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Résumé

Cette thèse traite de systèmes vibroacoustiques complexes sur une large bande de fréquences
d’analyse et a été faite dans le cadre de la vibroacoustique des automobiles. Le système consid-
éré est composé d’une structure complexe couplée à une cavité acoustique interne. La structure
complexe est définie par une géométrie complexe, constituée de matériaux hétérogènes et de deux
types de niveaux structurels : une partie principale rigide et de nombreuses sous-parties flexi-
bles. Dans une telle structure, le modèle vibroacoustique est représenté par les modes élastiques
habituels de déplacements globaux associés à la partie principale, et par de nombreux modes
élastiques locaux, qui correspondent aux vibrations prépondérantes des sous-parties flexibles.
Cependant, dans le cadre de la modélisation vibroacoustique automobile, la principale difficulté
est l’imbrication des déplacements globaux avec les nombreux déplacements locaux, qui intro-
duisent un chevauchement des trois domaines de fréquence habituels (basse (LF), moyenne (MF)
et haute (HF)). Dans l’industrie automobile, des modèles numériques vibroacoustiques sont util-
isés pour prédire les niveaux de bruit interne induits par des excitations solidiennes. Cependant,
la dimension des modèles numériques vibroacoustiques est très élevée. Dans ce travail, le modèle
numérique a 19 millions de degrés de liberté (DOF) pour la partie structurelle et 1 million de DOF
pour la cavité acoustique couplée. Une dimension aussi élevée pose des problèmes de calcul qui
sont pour la plupart surmontés par l’introduction d’un modèle numérique d’ordre réduit (ROM)
construit avec une analyse modale classique. Néanmoins, la dimension d’un tel ROM est toujours
très importante lorsque la bande de fréquence de l’analyse chevauche les domaines LF, MF et HF.
Par conséquent, un modèle d’ordre réduit à plusieurs niveaux - pour la structure - est construit
sur les bandes de fréquences LF, MF et HF. La stratégie est basée sur une projection multi-
niveaux consistant à introduire trois bases d’ordre réduit (ROB) qui sont obtenues en utilisant
une méthodologie de filtrage spatial des déplacements locaux. La méthode de filtrage nécessite
l’introduction d’un ensemble de fonctions de forme globale qui définissent un sous-espace pour la
projection de la matrice de masse de la structure, ce qui donne une matrice dont l’espace nul est
constitué de déplacements locaux qui doivent être filtrés. En outre, un ROM classique utilisant
des modes acoustiques est réalisée pour la cavité acoustique. Ensuite, le couplage entre le modèle
d’ordre réduit multi-niveaux et le modèle d’ordre réduit acoustique est présenté. La modélisation
probabiliste non paramétrique est ensuite proposée afin de prendre en compte les incertitudes
du modèle induites par les erreurs de modélisation, erreurs dont les effets augmentent avec la
fréquence. Ce nouveau modèle stochastique d’ordre réduit multi-niveaux permet d’adapter le
niveau d’incertitudes de la structure à chaque partie de la large bande de fréquences, c’est-à-dire
aux sous-bandes LF, MF et HF. Une des grandes difficultés de ce travail a été de développer une
méthodologie et des algorithmes qui permettent d’analyser des modèles vibroacoustiques de très
grande dimension avec des temps de calcul (CPU) qui restent relativement faibles et qui, de plus,



ne conduisent pas à des problèmes de mémoire (RAM) requiérant l’utilisation de disques durs
externes, ce qui rendrait impossible l’utilisation de la méthode développée. L’application présen-
tée consiste en un modèle vibroacoustique numérique de très grande dimension d’une voiture
(structure couplée à une cavité acoustique interne). Les résultats numériques obtenus sont ceux
qui étaient espérés concernant leurs qualités et la faisabilité des calculs.



Abstract

This thesis deals with the vibroacoustics of complex systems over a broad frequency band
of analysis and has been made as part of the vibroacoustics of automobiles. The system under
consideration is composed of a complex structure coupled with an internal acoustic cavity. The
complex structure is defined by a complex geometry, constituted of heterogeneous materials and
of two types of structural levels: a stiff main part and numerous flexible sub-parts. In such
a structure, the vibroacoustics model is represented by the usual global-displacements elastic
modes associated with the main part, and by numerous local elastic modes, which correspond
to the preponderant vibrations of the flexible sub-parts. However, in the framework of automo-
bile vibroacoustic modeling, the main difficulty is the interweaving of the global displacements
with the numerous local displacements, which introduce an overlap of the usual three frequency
domains (low- (LF), medium- (MF), and high frequency (HF)). In the automotive industry, com-
putational vibroacoustic models are used for predicting the internal noise levels due to structural
excitations. However, the dimension of computational vibroacoustic models is very high. In this
work, the computational model has 19 million of degrees-of-freedom (DOFs) for the structural
part and 1 million of DOFs for the coupled acoustic cavity. Such a high dimension brings some
computational challenges that are mostly overpassed by introducing a reduced-order computa-
tional model (ROM) constructed with a classical modal analysis. Nevertheless, the dimension of
such ROM is still very important when the frequency band of analysis overlaps the LF, MF and
HF domains. Consequently, a multi-level reduced-order model - for the structure is constructed
over the LF, MF, and HF frequency bands. The strategy is based on a multi-level projection
consisting in introducing three reduced-order bases (ROBs) that are obtained by using a spatial
filtering methodology of local displacements. The filtering method requires the introduction of
a set of global shape functions that define a subspace for projecting the mass matrix of the
structure yielding a matrix for which the null space is made up of local displacements that need
to be filtered out. In addition, a classical ROM using acoustic modes is carried out for the acous-
tic cavity. Then, the coupling between the multi-level reduced order model and the acoustic
reduced-order model is presented. The nonparametric probabilistic modeling is then proposed
in order to take into account the model uncertainties induced by modeling errors, errors whose
effects increase with frequency. This novel stochastic multilevel ROM allows for adapting the
level of uncertainties of the structure to each part of the broad frequency band, that is to the
LF, MF, and HF sub-bands. One of the great difficulties of this work has been to develop a
methodology and algorithms, which make it possible to analyze very large vibroacoustic compu-
tational models with computing times (CPU) which remain relatively low and which, moreover,



do not lead to memory (RAM) problems requiring the use of external hard disks, which would
make it impossible to use the developed method. The application presented consists of a very
large digital vibroacoustic model of a car (structure coupled to an internal acoustic cavity). The
numerical results obtained are those which were hoped for concerning their qualities and the
feasibility of the calculations.
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Chapter 1

Introduction

Contents
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Position of the research . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Organization of the manuscript . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Context

In the context of the use of large scale computational models, the developments of methodologies
for analyzing the vibroacoustics of automobiles and for identifying the models have been and are
the subject of a lot of works over the past 20 years (see for example, by being very far from
exhaustiveness, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]).

This work deals with the linear vibroacoustic analysis framework of complex structures such
as automobiles. An extension of the multilevel model reduction for complex structures with
uncertainties is proposed by taking into account the vibroacoustic coupling. The application is
made for automotive structures, but the methods are applicable for other complex structures.
We call complex structures, mechanical structures resulting from the assembly of numerous, het-
erogeneous and geometrically irregular components.

The classical construction of reduced-order models (ROMs) are obtained through modal anal-
ysis in computational linear structural dynamics. The multilevel reduction that is proposed in
this work will be constructed for a vibroacoustic computational model composed of a complex
structure coupled with an internal acoustic cavity.

1



Chapter 1. Introduction

Figure 1.1 – Finite element model of the structure (on the left) and the coupled internal acoustic
cavity (on the right).

Figure 1.2 – Finite element model of a coupled vibroacoustic automobile.

The model is shown in Fig. 1.1, which is composed of 3 216 050 nodes for the structure
and 688 015 nodes for the acoustic cavity. Acoustic specifications in the acoustic cavity of an
automobile has become an important criterion for client. Constructors are paying heed more and
more on this criterion. Conception criteria, like decreasing the level consumption or the total
mass, are added to the criteria of vibroacoustic vehicle dimensioning.

These days, it is well known that the predictions in structural vibration and vibroacoustics
over a broad frequency band, using a large scale computational model based on a finite element
model [18, 19, 20], must be improved by taking into account the model uncertainties caused by
modeling errors. The role of those modeling errors increases with the frequency. Consequently,
any model of uncertainties should take into account the frequency evolution. Furthermore, the
parametric probabilistic approach of uncertainties is known to be unable to reproduce efficiently
the effects of modeling errors.

2



1.2. Position of the research

In such a framework, the nonparametric probabilistic approach of uncertainties will be used.
For that, a ROM needs to be introduced in order to implement the nonparametric approach. Ac-
cordingly, these two conditions, frequency-evolution of the uncertainties and the reduced-order
model, prompt us to propose the development of a multilevel ROM in computational struc-
tural dynamics and vibroacoustics. This new multilevel ROM will allow us to adapt the level
of uncertainties of the structure to each part of the broad frequency band, that is to the LF
(Low-Frequency), MF (Medium-Frequency), and HF (High-Frequency) sub-bands (see below).
It is well known that the acoustic cavity can be considered as homogeneous. Consequently, the
multilevel ROM will be not necessary for the acoustic cavity.

In structural dynamics and vibroacoustics, the frequency response function (FRF) is typically
divided in three sub-bands. The LF band is characterized by a low modal density and by FRFs
displaying isolated resonances. These are due to the presence of long-wavelength displacements
of the main stiff part of the structure. Those displacements will be called « global displacements
» and will be explained later. In contrast, the HF band is characterized by a high modal density
and by smoother FRFs caused by the presence of numerous « local displacements ». The middle
band, defined as the MF band, displays a non-uniform modal density. The shape of the FRFs
exhibit strong variations due to a succession of strong overlapping and small overlapping of
resonances [21]. The well-known effective and efficient method used for the LF band is the
modal analysis [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], which gives a ROM whose reduced-
order basis (ROB) is composed of the first elastic modes that are the first structural elastic
modes. For the HF band, energy methods are commonly used like the statistical energy analysis
[33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43]. To analyze the MF band, several methods has
been proposed such as deterministic approaches dedicated to the deterministic linear dynamical
equations [21, 44, 45, 26, 46, 47, 48, 49, 50]. Other methods are based on stochastic linear
dynamical equations to take into account the uncertainties in the computational models [21, 51,
52, 53, 54, 55, 56, 4, 32, 14]. It should be noted that the uncertainties in the MF band plays
an important role. To point up the earlier definitions of the different frequency bands, a typical
FRF of a structure is shown in Fig. 1.3.

1.2 Position of the research

In this work, we examine the dynamical analysis of complex vibroacoustic system in a broad
frequency band. The complex system can be separated in two parts, a complex structure (the
car) coupled with an internal acoustic cavity (the cockpit). The complex structure is defined
by a complex geometry, made up of heterogeneous materials and more specifically, character-
ized by the presence of numerous structural levels. For example, the structure is made up of
a stiff main part embedding various flexible sub-parts. For such structures, there appears, in
addition to the usual global-displacements elastic modes linked with the stiff skeleton, several
local elastic modes that are associated with the predominant vibrations of the flexible sub-parts.

3



Chapter 1. Introduction

Figure 1.3 – Typical FRF behavior in LF, MF and HF bands. Modulus in dB scale with respect
to the frequency.

Such complex structures can be found, for instance in aeronautics and aerospace, but above
all in the automotive industry [2, 7, 6, 57]. There appears two main difficulties caused by the
presence of the local displacements in the structure. Firstly, the modal density may increase
abruptly from low frequencies, causing a high dimension ROM within modal analysis. Secondly,
such ROMs may not be robust enough with respect to uncertainties caused by the presence of
the numerous local displacements, which are known to be very sensitive to uncertainties. The
engineering objectives for such complex structures are to obtain a computational model with a
robust prediction for the global displacements at observation points that belong to the main stiff
part.

For a vibroacoustic system composed of a complex elastic structure coupled with an internal
acoustic cavity, characterized by the presence of numerous local elastic modes entangled with
global elastic modes, the research are not plentiful. Nonetheless for the structural part, researches
have been performed. In the experimental modal analysis framework, spatial filtering method
of the local displacements [58], based on regularization schemes, has been proposed [59]. For
computational models, the Guyan condensation technique [60] has also been used, consisting in
introducing master structural nodes in which the mass is condensed. It allows the filtering of
the local displacements. The downside is the complexity of the choice of the master nodes [61].
Filtering using the lumped mass matrix approximations have also been introduced by [62, 63, 64]
but it depends on the mesh and cannot be adjust. The construction [34] of a global displace-
ment basis using a coarse mesh yields important errors for the elastic energy. Other methods for
extracting the long-wavelength elastic modes of the main structure, like the interface substruc-
turing, has also been proposed [50]. Moreover, computational approaches based on the use of
image processing [65] have been proposed for identifying the global elastic modes, in which the
global displacements are considered as the eigenvectors of the frequency mobility matrix [66].
The extrapolation of the dynamical response using a sparse representation constructed using a
few elastic modes has also been proposed in [67]. In the LF band, for slender structures ex-
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1.2. Position of the research

hibiting a high modal density, simplified equivalent models have been proposed in [68, 69] and
homogenization has been suggested in [70]. Though, using these approaches, the simplification
of the model is not automatic and requires an expertise and validation continues to be necessary.

For complex structures for which the elastic modes are neither purely global nor purely local
displacements, the increasing of the dimension of the ROM based on the classical modal analysis
proves to be inconvenient. The methodology to sort the elastic modes depending to whether
they are global displacements or local displacements is not relevant because the elastic modes
are an association of both types of displacements. It is well known that large amplitudes of the
local displacements are difficult to distinguish from the global ones using the modal shapes. The
difficulty increases with the frequency.

Generally, in the case of a complex structure, an elastic mode is constituted of global dis-
placements (long wavelength deformations) assorted with local displacements (short wavelength
deformations) of differentiated structural level. One important observation is that as the fre-
quency increases, the global displacements in the elastic modes are less and less perceptible. The
fact is that they are covered by the high amplitudes local displacements.

Nevertheless, substructuring techniques have been used for trying to solve this separation
problem. The substructuring techniques have deeply been studied [71, 72, 73]. As written in
[74]: "historically, the concept of substructuring was first introduced by Argyris and Kelsey in
1959 [75] and by Przemieniecki in 1963 [76] and was extended by Guyan and Irons [60, 77]. Hurty
[78, 79] considered the case of two substructures coupled through a geometrical interface. Fi-
nally, Craig and Bampton [80] has adapted the Hurty method. Many variants has been proposed
for improving substructuring techniques [81, 82, 83, 84, 85], notably for the complex dynamical
systems with many auxiliaries considered as substructures from Benfield and Hruda [86]. A new
group of methods has been introduced for two coupled subtructures with fixed geometrical inter-
face (elastic modes) using structural modes with free geometry interface used in the Craig and
Bampton and by MacNeal [87] and Rubin [88]. Then the Lagrange multipliers have been applied
to write the coupling on the geometrical interface [89, 90, 91, 92]". The substructuring needs
discarding the component modes associated with flexible sub-parts, to eliminate their associated
local displacements. In the model considered, there is no clear boundary between the skeleton
and the substructures, that is to say, between the main stiff part and the flexible sub-parts. This
property can be explained by the complex geometry of the structure that is constructed in order
to have a continuous series of structural levels, instead of clear separation, in addition to the
various embedded equipments. In this type of setup, the notion of local displacements is relative.
It is worth mentioning that, in comparison to the usual global displacements that are present in
the LF band, the local displacements associated with the structural sub-levels (which can also
appear in the LF band) are characterized by high complexity level, similarly to those in the HF
band. Therefore, for the complex structure studied, there is an overlap of the three vibration
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Chapter 1. Introduction

regimes (LF, MF and HF band).

Regarding the uncertainties in the computational model, the probabilistic framework is well
suited to construct the stochastic models and to solve the inverse problems for the identification
of the probabilistic models of uncertainties. Thereafter, we present the framework limited to the
probabilistic approaches for uncertainty quantification. To take into account model parameter
uncertainties, model uncertainties induced by modeling errors and the variabilities in the real
dynamical system, different probabilistic approaches can be used (see [14]).

The parametric probabilistic approach is fairly well designed for model-parameter uncertain-
ties, at least for a sufficient small number of parameters. It involves the construction of a prior
and a posterior stochastic models of uncertain model parameters linked, for instance, to ma-
terials properties [93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 14], to geometry, to
boundary conditions, etc. This method proved to be computationally efficient for both the com-
putational model and its resulting ROM [106, 107] and for large-scale statistical inverse problems
[108, 109, 110, 111, 112, 113]. The main limit of this approach is that it does not take into account
neither the model uncertainties induced by modeling errors introduced during the construction
of the computational model nor the uncertainties caused by the use of a ROM.

The nonparametric probabilistic approach [114, 14] allows model uncertainties induced by
general modeling errors to be taken into account in the framework of linear dynamical systems.
The modus operandi is done in two stages. Firstly, the construction of a linear ROM of dimen-
sion n using the linear computational model with m degrees of freedom (DOFs) and a reduced
-order basis (ROB) of dimension n. Then, a linear stochastic ROM is built by replacing the
deterministic matrices of the linear ROM by random matrices for which the probability dis-
tributions are constructed [14] using the Maximum Entropy (MaxEnt) [115, 116] principle of
Information Theory. The construction of the linear stochastic ROM is fulfilled under the con-
straint generated from the available information such as algebraic positiveness, integrability of
the inverse, and some statistical information. This approach enlarged for different family of ran-
dom matrices and for linear boundary value problems [117, 118, 14]. Experimental validations
and applications to statistical inverse problems can be found for linear problems in composites
[119], viscoelasticity [120], dynamic substructuring [121, 122, 123], vibroacoustics [32, 2], robust
design and optimization [124], etc, and for the identification and sampling the Bayesian poste-
riors of high-dimensional symmetric positive-definite random matrices for data-driven updating
of computational models [125]. An extension to the nonlinear geometrical effects in structural
analysis has also been made [126, 127, 128].

It is well known that the real systems exhibit variabilities. As such, for a given design of a
structure, the manufactured objects differ from one to another one, which results in a dispersion
in the FRFs. Those variabilities are caused by the small differences with respect to the unique

6



1.3. Objectives

design that is used for constructing the computational model. It should be noted that the vari-
ability increases with the frequency.

Recently, a method has been proposed by Ezvan [129] to separate the local displacements
and the global displacements using a spatial filtering (on wavelength). Moreover, the multilevel
stochastic approach for structural dynamics has been introduced in [12] to adapt the level of the
uncertainties in each frequency band: LF, MF, and HF. In this work, we present an extension to
the case of vibroacoustic systems based on a reformulation of the construction of the multilevel
ROM for the structural part.

1.3 Objectives

For complex structures, such as automobiles, numerous high complexity level types elastic modes
are intertwined with the long wavelength types elastic modes. This provokes a high modal
density and an overlap of the three vibration regimes (LF, MF, and HF) and therefore, two
hurdles related to uncertainty quantification and to computational efficiency. As a reminder, the
overlap is explained by the presence of high complexity level HF-type displacements with the
usual global displacements of the LF band. The objective of this work is multiple. The first
one, is to propose a stochastic multilevel ROM for the structure that is able to take into account
the variability induced by the overlap in the three vibration regimes, which is a reformulation
of the method proposed in [129, 12], for which the presentation, the developments, and the
formulated interpretations are different. Secondly, we consider not only the structure but also
the vibroacoustic system constituted of the structure coupled with the acoustic cavity. An
objective of this work is to propose a predictive stochastic multilevel ROM whose dimension
is inferior to the usual ROM constructed by using the classical modal analysis. Another very
important objective is that the algorithms developed can be used for very large computational
models without encountering problems related to the limitation of RAM and with numerical
costs which remain low. This last objective requires in-depth methodological and algorithmic
reflection. The last objective is the need to develop a methodology and algorithms, which are
not intrusive with respect to commercial software.

1.4 Strategy

A new methodology has been introduced in [130] for the construction of a stochastic ROM de-
voted to dynamical structures possessing numerous local elastic modes in the LF range. The
stochastic model is obtained by using the nonparametric probabilistic approach of uncertainties
within a new formulation of the ROM whose ROB is made up of two families: on one hand the
global displacements and on the other hand the local displacements. The separation of those two
families is done by the introduction of a projection operator for the kinetic energy associated
with a subspace of piecewise polynomial functions. The spatial dimension of the subdomains of
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the displacements projection is constant. This allows a partition of the domain of the structure,
and a control parameter of the filtering between the global displacements and the local displace-
ments. The subdomain allows for excluding the local displacements by using an approximation.
The generation of such subdomains is called a uniform domain partition. The Fast Marching
Method [131, 132] is used in order to carry out the uniform domain partition for a complex finite
element mesh. The application for the case of automobile structure has been proposed in [7, 6].
Papers associated with this methodology are [130, 7, 6, 133, 134]. A former PhD thesis was
defended with a subject related to these papers [135].

In a following thesis by Ezvan (see [129, 12, 136, 137, 138, 139]), instead of the piecewise con-
stant approximation, another methodology is used through the introduction of a computational
framework for any approximation subspace for the kinetic energy. For automobile framework,
polynomial shape functions, with support equivalent to the whole domain of the structure, have
been used for constructing a spatial filtering for long wavelength displacements ROM. This gen-
eralization allows for achieving an efficient convergence of the long wavelength displacements
ROM with respect to the chosen spatial filtering. Furthermore, a multilevel ROM has been
proposed, whose the reduced-order basis (ROB) is composed of numerous families of displace-
ments, which coincide with the different structural levels of the complex structure. This ROB
has been constructed to achieve three families such as LF-, MF-, and HF-wavelength types of
displacements using successive spatial filterings. The multilevel ROM lets on implementing a
probabilistic model of uncertainties that is adapted to each vibration regime (LF, MF, and HF).
By constructing the multilevel stochastic ROM, the statistical fluctuations for each vibration
regime can be controlled. In the literature [140, 141, 142], multilevel substructuring methodolo-
gies exist but do not have the same objective at all and have been proposed only to speed up
the solution of large scale generalized eigenvalue problems.

This work follows on from these two theses, in particular the Ezvan’s thesis. In the present
work [143, 144, 145, 17], the computational vibroacoustic model is introduced. In addition,
the spatial filtering methodology has been modified and automated. The presentation of the
multilevel ROM is novel as well as the developments of the algorithms and the interpretations
that are made of them. In particular, the strategy will be to use polynomial shape functions to
represent the behavior of the elastic modes in order to construct a long wavelength-displacements
ROM for a complex structure such as an automotive. Moreover, a multilevel reduced-order
computational model in vibroacoustics will be constructed, whose reduced-order basis is formed
from three families of wavelength displacements (LF, MF, and HF), which correspond to the
three structural levels of the complex structure. This will allow for implementing a nonparametric
probabilistic model of uncertainties that will be adapted for each vibration regime. The stochastic
multilevel reduced-order computational model in vibroacoustics will allow for controlling the
statistical fluctuations for each frequency band type of displacements.
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1.5 Organization of the manuscript

Chapter 2 is devoted to the construction of the reduced-order computational vibroacoustic model.
The boundary value problem of the vibroacoustic system is presented in the frequency domain
for a linear viscoelastic solid medium coupled with a linear dissipative acoustic fluid medium.
Its weak formulation is then constructed. Its discretization by the finite element method yields
the full-order computational vibroacoustic model in the frequency domain. Finally, the classical
reduced-order computational vibroacoustic model is deduced by projecting the full-order com-
putational vibroacoustic model on the truncated modal expansions of the solution of the problem.

Chapter 3 presents the principle of the spatial filtering. The construction of a multilevel
basis is given and the associated algorithms are detailed. The methodology is introduced to
separate the elastic modes in two quantities "low complexity level" and "high complexity level"
displacements with regard to a maximal polynomial degree. The importance of the data storage
with respect to the RAM limitations is also explained.

Chapter 4 deals with the construction of the multilevel reduced-order computational model
involving the construction of the multilevel displacements basis and the construction of the as-
sociated multilevel displacements model for the LF and MF domains. This chapter lays the
foundation for the entire method for which the parameters involved are introduced.

In Chapter 5, a numerical application of the multilevel reduced-order computational model
is performed. The method is applied to two different cases. The results are compared and com-
mented.

Chapter 6 is devoted to the stochastic multilevel reduced-order computational model in vi-
broacoustics. The probabilistic model of random matrices is constructed in the framework of the
nonparametric probabilistic approach of model uncertainties. Then the classical nonparametric
stochastic reduced-order computational model is introduced followed by the construction of the
nonparametric multilevel reduced-order computational model in vibroacoustics. Finally the nu-
merical application devoted to a large scale computational vibroacoustic model of an automobile
is presented and commented.

After the conclusion and the perspectives, the reader will find an appendix devoted to the
Independent Component Analysis (ICA) using the Nastran (commercial software), which is a
computational tool for estimating a log-likelihood indicator to compare computation and exper-
imental FRF measurements for automobiles [143, 15]. As this work on ICA, which was carried
out at the start of the thesis, has been carried out with an automobile computational model that
is different from the one presented in all the chapters, we have preferred to present this work on
ICA in an Appendix for avoiding any confusion.
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Chapter 2

Construction of the reduced-order
computational vibroacoustic model

Contents
2.1 Description of the vibroacoustic problem . . . . . . . . . . . . . . . . 11

2.2 Boundary value problem for the vibroacoustic system in the fre-
quency domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Weak formulation of the boundary value problem in the frequency
domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Reduced-order computational vibroacoustic model . . . . . . . . . . 16

The purpose of this chapter is to construct the reduced-order computational vibroacoustic
model (ROM) for a vibroacoustic system (the car and the air in its cockpit). In the next chapter,
a Global/Local ROM will be presented and constructed in using its matrices. In this chapter,
the boundary value problem is presented in the frequency domain for a linear viscoelastic solid
medium coupled with a linear dissipative acoustic fluid medium. Then the weak formulation
of the problem in the frequency domain of the vibroacoustic system is constructed. A full-
order computational vibroacoustic model is then obtained by using the Finite Element method
for discretizing the weak formulation of the boundary value problem. Finally, the ROM is
constructed by projecting the full-order computational vibroacoustic model on the truncated
modal expansions of the solutions of the problem.

2.1 Description of the vibroacoustic problem

Let us consider a vibroacoustic system that is constituted of a three-dimensional structure (the
car) coupled with an internal acoustic cavity (the gas in the cockpit). Figure 2.1 shows a
simplified description of the vibroacoustic system. Despite the fact that the acoustic cavity is
internal, it is nevertheless assumed the acoustic cavity is almost closed with a nonsealed wall.
The vibroacoustic system can be modeled as a linear viscoelastic solid medium that occupies
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Figure 2.1 – Vibroacoustic system

the domain Ωs ⊂ R3. It is also assumed that the acoustic cavity can be modeled as a linear
dissipative acoustic fluid medium that is homogeneous and occupying the domain Ωf ⊂ R3. The
external boundary of domain Ωs (see Fig. 2.1) is constituted of two parts Γs (on which are imposed
external surface forces as Neumann boundary conditions) and Γ0 (on which are imposed Dirichlet
boundary conditions) while the boundary Γf of domain Ωf is the coupling interface between the
linear viscoelastic solid medium and the linear dissipative acoustic fluid medium. External loads
are applied to the vibroacoustic system and they consist in the surface forces gsurf on part Γs,
the body forces gvol in Ωs, and the acoustic source s in Ωf . In addition, it is also assumed that
the part Γ0 is fixed. In a Cartesian reference frame (e1, e2, e3), the dynamical response of the
vibroacoustic system (under external loads) are the displacement field u = (u1, u2, u3) in Ωs

of the linear viscoelastic solid medium and the pressure disturbance field p in Ωf of the linear
dissipative acoustic fluid medium. In the next section, the boundary value problem is presented
for which the solutions are displacement field u and pressure disturbance field p.

2.2 Boundary value problem for the vibroacoustic system in the
frequency domain

In this section, we use the equations of the vibroacoustic system presented in [26].

12



2.2. Boundary value problem for the vibroacoustic system in the frequency domain

2.2.1 Equations for the linear viscoelastic solid medium

In this section, the equations for the linear viscoelastic solid medium are established in the
frequency domain. Note that hereinafter, the summation convention on repeated indices is used.

2.2.1.1 Balance equations and boundary conditions

In case there are no external body forces gvol = 0, then the balance equations for the linear
viscoelastic solid medium in the frequency domain are written, for i = 1, . . . , 3, as

ρsui(x; ω)− ∂jσij(x; ω) = 0 in Ωs , (2.1)

in which x = (x1, x2, x3) is the position vector of any point in R3, where ω is the angular frequency
belonging to the frequency band of analysis B = [ωmin, ωmax], where ρs is the mass density of
the linear viscoelastic solid medium at rest, ∂jσij is the divergence of the Cauchy stress tensor,
and ∂j is the partial derivative with respect to xj . We assume that there are two Neumann
boundary conditions on parts Γf and Γs, which, respectively, correspond to pressure field p(x; t)

applied by the acoustic cavity on Γf and by surface forces gsurf = (gsurf
1 , gsurf

2 , gsurf
3 , ) on Γs. In

addition, we also assume that a Dirichlet boundary condition is applied to Γ0. We then have,
for all i = 1, 2, 3,

σij(y; ω)nj(y) = −p(y; ω)ni(y) on Γf ,

σij(y; ω)nj(y) = gsurf
i (y; ω) on Γs ,

ui(y; ω) = 0 on Γ0 .

where n = (n1, n2, n3) is the outward unit vector of domain Ωs and y = (y1, y2, y3) is the vector
of coordinates of a point located on the boundary of domain Ωs.

2.2.1.2 Constitutive equations for the linear viscoelastic solid medium

In the frequency domain and for a linear viscoelastic solid medium, the constitutive equations
are written as

σij(x, ω) =
(
aijkh(x, ω) + i ω bijkh(x, ω)

)
εkh(x, ω) , (2.2)

where εkh = 1/2(∂k uh + ∂h uk) is the linear strain tensor and where the viscoelastic coefficients
aijkh(x, ω) and bijkh(x, ω) are frequency dependent and such that

1. aijkh(x,−ω) = aijkh(x, ω) ,

2. bijkh(x,−ω) = bijkh(x, ω) ,

3. limω→+∞ aijkh(x, ω) < +∞ ,

4. limω→+∞ bijkh(x, ω) = 0 ,

5. aijkh(x, ω) = ajikh(x, ω) = aijhk(x, ω) = akhij(x, ω) ,
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6. bijkh(x, ω) = bjikh(x, ω) = bijhk(x, ω) = bkhij(x, ω) ,

7. aijkh(x, ω)XijXkh ≥ c1XijXij , bijkh(x, ω)XijXij ≥ c2XijXkh ,

for all symmetric second-order tensor {Xij}ij and where c1 and c2 are two positive real scalars
that are independent of ω.

2.2.2 Equations for the linear dissipative acoustic fluid medium

The equations of the linear dissipative acoustic fluid medium are established in this section.
These equation are presented in [26]. Let p and v be the disturbances of the pressure and of
the velocity in the linear dissipative acoustic fluid medium for which the undisturbed values
(when the linear dissipative acoustic fluid medium is at rest) are pf and vf . In the case for which
the thermal conduction can be neglected in the acoustic fluid and if there is no acoustic source
s = 0, then the equations of the linear dissipative acoustic fluid medium can be written in term
of pressure disturbance field p and velocity field v. We then have

iω p(x, ω) = −ρfc
2
f ∇ · v(x, ω) , (2.3)

iω ρf v(x, ω) + ∇p = −iω τ∇p(x, ω) , (2.4)

in which the dot operator is the usual inner product in R3, ρf and cf are the mass density and
sound velocity respectively in the linear dissipative acoustic fluid medium at rest and where τ ,
which can be frequency dependent, is given by

τ =
1

ρfc
2
f

(
4

3
η + ζ

)
, (2.5)

in which η is the dynamic viscosity and ζ is the second viscosity. Combining these two equations
yields

− ω2 1

ρfc
2
f

p(x, ω)− iω τ

ρf
∇2p(x, ω)− 1

ρf
∇2p(x, ω) = 0 in Ωf . (2.6)

In addition, the following Neumann boundary condition on Γf can be straightforwardly deduced
from Eq. (2.4),

(1 + iωτ)

ρf
∇p(y, ω) · n(y) = ω2u(y, ω) · n(y) on Γf , (2.7)

where the displacement field x 7→ u(x, ω) is such that v(x, ω) = iω u(x, ω) for all x ∈ Ωf ∪ Γf .
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2.2.3 Boundary value problem in the frequency domain for the vibroacoustic
system

The equations of the boundary value problem in the frequency domain for the vibroacoustic
system consists in finding x 7→ u(x, ω) and x 7→ p(x, ω) such that, for i = 1, . . . , 3,

ρsui(x; ω)− ∂jσij(x; ω) = 0 in Ωs , (2.8)

σij(x, ω) =
(
aijkh(x, ω) + i ω bijkh(x, ω)

)
εkh(x, ω) in Ωs , (2.9)

εkh(x, ω) =
1

2

(
∂huk(x, ω) + ∂kuh(x, ω)

)
in Ωs , (2.10)

σij(y; ω)nj(y) = −p(y; ω)ni(y) on Γf , (2.11)

σij(y; ω)nj(y) = gsurf
i (y; ω) on Γs , (2.12)

ui(y; ω) = 0 on Γ0 , (2.13)

−ω2 1

ρfc
2
f

p(x, ω)− iω τ

ρf
∇2p(w, ω)− 1

ρf
∇2p(x, ω) = 0 in Ωf , (2.14)

(1 + iωτ)

ρf
∇p(y, ω) · n(y) = ω2u(y, ω) · n(y) on Γf . (2.15)

2.3 Weak formulation of the boundary value problem in the fre-
quency domain

The solution x 7→ u(x, ω) belongs to the set Cs of all the admissible displacement fields and the
solution x 7→ p(x, ω) belongs to the set Cf of all the admissible sound pressure fields. Let us
introduce the sesquilinear forms of mass ms(·, ·), damping ds(·, ·), and stiffness ks(·, ·), which
are positive-definite hermitian on Cs × Cs and the antilinear form `s(·) defined on Cs that are
defined, for all u and δu = (δu1, δu2, δu3) in Cs, as

ms(u, δu) =

∫
Ωs

ρ(x)uj(x) δuj(x) dx , (2.16)

ds(u, δu) =

∫
Ωs

bijkh(x) ∂huk(x) ∂jδui(x) dx , (2.17)

ks(u, δu) =

∫
Ωs

aijkh(x) ∂huk(x) ∂jδui(x) dx , (2.18)

`s(δu) =

∫
Γs

gsurf
i (y) δui(y) dS(y) , (2.19)

in which dx = dx1 dx2 dx3 is the volume element and dS(y) is the surface element. Let us
introduce the sesquilinear form mf(·, ·), which is positive-definite hermitian on Cf × Cf , and the
sesquilinear forms df(·, ·) and kf(·, ·) that are positive hermitian on Cf × Cf such that for all p
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and δp in Cf , we have

mf(p, δp) =
1

ρfc
2
f

∫
Ωf

p(x) δp(x) dx , (2.20)

df(p, δp) =
τ

ρf

∫
Ωf

∇p(x) · ∇δp(x) dx , (2.21)

kf(p, δp) =
1

ρf

∫
Ωf

∇p(x) · ∇δp(x) dx . (2.22)

Let c(·, ·) be the sesquilinear form of vibroacoustic coupling defined on Cf × Cs such that for all
p and δp in Cf and for all u in Cs, we have

c(p, u) =

∫
Γf

p(y)ui(y)ni(y) dS(y) . (2.23)

The weak formulation of the boundary value problem in the frequency domain for the vibroa-
coustic system is then constructed by using the method of the test functions and is then defined
as follows: find u(·, ω) in Cs and p(·, ω) in Cf such that, for all δu in Cs and δp in Cf ,

−ω2ms(u, δu) + iω ds(u, δu) + ks(u, δu) + c(p, δu) = `s(δu) , (2.24)

−ω2mf(p, δp) + iω df(p, δp) + kf(p, δp) + ω2 c(δp, u) = 0 . (2.25)

2.4 Reduced-order computational vibroacoustic model

2.4.1 Full-order computational vibroacoustic model

Let u(ω) (resp. p(ω)) be the finite element vectors of all the degrees of freedom corresponding
to the nodal values on the finite element mesh of domain Ωs (resp. Ωf) for displacement field
u(·, ω) (resp. disturbance of pressure field p(·, ω)). Let ns

dof (resp. nf
dof) be the dimension of

vector u(ω) (res. p(ω)). The full-order computational vibroacoustic model is then constructed
by discretizing the sesquilinear forms in Eqs. (2.24) and (2.25) by the finite-element method.
Equations (2.24) and (2.25) are then replaced by

(−ω2[Ms] + iω[Ds] + [Ks]) u(ω) + [C] p(ω) = Fs(ω) , (2.26)

(−ω2[Mf ] + iω[Df ] + [Kf ]) p(ω) + ω2[C]T u(ω) = O , (2.27)

in which [Ms], [Ds], and [Ks] are the ns
dof × ns

dof positive-definite symmetric matrices constructed
by discretizing sesquilinear forms ms(·, ·), ds(·, ·), and ks(·, ·), where [Mf ] (resp. [Df ] and [Kf ]) is
the nf

dof × nf
dof positive-definite (resp. positive) symmetric matrix constructed by discretizing

sesquilinear form mf(·, ·) (resp. df(·, ·) and kf(·, ·)), where [C] is the ns
dof × nf

dof matrix con-
structed by discretizing the sesquilinear form c(·, ·), and where Fs is the finite-element vector
constructed by discretizing the antilinear form `s. In low-frequency structural dynamics, mass
matrix [Ms] is often approximated by a ns

dof × ns
dof positive-definite diagonal matrix [Mlump] con-

structed by lumped mass techniques. Such a lumped mass matrix will be used in Chapter 3 as
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a metric for defining a new set of interpolating polynomial functions. The two Eqs. (2.26) and
(2.27) can be rewritten as a single matrix equation,(

−ω2[Ms] + iω[Ds] + [Ks] [C]

ω2[C]T −ω2[Mf ] + iω[Df ] + [Kf ]

) (
u(ω)

p(ω)

)
=

(
Fs(ω)

0

)
. (2.28)

Note that the full-order computational vibroacoustic model is used for calculating u(ω) and p(ω)

only for nonzero ω belonging to the frequency band of analysis B = [ωmin, ωmax] with ωmin > 0.
Consequently, the solutions of the full-order computational vibroacoustic model are unique (see
[26]).

2.4.2 Elastic eigenmodes

Let 0 < λs
1 ≤ . . . ≤ λs

ns be the ns � ns
dof smallest eigenvalues that are solutions of the following

generalized eigenvalue problem: find λs
α > 0 and ϕs

α in Rn
s
dof such that

[Ks]ϕs
α = λs

α[Ms]ϕs
α . (2.29)

The eigenvectors ϕs
1, ...,ϕ

s
ns associated with the eigenvalues 0 < λs

1 ≤ ... ≤ λs
ns verify the usual

orthogonality properties and normalization,

(ϕs
β)T [Ms]ϕs

α = δαβ , (ϕs
β)T [Ks]ϕs

α = λs
α δαβ . (2.30)

For the LF, MF, and HF domains, let [Φs] = (ϕs
1 ...ϕ

s
ns) be the ns

dof × ns modal matrix.

2.4.3 Acoustic eigenmodes

Let 0 ≤ λf
0 ≤ . . . ≤ λf

nf be the nf + 1 � nf
dof smallest eigenvalues that are solutions of the

following generalized eigenvalue problem: find λf
α ≥ 0 and ϕf

α in Rn
f
dof such that

[Kf ]ϕf
α = λf

α[Mf ]ϕf
α . (2.31)

It should be noted that there is a zero eigenvalue λf
0 because matrix [Kf ] is not invertible. The

eigenvectors ϕf
0, . . . ,ϕ

f
nf associated with the eigenvalues 0 ≤ λf

0 ≤ ... ≤ λf
nf verify the usual

orthogonality properties and normalization, for all α, β = 1, . . . , nf ,

(ϕf
β)T [Mf ]ϕf

α = δαβ , (ϕf
β)T [Kf ]ϕf

α = λf
α δαβ . (2.32)

For the LF, MF, and HF domains, the nf
dof × nf modal matrix is defined as [Φf ] = (ϕf

1 ...ϕ
f
nf )

in which the eigenvector ϕf
0, which is associated with the null eigenvalue λf

0, has been omitted
from its columns.

17



Chapter 2. Construction of the reduced-order computational vibroacoustic model

2.4.4 Reduced-order computational vibroacoustic model in LF, MF, and HF
domains

In the LF, MF, and HF domains, the ROM is constructed by using a truncated modal expansion
of vectors u(ω) and p(ω) that are written as

u(ω) = [Φs] qs , p(ω) = [Φf ] qf , (2.33)

in which modal matrices [Φs] and [Φf ] have been defined in Sections 2.4.2 and 2.4.3. It should be
noted that since eigenvector ϕf

0 has been omitted from columns of modal matrix [Φf ], then it is
also excluded from the truncated modal expansion of p(ω). This eigenvector is associated with
the zero eigenvalue λf

0. Indeed, in the case of a car cockpit, the acoustic wall surrounding domain
Ωf is assumed to be nonsealed and consequently, the quasi-static pressure, which corresponds to
the generalized coordinate qf

0 associated with eigenvector ϕf
0, is balanced at any time t between

the internal cavity and the outside and is not an unknown of the problem. Consequently, the
equations of the full-order computational vibroacoustic model have been projected on the eigen-
subspace that is orthogonal to ϕf

0 and that is spanned by eigenvectors ϕf
1, . . . ,ϕ

f
nf . In the LF,

MF, and HF domains, the ROM is then deduced from Eq. (2.28) by using the truncated modal
expansion in Eq. (2.33). We then have(

−ω2[M s] + iω[D s] + [K s] [C ]

ω2[C ]T −ω2[M f ] + iω[D f ] + [K f ]

) (
qs(ω)

qf(ω)

)
=

(
fs(ω)

O

)
,

(2.34)
where the generalized mass matrix [M s], the generalized damping matrix [D s], and the general-
ized stiffness matrix [K s] are the ns × ns positive-definite matrices such that

[M s] = [Φs]T [Ms][Φs] , [K s] = [Φs]T [Ks][Φs] , [D s] = [Φs]T [Ds][Φs] , (2.35)

and where the generalized matrices [M f ], [D f ], and [K f ] are the nf×nf positive-definite matrices
such that

[M f ] = [Φf ]T [Mf ][Φf ] , [K f ] = [Φf ]T [Kf ][Φf ] , [D f ] = [Φf ]T [Df ][Φf ] , (2.36)

and finally, where
[C ] = [Φs]T [C][Φf ] , fs(ω) = [Φs]T Fs(ω) . (2.37)

Using the orthogonality properties and normalization defined by Eqs. (2.30) and (2.32), matrices
[M s], [K s], [M f ] and [K f ] can be rewritten as

[M s] = [Ins ] , [K s] = [Λs] , (2.38)

[M f ] = [Inf ] , [K f ] = [Λf ] , (2.39)

in which [Ins ] and [Inf ] are the identity matrices with dimensions ns×ns and nf ×nf , and where
[Λs]αβ = λs

α δαβ and [Λf ]αβ = λf
α δαβ are diagonal ns × ns and nf × nf matrices.

18



2.4. Reduced-order computational vibroacoustic model

2.4.5 Reduced-order computational vibroacoustic model in LF and MF

The LF, MF, and HF domains correspond to the frequency bands [0, ωL], [ωL, ωM], and [ωM, ωH]

(in rad.s−1) where the three bounds ωL, ωM, and ωH are assumed to be already known. Their
respective value can be estimated by analyzing the graphs of the Frequency Response Functions
(FRF) for some "important" degrees of freedom in the whole frequency domain by using the
reduced-order computational model presented in Section 2.4.4. Furthermore, let nL, nM, and
nH be the number of structural elastic modes in the LF, MF, and HF domains, and let nLM =

nL + nM. Let [Φs
L], [Φs

M], and [Φs
H] be the matrices with dimensions ns

dof × nL, ns
dof × nM, and

ns
dof × nH whose columns are the elastic eigenvectors belonging to frequency domains LF, MF,

and HF respectively and such that

[Φs] =
(

[Φs
L] [Φs

M] [Φs
H]
)

. (2.40)

We also introduce the matrix [Φs
LM] that is defined by

[Φs
LM] =

(
[Φs

L] [Φs
M]
)

. (2.41)

In the LF, MF, and HF domains, the ROM is constructed by using a truncated modal expansion
of vectors u(ω) and p(ω) written as

u(ω) = [Φs
LM] qs , p(ω) = [Φf ] qf , (2.42)

in which modal matrix [Φf ] has been defined in Section 2.4.3. In the LF and MF domains, the
ROM is then deduced from Eq. (2.28) by using the truncated modal expansion in Eq. (2.42).
We then have(

−ω2[M s
LM] + iω[Ds

LM] + [K s
LM] [CLM]

ω2[CLM]T −ω2[M f ] + iω[D f ] + [K f ]

) (
qs(ω)

qf(ω)

)
=

(
fsLM(ω)

O

)
, (2.43)

where the generalized mass matrix [M s
LM], the generalized damping matrix [D s

LM], and the
generalized stiffness matrix [K s

LM] are the nLM × nLM positive-definite matrices such that

[M s
LM] = [Φs

LM]T [Ms
LM][Φs

LM] , [K s
LM] = [Φs

LM]T [Ks
LM][Φs

LM] , [Ds
LM] = [Φs

LM]T [Ds
LM][Φs

LM] , (2.44)

and where
[CLM] = [Φs

LM]T [C][Φf ] , fs
LM(ω) = [Φs

LM]T Fs
LM(ω) . (2.45)

Using the orthogonality properties and normalization defined by Eqs. (2.30) and (2.32), matrices
[M s

LM] and [K s
LM] can be rewritten as

[M s
LM] = [InLM ] , [K s

LM] = [Λs
LM] , (2.46)

[M f ] = [Inf ] , [K f ] = [Λf ] , (2.47)

in which [InLM ] is the identity matrix with dimensions nLM × nLM and where the diagonal
nLM × nLM matrix [Λs

LM] is such that [Λs
LM]αβ = λs

α δαβ .
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In this chapter, we present a methodology to construct a new basis for u(ω), different from
elastic eigenvectors. For constructing such a basis, the approach relies on a spatial filtering to
decompose the set of the elastic eigenvectors into two sets of linearly independent displacement
vectors that are no longer elastic modes. The two sets of displacement vectors are characterized
by a polynomial degree. First, a set of « spatial filtering functions » is constructed as a set
of mutually orthogonal multivariate polynomials, with respect to a given metric related to the
sesquilinear form of mass, defined on Ωs. Consequently, the shape of each « spatial filtering
function » is weighted by the spatial mass distribution of the structure. Such set of « spatial
filtering function » can then represent the displacements of separate components or assembled
components of the structure as an automobile. A large wavelength elastic eigenvector, that is
generally representative of the LF domain, would then be written as a sum of « spatial filtering
functions » with a small polynomial degree. It should be noted that a spatially localized elastic
eigenvector, that is generally representative of the HF domain, could also be written as a sum of
« spatial filtering functions » with a small polynomial degree. Consequently, a low polynomial
degree used of the « spatial filtering functions » cannot be used to characterize the eigenvectors
in the LF, MF or HF domains. Nevertheless, the more the polynomial degree of the « spatial
filtering functions » is high, the more it can represent coupling of displacements of different
components of the structure. Hence, the polynomial degree of the « spatial filtering functions
» can be used to characterize the level of complexity for the vector space spanned by a set
of elastic eigenvectors. The more the polynomial degree of the « spatial filtering functions »
is high, the more the complexity level is important. Hereinafter, the construction of a set of
displacement vectors defined on Ωs and referred as the « Low complexity level displacements
basis » is presented in this chapter. The construction of its complementary counterpart into
the set of the elastic eigenvectors is also presented and yields the construction of the « High

21



Chapter 3. Multilevel basis

complexity level displacements basis ». Gathering the two bases together yields the « Multi-
complexity-level displacements basis » that we will shorten into « Multilevel basis ». Such an
approach has been already introduced in [129, 12], but the presentation, the developments, and
the formulated interpretations are different. Note that such an approach will be applied in this
manuscript only for the elastic eigenvectors of the structure and not for the fluid in the cockpit
of the automobile because the acoustic cavity is homogeneous with regards to such a complexity
characterization. It should be noted that, for simpler mechanical systems (with homogeneously
distributed mass), there might be coincidence between the « low complexity level displacement
basis » and the set of elastic eigenvectors in the LF domain.

3.1 Spatial filtering functions and finite-element projection

3.1.1 Set of mutually orthonormal polynomials as spatial filtering functions

Let m1, m2, . . . be real-valued multivariate monomials defined on Ωs. We then have, for all
x = (x1, x2, x3) in Ωs

mk(x) = (x1)α
1
k−α

2
k (x2)α

2
k−α

3
k (x3)α

3
k , (3.1)

in which αk = (α1
k, α

2
k, α

3
k) is the k-th three-dimensional multi-index such that 0 < |α1| ≤

|α2| . . . with |αk| = α1
k + α2

k + α3
k and such that 0 ≤ α3

k ≤ α2
k ≤ α1

k ≤ d. The number of such
monomials with degree less or equal to d is nmon = (d+ 1)(d+ 2)(d+ 3)/6. Let p1, p2, . . . , pnmon

be a set of multivariate three-dimensional polynomials defined on Ωs and written as

p`(x) =

nmon∑
k=1

mk(x) sk` , (3.2)

in which sk` is the `-th coefficient associated with the k-th monomial mk involved into the
monomial expansion of p`. By construction of the lumped mass matrix [Mlump] introduced in
Chapter 2, for each node of the finite-element mesh of domain Ωs, it is possible to associate
a discrete mass Mγ = [Mlump]JγJγ in which the Jγ-th degree of freedom corresponds to one of
the three translational displacement located at the γ-th node of the finite element mesh and
located at position xγ . The polynomials p1, p2, . . . , pnmon can also be chosen such that they are
orthogonal with respect to a metric defined by the lumped mass matrix [Mlump], such that, for
all `1 and `2 in {1, . . . , nmon},

nnodes∑
γ=1

Mγ p`1(xγ) p`2(xγ) = δ`1`2 , (3.3)

in which nnodes is the number of nodes in the finite-element mesh of Ωs and where xγ is the γ-th
node. For the sake of brevity, let us assume that there are 6 degrees of freedom at each node of
the finite element mesh of Ωs. In this case, we have ns

dof = 6nnodes. Hereinafter, the polynomials
p1, p2, . . . , pnmon will be referred as the « spatial filtering functions ».
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3.1. Spatial filtering functions and finite-element projection

3.1.2 Computation of the filtering functions values at the finite-element nodes

Let us introduce the nnodes × nnodes real-valued matrix [mlump]γγ̃ = Mγ δγγ̃ of the lumped mass
at the nodes mesh and the nnodes × nmon matrix [p]γ` = p`(xγ) of the polynomial values at the
nodes of the mesh. Note that for complex vibroacoustic model in high dimension and when
nmon � nnodes, the kernel space of [p]T is not reduced to the null space. Then, Eq. (3.3) can be
rewritten as

[p]T [mlump] [p] = [Inmon ] , (3.4)

in which [Inmon ] is the nmon × nmon identity matrix. Let [s]k` = sk` be the real nmon × nmon

matrix of the monomial decomposition coefficients of polynomials p` and let [m]γk = mk(xγ) be
the real nnodes × nmon matrix of the monomial values at the nodes of the mesh. Then, Eq. (3.2)
can be rewritten as

[p] = [m] [s] . (3.5)

Substituting Eq. (3.5) into Eq. (3.4) yields

[q]T [q] = [Inmon ] , (3.6)

where [q] = [mlump]1/2 [m] [s] is a nnodes × nmon matrix. We then have

[q] = [mlump]1/2[p] . (3.7)

From Eq. (3.6), it can be deduced that [q] is an orthogonal matrix that can directly be computed
as the economy-size QR decomposition [q] [r] of matrix [mlump]1/2[m] in which [r] is a nmon ×
nmon upper triangular matrix. Then, [s] = [r]−1 is also an upper triangular matrix if [r] is
an invertible matrix. Then, the nodal values of polynomials p1, . . . , pnmon can be calculated by
[p] = [mlump]−1/2 [q] [r]−1. Nevertheless, the computation of [p] is not required for efficiently
carrying out the filtering approach, which avoids the numerical cost to compute inverse matrix
[r]−1 and also avoids to store [r]. Only the computation of [q] is required.

3.1.3 Finite-element projection matrix associated with the filtering functions

Let u1, u2, and u3 be the Rnnodes vectors of all the degrees of freedom that correspond to trans-
lational displacement into directions e1, e2, and e3 for the nodes of the finite element mesh. Let
w be the vector of all the degrees of freedom that are not translational displacements. Let u be
the vector of all the degrees of freedom that, consequently, gathers all values of u1, u2, u3, and w.
Assembling u1, u2, u3, and w into u yields

u = [R] w +

3∑
j=1

[Tj ] uj , (3.8)

in which, for all j = 1, 2, 3, the entries of the ns
dof × nnodes matrix [Tj ] are 0 or 1 only and such

that, for all j, j′ = 1, 2, 3, i

[Tj ]
T [Tj′ ] = δjj′ [Innodes

] , (3.9)

[Tj ]
T [R] = [0] . (3.10)
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For all j = 1, 2, 3, it can then be deduced that

uj = [Tj ]
T u . (3.11)

In addition, since [Mlump] is diagonal then, for all j, j′ = 1, 2, 3, we also have

[Tj ]
T [Mlump] [Tj′ ] = δjj′ [m

lump] . (3.12)

For j = 1, 2, 3, let uj = [p] cj be the polynomial approximation of vector uj such that cj in Rnmon

minimizes c 7→ ‖[p] c−uj‖2. The solution of this least square minimization problem is well known
and can be written, using the pseudo-inverse, as

cj =
(

[p]T [mlump][p]
)−1

[p]T [mlump] uj , (3.13)

which can be rewritten, using Eqs. (3.4) and (3.11), as

cj = [p]T [mlump] [Tj ]
T u . (3.14)

Consequently, for all j = 1, 2, 3, the polynomial approximation uj of vector uj is such that

uj = [p] [p]T [mlump] [Tj ]
T u . (3.15)

Let us introduce the polynomial approximation u of the vector of the degrees of freedom u

constructed by replacing uj by its polynomial approximation uj and by replacing the non-
translational degrees of freedom w by the null vector. We then have

u = [P]u , (3.16)

in which we have introduced the ns
dof × ns

dof matrix [P] defined by

[P] =
∑
j=1

[Tj ] [p] [p]T [mlump] [Tj ]
T . (3.17)

Consequently, [P] can be computed by the usual assembling algorithm of the finite-element
method for the element matrix [p] [p]T [mlump]. In addition, the kernel of [P] is not reduced
to the null space since [P] u0 = 0 for any non-zero vector u0 written, for any vector w, as

u0 = [R] w +
3∑
j=1

[Tj ] u
j
0 with [p]T [mlump] u

j
0 = 0 . (3.18)

Indeed, left multiplying u0 by [P] and using Eqs. (3.9) and (3.10) yield

[P] u0 = [P] [R] w +
3∑
j=1

[P] [Tj ] u
j
0 , (3.19)

=
∑
j=1

[Tj ] [p] [p]T [mlump]

[0]︷ ︸︸ ︷
[Tj ]

T [R] w +
3∑
j=1

∑
j′=1

[Tj′ ] [p] [p]T [mlump]

δjj′ [Inmon ]︷ ︸︸ ︷
[Tj′ ]

T [Tj ] u
j
0 , (3.20)

=

3∑
j=1

[Tj ] [p] [p]T [mlump] u
j
0︸ ︷︷ ︸

0

, (3.21)

= 0 . (3.22)
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3.2. Low and high complexity level displacement bases

Note that for such vector it is always possible to find a vector u
j
0 such that [p]T [mlump] u

j
0 = 0

since in high dimension, the kernel of [p]T is not reduced to the null space (see Section 3.1.2).
Consequently, in all the rest of this work, matrix [P] will be referred as the matrix of the finite-
element projection associated with the spatial filtering. Note that ns

dof can be equal to several
millions and consequently, it is not possible to store the full matrix [P] in the random access
memory (RAM) or even on a hard disk.

3.2 Low and high complexity level displacement bases

3.2.1 Projected mass matrix

An unusual mass matrix is introduced and defined as the finite-element projection on the filtering
functions [P]T [Ms] [P] of mass matrix [Ms] defined in Chapter 2. It will be used for setting up an
unusual eigenvalue problem from which the both low and high complex level displacement bases
will be constructed. Nevertheless, the computation of [P]T [Ms] [P] requires the computation of
matrix [P] (which cannot be stored) and consequently of matrix [p]. Hence, computation of
[P]T [Ms] [P] is replaced by the computation of [Mproj] = [P]T [Mlump] [P] in order to take advantage
of orthogonality relations of polynomials [p]. By using Eqs. (3.4), (3.7), and (3.12), and by
introducing matrix [b] = [mlump]1/2 [q], we then have

[Mproj] =

 3∑
j=1

[Tj ] [mlump] [p] [p]T [Tj ]
T

 [Mlump]

 3∑
j′=1

[Tj′ ] [p] [p]T [mlump] [Tj′ ]
T

 , (3.23)

=
3∑

j,j′=1

[Tj ] [mlump] [p] [p]T

[mlump] δjj′︷ ︸︸ ︷
[Tj ]

T [Mlump] [Tj′ ] [p] [p]T [mlump] [Tj′ ]
T , (3.24)

=
3∑
j=1

[Tj ] [mlump] [p]

Inmon︷ ︸︸ ︷
[p]T [mlum] [p] [p]T [mlump] [Tj′ ]

T , (3.25)

=

3∑
j=1

[Tj ][m
lump]1/2[q][q]T [mlump]1/2[Tj ]

T , (3.26)

=

3∑
j=1

[Tj ][b] [b]T [Tj ]
T . (3.27)

Consequently, the projected matrix [Mproj] can be constructed by using the usual finite-element
assembling algorithm applied to the nnodes×nnodes matrix [b] [b]T . As announced in Section 3.1.2,
it requires only the computation of matrix [q] and avoids both the computation and the storage
of matrices [p] and [s]. Furthermore, Eq. (3.27) can be rewritten as

[Mproj] = [N] [N]T , (3.28)
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where the ns
dof × nmon matrix [N] is defined by

[N] = ( [T1] [b] [T2] [b] [T3] [b] ) . (3.29)

3.2.2 Conditions on the reduced-order basis for the filtering

Let N be a given positive integer such that N ≤ ns
dof and let [U] be a given ns

dof ×N matrix for
which the columns is a set of linearly independent finite-element displacements that are mutually
orthogonal with respect to the metric defined by the mass matrix [Ms] and the stiffness matrix
[Ks], such that

[U]T [Ks] [U] = [Λ] , [U]T [Ms] [U] = [IN ] , (3.30)

where [Λ] is a N ×N positive-definite diagonal matrix and where [IN ] is the N ×N unit matrix.
It should be noted that such orthogonality relations are also verified by matrix [Φs] defined in
Chapter 2. Nevertheless, they do not imply

[Ks] [U] = [Ms] [U] [Λ] . (3.31)

The spatial filtering method that is presented in this chapter can be applied to any reduced-
order basis represented by such a matrix [U] that fulfills relations in Eq. (3.30), such as [Φs] for
instance. Applying the following method with [U] = [Φs] will be carried out for defining the first
spatial filtering in Chapter 4.

3.2.3 Reduced-order projected mass matrix

The reduced-order projected mass matrix [M proj] is then introduced as the N×N matrix defined
as

[M proj] = [U]T [Mproj] [U] . (3.32)

Note that since [Mproj] is positive but not definite, then [M proj] is also positive but not definite.
Using Eq. (3.27) yields

[M proj] = [N ] [N ]T , (3.33)

in which the N × nmon matrix [N ] is written as

[N ] = [U]T [N] , (3.34)

= ( [U]T [T1] [b] [U]T [T2] [b] [U]T [T3] [b] ) , (3.35)

= ( ( [T1]T [U] )T [b] ( [T2]T [U] )T [b] ( [T3]T [U] )T [b] ) , (3.36)

= ( [Φs
1]T [b] [Φs

2]T [b] [Φs
3]T [b] ) , (3.37)

in which we have introduced the nnodes × N matrices [Uj ] = [Tj ]
T [U] for all j = 1, 2, 3. From a

numerical programming aspect, matrix [Uj ] is constructed by removing all the rows in [U] that
do not correspond to the degree of freedom of translational displacement into direction ej .
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3.2. Low and high complexity level displacement bases

3.2.4 Construction of the low complexity level displacements basis

Let S be the vector space that is spanned by columns of [U]. Let S low be the subspace of S

that is defined as the vector space of all the vectors of finite element displacements v in S with
non-zero kinetic energy 1

2 vT [Mproj] v. Let nlow be the dimension of S low, which is assumed to
be spanned by a set of nlow linearly independent vectors ulow

1 . . . ulow
nlow of dimension ns

dof . Since
S low is a subspace of S by construction, then ulow

α can be written, for all α = 1, . . . , nlow, as

ulow
α = [U] [Φproj]ϕlow

α , (3.38)

where ϕlow
1 , . . . , ϕlow

nlow are linearly independent vectors of dimension nlow and [Φproj] is a N×nlow

rectangular matrix such that [Φproj]T corresponds to the orthogonal projection operator from S

into S low for a given metric that is defined hereinafter. The objective of this section is to
construct matrix [Φproj] and the set of linearly independent vectors ulow

1 . . . ulow
nlow . Let us first

consider the following generalized eigenvalue problem: find ϕproj
α in RN and λproj

α > 0 such that

[Λ]ϕproj
α = λproj

α [M proj]ϕproj
α . (3.39)

Since matrix [M proj] is positive but not definite, then the eigenvalues are sorted in ascend-
ing order 0 < λproj

1 ≤ . . . ≤ λproj
nlow < . . . ≤ λproj

n in which rank nlow is such that λproj
α

is not finite for any α > nlow. Note that computing matrix [M proj] is not required. In-
deed, by using Eq. (3.33), the economy size Singular Value Decomposition (SVD) of matrix
[Λ]−1/2 [N ] is written as [Λ]−1/2 [N ] = [Uproj] [Σproj] [V proj]T in which [Uproj] is a rectangu-
lar N × nlow matrix with [Uproj]T [Uproj] = [Inlow ], and [V proj] is a rectangular nmon × nlow

matrix with [V proj]T [V proj] = [Inlow ] that does not need to be computed and in which [Σproj]

is a diagonal positive-definite nlow × nlow matrix. For all α = 1, . . . , nlow, we have λproj
α =

([Σproj]αα)−2 and [Φproj] = [Λ]−1/2 [Uproj] [Σproj] where [Φproj] is the N × nlow modal matrix
[Φproj] = [ϕproj

1 . . . ϕproj
nlow ]. Furthermore, we also have the two orthogonality and normalization

relations,
[Φproj]T [Λ] [Φproj] = [Σproj] , [Φproj]T [M proj] [Φproj] = [Inlow ] . (3.40)

A second eigenvalue problem is then solved for eventually constructing the low complexity level
displacements basis. It consists in finding ϕlow

α in Rn
low and λlow

α > 0 such that

[Φproj]T [Λ] [Φproj]ϕlow
α = λlow

α [Φproj]T [IN ] [Φproj]ϕlow
α , (3.41)

which can be rewritten as

[Σproj]ϕlow
α = λlow

α [Φproj]T [Φproj]ϕlow
α . (3.42)

The nlow eigenvalues 0 < λlow
1 ≤ . . . ≤ . . . ≤ λlow

nlow of the generalized eigenvalue problem de-
fined in Eq. (3.41) are finite and positive and the associated eigenvectors ϕlow

1 , . . . ,ϕlow
nlow are

assumed to be normalized with respect to matrix [Φproj]T [Φproj]. Once again, computing matrix
[Φproj]T [Φproj] is not required when nlow is large. Indeed, the SVD of matrix [Σproj]−1/2 [Φproj]T is
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written as [Σproj]−1/2 [Φproj]T = [U low] [Σlow] [V low]T in which [U low] and [V low] are two nlow×nlow

unit matrices and [Σlow] is a diagonal positive-definite nlow × nlow matrix. We then have
λlow
α = ([Σlow]αα)−2 for all α = 1, . . . , nlow and [Φlow] = [Σproj]−1/2 [U low] [Σlow] where [Φlow]

is the nlow × nlow modal matrix [Φlow] = (ϕlow
1 . . . ϕlow

nlow). Furthermore, we also have the two
orthogonality and normalization relations

[Φlow]T [Φproj]T [Λ] [Φproj] [Φlow] = [Λlow] , (3.43)

[Φlow]T [Φproj]T [Φproj] [Φlow] = [Inlow ] , (3.44)

where [Λlow] = [Σlow]−2 is a diagonal matrix. The low level complexity displacements basis
is then introduced as the set of nlow algebraically independent finite element vectors [Ulow] =

[ulow
1 . . . ulow

nlow ] defined, for all α = 1, . . . , nlow, by

ulow
α = [U] [Φproj]ϕlow

α . (3.45)

Note that such low level complexity displacements basis spans the same vector space S low as
the set of the nlow linearly independent finite element vectors [Uproj] = (u

proj
1 . . . u

proj
nlow) defined,

for all α = 1, . . . , nlow, by

uproj
α = [U]ϕproj

α . (3.46)

It should be noted that

[Ulow]T [Ks] [Ulow] = [Λlow] , [Ulow]T [Ms] [Ulow] = [Inlow ] , (3.47)

while there is only one orthogonality relation that can be built for [Uproj],

[Uproj]T [Ks] [Uproj] = [Λproj] . (3.48)

Consequently, [Ulow] fulfills orthogonality relations in Eq. (3.47) and then the spatial filtering
method can also be recurrently applied to [Ulow] by replacing [U] with [Ulow] in the previous
developments, which is not possible for Uproj. Such a recurrence will be used in Chapter 4 for
introducing the second spatial filtering. Despite relations in Eq. (3.47) seem to be very similar
to the relations in Eq.(2.30), it should be noted that, in general, λlow

α 6= λs
α and ulow

α 6= ϕs
α

for all α = 1, . . . , nlow. Consequently, in general, the low complexity level displacements basis
[Uproj] does not correspond to elastic modes. Furthermore, it will be more convenient for the
next chapters to introduce matrix [Qlow] = [Φproj] [Φlow]. By using Eq. (3.44), we then have

[Qlow]T [Qlow] = [Inlow ] . (3.49)

We then have

[Ulow] = [U] [Qlow] . (3.50)
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3.2.5 Construction of the high complexity level displacements basis

Since nlow is usually very small with respect to N , then vector space S low might not allow an
accurate representation of any finite element solution u(ω) that is represented by the basis made
up of the columns of [U]. It is the reason why a second displacement basis is introduced and
that is such that it spans the vector space S high defined as the complement vector space of
S low into S with respect to the metric associated with the mass finite element matrix [Ms]. Let
nhigh = N − nlow and let [Uhigh] = (u

high
1 . . . u

high
nhigh) be the ns

dof × nhigh matrix whose columns
form a set of mutually linearly independent vectors u

high
1 , . . . , u

high
nhigh that span S high. Hereinafter,

[Uhigh] will be referred as the high complexity level displacements basis. As S high is a subspace
of S s (by construction), then for all α = 1, . . . , nhigh, u

high
α can be written as

uhigh
α = [U] [Φcomp]ϕhigh

α , (3.51)

where ϕhigh
1 , . . . , ϕhigh

nhigh are linearly independent vectors belonging to Rn
high and [Φcomp] is any

N × nhigh rectangular matrix such that

[Φcomp]T [Φcomp] = [Inhigh ] . (3.52)

Since by construction, u
high
α is normal (for the metric defined by matrix [Ms]) to subspace S proj,

for all α = 1, . . . , nhigh, we have

[Uproj]T [Ms] uhigh
α = O . (3.53)

Since [U]T [Ms] [U] = [IN ] then Eq. (3.53) is rewritten as

[Φproj]T [Φcomp]ϕhigh
α = O . (3.54)

Since Eq. (3.54) is verified for the vectors ϕhigh
1 , . . . , ϕhigh

nhigh in Rn
high , which are linearly indepen-

dent, we have
[Φproj]T [Φcomp] = [0nlow×nhigh ] , (3.55)

where [0nlow×nhigh ] is the nlow × nhigh zero matrix. Taking into account Eqs. (3.52) and (3.55),
then matrix [Φcomp] can be defined as the real matrix whose columns are the right-singular
vectors associated with the nhigh zero singular values of the SVD of matrix [Φproj]T . The linearly
independent vectors ϕhigh

1 , . . . , ϕhigh
nhigh in Rn

high can arbitrarily be defined as the solutions of the
following generalized eigenvalue problem: find ϕhigh

α in Rn
high and λhigh

α > 0 such that(
[Φcomp]T [U]T [Ks] [U] [Φcomp]

)
ϕhigh
α = λhigh

α

(
[Φcomp]T [U]T [Ms] [U] [Φcomp]

)
ϕhigh
α , (3.56)

which can be rewritten as

[Φcomp]T [Λ] [Φcomp]ϕhigh
α = λhigh

α ϕhigh
α . (3.57)

Consequently, we have the following orthogonality relations

[Uhigh]T [Ks] [Uhigh] = [Λhigh] , [Uhigh]T [Ms] [Uhigh] = [Inhigh ] , (3.58)

29



Chapter 3. Multilevel basis

where [Λhigh] is a positive-definite diagonal matrix whose non-zero entries are the eigenvalues
λhigh

1 , . . . , nhigh and where [Φhigh] = (ϕlow
1 . . . ϕlow

nhigh) is such that

[Φhigh]T [Φhigh] = [IN ] , (3.59)

in which [IN ] is the identity matrix with dimensions N × N . Furthermore, it will be more
convenient for the next chapters to introduce matrix [Qhigh] = [Φcomp] [Φhigh]. We then have

[Uhigh] = [U] [Qhigh] . (3.60)

Using Eqs. (3.52) and (3.59), it can be deduced that

[Qhigh]T [Qhigh] = [Inhigh ] . (3.61)

In addition, using Eq. (3.55) yields

[Qlow]T [Qhigh] = [0nlow×nhigh ] . (3.62)

Finally, it is important to note that, since [Uhigh] fulfills orthogonality relations in Eq. (3.58) then
the spatial filtering method can be recurrently also applied to [Uhigh] by replacing [U] with [Uhigh]

in the previous developments. Such a recurrence will be used in Chapter 4 for introducing the
second spatial filtering.
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Multilevel reduced-order computational model
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MF domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

In this chapter, the methodology presented in Chapter 3 is used to construct a multilevel
reduced-order computational model. Such multilevel reduced-order computational model is con-
structed by carrying out recursively two successive spatial filterings to the elastic eigenvectors of
the structure, which belong to the LF (Low Frequency) and MF (Medium Frequency) frequency
domains. For such a construction, it is assumed that the upper and lower frequency bounds ωL,
ωM, and ωH of the LF, MF, and HF domains have already been defined and are known. The
strategy and the principle for the recursive two successive spatial filterings are shown in Fig. 4.1.
A first spatial filtering is carried out for [U] = [Φs

LM] with a polynomial degree d (see Chapter 3)
equal to dM that characterizes the complexity level of the elastic eigenvectors in the MF domain
in order to filter out any displacements contribution with complexity level higher than those in
the MF domain. This first spatial filtering yields the two displacements bases denoted by [ULM]

and [UH] that correspond to [Ulow] and [Uhigh] introduced in Chapter 3. It should be noted that
the subscript H is used to remind that those displacements vectors have the highest complexity
level. Hence, the subscript H does not refer to the HF domain. The second spatial filtering is
carried by replacing [U] introduced in Chapter 3 by [ULM] and with a polynomial degree d equal
to dL that characterizes the complexity level of the elastic eigenvectors in the LF domain. This
second spatial filtering yields two displacements bases denoted by [UL] and [UM] that correspond
to [Ulow] and [Uhigh] introduced in Chapter 3. Hereinafter, the complexity level of the set of
elastic eigenvectors in a frequency domain (LF, MF or HF) will be shortened in « complexity
level of the frequency domain (LF, MF or HF) ».
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Chapter 4. Multilevel reduced-order computational model

Figure 4.1 – Two spatial filterings to construct the multilevel displacement basis

4.1 Construction of the multilevel displacements basis for the LF
and MF domains

As previously said, the upper and lower frequency bounds of the LF, MF, and HF domains are
known. The spatial filtering method presented in Chapter 3 is then carried out for a polynomial
degree parameter d equal to dM (first spatial filtering) and then equal to dL (second spatial
filtering). The calculation of the values dM and dL is presented in Chapter 5.

4.1.1 Complexity level of LF, MF, and HF domains

In order to determine the value dM of d for the first spatial filtering, we propose to study the
graph of d 7→ convM(d) where, for all d that is positive, convM(d) is equal to the number nlow
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of non-zero eigenvalues introduced in Chapter 3 for [U] = [Φs
M]. Then, the value dM is fixed as

the smallest value of d such that convM(d) > nH (1 − εM) in which εM is a tolerance threshold
close to zero. Such a method to determine the value dM of d allows the characterization by
polynomial parameter d of the complexity level of the MF domain. Then, using the spatial
filtering with d = dM would allow separating every displacement contributions that have a
complexity level higher than the complexity level of the MF domain. In order to determine the
value dL of d for the second spatial filtering, we propose to study the graph of d 7→ convL(d)

where, for all d that is positive, convL(d) is equal to the number nlow of non-zero eigenvalues
introduced in Chapter 3 for [U] = [Φs

L]. Then, the value dL is fixed as the smallest value of
d such that convL(d) > nL (1 − εL) in which εL is a tolerance threshold close to zero. Such
a method to determine the value dL of d allows the characterization by polynomial parameter
d of the complexity level of the LF domain. Then, using the spatial filtering with d = dL

would allow for separating the displacement contributions that have a complexity level higher
than the complexity level of the LF domain. Furthermore, due to the random access memory
(RAM) limitation of the computers, there is a maximal value dmax for the polynomial parameter
d that can be used in practice to compute matrix [q] (see Section 3.1.2) when performing the QR
decomposition of matrix [mlump]1/2[m] as explained in Section 3.1.2. At the time this work has
been carried out, we found out that dmax = 40 with Matlab on a 1500 Gigabytes RAM machine.
Such a relatively high value for dmax makes it possible to estimate the complexity level of the
HF domain by calculating a value dH of d. It will be carried out by studying the graph of the
function d 7→ convH(d) where, for all d > 0, convH(d) is equal to the number nlow of non-zero
eigenvalues introduced in Chapter 3 with [U] = [Φs

H]. Then, the value dH is fixed as the smallest
value of d such that convH(d) > nH (1− εH) in which εH is a tolerance threshold much less than
1 (close to zero). Such a method to determine the value dH of d allows the characterization by
polynomial parameter d of the complexity level of the HF domain but it will not be used for
constructing the multilevel reduced-order computational model.

4.1.2 First spatial filtering

For a given value dM of d, the spatial filtering method presented in Chapter 3 is performed again
with [U] = [ΦLM] in order to construct two matrices [Ulow] and [Uhigh] that are renamed as [ULM]

and [UH] to avoid any confusion with the previous spatial filtering. Let nULM and nUH be the
number of columns of matrices [ULM] and [UH]. From Eq. (3.50), matrix [ULM] can be rewritten
as

[ULM] = [Φs
LM] [QLM] , (4.1)

where the matrix [QLM] is the matrix [Qlow] in Eq. (3.50) with [U] = [Φs] and d = dM. Conse-
quently, Eq. (3.49) yields

[QLM]T [QLM] = [InULM
] , (4.2)
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in which [InULM
] is the identity matrix of dimensions nULM × nULM . In addition, by using

Eq. (3.60), the matrix [UH] can be rewritten as

[UH] = [U] [QH] , (4.3)

where the matrix [QH] is the matrix [Qhigh] in Eq. (3.60) with [U] = [ULM] and d = dL. Conse-
quently, Eq. (3.61) yields

[QH]T [QH] = [InUH
] , (4.4)

in which [InUH
] is the identity matrix of dimensions nUH × nUH . In addition, from Eq. (3.62), it

can be deduced that
[QLM]T [QH] = [0nULM

×nUH
] , (4.5)

where [0nULM
×nUH

] is the nULM ×nUH zero matrix. Each column of matrix [UH] is a displacement
vector with a complexity level higher than the complexity level of the MF domain. In the case
of simple structures, matrix [UH] is « empty ». Nevertheless, in the case of complex structures as
automobiles, it can be expected that matrix [UH] is almost never « empty » because very local
displacements are observed even in the LF domain.

4.1.3 Second spatial filtering

For a given value dL of d, the spatial filtering method presented in Chapter 3 is carried again
with [U] = [ULM] to construct two matrices [Ulow] and [Uhigh] respectively that are renamed as
[UL] and [UM] respectively to avoid any confusion with the previous spatial filtering. Let nUL and
nUM respectively be the number of columns of matrices [UL] and [UM]. From Eq. (3.50), matrix
[ULM] can be rewritten as

[UL] = [U] [QL] (4.6)

= [ULM] [QL] (4.7)

= [Φs
LM] [QLM] [QL] , (4.8)

where matrix [QL] is the matrix [Qlow] in Eq. (3.50) for [U] = [ULM] and d = dL. Consequently,
Eq. (3.61) yields

[QL]T [QL] = [InUL
] , (4.9)

in which [InUL
] is the identity matrix of dimensions nUL × nUL . Each column of matrix [UL] is a

displacement vector with a complexity level of the same order than the complexity level of the LF
domain. In case dL is less than dM, which is usually the case, then the subscript L reminds that
the vectors in the columns of [UL] gather the vectors with the lowest complexity level. Hence,
the subscript L does not refer to the LF domain. In addition, from Eq. (3.60), matrix [UM] can
be rewritten as

[UM] = [U] [QM] (4.10)

= [ULM] [QM] (4.11)

= [Φs
LM] [QLM] [QM] , (4.12)
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where the matrix [QM] is the matrix [Qhigh] in Eq. (3.60) with [U] = [ULM] and d = dL. Conse-
quently, Eq. (3.61) yields

[QM]T [QM] = [InUM
] , (4.13)

in which [InUM
] is the identity matrix of dimensions nUM×nUM . Each column of matrix [UM] is a

displacement vector with a complexity level of higher order than the complexity level of the LF
domain but less than the complexity level of the columns of [UH]. The subscript M reminds that
the vectors in the columns of [UM] gather the vectors with a medium complexity level. Hence,
the subscript M does not refer to the MF domain.

4.2 Construction of the multilevel reduced-order model in the LF
and MF domains

An approximation of the finite-element displacement vector u(ω) is then written with respect to
its expansion on the bases represented by matrices [UL], [UM], and [UH],

u(ω) = [UL] qs
L(ω) + [UM] qs

M(ω) + [UH] qs
H(ω) . (4.14)

This expansion can be rewritten as

u(ω) = [ULMH] qs
LMH(ω) , (4.15)

where

[ULMH] =
(

[UL] [UM] [UH]
)

, qs
LMH =

qs
L(ω)

qs
M(ω)

qs
M(ω)

 . (4.16)

By using Eqs. (4.1), (4.6), and (4.10), the matrix [ULMH] can be rewritten as

[ULMH] = [Φs
LM]

(
[QLM] [QL] [QLM] [QM] [QH]

)
(4.17)

= [Φs
LM] [QLMH] , (4.18)

in which
[QLMH] =

(
[QLM] [QL] [QLM] [QM] [QH]

)
. (4.19)

We then obtain the multilevel reduced-order model(
−ω2[M s

LMH] + iω[Ds
LMH] + [Ks

LMH] [CLMH]

ω2[CLMH]T −ω2[M f ] + iω[Df ] + [Kf ]

) (
qs
LMH(ω)

qf(ω)

)
=

(
fsLMH(ω)

O

)
, (4.20)

where
[M s

LMH] = [ULMH]T [Ms] [ULMH] = [QLMH]T [M s
LM] [QLMH] , (4.21)

[Ds
LMH] = [ULMH]T [Ds] [ULMH] = [QLMH]T [D s

LM] [QLMH] , (4.22)

[Ks
LMH] = [ULMH]T [Ks] [ULMH] = [QLMH]T [K s

LM] [QLMH] , (4.23)
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[CLMH] = [ULMH]T [C][Φf ] = [QLMH]T [CLM] , (4.24)

fsLMH(ω) = [ULMH]T Fs(ω) = [QLMH]T fs
LM(ω) , (4.25)

and where the generalized matrices [M s
LM], [D s

LM], [K s
LM], [CLM], and the generalized vector fs

LM

are introduced in Section 2.4.5. Using Eqs. (4.2), (4.4), (4.5), (4.9), and (4.13) yields

[QLMH]T [QLMH] = [InLM ] . (4.26)

Consequently, [MLMH] is equal to the identity matrix [InLM ] and therefore, it is a diagonal matrix,
which is not the case, in general, for matrices [DLMH] and [KLMH].
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Numerical applications for the multilevel
reduced-order computational model
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In this chapter, a numerical application is presented for the methodology presented in Chap-
ters 3 and 4. In the following section, the three frequency bounds ωL, ωM, and ωH (see Sec-
tion 2.4.5) are determined by analyzing the FRF for a given excitation (input) and for a set of
observation points (outputs). Then the multilevel reduced-order computational model is con-
structed and validated by comparison with the classical reduced-order computational model in
Section 2.4.5.

5.1 Description of the full-order computational model

This full-order computational model is a three-dimensional finite-element model of an automobile
(see Fig. 5.1) The total number of degree of freedom is ns

dof + nf
dof = 19 984 315. An intensive

computational effort has been carried out to calculate the ns = 25 685 elastic modes for the
structure and the nf = 4 427 elastic modes for the acoustic cavity in the whole LF, MF and HF
domains (0 to 2000 Hz) allowing the construction of matrices [Φs] and [Φf ]. The excitations are
located in the structure at four points (clvd, clvg, clrd and clrg) as shown in Fig. 5.1. They have
been chosen because they represent engine supports. Figure 5.1 also shows the location of the
observation points for the structure and the cavity. For the structure, they correspond to the
flooring points (ccuvg and ccurg) and again the points clvd and clvg. For the acoustic cavity,
the observation points (avd, avg, ard and arg) are located at to the ear of the passengers.

37
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Figure 5.1 – Excitation (input) and observation (output) points for calculated FRF. On the right, observation

points for the acoustic cavity which corresponds to the four hearing points (avd, avg, ard and arg) of the four

passengers in the passengers. On the left, excitation points (clvd and clvg) and observation points (ccuvg, ccurg

and again clvd, clvg) for the structure.

5.2 Frequency domain limits ωL, ωM and ωH

The frequency limits each frequency domains (LF, MF and HF) have been determined by ana-
lyzing the FRF for a given input (excitation at point clvg and in X-direction) and 12 outputs
(observations on ccuvg, ccurg, clvd and clvg in X−, Y−, and Z−directions). Figures 5.2 to 5.7
show the graph of the mean value of these 12 FRF with different frequency scaling. Compar-
ing Figs. 5.2 and 5.3 does not allow a clear conclusion on the value of ωL. Indeed, the upper
limit of the LF domain is unclear for such a structure: it could be ω/2π = 30 Hz as well as
ω/2π = 200 Hz. Comparing Figs. 5.2, 5.6, and 5.7 allows an estimation of the upper limit of the
MF domain with ωL/2π = 800 Hz and of course, the upper limit of the validity domain of the
reduced-order computational model is ωH/2π = 2000 Hz. The determination of the value dM

(resp. dL) of polynomial parameter d for the first (resp. second) spatial filtering does depend
on the eigenvectors belonging to the MF (resp. LF) domain, then it is clear that uncertainty
on the values of ωM (resp. ωL) yields uncertainties on the value of dM (resp. dL) as well on the
construction of the multilevel reduced-order computational model. It is the reason why two con-
structions of the multilevel displacement bases [UL], [UM] and [UH] are presented in the following
yielding to two construction of the multilevel reduced-order computational model. The first case
will correspond to ω/2π = 30 Hz and the second case will correspond to ω/2π = 200 Hz. Note
that in the frequency domain [0, ωM], there are nLM = 7470 structural modes and nf

LM = 419

acoustic modes.

5.3 Complexity level for the HF domain

As presented in Section 4.1.1, the complexity level of the HF domain is quantified by the value dH

of polynomial degree parameter d in studying the graph of mapping d 7→ convH(d) (see Fig. 5.6).
It can be seen that dH = 32. Nevertheless, it can also be seen that the values of convH(d) are
not negligible for small values of d. A possible interpretation is that there is no cutoff value

38



5.4. Case 1: Multilevel reduced-order model with ωL/2π = 30 Hz

Frequency -Hz
0 500 1000 1500 2000

A
c
c
e

le
ra

ti
o

n
 d

B
 (

re
f1

)

40

50

60

70

80

90

100
FRF

Figure 5.2 – Graph of the mean value of the 12 frequency response functions for a same excitation in X-direction

at a point clvg and observation in X−, Y−, and Z−directions at points ccuvg, ccurg, clvd and clvg. Vertical axis:

acceleration. Horizontal axis: frequency f = ω/2π in Hz for f ∈ [0, 2000]Hz.

dcutoff
H of d, which can filter out all the eigenvectors in the HF domain into the columns of matrix

[Uhigh]. Consequently, it seems impossible to consider the HF domain as being only a purely
high complexity level domain. We should observe a superposition of large structural component
displacements on very local displacements. Note that it is not expected that the values dL and
dM to be higher than dH since it would mean that the complexity level of either the LF or MF
domain is greater than the complexity level of the HF domain.

5.4 Case 1: Multilevel reduced-order model with ωL/2π = 30 Hz

In this section, the value ωL is assumed to be equal to 30×2π rad/s. As presented in Section 4.1.1,
the complexity level of the LF (resp. MF) domain is quantified by the value dL (resp. dM) of
polynomial degree parameter d in studying the graph of mapping d 7→ convL(d) (resp. d 7→
convM(d)) that is shown in Fig. 5.7. It can be seen that dM = 29 and dL = 3 that are lesser than
dH is in accordance with the usual expertise in structural dynamics in which complexity level of
the HF domain is higher than the complexity level of the MF, which is higher than the complexity
level of the LF domain. Nevertheless, it also can be seen that the values of d 7→ convM(d) are
not negligible for small values of d as it is the case for d 7→ convM(d). Once again, a possible
interpretation if that there is no cutoff value dcutoff

M of d, which can filter out all the eigenvectors in
the MF domain into the columns of matrix [Uhigh]. Consequently, it seems impossible to consider
the MF domain as being a purely (moderate) high complexity level domain only. Again, it can
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Figure 5.3 – Graph of the mean value of the 12 frequency response functions for a same excitation
in X-direction at point clvg and observation in X−, Y−, and Z−directions at points ccuvg,
ccurg, clvd and clvg. Vertical axis: acceleration. Horizontal axis: frequency f = ω/2π in Hz for
f ∈ [0, 200]Hz.

be expected to observe a superposition of large structural component displacements on more or
less local displacements. In short, for constructing the multilevel reduced-order computational
model, the parameters are ωL = 30/2π, ωM = 800/2π, dL = 3 and dM = 29. The number of
columns of [UL] (resp. [UM] and [UH]) is nUL = 60 (resp. nUM = 7 383 and nUH = 27). Three
multilevel reduced-order computational models have been used by removing some columns of
[ULMH] = ([UL] [UM] [UH]). Figure 5.8 (resp. Fig. 5.9) presents the FRF for an excitation
at point clvg in X-direction and an observation at point ccvg (resp. ccurg) in X-direction
for [ULMH] = [UM] (green lines), [ULMH] = [UL] (red lines), [ULMH] = [UH] (cyan lines, but
out of range on the figure) and [ULMH] = ([UL] [UM] [UH]) (black lines). It has previously been
checked that the FRF calculated with the multilevel reduced-order computational model with
[ULMH] = ([UL] [UM] [UH]) perfectly fits the FRF calculated by the reduced-order computational
model in Section 2.4.5. It can be seen that for [ULMH] = [UM], the FRF is almost accurately
well calculated into the whole MF domain and that for [ULMH] = [UL], the FRF is almost
accurately well calculated into the LF domain (up to 58.13 Hz for Fig. 5.8 and up to 77.11 Hz
for Fig. 5.9). Such a result yields the conclusion that, at least for the chosen parameters ωL and
ωM, [UM] spans almost the same vector space as the elastic eigenvectors in the MF domain (we
have nLM ' nUM). Figure 5.10 presents the FRF for an excitation at point clvg in X-direction
and four observations of the pressure (in dB) at points avg (top, left), arg (top, right), avd
(bottom, left) and ard (bottom, right) for [ULMH] = [UM] (green lines), [ULMH] = [UL] (red lines),
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Figure 5.4 – Graph of the mean value of the 12 frequency response functions for a same excitation
in X-direction at a point clvg and observation in X−, Y−, and Z−directions at points ccuvg,
ccurg, clvd and clvg. Vertical axis: acceleration. Horizontal axis: frequency f = ω/2π in Hz for
f ∈ [200, 800]Hz.

[ULMH] = [UH] (cyan lines) and [ULMH] = ([UL] [UM] [UH]) (black lines). It has previously been
checked that this FRF calculated with the multilevel reduced-order computational model with
[ULMH] = ([UL] [UM] [UH]) perfectly fits the FRF calculated by the reduced-order computational
model in Section 2.4.5. Nevertheless, it can be seen in Fig. 5.10 that none of the basis [UL],
[UM] and [UH] representing displacement vector u(ω) is able to account by itself only of the
vibroacoustics for such a coupled fluid-structure system.

5.5 Case 2: Multilevel reduced-order model with ωL/2π = 200 Hz

In this section, the value ωL is assumed to be equal to 200×2π rad/s. The complexity level of the
LF (resp. MF) domain is quantified by the value dL (resp. dM) of polynomial degree parameter
d in studying the graph of mapping d 7→ convL(d) (resp. d 7→ convM(d)) that is shown in
Fig. 5.11. It can be seen that dM = 22 and dL = 14 that are still lesser than dH is in accordance
with the usual expertise in structural dynamics in which complexity level of the HF domain is
higher than the complexity level of the MF, which is higher than the complexity level of the LF
domain. As for case 1, it also can be seen that the values of d 7→ convM(d) are not negligible for
small values of d as it is the case for d 7→ convM(d). Again, a possible interpretation if that there
is no cutoff value dcutoff

M of d, which can filter out all the eigenvectors in the MF domain into the
columns of matrix [Uhigh]. Consequently, it seems impossible to consider the MF domain as being

41



Chapter 5. Numerical applications for the multilevel reduced-order computational model

Frequency -Hz
800 1000 1200 1400 1600 1800 2000

A
c
c
e

le
ra

ti
o

n
 d

B
 (

re
f1

)

40

50

60

70

80

90

100
FRF

Figure 5.5 – Graph of the mean value of the 12 frequency response functions for a same excitation
in X-direction at a point clvg and observation in X−, Y−, and Z−directions at points ccuvg,
ccurg, clvd and clvg. Vertical axis: acceleration. Horizontal axis: frequency f = ω/2π in Hz for
f ∈ [800, 2000]Hz.

a purely (moderate) high complexity level domain only. Again, it can be expected to observe a
superposition of large structural component displacements on more or less local displacements.
Again, for constructing the multilevel reduced-order computational model, the parameters are
ωL = 200/2π, ωM = 800/2π, dL = 14 and dM = 22. The number of columns of [UL] (resp.
[UM] and [UH]) is nUL = 2 040 (resp. nUM = 4 698 and nUH = 742). It should be noted that the
number of columns of [UL] and [UH] is higher than for case 1. Three multilevel reduced-order
computational models have been used by removing some columns of [ULMH] = ([UL] [UM] [UH]).
Figure 5.12 (resp. Fig.5.13) presents the FRF for an excitation at point clvg in X-direction

and an observation at point ccvg (resp. ccurg) in X-direction for [ULMH] = [UM] (green lines),
[ULMH] = [UL] (red lines), [ULMH] = [UH] (cyan lines) and [ULMH] = ([UL] [UM] [UH]) (black
lines). It has previously been checked that the FRF calculated with the multilevel reduced-order
computational model with [ULMH] = ([UL] [UM] [UH]) perfectly fits the FRF calculated by the
reduced-order computational model in Section 2.4.5. At opposite of case 1, it can be seen that
for [ULMH] = [UM], the FRF is no longer accurately well calculated into the whole MF domain
and that for [ULMH] = [UL], the FRF is almost accurately well calculated into the LF domain up
to 338.9 Hz. Such a result yields the conclusion that, in general and at opposite of case 1 that
was a special case, [UM] does not span the same vector space as the elastic eigenvectors in the
MF domain (note that we have nLM 6' nUM). Figure 5.14 presents the FRF for an excitation
at point clvg in X-direction and four observations of the pressure (in dB) at points avg (top,
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Figure 5.6 – Graph of mapping d 7→ convH(d). Horizontal axis: polynomial degree d. Vertical
axis: Number of columns of matrix [Ulow] for [U] = [ΦH].

left), arg (top, right), avd (bottom, left) and ard (bottom, right) for [ULMH] = [UM] (green
lines), [ULMH] = [UL] (red lines), [ULMH] = [UH] (cyan lines) and [ULMH] = ([UL] [UM] [UH]) (black
lines). It has previously been checked that this FRF calculated with the multilevel reduced-
order computational model with [ULMH] = ([UL] [UM] [UH]) perfectly fits the FRF calculated by
the reduced-order computational model in Section 2.4.5. Nevertheless, as for case 1, it can be
seen in Fig. 5.14 that none of the basis [UL], [UM] and [UH] for representing displacement vector
u(ω) is able to account by itself only of the vibroacoustics for such a coupled fluid-structure
system.
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Figure 5.7 – Complexity levels for the case 1. On the left, graph of d 7→ convM(d). On the right,
graph of d 7→ convL(d). Horizontal axis: polynomial degree d. Vertical axis: Number of columns
of matrix [Ulow] for [U] = [ΦM] (on the left) and for [U] = [ΦM] (on the right).
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Figure 5.8 – Case 1: FRF for an excitation at point clvg in X-direction and an observation at
point ccvg X-direction for [ULMH] = [UM] (green lines), [ULMH] = [UL] (red lines), [ULMH] = [UH]
(cyan lines, but out of range on the figure) and [ULMH] = ([UL] [UM] [UH]) (black lines). Horizontal
axis: frequency ω/2π in Hz. Vertical axis: Acceleration in dB.
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Figure 5.9 – Case 1: FRF for an excitation at point clvg in X-direction and an observation at
point ccurg in X-direction for [ULMH] = [UM] (green lines), [ULMH] = [UL] (red lines), [ULMH] =
[UH] (cyan lines, but out of range on the figure) and [ULMH] = ([UL] [UM] [UH]) (black lines).
Horizontal axis: frequency ω/2π in Hz. Vertical axis: Acceleration in dB.
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Figure 5.10 – Case 1: FRF for an excitation at point clvg in X-direction and the four observations
of pressure (in dB) at points avg (top, left), arg (top, right), avd (bottom, left) and ard (bottom,
right) for [ULMH] = [UM] (green lines), [ULMH] = [UL] (red lines), [ULMH] = [UH] (cyan lines, but
out of range on the figure) and [ULMH] = ([UL] [UM] [UH]) (black lines). Horizontal axis: frequency
ω/2π in Hz. Vertical axis: Pressure in dB.
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Figure 5.11 – Complexity levels for the case 2. On the left, graph of d 7→ convM(d). On the
right, graph of d 7→ convL(d). Horizontal axis: polynomial degree d. Vertical axis: Number of
columns of matrix [Ulow] for [U] = [ΦM] (on the left) and for [U] = [ΦM] (on the right).
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Figure 5.12 – Case 2: FRF for an excitation at point clvg in X-direction and an observation at
point ccvg in X-direction for [ULMH] = [UM] (green lines), [ULMH] = [UL] (red lines), [ULMH] =
[UH] (cyan lines, but out of range on the figure) and [ULMH] = ([UL] [UM] [UH]) (black lines).
Horizontal axis: frequency ω/2π in Hz. Vertical axis: Acceleration in dB.
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Figure 5.13 – Case 2: FRF for an excitation at point clvg in X-direction and an observation at
point ccurg in X-direction for [ULMH] = [UM] (green lines), [ULMH] = [UL] (red lines), [ULMH] =
[UH] (cyan lines, but out of range on the figure) and [ULMH] = ([UL] [UM] [UH]) (black lines).
Horizontal axis: frequency ω/2π in Hz. Vertical axis: Acceleration in dB.
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Figure 5.14 – Case 2: FRF for an excitation at point clvg in X-direction and four observations
of pressure (in dB) at points avg (top, left), arg (top, right), avd (bottom, left) and ard (bottom,
right) for [ULMH] = [UM] (green lines), [ULMH] = [UL] (red lines), [ULMH] = [UH] (cyan lines, but
out of range on the figure) and [ULMH] = ([UL] [UM] [UH]) (black lines). Horizontal axis: frequency
ω/2π in Hz. Vertical axis: Pressure in dB.
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Chapter 6

Stochastic multilevel reduced-order
computational model in vibroacoustics
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The objective of this chapter is to take into account the model uncertainties induced by
the modeling errors by using the nonparametric probabilistic approach and to construct the
stochastic multilevel reduced-order computational model in vibroacoustics. The nonparametric
probabilistic approach for the model uncertainties (see [114, 14]) consists in directly substituting
the matrices of the multilevel reduced-order computational model presented in Chapter 4 by
random matrices. The probabilistic model of these random matrices has been constructed by
the use of the MaxEnt principle. The hyperparameters of the probabilistic model for each random
matrix consist of the mean value of the random matrix and a dispersion coefficient that controls
the level of statistical fluctuations, which reflect the level of uncertainties.
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6.1 Random matrix theory

In this section, we briefly present important ensembles of random matrices. More details can be
found in [114, 14].

6.1.1 Random Matrix Ensemble SG+
0

This ensemble is the most fundamental set of random matrices that are used in the construction.
Let n be any positive integer. A random matrix [G0] in SG+

0 with values in M+
n (R) and such that

E{[G0]} = [In] , E{log(det([G0]))} = νG0 , |νG0 | < +∞ , (6.1)

in which E{·} is the mathematical expectation operator, [In] is the identity matrix of dimension
n × n and the condition E{log(det([G0]))} = νG0 allows the invertibility and the integration of
random inverse matrix [G0]−1 to be satisfied. The probability density function of random matrix
[G0] defined on Sn = M+

n (R) is then written as

p[G0]([G]) = 1n([G]) κ (det[G])(n+1) 1−δ2
2δ2 e−

n+1

2δ2
tr[G] . (6.2)

The normalisation constant κ is defined by

κ = (2π)−n(n−1)/4
(n+ 1

2δ2

)n(n+1)

2δ2
( n∏
j=1

Γ(
n+ 1

2δ2
+

1− j
2

)
)−1

, (6.3)

where, for all z > 0, Γ(z) =
∫ +∞

0 tz−1e−tdt. Hence, [G0] is defined by an unique parameter δ

that control the statistical dispersion and with values in [ 0 ,
√

n+1
n+5 ]. This dispersion coefficient

is defined as

δ =

{
E{||[G0]− E{[G0]}||2F }

||E{[G0]}||2F

} 1
2

. (6.4)

Since random matrix [G0] is almost surely positive definite, then there exists an unique random
upper triangular matrix denoted as [L] that is such that the Cholesky factorization of random
matrix [G0] is written as

[G0] = [L]T [L] , almost surely . (6.5)

It is proven that random entries [L]jj′ of random upper triangular matrix [L] are such that

[L]j′j = ξVj′j , for j′ < j ≤ n , (6.6)

[L]jj = ξ
√

2h(ηj , Vjj) for j ≤ n , (6.7)

where {Vj′j , 1 ≤ j′ ≤ j ≤ n} is a set of normalized Gaussian real-valued random variables that
are mutually independent. The real-valued parameters ξ and ηj are such that ξ = δ(n+1)−

1
2 and

ηj = n+1
2δ2

+ 1−j
2 . The function h is written as h(η, V ) = F−1

Γη
(FV (v)) where FV is the cumulative

distribution function of a normalized Gaussian real-valued random variable V and where FΓη is
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6.2. Classical nonparametric stochastic reduced-order computational model

the cumulative distribution function of the Gamma real-valued random variable Γη of parameter
η. The independent realizations [G0(θ1)], . . . , [G0(θnR)] of random matrix [G0] are constructed by
using Eqs. (6.5), (6.6) and (6.7) and independent realisations vj′j(θ1), . . . , vj′j(θnR) of random
variable Vj′j . Consequently, for all 1 ≤ r ≤ nR and for all j′ < j ≤ n, we have

[G0(θr)] = [L(θr)]
T [L(θr)] , [L(θr)]j′j = ξvj′j(θr) , [L(θr)]jj = ξ

√
2h(ηj , vjj(θr)) . (6.8)

6.1.2 Ensemble SErect

Let n and m be any positive integer. Let SErect be the set of the Mmn(R)-valued second-order
random matrix [Arect]. Let [Arect] = E{[Arect]} be the mean value of random matrix [Arect] for
which the null space is assumed to be only the zero vector in Rn. We then have

[Arect] = [U ][A] , (6.9)

where [A] ∈ M+
n (R) and [U ] ∈ Mmn(R) such that [U ]T [U ] = [In]. Such a factorization can directly

be deduced from an SVD of matrix [Arect]. The ensemble SErect is then constructed as the set
of the random matrices [Arect] that are written as

[Arect] = [U ][A] , (6.10)

where [A] is written as [A] = [LA]T [G0] [LA] in which the deterministic upper triangular matrix
[LA] is such that [LA]T [LA] = [A] and where [G0] is a random matrix in ensemble SE+

0 for which
the dispersion coefficient is δA. The independent realizations [Arect(θ1)], . . . , [Arect(θnR)] of
random matrix [Arect] are constructed by using independent realizations [G0(θ1)], . . . , [G0(θnR)]

of random matrix [G0] ∈ SG+
0 and Eq. (6.10),

[Arect(θr)] = [U ] [LA]T [G0(θr)] [LA] . (6.11)

6.2 Classical nonparametric stochastic reduced-order computa-
tional model

The classical nonparametric stochastic reduced-order computational model is constructed by sub-
stituting the deterministic generalized matrices [CLM], [M s

LM], [D s
LM], and [K s

LM] of the reduced-
order computational vibroacoustic model presented in Section 2.4.5 by the random matrices
[CLM], [Ms

LM], [Ds
LM], and [Ks

LM]. Note that for such a stochastic computational model, it is
assumed that there is no model uncertainties in the acoustic cavity but only on the structure and
on its coupling with the acoustic cavity. The classical nonparametric stochastic reduced-order
computational model is then written as(

−ω2[Ms
LM] + iω[Ds

LM] + [Ks
LM] [CLM]

ω2[CLM]T −ω2[M f ] + iω[D f ] + [K f ]

) (
Qs(ω)

Qf(ω)

)
=

(
fsLM(ω)

O

)
, (6.12)

in which Qs(ω) is a Cn
s-valued random vector and where Qf(ω) is a Cn

f -valued random vector.
The finite element displacement vector u(ω) (resp. the finite-element pressure vector p(ω)) is
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then replaced by the Cn
s
dof -valued random vector U(ω) (resp. the Cn

f
dof -valued random vector

P(ω)), which are such that

U(ω) = [Φs
LM]Qs(ω) , P(ω) = [Φf ]Qf(ω) , (6.13)

The random matrix [CLM] belongs to ensemble SErect (see Section 6.1.2) with a dispersion coeffi-
cient δ denoted by δCLM

. Let random matrix [A] be any of matrices [Ms
LM], [Ds

LM], and [Ks
LM].

The Cholesky factorization of matrix [A] = E{[A]} is written as [A] = [LA]T [LA] in which [LA]

is an upper triangular matrix. The probabilistic model of random matrix [A] is then written as

[A] = [LA]T [GA] [LA] , (6.14)

where the random matrix [GA] is a random matrix belonging to SG+
0 with a dispersion coefficient

δ denoted by δA. Consequently, the construction of the stochastic model involves four dispersion
coefficients, δCLM

, δMs
LM

, δDs
LM

, and δKs
LM

associated with the probabilistic model of random
matrices [CLM], [Ms

LM], [Ds
LM], and [Ks

LM].

6.3 Nonparametric stochastic multilevel reduced-order computa-
tional model

The nonparametric stochastic multilevel reduced-order computational model is constructed by
substituting the deterministic generalized matrices [CLMH], [M s

LMH], [Ds
LMH], and [Ks

LMH] of the
reduced-order computational vibroacoustic model presented in Section 2.4.5 by random matrices
[CLMH], [Ms

LMH], [Ds
LMH], and [Ks

LMH]. The classical nonparametric stochastic reduced-order
computational model is then written as(

−ω2[Ms
LMH] + iω[Ds

LMH] + [Ks
LMH] [CLMH]

ω2[CLMH]T −ω2[M f ] + iω[D f ] + [K f ]

) (
Qs

LMH(ω)

Qf(ω)

)
=

(
fsLMH(ω)

O

)
,

(6.15)

in which Qs
LMH(ω) is a CnUL

+nUM
+nUH -valued random vector and where Qf(ω) is a Cn

f -valued
random vector Qf(ω). Again, note that for such a stochastic computational model, it is assumed
that there is no modeling uncertainties on the acoustic cavity but only on the structure and its
coupling with the acoustic cavity. The finite element displacement vector u(ω) (resp. the finite-
element pressure vector p(ω)) is then replaced by the Cn

s
dof -valued random vector U(ω) (resp. the

Cn
f
dof -valued random vector P(ω)) written as

U(ω) = [ULMH] Qs
LMH(ω) , P(ω) = [Φf ]Qf(ω) . (6.16)

Concerning the probabilistic models of [CLMH], [Ms
LMH], [Ds

LMH], and [Ks
LMH], a naive approach

would consist in substituting matrices [CLM], [M s
LM], [D s

LM], and [K s
LM] in the expressions of

matrices [CLMH], [M s
LMH], [Ds

LMH], and [Ks
LMH] given by Eqs. (4.21) to (4.24) by the random

matrices [CLM], [Ms
LM], [Ds

LM], and [Ks
LM] that have been introduced in Section 6.2. Never-

theless, such a probabilistic model would be exactly the same as for the probabilistic model in
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Section 6.2 and consequently, it would not be interesting. Hereinafter, the probabilistic model for
[CLMH], [Ms

LMH], [Ds
LMH], and [Ks

LMH], which is different from the probabilistic model in Section 6.2
is presented. Concerning the random matrix [CLMH], the probabilistic model is constructed by
substituting matrix [CLM] in Eq. (4.24) by random matrix [CLM] that has been introduced in
Section 6.2. We then have

[CLMH] = [QLMH]T [CLM] . (6.17)

Furthermore, let random matrix [A] be any of [Ms
LMH], [Ds

LMH], and [Ks
LMH]. The Cholesky

factorization of matrix [A] = E{[A]} is written as [A] = [LA]T [LA] in which [LA] is an upper
triangular matrix. The probabilistic model of random matrix [A] is then written as

[A] = [LA]T [GA] [LA] , (6.18)

where the random matrix [GA] is written as

[GA] =

[GL,A] [0] [0]

[0] [GM,A] [0]

[0] [0] [GH,A]

 , (6.19)

in which the random matrices [GL,A], [GM,A], and [GH,A] belong to ensemble SG+
0 with dimension

nUL × nUL , nUM × nUM , and nUH × nUH , and with dispersion coefficients δL,A, δM,A, and δH,A.
Consequently, the construction of the nonparametric stochastic multilevel reduced-order compu-
tational model involves ten dispersion coefficients: δCLMH

for [CLMH]; δL,Ms
LMH

, δM,Ms
LMH

, δH,Ms
LMH

for [Ms
LMH]; δL,Ds

LMH
, δM,Ds

LMH
, δH,Ds

LMH
for [Ds

LMH]; and δL,Ks
LMH

, δM,Ks
LMH

, δH,Ks
LMH

for [Ks
LMH].

6.4 Numerical applications for the classical nonparametric stochas-
tic reduced-order computational vibroacoustic model

We present an application of the classical nonparametric stochastic reduced-order computational
vibroacoustic model to quantify the uncertainties related to the FRF due to mode uncertainties.
The Monte Carlo numerical method is used as the stochastic solver of the stochastic computa-
tional model in order to quantify the model uncertainty on a random FRF for an excitation in
X-direction at point clvd and for an observation in X-direction at point ccurg with δCLM

= 0.4,
δMs

LM
= δDs

LM
= δKs

LM
= 0.3. The number of realizations is 46 and there are 200 frequency

points distributed in log10-scale between 20 HZ and 200 Hz. The relatively low value of the num-
ber of realizations was chosen to minimize the CPU time. It allows to preserve qualitatively and
quantitatively the stochastic results. The main influence is a relative poor approximation of the
lower envelopes of the confidence domains, which would be smoother with a greater number of
realizations. Figure 6.1 presents the results: the confidence region for a probability level of 95%

is shown (yellow), the nominal FRF calculated by the deterministic computational model (blue),
and the statistical mean value (red). Figure 6.2 presents the results of the viboacoustic FRF: the
confidence region for a probability level of 95% is shown (yellow), the nominal FRF calculated
by the deterministic computational model (black), and the statistical mean value (red).

55



Chapter 6. Stochastic multilevel reduced-order computational model in vibroacoustics

6.5 Numerical applications for the nonparametric stochastic mul-
tilevel reduced-order computational vibroacoustic model

We present the uncertainty quantification on some FRF for the structure and for the acoustic cav-
ity, due to model uncertainties, by using the nonparametric stochastic multilevel reduced-order
computational model. Since two cases have been considered into Chapter 5, for ωL/2π = 30 Hz
and for ωL/2π = 200 Hz, then two cases will be presented again. Similarly to the classical non-
parametric stochastic ROM, all the results presented in this section have been obtained by using
46 realizations and 200 frequency points distributed in log10-scale between 20 Hz and 200 Hz.
We recall that this relatively low value of the number of realizations was chosen to minimize the
CPU time and allows us to preserve qualitatively and quantitatively the stochastic results (the
main influence is a relative poor approximation of the lower envelopes of the confidence domains,
which would be smoother with a greater number of realizations.

6.6 Case 1: Stochastic multilevel reduced-order model with ωL/2π =

30 Hz

Case 1 corresponds to ωL/2π = 30 Hz. We consider several random FRFs for an excitation in
X-direction at points clvd and clvg, for observations in X-direction at points ccurg and ccuvg,
with δCLMH

= 0.4 for all the calculations performed in this case 1, and for several set of values
of δMs

LMH
, δDs

LMH
, δKs

LMH
. The first set of values for the dispersion coefficients corresponds to

higher statistical fluctuations on the block matrix that corresponds to [UL] and smaller statisti-
cal fluctuations on the block matrices that correspond to [UM] and [UH]. Figure 6.3 presents the
confidence region for a probability level of 95% (yellow), the nominal FRF calculated by the de-
terministic computational model (blue), and the statistical mean value (red) for δL,Ks

LMH
= 0.25,

δL,Ds
LMH

= δL,Ms
LMH

= 0.3, and δM,Ks
LMH

= δH,Ks
LMH

= δM,Ds
LMH

= δH,Ds
LMH

= δM,Ms
LMH

=

δH,Ms
LMH

= 0.05 for several FRFs. Figure 6.7 presents the confidence region for a probability level
of 95% (yellow), the nominal FRF calculated by the deterministic viboracoustic computational
model (black), and the statistical mean value (red) for δL,Ks

LMH
= 0.25, δL,Ds

LMH
= δL,Ms

LMH
= 0.3,

and δM,Ks
LMH

= δH,Ks
LMH

= δM,Ds
LMH

= δH,Ds
LMH

= δM,Ms
LMH

= δH,Ms
LMH

= 0.05 for the excita-
tion point clvg and the observation points (AVG, AVD, ARG and ARD). The excitation is in
X-direction at point clvd (upper figures) and at point clrg (bottom figures). The observation is
in X-direction at point ccuvg (figures on the left) and at point ccurg (figures).

The next set of values for the dispersion coefficients corresponds to higher statistical fluctu-
ations on the block matrix that corresponds to [UM] and smaller statistical fluctuations on the
block matrices that correspond to [UL] and [UH]. Fig. 6.4 presents the confidence region for a
probability level of 95% (yellow), the nominal FRF calculated by the deterministic computa-
tional model (blue), and the statistical mean value (red) for δM,Ks

LMH
= 0.25, δM,Ds

LMH
= 0.3,
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δM,Ms
LMH

= 0.3, and δL,Ks
LMH

= δH,Ks
LMH

= δL,Ds
LMH

= δH,Ds
LMH

= δL,Ms
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= 0.05

for several FRFs. Figure 6.8 presents the confidence region for a probability level of 95% (yellow),
the nominal FRF calculated by the deterministic viboracoustic computational model (black),
and the statistical mean value (red) for δM,Ks

LMH
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= 0.3, and

δL,Ks
LMH

= δH,Ks
LMH

= δL,Ds
LMH

= δH,Ds
LMH

= δL,Ms
LMH

= δH,Ms
LMH

= 0.05 for the excitation point
clvg and the observation points (AVG, AVD, ARG and ARD). The excitation is in X-direction at
point clvd (upper figures) and at point clrg (bottom figures). The observation is in X-direction
at point ccuvg (figures on the left) and at point ccurg (figures on the right).

The next set of values for the dispersion coefficients correspond to higher statistical fluctu-
ations on the block matrix that corresponds to [UH] and smaller statistical fluctuations on the
block matrices that correspond to [UL] and [UM]. Fig. 6.5 presents the confidence region for a
probability level of 95% (yellow), the nominal FRF calculated by the deterministic computa-
tional model (blue), and the statistical mean value (red) for δH,Ks
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= 0.05

for several FRFs. Figure 6.9 presents the confidence region for a probability level of 95% (yellow),
the nominal FRF calculated by the deterministic viboracoustic computational model (black),
and the statistical mean value (red) for δH,Ks

LMH
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= 0.3, and

δL,Ks
LMH

= δH,Ks
LMH

= δL,Ds
LMH

= δM,Ds
LMH

= δL,Ms
LMH

= δM,Ms
LMH

= 0.05 for the excitation
point clvg and the observation points (AVG, AVD, ARG and ARD). The excitation is in X-
direction at point clvd (upper figures) and at point clrg (bottom figures). The observation is in
X-direction at point ccuvg (figures on the left) and at point ccurg (figures on the right).

The next set of values for the dispersion coefficients correspond to higher statistical fluctu-
ations on every block matrices that correspond to [UL], [UM], and [UH]. Fig. 6.6 presents the
confidence region for a probability level of 95% (yellow), the nominal FRF calculated by the
deterministic computational model (blue), and the statistical mean value (red) for δL,Ks

LMH
=

δM,Ks
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= δH,Ks
LMH

= 0.25, δL,Ds
LMH

= δM,Ds
LMH

= δH,Ds
LMH

= 0.3, and δL,Ms
LMH

= δM,Ms
LMH

=

δH,Ms
LMH

= 0.3 for several FRFs. The excitation is in X-direction at point clvd (upper figures)
and at point clrg (bottom figures). The observation is into X-direction at point ccuvg (figures
on the left) and at point ccurg (figures on the right).

6.7 Case 2: Stochastic multilevel reduced-order model with ωL/2π =

200 Hz

Case 2 corresponds to ωL/2π = 200 Hz. Several random FRFs are analyzed for an excitation in
X-direction at points clvd and clvg, for observations in X-direction at points ccurg and ccuvg,
with δCLMH

= 0.4 for all the calculations performed in this case 2, and for several set of values of
δMs

LMH
, δDs

LMH
, δKs

LMH
. The first set of values for the dispersion coefficients corresponds to higher
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statistical fluctuations on the block matrix that corresponds to [UL] and smaller statistical fluctu-
ations on the block matrices that correspond to [UM] and [UH]. Fig. 6.10 presents the confidence
region for a probability level of 95% (yellow), the nominal FRF calculated by the deterministic
computational model (blue), and the statistical mean value (red) for δL,Ks
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= δH,Ms
LMH
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for several FRFs. Figure 6.14 presents the confidence region for a probability level of 95%

(yellow), the nominal FRF calculated by the deterministic viboracoustic computational model
(black), and the statistical mean value (red) for δL,Ks

LMH
= 0.25, δL,Ds

LMH
= δL,Ms

LMH
= 0.3, and

δM,Ks
LMH

= δH,Ks
LMH

= δM,Ds
LMH

= δH,Ds
LMH

= δM,Ms
LMH
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= 0.05 for the excitation
point clvg and the observation points (AVG, AVD, ARG and ARD). The excitation is in X-
direction at point clvd (upper figures) and at point clrg (bottom figures). The observation is in
X-direction at point ccuvg (figures on the left) and at point ccurg (figuresont the right).
The next set of values for the dispersion coefficients corresponds to higher statistical fluctua-
tions on the block matrix that corresponds to [UM] and smaller statistical fluctuations on the
block matrices that correspond to [UL] and [UH]. Fig. 6.11 presents the confidence region for
a probability level of 95% (yellow), the nominal FRF calculated by the deterministic computa-
tional model (blue), and the statistical mean value (red) for δM,Ks
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for several FRFs. Figure 6.15 presents the confidence region for a probability level of 95%

(yellow), the nominal FRF calculated by the deterministic viboracoustic computational model
(black), and the statistical mean value (red) for δM,Ks
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and δL,Ks
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= 0.05 for the excita-
tion point clvg and the observation points (AVG, AVD, ARG and ARD). The excitation is
in X-direction at point clvd (upper figures) and at point clrg (bottom figures). The observa-
tion is in X-direction at point ccuvg (figures on the left) and at point ccurg (figures on the right).

The next set of values for the dispersion coefficients corresponds to higher statistical fluctu-
ations on the block matrix that corresponds to [UH] and smaller statistical fluctuations on the
block matrices that correspond to [UL] and [UM]. Fig. 6.12 presents the confidence region for
a probability level of 95% (yellow), the nominal FRF calculated by the deterministic computa-
tional model (blue), and the statistical mean value (red) for δH,Ks
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= 0.05

for several FRFs. Figure 6.16 presents the confidence region for a probability level of 95%

(yellow), the nominal FRF calculated by the deterministic viboracoustic computational model
(black), and the statistical mean value (red) for δH,Ks

LMH
= 0.25, δH,Ds

LMH
= 0.3, δH,Ms
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= 0.3,

and δL,Ks
LMH

= δH,Ks
LMH

= δL,Ds
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= δM,Ds
LMH

= δL,Ms
LMH

= δM,Ms
LMH

= 0.05 for the exci-
tation point clvg and the observation points (AVG, AVD, ARG and ARD). The excitation is
in X-direction at point clvd (upper figures) and on point clrg (bottom figures). The observa-
tion is in X-direction at point ccuvg (figures on the left) and at point ccurg (figures on the right).
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The next set of values for the dispersion coefficients corresponds to higher statistical fluctua-
tions on every block matrices that correspond to [UL], [UM], and [UH]. Fig. 6.13 presents the confi-
dence region for a probability level of 95% (yellow), the nominal FRF calculated by the determin-
istic computational model (blue), and the statistical mean value (red) for δL,Ks
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= δM,Ks
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= δH,Ds
LMH

= 0.3, and δL,Ms
LMH

= δM,Ms
LMH

= δH,Ms
LMH

= 0.3

for several FRFs. The excitation is in X-direction at point clvd (upper figures) and at point clrg
(bottom figures). The observation is in X-direction at point ccuvg (figures on the left) and at
point ccurg (figures).

6.8 Discussions

In this section, we discuss about all the results presented in this chapter. The comments given
below mainly concern the interpretation for all the results shown in Figs. 6.1 to 6.16.

It should be noted that the terminology "reference", which is sometimes used, corresponds to
the "nominal configuration" (or also "mean configuration") of the vibroacoustic system. Then
a reference FRF is a nominal FRF calculated by the deterministic computational vibroacous-
tic model. As a consequence, the value of a nominal FRF at a given frequency (blue for an
acceleration output and black for a pressure ouput) may or may not belong to the confidence re-
gion (yellow) calculated with the classical nonparametric stochastic reduced-order computational
model or with the nonparametric stochastic multilevel reduced-order computational model. Un-
fortunately, experimental measurements are not available for this vibroacoustic system allowing
a direct validation.

The Nastran software was used with available computation servers, to compute the elastic
eigenmodes and the acoustic modes, and to compute and export the generalized matrices of the
vibroacoustic system, in particular the generalized full coupling matrix between the structure
and the acoustic cavity. Taking into account the very large dimension of the computational
vibroacoustic model, it has not been possible to do in one run, for all the frequency band of
analysis (which would have made it possible to export the generalized full matrix of coupling),
but had to be made frequency sub-band by sub-band. In this case, for a given sub-band, Nastran
generates only the diagonal block of the generalized coupling matrix for the elastic modes and the
acoustic modes that belong to this sub-band. Thus, it is not possible to obtain the full generalized
coupling matrix for the entire band of analysis, but only the diagonal blocks, the extra-diagonal
blocks then being zero, which is not correct. Under these conditions, the prediction of the acoustic
response of the vibroacoustic system is an approximation whose level of approximation cannot be
evaluated given the size of the problem. On the other hand, to test and validate the methodology
and algorithms, the nonparametric probabilistic model of uncertainties has been developed in the
general framework, which means that the random matrix germs are full as the theory of random
matrices specifies for the ensembles of random matrices considered. However, as we have just
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explained the generalized matrix of coupling of the nominal model, which should be full (taking
into account of all the couplings between the structural and acoustic modes), is not and presents
many extradiagonal blocks, which are zero matrices. The construction of the random matrices
associated with this generalized coupling matrix of the nominal model, therefore substitutes the
zero blocks of this nominal matrix by non-zero random blocks. Therefore, for the prediction of
acoustic responses, the level of approximation used, between the nominal vibroacoustic model and
the classical or multilevel nonparametric stochastic model, is not exactly the same. This could
induce an additional small error in the interpretation of the acoustic results of the vibroacoustic
system when comparing the acoustic response of the nominal system with the acoustic response
of the classical or multilevel stochastic system. Despite these approximations, the errors induced
remain low and do not modify quantitatively the results presented, both for the structural FRFs
and for the acoustic FRFs.

In accordance with what we indicate in the perspectives of the chapter of conclusions, a
necessary development would be to obtain the complete vibroacoustic coupling matrix and to
see what is its influence on the vibroacoustic FRF. It should be noted that such a development
is directly linked to the possibilities of the commercial software, here Nastran, used and not to
the developments, strictly speaking, of the proposed method.

In the light of the comments, which have just been made, the results obtained are consis-
tent and are the expected results. The stochastic multilevel ROM takes better into account the
uncertainties as a function of the LF and MF frequency bands than the classical stochastic ROM.

An analysis of all the Figures (from Figs. 6.1 to 6.16) clearly shows that, the same conclusion
can be made for the structural FRFs and the acoustic FRFs. From this point on, we will no
longer differentiate between the acoustic and structural FRFs.

For each studied case, four different sets of dispersion coefficients (that is to say of uncertainty
level) are used for the three complexity levels L, M, and H (see Chapter 4). A comparison of
each set for each one of the two cases is done below.

The first set that features high level uncertainties for the L complexity level and low uncer-
tainties for the M and H complexity levels can be seen in Figs. 6.3 and 6.7 for case 1, and in
Figs. 6.10 and 6.14 for case 2. The first observation is that the confidence region is narrower for
case 1 for all presented excitations and observations points, and the statistical mean is closer to
the nominal response.

The results for the second set, which presents a high level of uncertainty for the M complexity
level and a low level of uncertainty for the L and H complexity levels, are given in Figs. 6.4 and
6.8 for case 1, and in Figs. 6.11 and 6.15 for case 2. Case 2 yields a narrower confidence region
than case 1. Also, the statistical mean is slightly closer to the nominal response for case 2. This
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set of the uncertainties level gives narrow confidence regions in the LF band, which increase with
the frequency.

The results for the third set, which deals with a high level of uncertainty for the H complexity
level and a low level of uncertainty for the M and H complexity levels, are given in Figs. 6.5 and
6.9 for case 1, and in Figs. 6.12 and 6.16 for case 2. A quick observation shows that the results
are really similar. Indeed, the thickness of the confidence region as well as the position of the
statistical mean are nearly identical for cases 1 and 2. This attribution of the uncertainty level
yields a very thin confidence region that grows with the frequency.

The structural FRFs for the last set, which introduces a high level of uncertainty for the three
levels of complexity, L, M, and H, are shown in Figs. 6.6 for case 1 and in Figs. 6.13 for case 2.
As observed for the third set, the similarities between the two cases are high (this is the reason
why the acoustic FRFs are not shown for this set).

The main conclusion is the following concerning the stochastic multilevel ROM that is better
than the classical stochastic ROM. First of all the robustness with regard to uncertainty level
does not depend solely on the choice of the polynomial degrees but also of the three complexity
levels. Finally, it is well known that MF domain is sensitive to uncertainties unlike the LF domain
that has very little sensitivity to model uncertainties. It is therefore consistent in the multilevel
method to consider a significant level of uncertainties for the M complexity levels (see the notion
of complexity level in Chapter 4) and a very low level of uncertainty for the L complexity level.
This situation corresponds to the second set of values for the coefficients of dispersion for which
the results are given in Figs. 6.4 and 6.8 for case 1 and in Figs. 6.11 and 6.15 for case 2. We
see by comparing case 1 and case 2 for this set of values of the coefficients of dispersion, that
case 2 gives a better result in terms of taking into account of the uncertainties as a function of
the frequency. This result is consistent with the fact that the value of ωL/2π = 200 Hz for case 2
gives a better separation of the 3 complexity levels: L, M, and H (see Chapter 4).

61



Chapter 6. Stochastic multilevel reduced-order computational model in vibroacoustics

FRF

Frequency (Hz)
0 200 400 600 800

A
c
c
e

le
ra

ti
o

n
 (

d
B

)

50

60

70

80

90

100

110

Excitation (clvg), observation (ccuvg)

Frequency (Hz)
0 200 400 600 800

A
c
c
e

le
ra

ti
o

n
 (

d
B

)

50

60

70

80

90

100

110

Excitation (clvg), observation (ccurg)

Frequency (Hz)
0 200 400 600 800

A
c
c
e

le
ra

ti
o

n
 (

d
B

)

50

60

70

80

90

100

Excitation (clvd), observation (ccuvg)

Frequency (Hz)
0 200 400 600 800

A
c
c
e

le
ra

ti
o

n
 (

d
B

)

50

60

70

80

90

100

Excitation (clvd), observation (ccurg)

Figure 6.1 – Structural FRF estimated with the classical stochastic ROM in vibroacoustics for
an excitation in X-direction at point clvd and for an observation in X-direction at point ccurg
with δCLM

= 0.4, δMs
LM

= δDs
LM

= δKs
LM

= 0.3. Confidence region corresponding to a probability
level of 95% (yellow), nominal (blue), and statistical mean value (red). In the upper part, the
excitation point is clvg. In the lower part, the excitation point is clvd while the observation points
are ccuvg (on the left) and ccurg (on the right). Horizontal axis: frequency ω/2π in Hz. Vertical
axis: Acceleration in dB.
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Figure 6.2 – Acoustic FRF estimated with the classical stochastic ROM in vibroacoustics for an
excitation in X-direction at point clvg with δCLM

= 0.4, δMs
LM

= δDs
LM

= δKs
LM

= 0.3. Confidence
region corresponding to a probability level of 95% (yellow), nominal (black), and statistical mean
value (red). The excitation point is always the same point noted clvg and the observation points
are the hearing points (AVG, AVD, ARG, and ARD). Horizontal axis: frequency ω/2π in Hz.
Vertical axis: Pressure in dB.
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Figure 6.3 – Case 1, structural FRF for δL,Ks
LMH

= 0.25, δL,Ds
LMH

= δL,Ms
LMH

= 0.3, and
δM,Ks

LMH
= δH,Ks

LMH
= δM,Ds

LMH
= δH,Ds

LMH
= δM,Ms

LMH
= δH,Ms

LMH
= 0.05: Confidence re-

gion 95% (yellow), nominal (blue), and statistical mean (red).
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Figure 6.4 – Case 1, structural FRF for δM,Ks
LMH

= 0.25, δM,Ds
LMH

= δM,Ms
LMH

= 0.3, and
δL,Ks

LMH
= δH,Ks

LMH
= δL,Ds

LMH
= δH,Ds

LMH
= δL,Ms

LMH
= δH,Ms

LMH
= 0.05: Confidence region

95% (yellow), nominal (blue), and statistical mean (red).
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Figure 6.5 – Case 1, structural FRF for δH,Ks
LMH

= 0.25, δH,Ds
LMH

= δH,Ms
LMH

= 0.3, and
δL,Ks

LMH
= δM,Ks

LMH
= δL,Ds

LMH
= δM,Ds

LMH
= δL,Ms

LMH
= δM,Ms

LMH
= 0.05: Confidence region

95% (yellow), nominal (blue), and statistical mean (red).
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Figure 6.6 – Case 1, structural FRF for δL,Ks
LMH

= δM,Ks
LMH

= δH,Ks
LMH

= 0.25, δL,Ds
LMH

=
δM,Ds

LMH
= δH,Ds

LMH
= 0.3, and δL,Ms

LMH
= δM,Ms

LMH
= δH,Ms

LMH
= 0.3: Confidence region 95%

(yellow), nominal (blue), and statistical mean (red).
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Figure 6.7 – Case 1, acoustic FRF for δL,Ks
LMH

= 0.2, δL,Ds
LMH

= 0.3, δL,Ms
LMH

= 0.3, and
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LMH
= δH,Ks
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= δM,Ds
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LMH
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LMH
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LMH
= 0.05: Confidence region

95% (yellow), nominal (black), and statistical mean (red).
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Figure 6.8 – Case 1, acoustic FRF for δM,Ks
LMH

= 0.25, δM,Ds
LMH

= δM,Ms
LMH

= 0.3, and
δL,Ks

LMH
= δH,Ks

LMH
= δL,Ds

LMH
= δH,Ds

LMH
= δL,Ms

LMH
= δH,Ms

LMH
= 0.05: Confidence region

95% (yellow), nominal (black), and statistical mean (red).
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Figure 6.9 – Case 1, acoustic FRF for δH,Ks
LMH

= 0.25, δH,Ds
LMH

= δH,Ms
LMH

= 0.3, and δL,Ks
LMH

=
δM,Ks

LMH
= δL,Ds

LMH
= δM,Ds

LMH
= δL,Ms

LMH
= δM,Ms

LMH
= 0.05: Confidence region 95% (yellow),

nominal (black), and statistical mean (red).
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Figure 6.10 – Case 2, structural FRF for δL,Ks
LMH

= 0.25, δL,Ds
LMH

= δL,Ms
LMH

= 0.3, and
δM,Ks

LMH
= δH,Ks

LMH
= δM,Ds

LMH
= δH,Ds

LMH
= δM,Ms

LMH
= δH,Ms

LMH
= 0.05: Confidence region

95% (yellow), nominal (blue), and statistical mean (red).
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Figure 6.11 – Case 2, structural FRF for δM,Ks
LMH

= 0.25, δM,Ds
LMH

= δM,Ms
LMH

= 0.3, and
δL,Ks

LMH
= δH,Ks

LMH
= δL,Ds

LMH
= δH,Ds

LMH
= δL,Ms

LMH
= δH,Ms

LMH
= 0.05: Confidence region

95% (yellow), nominal (blue), and statistical mean (red).
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Figure 6.12 – Case 2, structural FRF for δH,Ks
LMH

= 0.25, δH,Ds
LMH

= δH,Ms
LMH

= 0.3, and
δL,Ks

LMH
= δM,Ks

LMH
= δL,Ds

LMH
= δM,Ds

LMH
= δL,Ms

LMH
= δM,Ms

LMH
= 0.05: Confidence region

95% (yellow), nominal (blue), and statistical mean (red).
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Figure 6.13 – Case 2, structural FRF for δL,Ks
LMH

= δM,Ks
LMH

= δH,Ks
LMH

= 0.25,
δL,Ds

LMH
δM,Ds

LMH
= δH,Ds

LMH
= 0.3, and δL,Ms

LMH
= δM,Ms

LMH
= δH,Ms

LMH
= 0.3: Confidence

region 95% (yellow), nominal (blue), and statistical mean (red).
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Figure 6.14 – Case 2, acoustic FRF for δL,Ks
LMH

= 0.2, δL,Ds
LMH

= 0.3, δL,Ms
LMH

= 0.3, and
δM,Ks

LMH
= δH,Ks

LMH
= δM,Ds

LMH
= δH,Ds

LMH
= δM,Ms

LMH
= δH,Ms

LMH
= 0.05: Confidence region

95% (yellow), nominal (black), and statistical mean (red).
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Figure 6.15 – Case 2, acoustic FRF for δM,Ks
LMH

= 0.25, δM,Ds
LMH

= δM,Ms
LMH

= 0.3, and
δL,Ks

LMH
= δH,Ks

LMH
= δL,Ds

LMH
= δH,Ds

LMH
= δL,Ms

LMH
= δH,Ms

LMH
= 0.05: Confidence region

95% (yellow), nominal (black), and statistical mean (red).
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Figure 6.16 – Case 2, acoustic FRF for δH,Ks
LMH

= 0.25, δH,Ds
LMH

= δH,Ms
LMH

= 0.3, and
δL,Ks

LMH
= δM,Ks

LMH
= δL,Ds

LMH
= δM,Ds

LMH
= δL,Ms

LMH
= δM,Ms

LMH
= 0.05: Confidence region

95% (yellow), nominal (black), and statistical mean (red).
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Conclusion and Perspectives

Summary

This thesis has proposed an improvement of the general method of spatial filtering previously
developed for complex structures and has presented an extension to vibroacoustic systems made
up of a complex structure coupled with an internal acoustic cavity. The systems studied are all
the more complex as the number of degrees of freedom increases with the frequency band of anal-
ysis. The modified method has been made to construct a multi-complexity-level displacements
basis in order to obtain the multilevel ROM. The principal use is for robust dynamical analysis
of complex vibroacoustic systems over a broad frequency band for which the model uncertainties
induced by modeling errors can be adapted to each one of the three vibration regimes, LF, MF,
and HF. For that, a multilevel stochastic ROM has been developed for the structure, which is
able to take into account the variability induced by the overlap in the three vibration regimes.

The work starts from the Ezvan’s works for which a complete reformulation of the method is
proposed, for which a novel presentation and developments are performed, and for which novel in-
terpretations are given. For large scale computational vibroacoustic model, we have constructed
a predictive stochastic multilevel ROM whose dimension is inferior to the usual ROM constructed
by using the classical modal analysis. Algorithms have specifically been developed to be used
for very large computational models without encountering problems related to the limitation of
Random Acces Memory (RAM) and with numerical costs that remain low. This capability of the
proposed method has required in-depth methodological and algorithmic reflection. In particular,
the numerical analysis and the developed algorithm have been written to improve the existing
codes. The high dimension of the computational model compelled us to propose an efficient com-
putation to optimize time calculation (CPU) and data storage limitations (RAM). The database
(modal analysis, lumped mass matrix, vibroacoustic modal coupling matrix) has been computed
from a dedicated software (Nastran). All the proposed approach and the post-processing have
been implemented in Matlab. Consequently, the approach proposed is nonintrusive with respect
to commercial software. We have automated some parameters like the range of the first eigen-
value problem and not use the cutoff frequency in the process of the filtering.

The applications have been performed for an automobile whose computational vibroacoustic
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model is made up an acoustic cavity (cockpit) of 600 000 DOFs coupled with a complex structure
(car) (of nearly 19 000 000 DOFs). Several cases have been considered in order to test the
method, the numerical analysis, and the algorithms. The validation has been given and the
capability of the proposed approach has been tested, for the stochastic multilevel reduced-order
computational vibroacoustic model. This nonparametric stochastic multilevel ROM gives better
results than the classical nonparametric stochastic ROM with respect to the taking into account
of the uncertainties as a function of the frequency. In addition, it allows a significative reducing
of the CPU time with respect to the use of the classical ROM constructed by modal analysis.

Perspectives

In addition to technical refinements that could be proposed here and there, some future research
directions can be identified as follows.

The first development would be to obtain the complete vibroacoustic coupling matrix and to
see what is its influence on the vibroacoustic FRF. Such a development is directly linked to the
possibilities of the commercial software used and not to the developments, strictly speaking, of
the proposed method.

The second development would be to propose an adapted visualization of the filtered modes.
The study of these visualizations could be quite interesting to improve the method.

A third point would be to perform further test over other complex vibroacoustic systems.
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Appendix A

Independent Component Analysis using
Nastran

Improvement of vibroacoustic models prediction capabilities in a probabilistic context requires
an adapted metric to compare experimental measurements with stochastic computations. The
likelihood appears as the natural tool to compare experiments with probabilistic computations
as soon as the probability of a given result may be computed. Since the vibroacoustic anal-
ysis mainly relies on complex matrix-valued Frequency Response Functions ( [FRF] = {ω →
[FRF(ω)]}) that can be measured and computed, the likelihood of such complex and frequency
dependent matrices is investigated. A two stage statistical reduction, based on Independant Com-
ponents Analysis [146], is proposed in order to separate statistically independent components with
complex amplitudes for which the probability may be computed independently one from each
others. Bi-dimensional probability density functions of the complex components amplitudes are
deduced from a Monte-Carlo simulation of the nonparametric stochastic computational model,
using MSC/NASTRAN. The proposed statistical reduction presents many interesting properties
regarding the physical understanding of FRF matrices as well as a numerical aspects.

A.1 Introduction

In the automotive industry, computational vibroacoustic models are used for designing auto-
mobiles. The acoustic comfort and the vibrations of vehicles constitute a major issue. In the
vibroacoustic analysis, FRFs are widely used to control the structure borne noise transmission
in the case of multiple transmission paths. However, the computational structural model con-
sidered in this Appendix has about fifteen million of degrees-of-freedom (DOFs) and the coupled
acoustic cavity has about eight million of DOFs. The high dimension of the computational model
brings great difficulties. The advantage of the FRF is that, even for such complex structures
such as automobiles, it always provides a simple system of one vector-valued input (excitation)
and one vector-valued output (observation). The vibroacoustic computational model allows the
computation of the FRF matrices. The same FRF matrices can also be measured experimentally.
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A.2 Statistical reduction using ICA

An Independent Component Analysis (ICA) is performed. The main difference with the Princi-
pal Component Analysis (PCA) is that the components will be statistically independent. This
approach has been widely used and can be seen in [147]. The ICA can lead to an interesting phys-
ical interpretation of the extract components as shown from the Monte-Carlo simulation of the
nonparametric stochastic model. It should be noted that the PCA and ICA use the same space.
The only difference is the constraint imposed on the components, which is a linear decorrelation
for the PCA and the independence for the ICA. We use the Joint Approximation Diagonaliza-
tion of Eigen-matrices (JADE) algorithm as presented in [148], which is based on a fourth-order
moments formulation. JADE computes the matrix such as the sum of all nondiagonal terms of
the fourth-order matrix are equal to zero.

In this Appendix, Mn,m(C) denotes the set of all the (n×m) complex matrices. Let ω1, . . . , ωNf
be the frequency sampling. The number of observations DOFs are denoted by No and the number
of excitations DOFs by Ne. The complex matrix-valued random FRF is written as [FRF(ωj)]

with value in MNo,Ne(C), with j = 1, . . . , Nf . Let N = No × Ne be the spatial dimension.
Let F(ωj) be the random vector with values in CN , which is the reshaping by columns of the
complex random matrix [FRF(ωj)]. Let [Y] = [F(ω1) . . . F(ωNf )] be the complex random matrix
with values in MN,Nf (C). Let {[Yn], n = 1, . . . , NMC} be NMC independent realizations of [Y]

computed by using the stochastic computational model for a fixed value δ of the vector-valued
hyperparameter of the random matrices of the nonparametric probabilistic approach of model
uncertainties.

A.2.1 First statistical reduction based on ICA

We introduce the positive Hermitian matrix

[R] =
1

NMC

NMC∑
n=1

[Yn]∗[Yn] ∈ MNf ,Nf (C) , (A.1)

in which [Yn]∗ = [Y n]T . We solve the eigenvalue problem [R]xα = λαxα of [R] with α = 1, . . . , Nf .
The positive eigenvalues λα are ordered in a decreasing order. We can approximate [R] with a

lower number Np of terms. Let Np ≤ Nf such that [R] '
Np∑
α=1

λαxα(xα)∗, which is rewritten as

[R] = [x][Λ][x]∗ , (A.2)

in which [Λ] is the diagonal matrix in MNp(R) of the decreasing eigenvalues λ1, . . . , λNp and
[x] = [x1, . . . , xNp ] is the complex matrix in MNf ,Np(C) of the associated complex eigenvectors
that are normalized in order that

[x]∗[x] = [INp ] . (A.3)
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It can be seen that each realization [Yn] can be written as

[Yn] = [An][x]∗ , (A.4)

where [An] ∈ MN,Np(C) is given by the projection on [Yn], which is written, by using Eq.(A.3), as

[An] = [Yn][x] . (A.5)

Let
[c] = [x]∗ (A.6)

be the complex (Np ×Nf ) matrix, for which its columns are denoted by cj with j = 1, . . . , Nf :
[c] = [c1, . . . , cNf ]. Let us introduce the random vector C with values in CNp whose realizations
are c1, . . . , cNf . The Independent Component Analysis of random vector C is carried out and
yields,

[c] = [b][s] , (A.7)

in which [b] is a (Np ×Np) complex matrix and where [s] is a (Np ×Nf ) complex matrix whose
rows s1, . . . , sNp , which belong to M1,Nf (C), are independent realizations of a random vector ST

with values in CNf . From Eqs.(A.4), (A.6), and (A.7), it can be deduced that

[Yn] = [Ân][s] , (A.8)

in which [Ân] is written as
[Ân] = [An][b] ∈ MN,Np(C) . (A.9)

On the frequency basis [c], there are Np independent components. Figure A.1 shows the Np

independent components issued from the ICA. It can be seen peaks all along the frequency band
B and that each component has a different contribution over the frequency band. Consequently,
for each sub-band of B, only the components that have the main contributions are kept. This
means that the reductions is performed by sub-band and not globally for all the frequency band
of analysis. We have taken the frequency value at the maximum of each independent component
from the first ICA statistical reduction from Fig. A.1. It can be seen that the sub-bands are
narrower for the lowest frequencies. As the frequency increases, the width of the sub-bands
increases.

A.2.2 Second statistical reduction based on ICA

In the second statistical reduction, we construct a spatial basis over the observations and excita-
tions DOFs. From the Np independent components obtained from the first statistical reduction
over the frequency band, we determine the components that have contributions on the spatial
basis. We use exactly the same methodology that the one previously presented. The ICA is then
reused for constructing the second statistical reduction of the random matrix [Â] whose realiza-
tions are {[Ân], n = 1, . . . , NMC} that are defined by Eq.(A.9). The following representation is

83



Appendix A. Independent Component Analysis using Nastran

Figure A.1 – Frequency independent components from JADE algorithm with ICA.

obtained,

[Ân]kα =

N̂p(α)∑
β=1

[F̂ (α)]kβ[χn(α)]βα , (A.10)

in which k = 1, . . . , N and α = 1, . . . , Np, where N̂p(α) ≤ N , and where [F̂ (α)] and [χn(α)] are
complex matrices of dimension (N × N̂p(α)) and (N̂p(α)×Np), respectively. The matrix [χn(α)]

represents the basis. Substituting Eq. (A.10) into Eq. (A.8) yields

[Yn]kj =

Np∑
α=1

N̂p(α)∑
β=1

[F̂ (α)]kβ[χn(α)]βα[s]αj . (A.11)

The statistical reduction is efficient if N̂p(α) � N . Let us define γ such that for all γ =

1, . . . , Ncomp with Ncomp =
Np∑
α=1

N̂p(α), representing all independent components from the two

filterings.

The probability density function of the random variable [χ(α)]βα is estimated with its real-
izations [χn(α)]βα. Such a probability density function is shown in the bottom right of each block
in Fig. A.2. Moreover, it shows the contribution of each excitation point for each observation
point (left figures up and bottom). The upper-right figure represents the frequency independent
component of the first statistical reduction.
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Figure A.2 – Reading the figure as a (4× 2)-matrix of sub-figures. For γ = 1, α = 1, and β = 1:
modulus (1,1), phase (2,1), frequency component (1,2), and probability density function (2,2).
Gor γ = 11, α = 2, and β = 1: modulus (3,1), phase (4,1), frequency component (3,2), and
probability density function (4,2).

A.2.3 Projection of an experimental measurement

In this section, the experimental measurements are projected by using the two statistical re-
ductions in order to obtain the (N̂p(α) × Np) complex matrix [χexp(α)], for α = 1, . . . , Np.
For all ` = 1, . . . , νexp, let [Y exp] be the (N × Nf ) complex matrix related to the experimental
measurements,

[Y exp,`] = [Âexp,`][s] , (A.12)

[Âexp,`]kα =

N̂p(α)∑
β=1

[F̂ (α)]kβ[χexp,`(α)]βα . (A.13)

Equation (A.10) yields
[Âexp,`] = [Y exp,`][S ] , (A.14)
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in which [S ] = [s]∗([s][s]∗)−1 is the right pseudo-inverse of [s]. For α fixed in {1, . . . , Np}, let
[H(α)] be the (N̂p(α)× N̂p(α)) complex matrix defined by

[H(α)]β′β =
N∑
k=1

[F̂ (α)]kβ′ [F̂ (α)]kβ . (A.15)

The projection of Eq. (A.11) on [F̂ (α)] yields, for α fixed in {1, . . . , Np} and β
′ in {1, . . . , N̂p(α)},

the expression of [χexp,`(α)] written as

[χexp,`(α)]β′α =

N∑
k=1

[F̂ (α)]β′k[Â
exp,`]kα , (A.16)

in which [F̂ (α)] is such that

[F̂ (α)]β′k =

N̂p(α)∑
β=1

{[H(α)]−1}β′β[F̂ (α)]kβ . (A.17)

A.3 Calculation of the likelihood

The likelihood function is estimated using the kernel density estimation method. The fam-
ily {[χ(α)]βα, α = 1, . . . , Np, β = 1, . . . , N̂p(α)} of independent random variables (due to the
use of the ICA) are gathered in a random vector W = (W1, . . . ,WNcomp) of independent com-

ponents with Ncomp =
Np∑
α=1

N̂p(α). The corresponding experimental values of W are denoted

by {wexp,`, ` = 1 . . . , νexp}. Let (w1, . . . , wNcomp) 7→ pW(w1, . . . , wNcomp) = Π
Ncomp
γ=1 pWγ (wγ) be

the probability density function of W on RNcomp . The log-likelihood L of W for {wexp,`, ` =

1 . . . , νexp} is written as

L =

νexp∑
`=1

Ncomp∑
γ=1

Lγ,` , (A.18)

in which, for all γ = 1, . . . , Ncomp,

Lγ,` = 10 log10 pWγ (wexp,`
γ ) . (A.19)

In order to visualize the log-likelihood of the components from the first statistical reduction,
Eq.(A.18) is rewritten as a function of the frequency,

L =

νexp∑
`=1

Np∑
α=1

Lα , (A.20)
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in which

Lα =

N̂p(α)∑
β=1

Lβ . (A.21)

Figure A.3 shows the maximum and the minimum of the log-likelihood for [χ(α)]αβ . It can

Figure A.3 – On the left, log-likelihood of the experimental measurements (red), one sample from
Monte Carlo (blue), the minimum and the maximum of the stochastic basis (black dotted). On
the right, log-likelihood of the experimental measurements (red), one sample from Monte Carlo
(blue), the minimum and the maximum of the stochastic basis (black dotted)

be noticed that the realizations computed with the stochastic ROM are within the range of the
maximum and the minimum. A verification step has been carried out to make sure that all
realizations are within the range. The experimental measurements are also within the range
of the maximum and the minimum, which means that the nonparametric stochastic model is
sufficiently good. Some results and further details can be found in [15]

A.4 Discussion

It should be noted that this approach yields a significant reduction factor that is not negligible
for the models studied. The proposed statistical reduction offers many perspectives in different
fields. First, considering the data reduction capabilities, compressed model could be handled
in NVH synthesis tools in order to propagate uncertainties for various vibration sources and
operating conditions. Second, the deep physical meaning of the independent component analysis
has not yet been investigated.

We have mostly presented a methodology for constructing a statistical reduction of a com-
plex matrix-valued random FRF. At a given frequency, the random FRF complex matrix is
represented by a large collection of realizations computed using the Nonparametric Variability
Modeling in MSC/NASTRAN (nonparametric probabilistic approach of uncertainties). Since we
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consider the complex matrix-valued random FRF, the use of two statistical reductions is efficient.
The first reduction provides a decomposition of the studied frequency range in independent fre-
quency sub-bands, while the second reduction deals with the DOFs interaction in each of these
frequency sub-bands. Statistical independence of the reduction components is guaranteed by the
Independent Component Analysis as implemented in the JADE algorithm. Once the components
have been characterized, the PDF of their complex amplitude can be estimated, later allowing the
likelihood computation. The model reduction is performed according to a requested precision:
the lower the precision, the lower the number of components, and the higher the reduction.
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