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Consequently, the size of the yielded regions increases with elasticity. In addition, an increase in the field of the second invariant of the stress tensor in the center of the cavity is shown with increasing 𝑊𝑖. Furthermore, we notice that the first difference of the normal components 𝑁1 = (𝜏 𝑋 1 𝑋 1 -𝜏 𝑋 2 𝑋 2 ) is the main responsible for the shape of the unyielded regions. The highest values of normal stresses (𝜏 𝑋 1 𝑋 1 ) and (𝜏 𝑋 2 𝑋 2 ) are obtained in the area of recirculation of the fluid (vortex), indicating significant elastic effects. Kinematic, temperature and stress field, shape and size of yielded and unyielded zones investigations allowed to better understand the local phenomena for the same ratio of yield stress effects to buoyancy effects, leading for the slippage case to a distinct convective transfer and for the adherent case to a conductive transfer. The convective onset criteria are in the same orders of magnitude both in sliding and adherent conditions in comparison with experiments.
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Que toutes les personnes ayant, d'une façon ou d'une autre, contribué à cette oeuvre trouvent ici toute ma gratitude. Les résultats mettent en évidence une diminution du coefficient de traînée de la plaque lorsque le nombre d'Oldroyd (ratio entre les effets plastiques et les effets visqueux) devient prépondérant. Pour les nombres d'Oldroyd suffisamment grands, le coefficient de traînée tend vers une valeur asymptotique qui dépend uniquement de la contrainte seuil et de la géométrie de l'obstacle.

La force de trainé augmente avec l'élasticité. De plus, les effets élastiques sont responsables de la dyssimétrie amont/aval de l'écoulement. L'analyse du champ de la composante de cisaillement (𝜏 𝑋 1 𝑋 2 ) permet de conclure que la traînée totale est gouvernée par la pression. Expérimentalement et numériquement, on observe une influence significative de l'état initial des contraintes du matériau dans le domaine des effets de seuil prépondérants devant les effets visqueux. Les résultats obtenus avec la MPEFPIL sont dans les mêmes ordres de grandeur que ceux fournis par les expériences.

Pour un fluide purement viscoplastique donc sans élasticité dans la convection de Rayleigh-Bénard, le nombre de Nusselt et la norme de la vitesse diminuent lorsque les effets plastiques donc le nombre de Bingham (𝐵𝑛) augmentent. Au-dessus d'une valeur critique du nombre de Bingham Bnc, (𝐵𝑛𝑐=1,7), le transfert de chaleur est purement conductif 𝑁𝑢 ̅̅̅̅ 1 = 1.

Quant aux effets élastiques, les résultats montrent qu'ils favorisent la convection. L'élasticité joue alors un rôle déstabilisateur et induit une augmentation de l'intensité de la convection ainsi que du transfert de chaleur via le nombre de Nusselt moyen 𝑁𝑢 ̅̅̅̅ 1 . Par conséquent, la taille des zones seuillées augmente avec l'élasticité. De plus, on observe un accroissement du champ du deuxième invariant du tenseur des contraintes au centre de la cavité avec l'augmentation de Wi. La première différence des contraintes normales 𝑁1 = (𝜏 𝑋 1 𝑋 1 -𝜏 𝑋 2 𝑋 2 ) est principalement responsable de la forme des zones non seuillées. Les valeurs maximales des contraintes normales (𝜏 𝑋 1 𝑋 1 ) 𝑒𝑡 (𝜏 𝑋 2 𝑋 2 ) sont obtenues là où le fluide recircule (vortex), indiquant des effets élastiques significatifs.

En outre, l'analyse des champs cinématique, de température et de contrainte ainsi que la forme et la taille des zones seuillées et non seuillées a permis de comprendre les phénomènes locaux pour un même rapport des effets de seuil de contrainte aux effets de flottabilité qui induisent, dans le cas glissant, un transfert nettement convectif et, dans le cas adhérent, un transfert conductif. Les critères d'apparitions de la convection sont dans les mêmes ordres de grandeur, aussi bien dans des conditions glissantes et d'adhérence, comparés aux expériences.

Mots clés : fluide à seuil, élasto-viscoplastique, convection de Rayleigh-Bénard, écoulement de fluide, état initial de contrainte, glissement, force de traînée, MEFPIL

ABSTRACT

In industrial processes in which yield stress fluids are involved, the sudden transition between solid and fluid states based on the applied load have a wide range of applications. Additionally, yield stress fluids exhibit other characteristics including their slippage and the existence of elastic deformation below the yield stress. This thesis aims to understand the structure of elasto-viscoplastic fluid flows and, in particular, the parameters affecting flow morphology and applied forces. This research analyses two situations: (1) fluid flows around a plate perpendicular to the flow and (2) Rayleigh Bénard's instabilities based on numerical modelling with FEMLIP.

The first aim of the study focused on identifying the effects of plasticity and elasticity using the law of elasto-viscoplastic model, which associated with Herschel-Bulkley's and Maxwell's models. Moreover, the effects of plasticity and elasticity are compared with available experimental results obtained with a fluid model (Carbopol gel). In this comparison, more complex effects (Shear-thinning, wall slip, the initial state of stress) have been taken into account.

The results show a decrease in drag coefficient of the plate when the Oldroyd number (ratio between plastic and viscous effects) becomes predominant. Drag force is also reduced when the Oldroyd number (ratio between plastic and viscous effects) is predominant. The drag coefficient tends towards an asymptotic value which indicates that beyond a certain Oldroyd number, this drag coefficient is not governed by velocity but depends only on yield stress. Drag force increases with elasticity. Besides, the elastic effects are responsible for the dissymmetry that is observed between upstream and downstream the obstacle. The analysis of stress fields allows us to conclude that total drag force is dominated by pressure. Both experimentally and numerically, the influence of an initial state of stress of the material is observed significantly in the area of plastic effect predominant compared to viscous effects. The results obtained with FEMLIP are in the same orders of magnitude that the ones provided by the experiments. In Rayleigh Bénard's case of convection, for a purely viscoplastic fluid thus no elastic effect, the Nusselt number and the velocity norm decrease with an increasing plastic effect therefore the Bingham number (𝐵𝑛). Beyond a critical value of the Bingham number (𝐵𝑛 𝑐 = 1.7), the heat transfer is purely conductive one (𝑁𝑢 ̅̅̅̅ 1 = 1).

Regarding the elastic effects, the results show how they promote convection.

Therefore, elasticity plays a destabilizing role and leads to an enhancement of the convection strength as well as heat transfer via the mean Nusselt number (𝑁𝑢 ̅̅̅̅ 1 = 1). 
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Contexte et problématique de la thèse

La modélisation de la transition solide-liquide et son impact sur les écoulements est actuellement au coeur d'une intense activité scientifique à la fois expérimentale, théorique et numérique. Deux revues de l'état de l'art ont été publiées, l'une par Balmforth et al [1] et l'autre par Coussot [2]. Les enjeux sociétaux sont nombreux et cruciaux dans divers secteurs industriels et phénomènes naturels. Divers matériaux appelés génériquement « fluides à seuil » peuvent soutenir des contraintes importantes comme un solide ou bien s'écouler comme un liquide en fonction du chargement appliqué. La soudaine transition entre des états solide et fluide représente une problématique importante dans les procédés industriels. Par ailleurs, les fluides à seuil présentent d'autres spécificités telles que leurs capacités à glisser aux interfaces [1] ou l'existence d'une déformation élastique sous contrainte [2]. Les fluides à seuil sont rencontrés dans de nombreuses applications [3] telles que les produits alimentaires, pharmaceutiques, les batteries, la peinture, les revêtements de surface, les biomatériaux, le béton frais et d'autres scénarii illustrés sur la Figure 1 [4]. [4], (H) graisse lubrifiante, (I) biomatériau [4]), (J) impression 3D [4]).

De plus, sur le plan expérimental, des phénomènes importants avec une influence significative sur la dynamique d'un écoulement d'un fluide à seuil ont été mis en évidence tels que la présence d'un sillage négatif et une perte de symétrie amont/aval de l'écoulement liée à l'influence de l'élasticité, la présence de zones seuillées et non seuillées qui est principalement liée au comportement plastique. Quelques exemples d'écoulements de fluides à seuil autour d'un obstacle sont illustrés sur la figure 2 [5]. 

Méthodes numériques pour les fluides viscoplastiques

Diverses méthodes utilisées jusqu'à présent pour simuler les écoulements de fluides viscoplastiques entrent dans certaines catégories principales dont l'examen détaillé a été rapporté par Saramito et Wachs [START_REF] Saramito | Progress in numerical simulation of yield stress fluid flows[END_REF]. [START_REF] Vikhansky | Lattice-Boltzmann method for yield-stress liquids[END_REF].

Si la régularisation de la loi de comportement a pour avantage de faciliter les calculs, elle ne rend pas compte du comportement élasto-viscoplastique du matériau et conduit à des solutions numériques inexactes du champ de contraintes [START_REF] Frigaard | On the usage of viscosity regularisation methods for visco-plastic fluid flow computation[END_REF]. Elle ralentit le taux de convergence et provoque des instabilités numériques. Parfois, un choix inapproprié du paramètre de régularisation peut conduire à des résultats erronés [START_REF] Saramito | An adaptive finite element method for viscoplastic fluid flows in pipes[END_REF] Méthode lagrangienne augmentée : Mise en oeuvre par Glowinski et Wachs [START_REF] Glowinski | On the Numerical Simulation of Viscoplastic Fluid Flow[END_REF], la méthode Lagrangienne augmentée permet de modéliser les écoulements de fluide [START_REF] Chaparian | An adaptive finite element method for elastoviscoplastic fluid flows[END_REF].

Elle a été largement utilisée dans des domaines tels que les écoulements internes [START_REF] Saramito | An adaptive finite element method for viscoplastic fluid flows in pipes[END_REF] [26] [27] [START_REF] Putz | On the lubrication paradox and the use of regularisation methods for lubrication flows[END_REF], les écoulements dans des géométries complexes [START_REF] Roquet | An adaptive finite element method for Bingham fluid flows around a cylinder[END_REF] [30] et les instabilités thermiques [START_REF] Karimfazli | A novel heat transfer switch using the yield stress[END_REF] [32] [START_REF] Huilgol | Fundamental Equations[END_REF] [31] [START_REF] Karimfazli | Thermal plumes in viscoplastic fluids: flow onset and development[END_REF]. C'est une méthode basée sur l'optimisation convexe [START_REF] Huilgol | Fundamental Equations[END_REF]. Cependant, l'inconvénient de l'approche du Lagrangien augmenté est qu'elle exige une puissance de calcul élevée et la convergence des algorithmes est lente [START_REF] Saramito | Progress in numerical simulation of yield stress fluid flows[END_REF].

Une méthode alternative récente est alors proposée par Treskatis et al [START_REF] Treskatis | An accelerated dual proximal gradient method for applications in viscoplasticity[END_REF] [35] avec un algorithme basé sur la formulation double en termes de contrainte au problème d'écoulement viscoplastique. Cette méthode améliore la vitesse de convergence et constitue une alternative avec un algorithme d'optimisation de premier ordre accéléré issu de la méthode de gradient proximal. Saramito [START_REF] Saramito | A damped Newton algorithm for computing viscoplastic fluid flows[END_REF] a introduit une nouvelle méthode qu'il a appliquée aux fluides viscoplastiques en écoulement, en conduit et autour d'obstacle [24] [29]. Cette approche est basée sur la méthode de Newton qui permet de résoudre des problèmes non linéaires, tout en évitant une matrice Jacobienne singulière, conséquence de modèles viscoplastiques non régularisés [START_REF] Chaparian | An adaptive finite element method for elastoviscoplastic fluid flows[END_REF].

Méthodes numériques pour les fluides élasto-viscoplastiques

Du point de vue des méthodes numériques, les fluides élasto-viscoplastiques ont été très peu étudiés comparés aux fluides viscoplastiques. Toutefois, quelques techniques numériques récentes existent dans la littérature.

Cheddadi et Saramito [START_REF] Cheddadi | A new operator splitting algorithm for elastoviscoplastic flow problems[END_REF] ont proposé un schéma numérique dépendant du temps pour résoudre les écoulements de fluides (EVP) autour d'obstacles. C'est une méthode qui résout un algorithme à point fixe pour les termes non linéaires dus à la viscoplasticité, couplé à un sous problème de transport de contraintes [START_REF] Chaparian | An adaptive finite element method for elastoviscoplastic fluid flows[END_REF].

On notera que les travaux de Cheddadi et al. [START_REF] Cheddadi | Understanding and predicting viscous, elastic, plastic flows[END_REF] et Cheddadi et Saramito [START_REF] Cheddadi | A new operator splitting algorithm for elastoviscoplastic flow problems[END_REF] La MEFPIL a déjà été appliquée à l'écoulement de fluide EVP autour d'une plaque plane [START_REF] Ahonguio | Flow of an elasto-viscoplastic fluid around a flat plate: Experimental and numerical data[END_REF], à la géophysique [START_REF] Moresi | A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials[END_REF], à l'écoulement de béton frais [START_REF] Muhlhaus | A director theory for viscoelastic folding instabilities in multilayered rock[END_REF] On note que les effets inertiels sont toujours considérés comme négligeables. 
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Abstract

The present numerical work aims to study the Rayleigh-Bénard convection of elasto-viscoplastic fluids in a two-dimensional square enclosure. The elastic behavior of a viscoplastic fluid is accounted for since it may have some consequences on the transition from conductive to convective regime. Finite

Element Method with Lagrangian Integration Points (FEMLIP) is used to investigate the complex deformation behavior of the fluid subjected to a vertical thermal gradient.

This numerical method can simulate large deformations within a complex material which is indicated in the case of elasto-viscoplastic fluids. The material is described as a viscoelastic Maxwell fluid with an apparent viscosity given by the Herschel-Bulkley model. In this model, the yield stress is evaluated using the second invariant of the stress tensor and the fluid presents mainly an elastic behavior below the yield stress.

The critical conditions when convection occurs are determined in terms of the Rayleigh number 𝑅𝑎, defined as the ratio between the buoyancy effects and the thermal as well as the viscous diffusion effects, the Bingham number 𝐵𝑛, defined by the ratio between plastic and viscous effects, and the Weissenberg number 𝑊𝑖 defined as the ratio between fluid relaxation time and a characteristic time of the flow.

For 𝑊𝑖 = 0, numerical results confirm that an increase in 𝐵𝑛 involves a decrease in the convection intensity. When 𝐵𝑛 reaches the critical value 𝐵𝑛 𝑐 , the convection stops and only the conductive regime remains.

For a fixed 𝐵𝑛, the increase in 𝑊𝑖 involves an increase in the Nusselt number characterizing an increase in heat transfer. Moreover, the critical value 𝐵𝑛 𝑐 increases with increasing 𝑊𝑖. Also, the unyielded zones decrease in size and the yielded zones tend to spread with elasticity.

Keywords: Rayleigh-Bénard convection, elasto-viscoplastic materials, yield stress fluids, numerical simulations

Introduction

The modelling of the solid-liquid transition in viscoplastic fluids is at the heart of an intense current scientific activity [1]. Many materials commonly called " yield stress fluids " can withstand high stresses like an elastic solid or flow like a liquid depending on the applied load. Understanding the solid-liquid transition is still an active research topic. This transition may have a strong influence on both mass and heat transfers in industrial processes. In particular, this elasto-viscoplastic behavior is likely to have a strong influence on convective heat transfer.

Natural convection is one of the most studied thermal convection topics. In this case, convection occurs when a fluid layer contained between two parallel plates is heated from below allowing the occurrence of buoyancy-driven convection.

The first studies that dealt with convection in yield stress fluids in the early 2000s were theoretical and numerical. In particular, Zhang et al. [START_REF] Zhang | Yield stress effects on Rayleigh-Bénard convection[END_REF] studied Rayleigh-Bénard Convection (RBC) in an inelastic Bingham fluid. The authors show that the conductive regime is linearly stable, i.e. that convection does not occur when an inelastic Bingham fluid is subjected to weak perturbations. Computations are also proposed by using the Augmented Lagrangian method. Their numerical study highlights the stabilizing effect of the yield stress since when the flow is asymptotically stable, results show that velocity perturbation decays to zero in a finite time. These results were confirmed by works of Vikhansky [START_REF] Vikhansky | On the onset of natural convection of Bingham liquid in rectangular enclosures[END_REF] [51] by using Lattice Boltzmann method. However, experimental studies [START_REF] Darbouli | Rayleigh-Bénard convection for viscoplastic fluids[END_REF] [52] [START_REF] Kebiche | Experimental investigation of the Rayleigh-Bénard convection in a yield stress fluid[END_REF] have observed convection in viscoplastic fluids (Carbopol gels) even under small perturbations.

Darbouli et al. [START_REF] Darbouli | Rayleigh-Bénard convection for viscoplastic fluids[END_REF] carried out experiments to study the Rayleigh-Bénard Convection (RBC) in Carbopol gels within a cylindrical cavity. Their results highlight the onset of convection using Schmidt-Milverton principle, shadowgraphy and PIV technics. Their study confirms that convection can take place in gels when subjected to weak thermal disturbances. Darbouli and co-workers explain the difference with the theory by the fact that the gels show a dominant elastic behavior below the yield stress as opposed to an inelastic Bingham fluid commonly used in theoretical studies. Besides, they show that the inverse of the yield number 𝑌 which represents the ratio between the yield stress effect and the buoyancy effect is the dominant controlled parameter characterizing the influence of plasticity on the onset of convection. Their results are

Chapitre 2: Elastic effects on Rayleigh Bénard convection in an elastoviscoplastic fluid 29 in close agreement with that of Davaille et al. [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and morphology[END_REF] in the case of localized heating of Carbopol gels. Finally, Darbouli et al [START_REF] Darbouli | Rayleigh-Bénard convection for viscoplastic fluids[END_REF] have highlighted the influence of boundary conditions at the walls such as no-slip and slip conditions on the onset of convection.

Another experimental study has been proposed by Kebiche et al. [START_REF] Kebiche | Experimental investigation of the Rayleigh-Bénard convection in a yield stress fluid[END_REF] which considers the experimental investigation of the RBC in a rectangular configuration for yield stress fluid. The study shows that the control parameter 1/𝑌 at criticality is smaller than that obtained by Darbouli et al. [START_REF] Darbouli | Rayleigh-Bénard convection for viscoplastic fluids[END_REF] and Davaille et al. [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and morphology[END_REF]. This difference seems to be due to uncontrolled boundary conditions in [4] such as slippage at walls and insulated walls in the entire cavity.

A more recent study was conducted by Métivier et al. [START_REF] Métivier | Origin of the onset of Rayleigh-Bénard convection in a concentrated suspension of microgels with a yield stress behavior[END_REF] to experimentally investigate the origin of convection in gels by focusing on the liquid-solid transition as well as the elasto-viscoplastic behavior of gels.

Further theoretical and numerical studies of Rayleigh-Bénard Convection in yield stress fluids have been carried out. Among them, Karimfazli et al. [START_REF] Karimfazli | Thermal plumes in viscoplastic fluids: flow onset and development[END_REF] numerically studied thermal plumes of an inelastic viscoplastic Bingham fluid in a square cavity in order to compare with experimental results obtained by Davaille et al. [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and morphology[END_REF]. Changing the way, the fluid layer is heated with a localized heater on the bottom wall, Karimfazli and co-workers show that the onset of flow occurs after a waiting time which increases with the ratio between the yield stress and the buoyancy stresses. Huilgol et al. [START_REF] Huilgol | Natural convection problem in a Bingham fluid using the operator-splitting method[END_REF] use the operator-splitting method to simulate an inelastic Bingham fluid in the particular case of convection. The results show that when 𝑅𝑎 increases, the heat transfer increases and the unyielded zone decreases. Inversely, the increase in Bingham number results in a decrease in of the heat transfer as well as an increase in of the unyielded zone. Moreover, by increasing 𝑃𝑟 with fixed 𝑅𝑎 and 𝐵𝑛, the authors show a constant unyielded zone.

However, modelling inelastic Bingham or Herschel-Bulkley fluids is not fully satisfactory so far since the stress tensor is not defined below the yield stress as well as the viscosity tends to infinity. One way to get around these difficulties is to regularize the constitutive models. This is the technique used by many studies such as Lyubimova [START_REF] Lyubimova | Numerical investigation of convection in a viscoplastic liquid in a closed region[END_REF] and Turan et al. [START_REF] Turan | Laminar Rayleigh-Bénard convection of yield stress fluids in a square enclosure[END_REF] for instance. In these articles, natural convection is examined.

The fluid used is an inelastic Bingham model regularized by either the Papanastatiou's law [START_REF] Papanastasiou | Flows of Materials with Yield[END_REF] show the influence of the regularized parameters on results while they handle nonphysical parameters highlighting limits when using regularized models.

On the other hand, Rayleigh-Bénard Convection for viscoelastic fluids has been studied theoretically, see Larson for a review [59]. The onset of convection in a viscoelastic fluid such as a Maxwell fluid, in particular, is similar to the case of a Newtonian fluid. Indeed, the critical conditions are similar to the Newtonian case except under extreme conditions. In this latter case, it has been theoretically shown possible to obtain oscillatory convection below the critical Rayleigh number [START_REF] Sokolov | Convective Stability of a General Viscoelastic Fluid Heated from Below[END_REF], [START_REF] Vest | Overstability of a viscoelastic fluid layer heated from below[END_REF].

Demir [START_REF] Demir | Rayleigh-Benard convection of viscoelastic fluid[END_REF] has studied numerically the RBC in viscoelastic fluids in a square enclosure.

The Criminal-Erickson-Filbey (CEF) model is used and both shear-thinning and elastic behaviors are considered. The effect of the Weissenberg number is investigated in the range 0 ⩽ Wi ⩽ 0.01. It is mentioned that performing computations with higher values of Wi remains a challenge. Their results show that heat transfer is relatively unaffected by elasticity in the range of tested Wi numbers.

The development of more sophisticated models and algorithms to better understand the behavior of elasto-viscoplastic fluids has recently emerged as an essential tool in numerical simulation. In addition to the viscoplastic behavior, elastic behavior has to be added to the model. In particular, Saramito [START_REF] Saramito | A new constitutive equation for elastoviscoplastic fluid flows[END_REF] has proposed elasto-viscoplastic laws. Fraggedakis et al [START_REF] Fraggedakis | Yielding the yield stress analysis: A thorough comparison of recently proposed elasto-visco-plastic (EVP) fluid models[END_REF] have applied a tensor constitutive law to simulate the flow of elasto-viscoplastic fluids (EVP) in a cavity with a lid. Dinkgreve et al [START_REF] Dinkgreve | Everything flows?": elastic effects on startup flows of yield-stress fluids[END_REF] have studied the response of a well-known yield stress material (Carbopol gel), whose elastic limit remains the same, whether the shear rate increases or decreases over different cycles [1], [START_REF] Ovarlez | On the existence of a simple yield stress fluid behavior[END_REF], [START_REF] Coussot | Yield stress fluid flows: A review of experimental data[END_REF]. The authors show that the material mainly exhibits elastic deformation below the yield stress. Elastic effects are also observed in the viscous phase (above yield stress). De Souza et al [START_REF] De Souza Mendes | A critical overview of elastoviscoplastic thixotropic modeling[END_REF] study the elastic effects of EVP fluids flowing in a cavity by numerical means. They show that elasticity affects the material in both unyielded and yielded regions. A review on numerical methods and viscoplastic models is proposed by Saramito & Wachs [START_REF] Saramito | Progress in numerical simulation of yield stress fluid flows[END_REF].

The present paper aims at investigating a novel numerical method to model the Rayleigh-Bénard Convection (RBC) for elasto-viscoplastic (EVP) fluid. The Finite Element Method with Lagrangian Integration Points (FEMLIP) is capable of solving problems exhibiting small and large-deformation behaviors, elasto-viscoplastic fluids with complex rheology, notably history dependent variables and conditions with controlled limits [START_REF] Moresi | A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials[END_REF]. It combines the advantages of an Eulerian formulation for large deformations and a Lagrangian formulation for the tracking of material points. Indeed, the idea is to retain the generality and robustness of mesh based FEM and capture the geometrical flexibility of a fully-Lagrangian set of particles for tracking material deformation and properties dependent on its history [START_REF] Dufour | Numerical modelling of concrete flow: homogeneous approach[END_REF]. In section 3, the mathematical and numerical formulation are detailed. Unlike the inelastic viscoplastic models, the EVP model is characterized by both elastic and viscous components.

Besides, it was observed in EVP models that deformation rates could occur in the unyielded zone, which is defined by the Von Mises criterion, i.e. by comparing the yield stress to the second invariant of the deviatoric stress tensor. Investigating the natural convection of an elasto-viscoplastic fluid in the Rayleigh-Bénard configuration is the main objective of this study. To our knowledge, the elastic behavior has never been taken into account in the onset of Rayleigh-Bénard convection while it should have a real influence.

For this purpose, natural convection of an elasto-viscoplastic fluid in a bi-dimensional square enclosure is considered. In Section 2.2, the theoretical background is presented. Problem configuration, initial and boundary conditions, governing equations and the rheological model, as well as the characteristic dimensionless numbers, are introduced. Then, our numerical methods (FEMPIL) are detailed in Section 2.3.

Validation of the numerical simulations is presented in section 2.4.

Results are presented and discussed in Section 2.5. Our paper ends with concluding remarks.

Governing equations

A fluid subjected to the gravity field g in a 2D square cavity of size 𝐻 is considered (Figure 4). The temperatures of lower and upper walls are maintained constant respectively to 𝑇 𝐻 and 𝑇 𝐶 , such as 𝑇 𝐶 < 𝑇 𝐻 . Sidewalls are considered insulated.

No-slip conditions are considered at walls, leading to vanishing velocity components 𝑢 1 and 𝑢 2 in the horizontal and vertical directions respectively. Initial conditions consist in considering a fluid at rest (𝑢 1 (𝑡 = 0) = 𝑢 2 (𝑡 = 0)= 0) as well as a stress-free and a strain-free conditions in the whole fluid.

As a first approximation, we look for a steady state and low inertial solution, meaning that the particle derivative of velocity is considered equal to zero in our study. Under these assumptions, the continuity, the momentum including the Boussinesq approximation, and the energy equations write as follows:

𝑢 𝑖,𝑖 = 0

𝜏 𝑖𝑗,𝑗 -𝑝 ,𝑖 + 𝜌𝑔𝛽 (𝑇 -𝑇 𝑟𝑒𝑓 )δ i2 = 0 (2) 

u 1 = u 2 = 0 u 1 = u 2 = 0 u 1 = u 2 = 0 0 T H u 1 = u 2 = 0 H x 2 x 1   x 1 = 0   x 1 = 0 H T C g
Where 𝜏 𝑖𝑗 , 𝑝 and 𝑢 𝑖 represent the deviatoric stress tensor components, the pressure and the ith velocity vector component (𝑖 = 1,2). 𝜆 is the thermal conductivity, 𝐶 𝑝 is the specific heat capacity, 𝜌 is the density, 𝛽 is the coefficient of thermal expansion, 𝑇 𝑟𝑒𝑓 is a reference temperature set equal to the average of the temperature of the horizontal wall and 𝛿 ij is the Kronecker symbol.

The EVP fluid is described by the Maxwell model associating an elastic and a viscous behaviors, i.e. represented by a viscous damper and a purely elastic spring associated in series. However, in the present case, the viscosity is described by the Herschel-Bulkley model which considers both the yield stress and the shear-thinning behavior.

In this model, the strain rate tensor 𝐷, defined by the particle derivative of the strain tensor, is the sum of the viscous and the elastic contributions, respectively 𝐷 𝑣 and 𝐷 𝑒 :

where 𝐺 is the elastic shear modulus. In this model, the stress tensor is such as 𝜏 = 𝜏 𝑣 = 𝜏 𝑒 . As above mentioned, the apparent viscosity 𝜂 ′ is described by the Herschel-Bulkley constitutive model given by:

𝜏 𝑖𝑗 = [ 𝜏 0 2𝐷 𝑣 𝐼𝐼 + 𝐾(2𝐷 𝑣 𝐼𝐼 ) 𝑛-1 ] 𝐷 𝑣 𝑖𝑗 = 2𝜂 ′ 𝐷 𝑣 𝑖𝑗 (5) 
where 𝜏 0 , 𝐾 and 𝑛 represent respectively the yield stress, the consistency and the shear thinning index.

𝐷 𝑣𝐼𝐼 = -√ 1 2 𝑡𝑟 (𝐷 𝑣 2 )
is the second invariant of the strain rate tensor. It is worth noting that when 𝐷 𝑣𝐼𝐼 = 0, then the viscosity 𝜂 ′ tends to infinity. In this case, the main contribution is due to elastic behavior after Equation (4). For a nonzero strain rate tensor, the material is both characterized by elastic and viscous contributions. As a remark, a viscoplastic model can be obtained by setting 𝐺 to a very large value, then the elasticity in terms of deformation would be negligible in this case.

𝜏̇𝑖 𝑗 2𝐺 + 𝜏 𝑖𝑗 2𝜂 ′ = 𝐷 𝑖𝑗 = 𝐷 𝑣 𝑖𝑗 + 𝐷 𝑒 𝑖𝑗 (4) 
In the following, we consider the case 𝑛 = 1 which corresponds to the Bingham model (a particular case of the Herschel-Bulkley model).

In the present study, the dimensionless numbers of interest are:

the Bingham number defined by the ratio between plastic and viscous effects:

𝐵𝑛 = 𝜏 0 𝐾 √ 𝐻 𝑔𝛽∆𝑇 (6) 
the yield number 𝑌 defined by 𝑌 -1 = 𝜌𝑔𝛽𝛥𝑇𝐻 𝜏 0

is the control parameter which characterizes the onset of convection in gels especially as underlined by experimental works [5,6,[START_REF] Bingham | An investigation of the laws of plastic flow[END_REF] the Weissenberg number defined as the ratio between the fluid relaxation time, 𝐾 𝐺 and a characteristic time scale of the flow:

𝑊𝑖 = = 𝐾 𝐺 √ 𝑔𝛽∆𝑇 𝐻 (7) 
the Rayleigh number Ra is defined as the ratio between the buoyancy effects and the thermal as well as the viscous diffusion effects:

𝑅𝑎 = 𝜌 2 𝑔∆𝑇𝛽𝐻 3 𝐶 𝑝 𝐾𝜆 (8) 
-The Prandtl number 𝑃𝑟 depicts the ratio between the kinematic plastic viscosity and thermal conduction:

𝑃𝑟 = 𝐾𝐶𝑝 𝜆 (9) 
Remarks:

-It is worth noting that dimensionless numbers are related by the following relationship:

𝑅𝑎 = ( 𝐵𝑛 𝑌 ) 2 𝑃𝑟 (10) 
-The Deborah number 𝐷𝑒, the ratio between the relaxation time and the thermal diffusive time, can be deduced from Wi by the following relation:

𝐷𝑒 = 𝑊𝑖 . 𝑌 𝑃𝑟 . 𝐵𝑛 = 𝑊𝑖 √𝑅𝑎. 𝑃𝑟 (11) 
Heat transfer can be evaluated via the Nusselt number which represents the ratio of the total heat transfer and the conductive heat transfer over the hot wall. It is given by:

𝑁𝑢 = 𝜑𝐻 𝜆 , ( 12 
)
where the heat transfer coefficient φ is defined as:

𝜑 = ∫ |-𝜆 𝜕𝑇 𝜕𝑥 2 | × | 1 (𝑇 -𝑇 𝑟𝑒𝑓 ) | 𝑑𝑥 1 𝑥 1 =𝐻 𝑥 1 =0 (13) 

Numerical method 2.3.1. Description of the FEMLIP

The Finite Element Method with Lagrangian Integration Points (FEMLIP) was first introduced by Moresi and Solomatov [START_REF] Moresi | Numerical investigation of 2D convection with extremely large viscosity variations[END_REF]. Its originality relies on the possibility to solve large deformation flows on an Eulerian grid and to follow the material properties during the flow. For a given material configuration, the material points are used as integration points on one element. The iterative resolution (convergence criteria are set to 10 -5 for all the relative residuals) of the equilibrium equations (Eqs. 2 and 3) at the nodes provides a velocity field. This velocity field is interpolated at the end of each step from the nodes to the material points which move accordingly throughout the fixed mesh up to a new configuration. Besides, it is important to emphasize in our method, the distinction between the advection time step 𝛥𝑡, and the elastic time step 𝛥𝑡𝑒 [START_REF] Moresi | A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials[END_REF]. On a side, 𝛥𝑡 is used to discretize the effective movement of the matter. For example, it must be set such as the maximum displacement 𝑢𝛥𝑡 of each particle on a timestep is always smaller than the element size L so that the particles cross each element.

On another side, 𝛥𝑡𝑒 is used to write differentiation of the material behavior corresponding to viscoelastic relaxation. Equation [START_REF] Ouattara | Flow of a Newtonian fluid and a yield stress fluid around a plate inclined at 45° in interaction with a wall[END_REF] 

W ij represents the rotation tensor which corresponds to the antisymmetric part of the strain tensor in order to write the Jaumann derivative of the stress tensor and to model its rotation in the flow. At the end of the increment, all the variables (stress, strain, history variables) at the time 𝑡 + 𝛥𝑡 are calculated. In practice, in all the results presented in this article, we consider 𝛥𝑡 = 𝛥𝑡𝑒 at the beginning of the simulation to reach both stability and accuracy as recommended [START_REF] Moresi | Mantle Convection Modeling with Viscoelastic/Brittle Lithosphere: Numerical Methodology and Plate Tectonic Modeling[END_REF].

The coupling of equations ( 5) and [START_REF] Ouattara | Flow of a Newtonian fluid and a yield stress fluid around a plate inclined at 45° in interaction with a wall[END_REF] 

Equations ( 17) and ( 18) are solved iteratively at each time step until a residual criterion is reached. At iteration 𝑘 + 1, the residual criterion chosen for the velocity is as follows:

∑ (𝑣 𝑖 (𝑘+1) -𝑣 𝑖 (𝑘) ) 2 𝑖 ∑ (𝑣 𝑖 (𝑘+1) ) 2 𝑖 ≤ 𝜖 (19) 
with ϵ representing the required accuracy for the calculations.

For details on the resolution of equations with FEMLIP, the reader can refer to Moresi et al. [START_REF] Moresi | A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials[END_REF] and Moresi and Solomatov [START_REF] Moresi | Numerical investigation of 2D convection with extremely large viscosity variations[END_REF].

However, some calculation limitations will be noted when Wi increases. These limitations often raise a question in modelling viscoelastic fluids. Indeed, they could be due to values of viscosity contrast greater than 4 orders of magnitude. The numerical resolution of the problem becomes poorly conditioned and the major disadvantage of the iterative solver Gauss-Seidel is that the convergence process becomes very slow [START_REF] Dufour | Numerical modelling of concrete flow: homogeneous approach[END_REF]. The method of Gauss-Seidel thus raises velocity convergence problems for studies involving fluids with dominant elastic effect.

Validation of the numerical simulations

Results obtained in the Newtonian case have been compared with studies of Initial conditions correspond to a fluid at rest. Then a vertical temperature gradient is applied. A small periodic perturbation, which is 0.1% of the difference temperature between the bottom and top wall is suddenly applied at the lower wall leading to the onset of convection above the critical Rayleigh number. A similar procedure has been used in [START_REF] Turan | Laminar Rayleigh-Bénard convection of yield stress fluids in a square enclosure[END_REF] and [59] for instance. Several values of perturbation amplitude have been tested, results converge to a similar solution independently to the perturbation intensity as long as it is small enough as expected for a stability problem.

Results in terms of dimensionless velocity values 𝑈 max and 𝑉 max with 𝑈 = 𝑢 1 𝐻/𝛼 and 𝑉 = 𝑢 2 𝐻/𝛼, 𝛼 being the thermal diffusivity and the mean Nusselt numbers 𝑁𝑢 ̅̅̅̅ for the Newtonian case are displayed in Table 1.

To avoid numerical instability, the elastic time step ∆𝑡𝑒 is set equal to ∆𝑡. In the present study, its value corresponds to 0.1% of the material relaxation time, i.e. ∆𝑡𝑒 = ∆𝑡 = 0.1s. The influence of the grid size is illustrated in Table 1. In the Newtonian case, results converge for all tested grids. The maximal relative difference in results is 0.35 %. Nusselt numbers are also compared with the ones found in literature (Table 2), [START_REF] Turan | Laminar Rayleigh-Bénard convection of yield stress fluids in a square enclosure[END_REF] [70] and [START_REF] Evren-Selamet | Simulation of Rayleigh-Benard convection in a flipped L-shaped enclosure[END_REF]. A good agreement is obtained since the relative error is around 0.25%. Finally, our numerical results lead to small differences compared to the results in the literature in the Newtonian case. The mesh grid containing 81x81 number of elements is chosen for all the simulations to ensure convergence.

Results and discussion

This section aims at studying the effect of rheological features of an elasto-viscoplastic fluid on the Rayleigh-Bénard convection, that is to say, the elastic effect as well as the viscoplastic effect. In this section, the Rayleigh and Prandtl numbers are maintained constant 𝑅𝑎 = 10 5 , 𝑃𝑟 = 10, in order to compare our results with those of Turan et al. [START_REF] Turan | Laminar Rayleigh-Bénard convection of yield stress fluids in a square enclosure[END_REF] as well as most of the results of the literature, in the case of a Bingham fluid (𝑛 = 1).

The elasto-viscoplastic model with neglected elasticity

As a first step, the case with negligible elasticity is presented, i.e. 𝑊𝑖 → 0, which means that 𝑊𝑖 = 10 -12 is imposed in our simulations. This case tends to the Bingham model which is characterized only by a viscoplastic behavior. However, because the EVPHB model considers also elasticity, even weak, it leads to a continuous model for which the stress tensor is defined everywhere in the material. It means that there is no need to regularize the model or to introduce unphysical regularization parameters which could influence results as highlighted by Frigaard and Nouar [START_REF] Frigaard | On the usage of viscosity regularisation methods for visco-plastic fluid flow computation[END_REF] and Li et al. Close to the walls, the velocity gradient remains constant whatever the value of 𝐵𝑛 in the range [0, 𝐵𝑛 𝑐 ], including the Newtonian case (𝐵𝑛 = 0). A decrease in the maximal value of the velocity is observed when the value of 𝐵𝑛 increases, it leads to a decrease in the convection intensity. These results show the stabilizing effect of yield stress.

Furthermore, in the middle of the cavity, the velocity gradient decreases also with increasing values of 𝐵𝑛. This is the result of the emergence of unyielded regions as shown later in the case. These tendencies follow the decrease in heat transfer for increasing 𝐵𝑛. When 𝐵𝑛 𝑐 ≥ 1.7, we recover a motionless state in the whole cavity. Another result of interest concerns the determination of yielded and unyielded regions.

In this study, unyielded regions are defined in regions where the dimensionless second invariant of the deviatoric stress tensor 𝐽 2𝑆𝑖𝐺 is such as

𝐽 2𝑆𝑖𝐺 = τ II 𝜏 0 ≤ 1, 𝜏 𝐼𝐼 is defined as 𝜏 𝐼𝐼 = [ 1 2 (𝜏 𝑋 1 𝑋 1 2 + 𝜏 𝑋 2 𝑋 2 2 + 2𝜏 𝑋 1 𝑋 2 2 )] 1 2 . If 𝐽 2𝑆𝑖𝐺 > 1, the zone is considered as yielded.
In Figure 8 , the yielded zones are represented in white while unyielded regions are displayed in colour for 𝐵𝑛 = 1 and 𝐵𝑛 = 𝐵𝑛 𝑐 = 1.7.

For 𝐵𝑛 = 1, unyielded regions are located in the corners of the square cavity and the middle of the cavity as already observed in literature [START_REF] Turan | Laminar Rayleigh-Bénard convection of yield stress fluids in a square enclosure[END_REF], [START_REF] Huilgol | Natural convection problem in a Bingham fluid using the operator-splitting method[END_REF], [6], [START_REF] Aghighi | Rayleigh-Bénard convection of Casson fluids[END_REF]. In addition, the size of the unyielded regions increases with the increase in 𝐵𝑛.

By using the EVPHB model, a quite large unyielded region is obtained in the center of the cavity. Obviously, 𝐽 2𝑆𝑖𝐺 reaches the value 1 at the limit between unyielded and yielded regions since the yield stress is reached there. However, in the case 𝐵𝑛 = 1, we observe that 𝐽 2𝑆𝑖𝐺 values are around 70% of the yield stress value at the middle of the unyielded region (red region around the first diagonal). For 𝐵𝑛 = 𝐵𝑛 𝑐 = 1.7., we observe that the unyielded region invades the whole cavity since there is no white region. This also confirms that the regime is purely conductive in this case. The second invariant of the deviatoric stress tensor is not constant in the cavity and maximal values are obtained close to horizontal walls where 𝐽 2𝑆𝑖𝐺 reaches 40% of the yield stress (green and blue light regions). As previously, we observe that minimal values of 𝐽 2𝑆𝑖𝐺 are obtained at the center and corners of the square cavity.

Although the effect of elasticity is negligible in this section, the modified Maxwell model allows us to determine the stress level via J 2SiG throughout the cavity. We thus observe that the yield stress is first reached at horizontal walls, where the buoyancy effects are the largest. Furthermore, the no-slip conditions result in increasing shear stress at walls.

The general elasto-viscoplastic model

In this section, the elastic effect added to the viscoplastic behavior is investigated. For this purpose, we vary the Weissenberg number. The mean Nusselt number 𝑁𝑢 ̅̅̅̅ as a function of Bn (Figure 9) and the inverse of the yield number 1/𝑌 (Figure 10) are presented. In these figures, one observes an increase in the Nusselt number with increasing 𝑊𝑖. It means that elasticity favors significantly heat transfer as already shown by Park & Lee [START_REF] Park | Nonlinear hydrodynamic stability of viscoelastic fluids heated from below[END_REF] for instance. Furthermore, the increase in 𝑊𝑖 has a destabilizing effect since 𝐵𝑛 𝑐 increases as represented in Figure 11. On the other hand, the increase in 𝑊𝑖 leads to a transition from subcritical to supercritical the other hand, our numerical results can be compared with some experimental results obtained for an elasto-viscoplastic gel, namely the Carbopol gel used in our previous works [51] [52]. In these latter papers, the aspect ratio of the experimental cavity is Furthermore, we observe an increase in the maximal value of 𝑈 when 𝑊𝑖 is increased which is in agreement with the increase in the convective intensity via the Nusselt number for instance. Another consequence is the increase of the shear rate in the whole cavity, leading to a decrease in unyielded regions. More interestingly, an additional unyielded region is obtained at the center of the cavity.

When 𝑊𝑖 increases, as expected, the unyielded region decreases since 𝐽 2𝑆𝑖𝐺 increases. A consequence is that the shear rate values as well as the convective intensity increase as underlined previously.

This result is in agreement with the numerical works published by Martins et al. [START_REF] Da R. Martins | Elastic and viscous effects on flow pattern of elastoviscoplastic fluids in a cavity[END_REF] and Furtado et al. [START_REF] Furtado | Numerical simulation of a elasto-viscoplastic fluid flow inside a cavity[END_REF], in which the authors study the elastic effect on flow pattern of an elasto-viscoplastic fluid in a cavity. Their results indicate clearly that an increase in elasticity has an effect on the unyielded regions' size. They show that the increase in elasticity level increases the whole stress level. Indeed, the increase in elasticity is accompanied by a greater ability of the material to deform. Thus, the increase in strain induces an increase in the stress level. It finally leads to decrease the unyielded regions' size.

Concerning the topology of the pattern, we observe that unyielded regions are invariant under point reflection through its center (central symmetry).

For 𝑊𝑖 ≥ 0.8, the central unyielded region breaks into two centrally symmetric regions.

Numerical simulations [START_REF] Da R. Martins | Elastic and viscous effects on flow pattern of elastoviscoplastic fluids in a cavity[END_REF] have shown that viscoelastic deformations developing in the yielded regions contribute to the shape changes and symmetry modifications in the unyielded regions. 

Conclusion

Natural convection of an elasto-viscoplastic fluid is studied using the Finite Element Method with Lagrangian Integration Points (FEMLIP). The rheological model can be characterized according to Maxwell viscoelastic constitutive relationship which assumes that the total strain is the sum of viscous and elastic strains. The effects of plasticity and elasticity on the Rayleigh-Bénard convection are explored.

Concerning a viscoplastic fluid with negligible elasticity, the increase in 𝐵𝑛 leads to a decrease in the non-dimensional horizontal velocity component 𝑈, accompanied by a decrease in shear rate. Then, when 𝐵𝑛 increases, a higher level of stress within the material is needed to trigger the convection. This increase in 𝐵𝑛 leads to a decrease in the variation of temperature along the wall -via the coupling between the momentum and energy equations -which involves a decrease of the mean Nusselt number 𝑁𝑢 ̅̅̅̅ 1 .

Our results are found to be in excellent agreement with the previous works of Turan et al. [START_REF] Turan | Laminar Rayleigh-Bénard convection of yield stress fluids in a square enclosure[END_REF].

An elasto-viscoplastic material is considered and the influence of the Weissenberg number is investigated. Our results show that for increasing 𝑊𝑖 values, the convection domain enlarges highlighting a destabilizing effect of elasticity in the range of our study. This is the consequence of an increase in the elastic strain and thus in the level of stress within the material. The increase in 𝑊𝑖 induces an increase in the convection intensity as well as the heat transfer via the mean Nusselt number 𝑁𝑢 ̅̅̅̅ • Premièrement, succinctement la configuration modélisée est présentée.

Le support théorique des équations fondamentales et la loi de comportement élasto-viscoplastique sont décrits, ainsi que la méthode de résolution numérique MEFPIL [START_REF] Moresi | A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials[END_REF].

• Deuxièmement, les conditions expérimentales ainsi que les résultats obtenus dans [START_REF] Darbouli | Rayleigh-Bénard convection for viscoplastic fluids[END_REF] et [START_REF] Métivier | Origin of the onset of Rayleigh-Bénard convection in a concentrated suspension of microgels with a yield stress behavior[END_REF] sont résumés 

Equations gouvernant le problème

La convection de Rayleigh-Bénard pour le problème considéré est gouvernée par les équations de continuité, de quantité de mouvement prenant en compte l'approximation de Boussinesq et de l'énergie. Elles s'écrivent comme suit : 

u i,i = 0 (1) τ ij,j -p ,i + ρgβ (𝑇 -T 𝑟𝑒𝑓 )δe i2 = 0 ( 2 
)
ρC p ( ∂T ∂t + u j ∂T x j ) = λ ∂ 2 T ∂x j 2 (3) 
τ̇i j 2G + τ ij 2η ′ = D ij = D v ij + D e ij (4) 
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τ ij = [ τ 0 2D v II + K(2D v II ) n-1 ] D v ij = 2η ′ D v ij
où 𝜏 𝐼𝐼 est le second invariant du tenseur déviateur des contraintes ( 5)

𝜏 𝐼𝐼 = [ 1 2 (𝜏 𝑋 1 𝑋 1 2 + 𝜏 𝑋 2 𝑋 2 2 + 2𝜏 𝑋 1 𝑋 2 2 )] 1 2 (6) 
Pour plus de détails sur la formulation mathématique, se référer aux chapitres 2 et 4. tr(𝐷 𝑣 2 ).

Sous

3.2.3.

Nombres adimensionnels caractéristiques

Dans cette étude, les longueurs sont rendues sans dimension en considérant H comme longueur caractéristique, l'échelle de vitesse est U = √gβΔTH, la température est adimensionnalisée par (𝑇 𝐻 -𝑇 𝐶 ) et les contraintes par la contrainte seuil τ 0 .

L'introduction de ces échelles caractéristiques dans les équations gouvernant le problème permet d'obtenir plusieurs nombres sans dimension comme paramètres de contrôle :

• Le nombre de Bingham est défini par le rapport entre les effets plastiques et visqueux [20] [21].

Bn = τ 0 K (√ 𝐻 𝑔𝛽𝛥𝑇 ) 𝑛 (7) 
• Le nombre de Weissenberg est défini comme étant le rapport entre le temps de relaxation du fluide, (K/G) 

• Le nombre de Nusselt est défini comme le rapport entre le flux de chaleur total et le flux de chaleur conductif

Nu = φH λ (12) 
Le coefficient de transfert thermique vertical φ est défini comme suit : 21). Ce flux de chaleur évolue considérablement avec l'apparition de la convection. La convection a tendance à homogénéiser la température dans la cavité. Cela entraine une diminution de la pente de la courbe 𝛥𝑇 vs. 𝑄 𝑡 (Figure 21). Au niveau du changement de pente, la différence de température 𝛥𝑇 correspond à la différence de température critique d'apparition de la convection [START_REF] Darbouli | Rayleigh-Bénard convection for viscoplastic fluids[END_REF]. Chaque point de la Figure 21 est obtenu après un temps d'attente allant de 2 heures (en régime conductif) jusqu'à Typiquement, pour un gradient de cisaillement apparent de 10 

φ = |-λ ∂T ∂y | × | 1 (𝑇-T 𝑟𝑒𝑓 ) | (13) 

Champs de lignes de courant et isothermes

La Figure 26 La Figure 28 

Abstract:

The implementation of realistic solid-liquid transition in the numerical modelling of yield stress fluid mechanics is a current scientific issue. This numerical study investigates the creeping flow of an elasto-viscoplastic fluid around a plate perpendicular to the flow direction. The analysis is performed with a Finite Element Method with Lagrangian Integration Points (FEMLIP). This numerical method is able to simulate large strains problems and also to describe yielded and unyielded regions. were the first to consider this flow configuration but the experimental data they provide are not detailed enough to be usable.

However, points of comparison can be found in the field of geotechnics where circular foundations are often used to resist to vertical forces. The uplift factor evaluated both experimentally and numerically [START_REF]The Vertical Holding Capacity of Marine Anchors in Clay Subjected to Static and Cyclic Loading[END_REF] [94] can be compared to the plastic drag coefficient used in the field of yield stress fluid mechanics.

Savreux et al [START_REF] Savreux | Flow normal to a flat plate of a viscoplastic fluid with inertia effects[END_REF] numerically studied the flow with negligible inertia of a Bingham fluid around a plate. The flow morphology has been analyzed as a function of the Oldroyd number representing the ratio between plastic and viscous forces.

Empirical correlations of the drag coefficient have been proposed for Reynolds number ranging from 0.01 to 3. The drag coefficient, as well as the shape and size of the yielded and unyielded regions in the vicinity of the plate, have been computed. Ouattara et al [START_REF] Ouattara | Influence of the inclination of a plate on forces generated in flows of Newtonian and yield stress fluids[END_REF] [15] [START_REF] Ouattara | Flow of a Newtonian fluid and a yield stress fluid around a plate inclined at 45° in interaction with a wall[END_REF] observed good agreement between experimental measurements of drag coefficient with a yield stress fluid (Carbopol gel) and numerical simulations. However, they used the Papanastasiou regularization method [START_REF] Papanastasiou | Flows of Materials with Yield[END_REF] to model the solid-liquid transition. This method approximates the fluid rheological behavior below the yield stress as highly viscous. It does not take into account elastic effects responsible for the fore-aft flow field asymmetry observed experimentally by Jossic et al [START_REF] Jossic | Flow of a yield stress fluid perpendicular to a disc[END_REF] in the flow around a plate. This asymmetry has also been observed around other symmetrical geometries such as spheres [97] [98]. Despite the influence of elasticity on the flows of yield stress fluids, most of the computational studies mentioned above didn't take elastic effects into account. In order to consider the influence of elasticity on the rheological behavior of yield stress fluids, elasto-viscoplastic (EVP) models have been developed over the last years. Flow modeling of such fluids is in the core of an intense current scientific activity [START_REF] Fraggedakis | Yielding the yield stress analysis: A thorough comparison of recently proposed elasto-visco-plastic (EVP) fluid models[END_REF]. The development of new numerical methods [START_REF] Saramito | Progress in numerical simulation of yield stress fluid flows[END_REF] and EVP models allows a more detailed analysis of the influence of elasticity on flows around obstacles. Considering the flows of EVP fluids around obstacles, only the simplest geometries such as the flow along a flat plate [START_REF] Ahonguio | Flow of an elasto-viscoplastic fluid around a flat plate: Experimental and numerical data[END_REF] [99] or around a sphere [START_REF] Fraggedakis | Yielding the yield-stress analysis: a study focused on the effects of elasticity on the settling of a single spherical particle in simple yield-stress fluids[END_REF] have been considered so far. Experimental and numerical data are still needed to understand more thoroughly the influence of elasticity in the yield stress fluid flows around obstacles.

In the present study, the bi-dimensional flow of an EVP fluid around a plate is 

Computational domain, boundary and initial conditions

The flow configuration considered in the present study is represented in Figure 30 The flow is bi-dimensional. For symmetry reasons, only one half of the flow domain is considered. Its length is L and its width H. A plate with no thickness and half-width a is placed perpendicularly to the flow direction at a fixed position 𝑋 1 = 0 and 𝑋 2 = 0 corresponding to the center of the flow domain. Geometrical effects will not be discussed as L/a =30 and H/a = 10 are kept constant. -𝑈 𝑋 2 = 0 and 𝑈 𝑋 1 = 𝑈 0 are constant in the inlet section AC, 𝑋 1 = -L/2.

-In the outlet section, 𝑋 1 = L/2, periodic boundary conditions are adopted, so that 𝑈 0 is also found in this section. This ensure a homogeneous outlet flow.

-The fluid adheres to the wall so that the velocity is equal to zero on the plate surface.

-Free slip is imposed along wall AB as well as 𝑈 𝑋 2 = 0.

-For symmetry reasons, 𝑈 𝑋 2 = 0 along CD, 𝑋 2 = 0.

Initial conditions have been chosen such that at t = 0, all components of the stress tensor are set equal to 0 in the whole computational domain.

Chapitre 4: Flow of an élasto-viscoplastic fluid around a plate perpendicular to the flow direction 83

Governing and constitutive equations

The governing and constitutive equations have already been presented into more details by Ahonguio et al [START_REF] Ahonguio | Flow of an elasto-viscoplastic fluid around a flat plate: Experimental and numerical data[END_REF] where additional information regarding, among other, the time discretization can be found. For the sake of brevity, these equations are briefly recalled hereafter.

The Stokes and continuity equations solved in the simulations can be written as follow:

{ (f ext ) i + τ ij,j -p ,i = 0 u i,i = 0 (1, 2)
in which f ext , τ ij , p and 𝑢 represent the external body forces, the deviatoric stress tensor components, the pressure and the velocity vector respectively. X i and X, i correspond to the component and spatial derivative along the i direction of the field X.

The elasto-viscoplastic fluid behaviour is described by the Maxwell model. This latter consists in an association of an elastic solid and a viscous fluid. Usually, the viscous fluid is characterized by a Newtonian viscosity. However, in the present case, the viscosity is described by the Herschel-Bulkley model which takes into account both the yield stress and the shear-thinning behaviour. In this model, the strain rate tensor 𝐷 is the sum of the viscous and the elastic contributions, respectively 𝐷 𝑣 and 𝐷 𝑒 as follows:

where 𝐺 is the shear elastic modulus, τ̇i j is the Jaumann derivative in order to keep the objectivity of the derivative in large transformation.

As above mentioned, the apparent viscosity η ′ is described by the Herschel-Bulkley model given by:

τ ij = [ τ 0 2D v II + K(2D v II ) n-1 ] D v ij = 2η ′ D v ij (4) τ̇i j 2G + τ ij 2η ′ = D ij = D v ij + D e ij (3) 
where τ 0 , K and n respectively represent the yield stress, the consistency and the shear thinning index. D vII = -√ 1 2 tr D vij 2 is the second invariant of the rate of strain tensor. It is worth noting that when stress is below yield stress, the apparent viscosity (η ′ ) tends to be infinite, and the model returns to pure elasticity. In the numerical implementation, a numerical viscosity (η ∞ ) with a large value greater than 10 10 Pa•s is used in this solid regime. When stress is greater than yield stress, the apparent viscosity is a function of 𝜏 0 , 𝑘, and 𝑛, the specific form of which stemming from the Herschel-Bulkley model (Eq. ( 4)).

. For a non-zero strain rate tensor, the material is both characterized by elastic and viscous contributions.

As a remark, a viscoplastic model can be obtained by setting 𝐺 to a very high value, then the elasticity, in the sense of its deformation would be negligible in this case.

Considering the flow configuration and the rheological behavior of the fluid, the flow considered in the present study can be characterized by the following non-dimensional numbers. The Weissenberg number is defined as the ratio between elastic and viscous effects:

Wi = K G ( U 0 a ) n (5) 
This number can be considered as the ratio, to the power n, between the fluid relaxation time (K/G) 1 n ⁄ , and a characteristic time scale of the flow a U 0 ⁄ . It is used to describe the influence of elasticity on the flow. Flows with Wi from 0 to 0.6 have been considered. Throughout the rest of the study, n has been set equal to 1 (Bingham model).

The Oldroyd number often called the Bingham number in the literature, is defined as the ratio between plastic and viscous effects [100] [101].

Od = τ 0 K( U 0 a ) n (6) 
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Numerical method

The Finite Element Method with Lagrangian Integration Points (FEMLIP) has been proposed by Moresi and al [43]. This method originates from the Particle-In-Cell method for which the numerical integration weight is recomputed in each configuration in order to keep the finite element properties of the Gaussian integration scheme. It is a hybrid method coupling the Eulerian and Lagrangian approaches. The former approach is used for the mesh points which are spatially fixed nodes while the latter is used for the integration points which are an ensemble of material points moving in a fixed mesh towards a new configuration. The fixed mesh enables to avoid numerical diffusion problems which can especially appear in the modeling of material interactions. The material points carrying the constitutive and history variables are used in a given configuration as integration points to compute the nodal velocity field.

They are formally separated from the calculation points. To couple them, a quadrature of non-standard elements in which the particles in each element serve as integration points can be used. At the end of each calculation step, the new location of particles is updated based on the velocity field using Finite Elements shape functions. The FEMLIP has already been used in geomechanics for analyzing concrete flows and landslides [43] [42]. It can be used for studying numerous phenomena such as large strains phenomena and free surface flows. It can also be used to predict the extent of sheared zones. In the present study, an elasto-viscoplastic model has been implemented in a numerical tool based on the FEMLIP. It is worth underlining that twotime steps are used in the FEMLIP method. One is the elastic time step 𝛥𝑡 𝑒 which is used to discretize the constitutive equation and is chosen such that it is one hundredth the material relaxation time. The other one is the advection time step Δt which is used to discretize the lagrangian particles advection. This time step is chosen such that the displacement increment of every particle is lower than the width of the finest mesh.

From a practical point of view, all the results of the present study have been obtained

with 𝛥𝑡 = 𝛥𝑡𝑒 to reach both stability and accuracy. One of its main interest in the case of the present study is that no regularization method such as Papanastasiou's regularization method [START_REF] Papanastasiou | Flows of Materials with Yield[END_REF] is needed to compute the solid-liquid transition during the flow.
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Furthermore, it is necessary to underline that two-time steps are used in the FEMLIP method. One is the elastic time step 𝛥𝑡 𝑒 which is used to discretize the constitutive equation. To avoid numerical instability, 𝛥𝑡 𝑒 is chosen independently of 𝛥𝑡. In the present case, it is fixed at one tenth of the relaxation time of the materials. The other one is the advection time step Δt which is used to discretize the lagrangian particles advection. This time step is chosen for accuracy reasons such that the displacement increment of every particle is lower than the width of the finest element. As introduced by Moresi et al. [START_REF] Moresi | A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials[END_REF] the stress is updated at time t + Δt. For more details about the time discretization of the convective derivative 𝜏̇𝑖 𝑗 with the elastic time step ∆𝑡𝑒, please see the chapter 2. Therefore, in the following simulations the particle convection timestep and elastic timestep are set to be equal. Three meshes have been used: M1 = 64X32, M2 = 128X64 and M3 = 240X80 elements along the 𝑋 1 and 𝑋 2 axes respectively and the solution accuracy is 10 -5 .Their influence on the numerical results has been tested through the computation of the non-dimensional velocity profile 𝑈 * 𝑋 1 = 𝑈 𝑋 1 U 0 ⁄ along the symmetry-axis. Figure 31 shows that there is no significant influence of the refinement on the velocity profiles. The differences between M1, M2 and M3 were calculated, and did not exceed 2%. However, in order to obtain more spatial refinement, particularly in the vicinity of the plate, the finest mesh has been selected.

In the case of low Oldroyd numbers flows (here 0.01), special attention must be paid to the size of the domain because flows take a large extension. Figure 32 In simulations using the EVP model, instabilities appear after a while at high Oldroyd or high Weissenberg numbers. Moreover, the finer is the mesh, the shorter is the time before numerical instabilities appear. Indeed, as in Particle-In-Cell method, when the material is highly elastic, particles carry a high level of elastic stress. When the particles cross an element, it may enter a domain with lower applied stresses yielding instability by stress relaxation. Results presented here are within a domain of Od and Wi where there are no numerical instabilities. 

Results and discussions

The influence of plasticity and elasticity on the axial velocity profile, stream function and velocity field will be described hereafter in section 3.1. Section 3.2 is dedicated to the influence of the Oldroyd and Weissenberg numbers on the flow morphology, the fields of shear stress, first normal stress difference and yielded and unyielded regions. The plate's drag coefficient is presented in section 3.3.

Kinematic fields

The influence of the Oldroyd and Weissenberg numbers on the kinematics can be first quantified by representing the axial velocity profiles. We first consider the case of a viscoplastic fluid without elastic contribution represented by 𝑊𝑖 = 0. Figure 33 represents the velocity evolution along the symmetry axis 𝑈 𝑋 1 * as a function of 𝑋 1 * for different Oldroyd numbers at 𝑊𝑖 = 0.

It appears that the axial velocity profile is strongly influenced by the Oldroyd number.

At high Oldroyd numbers, i.e. high plastic effects, the axial velocity is modified in the close vicinity of the plate. When the Oldroyd number decreases, the axial velocity deviates from U0 at a greater distance from the plate. Also, we note that in the absence of inertial and elastic effects this distance is the same upstream and downstream, the velocity profile is symmetrical. The following section shows how the flow becomes disymmetrical when elastic effects are considered. asymmetrical. The asymmetry is more accentuated when Od = 1 and a velocity peak appears in the wake of the plate. This velocity peak increases with Od. Such an evolution has also been observed through a study on the influence of surface properties on the flow of a yield stress fluid around spheres [START_REF] Ahonguio | Influence of surface properties on the flow of a yield stress fluid around spheres[END_REF]. An asymmetric flow field was also observed by Tokpavi et al [START_REF] Tokpavi | Experimental study of the very slow flow of a yield stress fluid around a circular cylinder[END_REF], for flow around a cylinder. They suggest that this asymmetry could be due to the gel elasticity. The comparison between 33 and 34 confirms that this asymmetry is due to elasticity. The velocity overshoot observed in the wake of the plate can be explained by the stresses applied to the fluid in the upstream and downstream regions. Upstream the fluid is submitted to compression, the stresses generated in this region of the flow relax in the downstream region. to the flow direction 91 Figure 36c). One can also mention that as the Oldroyd number increases, i.e. as the yield stress effects increase and viscous effects decrease, the influence of the plate on the flow remains located in a narrower region in the vicinity of the plate. However, when elastic effects are taken into account, for example for Wi=0.6, in Figure 36d', a loss of symmetry is observed. As discussed in the previous section this asymmetry is due to elasticity. This fore aft asymmetry will be discussed into more details in chapter 5 dedicated to the comparison between experimental and numerical results. In the case of low plastic effects as considered here, the velocity overshoot reaches the wall. The velocity overshoot is due to the mass conservation. As the flow section is reduced because of the plate, the fluid velocity has to be higher to ensure the mass conservation. Figures 37a' and8b' show the fields close to the obstacle zone, demarcated with a dotted line. For the case without elasticity (Fig. 37a'), the field is symmetrical upstream-downstream of the obstacle. However, with elasticity (Wi = 0.6) the flow becomes asymmetrical as reflected by the velocity fields (Fig. 37b'). This asymmetry is consistent with the velocity profiles represented on Figure 36 and the stream function (Fig. 37d'). 

Stress fields

To analyze the influence of the Oldroyd and Weissenberg numbers on the flow morphology, the fields of shear stress, first normal stress difference and the second invariant of the deviatoric stress tensor have been computed. In the inlet and outlet sections far from the plate the shear stress is always uniformly equal to zero. The shear stress intensity increases when one gets closer to the plate.

Shear Stress

Local maximums can be observed in the close vicinity of the plate. Their intensity and position depend on the Oldroyd and Weissenberg numbers. In the absence of elasticity, the shear stress field is symmetric while it is asymmetric when elasticity is taken into account.

At low Oldroyd number, Figure 38-a, the average shear stress is one order of magnitude higher than the yield stress. At high Oldroyd numbers on the opposite, Figure 38-c, the absolute value of the shear stresses remains close to the yield stress level. As Od increases the viscous contributions decreases in comparison to plastic effects. Comparing Figure 38-b andd, it appears that the influence of elasticity is to decrease the average value of the shear stress field. The average absolute value of the shear stress on the whole flow domain is equal to 6.1 when elasticity is taken into account and 6.9 when it is not. No significant influence of elasticity is observed on the shear stress distribution along the plate wall. However, it would be too hasty to draw conclusion on the drag coefficient from this simple observation. As discussed in section 4.3.7 the drag coefficient is not only governed by shear stresses at the wall but pressure and normal stresses also. In the absence of elastic effects (𝑊𝑖 = 0), as the Oldroyd number increases, plastic effects increase and the first normal stress difference decreases. This indicates that 𝜏 𝑋 1 𝑋 1 tends towards 𝜏 𝑋 2 𝑋 2 when plastic effects become predominant. On the opposite, at low Oldroyd numbers, when the viscous contribution is much higher than the plastic contribution, normal stresses in the flow direction i.e. 𝜏 𝑋 1 𝑋 1 become significantly higher than 𝜏 𝑋 2 𝑋 2 . It is also worth mentioning that the absolute value of 𝑁1 * is symmetrical when 𝑊𝑖 = 0. As already observed previously this symmetry is lost when elasticity is introduced. Comparing figure 39c and39d show that the average value of 𝑁1 * in the computation domain is lower when elasticity is taken into account. In fact, as shear rate increases, the shear stress increases. Here, shear stresses (figure 39c) are higher for the case 𝑊𝑖 = 0 and 𝑂𝑑 = 0.01. . Rappelons que

First normal stresses difference

𝜏 𝐼𝐼 = [ 1 2 (𝜏 𝑋 1 𝑋 1 2 + 𝜏 𝑋 2 𝑋 2 2 + 2𝜏 𝑋 1 𝑋 2 2
)] 1 2 . Then, values of 𝐽 2 𝑠𝑖𝑔 higher than 1 represent the sheared or yielded zones. This zone is located in the vicinity of the plate. The stress level generated in this region is higher than the yield stress.

Values of 𝐽 2 𝑠𝑖𝑔 lower or equal than 1 represents the unyielded zones. One must distinguish mobile and static unyielded zones. The mobile unyielded zone also named plug flow is located far from the plate. In this region, the fluid is moving in the 𝑋 1 direction but is not yielded. Static unyielded zones are located in the vicinity of the upstream and downstream stagnation points. In these regions where velocities and shear rates are very low, the second invariant of the deviatoric stress tensor remains below the yield stress level. Figure 40 illustrates how increased plastic effects imply more extended unyielded regions and smaller yielded regions. When 𝑂𝑑 is increased from 0.1 to 100, the extent of the yielded regions is approximately divided by six.

Similarly, the unyielded mobile regions enlarge when 𝑂𝑑 goes from 0.1 to 100. The enlarged part of unyielded static zones in Figure 40 illustrates the increase of the static unyielded zones when Od increases. Besides, this figure illustrates how increasing fluid elasticity has an impact on the foreaft asymmetry. Also, it is worth mentioning the existence of a small unyielded zone located in the yielded zone whose size increases when Wi increases.

Otherwise, when focusing on the close vicinity of the plate (near fields for the 𝑊𝑖 cases = 0 and 𝑊𝑖 = 0.6), one can observe that yielded regions increase with elasticity. 

Strain

Fields of the total strain are presented on Figure 42. In the absence of elastic effects (𝑊𝑖 = 0), a symmetrical field can be observed far and in the vicinity of the plate (figure 42c'). The total strain increases with 𝑂𝑑. In the elastic case (𝑊𝑖 = 0.6), the strain field becomes asymmetric and the overall strain is slightly higher than in the case with no elasticity. In all cases, high values of strain are mainly located in the close vicinity 

C d * = C d,∞ * + β Od m (8) 
where β and m =1/(1+n) are numerical coefficients, here m=0.5. The second term of equation 8 represents the viscous contribution in the drag coefficient.

As a consequence, it has been fitted in the range of Od between 1 and 100 as follow Let's now consider the influence of elastic effects on the drag coefficient. Figure 45 represents the effects of Weissenberg numbers on the drag coefficient. As explained in section 4.3.1 on the numerical method, high Weissenberg numbers cannot be considered when plastic effects are important because of numerical instabilities. ⌋. This allows to evaluate the influence of elasticity on the drag. The increase in elasticity leads to an increase in drag force. This result is confirmed by the numerical study by Huang and Feng [START_REF] Huang | Wall effects on the flow of viscoelastic fluids around a circular cylinder[END_REF] who simulated the flow of viscoelastic fluids around a circular cylinder using a finite element method with the elastic-viscous stress split scheme. They have studied the influence of elasticity on the drag coefficient at three different Reynolds numbers. When 𝑅𝑒= 0.1, the closest configuration of the present study, they computed a slight increase in Cd* as Wi increases from 0 to 2. Fraggedakis et al. [START_REF] Fraggedakis | Yielding the yield-stress analysis: a study focused on the effects of elasticity on the settling of a single spherical particle in simple yield-stress fluids[END_REF] simulated the flow of an elastoviscoplastic fluid around a sphere. They also conclude that elasticity increases the drag coefficient. The increase of the drag force due to elasticity, observed in the case of the flat plate, as well as for the cylinder and sphere for the two studies recently cited, is rather moderate in the range of Wi considered. This can be explained by the fact that the drag force is mainly governed by the pressure contribution related to the cross section and symmetry of the obstacle. 

Conclusion

The finite element method with Lagrangian integration point has been used to model the fluid of an EVP Bingham fluid around a plate perpendicular to the flow direction. The rheological model couples the Maxwell and Bingham constitutive equations to take into account the elasticity and yield stress contributions in the fluid behaviour. Flows with very low velocities have been considered so that inertia has not been taken into account in the governing equations. Inertia effects are neglected in comparison with elastic, viscous and plastic effects. The numerical data obtained made it possible to quantify the influence of elasticity and plasticity on the kinematic and stress fields as well as the drag force. The shape and size of yielded and unyielded regions in the vicinity of the plate have been computed and quantified. Unyielded regions are favoured by increasing plastic effects. For given plastic effects, unyielded regions increase with increasing elasticity. The present results also illustrate how elasticity introduces a fore-aft asymmetry in the kinematic and stresses fields, as frequently observed in the flow of yield stress fluids around obstacles. The drag coefficient has been computed and the increase due to elasticity has been quantified. Dans le cas des fluides newtoniens, cette configuration a fait l'objet de nombreuses études analytiques, numériques et expérimentales. Parmi celles-ci, nous pouvons citer Tomotika et Aoi [START_REF] Tomotika | The steady flow of a viscous fluid past an elliptic cylinder and a flat plate at small Reynolds numbers[END_REF] qui ont étudié numériquement l'écoulement autour d'une plaque plane parallèle et perpendiculaire à la direction de l'écoulement à inertie négligeable.

Ce chapitre a fait l'objet d'une soumission dans le Journal of Non-Newtonian Fluid Mechanics

Les auteurs ont déterminé analytiquement les expressions du coefficient de traînée, des lignes de courants et de la distribution de pression sur la plaque. Le coefficient de traînée d'une plaque plane parallèle à la direction de l'écoulement a été calculé numériquement par Tamada et al [START_REF] Tamada | Low-Reynolds-number flow past a cylindrical body[END_REF] en utilisant cette fois-ci les équations de Navier-Stokes appliquées à de petits nombres de Reynolds variant entre 0.1 et 10. L'écoulement autour d'une plaque perpendiculaire à la direction de l'écoulement a été étudié numériquement par Dennis et al [START_REF] Dennis | Viscous flow normal to a flat plate at moderate Reynolds numbers[END_REF]. Plus précisément, ces derniers ont étudié le comportement de l'écoulement, les lignes de courant, et mis en évidence la formation d'un vortex autour de la plaque. Pour leur part, In et al [START_REF] In | Two-dimensional viscous flow past a flat plate[END_REF], ont étudié l'écoulement bidimensionnel autour d'une plaque plane avec un angle d'incidence A priori, il n'existe pas d'étude expérimentale qui porte sur la morphologie des écoulements de fluide à seuil autour d'une plaque infinie. Toutefois, citons l'étude de Jossic et al [START_REF] Jossic | Flow of a yield stress fluid perpendicular to a disc[END_REF] sur la morphologie des écoulements de gel de Carbopol autour d'une plaque circulaire perpendiculaire à l'écoulement.

Dans le domaine de la géotechnique, l'étude de la stabilité de l'ancrage de plaques dans des sols plastiques a fait l'objet de nombreuses études [START_REF] Merifield | Three-dimensional lower bound solutions for stability of plate anchors in clay[END_REF], [START_REF] Merifield | Stability of plate anchors in undrained clay[END_REF], [START_REF] Rowe | The behaviour of anchor plates in clay[END_REF] mettant en évidence l'évolution de la force de traînée . Leurs résultats permettent d'évaluer les solutions pour des effets de plasticité prépondérants. Ces études, avec différentes approches de la théorie de la plasticité, cherchent à déterminer la force que l'on peut appliquer à la plaque avant la rupture du sol. Les travaux expérimentaux et numériques prenant en compte l'élasto-viscoplasticité sont plus éparses et relativement récents.

Peu d'études concernent la configuration de notre présente étude. Ferreira et al [START_REF] Soares | Flow and Forced Convection Heat Transfer in Crossflow of Non-Newtonian Fluids over a Circular Cylinder[END_REF] ont uniquement étudié le champ cinématique de l'écoulement autour d'une plaque sans pour autant calculer la force de traînée. Ils ont, d'une part, mis en évidence que l'élasticité modifie la forme des zones cisaillées et non-cisaillées dans le voisinage de la lame. Ahonguio et al [START_REF] Ahonguio | Flow of an elasto-viscoplastic fluid around a flat plate: Experimental and numerical data[END_REF] ont étudié expérimentalement et numériquement l'écoulement rampant d'un fluide élasto-viscoplastique autour d'une plaque mais parallèle à la direction de l'écoulement. La loi de comportement élasto-viscoplastique utilisée couple le modèle de Herschel-Bulkley au modèle de Maxwell. La MEFPIL a été utilisée par ces auteurs et donc par rapport à cette étude notre apport original est d'étudier une nouvelle configuration avec de nouveaux effets physiques. De plus, Ahonguio et al [START_REF] Ahonguio | Flow of an elasto-viscoplastic fluid around a flat plate: Experimental and numerical data[END_REF] ont analysé l'influence de l'élasticité et de la contrainte seuil sur la force de traînée et le champ cinématique dans le voisinage de la plaque. De récentes études numériques de l'écoulement d'un fluide élasto-viscoplastique avec des obstacles de formes différents ont été également étudiées comme dans le cas d'un cylindre [START_REF] Fonseca | Flow of elasto-viscoplastic thixotropic liquids past a confined cylinder[END_REF] et d'une sphère [START_REF] Fraggedakis | Yielding the yield-stress analysis: a study focused on the effects of elasticity on the settling of a single spherical particle in simple yield-stress fluids[END_REF] particulièrement en couplant le modèle Saramito [START_REF] Saramito | A new constitutive equation for elastoviscoplastic fluid flows[END_REF] avec le modèle de durcissement cinématique isotrope (IKH) introduit par Dimitriou et al [START_REF] Dimitriou | Describing and prescribing the constitutive response of yield stress fluids using large amplitude oscillatory shear stress (LAOStress)[END_REF].

Dans la présente étude, nous avons tenu à examiner l'influence de l'état initial en contrainte, c'est-à-dire l'état de contrainte résiduel qui existe dans le matériau laissé par son histoire mécanique. Ce phénomène n'est pas dû à la thixotropie mais, à la plasticité du fluide. Cet aspect est d'autant plus important que dans la présente étude, nous allons travailler dans le domaine où les effets de seuil sont élasto-viscoplastique autour d'une plaque perpendiculaire à l'écoulement 113 importants par rapport aux effets de viscosité. Mougin et al. [START_REF] Mougin | The significant influence of internal stresses on the dynamics of bubbles in a yield stress fluid[END_REF] ont montré l'influence significative qu'exerce l'état de contrainte résiduelle sur la dynamiqu e des bulles possédant des vitesses très lentes dans un fluide à seuil comme les gels de Carbopol. Dans ce domaine, la forme et la trajectoire des bulles sont principalement contrôlées par l'état de contrainte résiduelle présent dans le fluide. Plusieurs études sur sa transition solide-liquide ont été menées. Dimitriou et al. [START_REF] Dimitriou | Describing and prescribing the constitutive response of yield stress fluids using large amplitude oscillatory shear stress (LAOStress)[END_REF] fournissent une revue de la littérature assez complète sur la caractérisation de cette transition pour les gels Carbopol. Dans notre étude, les propriétés rhéologiques du gel ont été déterminées à contrainte imposée par des essais en cisaillement simple à l'aide du rhéomètre DHR3 (TA instruments) en régime permanent. En régime de relaxation, les mesures ont été réalisées à l'aide du rhéomètre ARES-G2 (TA instruments) travaillant en déformation contrôlée. Les surfaces de la cellule de mesure cône-plan sont rugueuses pour éviter le glissement aux parois [START_REF] Magnin | Shear rheometry of fluids with a yield stress[END_REF]. Les mesures ont été réalisées en contrôlant l'évaporation selon des techniques développées par Magnin et Piau [START_REF] Magnin | Shear rheometry of fluids with a yield stress[END_REF]. Une température de 22°C+/-1°C a été imposée au cours des expériences.

Les incertitudes de mesure sont estimées environ à 7% pour les paramètres rhéologiques. Il est connu que le comportement en cisaillement permanent des gels aqueux de Carbopol suit le modèle d'Herschel Bulkley décrit par l'équation [START_REF] Bingham | An investigation of the laws of plastic flow[END_REF]. Dans la présente étude (Figure 46 

Equations gouvernantes

Les écoulements considérés étant isothermes, ils sont uniquement gouvernés par les principes de conservation de la quantité de mouvement et de conservation de la masse. Les écoulements étant sans inertie, la conservation de la quantité de mouvement s'exprime avec l'équation de Stokes (équation 4). L'équation de continuité (équation 5) traduit la conservation de la masse. :

(𝑓 𝑒𝑥𝑡 ) 𝑖 + 𝜏 𝑖𝑗,𝑗 -𝑝 ,𝑖 = 0 (4) 

𝑢 𝑖,𝑖 = 0 (5) 

Méthode numérique

La méthode des éléments finis avec points d'intégration lagrangiens (MEFPIL) [START_REF] Moresi | A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials[END_REF] Les calculs ont été menés avec un maillage régulier selon la procédure décrite dans le chapitre précédent. Un pas de temps ∆𝑡 𝑒 = ∆𝑡 = 10 -3 𝑠 et un critère de convergence sur le résidu relatif 10 -5 ont été fixés.

Résultats et discussions

Dans un premier temps, nous allons nous intéresser au coefficient de traînée en régime permanent puis à son évolution au cours de la relaxation. Dans un second temps, l'influence de l'état initial du fluide sur la force de traînée et sur les champs de vitesse, de contrainte et de déformation sera examinée.

Coefficient de traînée en régime permanent

Cette section traite de l'évolution du coefficient de traînée en régime permanent en fonction du nombre d'Oldroyd. Le coefficient de traînée calculé est comparé aux valeurs expérimentales. Le coefficient de traînée de la plaque est défini par :

𝐶 𝑑 * = 𝐹 𝑑 𝜏 0 .𝑎 (11) 
Où 𝐹 𝑑 est la force de traînée exercée par le fluide sur la plaque. Des études approfondies ont montré que la transition solide liquide dans les gels de Carbopol était sophistiquée [START_REF] Møller | Origin of apparent viscosity in yield stress fluids below yielding[END_REF], [START_REF] Divoux | Transient Shear Banding in a Simple Yield Stress Fluid[END_REF], [START_REF] Divoux | From stress-induced fluidization processes to Herschel-Bulkley behaviour in simple yield stress fluids[END_REF], [START_REF] Dimitriou | Describing and prescribing the constitutive response of yield stress fluids using large amplitude oscillatory shear stress (LAOStress)[END_REF], [START_REF] Lidon | Power-law creep and residual stresses in a carbopol gel[END_REF], [START_REF] Younes | On the elusive nature of Carbopol gels: "model", weakly thixotropic, or time-dependent viscoplastic materials?[END_REF].

On notera, comme présenté dans le chapitre 4, que la force de traînée est presque entièrement gouvernée par les forces de pression à l'avant et à l'arrière de la plaque. La composante de la force de traînée créée par les composantes des contraintes normales à la plaque 𝜏 𝑋 1 𝑋 1 𝑒𝑡 𝜏 𝑋 2 𝑋 2 est d'intensité mineure. L'analyse du profil de vitesse sur l'axe confirme ces observations. La Figure 60b confirme que le champ de vitesse est influencé par la présence de la plaque sur une distance plus grande à l'amont qu'à l'aval de la plaque. A l'aval, une région de flux inversé, souvent appelé phénomène de sillage négatif [START_REF] Hassager | Negative wake behind bubbles in non-newtonian liquids[END_REF] est observée. L'influence plus forte de l'élasticité pour Od=11,5 forte fait apparaitre un profil de vitesse avec une survitesse à l'aval. Ces phénomènes ont été observés expérimentalement dans le cas des écoulements de gels de Carbopol autours de plaque circulaire [START_REF] Jossic | Flow of a yield stress fluid perpendicular to a disc[END_REF] sphère [START_REF] Ahonguio | Influence of surface properties on the flow of a yield stress fluid around spheres[END_REF] et cylindre [START_REF] Tokpavi | Experimental study of the very slow flow of a yield stress fluid around a circular cylinder[END_REF]. Par exemple, la Figure 61 Pour approfondir l'analyse des champs de contraintes, la figure 64 fournit les champs des contraintes de cisaillement en régime permanent pour Od=11,5. Ces figures confirment que globalement les contraintes de cisaillements sont dans les mêmes ordres de grandeur pour les cas en régime permanent 1 (Figure 64a) et en régime permanent 2 (Figure 64b), montrant ainsi que l'état initial n'a guère d'influence. Les plus fortes valeurs sont au voisinage des arêtes de la plaque comme pour les déformations totales (Figure 63). Ces valeurs de la contrainte de cisaillement sont d'autant plus faibles qu'on s'éloigne davantage de l'obstacle (Figure 64). 

Perspectives

Les perspectives de ce travail de recherche sont nombreuses pour étendre l'utilisation du code Ellipsis, nous pouvons proposer :

-Intégrer des forces inertielles dans la modélisation, notamment pour étendre le domaine d'application et se rapprocher des situations industrielles :

-Implanter d'autres lois de comportement pour élargir encore le spectre des applications de la MEFPIL, en particulier des lois de comportement mimant plus précisément les gels de Carbopol en-dessous du seuil en introduisant le concept de durcissement cinématique [START_REF] Dimitriou | Describing and prescribing the constitutive response of yield stress fluids using large amplitude oscillatory shear stress (LAOStress)[END_REF] ou en introduisant plusieurs temps de relaxation.

-Implanter d'autres lois de transition solide-liquide en particuliers des lois thixotropes qui recouvrent un large domaine des fluides à seuil.

-Implanter des lois de frottement plus réalistes aux interfaces, soit des lois plus phénoménologiques, en imposant une condition de glissement et en définissant un critère seuil de glissement au-dessous duquel l'adhérence a lieu [START_REF] Ahonguio | Influence of surface properties on the flow of a yield stress fluid around spheres[END_REF] [137] ou une loi d'origine microscopique bien adaptée pour les suspensions de microgels de Carbopol [START_REF] Ahonguio | Influence of surface properties on the flow of a yield stress fluid around spheres[END_REF]. Une loi de frottement sec (Coulomb) est déjà implantée dans le code.

-Dans le cas d'écoulement de milieux granulaires, par exemple pour modéliser une avalanche de neige sur un obstacle, des travaux antérieurs ont été menés par Kneib et al [138] [START_REF] Kneib | Force fluctuations on a wall in interaction with a granular lid-driven cavity flow[END_REF]. Ces derniers ont mis en oeuvre une approche par éléments discrets très coûteuse en temps de calcul. Lorsque la quantité de matière mis en oeuvre devient très grande, il n'est plus possible de modéliser les grains de écoulements autour d'obstacle de base cylindres interaction entre cylindre ou cônes, écoulement au travers de convergent, divergent, remplissage de cavité par un jet.

A court terme, la caractérisation et l'analyse de l'influence de divers états de contrainte initiale dans le matériau sur le critère d'apparition de la convection est une piste intéressante à examiner avec la MEFPIL.

7 RÉSUMÉ

 7 Dans les procédés industriels mettant en jeu des fluides à seuil, la transition entre des états solide -fluide en fonction du chargement appliqué représente une problématique importante dans de nombreuses applications. Ces fluides à seuil présentent aussi d'autres caractéristiques telles que leurs capacités à glisser aux interfaces et l'existence d'une déformation élastique sous le seuil de contrainte. Cette thèse se propose de comprendre la structure des écoulements de fluides élasto-viscoplastiques et, en particulier, les paramètres influant sur la morphologie de l'écoulement et sur les efforts appliqués. Elle analyse deux situations : (1) les écoulements autour d'une plaque plane perpendiculaire à l'écoulement et, (2) les instabilités thermiques de Rayleigh-Bénard en s'appuyant sur une modélisation numérique mise en oeuvre avec la Méthode des Eléments Finis avec Points d'Intégration Lagrangiens (MEFPIL). D'une part, l'objectif est d'identifier les effets respectifs de la plasticité et de l'élasticité en utilisant la loi de comportement élasto-viscoplastique qui est une association du modèle de Herschel-Bulkley et du modèle de Maxwell. D'autre part, les résultats obtenus avec la MEFPIL sont comparés avec ceux d'études expérimentales disponibles avec un fluide modèle (gel aqueux de Carbopol). Dans cette comparaison, d'autres effets (rhéofluidification, glissement aux parois, état initial des contraintes) ont été également pris en compte.
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Figure 1 :

 1 Figure 1: Exemples d'applications d'ingénieries des fluides à seuil. (A) mortier de construction avec une truelle immobilisée, (B) pâte à poterie, (C) médium à peinture flamande [1], (D) dentifrice, (E) beurre d'arachide, (F) crème fouettée, (G) boisson Orbitz avec particules en suspension[4], (H) graisse lubrifiante, (I) biomatériau[4]), (J) impression 3D[4]).

Figure 2 :

 2 Figure 2: Exemples d'écoulement d'un fluide à seuil autour d'un obstacle, (K) système de prévention contre les avalanches, (L) barrière de protection contre les laves torrentielles, (M) mélange du béton, tirés de [5].

Figure 3 :

 3 Figure 3: (A) convection de Rayleigh-Bénard dans une cavité fermée, (B) convection, dans le magma terrestre, (C), Cuisson de fluide alimentaire, (D) cuve remplie de corium (unité 2 Fukushima Daiichi)

  Cette thèse s'inscrit dans la problématique de transition solide/fluide dans les fluides à seuil. En plus d'une contribution significative à la compréhension de la structure des écoulements, elle analyse les paramètres influant la morphologie de l'écoulement. Deux situations mettant en oeuvre chacune un fluide élasto-viscoplastique ont été étudiées à travers : Les écoulements de fluide à seuil interagissant avec un obstacle : une plaque plane perpendiculaire à l'écoulement ; Les écoulements créés par des gradients de température (convection de Rayleigh-Bénard). Dans ces deux situations, une volonté de mener des simulations numériques avec la méthode MEPFIL est ciblée pour : -Identifier les effets de la plasticité et de l'élasticité en utilisant la loi EVPHB ; -Comparer les effets de plasticité et d'élasticité avec des résultats expérimentaux disponibles obtenus avec un fluide modèle (gel aqueux de Carbopol) pour lesquels des effets plus complexes (rhéofluidification, glissement aux parois, état initial des contraintes) ont été pris en compte.

analysés. Le chapitre 4 Chapitre 1 : Introduction générale 25 Le chapitre 6

 41256 est consacré à la détermination des champs cinématique, de contrainte et de déformation générés par l'écoulement en 2D d'un fluide élasto-viscoplastique sans rhéofluidification autour d'une plaque perpendiculaire dans un milieu confiné. Les résultats sont analysés et discuter en fonction, d'une part, du nombre d'Oldroyd (𝑂𝑑) qui traduit le rapport des effets de plasticité et de viscosité, et d'autre part, du nombre de Weissenberg (𝑊𝑖) défini comme le rapport entre le temps de relaxation du fluide et le temps caractéristique de l'écoulement. Les zones seuillées et non seuillées, ainsi que les coefficients de traînée en fonction de 𝑂𝑑 et 𝑊𝑖 ont été analysés. Le chapitre 5 s'intéresse à une étude comparative des simulations numériques avec les données expérimentales obtenues par Ouattara [5] sur les écoulements d'un fluide à seuil modèle autour d'une plaque perpendiculaire à l'écoulement. Cette comparaison porte sur l'évolution des coefficients de traînée en régime permanent et en relaxation, ainsi que l'influence de l'état de contrainte initiale. Les champs de contrainte, déformation et cinématique associés ont été analysés. Le caractère rhéofluidifiant du fluide expérimental a été pris en compte dans nos simulations. clôt le manuscrit avec une conclusion et des perspectives de développements et d'études à partir de ce travail.

[ 6 ]Chapitre 2 : 40 Figure 6

 62406 Figure 6 presents the dimensionless horizontal velocity component U = 𝑢 1 H/α along the vertical mid-profile (i.e. along 𝑋 1 / H = 0.5) for different 𝐵𝑛 values.
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 5677 Figure 5: Mean Nusselt number Nu ̅̅̅̅ as a function of the Bingham number Bn comparison with Turan et al[START_REF] Turan | Laminar Rayleigh-Bénard convection of yield stress fluids in a square enclosure[END_REF] 
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 829 Figure 8: Fields of the second invariants of the deviatoric stress tensor J 2SiG
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 18 Carbopol gels fit well with the Herschel-Bulkley model (𝑛 < 1) in the steady state flow curves, i.e. above the yield stress. Under these conditions, experimental results show an onset of convection at the threshold 1/𝑌 𝑐 ≈ 80. In the present computations, the aspect ratio is 1 and an elastic Bingham model (or modified Maxwell model) is consider. As indicated in Fig. 7, we observe that 1/𝑌 𝑐 varies with the Weissenberg number. From FEMLIP simulations for the tested range of 𝑊𝑖 numbers, one gets 50 < 1 𝑌 𝑐 < 60, values which are in a quite good agreement with the experimental values given their differences.
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 10221 Figure 10: Mean Nusselt numbers Nu ̅̅̅̅ as a function of 1/Y for different values of Wi and Ra = 10 5

Figure 11 :Figure 12 :

 1112 Figure 11: Bn c as a function of Wi

Figure 13 :Chapitre 2 : 49 Figure 14 :

 1324914 Figure 13: Contours of non-dimensional stream function at 𝐵𝑛 = 1 for different 𝑊𝑖 Dimensionless temperature profiles and temperature fields are shown respectively inFigs.14 and 15. For increasing 𝑊𝑖 numbers, the thermal boundary layer decreases resulting in an increase in the temperature gradient within the boundary layer. This is due to an increase in heat transfer, thus to an increase in the convective intensity.
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 1522 Figure 15: Temperature fields in the whole cavity for 𝐵𝑛 = 1 and different 𝑊𝑖

Figure 16 :Chapitre 2 : 53 Figure 17 : 8 Figure 17 1 -Chapitre 2 :

 162531781712 Figure 16: Contours of the second invariant of the deviatoric stress tensor J 2SiG at Bn = 1 for different Wi. Coloured regions correspond to J 2sig < 1.

Figure 20 :

 20 Figure 20: Configuration du domaine d'étude

  forme tensorielle, le tenseur déviateur des contraintes noté τ, avec les composantes τ ij , peut être exprimé en fonction de η ′ , le module élastique noté G et le tenseur des taux de déformation noté D. Dans le cas d'un fluide de Maxwell, D est la somme d'une contribution visqueuse et élastique D v et D e , respectivement. Selon la loi Herschel-Bulkley, la viscosité apparente peut être exprimée en fonction des éléments suivants : l'indice de rhéofluidification n, la consistance K, la contrainte seuil τ 0 et le second invariant du tenseur des taux de déformation visqueux D vII = -√ 1 2

Figure 21 :

 21 Figure 21: Évolution de la différence de température en fonction de la puissance de chauffage.

Chapitre 3 :

 3 Convection de Rayleigh Bénard pour un fluide élastoviscoplastique : comparaison modélisation numérique et expérience 67 10 heures (en régime convectif). Afin de contrôler les conditions de surface de la cavité de Rayleigh-Bénard en contact avec le gel, des feuilles de PMMA d'une épaisseur de 50 µ𝑚 ont été collées sur la surface inférieure en cuivre de la cavité de Rayleigh-Bénard[START_REF] Darbouli | Rayleigh-Bénard convection for viscoplastic fluids[END_REF]. Les feuilles de PMMA non traitées entrainent des conditions de glissement du fluide à leur interface, car elles sont hydrophobes (non mouillantes) et très lisses, i.e. la rugosité de la surface est très inférieure à la taille des microgels. Il est bien documenté que les gels de Carbopol glissent sur des surfaces lisses et non mouillantes comme le PMMA[START_REF] Piau | Carbopol gels: Elastoviscoplastic and slippery glasses made of individual swollen sponges[END_REF],[START_REF] Cloitre | A review on wall slip in high solid dispersions[END_REF],[START_REF] Magnin | Cone-and-plate rheometry of yield stress fluids. Study of an aqueous gel[END_REF]. Des conditions de non-glissement sont obtenues en traitant les surfaces de PMMA comme proposé par Métivier et al.[START_REF] Christel | Stick-slip control of the Carbopol gels on Polymethyl methacrylate transparent smooth walls[END_REF].Les autres surfaces, surface latérale en PMMA et surface supérieure en verre, ont aussi été traitées.Les gels aqueux de Carbopol sont fabriqués à partir de résines réticulées d'acide polyacrylique C 940, fabriquées par B.F. Goodrich. Le polymère est dispersé dans de l'eau distillée, la solution est neutralisée avec 𝑁𝑎𝑂𝐻, à 𝑝𝐻 = 7. La solution devient un gel transparent. La structure du gel correspond à une dispersion concentrée de microgels dans l'eau. Les gels de Carbopol sont très souvent utilisés comme fluides modèles, car outre leur transparence, ils ne sont pas thixotropes[START_REF] Piau | Carbopol gels: Elastoviscoplastic and slippery glasses made of individual swollen sponges[END_REF],[START_REF] Dimitriou | Describing and prescribing the constitutive response of yield stress fluids using large amplitude oscillatory shear stress (LAOStress)[END_REF]. Les propriétés rhéologiques globales des gels de Carbopol ont été mesurées à l'aide d'un rhéomètre AR-G2 (TA Instruments). Les géométries de mesure cône-plan sont rendues rugueuses pour éviter le glissement aux parois[START_REF] Magnin | Cone-and-plate rheometry of yield stress fluids. Study of an aqueous gel[END_REF]. Les gels ont un comportement élasto-viscoplastique. Les valeurs des paramètres rhéologiques en volume du gel de Carbopol utilisé sont τ 0 =0.031 𝑃𝑎, 𝐾=0.26 𝑃𝑎. 𝑠, n=0.46, 𝐺=0.77 𝑃𝑎.Afin d'évaluer le glissement à la paroi, la méthodologie proposée par Piau[START_REF] Piau | Carbopol gels: Elastoviscoplastic and slippery glasses made of individual swollen sponges[END_REF] a été mise en oeuvre. La rhéométrie en cisaillement à l'état stationnaire a été réalisée en utilisant des surfaces de la cellule de mesure dans le même matériau que celui dans la cavité de Rayleigh-Bénard, c'est-à-dire les surfaces de PMMA lisse, non traité et PMMA traité. Les résultats connus et théorisés[START_REF] Cloitre | A review on wall slip in high solid dispersions[END_REF],[START_REF] Magnin | Cone-and-plate rheometry of yield stress fluids. Study of an aqueous gel[END_REF] ont montré que la contrainte en fonction de la vitesse de cisaillement apparente est plus faible avec les surfaces en PMMA lisse non traité que pour les surfaces en PMMA traité.

Figure 22 :

 22 Figure 22: Evolution de la contrainte de cisaillement en fonction de la vitesse de cisaillement en régime permanent pour un gel de Carbopol Le glissement avec les surfaces de PMMA lisse, non traité est relativement important.
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 33535212324 Figure 23: Evolution du nombre de Nusselt en fonction de 1/𝑌 pour des conditions limites d'adhérence et de glissement à la paroi ; Gel de Carbopol avec 𝜏 0 = 0.031 𝑃𝑎, d = 0.017 m

Figure 25 :

 25 Figure 25: Champ de déformation totale pour le cas (a) adhérent (à gauche) et (b) glissant (à droite) 3.5.2.2.

Figure 26 : 3 . 5 . 2 . 3 .𝜏Figure 27 :

 26352327 Figure 26: Représentation des isothermes (a et b) pour les cas d'adhérence et de glissement respectivement et des lignes de courant (c et d) pour les cas d'adhérence et de glissement respectivement 3.5.2.3.

Chapitre 3 :Figure 28 :

 328 Figure 28: Champs des contraintes de cisaillements adimensionnalisées pour le cas adhérent (a) et le cas glissant(b) La figure 29 montre l'effet des conditions aux limites sur l'évolution des zones seuillées et non seuillées. Les limites entre les zones seuillées et non seuillées sont calculées à partir du rapport : J 2sig = τ II /τ 0 avec τ II le second invariant du tenseur des contraintes. Sur la Figure 29, les zones dites non seuillées sont représentées en nuances de gris et les zones seuillées sont en couleur.

Figure 29 :Chapitre 4 : 78 CHAPITRE 4 :Chapitre 4 :

 2947844 Figure 29: Champs adimensionnel du deuxième invariant du tenseur déviateur des contraintes. Zones non seuillées (en niveau de gris) et seuillées (en couleur) dans les cas d'adhérence (a) et de glissement (b)

  An elasto-viscoplastic model coupling the Bingham and the Maxwell constitutive equations has been implemented. The influences of plasticity and elasticity on kinematic and stress fields are discussed. The influence of elasticity on the fore-aft asymmetry of the flow morphology is shown and quantified. The size and shape of the yielded and unyielded regions around the obstacle are quantified. Far and local stress fields as well as the drag coefficient are also quantified as a function of the plastic and elastic contributions. Keywords: elasto-viscoplasticity, plate, yielded and unyielded regions, drag, Finite Element Method with Lagrangian Integration Points (FEMLIP).

4. 1 .

 1 IntroductionMost fluids used in industrial applications exhibit a solid-liquid transition. At rest, they behave as an elastic solid. Above a certain stress level, called yield stress, they flow as a viscous fluid with a viscosity that may vary with the shear rate. This specific behavior has a strong impact on the flow of such fluids around obstacles. It plays an important role in terms of efficiency and performance in many industrial process operations such as mixing. Because of their interest in industrial applications, viscoplastic fluids flows around obstacles have been extensively studied these last few years[1] [2].The goal of the present study is to simulate the bi-dimensional flow of an elastoviscoplastic fluid perpendicular to a flat plate. This flow configuration is well documented in the case of a Newtonian fluid. Analytical, experimental and numerical approaches have been developed in the literature[START_REF] Tomotika | The steady flow of a viscous fluid past an elliptic cylinder and a flat plate at small Reynolds numbers[END_REF] [90]. In the case of yield stress fluids, data from the literature are much more scarce. Brooks and Whitmore[START_REF] Brookes | Drag forces in Bingham plastics[END_REF] [START_REF] Brookes | The static drag on bodies in Bingham plastics[END_REF] 
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 482 considered. Computations have been performed in the domain where inertia effects are negligible compared to viscous, plastic and elastic effects. Section 1 presents the flow configuration as well as the boundary conditions. Then, the governing equations and the EVP model used are presented. The constitutive equation is based on the coupling of the Bingham model for the viscous contribution with the Maxwell model for the elastic contribution. The resulting characteristic dimensionless numbers of the flow are then introduced. Section 2 is concluded with the problem formulation and the numerical methods used. The influence of elasticity and plasticity on the kinematic fields are discussed in section 3. The shape and size of the yielded and unyielded regions have been analyzed into details first. The drag coefficient has also been computed as a function of the rheological properties of the fluid in steady-state. Flow of an élasto-viscoplastic fluid around a plate perpendicular to the flow direction

Figure 30 :

 30 Figure 30: Flow configuration and boundary conditions Boundary conditions are described below:

  represents the non-dimensional axial velocity profile 𝑈 * 𝑋 1 , for 𝑂𝑑 = 0.01 obtained in the case of two different lengths (𝐿) of the computation domain. It appears that the size of the domain must be large enough to allow the axial velocity to be established and it also allows the size of unyielded zones to be shown in figure40. This result confirms that the value L / a = 30 is correct for simulations carried when 𝑂𝑑 > 0.01.
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 3132 Figure 31: Non-dimensional axial velocity profile 𝑈 * 𝑋 1 as a function of 𝑋 1 * when Od = 0
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 433 Figure 33: Non-dimensional axial velocity profiles as a function of 𝑋 1 * when Wi = 0 for a given Od value

Figure 34 :Chapitre 4 :Figure 35 :Figure 36 ,

 3443536 Figure 34: Non-dimensional axial velocity profiles 𝑈 𝑋 1 * as a function of 𝑋 1 * when Wi = 0.4 for a

Chapitre 4 :Figure 36 :

 436 Figure 36: Non-dimensional stream function for different values of Od and Wi in far-field (a), (b), (c) and (d) and near field (c') and (d')Figure37represents the non-dimensional axial velocity field 𝑈 𝑋 1 * computed when Od = 0.1, with and without elastic effects: Wi = 0 and Wi = 0.6 in the whole domain (Figures37a and 37b) and in the close vicinity of the plate (Figures37a' and

  37b'). The far fields are similar. On the one hand, the farther away from the obstacle, the more the velocity fields increase until they reach the upper wall regardless of the value of Wi. On the other hand, with elastic effect (Wi = 0.6), the increase of fluid velocity in contact with the obstacle is stronger, highlighting a greater overshoot zone as shown in Figure37b.
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 6376495 Figure 37:far (a, b) and near (a', b') adimensional velocity field for Od = 0.1 and Wi = 0 and 0.6

Figure 38 represents

 38 Figure 38 represents the non-dimensional shear stress: 𝜏 𝑋 1 𝑋 2 *
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 438 Figure 38: Evolution of shear stress field in the horizontal plane, far [(a), (b), (c) et d] and near [(a') (b'), (c') et (d')] materialized in hatched lines

Figure 39 represents

 39 Figure 39 represents the field of the first normal stress difference 𝑁1 * = 𝜏 𝑋 1 𝑋 1 -𝜏 𝑋 2 𝑋 2 𝜏 0
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 3998323 Figure 39: Evolution of the first normal stress difference for different values of Wi and Od
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 440 Figure 40: Field of the non-dimensional second invariant of the deviatoric stress tensor when Wi = 0 for a given value of Od (*local zoom around the plate for 𝑂𝑑 = 100 and 𝑂𝑑 = 0.1).

Figure 41

 41 Figure 41 represents the influence of elasticity on the fields of the second invariant of the deviatoric stress tensor for an Oldroyd number set equal to 0.1. In farfield, this figure shows that elasticity expands unyielded regions and reduces yielded regions. As an example, the decrease of the region is more pronounced when 𝑊 𝑖 = 0.6 than when 𝑊𝑖 = 0.

Figure 41 :

 41 Figure 41: Contours of the second invariant of the deviatoric stress tensor at 𝑂𝑑 =0. 1 for different 𝑊𝑖. (*local zoom around the plate for 𝑊𝑖 = 0.2 and 𝑊𝑖 = 0.6).
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 442122 Figure 42: Evolution of total strain field for different values of 𝑊𝑖 and 𝑂𝑑
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 4 Flow of an élasto-viscoplastic fluid around a plate perpendicular to the flow direction 102In all three cases, 𝜏 𝑋1𝑋1 * remains approximately constant along the plate and is always lower than 𝑝 * and 𝜏 𝐼𝐼 * . However, a significant increase in 𝜏 𝑋1𝑋1 * can be observed when comparing Figure43-a and c. The average value goes from 25 to 75 when Wi is increased from 0 to 0.6. Taking the elastic contribution into account has an impact on the stress distribution along the plate and explains why the drag coefficient of the plate is higher when elastic effects are taken into account as presented in the next section on Figure45. If we now focus on the comparison between 𝑝 * and 𝜏 𝐼𝐼 * it appears that 𝜏 𝐼𝐼 * is always much lower than the pressure level. As a consequence, the overall drag force exerted by the fluid on the plate is mainly governed by the pressure difference on the upstream and downstream sides of the plate. The drag is mainly a pressure drag with minor contributions of viscous and elastic drag. Once again, as already observed on the kinematic fields, Figure43-c illustrates how elasticity induces a dissymmetry when elastic effects become more important.

Figure 43 :

 43 Figure 43: Evolution of non-dimensional pressure, normal stress and second invariant of the deviatoric stress tensor along both sides of the plate
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 4 of correlation equal to 0.98. The value of C d,∞ * has been studied extensively to calculate the stability of a flat anchor. Different approaches of plasticity have been implemented and a few of them are hereafter mentioned. For a perfectly plastic yield stress fluid, Raghavendra [106] and Anderson et al. [107] have shown that C d,∞ * = 3𝜋 + 2 ≈ 11.34. Merrifield et al [108] [94] using two numerical procedures based on finite element formulations of the upper and lower bound theorems of limit analysis and by assuming a perfectly rigid plastic clay model with a Tresca yield criterion established that C d,∞ * =11.16 and 11,86. Rowe [109] assumed a kinematically admissible upper bound solution and a statically admissible lower bound solution to obtain C d,∞ * = 11.42 and C d,∞ * = 10.28 respectively. Flow of an élasto-viscoplastic fluid around a plate perpendicular to the flow direction 104 These values are close to the numerical value obtained in the present study: C d,∞ * = 10.74 (Eq. 9). Patel and Chhabra [103] carried out a numerical study of the flow of a Bingham fluid around an elliptical cylinder. When the aspect ratio of the elliptical cylinder tends towards zero, the geometry becomes similar to that of a perpendicular plate. Using the correlation given by Patel and Chhabra in the case of their smallest aspect ratio and negligible inertia, one obtains C d * = 10.41 + 14 Od 0.58 . This expression provides a value of C d,∞ * in good agreement with the numerical value of the present study, equation 9. The different expressions of the viscous contribution can be explained by the fact that Patel and Chabbra studies an elliptical cylinder, thus a slightly higher surface than the plate. In addition, , they used a Bingham constitutive equation regularized by the Papanastasiou model. Finally, a certain imprecision is induced by their correlation including multiple parameters. In conclusion, the determination of drag coefficient obtained by the FEMLIP method in the absence of elasticity provides correct values in agreement with the literature data.
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 444 Figure 44: Evolution of the drag coefficient Cd* as a function of the Od for Wi = 0

Figure 45 illustrates

 45 the influence of elasticity on the drag coefficient when 𝑂𝑑 = 0.1. It represents the gap between the drag coefficient computed for a given value of Wi and the drag coefficient computed when Wi=0 normalized by the drag coefficient computed without elasticity,
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 55 Etude expérimentale et numérique de l'écoulement d'un fluide élasto-viscoplastique autour d'une plaque perpendiculaire à l'écoulement 108 Etude expérimentale et numérique de l'écoulement d'un fluide élasto-viscoplastique autour d'une plaque perpendiculaire à l'écoulement Chapitre 5 : Etude expérimentale et numérique de l'écoulement d'un fluide élasto-viscoplastique autour d'une plaque perpendiculaire à l'écoulement 109 Résumé : Ce chapitre s'intéresse à l'écoulement sans inertie d'un fluide élasto-viscoplastique autour d'une plaque perpendiculaire à la direction de l'écoulement. L'écoulement est analysé à la fois expérimentalement et numériquement. Les expériences ont été réalisées avec un gel Carbopol. Ce fluide à seuil modèle nonthixotrope a été finement caractérisé d'un point de vue rhéométrique en régime permanent et de relaxation. Pour l'approche numérique, le comportement rhéologique du gel est basé sur le modèle de Maxwell dans lequel la viscosité apparente η' est régie par la loi de Herschel-Bulkley. Toutes les équations sont résolues avec la méthode MEFPIL. Le fluide se comporte comme un solide élastique en dessous de la contrainte seuil. Au-delà de cette contrainte, le fluide s'écoule suivant une loi visqueuse non linéaire. La transition solide-liquide est définie par le critère de Von Mises. Après une présentation de l'approche expérimentale et de la méthode numérique, les résultats expérimentaux et numériques sont comparés en termes d'influence de la plasticité, de l'élasticité et de la condition initiale sur la traînée à la fois en régime permanent et en régime de relaxation. L'influence de l'état de contrainte initial a été clairement identifiée. La rhéofluidification du fluide a été prise en compte. De plus, l'évolution des zones seuillées et non seuillées, des champs de vitesse, de contrainte et de déformation du gel ont été analysées. Mots-clés : élasto-viscoplasticité, modélisation numérique, expérience, plaque, zones seuillées, traînée, 5.1. Introduction Dans les procédés industriels où interviennent les écoulements de fluides à seuil, la maîtrise et le contrôle de la cinématique de ces écoulements sont cruciaux pour des besoins de compréhension physique et d'optimisation. La présence du seuil d'écoulement rend le comportement de ces matériaux très particulier. Le critère le plus couramment utilisé pour représenter cette transition dans les écoulements plastiques est le critère de Von Mises [66]. Lorsque la contrainte appliquée est inférieure à la contrainte seuil, ces matériaux se comportent comme un solide élastique qui peut en première approximation être représenté par le modèle de Hooke. Lorsque la contrainte appliquée est supérieure à la contrainte seuil, ces matériaux s'écoulent. La présence d'un seuil d'écoulement associé à un comportement élastique affecte fondamentalement les transferts et la structure des écoulements dans les procédés. La compréhension du rôle de l'élasto-viscoplasticité est rendue nécessaire dans l'objectif d'optimiser les procédés de traitement de ces fluides. Ici, nous avons choisi de focaliser nos efforts sur l'écoulement de ces fluides élasto-viscoplastiques autour d'une plaque. Cet obstacle a été choisi car, d'une part, c'est un cas classique de la mécanique des fluides et, d'autre part, il correspond à des applications pratiques. Le but de la présente étude est de confronter les résultats expérimentaux obtenus avec un fluide modèle aux prédictions numériques fournies par la modélisation numérique.
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 5 Etude expérimentale et numérique de l'écoulement d'un fluide élasto-viscoplastique autour d'une plaque perpendiculaire à l'écoulement 111 variable et, à cet effet, ils ont déterminé les coefficients de traînée et de portance pour des Reynolds compris entre 1 et 30. Concernant les fluides non-newtoniens rhéofluidifiants, Wu et Thompson [115] ont étudié, numériquement et expérimentalement, l'écoulement autour d'une plaque plane avec un angle d'incidence variable. Les auteurs ont déterminé l'influence de l'inertie, de l'indice de rhéofluidification et de l'angle d'attaque sur les coefficients de traînée et de portance. Cependant, à notre connaissance, peu d'études sur l'écoulement de fluide élasto-viscoplastique perpendiculaire à la plaque sont disponibles. Brookes et Whitmore [91] ont étudié expérimentalement la force de traînée statique d'une plaque immergée dans un fluide plastique considéré comme un fluide de Bingham. Les auteurs ont, d'une part, montré que cette force est proportionnelle à la surface immergée de la plaque et, d'autre part, proposé une expression analytique reliant la force de traînée statique, le maître couple et la contrainte seuil. D'autres auteurs tels que Savreux et al [95] ont étudié numériquement en 2D l'écoulement d'un fluide de Bingham perpendiculaire à une plaque plane. Ils ont abordé en détail la morphologie de l'écoulement à inertie négligeable en fonction du nombre d'Oldroyd défini comme le rapport entre les effets de la contrainte seuil et les effets visqueux-avant de calculer le coefficient de traînée et de proposer des solutions analytiques dans le domaine des contraintes seuils élevés. Patel et Chhabra [116] ont utilisé la méthode des éléments finis pour simuler l'écoulement autour d'un cylindre elliptique. Le coefficient de traînée ainsi que la forme et la taille des régions cisaillées et non cisaillées au voisinage de l'obstacle ont été calculés. Pour leur part, Ouattara et al [96] ont étudié expérimentalement et numériquement l'écoulement de gel de Carbopol autour d'une plaque avec des incidences comprises entre 0 ° et 90 °. Les auteurs ont déterminé les forces de traînées et de portance sur la plaque et quantifié les effets de la contrainte seuil. Les forces mesurées ont été comparées aux résultats numériques et aux données de la littérature. Des différences significatives entre les résultats expérimentaux et numériques ont été observées. Le gel de Carbopol est un fluide à seuil modèle non-thixotrope. Leurs simulations ont été effectués à l'aide du logiciel fluent avec une loi viscoplastique d'Herschel-Bulkley régularisée avec la loi de Papanastasiou ne prenant pas en compte la contribution élastique. Cela révèle que le logiciel commercial Fluent utilisé n'intègre pas la modélisation jugée plus réaliste du comportement élasto-viscoplastique du gel de Carbopol.
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 115 notre connaissance, l'écoulement d'un fluide élasto-viscoplastique autour d'une plaque perpendiculaire à l'écoulement n'a pas été étudié numériquement et les résultats comparés avec les données expérimentales. C'est l'objectif de cette étude de combler ce manque de connaissance. Ainsi, nous proposons de réaliser une modélisation numérique originale avec la MEFPIL intégrant un modèle constitutif élasto-viscoplastique dans la configuration d'un écoulement perpendiculaire à une plaque. Nous étudierons les paramètres adimensionnels clés influant sur la morphologie de l'écoulement et sur les efforts appliqués. Cette approche originale permet de mieux comprendre et de prédire un écoulement complexe afin d'en optimiser certaines mesurables d'ingénieries dans un contexte applicatif ou industriel. Cette méthode MEFPIL a la particularité et l'avantage majeur de dissocier les points matériels des points de calculs, ce qui lui permet d'être un candidat idéal pour intégrer la modélisation solide-liquide. Cela permet de modéliser le comportement élastique en dessous du seuil d'écoulement sans avoir recours à la régularisation et par conséquent, d'intégrer une loi de comportement élasto-viscoplastique plus représentative du comportement réel du Carbopol utilisé dans les expériences. La section 5.2 présente l'approche expérimentale (la caractérisation rhéologique du matériau, le dispositif expérimental de mesure de force de traînée et des résultats expérimentaux). Par ailleurs, une partie des méthodes expérimentales est détaillée dans les études de Ouattara et al. [23] [96] [15] . Par conséquent, seules les informations nouvelles non publiées seront présentées ici. La section 5.3, consacrée à la modélisation numérique, présente tout d'abord la configuration du domaine de calcul et les conditions limites et initiales associées. Les équations gouvernantes et la loi de comportement élasto-viscoplastique sont ensuite présentées. La modélisation tiendra compte du caractère rhéofluidifiant du fluide expérimental. Les nombres adimensionnels caractéristiques de l'écoulement seront Chapitre 5 : Etude expérimentale et numérique de l'écoulement d'un fluide élasto-viscoplastique autour d'une plaque perpendiculaire à l'écoulement 114 introduits. La méthode numérique MEFPIL, précédemment détaillée dans le chapitre 3, fera l'objet d'un bref rappel. La section 5.4 compare les résultats numériques avec les données expérimentales obtenues par Ouattara et al [5] complétées par des données non encore publiées. Les comparaisons portent essentiellement sur la force de traînée à la fois en régime permanent et de relaxation ainsi que sur l'influence de l'état initial de contrainte. Les champs de contraintes et cinématiques associés et déterminés numériquement sont également présentés et discutés. Chapitre 5 : Etude expérimentale et numérique de l'écoulement d'un fluide élasto-viscoplastique autour d'une plaque perpendiculaire à l'écoulement Les gels aqueux de Carbopol ont été choisis comme fluide à seuil modèle dont les propriétés élasto-viscoplastique ont largement été étudiées. Ils ont l'avantage d'être transparents et non thixotropes [123] [83] [124] [125] avec une microstructure favorable à un comportement élongationnel très peu prononcé [126] [127] [128]. En écoulement, ces gels possèdent des contraintes normales [129] [98] [130].
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 54654748 Figure 46: Evolution de la contrainte de cisaillement en fonction du gradient de cisaillement en régime permanent

Chapitre 5 :Figure 49 :

 549 Figure 49: Evolution de la contrainte résiduelle 𝑌 0 (Pa) en fonction du taux de cisaillement appliquée en régime de relaxation Les équations (2) et (3) proposent des relations empiriques reliant l'inverse des temps de relaxation des matériaux 𝐾 1 et 𝐾 2 (s -1 ) aux gradients de cisaillement 𝛾̇ . Ces évolutions sont montrées sur la Figure 50.
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 52 Etude expérimentale et numérique de l'écoulement d'un fluide élasto-viscoplastique autour d'une plaque perpendiculaire à l'écoulement 120 Banc expérimental de mesure de forces de traînée Le dispositif expérimental de mesure de la force de traînée est représenté par la Figure 51. La plaque est déplacée, dans un canal à surface libre contenant le fluide à seuil, par un charriot mobile piloté en vitesse. La plaque est instrumentée avec des capteurs de mesure de force de traînée et de portance. Les détails techniques ont été présentés dans les articles de Ouattara et al. [15] [14] [96].

Figure 50 : 1 . 1 . 1 . 5 :

 501115 Figure 50: Evolution du temps de relaxation du gel en fonction du gradient de cisaillement 1.1.1.

Figure 51 :Figure 52 : 5 . 3 . Formulation du problème et méthode numérique 5 . 3 . 1 .

 515253531 Figure 51: Dispositif expérimental pour un écoulement perpendiculaire à une plaque La Figure 52 représente l'évolution de la force de traînée mesurée en fonction du temps lorsqu'un créneau de vitesse est imposé. Trois phases d'écoulements sont observées : le démarrage, le régime permanent et le régime de relaxation de la force de traînée lorsque la vitesse de déplacement est ramenée à zéro. Lors de cette dernière phase, la force de traînée diminue progressivement pour tendre vers une force résiduelle non nulle.

Figure 53 :••

 53 Figure 53: Domaine d'étude et conditions aux limites

1 2 ( 8 )Chapitre 5 :

 1285 Sous forme tensorielle, le déviateur du tenseur des contraintes τ avec composantes τ ij peut-être exprimé en fonction de η ′ , du module élastique G et du tenseur des taux de déformation D, ayant pour composantes D ij . Dans ce modèle, D est la résultante d'une contribution visqueuse D v et d'une contribution élastique D e . Lorsque les contraintes de cisaillement sont supérieures à la contrainte seuil, elles s'expriment à l'aide du produit de la viscosité apparente η ′ avec le tenseur du taux de déformation visqueuse D v . D'après le modèle d'Herschel-Bulkley, la viscosité apparente s'exprime à l'aide de l'indice de rhéofluidification n, de la consistance K, de la contrainte seuil τ 0 et du second invariant du tenseur des taux de déformation D v II . La discrétisation des équations 4 à 6 a été présentée dans le chapitre 2. L'adimensionalisation de l'équation de Stokes, de la loi de comportement et des conditions aux limites montre que l'écoulement considéré peut-être décrit à l'aide de plusieurs nombres sans dimension. Ils permettent d'évaluer l'influence des différents paramètres physiques mis en jeu. Le nombre d'Oldroyd (équation 9), appelé aussi nombre de Bingham dans la littérature, est défini comme le rapport entre les effets plastiques et visqueux [100] : Weissenberg, (équation 10) est défini comme le rapport entre les effets élastiques et visqueux comme suit : Etude expérimentale et numérique de l'écoulement d'un fluide élasto-viscoplastique autour d'une plaque perpendiculaire à l'écoulement 125 Dans cette étude, les nombres d'Oldroyd varient de 5,5 à 178. Les nombres de Weissenberg sont compris entre 10 -8 et 10 -4 . L'indice de rhéofluidification a été maintenu constant et fixé à n=0,4, valeur identique à celle du fluide utilisé dans les expériences. En somme, l'étude se situe dans le domaine de forts effets plastiques, de faibles effets élastiques avec une rhéofluidification relativement importante.
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 51071 Etude expérimentale et numérique de l'écoulement d'un fluide élasto-viscoplastique autour d'une plaque perpendiculaire à l'écoulement 126 La Figure 54 représente l'évolution des coefficients de traînée numériques en cercles vides et expérimentaux en disques noirs en fonction du nombre d'Oldroyd. On observe que le coefficient de traînée diminue pour tendre vers un plateau lorsque Od tend vers les grandes valeurs. La force de traînée est alors gouvernée uniquement par la valeur du seuil d'écoulement et la géométrie de la plaque. Lorsque Od tend vers les faibles valeurs, les forces de frottement visqueuse augmentent entraînant une augmentation de la force de traînée. Merkak et al. [105] ont montré que l'évolution du coefficient de traînée en fonction du nombre d'Oldroyd peut être décrite par l'équation suivante. 𝐶 𝑑,∞ * représente le coefficient de traînée lorsque les vitesses deviennent petites et s'annulent ne dépendant alors que la contrainte seuil et de la géométrie de l'obstacle. Le terme β Od m représente la contribution visqueuse sur le coefficient de traînée. Les valeurs expérimentales ont été calées en fixant 𝑚 = Les valeurs numériques ont été calées en laissant libre la valeur de m. Les valeurs expérimentales et numériques de 𝐶 𝑑,∞ * de 𝛽 et de m sont regroupées dans le tableau 2.
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 554 Figure 54: Evolution du coefficient de traînée en régime permanent en fonction du nombre d'Oldroyd
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 55555 Figure 55: Evolution du coefficient de traînée aux différents régimes permanents et de relaxations en fonction du temps adimensionnel t* à Od = 11,5

Figure 56 :Chapitre 5 : 133 5. 4 . 3 . 2 .Figure 57 :

 56513343257 Figure 56: Evolution du coefficient de traînée en fonction de Od pour le régime de relaxation (a) et pour le régime permanent (b)

2 Figure 58 :

 258 Figure 58: Champs du deuxième invariant du tenseur déviatoire des contraintes au voisinage de la plaque

Figure 59 :Figure 60 :Chapitre 5 :

 59605 Figure 59: Zones seuillées à l'amont et à l'aval d'une plaque circulaire. Od=11 calculé sur le diamètre de la plaque. Fluide : gel de Carbopol[START_REF] Jossic | Flow of a yield stress fluid perpendicular to a disc[END_REF] 

  montre la vitesse axiale à l'amont et à l'aval d'une plaque circulaire [12] pour deux nombres d'Oldroyd ( calculés sur le diamètre de la plaque). La Figure 62 montre une similitude de comportement entre les prédictions numériques et les résultats expérimentaux.

Figure 61 :

 61 Figure 61: Vitesse axiale adimensionnalisée pour une plaque circulaire perpendiculaire à l'écoulement d'un fluide à seuil à deux nombres d'Oldroyd[START_REF] Li | Real-time monitoring and FEMLIP simulation of a rainfall-induced rockslide[END_REF]. Fluide : gel de Carbopol[START_REF] Jossic | Flow of a yield stress fluid perpendicular to a disc[END_REF] 

Figure 62 :Chapitre 5 :Figure 63 :

 62563 Figure 62: Vitesse axiale adimensionnalisée, Od = 11,5 (à gauche) et Od=115 (à droite)

Chapitre 5 : 2 Figure 65 : 1 -Chapitre 5 :Figure 66 : 5 -Chapitre 5 : 5 . 5 . 6 . 1 .

 52651566555561 Figure 65: Champs adimensionnel de la composante des contraintes normales (𝜏 * 𝑋 1 𝑋 1 et 𝜏 * 𝑋 2 𝑋 2 ) en régime permanent et en fin de relaxation pour Od=11,5 La figure 66 montre que le comportement élongationnel des gels de Carbopol est défini à partir de la première différence de contrainte normale 𝑁1 * = 𝜏 𝑋 1 𝑋 1 -𝜏 𝑋 2 𝑋 2 𝜏 0
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 6 Conclusions générales et perspectives 151 l'écoulement. Une loi de type fluide à seuil pourrait être utilisée avec la MEFPIL et la comparaison entre les 2 approches serait très pertinente en fonction de la granularité, des vitesses d'écoulement mises en oeuvre et des variables d'intérêt. -Il serait également enrichissant pour la recherche applicative d'optimisation de forme pour améliorer les procédés de mélange, de mener une confrontation des résultats expérimentaux sur les écoulements de fluides à seuil dans des cas de base de la mécanique des fluides établis au Laboratoire Rhéologie et Procédés. Leurs intérêts sont d'être bien contrôlés du point de vue comportement en volume et aux interfaces :écoulement non inertiel d'un fluide à seuil autour d'une sphère présentant des propriétés interfaciales différentes : adhérence ou glissement[START_REF] Ahonguio | Influence of surface properties on the flow of a yield stress fluid around spheres[END_REF] 

  

  Elle est basée sur une dissociation cinématique entre les points matériels et les noeuds de calcul du maillage eulérien en éléments finis. Pour une configuration matérielle donnée, les points matériels sont utilisés comme points d'intégration sur un élément.La résolution de l'équation d'équilibre aux noeuds donne le champ de vitesse. Les points matériels sont alors déplacés à travers le maillage fixe jusqu'à une nouvelle configuration. A la fin de chaque étape de calcul, la position des points matériels et les variables d'histoires (pression, contraintes, déformation, etc.) sont mises à jour sur la base du champ de vitesse et au moyen de fonctions de forme. Ainsi, toutes les propriétés du matériau, y compris les variables internes, sont stockées et sont suivies avec précision pendant le processus d'advection des particules. En effet, grâce à la dissociation entre les noeuds du maillage et les points de matériau, cette approche
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sont limités à de faibles effets élastiques. Un nouveau modèle couplant à la fois les modèles viscoplastiques Bingham et viscoélastique Oldroyd pour écoulements de fluides élasto-viscoplastiques a été présenté par Saramito. Bien que ce modèle soit simple, néanmoins, il n'introduit pas explicitement la rhéofluidification et n'a été utilisé que pour simuler des écoulements viscosimétriques simples

[START_REF] Mitsoulis | Numerical simulations of complex yield-stress fluid flows[END_REF]

. Fraggedakis et al

[START_REF] Fraggedakis | Yielding the yield-stress analysis: a study focused on the effects of elasticity on the settling of a single spherical particle in simple yield-stress fluids[END_REF] 

ont introduit le durcissement isotopique cinématique (IKH) de Dimitriou et al

[START_REF] Dimitriou | A comprehensive constitutive law for waxy crude oil: a thixotropic yield stress fluid[END_REF]

. En couplant le modèle SHR HB et IKH, les auteurs ont conclu que la vitesse prédite et le champ vitesse d'écoulement sont très proches des valeurs expérimentales. En revanche la difficulté est que les zones seuillées et non seuillées prédites à partir du critère de Von Mises, s'écartent de celles déterminées expérimentalement

[START_REF] Fraggedakis | Yielding the yield-stress analysis: a study focused on the effects of elasticity on the settling of a single spherical particle in simple yield-stress fluids[END_REF]

.

En résumé, il convient de mentionner que deux familles de méthodes : (i) l'approche dite de régularisation et (ii) la méthode du Lagrangien augmenté ont été principalement suggérées par la littérature au cours des 40 dernières années

[START_REF] Saramito | Progress in numerical simulation of yield stress fluid flows[END_REF]

. Les manquements et les limites de ces méthodes, positionnent la Méthode des éléments Finis aux Points d'Intégration Lagrangiennes comme étant une approche originale capable de modéliser le comportement réel des fluides EVP sans recours à la régularisation. Dans l'objectif d'une compréhension approfondie et significative de ces écoulements, il est essentiel d'introduire la transition solide liquide des fluides élasto-viscoplastiques dans la modélisation numérique en particulier dans les écoulements complexes. Pour ce faire, la Méthode des Éléments Finis avec Points d'Intégration Lagrangiens (MEFPIL) est mise en oeuvre. La MEFPIL [41] [42] [43],[44] est issue de la méthode Particle In Cell [41]. bénéficie d'un double avantage : (1) capacité d'une MEF eulérienne (le maillage est maintenu fixe) pour supporter les grandes transformations, et (2) d'une MEF lagrangienne pour suivre les variables d'histoires. De plus, toutes les variations des contraintes et déformations élastiques utiles pour mieux appréhender le comportement des fluides EVP sont capturées au moyen d'une discrétisation temporelle effectuée avec un pas de temps élastique noté 𝛥𝑇𝑒, différent du pas de temps d'advection 𝛥𝑇 associé la position des particules.

  or the biviscosity model or the Williamson's model. The regularization consists in defining a very large viscosity below the yield stress, allowing to know the stress tensor. It is shown that heat transfer or the mean Nusselt number Nu ̅̅̅̅ 1 decreases with

	increasing 𝐵𝑛 until a critical Bingham number above which any convection does not
	occur. Then, thermal conduction becomes the dominating mode of heat transfer and
	(Nu ̅̅̅̅ 1 ) = 1. More recently, other viscoplastic models have been numerically
	investigated in Aghighi et al. [58] and Li et al. [6]. They have studied inelastic Casson,
	respectively Herschel-Bulkley models by using the Papanastasiou regularization. They

  provides the time discretization of the convective Jaumann derivative 𝜏̇𝑖 𝑗 with the elastic time step ∆𝑡𝑒. This time step is chosen to capture the elastic stresses variations.

	𝜏̇𝑖 𝑗	𝑡+∆𝑡𝑒 =	𝜏 𝑖𝑗 𝑡+∆𝑡𝑒 -𝜏 𝑖𝑗 𝑡 ∆𝑡𝑒	+ 𝜏 𝑖𝑗 𝑡 * 𝑊 𝑖𝑗 𝑡 -𝑊 𝑖𝑗 𝑡 * 𝜏 𝑖𝑗 𝑡

Table 1 :

 1 Simulation results for different element sizes for Ra=10 4 at Pr = 0.71

	Element	Number of elements	𝑈 max	𝑉 max	Numax	Nu ̅̅̅̅
	size					
	0.031	33x33	0.2739	0.2827	2.4625	2.1236
	0.015	65x65	0.2746	0.2837	2.4643	2.1392
	0.012	81x81	0.2753	0.2846	2.4654	2.1493
	0.0078	128x128	0.2759	0.2857	2.4671	2.1534

Table 2 :

 2 

	2.149	2.154	2.158	2.154

Comparison of Nu ̅̅̅̅ of present simulation results for a Newtonian fluid with the published ones for 𝑃𝑟 = 0.71 and 𝑅𝑎 = 10 4

Present study Turan et al.

[START_REF] Turan | Laminar Rayleigh-Bénard convection of yield stress fluids in a square enclosure[END_REF] 

Ouertatani et al.

[START_REF] Ouertatani | Numerical simulation of two-dimensional Rayleigh-Bénard convection in an enclosure[END_REF] 

Selamat et al.

[START_REF] Evren-Selamet | Simulation of Rayleigh-Benard convection in a flipped L-shaped enclosure[END_REF] 

  Figure 18: adimensionless isovalues of the shear stress 𝜏 𝑋 1 𝑋 2 component for Bn = 1, Wi=0.4 (left) and Wi=0.8 (right)
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: Isovalues of the first normal stress difference (N1) for Bn = 1, Wi=0.4 (left) and Wi=0.

8 (right) 

Convection de Rayleigh Bénard pour un fluide élasto-viscoplastique : comparaison modélisation numérique et expérience

  Convection de Rayleigh Bénard pour un fluide élastoviscoplastique : comparaison modélisation numérique et expérience 59 limites sur les transferts convectifs. Les auteurs de ces études ont mis en relation l'apparition de la convection avec l'intensité du seuil d'écoulement ou du seuil de glissement et la différence de température avant d'en fournir une interprétation physique. Ainsi, ils montrent que le paramètre déterminant du démarrage de la convection est le nombre critique 𝑌 𝑐 qui représente le rapport entre les effets de contrainte seuil et les effets de poussée d'Archimède. Par ailleurs, l'étude des panaches thermiques dans des gels de Carbopol réalisée par Davaille et al. [52] apermis de montrer des valeurs de 𝑌 𝑐 proches des études[START_REF] Darbouli | Rayleigh-Bénard convection for viscoplastic fluids[END_REF] et[START_REF] Métivier | Origin of the onset of Rayleigh-Bénard convection in a concentrated suspension of microgels with a yield stress behavior[END_REF]. L'étude proposée par Kébiche et al.[START_REF] Kebiche | Experimental investigation of the Rayleigh-Bénard convection in a yield stress fluid[END_REF] met en évidence des valeurs de 𝑌 𝑐 significativement différentes des études[START_REF] Darbouli | Rayleigh-Bénard convection for viscoplastic fluids[END_REF] [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and morphology[END_REF]. Ceci peut s'expliquer par des conditions aux limites très

	Chapitre 3 : Convection de Rayleigh Bénard pour un fluide élasto-
	viscoplastique : comparaison modélisation numérique et expérience
	Résumé :
	Cette étude confronte les observations expérimentales sur la convection de Rayleigh-La convection de Rayleigh-Bénard (RBC) due à l'action d'un fluide soumis à une
	Bénard obtenues avec un fluide à seuil modèle, à savoir un gel élasto-viscoplastique, différence de température entre deux plaques horizontales a fait l'objet de très Dans ce chapitre, nous proposons de modéliser la convection de Rayleigh-Bénard
	avec des résultats obtenus par simulation numérique. Du point de vue numérique, les nombreuses études dans le cas des fluides newtoniens [76] [77] [78] [79] [80]. dans une cavité carrée d'un fluide élasto-viscoplastique comme les gels Carbopol et
	équations fondamentales incluant une loi de comportement élasto-viscoplastique, ont Toutefois, l'analyse de la littérature montre que relativement peu d'études ont été de comparer les résultats obtenus aux données expérimentales disponibles et
	été résolues par la Méthode des Eléments Finis avec Points d'Intégrations consacrées aux fluides non newtoniens. Or, parmi ces derniers, les fluides à seuil contrôlées telles que celles établies par Darbouli et al. [48] et Métivier et al. [54].
	Lagrangiennes (MEFPIL). d'écoulement représentent une classe de grand intérêt d'un point de vue fondamental L'influence des conditions d'adhérence et de glissement sur la convection et
	L'influence des conditions aux limites d'adhérence et de glissement aux parois sur la et applicatif. Ainsi, au cours des dernières décennies, la convection de Rayleigh-notamment sur le critère d'apparition sera étudiée. Les équations fondamentales
	convection de Rayleigh-Bénard a été modélisée avec la MEFPIL. L'analyse montre un Bénard et ses critères d'apparition sur les fluides à seuil d'écoulement commence à seront résolues par la Méthode des Eléments Finis avec Points d'Intégration
	sont questionnables sur plusieurs points. D'abord, elles montrent des ruptures de
	pente typiques de la présence du glissement [83]. Ensuite, les rugosités utilisées par
	les auteurs (environ 10 micromètres) sont trop faibles pour éliminer totalement le
	glissement [83]. Du point de vue expérimental, dans la cellule de Rayleigh-Bénard, les
	conditions aux interfaces telles que le glissement aux parois n'est pas renseigné.
	57

1 

. The unyielded zones decrease in size since stresses can reach the yield stress, thus favouring the increase of yielded regions. Finally, our results indicate both significant elongational and shear effects of the same order of magnitude.

Ce chapitre a fait l'objet d'une soumission dans le Journal. Non-Newtonian Fluid Mechanic

Chapitre 3 : Convection de Rayleigh Bénard pour un fluide élastoviscoplastique : comparaison modélisation numérique et expérience 56 CHAPITRE 3 : bon accord entre les simulations et les résultats expérimentaux sur l'intensité des transferts et le critère d'apparition de la convection. Le glissement promeut l'apparition de la convection. Les champs cinématiques, thermiques et dynamiques ainsi que les régions seuillées et non seuillées dans la cavité, sont présentés et discutés pour les cas d'adhérence et de glissement étudiés. Mots-clés : Convection de Rayleigh-Bénard, Comportement élasto-viscoplastique, simulation numérique, glissement 3.1. Introduction susciter l'intérêt. Comme nous l'avons montré au chapitre précédent, une grande majorité des études sont numériques et théoriques. En outre, elles ne considèrent que des fluides à seuil inélastiques, alors que la plupart des matériaux présentent un comportement élasto-viscoplastique. Dans ce chapitre, la prise en compte du comportement élastique est proposée dans le cas de la Convection de Rayleigh-Bénard. Pour ce faire, un fluide élasto-viscoplastique soumis à un gradient de température vertical est étudié numériquement. Cette étude a pour objet d'évaluer l'influence de la contrainte seuil et de l'élasticité sur le démarrage de la convection, ainsi que sur les transferts thermiques. Au-delà de cet objectif, ce chapitre a pour but de confronter les prédictions numériques mettant en oeuvre un fluide élasto-viscoplastique avec les observations expérimentales obtenues avec un fluide à seuil modèle.

Les rares études expérimentales publiées ont été menées avec des fluides à seuil considérés comme les gels aqueux de Carbopol. Leurs caractéristiques font que ces fluides sont reconnus comme étant des fluides élasto-viscoplastiques non thixotropes

[START_REF] Piau | Carbopol gels: Elastoviscoplastic and slippery glasses made of individual swollen sponges[END_REF]

,

[START_REF] Dimitriou | Describing and prescribing the constitutive response of yield stress fluids using large amplitude oscillatory shear stress (LAOStress)[END_REF]

. Ces matériaux sont connus pour présenter un glissement au niveau de parois lisses non traitées chimiquement

[START_REF] Barnes | A review of the slip (wall depletk)n) of polymer solutions, emulsionsand particle suspensionsin viscometers:its cause,character, and cure[END_REF]

, ceci étant dû au caractère plastique du fluide et de sa microstructure. Le glissement prend une intensité variable selon les conditions qui règnent à l'interface

[START_REF] Cloitre | A review on wall slip in high solid dispersions[END_REF]

,

[START_REF] Magnin | Cone-and-plate rheometry of yield stress fluids. Study of an aqueous gel[END_REF]

. Darbouli et al.

[START_REF] Darbouli | Rayleigh-Bénard convection for viscoplastic fluids[END_REF] 

et Métivier et al.

[START_REF] Métivier | Origin of the onset of Rayleigh-Bénard convection in a concentrated suspension of microgels with a yield stress behavior[END_REF] 

ont effectué des expériences pour étudier l'apparition de la convection de Rayleigh-Bénard dans des gels de Carbopol dans une cavité cylindrique avec des conditions aux parois contrôlées. Leurs expériences ont permis, d'une part, de détecter le début de la convection dans la cellule et, d'autre part, de démontrer l'effet des conditions aux Chapitre 3 : différentes, à savoir que dans

[START_REF] Kebiche | Experimental investigation of the Rayleigh-Bénard convection in a yield stress fluid[END_REF]

, toutes les parois sont isolantes et que la présence de glissement aux parois n'a pas été mesurée. En effet, Darbouli et al.

[START_REF] Darbouli | Rayleigh-Bénard convection for viscoplastic fluids[END_REF] 

ont montré que l'apparition de la convection dépend de l'adhérence ou du glissement du fluide à seuil à la paroi. Métivier et Magnin,

[START_REF] Métivier | The effect of wall slip on the stability of the Rayleigh-Bénard Poiseuille flow of viscoplastic fluids[END_REF] 

ont montré théoriquement l'influence du glissement dans le cas de l'écoulement de Rayleigh Bénard Poiseuille d'un fluide de Bingham. Le glissement ou l'adhérence du matériau sur une surface peut être identifié par rhéométrie. Différents niveaux de glissement existent. Le glissement peut être très intense sur des surfaces très lisses souvent hydrophobes telles que celles en PMMA fréquemment utilisées pour les visualisations. Un moyen de rendre adhérant les gels de Carbopol sur le PMMA est proposé par Métivier et al [85]. En ce qui concerne la comparaison numérique et expérimentale de la convection de Rayleigh-Bénard avec des gels de Carbopol dans une cavité carrée, à l'heure actuelle, seuls Hassan et al. [86] ont proposé un cadre d'analyse. Du point de vue numérique, les auteurs ont utilisé une modélisation classique avec le logiciel Fluent qui travaille en volumes finis et un modèle purement viscoplastique d'Herschel-Bulkley régularisé par la méthode de Papanastasiou [19]. Toutefois, les courbes de rhéométrie Lagrangiens (MEFPIL), méthode plus adaptée au traitement des écoulements de fluides élasto-viscoplastiques. Le chapitre est construit comme suit :

. Théorie des instabilités de RB Le

  problème considéré est schématisé dans la Figure 20. Une cavité carrée de dimension H et bidimensionnelle est étudiée. Les parois inférieures et supérieures sont à températures constantes T H et T C respectivement de telle sorte que T C soit inférieure à T H . Les parois latérales sont considérées comme étant adiabatiques, c'est-à-dire que le flux thermique à travers ces parois est nul. La vitesse normale aux parois est nulle dans tous les cas étudiés.
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	3.2Pour les conditions aux limites, nous avons considéré deux cas :
	-L'adhérence aux parois avec u 1 = u 2 = 0,
	-Le glissement parfait aux parois avec 𝜎 12 = 0 .
	A l'état initial, le fluide est considéré comme étant au repos de sorte que u 1 = u 2 = 0 et
	les champs de contrainte et de déformation sont nuls dans tout le domaine de calcul.
	61

• La dernière partie est dédiée à la comparaison des résultats expérimentaux et numériques, à travers notamment les variations des transferts thermiques, via le nombre de Nusselt, en fonction de l'inverse du nombre seuil 1/𝑌. Les valeurs critiques de 1/𝑌 qui caractérisent le passage du régime conductif au régime convectif sont présentées et discutées à la fois dans le cas adhérent et le cas de glissement parfait. Les champs cinématiques, de contrainte, de déformation et thermiques ont été finement analysés.

2.2. Loi de comportement

  

	∂T x j	et λ	∂ 2 T ∂x j
	Le modèle élasto-viscoplastique utilisé dans cette étude a été présenté en détail dans
	le chapitre précédent.		
	Le modèle de Maxwell est choisi pour rendre compte du comportement élastique et
	visqueux du fluide. Il consiste en une association d'un solide élastique et d'un fluide
	visqueux. Dans ce modèle, la viscosité est décrite par le modèle Herschel-Bulkley qui
	tient compte à la fois de la contrainte seuil et du comportement rhéofluidifiant. Le
	modèle s'écrit :		

Avec τ ij , p et u qui représentent respectivement la composante 𝑖, 𝑗 du tenseur déviateur des contraintes, la pression et le vecteur de vitesse. Les termes u j 2 correspondent respectivement aux termes de convection et de diffusion thermique. λ est la conductivité thermique, C p est la capacité thermique massique, ρ la masse volumique, β le coefficient d'expansion thermique, δ ij le symbole de Kronecker et g l'accélération due à la gravité. ΔT = T ref -T c , avec T ref la température de référence qui est égale à la température moyenne des parois horizontales.

3.

  La MEFPIL est basée sur la méthode des éléments finis dans laquelle nous avons une approche continue et une discrétisation de l'ensemble du domaine. Elle est issue de la méthode Particle-In-Cell (PIC)[START_REF] Prime | Unified Model for Geomaterial Solid/Fluid States and the Transition in Between[END_REF] [41]. Cette méthode a pour spécificité la double discrétisation du domaine contrairement à la MEF où nous avons une répartition spatiale unique des éléments. Dans la MEFPIL, le domaine est divisé en éléments afin d'obtenir les équations nodales avec un maillage fixe. Ceci permet de garder un processus d'intégration pour la convergence du calcul, point essentiel pour tenir compte des grandes déformations du matériau. De plus, le matériau est discrétisé en Les données expérimentales sont celles établies par Darbouli dans sa thèse ainsi que dans les articles de Darbouli et al. [48] et Métivier et al. [54]. Les aspects les plus importants sont résumés ci-après. La cavité de Rayleigh-Bénard est une cellule cylindrique de diamètre 179 𝑚𝑚. La distance entre la paroi inférieure et la paroi supérieure vaut d =17 𝑚𝑚. Le flux de chaleur total 𝑄 𝑡 de la paroi inférieure est contrôlé au moyen d'une plaque chauffante. La température de la paroi supérieure est contrôlée par une circulation d'eau froide. Le début de la convection est déterminé à l'aide de la méthode de Schmid-Milverton qui considère que, dans le régime conductif, le flux de chaleur, Q t , est proportionnel à la différence de température 𝛥𝑇 (voir Figure

	Chapitre 3 : Convection de Rayleigh Bénard pour un fluide élasto-Chapitre 3 : Convection de Rayleigh Bénard pour un fluide élasto-
	viscoplastique : comparaison modélisation numérique et expérience viscoplastique : comparaison modélisation numérique et expérience
	3.3. Méthode numérique 3.4. Conditions expérimentales
	τ̇i j	t+∆te =	τ ij t+∆te -τ ij t ∆te	+ τ ij t * W ij t -W ij t * τ ij
				65 66

L'indice de rhéofluidification 𝑛 est également un paramètre caractéristique du problème. points matériels. Il faut également noter que dans la MEPFIL, il n'y a pas d'interaction fixe entre les points de calculs aux noeuds et les points matériels. Ces derniers ne représentent que des supports numériques transportant l'information matérielle lors de l'advection. Ce processus permet d'évaluer les différentes variables telles que la déformation, les contraintes, la vitesse, etc. L'équation

[START_REF] Ouattara | Flow of a Newtonian fluid and a yield stress fluid around a plate inclined at 45° in interaction with a wall[END_REF] 

fournit la discrétisation temporelle de la dérivée convective τ̇i j avec ∆te le pas de temps élastique. Ce pas de temps est choisi pour capturer les variations de contraintes élastiques.

t (14)

W ij représente le tenseur rotationnel qui correspond à la partie antisymétrique du tenseur des taux de déformation. A la fin de l'incrément, toutes les variables (contrainte, déformation, pression…) avec le pas de temps t+Δt sont calculées. En pratique, dans tous les résultats présentés dans ce chapitre, nous avons Δt = Δte afin d'avoir à la fois une stabilité numérique et une bonne précision

[START_REF] Moresi | A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials[END_REF]

. L'incrément Δte est lui choisi comme étant égal au plus à 1/10 ème du temps de relaxation viscoélastique du matériau pour des raisons de précision dans les résultats

[START_REF] Moresi | A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials[END_REF]

.

  Leurs variations en fonction de la température ont été prises en compte. Dans le cas du glissement, la gamme de ΔT étudiée s'étend de 17.3 à 39.4 𝐾. La gamme des nombres adimensionnels associés est 0.135 < 𝑂𝑑 < 0.195, 1037 < 𝑃𝑟 < 1740, 4145 < 𝑅𝑎 < 29705, 0.12 < 𝑊𝑖 < 0.27 et 𝑛 = 0.46. Dans le cas adhérent, la gamme de ΔT étudiée Dans un premier temps, nous comparons les résultats numériques et expérimentaux sur les transferts thermiques avec notamment l'évaluation du nombre de Nusselt, 𝑁𝑢, en fonction du nombre de seuil, 𝑌, dans le cas d'adhérence aux parois et dans le cas de glissement aux parois. La valeur critique 𝑌 𝐶 correspondant au passage du mode de transfert par conduction au mode de transfert par convection sera ainsi déterminée. Dans une deuxième étape, l'influence des conditions aux limites sur les champs cinématiques et thermiques est examinée, ainsi que le champ de contrainte et les zones seuillées et non seuillées. 𝑌 𝑐 = 40 et 1/𝑌 𝑐 = 80 respectivement.L'effet du glissement peut être relativement important avec 100% sur le critère d'apparition. Ceci va dans le sens de l'étude théorique faite par Métivier et Magnin[START_REF] Métivier | The effect of wall slip on the stability of the Rayleigh-Bénard Poiseuille flow of viscoplastic fluids[END_REF] dans le cas de l'écoulement de Rayleigh-Bénard Poiseuille. On constate que la prévision numérique est en bon accord avec les résultats expérimentaux. Dans le cas du glissement, les prévisions numériques donnent des valeurs un peu plus élevées.

	Chapitre 3 : Convection de Rayleigh Bénard pour un fluide élasto-	
	viscoplastique : comparaison modélisation numérique et expérience	
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s -1 , la contrainte est 3 fois plus faible qu'avec une surface en PMMA traité. Notons que dans le cas du PMMA traité, on trouve les mêmes résultats qu'avec des surfaces rugueuses pour éliminer le glissement (cercles blancs) (Figure
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). Ces évolutions de la contrainte dans le cas du glissement et les vitesses de glissement ont été théorisées par Seth et al.

[START_REF] Seth | Influence of short-range forces on wall-slip in microgel pastes[END_REF]

. Ce glissement important observé expérimentalement est modélisé par un glissement parfait dans la simulation numérique. Pour les paramètres thermo-physiques du gel de Carbopol (β, λ, ρ, Cp, α), ils sont essentiellement ceux du solvant, c'est-à-dire de l'eau pure car la concentration en Carbopol est très faible 0,043 %𝑤𝑡. s'étend de 16.2 à 53.2 𝐾. La gamme des nombres sans dimension associés est 0,12 < 𝑂𝑑 < 0,21, 937 < 𝑃𝑟 < 1977, 2559 < 𝑅𝑎 < 45973, 0.10 < 𝑊𝑖 < 0.32.et 𝑛 = 0,46.

Critère d'apparition et intensité de la convection

La Figure
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montre les résultats obtenus dans les deux cas de conditions aux limites d'adhérence et de glissement aux parois. Pour chaque situation, les résultats numériques sont présentés. Le mode de transfert thermique par conduction est caractérisé par 𝑁𝑢=1. Le passage au mode de transfert thermique convectif est caractérisé par l'élévation du nombre de 𝑁𝑢. Le passage de la conduction à la convection est caractérisé par une valeur critique 1/𝑌 𝑐 correspondant au changement de pente. On observe que le glissement aux parois favorise la convection. Pour une même valeur de 1/𝑌, le nombre de Nusselt est plus élevé pour le cas avec glissement aux parois et la convection apparait pour des valeurs de 1/𝑌 plus faible. Pour un même seuil, il faut des forces de flottabilités plus petites pour déclencher la convection. Les valeurs critiques du paramètre de contrôle 1/𝑌 numériques sont proches de celles de Darbouli et al [48]. Expérimentalement, les valeurs critiques pour le cas avec glissement et sans glissement sont estimées à 1/Cela provient du fait que le glissement parfait supposé dans les calculs surestime les effets du glissement en favorisant davantage la convection. De plus, les effets 3D, la différence de géométrie, une cavité carrée pour la simulation numérique et une cavité

  En outre, on remarque que pour les deux conditions aux limites, ce sont les contraintes normales qui sont dominantes sur les contraintes de cisaillement. On pouvait s'attendre à ce résultat dans le cas d'adhérence aux parois puisque le régime est principalement conductif et les amplitudes de vitesse sont très faibles. Par contre, cela est plus surprenant dans le cas du glissement parfait puisque la convection s'est développée avec 𝑁𝑢 = 1.69.

	Cette valeur du nombre de Nusselt indique que le transfert par conduction est toujours
	dominant par rapport au transfert par convection. Ainsi, l'annulation des contraintes de

montre la répartition des contraintes de cisaillement pour les deux conditions aux limites étudiées. On retrouve, pour le cas glissant, une contrainte de cisaillement nulle sur toutes les parois de la cavité puisque le glissement est supposé parfait. Comme on pouvait s'y attendre, les zones de cisaillement important sont obtenues au niveau des parois dans le cas d'adhérence. Néanmoins, comme la convection n'est pas développée dans ce cas, le déplacement de la matière est moindre que dans le cas de glissement parfait. Ainsi, le cisaillement est plus faible dans le cas adhérent. Par ailleurs, on remarque que la structure de l'écoulement est très différente pour les deux types de conditions aux limites. cisaillement aux parois avec un régime conductif dominant engendrent des contraintes normales plus importantes dans tout le volume.

  Avec 𝑌 0 la contrainte résiduelle en fin de relaxation. Les paramètres de la loi de relaxation de la contrainte de cisaillement sont donnés dans le tableau 1 ci-après pour différents gradients de cisaillement. La Figure48bmontre une bonne corrélation entre les résultats expérimentaux et les calages avec l'équation 1.

		-𝑡 1 + 𝛼 2 . 𝑒 𝑡	-𝑡 2 + 𝑌 0 = 𝛼 1 . 𝑒 -𝐾 1 𝑡 + 𝛼 2 . 𝑒 -𝐾 2 𝑡 + 𝑌 0 𝑡	(1)
	Tableau 1: Valeurs des coefficients de l'équation (1) de la contrainte résiduelle de cisaillement en
		régime de relaxation pour différents gradients de cisaillement
	𝜸̇ (s -1 )	𝛂 𝟏		𝛂 𝟐	𝐭 𝟏 (s)	𝐭 𝟐 (s)	𝒀 𝟎 (𝐏𝐚)
	3	64,4		36,3	0,089	1,88	82,5
	1	44,2		30,1	0,185	3,26	86,7
	0,3	39,18	22,9	0,57	14,7	90,6
	0,1	27,2		19,6	0,89	15,7	98,1
	0,03	22,1		15,6	2,46	66	100
	0,01	15,6		13,4	5,08	113	100
	La figure 49 représente l'évolution de la contrainte résiduelle en fonction du taux de
	cisaillement appliqué. Cette figure 49 illustre l'évolution de la contrainte de cisaillement
	en fonction de la contrainte résiduelle en fin de relaxation 𝑌 0 .	

•

  La section (𝐴𝐵) est une surface libre pour se rapprocher des conditions expérimentales, la condition de cisaillement nulle est adoptée : 𝜎 𝑋 1 𝑋 2 = 0 En général, les conditions initiales ont été choisies de telle sorte que les champs de contraintes et de vitesses soient nuls dans l'ensemble du domaine de calcul. Cet état se rapproche de l'état initial nommé « état homogène » défini dans la partie expérimentale. Pour certaines simulations, nous avons imposé un second créneau de vitesse à la suite du premier tel que montré à la figure52. Dans ce créneau de vitesse, l'état initial est celui laissé par la plaque après la relaxation du premier créneau. Ce second état initial se rapproche de celui nommé « état non homogène » dans la partie expérimentale.

  Où f ext , τ ij , p et 𝑢 représentent le vecteur des forces extérieures, les composantes déviatoires du tenseur des contraintes, la pression et le vecteur de vitesses respectivement. X i et X, i désignent respectivement la composante et la dérivée spatiale suivant la direction i du champ X. La loi de comportement EVP utilisée dans cette étude a déjà été présentée en détail dans le chapitre précédent. Elle est sommairement rappelée ici. Il est à noter que ce modèle ne nécessite pas de régularisation du seuil de contrainte et prend en compte les effets élastiques à la fois en dessous et audessus du seuil de contrainte. La loi de comportement est basée sur le modèle de Chapitre 5 : Etude expérimentale et numérique de l'écoulement d'un fluide élasto-viscoplastique autour d'une plaque perpendiculaire à l'écoulement 124 Maxwell, équation 6, dans lequel la viscosité apparente η' est régie par la loi de Herschel-Bulkley, équation 7.

	𝜏̇𝑖 𝑗 2𝐺	+	𝜏 𝑖𝑗 2𝜂 ′ = 𝐷 𝑖𝑗 = 𝐷 𝑣 𝑖𝑗 + 𝐷 𝑒 𝑖𝑗	(6)
	𝜏 𝑖𝑗 = [	𝜏 0 2𝐷 𝑣 𝐼𝐼	+ 𝐾(2𝐷 𝑣 𝐼𝐼 )	𝑛-1 ] 𝐷 𝑣 𝑖𝑗 = 2𝜂 ′ 𝐷 𝑣 𝑖𝑗	(7)
	𝐷 𝑣 𝐼𝐼 = [	1 2	(𝐷 11 2 + 𝐷 22 2 + 2𝐷 12 2 )]

  est une approche numérique qui permet de simuler tout type de comportements de matériau dans un contexte de grande transformation. L'originalité de cette méthode se trouve dans ses capacités à modéliser les matériaux à grande transformation tout en suivant dans l'espace les propriétés du matériau, ainsi que les éventuelles variables internes. C'est une méthode hybride qui couple à la fois une approche eulérienne pour la grille de calcul aux éléments finis décrite par un ensemble de noeuds fixes dans l'espace et d'une approche lagrangienne pour un ensemble de particules mobiles dans la grille de calcul pour la discrétisation matérielle du domaine d'intérêt. Pour une description complète, se référer au chapitre 2.

  Chapitre 5 : Etude expérimentale et numérique de l'écoulement d'un fluide élasto-viscoplastique autour d'une plaque perpendiculaire à l'écoulement 129Pour le premier créneau de vitesse, l'état de contrainte initial est uniformément nul dans tout le domaine de calcul. La force de traînée part de zéro. Quand l'écoulement est stoppé après le régime permanent on observe alors une relaxation de la force de traînée vers un niveau résiduel traduisant une relaxation du champ de contrainte vers des niveaux non nuls.A la fin de cette première relaxation, on impose alors un nouveau créneau de vitesse identique au premier. L'état de contrainte initial n'est alors plus uniformément nul, mais correspond à celui obtenu à l'issue de la première relaxation. De nouveau, lorsque on stoppe la vitesse une seconde relaxation de la force de traînée est observée. On notera que le 1 er régime permanent et 1 er régime de relaxation correspond à « l'état initial homogénéisé du gel ». Le 2 nd régime permanent et 2 nd régime de relaxation correspond à « l'état initial non homogénéisé du gel » (Figure55). Ce protocole permet de mettre en évidence l'influence de l'état de contrainte initiale sur la force de traînée mesurée en régime permanent. Numériquement, deux cas ont été considérés. Le premier correspond à Od = 11,5 et Wi =1,84.10 -2 et le dans le second cas, Od =115,2 et Wi =1,84.10 -3 . Chapitre 5 : Etude expérimentale et numérique de l'écoulement d'un fluide élasto-viscoplastique autour d'une plaque perpendiculaire à l'écoulement 130 permanent et celui après relaxation diminue lorsque la vitesse de cisaillement diminue.En diminuant la vitesse de cisaillement, on diminue la composante visqueuse de la déformation, on a donc un état de contrainte au-delà du seuil qui diminue. A cause de l'effet du seuil, la contrainte se fait uniquement sur la partie au-delà du seuil, puisqu'après le matériau devient élastique, i.e. sans relaxation, par conséquent l'écart entre le niveau de contrainte sous cisaillement et après relaxation diminue lorsque la vitesse de cisaillement diminue. La Figure56montre que le niveau de relaxation est indépendant de Od et donc de la vitesse U0 qui a été imposée. Ceci est aussi une marque que les effets thixotropes sont négligeables. En considérant une évaluation du taux de cisaillement autour de la plaque comme U0/a, pour les essais montrés le taux de cisaillement imposé s'étale entre 10 -4 et 10 -1 s -1 environ. Comme le montre la courbe

				Num
				Exp
				Eq.(12)
				Merifield et al [94]
	Les valeurs successives de Cd* calculées en régime permanent et en relaxation sont
	reportées dans le tableau 3.		
	5.4.2.	Régime de relaxation	
	Tableau 3 : Valeurs de Cd* calculées en régime permanent et de relaxation successifs.
		1 er régime	1 er régime de	2 nd régime	2 nd régime de
		permanent	relaxation	permanent	relaxation
	Expérimentalement comme montré sur la Figure 52, un créneau de vitesse a été imposé. Numériquement, il a été fait de même avec deux créneaux de vitesse Cas 1 : Od=11,5 Wi= 0,018 12,31 11,25 12,52 11,35
	successifs comme montré sur Figure 55. La Figure 55 représente l'évolution du coefficient de traînée calculé numériquement en fonction d'un temps adimensionnel t* Cas 2 : Od=115,2 Wi=0,0018 11,51 11,3 11,93 11,73
	=t/, où  désigne le temps de relaxation du matériau défini par =(k/G)^(1/n). Le
	matériau utilisé dans les mesures de forces de traînée possède un temps de relaxation La Figure 56 montre l'évolution du coefficient de traînée en régime permanent (Fig.
	=1,4.10 -3 s. 56b) et de relaxation (Fig. 56a) en fonction de Od. Les mesures expérimentales sont
	Cette courbe a été obtenue en imposant une vitesse d'écoulement constante jusqu'à comparées avec les résultats numériques. L'analyse de l'ensemble de ces résultats
	ce que le régime permanent soit atteint. Pour ce calcul, l'état de contrainte initial est fait apparaitre les points suivants. Comme on a un fluide EVP, il n'y a pas de relaxation

Dans un premier temps, le régime de relaxation des gels est examiné. Dans un second temps, l'influence de l'état initial sur le coefficient de traînée est analysée. uniformément nul dans tout le domaine de calcul. L'écoulement est ensuite stoppé et on observe alors une première relaxation des contraintes vers une contrainte résiduelle qui se traduit par un plateau pour la force de traînée et donc pour Cd*. sous le seuil, donc les points de matière en-dessous du seuil de contrainte restent dans leur état de contrainte et ceux au-dessus du seuil se relaxent pour revenir vers le seuil. Les résultats montrent que l'écart entre le niveau de force entre le régime d'écoulement en cisaillement simple obtenue en rhéométrie (Figure
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) les niveaux des contraintes de cisaillement sont proches du seuil d'écoulement pour ce domaine de taux de cisaillement. Numériquement, on note une différence entre le régime 1 et 2 pour Od=115 qui n'est pas observée pour Od=11,5. L'effet de l'état initial est observé plus fortement lorsque l'état ce contrainte est proche de celui défini par le critère de Von Mises. Expérimentalement, on enregistre un effet de l'état initial plus accentué par rapport aux résulats numériques. Les écarts entre le régime 1 et 2 sont plus grands expérimentalement. Ces écarts sont plus importants pour les Od grands.

  Chapitre 5 : Etude expérimentale et numérique de l'écoulement d'un fluide élasto-viscoplastique autour d'une plaque perpendiculaire à l'écoulement 𝑋 1 a un niveau plus élévé que 𝜏 * 𝑋 2 𝑋 2 . Lorsque la vitesse est annulée, le matériau relaxe vers un état de contrainte résiduel d'intensité légèrement inférieure à celui du régime permanent.
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	Figure 64 : champs des contraintes de cisaillement en régime permanent 1 : (a) et en régime
	permanent 2 (b) pour Od=11,5																
	La figure 65 montre les répartitions des deux composantes des contraintes normales
	(𝜏 *	𝑋 1 𝑋 1 𝑒𝑡 𝜏 *	𝑋 2 𝑋 2 ) en régime permanent et en fin de relaxation pour Od=11,5. On
	constate que les deux composantes des contraintes normales (𝜏 *	𝑋 1 𝑋 1 et 𝜏 *	𝑋 2 𝑋 2 ) sont
	en valeurs absolues maximales sur la face avant et arrière de la plaque. La contrainte
	𝜏 *	𝑋 1																								
																		140									

CHAPITRE 2: Elastic effects on Rayleigh Bénard convection in an elasto-viscoplastic fluid

CHAPITRE 6 : Conclusions générales et perspectives

champs de vitesse diminuent progressivement et s'annulent au contact de l'obstacle. Cette diminution engendre un développement d'une zone à très faibles vitesses au voisinage immédiat de l'obstacle. Cette zone correspond à la région non cisaillée collée à la plaque. Dans le cas de « l'état non homogénéisé » du gel, la zone cisaillée tend à augmenter et est légèrement plus étendue quand les effets de seuil deviennent plus importants. En conclusion, les résultats numériques obtenus avec la MEFPIL en comparaison avec l'expérience ont permis de montrer la capacité d'une approche originale (MEFPIL) à modéliser les écoulements autour d'obstacles et les transferts thermiques dans les fluides élasto-viscoplastiques. Ces premiers résultats sont prometteurs et permettent d'envisager de nombreuses perspectives.