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de Grenoble), Prof. Antoine Grall (Université de Technologie de Troyes) and Prof.
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Abstract

Nowadays, industrial systems contain numerous components so that they become more

and more complex regarding the logical structures as well as the various dependences

(economic, stochastic and structural dependences) between components. The depen-

dences between components have an impact on the maintenance optimization as well as

the reliability analysis. Condition-based maintenance which enables to manage mainte-

nance activities based on information collected through monitoring has gained a lot of

attention over recent years but stochastic dependences are rarely used in the decision

making process. Therefore, this thesis is devoted to propose condition-based mainte-

nance policies which take advantage of both economic and stochastic dependences for

multi-component systems. In terms of economic dependence, the proposed maintenance

policies are designed to be maximally effective in providing opportunities for mainte-

nance grouping. A decision rule is established to permit the maintenance grouping with

different inspection periods. Stochastic dependence due to a common degradation part

is modelled by Lévy and Nested Lévy copulas. Condition-based maintenance policies

with non-periodic inspection scheme are proposed to make use of stochastic dependence.

Our studies show the necessity of taking account of both economic and stochastic de-

pendences in the maintenance decisions. Numerical experiments confirm the advantages

of our maintenance policies when compared with other existing policies in the literature.

Keywords:

• monte-Carlo method

• condition-based maintenance

• mathematical models

• dependence (statistic)

• decision making

• reliability (engineering)

• stochastic process
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Résumé

De nos jours, les systèmes industriels sont de plus en plus complexes tant du point de

vue de leur structure logique que des diverses dépendances (dépendances économique, s-

tochastiques et structurelles) entre leurs composants qui peuvent influencer l’optimisation

de la maintenance. La Maintenance conditionnelle qui permet de gérer les activités

de maintenance en fonction de linformation de surveillance a fait lobjet de beaucoup

d’attention au cours des dernières années, mais les dépendances stochastiques sont

rarement utilisées dans le processus de prise de décision. Par conséquent, cette thèse a

pour objectif de proposer des politiques de maintenance conditionnelle tenant compte des

dépendances économiques et stochastiques pour les systèmes multi-composant. En ter-

mes de dépendance économique, les politiques proposées sont conues pour permettre de

favoriser les opportunités de grouper des actions de maintenance. Une règle de décision

est établie qui permet le groupement de maintenances avec des périodes d’inspection d-

ifférentes. La dépendance stochastique causée par une part de dégradation commune est

modélisée par copules de Lévy. Des politiques de maintenance conditionnelle sont pro-

posées pour profiter de la dépendance stochastique. Nos travaux montrent la nécessité

de tenir compte des dépendances économiques et stochastiques pour la prise de décision

de maintenance. Les résultats numériques confirment lavantage de nos politiques par

rapport à dautres politiques existant dans la littérature.

Mots-clés :

• méthode Monte-Carlo

• maintenance conditionnelle

• modèles mathématiques

• dépendance (statistique)

• prise de decision

• fiabilité

• processus stochastique
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Chapter 1

General Introduction

Maintenance activities play an important role in industry as they can prevent sudden

failures to guarantee the productivity and quality, to avoid severe damages and losses,

to improve the reliability and safety of systems. Maintenance can be defined as the

combination of all technical and associated administrative actions intended to retain an

item or system in, or restore it to, a state in which it can perform its required func-

tion. Maintenance is considered an essential element to pursuer economic competition

between companies as it ensures the productivity of assets, the quality of product so

as to accomplish mission in a short-time [1]. According to Robertson and Jones [2],

maintenance budget varies from low in light manufacturing to high in equipment inten-

sive industry with 2% to 90% of the total plant operating budget, the average being

20.8%. In order to reduce the maintenance cost, the maintenance optimization which

decides when and how to repair components is widely studied since the early sixties

[3, 4, 5, 6, 7, 8]. Various maintenance policies have been proposed in the literature

to address the maintenance optimization problem which can be divided into two main

categories: time-based maintenance policies and condition-based maintenance policies.

Condition-based maintenance has gained a lot of attention over a few decades as it

recommends maintenance actions based on the information collected through condition

monitoring [9]. When compared to time-based maintenance, condition-based attempts

to avoid unnecessary maintenance activities by carrying out maintenance actions only

when there is evidence of severe degradation so that the maintenance cost is reduced.

In recent years, with rapid developments of science and technology, industrial systems

become more efficient but also more complex. Indeed, the increasing number of compo-

nents in a system leads to not only the complicated system structure, but also various

interactions between components which can be classified into three categories: eco-

nomic dependence, stochastic dependence and structural dependence [10]. Interactions

1



2 Chapter 1. General Introduction

between components increase the difficulty of maintenance optimization but provide op-

portunities at the same time. On one hand, economic dependence between components

provide opportunities to group maintenance activities so that the maintenance cost is

reduced. Many researches in the literature are devoted to propose grouping strategies

for multi-component systems. Nevertheless, most of them proposed grouping strategies

basing on the time-based maintenance. Grouping strategy for condition-based mainte-

nance is less explored as well as the inspection strategies for multi-component systems.

In fact, when the inspection cost is not negligible, it is more economic to apply an

adaptive inspection period for each component in the system. However, the diversity

of inspection periods of components increases the difficulty of maintenance grouping as

the maintenance action can only be made at inspection. Therefore, the first objective

of this these is to propose grouping strategy for condition-based maintenance as well as

the inspection strategy. On the other hand, stochastic dependence which implies that

the behavior of one component may influence other components in the system have a

significant impact on the reliability analysis. Most literatures concerning the stochas-

tic dependence model the stochastic dependence as failure interactions or degradation

interactions whereas the stochastic dependence caused by common degradation part is

less investigated. Moreover, few literatures take account stochastic dependence in their

maintenance modeling but it is verified that stochastic dependence have an impact on

the maintenance optimization. As a consequence, the second objective of this thesis is

to model the stochastic dependence caused by common degradation part and then take

full advantage of stochastic dependence for maintenance optimization.

Generally, the maintenance optimization can be divided into two parts: degradation

modeling and maintenance modeling. The chapter 2 and chapter 3 are devoted to present

and discuss the existing models concerning two parts respectively to give a framework for

our study and clarify our problem. In chapter 2 which review the degradation modeling

for both single-unit and multi-component systems, we focus on the gradual degradation

modeling with continuous state space modeled by stochastic processes and the stochastic

dependence modeling. In chapter 3, the existing maintenance policies in the literature

are introduced and discussed which concern the effect of maintenance actions, main-

tenance policies for single-unit systems and maintenance policies for multi-component

systems.

chapter 4 and chapter 5 are dedicated to model the gradual degradation with stochastic

dependence and propose maintenance policies in order to take account of both economic

and stochastic dependence. In chapter 4, with respect to adaptive inspection periods for

heterogeneous components in the system, grouping strategy for condition-based main-

tenance in order to take advantage of economic dependence is proposed. The stochastic

dependence modeled by Lévy copulas is also investigated. The study of chapter 4 can

be seen as a first essay to consider stochastic and economic dependences simultaneously
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which is rarely investigated in the literature with a two-component system. chapter 5 is

devoted to further investigate the stochastic dependence with asymmetric dependence

and the stochastic dependence is fully explored by being integrated in the proposed

inspection and replacement strategies. To end this thesis, conclusions and perspectives

are drawn in chapter 6.
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2.1 Introduction

In order to analyse the reliability of systems, predict the remain useful life or minimize

the maintenance cost, the first step is to model the physical properties of components or

systems such as how they degrade and when they fail. That is modeling the degradation

behavior of a component or a system through a mathematical modeling. In this chap-

ter, we review and analyse the existing degradation models for systems in the literature

(either single-unit systems or multi-component systems).

The remainder of this chapter is organised as follows. Section 2.2 presents the degrada-

tion modeling for a single component which can be divided into two categories: lifetime

distribution based models and gradual degradation based models. When considering

failures of multi-component systems, stochastic dependences as well as the structure of

the system should be take into account. Therefore section 2.3 describes the stochastic

dependence modeling between components and section 2.4 is devoted to the structures

of multi-component systems. The conclusions are drawn in section 2.5.

2.2 Individual degradation modeling

Before the component is put in service, it is important to measure its degradation speed

of component and predict its failure date because a sudden failure of component may

cause unpredictable losses. Before introducing the degradation modeling, some concepts

are reviewed as follows if T stands for the lifetime.

Definition 2.1. Lifetime distribution function is the probability that a component fails

up to and including t time units. If T is a continuous random variable, it can be expressed

as:

F (t) = P (T ≤ t) =

∫ t

0
f(x)dx, (2.1)

where f(x) is the probability density function of T and t is the length of the period of

time (which is assumed to start from time zero).

Definition 2.2. Reliability is the probability that a component performs well during t

time units as:

R(t) = P (T > t) = 1− F (t) =

∫ ∞

t
f(x)dx, (2.2)

Definition 2.3. The failure rate function is defined as:

λ(t) = f(t)/R(t), (2.3)

provided that function F(.) is differentiable.
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2.2.1 Lifetime distribution models

In lifetime distribution models, components have only two states (either functioning

or failed) for the cases where the intermediate state of components is unobservable or

hard to be measured. The exponential families and proportional hazard function are

introduced where the former are widely used in the literature as they are able to derive

explicit results and the latter is efficient in taking into account effects of covariables on

the failure of component.

2.2.1.1 Exponential families

Exponential distribution, Weibull distribution and Gamma distribution are introduced

in this section.

Exponential distribution

The component whose lifetime distribution follows an exponential distribution has fol-

lowing properties:

• Probability density function:

f(t;λ) =

{
λe−λt t ≥ 0

0 t < 0

• Lifetime distribution function:

P (T ≤ t) = F (t;λ) =

{
1− eλt t ≥ 0

0 t < 0

• Failure rate function:

λ(t) = f(t)/(1− F (t)) = λ, t ≥ 0 (2.4)

• Mean and variance: 1
λ and 1

λ2

• Remaining useful lifetime distribution:

P (T > y|T > x) = ey−x, y > x (2.5)

The exponential distribution is a basic lifetime distribution whose failure rate is constant

such that is an excellent model for the long flat ”intrinsic failure” portion of the Bathtub
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Curve. Furthermore, it works well for inter arrival times while the Poisson distribution

describes the total number of events in a given period. Therefore, when the failures

arrives which follows standard Poisson process, the exponential life distribution model

will naturally apply. Nevertheless, the exponential distribution has only one parameter

which can not fit all types of lifetime data such that distributions like Gamma distribu-

tion and Weibull distribution with two parameters (shape and scale) are more flexible

in applications.

Gamma distribution

The component whose lifetime distribution follows a Gamma distribution has follow-

ing properties:

• Probability density function:

f(t;α, β) =

{
tα−1 βαe−βt

Γ(α) t ≥ 0

0 t < 0

where Γ(α) =
∫∞
0 tα−1e−tdt is the Gamma function.

• Lifetime distribution function:

P (T ≤ t) = F (t;α, β) =

{ ∫ t
0 x

α−1 βαe−βx

Γ(α) dx t ≥ 0

0 t < 0

when α is an integer, F (t;α, β) is called an Erlang distribution and its form can

be obtained as below:

P (T ≤ t) = F (t;α, β) =

{
1−∑α−1

k=1
(βt)ke−βt

k t ≥ 0

0 t < 0

whereas for an arbitrary α, F (t;α, β) has not closed form.

• Failure rate function:

λ(t) = f(t)/(1− F (t)) = [

∫ ∞

0
(1 +

x

t
)α−1e−βxdx]−1, t ≥ 0 (2.6)

• Mean and variance: α
β and α

β2

Therefore, Gamma distribution generalizes the exponential model and is more flexible

when compared to the exponential distribution in terms of the failure rate function.

When α < 1 the failure rate is decreasing with time; when α = 1, the Gamma distribu-

tion reduces to the exponential distribution and the failure rate is constant; when α > 1,
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the failure rate is increasing. For any integer α, the sum of α independent and identi-

cally distributed exponential random variables with parameter β is Gamma distributed

with parameters (α, β). Moreover, the sum of independent and identically distributed

Gamma random variables has a Gamma distribution so that it has a nice physical in-

terpretation. The Gamma distribution has found a number of applications in different

fields. For example, in [11], the Gamma distribution is used to assess and predict fatigue

reliability of steal bridges based on long-term monitoring data. But the major disad-

vantage of the Gamma distribution is that the distribution function or survival function

cannot be expressed in a closed form if the shape parameter is not an integer whereas

one needs to obtain the distribution function, survival function or the failure rate by

numerical integration. This makes Gamma distribution less popular compared to the

Weibull distribution.

Weibull distribution

The lifetime (T ) of a component follows the Weibull distribution with shape α and

scale parameter β if its probability density function is given as follows:

f(t;α, β) =

{
αβ(αt)β−1e−(αt)β t ≥ 0

0 t < 0

Therefore the lifetime distribution function is:

P (T ≤ t) = F (t;α, β) =

{
1− e−(αt)β t ≥ 0

0 t < 0

Then the failure rate function is obtained as follows:

λ(t) = f(t)/(1− F (t)) = αβ(αt)β−1, t ≥ 0 (2.7)

and the remaining useful lifetime distribution is:

P (T > y|T > x) = R(y)/R(x) = exp((αx)β − (αy)β), y > x (2.8)

The Weibull distribution is the most used lifetime distribution in literature as it is

powerful and flexible in modeling the ageing of various components according to [12] in

many applications such as fatigue failure, vacuum tube failure and ball-bearing failure.

Moreover, with Weibull distribution, most indicators are known in closed form such

that it allows the mathematical developments. The impact of the shape parameter on

the failure rate, lifetime, age-based maintenance policies and residual life is studied in

[13]. For effect of scale parameter, when β = 1, the Weibull distribution reduces to
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the exponential distribution where the failure rate is constant; when β > 1, the failure

rate is increasing which means that the degradation speed is accelerated with increasing

operating time of components; on the contrast, when β < 1, the failure rate is decreasing

which means that the degradation speed is decelerated. A vast maintenance applications

have been made based on the Weibull distribution. In [14], the bridge maintenance

and replacement model is addressed with renewal theory and Weibull distribution is

used to model the degradation process of the bridge deck in [15]. In [16], grouping

maintenance strategies taking into account the economic dependence are proposed for

multi-component systems.

2.2.1.2 Proportional hazards model

Components degrades along with usage time but it also can be affected by other covari-

ables. In order to take covariables into consideration, the proportional hazards model is

proposed which assumes the hazard function can be written as follows:

λ(t; z) = g(z)λ0(t) (2.9)

where z is a vector of explanatory variables which are considered to influence the lifetime

parameters and λ0(t) is the baseline hazard function for a nominal set z0 where all the

explanatory variables take the value of zero. The proportional hazards model was first

proposed by Cox in [17] to incorporate the effects of covariates such as the operating

environment, the maintenance effect which might have impact on the failure rate. The

advantage of proportional model is that, without making any specific assumptions about

the form of the baseline hazard function, it is able to analyze experimental data, com-

pute maximum likelihood estimates and use likelihood ratio tests to determine which

explanatory variables are highly significant. The Weibull hazard function is mostly used

as a baseline hazard function see [9] which is defined as follows:

λ0(t) =
β

η
(
t

η
)β−1 (2.10)

and a common useful form for g(z) is log linear model: g(z) = exp(αz) where α is a

vector of parameters which defines the effects of the associated covariate.

The proportional hazards model is thereby powerful for modeling lifetime distribution

to take not only the age but also covariates which may influence the lifetime distribu-

tion into consideration [18], for example, the state of components [19, 20], the effect of

maintenance [21, 22].
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2.2.2 Monotone gradual degradation models

Gradual degradation models are based on the measurement of intermediate states be-

tween perfect functioning and total failure. According to the number of states, the

gradual degradation models can be further classified into discrete space degradation

models which can be modeled by Markov or semi-Markov process [23, 24, 25, 26] and

continuous space degradation models. In this document, we focus on the modeling of

continuous space gradual degradation. In effect, continuous space gradual degradation

models can be further divided into monotone degradation models and non-monotone

degradation models. In this section, two monotone degradation models are introduced.

2.2.2.1 Gamma process

Definition 2.4. A stochastic process (Xt)t≥0 is called Gamma process if it has the

following properties:

• X0 = 0

• (Xt)t≥0 has independent increments

• For t > 0 and h > 0, Xt+h−Xh follows a Gamma distribution with shape parameter

a(t + h) − a(h) and scale parameter β and the probability density function of

(Xt+h−Xh) is given by:

fa(t+h)−a(h),β(x) =
βa(t+h)−a(h)xa(t+h)−a(h)−1exp(−βx)

Γ(a(t+ h)− a(h))
, (2.11)

where Γ(.) is Gamma function and

Γ(a(t+ h)− a(h)) =

∫ ∞

0
ua(t+h)−a(h)−1e−udu, α > 0 (2.12)

and a(t) is be an increasing, right-continuous real-valued function of time t, with

a(0) ≡ 0. When a(t) is a linear function of time then the Gamma process is

stationary otherwise it is non-stationary.

Therefore, some interesting properties of homogenous Gamma process are noted as fol-

lows:

• If component fails when the degradation modeled by a Gamma process with pa-

rameter (a(t), β) exceeds a preset threshold L, then the reliability of component
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at t is

P (T > t) = P (Xt < L) =

∫ L

0
fa(t),β(u)du. (2.13)

• If degradation level of component at s is known as xs then

P (T > t|Xs = xs) = P (Xt < L|Xs = xs) =

∫ L−xs

0
fa(t)−a(s),β(u)du. (2.14)

• E(Xt) =
a(t)
β and var(Xt) =

a(t)
β2 t. For stationary Gamma process, the mean and

variance are all linear functions which means that homogeneous Gamma process

can model degradation with linear tendency over time.

• Gamma process is a pure jump Lévy process and the Lévy measure of stationary

Gamma process is ν(dx) = αe−βx

x dx.

Note that the Gamma process is time-homogeneous with independent and positive in-

crements so it is sensible to use this process to describe a gradual deterioration especially

the gradual damage monotonically accumulating over time in a sequence of tiny incre-

ments, such as wear, fatigue, corrosion, crack growth, erosion, consumption, creep, swell,

degrading health index, etc [27]. Another advantage of Gamma process is that it has

an explicit probability distribution function which permits both the mathematical de-

velopments and simulation. It has been extensively used to model single-unit systems

as well as variants such as non-linear shape function and/or parameters depending on

covariates (see [28, 29, 30, 31, 32, 33, 34, 35, 36, 37] for example).

2.2.2.2 Inverse Gaussian process

Definition 2.5. A stochastic process (Xt)t≥0 is called Inverse Gaussian (IG) process if

it has the following properties:

• X0 = 0

• (Xt)t≥0 has independent increments

• For t > 0 and h > 0, Xt+h−Xh follows a IG distribution with shape parameter

Λ(t+h)−Λ(h) and scale parameter η[Λ(t+h)−Λ(h)]2 and the probability density

function of IG distribution with parameter (a, b) is given by:

fIG(x) =

√
b

2πx3
exp(−b(x− a)2

2a2x
), x > 0 (2.15)

where Λ(t) is a monotone increasing function. If Λ(t) = ζt, the IG process is a

stationary process.



2.2 Individual degradation modeling 13

Therefore, some interesting properties of IG process are noted as follows:

• If component fails when the degradation modeled by an IG process with parameter

(ζt, ηt2) exceeds a preset threshold L, then the reliability of component at t is

P (T > t) = P (Xt < L) = φ[

√
η

L
(
L

ζ
− t)] + exp

2ηt

ζ
φ[−

√
η

L
(t+

L

ζ
)]. (2.16)

• If degradation level of component at s is known as xs then

P (T > t|Xs = xs) = P (Xt < L|Xs = xs)

= φ[

√
η

L− xs
(
L− xs

ζ
− t+ s)] + exp

2ηt

ζ
φ[−

√
η

L− xs
(t− s+

L− xs
ζ

)].
(2.17)

• E(Xt) = ζt and var(Xt) =
ζ3

η t if Λ(t) = ζt such that degradation level of compo-

nent increases linearly over time.

As a consequence, the IG process can be also used to model the monotone continuous

gradual degradation of components like the Gamma process. In effect, the IG distribu-

tion is used as a lifetime distribution in [38] as it describes an increasing failure rate at

the beginning and then a decreasing failure rate after a certain time. The IG process is

used to fit the degradation data in [39] which has shown that Gamma process is not suf-

ficient to well fit all types of data such that the IG process can be an alternative choice

for monotone gradual modeling. As well random effects can be investigated with IG

process. Considered as the first passage process of Brownian motion, two more random

effects models are proposed in [40]. It has been proved in [40] that the IG process can be

approximated as compound Poisson process. A general Bayesian method is proposed for

degradation analysis with inverse Gaussian process models in [41]. A condition-based

maintenance policy is proposed in [42] based on the inverse Gaussian degradation mod-

eling and the remaining useful life estimation is investigated with respect to random

effect in [43].

2.2.3 Non-monotone gradual degradation models

While the Gamma process is widely adopted in the literature to model continuous space

degradation, however some cases cannot be explained by monotone degradation models

due to internal mechanisms such as self-repair ability in short term or external impacts

such as measurement errors. Therefore non-monotone degradation models should be

proposed in order to depict the non-increasing increment in short term.
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2.2.3.1 Drifted Brownian motion

The Brownian motion is also called Wiener process and it is defined as follows:

Definition 2.6. A stochastic process (Bt)t≥0 is called standard Brownian motion if it

has the following properties:

• B0 = 0

• (Bt)t≥0 has independent and stationary increments

• For t > 0 and h > 0, Bt+h−Bh follows a Normal distribution with zero mean

and variance t and the probability density function of Normal distribution with

parameter (0, t) is given by:

f(x|0, t) = 1√
2πt

exp(−x2

2t
), x > 0. (2.18)

Then a drifted Brownian motion is defined as:

Xt = µt+ σBt, µ > 0, σ > 0 (2.19)

So that Xt+h−Xh is normally distributed with mean µt and variance σ2t for t > 0 and

h > 0. Some interesting properties of drifted Brownian motion are noted as follows:

• If component fails once the degradation modeled by a drifted Brownian motion

with parameter (µ, σ) exceeds a preset threshold L, then the reliability of compo-

nent at t is

P (T > t) = P (Xt < L) = φ(
L− µt

σ
√
t

)− exp
2µL

σ2
φ(−L+ µt

σ
√
t

). (2.20)

In effect, the first passage time of the drifted Brownian motion is distributed

according to an Inverse Gaussian distribution with parameter (Lµ ,
L2

σ2 ).

• If degradation level of component at s is known as xs then the remaining lifetime

distribution is

P (T > t|Xs = xs) = P (Xt < L|Xs = xs)

= φ(
L− xs − µ(t− s)

σ
√
t− s

)− exp
2µ(L− xs)

σ2
φ(−L− xs + µ(t− s)

σ
√
t− s

).
(2.21)

• E(Xt) = µt and var(Xt) = σ2t such that degradation level of component increases

linearly over time in long term. However, the system modeled by Brownian motion
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is not always degrading, but sometimes its degradation level is reduced without

maintenance due to self-repair.

Brownian motion is widely used to model the non-monotone degrading system see [44,

45, 46] for example.

2.2.3.2 Variance Gamma process

The symmetric variance Gamma (VG) model was first introduced by Madan and Seneta

in [47] to find an alternative to the Brownian motion in the modelling of option pric-

ing. Different from the Brownian motion, the symmetric VG model is able to control

the kurtosis of the distribution as well as the long-tailedness. Later, a 3-parameter

model which permits to control both skewness and kurtosis is developed in [48]. The

2-parameter symmetric VG and the 3-parameter asymmetric VG option pricing models

are empirically tested in [49]. They have shown that the VG models are better than the

Black-Scholes approach in approximating the observed market prices. Three methods

for sequential simulation and two bridge sampling methods of the VG process are pro-

posed in [49].

The VG Process is a Lévy process with independent stationary increments. A 2-

parameter (σ, β) symmetric VG process (Xt)t≥0 can be obtained from the Brownian

motion subjected to a random time change as follows:

Xt = W (Gt) (2.22)

Where Gt is a Gamma process with parameter ( t
β ,

1
β ) and W (t) is an independent

Brownian motion of zero drift and variance σ2Gt. For t > 0 and h > 0, increment

Xt+h−Xh follows a Normal distribution with zero mean and variance following a Gamma

distribution as follows:

f(x|σ2, β) =

∫ ∞

0
exp(− x2

2σ2v
)g(v|β)/(σ

√
2πv)dv, (2.23)

with

g(v|β) = 1

β

t
β

v
t
β
−1 exp (− 1

β
v)/Γ(

t

β
). (2.24)

Such that 



E[Xt] = 0

E[Xt − E[Xt]]
2 = σ2t

E[Xt − E[Xt]]
3 = 0

E[Xt − E[Xt]]
4 = 3σ4(t2 + βt)
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The kurtosis (E[Xt − E[Xt]]
4/var(X − t)) therefore is 3(1 + β/t) which signifies that

long-tailedness presents for short term data whereas long term data tend to be normally

distributed.

A 3-parameter (θ, σ, β) VG process can be defined from Brownian motion with drift in

Equation 2.22 such as:

Xt = θGt +W (Gt) (2.25)

Thus





E[Xt] = θt

E[Xt − E[Xt]]
2 = σ2t+ θ2βt

E[Xt − E[Xt]]
3 = 2θ2β2t+ 3σ2θβt

E[Xt − E[Xt]]
4 = 3σ2βt+ 12σ2θ2β2t+ 6θ4β3t+ 3σ4t2 + 6σ2θ2βt2 + 3θ4β2t2

The parameter θ is introduced to control the skewness. It is worth mentioning that the

kurtosis and skewness of Gamma process are 3(1+ 2
αt) and

2√
αt

such that the 3-parameter

VG process is more flexible in the control of statistical characters.

Two simulation methods are introduced in this section to sample the increments of a

VG process according to [50]:

Algorithm 1

• Set X0 = 0, i = 1, t0 = 0

• For given ∆ti = ti−ti−1, generate independentGi ∼ Γ(∆ti/β, β) andWi ∼ N(0, 1)

• Return Xti = Xti−1 + θGi + σ
√
GiWi.

Algorithm 2

• Set X0 = 0, i = 1, t0 = 0

• Set up =
1
2

√
θ2 + 2σ2/β + θ

2 , uq =
1
2

√
θ2 + 2σ2/β − θ

2

• For given ∆ti = ti − ti−1, generate independent G1
i ∼ Γ(∆ti/β, βup) and G2

i ∼
Γ(∆ti/β, βuq)

• Return Xti = Xti−1 +G1
i −G2

i .

Figure 2.1 illustrates a sampling path of degradation for a component when modeled by

a Gamma process and by a VG process with the same mean and variance. The mean

degradation of component per time unit is 9 and the variance is 45. Hence parameters

of two process are: for the Gamma process, α = 9/5, β = 5 with t = 1; for the VG

process, θ = 9, σ2 = 9, β = 4/9 with t = 1. It can be seen that the VG process is
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Figure 2.1: A sampling of degradation level of component which is model by the Gamma
process and the Variance Gamma process respectively

not a monotone process. In fact, in long term the VG process has increasing trend

while in short term the degradation level may decrease. Similar to Brownian motion, it

can be used to model non-monotone degrading systems and has better properties than

Brownian motion. However, it is much more complex such that it has not yet been used

in reliability engineering.

2.2.3.3 Time-Dependent Ornstein-Uhlenbeck Process

Besides the drifted Brownian motion and the VG process, another non-monotone s-

tochastic process can be used for degradation modeling is the time-dependent Ornstein-

Uhlenbeck (OU) process. The general OU process is defined as follows which satisfies a

stochastic differential equation:

dXt = θ(µ−Xt)dt+ σdBt (2.26)

where θ, µ, σ are parameters and Bt is a standard Brownian motion. The parameter µ

is the mean of the process, θ is the tendency of the process to return to the mean and σ

is the degree of volatility around it caused by shocks. In fact, when µ is a constant, the

solution of Equation 2.26 is:

Xt = µ(1− e−θt) + x0e
−θt + e−θt

∫ t

0
σeθsdBs, (2.27)

Such that:

E(Xt) = x0e
−θt + µ(1− e−θt), (2.28)

V ar(Xt) =
σ2

2θ
(1− e2θt), (2.29)

cov(Xs,Xt) =
σ2

2θ
e−θ(s+t)(e2θmin(s,t) − 1). (2.30)
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Equation 2.27 shows that no matter what the initial state is, the long-term value of

process is a constant (µ) which is noted as the mean-reverting property of the OU

process. The general OU process is widely used in the field of such as finance, biology

[51, 52, 53] to describe systems which stabilize at their equilibrium point. However,

in order to be adapted to the degradation modeling with a degrading trend, a time-

dependent OU process is more suitable. By considering the time-dependent parameters

in Equation 2.26, it can be given as:

dXt = (a(t)Xt + b(t))dt + σ(t)dBt (2.31)

where a(t), b(t), σ(t) are smooth enough functions and Bt is a standard Brownian motion.

Several notations are introduced below to simplify the subsequent expressions:

α(t, s) = −
∫ t

s
a(u)du

β(t, s) = −
∫ t

s
b(u)eα(u,s)du

γ(t, s) =

∫ t

s

σ2(t)

2
e2α(t,s)du

Therefore, the time-dependent OU process has following properties [54]:

• The solution of Equation 2.31 can be explicitly given as:

Xt = e−α(t,0)(X0 − β(t, 0) +

∫ t

0
σ(s)eα(s,0)dBs). (2.32)

• The mean of the process is given as:

E(Xt) = e−α(t,0)(E(X0)− β(t, 0)) (2.33)

• The covariance and variance of the process are given as:

cov(Xt,Xs) = e−(α(t,0)+α(s,0))(var(X0) +

∫ min(t,s)

0
σ2(u)e2α(u,0)du (2.34)

var(Xt) = e−2α(t,0)(var(X0) +

∫ t

0
σ2(u)e2α(u,0)du) (2.35)

As a consequence, the time-dependent OU process is able to model the degradation with

continuous sample path, non-stationary increments. In effect, the time-dependent OU

process is very flexible in controlling the statical properties such as mean, variance and

covariance with Equations 2.33 2.34 2.35. Moreover, the mean-reverting property of

the time-dependent OU process is very attractive when compared to drifted Brownian
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motion because it tends to return to the mean in long-term which provides a localizing

mechanism to control uncertainties in stochastic models such that uncertainties can be

adjusted. As a diffusion process, the OU process is investigated for the first passage

time problem with fixed boundaries in [55, 56, 57] and random boundaries in [58, 59].

In [60], the residual useful lifetime is estimated when the degradation is modeled by the

time-dependent OU process.

2.2.4 Competing-risk failures with damages and shocks

In practice, system performance gradually degrades due to such as wear, fatigue, ero-

sion meanwhile the system may also suddenly fail due to such as hidden manufacturing

defects, excessive loads, shocks. For these systems subjected to competing failure pro-

cess, the failure happens when the degradation reaches a critical threshold or when the

shock arrives, whichever happens first. In [61], three failure processes are considered

where two degradation processes are modeled by so-called random-coefficient degrada-

tion path function and so-called randomized logistic degradation path function and the

shock process is modeled by a compound Poisson process. Besides, these three processes

are mutually independent. An average long-run maintenance cost rate function is de-

rived based on the expressions for the degradation paths & cumulative shock damage,

which are measurable. In [62], a single-unit system subjected to two failure mechanism-

s is considered. The failure of system happens when the cumulative damages due to

degradation exceeds a fixed threshold or when the lethal shock arrives whose failure rate

is related to both degradation level and the environment stress, whichever occurs first.

The competing risk model is proposed to describe the reliability of the cylinder liners

of a marine Diesel engine in [63]. Two dominant failure modes are presented: wear

degradation described through a stochastic process and thermal cracking whose failure

time is described by the Weibull distribution.

While most of previous literatures treated failure processes as independent, it is more

appropriate to consider that they are dependent. In many practical situations, the de-

pendence between them is of importance and should not be neglected. In [64, 65], the

system fails when the degradation process reaches a critical threshold or when a shock

occurs although the degradation process has not reached the threshold. The degrada-

tion is modeled by a Gamma process whereas shocks arrival times can be modeled by

a nonhomogeneous Poisson process with stochastic increasing intensity which depends

on the degradation level. When the degradation level exceeds a fixed level, the failure

rate function due to shocks becomes r2(t) instead of r1(t) and r2(t) > r1(t),∀t > 0. In

[66], the system failure can be classified into K mutually exclusive failure modes where
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each failure mode depends on both time t and the system degradation level. The degra-

dation of system is modeled by a stochastic process which satisfies an Ito differential

equation. In [67], a system subjected to competing risks due to two degradation pro-

cesses and random shocks is considered. Each shock causes a sudden increment jump to

both degradation processes simultaneously such that the two degradation processes are

dependent. The system fails if the cumulative deterioration of any degradation process

exceeds a certain critical failure threshold. In [19], the degradation process is described

by a random-coefficient autoregressive model with time effect such that the system

age, previous state observations, and the item-to-item variability of the degradation are

jointly combined. The failure rate corresponding to the hard failure is characterized

a proportional hazards function where both system age and the degradation level are

involved. In [68], a s-dependent competing failures model is developed and both shock

and wear indicators are involved. The system is subjected to M degradation processes

and a shock process where the arrival of random shocks follows a homogeneous Poisson

process. The shock could be fatal to cause the failure of system at time point t with

probability p(t) and be nonfatal with a probability 1− p(t) however the nonfatal shock

brings both a sudden increment jump and degradation rate acceleration to the degrada-

tion process. The system fails when one of the degradation exceeds a fixed threshold or

a fatal shock arrives, whichever occurs first.

2.3 Stochastic dependence modeling

When dealing with the multi-component systems, it is more realistic to consider that

components within system are dependent. According to Thomas [10], the dependences

or interactions between components can be classified into three categories: economic

dependence, stochastic dependence and structural dependence which are related to three

aspects: maintenance cost, failure behavior and structure of system. In this chapter

which deals with the failure behavior modeling, the stochastic dependence which means

that the state or failures of components can influence the other components where the

state can be referred to age, failure rate, failure or other measure is discussed. In addition

to failure interactions which are mostly used, the construction of multi-dimensional

stochastic processes with stochastic dependence is also discussed to be adaptive with

the gradual degradation modeling.

2.3.1 Failure interactions models

Murthy and Ngugen in [69] define three types of failure interactions in a two-component

system as follows:
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• Type I: the failure of a component can induce the failure of the other component

with probability p.

• Type II: the failure of component 1 can induce the failure of component 2 with

probability p whereas the failure of component 2 acts as a shock to component 1

instead of immediate failure.

• Type III: the failure of a component can act as a shock to the other component

and influences the failure rate of that one.

Nicolai and Dekker puts the types II and III failure interactions together with one

definition that the failure of a component affects either the failure rate or causes a

random amount of damage to the state of one or more of the remaining components [8].

In this work, the definition of [8] is adopted to review the existing results.

2.3.1.1 Type I failure interactions

The type I failure interactions was first studied in [69] for a two-unit system where the

failure of component induces the failure of other component with a probability p and

has no influence on the other component with probability 1−p. Murphy and Ngugen in

[70] extended this model for multi-component systems where the failure of a component

induces the failure of the whole system with probability p and does not induce other

components to fail with probability 1−p and proposed two maintenance policies. To deal

with a two-unit system with both economic dependence and type I failure interactions,

failure-based, aged-based as well as opportunistic maintenance policies to take advantage

of economic dependence is proposed in [71]. Later, based on the same failure interaction

model, block-replacement policies are proposed in [72]. Sharp and sheu in [73] derived the

long-run expected cost for age and block replacement models for the multi-component

systems with failure interactions. Liu et al in [74] extended the failure interactions

between components in a more general way where the failure of component i can induce

the failure of component j with probability pij and a warranty cost model is derived.

All the above mentioned literatures modeled the failure of component with a life time

distribution.

2.3.1.2 Type II failure interactions

The type II failure interactions was first discussed in [69] for a two-unit system where

the failure of component does not induce the immediate failure of the other component

but it affects the failure rate of the other component. In [75], the failure of component 1
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is subject to a Poisson process and each failure of component 1 causes a random damage

to component 2. Component 2 fails when its cumulative damage exceeds a threshold

K. A two parameter maintenance policy is proposed where the system is preventively

replaced either system ages to T or cumulative damage of component 2 exceedsK and the

expected long-run maintenance cost is thereby derived. In [76], a two-component parallel

system is studied and the failure of one component can modify the failure probability of

the other component with probability p and does not interact with probability 1− p. In

[77, 78], failures of component 1 occur according to a non-homogeneous Poisson process

with increasing failure rate whereas the failure of component 2 occur according to a

homogeneous Poisson process (HPP) with constant failure and increases the failure rate

of component 1 by p percent.

2.3.2 Degradation interactions

While failure interactions models depict the dependence between components when a

failure occurs, the state of the component might also influence degradation processes

of other components in the system even when it does not fail. Such type of stochastic

dependence can be defined as degradation interactions. Degradation interactions exist

in many mechanical systems. For example, in wind turbines, the degradation of hydro-

dynamic bearings may increase the looseness of primary transmission shafts such that

the vibration levels in the gearbox increase [79]. Several papers investigate degradation

interactions for multi-component systems. Degradation rate interactions model is pro-

posed in [79] and a system with n dependent components is considered. Components

in the system continuously degrade but their states can be divided into discrete degra-

dation states according to their degradation signals. When component i transitions to

a more severe degradation state, it increases the degradation rate of the other compo-

nents by an amount δij (∀j 6= i). Therefore, the overall degradation rate of component

in the system consists of two parts: its inherent degradation rate and the increments of

degradation rate due to the degradation state transitions of the other components. As a

result, stochastic modeling of degradation signals of component is established by taking

the degradation rate interactions into account. In [80], the degradation state of compo-

nent is modeled by the general degradation path model where the degradation state of

component at time nT S(nT ) can be expressed by S(nT ) = S(n(T −1))+∆n where ∆n

is the changes between two inspection intervals which is characterised by a probability

distribution constructed with the historical data. The component interaction model is

proposed by discussing the influence of degradation state of a component on the state or

the changes of another component. For example, if the state of component 2 affect the

state of component 1, then S1(nT ) = S1(n(T − 1)) + ∆1
n + g(S2(nT )) where Si is the
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state of component i (i = 1, 2) and g can be estimated by using regression technique. An

industrial case study is provided and it shows that degradation interactions can affect

maintenance of the system. This model is further developed in [81].

2.3.3 Multivariate models with common degradation parts

While failure and degradation interactions describe the interactions between components

due to the influence of a failure or state of components, the degradation of components

could depend on each other due to the common degradation part which can be referred

to the impact of the operating environment. As Gamma process is widely used in gradual

degradation modeling for single-unit systems to optimize various maintenance policies,

a bivariate Gamma process is proposed in [82, 83] for two-unit systems and defined as

follows:

X1
t = (Y 1

t + Y 3
t )β1,

X2
t = (Y 2

t + Y 3
t )/β2,

(2.36)

where (X1
t )t≥0 and (X2

t )t≥0 describes the degradation of components 1 and 2 respec-

tively. (Y i
t )t≥0 (i = 1, 2, 3) are mutually independent univariate Gamma processes with

parameter (αi, 1) such that the degradation of component i (i = 1, 2) is Gamma process

with parameter (αi + α3, βi). In the bivariate Gamma process model, the degradation

of components are correlated by a common degradation part which can be interpret-

ed as the influence of environment. Therefore the joint probability density function of

(X1
t ,X

2
t )t≥0 is given as follows:

f(x1, x2) = β1β2

∫ min(β1x1,β2x2)

0
fα1t,1(β1x1 − y3)fα2t,1(β2x2 − y3)fα3t,1(y3)dy3, (2.37)

where fα1t,1 refers to the probability density function of Gamma distribution with para-

meters (α1t, 1). The Spearman’s rank correlation coefficient is used in bivariate Gamma

process to measure the dependence degree between components and it ρX1
t X

2
t
can be

obtained as

ρX1
t X

2
t
= [E(X1

t X
2
t )− E(X1

t )E(X2
t )]/[

√
var(X1

t )
√

var(X2
t )]

= var(Y 3
t )/[

√
var(X1

t )
√
var(X2

t )β1β2]

= α3/[
√
α1 + α3

√
α2 + α3].

(2.38)

Equation 2.38 implies that the dependence between two components is decided by the

common degradation process (Y i
t )t≥0 such that it has limitation in modeling the strong

dependence degree.
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The common degradation is also presented in [67] where the system is subjected to two

dependent competing degradation processes and each degradation process is composed

by a individual Gamma process and a common shock process. As the reliability of

system is difficult to be derived analytically because of dependence, copulas are used to

estimate the reliability under such of modeling.

2.3.4 Copulas and Lévy copulas

Copulas have been widely used in finance to deal with the multivariate distribution func-

tion model [84, 85, 86, 87]. On one hand, they can separate the dependence structure

and marginal distributions from joint distribution. On the other hand, they permit dif-

ferent types of marginal processes (e.g. for a two-unit system, one component is Gamma

process and the other one is inverse Gaussian process). In [88], ordinary copulas are cho-

sen to describe the stochastic dependence between components with Gamma marginal

distributions at time t. Three ordinary copula functions (Gumbel, Clayton, Normal) are

investigated in [88] with different dependence degrees from independence to strong de-

pendence for both series and parallel systems. It has been shown that the optimal results

of series system are not sensitive to the stochastic dependence whereas those of parallel

systems are influenced. The higher stochastic dependence exists, the higher expected

cost rate is obtained and optimal inspection period is shorter because the parallel sys-

tems have higher probability to fail when components within system are more dependent

on each other. Besides, it has been shown that type of ordinary copula function under

the same Kendall’s tau has no impact on optimal results of neither parallel nor series

systems. In [68], the dependence structure between M degradation processes is modeled

by a copula function instead of using multivariate distributions. A two-stage Maximum

Likelihood Estimation is used to perform the statistical inference for copulas: firstly

, the marginal reliability probability of each degradation process with the given para-

meters is calculated; secondly, the Maximum Likelihood Estimation is used to estimate

the parameters of the joint copula reliability function with the underlying of the de-

pendent relationship between multiple degradation processes. Similarly, the dependence

between two degradation processes due to the additional damages caused by shocks in

[67] make it difficult to calculate the system reliability such that the copula approach

is applied to predict the system reliability. The modeling of s-dependence between t-

wo components with multi-state are proposed in [89]. The components in the systems

have M+1 discrete state spaces and s-dependencies between the two components for all

state subsets is considered. For example, the time spent by component 1 in state subset

{0, 1, 2, . . . , N1} (N1 < M) depends on the time spent by component 2 in state subset

{0, 1, 2, . . . , N2} (N1 < M). The computation of joint state probabilities is presented by
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using copula functions for all combinations of state subsets of two components.

It can be concluded from the above mentioned studies that copulas are very efficient

and flexible to model the dependence structure for multi-component system so as to

compute the reliability of system. Nevertheless, maintenance actions do not take into

consideration in [87, 89] such making us think about the problem whether the depen-

dence relationship remains the same after maintenance. Not clear instructions are given

in [88] how the increments are generated by ordinary copulas. In fact, the increments

generated As a consequence, the infinite divisible property of multi-dimensional Gamma

process might not be kept which signifies that the dependence structure modeled by or-

dinary copulas depends on time. Furthermore, the results in [88] show that maintenance

policies taking advantage of stochastic dependence should be proposed.

To overcome this drawback, Cont & Tankov extend the ordinary copulas to Lévy copu-

las dedicated to Lévy processes in [90] as a time-invariant solution. Application of Lévy

copulas can be seen in [91, 92, 93, 94, 95]. In effect, Lévy copulas model the dependence

structure by coupling the jump paths of components thus they are time independent

and are not influenced by maintenance actions.

2.4 Structure of system modeling

Since we consider the multi-component systems, the structure of system is briefly intro-

duced in this section. The structure of system can be various types according to the

configurations of components.

• Series system: the system is functioning if and only if all components in this system

are functioning and the reliability of system is given as follows:

• Parallel system: the system is functioning if at least one component in this system

is functioning and the reliability of system.

• k-out-of-n system: the system is functioning if at least k components in this system

are functioning and the reliability of system. When k = 1, it becomes parallel

system and when k = n, it becomes series system.

• Series-parallel system: the system is composed by several series subsystems in

parallel.

• Parallel-series system: the system is composed by several parallel subsystems in

series.

• Complex structure system: the system is composed by numbers of components

and can not be classified into above mentioned types.
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The parallel and series systems are the simplest multi-component system whereas they

differ in the sensitivity with stochastic dependence. In fact, for parallel systems, the

stronger stochastic dependence exists, the less reliability the systems have [88]. On the

contrast, reliability of series systems is not sensitive to stochastic dependence because

the system fails if one component fails. In [96, 97, 98, 99, 100], k-out-of-n systems

are studied. Complex structure systems are less investigated, examples can be seen in

[16, 101].

2.5 Summary and analysis

This chapter is devoted to presenting an overview of the current researches about the

degradation modeling which is an important aspect for maintenance optimization. The

three aspects relating to degradation modeling are briefly discussed and reviewed: indi-

vidual degradation modeling, stochastic dependence modeling and structure of system

modeling. For individual degradation modeling, various models have been proposed:

the lifetime distribution models (Weibull distribution, proportional hazards model etc),

the gradual degradation models with discrete state space (Markov process and semi-

Markov process etc) and with continuous state space (Gamma process, IG process,

drifted Brownian motion etc). Since the lifetime distribution can not express the real

state of component, the gradual degradation models have more advantages for making

maintenance decisions based on the state of component. Even though a vast results

have been obtained for single-unit systems with more and more complex models tak-

ing account for multiple sources of degradation, covariates, non-stationary trend that

may depend on covariates, the degradation modeling for multi-component systems is

less explored and when studied, stochastic dependence between components is not often

taken into account. Existing stochastic dependence models mainly focus on the failure

interactions or degradation interactions whereas the inherent dependence between com-

ponents due to common environment or the structure of system is rarely investigated.

Therefore, one objective of this work is to propose a gradual degradation modeling for

multi-component systems in which stochastic dependence is considered.

To address such a problem, several issues should be tackled such as how to couple sever-

al degradation processes while preserving their individual properties within a common

structure or how to propose a dependence modelling framework flexible enough to be

used with various system structures and number of components and allowing to rep-

resent not only various dependence degrees but also structures. Moreover an easy to

implement framework is required for the evaluation of a cost criterion for performance

optimization.

In term of stochastic dependence which is the main concern of degradation modeling
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of multi-components, Lévy copulas appear to be very flexible in the dependence struc-

ture as well as the range of dependence degree when compared to dependence modeling

through a common degradation part such as the multi-variate Gamma process obtained

from a trivariate reduction. In particular, Lévy copulas are able to depict symmetric or

non-symmetric dependence structures. Moreover Lévy copulas which are designed for

the Lévy process family apply for a wide range of individual processes from a continuous

path Brownian motion to pure jumps processes such as compound Poisson or Gamma

processes as well as mixed models with continuous part and jump part. When compared

to ordinary copulas, it models the dependence in the aspect of increment path instead

of increment over a specific time which ensures the stable dependence structure and the

individual properties of marginal processes such as the infinite divisible property for a

Gamma process. Furthermore, Lévy copulas can separate the dependence structure and

the marginal distributions. As a result, Lévy copulas can be a good choice to model

the stochastic dependence for degradation processes of multi-component systems. Re-

garding the individual deterioration modeling of components, we have reviewed Gamma

process is very popular among other Lévy processes to model the degradation of compo-

nents because it has independent and stationary increments and increasing degradation

path such that it is more suitable for our case where monotonically degrading system is

considered. Besides, the inverse tail integral of Lévy measure of Gamma process can be

numerically computed which permits the simulation of multi-dimensional process with

Lévy copulas.

In the next chapter, we will review the maintenance modeling which is another aspect

of maintenance optimization.
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3.1 Introduction

In this chapter, the literature review on the maintenance modeling will be introduced.

Given history data or degradation modeling, maintenance modeling aims to schedule

maintenance activities so as to minimize the maintenance cost or maximize the avail-

ability or the reliability of system according to the context. In the earlier years, the

system is maintained or replaced when it fails such a strategic is called the failure-based

maintenance. However such maintenance strategies are very expensive since the replace-

ment can not be planned and the failure may lead to catastrophic results due to the

fact that failure time is random. In effect, the failure of system can result in significant

economic losses (e.g. the delay of a mission), physical damage or threats to human life

(e.g. the chemical plant, nuclear power plant). To overcome this drawback, preventive

maintenance strategies are developed to prevent failures of system. Many preventive

maintenance strategies have been developed over a few of decades. According to the

number of components within the system, they can be classified as maintenance strate-

gies for single-unit systems and maintenance strategies for multi-component systems [7].

Maintenance strategies for single-unit systems consider that the whole system can be

synthesized as a unique component. In this way, the maintenance decision can be made

based on a scalar indicator which can be seen as a characteristic of an abstract com-

ponent (e.g. failure rate, degradation level, age). The proposed maintenance strategies

for single-unit systems are more and more efficient by taking account of different kinds

of competing degradation processes but is hard to extend these approaches to multi-

component systems due to the existing interactions between components. Therefore,

the adaptive maintenance strategies for multi-component systems should be developed.

The remainder of this chapter is organized as follows. Before introducing maintenance

strategies, section 3.2 discusses the impact of maintenance on the maintained compo-

nent. Maintenance actions are called perfect, imperfect or minimal according to their

efficiency. Section 3.3 presents and summarizes the maintenance strategies for single-

unit systems and section 3.4 is devoted to maintenance models for multi-component

systems. Some conclusions and perspectives are drawn in section 3.5.

3.2 Types of Maintenance actions

According to the state of component when it is maintained, the maintenance actions can

be categorized into two major classes: corrective maintenance and preventive mainte-

nance. Corrective maintenance is the maintenance that occurs when a component fails

such that it brings the failed component back to operation while the preventive one

is the maintenance that occurs when the component is still functioning but considered
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to be degraded enough to need a maintenance. Preventive maintenance is designed to

avoid or mitigate the sudden failure of component through planned operations so that

it is often more economic than unplanned corrective maintenance. Therefore, appropri-

ate maintenance activities should be scheduled to prevent the occurrence of failures of

system and to improve the system reliability and/or the availability.

According to the efficiency of maintenance actions on the maintained component, main-

tenance actions can be also classified into three categories: perfect maintenance, minimal

maintenance and imperfect maintenance [102]. A maintenance is perfect if component

state after maintenance is as good as new (AGAN). For the ease of analytical results,

most of literatures consider perfect maintenance in their models [29, 77, 103, 104]. A

minimal maintenance means that the system is restored to a functioning state but its

characteristics are the same as just before the maintenance that is named as bad as

old (ABAO). Minimal maintenance is often applied to the corrective maintenance how-

ever it is less used for gradual degradation modeling. In [65], a single-unit system is

subjected to two failure modes and the failure caused by external shocks is maintained

with minimal repair. In [105], the component is subjected to two types of failures and

type I failure is corrected by a minimal failure whereas type II failure is replaced with

probability p and minimally maintained with probability 1− p. While perfect and min-

imal maintenance models describe two extreme states after maintenance actions, the

imperfect maintenance which can bring a system to any condition between AGAN and

ABAO seems more suitable for practical applications.

In order to measure the degree of improvement after maintenance actions, several models

are proposed in literatures. The (p, q) rule is proposed to model imperfect maintenance

by the combination of perfect maintenance and minimal repair where the state of com-

ponent after maintenance is AGAN with probability p and is ABAO with probability

1−p, see [105, 106, 107, 108]. Even though the (p, q) rule is efficient for deriving optimal

maintenance policies, it is more realistic to return the system in an intermediate state

between AGAN and ABAO after the maintenance action especially for the gradually

degrading components. The improvement factor method is introduced in [109] where

the maintenance actions change the system time of the failure rate curve to some newer

time but not all the way to zero (not new). The investigation of improvement factor

method for imperfect maintenance can be found in [110, 111, 112] where the failure rate

of system after maintenance is reduced proportionally to maintenance cost, the age of

system or by a fixed reduction. Similar to the improvement factor model, the virtual

age model is introduced in [113]. This model assumes that the system has a so-called

virtual age Vn immediately after the (n − 1)th maintenance operation and the failure

time distribution after the (n− 1)th maintenance operations depends on Vn−1. Between

two maintenance actions the virtual age is incremented by a random amount Xn. When

the nth imperfect maintenance action takes place, the virtual age Vn is reduced by an
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amount proportional to virtual age before maintenance or by an amount proportional

to the additional age Xn as following:

Vn = Vn−1 + anXn (3.1)

Vn = an(Vn−1 +Xn) (3.2)

where an is the age reduction factor of nth maintenance action. Equation 3.1 indicates

that the maintenance action can only reduce additional age whereas the imperfect main-

tenance modeled by Equation 3.2 reduces the cumulative virtual age. Researches have

used the concept of virtual age model for imperfect maintenance, see [114, 115, 116].

While the improvement factor and the virtual age models restore the system to a newer

state but do not modify failure rate function, the hazard rate model is introduced in

[117] where the maintenance restore the system to AGAN but the failure rate hn(.) af-

ter the nth maintenance action is modified as hn(t) = βnhn−1(t) where βn ≥ 1 is called

adjustment factor. Therefore, the slope of the failure rate function increases with the

number of imperfect maintenance operations. A hybrid hazard rate model is proposed

in [118] where maintenance action not only reduces the effective age to a newer one, but

also further changes the slope of the failure rate curve. The hybrid hazard rate model is

further discussed in [119, 120]. The improvement factor model, virtual age model and

hazard rate model are based on the failure rate function and Figure 3.1 gives an illus-

tration of the impact of these models on the failure rate function when a maintenance

takes place.

For a gradually deteriorating system, a cumulative damage shock model with imperfect

periodic preventive maintenance actions is proposed in [121]. Each preventive mainte-

nance reduces the degradation level by (1 − b)% where b ∈ [0, 1] so that b can be seen

as the improvement factor of imperfect maintenance. The cumulative degradation level

after nth imperfect preventive maintenance is Xn+ = bXn− and the related maintenance

cost is unique and independent from b. In [122], the degradation level after preventive

maintenance is returned to a fixed value xr and the cost of preventive maintenance

action depends on the degradation reduction. The randomly distributed improvement

factor of imperfect maintenance is used in [123, 124, 125]. As imperfect maintenance also

impacts the evolution of the system deterioration, the mean degradation of system after

each imperfect maintenance action is modeled as an exponentially distributed increment

in [125].
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3.3 Maintenance modeling for single-unit systems

Several kinds of maintenance policies for single-unit systems are proposed in the litera-

ture and they can be classified into two major categories: time-based maintenance poli-

cies and condition-based maintenance policies. The difference between them is whether

the degradation information of component is available or taken into consideration for

decision-making. For time-based maintenance policies, the decision-making process is

based on the operating time of component and its general failure time distribution with-

out considering the real state of component. With the development of sensor techniques,

condition-based maintenance which enables to manage maintenance activities based on

information collected through system condition monitoring has gained a lot of attention

over recent years.

3.3.1 Time-based maintenance policy

Age-based maintenance policy is the most used preventive maintenance policy. Accord-

ing to the age-based maintenance policy, the component is preventively maintained when

its age arrives at T or correctively maintained when it fails, whichever occurs first, with

the maintained component to be as good as new. In order to optimize the age-based

maintenance policy, a mathematical form is proposed in [126] as follows:

C(T ) =
CcF (T ) + Cp(1− F (T ))

∫ T
0 (1− F (u))du

(3.3)
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where Cc is the unit corrective maintenance cost, Cp is the unit preventive mainte-

nance cost, F (.) is the cumulative distribution function of the failure time. The optimal

value of T is determined by minimizing the cost function C(T ) in equation 3.3. When

preventive maintenance cost is equal to corrective maintenance cost, the age-based main-

tenance policy tends to be failure-based maintenance policy and T can be infinity. By

considering minimal and imperfect maintenance, various extensions of the age-based

maintenance policy are proposed. The age-based maintenance policy is extended in

[127] by replacing the component to a new one at time T or when it has suffered N

failures. If component fails before time T and the number of failures is less than N, the

system is minimally repaired at the failure. In [128], the system suffers two types of fail-

ure where type I failure (minor failure) is corrected with minimal repair whereas type II

failure (catastrophic failure) is corrected with replacement. An age-based maintenance

policy is implemented such that the system is replaced when type II failure occurs or

at the opportunity after age T, whichever occurs first and the optimal value of T is

derived. In [129], the system undergoes imperfect maintenance either upon failure or

after having reached a predetermined age Ti, whichever of them occurs first and it is

replaced at the time of N th maintenance such that the system is back to as good as new.

The imperfect maintenance brings the age of the system back to zero but with a higher

failure rate. Then a mathematical model is proposed for determining the optimal value

of N and the sequence of preventive maintenance dates (T1, T2, . . . , TN−1) to minimize

the long-term average cost. Two age-based maintenance policies with minimal repair

are proposed in [65] for a single-unit system whose failures are due to the competing

causes of degradation and shocks. To summarize the age-based maintenance policy and

its extensions, the maintenance decision is mainly made based on the age of component

and the number of failures.

Similar to age-based maintenance policy, periodic preventive maintenance policy is pro-

posed which maintains the component at fixed time kT (k = 1, 2, . . . , n) independently

of the failure history of the component. When the component is found in a failed state at

time kT , it is repaired; otherwise, a preventive maintenance is carried out. The periodic

maintenance policy is suitable for the gradual degrading component where the failure

is soft and can only be detected at certain times. The difference between age-based

and periodic maintenance policies is that the failure is not corrected immediately in the

latter one so that a cost of downtime is involved in the cost function C(T ) which is

shown below:

C(T ) =
CcF (T ) + Cp(1− F (T )) + CdE[(T − d)1{T>d}]

T
(3.4)

where Cd is the cost of downtime per time unit, d is the failure time and 1{T>d} = 1

for T > d otherwise 1{T>d} = 0. The maintenance in periodic maintenance policy
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can be perfect, imperfect or minimal. For example, in [130], the system is maintained

preventively at periodic times kT (k ∈ N) where the preventive maintenance reduces

the rate of degradation and the system is replaced by a new one at the N th preventive

maintenance. If the system fails between two preventive maintenance, it undergoes

minimal repair. In [131], the component is repaired imperfectly at (i − 1)th failure

(i ∈ N, i < k) and after k − 1 failures, a periodic maintenance policy is applied. The

periodic policy preventively maintains the system at times T , 2T , 3T , . . . and brings

system to as good as new with probability p and to as bad as old with probability

1 − p and an imperfect repair is performed when a failure occurs between preventive

maintenances. Non periodic maintenance policy is also proposed so called sequential

preventive maintenance policy because of the imperfect maintenance, see [117, 118, 132].

3.3.2 Condition-based maintenance policy

If the degradation information of component can be collected by monitoring, condition-

based maintenance can be performed in order to provide flexible maintenance dates to

avoid failures of component as well as lengthening the operating time when the com-

ponent is still in good condition. A condition-based maintenance policy monitors com-

ponents in the system and the inspections will reveal the information of components.

For condition-based maintenance policy, the replacement strategy is: at each inspec-

tion, if the component is revealed to be failed, a corrective maintenance is carried out

on the component; if no failure is detected but the degradation information (such as

failure rate, wear or accumulative damage) of component is revealed to exceed a pre-

ventive maintenance threshold M , a preventive maintenance is carried out. Therefore

condition-based maintenance is based on the collected information through condition

monitoring process [9] in which two aspects are involved: inspection frequency and the

collected information.

In practice, information can be gathered either continuously or at discrete times. When

the system is continuously monitored, the information of component is available all the

time so that the maintenance policy is more sensitive and react faster when a failure

occurs. Nevertheless, the cost of continuous monitoring is very expensive because spe-

cial inspection devices are required. In contrast, periodic inspection is less expensive

but system may fail between two inspection times. As a consequence, condition-based

maintenance policies with non-periodic inspections where the next inspection interval

depends on the current state of component are often implemented [29, 133, 134]. In-

spections are more and more frequent as the component deteriorates or ages.

Irrespective of whether the system is monitored continuously or through inspections,
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two cases relating to the observability level may arise: completely observable compo-

nent and partially observable component [9]. For a completely observable component,

the state of component can be completely observed or identified such that the collected

information can be used directly to make a maintenance decision. Several models are

proposed to investigate condition-based maintenance policies for observable components.

Among them, various degradation models as well as the types of maintenance are used.

Examples which use different degradation models can be seen in [29, 103, 135, 136]. In

[135], a condition-based maintenance policy is proposed based on a random coefficient

growth model where the coefficients of the regression growth model are assumed to fol-

low known distribution functions. Both the optimal critical level and inspection interval

in condition based maintenance is determined based on this model in terms of a criterion

of interest, which can be cost-based or reliability-based. In [29, 103], Gamma process is

used to describe the degradation process and non-periodic inspection scheme as well as

preventive maintenance threshold are optimized by using semi-regeneration technics. A

Markov chain is used in [136] where the inspection period and preventive maintenance

threshold are found to maximize the system availability. Although a lot of papers deal

with the condition-based maintenance policy assume that the maintenance restore the

component back to as good as new, condition-based maintenance policies with imperfect

maintenance are also investigated, see [125, 137].

For partially observable components, the state of component cannot be fully observed or

identified. For example, in [138], failure of component can be detected with a probability

1 − p or can not be detected with a probability p due to monitoring problems and the

condition-based maintenance policy with control-limit rule is implemented where the in-

terval of two inspections depends on the revealed state and the component is repaired if

and only if it is known that the component is in condition i for every i > π. In [139], the

system state is not observable, only the failure can be observed. Then the replacemen-

t problem is formulated as an optimal stopping problem with partial information and

transformed to a problem with complete information by applying the projection theorem

to a smooth semi-martingale process in the objective function. The dynamic equation

is derived and analyzed in the piecewise deterministic Markov process framework. The

system’s degradation is represented by a proportional hazards model in [22] and the

optimization of the optimal maintenance policy is formulated as a partially observed

Markov decision process since the state of component is unknown. In [140], the problem

is also formulated as a partially observed Markov decision process with heterogeneous

parameters. The model is solved using a backward dynamic programming method and

a dynamic strategy is produced.
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3.4 Maintenance modeling for multi-component systems

Even though maintenance policies for single-unit systems have been widely studied, the

results can not be directly extended for multi-component systems. Maintenance policies

should be developed for taking into account the economic dependence for the multi-unit

systems. Hence, in this section we discuss the extension of maintenance policies from

single unit systems to multi-component systems by taking into account the economic

dependence.

3.4.1 Economic dependence

Economic dependence applies if the maintenance cost depends on whether the compo-

nents are maintained jointly or separately. The economic dependence can be positive or

negative.

Positive economic dependence implies that maintenance cost can be saved if components

are jointly maintained rather than separately, due to saving of so-called the set-up cost,

‘general economies of scale’ or downtime opportunity in [8]. The term economies of

scale refers to the fact that grouping maintenance activities allows to save maintenance

costs. Nicolai and Dekker distinguish two major forms of economies of scale that are

set-up and ‘general economies of scale’. The concept of set-up cost relies on the fact

that the cost of each maintenance action (either corrective or preventive) can consist of

two parts: a set-up cost which is related to human activities and can be shared and an

individual cost for each component incurred by materials consuming. In other words

only one set-up cost is incurred when maintenance activities are grouped, regardless

of the number of maintained components. The ‘general economies of scale’ cannot be

modeled by a single set-up cost. While the cost saving due to set-up cost is linear to

the number of maintained components, that due to ‘general economies of scale’ can be

concave or convex. The downtime opportunity consists in turning the downtime of sys-

tem into an opportunity to carry out preventive maintenance for non-failed components.

The downtime opportunity is also different from the set-up cost because the cost saving

depends on the maintenance duration.

In terms of negative economic dependence, it is less investigated in the literature. Neg-

ative economic dependence between components occurs when maintaining components

simultaneously is more expensive than maintaining them individually. The cause of neg-

ative maintenance can be resources and manpower restrictions, safety requirement or

production-loss, see [8]. Firstly, resources and manpower restrictions depict that the in-

creasing number of maintenance may lead to the fact that the maintenance requirement

are hardly satisfied or costly. For example, maintaining several components at the same



38 Chapter 3. State of the art part II: Maintenance modeling

time requires to hire more labour and the storage of spare parts but the maintenance

activities are less frequent. As a consequence, the balance between workload fluctuation

and grouping maintenance should be found. Secondly, there are often restrictions on

the use of equipment, when executing maintenance activities simultaneously. Moreover,

if the breakdown of system may cause potential danger, it is better not to maintain

component simultaneously. As an example, in a system with high safety requirement,

redundancy is used to improve the reliability of system but joint maintenance of redun-

dant parts causes the loss of its benefit. Production loss may also increase more than

linearly with the number of components out of operation.

3.4.2 Maintenance models taking advantage of economic dependence

Considering the economic dependence, grouping maintenance strategies should be de-

veloped to provide more opportunities for costs saving by taking full advantage of pos-

itive economic dependence whereas the maintenance grouping should be avoided when

negative economic dependence applies. Various optimal grouping maintenance mod-

els have been proposed in the literature, an overview of this problem can be seen in

[7, 8, 141, 142, 143]. Among those proposed in the literature, the maintenance model-

s considering economic dependence can be classified into several categories relating to

different aspects [142]. Firstly, maintenance models can be identified as stationary or

dynamic according to the planning characteristics. In stationary models, a long-term

stable situation is assumed and static rules for maintenance are applied on an infinite

horizon. The stationary models can be further classified into three categories: group-

ing of corrective maintenance, grouping of preventive maintenance and opportunistic

maintenance regarding to types of maintenance action. In dynamic models, short-term

information such as changes in the degradation parameters of components or unexpected

opportunities of grouping can be taken into account. These models generate dynamic

decisions that may change over the planning horizon. Therefore, maintenance models

are reviewed according to the three categories of stationary models and then dynamic

models in the following.

3.4.2.1 Grouping of corrective maintenance

In some types of system such as parallel systems or k-out-of-n systems, redundancy of

components make it possible to postpone the corrective maintenance of a failed com-

ponent to benefit from costs saving achieved by grouping the maintenance tasks when

subsequent failure occur. In [144], an optimum age replacement policy is proposed to
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minimize the maintenance cost and production loss due to failure of machine for N-unit

systems. All the failed components are replaced only at (kT )k∈N. With the increasing

number of failed machines, the maintenance cost per machine is reduced due to the

shared set-up cost whereas the production loss per machine is increased. A nomograph

was developed for machines with exponentially distributed failure time and the period

T for repair as well as the total repair cost per cycle can be obtained easily from the

nomograph. In [145], an optimal replacement policy is proposed which resets all failed

machines at the moment when the number of failed machines reaches some prescribed

number k. This model is similar to that in [144] but the optimal number k instead of

the period T has to be found to minimize the cost criterion so that the replacement

dates are not deterministic. A grouping corrective maintenance strategy which consider

two types of components and leaves the non-critical components in failed state until the

failure of system occurs is proposed in [146]. In [147], an optimal maintenance policy is

proposed for k-out-of-n system based on a dynamic programming model and the optimal

result turns out that the component should wait and be left in failure state until the

sum of degradation level of other components exceeds a certain level.

3.4.2.2 Grouping of preventive maintenance

An advantage of preventive maintenance is that it can be planned so that necessary

resources can be prepared which enable a large number of maintenance executed at

the same time with lower cost. The existing grouping methods for preventive mainte-

nance can be identified as direct grouping methods or indirect grouping methods [142].

In direct grouping methods, components are set into a fixed group and they are always

preventively maintained with the other components in the same group at an appropriate

moment. The groups of components as well as the optimal maintenance time for each

group should be decided. The number of possibilities for splitting N components into

groups is 2N − 1 (see [148]) such that the optimization of direct grouping is NP-hard. A

direct grouping model is studied in [149] where the date of maintenance in a group is set

to the shortest individual optimal replacement date of component in the group. In this

way, the problem is solved in polynomial time an a dynamic programming algorithm is

developed.

Since the optimization of direct grouping approaches is very complicated, indirect group-

ing methods are proposed. Two types of indirect grouping approaches exist in the lit-

erature: the standard indirect grouping method and the joint-overhaul problem. The

standard indirect grouping is to maintain the component i at (kiT )ki∈N such that T and

ki ∈ N should be optimized, see [150, 151, 152]. As the components heterogeneously

degrade in the system, the standard grouping approach does not fix the components in
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a group so that it is more flexible than direct grouping. The joint-overhaul problem is

similar to the standard indirect grouping but it overhauls the system every T time units

and the component i undergoes minor overhaul every ( Tki )ki∈N time units [153, 154, 155].

The overhaul of system brings back all the components to as good as new while the minor

overhaul of component may be not.

3.4.2.3 Opportunistic maintenance

In the previously reviewed grouping maintenance strategies, the maintenance activi-

ties are jointly carried out in a group when a fixed number of failures is reached or

after a fixed period. Nevertheless, this kind of grouping strategies does not consider

the downtime opportunities such that an opportunistic maintenance policy should be

proposed. Opportunistic maintenance applies when the failure of a component or the

system downtime is turned into an opportunity to group corrective maintenance with

preventive maintenance. Set-up cost as well as downtime cost can thus be saved. Since

opportunistic maintenance policy groups maintenance by chance, it can either bring

forward some preventive maintenance tasks at the failure time of a critical component

or delay the corrective maintenance of non-critical components to the planned time of

preventive maintenance of critical components. A component is said to be a critical

component if its failure causes immediately the system break down whereas the failure

of non-critical component does not influence the operation of system.

Numerous literatures use opportunistic maintenance model for optimizing multi-unit

systems maintenance problem. The opportunistic maintenance models for a k-out-of-

n: G system is studied in [156] and two (τ, T ) opportunistic maintenance policies are

proposed. The (τ, T ) model corrects each failure occurring in time interval [0, τ ] with

minimal repair. Once m components fail in [τ, T ), the corrective maintenance for failed

components is immediately carried out and combined with the preventive maintenance

of unfailed components so as the system is renewed. If less than m components fail in

[τ, T ), the whole system is preventively replaced at time T. Decision variables are τ and

T whereas m is considered as a predetermined parameter. The imperfect maintenance

is also considered in a way that when preventively maintained, the system is renewed

(that is system returns to as good as new) with probability p and minimally repaired

(that is as bad as old) with probability 1 − p. In [157], the preventive maintenance

of series multi-component systems leads to the downtime of system such that it pro-

vides the opportunity to maintain the other components to save the downtime cost and

maintenance cost but a penalty cost incurs at the same time since the useful working

time of components is reduced. A dynamic opportunistic strategy is proposed where a

component is preventively maintained when its reliability reaches a threshold then the
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possibility of preventive maintenance of the other components is studied based on the

difference between cost saving (maintenance cost and downtime cost) and penalty cost.

In [158], a series multi-component system which consists of N components is consid-

ered. The preventive maintenance of component i is only carried out at discrete times

(kiτ)k∈N,i∈(1,2,...,N). At each failure of component, it should be decided whether other

components can be opportunistically replaced with it or wait their scheduled replace-

ments. A solution procedure based on Monte-Carlo simulations with informative search

method is proposed. At the failure time ti of component i, component j is preventively

replaced with component i if the expected cost of taking opportunity to bring forward

the preventive maintenance of component j is lower than that of leaving it until the

next planned preventive maintenance (given that it may fail before). In [159], the real-

time remaining useful life (RUL) of components is predicted with stochastic dependence

based on stochastic filtering theory and historic condition monitoring data and then the

optimal preventive maintenance date is analyzed based on the RUL prediction within

a time window. The component is maintained at its optimal preventive maintenance

date or as soon as it fails which turns out to be an opportunity to carry out preventive

maintenance for other components. An opportunistic preventive maintenance strategy

is proposed where the component j is preventively replaced when component i should be

maintained with the condition that its individual optimal preventive maintenance date

fails in the optimal opportunistic maintenance zone. Other opportunistic maintenance

models can be seen [160, 161, 162, 163, 164, 165]. In general, opportunistic maintenance

approach is to group the corrective maintenance with preventive maintenance based on

the cost gain evaluation criteria.

3.4.2.4 Dynamic grouping

According to planning horizon, the dynamic grouping methods can be categorized into

two types: methods with finite horizon and methods with rolling horizon [148, 166].

The methods with finite horizon apply for systems that are used during a given peri-

od and not afterwards so that the maintenance optimization is performed within this

finite mission time. The methods with rolling horizon optimize the maintenance cost

with tentative optimal long-term parameters at decision time but they can be updated

when short-term information is available. Rolling-horizon models are proposed to take

advantage of infinite horizon models to have more stable solutions compared to finite

horizon models and to make use of short-term information as well.

Finite horizon models are less investigated in the literature because it is more difficult to

discuss the optimal policies for these models. An overview of cost evaluation of mainte-

nance policies for single-unit systems on a finite horizon can be found in [167]. In [168], a
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finite horizon model is proposed for evaluating the expected cost associated with a peri-

odic condition-based maintenance policy. A generalized renewal equation is formulated

for the expected cost in a finite horizon. It is shown that the finite time cost curve is less

smooth than the expected long-term cost curve. Since the analytical equations of the

expected cost in a finite horizon for multi-component systems are more complex than

single-unit systems, the simulation method is adopted in [88] to evaluate the expected

cost and its probability distribution. In [169], the planning horizon is segmented into

J discrete intervals and at the end of each interval, a decision should be made: either

a preventive maintenance, a corrective maintenance or no maintenance action is car-

ried out. When maintenance actions are carried out simultaneously, downtime cost can

be saved. Therefore, the problem can be formulated as an integer linear programming

problem and can be solved with heuristic methods.

The basic idea of dynamic grouping with rolling horizon is to group the maintenance

activities following four steps:

• Individual optimization: the individual optimizations are first performed by con-

sidering each component as a mono-component system and minimizing the expect-

ed long-term cost on an infinite horizon. A penalty cost function is established

in order to take account for changes caused by the shift (advance or delay) of

the replacement date. On one hand the useful life of components is reduced if

maintenance dates are advanced and on the other hand the probability of failure

is increased if the maintenance dates are delayed.

• Tentative planning: from time t, the planning horizon PH is defined based on the

individual optimization as PH = [t,max1≤i≤n{t∗i }] where t∗i is the optimal replace-

ment date of component i after time t with considering short-term information.

In the defined planning horizon, tentative preventive activities of components are

displayed.

• Grouping optimization: on the planning horizon PH, groups of maintenance ac-

tivities are determined at times t∗Gi
by minimizing the total cost where Gi is a

group i of maintenance activities. The cost saving of one group is twofold. On

one hand, grouping maintenance activities of components jointly saves the set-up

cost or reduces the downtime cost (if maintenance duration is non-negligible). On

the other hand, a penalty cost is induced due to the shift of execution time of

maintenance.

• Updating of the maintenance planning: when new short-term information is avail-

able, the maintenance planning is updated by repeating the steps of tentative

planning and grouping optimization. In this way, the maintenance planning is

dynamic and adaptive.
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The main challenge of dynamic grouping strategy is the optimization of the group struc-

ture over the planning horizon. A fast approach to derive the grouping structure is

proposed in [148] which reduced the computation complexity of set-partitioning algo-

rithm in [170]. In [171], a dynamic grouping method for age-based replacement with

rolling horizon is developed. The gradual degradation model is used and condition mon-

itoring information is incorporated at decision time. This method is further developed in

[172] on infinite horizon considering different levels and combinations of dependences be-

tween components. In [173], a dynamic grouping maintenance strategy based on failure

rate distribution is proposed where the preventive maintenance duration is taken into

consideration. In [16, 100], complex system structures are then considered. In [21], a

grouping strategy based on proportional hazards model is proposed for a condition-based

maintenance policy with periodic inspection. At each inspection, failed components are

correctively replaced and unfailed components can be preventively replaced according

to the following decision rule: if the hazard rate of a component exceeds the level-1 risk

threshold d1, it is preventively replaced; moreover if a maintenance (either preventive

or corrective) takes place, then any component whose hazard rate exceeds the level-2

risk threshold d2 (d2 < d1) is preventively replaced. Therefore, the level-2 risk thresh-

old is introduced to group the maintenance activities for condition-based maintenance.

In [174], a multi-level predictive maintenance policy is proposed for multi-component

systems with complex structure. The preventive maintenance activities are triggered

only when the estimated system reliability before the next planned inspection is under a

reliability threshold R0 to be optimized. If this condition is met then the optimal group

of components to be preventively maintained is obtained by minimizing its cost-based

group improvement factor then the components in the optimal group is preventively

maintained. Therefore the decision parameters of the proposed maintenance policy in

[174] are (T,R0) where T is inspection interval.

3.5 Summary and analysis

This chapter is devoted to presenting the existing maintenance models in the literature.

Maintenance policies for single-unit and multi-component systems are discussed as well

as the maintenance effect. Maintenance strategies for single unit systems are constantly

being improved, combining several maintenance tasks and/or inspection scheme accord-

ing to the degradation cause. For multi-component systems, economic dependence has

been substantially addressed but stochastic dependence even when taken into accoun-

t the degradation model is not often used in the decision making process. To deal

with economic dependence, grouping strategy has to be proposed since it can reduce

the maintenance cost. Nevertheless, the condition-based maintenance strategies which
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make a decision based on the state of component are often more efficient than age-based

maintenance strategies. In both reviewed papers using condition-based maintenance

([172] and [174]) the inspection schemes is not taken into account. Moreover, all the

components in the system are inspected at the same period which might lead to high

inspection cost because faster degrading components require high frequency inspection

while the slower ones do not need. Therefore, the objective of this thesis regarding the

maintenance modelling is twofold. Firstly, we aim to propose grouping strategies for

condition-based maintenance with considering stochastic dependence. Secondly we aim

to explore the use of stochastic dependence in the decision making process.

In the next two chapters, we aim to address the following problems:

• How to use the condition monitoring information to make a decision about the

opportunities to group maintenance activities.

• How to benefit from cost saving due to grouping opportunities while preserving a

maintenance scheme adapted to the individual behaviour of each component.

• How to profit the stochastic dependence between components to adapt the online

decision.

• How to provide different inspection schemes for a number of components without

increasing the complexity of optimization.

• Which indicator(s) should be used to make a decision regarding a multi-component

system.

chapter 4 is devoted to addressing the first three problems with a case study for a

two-component system combining stochastic and economic dependences. The impact of

each type of dependence is discussed in relation to individual behaviour of components.

chapter 5 increases the number of components and considers more complex dependence

structures to deal with on the last three problems.
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4.1 Introduction

This chapter is written mainly based on [175]. The objective of this chapter is to pro-

pose condition-based maintenance decision rule evaluating grouping opportunities with

individual inspection schemes to take advantage of both economic and stochastic depen-

dence.

Positive economic dependence applies when maintaining two or more components simul-

taneously is cheaper than maintaining them separately is considered in this document.

In such a context, the maintenance policies should be designed to maximize the op-

portunities for grouping maintenance activities. A decision rule based on the available

information is proposed to decide at each inspection time how many components should

be maintained. In this way the replacement of a component may be postponed or pre-

empted when compared to the date that would be set if only individual information was

considered.

Unlike those works that assume that the components are independent in most litera-

tures, the stochastic dependence modeled by Lévy copulas is considered in our proposed

degradation model. Since the multi-component systems may contain various compo-

nents, it leads to various dependence between components. We first consider a rather

simple case of symmetric dependence in this chapter and a two-component system in

parallel is presented as an example. The asymmetric dependence will be considered in

the next chapter.

The rest of this chapter is organized as follows. Section 4.2 is devoted to the descrip-

tion of individual degradation and stochastic dependence model. Section 3.3 describes

the new condition-based maintenance policy and the implemented classic maintenance

policies. In Section 3.4, numerical experiments are presented and sensitivity analysis is

carried out. Finally, conclusions and perspectives are drawn in Section 5.

4.2 Stochastic degradation modeling

In the aim of dealing with multi-unit systems with stochastic dependence when compo-

nents suffer gradual degradation, we propose to use Lévy copulas which are well suited

to model stochastic dependences for Lévy processes. We first detail the individual degra-

dation model of components in the system. Then we briefly introduce main properties of

Lévy copulas. Simulation methods of multi-dimensional Gamma processes with Clayton

Lévy copula are given to end this section.
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4.2.1 Marginal Gamma process

In chapter 2, we have reviewed some degradation models and justified that the Gamma

process can be used to model the individual gradual degradation of components (noted as

(Xt)t≥0) in this work. Recall that (Xt)t≥0 is a Gamma process if given shape parameter

α and scale parameter β, it has the following properties:

• X0 = 0

• (Xt)t≥0 has independent and stationary increments

• For t > 0 and h > 0, Xt+h−Xh follows a Gamma distribution with shape parameter

αt and scale parameter β and the probability density function of (Xt+h−Xh) is

given by:

fαt,β(x) =
βαtxαt−1exp(−βx)

Γ(αt)
, (4.1)

where Γ(αt) is Gamma function and

Γ(α) =

∫ ∞

0
uα−1e−udu, α > 0 (4.2)

In order to simulate the degradation of a components modeled by the Gamma process,

the Inverse Lévy Measure Method proposed in [176] is used for the purpose of being

combined with Lévy copulas. Thus the degradation level of component at time t is

defined as follows:

Xt =
∞∑

n=1

U−1(
Γn

T
)1[0,t](vn), (4.3)

where U−1 is the inverse tail integral of Lévy measure of Gamma process and it is defined

as:

U−1(y) = inf{x > 0, U([x,∞)) < y} (4.4)

U([x,∞)) is the tail integral of Lévy measure of Gamma process. As the Lévy measure

of Gamma process is ν(dx) = αe−βx

x dx, then

U([x,∞)) =

∫ ∞

x
ν(dx),

=

∫ ∞

x

αe−βx

x
dx,

= αE1(βx),

(4.5)
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where E1(x) =
∫∞
x

e−t

t dt is known as the exponential-integral function. Using Equations

4.5, Equation 4.3 is rewritten as:

Xt =
∞∑

n=1

E1
−1(

Γn

αT
)/β1[0,t](vn), (4.6)

where t ∈ [0, T ], {Γn}n∈N is a sequence of arrival times of a standard Poisson process

and {vn}n∈N is a sequence of mutually independent and uniformly distributed ran-

dom variables on [0,T]. Variables {Γn}n∈N and {vn}n∈N are also mutually independent.

Note that E1
−1 can not be given explicitly (neither E1) thus an approximate evaluation

should be developed. When the degree of freedom of χ2-tail probabilities tends to zero,

its survival function tends to the exponential-integral function. Therefore, we adopt the

inverse χ2-tail function in Matlab for simulation which is proposed in [177].

Since E1
−1 is a decreasing function, for the feasibility of simulation, the series represen-

tation can be truncated. The arrival times of a standard Poisson process are generated

until the arrival time Γn is greater than τ , because very large values of Γn relate to too

small size of jump and have no significant contribution to the increment. An example of

a sample path of a Gamma process using series representation is sketched in Figure 4.1.

It can be seen that the sampling procedure is in three steps. Firstly in Figure 4.1.(a)

the arrival times of a standard Poisson process (Γn)n∈N (red circles on x-axis) are sim-

ulated which are used to calculate the jumps sizes (blue lines between circle and star)

by applying the inverse tail integral of Levy measure of Gamma process. It should be

noticed that the jump sizes are in decreasing order at this step and reduce quickly so

only 17 points of Poisson process are depicted because the jump size becomes negligible

after that. Figure 4.1.(b) shows that a jump time is allocated to each jump size using

uniform random variables on [0,1]. Finally, by combining the jump sizes obtained in

Figure 4.1.(a) and jump times in Figure 4.1.(b), Figure 4.1.(c) illustrates the resulting

increment path Gamma process.

In fact, other methods exist for simulating the Gamma process in a more simple but

efficient way. Among those that are based on the series representations of Gamma pro-

cess, the Bondesson’s method is simpler as the involved functions are in closed form.

The reason why we adopt the Inverse Lévy Measure Method in this work is that it is

based on the Lévy measure where the Gamma process is totally determined by its Lévy

measure. Therefore, this method can be easily extended to multi-dimension case when

stochastic dependence is considered.
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Figure 4.1: Example of series representations for gamma process on [0,1] with α = 7/5,
β = 1/5

4.2.2 Symmetric Stochastic dependence modeling using Lévy copulas

When extended to multi-component systems, a multi-dimensional Gamma process which

represents the state of system should be proposed and the stochastic dependence should

be considered. As it has been reviewed in chapter 2, while failure and degradation

interaction models are focused on how a change in a component state impacts the other

components, the inherent stochastic dependence due to a common cause of degradation

is less investigated. Even though a bivariate Gamma process with common degradation

part model (BGCD model) proposed by Mercier et al. in [82] can be used to describe

such type of stochastic dependence, it is limited in some dependence degrees (e.g. the

complete dependence can not be expressed). Moreover, BGCD model considers that

the influence of a common cause is the same on all components whereas it may be

different. Therefore, Lévy copulas which model the dependence between jumps is more

suitable for multi-dimensional degradation processes case as well as its flexibility in a

wide range of dependence structures and degrees. Since Lévy copulas are strongly related

to ordinary copulas, we first introduce and review the main features of ordinary copulas.
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We discuss a two-component system in this chapter, hence only two-dimensional copulas

are presented but all results can be easily extended to d-dimensional copulas.

4.2.2.1 Dependence modeling with ordinary copulas

The word copula was first employed in a mathematical or statistical sense by Sklar in

[178] to describe the functions that join together one-dimensional distribution functions

to form multivariate distribution functions. In other words, copulas are the functions

which contain the dependence information of multivariate distributions. In this way,

multivariate distributions can be studied by their marginal distributions and the depen-

dence. General introduction of copulas can be seen in [179]. In this section, the main

properties of copulas are introduced as well as two copula functions.

Definition 4.1. A two-dimensional copula function C is a function defined from [0, 1]2

to [0,1] who has the following properties:

1. C is grounded and 2-increasing.

2. For u ∈ [0,1] and v ∈ [0,1],

C(u, 1) = u, (4.7)

and

C(1, v) = v. (4.8)

Obviously, property 1 is a necessary and sufficient condition for the copula function to

be a multivariate cumulative distribution function (cdf). Property 2 implies that the

marginal distributions of C are both uniform. Hence copulas are joint cdfs on [0, 1]2

with standard uniform marginal distributions.

Theorem 4.2. Sklar’s Theorem. Let F be a joint distribution function with margins

F1, F2. Then there exists a copula C such that for all x1, x2 in R,

F (x1, x2) = C(F1(x1), F2(x2)) (4.9)

If F1 and F2 are continuous, then C is unique; otherwise, C is uniquely determined on

the product of range of F1 and F2. Conversely, if C is a copula and F1 and F2 are

distribution functions, then the function F defined by 4.9 is a joint distribution function

with margins F1 and F2.

This theorem is firstly proposed by Sklar in [178]. It shows that a multivariate distribu-

tion can be constructed from the pair of its marginal distributions and a given copula
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function. All the dependence information is contained in the copula function. Con-

sequently, it is important to choose an appropriate copula function for its underlying

dependence.

Several copula functions have been proposed and widely studied such as Gaussian cop-

ula, student t copula and Archimedean copulas to name a few. In this work, we are

interested in the Archimedean copulas which allow for a wide range of dependence and

have the advantage of being known in closed form.

Definition 4.3. Let ϕ be a continuous, strictly decreasing function from [0, 1] to [0,∞]

such that ϕ(1) = 0, and let ϕ−1 be the inverse of ϕ. Let C be the function from [0, 1]2

to [0, 1] given by

C(u, v) = ϕ−1(ϕ(u) + ϕ(v)) (4.10)

If ϕ is convex then any function C defined by Equation 4.10 is a copula function and it

is said to be an Archimedan copula.

The function ϕ is called the generator of the Archimedean copula. The proof can be

seen in [179] (Lemma 4.1.2.).

Among Archimedean copulas, two copulas are introduced and used in this work which

are Gumbel copula and Clayton copula. The generator of Gumbel copulas is

ϕ(x) = (− lnx)θ, θ ∈ [1,∞],

then

C(u, v) = exp{−[(− ln u)θ + (− ln v)θ]
1
θ }.

The generator of Clayton copulas is

ϕ(x) = x−θ − 1, θ ∈ [−1,∞]/{0},

then

C(u, v) = (u−θ + v−θ − 1)−
1
θ .

In Figure 4.2, the scatterplots are shown with different values of θ. The figure shows that

Clayton and Gumbel copulas have different dependence structure. In effect, Clayton

copula has lower tail dependence where small values of variables are more correlated

whereas Gumbel copula has upper tail dependence where dependence is stronger for

large values of variables.
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Figure 4.2: Scatterplots for Gumbel and Clayton copulas with different values of θ

4.2.2.2 Stochastic dependence modeling with Lévy copulas

In the previous section, we have reviewed the definition and main properties of ordinary

copulas. For a two-dimensional Lévy process, the probability distribution at a specific

time t can be characterized by the marginal distributions and an ordinary copula function

Ct. However, since the marginal distributions depend on time, Ct may be also changed

through time such that the infinitely divisible property is not guaranteed in this way. In

order to model the dependence between Lévy processes, Lévy copulas are proposed in

[92] to model the dependence structure in the field of Lévy measure instead of probability.

Definition 4.4. A two-dimensional tail integral of Lévy measure is a function U from

[0,∞]2 to [0,∞] such that:

1. U is a d-increasing function.

2. U is equal to zero if one of its arguments is equal to ∞.

3. U is finite everywhere except at zero and U(0, 0) =∞.

4. U(x1, x2) = υ([x1,∞)× [x2,∞)), x1, x2 ∈ (0,∞)2 and υ is a Lévy measure.

5. U(x1, 0) = U1(x1) and U(0, x2) = U2(x2). Ui is called the marginal tail integral of

Lévy measure.

Therefore function U is similar to a survival function of a probability density function

but the Lévy tail integral relates to the Lévy measure and it is not a bounded function.
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Theorem 4.5. Let U be a two-dimensional tail integral with margins U1 and U2. There

exists a positive Lévy copula C such that

U(x1, x2) = C(U1(x1), U2(x2)) (4.11)

If U1 and U2 are continuous, this Lévy copula is unique. Otherwise it is unique on

RanU1 ×RanU2, the product of ranges of one-dimensional tail integrals. Conversely, if

C is a positive Lévy copula and U1, U2 are one-dimensional tail integrals then Equation

4.11 defines a two-dimensional tail integral.

Notation C is reserved for ordinary copulas in the subsequent sections and C is reserved

for Lévy copulas. The proof of this theorem can be seen in [92] and it is an extension of

Sklar’s theorem to the tail integrals of Lévy measure.

Theorem 4.6. Let (Xt)t≥0 = (X1
t ,X

2
t )t≥0 be a two-dimensional Lévy process with pos-

itive jumps having tail integral U and marginal tail integrals U1 and U2. There exists a

two-dimensional positive Lévy copula C which characterizes the dependence structure of

Xt = (X1
t ,X

2
t ), that is, for all x1, x2 ∈ [0,∞),

U(x1, x2) = C(U1(x1), U2(x2)) (4.12)

If U1 and U2 are continuous, this Lévy copula is unique. Otherwise it is unique on

RanU1×RanU2. Conversely, let (X
1
t )t≥0 and (X2

t )t≥0 be two one-dimensional Lévy pro-

cesses with positive jumps having tail integrals U1 and U2 and let C be a two-dimensional

positive Lévy copula. Then there exists a two-dimensional Lévy process with Lévy copula

C and marginal tail integrals U1 and U2. Its tail integral is given by Equation 4.12.

This theorem states that the dependence between components of a multi-dimensional

Lévy process can be modeled by using Lévy copulas to couple the marginal tail integral

of Lévy measure. Thus the multivariate Lévy process models can be constructed by

specifying separately jump dependence structure and one-dimensional margins.

Now come back to the series representations of Gamma process introduced in Section

4.2.1. When extended to a two-dimensional Gamma process (Xt)t≥0 = (X1
t ,X

2
t )t≥0

with margin tail integrals U1 and U2 and Lévy copula C, the series representation is as

follows:

X1
t =

∞∑

n=1

U−1
1 (

Γ1
n

T
)1[0,t](vn),

X2
t =

∞∑

n=1

U−1
2 (

Γ2
n

T
)1[0,t](vn). (4.13)
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(Γ1
n)n∈N is a sequence of arrival times of a standard Poisson process. Conditionally to Γ1

n,

Γ2
n has distribution function ∂C(x,y)

∂x |x=Γ1
n
. Therefore with a specific Lévy copula function,

the two-dimensional Lévy process can be constructed. By analogy with Archimedean

copulas introduced in Section 4.2.2.1 for the ordinary copulas, Archimedean Lévy copulas

can be constructed. Since the domain and range of Lévy copula functions are different

from that of ordinary copula functions, the generators should be defined to satisfy that:

ϕ is a decreasing function defined on [0,∞), ϕ(0) =∞ and ϕ(∞) = 0.

In order to meet the above conditions, the generator of Gumbel Lévy copula can be

given as

ϕ(x) = (ln (x+ 1))−θ, θ ∈ (0,∞]

then

C(u, v) = exp{[(ln (u+ 1))−θ + (ln (u+ 1))−θ]−
1
θ } − 1.

Similarly, the generator of Clayton copula is

ϕ(x) = x−θ, θ ∈ (0,∞]

then

C(u, v) = (u−θ + v−θ)−
1
θ .

In the next section, we discuss simulation methods focusing on Clayton Lévy copula as

an example for convenience purposes.

4.2.3 Simulating bivariate Gamma processes with Lévy copulas depen-

dence

In order to simulate a bivariate Gamma process with Lévy copulas dependence, two sim-

ulation methods are introduced in this section. The first one is based on the conditional

copula function and the second is based on the Marshall-Olkin algorithm.

4.2.3.1 Conditional distribution method

Simulating (Γ1
n,Γ

2
n)n∈N directly from Equation 4.13 needs to calculate the first derivative

of copula function C with respect to its first variable. When the Lévy copula is in Clayton

family with the form C(u, v) = (u−θ+v−θ)−
1
θ , then the conditional distribution function

is:

C(v|u) = ∂C(u, v)/∂u

= (1 + (u/v)θ)
−(θ+1)/θ

.
(4.14)



4.2 Stochastic degradation modeling 55

Since C(u, v) is a two-dimensional positive Lévy copula, C(v|u) exists for all values of

u ≥ 0 and is continuous for all v ∈ [0,∞] moreover 0 ≤ C(v|u) ≤ 1. Thus with

conditional method, the arrival times (Γ1
n)n∈N of a standard Poisson process are first

generated and then Γ2
n is sampled from Γ1

n as:

Γ2
n = C

−1(Γ2
n|Γ1

n) = Γ1
n(y

−θ/(1+θ) − 1)−1/θ, (4.15)

where y is a random variable uniformly distributed on [0,1]. Algorithm 1 is then devel-

oped.

Algorithm 1 Simulating two-dimensional Gamma process modeled by Clayton Lévy
copula by the conditional distribution method

Input: τ , θ, T , α1, α2, β1, β2
n← 0, Γ1

0 ← 0
while Γ1

n ≤ τ do
n← n+ 1
w ← exp(1)
Γ1
n ← Γ1

n−1 + w
y ← rand(1)
Γ2
n ← Γ1

n(y
−θ/(1+θ) − 1)−1/θ

vn ← rand(1)
end while
N ← n

Output: X1
t =

∑N
n=1E1

−1( Γ1
n

α1T
)/β11[0,t](vn), X2

t =
∑N

n=1 E1
−1( Γ2

n

α2T
)/β21[0,t](vn)

As the series representations are truncated for the reason of simulation time, the con-

vergence of Algorithm 1 is slow regarding X2
t when the parameter θ is small related to a

weak dependence. The reason is that generating enough significant jumps of component

2 from those of component 1 is more difficult when the dependence between components

is weak. Indeed the stopping criterion of Algorithm 1 (Γ1
n ≤ τ) relates to the required

precision. It ensures that all jumps generated for component 1 are greater than U−1
1 (τ).

By properly setting τ , the mean degradation speed of component 1 can be controlled

and maintained at the desired value. Conversely, no precision is ensured for component

2: when generating Γ2
n using Equation 4.15, some big and/or medium-size jumps can

be missing for component 2. Thus, the performance of Algorithm 1 depends on the

combination of (θ, T, τ) (see [180]). The more θ is low and the more τ/T should be set

to a high value in order to control not only the mean degradation speed of component

1 but also that of component 2. Anyway, it is difficult to get convergence when θ < 1

and in this case Algorithm 1 is not recommended to use.
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4.2.3.2 Marshall-Olkin algorithm

In [181], another method is proposed to construct a random vector (u, v) with distribu-

tion function given by the Archimedean copula. According to Marshall-Olkin algorithm,

a two-dimensional random vector (U1, U2) subjected to Archimedean copulas can be sim-

ulated in three steps:

1. First simulate a common variable V with distribution function G such that its

Laplace function is ϕ−1 in Equation 4.10 (inverse of the generator).

2. Then simulate two individual independent uniformly distributed variables X1 and

X2.

3. Finally set Ui (i = 1, 2) equal to ϕ(− ln (Xi/V )).

Similar algorithms have been derived for sampling Archimedean Lévy copulas (see [180]).

In particular, Algorithm 2 below can be used to simulate a two-dimensional Gamma

process with dependence modeled by Clayton Lévy copula.

Algorithm 2 A Marshall-Olkin type algorithm for sampling a two-dimensional Gamma
with dependence modeled by Clayton Lévy copula

Input: τ , θ, T , α1, α2, β1, β2
n← 0, ω1

0 ← 0
while ω1

n ≤ τ do
n← n+ 1
w ← exp(1)
ω1
n ← ω1

n−1 + w
y ← rand(1)
zn ← (ωnΓ(

1
θ )/θ)

θ

xn ← exp(1), yn ← exp(1)
vn ← rand(1)

Γ1
n = (xn/zn)

− 1
θ , Γ2

n = (yn/zn)
− 1

θ

end while
N ← n

Output: X1
t =

∑N
n=1E1

−1( Γ1
n

α1T
)/β11[0,t](vn), X2

t =
∑N

n=1 E1
−1( Γ2

n

α2T
)/β21[0,t](vn)

As a result, components are processed symmetrically when simulated by Algorithm 2

so that the resulting precision is similar for both components. Algorithm 2 can be used

even if the dependence degree between components is weak however practical use of the

Marshall-Olkin type algorithms is limited to cases where the underlying function G can

be deduced from its Laplace transform ϕ−1 (G is a probability distribution function or

a more general mass function depending on whether we consider an ordinary copula or

a Lévy copula). For the Clayton Lévy copula, function G is G(x) = θx
1
θ

Γ( 1
θ
)
. Some cases of

Lévy copulas are detailed in [180] but for other Archimedean copula function, function
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Figure 4.3: Satterplots of the increments two-dimensional Gamma process on [0, 0.1]
modeled by Clayton Lévy copula with different values of θ and α1 = 7/5, α2 = 9/5,

β1 = β2 = 1/5

.

G may be very difficult to derive.

Finally, Figure 4.3 is given which illustrates the dependence of the increments of a

two-dimensional Gamma process on [0, 0.1]. It indicates that unlike Clayton ordinary

copula, Clayton Lévy copula has stronger dependence for the big jumps which can

better represent the reality. In fact, when a component suffers a very significant damage

(e.g. a big jump occurs), the impact on the other components can be stronger as

they try to reach a new balance working state. Figure 4.4 illustrates the degradation

paths of components over time and it indicates that when the greater θ is, the stronger

dependence exists between components such that the degradation paths are more similar.

4.3 Maintenance policies

In this section, we propose some maintenance policies for a two-component system when

individual degradation of components is modeled by a Gamma process and dependence

between components by a Clayton Lévy copula. Firstly classic maintenance policies such

as periodic and condition-based maintenance policies are studied for this type of two-

component system. Then a grouping strategy is developed in order to take advantage

of the economic dependence between components.



58 Chapter 4. Maintenance policies considering symmetric dependence

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

100

time

de
gr

ad
qt

io
n 

le
ve

l

 

 

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

time

de
gr

ad
at

io
n 

le
ve

l

 

 

0 2 4 6 8 10
0

20

40

60

80

100

120

time

de
gr

ad
at

io
n 

le
ve

l

 

 

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

time

de
gr

ad
at

io
n 

le
ve

l
 

 

component 1

component 2

component 1
component 2

component 1
component 2

component 1
component 2

Figure 4.4: Evolution of degradation over time for components modeled by Gamma
process with Clayton Lévy copula with different values of θ = 0.4, 0.8, 1.6, 6 and α1 =

7/5, α2 = 9/5, β1 = β2 = 1/5

.

4.3.1 Main assumptions and cost model

For all considered maintenance policies, we make the following assumptions:

• Each component degrades gradually and when its degradation level exceeds a pre-

set corrective threshold L, it is considered as failed and a corrective replacement

is needed. When the component is replaced before failure, replacement is said to

be a preventive replacement. Both replacements (preventive and corrective) are

assumed to be perfect and instantaneous (the duration of maintenance is negligi-

ble).

• The degradation level of each component can be obtained only by inspection.

Besides, if the component fails, it remains unavailable until its next inspection by

then it is replaced. We assume that each inspection reveals the degradation level

of component perfectly.

• The maintenance cost criterion depends on the following unitary costs:

- A preventive maintenance cost (cip, i = 1, 2) if a preventive maintenance is carried

out.

- A corrective maintenance cost (cic, i = 1, 2) if a failure happens.

- A penalty cost per time unit (cu) if one component fails but the other one is still

working.
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- A downtime unitary cost per time unit (cd) when the system is down.

- An inspection cost (cinsp) if an inspection operation is executed

To evaluate maintenance policies, we use the criterion of long-run expected cost of system

per time unit which is defined as:

C∞ = lim
t→∞

E[c(t)]

t
.

The cumulative cost of system c(t) depends on the number of preventive and corrective

replacements (N i
P (t), N

i
C(t)), the number of inspections (N i

I(t)), the individual cumu-

lative downtime of components (ui(t)), i = 1, 2 and the cumulative downtime of system

(D(t)). Therefore, c(t) can be written as:

c(t) =

2∑

i=1

(cipN
i
P (t) + cicN

i
C(t) + cinspN

i
I(t) + uicu(t)) + cdD(t). (4.16)

To investigate the influence of economic dependence, we consider the cost of any re-

placement (both preventive and corrective) to consist of two parts: a set-up cost cr

which can be shared, mainly incurred by human activities and an individual cost for

each component incurred by materials consuming. In this way, two individual replace-

ments (either corrective or preventive) incur two cr while simultaneous replacement of

both components incurs a single cr. Therefore a set-up cost cr is saved as soon as two

maintenance actions are carried out simultaneously. Obviously, taking account of set-up

cost will affect the optimization of maintenance. When the set-up cost is significant,

the maintenance policy tends to find an appropriate replacement date by delaying the

preventive maintenance of one component or bringing forward the replacement of the

other one. Therefore, the maintenance cost on [0,t] is reduced by the number of grouped

maintenance actions Ng(t) multiplied by the set-up cost as in the following equation:

c(t) =

2∑

i=1

(cipN
i
P (t) + cicN

i
C(t) + cinspN

i
I(t) + uicu(t)) + cdD(t)− crNg(t). (4.17)

4.3.2 Classic maintenance policies

4.3.2.1 Periodic maintenance policy

For periodic maintenance policy, denoted as Policy 4 in this work, component i (i = 1, 2)

are replaced every TBi time units in order to avoid failures. At time nTBi (n ∈ N), if

component i is failed, a corrective maintenance cost is incurred otherwise a preventive

maintenance cost is incurred. To minimize the global maintenance cost, the parameters
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(TBi, TB2) have to be optimized. For single-component systems, periodic maintenance

policy can be optimized using the renewal reward theorem if the component returns to

be as good as new after maintenance. In this case, the average long-run maintenance

cost per unit of time for single-component system with perfect maintenance, denoted

by EC, is the expected maintenance cost incurred in a renewal cycle divided by the

preventive replacement TB such as:

EC = lim
t→∞

E(c(t))/t = E(c(TB))/TB

= {P (XTB > L)cc + P (XTB < L)cp + E(TB − TL1{TB>TL})cu)}/TB

= cp + (cc − cp)

∫ ∞

L
fαTB,β(x)dx+

∫ TB

0

∫ ∞

L
fαs,β(x)dxds}/TB,

(4.18)

where fαTB,β(x) = xαTB−1 exp(−βx)βαTB/Γ(αTB) is the density function of Gamma

distribution, TL denotes the time when degradation level of component exceeds L and

Xt stands for the degradation level of component at time t without maintenance actions

(initial degradation level at t = 0 is assumed to be zero). For two-component systems,

the renewal cycle is long and can be regarded as the moment when two components are

replaced simultaneously that is the least common multiple of TB1 and TB2 noted as

LCM . An example is given below when TB1 = 10 and TB2 = 6 then LCM=30:

EC = lim
t→∞

E(c(t))/t = E(c(LCM))/LCM

=

2∑

i=1

cp + (cc − cp)
∫∞
L fαiTBi,βi

(x)dx

TBi
+

∫ LCM
0 P (X̃1

u > L, X̃2
u > L)ducd

LCM

+
(
∫ LCM
0 P (X̃1

u > L, X̃2
u < L)du+

∫ LCM
0 P (X̃1

u < L, X̃2
u > L)du)cu

LCM

(4.19)

When X̃i
t is used to denote the degradation level of component i (i = 1, 2) with main-

tenance so that X̃i
t returns to zero after maintenance action. Therefore the joint dis-

tribution of two-component are involved. When two components are independent with

TB1 = 10 and TB2 = 6 then LCM=30, the expected downtime cost of system within a
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renewal cycle of system can be calculated as follows:

IE(LCM − u1{X̃1
u>L,X2

u>L})cd =

∫ 30

0
P (X̃1

u > L, X̃2
u > L)du

= {
∫ 6

0
P (X1

u > L)P (X2
u > L)du+

∫ 10

6
P (X1

u > L)P (X2
u−6 > L)du

+

∫ 12

10
P (X1

u−10 > L)P (X2
u−6 > L)du+

∫ 18

12
P (X1

u−10 > L)P (X2
u−12 > L)du

+

∫ 20

18
P (X1

u−10 > L)P (X2
u−18 > L)du+

∫ 24

20
P (X1

u−20 > L)P (X2
u−18 > L)du

+

∫ 30

24
P (X1

u−20 > L)P (X2
u−24 > L)du}cd

(4.20)

where P (Xi
u > L) =

∫∞
L fαiu,βi

(i = 1, 2). Equation 4.20 shows that even for inde-

pendent case, the calculation of maintenance cost is more complex for two-component

systems than single-unit systems. Thus the Monte-Carlo simulation method is used in

the following to optimize (TB1, TB2) for periodic maintenance policy (Policy 4).

4.3.2.2 Condition-based maintenance policy

With periodic replacement policy, component is replaced without identifying its real

degradation level which may lead to unnecessary replacement when component is at a

low degradation level. Some condition-based maintenance strategies are now proposed

to replace each component according to its degradation level instead of its age. Health

condition of components is supposed to be monitored through periodic inspections every

∆T time units. The degradation level is supposed to be revealed perfectly at the inspec-

tion moment. If the revealed degradation level exceeds the corrective threshold L, the

component is correctively maintained; otherwise, in order to avoid failures, a preventive

replacement is carried out as soon as the revealed degradation level exceeds a preventive

threshold M . To this end, condition-based maintenance policy for single-unit systems,

with parameters (∆T,M) should be optimized. When ∆T is too small, expensive in-

spection costs are incurred whereas it can not perform well in avoiding failures; when

M is small, expensive preventive maintenance cost are incurred.

To calculate the average long-run maintenance cost per time unit, the semi-regenerative

theory can be used as after each inspection the component state is perfectly known.

The single-unit system case is studied and developed in [29]. When extended to two-

component systems, an inspection scheme with two individual periods combined with a

decision rule based on two individual replacement thresholds (parameters (∆T1,∆T2,M1,M2))

is first considered. In order to investigate the influence of a joint parameter (either a
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joint inspection period or a joint replacement threshold) for the components in multi-

component systems, we propose following maintenance policies. In all cases parameters

are optimized using Monte Carlo simulations.

Policy 1 Condition-based maintenance policy with two independent preventive thresholds

(M1,M2) and inspection periods (∆T1,∆T2).

Policy 2 Condition-based maintenance policy with two independent inspection periods (∆T1,∆T2)

and a joint preventive threshold M .

Policy 3 Condition-based maintenance policy with two independent preventive thresholds

(M1,M2) and a joint inspection period ∆T .

Policy 2 is implemented to investigate the sensitivity to the preventive threshold and

Policy 3 is implemented to investigate the sensitivity to the inspection period. Indeed

when the number of components in the multi-component systems increases, the opti-

mization time will increase dramatically if the inspection scheme is implemented with

individual parameters for all components.

All the maintenance policies proposed so far are a simple extension from the single-unit

systems and they are not structurally designed for grouping maintenance actions. Two

components can be maintained simultaneously in some cases, e.g., if the selected values

of ∆T1 and ∆T2 allow some inspections of components 1 and 2 to take place at the same

time and additionally if the degradation levels of both components have exceeded their

own preventive threshold at such common inspection times. As the set-up cost increases,

these policies favour the appropriate parameters values especially the parameters ∆Ti

(i = 1, 2) to gain more opportunities for maintenance grouping. Even though some

maintenance actions can take place simultaneously in classic maintenance policies, a

grouping strategy should be developed to take full advantage of economic dependence.

4.3.3 A new condition-based maintenance policy with grouping oppor-

tunities

From a point of view on [0, t], when two components are maintained closely, it would

be beneficial to maintain them together as one set-up cost can be saved. Thus, in order

to find the opportunities to group maintenance actions, a new decision rule is proposed.

The maintenance policy proposed in this section is denoted as Policy 0.

As the state of component will be revealed by inspection, we only take the inspec-

tion moment as decision time. Suppose that at time n∆T1 (date of nth inspection of

component 1), the state of component 1 exceeds the preventive threshold M1. Then,
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Figure 4.5: Sketch of inspection time

according to the condition-based maintenance decision rule, a preventive maintenance

action is triggered. On one hand, if the degradation level of component 2 also exceeds

the preventive threshold M2 at this time, we could preempt the preventive maintenance

of component 2. On the other hand, if the next inspection time (m + 1)∆T2 (date of

(m + 1)th inspection of component 2) is closed to n∆T1, it is also feasible to postpone

the preventive maintenance of component 1. Since the state of component 2 is unknown

at time n∆T1, we have to consider two cases as follows (see Figure 4.5):

1. Set pa = P (X2
n△T1

> M2|X2
m△T2

= x) be the probability that component 2 would

need a preventive replacement at time n△T1 (the state of component 2 is updated

at time m∆T2 < n∆T1 and denoted as x). If pa → 1, then component 2 will

probably be replaced soon at time (m + 1)△T2. In this case, termed preempting

case, the replacement of component 2 is preempted in order to save one set-up

cost as well as avoid the failure of component 2 before (m+1)△T2. However such

an action may replace component 2 too early such that it leads to an increase

of preventive maintenance cost. Parameter pa only depends on the last known

degradation level of component 2, it is computed as follows:

pa = P (X2
n△T1

> M2|X2
m∆T2

= x)

= P (X2
n∆T1−m∆T2

> M2 −X2
m∆T2

|X2
m∆T2

= x),

whereX2
n∆T1−m∆T2

follows Gamma distribution with parameter (n∆T1−m∆T2)α2

and β2. Therefore pa = F (n∆T1−m∆T2)α2,β2
(M2 − x), where

F (n∆T1−m∆T2)α2,β2
(x) =

∫ +∞

x
f(n∆T1−m∆T2)α2,β2

(u)du. (4.21)

If the preventive maintenance of component 2 is preempted, the change of main-

tenance cost can be expressed as:

∆c(t) = cr − cpenaltyP (X2
n∆T1

< M2), (4.22)
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where cpenalty is the penalty cost which contains two parts: the gain from avoiding

the failure of component 2 before time (m+1)∆T2 and the loss due to shortening

its lifetime. In order to minimize the expected maintenance cost, ∆c(t) should be

positive. Under this condition,

∆c(t) = cr − cpenaltyP (X2
n∆T1

< M2) > 0,

pa = P (X2
n∆T1

> M2) >
cpenalty − cr

cpenalty
.

Obviously cpenalty is hard to be derived accurately but we can use a probability

threshold PA to cope with it by implementing the test: pa > PA. In other

words, when the value of pa is greater than a selected probability threshold PA

(0 ≤ PA ≤ 1), we consider to preempt the replacement of component 2. Then PA

is optimized using Monte Carlo simulations for different values of set-up cost.

2. Set pp = P (X1
(m+1)∆T2

> L|X1
n∆T1

= y) be the probability that component 1

will fail before the inspection time (m + 1)∆T2 (current state of component 1 is

updated and denoted as y). If pp → 0, then component 1 will almost impossibly

fail before time (m+1)∆T2. In this case, termed postponing case, the replacement

of component 1 can be postponed to time (m+ 1)∆T2 in order to save one set-up

cost as well as extend the working hours of component 1. However such an action

may take the risk that component 1 fails before it is replaced whereas the cost

of corrective replacement is more expensive than that of preventive replacement.

Similarly to case 1, pp = F ((m+1)∆T2−n∆T1)α1,β1
(L− y) and

∆c(t) = cr − c
′

penaltyP (X1
(m+1)∆T2

> L) > 0,

pp = P (X1
(m+1)∆T2

> L) <
cr

c
′

penalty

,

where c
′

penalty represents the penalty cost due to postpone the preventive main-

tenance action of component 1. We can optimize a probability threshold PP

(0 ≤ PP ≤ 1) with the test: pp < PP in the same way.

For general case,

pa = F (n∆Ti−m∆Tj)αj ,βj
(Mj − x). (4.23)

pp = F ((m+1)∆Tj−n∆Ti)αi,βi
(L− y). (4.24)

where Xj
m∆Tj

= x, Xi
n∆Ti

= y, current inspection time is n∆Ti and Mi < Xi
n∆Ti

.

Note that condition pa → 1 should be checked first because if pa is too small, it would

be useless to postpone the replacement of component 1 as component 2 will be rarely

replaced at next inspection time. As a result, we give priority to the verification of
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Figure 4.6: Sketch of decision rule for the example of component 1 is inspected at time
n∆T1

pa → 1 condition and define our decision rule in Figure 4.6. Pay attention that the

replacement of component 1 can not be postponed if X1
n∆T1

> L.

Condition 1 is met if pa is greater than PA whereas condition 2 is met when pp is smaller

than PP (see Figure 4.6). When PA is small, condition 1 will be often met which leads

to more opportunities to group maintenance tasks. When PP is small, preempting the

replacement of component 2 is more preferable than postponing that of component 1.

4.4 Numerical experiments

4.4.1 Description of the case studies

In this section, we investigate three cases of parallel systems related to the diversity

of individual degradation behavior of components and to the global degradation speed

of the multi-unit system. In terms of the degradation behavior of components, the

“quasi-homogeneous” case corresponds to a system with two quite similar components

whereas the “heterogeneous” case is related to a system with greater diversity between
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Table 4.1: three cases of systems

α β slow degradation fast degradation

quasi-homogeneous
component 1 7/5 1/5

L=180 L=50
component 2 9/5 1/5

heterogeneous
component 1 5/7 1/7
component 2 9/5 1/5

Table 4.2: unitary cost parameter

cip(i = 1, 2) cic(i = 1, 2) cu cd
20 100 10 100

components. Fast and slow degrading sub-cases differ on the limit degradation level

that should not be exceeded. The parameters of three cases are shown in Table 4.1

and Table 4.2 details the corresponding cost parameters. It is worth mentioning that

the values of unitary costs are in arbitrary units, only the proportion of each type of

maintenance cost is of interest for our study. In a general way, the corrective maintenance

is much more expensive than the preventive one as the unpredicted failures often cause

incalculable loss in practice while inspecting component costs much less than replacing

it. Moreover, the values of dependence degree between components are involved in

subsequent sections so as to investigate the influence of stochastic dependence.

4.4.2 Heterogeneous fast degrading system (HTFD system)

In HTFD system, component 2 degrades nearly twice as fast as component 1. To

investigate the influence of economic dependence, the set-up cost varies from 0 to 5.

The long-run maintenance cost is evaluated by Monte-Carlo simulation. In terms of

optimization for preventive thresholds and inspection periods, a grid search method is

used for Policy 1, 2, 3 and 4. It should be noted that Policy 0 is optimized by genetic

algorithm considering that there are 6 parameters to manage so the grid search method

will be time-consuming. A relatively strong dependence exists between components with

θ = 2 (kendall′s tau ≈ 0.64). After implementing Policy 0, 1, 2, 3 and 4, the results

are shown in Tables 4.3 4.4 where LCi (i = 1, 2) refers to the mean lifecycle length of

component i, PGi refers to the proportion of grouped replacements among replacements

of component i and UNAV refers to the system’s unavailability.

For this fast degrading system, components tend to fail early and the variance of failure

dates is large. Consequently, in order to avoid failures Policy 4 has to replace compo-

nents early (the values of LC1/LC2 with Policy 4 are smaller than those with other
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Table 4.3: optimal parameters for HTFD system

cost parameters Cp=20 Cc=100 Cinsp=0.3 Cu=10 Cd=100 θ=2

component
α1=5/7 β1=1/7

L=50
α2=9/5 β2=1/5

set-up cost policies minimum cost LC1/LC2 ∆T1/TB1 ∆T2/TB2 M1 M2 PA PP

0

Policy 0 9.4107 7.50/4.29 1 0.55 32.2 33.6 0.13 0.01
Policy 1 9.4467 7.58/4.30 1 0.55 31.8 33.6
Policy 2 9.4696 7.65/4.17 1 0.60 32.2 32.2
Policy 3 9.5346 7.65/4.20 0.75 0.75 32.8 31.8
Policy 4 12.7667 5.65/3.30 5.65 3.30

1

Policy 0 9.3578 7.33/4.25 1 0.60 31.6 33.1 0.10 0.01
Policy 1 9.4351 7.58/4.29 1 0.50 31.8 33.8
Policy 2 9.4587 7.65/4.17 1 0.60 32.2 32.2
Policy 3 9.4876 7.65/4.20 0.75 0.75 32.8 31.8
Policy 4 12.7305 5.50/3.30 5.50 3.30

2

Policy 0 9.2871 7.34/4.27 1.2 0.55 32.3 33.5 0.07 0.01
Policy 1 9.4056 7.38/4.27 1.1 0.55 30.6 33.4
Policy 2 9.4391 7.85/4.23 1 0.50 33.2 33.2
Policy 3 9.4407 7.65/4.20 0.75 0.75 32.8 31.8
Policy 4 12.6263 6.10/3.05 6.10 3.05

3

Policy 0 9.1996 7.35/4.23 1 0.55 33.0 33.2 0.05 0.01
Policy 1 9.3764 7.38/4.27 1.1 0.55 30.6 33.4
Policy 2 9.3967 7.45/4.20 0.75 0.75 31.8 31.8
Policy 3 9.3936 7.65/4.15 0.75 0.75 32.8 31.4
Policy 4 12.4624 6.10/3.05 6.10 3.05

5

Policy 0 9.0141 6.92/4.27 1.35 0.55 33.1 33.6 0.03 0.01
Policy 1 9.2991 7.65/4.15 0.75 0.75 32.8 31.4
Policy 2 9.3001 7.45/4.20 0.75 0.75 31.8 31.8
Policy 3 9.2991 7.65/4.15 0.75 0.75 32.8 31.4
Policy 4 12.1313 5.90/2.95 5.90 2.95

policies). Thus, condition-based maintenance policies have better performance for fast

degrading systems.

Figure 4.7 illustrates the minimum long-run maintenance cost of condition-based poli-

cies with different values of set-up cost. Policy 1 is better than Policy 2 and 3 because

components degrade differently and a joint parameter (inspection period or preventive

threshold) is not relevant. As shown in Figure 4.7, the curve of Policy 0 is nonlin-

ear which illustrates that Policy 0 can take more and more advantage of economic

dependence. In fact, by controlling the values of PA and PP , Policy 0 provides more

opportunities for maintenance grouping by preempting replacements of component 1

and offers flexible replacement dates as it can be seen from slightly lower values of LC1

for Policy 0 than for Policy 1 even when the selected inspection periods are similar in

both policies. That’s why in Table 4.4, the value of PGi (i = 1, 2) increases with set-up

cost and it is much higher when Policy 0 is applied rather than another condition-based

maintenance policy. Moreover, when set-up cost is 0, Policy 0 still performs better than

Policy 1. For the reason of strong dependence, when a big jump occurs for component

2, component 1 would also be affected. In such cases, preempting component 1 can

avoid some of its failures. Meanwhile, Policy 0 provides flexible replacement date for
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Table 4.4: Proportion of grouped maintenance actions and system unavailabilty of
maintenance policies for HTFD system

set-up cost Policy 0 Policy 1 Policy 2 Policy 3 Policy 4

PG1

0 35.97% 2.06% 8.31% 35.88% 1.51%
1 44.47% 20.35% 8.31% 35.88% 33.33%
2 57.43% 21.52% 20.66% 35.88% 100%
3 62.65% 21.52% 35.96% 36.13% 100%
5 78.59% 36.13% 35.96% 36.13% 100%

PG2

0 21.69% 1.17% 4.52% 19.68% 0.88%
1 25.78% 11.53% 4.52% 19.68% 20%
2 33.38% 12.46% 11.11% 19.68% 50%
3 36.02% 12.46% 20.26% 19.61% 50%
5 48.45% 19.61% 20.26% 19.61% 50%

UNAV

0 0.37h 0.21h 0.37h 0.45h 2.63h
1 0.43h 0.24h 0.43h 0.45h 2.82h
2 0.43h 0.24h 0.43h 0.45h 3.50h
3 0.43h 0.24h 0.43h 0.44h 3.50h
5 0.43h 0.44h 0.43h 0.44h 3.00h

0 1 2 3 5
9

9.1

9.2
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9.5
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Figure 4.7: Optimal values of C∞ for Policy 0, Policy 1, Policy 2, Policy 3 with θ = 2
in HTFD system when set-up cost varies
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both components without additional inspection cost. It should also be noted that even

though the classic maintenance policies do not performs as well as Policy 0 in taking

advantage of the economic dependence, they try to offer opportunities for maintenance

grouping as many as possible.

As shown in Table 4.3, Policy 1, Policy 2 and Policy 3 inspect both components at

the same time when the set-up cost is greater than 3. In this way, the opportunity of

maintaining two components simultaneously increases.

Policy 1 succeeds to offer grouping opportunites while adapting parameters to the in-

dividual behavior of components in order to minimize the mean cost criterion of each

component. When set-up cost is high, Policy 1 favors maintenance opportunities by

selecting a common inspection period of 0.75 and the resulting number of grouped re-

placements is nearly twice as high compared to the case ∆T1 = 1 and ∆T2 = 0.5. With

a common inspection period for both components, Policy 3 is designed to offer many

opportunities for grouping maintenance as can be seen with rather high values of PGi

(i = 1, 2) and thus set-up cost savings are greater when compared to Policy 1. Howev-

er, as Policy 3 selects the mid-point between the individual inspection periods as the

common period for both components, some failures can no longer be detected in time.

The resulting increase of each individual maintenance cost of components can not be

balanced by the set-up cost savings except when the unit set-up cost is greater than 5

(in this case Policy 1 and Policy 3 select the same parameters). When the maintenance

threshold is constrained to be the same for both components, Policy 2 fails to balance

the objectives of grouping replacements and adapting the inspection periods to individ-

ual degradation speed of components. When the set-up cost is less than 2, Policy 2

favors an individual inspection scheme whereas opportunities to group are favored when

set-up cost is high.

Nevertheless, the maximal value of PGi that Policies 1, 2, 3 can provide is less than

50% due to the diversity of components.

4.4.3 Quasi-homogeneous cases

For quasi-homogeneous case, we study a slow degrading and highly correlated system

(QHSD) and a fast degrading (QHFD) system. A strong stochastic dependence is

considered in QHSD system with θ = 10 (kendall′s tau ≈ 0.94). Table 4.5 shows that

Policy 0 selects parameters for component 1 in order to be a block-replacement policy

(with adaptive replacement time) due to the set-up cost. That is, when set-up cost is

greater than 1, component 1 does not need to be monitored and it is replaced simultane-

ously with component 2. This is because both components degrade slowly and they are

strongly correlated so that it merely needs to monitor the faster degrading component
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Figure 4.8: Optimal values of C∞ for Policy 0, Policy 1, Policy 2, Policy 3, and Policy
4 in QHSD system with θ = 10 when set-up cost varies
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Figure 4.9: Optimal values of C∞ for Policy 0, Policy 1, Policy 2, Policy 3, and Policy
4 in QHFD system with θ = 10 when set-up cost varies

and use its state as an indicator for the other component. Even though such an action

may cause a certain increase of preventive replacements of component 1, it avoids some

corrective replacements and saves inspection cost. As a consequence, only component 2

is inspected and replaced at optimal dates while component 1 is always replaced with

it.

With the help of Figure 4.8, a global impression of performance of each policy is given.

Policy 4 is always better than other policies except Policy 0 because both components
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Table 4.5: Optimal parameters for QHSD system

cost parameters Cp=20 Cc=100 Cinsp=1 Cu=10 Cd=100 θ=10

component
α1=7/5 β1=1/5

L=180
α2=9/5 β2=1/5

policies set-up cost minimum cost LC1/LC2 ∆T1/TB1 ∆T2/TB2 M1 M2 PA PP

Policy 0

0 2.8163 20.17/15.50 6 5 118 114 0.64 0.04
1 2.7581

16.55/16.55 ∞ 4 0 128 0 0
2 2.6977
3 2.6372
5 2.5164

Policy 1

0 2.8311 19.93/15.88 6 4 116 122
1 2.8180

20.29/15.49 5 5 122 114
2 2.8012
3 2.7843
5 2.7505

Policy 2

0 2.8314
20.29/15.88 5 4 122

1 2.8280
2 2.8196

19.43/15.71 5 5 1163 2.8023
5 2.7632

Policy 3

0 2.8349

20.29/15.49 5 122 114
1 2.8180
2 2.8012
3 2.7843
5 2.7505

Policy 4

0 2.7998
18/14 18 141 2.7919

2 2.7840
3 2.7639

15/15 15 15
5 2.6306

degrade slowly whereas the inspection cost is relatively high. In this case the period-

ic maintenance policy can well perform the preventive maintenance activities to avoid

failures and the inspection cost can be saved. Policy 1 and Policy 3 recover the same

optimal results when set-up cost increases because a stronger economic dependence pro-

vides more opportunities for maintenance grouping to reduce maintenance cost. How-

ever, the maintenance action is only possible at inspection times. Consequently, the two

components must have a joint inspection period. Policy 2 has worst results because of

the joint preventive threshold. When compare Policy 3 with Policy 4 with a zero set-up

cost, it shows that the inspection period has more influence than preventive threshold.

When set-up cost is 0, Policy 0 is better than other condition-based policies because it

takes advantage of available information about components and the replacement dates

of components become more flexible. When set-up cost is greater than 1, Policy 0 turns

out to be an adaptive block-replacement policy. Such a strategy reduces the inspection

cost, saves the set-up cost and offers flexible dates for block replacement. For instance,

when set-up cost is 5, Policy 0 offers dates 4, 8, 12, 16, 20. . . for block replacement

whereas Policy 4 only offers dates 15, 30, 45. . . . Therefore Policy 0 performs better

than Policy 4.

For QHFD system, we first evaluate the performance of maintenance policies with the

same level of dependence degree (θ = 10) to make sure that our proposed maintenance
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policy still maintains the advantage. Figure 4.9 presents the minimum maintenance cost

of system of each maintenance policy with different values of set-up cost. It reveals that

the condition-based maintenance policies dominate the periodic maintenance policy for

QHFD system. Among the condition-based maintenance policies, it remains the same

dominance as for QHSD system. Nevertheless, Policy 0 turns out again to be an adap-

tive block-replacement policy. We investigate the influence of stochastic dependence on

Policy 0 by testing weaker dependences (independent case, θ = 1 and θ = 2). The

results are given in Figure 4.10 and Table 4.6.

Figure 4.10 reveals clearly that the stochastic dependence level has a significant impact

on Policy 0. When the two components are strongly related (θ = 2 and 10), Policy 0 is

an adaptive block-replacement policy which only inspects the faster degrading compo-

nent and uses its degradation level as a criterion of block replacement. However when

the two components are independent, failures of slower degrading component can not

be avoided with such a strategy because the information about the faster degrading

component has no relation with it. It is worth mentioning that when θ = 1, the optimal

parameters of Policy 0 appear to be very different where cr = 2 is the demarcation

point. In fact, when cr = 2 and θ = 1, the difference between inspecting component 1

or not is: the gain of saving inspection cost is 0.5555, the loss of increasing preventive

and corrective maintenance cost is 0.7178 and the gain of saving set-up cost is 0.2649.

As a consequence, when set-up cost is greater than 2, the gain of maintenance grouping

opportunities compensates the loss which is mainly caused by replacing component 1

too early.

Studying the independent case and that of θ = 1, we can see that when stochastic

dependence is weaker Policy 0 accepts a greater PA and a smaller PP such that less

grouped maintenance actions are allowed. The cases of θ = 2 and 10 indicate that for

strong dependence, the adaptive block-replacement policy has to replace components

earlier in order to avoid failures where θ = 2 has a smaller values of LC1/LC2 than

θ = 10. Compare the curves of θ = 2 and θ = 10, component 1 suffers more failures when

two components are less dependent so that the expected maintenance cost of system is

greater. On the contrary, with the same dependence degree and with the stronger eco-

nomic dependence, the adaptive block replacement policy replaces components earlier.

The curve of θ = 0 in figure 4.10 shows that the economic dependence also plays a

role in the optimization. When the set-up cost increases, Policy 0 tends to find appro-

priate values of parameters in order to have more grouped maintenance actions to take

advantage of economic dependence.
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Table 4.6: optimal parameters of Policy 0 for QHFD system with different degrees of
dependence

cost parameters Cp=20 Cc=100 Cinsp=1 Cu=10 Cd=100

component
α1=7/5 β1=1/5

L=50
α2=9/5 β2=1/5

θ set-up cost minimum cost LC1/LC2 ∆T1 ∆T2 M1 M2 PA PP

θ→0

0 12.0317 5.23/4.06 1.5 1.1 29.4 29.4 0.54 0
1 11.9851 5.19/4.05 1.5 1.1 29.4 29.4 0.41 0
2 11.9221 5.18/4.02 1.5 1.2 29.6 28.8 0.25 0.01
3 11.8344 5.17/4.02 1.5 1.1 30.4 29.8 0.19 0
5 11.6031 4.95/3.94 1.5 1.1 30.4 29.8 0.09 0

θ=1

0 11.9669 5.28/4.05 1.5 1.0 29.9 29.6 0.26 0.02
1 11.8781 5.20/4.08 1.5 1.0 29.7 29.7 0.15 0.03
2 11.6712 4.26/4.26

∞ 0.9 0
31.8

0 03 11.4351
4.22/4.22 31.4

5 10.9607

θ=2

0 11.7812
4.37/4.37

∞ 0.8 0
33.2

0 0
1 11.5524
2 11.3236
3 11.0956

4.33/4.33 32.8
5 10.6334

θ=10

0 11.6422
4.47/4.47

∞ 0.8 0
34

0 0
1 11.4185
2 11.1948
3 10.9706

4.42/4.42 33.6
5 10.5186
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Figure 4.10: Optimal values of C∞ for Policy 0 in QHSD system with different degrees
of dependence

4.4.4 Sensitivity analysis

In order to test the robustness of Policy 0, we consider two possible sources of error

about the input parameters: the mean degradation speed (µ1 and µ2) of components

and the corrective threshold L. The baseline case is HTFD system with mean degra-

dation speed µ1 = 5, µ2 = 9 and corrective threshold L = 50. Errors of e = ±10% and
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Table 4.7: Modified parameters of mean degradation speed

L θ α1 β1 α2 β2
µ(−10%)

50 2

4.5*4.5/35 4.5/35 8.1*8.1/45 8.1/45

µ(−5%) 4.75*4.75/35 4.75/35 8.55*8.55/45 8.55/45

µ(0%) 5/7 1/7 9/5 1/5

µ(5%) 5.25*5.25/35 5.25/35 9.45*9.45/45 9.45/45

µ(10%) 5.5*5.5/35 5.5/35 9.9*9.9/45 9.9/45

Table 4.8: Modified parameters of individual corrective threshold

L θ α1 β1 α2 β2
L(−10%) 45

2 5/7 1/7 9/5 1/5
L(−5%) 47.5

L(0%) 50

L(5%) 52.5

L(10%) 55

e = ±5% about µi (i = 1, 2) and L are considered.

Let Cµ(e)
be the minimal expected cost optimized using the real values of mean degrada-

tion speeds of components, CL(e)
be the minimal expected cost optimized using the real

parameters of the corrective threshold. Cµ
OPT (e) (CL

OPT (e)) is the expected cost when

Policy 0 is implemented with optimized parameters for (L = 50, α1 = 5/7, β1 = 1/7,

α2 = 9/5, β2 = 1/5) whereas the actual values of mean degradation speeds µi in real

is µi(1 + e) (Table 4.7) (or L(1 + e) (Table 4.8) respectively). The relative additional

cost V µ (or V L respectively) incurred when implementing the maintenance policy with

the optimized setting for a wrong value of mean degradation speed (corrective threshold

respectively) instead of the actual value is defined as follows:

V µ(e) =
Cµ
OPT (e) − Cµ(e)

Cµ(e)

, e = ±%10,±%5, 0.

V L(e) =
CL
OPT (e) − CL(e)

CL(e)

, e = ±%10,±%5, 0.

They measure the influence of parameters on the optimal solution and the results are

given in Table 4.9 and Figure 4.11. As reflected, the mean degradation speed of com-

ponents have a weak influence on Policy 0. When the mean degradation speeds of

components increase, components will fail at earlier dates and have to be replaced more

frequently. However the balance between the mean number of preventive and corrective

replacements remains quite stable. In contrast, it changes a lot when the error is related

to the corrective threshold. On one hand, when the corrective threshold decreases, the
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Table 4.9: Relative variation for mean degradation speeds and corrective threshold

e -10% -5% 0% 5% 10%

Cµ(e) 8,5781 8,9322 9,2871 9,6614 10,0030

Cµ
OPT (e) 8,6389 8,9628 9,2871 9,7071 10,0587

V µ(e) 0.7090% 0.3423% 0 0.4728% 0.5575%

CL(e) 10,5395 9,8718 9,2871 8,7693 8,2779

CL
OPT (e) 11,1214 10,0077 9,2871 8,8304 8,5145

V L(e) 5,5216% 1,3771% 0 0,6965% 2,8571%
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Figure 4.11: Sensitivity analyse in HTFD system with two sources of error

component will fail in mean at earlier dates whereas the mean entrance time in preven-

tive zone is unchanged. Consequently, the probability of failure of component between

two inspections (that is P (X(n+1)∆T > L|Xn∆T < M)) increases when L is actually s-

maller than the estimated value. It means that the proportion of corrective replacements

is larger in this case. On the other hand, when the corrective threshold is in real greater

than its estimated value, the proportion of preventive replacements increases due to too

early replacement. As the preventive maintenance cost is lower than the corrective one,

the impact on the global cost is less significant when L is underestimated than when

it is overestimated. It is also worth mentioning that the decision rule is only related

to the corrective threshold in the postponing case and the results of numerical exper-

iments (PP < 0.03) show that postponing requirement is very rarely met. Therefore,

the corrective threshold has little impact on the decision rule. In conclusion, the system

parameter (corrective threshold L) has more influence than component parameter (mean

degradation speed) on the condition-based maintenance policies.
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4.5 Conclusions and perspectives

A new condition-based maintenance policy with grouping strategy is proposed in this

chapter. As a result, we have shown that the proposed condition-based maintenance

policy (Policy 0) can adapt to both quasi-homogeneous and heterogeneous cases, fast

and slow degrading systems, and it outperforms classic maintenance policies. Based

on an adaptive decision rule, Policy 0 are able to take full advantage of the econom-

ic dependence by providing more opportunities as well as flexible replacement dates for

maintenance grouping. The robustness of Policy 0 is evaluated through sensitivity anal-

ysis by testing two sources of error.

The influences of the economic and stochastic dependences were investigated in this

chapter. It revealed that both of the economic and stochastic dependences have a sig-

nificant influence on the maintenance optimization. Therefore, for multi-component

systems, appropriate stochastic dependence modelling and economic dependence should

be taken into account in the design of maintenance policies.

Even though the proposed condition-based maintenance policy performed well exper-

imentally, the classic Monte-Carlo simulation combined with optimization schemes is

time-consuming, thus becoming impractical in view of the systems composed of numer-

ous components. To extend the proposed strategy to such systems remains an open

question. Furthermore, the stochastic dependence is only involved in the degradation

modeling but it is not directly involved in the design of maintenance policies. Thus in

the next chapter, we will consider systems with more than two components and more

complex dependence structure. In the next chapter, we focus on the use of stochastic

dependence,. In this aim, several maintenance policies seeking to make the best use of

the available information about stochastic dependence modeling are proposed.
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5.3.2 Clayton Lévy copula and Gumbel ordinary copula . . . . . . . 85

5.4 Maintenance policies . . . . . . . . . . . . . . . . . . . . . . . 86

5.4.1 Part I: Maintenance strategies based on subsystems dependence 87

5.4.2 Part II: Maintenance policies making use of dependence at both

subsystem and system levels . . . . . . . . . . . . . . . . . . . . 89

5.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . 102

5.5.1 Performance analysis of maintenance strategies based on sub-

systems dependence . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5.2 Performance analysis of maintenance policies making use of s-

tochastic dependences . . . . . . . . . . . . . . . . . . . . . . . 116

77



78 Chapter 5. Maintenance policies considering hierarchical dependences

5.6 Conclusions and perspectives . . . . . . . . . . . . . . . . . . 120



5.1 Introduction 79

5.1 Introduction

This chapter is written mainly based on [182, 183]. In chapter 4, it has been proved

through numerical experiments that stochastic dependence has a significant impact on

the maintenance optimization. Therefore the objectives of this chapter is to develop

maintenance policies which can take full advantage of the stochastic dependence. In

terms of degradation modeling of system, a four-component system with hierarchical

stochastic dependences is modeled by Gamma process with Nested Lévy copulas. In

such a dependence modeling, system can be divided into subsystems according to dif-

ferent dependence degrees and components within subsystems are more dependent on

each other than those between subsystems such that it can be applied in various cases

of systems.

In terms of maintenance modeling, maintenance policies proposed in this chapter can be

divided into two parts: maintenance policies with the parameters based on subsystems

level which explore economic dependence and stochastic dependences both within sub-

system and between subsystems and maintenance policies applied by the whole system

which explore deeply the stochastic dependence. In the first part, we consider a type

of systems with the assumption that components within subsystem contribute to the

same tasks and have homogenous degradation behaviour such that the operations can

be done at subsystem level instead of component level. In the first part, five maintenance

policies are proposed to apply on such type of systems with respect to whether taking

advantage of economic dependence or not, whether making use of within-subsystem s-

tochastic dependences or not and whether profiting between-subsystem dependence or

not. In the second part, we focus on developing maintenance strategies which can take

full advantage of stochastic dependence when components in a subsystem can be treat-

ed separately. Two main maintenance policies are proposed in the second part and two

classic maintenance policies are also implemented to evaluate the profit gained when

stochastic dependences are used.

The rest of this chapter is organised as follows. Section 5.2 is devoted to the hierar-

chical stochastic dependence modeling. Section 5.3 describes maintenance policies. In

Section 5.4, numerical experiments are presented and sensitivity analysis is carried out.

Finally, Conclusions and perspectives are drawn in Section 5.5.
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5.2 Asymmetric Stochastic dependence modeling with Nest-

ed Archimedean Lévy copulas

In chapter 4, we dealt with the stochastic dependence of two-unit degrading systems

with Archimedean Lévy copulas. In this chapter, the stochastic dependence is further

investigated within a four-component system. When the system is composed of more

than two components, the dependence between components is often asymmetric. Ac-

cording to the structure of system, the physical properties of components or the influence

of working environment, the four-component system is supposed to be composed of two

subsystems. Within subsystems, components share characteristics or tasks such that a

symmetric and strong dependence exists between them. However dependence between

subsystems is often observed at a lower degree which is related to a common environ-

ment and mission profiles. Therefore, components in the system are dependent on each

other at different levels. In order to model hierarchical dependence, the Nested Lévy

copulas model could be used.

5.2.1 Modeling of hierarchical stochastic dependences

Nested Clayton Lévy copulas are used with parameters (θ0, θ1, θ2) to model such hier-

archical dependencies, see Equation 5.1.

C(u1, u2, u3, u4) = ((u−θ1
1 + u−θ1

2 )
− θ0

θ1 + (u−θ2
3 + u−θ2

4 )
− θ0

θ2 )
− 1

θ0 . (5.1)

Components within subsystem i are coupled by Clayton Lévy copulas which depicts

symmetric dependence with parameter θi (i = 1, 2) and then both copulas are aggre-

gated by a new Clayton Lévy copula with parameter θ0 at a lower degree to model the

dependence at system level. Figure 5.1 depicts the dependence structure as a tree where

Cij refers to the copula function relating components i and j, (i, j) ∈ {(1, 2); (3, 4)} and
CN refers to the copula function relating subsystems 1 and 2.

5.2.2 Simulating four-dimensional Gamma processes with Nested Lévy

copulas dependence

To sample the increment path of four dependent related components, an adapted version

of the Marshall-Olkin algorithm to the Clayton Nested Lévy copulas for Gamma process

is used and it is detailed as follows:

It should be noticed that S(θ0θ1 , 1, (cos(απ/2)xn)
θ1
θ0 , 0; 1) is a α-stable distribution and Υ
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component 1 component 4component 3component 2

Figure 5.1: Sketch of dependence structure of system

Algorithm 3 Simulating four-dimensional Gamma process modeled by Nested Clayton
Lévy copula by Marshall-olkin algorithm

Input: Υ, θ0, θ1, θ2, T , α1, α2, α3, α4, β1, β2, β3, β4
n← 0, ω1

0 ← 0
while ω1

n ≤ Υ do
n← n+ 1
w ← exp(1)
ω1
n ← ω1

n−1 + w
y ← rand(1)
zn ← (ωnΓ(

1
θ0
)/θ0)

θ
0

xn ← S(θ0θ1 , 1, (cos(απ/2)zn)
θ1
θ0 , 0; 1), yn ← S(θ0θ2 , 1, (cos(απ/2)zn)

θ2
θ0 , 0; 1)

an ← exp(1), bn ← exp(1), cn ← exp(1), dn ← exp(1)
vn ← rand(1)

Γ1
n = (an/xn)

− 1
θ1 , Γ2

n = (bn/xn)
− 1

θ1 , Γ3
n = (cn/yn)

− 1
θ2 , Γ4

n = (dn/yn)
− 1

θ2 ,
end while
N ← n

Output: X1
t =

∑N
n=1 E1

−1( Γ1
n

α1T
)/β11[0,t](vn), X2

t =
∑N

n=1E1
−1( Γ2

n

α2T
)/β21[0,t](vn),

X3
t =

∑N
n=1E1

−1( Γ3
n

α3T
)/β31[0,t](vn), X4

t =
∑N

n=1E1
−1( Γ4

n

α4T
)/β41[0,t](vn)

is a parameter for truncating the series representation for reasonable simulation time

and its value should be carefully chosen to make sure the convergence. For Laplace-

Stieltjes transforms of the Nested Archimedean copulas and Nested Archimedean Lévy

copulas generators, more details can be found in [180, 184]. Figure 5.2 illustrates the

deterioration level of components with hierarchical dependence that is modeled by Nest-

ed Clayton Lévy copula. It show that the stronger the stochastic dependence between

components within subsystem is, the more often big damage arrives at both components.

Moreover, the dependence within the system is asymmetric.
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Figure 5.2: An illustration of deterioration paths of components when nested Clayton
Lévy copula is used (θ0 = 0.4, θ0 = 1.5, θ0 = 4)

5.3 From Lévy copulas to ordinary copulas when depen-

dence is considered at fixed time

In this section, we investigate the relationship between ordinary copulas and Lévy copu-

las at a fixed time. The dependence between components modeled by copulas and Lévy

copulas is studied through Kendall’s tau which shows the dependence degree as well as

tail dependence which is regarded as dependence structure. At specific time, Gumbel

ordinary copula is used to describe the dependence between components modeled by

Clayton Lévy copula with adaptive parameter. Goodness-of-fit test is done which shows

that Gumbel ordinary copula can fit the simulation data generated by Clayton Lévy

copula.

5.3.1 Measure of dependence

In this section, we aim to study and measure the dependence in order to explore how

the dependence between components can be expressed by ordinary and Lévy copulas.

Two concepts are reviewed in this section where Kendall’s tau can be considered to

measure the dependence degree and tail dependence is used to investigate the dependence

structure.
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5.3.1.1 Kendall’s tau

The concept of Kendall’s tau was developed by Kendall in 1938 to measure the correla-

tion between two random variables in [185] and it is defined as follows:

Definition 5.1. Let {(x1, y1), (x2, y2), . . . , (xn, yn)} be a random sample of n obser-

vations of random pair of (X,Y ). For any pair of observation (xi, yi) and (xj , yj)

(i 6= j), it is said to be concordant if {xi < xj , yi < yj} or {xi > xj, yi > yj} and

if {xi > xj , yi < yj} or {xi < xj, yi > yj}, the pair is discordant. Let c denote the

number of concordant pairs and d denote the number of discordant pairs. Therefore the

Kendall’s tau τ is defined as:

τ =
c− d

c+ d
(5.2)

That means the population version of Kendall’s tau is to measure the difference between

the probability of concordance and discordance between two variables as follows:

τ = P ((x1 − x2)(y1 − y2) > 0)− P ((x1 − x2)(y1 − y2) < 0). (5.3)

Nelsen has proved that Kendall’s tau can be calculated using the copula functions

through following equation if C is the underlying copula of (X,Y ) in [179] (Theorem

5.1.3.).

τ = 4
x

[0,1]2

C(u, v)dC(u, v) − 1

= 4E(C(u, v)) − 1.

(5.4)

It can be proved that for Archimedean copulas with generator ϕ (see chapter 4.2.2.1),

Kendall’s tau can be given as follows:

τ = 1 + 4

∫ 1

0
ϕ(t)/ϕ

′

(t)dt. (5.5)

The proof is seen in [179] (Corollary 5.1.4.). Therefore, the Kendall’s tau of two variables

where the dependence between them is modelled by Archimedean ordinary copulas can

be easily achieved by Equation 5.5. For Clayton ordinary copula,

τ = 1 + 4

∫ 1

0
(t−θ − 1)/(−θt−θ−1)dt

= 1 + 4

∫ 1

0
(tθ+1 − t)/θ

= θ/(θ + 2),

(5.6)
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and for Gumbel ordinary copula,

τ = 1 + 4

∫ 1

0
(− ln t)θ/(−θ(− ln t)θ−1/t)dt

= 1 + 4

∫ 1

0
t ln t/θ

= (θ − 1)/θ.

(5.7)

The calculation of Kendall’s tau for copulas displays the dependence degree between

variables which is represented by the copula function and the value of parameter θ.

Moreover, the estimation of Kendall’s tau is very easy with a given sample such that it

can be used for parametric estimation when the underlying copula function is known.

5.3.1.2 Tail dependence

Another important concept is the tail dependence which measures the dependence for

extreme values. For a pair of random variables X1 and X2, the upper tail dependence

parameter is given by:

λU = lim
t→1−

P (X1 > t | X2 > t)

= lim
t→1−

P (X1 > t,X2 > t)

P (X2 > t)

= lim
t→1−

1− 2t+ c(t, t)

1− t
,

(5.8)

and the lower tail dependence parameter is given by:

λL = lim
t→0+

P (X1 < t | X2 < t)

= lim
t→0+

P (X1 < t,X2 < t)

P (X2 < t)

= lim
t→0+

C(t, t)

t
.

(5.9)

A copula function C is said to have lower (upper) tail dependence if λL 6= 0 (λU 6= 0).

For Clayton ordinary copula, it has low tail dependence with

λL = lim
t→0+

(2t−θ − 1)−
1
θ /t

= 2−
1
θ ,

(5.10)
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and for Gumbel ordinary copula, it has upper tail dependence with

λU = lim
t→1−

(1− 2t+ exp{−[(− ln t)θ + (− ln t)θ]
1
θ })/(1 − t)

= 2− 2θ.
(5.11)

However λU for Clayton ordinary copula and λL for Gumbel ordinary copula are 0

respectively. That’s why in Figure 4.2, Clayton and Gumbel ordinary copulas have

different dependence drawings even when their Kendall’s tau is identical. For Lévy

copulas, the jump tail dependence is investigated in [186]. It has been proved that the

Clayton Lévy copula has tail dependence of large jumps and the jump tail dependence

coefficient is 2−
1
θ .

The tail dependence is very important when dealing with the stochastic dependence

modeling for maintenance optimization because the influence of large jump is more

significant than small jump due to expensive corrective maintenance cost.

5.3.2 Clayton Lévy copula and Gumbel ordinary copula

Even though Lévy copulas are able to model a time-independent dependence structure

and can be used to sample correlated degradation path, it can not lead to a direct

statistical inference. The limit theorem of Lévy copulas in Equation 5.12 shows that

when time tends to zero, there is an unique ordinary copulas Ct corresponding to the

Lévy copula C (see [93]).

C(u1, u2) = lim
t→0

1

t
Ct(tu1, tu2), (5.12)

Our main idea is thus to use an ordinary copula as an approximation of the Lévy copula

to derive information at fixed times about non observed components and only for the

purpose of deciding if component needs an intervention. Since the relationship between

the Lévy copulas and the ordinary copulas at specific time is rarely investigated in lit-

erature, we propose to fit an ordinary copula to the degradation levels observed at fixed

times when the degradations of components are simulated by Nested Lévy copulas using

Algorithm 3. When dealing with which copula function can fit better the data, the tail

dependence should be considered because it measures the dependence for the extreme

values. Ordinary copula which has the same tail dependence properties as Clayton Lévy

copula should be chosen.

As we have reviewed in Section 5.3.1.2, due to the fact that the dependence modeled

by Clayton Lévy copula is stronger when the jump size is great, the Gumbel ordinary

copula with upper tail dependence can fit the data better than the Clayton ordinary cop-

ula. Thus stochastic dependence between two components modeled by Gumbel ordinary
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copula at a fixed time t is defined as follows:

F (xi, x4) = CG
t (Fi(xi), F4(x4)) = CG

t (ui, u4)

= exp{−[(− lnui)
θi4
G + (− lnu4)

θi4
G ]

1

θi4
G }, i = 1, 2, 3

(5.13)

The parameter of Gumbel ordinary copula function has to be estimated at each value

of time. Figure 5.3 illustrates the Maximum Likelihood estimated values of parameter

of each component when time varies. It verifies that ordinary copula is time-dependent

and we can notice as well that θ34G is greater than θ14G and θ24G because the dependence

degree within subsystems is greater than that between subsystems.

We propose a simple Kolmorov–Smirnov test (see [187]) to choose between Clayton and

Gumbel ordinary copulas because in our case, marginal distributions are well known. A

goodness-of-fit test proposed in [188] with the method “S
(B)
n ” is also used as it has been

proved that the best procedures overall are those based on “S
(B)
n ”. In fact, the Kol-

morov–Smirnov test with sample size n = 10000 between component 1 and component

4 rejects the hypothesis that the underlying distributions of two samples generated by

the Clayton Lévy copula and Gumbel ordinary copula respectively differ with P-value

0.2000 and Kolmogorov–Smirnov statistic 0.0189. However, the Kolmogorov–Smirnov

test for Clayton ordinary copula accepts that hypothesis with P-value 1.2395e-17 and

Kolmogorov–Smirnov statistic 0.0700. The goodness-of-test for copulas with method

”S
(B)
n ” between component 1 and component 4 shows that: when null hypothesis is

Gumbel ordinary copula, P-value is 0.1673 which lead to accept the null hypothesis;

however when it is Clayton ordinary copula, P-value is 0.0004995 such that the null hy-

pothesis is rejected. As a conclusion, Gumbel ordinary copula can fit the data generated

by Clayton Lévy copula. Thus, in the subsequent sections, Gumbel ordinay copula with

parameter adaptive to time is used for for statistic inference instead of Clayton Lévy

copula.

5.4 Maintenance policies

In this section, we propose some maintenance policies which can be divided into two

parts. Firstly, some maintenance policies considering both economic and stochastic

dependences but easy to be implemented in practice with decision parameter set at

subsystem level. In the second part, we focus on taking advantage of stochastic de-

pendences when no practical constraint holds hence maintenance policies taking into

account stochastic dependences at all levels are proposed. Besides, some classic mainte-

nance policies are also implemented for the purpose of comparison with the performance

of our proposed maintenance policies.
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Figure 5.3: Estimating the values of parameter of Gumbel ordinary copula between
component i (i = 1, 2, 3) and component 4 with θ0 = 1, θ1 = 1.5, θ2 = 2

For general assumption, the degradation level of components are revealed through in-

spections instantaneously and perfectly and an inspection cost cinsp is incurred. In order

to avoid failures, components are preventively replaced with a preventive maintenance

cost cp when their degradation levels are revealed to have crossed over a preset threshold

M . If the degradation level of component i (i = 1, 2, 3, 4) is revealed to have exceeded

a corrective threshold L, it is considered failed and then a corrective maintenance with

a cost cc should be carried out. Both replacements (preventive and corrective) are as-

sumed to be perfect and instantaneous (e.g. the duration of maintenance is negligible).

The system is out of service as soon as a component fails and a downtime cost cd is

incurred per time unit.

5.4.1 Part I: Maintenance strategies based on subsystems dependence

It has been shown in chapter 4 that the condition-based maintenance policy multi-

component has lowest maintenance cost when each component is inspected and replaced

according to individual inspection and replacement parameters. For example, for HTFD

system in chapter 4, 0.24% loss is observed for joint preventive threshold and 0.93% loss is

observed for joint inspection period when compared to individual setting. However, the

optimization of such a maintenance policy is time-consuming because eight parameters

are involved. In this part, we consider a type of systems in which the degradation speeds

of components within subsystem are closed and components are related. Therefore, the

maintenance parameters can be set at subsystem level. In this way, if both components

in a subsystem are monitored, they are inspected simultaneously (a joint inspection
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period for both components in a subsystem) and the preventive maintenance threshold

is the same for both components. Five maintenance policies are proposed below to take

advantage of the economic dependence, the stochastic dependence within subsystem and

the stochastic dependence between subsystems.

• Policy I1: Both components in subsystem i (i = 1, 2) are inspected simultaneously

every Ti time units. Each component in subsystem i is replaced when its own

degradation level is revealed to have exceeded the preventive threshold Mi.

• Policy I2: Both components in subsystem i (i = 1, 2) are inspected simultaneously

every Ti time units. The whole subsystem i is replaced as soon as the degradation

level of a component is revealed to have exceeded the preventive threshold Mi.

• Policy I3: A single component in subsystem i (i = 1, 2) is inspected every Ti

time units in turns. The faster degrading component is to be inspected at first.

The currently inspected component in subsystem i is replaced when its degradation

level is revealed to have exceeded the preventive thresholdMi. Then the inspection

scheme switches to the other component immediately to permit that components

are replaced simultaneously. The inspection scheme on one component is started

with the replacement of the other component and ended when it is replaced so

that both components in a subsystem are alternately monitored.

• Policy I4: The faster degrading component in subsystem i (i = 1, 2)is inspected

every Ti time units. The whole subsystem i is replaced when the degradation

level of the inspected component in subsystem i is revealed to have exceeded the

preventive threshold Mi.

• Policy I5: The faster degrading component among the whole system (that is

component 4 in subsystem 2) is inspected every T2 time units. When the state of

component 4 in subsystem 2 is revealed to have exceeded the preventive threshold

M2, the replacement of the whole subsystem 2 is carried out and the inspection

scheme of subsystem 1 starts T1 time units later. The component which degrades

faster in subsystem 1 is inspected every T1 time units until its degradation level is

revealed to have exceeded the preventive threshold M1. Then an extra inspection

of component 4 in subsystem 2 is carried out instantaneously. If component 4 is

also revealed to have exceeded its preventive threshold M2 then the whole system

is replaced and the inspection scheme restarts. Otherwise only subsystem 1 is

replaced. In all cases, as soon as subsystem 1 is replaced, its inspection scheme is

stopped until subsystem 2 is replaced in turn so that inspections for subsystem 1

are always triggered by the replacement of subsystem 2.
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To briefly summarize these five policies, policies I1 and I2 inspect both components

within subsystem whereas policies I3, I4 and I5 inspect only one component within

subsystem in order to take advantage of within-subsystem dependence. Policies I1 and

I3 are independent replacements within subsystem but policies I2, I4 and I5 are block-

replacements which can better profit economic dependence. Specially, policy I5 applies

non-periodical inspection schemes for slower subsystem.

5.4.2 Part II: Maintenance policies making use of dependence at both

subsystem and system levels

In previous part, in order to optimize the condition-based maintenance in a reasonable

time as well as grouping maintenance activities, the number of maintenance parameters

is reduced by setting at subsystem level. Nevertheless, it has to find appropriate para-

meters to balance both components within subsystem which lead to more inspections for

slow degrading component hence high inspection cost whereas less inspections for fast

degrading component hence high corrective maintenance cost. As a consequence, period-

ic inspection scheme is easy to manage but when applied to heterogeneous components,

it fails to balance the objectives of grouping maintenances tasks to save set-up cost (in-

dividual maintenance parameters at component level) and adapting inspection periods

to the specific degradation speeds of each component (joint maintenance parameters at

subsystem level). As components are correlated, if degradation level of component is

revealed within a time interval, it can be used to estimate the degradation information

of other components. The stronger the dependence is, the more accurate the estimation.

Moreover, the slow degrading component is not so sensitive to inspection frequency when

compared to fast degrading component. Therefore, information about slow degrading

components can be derived from revealed information of fast degrading components

based on the stochastic dependence. To this end, we explore the stochastic dependence

deeply and aim to propose strategies which can reduce unnecessary inspections and avoid

failures by using stochastic dependences.

5.4.2.1 Deriving information about an unknown component from a known

component

In Section 5.3, we have discussed how the increments generated by Lévy copulas can

be presented by time-dependent ordinary copulas. Suppose that a pair of two random

variables (X,Y ) is coupled by Gumbel ordinary copula, that is the joint cumulative

distribution function H can be written as a function of individual CDF FX and FY as
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following

H(x, y) = C(FX(x), FY (y)) (5.14)

where

C(u, v) = exp{−[(− lnu)θ + (− ln v)θ]
1
θ }. (5.15)

Then the conditional distribution copula is

Cupv(u p v) =

∫ u

0

∂2C(t, v)

∂t∂v
dt

=
∂C(u, v)

∂v

= exp{−[(− ln u)θ + (− ln v)θ]
1
θ }[(− ln u)θ + (− ln v)θ](

1
θ
−1)(− ln v)θ−1 1

v
,

(5.16)

and the density function is

c(u, v) =exp{−[(− lnu)θ + (− ln v)θ]
1
θ }[(− ln u)θ + (− ln v)θ]2(

1
θ
−1)(− lnu)θ−1(− ln v)θ−1 1

u

1

v

+ exp{−[(− lnu)θ + (− ln v)θ]
1
θ }[(− ln u)θ + (− ln v)θ]

1
θ
−2(− lnu)θ−1(− ln v)θ−1 1

u

1

v
.

(5.17)

Since E(X|Y ) is a so-called minimum-mean-square-error estimation for X given the value

of Y, it can be used to estimate the state of a non-inspected component if the state of

another related component is known. The subsequent equation details the calculation of

E(X p Y = y) when X and Y are coupled by a copula function C with density function

c in Equation 5.17.

E(X p Y = y) =

∫ ∞

0
xc(FX (x), FY (y))fX(x)dx. (5.18)

With the estimation E(X p Y = y), the mean-square error MSE(y) is given as follows:

MSE(y) =

∫ ∞

0
(x− E(X p Y = y))2fX(x)dx

=E(X2)− 2E(X p Y = y)E(X) + (E(X p Y = y))2.

(5.19)

Therefore, the error of estimation E(X p Y = y) for X depends not only on the marginal

law of X but also on the dependence relationship between X and Y and the observed

value of Y . Figure 5.4 illustrates the conditional expectation of Xi (i = 1, 2, 3) with all

the possible values of Y (the values of Y are standardized to [0, 1] by FY (y)) where Xi

and Y are Gamma distributed, Mi and Vi is the mean and variance of xi respectively
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Figure 5.4: Conditional expectation of X knowing the observed value of Y served in
function of FY (y) with different mean and variances and dependence degrees

and θi4G is parameter of Gumbel function between Xi and Y . Figure 5.4 shows that

the greater θi4G is, the more E(X p Y = y) depends on the observed value of Y and the

estimated value of Xi are more accurate. For example, compare two blue curves 5.4

which are solid and dotted respectively, the blue solid curve is more flat than the blue

dotted curve hence it is less dependent on the observed value of Y . In fact, when X1 and

Y are independent, E(X p Y = y) = E(X) is constant. As a result, if components are

highly correlated, it is reasonable to inspect only some components and the degradation

level of other components can be estimated e.g. by using conditional expectations.

Nevertheless, the conditional expectation E(X p Y = y) with ordinary Gumbel copula

given by Equation 5.18 has not explicit form which leads to time-consuming numerical

integral at each inspection time when it is implemented in maintenance policies. Thus

the estimated value of the probability that components exceed the threshold is used as an

alternative to make the maintenance decision. In this case, the conditional distribution

function of a component given the observed state of another related component should
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be derived as follows:

H(x p y) =

∫ x

0

h(t, y)

fY (y)
dt

=

∫ x

0

∂2C

∂u∂v
(FX(t), FY (y))fX(t)dt

=Cupv(FX (x) p FY (y))

=exp{−[(− lnFX(x))θ + (− lnFY (y))
θ]

1
θ }[(− lnFX(x))θ

+ (− lnFY (y))
θ](

1
θ
−1)(− lnFY (y))

θ−1 1

FY (y)

(5.20)

where h(x, y) = ∂2H(x,y)
∂x∂y . We give an example in Figure 5.5 of how to derive the prob-

ability that component i exceeds the preventive threshold at nT with the last known

degradation level being ximiT
at miT and the increment of a related component j on

[miT +T1,miT +T1+Wi] being revealed as Di with miT +T1 and miT +T1+Wi being

two inspection moments of component j. Within an interval from last operation time

miT to current decision moment nT , the increment of component i can be divided into

three parts: a random variable xi following the Gamma distribution with parameters

(T1αi, βi), a random variable y depending on both Di and the marginal distribution

function of component i during time Wi (conditional distribution given Di is noted as

HWi
(y|Di) and a random variable x2 following the Gamma distribution with parameters

(T2αi, βi) (see in Figure 5.5(a)). Since the increments of Gamma process are indepen-

dent and exchangeable, the increments of component i can also be divided in two parts:

a random variable x following the Gamma distribution with parameters ((T1+T2)αi, βi)

and a random variable y related to the revealed increments of component j (see in Figure

5.5(b)). Therefore,

P (Xi
nT > M p Xi

miT =ximiT ,Di,Wi)

=1−
x

x+y<M−xi
miT

fαi(nT−miT−Wi),βi
(x)h(y p Di)dxdy

=1−
∫

x<M−xi
miT

fαi(t−miT−Wi),βi
(x)H(M − ximiT − x p Di)dx

(5.21)

It is worthwhile to notify that when x is zero which mean that the observation of

component j is complete for component i such that P (Xi
nT > M p Xi

miT
) can be directly

computed without numerical integral. Therefore the computation of the probability that

components exceed the threshold consumer less time than the conditional expectation

especially when component j is always completely inspected at the decision time of

component i. For subsequent sections, components are noted as component 1, 2, 3, 4
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Figure 5.5: An example for calculation estimate the probability of component i exceed-
ing preventive threshold M with the information of component j

with degradation speeds in increasing order so that component 4 is the fastest degrading

component.

5.4.2.2 Semi non-periodic strategy considering stochastic dependence (pol-

icy II1)

On the basis of a four-component system, we propose a new condition-based mainte-

nance policy denoted as policy II1 which is designed to inspect periodically the fastest

degrading component and the remaining components are inspected only when need-

ed. The main idea is that the fastest degrading component should be inspected more

frequently and its revealed degradation information can be used to estimate the degrada-

tion level of the other components, thus the other components are inspected only when

their degradation levels are estimated to exceed the preventive threshold. Policy II1 is

detailed as follows:

• Inspection strategy: we suppose that the degradation level of component can only

be known by inspection operations. component 4 is inspected every T time units.

Once the degradation level of component 4 is observed at time nT (n ∈ N), it

is used to calculate the estimated probability PMi that the degradation level of

component i exceeds the preventive threshold (that is PMi ≃ P (Xi
nT > M |X4

nT )).

component i (i = 1, 2, 3) is inspected when and only when the estimated probabil-

ity PMi is high enough while remaining below a direct replacement threshold : if

R2 ≤ PMi ≤ R1 then component i is inspected. Each inspection operation incurs

a cost Cinsp.
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• Replacement strategy: component i (i = 1, 2, 3, 4) is replaced when inspected

if its revealed degradation level exceeds a preventive threshold M and correc-

tive replacement with cost Cc takes place if the preset corrective threshold L is

reached otherwise preventive replacement incurs a cost Cp. Moreover, component

i (i = 1, 2, 3) is replaced without inspection operation when the estimated PMi

exceeds the direct replacement threshold R1. If the component i fails, corrective

maintenance incurs a cost Cc otherwise preventive maintenance incurs a cost Cp.

The degradation level of component 4 is revealed every T time units such that the

estimated probability PMi (i = 1, 2, 3) can be updated using the revealed increments of

component 4 based on their dependence relationship. Having the following assumptions:

• nT is current decision time, component 4 is already inspected and the revealed

increment of component 4 since time (n− 1)T is D4
nT ,

• the last operation of component i (i = 1, 2, 3) took place at miT with (n− 1)T <

miT < nT and the last revealed degradation level is ximiT
,

then

PMi = P (Xi
nT > M |Xi

miT = ximiT ,Σ
k=nT
k=miTD

4
k)

= 1− exp(−℘i4
∆t(x, y)

1

θG
i4 )℘i4

∆t(x, y)
1

θG
i4

−1
(− lnℜ4

∆t(x))
θGi4−1 1

ℜ4
∆t(x)

,
(5.22)

where

∆t = (n−mi)T,

x = Σk=nT
k=miTD

4
k,

y = M − ximiT ,

ℜ4
∆t(x) = F∆tα4,β4(x),

℘i4
∆t(x, y) = (− lnℜ4

∆t(x))
θGi4−1 + [− lnℜi

∆t(y)]
θGi4−1,

and F(n−mi)Tα4,β4
is Gamma distribution function with shape and scale parameters

(n − mi)Tα4 and β4 respectively. Equation 5.22 is obtained from Equation 5.20 with

specific information.

As a result, the degradation increments of component 4 contribute to estimate PMi of

component i (i = 1, 2, 3) without inspection operations. The quality of predicted PMi

depends on the time elapsed since the last inspection of component i (i = 1, 2, 3) as

well as the dependence degree between component 4 and component i. The inspection

operations of slower degrading components are triggered only when the value of PMi
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Figure 5.6: An illustration of policy II1

exceeds an inspection threshold R2. When their degradation levels are high enough and

exceed a direct replacement threshold R2, components are supposed to have deteriorated

enough and they must be replaced. To make subsequent equations more succinct and

readable, we name a new function ℑij
t (x, y) as:

ℑij
t (x, y) = exp(−℘ij

t (x, y)
1

θG
ij )℘ij

t (x, y)
1

θG
ij

−1

(− lnℜj
t(x))

θGij−1 1

ℜj
t (x)

, (5.23)

such that PMi = 1 − ℑij
∆t. To have a better understanding of policy II1, we give

an example in Figure 5.6 where the time of inspection is indicated by cross on the

deterioration curve. It shows that by inspecting component 4 periodically and taking

into account the observed increments, the inspection cost is saved. For example, on the

time interval [7.5,11], component 4 is revealed to deteriorate slowly so that components

1, 2, 3 start to be inspected lately. On the contrary, on the time interval [24.5,25], a

big jump is detected for component 4 hence the other components are replaced directly

without inspection.

5.4.2.3 Non-periodic strategy considering stochastic dependence (policy I-

I2)

The purpose of policy II1 is to avoid unnecessary inspection operations for the slower

degrading components using stochastic dependences between the critical component in

the system (the faster degrading one) and the others. Aiming to benefit from non-

periodic inspection scheme for all components, we propose a new maintenance policy

denoted as policy II2.

In policy II2, the inspection scheme of each component (even the fastest degrading
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component) is based on the evaluation of probability PMi of exceeding the preventive

threshold every T time units so as to allow non-periodic inspections for all components.

Moreover probability PMi is calculated using the observed degradation data of any other

components. Components are treated sequentially in the procedure, beginning with the

fastest degrading one. The figure 5.10 illustrates the procedure of decision-making of

policy 3 in which some key elements are highlighted (marked in the flowchart from (1)

to (7)) and explained in the flowing list if nT is the current decision time and miT is

the last operation (either inspection or replacement) date of component i:

1. Initialisation “i = 4”. When asking if inspections are needed, component 4 is

treated first because component 4 degrades fastest so it should be inspected more

frequently which leads to more available information. As soon as it is inspected, its

revealed degradation level can be devoted to make decision for other components.

2. Instruction “find j: j = argmax
k

(INFORik3), k = 1, . . . , 4 and k 6= i” allows

to identify the information that can be used for component i. Before the next

inspection being carried out for component i (i = 1, 2, 3, 4), some other components

may have been inspected hence the acquired information is available for calculating

PMi. To simplify the calculation, we only use the information observed on the

component which corresponds to the longest effective activity interval denoted as

INFORik3. The matrix INFOR stores the necessary information: INFORij1

and INFORij2 are the start and end time of observation interval of component

j used for component i respectively; INFORij3 is the length of effective activity

interval of component j used for component i and INFORij4 is the corresponding

revealed increment of component j used for component i on the effective activity

interval; INFORij5 is the degradation level of component j observed at the last

inspection.

3. Test “INFORij1 < miT ?” allows to know whether available information about

component j can be used for component i or not. It should be noticed here

that dependence between components is represented by dependent increments. If

miT > INFORij1, it signifies that even though the increment of component j is

acquired, it is useless because the degradation level of component j is unknown at

miT . Wi refers to the length of the selected interval to be used for component i

where Wi = 0 represents no information is available for component i.

4. Estimation “PMi = P (Xi
nT > M |Xi

miT
= ximiT

,miT,Di,Wi, αi, βi, αj , βj)”. If

Wi = 0, then

PMi = P (Xi
nT > M |Xi

miT = ximiT ,miT,Di,Wi, αi, βi, αj , βj)

= 1− Fαi(nT−miT ),βi
(M − ximiT ),

(5.24)
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Figure 5.7: Flowchart of policy 3
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and in this case, PMi is completely decided by its marginal distribution; otherwise

if component j with observed increment Di is selected to be used for component i

PMi = P (Xi
nT > M |Xi

miT = ximiT ,miT,Di,Wi, αi, βi, αj , βj)

= 1−
x

x+y<M−xi
miT

fαi(nT−miT−Wi),βi
(x)h(y|Di)dxdy

≃ 1−
∫

x<M−xi
miT

fαi(nT−miT−Wi),βi
(x)ℑij

Wi
(Di,M − ximiT − x).

(5.25)

where h(y|Di) is the conditional distribution of component i during time Wi know-

ing that the observed increment of component j duringWi is Di. This distribution

function depends on the dependence degree θij between components i and j and

individual degradation parameters of components. Equation 5.25 implies that the

shorter Wi is, the calculation of PMi depends more on its marginal distribution. S-

ince stochastic dependences exist between components, the observed increments of

one component certainly can serve for predicting increments of other components.

That’s why we choose the longest Wi in “(2) find j: j = argmax
k

(INFORik3),

k = 1, . . . , 4 and k 6= i”.

5. Loop “k = 1, . . . , 4, k 6= i”. After verifying PMi < R1, component i is surely

operating, therefore the new available information should be stocked for other

components except itself.

6. Test “component i is inspected?” is dedicated to the updating of component i.

If answer is yes, the degradation level of component i is revealed such that the

information stock for component j can be updated; otherwise, component i is

replaced without inspection hence not useful information can be updated.

7. Test “INFORki1 < mkT ?” allows to determine which inspection of component

i can bring new information used for which component. To update the informa-

tion about component i available for other components, three cases are detailed

in Figure 5.8 where INFOR′ is values of INFOR after being updated using the

revealed information of component i and mkT (casej) (j = 1, 2, 3) is the last op-

eration (either inspection or replacement) time of component k in case j. Case

1 (mkT < INFORki1) means that since last operation (either inspection or re-

placement) time, component i have been inspected more than twice, such that

the available information of component i for component k should be accumulated.

Case 2 (INFORki1 < mkT < INFORki2) signifies that interval of information

of component i is included in [mkT (case2), nT ] such that this information can

be updated for component k. In case 3 (mkT > INFORki2), the information of

component i is no available for component k because its degradation level at time
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Figure 5.8: An interpretation of (7) in Figure 5.10
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Figure 5.9: An illustration of policy II2

mkT (case3) is unknown. In order to simplify the flowchart in Figure 5.10, case 3 is

treated as case 2. In fact, even though the information of component i is updated

for component k in case 3 in Figure 5.10, it is not used since the condition “(3)

INFORkj1 < mkT” is met then Dk = 0,Wk = 0.

An example is given in Figure 5.9 with the same degradation trajectory as that used in

Figure 5.6. It shows that in policy II2, all components are non-periodically inspected

and the next inspection time depends on not only the last revealed deterioration level

and its deterioration parameters but also the revealed deterioration information of other

components. For example, as component 4 deteriorates the fastest and has the biggest

variance so that it starts to be inspected first. Without taking into account the stochastic

dependence, the first inspection of component 4 always takes place 1.5 time units after

it is maintained because at that time PM just exceeds the inspection threshold R2.

However, in Figure 5.9, the first inspection of component 4 takes place 2 time units

after it is replaced at t=2.5 because component 3 and component 2 are revealed to

deteriorate slowly during the time intervals [2.5,3] and [3,3.5] respectively whereas the

component 4 is directly replaced at t=13 only 1 time unit after the beginning of the

lifecycle because a big jump has been detected for component 2 on the time interval

[12,12.5].

5.4.2.4 Two strategies not considering stochastic dependence

In order to evaluate the profit gained by taking advantage of stochastic dependences,

two maintenance policies which do not take into account stochastic dependences are

proposed. Policy II3 is similar to policy II2 except that the calculation of PMi relies
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completely on the distribution of component i and do not take the revealed information

of other components into consideration.

• Inspection strategy: at every T time units, the inspection operation of component

i (i = 1, 2, 3, 4) is possible according to the value of PMi where PMi = P (Xi
t >

M |Xi
t′ = xit′) = 1−F(t−t′)αi,βi

(M − xit′) (t is current time, xit′ and t′ is last known

degradation level and date respectively). If R2 < PMi < R1, component i is

inspected with a cost cinsp.

• Replacement strategy: at decision time, if PMi > R1, component i (i = 1, 2, 3, 4)

is replaced without inspection operation: when component is broken, a corrective

maintenance incurs a cost cc; otherwise, a preventive maintenance incurs a cost

Cp. component i (i = 1, 2, 3, 4) is replaced if the revealed degradation level ex-

ceeds a preventive threshold M : when the revealed degradation level exceeds a

preset corrective threshold, a corrective maintenance incurs a cost cc; otherwise, a

preventive maintenance incurs a cost cp.

The replacement strategy of policy II3 is the same as that of policy II1 for component i

(i = 1, 2, 3) and it applies on all components. It is noteworthy that both policies II2 and

II3 are condition-based maintenance policies with non-periodic inspections where the

inspection intervals depend on the condition of components but they are limited to the

multiple of T . Furthermore, even though components are non-periodically inspected,

the reliability of components is controlled to be at least over 1−R1.

An example is given in Figure 5.10 with the same degradation trajectory as that used in

Figures 5.6 and 5.9. It shows that all components are non-periodically inspected and the

next inspection time depends only on the last revealed deterioration level and individual

deterioration parameters. The first inspection of components 1, 2, 3 and 4 always takes

place 2.5, 2, 1.5, 1.5 time units respectively after they are replaced because at that times

the value of PM of components just exceeds the inspection threshold R2. Once the first

inspection takes place, the next ones can be decided according to revealed condition of

component. For example, component 1 is inspected soon at t=3 when the deterioration

level at t=2.5 is revealed to be close to the preventive threshold but the inspection takes

place late at t=19 when the deterioration level at t=17.5 is revealed to be in low level.

It can be seen in Figures 5.6, 5.9, 5.10 that policies 1, 2, 3 have 2, 5, 3 groups of two

maintenance operations carried out simultaneously, 4, 2, 3 groups of three maintenance

operations and 1, 1, 0 groups of four maintenance operations on [0,5] respectively that

indicates a significant set-up cost saving of 13, 12, 9 respectively. As a result, the

proposed condition-based maintenance policies can also take advantage of economic

dependence.
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Figure 5.10: An illustration of policy II3

A predictive maintenance policy with periodic inspections is proposed and denoted as

policy II4.

• Inspection strategy: component i (i = 1, 2, 3, 4) is inspected every T time unit and

its degradation level is revealed perfectly denoted as xinT (n = 1, 2, . . . ,∞).

• Replacement strategy: at inspection time nT , if xinT > L, a corrective maintenance

is carried out for component i; if xinT < L but its conditional reliability at next

inspection time given the observed current degradation level is less than a threshold

R that is:

P (Xi
(n+1)T > L|Xi

nT = xinT ) = FTαi,βi
(L− xinT ) < R, (5.26)

then a preventive maintenance is carried out.

Such a strategy with periodic inspection scheme and predictive indicator is used for

multi-component systems to develop grouping maintenance strategies taking account of

economic dependence (see [100, 174]).

5.5 Numerical experiments

In this section, we evaluate the performance of the proposed maintenance policies using

Monte-Carlo simulation. Table 5.1 and Table 5.2 state components and cost parameters.

Components within subsystems degrade with similar speeds and subsystem 1 degrades

in mean more slowly than subsystem 2. Cost values are arbitrarily fixed with the as-

sumption that the corrective maintenance is much more expensive than the preventive



5.5 Numerical experiments 103

Table 5.1: Degrading parameters for three configurations of system

component i 1 2 3 4

mean 7 9 12 13

variance 35 45 60 65

αi 7/5 9/5 12/5 13/5

βi 1/5

Table 5.2: Cost parameters

L Cc Cp Cinsp Cd

50 100 20 1 10

one because the unpredicted failures often cause incalculable loss in practice and that

inspecting component costs much less than replacing it.

5.5.1 Performance analysis of maintenance strategies based on subsys-

tems dependence

5.5.1.1 Configurations of system regarding dependences

In order to investigate the influences of stochastic dependences within and between sub-

systems, we propose three cases of system. System 1 has moderate between-subsystems

dependence and strong within-subsystems dependence. To investigate the influence of

dependence within subsystems, system 2 has weaker within-subsystems dependence than

system 1. Likewise, to study the effect of between-subsystems dependence, system 3 has

independent subsystems. The dependence parameters of systems are defined in Table

5.3, where θ0, θ1, θ2 is the parameter of Clayton Lévy copula for the dependence between

subsystems, the dependence within subsystem 1 and the dependence within subsystem 2

respectively. τ in Table 5.3 represents approximate value of Kendall’s tau related to each

given value of θ of Clayton Lévy copula because unlike ordinary copulas, the Kendall’s

tau of dependence modeled by Lévy copulas does not have closed form.

5.5.1.2 Comparison of maintenance policies for system 1 as the baseline

case
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Table 5.3: Dependence parameters for three configurations of system for maintenance
policies of part I

parameter of clayton function system 1 system 2 system 3

θ0 1.0 (τ ≃ 0.43) 1 (τ ≃ 0.43) 0 (τ ≃ 0)

θ1 1.5 (τ ≃ 0.56) 1.1 (τ ≃ 0.46) 1.5 (τ ≃ 0.56)

θ2 2.0 (τ ≃ 0.65) 1.2 (τ ≃ 0.59) 2.0 (τ ≃ 0.65)
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Figure 5.11: Optimal values of EC for policies I1, I2, I3, I4 and I5 in system 1 when
set-up cost varies
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Table 5.4: Optimal parameters and main characteristics of maintenance policies for system 1

cr EC T1 T2 M1 M2 A(h)
Pci (%) LCi NGi (%)

1 2 3 4 1 2 3 4 1 2 3 4

PI1

0 30.87 1.2 0.8 29.4 29.5 9.6 3.7 5.7 4.7 5.4 5.2 4.1 3.1 2.9 66.2 28.4 4.1 1.3
1 30.58 0.9 0.9 30.9 27.7 7.46 3 4.4 4.3 5 5.2 4.2 3 2.8 52.7 30.9 12.5 3.9
2 30.1 1 1 30.1 26.8 8.64 3 4.7 4.6 5.4 5.2 4.1 2.9 2.8 48.8 31.9 14.2 5
3 29.61 1 1 29.5 26.7 8.23 2.7 4.2 4.6 5.4 5.1 4.1 2.9 2.8 48.6 31.8 14.4 5.2
5 28.55 1.1 1.1 28.6 25.3 8.82 2.7 4.3 4.4 5.3 5 4 2.9 2.7 43.9 32.9 16.5 6.7

PI2

0 31.84 1.2 0.8 31.9 30.9 9.37 2 8.1 3.7 5.9 4.4 4.4 2.9 2.9

0

92.5

0

7.5
1 31.22 1.2 0.8 31.1 30.9 8.76 1.8 7.2 3.7 5.9 4.3 4.3 2.9 2.9 92.5 7.5
2 30.59 1.2 0.8 31.1 30.4 8.45 1.8 7.2 3.4 5.4 4.3 4.3 2.8 2.8 92.4 7.6
3 29.93 1.6 0.8 27.9 30.4 10.19 1.9 7.4 3.4 5.4 4.1 4.1 2.8 2.8 84.3 15.7
5 28.54 1 1 32 27.8 7.78 1.5 6.2 3.6 5.5 4.3 4.3 2.7 2.7 76.9 23.1

PI3

0 29.55 0.9 0.6 30.5 30.8 7.48 3 5.7 4.3 4.2 5.2 4.2 3.1 2.9 67.9 27.8 3.3 1
1 29.26 1 0.5 29.9 31.9 7.21 3.1 5.9 4.1 4 5.2 4.2 3.2 2.9 65.2 27.6 5.7 1.6
2 28.89 1.2 0.6 27.9 30.6 7.8 3 5.4 4.2 4.1 5 4 3.1 2.9 60.3 30.4 7 2.3
3 28.51 0.8 0.8 30.6 28.5 7.78 2.6 5.2 4.7 4.7 5.2 4.2 3 2.8 52.8 31.6 11.6 4
5 27.54 0.9 0.9 29.1 26.8 7.55 2.3 4.4 4.5 4.4 5 4 3 2.7 48.1 33 13.5 5.4

PI4

0 29.65 0.9 0.6 32.2 31.4 6.07 1.9 5.6 4.2 4.5 4.3 4.3 2.9 2.9

0

94.1

0

5.9
1 29.04 0.9 0.6 32.2 31.3 6.02 1.9 5.6 4.1 4.5 4.3 4.3 2.9 2.9 94.1 5.9
2 28.43 0.9 0.6 32.2 30.6 5.69 1.9 5.6 3.6 3.9 4.3 4.3 2.9 2.9 94 6
3 27.8 0.7 0.7 33.7 29.9 5.45 1.8 5.1 4 4.6 4.4 4.4 2.8 2.8 83.5 16.5
5 26.48 0.7 0.7 33.4 29.9 5.31 1.7 4.9 4 4.6 4.3 4.3 2.8 2.8 83.4 16.6

PI5

0 29.28 0.6 0.6 34.4 31.7 4.97 1.8 5 4.3 4.8 4.4 4.4 2.9 2.9

0

85.3 14.8
1 28.64 0.6 0.6 34.4 31.3 4.76 1.7 4.9 4.1 4.5 4.4 4.4 2.9 2.9 85.2

0

14.8
2 28 0.6 0.6 34.4 31.3 4.76 1.7 4.9 4.1 4.5 4.4 4.4 2.9 2.9 85.2 14.8
3 27.35 0.6 0.6 34.4 30.6 4.43 1.7 4.9 3.6 3.9 4.4 4.4 2.9 2.9 85.1 14.9
5 26.03 0.6 0.6 33.3 30.6 4.08 1.5 4 3.6 3.9 4.3 4.3 2.9 2.9 84.6 15.4
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In this section, we compare the performance of the maintenance policies I1 to I5 when

the stochastic dependences between subsystems are moderate. The optimal parameters

and main characteristics of five proposed maintenance policies for system 1 are de-

tailed in Table 5.4 where PI1 stands for policy I1, A is unavailability of system, Pci

(i = 1, 2, 3, 4) is the proportion of corrective maintenance of component i, Lci is the

mean lifecycle length of component i and NGi is the proportion of maintenance ac-

tivities that are performed on i components simultaneously Figure 5.11 illustrates the

performance of all maintenance policies when the set-up cost cr varies from 0 to 5. Con-

sidering maintenance policies which inspect both of two components within subsystem,

policy I2 is worse than policy I1 when cr is small. In fact, policy I2 replaces the whole

subsystem as soon as the degradation level of a component in the subsystem exceeds

the preventive threshold, hence the service time of the other component is shortened.

In fact, when set-up cost is 0, policy I2 reduces the lifetime of component 1 from 5.2

to 4.4 and increases that of component 2 from 4.1 to 4.4 when compared with policy

I1. Neither of components within subsystem can achieve its optimum such that the

maintenance cost augments. However policy I2 has much more grouped maintenance

activities so that when cr increases, it profits more economic dependence than policy

I1 and the gap is narrowed. It is noteworthy that policy I2 begins to dominate policy

I1 when cr is greater than 5. Even though policy I1 tries to maximize the grouping

opportunities by a joint inspection interval when set-up cost is 5, it is slightly worse

than policy I2 as still 43.9% of the maintenance activities are operated individually. In

practice, when applying the maintenance policies to some systems, the whole subsystem

has to be replaced due to technical constraints. For example, some related bearing parts

in a vehicle, such as timing belt and tension wheel are often replaced simultaneously and

it is better to also replace water pump with them because it is not so easy to implement

the maintenance operations on a vehicle. In cases where practical constraints lead to

replace components in a subsystem at the same time, policy I2 has to be applied instead

of policy I1 leading to around 3% of loss at most for small values of cr when compared

to policy I1.

Policies I3, I4 and I5 are designed to take advantage of the dependence between com-

ponents and they inspect a single component within each subsystem. When compared

to policy I1, policy I3 profit the stochastic dependence between components within sub-

system such that the alternate inspection strategy begins to inspect components when

component degrades to a certain level. Unnecessary inspection cost is saved when com-

ponents is newly maintained in policy I3 hence the optimal inspection period is smaller

than that of policy I1 (0.9 for subsystem 1 and 0.6 for subsystem 2 in policy I3 whereas

in I1, that for subsystem 1 and 2 is 1.2 and 0.9 respectively). Meanwhile policy I3

allows each component within subsystem to be replaced according to its own degrada-

tion speed whereas policy I4 forces both components within a subsystem to be replaced
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simultaneously. In fact when compared to policy I4, policy I3 reduces a lot the amount

of preventive maintenances of components 1 and 3 but increases few of the amounts of

their failures. Hence policy I3 is better than policy I4 when cr is small. Nevertheless,

policy I3 groups maintenance activities only when components happen to be inspected

and they exceed the preventive threshold, so it performs the worst in taking advantage

of economic dependence (48.1% of maintenance activities are performed on a single com-

ponent when cr is 5).

Like policy I3, policy I4 takes advantage of stochastic dependences between components

within subsystem therefore it is better than policies I1 and I2 for all selected values of

cr. Besides, policy I4 replaces both components in a subsystem simultaneously, it has

much more opportunities for maintenance grouping than policy I3. As it profits both

economic and stochastic dependence, policy I4 is more profitable than policies I1, I2 and

I3 when cr is great.

Policy I5 profits further the stochastic dependences between subsystems such that it per-

forms better than policies I3 and I4. Through the analysis of numerical experiments, we

can see the advantage of policy I5 is twofold. On one hand, when two subsystems degrade

dependently, triggering the inspections of the slower degrading subsystem (subsystem 1)

according to the replacement time of the faster degrading subsystem (subsystem 2) can

save some inspection costs without increasing the amount of failures of the slower de-

grading subsystem too much. On the other hand, when the slower degrading subsystem

exceeds its preventive threshold between consecutive inspections, it reveals that it may

have suffered some big jumps which can also be happened to faster degrading subsystem

because of stochastic dependences at system level. Therefore adding an inspection of

the faster degrading subsystem at these moments can avoid some of its failures. As a

conclusion, maintenance policies which inspect only the faster degrading component per

subsystem and replace the whole subsystem are preferable in multi-component systems

in considering economic and stochastic dependence.

To briefly summarize the numerical results for system 1, it can be concluded that when

components are dependent on each other, inspecting all components in the system is too

expensive and unnecessary and adaptive block-replacement strategies can take advan-

tage of economic dependence.

5.5.1.3 Comparison of maintenance policies for system 2 and system 3
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Figure 5.12: Optimal values of EC of policies I1, I2, I3, I4 and I5 for systems 1, 2, and 3
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Table 5.5: Optimal parameters and main characteristics of maintenance policies for system 2

cr EC T1 T2 M1 M2 A(h)
Pci (%) LCi NGi (%)

1 2 3 4 1 2 3 4 1 2 3 4

PI1

0 30.91 1.2 0.7 29.4 30.1 8.9 3.6 5.7 4.1 4.8 5.2 4.1 3.1 2.9 75.8 23 0.9 0.3
1 30.6 1.2 0.8 29.4 28.7 9.3 3.6 5.7 4.1 4.8 5.2 4.1 3 2.8 68 26.8 4 1.2
2 30.15 1 1 30.3 26.7 8.9 3.2 4.8 4.5 5.4 5.2 4.1 2.9 2.7 50.6 31.3 13.6 4.5
3 29.67 1 1 29.7 26.4 8.3 2.8 4.3 4.3 5.1 5.1 4.1 2.9 2.7 50.1 31.3 13.8 4.7
5 28.64 1.1 1.1 29 25.3 9.5 2.9 4.6 4.5 5.4 5 4 2.9 2.7 46 32.2 15.8 5.9

PI2

0 32.23 1.2 0.8 31.8 30.9 9.6 2.1 7.7 3.6 5.5 4.3 4.3 2.8 2.8

0

92.4

0

7.6
1 31.6 1.2 0.8 31.3 30.9 9.2 2 7.1 3.6 5.5 4.3 4.3 2.8 2.8 92.4 7.6
2 30.97 1.2 0.8 31.3 30.9 9.2 2 7.1 3.6 5.5 4.3 4.3 2.8 2.8 92.4 7.6
3 30.3 1 1 32.6 28.6 8.9 1.8 6.5 3.8 5.8 4.3 4.3 2.7 2.7 76.9 23.1
5 28.86 1 1 32 28.2 8.2 1.6 5.9 3.6 5.4 4.2 4.2 2.7 2.7 76.5 23.5

PI3

0 30.03 1 0.6 29.4 29.8 9.5 3.2 6 4.9 3.8 5.1 4.1 3.1 2.8 67.7 29.4 2.2 0.7
1 29.7 1 0.5 29 31.1 8.6 2.9 5.6 4.8 3.7 5.1 4.1 3.1 2.8 63.3 29 6 1.7
2 29.31 1.2 0.6 28.1 29.5 9.8 3.4 6.1 4.6 3.6 5 4.1 3.1 2.8 59 31.4 7.1 2.4
3 28.89 0.8 0.8 30.6 27.6 10.0 2.9 5.8 5.2 4.2 5.2 4.2 3 2.7 52 32 11.7 4.2
5 27.91 0.9 0.9 29.1 26 9.5 2.6 5 5 4 5 4 2.9 2.6 47.6 33.3 13.6 5.5

PI4

0 30.64 0.9 0.6 32.5 29.8 8.7 3 6 5.3 3.4 4.3 4.3 2.8 2.8

0

94

0

6
1 30.01 0.9 0.6 31.6 29.8 8.1 2.6 5 5.3 3.4 4.2 4.2 2.8 2.8 93.9 6.1
2 29.38 0.9 0.6 31.6 29.8 8.1 2.6 5 5.3 3.4 4.2 4.2 2.8 2.8 93.9 6.1
3 28.64 0.8 0.8 32 27.4 8.0 2.4 4.5 4.9 3.8 4.2 4.2 2.7 2.7 80.8 19.2
5 27.23 0.8 0.8 31.7 27.4 7.8 2.3 4.2 4.9 3.8 4.2 4.2 2.7 2.7 80.7 19.3

PI5

0 30.29 0.7 0.7 33.2 29.4 8. 2.7 4.8 5.9 4.2 4.3 4.3 2.8 2.8

0

82.9

0

17.1
1 29.61 0.7 0.7 33.1 29.4 8.3 2.6 4.7 5.9 4.2 4.3 4.3 2.8 2.8 82.9 17.1
2 28.94 0.7 0.7 33.1 29.4 8.3 2.6 4.7 5.9 4.2 4.3 4.3 2.8 2.8 82.9 17.1
3 28.26 0.7 0.7 32.9 28.3 7.2 2.5 4.5 4.9 3.5 4.3 4.3 2.7 2.7 82.7 17.3
5 26.87 0.7 0.7 32 28 6.5 2.2 3.8 4.6 3.3 4.2 4.2 2.7 2.7 82.2 17.8
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Table 5.6: Optimal parameters and main characteristics of maintenance policies for system 3

cr EC T1 T2 M1 M2 A(h)
Pci (%) LCi NGi (%)

1 2 3 4 1 2 3 4 1 2 3 4

PI1

0 30.86 1.2 0.8 29.6 28.9 9.9 3.7 5.9 4.2 4.9 5.2 4.2 3 2.8 66.1 29.6 3.6 0.6
1 30.55 1.2 0.8 29.1 28.8 9.4 3.4 5.4 4.1 4.8 5.1 4.1 3 2.8 65.9 29.8 3.7 0.6
2 30.24 1 1 30.4 26.6 9.8 3.2 4.9 4.5 5.3 5.2 4.2 2.9 2.7 49.7 36.7 11.6 2.1
3 29.75 1.1 1.1 29.9 25.5 11.2 3.4 5.3 4.6 5.5 5.2 4.1 2.9 2.7 45.2 38.3 13.8 2.8
5 28.74 1.2 1.2 28.7 23.8 11.4 3.2 5.1 4.3 5.2 5.1 4.1 2.8 2.6 39.4 40.1 16.6 3.9

PI2

0 31.87 1.2 0.8 31.7 30.8 9.7 2 7.9 3.7 5.8 4.4 4.4 2.9 2.9

0

94.1

0

5.9
1 31.25 1.2 0.8 30.7 30.3 8.6 1.7 6.7 3.3 5.3 4.2 4.2 2.8 2.8 94 6
2 30.63 1.2 0.8 30.6 30.3 8.5 1.7 6.6 3.3 5.3 4.2 4.2 2.8 2.8 94 6
3 29.98 1.4 0.7 29.3 31.9 9.1 1.8 7.1 3.4 5.5 4.2 4.2 2.9 2.9 89 11
5 28.72 0.9 0.9 32.4 29 7.3 1.3 5.4 3.4 5.4 4.3 4.3 2.8 2.8 85.4 14.6

PI3

0 29.60 1 0.6 29.7 31 8.2 3 5.7 4.5 4.4 5.1 4.1 3.1 2.9 69.8 28.2 1.7 0.3
1 29.39 1 0.5 29.7 31.8 7.4 3 5.7 4 3.9 5.1 4.1 3.1 2.9 66 28.9 4.4 0.7
2 28.96 1.2 0.6 28.7 30.4 9 3.4 6.1 4 4 5.1 4.1 3.1 2.8 61.3 31.7 5.8 1.2
3 28.62 0.8 0.8 30.9 27.9 8.2 2.7 5.5 4.2 4.1 5.2 4.2 3 2.7 54.3 35.4 8.6 1.7
5 27.76 0.9 0.9 29.4 26.9 8.6 2.4 4.7 4.5 4.5 5 4.1 3 2.7 49.5 37.4 10.6 2.4

PI4

0 29.70 0.9 0.6 32.4 31.2 6.4 1.9 5.7 4 4.5 4.3 4.3 2.9 2.9

0

95.7

0

4.3
1 29.09 0.9 0.6 32.4 31.2 6.4 1.9 5.7 4 4.5 4.3 4.3 2.9 2.9 95.7 4.3
2 28.49 0.9 0.6 32.4 31 6.3 1.9 5.7 3.9 4.3 4.3 4.3 2.9 2.9 95.7 4.3
3 27.86 0.7 0.7 33.8 30.1 6 1.8 5.2 4 4.6 4.4 4.4 2.9 2.9 89.3 10.7
5 26.59 0.7 0.7 33.8 29.2 5.5 1.8 5.2 3.5 4 4.4 4.4 2.8 2.8 89.2 10.8

PI5

0 29.7 0.6 0.6 34.7 30.5 8.8 2.6 7.2 3.5 3.9 4.5 4.5 2.8 2.8

0

88.1

0

11.9
1 29.10 0.6 0.6 34.7 30.5 8.8 2.6 7.2 3.5 3.9 4.5 4.5 2.8 2.8 88.1 11.9
2 28.46 0.6 0.6 34.7 30.5 8.8 2.6 7.2 3.5 3.9 4.5 4.5 2.8 2.8 88.1 11.9
3 27.82 0.7 0.7 33.7 30 10.1 2.6 7.4 4 4.6 4.4 4.4 2.8 2.8 86.1 13.9
5 26.51 0.7 0.7 33 28.9 8.8 2.3 6.6 3.3 3.8 4.4 4.4 2.8 2.8 86 14
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Table 5.7: The difference of optimal value of EC of five maintenance policies between
system i (i = 2, 3) and system 1

cr PI1 PI2 PI3 PI4 PI5

ECs2−ECs1
ECs1

(%)

0 0.13 1.22 1.62 3.34 3.45
1 0.07 1.22 1.5 3.34 3.39
2 0.17 1.24 1.45 3.34 3.36
3 0.2 1.24 1.33 3.02 3.33
5 0.32 1.12 1.34 2.83 3.23

ECs3−ECs1
ECs1

(%

0 -0.03 0.09 0.17 0.17 1.57
1 -0.1 0.1 0.14 0.17 1.61
2 0.37 0.13 0.24 0.21 1.64
3 0.47 0.17 0.39 0.22 1.72
5 0.67 0.63 0.8 0.42 1.84

In order to investigate the influence of dependences within and between subsystems on

maintenance policies, we compare the performance of policies I1, I2, I3, I4 and I5 for

systems 2 and 3 with that for system 1. The results are shown in Figure 5.12 and Tables

5.5 and 5.6.

For system 2 where the within-subsystem dependence is weaker when compared to sys-

tem 1, the performance of policies I4 and I5 reduce so much that policy I3 is the best

when cr is smaller than 1. In fact, when the dependence between components is weaker,

the amount of information about the inspected component that can be used for the

other related component is reduced. In such cases, policies I4 and I5 are less efficient

to avoid the failures of non-monitored components than policy I3 which inspects both

components in subsystems. Nevertheless policy I4 is still better than policy I1 even

though the difference between them has been narrowed. Actually policies I2, I3, I4 and

I5 profit the dependence between components. It is inevitable that their performances

are reduced for system 2. However policies I4 and I5 always take better advantage of

economic dependence than policy I1. The greater is cr, the difference between them

becomes larger. As a conclusion, when the dependence between components is tiny and

cr is small, it is better to apply policy I3 rather than policies I4 and I5.

In system 3 where two subsystems are independent, policies I1, I2, I3 and I4 are ranked

in the same way when compared to system 1 except that policy I4 performs as well

as policy I5. Policy I5 is better than policy I4 for systems 1 and 2 because it takes

advantage of stochastic dependence between subsystems. When the subsystems are in-

dependent, there is no more advantage in applying policy I5.

5.5.1.4 Evaluation and relevance of maintenance policies
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Figure 5.13: Optimal values of EC of policies I1, I2, I3, I4 and I5 when set-up cost varies from 0 to 5 for the three cases of system
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In this section, we aim to summarize the performance of the five proposed maintenance

policies for different systems and discuss their applications with Figure 5.13 and Table

5.7. ECsi (i = 1, 2, 3) in Table 5.7 represents the optimal value of EC of maintenance

policy for system i. Figure 5.13 (a) to (e) illustrates the minimum EC of Policy I1 to

I5 when the set-up cost varies from 0 to 5 for three systems. Figure 5.13 shows that

policy I1 is almost insensitive to stochastic dependences within and between subsystem-

s when cr is small. When cr is greater, the more stochastic dependences within and

between subsystems, policy I1 has more opportunities to group maintenance activities

such that ECs2−ECs1
ECs1

is slightly increased when cr is greater. However, the influence

of stochastic dependences on policies I2, I4, I5 remains stable regardless the value of

cr. In fact, policies I2, I4 and I5 apply block-replacement within subsystems such that

the influence of stochastic dependence is not sensitive to economic dependence. Figure

5.13(b), 5.13(c), 5.13(d) and 5.13(e) show that policies I2, I3, I4 and I5 are sensitive

to stochastic dependences within subsystems. Moreover, policies I4 and I5 are more

sensitive than policies I2 and I3. In policies I2 and I3, the slower degrading compo-

nents within subsystem are inspected and they are replaced according to their revealed

degradation level whereas in policies I4 and I5, they are not inspected and the decision

have to be made based on the degradation levels of faster degrading components. As

a consequence, when within-subsystem dependence is weaker, the maintenance decision

based on the revealed degradation levels of faster degrading components is less reliable.

For example, when the faster degrading component is found to exceed the preventive

threshold soon after the block replacement of subsystem, the slower degrading compo-

nent may be in relatively new state or when the faster degrading component is found

to exceed the preventive threshold long after the block replacement of subsystem, the

slower degrading component may have failed. In short, when the dependence between

components is weak, the degradation levels of components are less dependent hence the

maintenance decision of slower degrading components can not be made based on the

information of faster degrading components.

Policies I1, I2, I3 and I4 do not take advantage of the stochastic dependence between

subsystems such that the influence of between-subsystem dependence on them is much

less significant than policy I5. Their performances depend slightly on the stochastic de-

pendence between subsystems when cr is great because stronger stochastic dependence

between subsystem leads to more opportunities of maintenance grouping. Figure 5.13(e)

reveals that Policy I5 is sensitive to stochastic dependences within and between subsys-

tems. Only policy I5 considers and takes advantage of dependences at all levels.

As a conclusion, policies I4 and I5 basing the maintenance decision on a single com-

ponent in a subsystem are fully exploited when the stochastic dependences are not so

weak. However, such strategies are very sensitive to the stochastic dependence and they

seem to request a right identification of the faster degrading component as only one
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Figure 5.14: EC of policy I4 used with parameters of the faster degrading components
when different components in subsystems are monitored

component is inspected. Otherwise, policy I1 is more preferable. Policy I2 is interesting

when the whole subsystem has to be replaced at the same time and the system asks

for a high reliability. In regard to Policy I3, it is less attractive unless cr is small. In

the next paragraph, we explore the impact of possible errors in the identification of the

faster degrading components.

5.5.1.5 Sensitivity analysis

The performances of policies I4 and I5 depend not only on the degree of dependence

between components but also on the identification of degradation speed of component.

In practice, when two components degrade closely, it is hard to identify which is the

faster one. Thus we test how policy I4 performs when errors are made in identifying the

faster degrading component. The results which are applied the optimal parameters of

policy I4 in system 1 are presented in Figure 5.14 and 5.15, where “ Inspect C2(C1) and

C4“ represents that policy I4 inspects component 1 instead of component 2 in subsys-

tem 1 but with parameters of component 2 and replaces the whole subsystem 1 when

degradation level of component 1 exceeds preventive threshold. In doing so, the error is

twofold: an estimation error about the parameters of the inspected component is cumu-

lated to a mistaken strategy basing the maintenance decision on the wrong component.

Three cases are considered depending on whether the error relates to subsystem 1 or

subsystem 2 or both subsystems. Figure 5.14 shows that the amount of cost incurred

by an error about one subsystem is much higher when the error relates to component 2

rather than component 4. The error of subsystem 1 leads to a maximum of 17.61% loss
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Figure 5.15: EC of policy I4 used with parameters of the lower degrading components
when different components in subsystems are monitored

of maintenance cost whereas those of subsystem 2 leads to 3.53%. The reason is twofold.

On one hand, components 1 and 2 have weaker dependence than components 3 and 4 so

that component 1 is unable to be representative of component 2 as component 3 can be

for component 4. On the other hand, the difference of mean degradation speed between

components 1 and 2 is wider than that between components 3 and 4: around 20% in

subsystem 1 while only 8% in subsystem 2. As component 2 degrades much faster and

component 1 cannot represent it completely then basing the maintenance decision on

component 1 with parameters of component 2 leads to replace component 2 much too

late. Consequently, policy I1 with independent inspections of both components should

be applied in this case. It is worth mentioning that in Figure 5.14, the curve of ”Inspect

C2 (C1) and C4” increases slightly between cr = 2 and cr = 3. Because when cr is

great, policy I4 has to find a joint inspection period for both subsystems in order to

have more opportunities of maintenance grouping. When cr passes from 2 to 3, the

inspection period of subsystem 1 has been shortened to meet the inspection period of

subsystem 2. When applied to component 1 instead of 2, this leads to more failures of

component 2 and more downtime of system. The gain of grouping more maintenance

activities cannot compensate the loss resulting from failures and downtime.

These results highlight the fact that when there is any doubt about which component

degrades fast in a subsystem, policy I4 is suggested not to be used at least not be used

without adapting the parameters of inspected component (inspection period and main-

tenance threshold). In fact as shown in Figure 5.15, if policy I4 is applied with optimal

parameters of component 1 for subsystem 1, it performs better than policy I1 whatever

the component monitored in subsystem 1 as soon as cr is greater than 2.
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Table 5.8: Dependence parameters for three configurations of system for maintenance
policies of part II

parameter of clayton function system 1 system 2 system 3

θ0 1.0 (τ ≃ 0.43) 1.5 (τ ≃ 0.56) 0.8 (τ ≃ 0.36)

θ1 1.5 (τ ≃ 0.56) 2.0 (τ ≃ 0.65) 2.5 (τ ≃ 0.70)

θ2 2.0 (τ ≃ 0.65) 1.6 (τ ≃ 0.58) 2.0 (τ ≃ 0.65)

Table 5.9: Optimal parameters of policy II1

system EC T/M/R1/R2 LC1/LC2/LC3/LC4 EC1/EC2/EC3/EC4

1 28.45 0.5/33/0.52/0.12 5.36/4.22/3.20/2.98 4.64/5.98/7.82/9.97
2 28.28 0.5/33/0.54/0.16 5.37/4.22/3.21/2.98 4.52/5.83/7.92/9.97
3 28.62 0.5/33/0.54/0.12 5.37/4.22/3.20/2.98 4.70/6.07/7.82/9.97

system UNAV Pc1/Pc2/Pc3/Pc4 NI1/NI2/NI3/NI4
1 4.54h 3.06%/3.76%/4.42%/4.71% 2.40/2.21/1.47/5.96
2 4.42h 2.98%/3.60%/4.91%/4.71% 1.87/1.75/1.50/5.96
3 5.07h 3.31%/4.06%/4.46%/4.71% 2.62/2.41/1.48/5.96

5.5.2 Performance analysis of maintenance policies making use of s-

tochastic dependences

5.5.2.1 Configurations of system regarding the dependences

In order to investigate the influence of stochastic dependences within and between sub-

systems, we also propose three configurations of system for part II. Dependence para-

meters are detailed in Table 5.8. System 1 is the same as that in 5.5.1.1 as the baseline

case. System 2 has strong within-subsystems and between-subsystems dependences.

System 3 have weak between-subsystems dependence and strong within-subsystems de-

pendence.

5.5.2.2 Performance analysis

The optimal parameters and main characteristics of policies II1, II2, II3 and II4 are

detailed in Tables 5.9, 5.10, 5.11 and 5.12 where LCi (i = 1, 2, 3, 4) refers to the life-

cycle length of component i, ECi refers to the expected long-run maintenance cost of

component i, UNAV is the unavailability of system, Pci is the proportion of corrective

maintenance and NIi is the mean number of inspections before replacement.

In policy II1, component 4 is inspected periodically whereas the other components are

inspected according to the inspection strategy which is based on the value of PMi.
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Table 5.10: Optimal parameters of policy II2

system EC T/M/R1/R2 LC1/LC2/LC3/LC4 EC1/EC2/EC3/EC4

1 28.05 0.5/33/0.51/0.06 5.25/4.12/3.14/2.92 4.74/6.12/8.11/9.03
2 27.94 0.5/33/0.49/0.07 5.24/4.12/3.13/2.91 4.67/6.05/8.15/9.03
3 28.14 0.5/33/0.5/0.06 5.23/4.12/3.13/2.91 4.76/6.16/8.12/9.04

system UNAV Pc1/Pc2/Pc3/Pc4 NI1/NI2/NI3/NI4
1 5.02h 2.43%/3.14%/4.16%/4.76% 2.94/2.73/2.10/2.53
2 5.20h 2.44%/3.19%/4.26%/4.84% 2.54/2.37/2.09/2.38
3 5.18h 2.51%/3.16%/4.17%/4.73% 2.93/2.83/2.09/2.54

Table 5.11: Optimal parameters of policy II3

system EC T/M/R1/R2 LC1/LC2/LC3/LC4 EC1/EC2/EC3/EC4

1 28.67 0.4/35/0.29/0.07 5.42/4.23/3.17/2.93 4.92/6.28/8.35/9.05
2 28.67 0.4/35/0.29/0.07 5.42/4.23/3.17/2.93 4.92/6.28/8.35/9.05
3 28.67 0.4/35/0.29/0.07 5.42/4.23/3.17/2.93 4.92/6.28/8.35/9.05

system UNAV Pc1/Pc2/Pc3/Pc4 NI1/NI2/NI3/NI4
1 7.03h 3.45%/4.21%/4.46%/4.88% 3.95/3.24/2.92/2.67
2 6.87h 3.45%/4.21%/4.46%/4.88% 3.95/3.24/2.92/2.67
3 7.10h 3.45%/4.21%/4.46%/4.88% 3.95/3.24/2.92/2.67

Therefore, the performance of policy II1 mainly depends on the dependence degree be-

tween component 4 and component i (i = 1, 2, 3). The optimal values of (T,M,R1, R2)

for three systems indicate that when the stochastic dependence between component i

and component 4 is weaker, policy II1 tends to use a higher R1 and a lower R2 to

inspect components more frequently and avoid failures. System 3, with weak between-

subsystems dependence, has the largest observed mean number of inspections before

replacement for components 1 and 2. Despite this, we can see that the proportion of

corrective maintenance of components 1 and 2 also augments in system 3 which means

that the increasing number of inspections can not compensate the loss of validity of the

revealed information of component 4. In other words, the stronger dependence exist-

s, the better policy II1 performs in estimating the degradation level of non-inspected

components by using the information of inspected component. By taking full advantage

of stochastic dependence while ensuring that the risk of failure is below threshold R1

for each component, we can see that the system’s unavailability is in a very low level

(5.07% at most). It’s also worth mentioning that when looking at the mean length of

life cycle of four components, they are almost the same in the three systems. It signifies

that the life cycle of components is mainly decided by their marginal degradation process.

When compare policy II1 to policy II4, the maintenance cost is saved by 8.76% of system

1, by 9.27 % of system 2 and by 8.21 % of system 3 and policy II1 saves not only the

inspection cost but also the preventive and corrective maintenance cost. Even though
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Table 5.12: Optimal parameters of policy II4

system EC T/R LC1/LC2/LC3/LC4 EC1/EC2/EC3/EC4

1 31.18 0.9/0.08 5.82/4.29/2.99/2.69 5.46/6.80/9.01/9.82
2 31.17 0.9/0.08 5.82/4.29/2.99/2.69 5.46/6.80/9.01/9.82
3 31.18 0.9/0.08 5.82/4.29/2.99/2.69 5.46/6.80/9.01/9.82

system UNAV Pc1/Pc2/Pc3/Pc4 NI1/NI2/NI3/NI4
1 8.71h 6.64%/5.51%/4.52%/4.24% 6.47/4.77/3.32/2.99
2 8.44h 6.64%/5.51%/4.52%/4.24% 6.47/4.77/3.32/2.99
3 8.85h 6.64%/5.51%/4.52%/4.24% 6.47/4.77/3.32/2.99

the mean observed number of inspection of policy II4 is twice times greater than that of

policy II1, it performs worse in avoiding failures due to the fact that policy II4 has iden-

tical inter-inspection interval which can not be adapted to the condition of components.

Component should be inspected more frequently when its degradation is in high level.

As a conclusion, by making use of the stochastic dependence between components, pol-

icy II1 inspects the components in right time such that it not only saves the inspection

cost but also avoids the failures.

To evaluate the performance of four proposed maintenance policies, non-periodic in-

spection schemes dominate the periodic inspection schemes. It can be seen in Tables 5.9

and 5.12 with EC4 being 9.82 and 9.97 respectively, however EC4 in Tables 5.10 and

5.11 is 9.03 and 9.05 respectively. In fact, periodic inspection schemes spends unneces-

sary cost to inspect components even when they are just maintained. Furthermore, they

are very sensitive to the inter-inspection interval such that the interval can not be too

short otherwise the inspection cost will be very expensive. Conversely, the non-periodic

inspection polices are more flexible. It can be achieved that when component is just

maintained, during a certain time, no inspection is implemented but consecutive and

more frequent inspection is carried out when component degrades enough. Therefore,

non-periodic inspection policies performs better to inspect component in right time and

avoid failure for slower degrading components. That’s why components 1 and 2 have

higher value of Pc1 and Pc2 respectively in policy II4 than in policy II3.

Policies II3 and II4 do not take advantage of stochastic dependences between components

so that all the four components have the same cost in three systems except that of

system’s unavailability. When components are more dependent on each other (the case

of system 2), the system’s unavailability is reduced (6.87% and 8.44% in policy II4

and policy II3 respectively) due to the fact that for series systems, once a component

fails, it leads to the breakdown of system. Therefore, the series system’s unavailability

is lower when components are more dependent. Such a result shows that even if the

stochastic dependence may not be so important to the economic part to minimize the
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maintenance cost, it is very significant for analysing the reliability and availability of

multi-component systems. The system structure and the stochastic dependence should

be taken into consideration.

Policy II2 performs the best when compared to policies II1, II3 and II4 not only because

it implements the non-periodic inspection strategy for all the four components but also

because it takes advantage of the stochastic dependence at all levels. All the available

information is fully utilized. Policy II3 can be regarded as special case of policy II2

when stochastic dependences are not considered. By taking advantage of the stochastic

dependence, the maintenance cost is reducing through saving inspection cost as well

as avoiding failures. For example, policy II2 saves 1.5 inspection cost unit in each life

cycle and reduce the proportion of failures for component 1 in system 2 by 1% when

compared to policy II3. We analyse the maintenance cost saving of policy II1 and

that of policy II2 at components level and Table 5.14 depicts the results. It can be

concluded that policy II1 can take full advantage of the stochastic dependence at each

potential inspection time by using the revealed degradation information of components.

The effectiveness of prediction depends on the dependence degree between component i

(i = 1, 2, 3) and component 4. For example, component 3 saves more than components

1 and 2 in systems 1 and 3 due to the stronger dependence. Nevertheless, in policy

II2, all components are non-periodically inspected such that useful information level is

lower at each potential inspection time. Therefore, component i (i = 1, 2, 3) saves less

maintenance cost in policy II2 than in policy II1 even if component 4 gains so much

that policy 3 outperforms policy II1 at system level. But when analysing the profit of

components, it can be found that in policy II2, component 1 gains the most even better

than component 3. It’s because component 1 degrades slowest, it can take advantage

of information of the three other components before its replacement. Furthermore,

component 1 is more dependent on component 2 than component 4. It is good to use

the information of component 2 for component 1 as soon as it is possible.

Overall, the non-periodic inspection policies (policies II1, II2, II3) is better than periodic

policy (policy II4). The stochastic dependence should be taken into consideration to

minimize the maintenance cost as well as increase the system’s availability. Even though

policy II2 has the best performance, it is not easy to be implemented because the

calculation of PMi involves the integration and it is time-consuming. Thus policy II1 is

more suitable for application.

5.5.2.3 Sensitivity analysis

In order to test the robustness of policy II1, we propose to investigate how policy II1

performs when errors are made in estimating degradation parameter of components. For
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Table 5.13: Sensitivity analysis of policy II1

e% -10% -5% 0% 5% 10%

ECe 26.67 27.55 28.45 29.50 30.56
ECe−EC0

EC0
-6.26% -3.16% 0 3.69% 7.42%

Table 5.14: maintenance cost saving of policies II1 and II2 when compared to policy
II3

policy II1 policy II2

component 1 2 3 1 2 3

system 1 5.69% 4.78% 6.35% 3.66% 2.55% 2.87%

system 2 8.13% 7.17% 5.15% 5.05% 3.66% 2.40%

system 3 4.68% 3.34% 6.35% 3.25% 1.91% 2.75%

the baseline case of system 1, we consider the worst case that both the mean degradation

speed and variance of non-inspected components are overestimated or underestimated

by e% (e = ±10,±5). The cost of policy II1 when implemented for system 1 with

parameters in Table 5 whereas errors are made is shown in Table 5.13. When all non-

inspected components increase their mean degradation speed by 10%, the whole system

increase its mean degradation by 6.83% whereas the maintenance cost increases only

7.42%. Hence, policy II1 is robust. In fact, policy II1 is not as sensitive to the parameters

(T,M) as the maintenance policy with periodic inspection. The change of degradation

parameters impacts the inspection scheme but not so much since the inspection and

replacement strategy of policy II1 is very flexible. In fact the times to inspect and/or

replace components 1, 2 and 3 are decided not only on the basis of individual input

parameters but also on the revealed degradation level of component 4.

5.6 Conclusions and perspectives

A four-component system with hierarchical dependences is proposed and investigated

in this chapter. It is shown that the Nested Clayton Lévy copula enables modelling

of time-independent structure as well as sampling. For maintenance decision making,

five maintenance policies are firstly proposed in part I with the aim to investigate both

economic and stochastic dependences and to be implemented easily in practice. Results

show that policy I5 outperforms the other maintenance policies by considering all types

of dependences, up to 11% of total cost compared to policy II1. Besides, even with an

error in identifying faster degrading components, policies I4 and I5 can maintain the

profits by adapting the parameters of slow degrading components.

Nevertheless, policy I4 and I5 are very sensitive to stochastic dependence as well as
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the implemented values of parameters. Therefore, in part II, maintenance policies that

fully exploit the stochastic dependence are proposed. It has been shown in this work

that inference about the reliability at a fixed time of non-observed components can be

made using an ordinary copula instead of the Lévy copula. The proposed maintenance

strategy that uses these estimates derived from the monitoring of the critical compo-

nent in the system to decide which other components should be inspected or replaced

succeeds in reducing the global inspection cost while preventing failures. Therefore

the maintenance cost is reduced with policy II1 when compared to classical mainte-

nance strategies such that predictive maintenance policy with periodic inspection and

condition-based maintenance policy with non-periodic inspection without considering

stochastic dependence. An additional and more sophisticated maintenance strategy is

proposed, allowing non-periodic inspections for all components in the system and tak-

ing advantage of stochastic dependence at all levels. Unlike the previous strategy, the

monitoring information is gathered in certain time which provides more opportunities

to group maintenance activities or inspection operations.

These results are a good foundation for future work that will consider both stochastic

and economic dependences. As well, though we find an ordinary copula to fit the data

generated by Lévy copula, further research on the relationship between ordinary copulas

and Lévy copulas dependence structure when considered at a fixed time may lead to

even better performances of policy II1.





Chapter 6

Conclusions and perspectives

This work is dedicated to the maintenance modelling for multi-unit system with de-

pendent and gradually deteriorating components. More precisely, we are interesting in

developing grouping strategies for condition-based maintenance to take advantage of

economic dependence, modeling stochastic dependence between components caused by

common degradation part and making use of stochastic dependence in maintenance de-

cision process. To begin the work, a literature review which interests on the degradation

modeling and maintenance modeling is presented first to clarify our problem and choose

the adaptive models. In chapter 2, by comparing with other models, the Gamma process

and Lévy copulas are justified to model degradation of multi-component system with

stochastic dependence caused by common degradation part. In chapter 3, the necessity

of developing grouping strategy for condition-based maintenance is highlighted in order

to take advantage of positive economic dependence. Based on the chosen degradation

model and the stochastic dependence model, the maintenance modeling is investigated

according to the different aspects: the taking advantage of economic dependence when

the condition-based maintenance with periodic inspection is applied, the taking advan-

tage of stochastic dependence when the condition-based maintenance with non-periodic

inspection is applied.

chapter 4 works on the maintenance modelling for a two-component system with sym-

metric stochastic dependence. The degradation of system is modeled by two-dimensional

Gamma process with Lévy copulas. Condition-based maintenance policies with periodic

inspections and inspection period adaptive to the degradation speeds of components

are proposed in order to take advantage of both economic and stochastic dependences.

Additionally an adaptive decision rule is proposed to asses online opportunities of main-

taining both components simultaneously with different inspection periods. The results

show that the condition-based maintenance based on a static decision rule regarding

123
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replacement dates is sensitive to the inspection period and the opportunities of mainte-

nance grouping provided by a joint inspection period are very limited and the stochas-

tic dependence can not be profited neither. On the contrast, the proposed adaptive

maintenance decision rule provides flexible dates for profitable maintenance grouping.

Furthermore, by investigating the different degrees of stochastic dependence between

components, it shows that the proposed maintenance policy can make use of stochas-

tic dependence where the maintenance decision of slower degrading component is made

based on the revealed degradation of faster degrading component in the system.

chapter 5 works on the maintenance modelling for a four-component system with asym-

metric stochastic dependence. When extended to four components, the stochastic depen-

dences between components are modeled by Nest Lévy copulas allowing non-symetric

dependence structure. Inspired by results obtained in chapter 4 that the slower de-

grading component does not need to be inspected in some cases where the degradation

speeds are closely related and stochastic dependence between components is strong, the

work in chapter 5 aims to propose maintenance policy which can use the stochastic

dependence for more general cases and in a more efficient way. The decision making

process of components is based on the total information of system (individual degrada-

tion information of components and the dependence relationship between them) with

non-periodic inspection scheme so that the proposed maintenance policies are more ro-

bust to dependence degrees and inspection periods when compared to that proposed

in chapter 5. Moreover, maintenance policies set on subsystem level are also proposed

with the objective of being easy to implement in practice as well as investigating the

economic dependence, the stochastic dependences within subsystems and the stochastic

dependences between components.

The maintenance models proposed in this thesis are aimed at investigating how to im-

prove the decision making process by the use of dependences between components. Nev-

ertheless further research should deal with expanding the scope of applications relating

to the following aspects: possible failure modes for components in the system, com-

plexity of the structure of system regarding the number of components, maintenance

implementation, resource constraints consideration. For further research, we propose to

investigate the maintenance models as follows:

• For degradation modeling which relates to individual degradation modeling and

stochastic dependence modeling, the stochastic dependence caused by common

degradation part is modeled in this thesis, however more complicated dependence

relationship can be developed in future work. In effect, in a complex system,

three types of stochastic dependence which are identified as failure interactions,
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degradation interactions and common degradation part may exist simultaneously

in reality. For condition-based maintenance, failure interactions or degradation

interactions lead to an increasing frequency of inspections and preventive mainte-

nance because the failure or the degradation of one component causes immediate

failure or accelerates the degradation speed of other components so they have neg-

ative influence on the maintenance cost. On the contrast, the common degradation

part can result in avoiding unnecessary inspection cost and less failures by taking

advantage of stochastic dependence between components so that it is considered

to have a positive impact on the maintenance optimization. Moreover, in this

thesis, components are supposed to suffer only one failure mode but in reality the

system can degrade due to several reasons, such as the wear and shock. Despite

the dependence between components, the different sources of degradation can also

depend on each other. As a consequence, it is necessary to take into account vari-

ous stochastic dependences and competing failure modes even though it increases

the difficulty of degradation modeling.

• Consequently new maintenance policies should be developed in order to adapt to

more complex deterioration modeling. For example, when various types of stochas-

tic dependences are considered in the multi-component system, the maintenance

modeling becomes more complicated in order to reduce the effect of negative s-

tochastic dependence and take advantage of positive stochastic dependence. More-

over, the complexity of maintenance modeling is also increased when considering

complex logical system structure and economic dependence. The logical system

structure is significant in reliability analysis and it impacts on the maintenance

cost when downtime cost is great. Multi-level setup cost could be studied further

in order to benefit economic dependence and provide opportunities of grouping

maintenance activities while the cost saving is not a linear function of the number

of components which undergo maintenance simultaneously.

• Some aspects related to maintenance should be considered such as imperfect main-

tenance, maintenance execution time, maintenance delay and the limited available

maintenance resources. Besides, when condition-based maintenance policy is pro-

posed, the inspection quality can also be discussed. For statistics aspects, param-

eter estimation methods such as for stochastic dependence, individual degradation

behavior, maintenance effect need to be developed. In terms of optimization, some

efficient and heuristic algorithms should be proposed when the number of mainte-

nance decision parameters is large or when the exact methods are time-consuming.
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component systems with Lévy copulas dependence. Reliability Engineering & Sys-

tem Safety, 149:44 – 55, 2016. 46
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cesses: Theory and Applications, Birkhäuser, Boston, pages 401–415. Springer,
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Politiques de maintenance condition-
nelle pour des systèmes multi-
composants avec dépendances stochas-
tiques 
 
De nos jours, les systèmes industriels sont de plus 
en plus complexes tant du point de vue de leur 
structure logique que des diverses dépendances 
(dépendances économique, stochastiques et struc-
turelles) entre leurs composants qui peuvent in-
fluencer l'optimisation de la maintenance. La Main-
tenance conditionnelle qui permet de gérer les acti-
vités de maintenance en fonction de l’information de 
surveillance a  fait l’objet de beaucoup d'attention 
au cours des dernières années, mais les dépen-
dances stochastiques sont rarement utilisées dans 
le processus de  prise de décision. Par conséquent, 
cette thèse a pour objectif de proposer des poli-
tiques de maintenance conditionnelle tenant compte 
des dépendances économiques et stochastiques 
pour les systèmes multi-composant. 
En termes de dépendance économique, les poli-
tiques proposées sont conçues pour permettre de 
favoriser les opportunités de grouper des actions de 
maintenance. Une règle de décision est établie qui 
permet le groupement de maintenances avec des 
périodes d'inspection différentes. La dépendance 
stochastique  causée par une part de dégradation 
commune est modélisée par copules de Lévy. Des 
politiques de maintenance conditionnelle sont pro-
posées pour profiter de la dépendance stochastique. 
Nos travaux montrent la nécessité de tenir compte 
des dépendances économiques et stochastiques 
pour la prise de décision de maintenance. Les  résul-
tats numériques confirment  l’avantage de nos poli-
tiques par rapport à d’autres politiques existant 
dans la littérature. 
 
Mots clés : Monte-Carlo, méthode de - maintenance 
conditionnelle - modèles mathématiques - dépen-
dance (statistique) - prise de décision - fiabilité 
(ingénierie) - processus stochastique. 
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Condition-based Maintenance Policies 
for Multi-component Systems Consider-
ing Stochastic Dependences 
 
 
Nowadays, industrial systems contain numerous 
components so that they become more and more 
complex regarding the logical structures as well as 
the various dependences (economic, stochastic and 
structural dependences) between components. The 
dependences between components have an impact 
on the maintenance optimization as well as the 
reliability analysis. Condition-based maintenance 
which enables to manage maintenance activities 
based on information collected through monitoring 
has gained a lot of attention over recent years but 
stochastic dependences are rarely used in the deci-
sion making process. Therefore, this thesis is devot-
ed to propose condition-based maintenance policies 
which take advantage of both economic and sto-
chastic dependences for multi-component systems.   
In terms of economic dependence, the proposed 
maintenance policies are designed to be maximally 
effective in providing opportunities for maintenance 
grouping. A decision rule is established to permit the 
maintenance grouping with different inspection 
periods. Stochastic dependence due to a common 
degradation part is modelled by Lévy and Nested 
Lévy copulas. Condition-based maintenance policies 
with non-periodic inspection scheme are proposed 
to make use of stochastic dependence.  
Our studies show the necessity of taking account of 
both economic and stochastic dependences in the 
maintenance decisions. Numerical experiments 
confirm the advantages of our maintenance policies 
when compared with other existing policies in the 
literature. 
 
Keywords: Monte-Carlo method - condition-based 
maintenance - mathematical models - dependence 
(statistics) - decision making - reliability (engineer-
ing) - stochastic processes. 
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