Jean-Philippe Lansberg 
  
Melih A Ozcelik 
  
Lo 
  
Nlo 
  
  
  
Pseudoscalar Quarkonium Hadroproduction

master integrals, we were able to provide for the first time complete analytical results to the pseudoscalar form-factors in different channels. We were able to compute the NNLO exclusive decay width to two photons for both charmonium and bottomonium states. In addition, we have computed the hard function needed for the NNLO hadro-production process which can be used in both collinear and TMD factorisation.

In the concluding pages, we have discussed the prospects and outlook for quarkonium studies in the future.

PART I AND PART II
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Summary

In this summary we briefly outline the main contents of this manuscript. Before dealing with the two principal parts of the thesis, we have started the manuscript with an introduction motivating the study of pseudoscalar quarkonium hadro-production and a general overview of quarkonium phenomenology.

In Part I of this thesis, we have assessed the phenomenology of pseudoscalar quarkonium inclusive production at Next-to-Leading Order (NLO) in QCD. The production of charmonia and bottomonia, which are bound-state mesons composed of charm and bottom quarks respectively, occurs at rather low energy scales. Previously, it has been noted several times in the literature, that NLO corrections to inclusive hadro-production processes yielded unphysical and negative cross-sections. However, no solution to this issue has been put forward before our proposition in this manuscript. After having confirmed the existing theoretical NLO corrections, we have traced back the issue of negative cross-sections to an over-subtraction of the collinear divergences inside the parton distribution functions (PDF) within the MS-scheme. This over-subtraction is in particular enhanced for low-scale processes such as charmonium production. For bottomonium, tt and H 0 production the issue is less pronounced due to their larger mass. Irrespective of this, we have noted a general mismatch between the processdependent coefficients in the perturbative hard part and the universal equations governing the evolution of the PDFs at different scales. We have cured this mismatch by proposing a new scale prescription for the factorisation scale and demonstrated that this new scale choice indeed yielded stable and reliable positive cross-section results up to very large collision energies. We have detailed our findings and results in Part I of this thesis.

In order to assess the convergence of the cross-section and reduce the renormalisation scale uncertainty, one needs to go to higher orders in the perturbative series. So far, no group has managed to compute a full Next-to-Next-to-Leading Order (NNLO) inclusive hadro-production computation involving quarkonia. The bottleneck for a full NNLO computation remained the two-loop virtual contributions and their combination with the real emission contributions. These two-loop virtual contributions involve massive Feynman integrals and presented a real challenge in particular due to the threshold kinematics. We have computed all master integrals relevant for pseudoscalar hadro-production analytically and produced at the same time very high-precision numerics up to 200 digits precision. Some of these integrals cannot be casted in terms of the ordinary polylogarithms and one has to extend the space of functions to the elliptic multiple polylogarithms. We have employed cutting-edge techniques to compute the massive two-loop master integrals analytically. In the course of this project, we have found identities among master integrals due to partial fraction which simplified some of the procedures. We presented the formalism and the mathematical background of computing master integrals in Part II of this thesis. Having at our disposal the full analytical and numerical result for the Chapter 1

Introduction

In this main introduction of the thesis, we will outline the motivations and goals to study perturbative QCD corrections to quarkonium inclusive hadro-production. Before giving a short review on quarkonium phenomenology and its historical background, we will first give a few words on the Standard Model (SM) of Particle Physics.

Standard Model

Quantum Chromodynamics (QCD), which is the main force responsible for the formation of quarkonia, is the theory of the strong interaction and constitutes one of the fundamental forces in the Standard Model of Particle Physics. Each of the fundamental forces has corresponding gauge bosons which interact with fermion particles and whose interaction strength is characterised by the specific couplings. While gauge bosons have spin S = 1, elementary fermions exhibit spin S = 1 2 and are sensitive to the Pauli exclusion principle. The Standard Model can be described by renormalisable gauge theories and is invariant under the symmetry group SU(3)×SU(2)×U (1), where the SU(3) symmetry group corresponds to the strong interaction described by QCD while the SU(2)×U (1) is the symmetry group of the unified Electro-Weak (EW) theory, merging the fields of Quantum Electrodynamics (QED) and the weak interaction. This unification of QED and weak interaction was the achievement of G. Glashow, A. Salam and S. Weinberg [1,[START_REF] Salam | Weak and Electromagnetic Interactions[END_REF][START_REF] Weinberg | A Model of Leptons[END_REF] which resulted into their Nobel Prize in 1979. Quantum electrodynamics has been known since the 1940s and 1950s starting with the work of J. Schwinger and R. Feynman and was very successful in describing the interaction between light and fundamental matter particles such as charged leptons (electrons, etc.). In this case, the strength of the interaction is characterised by the electric charge of the particle. For their contributions to QED, J. Schwinger and R. Feynman were awarded the Nobel Prize together with S.-I. Tomonaga in 1965.

In a similar fashion, one can describe the theory of quantum chromodynamics with the quarks and the gluons being the QCD-equivalent of the photon and the leptons. In addition to the electric charge, the quarks carry an additional colour charge. Each quark comes in N c = 3 and the gluons in N 2 c -1 = 8 different colours. These structures are embedded in the SU(3) symmetry group. Quarks and gluons bind and form colourless hadrons such as protons and neutrons. No free quark and gluon has ever been observed in nature. This non-Abelian theory of QCD has a fundamentally different coupling dynamic as Abelian QED. Due to the presence of the self-interaction of gluons in QCD, the β-function, which describes the running of the coupling as one increases the energy scale, takes opposite values for QED and QCD. The βfunction of QED is known to be positive and signals an increase in the QED coupling strength as one increases the energy scale. The difference in the sign between QED and QCD was already noted by G.t' Hooft but its exact value was not known until 1973, when it was computed and confirmed to be negative in the seminal work by D. Gross, D. Politzer and F. Wilzcek [START_REF] Politzer | Reliable Perturbative Results for Strong Interactions?[END_REF][START_REF] Gross | Ultraviolet Behavior of Nonabelian Gauge Theories[END_REF]. A negative β-function characteristic for non-Abelian theories implies asymptotic freedom at large energy scales where the coupling strength becomes small 1 . Therefore, at large energy scales, processes in QCD can be described well by perturbation theory. However, this type of running also suggests that, at low energy scales, the coupling strength becomes large to the extent that perturbation theory can no longer be applied. D. Gross, D. Politzer and F. Wilzcek were subsequently awarded the Nobel Prize for their work on asymptotic freedom in 2004.

The discovery of the J/ψ meson by two independent groups, S. Ting et al [START_REF] Aubert | Experimental Observation of a Heavy Particle J[END_REF] at Brookhaven National Laboratory (BNL) and by B. Richter at al [START_REF] Augustin | Discovery of a Narrow Resonance in e + e -Annihilation[END_REF] at Stanford Linear Accelerator (SLAC) led to the so-called November Revolution in 1974 and confirmed the existence of the charm quark. Previously, the existence of a fourth quark had been predicted by the GIM (Glashow-Iliopoulos-Maiani) mechanism in 1970 [START_REF] Glashow | Weak Interactions with Lepton-Hadron Symmetry[END_REF]. Both groups observed a new meson with a resonance state at around M = 3.1 GeV. The group of B. Richter discovered a few days later in addition a second resonance state at 3.7 GeV which was identified with the ψ particle which is an excited state of the J/ψ. The two groups of Richter and Ting used two different set-up of the collisions, the first one investigated the production of the meson under e + e -collision while the latter studied the production under the collision of a high-energetic proton beam on a beryllium target in a fixed-target mode. These meson discoveries led to intense research in the field of particle physics and the quark model picture. The significance of this discovery was honoured with a Nobel Prize to S. Ting and B. Richter only two years later in 1976.

The J/ψ belongs to the class of a charmonium mesons which, indeed, were the first application of asymptotic freedom in QCD by T. Applequist and D. Politzer [START_REF] Appelquist | Orthocharmonium and e+ e-Annihilation[END_REF]. Together with bottomonium mesons, charmonium states belong to the more general class of quarkonium mesons which are bound states composed of a heavy quark Q and its anti-quark Q of same flavour. We consider the heavy quarks to be the charm and the bottom quarks which then form charmonium and bottomonium bound states respectively. This terminology is in analogy with the positronium bound state in QED which is composed of an electron and a positron. Contrary to what the reader may expect, these particles are not the ground states of the charmonium spectroscopy. As we shall see, the true ground state will be a different meson which is at the center of the study of this thesis.

As for the bottomonium state, at Fermilab, Lederman et al observed the Υ meson with a resonance of M = 9.5 GeV in 1977 [10], which then confirmed the existence of the bottom quark. The existence of third generation quarks as the bottom and the top quarks had been previously predicted by T. Maskawa and M. Kobayashi in 1973 [START_REF] Kobayashi | CP Violation in the Renormalizable Theory of Weak Interaction[END_REF]. The existence of the top quark was then confirmed with its discovery at Fermilab in 1995 [START_REF] Abe | Observation of top quark production in pp collisions[END_REF][START_REF] Abachi | Observation of the top quark[END_REF]. It is so far the heaviest elementary particle to have been observed in the Standard Model with a mass of around m t = 172 GeV [START_REF] Zyla | Review of Particle Physics[END_REF]. Because of its large mass, the top quark decays before it can form a toponium bound state.

In 1983, the remaining gauge bosons of the electro-weak theory, the charged W + , W -and the neutral Z 0 bosons were discovered in a series of experiments at CERN. These bosons required high-energetic experimental setup as UA1 and UA2 due to their rather large mass. The masses for these gauge bosons have now been determined with M W ± = 80. [START_REF] Feng | Phenomenological NLO analysis of η c production at the LHC in the collider and fixed-target modes[END_REF] GeV and with M Z = 91. [START_REF] Schwinger | On Quantum electrodynamics and the magnetic moment of the electron[END_REF] GeV [START_REF] Zyla | Review of Particle Physics[END_REF]. The last missing piece to the Standard Model was the discovery of the Higgs boson H 0 at the LHC [START_REF] Chatrchyan | Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC[END_REF][START_REF] Aad | Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC[END_REF] in 2012. Both ATLAS and CMS collaborations detected the resonance of a boson at mass M H 0 = 125 GeV. The Higgs boson is a scalar particle with spin S = 0 and interacts only with massive fundamental particles. Its discovery resulted in the Nobel Prize for F. Englert and P. Higgs in 2013. In contrast to these forces, gravity is a non-renormalisable theory and is therefore not included in the current Standard Model.

In order to describe these Standard Model interactions, we can utilise the Lagrangian and derive Feynman rules from it. With all the predicted particles having been observed and the Standard Model to be considered complete since the discovery of the Higgs boson, we have now entered the era of consolidation of the Standard Model where experimental efforts are made to measure cross-sections and other observable quantities as precise as possible. The goal is to test the current framework and to detect potential deviations which would point to new physics Beyond the Standard Model (BSM). Theoretical efforts to provide the most accurate predictions for observables involve calculation of radiative corrections in perturbation theory. These involve Feynman integrals which belong to specific classes of integrals in Minkowski space-time. We will explain the mathematical background to these loop integrals in Part II of this thesis. In Part I of this thesis, we will show how perturbation theory can affect the phenomenology of quarkonium inclusive hadro-production. Higgs phenomenology is currently done at N 3 LO level [START_REF] Anastasiou | Higgs Boson Gluon-Fusion Production in QCD at Three Loops[END_REF][START_REF] Anastasiou | Higgs boson gluon-fusion production at threshold in N 3 LO QCD[END_REF] where one computes the corrections up to three orders higher in perturbation theory. These correction turn out to be rather large and affect the phenomenology of H 0 physics. We mention that higher-order corrections were already done in QED to test the experiments in the 1940s and 1950s. The one-loop correction to the anomalous magnetic moment of the electron was first computed by Schwinger in 1948 [START_REF] Schwinger | On Quantum electrodynamics and the magnetic moment of the electron[END_REF] before C. Sommerfield computed the twoloop QED correction in 1957 [START_REF] Sommerfield | Magnetic Dipole Moment of the Electron[END_REF]. The three-loop correction was then computed numerically by T. Kinoshita in 1995 and analytically by S. Laporta and E. Remiddi in 1996 [START_REF] Laporta | The Analytical value of the electron (g-2) at order alpha**3 in QED[END_REF][START_REF] Kinoshita | New value of the alpha**3 electron anomalous magnetic moment[END_REF]. Up to now it has been computed up to five-loop order [START_REF] Aoyama | Tenth-Order QED Contribution to the Electron g-2 and an Improved Value of the Fine Structure Constant[END_REF] and is in agreement with experimental data. In contrast to this, the five-loop QED correction to the muon g -2 anomalous magnetic moment [START_REF] Aoyama | Complete Tenth-Order QED Contribution to the Muon g-2[END_REF] does not agree with current experimental data 2 . Efforts have been made to repeat the experiments at different facilities. Recent results on the g -2 anomalous magnetic moment at Fermilab have now indeed confirmed a potential discrepancy with the current Standard Model [START_REF] Abi | Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm[END_REF]. This discrepancy may be a sign of new physics beyond the Standard Model. It is thus vital to develop techniques and methods to compute very high-precision result of multi-loop integrals. We will present some of these techniques in Part II of this thesis. With this general introduction, we shall now turn our attention to quarkonium phenomenology below.

Charmonium and bottomonium states

The J/ψ is one of the most measured quarkonium states at the LHC. It is a vector meson composed of a cc pair and has the same quantum numbers as the photon with 1 --. We have used here the spectroscopic notation with J P C where J is the total angular momentum, P is the Even though the J/ψ is the lightest meson to have the same quantum numbers as the photon, we shall see that this meson is not the ground state of the spectroscopy.

We present in Fig. 1.1 the spectroscropy of the different charmonium states below the DD threshold. We recognise that the η c is the true ground state below that of the J/ψ with a resonance at around 3.0 GeV. With its spectroscopic notation being 0 -+ , the η c is a pseudo-scalar particle as opposed to the J/ψ vector particle. The fact, that the J/ψ happens to have the same quantum numbers as the photon, also explains the straightforward detection, as the J/ψ can decay to a e + e -or a µ + µ -pair via a virtual off-shell photon, which has J = 1. In contrast to this, the η c cannot decay to a single virtual off-shell photon as the quantum numbers are fundamentally different. This is forbidden by C-parity conservation. Therefore the η c decay to e + e -requires at least two virtual photons and is thus subleading.

As aforementioned, the second meson which was discovered by Richter et al was the ψ which with the spectroscopy now at hand, we can identify as ψ(2S) vector particle where the first label indicates the principal quantum number n = 2 and S and P in the plot refer to the orbital angular momentum L = 0, 1, ... of the heavy-quark pair. Thus, both η c and J/ψ have L = 0 and differ only in the intrinsic spin of the heavy-quark pair. Contrary to this, the Pwave states h c and χ c,J=0,1,2 have orbital angular momentum L = 1 and occupy larger mass spectra than the S-wave states. In this thesis, we will deal only with the true ground state η c as Figure 1.2: Spectroscopy for bottomonium states below the BB threshold, adapted from Particle Data Group [START_REF] Zyla | Review of Particle Physics[END_REF]. this is the simplest quarkonia and allows us to test perturbative QCD at low scales where the coupling is not so small. The first experimental observation of the η c dates back to 1980, where it has been observed via the decay of ψ state to η c and a photon [START_REF] Partridge | Observation of an eta(c) Candidate State with Mass 2978-MeV +-9-MeV[END_REF][START_REF] Himel | Observation of the η c (2980) Produced in the Radiative Decay of the ψ (3684)[END_REF].

Before moving on with the phenomenological description of η c and J/ψ production, we have displayed in Fig. 1.2 the bottomonium spectroscopy below the BB threshold, where similarly as before the pseudo-scalar particle η b is the ground state with a resonance at around 9.4 GeV and lies under that of the vector particle Υ. The larger scale of bottomonium states suggests that perturbation theory due a smaller QCD coupling is better behaved than for charmonium states. We shall see some examples later on. Compared to the η c , the η b state was only discovered in 2008 by the BABAR Collaboration [START_REF] Aubert | Observation of the bottomonium ground state in the decay υ 3S → γeta b[END_REF] and its 2S-excitation was observed in 2012 by Belle Collaboration with a resonance of around 10 GeV [START_REF] Mizuk | Evidence for the η b (2S) and observation of h b (1P ) → η b (1S)γ and h b (2P ) → η b (1S)γ[END_REF].

At LHCb experiment, η c hadro-production has been observed only recently in 2014 via its decay mode to pp pair and for p T > 6 GeV, which is the transverse momentum of the particle [START_REF] Aaij | Measurement of the η c (1S) production cross-section in proton-proton collisions via the decay η c (1S) → pp[END_REF]. We can see in Fig. 1.3 that perturbative QCD corrections can describe the data within their uncertaintites rather well. We will introduce the different formalism to describe quarkonium production later on. More data for both η c and η b production are to be expected in future measurements such as the LHC in fixed-target mode (AFTER@LHC) and at SPD experiment at the NICA facility [START_REF] Hadjidakis | A Fixed-Target Programme at the LHC: Physics Case and Projected Performances for Heavy-Ion, Hadron, Spin and Astroparticle Studies[END_REF][START_REF] Chapon | Perspectives for quarkonium studies at the high-luminosity LHC[END_REF][START_REF] Brodsky | Physics Opportunities of a Fixed-Target Experiment using the LHC Beams[END_REF][START_REF] Lansberg | Quarkonium Physics at a Fixed-Target Experiment using the LHC Beams[END_REF][START_REF] Feng | Phenomenological NLO analysis of η c production at the LHC in the collider and fixed-target modes[END_REF][START_REF] Lansberg | η c Hadroproduction at Next-to-Leading Order and its Relevance to ψ Production[END_REF][START_REF] Arbuzov | On the physics potential to study the gluon content of proton and deuteron at NICA SPD[END_REF].

At this stage, let us add a few remarks on the feed-down to the pseudo-scalar charmonium states, namely the fraction of η c produced by the decay of a higher resonance. The branchings to η c from the pseudo-vector particle h c and from the 2S excited state η c are roughly 50% and at most 25% respectively. However, in addition to the branchings, one has to consider the relative [START_REF] Butenschoen | η c production at the LHC challenges nonrelativistic-QCD factorization[END_REF] represented by blue band versus experimental LHCb data [START_REF] Aaij | Measurement of the η c (1S) production cross-section in proton-proton collisions via the decay η c (1S) → pp[END_REF]. Taken from Ref. [START_REF] Lansberg | New Observables in Inclusive Production of Quarkonia[END_REF]. yields of the higher resonance as well. In contrast to the feed-downs to J/ψ, the ones to η c are rather small and can be neglected [START_REF] Lansberg | New Observables in Inclusive Production of Quarkonia[END_REF]. As for the situation of η b due to its more recent discovery, not much is known on its feed-down but it is likely to be small as well. As such, the dominant production of the pseudo-scalar states proceeds via direct production such as gluon fusion in hadron collision. We will discuss this in more detail in Chapter 2.

Quarkonium formation

With the QQ pair being confined inside the quarkonium bound state, we have to describe the production of quarkonia in two regimes which we assume to be factorisable. The production of the QQ pair, which is the short-distance part, can be described in a perturbative manner with Feynman diagrams. This proceeds naturally at the scale of the heavy-quark mass m Q where the strong coupling α s is perturbative. The quarkonium bound state, which is the longdistance part, exhibits two additional scales m Q v and m Q v 2 which are the typical momentum of the heavy quarks in the rest frame of the bound state and its kinetic energy respectively. These scales are significantly lower than the hard scale represented by m Q and, as such, perturbation theory can no longer be applied there.

For charmonium states, v 2 is typically around 0.3 while for bottomonium states one has that v 2 ∼ 0.1. We note that v ∼ α s (m Q v) where we indicated in the brackets the energy scale m Q v inside the coupling. The kinetic energy turns out to be similar for both charmonium and bottomonium states and are both not far from Λ QCD . Unlike in the case of the proton, the mass of the quarkonium state M Q is primarily made of the masses of its constituents. As such, taking the ground state meson η Q and considering the binding energy to be negligible, we can set M Q = 2m Q and obtain for the charm quark then m c = 1.5 GeV and for bottom quark m b = 4.75 GeV.

There exist different models to describe the hadronisation procedure, (1) the Colour-Singlet Model (CSM), [START_REF] Salam | Weak and Electromagnetic Interactions[END_REF] the Colour-Evaporation Model (CEM) and (3) the Colour-Octet Mechanism 1.3. QUARKONIUM FORMATION (COM). We refer to these recent reviews [START_REF] Lansberg | New Observables in Inclusive Production of Quarkonia[END_REF][START_REF] Andronic | Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions[END_REF][START_REF] Brambilla | Heavy Quarkonium: Progress, Puzzles, and Opportunities[END_REF][START_REF] Brambilla | Heavy quarkonium physics[END_REF].

Colour-singlet model

The CSM has been introduced by C.H. Chang, E. Berger, D. Jones, R. Baier and R. Ruckl in the late 1970s and early 1980s [START_REF] Chang | Hadronic Production of J/ψ Associated With a Gluon[END_REF][START_REF] Berger | Inelastic Photoproduction of J/psi and Upsilon by Gluons[END_REF][START_REF] Baier | Hadronic Production of J/psi and Upsilon: Transverse Momentum Distributions[END_REF]. The theoretical prediction shown in Fig. 1.3 for the p Tdependence of the η c cross-section was indeed done within CSM [START_REF] Butenschoen | η c production at the LHC challenges nonrelativistic-QCD factorization[END_REF]. As such, the CSM model describes the data for η c production well. In this model the cc pair is projected onto a coloursinglet state and the quantum numbers of the cc pair do not evolve between the production of the heavy-quark pair and its formation to the bound state. In CSM, one considers only the leading Fock-state of the bound-state with v = 0 such that the momenta of the two heavy quarks become identical. Therefore, we can for the inclusive production of a quarkonium state Q consider following factorisation

dσ(Q + X) = dσ QQ + X × O Q , (1.3.1)
where O Q is the Long-Distance Matrix Element (LDME) describing the non-perturbative quarkonium state [START_REF] Bodwin | Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium[END_REF]. In this thesis, we will make use of the so-called radial wavefunction at the origin |R 0 | 2 . As we will see later in Chapter 2, we can relate the LDME to the wavefunction. We mention that |R 0 | 2 turns out to be the same for both η c and J/ψ via virtue of heavy-quark symmetry. These parameters are usually extracted from experimental data. A review on the status of CSM can be found in Ref. [START_REF] Lansberg | New Observables in Inclusive Production of Quarkonia[END_REF].

In order to compare theory predictions with experimental data and validate the production mechanism, one needs to include higher-order corrections in α s in the short-distance part. The first Next-to-Leading Order (NLO) correction to the hadronic decay width of η Q was performed by K. Hagiwara et al in the early 1980's [START_REF] Hagiwara | Hadronic Decay Rate of Ground State Paraquarkonia in Quantum Chromodynamics[END_REF]. As for the hadro-production case, the first NLO correction was done by J. Kühn and E. Mirkes for the production of a hypothetical toponium state in the early 1990's [START_REF] Kuhn | QCD corrections to toponium production at hadron colliders[END_REF]. However, the first phenomenological application to charmonium production was done by G. Schuler in his review in 1994 [START_REF] Schuler | Quarkonium production and decays[END_REF]. We will discuss the analytic techniques and methods of CSM pseudo-scalar quarkonium hadro-production at NLO accuracy in detail in Chapter 2.

Colour-evaporation model

The CEM proposed by F. Halzen and H. Fritzsch in the late 1970s is based on the quark-hadron duality approach [START_REF] Halzen | Cvc for Gluons and Hadroproduction of Quark Flavors[END_REF][START_REF] Fritzsch | Producing Heavy Quark Flavors in Hadronic Collisions: A Test of Quantum Chromodynamics[END_REF]. Unlike in the case of CSM, in this model, the QQ pair is not constrained to be on colour-singlet state and can fluctuate in its quantum numbers. In order to compute the cross-section for η c , J/ψ and similarly for bottomonium state production within the CEM, one makes use of the following factorisation,

σ Q = F 2m H 2m Q dσ QQ dm QQ dm QQ , (1.3.2) 
where σ QQ accounts for the production of an open heavy-quark pair depending on the invariant mass m QQ of the heavy-quark and F is the so-called phenomenological factor. One integrates the cross-section in the invariant mass from the threshold to produce the heavy-quark pair 2m Q up to the threshold 2m H to produce the lightest heavy-light-flavour hadron pair. In the case of charmonium, the lightest hadron pair is the DD pair, where the D meson has a mass just over 1.85 GeV (see Fig. 1.1). For bottomonium, it is the BB hadron pair, where the B meson has a mass of just over 5.2 GeV.

In Eq. 1.3.2, the phenomenological factor F is sometimes assumed to follow some statistical fluctuations [START_REF] Amundson | Colorless states in perturbative QCD: Charmonium and rapidity gaps[END_REF]. The spin of the heavy quarks vary in a statistical way and these fluctuations account for the difference between the pseudo-scalar and the vector meson production. With J/ψ being a spin-triplet state with J = 1, it has three polarisations while the pseudo-scalar has one. The number of polarisations is computed with 2J + 1. Based on this counting, we would expect the ratio in the cross-sections between η c and J/ψ to be σ ηc /σ J/ψ = 1 3 . In the case of the P -wave states, one would then expect σ χ c,J=0 /σ χ c,J=1 = 1 3 and σ χ c,J=0 /σ χ c,J=2 = 1 5 . The recent phenomenology of the CEM is reviewed in [START_REF] Lansberg | New Observables in Inclusive Production of Quarkonia[END_REF]. We note that the CEM remains a rather phenomenological approach which does not rely so far on any proof of factorisation.

Colour-octet mechanism

The COM was introduced in the framework of non-relativistic QCD (NRQCD) by Bodwin, Braaten and Lepage in 1994 [START_REF] Bodwin | Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium[END_REF]. In this model, the QQ pair can be produced in a colour-octet state. One then has in the non-perturbative part soft-gluon emissions which are accounted by the long-distance matrix elements with the inclusion of higher Fock states. The COM has been introduced to address the issue of remaining divergences in the decay of P -wave states to gqq in CSM. This additional divergence is removed with the inclusion of a colour-octet 3 S [START_REF] Glashow | Weak Interactions with Lepton-Hadron Symmetry[END_REF] 1 state which within the framework of NRQCD has the same power counting in v 2 as the P -waves states [START_REF] Bodwin | Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium[END_REF][START_REF] Petrelli | NLO production and decay of quarkonium[END_REF]. However, as what concerns the pseudo-scalar quarkonium states, the COM does not add anything new to phenomenology and is thus subleading [START_REF] Lansberg | New Observables in Inclusive Production of Quarkonia[END_REF].

Part I and Part II

We will in this thesis focus on the CSM which is the dominant mechanism for η Q inclusive hadro-production and for which the formalism, at least for S-wave predictions, is robust. We have structured the manuscript into two principal parts. In Part I of this thesis, we will discuss the origin of negative cross-section results for several quarkonium states. We will guide the reader through all these issues and propose a new scale prescription to obtain reliable and positive NLO cross-section results. In Part II of this thesis, we will compute, for the first time, the complete analytical expressions for the two-loop double-virtual amplitude needed for hadroproduction and decay processes at NNLO accuracy. These involve massive Feynman integrals and present a real challenge. We will in the following, in the two subsections, discuss the physics motivations behind to conduct the studies in Part I and Part II.

Motivation for Part I

One of the motivations to study NLO corrections for pseudo-scalar quarkonium hadroproduction is the appearance of negative cross-section results for several quarkonium states. We consider here the transverse momentum p T -integrated cross-section. Previously, we have shown the cross-section result in Fig. 1.3 for p T > 6 GeV. For the integrated cross-section, we need in addition also to consider the low p T region. The p T -integrated cross-section involves loop integrals in the virtual threshold contribution and offer the advantage that p T is integrated over and, as such, does not introduce any new scale.

In Ref. [START_REF] Feng | Energy dependence of direct-quarkonium production in pp collisions from fixed-target to LHC energies: complete one-loop analysis[END_REF], the authors have considered NLO corrections to hadro-production of pseudoscalar and vector meson states in both colour-singlet and colour-octet states. We display in Fig. 1.4a the rapidity-differential cross-section for η c hadro-production in CSM at y = 0 as function of √ s, which is the collision energy in the center-of-mass frame. As there are some intrinsic degrees of freedom due to fixed-order calculations, one can vary scales within some ranges 3 . We note that, for some usual scale choices, the cross-section decreases as one increases the energy and eventually turns negative. A negative cross-section can be assessed as unphysical as these imply negative probabilities.

As for the situation of the J/ψ, we display the results in Fig. 1.4b with a selection of experimental data. We note that, while the LO curves agree reasonably well with data, the NLO cross-section curves behave worse than for η c production and turns negative much earlier already on the order of a few hundreds of GeV which is the energy scale of experiments pre-LHC such as fixed-target experiments. Are these negative cross-sections due to the formation mechanism of the bound state in the CSM and can the COM resolve this issue?

We have displayed in Fig. 1.5b the cross-section for the colour-octet state 1 S [START_REF] Glashow | Weak Interactions with Lepton-Hadron Symmetry[END_REF] 0 where we note that, as before, for some scale choices, the cross-section turns negative. Therefore, the inclusion of COM contributions cannot resolve the issue of negative cross-sections. The fact that the p T -differential cross-section for η c agrees well with data (Fig. 1.4a), may suggest that the appearance of negative cross-section is entirely due to the threshold virtual contributions which exist only at p T = 0. However, we will see later that this is not the case.

As several different charmonium states are affected by this issue, we will from the theoretical side focus on the simplest meson state in order to understand the origin of the negative numbers. As such, we will study in this thesis the ground state meson, η Q , and investigate 0 . Taken from Ref. [START_REF] Feng | Energy dependence of direct-quarkonium production in pp collisions from fixed-target to LHC energies: complete one-loop analysis[END_REF].

µ 0 =2m b µ F =µ R =µ 0 LO µ F =µ R =µ 0 NLO µ F =µ R /0.75=µ 0 µ F /0.75=µ R =µ 0 µ F /2=µ R =µ 0 µ F =µ R /2=µ 0 µ F =µ R =µ 0 , m b =4.5 GeV µ F =µ R =µ 0 , m b =5.0 GeV
µ 0 =2m c <O( 1 S [8] 0 )>=10 -2 GeV 3 µ F =µ R =µ 0 NLO µ F =µ R /0.75=µ 0 µ F /0.75=µ R =µ 0 µ F /2=µ R =µ 0 µ F =µ R /2=µ 0 µ F /1.5=µ R =µ 0 µ F =2µ R =µ 0 µ F =µ R =µ 0 , m c =1.4 GeV µ F =µ R =µ 0 , m c =1.6 GeV (b)
NLO corrections to the hadro-production case. We then aim at providing a solution for the more complex quarkonium states. We mention on a side note that the relatively good results for η b hadro-production in Fig. 1.5a suggest that the issue could be related to the low scale of charmonium production.

We mention that in the aforementioned Ref. [START_REF] Feng | Energy dependence of direct-quarkonium production in pp collisions from fixed-target to LHC energies: complete one-loop analysis[END_REF], the observed negative cross-section results were based on entirely numerical phase-space integrations. In order to verify that these negative cross-sections are truly from the theoretical framework rather than bad numerical integration, we will first in Chapter 2 introduce the background formalism to compute the p Tintegrated cross-section analytically. Having outlined the techniques, we will then derive in this thesis, for the first time, complete analytical expressions for the rapidity-differential crosssection in terms of the parton luminosity integrals and confirm the presence of the negative cross-section in Chapter 3.

In Chapter 4 we will then retrace the steps of our analytical derivation in order to understand the origin of the negative cross-sections results and we will then propose a new scale prescription to obtain reliable and positive cross-sections results. We then discuss the applicability of this cure to other quarkonium states. We will also discuss the importance of the shape of parton distribution functions which are badly behaved and unconstrained at low scales relevant for charmonium production, and show how these parton distribution functions affect the NLO cross-section result.

Having solved this issue with a new scale prescription, we then present in Chapter 5 reliable NLO cross-section results and discuss the detectability of the pseudo-scalars at future experimental set-ups. We conclude this part an outlook at prospects. Pseudo-scalar quarkonium production provides the excellent framework to study proton and nucleus PDFs in future experiments. uncertainty. Taken from Ref. [START_REF] Feng | Phenomenological NLO analysis of η c production at the LHC in the collider and fixed-target modes[END_REF].

Motivation for Part II

Following up on the discussion of the negative cross-sections observed at NLO, the interesting question remains, whether the inclusion of NNLO corrections can resolve this issue and restore positivity with the conventional scale setting. This is one of the key motivations to conduct a full NNLO study. In addition, we want to address the question whether it is necessary to go to higher orders in perturbation theory in order to provide more accurate predictions for η c and J/ψ cross-sections. As we can observe in Fig. 1.6, the scale uncertainties for η c production at NLO are not small because of its low scale where the running of α s becomes large. In the past, there have been efforts to provide partial higher-order corrections to vector meson production which are dubbed NNLO * [START_REF] Artoisenet | Υ Production at Fermilab Tevatron and LHC Energies[END_REF], however, these corrections do not involve the double-virtual contribution and are only valid for p T > M Q .

These double-virtual contributions are represented by two-loop Feynman diagrams involving massive Feynman integrals. Previously, there have been only a few attempts to compute full two-loop corrections in decay and in lepton annihilation production processes. In these attempts, the two-loop integrals have been evaluated only in numerical form up to 10 digits precision. One of the earliest two-loop calculation involving η c decay to di-photon channel was performed by A. Czarnecki and K. Melnikov in 1999 [START_REF] Czarnecki | Charmonium decays: J / psi -> e+ e-and eta(c) -> gamma gamma[END_REF]. The hadronic decay widths of η c and η b were computed at NNLO accuracy only recently in 2017 by F. Feng et al [START_REF] Feng | Next-to-Next-to-Leading-Order QCD Corrections to the Hadronic width of Pseudoscalar Quarkonium[END_REF]. However, so far, there have been no attempts to compute two-loop corrections to hadro-production and photo-production processes involving quarkonia. These corrections are however vital for a full NNLO and essential in order to understand quarkonium phenomenology.

As such, we will in Part II of this thesis solve analytically the two-loop amplitude formfactors needed for NNLO hadro-production and decay processes. We will start Part II with a presentation of the background material to these multi-loop Feynman integrals in Chapter 6. We will then in Chapter 7 outline modern strategies to generate the amplitude form-factors and perform the reduction of the integrals to the so-called master integrals. As the two heavy-quark momenta are identical due to the non-relativistic nature of the quarkonium bound-state, the Feynman integrals that occur have special threshold kinematics which make their evaluation challenging. We can employ partial fraction decomposition to simplify some Feynman integrals. We will then compare the difference in the approach used in Part I and Part II at the example of the one-loop integral in order to demonstrate the efficiency of the modern techniques.

In Chapter 8, we will then present the list of topologies and the master integrals that occur in the computation of the two-loop form-factors. We show that many integrals are not known in the literature and, as such, need to be computed. Before computing these integrals, we find that there are new equivalence relations relating different master integrals from different topologies. Therefore, we are able to reduce the number of integrals which we have to compute in order to obtain the analytical structure of the form-factors.

Having outlined the list of integrals, we then present in Chapter 9 cutting-edge techniques in evaluating these massive Feynman integrals with a complete analytic approach. We start the discussion with an introduction into the necessary techniques and the special functions that can appear in the master integral evaluation. Some of the integrals cannot be represented by usual multiple polylogarithmic functions and, as such, we need to include the class of elliptic multiple polylogarithm which have attracted much attention in the physics community in rather recent times. Integrals exhibiting these elliptic structures are very challenging and complex. We then discuss the different strategies in solving these integrals analytically and we provide examples with the list of our of master integrals. Having solved all master integrals analytically, we then outline how to evaluate these master integrals numerically to very high-precision (200 digits).

Having at our disposal both the complete analytical and the high-precision numerical results, we then present the two-loop form-factor results in Chapter 10. We discuss the UV renormalisation and the IR pole subtraction procedure and discuss the Coulomb singularity structure which is specific to quarkonia. We consider here the γγ case needed for the exclusive decay to di-photon and the gg case which is needed for both hadro-production and the hadronic decay. We assess the convergence of the QCD NNLO corrections in the case of the exclusive decay width and provide the hard function needed for the hadro-production in both collinear and TMD factorisation. In addition, we provide the analytical structure for the twoloop QED corrections to the amplitude for para-positronium decay to di-photon and discuss briefly how to relate the results between these three form-factors with colour transformations. We then briefly discuss the approach to other quarkonium form-factors and assess whether new master integrals could emerge. We discuss this in the case of colour-octet states of which we have preliminary results.

We then conclude the thesis with an outlook on prospects in quarkonium physics for both Part I and Part II.

Part I

Phenomenology of pseudoscalar quarkonium hadroproduction at NLO Introduction: Part I

We have seen in the main introduction of this thesis, that one encounters negative cross-section theory predictions for quarkonium hadro-production at NLO accuracy. This issue affects the phenomenology for several different quarkonium states. The situation is dramatic in particular for charmonium states. In order to understand this issue and trace back the origin of the negative numbers, we will in Part I of this thesis investigate the theoretical framework of quarkonium production in the case of the pseudo-scalar states η c and η b , which are the ground states of their respective spectroscopies.

We will start with a review of higher-order corrections to quarkonium hadro-production and study the different contributions such as the virtual and real emission parts in Ch. 2. We derive there the P T -and y-integrated partonic and hadronic cross-sections which yielded the aforementioned negative numbers. We will then present in Ch. 3 for the first time the derivation and the result for the analytical expressions for the rapidity-differential cross-section at NLO accuracy for both η c and η b . These were previously absent in the literature. After having reviewed the NLO techniques for quarkonium hadro-production, we will elucidate the origin of the negative numbers and propose a new scale-fixing criterion which yields stable and positive cross-sections results for both charmonium and bottomonium states in Ch. 4. We will conclude Part I by presenting reliable and positive NLO cross-section predictions for both η c and η b for different experimental setups in Ch. 5.

Chapter 2

Review of NLO techniques for pseudoscalar quarkonium inclusive hadroproduction

In this chapter, we will review techniques for inclusive hadro-production at NLO and will present a full NLO QCD computation for pseudo-scalar quarkonium, η c and η b , hadroproduction. The material presented in this chapter will serve as preparation for the following chapters. For more details and complementary information the reader is invited to consult Ref. [START_REF] Kuhn | QCD corrections to toponium production at hadron colliders[END_REF][START_REF] Petrelli | NLO production and decay of quarkonium[END_REF][START_REF] Altarelli | Large Perturbative Corrections to the Drell-Yan Process in QCD[END_REF]]. We will start by introducing the concept of fixed-order calculation in the framework of collinear factorisation in Sec. 2.1. We will then show how to compute the LO contribution for the quarkonium bound state in Sec. 2.2. We will then outline the calculation for the virtual corrections in Sec. 2.3 and make the cancellation of the singularity structure with the real corrections manifest in Sec. 2.4. These partonic cross-section need to be convoluted with the parton distribution function to yield hadronic cross-section. We will demonstrate this convolution in Sec. 2.5 before concluding this chapter with the presentation of hadronic cross-section results for η c production in Sec. 2.6. We will there briefly discuss the potential appearance of negative cross-sections.

Fixed-order calculation in collinear factorisation

The hadronic cross-section resulting from the collision of hadron h a with hadron h b can be written in collinear factorisation as [START_REF] Brock | Handbook of perturbative QCD: Version 1.0[END_REF][START_REF] Ellis | QCD and collider physics[END_REF] 

σ hah b = ij 1 0 dx 1 1 0 dx 2 f i/ha (x 1 , µ F ) f j/h b (x 2 , µ F ) σij (µ R , µ F , x 1 , x 2 , ŝ = sx 1 x 2 ), (2.1.1)
where f i/ha is the parton distribution function (PDF), i.e. the probability to find a parton i with momentum fraction x 1 in hadron h a , and σij is the partonic cross-section resulting from the collision of partons i and j with their respective momentum fractions x 1 and x 2 . While the parton distribution functions are fitted against experimental data and satisfy DGLAP equations, the partonic cross-section can be computed in a perturbative manner with Feynman diagrams. Both the PDFs and partonic cross-section are integrated over the momentum fraction of the initial partons to yield the hadronic cross-section. The hadronic cross-section receives contributions from different partonic channels ij. The quantities ŝ and s are the partonic and the hadronic centre-of mass energy respectively. We will later discuss the role of the scales µ R and µ F .

In order to outline the different partonic channels, we first elaborate on the concept of fixedorder calculations and the difference between inclusive and exclusive cross-sections. The Leading-Order (LO) contribution to η c production can be represented by the tree-level process gg → η c , where the coupling appears as α 2 s and thus makes it the dominant contribution. Next-To-Leading Order (NLO) contributions appear with an additional power of α s compared to the LO and thus we can express the partonic cross-section as a series in α s ,

σij = σLO δ ig δ jg + α s π H NLO ij + α s π 2 H NNLO ij + O α 3 s , (2.1.2) 
where H NLO ij is the NLO relative correction towards the LO and H NNLO ij stands for the next-tonext-to-leading order relative contribution. We have above introduced the δ ig δ jg symbol as this factor appears only in the gg-channel.

Contributions to H NLO ij can be represented either by (1) virtual corrections involving loop diagrams and (2) real corrections involving the emission of an additional parton. In addition to the gg-channel, we will need to consider the tree-level contributions originating from the qq and qg channels as these channels contribute at order α 3 s . One calls the cross-section inclusive if one considers the process ij → η c + X where we are only interested in the production of η c and X can stand for any additional emitted parton. In contrast to this, for exclusive cross-sections one explicitly defines the final state X, i.e. one observes all particles in the final state.

Returning to Eq. 2.1.1, the PDFs have a dependence on the factorisation scale µ F which is governed by the DGLAP equations. As we shall see later, this scale will play a crucial role. The factorisation scale µ F essentially sets the scale that separates out the perturbative part from the non-perturbative initial state. The partonic cross-section depends on both the renormalisation scale µ R and the factorisation scale µ F . While the implicit µ R -dependence in σij is present in the running of the strong coupling constant α s , the explicit dependence of both µ R and µ F only occurs in higher-order corrections within the framework of dimensional regularisation where they appear in ratios with other dimensionful parameters.

Dimensional regularisation is the standard technique to regulate divergences that may arise in individual contributions such as real and virtual corrections but must cancel in their sum. This is achieved by shifting the dimension from D = 4 to D = 4-2 such that the regulator appears in poles and thus makes the singularity structure explicit. We usually encounter two types of divergences, ultra-violet (UV) and infra-red (IR) singularities. UV divergences are associated to singularities in the high-energy region and occur only in virtual diagrams. These are removed via the procedure of renormalisation. On the other hand, IR singularities are present in both virtual and real corrections and are singularities in the low-energy region. Within a given partonic channel, the IR singularities must cancel between the virtual and the real corrections. However in hadro-production processes, one may be left with additional IR singularities that are associated to the initial states. These are removed via the so-called Altarelli-Parisi counterterms [START_REF] Altarelli | Asymptotic Freedom in Parton Language[END_REF] to absorb the divergences inside the PDFs. It is precisely this Altarelli-Parisi counterterm that will make the µ F -dependence explicit in the partonic cross-section. We will see later that the introduction of this counterterm may give rise to some unphysical and negative cross-sections.

LO contribution

At leading-order, the cross-section can be described by the tree-level gluon-fusion process represented by the diagram shown in Fig. 2.1a and its charge conjugate where the fermion lines are inverted. We will in this section briefly introduce the procedure to compute quarkonium hadro-production at leading-order with the introduction of the necessary spin-and colourprojection operators and the non-perturbative wavefunction to describe the bound state. For the LO, we thus consider the gluon fusion process,

g(k 1 ) + g(k 2 ) → η Q (P ), (2.2.1) 
where k i are the momenta of the initial-state gluons and P is the momentum of the pseudoscalar quarkonium state. As already mentioned in the main introduction of this thesis, the quarkonium is a bound state consisting of the two heavy quarks. As such, the amplitude for quarkonium production can be computed by evaluating the amplitude for the production of a heavy quark pair,

g(k 1 ) + g(k 2 ) → Q(p 1 )Q(p 2 ), (2.2.2) 
where p 1 and p 2 are the momenta of the heavy quark and its anti-quark. Within the coloursinglet model, we consider here only the leading Fock state of the bound state and as such we set for the relative velocity between the heavy quarks v = 0. We therefore have with momentum conservation that,

k 1 + k 2 = P = 2p, p = p 1 = p 2 , (2.2.3) 
with the following on-shell relations,

k 2 1 = 0, k 2 2 = 0, p 2 = m 2 Q , (2.2.4) 
where m Q is the mass of the heavy quark. In order to compute the pseudo-scalar quarkonium amplitude, one needs to compute a QQ pair at threshold with the following kinematics,

ŝ = (k 1 + k 2 ) 2 = (p 1 + p 2 ) 2 = M 2 Q = 4m 2 Q , t = (k 1 -p) 2 = -m 2 Q , û = (k 2 -p) 2 = -m 2 Q , (2.2.5) 
where M Q is the mass of the quarkonium state.

In addition, the spins of the heavy quarks s 1 and s 2 need to be projected onto a spin-singlet state 1 S 0 . For this, one needs to amputate the fermion spinors v(p, s 2 ) and u(p, s 1 ) and replace these by,

s 1 ,s 2 C(s 1 , s 2 )v(p, s 2 )u(p, s 1 ) = - 1 √ 2 γ 5 / p + m Q , (2.2.6) 
where C(s 1 , s 2 ) are the Clebsch-Gordan coefficients for the pseudo-scalar state 1 √ 2 (↑↓ -↓↑). Via the cyclicity property of the trace one can replace the spinors by this projection on the RHS above and evaluate the trace involving the Dirac matrices. We note the presence of the γ 5 which we will explain in more detail in the next section.

As we consider the quarkonium state to be in a colour-singlet state, we will need to project the heavy-quark pair onto the same configuration. For completeness, we give below the colourprojection operators for both colour-singlet and colour-octet configurations,

P colour = colour-singlet δ ij √ Nc , colour-octet √ 2 t c ij , (2.2.7) 
where i and j are the colours of the heavy quark states and N c = 3 is the number of colours in the triplet representation of the group SU (3) governing QCD. In the case where one would like to project onto a colour-octet state, c is the colour of the quarkonium state in the octet representation. However here, we only deal with the colour-singlet state. As such the resulting colour-factor of the matrix element is the same as one would encounter in Higgs production via gluon fusion. With this, one obtains a trace involving the colour matrices of the two initial-state gluons with colours a and b as,

Tr t a t b = T F δ ab where T F = 1 2 .
(2.2.8)

In addition to the projectors above, we need to keep in mind that the single-particle quarkonium state in fact originates from a two-particle final state at threshold. With this, one needs to introduce an additional factor describing the bound state. This factor is obtained by integrating over the second particle in the final state at amplitude squared level. One obtains the factor |R 0 | 2 /(2πM Q ), where R 0 is the so-called radial wavefunction at the origin which is a non-perturbative object and M Q is the mass of the quarkonium state. At amplitude level, we can therefore effectively multiply with,

P bound-state = |R 0 | 4πm Q , (2.2.9) 
where we have used the fact that the mass of the bound state is twice the mass of the heavy quark M Q = 2m Q . For completeness, we remark here that above m Q is the renormalised mass rather than the bare one.

In NRQCD, the non-perturbative part is characterised by the LDME (Long-Distance-Matrix element). One can relate the LDME O

1 S

[1] 0 η Q to the radial wavefunction at the origin with,

O 1 S [1] 0 η Q = 2 (2J + 1) N c |R 0 | 2 4π , ψ 0 = R 0 √ 4π , (2.2.10) 
where above we set J = 0 for the pseudo-scalar case. We mention here that the radial wavefunction R 0 is identical for η c and J/ψ by virtue of the heavy-quark spin symmetry up to v 2 corrections. With the total angular momentum being J = 1 for the J/ψ, its LDME is larger by factor of three. We have for completeness also mentioned for S-waves the relation between the wavefunction at the origin ψ 0 to the aforementioned radial wavefunction R 0 .

With this, we are now in a position to evaluate the matrix element for the leading-order contribution, where we note the presence of the anti-symmetric Levi-Civita tensor µνρσ which is a direct consequence of the final state being in a pseudo-scalar spin-singlet state. The ε µ are the polarisation vectors of the initial-state gluons. At matrix element squared level, we thus obtain that,

M LO = α s π M (0) = i √ 2πδ ab |R 0 | m 5/2 Q √ N c α s µνρσ ε µ (k 1 )ε ν (k 2 )k ρ, 1 k σ 2 (2.2.11)
|M (0) | 2 = N 2 c -1 N c 16π 3 |R 0 | 2 m Q (1 -) (1 -2 ) , (2.2.12) 
where we have summed over the initial-state polarisation vectors and made use of the fact that,

δ ab δ ab = N 2 c -1, g µµ g νν µνρσ µ ν ρ σ k ρ 1 k σ 2 k ρ 1 k σ 2 = 8m 4 Q (1 -) (1 -2 ) . (2.2.13)
Above we have summed in D = 4 -2 dimensions where is the regulator for potential divergences. Since there are no divergences present, we can set → 0 at the end. In addition to this, we have to normalise the matrix element squared by the helicity and colour configurations of the initial-state gluons. The partonic cross-section for the leading-order exists at only threshold kinematics and this introduces the delta function,

σLO,gg→η Q = σ(0) δ(1 -z) (2.2.14)
where z = M 2 Q /ŝ and,

σ(0) = π M 2 Q α s π 2 1 (N 2 c -1) 2 (2 -2 ) 2 |M (0) | 2 .
(2.2.15)

We have outlined here briefly the LO contribution to the partonic cross-section which will be later convoluted with the PDFs. We will in the next sections outline the procedure to compute the higher-order corrections where we will need to keep non-zero due to the presence of divergences.

Virtual corrections 2.3.1 One-loop amplitude

At next-to-leading order, the cross-section for η Q production receives contributions from both virtual and real diagrams in the gg-channel. In this section, we will focus on the virtual correction and show how to perform the renormalisation at one-loop level. We will discuss in detail how to compute integrals in Part II of this thesis. The expressions for the integrals used in the section were adapted from Ref. [START_REF] Krämer | QCD corrections to inelastic J / psi photoproduction[END_REF][START_REF] Maltoni | PhD thesis: Quarkonium Phenomenology[END_REF]. In order to compute the partonic cross-section at one-loop level, we will need to integrate the matrix element squared |M| 2 over the one-particle phase-space as was done for the LO in the previous section. We will discuss the phase-space integration for a two-particle final state in the next section. In particular for the virtual correction, we need to consider all contributions of the matrix element squared that can contribute to order α s compared to the LO contribution,

M gg→η Q = α s π M (0) + α s π 2 M (1) + O α 2 s , (2.3.1) 
where above we have factorised out the coupling. M (0) is the tree-level amplitude and M (1) represents the sum of all one-loop amplitudes for the kinematics gg → η Q . Thus, at the level of matrix element squared, we need to consider for the NLO contribution,

|M| 2 = α s π 2 |M (0) | 2 + α s π 3 M (0) M (1) † + M (0) † M (1) , = α s π 2 |M (0) | 2 + α s π 3 2 M (0) M (1) † , (2.3.2)
where the first term represents the LO and the second term the NLO virtual contribution. We note that for the NLO virtual contribition, one only needs the real part of the product between the tree-level and the one-loop amplitude.

While LO contributions can be represented by tree-level graphs as shown in Fig. 2.1a, NLO contributions can be described by one-loop diagrams as in Fig. 2.1b. The addition of an gluon propagator in the virtual contribution to form a loop yields with the two additional couplings an additional power in α s . Comparatively to the real emission graphs which we will show later on, the additional gluon propagator might be seen as a gluon emission which is absorbed by another propagator within the same diagram. The loop that is formed represents in a certain sense an internal degree of freedom that has to be integrated out in a Feynman integral. We will give a proper introduction to Feynman integrals in Part II of this thesis. Here we give a brief definition of one-loop Feynman integrals with n propagators,

µ 4-D ∞ -∞ d D q (2π) D 1 D 1 ...D n , (2.3.3) 
where above q is the loop momentum that has to be integrated out and the D i represent the propagators that contain loop momentum and are of type

D i = (q -k i ) 2 -m 2 i
where k i represents the sum of all external momenta for this propagator and m i is the internal mass. As we are working in dimensional regularisation with D = 4 -2 , we have introduced the additional factor of µ 4-D in order to keep the dimension the same. As we shall see in Part II of this thesis, this additional factor will in fact come from the renormalisation of the coupling. As Feynman integrals are integrated over the full phase-space, these may exhibit both UV and IR singularities. As aforementioned, UV singularities are associated to high-energy phase-space regions while IR singularities originate from low-energy phase-space points. At one-loop level, only tadpole and bubble integrals, i.e. integrals containing only one or two propagators respectively do exhibit UV singularities in D = 4 -2 . This can be seen by dimensional counting. We illustrate this with the following Feynman integral below,

µ 2 ∞ -∞ d 4-2 q (2π) 4-2 1 q 2 (q + p) 2 -m 2 = n 1 UV + 2 with n = i 16π 2 µ 2 m 2 (4π) Γ(1 + ), (2.3.4)
where n is a global normalisation factor and p is the external momentum with on-shell mass p 2 = m 2 . We see that the mass dimension in the denominator is 4 and the one in the integration measure 4 -2 , thus after performing the Wick rotation to go to Euclidean metric in the highenergy region q → ∞ the integral scales as ∝ dq q 1+2 and thus integrating it out, we obtain the UV pole 1

UV . On a side note, we remark here that due to the fact that for the NLO we only need the real part of the product between the tree-level and the one-loop amplitude, after factorising out the global factor n indeed only the real part of the Feynman integral contributes to the NLO cross-section. For this purpose and as the integrals used in the section from Ref. [START_REF] Krämer | QCD corrections to inelastic J / psi photoproduction[END_REF][START_REF] Maltoni | PhD thesis: Quarkonium Phenomenology[END_REF] only contain the real part, for all results presented here at amplitude level we show only the real part. As for the imaginary part of the amplitude, we have computed these explicitly in Part II of this thesis and we guide the reader to this part. IR singularities on the other hand are singularities in the low-energy region and as such can only occur in some specific configuration involving massless propagators.

Passarino-Veltman decomposition and bare amplitude

When computing Feynman diagrams, we usually encounter traces involving Dirac matrices originating from tracing out the heavy quark line. The trace comes from the projection operator in NRQCD where we have replaced the final state fermion spinors u and v by a factor γ 5 / p + m . The γ 5 factor is a strictly D = 4 object and thus in dimensional regularisation ambiguities related to traces involving the γ 5 may happen. Following the 't Hooft-Veltman scheme [START_REF] Hooft | Regularization and Renormalization of Gauge Fields[END_REF], we decompose the Dirac matrices γ µ into 4and D -4-dimensional components with γ µ = γµ and γ µ = γ µ respectively. We then define the anti-commutation relation as follows,

{γ µ , γ 5 } = 0 µ ∈ 0, 1, 2, 3 2 γ µ γ 5 µ > 3.
(2.3.5)

The γ 5 matrix is then defined using the 4-dimensional components of the Dirac matrices as,

γ 5 = i 4! µνρσ γµ γν γρ γσ . (2.3.6)
However as there is only a single γ 5 present in the trace, we find that there is no difference between the 't Hooft-Veltman scheme and naive dimensional regularisation.

Following the Feynman rules, fermion propagators usually exhibit numerator terms involving a loop momentum and thus can lead to so-called tensor integrals. Such tensor integrals involving a loop momentum q µ in the numerator can be treated via the Passarino-Veltman (PA) approach [START_REF] Passarino | One Loop Corrections for e+ e-Annihilation Into mu+ mu-in the Weinberg Model[END_REF]. We give a here a very brief presentation on how to compute tensor integrals via this technique. We consider the following tensor integral B µ ,

B µ = µ 2 ∞ -∞ d 4-2 q (2π) 4-2 q µ q 2 (q + p) 2 -m 2 .
(2.3.7)

As the integrand contains a vector q µ in the numerator the integral itself must depend on a vector. In fact, the only vector that it could depend on is the external momentum p µ that is present in this integral. Thus we have that,

B µ = p µ B 1 , (2.3.8) 
where we now need to determine the coefficient B 1 . The proper way to construct the coefficient would be to contract both sides of the equation above with p µ to yield,

p µ B µ = p 2 B 1 µ 2 ∞ -∞ d 4-2 q (2π) 4-2 p µ q µ q 2 (q + p) 2 -m 2 = p 2 B 1 (2.3.9)
We note that we can express p µ q µ as a linear combination of both propagators,

p µ q µ = 1 2 (q + p) 2 -m 2 - 1 2 q 2 , (2.3.10)
where we have made use of the on-shell property p 2 = m 2 . As such we can plug this in Eq. 2.3.9 and we obtain,

µ 2 ∞ -∞ d 4-2 q (2π) 4-2 1 2 (q + p) 2 -m 2 -1 2 q 2 q 2 (q + p) 2 -m 2 = p 2 B 1 , µ 2 ∞ -∞ d 4-2 q (2π) 4-2 1 2   1 q 2 - 1 (q + p) 2 -m 2   = p 2 B 1 . (2.3.11) 
As we shall see in more detail in Part II, the first term vanishes in the framework of dimensional regularisation as it has no scale. However in the computation here, we will keep track of it as the massless tadpole A(0) can be decomposed into a UV pole and an IR pole and as such we wish to make the dependence on the IR/UV pole structure explicit in our computation. The second term is a massive tadpole integral A m 2 with only a single propagator and thus we can solve for B 1 ,

B 1 = 1 2m 2 A(0) -A m 2 , (2.3.12) 
to obtain our tensor integral

B µ = p µ 1 2m 2 A(0) -A m 2 . (2.3.13)
We have shown above how to express a tensor integral in terms of external vectors with scalar integrals as precoefficient. In a similar fashion one can compute Rank-2 tensor integrals involving two vectors q µ q ν via a parametrisation,

B µν = g µν B 21 + p µ p ν B 22 , (2.3.14)
where above g µν is the space-time metric and B 21 , B 22 are the coefficients to be determined. As elaborated, these parametrisations can be deduced from Lorentz-invariance. As such only external vectors present in the propagators and other tensor structures as g µν can be used in the parametrisation. For triangle integrals involving three propagators and three external legs of which only two are independent by momentum conservation one can make a similar parametrisation involving two momenta p 1 and p 2 now,

C µ = p µ 1 C 11 + p µ 2 C 12 (2.3.15) C µν = g µν C 21 + p µ 1 p ν 1 C 22 + p µ 2 p ν 2 C 23 + (p µ 1 p ν 2 + p µ 2 p ν 1 ) C 24 .
(2.3.16)

In order to determine the coefficients one proceeds systematically as shown with the first example. In the one-loop amplitude computation, we have applied the Passarino-Veltman decomposition and the decomposition involved 16 scalar integrals. These scalar integrals involved seven bubble integrals, six triangle integrals and three box-type integrals. We will see later in Part II of this thesis, that with modern and cutting-edge techniques the one-loop amplitude can be decomposed to just four simple integrals.

Using the 16 scalar integrals from Passarino-Veltman decomposition, the unrenormalised amplitude then takes the following form,

α s π 2 M (1) unren. = α s π 2 M (0) ñ - 3 2 2 IR + 1 IR 3 log 2 - 5 6 + 5 6 1 UV + π 2 3v - 11 6 + 19 24 π 2 -3 log 2 2 , (2.3.17) 
where ñ = µ 2 m 2 (4π) Γ(1 + ). We have above already set the colour structures to C A = 3

and C F = 4 3 . For the exact colour structure at one-loop level, we guide the reader to Part II of this thesis. We see in Eq. 2.3.17 the presence of the double IR-pole. This pole is associated to double soft and collinear divergences. Soft divergences arise in the low-energy region of the loop integral while collinear singularities arise when two particles become collinear to each other. Each type yields a simple pole such that when both singularity structures occur at the same time, one obtains a double pole. The simple IR-pole in Eq. 2.3.17 can be either soft or collinear and the remaining pole is associated to the UV divergences which we will shortly remove with the procedure of renormalisation. We would like to make two remarks at this stage. First, we see that at one-loop level the UV and the IR poles do not mix, this is not surprising as the singularities are associated to opposite energy regions hence cannot occur simultaneously. Second, we have not yet mentioned the Coulomb singularity that arises from the exchange of a soft gluon between the heavy-quark lines. In fact, this Coulomb singularity is proportional to

π 2
2v where 2v is the relative momentum between the two heavy-quark lines. It can be shown that this Coulomb singularity with v → 0 can be absorbed into the non-perturbative bound-state [START_REF] Bodwin | Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium[END_REF][START_REF] Petrelli | NLO production and decay of quarkonium[END_REF][START_REF] Maltoni | PhD thesis: Quarkonium Phenomenology[END_REF]. Hence, in the following we can just drop this term. In fact, in Part II of the thesis we will show how the Coulomb singularity can be removed already at integral level.

UV renormalisation

The UV divergences will be removed via the procedure of renormalisation where we will need to consider diagrams with vertex counterterms as in Fig. 2.2a and fermion propagator counterterms as in Fig. 2.2b. We use here the on-shell (OS) renormalisation scheme for both the quark and gluon wavefunctions with δZ OS 2 and δZ OS 3 respectively and for the heavy-quark mass counterterm δZ OS m . For the coupling counterterm δZ MS g however, we employ the MS-scheme and 

α s π δZ OS 2 = -C F 1 UV + 5 6 1 IR - β 0 4 1 IR . ( 2 

.3.19)

A few remarks are in order. We see that above the counterterm contributions for δZ OS 2 and δZ OS m exhibit both the dimensionful factor µ 2 R m 2 while this factor is absent in the coupling counterterm δZ MS g contribution. This is straightforward to interpret. In contrast to both the heavy quark wavefunction and the mass counterterm being connected to the mass of the heavy quark, the coupling constant cannot depend on any mass or scale thus this factor is absent there. Comparing Eq. 2.3.19 with Eq. 2.3.17, we immediately see that the UV divergence indeed cancel out. As a matter of fact, the equivalent IR factor with the same coefficient vanishes as well. This cancellation is an artefact of the Feynman bubble integral that has no scale and thus should vanish in dimensional regularisation. However it is possible to compute the integral explicitly and assign different labels for , UV for the high-energy region and IR for the low-energy region such that the integral becomes 1

UV -1 IR . Here, it is beneficial to keep track of the different divergence structures in order to understand their origin. We mention here, that strictly speaking both UV and IR originate from the same dimensional regulator in D = 4 -2 and as such both are equivalent. However one can assign different labels as these singularities originate from different phase-space points. In Feynman integral calculation, one can make the consideration that ( UV ) > 0 and ( IR ) < 0. The same applies for the gluon wavefunction counterterm δZ OS 3 . Combining both the unrenormalised amplitude with the counterterm contribution we obtain that,

α s π 2 M (1) ren. = α s π 2 M (1) unren. + M (1) CT , = α s π 2 M (0) Γ(1 + ) (4π) - 3 2 1 2 IR + 1 IR 3 log 2 - β 0 4 - 3 2 log µ 2 R m 2 + - 11 6 + 19 24 π 2 -3 log 2 2 + 3 log 2 log µ 2 R m 2 - 3 4 log 2 µ 2 R m 2 , (2.3.20)
where above we have performed the expansion in

µ 2 R m 2
in order to indicate that the β 0 function does not carry any log

µ 2 R m 2 term.
All remaining singularities are IR divergences and must cancel against the singularities originating from the real-emission diagrams. As indicated in Sec. 2.1, one will be left with the remaining IR collinear singularities, in the virtual part it will be the β 0 function. As we will see later this singularity is associated to the initial-state divergence and will thus be absorbed into the so-called Altarelli-Parisi counterterm. To go from matrix element squared to the cross-section, we will need to average over the initial-state colours and spin polarisations of the gluons and we perform the one-particle phase-space integration to obtain the virtual part of the partonic cross-section,

σgg→η Q = δ(1 -z)σ (0) 1 + α s π K (1) virtual , (2.3.21) 
where σ(0) is the LO contribution shown in the previous section in Eq. 2.2.15 and K

virtual is the virtual relative contribution,

K (1) virtual = Γ(1 + ) (4π) -3 1 2 IR + 1 IR 6 log 2 - β 0 2 -3 log µ 2 R m 2 + - 11 3 + 19 12 π 2 -6 log 2 2 + 6 log 2 log µ 2 R m 2 - 3 2 log 2 µ 2 R m 2 .
(2.3.22)

In Eq. 2.3.21 we have used δ(1z) where z = 4m 2 ŝ and ŝ = sx 1 x 2 with s being the invariant mass of the hadronic collision and x 1 , x 2 are the momenta fraction of the partons. When convoluting with the PDFs we will need to integrate over x 1 and x 2 . This will be explained in the next section.

Dipole picture

Before moving to the real emission diagrams, in order to understand the IR pole structure better, we briefly consider the process γγ → η Q . In this channel the η Q can only exist in coloursinglet state. Assuming a priori that that IR pole structures originating from the virtual should cancel against the real emission graphs, we can consider the graph in Fig. 2.3a. As the emitted gluon carries a colour charge in contrast to the initial-state photons, we can already conclude from the colour structure that all real emission diagrams involving a gluon must vanish. This Performing an explict computation, and performing the renormalisation in a similar fashion as before we obtain the one-loop amplitude with,

α s π M (1),γγ→η Q ren. = α s π M (0),γγ→η Q π 2 6 - 10 3 . (2.3.23)
We note the absence of any IR-divergence here which is consistent with the fact, that the process η Q → γγ is in fact an exclusive process and thus measureable. Individual loop contributions indeed do exhibit IR singularities, however due to the dipole nature of the quarkonium state, which is in a sense a local factorised state, all divergence cancel between the diagrams. In order to illustrate this, we consider the decomposition of the renormalised amplitude to the vertex correction contribution, the fermion self-energy (s.e.) corrections and the Coulomb correction as in Fig. 2.3b,

α s π M (1),γγ→η Q ren. | vert. cor. = α s π M (0),γγ→η Q - 1 IR 4 3 + π 2 6 - 8 3 - 8 3 log 2 - 4 3 log µ 2 R m 2 , α s π M (1),γγ→η Q ren. | ferm. s.e. = α s π M (0),γγ→η Q 1 IR 2 3 + 2 3 + 8 3 log 2 + 2 3 log µ 2 R m 2 , α s π M (1),γγ→η Q ren. | Coul. cor. = α s π M (0),γγ→η Q 1 IR 2 3 + π 2 3v - 4 3 + 2 3 log µ 2 R m 2 , (2.3.24) 
where above we can as before drop the Coulomb singularity π 2 2v here. We see from the equation above that the IR singularities indeed cancel between the three contributions to obtain the finite piece in Eq. 2.3.23. We will return to this feature again in Part II of the thesis. On a side note we remark that the one-loop amplitude for the process γγ → η Q does not depend explicitly on the renormalisation scale µ 2 R which is not surprising as the amplitude is divergent-free hence there cannot be any dimensional factor involving the renormalisation scale which is only implicitly present in the running of coupling constant α s . We will in the next section introduce the real emission diagrams and probe whether the dipole mechanism comes at work again in the cancellation of the divergence in the gg-channel. 
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Real corrections & IR singularity cancellation

Kinematics and matrix element squared

Real-emission contributions can be represented by diagrams with gluon emissions from the heavy-quark line as in Fig. 2.4a, by gluon emissions from the initial-state gluons as shown in Fig. 2.4b and by graphs with triple gluon vertices as in Fig. 2.4c. We consider the process,

g(k 1 ) + g(k 2 ) → η Q (P ) + g(k 3 ). (2.4.1) 
As we have four independent external legs involved, we will have to define the Mandelstam variables with ŝ, t and û as,

ŝ = (k 1 + k 2 ) 2 , t = (k 1 -P ) 2 , û = (k 1 -k 3 ) 2 , (2.4.2)
where k 1 , k 2 are the momenta of the initial state gluons as labelled in the graphs, k 3 is the emitted gluon and P = 2p is the momentum of the quarkonium bound state. In contrast to the virtual contribution, the divergences for the real-emission diagrams only reveal themselves after taking the phase-space integration and, as such, we will need the matrix element squared for this. We would like to remark at this stage that, in the Feynman gauge, unphysical polarisation states are present in graphs involving the initial-state gluons with triple gluon vertices as in Fig. 2.4b and Fig. 2.4c. These unphysical polarisation vectors are removed with the introduction of additional diagrams involving ghost particles as in Fig. 2.5. For completeness, we where above the colour structure originated from the square of the anti-symmetric colour factor f abc with the colour charges a, b and c being the one for the two initial-state and the final-state gluon. In addition, we have made use of the sum relation between the Mandelstam variable and the on-shell masses of the legs with ŝ = 4m 2 -tû. As aforementioned, the singularity structure for the real corrections only reveal themselves after taking the phase-space integration. Inspecting Fig. 2.4.3, we note that the denominator contains poles at t = 0 and û = 0 which precisely correspond to the collinear limit when either t → 0 and û → 0. The partonic cross-section for the real emission diagram can thus be written as,

k 1 k 2 p p k 3 k 1 k 2 p p k 3
|M gg→η Q g | 2 = 256α 2 s π 3 |R 0 | 2 m α s π N 2 c -1 (-1 + 2 ) tû t -4m 2 2 (û -4m 2 ) 2 t + û 2 4m 2 -t -û 4096m 12 t + û 2 (-1 + ) + t2 + tû + û2 4 (-1 + ) -2048m 10 t + û 2 t2 + 3 tû + 2û 2 (-1 + ) -2m 2 t + û t2 + tû + û2 2 8 t2 (-1 + ) + 8û 2 (-1 + ) + tû (-12 + (7 -3 ) ) -128m 8 -16 t4 (-1 + ) -16û 4 (- 1 
σgg→η Q g = 1 2ŝ 1 8πŝ dt Γ(1 -) 4π ŝ µ 2 R û t |M gg→η Q g | 2 , (2.4.4)
where |M gg→η Q g | 2 is the matrix element squared averaged over the initial state colour and helicity states,

|M gg→η Q g | 2 = 1 (N 2 c -1) 2 1 (2 -2 ) 2 |M gg→η Q g | 2 .
(2.4.5)

Preliminaries on phase-space integration

As what will follow for the phase-space integration, it will be instructive to perform a variables transformation and define Mandelstam variables with,

ŝ = 4m 2 z , t = - ŝ 2 (1 -z) (1 -y θ ) , û = - ŝ 2 (1 -z) (1 + y θ ) , τ 0 = 4m 2 s , (2.4.6) 
where the two-particle phase-space integration now takes the following form,

dΦ (2) (z, y) = 4 Γ(1 -) 4πµ 2 R ŝ 1 16π (1 -z) 1-2 1 -y 2 θ -dy θ , (2.4.7) 
such that the cross-section can be written as,

σgg→η Q g = 1 2ŝ 1 -1 dΦ (2) |M gg→η Q g | 2 , = 1 2ŝ 4 Γ(1 -) 4πµ 2 R ŝ 1 16π 1 -1 dy θ (1 -z) 1-2 1 -y 2 θ -|M gg→η Q g | 2 (2.4.8)
where we will need to integrate y θ in the region [-1, 1], where y θ = cos θ with θ being the angle between the momenta k 2 and k 3 . With |M gg→η Q g | 2 containing poles at t → 0 and û → 0 it will be useful to factorise out the singularity structure and we define a divergent-free quantity B as,

B = ût |M gg→η Q g | 2 , (2.4.9) 
such that the singular structure of |M gg→η Q g | 2 is manifest in the factor 1y 2 θ -1-with the regulator being present in the exponent,

σgg→η Q g = 2 ŝ3 4 Γ(1 -) 4πµ 2 R ŝ 1 16π (1 -z) -1-2 1 -1 dy θ 1 -y 2 θ -1-B(z, y θ ).
(2.4.10)

From Eq. 2.4.6 it is clear that both t and û will vanish at the end points of the integration y θ → ±1 and in addition at the point z = 1 which is the kinematical point close to threshold where the energy of the emitted gluon vanishes. In order to make the singularity structure manifest in the equation above, we will need to make use of some identities here,

(1 -z) -1-2 = - 1 2 δ(1 -z) + 1 1 -z + -2 log (1 -z) 1 -z + + O 2 , (2.4.11) 1 -y 2 θ -1-= -[δ(1 -y θ ) + δ(1 + y θ )] 4 - 2 + 1 2 1 1 -y θ + + 1 1 + y θ + + O( ), (2.4.12)
where we introduced above the plus distributions that acts on a function f as,

1 0 dz (g(z)) + f (z) = 1 0 dz (g(z)) [f (z) -f (1)] , (2.4.13) 1 -1 dy θ 1 1 ± y θ + f (y θ ) = 1 -1 dy θ 1 1 ± y θ [f (y θ ) -f (∓1)] , (2.4.14) 
where g(z) is a function that is singular at z = 1 and f (z) is regular there. These plus distribution functions have been introduced to ensure that the integral is finite and convergent. A way to see the effect of the plus distribution is to keep in mind that the function f (z) is regular and finite at any z. If the distribution function g(z) = 1 1-z contains a pole at z = 1, integrating in z from [0, 1] over the regular function f would make the integral divergent. In order to regulate it, we subtract the value f (1) such that the integrand vanishes when z → 1 thus making the integral convergent. The singularity is then manifest with a simple pole in the regulator in the first term of the identity in Eq. 2.4.11. Two additional remarks are in order at this stage. It is clear that we would integrate in the entire y θ -region to perform the phase-space integration to obtain the partonic cross-section in Eq. 2.4.10. However when we come to the rapidity differential cross-section in the next chapter, we will encounter situations where we won't integrate over the full range [-1, 1]. In a similar way when we fold the partonic cross-section with the parton distribution function as in Eq. 2.1.1, we will not integrate z from [START_REF][END_REF]1]. Following the definition of z in Eq. 2.4.6, the lower limit z lower represents in fact the maximal partonic energy ŝ that the system can take while the upper limit is the soft or threshold limit where the energy of the system approaches the invariant mass of the quarkonium state. As the maximal partonic energy is clearly bounded by the hadronic energy of the system √ s, we will need integrate z in the region from [τ 0 , 1] where we have defined τ 0 in Eq. 2.4.6. However, the plus distributions are only defined over the entire range and act only when the singular point is covered in the integration range and thus we will need to make some modifications and replacements as,

1 1 -z + = 1 1 -z τ 0 + log (1 -τ 0 )δ(1 -z), (2.4.15) 
where our new distribution function is defined in the range [τ 0 , 1] as,

1 τ 0 dz 1 1 -z τ 0 f (z) = 1 τ 0 dz f (z) -f (1) 1 -z . (2.4.16)
Similarly, we have that for the second distribution function,

log (1 -z) 1 -z + = log (1 -z) 1 -z τ 0 + 1 2 log 2 (1 -τ 0 ) δ(1 -z).
(2.4.17)

We have given the derivation of these identities in Appendix A. We will in the next chapter on the computation of the rapidity-differential cross-section return to the plus distribution and show how to actually derive the identities in Eq. 2.4.11 and Eq. 2.4.12 as we will need to go to one order higher in there.

IR singularity structure

With the help of these identities we are now in a position to split the partonic cross-section into three regions, (1) soft and double soft-collinear singularities in the limit z → 1, (2) hard collinear singularities in the limits y θ → ±1 and (3) the finite piece. In order to make the individual singularity structures manifest, we use both the first and the second identities and need to extract the relevant contributions,

σgg→η Q g soft = -C 1 2 IR δ(1 -z) 1 -1 dy θ 1 -y 2 θ -1-B(z = 1, y θ ), (2.4.18) σgg→η Q g hard col. y θ =±1 = -C 4 - 2 IR 1 1 -z + -2 log (1 -z) 1 -z + B(z, y θ = ±1), (2.4.19 
)

σgg→η Q g finite = C 2 1 1 -z + 1 -1 dy θ 1 1 -y θ + + 1 1 + y θ + B(z, y θ ), (2.4.20) 
with

C = 2 ŝ3 4 Γ(1 -) 4πµ 2 R ŝ 1 16π
.

(2.4.21)

The regularised matrix element B takes the following values at the special points z = 1 and

y θ = ±1, B(z = 1, y θ ) = B 0 , (2.4.22) B(z, y θ = ±1) = B 0 (1 + (-1 + z) z) 2 z 3 (2.4.23)
with,

B 0 = 256α 2 s π 3 |R 0 | 2 m α s π N 2 c -1 (1 -) (1 -2 ) (N 2 c -1) 2 (2 -2 ) 2 4m 2 .
(2.4.24)

Coming back to the dipole picture from the previous section, considering only the diagrams where a gluon is emitted from the heavy quark line as in Fig. 2.4a and defining the corresponding regularised quantity as B dipole (z, y θ ), we find that,

B dipole (z = 1, y θ ) = 0, (2.4.25) B dipole (z, y θ = ±1) = 0, (2.4.26) 
thus confirming the dipole mechanism. We remark that individual diagrams may exhibit divergences that are however cancelled in their full sum. The graph in Fig. 2.4c equally vanishes in the soft and collinear limits. The vanishing in the soft limit z → 1 for the graph in Fig. 2.4c can be trivially deduced from the fact that we have a gluon propagator acting as a colour charge that needs to be removed with the emission of another gluon emission from the heavy quark line. Collinear singularities arise when two massless particles become collinear to each other and with massless particle travelling at the same speed of light c, one cannot distinguish between them. Both Fig. 2.4a and Fig. 2.4c do not exhibit collinear divergences as the emitted gluon is connected to the heavy quark line and thus these singularities are absent. The real correction divergences thus originate from the initial-state gluon emission graphs as in Fig. 2.4b and their interference terms. We will now state the result for the three regions for the partonic cross-section,

σgg→η Q g soft = -C 1 2 IR δ(1 -z) 4 -Γ(1 -)Γ(-) Γ(1 -2 ) B 0 , (2.4.27) σgg→η Q g hard col. y θ =±1 = -C 4 - 2 IR 1 1 -z + -2 log (1 -z) 1 -z + B 0 b collinear z 3 , (2.4.28) σgg→η Q g finite = C 2 1 1 -z + 1 -1 dy θ 1 1 -y θ (B(z, y θ ) -B(z, y θ = 1)) + 1 1 + y θ (B(z, y θ ) -B(z, y θ = -1)) , = C 2 1 1 -z + B 0 b finite z 3 , (2.4.29) with b collinear = 1 -z + z 2 2 , (2.4.30) b finite = 1 6 (-1 + z) (1 + z) 3 12 + 11z 2 + 24z 3 -21z 4 -24z 5 + 9z 6 -11z 8 +12 -1 + 5z 2 + 2z 3 + z 4 + 3z 6 + 2z 7 log z .
(2.4.31)

Now combining all the regions and defining C = 4 -C, we have that,

σgg→η Q g =σ gg→η Q g soft + σgg→η Q g hard col. y θ =1 + σgg→η Q g hard col. y θ =-1 + σgg→η Q g finite = - C 2 B 0 δ(1 -z) -1 2 IR + π 2 6 + 2 b collinear z 3 1 1 -z + 1 IR -2 log (1 -z) 1 -z + - b finite z 3 1 1 -z + . (2.4.32) 
The first term in the brackets of Eq. 2.4.32 is proportional to δ(1z) and is the only term that can be cancelled against the virtual corrections in Eq. 2.3.21. Before performing the cancellation, let's express B 0 and C in quantities such that we can relate these to the leading-order coefficient σ(0) and making use of the fact that Γ(1

-)Γ(1 + ) = 1 + π 2 6 2 + O 3 , σgg→η Q g =Γ(1 + ) 4πµ 2 R ŝ α s π σ(0) δ(1 -z) 3 2 IR -π 2 -6 b collinear 1 1 -z + 1 IR -2 log (1 -z) 1 -z + + 3 b finite 1 1 -z + .
(2.4.33)

Comparing the coefficient of the double pole in Eq. 2.4.33 with the one in Eq. 2.3.22, we can indeed confirm that the soft-collinear singularity vanishes. In order to cancel the simple pole that is proportional to δ(1z) we will first need to expand the dimensionful factor µ R ŝ and set ŝ = 4m 2 . The diligent reader will note the difference in the dimensionful factor in the virtual part being µ 2 R m 2 while the one here with

µ 2 R 4m 2 .
Taking this into account, we can cancel the remaining poles apart from the β 0 function and the combined virtual and real cross-section then takes the following form,

σvirtual+real =Γ(1 + ) (4π) α s π σ (0) δ(1 -z) - β 0 2 1 IR - 11 3 + 7 12 π 2 + 3 b finite 1 1 -z + -6 b collinear 1 1 -z + 1 IR + log µ 2 R ŝ -2 log (1 -z) 1 -z + .
(2.4.34)

Remaining singularities and AP counterterm

At this stage we are still left with two types of singularities, the one associated to the β 0 -function at z = 1 and the one associated to the hard-collinear singularity at z = 1. As shown before with the dipole picture, all corrections associated purely to the heavy-quark line are free from divergences. As such the remaining singularities are associated to the initial state radiative corrections and will be absorbed into the parton distribution functions. For this we define the so-called Altarelli-Parisi (AP) counterterms (CT) as [START_REF] Altarelli | Asymptotic Freedom in Parton Language[END_REF],

σAP-CT = 1 IR α s 2π 4πµ 2 R µ 2 F Γ(1 + ) σ(0) zP gg (z), (2.4.35) 
where P gg (z) is the splitting function and defined as,

P gg (z) =P gg + β 0 2 δ(1 -z), (2.4.36) 
P gg (z) =2C A 1 -z z + z (1 -z) + + z (1 -z) .
(2.4.37)

For each initial-state gluon, we will need the Altarelli-Parisi counterterm thus we will have to multiply the AP-counterterm by factor two for hadro-production. Comparing the coefficient of the β 0 -function, the poles cancel. As for the simple pole at z = 1, comparing the splitting function with the coefficent b collinear , we can indeed confirm that the collinear divergences cancel and we obtain that,

σ(1) =σ virtual+real + 2σ AP-CT =Γ(1 + ) (4π) α s π σ (0) δ(1 -z) - 11 3 + 7 12 π 2 + β 0 2 log µ 2 R µ 2 F +zP gg (z) log ŝ µ 2 F + 2z (1 -z) P gg (z) log (1 -z) 1 -z + + 3b finite 1 1 -z + , (2.4.38)
which is in agreement with the results available in the literature [START_REF] Kuhn | QCD corrections to toponium production at hadron colliders[END_REF][START_REF] Schuler | Quarkonium production and decays[END_REF][START_REF] Petrelli | NLO production and decay of quarkonium[END_REF]. A few remarks are in order at this stage. As mentioned before in the previous sections, the explicit µ F dependence came from the Altarelli-Parisi counterterm while the µ R dependence originated from the dimensionful factor of the phase-space integral. A physical interpretation of the scaledependence in the threshold part z = 1 are the vacuum polarisation contributions as shown in Fig. 2.6a. The factorisation scale µ F and the renormalisation scale µ R are essentially in a tradeoff to either absorb these contributions in the parton distribution function or in the partonic cross-section. The vertical red line in the figure illustrates this absorption by either side. For the η Q , the β 0 function is the only explicit source of n f which is the number of light-flavours.

The factorisation scale is also present in the real emission graph with P (z) as precoefficient. We will discuss in Section 4 a suitable criterion in the choice for µ F . Above in Eq. 2.4.38 the prefactors Γ(1 + ) (4π) are a consequence of dimensional regularisation and as the expression is now divergent-free, we can set → 0 to return to D = 4. The combined partonic cross-section for the gg-channel then reads, 

σgg→η Q +X =σ LO δ(1 -z) + α s π δ(1 -z) C F π 2 4 -5 + C A 1 + π 2 12 + β 0 2 log µ 2 R µ 2 F +zP gg (z) log ŝ µ 2 F + 2z (1 -z) P gg (z) log (1 -z) 1 -z + + C A b finite 1 1 -z + , (2.4.39) k 1 k 2 p p µ 2 F µ 2 R (a) k 1 k 2 p p k 3 (b) k 1 k 2 p p k 3 (c)

qgand qq-channel contributions

In addition to the gg-channel, at next-to-leading order we receive contributions from the treelevel processes qg → η Q q and qq → η Q g. The cross-section calculations in these channels follow in the same fashion as the one presented here. Hence, we will be brief and show the key differences to the gg-channel. The qg-channel contribution can be represented by diagrams as in Fig. 2.6b and exhibits only collinear singularities in the limit û → 0 which corresponds to the gluon propagator being on-shell. In the limit t → 0 however, the matrix element squared is finite. As for the qq-channel, the matrix element squared does not exhibit any singularities as the gluon is emitted from the heavy quark line. We collect below the matrix element squared for the two channels,

|M qg→η Q q | 2 = 128α 3 s π 2 |R 0 | 2 m N 2 c -1 2N c (-1 + 2 ) ŝ2 + t2 -ŝ + t 2 û ŝ + t 2 (2.4.40) |M qq→η Q g | 2 = 128α 3 s π 2 |R 0 | 2 m N 2 c -1 2N c (-1 + 2 ) -t2 -û2 + t + û 2 ŝ t + û 2 (2.4.41)
In the case of the qg-channel, the collinear singularity needs to be absorbed in the APcounterterm with the corresponding splitting function,

σAP-CT qg = 1 IR α s 2π 4πµ 2 R µ 2 F Γ(1 + ) σ(0) zP gq (z), (2.4.42) 
with

P gq (z) = C F 1 + (1 -z) 2 z . (2.4.43)
Applying the AP-counterterm for the qg-channel, we indeed cancel the collinear divergence present in the term σqg→η Q q hard col. y θ =-1 . We state below the final partonic cross-section results for the two channels,

σqg→η Q q = α s π σLO z 2 P gq (z) log ŝ µ 2 F + log (1 -z) 2 + C F z 2 2 -C F (1 -z) (1 -log z) ,
(2.4.44)

σqq→η Q g = α s π σLO 32 27 z 2 (1 -z) . (2.4.45)
As before, in Eq. 2.4.44 we note the presence of the µ F -dependence which comes from the expansion of the dimensionful parameter and is proportional to the splitting function. We also remark the addition factor log (1z) 2 . This term can be traced back to the phase-space integral where we had the factor (1z) -1-2 . Unlike the gg-channel, the qg-channel does not exhibit any soft singularities at z → 1 and therefore the identity in Eq. 2.4.11 is not needed. In the next section, we will convolute the partonic cross-sections with the PDFs.

Convolution with PDFs

In this section we will convolute the partonic cross-sections with the PDFs to obtain the hadronic cross-sections. Starting with Eq. 2.1.1 and defining,

τ = τ 0 z = x 1 x 2 , ỹ = 1 2 log x 1 x 2 , (2.5.1) 
where we used the fact that ŝ = sx 1 x 2 , such that x 1 and x 2 become with Jacobian J = 1,

x 1 = √ τ e ỹ, x 2 = √ τ e -ỹ . (2.5.2)
We can write for the leading-order contribution,

σ LO gg (s) = 1 0 1 0 dx 1 dx 2 f g (x 1 , µ F )f g (x 2 , µ F ) σLO δ(1 -z) = 1 τ 0 dτ ∂L gg ∂τ (τ, µ F ) σLO τ δ(τ -τ 0 ), = ∂L gg ∂τ (τ 0 , µ F ) σLO τ 0 , (2.5.3) 
where ∂Lgg ∂τ (τ, µ F ) is the differential gluon luminosity defined as,

∂L gg ∂τ (τ, µ F ) = -1 2 log τ 1 2 log τ dỹ f g √ τ e ỹ, µ F f g √ τ e -ỹ , µ F , (2.5.4) 
For the next-to-leading order contribution in this channel, we will need to take into account the plus distributions in the real emission part R(z),

σ NLO gg (s) = 1 0 1 0 dx 1 dx 2 f g (x 1 , µ F )f g (x 2 , µ F ) σgg→ηc+X (ŝ, µ R , µ F ) =σ LO τ 0 ∂L gg ∂τ (τ 0 , µ F ) 1 + α s π C F π 2 4 -5 + C A 1 + π 2 12 + β 0 2 log µ 2 R µ 2 F + α s π R(z) , (2.5.5) 2.5. CONVOLUTION WITH PDFS R(z) = 1 τ 0 dτ ∂L gg ∂τ (τ, µ F ) zP gg (z) + 2z (1 -z) P gg (z) log (1 -z) 1 -z + + C A b finite 1 1 -z + (2.5.6)
The plus distribution is only applicable when the integration variable is z. Therefore we will make use of Eq. 2.5.1 and express τ in terms of z where the corresponding Jacobian is J = τ 0 z 2 . We will expand out P gg and have that,

R(z) = 1 τ 0 dz τ 0 z 2 ∂L gg ∂τ τ 0 z , µ F zP gg (z) + 2z (1 -z) P gg (z) log (1 -z) 1 -z + + C A b finite 1 1 -z + , =C A 1 τ 0 dz τ 0 z 2 ∂L gg ∂τ τ 0 z , µ F 2 log 4m 2 zµ 2 F b collinear 1 1 -z + +4b collinear log (1 -z) 1 -z + + b finite 1 1 -z + , =C A 1 τ 0 dz τ 0 1 1 -z ∂L gg ∂τ τ 0 z , µ F 2 z 2 log 4m 2 zµ 2 F b collinear -2 log 4m 2 µ 2 F ∂L gg ∂τ (τ 0 , µ F ) + log (1 -z) 1 -z 4 z 2 b collinear ∂L gg ∂τ τ 0 z , µ F -4 ∂L gg ∂τ (τ 0 , µ F ) + 1 1 -z 1 z 2 b finite ∂L gg ∂τ τ 0 z , µ F -0 +δ(1 -z) ∂L gg ∂τ (τ 0 , µ F ) 2 log 4m 2 µ 2 F log (1 -τ 0 ) + 2 log 2 (1 -τ 0 ) , (2.5.7) 
where in the last line we have made use of the identities in Eq. 2.4.15 and Eq. 2.4.17 in order to take into the account the lower limit τ 0 rather than 0. We can now transform back to τ and the final result for the gg-channel then reads,

σ NLO gg (s) =σ LO τ 0 ∂L gg ∂τ (τ 0 , µ F ) 1 + α s π C F π 2 4 -5 + C A 1 + π 2 12 + β 0 2 log µ 2 R µ 2 F +2C A log (1 -τ 0 ) 2 + log (1 -τ 0 ) log 4m 2 µ 2 F + α s π C A 1 τ 0 dτ b finite 1 -z ∂L gg ∂τ (τ, µ F ) + 2 1 1 -z ∂L gg ∂τ (τ, µ F ) log 4m 2 zµ 2 F b collinear -z 2 log 4m 2 µ 2 F ∂L gg ∂τ (τ 0 , µ F ) +4 log (1 -z) 1 -z b collinear ∂L gg ∂τ (τ, µ F ) -z 2 ∂L gg ∂τ (τ 0 , µ F ) .
(2.5.8)

In a similar fashion we can convolute the qg and the qq-channels with the PDFs. For the light quarks, we will need to sum over the different quark and anti-quark flavours in the PDF,

σ NLO qg (s) =σ LO α s π 1 τ 0 dτ ∂L qg ∂τ (τ, µ F ) z 2 P gq (z) log 4m 2 zµ 2 F + log (1 -z) 2 + C F z 2 2 -C F (1 -z) (1 -log z) ,
(2.5.9)

σ NLO qq =σ LO α s π 1 τ 0 dτ ∂L qq ∂τ (τ, µ F ) 32 27 z 2 (1 -z) , (2.5.10) 
where the differential luminosities

∂L ij ∂τ (τ, µ F ) are defined as, ∂L qg ∂τ (τ, µ F ) = -1 2 log τ 1 2 log τ dỹ q∈u,d,s,u,d,s f q √ τ e ỹ, µ F f g √ τ e -ỹ , µ F , (2.5.11) ∂L qq ∂τ (τ, µ F ) = -1 2 log τ 1 2 log τ dỹ q∈u,d,s,u,d,s f q √ τ e ỹ, µ F f q √ τ e -ỹ , µ F .
(2.5.12)

The combined hadronic cross-section then takes the form,

σ NLO (s) = σ NLO gg (s) + σ NLO qg (s) + σ NLO gq (s) + σ NLO qq (s), (2.5.13) 
where we have in addition used the gq-channel which is identical to the qg-channel except in the parton luminosity with interchanging q ↔ g. The partonic cross-section is identical for these two channels σqg = σgq . However for the rapidity differential cross-section dσ dy , this is no longer true as we will shall see in the next chapter. This asymmetry arises from the fact that for the qg-channel the collinear singularity occured in the û-channel while singularity for the gqchannel is in the t-channel. The phase-space integrated partonic cross-section does not depend on either t and û and therefore both results coincide while for the rapidity-differential we are not fully integrating out the phase-space with the consequence of a slight asymmetry. We have shown above the calculation for η c production and discussed the different contributions. The result is equally applicable to η b production. Apart from the trivial change in the mass and the scale, the only explicit difference is the n f term in the β 0 function of the virtual contribution. In addition for the qg, gq and the qq channels, we receive additional contributions for the c and c flavours thus we will need to include these in the sum inside the parton luminosities.

NLO cross-section results

Having provided the expressions for the hadronic cross-section, we briefly present here NLO cross-section results for η c production. We have plotted in Fig. 2.7 the energy-dependence of the hadronic cross-section. As for the PDF choice, we have made use of the PDF4LHC15_nlo_30 PDF set [START_REF] Butterworth | PDF4LHC recommendations for LHC Run II[END_REF]. In order to assess the convergence of the hadronic cross-section with respect to the two scales that we have introduced in this chapter, the renormalisation scale µ R and the factorisation scale µ F , we make use of the usual 7-scale variation around the default scale choice

µ R = µ F = M Q , µ R M Q , µ F M Q = {(1, 1)
, (1, 0.5) , (1, 2) , (0.5, 1) , (2, 1) , (0.5, 0.5) , (2, 2)}.

(2.6.1)

As such, we vary each scale choice by factor two and keep the ratio between µ R and µ F no more than factor two in both directions. Here we set

M Q = 3 GeV and |R 0 | 2 = 1 GeV 3 [69].
The LO curves shown in Fig. 2.7a are monotonously increasing as one increases the energy. In contrast to this, the NLO corrections shown in Fig. 2.7b deviate from the LO in particular for the scale choices which have been highlighted in red colour. We note that for two scale choices

(µ R = M Q /2, µ F = M Q ) and (µ R = M Q , µ F = 2M Q ) the NLO curves turn negative just above √ s = 2 TeV and √ s = 4
TeV respectively. Clearly, such a behaviour can be assessed as unphysical. In addition to the scale variation which we have shown only for the central PDF 2.6. NLO CROSS-SECTION RESULTS choice, one usually also assesses the PDF uncertainty of the cross-section. We have plotted this in Fig. 2.8 for the central scale choice µ R = µ F = M Q . We note that the uncertainty at NLO is larger than at LO. In particular, these grow as we increase the energy. As was outlined in the main introduction of the thesis, the authors of Ref. [START_REF] Feng | Energy dependence of direct-quarkonium production in pp collisions from fixed-target to LHC energies: complete one-loop analysis[END_REF] have made the observation that for some scale choices the cross-section for charmonium production becomes negative and unphysical (see Fig. 1.4a). We can indeed make similar statements here. As for η b , we will discuss this in a later chapter.

η c PDF4LHC15_30_nlo μ R =μ F =M/2 μ R =M/2, μ F =M μ R =M, μ F =M/2 μ R =μ F =M μ R =M, μ F =2M μ R =2M, μ F =M μ R =μ F =2M 1 
σ LO [nb] (a) η c PDF4LHC15_30_nlo μ R =μ F =M/2 μ R =M/2, μ F =M μ R =M, μ F =M/2 μ R =μ F =M μ R =M, μ F =2M μ R =2M, μ F =M μ R =μ F =2M 1 
η c PDF4LHC15_30_nlo LO: μ R =μ F =M μ R =μ F =M 0 
We have here derived the results for the transverse momentum p T -and the rapidity y-integrated cross-section. However, given that detectors in experiments are usually constrained in the kinematics, they cannot cover the full phase-space of the production. As such, the measured cross-section will always be a fraction of σ. With this and the negative cross-section in mind, it will be beneficial to derive and compute the rapidity-differential cross-section analytically and investigate the issue of the negative cross-section with it.

Chapter 3

Rapidity differential cross-section at NLO

We have introduced in the previous section the basic formalism to perform the phase-space integration and to isolate the soft and collinear singularities for the transverse momentum p Tand the rapidity y-integrated cross-section. In this section we derive, for the first time, the completely analytical expressions for the rapidity differential cross-section for η c and η b production. These were previously absent in the literature. We have presented these for the first time in Ref. [START_REF] Lansberg | Curing the unphysical behaviour of NLO quarkonium production at the LHC and its relevance to constrain the gluon PDF at low scales[END_REF].

Kinematics

The four-momentum P η Q of the final state quarkonium system in the hadronic frame can be expressed in terms of the transverse momentum p T and the rapidity y as,

P η Q = (m T cosh y, p T , m T sinh y) , (3.1.1) 
where

m T = M 2 Q + p 2 T with M Q = 2m Q being the quarkonium mass and p 2 T = | p T | 2 .
We trivially obtain for the on-shell mass

P 2 η Q = M 2 Q .
The derivation of dσ dy is more complex than σ as the integration over the phase-space is bounded by the rapidity y of the quarkonium state. At this stage we will need to distinguish the rapidity of the quarkonium state in the hadronic frame y and the rapidity in the partonic frame y . These are related by,

y = y + ỹ, (3.1.2)
where ỹ is the boost term from Eq. 2.5.2 and entirely due to the ratio of x 1 and x 2 . In collinear factorisation p T remains unaffected as the boost factor is orthogonal to the transverse vector. We note that the quarkonium state can only have a non-zero p T if another particle is emitted in the final state. For 2 → 1 processes such as the LO, we have that p T = 0. In the following, the derivation for dσ dy in terms of the matrix element squared is applicable to any 2 → 1 and 2 → 2 process, e.g. Higgs production at NLO. We discuss below the kinematics for the 2 → 2 process. In the partonic center-of-mass frame, the initial state and the quarkonium momenta take the form,

k 1 = √ ŝ 2 , 0, 0, √ ŝ 2 , k 2 = √ ŝ 2 , 0, 0, - √ ŝ 2 P = m T cosh y , p T , m T sinh y .
(3.1.3) From this, using the definition of the Mandelstam variables in Eq. 2.4.2 and taking into account the boost shift in Eq. 3.1.2, we can express these as,

ŝ = sx 1 x 2 , t = M 2 - √ sx 1 m T e -y , û = M 2 - √ sx 2 m T e y . (3.1.4)
From the condition,

ŝ + t + û = M 2 , (3.1.5)
we can re-express p 2 T and obtain that,

t = M 2 - sx 1 x 2 + M 2 x 1 e -y + x 2 e y x 1 e -y , û = M 2 - sx 1 x 2 + M 2
x 1 e -y + x 2 e y x 2 e y .

(3.1.6)

As aforementioned the phase-space integration for the rapidity-differential is limited and thus we will first need to be able to set the boundaries for the parton fractions x 1 and x 2 and make the dependence on the rapidity y explicit. We have the condition that the Mandelstam variables t and û are both negative and using the definition in Eq. 3.1.6 we obtain that,

t ≤ 0 √ τ 0 e y ≤ x 1 , (3.1.7) 
and equivalently for û ≤ 0 √ τ 0 e -y ≤ x 2 .

(3.1.8)

With the additional trivial constraints x 1 ≤ 1 and x 2 ≤ 1, we are now in a position to set the bounds for the rapidity of the quarkonium state as,

1 2 log τ 0 ≤ y ≤ - 1 2 log τ 0 , (3.1.9) 
where it depends on the hadronic centre-of-mass energy √ s and the mass of the quarkonium state M . As what will follow in the next lines, it will be useful to express x 1 and x 1 in terms of τ and ỹ as in Eq. 2.5.2 with the limits,

τ 0 ≤ τ ≤ 1, 1 2 log τ ≤ ỹ ≤ - 1 2 log τ. (3.1.10)
However these are the limits for the rapidity-integrated cross-section. For the rapiditydifferential, we will need to decompose the double-integral in individual pieces to take into account the physical rapidity y of the final quarkonium state. We intend to integrate in ỹ first and as such the limits of τ are dependent on the region in ỹ. From the constraints,

√ τ 0 e y ≤ √ τ e ỹ ≤ 1, √ τ 0 e -y ≤ √ τ e -ỹ ≤ 1 (3.1.11)
where we used Eq. 3.1.7, Eq. 3.1.8 and Eq. 2.5.2, we need to satisfy both

y + 1 2 log τ 0 - 1 2 log τ ≤ ỹ ≤ - 1 2 log τ 1 2 log τ ≤ ỹ ≤ y - 1 2 log τ 0 + 1 2 log τ.
(3.1.12)

From these constraints we can thus conclude that the integration region for ỹ is bounded by,

max y + 1 2 log τ 0 - 1 2 log τ ; 1 2 log τ ≤ ỹ ≤ min y - 1 2 log τ 0 + 1 2 log τ ; - 1 2 log τ , (3.1.13)
and thus we can split the double-integral into three regions,

1 τ 0 dτ -1 2 log τ 1 2 log τ = 1 √ τ 0 e y dτ -1 2 log τ 1 2 log τ dỹ + √ τ 0 e y √ τ 0 e -y dτ -1 2 log τ y+ 1 2 log τ 0 -1 2 log τ dỹ + √ τ 0 e -y τ 0 dτ y-1 2 log τ 0 + 1 2 log τ y+ 1 2 log τ 0 -1 2 log τ dỹ, (3.1.14)
where the LHS is always understood to statisfy the constraints presented above. We make the important remark here, that the integration boundaries above are only valid for y ≥ 0 of the final quarkonium state. We will elaborate on this point later on.

Differential cross-section: Derivation

The derivation for the rapidity-differential cross-section for 2 → 1 processes is straightforward.

In the center-of-mass frame at the level of the partonic cross-section, the final-state particle is fixed at p T = 0 and y = 0 by construction. Therefore the rapidity y in the hadronic center-ofmass frame can only come from the boost factor in Eq. 3.1.2. Starting with

σ 2→1 = 1 0 dx 1 1 0 dx 2 f i (x 1 , µ F )f j (x 2 , µ F )σ 2→1 δ(1 -z), (3.2.1) 
we can as before integrate out the δ function and obtain,

σ 2→1 = σ2→1 τ 0 -1 2 log τ 0 1 2 log τ 0 dỹ ∂ 2 L ij ∂τ ∂ ỹ (τ 0 , ỹ, µ F ), (3.2.2) 
where we have defined the double-differential luminosity as,

∂ 2 L ij ∂τ ∂ ỹ (τ, ỹ, µ F ) = f i (x 1 , µ F )f j (x 2 , µ F ). (3.2.3)
As the rapidity is governed by y = ỹ, we can conclude from this that the hadronic rapiditydifferential then is,

σ 2→1 dy = σ2→1 τ 0 ∂ 2 L ij ∂τ ∂ ỹ (τ 0 , y, µ F ). (3.2.4)
In order to match the virtual to the real corrections later on, we can then express is as

σ 2→1 dy = 1 τ 0 dτ -1 2 log τ 1 2 log τ dỹ ∂ 2 L ij ∂τ ∂ ỹ (τ, ỹ, µ F )σ 2→1 τ δ(τ -τ 0 )δ(ỹ -y). (3.2.5)
The shape of the rapidity-differential for the leading-order is then entirely driven by the double-differential luminosity where the partonic cross-section merely sets the global constant factor.

For a 2 → 2 process however we will need to make the dependence on p T and y explicit. We can start from the double differential hadronic cross-section defined as,

d 2 σ 2→2 dydp T = 1 0 dx 1 1 0 dx 2 f i (x 1 , µ F )f j (x 2 , µ F )2ŝ p T dσ 2→2 d t δ ŝ + t + û -M 2 . (3.2.6)
Integrating out p T and performing the variable transformations, we arrive at,

dσ 2→2 dy = 1 τ 0 dτ -1 2 log τ 1 2 log τ dỹ ∂ 2 L ij ∂τ ∂ ỹ (τ, ỹ, µ F ) dσ 2→2 d t sτ + M 2 2 cosh 2 (ỹ -y) . (3.2.7)
As the rapidity-differential is an observable, all IR singularities must cancel between the virtual 2 → 1 and the real corrections 2 → 2 process,

dσ dy = 1 τ 0 dτ -1 2 log τ 1 2 log τ dỹ ∂ 2 L ij ∂τ ∂ ỹ (τ, ỹ, µ F ) σ2→1 τ δ(τ -τ 0 )δ(ỹ -y) + dσ 2→2 d t sτ + M 2 2 cosh 2 (ỹ -y) .
(3.2.8) As we have already computed the virtual contributions in Eq. 2.3.21 for σ2→1 , the challenge lies now in performing the phase-space integration for dσ 2→2 d t under consideration of the constraints for the external physical rapidity y. In order to proceed, we express the Mandelstam variables in terms of z and y θ as in Eq. 2.4.6 and have that,

d t = ŝ 2 (1 -z) dy θ . (3.2.9)
Employing the same strategy as in the previous chapter, we define a divergent-free quantity B as in Eq. 2.4.9 and making use of Eq. 2.4.10, we can express

σ d t = 2 ŝ (1 -z) 2 ŝ3 4 Γ(1 -) 4πµ 2 R ŝ 1 16π (1 -z) -1-2 1 -y 2 θ -1-B(z, y θ ). (3.2.10)
Using Eq. 3.1.6 and Eq. 2.4.6, we can express y θ in terms of the rapidity y,

y θ = 1 + z 1 -z tanh (y -ỹ). (3.2.11)
We note the presence of the factors (1z) -1-2 and 1y 2 θ -1-, where we can again make use of the identities in Eq. 2.4.11 and Eq. 2.4.12. However, as it turns out, we will need to expand to one order higher in for the y θ -distribution. We note that for the y-integrated cross-section σ for the soft part in Eq. 2.4.18 we have in fact only used the z-identity and integrated out the 1y 2 θ -1-part explicitly. This integration will yield another pole in , thus together with the soft pole it forms the double soft-collinear singularity. However for the rapidity-differential cross-section it is vital that we use both the z-identity and the y θ -identity in order to match to the virtual cross-section. Therefore we need to derive the next higher-order coefficient for the collinear pole in the y θ -identity such that this coefficient when multiplied with the simple soft pole yields a finite piece. In order to derive the identity to one order higher, we will make use of the plus distributions to regulate the divergence as in Eq. 2.4.13 and Eq. 2.4.14. As we encounter divergent phase-space points at both y θ = ±1, we first apply partial fraction and split the integrand into two parts as,

1 1 -y 2 θ 1+ = 1 2 1 -y 2 θ 1 1 -y θ + 1 1 + y θ . (3.2.12)
We can then start by integrating over a function f (y θ ) that is regular and finite at y θ = ±1 with (see also Ref. [START_REF] Potter | Calculational Techniques in Perturbative QCD: The Drell-Yan Process[END_REF]),

1 -1 dy θ f (y θ ) 1 -y 2 θ 1+ = 1 -1 dy θ f (y θ ) -f (1) 2 1 -y 2 θ (1 -y θ ) + 1 -1 dy θ f (y θ ) -f (-1) 2 1 -y 2 θ (1 + y θ ) + 1 -1 dy θ f (1) 2 1 -y 2 θ (1 -y θ ) + 1 -1 dy θ f (-1) 2 1 -y 2 θ (1 + y θ ) , (3.2.13) 
where we can now integrate out the terms in the second line and we obtain that,

1 -1 dy θ f (±1) 2 1 -y 2 θ (1 ∓ y θ ) = 4 -Γ(-)Γ(1 -) 2Γ(1 -2 ) f (±1) = -4 - 2 1 - π 2 6 2 + O 3 f (±1).
(3.2.14) As for the first line in Eq. 3.2.13, it turns out, that it is sufficient to expand the denominator up to the finite piece only. We will explain this point in a minute. Using the definition of the plus distribution in Eq. 2.4.14, we can then finally express,

1 -y 2 θ -1-= - 4 - 2 1 - π 2 6 2 [δ(1 -y θ ) + δ(1 + y θ )]+ 1 2 1 1 -y θ + + 1 1 + y θ + +O( ).
(3.2.15) In order to understand why the O( ) term of the first line in Eq. 3.2.13 is not needed here, we can make the following considerations. One might a priori assume that the O( ) term could potentially yield a finite piece when combined with the simple -pole of the soft divergence. These additional terms at O( ) involve plus distributions of a function f (y θ ) that will be regular at any y θ . This function f is represented in our computation by the divergent-free quantity B in Eq. 2.4.9 and depends on both z and y θ . In order to investigate the potential appearance of additional finite pieces, we will study the soft limit z → 1. In fact, we have already computed this quantity in Eq. 2.4.22 and it is immediately obvious to the reader that B 0 is a mere constant and does not depend on y θ . Thus the plus distribution at O( ) for the y θ -distribution will vanish as B(z = 1, y θ ) = B(z = 1, y θ = ±1). This is trivial to understand as when we are approaching the soft limit, we are going from a 2 → 2 phase-space to a 2 → 1 phase-space and thus the notion of an angle in y θ disappears. In contrast to this, the higher order term in for the δ(1 ∓ y θ ) coefficient indeed contributes to the cross-section.

Equipped with these identities and formulas, we are now in a position to split the integrand in different regions as before. We will however need to perform a change of variables in order to integrate with respect to τ and ỹ. We can express the δ(1y θ ) functions as 

δ(1 ∓ y θ ) = 1 -z 1 + z cosh 2 (y -ỹ)δ y -ỹ ± 1 2 log z . ( 3 
C soft =σ 2→1 τ δ(τ -τ 0 )δ(ỹ -y) + C 4 - 4 2 IR δ(1 -z) 1 - π 2 6 2 [δ(y -ỹ) + δ(y -ỹ)] B 0 =δ(τ -τ 0 )δ(y -ỹ)τ Γ(1 + ) (4π) α s π σ (0) - β 0 2 1 IR - 11 3 + 7 12 π 2 , (3.2.17) 
where we can as before make the cancellation of the double-soft divergence explicit. The simple pole related to the β 0 function will be removed with the Altarelli-Parisi counterterm. We now come to the collinear singularities,

C h. col. y θ =±1 = -C 4 - 2 IR δ y -ỹ ± 1 2 log z 1 1 -z + -2 log (1 -z) 1 -z + B 0 b collinear z 3 . (3.2.18)
Before coming to the finite piece, we will now introduce the Altarelli-Parisi counterterms for the rapidity differential,

C AP-CT = α s 2π 1 IR 4πµ 2 R µ 2 F Γ(1 + )σ (0) P gg (z) z δ y -ỹ + 1 2 log z + δ y -ỹ - 1 2 log z = α s π 1 IR 4πµ 2 R µ 2 F Γ(1 + )σ (0) τ δ(τ -τ 0 )δ(y -ỹ) β 0 2 +P gg (z) z 2 δ y -ỹ + 1 2 log z + δ y -ỹ - 1 2 log z , (3.2.19) 
where above we have used the splitting function for the gg-channel defined as in Eq. 2.4.36 and Eq. 2.4.37. Each initial state particle that yields a collinear singularity contributes with a δ yỹ ± 1 2 log z function in the equation above. We can indeed confirm that the collinear singularities cancel between the AP counterterm and the soft and collinear parts. Finally, the finite piece takes the form,

C finite = 1 + z 1 -z 1 cosh 2 (y -ỹ) C 2 1 1 -z + 1 1 -y θ + + 1 1 + y θ + B(z, y θ ). (3.2.20)
As shown before, the plus distributions are only applicable when the integration variable matches the variable in the distribution. The z-distribution is rather straightforward to implement. However the complexity lies in performing the y θ -distribution. In addition, we are integrating from [-1, 1] but rather the phase-space is fixed by the external physical rapidity y which implies that we will need to add additional contributions to the plus distribution in a similar fashion as we have done in Eq. 2.4.15 and Eq. 2.4.17 such that the boundaries are correctly taken into account. We will therefore integrate in y θ and use Eq. 3.2.11. We combine first the individual contributions together with the leading-order cross-section and integrate out the 3.3. DIFFERENTIAL CROSS-SECTION: RESULTS soft part to obtain that,

dσ dy =σ LO τ 0 ∂ 2 L ij ∂τ ∂ ỹ (τ 0 , y, µ F ) 1 + α s π C F π 2 4 -5 + C A 1 + π 2 12 + β 0 2 log µ 2 R µ 2 F + 1 τ 0 dτ -1 2 log τ 1 2 log τ dỹ σ LO α s π ∂ 2 L ij ∂τ ∂ ỹ (τ, ỹ, µ F )P (z) z 2 δ y -ỹ + 1 2 log z +δ y -ỹ - 1 2 log z × log ŝ µ 2 F + 2 (1 -z) log (1 -z) 1 -z + + 1 τ 0 dτ -1 2 log τ 1 2 log τ dỹ ∂ 2 L ij ∂τ ∂ ỹ (τ, ỹ, µ F ) C finite . (3.2.21)
Before continuing further and applying the plus distributions, we will need to split the integration bounds into three regions as was shown in Eq. 3.1.14 and then perform the variable transformations in order to apply the plus distributions. We will not show the full derivation of the phase-space integration and application of the plus distribution but we will state in the next section the results for the different channels and make additional remarks.

Differential cross-section: Results

We have computed for the first time the rapidity-differential for η Q production analytically.

The results obtained here were not available in the literature before and have been published by us in Ref. [START_REF] Lansberg | Curing the unphysical behaviour of NLO quarkonium production at the LHC and its relevance to constrain the gluon PDF at low scales[END_REF]. We present below the final results for the gg-, the qgand the qq-channels and have used quantities in order to present the result in a compact form. The result presented here are only valid for y ≥ 0. This is due to the way we have decomposed the integration regions in Eq. 3.1.14. For symmetric hadron collisions h A + h A , the differential cross-section is symmetric for both positive and negative regions of y. For asymmetric hadron collisions h A + h B however, the differential cross-section will be asymmetric and we will need to make some minor modification in order to obtain the result for y ≤ 0. dσ dy is the differential crosssection where y is the quarkonium rapidity relative to the first beam particle associated with x 1 . In order to compute the differential cross-section for y ≤ 0, we will need to swap x 1 ↔ x 2 and essentially compute the positive rapidity y relative to the second beam particle associated to x 2 . The swap in the parton fractions amounts to swapping of the two parton distribution functions. With this approach, we can obtain values for both positive and negative y regions.

The differential cross-section for the gg-channel reads,

dσ gg dy =σ LO τ 0 Lgg (τ 0 , y) 1 + α s π C F π 2 4 -5 + C A 1 + π 2 12 + β 0 2 log µ 2 R µ 2 F +C A i∈{1,2} log (1 -η i ) log 4m 2 µ 2 F + log (1 -η i )   + α s π C A   i∈{1,2} η i τ 0 dτ 1 1 -z Lgg (τ, y i )b collinear log 4m 2 zµ 2 F -z 2 Lgg (τ 0 , y) log 4m 2 µ 2 F + 2 log (1 -z) 1 -z Lgg (τ, y i )b collinear -z 2
Lgg (τ 0 , y)

+ 1 η 1 dτ t 2 t 1 dw Lgg (τ, y 3 ) 2a 1 1 -w 2 + η 1 η 2 dτ 1 t 1 dw Lgg (τ, y 3 )a 1 -Lgg (τ, y 1 )a 2 1 -w + η 1 η 2 dτ a 2 Lgg (τ, y 1 ) log 1 -t 1 2 + η 1 η 2 dτ 1 t 1 dw 1 1 + w Lgg (τ, y 3 )a 1 η 2 τ 0 dτ 1 -1 dw Lgg (τ, y 3 )a 1 -Lgg (τ, y 1 )a 2 1 -w + Lgg (τ, y 3 )a 1 -Lgg (τ, y 2 )a 2 1 + w , (3.3.1) 
A few remarks are in order at this stage. The second line of Eq. 3.3.1 is the additional term that originated from adjusting the boundaries to the plus distribution of the collinear terms in the third and fourth lines. In contrast to the y-integrated cross-section, for the differential we needed to take into account the limited boundaries of the w-distributions. From this we obtained the first term in the sixth line that originated from the second term in the fifth line. As for the qq-channel, there are no singularities present, thus the differential is straightforward to perform and we have,

dσ qq dy =σ LO α s π 4 9 1 η 1 dτ t 2 t 1 dw Lqq (τ, y 3 )a 3 + η 1 η 2 dτ 1 t 1 dw Lqq (τ, y 3 )a 3 + η 2 τ 0 dτ 1 -1
dw Lqq (τ, y 3 )a 3 .

(3.3.2)
For the qg-channel, we find that we will need to treat the qg and the gq-channels in a slight different manner. This is due to the fact, that this channel is asymmetric in t and û. In the qg-channel the singularity is in the û-channel while it is in the t-channel for the gq-channel and in addition both channels have a different dependence on the external physical rapidity y. We combine both channels as follows,

dσ gq+qg dy =σ LO α s π C F 2 η 1 τ 0 dτ Lgq (τ, y 1 ) z 2 + b qg collinear log 4m 2 zµ 2 F + log (1 -z) 2 + η 2 τ 0 dτ Lqg (τ, y 2 ) z 2 + b qg collinear log 4m 2 zµ 2 F + log (1 -z) 2 + 1 η 1 dτ t 2 t 1 dw 2 Lgq (τ, y 3 )a 4 + 2 Lqg (τ, y 2 )a 5 1 -w 2 + η 1 η 2 dτ 1 t 1 dw Lgq (τ, y 3 )a 4 -Lgq (τ, y 1 )b qg collinear + Lqg (τ, y 3 )a 5 1 -w + η 1 η 2 dτ b qg collinear Lgq (τ, y 1 ) log 1 -t 1 2 + η 1 η 2 dτ 1 t 1 dw Lgq (τ, y 3 )a 4 + Lqg (τ, y 3 )a 5 1 + w + η 2 τ 0 dτ 1 -1 dw Lgq (τ, y 3 )a 4 -Lgq (τ, y 1 )b qg collinear + Lqg (τ, y 3 )a 5 1 -w + η 2 τ 0 dτ 1 -1 dw Lgq (τ, y 3 )a 4 + Lqg (τ, y 3 )a 5 -Lqg (τ, y 2 )b qg collinear 1 + w , (3.3.3) 
where we have used the following quantities,

η 1,2 = √ τ 0 e ±y , y 1,2 = y ± 1 2 log z, y 3 = y - 1 2 log 1 + w + z -wz 1 -w + z + wz , t 1,2 = 1 + z 1 -z tanh y ± 1 2 τ , b collinear = 1 -z + z 2 2 , b qg collinear = (2 + z (z -2)) , a 1 = z 2 -zw 2 + z + w 2 + 3 2 9z 4 -4z 3 + 6z 2 + (z -1) 4 w 4 + 6(z -1) 4 w 2 -4z + 9 16(1 -z) ((z + 1) 2 -(z -1) 2 w 2 ) 2 , a 2 = b collinear 1 -z , a 3 = z 2 (1 -z) 1 + w 2 , a 4 = z 2 (w + 1) z 2 (w + 1) 2 -2z(w + 1) 2 + w(w + 2) + 5 2((z -1)w + z + 1) 2 , a 5 = z 2 (1 -w) z 2 (w -1) 2 -2z(w -1) 2 + (w -2)w + 5 2(z(-w) + z + w + 1) 2 , (3.3.4)
and as for the L variables, these are shortcut notations for the double-differential luminosities as,

Lgg (τ, ỹ) = ∂ 2 L gg ∂τ ∂ ỹ (τ, ỹ, µ F ), Lqq (τ, ỹ) = q∈{u,d,s,u,d,s} ∂ 2 L qq ∂τ ∂ ỹ (τ, ỹ, µ F ), Lqg (τ, ỹ) = q∈{u,d,s,u,d,s} ∂ 2 L qg ∂τ ∂ ỹ (τ, ỹ, µ F ), Lgq (τ, ỹ) = q∈{u,d,s,u,d,s} ∂ 2 L gq ∂τ ∂ ỹ (τ, ỹ, µ F ).
(3.3.5) (a) 
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Implementation & cross-section results

The analytical expressions to the rapidity-differential cross-section shown in the previous section have been implemented in a private Fortran code and interfaced with the LHAPDF routine [START_REF] Buckley | LHAPDF6: parton density access in the LHC precision era[END_REF] in order to load the PDFs. In a similar fashion the α s value has been chosen according to the PDF parametrisation 1 . This code will be used extensively in the following section to understand the origin of the negative numbers.

We mention here at this stage, that we have performed several cross-checks of the code. The most important check was that when computing the differential cross-section for all allowed rapidity points from log τ 0 < y <log τ 0 and then integrating the dσ dy curve in y to obtain σ, we indeed recover to very high precision the same σ when the integration is performed with the analytical partonic σ over the PDFs. In fact, we have made the cross-checks for all sub-channels individually and in particular a further split in the different pieces (collinear, finite etc.). In all cases we found agreement to very-high precision for different energy levels √ s and different µ R and different µ F values. In addition, we have also made a cross-check with a second private implementation in Mathematica. Finally we mention here, that the results obtained here, have been successfully cross-checked against the semi-automatic numerical code FDC [73]2 .

We have plotted in Fig. 3.1 the energy-dependence of the rapidity-differential cross-sections at (a) LO and (b) NLO for η c production at central rapidity y = 0. We have employed here the usual 7 scale-setting variation for both µ R and µ F around the central scale choice µ R = µ F = M Q (see Eq. 2.6.1). As for the PDF choice, we have made use of the PDF4LHC15_nlo_30 set [START_REF] Butterworth | PDF4LHC recommendations for LHC Run II[END_REF]. Here, we have displayed only the results with central PDF choice.

While the LO cross-sections are all positive, we note that for some scale choices, the NLO TeV with PDF4LHC15_nlo_30 [START_REF] Butterworth | PDF4LHC recommendations for LHC Run II[END_REF].

η c PDF4LHC15_30_nlo LO: μ R =μ F =M μ R =μ F =M 0.
η c, s =14TeV, PDF4LHC15 LO: μ R =μ F =M μ R =μ F =M (b)
cross-section curves turn negative. We have highlighted these in red where they get negative just above the endpoint of the curves in the log-plot. For the most dramatic choice, it turns negative at already above √ s = 1 TeV. We thus confirm the observations made in Ref. [START_REF] Feng | Energy dependence of direct-quarkonium production in pp collisions from fixed-target to LHC energies: complete one-loop analysis[END_REF] (see Fig. 1.4a). They made use of a different PDF set CTEQ6M [START_REF] Pumplin | New generation of parton distributions with uncertainties from global QCD analysis[END_REF]. We will see later how the cross-section results depend on different PDF sets.

We have displayed in Fig. These negative cross-sections are clearly unphysical and cannot be measured in any experimental setup. Having at our disposal the implementation and the analytic expressions, we will address in the next chapter the issue of these negative cross-sections.

Chapter 4

Negative cross-sections & a new scale prescription

We have in the main introduction of this thesis already outlined issues related to charmonium production. For some renormalisation and factorisation scale choices, the cross-section becomes unphysical and negative. In this chapter, we will address these issues and argue that unphysical cross-sections can be attributed to an over-subtraction of the initial-state collinear divergences inside the PDFs within the MS-scheme. This mis-match in the subtraction is crucial for low-scale processes such as charmonium production which renders most of its phenomenology at the LHC void. The situation for bottomonium production is less dramatic. In this chapter we guide the reader through all these issues and we propose a new scale prescription which cures all these issues. Some of the results presented here were published by us in Ref. [START_REF] Ozcelik | Constraining gluon PDFs with quarkonium production[END_REF][START_REF] Lansberg | Curing the unphysical behaviour of NLO quarkonium production at the LHC and its relevance to constrain the gluon PDF at low scales[END_REF].

Partonic high-energy limit

Interplay with flat and steep gluon PDFs

In this section we will discuss the origin of the negative cross-sections. G. Schuler was the first to encounter negative hadronic cross-sections for charmonium production at √ s on the order of already a few TeV. In his 1994 review [START_REF] Schuler | Quarkonium production and decays[END_REF], he identified two potential problems, (1) rather flat gluon PDFs that would favour the real corrections over the LO threshold contributions and (2) the limited final-state phase-space in the quarkonium production mechanism. We will briefly elaborate on point (1), where at low x gluon and sea-quark PDFs become dominant. We will discuss point (2) later on.

Within the framework of collinear factorisation (see Eq. 2.1.1), the partonic cross-section is convoluted with the PDFs and integrated over the parton momentum fractions x 1 and x 2 . As already mentioned, we can express the integral measure of the parton fractions in terms of τ and ỹ as shown in Eq. 2.5.1. In order to make the direct connection to the partonic cross-section which depends on z = τ 0 τ , we can write,

dx 1 dx 2 = dτ dỹ = dzdỹ τ 0 z 2 . (4.1.1) lim s→∞ σ pp s, M 2 → with σgg z, M 2 f g/p (x, µ F ) → 1
Table 4.1: Asymptotic √ s → ∞ behaviour at hadronic level for different terms in partonic cross-section with flat PDF (center column) and steep PDF (right column) [START_REF] Schuler | Quarkonium production and decays[END_REF].

We note the presence of the Jacobian factor which scales as z -2 for fixed τ 0 = M 2 s , where M is the mass of the final-state particle. Considering that in the partonic cross-section the threshold contributions are at z = 1, this Jacobian suggests that the real corrections in the limit z → 0 are enhanced by z -2 unless these are damped by the PDFs. Starting from toy PDFs, G. Schuler was able to show that steep gluon/sea-quark PDFs would dampen the real corrections and favour threshold contributions while rather flat PDFs would favour the real corrections. Here, he considered toy PDFs that scaled in the low-x regime as f g/p (x, µ F ) ∼ x -1.5 for steep PDFs and as ∼ x -1 for flat PDFs.

We consider here the p T -and y-integrated cross-section as discussed in Sec. 2.4 but the argument is equally applicable to the rapidity-differential cross-section. The analytic structure of the partonic cross-section can be described by polynomials in z and additional functions as log z. One is then able to integrate out these different contributions that could appear in the partonic cross-section in the convolution with the toy PDFs and investigate their behaviour in the hadronic high-energy limit s → ∞ which corresponds to τ 0 → 0. The results are given in Table 4.1. In the left column we find the different terms (δ(1z), z h , ...) in the partonic crosssection and their behaviour in the asymptotic scaling s → ∞ when convoluted with flat (center column) and steep (right column) PDFs.

We can conclude that with flat PDFs, constant and logarithmic terms in the partonic crosssection coming from the real emissions are favoured over the LO threshold δ(1z) contribution in the limit s → ∞. The situation is however different for steep PDFs as can be seen in the right column. We note that the scaling with respect to s is the same for all terms with the effect that the LO contribution with its leading coupling will remain the dominant contribution at large energies.

We will now look at the behaviour of the partonic cross-section in the high-energy (HE) limit z → 0 where ŝ → ∞, such that we can identify the constant and logarithmic terms which are the dominant contributions for flat PDFs. Making use of the analytical expressions for η Q in Eq. 2.4.39 and Eq. 2.4.44, we can express the high-energy limit as follows,

lim z→0 σNLO gg (z) = 2C A α s π σLO log M 2 Q µ 2 F + A gg , lim z→0 σNLO qg (z) = C F α s π σLO log M 2 Q µ 2 F + A qg , (4.1.2) 
where above M Q is the mass of the quarkonium state and A gg and A qg are the constant terms for the gg-channel and the qg-channel respectively. The logarithmic terms in z all vanish when the form-factor is resolved (see later). As can be seen in Eq. 4.1.2, one can factorise out the LO cross-section and channel-dependent colour factors in the HE-limit. We note the presence of the factorisation scale within the log-term. For η Q , the coefficients take the form A gg = A qg = -1. This implies that using the default scale choice µ F = M Q = 2m Q , this limit is negative and ∝ -αs π σLO .

With flat PDFs, a negative HE-limit will eventually overtake the positive LO contributions to yield negative hadronic cross-sections despite PDFs being positive. As gluon PDFs are badly constrained at low factorisation scales at around the mass of the charmonium state, different PDF parametrisations may yield drastically different results for η c production. We see in Fig. 4.1 the energy-dependence of the K-factor, which is defined as the ratio of NLO vs LO yields, of dσ dy for η c production. We have plotted the K-factor for the scale configuration at µ R = m c = 1.5 GeV, µ F = 2m c = 3 GeV and for five different PDF parametrisations [START_REF] Dulat | New parton distribution functions from a global analysis of quantum chromodynamics[END_REF][START_REF] Ball | Parton distributions with small-x resummation: evidence for BFKL dynamics in HERA data[END_REF][START_REF] Martin | Pinning down the glue in the proton[END_REF]: CT14nlo_NF3 (CT14nlo), NNPDF31sx_nlo_as_0118 (NNPDFsx), NNPDF31sx_nlonllx_as_0118 (NNPDFsxNLL), MRS(A') and MRS(G).

We note that with this scale configuration, where the HE-limit of the cross-section is negative, four out of the five PDF sets yield negative K-factors in Fig. 4.1, for some already on the order of √ s ∼ 2 TeV. The only PDF choice that has a stable yield and remains positive throughout is MRS(G), which compared to the other parametrisations has a steep gluon PDF in the low-x region with ∼ 1/x 1.30 . In contrast to this, all other PDFs choices, such as, MRS(A') (∼ 1/x 1.14 ) are rather flat in the low-x region thus confirming the hypothesis that steeper PDFs indeed yield better results.

Coefficients A gg and A qg

In order to understand the high-energy limit, we have collected in Table . 4.2, the HE-coefficients for different particles and we find in all cases that A gg = A qg . As we shall see, this equality for ggand for qg-channels will play later an important role. The fact that the coefficients are the same for the two channels can be traced back to the initial-state emission graphs as shown in Fig. 2.4b for the ggand Fig. 2.6b for the qg-channel. We will return to this later. In contrast to this, all diagrams where the gluon is emitted from the heavy-quark line as in Fig. 2.4a vanish in the high-energy limit z → 0.

The initial-state emission graphs exhibit as sub-graph the LO diagram as in Fig. 2.1a but where a gluon is now off-shell. Following Ref. [START_REF] Marzani | Higgs production via gluon-gluon fusion with finite top mass beyond next-to-leading order[END_REF][START_REF] Catani | GLUON CONTRIBUTIONS TO SMALL x HEAVY FLAVOR PRODUCTION[END_REF][START_REF] Catani | High-energy factorization and small x heavy flavor production[END_REF], it is thus possible to compute the HE-limit within the k T -factorisation approach. In addition, it can be shown that when the formfactor is resolved, i.e. contains internal propagator structure, the high-energy limit at NLO is constant. We will later see an example in the case of the EFT Higgs coupling, where the top mass has been integrated out with m t → ∞.

In Table 4.2, we have given the values for the P -wave states [START_REF] Mangano | NLO quarkonium production in hadronic collisions[END_REF][START_REF] Petrelli | NLO production and decay of quarkonium[END_REF], whose coefficients are more negative than that of the η Q . As the cross-section for χ c production behaves worse than that of the η c , with this table we may trace this behaviour to the more negative coefficients in the HE-limit. We remark that for the quarkonium states, the high-energy limit turns out to be the same for colour-singlet and for colour-octet states. The implies that the inclusion of colour-octet states within the framework of NRQCD cannot resolve the issue of negative cross-sections.

In order to demonstrate that this issue is not due to quarkonium physics alone and the production mechanism as suggested by Schuler (see point [START_REF] Salam | Weak and Electromagnetic Interactions[END_REF] in Sec. 4.1.1), we have in addition also displayed the HE-limit coefficients for Higgs production with a finite top-quark loop. These coefficients only exist in numerical form and depend on the ratio between the Higgs mass and the quark mass inside the loop [START_REF] Harlander | Higgs production in gluon fusion at next-to-next-to-leading order QCD for finite top mass[END_REF]. For the scalar Higgs boson, we find that the coefficient is positive with A gg = A qg = 2.28 with the ratio 2m t /M H = 2.76. As we decrease the ratio, the coefficients get smaller and eventually negative for the equivalent η Q case where 2m Q = M H . This confirms that this is not a quarkonium issue per se. In a similar fashion, one can derive the coefficients for the pseudo-scalar Higgs case which turn out to be largely all negative [START_REF] Caola | Finite fermion mass effects in pseudoscalar Higgs production via gluon-gluon fusion[END_REF].

On a side note and in order to understand the finiteness of the coefficients, we state below the high-energy limit for the EFT point-like Higgs with m t → ∞ [START_REF] Dawson | Radiative corrections to Higgs boson production[END_REF],

lim z→0 σNLO gg (z) = 2C A α s π σLO log M 2 H µ 2 F - 11 12 -log z , lim z→0 σNLO qg (z) = C F α s π σLO log M 2 H µ 2 F - 3 4 -log z . (4.1.3)
This HE-limit contains now a logarithmic term log z and the ggand qg-channels differ in addition by a constant term. This is not surprising because in the high-energy limit we have that ŝ → ∞ and therefore EFT with m t → ∞ cannot be applied for Higgs production. We note that [1,8] ) -1 Coefficients for the constant term in the HE-limit (see Eq. 4.1.9) given in center column for different quarkonium states [START_REF] Petrelli | NLO production and decay of quarkonium[END_REF] and Higgs with different mass ratios between Higgs and internal fermion loop [START_REF] Harlander | Higgs production in gluon fusion at next-to-next-to-leading order QCD for finite top mass[END_REF]. Right column represents the corresponding scales for the new factorisation scale (see later in Sec. 4.2).

A gg = A qg μF η Q ( 1 S 0
M Q √ e = 0.607M Q 3 P 0 [1,
this is in fact a double-limit in both ŝ → ∞ and m t → ∞, as such these may not commute. When ŝ → ∞, the internal quark-loop must be resolved thus one needs to compute the HElimit with finite m t (see below). We remark that the log z term in the HE-limit originates from expanding out the dimensionful phase-space factor 4πµ2 R /ŝ = 4πµ 2 R z/M 2 (see Eq. 2.4.7). As for the approximation in the opposite limit where M H > m t , the coefficients are now manifestly finite and we recover A gg = A qg [START_REF] Spira | Higgs boson production at the LHC[END_REF],

lim z→0 σNLO gg (z) = 2C A α s π σLO log M 2 H µ 2 F - 7 15 log M 2 H m 2 Q , lim z→0 σNLO qg (z) = C F α s π σLO log M 2 H µ 2 F - 7 15 log M 2 H m 2 Q . (4.1.4)
Here the log z term coming from the phase-space factor has perfectly cancelled against another log z term that originated from integrating out the finite piece in the real emission part. To be precise, it came from the diagrams where the gluon was emitted from an internal heavy-quark line/propagator. This cancellation between the two log z terms leads to resolved form-factors.

In the absence of these diagrams as in the case of the EFT Higgs coupling, the log z from the phase-space factor remains.

Over-subtraction of collinear divergences and high-energy limit

As already indicated, this limit originates from the initial-state emissions 1 . In order to understand why this limit can take negative values, we will in the following now reconstruct the crucial steps. We have already shown in Sec. 2.4 how to compute the real emission diagrams that contribute in the z → 0 limit. In contrast to this, although the virtual part may give rise to negative numbers via interference terms with the LO amplitude in 2 M (0) M (1) † , virtual contributions do not contribute to the HE-limit (z → 0) as its kinematics are fixed at threshold z = 1. Therefore, these are irrelevant for the discussion that follows. We can indeed confirm that the matrix element squared for the real contributions |M (Real) |2 for the ggand the qg-channels are both positive definite (see Eq. 2.4.3 and Eq. 2.4.40).

At this stage, we still have to perform the phase-space integration in order to extract the IR-pole structure. As we are only interested in the region away from threshold so z = 1, we can discard the discussion of the soft-singularities that would require z = 1 and instead focus on the hard collinear singularities originating from the initial-state emission diagrams as in Fig. 2.4b. We can then recast the un-renormalised partonic cross-section σ involving the collinear singularity as,

σ NLO,z =1 ab = d t dσ NLO,z =1 ab d t = - 1 IR α s 2π 4πµ 2 R M 2 Γ(1 + ) σLO zP ga (z) (1 + δ ab ) + α s π σLO C ab A ab (z), (4.1.5) 
where a = {q, g} and b = {g, γ} such that we can follow the argument for both hadro-and photo-production, where the latter case corresponds to the process γp. The first term contains the collinear singularity while the second term is finite. We have introduced the δ ab Kroncker symbol in order to indicate that when a = b = g we will have collinear singularities for each initial-state gluon. As for the colour-factor C ab , we have that C qb = C F for the qb-channel, while C gg = 2C A for hadro-production and C gγ = C A for the photo-production case. Finally, for the splitting function P gg we ignore here the threshold δ(1z)β 0 term and consider only the contribution from P gg (z).

Keeping in mind that IR → 0 -, Eq. 4.1.5 is indeed manifestly positive definite as the first term evaluates to +∞ for the entire range of 0 ≤ z < 1 2 . The collinear singularities in the first term are removed via the process-independent and universal Altarelli-Parisi counterterms in the MS-scheme3 previously introduced as,

σ AP-CT ab = 1 IR α s 2π 4πµ 2 R µ 2 F Γ(1 + ) σLO zP ga (z) (1 + δ ab ) . (4.1.6)
We are now in a position to subtract the IR-singularity in Eq. 4.1.5. This subtraction will introduce the explicit µ F -dependence and we are left with a finite piece now,

σNLO,z =1 ab = α s π σLO log M 2 µ 2 F 1 2 zP ga (z) (1 + δ ab ) + C ab A ab (z) . (4.1.7)
As we have performed a subtraction involving the external AP counterterms, the partonic cross-section is no longer based on a perfect |M (Real) | 2 . With this, the terms inside the brackets of Eq. 4.1.7 can take negative values. If the divergent-free expression becomes negative for some z values, we can say that we have likely over-subtracted the collinear divergences inside the PDF. We would like to re-iterate at this stage, that the only source for the real emissions to become negative is the subtraction with the AP counterterm4 .

In the HE-limit of Eq. 4.1.7, we have that,

lim z→0 zP gq (z) = 2C F , lim z→0 zP gg (z) = 2C A , lim z→0 A ab (z) = A ab = Â. (4.1.8)
where in the last equality we have made use of the fact that the constant term  in the HE-limit is the same for all channels ab when the form-factor is resolved. They then only differ by the appropiate colour-factor C ab such that we can write the partonic HE-limit in its most general form as,

lim z→0 σNLO ab (z) = C ab α s π σLO log M 2 µ 2 F + Â . (4.1.9) 
We note that the µ F -dependence is process-independent and originates from the universal Altarelli-Parisi counterterm in the MS-scheme, while in contrast to this, the coefficients  take different values for different particles as can be seen in Table 4.2 and are thus process-dependent. We remind ourselves that even though the general expression in Eq. 4.1.7 might be negative for some z-values, for flat PDFs the value of the HE-limit at z → 0 is the most impactful contribution to the hadronic cross-section. Thus, the HE-limit serves as a guidance on the convergence of the convolution between partonic cross-section and the PDFs. We will return to this in the next section.

Before elaborating on this further, we mention here the proceedings [START_REF] Petrelli | NLO production and decay of quarkonium[END_REF] by M. Mangano and A. Petrelli where they arrived to the same conclusion as G. Schuler on the interplay between the partonic cross-section and the PDFs (point (1)). They elaborated that having negative partonic cross-sections is not problematic as within the framework of collinear factorisation these negative contributions should be compensated by steeper gluon PDFs via the DGLAP evolution. However, as the scale of the charmonium state is rather close to the initial PDF parametrisation, i.e. near the scale of the charm mass, there is not sufficient evolution for the gluon PDFs to acquire the steepness needed to avoid negative hadronic cross-sections as shown by Schuler.

Impact on η b phenomenology

Having said this, we would like to evaluate the impact of this to η b phenomenology. Both η c and η b share the same NLO partonic cross-sections apart from three changes, (1) the mass shift,
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(2) a trivial rescaling of the LDME and (3) the change in the number of flavours n f . The change in n f only affects the β 0 function in the virtual part, i.e. threshold contribution at z = 1, and the inclusion of the charm PDFs for the qg-channel which are however neglible. Aspect (2) does not require any further introduction as this rescaling is constant and independent of the collision energy. The most impactful parameter is (1). The shift from m c to m b has three immediate effects.

(1.i) The dependence of the hadronic cross-section on √ s has stretched by effectively a factor of three which is the ratio the mass has changed. This can be deduced in the following manner. A given z = M 2 ŝ value corresponds for bottomonium to a larger ŝ value than the charmonium equivalent because of the mass change. When convoluting with the PDFs, in order to maintain the same integration bounds for both charmonia and bottomonia with τ ∈ [ M 2 s , 1], the change in the mass is coupled to the change in √ s, thus implying a global stretching in the dependence of the hadronic cross-section on √ s.

(1.ii) With this mass change, the renormalisation scale µ R , which is chosen around the mass of the quarkonium state, has increased for the bottomonium state and affects most importantly the running of the coupling constant α s . A smaller coupling α s implies weaker QCD corrections with the effect that the HE-limit is not as impactful as for the charmonium case.

(1.iii) The third effect is the change in the factorisation scale µ F . As indicated in the previous paragraph, for η c there is only little evolution from the initial parametrisation at the scale of the charm mass m c . In contrast to this, the PDFs are now evolved from the initial parametrisation up to the scale of η b such that gluon PDFs are now steep enough to compensate for the negative HE-limit.

For completeness, we reiterate here that the coefficients  in the HE-limit are identical for η c and η b . All three effects combined ensure the positivity of the η b cross-section at LHC scales up to √ s = 100 TeV. However as was observed in Ref. [START_REF] Feng | Energy dependence of direct-quarkonium production in pp collisions from fixed-target to LHC energies: complete one-loop analysis[END_REF], the η b NLO cross-section starts to deviate from the LO at large energies. Charmonium states are most affected from the issue of the negative cross-sections. We will investigate this over-subtraction in more detail and will propose a solution to this in the next section.

A new scale prescription 4.2.1 Process-dependent coefficient vs process-independent evolution

The process-dependence of the coefficients  in the HE-limit can be traced back to the subgraph g * g → X, where X stands here for the final-state particle such as η Q . This is due to the fact that the HE-limit of the partonic cross-section receives contribution only from the initial-state emission contributions where an off-shell gluon is connecting the heavy quark line and the initial-state parton (see Fig. 2.4b and Fig. 2.6b). When integrating the matrix element squared over the phase-space, unlike at the collinear point where a factorisation in terms of the splitting function and the LO graph is possible, because there we have that gg → X, at other phasespace points the off-shellness does not allow us to make a similar factorisation. Therefore, the coefficients  are process-dependent.

This singularity subtraction via the Altarelli-Parisi counterterms in the MS-scheme should introduce steeper gluon PDFs via the universal DGLAP evolution equations and should as aforementioned compensate for the negative partonic cross-section that resulted from the over-subtraction. However, as the coefficients  in the HE-limit are process-dependent while the DGLAP equations here are process-independent, these negative values in the partonic crosssection cannot be compensated in a global and systematic manner via the universal DGLAP equations. We thus have a mismatch between the partonic cross-section and the PDFs. This mismatch is most profound and dramatic for low-scale processes such as charmonium production. The effect is less pronounced for bottomonium states and almost non-noticable for Higgs and tt-production due to their very large scales giving rise to very steep gluon PDFs, thus making the constant terms in the HE-limit essentially void. We will now propose a strategy how to resolve this mismatch between the process-dependent σ and the process-independent PDFs.

Physical scale choice

We recall that after subtraction of the collinear singularities the partonic cross-section can be expressed as in Eq. 4.1.7 where the µ F term is proportional to the splitting functions and the remaining finite term is contained in A ab (z). It is clear that different partonic channels such as the ggand the qg-channels will have different A gg (z) = A qg (z) for any 0 < z < 1. However in the limit z → 0 all partonic channels exhibit the same constant value A ab (z → 0) = Â due to the common sub-graph gg * → X. Making use of this fact, we propose a new scale prescription for µ F for all partonic channels and define,

μF = M e Â/2 . (4.2.1)
such that the partonic high-energy limit vanishes for this new factorisation scale,

lim z→0 σNLO ab (z)| µ F =μ F = C ab α s π σLO log M 2 μ2 F + Â = 0. (4.2.2)
With the constant terms in the partonic cross-section being sensitive to rather flat PDFs and inducing negative cross-sections at large energies, a vanishing HE-limit prevents this with the constant terms being absent. It should be kept in mind, that in general A ab (z) might be more negative at some other z-value than at the HE-limit (z → 0). However as we shall see, solving the issue via the HE-limit is sufficient to obtain stable and reliable cross-sections. When z = 0, A ab (z) contains real-emission contributions from both the heavy-quark lines and the initialstate partons. At z = 0, all the emissions from the heavy-quark line vanish in this limit and only the contributions with intial-state emissions survive.

We remark that due to the presence of the splitting function P ga (z) as prefactor to the µ Fterm in Eq. 4.1.7, setting µ F = μF will not only affect the constant terms at z → 0 but also the contributions at different z = 0 in accord with the structure of the splitting function. With the help of the HE-limit, we are thus able to filter out only the contributions coming from the initial-state emissions and absorb these in the PDFs. We have listed the corresponding values for the new scale prescription for some quarkonium states and the Higgs particle in the right column of Table 4.2. We would like to stress that the values for μF such as for η Q are within the usual range of µ F ∈ [ M 2 , 2M ] already considered. For η c with a mass of M = 3 GeV, we have that μF = 1.82 GeV, while for η b with M = 9.5 GeV we obtain μF = 5.76 GeV. While a negative HE-limit amounts to an over-subtraction of the initial-state divergences inside the PDFs, a positive HE-limit could be interpreted as an under-subtraction. In a physical GeV with the following PDF parametrisations, PDF4LHC15_nlo_30 [START_REF] Butterworth | PDF4LHC recommendations for LHC Run II[END_REF], MMHT14nlo [START_REF] Harland-Lang | Charm and beauty quark masses in the MMHT2014 global PDF analysis[END_REF], JR14NLO08VF [START_REF] Jimenez-Delgado | Delineating parton distributions and the strong coupling[END_REF], NNPDF31sx_nlonllx_as_0118 [START_REF] Ball | Parton distributions with small-x resummation: evidence for BFKL dynamics in HERA data[END_REF], CT14nlo [START_REF] Dulat | New parton distribution functions from a global analysis of quantum chromodynamics[END_REF] and NNPDF31_nlo_as_0118 [START_REF] Ball | Parton distributions from high-precision collider data[END_REF]. Plots generated with APFEL [START_REF] Bertone | APFEL: A PDF Evolution Library with QED corrections[END_REF][START_REF] Carrazza | APFEL Web: a web-based application for the graphical visualization of parton distribution functions[END_REF]. In addition, reweighted NNPDF30_nlo_as_0118 [START_REF] Ball | Parton distributions for the LHC Run II[END_REF] gluon PDF based on exclusive J/Ψ data added [START_REF] Flett | Very low x gluon density determined by LHCb exclusive J/ψ data[END_REF] sense, μF is the scale at which all the real emissions at z → 0, i.e. initial-state emissions, are absorbed inside the PDFs. In addition to fixed-order calculations, one may consider resummation effects related to initial-state emissions. It provides in a deeper sense the scale at which the 'coupling' between the PDFs and the partonic cross-section is optimal.

For flat PDFs, a non-zero HE-limit contributes accumulatively to the hadronic cross-section at large collider energies √ s and would violate the perturbative stability of the fixed-order calculation. When the HE-limit vanishes, the hadronic cross-section behaves in a more asymptotic manner and follows the threshold contributions thus ensuring the convergence of the series. We can thus expect that with this scale setting μF the perturbative stability is independent of the precise shape of the gluon PDFs and therefore would behave in a similar way for different PDF parametrisations.

PDF parametrisations

In order to evaluate the impact of this new factorisation scale to different PDF parametrisations, within the LHAPDF6 library [START_REF] Buckley | LHAPDF6: parton density access in the LHC precision era[END_REF], we have used here three different PDF sets representative for the different approaches in their parametrisations, (a) PDF4LHC15_nlo_30 (PDF4LHC15) [START_REF] Butterworth | PDF4LHC recommendations for LHC Run II[END_REF] which is representative for conventional PDFs, (b) JR14NLO08VF [START_REF] Jimenez-Delgado | Delineating parton distributions and the strong coupling[END_REF] that uses dynamical PDFs and (c) NNPDF31sx_nlonllx_as_0118 (NNPDFNLL) [START_REF] Ball | Parton distributions with small-x resummation: evidence for BFKL dynamics in HERA data[END_REF] which incorporates resummation effects at low x.

Before proceeding further, we wish to make a few remarks on the difference between these GeV with the following PDF parametrisations, PDF4LHC15_nlo_30 [START_REF] Butterworth | PDF4LHC recommendations for LHC Run II[END_REF], MMHT14nlo [START_REF] Harland-Lang | Charm and beauty quark masses in the MMHT2014 global PDF analysis[END_REF], JR14NLO08VF [START_REF] Jimenez-Delgado | Delineating parton distributions and the strong coupling[END_REF], NNPDF31sx_nlonllx_as_0118 [START_REF] Ball | Parton distributions with small-x resummation: evidence for BFKL dynamics in HERA data[END_REF], CT14nlo [START_REF] Dulat | New parton distribution functions from a global analysis of quantum chromodynamics[END_REF] and NNPDF31_nlo_as_0118 [START_REF] Ball | Parton distributions from high-precision collider data[END_REF]. Plots generated with APFEL [START_REF] Bertone | APFEL: A PDF Evolution Library with QED corrections[END_REF][START_REF] Carrazza | APFEL Web: a web-based application for the graphical visualization of parton distribution functions[END_REF].

PDF sets. The conventional PDF choices such as PDF4LHC15, MMHT14nlo [START_REF] Harland-Lang | Charm and beauty quark masses in the MMHT2014 global PDF analysis[END_REF], CT14nlo [START_REF] Dulat | New parton distribution functions from a global analysis of quantum chromodynamics[END_REF] etc., are all based on a parametrisation at an initial scale µ F = Q 0 ∼ 1.5 GeV. Using then experimental data at larger Q, where the PDFs are now evolved via DGLAP equation, one then attempts to fit the coefficients present in the initial-scale parametrisation in order to match the convoluted cross-sections to data. However, as there is not much data at low scales such as charmonium scales, the PDFs are badly constrained at the initial scales. This results into very large uncertainties and even negative parton distributions in the low-x region 5 .

In contrast to this, the JR14NLO08VF set is driven by the dynamical PDF approach [START_REF] Gluck | Dynamical parton distributions of the nucleon and very small-x physics[END_REF][START_REF] Jimenez-Delgado | Dynamical NNLO parton distributions[END_REF]. The key difference to the conventional PDFs is that in the dynamical PDF approach one starts only with positive and valence-like PDFs at very low scales below 1 GeV which implies vanishing PDFs in the low-x region. The low-x distribution at larger Q scales is then entirely driven by the DGLAP evolution and there is no need to parametrise the low-x region separately. The dynamical PDFs approach thus results into steeper gluons PDF than in the conventional approach. However, this more restrictive approach results into small uncertainties as we will see.

Finally, the third PDF choice NNPDF is based on the neural network approach [START_REF] Forte | Neural network parametrization of deep inelastic structure functions[END_REF]. Similarly to the conventional PDFs, standard NNPDF parametrisations as NNPDF31_nlo_as_0118 (NNPDF31) [START_REF] Ball | Parton distributions from high-precision collider data[END_REF] suffer from large uncertainties in the low-x region and at low scales Q, and can thus go in the negative region. The NNPDFNLL set [START_REF] Ball | Parton distributions with small-x resummation: evidence for BFKL dynamics in HERA data[END_REF], that we have selected here, however considers in addition also resummation effects LL (Leading Logarithm)+NLL (Next-to-Leading Logaritm) for the low-x region. The effect of these resummations is that it slows down the DGLAP evolutions. When fitting to data at larger scales Q, with a slower evolution one there-fore needs to start with steeper gluon PDFs in order to match the convoluted cross-sections to data. Another group that has attempted to include resummation effects in their fit is the xFitter community [START_REF] Abdolmaleki | Impact of low-x resummation on QCD analysis of HERA data[END_REF]. In view of the partonic HE-limit being very sensitive to flat PDFs, steeper gluon PDFs provided in the NNPDFNLL set are thus interesting.

Following the aforementioned remarks and in order to understand the effect of the different parametrisations and approaches on the shape of the PDF, we have plotted the gluon PDFs multiplied with the momentum fraction xf g/p (x, µ F ) at two different scales, µ F = 1.55 GeV in Fig. 4.2 and at µ F = 3 GeV in Fig. 4.3, and for the following PDF parametrisations, PDF4LHC15, MMHT14nlo, JR14NLO08VF, NNPDFNLL, CT14nlo and NNPDF31. We note that at µ F = 1.55 GeV, all PDF parametrisation agree roughly in the x region larger than x > 0.02. However, in the low-x region, which is crucial for the threshold contributions at large energies √ s, different parametrisations exhibit large uncertainties with some distributions turning to the negative region. These uncertainties are large due to lack of experimental data.

In addition, for the conventional PDFs we observe the presence of a bump at x ∼ 0.02 and a dip below x ∼ 0.001. We note that this dip is absent for the dynamic PDFs represented by JR14 and the PDF containing small-x resummation effects represented by NNPDFNLL. This dip for the conventional PDFs is the result of the extrapolation when the fit/match is performed at larger scales as explained previously. As we shall see later, this dip will lead to strange crosssection results in energy √ s and rapidity y distributions.

On a side note, we remark that in a recent study by Flett et al. [START_REF] Flett | Very low x gluon density determined by LHCb exclusive J/ψ data[END_REF], this dip is in contradiction to exclusive J/ψ photo-production data. In the study they performed a reweighting of the gluon PDF NNPDF30_nlo_as_0118 [START_REF] Ball | Parton distributions for the LHC Run II[END_REF] based on J/ψ data which we have plotted for comparisonal purposes in Fig. 4.2. As the exclusive J/ψ data are however not directly related to the PDFs but rather generalised parton distributions (GPDs), we consider the reweighting here to be preliminary although interesting.

When evolving the gluon PDFs to larger scale µ F = 3 GeV, the dip disappears as the gluon PDFs have evolved to steeper distributions driven by the DGLAP equations. In addition, we note that the PDF uncertainties are reduced compared to the situation at µ F = 1.55 GeV. The gluon PDFs are now all positive up to roughly x ∼ 10 -5 .

In the next section, we will investigate how these three rather different PDF choices affect the perturbative stability of the K-factor for our scale choice μF . Following our argumentation in the previous section, despite the PDFs having drastically different shapes, we expect very similar results for the K-factor with our new scale prescription.

Impact of μF on the K-factor

We will now apply this new factorisation scale choice prescription and investigate the effect on η c production. In addition, we will also explore its effect on larger scale processes such as η b and Higgs production, where the latter process has a different production mechanism and thus serves as an independent measure of the new scale prescription. 
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Figure 4.4: K-factor of dσ dy for η c production at y = 0 with usual 7-scale variation for (µ R , µ F ) and in addition our scale choice µ R = µ F = μF with (a) PDF4LHC15_nlo_30 [START_REF] Butterworth | PDF4LHC recommendations for LHC Run II[END_REF] and (b) JR14NLO08VF [START_REF] Jimenez-Delgado | Delineating parton distributions and the strong coupling[END_REF] PDF parametrisations.

K-factor of η c production

We have plotted in Fig. 4.4 and in Fig. 4.5a the K-factor of the rapidity-differential cross-section dσ dy for η c production at y = 0 and applied the typical 7-scale variations around the central default scale choice for both renormalisation and factorisations scales. In the plots we denote these as ξ R = µ R M and ξ F = µ F M . In addition, we have applied our new factorisation scale prescription µ F = μF and set the renormalisation scale equal to µ R = µ F = μF . The three plots in Fig. 4.4 and Fig. 4.5a show the corresponding K-factor yields for the aforementioned three PDFs sets, (a) PDF4LHC15, (b) JR14NLO08VF and (c) NNPDFNLL. For the K-factor, which is the ratio between the NLO versus the LO cross-sections, we have computed both LO and NLO cross-sections with the same PDF in order to investigate the perturbative stability with respect to the real emission contributions.

We note that, for PDF4LHC15, out of the eight scale choices, five approach values below K < 1. Three even go in the negative K-factor region, some as early at around √ s ∼ 1.2 TeV.

For the default scale choice, the K-factor becomes very small K ∼ 0.1 indicating a very bad perturbative convergence. With a larger µ R , α s becomes smaller and the contributions of the real emissions are smaller than for the default scale choice and give a slightly better K-factor. All five scale choices mentioned here do have the property that µ F > μF and thus exhibit a negative HE-limit. The worst choices are characterised by a small µ R choice to enhance the QCD corrections and a large µ F value to make the HE-limit as negative as possible.

Two out of the eight scale choices yield K-factor results above K > 2. These large K-factor yields can be easily explained by their low factorisation scale µ F < μF thus resulting into a positive HE-limit. As shown before, at low scales such as µ F = 1.5 GeV, PDF4LHC15 gluon PDF set exhibits a dip below x < 0.001. It is precisely this dip that causes the bump in Fig. 4.4a √ s Our scale choice µ F = μF that cancels the HE-limit is shown with the thick green curve. We see that as we go to larger √ s, the K-factor remains stable and asymptotically approaches a value close to K ∼ 1 in agreement with our expectation. As with our scale choice the LO and soft+virtual corrections dominate, we may want to compare the asymptotic value with the threshold K-factor value. Using α s (µ R = 1.82 GeV) = 0.310, we obtain with µ R = µ F from Eq. 3.3.1 or Eq. 2.4.39 that K ∼ 1.21. Comparing the asymptotic value for our scale, we find that the value is close to the threshold K-factor as expected. We see it as a confirmation and success of our scale choice.
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We have described the features in the previous paragraph for the conventional PDF choice with rather flat gluon PDFs. We now discuss the results with the dynamical PDF set JR14NLO08VF with its steeper gluon distributions. We observe that the K-factor yield for the scale choices behave very similarly as for PDF4LHC15. The ones where µ F > μF and thus have a negative HE-limit undershoot the LO order while the scale choices with µ F < μF inducing a positive HE-limit overshoot the LO.

We note two differences to the conventional PDF choice. The bump for the ξ F = 0.5 scale choice is now absent as the gluon PDF for JR14NLO08VF does not exhibit any dip at low scales. Secondly, as the gluon PDFs are now steeper, the first scale configuration that goes negative is now at larger energies at around √ s ∼ 4 TeV. For our scale choice µ F = μF , which is labelled with a solid green curve, we can indeed confirm that the K-factor yield is again stable and approaches asymptotically the threshold K-factor computed previously. Finally, for the PDF set with low-x resummation effects NNPDFNLL, we can make the same observations that depending on the relative value of µ F to μF , it will either over-shoot or under-shoot the LO. Similarly as for JR14NLO08VF, we note the absence of the bump in the K-factor yield in Fig. 4.5a as the dip in the gluon PDF is non-existant. Again as before, for our scale choice the K-factor yield is stable and approaches asymptotically the threshold K-factor value.
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We remark that the renormalisation scale µ R can have two effects. As it appears implicitly in the running of the coupling constant α s , a smaller (larger) µ R -value will make the higher-order corrections stronger (weaker). Thus with a larger µ R value and thus weaker corrections, it will essentially delay the exact point when the cross-section becomes negative. But the trajectory and tendency of the K-factor is dictated by the factorisation scale value. The second effect is that due to the presence of the log µ 2 R /µ 2 F value in the threshold part, the K-factor will essentially be shifted by a constant term although its energy-dependence remains unaffected by this.

We note the striking similarity between the green curves for PDF4LHC15, JR14NLO08VF and NNPDFNLL. It indeed confirms our initial expectation that the perturbative stability of NLO versus LO is, for our particular scale choice µ F = μF , independent of the precise shape of the gluon PDF. This is due to the fact that with a vanishing HE-limit at large ŝ → ∞ the partonic cross-section can only contribute asymptotically to the threshold value which involve LO and threshold contributions (z = 1) from virtual and real emission parts. We mention that a different choice for the µ R scale will yield similarly good results as this change just amounts to a constant off-set in the K-factor but not in its energy-dependence. Fictitious-H 0 production with M H =3 GeV, m Q =m H at NLO computed with ggHiggs and PDF4LHC30
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Figure 4.7: K-factor of σ for Higgs production with M H = 3 GeV with usual 7-scale variation for (µ R , µ F ) and in addition our scale choice µ R = µ F = μF with PDF4LHC15_nlo_30 [START_REF] Butterworth | PDF4LHC recommendations for LHC Run II[END_REF] and two different ratios with the internal quark mass, (a)

2m Q M H = 1 and (b) 2m Q M H = 2. Computed with ggHiggs [99, 100, 101].

K-factor of η b production

We will now assess the situation for η b production and employ the same 7-scale variation around the central scale plus our scale choice µ F = μF . Compared to η c , the key difference for the bottomonium case is now the increase in the scale from the mass of the charmonium to the mass of the bottomonium state. This scale increase will generically weaken QCD corrections due to the lower α s value. However as the coefficients in the HE-limit are identical, we expect to observe similar tendencies in the K-factor yield for the scale configurations considered as in the η c case. On a side note, we remark that the change in n f is negligible here.

We have plotted in Fig. 4.5b and in Eq. 4.6 the energy-dependence of the K-factor for the same three different PDF parametrisations. Up to FCC energies √ s = 100 TeV, all scale choices generate positive yields, however the tendency of five of these curves indicate that the K-factor may turn negative beyond √ s = 100 TeV. This is in line with the discussion on the difference between η c and η b (see Sec. 4.1.4) that the energy-dependence for η b is stretched in √ s by the ratio the mass has changed. Our new scale prescription represented by the green curve is manifestly the most stable choice out of the ones shown here and approaches asympotically a limiting value. Using α s (µ R = 5.76 GeV) = 0.20, we obtain for the threshold K-factor K ∼ 1.14.

We point out that as the PDFs are now evolved compared to the η c case, the bump in the K-factor yield is non-existent for the PDF4LHC15 choice in Fig. 4.6a as the dip has disappeared now. In addition, the PDFs are now more aligned such that K-factor yields for different PDF sets are more uniform now. However, for our scale choice the curves are nearly identical thus confirming our expectation that the perturbative stability with respect to the LO is essentially independent from the PDF choice. √ s/M H H 0 production with finite top quark mass at NLO computed with ggHiggs and PDF4LHC30 
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K-factor of H 0 production

We have applied our scale prescription also for Higgs production with finite quark loop which has a different production mechanism than η Q and thus serves as an independent measure of our scale prescription. In order to measure this effect, we will first consider a fictitious light Higgs particle with mass M H = 3 GeV such that we can consider PDFs at low scale which then exhibit flat distributions. In order to compute the p T and y-integrated cross-section σ, we have made use of the package ggHiggs by M. Bonvini [START_REF] Ball | Higgs production in gluon fusion beyond NNLO[END_REF][START_REF] Bonvini | Updated Higgs cross section at approximate N 3 LO[END_REF][START_REF] Bonvini | On the Higgs cross section at N 3 LO+N 3 LL and its uncertainty[END_REF] which is based on the NLO calculations involving finite top-quark mass effects as in in Ref. [START_REF] Bonciani | Scalar particle contribution to Higgs production via gluon fusion at NLO[END_REF][START_REF] Harlander | Higgs production in gluon fusion at next-to-next-to-leading order QCD for finite top mass[END_REF]. As we seen before in the case for η Q production, with our scale choice, the K-factor yield is rather independent of the precise shape of the PDF. We have thus only used PDF4LHC15 [START_REF] Butterworth | PDF4LHC recommendations for LHC Run II[END_REF] here.

In Fig. 4.7 and in Fig. 4.8a, we have plotted the energy-dependence of the K-factor for the light Higgs case and with different ratios between the internal quark mass and the Higgs mass. As shown in Table 4.2, the process-dependent quantity  for Higgs production in the HE-limit depends on the exact ratio between the quark mass inside the loop and the mass of the Higgs particle [START_REF] Harlander | Higgs production in gluon fusion at next-to-next-to-leading order QCD for finite top mass[END_REF]. In these three plots in Fig. 4.7 and in Fig. 4.8a, we show the impact for the three different ratios, [START_REF] Dulat | New parton distribution functions from a global analysis of quantum chromodynamics[END_REF] where the last one corresponds to the ratio between the top quark mass m t = 173 GeV and the real Higgs mass M H = 125 GeV.

2m Q /M H = 1, 2m Q /M H = 2 and 2m Q /M H = 2.
As before, we can confirm the generic behaviour that when µ F > μF , the K-factor tends to decrease while for µ F < μF we observe the tendency to increase. For our scale choice µ F = μF represented by the green curve, the K-factor is indeed stable. We have set here again µ R = µ F . As the coefficients  for the Higgs state are more positive than for the η Q state, all scale configuration considered here yield positive results. √ s/M H H 0 production with a fictitious m Q =M H /2 at NLO computed with ggHiggs and PDF4LHC30 √ s/M H H 0 production with m t =M H at NLO computed with ggHiggs and PDF4LHC30
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Figure 4.9: K-factor of σ for Higgs production with M H = 125 GeV with usual 7-scale variation for (µ R , µ F ) and in addition our scale choice µ R = µ F = μF with PDF4LHC15_nlo_30 [START_REF] Butterworth | PDF4LHC recommendations for LHC Run II[END_REF] and two different ratios with the internal quark mass, (a)

2m Q M H = 1 and (b) 2mt M H = 2.
Computed with ggHiggs [START_REF] Ball | Higgs production in gluon fusion beyond NNLO[END_REF][START_REF] Bonvini | Updated Higgs cross section at approximate N 3 LO[END_REF][START_REF] Bonvini | On the Higgs cross section at N 3 LO+N 3 LL and its uncertainty[END_REF].

We note again the bump when µ F = 1.5 GeV as we have observed previously in the plot for charmonium production. The bump appears larger here because the K-factor is based on σ for Higgs production such the LO is integrated over the PDFs while for η c the K-factor yield was based on dσ dy where the LO is directly coupled to points in the PDF. As for the situation with the real Higgs state with M H = 125 GeV and using the same three ratios as before, we have plotted the K-factor results in Fig. 4.8b and in Fig. 4.9. With the PDFs now being rather steep due to the evolution from the initial parametrisation to the scale of the Higgs state, the different scale choices yield more uniform results with same tendencies as before.

We note that our scale choice for the heavy Higgs performs best for the situation when 2m Q /M H = 1 in Fig. 4.9a. As for the case with the real top quark in the loop shown in Fig. 4.9b, the scale choice (ξ R , ξ F ) = (2.0, 2.0) seems to give the best results for the K-factor yield. It remains to be understood whether real emission contributions originating from the heavyquark loop may contribute significantly to the region very close to the HE-limit as this is a loop-induced process. Other than that, we can conclude that our scale choice for the light Higgs particle indeed yields the best stable result for the K-factor and thus confirms the general principle of the method.

Additional remarks and outlook

At this stage, we would like to make the following interesting observation, that when a crosssection yield is positive-definite, it is not immediately clear whether the result is not in fact overshooting the true physical result by orders of magnitude at large collision energies. In contrast to this, when the cross-section yield turns negative thus under-shooting the true physical result, it is immediately clear that the result is unreliable and wrong. However, in both cases, overshooting and under-shooting the true result, we consider this to be a very bad convergence of the perturbative series. It is therefore necessary to make a good choice for the factorisation scale to avoid the deviation either side from the true result. This is the very essence in our idea of the new scale prescription that the HE-limit must vanish such that at large energies it cannot deviate either side from the threshold contribution.

Finally, we mention here in passing that preliminary results for the K-factor yield for the 3 P

[1] 0 charmonium state, which has a more negative  = - 43 27 coefficient than η c with  = -1, show that our scale choice indeed preserves the positivity and is stable while other choices all tend to go into the negative region as one increases the energy. Further investigation of this and additional states such as J/ψ photo-and hadro-production are left for future work. We have managed to resolve the issue of negative cross-sections by imposing a scale prescription for the factorisation scale that eliminates the partonic high-energy limit and yields stable results for η Q production.

We also mention here, that the PDF uncertainty of the K-factor for our scale choice was smaller than the uncertainty for larger µ F choices despite the PDFs being evolved there. This is easily explained with the vanishing HE-limit and is an indirect confirmation of our scale prescription. In addition, we mention that the stability and positivity induced by our scale choice is independent of the PDF choice which in a sense demonstrates that µ F = μF provides the best 'coupling' and factorisation between the partonic cross-section and the PDFs. In view of PDFs having large uncertainties and different shapes at low scales needed for charmonium states, we consider our scale prescription the first important step and condition to obtain reliable results.

Gluon luminosities and LO cross-sections

As the LO rapidity-differential cross-section is driven by the shape of the gluon PDFs, where we have that

dσ LO dy ∝ τ 0 ∂ 2 L gg ∂τ ∂y (τ 0 , y, µ F ), (4.5.1) 
the NLO cross-section will be directly affected by this. This relation also holds for Higgs production and generally for all 2 → 1 processes which are driven by gluon fusion. These differ only by a constant prefactor depending on the production mechanism and the nature of the final-state particle. Therefore, issues with LO rapidity-differential cross-sections are then entirely due to the PDF shapes. For charmonium production we happen to work at very low scales where the PDFs are not well-constrained due to lack of data.

We will investigate the energy-dependence of the gluon luminosities which would dictate the rapidity-dependence of the LO cross-section for any 2 → 1 process. We have plotted in Fig. 4.10, the energy-dependence for the gluon luminosity ∂ 2 L gg /∂τ ∂y multiplied by τ 0 (see Eq. 4.5.1) at y = 0 corresponding to LO rapidity-differential cross-section for charmonium production and employed the same three PDF parametrisations, (a) PDF4LHC15, (b) JR14NLO08VF and (c) NNPDFNLL. We have evolved the gluon PDFs to three different scales,

µ F = { M 2 = 1.5 GeV, M = 3 GeV, 2M = 6
GeV}. We can make the following observations that as we move to larger scales, the PDF uncertainties reduce.

The energy-dependence for PDF4LHC15 choice shown in Fig. 4.10a and for the scale choice µ F = 1.5 GeV (red band) is in contradiction to physical behaviour which one would expect to GeV) with three scale choices µ F = { M 2 , M, 2M } and with (first row) PDF4LHC15_nlo_30 [START_REF] Butterworth | PDF4LHC recommendations for LHC Run II[END_REF], (second row) JR14NLO08VF [START_REF] Jimenez-Delgado | Delineating parton distributions and the strong coupling[END_REF] and (third row) NNPDF31sx_nlonllx_as_0118 [START_REF] Ball | Parton distributions with small-x resummation: evidence for BFKL dynamics in HERA data[END_REF] PDF parametrisations.

observe in any experimental setup. It suggest that from √ s = 100 GeV up to √ s = 14 TeV, within its uncertainty, the cross-section remains constant throughout. The central curve represented by the solid line in fact essentially goes slightly down. We can explain this unphysical behaviour with the presence of the dip in PDF4LHC15 (see Fig. 4.2). The minimum at around √ s = 14 TeV is exactly in agreement with the bump observed for the K-factor yield in Fig. 4.4a.

The large uncertainties for PDF4LHC15 also extend into the negative region. The situation is better when evolved to larger scales at µ F = 3 GeV (black band) and µ F = 6 GeV (blue band) where the curve increase monotonously.

As for the case of JR14NLO08VF set shown in Fig. 4.10c, the evolution of the curves for all three scale choices is in perfect agreement with expectation. However, we note that the uncertainties are small due to the constrained fit mentioned before where the low-x region is entirely generated by the evolution directly rather than parametrised separately. For the NNPDFNLL set shown in Fig. 4.10e, the situation is better than in the case for PDF4LHC15. The curves behave in a more acceptable manner, however the luminosity uncertainities at the scale µ F = 1.5 GeV (red band) and close to FCC energies ( √ s = 100 TeV) extend again to the negative region.

We will now investigate the rapidity-dependence of the gluon luminosities at √ s = 14 TeV which we have displayed in Fig. 4.10. The shape for the PDF4LHC15 choice has very large uncertainties for all three scale choices. In particular for the µ F = 1.5 GeV choice the crosssection increases by a factor of roughly ten when moving from y = 0 to y = 6 which again can be explained by the presence of the dip. As we evolve in µ F , the shapes take more acceptable forms. For JR14NLO08VF, the shape of the rapidity distribution is in perfect agreement as what one would expect. The shape would be consistent for example for LO real Higgs production at scales around µ F ∼ 100 GeV. As for the NNPDFNLL PDF choice, it is obvious that the uncertainties are large from y > 3 on with the range extending into the negative region thus providing unreliable results. The PDF with the best parametrisation is thus JR14NLO08VF despite its low uncertainties.

As for the situation of η b production with a mass of M = 9.5 GeV, we have plotted the energy-and rapidity-dependence of the luminosities with the same configurations as before in Fig. 4.11. Due to the larger scale, the PDFs have all evolved such that the uncertainties become smaller. Thus, different PDF choices yield more uniform results than in the case of charmonium production.

As we shall see, having a good (bad) PDF shape already at LO, will significantly affect the NLO result. This affects most noticeably the charmonium case and shall be our second followup condition that the LO curves must behave reasonably first before going to NLO accuracy.

Stability & positivity of cross-sections at NLO

In this section, we will now investigate how the different PDFs and our scale prescription impact the cross-section result at NLO accuracy.

Cross-section for η c production

We have plotted in Fig. 4.12 and in Fig. 4.14a the energy-dependence of the NLO rapiditydifferential cross-section for η c production at y = 0. We have set, for the quarkonium mass, 

dσ NLO η c /dy | |y=0 [nb] √ s [TeV] PDF4LHC30 (ξ R ,ξ F )=(1/√ e,1/√ e) (ξ R ,ξ F )=(1.0,1.0) (ξ R ,ξ F )=(1.0,2.0) (ξ R ,ξ F )=(1.0,0.5) (ξ R ,ξ F )=(0.5,0.5) (ξ R ,ξ F )=(2.0,1.0) (ξ R ,ξ F )=(2.0,2.0) (ξ R ,ξ F )=(0.5,1.0) (a 
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Figure 4.12: Energy-dependence of dσ NLO dy for η c production at y = 0 with usual 7-scale variation for (µ R , µ F ) and in addition our scale choice µ R = µ F = μF with (a) PDF4LHC15_nlo_30 [START_REF] Butterworth | PDF4LHC recommendations for LHC Run II[END_REF] and (b) JR14NLO08VF [START_REF] Jimenez-Delgado | Delineating parton distributions and the strong coupling[END_REF] PDF parametrisations. M = 2m c = 3 GeV and, for the radial wavefunction at the origin, |R 0 | 2 = 1 GeV 3 [START_REF] Brodsky | Heavy-Quarkonium Production in High Energy Proton-Proton Collisions at RHIC[END_REF]. As before, for the K-factor analysis, we have employed the 7-scale variation method around the central scale µ R = µ F = M for both renormalisation and factorisation scales 7 . In addition, we have applied our scale prescription for the factorisation scale and set µ R = µ F = μF = 1.82 GeV. We have computed the cross-section results by involving all PDF eigensets and replicas for the three PDF parametrisation in order to obtain the PDF uncertainties. In the plot, we have shown only the average result rather than the uncertainties as these do not add any new information to the luminosity plots shown before. We will show the PDF uncertainties for our scale choice later on. At this stage, we only wish to show the curves for the 7-scale choices and μF in order to understand the efficiency of our scale prescription.

For all three PDF sets, three scale choices go into the negative region, which is indicated by their incomplete curves. These choices are (ξ R , ξ F ) = (0.5, 1.0), (1.0, 2.0) and (2.0, 2.0). For these choices, we have a negative HE-limit. Depending on the steepness of the gluon PDF, for such scale choices, the NLO cross-section crosses the zero line from positive to negative region either at smaller or larger √ s. For PDF4LHC15, the default scale choice (1.0, 2.0) reaches a maximum at around √ s = 2 TeV before decreasing.

For the other PDF parametrisations, the default scale choice seems to stagnate, indicating a damping through the negative HE-limit. For μF , the NLO cross-section remains positivedefinite for all three parametrisation and therefore demonstrating its efficiency and success. We observe again for PDF4LHC15, as the factorisation scale is rather low, the peculiar PDF luminosity shape we encountered in the previous section (see Fig. 4.10a) and this indeed drives the shape of the LO and thus the NLO cross-section. For JR14NLO08VF PDF choice, the trajec- 7 As a reminder, in the plots we have defined ξ R/F = µ R/F M and thus we consider (ξR, ξF [68], JR14NLO08VF [START_REF] Jimenez-Delgado | Delineating parton distributions and the strong coupling[END_REF], NNPDF31sx_nlonllx_as_0118 [START_REF] Ball | Parton distributions with small-x resummation: evidence for BFKL dynamics in HERA data[END_REF], ABM11_3n_nlo [START_REF] Alekhin | Parton Distribution Functions and Benchmark Cross Sections at NNLO[END_REF], CT14nlo [START_REF] Dulat | New parton distribution functions from a global analysis of quantum chromodynamics[END_REF], NNPDF31_nlo_as_0118 [START_REF] Ball | Parton distributions from high-precision collider data[END_REF] and MMHT14nlo [START_REF] Harland-Lang | Charm and beauty quark masses in the MMHT2014 global PDF analysis[END_REF] PDF parametrisations.

) = µ R M , µ F M = {(1.0,
dσ LO η c /dy | |y=0 [nb] √ s [TeV] (ξ R ,ξ F )=(1/√ e,1/√ e) Central eigensets PDF4LHC JR1408VF NNPDFNLL ABM11 -3n -nlo CT14nlo NNPDF31 MMHT14nlo (a)
√ s [TeV] (ξ R ,ξ F )=(1/√ e,1/√ e) Central eigensets PDF4LHC JR1408VF NNPDFNLL ABM11 -3n -nlo CT14nlo NNPDF31 MMHT14nlo (b)
tory is in agreement with expectation as it increases monotonously with energy. Similarly, this is what we observe with NNPDFNLL.

We stress again, that when the PDF shape for our scale prescription is peculiar, it is entirely due to the shape of the PDF rather than the NLO correction. In order to illustrate this, we have computed the central PDF values for our scale choice µ R = µ F = μF with different PDF parametrisations for both NLO and LO. We have plotted the results in Fig. 4.13 for LO (left plot) and NLO (right plot) for different PDF parametrisations, PDF4LHC15 [START_REF] Butterworth | PDF4LHC recommendations for LHC Run II[END_REF], JR14NLO08VF [START_REF] Jimenez-Delgado | Delineating parton distributions and the strong coupling[END_REF], NNPDFNLL [START_REF] Ball | Parton distributions with small-x resummation: evidence for BFKL dynamics in HERA data[END_REF], ABM11_3n_nlo [START_REF] Alekhin | Parton Distribution Functions and Benchmark Cross Sections at NNLO[END_REF], CT14nlo [START_REF] Dulat | New parton distribution functions from a global analysis of quantum chromodynamics[END_REF], NNPDF31_nlo_as_0118 [START_REF] Ball | Parton distributions from high-precision collider data[END_REF], MMHT14nlo [START_REF] Harland-Lang | Charm and beauty quark masses in the MMHT2014 global PDF analysis[END_REF].

We can make two observations, the first being that due to the low scale µ F = 1.82 GeV, the gluon PDFs are rather unconstrained and thus take vastly different shapes for the different parametrisations. As the LO rapidity-differential cross-section is directly driven by this, we obtain different results for the LO cross-section with different PDFs. Comparing the performance of the NLO results, we can indeed confirm that the NLO results are perturbatively stable and follow the trajectory of the LO curves. We mention that for our scale choice the NLO cross-section can only turn negative with entirely negative gluon PDFs. These gluon PDFs only turn negative for conventional parametrisations because the low-x region has been fit to data at larger µ F and when back-evolving to the initial parametrisation, the gluon PDFs happen to be negative. However, in view of the impact on charmonium production, the gluon PDFs should remain positive-definite throughout to the initial scale in the MS-scheme (see [START_REF] Candido | Can MS parton distributions be negative?[END_REF]). 
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Cross-section for η b production

As for η b production, we show the NLO cross-section results in Fig. 4.14b and in Fig. 4.15. We have set, for the bottomonium mass, M = 2m b = 9.5 GeV and, for the radial wavefunction at the origin, |R 0 | 2 = 7.5 GeV 3 [START_REF] Brodsky | Heavy-Quarkonium Production in High Energy Proton-Proton Collisions at RHIC[END_REF]. Due to the evolved PDFs and in particular as the dependence on √ s is stretched 8 , the different scale choices and the different PDF parametrisation yield similar results. However, we note that, for the PDF4LHC15 parametrisation and for the scale choice (1.0, 2.0), where the HE-limit is very strongly negative, the η b NLO cross-section is stagnating close to FCC energies. The trajectory indicates that beyond FCC energies the crosssection may turn down. For NNPDFNLL, the same scale choice also indicates a stagnation. This is less pronounced for the JR14NLO08VF choice.

Renormalisation and PDF uncertainty

We will now study the PDF and renormalisation scale uncertainties only for our scale choice µ F = μF and with the three different PDF parametrisations as before. In order to obtain the PDF uncertainty, we have computed the cross-section for all eigensets for PDF4LHC15 and JR14NLO08VF parametrisations and computed the uncertainty according to the Hessian way.

For the NNPDFNLL choice, in line with its structure, we have applied the replica method to compute the average value and its uncertainty. For this, we have set the renormalisation scale µ R = µ F = μF throughout. 
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Figure 4.15: Energy-dependence of dσ NLO dy for η b production at y = 0 with usual 7-scale variation for (µ R , µ F ) and in addition our scale choice µ R = µ F = μF with (a) PDF4LHC15_nlo_30 [START_REF] Butterworth | PDF4LHC recommendations for LHC Run II[END_REF] and (b) JR14NLO08VF [START_REF] Jimenez-Delgado | Delineating parton distributions and the strong coupling[END_REF] PDF parametrisations.

As for the µ R -uncertainty, we have computed the cross-sections with the lower and upper bound of the range µ R ∈ [M/2, 2M ] while fixing µ F = μF and using the average of the PDF.

For the relative uncertainty of the µ R -variation, we have set as reference value the central scale choice µ R = M . In order to assess the convergence of the series, we have in addition also shown the µ R -uncertainty for the LO cross-section. For a good convergence at NLO, one expects the µ R -uncertainty to decrease at NLO compared to the LO. These scales appear implicitly in the running and explicitly in the partonic cross-section due to dimensional regularisation 9 .

The energy-dependence of the rapidity-differential cross-section yield for η c production at y = 0 and its uncertainties are displayed in Fig. 4.16. In the plots the red band indicates the µ R -uncertainty while the green band indicates the PDF uncertainty. For the PDF4LHC15 set choice in Fig. 4.16a, the PDF uncertainties grow as we reach higher energies and exceed the µ R -band at around √ s = 7 TeV. Just over √ s = 10 TeV, we observe that the uncertainties go into the negative region. We reiterate that this is entirely due to the PDFs and not due to the NLO correction. As we go to higher energies we start to probe the low-x region and we find that some eigensets/replicas exhibit negative gluon distributions there. This then results into negative yields 10 .

As for the relative uncertainty in Fig. 4.16b, at low energies just below √ s ∼ 1 TeV, where we are probing the large-x region, the uncertainty is around 15% before rapidly growing with as function of energy for η c production at y = 0 and our scale choice µ F = μF with (first row) PDF4LHC15_nlo_30 [START_REF] Butterworth | PDF4LHC recommendations for LHC Run II[END_REF], (second row) JR14NLO08VF [START_REF] Jimenez-Delgado | Delineating parton distributions and the strong coupling[END_REF] and (third row) NNPDF31sx_nlonllx_as_0118 [START_REF] Ball | Parton distributions with small-x resummation: evidence for BFKL dynamics in HERA data[END_REF] PDF parametrisations. increasing energy. As for the µ R -sensitivity at LO, the renormalisation scale only appears in the running of the coupling constant α s and thus the relative uncertainty is independent of the energy as the change just amounts to the ratio between the α s value at different renormalisation scales. These bands are marked with the blue dashed line and we find variations of around 85% above and 35% below the reference value. At NLO accuracy, the relative µ R -uncertainty is indeed smaller than the one at LO, thus confirming the convergence of the series with µ F = μF . We also note that this band shrinks as we move to larger energies. From √ s = 1 TeV up at FCC energy √ s = 100 TeV the band extends roughly to around 40% over the reference value and 25% below.

For JR14NLO08VF in Fig. 4.16d, the PDF uncertainties are very small and stay nearly constant as one increases the energy. They remain well below the uncertainties for µ R -uncertainty. We observe that as in the case of PDF4LHC15 again similar results with respect to the scale variations at LO and NLO occur and can thus confirm the improvement in the scale uncertainty reduction. The situation is very similar for NNPDFNLL in the µ R -scale variation as well. As for its PDF uncertainties, these are larger the one of JR14NLO08VF and less than then one PDF4LHC15. Similarly as in the latter case, the PDF uncertainties extend to the negative region beyond √ s = 60 TeV which can be traced back to the negative gluon PDFs as mentioned before.

We briefly assess the situation for η b production. The corresponding plots are displayed in Fig. 4.17. As the reader can verify, the cross-section plots for η b production are more uniform among the different PDF parametrisation. As for the relative µ R -uncertainty, we can again confirm the convergence of the series with the reduction of the scale sensitivity from LO with roughly 45% above and 25% below the reference to around 20% both above and below at NLO accuracy and for √ s > 1 TeV. This scale reduction is slightly better with the JR14NLO08VF set choice than PDF4LHC15 and NNPDFNLL. As for the PDF uncertainty, the uncertainties have reduced for all three PDF choices due to evolved PDFs and is in particular small for JR14NLO08VF.

Having confirmed the µ R -uncertainty reduction at NLO accuracy for our scale choice µ F = μF , we are in a position to make predictions on the rapidity-dependence of the cross-section in the next chapter. as function of energy for η b production at y = 0 and our scale choice µ F = μF with (first row) PDF4LHC15_nlo_30 [START_REF] Butterworth | PDF4LHC recommendations for LHC Run II[END_REF], (second row) JR14NLO08VF [START_REF] Jimenez-Delgado | Delineating parton distributions and the strong coupling[END_REF] and (third row) NNPDF31sx_nlonllx_as_0118 [START_REF] Ball | Parton distributions with small-x resummation: evidence for BFKL dynamics in HERA data[END_REF] PDF parametrisations.

Chapter 5

Cross-section predictions at NLO

Having outlined the origin of the negative values in hadro-production cross-sections and proposed a new scale prescription in Ch. 4, we are now in a position to provide reliable predictions at NLO accuracy. Before we proceed with this, we will discuss the phenomenology of the pseudo-scalar particles, η c , η b and η c which is the 2S-excitation of the ground state η c .

Detectability of pseudo-scalar mesons

For detailed discussions on the detectability, we guide the readers to Ref. [START_REF] Lansberg | η c Hadroproduction at Next-to-Leading Order and its Relevance to ψ Production[END_REF][START_REF] Feng | Phenomenological NLO analysis of η c production at the LHC in the collider and fixed-target modes[END_REF][START_REF] Lansberg | Curing the unphysical behaviour of NLO quarkonium production at the LHC and its relevance to constrain the gluon PDF at low scales[END_REF]. We provide below a short summary. The vector mesons J/ψ and ψ have clean decay channels into µ + µ -or e + e -which proceeds via a virtual photon. However, for pseudo-scalar mesons, the di-lepton decay mode is surpressed due to the different quantum number. It would require the emission of two virtual photons in order to decay into this channel. As such, we will have to look into potential hadronic decay modes.

As already mentioned in the main introduction, the η c has been detected at LHCb via its decay mode to pp [START_REF] Aaij | Measurement of the η c (1S) production cross-section in proton-proton collisions via the decay η c (1S) → pp[END_REF]. The branching ratio of this decay is known up to 10% precision with B(η c → pp) = (1.52 ± 0.16) × 10 -3 . For comparison purposes, we mention here that the branching of the B(J/ψ → µ + µ -) = (5.961 ± 0.033) × 10 -2 is 40 times larger than the branching above [START_REF] Zyla | Review of Particle Physics[END_REF]. Another promising channel to investigate η c production, would be to study its decay to φφ, where the φ is is a vector meson and composed of a sŝ pair with very small mixing with the u and d flavours. However, the φ is not a stable particle and therefore we observe additional branchings. Its branching has been reported to be B(η c → φφ) = (1.77 ± 0.19) × 10 -3 [START_REF] Zyla | Review of Particle Physics[END_REF]. We mention that the J/ψ and ψ cannot decay into φφ due to Landau-Yang theorem which forbids the decay of a spin-1 particle into two spin-1 particles [START_REF] Landau | On the angular momentum of a system of two photons[END_REF][START_REF] Yang | Selection Rules for the Dematerialization of a Particle Into Two Photons[END_REF].

As for the situation of the excited state η c , it could be measured via pp decay which has been estimated to be around B(η c → pp) = O 0.7 × 10 -4 [START_REF] Feng | Phenomenological NLO analysis of η c production at the LHC in the collider and fixed-target modes[END_REF]. As the η c can be produced in the decay of B + meson, one would in addition have to measure the branching of B(B + → η c K + ) which can be performed at Belle experiment. It has been detected recently at LHCb via this decay channel [START_REF] Aaij | Observation of η c (2S) → pp and search for X(3872) → pp decays[END_REF]. Another decay mode for η c is the φφ channel [START_REF] Aaij | Study of charmonium production in b-hadron decays and first evidence for the decay B 0 s → φφφ[END_REF].

As for the η b state, it has a much larger phase-space than the η c and can thus decay into more particles. However, the situation for η b detectability is much less clear than for η c because of its more recent discovery at BABAR in 2008 [START_REF] Aubert | Observation of the bottomonium ground state in the decay υ 3S → γeta b[END_REF]. It has so far only been detected in lepton annihilation processes at BABAR [START_REF] Aubert | Observation of the bottomonium ground state in the decay υ 3S → γeta b[END_REF][START_REF] Aubert | Evidence for the eta(b)(1S) Meson in Radiative Upsilon(2S) Decay[END_REF], CLEO [START_REF] Bonvicini | Measurement of the eta(b)(1S) mass and the branching fraction for Upsilon(3S) -> gamma eta(b)(1S)[END_REF] and Belle [START_REF] Mizuk | Evidence for the η b (2S) and observation of h b (1P ) → η b (1S)γ and h b (2P ) → η b (1S)γ[END_REF][START_REF] Tamponi | First observation of the hadronic transition Υ(4S) → ηh b (1P ) and new measurement of the h b (1P ) and η b (1S) parameters[END_REF] experiments. We mention that the hadronic decay width Γ(η b → gg) computed up to NNLO accuracy is in good agreement with data [START_REF] Feng | Next-to-Next-to-Leading-Order QCD Corrections to the Hadronic width of Pseudoscalar Quarkonium[END_REF]. In this reference, all contributions at NNLO level have been evaluated only numerically. In order to have a good assessment of the NNLO accuracy, we will in Part II of this thesis compute the two-loop virtual corrections analytically in order to obtain reliable quantities.

We expect further measurements on η b to be performed by Belle II experiment [START_REF] Altmannshofer | The Belle II Physics Book[END_REF]. One of the decay channels considered was the di-J/ψ decay channel which would further decay into the di-muon pair. However, the expected branching factor is small and on the order of [START_REF] Hao | Hunting eta(b) through radiative decay into J/psi[END_REF][START_REF] Gong | Exclusive eta(b) decay to double J / psi at next-to-leading order in alpha(s)[END_REF]. Another potential decay mode which was considered was the decay to J/ψγ whose branching is estimated to be

B(η b → J/ψJ/ψ) = O 5 × 10 -8
B(η b → J/ψγ) = O 2 × 10 -7
which is small as well.

We consider the best decay mode to detect η b to be the decay to di-photon where the branching is comparatively not so small with B(η b → γγ) = (4.8 ± 0.7) × 10 -5 . This exclusive decay is known up to two-loops in Ref. [START_REF] Feng | Next-to-Next-to-Leading-Order QCD Corrections to the Hadronic width of Pseudoscalar Quarkonium[END_REF], where the double-virtual contributions have been computed only numerically. In Part II of this thesis we will recompute the two-loop contribution to the di-photon decay channel for both η c and η b but this time we will compute the master integrals in a complete analytical manner and will provide the analytical structure of the twoloop form-factor which are absent in the literature. We then provide the most precise two-loop correction to the decay of η c and η b to di-photon and will assess the convergence.

In the future, both η c and η b can be detected at the LHC in both collider mode and fixedtarget mode at AFTER@LHC [START_REF] Hadjidakis | A Fixed-Target Programme at the LHC: Physics Case and Projected Performances for Heavy-Ion, Hadron, Spin and Astroparticle Studies[END_REF]. In addition, the η c could be measured at SPD at NICA facilities where the center-of-mass energy can go up to √ s = 27 GeV [START_REF] Arbuzov | On the physics potential to study the gluon content of proton and deuteron at NICA SPD[END_REF].

Cross-section at NLO

As η c production is a low-scale process where PDFs are badly constrained, η c measurements integrated in p T as function of center-of-mass energy √ s and rapidity y can provide valuable constraints on the PDFs. We will proceed and provide predictions for the rapidity-differential cross-sections for both η c and η b and for three different experimental set-ups, (1) at LHC in collider mode with √ s = 14 TeV, (2) at LHC in the fixed-target mode with √ s = 114.6 GeV and

(3) at SPD with NICA detector with √ s = 24 GeV.

As for the choice of PDF, given the huge uncertainties and the anormal shapes with the conventional choices at low scales (see Fig. 4.10b and Fig. 4.13), we will show here only the NLO results with the JR14NLO08VF PDF choice [START_REF] Jimenez-Delgado | Delineating parton distributions and the strong coupling[END_REF]. The uncertainties of this dynamical PDF are small due to the constrained fit [START_REF] Jimenez-Delgado | Dynamical NNLO parton distributions[END_REF], however the luminosity curves behave more monotonously in both energy and rapidity (see Fig. 4.10d).

Rapidity-distribution of η c cross-section

We have plotted in Fig. 5.1 the rapidity-distribution of the hadronic cross-section for η c production and for the three different energy configurations. We have used our scale prescription for the factorisation scale with µ F = μF and, for the renormalisation scale, we have fixed µ R = µ F for the central scale choice. In order the establish the renormalisation scale uncertainty, we have varied µ R within the conventional range from M/2 up to 2M and used the central PDF √ s = 24 GeV for SPD NICA [START_REF] Arbuzov | On the physics potential to study the gluon content of proton and deuteron at NICA SPD[END_REF], (second row) √ s = 114.6 GeV for AFTER@LHC [START_REF] Hadjidakis | A Fixed-Target Programme at the LHC: Physics Case and Projected Performances for Heavy-Ion, Hadron, Spin and Astroparticle Studies[END_REF] and (third row) at √ s = 14

TeV for LHC.

eigenset. As before, we have made use of the LHAPDF library [START_REF] Buckley | LHAPDF6: parton density access in the LHC precision era[END_REF] and used our Fortran code with the analytical result for dσ/dy given in Sec. 3.3.

The QCD correction turn out to be large for the configuration at √ s = 24 GeV for SPD NICA configuration with roughly K ∼ 2 at y = 0. The PDF uncertainty are particularly small as was already pointed in Sec. 4.6 (see Fig. 4.16d). As for the renormalisation scale uncertainty, at LO and NLO we obtain that,

√ s = 24 GeV dσ LO ηc dy y=0 = 1 +20% -56% × 640nb, dσ NLO ηc dy y=0 = 1 +15% -49% × 1300nb,
(5.2.1) where above we have displayed the uncertainty in form of relative uncertainty. We can indeed confirm that the µ R uncertainty of the cross-section decreases slightly at NLO which indicates a slow convergence of the series. The scale uncertainty should be further reduced at NNLO level. We will discuss some aspects related to this in Part II of this thesis. In order to obtain the number of events at the experiment, we need to take into account the proton luminosity with around L = 1fb -1 for SPD experiment 1 and the branching for the most promising decay channel for η c . Following the discussion in the previous section, we will use B(η c → pp) = 1.52 × 10 -3 . In addition, one will have to take into account the efficiency of the detectors. We take efficiency to be ε = 10% and can compute the number of events with,

√ s = 24 GeV N = dσ NLO ηc dy y=0 × L × ε × B(η c → pp) =O 2 × 10 5 , (5.2.2) 
which is large and could be easily detected. As for the fixed-target mode at LHC and using the luminosity L = 10fb -1 for LHC experiment, we obtain for the LO and the NLO cross-section with the respective renormalisation scale uncertainty that,

√ s = 114.6 GeV dσ LO ηc dy y=0 =1 +20% -56% × 3500nb, dσ NLO ηc dy y=0 = 1 +10% -41% × 5300nb, N = O 8 × 10 6 , (5.2.3) 
where at NLO accuracy, the scale uncertainty at √ s = 114.6 GeV has reduced further as compared to situation at √ s = 24 GeV. In contrast to this, at LO, the scale uncertainty is independent of the energy as these are global factors (see blue line in Fig. 4.16d). We have above also computed the number of events with the same parameters and with the NLO cross-section. As for the collider mode of LHC with √ s = 14 TeV, we obtain that,

√ s = 14 TeV dσ LO ηc dy y=0 =1 +20% -56% × 21000nb, dσ NLO ηc dy y=0 = 1 +7% -37% × 28000nb, N = O 4 × 10 7 , (5.2.4)
where the µ R -scale uncertainty has reduced further. We also remark that the K-factor with our scale choice now approaches unity and follows the path of the LO curve at large energies.

Rapidity-distribution of η b cross-section

We will now proceed with the rapidity-differential results for η b production at these three different energy configurations. The results have been plotted in Fig. 5.1. We give below the result for SPD NICA configuration at y = 0,

√ s = 24 GeV dσ LO η b dy y=0 =1 +11% -41% × 0.009nb, dσ NLO η b dy y=0 = 1 +9% -36% × 0.020nb, N = O 1 × 10 -1 , (5.2.5) 
where above in line with the discussion on η b detectability, we have computed the number of events now based on the branching of the decay of η b to di-photon and used B(η b → γγ) = 4.8 × 10 -5 . The number of events is very small and, as such, SPD NICA experiment is not a feasible configuration for η b measurements. We observe that the K-factor of the QCD correction of NLO versus LO is similar around K ∼ 2. We also observe that the scale uncertainty at NLO for the renormalisation scale has reduced compared to the LO as expected. For the LHC fixedtarget configuration, one obtains,

√ s = 114.6 GeV dσ LO η b dy y=0 =1 +11% -41% × 11.7nb, dσ NLO η b dy y=0 = 1 +6% -30% × 20nb, N = O 1 × 10 3 . (5.2.6) 
We note that the NLO cross-section has increased by factor 1000 compared to the yield at √ s = 24 GeV2 . Finally for the LHC collider mode, the result is,

√ s = 14 TeV dσ LO η b dy y=0 =1 +11% -41% × 1190nb, dσ NLO η b dy y=0 = 1 +3.4% -23% × 1580nb, N = O 7.6 × 10 4 . (5.2.7)
In order to improve the renormalisation scale uncertainty, it will be necessary to go to NNLO accuracy. We have seen that the plots with our scale prescription and the JR14 PDF parametrisation take monotonously rapidity-distributions. It will be very interesting to conduct future experiments and try to extract gluon and quark PDFs from pseudo-scalar cross-section results.

Outlook

Our scale choice provides a solution to avoid the negative numbers in the partonic cross-section and thus at hadronic level. The negative numbers observed by G. Schuler and M. Mangano and A. Petrelli were due to the over-subtraction of the intial-state collinear divergences inside the PDFs. As elaborated, such over-subtraction should in principle be returned via steeper gluon evolutions via the DGLAP equations in the PDF. However we note that these DGLAP evolutions are process-independent, while the negative partonic high-energy is process-dependent. Therefore, the DGLAP equations cannot solve this issue in a global manner. In order to cure this mismatch and avoid negative values, we have proposed a new scale-prescription which eliminates the partonic high-energy limit. As a reminder, the partonic high-energy limit represents only the real radiation part coming from the initial-state partons. We have also shown that flat PDFs are rather sensitive to the constant term that survive in the high-energy limit (see Table 4.1). Thus, our scale-fixing avoids that these terms have large weights attached when convoluted with the PDFs. In fact, as we have seen, as what concerns the K-factor, where PDF effects cancel out, the energy-dependence is very similar for different PDF parametrisations, which includes both flat and steep PDFs. In contrast to this, the K-factors for the conventional scale-setting (7-scale choice setting) are strongly dependent on the PDF parametrisation. Thus with our scale-fixing µ F = μF , we have essentially achieved a very good 'coupling' and factorisation between the partonic cross-section and the PDF.

As was mentioned before, preliminary results for the P -wave state indicate that our scale fixing indeed avoids negative cross-sections as well. A more detailed analysis is needed in order to establish the impact of the scale-fixing on this and the other quarkonium states. As we have seen in Fig. 1.4b, the J/ψ hadro-production cross-section suffers from very large uncertainties and goes negative for some scale choices already on the order of a few GeV. Clearly, efforts will be undertaken in order to understand how our scale-fixing can cure the negative numbers there.

In fact, we would like to remark that one of the early encounters of negative cross-section was done in the J/ψ photo-production analysis by M. Krämer in Ref. [START_REF] Krämer | QCD corrections to inelastic J / psi photoproduction[END_REF] in 1996. Krämer has plotted the numerical values of the partonic cross-section for the ggand the qg-channels as function of the partonic energy and for fixed kinematical configuration with z ≤ 0.9 where the z is the ratio of the J/ψ to the photon energy in the proton rest frame. One observes in these plots that the high-energy limit coefficient  for both ggand qg-channels suggests that the value is negative with  ∼ -0.35. From this, we can infer that the optimal choice would be μF ∼ 0.84M J/ψ which is lower than the mass of the J/ψ. It remains to be seen whether this scale choice can indeed cure the J/ψ photo-production cross-section such that the results agree well with experimental data. As for the other kinematical configurations with different z values, it remains to be seen how the high-energy limit coefficient  varies with z. We leave this for future work. In principle, as we have seen, the partonic high-energy limit of photo-production is related by a simple colour factor transformation to the hadro-production case. As such, one could infer the corresponding scale choice for the hadro-production case and restore positivity for J/ψ hadro-production which are very badly behaved (see Fig. 1.4b).

Our scale prescription clearly by construction does not allow us to vary µ F by any range. This behaviour is similar to the situation for the BLM (Brodsky-Lepage-Mackenzie) scalesetting [START_REF] Brodsky | On the Elimination of Scale Ambiguities in Perturbative Quantum Chromodynamics[END_REF] and similar scale-setting such as the PMC (Principle of Maximal Conformality) one [START_REF] Brodsky | Setting the Renormalization Scale in QCD: The Principle of Maximum Conformality[END_REF][START_REF] Brodsky | Scale Setting Using the Extended Renormalization Group and the Principle of Maximum Conformality: the QCD Coupling Constant at Four Loops[END_REF][START_REF] Di Giustino | Infinite-order scale-setting using the principle of maximum conformality: A remarkably efficient method for eliminating renormalization scale ambiguities for perturbative QCD[END_REF]. In the BLM scale-setting, the renormalisation scale is fixed in such a manner as to cancel the n f terms and make the cross-section conformal.

We recall that it has been sufficient to restore postitivity just for the z → 0 limit due to the interplay with flat PDFs. In contrast to this, the partonic cross-section at different z > 0 may still yield negative values. It would be interesting to study a generalisation of the Altarelli-Parisi subtraction scheme such that the negative numbers are not only eliminated at z → 0 but over the entire range such that the positivity of the partonic cross-section is restored everywhere. It 5.3. OUTLOOK should be clear to the reader that this new generalised scheme will involve new parton distribution functions defined according to this scheme. One will have to derive the corresponding DGLAP evolution equations in this scheme. We also mention here that one could enforce the qg channel, which traditionally is negative, to be positive-definite over the entire z-range via a simple global factor related to the phase-space. This all is left for future work.

We hope that with our scale-prescription and reliable cross-sections results, we can motivate the PDF community to perform PDF fits using quarkonia at low scales and infer monotonously increasing gluon luminosity-shapes as function of energy and rapidity (see Fig. 4.10). As for the x-range which can be fitted with SPD NICA energies, we expect that the gluon can be determined in the range [5 × 10 -2 , 1], while for the fixed-target mode we expect the range to be [10 -2 , 1] and for the collider mode at LHCb at √ s = 14TeV, we expect [10 -6 , 5 × 10 -2 ].

On a side note, we would also like to make a minor remark which related to the number of flavours to be taken inside the running of the strong coupling α s . In NRQCD, the number of light flavours to be included in the running is typically taken to be the number of flavours lighter than the heavy quark in the quarkonium state. In the case of charmonium, one would have to use n f = 3 and for bottomonium n f = 4. Some PDF parametrisation however employ a variable-flavour scheme, where for the charmonium cross-section, these would use n f = 4 instead for the default scale choice. However, we expect that the difference between fixedflavour and variable-flavour scheme PDFs may not be large. In fact, we have applied a PDF parametrisation with fixed-flavour scheme, CT14nlo_NF3 [START_REF] Dulat | New parton distribution functions from a global analysis of quantum chromodynamics[END_REF], in Fig. 4.1. The difference on the K-factor energy-dependence with the other conventional PDFs is indeed small. This concludes Part I, where we have provided a cure to the negative cross-section at NLO. The interesting question remains, whether going to one additional higher order as NNLO can restore the positivity of the cross-section already with the conventional scale-setting? In case, it is still negative, one could extend the work on the scale prescription and try to find a scheme extended to NNLO level. In order to compute the full NNLO result, one needs to include the two-loop form-factor amplitudes. This calcuation which involves the evaluation of two-loop master integrals is highly non-trivial and presents a real challenge. We present in the next Part II the formalism and the result for the two-loop master integrals and the form-factors needed for η Q hadro-production. This presents a significant step towards a full NNLO.

Part II

Pseudoscalar quarkonium production & decay at NNLO Introduction: Part II

In Part II of this thesis, we will present modern and cutting-edge techniques in order to deal with the two-loop form-factor amplitudes that contribute to pseudo-scalar quarkonium decay and production processes up to NNLO accuracy. As we have seen in Part I, the previous methods used to compute the one-loop amplitude such as Passarino-Veltman decomposition are rather inconvenient at two-loop level due to increased complexity. For this purpose, we need to make use of new techniques to compute the two-loop amplitudes and the corresponding master integrals analytically.

As we have seen in Part I of this thesis, the NLO corrections to charmonium hadroproduction can yield unphysical and negative cross-section results. In addition, due to the low scale of the process, the result is strongly dependent on the parton distribution functions. These are rather unconstrained in the low-x region at scales around the mass of the charmonium states and exhibit large uncertainties. We have found in Part I, that the origin of the negative cross-section can be traced back to an over-subtraction of the initial-state collinear divergences inside the PDFs. In addition, we noted a general mismatch between the process-dependent coefficients of the high-energy limit and the universal equations governing the evolution of the PDFs at different scales. We have cured these issues with a new scale prescription for the factorisation scale and demonstrated its efficiency to obtain reliable and positive cross-section results up to large collision energies. The question remains, whether going to NNLO accuracy can resolve the issue of negative cross-section with the conventional scale-setting. This is the motivation to study the η Q hadro-production at NNLO accuracy. In addition, we wish to assess the convergence and the scale uncertainty reduction for the renormalisation scale at NNLO level.

So far, there have been no attempts in the literature to study η Q hadro-production at NNLO. The full NNLO cross-section for η Q production contains in addition to the NLO part various additional contributions from different channels at order α 2 s compared to the LO. We list here below the contributions from the dominant gg-channel,

• double-virtual two-loop amplitude for gg → η Q ,

• real-virtual one-loop amplitude for gg → η Q g,

• double-real tree-level amplitude for gg → η Q gg,

• double-real tree-level amplitude for gg → η Q qq,

• double-real tree-level amplitude for gg → η Q QQ.

As we have seen in Part I, the necessary techniques already exist for the computation of the one-loop and the tree-level amplitudes. Indeed, the missing ingredient and bottleneck for a full NNLO computation remains the computation of the double-virtual two-loop amplitude.

These double-virtual amplitudes can be represented by two-loop master integrals. Their evaluation is highly non-trivial and requires new methods and techniques which we will introduce in this Part II. In order to demonstrate their efficiency, we will also recompute the one-loop amplitude with the modern techniques and compare the result with to the one obtained in Part I. In addition to the NNLO hadro-production case, we will also study the NNLO exclusive decay width of η Q to di-photon. As a side result, we also present the analytical result to the para-positronium two-loop amplitude.

We remind the reader, that the gg-quarkonium form-factor is represented by the process,

g (k 1 ) + g (k 2 ) → η Q (P ), (II.0.1)
where the quarkonium state η Q is composed of the heavy-quark pair

Q (p 1 ) Q (p 2
) and as such one can compute the process,

g (k 1 ) + g (k 2 ) → Q (p 1 ) Q (p 2 ) , (II.0.2)
where the QQ state needs to be projected onto a specific kinematical configuration to form the quarkonium state. We make use of the following kinematical relations,

p 1 = p 2 = p = 1 2 (k 1 + k 2 ) , P = 2p, (II.0.3) p 2 = m 2 Q , k 2 1 = k 2 2 = 0, (II.0.4) ŝ = (k 1 + k 2 ) 2 = 4m 2 Q , t = û = (k 1 -p) 2 = -m 2 Q . (II.0.5)
In this Part II, we will make use of the fact, that the two heavy-quark momenta p 1 and p 2 are identical. As we will see later, this will simplify the evaluation of the integrals.

Before outlining the new techniques and methods in computing the two-loop amplitudes, we will first in the next section 6 introduce prerequisite material to Feynman integrals. In Ch. 7, we will then outline the setup in computing quarkonium form-factors and show how we can simplify some Feynman integrals due to the special threshold kinematics. We will then present in Ch. 8 the topologies and master integrals that occur in the hadro-production and decay processes. With some new identities based on partial fraction decomposition we are able to relate different master integrals and thus reduce the number integrals that needs to be computed. In Ch. 9, we will outline the analytical approach in computing these master integrals. We will then briefly discuss how to obtain high-precision numerical results. We then present in Ch. 10 the form-factor results needed for pseudo-scalar hadro-production and decay processes. We will also discuss the procedure of UV renormalisation and validate our results via a check on the IR singularity structure. In addition to the analytical two-loop amplitude, which is needed for the NNLO hadro-production, we present in this section the NNLO exclusive decay of η Q to di-photon and the analytical results for the QED NNLO para-positronium corrections. We will then in the concluding remarks in Ch. 10 discuss the applicability of our strategy to the other quarkonium form-factors and will briefly discuss preliminary results for the pseudo-scalar colour-octet states.

Chapter 6

Prerequisites for multi-loop techniques

In this section we give a quick review of some prerequisite material on Feynman integrals which we need for later. As for a more detailed introduction into this topice, we guide the reader to Ref. [START_REF] Smirnov | Analytic tools for Feynman integrals[END_REF][START_REF] Grozin | Integration by parts: An Introduction[END_REF].

Feynman integrals

In this section we give a brief introduction to Feynman integrals and their properties. We can express Feynman integrals with l loops and n propagators in the most general form as,

I (α 1 , ..., α n ) = d D q 1 (2π) D ... d D q l (2π) D 1 D α 1 1 ...D αn n , (6.1.1) 
where we integrate the loop momenta q i in Minkowski space-time metric over the full space.

Here D i are the denominators with power coefficients α i that can take any integer value. The denominators contain scalar products involving internal loop momenta q i and external legs k j .

In addition each denominator can contain additional mass m 2 i terms so that we can express the denominator in the most general form as,

D i = j≥k≥1 c i,jk r j • r k -m 2 i , (6.1.2) 
where the r j represent either internal (loop) or external (physical) momenta with the matrix c i being the prefactor of their scalar product. Here we will however only focus on matrices c i that are quadratic, i.e. originating from structures of the form (...) 2 containing at least one loop momentum inside. Within the framework of dimensional regularisation, the loop momenta q i are extended to D = 4 -2 -dimensions where the acts as the regulator to deal with UV (ultra-violet) and IR (infra-red) divergences.

Within the framework of dimensional regularisation, multi-loop Feynman integrals in D-100 6.1. FEYNMAN INTEGRALS dimensions exhibit some trivial properties,

d D q i c f (q i ) = c d D q i f (q i ) , (6.1.3) d D q i [f (q i ) + g (q i )] = d D q i f (q i ) + d D q i g (q i
) , (6.1.4)

d D q i f (q i + p) = d D q i f (q i ) , (6.1.5) d D q i f (Λq i ) = d D q i f (q i ) , (6.1.6) d D q i f (c q i ) = |c| -D d D q i f (q i ) , (6.1.7) 
where the properties above apply to each individual loop variable q i . The functions f (q i ) may contain the remaining loop integrals and denominator structures. We will now rapidly go through these fundamental properties and show how these can be used to simplify complicated Feynman integrals. The reader may find the first two properties straightforwardly as these are trivial linearity relations known from normal Euclidean calculus. The third property is the translational invariance which proves to be a very useful identity that can be used for Integration-By-Parts (IBP) identities (see Sec. 6.3). Assuming that p µ in Eq. 6.1.5 is an infinitesimal small D-dimensional vector, we obtain that,

d D q i ∂f (q i ) ∂q µ i = 0. (6.1.8) 
The fourth identity states that the Feynman integral is invariant under Lorentz transformation of the loop momentum q ν i = Λ ν µ q µ i . As with the translational identity, we can derive another useful relation for the Lorentz-invariant identity. Assuming an infinitesimal Lorentz transformation Λ µν = g µν + η µν , where g µν = g νµ is the symmetric and η µν = -η νµ is the anti-symmetric part of the tensor, one can derive the identity,

d D q i q i,µ ∂ ∂q ν i -q i,ν ∂ ∂q µ i f (q i ) = 0. (6.1.9)
As we will see later, one can obtain further relations from these identities in addition to the translational identities. As the first and second property, the reader may find the last property straightforwardly. The scaling depends only on the dimension of the integration measure.

In addition to these properties, we may find it useful to make use of physical arguments when computing integrals. When integrating over all the loop momenta, the Feynman integral can only depend on the internal masses of the propagators and the kinematics of the external legs such as their on-shell masses and the Mandelstam variables. A vacuum bubble with massless propagators as shown below does not have any dimensionful parameter that it can depend on,

d D q 1 (2π) D 1 q 2 1 = 0. (6.1.10)
For this reason, the integral vanishes. At this stage, the number of loops that the integral has, does not play any role at all. The same applies for massless 2-point bubble integrals where the external legs are on-shell and vanish,

d D q 1 (2π) D 1 q 2 1 (q 1 + k 1 ) 2 , with k 2 1 = 0. (6.1.11)
For the very same reason as above, these classes of Feynman diagrams vanish. Finally, integrals where the integrand contains a variable b which can either represent a pure constant or is a function of the integration q i only, such as a polynomial or a tensor, vanish within the framework of dimensional regularisation,

d D q i b = 0. (6.1.12)
Having outlined some key properties of Feynman integrals, we will discuss in the next section how to deal with tensor integrals.

Topologies and tensor integrals

When calculating scattering amplitudes, one usually encounters integrals with loop momenta in the numerator which would make these integrals tensor integrals,

I µ,...,ρ (α 1 , ..., α n ) = d D q 1 (2π) D ... d D q l (2π) D q µ 1 ...q ρ n D α 1 1 ...D αn n . (6.2.1) 
At one-loop level there is a simple way to deal with tensor integrals via the Passarino-Veltman decomposition which is based on Lorentz invariance. We have already shown some simple examples to the Passarino-Veltman decomposition in Part I of this thesis in Sec. 2.3. Beyond one-loop level however, this strategy is inconvenient and we need to apply new techniques to compute tensor integrals at two-loop level and beyond.

These tensor integrals are usually contracted with some other external vectors. In this section we will only focus on the contraction with external physical momenta (k 1 , k 2 , ...). As for the physical polarisation vectors, these scalar products are usually eliminated by means of a so-called form-factor projection operator. We will deal with these in the next section.

Having l loop momenta and m independent external momenta, one can construct l × (l + 1)/2+l×m different scalar products between loop momenta among themselves and a loop momentum with an external momentum. The number of such scalar products essentially tells us how many linearly independent propagators exist for a given number of configuration (number of external legs and internal loops). Having defined such a bases set for the propagators, this defines a topology. All Feynman integrals that can be expressed within this set of propagators as defined in Eq. 6.1.1 (having zero as denominator power is permissible), belong to this topology. As for the specific configuration for the two-loop 2 → 1 quarkonium form factors, we only have 2 independent external momenta that we take to be the initial-state gluon momenta k 1 and k 2 . Therefore each topology considered here will be defined by a set of 2×3/2+2×2 = 7 linearly independent propagators. In this thesis, we call a propagator 'active', if its denominator power is non-zero. Feynman integrals that have less than 7 active propagators, i.e. some denominator powers are zero, can in principle also be members of other topologies at the same time. The most common ones where this is the case are vacuum bubbles.

We now turn to details how we can deal with these tensor integrals. In amplitude calculations, these tensor integrals are contracted with other vectors such as external and loop momenta or external polarisation vectors and therefore appear in dot products. In the first two cases, we are in a position to deal with the integrals in a rather straightforward manner as these dot products can be related to denominator structures (see later). However, in the case where it is contracted to a polarisation vector, we will first need to remove these polarisation vectors via a form-factor projection operator which we will demonstrate in the next chapter in Sec. 7.1. Such a form-factor projection operators will then lead to contraction of the tensor integral with other external and loop momenta.

It can be straightforwardly seen from Eq. 6.1.2 that each denominator when expanded out can be expressed in terms of scalar products and some external parameters such as masses and Mandelstam variables. Now using this equation, each scalar product q i • r j can therefore be linearly decomposed into this basis set of denominators,

q i • r j = n k β k D k + q γ q c q , (6.2.2)
where r j can be either a loop momentum or an external physical momentum, D k are the denominators as before and c q reflect all possible Mandelstam variables and masses that can occur in the Feynman diagram. Therefore, whenever the numerator of such a Feynman integral contains loop momenta in tensor form contracted with some other internal or external momenta to give scalar products, we can always re-express these scalar products in terms of denominators and constants (Mandelstam variables, masses). Making use of Eq. 6.1.4, such scalar products will lead to a linear sum of Feynman integrals with different powers in the denominator set that are trivially all members of the same topology. We will now continue and outline the Integration-By-Parts technique that allows us to simplify this set of new Feynman integrals.

Integration-by-parts identities

The Integration-By-Parts (IBP) technique was introduced for the first time by K. G. Chetyrkin and F. V. Tkachov [START_REF] Tkachov | A Theorem on Analytical Calculability of Four Loop Renormalization Group Functions[END_REF][START_REF] Chetyrkin | Integration by Parts: The Algorithm to Calculate beta Functions in 4 Loops[END_REF] in 1981. This technique allows us to express complicated Feynman integrals in terms of easier integrals that are called master integrals. There is no well-defined criterion as what counts as master integral, but these integrals usually exhibit the smallest number of propagators such that the integral can be solved in an easy way.

In the previous section, we have already touched on the translational identity which is key in deriving the IBP reduction relations. In a mathematical way, Eq. 6.1.8 states that the boundary/surface term of the integrand vanishes. This is to do with the fact that changing q i by an infinitesimal vector p, does not change the integral at all, therefore the surface term vanishes. The reason Eq. 6.1.5 holds is that the integral goes over the entire range ±∞, hence a constant shift p has no effect. Therefore the integral must vanish at the boundaries.

To illustrate the power of this technique, let us now briefly outline an example from the paper by Chetyrkin and Tkachov [START_REF] Chetyrkin | Integration by Parts: The Algorithm to Calculate beta Functions in 4 Loops[END_REF] and apply it to the following two-loop Kite integral I K ,

I K (1, 1, 1, 1, 1) = p p q 2 -p q 1 -p q 1 q 2 q 2 -q 1 , = d D q 1 (2π) D d D q 2 (2π) D 1 q 2 1 (q 1 -p) 2 q 2 2 (q 2 -p) 2 (q 1 -q 2 ) 2 .
(6.3.1)

We have followed the definition of Eq. 6.1.1 with the basis of denominators

P K = {q 2 1 , (q 1 -p) 2 , q 2 2 , (q 2 -p) 2 , (q 1 -q 2 ) 2 }. (6.3.2)
Similarly as one can depict interactions between particles via Feynman diagrams, one can depict integrals graphically by associating each line a propagator such that the momentum flow is conserved at each vertex. We have in the first line of Eq. 6.3.1 displayed the Kite integral graphically. Such graphical representation always indicates that the integral is a scalar integral and does not contain any numerator terms. We will see more examples of this in the coming chapters.

We also note that, for the graphical representation, one usually drops the label of the momentum and the arrow as these can always be deduced from the graph. We mention that, in this particular case, the external leg is massive with p 2 = 0 and as such we have labelled it with a double line in the graph in Eq. 6.3.1. Massless propagators are usually depicted with single lines only.

Making use of the identity Eq. 6.1.8 and contracting the vectorial partial derivative ∂/∂q µ 1 with the integral containing the momentum (q 1q 2 ) µ in the numerator, we obtain that,

d D q 1 (2π) D d D q 2 (2π) D ∂ ∂q µ 1 q µ 1 -q µ 2 q 2 1 (q 1 -p) 2 q 2 2 (q 2 -p) 2 (q 1 -q 2 ) 2 = 0. (6.3.3)
For the reader who is not familiar with vectorial derivatives, we recall that,

∂ ∂q µ i q µ j = D δ ij and ∂ ∂q µ i 1 (q j + p) 2 = - 1 (q j + p) 2 2 ∂ ∂q µ i (q j + p) 2 = -2 δ ij (q i + p) µ (q i + p) 2 2 . (6.3.4)
We can now apply the vectorial partial derivative ∂/∂q µ 1 to the tensor integrand and obtain by using the chain rule and product rules that,

(D -4) I K (1, 1, 1, 1, 1)+I K (1, 2, 1, 0, 1)-I K (1, 2, 1, 1, 0)-I K (2, 1, 1, 1, 0)+I K (2, 1, 0, 1, 1) = 0,
(6.3.5) where the power indices follow in the order of Eq. 6.3.2. We have seen that by using a simple IBP relation, we have been able to derive some algebraic relations among Feynman integrals. To be specific, we have been able to relate our original integral I K (1, 1, 1, 1, 1) to some simpler integrals with a denominator less. These integrals can be denoted graphically in a similar fashion, where the denominators taken to the square are indicated by dots on the propagator line. One could now continue and apply further IBP relations to the other integrals until we have reached the master integrals which by definition are irreducible, i.e. cannot be reduced further to some simple bases. In this particular case however, all the integrals can be expressed easily in terms of Gamma functions, so one may stop the IBP reduction here.

What is important to realise at this stage is that the mass dimension for each term in such an algebraic relation must be the same. This is obvious from Eq. 6.3.5, where counting the sum of denominator powers α for each term, one always obtains the same number α = 5. However, one may also have IBP relations, where either Mandelstam variables or propagator masses appear in the prefactor. In such a case, the sum of denominator powers in the Feynman Integral must consequently reduce by the same amount to keep the dimension of the product intact.

We can now define the IBP reduction procedure for the general case, an l-loop Feynman integral with m independent external legs,

d D q 1 (2π) D ... d D q l (2π) D ∂ ∂q µ i r µ j D α 1 1 ...D αn n = 0, (6.3.6) 
where above we have differentiated with respect to a loop momentum and contracted the vectorial derivative with a vector r j , that can be either a loop momentum or an external leg. Therefore for each Feynman integral I (α 1 , ..., α n ), one may deduce l × (l + m) different algebraic IBP relations which may however not all be independent due to symmetry relations. We will go into more details here later on. As is clear from Eq. 6.3.4, differentiating a propagator by a loop momentum can raise its power α i only to α i + 1 but not higher. Each such IBP reduction will yield algebraic relations between Feynman integrals with different denominator powers,

a i I i (α 1,i , ..., α n,i ) = 0. (6.3.7)
In principle, there exists an infinite set of IBP relations as we could consider all possible Feynman integrals within this topology with any propagator power. By recursively applying the IBP relations to the new integrals that can appear at each step, one is able to set up a system of IBP reductions. With this system one is able to reduce complex integrals to a few master integrals that have only a few active propagators. These master integrals are by definition irreducible and cannot be reduced further. With infinite number of algebraic relations between Feynman Integrals, one may be tempted to think that the number of master integrals is infinite. However A. V. Smirnov and A. V. Petukhov have shown that the reduction of integrals will always result into a finite set of master integrals [START_REF] Smirnov | The Number of Master Integrals is Finite[END_REF].

With the large number of IBP-relations present for a given topology, it is a rather complex procedure to combine all relations in an efficient manner. In order to simplify the reduction, one can take into account symmetries of Feynman integrals. Some Feynman integrals are invariant under interchange of external legs. One of the most used algorithms in automated programs is the Laporta algorithm which has well-defined criteria in which order the different IBP relations are to be combined [START_REF] Laporta | High precision calculation of multiloop Feynman integrals by difference equations[END_REF]. Although this algorithm may miss out some reductions, it is nevertheless one of the best that we currently have and has been implemented in programs such as AIR [START_REF] Anastasiou | Automatic integral reduction for higher order perturbative calculations[END_REF], FIRE [START_REF] Smirnov | Algorithm FIRE -Feynman Integral REduction[END_REF][START_REF] Smirnov | FIRE5: a C++ implementation of Feynman Integral REduction[END_REF][START_REF] Smirnov | FIRE6: Feynman Integral REduction with Modular Arithmetic[END_REF] and Reduze [START_REF] Studerus | Reduze-Feynman Integral Reduction in C++[END_REF][START_REF] Manteuffel | Reduze 2 -Distributed Feynman Integral Reduction[END_REF]. Other implementations based on Lie algebra theory include LiteRed [START_REF] Lee | Presenting LiteRed: a tool for the Loop InTEgrals REDuction[END_REF][START_REF] Lee | LiteRed 1.4: a powerful tool for reduction of multiloop integrals[END_REF]. Usually these IBP reduction algorithms also take into account Lorentz invariant identities which we will introduce in the next section.

Lorentz-invariant identities

We now give a very brief introduction to Lorentz-Invariant (LI) identities. From the identity in Eq. 6.1.6, we have been able to derive the relation Eq. 6.1.9. This relation is a consequence of the fact that the integrand is a scalar and thus making an infinitesimal Lorentz-transformation does not change the integrand at all. From exactly the same considerations as above but now instead of applying the Lorentz transformation internally to the loop space, one can also apply it physically to the space with n independent external legs k i . In this case, we are in a position to factor out such an operation outside of the integral and apply it to the full scalar integral I k 2 i , ... , which only depends on Lorentz-invariant quantities such as masses and Mandelstam

variables k 2 1 , ..., k 2 n , ..., k 1 • k j , ..., k n-1 • k n .
Thus the integral is invariant under any Lorentztransformation as well. We now define the LI-Identities in more formal way as,

k µ j k ν l -k ν j k µ l n i k i,µ ∂ ∂k ν i -k i,ν ∂ ∂k µ i I k 2 1 , ..., k 2 n , ..., k 1 • k j , ..., k n-1 • k n = 0, (6.4.1) 
where we take the sum over all n independent external legs and contract the tensor with any anti-combination of external momenta k µ j k ν l . The number of LI identities grows with the number of n independent external legs as n (n -1) /2, however considering that the number of truly independent external legs is constrained by the spacetime dimension D = 4 -2 , one has technically speaking maximal 6 LI identities for each integral. These identities are used alongside the IBP-relations to make a full reduction to master integrals. R. Lee has however shown that these LI-identities are not independent and can be derived from IBP relations [START_REF] Lee | Group structure of the integration-by-part identities and its application to the reduction of multiloop integrals[END_REF]. In fact, this is straightforward to see from Eq. 6.1.9 and Eq. 6.4.1. As the integrand f (q i ) is invariant under Lorentz-transformation for both the loop space and the physical space, one can essentially write,

k µ j k ν l -k ν j k µ l d D q i q i,µ ∂ ∂q ν i -q i,ν ∂ ∂q µ i f (q i ) = 0, 2 d D q i (k j • q i ) k µ l -(k l • q i ) k µ j ∂ ∂q µ i f (q i ) = 0, d D q i k µ l ∂ ∂q µ i (k j • q i ) f (q i ) -k µ j ∂ ∂q µ i (k l • q i ) f (q i ) = 0, (6.4.2) 
where the scalar products between external and loop momenta k j • q i can be expressed in terms of a linear sum of denominators as shown in Eq. 6.2.2. From this we conclude that the LI identities can be derived from a linear sum of different IBP relations applied to integrands with different denominator powers. As there are a large number of IBP relations and to combine all algebraic relations efficiently, one relies on some algorithm procedure which we have mentioned before. The Laporta algorithm, which is one of the most commonly algorithms used here, still makes use of the LI identities to find relations among master integrals that otherwise would take longer to be detected.

Chapter 7

Amplitude generation & partial fraction

After having introduced the prerequisite material for Feynman integrals, we are now in a position to outline the procedure to compute the form-factor amplitudes specific for pseudoscalar quarkonium production & decay. In particular, we will show how we can avoid the Passarino-Veltman decomposition which is impractical at two-loop level and also demonstrate some mathematical tricks specific for quarkonia. We will start with the set-up of the amplitude generation before discussing the method of partial fraction which allows us to decompose Feynman integrals to simpler ones. We will demonstrate the efficiency of this method in the case of the one-loop amplitude and also discuss the Coulomb singularity which arises when computing the amplitude with non-zero v but is absent in our approach as we set v = 0.

We will then conclude this section by outlining the procedure of the integral reduction to the master integrals.

Amplitude for quarkonium form-factors

We make use of the packages FeynArts [START_REF] Kublbeck | Computeralgebraic generation and calculation of Feynman graphs using FeynArts and FeynCalc[END_REF][START_REF] Hahn | Generating Feynman diagrams and amplitudes with FeynArts 3[END_REF] and FeynCalc [START_REF] Kublbeck | Computeralgebraic generation and calculation of Feynman graphs using FeynArts and FeynCalc[END_REF][START_REF] Shtabovenko | New Developments in FeynCalc 9.0[END_REF] in order to generate the Feynman diagrams and amplitudes for the

2 → 2 process g (k 1 ) g (k 2 ) → Q (p 1 ) Q (p 2 ).
In particular, we set the final-state momenta p = p 1 = p 2 equal and on-shell p 2 = m 2 Q . As such, v = 0 in our approach. As we are working in the on-shell renormalisation scheme, we omit all diagrams that introduce loops such as bubbles and tadpoles on the on-shell legs. These are trivially taken into account in the renormalisation procedure. As next step, FeynArts is generating the physical amplitude based on the drawn 'FeynArts' topologies. Before proceeding, we first need to perform some manual modifications relevant for quarkonium physics. We have already explained the background of these modifications in detail in Sec. 2.2 of Part I. Therefore, in the following we will be brief. As a reminder, we need to sum the two fermion spinors u and v over the corresponding configurations in order to obtain the spin-singlet state. This can be achieved via by a spin-projection operator. In addition to the spin-projection, we need to apply a colour-projection of the final state. Here we consider only the colour-singlet state but the procedure and methods in the following sections are equally applicable to the colour-octet states. Finally, we have to involve the non-perturbative factors describing the bound state. As the product of the vector spinors u and v with the matrix T is a pure number, we can convert this number to a trace and make use of its cyclicity property,

u (p, s 1 ) T v (p, s 2 ) = Tr [u (p, s 1 ) T v (p, s 2 )] = Tr [T v (p, s 2 ) u (p, s 1 )] (7.1.1)
and then effectively replace,

v (p, s 2 ) u (p, s 1 ) → - 1 √ 2 γ 5 / p + m Q δ ij √ N c R 0 4πm Q . (7.1.2)
Applying this replacement allows us to perform the traces over the Dirac γ-matrices and evaluate separately the traces over the colour matrices in the amplitude after projecting the heavyquark colours i and j equal. As we mentioned before, for the colour-singlet state, we have essentially a similar colour configuration as in the case of Higgs production via a heavy-quark loop. The traces with the colour matrices will always be proportional to δ ab where a and b are the colours of the initial-state gluons. For colour-octet states, one would in addition also need to keep track of the colour of the final state. The last factor is due to the fact that the singleparticle quarkonium state originates from a two-particle phase-space. We recall that R 0 is the so-called radial wavefunction at the origin which is a non-perturbative object.

For the diagrams where FeynArts generates closed quark loops such as diagrams with vacuum polarisation and diagrams of type light-by-light scattering, we need to keep track of the fermion loops and the number of flavours. We follow the convention that contributions of quark loops that are lighter than the heavy-quark pair are taken to be massless and multiplied by a factor n l to indicate the number of light flavours. In addition, we consider the same diagrams with massive quark loops this time and label these contributions with n h . The propagator mass of the loop is the same as the one of the heavy-quark flavour appearing in the final state and we will set n h = 1 at the end. In the case of γγ → η c , one has the additional complication of keeping track of the electric charge which is different for quark flavours of type up and down. Equipped with these modifications, we can now proceed with the amplitude calculation.

We have previously mentioned that due to the special kinematics, we only have two independent momenta that we take to be k µ 1 and k µ 2 which are the momenta of the initial-state gluons. As our final state is a pseudo-scalar state, the only other external four-momentum vectors present in the amplitude are the polarisation vectors of the initial-state gluons ε µ 1 (k 1 , s 1 , a) and ε µ 2 (k 2 , s 2 , b). In addition to the external momenta, at two-loop level, we also have internal loop momenta, q µ 1 and q µ 2 . As for the scalar products involving the external physical momenta, we have the following relations,

k 2 1 = k 2 2 = 0, k 1 • k 2 = 2m 2 Q , k 1 • ε 1 = 0, k 2 • ε 2 = 0, (7.1.3)
where the first two identities are a trivial consequence of the special kinematics, while the last two equalities are consequences of the fact that massless spin-1 particles only have two physical polarisations, namely their transverse polarisations with respect to their four-momenta. This leaves us only scalar products between loop and external momenta. In the preceding section, we have already seen how a scalar product involving a loop and an external momentum such as k 1 can be expressed in terms of a linear sum of denominators and incorporated in the Feynman integral. However this tensor decomposition does not work with scalar products which involve loop and physical polarisation vectors.

As we have very similar kinematics as in the case of Higgs production where the difference is only the scalar/pseudo-scalar nature of the final-state particle, we can apply a very similar strategy [START_REF] Beerli | A New method for evaluating two-loop Feynman integrals and its application to Higgs production[END_REF]. We can express the amplitude as a rank-2 tensor and decouple the polarisation vectors from it as,

A = ε µ 1 ε ν 2 A µν . (7.1.4)
Gauge invariance requires that, when the polarisation vector ε µ i is replaced by its fourmomentum k i , we have that

k µ 1 ε ν 2 A µν = 0 and ε µ 1 k ν 2 A µν = 0. (7.1.5)
We are now in a position to express the amputated rank-2 amplitude A µν as follows,

A µν = a (k 1 • k 2 ) g µν + b 1 k 1,µ k 2,ν + b 2 k 2,µ k 1,ν + c 1 k 1,µ k 1,ν + c 2 k 2,µ k 2,ν + d µνρσ k ρ 1 k σ 2 . (7.1.6)
Due to the symmetry (1, µ) ↔ (2, ν), we have that c 1 = c 2 . Using gauge invariance, we have that,

k µ 1 ε ν 2 A µν = (a + b 2 ) (k 1 • k 2 ) (k 1 • ε 2 ) = 0, (7.1.7) 
from which we can deduce that b 2 = -a. As the scalar product of a physical polarisation vector with its four-momentum vanishes, we can neglect the contributions b 1 , c 1 , c 2 and arrive at,

A µν = a [(k 1 • k 2 ) g µν -k 2,µ k 1,ν ] + d µνρσ k ρ 1 k σ 2 . (7.1.8) 
We would like to stress at this stage that A µν = A µν but when contracted with physical polarisation vectors we have that

A = ε µ 1 ε ν 2 A µν = ε µ 1 ε ν 2 A µν .
We are now left with only two coefficients a and d which correspond to the scalar and the pseudo-scalar states respectively. The only difference here is that the scalar and the pseudoscalar behave differently under parity which affects only the spatial components of the vectors. As such, we only need to focus on the second term d and can therefore set a = 0.

We can now turn back to Eq. 7.1.8 and construct the projection operator that allows us to decouple the polarisation vectors from the loop momenta. In order to extract the coefficient d from the amputated form-factor, we can apply the following projection operator,

P µν = 1 c norm µνρ σ k ρ 1 k σ 2 , (7.1.9) 
with Having separated the polarisation vectors from the loop momenta, we are now in a position to express all scalar products involving loop momenta in terms of denominators and thus a linear sum of Feynman integrals. However, before we enter this step and construct the Feynman integrals from these scalar products, we need to make one more modification. 

c norm = µ ν δ 1 δ 2 µ ν δ 3 δ 4 k δ 1 1 k δ 2 2 k δ 3 1 k δ 4 2 = 4(6 -5D + D 2 )m 4 Q , ( 7 

Partial fraction

We have mentioned before that we have set the momenta of the two final-state heavy quarks equal. This brings in some simplification when dealing with master integrals. We note that from the kinematical point of view the Feynman integrals only depend on two external momenta k 1 and k 2 , thus are represented by three-point functions, while the Feynman diagrams themselves are graphically four-point functions at special kinematics as defined in Eq. II.0.5. We have seen in Part I, that one can compute Feynman integrals with non-zero v, where 2v is the modulus of the relative 3-velocity between the heavy quark momenta in the quarkonium rest frame, and compute the amplitude within this scheme and then expand around in the limit v → 0 to obtain the amplitude for the 1 S

[1] 0 state. With this approach, one needs around 16 one-loop scalar integrals to evaluate the one-loop amplitude. This v-expansion will make the Coulomb singularity π 2 /v at one-loop level explicit which is then absorbed inside the LDME [START_REF] Bodwin | Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium[END_REF][START_REF] Petrelli | NLO production and decay of quarkonium[END_REF][START_REF] Maltoni | PhD thesis: Quarkonium Phenomenology[END_REF]. However, with the modern approach now, this singularity does not arise in the first place as we are starting with v = 0 from the very beginning. We will discuss this point more in depth in Sec. 7.4. In order to illustrate here the power of the new techniques at the application to the one-loop diagram, we can consider the diagram in Fig. 7.1a. The scalar integral represented by the diagram above can be written as

I Coul. = d D q 1 1 D 1 D 2 D 3 D 4 , with D 1 = (q 1 -p) 2 -m 2 Q , D 2 = (q 1 + p + k 2 ) 2 -m 2 Q , D 3 = (q 1 + p) 2 -m 2 Q and D 4 = q 2 1 . (7.2.1)
As the two heavy quark momenta are equal, we can express one of the denominators D 4 = 1 2 (D 1 + D 3 ) in terms of the other three,

I Coul. = d D q 1 1 D 1 D 2 D 3 D 4 = d D q 1 2 D 1 D 2 D 3 (D 1 + D 3 ) . (7.2.2)
As the propagators are linearly dependent on each other, we can now apply the mathematical procedure of partial fraction. At the convenience of the reader we recall the basic property of partial fraction decomposition,

1 (a + b) 1 a = 1 ab - 1 (a + b) 1 b . (7.2.3)
Making use of partial fraction decomposition, we obtain that,

I Coul. = d D q 1 2 D 1 D 2 D 3 (D 1 + D 3 ) = d D q 1 2 D 1 D 2 D 2 3 -d D q 1 2 D 2 D 2 3 (D 1 + D 3 ) 2D 4 . (7.2.4)
This partial fraction can be diagrammatically represented by,

k 2 k 1 p p D 3 D 4 D 2 D 1 = 2 k 2 k 1 D 3 2p D 2 D 1 - k 2 k 1 -p D 3 p D 2 D 4 , (7.2.5)
where double solid lines stand for massive propagators/legs and the thin line for massless propagators/legs. The momenta k i are incoming and the momenta p outgoing. This relation essentially tells us that we can write a four-point integral at special kinematics in terms of two three-point functions. With the IBP relation to be applied later, this mathematical trick already brings some simplification at one-loop level. At two-loop level, the improvement will be even more drastic as there are several additional relations for partial fraction and thus the number of master integrals that we would need to compute will be reduced significantly. We would like to stress at this stage that the trick of partial fraction does not depend on the fact whether the propagators are massive or massless. In fact, in a similar fashion one can also apply the trick to Fig. 7.1b. We will go into more detail here and see how we can systematically perform partial fraction.

From Ch. 6 we remember that the number of independent scalar products involving internal q i and external k i momenta must match the number of linearly independent denominators. In the example above, we have one loop momentum and two independent external momenta k 1 and k 2 which would yield three independent scalar products q 2 1 , q 1 • k 1 and q 1 • k 2 . Thus, we can only have maximal three independent denominators. Therefore all one-loop box diagrams can be partial fractioned. However, we can also have situations where a triangle diagram can be partial fractioned and expressed in terms of bubble integrals. A simple example for this is Fig. 7.1c1 . The scalar triangle integral from this diagram can be partial fractioned to bubble integrals. We note that all three diagrams (Fig. 7.1a,Fig. 7.1b, Fig. 7.1c) share a similar subdiagram with only the masses of the denominators being different.

Let us now define these three denominators with most general masses as

D 1 = (q 1 + p) 2 - m 2 1 , D 2 = q 2 1 -m 2 2 and D 3 = (q 1 -p) 2 -m 2 3 . We can express D 2 = 1 2 D 1 + 1 2 D 3 -A with A = m 2 -1 2 m 2 1 -1 2 m 2 3 + m 2 2
where m 2 = p 2 as before. This can be partial fractioned to,

1 D 1 D 2 D 3 = 1 2A - 2 D 1 D 3 + 1 D 1 D 2 + 1 D 2 D 3 . (7.2.6)
This decomposition can be diagrammatically expressed as,

p p D 3 D 2 D 1 = 1 2A             -2 2p D 3 D 1 + p p D 2 D 1 + p p D 3 D 2             . (7.2.7)
We remark at this stage that the 'mass' dimension, i.e. combined power of all the denominators, must be preserved for each term. Therefore when we perform partial fraction and remove a denominator, the missing 'mass' dimension must be somehow compensated for. Above we see the appearance of the pre-factor A that depends only on the masses but not on the loop momenta, therefore we can factorise this out of the Feynman integrals. However in the special case when A = 0, the missing 'mass' dimension is compensated by taking doubled propagators,

1 D 1 D 2 D 3 = 2 D 1 D 2 3 - 1 D 2 D 2 3 . (7.2.8)
As before, diagrammatically we have that,

p p D 3 D 2 D 1 = 2 2p D 3 D 1 - p p D 3 D 2 .
(7.2.9)

We will come back to this limit A → 0 later on in the section on the master integral computation.

It turns out that one can derive some specific rules that allows us to match integrals over crosstopologies.

There are several different ways to partial fraction these expressions, for instance, the order of partial fraction decomposition. When several variables are involved, one would have to recursively partial fraction these one by one. However by doing so, one risks the appearance of new denominator structures which is unfavourable as this introduces additional master integrals. At one-loop level, it just amounts to change of the external momenta and internal masses. At two-loop level, there are more variables involved hence the partial fraction procedure is more complex. Therefore, performing the partial fraction decomposition without any clear strategy on the order, one risks the appearance of denominators where the loop momentum is no longer quadratic but linear which is then no longer a standard Feynman integral. However, there exist strategies to partial fraction such that the denominator structure is preserved. This has been, for instance, implemented in the package $Apart by F. Feng [START_REF] Feng | Apart: A Generalized Mathematica Apart Function[END_REF]. We have made use of this package to preserve the denominator structure and keep the number of topologies to a minimum. The subdiagram presented above is not only constrained to one-loop diagrams but it can be equally found in multi-loop diagrams. At two loop level, the number of Feynman diagrams grows rapidly and spotting these and more complicated relations requires a systematic approach. For this, we will now outline an algorithm that can seed out the diagrams which can be partial fractioned. Keeping in mind that the number of independent denominators must match the number of scalar products, we are in a position to recursively assign for each scalar product a linear combination of denominators. If a scalar product cannot be expressed from the existing list of denominators, one can automatically construct a new denominator that when expanded out contains this scalar product. Doing this recursively, each scalar product can then be assigned a linear combination of denominators. Whenever the total length of denominators, existing plus constructed, exceeds the number of scalar products, we are able to perform partial fraction of this topology. Now to find these redundant denominators, one can simply expand these expressions out and express the resulting scalar products in term of their linear denominator decomposition. By this procedure, we are in a position to extract the denominators that can be expressed in terms of other denominators. This strategy should be applicable to any n-loop integral.

Another strategy would be to consider in addition to the two independent external momenta k 1 , k 2 also p and treat these a priori as independent. The denominators will now contain these three momenta. One could make the decomposition of the scalar products as before, where now with 2 loop and 3 external momenta one has 9 'independent' denominators. Once the assignment to the scalar products has been completed and keeping in mind that p = 1 2 (k 1 + k 2 ), one can systematically find relations between the denominators by setting

q i • p = q i • 1 2 (k 1 + k 2 )
for both q 1 and q 2 and replacing the scalar products by their denominator decomposition.

For two-loop diagrams, one gets additional subdiagram relations. For simplicity we will present only two cases below.

As first example let us consider the following situation where D 7 = D 3 +D 4 -D 6 -2A where A only contains the full mass dimension and where the momentum dependence for each D i can be deduced from the diagrammatical relation later on. Again we consider the most general case with arbitrary denominator masses,

1 D 4 D 7 D 6 D 3 = 1 2A - 1 D 3 D 4 D 7 - 1 D 3 D 4 D 6 + 1 D 3 D 6 D 7 + 1 D 4 D 6 D 7 , (7.2.10)
where the denominators can be assigned diagrammatically to the following diagram where the single internal lines representing the propagators can stand for any mass,

p p D 3 D 7 D 4 k i D 6 = 1 2A          - p -k i p D 3 D 7 D 4 - p -k i p D 3 D 6 D 4 + k i p D 3 D 6 D 7 p + k i p D 6 D 7 D 4 p          . (7.2.11)
An application of this case can be for example found in the Feynman diagram shown in Fig. 7.2a where D 7 and D 6 would be massive with mass m 2 and D 3 and D 4 being massless.

Let us now consider another example applicable to Feynman diagram shown in Fig. 7.2b. We note the similarity between this subdiagram and the one that we encountered at one-loop level in Eq. 7.2.7 and Eq. 7.2.9. Let us now define this subdiagram and show the explicit decomposition for the scalar integral for Fig. 7.2b. We will mark massive propagators with double lines and massless ones with single lines. We have that with

D 7 = -1 2 D 2 + 1 2 D 3 + D 4 + D 5 -D 6 , 1 D 2 D 3 D 4 D 5 D 6 D 7 = - 1 D 2 D 3 D 4 D 5 D 2 6 + 2 D 2 D 3 D 4 D 2 6 D 7 + 2 D 2 D 3 D 5 D 2 6 D 7 + 2 D 2 D 4 D 5 D 2 6 D 7 - 1 D 3 D 4 D 5 D 2 6 D 7 , (7.2.12) 
with the following diagrammatical decomposition,

p p D 3 D 4 D 2 D 7 D 5 D 6 = - p p D 3 D 4 D 2 D 5 D 6 + 2 p p D 3 D 2 D 4 D 6 D 7 + 2 p p D 3 D 2 D 5 D 6 D 7 + 2 p p D 4 D 2 D 7 D 5 D 6 - p p D 3 D 4 D 7 D 6 D 5 . (7.2.13)
These subdiagrammatic decomposition should always be understood as that we can attach the missing denominators at the bottom of these graphs (the free end of D 2 and D 3 or what is left there in case these are absent) irrespective of the actual number of loops that occur. The careful reader will note that we have chosen the denominator D 6 to be the doubled propagator to compensate for the missing 'mass' dimension as mentioned before. One could in principle have chosen another denominator as the doubled one. It would have resulted in a slightly 7.3. PARTIAL FRACTION: ONE-LOOP RESULT different arrangement which, however, would probably not have any affect on the master integrals themselves. We note the similarity between Eq. 7.2.7 and Eq. 7.2.13. One could trivially extend this to 3-loops with the same D 2 and D 3 and all possible combinations of planar and non-planar sectors. The key point here to realise is that one could express D 2 = (q 1 + p)m 2 and D 3 = (q 1p)m 2 so the region between D 2 , D 3 and the intersection points to the external momenta p and p form a 'closed' loop, therefore can be partial fractioned.

Having outlined the procedure for partial fractioning, we will now return to the amplitude computation. The first step is to perform partial fraction for the base scalar integrals for each Feynman diagram (not considering the numerator terms), once this has been performed, one can now group together all resulting new scalar integrals and complete the missing denominator bases. The final step is to convert the scalar products involving loop momenta in the numerator terms to the Feynman integrals with various different powers.

Partial fraction: One-loop result

To illustrate the gain for partial fractioning, we will consider the form-factor for the one-loop amplitude to the process gg → 1 S

[1] 0 . We will give a more detailed description in the form-factor section later on. Here we will be brief and show how partial fraction can simplify the procedure. As opposed to the approach presented in Part I where 16 Feynman integrals were needed, this can be expressed in terms of only four simple master integrals, the massive vaccuum tadpole, two bubble integrals and a triangle integral. We will give their explicit decomposition in this section.

The key differences between the modern technique and the approach in Part I with Passarino-Veltman decomposition are two-fold. One one hand with the modern way the first step consists in performing partial fraction decomposition of the base scalar integrals such that all propagators are linearly independent and that we can then complete the denominator base. We then translate the scalar products involving a loop momentum into linear combinations of denominators and can then from this construct scalar integrals with various different powers in the propagators. With the IBP reduction procedure, these integrals can then be reduced to the set of master integrals.

In the Passarino-Veltman approach, partial fractioning is not a necessary requirement whereas this is needed in the IBP reduction procedure as it relies on the fact that all propagators in the set are linearly independent. On the other hand, the Passarino-Veltman decomposition allows one to express vector and tensor integrals with the property of Lorentz invariance in terms of scalar integrals and combinations of external momenta vectors. There is no need for IBP reduction in that approach. With the Part I approach and Passarino-Veltman decomposition, around 16 scalar integrals were needed to be able to compute the one-loop correction. These integrals included three box (4-point function) and several triangle (3-point function) integrals. In the modern approach however the one-loop amplitude can be represented by 4 master integrals only, a tadpole, two simple bubble integrals and a triangle integral. We give their diagrammatic representation below,

I 1 = , I 2 = 4m 2 4m 2 , I 3 = -m 2 -m 2 , I 4 = 0 m 2 -m 2 . (7.3.1)
The integrals I 1 and I 2 are trivially known up to all orders in . We will meet some special partial fraction identities later on in Sec. 8.3. Making use of these identities, we note that I 3 is nothing else than I 2 but now at anti-threshold with ŝ = -4m 2 and this is known up to all orders in as well. We will give below the one-loop correction to the Born amplitude A (0) before renormalisation and show their decomposition to the master integrals,

α bare s π A (1) = α bare s π A (0) S 1 m 2 × × I 1 × C A + C F + 3C A -9C F + 2C A 2 + 4C F 2 + 4C F 3 2 (-1 + 4 2 ) + I 2 × C A (1 -3 ) 2 (-1 + ) + I 3 × (-C F (2 + )) +I 4 × C F 1 + -2 2 + C A -1 + 2 + 2 -1 + , (7.3.2) 
where above we have already factorised out the mass dimension m 2 and the measure iπ 2 from these integrals, C A = 3 and C F = 4 3 are the Casimirs of the adjoint and fundamental representation and the factor S = (4π) e -γ E stands for the parameters that are a consequence of dimensional regularisation.

We see that this decomposition with only 4 integrals is convenient as these one-loop integrals are rather straightforward to compute. In order to compute the NLO correction to the cross-section, we would need the one-loop correction up to O 0 . From the coefficients of the integrals, we can deduce that we would need to compute I 1 up to order -1 , I 2 up to order , I 3 up to -1 and I 4 up to order 0 . In the previous approach with Passarino-Veltman, the one-loop correction would have been decomposed into 16 integrals that would involve box-integrals and which we would have to know mostly up to O 0 . However at NNLO accuracy, the one-loop amplitude enters with the full square, hence it is necessary to compute their contribution up to order 2 . With the previous approach, it would have been required to compute 16 integrals up to O 2 which is a rather tedious exercise. However, with the modern approach and the current master integral decomposition we would need to compute I 1 up to order , I 2 up to order 3 , I 3 up to and I 4 up to order 2 . We have given the expression for the one-loop master integrals in Appendix E. We will give the exact expression to the one-loop amplitude later in the form-factor section. Trivially, the form-factor results obtained with this method agree with the one obtained via Passarino-Veltman decomposition shown in Part I.

Partial fraction: Coulomb singularity

We now wish to address the key difference related to the Coulomb singularity in the two approaches in Part I and II. In the former approach used in Part I, one computed diagrams with finite non-zero v where 2v is the modulus of the relative 3-velocity between the quark and antiquark in the quarkonium rest frame. We recall that in the case for finite v and with p 1 and p 2 being the momenta for the quark and anti-quark we have that,

p 2 1 = p 2 2 = m 2 Q , (p 1 + p 2 ) 2 = ŝ = 4m 2 Q 1 -v 2 . (7.4.1)
This Coulomb singularity makes an appearance in the form of π 2 /(2v) where v → 0. However in the modern approach, we have started the computation with v = 0 from the very beginning, hence the term ∝ 1/v cannot exist in the first place. In fact, the master integral decomposition for the one-loop amplitude in Eq. 7.3.2 only involves the gluon momenta k 1 and k 2 as we had that p = p 1 = p 2 = 1 2 (k 1 + k 2 ). The Feynman diagram that contributes with a Coulombic singularity is Fig. 7.1a. This is straightforward to see as the gluon propagator connecting the two external heavy quark momenta is massless and thus in the limit v → 0 when p = p 1 = p 2 , a divergence can manifest itself. Coulomb singularities are low energetic soft singularities as opposed to the high-energetic ultra-violet divergences. We can consider the corresponding Feynman integral in Eq. 7.2.1. Treating this integral as a true four-point function with dependencies on ŝ, t and v, this can be expressed analytical as [START_REF] Maltoni | PhD thesis: Quarkonium Phenomenology[END_REF],

Ĩ = d D q 1 1 (q 1 -p 1 ) 2 -m 2 Q (q 1 + p 2 + k 2 ) 2 -m 2 Q (q 1 + p 2 ) 2 -m 2 Q q 2 1 = C ŝ t -m 2 Q v 1 log 1 -v 1 + v -2 log 1 -v 1 + v log v + log m 2 Q - t m 2 Q -2Li 2 1 -v 1 + v + 2Li 2 v -1 v + 1 - π 2 2 + O( ), (7.4.2) 
where the factor C involves global constants that do not depend on kinematical variables. In order to establish the expression of interest for the one-loop amplitude, we need to expand the expression around v = 0 and we obtain up to the finite piece that,

lim v→0 Ĩ = 2C ŝ t -m 2 Q - π 2 2v + 2 log m 2 Q - t m 2 Q + 2 - 1 , = -C 4m 4 Q - π 2 2v + 2 log 2 + 2 - 1 + O( ), (7.4.3) 
where in the second line we have set ŝ = 4m 2 Q and t = -m 2 Q at threshold. There was no need to expand the variables t and ŝ around v = 0 as the integral does not have any singular points in the threshold limit of these variables.

We observe the presence of the Coulomb singularity π 2 /(2v) above. In addition, we remark that finite pieces from the expansion such as the term 2 above can arise. In the framework of NRQCD, these Coulomb singularities are absorbed into the LDME [START_REF] Bodwin | Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium[END_REF][START_REF] Petrelli | NLO production and decay of quarkonium[END_REF][START_REF] Maltoni | PhD thesis: Quarkonium Phenomenology[END_REF]. So the convention in NRQCD is that whenever Coulomb singularities of type 1/v occur, these will simply be dropped. For completeness, we also remark that the higher-order terms in of this integral, whose expressions were not available in the aforementioned references but can be found Ref. [START_REF] Korner | Laurent series expansion of massive scalar one-loop integrals to O(epsilson 2)[END_REF], indicate that additional log v terms can arise in connection with the v -1 singularity.

At this stage, we point out that the integral in Eq. 7.4.2 has been first expanded around D = 4 -2 for finite v. In Eq. 7.4.3, we have then afterwards expanded around v → 0. In order to understand the origin of the Coulomb singularity, we retrace here our steps. We have essentially taken a double-limit first in → 0 and then in v → 0. We will now investigate below the double-limit with the limits now being inverted, where we first set v → 0 and then expand in which amounts to compute the integral at v = 0.

With v = 0, we only have two independent momenta k 1 and k 2 due to the relation p = p 1 = p 2 = (k 1 + k 2 ) /2. Making use of partial fraction and IBP reduction, we obtain that,

I Coul. = d D q 1 1 (q 1 -p) 2 -m 2 Q (q 1 + p + k 2 ) 2 -m 2 Q (q 1 + p) 2 -m 2 Q q 2 1 = -C 4m 4 Q 2 log 2 + 2 - 1 + O( ), (7.4.4) 
where the Coulomb singularity is absent as expected in the second approach. Comparing the expressions in Eq. 7.4.3 and Eq. 7.4.4, we find agreement in the simple pole in and in the finite piece.

The reader will have noticed, that we have taken again a double-limit but now with the reversed order of the limits. We have first set v → 0 and then computed the integral as expansion in . Clearly, this double-limit is non-commuting for these type of diagrams where Coulomb singularities can arise, lim The fact, that this double limit is non-commuting for this type of integral is not a contradiction as these belong to two different schemes. As long as a scheme is used consistently throughout in a computation, both results agree. We have confirmed this with the one-loop calculation explicitly. At two-loop level, as we have seen, the set of master integrals is much simpler with the modern approach where four-point functions are reduced to three-point functions etc. This approach has also been employed in some other two-loop calculations involving quarkonia, for instance for the decay [START_REF] Feng | Can Nonrelativistic QCD Explain the γγ * → η c Transition Form Factor Data?[END_REF][START_REF] Feng | Next-to-Next-to-Leading-Order QCD Corrections to the Hadronic width of Pseudoscalar Quarkonium[END_REF]. As such, we will make use of this modern approach.

At two-loop level, in the modern approach other types of Coulomb singularities can appear which are represented by poles in now. We will discuss these types of Coulomb singularities in the form-factor chapter. We mention here that the fact that P -wave states, as they occur in χ Q,J , are computed via an expansion in v is not in contradiction with the partial fraction procedure. We will discuss this in the next section.

Partial fraction: Additional applications

We would like to stress at this stage that the procedure of partial fraction introduced in the previous section is of course not only applicable to the pure virtual diagrams. This procedure could be equally applied to loop corrections in junction with an additional emitted parton as they appear in the one-loop real-virtual correction to η Q production at NNLO level. Similarly, these could already be applied to the NLO correction of J/ψ production in association with a emitted gluon (see Fig. 7.3a). The extension to the two-loop corrections to J/ψ production with a jet is obvious. In addition, there are no constraints on the kinematics of the initial states. The partial fraction procedure does not require us to take the initial state partons to be massless k 2 1 = 0 and k 2 2 = 0. We could for example take the example of electro-production where the initial photon is off-shell (see Fig. 7.3c) or in the case when a jet is emitted from a initial-state gluon such the propagator connected to the heavy quark line is off-shell (see Fig. 7.3b).

Whenever the sub-diagram in Eq. 7.2.7 can be found in these processes, partial fraction is possible. This is possible because we have set v = 0 from the very beginning such that the two heavy quark momenta are equal. From the mathematical point of view, one first expresses each scalar product involving a loop momentum in a linear combination of existing propagators. If in such a case, a denominator that is present in the loop integral is not used in the scalar product decomposition, this is an indication that this denominator can then be decomposed and as such one can then apply partial fraction. With additional partons, more scalar products are present and therefore additional denominators. It is thus important to devise and develop algorithms to fully automate the procedure of partial fractioning.

Let uss now briefly discuss the procedure when we need to take into account relativistic corrections, where we consider the higher-order terms in the v-expansion. This is for example required in the amplitude calculation for P -wave states as they occur for χ Q,J . The necessity to involve higher-order terms is not in contradiction to the partial fraction procedure. The proper procedure would be to take the derivative of the amplitude with respect to v and set afterwards v = 0 which corresponds to obtaining the coefficients of the higher-order terms in v. The resulting amplitude for the P -wave states will then involve Feynman integrals with propagators taken to doubled power which follows from the differentiation. Having set v = 0 afterwards, these integrals have only two independent momenta as in the case of the S-waves and, as such, we are in a position to apply partial fraction for these integrals with doubled propagators as before. Compared to the S-wave state amplitude, the integrals occuring in the P -wave states have slightly different propagator powers, however, since the IBP reduction procedure can reduce these integrals with doubled propagators to the master integrals, we may be able to relate many of these to the ones that already occurred in the S-wave state case. As such, the space of master integrals may remain the same between S-waves and P -waves. However, in order to verify this, an explicit computation is necessary. In a similar fashion one could apply this to D-wave states where one takes the derivative twice.

Reduction to master integrals

In the preceding sections, we have introduced the concept of partial fraction decomposition and showed its efficiency at the example of the one-loop result compared to its evaluation with techniques introduced in Part I. At two-loop level, the computation is more involved and therefore the method of partial fraction to preserve the denominator structure is of particular importance. We will now briefly outline the procedure to the reduction to the two-loop master integrals.

For each Feynman diagram generated with FeynArts, we have, wherever possible, first applied partial fraction to the base scalar integrals, i.e. considering only the propagators that appear in the denominator of the Feynman integral but no numerator contributions yet. Among the diagrams that have been partial fractioned, we have then organised and combined together all the amplitudes with exactly the same base scalar integral to avoid duplicate topologies. Before going further, it is very important to realise that, at this stage, the loop momenta q 1 and q 2 must remain unchanged throughout this procedure, i.e. no shift in the loop momenta, as the loop momenta appearing in the denominator can only be changed at the same time as the loop momenta appearing in the numerator.

The denominators appearing in the base scalar integrals are now linearly independent and we can proceed in defining the topologies and completing the set of independent denominators to 7 propagators which is the same number as the set of independent scalar products involving loop momenta. We can express all scalar products appearing in the numerator in terms of these linear combinations of denominators and thus construct all Feynman integrals that appear in the amplitude.

Before we start the reduction to the so-called master integrals, it is useful to reduce the number of Feynman integrals by equivalence relations beforehand. This can be achieved with the help of the Mathematica version of FIRE5 by A. V. Smirnov [START_REF] Smirnov | Algorithm FIRE -Feynman Integral REduction[END_REF][START_REF] Smirnov | FIRE5: a C++ implementation of Feynman Integral REduction[END_REF][START_REF] Smirnov | FIRE6: Feynman Integral REduction with Modular Arithmetic[END_REF]. The function FindRules allows the user to detect all possible equivalence relations among Feynman integrals that were defined with the same denominator bases set. These equivalence relations are based on the translational identity of Eq. 6.1.5. As we have Feynman integrals defined with multiple different propagator sets, a self-written private code has been set up to detect all possible relations among all the integrals that occured in the amplitude over the different topologies. For colour-singlet η Q hadro-production, the overall number of Feynman integrals before equivalence relations was around ∼ 74000, after the use of equivalence relations around ∼ 12000 distinct integrals remained.

With the help of the C++ version of FIRE, we have for each propagator base set reduced the integrals to the so-called master integrals. We have repeated the procedure of equivalence relation detection as before and applied it to the master integrals across different topologies to yield the set of distinct master integrals. The choice of master integral is however arbitrary and FIRE may have chosen different master integral bases for a given propagator set. This implies that one could anticipate relations among these 'master' integrals. Typical examples are ones with doubled propagators. There is a certain arbitrariness in the choice of which propagator is to be taken doubled.

In order to detect all possible relations among these integrals and get the ultimate set of irreducible master integrals, we have allocated with a self-written private code all these integrals to newly-created unique topologies. For colour-singlet η Q hadro-production, we have constructed around 11 distinct and unique topologies. With the help of the package LiteRed by R. Lee [START_REF] Lee | Presenting LiteRed: a tool for the Loop InTEgrals REDuction[END_REF][START_REF] Lee | LiteRed 1.4: a powerful tool for reduction of multiloop integrals[END_REF], we have defined the set of unique irreducible master integrals for each of these newly created topologies. We note that interchanging k 1 ↔ k 2 will leave all integrals unchanged by symmetry relation. Performing the IBP reduction of all integrals within these unique topologies will reveal relations among them. Going through all these unique topologies we have then constructed the ultimate list of all relations and list of unique irreducible master integrals. The two-loop bare amplitude should then be expressible in terms of these l master integrals MI[i] as,

α bare s π 2 A (2) = α bare s π 2 A (0) l i=1 c i ( )MI[i], (7.6.1) 
where c i depends on the regulator originating from D = 4 -2 . In addition, the coefficients will contain information on the colour structures (C A , C F and T F ), fermion numbers n l and n h and, in addition, whether these contributions originate from light-by-light scattering contributions. Once these master integrals have been computed, the final step consists in plugging these master integrals in the amplitude and combining the expressions. We will outline in the next chapter the topologies and master integrals that we encountered and will present the ones we have to compute.

Chapter 8

Master integrals & topologies

We have in the preceding section outlined the methods in generating the amplitudes and the reduction of the two-loop Feynman integrals to the master integrals. We have made use of the partial fraction procedure which was possible because we had started the computation with the two heavy-quark momenta being identical. In the following we present the list of master integrals for the different form-factors to obtain an overview of the appearance of master integrals for the corresponding form-factors. We will first present the master integral topologies and the type of Feynman diagrams where these occur. We will then proceed in giving the full set of master integrals that are needed for the form-factor calculations. However, we find that we can reduce the number of integrals which needs to be computed because of new equivalence relations among the master integrals. After having introduced these and identified the integrals that can be reduced we then define the bases of integrals which we will compute analytically.

List of topologies

All Feynman integrals that we have encountered so far in colour-singlet hadro-production can be reduced to a list of 76 irreducible master integrals via IBP relations. Out of the 76 master integrals we have 10 factorisable one-loop integrals which leaves us with 66 pure two-loop integrals that we have to compute. Feynman integrals at two loops and with two independent external momenta can have 7 independent scalar products involving loop momenta. Therefore each topology is described by a unique set of 7 propagators. We have organised all 76 master integrals into 11 different topologies each defined by a set of 7 propagators.

We call the parent integral of a topology the integral that has the largest number of non-zero propagator indices and thus defines the topology. In the ideal case, these integrals have 7 active propagators. It is indeed possible to have several such parent integrals within the same topology which differ only by a shift in the exponent such as doubled propagators. All integrals with a smaller subset of the same indices are called children integrals. For some topologies, the parent integrals have less than 7 active propagators, thus there is a certain degree of freedom in the choice for these unused propagators. It is achievable that with a particular choice of the remaining propagators one is able to merge several parent integrals with disjoint set of active indices into a single topology. This is clearly only possible when these integrals have less than 7 propagators as otherwise these are covering the full set of denominators and therefore by construction can only belong to this single topology. With a particular choice of the remain-ing propagators, one would end up with less topologies inhabitating the same set of master integrals. However as what concerns the analytic evaluation for these integrals, the number of topologies is irrelevant so we will not follow it here.

The reasoning is straightforward. As the parent integrals have different sets of propagators, these would be disjoint and decoupled from each other. In the differential equation approach (see Sec. 9.1) one would obtain block matrix systems where parent integrals can only depend on their children integrals. In cases where several parent integrals are present within a topology and where these share the same propagator set and differ only in the exponent power, these parent integrals are coupled and will therefore be involved in the same block. To give a better criterion in distinguishing the number of separate and independent systems, we find that all integrals can be organised into 15 independent blocks, that is to say all integrals are covered by the propagator set of 15 integrals.

In the following, we will now present these 11 topologies with a definition of their propagator structure and the parent integrals that are defining these topologies. We will, for each topology, denote the parent integrals diagrammatically by specifying massive propagators of mass m 2 with double lines and massless propagators by single lines. As for the external legs, we will specify massive legs that stand for the heavy quark line with momentum p = k 1 2 + k 2 2 and onshell mass p 2 = m 2 with double lines and massless legs standing for the initial state partons k i with single lines. We will have two additional kinematical points to specify, ŝ = (p + p) 2 = 4m 2 and t = (pk i ) 2 = -m 2 . We will denote and label explicitly the 4m 2 kinematical point over double lines. As for the -m 2 kinematical point, we will denote these legs by combining the double lines with a simple line to show that the momentum corresponds to (pk i ).

As for the full list of master integrals that can be casted in the propagator structure of each topology, we have listed these in Appendix F. For each topology, we give the corresponding propagator index structure for all the master integrals that can be casted in this topology. This also includes integrals that are not direct children of the parent integrals which are definining the topology. These integrals are however already covered by another parent integral in a separate topology. For this purpose, we give the additional information on the presence of the master integral in the different topologies. As for the notation of the integral and the topology number, we follow here the notation used in FIRE and we will indicate the master integral as follows with,

G[i, {α 1 , α 2 , α 3 , α 4 , α 5 , α 6 , α 7 }], (8.1.1) 
where the i label indicates the topology number and the indices α j are the power indices for the j th denominator that appears in the set and corresponds to the exponent as in Eq. 6.1.1.

We mention here that some of these topologies have been computed in the literature for general kinematics in ŝ and t away from threshold ŝ = 4m 2 and t = -m 2 . However, the results obtained in these references cannot be converted in a straightforward manner to the threshold kinematics and are, in some cases, even incomplete. This is due to the fact, that the expressions in general kinematics contain denominators which scale as 1/ ŝ -4m 2 or 1/ √ ŝ -4m 2 . Similar prefactors occur in the t-channel. These global prefactors are clearly divergent in the threshold limit ŝ → 4m 2 and t → -m 2 and therefore do not allow a straightforward adoption. One would have to perform a proper expansion of the entire expression around the threshold kinematics. However, this procedure is complicated through the fact that the expression is essentially in a non-canonical form which makes it rather infeasible to adopt the results here. We will later introduce the concept of canonical form.

In addition, although we have not yet introduced the concept of weight w for the functions that can occur, we mention here that these type of prefactors essentially trigger weight drops of the expressions. If the results for the master integrals are given in a series around up to a given order where the coefficients have weight w, in the special kinematics for some of the integrals the weight drops to w -1. This threshold limit can in a sense be understood as taking the derivative of the expressions which induces the weight drop. For our quarkonium case, this implies that for several of these master integrals we have to compute the coefficients up to one order higher in the regulator which are then unknown in the literature. Given these inconveniences and missing contributions in the literature, we have then essentially computed most of the master integrals in an entirely analytic way at threshold. We will in what follows now introduce the different topologies that we encountered here.

Topology 1

The propagator structure for T1 has the form,

P 1 = {q 2 1 , (k 1 -q 1 ) 2 , q 2 2 , (k 2 + q 2 ) 2 , (-k 1 + q 1 + q 2 ) 2 , -m 2 + - k 1 2 + k 2 2 + q 2 2 , -m 2 + k 1 2 + k 2 2 -q 1 2 }. (8.1.2)
Topology 1 contains 13 integrals that we need and the parent integral can be graphically represented as in Fig. 8.1a with the propagators labelled in the same order as above in P 1 . We have displayed in Fig. 8.1b the corresponding Feynman diagram in the amplitude that yields this integral. It is immediately clear that this integral can only occur in the gg-channel as we need the non-Abelian triple-gluon vertices. This parent integral will be absent in the other channels, although some children integrals may still appear as these can originate from other diagrams as well. We mention here, that this integral would occur in the general kinematics with ŝ and t away from threshold also in open tt production. In the general kinematics, this integral has been studied for example in Ref. [START_REF] Bonciani | Two-Loop Planar Corrections to Heavy-Quark Pair Production in the Quark-Antiquark Channel[END_REF]. As indicated in the previous section, some of the integrals present in this topology contain prefactors as 1/ ŝ -4m 2 which would trigger weight drops in the expressions at our threshold kinematics. Therefore, for our quarkonium processes we need to compute the expressions of the higher order terms in which are not available in the literature. As such, we will need to compute many of the integrals in the topology by direct integration.

Topology 2

The propagator structure for T2 has the form,

P 2 = {q 2 1 , (k 1 -q 1 ) 2 , q 2 2 , (k 2 + q 2 ) 2 , (-k 1 + q 1 + q 2 ) 2 , -m 2 + k 1 2 + k 2 2 -q 1 2 , -m 2 + - k 1 2 + k 2 2 + q 1 + q 2 2 }. (8.1.3)
Topology 2 contains 20 integrals that we need and the parent one can be graphically represented as in Fig. 8.2a and the corresponding Feynman diagram as in Fig. 8.2b. As in the case of the previous topology, this master integral is only present in the gg-channel and absent in the other channels due to the triple gluon vertices. open tt production as well and has been studied in Ref. [START_REF] Becchetti | Master Integrals for the two-loop, non-planar QCD corrections to top-quark pair production in the quark-annihilation channel[END_REF]. Likewise as before, some of the integrals present in this reference contained prefactors of type 1/ ŝ -4m 2 which made their adoption infeasible at threshold kinematics. In addition, one needed the coefficients of several integrals of one order higher in which were not known in the literature. We will therefore compute most of the integrals in this topology by direction integration.

Topology 3

The propagator structure for T3 has the form,

P 3 = {-m 2 + q 2 1 , -m 2 + (k 1 -q 1 ) 2 , q 2 2 , -m 2 + (-k 1 + q 1 + q 2 ) 2 , -m 2 + k 1 2 + k 2 2 -q 2 2 , -m 2 + - k 1 2 + k 2 2 + q 2 2 , k 1 2 + k 2 2 -q 1 2 }. (8.1.4)
Topology 3 has 26 integrals that we need and the parent one can be graphically represented as in Fig. 8.3a and the corresponding Feynman diagram as in Fig. 8.3b. This integral does not depend on the initial-state channels and is thus present already in the para-positronium QED correction. In a slightly different kinematical regime where the final-state invariant mass is at threshold but one of the initial-state partons now off-shell, this integral has been considered in Ref. [START_REF] Chen | Two-Loop integrals for CP-even heavy quarkonium production and decays: Elliptic Sectors[END_REF] and been computed via means of differential equation. These integrals have applications in electro-production where the initial-state photon is off-shell. For our processes however, we would need the solutions where the initial-state parton is on-shell. The full analytical solutions to these integrals with Q 2 -dependence are however absent in Ref. [START_REF] Chen | Two-Loop integrals for CP-even heavy quarkonium production and decays: Elliptic Sectors[END_REF]. The authors only provide the system of differential equations and some boundary conditions. However, we have found several typos in this paper and confirmed these with the authors. In view of these difficulties, we will therefore compute all the integrals in this topology via direct integration. As this topology contains the elliptic sunrise integrals (MI-39 and MI-41 to be introduced later), it will exhibit elliptic structures. Such elliptic integrals are rather complicated to solve and present a real challenge.

Topology 4

The propagator structure for T4 has the form,

P 4 = {-m 2 + q 2 1 , -m 2 + (k 1 + q 1 ) 2 , -m 2 + q 2 2 , (q 1 + q 2 ) 2 , k 1 2 + k 2 2 -q 2 2 , -m 2 + k 1 2 - k 2 2 + q 1 + q 2 2
, (k 2 + q 1 ) 2 }. Within the same kinematical constraints as for Topology 3, both these integrals have been studied in the same Ref. [START_REF] Chen | Two-Loop integrals for CP-even heavy quarkonium production and decays[END_REF]. As before, the full solutions were absent in Ref. [START_REF] Chen | Two-Loop integrals for CP-even heavy quarkonium production and decays[END_REF] and with typos present, we will therefore compute these integrals analytically via direct integration. Similarly as for T3, it contains the elliptic sunrise (MI-39 and MI-41 to be introduced later) as subtopology.

Topology 5

The propagator structure for T5 has the form, In the general kinematics with invariant mass ŝ, this integral occurs as well in tt and γγproduction in gluon fusion via a massive t-quark loop and has been studied in Ref. [START_REF] Manteuffel | A non-planar two-loop three-point function beyond multiple polylogarithms[END_REF]. As for the kinematics, the authors have considered solutions for different values of ŝ for both positive and negative regions with the initial-state particles to be massless. We note that there are two parent integrals that differ via a doubled propagator. This is usually a hint that elliptic structures may be present here despite the fact that the elliptic sunrise integral is absent here.

P 5 = {-m 2 + q 2 1 , -m 2 + (k 1 + q 1 ) 2 , (q 1 + q 2 ) 2 , (k 1 + k 2 + q 1 + q 2 ) 2 , -m 2 + q 2 2 , -m 2 + (k 2 + q 2 ) 2 , (k 2 + q 1 ) 2 }.
In order to obtain full analytic results, this integral will be computed via direct integration and we can ad-hoc confirm that it indeed exhibits an elliptic curve which distinct from the sunrise one (see later in Sec. 9.2.3). We mention that we only the result for MI-49. The amplitude precoefficient for MI-50 starts at O( ) and having confirmed with numerical packages as FIESTA [START_REF] Smirnov | Feynman Integral Evaluation by a Sector decomposiTion Approach (FIESTA)[END_REF][START_REF] Smirnov | FIESTA 2: Parallelizeable multiloop numerical calculations[END_REF][START_REF] Smirnov | FIESTA 3: cluster-parallelizable multiloop numerical calculations in physical regions[END_REF][START_REF] Smirnov | FIESTA4: Optimized Feynman integral calculations with GPU support[END_REF] and pySecDec [START_REF] Carter | SecDec: A general program for sector decomposition[END_REF][START_REF] Borowka | Numerical Evaluation of Multi-Loop Integrals for Arbitrary Kinematics with SecDec 2.0[END_REF][START_REF] Borowka | SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop[END_REF][START_REF] Borowka | pySecDec: a toolbox for the numerical evaluation of multi-scale integrals[END_REF][START_REF] Borowka | pySecDec: a toolbox for the numerical evaluation of multi-scale integrals[END_REF] that this integral starts the Laurent series at O 0 , we do not need it for the pseudo-scalar form-factors. On a side, we mention that these integrals are only present in the gauge-invariant light-by-light contributions to the amplitude.

Topology 6

The propagator structure for T6 has the form,

P 6 = {-m 2 + q 2 1 , -m 2 + (k 1 + q 1 ) 2 , (k 1 + k 2 + q 1 + q 2 ) 2 , -m 2 + q 2 2 , -m 2 + (k 2 + q 2 ) 2 , -m 2 + k 1 2 + k 2 2 + q 1 + q 2 2 , (k 2 + q 1 ) 2 }. (8.1.7) 
Topology 6 has 13 integrals that we need and the highest ranked integral has 6 active propagators with G[6, {1,

0}] as shown in Fig. 8.6a. We remark that this integral can originate from both corrections inside the heavy-quark lines as in Fig. 8.4c and from contributions of type light-by-light scattering as shown in Fig. 8.5c. As such this integral can already occur in the para-positronium process. To the best of our knowledge this integral has not been computed anywhere in the literature before. However for this integral, the precoefficient in the amplitude starts at O( ) and having checked with pySecDec, that this integral starts at O( 0 ), this integral is not needed for η Q production at NNLO accuracy. However there is another integral G[6, {1, 0, 1, 1, 1, 1, 0}] within this family which we have computed which is needed in the case of the colour-octet contribution. The amplitude precoefficient there starts at O( 0 ). This topology has the elliptic sunrise as subtopology, thus some integrals in this topology can not be expressed in terms of multiple polylogarithms only but one has to include the functions of elliptic polylogarithms.

Topology 7

The propagator structure for T7 has the form, This integral family is already known in the literature as it also appears in the two-loop virtual correction to the Higgs form factor computation at NLO in Ref. [START_REF] Anastasiou | Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop[END_REF][START_REF] Beerli | A New method for evaluating two-loop Feynman integrals and its application to Higgs production[END_REF]. The integrals in this topology can be casted into functions of multiple polylogarithms only.

P 7 = {q 2 1 , (k 1 + q 1 ) 2 , -m 2 + q 2 2 , -m 2 + (k 2 + q 2 ) 2 , -m 2 + (q 1 + q 2 ) 2 , -m 2 + (k 1 + k 2 + q 1 + q 2 ) 2 , (k 2 + q 1 ) 2 }. ( 8 

Topology 8

The propagator structure for T8 has the form,

P 8 = {q 2 1 , -m 2 + - k 1 2 - k 2 2 + q 1 2 , -m 2 + - k 1 2 + k 2 2 + q 1 2 , q 2 2 , (-k 1 + q 1 + q 2 ) 2 , -m 2 + - k 1 2 - k 2 2 + q 2 2
, (q 1 + q 2 ) 2 }. To the best of our knowledge these two integrals are not known in the literature. Both integrals are needed for the gg-channel form-factor and, as such, we have to compute these analytically.

Topology 9

The propagator structure for T9 has the form, The first two integrals are factorisable one-loop integrals and therefore trivial to solve. The two-loop two-point function integral is already known from the two-loop Higgs form-factor computation and is available in Ref. [START_REF] Anastasiou | Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop[END_REF][START_REF] Beerli | A New method for evaluating two-loop Feynman integrals and its application to Higgs production[END_REF][START_REF] Gerlach | Matching coefficients in nonrelativistic QCD to two-loop accuracy[END_REF]. All integrals in this topology can be casted into functions of multiple polylogarithms only.

P 9 = {-m 2 + q 2 1 , -m 2 + (-k 1 + q 1 ) 2 , -m 2 + (k 2 + q 1 ) 2 , q 2 2 , (-k 1 -k 2 + q 2 ) 2 , -m 2 + (-k 1 + q 1 + q 2 ) 2 , (q 1 + q 2 ) 2 }. ( 8 

Topology 10

The propagator structure for T10 has the form, We mention that in the general kinematics with invariant mass ŝ this integral has been studied in Ref. [START_REF] Becchetti | Master Integrals for the two-loop, non-planar QCD corrections to top-quark pair production in the quark-annihilation channel[END_REF]. However due to the presence of prefactors as ŝ (ŝ -4m 2 ), this integral contains a weight drop and for our quarkonium processes we need to compute this integral to one order higher in whose coeffcient is unknown in the literature. We will therefore need to compute this integral analytically via direct integration.

P 10 = {q 2 1 , (-k 1 + q 1 ) 2 , (k 2 + q 1 ) 2 , - k 1 2 - k 2 2 + q 2 2 , -m 2 + q 2 2 , -m 2 + (-k 2 -q 1 + q 2 ) 2 , (q 1 + q 2 ) 2 }. ( 8 

Topology 11

The propagator structure for T11 has the form, 

P 11 = {q 2 1 , (-k 1 + q 1 ) 2 , (k 2 + q 1 ) 2 , q 2 2 , (-k 1 -k 2 + q 2 ) 2 , (-k 1 + q 1 + q 2 ) 2 , (q 1 + q 2 ) 2 }. ( 8 

List of master integrals

In this section, we present diagrammatically all 76 master integrals that occured in the pseudoscalar colour-singlet form-factor computation. In the first column, we have, for each master integral indicated in the first line their name and in the second line following the 'T': in which topology the integral occurs. For their exact propagator structure we refer to one of the indicated topologies in Appendix F. The integrals that can be found in only a single topology and are thus essential for this topology are marked with an italic digit. We give the additional information, which master integrals are present () or absent () in the channels considered.

We focus on the colour-singlet pseudo-scalar form-factors in γγ → η Q and gg → η Q needed for the decay to di-photon and for hadro-production. In addition we consider here also the para-positronium (p-Ps) form-factor with di-photon which is needed for the QED corrections to the decay width. It should be clear to the reader that the master integral decomposition is identical for the two-loop amplitude for both production and decay here. We will, in a later section, display the leading amplitude pre-coefficient in . 

Master

Partial fraction revisited

The partial fraction procedure that we introduced in Sec. 7.2 allowed us to decompose Feynman integrals with linearly dependent propagators into a combination of integrals where the propagators were now linearly independent and its propagator number reduced. As we pointed out, this reduction in the propagator number needed to be compensated for as the 'mass' di-mension has to be preserved on both sides of the equation. It is precisely this point that we wish to elaborate on and we will deduce some identities that prove to be very useful. We will then apply these directly to some of the master integrals which we have introduced in the previous section. We recall Eq. 7.2.6 and make some modifications to it. We set the masses for the propagators D 1 and D 3 the same and take D 2 to be massless this time,

D 1 = (q 1 + p) 2 -m 2 , D 2 = q 2 1 , D 3 = (q 1 -p) 2 -m 2 , (8.3.1) 
where p now has the on-shell mass p 2 = -xm 2 . The minus sign in -xm 2 is of no particular importance here. For our case, we are interested in the limit x → -1 where p 2 is then identical to the mass that appears in the propagator, p 2 → m 2 . We can now express one denominator in terms of the remaining two as

D 2 = 1 2 D 1 + 1 2 D 3 -A with A = -(1 + x) m 2 .
We mention that these denominators can be part of a Feynman integral F involving additional propagators and loops,

F = d D q 1 ... d D q n 1 D 1 D 2 D 3 ...D m . (8.3.2)
The sub-part containing these three propagators can then be partial fractioned according to,

1 D 1 D 2 D 3 = 1 2A - 2 D 1 D 3 + 1 D 1 D 2 + 1 D 2 D 3 , = 1 (1 + x) m 2 1 D 1 D 3 - 1 2 1 D 1 D 2 - 1 2 1 D 2 D 3 . (8.3.3) 
We can visualise this diagrammatically with double lines standing for the massive and single lines for the massless propagators. Here we add two coloured dots, blue and red, which represent the connectors of this subgraph. The remaining propagators present in the integral F which are connected to the blue connector on the LHS, will always remain connected to the blue dot, while the ones with the red ones will always remain with this one on the RHS.

p p D 3 D 2 D 1 = 1 (1 + x) m 2             2p D 3 D 1 - 1 2 p p D 2 D 1 - 1 2 p p D 3 D 2             . ( 8 
.3.4) As we are free to rearrange terms in Eq. 8.3.3, we can multiply both sides with (1 + x) m 2 to obtain,

(1 + x) m 2 D 1 D 2 D 3 = 1 D 1 D 3 - 1 2 1 D 1 D 2 - 1 2 1 D 2 D 3 . (8.3.5)
Now in the limit x → -1 none of the denominators D 1 , D 2 and D 3 is divergent or show any poles at x = -1. Therefore, we can conclude that the LHS vanishes in this limit and we obtain that,

0 = 1 D 1 D 3 - 1 2 1 D 1 D 2 - 1 2 1 D 2 D 3 x=-1 . (8.3.6)
This equation implies that one can at this special kinematic point p 2 = m 2 derive the relation,

1 D 1 D 3 x=-1 = 1 2 1 D 1 D 2 + 1 2 1 D 2 D 3 x=-1 . (8.3.7)
Diagrammatically we have that,

4m 2 D 3 D 1 = 1 2 m 2 m 2 D 2 D 1 + 1 2 m 2 m 2 D 3 D 2 , (8.3.8) 
where we can now apply this equality at integral level with the involvement of the additional propagators and loop momenta. We can define by setting p 2 = m 2 that,

F 1 = d D q 1 ... d D q n 1 D 1 D 3 ...D m , (8.3.9) 
F 2 = d D q 1 ... d D q n 1 D 1 D 2 ...D m , (8.3.10) 
F 3 = d D q 1 ... d D q n 1 D 2 D 3 ...D m , (8.3.11) 
where we then have the following relation between these integrals as,

F 1 = 1 2 F 2 + 1 2 F 3 . (8.3.12)
We would like to stress here that the equality presented in Eq. 8.3.7, Eq. 8.3.8 and above are valid in any arbitrary dimensions D and for any n-loop diagram which has this subdiagram. Using D = 4 -2 , this equality holds at any order in the regulator . As a simple example, we can now apply this equality to a one-loop case where only the propagators D 1 , D 2 and D 3 are present. This essentially amounts in connecting the blue connector with the red one and we obtain diagrammatically that,

4m 2 4m 2 = 1 2 
m 2 m 2 + 1 2 m 2 m 2 . = m 2 m 2 , (8.3.13)
where the second line can be deduced by symmetry. We can now study another one-loop example and apply the equality to the following triangle integral,

T 1 = d D q 1 ... d D q n 1 D1 D2 D3
, with

D1 = q 2 1 -m 2 , D2 = (q 1 + k 1 ) 2 -m 2 , D3 = (q 1 -k 2 ) 2 -m 2 , (8.3.14) 
where

k 2 1 = 0, k 2 2 = 0 and k 1 • k 2 = 2p 2 = 2m 2 .
We obtain the following relation,

4m 2 0 0 = 1 2 m 2 0 -m 2 + 1 2 m 2 0 -m 2 , = 0 m 2 -m 2 (8.3.15)
Both one-loop integrals above occur in the list of two-loop master integrals as factorisable oneloop diagrams. This equality implies that it suffices to compute only one of the integrals in order to obtain the result for the other. Before we apply it to our list of two-loop master integrals and determine the set of integrals that we actually have to compute analytically, we will first explore additional partial fraction identities. We can consider a slightly modified version as above where we now set D 1 and D 3 massless with D 2 having mass m 2 ,

D 1 = (q 1 + p) 2 , D 2 = q 2 1 -m 2 , D 3 = (q 1 -p) 2 , (8.3.16) 
where as before p 2 = -xm 2 . We can now express

D 2 = 1 2 D 1 + 1 2 D 3 -A with A = -(x -1) m 2 .
We apply partial fraction as before and obtain that,

1 D 1 D 2 D 3 = 1 2A - 2 D 1 D 3 + 1 D 1 D 2 + 1 D 2 D 3 , = 1 (x -1) m 2 1 D 1 D 3 - 1 2 1 D 1 D 2 - 1 2 1 D 2 D 3 . (8.3.17)
We can visualise it again diagrammatically as follows,

p p D 3 D 2 D 1 = 1 (x -1) m 2             2p D 3 D 1 - 1 2 p p D 2 D 1 - 1 2 p p D 3 D 2             . ( 8 
.3.18) Following the same argumentation as before, we conclude that with,

(x -1) m 2 D 1 D 2 D 3 = 1 D 1 D 3 - 1 2 1 D 1 D 2 - 1 2 1 D 2 D 3 , (8.3.19) 
the LHS vanishes in the limit x → 1 with D 1 , D 2 and D 3 being finite in that limit. We then obtain the relation, .3.20) This implies that when p 2 = -m 2 , we have that,

0 = 1 D 1 D 3 - 1 2 1 D 1 D 2 - 1 2 1 D 2 D 3 x=1 . ( 8 
1 D 1 D 3 x=1 = 1 2 1 D 1 D 2 + 1 2 1 D 2 D 3 x=1 . (8.3.21)
Diagrammatrically this corresponds to,

-4m 2 D 3 D 1 = 1 2 -m 2 -m 2 D 2 D 1 + 1 2 -m 2 -m 2 D 3 D 2 , (8.3.22) 
As before, we can apply this new identity to a simple one-loop example where only these three propagators are present. In order to obtain the relation, one can as before just connect the blue connector with the red one,

-4m 2 -4m 2 = -m 2 -m 2 . (8.3.23)
The one-loop diagram on the LHS is simply a massless form-factor result that is known up to all orders in . Likewise, as in the case of the first partial fraction identity, we also find applications to our list of two-loop master integrals.

For the partial fraction identities presented so far, when attaching the remainder of the Feynman integral to the blue or the red connector, the external legs where we have denoted only their on-shell mass are combined in a similar fashion as shown in Eq. 8.3.15. We keep in mind that the legs are parallel to each other with momenta p, now whenever its on-shell mass is m 2 , we can replace

p = ± 1 2 (k 1 + k 2 ). If its on-shell mass is -m 2 , we can replace p = ± 1 2 (k 1 -k 2 )
, where in all cases we follow k

2 1 = k 2 2 = 0 and k 1 • k 2 = 2m 2 .
This should clarify how the external legs combine in the partial fraction procedure.

We would like to make a second interesting remark here. Looking at the LHS of Eq. 8.3.4 and Eq. 8.3.18, we could take the propagator D 2 connecting the external legs as doubled propagator. We will visualise this at the example of Eq. 8.3.4. This simply amounts to just insert an additional D 2 on both LHS and RHS everywhere,

p p D 3 D 2 D 1 = 1 (1 + x) m 2             p p D 3 D 2 D 1 - 1 2 p p D 2 D 1 - 1 2 p p D 3 D 2             . (8.3.24)
We see immediately that when x → -1 such that p 2 = m 2 and when A vanishes, we have that the RHS represents a very similar partial fraction relation with now choosing D 2 as the mass compensation term similarly as shown in Eq. 7.2.9 where the mass compensation term was D 3 , .3.25) This implies that we could have derived these special relation also the other way around, by looking at all partial fraction relations where A vanishes, such that one of the propagators has to act as the mass compensator. As this propagator is present on both sides of the equation (simple on LHS and doubled on RHS), we are free to reduce the power by one.

m 2 m 2 D 3 D 2 D 1 = 1 2 m 2 m 2 D 2 D 1 + 1 2 m 2 m 2 D 3 D 2 . ( 8 
We find additional relations for cases where the propagator masses are either massive with m 2 or massless and parallel external legs that are either massive or massless. As for these additional relations, there was no immediate application to our list of master integrals but as these rules are rather simple, in the following we will just list them below. Their derivation can be done already visually by remembering that D 2 = 1 2 D 1 + 1 2 D 3 and choosing the propagator D 2 connecting the parallel external legs as the mass compensator, 0

D 3 D 1 = 1 2 0 0 D 2 D 1 + 1 2 0 0 D 3 D 2 , (8.3.26) -2m 2 D 3 D 1 = 1 2 -1 2 m 2 -1 2 m 2 D 2 D 1 + 1 2 -1 2 m 2 -1 2 m 2 D 3 D 2 , (8.3.27) D 3 D 1 = 1 2 0 0 D 2 D 1 + 1 2 0 0 D 3 D 2 , (8.3.28) 2m 2 D 3 D 1 = 1 2 1 2 m 2 1 2 m 2 D 2 D 1 + 1 2 1 2 m 2 1 2 m 2 D 3 D 2 . (8.3.29)
As before all partial fraction relations are not constrained to one-loop diagrams only but can be equally applied to multi-loop integrals where the missing denominators are then just added to the blue and red connectors throughout on both LHS and RHS.

We would like to make two additional remarks at this stage. One could derive such partial fraction relations also involving propagators that depend already at two loops such as in 7.2.13. This would in a sense relate planar to non-planar graphs. In addition to this, as one is free to choose the propagator acting as the mass compensator, further additional relations could be derived from these different choices. At this stage however, these additional relations are not expected to simplify our list of master integrals. We leave this study of additional relations for future work.

A final comment is in order. The procedure of partial fractioning and the derivation of identities is of course not constrained to quarkonium physics only. We have focused so far only on propagators with masses of the heavy quark m and massless propagators. One is free to choose propagators with different and arbitrary masses. The identities derived in such cases would as before only be applicable at special external on-shell masses in such a way as to eliminate the mass compensator A = 0.

Partial fraction: Application

We can now apply the partial fraction relation to the list of master integrals and show which master integrals are equivalent. This will save us later from computing these integrals twice analytically. We have in the previous section already shown the relation between the two triangle integrals in Eq. 8.3.15. We find that both integrals are present in our list as part of factorisable We turn now a simple two-loop integral MI-7. At first observation, this integral does not seem to be straightforward. We however find through our 2nd partial fraction relation in Eq. 8.3.22 that this integral is equivalent to another one which is known in the literature. This integral is topologically similar to MI-75 however the external massive leg is at anti-threshold now with on-shell mass -4m The integral on the RHS is just a massless form-factor result that is known up to all orders in . Its result can be obtained from Ref. [START_REF] Gehrmann | Differential equations for two loop four point functions[END_REF]. With the help of the first partial fraction relation in Eq. 8. Both partial fraction relations in Eq. 8.3.8 and Eq. 8.3.22 involve three terms each. However above we have shown relations between two integrals/terms only. This is just a consequence of the fact that the diagrams are symmetric under application of these partial fraction relations.

As before, we have that interchanging k 1 ↔ k 2 will leave the integral invariant. The master integral MI-62 is known from the two-loop Higgs form-factor computation and we are in a position to adapt the result from Ref. [START_REF] Anastasiou | Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop[END_REF][START_REF] Beerli | A New method for evaluating two-loop Feynman integrals and its application to Higgs production[END_REF]. In a similar fashion, these relations also hold when taking common propagators on both sides to double power such as MI- The result on the RHS is known for general values for the massive leg and can be taken from Ref. [START_REF] Bonciani | Master integrals for the two loop QCD virtual corrections to the forward backward asymmetry[END_REF]. We will now consider an application where the integral is asymmetric. We find that a relation between three different master integrals (MI- Master integral MI-60 is known from the Higgs form-factor in Ref. [START_REF] Anastasiou | Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop[END_REF][START_REF] Beerli | A New method for evaluating two-loop Feynman integrals and its application to Higgs production[END_REF], while the LHS is an integral that would occur in tt-production at threshold ŝ = 4m 2 . At this special kinematic point, the two integrals are equivalent. With this equality, we no longer have to compute the previously unknown integral MI-68 analytically. In all cases, we have verified the relations presented here either analytically where the results were available or numerically with pySecDec to high precision accuracy at different orders in .

The two integrals above are in fact parent integrals of topology 7 and 8 following the numeration in the topology section. This partial fraction identity shown above implies that we are able to connect integrals over cross-topologies. However, it is interesting to remark that the same equality does not necessarily hold for the children integrals. This is due to the simple fact that the propagators in the partial fraction identities as shown in 8.3.8 are no longer present in the children integral anymore. It needs to exhibit at least two of D 1 , D 2 and D 3 , in order for partial fraction to work. In addition to this, most of the cases that we have presented above exhibit a symmetry such that there is a relation between two terms/integrals instead of the general three. However when trying to apply this procedure to the children integrals, this symmetry may no longer be present. This raises the question whether we could in fact find different means of connecting integrals over cross-topologies when this is applicable to the parent integrals. We remind ourselves that the master integrals are in fact a product of the Integration-By-Parts identities with coefficients depending on the dimension D. It remains an open question as whether there is the possibility to connect these integrals before or in intermediate IBP reduction steps, whenever we have exactly two out of D 1 , D 2 and D 3 present. If possible, all integrals in one topology that are children of the parent integral should then be able to be mapped to the other topology. In such a case, a general D-dimensional dependence in the mapping would be expected. We leave this here for future work.

As final remark, we point out that one could apply these relations in fields outside of quarkonium physics, such as tt-production. The master integrals that would occur in ttproduction are for general kinematics ŝ and when solving the integrals via means of differential equations, one usually needs to fix the boundary condition. Now one is free to choose the kinematical point of these boundary conditions but if the integral under consideration has a similar structure as our partial fraction identitiy like MI-68, one may choose as boundary condition ŝ = 4m 2 and take the result from Higgs production if an integral similar to MI-60 has already been solved there. For general kinematics ŝ, MI-68 and MI-60 have completely different values, however as one approaches the limit ŝ → 4m 2 , both integrals coincide at this kinematical intersection point. This is however not constrained to two-loop diagrams, one could equally apply it to higher-loop orders. For our list of master integral, there are additional partial fraction relations, however at slightly differential kinematical points. This would be useful as application in solving the integrals via differential equation. We present below two examples. We note a similarity between the parent integral MI-49 of topology 5 and the parent integral MI-58 of topology 6 however at anti-threshold this time, As a final note and ignoring the fact that two of the integrals are at anti-threshold, we remark that this partial fraction identity relates integrals in 3 disjunct topology groups: MI-33 (T3, T4), MI-59 (T6) and MI-52 (T5, T9).

Making use of this partial fraction identity, we are in a position to reduce the number of independent master integrals that we have to compute analytically. Before presenting the analytic strategies in computing the integrals, it turns out that it makes sense to perform a rotation of bases which we explain in the next section.

Rotation of bases

From general observations for multi-loop amplitude calculations in D = 4 -2 , one finds that the maximal weight w of the amplitude can be computed with w = 2h, where h is the number

(a) (b) 4m 2 (c)
Figure 8.13: New bases with integrals (a) MS [START_REF] Brambilla | Heavy quarkonium physics[END_REF], (b) MS [START_REF] Mizuk | Evidence for the η b (2S) and observation of h b (1P ) → η b (1S)γ and h b (2P ) → η b (1S)γ[END_REF] and (c) MS [START_REF] Altarelli | Asymptotic Freedom in Parton Language[END_REF] of loops. Here w stands for the weight of a function which is a specific feature of the function.

We will explain this in more detail in the analytical approach section. Here we limit ourselves with the general structure of the amplitude on the weight. At one-loop level, the amplitude involves functions of weight 0 ≤ w ≤ 2, while two-loop amplitudes contain functions of weight 0 ≤ w ≤ 4. Although there is no formal proof yet of this concept, this serves as a further crosscheck of our form-factor amplitudes which we will present later. As we shall see later, we can indeed confirm that all form-factors contain master integrals with functions of maximal weight w = 4. In theories such as N = 4 super Yang-Mills, one has that the amplitude contains terms of uniform maximal weight 2h only. The interested reader may consult Ref. [START_REF] Henn | What can we learn about QCD and collider physics from N=4 super Yang-Mills?[END_REF] for a brief review on the connection between N = 4 super Yang-Mills and QCD.

We have presented in Sec. 8.2 the list of master integrals that appeared in the computation for the form-factors. We note as an example that the double tadpole integral MI [START_REF] Abachi | Observation of the top quark[END_REF] is needed up to O 3 which would involve functions of weight w = 5. However when plugging in all master integrals in the form-factor result, these weight w = 5 contributions from MI [START_REF] Abachi | Observation of the top quark[END_REF] should cancel against those weight w = 5 contributions originating from other integrals. We can confirm this cancellation a posteriori. We remark that the weight of the functions appearing in the finite piece at O 0 of any two-loop integral has weight 0 ≤ w ≤ 4. Thus weight w = 5 contributions can only originate from higher -order terms which may involve mixed weight terms and would thus also involve functions of weight w = 4. We will see later, that it will be beneficial to rotate the bases of master integrals to a new 'good' base such that we only need to consider terms of maximal weight w = 4.

In order to achieve this, it turns out that it suffices to rotate only three master integrals from our MI base list to a new base list which we shall call MS. The integrals affected are MI [START_REF] Brambilla | Heavy quarkonium physics[END_REF], MI [START_REF] Mizuk | Evidence for the η b (2S) and observation of h b (1P ) → η b (1S)γ and h b (2P ) → η b (1S)γ[END_REF] and MI [START_REF] Altarelli | Asymptotic Freedom in Parton Language[END_REF]. We would like to comment that all the integrals where weight w = 5 contributions are needed, can be found in at a least in a topology where the other aforementioned integrals are involved as well. We can now proceed and define the new integrals MS [START_REF] Brambilla | Heavy quarkonium physics[END_REF], MS [START_REF] Mizuk | Evidence for the η b (2S) and observation of h b (1P ) → η b (1S)γ and h b (2P ) → η b (1S)γ[END_REF] and MS [START_REF] Altarelli | Asymptotic Freedom in Parton Language[END_REF] as follows, where the propagators are defined accordingly to the topology where these integrals appear in. This is signified by the first index label and the exact propagator structure is given in Appendix F. We have given their diagrammatic representation in Fig. 8.13 where the double dot signifies that the propagator has been taken to triple power and where the disconnected propagator stands for the numerator term.

MS[43] = G[4, {1, 1, 1, 1, 1, 1, -1}], (8.5 
In order to relate the MI bases to the new MS bases, we can make use of the IBP relations which we have collected in Appendix G. We have repeated the same analysis for the MS base and collected the leading -coefficients in Appendix G. We can confirm a posteriori that all weight w = 5 terms cancel and are no longer needed in the form-factor calculations. Having discussed the rotation of bases we can now proceed and elucidate the methods we used to obtain fully analytical results for all the master integrals that were needed and their numerical evaluation.

Chapter 9

Master integrals -analytic approach & numerical results

To obtain reliable quantities for our amplitude, it is necessary to solve the list of two-loop master integrals analytically. We will show later how to derive high-precision numerical results from the analytics. There are two well-known techniques to compute Feynman integrals analytically, one is the method of differential equations (DE) and the other is the method of direct integration (DI). As we will focus on the direct integration technique we first give below a brief introduction to the method of differential equations. We will partially use this for our numerical approach. We have collected analytical expressions in Appendix H. During the course of the project, we have found some additional integral identities which we collected in Appendix L.

Method: Differential equation

The method of differential equation has been applied for the first time by A. V. Kotikov in the early 1990s [START_REF] Kotikov | Differential equations method: New technique for massive Feynman diagrams calculation[END_REF][START_REF] Kotikov | Differential equation method: The Calculation of N point Feynman diagrams[END_REF]. E. Remiddi has further refined these techniques in Ref. [START_REF] Remiddi | Differential equations for Feynman graph amplitudes[END_REF]. In their seminal paper [START_REF] Gehrmann | Differential equations for two loop four point functions[END_REF], T. Gehrmann & E. Remiddi have applied this technique to massless two-loop four-point integrals. The key difference in the approach between the IBP and the DE procedure is the fact that while for the former one, the differentiation is with respect to the loop momenta, the differentiation for the latter one is with respect to an external invariant scale such as Mandelstam variables ŝ, t or internal masses m 2 . As it is the integral that depends on these scales rather than the integrand, which still contains the scalar products involving the loop momenta, one usually converts the Mandelstam variables to suitable combinations of external momenta such we can apply it at integrand level. As an example, we can consider the case when we only have two independent external massless momenta k 1 and k 2 like in our quarkonium/Higgs kinematics. We define the Mandelstam variable ŝ and derive the differential operator as follows,

ŝ = (k 1 + k 2 ) 2 = 2k 1 • k 2 , (9.1.1) k µ 1 ∂ ∂k µ 1 = k µ 1 ∂ŝ ∂k µ 1 ∂ ∂ŝ = 2k µ 1 k 2,µ ∂ ∂ŝ = ŝ ∂ ∂ŝ . (9.1.2)
We are therefore in a position to differentiate the integrand now with the operator k µ 1 ∂/∂k µ 1 or similarly due to the symmetry k µ 2 ∂/∂k µ 2 which will produce a linear combination of integrals 150 9.1. METHOD: DIFFERENTIAL EQUATION with doubled propagators now. The next step would be to reduce these new integrals via IBP to master integrals. We note that all resulting integrals have the same subset of propagator indices as the integral under consideration. One then recursively repeats this step to each new master integral that appears in this procedure. For the differential equation approach to work, one needs to have at least two scales where the second scale could be the mass of propagator m 2 . One constructs the differential operator as a ratio of these two scales x = ŝ/m 2 . One can then express the resulting system as,

x ∂ ∂x I = M ( , x) • I, (9.1.3) 
where I is the vector comprising the master integrals and M is the matrix with the master integral coefficients that depends on the regulator and ŝ. If there are no massive propagators or no second scale available in the integral, the method of differential equation fails as these integrals are just massless form-factors as MI-76. In such a case the master integral will only depend on itself with the coefficients being the dimension represented by the scale ŝ.

As opposed to the IBP approach where the integral vanishes in the framework of dimensional regularisation, the key idea in the differential equation approach is the scaling of the integral with respect to the external invariant. This is manifest in the equation above where the scaling depends on a linear combination of master integrals with corresponding coefficients. However constants terms vanish under differentiation of the scale. Thus, one needs to set boundary conditions for some kinematical points.

We remark that the matrix M depends on both rational functions in the regulator and the variable x. In order to compute the parent integral up to a given order in , one may have to compute recursively the children integrals up to different orders in and this can prove to be a rather cumbersome exercise. In 2013, the so-called -or canonical-form was introduced by J. Henn in his seminal paper [START_REF] Henn | Multiloop integrals in dimensional regularization made simple[END_REF]. Via a variable transformation and a particular choice of master integral bases, one can achieve a complete factorisation of as global factor from the matrix M and bring the matrix in Fuchsian form, i.e. the coefficients in the variable x can have at most simple poles such as 1/ (1x) or 1/ (1/2 + x). This -form simplifies the differential equation in an efficient way and allows us to compute master integrals systematically at different orders in . These DE systems also introduce the alphabet of letters for the functions that can appear for the master integrals. This is related to the d log-form that represents the structure of the simple poles in the variable x. We guide the reader for further reading to Ref. [START_REF] Henn | Lectures on differential equations for Feynman integrals[END_REF].

The complexity now lies in the transformation to the canonical or -form. There is no proof that this transformation to Fuchsian form is possible for arbitrary systems. In fact, Bolibrukh has shown a counterexample to this [START_REF] Bolibrukh | The Riemann-Hilbert problem on the complex projective line[END_REF] and thus there is no guarantee that one will succeed in bringing the DE system to canonical form. In Ref. [START_REF] Lee | Reducing differential equations for multiloop master integrals[END_REF], R. Lee has proposed a systematic strategy to bring systems into the canonical form and this has been implemented and automated in programs such as Fuchsia [START_REF] Gituliar | Fuchsia: a tool for reducing differential equations for Feynman master integrals to epsilon form[END_REF], epsilon [START_REF] Prausa | epsilon: A tool to find a canonical basis of master integrals[END_REF] and CANONICA [START_REF] Meyer | Algorithmic transformation of multi-loop master integrals to a canonical basis with CANONICA[END_REF]. The last implementation is able to deal with multi-scale problems and is in addition also based on the algorithm in Ref. [START_REF] Meyer | Transforming differential equations of multi-loop Feynman integrals into canonical form[END_REF]. However, these programs do not always succeed and one is left to perform the transformation manually.

As we have effectively only a single scale which is the mass of the heavy quark, we need to find a second scale in order to make the differential equation approach to work. We have chosen the second scale to be 2k 1 •k 2 = ŝ. For the differential equation systems for the topologies presented, we have attempted to bring these into canonical form with some of the programs above without success. For master integrals involving several different massive propagators there is also the possibility to vary some of the propagator masses m 1 and m 2 versus against each other and solve the system of differential equation via this way. This has been done for example in the framework of quarkonium physics in Ref. [START_REF] Kniehl | Two-loop diagrams in non-relativistic QCD with elliptics[END_REF]. Another scale that could be varied is the off-shellness of one of the initial photons as was employed for quarkonium physics in Ref. [START_REF] Chen | Two-Loop integrals for CP-even heavy quarkonium production and decays: Elliptic Sectors[END_REF][START_REF] Chen | Two-Loop integrals for CP-even heavy quarkonium production and decays[END_REF]. At the end of the day, we need the result only at a single kinematical point.

The differential equation approach is efficient for a topology only when it contains several master integral that are unique and thus defining the topology. If however all master integrals except two or three can already be found in other topologies, rather to bring the DE system in canonical form and to compute all boundary conditions via direct integration, it would be more efficient to compute these few unique integrals via direct integration at our kinematical point and leave the remaining ones to the other topologies. It has been our strategy to reduce the number of topologies that we would have to bring into canonical form. Due to weight drop of some master integrals at our kinematical point, some master integral that were available in the literature required the computation of one order higher in which in the differential equation approach relates to the computation of several boundary conditions by one or two orders higher in via direct integration. In order to be efficient, we have decided to compute several integrals directly via direct integration. In addition, due to the absence of full analytical results and presence of several typos in Ref. [START_REF] Chen | Two-Loop integrals for CP-even heavy quarkonium production and decays: Elliptic Sectors[END_REF][START_REF] Chen | Two-Loop integrals for CP-even heavy quarkonium production and decays[END_REF] for T3 and T4, we have computed all these integrals and unknown ones from other topologies via the method of direct integration. We present this method and show new techniques to deal with complicated Feynman integrals in the next section.

Method: Direct integration

We present in this section the method of direct integration which we have used in order to evaluate the master integrals analytically. Before, we first need introduce preliminaries on the connection between Feynman integrals and graph theory. We will then introduce the analytical functions that can appear in the computation, namely the multiple polylogarithms and their elliptic extensions which have attracted attention in the physics community in rather recent times. Once the formalism has been introduced, we then outline our different strategies in computing the different master integrals.

Feynman integrals and graph theory

In the previous sections, we have displayed Feynman integrals graphically with vertices, edges (propagators) and external legs. In fact, any multi-loop Feynman integral can be represented via two graph polynomials U and F that are called the first and second Symanzik polynomials respectively. For a detailed discussion on graph polynomials the reader is invited to consult Ref. [START_REF] Nakanishi | Graph theory and Feynman integrals[END_REF][START_REF] Bogner | Feynman graph polynomials[END_REF]. Here we will be brief and give only a short introduction into this topic. An integral can be represented in terms of graph polynomials via,

I = (-1) a (e γ E ) h Γ a -h D 2 ∞ 0 dx 1 ... ∞ 0 dx m δ(1 -∆ H ) m i=1 x a i -1 i Γ(a i ) U a-(h+1) D 2 F a-h D 2 , (9.2.1) 
where the integration measure for each loop is,

D D q i = d D q i iπ D 2 e γ E . (9.2.2)
Above each variable x i represents a propagator (edge), h is the number of loops, m is the number of active propagators (edges) present in the graphical representation and a i stands for the power index of propagator i which by default is a i = 1. In case of doubled propagators we have that a i = 2. We denote the combined sum of all propagator powers as a = m i=1 a i and Γ are the usual Gamma functions. We will discuss the Dirac delta function later together with a definition of ∆ H . There are two ways to define the Symanzik polynomials, one is via the structure of the propagator and the other one diagrammatically via graph theory. In order to understand the difference between massless and massive propagators for the procedure of direct integration, it will be more instructive to follow the second method. For this we will quickly follow Ref. [START_REF] Bogner | Feynman graph polynomials[END_REF] and define spanning trees and spanning forests first.

One can consider a connected graph G with m-internal lines that are called edges (propagators) E = (e 1 , ..., e m ), r vertices labelled as V = (v 1 , ..., v r ) and n external legs. When the graph is connected, one can compute the number of loops as h = mr + 1. This quantity is called in graph theory the first Betti number. A spanning tree for our connected graph G is a subgraph T that meets three requirements, (1) the number of loops must be h = 0, (2) the graph must be connected and (3) all vertices of G must be present in the spanning tree. One can obtain the spanning tree by cutting h edges such that graph remains connected. A spanning forest for our connected graph G is a subgraph F that satisfies only criterion (1) and (3). For the spanning forest there is no requirement for it to be connected, it can be composed to individual disconnected trees that are still covering all vertices of G thus the nomenclature forest. In fact, the spanning tree of G is called a 1-forest, whereas a forest composed of two disconnected trees is called a 2-forest etc. There are several different ways to construct spanning trees and spanning forests from a given graph G. One can construct a k-forest by cutting mr + k edges, which is in fact the Betti number or number of loops for disconnected graphs. For the connected one we set k = 1 to recover the equation above to obtain h. One can define the set of spanning forests of our graph G as,

T = r k=1 T k , (9.2.3) 
where T k is the set of all spanning k-forests. For a given k-forest one can label its k disconnected components that are trivially trees with (T 1 , T 2 , ..., T k ). Finally, for a given k-forest we need to define the set of external momenta connected to each disconnected tree T i and we denote the set of momenta as P T i . These are precisely the quantities we need in order to define the two Symanzik polynomials,

U = T 1 ∈T 1   e i / ∈T 1 x i   , (9.2.4) 
F = F 0 + U m i=1 x i m 2 i µ 2 , (9.2.5) with F 0 = (T 1 ,T 2 )∈T 2     e i / ∈(T 1 ,T 2 ) x i     p j ∈P T 1 p k ∈P T 2 p j • p k µ 2     . ( 9 

.2.6)

A few comments are in order. The first polynomial depends only on the set of all spanning trees or equivalently all 1-forest of our graph. Each spanning tree contributes with the product of the removed edges. This has two implications, the first one being that the resulting polynomial will be always linear for any x i . In order to create a 1-forest out of a connected graph with h-loops, we will have to remove h edges. This implies that each term is a product of h different x i where for one-loop it would essentially be simply the sum of all edges while at two loop there will be combinations of two x i etc. The second Symanzik polynomial depends on two different terms where F 0 now involves the sum over all possible 2-forests. For each given 2-forest with T 1 and T 2 being the two disconnected trees of this 2-forest, one adds up the products of edges that have been eliminated to create this given 2-forest. In addition, one now involves the kinematics of the external momenta that flow into the two disconnected trees T 1 and T 2 . The factor µ 2 has been introduced to keep the dimension of the Symanzik polynomial massless.

We will now discuss the second term of F which explains the role of the massive propagators. We see that the first Symanzik polynomial U is multiplied by the sum of all massive edges in the graph G together with the dimensionless quantity m 2 i /µ 2 , where m i represents the corresponding mass of the edge (propagator). We can make the important observation that this second term involves x i that now appear quadratically due to the product with U. This implies that all edges associated to massive propagators will appear quadratically while massless propagators will remain linear. We will see later why this is important. We conclude the discussion on the two polynomials by mentioning that all the kinematics of the external legs and the internal masses are encoded in F only while the first polynomial U is independent of the kinematics and only depends on the 'topological structure' of the graph.

Let's now return back to Eq. 9.2.1 and discuss the integral. We note that the number of integrations dx i is only dependent on the number of propagators (edges) rather than the number of loops h and the dimension D = 4 -2 . These two quantities only affect the integrand. The precise structure of the propagators is only encoded in the polynomials U and F while the power indices of the propagators only enter in the variables a i and a. We note the presence of the δ(1 -∆ H )-function which is also called Cheng-Wu delta function. It has the important role of projecting out the integrand to some specific configuration. The Cheng-Wu theorem [START_REF] Cheng | EXPANDING PROTONS: SCATTERING AT HIGH-ENERGIES[END_REF] states that the integral is invariant under modification of the sum ∆ H = m i=1 x i to include only a subset of edges S ⊂ E to yield ∆ H = i∈S x i . This theorem is only true as long as the integration region for each variable is positive x i ≥ 0. In fact, as shown in Ref. [START_REF] Panzer | Feynman integrals and hyperlogarithms[END_REF] due to the integral being projective this can be generalised to include prefactor coefficents with c i ≥ 0 and thus we define,

∆ H = m i=1 c i x i . (9.2.7)
We will frequently make use of this in order to eliminate one of the integration variables when calculating our master integrals. Finally we wish to remark that the quantity

d u = a -h D 2
inside the Gamma function is called the superficial degree of divergence. Before presenting an explicit example in Sec 9.2.4, we will first need to define the special functions that can appear in the master integrals.

Multiple polylogarithms

The aim to express multi-loop Feynman integrals analytically in terms of some mathematical functions requires a proper understanding of their properties. The reader will be familiar with functions such as the log and the Li 2 that arise frequently in one-loop calculations. However beyond one-loop level, new functions will emerge. It is the purpose of this section to introduce these new functions and give their definitions and properties. Here we will introduce the class of functions that belong to the multiple polylogarithms (MPLs). The MPL function G can be defined recursively as iterated integrals [START_REF] Goncharov | Multiple polylogarithms, cyclotomy and modular complexes[END_REF][START_REF] Goncharov | Multiple polylogarithms and mixed Tate motives[END_REF], The general differential of a function G can be expressed as,

G (a 1 , ..., a n ; z) = z 0 dt 1 t -a 1 G (
d G (a 1 , ..., a n ; t) = n i=1 G (a 1 , ..., âi , ..., a n ; t) d log a i-1 -a i a i+1 -a i , (9.2.11) 
where above the indices âi have been removed from the argument of the function G and one defines in addition a n+1 = t and a 0 = 0. Special care has to be taken when defining the boundaries of the integration. By default, the limits are always set from 0 up to the argument t. However if the integration kernel is a n = 0 and if it is the innermost integration (last index), it is clear that one cannot choose 0 as the lower bound since the integral would otherwise diverge. We can consider the following well-known example as definition,

G (0; z) = log z = z 1 dt 1 t . ( 9 

.2.12)

So whenever the integrand and the integration kernel give rise to logarithmic singular structure, one has to choose the boundaries [1, z]. Starting from the first kernel a i = 0, one can go back to the integration bounds [0, z] for all subsequent kernels a j with j ≤ i. We illustrate this with an example,

G (0, 1, 0; z) = z 0 dt 1 t G (1, 0; t) = z 0 dt 1 t t 0 dt 1 t -1 G 0; t = z 0 dt 1 t t 0 dt 1 t -1 t 1 dt 1 t .
(9.2.13) We remark here that all multiple polylogarithms vanish when their argument is z = 0 unless in the special case when all indices are zero and thus give rise to logarithmic structure. This is clear from the outermost integration boundaries [0, z] as when z → 0 the integration vanishes. We briefly mention here the class of the harmonic polylogarithms (HPLs) that have been introduced to the physics community by J. Vermaseren and E. Remiddi in their seminal paper [START_REF] Remiddi | Harmonic polylogarithms[END_REF]. The HPLs are a subclass of the multiple polylogarithms. Whenever the indices/kernels in the MPLs are either +1, -1 or 0, this is an HPL up to slight sign convention compared to the MPLs. The difference is that for the kernel +1 the HPLs are defined as,

H (1, z) = z 0 dt 1 1 -t = -G (1, z). (9.2.14)
Thus the H and the G are related up to a sign depending on the number of +1 kernels which we label with m, H ( a, z) = (-1) m G ( a, z). (9.2.15)

The number of integrations of the multiple polylogarithm, thus equal to the number of indices, is defined as the weight w of the MPL. We had already touched on this concept in Sec. 8. The simple log function thus has weight w = 1, while the Li 2 has weight w = 2. The classical n-th Li function can be related to the MPLs via,

Li n (z) = -G 0 n-1 , 1; z , with Li 1 (t) = -log (1 -t) = -G (1; t). (9.2.16)
The concept of weight also carries over to special functions of the MPLs. A simple example is the following,

G (0; -1 ± iδ) = log (-1 ± iδ) = ±iπ, (9.2.17) 
where δ is an infinitesimal and the regulator of the imaginary part. This equality above implies that one can associate to the transcendental function π a weight w = 1. Correspondingly one can assign to the familiar zeta functions ζ n a weight w = n, where the ζ functions are related to the Li and the G via,

Li n (1) = -G 0 n-1 , 1; 1 = ζ n . (9.2.18) 
ζ's with even n are proportional to π n , e.g. ζ 2 = π 2 /6. The reader will verify that Li 1 (1) = ζ 1 is singular and divergent. We will come to this point again when solving the integrals analytically. In addition to the iterated integral representation, the multiple polylogarithms can be represented as well by multiple nested sums,

Li m 1 ,m 2 ,...,mn (z 1 , z 2 , ..., z n ) = ∞ pn=1 z pn n p mn n pn-1 p n-1 =1 z p n-1 n-1 p m n-1 n-1 ... p 2 p 1 =1 z p 1 1 p m 1 1 , (9.2.19) 
where the direct relation to the iterated integral representation is,

Li m 1 ,m 2 ,...,mn (z 1 , z 2 , ..., z n ) = (-1) n G 0 mn-1 , 1 z n , ..., 0 m 1 -1 , 1 z n z n-1 ...z 1 ; 1 . (9.2.20)
Above the 0 l are the zero vectors of length l. The relation between the iterated integral representation and the multiple nested sum representation makes it rather straightforward to evaluate multiple polylogarithms up to high precisions. This has been implemented in packages such as the GiNaC interface [START_REF] Bauer | Introduction to the GiNaC framework for symbolic computation within the C++ programming language[END_REF]. We note that above we can derive Eq. 9.2.16 from Eq. 9.2.20 with the only difference being that the argument has been normalised in the latter equation. where a ¡ b denotes all possible combinations of a i with b j in a new vector of length m + n while retaining the relative order within the a i 's and b j 's. We note that the arguments of the MPLs are identical with z. We illustrate this with a concrete example below,

G (a 1 , a 2 ; z) G (b 1 , b 2 ; z) = G (a 1 , a 2 , b 1 , b 2 ; z) + G (a 1 , b 1 , a 2 , b 2 ; z) + G (a 1 , b 1 , b 2 , a 2 ; z) + G (b 1 , a 1 , b 2 , a 2 ; z) + G (b 1 , b 2 , a 1 , a 2 ; z). (9.2.23)
The shuffle algebra preserves the combined length of the indices present, and therefore trivially preserves the weight of the MPLs. In the case, where all the indices of the MPL are identical, where we label these as a vector a n = (a, ..., a) of length n, we have that due to the shuffle algebra,

G ( a n ; z) = 1 n! G (a; z) n . ( 9 

.2.24)

We will now briefly discuss the cases when the polylogarithms are divergent. Whenever the first index matches the argument and is non-zero a 1 = z = 0, such as G (1, 0, 2; 1) the MPLs are always divergent apart from the special case where all subsequent indices are zero a 2 = ... = a n = 0, e.g. G (1, 0, 0; 1) = -ζ 3 . The other trivial case where they diverge are the MPLs where all the indices including the argument are zero. From Eq. 9.2.24, we can deduce that,

G 0 n ; z = 1 n! G (0; z) n = 1 n! log n (z), (9.2.25) 
which implies that these divergences are all logarithmic. Indeed, all divergences including the example presented above G (1, 0, 2; 1) are logarithmic. The proper way to make these divergences manifest is to apply the shuffle algebra and extract the first indices that match the argument,

G ( a; 1) = G 1 n , b; 1 = G 1 n ; 1 G b; 1 - c = a c∈ 1n¡ b G ( c; 1), (9.2.26) 
where b 1 = 1. We note however that in the sum above we still may get terms of type G 1 m , d; 1 , where now m < n. In order to extract all singularities, this procedure needs to applied recursively such that all singular terms have been extracted. For illustration purposes, we apply this to a concrete example here,

G (1, 1, b 1 , b 2 ; 1) = G (1, 1; 1) G (b 1 , b 2 ; 1) -G (1, b 1 , 1, b 2 ; 1) -G (1, b 1 , b 2 , 1; 1) -G (b 1 , 1, 1, b 2 ; 1) -G (b 1 , 1, b 2 , 1; 1) -G (b 1 , b 2 , 1, 1; 1), = G (1, 1; 1) G (b 1 , b 2 ; 1) -[G (1; 1) G (b 1 , 1, b 2 ; 1) -2 G (b 1 , 1, 1, b 2 ; 1) -G (b 1 , 1, b 2 , 1; 1)] -[G (1; 1) G (b 1 , b 2 , 1; 1) -G (b 1 , 1, b 2 , 1; 1) -2 G (b 1 , b 2 , 1, 1; 1)] -G (b 1 , 1, 1, b 2 ; 1) -G (b 1 , 1, b 2 , 1; 1) -G (b 1 , b 2 , 1, 1; 1), = G (1, 1; 1) G (b 1 , b 2 ; 1) -G (1; 1) [G (b 1 , 1, b 2 ; 1) + G (b 1 , b 2 , 1; 1)] + G (b 1 , 1, 1, b 2 ; 1) + G (b 1 , 1, b 2 , 1; 1) + G (b 1 , b 2 , 1, 1; 1). (9.2.27)
We see that above we have extracted the singular terms. Now to make the connection to the logarithmic singularities of type G (0; x p ), we are able to convert,

G (1; 1 + x p ) = G (0; x p ) -iπ with (x p ) > 0 G (0; x p ) + iπ with (x p ) < 0 (9.2.28) G (1; 1 -x p ) = G (0; x p ), (9.2.29) 
where above x p is a small number and denotes the imaginary part of x p . When matching divergences of type G (1; 1 ± x p ) and G (0; x p ), it is very important that the same convention is used throughout the computation as otherwise additional uncancelled finite pieces may remain. We will show the importance of this in a computation later on. On a side note, we remark that G ( 1 n ; 1) = (-1) n /n! ζ n 1 , where ζ 1 is the divergence we have introduced earlier on. Now returning back to the procedure of the argument normalisation as presented in Eq. 9.2.21, before the normalisation, all zeroes in the last indices of a must have been removed a priori. In order to understand why this is necessary, we present below an explicit example,

G (a 1 , a 2 , 0; z) = z 0 dt 1 t -a 1 t 0 dt 1 t -a 2 t 1 dt 1 t , (9.2.30) 
where we now rescale t to zt s ,

G (a 1 , a 2 , 0; z) = 1 0 dt s 1 t s -a 1 z zts 0 dt 1 t -a 2 t 1 dt 1 t , = 1 0 dt s 1 t s -a 1 z ts 0 dt s 1 t s -a 2 z zt s 1 dt 1 t , = 1 0 dt s 1 t s -a 1 z ts 0 dt s 1 t s -a 2 z t s 1 z dt s 1 t s , (9.2.31) 
where in each step we have rescaled the integration variable by z as t → zt s and t → zt s , in order to bring this integral in the iterative integral representation. It should be clear from the last line that because the lower limit in the last integration is = 1 that,

G (a 1 , a 2 , 0; z) = G a 1 z , a 2 z , 0; 1 . (9.2.32)
This applies to all cases where the last indices give rise to logarithmic structures log n (t ). In order to obtain the correct relation, one needs to shuffle all zeroes from the last indices recursively.

We demonstrate this with an example below, G (a 1 , a 2 , 0, 0; z) = G (0, 0; z) G (a 1 , a 2 ; z) -G (a 1 , 0, a 2 , 0; z) -G (a 1 , 0, 0, a 2 ; z) -G (0, a 1 , a 2 , 0; z) -G (0, a 1 , 0, a 2 ; z) -G (0, 0, a 1 , a 2 ; z) = G (0, 0; z) G (a 1 , a 2 ; z) -G (0, a 1 , 0, a 2 ; z) -G (0, 0, a 1 , a 2 ; z) -G (a 1 , 0, 0, a 2 ; z) -[G (0; z) G (a 1 , 0, a 2 ; z) -2 G (a 1 , 0, 0, a 2 ; z) -G (0, a 1 , 0, a 2 ; z)] -[G (0; z) G (0, a 1 , a 2 ; z) -G (0, a 1 , 0, a 2 ; z) -2 G (0, 0, a 1 , a 2 ; z)] = G (0, 0; z) G (a 1 , a 2 ; z) -G (0; z) [G (a 1 , 0, a 2 ; z) + G (0, a 1 , a 2 ; z)] + G (0, a 1 , 0, a 2 ; z) + G (0, 0, a 1 , a 2 ; z) + G (a 1 , 0, 0, a 2 ; z)

= G (0, 0; z) G a 1 z , a 2 z ; 1 -G (0; z) G a 1 z , 0, a 2 z ; 1 + G 0, a 1 z , a 2 z ; 1 + G 0, a 1 z , 0, a 2 z ; 1 + G 0, 0, a 1 z , a 2 z ; 1 + G a 1 z , 0, 0, a 2 z ; 1 (9.2.33)
We note that despite the presence of logarithmic structures on the RHS, the polylogarithm on the LHS vanishes when z → 0. The coefficient of the divergent parts G (0; z) n on the RHS vanish faster than the logarithm diverge thus the RHS vanishes as well.

We have presented in this section the mathematical background to the multiple polylogarithms. As we have pointed out, for some of the integrals we need to extend the space to the elliptic multiple polylogarithms which we will introduce in the next section.

Elliptic multiple polylogarithms

In quantum field theory new types of functions emerge beyond one-loop level that cannot be casted in terms of multiple polylogarithms only. The earliest such encounter dates back to the two-loop self-energy correction to the electron in QED by A. Sabry in 1962 [START_REF] Sabry | Fourth order spectral functions for the electron propagator[END_REF]. These new functions involve integrals with elliptic curves and occur particularly in diagrams involving massive heavy particles. In recent times these elliptic functions have also appeared in higherorder corrections to tt-production [START_REF] Czakon | Inclusive Heavy Flavor Hadroproduction in NLO QCD: The Exact Analytic Result[END_REF][START_REF] Manteuffel | A non-planar two-loop three-point function beyond multiple polylogarithms[END_REF] or Higgs production in association with a jet [START_REF] Bonciani | Two-loop planar master integrals for Higgs→ 3 partons with full heavy-quark mass dependence[END_REF]. In the current precision era at the LHC, it thus important to have a proper and consistent understanding of these new functions. Here we will give a brief review on the properties and definitions on these new functions. We refer for further reading to Refs. [START_REF] Broedel | Elliptic polylogarithms and iterated integrals on elliptic curves. Part I: general formalism[END_REF][START_REF] Broedel | Elliptic polylogarithms and iterated integrals on elliptic curves II: an application to the sunrise integral[END_REF][START_REF] Broedel | Elliptic symbol calculus: from elliptic polylogarithms to iterated integrals of Eisenstein series[END_REF][START_REF] Broedel | Elliptic Feynman integrals and pure functions[END_REF][START_REF] Broedel | Elliptic polylogarithms and Feynman parameter integrals[END_REF].

From a mathematical point of view the multiple polylogarithms that have we introduced in the previous section can be described geometrically by a Riemann surface of genus zero such as a sphere. The elliptic integrals are associated to Riemann surfaces of genus such as torus. Elliptic integrals have been studied in the 19th century and one can define three types of incomplete elliptic integrals,

F x, m 2 = x 0 dt 1 (1 -t 2 ) (1 -m 2 t 2 ) , (9.2.34) E x, m 2 = x 0 dt (1 -m 2 t 2 ) (1 -t 2 ) , (9.2.35) Π n 2 , x, m 2 = x 0 dt 1 (1 -t 2 ) (1 -m 2 t 2 ) 1 (1 -n 2 t 2 ) , (9.2.36) 
where above F , E and Π are the incomplete integrals of the first, second and third kind respectively. We remark that in the mathematics literature different conventions exist here. The integrals presented above are complete when x = 1 and thus depend on a variable less. We denote the complete integral of the first kind as K(λ) = F (1, λ) and the complete integral of the second kind as E(λ) = E(1, λ).

Elliptic curves can be represented by either a cubic or quartic polynomial P n (x) in the form of,

y 2 = P n (x) = (x -a 1 ) ... (x -a n ) , (9.2.37) 
where the a i are the roots of the polynomial. One calls the roots also the branch points of the elliptic curve. It can be shown that any elliptic curve either of degree three or four can be transformed into the so-called Weierstrass equation with,

y 2 = 4x 3 -g 2 x -g 3 = 4 (x -e 1 ) (x -e 2 ) (
xe 3 ) with e 1 + e 2 + e 3 = 0. (9.2.38)

However in high-energy physics, the quartic polynomials occur more commonly than the cubic and are associated most notably to the elliptic sunrise integral. Hence in the following, we focus only on the quartic case. One can define the two periods ω i and quasi-periods η i of the elliptic curve as

ω 1 = 2c 4 a 3 a 2 dx 1 y = 2K(λ), (9.2.39 
)

ω 2 = 2c 4 a 2 a 1 dx 1 y = 2iK(1 -λ), (9.2.40 
)

η 1 = - 1 2 a 3 a 2 dx Φ4 (x, a) = E(λ) - 2 -λ 3 K(λ) (9.2.41) η 2 = - 1 2 a 2 a 1 dx Φ4 (x, a) = -iE(1 -λ) + i 1 + λ 3 K(1 -λ), (9.2.42) with Φ4 (x, a) = 1 c 4 y x 2 - s 1 ( a) 2 x + s 2 ( a) 6 , (9.2.43) 
where,

λ = a 14 a 23 a 13 a 24 , c 4 = 1 2 √ a 13 a 24 , a ij = a i -a j , (9.2.44) 
and s n ( a) being the n th elementary symmetric polynomial in the branch points a. We point out that the periods are related to the quasi-periods via the Legendre relation as,

ω 1 η 2 -ω 2 η 1 = -iπ. (9.2.45)
Before defining the order of the branch points, we briefly point out that different sets of elliptic periods and quasi-periods can be associated to the same elliptic curve via a rescaling. In order to establish whether two elliptic curves are related, one can compute the so-called j-invariant,

j = 256 (1 -λ (1 -λ)) 3 λ 2 (1 -λ) 2 . (9.2.46)
If two elliptic curves have different j-invariants, these curves are truly different and cannot be related to each other via a variable transformation. Thus these curves will have different coefficients in the Weierstrass equation.

We now define the ordering of the branch points. In our master integral calculations we encounter two different types of elliptic curves. We have already pointed out that some topologies exhibit the sunrise as subtopology and thus this elliptic curve can be characterised by,

a ell.sunrise 1 = 1 2 1 - √ 1 + 2i = -0.13601 -0.393076i, a ell.sunrise 2 = 1 2 1 - √ 1 -2i = -0.13601 + 0.393076i, a ell.sunrise 3 = 1 2 1 + √ 1 + 2i = 0.13601 + 0.393076i, a ell.sunrise 4 = 1 2 1 + √ 1 -2i = 0.13601 -0.393076i. (9.2.47)
The second elliptic curve that we encounter is the one related to Topology 5 the one with the parent integrals MI-49 and MI-50,

a MI-49 1 = 1 - √ 5 = -1.23607, a MI-49 2 = 0, a MI-49 3 = 2, a MI-49 4 = 1 + √ 5 = 3.23607. (9.2.48) 
Whenever the polynomial P 4 (x) is real, one has three possibilities for the branch points, (1) all branch points are real, (2) two branch points are real and two are complex conjugates, (3) all four branch points are complex and pairwise complex conjugate. We see that for the sunrise elliptic curve we have configuration (3) so we will have to follow the convention,

a 1 = a * 2 , a 3 = a * 4 , (a 1 ) < (a 3 ) (a 2 ) , (a 3 ) > 0, (a 1 ) , (a 4 ) < 0, (9.2.49) 
which we have already implemented for the elliptic sunrise curve. Here and denote the real and imaginary parts respectively. For the elliptic curve defined by the parent integrals of T5, we find that the branch points are all real and we follow the conventions that,

a 1 < a 2 < a 3 < a 4 . (9.2.50)
As all branch points are real, the square-root is ill-defined when the polynomial turns negative. Therefore for this configuration we need to fix the branch points for the square-root by taking into account the region of integration,

y = P 4 (x) = |P 4 (x) | ×            -1 x ≤ a 1 or x > a 4 , -i a 1 < x ≤ a 2 , 1 a 2 < x ≤ a 3 , i a 3 < x ≤ a 4 .
(9.2.51)

We can now define the elliptic extension to the multiple polylogarithm which are called elliptic multiple polylogarithms (eMPL). We can represent these eMPLs as iterated integrals in a similar fashion as before in the following way,

E 4 ( n 1 ... nm c 1 ... cm ; x, a) = x 0 dt ψ n 1 (c 1 , t, a) E 4 ( n 2 ... nm c 2 ... cm ; x, a), (9.2.52) 
where in analogy with the MPLs we have that E 4 (; x, a) = 1. The quantity m i=1 |n i | is the weight of the E 4 while m is its length. The first row signifies the kernel type while the second row signifies the poles. We now need to define the kernels ψ n i (c i , x) where the dependence on the branch points a is now implicit,

ψ 0 (0, x) = c 4 y , ψ 1 (c, x) = 1 x -c , ψ -1 (c, x) = y c y (x -c) - δ 0c x , ψ 1 (∞, x) = c 4 y Z 4 (x), ψ -1 (∞, x) = x y , ψ n (c, x) = 1 x -c Z (n-1) 4 (x) -δ n2 Φ 4 (x) - δ 0c x Z (n-1) 4 (0), ψ -n (c, x) = y c y (x -c) Z (n-1) 4 (x) - δ 0c x Z (n-1) 4 (0), ψ n (∞, x) = c 4 y Z (n) 4 (x), ψ -n (∞, x) = x y Z (n-1) 4 (x) - δ n2 c 4 , (9.2.53) 
where n ≥ 2 and n ∈ Z. We have further defined Z where the Z 4 (x) has a pole at infinity and is regular everywhere else. As for the form for Z

(n) 4 (x), these are rather lengthy and we refer to Ref. [START_REF] Broedel | Elliptic polylogarithms and iterated integrals on elliptic curves. Part I: general formalism[END_REF].

A few remarks are in order at this stage. As in the case for the multiple polylogarithms, the integration kernels presented in Eq. 9.2.53 have at most simple poles such that the eMPLs have at most logarithmic singularities. The kernels with c = ∞ have a singularity at x = ∞.

Otherwise it has poles at x = c. The only kernel that does not exhibit any poles is ψ 0 (0, x). We note that for the kernels ψ -1 (0, x) and ψ ±n (0, x), the integral becomes logarithmically divergent when x = 0. In order to regularise this integral, one subtracts the kernel 1/x to make it finite. In a similar fashion we will show how to regulate divergences at points different from x = 0 in Appendix K. We further remark that for the kernels when 1/y combined with 1/(xc) and where it has a simple pole at one of the branch points c = a i these are not unique. In such cases we are able to perform partial fraction and express 1/ (y (xa i )) as a linear combination of other kernels. Finally, one can relate elliptic multiple polylogarithms to the three incomplete integrals of the first, second and third kind.

From the kernels above we can conclude that ordinary multiple polylogarithms are a subset of the elliptic multiple polylogarithm, Having defined the basic material to the elliptic multiple polylogarithms, we are now in a position to outline the procedure in solving the master integrals via direct integration in the next sections.

E 4 1 c ; x, a = G ( c; x), (9.2 

Linear reducibility

Before discussing the properties further, we first present an example for one of our master integrals MI-3. Following the propagator numbering in Fig. 9.1a the Symanzik polynomials take the following structures,

U = x 4 (x 3 + x 5 ) + x 1 (x 2 + x 3 + x 5 ) + x 2 (x 3 + x 4 + x 5 ) (9.2.57) F = m 2 µ 2 x 2 (x 4 + x 5 ) 2 -x 1 4x 2 x 3 -x 2 5 + x 4 (x 3 x 4 + x 5 (x 4 + x 5 )) (9.2.58)
As we can always factorise and recover the mass dimension of the integral, hence here and in the following we will always set µ 2 = m 2 . We see that x 4 and x 5 are both quadratic in correspondence with the edges e 4 and e 5 being massive in the graph while all other variables are massless and thus appear linearly in the polynomial. Due to the absence of doubled propagators we have that for all a i = 1 yielding a = 5 and h = 2 due to being a two-loop graph. With D = 4 -2 , the integral in Eq. 9.2.1 then takes the following form,

I MI-3 = -e 2 γ E Γ (1 + 2 ) ∞ 0 dx 1 ∞ 0 dx 2 ∞ 0 dx 3 ∞ 0 dx 4 ∞ 0 dx 5 δ(1 -∆ H ) U -1+3 F -1-2 .
(9.2.59) As the integral MI-3 is finite, this can be a priori checked numerically with programs such as pySecDec or FIESTA, we can already expand out the integral up to the finite piece of ,

I MI-3 | 0 = - ∞ 0 dx 1 ∞ 0 dx 2 ∞ 0 dx 3 ∞ 0 dx 4 ∞ 0 dx 5 δ(1 -∆ H ) 1 UF . ( 9 

.2.60)

As it will be easier to integrate out linear variables rather then quadratic ones, we choose to set ∆ H = x 5 to eliminate one of the massive propagators. We then have that,

I MI-3 | 0 = - ∞ 0 dx 1 ∞ 0 dx 2 ∞ 0 dx 3 ∞ 0 dx 4 1 UF x 5 =1 . (9.2.61)
We can do the first integration with x 2 . In order to change the integration bounds from [0,∞] to [START_REF][END_REF]1] we can apply the Möbius transformation with x i = xi 1-x i with Jacobian J = 1

(1-x i ) 2 to obtain that,

I MI-3 | 0 = - ∞ 0 dx 1 ∞ 0 dx 3 ∞ 0 dx 4 1 0 dx 2 1 Ũ F , (9.2.62) 
where Ũ and F now contain the Jacobian and the new variable x2 . We can now attempt to construct the primitive with respect to x2 . As both terms F and Ũ are linear in x2 , we can directly perform partial fraction and following the definitions from Eq. 9.2.8 and Eq. 9.2.9 construct the integration kernels for x2 . We then obtain that,

I MI-3 | 0 = ∞ 0 dx 1 ∞ 0 dx 3 ∞ 0 dx 4 P 2 | x2 =1 -P 2 | x2 =0 , (9.2.63) 
where

P 2 = (t 1 + t 2 ) (x 1 + 2x 2 x 3 + x 3 x 4 )
with

t 1 = c 1 G (1 + x 3 ) (x 1 + x 4 ) -1 + x 3 (-1 + x 1 + x 4 ) ; x2 , t 2 = c 2 G x 1 + x 4 (1 + x 4 + x 3 x 4 ) -1 + x 1 + 4x 1 x 3 -x 4 + x 3 x 2 4 ; x2 , c 1 = x2 + x2 x 3 + x 1 (1 + x 3 -x2 x 3 ) + x 4 + x 3 x 4 -x2 x 3 x 4 -1 + x 3 (-1 + x 1 + x 4 ) c 2 = x 1 (-1 + x2 + 4x 2 x 3 ) -x 4 (1 + x 4 + x 3 x 4 ) + x2 (-1 -x 4 + x 3 x 2 4 ) -1 + x 1 + 4x 1 x 3 -x 4 + x 3 x 2 4 . (9.2.64)
As there are no poles when x2 → 0 and as the two MPLs above vanish in this limit, we just need to consider the upper limit x2 = 1 which is finite. We can then tackle the next integration which we choose to be x 3 . As before we perform the Möbius transformation with

x 3 = x3 1-x 3
and with the corresponding Jacobian we obtain that,

I MI-3 | 0 = ∞ 0 dx 1 ∞ 0 dx 4 1 0 dx 3 Ĩ3 (9.2.65) with, Ĩ3 = 1 (x 1 + x 1 x3 + x3 x 4 ) 2 c1 G 1 + x 4 -1 + x 1 x3 + x3 x 4 ; 1 + c2 G x 1 -x 1 x3 + x 4 (1 -x3 + x 4 ) -1 + x 1 + 3x 1 x3 -x 4 + x3 (1 + x 4 + x 2 4 ) ; 1 , (9.2.66)
where above the coefficients c1 and c2 can be derived from c 1 and c 2 by setting x2 = 1 and performing the Möbius transformation. We see that the denominator in both coefficients is linear in x3 which allows us to construct the integration kernel as before. We note that the global denominator factor in front of the brackets is overall quadratic however this does not create any issues as we have a linear x3 in a double pole rather than a quadratic x3 inside a simple pole.

Integrating out a double pole will simply yield a simple pole without introducing any squareroots so this does not create any issue. Before we can proceed with the next integration, we need to bring the integrand in canonical form. We see that from Eq. 9.2.8 that we can only perform the integration with respect to x3 when the argument of all MPLs present must contain only x3 . It cannot appear in any of these indices. Thus, we will need to fibrate both MPLs in the integrand. As these are both weight w = 1 objects, i.e. only one index, the procedure is straightforward here. The first step is to differentiate the non-canonical MPL with respect to x3 . Here we will make use of Eq. 9.2.11 and differentiate,

d dx 3 G 1 + x 4 -1 + x 1 x3 + x3 x 4 ; 1 = 1 x3 -(1+x 1 +x 4 ) (x1+x 4 ) , (9.2.67)
where the RHS is linear with respect to x3 in the denominator and thus a MPL kernel. Integrating back, we thus have the relation

G 1 + x 4 -1 + x 1 x3 + x3 x 4 ; 1 = G (1 + x 1 + x 4 ) (x 1 + x 4 ) ; x3 + c, (9.2.68) 
where c is a constant which does not depend on the integration variable x3 . All canonical MPLs have the property, that when there is at least one non-zero index, they vanish when x3 = 0, otherwise we would have logarithmic singularities as shown in Sec. 9.2.2. We can thus set x3 = 0 to obtain that, G (-1x 4 ; 1) = c. (9.2.69)

In the presence of branch cuts in the MPLs, it necessary to introduce additional constant terms.

In our case however this is not necessary. We can repeat the fibration for the second MPL and obtain,

G x 1 -x 1 x3 + x 4 (1 -x3 + x 4 ) -1 + x 1 + 3x 1 x3 -x 4 + x3 (1 + x 4 + x 2 4 ) ; 1 = G (1 + x 4 ) 2 4x 1 + (1 + x 4 ) 2 ; x3 -G x 1 + x 4 + x 2 4 x 1 + x 4 ; x3 + G x 1 + x 4 + x 2 4 -1 + x 1 -x 4 ; 1 . (9.2.70)
As the integrand is now in canonical form we are ready to perform the integration with respect to x3 and set the upper and lower limits. We will now choose x 1 as next integration variable as all denominators are linear in x 1 . We will perform the Möbius transformation and have that,

I MI-3 | 0 = ∞ 0 dx 4 1 0 dx 1 Ĩ1 , (9.2.71)
with Ĩ1 now containing MPLs up to weight w = 2, i.e. with two indices. As the expressions for Ĩ1 are now rather lengthy we do not give them here. All pre-coefficent of MPLs in x1 have kernels that are linear in x1 . Before performing the integration, we still need to bring all MPLs into the canonical form. We have already demonstrated it for weight w = 1 terms. However this time we also encounter weight w = 2 terms. We present an example below,

d dx 1 G (-1 + x1 ) (-x 1 -x 4 + x1 x 4 ) , (-1 -x 4 + x1 x 4 ) (-x 1 -x 4 + x1 x 4 ) ; 1 = 1 -x 4 + x 2 4 x1 -x 4 (-1+x 4 ) x1 -(1+x 4 ) x 4 G (-1 + x1 ) (-x 1 -x 4 + x1 x 4 ) ; 1 + 1 2 -3x 4 + x 2 4 x1 -(1-x 4 ) (2-x 4 ) x1 -x 4 (-1+x 4 ) G (-1 -x 4 + x1 x 4 ) (-x 1 -x 4 + x1 x 4 ) ; 1 . (9.2.72)
We see that above by differentiating an MPL of weight w = 2, we get a linear combination of weight w = 1 MPLs consistent with the fact that differentiating an MPL of weight w = n, one obtains term of weight w = n -1, i.e. number of integration has reduced by 1. So the procedure now consists in fibrating these weight w = 1 MPLs first,

G (-1 + x1 ) (-x 1 -x 4 + x1 x 4 ) ; 1 = G (1 -x 4 ) (2 -x 4 ) ; x1 -G (1; x1 ) + G 1 x 4 ; 1 , (9.2.73) G (-1 -x 4 + x1 x 4 ) (-x 1 -x 4 + x1 x 4 ) ; 1 = G (1; x1 ) -G 1 + x 4 x 4 ; x1 + G 1 + x 4 x 4 ; 1 . (9.2.74)
With these fibrations we are now in a position to express,

G (-1 + x1 ) (-x 1 -x 4 + x1 x 4 ) , (-1 -x 4 + x1 x 4 ) (-x 1 -x 4 + x1 x 4 ) ; 1 = G 1 x 4 ; 1 G x 4 -1 + x 4 ; x1 + G 1 -x 4 2 -x 4 ; x1 G 1 + x 4 x 4 ; 1 -G x 4 -1 + x 4 ; x1 G 1 + x 4 x 4 ; 1 -G 1 x 4 ; 1 G 1 + x 4 x 4 ; x1 + G 1 -x 4 2 -x 4 , 1; x1 -G 1 -x 4 2 -x 4 , 1 + x 4 x 4 ; x1 + G 1 x 4 , 1 + x 4 x 4 ; 1 -2 G x 4 -1 + x 4 , 1; x1 + G x 4 -1 + x 4 , 1 -x 4 2 -x 4 ; x1 + G x 4 -1 + x 4 , 1 + x 4 x 4 ; x1 + G 1 + x 4 x 4 , 1; x1 -G 1 + x 4 x 4 , 1 -x 4 2 -x 4 ; x1 . (9.2.75)
The very same principle applies to MPLs of weight w = 3 and higher, however the number of terms increases with the weight w. We note that when fibrating an MPL of weight w = n, all resulting terms will have the same weight w = n corresponding to the number of indices. Bringing all MPLs into the canonical form, we can perform the integration with respect to x1 and are left with the last integration.

At this stage we wish to introduce the concept of linear reducibility. Up to the next to last integration we have been able to perform the integrations using MPLs kernels. This was only possible because the kernels of the integrand were linear in the integration variable. In addition, the kernels when performing the fibration of the polylogarithm were linear in the integration variable as well. This has allowed us to use the MPL kernels so far. As what concerns the last integration, this criterion is now essentially immaterial. In order to illustrate this, let's suppose we would have to perform the last integation of the following integrand with respect to a variable z that appears now quadratically as,

I ex = 1 0 dz 1 z 2 + 2z -1 G (2, 1, 3; z), (9.2.76)
We can solve extract the zeroes from the quadratic polynomial z 2 + 2z -1 and obtain that,

I ex = 1 0 dz 1 z --1 - √ 2 z --1 + √ 2 G (2, 1, 3; z). (9.2.77)
We see that above, in order to linearise the kernels we had to introduce square-roots such as √ 2. Similarly, for a cubic or a polynomial of degree n, one may have to introduce roots of higher degree. We are now in a position to perform the integration and we obtain,

I ex = 1 2 √ 2 G -1 + √ 2, 2, 1, 3; z -G -1 - √ 2, 2, 1, 3; z . (9.2.78)
Going back to our integral MI-3, our particular choice of integration order (x 5 eliminated with Cheng-Wu, x 2 , x 3 , x 1 , x 4 ) allowed us to write and express kernels linearly in these integration variables without having to introduce any square-roots up to the next-to-last integration. If an integral is linearly reducible as above, the integral can be expressed in terms of functions in the class of multiple polylogarithms. In order to understand our strategy, we recap the steps. For MI-3 we have first eliminated one of the massive propagators (edges) which scaled quadratically in the polynomial and then integrated out all massless propagators that were linear. Finally we have performed the last integration over the second massive propagator. Had we for example chosen another Cheng-Wu delta function to eliminate one of the massless edges first and then tried to integrate a massive edge, our strategy would have failed as after this integration all remaining variables would have been under square-root. We will see an application of this later in Sec. 9.2.5. In general, the choice of Cheng-Wu and the order of the integration in order for the procedure to succeed is not always trivial. After performing the last integration, the final result for the finite piece of MI-3 reads,

I MI-3 | 0 = - iπ 3 6 - 2 3 π 2 log 2 + 3 2 ζ 3 . (9.2.79)
Now in order to compute the result for order , we will have to go back to Eq. 9.2.59 and expand up to one order higher in and we obtain,

I MI-3 | 1 = ∞ 0 dx 1 ∞ 0 dx 2 ∞ 0 dx 3 ∞ 0 dx 4 ∞ 0 dx 5 δ(1 -∆ H ) 2 log F -3 log U UF , = - iπ 3 3 - 11π 4 72 - 4 3 π 2 log (2) + 2 3 iπ 3 log (2) + 4 3 log 4 (2) + 32 Li 4 1 2 + 3ζ 3 -7iπζ 3 + 14 log (2)ζ 3 . (9.2.80)
We note that the maximal weight of the functions that appear in I MI-3 | 0 is weight w = 3, while the maximal weight for I MI-3 | 1 is w = 4. This increase in the weight can be easily explained with the appearance of the weight w = 1 terms log U and log F in the expansion above. Thus for order 2 one would expect to include functions of weight w = 5.

In order to perform some of the steps above, we have made use of the Mathematica package PolyLogTools by C. Duhr and F. Dulat [START_REF] Duhr | PolyLogTools -polylogs for the masses[END_REF] which has implemented the MPLs features presented in Sec. 9.2.2. PolyLogTools also allows to build an interface with the GiNaC platform [START_REF] Bauer | Introduction to the GiNaC framework for symbolic computation within the C++ programming language[END_REF] for high-precision numerical evaluations of MPLs and checks. It presents an algorithm to fibrate the integrand to the canonical form. Rather than differentiating and integrating back as we presented above, this algorithm is based on the Hopf algebra and co-product approach. The reader is invited to consult Ref. [START_REF] Duhr | Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes[END_REF] for an introduction into this topic. We mention in passing also the HPL package by D. Maître [START_REF] Maitre | HPL, a mathematica implementation of the harmonic polylogarithms[END_REF] which has implemented some of features for the harmonic polylogarithms that are a subset of the multiple polylogarithms. There exist algorithms and implementations to test whether an integral is linearly reducible. These algorithm are based on considerations in the compatibility graph method [START_REF] Brown | The Massless higher-loop two-point function[END_REF][START_REF] Brown | On the periods of some Feynman integrals[END_REF] and have been implemented in Maple packages such as MPL by C. Bogner [START_REF] Bogner | MPL-A program for computations with iterated integrals on moduli spaces of curves of genus zero[END_REF] and HyperInt by E. Panzer [START_REF] Panzer | Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals[END_REF]. As there is the freedom of the Cheng-Wu delta function, the algorithm does not always succeed and the user is left to find the order of integration manually with a suitable Cheng-Wu function. With the HyperInt package the user is able to perform the integration of each variable automatically by specifying the integration bounds. However situations can arise where the integration is not performed and the user is left to do it manually.

We now consider one of the parent integrals in Topology 8. MI-64 shown in Fig. 9.1b is to the best of our knowledge unknown in the literature. We have computed it for the first time with the method of direct integration. Following the propagator numbering, the two Symanzik polynomials take the following form,

U =x 1 x 4 + x 2 x 4 + x 3 x 4 + x 1 x 5 + x 2 x 5 + x 3 x 5 + x 4 x 5 + x 1 x 6 + x 2 x 6 + x 3 x 6 + x 5 x 6 , (9.2.81) F = m 2 µ 2 [x 3 (2x 1 + x 3 ) (x 4 + x 5 ) + 2x 1 (x 3 + x 5 ) x 6 + x 3 (x 3 + 2x 5 ) x 6 + (x 1 + x 3 + x 5 ) x 2 6 + x 2 2 (x 4 + x 5 + x 6 ) + x 2 2x 4 x 5 + 2x 5 x 6 + x 2 6 + 2x 3 (x 4 + x 5 + x 6 ) (9.2.82)
The Feynman integral in the parametric representation reads, MI-64 = e 2 γ E Γ(2 + 2 )

6 i=1 ∞ 0 dx i δ(1 -∆ H ) U 3 F -2-2 . ( 9 

.2.83)

We can now eliminate one of the massive propagators with ∆ H = x 3 . As the integral is finite, we can expand the expression above to the finite piece. We are able to find a linearly reducible order and can therefore successfully perform the integration with help of HyperInt and PolyLogTools,

MI-64| 0 = 6 i=1 ∞ 0 dx i 1 F 2 . = - π 4 96 - 5 64 π 3 G (0; 2) + 2C G (0, 0; 2) - 9 8 π G (0, 0, 0; 2) -3i G (0; 2) G 0, 0, 1; 1 2 - i 2 + 3i G (0; 2) G 0, 0, 1; 1 2 + i 2 + i 4 (G (0, -1, -1, -1; i) + G (0, -1, -1, 1; i) -G (0, -1, 1, -1; i) -G (0, -1, 1, 1; i) + G (0, 1, -1, -1; i) + G (0, 1, -1, 1; i) -G (0, 1, 1, -1; i) -G (0, 1, 1, 1; i)) + 7 3072 ψ 3 1 4 - 1 1024 ψ 3 3 4 + 7 32 πζ 3 , (9.2.84)
where above C is the Catalan constant and ψ 3 1 4 , ψ 3 3 4 are the polygamma functions defined as ψ m (z) = d m+1 dz m+1 log (Γ(z)) with Γ(z) being the gamma function.

Elliptic linear reducibility

In the previous sections, we have seen that massive propagators appear quadratically in the polynomials while massless ones appear linearly. For MI-3, our strategy to find a linearly reducible integration order was based on eliminating one of the quadratic variables via the Cheng-Wu delta function and leaving the second quadratic variable up to the last integration. The more massive edges (propagators) an integral has, the more difficult it becomes to find a linearly reducible integration order. As an example, we will consider the massive sunrise MI-39 with three propagators and where the external leg has off-shell mass -m 2 . For simplicity of the argument we compute MI-39 in D = 2-2 . The Symanzik polynomials are independent of D and take the following form,

U = x 1 x 2 + x 2 x 3 + x 3 x 1 , (9.2.85) F = m 2 µ 2 [x 1 x 2 x 3 + (x 1 x 2 + x 2 x 3 + x 3 x 1 ) (x 1 + x 2 + x 3 )] . (9.2.86)
The integral is finite in D = 2 -2 and we have that,

I MI-39 2-2 = -e 2 γ E Γ (1 + 2 ) ∞ 0 dx 1 ∞ 0 dx 2 ∞ 0 dx 3 δ(1 -∆ H ) U 3 F -1-2 . (9.2.87)
We can eliminate one of the integration variables with the Cheng-Wu and we choose x 1 and after expansion the finite piece reads,

I MI-39 2-2 | 0 = - ∞ 0 dx 2 ∞ 0 dx 3 1 F x 1 =1 . = - ∞ 0 dx 2 ∞ 0 dx 3 1 x 2 + x 2 2 + x 3 + 4x 2 x 3 + x 2 2 x 3 + x 2 3 + x 2 x 2 3 . (9.2.88)
We note that the polynomial is symmetric with respect to x 2 and x 3 and both integration variables appear quadratically in the denominator. At this stage there is no way to linearise it without the introduction of square-roots. We now perform the Möbius transformation for both x 2 and x 3 and choose x 2 as next integration variable,

I MI-39 2-2 | 0 = 1 0 dx 3 1 0 dx 2 -1 x2 + x3 + 2x 2 2 (-1 + x3 )x 3 -2x 2 x2 3 , = 1 0 dx 3 1 0 dx 2 1 2x 3 (1 -x3 ) 1 (x 2 -A) (x 2 -B) , (9.2 

.89)

with,

A = -1 + 2x 2 3 -P4 4 x2 3 -x3 , B = -1 + 2x 2 3 + P4 4 x2 3 -x3 , P4 = 1 + 4x 2 3 -8x 3 3 + 4x 4 3 . (9.2.90)
With this linearisation of the kernels we can now integrate with respect to x2 and set the limits [0,1],

I MI-39 2-2 | 0 = 1 0 dx 3 1 P4 (G (A; 1) -G (B; 1)) . ( 9 

.2.91)

Before we can start with the last integration, a few remarks are in order. We have managed to integrate with respect to x2 via linearising the denominator at the expense of introducing some square-roots. We have shown in the last section that when the square-root contains mere constants, the functions can be casted in terms of MPLs as in Eq. 9.2.3. However in the situation here, the square-roots depend on the last integration variable x3 . We study now the polynomial P4 . If the polynomial is either linear or quadratic in the variable under the square-root, this can be rationalised via a variable transformation and we would be able to express everything in terms of MPLs only. We will present an explicit example to this in a later section. However the polynomial P4 is quartic in x3 such that a rationalisation is impossible. We are thus led to introduce the functions of the class of the elliptic multiple polylogarithms that we have introduced in Sec. 9.2.3. We first need to establish the roots of the polynomial P4 ,

r 1 = 1 2 1 - √ 1 -2i , r 2 = 1 2 1 + √ 1 -2i , r 3 = 1 2 1 - √ 1 + 2i , r 4 = 1 2 1 + √ 1 + 2i . (9.2.92)
These are the roots of the elliptic sunrise curve as shown in Eq. 9.2.47 and we employ the ordering according to Eq. 9.2.49. We can normalise the polynomial P4 towards the highest power in x3 and we define

P 4 = P4 4 = 1 4 + x2 3 -2x 3 3 + x4 3 , y = P 4 . (9.2.93)
We then have that

I MI-39 2-2 | 0 = 1 0 dx 3 1 2y (G (A; 1) -G (B; 1)) , (9.2.94)
where from Eq. 9.2.53 we see that the integration kernel above is 1 c 4 ψ 0 (0, x3 ) with c 4 = 5 1/4 2 for the elliptic curve here. However before we need to fibrate the integrand and bring these into the canonical form. As both MPLs contain the quartic polynomial under the square-root, we anticipate that both will evaluate to linear combinations of eMPLs. As shown in the previous Sec 9.2.4, we will proceed with the same strategy of differentiating and integrating back,

d dx 3 G (A; 1) = 1 2 (x 3 -1) - 1 2x 3 - 1 2y + 1 4 (x 3 -1) y + 1 4x 3 y + x3 y . (9.2.95)
Using Eq. 9.2.53, we are in a position to associate each term to a kernel in the class of the eMPLs and we obtain that,

G (A; 1) = 1 2 G (1; x3 ) - 1 2 G (0; x3 ) - 1 5 1/4 E 4 ( 0 0 ; x3 , q r ) + 1 4y 1 E 4 -1 1 ; x3 , q r + 1 4y 0 E 4 -1 0 ; x3 , q r + 1 4y 0 G (0; x3 ) + E 4 ( -1 ∞ ; x3 , q r ), (9.2.96) 
where above q r are the roots of the sunrise elliptic curve, and with y c = P 4 (c) we have that y 0 = 1 2 and y 1 = 1 2 . We remark here that in order to express the term 1 4x 3 y above in terms of the elliptic kernels due to the δ c0 becoming active in Eq. 9.2.53 we have that,

1 x3 y = 1 y c (ψ -1 (0, x3 ) + ψ 1 (0, x3 )) . (9.2.97)
The goal of this special case is to regularise all elliptic kernels such that all singularities are purely logarithmic. Now fibrating the second G term,

G (B; 1) = 1 2 G (1; x3 ) - 1 2 G (0; x3 ) + 1 5 1/4 E 4 ( 0 0 ; x3 , q r ) - 1 4y 1 E 4 -1 1 ; x3 , q r - 1 4y 0 E 4 -1 0 ; x3 , q r - 1 4y 0 G (0; x3 ) -E 4 ( -1 ∞ ; x3 , q r ), (9.2.98) 
we can now plug everything into Eq. 9.2.94,

I MI-39 2-2 | 0 = 1 0 dx 3 2 5 1/4 ψ 0 (0, x3 ) - 1 5 1/4 E 4 ( 0 0 ; x3 , q r ) + 1 2 E 4 - 1 
1 ; x3 , q r + 1 2 E 4 -1 0 ; x3 , q r + 1 2 G (0; x3 ) + E 4 ( -1 ∞ ; x3 , q r ) . (9.2.99)
Performing the last integration and setting the limits, we now obtain,

I MI-39 2-2 | 0 = - 2 √ 5 E 4 ( 0 0 0 0 ; 1, q r ) + 1 5 1/4 E 4 0 -1 0 1 ; 1, q r + 1 5 1/4 E 4 0 -1 0 0 ; 1, q r + 1 5 1/4 E 4 ( 0 1 0 0 ; 1, q r ) + 2 5 1/4 E 4 0 -1 0 ∞ ; 1, q r . (9.2.100)
The key difference to the non-elliptic case in Sec.9.2.4 was that the kernels were linearly reducible only up to the next-to-last integration this time. The last integration involved quartic roots in the variable x3 and as such was not expressible in terms of ordinary polylogarithmic kernels. We had to resort to the elliptic polylogarithmic kernels. In the previous section, we called an integral linearly reducible if up to the last integration one is able to linearise all kernels without introducing square-roots. In accord with Ref. [START_REF] Hidding | All orders structure and efficient computation of linearly reducible elliptic Feynman integrals[END_REF], we define an integral to be elliptic linearly reducible if the integral is linearly reducible up to the next-to-last integration and the elliptics are introduced only in the last integration.

In a similar fashion one can compute the sunrise for higher orders in . Below we give the analytic expression at order ,

I MI-39 2-2 | 1 = ∞ 0 dx 2 ∞ 0 dx 3 2 log F -3 log U F x 1 =1 , = π 2 6 1 5 1/4 E 4 ( 0 0 ; 1, q r ) - 2 5 1/4 E 4 0 -1 1 0 0 0 ; 1, q r - 2 5 1/4 E 4 0 -1 1 0 0 1 ; 1, q r - 2 5 1/4 E 4 0 -1 1 0 1 0 ; 1, q r - 2 5 1/4 E 4 0 -1 1 0 1 1 ; 1, q r + 2 5 1/4 E 4 0 -1 1 0 ∞ 0 ; 1, q r + 2 5 1/4 E 4 0 -1 1 0 ∞ 1 ; 1, q r - 2 √ 5 E 4 ( 0 0 1 0 0 0 ; 1, q r ) - 2 √ 5 E 4 ( 0 0 1 0 0 1 ; 1, q r ) + 3 5 1/4 E 4 0 1 -1 0 0 0 ; 1, q r + 3 5 1/4 E 4 0 1 -1 0 0 1 ; 1, q r + 6 5 1/4 E 4 0 1 -1 0 0 ∞ ; 1, q r - 6 √ 5 E 4 ( 0 1 0 0 0 0 ; 1, q r ) + 1 5 1/4 E 4 ( 0 1 1 0 0 0 ; 1, q r ) - 2 5 1/4 E 4 ( 0 1 1 0 0 1 ; 1, q r ) + 3 5 1/4 E 4 0 1 -1 0 1 0 ; 1, q r + 3 5 1/4 E 4 0 1 -1 0 1 1 ; 1, q r + 6 5 1/4 E 4 0 1 -1 0 1 ∞ ; 1, q r - 6 √ 5 E 4 ( 0 1 0 0 1 0 ; 1, q r ) + 3 5 1/4 E 4 ( 0 1 1 0 1 0 ; 1, q r ) + 4 i=1 - 2 5 1/4 E 4 0 1 -1 0 q i r 0 ; 1, q r - 2 5 1/4 E 4 0 1 -1 0 q i r 1 ; 1, q r - 4 5 1/4 E 4 0 1 -1 0 q i r ∞ ; 1, q r + 4 √ 5 E 4 0 1 0 0 q i r 0 ; 1, q r - 2 5 1/4 E 4 0 1 1 0 q i r 0 ; 1, q r , (9.2.101)
where in the last two lines we are summing over all four roots of the elliptic sunrise curve. We note that above we have computed the elliptic sunrise in D = 2 -2 rather than D = 4 -2 .

We will see later the motivation for this in the next section.

The elliptic sunrise appears in Topologies 3, 4 and 6 and as such all integrals that contain the sunrise as sub-topology are elliptic. We have shown the computation above for the first sunrise. In fact, there is a second sunrise MI-41 that topologically is identically to the first one except for a doubled propagator this time. An example concerning the computation for the second sunrise can be found in Ref. [START_REF] Broedel | Elliptic polylogarithms and iterated integrals on elliptic curves II: an application to the sunrise integral[END_REF].

All of the elliptic integrals that appeared in Topology 4 including the two parent integrals and several in Topology 3 were elliptic linearly reducible. We have therefore performed the integration up to the third-last integration via HyperInt whereever possible. The result up to the third-last integration contained only the MPLs with the last two integration variables remaining. The next-to-last integration we have performed manually and in the procedure of linearising the kernels with respect to the integration variable we have introduced the quartic roots. The last integration then contained all the square-roots in the last variable and thus we had to fibrate the integrand to functions of the elliptic polylogarithms.

We will present additional examples involving elliptic integrals among our list of master integrals including examples that are not straightforwardly elliptic linearly reducible. We mention here in passing, that currently there are no public packages able to deal with elliptic integrals. There are however private implementations such as EllipticPolyLogTools by C. Duhr 1 . With additional private codes based on this package, we have computed all elliptic integrals analytically.

Quasi-finite bases

As is known, Feynman integrals at h-loops can have poles at most -2h , where each loop can contribute with UV-poles of type -1 and IR-poles at most -2 . However these pole structures may not be imminent in the parametric representation of Feynman integrals in Eq. 9.2.1. As we mentioned back, the only obvious immediate factor that could introduce poles in is the gamma function Γ(d u ) where d u = ah D 2 was the superficial degree of divergence. However the maximal pole structure of that this gamma function can produce is a simple pole -1 . Thus the remaining poles structures must be encoded in the two Symanzik polynomials U and F. Their extraction is the purpose of the sector-decomposition methods as introduced in Ref. [START_REF] Hepp | Proof of the Bogolyubov-Parasiuk theorem on renormalization[END_REF][START_REF] Binoth | An automatized algorithm to compute infrared divergent multiloop integrals[END_REF][START_REF] Binoth | Numerical evaluation of multiloop integrals by sector decomposition[END_REF][START_REF] Binoth | Numerical evaluation of phase space integrals by sector decomposition[END_REF][START_REF] Bogner | Resolution of singularities for multi-loop integrals[END_REF]. These methods have been implemented in numerical programs such as sector_decomposition [START_REF] Bogner | Resolution of singularities for multi-loop integrals[END_REF][START_REF] Bogner | Blowing up Feynman integrals[END_REF], pySecDec [START_REF] Carter | SecDec: A general program for sector decomposition[END_REF][START_REF] Borowka | Numerical Evaluation of Multi-Loop Integrals for Arbitrary Kinematics with SecDec 2.0[END_REF][START_REF] Borowka | SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop[END_REF][START_REF] Borowka | pySecDec: a toolbox for the numerical evaluation of multi-scale integrals[END_REF] and FIESTA [START_REF] Smirnov | Feynman Integral Evaluation by a Sector decomposiTion Approach (FIESTA)[END_REF][START_REF] Smirnov | FIESTA 2: Parallelizeable multiloop numerical calculations[END_REF][START_REF] Smirnov | FIESTA 3: cluster-parallelizable multiloop numerical calculations in physical regions[END_REF][START_REF] Smirnov | FIESTA4: Optimized Feynman integral calculations with GPU support[END_REF]. The gamma function with the superficial degree of divergence d u can in fact only produce global UV-singularities. In multi-loop integrals, UV sub-singularities can arise from the U polynomial. IR-poles on the other hand are incorporated primarily in the F polynomial.

As the extraction of the pole structure is rather complex, in order to compute Feynman integrals efficiently in the parametric representation one resorts to the so-called quasi-finite bases. An introduction to this can be found in Ref. [START_REF] Manteuffel | A quasi-finite basis for multi-loop Feynman integrals[END_REF]. In order to compute Feynman integrals via the method of direct integration, it is necessary that both polynomials U and F are free of singularities. The integrals can only have at most a UV-pole -1 originating from the gamma function. In order to compute master integrals with either IR-pole structure or UV sub-singularity structure originating from the U polynomial, we can follow two approaches. We can compute these integrals either via (1) dimensional shift or (2) dotted propagators.

The concept of dimensional shift was introduced by O.V. Tarasov in Ref. [START_REF] Tarasov | Connection between Feynman integrals having different values of the space-time dimension[END_REF][START_REF] Tarasov | A New approach to the momentum expansion of multiloop Feynman diagrams[END_REF] that relates D-dimensional Feynman integrals to ones shifted by even number of dimensions such as at D ± 2n with n being a positive integer. Similar to the strategy of the Integration-By-Parts method introduced in Sec. 6.3, these dimensional shift relations are based on recurrence relations with respect to the dimension D this time. The derivation is based on the parametric representation of the Feynman integral. Further work in this direction was done by R. Lee in Ref. [START_REF] Lee | Space-time dimensionality D as complex variable: Calculating loop integrals using dimensional recurrence relation and analytical properties with respect to D[END_REF][START_REF] Lee | Calculating multiloop integrals using dimensional recurrence relation and D-analyticity[END_REF] and implemented in the package LiteRed [START_REF] Lee | Presenting LiteRed: a tool for the Loop InTEgrals REDuction[END_REF][START_REF] Lee | LiteRed 1.4: a powerful tool for reduction of multiloop integrals[END_REF]. We now present an example of our master integral where we have applied the dimensional shift. We point out at this stage that it was essentially impossible to compute the parent integrals of T1 and T2 numerically with either pySecDec or FIESTA. This was primarily for two reasons, first the pole structure for both integrals started at order -4 and thus the compu-tation of the finite piece proved to be impossible as each higher order takes longer than the computation of the previous order by the same factor. Secondly, the numerical evaluation is most critical at threshold ŝ = 4m 2 . Parent integral MI-1 has been computed for general kinematics in Ref. [START_REF] Bonciani | Two-Loop Planar Corrections to Heavy-Quark Pair Production in the Quark-Antiquark Channel[END_REF]. In order to validate this result, we have computed MI-1 in D = 6 -2 . The double-box integral is finite in this dimension. Making use of the dimensional recurrence relation provided by LiteRed, we have the following relation between the master integrals in

D = 6 -2 and D = 4 -2 , MI-1| 4-2 = - 6 -5D + D 2 16m 4 MI-1| 6-2 - (-2 + D) 3 128m 10 (-4 + D) (-3 + D) 2 MI-13| 4-2 + 208 -166D + 41D 2 -3D 3 128m 8 (-4 + D) (-3 + D) (-7 + 2D) MI-10| 4-2 + 242 -149D + 23D 2 32m 6 (-4 + D) 2 MI-7| 4-2 + 38 -28D + 5D 2 32m 6 (-4 + D) 2 MI-6| 4-2 + -112 + 130D -49D 2 + 6D 3 64m 8 (-4 + D)(-3 + D)(-10 + 3D) MI-11| 4-2 + -2208 + 2126D -679D 2 + 72D 3 96m 6 (-4 + D) 2 (-3 + D) 2 MI-12| 4-2 - 1 2m 2 (-4 + D) (-3 + D)) MI-2| 4-2 - 1 4m 4 MI-3| 4-2 + 2672 -3474D + 1695D 2 -368D 3 + 30D 4 64m 8 (-4 + D) 3 (-3 + D) MI-8| 4-2 (9.2.102)
From the precoefficient we see that in order to compute MI-1| 4-2 up to the finite piece, we only need compute the finite piece of MI-1| 6-2 via direct integration. We construct the U and F polynomials,

U =x 1 x 3 + x 2 x 3 + x 1 x 4 + x 2 x 4 + x 1 x 5 + x 2 x 5 + x 3 x 5 + x 4 x 5 + x 1 x 6 + x 2 x 6 + x 5 x 6 + x 3 x 7 + x 4 x 7 + x 5 x 7 + x 6 x 7 (9.2.103) F = m 2 µ 2 [x 6 (2x 3 x 5 + 2x 2 (x 3 + x 5 ) + (x 2 + x 5 ) x 6 ) + x 1 (-4x 4 x 5 + x 6 (2x 3 + x 6 )) + 2x 3 x 5 + 2 (x 3 + x 5 ) x 6 + x 2 6 + 2x 2 (x 3 + x 4 + x 5 + x 6 ) x 7 + (x 3 + x 4 + x 5 + x 6 ) x 2 7 , (9.2.104)
where the numeration of the variables follows the numeration of the propagators in Fig. 8.1a. We see that both x 6 and x 7 are quadratic, thus we choose to eliminate one of them with ∆ H = x 7 and expanding the integrand in we have that,

MI-1| 6-2 0 = ∞ 0 dx 1 ∞ 0 dx 2 ∞ 0 dx 3 ∞ 0 dx 4 ∞ 0 dx 5 ∞ 0 dx 6 -1 U 2 F x 7 =1 , = -iπ - π 2 12 + iπ 3 3 - 131π 4 720 + 2 G (0; 2) + 11 12 π 2 G (0; 2) - π 2 12 G (0; 2) G (0; 3) - π 2 12 G (-1, -2; 1) - π 2 12 G -1, - 1 
2 ; 1 - π 2 12 G (0, -2; 1) + π 2 6 G 0, - 1 2 
; 1

- 25 24 π 2 G (0, 0; 2) + 1 2 G (-2, -1, 0, 1; 1) + 1 2 G (-2, 0, -1, 1; 1) + G (-2, 0, 0, 1; 1) + 1 2 G - 1 2 , -1, 0, 1; 1 + 1 2 G - 1 2 , 0, -1, 1; 1 -2 G - 1 2 , 0, 0, 1; 1 + 1 2 G (0, -2, -1, 1; 1) + 1 2 G (0, -2, 0, 1; 1) + 1 2 G 0, - 1 2 , -1, 1; 1 -G 0, - 1 2 , 0, 1; 1 + G 0, 0, 0, - 1 
2 ; 1 + 1 2 G (0, 1, 0, -2; 1) - 1 2 G (0, 0, -1, -2; 1) - 1 2 G 0, 0, -1, - 1 2 
; 1 -1 2 G (0, 0, 0, -2; 1) As we have the analytic expressions to all the integrals on the RHS of Eq. 9.2.102, we are in a position to compute MI-1 in D = 4 -2 . Checking the result obtained this way and comparing it with the one from Ref. [START_REF] Bonciani | Two-Loop Planar Corrections to Heavy-Quark Pair Production in the Quark-Antiquark Channel[END_REF] we find full agreement. In a similar fashion we have computed the parent integral MI-14 from T2 and checked numerically versus the one obtained by Ref. [START_REF] Becchetti | Master Integrals for the two-loop, non-planar QCD corrections to top-quark pair production in the quark-annihilation channel[END_REF]. As we already mentioned, the analytical expression from Ref. [START_REF] Becchetti | Master Integrals for the two-loop, non-planar QCD corrections to top-quark pair production in the quark-annihilation channel[END_REF] was rather inconvenient as it involved denominators type ŝ -4m 2 and thus one would have to perform a proper expansion of all multiple polylogarithm around this point. We have therefore kept the result we have computed via direct integration and dimensional shift as the analytic form was more convenient. Numerically both results agreed to very high precision.

+ 11 G (0, 0, 0, 0; 2) + 1 2 G (0, 1, -1, -2; 1) + 1 2 G 0, 1, -1, - 1 2 ; 1 
-G 0, 1, 0, - 1 2 
Let's consider another example of master integral that is divergent and thus needs to be computed via a quasi-finite base. We have computed MI-66 in D = 6 -2 and in addition placed a dot on the diagonal propagator as in Fig. 9.3a. We define the two Symanzik polynomials as,

U = x 1 x 3 + x 2 x 3 + x 1 x 4 + x 2 x 4 + x 3 x 4 + x 1 x 5 + x 2 x 5 + x 3 x 5 , (9.2.106) F = m 2 µ 2 x 2 1 (x 3 + x 4 + x 5 ) + 2x 1 (x 3 x 4 + x 2 (x 3 + x 4 + x 5 )) + x 2 (2x 3 x 5 + x 2 (x 3 + x 4 + x 5 )) . (9.2.107)
As we have taken the propagator corresponding to x 3 to doubled power, this will appear in the numerator according to Eq. 9.2.1,

MI-66 (dotted)| 6-2 = 5 i=1 ∞ 0 dx i δ(1 -∆ H ) e 2 γ E Γ(2 ) x 3 U -3+3 F -2 . (9.2.108)
We see that above the Γ(2 ) will produce a global UV singularity pole -1 in agreement with the numerical result obtained by pySecDec. We can eliminate one of the massive edges and we choose ∆ H = x 1 . In order to compute MI-66 in D = 4 -2 , we rely on the dimensional recurrence relation and IBP identities by LiteRed,

MI-66| 4-2 = 1 m 2 (D -3) (D -2) (D -4) MI-66 (dotted)| 6-2 + 1 4m 4 MI-11| 4-2 - 1 2m 2 (D -3) MI-12| 4-2 - 1 4m 4 MI-10| 4-2 .
(9.2.109)

From above, due to the pole D -4 we conclude that in order to compute MI-66| Plugging this expression along with the other master integrals in Eq. 9.2.109 we obtain a compact expression for MI-66| Feynman integrals that contain bubble subgraphs such as MI-36 usually exhibit UVsingularities in D = 4 -2 . If these pole structures are not encoded in the global gamma function, a possible solution would be to place dots on one of the propagators forming the bubble as in Fig. 9.3b. This renders the Feynman integrals finite. The careful reader may have noticed that MI-66 contains two triangles which may each yield UV-singularities in D = 6 -2 in analogy with bubbles yielding UV-singularities in D = 4 -2 . Placing a dot on the diagonal will encode a global UV-singularity in the gamma factor and remove potential double poles. The integral MI-36 contains the elliptic sunrise as subtopology and is thus expressible in terms of elliptic polylogarithms. As elliptic integrals usually have lengthy expressions, we refrain from giving the result here.

Elliptic next-to-linear reducibility

All the integrals we have considered so far were either linearly reducible and expressible in terms of MPLs or elliptic linearly reducible and expressible in terms of eMPLs. The integrals that had less than 3 massive propagators were all linearly reducible. The remaining set of the integrals had at most 4 massive propagators and were elliptic only if the elliptic sunrise was present as sub-topology. The only exception to this were the parent integrals of T5 that had a distinct elliptic curve. We remind the reader that each massive propagator brings a quadratic variable in the polynomial thus finding a (elliptic) linearly reducible integration order gets more difficult as the number of massive propagators increases.

In Topology 3, there are 4 integrals that have 5 massive propagators, the parent integral MI-23 and the children integrals MI-26, MI-27 and MI-32. These integrals were not elliptic linear reducible. Despite all attempts with different Cheng-Wu delta functions, the integral was not linearly reducible anymore already at the third-last-integration rather than the second-last one in the case of elliptic linear reducibility. The implication of introducing square-roots already at the third-last integration are far reaching, the functions are no longer expressible in terms of elliptic kernels but one would have to resort to hyper-elliptic kernels, that is to say functions that admit several different elliptic curves at the same time. As this exceeds the current state of art, a computation here seems impossible with the current methods. However as we shall see in the next paragraphs there is a way out to compute these integrals via means of rationalisation of the square-roots. We call such integrals elliptic next-to-linearly reducible. For the parent integral MI-23 of Topology 3, we will encounter additional complications and thus we will present a detailed treatment to the parent integral in the next section.

Out of the three integrals, we take MI-26 as an illustrative example. We start first with the construction of the Symanzik polynomials with the variables following the edges as labelled in Fig. 9.4a,

U =x 1 x 3 + x 2 x 3 + x 1 x 4 + x 2 x 4 + x 3 x 4 + x 1 x 5 + x 2 x 5 + x 3 x 5 + x 3 x 6 + x 4 x 6 + x 5 x 6 , (9.2.112) F = m 2 µ 2 x 2 1 (x 3 + x 4 + x 5 ) + x 2 2 (x 3 + x 4 + x 5 ) + x 1 x 2 3 + (x 4 + x 5 ) 2 + 2x 2 (x 3 + x 4 + x 5 ) +2x 3 (2x 4 + x 5 )) + (x 3 + x 4 + x 5 ) ((x 4 + x 5 ) x 6 + x 3 (x 4 + x 5 + x 6 )) +x 2 x 2 3 + 2x 3 (x 4 + 2x 5 + x 6 ) + (x 4 + x 5 ) (x 4 + x 5 + 2x 6 ) . (9.2.113)
Now fibrating the MPL with respect to x2 and fixing the constant term we have that,

G 0; z1 z2 = G 0; x 1 + x 2 1 -(-1 + x 3 ) x 3 x 2 1 -(-1 + x 3 ) x 3 + x 1 1 + 2x 3 -2x 2 3 + G (A 1 ; x2 ) + G (B 1 ; x2 ) -G (A 2 ; x2 ) -G (B 2 ; x2 ), (9.2 

.117)

where

A 1 = -1 + 2x 2 1 - √ p 1 2 -x 1 + x 2 1 -x 3 + x 2 3 , A 2 = p 3 - √ p 2 2 -x 1 + x 2 1 + x 3 + 2x 1 x 3 -x 2 3 -2x 1 x 2 3 , B 1 = -1 + 2x 2 1 + √ p 1 2 -x 1 + x 2 1 -x 3 + x 2 3 , B 2 = p 3 + √ p 2 2 -x 1 + x 2 1 + x 3 + 2x 1 x 3 -x 2 3 -2x 1 x 2 3 , p 1 = 1 + 8x 1 x 3 + 4x 2 3 -8x 1 x 2 3 -8x 3 3 + 4x 4 3 , p 2 = 1 -4x 3 -8x 1 x 3 + 4x 2 3 + 8x 1 x 2 3 , p 3 = -1 + 2x 2 1 + 2x 3 + 4x 1 x 3 -2x 2 3 -4x 1 x 2 3 . (9.2.118)
We see that above we have two set of index pairs (A 1 , B 1 ) and (A 2 , B 2 ) that contain p 1 and p 2 under the square-roots respectively. Each index pair (A i , B i ) originated from linearising a given polynomial quadratic in x2 . For the later procedure it should be kept in mind that an index A i always has a pair counterpart in B i . The two polynomials p 1 and p 2 are distinct and both linear in x 1 and quartic and quadratic in x 3 respectively. We are now in a position to integrate with respect to x 2 and set the limits [0, 1],

I MI-26 | 0 = ∞ 0 dx 1 1 0 dx 3 1 2 (1 + 2x 1 ) x 3 [I 1 + I 2 + I 3 ] . ( 9 

.2.119)

with

I 1 = G 0; x 1 + x 2 1 + x 3 -x 2 3 x 1 + x 2 1 + x 3 + 2x 1 x 3 -x 2 3 -2x 1 x 2 3 -G (0; 2) + G x 1 1 + x 1 ; 1 , ( 9 
.2.120)

I 2 = -G (-1, A 1 ; 1) -G (-1, B 1 ; 1) + G x 1 1 + x 1 , A 1 ; 1 + G x 1 1 + x 1 , B 1 ; 1 , (9.2 
.121)

I 3 = G (-1, A 2 ; 1) + G (-1, B 2 ; 1) -G x 1 1 + x 1 , A 2 ; 1 -G x 1 1 + x 1 , B 2 ; 1 . (9.2.122)
At this stage we still have to perform two more integrations however we have the presence of two different square-roots in the polynomials p 1 and p 2 that are present in the terms I 2 and I 3 respectively. It is known that one can rationalise square-roots involving polynomials that are either linear or quadratic in the variable under consideration. Looking at the polynomials p 1 and p 2 in Eq. 9.2.118, the choice of the next integration variable is clear. We take x 1 as this variable appears linearly in both square-roots. On the contrary it is not possible to choose x 3 as next integration variable as the polynomial p 1 is already quartic in x 3 and thus nonrationalisable. We will now proceed in splitting the integrand into three parts, (1) I 1 with no square-root, (2) I 2 with square-root involving p 1 and (3) I 3 with square-root involving p 2 .

As for the first part that does not contain any square-roots, we can proceed in fibrating the integrand with respect to the rescaled variable x1 . We show the following fibration of the MPL in I 1 ,

G 0; x1 + (-1 + x1 ) 2 x 3 -(-1 + x1 ) 2 x 2 3 x1 + x 3 + x2 1 (-1 + x 3 ) x 3 -x 2 3 = -G (A 3 ; x1 ) -G (B 3 ; x1 ) + G -1 + x 3 x 3 ; x1 + G x 3 -1 + x 3 ; x1 , (9.2 

.123)

with

A 3 = 1 + P4 2x 3 -2x 2 3 , B 3 = 1 -P4 2x 3 -2x 2 3 , (9.2.124) 
where P4 = 1 + 4x 2 3 -8x 3 3 + 4x 4 3 which is the same polynomial that we have encountered for the computation of the elliptic sunrise in Sec. 9.2.5 and thus the last integration of this part will yield eMPLs with the elliptic sunrise curve.

The second part contains the square-root involving the polynomial

p 1 = 1 + 8x 1 x 3 + 4x 2 3 - 8x 1 x 2 3 -8x 3 3 + 4x 4 3 .
As this polynomial appears linearly in x 1 we are in a position to perform a variable transformation and remove the square-root. Rationalising square-roots in multiloop integral computation has been applied previously in Ref. [START_REF] Becchetti | Two-Loop Master Integrals for the Planar QCD Massive Corrections to Di-photon and Di-jet Hadro-production[END_REF][START_REF] Aglietti | Master integrals with 2 and 3 massive propagators for the 2 loop electroweak form-factor -planar case[END_REF][START_REF] Broadhurst | Two loop two point functions with masses: Asymptotic expansions and Taylor series, in any dimension[END_REF][START_REF] Fleischer | Analytic two loop results for selfenergy type and vertex type diagrams with one nonzero mass[END_REF]. Recently an algorithmic approach in rationalisation of square-roots has been put forward in Ref. [START_REF] Besier | Rationalizing roots: an algorithmic approach[END_REF] and implemented in the package RationalizeRoots [START_REF] Besier | RationalizeRoots: Software Package for the Rationalization of Square Roots[END_REF]. With the help of this package we find a suitable rationalisation for x 1 to be

x 1 = -1 + t 2 1 (1 + 4x 2 3 -8x 3 3 + 4x 4 3 ) 8t 2 1 (-1 + x 3 )x 3 . (9.2.125)
For compleness we verify that this variable transformation indeed rationalises the square-root involing the polynomial p 1 ,

√ p 1 = 1 t 2 1 = 1 t 1 . ( 9 

.2.126)

Before we can plug in this transformation, let's first discuss the change in the limits. The bounds for x 1 were [0, ∞] and trying to solve the equation above for the new variable t 1 , we find two solutions for the lower bound at x 1 and we select the positive one in agreement with having chosen the positive solution in the equation above,

t lower 1 = 1 P4 , (9.2.127)
where as before the sunrise elliptic curve appears again. Now concerning the upper limit at x 1 = ∞ care is needed. We find that this limit corresponds to a single point in t 1 = 0. However we have not yet discussed the singularity structure of the integral. Considering a full Feynman integral, each single integration of the edges must yield a finite term. Above however we had split the integral into three different parts I 1 , I 2 and I 3 . We can indeed confirm that part I 1 is finite upon the integration in x 1 . It turns out that parts I 2 and I 3 do contain singularities individually. We therefore need to keep track of the singular structures in both parts and in particular parametrise the singularities in the same way. We need to apply the same convention as otherwise one may miss out finite pieces in the cancellation of the divergences. Thus for I 2 and I 3 we match the new variable not at x 1 = ∞ but rather at x 1 = 1 δ where δ → 0 at the end of the day,

t upper 1 = √ δ -8 (-1 + x 3 ) x 3 + P4 δ , (9.2.128)
The fact that there is a square-root with δ is irrelevant here. With this variable transformation one encounters two additional complications in the computation. The first aspect to be taken care of is the proper contour integration, that is to say that branch cuts in MPLs can appear and thus one needs to fix the constant term in the fibration of the new variable. This is a highly nontrivial task and requires a detailed study of the contour. We shall not discuss it further here. We now come to the second aspect. With this rationalisation of the square-root involving p 1 we are in a position to fibrate the integrand and linearise the kernels. However at this stage the linearisation of the kernels introduces several additional square-roots in the next integration variable. As an example let's consider one of the resulting MPLs G 1/ √ Q, 1/ P4 ; t 1 , where P4 is our familiar sunrise elliptic curve and Q is a new quartic polynomial with

Q = 1 -8x 3 + 12x 2 3 -8x 3 3 + 4x 4 3 . (9.2.129)
We see that this polynomial looks different from the elliptic sunrise with roots,

a Q 1 = 1 2 1 + i 3 + 2 √ 3 , a Q 2 = 1 2 1 + -3 + 2 √ 3 , a Q 3 = 1 2 1 --3 + 2 √ 3 , a Q 4 = 1 2 1 -i 3 + 2 √ 3 . (9.2.130)
As elaborated in Sec. 9.2.3, different polynomials may be related via a variable transformation.

In order to establish that these roots belong to a truly different elliptic curve one computes the j-invariant and we obtain that j Q = 0 and j sunrise = 16384 5 which are different and thus the elliptic curves are distinct. The appearance of additional square-roots complicates the procedure at the last integration however there is a way to get rid of these roots which we will discuss later. Now having fibrated the integrand and included the Jacobian, we are in a position to perform the second-last integration in t 1 from [t lower 1 , t

]. As aforementioned care is needed when performing the integration from these regions as one may have to perform contour deformations and one may encounter pinch-singularities that may yield finite pieces.

For the third part I 3 that involves the second square-root with polynomial p 2 we can as before again perform a rationalisation with the help of RationalizeRoots. For completeness we present the transformation here,

x 1 = 2 -4x 3 + 4x 2 3 + t 1 (1 -2x 3 ) t 2 1 . ( 9 

.2.131)

This transformation indeed rationalises the square-root with,

√ p 2 = (t 1 -2t 1 x 3 + 8 (-1 + x 3 ) x 3 ) 2 t 2 1 = (t 1 -2t 1 x 3 + 8 (-1 + x 3 ) x 3 ) t 1 , ( 9 

.2.132)

As before we have decided to take the positive solution and in a similar fashion we regularised the upper limit with ],

t lower 1 = 4 (-1 + x 3 ) x 3 -1 + 2x 3 , (9.2.133) t upper 1 = δ -2x 3 δ - (1 -2x 3 ) 2 δ + 8 (-1 + x 3 ) x 3 δ. (9.2.134)
After fibrating the integrand in t 1 , one can perform the integrations in terms of MPLs kernels and again as before new square-roots appear and care has to be taken with the contour deformation and pinch singularities.

Combining all three parts now, we can explicitly verify that the singularities between I 2 and I 3 perfectly cancel each other and we can proceed with the last integration. Before, we will briefly recap the steps. In the previous sections we had introduced the concepts of linear reducibility and elliptic linear reducibility. As the most difficult integrals had five massive edges, an elliptic linear reducible order did not seem to be possible as square-roots would have to be introduced already at the third-last integration rather than the second-last one in case of elliptic linear reducibility. We have analysed the resulting square-roots and found that one could rationalise these with a suitable variable transformation. With this variable transformation, we were in a position to express the integrand and the integration kernels in terms of ordinary polylogarithmic ones only. The integration has to be performed with care as one may have to perform contour deformations and obtain finite pieces from pinch singularities. Before the last integration, all polylogarithms belong to the class of MPLs with several different square-root present in the indices that were introduced through the linearisation of the MPL kernels. We will now discuss how to deal with these additional square-roots.

We have mentioned before that when several different elliptic curves appear in a kernel, these can no longer be casted in terms of eMPLs but one would have to resort to hyper-elliptic curves. The same thing would apply if the kernel contain under square-root a polynomial of degree 5 with five distinct roots. These kernels likewise cannot be casted in terms of eMPLs and belong to the class of hyperelliptic curves. Indeed, for some of the master integrals in this section some of the indices contained quintet roots. We will as an illustrative example consider an MPL with indices such that the following kernels could arise with the differentiation,

d dx 3 G (v 1 , .., v n ; z) = 1 x 3 C 1 + 1 y 1 C 2 + 1 y 2 C 3 + 1 y 1 y 2 C 4 , (9.2.135) 
where C i are coefficients and contain themselves unfibrated MPLs of weight w = n -1 and y i are different cubic/quartic polynomials. It is clear that with the existing kernel classification, we are in a position to integrate the first three terms provided that the polylogs fibrated in the coefficients C 2 and C 3 are not elliptic with respect to the second elliptic curve. This would be hyperelliptic. However, there is no way to partial fraction the kernel of the fourth term and thus it is impossible to fibrate the MPL above to canonical form in terms of eMPLs. We remember from the second-last integration that these square-roots arouse from the linearisation of quadratic terms in the kernels. This implies that each square-root has a counterpart as shown in Eq. 9.2.124. Therefore, MPLs that exhibit these square-roots in the indices must have similar prefactors, which differ only by a multiplicative constant term, and thus have same integration kernels. In turns out that when fibrating such terms together, the resulting integration kernels in the differential turn out to be simpler due to cancellation. It is even possible that resulting kernels are purely ordinary polylogarithmic. We show below an example,

d dx 3 G P4 ; 1 + G -P4 ; 1 = -2 + 4x 3 (-1 + x 3 ) 4x 3 4 i=1 (x 3 -q i r ) , (9.2.136)
where q i r are the roots of the elliptic sunrise. With this information, it is clear that the fibration of individual MPLs is in fact irrelevant. What matters is the fibration of the entire integrand which is needed to perform to the integration. And with this we have developed algorithms to fibrate the entire integrand with respect to a generic integration variable x. We list below the steps:

1. The first step consists in the classification of all terms in the integrand according to their weight w = k to a set called S k 2. Considering a set S n that contains terms of weight w = n, the second step consists in grouping and classifing all MPLs and products thereof in the set according to their x-dependence in the prefactors only. That is to say that they are grouped according to the integration kernels. MPLs that differ only by pure numbers without any dependence on the integration variable x belong to the same group. If there are m different integration kernels, we have the set of groups labelled as {g 1 , ..., g m } 3. Consider the elements in a given group g j and differentiate the sum of all MPLs Once the full integrand is in canonical form, we can perform the integration in x 7. We still need to fix the constant term here. This can be achieved either analytically or numerically with the method of analytic reconstruction with help of PSLQ algorithm. One usually chooses the point around x = 0 and the constant terms have weight w = n 8. Go back to step 2 and repeat for all other weight sets S k A few remarks are in order at this stage. We have mentioned in step 1, that we have to consider all terms of uniform weight w = n first. In a Feynman integral computation, it is possible that the integrand contains terms of different weight. However the fibration of an MPL with weight w can only yield to a sum of MPLs of the same weight w. It is not possible to have mixed weight here. Thus when the integrand in a Feynman integral contains terms of different weights, we need to repeat the steps for each individual weight terms separately. We have mentioned above the PSLQ algorithm [START_REF] Ferguson | A Polynomial Time, Numerically Stable Integer Relation Algorithm[END_REF]. Given a l-vector of numerical values with {n 1 , ..., n l }, the PSLQ algorithm tries to detect integer relations with coefficients {c 1 , ..., c l } such that the l i=1 c i n i = 0 vanishes where all c i ∈ Z. With this technique one is able to reconstruct numerical values given an analytic bases. Usually the bases of MPLs that is used have indices either being zero or values at sixth root of unity so indices of type e ikπ 3 with k = 0, ±1, ±2, 3. For a more detailed discussion on this, we guide the reader to Ref. [START_REF] Henn | Evaluating Multiple Polylogarithm Values at Sixth Roots of Unity up to Weight Six[END_REF]. This algorithm has been implemented in Mathematica. Now applying our algorithm above, all additional roots disappear one-by-one and the final fibrated integrand above depends on only a single elliptic curve, namely the one of the elliptic sunrise. As the integrand is now in canonical form, we are in a position to perform the last integration and setting the limits we obtain the final result for MI-26,

I MI-26 | 0 =a 1 + a 2 - 119π 4 73728 + 3π 2 128 G (0, 0; 2) + 217 256 G (0; 2)ζ 3 - 9 256 G 0, 0, 1 2 1 -i √ 3 , -1; 1 - 27 1024 G 0, 0, 1 2 -1 -i √ 3 , 1; 1 (9.2.137) a 1 = l i ∈{ 1 2 -i 2 , 1 2 + i 2 } - 1 4 E 4 1 1 -1 -1 0 l i 0 0 ; 1, q r - 1 4 E 4 1 1 -1 -1 0 l i 0 1 ; 1, q r - 1 2 E 4 1 1 -1 -1 0 l i 0 ∞ ; 1, q r + 1 2 1 5 1/4 E 4 1 1 -1 0 0 l i 0 0 ; 1, q r - 1 4 E 4 1 1 -1 1 0 l i 0 0 ; 1, q r - 1 4 E 4 1 1 -1 -1 0 l i 1 0 ; 1, q r - 1 4 E 4 1 1 -1 -1 0 l i 1 1 ; 1, q r - 1 2 E 4 1 1 -1 -1 0 l i 1 ∞ ; 1, q r + 1 2 1 5 1/4 E 4 1 1 -1 0 0 l i 1 0 ; 1, q r - 1 4 E 4 1 1 -1 1 0 l i 1 0 ; 1, q r + 1 2 E 4 1 1 -1 -1 0 l i ∞ 0 ; 1, q r + 1 2 E 4 1 1 -1 -1 0 l i ∞ 1 ; 1, q r + E 4 1 1 -1 -1 0 l i ∞ ∞ ; 1, q r - 1 5 1/4 E 4 1 1 -1 0 0 l i ∞ 0 ; 1, q r + 1 2 E 4 1 1 -1 1 0 l i ∞ 0 ; 1, q r - 1 2 1 5 1/4 E 4 1 1 0 -1 0 l i 0 0 ; 1, q r - 1 2 1 5 1/4 E 4 1 1 0 -1 0 l i 0 1 ; 1, q r - 1 5 1/4 E 4 1 1 0 -1 0 l i 0 ∞ ; 1, q r + 1 √ 5 E 4 1 1 0 0 0 l i 0 0 ; 1, q r - 1 2 1 5 1/4 E 4 1 1 0 1 0 l i 0 0 ; 1, q r - 1 4 E 4 1 1 1 -1 0 l i 0 0 ; 1, q r - 1 4 E 4 1 1 1 -1 0 l i 0 1 ; 1, q r - 1 2 E 4 1 1 1 -1 0 l i 0 ∞ ; 1, q r + 1 2 1 5 1/4 E 4 1 1 1 0 0 l i 0 0 ; 1, q r (9.2.138) a 2 = r i ∈{e iπ/3 ,e i5π/3 } 3 4 E 4 1 1 -1 -1 0 r i 0 0 ; 1, q r + 3 4 E 4 1 1 -1 -1 0 r i 0 1 ; 1, q r + 3 2 E 4 1 1 -1 -1 0 r i 0 ∞ ; 1, q r - 3 2 1 5 1/4 E 4 1 1 -1 0 0 r i 0 0 ; 1, q r + 3 4 E 4 1 1 -1 1 0 r i 0 0 ; 1, q r + 3 4 E 4 1 1 -1 -1 0 r i 1 0 ; 1, q r + 3 4 E 4 1 1 -1 -1 0 r i 1 1 ; 1, q r + 3 2 E 4 1 1 -1 -1 0 r i 1 ∞ ; 1, q r - 3 2 1 5 1/4 E 4 1 1 -1 0 0 r i 1 0 ; 1, q r + 3 4 E 4 1 1 -1 1 0 r i 1 0 ; 1, q r - 1 2 E 4 1 1 -1 -1 0 r i ∞ 0 ; 1, q r - 1 2 E 4 1 1 -1 -1 0 r i ∞ 1 ; 1, q r -E 4 1 1 -1 -1 0 r i ∞ ∞ ; 1, q r + 1 5 1/4 E 4 1 1 -1 0 0 r i ∞ 0 ; 1, q r - 1 2 E 4 1 1 -1 1 0 r i ∞ 0 ; 1, q r + 1 2 1 5 1/4 E 4 1 1 0 -1 0 r i 0 0 ; 1, q r + 1 2 1 5 1/4 E 4 1 1 0 -1 0 r i 0 1 ; 1, q r 1 5 1/4 E 4 1 1 0 -1 0 r i 0 ∞ ; 1, q r - 1 √ 5 E 4 1 1 0 0 0 r i 0 0 ; 1, q r + 1 2 1 5 1/4 E 4 1 1 0 1 0 r i 0 0 ; 1, q r 3 4 E 4 1 1 1 -1 0 r i 0 0 ; 1, q r + 3 4 E 4 1 1 -1 -1 0 r i 0 1 ; 1, q r + 3 2 E 4 1 1 1 -1 0 r i 0 ∞ ; 1, q r - 3 2 1 5 1/4 E 4 1 1 1 0 0 r i 0 0 ; 1, q r (9.2.139)
The result above has been checked numerically versus pySecDec and found to be in full agreement. In a similar fashion, one can compute the integrals MI-27 and MI-32 with the same procedure. We give their analytic expression in the Appendix. We have mentioned before that for MI-23 one encounters additional complications. We will discuss the treatment of the parent integral of Topology 3 in the next section.

MI-23 and a second delta function

In the preceding section we have discussed how to deal with integrals that have five massive propagators and are thus not straightforwardly elliptic linearly reducible. One may expect that the same procedure should work for the top integral MI-23 in T3. As it turns out there are additional complications which make this approach difficult. We will propose a new approach with the introduction of a second pseudo-Cheng-Wu delta function that equivalently amounts to a variable transformation at the very beginning before any integration is taken. Following the propagator labelling in Fig. 8.3a, the Symanzik polynomials take the following structure,

U =x 1 x 3 + x 2 x 3 + x 1 x 4 + x 2 x 4 + x 3 x 4 + x 1 x 5 + x 2 x 5 + x 4 x 5 + x 1 x 6 + x 2 x 6 + x 4 x 6 + x 3 x 7 + x 4 x 7 + x 5 x 7 + x 6 x 7 , (9.2.140) 
F = m 2 µ 2 x 2 1 (x 3 + x 4 + x 5 + x 6 ) + x 2 2 (x 3 + x 4 + x 5 + x 6 ) + x 1 2x 3 x 4 + x 2 4 + 4x 4 x 5 +x 2 5 + 2 (x 3 + x 4 + x 5 ) x 6 + x 2 6 + 2x 2 (x 3 + x 4 + x 5 + x 6 ) + x 4 ((x 5 + x 6 ) (x 4 + x 5 + x 6 ) +x 3 (x 4 + 2x 6 )) + 2x 3 (x 4 + x 6 ) + (x 4 + x 5 + x 6 ) 2 x 7 + x 2 x 2 4 + 2x 3 (x 4 + x 6 + x 7 ) +2x 4 (x 5 + 2x 6 + x 7 ) + (x 5 + x 6 ) (x 5 + x 6 + 2x 7 ))] , (9.2.141) 
volvement of additional fictonal variables (edges). In fact this is equivalent to a variable transformation performed at the very beginning rather than at intermediate steps. We have above selected our Cheng-Wu with δ(1x 1x 2x 4 ) under involvement of the massive edges e 1 , e 2 and e 4 which were connected in the graph as in Fig. 8.3a. With the symmetry present in this integral, the computation is invariant if we had chosen the other symmetric edges to yield δ(1x 5x 6x 4 ). Because such a combination of edges yields a rather compact intermediate result, one may attempt to duplicate this feature with the introduction of a second delta function δ(1x 5x 6x 4 ) where x 4 is now a new edge. A priori, the integration region for x 4 must be [-∞, ∞] as integrating this additional delta function out, we have to recover Eq. 9.2.142.

Testing this new strategy out and applying a second pseudo-Cheng-Wu to the elliptic nextto-linearly reducible integrals (MI-26, MI-27, MI-32) from the previous section, remarkably all square-roots after the third-last integration have disappeared and thus a rationalisation at the second-last integration is no longer necessary. With this strategy, these integrals now appear to be elliptic linearly reducible. As for our top integral MI-23, we find that this strategy succeeds in eliminating the global square-root originating from the kernel prefactor such that we are left with only two square-roots. Nevertheless, these roots are decoupled from each other and we can hence proceed in rationalising these roots in a similar fashion as we did in the previous section for the elliptic next-to-linearly reducible integrals. The integral with the particular pseudo-Cheng-Wu delta function chosen reads,

I MI-23 = -e 2 γ E Γ (3 + 2 ) 7 i=1 ∞ 0 dx i δ(1 -x 1 -x 2 -x 4 ) ∞ -∞ dx 4 δ x 5 -x 6 + x 4 U 1+3 F -3-2 , (9.2.146)
where the Symanzik polynomials above remain unchanged. We have seen in Sec. 9.2.1, that all variables must be positive definite x i ≥ 0. However the introduction of the second delta function and the fact that the edges x 5 and x 6 have opposite signs implies that the variable x 4 will extend to both positive and negative regions. In order to illustrate this, we consider the case where we eliminate x 5 with the second delta function such that x 5 = x 6x 4 . As x 5 ≥ 0 we have the constraint that x 6 ≥ x 4 and simultaneously x 6 ≥ 0. In order to retain linear reducibility, we will first integrate in x 6 rather than x 4 . We thus have two integration regions involving x 6 and x 4 , Sector 1:

x 4 ≤ x 6 ≤ ∞ & 0 ≤ x 4 ≤ ∞, Sector 2: 0 ≤ x 6 ≤ ∞ & -∞ ≤ x 4 < 0. (9.2.147) 
As for the integration order, we first eliminate x 2 with the Cheng-Wu, x 5 with the pseudo Cheng-Wu, then integrate out x 3 (massless), x 7 (massless) and x 1 (massive). At this stage we still have three more integrations to perform (x 6 , x 4 , x 4 ). As aforementioned in order to retain linear reducibility we choose x 6 and fibrating the integrand will introduce the two square-roots. Setting the limits for the two sectors, we are then in a position to proceed with the second last integration in x 4 . We will however need to fibrate the integrand twice for the different regions in Eq. 9.2.147. This is due to the fact, that for the two regions we have different branch cuts and thus we will need to fix the constant terms differently. In order to complicate matters, it turns out that we will have to split Sector 1 again into two regions due to the presence of additional branch cuts. This requires that the third-last integration is repeated under consideration of the contour deformation with the branch cuts. We can proceed in rationalising the square-roots in the three sectors. We remark at this stage that the two polynomials under the square-root are different in Sector 1 and Sector 2 which can be traced back to the different limits of x 4 in Eq. 9.2.147. Thus, we will have perform different transformations in these sectors. Resolving additional pinch singularities and more complex contour deformations, we can complete the integration inx 4 which leaves us with the final integration in x 4 . At this stage the integrand contains unfibrated MPLs and involves 20 additional polynomials under the square-root this time. These MPLs involve both roots with quintet polynomials and in addition mixing between these additional roots. This may all point to the introduction of hyperelliptic curves. However following our algorithm in the preceding section in a systematic way, we can indeed confirm that all additional roots disappear one-by-one and the final integrand contains eMPL defined by only a single elliptic curve, namely that of the elliptic sunrise. Performing the integration and setting the limits, we obtain the final result for MI-23 where we can express the individual components as follows,

I MI-23 =t 1 2 - i 2 -t 1 2 + i 2 + u (9.2.148) t(a) = c 1 (a) + c 2 (a) + c 3 (a) + c 4 (a) + c 5 (a) + c 6 (a) (9.2.149) c 1 (a) = i 2 p 1 (a, 0, 0) - i 4 p 1 (a, 0, 1) - i 4 p 2 (a, 0) + i 2 p 3 (a, 0) (9.2.150) c 2 (a) = - 5i 16 p 1 (a, -i, 0) - i 8 p 1 (a, -i, 1) + i 16 p 1 (a, -i, ∞) - 5i 16 p 3 (a, -i) (9.2.151) 
c 3 (a) = i 16 p 1 a, 1 2 , 0 + 
i 16 p 1 a, 1 2 , 1 - 3i 8 p 1 a, 1 2 , ∞ + 3i 8 p 2 a, 1 2 + i 16 p 3 a, 1 2 (9.2.152) 
c 4 (a) = - i 8 p 1 (a, a * , 0) - i 8 p 1 (a, a * , 1) + i 4 p 1 (a, a * , ∞) - i 4 p 2 (a, a * ) - i 8 p 3 (a, a * ) (9.2.153) c 5 (a) = - 7i 16 p 1 (a, 1, 0) + i 8 p 1 (a, 1, 1) + 3i 16 p 1 (a, 1, ∞) - 7i 16 p 3 (a, 1) c 6 (a) = d∈{ 1 2 (1-i √ 3), 1 2 (1+i √ 3)} 3i 8 p 1 (a, d, 0) + 3i 8 p 1 (a, d, 1) - i 4 p 1 (a, d, ∞) + i 4 p 2 (a, d) + 3i 8 p 3 (a, d) (9.2.154) 
p 1 (a, b, c) = E 4 1 1 -1 -1 a b c 0 ; 1, q r + E 4 1 1 -1 -1 a b c 1 ; 1, q r + 2 E 4 1 1 -1 -1 a b c ∞ ; 1, q r - 2 5 1/4 E 4 1 1 -1 0 a b c 0 ; 1, q r + E 4 1 1 -1 1 a b c 0 ; 1, q r , (9.2.155) p 2 (a, b) = 1 5 1/4 E 4 1 1 0 -1 a b 0 0 ; 1, q r + 1 5 1/4 E 4 1 1 0 -1 a b 0 1 ; 1, q r + 2 5 1/4 E 4 1 1 0 -1 a b 0 ∞ ; 1, q r - 2 √ 5 E 4 1 1 0 0 a b 0 0 ; 1, q r + 1 5 1/4 E 4 1 1 0 1 a b 0 0 ; 1, q r , (9.2.156) 
p 3 (a, b) = E 4 1 1 1 -1 a b 0 0 ; 1, q r + E 4 1 1 1 -1 a b 0 1 ; 1, q r + 2 E 4 1 1 1 -1 a b 0 ∞ ; 1, q r - 2 5 1/4 E 4 1 1 1 0 a b 0 0 ; 1, q r , (9.2.157) 
where above u is the ordinary polylogarithmic sector. As the expression of the u is rather lengthy, we do not present them here. These can be provided upon request from the author.

Numerical results

We have shown in the preceding section how we have computed all master integrals analytically. With this, we are in a position to obtain complete analytic results for the form-factors. For the phenomenological application it is sufficient to convert these analytical results to numerical results for the master integrals. In this section, we will show the methodology to obtain reliable numbers for the master integrals needed.

Numerical results -MPLs

As already shown in Sec. 9.2.2, multiple polylogarithms can be represented by either the iterated integral representation in Eq. 9.2.8 or by their nested sum representation in Eq. 9.2.19. For the numerical evaluation of the multiple polylogarithm, one can thus transform the MPLs to the nested sum representation where one can now rather easily expand the convergent series to a given order to obtain the required precision of the MPLs. We would like to mention that the sum representation in Eq. 9.2.19 is in fact only true when there are no branch cuts in the MPLs. An MPL G (..., a i , ...; z) has a branch cut on the real axis when its argument z is purely real and larger than any purely real non-zero index a i . In such a situation it is necessary to assign a small imaginary part to either the argument z with z ± iδ where δ is the infinitesimal and fixes the sign. Imposing such a prescription will determine the contour of the integration.

There exist several numerical packages to evaluate polylogarithms. For the HPLs, a numerical evaluation routine has been implemented in the HPL-package by D. Maître [START_REF] Maitre | HPL, a mathematica implementation of the harmonic polylogarithms[END_REF][START_REF] Maitre | Extension of HPL to complex arguments[END_REF], the hplog-package by T. Gehrmann and E. Remiddi [START_REF] Gehrmann | Numerical evaluation of harmonic polylogarithms[END_REF][START_REF] Gehrmann | Numerical evaluation of two-dimensional harmonic polylogarithms[END_REF] and in the package CHAPLIN by S. Buehler and C. Duhr in Ref. [START_REF] Buehler | CHAPLIN -Complex Harmonic Polylogarithms in Fortran[END_REF]. As for the generalisation to the MPLs, a routine has been developed within the GiNaC framework by J. Vollinga and S. Weinzierl in Ref. [START_REF] Vollinga | Numerical evaluation of multiple polylogarithms[END_REF]. Here we will employ the last package and make use of the GiNaC interface provided by the Mathematica PolyLogTools package [START_REF] Duhr | PolyLogTools -polylogs for the masses[END_REF]. All master integrals which were needed and which only contained polylogarithmic functions have been evaluated to at least 200 digits precision. For the MPLs up to weight w = 4, it poses no issue to go beyond 1000 digits accuracy with the GiNaC-interface. In fact, some master integrals that we have computed analytically contain rather complicated MPLs. It turns out that the combination of the complicated MPLs which is present in the master integral can be reduced to much simpler and well-known functions {π, log 2, ζ 3 , ...}.

Numerical results -PSLQ algorithm

To establish some analytic relations is sometimes not straightforward to implement. A wellused method to detect these relations is based on the PSLQ-method by H. R. P. Ferguson and D. H. Bailey [START_REF] Ferguson | A Polynomial Time, Numerically Stable Integer Relation Algorithm[END_REF] which we have already briefly touched on in the chapter on the analytic computation. Given a linear sum of n i=1 c i n i , where c i are integer coefficients and n i are numerical values representing the MPLs and special functions, the key idea of the PSLQ-algorithm boils down in finding integer values of the c i coefficients in such a way that n i=1 c i n i = 0. If such a relation has been found, one can relate the master integral represented by its numerical value n i , which we have evaluated with GiNaC, to MPLs represented by the remaining n i and their coefficients. In order to ensure the success of this numerical fit, one needs to make an educated guess about the kind of functions that could appear. If the bases of function is incomplete, such a fit will fail. Usually one tries to fit with MPLs that contain indices at zero or at sixth root of unity {0, 1, -1, e i π 3 , e -i π 3 , e i 2π 3 , e -i 2π 3 }. For details surrounding the bases of sixth root of unity, the reader is invited to consult Ref. [START_REF] Henn | Evaluating Multiple Polylogarithm Values at Sixth Roots of Unity up to Weight Six[END_REF].

In addition, with a growing numbers of bases, one needs to go to higher precision such that the PSLQ algorithm can find the correct integer relations. For a given precision for the n i values, the PSLQ algorithm tries to determine the best possible combination of the integers such that the sum vanishes close to zero below the threshold of the precision. In order to understand the termination criterion for PSLQ, one may imagine a plot where the numerical value of the sum is given as function of the integer coefficients. A fit would be wrong if increasing the integer coefficients would gradually move the sum to zero. It would be only correct up the precision given. However, beyond this precision, the difference between the initial result and the false fit will be obvious. Thus the successful PSLQ fit will occur if for some given integer relation the sum has a highly non-zero value, and then changing a c i by a single unit up or down, this non-zero sum will suddenly fall very close to zero by several orders of magnitude (usually more than 20 orders of magnitude [START_REF] Bailey | PSLQ: An Algorithm to Discover Integer Relations[END_REF]). In order to ensure that the PSLQ fit was successful, one usually evaluates numerically the initial analytic value versus the final analytic value to a much higher precision beyond the one used in the PSLQ fit. If the difference is zero up to the new precision, this indicates a successful fit.

The PSLQ method can also be used for other applications such as trying to fix numerical values to a given m-degree polynomial or rational values. We mention here in passing Ref. [START_REF] Laporta | High-precision calculation of the 4-loop contribution to the electron g-2 in QED[END_REF], where S. Laporta has managed to fit via PSLQ several of the terms present in the 4-loop contribution to the electron g -2 value in QED. These fits involved numerical evaluations up to > 4000 digits, however some coefficients in particular the elliptic sector remain unknown. For our master integrals in the MPL sector, we can indeed verify that all integrals apart from three can be fitted to very high precision (> 1000 digits) to the bases of sixth root of unity. The remaining three integrals remain in their original analytic representation.

Numerical results -eMPLs

As for the numerical evaluation for the master integrals involving elliptic kernels, the situation is very much different from the ordinary polylogarithms. At this stage, there do not exist feasible methods to evaluate the eMPLs directly to numerical values in a simple and convenient manner. In order to evaluate the eMPLs numerically for phenomenological applications, one can either perform the integrations numerically in a direct way or transform it to a series representation similarly as in the case of the MPLs. This would involve to transform the eMPLs to their geometric torus representation Γ (see Ref. [START_REF] Broedel | Elliptic polylogarithms and iterated integrals on elliptic curves. Part I: general formalism[END_REF]). From there on, one can make use of the modular forms and perform the q-expansion to evaluate the Γ numerically. In the best case scenario, when the coefficients of the Abel map, i.e. to map the E 4 representation to points on the torus in the Γ representation, have rational precoefficients for a 1/2 in a 1 + a 2 τ . In such a case one can cast these integrals to the iterated Eisenstein series representation which allows fast convergences (see Ref. [START_REF] Duhr | Algorithms and tools for iterated Eisenstein integrals[END_REF]). However in the general case the coefficients a 1/2 may not be rational and thus one will have to rely on the q-expansion, where the convergence of the series is rather too slow to obtain very high-precise numbers. We have made use of the q-expansion in order to verify the analytic structure of master integrals.

In order to obtain high-precision numerical results, we make use of the differential equation approach and solve the system numerically via the series expansion approach. This has been automated in the Mathematica package DiffExp by M. Hidding [START_REF] Hidding | DiffExp, a Mathematica package for computing Feynman integrals in terms of one-dimensional series expansions[END_REF] which is based on the formalism presented in Ref. [START_REF] Moriello | Generalised power series expansions for the elliptic planar families of Higgs + jet production at two loops[END_REF] by F. Moriello. We already discussed in Sec. 9.1 the key idea behind the differential equation approach. In the differential equation approach, one will have to find the variation of the integrals with respect to a variable such as x = m 2 4p 2 and then solve this for general x. We are then interested in the solution at x = 1 4 for our case. In order to solve the system of differential equation numerically, one can try as an Ansatz a solution to the integral of the form x a ∞ i=0 c i x i , where a is a rational number and c i are the coefficients. Such a series expansion can be achieved with the help of Frobenius series method. One may alternatively also try and apply a Padé approximation which allows fast convergence. For multi-scale problems, one usually is interested in the numerical evaluation for several different values of x. As the series expansion in the vicinity of a single x 0 -value can be constrained by the radius of convergence or by the position of the nearest singularity, one performs an expansion around several different points x 0 , x i , ... on a one-dimensional line on different segments. The segments are then analytically continued and connected in order to ensure stable numerical results for different x-values along the one-dimensional segment line. Around singular points the series may behave logarithmically and thus one may consider to include parametrisation of type log x. In addition to this, one needs to specify the boundary conditions of the differential equation for a given x-value. These need to be computed analytically by the user and entered into the program. The solution of the differential equation is then transported from the initial phase-space point to the new point. We guide the reader for a more detailed description of the implementation to Ref. [START_REF] Hidding | DiffExp, a Mathematica package for computing Feynman integrals in terms of one-dimensional series expansions[END_REF]. This strategy has been successfully applied in computing the two-loop master integrals for Higgs+jet production [START_REF] Bonciani | Evaluating a family of two-loop non-planar master integrals for Higgs + jet production with full heavy-quark mass dependence[END_REF][START_REF] Frellesvig | The complete set of two-loop master integrals for Higgs + jet production in QCD[END_REF] and for two-loop integrals for planar five-point one-mass processes such as 2-jet associated W-boson production [START_REF] Abreu | Two-Loop Integrals for Planar Five-Point One-Mass Processes[END_REF]. Such series expansion strategies allow us to obtain high-precision numbers for master integrals. We have hence made use of this package for our master integral calculations.

In our master integral bases, we have 22 integrals which exhibit elliptic structures. However two of these MI/MS [START_REF] Schuler | Quarkonium production and decays[END_REF] and MI/MS [START_REF] Feng | Next-to-Next-to-Leading-Order QCD Corrections to the Hadronic width of Pseudoscalar Quarkonium[END_REF] were not needed for our form-factors as these integrals entered the form-factor computation at order O( ) and were manifestly finite O 0 which we have confirmed numerically with pySecDec. This implies that these integrals do not contribute to the amplitude at order O 0 for NNLO. They would only start to contribute at N 3 LO level when the amplitude is needed up to O 2 . Therefore in total 20 elliptic integrals were needed. As discussed in the Topology section, these elliptic integrals were found in T3 (14 elliptic MIs), T4 (4 elliptic MIs), T5 (1 elliptic MIs) and T6 (1 elliptic MIs). In order to compute the elliptic integral MI/MS [START_REF] Altarelli | Large Perturbative Corrections to the Drell-Yan Process in QCD[END_REF] in T6, we have made use of the analytic solution and converted the E 4 solution to the iterated Eisenstein integral representation. The integral was then computed numerically up to 200 digits precision. The issue with the other integrals is that these cannot be casted in the iterated Eisenstein integral representation which allows fast convergence. As such for the integrals appearing in T3, T4 and T5, we have made use of the differential equation approach with DiffExp-package. The differential equation system for T5 was provided in Ref. [START_REF] Manteuffel | A non-planar two-loop three-point function beyond multiple polylogarithms[END_REF] by A. von Manteuffel and L. Tancredi and we made use of the DiffExp-package as described above. For the integrals appearing in T3 and T4 as aforementioned, the differential equation system was solved in Ref. [START_REF] Chen | Two-Loop integrals for CP-even heavy quarkonium production and decays: Elliptic Sectors[END_REF][START_REF] Chen | Two-Loop integrals for CP-even heavy quarkonium production and decays[END_REF] where the elliptic sunrise was present as sub-topology. We had already pointed out that the differential equation system presented there contained several typos which we have corrected ourselves with a detailed analysis. In addition to this, as the system was not in purely -form, we had to compute some boundary conditions analytically beyond weight w = 4.

We also now see the connection to Sec. 8.5, where we had rotated the bases from the MI base to the MS base in order to avoid contributions from master integrals beyond weight w = 4. Had we sticked to our original MI list, we would had to compute several additional boundary conditions to one order higher in . But as we have worked with the MS base, this was not necessary. Concerning the computation of the additional boundary conditions, we have accomplished this with the strategies presented in Sec. 9.2. These master integrals were then computed up to 200 digits precision with the DiffExp-package. The timescale for the execution of the program was around O(5h). We note that the differential equation system contained both the elliptic and the ordinary polylogarithmic sectors. As we have already evaluated analytically and numerically several of the master integrals in the ordinary polylogarithmic sector to very high precision (> 1000 digits), we have been able to confirm the numerical values in the output of DiffExp for the corresponding integrals at the special kinematics thus confirming the general principle of this method. In addition, all the numbers for the elliptic integrals were cross-checked against pySecDec and found to be in agreement.

As a matter of fact, we have managed to confirm the numerical precision for these elliptic integrals rather indirectly in the following manner. We were able to PSLQ fit some linear combinations involving elliptic integrals to some MPL bases at a given precision using these numerical results. Then evaluating these MPLs to higher precision to 200 digits and then comparing with the numerical value of this linear combination, indeed the difference was zero up to 200 digits precision, thus confirming the precision of the numerical evaluation. In such linear combinations of the ellptic integrals, all the elliptic constants drop out such that only the MPLs survive. For phenomenological applications, one only requires around 10 digits precision to make reliable predictions for the cross-section. The purpose and the gain that we have managed to obtain 200 digits precision for all the integrals required is two-fold. On one-hand we have shown that with the methods used here, such high-precision numbers are technically possible in master integral computation nowadays. On a more practical side as we shall see later in the form-factor chapter, some of the elliptic integrals were present in the IR pole structure of the amplitude. However, we know that the pole structure up to two-loops is dictated by MPL functions only (see in form-factor section). Thus the elliptic constant must all vanish as aforementioned. We have then managed to fit all these linear combinations of the elliptic integrals via PSLQ to a given MPL base and verified the PSLQ fit to higher precision. This is in particular important for quarkonium physics because unlike in Higgs production, the IR pole structure contains additional remaining and potentially unknown Coulomb singularities. Having completely analytic results in the pole structure is thus very beneficial in verifying the correctness of the result and extracting the structure of the process-dependent Coulomb singularity. The PSLQ fit was only possible because we had evaluated the elliptic integrals up to high precision. Numerical values given by pySecDec with approximately 5 to 10 digits precision may have been insufficient here.

We have collected the numerical results for all the master integrals that were needed for the form-factor calculations in Appendix I.

Chapter 10

Form-factor: Results

We have in the preceding chapters elucidated the methods and strategies in computing twoloop amplitudes for quarkonium form-factors. We have computed all the master integrals analytically and in addition produced high-precision numerical results (up to 200 digits). With the full analytical and numerical results for the master integrals at our disposal we are now in a position to present the form-factor results for the different channels, γγ ↔ η Q , gg ↔ η Q and γγ ↔ p-Ps up to two-loops. We used the double-sided arrow as these form-factors are identical for production and decay.

The two-loop form-factor result in the gg-channel needed for the hadro-production case for η Q is absent in the literature. As such, we present here for the first time the analytical twoloop amplitude needed for the hadro-production case at NNLO accuracy in QCD. In order to validate our methods and approaches, we have computed the form-factors analytically for η Q decay to γγ which has been previously computed numerically in Ref. [START_REF] Czarnecki | Charmonium decays: J / psi -> e+ e-and eta(c) -> gamma gamma[END_REF][START_REF] Feng | Can Nonrelativistic QCD Explain the γγ * → η c Transition Form Factor Data?[END_REF] but only up 10 digits precision. We find numerically full agreement. In addition to the new full analytical results, we improve the precision of the NNLO corrections up to 200 digits accuracy. Furthermore, we present here the analytical result for the two-loop amplitude needed in the para-positronium decay up to NNLO accuracy in QED.

We will proceed in presenting the bare amplitudes at tree level, one-loop and two-loop level for each channel. The bare amplitude of these quarkonium form-factors can be expressed through NNLO accuracy in the bare strong coupling α bare s as,

A = α bare s π q A (0) + α bare s π A (1) + α bare s π 2 A (2) + O α bare s 3 , (10.0.1) 
where above q is the power in the strong coupling for the leading-order contribution. We have factorised out the coupling above as the UV renormalisation will be slightly different for the ggand the γγ-channel. As for the structure of the amplitude needed for the parapositronium decay up to NNLO accuracy in QED, we can replace above α s by α em representing the electromagnetic coupling. A (0) stands for the leading-order tree-level amplitude, while A (1) and A (2) represent the one-loop and the two-loop amplitude respectively.

We then present the renormalised amplitude which admits a similar expansion in terms of the renormalised coupling α s as,

A ren = α s π q A (0) ren + α s π A (1) ren + α s π 2 A (2) ren + O α s 3 . (10.0.2) 
After renormalisation, one is left with potential IR singularities and the Coulomb singularities which are specific for quarkonium states. We will discuss these in detail for each channel individually. Once these have been validated, we then present the quantities at NNLO accuracy. We will conclude this chapter by discussing the computation of additional form-factors such as the colour-octet states and P -wave states.

10.1 Form-factor γγ ↔1 S

[1] 0

Two-loop corrections to η Q decay to γγ have been considered for the first time in Ref. [START_REF] Czarnecki | Charmonium decays: J / psi -> e+ e-and eta(c) -> gamma gamma[END_REF] by A. Czarnecki and K. Melnikov in 2001. They studied the two-loop corrections to the decay width ratio between J/ψ → e -e + and η c → γγ. At one-loop level, this ratio presents a clean observable to study the convergence of QCD at low scales as the non-perturbative part for J/ψ and η c would cancel in the ratio. This observable could be used experimentally to extract a value for the strong coupling α s at the scale of the charmonium scale. Experimental efforts to measure the ratio were done by the CLEO collaboration [START_REF] Brandenburg | Measurements of the mass, total width and two photon partial width of the eta(c) meson[END_REF]. However as the authors in Ref. [START_REF] Czarnecki | Charmonium decays: J / psi -> e+ e-and eta(c) -> gamma gamma[END_REF] have shown, this ratio computed at two-loop order no longer provides a clean observable. This is due to the fact, that at two-loop level, an additional scale for the nonperturbative part appears which is due to the Coulomb singularity. This Coulomb structure is spin-dependent and with J/ψ and η c having different quantum numbers, 1 --and 0 -+ respectively, the non-perturbative scale does not cancel in their ratio. Due to the presence of these additional scales, which are not well understood, the ratio of the two decay widths therefore involves additional theoretical uncertaintites at two-loop accuracy. The Coulomb singularity for γ * → J/ψ has been previously computed in Ref. [START_REF] Czarnecki | Two loop QCD corrections to the heavy quark pair production cross-section in e+ e-annihilation near the threshold[END_REF][START_REF] Beneke | Two loop correction to the leptonic decay of quarkonium[END_REF]. These have been computed via threshold expansion methods [START_REF] Beneke | Asymptotic expansion of Feynman integrals near threshold[END_REF] where one considers the production of two heavy quark pairs γ * → QQ which is then taken close to threshold ŝ = 4m 2 . As for the Coulomb singularity for the η c , it was previously computed by A. Czarnecki and K. Melnikov in Ref. [START_REF] Czarnecki | Top quark threshold production at a gamma gamma collider at next-to-next-to-leading order[END_REF] as expansion of the relative velocity v and converted in simple pole in the aforementioned Ref. [START_REF] Czarnecki | Charmonium decays: J / psi -> e+ e-and eta(c) -> gamma gamma[END_REF].

As for the Coulomb singularities for the other states, the reader is invited to consult Ref. [START_REF] Kniehl | Two-loop matching coefficients for heavy quark currents[END_REF].

In a more recent effort in 2015, the authors of Ref. [START_REF] Feng | Can Nonrelativistic QCD Explain the γγ * → η c Transition Form Factor Data?[END_REF] have considered two-loop corrections to the transition form factor for γ * γ → η c . In the same paper, they presented the two-loop corrections to the decay width of η c → γγ. They find agreement with Ref. [START_REF] Czarnecki | Charmonium decays: J / psi -> e+ e-and eta(c) -> gamma gamma[END_REF] and provide in addition the light-by-light contributions that have been omitted in the aforementioned reference. However, both references are based on entirely numerical approaches for the master integrals and the precision of the results extends to ∼ 5 digits in Ref. [START_REF] Czarnecki | Charmonium decays: J / psi -> e+ e-and eta(c) -> gamma gamma[END_REF] while this has been improved to ∼ 10 digits in Ref. [START_REF] Feng | Can Nonrelativistic QCD Explain the γγ * → η c Transition Form Factor Data?[END_REF].

Having at our disposal the full analytic result for all the master integrals and in addition numerical results up to 200 digits precision, we are in a position to provide the most accurate two-loop correction to the decay width of η c → γγ. We will explain in the following how we have obtained the bare tree-level, one-loop and two-loop amplitude form-factor and will explain the procedure to remove the divergences. As this is an exclusive process 1 with the ini- tial/final photons coming from Abelian QED, the form factor cannot contain any remaining IR singularities apart from the Coulomb singularity related to the quarkonium state. Our result of this form-factor provides a non-trivial cross-check of the set-up and method of the calculation elucidated in the preceding chapters.

Bare amplitude

In the following, we will present the bare form-factor amplitude for the process γγ → η Q (

0 ) up to two loop accuracy. The LO contribution involves only the QED coupling α em . As such, the expansion of the bare amplitude starts in Eq. 10.0.1 with q = 0.

With this, the tree-level amplitude takes the following form,

A (0) = 2i √ 2π N c |R 0 | m 5/2 √ N c e 2 Q α em µνρσ ε µ (k 1 )ε ν (k 2 )k ρ 1 k σ 2 , (10.1.1) 
where |R 0 | is the radial wavefunction at the origin and N c = 3 represents the number of QCD colors. We have applied the colour-singlet projection operator δ ij / √ N c (see Sec. 7.1 or Sec. 2.2).

µνρσ stands for the Levi-Civita tensor as η Q is a pseudo-scalar particle and originates from evaluating traces involving the γ 5 matrix (see Eq. 7.1.1), k i stand for the initial state momenta and ε µ (k i ) are the polarisation vectors of the two photons. In addition, as the electric charge depends on the type of flavour, we have factorised this flavour-dependent value out into the factor e Q . We have that for up-type flavours as charm quark e c = 2 3 and for down-type flavours as bottom quark e b = - 1 3 . The one-loop amplitude can be represented by graphs as in Fig. 2.3b. As some of the propagators are linearly dependent, we can apply partial fractioning here and express the amplitude in terms of three simple integrals (tadpole, bubble and triangle). Plugging in the one-loop integral expressions, we obtain for the one-loop amplitude up to O 2 ,

α bare s π A (1) =A (0) S α bare s π C F 1 m 2 π 2 8 - 5 2 + -1 + π 2 4 + 4 log 2 + 7 4 ζ 3 + 2 -10 + π 2 8 + 5π 4 96 -4 log 2 2 + 10 log 2 + 7 2 ζ 3 , (10.1.2) 
where above S = (4π) e -γ E . We note that the one-loop amplitude is finite and does not contain any singularities. We have shown in Part I in Sec. 2.3.4 that individual contributions from different diagrams indeed exhibit IR singularities but as the final state is a colourless dipole these singularities vanish in their sum. Any real gluon emission from the heavy quark line must vanish as the initial state photons and the quarkonium state are in both colour-singlet state. We shall see later, why the one-loop amplitude does not exhibit any UV singularities either. For the NNLO calculation, we can thus truncate the Laurent series in already at the finite piece. The colour-factor C F = 4 3 is the Casimir of the fundamental representation and indicates corrections that are Abelian-like as one would find these in Abelian QED.

The two-loop amplitude is significantly more difficult to handle than the one-loop amplitude. Due to the presence of linearly dependent propagators, we can apply again partial fraction decomposition and perform IBP reduction to express the amplitude in terms of the master integrals. We find that the amplitude can be reduced to 61 master integrals indicated in Sec. 8.2. We have included here the contributions of type light-by-light scattering as shown in Fig. 10.1b. We remark that the diagrams of type triangle quark-loop as shown in Fig. 10.1a vanish due to Furry's theorem when summing up the contributions of the quark-loop and its charge conjugate. We have verified this explicitly in our calculations.

A two-loop amplitude can exhibit -poles at most at the quadruple order O -4 . For better visibility and in order to illustrate the IR and UV pole structures in a more convenient form, we will below indicate the contributions of the two-loop amplitude at each order in as follows

α bare s π 2 A (2) = A (0) S 2 α bare s π 2 1 m 2 2 1 4 c -4 + 1 3 c -3 + 1 2 c -2 + 1 c -1 + c 0 . (10.1.3) 
We have the following pole structure,

c -4 =0 (10.1.4) c -3 =0 (10.1.5) c -2 = 3 32 C 2 F - 1 8 C F T F n h (10.1.6) c -1 =C 2 F - 39 32 - π 2 16 + 3 4 log 2 + C A C F - 205 96 - π 2 96 + C F T F n l 17 24 - π 2 24 + C F T F n h 7 8 - π 2 24 , (10.1.7) 
where we have labelled the contributions coming from closed fermion loops, with n l standing for the number of light massless quarks and n h for the number of massive quarks. For the latter case, we consider the mass of the quark to be the same as the mass of the heavy quark Q appearing in the final state. We apply here the decoupling theorem [START_REF] Appelquist | Infrared Singularities and Massive Fields[END_REF] and thus do not need to consider quarks, such as the top quark, that are heavier than the Q flavour under consideration here. For charmonium we use n l = 3, n h = 1 and for bottomonium state we have that n l = 4, n h = 1.

The fermion loops appearing in the pole structure and with colour-factor T F = 1 2 originate from vacuum polarisation diagrams as shown in Fig. 10.1c. In contrast to this, the contributions of type light-by-light are manifestly finite (see Fig. 10.1b). In addition to the one-loop amplitude, we note the emergence of new colour structures such as C2 F and C F C A . While the former factor indicates Abelian-like corrections (see Fig. 10.2a), the latter with its C A = 3 factor, which is the Casimir of the adjoint representation, indicates non-Abelian corrections represented by triple gluon vertices such as in Fig. 10.2b.

We note that the coefficients for the quadruple and the triple pole in Eq. 10.1.3 vanish for the two-loop amplitude of the process η Q → γγ. As this is an exclusive decay process we do not expect any IR-singularities related to the phase-space integration of the photons. As such these IR singularities should vanish in the sum due to aforementioned dipole picture 2 . The remaining singularities should then be removed via the UV singularity which in the absence of IR singularities can only contribute up to double pole 3 .

We can cast the finite piece into the following form with the colour structures factorised out,

c 0 = C 2 F a 1 + C F C A a 2 + C F T F n h a 3 + C F T F n l a 4 + lbl C F T F n h a 5 + lbl C F T F n l n l i e 2 i e 2 Q a 6 . (10.1.8) 
The label lbl indicates contributions of type light-by-light scattering which constitutes a finit and a gauge-invariant subset. In addition, as the coupling of the initial-state photons to the fermion lines depends on their electric charge, for the light-by-light scattering contribution with massless fermion loops we will therefore need to sum up all different flavours under consideration of the charge. We have that,

n l i e 2 i e 2 Q =        ( 2 3 ) 
2 +(-

1 3 ) 2 +(-1 3 ) 2 ( 2 3 ) 2 
= 3 2 for η c , ( 2 3 ) 
2 +(-

1 3 ) 2 +(-1 3 ) 2 +( 2 3 ) 2 (-1 3 ) 2 
= 10 for η b .

(10.1.9)

We note that these contributions are particularly enhanced for η b compared to η c . We comment here, that the expressions for the Abelian-like coefficients a 1 , a 3 , a 4 , a 5 and a 6 in Eq. 10.1.8 will provide later a trivial cross-check. We will proceed in the next section with the UV renormalisation.

UV renormalisation

We can proceed and renormalise the amplitude via the UV counterterm method 4 . As for the renormalisation factors we employ the on-shell renormalisation scheme with Z Q for the heavy quark wavefunction, Z m for the heavy quark mass and Z g for the renormalisation of the gluon wavefunction. As for the strong coupling, we use the renormalisation Z αs within the MS-scheme.

We have the relation between the bare and the renormalised coupling as,

α bare s = S -1 µ 2 Z αs α (nf ) s , (10.1.10) 
where the origin of the µ 2 scale is apparent now. It indeed originates from the coupling in the Lagrangian in D = 4 -2 dimensions. As such, the renormalised coupling is dimensionless and a pure number while the bare coupling is dimensionful. The bare coupling α bare s cannot depend on any scale dα bare s /dµ 2 = 0 while the renormalised coupling indeed depends on the running of the renormalisation scale µ 2 . It is precisely this running of the scale that determines the number of flavours to be taken inside the coupling.

The Z i renormalisation factors admit an expansion in the renormalised coupling as,

Z i = 1 + α s π Z (1) i + α s π 2 Z (2) 
i + O α 3 s . (10.1.11) 
The exact expressions for the counterterm variables Z i have been collected in Appendix B. We make the important remark that the expansion in Appendix B is actually done around α

(n l +n h ) s
, where the heavy quark has been absorbed into the strong coupling as well. In order to convert this strong coupling to the more conventional α (n l ) s one, we need to apply the following decoupling mechanism [START_REF] Bernreuther | Decoupling of Heavy Quarks in the Minimal Subtraction Scheme[END_REF],

α (n l +n h ) s = ζ αs α (n l ) s (10.1.12)
where the the decoupling parameter ζ αs admits a similar expansion in the coupling. The expressions have been collected in Appendix B.

We give below the counterterm contribution needed for the one-loop amplitude,

A (1,CT) = A (0)   α (nf ) s π   Z (1) 
Q -Z (1) m , (10.1.13) 
where above Z

Q is the O(α s ) coefficient of the heavy quark wavefunction and Z

m is the corresponding coefficient for the mass factor. We do not need to consider the wave-function of the photon and the correction to the QED coupling.

Despite the fact, that our one-loop amplitude is free of divergences (see Eq. 10.1.2), we can construct above a counterterm contribution It turns out that the coefficients Z 

Q = Z (1)
m in Appendix B 5 . This relation is rather a coincidence and at order α 2 s one finds that the coefficients are different Z

Q = Z (2) 
m as was already observed by Broadhurst et al. in Ref. [START_REF] Broadhurst | Gauge invariant on-shell Z(2) in QED, QCD and the effective field theory of a static quark[END_REF]. Before showing the renormalised oneloop amplitude, we need to apply the decoupling in order to express the expansion in terms of α (n l ) s . However, as the leading contribution in α s starts at NLO, we can thus conclude that α

(n f ) s = α (n l ) s + O α (n l ) s 2 and obtain, α (n l ) s π A (1) 
ren = A (0) ren α (n l ) s π C F π 2 8 - 5 2 . (10.1.14) 
As for the two-loop renormalisation counterterms, with an explicit computation we can express the contributions in the following form as,

α (n l ) s π 2 A (2) ren = α (n l ) s π 2 S -2 µ 4 A (2) + A (2,CT) + A (2,decoupling) , (10.1.15) 
A (2,CT) =S -1 µ 2 A (1) Z (1) 
Q + Z (1) αs -Z (1) m A (1,mass CT) + A (0) Z (2) 
Q -Z (2) m -Z (1) 
Q Z (1) m + 1 2 Z (1) m 2 
(10.1.16)

A (2,decoupling) =A (1) ren ζ (1) αs = A (1) 
ren

T F n h 1 3 log µ 2 m 2 . (10.1.17) 
where A (2,CT) is the sum of all the counterterm contributions and A (2,decoupling) is the decoupling contribution to go from α s defined with n h + n l flavours to n l flavours. The decoupling can already be applied here to adjust the counterterm contribution and transform the coupling to α

(n l ) s rather perform the expansion at the end of the computation. On an additional side note, we note that the decoupling is proportional to n h only.

A (1,mass CT) is the specific mass counterterm contribution at one-loop level and reads,

A (1,mass CT) =A (0) C F µ 2 m 2 1 4 + - 1 3 - π 2 8 -log 2 + - 19 9 + π 2 16 + log 2 2 -2 log 2 - 7 4 ζ 3 + 2 83 27 + 11π 2 36 - 5π 4 96 + 2 log 2 2 - 2 3 log 3 2 + 1 12 π 2 log 2 + 2 3 ζ 3 , (10.1.18) 
where the expansion up to O 2 is necessary as these will be multiplied with the counterterm coefficients in Appendix B which contain poles and can thus yield finite contributions. 5 We recall that the dimensional regulator originates from D = 4 -2 . We have in Part I of this thesis made a distinction between UV and IR to signify that these poles originate in fact from different phase-space points. The reader may want to compare the mass and the heavy-quark counterterms under this label separation in Eq. 2.3.18. One observes that the two renormalisation factors Z (1)

Q and Z (1)
m are in fact different. We have then shown in Sec. 2.3.4, that after renormalisation of the amplitude, individual contributions may still exhibit IR singularities which however vanish when summed up due to the dipole picture (see Eq. 2.3.24).

We obtain for the counterterm contribution that,

A (2,CT) =A (0) 1 2 A (2,CT),(-2) + 1 A (2,CT),(-1) + A (2,CT),(0) (10.1.19) A (2,CT),(-2) = - 3 32 C 2 F - 1 8 C F T F n h (10.1.20) A (2,CT),(-1) =C 2 F 39 32 - 3π 2 16 - 3 4 log 2 - 3 16 log µ 2 m 2 + C F C A 205 96 - 11π 2 96 + C F T F n l - 17 24 + π 2 24 + C F T F n h - 7 8 + π 2 24 + 1 4 log µ 2 m 2
(10.1.21) (

A (2,CT),(0) =C 2 F 319 192 - 59π 2 64 - 11 2 log 2 + 1 2 π 2 log 2 + 3 4 log 2 2 - 27 8 ζ 3 + 39 16 - 3 8 π 2 - 3 2 log 2 log µ 2 m 2 - 3 16 log 2 µ 2 m 2 + C F C A - 121 
After summing these contributions with the unrenormalised part, we obtain here the UVrenormalised amplitude and can indeed confirm that the double pole vanishes (see Eq. 10.1.20 and Eq. 10.1.6),

A (2),(-2) ren =0, (10.1.23) 
A

= - π 2 4 C 2 F - π 2 8 C F C A . (2),(-1) ren 
The remaining simple pole is the Coulomb IR singularity related to diagrams as in Fig. 10.2. This remaining Coulomb singularity is in full agreement with previous results as in Ref. [START_REF] Czarnecki | Charmonium decays: J / psi -> e+ e-and eta(c) -> gamma gamma[END_REF][START_REF] Feng | Can Nonrelativistic QCD Explain the γγ * → η c Transition Form Factor Data?[END_REF] and will be absorbed into the non-perturbative wavefunction which will then introduce an additional scale µ 2 NRQCD . From Ref. [START_REF] Kniehl | Two-loop matching coefficients for heavy quark currents[END_REF], we have for the anomalous dimension for the pseudo-scalar that,

γ p = - α s π 2 C 2 F + 1 2 C F C A π 2 . (10.1.25)
The anomalous dimension is related to the Coulomb singularity renormalisation via γ p = -d log Z Coulomb /d log µ and we obtain the corresponding counterterm as, (no triple gluon vertex) as shown in Fig. 10.2a contribute with C 2 F colour-factor while the contributions with non-Abelian-like corrections, that proceed via a triple gluon vertex, contribute with C A C F colour factor. Adding up the counterterm contribution for the Coulomb singularity, we obtain that,

A (2,Coulomb-CT) = A (0) ren 1 π 2 4 C 2 F + π 2 8 + π 2 2 C 2 F + π 2 4 log µ 2 µ 2 NRQCD . ( 10 
Ã(2),(-2) ren =A (2),(-2) ren = 0, (10.1.27) Ã(2),(-1) ren =A (2),(-1) ren + A (2,Coulomb-CT),(-1) = 0, (10.1.28) 
where the renormalised amplitude Ãren is now manifestly finite and does not contain any remaining IR singularities.

Final amplitude

After having oulined the renormalisation procedure, we can express the finite renormalised amplitude up to two-loop order as follows,

Ãren = A (0) ren   1 + α (n l ) s π K (1) + α (n l ) s π 2 K (2)   , (10.1.29) 
with

K (1) = C F π 2 8 - 5 2 = -1.2662994498638302510 C F , (10.1.30) 
where the one-loop relative correction, which are of Abelian-type, turn out to be negative. As for the two-loop finite amplitude, we can make the colour decomposition as follows,

K (2) =C 2 F c 1 + C F C A c 2 + C F T F n h c 3 + C F T F n l c 4 + K (2) lbl + K (1) β 0 4 log µ 2 m 2 + K (2) 
Coulomb log

µ 2 NRQCD m 2 (10.1.31)
where we note the appearance of the soft NRQCD scale µ 2 NRQCD in front of K

Coulomb which is the Coulomb singularity contribution with, K

Coulomb = -C 2 F π 2 2 -C F C A π 2 4 . (2) 
In Eq. 10.1.31, we also note the presence of the renormalisation scale with the β 0 -function where we have set n f = n l . The appearance of this additional scale in the finite piece can be traced back to the fact that the renormalisation of the strong coupling in Eq. B.0.6 does not know any mass scale, and, as such, in the MS-scheme it only absorbs the pole without its extension in terms of µ 2 /m 2 . These factors are only present in the heavy quark and the mass renormalisation terms. In addition these also appear in the heavy-quark corrections to the gluon wavefunction.

We have made the distinction of the gauge-invariant light-by-light scattering contributions as

K (2) lbl , K (2) lbl = C F T F n h c 5 + C F T F n l n l i e 2 i e 2 Q c 6 . (10.1.33) 
Before presenting the analytical structures to the two-loop coefficients, we make here a few remarks on the master integrals that occured here. From the analytical point view, these can divided into two group, the integrals expressible in terms of the ordinary polylogarithms only and the integrals which involve elliptic structures. We recall that we have elliptic functions involving two distinct elliptic curves, the one related to the sunrise elliptic curve defined by the branch points given in Eq. 9.2.47 and the one related to integral MS [START_REF] Kuhn | QCD corrections to toponium production at hadron colliders[END_REF] in Eq. 9.2.48 which is only present in the light-by-light contribution 6 .

We note that the contributions to light flavours n l can be casted into ordinary polylogarithmic functions for both the vacuum polarisation contributions in c 4 and for the light-by-light contribution in c 6 . In contrast to this, the heavy quark contribution in c 3 , for the vacuum polarisation, and c 5 , for the light-by-light contribution, involve elliptic functions. As for the contributions C 2 F and C A C F , these involve functions with the sunrise elliptic curve. We have collected these expressions in Appendix J.

We mention that all coefficients contain constants of weight w ≤ 4 which is in agreement with the expectation that the maximal weight for two-loop amplitudes is w = 4 (see Sec. 8.5). Having provided the analytical decomposition and having at disposal the numerical evaluation of all the master integrals up to 200 digits precision, we are now in a position to provide the high-precision numerics to the individual coefficients c i . We present here only the first 50 digits of the series, We note that our numerical results are in full agreement with the ones in Refs. [START_REF] Feng | Can Nonrelativistic QCD Explain the γγ * → η c Transition Form Factor Data?[END_REF][START_REF] Czarnecki | Charmonium decays: J / psi -> e+ e-and eta(c) -> gamma gamma[END_REF]. The precision of the numerical result in Ref. [START_REF] Czarnecki | Charmonium decays: J / psi -> e+ e-and eta(c) -> gamma gamma[END_REF] was 5 digits while the one in Ref. [START_REF] Feng | Can Nonrelativistic QCD Explain the γγ * → η c Transition Form Factor Data?[END_REF] was 10 digits.

c 1 =-21.107897967310671456611138881130917771774965303234 (10.1.34) 
c 2 =-4.7929800010843144501315261426652893266533500212922 (10.1.35) 
c 3 =0.22367201327357266786856189905910233932948224626469 (10.1.36) 
We remark that the light-by-light contributions were neglected7 in the former reference [START_REF] Czarnecki | Charmonium decays: J / psi -> e+ e-and eta(c) -> gamma gamma[END_REF] but were included in the more recent one [START_REF] Feng | Can Nonrelativistic QCD Explain the γγ * → η c Transition Form Factor Data?[END_REF]. Our result for the light-by-light correction is in full agreement again. We note that the authors of the more recent Ref. [START_REF] Feng | Can Nonrelativistic QCD Explain the γγ * → η c Transition Form Factor Data?[END_REF] have decided not to apply the decoupling mechanism for α s as they consider the heavy quark to be involved inside the running of the coupling. With this, they set n f = n l + n h inside the β-function.

As final remark, we mention that, as in the one-loop case, the two-loop purely Abelian corrections c 1 which are proportional to C 2 F are strongly negative.

Decay width at NNLO

We will in the following now construct the exclusive NNLO decay width to di-photon for η c and for η b . At NLO both charmonium and bottomonium have the same correction, it is only at NNLO, primarily due to the massless light-by-light contributions, that the corrections are different due to the flavour dependence in the QED coupling of the initial photons to the fermion loop. We shall set here n h = 1 and n l = 3 for η c and n l = 4 for η b .

Γ η Q →γγ = Γ 0 1 + α s π Γ 1 + α s π 2 Γ 2,Q , (10.1.40) 
where,

Γ 0 = 1 2! 1 8π 1 4m |A (0) ren | 2 = N c α 2 em e 4 Q |R 0 | 2 m 2
(10.1.41) We note that the correction for the bottomonium state is slightly less negative than that of the charmonium decay. With the presence of the non-perturbative scale µ NRQCD which was related to the absorption of the Coulomb singularity inside the LDME, we can conclude that, for a small µ NRQCD scale, the negative value will be overtaken by the positive Coulomb correction 8 .

Γ 1 = -3.3767985329702137937218363333746162882287668642531 (10.1.42) Γ 2,c = -110.17929296928632090731729239434190476040520397143 -7.5977966991829810358741317500928866485147254445694 log µ 2 m 2 -37.285172181893132560041410443976570955629531094021 log µ 2 NRQCD m 2 (10.1.43) 
As for reasonable scale choices for both the renormalisation scale µ R and the NRQCD scale µ NRQCD , we follow the scales we have introduced in the main introduction of this thesis (see Ch. 1). The hard part of the short-distance coefficient is guided by the scale of the heavy-quark mass or the bound state η Q . As what concerns the non-perturbative part, there are two scales at play, the kinetic term mv 2 and the momentum mv. We remind ourselves that for charmonium states we have v 2 ∼ 0.3 while for bottomonium the value is v 2 = 0.1. In computing the decay width and its uncertaintities, we will vary 8 We recall that the contribution to the Abelian coefficient C 2 F is strongly negative. However, we also note that the Coulomb singularity has an Abelian section. As such, one could in a similar spirit, as shown in Part I with the scale prescription for µF , argue that the negative coefficient is due to an over-subtraction of the Coulomb singularity inside the LDME. For the interested reader, we quote here the size of the NRQCD scale µ NRQCD to cancel the negative Abelian c1 coefficient, µ NRQCD = 0.117811m, which is a very low scale. For charmonium with mc = 1.5 GeV, this would correspond to µ NRQCD = 0.176716 GeV which is on the order of Λ QCD .

µ R ∈ [M/ √ 2, √ 2M ] with µ R = M = 2m being
the central scale choice. This scale variation has already been applied in Ref. [START_REF] Feng | Next-to-Next-to-Leading-Order QCD Corrections to the Hadronic width of Pseudoscalar Quarkonium[END_REF]. As for the non-perturbative scale, we will choose µ NRQCD ∈ [mv/ √ 2, √ 2mv] with µ NRQCD = mv being the central scale choice. As for the running of α s , we will make use of the values provided from LHAPDF [START_REF] Buckley | LHAPDF6: parton density access in the LHC precision era[END_REF] from the set CT14nnlo_NF3 for charmonium by fixing n f = 3 and from the set CT14nnlo_NF4 for bottomonium with n f = 4 [START_REF] Dulat | New parton distribution functions from a global analysis of quantum chromodynamics[END_REF]. We use m c = 1.5 GeV and m b = 4.75 GeV. As for the non-perturbative parameter, we have used |R 0 | 2 = 1 GeV 3 for charmonium and |R 0 | 2 = 7.5 GeV 3 for bottomonium state [START_REF] Brodsky | Heavy-Quarkonium Production in High Energy Proton-Proton Collisions at RHIC[END_REF]. We have used for the electromagnetic coupling the value α em = 7.2973 × 10 -3 .

As we vary the µ NRQCD scale by the same ratio for both charmonium and bottomonium, the uncertainty in the coefficients Γ 2,c,b will be identical. We find that for charmonium, the uncertainty around our central scale choice with respect to µ NRQCD is

Γ 2,c = -75.8 ± 25.8, (10.1.45) 
which is rather large. As for bottomonium state, the average and the uncertainty with respect to the non-perturbative scale is, Γ 2,b = -26.5 ± 25.8, (10. 1.46) where the uncertainty is on the same order as the central value.

With these values, we obtain for the charmonium decay rate at NLO and NNLO, Γ NLO ηc→γγ =Γ 0 × 0.737 +0.032 -0.044 = 10.34 +0.45 -0.62 keV, (

Γ NNLO ηc→γγ = Γ 0 × 0.28 +0.11 -0.17 ± 0.16 = 3.9

+1.6 -2.3 ± 2.2 keV , (10.1.48) 
where the first uncertainty is due to the renormalisation scale and the second uncertainty due to the NRQCD scale setting. We note that with this scale variation, the non-perturbative scale has similar uncertainties as the renormalisation scale. We mention here that we do not observe any scale reduction from NLO to NNLO. In particular the corrections are large. The Particle Data Group (PDG) value for the measured η c decay to γγ has been given with [START_REF] Zyla | Review of Particle Physics[END_REF],

Γ exp ηc→γγ = (5.06 ± 0.34) keV, (10.1.49) where our NNLO result within its uncertainties agrees with the data while the NLO does not. This demonstrates that NNLO corrections are indeed essential for charmonium phenomenology.

As for the bottomonium case, the decay is better behaved because of the running of α s , where we remark that the uncertainties with respect to the renormalisation scale are smaller than that of the non-perturbative scale. However, we note that the renormalisation scale uncertainty is very similar at NLO and NNLO. Currently there are no data given in the Particle Data Group concerning the experimental decay width of η b to γγ.

Γ NLO η b →γγ =Γ 0 × 0.809
We would also like to mention that for the charmonium decay width, for some particular choice of µ NRQCD , one can obtain negative pre-coefficients. This negative number is then compensated via another negative number inside Γ 0 , which is the radial wavefunction at the origin |R 0 | 2 . It is clear that this wave-function must be dependent on the scale µ NRQCD . Usually one fits |R 0 | 2 with experimental data. With a knowledge of α s , one would be able to experimentally fit a value of |R 0 | 2 with a given and fixed NRQCD scale with this two-loop decay correction.

The purpose here to compute the NNLO correction for the η Q decay to γγ was two-fold. On one hand, we have at our disposal the full analytical result and in addition significantly improved the numerical precision of the result. One the other hand, having confirmed the previous result, we consider this to be a non-trivial cross-check of our calculation which we have elucidated in the previous chapters. With this, we are now in a position to tackle the hadro-production case which is currently unknown in the literature. The reader should keep in mind that we have investigated in detail the UV renormalisation together with its final-state dependent Coulomb IR singularity. We will encounter this in the next section again.

Form-factor gg ↔ 1 S

[1] 0

In this section we will deal with the hadro-production case gg

→ η Q ( 1 S [1]
0 ) which is currently not available in the literature. The two-loop corrections to this form-factor are the missing ingredient to a full NNLO correction for η Q hadro-production. Having seen and derived the origin of the negative NLO cross-sections for η c production, the question remains whether going to NNLO accuracy would return the cross-section to a positive value. However, in absence of a full NNLO result, the best result is obtained with our new scale prescription as demonstrated in Part I.

We mention that in Ref. [START_REF] Feng | Next-to-Next-to-Leading-Order QCD Corrections to the Hadronic width of Pseudoscalar Quarkonium[END_REF] the authors have computed the hadronic decay rate for η c and η b up to NNLO accuracy. The calculation of the decay rate was done via the optical theorem and under application of the Cutkosky rules. However, the master integrals that appeared in this approach were computed only in numerical form and the structure of the form-factor remains unknown in the literature, both numerically and analytically. So far, no efforts have been undertaken to calculate the cross-section for hadro-production, which is more complex than the decay width, as one will have to convolute the partonic cross-section with the PDFs, which as we have seen in Part I are unconstrained in the low-x region and have anormal distributions.

As aforementioned in the previous section, the ratio of the decay width for η c → γγ versus the one of J/ψ → e + e -has large theoretical uncertainties because the non-perturbative effects do not cancel at two-loop accuracy Ref. [START_REF] Czarnecki | Charmonium decays: J / psi -> e+ e-and eta(c) -> gamma gamma[END_REF]. This is due to the fact that the Coulomb singularities have different structures for the vector and the pseudo-scalar current. For this reason in order to make reliable prediction for η c decay, one can look at the branching of η c → γγ versus η c → gg where the non-perturbative effects will cancel. We will demonstrate that the remaining Coulomb singularity is, indeed, identical between the two different channels and, in fact, depends only on the final state.

One may expect that the UV renormalisation will be similar for the two channels but with the initial-state gluons being colourful partons now, we may encounter remaining IR singularities. We have already dealt with the IR structure of the one-loop case in Part I in Sec. 2.4. At two-loop level, the anticipated IR pole structure will be more complicated with poles up to O -4 . We will investigate and validate the pole structure under application of the generalised IR factorisation formula [START_REF] Catani | The Singular behavior of QCD amplitudes at two loop order[END_REF][START_REF] Becher | Infrared singularities of scattering amplitudes in perturbative QCD[END_REF][START_REF] Becher | Infrared singularities of QCD amplitudes with massive partons[END_REF][START_REF] Becher | On the Structure of Infrared Singularities of Gauge-Theory Amplitudes[END_REF][START_REF] Ferroglia | Two-loop divergences of massive scattering amplitudes in non-abelian gauge theories[END_REF].

Bare amplitude

In this section, we present the structure of the bare amplitude and the types of additional diagrams which were absent in Sec. 10.1. We can already see from Sec. 8.2 that for the gg-channel we need additional master integrals due to the emergence of new topologies. We also note that for several master integrals which we have already treated for the γγ-channel, we require the solutions of one additional higher order in . This is a consequence of the new topologies and the result of the IBP reduction to our set of master integral. However, as what concerns the weight of the amplitude, it will remain maximal weight w = 4.

We will in the following now present the form-factor result for the tree-level, one-loop and two-loop amplitude for the gg ↔ η Q case. We can make a similar expansion in terms of the bare coupling but with the key difference now that the tree-level amplitude contains an α s , as such q = 1. This will have some implication for the renormalisation of the strong coupling as we shall see later on.

Tree-level and one-loop amplitude

The tree-level cross-section takes the following form,

α bare s π A (0) = i √ 2π δ ab |R 0 | m 5/2 √ N c α bare s µνρσ ε µ (k 1 )ε ν (k 2 )k ρ 1 k σ 2 , (10.2.1) 
where δ ab is the Kronecker-delta symbol with the colours of the initial-state gluons being a and b. We had projected here the η Q onto a colour-singlet state such the the colour structure is identical in the case of Higgs hadro-production. Having projected the two heavy quarks to the same colour, one has the trace at leading-order with,

Tr t a t b = T F δ ab = 1 2 δ ab . (10.2.2)
This additional T F factor explains the difference in the colour factor between Eq. 10.2.1 and Eq. 10.1.1 for the γγ one. In the γγ case, taking a trace without any colour matrix will necessarily result into the factor N c . For completeness, we recall that |R 0 | is the radial wavefunction at the origin, m is the mass of the heavy quark Q and µνρσ is the Levi-Civita tensor originating from evaluating traces with γ 5 . We no longer have any flavour-dependent electric charges and can thus conclude that the difference in the correction between charmonium and bottomonium states will only dependent on the number of n l but not on the flavour-type anymore.

We have computed the one-loop amplitude with the same methods via partial fraction decomposition and IBP reduction as for the γγ case. In Sec. 7.3 we have already shown the master integral decomposition for the one-loop amplitude which can be expressed in terms of four simple one-loop integrals (one tadpole, two bubbles and a triangle). At one-loop level one will encounter divergences up to O -2 . For the amplitude squared, we will therefore need to compute the one-loop amplitude up to O 2 which can then contribute to the finite piece.

As aforementioned in Part I, the one-loop correction has already been computed in Ref. [START_REF] Kuhn | QCD corrections to toponium production at hadron colliders[END_REF] in 1991 for a hypothetical toponium state, i.e. a bound system of tt, which cannot bind. This was then confirmed in Ref. [START_REF] Schuler | Quarkonium production and decays[END_REF][START_REF] Petrelli | NLO production and decay of quarkonium[END_REF][START_REF] Maltoni | PhD thesis: Quarkonium Phenomenology[END_REF]. As was remarked in Sec. 2.3, at one loop level only its real part contributes to NLO. However at NNLO, we will need the modulus of the oneloop squared and, thus, need the imaginary contributions as well. We have computed these With this, we are now in a position to present the structure of the one-loop amplitude up to O 2 . We will express the amplitude as follows,

α bare s π 2 A (1) =A (0) S α bare s π 2 1 m 2 1 2 a (-2) 1-loop + 1 a (-1) 1-loop + a (0) 
1-loop + a

(1)

1-loop + 2 a (2) 1-loop (10.2.3) a (-2) 1-loop =C A - 1 2 (10.2.4) a (-1) 
1-loop =C A - iπ 2 + log 2 (10.2.5) a (0) 
1-loop =C A 1 2 + π 2 6 + iπ log 2 -log 2 2 + C F π 2 8 - 5 2 (10.2.6) a 
(1) We note that the singularities at one-loop level have the colour-factor C A which indicates that these type of divergences are related to non-Abelian corrections. Furthermore, we note that the C F contributions are finite and in fact identical with the C F contributions from the γγchannel in Eq. 10.1.2. This indicates that Abelian corrections may be independent from the initial-state partons. In addition, we note that the imaginary contributions are only present in the C A coefficient.

1-loop =C A 1 + π 2 8 - 2 

Two-loop amplitude

We are now ready to present the two-loop amplitude. Compared to the γγ case, the two-loop amplitude for the gg case receives additional contributions from corrections involving triple gluon vertices connected to the initial-state gluons as shown in Fig. 10.3. In addition, we note that the contributions with closed fermions triangle loops as in Fig. 10.3a are now non-zero unlike in the case of γγ where it vanished due to Furry's theorem. In the γγ case, we recall that the fermion triangle loop was connected to two g and a γ and thus resulting into a δ a b colourfactor which could be easily factorised out and is symmetric under exchange of the two gluons. However, in the gg case, three g are now attached to the triangle lines and as such the colour structure is no longer symmetric. This is essentially a one-loop correction to the triple-gluon vertex with a fermion loop insertion.

With the methods and strategies shown in the previous chapters we have computed the two-loop amplitude. Applying partial fraction to resolve the linearly dependent propagators and then applying IBP reduction, we end up with 76 master integrals listed in Sec. 8.2. Unlike in the case for γγ, where the lowest pole was at order O -2 , we expect the pole structure to start at O -4 and to involve in addition to the UV and the Coulomb singularities also IR divergences. We can express the unrenormalised amplitude as follows,

α bare s π 3 A (2) = A (0) S 2 α bare s π 3 1 m 2 2 1 4 c -4 + 1 3 c -3 + 1 2 c -2 + 1 c -1 + c 0 . (10.2.9)
The pole structure for the gg-channel takes the form, Comparing the coefficients of the Abelian colour structures C 2 F , C F T F n h and C F T F n l with the one from γγ in Eq. 10.1.7, we find full agreement as in the case of the one-loop amplitude. These purely Abelian corrections only occur at the double and simple pole and will be removed via the renormalisation procedure. We recall that there is a remaining Coulomb singularity remaining in the C 2 F coefficient. We note that the coefficient for C A C F is not the same between γγ and gg-channels as these additional new topologies also contribute with C A C F colour structure.

c -4 = 1 8 C 2 A (10.2.10) c -3 =C 2 A - 11 96 + iπ 4 - 1 2 log 2 - 3 16 C A C F + 1 6 C A T F n h + 1 24 C A T F n l (10.2.11) c -2 =C 2 A - 139 
We can express the finite piece in the following form, We remark that again as before, checking the Abelian contributions above for C 2 F and C F T F n h , C F T F n l for both vacuum polarisation and the light-by-light contributions, we find that these expressions are in full agreement with the corresponding Abelian contributions in the γγ case in Eq. 10.1.8,

c 0 =C 2 A a AA + C A C F a AF + C 2 F a F F + C A T F n h b Ah + C A T F n l b Al + C F T F n h b F h + C F T F n l b F l + lbl [C A T F n h c Ah + C A T F n l c Al + C F T F n h c F h + C F T F n l c F l ] ,
a 1 = a F F , a 3 = b F h , a 4 = b F l , a 5 = c F h , a 6 = c F l . (10.2.15)
We consider these equalities to be a non-trivial and very strong cross-check of our calculations.

The fact, that we were able to recover the coefficients from the γγ-channel in the previous chapter, confirms that our approach and methods work for both γγ and gg.

In order to understand why the light-by-light contribution which does not exhibit any triple-gluon vertices can yield a C A T F colour factor, it will be instructive to look at Fig. 10.4. The key difference is that the colour structure of the planar and non-planar diagrams take different values. We have labelled the colours of the gluons present in the planar and non-planar graphs and where we have projected the two heavy quark lines onto the colour-singlet state. This yields a trace with the two gluons c and d. In addition to this, we have a second colour trace from the closed fermion loop. We have for the planar and non-planar colour structures that,

c colour,planar = Tr t a t b t c t d Tr t c t d = 1 2 C F T F δ ab c colour,non-planar = Tr t a t c t b t d Tr t c t d = 1 2 C F T F δ ab - 1 4 C A T F δ ab .
(10.2.16)

We note that the Abelian coefficient C F T F remains the same throughout for the planar and non-planar diagrams. This explains why the Abelian coefficients agree with the one from the γγ case, where the diagrams are colour-invariant under permutation of the two gluons and the two photons. However, in the gg-channel, the non-planar graph in Fig. 10.4b acquires an additional C A contribution and, thus, one has a difference between these two class of diagrams. This is then reflected in the contribution of c Ah and c Al above in Eq. 10.2.14.

In a similar fashion the same diagrams considered for the γγ case may in addition to the Abelian part C F yield a contribution proportional to C A which is then included in the coefficients for the C A C F colour-factor etc. Apart from the additional topologies, this difference in the colour structure for planar and non-planar graphs may result into slightly different master integrals where these do not cancel as they would have in the Abelian case. It can also require higher orders in the regulator . We are now in a position to present the renormalisation to this process. 

UV renormalisation

We will proceed with the renormalisation of the amplitude via the counterterm method approach. A key difference to the renormalisation approach in the γγ case is order of α s which enters already at the tree-level with q = 1. This implies that the coupling renormalisation will already affect the one-loop amplitude. This was absent in the case for γγ.

Tree-level and one-loop amplitude

We will below express the renormalised amplitude for the tree-level contribution with α

(n l ) s
which is the renormalised coupling taking into account only the n l massless flavours inside the running,

α (n l ) s π A (0) ren = i √ 2π δ ab |R 0 | m 5/2 √ N c S -1 µ 2 α (n l ) s µνρσ ε µ (k 1 )ε ν (k 2 )k ρ 1 k σ 2 , (10.2.17) 
where above the µ 2 originated from the transition from the bare to the renormalised coupling and introduces the renormalisation scale.

We have noted in the preceding section, that the one-loop bare amplitude contained poles up to O -2 with colour factor C A as prefactor. Computing the counterterm contribution for the one-loop amplitude we obtain that, (1) g + Z (1) αs + Z

  α (nf ) s π   A (1,CT) = A (0) ren   α (nf ) s π   Z
(1) .2.18) Compared to the situation for the γγ channel in Eq. 10.1.13, we have in addition the counterterms for the gluon wavefunction and the strong coupling renormalisation. Concerning the gluon wavefunction, if one considers only massless fermion loops and the gluon self-coupling, as there are no scales, these integrals vanish within dimensional regularisation 9 . However, as the expansion of α s is done around n f = n h + n l , we will need to consider the contributions of massive fermion loops with n h flavours and as these contain scales of the mass, the gluon wavefunction is non-zero here. We note that the higher order expressions of Z g are proportional to n h . However, as we interested in renormalising the coupling with respect to n l massless quarks only, we will need to apply the decoupling theorem which unlike in the γγ case, already acts at one-loop level. The corresponding term for the decoupling is,

Q -Z (1) m . ( 10 
A (1,decoupling) = A (0) 
ren ζ (1) αs =A

ren T F n h Therefore, we obtain for the one-loop renormalised amplitude that, (1,decoupling) . (10.2.20)

α (n l ) s π 2 A (1) ren = α (n l ) s π 2 µ 2 S -1 A (1) + A (1,CT) + A
We thus obtain for the one-loop renormalised amplitude that,

α (n l ) s π 2 A (1) ren = A (0) ren α (n l ) s π 2 1 2 b (-2) 1-loop + 1 b (-1) 1-loop + b (0) 
1-loop + b

(1)

1-loop + 2 b (2) 1-loop (10.2.21) b (-2) 1-loop =a (-2) 1-loop = - 1 2 C A (10.2.22) b (-1) 
1-loop =a

(-1)
1-loop -

β 0 4 + log µ 2 m 2 a (-2) 1-loop =C A - iπ 2 + log 2 - 1 2 log µ 2 m 2 - β 0 4 (10.2.23) b (0) 
1-loop =a (0)

1-loop + log µ 2 m 2 a (-1) 1-loop + 1 2 log 2 µ 2 m 2 a (-2) 1-loop =C A 1 2 + π 2 6 + iπ log 2 -log 2 2 - 1 2 iπ log µ 2 m 2 + log 2 log µ 2 m 2 - 1 4 log 2 µ 2 m 2 + C F π 2 8 - 5 2 (10.2.24) b (1) 
1-loop =a

(1)

1-loop + log µ 2 m 2 a (0) 1-loop + 1 2 log 2 µ 2 m 2 a (-1) 1-loop + 1 6 log 3 µ 2 m 2 a (-2) 1-loop (10.2.25) b (2)
1-loop =a

(2)

1-loop + log µ 2 m 2 a
(1)

1-loop + 1 2 log 2 µ 2 m 2 a (0) 1-loop + 1 6 log 3 µ 2 m 2 a (-1) 1-loop + 1 24 log 4 µ 2 m 2 a (-2)
1-loop .

(10.2.26)

We note that after applying the decoupling theorem, the contribution from the gluon wavefunction disappears and one only has the contribution from the strong coupling renormalisation, which introduced the β 0 term at the simple pole. As we have renormalised the amplitude with respect to n l light flavours inside the running of the coupling, the coefficient in the β 0 are with respect to n f = n l flavours only.

As before, the contributions from the heavy-quark mass and quark wavefunction renormalisation cancel. We note that the renormalised amplitude does not differ from the bare amplitude apart from the introduction of the β 0 -function and the expansion of µ 2 /m 2 at each order of 10 .

Two-loop amplitude

We are now in a position to proceed with the renormalisation of the two-loop amplitude. We expect that the renormalisation will start to affect the triple pole as we will have to multiply the correction to the one-loop amplitude which starts at the double pole. We can express the renormalised amplitude in the following form, (2,decoupling) , (10.2.27)

α (n l ) s π 3 A (2) ren = α (n l ) s π 3 S -2 µ 4 A (2) + A (2,CT) + A
A (2,CT) =S -1 µ 2 A (1) Z (1) g + 1 2 Z (1) αs + Z (1) Q -Z (1) m A (1,mass CT) + A (0) 
ren Z (1) αs Z (1) g + Z

(1)

Q -Z (1) m + Z (2) αs + Z (2) g -Z (1) g Z (1) 
Q -Z (1) m + Z (2) Q -Z (2) m -Z (1) m Z (1) 
Q + 1 2 Z (1) m 2 ,
(10.2.28)

A (2,decoupling) =A (0) ren ζ (2) αs + 2 A (1) 
ren -A (1,decoupling) ζ (1) αs ,

where above in the last line we have expressed the decoupling expression for the two-loop amplitude. It should be kept in mind that the decoupling mechanism only works when all terms have been expanded in α

(n f ) s
. However, as we have already renormalised the one-loop amplitude A

ren in α

(n l )
s , we will need to convert this expression back to an expansion in α

(n f ) s , hence the subtraction in Eq. 10.2.29. The factor two in Eq. 10.2.29 comes from the power of α 2 at one-loop. Any decoupling contributions from the two-loop amplitude would affect only higher-orders terms such as three-loop amplitude etc.

We present below the result for the non-trivial one-loop correction due to the mass counterterm, where we have computed the corrections up to O 2 as these higher-order terms, multiplied with the counterterm renormalisation factors Z i , will yield finite pieces.

A (1,mass CT) = A (0) ren µ 2 m 2 1 4 2 C A + 1 C A - 3 4 + iπ 2 - 1 2 log 2 - 1 4 C F + C A -
We can now express the two-loop counterterm as before in the coefficients. However this time, as the decoupling term due to the involvement of the one-loop amplitude will affect the double pole, we will in the following give the expression for the two-loop counterterm summed with the decoupling expression such that we can immediately compare the pole structure with the one of the bare expression. We obtain that,

A (2,CT+dec) =A (2,CT) + A (2,decoupling) =A (0) ren 1 3 A (2,CT+dec),(-3) + 1 2 A (2,CT+dec),(-2) +
1 A (2,CT+dec),(-1) + A (2,CT+dec),( 0) , (10.2.31) 

A (2,CT+dec),(-3) = 11 12 C 2 A - 1 3 C A T F n l - 1 6 C A T F n h + 3 16 C A C F (10.2.32) A (2,CT+dec),(-2) = - 3 32 C 2 F + 1 8 C F T F n h + C A C F 13 
m 2 + 1 9 T 2 F n 2 l + C A T F n l - 11 18 - iπ 3 + 2 3 log 2 - 1 3 log µ 2 m 2 + C A T F n h - 1 16 - iπ 6 + 1 3 log 2 - 1 3 log µ 2 m 2 (10.2.33) 
A (2,CT+dec),(-1) =C 

+ C F T F n h - 7 8 + π 2 24 + 1 4 log µ 2 m 2 + C F T F n l - 17 12 + π 2 12 + C A T F n h 7 32 + π 2 24 + 1 3 iπ log 2 - 1 3 log 2 2 - 1 8 log µ 2 m 2 - 1 3 iπ log µ 2 m 2 + 2 3 log 2 log µ 2 m 2 - 1 3 log 2 µ 2 m 2 + C A T F n l 13 24 + π 2 9 + 2 3 iπ log 2 - 2 3 log 2 2 - 1 3 iπ log µ 2 m 2 + 2 3 log 2 log µ 2 m 2 - 1 6 log 2 µ 2 m 2 (10.2.34)
We will refrain from giving the full expression for the finite piece originating from the renormalisation.

We would like to make a few remarks. We have fully expanded out the quantity µ 2 /m 2 above. The reader should realise that this factor cannot be factorised out in a global fashion as we have renormalised the coupling and the coupling does not involve such factors. As an example, we observe at the triple pole above in Eq. 10.2.32, that the first two terms are nothing else than proportional to the β 0 coefficient. At the double pole, this β 0 coefficient is accompanied with a log µ 2 /m 2 term. This originates from the combination of the coupling renormalisation and the one-loop amplitude which involves this ratio in the prefactor as µ 2 /m 2 . However, the global factor for the unrenormalised two-loop amplitude comes with double power as µ 2 /m 2 2 because each loop contributes with this factor. It is therefore necessary to perform the expansion in a rigorous manner.

In addition, we note that at the double pole, we observe a term proportional to β 2 0 which originates from the two-loop coupling renormalisation multiplied with the tree-level amplitude. As such, there are no logarithms involved in µ 2 /m 2 and carried over to the simple pole. We keep in mind that there will be a Coulomb singularity remaining and we expect this singularity to be the same as in the γγ-channel. In order to extract its structure we will first check the IR-pole structure and extract any remaining pole from it, which will then the remaining Coulomb singularity. Before presenting the pole structure, in order to save space we define, With this, we are now in a position to proceed with the check of the IR-pole structure in the next section.

l µ = log µ 2 m 2 . ( 10 
Before, we would like to make two observations. Compared to the pole structure for the unrenormalised amplitude, the pole structure here no longer has any dependencies on n h which indicated the number of the heavy quark flavours. All such dependencies that occured previously only contained UV poles but no IR poles due to their massive propagators. Subsequently, these have all been removed via the renormalisation procedure. In addition, we recall that we have renormalised with respect to the strong coupling depending only on n l light flavours. If one is interested in renormalising with respect to n f = n l + n h flavours, one can return to the decoupling coefficient and undo the subtraction.

The second observation that we would like to make is that all purely Abelian contributions at the triple and double pole have disappeared as these only contained UV singularities and were related to the corrections to the heavy quark legs of the quarkonium state only. However, we observe that at the simple pole a C 2 F contribution has survived. From the knowledge from the γγ case, we can immediately identify this with the Abelian part of the Coulomb singularity. As for the non-Abelian contribution to this Coulomb singularity with colour structure C A C F , we will first need to perform the check on the IR pole structure and extract the remaining piece.

IR-pole structure check & Coulomb singularity

As we have removed all UV singularities with the procedure of UV renormalisation, at this stage the amplitude still contains IR poles and a remaining process-dependent Coulomb singularity. The purpose of this sub-section is to validate the IR pole structure and extract the remaining Coulomb singularity. The IR pole structure can be expressed in a universal manner and is process-independent. This factorisation has been demonstrated by S. Catani in Ref. [START_REF] Catani | The Singular behavior of QCD amplitudes at two loop order[END_REF] and extended in Ref. [START_REF] Becher | Infrared singularities of scattering amplitudes in perturbative QCD[END_REF][START_REF] Becher | Infrared singularities of QCD amplitudes with massive partons[END_REF][START_REF] Becher | On the Structure of Infrared Singularities of Gauge-Theory Amplitudes[END_REF][START_REF] Ferroglia | Two-loop divergences of massive scattering amplitudes in non-abelian gauge theories[END_REF]. The pole structure depends on the colour structure and the number of initial-state and final-state partons.

As the quarkonium is in a colour-singlet state, we expect that the IR pole structure should be comparable to the structure in Higgs production with the exception of the Coulomb IR singularity which is specific for quarkonium states being at threshold ŝ = 4m 2 . It can be shown that one can derive an IR Z renormalisation factor similarly in the case of UV divergence and is related to the IR-finite amplitude A fin as,

A fin = Z -1 IR A ren , (10.2 

.37)

where A ren is the UV-renormalised amplitude from the previous section which still contains some IR poles. Thus, the pole structure is entirely encoded in Z IR . Its form can be derived from the differential equation,

d d log µ Z IR = -Γ IR Z IR , (10.2.38) 
where Γ IR is the colour-space matrix anomalous dimension. We would like to clarify that the Z IR is in fact a matrix in the colour-space and depends on the colour-structure of the amplitude A ren .

The anomalous dimension matrix takes the most general form up to two-loop order [241,

Γ IR = (i,j) T i • T j 2 γ cusp log µ 2 -s ij + i γ i - (I,J) T I • T J 2 γ cusp (β IJ ) + I γ I + I,j T I • T j γ cusp log m I µ -s Ij + (I,J,K) if abc T a I T b J T c K F 1 (β IJ , β JK , β KI ) + (I,J) k if abc T a I T b J T c k f 2 β IJ , log -σ Jk v J • p k -σ Ik v I • p k + O α 3 s , (10.2.39) 
where the lowercase indices i stand for massless partons and the uppercase indices I for massive ones. One sums over the colourful initial-state and final-state partons.

We mention here that the T i are the colour matrices of parton i to emit a gluon and takes the following form for gluons, (T a ) bc = -if abc , which is the adjoint representation. For the emission of a gluon from the initial-state quarks and final-state anti-quarks one has that (T a ) αβ = -t a βα and for a final-state quark and initial-state anti-quark one has (T a ) αβ = t a αβ where the colour-factor is in the fundamental representation. The notation above indicates T i • T j = a T a i • T a j where the gluon with colour a is connected between the two different partons i and j.

The sum (i,j) indicates that the sum is over two distinct partons with i = j. These represent the structures from two-parton correlators. We have the following relations,

T i • T j =T j • T i
where i = j,

T 2 i =C i , (10.2.40) 
where the C i are the Casimir operators of the fundamental and adjoint representations and take the following forms,

C i = C A if i is a gluon and C i = C F if i is a (anti-)quark.
It should be clear to the reader that the colour flow is conserved under consideration of all partons involved in the process. One then has that,

i T i + I T I = 0. (10.2.41)
In fact, the relation above applies equally to each subset of partons which combined is in a colour-singlet state. Making use of this colour conservation, it turns out that one can make a general statement relating these three two-parton colour correlators. We have that, (I,J)

T I • T J = - I T I - (I,j) T I • T j , (i,j) T i • T j = - j T j - (I,j) T I • T j . (10.2.42)
With this, we note that we only need to know the expressions for the Casimirs and the colourdependent value of only one of these three colour-correlators I,j T I • T j , I,J T I • T J and i,j T i • T j in order to be able to compute the remaining two.

In Eq. 10.2.39, γ cusp is the cusp anomalous dimension and the γ i are the anomalous dimensions related to parton i which include the contributions from one-parton correlators, i.e. gluon emissions from and to the same parton i. In addition, for the case involving massive partons, one has a generalised anomalous cusp dimension γ cusp (β) depending on the kinematics of the two heavy quark partons I and J with β IJ . We have listed the exact expressions to these coefficients in Appendix C.

As what concerns σ ij , it takes the value +1 if the momenta of partons i and j are either both incoming or both outgoing and -1 otherwise. In addition, one has that p 2 I = m 2 I and v I = p I /m I . As for β IJ , it only affects the kinematics of the massive partons and one has that cosh β IJ = -s IJ /(2m I m J ), where the variable s ij is defined as,

s ij = 2σ ij p i p j + i 0 + , (10.2.43) 
with i 0 + being the indicator for the imaginary part for the analytic continuation. This implies that for the log s ij dependencies in Eq. 10.2.39 with our kinematics we have that,

log µ 2 -s ij = log µ 2 -4m 2 = l µ -2 log 2 + iπ, (10.2.44 
)

log m I µ -s Ij = log µ 2m = 1 2 l µ -log 2, (10.2.45) 
where above we have used the abbreviation l µ = log µ 2 /m 2 .

The first two lines of the anomalous dimension matrix in Eq. 10.2.39 start at order α (n l ) s whereas the last two lines representing three-parton correlators start at (α

(n l ) s ) 2 .
In the case of gg → H form-factor calculation, as there are only two partons involved, one only needs to consider the first line. For the colour-octet states, one will need in addition to consider the second line as well. The third line, representing the correlations between three massive quarks are not needed for open tt production [START_REF] Becher | Infrared singularities of QCD amplitudes with massive partons[END_REF][START_REF] Bärnreuther | Virtual amplitudes and threshold behaviour of hadronic top-quark pair-production cross sections[END_REF]. In addition, it was noted in Ref. [START_REF] Bärnreuther | Virtual amplitudes and threshold behaviour of hadronic top-quark pair-production cross sections[END_REF][START_REF] Ferroglia | Two-loop divergences of massive scattering amplitudes in non-abelian gauge theories[END_REF] that the fourth line was not needed for tt production as well. We remark that the function f 2 in Eq. 10.2.39 depends on the velocities v I and v J and is anti-symmetric in the second argument with respect to interchange of partons I and J [START_REF] Becher | Infrared singularities of QCD amplitudes with massive partons[END_REF].

We can now proceed and construct the anomalous dimension matrix for the colour-singlet state based on the first line in Eq. 10.2.39. For the interested reader, we have collected some details concerning the contribution coming from the second line involving the interactions of the heavy-quark pair in Appendix. D. As the heavy-quark pair and the initial-state gluon pair are both in a colour-singlet state, we can make use of colour conservation and simplify, 10.2.46) where in the last line we have taken into account that the initial-state partons are gluons. With this, the anomalous dimension in the colour-singlet (cs) space for η Q and for H production takes the following form in gluon fusion,

j =i T j = -T i , (i,j) T i • T j = - i T 2 i = - i C i , = -2C A , ( 
Γ cs gg = -C A γ cusp (l µ -2 log 2 + iπ) + 2γ g , = α (n l ) s π -C A (l µ -2 log 2 + iπ) - β 0 2 + α (n l ) s π 2 -C A C A 67 36 - π 2 12 - 5 9 T F n l (l µ -2 log 2 + iπ) + C 2 A - 173 54 + 11π 2 144 + 1 4 ζ 3 + C A T F n l 32 27 - π 2 36 + 1 2 C F T F n l .
(10.2.47)

With this, we are now in a position to construct the IR renormalisation factor. We expect that the remaining Coulomb singularity should take exactly the same structure as for the exclusive decay to γγ which is otherwise free from any divergences. Solving Eq. 10.2.38, one obtains the the IR renormalisation factor with [START_REF] Ferroglia | Two-loop divergences of massive scattering amplitudes in non-abelian gauge theories[END_REF],

Z IR =1 + α (n l ) s π Γ 0 4 2 + Γ 0 2 + α (n l ) s π 2 (Γ 0 ) 2 32 4 + Γ 0 8 3 Γ 0 - 3 2 β 0 + Γ 0 8 2 (Γ 0 -2β 0 ) + Γ 1 16 2 + Γ 1 4 , (10.2.48) 
where above the variable Γ is defined as,

Γ = ∂ ∂ log µ Γ = -γ cusp i C i = -2C A α (n l ) s π -2C A α (n l ) s π 2 C A 67 36 - π 2 12 - 5 9 
T F n l .

(10.2.49)

The equality shown above in the first line is universal and originates from collecting the log µdependencies in the general anomalous dimension matrix in Eq. 10.2.39,

∂Γ ∂ log µ = (i,j) T i • T j γ cusp + (I,j) T I • T j γ cusp =γ cusp j T j •   i =j T i + I T I   =γ cusp j T j (-T j ) = -γ cusp j C j .
(10.2.50)

In the equation above, we have in the step from the second to the third line made use of colour conservation (see Eq. 10.2.41). When expressing the coefficients for the Z IR in Eq. 10.2.48, we have made use of the expansion of the coefficients for the anomalous dimension and its derivative in the following form, .2.51) With this, we can now reconstruct the pole structure at one-loop and two-loop via the expansion by making use of Eq. 10.2.37 and Eq. 10.2.48,

Γ = k=0 Γ k α (n l ) s π k+1 , Γ = k=0 Γ k α (n l ) s π k+1 . ( 10 
A fin = α (n l ) s π A (0) ren + α (n l ) s π 2 A (1) 
ren -A

ren Z

(1) IR + α

(n l ) s π 3 A (2) 
ren -A

ren Z

(1)

IR -A (0) 
ren Z

(2)

IR -Z (1) IR 2 . 
(10.2.52)

The one-loop pole structure takes then the form, A

IR-struc =A

ren Z

(1) IR (10.2.53)

A (1),( -2) 
IR-struc = -

1 2 C A , A (1) 
,(-1)

IR-struc =C A - iπ 2 + log 2 - 1 2 l µ - β 0 4 , (10.2.54) 
which is in full agreement with the pole structure of the renormalised amplitude in Eq. 10.2.22 and Eq. 10.2.23.

We will now proceed with the pole structure of the two-loop amplitude, A

IR-struc =A

(1)

IR + A (0) ren Z 
(2)

IR -Z (1) IR 2 (10.2.55) 

A

(2),(-4)

IR-struc = 1 8 C 2 A A (2),( -3) 
IR-struc =C Checking the pole structure of the renormalised amplitude from the previous section in Eq. 10.2.36 with the poles above, we can indeed confirm that the quadruple, the triple and the double pole are in full agreement. As for the simple pole, we find as expected a remainder for the Coulomb singularity which is,

A

(2),(-1) ren -A

(2),(-1)

IR-struc = - π 2 4 C 2 F - 1 2 C A C F . (10.2.57)
Comparing the Coulomb structure above with the one from the previous section in the γγchannel, we find that the Coulomb singularity is indeed the same for γγ and gg-channels. This is not surprising given the fact that the Coulomb singularity here originates from corrections related to the heavy quark lines only inside the colourless dipole and, as such, does not depend on the initial-state partons. We can now proceed and renormalise the Coulomb singularity via the same renormalisation procedure with Z Coulomb (see Eq. B.0.8) as in the previous section with,

A (2,Coulomb-CT) =Z (2) Coulomb A (0) ren =A (0) ren 1 π 2 4 C 2 F + π 2 8 + π 2 2 C 2 F + π 2 4 log µ 2 µ 2 NRQCD .
(10.2.58)

With this, we again have an explicit dependence on the NRQCD scale µ NRQCD . We mention here in passing that in Ref. [START_REF] Feng | Next-to-Next-to-Leading-Order QCD Corrections to the Hadronic width of Pseudoscalar Quarkonium[END_REF] where the authors have computed the η Q hadronic decay width numerically, they found that after combining all contributions from the form-factor and the real radiation side indeed a singularity of exactly the same structure above remained which is then removed via the Coulomb IR renormalisation. Now that the IR pole structure of our two-loop form-factor has been confirmed explicitly and the same Coulomb structure obtained as in the exclusive process, we can now proceed in showing the finite piece of the amplitude in the next section.

Final amplitude

We can now proceed and show the finite piece of the two-loop amplitude after having applied the IR renormalisation as in Eq. 10.2.37,

A fin = α (n l ) s π A (0) ren   1 + α (n l ) s π K (1) + α (n l ) s π 2 K (2)   , (10.2.59) 
with where we note that the Abelian contribution is the same as for γγ and negative. The new non-Abelian contributions related to corrections involving initial state gluons are positive and involve an imaginary part. We also note the presence of the renormalisation scale in l µ in the non-Abelian part only. As for the two-loop correction in A

K (1) =C F π 2 8 - 5 2 + C A π 2 6 + 1 2 -log 2 2 + iπ log 2 + l µ log 2 - iπ 2 - 1 4 l 2 µ , = -1.2662994498638302510 C F + C A [(
(2)

fin , we would like to mention that it receives corrections from both A IR will give finite piece. With the additional colour structure present here, we can now express K (2) as,

K (2) =C 2 A a AA + C A C F a AF + C 2 F a F F + C A T F n h b Ah + C A T F n l b Al + C F T F n h b F h + C F T F n l b F l + K (2) lbl + K (1) β 0 4 l µ + K (2) Coulomb l µ NRQCD , (10.2.61) 
where we have defined,

l µ NRQCD = log µ 2 NRQCD m 2 . (10.2.62)
We remark that we have factorised out the l µ contribution which depends on the one-loop finite amplitude and the β 0 function in order to be able to make comparisons with the γγ case. The coefficients where we had removed the IR singularity via the IR renormalisation procedure may still contain additional l µ terms.

As before µ NRQCD is the soft NRQCD scale due to the Coulomb singularity. Its coefficient

K (2)
Coulomb is the same as for γγ-channel shown in the previous section due to the fact that it only depends on the final-state dipole. We have that,

K (2) Coulomb = -C 2 F π 2 2 -C F C A π 2 4 . ( 10 

.2.63)

As before, the light-by-light contributions are unaffected by the procedure of UV renormalisation and are a gauge-invariant subset. We can parametrise the contributions relating to the Abelian and the non-Abelian parts as follows, K

lbl = C A T F n h c Ah + C A T F n l c Al + C F T F n h c F h + C F T F n l c F l . (2) 
Having defined all the coefficients that appear in the two-loop amplitude, we can now make some comparisons with the γγ-channel result from the previous section. We can indeed confirm that all Abelian corrections, namely the coefficients a F F , b F h , b F l , c F h and c lh are in full agreement with the γγ-channel. We consider this to be a highly non-trivial check of our calculations in addition to the IR pole structure check in the previous section. For for the Abelian contribution of the amplitude, we are referring to the coefficients indicated in Eq. J.0.1, Eq. J.0.3, Eq. J.0.4, Eq. J.0.5 and Eq. J.0.6 and have the relations,

a F F = c 1 , b F h = c 3 , b F l = c 4 , c F h = c 5 , c F l = c 6 .
(10.2.65)

As such, it is indeed only the non-Abelian contributions which are new here. We have collected these expressions in Appendix J.

In passing, we remark that the coefficients of C A C F for the gg and the γγ differ as the ggchannel receives additional contributions from corrections with gluons connecting the heavy quarks and the initial-state gluons. In addition, similarly, as was shown in the case for the light-by-light contributions, the same type of topologies that occured in γγ-channel can now yield in addition to the usual Abelian C 2 F terms also non-Abelian C A C F contributions due to the colour trace, which involves the colour matrices of the initial-state gluons that were absent in the γγ case (see Eq. 10.2.16).

We remark that as before, all the non-Abelian contributions proportional to the number of light flavours can be casted in terms of the ordinary polylogarithms only. Having given the analytical expressions, we are now in a position to give full numerical results up to 200 digits precision. We will present only the first 50 digits of the series, 

a FF =-

Hard function

With these high-precision numerics we can now define the hard function of the amplitude as follows,

H gg,cs = 1 + i=1 α (n l ) s π K (i) 2 . =1 + α (n l ) s π H (1) 
gg,cs + α

(n l ) s π 2 H (2) 
gg,cs + O α 3 s (10.2.77)

We will now give the numerical result for the hard function up to two-loop accuracy. This hard function comprising the crucial two-loop contribution is the last missing piece for a full NNLO for η Q production. This function will be combined with the contributions from the real emission side. This can be implemented for example with the phase-space slicing method [START_REF] Harris | The Two cutoff phase space slicing method[END_REF] or the FKS subtraction scheme [START_REF] Frixione | Three jet cross-sections to next-to-leading order[END_REF] which both employ the q T -subtraction method [START_REF] Catani | An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC[END_REF]. In addition, with this hard function, one can use the hard function within Transverse Momentum Distribution (TMD) factorisation [START_REF] Collins | Transverse Momentum Distribution in Drell-Yan Pair and W and Z Boson Production[END_REF][START_REF] Collins | Foundations of perturbative QCD[END_REF] and compute the cross-section at low p T . As the production or decay of charmonium and bottomonium states involve different number of light flavours, we give below the result for both η c and η b , where we use n l = 3 for the former and n l = 4 for the latter. This only affects the two-loop result. In addition, we set where we note that the difference in n l between the charm and the bottom quarks is very small. We observe again the dependence on the renormalisation scale µ and the NRQCD scale µ NRQCD .

C A = 3, C F = 4 3 , T F = 1 2 and n h = 1, H (1) 
The hard functions alone do not have any physical meaning and it therefore does not make sense to investigate its uncertainty. However, for completeness and in order to have an estimate of the size, we quote below the value at µ = 2m and µ NRQCD = mv, H 

H (2) gg,cs,η b | µ=2m,µ NRQCD =mv =22.683616986402571905831539145079548028675360333002, (10.2.83) 
where we have used v 2 = 0.3 for charmonium and v 2 = 0.1 for bottomonium states.

Having provided for the first time the hard function involving the two-loop contributions, which were indeed the bottleneck for a full NNLO calculation, we have prepared the ground for the first complete computation at NNLO of inclusive quarkonium production, which will allow us to investigate the convergence of the perturbative series for charmonium and bottomonium production.

Form-factor γγ ↔ para-positronium

The para-positronium decay to γγ was already computed nearly 20 years ago in Ref. [START_REF] Czarnecki | Alpha**2 corrections to parapositronium decay: A Detailed description[END_REF][START_REF] Czarnecki | alpha**2 corrections to parapositronium decay[END_REF]. The precision of the result was around 5 digits. We will now show in this section how to obtain the analytical para-positronium amplitude up to two loops within the framework of NRQED. Since in QED, the triple-photon vertex is absent, we only have Abelian contributions. Having already computed these for the γγ and the gg-channels which were identical, we can now make use of these for the positronium form-factor. In order to obtain the QED corrections from either γγ or gg-channels, we apply the following replacements,

C F → 1, C A → 0, T F → 1. (10.3.1)
Equipped with these transformation rules, we can now express the form-factor for the parapositronium decay up to two-loops. We can then express the bare amplitude in terms of these Abelian coefficients from the previous sections. As we are considering here the decay to di-photon, there are no other IR singularities remaining apart from the Coulomb singularity.

10.3. FORM-FACTOR γγ ↔ PARA-POSITRONIUM Therefore all UV singularities of the bare amplitude should be removed via the procedure of UV renormalisation which we have already investigated in detail in the preceding two sections. There exist however some minor differences concerning the QED renormalisation procedure. Since we are working in purely Abelian theory, one has to remove all the C A coefficients in the renormalisation factors as well. In addition, for the vertex corrections, the photon and the coupling α em renormalisation factors exactly cancel out via virtue of Abelian QED theory. As such one only needs to consider the renormalisation of the massive lepton wavefunction and the renormalisation of the mass here. As the positronium consists of the lightest charged leptons here, there are no lighter flavours that we can consider. Therefore we set n l = 0 and n h = 1.

For the leading-order contribution, we obtain for the renormalised amplitude that,

α em π A (0) ren = 2i √ 2π|R NRQED 0 | m 5/2 e 2 α em µ 2 µνρσ ε µ (k 1 )ε ν (k 2 )k ρ 1 k σ 2 . (10.3.2)
For the one-loop renormalised contributions we have that,

α em π 2 A (1) ren = A (0) ren α em π 2 π 2 8 - 5 2 . (10.3.3)
And for the two-renormalised amplitude we have that by setting n l = 0 and n h = 1,

α em π 3 A (2) ren = A (0) ren α em π 3 t reg + t vac + t lbl + t Coulomb , (10.3.4) 
where t reg indicates the regular two-loop corrections with photon exchanges, t vac indicates the vacuum polarisation contribution and t lbl is the light-by-light contribution. We have depicted these in Fig. 10.5. We would like to state that each of these contributions is gauge-invariant. We can match these contributions to the Abelian coefficients c 1 , c 3 and c 5 in Eq. J.0.1, Eq. J.0.3 and Eq. J.0.5, In order to remove this singularity, we can either make use of the same Coulomb singularity counterterm as before by setting C F → 1 and C A → 0. We would then obtain for the coefficient t Coulomb ,

t
t NRQED Coulomb = - π 2 2 log µ 2 NRQED m 2 , ( 10.3.9) 
where we have then introduced the NRQED scale inside the log with m being the mass of the electron. In Ref. [START_REF] Czarnecki | Alpha**2 corrections to parapositronium decay: A Detailed description[END_REF], the Coulomb singularity has been removed via an explicit computation in the soft part. If we make use of their result in the soft contribution, we would get for the finite piece,

t soft contr. Coulomb = 107π 2 48 , (10.3.10) 
Comparing the two expressions, one could match the contributions with µ NRQED ∼ 0.107618m. We shall make use of the soft contribution computed in Ref. [START_REF] Czarnecki | Alpha**2 corrections to parapositronium decay: A Detailed description[END_REF], .3.11) With this, we have the full analytical result and the high-precision numerical results up to 200 digits. We give below only the first 50 digits of the series, where we note that the negative contribution in the hard part are overturned by the positive soft contribution. For the quarkonium case in the previous sections, this would essentially correspond in choosing a low NRQCD scale such that the Coulomb contributions are overturning the negative contributions in the hard part. We mention here, that the coefficients above are in agreement with Ref. [START_REF] Czarnecki | Alpha**2 corrections to parapositronium decay: A Detailed description[END_REF]. We will in the following now construct the NNLO correction to the decay width of the positronium to γγ,

t Coulomb = t soft contr. Coulomb . ( 10 
t reg =-21.107897967310671456611138881130917771774965303234, (10.3 
Γ p-Ps→γγ = Γ 0 1 + α em π Γ 1 + α em π 2 Γ 2 , (10.3.16) 
where the leading order contribution can be expressed as, We would like to mention that in Ref. [START_REF] Czarnecki | Alpha**2 corrections to parapositronium decay: A Detailed description[END_REF] logarithmic corrections in the coupling have been taken into account. We have omitted these above.

Γ 0 = α 2 em m 2 |R NRQED 0 | 2 = mα 5 em 2 ( 
From the previous results in the form-factors for the γγ and the gg channels, we have managed to recover the two-loop corrections for the regular part, for the vacuum polarisation and for the light-by-light contributions via the colour transformations in Eq. 10.3.1 which correspond to the purely Abelian contributions. In addition, we have recovered the remaining Coulomb singularity in the Abelian part. In order to remove this singularity we could have made use of the Coulomb counterterm as we have done before which would have introduced the NRQED scale. However here, we have decided to make use of the soft contribution in Ref. [START_REF] Czarnecki | Alpha**2 corrections to parapositronium decay: A Detailed description[END_REF], where the Coulomb singularity has been cancelled against the term in the soft part. Since we have the full analytical and numerical results to all the two-loop master integrals in the hard part, we were able to provide high-precision numerical results to the NNLO decay width.

Additional remarks & other form-factors

Having computed the master integrals analytically and numerically, we may want to assess the question, whether we can make use of these master integrals and express additional quarkonium form-factors in a complete analytical fashion and provide high-precision numerics to these.

As for the colour-octet states for the pseudo-scalar 1 S

[8] 0 , we can indeed confirm that we have already computed all the master integrals needed for the gg and the γg-channels to produce a colour-octet state. In fact, in the latter channel, there appears a new master integral in addition to the ones we have shown. However, with the methods outlined in Sec. 9, we have computed this master integral in a straightforward manner. As such, we have the full analytical and numerical results for the colour-octet state form-factors and we have tentatively confirmed its IR pole structure. We already mentioned that some of the coefficients in the anomalous dimension matrix in Eq. 10.2.39 have been computed for non-zero v. However in our calculation we had set v = 0 from the very beginning. As such, it is necessary to compute these coefficients at v = 0 rather than the limit v → 0. The coefficients with finite v-effects have been computed via a matching such that these reproduced the velocity-dependent anomalous dimension in HQET (Heavy Quark Effective Theory). We believe that we can in a similar fashion compute the coefficients via a matching with the dipole picture (see Appendix D). This will investigated in more detail in the future. Making use of these new coefficients based on the dipole, we find that the remaining Coulomb singularity for the colour-octet states at the simple pole agrees in the Abelian contribution C 2 F with the colour-singlet states but has a deviation in the non-Abelian C A C F part. This is to be expected since the non-Abelian contributions depend strongly on the colour-structure. We mention here that the remaining colour-octet Coulomb singularity is the same for both γg and gg-channels which we take as confirmation of the IR factorisation and the dipole matching procedure mentioned above. These preliminary results will be presented in a forthcoming publication.

As for additional form-factors such as the P -wave states in colour-singlet and colour-octet states, we would like to mention that since in the P -wave amplitude one takes the derivative with respect to the relative velocity v, the integrals acquire doubled propagators. However since with the IBP reduction one can reduce these new integrals to simpler integrals, we expect that many of these doubled propagator integrals may reduce to our set of master integrals. As such we may be able to make use of the complete analytical and numerical results of the all the master integrals that we have computed for the pseudo-scalar colour-singlet and colour-octet states. An explicit computation will show whether additional topologies emerge. We leave this for future work. such, the threshold contributions (s → s min ) dominate.

Recalling then the steps of the analytical derivation, we have then traced back the appearance of negative cross-sections to an over-subtraction of the initial-state collinear divergences inside the PDF. These negative coefficients should in principle be compensated by steeper gluon PDFs via the universal evolution equations, however, we noted a general mismatch between the process-dependent coefficients  and the universal equations governing the PDF. As such, the negative numbers cannot be absorbed into the PDFs in a global and systematic manner. This mismatch is most profound for low scale processes such as charmonium production where gluon PDFs are rather flat and therefore impacts the phenomenology of charmonium hadro-production.

We argued that this issue can be cured with a new prescription for the factorisation scale µ F which then eliminates the high-energy limit. We have demonstrated that with this new scale prescription we were able to obtain reliable and positive NLO cross-section results for η c hadro-production and shown that the size of the NLO corrections is perturbative and follows the trajectory of the LO contribution (see Fig. 4.4 and Fig. 4.12). We made the remark that since at LO the factorisation scale appears only implicitly inside the evolution of the PDF, our scale prescription provides in a sense a general reference value for the factorisation scale for both LO and NLO accuracy. In addition, we have demonstrated that, with different PDF parametrisations, the energy-dependence of the K-factor defined as the ratio of NLO to LO is indeed nearly identical which confirms our understanding of the good reference scale between the PDF and the partonic cross-section.

Having solved the issue for the pseudo-scalar meson, it would then be interesting to apply this scale prescription to other charmonium states. Preliminary results for the P -wave state indeed indicate that with this scale prescription we can restore the positivity of the NLO crosssection. It will then be appealing to study this further and apply this scale prescription to the vector meson state, J/ψ, whose situation is more dramatic and where the NLO hadroproduction cross-section turns negative at collision energies of already on the order of a few hundreds of GeV (see Fig. 1.4b). Following these upcoming results, it would be interesting to assess the phenomenology of these charmonium states at the LHC.

In the future, one could extend the study to a new generalised subtraction scheme, where after subtraction of the collinear divergences the partonic cross-section remains positive-definite at any kinematical point. This would involve new PDF fits within this scheme. In Chapter 4 we have also shown that as the PDFs are badly constrained at low scales, the gluon luminosities exhibit unphysical energy-and rapidity-distributions (see Fig. 4.10). In view of this, the study of charmonium hadro-production data offers interesting constraints on gluon PDFs at low scales. This could then be used in global PDF fits in junction with DIS data, for instance.

On a side note, with our analytical expressions for the rapidity-differential cross-section in terms of the parton luminosities at hand (see Chapter 3), it would also be interesting to perform a reweighting of gluon PDFs imposing the NLO results to be positive. Given that the scale sensitivity should reduce at higher orders, one could then make use of the 5-stencil method [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF] to assess the relative scaling of the hadronic cross-section on both the renormalisation and the factorisation scale around our scale prescription. It would be instructive to see the shape of the resulting reweighted gluon PDF.

In Chapter 5 we have then discussed the detectability of the pseudo-scalar states and provided reliable predictions for η c and η b production at three different experimental setups (see 11.2. OUTLOOK: PART II Fig. 5.1), SPD NICA experiment where √ s can extend up to 27 GeV, the LHC in fixed-target mode (AFTER@LHC) at √ s = 114.6 GeV and the LHC in collider mode with √ s = 14 TeV.

These three experimental setups are promising to study pseudo-scalar charmonium production whereas pseudo-scalar bottomonia can be studied in the latter setups at the LHC in both the fixed-target and collider modes during the HL-LHC phase in the future [START_REF] Chapon | Perspectives for quarkonium studies at the high-luminosity LHC[END_REF].

Outlook: Part II

In Part II of this thesis, we have studied the two-loop virtual corrections needed for the NNLO corrections to pseudo-scalar inclusive hadro-production. The motivations here were two-fold.

The NLO scale uncertainties for µ R are for charmonium not particular small. In addition, we wish to adress the question whether negative NLO cross-sections could be cured in the conventional scale setting by going to higher orders. Indeed, the missing ingredients towards a full NNLO were the two-loop double-virtual corrections.

These involve massive Feynman integrals which due to the non-relativistic nature of the quarkonium bound state involve identical external heavy-quark momenta. As such, the integrals can be decomposed via partial fraction to simpler ones. After having discussed the main properties of Feynman integrals in Chapter 6, we have then discussed the procedure of partial fraction for the two-loop quarkonium form factors and demonstrated the efficiency of this method at the example of the one-loop amplitude in Chapter 7.

We then discussed in Chapter 8, the set of master integrals that emerged in these computations. In order to validate our methods, we have in addition computed the form-factors needed for the NNLO corrections to the exclusive decay of η Q to di-photon, which has been computed previously only in numerical form, and the QED NNLO correction to the para-positronium decay width.

In this thesis, we found new equivalence relations between the master integrals and we employed cutting-edge techniques in evaluating these integrals analytically in Chapter 9. We then evaluated these integrals numerically to very high-precision (200 digits). Finally in Chapter 10, we presented the analytical result to the two-loop form-factors needed for the different production and decay processes. We validated our methods by confirming the η Q → γγ form-factor with the numerical value in the literature.

For the exclusive decay width of η c to di-photon, we observed that the size of the corrections were rather large between NLO and NNLO. In addition, the renormalisation scale uncertainty has contrary to expectation not reduced from NLO to NNLO accuracy. Furthermore, we noted the explicit appearance of the NRQCD scale in the two-loop form-factor which emerged because of the Coulomb singularity renormalisation, which are specific to quarkonia. The scale uncertainty of the renormalisation scale and the NRQCD scale are both large and comparatively similar to each other (see Eq. 10.1.48). In contrast to the NLO corrections, the NNLO decay width within the uncertainty agrees with the experimental data. This demonstrates the necessity of NNLO corrections for quarkonium phenomenology. As for situation of η b , we showed that the size of the corrections were better behaved due to its larger mass scale. However, we observed that the scale uncertainty in µ R has remained roughly the same at NLO and NNLO which suggests a slow convergence (see Eq. 10.1.51). However, the uncertainty is dominated by the NRQCD scale this time.

As for the form-factor gg → η Q needed for the hadro-production process, which were previ-ously absent in the literature and are new here, we have validated the IR pole structure and confirmed the appearance of the same Coulomb singularity as in the exclusive decay case. We have then constructed the hard function (see Eq. 10.2.77) that can then used within the q T -formalism for both collinear and TMD factorisation. The combination of this hard function with the real emission contributions remains the final step to obtain the NNLO hadro-production correction. It remains to be seen what the scale uncertainty will be at NNLO level and whether the positivity of the cross-section can be restored with the conventional scale-setting. If these are still negative then, one could try to find a generalisation of the scale prescription to NNLO level. In addition, it would then be interesting to study the interplay with gluon PDFs at NNLO.

Having established the techniques to compute the two-loop master integrals both analytically and numerically, we are in a position to discuss the applicability of our methods to additional quarkonium states. Indeed, preliminary results for the colour-octet pseudo-scalar states confirm that the set of master integrals is identical with the ones in the colour-singlet state. For the colour-octet states we have considered the form-factors with gg and γg initial states. In fact, in the latter channel, we observe the appearance of an additional master integral which with the methods and techniques at hand (see Chapter 9) we have computed analytically in a straightforward manner. We have performed again the IR pole structure check1 and observed that the remaining Coulomb singularities are identical for both colour-octet form-factors with gg and γg initial states but differ to the one in the colour-singlet case in the non-Abelian coefficient C A C F . In contrast to this, they agree in the Abelian coefficient C 2 F of the colour-singlet case. These results will be analysed in more detail for a forthcoming publication.

As for additional states such as the P -wave which exhibit similar kinematics as pseudoscalar S-wave states, we expect that we can reuse many or if not all of the master integrals that we have computed. As such, the set of master integrals may remain the same. However, in order to verify this, an explicit computation is needed here. We have considered here only the two-loop form-factors for bosonic initial states as g and γ. In addition, for some states one could consider also the qq-channel contributions which appear in NNLO calculation. However, since the initial-state quarks are massless as before, the integrals that appear there could be reduced to the same set of master integrals.

Finally, for processes which have different kinematics such as the J/ψ case, we can nevertheless apply the key principles in the decomposition of the amplitude to the master integrals and proceed in the same manner. The integrals that appear do contain one modified/additional external leg. However, we can still apply the princple of partial fraction decomposition and simplify many master integrals. These can then be evaluated possibly numerically with the methods discussed in Section 9.3. These corrections will be essential for quarkonium hadroproduction pheno and in establishing whether the NNLO J/ψ and Υ cross-sections within the CSM agree well with the experimental data.

Quarkonium physics offers many further and interesting aspects to be studied in the future. 
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Z αs = 1 -   α (nf ) s π   β 0 4 +   α (nf ) s π   2 β 2 0 16 2 - β 1 32 , (B.0.6)
with,

β 0 = 11 3 C A - 4 3 T F n f , β 1 = 34 3 C 2 A - 20 3 C A T F n f -4C F T F n f . (B.0.7)
In addition for the pseudo-scalar we will need to absorb the Coulomb singularity via the following renormalisation constant,

Z Coulomb = 1 + α (n l ) π 2 π 2 4 C 2 F + 1 2 C F C A + π 2 2 C 2 F + 1 2 C F C A log µ 2 µ 2 NRQCD (B.0.8) Appendix C

IR Renormalisation

We present here the coefficients needed for constructing the IR renormalisation factor Z IR . These coefficients appear in the anomalous dimension matrix Γ,

γ cusp = α (n l ) s π + α (n l ) s π 2 C A 67 36 - π 2 12 - 5 9 T F n l (C.0.1) γ cusp β QQ = - iπ 2v + 1 γ cusp + γ (2) cusp β QQ (C.0.2) γ (2) 
cusp β QQ = α (n l ) s π 2 C A 2 iπ 2v 2 - π 2 6 -1 + ζ 3 (C.0.3) γ cusp β QQ = α (n l ) s π + α (n l ) s π 2 C A 2 49 18 - π 2 6 + ζ 3 - 5 9 T F n l (C.0.4) γ g = - α (n l ) s π β 0 4 + α (n l ) s π 2 C 2 A - 173 108 + 11π 2 288 + 1 8 ζ 3 +C A T F n l 16 27 - π 2 72 + 1 4 C F T F n l (C.0.5) γ Q = - α (n l ) s π C F 2 + α (n l ) s π 2 C F 4 C A - 49 18 + π 2 6 -ζ 3 + 10 9 T F n l (C.0.6)
colour-correlators in the colour-singlet case that appear in the first and second line of the matrix as, (i,j)

T i • T j = - i T 2 i = -2C A (I,J) T I • T J = - I T 2 I = -2C F (I,j) T I • T j = - j T 2 j - (i,j) T i • T j = 0, (D.0.3)
where in the first and second line above, we have made use of the fact that the two heavy quarks are in colour-singlet state. The third line above can then be simply deduced from the other two colour-factors.

With these colour-factors, one would get from the second line in the anomalous dimension matrix in Eq. 10.2.39 for QQ at threshold the additional contribution ∆Γ QQ gg which takes the form,

∆Γ QQ gg =C F γ cusp β QQ + 2γ Q = α (n l ) s π C F 1 - iπ 2v + 2 - C F 2 + α (n l ) s π 2 C F C A 67 36 - π 2 12 - 5 9 T F n l - iπ 2v + 1 + C A 2 iπ 2v 2 - π 2 6 -1 + ζ 3 + 2 C F 4 C A - 49 18 + π 2 6 -ζ 3 + 10 9 T F n l = - iπ 2v   α (n l ) s π C F + α (n l ) s π 2 C F 31 36 C A - 5 9 T F n l   , (D.0.4)
where above we note that all the finite pieces have disappeared and what remains are the Coulomb singularities of type 1/(2v). We would like to stress, that the anomalous cusp dimension with β QQ was computed for finite non-zero v. However, in our calculation we have set from the very beginning v = 0. In NRQCD, in the approach where loop integrals were computed with finite non-zero v, whenever a 1/(2v) appeared in the amplitude, these terms were dropped as they were absorbed inside the LDME [START_REF] Bodwin | Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium[END_REF][START_REF] Petrelli | NLO production and decay of quarkonium[END_REF][START_REF] Maltoni | PhD thesis: Quarkonium Phenomenology[END_REF]. If one follows this prescription and drop the 1/(2v) terms above, one obtains ∆Γ QQ gg = 0, which seems to be in agreement with the fact that for colour-singlet quarkonium state the heavy-quark partons do not contribute to the singularity structure. However we will need to show it in a more rigorous manner.

At this stage, we make here an important remark. We point out that the anomalous cusp dimension γ cusp β QQ with finite v effects was computed under the assumption that it reproduced the velocity dependent anomalous dimension of heavy-quark currents in HQET (Heavy Quark Effective Theory) [START_REF] Becher | Infrared singularities of QCD amplitudes with massive partons[END_REF][START_REF] Neubert | Heavy quark symmetry[END_REF][START_REF] Falk | Heavy Meson Form-factors From QCD[END_REF][START_REF] Korchemsky | Renormalization of the Wilson Loops Beyond the Leading Order[END_REF][START_REF] Korchemsky | Infrared factorization, Wilson lines and the heavy quark limit[END_REF][START_REF] Kidonakis | Two-loop soft anomalous dimensions and NNLL resummation for heavy quark production[END_REF],

Γ HQET gg = C F γ cusp β QQ + 2γ Q . (D.0.5)
Given that this matching was done with finite v effects, with can define a matching with the dipole picture where v = 0 and thus the order of the double-limit being reversed with,

Γ dipole gg = C F γ cusp β QQ + 2γ Q = 0, (D.0.6)
such that up to all orders in the strong coupling we have that,

γ cusp β QQ = - 2 C F γ Q , (D.0.7)
where γ Q is known from the SCET matching which does not rely on the relative velocity v [START_REF] Becher | Infrared singularities of QCD amplitudes with massive partons[END_REF][START_REF] Bauer | An Effective field theory for collinear and soft gluons: Heavy to light decays[END_REF][START_REF] Bosch | Factorization and Sudakov resummation in leptonic radiative B decay[END_REF][START_REF] Neubert | Renormalization-group improved calculation of the B -> X(s) gamma branching ratio[END_REF]. In this matching to define γ Q , it relates only the interactions between a light-quark and a heavy-quark parton, however no interactions among heavy quark partons. Making use of the results for γ Q we obtain the result at v = 0 and β QQ = -iπ,

γ cusp β QQ = α (n l ) s π + α (n l ) s π 2 C A 2 49 18 - π 2 6 + ζ 3 - 5 9 T F n l . (D.0.8)
We can make use of this new factor γ cusp (β QQ ) when investigating the IR pole structure for the colour-octet states. Compared to the colour-singlet case, for the colour-octet states, the colour-correlators take different values in Eq. D.0.3. We mention here that we can indeed confirm that the remaining Coulomb singularity takes the same value for both the gg and the γg-channel where the quarkonium state is in a colour-octet. We take this as confirmation of the IR factorisation and the dipole matching based on the fact that the heavy-quarks in the colour-singlet state are unresolved at large distances. Compared to the Coulomb singularity in the colour-singlet case, we find that they agree in the purely Abelian contribution C 2 F but differ in the non-Abelian C A C F contribution. This is not surprising given that the non-Abelian contributions depends on the colour-structure of the partons. We will present these finding in an upcoming publication. Propagator structure for T2 takes the following form,

I 3 = 1 + (2 -2 log 2) + 4 - π 2 12 - 4 
I 4 = - π 2 8 - 7 4 ζ 3 - 5π 4 96 2 + O 3 (E.0.7) T1-3 MI-3 G[1, {1, 0, 0, 1, 1, 1, 1}] T: 1,2 4m 2 T1-4 MI-4 G[1, {1, 0, 1, 1, 1, 0, 1}] T: 1,2 T1-5 MI-5 G[1, {0, 1, 0, 1, 1, 1, 1}] T: 1,2,8 T1-6 MI-6 G[1, {0, 1, 1, 0, 0, 1, 1}] T: 1,3 T1-7 MI-7 G[1, {0, 1, 0, 1, 1, 0, 1}] T: 1,2,8 T1-8 MI-8 G[1, {1, 0, 0, 1, 1, 0, 0}] T: 1,2,11 4m 2 4m 2 T1-9 MI-9 G[1, {0, 0, 1, 0, 0, 1, 1}] T: 1,2 ,3,4,8 T1 
P 2 = {q 2 1 , (k 1 -q 1 ) 2 , q 2 2 , (k 2 + q 2 ) 2 , (-k 1 + q 1 + q 2 ) 2 , -m 2 + k 1 2 + k 2 2 -q 1 2 , -m 2 + - k 1 2 + k 2 2 + q 1 + q 2 2 }.
(F.0.

2)

The parent one can be graphically represented as, We will now list all 20 integrals of Topology 2 that we need, 

Master Integral Graph Master Integral Graph T2-1 MI-14 G[2, {1, 1, 1, 1, 1, 1, 1}] T: 2 T2-2 MI-15 G[2, {0, 1, 1, 1, 1, 1, 1}] T: 2,8 T2-3 MI-2 G[2, {0, 2, 0, 1, 1, 1, 1}] T: 1,2,8 T2-4 MI-3 G[2, {1, 0, 0, 1, 1, 1, 1}] T: 1,2 4m 2 T2-5 MI-4 G[2, {1, 0, 1, 1, 1, 0, 1}] T: 1,2 T2-6 MI-5 G[2, {0, 1, 0, 1, 1, 1, 1}] T: 1,2,8 T2-7 MI-16 G[2, {1, 0, 1, 0, 1, 1, 1}] T: 2,8 T2-8 MI-17 G[2, {1, 1, 1, 1, 0, 0, 1}] T: 2 T2-9 MI-18 G[2, {0,

Topology 3

Propagator structure for T3 takes the following structure,

P 3 = {-m 2 + q 2 1 , -m 2 + (k 1 -q 1 ) 2 , q 2 2 , -m 2 + (-k 1 + q 1 + q 2 ) 2 , -m 2 + k 1 2 + k 2 2 -q 2 2 , -m 2 + - k 1 2 + k 2 2 + q 2 2 , k 1 2 + k 2 2 -q 1 2 }.
(F.0.

3)

The parent one can be graphically represented as,

1 4 5 3 2 7 

6

We will now list all 26 integrals of Topology 3 that we need, Propagator structure for T4 takes the following structure,

Master Integral Graph Master Integral Graph T3-1 MI-23 G[3, {1, 1, 1, 1, 1, 1, 1}] T: 3 T3-2 MI-24 G[3, {1, 1, 1, 0, 1, 1, 1}] T: 3 T3-3 MI-25 G[3, {0, 1, 1, 1, 1, 1, 1}] T: 3 T3-4 MI-26 G[3, {1, 1, 0, 1, 1, 1, 1}] T: 3 T3-5 MI-27 G[3, {2, 1, 0, 1, 1, 1, 0}] T: 3,6 T3-6 MI-28 G[3, {0, 1, 1, 1, 0, 1, 1}] T: 3 T3-7 MI-29 G[3, {0, 1, 1, 0, 1, 1, 1}] T: 3 T3-8 MI-30 G[3, {1, 0, 1, 1, 1, 0, 2}] T: 3 T3-9 MI-31 G[3, {1, 0, 1, 1, 1, 0, 1}] T: 3 T3-10 MI-32 G[3, {1, 1, 0, 1, 1, 1, 0}] T: 3,6 T3-11 MI-33 G[3, {0, 1, 0, 1, 1, 1, 1}] T: 3,4 T3-12 MI-34 G[3, {1, 0, 1, 1, 1, 1, 0}] T: 3 T3-13 MI-6 G[3, {0, 1, 1, 0, 0, 1, 1}] T: 1,3 T3 
P 4 = {-m 2 + q 2 1 , -m 2 + (k 1 + q 1 ) 2 , -m 2 + q 2 2 , (q 1 + q 2 ) 2 , k 1 2 + k 2 2 -q 2 2 , -m 2 + k 1 2 - k 2 2 + q 1 + q 2 2 , (k 2 + q 1 ) 2 }. (F.0.4)
The parent one with 7 propagators can be graphically represented as, -4m 2 We will now list all 24 integrals of Topology 4 that we need, Propagator structure for T5 takes the following structure,

Master Integral Graph Master Integral Graph T4-1 MI-42 G[4, {1, 1, 1, 1, 1, 1, 0}] T: 4 T4-2 MI-43 G[4, {1, 1, 1, 1, 1, 2, 0}] T: 4 T4-3 MI-44 G[4, {1, 1, 0, 1, 1, 2, 0}] T: 4 T4-4 MI-45 G[4, {1, 0, 1, 1, 1, 1, 0}] T: 4 T4-5 MI-46 G[4, {2, 0, 1, 1, 1, 1, 0}] T: 4 T4-6 MI-33 G[4, {1, 1, 1, 1, 0, 1, 0}] T: 3,4 T4-7 MI-47 G[4, {1, 1, 1, 1, 1, 0, 0}] T: 4,8 T4-8 MI-48 G[4, {1, 1, 0, 1, 1, 1, 0}] T: 4 T4-9 MI-18 G[4, {1, 0, 0, 2,
P 5 = {-m 2 + q 2 1 , -m 2 + (k 1 + q 1 ) 2 , (q 1 + q 2 ) 2 , (k 1 + k 2 + q 1 + q 2 ) 2 , -m 2 + q 2 2 , -m 2 + (k 2 + q 2 ) 2 , (k 2 + q 1 ) 2 }.
(F.0.5)

The parent one can be graphically represented as, We will now list all 10 integrals of Topology 5 that we need,

Master Integral Graph Master Integral Graph T5-1 MI-49 G[5, {1, 1, 1, 1, 1, 1, 0}] T: 5 4m 2 T5-2 MI-50 G[5, {2, 1, 1, 1, 1, 1, 0}] T: 5 4m 2 T5-3 MI-51 G[5, {1, 1, 0, 1, 1, 1, 0}] T: 5,6 4m 2 T5-4 MI-52 G[5, {0, 1, 1, 1, 1, 1, 0}] T: 5,9 4m 2 T5-5 MI-53 G[5, {0, 1, 1, 0, 1, 1, 0}]
T: 5,6,7,8,9 Propagator structure for T6 takes the following structure,

4m 2 T5-6 MI-54 G[5, {0, 1, 1, 1, 1, 0, 0}] T: 5,9 4m 2 T5-7 MI-55 G[5, {0, 2, 1, 1, 1, 0, 0}] T: 5,9 4m 2 T5-8 MI-56 G[5, {0, 1, 1, 0, 0, 1, 0}] T: 5,6 ,7,8,9,10 
P 6 = {-m 2 + q 2 1 , -m 2 + (k 1 + q 1 ) 2 , (k 1 + k 2 + q 1 + q 2 ) 2 , -m 2 + q 2 2 , -m 2 + (k 2 + q 2 ) 2 , -m 2 + k 1 2 + k 2 2 + q 1 + q 2 2 , (k 2 + q 1 ) 2 }. (F.0.6)
The parent one can be graphically represented as, -4m 2 We will now list all 24 integrals of Topology 8 that we need, T: 8

Master Integral Graph Master Integral Graph T8-1 MI-64 G[8, {1, 1, 1, 1, 1, 1, 0}] T: 8 T8-2 MI-2 G[8, {2, 0, 1, 1, 1, 1, 0}] T: 1,2,8 T8-3 MI-65 G[8, {0, 1, 1, 1, 0, 1, 1}] T: 8 T8-4 MI-5 G[8, {1, 0, 1, 1, 1, 1, 0}] T: 1,2,8 T8 

Topology 9

Propagator structure for T9 takes the following structure,

P 9 = {-m 2 + q 2 1 , -m 2 + (-k 1 + q 1 ) 2 , -m 2 + (k 2 + q 1 ) 2 , q 2 2 , (-k 1 -k 2 + q 2 ) 2 , -m 2 + (-k 1 + q 1 + q 2 ) 2 , (q 1 + q 2 ) 2 }.
(F.0.9)

The parent one can be graphically represented as, We will now list all 10 integrals of Topology 9 that we need,

Master Integral Graph Master Integral Graph T9-1 MI-69 G[9, {1, 1, 1, 1, 1, 0, 0}] T: 9 4m 2 4m 2 4m 2 T9-2 MI-70 G[9, {0, 1, 1, 1, 1, 1, 0}] T: 9 4m 2 4m 2 T9-3 MI-52 G[9, {1, 0, 1, 1, 1, 1, 0}] T: 5,9 4m 2 T9-4 MI-53 G[9, {1, 0, 1, 1, 0, 1, 0}]
T: 5,6,7,8,9 Propagator structure for T10 takes the following structure,

4m 2 T9-5 MI-71 G[9, {1, 1, 1, 0, 0, 1, 0}] T: 9 4m 2 T9-6 MI-54 G[9, {1, 0, 0, 1, 1, 1, 0}] T: 5,9 4m 2 T9-7 MI-55 G[9, {2, 0, 0, 1, 1, 1, 0}] T: 5,9 4m 2 T9-8 MI-56 G[9, {0, 0, 1, 1, 0, 1, 0}] T: 5,6 ,7,8,9,10 
P 10 = {q 2 1 , (-k 1 + q 1 ) 2 , (k 2 + q 1 ) 2 , - k 1 2 - k 2 2 + q 2 2 , -m 2 + q 2 2 , -m 2 + (-k 2 -q 1 + q 2 ) 2 , (q 1 + q 2 ) 2 }. (F.0.10)
The parent one can be graphically represented as, Propagator structure for T11 takes the following structure,

P 11 = {q 2 1 , (-k 1 + q 1 ) 2 , (k 2 + q 1 ) 2 , q 2 2 , (-k 1 -k 2 + q 2 ) 2 , (-k 1 + q 1 + q 2 ) 2 , (q 1 + q 2 ) 2 }. (F.0.11)
The parent one can be graphically represented as, We will now list all 4 integrals of Topology 11 that we need, We will now give the analytical solutions to the four elliptic integrals MS [START_REF] Aoyama | Tenth-Order QED Contribution to the Electron g-2 and an Improved Value of the Fine Structure Constant[END_REF], MS [START_REF] Abi | Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm[END_REF], MS [START_REF] Partridge | Observation of an eta(c) Candidate State with Mass 2978-MeV +-9-MeV[END_REF] and MS [START_REF] Aaij | Measurement of the η c (1S) production cross-section in proton-proton collisions via the decay η c (1S) → pp[END_REF] which were extremely challenging to be computed. We have computed these elliptic integrals via rationalisation of the roots and a special choice for the Cheng-Wu delta function. MI [START_REF] Aoyama | Tenth-Order QED Contribution to the Electron g-2 and an Improved Value of the Fine Structure Constant[END_REF][START_REF][END_REF] and where u is the ordinary polylogarithmic sector. As the expression in this section is rather lengthy, we do not present them here. These can be provided upon request of the author.

Master Integral Graph Master Integral Graph MS-4 T: 1,2 O( 1 ) O( 0 ) O( 1 ) MPLs MS-5 T: 1,2,8 - O( 0 ) - MPLs MS-6 T: 1,3 O( 0 ) O( -2 ) O( 0 ) MPLs MS-7 T: 1,2,8 - O( -2 ) - MPLs MS-8 T: 1,2,11 4m 2 4m 2 O( -2 ) O( -3 ) O( -2 ) MPLs MS-9 T: 1,2,3,4,8 O( 0 ) O( -2 ) O( 0 ) MPLs MS-10 T: 1,2,4,8,10 O( -1 ) O( -2 ) O( -1
π 3 + 1 2 π G 0, 1, e -2iπ 3 ; 1 + 5 18 π Cl 2 π 3 log 2 - 1 2 G e -iπ 3 , 1, -1; 1 - 25 4 G 0, 0, e -iπ 3 ; 1 - 147 16 G 0, 0, e -2iπ 3 , 1; 1 -4 G e -iπ 3 , 1, 1, -1; 1 -38 log 2 - 7 2 π 2 log 2 + 2 3 π G 0, e -iπ 3 , -1; 1 -3 G e -iπ 3 , 1, -1; 1 log 2 + 15 log 2 2 - 1 2 π 2 log 2 2 - 83 
MS[21,1] = 16061π 4 62208 - 1 4 π G 0, 1, e -2iπ 3 ; 1 + 2 G e -iπ 3 , 1; -1 log 2 + 39 32 G 0, 0, e -2iπ 3 , 1; 1 + 2 G e -iπ 3 , 1, 1; -1 - 1 3 π G 0, e -iπ 3 , -1; 1 + 1 2 π 2 log 2 2 + 1 4 log 4 2 - 1 12 π Cl 2 π 3 log 3 - 1 3 π 2 log 2 log 3 - 1 2 log 3 2 log 3 + 1 3 π 2 Li 2 - 1 2 + 1 2 log 2 2 Li 2 - 1 2 - 71 12 log 2ζ 3 - 35 8 G 0, 0, e -iπ 3 , -1; 1 (H.0.24) MS[22,-2] = 1 2 MS[22,-1] = 5 2 MS[22,0] = 2 - π 2 6 - 7 4 ζ 3 MS[22,1] = 2 - 5π 2 6 + 7π 4 2880 - 9 2 G 0, 0, e -iπ 3 , -1; 1 - 27 
MS[54,-1] = 5 2 + iπ -2 log 2 MS[54,0] = 19 2 + 5iπ - 7π 2 12 - √ 2π 2 3 -2 √ 2 G 0, 1; 3 -2 √ 2 + G 0, 0, 1; 3 -2 √ 2 -10 log 2 -2iπ log 2 -2i √ 2π log 2 - 1 3 π 2 log 2 + 2 log 2 2 + 2 √ 2 log 2 2 -iπ log 2 2 + 2 3 log 3 2 + 2i √ 2π log -2 + 2 √ 2 + 1 3 π 2 log -2 + 2 √ 2 -4 √ 2 log 2 log -2 + 2 √ 2 + 2iπ log 2 log -2 + 2 √ 2 -2 log 2 2 log -2 + 2 √ 2 + 2 √ 2 log 2 -2 + 2 √ 2 -iπ log 2 -2 + 2 √ 2 + 2 log 2 2 log 2 -2 + 2 √ 2 - 2 3 log 3 -2 + 2 √ 2 + ζ 3 (H.0.36) MS[55,0] = 1 6 π 2 log -1 + √ 2 - 1 2 iπ log 2 -1 + √ 2 - 1 3 log 3 -1 + √ 2 - 1 2 Li 3 3 -2 √ 2 + 1 2 ζ 3 (H.0.37) MS[56,-2] =1 MS[56,-1] =2 MS[56,0] = - 1 2 + 11π
+ 2C G (0, 0; 2) - 9 8 π G (0, 0, 0; 2) -3i G (0; 2) G 0, 0, 1; 1 2 - i 2 + 3i G (0; 2) G 0, 0, 1; 1 2 + i 2 + i 4 G (0, -1, -1, -1; i) + G (0, -1, -1, 1; i) -G (0, -1, 1, -1; i) -G (0, -1, 1, 1; i) + G (0, 1, -1, -1; i) + G (0, 1, -1, 1; i) -G (0, 1, 1, -1; i) -G (0,
MS [START_REF] Abi | Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm[END_REF][START_REF][END_REF] + E 4 1 0 -1 a 0 ∞ ; 1, q r + 1 2 E 4 ( 1 0 1 a 0 0 ; 1, q r ) + 1 8 -2 + (-1) We now outline the strategy in extracting the logarithmic singular expressions of type G ( 1; 1). In the first step, for the most general E 4 , we need to extract the singular terms of type E 4 n 1 ; 1, q r where n can take any kernel combination. This can be achieved by using the shuffle relations that we have introduced before. Defining a = n However the sum E 4 d; 1, q r above still contains divergent kernel combinations p l pm 1 l fm with 1 l being the vector (1, ..., 1) of length l. But this length has reduced as compared in our initial expression. Hence, we can repeatedly and recursively apply Eq. K.0.8 such that all E 4 expressions are either finite or maximal singular in the sense of having the kernels n 1 . In order to build up the full regularisation procedure for all these maximal singular E 4 expressions, we will need to start with the E 4 of length 1 and then build up the system by involving E 4 of larger length. To illustrate this procedure, we will go up to length 4 and involve the kernels ( 1 1 ) and -1 1 . At length 1, we only have two expressions,

a 1 = l i ∈{ 1 2 -i 2 , 1 2 + i 2 } - 1 4 E 4 1 1 -1 -1 0 l i 0 0 ; 1, q r - 1 4 E 4 1 1 -1 -1 0 l i 0 1 ; 1, q r - E 4 1 1 -1 -1 0 l i 0 ∞ ; 1, q r + 1 2 1 5 1/4 E 4 1 1 -1 0 0 l i 0 0 ; 1, q r - 1 4 E 4 1 1 -1 1 0 l i 0 0 ; 1, q r - E 4 1 1 -1 -1 0 l i 1 0 ; 1, q r - 1 4 E 4 1 1 -1 -1 0 l i 1 1 ; 1, q r - 1 2 E 4 1 1 -1 -1 0 l i 1 ∞ ; 1, q r + 1 5 1/4 E 4 1 1 -1 0 0 l i 1 0 ; 1, q r - 1 4 E 4 1 1 -1 1 0 l i 1 0 ; 1, q r + 1 2 E 4 1 1 -1 -1 0 l i ∞ 0 ; 1, q r + E 4 1 1 -1 -1 0 l i ∞ 1 ; 1, q r + E 4 1 1 -1 -1 0 l i ∞ ∞ ; 1, q r - 1 5 1/4 E 4 1 1 -1 0 0 l i ∞ 0 ; 1, q r + E 4 1 1 -1 1 0 l i ∞ 0 ; 1, q r - 1 
1 3 E 4 1 -1 -1 a 0 0 ; 1, q r + E 4 1 -1 -1 a 0 1 ; 1, q r + 2 E 4 1 -1 -1 a 0 ∞ ; 1, q r + E 4 1 -1 1 a 0 0 ; 1, q r + E 4 1 -1 -1 a 1 0 ; 1, q r + E 4 1 -1 -1 a 1 1 ; 1, q r + 2 E 4 1 -1 -1 a 1 ∞ ; 1, q r + E 4 1 -1 1 a 1 0 ; 1, q r + E 4 1 1 -1 a 0 0 ; 1, q r + E 4 1 1 -1 a 0 1 ; 1, q r + 2 E 4 1 1 -1 a 0 ∞ ; 1, q r + 1 8 3 + i √ 3 1 5 1/4 E 4 1 -1 0 a 0 0 ; 1, q r + 1 5 1/4 E 4 1 -1 0 a 1 0 ; 1, q r + 1 3 E 4 1 -1 -1 a ∞ 0 ; 1, q r + 1 3 E 4 1 -1 -1 a ∞ 1 ; 1, q r + 2 3 E 4 ( 1 -1 -1 a ∞ ∞ ; 1, q r ) 1 3 E 4 
1 3 E 4 1 -1 -1 b 0 0 ; 1, q r + E 4 1 -1 -1 b 0 1 ; 1, q r + 2 E 4 1 -1 -1 b 0 ∞ ; 1, q r + E 4 1 -1 1 b 0 0 ; 1, q r + E 4 1 -1 -1 b 1 0 ; 1, q r + E 4 1 -1 -1 b 1 1 ; 1, q r + 2 E 4 1 -1 -1 b 1 ∞ ; 1, q r + E 4 1 -1 1 b 1 0 ; 1, q r + E 4 1 1 -1 b 0 0 ; 1, q r + E 4 1 1 -1 b 0 1 ; 1, q r + 2 E 4 1 1 -1 b 0 ∞ ; 1, q r -
E 4 -1 1 ; 1, q r = E Reg 4 - 1 
1 ; 1, q r + HPLs 1 , (K.0.9) E 4 ( 1 1 ; 1, q r ) = HPLs 1 .

(K.0.10) At length 2, we have the following terms E 4 ( 1 1 1 1 ; 1, q r ), E 4 -1 -1 1 1 ; 1, q r , E 4 -1 1 1 1 ; 1, q r and E 4 1 -1 1 1 ; 1, q r . To build up the system in the right order, we need to start with the E 4 that exhibits the largest number of the kernel ( 1 1 ). Of this subset, one should start with the E 4 with the longest chain of right-most elements being 1 1 , as these are the first integrations of the eMPLs. The reason for this order is simple. One can only regularise elliptic kernels as shown in Eq. K.0.3. So if the first kernel is the ( 1 1 ), there is no way to regularise this term directly. Beforehand, one needs to apply the shuffle algebra to move these non-elliptic kernels backwards on the right to the inside integrations. Following these criteria, we can start with, E 4 ( 1 1 1 1 ; 1, q r ) = HPLs 2 , (K.0.11) We now consider the divergent terms at length 3. We have 8 such expressions to regularise, E 4 ( 1 1 1 1 1 1 ; 1, q r ) = HPLs 3 , (K.0.16) -1 1 1 1 1 1 ; 1, q r + HPLs 3 , (K.0.17)

E 4 -1 1 1 1 ; 1, q r = 1 0 dt y 1 y (t -1)
E 4 -1 1 1 1 1 1 ; 1, q r = 1 0 dt y 1 y (t -1)
E 4 1 -1 1 1 1 1 ; 1, q r = E 4 -1 1 1 1 ; 1, q r E 4 ( 1 1 ; 1, q r ) -2 E 4 -1 1 1 1 1 1 ; 1, q r = -2 E Reg 4 -1 1 1 1 1 1 ; 1, q r + HPLs 1 E Reg 4
-1 1 1 1 ; 1, q r + HPLs , (K.0.18) 

E 4 1 1 -1 1 1 1 ; 1, q r = E 4 -1 1 ; 1, q r E 4 ( 1 1 1 1 ; 1, q r ) -E 4 1 -1 1 1 1 1 ; 1, q r -E 4 -1 1 1 1 ; 1, q r = E
E 4 -1 1 -1 1 1 1 ; 1, q r = E 4 -1 1 1 1 ; 1, q r E 4 - 1 
1 ; 1, q r -2 E 4 -1 -1 1 1 1 1 ; 1, q r = -2 E Reg 4 -1 -1 1 1 1 1 ; 1, q r + 2 E Reg 4 -1 1 1 1 1 1 ; 1, q r -HPLs 1 E Reg 4 -1 1 1 1 ; 1, q r + HPLs 2 E Reg 4 -1 1 ; 1, q r + HPLs 3 + E Reg 4 -1 1 ; 1, q r E Reg 4 -1 1 1 1 ; 1, q r (K.0.21) E 4 1 -1 -1 1 1 1 ; 1, q r = 1 2 E 4 ( 1 1 ; 1, q r ) E 4 -1 1 ; 1, q r E 4 -1 1 ; 1, q r -E 4 -1 1 -1 1 1 1 ; 1, q r -E 4 -1 -1 1 1 1 1 ; 1, q r = E Reg 4 -1 -1 1 1 1 1 ; 1, q r -E Reg 4 -1 1 1 1 1 1 ; 1, q r + 1 2 HPLs 1 E Reg 4 -1 1 ; 1, q r E Reg 4 - 1 
1 ; 1, q r + HPLs 2 E Reg 4

-1

1 ; 1, q r -E Reg 4 - 1 
1 ; 1, q r E Reg 4

-1 1 1 1 ; 1, q r + HPLs 3 , (K.0.22)

E 4 -1 -1 -1 1 1 1 ; 1, q r = 1 6 E 4 - 1 
1 ; 1, q r E 4 -1

1 ; 1, q r E 4 (K.0.25)

We now construct the decomposition for the terms at length 4, E 4 ( 1 1 1 1 1 1 1 1 ; 1, q r ) = HPLs 4 , (K.0.26)

E 4 -1 1 1 1 1 1 1 1 ; 1, q r = E Reg 4
-1 1 1 1 1 1 1 1 ; 1, q r + HPLs 4 , (K.0.27)

E 4 1 -1 1 1 1 1 1 1 ; 1, q r = E 4 -1 1 1 1 1 1 ; 1, q r E 4 ( 1 1 ; 1, q r ) -3 E 4 -1 1 1 1 1 1 1 1 ; 1, q r = -3 E Reg 4 -1 1 1 1 1 1 1 1 ; 1, q r + HPLs 1 E Reg 4
-1 1 1 1 1 1 ; 1, q r + HPLs 4 , (K.0.28)

E 4 1 1 -1 1 1 1 1 1 ; 1, q r = E 4 ( 1 1 1 1 ; 1, q r ) E 4 -1 1 1 1 ; 1, q r -2 E 4 1 -1 1 1 1 1 1 1 ; 1, q r -3 E 4 -1 1 1 1 1 1 1 1 ; 1, q r =3 E Reg 4 -1 1 1 1 1 1 1 1 ; 1, q r -2 HPLs 1 E Reg 4 -1 1 1 1 1 1 ; 1, q r + 2 HPLs 2 E Reg 4
-1 1 1 1 ; 1, q r + HPLs 4 , (K.0.29)

E 4 1 1 1 -1 1 1 1 1 ; 1, q r = E 4 -1 1 ; 1, q r E 4 ( 1 1 1 1 1 1 ; 1, q r ) -E 4 1 1 -1 1 1 1 1 1 ; 1, q r -E 4 1 -1 1 1 1 1 1 1 ; 1, q r -E 4 -1 1 1 1 1 1 1 1 ; 1, q r = -E Reg 4
-1 1 1 1 1 1 1 1 ; 1, q r + HPLs 1 E 4 -1 1 1 1 1 1 ; 1, q r -HPLs 2 E 4 -1 1 1 1 ; 1, q r + HPLs 3 E 4 

E 4 -1 1 -1 1 1 1 1 1 ; 1, q r = 1 2 E 4 -1 1 1 1 ; 1, q r E 4 -1 1 1 1 ; 1, q r -2 E 4 -1 -1 1 1 1 1 1 1 ; 1, q r =4 E Reg 4 -1 1 1 1 1 1 1 1 ; 1, q r -2 E Reg 4 -1 -1 1 1 1 1 1 1 ; 1, q r + 1 2 E Reg 4 -1 1 1 1 ; 1, q r E Reg 4 -1 1 1 1 ; 1, q r + HPLs 2 E Reg 4 -1 1 1 1 ; 1, q r -2 HPLs 1 E Reg 4
-1 1 1 1 1 1 ; 1, q r + HPLs 4 , (K.0.32)

E 4 -1 1 1 -1 1 1 1 1 ; 1, q r = E 4 -1 1 1 1 1 1 ; 1, q r E 4 -1 1 ; 1, q r -E 4 -1 1 -1 1 1 1 1 1 ; 1, q r -2 E 4 -1 -1 1 1 1 1 1 1 ; 1, q r = E Reg 4 -1 1 1 1 1 1 ; 1, q r E Reg 4 -1 1 ; 1, q r + HPLs 1 E Reg 4 -1 1 1 1 1 1 ; 1, q r - 1 2 E Reg 4 -1 1 1 1 ; 1, q r E Reg 4 -1 1 1 1 ; 1, q r -HPLs 2 E Reg 4 -1 1 1 1 ; 1, q r + HPLs 3 E Reg 4 - 1 
1 ; 1, q r + HPLs 4 , (K.0.33)

E 4 1 -1 -1 1 1 1 1 1 ; 1, q r = E 4 ( 1 1 ; 1, q r ) E 4 -1 -1 1 1 1 1 ; 1, q r -E 4 -1 1 -1 1 1 1 1 1 ; 1, q r -2 E 4 -1 -1 1 1 1 1 1 1 ; 1, q r = - 1 2 E Reg 4
-1 1 1 1 ; 1, q r E Reg 4

-1 1 1 1 ; 1, q r + HPLs 1 E Reg 4

-1 -1 1 1 1 1 ; 1, q r -HPLs 1 E Reg 4

-1 1 1 1 1 1 ; 1, q r + HPLs 2 E Reg 4

-1 1 1 1 ; 1, q r + HPLs 4 , (K.0.34)

E 4 1 -1 1 -1 1 1 1 1 ; 1, q r = E 4 -1 1 -1 1 1 1 ; 1, q r E 4 ( 1 1 ; 1, q r ) -2 E 4 -1 1 1 -1 1 1 1 1 ; 1, q r -E 4 -1 1 -1 1 1 1 1 1 ; 1, q r = -4 E Reg 4 -1 1 1 1 1 1 1 1 ; 1, q r + 2 E Reg 4 -1 -1 1 1 1 1 1 1 ; 1, q r + 1 2 E Reg 4 -1 1 1 1 ; 1, q r E Reg 4 -1 1 1 1 ; 1, q r + 2 HPLs 1 E Reg 4 -1 1 1 1 1 1 ; 1, q r -2 HPLs 1 E Reg 4 -1 -1 1 1 1 1 ; 1, q r + HPLs 1 E Reg 4 -1 1 1 1 ; 1, q r E Reg 4 -1 1 ; 1, q r -HPLs 2 E Reg 4 -1 1 1 1 ; 1, q r + HPLs 3 E Reg 4 -1 1 ; 1, q r -2 E Reg 4 -1 1 1 1 1 1 ; 1, q r E Reg 4 - 1 
1 ; 1, q r + HPLs 4 , (K.0.35)

E 4 1 -1 -1 1 1 1 ; 1, q r = E 4 ( 1 1 1 1 ; 1, q r ) E 4 -1 -1 1 1 ; 1, q r -E 4 1 -1 1 -1 1 1 1 1 ; 1, q r -E 4 -1 1 1 -1 1 1 1 1 ; 1, q r -E 4 1 -1 -1 1 1 1 1 1 ; 1, q r -E 4 -1 1 -1 1 1 1 1 1 ; 1, q r -E 4 -1 -1 1 1 1 1 1 1 ; 1, q r =2 E Reg 4 -1 1 1 1 1 1 1 1 ; 1, q r -E Reg 4 -1 -1 1 1 1 1 1 1 ; 1, q r + E Reg 4 -1 1 ; 1, q r E Reg 4 -1 1 1 1 1 1 ; 1, q r -HPLs 1 E Reg 4 -1 1 1 1 1 1 ; 1, q r + HPLs 1 E Reg 4 -1 -1 1 1 1 1 ; 1, q r -HPLs 1 E Reg 4 -1 1 1 1 ; 1, q r E Reg 4 -1 1 ; 1, q r + 1 2 HPLs 2 E Reg 4 - 1 
1 ; 1, q r E Reg 4 - 1 
1 ; 1, q r + HPLs 3 E Reg 4

-1

1 ; 1, q r + HPLs 4 , (K.0.36)

E 4 -1 -1 -1 1 1 1 1 ; 1, q r = E Reg 4 -1 -1 -1 1 1 1 1 1 ; 1, q r + HPLs 4 + E 4 -1 -1 1 1 1 1 1 1 ; 1, q r + E 4 -1 1 -1 1 1 1 1 1 ; 1, q r + E 4 1 -1 -1 1 1 1 1 1 ; 1, q r -E 4 -1 1 1 1 1 1 1 1 ; 1, q r -E 4 1 -1 1 1 1 1 1 1 ; 1, q r -E 4 1 1 -1 1 1 1 1 1 ; 1, q r = E Reg 4 -1 -1 -1 1 1 1 1 1 ; 1, q r -E Reg 4 -1 -1 1 1 1 1 1 1 ; 1, q r + E Reg 4 -1 1 1 1 1 1 1 1 ; 1, q r -HPLs 1 E Reg 4 -1 1 1 1 1 1 ; 1, q r + HPLs 1 E Reg 4 -1 -1 1 1 1 1 ; 1, q r + HPLs 2 E Reg 4
-1 1 1 1 ; 1, q r + HPLs 4 , (K.0.37) 

E 4 -1 -1 1 -1 1 1 1 ; 1, q r = E 4 -1 -1 1 1 1 1 ; 1, q r E 4 -1 1 ; 1, q r -3 E 4 -1 -1 -1 1 1 1 1 1 ; 1, q r = -3 E
E 4 -1 -1 -1 1 1 1 ; 1, q r = E 4 -1 1 1 1 ; 1, q r E 4 -1 -1 1 1 ; 1, q r -3 E 4 -1 -1 -1 1 1 1 1 1 ; 1, q r -2 E 4 -1 -1 1 -1 1 1 1 1 ; 1, q r =3 E Reg 4 -1 1 1 1 1 1 1 1 ; 1, q r -3 E Reg 4 -1 -1 1 1 1 1 1 1 ; 1, q r + 3 E Reg 4 -1 -1 -1 1 1 1 1 1 ; 1, q r + 2 E Reg 4 -1 1 ; 1, q r E Reg 4 -1 1 1 1 1 1 ; 1, q r -2 E Reg 4 -1 1 ; 1, q r E Reg 4 -1 -1 1 1 1 1 ; 1, q r + 1 2 E Reg 4 -1 1 ; 1, q r E Reg 4 -1 1 ; 1, q r E Reg 4 -1 1 1 1 ; 1, q r -HPLs 1 E Reg 4 -1 1 1 1 1 1 ; 1, q r + HPLs 1 E Reg 4 -1 -1 1 1 1 1 ; 1, q r -HPLs 1 E Reg 4 -1 1 ; 1, q r E Reg 4 -1 1 1 1 ; 1, q r + 1 2 HPLs 2 E Reg 4 -1 1 ; 1, q r E Reg 4 - 1 
1 ; 1, q r + HPLs 3 E Reg 4

-1

1 ; 1, q r + HPLs 4 , (K.0.39) 310

E 4 1 -1 -1 -1 1 1 1 1 ; 1, q r = E 4 -1 -1 -1 1 1 1 ; 1, q r E 4 ( 1 1 ; 1, q r ) -E 4 -1 1 -1 -1 1 1 1 1 ; 1, q r -E 4 -1 -1 1 -1 1 1 1 1 ; 1, q r -E 4 -1 -1 -1 1 1 1 1 1 ; 1, q r = -E Reg 4 -1 1 1 1 1 1 1 1 ; 1, q r + E Reg 4 -1 -1 1 1 1 1 1 1 ; 1, q r -E Reg 4 -1 1 ; 1, q r E Reg 4 -1 1 1 1 1 1 ; 1, q r + HPLs 3 E Reg 4 -1 1 ; 1, q r + E Reg 4 -1 1 ; 1, q r E Reg 4 -1 -1 1 1 1 1 ; 1, q r + HPLs 4 - 1 2 E Reg 4 -1 1 ; 1, q r E Reg 4 -1 1 ; 1, q r E Reg 4 -1 1 1 1 ; 1, q r + 1 6 HPLs 1 E Reg 4 - 1 
1 ; 1, q r E Reg 4 - 1 
1 ; 1, q r E Reg 4 - 1 
1 ; 1, q r + 1 2 HPLs 2 E Reg 4 - 1 
1 ; 1, q r E Reg 4 - 1 
1 ; 1, q r -E Reg 4

-1 -1 -1 1 1 1 1 1 ; 1, q r , (K.0.40)

E 4 -1 -1 -1 -1 1 1 1 1 ; 1, q r = 1 24 E 4 - 1 
1 ; 1, q r E 4 -1

1 ; 1, q r E 4 -1

1 ; 1, q r E 4 -1

1 ; 1, q r = 1 24 E Reg 4 -1 1 ; 1, q r E Reg 4 -1 1 ; 1, q r E Reg 4 -1 1 ; 1, q r E Reg 4 -1 1 ; 1, q r + 1 6 HPLs 1 E Reg 4 -1 1 ; 1, q r E Reg 4 -1 1 ; 1, q r E Reg 4 -1 1 ; 1, q r + 1 2 HPLs 2 E Reg 4 -1 1 ; 1, q r E Reg 4 - 1 
1 ; 1, q r + HPLs 3 E Reg 4

-1

1 ; 1, q r + HPLs 4 , (K.0.41)

where we have defined the finite regularised functions E Reg 4

-1 1 1 1 1 1 1 1 ; 1, q r , E Reg 4 -1 -1 1 1 1 1 1 1 ; 1, q r , E Reg 4 -1 -1 -1 1 1 1 1 1 ; 1, q r as, integral computation. We have confirmed these relations numerically up to sufficent precision (> 7 digits) and these relations can be ultimately checked in the Γ representation. We have that,

E Reg 4 -1 1 ; 1, q r = -E 4 -1 0 ; 1, q r -2 E 4 ( -1
∞ ; 1, q r ) + 1 -1 q i r 0 ; 1, q r -

2 5 E 4 1 -1 q i r 1 ; 1, q r - 4 5 E 4 
1 -1 q i r ∞ ; 1, q i + 4 5 • 5 1/4 E 4 1 0 q i r 0 ; 1, q r -2 5 G q i r , 0, 1 , (K.0.46)

We also mention here that we have found relations with E Reg 4

-1 1 1 1 1 1 ; 1, q r and E Reg 4 -1 -1 1 1 1 1 ; 1, q r in terms of E 4 but as the expressions are very lengthy, we do not present them here. Les prédictions théoriques [START_REF] Butenschoen | η c production at the LHC challenges nonrelativistic-QCD factorization[END_REF] sont en bleu et les mesures expérimentales de LHCb [START_REF] Aaij | Measurement of the η c (1S) production cross-section in proton-proton collisions via the decay η c (1S) → pp[END_REF] en noir. Reproduit de Ref [START_REF] Lansberg | New Observables in Inclusive Production of Quarkonia[END_REF]. duction de charmonia dépendent fortement de la forme des PDFs gluoniques [START_REF] Mangano | NLO quarkonium production in hadronic collisions[END_REF]. Tant Schuler que Mangano et Petrelli observèrent que ces valeurs négatives pouvaient être expliquées en analysant la limite à haute énergie partonique pour laquelle la section efficace partonique devient négative pour les quarkonia. Cela étant, aucune solution à ce problème ne fut proposée. Quasi 20 ans plus tard, une étude phénoménologique complète jusqu'aux énergies du LHC [START_REF] Feng | Energy dependence of direct-quarkonium production in pp collisions from fixed-target to LHC energies: complete one-loop analysis[END_REF] rapporta des résultats identiques mais toujours sans proposer de solution.

Dans la partie I de cette thèse, nous avons étudié la section efficace de production de quarkonium pseudo-scalaire en incluant les corrections sous dominantes (NLO) en α s et nous avons analysé l'origine physique de ces sections efficaces négatives. Nous avons proposé une nouvelle prescription de choix d'échelle de factorisation qui empêche l'apparition du problème et procure des prédictions fiables pour la production de η c and η b . L'intéressante question selon laquelle ces sections efficaces négatives pourraient être alternativement solutionnées par l'inclusion de contributions à l'ordre sous-sous-dominant (NNLO) se pose évidemment. Néanmoins, l'obstacle majeur pour l'obtention de calcul complet au NNLO reste l'évaluation des contributions des diagrammes d'émissions virtuelles à deux boucles qui est loin d'être triviale. Ceci est l'objet de la partie II de la thèse dans laquelle nous avons présenté de nouvelles méthodes pour calculer les intégrales dites « maîtresses » dont la plupart sont en fait inconnues. Nous avons expliqué de nouvelle relations d'équivalence pour calculer certaines de ces intégrales grâce à la méthode de décomposition en éléments simples. Nous avons présenté également des résultats analytiques pour les facteurs de formes concernés.

Résumé de la partie I :

Afin d'améliorer notre compréhension de la structure de la section efficace de la hadroproduction de quarkonia pseudo-scalaires, nous avons présenté dans le Chapitre 2 une dérivation de la section efficace au NLO. Etant donné que le problème des sections efficaces existent pour différents charmonia et vu que les états pseudo-scalaires sont les plus simples à traiter, nous nous sommes focalisés sur celui-ci.

La section efficace hadronique pour une collisions entre deux hadrons h a et h b s'appuie sur la factorisation colinéaire et s'écrit :

σ hah b = ij 1 0 dx 1 1 0
dx 2 f i/ha (x 1 , µ F ) f j/h b (x 2 , µ F ) σij (µ R , µ F , x 1 , x 2 , ŝ = sx 1 x 2 ), (FR.0.1) où f i/ha (x 1 ) représente la PDF du parton i dans le hadron h a , à savoir la probabilité de trouver ce parton i avec une fraction d'impulsion x 1 dans le hadron h a . σij représente la section efficace partonique pour la collision des partons i et j. Alors que les PDFs sont des objets non-perturbatifs et sont habituellement extraites de données expérimentales, la section efficace partonique est calculable perturbativement à l'aide des diagrammes de Feynman.

Dans des calculs dits à « ordre fixe » où la section efficace partonique est calculée à différents ordres en la constante de couplage forte, nous notons l'apparition de deux échelles, celle de renormalisation, µ R , et celle de factorisation, µ où D i représente des propagateurs typiques et q l'impulsion dans la boucle sur laquelle l'on doit intégrer. De telles intégrations font apparaître des divergences ultra-violettes (UV) ou infra-rouges (IR). Les divergences UV sont enlevées par la procédure de renormalisation alors que les divergences IR doivent être combinées avec celle des émissions réelles.

Les divergences des contributions d'émissions réelles n'apparaissent qu'après intégration sur l'espace de phase des particules externes au niveau de l'amplitude au carré |M| 2 . Les singularités « molles » s'annulent avec celles des contributions d'émissions virtuelles. Dans le cas de la hadro-production, il ne reste plus que les singularités colinéaires. Celles-ci sont absorbées dans les PDFs dans le schéma de factorisation MS, ce qui introduit explicitement de l'échelle de factorisation, µ F . Après avoir calculé la section efficace partonique, l'on doit la convoluer avec les PDFs pour obtenir la section efficace hadronique. Nous avons confirmé les résultats existants dans la littérature [START_REF] Kuhn | QCD corrections to toponium production at hadron colliders[END_REF][START_REF] Schuler | Quarkonium production and decays[END_REF][START_REF] Petrelli | NLO production and decay of quarkonium[END_REF][START_REF] Maltoni | PhD thesis: Quarkonium Phenomenology[END_REF] et vérifié l'apparition de sections efficaces négatives. Pour mieux comprendre la situation et vu que les installations expérimentales ne mesurent qu'une fraction de la section efficace σ à cause de contraintes sur l'espace de phase mesurable, nous avons dérivé pour la première fois analytiquement la section efficace différentielle en la rapidité dσ dy et exprimé celle-ci en termes de luminosité partonique dans le Chapitre 3. Nous avons encore une fois observé l'apparition de sections efficaces négatives.

Dans le Chapitre 4, nous avons ensuite analysé l'origine physique de celles-ci. Comme discuté par Schuler, Mangano et Petrelli, la section efficace est sensible à la forme des PDFs de gluons. Si les PDFs ne sont pas assez pentues à petit x, les contributions d'émissions réelles dominent. Ainsi, il est intéressant d'analyser la limite à petit z de la section efficace partonique, avec z = M 2 Q /ŝ et M Q la masse du quarkonium et où √ ŝ est l'énergie dans le système du centre de masse partonique. La limite de haute énergie partonique de la section efficace partonique du canal ab prend la forme générale En principe, une telle « sur-soustraction » devrait être compensée par des PDFs plus pentues suite à l'évolution des PDFs à différentes échelles en vertu de l'équation universelle gouvernant cette évolution, appellée équation DGLAP. Néanmoins, nous avons noté que les coefficients  dépendent du processus alors que l'évolution des PDFs est universelle. Ainsi, cette « sursoustraction » ne peut être compensée de manière systématique. Ce hiatus est davantage marqué à petite échelle comme pour la production de charmonia, ce qui rend sa phénoménologie essentiellement vide de sens au NLO aux énergies du LHC.

En s'appuyant sur le fait que la limite de haute énergie partonique est identique (à des facteurs de couleurs près) pour les différents canaux partoniques, nous avons solutionné ce hiatus avec une nouvelle prescription sur le choix de l'échelle de factorisation, µ F . Celle-ci est choisie de telle manière que la contribution pure NLO de Eq. FR.0. (FR.0.4)

Ce nouveau choix d'échelle donne en effet des taux de production stabilisés au NLO et positifs à très hautes énergies de collisions. Nous avons effectué une étude détaillée du facteur K, défini comme le rapport de la section efficace aux NLO et LO, ainsi que la forme des PDF gluoniques. Les PDFs sont habituellement ajustées à plus grandes échelles ce qui laisse une grande incertitude à relativement petites échelles. Nous avons montré que la section efficace différentielle en la rapidité au LO, qui est directement liée aux PDFs, montre une évolution en énergie assez inhabituelle. Nous avons étudié ce comportement avec différents paramétrisations de PDFs et avonc conclu que les quarkonia peuvent être des outils très utiles pour contraindre les PDFs de gluon à petites échelles d'énergie.

Ayant solutionné le problème des section efficaces négatives, nous avons présenté dans le Chapitre 5 les prédictions les plus précises au NLO tant pour le η c que pour le η b pour 3 installations expérimentales, SPD à NICA ainsi que le LHC en mode collisionneurs ou cible fixe. En outre, nous avons discuté de la détectabilité des quarkonia pseudo-scalaires. Une partie de nos résultats est publié dans [START_REF] Ozcelik | Constraining gluon PDFs with quarkonium production[END_REF][START_REF] Lansberg | Curing the unphysical behaviour of NLO quarkonium production at the LHC and its relevance to constrain the gluon PDF at low scales[END_REF].

Résumé de la partie II :

Afin d'étudier la convergence de la section efficace et de réduire l'incertitude lié à l'échelle de renormalisation, il est nécessaire d'aller à un ordre supplémentaire dans la série perturbative de QCD. Jusqu'à présent, aucune équipe de recherche n'a pu calculer les corrections à l'ordre sous-sous dominant (NNLO) en QCD dans le cas de hadro-production inclusive de quarkonia. Le point d'achoppement vient des contributions à deux boucles et leur combinaison avec des contributions d'émissions réelles. Ces corrections à deux boucles impliquent des intégrales de Feynman avec masses qui furent un réel défi en particulier à cause de la cinématique « au seuil », spécifique au cas des quarkonia.

Dans le Chapitre 6, nous avons présenté le formalisme et les pré-requis mathématiques pour le calcul des intégrales de Feynman à deux boucles. Dans le Chapitre 7, nous avons présenté la technique générale pour le calcul des facteurs de forme nécessaires pour la désintégration de η Q → γγ et pour la hadroproduction gg → η Q . Etant donné que l'impulsion des quarks lourds externes est identique, certains dénominateurs dans les intégrales sont linéairement dépendantes. Nous avons ainsi utilisé la méthode de décomposition en éléments simples pour simplifier ces intégrales. Nous avons ensuite utilisé la méthode de réduction par intégration par partie pour réduire ces intégrales en des intégrales dites « maîtresses ».

Dans le Chapitre 8, nous avons détaillé les différentes topologies et la liste des intégrales « maîtresses » qui apparaissent dans le calcul des facteurs de forme. Nous avons trouvé que beaucoup de ces intégrales « maîtresses » étaient inconnues et devaient être calculées. Nous avons par ailleurs trouvé de nouvelles relations d'équivalence parmi des intégrales grâce à la méthode de décomposition en éléments simples. Dans le Chapitre 9, nous avons présenté les techniques les plus avancées pour le calcul analytique de ces intégrales « maîtresses ». Certaines intégrales ne sont pas exprimables en polylogarithmes ordinaires mais bien en polylogarithmes multiples elliptiques. Nous avons expliqué ce que sont ces fonctions et expliqué avec quelques exemples comment calculer ces intégrales analytiquement. Ces intégrales elliptiques furent ardues à calculer de par la complexité des fonctions et les nombreux termes à traiter. Lors du calcul de ces intégrales, nous avons pu factoriser la masse des quarks lourds pour les utiliser tant pour les charmonia et bottomonia. Nous avons également expliqué comment obtenir des résultats numériques de hautes précisions pour ces intégrales.

Ayant calculé analytiquement toutes les intégrales « maîtresses » impliquées dans la hadroproduction inclusive de quarkonia pseudo-scalaires et généré des résultats numériques de ultra-haute précision, nous avons pu présenté dans le Chapitre 10 les facteurs de forme à deux boucles pour le processus η Q → γγ et gg → η Q . Nous avons discuté la renormalisation ultraviolette à deux boucles et montré que la structure des divergences infrarouges pour le cas gg → η Q correspondait à la structure universelle attendue. En outre, nous avons présenté les facteurs de forme à deux boucles pour la désintégration du parapositronium en di-photon. Ces facteurs de forme n'avaient été calculé précédemment que numériquement avec une précision modeste (cf Ref [START_REF] Feng | Can Nonrelativistic QCD Explain the γγ * → η c Transition Form Factor Data?[END_REF][START_REF] Czarnecki | Charmonium decays: J / psi -> e+ e-and eta(c) -> gamma gamma[END_REF] et Ref [START_REF] Czarnecki | Alpha**2 corrections to parapositronium decay: A Detailed description[END_REF]). Nous avons donc porté la précision des résultats jusqu'à 200 chiffres significatifs et obtenu résultats analytiques complets. Armés de ces facteurs de forme à deux boucles, nous avons discuté de la convergence de la série perturbative pour la désintégration exclusive du η Q en di-photon au NNLO. Nous avons montré que les corrections NNLO sont en fait assez grandes et produisent des résultats théoriques en accord avec les mesures expérimentales. Nous avons également noté que l'incertitude venant de l'échelle de renormalisation, contrairement à nos attentes, n'est pas réduite au NNLO par rapport au NLO.

En ce qui concerne le cas de hadro-production, nous avons calculé la fonction dure nécessaire pour la hadro-production inclusive au NNLO qui peut être utilisée en factorisation colinéaire et TMD. Nous avons discuté l'applicabilité de nos méthodes pour d'autres facteurs de forme à deux boucles et brièvement discuté le cas pseudo-scalaire « colour octet » pour lequel nous avons obtenus des premiers résultats. Nous avons enfin discuté la structure des pôles infrarouges et des singularités Coulombiennes spécifiques au cas des quarkonia où les quarks lourds sont au seuil.

Dans la Conclusion nous avons discuté des prospectives pour les futures études théoriques de précision de la production de quarkonia. Dans la partie I de cette thèse, nous avons discuté la phénoménologie de la production inclusive de quarkonia pseudo-scalaires à l'ordre sous dominant (NLO) en QCD. La production des charmonia et des bottomonia, qui sont des états liés mésoniques composés de quarks respectivement charmés et beaux, est un processus à relativement petite échelle d'énergie. Or, il a été remarqué à plusieurs reprises dans la littérature que les corrections au NLO à la hadro-production inclusive de quarkonia pseudoscalaires donnaient des résultats non-physiques ainsi que des sections efficaces négatives. Malgré cela, aucune solution à ce problème ne fut proposée avant celle discutée dans cette thèse. Après avoir confirmé les calculs précédents de ces corrections au NLO, nous avons identifié la source des sections efficaces négatives comme venant d'une « sur-soustraction » des divergences colinéaires dans les fonctions de distribution de partons (PDFs) dans le schéma dit MSbar. Cette « sur-soustraction » est d'autant plus grande que l'échelle du processus est petite, comme dans le cas des charmonia. Pour la production de bottomonia, de quark top ou du H0, le problème est moins prononcé eu égard à leur plus grande masse. Nous avons noté un hiatus général entre les coefficients de la partie perturbative dépendant du processus et l'équation universelle gouvernant l'évolution des PDFs à différentes échelles. Ce hiatus est davantage marqué à petite échelle. Nous avons solutionné ce hiatus avec une nouvelle prescription sur le choix de l'échelle de factorisation. Ce nouveau choix d'échelle donne en effet des taux de production stabilisés et positifs à très hautes énergies de collisions.

Afin d'étudier la convergence de la section efficace et de réduire l'incertitude lié à l'échelle de renormalisation, il est nécessaire d'aller à un ordre supplémentaire dans la série perturbative de QCD. Jusqu'à présent, aucune équipe de recherche n'a pu calculer les corrections à l'ordre sous-sous dominant (NNLO) en QCD dans le cas de hadroproduction inclusive de quarkonia. Le point d'achoppement vient des contributions à deux boucles et leur combinaison avec des contributions d'émissions réelles. Ces corrections à deux boucles impliquent des intégrales de Feynman avec masses qui furent un réel défi en particulier à cause de la cinématique « au seuil ». Nous avons calculé analytiquement toutes les intégrales dites « maîtresses » impliquées dans la hadro-production inclusive de quarkonia pseudo-scalaires et généré des résultats numériques de ultra-haute précision. Certaines intégrales ne sont pas exprimables en polylogarithmes ordinaires mais bien en polylogarithmes multiples elliptiques. Nous avons employé des techniques pointues pour les calculs analytiques à deux boucles. Nous avons trouvé des identités parmi des intégrales grâce à la méthode de décomposition en éléments simples. Nous avons présenté le formalisme et les pré-requis mathématiques pour le calcul de ces intégrales dans la partie II de cette thèse. Armés de ces résultats analytiques et numériques complets, nous avons présenté, pour la première fois, des résultats analytiques complets des facteurs de formes au NNLO pour les quarkonia pseudo-scalaires pour les différents canaux possibles. Nous avons également pu calculer la désintégration exclusive en deux photons. En outre, nous avons calculé la fonction dure nécessaire pour la hadro-prodiction inclusive au NNLO qui peut être utilisée en factorisation colinéaire et TMD.

Nous avons discuté en guise de conclusion des perspectives pour de futures études portant sur les quarkonia. In Part I of this thesis, we have assessed the phenomenology of pseudoscalar quarkonium inclusive production at Next-to-Leading Order (NLO) in QCD. The production of charmonia and bottomonia, which are bound-state mesons composed of charm and bottom quarks respectively, occurs at rather low energy scales. Previously, it has been noted several times in the literature, that NLO corrections to inclusive hadro-production processes yielded unphysical and negative cross-sections. However, no solution to this issue has been put forward before our proposition in this manuscript. After having confirmed the existing theoretical NLO corrections, we have traced back the issue of negative cross-sections to an over-subtraction of the collinear divergences inside the parton distribution functions (PDF) within the MSbar-scheme. This oversubtraction is in particular enhanced for low-scale processes such as charmonium production. For bottomonium, tt and H 0 production the issue is less pronounced due to their larger mass. Irrespective of this, we have noted a general mismatch between the process-dependent coefficients in the perturbative hard part and the universal equations governing the evolution of the PDFs at different scales. We have cured this mismatch by proposing a new scale prescription for the factorisation scale and demonstrated that this new scale choice indeed yielded stable and reliable positive cross-section results up to very large collision energies. We have detailed our findings and results in Part I of this thesis.

In order to assess the convergence of the crosssection and reduce the renormalisation scale uncertainty, one needs to go to higher orders in the perturbative series. So far, no group has managed to compute a full Next-to-Next-to-Leading Order (NNLO) inclusive hadro-production computation involving quarkonia. The bottleneck for a full NNLO computation remained the two-loop virtual contributions and their combination with the real emission contributions. These two-loop virtual contributions involve massive Feynman integrals and presented a real challenge in particular due to the threshold kinematics. We have computed all master integrals relevant for pseudoscalar hadroproduction analytically and produced at the same time very high-precision numerics up to 200 digits precision. Some of these integrals cannot be casted in terms of the ordinary polylogarithms and one has to extend the space of functions to the elliptic multiple polylogarithms. We have employed cutting-edge techniques to compute the massive two-loop master integrals analytically. In the course of this project, we have found identities among master integrals due to partial fraction which simplified some of the procedures. We presented the formalism and the mathematical background of computing master integrals in Part II of this thesis. Having at our disposal the full analytical and numerical result for the master integrals, we were able to provide for the first time complete analytical results to the pseudoscalar form-factors in different channels. We were able to compute the NNLO exclusive decay width to two photons for both charmonium and bottomonium states. In addition, we have computed the hard function needed for the NNLO hadro-production process which can be used in both collinear and TMD factorisation.

In the concluding pages, we have discussed the prospects and outlook for quarkonium studies in the future.
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 11 Figure 1.1: Spectroscopy for charmonium states below the DD threshold, adapted from Particle Data Group [14].
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 13 Figure 1.3: Differential cross-section of η c hadro-production as function of p T . Theory[START_REF] Butenschoen | η c production at the LHC challenges nonrelativistic-QCD factorization[END_REF] represented by blue band versus experimental LHCb data[START_REF] Aaij | Measurement of the η c (1S) production cross-section in proton-proton collisions via the decay η c (1S) → pp[END_REF]. Taken from Ref.[START_REF] Lansberg | New Observables in Inclusive Production of Quarkonia[END_REF].
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 14 Figure 1.4: Rapidity-differential cross-section at y = 0 as function of √ s with different scale choices for (a) η c and (b) J/ψ in CSM. Taken from Ref. [55].
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 15 Figure 1.5: Rapidity-differential cross-section at y = 0 as function of √ s with different scale choices for (a) η b and (b) 1 S [8]
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 416 Figure 1.6: η c (a) P T -differential cross-section at √ s = 13 TeV and (b) NLO K-factor with scale
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 21 Figure 2.1: Feynman diagrams contributing to (a) leading order and (b) next-to-leading order.
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 22 Figure 2.2: Counterterm diagrams at (a) vertex and (b) fermion propagator
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 23 Figure 2.3: diagrams with γγ initial channel with (a) gluon emission from heavy quark line and (b) loop diagram with gluon

Figure 2 . 4 :

 24 Figure 2.4: Real emission diagrams with (a) gluon emission from heavy-quark line, (b) initialstate radiation and (c) triple gluon vertex
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 25 Figure 2.5: Ghost diagram (a) gluon emission from heavy-quark line, (b) initial-state radiation and (c) triple gluon vertex
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 26 Figure 2.6: diagrams with (a) vacuum polarisation, (b) qg-channel and (c) qq-channel contributions
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 27 Figure 2.7: σ for η c production at (a) LO and (b) NLO with usual 7-scale variation for µ R and µ F as function of √ s with PDF4LHC15_nlo_30 [68].
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 28 Figure 2.8: σ for η c production with PDF uncertainties at LO (grey band) and at NLO (green band) at central scale choice µ R = µ F = M Q as function of √ s with PDF4LHC15_nlo_30 [68].
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 31 Figure 3.1: dσ dy for η c production at (a) LO and (b) NLO with usual 7-scale variation for µ R and µ F as function of √ s at y = 0 with PDF4LHC15_nlo_30 [68].
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 32 Figure 3.2: dσ dy for η c production at LO (grey band) and NLO (green band) with µ R = µ F = M Q and PDF uncertainty (a) as function of √ s at fixed y = 0 and (b) as function of y at fixed √ s = 14

  3.2 the PDF uncertainty for the central scale choice µ R = µ F = M Q at both LO (grey band) and NLO (green band) in (a) as function of √ s at fixed y and (b) as function of y at √ s = 14 TeV. The PDF uncertainty bands for the NLO cross-sections are very large.

  of η c production with n f =3, μ r =m c , μ f =2m c , y=0
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 41 Figure 4.1: K-factor of dσ dy yield for η c production at y = 0 with five different PDF choices and µ R = m c = 1.5 GeV, µ F = 2m c = 3 GeV
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 42 Figure 4.2: Gluon PDF shape for different x-values at µ F = 1.55GeV with the following PDF parametrisations, PDF4LHC15_nlo_30[START_REF] Butterworth | PDF4LHC recommendations for LHC Run II[END_REF], MMHT14nlo[START_REF] Harland-Lang | Charm and beauty quark masses in the MMHT2014 global PDF analysis[END_REF], JR14NLO08VF[START_REF] Jimenez-Delgado | Delineating parton distributions and the strong coupling[END_REF], NNPDF31sx_nlonllx_as_0118[START_REF] Ball | Parton distributions with small-x resummation: evidence for BFKL dynamics in HERA data[END_REF], CT14nlo[START_REF] Dulat | New parton distribution functions from a global analysis of quantum chromodynamics[END_REF] and NNPDF31_nlo_as_0118[START_REF] Ball | Parton distributions from high-precision collider data[END_REF]. Plots generated with APFEL[START_REF] Bertone | APFEL: A PDF Evolution Library with QED corrections[END_REF][START_REF] Carrazza | APFEL Web: a web-based application for the graphical visualization of parton distribution functions[END_REF]. In addition, reweighted NNPDF30_nlo_as_0118[START_REF] Ball | Parton distributions for the LHC Run II[END_REF] gluon PDF based on exclusive J/Ψ data added[START_REF] Flett | Very low x gluon density determined by LHCb exclusive J/ψ data[END_REF] 
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 43 Figure 4.3: Gluon PDF shape for different x-values at µ F = 3GeV with the following PDF parametrisations, PDF4LHC15_nlo_30[START_REF] Butterworth | PDF4LHC recommendations for LHC Run II[END_REF], MMHT14nlo[START_REF] Harland-Lang | Charm and beauty quark masses in the MMHT2014 global PDF analysis[END_REF], JR14NLO08VF[START_REF] Jimenez-Delgado | Delineating parton distributions and the strong coupling[END_REF], NNPDF31sx_nlonllx_as_0118[START_REF] Ball | Parton distributions with small-x resummation: evidence for BFKL dynamics in HERA data[END_REF], CT14nlo[START_REF] Dulat | New parton distribution functions from a global analysis of quantum chromodynamics[END_REF] and NNPDF31_nlo_as_0118[START_REF] Ball | Parton distributions from high-precision collider data[END_REF]. Plots generated with APFEL[START_REF] Bertone | APFEL: A PDF Evolution Library with QED corrections[END_REF][START_REF] Carrazza | APFEL Web: a web-based application for the graphical visualization of parton distribution functions[END_REF].
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 45 Figure 4.5: K-factor of dσ dy for (a) η c and (b) η b production at y = 0 with usual 7-scale variation for (µ R , µ F ) and in addition our scale choice µ R = µ F = μF with NNPDF31sx_nlonllx_as_0118 [77] PDF parametrisation.
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 46 Figure 4.6: K-factor of dσ dy for η b production at y = 0 with usual 7-scale variation for (µ R , µ F ) and in addition our scale choice µ R = µ F = μF with (a) PDF4LHC15_nlo_30 [68] and (b) JR14NLO08VF [87] PDF parametrisations.

  for M H =3 GeV and m Q =1.5 GeV in the loop computed with ggHiggs and PDF4LHC30

Fictitious H 0

 0 production with M H =3 GeV with m Q /M H = 173/125 at NLO computed with ggHiggs and PDF4LHC30
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 48 Figure 4.8: K-factor of σ for Higgs production with (a) M H = 3 GeV and (b) M H = 125 GeV with usual 7-scale variation for (µ R , µ F ) and in addition our scale choice µ R = µ F = μF with PDF4LHC15_nlo_30 [68] and with ratio 2m Q M H = 2.76 which corresponds to the physical ratio between the top quark mass and the Higgs mass. Computed with ggHiggs [99, 100, 101].
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 54 Figure 4.10: (Left column) energy-dependence at y = 0 and (right column) rapiditydependence at √ s = 14 TeV of gluon luminosity corresponding to η c production (M = 3

Figure 4 .

 4 Figure 4.11: (Left column) energy-dependence at y = 0 and (right column) rapiditydependence at √ s = 14 TeV of gluon luminosity corresponding to η b production (M = 9.5GeV) with three scale choices µ F = { M 2 , M, 2M } and with (first row) PDF4LHC15_nlo_30[START_REF] Butterworth | PDF4LHC recommendations for LHC Run II[END_REF], (second row) JR14NLO08VF[START_REF] Jimenez-Delgado | Delineating parton distributions and the strong coupling[END_REF] and (third row) NNPDF31sx_nlonllx_as_0118[START_REF] Ball | Parton distributions with small-x resummation: evidence for BFKL dynamics in HERA data[END_REF] PDF parametrisations. 81

  1.0) , (1.0, 0.5) , (1.0, 2.0) , (0.5, 0.5) , (0.5, 1.0) , (2.0, 1.0) , (2.0, 2.0)}.
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 4 Figure 4.13: Energy-dependence of dσ dy for η c production at y = 0 with our scale choice µ R = µ F = μF at (a) LO and (b) NLO accuracy with central PDF choices: PDF4LHC15_nlo_30[68], JR14NLO08VF[START_REF] Jimenez-Delgado | Delineating parton distributions and the strong coupling[END_REF], NNPDF31sx_nlonllx_as_0118[START_REF] Ball | Parton distributions with small-x resummation: evidence for BFKL dynamics in HERA data[END_REF], ABM11_3n_nlo[START_REF] Alekhin | Parton Distribution Functions and Benchmark Cross Sections at NNLO[END_REF], CT14nlo[START_REF] Dulat | New parton distribution functions from a global analysis of quantum chromodynamics[END_REF], NNPDF31_nlo_as_0118[START_REF] Ball | Parton distributions from high-precision collider data[END_REF] and MMHT14nlo[START_REF] Harland-Lang | Charm and beauty quark masses in the MMHT2014 global PDF analysis[END_REF] PDF parametrisations.
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 4 Figure 4.14: Energy-dependence of dσ NLO dy for (a) η c and (b) η b production at y = 0 with usual 7-scale variation for (µ R , µ F ) and in addition our scale choice µ R = µ F = μF with NNPDF31sx_nlonllx_as_0118 [77] PDF parametrisation.
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 4 Figure 4.16: (Left column) absolute and (right column) relative PDF (green band) and µ R (red band) uncertainties of dσ NLO dy
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 4 Figure 4.17: (Left column) absolute and (right column) relative PDF (green band) and µ R (red band) uncertainties of dσ NLO dy
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 51 Figure 5.1: Rapidity-dependence of dσ dy for (left column) η c production (M = 3 GeV) and (right column) η b production (M = 9.5 GeV) with scale prescription µ R = µ F = μF and with JR14NLO08VF [87] PDF at three different energy configurations (first row) √ s = 24 GeV for

  .1.10) where we have contracted the indices in D-dimensions with D = 4 -2 .
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 71 Figure 7.1: one-loop diagrams with (a) Coulombic interaction (b) initial-state box-loop and (c) 4-gluon vertex
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 72 Figure 7.2: two-loop diagrams with (a) closed fermion loop and (b) non-planar loop
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 73 Figure 7.3: one-loop diagrams with (a) emission from heavy-quark line (b) emission from initial state gluon and (c) off-shell initial state photon
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 81 Figure 8.1: Topology 1 with (a) parent integral MI-1 and (b) corresponding Feynman diagram
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 82 Figure 8.2: Topology 2 with (a) parent integral MI-14 and (b) corresponding Feynman diagram
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 83 Figure 8.3: Topology 3 with (a) parent integral MI-23 and (b) corresponding Feynman diagram
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 81584 Figure 8.4: Topology 4 with (a) parent integral MI-42, (b) parent integral MI-43 and (c) corresponding Feynman diagram
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 81685 Figure 8.5: Topology 5 with (a) parent integral MI-49, (b) parent integral MI-50 and (c) corresponding Feynman diagram
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 86 Figure 8.6: Topology 6 with (a) parent integral MI-58
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 87 Figure 8.7: Topology 7 with (a) parent integral MI-60 and (b) corresponding Feynman diagram
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 81988 Figure 8.8: Topology 8 with (a) parent integral MI-64, (b) parent integral MI-68 and (b) corresponding Feynman diagram
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 1089810 Figure 8.9: Topology 9 with (a) parent integral MI-69, (b) parent integral MI-71, (c) parent integral MI-70
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 11811 Figure 8.11: Topology 10 with (a) parent integral MI-72 and (b) corresponding Feynman diagram

.1. 12 )Figure 8 . 12 :

 12812 Figure 8.12: Topology 11 with (a) parent integral MI-74, (b) parent integral MI-76 and corresponding Feynman diagrams with (c) planar topology and (d) non-planar topology

  two-loop integrals in MI-38 and in MI-71,

3 . 8 ,

 38 we can establish a relation between MI-22 and MI-62.

MI- 58

 58 is known from the computation for tt-production and has been computed in Ref.[START_REF] Manteuffel | A non-planar two-loop three-point function beyond multiple polylogarithms[END_REF]. If one decided to compute MI-58 via means of differential equation, one could simply set the boundary condition at ŝ = -4m 2 and borrow the result from MI-49 at anti-threshold. Another example of partial fraction that relates our master integral MI-33 to children of MI-58 and MI-49 but both at anti-threshold, MI-33 = -MI-59 (anti-threshold) + 2 MI-52 (anti-threshold)

1 dx Φ 4

 14 x , where Φ 4 (x) = Φ4 (x) + 4c 4
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 91 Figure 9.1: graph of (a) MI-3 and (b) MI-64 with propagator numbering

Figure 9 . 2 :

 92 Figure 9.2: graph of MI-39 with propagator numbering
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 93 Figure 9.3: graph of (a) MI-66 with dot and propagator numbering and (b) MI-36 with dot
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 94 Figure 9.4: graph of (a) MI-26 with propagator numbering

  i∈g j d i G b i ; c i with the x-dependence in the prefactor d i removed 4. We can construct the integration kernels in the resulting differential d dx i∈g j d j G b i ; c i but we still have unfibrated MPLs of weight w = n -1 present → go back to step 2 5. Repeat steps 3 and 4 for all other elements in the set {g 1 , ..., g m } 6.
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 101 Figure 10.1: Feynman diagrams at two-loop with internal fermion loops of type (a) triangle (b) light-by-light scattering and (c) vacuum polarisation
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 102 Figure 10.2: Feynman diagrams at two-loop with (a) Abelian and (b) non-Abelian type of corrections
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 26 This Coulomb singularity can be traced back to loop corrections to the one-loop diagram that has a Coulomb-like exchange as in Fig.2.3b. The contributions with Abelian-like corrections 200 10.1. FORM-FACTOR γγ ↔ 1 S [1] 0
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 103 Figure 10.3: two-loop Feynman diagrams for gg-fusion with (a) internal triangle quark loops, (b) non-planar correction and (b) planar correction with initial-state gluons involved

( 10 .

 10 2.14) where the first line indicates the corrections with two gluon exchanges, the second line indicates vacuum polarisation corrections and the third line indicates the light-by-light contribution (lbl = 1).
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 104 Figure 10.4: Feynman diagrams at two-loop for gg-fusion with internal quark loops of type light-by-light scattering with (a) planar and (b) non-planar topology

  ren involving the O( ) and O 2 terms which multiplied with Z(1) 
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 105 Figure 10.5: Feynman diagrams at two-loops of type (a) regular (b) vacuum polarisation and (c) light-by-light contributions for para-positronium form-factor.
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Figure FR. 1 :

 1 Figure FR.1: Section efficace différentielle en fonction de p T pour la hadro-production de η c . Les prédictions théoriques[START_REF] Butenschoen | η c production at the LHC challenges nonrelativistic-QCD factorization[END_REF] sont en bleu et les mesures expérimentales de LHCb[START_REF] Aaij | Measurement of the η c (1S) production cross-section in proton-proton collisions via the decay η c (1S) → pp[END_REF] en noir. Reproduit de Ref[START_REF] Lansberg | New Observables in Inclusive Production of Quarkonia[END_REF].

  F . Ces échelles sont des artefacts de la régularisation dimensionnelle nécessaire pour réguler les divergences possibles. Ainsi l'on modifie la dimension de D = 4 à D = 4 -2 où agit comme régulateur. Alors que le LO est libre de toute divergence et peut être représenté par le diagramme Fig. FR.2a, la section efficace au NLO peut être représentée par diagrammes de Feynman pour des émissions réelles ou virtuelles, tels que montré sur Fig. FR.2b et Fig. FR.2c qui néanmoins développent individuellement des divergences.

Figure FR. 2 :I = µ 4

 24 Figure FR.2: Diagrammes de Feynman contribuant à (a) l'ordre dominant et à l'ordre sous dominant via (b) une émission virtuelle et (c) une émission réelle.

2 F

 2 C ab est le facteur de couleur pour ce canal. Cette équation vaut également pour la production d'un boson de Higgs par fusion de gluons via une boucle de quarks top, où M est la masse du système produit avec un facteur de forme dit « résolu ». Alors que le facteur log M 2 /µ est universel, le facteur  dépend du processus et prend différentes valeurs pour différents systèmes produits. Pour un quarkonium pseudo-scalaire,  = -1. L'origine de ces valeurs négatives peut être identifiées comme venant des émissions réelles d'état initial cf Fig. FR.2c. Comme mentionné ci-dessus, ces diagrammes, après intégration sur l'espace de phase, produisent des divergences colinéaires. Il est important de noter que l'élément de matrice au carré |M| 2 étant positif sur tout l'espace d'intégration, la section efficace partonique est définie positive pour toute valeur de z. Néanmoins, il est nécessaire d'enlever ces singularités et de les inclure dans les PDFs. Il apparaît donc que ces valeurs négatives résultent d'une « sur-soustraction » des divergences colinéaires dans les PDFs dans le schéma dit MS.

  3 s'annule dans cette limite et nous définissons notre choix d'échelle comme μF = M e Â/2 .
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	8]	-43/27	0.451M Q
	3 P 2 Fictitious H0 [1,8] (2m Q /M H = 1)	-53/36 -0.147	0.479M Q 0.93M H0
	Fictitious H0 (2m Q /M H = 2)	1.61	2.43M H0
	Real H 0 (2m t /M H = 2.76)	2.28	3.12M H 0

  .1.8) Topology 7 has 7 integrals that we need and the highest ranked integral with 6 active propagator is G[7, {1, 1, 1, 1, 1, 1, 0}] as in Fig.8.7a and can originate from diagrams of type as shown in Fig.8.7b. Due to the presence of the triple-gluon vertex, this integral needs to have at least a gluon in the initial state and thus cannot occur in the γγ fusion process.

  Both MI-65 and MI-61 are known in the literature in Ref.[START_REF] Chen | Two-Loop integrals for CP-even heavy quarkonium production and decays[END_REF] and Ref.[START_REF] Anastasiou | Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop[END_REF][START_REF] Beerli | A New method for evaluating two-loop Feynman integrals and its application to Higgs production[END_REF], hence we can deduce the value of MI-47 from this equality. We reiterate that this equality is valid up to all orders in the regulator . As the integrals on the RHS are finite and start at O 0 , MI-47 is trivially finite as well. Looking back at the equality in Eq. 8.4.2, it is clear that MI-75 has poles starting at O -2 , thus the same applies to MI-7. The next relation is symmetric again and trivial to derive with Eq. 8.3.8,The result for MI-70 is already known from the Higgs form-factor computation[START_REF] Anastasiou | Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop[END_REF][START_REF] Beerli | A New method for evaluating two-loop Feynman integrals and its application to Higgs production[END_REF]. Before realising this equality, we have in fact computed MI-72 independently and we can thus verify this relation analytically. On a side note, it is interesting to see that this relation above allows us to go from a triangle integral to a simple two-point function. However in all cases the number of propagators (or more specifically sum of propagator powers) present in each term remains the same. This is straightforward to see as the prefactor of each term/integral is just a dimensionless integer number, hence each integral must have the same mass dimension. The next relation that we present below involves two integrals with six propagators each,

		MI-68	=	MI-60	
				4m 2
						(8.4.8)
			=			.
				47, MI-65, MI-61) can be derived with
	Eq. 8.3.8,				
	MI-47	=	-MI-65 + 2 MI-61
						4m 2
		= -		+ 2	.	(8.4.6)
		MI-72	=	MI-70	
		4m 2		
			=	4m 2	4m 2	.	(8.4.7)

  Above z is the argument of the function G (a 1 , ..., a n ; z) and the indices a i describe the MPL integration kernels. The argument and the indices can take up any value in the complex plane, z, a i ∈ C. The relation to the integration kernels is manifest in the following trivial relation,

							a 2 , ..., a n ; t),	(9.2.8)
	where the recursion stops with,					
		G (a n ; t) =	0	t	dt	1 t -a n	G ; t , where G ; t = 1.	(9.2.9)
	∂ ∂t	G (a					

1 , ..., a n ; t) = f (t, a 1 ) G (a 2 , ..., a n ; t), with the kernel being f (t, a 1 ) = 1 ta 1 . (9.2.10)

  For the case where zeroes are present in the last indices of a, we will first need to remove these via a procedure that we will introduce now. Iterated integrals such as MPLs satisfy a shuffle algebra as, G (a 1 , ..., a m ; z) G (b 1 , ..., b n ; z) =

			G (c 1 , ..., c m+n ; z),	(9.2.22)
			c∈ a¡ b	
				In the iter-
	ated integral representation, as long as there are no zeroes in the last indices, i.e. no logarithmic
	structure, one can normalise the MPLs as,			
	G ( a; z) = G	a z	; 1 , where a n = 0.	(9.2.21)

  .55) with c i = ∞. As in the case for the MPLs their elliptic extension satisfy the shuffle relation as follows, E 4 ( e 1 ; x, a) E 4 ( e 2 ; x, a) =

	E 4 f ; x, a .	(9.2.56)
	f ∈ e 1 ¡ e 2	

  4-2 up to the finite piece we need the result of MI-66 (dotted)| 6-2 up to order . With the help of HyperInt and PolyLogTools the integral is straightforward to compute and we obtain,

	MI-66 (dotted)| 6-2 =	1 4	+	17 8	-log 2 -	7 8	ζ 3 +	183 16	-	π 2 16	-	83π 4 1440	-8 log 2 + 2 log 2 2
		-	π 2 6	log 2 2 +	1 6	log 4 2 + 4 Li 4	1 2	-	21 8	ζ 3 +	7 2	log 2ζ 3 + O 2 .
														(9.2.110)

  1 δ and set the limits [t lower

	1	upper , t 1

  The only component which has not been expanded is the β0-function as it does not know any mass scale.

																	[1] 0 10.2. FORM-FACTOR GG ↔ 1 S
			1 -	7π 2 48	+	5 4	log 2 -iπ log 2 +	1 2	log 2 2 + C F	1 3	+	π 2 8	+ log 2
	+		C A -2 -iπ +	11π 2 48	-	iπ 3 8	+ 2 log 2 +	13 24	π 2 log 2 -	5 4	log 2 2 + iπ log 2 2
	-	1 3	log 3 2 +	7 6	ζ 3 + C F			19 9	-	π 2 16	+ 2 log 2 -log 2 2 +	7 4	ζ 3	(10.2.30)
	+ 2 C A -4 -3iπ +	π 2 3	+	493π 4 5760	+ 6 log 2 + 2iπ log 2 -	5π 2 48	log 2 +	1 4	iπ 3 log 2
	-2 log 2 2 -	13 24	π 2 log 2 2 +	5 6	log 3 2 -	2 3	iπ log 3 2 +	1 6	log 4 2 +	33 8	ζ 3 -	7 6	iπζ 3
	+	7 6	log 2ζ 3 + C F -	83 27	-	11π 2 36	+	5π 4 96	-2 log 2 2 +	2 3	log 3 2 -	π 2 12	log 2 -	2 3	ζ 3	,
																	212
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  We note the presence of the Coulomb singularity contribution which we have labelled with t Coulomb . We note that in the positronium case, only the Abelian part of the previously encountered Coulomb singularities emerges here. As such one has after renormalisation of the two-loop amplitude a remaining simple pole of,

	reg =c 1 ,			(10.3.5)
	t vac =c 3 ,			(10.3.6)
	t lbl =c 5 .			(10.3.7)
	Ã(2),(-1) ren	= -	π 2 4	.	(10.3.8)

  where for the second relation in Γ 0 we have made use of Ref.[START_REF] Czarnecki | Alpha**2 corrections to parapositronium decay: A Detailed description[END_REF], and in Γ 2 we have included the one-loop amplitude squared. Combining these contributions and making use of α em = 7.2973525693 × 10 -3 and m = 0.5109989461 MeV we obtain that,

	Γ NNLO p-Ps→γγ =0.994145 × Γ 0 , =7985.47 (µs) -1 .	(10.3.20)
		10.3.17)
	Γ 1 = -2.5325988997276603452913772500309622161715751481898,	(10.3.18)
	Γ 2 =5.1309798210659600230324061246468971484391124663564,	(10.3.19)

  log 2 + 2 log 2 2 + 2 8 -

												π 2 6	-8 log 2 +	1 6	π 2 log 2
	+4 log 2 2 -	4 log 3 2 3	-	7ζ 3 3	+ 3 16 -	π 2 3	-	47π 4 1440	-16 log 2 +	π 2 3	log 2 + 8 log 2 2
	-	π 2 6	log 2 2 -	8 3	log 3 2 +	2 3	log 4 2 -	14 3	ζ 3 +	14 3	log 2 ζ 3 + O 4
												(E.0.6)

  = c 1 (a) + c 2 (a) + c 3 (a) + c 4 (a) + c 5 (a) + c 6 (a), (H.0.58)

	c 4 (a) = -	i 8	p 1 (a, a * , 0) -	i 8	p 1 (a, a * , 1) +	i 4	p 1 (a, a * , ∞) -	i 4	p 2 (a, a * ) -	i 8	p 3 (a, a * ),	(H.0.62)
	c 5 (a) = -	7i 16	p 1 (a, 1, 0) +	i 8	p 1 (a, 1, 1) +	3i 16	p 1 (a, 1, ∞) -	7i 16	p 3 (a, 1),
	c 6 (a) =	d∈{ 1 2 (1-i	√	3), 1 2 (1+i	√	3)}	3i 8	p 1 (a, d, 0) +	3i 8	p 1 (a, d, 1) -	i 4	p 1 (a, d, ∞) +	i 4	p 2 (a, d) +	3i 8	p 3 (a, d),
																				=t	1 2	-	i 2	-t	1 2	+	i 2	+ u,	(H.0.57)
	where we have defined,										
	t(a) c 1 (a) = i 2 p 1 (a, 0, 0) -4 i	p 1 (a, 0, 1) -	i 4	p 2 (a, 0) +	i 2	p 3 (a, 0),	(H.0.59)
	c 2 (a) = -	5i 16	p 1 (a, -i, 0) -	i 8	p 1 (a, -i, 1) +	i 16	p 1 (a, -i, ∞) -	5i 16	p 3 (a, -i),	(H.0.60)
	c 3 (a) =	i 16	p 1 a,	1 2	, 0 +	i 16	p 1 a,	1 2	, 1 -	3i 8	p 1 a,	1 2	, ∞ +	3i 8	p 2 a,	1 2	+	i 16	p 3 a,	1 2	,
																						(H.0.61)

  =a 1 + a 2 -

	-	9 256	119π 4 73728 G 0, 0, + 1 3π 2 128 2 1 -i G (0, 0; 2) + √ 3 , -1; 1 217 256	G (0; 2)ζ 3 -27 1024	G 0, 0,	1 2	-1 -i √	3 , 1; 1
								(H.0.67)

We mention here in passing that in the large n f -limit, where n f is the number of fermions, the β-function of non-Abelian theories can change sign and become positive.

We note that the latest results in g -2 lattice computation seem to be closer to the experimental value[START_REF] Borsanyi | Leading hadronic contribution to the muon 2 magnetic moment from lattice QCD[END_REF].

For quarkonium hadro-production, we have three scales, the factorisation scale µF , the renormalisation scale µR and the NRQCD scale µ NRQCD .

We remark that a PDF fit usually involves a simultaneous fit in αs value. As we shall see in the next chapter, there will be a subletly concerning the number of flavours to be involved in the running of the coupling.

We thank Y. Feng for providing some FDC benchmark results for the cross-check.

To be precise, this would be true when computed in the axial physical gauge. The computation in different gauges may contain interference terms as we are considering |M (Real) |

. Following Ref.[START_REF] Marzani | Higgs production via gluon-gluon fusion with finite top mass beyond next-to-leading order[END_REF][START_REF] Catani | GLUON CONTRIBUTIONS TO SMALL x HEAVY FLAVOR PRODUCTION[END_REF][START_REF] Catani | High-energy factorization and small x heavy flavor production[END_REF], the physical picture is that these are indeed originating only from the initial-state emission contributions thus allowing their derivation within kT -factorisation approach.

We recall that is the regulator originating from D = 4 -2 and can take in principle any complex value. However, we are ultimately interested in the limit → 0. At one-loop level, one labels the poles with UV and IR to associate these with the UV and IR points. Under some considerations from loop-diagram calculations, one can conclude that, for the UV-poles, one has that ( UV ) ≥ 0 while for the IR poles ( IR ) ≤ 0. At higher loop orders, the labelling of UV and IR becomes irrelevant and one considers generically . This can be seen, for example, from the IBP reduction procedure (see Part II of thesis), where the appearing there cannot be associated to either UV or IR points because of generic prefactors with D = 4 -2 that appear in the reduction.

We remark here that the form of the AP-CT term is scheme-dependent. For example, in the MS-scheme one considers only the divergent part, while in the DIS-scheme one has an additional finite piece involving among others a log z-dependence that would be absorbed into the A ab (z) term[START_REF] Kuhn | QCD corrections to toponium production at hadron colliders[END_REF]. This log z-term in the DIS-scheme diverges in z → 0 limit, however when convoluted and integrated with the PDFs, it yields finite contributions. We also remark that by changing the scheme for the AP-CT, one will have to simultanously fit the PDFs to the different scheme. Most PDFs have been fitted within the MS-scheme.

The possibility to avoid negative partonic cross-section at any z-value with a new generalised scheme for the Altarelli-Parisi counterterm is left for future work as this implies a new fit for the PDFs within the new scheme.

We note here a recent paper exploring the positivity of the gluon PDFs within the MS-scheme in Ref.[START_REF] Candido | Can MS parton distributions be negative?[END_REF].

In fact, this can be easily confirmed by computing the corresponding values for x1 and x2 for the LO. Due to z = 1, and using √ s ∼ 14 TeV, M = 3 GeV for ηc, we compute τ0 ∼ 5 • 10 -8 . Now with y = 0, we have x1 = x2 = √ τ0 ∼ 0.0002 which indeed happens to be the rough position of the dip for PDF4LHC15.

As previously discussed, the dependence on the energy is stretched by the ratio the mass has changed. This implies that when comparing charmonium and bottomonium states, for fixed √ s, due to the smaller mass for charmonium, one needs the rather low-x PDF regime, which is rather unconstrained. For the bottomonium case due to its larger mass, for the same √ s one thus needs only the larger x PDF region which is better constrained.

As these scales are artificial, these cannot be measured in any experiment. If one computed with the method of fixed-order calculation, corrections up to N ∞ LO accuracy, the true physical result cannot depend on µR and one would expect this uncertainty to disappear.

We recall that as we are considering y = 0, the two gluon PDFs come in a pure square for the LO cross-section and thus two negative gluon distributions will give positive LO results. However, for the NLO result, one probes different x1 and x2 values and this will then result into negative yields when the positive partonic cross-section is multiplied with the two PDFs, one being positive and the other negative.

We note that higher luminosities for SPD experiment are possible.

This is a consequence of the aforementioned fact (see Sec. 4.1.4), that z is now smaller compared to the situation for ηc and thus receives the sudden contribution from the PDF shape at larger x.

Although together with its charge conjugated contribution, where the fermion lines are inverted, this diagram vanishes for the pseudo-scalar state in both colour-singlet and colour-octet state.

I thank C. Duhr for making this package available to me.

At this stage, we would like to make a small remark concerning the difference between exclusive and inclusive decay of ηQ to di-photon. It should be clear to the reader that the process ηQ → γγg which is needed for the inclusive decay at NLO accuracy vanishes because of colour-factor and charge conjugation. As such, at LO and at NLO accuracy the inclusive decay is identical to the exlusive one. However, at NNLO the inclusive decay involves the additional contribution of ηQ → γγgg. Nevertheless, the form-factors presented here can be used for both exclusive and inclusive decay at NNLO.

As whether the phase-space integration for the tree-level decay process ηQ → γγgg (or equivalently γγ → ηQgg for production), where the two gluons are combined in a colour-singlet state, would contribute to the pole structure is left for future work. At this stage we assume the dipole mechanism.

We recall that each loop integral can yield IR singularities up to the double pole and a UV singularity up to the simple pole only.

We mention here in passing, that the mass m that appeared in the bare amplitude contains contributions from both the heavy quark mass appearing in the propagators and in addition also from ŝ = 4m 2 which is the on-shell mass.

A way to understand why we have the presence of two different elliptic curves, one may view the sunrise curve as the elliptic curve in the t-channel topology whereas the second elliptic curve could be viewed as the one coming from an ŝ-channel topology.

We mention at this stage that the authors of Ref.[START_REF] Czarnecki | Charmonium decays: J / psi -> e+ e-and eta(c) -> gamma gamma[END_REF] have in fact computed these light-by-light contributions with a massive fermion loop for the para-positronium decay in Ref.[START_REF] Czarnecki | Alpha**2 corrections to parapositronium decay: A Detailed description[END_REF] and by colour transformation this correction can be converted to the one for ηQ decay and one finds agreement. We will discuss the para-positronium case in Sec.10.3 

Alternatively, one can try at one-loop level to distinguish between UV and IR and obtain a non-zero expression as was done in Part I of this thesis (compare with δZ OS 3 in Eq. 2.3.18).

In contrast to the colour-singlet state, one needs to consider the heavy-quark interaction as well this time (see Appendix D)
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With these polynomials the integal reads,

(9.2.114)

As the integral is finite in D = 4-2 , we can perform the -expansion here. The Symanzik polynomials depend on six integration variables of which five of them are massive and thus appear quadratically. The only variable that appears linearly is the massless edge e 6 . A good strategy for selecting the Cheng-Wu delta function would be to select massive propagators. However due to the presence of five massive edges this time, all possible reasonable combinations in the Cheng-Wu do not yield an elliptic linearly reducible order. We are thus forced to work with square-roots containing more than one integration variable. We choose our Cheng-Wu delta function with three massive edges to be ∆ H = x 3 + x 4 + x 5 . We can choose to eliminate variable x 5 with x 5 = 1x 3x 4 . We can proceed next in integrating x 6 from [0, ∞]. As next integration variable we will follow with x 4 . However, this time care has be taken concerning the integration bounds. From the relation x 5 = 1x 3x 4 above and from the condition that all integration variables must be positive definite x i ≥ 0 we have that 0 ≤ x 4 ≤ 1x 3 . This further implies that the integration bounds for x 3 will be limited to [START_REF][END_REF]1] as to satisfy the positivity bound. We can perform these integration without introducing any square-roots up to this stage and we obtain that,

(9.2. [START_REF] Brodsky | Setting the Renormalization Scale in QCD: The Principle of Maximum Conformality[END_REF] We see that the integration kernel is linear in all three remaining variables. In addition the G-function is essentially a log function thus has weight w = 1. However we see that inside the argument of the G we have the polynomials z 1 and z 2 that still contain a quadratic dependence of all three variables. We can indeed verify that differentiating G 0; z 1 z 2 with respect to either x 1 , x 2 and x 3 and then linearising will lead to square-roots in the kernels containing two integration variables. We will show later on how to deal with this. As next integration variable we choose x 2 and perform the Möbius transformation with x 2 = x2 1-x 2 and obtain, .2.116) and the integral reads,

With seven propagators being present of which five are massive (quadratic), MI-23 presents a serious challenge in its evaluation via direct integration. Assuming that this integral could be solved in a similar fashion as the integrals presented in the preceding section, we encounter some unexpected obstacles. As the expressions are rather lengthy, we will only give a brief description on the issue encountered. To illustrate this, we select the Cheng-Wu with ∆ H = x 1 + x 2 + x 4 and choose to eliminate x 1 first. Integrating then out edges x 7 (massless), x 2 (massive) and x 3 (massless), we obtain an expression that is quadratic in all three remaining integration variables (x 5 , x 6 , x 4 ) which is similar to the situation for elliptic next-to-linearly reducible integrals. We could proceed with x 6 as next integration variable, linearise the kernels and then perform the integration. At the level of the integrand in the second-last integration, as in the previous section we now have the presence of square-roots in the indices. However, the key difference is that instead of the two square-roots as before we have three this time with different polynomials. If the square-roots had been fully decoupled from each other, it would not have posed any issue. In this case we could have split the integrand in different pieces and rationalised each square-root separately. However, we face this time the obstacle of mixing between these three square-roots. We define the three different square-roots with polynomials p 1 , p 2 and p 3 below, 

The third root comes in fact from the linearisation of the global kernel prefactors in the third last integration as it appears there quadratically. Thus the third root mixes with the first two.

In contrast to this, in the example we encountered before, the global kernel prefactor appeared linearly in Eq. 9.2.116. With the mixing present, we therefore have MPLs with indices involving square-roots either with p 1 coupled to p 3 , or p 2 coupled to p 3 . One may proceed and aim at rationalising each combination (p 1 , p 3 and p 2 , p 3 ) simultaneously. As x 5 appears linearly in p 1 and p 2 and quadratically in p 3 , one may choose this as our next integration variable. However a simultaneous rationalisation proved to be extremely difficult here. As there are multiple ways to rationalise each root, one would have to find a specific rationalisation that rationalises each square-root at the same time. In view of this difficulty, we have decided to take a new approach in solving this integral which we will now explain below.

In order to avoid MPLs having several roots present in the indices at the level of the secondlast integration, the strategy lies in linearising the global kernel of the third-last integration without the introduction of square-roots. At this stage, we can either change the order of the integration or use a different Cheng-Wu. However all reasonable combinations of Cheng-Wu and integration orders did not resolve this issue. With the application of the Cheng-Wu delta function, one may pose the question as whether one could introduce an additional delta function involving fictional non-existing edges. To recap, we had the degree of freedom to choose our Cheng-Wu delta function because Feynman integrals were projective integrals. With additional delta functions, one may imagine a reprojection of the Feynman integral under in-Chapter 11

Outlook

In this final chapter of the manuscript, we will summarise the key elements from the two principal parts of the thesis, Part I and Part II, and re-address the motivations made in the main introduction in Chapter 1. We will then discuss the prospects and the outlook.

Outlook: Part I

We recall that, in the literature [START_REF] Schuler | Quarkonium production and decays[END_REF][START_REF] Mangano | NLO quarkonium production in hadronic collisions[END_REF][START_REF] Feng | Energy dependence of direct-quarkonium production in pp collisions from fixed-target to LHC energies: complete one-loop analysis[END_REF], NLO corrections to charmonium hadro-production yielded, for some scale choices, negative results for p T -integrated cross-sections (see Fig. 1.4a and Fig. 1.4b).

In order to understand the origin of the negative numbers, we have in Part I investigated in detail the analytical structure of quarkonium inclusive hadro-production at the example of the pseudo-scalar meson, η Q , which from the theoretical perspective is the simplest quarkonium state to deal with. We have introduced the formalism to compute NLO corrections in Chapter 2. With this, we have then confirmed the analytical expressions available in the literature [START_REF] Kuhn | QCD corrections to toponium production at hadron colliders[END_REF][START_REF] Schuler | Quarkonium production and decays[END_REF][START_REF] Petrelli | NLO production and decay of quarkonium[END_REF][START_REF] Maltoni | PhD thesis: Quarkonium Phenomenology[END_REF] and the appearances of the negative values for the p T -and y-integrated cross-section. In Chapter 3 we have derived, for the first time, the analytical expressions for the NLO rapiditydifferential cross-section in terms of the parton luminosity integrals for η Q inclusive hadroproduction which were previously absent in the literature. We confirmed that, for some typical scale choices, the rapidity-differential cross-section indeed turned negative [START_REF] Lansberg | Curing the unphysical behaviour of NLO quarkonium production at the LHC and its relevance to constrain the gluon PDF at low scales[END_REF].

With these analytical structures at hand, we have in Chapter 4 done a detailed analysis of the origin of the negative NLO cross-section results. We observed that in particular for charmonium hadro-production, the cross-section results were strongly dependent on the shape of the PDF. We have seen that, in the convolution with flat PDFs, the constant terms in the partonic cross-section were strongly enhanced (see Table 4.1). We have then discussed the partonic high-energy limit (ŝ → ∞) at which only the constant terms in the partonic cross-section remain. This structure turns out to be the same for different partonic channels (see Eq. 4.1.9) and contains a universal µ F -term and a process-dependent coefficient Â. For different quarkonium states, these process-dependent coefficients are negative. When convoluted with flat PDFs and when the high-energy limit of the partonic cross-section is negative, the hadronic cross-section turns negative as one increases the collision energy. This issue is absent for large scale processes such as H 0 and tt hadro-production as the PDFs have evolved to steeper distributions and, as

Appendices

Appendix A

Splitting functions and plus distributions

In this Appendix, we will give the definitions to the splitting functions P ji and plus distributions used in the manuscript.

where the plus distribution is defined as,

The plus distribution shown above are only valid when it is integrated in z over the entire range [0, 1] and when the integration bounds contain the singularity. However, as the lower bound is restricted by τ 0 = M 2 Q /s where √ s is the center-of-mass energy in the hadronic frame, we cannot apply these plus distributions in a straightforward manner. In order to evaluate these plus distributions correctly, we can here split the integration regions as follows and obtain that,

(A.0.5)

Defining our new distribution function for the range [τ 0 , 1] to be,

we can thus make the replacement,

and in a similar fashion for the second distribution function that appeared in Ch. 2,

UV Renormalisation

In this Appendix we have collected the renormalisation factors Z which are needed to remove the UV singularities. We adopt for the gluon wavefunction Z g , the heavy quark wavefunction Z Q and the renormalisation for the heavy quark mass Z m the on-shell renormalisation scheme and for the renormalisation Z αs for the strong coupling we apply the MS-scheme here. We have adopted the results from Ref. [START_REF] Bärnreuther | Virtual amplitudes and threshold behaviour of hadronic top-quark pair-production cross sections[END_REF]. The corrections up to O α 2 s ) for the heavy quark and the mass renormalisation have been computed in Ref. [START_REF] Broadhurst | Two loop two point functions with masses: Asymptotic expansions and Taylor series, in any dimension[END_REF] and are gauge-independent. On a side note, we remark that the three-loop contribution computed in Ref. [START_REF] Melnikov | The Three loop relation between the MS-bar and the pole quark masses[END_REF] however is gaugedependent. As for the gluon wavefunction with heavy quark loops, it has been computed in Ref. [START_REF] Mitov | The Singular behavior of massive QCD amplitudes[END_REF]. We mention here that the expansion in the strong coupling involves the coupling with n f = n l + n h flavours. In order to go to the conventional coupling where only n l massless flavours are absorbed, one applies the following decoupling relation [START_REF] Bernreuther | Decoupling of Heavy Quarks in the Minimal Subtraction Scheme[END_REF],

with,

We now present the renormalisation factors below, 

IR structure: Dipole matching

When the final quarkonium state is in a colour-singlet, we have shown that it was sufficient to treat the IR structure as in the case of Higgs production and consider only the first line in the anomalous dimension matrix in Eq. 10.2.39. In this short Appendix, we want to address the question what the effect of the second line in the anomalous dimension matrix would be, where effects related to the heavy-quark momenta are taken into account.

We first want to make a few remarks on the value of β QQ which is needed in the anomalous cusp dimension for the two heavy quark partons γ cusp (β IJ ). In the general kinematics and considering 2v to be the relative 3-velocity of the two heavy quark in the quarkonium rest frame, one has that,

For our processes, we are at threshold with the two heavy-quark momenta being identical, thus we set v = 0 and obtain for β QQ the following values for our kinematics,

As we have already remarked in Sec. 7.4, there is a subletly related in computing quantities in the limit at threshold, ŝ → 4m 2 with v → 0 where divergences of type 1/v can appear, and computing the same quantities at threshold, ŝ = 4m 2 with v = 0 this time where there cannot occur any divergences of this type in the second approach. As we have elaborated, this was to do with the order of the double-limit. We wish to have the solution at v → 0 and → 0. In the case where Coulomb singularities are present, the two limits do not commute. As we have seen, Coulomb divergences can also arise when v = 0 from the very beginning and manifest itself with poles in the dimensional regulator . We will come to this later on.

As we mentioned, we have only made use of the first line of the anomalous dimension matrix to reproduce the pole structure of the colour-singlet final state. The second line in Eq. 10.2.39 takes in addition the explicit presence of the final-state heavy-quark partons into account. We repeat that as the η Q is in a colour-singlet state, the two heavy-quark particles are unresolved at large distances. This precisely corresponds to the dipole picture which we have already mentioned. As such the presence of heavy quarks does not need to be considered for the IR pole structure.

Nevertheless, we would like to understand their additional structure which will be needed for the colour-octet states where the dipole is absent there. We will below express the three

Appendix E

One-loop master integrals

In this Appendix, we give below the analytical structure for the one-loop master integrals we have introduced in Sec. 7.3. The integals I 1 , I 2 , I 3 and I 4 are defined with the integration measure,

and where we have factorised out the mass dimension m, which is the mass of the heavy quark line, as follows,

with a 1 = 1, a 2 = 2, a 3 = 2 and a 4 = 3. The integrals belong to the graphs,

and can be expressed as,

Appendix F

List of topologies

In this section we will present the master integrals that are present in these topologies and give information to each integral in which topology this integral it occurs. Integrals that are unique in the topologies are marked with an italic digit. It is very useful to have the additional information which integrals are also present in other topologies as to establish the minimum number of integrals in the topology that one has to compute to close this topology.

Topology 1

Propagator structure for T1 takes the following form,

The parent one can be graphically represented as, We will now list all 13 integrals of Topology 1,

We will now list all 13 integrals of Topology 6 that we need,

T: 5,6,7,8,9 Propagator structure for T7 takes the following structure,

The parent one can be graphically represented as, 4m 2 1 2 3 6 4 5 7

We will now list all 7 integrals of Topology 7 that we need,

T: 5,6,7,8,9,10

T7-7 MI-13 G[7, {0, 0, 0, 1, 0, 1, 0}] T: 1,2,3,4,5,6,7,8,9,10

Topology 8

Propagator structure for T8 takes the following structure,

The parent one can be graphically represented as,

Appendix G

List of master integrals: MS base

In this section we present the list of master integrals in the new base MS. We have previously presented the integrals in the MI base in Sec. 8.2. It turns out to be beneficial for both the analytics and the numerics to perform a rotation of bases from the MI list to the MS list. In contrast to the MI base where terms with weight 5 contributions enter the form-factor, the benefit of the new base is these weight 5 contributions already cancel in the rotation of the bases rather than in the form-factor which makes it much more convenient and simpler to use the new base. As we have shown in Sec. 8.5, there are three integrals in the MI list that needs to be rotated in order to achieve the cancellation of all weight 5 contributions. These are MI [START_REF] Mizuk | Evidence for the η b (2S) and observation of h b (1P ) → η b (1S)γ and h b (2P ) → η b (1S)γ[END_REF], MI [START_REF] Brambilla | Heavy quarkonium physics[END_REF] and MI [START_REF] Altarelli | Asymptotic Freedom in Parton Language[END_REF]. These are replaced by the new integrals in the base MS [START_REF] Mizuk | Evidence for the η b (2S) and observation of h b (1P ) → η b (1S)γ and h b (2P ) → η b (1S)γ[END_REF], MS [START_REF] Brambilla | Heavy quarkonium physics[END_REF] and MS [START_REF] Altarelli | Asymptotic Freedom in Parton Language[END_REF]. The definition of the new base is as follows, 

All other integrals in the MI base are identical to those in the MS base where the MI/MS[#number] is retained. We have collected below the MS counterpart to the MI list containing all the leading coefficients in the -expansion for the different form-factors. We can indeed verify that all weight-5 contributions disappear.

Master Integral Graph

Amplitude precoefficient starts at Class of functions γγ

Appendix H

Analytic results for master integrals

As discussed in Ch. 9, we have computed all the master integrals that were needed for the twoloop form-factor calculations analytically. We can divide these integrals into two classes, the master integrals that can be expressed in terms of ordinary polylogarithms (MPLs) only and the ones where we need to extend the base of functions to the elliptic multiple polylogarithms.

The results for the ordinary polylogarithm can be casted in a rather compact form whereas the ones from the elliptic sector are rather lengthy. We will therefore in this section present the analytical solutions for all the the master integrals in the polylogarithmic sector and the result for the four elliptic integrals that were the most complicated to compute as done with the methods and strategies in Ch. 9. As for the remaining integrals, these can be made available upon request to the author. We have adopted here the MS base as discussed in Sec. 8.5 and as they appear in Appendix G.

In order to keep the result as compact as possible, we will make use of the following integration measure for each loop variable,

We will in the following present the results in the form

where above is the regulator from D = 4 -2 and in addition we have factorised out the mass dimension from the integral in c m defined as,

Above m represents the mass of the quark as it appears in the propagator and we have that ŝ = 4m 2 . The factor a stands for the sum of the propagator power indices and can be deduced from their definitions in Appendix G and Appendix F. One simply has to sum up the numbers in the indices to obtain a.

We now present below all the integrals that can be represented by MPL functions only. 

Appendix I

Numerical results for master integrals

In this section we present the numerical results for all the master integrals that were needed for the form-factor calculations. We have here adopted the MS master integral base as discussed in Sec. 8.5 and follow here the notation of the master integrals as they appear in Appendix G. All these integrals have been computed at least up to 200 digits precision. We only present the first 50 digits of the numerical values here.

As in Appendix H, we make use of the same integration measure for each loop variable with,

In order to present the numerical results for the master integrals in a convenient manner we will give the numerical results for the individual coefficients of the poles in the form of

where i min is the leading pole in ep imin and i max is the highest order in ep where the integral is needed. Here ep stands for our dimensional regulator from D = 4 -2 . In addition, we have factorised out the quark mass m as they appear in the propagator and where a is the sum of all propagator powers of the denominators and can be extracted from summing up the indices in their propagator power definition in Appendix F. Appendix J

Coefficients for form-factors

In this Appendix, we will collect the analytical structure of the coefficients that appear for the form-factors in Ch. 10. As the analytical results involving elliptic integrals are rather lengthy, we will restrict ourselves to give the master integrals decomposition to the ordinary polylogarithms and the minimal subset of the elliptic integrals. We remark that additional elliptic integrals were present in the calculation but certain linear combinations among these can be simplied to ordinary polylogarithms only. We mention here that among the special functions that occur here, C is the Catalan constant and ψ 3 1 4 , ψ 3 3 4 are the polygamma functions defined as ψ m (z) = d m+1 dz m+1 log (Γ(z)) with Γ(z) being the gamma function. In the following we give the analytical expressions for the individual coefficients. The elliptic integrals are labelled in the format as in Appendix H. Appendix K

Direct integration: Cancellation of divergences with eMPLs

In this Appendix we will demonstrate how to cancel the divergences between the elliptic and the non-elliptic sectors. In particular, we will show how to extract the singular terms of the eMPLs.

We recall the eMPL integration kernels from Sec. 9.2.3 and consider the following eMPL,

The E 4 above is clearly divergent at x = 1, however among the divergent piece it contains a finite part. We now need to extract this finite piece above and make the singularity manifest.

Here we follow the convention to express the divergent part in the form of G ( 1; x). We can regularise this E 4 as follows,

being finite and defined as

We see that above we have extracted the singular part G ( 1; x) from the E 4 . Making this singularity explicit, we are able to make the cancellation of all divergences between the ellipic and the non-elliptic sectors manifest. We will see later that for our elliptic curve q r and at x = 1 this function E

Reg 4

can actually be expressed in terms of familiar E 4 with different elliptic kernels. In the remainder of this section we set x = 1 and define, (K.0.7)

, (K.0.42)

.

(K.0.44)

We have shown above the relations involving the kernels ( 1 1 ) and -1 1 . In a similar fashion, one can derive the tables for other divergent kernels ( 2 1 ), -2 1 and all combinations thereof. The relations derived above are applicable to any arbitrary elliptic curve.

For our specific elliptic curve with branch points q r , we find the following relations for the regularised E Reg 4 that prove to be useful. These relations were derived while cancelling the divergencent expressions between the elliptic and non-elliptic sectors in some of the master Appendix L

Additional triangle identities

We have shown in Sec. 8.3 equivalence relations between master integrals that are based on partial fraction identities. In this Appendix, we present another class of identities that is seemingly related to conformal invariance. We start by showing two equivalent one-loop integrals, As before we have checked this identity numerically to high precision. We can prove it analytically and will point out the connection to conformal invariance. We start by defining the two Symanzik polynomials U and F for the integral on the right I C,2 ,

We mention that the Symanzik polynomials are similar for the integral on the LHS upon interchange of m 1 ↔ m 2 . We associate the x 3 variable to the doubled propagator in both cases, x 1 to the propagator that is connecting the external legs p 2 1 and 0 and finally x 2 is the one connecting the legs p 2 2 with 0. We now define the integral,

where above for the Cheng-Wu delta function we set x 1 = 1x 2 . In addition we set D = 4 -2 and obtain that,

(L.0.5) We can perform the integration in x 2 from [0, 1] to obtain that,

The integral on the left I C,1 has the same expression upon interchange of m 1 ↔ m 2 ,

At this stage, we can already try to demonstrate that both integrals I C,1 = I C,2 are equivalent before performing the last integration in x 3 . We note that the expressions for I C,1 and I C,2 are similar apart from the m 1 ↔ m 2 interchange. We can consider I C,2 and apply a 'conformal' transformation to x 3 = 1 y . As the integration boundaries are from [0, ∞], the boundaries remain unchanged under this conformal map and we obtain that with Jacobian 1 y 2 ,

Now comparing the expression above in Eq. L.0.7 with Eq. L.0.8 we find full agreement thus we have shown that, I C,1 = I C,2 .

(L.0.9)

We have shown this equality to hold for arbitrary , thus this relation is true for any dimensions and any order in . We have further shown this equality to hold for arbitrary masses m 1 and m 2 and external legs with arbitrary masses p 2 1 and p 2 2 . We note that in the special case when p 2 1 = p 2 2 , we would have to return to Eq. L.0.5 where the dependence on x 2 would vanish. The integral is then easy to perform and one has to repeat the argument for the x 3 rescaling to x3 → 1 y and one recovers the value for the second integral. A requirement for this equality to hold is that the external leg opposite of the doubled propagator as in Eq. L.0.2 remains massless k 2 1 = 0 as otherwise this conformal symmetry would be broken. The fact that we have proven it for general p 2 1 and p 2 2 implies that the momenta p 1 and p 2 could in fact also involve additional loop momenta as there are no constraints on the off-shell masses of these legs. Assuming that one of the masses m 1/2 is massless as in Eq. L.0.1, this procedure allows us to trade a massive propagator against a massless one which is useful in the procedure for direct integration has we have seen in Sec. 9.2. This will be very useful when coming to the procedure of direct integration as in general diagrams with smaller numbers of massive propagators are easier to handle. We briefly consider two additional examples at two-loop, the latter one which involves our list of master integrals, where we have computed both integrals at different orders in analytically and were in addition able to confirm their equivalence numerically in higher orders in . In fact, MI-17 and MI-66 are finite when the doubled propagator is present thus forming a quasi-finite basis of the original integrals. The integrals with the doubled propagator can be related to MI-17 and MI-66 via IBP relations. This equality however implies that we should be able to make a direct relation between MI-17 and MI-66. It would be interesting at this stage to investigate whether like in the case for partial fraction identities, there is a way to build in these conformal triangle identities and then relate integrals from different topologies. We would like briefly to show

Résumé en français

Dans cette thèse, nous avons étudié la hadroproduction et la désintégration de quarkonium pseudo-scalaire jusqu'à deux boucles. Ce manuscrit est composé de deux parties principales et les motivations de chacune de ces parties est discutée dans le Chapitre 1 qui est l'introduction principale de la thèse.

Les quarkonia sont des mésons composés d'un quark lourd Q et d'un antiquark lourd Q de la même saveur. Nous considérons ici les quarks charmés et beaux qui forment les états liées charmonia et bottomonia respectivement. Ils constituent des sondes utiles pour étudier la Chromodynamique Quantique à l'interface de ses régimes perturbatifs et non perturbatifs. Ils existent différents états charmonia et bottomonia tels que le J/ψ et l'Υ qui sont des mésons vecteurs. Dans cette thèse, nous nous focaliserons sur les états fondamentaux, notés η Q , qui sont des mésons pseudo-scalaires. Comme la production de la paire QQ est supposée être décrite de manière perturbative, l'on peut étendre et calculer la section efficace comme une série en puissance de α s . À grandes échelles d'énergies, le couplage est faible et la série converge rapidement avec un premier terme effectivement dominant. Quand l'on se rapproche de la masse du quark charmé, 1.5 GeV, le couplage grandit et les contributions d'ordres supérieurs peuvent contribuer de manière significative à la section efficace. Il est dès lors intéressant d'étudier la convergence de la série perturbative pour la production de charmonia.

Dans la littérature, l'on peut trouver plusieurs études rapportant des sections efficaces négatives pour la hadro-et photo-production de charmonia qui sont de facto non-physiques car correspondant à des probabilités négatives [START_REF] Schuler | Quarkonium production and decays[END_REF][START_REF] Krämer | QCD corrections to inelastic J / psi photoproduction[END_REF][START_REF] Mangano | NLO quarkonium production in hadronic collisions[END_REF][START_REF] Feng | Energy dependence of direct-quarkonium production in pp collisions from fixed-target to LHC energies: complete one-loop analysis[END_REF]. Ceci fut noté pour la première fois par G. Schuler en 1994 [START_REF] Schuler | Quarkonium production and decays[END_REF] quand il nota une forte dépendance de la section efficace hadronique en la forme des distributions de gluons (PDFs). Celles-ci décrivent le contenu en gluon dans un hadron. Si ces PDFs ne sont pas assez pentues dans le régime à petit x, la section efficace devient négative à hautes énergies. M. Mangano et A. Petrelli arrivèrent à la même conclusion que les sections efficaces de pro-