as

well as its variations. Proposed in [Cao et al., 2007], a first approach for online NMF

(ONMF) investigates the fact that, when updating the basis matrix, the old data

matrix does not need to be available, but only the old basis matrix since they can be

used to represent the old data. By using the full-rank decomposition theorem from

linear algebra, this strategy significantly reduces the computational cost compared to

re-running the conventional NMF. It turns out that it yields an inferior reconstruction

accuracy, as demonstrated in many works, such as in [Guan et al., 2012] with face

images and in our experiments with hyperspectral images. The trick of incremental

subspace learning, initially proposed for principal component analysis, is revisited with

incremental online NMF (IONMF) in [Bucak and Gunsel, 2009] to tackle the increasing

complexity of the conventional NMF in online setting. The underlying assumption is that

the new samples do not affect the past encoding vectors. Fixing the encoding vectors

for the processed samples, this technique updates the two factorizing matrices with

multiplicative updating rules, by incrementally aggregating the effects from the newly-

available data. Wang et al. [2011] solves an optimization problem similar to IONMF by

using additive updating rules. Therein, the update with first-order PGD is closely related

to the work in [Mairal et al., 2010], where the online matrix factorization with sparse

constraints on the encoding matrix is discussed, and NMF is viewed as a special case

with supplementary nonnegativity constraints. Sharing the same basis matrix update

scheme, the latter differs from the first-order PGD merely on the sparseness of the

encoding vectors.
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By replacing the stepsize in the first-order PGD by the approximation of the inverse

Hessian, the second-order PGD (HONMF) is advocated in [Wang et al., 2011], and

expected to outperform its first-order counterpart. Proposed in [Guan et al., 2012],

the online NMF with robust stochastic approximation (RSA) benefits from the recent

progress in choosing the stepsize and averaging over the results, with a convergence rate

of O(1/
√
K) guaranteed for the basis matrix update, where K is the iteration number.

While most works focus on the conventional linear model, a few online methods were

developed for other variants of the NMF. In [Févotte et al., 2008], an online scheme is

considered where the Itakura-Saito divergence is used as the measurement of dissimilarity

between the input matrix and its approximation. The projective NMF, which decom-

poses X into the form X = EE⊤X, is extended to the online version in [Yang et al.,

2012; Wang and Lu, 2013]. Similar with its batch counterpart, the online projective

NMF (PONMF) yields orthogonal and sparse basis vectors. The volume-constrained

online NMF in [Zhou et al., 2011b] adds the regularization term log |det(E)| to the

cost function, in order to enhance the uniqueness of the factorization. However, this

technique is limited to the cases with a square basis matrix, i.e., L = N .

4.4.2 Experiments with synthetic data

This section first presents the relevance of the SGD/ASGD/MU algorithms within the

proposed OKNMF framework on two synthetic hyperspectral images. The performance

is validated using a comparative analysis with state-of-the-art methods. Second, the

performance of sparsity-promoting sOKNMF over the unregularized OKNMF is studied

on synthetic data with sparse encoding matrices.

4.4.2.1 Performance of OKNMF

The performance of the proposed method is first evaluated by unmixing two synthetic

hyperspectral images, each having 50 000 pixels. The N = 3 endmembers used for data

generation are selected from the United States Geological Survey (USGS) digital spectral

library used in [Bioucas-Dias and Nascimento, 2008], with each spectrum of L = 224

spectral bands. These spectra are shown in Figure 4.1. The first image is generated
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Figure 4.1: The USGS spectra used for synthetic images generation.

using the generalized bilinear model (GBM) defined in (1.6) with

xt =
N∑

n=1

ant en +
N−1∑

i=1

N∑

j=i+1

γij,t ait ajt (ei ⊙ ej) + nt,

where γnm ∈ [0, 1] is generated from the uniform distribution. The second image is

defined by using a polynomial post-nonlinear mixing model (PPNMM) given in (1.7)

with

xt =

N∑

n=1

ant en + bt

( N∑

n=1

ant en

)
⊙
( N∑

n=1

ant en

)
+nt,

where the parameter bt is uniformly generated within the range [−0.3, 0.3] according
to [Altmann et al., 2012]. For each studied image, the abundance values ant are uniformly

generated within [0, 1] and then normalized to meet the sum-to-one constraint. The

images are corrupted by an additive Gaussian noise nt ∈ IRL×1, with a signal-to-noise

ratio SNR = 30 dB.

Experiments are conducted using the proposed algorithms, with the following settings.

First, the bandwidth of the Gaussian kernel is set to σ = 5.5 for GBM image and σ = 6.5

for PPNMM image, as determined with the batch KNMF detailed in Chapter 3. Second,

the mini-batch size is chosen within the form p = min{⌈ k10⌉,m}. The value of this

parameter allows to balance between the computational cost and the smoothness of the
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Figure 4.2: Influence of the value of the mini-batch size p on the reconstruction errors
in the input and feature spaces, using the MU algorithm, with p = 10, 30, or 50. For
illustration purpose, only the first 5000 samples from the synthetic PPNMM image are

shown.

Table 4.1: Parameter Settings for the Synthetic Images

GBM PPNMM

σ p η0 λ σ p η0 λ

O
K
N
M
F SGD

5.5 30

0.25 2−8

6.5 30

0.25 2−8

ASGD 2 2−9 1 2−9

MU - - - -

convergence. To show its influence, we consider the MU algorithm (the other algorithms

depend on the stepsize parameter, which makes difficult the characterization of the

influence of p). As illustrated in Figure 4.2, a moderate value is close to 30. On one hand,

small values of p such as 10 cause fluctuating convergence. On the other hand, an over-

sized p = 50 is computational expensive without anysignificant improvement due to the

redundancy within the data. Last, concerning the algorithms SGD/ASGD with additive

updates, the optimal values of η0 and λ are determined with a 10-fold cross validation,

on 1000 randomly selected pixels, using the candidate values η0 ∈ {2−3, 2−2, . . . , 21}
and λ ∈ {2−15, 2−14, . . . , 20, 21}. Table 4.1 summarizes the parameter settings. The

maximum number of iterations is set to 100.

The performance is validated using a comparative analysis with the aforementioned

techniques: ONMF, IONMF, HONMF, RSA and PONMF. For the sake of fair com-

parison, we identically initialize the basis matrix E in all the compared algorithms,

using the endmembers estimated by the NMF algorithm on a small subset of samples.
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Table 4.2: Unmixing Performance for the Synthetic Images (×10−2)

GBM PPNMM

SAD RMSE RE REΦ SAD RMSE RE REΦ

ONMF 100.39±2.75 48.87±0.02 66.56±28.51 6.68±0.00 104.66±18.3 48.82±0.04 79.52±65.8 6.68±0.00
IONMF 3

O 10.06±0.94 16.41±1.83 1.81±0.01 6.68±0.00 19.52±7.37 3
O 15.06±2.29 3

O 1.71±0.14 6.68±0.00
HONMF 20.62±4.07 3

O 14.47±4.97 2
O 1.57±0.21 5.58±1.76 10.40±1.67 19.16±4.30 1

O 1.40±0.01 4.68±0.85
RSA 32.95±8.98 34.93±5.38 1

O 1.56±0.19 635.38±0.04 33.96±8.63 35.56±5.11 2
O 1.54±0.20 631.92±0.04

PONMF 71.53±0.03 1
O 12.58±0.01 3

O 1.81±0.00 71.34±0.01 71.54±0.04 1
O 12.56±0.01 1.79±0.00 70.46±0.01

O
K
N
M
F SGD 12.48±2.42 17.17±2.77 2.51±0.19 3

O 0.51±0.03 1
O 8.44±3.46 19.70±2.71 2.65±0.13 2

O 0.45±0.01
ASGD 1

O 9.19±0.57 2
O 14.43±1.30 2.25±0.01 1

O 0.47±0.00 2
O 8.93±1.70 2

O 15.01±2.95 2.40±0.11 1
O 0.42±0.01

MU 2
O 10.00±1.48 17.08±4.89 2.38±0.13 2

O 0.49±0.02 3
O 9.42±3.18 18.72±3.85 2.60±0.08 3

O 0.45±0.02

Considering the size of data, only 5 Monte-Carlo simulations are carried out for each

algorithm. The resulting averages and deviations of the four aforementioned metrics

are given in Table 4.2, where the smallest two values (often very close values) for each

metric are highlighted.

The proposed OKNMF provides jointly the best averaged spectral angle distance be-

tween endmembers (SAD) and good root mean square error in terms of abundances

(RMSE). The only competitive algorithm seems to be PONMF when dealing with the

RMSE of abundances; however, the estimated endmembers are the worst with PONMF,

up to eightfold compared to the proposed ASGD algorithm. The relevance of the jointly

estimated endmembers and abundances can be measured with the reconstruction errors,

RE and REΦ. The most accurate reconstruction is achieved by all the proposed algo-

rithms (SGD/ASGD/MU) within the OKNMF framework, with the reconstruction error

in the feature space. It is noticeable that these errors with REΦ are at least threefold

lower than the ones obtained by all state-of-the-art algorithms using the linear model

with RE. This means that the OKNMF (4.1) with the Gaussian kernel provides the

most suitable factorization for the studied images, outperforming all other methods.

To compare the computational time of the online algorithms, experiments are conducted

on the first 10000 pixels of the synthetic PPNMM image using a HP Intel® CoreTM

i7-3687U CPU at 2.10GHz computer. The MATLAB® (R2010) average implementation

times per pixel in milliseconds are shown in Table 4.3. These results show that the SGD

is twice faster than the state-of-the-art PONMF.

4.4.2.2 Performance of sOKNMF versus OKNMF

This section compares the extension with sparse coding (sOKNMF), presented in Sec-

tion 4.3.1, with the unregularized OKNMF, on unmixing a series of synthetic data with
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Table 4.3: Computational Time (ms/pixel)

ONMF 6.7

IONMF 23.7

HONMF 30.1

RSA 9.7

PONMF 114.3

O
K
N
M
F SGD 55.2

ASGD 84.8

MU 258.2
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Figure 4.3: The USGS spectra used for synthetic images generation.

sparse abundance (encoding) matrix.

Four synthetic images, each of the size 50 × 50 pixels, are generated following the same

settings of the aforementioned PPNMM model using five endmembers from the USGS

digital spectral library, as shown in Figure 4.3. The four images have a different sparsity

level on the abundances, set respectively to s = 15%, 30%, 45% and 60%, and defined as

follows: To impose the sparsity on the encoding matrix, a proportion of its entries are

nullified, by ensuring at least one non-zero entry existing for each column. Concerning

sOKNMF, it is noticeable that the parameter β should be tuned according to the sparsity

of the unknown abundance (encoding) matrix. According to [Hoyer, 2004; Qian et al.,
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Figure 4.4: The averaged spectral angle distance (SAD, left figure) and the averaged
root mean square error (RMSE, right figure) versus the percentage of zeros in the
abundances, using OKNMF and sOKNMF. For the data with 15%, 30%, 45% and 60%
zeros in abundance matrix, the results are archived respectively with β = ŝ × 10−1 =

0.024, β = ŝ× 10−2 = 0.0037, β = ŝ× 10−1 = 0.057 and β = ŝ× 10−1 = 0.088.

2011], a rough estimator from the input spectra is

ŝ =
1√
L

L∑

l=1

√
T − ‖xl∗‖1/‖xl∗‖2√

T − 1
,

where xl∗ is the l-th row of X, thus representing the l-th band over all the pixels. The

set of candidate values for β is empirically set as β ∈ {0, ŝ × 10−2, ŝ × 10−1, ŝ}, with
ŝ = 0 corresponding to the unregularized OKNMF. In all the experiments, the ASGD

algorithm is applied with η0 = 2 and λ = 2 × 10−8, the bandwidth parameter of the

Gaussian kernel is set to σ = 6.0. The best results, averaged over ten Monte-Carlo

simulations, in terms of SAM and RMSE are shown in Figure 4.4.

For all the synthetic images under study, the performance of OKNMF is improved by

the sparsity-promoting sKONMF, in terms of both SAD and RMSE. These results are

expected, since sOKMNF imposes a sparseness on the encoding vector, thus yielding

more consistent solutions with the underlying sparse abundance matrices.

4.4.3 Experiments on real hyperspectral images

In order to study the performance of the proposed OKNMF by comparing it with the

aforementioned state-of-the-art online NMF algorithms, we consider two well-known real

hyperspectral images.
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Figure 4.5: The RGB image of the Urban scene.

To provide a comparative analysis with results given in the previous chapter, the first

image is the same as the one used in Section 3.5. The image is the Moffett image with

50× 50 pixels.

To study the proposed OKNMF in a large-scale and streaming settings, the second image

is the relatively big Urban image, as illustrated in Figure 4.5. It is available from the

Hyperspectral Digital Imagery Collection Experiment (HYDICE), and contains 307×307
pixels. The original data is composed of L = 210 channels, with the wavelength ranging

from 0.4µm to 2.5µm. After removing the noisy bands, L = 162 clean bands are

of interest. Widely-studied in the hyperspectral unmixing domain [Qian et al., 2011;

Liu et al., 2011; Zhu et al., 2014], ground-truth information showed that this scene is

composed at most of N = 6 endmembers, with asphalt road/parking, grass, tree, roof♯1,

roof♯2/shadow, and concrete road as shown in Figure 4.6.

For both hyperspectral images, the parameter settings are obtained by performing a

procedure similar to the one conducted for the synthetic images. Table 4.4 presents the

used values. In practice, we simply retain for the Urban image the same values of the

stepsize parameters (η0, λ) as in the small Moffett image. Empirically, these values of
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Figure 4.6: The six ground-truth endmembers in the Urban image.

Table 4.4: Parameter Settings for the Real Images

Moffett Urban

σ p η0 λ σ p η0 λ

O
K
N
M
F SGD

3.3 30

1 2−8

3.0 30

1 2−8

ASGD 1 2−12 1 2−12

MU - - - -

parameters perform well. Elaborated search techniques, such as cross-validation, achieve

better accuracy, yet at a higher computational cost. Considering the data scale, ten

Monte-Carlo simulations are carried out for each comparing algorithm for the Moffett

image, and three Monte-Carlo simulations for the Urban image.

4.4.3.1 Performance comparison

The results in terms of reconstruction errors, RE and REΦ, are given in Table 4.5 for both

hyperspectral images. Since ground-truth information on the endmembers is available

for the Urban image, the accuracy of the estimated endmembers is further measured with

the averaged spectral angle distance (SAD), as given in Table 4.6. For both images under

study, the nonlinear model using the proposed online algorithms leads to the smallest

reconstruction error in the feature space. Despite a relatively high reconstruction error

in the input space, the nonlinear model results in the lowest SAD, namely it extracts
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Table 4.5: Unmixing Performance for the Moffett and Urban Image (×10−2)

Moffett Urban

RE REΦ RE REΦ

ONMF 11.94±3.49 7.36±0.01 231.48±23.23 7.88±0.01

IONMF 1
O 0.82±0.13 7.33±0.00 1.27±0.32 7.86±0.00

HONMF 3
O 1.03±0.69 9.60±3.69 2

O 0.87±0.22 17.02±4.56

RSA 1.21±0.01 84.66±0.12 1
O 0.69±0.04 228.64±0.04

PONMF 2
O 0.90±0.02 23.82±0.93 3

O 1.12±0.08 39.02±1.25

O
K
N
M
F SGD 1.53±0.26 1

O 0.55±0.08 3.16±0.15 1
O 0.95±0.02

ASGD 1.54±0.21 2
O 0.57±0.05 2.53±0.02 3

O 1.02±0.01

MU 2.08±0.96 3
O 0.93±0.27 2.45±0.07 2

O 1.01±0.04

Table 4.6: Averaged spectral angle distance (SAD) for the Urban Image (×10−2)

asphalt grass tree roof♯1 roof♯2 cr.road average

ONMF - - - - - - ≥ 133.75

IONMF 53.45 46.84 41.38 24.47 3
O 64.15 56.77 47.84

HONMF 56.25 58.99 40.64 53.87 2
O 48.39 47.93 51.09

RSA 58.83 2
O 27.68 3

O 29.90 41.89 86.15 29.27 45.61

PONMF 94.86 97.55 101.84 97.85 105.83 109.44 101.12

O
K
N
M
F SGD 3

O 35.63 42.06 51.27 3
O 17.84 68.59 1

O 2.97 3
O 36.39

ASGD 1
O 29.02 1

O 25.37 1
O 6.93 1

O 5.48 71.32 2
O 3.41 2

O 23.58

MU 2
O 31.54 3

O 36.47 2
O 9.59 2

O 15.92 1
O 31.56 3

O 3.68 1
O 21.45

the closest endmembers to the ground-truth by revealing the underlying nonlinearity in

the image.

Figure 4.7 visualizes the estimated endmembers and their corresponding abundance

maps for the Moffett image, and Figure 4.8 illustrates the estimate abundance maps for

the Urban image. As observed, the proposed OKNMF is able to recognize regions that

are the most consistent with the ground-truth, whereas the state-of-the-art techniques

can only distinguish partly the regions while resulting in spiky/noisy endmembers and

incoherent abundance maps.

4.5 Conclusion

This chapter presented a novel online kernel-based NMF method, termed OKNMF, to

handle large-scale and streaming data. By exploiting stochastic gradient descent and

mini-batch strategies in stochastic optimization, we developed additive and multiplica-

tive update rules using the general kernel form, and detailed the case of the Gaussian

kernel. The proposed methods maintain a fixed and tractable time complexity and
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Figure 4.7: Left to right: estimated endmembers (soil, water, vegetation) and their cor-
responding abundance maps on the Moffett image. Top to bottom: IONMF, HONMF,

RSA, PONMF, OKNMF with ASGD, sKONMF with β = s× 10−1 = 0.41.

memory usage. Experimental results for unmixing synthetic and real hyperspectral im-

ages demonstrated the effectiveness of the proposed OKNMF. Not only it outperformed

the state-of-the-art methods, but also the estimated endmembers are the closest to the

ground-truth endmembers.

Future works include parallelization using GPU or distributing using computer clusters,

as well as a further analysis on the convergence, which remains an open problem when

dealing with nonconvex optimization problems. The study of more sophisticated opti-

mization methods is of great interest, such as with limited-memory BFGS and conjugate

gradient with line search.
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Figure 4.8: Estimated abundance maps on the Urban image. Left to right: asphalt
road/parking, grass, tree, roof♯1, roof♯2/shadow, and concrete road. Top to bottom:
IONMF, HONMF, RSA, PONMF, OKNMF with ASGD, sOKNMFwith β = s×10−1 =

0.19.
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In this chapter, we revisit the KNMF as a multi-objective optimization problem, in

particular a bi-objective one, where the objective functions defined in both input and fea-

ture spaces are taken into account. By taking the advantage of the sum-weighted method

from the literature of multi-objective optimization, the proposed bi-objective KNMF de-

termines a set of nondominated, Pareto optimal, solutions. Moreover, the corresponding

Pareto front is approximated and studied. Experimental results on unmixing synthetic

and real hyperspectral images confirm the efficiency of the bi-objective KNMF compared

with the state-of-the-art methods.

5.1 Introduction

In either its linear conventional formulation or its nonlinear kernel-based formulation, as

well as all of their variants, the NMF has been tackling a single-objective optimization

problem. In essence, the underlying assumption is that it is known in prior that the

linear model dominates the nonlinear one, or vice versa, for the data under study. To

obtain such prior information about the given data is not practical in real-world appli-

cations. Moreover, it is possible that the combination of the linear and nonlinear models

reveals the latent variables that are closer to the ground-truth than each single model

considered alone. Independently from the NMF framework, such combination of the lin-

ear model with a nonlinear fluctuation was recently studied in [Chen et al., 2013b] with

a nonlinearity depending only on the spectral content, and in [Chen et al., 2013c] with

a nonlinearity defined by a post-nonlinear model. Within the same context, a multiple-

kernel learning approach was studied in [Chen et al., 2012] and a Bayesian approach was

investigated in [Altmann et al., 2014] with the so-called residual component analysis.

While all these methods show the relevance of combining linear and nonlinear models,

they share a major drawback: they only consist in estimating the abundances, while the

endmembers need to be extracted in a pre-processing stage using any conventional linear

technique (N-Findr, VCA, ... See Section 1.2.1). As opposed to such separation in the

optimization problems, the NMF provides an elegant framework for estimating jointly

the endmembers and the abundances. To the best of our knowledge, there has not been

any study that combines the linear and nonlinear models within the NMF framework.

In this chapter, we study the bi-objective optimization problem that performs the NMF

in both input and feature spaces, by combining the linear and kernel-based models. The
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first objective function to optimize stems from the conventional linear NMF, while the

second objective function, defined in the feature space, is derived from the kernel-based

KNMF model proposed in Chapter 3. In case of two conflicting objective functions,

there exists a set of nondominated, noninferior or Pareto optimal solutions. In order

to acquire the Pareto optimal solutions, we investigate the sum-weighed method from

the literature of multi-objective optimization, due to its ease for being integrated to

the proposed framework. Moreover, we study the approximation of the corresponding

Pareto front. Based on projected gradient descent scheme, the update rules are derived

for the resulting sub-optimization problem when the feature space is induced by the

Gaussian kernel. The complexity and the convergence of the algorithm are discussed, as

well as the stopping criteria. Extensive experiments on synthetic and real hyperspectral

images are conducted to study the relevance of solving such multi-objective optimization

problem.

5.2 On Combining the Linear Model with a Nonlinear One

5.2.1 Augmenting the linear model with a nonlinearity

Several nonlinear models have been proposed within the hyperspectral unmixing scope,

as outlined in Section 1.4 and reviewed in [Heylen et al., 2014; Dobigeon et al., 2014].

With few exceptions (such as the Mac-Mic mixing model that confronts the linear model

to the nonlinear one), most of these nonlinear variations mainly consist in a combination

of the linear model with an additive nonlinear term, as often advocated by a physical

interpretation. These augmented linear models take the form

xt ≈
N∑

n=1

ant en + ψ(E,at),

where ψ is an X -valued nonlinear function, as detailed in the following. It is worth

noting that the same abundances and endmembers intervene in both the linear and the

nonlinear terms.

Bilinear models introduce bilinear mixtures of endmembers, such as the generalized

bilinear model (GBM) [Halimi et al., 2011a] and the post-nonlinear mixing model [Alt-

mann et al., 2012], as well as the GBM-based semi-NMF approach [Yokoya et al., 2014].
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Figure 5.1: Schema illustrating linear versus nonlinear models, and single versus joint
estimation. Marker ⊠ shows the combinations between VCA/N-Findr and GBM/K-

Hype, for instance.

Several kernel-based models have been proposed to define the nonlinearity term ψ in

some feature space. In [Chen et al., 2013b], the nonlinearity depends exclusively on the

endmembers, namely ψ(E). In [Chen et al., 2012], the above additive fluctuation is re-

laxed by considering a convex combination with multiple kernel learning. More recently,

the abundances are incorporated in the nonlinear model, with a post-nonlinear model

ψ(Eat) in [Chen et al., 2013c] and a Bayesian approach is used in [Altmann et al., 2014].

Another model is proposed in [Nguyen et al., 2013] in the context of supervised learning.

All these methods consider that the endmembers en were already estimated using some

linear technique such as N-Finder and VCA [Nascimento and Bioucas-Dias, 2005]; only

the abundances are estimated with nonlinear models. Figure 5.1 presents a schematic

illustration of these differences with respect to our work that is described in Section 5.3.

See Section 3.3.1 for connections to the Mac-Mic [Hapke, 1981; Close et al., 2014].
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5.2.2 On combining the linear NMF with a kernel-based one

The NMF allows to estimate simultaneously the endmembers and the abundances. It

has been applied either in its linear model, i.e., in the input space, or in a kernel-based

formulation, i.e., in the feature space. In the former as studied for instance in [Lee and

Seung, 2001; Ding et al., 2010; Huck et al., 2010], each sample xt is approximated with

a linear combination of basis elements en, by minimizing the distance in the input space

between each xt and x̂t =
∑N

n=1 ant en, namely minimizing

JX (E,A) =
1

2

T∑

t=1

∥∥∥xt −
N∑

n=1

ant en

∥∥∥
2
, (5.1)

where the residual error is measured in the input space X . In the kernel-based formula-

tions conducted in [Zhang et al., 2006; Lee et al., 2009; Li and Ngom, 2012; Pan et al.,

2011] (prior to our work described in Chapter 3), the basis elements eΦn belong to some

kernel-induced feature space where the optimization occurs, by minimizing the distance

between Φ(xt) and
∑N

n=1 ant e
Φ
n .

To the best of our knowledge, there has not been any attempt to examine simultaneously

linear and nonlinear NMF. This is mainly due to the fact that the endmembers are not

the same in both representations. The linear endmembers are en ∈ X while the nonlinear

ones are eΦn ∈ H. As these endmembers belong to different spaces, a way to connect

them is to map the latter to the input space, by estimating e′n ∈ X whose image Φ(e′n)

is as close as possible to eΦn . We fall once again in the curse of the pre-image problem

as described in Section 2.4. Moreover, the issue here is a more difficult one, since the

simultaneous optimization of the linear and nonlinear NMF yields two different sets of

endmembers, en and e′n, without any connection between them which leads to difficult

interpretation. For all these reasons, MercerNMF and KconvexNMF are not shown

in Figure 5.1; while the underlying models are nonlinear, the endmembers cannot be

estimated.
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5.3 Bi-objective KNMF

In the previous chapters, we have defined a novel nonlinear model in the feature space

using Φ(xt) ≈ Ψ̂t, with

Ψ̂t =

N∑

n=1

antΦ(en). (5.2)

As a consequence, the endmembers en are estimated directly in X . Under the nonnega-
tivity of all en and ant, the optimization problem consists in minimizing the sum of the

residual errors in the feature space H, namely

JH(E,A) =
1

2

T∑

t=1

∥∥∥Φ(xt)−
N∑

n=1

antΦ(en)
∥∥∥
2

H
. (5.3)

In this chapter, we combine the estimation of this model with the linear one. To this

end, we minimize simultaneously JX and JH, namely the distance in the input space X
between each xt and x̂t =

∑N
n=1 ant en, and the distance in the feature space H between

Φ(xt) and Ψ̂t =
∑N

n=1 antΦ(en). The resulting problem is the bi-objective KNMF. In

Section 5.4, we shall take advantage of the sum-weighted method to tackle this problem

as a sequence of single-objective optimization problems, each corresponding to a fusion

of the linear and nonlinear optimization problems, at different levels characterized by a

parameter α, namely

min
E,A

αJX (E,A) + (1− α)JH(E,A), (5.4)

under the nonnegativity constraints.

5.3.1 Remarks on the physical interpretation

As opposed to augmenting the linear model with a nonlinearity (see Section 5.2.1),

the proposed model is related to the Mac-Mic presented in [Close et al., 2014] (see

Figure 5.1). Indeed, the latter confronts two models for each pixel, the linear model

(called macroscopic) and the intimate mixing model (called microscopic) defined in Sec-

tion 1.4.2. The proposed bi-objective KNMF can be also viewed as confronting two

models, a “regularized” linear model and a “regularized” nonlinear one. One way to

understand this property is through two complementary viewpoints of the bi-objective
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Figure 5.2: In the linear NMF, each sample xt is approximated by x̂t in the input space
X , while in the KNMF, the mapped sample Φ(xt) is approximated by Ψ̂t in the feature
space H. The proposed bi-objective KNMF solves simultaneously the two optimization

problems.

optimization problem (5.4). In the first one, the investigated model is xt ≈
∑N

n=1 ant en

(results from minimizing JX ), while the minimization of JH operates as a regularization,

namely

min
E,A

T∑

t=1

∥∥∥xt −
N∑

n=1

ant en

∥∥∥
2
+ α′RegH(E,A),

where α′ = 1/α − 1 controls the tradeoff between the fitness and the regularity of the

solution. In the second viewpoint, one can say likewise that the underlying model is the

nonlinear model Φ(xt) ≈
∑N

n=1 antΦ(en), while the minimization of JX operates as a

regularization by emphasizing that the nonlinear model should not be very “distinct”

from the linear one.

5.3.2 Problem formulation

We propose to minimize simultaneously the objective functions JX (E,A) and JH(E,A),

namely in both input and feature spaces as shown in Figure 5.2. Such problem is in

a sense an ill-defined one. Indeed, it is not possible in general to find a solution that

is optimal for both objective functions. As opposed to single-objective optimization

problems where the main focus would be on the decision solution space, namely the

space of all entries (E,A) (of dimension LN +NT ), the bi-objective optimization prob-

lem brings the focus on the objective space, namely the space of the objective vectors

[JX (E,A) JH(E,A)]. To study and solve this optimization problem, we revisit in our

context the following definitions from the literature of multi-objective optimization:



114 Chapter 5. Bi-objective KNMF

� Pareto dominance: The solution (E1,A1) is said to dominate (E2,A2) if and

only if JX (E1,A1) ≤ JX (E2,A2) and JH(E1,A1) ≤ JH(E2,A2), where at least

one inequality is strict.

� Pareto optimal: A solution is a global (respectively local) Pareto optimal if and

only if it is not dominated by any other solution (respectively in its neighborhood).

That is, the objective vector [JX (E∗,A∗) JH(E∗,A∗)] corresponding to a Pareto

optimal (E∗,A∗) cannot be improved in any space (input or feature space) without

any degradation in the other space.

� Pareto front: The set of the objective vectors corresponding to the Pareto opti-

mal solutions forms the Pareto front in the objective space.

Various multi-objective optimization techniques have been successfully proposed e.g.,

evolutionary algorithms, sum-weighted method, ε-constraint method, normal boundary

intersection method, to name a few. See [Lampinen, 2000; Miettinen, 2008] for a survey.

Among the existing methods, the sum-weighted or scalarization method has been always

the most popular one, since it is straightforward and easy to implement [Das and Dennis,

1997; Ryu et al., 2010]. It converts a multi-objective problem into a single-objective

problem by combining the multiple objectives. Under some conditions, the resulting

objective vector belongs to the convex part of multi-objective problem’s Pareto front.

Thus, by changing appropriately the weights among the objectives, the Pareto front

of the original problem is approximated. The main drawback of this method is that

the nonconvex part of the Pareto front is often unattainable [Das and Dennis, 1997].

Nevertheless, it is the most practical one, in view of the complexity of the NMF problem,

which is nonconvex, ill-posed and NP-hard [Vavasis, 2009].

5.4 Optimization with the Sum-weighted Method

Following the formulation introduced in the previous section, we study the minimization

of the two objective functions JX and JH, under the nonnegativity constraints. The

decision solution, of size LN +NT , corresponds to the entries in the unknown matrices

E and A. We transform this bi-objective optimization problem into an aggregated

objective function (i.e., sum-weighted objective function, also called scalarization value)
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which is a convex combination of the two original objective functions, namely

min
E,A

αJX (E,A) + (1− α)JH(E,A)

subject to E ≥ 0 and A ≥ 0

(5.5)

where the weight α ∈ [0, 1] controls the relative importance between objectives JX and

JH. For a fixed value of α, this problem is called the sub-optimization problem. Its

solution is a Pareto optimal for the original bi-objective problem, as proven in [Das

and Dennis, 1997] for the general case. By solving the sub-optimization problem with

a spread of values of α, we obtain an approximation of the Pareto front. It is obvious

that the single-objective conventional NMF in (5.1) is given by α = 1, while α = 0 leads

to the kernel-based formulation in (5.3).

Similar to the NMF, which is ill-posed, nonconvex and NP-hard [Vavasis, 2009], the

optimization problem (5.5) is difficult to solve. It has no closed-form solution, a drawback

inherited from most nonnegative constrained optimization problems. Moreover, the

objective function is nonlinear, making the optimization problem more difficult. As

in NMF algorithms, the global optimal solution cannot be guaranteed, thus the term

Pareto optimal referred in the following is in the local sense.

Substituting the expressions given in (5.1) and (5.3) for JX and JH, the aggregated

objective function becomes

α

2

T∑

t=1

∥∥∥xt −
N∑

n=1

ant en

∥∥∥
2
+

1− α
2

T∑

t=1

∥∥∥Φ(xt)−
N∑

n=1

antΦ(en)
∥∥∥
2

H
.

After removing the constant terms that are independent of ant and en, this objective

function becomes

J (E,A) = α

T∑

t=1

(
−

N∑

n=1

ante
⊤
nxt +

1

2

N∑

n=1

N∑

m=1

antamte
⊤
n em

)

+ (1− α)
T∑

t=1

(
−

N∑

n=1

antκ(en,xt) +
1

2

N∑

n=1

N∑

m=1

antamtκ(en,em)
)
. (5.6)

In the following, we derive iterative techniques to minimize it with a two block-coordinate

descent strategy, by alternating over the matrices E and A, while keeping the other

matrix fixed. The algorithm is outlined in Algorithm 1.
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Algorithm 1 The proposed bi-objective KNMF, for a fixed αm ∈ {α1, α2, ..., αM}
Input: k = 0, warm start by E0

m = Em−1 and A0
m = Am−1

1: repeat
2: update Ek+1 with (5.7), with stepsize obtained from Algorithm 2
3: update Ak+1 with (5.12)
4: k = k + 1
5: until stopping criterion

Output: Em and Am

5.4.1 Optimization over endmembers

Consider the minimization over E of the function J (E,A), denoted J (E) in the fol-

lowing. The constrained optimization problem becomes

min
E

J (E)

subject to en ≥ 0 for n = 1, . . . , N,

We apply the projected gradient descent strategy (PGD) presented in the previous

chapters. At iteration k, the update rule takes the form

Ek+1 =
(
Ek − ηk∇EJ (Ek)

)
+
, (5.7)

where ηk is the stepsize and (·)+ is the projection operator that maps its argument to

the feasible nonnegative region.

In these expression, the gradient of (5.6) with respect to en is

∇enJ (E) = α

T∑

t=1

ant

(
− xt +

N∑

m=1

amtem

)

+ (1− α)
T∑

t=1

ant

(
−∇enκ(en,xt) +

N∑

m=1

amt∇enκ(en,em)
)
, (5.8)

where ∇enκ(en, ·) denotes the gradient of the kernel with respect to its first argument

en, as given in Table 2.1. Without loss of generality, we restrict the presentation to the
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Algorithm 2 The estimation of the optimal stepsize

Input: 0 < ρ < 1
1: ηk ← ηk−1, p = 1
2: if ηk satisfies (5.9), then
3: while ηk/ρ

p satisfies (5.9) do
4: ηk ← ηk/ρ

p, p ← p+ 1
5: end while
6: else
7: while ηk does not satisfy (5.9) do
8: ηk ← ηk ρ

p, p ← p+ 1
9: end while

10: end if

Gaussian kernel for the objective function JH. In this case, expression (5.8) becomes

∇enJ (E) = α

T∑

t=1

ant

(
− xt +

N∑

m=1

amtem

)

+
1− α
σ2

T∑

t=1

ant

(
κ(en,xt)(en − xt)−

N∑

m=1

amtκ(en,em)(en − em)
)
.

To estimate the stepsize ηk at each iteration k, we investigate the backtracking-Armijo

line search, since it has proved effective for NMF [Lin, 2007b; Huck et al., 2010]. To this

end, the stepsize is refined, either by increasing or decreasing its value ρ-fold, depending

if the condition

J (Ek)− J (Ek+1) ≤ γ ηk vec(∇EJ )⊤vec(Ek −Ek+1) (5.9)

is satisfied, where ∇EJ = [∇e1J ∇e2J · · · ∇eNJ ], vec(·) reshapes this matrix into

a column vector, and γ characterizes the decrease level and is often set to 1%. The

algorithm that accelerates the stepsize search is outline in Algorithm 2.

5.4.2 Optimization over abundances

In order to minimize the function J (E,A) over A, denoted J (A) in the following, the

PGD update rule for A can be derived in the same way as for E. However, the stepsize

estimation in PGD rule is very time consuming. To alleviate this problem, we develop

the multiplicative update (MU) for A. Both linear and nonlinear models are linear-in-

the-parameters in terms of ant, which is not the case when dealing with the endmember

matrix E. Therefore, owing to the convexity of the subproblem J (A), the MU for
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A yields a monotone decrease in the objective function. Denote by Λk the matrix of

stepsize values at iteration k, where (Λk)nt = λk,nt. The PGD update rule in terms of

A is

Ak+1 =
(
Ak − Λk∇AJ (Ak)

)
+
. (5.10)

Here, the stepsize balances the rate of convergence with the accuracy of optimization,

and can be set differently depending on n and t.

In these expressions, the derivative of (5.6) with respect to ant is

∇antJ (A) = α
(
− e⊤nxt +

N∑

m=1

amt e
⊤
n em

)
+ (1− α)

(
− κ(en,xt) +

N∑

m=1

amt κ(en,em)
)
.

(5.11)

In order to get the multiplicative update rule, we choose the stepsize parameter in (5.10)

as

λk,nt =
aknt

α

N∑

m=1

akmte
⊤
n em + (1− α)

N∑

m=1

akmt κ(en,em)

,

which yields

ak+1
nt = aknt

α e⊤nxt + (1− α)κ(en,xt)

α

N∑

m=1

akmte
⊤
n em + (1− α)

N∑

m=1

akmt κ(en,em)

. (5.12)

It is noteworthy that the multiplicative update rule for en can be elaborated in the same

way, by using the split gradient method. However, since the sub-optimization on en is

possibly nonconvex1, the monotone property is not guaranteed with an arbitrary kernel.

That is, for a given weight α, although the aggregated objective function J globally

decreases, the overshoot of stepsize in updating E may occur during iterations. This

discussion is outlined in Table 5.1.

1In conventional NMF, the subproblem of estimating each matrix separately is convex. Thanks to
this property, the monotone decreasing property of the multiplicative-style update rules was proved by
constructing an auxiliary function as an upper bound [Lee and Seung, 2001; Lin, 2007a]. In our work,
the proposed framework involves a nonconvex optimization problem on en, since the Hessian matrix is
no longer guaranteed to be positive semidefinite.
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Table 5.1: The convexity and the optimization methods for each subproblem

Convexity PGD MU

minE J (E) X

minA J (A) X X X

5.4.3 Complexity, convergence and stopping criteria

The complexity of the PGD method for E in Algorithm 2 is O(pTLN2), where p is

the average number of checking condition (5.9). The complexity of the MU for A is

O(TLN2). Thus, the total complexity of Algorithm 1 is O(k(p + 1)TLN2) after k

iterations. This complexity holds using any commonly-used kernel listed in Table 2.1,

with roughly the same complexity O(L) for each kernel.

Similar to the PGD and MU rules initially presented for the linear NMF, the proposed

algorithm is a stationary point method. See also the discussions on the convergence of

the conventional NMF in [Gonzales and Zhang, 2005; Lin, 2007a]. We use a twofold

stopping criterion, i.e., either a stationary point is attained, or the preset maximum

number of iterations is reached. To be more specific, the algorithm stops when either

the condition ‖J (Ek+1,Ak+1) − J (Ek,Ak))‖ < ε is satisfied, or k = kmax. In the

experiments, the threshold of the error difference between successive iteration is set to

ε = 10−4.

5.4.4 A posteriori analysis of the approximated Pareto front

It is worth noting that we apply the sum-weighted method as a posteriori method,

where different Pareto optimal solutions are generated. The Decision Maker makes the

final compromise among optimal solutions, from the conventional linear NMF to the

Gaussian KNMF. Alternatively, in a priori methods, the Decision Maker specifies the

weight α in advance to generate a solution. See [Miettinen, 2008] for more details.

All the points on the approximated Pareto front are optimal in some sense. To choose

the α suitable to the data under scrutiny, we employ level diagrams approach studied in

[Blasco et al., 2008]. This a posteriori method classifies the points on the Pareto front
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according to their proximities to the ideal point, defined in our case by

J ∗∗ = [minJX minJH],

where minJX and minJH denote respectively the minimum values of the two objective

functions obtained on the Pareto front. For this purpose, each point J = [JX JH] is
first normalized to J = [JX JH] using the maximum and minimum achieved values,

that is

JX =
JX −minJX

maxJX −minJX
,

and

JH =
JH −minJH

maxJH −minJH
.

The distance to the ideal point is then evaluated with an ℓp-norm. Of particular interest

are the following norms:

� ℓ1-norm: ‖J ‖1 = JX + JH;

� ℓ2-norm: ‖J ‖2 =
√
JX 2

+ JH2
;

� ℓ∞-norm: ‖J ‖∞ = max(JX ,JH);

� ℓ−∞-norm: ‖J ‖−∞ = min(JX ,JH).

It is clear that the points with small norms locate nearly to the ideal point; therefore

the Decision Maker can choose a solution among them.

5.5 Experiments

In this section, the performance of the proposed bi-objective KNMF is demonstrated on

the unmixing of synthetic and real hyperspectral images, by comparing with state-of-the-

art unmixing techniques. We consider three supervised methods, namely FCLS [Heinz

and Chang, 2001], K-Hype [Chen et al., 2013b] and GBM-sNMF [Yokoya et al., 2014],

where NMF is applied in prior for endmember extraction. We further consider several

unsupervised methods, including four NMF-based ones: MiniDisCo [Huck et al., 2010],

ConvexNMF [Ding et al., 2010], KconvexNMF [Li and Ngom, 2012] and MercerNMF

[Pan et al., 2011], as well as a nonlinear unmixing technique Mac-Mic [Close et al.,
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Figure 5.3: The USGS spectra used for synthetic data generation.

2014]. The unmixing performance is evaluated by two criteria, the averaged spectral

angle distance between endmembers (SAD) and the root mean square error on the

abundances (RMSE), as defined with (4.15) and (4.16) in Section 4.4.

5.5.1 Simulation with synthetic data

The performance of the proposed method is firstly studied on a series of synthetic images,

each of size 20×20 pixels. The generalized bilinear model (GBM) is considered as defined

in (1.6). The data are generated as given in [Bioucas-Dias and Nascimento, 2008] as

follows. First, N = 3 or N = 6 endmembers are randomly selected from the candidate

spectra set. This set is composed of 19 spectra drawn from the United States Geological

Survey (USGS) digital spectral library, as given in Figure 5.3. Second, the abundance

vectors are uniformly generated using a Dirichlet distribution on the simplex defined by

the nonnegativity and the sum-to-one constraints. Last, the data are corrupted with a

Gaussian noise at two different levels, with the signal-to-noise ratio of 30 dB and 15 dB.

Experiments are conducted employing the weight set α ∈ {0, 0.1, . . . , 0.9, 1}, which im-

plies the model varying gradually from the nonlinear Gaussian NMF (α = 0) to the

conventional linear NMF (α = 1). For each value of α from the weight set, Algorithm 1

is applied. The maximum iteration number is set as kmax = 2000 in all the comparing
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Table 5.2: Unmixing performance on synthetic data (×10−2)

N = 3 N = 6

SNR = 30dB SNR = 15dB SNR = 30dB SNR = 15dB

SAD RMSE SAD RMSE SAD RMSE SAD RMSE

FCLS - 32.48 - 31.99 - 30.01 - 28.17

GBM-sNMF - 28.91 - 27.48 - 27.79 - 26.49

K-Hype - 8.40 - 10.63 - 12.31 - 11.11

MiniDisCo 8.20 10.49 11.60 12.24 14.53 2
O 7.66 17.93 2

O 7.99

ConvexNMF 14.19 21.43 13.91 21.96 19.06 12.15 20.00 12.86

KconvexNMF - 14.40 - 16.36 - 12.45 - 12.40

MercerNMF - 16.02 - 15.94 - 1
O 7.60 - 1

O 7.54

Mac-Mic 9.93 12.72 13.34 12.34 14.48 13.01 19.05 9.04
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α = 0.9 1
O 4.80 1

O 4.67 1
O 6.22 3

O 6.83 12.58 3
O 8.83 21.97 3

O 8.44

α = 0.8 2
O 5.34 2

O 4.86 2
O 6.40 1

O 6.37 2
O 11.78 8.93 18.83 8.85

α = 0.7 3
O 6.19 3

O 6.13 3
O 6.95 2

O 6.76 1
O 11.77 8.85 17.36 9.10

α = 0.6 7.10 7.81 7.49 7.62 3
O 11.95 9.28 16.56 9.14

α = 0.5 7.85 9.06 7.95 8.40 12.27 9.93 16.11 9.80

α = 0.4 8.48 9.80 8.45 8.90 12.70 10.80 3
O 15.46 10.45

α = 0.3 9.16 10.59 8.90 9.36 13.10 11.72 2
O 15.19 10.89

α = 0.2 9.92 11.74 9.51 9.82 13.67 12.27 1
O 15.16 11.14

α = 0.1 10.95 13.00 10.34 10.60 14.42 12.93 15.57 11.08

α = 0 12.32 17.55 12.54 15.54 15.22 13.83 16.42 12.32

methods. The bandwidth parameter in the Gaussian kernel is roughly set to σ = 3.0 for

all the experiments. By performing ten Monte-Carlo simulations, the average values in

terms of SAD and RMSE are compared with the state-of-the-art unmixing methods, as

given in Table 5.2.

We observe the following. For all the considered numbers of endmembers and noise

levels, the proposed bi-objective KNMF with the Pareto optimal outperforms not only

state-of-the-art methods but also the linear (α = 1) and Gaussian (α = 0) NMF in terms

of endmember estimation. Given a relatively small number of endmembers with N = 3,

the proposed method also yields the smallest root mean square error on the abundances

regardless of the noise level. For N = 6, it provides comparable results to MercerNMF

and MiniDisCo, being slightly worse in terms of RMSE and slightly better in terms of

SAD.

5.5.2 Experiments with the Urban image

As depicted in Figure 5.4, the real hyperspectral image studied is from the Urban image,

acquired by the HYDICE sensor. A description of the Urban image is available in
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Figure 5.4: The scene from the Urban image

Section 4.4.3. In this chapter, we take the top left part with 150 × 150 pixels from the

original 307 × 307 pixels’ image. According to the ground truth provided in [Jia and

Qian, 2007; Fong and Hu, 2011], the studied area is mainly composed of four endmembers

shown in Figure 5.5: asphalt, grass, tree and roof. In experiments, the weight set

is chosen as α ∈ {0, 0.04, . . . , 0.96, 1}, and the maximum iteration number is set to

kmax = 300. Starting from α1 = 0, the matrix E1 is initialized by conducting NMF

on 1000 randomly chosen samples, while the elements in A1 are generated using a [0, 1]

uniform distribution. The bandwidth in the Gaussian kernel is selected as σ = 4.2, after

a preliminary analysis using the single-objective Gaussian NMF with the candidate set

{0.2, 0.3, . . . , 9.9, 10, 15, 20, . . . , 50}.

The unmixing performance is shown in Table 5.3, with several ℓp-norms as described in

Section 5.4.4. Methods that do not extract endmembers are not included, such as FCLS,

sNMF, K-Hype, MercerNMF and KconvexNMF, since they poorly perform as shown in

Table 5.2. Compared with the state-of-the-art methods, three endmembers out of four,

i.e., Asphalt, Tree and Roof, are better estimated by Pareto optima. The estimated

abundance maps corresponding to the four endmembers are shown in Figure 5.8.

We compare in Table 5.4 the computational time of the proposed method with the afore-

mentioned unmixing algorithms that jointly estimate the endmembers and abundances.

Nonlinear methods, and in particular kernel-based ones, are time-consuming in general.

Regarding the proposed bi-objective KNMF, its computational complexity is lower than

the one of MercerNMF, for a fixed value of α. When considering a spread of values of

α, the sub-optimization problems can be addressed in parallel.
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Figure 5.5: The four ground truth endmembers in the Urban image.

Table 5.3: Performance on the Urban image (×10−2)

Spectral Angle Distance

SAD Asphalt Grass Tree Roof

MiniDisCo 3
O 30.23 25.91 1

O 25.62 13.86 55.51

ConvexNMF 34.83 48.15 47.87 14.29 35.01

Mac-Mic 33.53 3
O 10.78 2

O 43.65 53.00 26.68

th
is

th
es
is

α = 1 (ℓ−∞-norm) 40.84 87.29 60.03 1
O 7.92 3

O 8.14

P
ar
et
o
op

t. α = 0.48 (ℓ2-norm) 31.28 66.74 46.11 2
O 8.30 1

O 3.95

α = 0.40 (ℓ∞-norm) 30.45 64.18 3
O 44.95 3

O 8.37 2
O 4.30

α = 0.04 (ℓ−∞-norm) 2
O 29.79 1

O 8.34 70.54 9.77 30.46

α = 0 1
O 28.55 2

O 8.93 62.31 10.10 32.84

Table 5.4: Estimated computational time (in seconds)

MiniDisCo 220

ConvexNMF 996

n
o
n
li
n
ea
r KconvexNMF 2622

MercerNMF 20332

Mac-Mic 4244

Bi-Objective NMF, average per α 5420
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5.5.3 Approximating the Pareto front

Inherited from nonlinear multi-objective optimization problems, the determination of

the whole Pareto front is intractable and the target becomes to approximate the Pareto

front by a set of discrete points, as stated in [Lampinen, 2000]. To this end, we operate as

follows: For each value of α, we obtain a solution (endmember and abundance matrices)

from the proposed algorithm; by evaluating the objective functions JX and JH at this

solution, we get a single point in the objective space, as shown in Figure 5.6. Figure 5.7

shows the evolution of these objectives functions and the aggregated objective function

J , evaluated at the solution obtained for each α.

We observe the following:

1. Regarding the sum-weighted approach, the minimizer of the sub-optimization

problem is proven to be a Pareto optimal for the original multi-objective prob-

lem, i.e., the corresponding objective vector belongs to the Pareto front in the

objective space [Das and Dennis, 1997]. For the Urban image, we obtain 25 (out

of 26) nondominated solutions. The solution for α = 0 is dominated by the so-

lutions on the approximated Pareto front, with respect to both objectives. Such

phenomenon is not surprising. Indeed, there exist multiple Pareto optimal solutions

in a problem only if the objectives are conflicting to each other, as demonstrated in

[Deb and Kalyanmoy, 2001]2. As shown in Figure 5.6 and Figure 5.7, the obtained

solutions are Pareto optimal within the objectives-conflicting interval α ∈ [0.04, 1].

2. A uniform distribution of the values of α from [0, 1] does not lead to a uniform

spread of the solutions on the approximated Pareto front. Moreover, the nonconvex

part of the Pareto front cannot be attained using any weight. These are two major

drawbacks of the sum-weighted method, as stated in [Das and Dennis, 1997] and

illustrated in Figure 5.6.

Nevertheless, the obtained approximation of Pareto front is of high value. On one

hand, it provides a set of nondominated solutions for the Decision Maker. On the other

hand, an insight of the tradeoff between objectives JX and JH reveals the underlying

linearity/nonlinearity of the data under study.

2For example, the Pareto optimal solutions for the well-known Schaffer’s function, defined by J (x) =
[x2 (x − 2)2], are found only within the interval [0, 2], where a tradeoff between the two objectives
exists. See [Zitzler and Thiele, 1999].
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Figure 5.6: Illustration of the approximated Pareto front in the objective space for the
Urban image. The (normalized) objective vectors of the 25 nondominated solutions,
marked in red, approximate a part of the Pareto front; the single dominated solution

is marked in blue.

5.6 Conclusion

This chapter presented a bi-objective nonnegative matrix factorization by exploiting the

kernel machines, where the decomposition was performed simultaneously in the input

and the feature spaces. The performance of the method was demonstrated for unmixing

synthetic and real hyperspectral images. The approximation of the Pareto front was

analyzed.

Future works include a more efficient way to determine the good value of the weight

parameter α. In addition, we will incorporate physical-based unmixing models, namely

the bilinear ones and the macroscopic-microscopic models, by defining appropriately

the kernel in the proposed framework. Considering simultaneously several kernels, and

consequently several feature spaces, is also under investigation.
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Figure 5.8: Estimated abundance maps for the Urban image. Left to right: Abundance
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In hyperspectral images, some spectral bands suffer from low signal-to-noise ratio due

to noisy acquisition and atmospheric effects, thus requiring robust techniques for the un-

mixing problem. This chapter presents a robust supervised spectral unmixing approach

for hyperspectral images. The robustness is achieved by writing the unmixing problem

as the maximization of the correntropy criterion subject to the most commonly used

constraints. Two unmixing problems are derived: the first problem considers the fully-

constrained unmixing, with both the nonnegativity and sum-to-one constraints, while the

second one deals with the nonnegativity and the sparsity-promoting of the abundances.

The corresponding optimization problems are solved efficiently using an alternating di-

rection method of multipliers (ADMM) approach. Experiments on synthetic and real

hyperspectral images validate the performance of the proposed algorithms for different

scenarios, demonstrating that the correntropy-based unmixing is robust to outlier bands.

6.1 Introduction

By far, almost all the unmixing algorithms hugely suffer from noisy data and outliers

within bands. Indeed, in real hyperspectral images for remote sensing, a considerable

proportion (about 20%) of the spectral bands are noisy with low signal-to-noise ratio

(SNR), due to the atmospheric effect such as water absorption [Zelinski and Goyal,

2006]. These bands need to be removed prior to applying any existing unmixing method;

otherwise, the unmixing quality drastically decreases. Such sensitivity to outliers is due

to the investigated ℓ2-norm as a cost function in the fully-constrained least-squares

method (FCLS) [Bioucas-Dias et al., 2012] and sparse unmixing by variable splitting

and augmented Lagrangian (SUnSAL) [Bioucas-Dias and Figueiredo, 2010] algorithms,

as well as all unmixing algorithms that explore least-squares solutions. It is worth noting

that nonlinear unmixing algorithms also suffer from this drawback, including the kernel-

based fully-constrained least-squares (KFCLS) [Broadwater et al., 2007], the nonlinear

fluctuation methods [Chen et al., 2013b] and the post-nonlinear methods [Chen et al.,

2013c]. See Chapter 1 for a review.

Information theoretic learning provides an elegant alternative to the conventional min-

imization of the ℓ2-norm in least-squares problems, by considering the maximization

of the so-called correntropy [Liu et al., 2007; Principe, 2010]. Due to its stability and

robustness to noise and outliers, the correntropy maximization is based on theoretical
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foundations and has been successfully applied to a wide class of applications, including

cancer clustering [Wang et al., 2013a], face recognition [He et al., 2011], and recently

hyperspectral unmixing [Wang et al., 2015], to name a few. In these works, the re-

sulting problem is optimized by the half-quadratic technique [Nikolova and Ng, 2005],

either in a supervised manner [He et al., 2011] or as an unsupervised nonnegative matrix

factorization [Wang et al., 2013a, 2015].

In this chapter, we consider the hyperspectral unmixing problem by defining an appropri-

ate correntropy-based criterion, thus taking advantage of its robustness to large outliers,

as opposed to the conventional ℓ2-norm criteria. By including constraints commonly

used for physical interpretation, two unmixing problems are derived in detail: the first

problem considers the fully-constrained unmixing, with both the nonnegativity (ANC)

and sum-to-one (ASC) constraints, while the second one deals with the nonnegativity

and the sparsity-promoting of the abundances. We propose to solve these constrained

optimization problems with alternating direction method of multipliers (ADMM) algo-

rithms. Indeed, the ADMM approach splits a hard problem into a sequence of small

and handful ones [Boyd et al., 2011]. Its relevance to solve nonconvex problems was

studied in [Boyd et al., 2011, Section 9]. We show that ADMM provides a relevant

framework for incorporating different constraints arising in the unmixing problem. We

present the so-called CUSAL (for Correntropy-based Unmixing by variable Splitting and

Augmented Lagrangian), and study in particular two algorithms: CUSAL-FC to solve

the fully-constrained (ANC and ASC) correntropy-based unmixing problem, and the

CUSAL-SP to solve the sparsity-promoting correntropy-based unmixing problem.

6.2 Classical Unmixing Problems

Before proceeding, we outline the hyperspectral unmixing problems detailed in Chap-

ter 1, by emphasizing on the models and problems that shall be revisited in this chapter.
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The linear mixture model (LMM) assumes that each spectrum can be expressed as a

linear combination of a set of pure material spectra, namely

xt =

N∑

n=1

ant en + nt

= Eat + nt,

where E = [e1 · · · eN ] ∈ RL×N is the matrix of the N endmembers with en =

[e1n · · · eLr]⊤, at = [a1t · · · aNt]⊤ is the abundance vector associated with the t-th

pixel, and nt ∈ RL is the additive noise. In matrix form for all pixels, we have

X = EA+N ,

where A = [a1 · · · aT ] ∈ RN×T and N is the noise matrix.

In the following, the endmembers are assumed known, either from ground-truth informa-

tion or by using any endmember extraction technique. The unmixing problem consists

in estimating the abundances for each pixel. The easiest way to solve this problem is to

consider the unconstrained least-squares optimization problem

min
at

‖xt −Eat‖22, (6.1)

for each t = 1, . . . , T , where ‖ · ‖2 denotes the conventional ℓ2-norm. The solution

to this conventional least-squares problem is given by the pseudo-inverse of the (tall)

endmember matrix, with at = (E⊤E)−1E⊤xt. The least-squares optimization problems

(6.1), for all t = 1, . . . , T , are often written in a single optimization problem using the

following matrix formulation min
A
‖X−EA‖2F , where ‖·‖F denotes the Frobenius norm.

Its solution is

ALS = (E⊤E)−1E⊤X. (6.2)

Finally, this optimization problem can be also tackled by considering all the image pixels

at each spectral band, which yields the following least-squares optimization problem

min
A

L∑

l=1

‖xl∗ − el∗A‖22,

where xl∗ its l-th row of X representing the l-th band over all pixels, and el∗ is the
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row vector of the l-th spectral band over all the endmembers. While all these problem

formulations have a closed-form solution, they suffer from two major drawbacks. The

first one is that several constraints need to be imposed in order to have a physical

meaning of the results. The second drawback is its sensitivity to noise and outliers, due

to the use of the ℓ2-norm as the fitness measure. These two drawbacks are detailed in

the following.

To be physically interpretable, the abundances should be nonnegative (ANC) and satisfy

the sum-to-one constraint (ASC). Considering these constraints, the fully-constrained

least-squares problem is formulated as, for each t = 1, . . . , T ,

min
at

‖xt −Eat‖22, subject to at ≥ 0 and 1⊤at = 1,

where 1 ∈ RN×1 denotes the column vector of ones and ≥ 0 is the nonnegativity applied

element-wise, or in matrix form:

min
A
‖X −EA‖2F , subject to A ≥ 0

and 1⊤at = 1, for t = 1, . . . , T.

Since there is no closed-form solution when dealing with the nonnegativity constraint,

several iterative techniques have been proposed, such as the active set scheme with the

Lawson and Hanson’s algorithm [Lawson and Hanson, 1987], the multiplicative iterative

strategies [Lantéri et al., 2001], and the fully-constrained least-squares (FCLS) technique

[Heinz and Chang, 2001]. More recently, the alternating direction method of multipli-

ers (ADMM) was applied with success for hyperspectral unmixing problem, with the

SUnSAL algorithm [Bioucas-Dias and Figueiredo, 2010].

Recent work in hyperspectral unmixing have advocated the sparsity in the abundance

vectors [Bioucas-Dias and Figueiredo, 2010; Iordache et al., 2011, 2012]. In this case, each

spectrum is fitted by a sparse linear mixture of endmembers, namely only the abundances

with respect to a small number of endmembers are nonzero. To this end, the sparsity-

promoting regularization with the ℓ1-norm is included in the cost function, yielding the

following constrained sparse regression problem [Bioucas-Dias and Figueiredo, 2010], for
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each t = 1, . . . , T ,

min
at

‖xt −Eat‖22 + λ‖at‖1, subject to at ≥ 0,

where the parameter λ balances the fitness of the least-squares solution and the sparsity

level. It is worth noting that the ASC is relaxed when the ℓ1-norm is included. This

problem is often considered by using the following matrix formulation:

min
A
‖X −EA‖2F + λ

T∑

t=1

‖at‖1, subject to A ≥ 0.

6.2.1 Sensitivity to outliers

All the aforementioned algorithms rely on solving a (constrained) least-squares optimiza-

tion problem, thus inheriting the drawbacks of using the ℓ2-norm as the fitness measure.

A major drawback is its sensitivity to outliers, where outliers are some spectral bands

that largely deviate from the rest of the bands. Indeed, considering all the image pixels,

the least-squares optimization problems take the form

min
A

L∑

l=1

‖xl∗ − el∗A‖22. (6.3)

subject to any of the aforementioned constraints. From this formulation, it is easy to

see how the ℓ2-norm gives more weight to large residuals, namely to outliers in which

the estimated values x̂l∗ = el∗A are far from the corresponding observations xl∗. More-

over, it is common for hyperspectral images to present up to 20% of unusable spectral

bands due to low signal-to-noise ratio essentially from atmospheric effects, such as water

absorption. In the following section, we overcome this difficulty by considering the cor-

rentropy maximization principle from the information theoretic learning, which yields

an optimization problem that is robust to outliers.
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6.3 Correntropy-based Unmixing Problems

In this section, we present the correntropy and write the unmixing problems as cor-

rentropy maximization ones. Algorithms for solving these problems are derived in Sec-

tion 6.4.

6.3.1 Correntropy

Within the framework of information theoretic learning, the correntropy was introduced

as a generalized correlation function between two stochastic processes, with geometric

and probabilistic interpretations [Principe, 2010]. With close connections with the M-

estimation, it has been very useful in non-Gaussian signal processing, especially for

impulsive noise environments [Liu et al., 2007]. The correntropy can be viewed as a

nonlinear local similarity measure between two arbitrary random variables. For two

random variables, v and its estimation v̂ using some model/algorithm, it is defined by

IE[κ(v, v̂)], (6.4)

where IE[·] is the expectation operator, and κ(·, ·) is a shift-invariant positive definite

kernel (see Chapter 2). The joint distribution of the variables v and v̂ being unavailable

in practice, the sample estimator of the correntropy is adopted instead by employing a

finite set of data.

In the following, we consider the same notation as in the unmixing problem, where the

variables are the observed spectrum and its estimation using some model/algorithm,

namely (xl∗, x̂l∗). Considering a finite set of these pairs, namely {(xl∗, x̂l∗)}Ll=1, the

correntropy is estimated by
L∑

l=1

κ(xl∗, x̂l∗), (6.5)

up to a normalization factor. The Gaussian kernel is the most commonly-used kernel

for the correntropy. This leads to the following expression for the correntropy

C =
L∑

l=1

exp
(
−1
2σ2
‖xl∗ − x̂l∗‖22

)
, (6.6)

where σ denotes the bandwidth of the Gaussian kernel.
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The maximization of the correntropy, given by

max
A
C

where A is the model’s parameters, and is termed the maximum correntropy criterion.

This criterion has been largely investigated for many applications in statistical signal

processing and machine learning, including adaptive systems, unsupervised learning,

and pattern recognition [Principe, 2010]. Equivalently, we consider in the following the

minimization of the objective function −C, which is often termed the negative of the

correntropy.

It is noteworthy that well-known second-order statistics, such as the mean square er-

ror (MSE) depends heavily on the Gaussian assumption [Liu et al., 2007]. However, in

presence of non-Gaussian noise and in particular large outliers (i.e., observations greatly

deviated from the data bulk), the effectiveness of the MSE-based algorithms will signif-

icantly deteriorate [Wu et al., 2015]. By contrast, the maximization of the correntropy

criterion is appropriate for non-Gaussian signal processing, since it is robust in particular

against large outliers, as shown next.

6.3.2 The underlying robustness of the correntropy criterion

In this section, we study the sensitivity to outliers of the correntropy maximization

principle, by showing the robustness of the underlying mechanism. To this end, we

examine the behavior of the correntropy in terms of the residual error defined by

ǫl = ‖xl∗ − x̂l∗‖2.

Thus, the correntropy defined in (6.6) becomes

C =
L∑

l=1

exp
(
−1
2σ2

ǫ2l
)
.

Compared with second-order statistics, e.g. MSE with 1
L

∑L
l=1 ǫ

2
l , the correntropy is

more robust with respect to the outliers. This is illustrated in the profiles given in

Figure 6.1 for L = 1, by comparing ǫ2l and 1−C in terms of the residual error ǫl. As the

residual error increases, the second-order function keeps increasing dramatically. On the
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contrary, the correntropy is only sensitive within a region of small residual errors, this

region being controlled by the kernel bandwidth. For large magnitudes of the residual

error, the correntropy falls to zero. Consequently, the correntropy criterion is robust to

large outliers. In the following, we take advantage of this property in order to provide

robust unmixing.

6.3.3 Correntropy-based unmixing problems

The correntropy-based unmixing problem consists in estimating the unknown abundance

matrix A, by minimizing the objective function −C (the negative of the correntropy),

defined by

− C(A) = −
L∑

l=1

exp
(
−1
2σ2
‖xl∗ − el∗A‖22

)
, (6.7)

where the Gaussian kernel was considered. Equivalently, using element-wise notation,

we have

−C(A) = −
L∑

l=1

exp

(
−1
2σ2

T∑

t=1

(
xlt −

N∑

n=1

ant eln

)2
)
.
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Considering both the ANC and ASC constraints, the fully-constrained correntropy un-

mixing problem is defined by the following optimization problem:

min
A
−C(A), subject to A ≥ 0

and 1⊤at = 1, for t = 1, . . . , T.

(6.8)

For the sake of promoting sparse representations, the objective function (6.7) can be

augmented by the ℓ1-norm penalty on the abundance matrix A, leading to the following

optimization problem:

min
A
−C(A) + λ

T∑

t=1

‖at‖1, subject to A ≥ 0. (6.9)

6.4 ADMM for Solving the Correntropy-based Unmixing

Problems

We first briefly review the alternating direction method of multipliers (ADMM), follow-

ing the expressions in [Boyd et al., 2011, Chap. 3]. Consider an optimization problem

of the form

min
a

f(a) + g(a),

where the functions f and g are closed, proper and convex. The ADMM solves the

equivalent constrained problem

min
a,b

f(a) + g(b) subject to Pa+Qb = c, (6.10)

such as having the particular constraint a = b for instance. While this formulation

may seem trivial, the optimization problem can now be tackled using the augmented

Lagrangian method where the objective function is separable in a and b. By alternating

on each variable separately, the ADMM repeats a direct update of the dual variable. Its

relevance to solve nonconvex problems is studied in [Boyd et al., 2011, Section 9]. In its

scaled form, the ADMM algorithm is summarized in Algorithm 3.
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Algorithm 3 The ADMM algorithm [Boyd et al., 2011]

Input: functions f and g, matrices P and Q, vector c, parameter ρ
1: Initialize k = 0, a0, b0 and d0

2: repeat

3: ak+1 = argmin
a
f(a) +

ρ

2
‖Pa+Qbk − c+ dk‖22;

4: bk+1 = argmin
b
g(b) +

ρ

2
‖Pak+1 +Qb− c+ dk‖22;

5: dk+1 = dk + Pak+1 +Qbk+1 − c;
6: k = k + 1;
7: until stopping criterion

6.4.1 Correntropy-based unmixing with full constraints

In the following, we apply the ADMM algorithm to solve the correntropy-based unmixing

problem in the fully-constrained case, presented in (6.8). Rewrite the variables to be op-

timized in a vector a ∈ RRT×1, which is stacked by the columns of the matrix A, namely

a = [a⊤1 · · · a⊤T ]⊤. Rewrite also the following vectors in RRT×1: b = [b⊤1 · · · b⊤T ]⊤ and

d = [d⊤1 · · · d⊤T ]⊤, where bt = [z1t · · · zNt]⊤ and dt = [u1t · · · uNt]⊤, for t = 1, . . . , T .

By following the formulation of the ADMM in Algorithm 3, we set

f(a) = −C(a) +
T∑

t=1

ι{1}(1
⊤at) (6.11)

g(b) = ι
RRT

+
(b)

P = −I,Q = I and c = 0,

where I is the identity matrix, 0 ∈ RRT×1 is the zero vector and ιS(u) is the indicator

function of the set S defined by

ιS(u) =





0 if u ∈ S;
∞ otherwise.

Before that, we eliminate the T equality constraints, i.e., the sum-to-one constraints, by

replacing aNt with

aNt = 1−
N−1∑

n=1

ant,
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for t = 1, . . . , T . Let a ∈ R(N−1)T×1 be the reduced vector of (N − 1) unknowns to be

estimated, stacked as follows

at =
[
a1t · · · a(N−1)t

]⊤
,

for t = 1, . . . , T . By this means, the objective function in (6.11) is transformed from

(6.7) into the reduced-form

f1(a) = −
L∑

l=1

exp

(
−1
2σ2

T∑

t=1

ǫl(at)
2

)
, (6.12)

where ǫl(at) = xlt − elN −
∑N−1

p=1 (elp − elN )apt, for l = 1, . . . , L. The gradient of (6.12)

with respect to a is stacked as

∂f1
∂a

=

[
∂f1
∂a1

⊤

· · · ∂f1
∂aT

⊤
]⊤
∈ R(N−1)T×1,

where ∂f1
∂at

=
[
∂f1
∂a1t

· · · ∂f1
∂a(N−1)t

]⊤
, with the entries given by

∂f1(a)

∂ant
= 1

σ2

L∑

l=1

(elN − eln) exp
(
−1
2σ2

T∑

s=1

ǫl(as)
2
)
ǫl(at),

for all n = 1, . . . , (N − 1) and t = 1, . . . , T . Similarly, the function ρ
2‖a − bk − dk‖22 is

expressed with respect to a as

φ(a) =
ρ

2

T∑

t=1

(
1−

N−1∑

p=1

apt − zNt,k − uNt,k
)2

+

N−1∑

p=1

(apt − zpt,k − upt,k)2

with the entries in its gradient ∂φ
∂a given by

∂φ(a)

∂ant
= ρ
(
ant +

N−1∑

p=1

apt − 1 + zNt,k − znt,k + uNt,k − unt,k
)
, (6.13)

for all n = 1, . . . , N − 1 and t = 1, . . . , T .

The main steps of the algorithm CUSAL-FC (for correntropy-based unmixing with full

constraints) are given in Algorithm 4. The subproblem of the a-update (in line 3 of

Algorithm 3) addresses a nonconvex problem without any closed-form solution. To
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Algorithm 4 Correntropy-based unmixing with full constraints (CUSAL-FC)

1: Initialize k = 0, ρ > 0, η > 0, σ > 0; a0, b0 and d0;
2: repeat
3: repeat

4: ak+1 = ak+1 − η
( ∂f1
∂ak+1

+
∂φ

∂ak+1

)
;

5: until convergence
6: reform ak+1 using ak+1;
7: bk+1 = max(0,ak+1 − dk);
8: dk+1 = dk − (ak+1 − bk+1);
9: k = k + 1;

10: until stopping criterion

overcome this difficulty, we apply an ADMM variant that solves the subproblem iter-

atively using the gradient descent method, instead of solving it exactly and explicitly.

This step is given in lines 3-5 of Algorithm 4. The solution of the b-update in line 4 of

Algorithm 3 becomes the projection of ak+1−dk onto the first orthant, as shown in line

7 of Algorithm 4.

6.4.2 Sparsity-promoting unmixing algorithm

In order to apply the ADMM algorithm for the correntropy-based sparsity-promoting

unmixing problem, we express the constrained optimization problem (6.9) as follows

f(a) = −C(a) (6.14)

g(a) = ι
RRT

+
(a) + λ‖a‖1

P = −I,Q = I and c = 0.

By analogy with the previous case, the a-update in line 3 of Algorithm 3 is solved

iteratively with the gradient descent method and is given in Algorithm 5 lines 3-5. The

gradient of (6.14) with respect to a is stacked by ∂f
∂at

, where

∂f

∂at
= − 1

σ2

L∑

l=1

ǫl(at) exp

(
−1
2σ2

T∑

s=1

(ǫl(as))
2

)
e⊤l ,

for t = 1, . . . , T , where ǫl(at) = xlt −
∑N

n=1 ant eln.
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Algorithm 5 Correntropy-based unmixing with sparsity-promoting (CUSAL-SP)

1: Initialize k = 0, ρ > 0, σ > 0, η > 0, λ > 0; a0, b0 and d0;
2: repeat
3: repeat

4: ak+1 = ak+1 − η
( ∂f

∂ak+1
+ ρ(ak+1 − bk − dk)

)
;

5: until convergence
6: bk+1 = max(0, Sλ/ρ(ak+1 − dk));
7: dk+1 = dk − (ak+1 − bk+1);
8: k = k + 1;
9: until stopping criterion

The b-update in line 4 Algorithm 3 involves solving

bk+1 = argmin
b
ι
RRT

+
(b) + (λ/ρ)‖b‖1 +

1

2
‖b− ak+1 − dk‖22. (6.15)

In [Boyd et al., 2011], the ADMM has been applied to solve various ℓ1-norm problems,

including the well-known LASSO [Tibshirani, 1996]. The only difference between (6.15)

and the b-update in LASSO is that in the latter, no nonnegativity term ιR+RT (b) is

enforced. In this case, the b-update in LASSO is the element-wise soft thresholding

operation

bk+1 = Sλ/ρ(ak+1 − dk),

where the soft thresholding operator [Boyd et al., 2011] is defined by

Sb(ζ) =





ζ − b if ζ > b;

0 if ‖ζ‖ < b;

ζ + b if ζ < −b.

Following [Bioucas-Dias and Figueiredo, 2010], it is straightforward to project the result

onto the nonnegative orthant in order to include the nonnegativity constraint, thus

yielding

bk+1 = max(0, Sλ/ρ(ak+1 − dk)),

where the maximum function is element-wise. All these results lead to the correntropy-

based unmixing algorithm with sparsity-promoting, as summarized in Algorithm 5.
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6.4.3 On the initialisation and the bandwidth determination

We apply a three-fold stopping criterion for Algorithms 4 and 5, as recommended in gen-

eral by [Boyd et al., 2011] and in [Bioucas-Dias and Figueiredo, 2010] for hyperspectral

unmixing (with the SUnSAL algorithm) :

(i) the primal and dual residuals are small enough, namely ‖ak+1 − bk+1‖2 ≤ ǫ1 and

ρ‖bk+1 − bk‖2 ≤ ǫ2,

(ii) the primal residual starts to increase, i.e., ‖ak+1 − bk+1‖2 > ‖ak − bk‖2, or

(iii) the maximum iteration number is attained.

The threshold parameters are set to ǫ1 = ǫ2 =
√
RT×10−5, as recommended in [Bioucas-

Dias and Figueiredo, 2010].

The bandwidth σ in the Gaussian kernel should be well-tuned. A small value for this

parameter punishes harder the outlier bands, thus increasing the robustness of the al-

gorithm to outliers [He et al., 2011]. Moreover, the ADMM is applied to address a

nonconvex objective function, thus no convergence is guaranteed theoretically, accord-

ing to [Boyd et al., 2011]. Considering these issues, we propose to fix the bandwidth

empirically as summarized in Algorithm 6 and described next. Following [He et al.,

2011; Wang et al., 2015], we first initialize the bandwidth parameter as a function of the

reconstruction error, given by

σ20 =
N

8L
‖X −EALS‖2F , (6.16)

where ALS is the least-squares solution (6.2). In the case of a result too apart from that

of least-squares solution, the parameter is augmented by σ = 1.2σ, until the condition

‖X −EA‖F
‖X −EALS‖F

< 2

is satisfied. The algorithm divergence occurs if the stopping criterion (ii) is satisfied,

namely the primal residual increases over iterations. In this case, either the parameter

is too large due to an overestimated initialization, or it is too small. Accordingly, we

either decrease it by σ = σ0/p, or increase it by σ = 1.2σ, until the convergence of the

ADMM algorihtm.
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Algorithm 6 Tuning the bandwidth parameter σ

1: Initialize σ = σ0 using (6.16); p = 1;
2: Do CUSAL with Algorithm 4 or Algorithm 5;
3: if stopping criterion (i) or (iii) is satisfied then

4: if condition ‖X−EA‖2
‖X−EALS‖2

< 2 is satisfied, then

5: σ∗ = σ (optimal value)
6: else
7: increase σ = 1.2σ, and go to line 2
8: end if
9: else

10: if σ > 1000σ0 (due to the overestimated σ0) then
11: p = p+ 1;
12: decrease σ = σ0/p, and go to line 2
13: else
14: increase σ = 1.2σ, and go to line 2
15: end if
16: end if

6.5 Experiments

In this section, the performance of the proposed CUSAL algorithms, in both the fully-

constrained (CUSAL-FC) and sparsity-promoting (CUSAL-SP) versions, are evaluated

on synthetic and real hyperspectral images. A comparative study is performed consid-

ering six state-of-the-art methods proposed for linear and nonlinear unmixing models,

described in Chapter 1: FCLS [Heinz and Chang, 2001], SUnSAL-FCLS [Bioucas-Dias

and Figueiredo, 2010], BayGBM [Halimi et al., 2011a,b], BayPPNMM [Altmann et al.,

2012], KFCLS [Broadwater et al., 2007] and the robust NMF (rNMF) [Févotte and Dobi-

geon, 2015]. Three metrics are considered to evaluate the unmixing performance, namely

the root mean square error of abundances (RMSE) as defined in (4.16) (see Section 4.4),

the averaged spectral angle distance between the input spectra and the reconstructed

ones (SAD) as defined in (4.15) (see Section 4.4), as well as the signal-to-reconstruction

error (SRE) to be defined in (6.17) for sparsity-promoting algorithms.

6.5.1 Experiments with synthetic data

In this section, the performance of the proposed fully-constrained (CUSAL-FC) and

sparsity-promoting (CUSAL-SP) algorithms is evaluated on synthetic data.

We first compare the fully-constrained CUSAL-FC, presented in Section 6.4.1, with the

state-of-the-art methods. A series of experiments are performed, mainly considering the
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Figure 6.2: The N = 3 (left) and 6 (right) endmembers chosen for simulation from the
USGS.

influence of four aspects: (i) mixture model, (ii) noise level, (iii) number of corrupted

bands and (iv) number of endmembers.

Each image, of 50 × 50 pixels, is generated using either the linear mixing model or the

polynomial post-nonlinear mixing model (PPNMM) (1.7), where the additive Gaussian

noise has a SNR ∈ {15, 35}dB. The N ∈ {3, 6} endmembers, as shown in Figure 6.2,

are drawn from the USGS digital spectral library [Bioucas-Dias and Nascimento, 2008].

These endmembers are defined over L = 244 continuous bands with the wavelength

ranging from 0.2µm to 3.0µm. The abundance vectors at are uniformly generated using

a Dirichlet distribution as in [Bioucas-Dias and Nascimento, 2008; Halimi et al., 2015a].

For PPNMM, the values of bt are generated uniformly in the set (−3, 3) according to

[Altmann et al., 2012]. To imitate the noisy bands in the real hyperspectral images,

several bands in the generated data are corrupted by replacing the corresponding rows

of X with random values within [0, 1]. The number of corrupted bands varies in the set

{0, 20, 40, 60}.

The unmixing performance is evaluated using the abundance root mean square error

(RMSE), as defined in Section 4.4. Figure 6.3 and 6.4 illustrates the average of RMSE

over 10 Monte-Carlo realizations, respectively on the LMM and PPNMM data. It is easy

to see that, in presence of outlier bands, the proposed CUSAL-FC algorithm outperforms

all the methods in terms of RMSE, for all mixture models, all noise levels and all

numbers of endmembers. It is also shown that the performance of the proposed algorithm

improves when increasing the SNR.



146 Chapter 6. Correntropy Maximization via ADMM for Robust Unmixing

0 20 40 60
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Number of corrupted bands

R
M

S
E

 

 
CUSAL-FC

SUnSAL-FCLS

FCLS

BayGBM

BayPPNMM

KFCLS

rNMF

(a) SNR = 15, N = 3

0 20 40 60
0.05

0.06

0.07

0.08

0.09

0.1

0.11

Number of corrupted bands

R
M

S
E

 

 

(b) SNR = 15, N = 6
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(c) SNR = 35, N = 3
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(d) SNR = 35, N = 6

Figure 6.3: LMM data: The root mean square error (RMSE) with respect to the number
of corrupted bands, averaged over ten Monte-Carlo realizations, for different number of

endmembers and SNR.

The performance of the proposed the sparsity-promoting CUSAL-SP, presented in 6.4.2,

is compared with the sparsity-promoting SUnSAL-sparse, as well as the FCLS, on a

series of images with sparse abundance matrices. The influences of (i) the number of

corrupted bands and (ii) the sparsity level of the abundances, are studied. Each image,

of 15 × 15 pixels, is generated by the linear mixture model. The endmember matrix

is composed of N = 62 signatures from the USGS, where the angle between any two

different endmembers is larger than 10◦ [Iordache et al., 2011]. The K nonzero entries

in each abundance vector at are generated by a Dirichlet distribution. The value of K

(i.e., the indicator of sparsity level) ranges from 4 to 20, while the number of corrupted

bands varies in {0, 20, 40, 60}. We set the Gaussian noise by SNR = 30dB, a level that is

commonly present in real hyperspectral images according to [Iordache et al., 2011]. For

both sparsity-promoting algorithms, the regularization parameter λ is adjusted using

the set {10−5, 5 · 10−5, 10−4, 5 · 10−4, 10−3, 10−2, 10−1}.
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(b) SNR = 15, N = 6
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(c) SNR = 35, N = 3
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(d) SNR = 35, N = 6

Figure 6.4: PPNMM data: The root mean square error (RMSE) with respect to the
number of corrupted bands, averaged over ten Monte-Carlo realizations, for different

number of endmembers and SNR.

The unmixing performance with the sparsity-promoting algorithms is evaluated using

the signal-to-reconstruction error, measured in decibels, according to [Bioucas-Dias and

Figueiredo, 2010; Iordache et al., 2011]. It is defined by

SRE = 10 log10

( ∑T
t=1 ‖at‖22∑T

t=1 ‖at − ât‖22

)
. (6.17)

The results, averaged over ten Monte-Carlo realizations, are illustrated in Figure 6.5.

Considering that the abundance matrix under estimation is sparse at different levels,

we conclude the following: Concerning the case without outlier bands, the CUSAL-

SP outperforms the SUnSAL-sparse for all values of K > 8 and FCLS for all values

of K > 12. When the number of outlier bands increases, the proposed CUSAL-SP

algorithm generally provides the best unmixing quality with the highest SRE value,

especially for K > 6.
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Figure 6.5: LMM data: The averaged signal-to-reconstruction error (SRE) with respect
to the sparsity level K, averaged over ten Monte-Carlo realizations. Comparison for

various number of corrupted bands at SNR = 30.

6.5.2 Experiments with real data

This section presents the performance of the proposed algorithms on a real hyperspectral

image. We consider a 250×190 sub-image taken from the Cuprite mining image, acquired

by the AVIRIS sensor when flying over Las Vegas, Nevada, USA. The image has been

widely investigated in the literature [Chen et al., 2013b; Iordache et al., 2011]. The raw

data contains L = 224 spectral bands, covering a wavelength range 0.4µm − 2.5µm.

From these spectral bands, there are 37 relatively noisy ones with low SNR, namely

the bands 1 − 3, 105 − 115, 150 − 170, and 223 − 224. The geographic composition

of this area is estimated to include up to 14 minerals [Nascimento and Bioucas-Dias,

2005]. Neglecting the relatively similar signatures, we consider 12 endmembers as often

investigated in the literature [Lu et al., 2013; Chen et al., 2013b]. The VCA technique

is first applied to extract these endmembers on the clean image with L = 187 bands.

Starting from L = 187 bands, the noisy bands, randomly chosen from the bands 1 − 3,
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Figure 6.6: Cuprite image: The averaged spectral angle distance (SAD) using different
number of bands, by starting with 187 clean spectral bands and gradually including

the noisy bands.

105−115, 150−170, and 223−224, are gradually included to form a series of input data.

Therefore, the experiments are conducted with L = 187, 193, 199, 205, 211, 217, 223 and

224 bands.

Since ground-truth abundances are unknown, the performance is measured with the av-

eraged spectral angle distance (SAD) between the input spectra xt and the reconstructed

ones x̂t, as defined in (4.15) (see Section 4.4). The results are illustrated in Figure 6.6.

The estimated abundance maps using 187, 205 and 224 bands are given in Figure 6.7,

Figure 6.8, and Figure 6.9, respectively. In absence of noisy bands (i.e., L = 187 bands),

all the considered methods lead to satisfactory abundance maps, with BayPPNMM pro-

viding the smallest SAD and rNMF the worst. As the number of noisy bands increases,

the unmixing performance of the state-of-the-art methods deteriorates drastically, while

the proposed CUSAL yields stable SAD. The obtained results confirm the good behav-

ior of the proposed CUSAL algorithms and their robustness in presence of corrupted

spectral bands.
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Figure 6.7: Cuprite image: Estimated abundance maps using 187 clean bands.
Left to right: sphene, alunite, buddingtonite, kaolinite, chalcedony, highway. Top to
bottom: SUnSAL-FCLS, FCLS, BayGBM, BayPPNMM, KFCLS, rNMF, CUSAL-FC.
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Figure 6.8: Cuprite image: Estimated abundance maps using 205 bands, with 187 clean
bands. Same legend as Figure 6.7.
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Figure 6.9: Cuprite image: Estimated abundance maps using all the 224 bands, with
187 clean bands. Same legend as Figure 6.7.
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6.6 Conclusion

This chapter presented supervised robust unmixing algorithms based on the corren-

tropy maximization principle, with robustness in terms of outliers and corrupted spec-

tral bands. Two correntropy-based unmixing problems were addressed, the first with the

nonnegativity and sum-to-one constraints, and the second with the nonnegativity con-

straint and a sparsity-promoting term. The alternating direction method of multipliers

(ADMM) was investigated in order to solve the correntropy-based unmixing problems.

The effectiveness and robustness of the proposed unmixing method were validated on

synthetic and real hyperspectral images. Future works include the generalization of the

correntropy criterion to account for the multiple reflection phenomenon [Halimi et al.,

2011a; Fan et al., 2009], as well as incorporating nonlinear models [Halimi et al., 2015b].

Of great interest is robust unsupervised unmixing, with the joint estimation of endmem-

bers and abundances.
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In this manuscript, we have investigated several methods to infer hidden patterns from

data, by considering the hyperspectral unmixing problem. First, a kernel-based nonneg-

ative matrix factorization (KNMF) model was proposed, which bypasses the preimage

problem inherit from the kernel machines. To handle large-scale and streaming data,

we also extended the the proposed method to an online mode, by maintaining a fixed

and tractable computational complexity and memory usage. Next, we studied the bi-

objective optimization problem that performs the NMF in both input and feature spaces,

by combining the linear and kernel-based models. Finally, independent from the proposed

KNMF, we derived a supervised unmixing method based on the correntropy maximiza-

tion principle, which is shown to be robust to corrupted spectral bands. This chapter

summarizes the thesis by outlining the aforementioned methods and by discussing future

research directions.

7.1 Conclusion

The work of thesis consists in proposing several methods within the framework of kernel

methods in machine learning, in order to address the hyperspectral unmixing problem.

The main contributions can be summarized as follows.

In Chapter 3, we presented a new kernel-based NMF (KNMF) model that determines

the decomposition bases directly in the input space, without suffering from the pre-

image problem. The resulting optimization problem was solved using two-blocks co-

ordinate descent alternating technique, where the additive and multiplicative update

rules were proposed. Furthermore, motivated by the unmixing task in hyperspectral

imagery, several extensions were derived with constraints imposed on the endmembers

and the abundances, such as sparseness, smoothness, and spatial regularization with a

total-variation-like penalty.

In Chapter 4, we extended the KNMF to an online mode in order to tackle large-scale and

streaming dynamic data. We derived both the additive and multiplicative update rules

of the general form, by investigating the stochastic gradient descent and the mini-batch

strategies. The case of the Gaussian kernel was studied in details. For commonly-used

kernels, the proposed algorithms keep a fixed and tractable complexity independent
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of the increasing number of samples. Several extensions were considered within the

proposed online framework, namely sparse coding and smoothness of the basis vectors.

In Chapter 5, we proposed a bi-objective KNMF by exploiting the kernel machines,

where the decomposition was performed simultaneously in the input and the feature

spaces. The first objective function to optimize stems from the conventional linear

NMF, while the second one is from the KNMF. When these objective functions are

conflicting, there exists a set of nondominated, noninferior or Pareto optimal solutions.

By taking advantage of the sum-weighted method, we broke the original bi-objective

problem into a sequence of single-objective optimization problems, each corresponding

to a fusion of the linear and nonlinear models at a different level. The update rules were

derived. Last, the corresponding Pareto front was approximated and analyzed.

In Chapter 6, we proposed a supervised spectral unmixing approach robust to outlier

spectral bands, by investigating the maximization of the correntropy criterion. We

derived two unmixing problems, the first one is the fully-constrained unmixing, and

the second one is sparsity-promoting unmixing. Taking the advantages of alternating

direction method of multipliers (ADMM), the corresponding optimization problems were

solved efficiently.

7.2 Future Works

This thesis provided several important solutions for the hyperspectral unmixing prob-

lems. As part of future research, we would like to investigate the following aspects

concerning improvements of our proposed methods.

� In Chapter 3, the optimization problem related to the proposed KNMF model was

solved using the multiplicative update rules, following the spirit in linear NMF.

However, due to the nonlinearity and nonconvexity in terms of the subproblem

with respect to the endmembers/bases, the convergence to a stationary point is not

guaranteed. Notice that KNMF can be viewed an extreme case of the bi-objective

NMF. Therefore, the projected gradient descent (PGD) algorithm described in Al-

gorithm 2 in Chapter 4 can be applied to yield stationary points. The disadvantage
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is that the stepsize searching procedure in PGD is very time-consuming. Apply-

ing more efficient techniques, such as ADMM, to solve this nonlinear, nonconvex

optimization problem deserves attention in the future.

� The bi-objective KNMF proposed in Chapter 5 detects holistically the nonlinearity

in an image, namely each Pareto solution corresponds to a fusion of the conven-

tional linear NMF and the kernel-based KNMF at a certain level. However, for

real scenarios, it is more reasonable to assume that the nonlinearity varies from

one pixel to another. To this end, a pixel-wise mixture model that determines

the nonlinearity at each pixel should be considered as an improvement of the bi-

objective KNMF model, from the perspective of hyperspectral unmixing. To this

end, we rewrite the cost contributed by each pixel xt separately, with

min
E,A,µ

T∑

t=1

‖xt −
∑N

n=1 anten‖2
µt

+
‖Φ(xt)−

∑N
n=1 antΦ(en)‖2H
1− µt

(7.1)

subject to E,A ≥ 0 and µt ∈ (0, 1) for t = 1, . . . , T.

Here, the t-th element µt of µ corresponds to the nonlinearity level at pixel xt.

Notice that a pixel tends to be linearly mixed when its nonlinearity level is close to

0, while a value near 1 means that the pixel is highly nonlinearly mixed. To solve

the above problem, a three-block coordinate descent optimization alternating over

E, A and µ could be considered. The balance in (7.1) between the linear and

nonlinear functional norms (denoted respectively a and b) allows to have a convex

cost function over µt ∈ (0, 1) for fixed E and A, with a closed-form solution for the

optimum at µ∗ = (1 +
√
b/a)−1. See [Chen et al., 2013a] and references therein.

� In Chapter 6, we established the correntropy maximization criterion under the

assumption of the linear mixture model. Future works include the generalization of

the correntropy criterion to account for the multiple reflection phenomenon [Halimi

et al., 2011a; Fan et al., 2009], as well as incorporating recent advances in nonlinear

models including variabilities [Halimi et al., 2015b]. As a result, existing nonlinear

unmixing models could become robust to outlier bands. Moreover, the problem of

extracting the endmembers using a robust unmixing method will receive attention

in the future, namely by considering a robust KNMF.
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Factorisation en matrices non négatives 
à noyaux :  application  à l’imagerie  
hyperspectrale 
 
 
Cette thèse vise à proposer de nouveaux modèles 
pour la séparation de sources dans le cadre non 
linéaire des méthodes à noyaux en apprentissage 
statistique, et à développer des algorithmes asso-
ciés. Le domaine d'application privilégié est le dé-
mélange en imagerie hyperspectrale. Tout d'abord, 
nous décrivons un modèle original de la factorisa-
tion en matrices non négatives (NMF), en se basant 
sur les méthodes à noyaux. Le modèle proposé sur-
monte la malédiction de préimage, un problème 
inverse hérité des méthodes à noyaux. Dans le 
même cadre proposé, plusieurs extensions sont 
développées pour intégrer les principales con-
traintes soulevées par les images hyperspectrales. 
Pour traiter des masses de données, des algo-
rithmes de traitement en ligne sont développés afin 
d'assurer une complexité calculatoire fixée. Égale-
ment, nous proposons une approche de factorisation 
bi-objective qui permet de combiner les modèles de 
démélange linéaire et non linéaire, où les décompo-
sitions de NMF conventionnelle et à noyaux sont 
réalisées simultanément. La dernière partie se con-
centre sur le démélange robuste aux bandes spec-
trales aberrantes. En décrivant le démélange selon 
le principe de la maximisation de la correntropie, 
deux problèmes de démélange robuste sont traités 
sous différentes contraintes soulevées par le pro-
blème de démélange hyperspectral. Des algorithmes 
de type directions alternées sont utilisés pour ré-
soudre les problèmes d'optimisation associés. 
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Kernel Nonnegative Matrix Factorization: 
Application to Hyperspectral Imagery 
 
 
 
This thesis aims to propose new nonlinear unmixing 
models within the framework of kernel methods and 
to develop associated algorithms, in order to ad-
dress the hyperspectral unmixing problem. 
First, we investigate a novel kernel-based nonnega-
tive matrix factorization (NMF) model, that circum-
vents the pre-image problem inherited from the 
kernel machines. Within the proposed framework, 
several extensions are developed to incorporate 
common constraints raised in hypersepctral images 
analysis. In order to tackle large-scale and stream-
ing data, we next extend the kernel-based NMF to an 
online fashion, by keeping a fixed and tractable 
complexity. Moreover, we propose a bi-objective 
NMF model as an attempt to combine the linear and 
nonlinear unmixing models. The decompositions of 
both the conventional NMF and the kernel-based 
NMF are performed simultaneously. The last part of 
this thesis studies a supervised unmixing model, 
based on the correntropy maximization principle. 
This model is shown robust to outlier bands. Two 
correntropy-based unmixing problems are ad-
dressed, considering different constraints in hyper-
spectral unmixing problem. The alternating direction 
method of multipliers (ADMM) is investigated to 
solve the related optimization problems. 
 
 
Keywords: hyperspectral imagery - machine learning 
- nonlinear models - factorization (mathematics)- 
non-negative matrices. 
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