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Résumé

Introduction générale

Contexte et motivation

Au cours de la dernière décennie, le monde a témoigné des progrès importants en
informatique mobile ainsi que le développement des technologies sans �l, ce qui a
permis aux utilisateurs d'accéder à leurs services et leurs informations d'une manière
omniprésente. En outre, les technologies de communication mobile ont joué un rôle
important dans l'amélioration de la qualité de vie humaine dans le contexte de villes
intelligentes (Smart city) [1].
Aujourd'hui, les équipements mobiles sans �l sont indispensables dans la vie quo-
tidienne des millions d'utilisateurs, qui utilisent en permanence leurs ordinateurs
portables, leurs tablettes et leurs smartphones pour béné�cier de plusieurs types
de services informatiques. Ces équipements, même s'ils ont des caractéristiques
hétérogènes, ils peuvent partager leurs ressources et constituent un réseau mobile
ad hoc ou MANET (Mobile Ad hoc Network).
Un réseau MANET est une collection d'entités ou n÷uds mobiles qui peuvent se
connecter d'une manière dynamique pour constituer un réseau ayant une topologie
arbitraire et temporaire [2]. Les réseaux MANET ne s'appuient sur aucune infras-
tructure existante, où les n÷uds participent d'une manière coopérative pour assurer
le routage des messages de données et de contrôle sans le besoin d'une administration
centrale. Par conséquent, chaque n÷ud du réseau joue le rôle d'un point terminal
et d'un routeur en même temps. Grâce à ses caractéristiques, les réseaux MANET
sont largement utilisés pour assurer la communication dans les situations où il est
di�cile de déployer une infrastructure réseau, comme les champs de bataille et les
opérations de secours.
Malgré les facilités o�ertes par les réseaux MANET, ils sont vulnérables aux
plusieurs attaques de sécurité. En fait, les n÷uds qui constituent un réseau MANET
proviennent souvent des places di�érentes et ne se connaissent pas à l'avance. Dans
tel contexte exigeant, les n÷uds du réseau sont fondamentalement responsables
d'assurer les di�érents services du réseau d'une manière coopérative et totalement
décentralisée.
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Cependant, les protocoles de routage ad hoc existants ne supportent pas la réali-
sation de ces responsabilités sous les meilleures conditions de sécurité, surtout que
la plupart de ces protocoles assument que les n÷uds du réseau sont dignes de con-
�ance. Par conséquent, plusieurs types d'attaques peuvent être réalisées contre les
di�érentes couches du réseau, dont la couche de routage. Par exemple, un n÷ud
malveillant peut supprimer une partie ou bien la totalité de paquets qu'il reçoit
au lieu de les acheminer à leur destination. D'autre part, les n÷uds d'un réseau
MANET tendent à être égoïstes dû à leurs ressources limitées. Par conséquent, il
est possible pour un n÷ud de ne pas coopérer dans le routage des paquets pour
conserver ses ressources en termes de batterie et de bande passante.
La sécurité est un besoin fondamental dans les réseaux MANET qui peut être
garantie grâce à des contre-mesures permettant d'empêcher les comportements
malveillants de perturber la performance des services du réseau. Cependant, la
sécurisation d'un réseau MANET ne peut pas être assurée par les mécanismes util-
isés dans les réseaux sans �l traditionnels (ex., pares-feux), qui sont normalement
conçu pour être utilisés dans des réseaux ayant une infrastructure centralisée. Dans
le contexte de routage ad hoc, la sécurité a cinq objectifs essentiels : la con�dential-
ité et l'intégrité de l'information de routage, l'authenti�cation et la non-répudiation
des n÷uds et la disponibilité du réseau [3]. Ce dernier signi�e que les services et les
ressources du réseau doivent être disponibles même en présence des n÷uds malveil-
lants. Cette condition est assurée en protégeant le réseau contre les attaques de Déni
de Service (DoS). Au niveau de routage ad hoc, ces attaques peuvent être classi�ées
en trois catégories :

• Attaques par épuisement des ressources : peuvent être réalisées par un
attaquant même s'il ne fait pas partie du réseau en générant un taux excessif
de paquets erronés pour consommer les ressources des n÷uds du réseau.

• Attaques par manipulation de tra�c : exploitent les vulnérabilités du
protocole de routage pour attirer le tra�c ou établir des liens malicieux entre
les attaquants. Par conséquent, le tra�c intercepté est susceptible d'être altéré
ou bien supprimé selon les objectifs des attaquants.

• Attaques par suppression des paquets : dans cette classe d'attaques,
quand un n÷ud malveillant reçoit des paquets qui sont supposés d'être achem-
inés, il supprime une partie ou bien la totalité de ces paquets pour éviter leur
livraison normale à leur destination.

Dû à leur impact sévère sur la performance des réseaux MANET, les attaques par
suppression des paquets ont attiré une attention considérable de plusieurs travaux
de recherche. Parmi les solutions qui ont été proposées dans ces travaux, nous
distinguons les mécanismes cryptographiques qui sont utilisés comme des stratégies
préventives assurant l'authenti�cation des n÷uds et l'intégrité de l'information
de routage [4],[5]. D'autres travaux de recherche ont montré que les systèmes de
gestion de la con�ance sont essentiels dans les réseaux MANET, surtout quand les
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n÷uds désirent établir un réseau avec un certain niveau de con�ance entre eux sans
aucune interaction précédente [6],[7].

En se basant sur des études précédentes [8], nous considérons que les solu-
tions cryptographiques ne sont pas su�santes pour prévenir tous les problèmes de
sécurité causés par les n÷uds malveillants. D'autre part, nous considérons que la
performance des systèmes de con�ance dans un réseau MANET est susceptible
d'être dégradée dû à la topologie dynamique de ces réseaux. Par conséquent,
notre objectif est de proposer une solution légère et totalement décentralisée pour
surmonter les dé�s qui font face à la plupart des solutions utilisant la cryptographie
et les systèmes de con�ance. Nous explorons certaines techniques statistiques et
probabilistes pour concevoir et implémenter un mécanisme de détection contre les
attaques par suppression des paquets dans les réseaux MANET. Nous considérons
que telle solution fait face à plusieurs dé�s techniques :

• Décentralisation : l'absence d'une administration centrale dans les réseaux
MANET compliquent la détection des comportements malveillants. Comment
peut-on assurer que toutes les phases de détection sont décentralisées?

• Mobilité des n÷uds : la mobilité imprévisible des n÷uds cause des change-
ments fréquents dans la topologie du réseau, ce qui peut a�ecter la précision de
détection des n÷uds malveillants. Comment peut-on concevoir un mécanisme
de détection qui est adapté à une telle topologie?

• Contraintes des ressources : les n÷uds d'un réseau MANET tendent à se
comporter d'une manière égoïste pour conserver leurs ressources en termes de
batterie et bande passante. Quelles sont les caractéristiques d'un mécanisme
de détection qui prend en considération les limitations des ressources?

• Précision de détection : le mécanisme de détection doit être basé sur un
ensemble d'attributs permettant de réaliser une analyse comportementale des
n÷uds du réseau. Comment peut-on concevoir une méthode de modélisation
des comportements des n÷uds permettant de détecter ceux qui sont malveil-
lants avec une haute précision?

• Pro�l d'attaquant : une n÷ud malicieux peut changer ses comportements en
fonction du temps en supprimant des paquets parfois et les acheminant d'une
manière normale d'autres fois pour tromper le mécanisme de détection utilisé.
Comment peut-on exploiter l'évolution d'un n÷ud en fonction du temps pour
reconnaître la nature de ses comportements?

Contributions

La première contribution de cette thèse consiste à proposer une nouvelle taxonomie
d'attaques qui menaçent la disponibilité des services de routage ad hoc. Les
scénarios d'attaques qui peuvent conduire à un Déni de Service sont classi�és
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en trois catégories : les attaques par suppression des paquets, les attaques par
épuisement des ressources et les attaques par manipulation de tra�c. Pour chaque
catégorie d'attaques, nous explorons les di�érentes techniques, les objectifs et
l'impact sur la performance de routage.

La deuxième contribution consiste à proposer un mécanisme de détection dé-
centralisé contre les attaques par suppression des paquets dans les réseaux
MANETs. Ce mécanisme est basé sur une classi�cation probabiliste des n÷uds du
réseau pour déterminer la nature de leurs comportements et décider s'ils sont �ables
pour acheminer les paquets. Nous utilisons le mode promiscuité pour permettre à
un n÷ud d'écouter les paquets passant par ses n÷uds voisins quelle que soient leurs
destinations [9]. Nous modélisons les comportements d'un n÷ud sous forme d'un
vecteur ayant trois attributs représentant les taux de transmission de trois types
des paquets : les paquets de données Data, les paquets de demande de route RREQ
(Route Request) et les paquets de réponse de route RREP (Route Reply). En se
basant sur les valeurs de ces attributs nous classi�ons un vecteur de comportements
en évaluant sa probabilité de malveillance. Cette valeur de probabilité est obtenue
par un calcul Bayésien basé sur deux modèles de classi�cation : Bernoulli et Multi-
nomial. Nous utilisons une métrique nommée TCR (Total Cost Ratio) qui permet
d'évaluer la performance de ces modèles en comparant leurs taux d'erreur avec
celui d'une ligne de base. Les résultats de simulation montrent que l'utilisation des
modèles Bayésiens peut assurer la détection des comportements malveillants dans
les réseaux MANET avec une haute précision. Nous constatons que l'utilisation
du modèle de Bernoulli assure une détection complète des n÷uds malveillants
quand leur pourcentage dans le réseau est inférieur à 15%, alors que l'utilisation du
modèle Multinomial est plus appropriée quand ce pourcentage excède une valeur
de 27%. Nous déduisons que les deux modèles peuvent être utilisés d'une manière
complémentaire pour assurer une détection complète des attaques par suppression
des paquets dans les réseaux MANET.

La troisième contribution est une extension de la première approche, dans
laquelle nous proposons de calculer la probabilité de malveillance d'un n÷ud
surveillé d'une manière périodique (à chaque t = τ) a�n de faire la traçabilité de ses
comportements durant une période T . Nous utilisons un modèle basé sur la logique
�oue pour associer une valeur linguistique à chaque valeur de probabilité obtenue
durant une période τ . Nous dé�nissons trois niveaux de malveillance représentant
l'espace �ni des états des comportements possibles d'un n÷ud : légitime, suspect et
malveillant. Nous utilisons la séquence des transitions entre les di�érents états pour
représenter l'évolution d'un n÷ud sous forme d'une matrice stochastique en utilisant
les chaînes de Markov. Nous démontrons mathématiquement que chaque n÷ud du
réseau admet un état stationnaire qui peut être prédit en appliquant le théorème
d'ergodicité avec un nombre d'étapes inférieur à 10. Nous expliquons l'importance
de l'utilisation de la classe de comportements suspects (i.e., non-détecté) pour
surmonter les dé�s causés par les attaques par suppression périodique des paquets.
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Les résultats de simulation montrent que notre solution est capable de détecter les
di�érents types d'attaques par suppression des paquets avec une valeur moyenne
de précision supérieure à 90% dans des di�érentes con�gurations du réseau en
termes des : taille du réseaux, pourcentage des n÷uds malveillants et durées des
simulations.
Dans le reste de ce résumé, nous allons tout d'abord présenter les di�érentes
applications des réseaux MANET, les concepts fondamentaux de routage dans ces
réseaux et les dé�s de sécurité menaçant le routage ad hoc. Par la suite, nous
développons un état de l'art analysant des solutions existantes pour la sécurisation
de routage ad hoc contre les attaques DoS. Nous présentons les solutions que nous
proposons pour lutter contre les attaques par suppression des paquets. Finalement,
nous terminons ce résumé avec une conclusion dans laquelle nous discutons les
dé�s qui peuvent faire face à nos solutions, et nous présentons nos perspectives de
recherche à court terme et à long terme.

Réseaux MANETs : applications et challenges de sécurité

Avec l'évolution des exigences des utilisateurs, des nombreuses technologies de réseau
ont été développées en se basant sur le concept de communication ad hoc. Parmi ces
technologies, les réseaux mobiles ad hoc (MANET) ont été conçus pour assurer une
communication �able où il est inapproprié ou coûteux de déployer une infrastructure
réseau. Ces réseaux ne s'appuient sur aucune infrastructure �xe, où les n÷uds
sont chargés d'agir d'une manière coopérative pour assurer les di�érents services du
réseau.

Applications de réseaux MANETs

Les réseaux MANET ont vu le jour dans le domaine militaire. À cette époque, ces
réseaux étaient largement employés comme des moyens de communication dans des
environnements rigoureux. Leur déploiement facile, rapide et non-coûteux était bien
adapté pour assurer la communication entre les unités militaires dans les champs de
bataille où il est di�cile de déployer une infrastructure réseau.
Dans la dernière décennie, la révolution de technologies sans �l et l'émergence des
équipements mobiles ont impliqué l'utilisation de la communication ad hoc dans un
large nombre des applications et assurer l'amélioration de la qualité de plusieurs
services urbains avec des coûts réduits :

• Réseaux véhiculaires (VANET) : les réseaux VANET (Vehicular Ad hoc
Network) sont des réseaux ad hoc utilisés pour assurer la communication au
sein d'un groupe de véhicules en deux types [10]. Le premier type est la
communication véhicule à véhicule, alors que le deuxième type est dé�ni par
une communication entre les véhicules et des équipements de route nommés
RSU (Road Side Unit). Les réseaux VANETs sont largement utilisés pour
implémenter des systèmes de sécurité routière, des services de confort et des
solutions de stationnement intelligentes.
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• Réseaux de capteurs (WSN) : comme leur nom l'indique, les WSN (Wire-
less Sensor Network) sont basés sur des capteurs sans �l qui sont capables de
récolter et de transmettre des données au sein d'un système environnemental,
domestique ou sanitaire [11]. Ces données sont traitées et analysées par des
unités nommés stations de base, a�n d'améliorer les conditions d'utilisation du
système étudié.

• Réseaux maillés (WMN) : c'est une topologie réseau connue par WMN
(Wireless Mesh Network) dont toutes les entités sont connectées en mode ad
hoc [12]. Parmi leurs objectifs principaux, ces réseaux servent à reproduire
l'architecture de l'Internet tout en l'optimisant pour une communication sans
�l. Les réseaux Mesh font partie aujourd'hui de la vie quotidienne ; ils per-
mettent de connecter des zones encore blanches et de déployer l'Internet dans
des domaines et des situations où les réseaux actuels font défaut.

• Réseaux personnels (WPAN) : ou bien les réseaux domestiques sans �l
sont connus par WPAN (Wireless Area Personal Network) permettent de con-
necter des équipements sans �l ayant une portée de transmission limitée à une
dizaine de mètres [13]. La technologie SPAN (Smart Phone Ad hoc Network)
est une parmi les applications de WPAN qui sert à créer une communica-
tion sans �l entre deux smartphone sans passer par un réseau d'opérateur.
Les réseaux WPAN sont largement employés pour assurer une communica-
tion en champ proche NFC (Near Field Communication), qui incrustent de
l'intelligence un peu partout dans des applications quotidiennes comme les
cartes de paiement sans contact et les puces d'identi�cation RFID (Radio
Frequency Identi�cation).

• Informatique ubiquitaire : le terme ubiquitaire fait référence à
l'omniprésence de l'accès à l'information, c'est-à-dire, un accès n'importe où
et n'importe quand, grâce à une gamme de petits appareils informatiques [14].
Parmi les applications ubiquitaires nous trouvons les maisons intelligentes con-
nues par Smart House qui permettent par exemple d'ajuster un système de
chau�age ou de climatisation, ou encore télécommander un décodeur télévision
depuis une application mobile.

• Applications médicales : dans la dernière décennie, plusieurs systèmes de
surveillance médicale et sanitaire ont vu le jour a�n d'améliorer le mode de vie
de l'homme [15]. Ces systèmes sont basés sur des capteurs qui sont générale-
ment déployés et interconnectés sur, autour ou bien dans le corps humain pour
surveiller certaines conditions sanitaires a�n d'assurer la prévention contre cer-
taines maladies. D'autre part, l'émergence des équipements mobiles a favorisé
le développement des applications Web et mobile permettant de surveiller les
conditions sanitaires d'un utilisateur depuis un smartphone ou bien une mon-
tre intelligente, a�n de satisfaire certains facteurs de confort comme le régime
alimentaire et l'analyse du sommeil.
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Protocoles de routage ad hoc

Le routage est une fonction primordiale dans les réseaux MANET, puisqu'il constitue
la base pour l'échange des données entre les n÷uds mobiles. Les caractéristiques in-
trinsèques de ces réseaux ont imposé l'utilisation des nouveaux protocoles de routage
qui assurent des approches distribuées d'établissement des routes entre les n÷uds,
tout en considérant le changement de topologie et les limitations de ressources.
En fonction du mode de fonctionnement de l'établissement et la maintenance de
route, les protocoles de routage ad hoc peuvent être classi�és en trois catégories :

• Réactif : ces protocoles sont à la demande, où les n÷uds échangent les infor-
mations de routage seulement quand il y a un besoin de découverte de route.

• Proactif : les n÷uds échangent entre eux des informations périodiques sur
la topologie du réseau pour que toutes les routes soient disponibles à tout
moment.

• Hybride : ce type combine les deux approches précédentes ; il adopte une
méthode proactive pour établir les chemins à l'avance dans un voisinage à un
nombre limite de sauts, et utilise une méthode réactive au delà de cette limite.

Dans ce qui suit, nous allons décrire le protocole de routage AODV (Ad hoc On-
demand Distance Vector), que nous allons utiliser dans les approches de détection
proposées dans cette thèse.

Le protocole AODV

AODV est un protocole de routage basé sur un algorithme de recherche de route
réactif qui a été proposé dans [16]. Quatre principaux types de messages de contrôle
de routage sont dé�nis dans ce protocole : RREQ , RREP, RERR (Route ERRor) et
Hello. Ces messages sont utilisés respectivement pour demander une route, répondre
à une demande de route, signaler une erreur ou une rupture de lien et maintenir les
routes établies.
Selon ce protocole, lorsqu'un n÷ud source a besoin d'avoir une route vers une cer-
taine destination et qu'aucune route n'est disponible, il di�use un message RREQ
à tous les n÷uds voisins qui sont dans sa portée de transmission. Un n÷ud inter-
médiaire recevant ce message véri�e s'il a une route vers la destination demandée,
et envoie un message RREP vers la source, le cas échéant. Sinon, il enregistre une
route inverse vers la source, incrémente son nombre de sauts du message RREQ et
le redi�use vers ses voisins. Cette procédure est établie jusqu'à trouver une route
valide vers la destination. Si c'est le cas, le n÷ud destination envoie un message de
réponse de route RREP vers le n÷ud source en passant par les n÷uds constituant
la route inverse qu'il l'a extrait du paquet RREQ reçu. Lorsque le message RREP
atteint la source, un chemin bidirectionnel est établi entre la source et la destination
et la transmission de paquets de données peut débuter.
La maintenance des routes découvertes est assurée par une transmission périodique
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de messages Hello. Si au bout d'une certaine période, aucun message Hello n'est
reçu d'un n÷ud voisin, le lien correspondant est considéré comme défaillant. Dans
ce cas, un message d'erreur RERR se propage vers la source et tous les n÷uds in-
termédiaires a�n de marquer la route comme invalide.
AODV utilise le principe du numéro de séquence pour garantir la consistance des in-
formations de routage pour que les routes empruntées par les n÷uds soient valables
et fraîches (à jour). D'autre part, ce protocole a l'avantage de réduire le nombre de
messages de contrôle échangés étant donné que les routes sont créées à la demande.
Cependant, la phase d'établissement de route peut engendrer des délais importants
avant la transmission des données. En plus, AODV est vulnérable aux attaquants
qui peuvent exploiter la politique de "di�usion" utilisée dans la phase de découverte
de route pour inonder le réseau par des messages erronés a�n d'épuiser ses ressources
et perturber ses services. Ces comportements malveillants et d'autres vulnérabilités
de sécurité de routage ad hoc sont abordés dans la section suivante.

Taxonomie d'attaques DoS au niveau du routage ad hoc

Assurer un routage sécurisé dans les réseaux MANET est une problématique
de recherche qui attire une attention particulière de plusieurs communautés de
recherche. La majorité des protocoles de routage existants assument que les n÷uds
du réseau sont dignes de con�ance et coopératifs. Par conséquent, les services de
routage sont menacés par plusieurs attaques de sécurité, allant de l'écoute passive
jusqu'aux attaques de Déni de Service (DoS). Ce dernier comporte l'ensemble de
comportements malveillants qui peuvent perturber la disponibilité des services de
routage ad hoc.
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Figure 1: Taxonomie d'attaques DoS au niveau de routage ad hoc.

Dans notre étude bibliographique, nous avons fait une recherche extensive sur les
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di�érents scénarios d'attaques qui peuvent engendrer un Déni de Service. Dans la
�gure 1, nous proposons une nouvelle taxonomie d'attaques DoS, qui dé�nit trois
catégories d'attaques qui menaçent la disponibilité de routage ad hoc : les attaques
par suppression des paquets, les attaques par épuisement des ressources et les at-
taques par manipulation de tra�c. Nous e�ectuons pour chaque catégorie d'attaques
une simulation avec NS2 (Network Simulator 2) a�n de montrer le taux de perte
des paquets causée par ces attaques. Les �gures 2, 3 et 4 montrent l'impact de ces
attaques sur la performance d'un réseau MANET en terme de taux de perte des
paquets selon les résultats que nous avons obtenu à travers des simulations.

• Attaques par suppression des paquets : la suppression des paquets est
une violation sévère de la propriété de coopération entre les n÷uds pour as-
surer les services de routage. La manière de suppression des paquets dépend
de l'objectif de l'attaquant, qui peut supprimer la totalité de paquets a�n
d'interrompre les connexions entre les n÷uds communiquant, ou bien une par-
tie de ces paquets pour compliquer sa détection. La suppression des paquets
peut être aussi e�ectuée par des n÷uds ayant des objectifs égoïstes qui con-
sistent à conserver leurs ressources aussi longtemps que possible.
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Figure 2: Taux de perte causée des paquets par les attaques par suppression.

• Attaques par épuisement de ressources : ces attaques sont e�ectuées
par des entités internes ou externes qui peuvent envoyer un taux excessif des
paquets inutiles aux n÷uds du réseau pour épuiser leurs ressources. Parmi
ces attaques nous distinguons l'attaque par inondation RREQ qui menacent
généralement les protocoles de routage réactifs (ex., AODV). Cette attaque
consiste à bloquer le réseau entier en générant des demandes des routes
inutiles avec une fréquence excédant celle qui est dé�nie dans les spéci�cations
du protocole. Par conséquent, le réseau entier est susceptible d'être inondé
dû à l'obligation du protocole qui consiste à redi�user les messages RREQ
reçus. Une entité malveillante peut aussi faire des interactions inutiles avec
un ou plusieurs n÷uds du réseau a�n de les occuper d'une manière continue
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Figure 3: Taux de perte des paquets causée par les attaques par épuisement des
ressources.

et causer ce qu'on appelle sleep deprivation.

• Attaques par manipulation de tra�c : regroupent les comportements
malveillants qui ont pour objectif de perturber l'exécution normale d'un pro-
tocole de routage, en déroutant les paquets selon les objectifs de l'attaquant.
Par exemple, un attaquant peut attirer des n÷uds dans sa portée de trans-
mission en leur faisant une sorte d'illusion qu'il a une route vers les destina-
tions qu'ils demandent. Un autre scénario possible consiste à créer un tunnel
malveillant entre deux n÷uds distants du réseau pour tromper d'autres n÷uds
et les forcer à emprunter une route malveillante pour envoyer leurs paquets.
Une autre attaque ayant le même objectif de l'attaque tunneling connue par
l'attaque rushing. Cette attaque consiste à tromper les n÷uds du réseaux en
livrant leurs paquets aux destinations désirées aussi vite que possible.
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Figure 4: Taux de perte des paquets causée par les attaques par manipulation de
tra�c.
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État de l'art de sécurité du routage ad hoc

La sécurité est un sujet important à traiter, surtout pour les applications de MANET
qui sont souvent sensibles à la sécurité comme les applications militaires. Dans cette
section, nous présentons pour chaque catégorie d'attaques DoS de la taxonomie
déjà présentée certains mécanismes de sécurité qui ont été proposés pour prévenir,
détecter ou isoler les n÷uds malveillants dans les réseaux MANETs.

Mécanismes contre les attaques DoS par suppression des paquets

Les mécanismes de sécurité proposés pour lutter contre ces comportements malveil-
lants peuvent être classi�és en trois grandes catégories: les mécanismes cryp-
tographiques, les systèmes de gestion de la con�ance et les mécanismes de détection.
Dans ce qui suit, nous citons pour chaque catégorie certain nombre de travaux de
recherche les plus connus dans la littérature.

• Mécanismes cryptographiques : la plupart de ces solutions consistent
à proposer des méthodes permettant d'assurer l'authenti�cation des n÷uds
et l'intégrité des informations de routage a�n de prévenir l'occurrence des
attaques par suppression des paquets. Parmi ces solutions, des protocoles de
sécurité ont été proposés [17], [18] pour assurer l'intégrité des messages de
routage en utilisant le chi�rement à clé publique. L'objectif de ces protocoles
est de garantir la meilleure exécution de la phase de découverte de route par les
n÷uds du réseau. Dans [19], les auteurs ont proposé une méthode qui s'appelle
le chi�rement adaptatif des messages de routage, qui consiste à assigner un
niveau de chi�rement pour un n÷ud selon son niveau de con�ance. Une autre
solution proposée dans [4] consiste à assurer une authenti�cation saut-par-
saut des messages de routage pour assurer leur intégrité. D'autres solutions
comme [20] et [21] ont utilisé le chi�rement symétrique pour sécuriser la phase
de découverte de route dans le protocole AODV.

• Systèmes de con�ance : la plupart des solutions basées sur les systèmes
de con�ance ont pour objectif de forcer les n÷uds ayant des comportements
malveillants à participer dans le routage selon les spéci�cations du protocole.
Les systèmes de con�ance ont été utilisés dans plusieurs travaux de recherche
comme [22], [23] et [24], pour permettre à un n÷ud de véri�er si les paquets
envoyés vers un autre n÷ud voisin sont bien transmis ou supprimés. Selon les
comportements observé, un niveau de con�ance est assigné au n÷ud surveillé.
Le niveau de con�ance peut être obtenu soit via l'observation directe d'un
n÷ud ou bien par une combinaison entre cette observation et les recomman-
dations des autres n÷uds. D'une manière similaire, la solution proposée dans
[7] utilise un système de réputation qui prend en considération la qualité des
liens comme un paramètre de qualité de service pour choisir les routes. Les
travaux proposés dans [25] et [26] consistent à améliorer la performance du
protocole AODV en utilisant un système de con�ance.
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• Mécanismes de détection : ces mécanismes ont pour objectif de détecter
les n÷uds malveillants en se basant sur une analyse comportementale. Les au-
teurs de [27] ont proposé un mécanisme de détection des n÷uds malveillants
en utilisant une machine à états �nis permettant de modéliser leurs comporte-
ments. Leur solution est basée sur l'utilisation des matrices de transitions pour
faire une traçabilité des n÷uds pour détecter ceux qui sont malveillants. Dans
[28], une méthode de classi�cation supervisée pour détecter les attaques par
suppression a été proposée. Un modèle de distribution normale des paquets
RREQ et RREP a été dé�ni et utilisé pour détecter les n÷uds comportant
des déviations de ce modèle. Dans [29], les auteurs ont proposé un modèle de
prédiction de con�ance des n÷uds qui se base sur l'historique de leurs com-
portements. Ces derniers sont modélisés suite à une analyse des paquets des
données et de routage échangés par les n÷uds. Un modèle de routage �able
de paquets de données a été présenté dans [30]. L'idée principale de ce modèle
consiste à évaluer la probabilité qu'un n÷ud soit un attaquant en analysant
les paquets RTS (Request-To-Send) et CTS (Clear-To-Send) qu'il échange.

Mécanismes contre les attaques DoS par épuisement de ressources

Malgré leur impact sévère sur les services de routage, il n'y a pas su�samment des
travaux de recherche qui ont traité les attaques DoS par épuisement des ressources.
La plupart de ces travaux proposent des solutions pour protéger les protocole de
routage réactifs contre les attaques par inondation de RREQ. Plusieurs améliorations
des protocole existants ont été proposées pour lutter contre les n÷uds qui génèrent
un taux excessif de messages RREQ. Dans certaines versions des protocoles réactifs,
plusieurs spéci�cations ont été implémentées pour mitiger les e�ets de ces attaques,
comme la dé�nition d'un taux limite de demandes de route dans le cas du protocole
AODV [16].
Plusieurs solutions ont été proposées pour surveiller les n÷uds du réseau, évaluer le
taux de leurs demandes de route et véri�er la légitimité de ces demandes [31], [32],
[33], [34]. D'autres solutions ont proposé des mesures réactives permettant d'isoler
les n÷uds réalisant ce type d'attaques [35], [36]. Finalement, des mécanismes de
prévention ont été proposées a�n d'éviter l'occurrence des attaques par inondation
des paquets RREQ, en ajoutant des spéci�cations qui améliorent la protection des
protocoles de routage existants [37], [38].

Mécanismes contre les attaques DoS par manipulation de tra�c

Les attaques par manipulation de tra�c ont été bien traitées dans plusieurs travaux
de recherche qui ont proposé des mécanismes permettant de détecter, localiser et
mitiger l'impact de ces attaques sur les réseaux MANETs. Ces mécanismes peuvent
être classi�és comme suivant :

• Analyse temporelle des paquets : l'objectif de cette classe de solutions
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est de permettre à un n÷ud de véri�er si les paquets qu'il les envoie passent
par des n÷uds appartenant à sa propre portée de transmission. La plupart de
ces solutions ajoutent une information temporelle à l'envoie et à la réception
des paquets pour véri�er s'ils sont acheminés via des routes truquées [39],
[40]. D'une manière similaire, d'autres solutions ont essayé de dé�nir une
relation entre le temps de transmission de paquets et le nombre de sauts a�n
de détecter les tunnels créés par les n÷uds malveillants [41]. D'autre part,
le temps d'aller-retour des paquets qui est bien connu par RTT (Round Trip
Time) a été exploité dans plusieurs travaux de recherche pour détecter les liens
Wormhole dans les réseaux MANETs [42].

• Mécanismes de localisation : ces mécanismes utilisent des informations
spatio-temporelles des paquets échangés entre les n÷uds pour identi�er et lo-
caliser ceux qui réalisent des attaques Wormhole. Dans [43], les auteurs ont
proposé un mécanisme de véri�cation sécurisée des temps des rencontres entre
les n÷uds pour les distances qui les séparent, et ensuite détecter ceux qui étab-
lissent des connexions malveillantes dans le réseau. Une autre solution pour
lutter contre ces attaques a été proposée dans [44], en utilisant des équipements
spécialisés nommés antennes directionnels. L'idée de cette solution consiste à
véri�er la consistance de direction des ondes radios échangées entre les n÷uds.

• Détection basée sur la connectivité : les liens malicieux créés par les at-
taques Wormhole ont été traités dans plusieurs approches utilisant des infor-
mations sur la connectivité du réseau et analysé d'un point de vue géométrique.
Dans [45], les auteurs ont présenté comment ces attaques peuvent être détec-
tées en utilisant les graphes géométriques aléatoires. Ils ont montré que le
changement de topologie causé par une attaque Wormhole peut être détecté
avec ce modèle. D'autres approches de détection de ces attaques ont été pro-
posé dans [46][47].

Approche de détection des n÷uds malveillants

L'objectif de cette approche est d'assurer une détection des n÷uds malveillants dans
un réseau MANET, et précisément ceux qui ne participent pas dans le routage en
supprimant les paquets au lieu de les acheminer à leurs destinations. Notre idée
consiste à e�ectuer une analyse comportementale des n÷uds en se basant sur les
taux de paquets qu'ils ont transmis durant une période de monitorage. La structure
générale de notre système de détection est illustrée dans la �gure 5.

La détection est e�ectuée d'une manière décentralisée, où chaque n÷ud du réseau est
chargé de surveiller ses n÷uds voisins a�n de sélectionner ceux qui peuvent assurer
un routage �able des paquets. Nous présentons dans ce qui suit les étapes nécessaires
détecter les attaques par suppression des paquets avec une haute précision :

• Monitorage périodique : durant une période dé�nie, chaque n÷ud collecte
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Figure 5: Phases du système de détection.

des informations sur les paquets échangés par un voisin surveillé, en utilisant
le mode promiscuité qui permet d'écouter le tra�c passant par les n÷uds qui
sont dans sa portée de transmission.

• Modélisation des comportements : les informations collectées sont util-
isées pour créer un modèle de comportements du n÷ud surveillé. Pour sélec-
tionner les attributs nécessaires pour la modélisation de comportement, nous
évaluons la performance de n÷ud en ce qui concerne trois attributs qui sont
associés à trois types de paquets :

� DATA : la �abilité de n÷ud à acheminer les données entre les entités
en communication, en évaluant le taux des paquets de données qui les a
correctement transmis.

� RREQ : le participation de n÷ud à la phase de découverte des routes en
évaluant le taux de messages RREQ qui sont correctement redi�usés par
le n÷ud.

� RREP : l'aptitude de n÷ud à assurer l'établissement des routes de-
mandées en évaluant le taux de messages RREP qui les a transmis.

En se basant sur ces trois attributs, nous représentons les comportements
d'un n÷ud sous forme d'un vecteur composé de trois éléments, où chacun
sert à évaluer le taux de transmission d'un type de paquet. Dans notre cas,
nous utilisons deux types de vecteurs. Le premier type représente le modèle
de comportements avec des valeurs booléennes, où chaque élément indique
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l'occurrence ou l'absence d'une suppression d'un type de paquet. Dans le
deuxième type, les éléments des vecteurs sont des pourcentages qui évaluent
les taux de transmissions pour chaque type de paquets.

• Classi�cation des comportements : le vecteur de comportements d'un
n÷ud obtenu dans la phase précédente est utilisé pour calculer sa probabilité
de malveillance selon deux modèles de classi�cation Bayésienne : Bernoulli et
Multinomial. Dans le modèle de Bernoulli, le calcul de probabilité est basé
sur des vecteurs booléens, alors que le modèle Multinomial permet de calculer
la probabilité de malveillance d'un n÷ud en utilisant le deuxième type de
vecteurs.

• Phase de réaction : la valeur de probabilité obtenue est comparée avec le
seuil de classi�cation du modèle nommé α. Si la probabilité de malveillance
est supérieure à α le n÷ud est classi�é comme malveillant, et comme légitime
ailleurs.

Évaluation de l'approche proposée

Pour montrer la précision de détection assurée par notre approche nous intro-
duisons un paramètre qui permet d'évaluer les modèles de classi�cation utilisés.
Ce paramètre est nommé TCR (Total Cost Ratio) qui sert à comparer l'erreur
causée par un �ltre de classi�cation avec celui d'une ligne de base, c'est-à-dire, sans
utiliser un �ltre. Un modèle de classi�cation est considéré important si son TCR
est supérieur à 1, et il n'a aucune valeur ailleurs.
Nous utilisons un deuxième paramètre nommé λ pour ajuster la valeur du seuil de
détection α suivant la formule α = λ/λ+ 1. λ est utilisé pour donner un rapport
des coûts entre les faux positifs et les faux négatifs. Un faux positif dans notre
cas signi�e une erreur de classi�cation d'un n÷ud légitime comme malveillant, alors
qu'un faux négatif signi�e une erreur de classi�cation d'un n÷ud malveillant comme

légitime. Dans notre cas, nous utilisons ce rapport pour donner plus d'importance
aux faux positifs. Par exemple, si λ est égal à 5 alors les faux positifs sont 5 fois
plus coûteux que les faux négatifs. Avec une valeur de λ égale à 1, les deux erreurs
ont le même coût, dans ce cas la valeur par défaut du seuil de détection α qui est
égal à 0.5.
Pour évaluer la performance de notre classi�cation, nous calculons la valeur du TCR
selon quatre con�gurations des seuils de détection α en fonction de quatre valeurs
de λ comme le montre la �gure 6. L'analyse de performance est validée via des
simulations e�ectuées avec le simulateur NS2.

Selon la �gure 6a, quand le seuil de détection α est égal à 1, les deux modèles mon-
trent une haute performance quel que soit le pourcentage des n÷uds malveillant
dans le réseau. Cependant, le modèle de Bernoulli n'a aucune importance pour dé-
tecter les faibles pourcentages des n÷uds malveillants (< 10%). En plus, dans les
autres con�gurations de α, le modèle de Bernoulli persiste incapable de détecter les
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(b) λ = 3, α = 0.75
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(c) λ = 9, α = 0.9
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(d) λ = 19, α = 0.95

Figure 6: Performance des modèles de classi�cation en fonction du seuil de α

pourcentages faibles de n÷uds malveillants avec une valeur de TCR inférieure à 1.
Le modèle Multinomial montre une valeur de TCR qui est toujours élevée dans
toutes les con�gurations du seuil α, et assure une détection des n÷uds malveillants
quel que soit leur pourcentage dans le réseau. Cependant, l'allure de la courbe TCR
de ce modèle montre une diminution notable dans les deux dernières con�gurations,
surtout quand le pourcentage des n÷uds malveillants dans le réseau est notable
(> 27%).
Finalement, nous trouvons que les deux modèles de classi�cation proposés dans
notre approche montrent une bonne performance et assurent une détection totale
des comportements malveillants s'ils sont utilisés en conjonction. Autrement dit,
si le modèle de Bernoulli est utilisé dans le cas de pourcentage élevé, et le mod-
èle Multinomial dans le cas de faible pourcentage des n÷uds malveillants. Dans
la prochaine section, nous présentons une deuxième approche qui permet de suivre
l'évolution d'un n÷ud pour prédire la nature de ses comportements et l'éviter s'il
est malveillant. Nous utilisons encore la classi�cation Bayésienne et nous préférons
de nous orienter vers le modèle de Bernoulli, en essayant d'augmenter la précision
de détection dans le cas des faibles pourcentages des n÷uds malveillants dans le
réseau.
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Analyse stochastique pour la prédiction d'états des n÷uds

Dans notre deuxième contribution, nous cherchons à trouver une méthode de pré-
diction d'états des n÷uds en se basant sur la traçabilité de leurs comportements.
L'idée consiste à utiliser une analyse stochastique de l'évolution des n÷uds du-
rant une période dé�nie. Cette solution assure une détection des di�érents types
d'attaques par suppression avec une haute précision, surtout celles qui changent
leurs comportements en fonction du temps. La �gure 7 montre le modèle d'attaque
e�ectuant une suppression périodique et aléatoire de paquets en comparaison avec
un modèle normal. Nous remarquons qu'il est important de faire une longue péri-
ode de surveillance pour pouvoir détecter tel type de suppression, surtout qu'elle se
comporte parfois d'une manière légitime. Pour adresser cette problématique, nous
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Figure 7: Illustration de la suppression périodique des paquets

introduisons le concept de comportements suspects ou encore incertains, qui seront
clari�és par la suite.
La �gure 8 montre les composants de notre système de prédiction où quelques-uns
sont similaires à ceux qui sont utilisés dans notre première approche.

• Monitorage des n÷uds : ce module consiste à assurer un monitorage à
long terme e�ectué par un n÷ud surveillant d'un autre n÷ud voisin dans
sa portée de transmission. La durée de la phase de monitorage doit être
su�samment longue a�n de constituer une base de connaissance su�sante sur
les comportements des n÷uds.

• Sélection d'attributs : cette étape consiste à collecter des informations
sur les taux des paquets transmis pour les types Data, RREQ et RREP qui
s'e�ectue exactement selon la méthode proposée dans la première approche.

• Modélisation des comportements : après avoir collecté les valeurs des
attributs sélectionnés, les comportements sont modélisés en utilisant la même
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Figure 8: Composants de l'approche de prédiction de comportements.

méthode que nous avons décrit dans le système proposé dans la �gure 5. Dans
cette solution, nous utilisons les vecteurs Booléens pour calculer la probabilité
de malveillance d'un modèle de comportements.

• Classi�cation Bayésienne : la probabilité de malveillance d'un vecteur de
comportements donné est calculée en utilisant le modèle de Bernoulli. Cepen-
dant, au lieu de faire référence au seuil de classi�cation du modèle α pour
véri�er si le n÷ud est malveillant, nous proposons d'assigner un niveau de
malveillance selon deux valeurs seuils dé�nissant une intervalle d'incertitude :
s = [αmin, αmax].

• Logique �oue : nous proposons la dé�nition de trois niveaux de malveillance
associés aux valeurs de probabilité : légitime, suspect et malveillant. Ces
comportements dé�nissent un espace �ni d'états possibles d'un n÷ud, et ils
sont associés respectivement aux n÷uds ayant une valeur de probabilité de
malveillance inférieure à αmin, ∈ [αmin − αmax] et supérieure à αmax.

• Traçabilité des comportements : l'a�ectation d'un niveau de malveillance
à un n÷ud est réalisée à chaque intervalle de temps τ . Ensuite, la séquence
d'états de comportements de ce n÷ud durant une période T est modélisé avec
une chaîne de Markov, où les transitions entre ces états sont représentées sous
forme d'une matrice stochastique ayant une taille 3×3. Dans cette matrice, un
élément qui se trouve à la ime ligne et la jme colonne représente la probabilité
que la chaîne se déplace de l'état i vers l'état j.

• Prédiction d'états limites : en appliquant le théorème d'ergodicité de la
chaîne de Markov, nous prouvons que chaque n÷ud du réseau admet une dis-
tribution limite de se probabilité de transition qui dé�nit son état stationnaire.
Cet état est obtenu en calculant la puissance de la matrice jusqu'à l'obtention
de trois lignes identiques, ce qui indique que l'état stationnaire est atteint.
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• Décisions de routage : le vecteur de distribution limite d'un n÷ud est com-
posé de trois valeurs qui sont associées respectivement aux probabilités d'un
n÷ud d'être légitime, suspect et malveillant (Pl, Ps, Pm). Puisque la décision
est basée sur ces trois valeurs, nous préférons d'utiliser la valeur maximale
pour déterminer l'état �nal d'un n÷ud (voir �gure 9). Dans ce cas, un n÷ud
est considéré comme légitime si la valeur maximale est Pl (état S3), et malveil-
lant si la valeur maximale est Pm (état S4). Si la valeur maximale est celle de
Ps, une deuxième comparaison (état S2) est faite entre Pl et Pm pour décider
si cette incertitude dû à une suppression légitime ou malveillante des paquets.
Finalement, si nous trouvons que les trois valeurs de probabilité sont égales
ou bien la valeur de Ps est égale à 1, nous considérons que notre mécanisme
est incapable d'identi�er la nature des comportements observés.

S1 S2

S3

S4

f1= l

f1= m

f1= s
S5

f2= Null

Figure 9: Le processus de décisions de routage.

Évaluation de l'approche proposée

Après avoir décrit les di�érentes phases de notre mécanisme de détection, nous
évaluons par la suite la performance de notre solution en termes de précision de
détection. Le tableau 1 montre les di�érentes con�gurations des simulations que
nous avons réalisé en utilisant le simulateur NS2.
Dans ce qui suit, nous analysons les résultats que nous avons obtenu pour évaluer la
précision et l'incertitude de notre approche en fonction des di�érentes con�gurations.

Dans le cas où la taille du réseau est égale à 10 n÷uds, la �gure 10 montre un taux de
précision qui atteint un pourcentage de 100% dans le cas d'une faible proportion des
n÷uds malveillants dans le réseau. Les valeurs de précision montrent une relation
directement proportionnelle avec le temps de simulation et une relation inversement
proportionnelle avec le pourcentage des n÷uds malveillants. D'autre part, nous
notons des valeurs élevées au niveau des taux d'incertitude, qui sont égales parfois
à 20% surtout dans le cas d'une haute proportion des n÷uds malveillants.
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Table 1: Paramètres des simulations.

Paramètre Valeur

Zone de couverture 1000m × 1000m
Nombre des n÷uds 10, 20 et 50 n÷uds
Portée de transmission 250m
Durée de simulation 10, 20 et 30 minutes
Laps de temps τ 1 minute
Modèle de mobilité Random Waypoint
Antenne Omnidirectionnel
Vitesse [2− 8] m/s
Protocole de routage AODV
Type de tra�c UDP/ CBR
% des n÷uds malveillants 10, 30 et 50%

Intervalle d'incertitude 0.2

Couche physique IEEE 802.11p

0 10 20 30
0

10

20

30

40

50

60

70

80

90

100

Temps de simuation (minutes)

P
ré

c
is

io
n

 d
e

 d
é

te
c

ti
o

n
 (

%
)

 

 

10% malveillant

30% malveillant

50% malveillant

(a) Taux de précision vs temps de simulations

0 10 20 30
0

10

20

30

40

50

60

70

80

90

100

Temps de simuation (minutes)

T
a

u
x

 d
’i

n
c

e
rt

it
u

d
e

 

 

10% malveillant

30% malveillant

50% malveillant

(b) Taux d'incertitude vs temps de simulations

Figure 10: Taille du réseau = 10 n÷uds

En augmentant la taille du réseau à 20 n÷uds (�gure 11), nous remarquons que
les valeurs de précision sont inférieures à celles que nous avons obtenu dans le cas
de 10 n÷uds. Cependant, nous constatons une augmentation plus importante de
la précision de détection en fonction de temps de simulation. Par exemple, dans
le cas où le pourcentage des n÷uds malveillants est égale à 50%, la précision de
détection augmente 15% en étendant le temps de simulation de 10 à 30 minutes
détection. En plus, nous remarquons une diminution notable au niveau de taux
d'incertitude en comparaison avec le cas où la taille du réseau est égale à 10 n÷uds.
Finalement, quand nous augmentons la taille du réseau à 50 n÷uds (�gure 12), nous
remarquons que les taux de précision de détection sont toujours supérieurs à 80%

avec des valeurs qui sont inférieures à celles que nous avons obtenu dans les deux
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Figure 11: Taille du réseau = 20 n÷uds
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Figure 12: Taille du réseau = 50 n÷uds

cas précédents. Cependant, nous remarquons la variation de temps de simulation a
plus d'impact sur les valeurs des taux de précision. Par exemple, dans le cas où le
pourcentage des n÷uds malveillants est 50%, la précision augmente de 80% à 95%

lorsque le temps de simulation est augmenté de 10 à 30 minutes.

Conclusion et perspectives

Dans cette thèse, notre travail de recherche a été orienté pour adresser le problème
des attaques DoS par suppression des paquets dans les réseaux MANET.
En premier, nous avons présenté une étude des attaques qui menacent la sécurité
de routage ad hoc, et précisément celles qui donnent lieu à un déni de service. Nous
avons proposé une nouvelle classi�cation de ces attaques en trois grandes catégories
: attaques par suppression des paquets, attaques par épuisement des ressources et
attaques par manipulation de tra�c. Nous avons étudié leurs techniques, leur ob-
jectifs et leurs impacts sur la performance de routage ad hoc. En se basant sur des
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études précédentes et nos propres simulations, nous avons déduit que les attaques
par suppression des paquets constituent une menace potentielle contre la disponibil-
ité du routage ad hoc. Nous avons discuté certains mécanismes de sécurité qui ont
été proposés pour lutter contre ces attaques. Nous avons donné plus d'importance
aux systèmes de détection, précisément ceux qui sont basés sur des modèles de clas-
si�cation.
Nous avons proposé un mécanisme de détection basé sur une analyse comportemen-
tale et utilisant deux modèles Bayésiens pour la classi�cation des n÷uds qui sont :
Bernoulli et Multinomial. Nous avons fait une description des di�érentes phases de
détection nécessaires pour surveiller et modéliser les comportements d'un n÷ud, et
après les classi�er selon la valeur de leur probabilité de malveillance. Les résultats
de simulations ont montré que les modèles Bayésiens peuvent être utilisés pour as-
surer la détection d'attaques DoS par suppression des paquets.
Nous avons exploité l'approche proposée dans la première contribution pour pro-
poser un mécanisme de prédiction des comportements des n÷ud basé sur les chaînes
de Markov. Nous avons montré que les n÷uds réalisant des attaques par suppression
périodique des paquets peuvent être détectés en e�ectuant une traçabilité de leurs
comportements. Nous avons dé�ni un ensemble de trois niveaux de malveillance
représentant l'espace d'états des comportements en utilisant un modèle basé sur la
logique �oue. Nous avons présenté une analyse stochastique permettant de mod-
éliser l'évolution de l'état d'un n÷ud sous forme d'une matrice de transitions. Les
entrées de cette matrice sont des valeurs de probabilités de transitions entre trois
états des comportements : légitime, suspect et malveillant. Nous avons montré via
simulations la capacité de notre solution de prédire l'état limite des n÷uds en se
basant sur l'évolution de leurs comportements. D'autre part, nous avons montré
que les attaques par suppression périodique des paquets peuvent être détectées avec
un taux minimal de fausses alertes.

Nouveaux dé�s émergents

L'objectif de solutions proposées dans cette thèse est d'adresser le problème de
disponibilité de routage ad hoc. Les mécanismes proposés sont fondamentalement
complémentaires et conçus pour assurer une détection complète des di�érentes types
d'attaques par suppression des paquets. Cependant, certains dé�s techniques sont
identi�és suite à notre évaluation globale de nos solutions, surtout en ce qui concerne
la modélisation des comportements et la classi�cation probabiliste des n÷uds.
Dans les modèles de classi�cation utilisés, le calcul de taux de transmissions des pa-
quets des données s'appuie sur deux types de paquets de contrôle (RREQ et RREP)
comme des attributs. Cette sélection est basée sur le fait que les comportements
d'un n÷ud peuvent être bien présentés en évaluant sa participation dans les services
d'acheminement de données, découverte des routes et établissement des routes. Nous
avons omis les deux autres types des paquets de contrôle utilisé dans le protocole
AODV qui sont RERR et Hello, en assumant que leur suppression n'a pas un e�et
signi�catif sur la performance de routage. Suite à nos études récentes, nous avons
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constaté que la suppression et la manipulation de ces paquets peuvent perturber la
disponibilité de services de routage.
Les messages Hello sont utilisés normalement pour maintenir les liens entre les n÷uds
qui sont à un saut l'un de l'autre. Ces messages sont des paquets RREP avec un
nombre de saut égale à 1, qui sont utilisés pour envoyer une information de présence
sans aucun rôle ultérieur. Donc, la suppression de ces paquets par un n÷ud récepteur
n'a pas aucun e�et négatif sur la performance de routage. Cependant, l'altération
des messages Hello peut être exploitée par un n÷ud malveillant pour réaliser des
attaques de détournement de tra�c, ce qui est actuellement hors de notre objectif.
D'autre part, les messages RERR sont utilisés pour informer les n÷uds de
l'occurrence d'une rupture de lien. Ce message est envoyé par le n÷ud qui a détecté
la rupture vers les n÷uds qui utilisent ce lien pour envoyer leurs paquets. Si un
n÷ud malveillant supprime un message RERR qui est supposé d'être transmis, les
n÷uds assumés d'être informés de cette rupture seraient susceptibles de continuer
à utiliser le lien rompu pour envoyer leurs paquets. Par conséquent, les paquets
des données passant par cette lien peuvent être perdus, ce qui peut perturber la
performance de routage.
Dans les deux solutions présentées dans les chapitres 4 et 5, le n÷ud surveillant
se base sur des observations directes pour décider si un autre n÷ud surveillé est
malveillant ou non. Cependant, dans la plupart des solutions utilisant les systèmes
de con�ance, la décision sur un n÷ud surveillé est basée sur une agrégation des
observations directes et les recommandations des autres n÷uds. Dans ce cas, rien
n'empêche un n÷ud malveillant de générer des mauvaises recommandations pour
tromper le mécanisme d'évaluation de con�ance [48]. Par conséquent, nos solutions
sont moins vulnérables à ce type de comportements malveillants puisque la décision
sur un n÷ud est prise sans faisant référence aux recommandations d'autres n÷uds.
Cependant, cette manière de prise de décision peut engendrer des fausses alertes
quand la détection des n÷uds malveillants est réalisée dans un réseau dense, où
il est di�cile de décider si la suppression des paquets est dû à une attaque ou
une collision par exemple. Dans ce cas, l'agrégation des observations directes et
indirectes semble d'être e�cace pour mitiger telles fautes de décisions. Un n÷ud
surveillé qui est vu comme malveillant par un n÷ud surveillant peut être considéré
comme légitime de point de vue des autres n÷uds. Par conséquent, l'utilisation des
recommandations comme une information de seconde main peut diminuer le taux
de fausses alertes dans telles situations.
Finalement, la proposition d'une solution qui prend en considération les limitations
de ressources n'était pas un objectif prioritaire dans cette thèse. La complexité des
opérations de surveillance, la modélisation des comportements et les algorithmes de
classi�cation n'ont été traités ni évalués. En plus, l'espace mémoire et le surcharge
réseau nécessaire pour faire la traçabilité des n÷uds n'étaient pas abordés. Puisque
la disponibilité de services de routage est notre objectif prioritaire, nous plani�ons
de prendre plus de considération aux contraintes des ressources.
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Travaux de recherche en cours

Pour traiter le problème d'attaques menaçant la disponibilité de routage, nous avons
réalisé deux travaux de recherche qui proposent des solutions pour les attaques DoS
par épuisement des ressources (Flooding) et par manipulation de tra�c (Wormhole).
Nous avons étudié les techniques utilisées par ces attaques et interprété leurs e�ets
sur la performance de routage.
Nous avons proposé une solution préliminaire contre les attaques Wormhole en util-
isant un modèle basé sur la théorie des graphes. Le mécanisme de détection proposée
est déclenchée par un n÷ud destination quand il reçoit un message de demande de
route (RREQ), et avant envoyer un message de réponse de route (RREP) vers la
source de demande. Ce mécanisme consiste à véri�er si ce message RREQ a été
di�usé par un n÷ud suspect en comparant le nombre de sauts traversés par ce mes-
sage avec celui des autres n÷uds qui ont encore di�usé le même message RREQ. Ce
travail a été publié dans une conférence nationale ; les lecteurs intéressés peuvent
découvrir plus des détails dans [49].
D'autre part, nous avons étudié les attaques d'épuisement de ressources par inon-
dation RREQ qui menacent le protocole de routage AODV. Nous avons conçu une
solution pour permettre à un n÷ud de détecter telles attaques en utilisant une méth-
ode statistique. L'idée de base consiste à surveiller et évaluer la moyenne mobile
pondérée des messages RREQ générés par un n÷ud pour détecter les générations
anormales des demandes de route. Ce travail a été publié dans une conférence in-
ternationale et plus détails sur la solution proposée peuvent être trouvés dans [50].

Perspectives

Le travail réalisé dans cette thèse nous a motivé à élaborer certains travaux de
recherche à court terme comme suivant :

• Adaptabilité des solutions: les solutions que nous avons proposé dans les
chapitres 4 et 5 nécessitent plus d'études en termes de précision de détection.
Une analyse ultérieure de la phase de monitorage est nécessaire en ce qui
concerne les capacités matérielles des n÷uds d'utiliser le mode promiscuité.
D'autre part, il est important de ra�ner les critères de détection des attaques
par suppression des paquets en interprétant l'impact de choix des seuils sur la
précision de détection.

• Mobilité des n÷uds: le mécanisme de prédiction présenté dans le chapitre
5 nécessite plus d'analyse en termes de traçabilité des n÷uds. La phase de
monitorage doit être analysée en particulier dans le cas des réseaux à forte
mobilité .

• Incertitude de détection: selon les résultats des simulations obtenus dans
le chapitre 5, un pourcentage de 5% des n÷uds non-détectés persiste même en
augmentant la durée de monitorage. Nous allons étudier l'impact de con�gu-
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rations des seuils et de la durée de monitorage sur le pourcentage des n÷uds
non-détectés.

• Décisions de routage: dans le chapitre 5, la distribution limite des prob-
abilités dé�nissant l'état stationnaire d'un n÷ud est utilisée pour identi�er
la nature des ses comportements. Ce process nécessite plus de spéci�cations
pour augmenter la précision et mitiger l'incertitude des décisions prises en un
n÷ud.

Nous soulignons quelques directions de recherche que nous allons envisager à long
terme :

• Analyse de complexité: les techniques statistiques et probabilistes présen-
tés dans les chapitres 4 et 5 doivent être analysées et améliorées en termes de
complexité. Nous pouvons évaluer la performance de nos solutions dans un
réseau réel et optimiser les di�érentes phases de détection pour minimiser leur
surcharge sur le réseau.

• Contraintes des ressources: l'espace mémoire et l'énergie nécessaires pour
stocker et traiter les informations collectés sur les comportements et l'évolution
d'un n÷ud méritent plus d'analyse en termes de consommation des ressources.
Ce dernier peut être étudié dans le cas d'une implémentation réelle pour con-
cevoir une solution adéquate contre les attaques de suppression des paquets
en tenant compte les ressources nécessaires pour assurer les di�érentes phases
de détection.

• Implémentation réelle: les solutions proposées dans cette thèse sont capa-
ble de détecter les di�érentes types d'attaques par suppression des paquets.
Cependant, il est nécessaire d'évaluer leur adaptabilité d'être implémentées
comme un système de détection au niveau de chaque n÷ud du réseau. Nous
pouvons encore adapter ces solutions comme une extension de sécurité qui agit
d'une manière similaire aux systèmes de réputation.

• Suppression coopérative des paquets: dans cette thèse nous avons traité
le cas des n÷uds malveillants qui réalisent des attaques par suppression sans
aucune coopération entre eux. En se basant sur des études récentes, les at-
taques par suppression des paquets qui sont réalisées par plusieurs n÷uds d'une
manière coopérative peuvent rester dans le réseau et perturber le routage sans
être détectés. Nous allons traiter le problème de ces attaques dans les réseaux
MANETs en analysant leurs techniques et essayant de modéliser leurs com-
portements.





Abstract

With the evolution of user requirements, many network technologies have been de-
veloped based on the Machine-to-Machine (M2M) communication concept. Among
these technologies, we �nd Mobile Ad hoc Networks (MANETs) that were designed
to ensure communication in situations where the deployment of a network infrastruc-
ture is expensive or inappropriate. In this type of networks, routing is an important
function where each node acts as a router and participates in routing services.
Basically, MANET entities are in a managed environment where only authorized
users can participate in the network. However, some ad hoc scenarios are in an open
environment where nodes come from di�erent organizations or places and do not
know each other in advance. Moreover, existing routing protocols are not designed
with security in mind and are often vulnerable to attacks performed by malicious
entities. For instance, an authenticated entity may behave maliciously by dropping
the received packets that are supposed to be forwarded, in the aim of disrupting the
routing services and blocking the network tra�c.
In this thesis, we �rst present a taxonomy of ad hoc routing attacks, precisely those
leading to a denial of routing services. The main characteristic of this work is that it
distinguishes di�erent objectives and mechanisms of the Denial of Service (DoS) at-
tacks, which can help defenders to easily notice which attacks should be prevented.
We then focus on our main research objective which is the proposition of a fully
distributed detection mechanism of malicious nodes performing packet dropping at-
tacks to disrupt the routing services in MANETs.
We propose at �rst a classi�cation framework based on a Bayesian probabilistic
analysis in order to evaluate the behavior of a node based on its interaction with
its neighbors using a completely decentralized scheme. Simulation results show that
misbehaving nodes can be e�ciently detected using the Bayesian classi�ers.
Besides, we propose a prediction framework extending the detection mechanism al-
ready mentioned using a Markov chain model to handle the problem of periodic
packet dropping attacks. The core idea of this approach consists of keeping track of
the evolution of network nodes over a time period in order to predict their station-
ary states. Simulation results show that the proposed solution is able to predict the
state of a node based on its historical evolution and then detect the periodic drop-
ping attacks with an accuracy rate greater than 90%. Finally, we use the experience
obtained in this thesis to provide some guidelines for security enhancements that
should be considered to guarantee the availability of routing services in MANETs.
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Chapter 1
Introduction

1.1 Background and motivation

Over the last decade, the world has witnessed important advances in mobile com-
puting along with the development of wireless technologies, enabling information
and service access anywhere, anytime and from any device. In addition, mobile
communications played a central role in improving quality of life by connecting peo-
ple, homes, cars and other social systems in the context of so-called Smart city [1].
Today, wireless mobile devices are essential in the daily life of millions of users, who
keep their laptops, smart phones and tablets nearby, check them frequently and
sometimes use multiple devices at once. These devices, even if they are heteroge-
neous in terms of characteristics and goals, can share their resources in a network
and constitute a Mobile Ad hoc Network (MANET).
MANETs are autonomous systems of wireless mobile nodes that can be dynamically
self-organized into an arbitrary and temporary network topology [2]. MANETs do
not rely on a prede�ned infrastructure; every node in the network should act as host
and a router at the same time. MANETs can provide important means of achieving
the ubiquitous network utilization thanks to their ease, low cost and robust deploy-
ment. These networks are recommended for providing temporary communications
in highly dynamic and harsh environments such as, battle �elds, disaster relief and
rescue operations.
Despite the fact that infrastructure-less feature of MANETs o�ers a wide variety of
deployment facilities, it makes the network vulnerable to security challenges, espe-
cially in open environments where nodes are heterogeneous and do not know each
other in advance. In such challenging context, more responsibilities are in charge
of network nodes, which should cooperate with each other and provide di�erent
network services. However, existing ad hoc routing protocols do not support the
realization of these intrinsic responsibilities even if they are cooperative in nature.
In fact, most of them are not designed with security in mind, since they operate
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under a trust assumption on all network nodes. Therefore, many security attacks
can take place against the network especially at the routing layer. For instance, a
malicious node may discard some or all packets it receives to deny their forwarding
towards the intended destination. On the other hand, being wireless enabled small
devices having limited resource in terms of battery life and bandwidth, MANET
nodes trend to be sel�sh. Hence, it is possible for a node to decide not to cooperate
in packet forwarding in order to save its resources as long as possible.
Security is a fundamental requirement in MANETs which guarantees the prevention
of those malicious behaviors that may intercept, modify and discard packets, or in-
ject incorrect topological information to disrupt routing services. However, security
in MANETs cannot be guaranteed through centralized mechanisms used in infras-
tructure network such as, �rewalls and network-based Intrusion Detection Systems
(IDS).
A secure routing in MANETs should guarantee the integrity and privacy of rout-
ing information, the authentication and non-repudiation of network nodes and the
availability of network services [3]. This latter means that network resources and
services should remain available even in presence of malicious nodes in the network,
which can be ensured by preventing service disruptions caused by Denial of Service
(DoS) attacks [51].
At the network layer, availability attacks, the alternative name of DoS attacks, can
be classi�ed in three main categories:

• Resource consumption attacks: can be launched by an external attacker by
generating an excessive number of bogus packets in the aim of exhausting the
resources of network nodes.

• −]Routing disruption attacks: exploit protocol vulnerabilities to attract net-
work tra�c or establish malicious links between colluding nodes. Further, the
intercepted tra�c may be altered or discarded depending on attacker goals.

• Packet dropping attacks: in this class of attacks, when a malicious node re-
ceives packets that are supposed to be forwarded, it discards some or all of
them in the aim of disrupting their forwarding to an intended destination.

Due to their severe impact on network performance, especially on the routing
services availability, packet dropping attacks have attracted a considerable attention
of many research works. Cryptography-based mechanisms were widely proposed
as preventive solutions against these attacks. In general, these mechanisms were
proposed to authenticate network nodes [18][17] and ensure the integrity of routing
information using public key cryptography [5] or symmetric key cryptography
[20][21]. Other research works showed that trust management is an essential
requirement in MANETs, especially when nodes desire to establish a network with
a certain level of trust relationships among themselves and without any previous
interactions [6]. Trust-based security mechanisms were generally used to force
sel�sh nodes to cooperate [23], isolate them from the network [24] or establish a
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reputation system to make routing decisions based on trust level of nodes [7] [26] [52].

Based on previous studies [8], we consider that the cryptographic measures
alone are not su�cient to counteract di�erent security problems caused by mali-
cious nodes. On the other hand, we believe that trust management in MANETs
is challenging due to the topology changes which may hamper the trustworthiness
evaluation and aggregation among network nodes.
Therefore, we aim to propose a fully decentralized mechanism to overcome the
challenges that face most of cryptographic and trust-based solutions. We inves-
tigate statistical and probabilistic techniques to design and implement a novel
behavior-based detection mechanism against dropping attacks in MANETs. We
believe that such a solution faces a range of challenges:

• Decentralization: the lack of centralized management and security enforce-
ment points in MANETs such as, routers and �rewalls complicate the detection
of misbehaving nodes. How can we ensure that all detection phases are fully
decentralized?

• Node mobility: the unpredictable mobility of network nodes causing fre-
quent topology changes a�ect the detection accuracy of misbehaving nodes.
How can we design a detection mechanism which can be adapted to the dy-
namic nature of MANETs?

• Resource constraints: MANET nodes have the tendency to be sel�sh and
attempt to preserve their limited resources especially in terms of bandwidth
and battery power. What are the characteristics of a lightweight detection
mechanism in MANETs?

• Detection accuracy: the detection should de�ne a set of attributes in order
to realize a behavior-based analysis of network nodes and then detect those
misbehaving ones. How can we design a model of nodes' behaviors that ensures
an accurate detection of malicious nodes?

• Node's behavior changes: a sophisticated attacker may perform a selec-
tive packet dropping or change its behavior over time in order to deceive the
underlying detection mechanism. How can we exploit the evolution of a node
during a time period to identify the nature of its behaviors?
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1.2 Contributions

The �rst contribution in this thesis consists of proposing a novel taxonomy of
availability attacks threatening the ad hoc routing layer. The major attack scenarios
that can actively lead to a denial of routing services can be classi�ed in three broad
categories: packet dropping, resource consumption and routing disruption. For
each class of attacks, we investigate their techniques, objectives and damages they
cause to the ad hoc routing services.

The second contribution consists of a decentralized detection mechanism against
dropping attacks based on a probabilistic classi�cation of network nodes. This
mechanism is designed to allow a node to recognize the behaviors of a neighbor node
before forwarding packet through it. We exploit the ability of MANETs to work in
a promiscuous mode to ensure the monitoring of all packets in a node's transmission
range regardless their destination [9]. We model node's behaviors as a vector based
on three attributes representing the forwarding rates of three packet types: Data
packets, RREQ and RREP routing messages. Based on attribute values, we perform
a classi�cation of a behaviors' vector by evaluating its probability of maliciousness
using two Bayesian models: Bernoulli and Multinomial. We use the Total Cost

Ratio (TCR) to evaluate the performance of these classi�ers by comparing their
error rate with that of the baseline classi�er. Simulation results show that the use
of Bayesian classi�ers ensure an accurate detection of malicious nodes in MANETs.
Bernoulli classi�er shows a full detection of malicious nodes if their proportion in
the network exceeds 15%, while Multinomial classi�er is more appropriate when
the proportion of malicious nodes is less than 27%. We note that the combination
of these classi�ers can ensure a full detection of packet dropping attacks in MANETs.

The third contribution is an extension of the �rst approach, in which we
propose to track the evolution of a node's behaviors by calculating its probability
of maliciousness at each time slot τ during a time period T . We use a fuzzy logic

model to associate for each obtained probability value a linguistic label representing
the node's behaviors which are detected at a time slot τ . We de�ne three levels of
maliciousness representing the space of possible behavior states of a node over T :
legitimate, suspicious and malicious. We use the sequence of transition between
these states to represent the evolution of a node as a stochastic matrix using a
Markov chain. We show through simulation the ability of our proposed solution
to predict the state of a node by applying the ergodicity theory with a number of
steps less than 10. We clarify the important role of the suspicious state that we
introduce to overcome the challenge of the periodic packet discarding and then
increase both QoS and security. Simulation results show that our solution is able
to detect di�erent types of dropping attacks with an accuracy rate greater than
90% in di�erent con�guration parameters in terms of: network size, percentage of
malicious nodes and simulation time.
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1.3 Dissertation outline

The thesis is organized in six chapters which are further divided into multiple
sections. Hereafter, an overview of those chapters is provided:

Chapter 1, �Introduction�, also the current chapter, provides a global view of
the thesis. It introduces the context in which our research work is realized, the
importance of MANETs, the security threats at the ad hoc routing layer and an
overview of existing security solutions. It focuses on the problem of packet dropping
attacks and presents the technical challenges that should be taken into

consideration to design an adequate misbehavior detection mechanism.
It also presents the motivations, the contributions and the organization of this thesis.

Chapter 2, �MANETs: applications, protocols and security issues�, provides
�rstly an overview of ad hoc communication technologies and their applications
in the context of Smart city, and then studies the routing characteristics,

protocols and security threats in MANETs. It provides a taxonomy of DoS
attacks threatening the availability of ad hoc routing services, and focuses on the
techniques they used to realize their malicious objectives. Finally, it summarizes
the security vulnerabilities in ad hoc routing protocols that can be exploited by a
malicious entity to perform a DoS attack.

Chapter 3, �Security mechanisms against DoS attacks in MANETs�, surveys

the solutions that were proposed in the literature to secure routing

services and protocols in MANETs. In this chapter, we analyze security
mechanisms for each of three classes of DoS attacks: packet dropping, resource
consumption and routing disruption.

Chapter 4, �A probabilistic detection mechanism against routing misbehav-
iors in MANETs�, proposes a decentralized solution to detect packet dropping
attacks at the ad hoc routing layer. In this chapter, we �rst describe the network
assumptions, the modeling scheme of nodes' behaviors and the speci�cation of
the proposed detection mechanism. We also present the Bayesian models used to
evaluate the probability of maliciousness of nodes' behaviors. Finally, we
evaluate the performance of the proposed solution based on results that we obtain
through network simulations.

Chapter 5, �Nodes' behaviors prediction through a stochastic analysis�, presents
an extension of the detection mechanism proposed in chapter 4. In this chapter,
we address the problem of periodic dropping attacks in MANETs. We use a fuzzy
logic model to associate to a probability of maliciousness value a linguistic label
de�ning the state of its behaviors. We propose a stochastic Markov chain to model
the state evolution as a stochastic transition matrix. We show through simulations
the ability of the proposed solution to predict the state of a node based on its
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previous state transitions. In addition, we prove through simulation that dif-
ferent types of packet dropping attacks can be detected with a high rate of accuracy.

Chapter 6, �Conclusion and future directions� concludes the dissertation with
a review of the work that we realized in this thesis, a global evaluation of the
proposed solutions and an investigation of emergent technical challenges. It also
presents an overview of other research contributions that we realized to

detect Flooding attacks and Wormhole attacks that threat the availability
of ad hoc routing services. Finally, it presents an overview of our short-term and
long-term future research directions.



Chapter 2
MANETs: applications, protocols and

security issues

�To raise new questions, new possibilities, to regard old problems from a new angle,
requires creative imagination and marks real advance in science.�

� Albert Einstein
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2.1 Introduction

Recent advances in mobile computing along with the development of mobile de-
vices enable information and service access anywhere, anytime from any device.
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With the evolution of user requirements, many network technologies were devel-
oped based on the concept of Machine-to-Machine (M2M) communication. Among
these technologies, Mobile Ad hoc Networks (MANETs) have been designed to en-
sure communications where the deployment of a network infrastructure is expensive
or inconvenient. Being an infrastructure-less network, MANET's nodes ensure net-
work service cooperatively without relying on a central administration. The limited
transmission power of nodes implies that communications beyond the radio range
must rely on the forwarding help of other nodes.
Due to their intrinsic characteristics, MANETs are exposed to a large number of
security threats besides those inherited from conventional wireless networks, espe-
cially at the routing layer. Studying threats against routing layer is a fundamental
requirement to detect the potential attacks, and then build an adapted security ar-
chitecture for speci�c ad hoc applications. The major security goals in MANETs
consist of providing the following security attributes: availability, con�dentiality,
integrity, authentication and non-repudiation.
In this context, this chapter aims to focus mainly on application and security chal-
lenges in MANETs, and is organized as follows: fundamental concepts of ad hoc
communication technologies, routing protocols, applications and limitations are in-
troduced in section 2.2. In section 2.3, we present an in-depth security analysis of
Denial of Service (DoS) attacks at the ad hoc routing layer. We discuss the proto-
col vulnerabilities and attack techniques exploited by attackers and the techniques
targeting the availability of routing services in MANETs.

2.2 Background: Ad hoc networks

Ad hoc networks are de�ned as wireless networks that do not rely on any prede�ned
infrastructure. Thanks to these characteristics, ad hoc networks have a wide range
of potential applications. In this section we provide an overview of di�erent appli-
cations and real deployments of this type of networks. On the other hand, we show
the characteristics of the ad hoc routing and review some speci�c routing protocols.

2.2.1 Applications of ad hoc networks

Over the last decade, smart phones and tablets have emerged as a multi-purpose
computing platform, relying exclusively on wireless connectivity and replacing per-
sonal digital assistants and low-end mobile computers. In this context, the ad hoc
concept played a key role to ensure the communication between these devices.
Many research works have studied di�erent issues related to ad hoc networks such
as, routing protocols, quality of service and security challenges. However, there are
a few research works on current and future deployments of ad hoc communications.
According to recent statistics provided by Cisco VNI Service Adoption Forecast in
�gure 2.1, we note a signi�cant increase in M2M communications during the last
four years decade, and more increasing in the two coming years.
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Figure 2.1: M2M communications increase.
Source: www.cisco.com

In the following, we brie�y survey some applications of M2M communications and
areas of interest for ad hoc networks, especially in the context of smart city and
Internet of Things (IoT).

2.2.1.1 Vehicular networking

This area covers applications where one of the communication partners is a vehicle.
Vehicular ad hoc networks (VANETs) aim to ensure information exchange between
vehicles and provide several types of network services [10].

Figure 2.2: An overview of vehicular networking areas.
Source: www.decom.ufop.br

 http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-52 0862.html
http://www.decom.ufop.br/imobilis/tag/vanet/
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According to �gure 2.2 there two main types of communications used in VANETs.
The �rst communication mode of VANETs is Vehicle-to-Vehicle (V2V) commu-
nication, which has applications in convoy driving, lane changes and other safety
services. For instance, when a vehicle detects a new event (e.g., accident), it noti�es
neighboring vehicles about tra�c conditions change and helping drivers in decision
making.
The second communication mode is called Vehicle-to-Infrastructure (V2I) commu-
nication. In V2I, the infrastructure plays a coordination role by gathering global
or local information on tra�c and road conditions and then suggesting or imposing
certain behaviors on a group of vehicles. One example is ramp metering, already
widely used, which requires limited sensors and actuators. Finally, VANETs ensure
some comfort services by o�ering not only an Internet access, but also guiding
drivers to �nd available spaces in a near parking [53]. VANETs also include
Vehicle-to-Broadband Cloud communication (V2B), which involves generally the
short range communication between the vehicle and personal devices carried by
passengers using di�erent technologies, such as 3G cellular telephony [54], Bluetooth
[55], WiMax [56] and LTE [57].

2.2.1.2 Urban sensing

The focus of wireless sensor networking research has evolved from static networks of
specialized devices to advanced network technologies making use of robotic or other
controlled mobility to adapt to the sensing conditions and a people-centric approach
relying on the mobility of people [11].

Figure 2.3: Scenario examples of sensing process in urban environments.
Source: www.novim.org

Initiatives in the area of Wireless Sensor Networks (WSN) propose on one level
to make infrastructures more e�cient, but on another level, citizens with sensing
capabilities are a key way in which urban processes may run more e�ciently by

http://www.novim.org/resources/novim-news/399-they-re-tracking-when-you-turn-off-the-lights
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monitoring their individual consumption activities, transport patterns and energy
use (see �gure 2.3). An expanding research community is developing techniques
to bring about very large scale urban sensing by leveraging the increasing sensing
capabilities found in consumer devices such as smartphones. Data collected from
these mobile sensors provide the foundation for exciting people-centric applications
and projects such as, Google Street View [58], MIT Senseable City Lab [59] and Intel
Urban Atmospheres project [60].

2.2.1.3 Ubiquitous computing

Ubiquitous, also called pervasive, means �existing everywhere� [14]. In contrast
to desktop computing, ubiquitous computing can occur using any device, in any
location and in any format. This paradigm is the result of computer technology
advancing at exponential speeds, with the aim of integrating computation into the
environment.
At their core, all models of ubiquitous computing share a vision of small processing
devices, distributed at all scales throughout everyday life. For example, a smart

house environment might interconnect heating controls with personal biometric
monitors woven into clothing so that environment conditions in a room might be
modulated continuously and imperceptibly [61].
Another example involves solutions where a television set-top box can be controlled
from a smartphone, through an Internet connection, even when the two devices are
several feet from each other.

2.2.1.4 Network extension

In this application area, ad hoc networks are used to improve the performance of
networks having an insu�cient coverage [12]. Adding an ad hoc extension to the ac-
cess network will bene�t both service providers and users. In that case, while some
nodes access the Internet by directly connecting to an Access Point (AP), others
might be sending and receiving data packets through those intermediate nodes to
have Internet access.
In this context,Wireless Mesh Networks (WMNs) are the most known to ensure net-
work extension and Internet access solution [62]. These networks have the potential
to o�er low cost, wireless broadband Internet access for both �xed and mobile users
[63]. In WMNs, nodes can communicate directly with each other, without requir-
ing the assistance of an Internet connection. Therefore, if one node can no longer
operate, other nodes can still communicate with each other, directly or through one
or more intermediate nodes. WMNs allow a scalable coverage, high fault tolerance
and low installation costs, which can be exploited to increase the coverage area of
network services.
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2.2.1.5 Wireless Body Area Network (WBAN)

The body area network �eld is an interdisciplinary area which can allow inexpensive
and continuous health monitoring with real-time updates of medical records through
the Internet.
Wearable health monitoring systems integrated into a tele-health system are novel
information technology that will be able to support early detection of abnormal
conditions and prevention of its serious consequences [15].

Figure 2.4: WBAN of Intelligent Sensors for Patient Monitoring.
Source: www.rs-online.com

Wearable sensor nodes can store patient data such as, identi�cation, history and
treatments, by supplementing the use of back-end storage systems and paper charts
(see �gure 2.4). In a Mass Casualty Event (MCE), these networks can greatly im-
prove the ability of �rst responders to treat multiple patients equipped with wearable
wireless monitors [64].

2.2.1.6 Wireless Personal Area Network (WPAN)

Ad hoc networks allow a number of independent data devices to communicate with-
out any central administration. Communications in WPANs are normally con�ned
to a person or object that typically extends up to 10 meters in all directions and en-
velops two or more objects or persons whether stationary or in motion [13]. WPANs
could serve to interconnect all communicating nodes that many people have on their
desk or carry with them today.
In the context of personal utilization, Smart Phone Ad hoc Networks (SPANs) lever-
age the existing hardware in commercially available smartphones to create Peer-To-
Peer (P2P) networks without relying on cellular carrier networks or wireless access
points. This technology di�ers from traditional hub and spoke networks such as,
WiFi Direct [65], in that they support multi-hop relays, so peers can join and leave
at anytime without destroying the network.
Another paradigm of WPANs applications is the Near Field Communication (NFC)

http://www.rs-online.com/designspark/electronics/eng/knowledge-item/body-area-networks
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system, which allows two NFC-enabled devices to communicate with each other and
exchange information in an ad hoc fashion [66]. This contact-less technology allows
devices to communicate among themselves by a simple tap or touch to make use of
many services such as, cashless payment, P2P data transfer, loyalty and membership
identi�cation and other real time applications.

2.2.2 Summary

The numerous deployments of ad hoc networks, especially in smart city deployments
and IoT applications, make them an essential component of future Internet archi-
tecture. Routing is one of the services that will undergo a notable evolution, where
traditional routers will be replaced by smart entities.
Networks will have more distributed operations; a huge size of data will be stored
and forwarded daily through users' devices. Hence, there will be a crucial need for
an appropriate routing service to overcome the evolution non-predictable [67]. In
this context, ad hoc routing protocols constitute an important topic when designing
reliable and secure communications over distributed systems and smart applica-
tions. In the following, we introduce the ad hoc routing concepts, characteristics
and protocols.

2.2.3 Fundamental concepts of ad hoc routing

The routing function constitutes the basis for data exchange, which enables the
establishment and maintenance of optimal routes between network nodes. In con-
ventional wireless networks, routing protocols do not need to manage constraints
related to mobility nor topology changes, since the routing function is ensured by
�xed entities (i.e., routers).

2.2.3.1 Routing protocols classi�cations

Being an infrastructure-less, dynamic and resource constrained networks, MANETs
require a dedicated routing protocol which satis�es the following requirements:

• Distributed way of route establishment between nodes.

• Adaptation to frequent topology changes by handling broken links at real time.

• Low overhead as well as a low consumption of energy.

Many routing protocols were proposed and dedicated for ad hoc routing, where
each protocol de�nes its own metrics to ensure an optimal route selection. Some
protocols use hop count as a selection metric, and then choose the shortest path
between communicating nodes [68]. Other protocols take into account other metrics,
such as Quality of Service (QoS) [69], reliability [70] or security considerations [71].
According to how routing information is structured and exchanged, ad hoc routing
protocols can be classi�ed in two classes of approaches:
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− The distance vector approach, where routing information is only exchanged
between directly connected neighbors.

− The link state approach, which requires that all routers know about the paths
reachable by all other nodes in the network.

Ad hoc routing protocols can be also classi�ed in three types according to how the
routes are discovered and updated [72]. They are respectively proactive, reactive
and hybrid protocols.

• Proactive: also called �table-driven�. Nodes periodically exchange messages
in order to overcome the dynamic aspect of network topology and ensure the
consistence of routing information. Proactive approaches allow an optimized
route discovery; a route already discovered can be used instead of constantly
search again.

• Reactive: also called �on-demand �. Nodes do not exchange routing informa-
tion until there is data to be sent but no route is available. To �nd out a route,
a sender node broadcasts a route request message to its neighbors hoping it
will reach the requested destination. A route reply message is sent once this
request message reaches the destination.

• Hybrid: this class of routing protocols aims to combine the merits of both
proactive and reactive schemes. Each node maintains the topology information
within its coverage area using a proactive approach. The routes outside the
node's coverage area are discovered using a reactive approach, as is the case
with the Zone Routing Protocol (ZRP) [73], and the Sharp Hybrid Adaptive

Routing Protocol (SHARP) [74].

In the following, we introduce two representative ad hoc routing protocols, Ad hoc

On-demand Distance Vector protocol (AODV) [16] andOptimized Link State Routing
protocol (OLSR) [75]. For the other routing protocols, interested readers can refer
to [12] for more information.

2.2.3.2 The AODV routing protocol

This reactive protocol was developed in Nokia Research Center, University of Cali-
fornia, Santa Barbara and University of Cincinnati [16]. The key concept of AODV
is to establish routes only when needed. This protocol has two main phases: route
discovery and route maintenance.
Route discovery: this process is triggered once a source S wants to transmit data
to an unknown node D, and that S has no fresh route to D. S broadcasts a Route

Request (RREQ) message to its neighbors to ask them if they have a route to D. At
an intermediate node I, if the RREQ is received for the �rst time, a reverse route
towards the source node is created. Otherwise, the packet is discarded by the node
I. When receiving a RREQ, the destination D updates its routing table by adding a
reverse route to the source S, and sends a Route Reply (RREP) message in unicast
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to the next hop towards S. The RREP can be optionally sent by an intermediate
node if it has a fresh route to the requested destination. Intermediate nodes re-
ceiving a RREP add a route to D in their routing tables, and forward the updated
message to the next hop towards S. Once receiving the RREP, a bidirectional link
is established between S and D. If multiple RREP messages are received by S, the
route with the shortest hop count is selected.
Route maintenance: to maintain the discovered routes, a route maintenance
phase is performed using two additional messages. First, the Hello message, which
is sent periodically among neighbor nodes to inform each other about their connec-
tivity. Receiving a Hello message from a node proves that there is an active route
through that node. Second, the Route Error (RERR) message is sent when a node
detects a link break in an active route towards nodes using that link to send their
packets. A last important feature of AODV is the use of sequence numbers in packet
header to ensure the consistence of route information and prevent routing loops.

2.2.3.3 The OLSR routing procotol

OLSR is a proactive protocol developed by Institut National de Rercherche en In-

formatique et en Automatique (INRIA) [75]. The key concept of this protocol is
the use of Multi-Point Relays (MPRs) to forward broadcast messages during the
routing �ooding process.
To build a vision of the network topology, each node performs several steps to ob-
tain and maintain di�erent routing information. First, a neighbor discovery process
is initiated using Hello messages dissemination in order to perform a link sensing.
Then, each node has the list of its 1-hop neighbors and selects among them a set
of MPR nodes, and then reach all its 2-hops neighbors. Second, each node declares
its MPR selectors by broadcasting Topology Control (TC) messages. The topology
information received in TC messages are saved in the topology table, and later used
to know the shortest routes to other network nodes.
The OLSR routing scheme ensures an optimized mechanism that e�ectively reduces
the tra�c generated by broadcast control messages. Moreover, improving the rout-
ing information dissemination still provide optimal routes in terms of hop count and
reduces the number of control messages. OLSR is particularly suited for large and
dense networks as the technique of MPR works well in this context.

2.2.4 Discussion

Many research works proved that AODV ensures much better performance than
other ad hoc routing protocols [76], [77], [78]. On the other hand, many research
works presented a high importance of AODV in many smart deployments and real
time applications such as, Voice over IP (VoIP) [79] and environment monitoring
systems [80].
Providing a secure routing is challenging in MANETs; network entities are in charge
of providing routing services cooperatively. Moreover, most of ad hoc routing pro-



26 Chapter 2. MANETs: applications, protocols and security issues

tocols do not have an adequate security control to prevent misbehaving nodes from
participating in the routing process. Consequently, the routing function is targeted
by a large number of security attacks, ranging from passive eavesdropping to ac-
tive denial of service. This latter, is an outcome of one or more malicious behaviors
known as availability attacks. The network availability is a crucial security attribute,
without which the network is considered as non-functional.
In this thesis, we are particularly interested by security attacks threatening the
availability of MANETs' routing layer. In the next section, we reveal security vul-
nerabilities that can deny the ad hoc routing services, and provide a novel taxonomy
of DoS attacks before presenting security solutions in the following chapters. In the
rest of the thesis, we use AODV as the base routing protocol, due to its performance
superiority over the other protocols.

2.3 Routing availability challenges: DoS attacks

According to the Internet Engineering Task Force (IETF), the Request For Com-

ments (RFC) 4949 [81] de�nes an attack as �an intentional act by which an entity
attempts to avoid security services and violate the security policy of a system�. In
addition, the combination of several attacks can lead to more potential attacks which
are di�cult to detect. A DoS attack is an attempt to make a machine or network
resource unavailable to its intended users. In the context of MANETs, DoS attacks
consume not only the scarce system resources, such as bandwidth, battery energy
or Central Processing Unit (CPU) cycles, but also keep legitimate users away from
the network [82]. Next, we discuss the security challenges in MANETs, especially
those threatening the availability of routing services.

2.3.1 Attributes of Denial of Service

Ad hoc routing services may be threatened by di�erent types of DoS attacks. An
attacker may consume the resources of a legitimate node by sending it an excessive
tra�c, or isolate it from the routing process. DoS attacks may have di�erent levels
of severity, where the highest level consists of a disabling of the entire network.
To address this problem, it is mandatory to understand the techniques, objectives
and damages of DoS attacks. Wood and Stankovic [83] characterized these attacks
using �ve main attributes, which can help to �nd ways to mitigate attacks by pre-
vention, detection and recovery:

• Attacker: it may be classi�ed as either internal if it is part of the network,
or external if it has no knowledge of the network. Depending on the attacker's
goal, it can have multiple behaviors ranging from a passerby to a terrorist.

• Capability: knowing what an attacker is capable of is important for defending
the network. The capability of a DoS attack can be described by the number
of attackers, their coordination, technical capabilities and area of in�uence.
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• Target: the type of a service and its importance are factors that a�ect the
overall risk and constrain solutions. The loss of key services such as routing
or directory services may disrupt the entire operation of the network.

• Vulnerability: designates the weaknesses in the network, through which an
attacker may gain unduly exercise privilege. DoS attacks can be perpetrated
by exploiting low-tech physical or logical �aws.

• Result: DoS attacks may have di�erent impact levels on the network
depending on the intention of the attacker. Under such attacks, the targeted
service may be troubled, disrupted, degraded or totally disabled.

This taxonomy helps to identify the pro�le of an adversary, and then customize
the appropriate security countermeasure. However, this abstract description is not
su�cient to formally de�ne the DoS. In other words, it is crucial to understand how
and why the service can be denied, not only based on the pro�le of the attackers,
but also on the possible scenarios that can lead to such a situation.

2.3.2 Taxonomy of DoS attacks in MANETs

Most research works used the DoS term to de�ne some class of security threats
against some network services, or alternatively with �ooding attacks in other secu-
rity �elds such as cloud computing [84]. According to [85], DoS attacks are known as
availability attacks, namely, security attacks that threaten the availability of routing
services. In the context of ad hoc routing, we de�ne DoS as �a series of elementary
malicious activities that can reduce or completely deny the routing services�. In
other words, DoS itself is not an attack, but an eventual outcome of a sequence of
many attacks.
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Figure 2.5: Taxonomy of DoS attacks against routing services in MANETs.
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Past research works studying DoS attacks in MANETs did not adequately describe
the techniques used to launch these attacks. In [86], a few DoS attack scenarios at
the network layer were studied. However, there is no clear classi�cation of possible
DoS attacks in MANETs and their impact on routing services.
The authors of [87] attempted to provide several system requirements to detect DoS
attacks in MANETs. However, they considered DoS as a single attack that over-
whelms the network and deprives legitimate users from using network resources.
Both of these past works did not really present an in-depth security analysis of DoS
attacks, in other words, they did not present a clear taxonomy of attack scenarios
leading to a potential denial of routing services.
In this section, we intend to propose a complete classi�cation of threats against the
availability of routing services. Figure 2.5 depicts our own taxonomy of DoS attacks
that has a tree structure as proposed in [88]. In an attack tree structure, the root
represents the goal of the attack; in our case, the goal is the DoS. An intermediate
node of the tree is a more speci�c goal (i.e., subgoal) and a leaf is an attack mech-
anism. Preparative attacks such as, message interception and message forging are
omitted from this taxonomy and are out of the scope of our security analysis.

Table 2.1: DoS attacks simulation parameters.

Parameter Value

Coverage area 800 m × 800 m
Transmission range 250 m
Simulation time 300 sec
Mobility model Random Waypoint
Antenna OmniAntenna
Minimal/ Maximal speed [5 − 20] m/s
Routing protocol AODV
Tra�c type UDP − CBR
Packet size 512 bytes
MAC layer type IEEE 802.11p

For each attack subgoal of the proposed taxonomy, we describe the protocol vulner-
abilities that can be exploited by the malicious node and the possible mechanisms
leading to that subgoal. Besides of this description, we present a performance eval-
uation of MANETs under some attack scenarios that we simulated using Network

Simulator 2 (NS2). In table 2.1, we provide the common experimental parameters
of simulations studied throughout this chapter.

2.3.3 Packet dropping attacks

In MANETs, nodes trustworthiness assumption makes the network vulnerable to
many security attacks that can disrupt or disable routing services. Packet drop-
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ping attacks were widely studied due to their severe impact, especially on packet
forwarding. Generally, packet dropping may occur when a sel�sh node does not
forward packets in order to save its energy, or when a malicious node drops some
or all packets it receives [89]. Figure 2.6 illustrates how a malicious node intercepts
the tra�c before performing a packet dropping attack.
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Figure 2.6: Packet dropping attacks in MANETs.

A Blackhole attack occurs when a malicious node advertises itself as having the
shortest route to the destination by providing a high sequence number or a low
hop count in packets it forwards to other nodes. Once the malicious node receives
packets, it absorbs them instead of forwarding them to their destination.
Grayhole attack is a another type of dropping attacks in which a malicious node
selectively drops the received packets, in other words, drops some packet types and
forwards other ones. For instance, a Grayhole node having the intention to disrupt
the route establishment may drop RREP packets and forward other packets.
Similarly, a malicious node may perform a periodic dropping by changing its be-
haviors over time. In other words, it drops packets sometimes and forwards them
normally other times in order to still in the network as long as possible without
being detected [90].
Routing services may also be disrupted by sel�sh nodes which try to save their re-
sources by not cooperating with others in route establishment and packet forwarding.
According to [91], a sel�sh behavior may use one of the following models:

1. Sel�sh forwarding model represents the nodes that refuse to forward data pack-
ets while still participate in the route discovery phase.

2. Sel�sh routing model represents the behavior of the nodes that participate
neither in route discovery nor in data forwarding phase.

3. Energy-driven sel�sh behavior model combines the two models in order to
provide a psychological explication to the sel�sh behaviors.
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Sel�sh behaviors are not really attacks; their aim is to minimize the chances of being
included in routes for which it is neither source nor destination.
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Figure 2.7: Data packet loss caused by dropping attacks.

Packet dropping attacks were largely studied due to their potential damage they
cause for ad hoc routing services. These attacks signi�cantly decrease the network
performance; they may lead to a high packet loss ratio and low packet delivery ratio.
Moreover, the packet loss caused by dropping attacks is usually confused with those
caused by packet collusions, especially if the attacker performs a periodic dropping.
To show the impact of packet dropping attacks on routing services, we performed
many simulation scenarios using NS2. The network size is changed from 20 to 180

nodes, and the percentage of malicious nodes performing packet dropping attacks is
between 10% and 50%.
Figure 2.7 shows the data packet loss caused by these attacks in function of network
scale and the percentage of malicious nodes. We note that more the monitoring
increases in the network the more the data packets are lost. On the other hand,
we note a signi�cant percentage of data packet loss in the case of large networks.
When the percentage of malicious nodes is equal to 20%, 35% of packets are lost in
the case of network size equal to 180 nodes.

2.3.4 Resource consumption attacks

In most reactive routing protocols, routing information dissemination and route
discovery phase are performed using a �ooding-based scheme. In the case of AODV,
a RREQ message is di�used once a sender has data to send and there is no fresh
route towards the intended receiver. During the route discovery process, the sender
should satisfy the following conditions:

• The generation rate of RREQ messages should be less than a RREQ Rate

Limit.
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• After broadcasting a RREQ, the sender should wait for a RREP. If the latter is
not received within a Network Traversal Time, the node may perform another
route discovery until it reaches a maximum number of RREQ Retry Times.

• Time intervals between repeated route request trials should satisfy a Binary

Exponential Back-o� to prolong the waiting times for the next new transmis-
sion of RREQ packets.

However, the �ooding may have a malicious intention when an attacker broadcasts
a large number of useless packets to exhaust the communication bandwidth and
degrade the routing services. A malicious node may perform a RREQ �ooding

attack by sending an excessive number of RREQ packets towards out-of-domain IP
addresses in order to cause a DoS for one or more network nodes.
A malicious node would also perform RREQ packets retries without waiting for the
arrival of RREP packets or a large number of RREQ packets with the maximum
Time-To-Live (TTL) value in a burst manner. Since the destination IP addresses
are invalid, no node could answer RREQ packets, and the reverse routes will be
stored for a longer time in network nodes' routing tables. Consequently, the whole
network may be crowded with fraudulent RREQ packets, which can disrupt the
forwarding services and exhaust the resources of network nodes.
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Figure 2.8: Data packet loss caused by RREQ Flooding attack.

To show the impact of this class of attacks on routing services, we performed a
number of simulations using NS2 according to the experimental parameters showed
in table 2.1.
Five communication sessions are established between �ve pairs of nodes. Flooding
attack is launched by several nodes in the network, which generate an excessive
number of malformed RREQ messages. Figure 2.8 depicts the data packet loss ratio
caused by RREQ �ooding attack during the simulation period.
Data �ooding attack occurs after a route is established between the attacker and one
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or more legitimate network nodes. After setting up a route to a legitimate node, the
attacker forwards a high number of useless data packets along the path to disrupt
the normal packet processing of targeted nodes [92], in order to exhaust its battery
power and then isolates it from the network.
Sleep deprivation attack is another method which can be performed by an attacker
to disable the routing services provided at a legitimate node. The attacker launches
a sleep deprivation attack by interacting with the targeted node in a manner that
it appears as legitimate; however, the purpose of these interactions is to keep the
attacked node out of its power conserving sleep mode [93].

2.3.5 Routing disruption attacks

Ad hoc routing is a service provided cooperatively by network nodes without
any administration or central supervision. In terms of security, the number of
vulnerable points is proportional to network size. Disrupting one node may cause
the disruption of the entire network. In this context, we are interested in attacks
which disrupt the normal execution of routing by diverting the packets from their
normal direction.
A malicious node may attract the tra�c by advertising itself as a best possible node
having a route towards some destination in order to deceive other nodes and force
them to use that route more frequently for packet forwarding. Such misbehavior
is known as Sinkhole Attack, which can be established by a malicious insider or
a resourceful outsider. For instance, in the case of AODV routing protocol, an
attacker can modify or create a RREP message that announces a sequence number
larger than that in a received RREQ. Therefore, the fresh route provided by the
malicious node guarantees that other nodes will select it as a next hop to forward
packets towards the requested destination. Figure 2.9 illustrates how a Sinkhole
node M attracts all nodes that want to send data to a destination node D.

DM

(1) M advertises

itself as having a 

fresh route to D

(2) Nodes select M 

when sending data 

to D

Figure 2.9: Sinkhole attack in MANETs.

Similarly, a malicious node can dominate the route discoveries launched by a legiti-
mate node by forcing the routing protocol to malfunction. Being a �ooding-based
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routing protocol, AODV limits the number of broadcast RREQ packets using
a Back-o� waiting period, which may be exploited by an attacker to perform a
Rushing attack [94]. In this case, if the RREQs sent by a malicious node reach the
neighbors of a requested destination �rst, then any route discovered towards this
destination will include that malicious node.

To attract the nodes and disrupt the route discovery process, two colluding
nodes may also conduct a tunneling attack, which is widely known as Wormhole

attack. This attack is feasible even when the network provides con�dentiality
and authenticity without requiring any cryptographic knowledge. Analytic and
simulation results obtained in [95] demonstrate that a strategic placement of
Wormhole nodes can disrupt and control an average of 32% of all communications
across the network. If the tunneling is performed without any malicious intention,
the attacker actually ensures more e�cient connections in the network. However,
the powerful position of a Wormhole node can be exploited in a variety of ways,
such as packet dropping or data alteration.

The traditional method of packet tunneling consists of a wired or a long-
range directed wireless link between two colluding nodes. In a typical Wormhole
attack, two colluding nodes make an invalid link between them called a tunnel. The
packets received by the �rst malicious node are forwarded through the tunnel, and
relayed to another attacker located in another point in the network.
Furthermore, by simply switching the Wormhole link on and o�, the attacker can
trigger a route oscillation within the network, thus leading to a DoS attack [45].
A more sophisticated method called packet encapsulation is used to create a tunnel
between malicious nodes. In this type of Wormhole, a malicious node located
near to a source of tra�c encapsulates the received packets and forwards them to
another colluding node near to the requested destination. In its turn, the second
malicious node decapsulates the packets and forwards them in such a way that the
actual hop count does not increase during the traversal.

In the example illustrated in �gure 2.10, when node X hears a RREQ coming from
node S, it transmits this RREQ to another colluding node Y at a distant location
near the destination. Then Y rebroadcasts the RREQ. The neighbors of Y receive
the RREQ and drop any further legitimate RREQs that are coming from legitimate
multi-hop paths. As a result, the route between the source and the destination
includes the malicious nodes performing the Wormhole attack [96]. This prevents
nodes from discovering legitimate paths that are more than two hops away.
To show the impact of these attacks on ad hoc routing services, we simulated the
Wormhole attack that use the packet encapsulation technique. In addition, the
malicious nodes performing the Wormhole attack drop the packets they intercept
instead of forwarding them. The simulated network is composed of 30 nodes, where
the number of malicious nodes ranges from 1 to 12 nodes. The rest of con�guration
parameters are showed in table 2.1.
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Figure 2.10: Wormhole attack in MANETs.

Figure 2.11 depicts the data packet loss caused by Wormhole attacks in MANETs.
We note that more than 80% of packets are lost when 3 pairs of nodes perform the
Wormhole attack scenario that we already described.
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Figure 2.11: Data packet loss caused by Wormhole attacks.

Another type of routing disruption may occur when a malicious node convinces two
distant nodes that are neighbors using packet relaying or a Hello �ooding attack.
The former misbehavior can be performed by one or more Wormhole nodes relaying
packets between legitimate nodes. In the latter case, a malicious node exploits the
route maintenance phase of a reactive routing protocol by generating Hello packets
with a high transmission power and without respecting the Hello Interval [97].
When the targeted node receives such Hello messages it consider that the malicious
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node belongs to its transmission range and may be used to forward packets.

2.3.6 DoS attacks versus routing vulnerabilities

DoS attacks are the most crucial challenge against routing services availability in
MANETs. Ensuring privacy and authentication in MANETs does not imply that
the network is totally protected. Many security vulnerabilities can be exploited in
routing protocols to launch an attack and disrupt the network availability.

DoS attack Misbehavior Attack type Vulnerability Impact

Packet Dropping

Total dropping Blackhole

SN or HC Data Packet Loss
Selective dropping Grayhole

Periodic dropping Jelly�sh dropping

Sel�shness N/A

Routing disruption

Attraction
Hello �ooding Hello interval time

Malicious Tra�c InterceptionSinkhole
HC

Tunneling Wormhole

Protocol distortion Rushing Back-o� period Forwarding Invasion

Resource consumption Flooding attacks
RREQ �ooding RREQ rate limit Routing Table Overload

Data �ooding N/A Network Throughput Damage

Table 2.2: DoS attacks against ad hoc routing services (case of AODV).

For instance, a malicious node may falsify the hop count of a routing message in or-
der to hijack or redirect the tra�c to another colluding node, or convince legitimate
nodes to use Wormhole links to forward packets. On the other hand, the sequence
number of a route can be altered by a malicious node in order to prevent legitimate
nodes from using optimal routes.
In table 2.2, we summarize the most potential threats that can disrupt the availabil-
ity of routing services and lead to a DoS attack based on the taxonomy presented
in 2.3.2. For each attack mechanism, we show the vulnerabilities it exploits to take
place and its impact on routing performance.

2.4 Conclusion

In this chapter, we introduced the importance of mobile ad hoc networks and their
di�erent applications, especially in Smart city deployments. Then, we presented the
fundamental concepts of routing in MANETs and explained the routing process of
two well-known routing protocols OLSR and AODV.
The second section was dedicated to challenges of routing services availability in
MANETs. Then, a novel de�nition of DoS attacks was presented by describing
their attributes, and classifying their mechanisms using an attack tree. For each
attack mechanisms at the lowest level of the tree we described the vulnerabilities
that may be exploited by attackers, and we proved through experimental results the
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impact of these attacks on routing performance.
In the proposed attacks taxonomy, we omitted preparative misbehaviors used in
some attacks mechanisms such as, message interception, forging, etc. We focused
on well-known attacks that we considered as potential threats against the availability
of routing services in MANETs. In the next chapter, we address the problem of DoS
attacks at the routing layer in MANETs by discussing some research works that
were proposed in the literature.
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�Each problem that I solved became a rule, which served afterwards to solve other
problems.�

� Rene Descartes
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3.1 Introduction

The lack of a central administration, and the high dependence on inherent node
cooperation make ad hoc routing services vulnerable to many threats. To address
the vulnerabilities discussed in the previous chapter, many security mechanisms
dedicated for ad hoc routing layer were proposed in the literature.
In this chapter, we present a state of the art of ad hoc routing security mechanisms
within the strategies mentioned above. For each DoS attack technique described in
�gure 2.5, we detail some representative solutions, and we discuss their advantages
and limitations on network performance. The discussed research works were selected
as a trade-o� between the most cited and the most recent works, to provide a rich
and comprehensible state of the art.
Among DoS attacks, we focus on packet dropping attacks and their countermeasures
in the aim of clarifying our contributions in comparison with existing solutions.

3.2 Mechanisms against packet dropping

Ad hoc routing services rely on the cooperation of all network nodes. Thus, sel�sh-
ness is one of the major security problems in ad hoc networks. A sel�sh node aims
to preserve its own resources while using the services of others and consuming their
resources. As we have already mentioned in 2.3.3, with Blackhole and Grayhole
attacks, a node malicious node drops the totality or a part of packets it receives
instead of forwarding them.
To highlight potential research works proposed to secure MANETs against this class
of attacks, we detail in the following some security solutions using three classes.
First, we present solutions that use cryptographic tools to prevent packet dropping
attacks. Second, we describe those based on trust management to detect sel�sh
and malicious nodes from routing operations. Finally, we discuss some classi�cation
frameworks that were proposed to detect packet dropping attacks in MANETs.

3.2.1 Cryptography-based mechanisms

Most of these mechanisms were proposed to allow the protocols to authenticate
network nodes and guarantee the integrity of routing information. Most of these
solutions were proposed as preventive strategies against the malicious modi�cation
of routing information, which occurs usually prior to launching a packet dropping
attack.

Authenticated Routing for Ad hoc Networks (ARAN)

This security protocol was proposed in [18] to ensure routing messages' integrity
and non-repudiation based on public key cryptography. ARAN requires the use of
a trusted Certi�cate Authority (CA) server, whose public key PKCA is known to
all valid nodes. Each node denoted by A has to obtain a certi�cate certA before
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entering the network, where certA =< IPA, PKA, t, e >SKCA . The obtained CA

belongs to the node having the IP address IPA, created at a time equal to t, expires
at a time equal to e and having SKCA as a private key.
Each node running ARAN uses a secure packet signed with its private key called
Route Discovery Packets (RDP). At the beginning of a route request initiated by a
node S towards a node D, a RDP message is constructed and di�used to neighbor
nodes, containing the IP address of D, the certi�cate of S, a monotonically increas-
ing SN and a timestamp t, RDP=< IPD, certS , SN, t >. The freshness of RDP
message can be veri�ed by intermediate nodes using the IPS found in certS in con-
junction with SN.
After receiving a RDP message, each intermediate node I veri�es the signature of
the node from which it received that packet, removes it from the message, then
adds its own signature and certi�cate to the message before rebroadcasting it:
<<< IPD, certS , SN, t > SKS > SKN , certN >. Once D receives a RDP mes-
sage, it considers only the �rst received one and ignores more further messages.
Then, a reply process is performed using a Reply packet (REP) that is sent using
the reverse path traversed by the RDP message.
ARAN is one of the most known secure routing protocols, which provides authenti-
cation, non-repudiation and integrity of routing information, at the price of weighty
cryptographic operations and the use of CA server.

Secure AODV (SAODV)

Zapata et al. [17] proposed this secure routing protocol to protect the AODV routing
information. SAODV needs a CA server to manage Public Key Infrastructure (PKI)
in order to sign routing messages sent by network nodes. A hash chain is used to
authenticate the only mutable �eld in AODV messages, the Hop Count (HC) �eld.
According to SAODV, when a node wants to establish a communication session, it
has to generate a random seed s and a hash function hMax_HC(s), and puts them
into each RREQ.
When an intermediate node receives the RREQ, it increases the HC �eld, and re-
places s by its own hash s′. The integrity of HC �eld is veri�ed at any node by
checking whether hMax_HC(s) is equal to hMax_HC(s′).
Another aspect of SAODV is that it adds some measures to prevent malicious nodes
which try to attract tra�c by deliberately increasing the SN �eld. Although that
SAODV guarantees the integrity and authentication of routing information, it can-
not totally prevent attacks on HC using hash chains. Moreover, nodes may spend
a long time in computing signatures, and become overloaded, which degrades the
throughput and network delay.

Hierarchical Secure Routing against Blackhole attacks (HSRBH)

This secure routing protocol was proposed in [20] to discover safe routes against
Blackhole attacks using symmetric key cryptography. The core idea of this protocol
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is to divide the network into various groups organized in a tree structure with the
root of the tree called Group Leader.
An intra-group key among neighbors of the group leader and an inter-group key
between the two neighboring group leaders are established. To detect Blackhole
attacks, the source node randomly sends a control message to the destination and
waits for receiving an acknowledgement.
The acknowledgement message sent by the destination includes the Message Au-

thentication Code (MAC) which is created using the shared key between the source
and the destination to verify whether the route is secure. If the veri�cation is not
successful, then the route is considered as infected by a Blackhole node.

Triangular-based Encryption (TE)

This mechanism was proposed in [21] to prevent Blackhole nodes from participating
in the AODV route discovery phase. A node requesting a route towards a destination
must include a clear text in the RREQ before broadcasting it. When the destination
receives the RREQ, it encrypts the plain text and sends a RREP message to the
source containing the cipher text. As the RREP packet contains the cipher text, the
destination node must be reached.
The main assumption used by the authors to detect Blackhole nodes is the fact that
and attacker sends RREP messages without consulting the routing table. Therefore,
it is not possible that it can obtain the cipher text while creating the RREP packet.
Consequently, the presence of Blackhole nodes along the route can be veri�ed by
the source node by checking whether the packet has the matching cipher.
The authors argue that their proposed method guarantees that the RREP messages
are forwarded only using legitimate nodes. However, they have not presented any
details about the encryption algorithm used to secure the route establishment.

Adaptive Encryption (AE)

Nekkanti and Lee [19] proposed an extension for the AODV routing protocol using
a trust factor and a security level at each node. The trust factor and the level of
security assigned to the information �ow decide what level of encryption is applied
to the current routing information at a source or an intermediate node.
The core idea of this approach is to ensure an adaptive encryption, by masking the
routing information only from the non-trusted nodes instead of masking it from all
the nodes, in order to save both time and energy. Therefore, when a node S wants
to �nd out a route towards a destination D, it sends the RREQ messages according
to the following formula:

S→broadcast :{RREQ,SN,PbD[SID], DID, SL}

where PbD[SID] is the encrypted source ID with the destination's D public key,
DID is the destination ID and SL is the security level set by the application.
When an intermediate node B receives the RREQ, it looks up its trust table for
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each of its neighboring nodes and encrypts its own information with its private key,
appends it to the source information and then encrypts the whole information with
the public key of the destination node:

B→ broadcast :{RREQ,SN,PbD[PvB[BID]], PbD[SID], DID, SL}

where PbD[PvB[BID]] is the encrypted intermediate nodes' ID(B).
When D receives the RREQ, it veri�es if the path includes any bad nodes using the
intermediate node list. If a bad node is found, the RREQ is discarded. Otherwise,
D generates a �ow-ID and encodes it with the public keys of intermediate nodes in
the order they would receive, and then it broadcasts the RREP to its neighbors. If
B and C are the intermediate nodes, D sends the following RREP:

D → broadcast : {RREP,PbC[FID, PbB[FID, P bS[PvD[FID]]]]]}

Finally, when S receives the RREP, it �rst applies its private key and then the
public key of D, and then gets the �ow-ID generated by D, which completes the
route discovery process. If B is the intermediate node near to S, the packets are
sent to D using the same �ow-ID of the received RREP: S → B : {FID, Data}.

Secure Enhanced AODV (SEAODV)

Li et al. [4] proposed a secure protocol that employs a Blom's key pre-distribution

scheme [98] in conjunction with the enhanced HELLO message to establish Pairwise
Transient Key (PTK) and then distributes a Group Transient Key (GTK). PTK
and GTK provide a hop-by-hop authentication routing solution, in which routing
messages are protected at every hop during the route setup process.
To secure the route discovery process, a MAC �eld is appended to the RREQ
message before di�using it to 1-hop neighbors. The MAC is obtained using the
GTK of the node generating the route request A and the rest of message �elds M :
A→ ∗ : RREQ : [M,MAC(GTK,M)].
Upon receiving the broadcast RREQ, each neighbor compares its GTK with that
of A. If there is a match, it computes the corresponding MAC with the received
message and the GTK before updating its routing table and setting up the reverse
route back to A. When RREQ reaches a node having the right to reply according to
AODV speci�cation, it computes a newMAC(PTK,M) using the PTK of the next
hop in the reverse route towards A. If a node B needs to unicast the RREP to the
node A it sends the following message: B → ∗ : RREP : [M,MAC(PTKBA,M)].
When A receives the RREP from B, it veri�es whether PTKBA is in its PTK group,
and then updates the HC �eld in the RREP and its own routing table before setting
up the forwarding path towards the destination.

Secure records of packet delivery information

This work was proposed in [5] to solve the problem of Blackhole attacks by securing
the history records of packet delivery information at each node encountered along
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the path from a source to a destination. The authors used public key cryptography
to encrypt the routing information. Each node saves the history of records created
by encountered nodes, and keeps in its memory the packets' receiving and forwarding
records created by the encountered nodes. There are two tables generated at each
node for storing these records. Receiving Record Table (RRT) is used by a node to
keep packet exchange records generated by its encountering nodes and a Self Record
Table (SRT) which maintains the records it generates for each node encounter.
When two nodes interact, they validate the history records from each other, and
determine the legitimacy of the encountered nodes, and further detect the presence
of a Blackhole attack. During the exchange of history information, each node creates
a record that contains its ID and that of the encountered node, the number of
received and forwarded messages "from" and "to" this node respectively, and the
current timestamp t. Then, the node signs the record using its private key. The
stored information is used to verify if an encountered node has normally forwarded
the received packets during a history window interval.
Although this mechanism shows a good detection capability of Blackhole attacks,
the authors have not provided details about the exchange period between nodes.
Therefore, if the history size requires a transmission time greater than the exchange
period, then the collected information is unlikely to be su�cient to classify the
encountered node.

3.2.2 Trust management

In the context of network security, a trust management is a risk management with
a particular emphasis on the authentication of entities under uncertainty and deci-
sion making based on cooperation with unknown entities [99]. Trust management
was employed in MANETs to establish a so-called reputation system to satisfy the
following security goals:

• Malicious nodes detection: the trust value assigned to a node is obtained based
on its behavior. A node is considered as legitimate if it has a high trust value
(i.e., greater than certain threshold), while a node having a low trust value is
considered as malicious [100].

• Malicious nodes isolation: in the case of trust-based routing, packet forwarding
is performed among nodes having a high trust value. Therefore, a node having
a low trust value is progressively isolated from the routing process [101].

• Cooperation reinforcement: malicious nodes are susceptible to be punished by
network nodes, which can motivate them to cooperate in the routing process
[102].

Reputation systems were used in a variety of applications, among them are the
selection of good peers in a P2P network, the choice of transaction partners for
online auctioning and misbehaving nodes detection in wireless networks [103].
In case of a MANET, the reputation of a node refers to how good the node is in terms
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of its contribution to routing activities in the network. Most of reputation systems
use the monitoring mechanism called watchdog, in order to collect information of
routing behaviors.
In the following, we discuss some research works that have used trust management
to establish a reputation system to detect, isolate and reinforce the malicious nodes
to cooperate in packet routing process.

Watchdog and Path Rater

The concept of watchdog was introduced by Marti et al. [22] to mitigate the ef-
fects of routing misbehavior in the Dynamic Source Routing protocol (DSR) [104].
In this approach, the authors assume that wireless interfaces support promiscuous
mode operation, which means that if node A is within the transmission range of a
node B, it can overhear communications "to" and "from" B even if those commu-
nications do not directly involve A. Each node supports two components: watchdog
and path rater.
The watchdog maintains a bu�er of recently sent packets and compares each over-
heard packet with the packet in the bu�er to see if there is a match. If so, the
behavior is considered as normal, and the packet is removed from the bu�er. If a
packet remains in the bu�er for longer than a certain period, the watchdog keeps
track of that node and declares it as misbehaving if the period exceeds a certain
threshold.
Each node maintains a rating for every other node it knows about in the network.
The path metric is calculated by averaging the node ratings in the path. Based on
the knowledge of nodes' rankings, the path rater can choose the node that is most
likely to deliver the packets.
The main drawback of this approach is the fact that the reputation considers only
the direct observations. Many research works have introduced a second hand in-
formation, based on the recommendations of other network nodes when calculating
the global reputation value such as, CORE [23] and CONFIDANT [24].

Cooperative Reputation (CORE)

This work was proposed in [23] to enforce nodes cooperation in MANETs. The
global reputation of a node is evaluated by combining three types of reputations:

• Subjective reputation: is evaluated only by considering the direct interac-
tion between a subject and its neighbors. A subjective reputation at time t
from subject si point of view is calculated using a weighted mean of the ob-
servations' rating factors, by giving more relevance to the past observations.

• Indirect reputation: adds the possibility to use information provided by
other members of the community to calculate the �nal value to the reputation
of a subject. This type is considered as a second-hand reputation, and is used
optionally in CORE.
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• Functional reputation: adds the possibility to calculate a global value of a
subject's reputation that takes into consideration di�erent functions as evalua-
tion criteria such as, packet forwarding (f = PF ) or routing function (f = R).

The monitoring process is performed by storing several essential information of
packets passed by the node. Each packet is identi�ed by a unique identi�er, the
addresses of its sender S and its receiver D, and a hash value of the data payload :
< UID, IPS , IPD, h(payload) >.
CORE compares each overheard packet to what it is excepting. In case of data
alteration or packet dropping, the reputation of a node decreases, otherwise it in-
creases. When a node A wants to calculate a reputation on a node B at a time t, it
combines di�erent reputation evaluations as follows:

rtA(B) =
∑

f∈{PF,R}

wf{rtA(B|f)}+
∑
z∈NA

λz{rtz(B|f)} (3.1)

where wf denotes the weight of the function f , and NA regroups the direct neighbors
of node A. If the global reputation without second-hand reputations, then rtz(B|f)

is set to 0. Otherwise, λz = rtA(z|f) denotes the weight on the indirect reputation
rtz(B|f).

Cooperation Of Nodes Fairness in Dynamic Ad hoc NeTworks (CONFI-

DANT)

This work was proposed in [24] in the aim of establishing a consistent reputation
system based on both direct and indirect observations, in order to detect and isolate
misbehaving nodes in MANETs.
CONFIDANT consists of four components: the monitor, the trust manager, the
reputation system and the path manager. Unlike CORE, with CONFIDANT a node
monitors all its neighbors and locally looks for deviating neighbors. The latter is
ensured by either listening promiscuously to the transmission of the next node or
by observing route protocol behavior.
The trust manager of a node deals with incoming and outgoing ALARMS to warn
others of malicious nodes. Outgoing ALARM messages are generated by the node
itself after having observed a malicious behavior.
The recipients of these messages are called friends, which are administered in a
friend list. The trust manager maintains an alarm table containing information
about received alarms, and a trust table to manage the trust level of incoming
ALARM messages. Trust management is performed using a method similar to that
proposed in Pretty Good Privacy (PGP) [105], which de�nes four levels of trust:
friend, marginal, unknown and enemy.
The reputation system component manages a table consisting of entries for nodes
and their rating. The rating is changed only when there is a su�cient evidence of
malicious behavior that is signi�cant for a node and that has occurred a number of
times exceeding a threshold to roll out coincidences.
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Finally, the path manager ensures a routing according to the reputation of the nodes
in the path, and deletes paths containing malicious nodes.

Trust-based QoS Routing (TQR)

This protocol has some particularity since it takes into account QoS besides the trust
management scheme. It was proposed by Wang et al. [7] to estimate the available
link delay requirement by considering link quality, and incorporating a trust system
into the route discovery procedure to enhance the security of the network.
In TQR protocol, each node i derives a trust degree value for each of its 1-hop
neighbors. The trust degree value of i in its neighbor j at a time t is de�ned as the
weighted average of two parts. The �rst one is the direct trust degree T di,j(t) of i in
j based on i's direct observation of j's packets forwarding behavior at a time t:

T di,j(t) =
Fi,j(T )

Ri,j(T )
(3.2)

where Fi,j(T ) represents the number of packets forwarded correctly by j at time t,
and Ri,j(T ) is the number of packets successfully received by j from i at time t.
The second part is the average of existing indirect trust degrees T ri,j(t) that the n
mutual neighbors of i and j have in node j by recommendation at time t:

T ri,j(t) =
1

n

n∑
k=1

T dk,j(t) (3.3)

The global trust Ti,j(t) combining the two parts de�ned above is obtained as follows:

Ti,j(t) = ω1T
d
i,j(t) + ω2T

r
i,j(t) (3.4)

where the weight factors ω1 and ω2 ∈ [0, 1] such that ω1+ω2 = 1. Therefore, when a
source node discovers a path to a destination, the trust degree of that path denoted
by Rr should be computed according to the trust degree of the l nodes constituting
the route r using the following formula:

Rr = T1,2(t)T2,3(t) . . . Tl−2,l−1(t) =
l−2∏
i=1

Ti,i+1(t). (3.5)

The authors assumed that the initial trust degree value is set to 0.5, which is used
to represent a neutral view on unknown nodes. Network nodes are placed in the
promiscuous mode; each node can overhear packets forwarded by its neighbors. For
instance, Ri,j is incremented whenever i �nds that j received a packet, and if that
packet is forwarded Fi,j is incremented. Based on the interactions between i and j,
the trust degree is increased after each successful forwarding, and decreased when a
failed forwarding is detected.
Besides the trust model, the authors considered the link delay as QoS parameter by
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measuring the link quality, and used an Expected Transmission count (ETX) as a
metric when selecting a route:

Xj(t) =
1

Fj(t)×Rj(t)
(3.6)

where Fj(t)× Rj(t) is the probability that a probe packet is successfully "sent to"
and "acknowledged back" by receiving node. Therefore, Xj(t) denotes the expected
number of successful transmissions measured by node j at time t. δj(t) is the total
link delay de�ned to take into account delay determined by the queue bu�er size
and transmission delay caused by link bandwidth decrease. A new routing metric
Cr(t) considering both the trust degree of route and QoS requirements is de�ned
using the following cost metric:

Cr(t) =
∑
j∈r

δj(t)× (1− Ti,j(t)) (3.7)

where r is a sequence of nodes constituting the route between the source and the des-
tination. Finally, using this formula, the authors de�ned a trade-o� between quality
and trust degree of the route, which can be adjusted according to an optimization
method having a minimum value of Cr(t).

Trusted AODV (TAODV)

Li et al. [25] employed this trust model using three modules which implement the
following components: basic AODV routing protocol, a trust model based on the
subjective logic and the trusted AODV routing protocol. The subjective logic is
de�ned as a logic which operates on subjective beliefs about the world, and uses the
term opinion to denote the representation of a subjective belief.
In the proposed trust model, the authors de�ned an opinion of a node A about the
trustworthiness of a node B using a three dimensional metric:

ωAB = (bAB, d
A
B, u

A
B) such that bAB + dAB + uAB = 1

where b, d and u correspond respectively to belief, disbelief and uncertainty. The
trust aggregation in TAODV is de�ned by combining opinions using two possible
operations:

• Discounting combination: if node A wants to know the trustworthiness of
a node C, and node B gives its opinion about C, then A will combine the two
opinions: A to B and B to C to obtain a recommendation opinion A to C:

bA,BC = bABB bBC
dA,BC = bABB dBC
uA,BC = dAB + uAB + bABu

B
C
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• Consensus combination: to get a relative objective evaluation where dif-
ferent nodes have di�erent or contrary opinions about another node:

bA,BC = (bACu
B
C + bBCu

A
C)/k

dA,BC = (dACu
B
C + dBCu

A
C)/k

uA,BC = (uBCu
B
C)/k

where k = uAC + uBC − 2uACu
B
C such that k 6= 0.

Based on the number of successful or failed communications, the node changes
its opinions about other nodes using some trust updating procedure. To ensure a
trusted route discovery in AODV, the trust recommendations are exchanged using
three types of messages: Trust Request (TREQ) issued by a trust requester, Trust
Reply (TREP) issued by a recommender node about a recommendee node, and Trust
Warning message (TWARN) to warn nodes when a malicious behavior is detected.
The salient feature of TAODV is that using trust relationships among nodes, there
is no need for a node to request and verify certi�cates all the time. Once the trust
relationships are established, the subsequent routing operations can be performed
securely based on the trust information.

Friendship AODV (FrAODV)

Another security extension for the AODV routing based on a friendship mechanism
was proposed in [26]. FrAODV is based on two algorithms called RvEvaluate and
FwEvaluate, which are used to evaluate respectively the reverse and forward routes,
and then build up trusted routes in AODV.
RvEvaluate algorithm is triggered once a node S sends a RREQ to �nd out a route
to a destination D. An intermediate node accepts the RREQ only if the friendship
evaluation of the previous hop is positive. In this case, it creates a reverse route
and evaluates the friendship of the route denoted by RvFrRTe:

RvFrRTe =
h∑
i=1

PfFrHpi
h

(3.8)

where PfFrHpi is the friendship value of the previous hop i, and h is the number of
hops from the current node to S. Similarly, when D receives the RREQ, it evaluates
the friendship of its previous hop N using the same scheme mentioned above. If the
obtained value of RvFrRTe is less than the friendship value of the existing route,
D rejects the route. Otherwise, it considers this route as the best reverse route.
In the FwEvaluate algorithm, trusted forward routes are built using a similar scheme.
This algorithm starts when a destinationD sends a RREP as a response to a received
RREQ. The RREP is accepted by an intermediate node N , if its previous and next
hop are friends. In this case, a forward route is created, and evaluated by node N
as follows:

FwFrRte =

h∑
i=1

FwFrHpi
h

(3.9)
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where FwFrHpi is the friendship value of the next hop i, and h is the number of
hops from the current node to D. When the source S receives the RREP message,
it veri�es if the next hop is a friend and evaluates the forward route using the same
formula mentioned above. If the obtained value is less than the the current routes
friendship value, then the new route is rejected. Otherwise, this route is selected as
the best friendly forward route.

Fuzzy Petri Net based Trust OLSR (FPNT-OLSR)

FPNT-OLSR is a trust reasoning model based on fuzzy Petri Net that was pre-
sented in [52] to evaluate trust values of mobile nodes in MANETs. In this model,
the trust evaluation is based on four factors: tra�c load, packet forwarding rate,
average forwarding delay and protocol deviation �ag. Based on these factors, a set
of weighted fuzzy reasoning rules propositions are developed through a trust evalu-
ation algorithm. The global trust value of a target node is obtained by combining
the direct trust of the monitoring node and its neighbors recommendations.
A node supporting FPNT-OLSR runs in a promiscuous mode to intercepts and
reads every network packet arriving at the target, in order to collect trust factors.
MPR nodes are responsible for monitoring and evaluating their selectors and prop-
agating the obtained evaluation result as recommendations. The trust aggregation
process relies on direct trust evaluations and recommendations received from other
nodes. Based on trust values of other nodes, each node in the network can calculate
a trust-based routing table.
To avoid malicious or compromised nodes, each node maintains candidate table

TABCAN to cache all possible path entries towards a destination. The entry having
the maximum path trust value in TABCAN is selected and moved to a trust-based
routing table TABPT .
The authors showed that FPNT-OLSR performs well against many security threats
such as, Blackhole and Grayhole attacks. However, the trust computing for ev-
ery path from the source to a newly added node may result a high overhead and
end-to-end delay.

3.2.3 Classi�cation frameworks

Intrusion detection has been frequently used as a second line of defense in MANETs.
A simple way to perform intrusion detection is to use a classi�er in order to decide
whether some observed tra�c data is �normal� or �abnormal� [106]. In this section we
discuss four classi�cation frameworks that were proposed to detect packet dropping
attacks in MANETs.

Finite State Machine (FSM) based mechanism

To distinguish sel�sh nodes from cooperative ones, Wang et al. [27] proposed a
method to build up a statistical description node's behavior based on an FSM model
of locally observed AODV actions. The proposed technique requires no training data
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but instead compares observed behaviors of multiple neighbors against each other,
providing a basis for an online local reputation assessment algorithm.
To constitute the information required to detect sel�sh routing behaviors, a Local

Routing Instance (LRI) is de�ned for each node including a subset of transmissions
generated by itself and its neighbors. Each LRI is identi�ed by the combination
of the source and destination contained in a RREQ message. The FSM is used to
describe the behavior of a single node with respect to a single LRI. Each transmission
observed by a local node is recorded as a state transition in one or more neighbors'
FSM. A sequence of transitions among certain possible states are recorded by a local
node according to the observed events performed by a monitored node.
Upon reaching a �nal state, the FSM is considered complete and the local node
stores the completed sequence to derive a matrix T containing the probability of
observing each transition state Tij :

Tij = 1/N ×
N∑
k=1

1(i→ j ∈ Xk) (3.10)

where N is the total number of completed FSMs for the monitored node and 1 is
an indicator function.
To detect sel�sh behaviors, a series of statistical tests are applied to attributes which
are extracted from the set of transition matrices for all of the local node's neighbors.
Based on these tests, the authors proved how their approach can detect both RREQ
and RREP dropping attacks.

Dynamic learning for anomaly detection

Kurosawa et al. [28] proposed the use of a dynamic training method, which takes
into account the Destination Sequence number (Dst_Seq) to detect packet dropping
caused by Blackhole attacks. In this solution, it is assumed that the Dst_Seq in-
creases largely when a Blackhole attack takes place, and base their detection method
on three features:

• x1: Number of sent RREQ messages.

• x2: Number of received RREP messages.

• x3: Average of the di�erences between the Dst_Seq in sent RREQ and those
in received RREP messages.

The network state during a time slot i is expressed by three-dimension vector xi =

(xi1, xi2, xi3). Then, a mean vector x̄D using a training data set D of N time slots:

x̄D =
1

N

N∑
i=1

xi (3.11)

Next, the distance from input data sample x to the mean vector x̄D is calculated
using the following formula:

d(x) = ||x− x̄D||2 (3.12)
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Finally, the obtained distance is compared to a certain threshold value Th. If d(x)

is greater than Th, then a deviation from the normal network state is detected,
and the state is treated as data including attack. Otherwise, the state is judged as
normal, and then the corresponding data set will be used as a training data set. At
the end of this procedure, the training data set is updated to be used for the next
detection. Then, the mean vector x̄D obtained from this training data set is used for
the detection in the next data set. By repeating this procedure, the authors consider
that their proposed scheme is able to detect anomalies in an ad hoc environment.

Dynamic trust prediction

Xi et al. [29] proposed a dynamic trust prediction model to evaluate the trustwor-
thiness of nodes, which is based on nodes' historical behaviors, as well as the future
behaviors via extended fuzzy logic rules prediction. In the proposed model, three
types of trust are de�ned:

• Node's historical trust : it is estimated by the packet forwarding ratio com-
posed of two values, Control packet Forwarding Ratio (CFR) and Data packet

Forwarding Ratio (DFR). At a time t, the historical trust value HTVij(t) de-
notes the evaluated node vj 's trust value standing on the monitoring node
vi's point of view and calculated using the following formula: HTVij(t) =

w1 × CFRij(t) + w2 × DFRij(t). w1 and w2 are the weights assigned to
CFRij(t) and DFRij(t) respectively, such that w1, w2 ≥ 0 and w1 + w2 = 1.

• Node's current trust : considering a monitored node's historical trust and its
current capability to provide services, the current trust is computed using a
prediction method based on a set of fuzzy logic rules. At a time t, this trust
type represents the trust value is denoted by TV (t), and C(t) represents the
node's capability level on providing packets transmission services at time t.
Finally, a speci�c number of fuzzy sets are de�ned for TV (t), TV (t + 1) and
C(t) in order to construct an inference relationship between them.

• Route trust : assigned to a route based on the quality of providing services
such as packet forwarding. This trust type is denoted by RouteTVP , which
is computed according to the intermediate nodes' trust values along an estab-
lished route between a source and a destination. At a time t, the trust of a
route P is equal to the continued product of node trust values in a route P
between a source vs and a destination vd, and calculated as follows:

RouteTVP (t) =
∏

({TVij(t)|vi, vj ∈ P and vi → vj}) (3.13)

in which, vi → vj means that vj is the next hop node of vi. Based on the trust pre-
diction model, a novel on-demand trust based unicast routing protocol for MANETs
is presented, termed as Trust-based Source Routing protocol (TSR). In this protocol,
a source can establish multiple loop-free routes to a destination in one route dis-
covery process, and each route has an evaluation vector composed of hop count and
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route trust value. A destination responds with quali�ed routes as candidates that
satisfy the trust requirements of transmitting data packets. The core idea of this
protocol is to provide a �exible and feasible approach to choose the shortest route
that meets the security requirement of data packets transmission.

Intrusion Detection System (IDS) for dropping attacks

This work was presented in [30] to propose a model of data forwarding to recognize
malicious packet dropping behaviors in MANETs. In this solution, the set of suc-
cessive actions that should be performed by a node N to forward a received packet
are:

1. Dest event: N is not the �nal destination.

2. Rout event: N has a valid route for relaying packet towards the destination.

3. Drop event: N is not a malicious dropper.

A node that wants to forward packets must �rst try to send a Request-To-Send

(RTS) packet. The probability that N sends an RTS message denoted by PRTS
considers those packets that ful�ll the conditions dest and rout, since these two
conditions could be easily determined by inspecting every received packet:

PRTS = Pr(RTS|Dest,Rout) = (1− PDrop) (3.14)

where PDrop is the probability that the packet is maliciously dropped by N .
Second, N checks if it receives a CTS message. This latter is received from the next
hop in the route once the corresponding RTS packet reaches its destination. The
probability that a CTS is received given that RTS event is occurred is obtained:

PCTS = Pr(CTS|RTS) = 1− (PCOL + PMOB) (3.15)

where PCOL is the probability for the RTS or CTS packets to be lost due to collisions
or channel errors, and PMOB is the probability of packet losses due to broken links
caused by mobility situations.
To forward the message, both RTS and CTS events need to be occurred successfully,
and then the probability for the whole forwarding process, PFWD, is computed as
follows:

PFWD = Pr(CTS,RTS|Dest,Rout)
= Pr(CTS,RTS)× Pr(RTS|Dest,Rout)
= (1− PDROP )× [1− (PCOL + PMOB)]

(3.16)

Therefore, the probability of occurrence of packet dropping attack can be deduced
using the following formula:

PDROP = 1− PFWD

[1− (PCOL + PMOB)]
(3.17)

Finally, the dropping probability is compared to a prede�ned detection threshold θ.
If PDROP is greater than this threshold, then the corresponding node is considered
as malicious, and as legitimate otherwise.
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3.2.4 Discussion

Packet dropping attacks were widely studied in many research works. In this
section, many cryptographic techniques, trust management and classi�cation
frameworks were presented and discussed. We summarize these mechanisms in
table 3.1. We �rst classify them in four categories: detection schemes, preventive
schemes, security extensions and secure routing protocols. Secondly, we show
the security enhancements provided by each mechanism in terms of availability,
authentication, privacy and integrity. Finally, we evaluate their impact on network
performance according to four parameters: end-to-end delay, overhead, packet
delivery ratio and throughput.
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s Symmetric

key
cryptography

HSRBH [20] X X X X

TE [21] X X X X X

SEAODV [4] X X X X

Public key
cryptography

ARAN [18] X X X X X X

AE [19] X X X X X

RRT & SRT [5] X X X X X

SAODV [17] X X X X X X

T
ru
st

m
a
n
a
g
e
m
e
n
t Reputation

systems

Watchdog [22] X X X X X

CORE [23] X X X X X

CONFIDANT [24] X X X X X

Trust aware
secure
routing

TQR [7] X X X

TAODV [25] X X X X

FrAODV [26] X X X X X

FPNT-OLSR [52] X X X X

C
la
ss
i�
c
a
ti
o
n

fr
a
m
e
w
o
rk
s

FSM LRI-based [27] X X X X

Dynamic learning Anomaly detection [28] X X X X

Trust prediction TSR [29] X X X X

IDS RTS&CTS [30] X X X

Table 3.1: Classi�cation of packet dropping security mechanisms.

As a global conclusion, we note that most of cryptography-based solutions [17]
[4] [5], focus on the integrity of routing packets in order to prevent the malicious
modi�cation of the non-mutable �elds of routing packets such as, SN and TTL or
HC �elds. The main drawback of these mechanisms is the signi�cant amount of
bandwidth they consume in terms of bandwidth and network overhead, which is
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not suitable for resource-constrained networks (i.e., MANETs).

On the other hand, trust-based solutions [7] [25], introduced the notion of
reputation in ad hoc routing; when the routes between communicating nodes are
made up of trusted nodes. The trust value of a node is adjusted according to
its behavior, namely, based on its cooperation in the packet forwarding process.
Although these solutions force the malicious nodes to cooperate in routing, the
trust value can be falsi�ed if many colluding nodes give good recommendations
about a malicious node; solutions that use indirect reputation like CONFIDANT
[24] are susceptible to such attacks.

Finally, classi�cation frameworks were also proposed to detect or prevent packet
dropping attacks in MANETs. These solutions are usually based on a behavior
monitoring process in order to detect protocol deviations. The performance of a
these solutions depends on the selected attributes or attributes they use to make
behavior classi�cation. For instance, the solution proposed in [28] use RREQ and
RREP packets as attributes, while that proposed in [30] analyzes the behavior of a
network node based on RTS and CTS packets.

3.3 Mechanisms against �ooding attacks

Flooding attacks occur usually when the underlying routing protocol uses a �ooding-
based method to disseminate routing information, such as AODV [16] and DSR [104].
In such routing protocols, a threshold value of RREQ generation rate is de�ned in
order to prevent malicious �ooding behaviors. Moreover, the maximum number of
RREQ trials when a route request fails is also de�ned. However, these parame-
ters still exploited by malicious entities, which can exhaust the nodes' resources by
generating fake or malformed RREQ packets through the network. In addition, a
malicious node can perform a data �ooding after being included in paths established
between communicating nodes. To protect MANETs against �ooding attacks, many
security mechanisms were proposed in the literature. In the following, we discuss
some of research works that proposed solutions against this class of DoS attacks.

3.3.1 RREQ di�usion management

In a reactive protocol, network stills silent until a node has packets to send and
there is no fresh route towards the intended destination. In this case, a �ooding-
based scheme is used to discover route by disseminating RREQ message among
network nodes. Based on this characteristic, an authenticated attacker may exploit
the RREQ �ooding attack in the aim of exhausting network resources. In the
following, we present some research works that were proposed to improve the RREQ
dissemination scheme and alleviate the impact of �ooding attacks.
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Protocol and standard speci�cations

The existing countermeasures and prevention schemes in the literature focus mainly
on RREQ �ooding attacks such as, AODV RFC [16]. According to this standard,
a node should not originate more than RREQ_RATELIMIT RREQ messages per
second. In addition, after broadcasting a RREQ, a node waits for a RREP or other
control message with current information regarding a route to the appropriate des-
tination. If a route is not received within NET_TRAVERSAL_TIME milliseconds,
the node may try again to discover a route by broadcasting another RREQ, up to
a maximum of RREQ_RETRIES.
According to the DSR routing standard [104], an exponential back-o� is used in
order to limit the rate at which new route discoveries may be initiated by any node
for the same destination. If a node attempts to send additional data packets to
this same node more frequently than this limit, the subsequent packets should be
bu�ered in the Send Bu�er until a RREP is received, but it must not initiate a new
route discovery until the minimum allowable interval between new route discoveries
for this target is reached.
However, both speci�cations mentioned above are designed to manage the �ooding
based route discovery. Thus, from a security point of view, they cannot be adapted
to prevent the occurring of �ooding attacks. A Distributed DoS (DDOS) can be
merely launched by some colluding nodes which respect the speci�ed rate limit, will
never be detected.

Rate Limitation

In [31], the authors proposed a technique to identify and isolate the malicious node
that �ood the network based on the Anonymous Secure Routing (ASR) protocol
[107]. This protocol cannot di�erentiate the packets that are originating from a
particular source node from the packets that are destined to a particular destina-
tion node. Thus, a node receiving a large number of packets from its previous hop
node cannot determine whether it is being �ooded by its previous hop node or by
the nodes prior to its previous hop.
To deal with �ooding attacks, the authors proposed the use of rate limitation compo-
nent before being transmitted to the next hop neighbor. Every node monitors each
requesting neighbor's channel usage at regular intervals. If the packets transmitted
by the neighbor exceeds a certain transmission threshold within a given interval,
then subsequent packets are dropped. If a neighbor generates requests with a rate
exceeding the transmission threshold by some blacklist threshold, then it is believed
to be responsible for �ooding, and all the packets received from it are discarded in
the future intervals.
If a blacklisted neighbor node exhibits a normal behavior for a white-list threshold,
the monitoring node removes that neighbor from the blacklist and begins to forward
packets for the neighbor. Using this method, every participating node is forced to
share the transmission channel equally with the neighbors.
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3.3.2 RREQ dropping

The purpose of this class of mechanisms is to identify the nodes generating an
excessive amount of RREQ messages, and then forces them to ful�ll the RREQ
generation rate allowed by the protocol speci�cation.

Address �ltering

The aim of the �lter proposed in this work [32] is to limit the rate of RREQ packets.
Each node maintains two threshold values. The threshold values are the criterion for
each node's decision of how to react to a RREQ message. A BLACKLIST_LIMIT
parameter is introduced to specify a value that aids in determining whether a node
is acting maliciously or not. If the RREQ message generation rate of a node ex-
ceeds this parameter value, a �ooding attack is detected. Then, the blacklisted
node is ignored for a time period given by BLACKLIST_TIMEOUT after which it
is unblocked. By blacklisting a malicious node, a distributed prevention process is
ensured by all neighbors of the malicious node by restricting the RREQ �ooding.
On the other hand, if the generation rate of RREQ messages is between the
RREQ_RATELIMIT and BLACKLIST_LIMIT values, the RREQ packet is added
to a delay queue waiting to be processed. Every DELAY_TIMEOUT, the �rst
packet in the queue is removed to be processed. Therefore, a malicious node having
a high RREQ rate is severely delayed.

Random Assessment Delay (RAD)

The authors of [33] presented a security analysis of RREQ �ooding attacks and their
impact on network performance, especially the network throughput. They proposed
this mechanism to keep track of redundant RREQ packets received over a de�ned
period. Each node monitors and counts the RREQ messages it receives from each
RREQ sender during a de�ned time period.
At the end of the time period, the node computes the rate at which it has received the
RREQ packets from each sender. To distinguish between malicious RREQ �oods
and those generated by normal nodes, they calculate a cut-o� rate. The RREQ
messages from a sender having a smoothed average rate which is greater than the
cut-o� rate will be dropped without forwarding.
The authors argue that this technique has no adverse impact in the absence of
malicious control packet �oods, but stops any harmful e�ects of frequent control
packet �oods without the need to identify the malicious nodes.

Flooding Attack Prevention (FAP)

FAP is an adaptive statistical packet dropping mechanism proposed in [34] to defend
against RREQ �ooding and data �ooding attacks using two methods: neighbor

suppression and path cut-o�.
In this mechanism, the authors assume that the isolation of a �ooder node can be



56 Chapter 3. Security mechanisms against DoS attacks in MANETs

ensured by its neighbors by rejecting the packets it sends. In addition, they proposed
the use of a priority-based packet processing method instead of the standard method
used in AODV, which is First In First Out (FIFO). The priority value of a node
is assigned by its neighbors; an inversely proportional relation is de�ned between
the RREQ generation rate and the priority value. A node having a priority value
less than a certain threshold is considered as attacker, and then isolated by its
neighbors.
The path cut-o� method was proposed to delete an established path between an
attacker and a victim node. The authors proposed simply to send a RERR message
in order to break the links containing the attacker. However, they have not presented
how an attacker can be detected, they only proposed a method to stop the �ooding
attack. Moreover, sending a RERR may break legitimate links, and then downgrade
the packet delivery ratio.

3.3.3 Trust-based �ooding detection

The core idea of these approaches is to evaluate the trust of a node and then assign
a reputation value based on its behavior. To detect �ooding attacks, the trust
computation takes into account the rate of packets generated by network nodes.
In the following, we present two security mechanisms that were used trust and
reputation systems to detect �ooding attacks.

Dual Defensive Wall System (DDWS)

Jiang et al. [35] proposed this system to reduce the disruption caused by �ood-
ing attacks and mitigate their negative impact on network resources and the route
discovery process. Their approach aims to detect two aspects of RREQ �ooding
attacks: the massive RREQ dissemination and the bogus route discovery.
The �rst line of defense is provided by neighbors of a RREQ generator to verify if the
destination IP address belongs to the network. The second line of defense is ensured
by the destination node which detects the large number of RREQ packets. Using
two threshold values of RREQ generation Min_Threshold and Max_Threshold,
nodes can be classi�ed according to three priority levels: normal, gray and black. A
node with priority 1 has a frequency less than Min_Threshold, and with priority
3 has a frequency more than Max_Threshold. The list of suspect nodes hav-
ing priority equal to 2 are those having a frequency between Min_Threshold and
Max_Threshold values. The downgrade and upgrade policies between the priority
levels are de�ned according to the changes of the RREQ generation frequency.

Friendship-based �ooding detection

This approach was proposed in [36] to detect �ooding attacks based on the extent
of friendship among network nodes. Nodes are categorized as friends, acquaintances
or strangers based on their relationships with their neighboring nodes. Any new
node entering the network is considered as stranger to all its neighbors.
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The mutual trust level of two communicating nodes can be upgraded to acquaintance
and later to friend if the number of successful packet transmissions becomes higher
than de�ned thresholds.
For each level of trust a maximum number of RREQ and data packets is also de�ned
which can be used to detect nodes trying to generate malicious requests and/or send
useless data tra�c to the network.
If the speci�ed threshold level is reached, further RREQ or data packets received
from the initiating node are ignored and dropped. This approach uses the trust
value as a parameter in order to prevent �ooding attacks. However, there is no clear
description of the method used to "compute" the trust values.

3.3.4 Anomaly prevention systems

These prevention systems were proposed to monitor the activity of a network node,
and then detect any type of misuse that falls out of normal protocol speci�cations.

Anti-�ooding AODV (AF-AODV)

Similarly, a monitoring of the RREQ transmission rate is proposed in [37] to detect
RREQ �ooding attacks using a mechanism called AF-AODV. During the monitor-
ing period Tra�cTime if the rate exceeds a threshold then the neighbor is added to
a black-list, and the RREQ packets are not forwarded but they are still recorded.
A black-listed node is suspended if the rate continues to be high, and can be re-
moved if the rate drops below the threshold. If a node �nds that many neighbors
exceed this threshold, then the Black_list value associated to the nodes generating
the greatest number of RREQ is set to 1 and the other neighbors are suspended.
If the value of Black_list is greater than or equal to 1, then the node tests the
authenticity of the neighbor by replying with a fake RREP packet.
If the neighbor is malicious, this will not result in any data �owing and its
Black_list is incremented. Otherwise (i.e., if it is legitimate) data will �ow to
the fake RREP packet originator which can respond with a RERR packet so that a
new route can be found.
This process is executed each time a RREQ packet is received from a black-listed
node until a value equal to 5, beyond which that node is considered as malicious
and is excluded from the neighbor list.

Speci�cation-based Intrusion Detection (SIDE)

Panos et al. [38] proposed this detection engine to safeguard the operation of the
AODV routing protocol. The authors proved that the anomaly-based approaches
are not suitable for dynamic environments such as MANETs. They proposed a
system that ensures a real-time monitoring of local information in order to detect
malicious activities that try to violate the legitimate functionality of AODV. An
FSM model is de�ned for each message processing operation in AODV in order to
prevent deviations from the standard functionality.
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To detect RREQ �ooding attack, SIDE monitors the generation of RREQ messages
at each network node and detect whether a host node attempts to perform RREQ
�ooding attack. This is achieved by validating the originator IP address encapsu-
lated in the generated RREQ and by monitoring if the rate of RREQs per second
exceeds the RREQ rate limit.
Besides the SIDE engine, a remote attestation procedure is used to enable a node to
verify if a particular neighboring node operates an untampered version of SIDE. This
can ensure the authenticity of each node running a SIDE instance and guarantee its
integrity.

3.3.5 Discussion

Despite the severity of �ooding attacks, there are only few research works studying
their impact or proposing appropriate security solutions to prevent them. In �gure
3.1, we summarize the categories of security solutions against these attacks that we
discussed in this section.

 

 

Figure 3.1: Security mechanisms against �ooding attacks in MANETs.

Most of the existing proposed solutions handle the problem of RREQ �ooding, which
can be occurred in �ooding-based routing protocols such as, AODV and DSR. The
prevention of such attacks is challenging, especially because they can be launched by
external malicious nodes. In other words, an attacker can send an excessive number
of RREQ to a network node without being in the network.
Since the protocol improvements are not su�cient to prevent these attacks, many
research works were investigated to mitigate the impact of RREQ �ooding attacks,
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and detect the nodes performing such misbehavior.
The prevention approaches proposed in [31] and [33] use similar methods to detect
and exclude nodes performing a RREQ �ooding attack. They rely on a monitor-
ing process of the rate of RREQ packets generated by network nodes to detect the
occurrence of an abnormal tra�c of requests, and then the detected nodes are tem-
porally suspended or de�nitively excluded from the network.
Other works proposed trust-based approaches to adjust the permitted generation
rate of RREQ packets for each node according to its trust level such as, [36] and
[34]. However, these approaches cannot prevent an attacker from falsifying the rate
of generated RREQ packets and then disrupt the trust assessment process.
Finally, to ensure an e�cient prevention of these attacks, it is important to improve
the reliability and security of �ooding-based routing algorithms based on speci�ca-
tion similar to the approach proposed in [38]. These improvements should protect
MANETs against resource exhausting attacks, which helps to maintain the avail-
ability of network services.

3.4 Mechanisms against routing disruption attacks

Protecting MANETs against routing disruption attacks and ensuring secure neigh-
borhood creation is an extremely important issue. In this section, we review some
research works that handle the problem of malicious tra�c attraction and tunnel-
ing attacks, which are usually launched before a modi�cation or a packet dropping
attack. Broadly, the di�erent detection mechanisms may fall into four categories:
time-based, hardware-based, connectivity-based and statistical-based mechanisms.

3.4.1 Time-based mechanisms

In this class of security mechanisms, the detection of Wormhole nodes is based on
traversal time and hop count analysis. The aim of these mechanisms is to ensure
that transmitting nodes lie within the local neighborhood according to the routing
protocol speci�cations.

Temporal leashes

This work was proposed by Hu et al. in [39] to enable a receiver of a packet to
determine if a packet has traveled further than the leash allows. To use temporal
leashes, the sending node includes in the packet the time at which it sent the packets.
When receiving a packet, the receiving node compares this value to the time at which
it received the packet, and then it is able to detect if the packet traveled too far
based on the claimed transmission time. To implement this mechanism, the authors
use the Time E�cient Stream Loss-tolerant Authentication (TESLA) with Instant

Key expiration (TIK).
The intuition behind TIK is that the packet transmission time can be signi�cantly
longer than the time synchronization error. The authors argue that the TIK protocol
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provides protection against the Wormhole attack, since an attacker that retransmits
the packet will most likely delay it long enough that the receiver will reject the
packet, because the corresponding key has already expired and the sender may have
disclosed it.
However, knowledge of the positions of all nodes may be a prerequisite for correctly
estimating transmission times. Moreover, the authentication data needed to protect
packet leashes requires additional processing and communication overhead.

TrueLink

Eriksson et al. [40] proposed this mechanism as an extension to the IEEE 802.11

MAC layer in order to prevent the creating of Wormhole tunnels in MANETs. Us-
ing TrueLink, a node i can verify the adjacency of an apparent neighbor j, using a
combination of timing and authentication. First, the nodes exchange nonces αj and
βi. This exchange proves the adjacency of the responding node through the use of
strict timing constraints; only a direct neighbor is able to respond in time.
Second, i and j transmit a signed message (αj ,βi), mutually authenticating them-
selves as the originator of their respective nonce. To implement Truelink, the authors
showed how a nonce can be included in each CTS frame without changing the frame
format using the IEEE 802.11 standard.

Delay Per Hop Indication (DelPHI)

This mechanism was proposed in [41]; it relies on collecting information about HC
and delay of disjoint paths between a source and a destination in order to verify
whether a certain path is subjected to Wormhole attacks.
In this approach, the authors consider that the delay a packet experiences in prop-
agating one hop under normal situation should be similar along each hop along the
path. However, under a Wormhole attack, the delay for propagating across false
neighbors should be high since there are in fact many hops between them.
Based on this attack signature, the delay per hop of a legitimate path is compared
with the delay per hop of a path that is under Wormhole attack. Therefore, if a
path has a ratio delay per hop exceeding some threshold value, it is likely to be
subjected to a Wormhole attack.

Transmission time analysis

In [42], a Wormhole detection mechanism based on the Round-Trip-Time (RTT)
was proposed for the Ad hoc On-demand Distance Vector (AOMDV) routing pro-
tocol. In this mechanism, the transmission time is evaluated between every two
successive nodes in an established path between a source S and a destination D.
After obtaining the RTT values, S calculates the total RTT for established routes.
The detection of Wormhole has some originality since the authors propose a solution
adapted to AOMDV routing protocol, where S estimates a threshold value tmax of
RTT by calculating the maximum time taken for a packet to traverse 1-hop. tmax is
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estimated by averaging the time elapsed to receive an acknowledgement after send-
ing a Hello message for all neighbors of S.
When S has many routes towards a destination D, it can check for an established
route r if it contains Wormhole nodes by comparing its total RTT with an estimated
RTT denoted as te. This latter is calculated as follows: te = tmax × h, where tmax
is the estimated time to traverse r, and h is the hop count of r. A Wormhole node
is detected in r if its total RTT is greater than the estimated value te.

3.4.2 Localization-based mechanisms

This class of mechanisms use location information in conjunction with temporal
information in the aim of detecting shortcuts caused by Wormhole nodes. In the
following, we discuss some of these solutions, and we describe for each solution
how the spatio-temporal information is exploited to detect Wormhole attacks in
MANETs.

Geographical leashes

Geographical leashes were introduced in the same work that proposed the use of
temporal leashes to detect Wormhole attacks [39]. In this approach, each node
must know its own location, and all nodes must have tightly synchronized clocks.
The core idea consists of appending the location information of the sending nodes to
each packet, and verify whether the hop-by-hop transmission is physically possible.
When a node sends a packet, it includes in the packet its own location, and the time
at which it sent the packet. A node receiving this packet compares these values to
its own location, and the time of receiving of packet. Then the receiver computes
an upper bound on the distance between the sender and itself. According to the
obtained distance, the receiver is able to detect if the packet has traveled further
than the leash allows, and then detect the tunnels created by Wormhole nodes.

Secure Tracking Of node encounters (SECTOR)

The SECTORmechanism was proposed in [43] to prevent Wormhole attacks without
requiring any clock synchronization. The proposed mechanisms in this work aim to
ensure a secure veri�cation of the time encounters between nodes in the aim of
preventing Wormhole attacks in MANETs.
A Mutual Authentication with Distance bounding (MAD) protocol is used to apply
the same principle as packet leashes, with the di�erence that each node can perform
distance bounding without having to trust on the other party.
The technique used by MAD consists of a series of rapid bit exchanges between
nodes. Each bit sent by the �rst node is considered to be a challenge for which the
other node is required to send a one bit response immediately. By measuring the
time between sending out the challenges and receiving the responses, the �rst node
can compute an upper-bound on the distance to the other node.
Despite the fact that this mechanism does not need a clock synchronization, it
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requires a special hardware to measure the local timing with nanosecond precision,
which is impractical for MANETs.

Directional antennas

The use of this technique was introduced in [44] as an attempt to mitigate Wormhole
attacks by equipping network nodes with directional antennas. This solution is
based on the assumption that a Wormhole attack cannot be performed when the
neighbor sets are maintained correctly. Their approach is based on three protocols:
directional, veri�ed and strict neighbor discovery.
The directional neighbor discovery protocol forms the basis of two other protocols;
it ensures the authentication of each node in its neighborhood. Then, the messages
received from nodes that are not members of its neighbor set are ignored. The
veri�ed neighbor discovery protocol de�nes the steps required to authenticate the
nodes and their apparent relative positions by using speci�c nodes called veri�ers.
This protocol ensures that the directions towards two communicating nodes are
consistent. The strict neighbor discovery protocol is similar to the veri�ed discovery
protocol, however, it adds some conditions on the possible location of the veri�er
nodes between neighbor nodes. This restriction can prevent a smart adversary trying
to convince two slightly out of radio range nodes that they are neighbors.

3.4.3 Connectivity-based mechanisms

Since Wormhole attacks attempt to create malicious shortcuts between colluding
nodes, they have a noticeable e�ect on the network from a geometry point of view.
Another signature of this attack, is the fact that the Wormhole node attracts neigh-
bors by advertising itself as having a fresher route to an intended destination. In the
following, we present mechanisms that rely on network structure analysis to detect
Wormhole attacks.

Geometric Random Graphs

Lazos et al. [45] presented the necessary and su�cient conditions for detecting and
defending against Wormhole attacks, using geometric random graphs induced by the
communication range constraint of nodes. In this solution, it is assumed that the
existence of Wormhole links violates the geometric graph model, by allowing links
longer than the normal transmission range, thus transforming the initial geometric
graph into a logical connectivity graph, where arbitrary connections can be estab-
lished. In other words, a link is considered as a Wormhole if the distance between
its two endpoints exceeds the regular communication range. Besides this mathe-
matical modeling, a set of trusted specialized guards are also employed to prevent
local nodes from launching a Wormhole attack using a global pre-loaded key in the
nodes.
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LiteWorp

A lightweight countermeasure against Wormhole attack called LiteWorp was pro-
posed in [46]. The detection process is composed of three phases: building neighbor
lists, local monitoring and isolation algorithm.
LiteWorp starts with building a data structure of the �rst and second hop neigh-
bors. First hop neighbor information is used by a node to reject (respectively do
not forward) packets that are received from a node (respectively to a node) that is
not a neighbor.
Also, the second hop neighbor information is used to verify if a forwarded packet
comes from a neighbor of the forwarder. Once the neighbor list building is com-
pleted, a node starts a local monitoring to detect Wormhole attack and diagnoses
the malicious nodes involved in launching it. The monitoring of malicious activities
is ensured by a set of guard nodes based on a watch bu�er ; the outgoing and incom-
ing links of each node are monitored by these guards, which are in fact its 1-hop
neighbors.
Finally, a malicious counter is maintained at each guard node and incremented
each time a malicious activity is detected. If the counter of a node X exceeds some
threshold, the corresponding guard node sends an alert message indicating the de-
tection of a malicious node. Then, each node receiving the alert message removes
X from its neighbor list.
Among the limitations that can be identi�ed in this work is its inability to deter-
mine neighbors at arbitrary points in the lifetime of the network. Another challenge
arises from the possibility for a mobile attacker to perform malicious actions at one
location and moves.

Control Tra�c Tunneling Attack Countermeasure (CTAC)

This mechanism was proposed in [47] to prevent malicious nodes claiming to exist in
more than one location in the network. CTAC relies on a set of trusted nodes which
called Cluster Head (CH) for position tracking of the mobile nodes and bookkeeping
of adversarial behavior of a mobile node. Depending on the number of available CH
nodes, CTAC divides the network into geographical units. Each geographical unit
is assigned to a CH and contains all the network nodes that lie within that unit.
Two types of detection were de�ned in CTAC:

• Local detection: the malicious node is detected by the nodes in its current
neighborhood in a distributed fashion.

• Global detection: the malicious node is detected on a global network scale
by the CH nodes in two phases.

1. Reports aggregation within the geographical unit of CH at multiple loca-
tions.

2. Reports exchange between CHs about the nodes that move from one
geographical unit to another.
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In CTAC, the mobile node can send and receive its own tra�c but cannot forward
any tra�c. This design arises from the insight that a node can only launch a
Wormhole attack if it is allowed to relay packets.
Using this approach, the isolation of malicious nodes is achieved in two phases;
locally, whereby the malicious node is removed from the current neighborhood, and
globally using global information at the CH nodes, and then a peripatetic mobile
node cannot cause unbounded damage in the network.

3.4.4 Anomaly detection techniques

Many research works were proposed to detect the anomaly caused by Wormhole
attacks in MANETs. Most of them rely on statistical methods to evaluate the
deviation from a normal model by investigating certain classi�cation attributes.
In the following, we present three of research works that used statistical analysis
methods to detect the Wormhole attacks in MANETs.

Neighbor distribution

Buttyan et al. [108] proposed two mechanisms for Wormhole detection in WSNs
which only require a list of neighbors for each node.
The �rst mechanism is based on the fact that the adversary increases the number
of neighbors of nodes within their transmission range by introducing new links into
the network graph. Then, the hypothetical and real distribution of the number of
neighbors are compared using a Neighbor Number Test (NNT) to detect the exis-
tence of a Wormhole.
The second detection mechanism is based on the fact that Wormhole attack distorts
the distribution of the length of the shortest paths among all pairs of nodes. This
mechanism consists also of a comparison between a hypothetical and the real dis-
tribution of the length of shortest paths among all pairs of nodes.
The main drawback of this mechanism is that it only focuses on detecting the pres-
ence of Wormhole nodes, but they do not pinpoint their locations.

Statistical Analysis of Multi-path routing (SAM)

This mechanism was proposed in [109]; it is based on the observation that certain
statistics of the discovered routes by routing protocols will change under Wormhole
attacks. The authors assume that the tunneled link established between the collud-
ing nodes is extremely attractive to routing requests, and then it is expected that
the majority of the obtained routes will contain that link.
To detect Wormhole attacks in a set of obtained routes R, a requesting node com-
putes the relative frequency of each link that appears in R, and deduces the max-
imum relative frequency pmax. On the other hand, it computes the di�erence φ
between the pmax link and the second most frequently appeared link in R from the
same route discovery.
Finally, the authors deduces that both statistics pmax and φ are much higher in the
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presence of malicious tunnels than that in normal system. Therefore, these statis-
tics are used in conjunction to determine whether the routing protocol is under
Wormhole attack.

Statistical Wormhole Apprehension using Neighbors (SWAN)

This scheme was proposed in [110] which uses a localized statistical approach by
taking advantage of the nodes' mobility. The authors assume that the neighborhood
count is expected to increase beyond a range of statistical �uctuation when a node
encounters with a Wormhole attacker. This �uctuation can be quanti�ed by com-
puting the di�erence between the history of neighborhood counts Strain, and the
recent sample set Stest.
The SWAN maintains the most recent events of the number of neighbors using ker-
nel sliding windows for regular training Wreg and test Wtest. When a node is not
in the Wormhole state, it checks if the normalized distance between Strain and Stest
distributions is greater than a threshold Tsh, then it concludes that it entered into
a Wormhole, and the new Wtest value is added to a Wormhole state sliding window
Wwh. Otherwise, it updates the regular sliding window Wreg entries by removing
the oldest elements and adding new entries with Wtest.
When a node is already in a Wormhole state, and the distance between the distri-
butions of Strain and Stest becomes less than the threshold Tsh, the node concludes
that is not in a Wormhole state any more. In this case, the Wwh entries are cleaned
up, and the Wtest value is used to update the sliding window class Wreg. Otherwise,
it updates the Wwh entries by removing the oldest elements and adding new entries
with Wtest.

3.4.5 Discussion

In this section, we have described some security solutions that were proposed to
mitigate, prevent or detect Wormhole attacks in MANETs, which are summarized
and classi�ed in �gure 3.2.

Among the discussed security solutions, time-based mechanisms can be di-
vided into two classes according to the strategies they use: clock synchronization
and RTT. The tightly synchronized clocks needed in the case of packet leashes [39]
are not adapted to MANETs due to the packet delays that may vary caused by
the unpredictable network mobility. On the other hand, the detection mechanisms
based on RTT [42] eliminate the need for tight clock synchronization required in
temporal leashes.

Localization-solutions use geographical location information to detect short-
cuts caused by Wormhole attacks. The assumption of these solutions such as
geographical leashes [39], is that each network node knows its exact location,
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Figure 3.2: Security mechanisms against Wormhole attacks.

and embeds the location and a time-stamp in each packet it sends. However,
such mechanisms cannot be adapted in MANETs, because they rely on location
information, which is dynamically changing.

Connectivity-based solutions are generally based on an analysis of topological
structure to detect anomalies caused by Wormhole attacks in the network. To
detect malicious shortcuts launched by Wormhole nodes, these solutions take
into consideration geometric attributes such as, established links between nodes,
logical graph models and neighbor nodes distribution. However, the consistence
of attributes is always related to the network mobility, and then the use of such
solutions is challenging in MANETs.

Finally, the statistical based solutions are easy to integrate with intrusion
detection systems to secure routing, especially in the case of on-demand protocols.
However, the main drawback of these solutions is that the routing anomaly can be
detected as long as su�cient information of routes is available.

3.5 Conclusion

Throughout this chapter, we have reviewed some security mechanisms against DoS
attacks in MANETs. We presented them within three axis according to the attack
class they handle: packet dropping, �ooding attacks and routing disruption.
More focus was noticed on defense mechanisms against packet dropping attacks
in MANETs. We have discussed three classes of research works that handle this
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problem: cryptography-based, trust-based and classi�cation-based solutions.
In the following, we clarify the research considerations that will be further developed
in the rest of this thesis. First, we intend to address the problem of DoS caused by
packet dropping attacks, by taking into consideration the e�cient techniques used
to launch such attacks. Many existing research works handling this problem have
not presented an in-depth modeling of this class of attacks, and then the detection
accuracy still an intrinsic challenge. In other words, an inappropriate modeling of
dropping attack may produce a confusion with the legitimate packet dropping caused
by packet collusion or link congestion. To address this problem, we propose in the
next chapter a fully decentralized framework to detect packet dropping attacks in
MANETs based on a probabilistic classi�cation of nodes' behaviors.
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Behavior-based detection against ad
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�It isn't that they can't see the solution. It is that they can't see the problem.�

� Gilbert K. Chesterton
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4.1 Introduction

In the previous chapter, we have presented many research works that were proposed
to protect MANETs against routing attacks. The availability of routing services
is an important security requirement, which cannot ensured using cryptographic
tools alone. In fact, the use of a monitoring mechanism such as, Watchdog [22]
enables a node to collect information about its neighbors' behavior using a network
con�guration called promiscuous mode. The collected information is supplied to a
misbehavior detection process which ensures the availability of routing services by
excluding misbehaving nodes from the network.
The Watchdog mechanism has the advantage of having neither additional tra�c nor
signi�cant computational overhead. However, when using Watchdog, nodes need
to store many information to perform misbehavior detection. This latter should
be lightweight in order to optimize the exchanged data tra�c especially when the
network is dense. In addition, the selection of attributes required to recognize the
nature of a node's behavior a�ects the accuracy of the detection process. Thus,
normal and attack models must be well de�ned in order to make the rate of false
alerts as low as possible.
Finally, the de�nitive isolation of malicious nodes is not recommended for self-
organized networks like MANETs, especially if a legitimate node is declared as
malicious due to a faulty detection. Excluding a node from the network means that
the network looses a routing entity, and then the routing performance is degraded.
Thus, it is useful to give a chance to an excluded node to participate later in routing
if it behaves legitimately; this ensures a trade-o� between security and QoS.

In this chapter, we present an e�cient detection scheme against packet drop-
ping attacks that threat the routing layer in MANETs. The detection is performed
in a hop-by-hop fashion, in order to allow a node to select the next hop node
providing a secure route, not only a shorter or faster route when forwarding packets
towards an intended destination.
Taking into account the aforementioned security requirements, the detection phases
of our proposed framework can summarized as follows:

• First of all, we propose the use of a monitoring process at each network node in
order to collect information about packets exchanged in its transmission range.
We are interested by three packet types to model the behavior of a monitored
node: Data, RREQ and RREP. The collected information about exchanged
packets is modeled as a vector composed of three elements representing the
forwarding rates of each packet type.

• After modeling the behavior of a neighbor, a classi�cation process is performed
using Bayes theorem, in order to evaluate the probability of maliciousness of
a node based on its behavior vector. To detect packet dropping attacks, we
use the Bernoulli and Multinomial Bayesian models. In Bernoulli model, the
vector elements are booleans representing the occurrence or absence of packet
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dropping. However, in the case of Multinomial model, the vector attributes
consider the number of packets transmitted by a node during the monitoring
period.

• Based on the probability of maliciousness of a behavior vector, a node is
detected as malicious if its probability value exceeds the classi�er threshold,
and classi�ed as legitimate otherwise. This process can be used to ensure
reliable and secure routing decisions in MANETs. Thus, when a node has
packets to forward, it should avoid neighbors detected as malicious, and use
those nodes satisfying security requirements.

In terms of implementation, the proposed detection framework is not designed to be
used as a security extension for an existing routing protocol. However, it can be used
as a host-based detection system at each network node in order to avoid malicious
nodes when forwarding packets. The simulation results show a good performance
of our proposed framework, thanks to the accurate misbehavior detection provided
by the Bayesian classi�cation models.
The chapter is organized as follows. We introduce in section 4.2 the notations
used in the chapter, and then discuss the related work in section 4.3. In section
4.4, we introduce the attack model handled in this chapter, and the design of the
behavior-based probabilistic approach that we propose to detect misbehaving nodes
in MANETs. Section 4.5 is dedicated for an extensive description of the two Bayesian
models that we use for node classi�cation: Bernoulli and Multinomial models. In
section 4.6, we validate the performance of these models and make a comparative
study of their e�ciency through simulations. Finally, we conclude the chapter in
section 4.7.

4.2 Notations

In the following, we introduce the notations that are used in this chapter in their
appearing order.

Notation Meaning

S a source node
D a destination node
X a network node
t a timestamp
τ the duration of a training period
t0 the beginning time of a bootstrap phase
∆t the duration of a time interval
ER an expected packet forwarding ratio
AR an acquired packet forwarding ratio
pt a packet type
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−→x a binomial behavior vector
Xi a binomial random variable associated to a packet type pti
ϑ the space of possible behaviors x
p a probability value
c a class of behavior
l a legitimate node
m a malicious node
Tref the reference table associating x and p values
TN a table storing p values of neighbor nodes
Ni a Multinomial random variable associated to a packet type pti
Mref the reference matrix composed of Multinomial probabilities p(Xi/c)
−→η a Multinomial behavior vector
W b
err the referential weighted error of a �lter

Werr the weighted error of a �lter
TP the rate of true positive
FP the rate of false positive
TN the rate of true negative
FN the rate of false negative
TCR the total cost ratio of a �lter
n0, n

′
0 rate of malicious nodes in the network

4.3 Related work

In this section, we discuss the existing research works that were proposed to detect
malicious behaviors in MANETs, and we show how we exploit the approaches
proposed in these works to design the phases of our detection framework.

The �rst interesting research work is that proposed in [111]. It consists of a
semi-decentralized Intrusion Detection System (IDS) to detect misbehaving nodes
in MANETs. The core idea of this approach is to deploy several IDS nodes in the
network in order to detect and prevent packet dropping attacks. IDS nodes are set
in promiscuous mode in order to sni� all routing packets within their transmission
range and estimate a suspicious value of other nodes according to the amount of
abnormal di�erence between RREQ and RREP messages they exchange. When
the suspicious value exceeds a prede�ned threshold, an attack is detected and
a block message is broadcast to all nodes to cooperatively isolate the malicious node.

The second work that we consider is proposed in [112]. This work is not
dedicated for MANETs, however, it uses a Bayesian classi�cation scheme that we
�nd interesting to design our detection framework. The contribution of this work
is a performance evaluation of three classi�cation models in the context of Spam
detection: Naive, Multinomial and Bernoulli Bayesian models. The core idea is
to calculate the probability that an email is spam given that the email contains
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a de�ned word. According to Naive Bayes, a spam detection is ensured based on
the probability that a document is spam given that a set of words occur in the
document. Multinomial Bayes is an optimization of Naive Bayes that is used to
make the �lter more accurate by keeping track of the number of occurrences of
each word, namely, the number of times that a word takes place in a multiset
of words. Multivariate Naive or Bernoulli Bayes classi�es an email based on
boolean attributes representing the presence or the absence of a word instead of its
occurrence.
Based on research works that we described above, we exploit the attribute selection
of two types of control packets, RREQ and RREP, as proposed in [111], and we
consider data packets as an additional attribute to model the behavior of a node.
On the other hand, we adapt the Bernoulli and Multinomial Bayesian �lters
presented in [112] to classify the behavior of a network node. We evaluate the
behavior of a node based on the obtained probability of maliciousness, in order to
verify if it performs a packet dropping attack.

4.4 System design

In this section, we present the general design of the mechanism that we propose
to detect packet dropping attacks in MANETs. Basically, the detection phases
of the proposed mechanism are fully decentralized, where each network node runs
an instance of the detection algorithm in order to avoid misbehaving nodes when
it has packets to forward. In the following, we present the network and system
assumptions, the characteristics of dropping attack which is handled in the proposed
solution and the di�erent modules composing our detection mechanism.

4.4.1 Assumptions

In this thesis we consider the case of homogeneous networks, where all nodes are
identical in terms of battery energy and hardware complexity. We assume that all
nodes have the same transmission range and use an omni-directional antenna. In
addition, we suppose that the promiscuous mode is available to all network nodes;
a forwarding node will be heard by other nodes in its transmission range.
Regarding the storage, we assume that each node is able to store information about
messages exchanged by its neighbors. The proposed scheme is non-cryptographic;
neither additional module nor a-priori key distribution is required. In terms of
processing, we consider that the stored information can be analyzed at each node
using an algorithm that we present throughout this chapter.
We use AODV as the base routing protocol to apply our detection mechanism. Being
a source routing protocol, where each node can easily recognize the entire packets
passing by its neighbors, which is appropriate to ensure the behavior monitoring
process.
Finally, we assume the existence of reference tables that we obtain during a training
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phase and maintained by each network node during a bootstrap phase starting at
t = t0. These tables are used in the classi�cation models to calculate the probability
of maliciousness and detect misbehaving nodes. The use of these tables will be
detailed throughout this chapter.

4.4.2 Attack model

We already showed in 2.3.3 the data packet loss caused by packet dropping attacks
in MANETs. In this section, we aim to re�ne the description of these attacks by
presenting their techniques and objectives.
To represent the di�erent dropping attack types handled in our study, we de�ne
three elementary dropping events associated to three packet types:

• Data packet dropping: when an attacker is included in an established route
and drops a part or whole data packets it receives instead of forwarding them
to the appropriate node.

• RREQ packet dropping: by dropping this type of packets, the attacker can
disrupt the normal discovery process launched by a requesting node to �nd
out a route to a requested node.

• RREP packet dropping: an attacker may maliciously prevent the estab-
lishment of a route by not forwarding the reply message from a requested node
towards a requesting node.

Based on these elementary events, an attacker may perform a dropping of one or
more packet types according to its malicious goals. For instance, if the attacker
is already included in an established route, it can drop data packets in order to
disrupt the normal packet delivery between two communicating nodes.

4.4.3 Detection speci�cation

As we already mentioned, the proposed detection mechanism is fully decentralized,
which is adapted to infrastructure-less nature of MANETs. Each node should main-
tain an instance of this mechanism in order to detect and avoid misbehaving neigh-
bors. The proposed detection process evaluates the probability of maliciousness of
1-hop neighbor nodes based on their behaviors, and then avoid those performing
packet dropping attacks.
The detection process is composed of four phases as illustrated in �gure 4.1. This
process is performed periodically, and the phases depend on each other as follows:

1. Periodic monitoring: each node is set in a promiscuous mode in order to
listen to the exchanged packets within its transmission range during a period
∆t. The outcome of this monitoring is an information about the number of
packets exchanged by each neighbor node.



4.4. System design 75

Promiscuous

Listening

Periodic monitoring

Exchanged

packets

Data processing

Behavior modeling

Behavior vectors

Bayesian filtering

Node classification

Probability of 

maliciousness

Packet dropping

detection

Reaction phase

Secure route 

decision

Figure 4.1: Modules of the proposed detection framework.

2. Behavior modeling: based on the collected information during the moni-
toring phase, the behavior of each neighbor is modeled as a vector composed
of three attributes. Each attribute corresponds to a packet type and repre-
sents the rate of packets that are successfully forwarded by the neighbor node.
We use binomial and multi-class vector attributes, which are adapted to the
classi�cation models that we use in our detection mechanism.

3. Node classi�cation: a node can calculate the probability of maliciousness
of a given vector using Bayesian classi�cation. By comparing the obtained
probability value with the classi�er threshold, the behavior can be classi�ed
as legitimate or malicious.

4. Reaction phase: according to the class of a neighbor's behavior, a node may
perform two possible reaction events. If the behavior vector is classi�ed as
legitimate, the node can use that neighbor as a next hop for its future packet
forwarding. Otherwise, the neighbor node should be avoided.

This probabilistic approach is not implemented neither as a real detection system,
nor a secure routing protocol, it is validated through network simulations. It is
noticed that the eventual purpose of this detection process is to allow a node to
recognize the behavior of its neighbors, and then make secure routing decisions.



76 Chapter 4. Behavior-based detection against ad hoc routing misbehaviors

4.5 Attacks classi�cation mechanism

As we already mentioned, the behavior of a node is modeled according to three
monitored routing events: data forwarding, route discovery and route establishment,
which are respectively associated to Data, RREQ and RREP packet types. The
behavior vector is classi�ed according to its probability of maliciousness, which is
calculated according to Bayesian theory.
The Bayesian probability theory can be de�ned as a transformation from the prior,
P (H), to the posterior, P (H|D), formally re�ects what has been learned about the
validity of the hypothesis from consideration of the data according to the following
relation [113]:

P (H|D) =
P (D|H)× P (H)

P (D)
=
Likelihood× Prior

Evidence
(4.1)

Where P (D|H) is the likelihood function assessing a probability of an observed data
D arising from a hypothesis H, and P (D) is the evidence obtained by integrating
P (D|H)× P (H) over all H.
This relation de�nes the Naive Bayes rule, which really involves nothing more than
the manipulation of conditional probabilities. Among the optimization of Naive
Bayes, we are interested by the Bernoulli and Multinomial models, that we adapt
to handle the problematic of packet dropping attacks in MANETs.
In this section, we explain the mathematical de�nition of these models, and we re�ne
their application in our detection mechanism.

4.5.1 Bernoulli classi�cation model

Bernoulli models constitute a class of exact Bayesian �lters for non-linear/non-
Gaussian recursive estimation of dynamic systems, recently emerged from the ran-
dom set theoretical framework. The Bernoulli �lter is the optimal Bayes �lter for a
single dynamic system which can randomly switch on or o� [114]. We present in
the following the mathematical de�nition of the Bernoulli model, the structure of
behavior vectors used as classi�cation input and the probabilistic scheme that we
exploit to detect misbehaving nodes in MANETs.

4.5.1.1 Notations and preliminaries

Bernoulli distribution is a discrete probability distribution of a random variable X
which is given as follows:

p (X = x) =


p if x = 1,

1− p if x = 0,

0 otherwise.

Meaning thatX takes the value 1 with probability p and 0 with probability q = 1−p,
which is equivalent to p(X = x) = px(1− p)1−x1{0,1}(x). The average and variance
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are given by the formula: E(X) = p, V ar(X) = p(1− p).
According to this de�nition, the behavior of a node can be characterized by a vector
−→x de�ned by −→x = (x1, . . . , xm). The vector elements x1, . . . , xm are the values
taken by the random variables X1, . . . , Xm that are assumed conditionally indepen-
dent given category c, which can be legitimate or malicious. Each variable gives
information about forwarding of a speci�c packet type.
The random variables are binary, where each Xi is set to 1 if packets having the
type i denoted by pti are correctly forwarded, and 0 otherwise. Consequently, each
random variable Xi follows a Bernoulli distribution with a parameter pi = p(pti).

4.5.1.2 Binomial behavior modeling

We de�ne a normal behavior as a set of events performed by a network entity to
ensure the forwarding of packets according to the routing protocol speci�cations.
This can be written as following:

ARpt ≈ ERpt , ∀ pt ∈ S, where S = {Data, RREQ, RREP} (4.2)

where pt is a packet type, AR is the Acquired Ratio of forwarded packets by a
node and ER is the Expected Ratio of packets that must be forwarded. For unicast
packets, namely, Data and RREP packets, the forwarding ratio is computed using
the following formula:

Forwarding Ratio =
# of forwarded packets

# of packets excpected to be forwarded
(4.3)

In the case of RREQ packets, which are disseminated in broadcast mode, AR and
ER metrics are calculated similarly using the following formula:

Disseminating Ratio =
# of disseminated packets

# of packets excpected to be disseminated
(4.4)

ER metric is estimated for each packet type during a training phase by taking into
account the network setup and other parameters such as, link congestion and packet
collusion. The AR metric is calculated during a test phase, and compared with the
ER value in order to model the node's behavior and verify if there is a deviation
from the normal behavior model.
Based on ER and AR values, we model the behavior of a node as a vector which
is composed of three boolean attributes ~x = (xData, xRREQ, xRREP ) and can be
obtained as follows:

xp =

{
1 if ARpt < ERpt
0 if ARpt ≥ ERpt

(4.5)

Consequently, for each packet type, there are two possible events: 1 if the
packet is properly forwarded, and 0 otherwise. Hence, the �nite space of possible
behaviors ϑ has 23 = 8 vectors which are:

ϑ = {(0, 0, 0); (0, 0, 1); (0, 1, 0); (0, 1, 1); (1, 0, 0); (1, 0, 1); (1, 1, 0); (1, 1, 1)} (4.6)
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Figure 4.2: Packet dropping attack patterns.

To re�ne this scheme, we illustrate in �gure 4.2 a graphical representation of the
possible node's behavior models. The blue triangle represents a triplet of ER values,
and the red and the green ones represent triplets of AR values for two dropping
attack models. For instance, ARData and ARRREP are respectively less than ERData
and ERRREP , which can be represented by the behavior vector ~x1 = (0, 1, 0). The
green triangle is another attack pattern with ARData and ARRREQ having values
less than ERData and ERRREQ respectively, which can be represented by the vector
~x2 = (0, 0, 1).

4.5.1.3 Node classi�cation

According to the Bayes theorem [115] and the total probabilities theorem, for a node
(xData, xRREQ, xRREP ), the probability to belong to class c is de�ned by:

p
(
C = c/

−→
X = −→x

)
=
p(C = c)× p(

−→
X = −→x /C = c)

p(
−→
X = −→x )

(4.7)

In our case, we de�ne two possible classes of node's behavior, l and m, which stand
respectively to legitimate and malicious. Based on this de�nition and using the
theorem of the total probability [116], we deduce:

p
(
C = c/

−→
X = −→x

)
=

p(C = c)× p(
−→
X = −→x /C = c)∑

c∈{l,m}

p(C = c)× p(
−→
X = −→x /C = c)

(4.8)

We assume that X1, X2, and X3 random variables are conditionally independent
given class c. As we already mentioned, S = {pt1, pt2, pt3} is the set of packet types
constituting a behavior vector. Using the set of packet types, the probability that



4.5. Attacks classi�cation mechanism 79

a behavior ~x belongs to class c expressed in 4.8 becomes:

p
(
C = m/

−→
X = −→x

)
=

3∏
i=1

p(pti/m)xi × (1− p(pti/m))(1−xi) × p(m)

∑
c∈{l,m}

3∏
i=1

p(pti/c)
xi × (1− p(pti/c))(1−xi) × p(C = c)

(4.9)

When classifying a behavior using this probabilistic scheme, there are two types of
errors that may be occurred. The �rst possible error is classifying a malicious node
as legitimate, and the second one is classifying a legitimate node as malicious, which
are denoted respectively by m → l and l → m. In our case, we consider that the
second error is more costly than the �rst one, in order to minimize the rate of false
alerts that may be obtained when detecting malicious nodes. To represent the rate
between these two errors, we introduce a cost parameter called λ. For instance,
using λ = 5, the l → m error is �ve times more costly than the m → l one. Based
on this assumption, a node having a behavior vector ~x is classi�ed as malicious if:

p
(
C = m/ ~X = ~x

)
> λ× p

(
C = l/ ~X = ~x

)
(4.10)

Since p(C = m/ ~X = ~x) + p(C = l/ ~X = ~x) = 1, we can deduce that the node ~x is
classi�ed as malicious if and only if:

p
(
C = m/ ~X = ~x

)
> α, where α =

λ

1 + λ
and λ =

α

1− α
(4.11)

According to this classi�cation criteria, if the probability of maliciousness denoted
by p(C = m/ ~X = ~x) exceeds α, then the node having a behavior ~x is classi�ed as
malicious. If the two mentioned errors have the same cost, namely, λ = 1, then the
threshold of classi�er denoted by α is set to 0.5. In our case, we use many values of λ
associated to classi�cation threshold α that we de�ned in 4.11, in order to evaluate
the performance of the used classi�cation models (see section 4.6).
We present in the following the detection process implementing the Bernoulli clas-
si�cation, in order to detect misbehaving neighbor nodes when forwarding packets.

4.5.1.4 Application of Bernoulli �lter

The detection becomes e�ective after the running of a bootstrap phase, in which
each node keeps a reference table denoted by Tref . This latter is obtained during a
training phase, and associates for each vector ~x in the behavior space ϑ, a probabil-
ity of maliciousness value p(~x) calculated according to equation 4.11.
Table 4.1 shows an association between behavior vectors and probability values
which are computed by averaging many network simulation results that we ex-
tracted from NS2 trace �les. This table allows a node to evaluate the maliciousness
of a given behavior by looking up its associated probability value. In addition, at
each node, a neighbor table TN is used to maintain, for each neighbor node, an entry
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Table 4.1: Reference table for misbehavior detection.

Behavior model ~x Probability p(~x)

000 0.971

001 0.687

010 0.507

011 0.622

100 0.375

101 0.242

110 0.130

111 0.099

storing its ID, the probability value p and a timestamp t.

Further, the information stored in TN is used to verify the reliability of a node before
using it to forward packets. The entry of a neighbor node is updated based on peri-
odic calculation of probability values. If a neighbor node goes out the transmission
range of monitoring node, its corresponding entry is removed from TN .

4.5.2 Multinomial classi�cation model

In the case of Binomial distribution, we can imagine that B(n, p) is obtained by
considering a sequence of n independent draws in the game of heads or tails, and p
as the probability of drawing head. However, in the case of Multinomial distribution,
we generalize the binomial distribution, where each �run� can produce k di�erent
results, not only two. For example, we can imagine a sequence of n tosses of a �dice�
with k sides, side number i with probability pi out. In the following, we present the
mathematical de�nition of the Multinomial Bayesian model, and we explain how it
can be adapted as a behavior-based attacks detection mechanism in MANETs.

4.5.2.1 Multinomial distribution

A Multinomial distribution is characterized by n (e.g., the number of shots) and the
sequence (p1, p2, . . . , pm) with p1 + p2 + · · ·+ pm = 1. Following n shots, we denote
ni the number of shots producing the result number i, n1 +n2 + · · ·+nm = n. The
shots are random, and the ni are the achievements of m random variables that we
denote by Ni, where i = 1, 2, . . . ,m. These variables are not independent since they
are related by

∑
i

Ni = n.

We call Multinomial distribution Mult(n, p1, p2, . . . , pm) the joint distribution of
the k random variables Ni. It is therefore a multivariate discrete distribution.
Its support is all k-uples of positive integers or zero (n1, n2, . . . , nm) such that,
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n1 + n2 + · · ·+ nm = n.
The distributionMult(n, p1, p2, . . . , pm) is entirely determined by the values of prob-
abilities of each possible m-uples. These probabilities are denoted by P (N1 =

n1, . . . , Nm = nm) and are given as follows:

p (N1 = n1, . . . , Nm = nm) = n!×
n∏
i=1

pnii
ni!

(4.12)

For all m-uples belonging to the support of the distribution, and 0 otherwise. The
average, variance and covariances are given by the formula:

E(Ni)=npi, V ar(Ni) = npi(1− pi), Cov(Ni, Nj) = npipj (4.13)

4.5.2.2 Multi-class behavior modeling

In this statistical model, each node is characterized by a vector −→η de�ned by
−→η = (n1, . . . , nm), where n1, . . . , nm are the values taken by the random variables
N1, . . . , Nm that are assumed conditionally independent given class c. In our case,
there are three random variables N1, N2 and N3, which are associated to forwarding
rates of three packet types: Data, RREQ and RREP.
Similarly to the modeling scheme that we used in the case of Bernoulli distribution
in 4.5.1.2, each vector attribute is associated to a packet type. However, in the case
of Multinomial, each attribute provides an information about �how much packets

are forwarded � instead of the �packet is forwarded or not� information. Hence, an
attribute ni represents the percentage of packets pti that are forwarded. For a packet
type pti, the associated attribute ni can be obtained using the following formula:

% of forwarded packets =
# of forwarded packets

# of packets excpected to be forwarded
× 100

(4.14)
In the case of RREQ packets, the value of ni is associated to the percentage of
disseminated packets, since they are generated using a broadcast mode. Hence, ni
is similarly obtained as follows:

% of disseminated packets =
# of disseminated packets

# of packets excpected to be disseminated
× 100

(4.15)

Since the Multinomial Bayesian theory relies on the attribute occurrence, we
assume that the percentage is truncated as integer value. For instance, a vector
having the following form: −→η = (97, 30, 10), means that 97% of Data packets, 30%

of RREQ packets, and 10% of RREP a packets are forwarded.

4.5.2.3 Node classi�cation

With a Multinomial event model, vector attributes represent the frequencies with
which certain events were generated by a Multinomial (p1, . . . , pn). Hence, for a
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node (nData, nRREQ, nRREP ), the probability to belong to class c can be de�ned as
a generalization of the binomial law de�ned in formulas 4.7 and 4.8, and obtained
as follows:

p
(
C=c/

−→
N =−→η

)
=

p(
−→
N = −→η /C=c)× p(C=c)

p(
−→
N=−→η /C=c)×p(C=c)+p(

−→
N =−→η /C=c)×p(C=c)

(4.16)

As we already mentioned, the input vectors of the Multinomial model are the oc-
currences of packet transmission having types pti. Taking into account the types
and percentages of forwarded packets by a node −→η , and based on the formula 4.12
we obtain the following formula:

p
(−→
N=−→η /C=c

)
= p((N1, . . . , Nm)=(n1, . . . , nm)/C=c)

= p((N1=n1, ..., Nm=nm)/C=c)

= n!×
n∏
i=1

p(pti/C=c)ni

ni!
(4.17)

By combining the formulas 4.16 and 4.17, we obtain the following formula to calcu-
late the probability that a node −→η belongs to class c:

p
(
C=c/

−→
N =−→η

)
=

n∏
i=1

p(pti/C=c)ni × p(C=c)

n∏
i=1

p(pti/C=c)ni×p(C=c) +
n∏
i=1

p(pti/C=c)ni×p(C=c)

(4.18)

In our case, c and c stand respectively to malicious and legitimate behavior classes.
By applying the formula 4.18, the probability of maliciousness of a node −→η can be
obtained as follows:

p
(
C = m/

−→
N =−→η

)
=

3∏
i=1

p(pti/m)ni × p(m)

3∏
i=1

p(pti/m)ni×p(m) +

3∏
i=1

p(pti/l)
ni × p(l)

(4.19)

By simplifying the equation 4.19, we obtain the following formula:

p
(
C = m/

−→
N =−→η

)
=

1

1 +

3∏
i=1

p(pti/l)
ni×p(l)

3∏
i=1

p(pti/m)ni × p(m)

(4.20)

where p(pti/m), p(m) and p(l) are the estimated frequencies calculated on a learning
corpus. Consequently, the selection criteria is similar to that used in Bernoulli model
but applied conditionally to the event (

−→
N = −→η ). Therefore, a node

−→
N is classi�ed

as malicious if p(C = M/
−→
N = −→η ) > α, where the threshold value α is associated

to the cost value λ de�ned in 4.11.



4.6. Performance evaluation 83

4.5.2.4 Application of Multinomial

In the case of Bernoulli classi�cation, we have modeled the behavior of a node as
a vector of booleans, where each vector attribute provides an information about
the occurrence or the absence of a dropping of each packet type pti. However, in
the case of Multinomial model, the vector attribute is multi-class, it represents the
percentage of forwarded packets for a packet type pti.
To recognize the legitimacy or the maliciousness of a multi-class behavior vector,
we introduce a 2× 3 reference matrix Mref . Each element of Mref is associated to
a Multinomial probability p(Xi/c), where Xi is a random variable corresponding to
packet type pti ∈ {Data,RREQ,RREP}, and c ∈ {malicious, legitimate}. The
elements of Mref are calculated using the following formula:

p (Xi/c) =
# of packets Xi transmitted in c

# of transmitted packets in c
(4.21)

The elements of this matrix represent the Multinomial probability distribution for
each packet type during a training phase. In the following, we show an example of
a reference matrix Mref that we can obtain through simulations:

M =

(
0.531 0.401 0.068

0.230 0.375 0.395

)
The �rst line of M represents the probability distribution of packets transmitted
by legitimate nodes, while the second line represents the probability distribution of
packets transmitted by malicious nodes. Based on elements of matrix M , we can
calculate for a given behavior vector the probability of maliciousness according to
formula 4.20.

4.6 Performance evaluation

In this section, we prove through simulation the ability of the Bayesian models
proposed in this chapter to detect malicious nodes in MANETs. First, we describe
the experimental setup of simulation scenarios that we have performed. Then, we
present the algorithms we use to implement dropping attacks, analyze trace �les
and model the node behaviors. Finally, we present the application of the used
Bayesian �lters, and we evaluate and compare their performance using di�erent
�ltering threshold con�gurations.

4.6.1 Simulation environment

The performance of Bernoulli and Multinomial models regarding packet dropping
attacks detection in MANETs is evaluated through simulation. We use a well-known
discrete event simulator Network Simulator 2 (NS2) to perform simulations of a mo-
bile ad hoc network in the presence of a changing percentage of malicious nodes.
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The attack models de�ned in 4.4.2 are implemented by modifying the original C++

source �les of AODV routing protocol. Then, a genuine version of AODV is exe-
cuted by legitimate nodes, while a malicious one is executed by the attackers. The
experimental parameters of the simulated MANET are shown in table 4.2.

Table 4.2: Network simulation parameters.

Parameter Value

Coverage area 800 m × 800 m
Number of nodes 15− 50 nodes
Transmission range 250 m
Simulation time 5− 15 minutes
Mobility model Random Waypoint
Antenna OmniAntenna
Maximum speed 15 m/s
Routing protocol AODV
Tra�c type UDP/ CBR
% of attackers 5, 10, . . . , 40%

MAC layer type IEEE 802.11p

The attackers perform packet dropping according to the function that we created in
the malicious version of AODV. Many scenarios were performed using di�erent net-
work sizes ranging from 15 to 50 nodes. The percentage of attackers in the network
is incremented by 5% from 5% to 40%. At the end of simulation scenarios, the trace
�les are maintained to be �ltered and analyzed using data processing algorithms,
which are presented in the following.

4.6.2 Trace �les processing

The output of simulations that we performed using NS2 is a trace �le describing
the events performed by each node in the network. These �les have usually a size
between 200 MB and 350 MB when the simulation time is about 20 minutes. To
extract an interesting information from such large �les, we have developed data
processing algorithms using GAWK language.
The obtained information consists of statistics on exchanged packets by each network
node during the simulation. As we already mentioned throughout this chapter, the
packet types that we handled in our study are: Data, RREQ and RREP packets.
Based on these statistics, we a�ect for each node a vector modeling that represents
its behaviors, use those vectors as inputs for probability calculation phase and then
classify them according to the obtained probability value.
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4.6.3 Node classi�cation process

The data set of nodes that we obtained after modeling the behavior vectors is ex-
ported as an input �le of the algorithm that we implemented using MATLAB. This
algorithm allows a node to calculate the probability of maliciousness of a given vec-
tor, and then gives the appropriate class according to the �lter threshold α.
For each Bayesian �lter, we developed a MATLAB function, which takes a behav-
ior vector as input and returns a probability of maliciousness value. In the case
of Bernoulli �lter, we use the reference table Tref that we obtained after a train-
ing phase. This table associates for each behavior vector in the �nite space ϑ a
probability value as we already explained in section 4.5.1.4. However, in the case
of Multinomial classi�cation, we use the reference vector Vref introduced in section
4.5.2.4.
The obtained results associate for each network node a probability of malicious-
ness value, which is calculated using the Bernoulli and Multinomial Bayesian �lters.
Therefore, each node in the dataset is labeled as malicious or legitimate according
to the probability value compared to the used classi�er threshold α. In the fol-
lowing, we present the parameters that we use to evaluate the performance of the
�lters, and then we make a comparative analysis of their e�ciency using di�erent
con�gurations.

4.6.4 Cost sensitive evaluation measures

After labeling the nodes of the dataset using Bayesian �lters, we evaluate the
performance of each �lter by comparing their error rate with a �baseline�. This
latter de�nes the case where no �lter is used: legitimate nodes are (correctly) never
detected, and malicious nodes (mistakenly) always pass the �lter.

We de�ne the weighted error parameter Werr to evaluate the error when us-
ing a �lter, and a referential weighted error W b

err to evaluate the error without
using the �lter [117]. These parameters are de�ned as follows:

Werr =
λFP + FN

λNl +Nm
, W b

err =
Nm

λNl +Nm
(4.22)

where:

− TP: True Positive, denotes the number of legitimate nodes classi�ed correctly.

− FP: False Positive, denotes the number of legitimate nodes classi�ed mistak-
enly.

− TN: True Negative, denotes the number of malicious nodes classi�ed correctly.

− FN: False Negative, denotes the number of malicious nodes classi�ed mistak-
enly.

− Nm = FN + TN, Nl = TP + FP
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To compare the performance of a classi�cation model with that of the baseline,
we introduce a new parameter called Total Cost Ratio (TCR), which allows us to
calculate the ratio between their error rates Werr and W b

err as follows:

TCR > 1⇔W b
err > Werr

When selecting the detection threshold of the �lter, we assume that l → m is λ
times more costly than m → l. Based on this assumption and using the formula
4.22, we obtain the following formula to calculate the TCR value:

TCR =
W b
err

Werr
=

Nm

λFP + FN
(4.23)

Greater TCR values indicate better performance. When the value of TCR is greater
than 1, the error rate of the baseline is greater than the error rate when using the
�lter. In this case, the classi�cation is considered as interesting since it minimizes
the error rate. Otherwise, when the TCR is less than 1, the error rate when using
the �lter is greater than the error rate of the baseline. In this case, the baseline is
better. Based on this measure, we evaluate the performance of Bayesian �lters, and
then we discuss their ability of detecting packet dropping attacks in MANETs.

4.6.5 Simulation results

As we already mentioned in 4.6.4, the default classi�cation threshold α is equal to
0.5, when the cost of false positive (l → m) is equivalent (λ = 1) to that of false
negative (m→ l).
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Figure 4.3: λ = 1 and α = 0.5

Using this con�guration, �gure 4.3 shows that Multinomial model has a better
performance than Bernoulli model when the proportion of malicious nodes in the
network is less than 33%. At this proportion, the Bernoulli model has a better
performance than Multinomial �lter. However, when the proportion of misbehaving
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nodes in the network is less than 10%, the TCR value of Bernoulli model becomes
less than 1, and then the baseline is better.

10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

Percentage of malicious nodes

T
o

ta
l 

C
o

s
t 

R
a

ti
o

 (
T

C
R

)

 

 

Bernoulli filter

Multinomial filter

Figure 4.4: λ = 3 and α = 0.75

In a second con�guration (�gure 4.4), the cost between the two errors λ is set to 3,
and then the classi�er threshold is equal to 0.75. In this case, the TCR curve in the
case of Multinomial �lter has a decreasing shape when the proportion of malicious
nodes increases. However, it stills always better than Bernoulli �lter, since it never
has a TCR < 1. Similarly to the �rst con�guration of λ, Bernoulli �lter shows a
better performance when the proportion of malicious nodes exceeds 33%.
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Figure 4.5: λ = 9 and α = 0.9

When the false positive error is 9 times more costly than the false negative error
(λ = 9), the classi�er threshold is equal to 0.9. In this case, Bernoulli �lter has no
interesting classi�cation when the percentage of malicious nodes is less than 15%.
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Beyond this percentage, the TCR curve of Bernoulli �lter has an increasing shape,
on the contrary of Multinomial one, which has a decreasing shape and becomes
without any interesting �ltering when the percentage of malicious node is between
27% and 34%.
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Figure 4.6: λ = 19 and α = 0.95

Finally, when we set the cost between the two errors to λ = 19, the classi�er
threshold becomes α = 0.95. Similarly to the previous case, with a low percentage
of malicious nodes (15%), the Bernoulli �lter is not interesting, otherwise, it has
a TCR > 1 whatever the percentage of malicious nodes in the network. On the
other hand, the Multinomial �lter has a bad performance when the percentage of
malicious nodes exceeds 27%.

4.6.6 Discussion

Based on the performance evaluation presented in the previous section, we deduce
that the TCR curve in the Bernoulli case is above the linear equation TCR = 1 (i.e.,
the baseline) when the number of malicious nodes is greater than certain percentage
n0, and that n0 increases when λ increases. Therefore, more the parameter λ in-
creases, the size of the network to which the Bernoulli model is not worth increases.
On the other hand, in the Multinomial case, we note that the TCR curve is above
the baseline except when λ is set to 9 or 19 where the curve is below the baseline
with a certain percentage of malicious nodes denoted by n

′
0. The Bernoulli model

performs well when λ is set to 1 or 3 regardless the percentage of malicious nodes,
and when λ is set to 9 or 19 while the percentage of malicious nodes is less than
n

′
0 which is between 25% and 30%. As a comparison between the two models, the
TCR curve of the Multinomial model is above that of the Bernoulli model until a
percentage n

′
0 beyond which the positioning of the curves is inverted.

We already showed that the Bernoulli �lter uses vectors providing information about
�forwarding� or �not forwarding�, while Multinomial model uses the forwarding rate
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itself which provides more information on how much packets are forwarded. This lat-
ter is a supplementary information that makes the Multinomial classi�cation model
able to recognize the low proportions of malicious nodes, and further it can ensure
a full detection when λ is set to 0.5. On the other hand, in the case of Bernoulli
classi�cation, the boolean attributes providing information about the occurrence or
the absence of dropping attack is su�cient when the proportion of malicious nodes
in signi�cant, and ensures a better performance when the classi�cation threshold is
set to 0.5.
Based on this interpretation, we deduce that the choice of the appropriate �lter is
adjusted according to the proportion of malicious nodes in the network. We also con-
clude that a combination of the two models is interesting to ensure a full detection
of dropping attacks regardless their percentage in the network.

4.7 Conclusion

In this chapter, we proposed a behavior-based probabilistic approach to detect
packet dropping attacks in MANETs. The main goal of this contribution is to
allow a node to avoid routes including misbehaving nodes by verifying the legiti-
macy of its 1-hop neighbors.
The rationale behind the proposed detection framework is to recognize the behavior
of a node by evaluating the probability of being malicious based on its behavior.
To calculate the probability value, we used a Bayesian classi�cation which has been
widely employed for spam detection. We selected two Bayesian �lters, Bernoulli and
Multinomial. In Bernoulli model, the probability is calculated based on the presence
or absence of dropping of a packet type. However, in the case of the Multinomial
model, the probability is calculated based on the rate of packets transmitted suc-
cessfully.
Simulation results showed an e�cient detection of packet dropping attacks using
the Bayesian classi�cation. A full detection of these attacks can be guaranteed by
combining the advantages of the two models.
In the next chapter, we handle the problem of a sophisticated version of packet drop-
ping attacks, in which a malicious node alternates its behavior by dropping packets
sometimes and behaving normally other times. This kind of attacks is known as
periodic dropping, which is di�cult to detect due its similarity to normal packet
discarding caused by certain network situations. To handle this problem, we pro-
pose to extend our detection mechanism by tracking the evolution of a monitored
node over a long time period in order to predict their future state.
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�The only di�erence between a problem and a solution is that people understand
the solution.�

� Charles Kettering
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5.1 Introduction

MANETs are dynamic networks composed of mobile entities which are free to
move, join or leave the network without any constraint. In such decentralized
environment, routing function is productive unless all network nodes in packet
forwarding and other services.
As we already showed in chapter 3, most of existing routing protocols are not
designed with security in mind and often are vulnerable to many attacks. An
authenticated node can easily intercept an established communication session
between legitimate nodes, and then drop the totality or a part of packets that are
supposed to be forwarded.
In this chapter, we treat the problem of periodic packet dropping attacks, in
which a malicious node randomly discards some packets during a time period.
Obviously, the detection of such attacks is challenging, since it may be confused
with legitimate dropping events which are happening usually due to packet collision
or link congestion [118]. To address the aforementioned problem, we exploit two
related research works to build the core idea of our proposed solution.
The �rst work is proposed in [30], in which the authors taken into account the
legitimate packet discards to ensure an accurate identi�cation of packet dropping
attacks. They assumed that the legitimate packet dropping may be caused
exclusively by packet collision and link break. Then, the malicious nodes can be
detected by calculating the probability of occurring a packet dropping based on �ve
attributes: number of sent and received data packets, number of sent RTS packets,
number of received CTS packets and a veri�cation of di�used RREQ.
In the second research work [119], the authors presented a decentralized trust
inference model to protect MANETs against packet dropping attacks. Basing on the
interest of historical behaviors of an entity, multi-dimensional trust attributes are
incorporated to re�ect trust relationship's complexity in various angles. The trust
computation of a monitored node is based on direct experience of the monitoring
node and a second hand information obtained using the recommendations of
other nodes. By making use of the obtained historical trust data sequence, the
authors proposed a Markov chain prediction model in order to provide a relative
identi�cation between normal and malicious behaviors and predict the future
behavior of a node.
We believe that the approaches proposed in both research works are vulnerable to
periodic packet dropping attacks. In the �rst work, the authors did not consider
the RREP packets when calculating the probability of occurring a packet dropping.
Hence, the malicious nodes discarding RREP packets cannot be detected. On the
other hand, being a trust-based solution, the approach proposed in the second
work is vulnerable to bad mouthing attacks [48]. For instance, if a malicious
node provides a bad recommendation about a monitored node, the second hand
information used in trust aggregation becomes incorrect. Therefore, the iden-
ti�cation of behaviors of a node which is based on its trust value may be inconsistent.
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To ensure an accurate detection of periodic dropping attacks in MANETs,
we propose a novel prediction framework combining the advantages of the proba-
bilistic behavior classi�cation and the prediction model already presented. First, we
perform a behavior analysis to calculate periodically the probability of maliciousness
of a node by taking into account information about sent and received data, RREQ
and RREP packets.
On the other hand, we perform a tracking process of the evolution of node's behav-
iors in the aim of addressing the problem of periodic dropping attacks. First, we
associate a maliciousness level de�ning the behavior state of a node during a time
period based on its probability value. Then, the sequence of transitions between
these states over certain number of time periods are modeled using a Markov chain
model. Finally, the stationary state of network nodes can be predicted, and then
nodes performing a periodic dropping attack can be accurately detected.
The chapter is organized as follows. We introduce in section 5.2 the notations used
in the chapter. Section 5.3 presents the problem of periodic dropping attacks in
MANETs. In section 5.4, we describe the general design of solution components
and we detail each of which in section 5.5. Simulation results and performance
evaluation are presented in section 5.6. Finally, Section 5.8 concludes this chapter.

5.2 Notations

In the following, we introduce the notations that are used in this chapter in their
appearing order.

Notation Meaning

Nn the number of network nodes
T a time period
τ a time slot
A a monitoring node
B a monitored neighbor node
−→
X τ a behavior vector of a node during a time slot τ
pti a packet type
xpt a boolean variable indicating whether packet pt is forwarded or not
Cτ the class of a node's behavior during τ
l a legitimate node
s a suspicious node
m a malicious node
p a probability value
αmin the left bound of suspiciousness interval
αmax the right bound of suspiciousness interval
Is the suspiciousness interval
pr a fuzzy proposition
R a fuzzy rule
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E the space of node behavior states
k a network node
t a time moment
Xt the state of the network at time t
Xk
t the state of node k at time t

i, j states of a node
P k the transition matrix of node k during T
n the power of a transition matrix
P k,n the nth power of transition matrix P k

pki,j the probability that node k moves from state i to state j
Tr(i,j) the number of times the node k moved from state i to state j
Ci the number of times the node k has visited the state i
νki (t) the probability that node k being in state i at time t
νk(t) the stochastic vector of node k
limn→∞ ν

k(n) the limit probability distribution of node k at the nth power
hc a hop count

5.3 Periodic dropping attacks in MANETs

Packet dropping attack is considered as one of the most severe DoS attacks threat-
ening the ad hoc routing services. In this chapter, we treat the problem of periodic
dropping attacks, in which a malicious node randomly discards some packets over a
time period in order to appear as legitimate and deceive the underlying detection
systems. The main challenge of these attacks is the fact that are closely similar to
legitimate packet discards caused by packet collision or link congestion. Therefore,
a malicious node performing such an attack may still a long period in the network
and drop packets silently without being detected.
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Figure 5.1: Illustration of periodic packet dropping pattern.
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To illustrate the impact of these attacks on MANETs, we performed many network
simulations using NS2. The simulated network is composed of 50 nodes and uses
AODV as routing protocol in the presence of one malicious node that discards pack-
ets randomly over time. We monitored the behavior of nodes during a period of
30 minutes. In a �rst scenario, we aim to compare the behavior of that malicious
node with the behavior of a normal node regarding the packet forwarding process.
Figure 5.1 shows the ratios of packets forwarded by two network nodes: the �rst
node behaves normally, while the second one performs a periodic packet dropping
attack. During the 30 minutes, we noticed that the ratio of packets forwarded by the
legitimate node changes between 0.88 and 0.94. On the other hand, many abnormal
changes were noticed in the case of the malicious node, where the packet forwarding
ratio shows a notable decrease and reaches 0.78 at t = 27 minutes.
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Figure 5.2: Impact of packet dropping on network throughput.

To show the impact of periodic dropping attacks on network throughput, we per-
formed a second scenario having the same network size and simulation period that
are used in the �rst scenario. However, we made several simulations by changing the
percentage of malicious nodes in the network between 0% and 25%. According to
the results obtained in �gure 5.2, we notice that the network throughput decreases
about 10 kbps when the percentage of malicious nodes in the network is about 15%.
Based on these simulation results, we conclude that the periodic dropping attacks
produce a potential perturbation of the packet forwarding process and a notable
increase in network throughput. In addition, based on previous studies, we note
that the malicious nodes performing this type of dropping attack may still a long
period in the network without being detected [118]. Therefore, we aim to propose
throughout this chapter a novel detection approach against these attacks based on
a behavior analysis of network nodes and using a tracking scheme of their evolution.
In the next section, we present the design of our proposed solution, and we describe
the di�erent components that we use to ensure the accurate detection of periodic
dropping attacks in MANETs.
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5.4 Solution overview

To address the problem presented in the previous section, we propose in this section
a fully decentralized framework to recognize the future trends of network nodes
based on their previous behavior evolution. Basically, this solution is designed to
alleviate the uncertainty caused by the periodic dropping attacks which are often
confused with legitimate packet discards caused by normal network situations.

5.4.1 System components

The main objective of our solution is to allow a node to predict the behavior of other
nodes in its transmission range based on historical evaluations of their behaviors.
The framework that we propose to detect packet dropping attacks consists of eight
phases as shown in Figure 5.3.

Node monitoring Attribute selection Behavior modeling

Instant classification
Bayesian filter

Behavior prediction
Markov chain

Routing decisions

Probability reasoning
Fuzzy logic

Behavior evolution

tracking

Figure 5.3: Phases of behavior prediction approach.

The input of the proposed framework is a set of information about packets exchanged
by a monitored node during a de�ned period. The outcome is a limit probability
distribution obtained through a stochastic process representing the stationary state
of the monitored node. The di�erent phases of the proposed solution are described
in the following:

• Each node in the network monitors other nodes that are in its transmission
range in order to collect information about packets passed by its 1-hop neigh-
bors. Based on this information, the monitoring node models the observed
behavior as a vector composed of three elements representing the forwarding
ratio of three packet types: Data, RREQ and RREP. This scheme is already
described in section 4.5.1.2.

• The obtained vector is used as an input of the Bernoulli classi�cation model
to evaluate the probability of maliciousness of the monitored node's behaviors
during a time slot according to the scheme described in 4.5.1.3. Then, the
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obtained probability value is mapped to a maliciousness level de�ning the
behavior state of a node using a fuzzy logic model.

• Based on the sequence of maliciousness levels obtained at each time slot, the
monitoring node establishes a matrix of probabilities representing the di�erent
transitions among behavior states. Then, the limit probability distribution
representing the stationary state of the monitored node is predicted using a
Markov chain model.

• Based on the obtained probability distribution, the monitoring node can de-
termine the stationary state of the monitored node and then decide whether
this node can be used to forward packets or not.

5.4.2 Detection characteristics

The aim of our proposed framework is to detect misbehaving nodes in the routing
discovery and data forwarding phases. Our framework has the following security
objectives:

1. Ensure a detection of di�erent types of total, selective and periodic dropping
attacks. Detecting such misbehaviors aims to maintain a reliable and secure
packet forwarding among network nodes, and then guarantee the availability
of routing services.

2. Propose the use of security as an attribute besides the hop count one, which is
widely used as a path selection criteria in most of unsecured routing protocols
such as, AODV and DSR. If this security improvement is employed to an
existing routing protocol, it should not degrade its normal operations.

3. Implement a totally distributed non-cryptographic solution to ensure a detec-
tion mechanism against dropping attacks. The proposed solution should be
much better than cryptographic techniques in terms of complexity and com-
putational costs, which are not well adapted to resource-constrained networks
like MANETs.

Based on these considerations, we present in the next sections the classi�cation mod-
els and detection phases performed in the proposed framework. We prove through
simulation its ability not only to detect misbehaving nodes, but also to predict their
future behaviors based on historical probability evaluations.

5.5 Framework speci�cation

This section is dedicated to describe the di�erent techniques that we use to allow
a monitoring node A to recognize the behavior of a monitored node B over a time
period T composed of n time slots τ . In addition, it presents the models that we
use to assign a state to a node based on its behaviors. Finally, it describes the
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di�erent phases that we use to model the transitions between states and calculate
the stationary state of a monitored node.

5.5.1 Behavior-based node classi�cation

According to the modeling scheme presented in section 4.4.2, the occurrence of a
packet dropping attack is related to three elementary events regarding the forward-
ing of three packet types: Data, RREQ and RREP. Then, the behaviors of a node
are modeled as a vector representing the forwarding ratio of these packet types.
Two schemes were described in sections 4.5.1.2 and 4.5.2.2 to model node behav-
iors as input vector adapted for the Bernoulli and Multinomial Bayesian �lters
respectively. Using these �lters, we computed the probability value quantifying the
likelihood that a node behaves maliciously.
According to the performance evaluation discussed in section 4.6, we prefer to adopt
the Bernoulli �lter to make our probabilistic classi�cation of node's behaviors.
The classi�cation scenario is performed as follows: node A models the behavior
of node B during a time slot τ as a vector composed of three boolean elements−→
Xτ = (xData, xRREQ, xRREP ). Then, node A calculates the probability of mali-

ciousness of B's behavior
−→
Xτ according to the following formula:

p
(
C=m/

−→
X =
−→
Xτ

)
=

3∏
i=1

p (pti/m)xi × (1− p(pti/m))(1−xi) × p(m)

∑
c∈{l,m}

3∏
i=1

p(pti/c)
xi × (1− p(pti/c))(1−xi) × p(C=c)

(5.1)

where
−→
Xτ is a vector of behaviors obtained during τ , pti is a packet type and m

and l denote the malicious and legitimate classes respectively. To classify a node
according to the obtained probability value, we use a fuzzy logic model instead of
relying on the default classi�cation threshold α as is de�ned in equation 4.11.

5.5.2 Probability reasoning model

The core idea of this process is to use two thresholds αmin and αmax instead of
relying on the default classi�er threshold α de�ned in the Naive Bayes theorem [116].
Instead of making a binary classi�cation, namely, classifying a node as malicious or
legitimate, we introduce a third class of behaviors called �suspicious�. This class is
used to overcome the challenge of non-detectable nodes' behaviors, and mitigate the
confusion between two possible scenarios:

• Periodic dropping attack performed by a malicious node and appears as legit-
imate.

• Packet discarding performed by legitimate node under normal network condi-
tions.
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Hence, we consider that the suspicious class gathers those nodes' having a proba-
bility of maliciousness p belonging to a suspiciousness interval, denoted by Is and
represented as follows:

p ∈ [αmin, αmax] , where αmin = 0.5− s and αmax = 0.5 + s (5.2)

where 0.5 corresponds to the value of the default classi�er threshold α, and s is the
range of probability values of the suspicious class. For instance, if Is is set to 0.05,
then the interval [αmin, αmax] is set to [0.45; 0.55].

Since we decided to extend the binary classi�cation by introducing a third
class, we should de�ne a reasoning model of the obtained probability value and
we prefer to use a fuzzy logic model. This mode is derived from fuzzy set theory
dealing with reasoning that is "approximate" rather than "precisely" deduced from
classical predicate logic [120]. This theory is described as a mathematical system
based on a membership function that uses truth value between 0 and 1 as input,
and has a linguistic variable as output. In our case, the only truth value is the
probability of maliciousness p, and the linguistic variables are de�ned by three
maliciousness levels: legitimate, suspicious and malicious.
There are many types membership functions de�ned in fuzzy logic theory that can
be used according to several criteria [121]. These functions are out the scope of this
thesis, however, we use the graphical representation of the Gaussian membership
function to illustrate our fuzzy logic model. Figure 5.4 represents the membership
between the probability of maliciousness values and behavior classes. We note that
Gaussian function is used only to clarify our idea graphically, and it is not used
further in our reasoning model.
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Figure 5.4: Membership function between probability values and behavior classes.

In this �gure, the interval of probability values of suspicious class is set to
[0.35; 0.65]. We note that the full membership is represented by 1, and no member-

ship by 0. Then, the full membership to the legitimate, suspicious and malicious
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classes is respectively mapped to 0.2, 0.5 and 0.8 probability values.
Fuzzy logic usually uses IF/ THEN rules, which are usually expressed in the form:
IF variable IS set THEN action. In our fuzzy logic model, the fuzzi�cation process
is based on 7 propositions and 3 rules detailed in the following.

Propositions

pr1: the value of p is less than αmin. pr5: a legitimate behavior is detected.
pr2: the value of p is greater than αmin. pr6: a suspicious behavior is detected.
pr3: the value of p is less than αmax. pr7: a malicious behavior is detected.
pr4: the value of p is greater than αmax.

Fuzzy rules

R1: if pr1 THEN pr5.
R2: if pr2 AND pr3 THEN pr6.
R3: if pr4 THEN pr7.

The fuzzy logic model presented above is an essential phase to �nd out a so-
lution that allows us to distinguish � legitimate nodes dropping packets due to
normal network conditions� and �malicious nodes performing a periodic packet
dropping attack�. We believe that the tracking of behavior's evolution of a node
can help to mitigate the uncertainty level induced by such situations. Therefore,
we propose in the next subsection a Markov chain model to identify the stationary
state of a node based on its previous evolution.

5.5.3 Stochastic modeling of node's evolution

Based on the fuzzy logic model presented in the previous subsection, we use the
de�ned maliciousness levels to represent a space of possible states of a network
node: E = {l, s,m}. We denote with Xt and Xk,t respectively the state of the
network and the state of node k at a time t. (Xt)t∈N is the stochastic process
modeling the network evolution, such that:

Xt =

Nn⋃
k=1

Xk,t

where Nn represents the number of nodes in the network. We represent the evolution
of the network as a Markov chain, where the process (Xk,t)t is memory-less and that
conditionally at the present, the past and the future are independent for all k, which
can be expressed mathematically as following:

p (Xk,t+1=xk,t/Xk,t=xk,t, Xk,t−1=xk,t−1, . . . , Xk,0=xk,0) = p (Xk,t+1=xk,t/Xk,t=xk,t)

(5.3)
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In our case, the memory-less property means that the state of a node at future
time t + τ relies on the node state at the current time t and does not depend on
the state at earlier time instants t, ..., t− τ .

Let pk,ij the �probability of transition of a node k� from state i to state j

expressed by pk,ij = p(Xk,t+1 = j/Xk,t = i). In our case, we assume that the
evolution of the network is homogeneous, namely, the probability of transition from
a state to another is constant over time, which can be written as follows:

pk,ij = p (Xk,t+1=j/Xk,t = i) = p (Xk,1=j/Xk,0 = i), ∀ (i, j) ∈ E2, and t ∈ N(5.4)

5.5.3.1 Transition matrix establishment

After de�ning the states of our Markovian process and their di�erent properties, we
use a Markovian stochastic matrix denoted by (Xk,t)t to represent the evolution of
node over T . This matrix contains the probabilities of transitions between di�erent
behavior states of a node k, which is denoted by P k = (pk,ij)i,j∈E and represented
as follows:

Pk =

 pk,ll pk,ls pk,lm
pk,sl pk,ss pk,sm
pk,ml pk,ms pk,mm

 (5.5)

where each entry pk,ij denotes the conditional probability that node k moves from
present state i to next state j. For instance, pk,ls designates the probability that
a node k is suspicious given legitimate. In our case, the probability value of each
matrix entry is obtained using the following formula:

pk,ij = pk (Xt+1 = j |Xt = i) =

∑
Tr(i,j)∑
Ci

(5.6)

where Tr(i,j) is the number of times that node k has moved from present state i to
next state j, and Ci denotes the number of times that k has visited state i.

5.5.3.2 Limit probability distribution

The intrinsic purpose of using a Markov chain model in our scheme consists of
predicting the stationary state of a node based on its evolution. We denote with
νk,i(t) the probability that node k being in state i at time t, namely, νk,i(t) =

p{Xk,t = i}. At any time t, we obtain the stochastic vector νk(t), such that νk(t)
veri�es the following matrix for t ∈ N:

(νk,l(t+1), νk,s(t+1), νk,m(t+1))=(νk,l(t), νk,s(t), νk,m(t))×

 pk,ll pk,ls pk,lm
pk,sl pk,ss pk,sm
pk,ml pk,ms pk,mm

(5.7)
which can be also written as νk(t+1) = νk(t)×Pk, t ∈ N. Therefore, the Markovian
chain representing the evolution of node k is entirely characterized by its transition
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matrix Pk and initial transition probability νk(0). Noting that Pnk is the nth power
of the matrix Pk, we have:

• νk(1) = νk(0)× Pk
• νk(2) = νk(1)× Pk = νk(0)× P 2

k

• νk(3) = νk(2)× Pk = νk(0)× P 3
k

.

.

.

• νk(n) = νk(0)× Pnk (5.8)

According to [122], a �nite Markov chain has at least one stationary proba-
bility distribution. In our case, the Markov chain representing the evolution of a
node has a space of three possible states. Therefore, the transition matrix Pk has
at least one stationary probability distribution denoted by lim

n→∞
νk(n), and then the

Markov chain representing the evolution of a node admits a stationary state.
On the other hand, based on the ergodicity theory presented in [123], there is at
least a power of transition matrix for any network node having strictly positive
elements, and then our Markov chain is ergodic. In fact, an ergodic Markov
chain de�ned with its stochastic vector (ν(n))n∈N has a unique limit distribution
lim
n→∞

ν(n) which does not depend on its initial vector ν(0). Therefore, in our case,

any node k has a unique stationary distribution which is given by lim
n→∞

νk(n) and

consequently by lim
n→∞

Pnk .

Based on the stochastic process described in this section, we present in the next
subsection the whole prediction process which can be performed to ensure the
detection of periodic packet dropping attacks in MANETs.

5.5.4 Behavior-based prediction algorithm

As we already mentioned, the scope of the detection approach presented in this
chapter is to ensure a reliable and secure routing decisions by verifying the state of
network nodes based on their behaviors.

A B D

Figure 5.5: Veri�cation of neighbor's behavior.

In �gure 5.5, we suppose that node A has di�used a route request in the network
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in order to �nd out a route to a node D using a reactive routing protocol such as,
AODV. Being a non-secured protocol, AODV returns to A a route composed of
the minimal number of intermediate nodes, in order to deliver packets to D as fast
as possible, without considering the possibility that the found route may include
malicious nodes.

Algorithm 1 Computing the limit probability distribution of node B

{INPUT → Node A tracks the behaviors of a node B during T}
{Collecting information about packet forwarding}
while (t < T ) do

X[3]←(xRREQ, xRREP , xDATA); {Behavior's vector}
P [t]←P (Malicious/ X); {Probability of maliciousness}
if (P [t] < αmin) then

C[t]← l; {Legitimate behavior}
else if (P [t] ≥ αmin && P [t] < αmax) then

C[t]← s; {Suspicious behavior}
else

C[t]← m; {Malicious behavior}
t← t+ τ ; {Next time slot}

{Counting occurrences of transitions in each class C}
for (i = 1; i ≤ 3; i← i+ 1) do

for (j = 1; j ≤ 3; j ← j + 1) do

P [i][j]← Count(C, i, j)/Count(C, i); {Transition matrix establishment}
{Obtaining the limit distribution}
step = 2;

while (P [1][1] 6= P [2][1] || P [1][1] 6= P [3][1]) do

step← step+ 1; {Increment power}
P ← P step; {Calculate the powers of transition matrix}

{OUTPUT → Limit probability distribution of node B}

By implementing our solution, A should consider the reliability of its next
hop as an additional criteria when selecting routes before forwarding packets.
Therefore, A should perform a veri�cation of B's state according to algorithm 1, in
order to decide whether B is reliable to forward packets or not.
Based on previous observations, node A a�ects a behavior state of node B at each
time slot τ over a time period T . Then, A represents the sequence of instant a�ecta-
tions made to B's behaviors over T as a transition matrix according to equation 5.7.
Finally, based on the ergodicity property of the obtained Markov chain, A is able to
obtain a unique limit probability distribution representing the stationary state of B.
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5.5.5 Routing decision process

After obtaining the stationary state of node B, we introduce a decision process which
enables node A to select (respectively avoid) node B to route packets (respectively
from packet forwarding) based on its limit probability distribution.

S1 S2

S3

S4

f1= l

f1= m

f1= s
S5

f2= Null

Figure 5.6: FSM model for reliable routing decision algorithm.

Figure 5.6 shows a Finite State Machine (FSM) describing the decision process that
we propose to use before forwarding packets through node B. The decision is based
on two functions and �ve states as follows:

• f1: an initial comparison function to make an intermediate decision based on
MAX (P (XB= l), P (XB=s), P (XB=m)).

• f2: an intermediate comparison function to make a �nal decision based on
MAX (P (XB= l), P (XB=m)).

• S1: the initial state applying the f1 function.

• S2: an intermediate state applying the f2 function.

• S3: a �nal state representing a positive decision about node B.

• S4: a �nal state representing a negative decision about node B.

• S5: a �nal state representing a fail in making decision about node B.

The FSMmodel takes a vector of probability distribution as input. If it �nds that the
maximal probability value is P (XB= l) (respectively P (XB=m)), then it considers
B as legitimate (respectively malicious). However, if it �nds that P (XB=s) has the
maximum value after the �rst comparison, it makes a second comparison between
P (XB= l) and P (XB=m) to make a decision as follows:



5.6. Performance Evaluation 105

• If it �nds that P (XB = l) is greater than P (XB = m), it deduces that the
high level of uncertainty is rather caused by packet discarding under normal
network situations.

• If it �nds that P (XB=m) is greater than P (XB= l) it deduces that the high
level of uncertainty is rather caused by a periodic packet dropping attack.

On the other hand, if the FSM reaches the �nal state S5, there are two possible
cases:

• The probabilities of transition P (XB = l) , P (XB = s) and P (XB = m) are
equal.

• The limit distribution of B has P (XB=s) = 1.

In both cases, we deduce that it is not possible to make a decision based on the
limit distribution of node B, and then our solution cannot determine the stationary
state of B.

5.6 Performance Evaluation

Throughout this chapter, we presented a prediction framework that combines a
probabilistic classi�cation, fuzzy logic and a Markov chain model. The rationale
behind this extensive study of node's behaviors is to detect malicious nodes that
perform a packet dropping attack which is closely similar to normal dropping events.
Basically, our solution is based on the following hypothesis: �to what extent can the
node evolution tracking improve the detection of malicious nodes, especially those
having an uncertain behavior?�.
To validate this hypothesis, we �rst prove through network simulations the ability of
our solution to predict the stationary state of a node based on its previous behaviors
evolution.
Secondly, to overcome the confusion between malicious and legitimate packet dis-
cards, we introduced the notion of suspicious level of node's behavior. We prove
through simulation the importance of introducing this level to ensure the detection
of periodic dropping attacks with a high rate of accuracy.

5.6.1 Validation of ergodic theory

We already showed in section 5.5.3.2 that the network evolution can be represented
by an ergodic Markov chain, and then any node in the network admits a unique sta-
tionary state. To prove the validity of this hypothesis, it is su�cient to demonstrate
for one network node a transition matrix having only strictly positive elements.
Then, we have to prove that this node has a stationary state represented by a
unique limit probability distribution.
To validate this hypothesis, we apply in the following the prediction process pre-
sented in algorithm 1 on a simulated network illustrating the scenario described in
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�gure 5.5. The simulation scenario is elaborated during a time period of 30 min-
utes. We declare node A as a source node having packets to send to another node D
through its 1-hop neighbor B. We assume that A wants to evaluate the legitimacy
of B based on its evolution during a monitoring period equal to T . We set node B
to malicious mode, where packets passing through it are randomly discarded over
T .
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0.176 0.176 0.648

  

Figure 5.7: Process of evolution tracking of node B performed by node A during T .
(+): legitimate, (−): malicious, (•): suspicious

Figure 5.7 illustrates the steps performed by A to represent the evolution of node
B. First, A selects a time slot equal to τ = 1 minute to compute the probability of
maliciousness of B. Then, it a�ects for each observation a state de�ning the behav-
iors of B observed during τ according to the suspiciousness interval con�guration
Is. This latter is set to 0.2, which means that [αmax, αmax] = [0.4, 0.6].
First, A obtains a sequence of 30 states representing the evolution of B during the 30

minutes. Then, node A computes the probability for each occurred state transition
according to equation 5.6. For instance, the value of the entry at the 1st line and
the 3rd column of the matrix represents pB,lm, and is obtained as follows:

pB,lm =
# of times that B has moved from l to m

# of times that B has visited the state l
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By performing this calculation for di�erent possible transitions, A deduces the
Markovian matrix of B denoted by p1B as following :

P 1
B =

0.166 0.166 0.668

0.166 0.333 0.500

0.176 0.176 0.648


which can be also illustrated using a directed graph as depicted in �gure 5.8, where
the nodes are the possible node states of E = {l, s,m}, and the edges are the
probabilities of transitions between these states.

l

s m

0.166

0.166 0.668

0.166

0.333

0.500

0.176

0.176

0.648

Figure 5.8: Directed graph representing the transition matrix PB.

To predict the limit probability distribution of node B, node A computes the
lim
n→∞

PnB by performing the powers of the initial transition matrix P 1
B according to

equation (5.8). For instance, the 2nd and 3rd powers of P 1
B are denoted respectively

by P 2
B and P 3

B an obtained as follows:

P 2
B =

0.2007 0.1728 0.6264

0.1989 0.1713 0.6298

0.2020 0.1727 0.6253

 , P 3
B =

0.2013 0.1725 0.6262

0.2011 0.1725 0.6264

0.2014 0.1725 0.6263


The power n is incremented until the lines of transition matrix become identical,
which indicates that the stationary distribution is reached after a number of steps
equal to n. Therefore, A �nds that the stationary distribution of B is reached at
the 4th step, where the transition matrix P 4

B is equal to:

P 4
B =

0.2012 0.1725 0.6263

0.2012 0.1725 0.6263

0.2012 0.1725 0.6263


Consequently, the stationary distribution has the following probability values:
P (XB = l) = 0.2012, P (XB = s) = 0.1725 and P (XB = m) = 0.6263. Accord-
ing to the FSM model presented in �gure 5.6, A deduces that B is a malicious node
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since its probability of maliciousness P (XB =m) is greater than its probability of
legitimacy P (XB = l) and suspiciousness P (XB =s). Therefore, A decides to avoid
B when forwarding packets.

5.6.2 Study of uncertainty threshold

As we already mentioned, we introduce the suspicious level as an attempt to over-
come the confusion between legitimate and malicious packet discarding. We showed
that a node is classi�ed as suspicious if its probability of maliciousness belongs to
an interval centered on 0.5 and having αmin and αmax as lower and upper bounds
respectively. We denoted with Is the suspiciousness interval de�ned by αmax−αmin.
Is is a critical parameter that we aim to adjust in order to obtain the most reliable
routing decisions.
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Figure 5.9: Limit probability distribution of network nodes.

In �gure 5.9, we evaluate the impact of Is interval on the limit probability dis-
tribution in the case of a network composed of 50 nodes, where 10% of them are
malicious. The black dots represent the distribution of legitimate nodes, while red
�lled ones represent the malicious nodes distribution.
According to �gure 5.9a, when we set the value of Is to 0.1, the scatter shows an
unclear relationship between the points of the class due to a notable variation be-
tween their probability distributions.
However, in �gure 5.9b, we note that the points of the same class are mostly grouped
into a clear linear shape when Is is set to 0.2. The legitimate nodes have high values
of probability of legitimacy, while the malicious nodes have high values of probabil-
ity of maliciousness, with a low value of uncertainty in both cases. Therefore, the
classi�cation of nodes shows a better performance than that in the case of Is = 0.1.
Finally, when we increase the value of Is to 0.3, we note a signi�cant variation be-
tween the points representing the class of malicious nodes. In addition, there are
high values of probability of suspiciousness, which may lead further to a confusion
between malicious and legitimate nodes.
Consequently, using this data set of network nodes we note that Is = 0.2 is the most
appropriate threshold con�guration since it ensures the best classi�cation of nodes.
In the following subsection, we elaborate several simulations using network scales
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less than 50 nodes. We set the value Is to 0.2 in all simulations in order to evaluate
the performance of our solution in function of monitoring time and percentage of
malicious nodes.

5.6.3 Evaluation of detection accuracy

To evaluate the performance of our proposed solution we performed many sim-
ulations using NS2 simulator by changing three main parameters: network size,
percentage of malicious nodes and simulation time. The simulated network is com-
posed of nodes having a low mobility speed between 2 and 8 m/s and a transmission
range of 250m. In each simulation scenario, 20% of network nodes establish com-
munication sessions and exchange data packets using a Constant Bit Ratio (CBR)
tra�c. As we already mentioned, the suspiciousness interval Is that we use to assign
a state to a node is set to 0.2 in all simulations. The rest of parameter settings of
our experimental setup are depicted in table 5.1.

Table 5.1: Network simulation parameters.

Parameter Value

Coverage area 1000m × 1000m
Number of nodes 10, 20 and 50 nodes
Transmission range 250m
Simulation time 10, 20 and 30 minutes
Time slot τ 1 minute
Mobility model Random Waypoint
Min/Max speed [2− 8] m/s
Routing protocol AODV
Tra�c type UDP/ CBR
% of malicious nodes 10, 30 and 50%

Is interval (αmax − αmin) 0.2

MAC layer type IEEE 802.11p

The simulated network contains a changing number of malicious nodes which runs
an instance of periodic packet dropping algorithm that we elaborated in C++. The
data sets of our testbed are the trace �les collected at the end of each simulation
scenario. These �les are processed using AWK and Python scripts, in order to ex-
tract information and perform a behavior modeling based on selected attributes.
The probability calculation process is implemented in C++, and used as input for
transition matrices establishment which is performed in MATLAB environment. In
addition, we evaluate the rate of nodes that are not detected by our solution due to
their uncertain state. Hence, the performance of our solution is evaluated based on
the detection accuracy (Acc) and uncertainty (Unc) such that:

Acc =
TP + TN

TP + FP + TN + FN
and Unc =

# non− detected nodes
Total number of nodes
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where TP , TN , FP and FN denote respectively the rate of True Positive, True
Negative, False Positive and False Negative as they were already explained in section
4.6.4. To facilitate the interpretation of the results that we obtained in di�erent
simulation scenarios, we use sometimes the following notations:

• %unc: the rate of non-detected nodes.

• Tsim: the duration of a simulation scenario.

• %mal: the percentage of malicious nodes in the network.

Figure 5.10a shows the detection accuracy of our proposed solution when the network
is composed of 10 nodes. We note a full accurate detection when %mal is equal to
10%, except when the simulation time is set to 20 minutes, where the detection
accuracy is equal to 90%. When %mal is set to 30%, we note a lower detection
accuracy equal to 80% when Tsim is set to 10 minutes. However, our solution
provides a full accurate detection of malicious nodes when we increase Tsim to 30

minutes.
On the other hand, �gure 5.10b shows the rate of nodes which are not recognized
at all by our solution. When the percentage of malicious nodes is set to 10%, we
note that 10% of nodes are not identi�ed when Tsim is set to 10 minutes. However,
this uncertainty disappears once Tsim is greater than 20 minutes. Similarly, in the
second scenario, when %mal is increased to 30%, the behaviors of 10% of nodes
are not recognized unless we increase Tsim to 30 minutes. Finally, when %mal is
50%, the percentage of non-detected nodes becomes greater than 10% whatever the
simulation time, and it reaches a rate of 20% when Tsim is equal to 20 minutes.
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Figure 5.10: Network size = 10 nodes

In Figure 5.11a we evaluate the detection accuracy of our solution when the network
size is equal to 20 nodes. When we set %mal to 10%, the accuracy rate remains
between 90% and 95% regardless the duration of simulation scenario. Similarly,
when the %mal is increased to 30% we get a lower accuracy rate that persists between
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85% and 90% in the three con�gurations of Tsim. However, in the case of %mal is
equal to 50%, the detection accuracy increases from 80% to 95% in the three cases.
Regarding the rate of uncertainty, �gure 5.11b shows that a percentage of 5% of
nodes are not detected when the value of %mal is equal to 10%, and this percentage
disappears when we increase Tsim to 30 minutes. In the case of 30 malicious nodes,
we note a value of %unc equal to 10% when the Tsim is set to 10 minutes which
appears progressively when Tsim is increased to 30 minutes. Finally, when %mal is
increased to 50% we note that there are always nodes that cannot be identi�ed with
a %unc value between 10% and 15% whatever the simulation duration.
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Figure 5.11: Network size = 20 nodes

The last con�guration of network size that we use in our simulations is set to 50

nodes, where the results are depicted in �gure 5.12. According to �gure 5.12a, when
we set %mal to 10% the detection rate increases to 90%.
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Figure 5.12: Network size = 50 nodes

However, when we increase %mal to 30% we note that the accuracy rate decreases
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to 85% in the case of Tsim = 10 minutes. By maintaining the same percentage
of malicious nodes, we increase the simulation time to 30% and we note that the
accuracy increases slightly and reaches a rate of 90%. When %mal is set to 50% the
accuracy rate is equal to 80% when Tsim is set to 10 minutes, and has a signi�cant
increase that reaches a rate of 95% when we increase the Tsim to 95%.

5.7 Discussion

Based on the performance evaluation presented in the previous section, we underline
some global interpretation regarding the impact of network con�guration on the
detection accuracy.

• The detection is more accurate in the case of large scale networks (50 nodes)
than that of small ones (10 nodes), where the malicious nodes can be detected
with an accuracy rate greater than 90% whatever their percentage in the
network. In addition, in the case of large scale networks, the rate of non-
detected nodes does not exceed 15% whatever the proportion of malicious
nodes in the network.

• Regarding the simulation time, more the monitoring duration is long the more
the detection is accurate whatever the network size. On the other hand,
the rate of non-detected nodes decreases when the simulation time increases.
Therefore, the detection of periodic dropping attacks is more accurate when
the monitoring phase is performed during a long time period.

• The malicious nodes that we attempt to detect in the above simulation scenar-
ios perform a periodic packet discarding, in such way they appear as closely
similar to a legitimate packet discarding. Despite all these technical challenges
that we attempted to simulate, the results show an average value of accuracy
equal to 90% in di�erent network con�gurations. Thus, we believe that an ad-
equate tracking of node's behaviors changes is essential to ensure the detection
of periodic dropping attacks.

• The performance of the behavior monitoring process in the case of highly
mobile networks is not handled in this work. We assumed that the simulated
networks are composed of nodes having a low mobility speed. However, to
address this problem, we aim to realize in our future works more investigation
of the impact of the mobility speed on the choice of T and τ values which are
the key parameters of our monitoring process.

5.8 Conclusion

In this chapter, we presented a decentralized framework based on a behavior pre-
diction model to detect periodic dropping attacks in MANETs. We �rstly showed
the di�culty of distinguishing these attacks from the normal packet discards and
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their potential impact on network performance. We presented the general design of
di�erent phases composing our framework and we described the interaction between
them.
Regarding the monitoring scheme, we used the same scheme proposed in chapter 4
to collect information about exchanged packet types, model the collected behavior
and calculate the probability of maliciousness. Then, we described the fuzzy logic
model that we introduced to assign a level of maliciousness of a node based on the
obtained probability value. We de�ned a space of possible states of a node's behav-
ior to represent the transition between states using Markov chain model. We showed
through simulation on NS2 and MATLAB the ability to predict the stationary state
of a node based on its previous evolution. Finally, the obtained simulation results
shows that our solution is able to detect periodic dropping attacks with an accuracy
rate greater than 90%.





Chapter 6
Conclusion and future directions

In this chapter, we conclude the outcome of our research work. We �rst overview the
solutions that we proposed to detect DoS attacks at the ad hoc routing layer. Then,
we give some technical challenges that we deduced following our global evaluation
of the proposed solutions. Finally, we overview other research contributions that we
realized during the thesis and we give some directions of our future work.

6.1 Conclusion

In this thesis, we have proposed two decentralized approaches to detect packet drop-
ping attacks in MANETs based on a behavior analysis of network nodes.
We �rst presented an overview of security attacks at the ad hoc routing layer, pre-
cisely those leading to a DoS. We classi�ed DoS attacks in three broad categories
that we consider as the most potential threats against routing availability: packet
dropping, resource consumption and routing disruption. We inquired their tech-
niques, objectives and damaging e�ects on routing performance. Based on previous
studies and our own network simulations, we deduced that packet dropping attacks
constitute a severe threat against routing services availability which needs more in-
vestigation. We surveyed and discussed certain mechanisms and countermeasures
that are proposed in the literature to secure the ad hoc routing protocols against
DoS attacks. We focused on solutions that are proposed to detect packet dropping
attacks, especially those based on classi�cation models, and we introduced the orig-
inal features of our solution in comparison with these solutions.
We then proposed a behavior-based detection mechanism using the Bernoulli and
Multinomial Bayesian classi�cation models. We described the decentralized opera-
tions of the detection phases starting with a statistical analysis of packets through a
node's transmission range. We selected the attributes that we consider as the most
representative to model the behavior of network nodes. We described the steps
of the probabilistic classi�cation models of behavior models and evaluated their
performance using di�erent threshold con�gurations. Simulation results showed an
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e�cient detection of packet dropping attacks using the Bayesian classi�cation mod-
els. A full detection of dropping attacks can be ensured by combining the advantages
of the two models.
We also exploited the aforementioned classi�cation framework to propose a predic-
tion framework of node's behaviors using a stochastic process. We proved that the
detection of periodic dropping attackers can be improved by tracking the evolution
of their behaviors. We de�ned the space of possible states of node's behaviors based
on a fuzzy logic model and represented the transitions among these states using a
Markov chain model. We showed through network simulations the ability of our
solution to predict the state of a node based on its previous evolution, and its ef-
�ciency to detect periodic packet dropping attacks with an accuracy rate greater
than 90%.

6.2 Emergence of new technical challenges

The solutions proposed in this thesis aim to address the problem of routing services
availability in MANETs. The detection and prediction mechanisms are basically
complementary and designed to ensure a full detection of di�erent types of packet
dropping attacks. However, there are some technical challenges that we deduced
following our global evaluation regarding the attributes selection for behavior
modeling and nodes' classi�cation.

In the probabilistic classi�cation model that we proposed, we used the for-
warding rates of data, RREQ and RREP packets as classi�cation attributes. This
selection is based on the fact that the behaviors of a node can be represented
by evaluating its participation in data forwarding, routing discovery and routing
establishment services. We intentionally omitted the possible manipulation of
RERR and Hello packets in the case of AODV routing protocol, by assuming that
their dropping has a negligible damage on routing availability in comparison with
the packet types that we selected. After further studies, we found that disrupting
the maintenance of established routes, which is ensured by RERR and Hello
messages, may also downgrade the routing services.
Exchanging Hello packets is used to maintain connections between those nodes
that are in the transmission range of each other. Since these packets are 1-hop
RREP packets, they are usually consumed by the receiving node after having
informed about a neighbor's presence without any further use. Hence, discarding
these packets by a node does not have any e�ect on routing performance. However,
altering Hello packets may be exploited by a malicious entity to divert the tra�c
from its normal destination, which is actually out the scope of this thesis.
On the other hand, the RERR packets are used to inform network nodes about
the occurrence of a link failure. This packet is sent by the node which notices
the failure information towards nodes that use that link to send their packets.
If a malicious node discards a RERR packet that are supposed to be forwarded,
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then the network nodes which are assumed to be informed about the link failure
may use a broken link to forward their packets. Therefore, the packets pass-
ing through that link are susceptible to be lost. Consequently, RERR dropping
can disrupt the network performance and threat the performance of routing services.

In both solutions presented in chapter 4 and 5, the monitoring node relies
only on its direct observation to decide whether another monitored node is mali-
cious or not. However, in most of trust-based detection mechanisms, the decision
about a node's behavior is made based on the aggregation of direct observations
and the recommendations of other nodes. In this case, nothing prevents a malicious
node to give bad recommendations about other nodes to disrupt the trust evaluation
phase [48]. Therefore, our solutions are less vulnerable to this kind of attacks since
the observations about nodes are made without any aggregation with other nodes'
recommendations.
However, this way of decision making may lead to false alerts when detecting
malicious nodes especially in dense networks. For instance, due to a network
congestion a bottleneck node may be considered as malicious due to the high rate
of packets it discards. However, the aggregation of direct and indirect observations
can mitigate such faulty decisions, since a node that is detected as malicious by
another node may be classi�ed as legitimate by other nodes. Therefore, using the
recommendation of other nodes as a second hand information may help to overcome
the challenge of false alerts in such situations.

Proposing a resource-aware detection solution was not a priority in this the-
sis. The complexity of monitoring operations, behavior modeling and classi�cation
algorithms was neither treated nor evaluated in our research works. Moreover,
the memory space and the computational overhead that required to perform the
evolution tracking process proposed in chapter 4 was not handled. Since the
availability of routing services is the most important objective of our research
works, we plan to more focus on resource constraints of network nodes.

6.3 Research works in progress

To address the problem of routing availability threats, we realized two research con-
tributions that treat the �ooding and tunneling attacks. According to DoS attacks
taxonomy proposed in chapter 2, these attacks may lead respectively to a network
resource exhausting and perturbation of routes in MANETs. We investigated the
techniques used by these attacks and interpreted their damaging e�ects on routing
services availability.
We proposed a preliminary solution against tunneling attacks in MANETs based
on a graph theoretical model, which addresses precisely the encapsulation-based
Wormhole technique. The solution that we presented is designed to be used by a
node before sending a RREP packet as response to a received RREQ packet. It
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consists of verifying whether a received RREQ is di�used through a malicious node
by comparing its hop count with that of other nodes that have di�used the same
RREQ. This contribution is published as a conference article; more details about
this solution can be found in [49].
On the other hand, we investigated the RREQ �ooding attacks that can target the
ad hoc routing and exhaust the resources of network nodes. We designed a solution
to enable a node to detect the occurrence of such attacks based on a statistical ap-
proach. The core idea of this approach is to monitor and evaluate the Exponential
Weighted Moving Average (EWMA) of RREQ packets generated by a node, in order
to detect the abnormal route request generations. This work was published in the
proceedings of a international conference in [50].

6.4 Future research directions

The work realized in this thesis motivates us to elaborate the following short-term
research works:

• Adaptability of solutions: both solutions proposed in chapter 4 and 5
deserve more studies in terms of detection accuracy. A further analysis
is necessary of the monitoring phase regarding the hardware capability of
network nodes to work in promiscuous mode. On the other hand, we need
to re�ne theoretically the detection criteria of dropping attacks, by studying
the impact of threshold con�gurations on the detection accuracy. Further
simulations can be also carried out to evaluate the performance of detection
phases in large scale networks.

• Node mobility: the prediction framework presented in chapter 5 needs more
investigation regarding the process of behavior evolution tracking. The long
time monitoring process should be studied, especially in highly mobile ad

hoc networks, where the behavior tracking is challenging.

• Detection uncertainty: according to simulation results obtained in chapter
5, there is always a percentage of nodes (< 5%) in the network that cannot
be identi�ed using our solution due to their uncertain behaviors. We need
to make further studies of the impact of thresholds con�gurations and
monitoring time on the percentage of non-detected nodes.

• Routing decision process: in chapter 5, the �nal probability distribution
de�ning the stationary state of a node is used to make a decision on the
nature of its behaviors. This process deserves more studies and speci�cations
in order to increase the accuracy and alleviate the uncertainty of made
decisions. We believe that this investigation can help to guarantee reliable
packet routing decisions.

We also underline some long-term research directions that require more investiga-
tions in the future:
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• Complexity analysis: the statistical and probabilistic techniques presented
in chapter 4 and 5 should be further studied and improved in terms of
complexity. We can also evaluate the performance of our solutions in a real
MANET and then optimize the detection phases in order to minimize their
computational overhead.

• Resource constraints: the memory space and battery energy required
to store and process the collected nodes' behaviors and evolution information
deserve more analysis in terms of resource consumption. This latter can be
evaluated in a real testbed in order to design an adequate resource-aware
detection solution of packet dropping attacks in MANETs.

• Real implementation: the solutions that we proposed in this thesis are able
to detect di�erent types of packet dropping attacks. However, we need to in-
vestigate their adaptability to be implemented as a decentralized detection
system at each network node. We can also adapt our solutions as a security
extension for an existing ad hoc routing protocol.

• Cooperative packet dropping: in this thesis we handled the case of ma-
licious nodes that perform di�erent types of dropping attacks without any
cooperation between them. Based on recent studies, dropping attacks per-
formed by multiple nodes in a cooperative manner can disrupt the routing
services and still in the network for a long time period without being detected.
We aim to investigate these attacks by studying their techniques and de�ning
a model for their behaviors.
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Une  approche  décentralisée  pour la 
détection de comportements mal-
veillants dans les réseaux MANETs 
 
 
Avec l’évolution des besoins d’utilisateurs, plusieurs 
technologies de réseaux sans fil ont été dévelop-
pées. Parmi ces technologies, nous trouvons les 
réseaux mobiles ad hoc (MANETs) qui ont été con-
çus pour assurer la communication dans le cas où le 
déploiement d’une infrastructure réseaux est coû-
teux ou inapproprié. Dans ces réseaux, le routage 
est une fonction primordiale où chaque entité mobile 
joue le rôle d’un routeur et participe activement 
dans le routage. Cependant, les protocoles de rou-
tage ad hoc tel qu’ils sont conçus manquent de 
contrôle de sécurité. Sur un chemin emprunté, un 
nœud malveillant peut violemment perturber le rou-
tage en bloquant le trafic. Dans cette thèse, nous 
proposons une solution de détection des nœuds 
malveillants dans un réseau MANET basée sur une 
analyse comportementale à travers les filtres 
bayésiens et les chaînes de Markov. L’idée de notre 
solution est d’évaluer le comportement d’un nœud 
en fonction de ses échanges avec ses voisins d’une 
manière complètement décentralisée. Par ailleurs, 
un modèle stochastique est utilisé afin de prédire la 
nature de comportement d’un nœud et vérifier sa 
fiabilité avant d’emprunter un chemin. Notre solution 
a été validée via de nombreuses simulations sur le 
simulateur NS-2. Les résultats montrent que la solu-
tion proposée permet de détecter avec précision les 
nœuds malveillants et d’améliorer la qualité de ser-
vices de réseaux MANETs. 
 
 
Mots clés : réseaux ad hoc (informatique) - attaques 
par déni de service - réseaux d'ordinateurs, mesures 
de sûreté - statistique bayésienne – processus sto-
chastiques.  
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Misbehaviors Detection Schemes in 
Mobile Ad Hoc Networks 
 
 
 
With the evolution of user requirements, many net-
work technologies have been developed. Among 
these technologies, we find mobile ad hoc networks 
(MANETs) that were designed to ensure communica-
tion in situations where the deployment of a network 
infrastructure is expensive or inappropriate. In this 
type of networks, routing is an important function 
where each mobile entity acts as a router and ac-
tively participates in routing services. However, 
routing protocols are not designed with security in 
mind and often are very vulnerable to node misbe-
havior. A malicious node included in a route be-
tween communicating nodes may severely disrupt 
the routing services and block the network traffic. In 
this thesis, we propose a solution for detecting ma-
licious nodes in MANETs through a behavior-based 
analysis and using Bayesian filters and Markov 
chains. The core idea of our solution is to evaluate 
the behavior of a node based on its interaction with 
its neighbors using a completely decentralized 
scheme. Moreover, a stochastic model is used to 
predict the nature of behavior of a node and verify 
its reliability prior to selecting a path. Our solution 
has been validated through extensive simulations 
using the NS-2 simulator. The results show that the 
proposed solution ensures an accurate detection of 
malicious nodes and improve the quality of routing 
services in MANETs. 
 
 
Keywords: ad hoc networks (computer networks) - 
denial of service attacks - computer networks, secu-
rity measures - Bayesian statistical decision theory 
– stochastic processes. 
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