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Résumé

Un état vitreux se caractérise par un état arrêté de système amorphe qui a une limite d’élasticité finie. Les matéri-

aux vitreux existent dans une large gamme d’échelles de longueur. Dans la préparation et l’application des verres,

l’étude de la rhéologie est d’une importance capitale pour tester la réponse du matériau lorsqu’il est soumis à

différentes conditions telles que la contrainte appliquée. Dans cette thèse, nous avons étudié par calcul les change-

ments structurels dans des modèles de verre sous déformation périodique de cisaillement à travers la transition

d’élasticité.

Nous avons travaillé sur deux modèles de formeurs de verre, à savoir le système Kob Andersen Lennard Jones

(KALJ) à la densité ρ = 1.2 et le système répulsif Wahnström (WH) à la fraction de volume φ = 0.58. Les matériaux

vitreux en régime de surrefroidissement présentent un paysage énergétique potentiel accidenté rempli de minima,

maxima et points de selle locaux. Avec le temps, le système évolue et explore cette surface énergétique complexe.

Au départ, nous avons équilibré notre système à certaines températures, puis nous avons minimisé l’énergie à

une température nulle. Ainsi, nous nous retrouvons avec des configurations appartenant à un minimum local.

Les structures minimales locales sont connues comme étant les structures inhérentes (IS) et elles représentent le

verre. Ensuite, nous cisaillons le verre en limite athrémique selon le protocole AQS (Athermal Quasi Static) pour

de nombreux cycles de déformation avec une certaine amplitude de déformation γmax. Un cycle complet sera une

déformation γ = 0→ γmax → 0→ −γmax → 0, où strain γ = ∆L/L, L étant la longueur de la boîte. Fig.1 est une

représentation schématique du protocole de déformation.

En raison de la déformation cyclique par cisaillement, le système atteint un état d’énergie stable. Pour les valeurs

faibles de γmax, ces états stables sont des états d’absorption. Les particules se réarrangent localement pendant un

cycle de déformation et reviennent à leur position initiale à la fin du cycle. Mais si la valeur γmax > γy, au-dessus de la

limite, le système devient diffusif. Les particules subissent de grands réarrangements irréversibles et ne reviennent

pas à leur position initiale. Il est intéressant de noter que ces réarrangements plastiques sont corrélés et forment

une bande localisée de particules avec une forte valeur de déformation. C’est ce qu’on appelle le shear banding

ou la localisation de la déformation. Dans la partie gauche de la figure 2, les énergies en régime permanent du

système KALJ ont été montrées comme une fonction de γmax à travers γy ≈ 0,07. Nous pouvons observer une

transition brutale de l’état absorbant à l’état diffusant. Au-dessus de l’état diffusant, le système est constitué d’une

ii
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Figure 1: Schéma de l’évolution du paysage énergétique potentiel avec déformation de la boîte de simulation. Dans
AQS, la boîte est déformée par petits pas de dγ suivi d’une minimisation de l’énergie. Avec une grande déformation,
le système passe à un nouveau minimum d’énergie.

bande de cisaillement, illustrée à droite, Fig. 2. Les particules rouges formant la bande ont une mobilité beaucoup

plus grande que les particules bleues. L’énergie à l’intérieur du SB est également plus élevée par rapport au reste

des systèmes [1].

Figure 2: A gauche : Energie à l’état stable du système KALJ initialement préparé à haute température T = 1 et
densité ρ = 1.2 en fonction de l’amplitude de la déformation γmax. En dessous du rendement (γy ≈ 0,07), l’énergie
en régime permanent U diminue, et au-dessus du rendement, elle augmente. Mais une analyse plus approfondie à
l’intérieur et à l’extérieur de la bande de cisaillement montre que l’énergie à l’intérieur de la bande de cisaillement
USB(σ) est beaucoup plus élevée que l’énergie globale du système. Mais, loin de la bande de cisaillement, U ′SB(σ)
l’énergie reste au même niveau bas de γy. C’est vrai : Bande de cisaillement trouvée dans l’état stable de γmax = 0.09.
Les particules sont colorées en fonction de leurs déplacements entre deux cycles consécutifs [1].

Dans cette thèse, (i) nous avons étudié les changements structurels à long terme dans les verres à travers le ren-

dement du contexte de "l’hyperuniformité" dans le système KALJ. (ii) Dans les états stables, nous avons également

examiné les changements de l’ordre structurel local à travers la céder et sa relation avec les réarrangements plas-

tiques dans le système WH. Dans les deux cas, nous avons analysé de façon cruciale les systèmes en présence
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de bandes de cisaillement.

Hyperuniformity

Figure 3: Représentation schématique de la fenêtre d’échantillonnage Ω de rayon R dans trois types de systèmes,
de gauche à droite : système désordonné aléatoire, système ordonné et système désordonné hyperuniforme. x0
est le centre de la fenêtre [2].

L’hyperunimormité dans un système englobe la suppression des fluctuations de densité à de grandes échelles de

longueur. À titre d’exemple, nous pouvons nous référer aux différents types de distributions de points présentés

dans la Fig. 3. Si une fenêtre sphérique de taille R est placée dans différentes parties du système, nous aurons des

fluctuations dans la densité du nombre de points à l’intérieur de la fenêtre. Nous pouvons définir la variance de la

densité de nombre ρ(R),

∆
2(R) =< ρ(R)2 >−< ρ(R)>2 . (1)

Pour une distribution aléatoire de type Poisson en dimension d, ∆2(R) ∼ R−d , alors que pour un arrangement or-

donné ∆2(R)∼R−(d+1). Le système désordonné hyperuniforme est une classe spéciale de systèmes se situant entre

un système aléatoire et un système ordonné où la variance de densité décroît plus rapidement que R−d . Pour une

configuration ponctuelle, la suppression de la variance de densité du nombre dans la limite des grandes longueurs

d’onde est liée au facteur de structure de disparition dans la limite des vecteurs de basses ondes. Pour les config-

urations de points hyperuniformes, comme k→ 0, S(k) ∼ kα → 0 . Pour l’exposant d’hyperuniformité 0 < α < 1, les

échelles de variance de densité numérique sont R−(d+α). En équilibre thermique, S(0) est lié à la compressibilité χT .

Les états hyperuniformes de la matière ont été présentés comme un nouvel état exotique de la matière. Au

cours des deux dernières décennies, l’hyperuniformité a été découverte dans de nombreux systèmes, y compris

des systèmes biologiques, et en référence à des transitions de phase hors équilibre. Pour les systèmes entraînés

avec des transitions d’état absorbant à diffusif, les états absorbants se sont avérés hyperuniformes. Dans cette

thèse, nous étudions pour la première fois l’hyperuniformité dans un système de verre piloté. Nous travaillons avec
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le système KALJ préparé à une densité de ρ = 1.2 et une température de 1.0. Pour ce système sous cisaillement

cyclique en limite AQS, l’amplitude de rendement est de γmax ≈ 0.07. Nous étudions l’hyperuniformité en calculant la

compressibilité isotherme définie pour les systèmes binaires, χ̃T(k) = ρkBT χT (k). Pour l’hyperuniformité, χ̃T(k)∼ kα

dans la limite inférieure de k. Extrait de la figure 4 (à gauche), nous constatons que dans les états absorbants,

χ̃T(k)∼ kα∼0,4 est hyperuniforme. Cependant, au-dessus du rendement, il existe des fluctuations de densité élevées

comme le reflète la remontée de χ̃T(k) au niveau du vecteur d’onde le plus bas. Une autre chose à noter est

que l’hyperuniformité s’étend aux échelles de longueur finie, aux vecteurs d’onde les plus bas χ̃T(k) s’écarte de

l’ajustement de la loi de puissance et atteint une valeur finie. Ce type de comportement a été signalé pour de

nombreux autres systèmes, dont on sait qu’il est effectivement hyperuniforme.

Figure 4: A gauche : Compressibilité χ̃T (k) pour les cas d’amplitudes de cisaillement γmax au-dessous et au-dessus
de l’amplitude critique de rendement γy ' 0,07 sont indiqués avec des symboles différents. Les données relatives
aux IS ont également été incluses. Dans les cas ci-dessus, χ̃T (k) a été déplacé vers le haut pour une meilleure
visibilité. Les lignes pleines (bleu et orange) montrent la loi de puissance adaptée aux courbes de compressibilité.
Les lignes verticales en pointillés marquent le régime du vecteur d’onde ajusté à la loi de puissance kα .
A droite : L’exposant de variance de la densité numérique α (voir le texte pour plus de détails) pour les cas où
γmax est inférieur à l’amplitude de rendement γy sont représentés par des cercles noirs. Lorsque l’interface est
incluse, l’exposant tombe à de faibles valeurs indiquant un manque d’hyperuniformité. Séparément à l’intérieur et à
l’extérieur de la bande de cisaillement, le système est hyperuniforme.

Nous avons également calculé ∆2(R) dans le système en présence d’une bande de cisaillement. Pour γmax > γy,

nous avons extrait l’exposant d’hyperuniformité α pour les fenêtres d’observation placées dans les sous-volumes à

l’intérieur de la bande de cisaillement, à l’extérieur de la bande de cisaillement et pour un cas où l’interface entre

ces deux régimes a été considérée. Les résultats sont présentés dans la partie droite de la figure 4. Ci-dessous,

le rendement, α ≈ 0.4. Au-dessus du rendement, les côtés intérieur et extérieur du système SB restent hyper-

uniformes. Lorsque l’interface est prise, l’hyperuniformité est perdue, ce qui est cohérent avec les résultats obtenus

par la reprise de la compressibilité pour l’ensemble du système. Par conséquent, nous concluons qu’au-dessus du

rendement, c’est l’interface qui perturbe l’hyperuniformité du système global.
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Structure locale et plasticité

En cas de déformation par cisaillement, le paysage énergétique potentiel du système vitreux change lentement,

comme le montre le panneau inférieur de la figure 1. Pour une amplitude de cisaillement suffisamment importante,

un minimum local disparaît, entraînant une instabilité mécanique dans le système. En conséquence, les particules

se déplacent localement à la recherche d’un nouveau minimum d’énergie. Pour un système amorphe, l’endroit et

la manière dont ces réarrangements se produiront présentent un intérêt fondamental. Il y a eu de nombreuses

tentatives pour trouver des paramètres d’ordre structurel local afin de prédire où les réarrangements se produiront.

Dans cette thèse, nous avons choisi deux descripteurs structurels pour répondre à la question de savoir si, dans

des états stables de cisaillement cyclique, les structures locales jouent un rôle quelconque dans la détermination

des particules qui auront de grands déplacements pendant un cycle de déformation. Nos descripteurs sont les

suivants :

Tétrahédralité dans les structures locales ntet

La tétrahédraalité ntet mesure pour chaque particule localement combien d’amas tétraédriques elle est impliquée.

ntet a été introduit pour corréler la structure locale avec l’hétérogénéité dynamique dans le régime vitreux des

mélanges de sphères dures [3]. Il a été constaté que des valeurs plus élevées de ntet sont bien corrélées avec les

particules se déplaçant plus lentement.

Deux entropie excédentaire du corps S2

L’entropie de deux corps en excès S2 peut être calculée à partir des fonctions de distribution radiale mollifiée par

particule [4]. S2 mesure la perte d’entropie due aux corrélations positionnelles, une valeur négative inférieure

de S2 correspond à une structure plus ordonnée. Nous avons travaillé sur le système WH sous déformation de

cisaillement cyclique pour lequel l’amplitude de rendement est de γy ≈ 0,06. Nous avons cisaillé des verres en

utilisant le protocole AQS, initialement préparés à la fraction de volume φ = 0.58 et aux températures T = 0.7 et

T = 1.5. Dans des états stables, nous avons mesuré les déplacements non-affines D2
min des particules pendant un

cycle de déformation, introduit par Falk et Langer [5],

D2
min =

1
n ∑

n
[(r j(t)− ri(t))−Γ(r j(0)− ri(0))]2. (2)

Ici, ri, j(0) est la position des particules au début d’un cycle de déformation et ri, j(t) est leur position dans la boîte

déformée au moment t, ce qui renvoie aux étapes de déformation de l’AQS (voir annexe) pendant un cycle. La

somme est sur les voisins et la matrice Γ est telle qu’elle minimise les déplacements carrés moyens réels des

atomes voisins par rapport à ce qu’auraient été leurs déplacements sous un cisaillement uniforme. Nous avons
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classé les 5% de particules les plus "mobiles" et les 5% de particules "statiques" en notant leurs valeurs maximales

de D2
min pendant un cycle de déformation. Ensuite, nous avons comparé les descripteurs structurels des particules

mobiles et statiques au début d’un cycle. Pour un cas, T = 0,7 dans un état stable de γmax = 0,06 les résultats sont

présentés dans la Fig. 5. Les particules statiques ont une valeur moyenne inférieure de S2 et une valeur supérieure

de ntet. Cela démontre en effet que les particules ayant des déplacements plus importants ont un environnement

structurel local différent.
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Figure 5: Pour le cas où T = 0,7 en régime permanent de γmax = 0,06, distribution de S2 en a) et de ntet en b) au
début d’un cycle, pour les particules ayant les valeurs de déplacement les plus faibles (bleu) et les plus élevées
(rouge) max(D2

min) à la fin d’un cycle.

Nous constatons également que dans les particules statiques, il y a une abondance de ntet = 20. Ceci est intéressant

car un amas icosaédrique local peut être décomposé en tétraèdres de 20 et l’amas icosaédrique a été exploré

pendant de nombreuses années en tant que structures localement favorisées en corrélation avec le ralentissement

dynamique des verres. Au-dessus du rendement, les particules mobiles appartiendraient au régime de bande de

cisaillement dynamique tandis que les particules statiques se trouveraient en dehors de la bande de cisaillement.

Nous avons effectué une analyse de la classification topologique des amas (TCC) [6] en présence de la bande

de cisaillement et avons spécialement calculé la variation spatiale de l’amas icosaédrique dans le système. Les

résultats sont présentés dans la Fig. 6. Tout d’abord, le profil de déplacement carré moyen entre deux cycles

consécutifs dans la direction Z est tracé. Cela montre la position de la bande de cisaillement dans le système.

Ensuite, la fraction de particules impliquées dans le regroupement icosaédrique est tracée le long de la même

direction Z. Nous constatons qu’en dehors de la bande de cisaillement, près de 30% des particules sont impliquées

dans les amas icosaédriques. Mais en dehors de la bande de cisaillement, cette participation est négligeable. Nos

résultats montrent une différence structurelle claire entre les sous-volumes du système en présence de la bande de

cisaillement.
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Figure 6: Pour le cas de T = 0.7 et γmax = 0.08 en régime permanent, nous traçons le déplacement carré moyen
des particules le long de Z (triangles bleus, capturant l’emplacement de la bande de cisaillement. Nous traçons
également la fraction des particules impliquées dans l’amas icosaédrique le long de Z.



Summary

A glassy state is characterised as an arrested state of amorphous system that has a finite yield stress. Glassy

materials exist through a wide range of length scales. In preparation and application purposes of glasses the study

of rheology is of immense importance to test material’s response when subjected to different conditions such as

applied stress. In this thesis we have computationally studied structural changes in model glasses under periodic

shear deformation across yielding transition.

We have worked on two models of glass formers, namely Kob Andersen Lennard Jones (KALJ) system at density

ρ = 1.2 and repulsive Wahnström (WH) system at volume fraction φ = 0.58. Glassy materials in supercooled regime

has a rugged potential energy landscape filled with local minima, maxima and saddle points. With time system

evolves and explores this complex energy surface. Initially we equilibrated our system at certain temperatures

and then we minimized the energy at zero temperature. Thus we end up with configurations belonging to a local

minimum. Local minimum structures are known to be the inherent structures (IS) and they represent the glass. Next

we shear the glass in athremal limit following Athermal Quasi Static (AQS) protocol for many deformation cycles with

certain strain amplitude γmax. A complete cycle will be strain γ = 0→ γmax→ 0→−γmax→ 0, where strain γ = ∆L/L,

L being the box-length. Fig.7 is a schematic representation of the deformation protocol.

Figure 7: Schematic diagram of evolution of potential energy landscape with deformation of simulation box. In AQS,
the box is deformed with small steps of dγ followed by energy minimization. With large deformation, system jumps
to new energy minimum.

ix
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As a result of cyclic shear deformation, the system reaches a steady energy state. For low γmax values, these

steady states are absorbing states. Particles locally rearrange during a deformation cycle and at the end of a cycle

comes back to their initial positions. But if the γmax > γy, above yielding the system becomes diffusive. The particles

undergo large irreversible rearrangements and fail to come back to their positions. Interestingly above yielding these

plastic rearrangements correlate and forms a localized band of particles with high strain value. This is known as

shear banding or strain localization. In the left of fig. 8, steady state energies of KALJ system have been shown as

a function of γmax across γy ≈ 0.07. We can see a sharp transition from absorbing to diffusive state. Above yielding

the system consists a shear band, shown in the right. The red particles forming the band have much higher mobility

compared to the blue particles. The energy inside the SB is also higher compared to the rest of the systems [1].

Figure 8: Left: Steady state energy of KALJ system initially prepared at high temperature T = 1 and density ρ = 1.2
as a function of strain amplitude γmax. Below yielding, (γy ≈ 0.07) steady state energy U decreases, and above
yielding jumps to higher value. But a deeper analysis inside and outside of shear band shows that energy inside
shear band USB(σ) is much higher than the overall energy of the system. But, far from shear band, U ′SB(σ) the
enrgy remains at the same low level of γy. Right: Shear band found in the steady state of γmax = 0.09. Particles are
coloured as per their displacements between two consecutive cycles [1].

In this thesis, (i) we have investigated long range structural changes in glasses across yielding from the context

of "hyperuniformity" in KALJ system. (ii) In steady states, we have also examined changes in local structural order

across yielding and its relation with plastic rearrangements in WH system. In both the problems, we have crucially

analized the systems in presence of shear band.
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Hyperuniformity

Figure 9: Schematic representation of sampling window Ω of radius R in three types of systems, from left to right :
randomly disordered system, ordered system and hyperuniform disordered system. x0 is the center of the window
[2].

Hyperunimormity in a system encompasses the suppression of density fluctuations at large length scales. As an

example we can refer to the different types of point distributions presented in Fig. 9. If a spherical window of size

R is placed in different parts of the system, we shall have fluctuations in the number density of points within the

window. We can define variance in number density ρ(R),

∆
2(R) =< ρ(R)2 >−< ρ(R)>2 . (3)

For a random Poisson type distribution in d dimension, ∆2(R) ∼ R−d , whereas for an ordered arrangement ∆2(R) ∼

R−(d+1). Hyperuniform disordered system is a special class of systems lying in between a random and an ordered

system where the density variance decays faster than R−d . For a point configuration, suppression of number density

variance in long wavelength limit is related to the vanishing structure factor in low wave vector limit. For hyperuniform

point configurations, as k→ 0, S(k) ∼ kα → 0 . For hyperuniformity exponent 0 < α < 1, number density variance

scales as R−(d+α). In thermal equilibrium, S(0) is related to the compressibility χT .

Hyperuniform states of matter has been claimed to be a new exotic state of matter. For last two decades hyper-

uniformity has been discovered in many systems including biological systems and with reference to non equilibrium

phase transitions. For driven systems with absorbing to diffusive state transitions the absorbing states have been

found to be hyperuniform. In this thesis we first time investigate hyperuniformity in driven glass system. We work

with KALJ system prepared at density ρ = 1.2 and temperature 1.0. For this system under cyclic shear in AQS limit,

the yielding amplitude is γmax ≈ 0.07. We study hyperuniformity by computing isothermal compressibility defined for

binary systems, χ̃T(k) = ρkBT χT (k). For hyperuniformity, χ̃T(k)∼ kα in low k limit. From Fig. 10 (left) we find that in

absorbing states χ̃T(k) ∼ kα∼0.4 is hyperuniform. However, above yielding there exists high density fluctuations as
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reflected by the upturn of χ̃T(k) at lowest wave vector. Another thing to notice is that the hyperuniformity extends for

finite length scales, at lowest wave vectors χ̃T(k) deviates from the power-law fit and attains a finite value. This kind

of behaviour has been reported for many other systems, known has effectively hyperuniform.

Figure 10: Left: Compressibility χ̃T (k) for the cases of shear amplitudes γmax below and above critical yielding
amplitude γy ' 0.07 are shown with different symbols. Data for IS has also been included. In the cases above
yielding, χ̃T (k) has been shifted upwards for clear visibility. The solid lines (blue and orange) show the power law fit
to the compressibility curves. The vertical dotted lines mark the wave vector regime fitted with the power law kα .
Right: Number density variance exponent α (see text for details) for the cases of γmax below yielding amplitude γy
are shown as black circles. When the interface is included, the exponent drops to low values indicating a lack of
hyperuniformity. Separately inside and outside the shear band the system is hyperuniform.

We also calculated ∆2(R) in the system in presence od shear band. For γmax > γy, we extracted hyperuniformity

exponent α for observation windows placed in the sub-volumes inside shear band, out side of shear band and for

a case where the interface between these two regimes have been considered. Results are shown in the right of

Fig. 10. Below yielding, α ≈ 0.4. Above yielding, inside and out side of SB system remains hyperuniform. When

the interface is taken, hyperuniformity is lost, consistent with the results obtained from upturn in compressibility for

the whole system. Therefore we conclude that above yielding it is the interface that disrupts hyperuniformity of the

overall system.

Local structure and plasticity

Upon application of shear deformation the potential energy landscape of the glassy system slowly changes, as has

been shown in the bottom panel of Fig. 7. For large enough shear amplitude a local minimum disappears causing

mechanical instability in the system. As a result, locally particles rearrange in search for new energy minimum. For

an amorphous system where and how these rearrangements will take place is of fundamental interest. There has

been many attempts to come up with local structural order parameters to predict where the rearrangements will

happen. In this thesis we have chosen two structural descriptors to address the question that in steady states of
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cyclic shear if the local structures play any role in determining which particles will have large displacements during

a deformation cycle. Our descriptors are as follows:

Tetrahedrality in local structures ntet

Tetrahedrality ntet measures for each particle locally how many tetrahedral clusters it is involved in. ntet was intro-

duced to correlate local structure with dynamic heterogeneity in glassy regime of hard sphere mixtures [3]. It was

found that higher values of ntet correlates well with the slower moving particles.

Two body excess entropy S2

Two body excess entropy S2 can be calculated from mollified radial distribution functions per particle [4]. S2 measures

the loss of entropy due to positional correlations, a lower negative value of S2 corresponds to a more ordered

structure.

We have worked on WH system under cyclic shear deformation for which the yielding amplitude is γy ≈ 0.06.

We sheared glasses using AQS protocol, initially prepared at volume fraction φ = 0.58 and temperatures T = 0.7

and T = 1.5. In steady states we measured the non-affine displacements D2
min of the particles during a deformation

cycle, introduced by Falk and Langer [5],

D2
min =

1
n ∑

n
[(r j(t)− ri(t))−Γ(r j(0)− ri(0))]2. (4)

Here, ri, j(0) is the position of the particles at the beginning of a deformation cycle and ri, j(t) is their positions in

deformed box at time t, which refers to the deformation steps of AQS (see appendix) during one cycle. The sum is

over the neighbours and the matrix Γ is such that it minimizes actual mean square displacements of neighbouring

atoms compared to what would have been their displacements under uniform shear. We classified the 5% most

"mobile" and 5% "static" particles by noting their maximum values of D2
min during one cycle of deformation. Then we

compared the structural descriptors of mobile and static particles at the beginning of a cycle. For one case, T = 0.7

in steady state of γmax = 0.06 the results are shown in Fig. 11. The static particles have lower mean value of S2 and

higher value of ntet. This demonstrates indeed particles having larger displacements have different local structural

environment.

We also find that in static particles there is an abundance of ntet = 20. This is interesting because A local icosahedral

cluster can be decomposed into 20 tetrahedrons and icosahedral cluster has been explored for many years as locally

favoured structures in correlation with dynamic slow down of glasses. Above yielding the mobile particles would

belong to the dynamic shear band regime whereas the static particles will lie outside of shear band. We performed
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Figure 11: For the case of T = 0.7 in steady state of γmax = 0.06, distribution of S2 in a) and ntet in b) at the beginning
of a cycle, for particles with lowest (blue) and highest (red) values of displacements max(D2

min) at the end of a cycle.

Topological Cluster Classification (TCC) [6] analysis in presence of shear band and specially computed the spacial

variation of icosahedral clustering in the system. Result is shown in Fig. 12. First, mean square displacement profile

between two consecutive cycles along Z direction is plotted. This shows the position of shear band in the system.

Then fraction of particles involved with icosahedral clustering is plotted along the same Z. We find that outside

shear band almost 30% of the particle has involvement with icosahedral clusters. But outside of shear band this is

negligible. Our results show clear structural difference between sub-volumes of the system in presence of shear

band.
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Figure 12: For the case of T = 0.7 and γmax = 0.08 in steady state we plot mean square displacement of the particles
along Z (blue triangles, capturing the location of shear band. We also plot fraction of particles involved in icosahedral
cluster along Z.



Chapter 1

Introduction I: Glasses and response to

shear deformation

1.1 The glass state

In the famous article "The Nature of Glass Remains Anything but Clear" by Kenneth Chang published in The New

York times in 2008 the author quotes from the Nobel Prize-winning physicist Philip W. Anderson (1995),

The deepest and most interesting unsolved problem in solid state theory is probably the theory of the nature of

glass and the glass transition.

In last decades there has been an immense amount of research articles dedicated to the understanding of glass

transition. Theoretical advancements based on mean field approximations, mode coupling theories while are able to

predict some crucial features of glass transitions, they are in no way complete [7]. Computer simulations have flour-

ished the research as they give easy way to test the theories as well as perform experiments to predict qualitatively

the phenomenological aspects of glasses under different conditions.

In general glasses are very long lived meta-stable states of matter which remain non-crystalline [8]. Glasses are

amorphous, they have no long-range order like a liquid but they are practically solid. The main question of interest is

that at the atomic level how can an amorphous arrangement give rise to finite yield stress, which is the characteristic

of a solid phase, meaning solids resist the attempt to change their shapes.

Glasses involve a wide range of length scales. Our everyday life is filled with glassy materials. The obvious

examples of glass people would give are probably that of the oxide glasses, such as window glass. Most common

building block for the transparent glasses is silica SiO2, which exists both in crystalline and amorphous state at

room temperatures as shown in Fig. 1.1. Other examples of systems at glassy states will include metallic glasses,

polymeric glasses, colloidal glasses involving a wide range of length scales [9].

1
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Figure 1.1: SiO2 in crystalline and amorphous phase (glass). Blue circles represent oxygen atom and black circles
are the Si atoms [10].

To make a glass usually the materials are melt at high temperatures and then it is rapidly cooled down to avoid

crystallization. For example for silica the melting temperature is as high as 1700°C. However, cooling rates, addition

of other materials result in glasses with different physical properties . Fig. 1.2 shows a very typical phase diagram for

glass transition. Glass transition occurs at temperatures lower than the melting temperature Tm. Melting temperature

is a well defined fixed temperature for a material. At melting temperature, given enough time, the system crystallises

and releases latent heat. Whereas, glass transition is a continuous process, there is no latent heat involved and

there is no well defined glass transition temperature Tg. As shown in Fig. 1.2, Tg also depends on the protocol of

obtaining the glass.

Figure 1.2: Schematic phase diagram of a glass forming liquid: enthalpy or equivalently volume versus temperature.
Glass transition temperature Tg = Tf ast or Tslow depends on cooling rate. Tm is the melting temperature [11].
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Glass transition temperature Tg is not related to a thermodynamic transition. It is a temperature below which the

system has very high viscosity and very large relaxation time with respect to experimental time scale. Below Tg the

dynamics slows down dramatically and physical properties slowly evolve to far from equilibrium states, known as

"aging" of glass [12].

1.1.1 Changes of properties across glass transition

Upon fast cooling below the melting temperature glassy materials reach a metastable "supercooled" regime. This

transition is accompanied by very rich phenomenological changes. We shall very shortly touch upon few key points

following the review by Berthier and Biroli [7]. The time scale over which density fluctuations relax is of the order of

picoseconds at Tm but at Tg it is of the order of 100s. This increase of time scale τα is one of the signatures of glass

transition. The mechanical properties also change dramatically as reflected by increase in viscosity η . At Tg the

viscosity increases to the order of 1012 Pa.s, in contrast typical liquids have η <≈ 0.1. Conventionally Tg is chosen

to be the temperature where η is close to 1012.

The variation of relaxation time or viscosity as a function of temperature is given by the "Angel plot" [13] shown

in Fig. 1.3.

Figure 1.3: Viscosity with temperature scaled with glass transition temperature Tg for different systems. "Strong"
glasses show Arrhenius type variation whereas "fragile" glasses show super-Arrhenius behaviour [13].
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For "strong" glass formers viscosity and the relaxation time τα has the following "Arrhenius" behaviour with temper-

ature T ,

η ∝ exp
( E

kBT

)
. (1.1)

Here, kB is the Boltzmann’s constant and E gives a notion of effective activation energy accounting to local relaxation

by breaking some kind of bond. The "fragile" glasses on the other hand shows a "super-Arrhenius" behaviour and

The fit is given by Vogel-Fulcher-Tamman law (VFT),

η ∝ exp
( E

kB(T −T0)

)
. (1.2)

This indicates that at a finite temperature T0 the relaxation time and viscosity diverges. However there are other

proposed functional forms for the fit [14], but experiments fail to universally choose one over others. In fragile

glasses the glass formation has been suggested to be a collective phenomenon.

Another interesting observation was found regarding the excess entropy Sex, a difference between system entropy

from corresponding crystal. Extrapolating of Sex for temperatures below Tg, one can obtain a finite temperature Tk,

known as the Kauzmann temperature where Sex becomes zero [15]. This means, below Tk entropy of the disordered

system becomes less than the entropy of ordered crystal phase. However, Sex is related to the configurational

entropy and no fundamental theory restricts the glass phase to have lower Sex.

Even though there is a diverging time scale at glass transition temperature Tg, this transition so far has not been

connected to diverging length scale associated to static density correlation function. However, dynamic density

correlation function undergoes significant changes across glass transition temperature. We can define intermediate

scattering function F(k, t) as,

F(k, t) =
〈 1

N
ρk(t)ρ−k(0)

〉
. (1.3)

Here ρk = ∑
N
j=1 exp(ik · r j) is the Fourier transform of density. The function measures decay of structural correlation

with time corresponding to a length scale λ ∼ 2π

|k| . Typically for k = kpeak, the value of the wave vector at the position

of the first peak of static structure factor S(k) =
〈

1
N ρk(0)ρ−k(0)

〉
is chosen which gives the idea how fast the closest

neighbours decorrelate with time. In Fig. 1.4 intermediate scattering function for molten silica in supercooled regime

is shown [16]. At low temperatures there are distinct regimes of interest. F(k, t) at first decays quite fast, then a

plateau appears followed by a second relaxation. The fast decay is the ballistic regime (short times), the plateau

is the β relaxation (intermediate times) and finally the second decay is the α relaxation (long times). The plateau

appears when the particles are stuck within the cages formed by its neighbours but eventually they break the cages

decorrelates from their initial positions by α relaxation which accounts for the escape of the particles from the cages

and the motion of the cages. Here it is worth to note that this cage effect is a descriptive idea that works at the level
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of Mean Field Theory (MFT), which is pretty clear and applicable in colloidal hard spheres and remains strongly

linked to Mode Coupling Theories (MCT) [17, 18, 19, 20]. The regime of α relaxation can be fitted to a stretched

exponential function ∼ exp(−(t/τα)
γ) and relaxation time τα can be extracted.

Figure 1.4: Self part of the intermediate scattering function Fs(q, t) for oxygen atoms of a silica melt at different
temperatures, corresponding to wave vector q = 1.7Å

−1
[16],

1.1.2 Potential Energy Landscape (PEL) view

The time evolution and flow properties of any N particle system originate from the interactions between the particles,

given by a potential energy Φ = Φ(R), where R = {r1, ..,rN} are the particle coordinates. For example Φ can have

effects of electrostatic interactions, polarization, hydrogen bonding, electron cloud repulsion etc and then as done

in molecular dynamics simulations, Newton’s equation of motion can be solved to track the particles in time. The

potential energy surface is a rugged landscape as has been illustrated in Fig. 1.5 [21], full with local minima, maxima

and saddle points. Minimas represent mechanically stable arrangement of the particles where all forces and torques

are zero. The deepest minima correspond to zero temperature perfect crystal arrangements. Higher lying minimas

meanwhile correspond to amorphous phases. System with equilibration tries to reach to deeper in the energy

basins [22].

At low temperatures, the configuration R is forced to seek deeper energy basins. Only local collective rearrange-

ments take place to move toward a little deeper energy basin. This makes the system highly heterogeneous in



6 CHAPTER 1. INTRODUCTION I: GLASSES AND RESPONSE TO SHEAR DEFORMATION

Figure 1.5: Left: Energy basin of a system of particles. Energy minimum states are known to be "inherent struc-
tures". Right: For a glassy system the β and α relaxations correspond to different sorts of exploration of inherent
structure basins [21]

intermediate time scales where locally some parts of the system has higher displacements compared to the others.

This is known as dynamic heterogeinity in super cooled regime. However over longer time a region with higher

mobility can become the slower moving region. There are two time scales involved. β relaxations occur due to

transition from neighbouring basins. Whereas, α relaxation occurs when system leaves one deeper metastable

basin to reach to another, as have been expressed in the right side plot of Fig. 1.5.

1.1.3 Jamming phase diagram

Broadly a jammed state refers to a disordered phase of a material that behaves like a solid, with finite yield stress.

In the context of glass transition temperature Tg, we have discussed that glass forming liquids can reach to a dis-

ordered arrested state when it is rapidly cooled. This kind of jamming thus has a "thermal" origin. However apart

from rapid cooling, we can find a jammed state in other systems as a result of high density or application of shear.

For example granular materials when shaken starts flowing, but becomes jammed for low shaking intensity, known

as "shear jamming" [23, 24]. Colloidal systems transform to a jammed state when the density or packing fraction

is increased [25, 26]. In colloidal particles the increase of relaxation time as the jammed state is approached has

"entropic" origin, while shear jamming has "kinetic" origin. Liu and Najel [27] proposed the idea of an unified "jam-

ming phase diagram" connecting these three routes to jamming, shown in Fig. 1.6. The question is weather glass

transition and other mechanisms leading to an arrested amorphous state are different aspects of same "jamming"

transition.
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Figure 1.6: A proposed phase diagram for jamming, Three axes depend on temperature, density and load or shear
stress [27].

1.1.4 Metallic glasses

Discovery of metallic glasses has been called a revolution in material science [28] due to its novel characteristics.

They are very flexible and deformable like plastics.They are 4− 5 times stronger than their metallic counterparts.

They have magnetic properties with less hysteresis loss and less eddy current loss making them suitable for trans-

former and MEMS (Micro-Electromechanical System) applications. Some examples of metal-metal metallic glasses

are Ni - Nb (Nickel Niobium), Mg - Zn (Magnesium zinc), Cu - Zr (Copper Zirconium). Metallic glasses can be

also formed by metals and metalloids such as, metals like Fe, Co, Ni and metalloids like B, Si, C, P. Metallic glasses

have high electrical resistance and hence is used to make accurate standard resistance, computer memories and

magnetic resistance sensors. They are also used in surgery in cutting tools due to high resistance to corrosion.

There are many other uses of metallic glasses [29] and demands for developing basic scientific understanding of

such systems. In this thesis we have chosen two model binary glass formers, the Kob-Andersen Lennard Jones

(KALJ) and repulsive Wahnström (WH) model which are representatives of metallic glasses and we studied their

structural changes under cyclic shear deformation (models described in Appendix).
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1.2 Mechanical response of glass

Glass is an amorphous system behaving as solids: this statement makes us question how can we say if a given

system’s behaviour is like a solid? The answer lies in the study of its response to mechanical deformation. In this

spirit, a system of bubbles, in which the surface tension is able to restore its shape when deformation is applied,

is in a glassy state and "behaving" as solid. When stress is applied to deform a glassy system, it resists the

deformation and this resistance against applied stress can be measured via elastic moduli, as we shall shortly

discuss. Some other definitions which are important from industrial point of view are, strength: how much stress

it can bear before breaking; hardness: resistance towards abrasion, for example scratch on the surface; impact

resistance and chemical resistance. All these combined helps us to choose proper materials for proper use. In the

rest part of this section we shall generally describe characteristics of glassy systems under uniform and periodic

shear deformation.

1.2.1 Stress-strain curve

Figure 1.7: Schematic representation of response of amorphous solids to deformation. (a) Evolution of stress Σ with
shear strain γ, with a stress overshoot Σmax. When material fails, which generally happens before strain localization,
the stress dramatically drops down. (b) Steady-state flow curve, dependence of steady state shear stress Σss on
shear rate γ̇, axes are semi-logarithmic. If the flow is split into macroscopic shear bands, a stress plateau is generally
observed [30].

Fig. 1.7 is a representation of the behaviour of amorphous solids under deformation [30]. Stress is defined as the

applied force F per unit area A,

Σ =
F
A

(1.4)
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The strain describes the deformation in glass. In 1d it will be fractional change in length due to compression or

stretch,

γ =
∆L
L

, (1.5)

where L is the original length of the material. There are many protocols of shearing a material in the laboratory:

using rheometers, applying stress in one direction, using gravity in tilted plane. We can monitor the response of a

material Σ(t) with time t as a function of imposed strain γ(t) or strain rate γ̇(t). For a system if thermal fluctuations

are negligible, it can be treated as an athermal system. Therefore in this limit of vanishing temperature the structural

changes in the system is dominated by shear deformation only. As can be observed from Fig. 1.7(a), for small

strains or for small applied stress the stress-strain has a linear elastic behaviour, following Hook’s law,

Σ = µγ. (1.6)

The proportionality constant µ is the elastic modulus (Young’s). So in this part the deformations are reversible in

nature, system can go back to its initial state when load is removed. For larger deformation, at a critical value of

strain γy the system yields. Beyond γy the deformation in the system is irreversible, known as the plastic deformation.

For "brittle" materials as soon as γy is crossed, the system fails or breaks. An example will be the window glass or

silica glass. Whereas for "ductile" materials there is a flow regime beyond γy where particles in the system adjust

their positions and results in permanent deformation in the system. Example will be metallic alloys. In steady state,

the flow curve is given by Herchel-Bulkley law,

Σ = Σy +Aγ̇
n, (1.7)

with n > 0, as has been shown in Fig. 1.7(b). The ductile behaviour makes the system flexible and easier to mould

to any form.

The ductility highly depends on the preparation protocol of a glass [31, 32]. In simulations also different tech-

niques can be employed to study yielding in ductile or brittle material, an example from the paper of Richard et

al. [33] has been shown in Fig. 1.8. In this work 2d systems are sheared with strain γ in athermal limit. One

of the system is bi-disperse (disks with two different radii) interacting through Lennard Jones (LJ) potential, other

one is a poly-disperse (POLY) packing with purely repulsive interactions. The LJ system has been quenched using

three protocols, namely instantaneous quenches from high temperature liquid (HTL), equilibrated supercooled liquid

states (ESL) and gradual quench (GQ) where the system is gradually quenched from high to low temperature. For

polydisperse, the glass is first equilibrated at a certain temperature Tini and then instantaneously quenched to T = 0

by energy minimization. We find from Fig. 1.8 that for POLY , at lowest temperature theere is abrubt stress drop in

the stress-strain curve, after which system goes to the steady flow state. So, the structure at the lower temperatures
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are more brittle compared to higher temperatures. Whereas, for LJ system we mainly find ductile bevaviour where

the transition from elastic to flow state is smooth. Although for GQ protocol the system is less ductile. The systems

we have used in the thesis, KALJ and WH are ductile in nature.

Figure 1.8: Stress strain curve for (a) Lennard Jones system with different quench protocols, inset shows a set of
particles with plastic rearrangements; and (b) Polydispere systems quenched from different initial temperatures Tini
[33].

What is the mechanism of plastic flow? A very nice review in the context of metallic glass is given by Hufnaget et

al [34]. As the system is sheared, particles undergo local rearrangements. Time scales associated with the driven

systems are much shorter than aging time scales. Therefore, some thermal systems can be treated as athermal [30].

At low temperatures or in athermal limit the system is residing close to its energy minimum configurations, the

inherent structures. Deformation of the system essentially deforms the potential energy landscape. Because of

shear deformation a local energy minimum can slowly disappear and the system becomes mechanically unstable

and therefore forced to move towards a new alternative minimum. Very small number of particles take part in

search of new minima by locally rearranging themselves. These are known as plastic events and a zone where

rearrangements happen is known as shear-transformation zone (STZ). Is it possible to identify STZ in a given

system? In chapter 4, we have shortly discussed about STZ in the introduction.

1.2.2 Shear banding

Under shear deformation amorphous metallic glasses show a very complex local rearrangements of particles. At

small strains these rearrangements are reversible. At large stresses the rearrangements are dissipative involving

mechanical instabilities. A very interesting effect observed in shearing is the strain localization in the system, also
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known as shear-banding [35, 36]. In Fig. 1.9 two instances of shear band formation in the steady flow state, one

obtained from simulation (A) and the other from experiment (B) are presented.

A. B.

Figure 1.9: A. Stress strain curve obtained from the simulation data of nano-wires with different casting lengths. The
insets correspond to samples at 10% strain rates, where the atoms have been coloured from red (0% shear strain)
to yellow (20% larger shear strain)according to shear strain. We can clearly see localization of shear strain [37].
B. Stress-strain curve obtain from experiments on bulk metallic glass Zr41.2Ti13.8Cu12.5Ni10Be22.5 by situ scanning
electron microscopy (SEM) quasi-static uniaxial compression experiments at room temperature. Inset shows typical
deformation patterns of multiple intersecting and branched shear bands [38].

Review on shear bands in metallic glasses can be found in [39]. One perception is homogeneous nucleation.

It is thought that STZ is activated throughout the system and at some point during the deformation a percolation

threshold is reached and they link-up to form a shear band. A second take on shear band formation is that a stress

concentration originates in some place of the system and then a mature shear front propagates through the system

forming the band [40]. However this second model is more appropriate for high-rate loading. Shrivastav et al. [41] for

Lennard Jones glass unveiled that due to finite shear rate inhomogeneous flow regimes form in the system. At lower

strain rate percolating cluster of mobile regions evolves to a long-lived shear band. In general, the large shear strain

values in the shear band indicates that the structure inside and outside the band is different. For metallic glasses

there can be single shear band with intense shear [42], or multiple bands with minimal shear [38] or homogeneous

distribution depending on the material [43], conditions and protocols. The local energy [1] and local density of the

shear band is different from the unsheared system [44]. In Fig. 1.10 we show the direct measurement of this density

variation of shear band in a metallic glass [44].
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Figure 1.10: The image of shear band found in cold-rolled Al88Y7Fe5 propagating from bottom to top is shown in the
right. Corresponding density variation with respect to undeformed state is shown in right [44].

1.2.3 Cyclic shear

Cyclic shear deformation is a well known technique in testing the rheology of a material and even to improve it. By

cyclic shear we mean that the strain γ(t) on the system is varied cyclically, with some amplitude γmax. In Lennard-

Jones type ductile material it is difficult to identify yielding strain γy from the almost continuous stress-strain curve

(Fig. 1.8). When a system is periodically driven for many cycles, a steady energy state is reached. In steady

energy states of cyclic shear, the yielding transition is sharper compared to the unidirectional shear [45, 46, 47].

This becomes clear when steady state values of stress σmax is plotted against amplitude γmax, as was reported by

Leishangthem et al [48] (Fig. 1.11).
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Figure 1.11: Stress strain curve for Kob Andersen Lennard Jones system under uniform shear (US) and cyclic
shear (CS) corresponding to two initial temperatures T and different system sizes N. Yielding strain value is shown
by broken vertical green curve [48]

Fiocco et al. [49] reported that under oscillatory shear deformation the Kob-andersen Lennard Jones glass

reaches a steady energy state after a short transient. Fig. 1.12 shows the evolution of energy and mean square

displacements at the end of each cycle of deformation for various γmax values, across the critical yielding amplitude

γy.

Figure 1.12: Left: Energy of the KALJ system is plotted against accumulated strain at the end of each cycle of
deformation. Filled symbols are for a system initially prepared at low temperature Tini = 0.466 and open symbols are
for Tini = 1.0. Different sysbols correspond to different values of strain amplitudes γmax: 0.07 (circle), 0.08 (square),
0.09 (diamond), 0.1 (down triangle), 0.12 (up triangle) and 0.14 (star). Above yielding amplitude γy ≈ 0.07 energy
levels for two Tini merge. Right: Mean square displacements of the particles at the end of each cycle with reference
to the initial configuration. In steady state there is a transition from absorbing to diffusive state at γy [49].
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There is a clear non-equilibrium transition from absorbing state to diffusive state at γy. In absorbing state the system

has reached to a configuration where particles during the deformation cycle moves reversibly, so from one cycle to

the next, the net displacement is zero, hence the MSD becomes a constant. On the other hand, above yielding,

we have a diffusive state, growing mean square displacements. In the later case the particle arrangements are

irreversible.

We notice from the energy plot that before reaching to the steady state in the transient, the energy of the high

temperature glass decreases. High temperature glass and hence high energetic glass going to deeper energy mini-

mum states as a result of shear is known as the mechanical annealing [50, 51]. However, for low temperature glass

we clearly observe the gain in the energy in the diffusive states (Fig. 1.12). This is known as energy rejuvenation

in glass [52, 53]. This high energy in this system is associated with the formation of shear band in the system.

Parmar et al. [1] have done a detailed thermodynamic analysis of single the shear band found in KALJ system of

size N = 64000 for amplitudes γmax above yielding. Above yielding the local energy inside strain localized shear band

is much higher compared to the part of the system outside shear band, as we find in Fig. 1.13. Once shear band

is formed, particles inside shear band move chaotically from one cycle to the next, giving rise to the mean square

displacements. Outside shear band the displacements are minimal.

Figure 1.13: Steady state energy of KALJ system initially prepared at high temperature T = 1 and density ρ = 1.2 as
a function of strain amplitude γmax. Below yielding, (γy ≈ 0.07) steady state energy U decreases, and above yielding
jumps to higher value. But a deeper analysis inside and outside of shear band shows that energy inside shear band
USB(σ) is much higher than the overall energy of the system. But, far from shear band, U ′SB(σ) the enrgy remains at
the same low level of γy [1].

The absorbing and disspitative nature of the system below and above yielding can be realised by plotting the
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Figure 1.14: KALJ system at density ρ = 1.2 under periodic deformation in athermal limit: stress-strain curve in the
steady states of cyclic shear fir various strain amplitudes below and above yielding amplitude γy ≈ 0.07. For both
the temperatures T , we fins above yielding the hysteresis curves have larger area. Maximum value of stresses has
been showed in circular symbols [48].

stress-strain curve of the system during a deformation cycle in steady state as in Fig. 1.14 [48]. Area under the

curve is proportional to the work done by the system. Below yielding the curves are really narrow, in contrast to

above yielding the area suddenly increases. This is because, in the steady states below yielding only a handful of

particles locally rearrange. But above yielding particles have higher displacements and dissipate energy. It is worth

mentioning that that shear band of high strain localization found above yielding has higher energy because it is a

band of particles with large irreversible plastic flow.

In this thesis

Yielding in glasses has been identified as a dynamical phase transition. One open question remains if the system

undergoes critical structural changes across yielding. In this thesis we have addressed this question by examining

structural changes in model glass system under cyclic shear deformation. This has been done from two directions.

Firstly, in the KALJ system we investigate "Hyperuniformity" across yielding and in the shear banded system. The

concept of hyperuniformity is related to the long range direct correlations and density fluctuations in the system.

We dedicate a complete chapter Introduction II, where we discuss about hyperuniformity. Then in Chapter 3 we

discuss the results for KALJ system. Secondly, we investigate the connection between local structures and plastic

rearrangements in the steady states of cyclic shear deformation in WH system in Chapter 4. We analyze the

changes in mean local ordering in the system across yielding and extract the nature of local clusters inside and

outside of shear band. In chapter 5 we have concluded our results from both the chapters. Appendix contains
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details of numerical simulation of our model glass forming systems. At the end of the thesis we have short abstracts

in both English and French.



Chapter 2

Introduction II: About Hyperuniformity

2.1 Basic concepts

Nature of statistical fluctuations are crucial in understanding and characterising a wide range of systems at equilib-

rium and as well as out of equilibrium. Can we characterise how a set of points are distributed in space? "Hyper-

uniformity" emerges as an answer to this question. It is a special property which describes suppression of number

density fluctuations at large length scales. A great review on hyperuniform states of matter was published by Salva-

tor Torquato, one of the pioneering researchers who explored hyperuniformity in various contexts, in 2018 [2]. This

review is the main inspiration for this chapter. In a many particle-system in d dimensions, if we sample different

parts of the system or different realizations of the system with a spherical window of size R, the number of points

inside the window shall have fluctuations. With growing window sizes, if the number variance,

σ
2
N(R) =< N(R)2 >−< N(R)>2, (2.1)

scales slower than the volume ∼ Rd , that implies fluctuations are suppressed in large length scales and the system

is hyperuniform. Equivalently, One can express in terms of number density variance, by dividing the number of

points inside a window with volume of the window,

∆
2(R) =< ρ(R)2 >−< ρ(R)>2, (2.2)

and for hyperuniformity ∆2(R) decays faster than R−d in large R limit.

17
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Figure 2.1: Schematic representation of sampling window Ω of radius R in three types of systems, from left to right
: randomly disordered system, ordered system and hyperuniform system. x0 is the center of the window [2].

Fig. 2.1 illustrates three types of point distributions. On the left we have random Poisson type point distribution.

In this case the number variance grows with window volume, σ2
N(R) ∼ Rd . In the middle we have an ordered

arrangement. Note that here fluctuations will arise only due to the surface of the window and hence we shall have,

σ2
N(R) ∼ Rd−1. This is an example of ordered hyperuniform system. At the right we have the most interesting

case. It is an example of disordered hyperuniformity, the scaling of σ2
N(R) is slower than Rd , but not as slow as

Rd−1. This intermediate occurrence of fluctuation-suppression manifests a new exotic state of matters. All perfect

crystals, perfect quasi-crystals are hyperuniform and so is special disordered systems. Therefore it provides a

unified framework to characterize structures of these materials and also to differentiate systems on the degree of

hyperuniformity. At large length scales disordered hyperuniform systems are able to suppress fluctuations like a

crystal and in smaller length scales it behaves as a liquid or glass where it is completely isotropic. This accounts

for novel applications as we shall touch upon. Also, a consequence of decaying number density variance at large

length-scales is that, in long-wavelength limit, i.e. as wave vector k→ 0, the structure factor,

S(k→ 0)→ 0, (2.3)

following density-fluctuation theorem. Now, structure factor is proportional to the scattering intensity from the mate-

rial. Fig. 2.2 shows the scattering pattern from an ordered crystal and disordered "stealthy" hyperuniform system [54,

55]. In the later, we observe that there is a range of wave vectors surrounding the origin where there is no scattering.
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Figure 2.2: Scattering from two very distinct hyperuniform systems. Left: A six-fold symmetric crystal and Right: A
disordered "stealthy" hyperuniform system [2].

Hyperuniformity has been only explored in last two decades. One of its earliest appearance was in cosmological

models [56] where hyperuniformity was termed as "super-homogeneous" distribution connecting the properties of

Arrison-Zeldovich like spectra and this revelation was called to be "glass like universe". At present there are plenty

of instances where hyperuniformity has been found, both in equilibrium and non-equilibrium systaems. Examples

include maximally random jammed (MRJ) hard-particle packings [57, 58, 59, 60, 61], granular media [62, 63], col-

loidal packing [64, 65], emulsions [66], avian photoreceptors [60], quantum ground states [67], classical disordered

ground states [54, 68, 69, 70], eigen values of random matrices [71, 72], non-equilibrium phase transitions [73, 74,

75, 76, 77, 78].

2.2 Mathematical formulations: Point processes

In the following subsections we shall discuss the relationship between isothermal compressibility and number vari-

ance, we shall define radial distribution function g(r), structure factor S(k) and we shall show in vanishing wave

vector limit the relationship between S(k) and number variance. Thereafter we shall consider spherical windows

sampling a point process and discuss how in large window size limit number variance inside the window relates to

S(k).

2.2.1 Number variance and compressibility χT

In grand canonical ensemble where both exchange of particles and exchange of energy are possible, the grand

potential is defined as,

Ω = F−Nµ. (2.4)
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Here F is the Helmholtz Free energy F = U − T S and µ is the chemical potential. U is internal energy, T is the

temperature and S is the entropy. The probability density in this grand canonical ensemble is given by,

f0(rN , pN ,N) =
exp[−β (H−Nµ)]

Ξ
. (2.5)

Here β = 1
KBT , H is the Hamiltonian, and Ξ is the grand canonical partition function given by,

Ξ =
∞

∑
N=0

exp(Nβ µ)

h3NN!

∫ ∫
exp(−βH)drNd pN (2.6)

=
∞

∑
N=0

zN

N!
ZN , (2.7)

where for a system of N particles drNd pN ≡ dr1dr2...drNd p1d p2...d pN , z= exp(β µ)
Λ3 , Λ=( 2πβ h̄2

m )1/2 and Zn =
∫

dr1dr2...drN .

The probability p(N) that the ensemble contains N particles is,

p(N) =
1

h3NN!

∫ ∫
f0drNd pN =

1
Ξ

zN

N!
ZN . (2.8)

Therefore average number of particles will be given by,

< N >=
∞

∑
N=0

N p(N) =
1
Ξ

∞

∑
N=0

N
zN

N!
ZN =

∂ lnΞ

∂ lnz
. (2.9)

Differentiating by lnz we obtain,

∂ < N >

∂ lnz
= z

∂

∂ z
(

1
Ξ

∞

∑
N=0

N
zN

N!
ZN) (2.10)

=
1
Ξ

∞

∑
N=0

N2 zN

N!
ZN− (

1
Ξ

∞

∑
N=0

N
zN

N!
ZN)

2 (2.11)

=< N2 >−< N >2=< (∆N)2 > . (2.12)

Now, the isothermal compressibility is defined as,

χT =− 1
V
(

∂V
∂P

)T . (2.13)

To establish the relation between isothermal compressibility and number fluctuation, we note, Helmholtz free energy

is an extensive property, that is dependent on system size. So, one can write,

F = Nφ(ρ,T ). (2.14)
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Where φ is free energy per particle. Since µ = ( ∂F
∂N )T,V , we get,

µ = φ +N
∂φ

∂ρ

∂ρ

∂N
(2.15)

= φ +ρ
∂φ

∂ρ
. (2.16)

Therefore,

(
∂ µ

∂ρ
)T = 2(

∂φ

∂ρ
)T +ρ(

∂ 2φ

∂ρ2 ). (2.17)

We know from thermodynamics, pressure P =−( ∂F
∂V )T,N . Since, ρ = N

V , ∂

∂V =−ρ2

N
∂

∂ρ
and it gives,

P = ρ
2(

∂φ

∂ρ
)T . (2.18)

Differentiating w.r.t. ρ at constant temperature,

(
∂P
∂ρ

)T = 2ρ(
∂φ

∂ρ
)T +ρ

2(
∂ 2φ

∂ρ2 )T = ρ(
∂ µ

∂ρ
)T . (2.19)

Again, ( ∂P
∂ρ

)T = ∂P
∂V

∂V
∂ρ

=−V 2

N
∂ρ

∂V . So from the definition of isothermal compressibility ( ∂P
∂ρ

)T = 1
ρχT

.

As, ( ∂ µ

∂ρ
)T = ( ∂ µ

∂N )(
∂N
∂ρ

) =V ( ∂ µ

∂N ), we have ρ
∂ µ

∂ρ
= 1

ρχT
.

We already had, <(∆N)2>
<N> = KBT

<N>
∂<N>

∂ µ
. Therefore it simply follows,

< (∆N)2 >

< N >
= ρKBT χT . (2.20)

From Equation 2.20 we find that in thermodynamic equilibrium compressibility χT of the system is related to the

variations in number fluctuations in grand canonical ensemble.

2.2.2 Radial distribution function g(r)

For a point-process "n-particle density" ρ
(n)
N can be defined as,

ρ
(n)
N (rn) =

N!
(N−n)!

1
ZN

∫
exp(−βVN)dr(N−n). (2.21)

Basically, ρ
(n)
N (rn)drN is the probability of finding n particles within the volume element drN , irrespective of the

coordinates of rest of the particles and irrespective of their momenta. Therefore it would hold that,

∫
ρ
(n)
N drn =

N!
(N−n)!

. (2.22)
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For instance the single particle density,∫
ρ
(1)
N dr1 = N, for uniform field, this gives, ρ

(1)
N = ρ = N

V .

Now the n-particle distribution function g(n)N (rn) is defined as,

g(n)N (rn) =
ρ
(n)
N (r1...rn)
n
∏
i=1

ρ
(1)
N (ri)

. (2.23)

For homogeneous systems,

ρ
ng(n)N (rn) = ρ

(n)
N (rn). (2.24)

Now let us write these in terms of delta functions. Let us find the average of δ (r− r1).

< δ (r− r1)>=
1

ZN

∫
δ (r− r1)exp[−βVN(r1,r2..,rN)]drN

=
1

ZN

∫
...
∫

exp[−βVN(r,r2..,rN)]dr2...drN .

Comparing with the definition of n-particle distribution function, we can see,

ρ
(1)
N (r) =<

N

∑
i=1

δ (r− ri)> .

Similarly, it will follow,

ρ
(2)
N (r) =<

N

∑
i=1

N

∑
j=1

δ (r− ri)δ (r− r j)> .

Now we can write,

<
1
N

N

∑
i=1

N

∑
j=1

δ (r− r j + ri)>=<
1
N

N

∑
i=1

N

∑
j=1

δ (r′+ r− r j)δ (r′− ri)>

=
1
N

∫
ρ
(2)
N (r′+ r,r′).

So, for homogeneous and isotropic system,

<
1
N

N

∑
i=1

N

∑
j=1

δ (r− r j + ri)>=
ρ2

N

∫
g(2)N (r,r′)dr′ = ρg(r). (2.25)

The definition of g(r) implies on the average the number of particles lying within the range of r to r + dr from a

reference particle is 4πr2ρg(r)dr , peaks in the plot of g(r) versus r represent "shells" of neighbours around the

reference particle.



2.2. MATHEMATICAL FORMULATIONS: POINT PROCESSES 23

2.2.3 Ornstein–Zernike Equation

The radial distribution function g(n)(rN)→ 1 for large mutual separations. Therefore total pair correlation function for

a statistically homogeneous and isotropic system is defined as,

h(r) = g(r)−1. (2.26)

h(r) measures the influence of a particle at position r2 on a particle at position r1, separated by the distance r =

|r2− r1|. Ornstein and Zernike proposed that this total correlation function can be decomposed into a "direct" and

"indirect" part.

h(r) = c(r)+ρ

∫
c(|r− r′|)h(r′)dr′. (2.27)

The interpretation is, the total correlation h(1,2) between the particles 1 and 2 is due to their direct correlation c(1,2)

plus indirect correlation via other particles. Taking Fourier transform (F.T.),

ĥ(k) = ĉ(k)+ρ

∫ ∫
c(|r− r′|)h(r′)dr′ exp(−ikr)dr.

Writing exp(−ikr) as exp(−ik(r− r′))exp(−ikr′) from the properties of F.T. we can obtain,

ĥ(k) = ĉ(k)+ρ ĉ(k)ĥ(k)

=
ĉ(k)

1−ρ ĉ(k)
.

2.2.4 Structure factor and zero wave-vector limit

Structure factor is defined from the density density correlation in k-space,

S(~k) =
1
N

< ρ̃(~k)ρ̃(−~k)> (2.28)

=
1
N

〈 N

∑
i=1

N

∑
j=1

exp(i~k ·~ri)exp(−i~k ·~r j)
〉
. (2.29)

Further expanding,

S(~k) = 1+
1
N

〈∫ ∫
exp(−i~k · (~r−~r′))

N

∑
i=1

N

∑
j=1,i6= j

δ (~r−~ri)δ (~r′−~r j)d~rd~r′
〉

= 1+
1
N

∫ ∫
exp(−i~k · (~r−~r′))ρ(~r,~r′)d~rd~r′

= 1+
ρ2

N

∫ ∫
exp(−i~k · (~r−~r′))g(~r,~r′)d~rd~r′.
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For statistically homogeneous systems, g(~r,~r′) only depends on the radial distance r = |~r−~r′|,

S(~k) = 1+ρ

∫
exp(−i~k ·~r)g(r)d~r. (2.30)

We have defined total correlation function h(r) = g(r)−1, in terms of F.T. of total correlation function h̃(~k),

S(~k) = 1+ρ h̃(~k) =
1

1−ρ c̃(~k)
. (2.31)

Form compressibility equation we know, ρKBT χT = 1+ρ
∫
[g(r)−1]dr.

Since ĥ(k) =
∫

h(r)exp(−ikr)dr, so, ĥ(0) =
∫

h(r)dr.

Therefore, we can see,

ρKBT χT = 1+ρ ĥ(0) = S(0). (2.32)

Therefore, in zero wave vector limit, structure factor is related to compressibility.

Structure factor, number variance and compressibility at zero wave-vector limit

Combining Eq. 2.20 and Eq. 2.32, we can see that in an equilibrium grand canonical system,

< (∆N)2 >

< N >
= ρKBT χT = S(0) (2.33)

This equation holds the relationship between the two main observables in the study of hyperuniformity where in

k-space we are interested in low-wavector limit of structure factor and we study the number variance with growing

length scales.

However, the relationship with compressiblity, S(0) = ρKBT χT only holds for equilibrium systems. But irrespective

of a system in equilibrium or not we can extablish the relationship S(0) = <(∆N)2>
<N> for infinitely large windows, as we

shall see in the next sub-section.

Structure factor and number variance in the limit of large window size

Number variance as a function of window size

Coming to real space fluctuations, when observation windows Ω of size R (vector for non-spherical windows, depend

on the parameters) is placed in the system with the center of the window at x0 and then x0 is varied to sample

different parts of the system, we can compute number variance. Introducing window indicator function w to count
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particles inside a certain window,

w(x−x0;R) =


1 ,x−x0 ∈Ω

0 ,x−x0 6∈Ω.

(2.34)

The number of points inside the window is then,

N(x0,R) = ∑
i=1

w(ri−x0;R). (2.35)

In thermodynamic limit if ρ is the global density and v1(R) is the volume of the window, on the average number of

particles inside a window of size R will be,

< N(R)>= ρv1(R) = ρ

∫
Rd

w(r;R)dr, (2.36)

We can express number density variance as a function of window size,

σ
2
N(R) =< N2(R)>−< N(R)>2

=
∫
Rd

ρ1(r)w(r1−x0;R)dr1 +
∫
Rd

∫
Rd

[
ρ2(r1,r2)−ρ1(r1)ρ1(r2)

]
w(ri−x0;R)dr1dr2

=< N(R)>
[
1+ρ

∫
h(r)α2(r;R)dr

]
,

where, α2(r;R) is given by

α2(r;R) =
vint

2 (r,R)

v1(R)
. (2.37)

Here vint
2 is the scaled intersection volume function for two windows seperated by a distance r,

vint
2 (r,R) =

∫
w(x0;R)w(x0 + r;R)dx0. (2.38)

For example in case of two spherical windows overlapping vint
2 will be the common volume of the lens formed by

them. By construction, for r = 0, α2 = 1 and it is non zero only when there is an overlap.

Using Parsaval’s theorem of Fourier transform, number variance equation can be re-written in terms of structure

factor S(k),

σ
2
N(R) =< N(R)>

[ 1
(2π)d

∫
Rd

S(k)α̃2(k;R)dk,
]

where α̃2(k;R) is the F.T. of α2(r;R).
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In infinite wavelength limit

In large length scale limit, the size of the window grows and we have, v1(R)→ ∞, the Fourier transform of scaled

intersection volume α̃2(k;R)→ (2π)dδ (k), where δ (k) is the d dimensional Dirac delta function. In this limit, the

variance has the following form,

lim
v1(R)→∞

σ2
N(R)

< N(R)>
= lim

k→0
S(k) = 1+ρ

∫
h(r)dr. (2.39)

Since for hyperuniform system, limk→0 S(k) = 0, we get,

lim
v1(R)→∞

σ2
N(R)

< N(R)>
= 0. (2.40)

As promised, Eq. 2.39 gives us the relation between structure factor and number density variance in the infinite

wavelength limit, which holds true for both equilibrium and non-equilibrium systems.

2.3 Classification of hyperuniform systems

For a monodisperse point configuration, hyperuniformity is linked to vanishing structure factor. In the vicinity of

origin, a power-law form of structure factor is found for hyperuniform systems [79],

S(|k|)∼ |k|α (2.41)

with a positive exponent α > 0. Mathematical analysis presents three classifications of hyperuniform systems de-

pending on α.

Classes α σ2
N(R)

Class I α > 1 ∼ Rd−1

Class II α = 1 ∼ Rd−1 lnR

Class III 0 < α < 1 ∼ Rd−α

Few examples of the above classes are,

Class I:

All crystals [56], many quasi-crystals [80], stealthy hyperuniform ground states [54, 55], one-component plas-

mas [81], perfect glasses [82], purturbed lattices [83, 84].

Class II:

Maximally random jammed packings [57, 59], density fluctuations in early universe [85], some quasi-crystals [80],

fermionic point process [67], superfluid helium, some purturbed lattices,perfect glasses [82].
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Class III:

Classical disordered ground states [86], random organization models, perfect glasses [82], perturbed lattices[87]

2.4 Size disperse systems

2.4.1 Volume fraction variance and spectral density

Generalized hyperuniormity can be applied to systems beyond point distributions. Examples include two-phase

media, polydisperse systems where particles are of different diameters. Two phase media involves partition of the

space into disjoint regions with interfaces, a good example would be system with bubbles. In such systems instead

of particle numbers, fluctuation of local volume fractions of one phase is of interest,

σ
2
v (R) =< τ

2
i (R)>−φ

2
i (2.42)

where φi is the global volume fraction of phase i and τi is the local volume fraction. For hyperuniformity, σ2
v (R)

decays faster than ∼ R−d . In k-space, similarly a spectral density χ̃v(k) has been defined which employs the same

hyperuniformity criteria as of with the structure factor S(k). Size disperse systems can also be treated to be made

up of different "phases", which basically are the species of particles with different diameters. For sphere packings

of radius a [88],

χ̃v(k) =
1
V

∣∣∣ N

∑
j=1

exp−(k · r j)m̃(k;a)
∣∣∣2 (2.43)

m̃(k;a) =
(2π

ka

) d
2
adJ d

2
(ka) (2.44)

Here, V is the volume of the system and Jν(x) is the Bessel function of first kind of order ν . Here to note, for point

particles, structure factor is given by,

S(k) =
1
N

∣∣∣ N

∑
j=1

exp−(k · r j)
∣∣∣2 (2.45)

So we can see in χ̃v(k) the size disperse particles are treated as point particles with some form factor m̃(k;a).

One of the issues encountered in computing volume fraction variance in real space is the surface effect of the

window, specially since in computer simulations we have a limitation of system sizes. Wu et al. [89] has compared

two ways of computing volume fraction as shown in Fig. 2.3. Authors have argued in favour of choosing Fig. 2.3(a)

in correctly recovering hyperuniform traits for bi-disperse additive soft core frictionless disks above jamming in two
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dimensions.

Figure 2.3: Schematic diagram depicting two ways of computing volume fraction for a spherical window: (a) Defini-
tion I: For the particles residing close to the window surface, the fraction of volume inside the window is taken into
account, (b) Definition II: If the center of the particle lies within the window, its volume is included [89].

Another suggestion to deal with real-space fluctuations was given by Ikeda et al. [90] for a mono-disperse systems

above jamming. Instead of treating the centers of the particles as a point particle distribution with a Dirac delta type

distribution, a Gaussian density field can be defined, in 3d,

ψ(~x) = ∑
i

f (~x−~ri) (2.46)

f (~x) =
(

δ

π

) 3
2

exp(−δ |~x|2). (2.47)

δ can be tuned for particle sizes. This is a coarse grained density field and density variance can be obtained as,

∆
2
ψ(R) =< ψ(~x;R)2 >−< ψ(~x;R)>2 (2.48)

=
9ρ

4πR3

∫
∞

0

dk
k

f (k)2S(k)J 3
2
(kR)2. (2.49)

The factor f (k) = exp(−( k2

4δ
)) represents the modification over point distribution. A coarse grain model like this

suppresses local fluctuations and reveals the nature large length scale behaviour more accurately.

2.4.2 Compressibility in search of hyperuniformity

Berthier et. al. [63] showed that for polydisperse jammed systems a good indicator of hyperuniformity is the wave

vector dependent compressiblity χT (k) instead of the structure factor. Even though the meaning of isothermal

compressiblity in such non-equilibrium system is unclear it was found that compressibility is getting suppressed at

large length scale, showing hyperuniformity. See Fig. 2.4.
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Figure 2.4: (a) In "jammed" state structure factor S(q) and compressibility χT (q) with wave vector q for a 2d packing
of hard-disks obtained experimentally. In the low wave vector regime it is the compressibility that tends to vanish,
showing hyperuniform trend [63]. (b) Compressibility for numerically obtained binary systems with various size
ratios, all showing hyperuniformity [63].

2.5 Some aspects of Hyperuniformity

Hyperunifirmity: an inverted critical phenomenon

For a fluid system Ornstein and Zernike [91] had defined the direct correlation function c(r) which is of significance

importance in studying fluctuations near the critical point. The total correlation function h(r) can be decomposed

into a direct part given by c(r) and an indirect contribution. Especially in Fourier space, the relationship is,

c̃(k) =
h̃(k)
S(k)

=
h̃(k)

1+ρ h̃(k)
(2.50)

For hyperuniform systems, h̃(k = 0) =−1/ρ. Therefore in k→ 0 limit as S(k) vanishes, the direct correlation function

c̃(k) diverges to −∞. This implies volume integral of c(r) does not exist and real space direct correlation function c(r)

is long ranged. This is a complete opposite behaviour from that observed in thermal or magnetic critical points. In

thermal or magnetic critical points it is the total correlation function that becomes long-ranged and direct correlation
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functions are short ranged. In this sense, hyperuniformity has been termed as "inverted" critical phenomenon.

By the analogy to thermal critical points, the direct correlation function of hyperuniform system is expected to

have the following power-law decay,

c(r)∼ 1
|r|d−2+η

. (2.51)

Here, (2−d)< η < 2 is the new critical exponent of hyperuniformity.

Multihyperuniformity

If each of the components in a system is independently hyperuniform, this makes the total system also hyperuniform.

This phenomenon is known as multihyperuniformity. Crystals whose components are periodically arranged are trivial

examples of multihyperuniform systems. Disordered multihyperuniform systems are harder to design. A naturally

arising example is distribution of cone cells in avian retina [92]. Another example is multi-component plasma in

equilibtrium at finite temperatures [93, 94].

Effective hyperuniformity: Hyperuniformity index H

Hyperuniformity is a long wavelength property. But in laboratory experiments and numerical simulations there can

be noises and constraints on system sizes. Therefore often we end up with systems that are "nearly" or "effectively"

hyperuniform. Effective hyperuniformity can be determined by hyperuniformity index H, as being described below.

From practical point of view, we can hardly obtain a perfect hyperuniform material whose structure factor is

completely zero at the origin. So the next best thing in determining hyperuniformity is to introduce hyperuniformity

index H defined as follows,

H =
S(k→ 0)
S(kpeak)

. (2.52)

kpeak denotes the wave vector k where the first peak of the structure factor arises. If the value of H is lower

than some cut-off, the system is termed to be effectively hyperuniform [95, 88]. Usually a system is characterised

as hyperuniform if H ≤ 10−3, but this is subjective. A good reference can be if H is significantly lower than the

disordered liquid phase of the system, it is hyperuniform.

In Fig. 2.5 we show the use of hyperuniformity index in the determination of different phases of amorphous ice [95].

2.6 Hyperuniformity in nonequilibrium systems

Hyperuniformity has been observed in many nonequilibrium states. Here we are listing few such interesting in-

stances, often related to non-equilibrium phase transition.



2.6. HYPERUNIFORMITY IN NONEQUILIBRIUM SYSTEMS 31

Figure 2.5: Hyperuniformity index H = S(0)
S(kpeak)

: (a) During compression of hexagonal (Ih, black) and low density
amorphous (LDA, red) ice. Peaks corrrespond to transition from Ih to HDA and LDA to HDA (High density amor-
phous). (b) and (c) are zoom of the data in (a). (d) H during cooling of liquid water at pressure P = 0.1 GPA [95].

2.6.1 Jamming

A jammed packing is a configuration where each particle is in contact with its nearest neighbours. A "strictly"

jammed system is the one that does not allow any uniform volume decreasing strains of the system boundary and

hence has infinite bulk and shear moduli. A special case is Maximally Randomly Jammed (MRJ) system where the

system is maximally random and strictly jammed. We can define a critical jamming density ρc or critical volume

fraction φc arising geometrically for a system so that configurations with ρ > ρc or φ > φc will be "jammed". An MRJ

state is a prototypical glass which is maximally disordered and perfectly rigid. For sphere packings in MRJ condition

the average number of particle contacts are 2d where d is the dimensionality.

Torquato and Stillinger has provided a conjecture regaring which type of jammed systems will be hyperuniform:

Conjectture: Any strictly jammed saturated infinite packing of identical spheres is hyperuniform [79].

This conjecture excludes systems where there is presence of "rattlers". Another important thing is the saturation

condition. This prescribes that imperfections, e.g., removal of certain number of disks from a triangular lattice, can

break down hyperuniformity. Till now there is no evidence contradicting this conjecture.

2.6.2 Driven systems

Absorbing state models depicts very good examples of a nonequilibrium transition between an active and an ab-

sorbing state. In active state particles evolve with never ending dynamics, where as in absorbing state after a short
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transient particles stop evolving. In many absorbing state models this criteria of transition is given by a critical vol-

ume fraction φc, or critical density ρc, or strain amplitude γc or strain rate γ̇c. Hexner and Levin found that in different

models of "Manna" universality class [96], namely, a) conserved lattice gas model (2d and 3d) [97, 98], b) Manna

model (1d) and c) Random organization model [99] (1d and 2d) the system exhibits hyperuniformity in absorbing

states [74]. In periodically driven microfluidic emulsions at the onset of reversible to irreversible state the system

was found to self-organize into hyperuniform state [75].

Figure 2.6: Schematic representation of 1d Manna model. A site is active if it has z > 2 particles. Particles in active
state (shown in green) are randomly moved to either right or left generating a new configuration. The dynamics is
then repeated [77].

Fig. 2.6 shows a schematic description of manna model [77] in 1d. Manna model is a bosonic lattice model, each

lattice site can be occupied by unlimited number of particles. A particular lattice site is considered "active" if the

particle occupancy is above some threshold value, in which case particles are moved to nearest sites. However,

total number of particles is conserved via periodic boundary conditions. Initially a distribution of particles on lattice

sites are taken. A site considered active if it has more than two particles (a choice made by the authors). The

dynamics evolves by moving the particles in active sites to its neighbouring sites randomly. The model exhibits a

critical density ρc above which system is always evolving, that is in diffusive active state and below this density after

a transient an absorbing state can be reached. In the study of periodically driven systems Hexner et al. [77] has

shown that hyperuniformity in absorbing states are robust against noise, diffusion or activity.

Fig. 2.7 shows structure factor and density variance for 2d Manna model for different numbers of re-activation

cycles. We find that for higher number of cycles the system is hyperuniform for larger length scales ξ . Therefore,

depending on cycles the system shows hyperuniformity up to finite length scales. At ξ ≈ ξ1 ≈ 10 the configurations

corresponsing to cycles= 1 shows a transition from hyperuniform to non-hyperuniform state (Fig. 2.7 B). On the

other hand, from S(k) we find that the configurations belonging to cycles= 100,1000 becomes more hyperuniform at

length scales larger than ξ1, changing exponent α ∼ 0.45→ 1.
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Figure 2.7: For 2d Manna model at density ρ = 1.28 < ρc = 1.306, A) Structure factor S(k), exponent α corresponds
to power-law fit and B) density variance with growing length scale l, for different activation cycles. The system is
re-activated when absorbing state is reached by random displacements. [77]

Absorbing state transitions are found in a wide range of driven systems. For example, superconducting vortices

in oscillating magnetic field [100], driven glassy systems [49], emulsions show this out of equilibrium transition. The

robustness of hyperuniformity and tunability in absorbing states demand more exploration.

2.7 Applications

Disordered hyperuniform systems are special since they suppress fluctuations like a crystal arrangement at large

length scales and yet they are isotropic in nature like liquids. This in turn can be used in achieving materials with

exotic properties. Here we are listing some utilities of hyperuniform systems.

Hyperuniformity has been discovered in biological systems. Two exciting findings are (i) distribution of cone cells

in avian retina [92] and (ii) the immune system [101]. (i):A highly regular arrangement of cone cells is most favourable

for optimal vision in animals. A two dimensional triangular lattice arrangement of light detectors serves this purpose.

Deviation from the ideal case leads to poor visual representation. In a chicken’s eye there are five types of cone

cells. Four of them are single coloured (violet, blue, green and red) and one responsible for luminance. However

inspecting the arrangement of their cone cells it was found that they are not at all well arranged like in a crystal but

is disordered. Then how can they have good vision? surprisingly it was discovered that all these component cone

cells are arranged in a hyperuniform distribution. The multi-hyperuniform nature of avian cone cell arrangements

was the best possible solution for optimal vision, given they are disordered. (ii): Adaptive immune system protects

organisms from the attack of various pathogens. The receptor proteins in the immune system recognizes the types
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of pathogens and interacts with the antigens to build up defense mechanism. Mayer et al. [101] studied the repertoire

of lymphocyte receptors in the adaptive immune system and developed general framework for predicting the optimal

repertoire that minimizes the cost of infections contracted from a given distribution of pathogens. They found that

limited populations of immune receptors can self-organize to provide effective immunity where the distribution of

receptor peaks are hyperuniform.

Stealthy hyperuniform systems as has been described earlier are the first disordered systems showing com-

plete photonic band gaps comparable to the size of photonic crystals with added benefit of isotropy [102]. This

inspires designing waveguide geometries unhindered by crystallinity and anisotropy [103, 104]. It is predicted that

electro-magnetic wave can travel through hyperuniform materials without loss. This prediction involves expansion

of effective di-electric constant εe [105]. Another study has shown that Lunesvurg lens based on a disordered

hyperuniform design has superior radiation properties compared to metamaterial designs [106]. Leseur et al. has

demonstrated that it is possible to get high density materials of stealthy hyperuniform scatterers which is transparent

for a range of wavelengths [107].

Stealthy hyperuniform system with higher extent of short range order can attain maximal effective diffusion [108].

Dispersion from stealthy materials can have nearly optimal effective conductivity [106]. Super conductor vortices

with hyperuniform pinning site geometries delivers higher critical currents [109].

Suppression of volume fraction fluctuations in disordered hyperuniform composite materials results into sup-

pression of crack propagation within matrix phase [110]. Hyperuniform composites can also posses higher brittle

fracture strength [111].



Chapter 3

Hyperuniformity in sheared glass

3.1 Introduction

Hyperuniformity essentially is related to the suppression of density fluctuations at large length scales. As we have

discussed in previous chapter, in a disordered d dimensional system if we sample various parts of the system with

growing window sizes, let say with spherical windows with radius R and the density variance within the window scales

as R−(d+α), then we have a hyperuniform disordered system (0 < α < 1). For point distributions it is directly related

to vanishing structure factor in in the long wavelength limit, i.e. S(k→ 0)→ 0 and, as a consequence, a vanishing

isothermal compressibility χT [79]. Given a system, meaning a set of composition and interaction rules, at which

condition will it be hyperuniform? Is there any criticality involved? The most exciting finding in this regard was

that jammed disordered hard-sphere packing was found to be hyperuniform [112]. Jamming is a non-equilibrium

transition at zero temperature, often observed upon crossing a critical geometrical jamming density ρc. Later it

was conjectured that maximally random jammed configurations of sphere packings are hyperuniform in nature [59,

113, 114]. In general, jamming happens when a disordered system starts behaving like a solid, with finite yield

stress. From the jamming phase diagram (Fig. 1.6) [27, 115] we know of three relevant axes of such transition from

flow state to jammed state and vise-versa: temperature, density and applied stress. Therefore it naturally follows

to investigate in a disordered system what happens to hyperuniformity under applied stress or driven system. In

periodically driven systems often a transition from diffusive to absorbing state is found after a transient where in

the absorbing states the particle trajectories become reversible and the system stops flowing. In such scenario,

colloidal suspensions showed to have hyperuniformity in absorbing state [76] with S(k) ∼ k0.45 in the intermediate

length scales. Another study on random reorganization model [77] also found hyperuniformity in absorbing states

for a finite length scale ξ , which diverges at a critical density ρc. Similarly for sheared sedimentation [116], many-

particle model [78] hyperuniformity in absorbing states have been discovered.

Glasses when applied to periodic shear deformation also undergo such non-equilibrium transition from absorbing

35
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to diffusive states, known as the yielding transition. Earlier studies have shown as a glass system is mechanically

driven for many cycles with strain amplitude γmax there exists a critical yielding amplitude γy marking this transi-

tion [49, 117, 48, 1]. In this work we perform numerical investigation of a model glass system in 3d under cyclic

shear deformation and study the nature of fluctuations in the system in terms of hyperuniformity across yielding tran-

sition. Our results show hyperuniform trend in absobing state and interestingly enough a dramatic change above

yielding. Above yielding as the system exhibits mobile shear band, we show that the glass system has two distinct

hyperuniform phases inside and outside the shear band regime.

3.2 Results

We work on the very well studied Kob-Andersen model glass former interacting with Lennard-Jones (LJ) potential

at reduced density ρ = 1.2 and temperature T = 1 in LJ units (See model and simulation for details). From the

equilibrated liquid we obtain energy minimized inherent structures (IS) at zero temperature, which we refer as the

glass. We shear the IS in Athermal Quasi Static (AQS) limit for many deformation cycles with certain strain amplitude

γmax untill the system reaches a steady energy state. We sample the steady state configurations for our analysis

and the results are averaged over at least 30 realizations. Our system size is N = 64000, unless otherwise stated.

3.2.1 Unsheared system: Compressibility depicting hyperuniformity

At first we study the unsheared inherent structures in contrast to liquid configurations. We find that for our binary

mixture, it is not the structure factor S(k), but the isothermal compressibility χT (k) is supressed in glassy state and

is relevent for the study of hyperuniformity [63]. For a binary system consisting A and B type particles, it is given by,

ρkBT χT (k) =
SAA(k)SBB(k)−SAB(k)2

c2
ASBB(k)+ c2

BSAA(k)−2cAcBSAB(k)
, (3.1)

where, cA =NA/N and cB =NB/N, and SAA etc. are partial static structure factors, defined as, Sαβ (k)= 1
N

〈
ρα(k)ρβ (−k)

〉
,

where ρα(k) =
Nα

∑
j=1

exp(ik · r j), (α,β ) ∈ (A,B). For hyperuniform systems, it is expected that

χ̃T (k)≡ ρkBT χT (k) ∝ kα , (3.2)

where the exponent α is such that 0 < α ≤ 1. This χ̃T (k) is related to structure factor S(k) as follows [118],

χ̃T (k) = SNN(k)− [∆(k)]2SCC(k). (3.3)

∆(k) =
SNC(k)
SCC(k)

. (3.4)
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Here, SCC is relevant to the concentration-concentration fluctuations and SNC is for number-concentration fluctu-

ations. S(k)≡ SNN(k), the number-number fluctuation.
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Figure 3.1: (a) Structure factor S(k) for liquid (red square) and inherent structures (black cicrcle), N = 64000. (b) and
(c) Partial structure factors for A and B type respectively.
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Figure 3.2: (a) Compressibility χ̃T(k) for liquid (red square) and inherent structures (black cicrcle), N = 64000. (b)
Zoom of χ̃T(k) in low-wave vector regime, for two system sizes, N = 64000 and N = 256000. Power-law fit shown in
broken curve, kα∼0.4. Vertical dotted lines show the range of fitting.

In Fig.3.1 we plot the total structure factor S(k) and partial structure factors SAA(k) and SBB(k) for both liquid and

IS. Only SAA shows a difference in values in k → 0 limit, between liquid and IS. But, we don’t find any strong

hyperuniform trend, i.e. a power law trend in the structure factors of either the liquid or the IS. On the other hand,

when we compute χ̃T(k), from Fig.3.2 we see a clear difference between liquid and IS. In the liquid, the k-dependent

compressibility approaches a constant value as k→ 0. For the IS, Fig. 3.2 shows that, within intermediate range
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of k-vectors, the compressibility is hyperuniform in nature, and follows Eq.3.1. In particular, when fitted on the

interval |k|= [0.667688;1.5023] corresponding to the length scales [4.18σAA ; 9.41σAA], we obtain α ∼ 0.40. We notice,

however, that the zero k limit of χ̃T (k) does not drop to zero but attains a finite value. This behavior has been

observed in several systems that are named effectively hyperuniform [119] but it is the first time that is observed in

glasses below jamming. Since hyperuniformity is essentialy related to large length scales, it is important to verify that

the limited range of the hyperuniform behaviour is not merely due to finite size of our system. We therefore report

here in Fig.3.2(b) two system sizes N = 64000 and N = 256000 and find that both of them show this hyperuniform

trend upto finite length scale. Similar observation has been reported in several other systems [116, 120] and it is

not a consequence of finite size effects. This allows us to work with N = 64000 for the rest of the work.

3.2.2 Sheared system

We have established that the glass obtained from initial high density and high temperature liquid suppresses com-

pressibility up to a finite length scale. So, now we examine its behaviour in cyclically driven system. As we deform

the system for many cycles with strain amplitude γmax, each cycle consists of

0→ γmax→ 0→−γmax→ 0. (3.5)

In absorbing states (γmax < γy) the steady state energy is lower than the initial IS. This is known as mechanical

annealing in glass. As soon as γmax > γy we observe energy rejuvenation, particles start to move chaotically. How-

ever, the traditional radial distribution function doesn’t capture any structural change from absorbing to diffusive state

of the sheared glass system. Therefore if hyperuniformity, a measure of long range correlation and fluctuations, can

identify this dynamical transition as a structural one that would open up new questions.

With strain amplitudes: χ̃T(k)

We compute χ̃T(k) in steady states of γmax ∈ [0.0,0.09]. For our system, the yielding amplitude is γy = 0.07 [1]. We

sample the systems stroboscopically (γ = 0) in steady state and average over at least 30 configurations.

Results are presented in Fig. 3.3, which shows clearly different trends for strain amplitudes below and above γy ≈

0.07. (i) In the absorbing states (γmax < γy) the hyperuniform trend of unsheared IS system is preserved. (ii) In the

diffusive state, γmax > γy , two relevant differences emerge with respect to absorbing states. Firstly, the power law

exponent changes dramatically as soon as γy is crossed, as can be seen from the fit corresponding to γmax = 0.06

and γmax = 0.076. Secondly, in the lowest accessible wave vector, a strong upturn of χ̃T (k) suggest the presence

of strong density fluctuations. Overall, the results presented in Fig. 3.3 suggest a profound difference between the

absorbing and diffusive state.
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Figure 3.3: Compressibility χ̃T (k) for the cases of shear amplitudes γmax below and above critical yielding amplitude
γy ' 0.07 are shown with different symbols. Data for IS has also been included. In the cases above yielding,
χ̃T (k) has been shifted upwards for clear visibility. The solid lines (blue and orange) show the power law fit to the
compressibility curves. The vertical dotted lines mark the wave vector regime fitted with the power law kα .
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Figure 3.4: (a) The exponent α of power law fit to compressibility χ̃T (k) is plotted against shear amplitude γmax. The
value γmax = 0 is for IS. The vertical dashed line marks the yield amplitude γy.
(b) We plot hyperuniformity index H against shear amplitudes γmax. The filled symbols and half filled symbols are for
two different routes of estimating H (See in text).

To further quantify the degree of hyperuniformity, we fitted Eq. 3.2 to the compressibility on the same range as

in Fig. 3.3 and the results are presented in Fig. 3.4(a). Below yielding, we obtain almost a constant value of α ≈ 0.4,

which is at the same level of that of the unsheared IS. A sudden change, however, is observed as soon as γy is
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crossed and the exponent α displays a dramatic drop.

The hyperuniform nature of a system can be also verified by computing the hyperuniformity index H, which

measures how much compressibility has been suppressed by comparing its value in k→ 0 limit, with respect to its

value at the the first peak [95, 121, 122]. More specifically we define:

H =
χ̃T (k0)

χ̃T (kpeak)
, (3.6)

where kpeak corresponds to the first peak of χ̃T (k). When H is close to 10−3 or lower, the system is concluded to

be hyperuniform [95, 121, 123, 124, 125]. For the IS, a value of H ≤ 2× 10−3 confirms indeed that our system is

hyperuniform. In this work, we estimated H following two routes. In one case, we fit the lowest k twelve points of

the χ̃T (k) to a third order polynomial a0 + a1k+ a2k2 + a3k3 to extract a0 which is assumed to be a good estimation

of the k→ 0 limit of the compressibility. We notice that, above yielding γmax > γy, the upturn in the compressibility

curves in k→ 0 limit can make the polynomial fitting procedure misleading and it is for this reason that we use a

second approach. In this case, for the k→ 0 limit, we used the value χ̃T (k = k∗) where k∗ = 2π/L is the lowest

accessible k-vector. The value of H versus γmax is plotted in Fig. 3.4(b) (half filled symbols). A similar trend as of the

exponent α is observed: H decreases as a result of shearing as we approach γy and then, above yielding, it jumps

to a higher value. This implies that shearing enhances fluctuations in the diffusive states and as a consequence the

compressibility of the yielded system is considerably higher.

Real space density fluctuations

In hyperuniform systems, the density fluctuations are suppressed with growing length scales. Hence we now directly

examine number density variance in real space for the glass system under shear. we introduce the density variance

in real space ∆2(R),

∆
2(R) :=

〈
ρ

2(R)
〉
−〈ρ(R)〉2 ∼ R−(d+α), (3.7)

where R is the radius of the sampling sphere, ρ is the number density within the spherical window of size R and d

is the dimensionality. We randomly place the spherical windows in the system and then compute the variance of

number density of particles within the windows.

The results of this analysis are presented in Fig. 3.5(a). Here again two clear trends emerge depending on if γmax is

below or above γy. Below yielding, the exponent α is found to be consistent with those obtained from compressibility

χ̃T(k) (Fig. 3.4a). Above yielding, however, one observes deviations from power law behaviour for large window

sizes and the exponent α (if one attempts to estimate it) attains negative values, indicating the presence of strong

fluctuations.
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Figure 3.5: (a) Number density variance as a function of sampled-window radius R for the shear amplitudes γmax
below and above the yielding amplitude γy ∼ 0.07. The symbols used here are same as that of Fig. 3.3. Solid blue
line is for reference to a non-hyperuniform system where the dependence is expected to be R−3. The red broken
line shows a reference when the variance scales as R−3.4.
(b) Local number density distributions of a window of radius R = 10 for γmax = 0.04 (< γy) and γmax = 0.09 (> γy). Above
yielding, the distribution is bimodal, indicating two distinct high and low density regions in the system.

Why at large R we are getting this very puzzling different fluctuations? To answer this question, we investigate

in detail the distribution of the local density ρ sampled within a given window of fixed size R = 10. As shown

in Fig. 3.5(b), the local density distribution shows substantially different behavior below and above yielding. For

γmax < γy, ρ exhibits a unimodal distribution centered around the bulk density ρ = 1.2. However, above yielding

(γmax > γy), the distribution becomes bimodal and can be described by the sum of two independent Gaussians, the

peaks lying on the different sides of the global density.

3.2.3 In presence of shear band

Above yielding under cyclic shear deformation glass system shows the presence of shear band (SB). In this situation

the diffusivity of the system is not homogeniously distributed in space. Rather, a band of particles localized in space,

are more mobile compared to others. At this point, we choose the case of γmax = 0.09 and for the case of R = 10, we

want to see how these two density profiles observed in Fig. 3.5 b) are distributed in space. For that, we place the

windows on the particles, if the local density ρ < 1.2, we assign a colour blue, or else red (Fig. 3.6, left).

In Fig. 3.6, we compare the low and high density regime with the shear band present in the system (Fig. 3.6, middle)

and we find they are localized and correlated, low density regime depicting the mobile shear band, perpendicular to

X . In this case, along the X direction, we have normalized fraction of windows belonging to either blue (ρ < ρc) or

red (ρ > ρc) class, such that their sum is 1. We see a very smooth variation of this distribution (Fig. 3.6, right). Now,

we consider three sub volumes as marked in horizontal colour bars just adjacent to the fractional variation plot:
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Figure 3.6: Left: For γmax = 0.09, we randomly place spherical windows of size R = 10 in the system and compute
local density ρ. If ρ < 1.2 (> 1.2), we assign the colour of central particle as blue (red). we see that they are localized.
Middle: We compare it with the displacements of the particles in steady state from one cycle to the next to identity
shear band, which is perpendicular to X in this case. The blue particles are more mobile (≈ 1σAA) compared to the
red particles (≈ 0.001σAA)
Right: Along X fraction of particles belonging to either low (blue) or high (red) density. The bars outside denote three
regime of interest: (i)red bar: Inside shear band, (ii) green bar: Outside shear band and (iii) shear band along with
the interface.

(i) red bar (Inside SB), (ii) green bar (Outside SB) and (iii) blue bar (Inside SB + Interface). We shall later refer to

these three regimes to understand better how the presence of shear band effects the fluctuations.

To locate the shear band precisely we compute the mean square displacements of the particles between two con-

secutive deformation cycles along the direction orthogonal to the plane of the shear band (here X). In this case,

with XZ shear, we find that the shear band forms in the Y Z plane. We can find the width of the shear band by fitting

a Gaussian function to this MSD, as shown in Fig. 3.7(a). Once the position and extent of the band is known, we

compute local density ρ along the shear direction in sub volumes parallel to shear plane in Fig. 3.7(b). Inside the

shear band the density is lower as already reported in Ref. [1]. Indeed, we are now certain of the correspondence

of this low-density sub-volume of Fig. 3.6 to the center of a dynamical shear band. Additionally, we compute the

variation in cA = NA
N along X . From Fig. 3.7 (c) we find that not only the density but also the composition of the system

varies with the shear band. Our results thus confirm that in the yielded system we indeed have distinct structural

characteristic inside and outside SB.

So far we have established that there is a relation of the high fluctuations above yielding with the shear band.

Now we ask, what is the exact nature of the fluctuation or hyperuniformity inside and outside the shear band and

how this effects the overall system.
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Figure 3.7: a) For an amplitude above yielding γmax = 0.09 the mean square displacements of the particles along X
direction between two consecutive deformation cycles is plotted in red circles. A Gaussian fit is shown as the blue
curve.
(b) Along shear direction X , the local density ρ in slabs parallel to the Y −Z plane is plotted, which has a dip in the
shear band. Global density ρ = 1.2 is shown as a broken red horizontal line for reference.
(c)Along X , local concentration of A type particle CA = NA

N is plotted, which also shows a variation across the band.
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Compressibility χ̃T(k):

The existence of a large interface between two different density regions might be the origin of the low k upturn in the

χ̃T (k) observed in Fig. 3.3. To confirm this expectation, we compute the compressibility, for the case of γmax = 0.09,

restricting the k vectors to planes parallel (kx = 0) and perpendicular (ky = 0 and kz = 0) to the shear band plane.

The results are displayed in Fig. 3.8 a). It is evident that, when k is parallel to the shear band, the hyperuniformity

features observed below yielding in Fig. 3.3 are recovered. On the other hand, across the shear band, the density

fluctuations are enhanced by the presence of the interface between the shear bands.

At this point, a question naturally arises, how the k-space compressibility behaves in the sub-volumes inside and out-

side of shear band.? We compute compressibility in sub-volumes by choosing, k = k(kx,ky,kz) with ky,kz =
2π

L (ny,nz)

and kx =
2π

l (nx). Here, l is the width of the sub-volume along X . From Fig. 3.8 b), we find that, when we include the

interface, that follows the non-hyperuniform trend of the overall system. But, inside and outside shear band, even

though there are fluctuations, we can see the trend to be hyperuniform.

Real space fluctuations:

Now we turn to real space analysis and directly measure density variance with reference to the shear band. We

again consider a case of γmax = 0.09 > γy, for which we have a shear band in the Y Z plane. Then to probe the

number density variance inside the shear band we place the spherical windows of radius R such that the volume of

the windows lie between ±σ from the center of shear band (σ obtained from the Gaussian fit to the MSD profile).

To probe the variance outside the shear band we place spheres such that their volume resides in regions between

± L
2 to ±(L

2 −σ). We restrict ourselves to smaller R, since we are dealing with narrow sub-volumes.

As shown in Fig. 3.9 a) for the case of γmax = 0.09, we find that for both inside and outside shear band the variance

scales as R−3.4, showing hyperuniformity. But, for the full system, as has been discussed earlier, we see higher

fluctuations disrupting hyperuniformity. We recover the trend of the full system when we include a broader region in

the shear banded part of width ±3σ . This includes the interface between the regions of higher and lower densities

outside and inside the shear band. We confirm that it is the interface between the states that disrupts hyperunifor-

mity. We repeat the variance calculation for all shear amplitudes to find the dependence of exponent α with γmax in

the presence of a shear band. Below yielding, density fluctuations across the system have similar character showing

hyperuniformity and are the same level as the ones obtained in k-space and presented in Fig. 3.4 a). Above yielding

the behaviour is very similar for the cases inside and outside the shear band. In both regions, we recover the same

level of hyperuniformity as below yielding. However, if we enlarge the window of sampling in the shear band such

that the interface is included (as marked in the Fig. 3.6 c) and described earlier), the hyperuniformity is completely

lost and similar results as in Fig. 3.4 a) are recovered. We conclude that the interface between the two regions of



3.2. RESULTS 45

k
10−3

10−2

χ̃
T

(k
)

a) γmax = 0.09

kx = 0
ky = 0
kz = 0

10−1 100 101

k

10−3

10−2

χ̃
T

(k
)

b) Full System
Inside SB
Outside SB
Inside SB + Interface

Figure 3.8: We choose one case: shear amplitude γmax = 0.09, where the shear band is perpendicular to X , as has
been shown in the snapshot in the Fig. 3.6.
(a) Compressibility χ̃T(k) corresponding to different wave vector orientations for this γmax is computed for the whole
system. Cases (i) kx = 0, (ii) ky = 0 and kz = 0 correspond to wave vectors being parallel(kx = 0) and perpendicular
to shear plane. For the perpendicular case, we see an upturn at the lowest wave vectors.
In (b): The compressibility χ̃T(k) has been calculated for sub volumes of the system belonging to different parts
w.r.t. shear band (see text). The vertical dotted curve shows the reference k value where the compressibility curves
corresponding to different sub volumes have been shifted and converged to have a better sense of the trends of
the curves. Black circle: for the full system. Red up triangle: Inside shear band, Green squares: Outside shear
band and Blue down triangle: In the shear band regime , which includes the interface of higher and lower density
sub-volumes.
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Figure 3.9: (a): Number density variance in spherical windows as a function of its radius R for shear amplitude
γmax = 0.09 (above yielding) calculated in different sub volumes of the system w.r.t. the shear band. For reference,
we plot solid blue and broken red curve with R dependence R−3 and R−4.
(b): Number density variance exponent α (see text for details) for the cases of γmax below yielding amplitude γy
are shown as black circles. When the interface is included, the exponent drops to low values indicating a lack of
hyperuniformity. Separately inside and outside the shear band the system is hyperuniform.

different densities, as a consequence of shear band formation, is responsible for the disruption of hyperuniformity.

3.3 Discussions

3.3.1 Temperature dependence of hyperuniformity in IS

We have found that for Kob Andersen system at high density ρ = 1.2 the inherent structure obtained from liquid at

a high temperature T = 1 to be hyperuniform up to finite length scales. We also found that in annealed absorb-

ing states due to cyclic shear the hyperuniform nature sustains. The other avenue to get a low energy glass is of

course by initially preparing a lower temperature equilibrated liquid and then obtain the IS. Here we seek the tem-

perature dependence of hyperunifom nature in IS obtained from liquids prepared at different temperatures. From

Fig. 3.10, we find that the IS of high temperature liquid is showing the hyperuniformity whereas for low temperature,

hyperuniformity is lost.

We plot the fitted power law exponent α with temperature in Fig. 3.11 b). It shows that above onset temperature

of glass transition, the IS is hyperuniform at a constant level. Below the onset temperature, hyperuniformity is lost.

We have compared the energy of IS in Fig. 3.11 a), where we also plotted steady state energies of absorbing states

of IS at T = 1.0. We have found these absorbing states to be hyperuniform. Interestingly the IS configurations of

equivalent energy of low temperature liquids are not.
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Figure 3.10: χ̃T(k) of inherent structures obtained from high T = 1.5 and low T = 0.466 temperature, at density
ρ = 1.2. Broken curves are power-law fits in the range of wave vectors marked by vertical dotted lines.
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cyclic deformation. (b) Hyperuniformity exponent α obtained from χ̃T(k) of IS with temperature.
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3.4 conclusions

Hyperuniformity has been claimed to be a new exotic state of matter with possible applications with special optical

features, experiments showing complete photonic band gaps [104, 126]. Here we have investigated hyperuniformity

in a model glass and has extablished that high density glasses produced from high temperature are hyperunifrom

upto finte length scale, in our case of the order of 10 diameters. We also studied yielding criticality from the con-

text of hyperuniformity as the glass is subjected to cyclic shear deformation. Previous work has established that

under cyclic deformation, a sharp boundary may be identified between a pre- and post-yield regime, corresponding

to deformation amplitudes γmax ≤ γy and γmax > γy respectively, and after a transient, these regimes correspond to

absorbing and diffusive states when one follows the particle positions stroboscopically at the end of each cycle.

With cyclic shear, the glass anneals progressively [1, 51]. We find that the glass remains hyperunifrom in absorbing

states , with almost constant hyperuniformity exponent α. With annealing, the compressibility is very slightly sup-

pressed, as reflected by hyperuniformity index H. Above yielding, we demonstrate that hyperuniformity of the system

as a whole is lost as a result of increased density fluctuations associated with the formation of an interface between

two regions with different densities in presence of shear band. Two dimensional compressibility χ̃T(k) parallel to the

shear band is hyperuniform and diverges when perpendicular component of wave vector is considered.

If we restrict our evaluation of the fluctuation inside and outside this shearband, excluding the interface, the

system continues to be hyperuniform in the same manner as the sheared glasses below yielding. This manifests

directional hyperuniformity in yielded system. Past studies have considered systems which exhibit hyperuniformity

homogeneously in space. Here we demonstrate, for the first time, the possibility of coexistence of hyperuniform

regions in a driven glass system.



Chapter 4

Local structures and plastic

rearranegements

4.1 Introduction

In the study of rheology, where and how a system will break is one of the fundamental questions. In case of crystals

with transnational long range orders theories and experiments suggest that it is the dislocations or the so called

defects in crystalline arrangements that initiate flow in the system under applied shear. In absence of such ordered

structures where will plastic rearrangements take place in amorphous system is quite a tough question. However,

in the spirit of identifying defects the existing theories start with the assumption that there exists local "soft spots" or

"shear transformation zones (STZ)" in the system, constituting approximately 8−10 particles which are more prob-

able to rearrange under shear stress. This assumption of heterogeneous response to applied deformation seems

reasonable as we know for example that the super cooled glassy systems also show dynamical heterogeneity which

people have tried to connect with their local structural properties. We shall discuss this point shortly in Methods.

Before going further into the basic principals of these theories, let us discuss the nature of plastic rearrangements.

When we deform a system, we want to identify the particles undergoing plastic rearrangements. A well accepted

and successful way to do so is the calculation of minimized non-affine displacement D2
min. Per particle D2

min is

a measure of local strain, obtained by minimizing the actual mean square displacements of neighbouring atoms

compared to what would have been their displacement under uniform shear.

D2
min(t,∆t) =

1
n ∑

n
∑

i

([
ri

n(t)− ri
0(t)
]
−∑

j
(δi j + εi j)

[
ri

n(t−∆t)− ri
0(t−∆t)

])2
(4.1)

Here, we are computing D2
min at time t w.r.t the configuration at a prior time (t−∆t) for a particle whose coordinate

49
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is denoted by ri
0. The (i, j) denote the spacial (x,y,z) components, therefore the sum on (i, j) runs from 1 to 3. n

is the number of neighbours of this particle. The term (δi j + εi j) represents a transformation matrix that minimizes

the non-affine displacement. δi j is the standard Kronecker delta and εi j can be determined by the following sets of

equations,

εi j = ∑
k

XikY−1
jk −δi j (4.2)

Xi j = ∑
n

[(
ri

n(t)− ri
0(t)
)(

r j
n(t−∆t)− r j

0(t−∆t
)]

(4.3)

Yi j = ∑
n

[(
ri

n(t−∆t)− ri
0(t−∆t)

)(
r j

n(t−∆t)− r j
0(t−∆t

)]
(4.4)

For a model 2d binary glass system at very low temperature under shear the intensity plots of D2
min is shown in

Fig. 4.1 from the paper of Falk and Langer [5].

Figure 4.1: Intensity plots of D2
min in sheared configuration with ∆t = 10 and ∆t = 30 in (a) and (b) [5].

Fig. 4.1 shows that in shorter time ∆t = 10, the re-arrangements are localized events and in larger time ∆t = 30, the

regions of rearrangements are bigger in size with an appearance of band formation. So, the important thing to note

is that there are some spots where collectively few particles initiated the rearrangements and in time further some

other particles participated in the changes of local stress through plasticity.

A zoom of such a STZ is shown in Fig. 4.2. We find that the local structure is not significantly altered.
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Figure 4.2: A zoom of a shear transformation zone identified with D2
min, snapshots correspond to before and after

the transformation due to shear. They grey scale is same for these two snapshots and scaled as per particle D2
min

values [5].

So a natural question arises what was special about the local arrangement of the particles inside a STZ prior

to the deformation. These STZs appear and disappear in the system and theories of the dynamics of shear trans-

formation zone stands on the basis of two-level property of such systems, where it is assumed that both the states

before and after the transformation are equally stable configurations. A short description of the theories is given

below.

Shear Transformation Zone (STZ) theory:

STZ theory proposes a dynamic equation for density of states related to the transition of STZ states. Following Falk

and Langer [5], the hypothesis is that the STZs are detectable from local geometry. The assumption is that, at a

meso-scale level there exists a definite value of yield stress for a given system and the plastic deformations diverge

upon approaching to this yield stress, after which the system flows viscoelastically. As a consequence of the two-

level system assumption, a STZ can toggle between two accessible states but cannot have repetitive transformation

in the same direction and thus giving a limit of maximum deformation up to which the zone remains intact.

The system is considered to have a set of STZs and we are interested in the probability of transition of these

STZs. The basic assumption of this theory is that this probability is proportional to the excess free volume V ∗

available to the particles in the zone. A simplification at this level is to consider that the free volume of the total

system is approximately,

Ω−Nv0 = Nv f .
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Here, Ω being the volume of the total system, v0 the estimated per particle volume. From this the number of states

follows to be (
v f
h )

N . This is in analogy to planks constant but means nothing more. From thermodynamics, we can

now have an expression for entropy S and a quantity χ analogous to temperature as follows,

S(Ω,N) = N ln
v f

h
≈ N ln

Ω−Nv0

Nh
.

1
χ
=

∂S
∂Ω
≈ 1

v f
.

Then, analogous to thermal activation, the activation factor for a zone will have a form exp(−∆V ∗/v f ). Finally if two

states of STZ are denoted by (±), and n± is the density of states in these two states, then the proposed dynamical

equation is,

ṅ± = R∓n∓−R±n±−C1(σsε̇s
in)n±+C2(σsε̇s

in)n∓.

First two terms are for the rate at which a (±) state changes to (∓) state and vise versa. Last two terms are for the

creation and annihilation of the states which is proposrtional to the irriversible work done on the system, σsε̇s
in. The

total strain ε = εel + ε in, with elastic and inelastic components and σs is the shear strain.

Soft vibrational modes

When a stable system is sheared, particles have to overcome e certain energy barrier in order to flow or rearrange.

These energy barriers are related to the harmonic properties such as vibrational frequency [127]. For a system of

N particles in d dimension, one can construct the Hessian matrix [128],

Hi j =
∂ 2U(r1,r2, ..,rN)

∂ ri∂ r j

Where U(r1,r2, ..,rN) is the Hamiltonian. H being a symmetric matrix, it will have real eigen values {λi}dN
i=1. Normal

modes will have frequencies, ωi =
√

λi. Low frequency vibrational modes have lower energy barriers to rearrange-

ments when sheared. Nm lowest energy modes are identified and Np particles in each of these modes with largest

polarization vectors are chosen to build "soft" spots in the system. The values of Nm and Np can be optimized in

connection to the plastic displacements [129]. Result for a 2d glass system is shown in Fig. 4.3

From local structures

The theories of "soft" spots suggest that like the dislocations in crystals, for amorphous solids also, local structural

arrangements probably play a significant role in the response to applied deformation. On of the interesting works

related to finding this correlation and relevant to our work is by Peng et al. [130]. Employing that atomic symmetries
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Figure 4.3: The upper pannel shows 10 lowest vibrational frequencies for different values of applied strain for a 2d
binary glass. In the lower panel (a) shows the plastic displacements and (b) soft spots identified with the vibrational
mode analysis at a strain value 3.3X10−3. Highlighted particles are identified with the chosen values of Nm = 30
lowest frequency modes and Np = 20 particles with largest polarization vectors [129].

can be a general way to capture local structures, a Voronoi tessellation method was adopted. This method can

identify number of i-edged faces ni, in a polyhedron. This reflects the local symmetry of the central atom. The

triangle, tetragon and hexagon faces have the local translational symmetry feature, while the pentagon faces reflect

the local five fold symmetry LFFS. An interesting aspect of this is an icosahedral polyhedron consists of 12 pentagon

faces and in many systems icosahedral cluster has been found to be correlated with the dynamical slow down of

super cool liquids. From Fig. 4.4 we can see that fraction of LEFS polyhedra increases as non-affine displacement

decreases.

In attempt to relating local structures to dynamic heterogeneity in super cool liquids or in the plastic rearrangements

under applied shear many more local structural descriptors have been proposed, such as local energy, local density

etc. A recent approach has been through machine learning [131, 132, 133, 134] where complex non linear fea-

ture vectors are generated starting from few local structural feature vectors such as bond-order parameters. In a

recent paper by Richard et al. [33], authors have compared the performance of many of the proposed methods in

the prediction of plasticity due to uniform shear deformation in 2d and they show that rearrangements are deeply

encoded in the structure. The role of local structure in relation to plastic rearrangements has mostly been explored
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Figure 4.4: Correlation between i-edged faces and non-affine displacements D2
min [130].

for systems under uniform shear deformation. In this work we use a binary repulsive 3d glass former to explore the

structural properties of particles undergoing plastic rearrangements due to cyclic shear deformation. We analyze

local structural order of the system by computing the per particle two-body excess entropy S2 [135] and tetrahedrality

ntet [3], the later has not been explored yet in the context of plastic rearrangements. These two are our structural

descriptors of choice and their detail will follow in the next section. When a glass is deformed in quasi-static limit

at zero temperature [136], compared to uniform shearing, the cyclic shear posses a sharp yielding transition from

absorbing to diffusive state at strain amplitude γy [48]. With many cycles of deformation the system reaches a steady

energy state. In steady state of strain amplitude γmax < γy the plastic rearrangements during a deformation cycle is

reversible[137] and localized. Above yielding the rearrangements with large particle displacements are irreversible

and the plastic events correlate specially causing an avalanche and form shear band. We focus on analysing the

configuration in steady state and if there is a priori structural difference in particles that will have largest and minimum

rearrangements in next cycle.

4.2 Methods

4.2.1 System

We use 50:50 additive Repulsive Wahnström model at packing fraction φ = 0.58 with size ratio σBB/σAA = 1.2 , as

has been described in Appendix. From equilibrated liquid system we obtain energy minimized inherent structures or
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IS. We shear the IS in athermal quasi static limit for strain amplitudes γmax ∈ [0.02,0.09] for many cycles. The system

yields above yielding amplitude γy ≈ 0.06. Details of the simulations can be found in Appendix.

4.2.2 Local descriptor: Tetrahedrality

Below the onset temperature of glass transition the diffusivity of glass forming liquids decreases by several orders of

magnitude as temperature is decreased. The mechanism involved in how a liquid looses its fluidity upon decreasing

temperature or increasing density has been of prime interest for several decades now [7]. In general, along the

extreme increase of relaxation time, dynamical heterogeneity appears, where locally some regions of the system

have higher mobility compared to others within the time scale of alpha-relaxation. More and more evidence now

support a correlation between this heterogeneity with changes in the local structure. One of the pioneer ideas in

this regard was by Charles Frank in 1952 indicating the possible prevalence of icosahedral clusters in the glassy

regime [138]. Later many studies corroborated the presence of local favored structures in the glassy regime related

to the slowdown of dynamics, the spotlight being on the icosahedral clusters [139, 140, 141, 142]. In the same

line of thought there has been proposals of simpler tetrahedron based order parameters capable of capturing the

changes in local structure and dynamics [143, 144, 145, 146, 3]. In particular, a recent development was the

introduction of the tetrahedrality of the local structure (TLS) ntet, which measures the number of tetrahedral clusters

each particle is involved in [3], based on the notion that most of the local favoured structures (including icosahedral)

can be decomposed into tetrahedrons. It was found that the particles with higher values of ntet are well correlated

with slower dynamics as can be seen from Fig. 4.5.

Figure 4.5: A snapshot of hard sphere system colour coded as per a) number of tetrahedra a particle is involved in
and b) their absolute displacements over a time scale of 500τ [3].
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For a given system, ntet can be obtained from Topological Cluster Classification (TCC) [6] algorithm, which we

shall discuss shortly. We have used this newly introduced structural order parameter ntet in the context of plasticity.

4.2.3 Local descriptor: Two body excess entropy

The local favoured structures where the free energy is minimized has both energetic and entropic contribution. Gain

in vibrational entropy with the loss of configurational entropy accounts for the local ordering [147]. Whereas energy

driven ordering can be found in tetralhedral type liquids, entropy driven ordering can be found in hard sphere type

systems. Entropy can be expanded in multiparticle correlations as S = S1 + S2 + S3 + .., here S1 being the ideal

gas limit, S2 the two-body excess entropy which can be calculated from pair distribution function, S3 for three-body

interaction etc [135]. S2 [148, 149, 150, 151] can be calculated from radial distribution function.

S2 =−2πρkB

∫
∞

0
[gi

m(r)log(gi
m(r))−gi

m(r)+1]r2dr, (4.5)

where gm(r) corresponds to the mollified radial distribution function,

gm(r) =
1

4πNρr2 ∑
i6= j

1
2πσ2 exp [−(r− ri j)

2/(2σ
2)]. (4.6)

Here, ri j is the distance between the ith and jth particle. The parameters are chosen such that gm(r)∼ g(r) and we

have a smooth integral to compute S2. To ensure the effectiveness of S2 in identifying local structural fingerprint we

are referring to some results in the paper [4],

Figure 4.6: First two plots show the radial distribution function g(r) and the integral of S2 equation. 4.5 I(r) for a
Lennard Jones system in different structural phases. We can see, where as from g(r) it is harder to make the
difference between ordered and disordered liquid phase, from I(r) it is more clear. In the right it is a colour plot of a
snapshot of nanocrystalline Al at temperature 300K where atoms are coloured according to their S2 values, locally
averaged over some distance and denoted by S̄ [4].
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As can be seen from Fig. 4.6 S2 is clearly capable of identifying ordered and disordered structures. However in

this figure of the snapshot, a local averaged version of the per particle S2 has been considered to smooth out high

fluctuation.

For our WH system, we choose σ = 0.09 and for each particle the limit of the integration in equation 4.5 is from

zero to rmax = 5.0. With this approach we obtain the per particle S2. In particular, a more negative value of S2

indicates higher local order.

S2 [152, 150, 151] has been widely used in the context of transport coefficients and plasticity. S2 measures the

loss of entropy due to positional correlations, a lower value of S2 corresponds to a more ordered structure. Even

though S2 is a half a century old concept there is place for new applications. As a matter of fact, in 2020, scaling

relations have been reported of S2 with diffusivity in glassy systems [148] and relaxation rates in cyclic sheared

systems [149].

4.2.4 Topological Cluster Classification (TCC)

TCC algorithm helps to detect energy minimized clusters for a set of particles in isolation as has been explained

in detail in the paper by Malins et al [6]. The idea of local favoured structures was initiated by Charles Frank

as we have already mentioned, where he showed for 13 particles in isolation interacting through Lennard-Jones

potential, icosahedral cluster arrangement requires 8.4% lower energy than more compact FCC or HCP crystal

arrangement. TCC algorithm looks for clusters made up of total number of particles other than 13 as well, and with

other interactions. For a given model system, TCC tries to identify clusters of m particles that has a similar bond

network with that of the minimum energy cluster of that particular model.

The first job of the algorithm is to identify neighbours for a particle. For this, TCC uses a modified Voronoi

tessellations method so that the results are robust against thermal fluctuations. Voronoi tessellations divides the

space in non intersecting domains with distinctive boundaries. Each domain surrounds one particle and space

points inside that domain is closest to this particle only. These domains are called Voronoi cells. In the modified

version, two particles are called neighbours if their Voronoi cells share a face and the line connecting the particles

intersect the shared face.

Once the neighbours have been identified, the algorithm looks for shortest path rings, known as spm rings, m

denoting number of particles in the ring. The basic clusters are classified as (i) spma if it only got these m particles

all bonded, (ii) spmb if there is a single extra particle which is neighbour to all m particles in the ring and (iii) spmc

if there are two extra particles neighbour to all m particles in the ring. To give an example, m = 3 particles can form

a triangular ring siting on the vertices of the ring. One extra particle can have bond to all these m particles and

resulting as a tetrahedron cluster. In basic cluster, the usually sorted values of m = 3,4,5. More compound clusters
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are found by either addition of particles to basic clusters or as a combination of basic clusters. There is standard

nomenclature for naming the clusters. Fig. 4.7 shows the clusters that TCC identifies [153].

Figure 4.7: These are the clusters identified from TCC algorithm. The highlighted ones with pink squares are the
minimum energy clusters for Kob-Andersen system [153]

4.3 Results

As we have discussed we have chosen tetrahedrality ntet and local two body excess entropy S2 to characterise local

structural order. A higher value of ntet and a lower negative value of S2 accounts for higher ordered structure at

local level. We arrange the results as follows: In next subsection, we first report (i) the variation of mean local

ordering in liquid and inherent structures (IS) with temperature using the 〈ntet〉 and 〈S2〉. (ii) We correlate the liquid

structures and the corresponding IS at different temperatures. Afterwards in another subsection, we present the

result from cyclic shear. We sample a high and a low temperature glass and shear the systems athermally for many

deformation cycles with strain amplitudes γmax. In steady states (iii) we compute the mean values of our structural

order parameters as γmax varies in a range across the yielding amplitude γy. (iv ) From one cycle to the next we

classify "mobile" and "static" particles with larger and smaller rearrangements respectively by computing the local

non-affine displacement D2
min [5]. (v ) In terms of ntet and S2 we examine whether there is a difference between the

mean local order of the mobile and static particles. (vi) Finally, we use the topological cluster classification algorithm

(TCC) [6] to point out the different cluster association between the two classes.

4.3.1 Liquid and Inherent structures

We first sample equilibrated liquid configurations of WH system at different temperatures T ∈ [0.7−2.0] and obtain

zero temperature inherent structures (IS) from liquid through energy minimization. Our system size is N = 64000 and

at packing fraction is φ = 0.58. We compute per particle ntet and S2 for liquid and and IS at different temperatures

and average over N particles to obtain 〈S2〉 and 〈ntet〉.
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Figure 4.8: a) 〈S2〉 as a function of temperature T for liquid and inherent structure. b) ntet as a function of T for liquid
and inherent structure.

In Fig.4.8 we show the dependency of both structural quantities with temperature. In liquid, from high to low temper-

ature the average local order increases as the systems present higher values of 〈ntet〉 and lower of 〈S2〉. Higher local

order is expected as has been reported earlier in the context of tetrahedrality in hard sphere mixtures [3]. However,

for inherent structures (IS) the 〈S2〉 and 〈ntet〉 is almost constant at higher temperatures. So, above the onset temper-

ature of glass transition, the structural properties of the energy basin is almost similar and temperature independent.

The values indicate higher local ordering in IS compared to liquid and this order increases for low temperatures. At

lowest temperatures how close is the local ordering in a liquid versus in a IS? We compute Spearman’s rank order

correlation [154] between S2 and ntet values of N particles in Liquid and with their values in IS.

In Fig.4.9 a), we report this correlation as a function of temperature. We find that the correlation grows in lower

temperatures and at T = 0.7 both S2 and ntet accounts for 60% correlated structure of supercooled liquid and its

IS. Whereas at high temperature the correlation almost vanishes. This high correlation at lowest temperature is

because the liquid system is already close to its local energy minimum and therefore posses similar level of local

ordering which is also associated to slow down in dynamics.

4.3.2 Sheared inherent structures

By this point, we have established that our structural descriptors are able to capture the growth of local order in su-

per cool regime. Now we will investigate the system under cyclic shear deformation using ntet and S2. In particular,

as we shear the glass (IS) with strain amplitude γmax there are two regimes of interest.

I. Below yielding γmax < γy: For low amplitudes of shear below yielding, there is annealing in the system. By

annealing we mean that in steady state the system reaches lower energy minimum basins, or the average energy
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Figure 4.9: a) Spearman’s correlation between the structural descriptors of liquid and inherent structures as a
function of temperature T . Density plot between inherent structure and liquid of b) S2 and c) ntet at a temperature
T = 0.7.

of the system decreases. In our system from γmax = 0.02 to γmax = 0.06 we have more and more annealed absorbing

states. If the initial configuration is a high temperature liquid, the annealing effect is more pronounced, compared to

low temperature initial configuration [155]. Also, in steady state, during a cycle of deformation, all the local plastic

rearrangements are reversible in nature. Therefore, from one cycle to another, there is no appreciable net displace-

ment. Even though we are calling the rearrangements during a cycle of deformation as "reversible", the trajectory

of a particular particle will not follow the same path as we move forward with strain value γ = 0→ γmax and backward

γ = γmax→ 0, for example. This is a peculiarity about cyclic loading in absorbing states that even without following

the same path, at the end of a cycle the particles manage to come back to the positions they began with. How-

ever depending on the system, mechanism of loading and deformation amplitude, sometimes this reversibility has

higher periodicity, meaning it may take more than one cycle, typically 2− 4 for the particles to come back to their

positions [156].

II. Above yielding γmax > γy: For higher strain amplitude above yielding, the system becomes diffusive. Plastic
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rearrangements during a cycle in steady energy state are now irreversible in nature, particles fail to come back to

their initial positions at the end of a cycle. For a large enough system, like in our case, N = 64000, it is possible

to observe formation of shear band [49, 157]. In this case, one part of the system consisting a band of particles

parallel to either Y Z or XY plane in case of XZ shear, have higher net displacements from nth to (n+1)th cycle, than

the particles outside of this shear band (SB), as can be seen from Fig. 4.10. Particles inside the SB has random

motions. The more mobile shear band has lower local density, higher local energy [1].

0.001

1

Figure 4.10: Shear band in WH system at T = 0.7, γmax = 0.08. Colour code shows displacements of particles
between two consecutive cycles of deformation.

Now we investigate the local order in the system below and above yielding.
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Figure 4.11: From initial equilibrated liquids at temperatures T = 1.5 and T = 0.7 we obtain the IS and shear the IS
with different shear amplitudes γmax. Values of a) 〈S2〉 and b) 〈ntet〉 are plotted against γmax in steady state. vertical
dashed curve shows the yielding amplitude γy.
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First we compute 〈S2〉 and 〈ntet〉 in steady state of strain amplitudes γmax ∈ [0.02,0.09] across γy∼ 0.06. In Fig.4.11,

we report the variation of mean value of these local descriptors with γmax, for both temperatures T = 1.5 and T = 0.7.

Note that, γmax = 0.0 is actually the value for the IS. For the high temperature glass, with annealing in the range of

γmax ∈ [0.0,0.06] the average local order increases as reflected by lower 〈S2〉 and higher 〈ntet〉. As we cross γy in

diffusive state on the average local order decreases. The transition across γy is sharp. For T = 0.7, with no strong

annealing, 〈S2〉 and 〈ntet〉 is almost constant and upon crossing γy jumps to the same level of T = 1.5. Above yielding,

energy also shows similar trend, that is they jump to the same level irrespective of initial temperature [49], this jump

in energy has been shown in Appendix in Fig. A.4.

As we have discussed, above yielding, we can observe shear band formation. The question is now whether 〈S2〉

and 〈ntet〉 capture differences in structures inside and outside the shear band. In Fig.4.12, for the case of T = 0.7,

γmax = 0.08 we bin the system along the Z axis (perpendicular to the plane of shear band), and we plot the mean

square displacement (MSD) between nth and (n+ 1)th cycle of the particles located inside each bin [1]. We can

clearly see the position of the mobile shear band where the MSD takes larger values. We turn our attention to the

local structure, we compute the 〈S2〉 and 〈ntet〉 per bin along Z, shown in 4.12 b) and c) respectively. Both of them

capture a variation across shear band. This indicates that the system is structurally different inside and outside SB.

On the average, outside SB we get higher structural order.

Now we will focus on the main objective of this work, seeing local structural differences related to plastic rear-

rangements in steady state. We use non-affine displacement D2
min to identify particles with larger rearrangements,

as was introduced by Falk and Langer [5] and we have discussed in the introduction in Equation 4.1. Here we are

rewriting the same equation in slightly simpler form even though for the calculation we followed Equation 4.1. In

simpler form,

D2
min =

1
n ∑

n
[(r j(t)− ri(t))−Γ(r j(0)− ri(0))]2 (4.7)

Here, ri, j(0) is the position of the particles at the beginning of a deformation cycle and ri, j(t) is their positions in

deformed box at time t. The sense of time here is equivalent to the number of deformation steps taken to complete

a cycle using AQS protocol (see Appendix). The sum in equation 4.7 is over nearest neighbors within a cut off

rcut = 1.4σAB, which corresponds to the first minimum of g(r) of the full system. In our case of cyclic deformation,

for the amplitudes below yielding, at steady state if we consider configurations at t = 0 and t = 4γmax/dγ (at the end

of the cycle), we shall have D2
min ≈ 0 due to reversibility. However, we are interested in identifying which particles

went through maximum re-arrangements during the deformation cycle, irrespective of reversibility. Therefore, we

recorded the maximum value max(D2
min) for each particle in a cycle of deformation.



4.3. RESULTS 63

0.0

0.1

0.2

0.3

M
S
D

a)

T = 0.7

γmax = 0.08

−5.75

−5.50

−5.25

〈S
2〉

b)

0 10 20 30 40
∆z

10

11

12

〈n
te
t〉

c)

Figure 4.12: We choose a sheared system at strain amplitude γmax = 0.08 above yielding for IS initially prepared
at temperature T = 0.7. Shear band is captured by (a) the mean-squared displacement between two consecutive
cycles along Z (perpendicular to the shear plane). We also plot b) 〈S2〉 and c) 〈ntet〉 binned along z in steady state of
the same system.

In Fig.4.13, we plot the distribution of max(D2
min) for two strain amplitudes below and above yielding. Above yielding,
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Figure 4.13: For initial configuration at T = 0.7, distribution of max(D2
min) at steady state of shear amplitude γmax =

0.06 < γy in a) and of γmax = 0.08 > γy in b). Above yielding we have longer tail. We observe the same behaviour for
the case of T = 1.5 as well in c) and d).

due to shear band, we have long tail in the distribution with higher displacement values.

Calculation of max(D2
min) has enabled us to identify particles with higher displacements, owing to plastic rear-

rangements. At this stage we ask, was there any structural discrepancy among particles that went through higher

rearrangements versus the particles that were reluctant to move? In other words, after the end of a cycle, (i) parti-

cles with highest max(D2
min) values and (ii) particles with lowest max(D2

min) : Did they have different structures at the

beginning of a cycle?

To answer this question, we use our local structural descriptors S2 and ntet. In the steady state, we note the per

particle values of the descriptors. Thereafter we subject the system to a complete deformation cycle and note the

values of max(D2
min) per particle. We classify the particles as ’static’ or ’mobile’ if their max(D2

min) values are among

the smallest or the largest respectively. In particular, we choose the top 5% as mobile particles and bottom 5% for

the static ones, and we plot their distribution in Fig.4.14. We are hereby reporting the case of T = 0.7 and γmax = 0.06,

however the trend is similar in all the cases of our system. From P(S2), we see that static and mobile particles have

different 〈S2〉. Static particles have lower 〈S2〉 or higher order, compared to the mobile particles. The same trend

we find in ntet as well, static particles having higher tetrahedrality ntet. Interestingly, there is a strong abundance of
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Figure 4.14: For the case of T = 0.7 in steady state of γmax = 0.06, distribution of S2 in a) and ntet in b) at the beginning
of a cycle, for particles with lowest (blue) and highest (red) values of displacements max(D2

min) at the end of a cycle.

ntet = 20 in static particles. This value of ntet is equal to a particle sitting at the center of an icosahedral cluster, the

appearance of this cluster has been investigated in many occasions in supercooled liquid systems, in connection to

dynamic heterogeneity.
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Figure 4.15: 〈S2〉 in a) and 〈ntet〉 in b) as a function of γmax in steady state, for 5% most mobile (red circle) and 5%
static particles (blue squares) based on their max(D2

min) values. Filled symbols correspond to T = 1.5 and open
symbols for T = 0.7.

In Fig.4.15 we plot 〈S2〉 and 〈ntet〉 for static and mobile particles as a function of strain amplitude γmax and for

both high (T = 1.5) and low (T = 0.7) temperatures. (i) For static particles in the range of γmax ∈ [0.0,0.06], the ntet

increases and 〈S2〉 decreases. This is more strongly observed for T = 1.5 and is related to the fact of increase

in ordered structure at local level with annealing, as we observed in Fig.4.11 as well. Above yielding, the static

particles belong to the regime outside shear band. We find that upon crossing the yielding amplitude (> 0.06),

both 〈S2〉 and 〈ntet〉 flattens out. (ii) Now coming to the mobile particles, below yielding, they are the particles that
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undergo reversible plastic re-arrangements, while above yielding, they belong to the mobile shear band regime with

irreversible displacements. From 〈S2〉 and 〈ntet〉 we do not see appreciable change in values upon crossing yielding

amplitude. However, consistently mobile particles have lower 〈ntet〉 and higher 〈S2〉 at the beginning of the cycle.
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Figure 4.16: We perform TCC analysis for mobile (red) and static (blue) particles during a deformation cycle in
steady state. In e) for T = 0.7 and γmax = 0.06 we report the fraction of these mobile and static particles in a
particular type of cluster. 13A is the icosahedral cluster. Next we plot these fractions against γmax for two particular
classes 10B (a and c) and 13A (b and d) and two initial; temperatures T = 0.7(a and b) and T = 1.5 (c and d).

At this point we have established that the particles with larger rearrangements and particles unwilling to move have

different local environment on the average, as reflect by our local descriptors. Now we investigate the exact local

arrangement of these classes by making use of the Topological Cluster Classification (TCC) [6]. From the TCC

analysis we can establish the membership of each particle to some predefined clusters. Note that, each particle can

be part of different types of clusters simultaneously. For the 5% most mobile and most static particles we examine

all possible clusters computed by the TCC and we calculate the fraction of particles involved in a certain cluster for

each case. In Fig.4.16 e) we show the results for mobile (red) and static (blue) particles for the case of T = 0.7 and

γmax = 0.06. Here, we report only the clusters that show significant differences between the two communities. We

highlight the 13A cluster corresponding to an icosahedral cluster, where we see that the difference between mobile

and static is maximum. Another cluster that presents large differences between the two communities is the 10B

cluster which corresponds to a defective icosahedral cluster.

Now, we explore the structure for all γmax and the two temperatures T = 0.7 and T = 1.5, and we focus in the

changes of icosahedral and defective icosahedral clusters. In Fig. 4.16 (a-d), we show the fraction of particles

involved in the 10B and 13A cluster for each of the communities as a function of γmax. For T = 1.5 the static particles
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again show growth in their involvement into these clusters with annealing in the range γmax ∈ [0.0,0.06] and then

above yielding it flattens out. For mobile particles we do not see significant difference. These trends are consistent

with the variation of 〈S2〉 and 〈ntet〉 in Fig.4.15.
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Figure 4.17: For the case of T = 0.7 and γmax = 0.08 in steady state we plot mean square displacement of the
particles along Z (blue triangles, capturing the location of shear band. We also plot fraction of particles involved in
icosahedral cluster along Z.

From Fig.4.14 b) we see that the majority of the most static particles have ntet = 20. This number is interesting

because as we mentioned earlier, icosahedral arrangement can be decomposed into 20 tetrahedra. From Fig. 4.16

we again see that the most mobile and the least mobile particles on the average show significant difference regarding

to the icosahedral ordering. We know that above yielding, the particles with larger arrangements belong to the

localized shear band, therefore we ask whether there is a specific localization of icosahedral clusters above yielding.

In Fig. 4.17, we report one case, namely T = 0.7, γmax = 0.08. First we plot the msd between two consecutive cycles

along Z (perpendicular to the plane of shear band). As before, this shows us the location of shear band. Now, we

consider all particles in the system, bin them along Z and plot in each bin, what fraction of the particles are involved

in icosahedral cluster. We find a clear localization, 30% of the particles outside shear band has this icosahedral

involvement, where as inside shear band it is negligible. Interestingly we can draw a connection to this finding in

case of soft jammed sphere packings where it was observed that icosahedrally packed regions are coupled with

flow inhomogeneities, they are locally stiffer [158, 159]. As, we have also found that the non-moving sub-volume of

our system is correlated with the higher presence of icosahedral clusters.
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4.4 Conclusions

In this work we have connected the local structural information with the plastic rearrangements in steady state of

cyclic shear in a model glass system. To address this connection we have chosen local two body excess entropy

S2 and tetrahedrality in local structure ntet. In general a higher ntet value and a lower S2 value for a particle indicates

that the particle is associated with its neighbours in a more ordered local arrangement. We have shown that both

ntet and S2 reveals higher structural order in liquid and inherent structures in lower temperatures. This is consistent

with the findings of increase in local order as the liquid starts showing extreme dynamical slow down below the

onset of glass transition temperature. We also find that there is a high correlation of structural order in liquid and IS

at lowest temperature, in this case T = 0.7. Thereafter, we choose two glasses, one prepared at high temperature

and one at low and shear the system with certain strain amplitudes γmax in athermal limit for many deformation

cycles. We find that below the yielding strain amplitude γy ≈ 0.06, shearing induces higher structural order in the

system as the system anneals. In the steady states corresponding to γmax < γy during a deformation cycle particles

rearrange but at the end of the cycle it comes back to initial positions, known as "reversible" plastic events. Whereas

above yielding the rearrangements are irreversible in nature. We identify the particles going through maximum and

minimum rearrangements by computing their non-affine displacements during a cycle w.r.t. the configuration at the

beginning of a cycle in steady state. We label them as "mobile" and "static". When we compare their local structures

at the beginning of a cycle we see that mobile and static particles have different mean local order. Explicitly, mobile

particles have lower 〈ntet〉 and higher 〈S2〉. However for mobile particles we do not find a difference in mean local

ordering below and above γy, which can be a very interesting problem to look at using other descriptors or machine

learning in future. We have also analyzed the system with topological cluster classification (TCC) algorithm. Analysis

shows structural differences in fast and slow particles on the average. The most interesting finding was that we find

above yielding in the subsystem outside shear band has 30% association with icosahedral cluster whereas inside

SB it is negligible. This result encompasses the connection of local structure with flow inhomogeneity under shear

as has been recently examined in other systems [160, 158].



Chapter 5

Conclusions and discussions

The thesis investigates structural properties of glass forming binary models under cyclic shear deformation in ather-

mal limit. There are two facets of this investigation. Firstly, long-range structural order given by hyperuniformity is

probed across yielding transition. Secondly, changes in local structure is analyzed across the yielding transition also

during deformation cycles in steady states of cyclic shear.

The glass forming models chosen in this work are well explored Kob-Andersen Lennard Jones system (KALJ)

and repulsive Wahnström mixture (WH). They represent metallic glasses [161] which are of immense importance

of industrial use. Cyclic shear is an well used technique to test mechanical properties of materials [162, 47, 163],

memory effects [164, 165], self organization [166], annealing of glass [51]. When a glass is deformed in quasi-static

limit at zero temperature [136], compared to uniform shearing, the cyclic shear posses a sharp yielding transition

from absorbing to diffusive state at strain amplitude γy [48]. With many cycles of deformation the system reaches a

steady energy state. In steady state of strain amplitude γmax < γy the plastic rearrangements during a deformation

cycle are reversible [137] and localized. Above yielding the rearrangements with large particle displacements are

irreversible and the plastic events correlate spatially causing an avalanche and form shear band [1].

Hyperuniformity means suppression of density fluctuations at large length scales. Hyperuniform states of matter

are considered to be new exotic states of amorphous materials with wide scope of use since it can suppress

fluctuations at large length scales but is isotropic at shorter length scales like a liquid with no Bragg peak [2]. In

sheared active state models such as Manna model, in sheared suspensions the absorbing states were found to be

hyperuniform in nature [74, 78, 116, 167]. Our works show that even before shearing, the the compressibility of the

inherent structures of the high temperature and high density glass forming liquid is effectively hyperuniform. When

the system is sheared, in the steady states of strain amplitudes γmax below yielding the system continues being

hyperuniform suppressing number density variance. Above yielding amplitude γmax > γy in presence of shear band

there is high density fluctuation in the system. But surprisingly we find that inside the shear band and far from shear

band the structure is still hyperuniform and it is the interface between these two phases that enhances overall density

69



70 CHAPTER 5. CONCLUSIONS AND DISCUSSIONS

fluctuation. So, in the directions parallel to shear band plane the system is hyperuniform, in the vertical direction

hyperuniformity is disrupted. Such directional hyperuniformity means that the system is compressible along one

direction whereas in opposite direction in has higher compressibility. This can lead to interesting applications as

indicated by Torquato [168].

In supercooled regime many glass forming liquids show an abundance of locally favoured structures which are

correlated with dynamic heterogeneity. Local favoured structures can be energy driven or entropy driven. For exam-

ple in Lennard Jones systems icosahedral clusters are energetically favoured which can be further decomposed into

tetrahedral clusters [138]. Marin et al [3] defined tetrahedrality ntet which measures per particle association to total

number of tetrahedral clusters and it was reported that for hard sphere system higher value of ntet highly correlates

to slower moving regions in glassy regime. We have shown in this thesis that average ntet in WH system increases

in lower temperature equilibrated liquid and corresponding IS. This shows higher local order at lower temperatures

which is also reflected in the decrease of local two-body excess entropy S2. We also find average local order in-

creases with annealing in the absorbing states as we cyclically deform the system. In steady state, we tracked the

particle displacements during deformation cycle. Our results reveal that particles with larger displacements on the

average have lower structural order. Here we would like to stress that connecting local structural order to plastic

rearrangements have not been explored in the context of periodic shear. We expect use of machine learning tech-

niques will be able to distinguish between rearrangements below and above yielding [169, 131, 134]. Our results

also demonstrate distinct characteristics of local structures inside and outside of shear band.

In this thesis the glass forming models we worked on are of "repulsive" type, as for both of them the decay of

intermediate scattering function at low temperatures shows a plateau corresponding to beta relaxation. This plateau

can be interpreted as if particles are trapped by the cages formed by their neighbours. However there is another

class of "attractive" colloidal glass formers where the interaction between the particles can be modeled as a hard-

core repulsion (for length scale 0 < r < σ ) plus a very short range attraction (for length scale σ < r <≈ 1.03σ ) [170,

171]. In such models the slow down in the dynamics in glass transition regime is dictated by particle-particle

bond formation due to attraction part of the interaction. Interestingly, under periodic shear they show a two-step

yielding [172]. First, at lower strains the inter-particle bonds break even though the topology of the neighbours does

not change. Second, at a higher strain values finally due to stronger rearrangements the topology changes and

the system flows. As a future direction of research it will be very interesting to investigate if the two-step yielding

can be associated with the structural changes in attractive colloidal glass. We would like to conclude by opening

a question common to both of the above works. Comparing the plots of Fig. 3.11 and Fig. 4.8 we observe that

inherent structures are less hyperuniform at lowest temperatures, depicting loss of long range order, whereas local

order grows at lowest temperatures. This seems puzzling since commonly one would expect that local ordering

will enhance correlation. It will be interesting to examine if the non-homogeneous nature of the structure in low

temperature inherent structure prohibits long range hyperuniformity.



Appendix A

Numerical preparation of glass system

Computer simulations are employed to study glass systems at the atomic level, it is an alternative to laboratory

experiments to extract information about the underlying thermodynamics as well as structural properties [173].

Specially more often we are interested in qualitative behaviour of materials which can be compared to experimental

counter parts with proper tuning. The two most popular technique to simulate a glass forming liquid is the Monte

Carlo (MC) method and the Molecular Dynamics (MD) method.

In MC the statistical randomness of a physical configuration space, i.e. a set of coordinates for N particles, is

exploited to end up with an accepted configuration. Starting from a random initial configuration, a new random

configuration is generated and compared with the initial. If the new configuration has lower energy, it is accepted.

Otherwise, the Boltzman factor exp(− ∆U
kBT ) is computed and compared with a random number generator in the range

of 0−1. If the random number is less than the calculated Boltzman factor, the new configuration is accepted. The

idea here is that particles eventually evolve to lower energetic states and even though a move to a higher energy

state is possible, it is less probable.

In MD the idea is to track time evolution of a system of particles starting out with initial positions and momenta

by solving the deterministic Newton’s equation of motion. One of the advantage over MC is obviously that we can

compute time dependent quantities. In this thesis , the MD simulation has been used to generate equilibrated liquid

samples.

A.1 Molecular Dynamics

A.1.1 Steps

Typical steps in a MD simulation involve:

• Initialize the system : Choose a set of initial positions and make sure particles DO NOT overlap. Randomly
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assign velocities. Velocities are chosen according to desired temperature, as it is related to the kinetic energy

of the system.

• Given a form of potential energy V (r), Calculate forces acting on the particles:

F(r) =−dV (r)
dr

(A.1)

• Solve for the equation of motion for each particle i,

Fi = miai (A.2)

ai being the acceleration acting on the particle of mass mi. Now,

ai =
d2ri

dt2 (A.3)

So we have to solve this second order differential equation for each particle.

• Updating position and velocity: Most commonly used algorithm to solve the above equation is the Leapfrog

Verlet algorithm. If the time step chosen is ∆t,

vi(t +
∆t
2
) = vi(t−

∆t
2
)+ai(t)∆t (A.4)

ri(t +∆t) = ri(t)+vi(t +
∆t
2
)∆t (A.5)

• Calculate the updated force and repeat the update steps.

A.1.2 Periodic Boundary Condition (PBC)

MD is applied to system sizes with total number of particles N of the order of hundreds or thousands. Practically the

system sizes are small and surface effect would dominate the outcomes. This is handled by implementation of PBC.

If N particles are in a domain of volume V , referred as the primary cell, it is imagined that this sell is surrounded by

exact replicas of itself, known as image cells. We need to solve for the interactions and follow the trajectories of the

particles contained in primary cell only. In course of time, if a particle moves to an image cell, image from opposite

cell moves into the primary.
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A.1.3 Initialization

Initialization involves assignment of initial positions, velocities and if needed system specific some higher order

derivatives of positions. Initial velocities are randomly assigned with the constrained < p2
x

2m >= 1
2 kBT , for each degrees

of freedom. Velocities are drawn from random distribution to ensure the temperature and then adjusted such that

there is no overall momentum, ∑mivi = 0. In equilibrium MD simulation, some important parameters are total

number of particles N, volume V , energy E, temperature T , pressure P. For example, to simulate a liquid at a

particular density we shall have different box sizes with different N.

A.1.4 Thermostat

For constant temperature thermodynamics, we need to attach a heat bath with the system. In other words, we need

to keep adjusting the velocities to achieve a target temperature. Commonly used algorithms are Berendsen and

Nosé–Hoover thermostat. In our simulation, we have used the later.

Nosé–Hoover thermostat

In this algorithm an additional fictitious degree η of freedom is introduced whose function is similar to that of friction.

In 3d, the equation of motion is now,

mi
d2ri

dt2 = Fi−ηmivi (A.6)

dη(t)
dt

=
1
Q

[
∑miv2

i −
3N +1

2
kBT

]
(A.7)

Here Q determines the relaxation dynamics of the friction.

A.1.5 How to know if system has equilibrated?

As we keep integrating the equations of motion in MD simulation with some small time step dt, it may take hundreds

or thousands of steps to relax from its initial configuration. Therefore, it is important to monitor thermodynamic

quantities as a function of time. For example, in NVT simulation, one may keep track of the temperature , energy

and as the system equilibrates they reach to constant values with small fluctuations.
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A.2 Interaction potentials and Models used in thesis

In general for non-bonded systems, the interaction potential will have the following form,

V (rN) = ∑
i

u(ri)+∑
i< j

v(ri,r j)+ ..... (A.8)

. The first term accounts for external force field, the second for two-body interaction and then there are higher order

terms. For most of the situations contribution from higher ordered terms are not significant and at most one can

come up with effective two-body interaction. In absence of external field the simplest approach is to define a pair

potential V (r) = v(ri j). For a pair of neutral atoms there are two limits of force field: A Van Der Walls type attraction

for longer range and a repulsive force at shortest distance due to overlapping electron orbitals and Pauli repulsion.

Historically among the pair potentials, the most popular choice has been the Lennard Jones (LJ) potential with its

wide application in noble gasses, liquids, glass forming models.

V (r) = 4ε

[(σ

r

)12−
(σ

r

)6
]

(A.9)
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Figure A.1: Lennard Jones potential

Here r is the distance between the particles, ε is the depth of the potential and σ is the distance where the
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potential is zero. σ denotes the size of the atomic molecules as for r < σ , the potential is positive and soon becomes

infinitely large due to the repulsive
(

σ

r

)12 term. Usually in simulation a cut-off distance rc is defined beyond which

particles do not interact with each other. Also at this cut-off the potential and the force should vanish to have smooth

integrability.

Apart from the interaction potential the polydispersity, i.e. particles with different sizes, of the system has been

an essential tool to avoid crytalization of the sample and get a glassy behaviour. Of course the simpler form is

to choose binary mixtures. Two such well established model systems are, Wahnström model [174] and Kob-

Andersen model [175]. They are very good representative metallic alloy type of glasses [176].

A.2.1 Kob Andersen Lennard Jones Model

Kob Andersen model is a mixture of 80% larger atoms A and 20% smaller sized atoms B. they interact with Lennard

Jones potential. But, we have introduced an additional square term in the potential so that at cutoff distance the

potential smoothly goes to zero, meaning the force is also zero at rc.

Vαβ (r) = 4εαβ

[(σαβ

r

)12−
(σαβ

r

)6
]
+4εαβ

[
c0αβ + c2αβ

( r
rcαβ

)2
]
,rαβ < rcαβ (A.10)

The parameters c0αβ and c2αβ are chosen such that at a cutoff distance rcαβ , both the pair potential and the force

smoothly go to zero. Here α and β represents particle types A and B. Interaction parameters are expressed with

respect to those corresponding to type A: σBB/σAA = 0.88, σAB/σAA = 0.80, εBB/εAA = 0.5, εAB/εAA = 1.5 and cutoff

distance rcαβ = 2.5σαβ .

A.2.2 Repulsive Wahnström model

As a model glass system, we have explored the behavior of the Wahnström (WH) system [174]. It consists of a 50 : 50

mixture of additive particles interacting through only with the repulsive part of the Lennard-Jones (LJ) potential,

Vαβ (r) =


4εαβ

[(
σαβ

r

)12
−
(

σαβ

r

)6
]
−Vrc , r < rc

0, r ≥ rc

(A.11)

where α and β denote the type of particle (A or B), the cut-off distance is defined as rc = 2
1
6 σαβ which is the minima

of LJ equation A.9. So at this point, the first derivative of the potential is essentially zero. Vrc is the value of the LJ

potential evaluated at rc. Note that, with this only the repulsive interaction between two particles is retained. The

potential parameters are defined with respect to type A: σBB/σAA = 1.2, σAB/σAA = 1.1 and εAA = εBB = εAB = 1.0.
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A.3 Simulation parameters

We use LAMMPS package [177] to perform molecular dynamics simulation of the system. We choose a time step

size of dt = 0.005. For most part of the thesis for both the models we have worked on a system size N = 64000. For

Kob-Andersen model, we worked with a high density system at ρ = 1.2. For Wahnström model we have worked with

packing fraction φ = π

6V (NAσ3
AA +NBσ3

BB) = 0.58.

Initially, we prepare equilibrated liquid samples at temperature T with the Nosé-Hoover thermostat (NV T ) for

time steps of the order of 2× 105 (high T ) - 2× 106 (low T ) depending on temperature and model, followed by

constant energy (NV E) relaxation. We sample the configurations from equilibrated liquid with an interval where

density density correlation from previous recorded sample has dropped to zero. We can observe dynamical slow

down by computing this self part of the density density correlation with time. For example here we are reporting the

self part of intermediate scattering function for Wahnström model,

Fs(k, t) =
1
N

〈 N

∑
i=1

exp ik · (ri(t)− ri(0))
〉

(A.12)
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Figure A.2: Intermediate scattering function corresponding the wave vector where first peak of structure factor
appears

In Fig.A.2, we plot Fs(k, t) for first peak kpeak of structure factor S(k). This basically gives the time scale for the
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decay of density correlation at the level of first cell. We can see that for lower temperature the decay is slower due t

glassy dynamics. The plateau appearing for lower temperatures are related to the cage effect.

A.4 Oscillatory shear deformation using AQS protocol

In this thesis we have studied the structural properties of model glass system under cyclic shear deformation. For

that, we have used Athermal Quasi Static (AQS) protocol of shear deformation [178, 136]. The inspiration of this

protocol is the energy landscape description of super cooled liquid or atomic glasses. A N particle system interacting

through some potential has a very complicated energy landscape and the dynamics of the system can be thought

of diffusion between the rugged energy surface. In AQS we track the evolution of inherent structures under applied

shear. One AQS step is composed of two steps:

• Deformation of simulation box by applying homogeneous shear transformation of the coordinates with some

small strain increment dγ.

• Minimization of energy at zero temperature so that the system moves the current local minimum induced only

because of the shear step.

The idea here is that the system in absence of external bias prefers to sit in the local energy minimum. When

the system is sheared, typically it will escape the local minimum. This can be caused from thermal agitation for a

system at finite temperature and finite shear rate. However, In the limit of vanishing shear rate γ̇ → 0 and T → 0,

escape from the minima is primarily due to strain increment. When a series of AQS steps are repeated the total

accumulated strain γacc = ∑dγ increases and stress strain curves show clear reversible smooth branches separated

by sudden drops corresponding to plastic rearrangements. Along the reversible branch what happens is that due

to the deformation of simulation box, the landscape around the minima changes gradually until at some point the

minima vanishes and the system has to evolve to a new minima.

AQS is a very useful technique with the use of advanced energy minimizers to computationally study mechanical

response under shear in the low temperature, low shear rate and thermodynamic limit. There are many minimizers

available on LAMMPS like steepest descent (sd) , conjugate gradient (cg), fire etc. We have used CG algorithm

as the minimizer which has been used in many papers.

A.5 Cyclic shear parameters

We have used athermal quasi static shear (AQS) protocol to study yielding under cyclic shear of the glasses. For

that, at zero temperature the XZ plane of the simulation box is deformed in very small shear steps of strain value
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Figure A.3: Schematic diagram of evolution of potential energy landscape with deformation of simulation box. In
AQS, the box is deformed with small steps of dγ followed by energy minimization. With large deformation, system
jumps to new energy minimum.

dγ = 0.0002. The coordinate transformation is,


1 0 dγ

0 1 0

0 0 1




x

y

z

 (A.13)

Each step is followed by energy minimization using CG. For deformed unit cell always Lees-Edwards boundary

condition is implemented.
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Lees-Edwards boundary condition pseudo code:

For two particles i and j the minimum image convention for Lees-Edwards can be summarized as follows,

dx = x[i]− x[ j]

dy = y[i]− y[ j]

dz = z[i]− z[ j]

I f (dz < Lz/2) : {dz+= Lz;dx+= tiltxz;dy+= tiltyz}

I f (dz > Lz/2) : {dz−= Lz;dx−= tiltxz;dy−= tiltyz}

I f (dy < Ly/2) : {dy+= Ly;dx+= tiltxy}

I f (dy > Ly/2) : {dy−= Ly;dx−= tiltxy}

I f (dx < Lx/2) : {dx+= Lx}

I f (dx > Lx/2) : {dx−= Lx}

Here, Lx,y,z is the box size of the unit cell. For XZ shear, tiltxz = γLz and tiltyz = tiltxy = 0. These steps of small strain

increments continue until the strain γ attains the value γmax along one direction. Then, the deformation steps are

repeated in the opposite direction. Thus, one complete deformation cycle consists of strains following the sequence,

0→ γmax→ 0→−γmax→ 0. (A.14)

AQS deformation corresponding to different shear amplitudes γmax are performed for many cycles, in the range

of 50−500 typically, depending on the amplitude of shear and the system, so that the system reaches steady states

where the energies fluctuate around a fixed mean value as can be seen in Fig. A.4. Configurations at steady states

are stroboscopically (at zero strain at the end of each cycle) sampled for further analysis.

In Fig. A.4 we plot energy of IS initially obtained from equilibrated liquids at two different temperatures for the

Wahnström mixture with deformation cycle. We can identify pre-yield and post-yield strain amplitudes γmax. Note that

for γmax ∈ [0.02,0.06], the energy of the IS is different for the two temperatures. Above yielding amplitude γy ≈ 0.06

the energy increases and irrespective of their preparation history they now fluctuate around a mean value.
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Figure A.4: For Wahnström mixture, energy of inherent structure eIS with deformation cycle. The solid curves
correspond to initial temperature T = 1.5 and broken curves are for T = 0.7. Above yielding (γmax > 0.06) the energy
fluctuates around a same value irrespective of initial temperature.
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Résumé : Dans cette thèse, nous avons étudié les 

changements structurels des verres subissant des 

déformations périodiques. Nous avons utilisé la dynamique 

moléculaire pour échantillonner des configurations liquides 

équilibrées de modèles de formation de verre binaire, puis cisaillé 

le système en utilisant un protocole quasi statique athermique avec 

des amplitudes maximales 𝛾𝑚𝑎𝑥. À une certian valeur 𝛾𝑚𝑎𝑥 = 𝛾𝑦, le 

systéme céde, ce qui se manifeste par une transition de l’état 

absorbant à l’état diffusif. A l’état diffusif, le systéme consiste en 

une bande de cisaillement qui est un sous-volume localisé de 

deformation élevée du système. Le but de la thèse était d’examiner 

les changements dans les propriétés structurelles dans les états 

stationnaires de cisaillement cyclique à travers cette yielding 

transition. 

 

La caractéristique structure à longue portée est caractérisée par 

"l’hyperuniformité", qui décrit la suppression des fluctuations de 

densité. Nos résultats montrent que dans les états absorbants, le 

verre est hyperuniforme et au-dessus, le système se divise en deux 

phases hyperuniformes séparées par une interface qui coïncide 

avec la limite de la bande de cisaillement. Par conséquent, dans les 

sous-volumes à l’intérieur et à l’extérieur de la bande, nous avons 

une hyperuniformité mais dans la direction perpendiculaire à la 

bande, l’hyperuniformité est perdue. 

 

L’ordre structurel local a été examiné en calculant 

l’entropie excédentaire à deux corps par particule 𝑆2 et la 

tétraédricité dans la structure local 𝑛𝑡𝑒𝑡. Il a été constaté que les 

états absorbants ont un ordre local moyen plus élevé. De plus, à 

l’état stationnaire, les particules participant à des réarrangements 

plastiques plus importants ont en moyenne un ordre structurel 

local inférieur. En particulier, les particules engages dans 12 

tétraèdres (𝑛𝑡𝑒𝑡 = 12), associées à une 

empilement icosaédrique, tendent à rester immobile. En 

analysant le système en présence d’une bande de cisaillement, 

nous constatons que près de 30% des particules sont impliquées 

dans un agencement icosaédrique local hors de la bande de 

cisaillement alors que cette fraction tombe à < 5 % dans la 

bande de cisaillement. Ce résultat marque la différence 

dispositions structurelles à l’intérieur et à l’extérieur de la bande 

de cisaillement. 

 

 

Title : Structural changes in glasses under periodic shear deformation 

Keywords : rheology, glassy systems, hyperuniformity, local structure, shear band, soft matter , yielding, simulation  

Abstract : In this thesis we have investigated structural 

changes in glasses undergoing periodic deformation. 

We have used molecular dynamics for sampling 

equilibrated liquid configurations of binary glass 

forming models and then sheared the system using 

athermal quasi static protocol with strain amplitudes 

𝛾𝑚𝑎𝑥. At a certain value of 𝛾𝑚𝑎𝑥 = 𝛾𝑦 the system yields, 

identified by a transition from absorbing to diffusive 

state. In diffusive state the system consists a shear 

band which is a high strain localized subvolume of the 

system. The purpose of the thesis has been to examine 

changes in structural properties in steady states 

of cyclic shear across this yielding transition. 

 

Long range structural feature is characterised by 

"Hyperuniformity", which describes suppression of density 

fluctuations. Our results show that in absorbing 

states the glass is hyperuniform and above yielding 

the system splits into two hyperuniform phases separated 

by an interface which coincides with the boundary of the 

shear band. Therefore, in the sub-volumes 

inside and outside the band we have hyperuniformity 

but in the direction perpendicular to the band, the 

hyperuniformity is lost.  

 

Local structural order was examined by computing per 

particle two-body excess entropy 𝑆2 and tetrahedrality in 

local structure 𝑛𝑡𝑒𝑡 . It was found that absorbing states have 

higher mean local order. Additionally, in steady state 

particles participating in larger plastic rearrangements on 

the average have lower local structural order. Specially 

particles with 𝑛𝑡𝑒𝑡 = 12, a number associated to icosahedral 

clustering, prefer to remain immobile. As we analysed the 

system in presence of shear band, we find that outside shear 

band almost 30% of the particles have local icosahedral 

clustering whereas inside shear band this percentage is very 

low (below 5 %) This result marks the different structural 

arrangements inside and outside shear band.  
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