
HAL Id: tel-03364390
https://theses.hal.science/tel-03364390v1

Submitted on 4 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel Standard-Compliant SystemC Simulation of
Loosely-Timed Transaction Level Models

Gabriel Busnot

To cite this version:
Gabriel Busnot. Parallel Standard-Compliant SystemC Simulation of Loosely-Timed Transaction
Level Models. Computation and Language [cs.CL]. Université de Lyon, 2020. English. �NNT :
2020LYSE1315�. �tel-03364390�

https://theses.hal.science/tel-03364390v1
https://hal.archives-ouvertes.fr

N°d’ordre NNT : 2020LYSE1315

THESE de DOCTORAT DE L’UNIVERSITE DE LYON
opérée au sein de

l’Université Claude Bernard Lyon 1

Ecole Doctorale N° 512
InfoMaths

Spécialité de doctorat : Informatique

Soutenue publiquement le 18/12/2020, par :
Gabriel Busnot

Simulation parallèle et conforme au
standard SystemC de modèles

transactionnels à temps relâché

Devant le jury composé de :

Maraninchi, Florence Professeur des Universités Université Grenobles Alpes Rapporteure
Pêcheux, François Professeur des Universités Sorbonne Université Rapporteur

Andrade, Liliana Maître de Conférences Université Grenobles Alpes Examinatrice
Dömer, Rainer Professeur des Universités Université de Californie Examinateur

Guérin Lassous, Isabelle Professeur des Universités Université Claude Bernard Lyon 1

Maillet-Contoz, Laurent Responsable Industriel STMicroelectronics Examinateur

Moy, Matthieu Maître de Conférences Université Claude Bernard Lyon 1 Directeur de thèse
Sassolas, Tanguy Ingénieur-chercheur CEA Co-Encadrant
Ventroux, Nicolas Responsable Industriel Thales Co-Encadrant, invité

Remerciements

Il me sera difficile de nommer toutes celles et tous ceux qui m’ont soutenu au cours
de cette thèse. J’espère néanmoins que chacun se reconnaitra dans l’une des quelques
lignes qui suivent.

Je tiens tout d’abord à remercier Matthieu Moy, Maître de conférence à l’Université
Claude Bernard Lyon 1, pour avoir dirigé ma thèse avec attention malgré la distance
qui le séparait de la capitale. Je remercie également chaleureusement Tanguy Sassolas et
Nicolas Ventroux du CEA, List, pour leur encadrement au quotidien et leur optimisme
permanent sans lequel je n’aurais sans doute pas mené ces travaux à leur terme.

Un grand merci aussi à Florence Maraninchi de l’Université Grenobles Alpes et à
François Pêcheux de Sorbonne Université pour avoir accepté d’être rapporteurs et de
consacrer de nombreuses heures à une lecture critique de mon manuscrit. Je remercie
par la même occasion le reste de mon jury de soutenance : Liliana Andrade, Rainer
Dömer, Isabelle Guérin Lassous et Laurent Maillet-Contoz.

Mais cette section serait largement incomplète sans y remercier tout mon entourage :
mes collègues de travail avec qui j’ai pu échanger sur toutes sortes de sujets, du plus
technique au plus informel, et qui ont pu m’apporter leur aide à plusieurs reprises ; mes
amis, ceux du CEA et d’ailleurs, qui m’ont patiement écouté me plaindre avec plus ou
moins de théâtralité trois années durant ; Jason qui a bénévolement relu intégralement
mon manuscrit à quelques jours du rendu final ; et enfin ma famille et à ma compagne
qui, bien que n’ayant pas la moindre idée de ce que je faisais chaque jour devant mon
écran, ont toujours cru en moi et ont eu raison puisque j’écris ces lignes aujourd’hui !

Merci enfin au CEA pour avoir financé ces trois années de thèses de doctorat.

3

Résumé détaillé

Présentation générales
Cette thèse porte sur la simulation parallèle SystemC. Spécifiquement, elle vise une
famille de modèles dit transactionnels à temps relâché. La contribution principale de
cette thèse porte sur la conception et le développement d’un noyau de simulation
SystemC parallel. Ce noyau permet l’exécution parallèle de modèles SystemC standard
après ajout d’annotations spécifiques.

Le manuscrit se divise en 5 chapitres. Le premier chapitre présente des notions
générales relatives à SystemC ainsi qu’au parallélisme et à la concurrence en infor-
matique. Le second chapitre présente la problématique de la thèse ainsi qu’un état
de l’art des techniques de simulation SystemC parallèle. Le troisième chapitre est le
cœur du manuscrit. Il explique les procédés principaux mis en œuvre pour permettre la
simulation SystemC parallèle de modèles transactionnels à temps relâché. Le quatrième
présente les expérimentation du procédé expliqué chapitre 3. Ces expérimentations
mettent en valeur des limitations dans le cas de simulation de logiciels exécutés sous
un système d’exploitation tel que Linux. Le cinquième et dernier chapitre analyse les
causes de ces observations et propose des solutions spécifiques ainsi que leur évaluation
expérimentale.

Chapitre 1
Dans ce premier chapitre, les notions générales de concurrence et de parallélisme
qui cohabitent étroitement dans le contexte de la simulation SystemC parallèle sont
introduites. Les similitudes et différences parfois subtiles entre ces deux notions y
sont illustrées à l’aide d’exemples. Le langage de description matérielle SystemC est
ensuite présenté. Le niveau de description RTL, cible initiale de SystemC, est utilisé
pour illustrer les bases de SystemC que sont la simulaiton à événements discrets,
les modules, les ports, les « channels » ainsi que les processus. Enfin le plus récent
niveau de description transactionnel est introduit. Les deux niveaux de précision de
gestion du temps « approximatif » et « relâché » sont décrits ainsi que des techniques
de modélisation modernes standards telles que l’interface mémoire directe (DMI) et
le découplage temporel. Les procédés développés dans ce manuscrit s’emploient à
supporter l’ensemble des techniques de modélisation proposées.

5

Chapitre 2
Le deuxième chapitre débute par un bref tour d’horizon des techniques d’accélération
usuelles applicables à la simulation de modèles SystemC. Le choix de la parallélisation
entre les processus SystemC au niveau du noyau de simulation est ainsi justifié. Les
obstacles qui s’opposent spécifiquement à l’évaluation parallèle de processus SystemC
sont alors exposés. En particulier, les problématiques de « thread-safety »1 et d’atomicité
des processus SystemC sont introduites au travers d’exemples. Une évaluation non
atomique de processus est ici désignée sous le terme de conflit.

La seconde partie du deuxième chapitre est un état de l’art des techniques de
simulation SystemC parallèle. De nombreuses approches y sont rapportées : simulation
à temps synchronisé ou découplé, simulation accélérée sur GPU ou sur matériel dédié,
simulation distribuée ou centralisée, exécution reproductible ou non ou encore simulation
RTL ou TLM. Il ressort de cette étude qu’une unique approche supporte efficacement les
modèles transactionnels à temps relâché, spécialement ceux faisant usage du découplage
temporel et du protocole DMI.

Il s’agit de SCale 1.0, un noyau de simulation SystemC parallèle qui a servi de point
de départ aux travaux présentés ici. SCale 1.0 est donc présenté de manière plus détaillée
dans la fin du chapitre 2 et ses limitations font l’objet d’une analyse méticuleuse. Il en
ressort que bien que présentant des mécanismes théoriquement efficaces, ces derniers
inapplicables avec de nombreux logiciels simulés, en particulier ceux exécutés sous
Linux. Des problèmes de performance importants se posent également.

Chapitre 3
Ce chapitre présente SCale 2.0, une refonte majeure de SCale 1.0. La plupart des
mécanismes de SCale 1.0 y sont remplacés et seule l’approche générale reste comparable :
l’instrumentation des accès mémoire simulés dans le but de contrôler les interactions
entre processus et de préserver leur atomicité. L’idée principale consiste en effet toujours
à garantir que les interactions par accès mémoire entre les processus décrivent un ordre
partiel entre ces derniers, c’est à dire qu’il existe un évaluation séquentielle produisant
le même résultat que l’évaluation parallèle en cours.

Le chapitre s’ouvre sur la description du flot d’exécution globale d’une phase
d’évaluation sous SCale 2.0 : évaluation parallèle de processus suivie d’une évaluation
séquentielle dans le cas où certains on été suspendus ; analyse des dépendances entre
processus en cas de phase séquentielle et récupération d’erreur par retour en arrière.

Les procédés appliqués lors de la phase parallèle spécifiquement sont ensuite détaillés
en commençant par la garantie de non dépendance entre processus lors de la phase
parallèle, une propriété fondamentale autorisant de nombreuses optimisations. Une

1La thread-safety désigne le fait qu’une portion de code peut être exécutée simultanément par
plusieurs fils d’exécution sans causer d’incohérence.

6

politique d’autorisation d’accès mémoire offrant la garantie en question ainsi qu’une
implémentation efficace sont ensuite définies.

La phase parallèle peut être suivie d’une phase séquentielle qui est alors décrite :
ordre d’évaluation des processus suspendus lors de la phase parallèle, vérification des
dépendances entre processus à l’aide de l’enregistrement préalable des accès mémoire,
génération de la trace permettant le reproduction de simulation et retour en arrière en
cas de violation d’atomicité des processus.

Enfin, le système de gestion des interactions via mémoire partagée est généralisé
à tout type d’interaction en considérant chaque partie du modèle simulé comme une
ressource pouvant être, au sens large, soit lue, soit écrite, à l’instar d’une adresse
mémoire. Cela permet, par exemple, de supporter les interactions par interruptions
(timer, inter-processeur, etc.).

Chapitre 4
Le quatrième chapitre est une analyse expérimentale du procédé décrit chapitre 3.
Le serveur pourvu de 36 cœurs hébergeant les expérimentations est décrit ainsi que
le modèle simulé : une architecture symétrique à mémoire partagée pourvue de 1 à
32 cœurs RISC-V simulés par QEMU. Les benchmarks baremetal2 de multiplication
de matrice parallèle, de détection de contours par filtrage de Deriche et de réseau
de neurones convolutif Mobilenet sont présentés, ainsi que leurs versions sous Linux
additionnées des benchmarks Blackscholes et Swaptions issues de la suite Parsec.

Un protocole de validation fonctionnelle expérimentatale de SCale 2.0 basé sur un
benchmark hautement aléatoire est également exposé. Il illustre la capacité de SCale 2.0
à produire toujours le même résultat lors de l’utilisation de la fonction de reproduction
de simulation. Lorsque cette dernière n’est pas activée, le résultat du benchmark de
test présente une forte variabilité.

La suite du chapitre présente les performances de simulation offerte par SCale 2.0.
Des accélérations atteignant ×15 face au noyau SystemC de référence et de ×110 face
à SCale 1.03 sont observés.

Les accélérations concernant les applications sous Linux sont en revanche nettement
moins satisfaisants puisque toujours inférieurs à 4. Ces résultats sont analysés en détail
dans la suite du chapitre. Cette analyse met en valeur divers facteurs tels que le mauvais
potentiel de parallélisation lors de la simulation du boot et de l’extinction de Linux.
La raison principale réside cependant surtout dans la présence d’un grand nombre de

2Logiciel s’exécutant à même le matériel, sans le support d’un système d’exploitation.
3Les performances très en retrait de SCale 1.0 sont expliquées par son utilisation dans un contexte

très différent de celui dans lequel il a été développé. La fréquence des accès mémoire, notamment
est plusieurs ordres de grandeur supérieur dans le cas présent, saturant totalement sont système
d’instrumentation et causant cette régression.

7

conflits qui nécessitent autant de retours en arrière coûteux. Ce constat révèle que
malgré la grande efficacité de SCale 2.0 dans la majorité des situations, il existe des
schémas d’accès mémoire notamment qui causent de nombreux conflits.

Chapitre 5

Le cinquième et dernier chapitre propose des solutions spécifiques aux problèmes
identifiés dans la dernière partie du chapitre 4. La première concerne les partie de la
simulation faiblement parallélisables telles que le boot de Linux. Ces parties sont aussi
souvent peu intéressantes pour l’utilisateur de SCale 2.0 qui cherche surtout à tester
le logiciel qu’il a développé et qui s’exécute sous Linux. Un système de variation de
la précision de simulation est proposé. Il permet de choisir dynamiquement le mode
de simulation des accès mémoire, permettant notamment de les effectuer directement
dans QEMU sans recourir au modèle SystemC. En contrepartie, la simulation parallèle
n’est plus possible mais les vitesses de simulations sont alors comparables. Ce mode de
simulation séquentielle peu précise mais rapide et déterministe est particulièrement
adapté à la simulation des parties du code sans intérêt directe pour l’utilisateur.

La seconde cause majeure de ralentissement est le grand nombre de conflits concen-
trés dans certaines parties de la simulation et responsables à eux seuls de la détérioration
globale des performances. L’étude de l’origine de ces conflits montre que le code prove-
nant du noyau Linux est responsable de la majeure partie des conflits (e.g., support
des fautes mémoire et gestion du système de fichiers). Ces conflits sont par nature
difficile à anticiper et donc à éviter avec fiabilité. La solution retenue consiste alors
à ne pas paralléliser la simulation du code appartenant au noyau Linux. Le niveau
de privilège des processeurs simulés est utilisé à cet effet : dès qu’un processeur qui
le niveau de privilège minimal utilisateur, le processus simulant ce processeur est
exécuté séquentiellement jusqu’à ce que son niveau de privilège retombe au niveau
utilisateur. La quasi totalité des conflits est alors évitée au prix d’un ralentissement à
peine mesurable, la majorité du code simulé étant exécuté en mode utilisateur.

Une nouvelle mesure des performances de SCale 2.0 est enfin réalisée avec ces
dernières techniques. Des accélérations d’environ ×9 face au noyau séquentiel de
référence ont obtenus pour l’intégralité des benchmarks. La comparaison avec SCale
1.0 n’est pas possible, ce dernier ne supportant pas la simulation de systèmes exécutant
Linux.

8

Publications

• Articles:

– Gabriel Busnot, Tanguy Sassolas, Nicolas Ventroux, Matthieu Moy. Standard-compliant
Parallel SystemC simulation of Loosely-Timed Transaction Level Models. ASP-DAC 2020
- 25th Asia and South Pacific Design Automation Conference, Jan 2020, Beijing, China.
pp.1-6. <hal-02416253>

– Gabriel Busnot, Tanguy Sassolas, Matthieu Moy, Nicolas Ventroux. Standard-compliant
Parallel SystemC simulation of Loosely-Timed Transaction Level Models: from baremetal
to Linux-based applications support. VLSI

– Amir Charif, Gabriel Busnot, Rania Mameesh, Tanguy Sassolas, Nicolas Ventroux. Fast
Virtual Prototyping for Embedded Computing Systems Design and Exploration. 11th
Workshop on Rapid Simulation and Performance Evaluation: Methods and Tools, Jan
2019, Valence, Spain. <10.1145/3300189.3300192>.<hal-02023805>

• Patents:

– Gabriel Busnot, Tanguy Sassolas, Nicolas Ventroux. Procédé de simulation parallèle repro-
ductible de niveau système électronique mis en œuvre au moyen d’un système informatique
multicœurs de simulation à événements discrets. FR1911332

– Gabriel Busnot, Tanguy Sassolas, Matthieu Moy. Procédé de simulation parallèle repro-
ductible de niveau système électronique mis en œuvre au moyen d’un système informatique
multicœurs de simulation à événements discrets. FR2012150

• Poster:

– Gabriel Busnot, Tanguy Sassolas, Nicolas Ventroux, Matthieu Moy. Parallel SystemC
Simulation Of Multicore Platforms Running Linux. ACACES Poster Session, Jul 2018,
Fiuggi, Italy.

9

Contents

Introduction 13

1 Parallel Computing and SystemC Simulation Background 17
1.1 Introduction . 18
1.2 Concurrency and Parallelism . 18

1.2.1 Concurrency . 18
1.2.2 Fine-Grained Control Over Concurrency with Coroutines 19
1.2.3 Parallelism . 21
1.2.4 Enabling Parallel Computation with Threads 23

1.3 SystemC Modeling and Simulation Overview 26
1.3.1 Virtual Prototyping in the SoC Design Flow 26
1.3.2 The SystemC Modeling Language 27
1.3.3 Discrete Event Simulation of SystemC Models 29

1.4 TLM-2.0 . 33
1.4.1 TLM: Abstraction of the Communication Layer 33
1.4.2 Coding Styles in TLM . 34

2 Parallel SystemC Simulation: Challenges and Existing Solutions 39
2.1 Parallel SystemC-TLM Simulation: Problem Statement 40

2.1.1 SystemC Acceleration Strategies 40
2.1.2 Parallelizing SystemC . 41

2.2 Existing Approaches . 44
2.2.1 Synchronous SystemC Parallelization 47
2.2.2 Time Decoupling . 50
2.2.3 SCale 1.0: Runtime Processes Interactions Monitoring 55

3 Proposed Solution for LT-TLM Parallel Simulation 63
3.1 Overview . 64

3.1.1 Simplified Model . 64
3.1.2 General Execution Flow . 65
3.1.3 mem_instr Outline . 67

3.2 The Parallel Evaluation Phase . 68
3.2.1 Advantages of Zero Dependencies Parallel Phase 68
3.2.2 The Address Monitoring Finite State Machine (FSM) 69
3.2.3 Correct Memory Access Recording Order 74

10

CONTENTS

3.2.4 Efficient FSMs Reset . 75
3.2.5 Fast Scalable FSM Storage . 77

3.3 The Sequential Evaluation Phase . 79
3.3.1 Choosing the Sequential Evaluation Order 80
3.3.2 Asynchronous Dependencies Analysis 81
3.3.3 Simulation Replay . 85
3.3.4 Rollback-Based Conflict Recovery 87

3.4 Generalization to Any Shared Resources 94

4 Evaluation of the Proposed Simulation Technique 97
4.1 Experimental Setup and Use Cases . 98

4.1.1 The Host Computer . 98
4.1.2 Simulated Architecture . 99
4.1.3 Simulated Software . 100
4.1.4 Metrics and Measurement Protocol 102

4.2 Functional Validation . 104
4.2.1 Case Study: the Spinlock-Based Barrier 104
4.2.2 Experimental Functional Validation 108

4.3 Performance on Baremetal and Linux-Based Use Cases 109
4.3.1 Baremetal Performance Evaluation 109
4.3.2 Linux Performance Evaluation 113

5 Full Software Stack Simulation Challenges and Solutions 115
5.1 Introduction . 116
5.2 Investigating the Performance of Linux-Based Benchmark Simulation . 116
5.3 Fast Sequential Mode . 119

5.3.1 Region of Interest . 119
5.3.2 Variable Accuracy . 120
5.3.3 Dynamic Scheduling Policy . 122

5.4 CPU-Mode-Based Unscheduling . 123
5.4.1 Conflicts Study . 123
5.4.2 Executing OS Kernel Code Sequentially 128

5.5 Final SCale 2.0 Performance Evaluation 130

Conclusion 135

Bibliography 143

11

Introduction

This manuscript presents the work that I have conducted at the Commissariat à
l’Énergie Atomique et aux Énergies Alternatives (CEA) in Saclay (France) during my
Ph.D. thesis. I was a member of the Design Automation & Architecture Laboratory
(LECA), a laboratory working in the virtual prototyping field, as well as a member
of the Laboratoire de l’Informatique du Parallélisme (LIP) for the University Claude
Bernard Lyon 1. My thesis is the sequel of my Projet de Fin d’Études (PFE) — a
6-month internship that concludes masters and engineering degrees — on variable
accuracy SystemC simulation. I have carried on my work on this topic during the first
months of my thesis and integrated the developed features in the final version of the
presented work.

System on a Chip
Electronic System Level (ESL) design and verification is increasingly challenging due
to the soaring complexity of Systems on Chips (SoCs) and time-to-market constraints.
An SoC is an advanced electronic component that gathers on a single chip a complete
computing system. SoCs are to be found in all places where a conventional computer
is not suited like, for instance, automotive, aeronautics & aerospace, smartphones,
USB devices or Internet of Things (IoT) devices. All these applications present strong
integration constraints with respect, for example, to power consumption, area, real-time
features, efficiency, reliability, or even electro-magnetic compatibility.

While a regular computer Central Processing Unit (CPU) is composed of a set of
identical processing cores connected to external main memory and peripherals, an SoC
embeds on a single chip various regular processing cores (e.g., ARM cortex A7 and A15
in the big.LITTLE architecture), memory, communication modules (e.g., Bluetooth,
Wi-Fi and cellular networking), accelerators (e.g., Graphical Processing Unit (GPU)
and codecs) or security devices (e.g., secured biometric identification). The only limit
to SoC architecture is the manufacturing process used to engrave these Intellectual
Properties (IPs) and the complexity that the hardware designer can embrace.

Following the path set by Moore’s law, SoCs complexity reaches unprecedented
levels year after year. With multi-billion-transistor chips integrated even in entry-level
devices, new design techniques must help architects grasp this level of intricacy. Thus,

13

CONTENTS

Electronic Design Automation (EDA) tools strive to enable architects to fully exploit
the new possibilities offered by each leap in manufacturing techniques. In that respect,
abstraction is the sinews of war. SoCs are now provided with configurable IPs viewed
as black boxes which can be dropped in larger designs with minimal effort. This helps
significantly reducing hardware design cycles.

However, hardware is only one side of a coin that has the software on the other.
Software complexity is growing even faster than hardware complexity with the de-
mocratization of multi-core architectures and hardware heterogeneity that brings new
challenges to software developers. Also, when power and efficiency requirements get
too high, complexity tends to shift to software with the use of simpler hardware like
non-coherent cache architectures. As a result, EDA tools must also enable faster and
easier software development tools.

Simulation in The Design Flow
Developing complex software requires systematic testing which in turn necessitates
to run this software on the SoC it targets. Waiting for validated hardware to be
available before starting software development is not an option, especially considering
that hardware development also takes advantage of feedbacks from software teams.
As a result, both processes must take place concurrently through the adoption of the
hardware and software co-design workflow.

The industry standard solution to that necessity is Virtual Prototyping (VP). It
consists in assembling a software model of the SoC under design to build a simulator
able to run the software targeting this SoC. For this technique to be viable, VP must
fulfill the following requirements:

Cost: The Virtual Prototype (VP) must be cheap and fast to develop.

Speed: The VP must execute fast enough in order not to slow down the build-test-fix
software development cycle.

Accuracy: The VP must provide accurate-enough information needed by the software
developer in the early development phases.

Debug: The VP must provide useful information relative to errors caused by the
software under development.

Repeatability: Bugs often need to be reproducible to be fixed efficiently.

The Transaction-Level Modeling (TLM) [Ayn09] standard has been developed to
fulfill these requirements. It is part of the C++-based SystemC [IEE12] Hardware
Description Language (HDL). TLM first enables interoperability, allowing independent
actors to provide their IP in the form of a standard black-box model that can be easily

14

CONTENTS

integrated into a bigger VP. In a transaction-level model, only components behavior
is modeled as opposed to a Register Transfer Level (RTL) model where components
internals are also simulated. This difference gives a significant edge to TLM models
when it comes to development cost and speed. It also drastically increases simulation
speed at the cost of a moderate yet inevitable loss in accuracy (i.e., speed-accuracy
trade-off). In addition to the possibility of hooking up a debugger to the simulated
processors, all regular C++ debugging techniques can be applied to a TLM model
simulation. Finally, a TLM simulation relies on the co-routine semantics enforced by
the SystemC standard as for most HDL, thus providing repeatability.

Still, state-of-the-art simulation techniques are now struggling to keep up with
modern hardware complexity and simulation speed tends to shrink inexorably. This
is a direct consequence of the standard SystemC simulation kernel provided by Ac-
cellera [ScR] being single threaded as a direct implementation of co-routines, thus
exploiting a single core of the host machine. At a time where computation power
increase relies on more and more cores being fitted into a single chip, simulation
techniques can no longer rely on single core performance improvement to keep up with
the increasing SoC complexity.

Contributions and Outline Of The Manuscript
This thesis tackles precisely parallel and standard-compliant simulation of TLM models.
In particular, parallel simulation must not give up on the co-routine semantics as
it would imply harder modeling and potentially non-reproducible bugs. This work
especially focuses on a specific type of TLM models: Loosely-Timed models. These
are the most abstract but also fastest models by up to two orders of magnitude when
compared to the other types of SystemC models (RTL or even Approximately-Timed
TLM models). LT-TLM models are particularly challenging to simulate in parallel,
which this work strives to achieve.

We propose SCale 2.0, a standard-compliant parallel SystemC kernel that guarantees
co-routine semantics preservation and simulation reproducibility as a direct consequence.
This work was started after SCale 1.0 [VS16]. We support any TLM model including
the Loosely-Timed coding style with the use of the Direct Memory Interface (DMI)
protocol. Our technique based on lightweight shared-resources access monitoring has a
limited overhead even when used with the fastest Instruction Set Simulators (ISS’s)
available.

This manuscript is organized as follows: Chapter 1 lays down the bases necessary
to understanding the present work: concurrency and parallelism concepts, parallel
programming challenges and SystemC simulation principles.

Chapter 2 exposes the challenges of parallel SystemC simulation and the existing
solutions described in the literature. In particular, SCale 1.0, the starting point of the
present work is introduced in detail in this chapter.

15

CONTENTS

Chapter 3 exposes the core mechanisms implemented in SCale 2.0 that have been
published at ASP-DAC 2020 conference in [BSV+20]. These mechanisms include: a
lightweight FSM-based shared-resources access granting policy that prevents most
process atomicity violations during parallel evaluation; a fast and highly scalable data-
structure for FSM instances storage; a general process-level rollback system to recover
from process atomicity violations; and a deterministic simulation replay mechanism for
bug reproduction.

Chapter 4 describes the experimental setup including the host platform, the simu-
lated platform, the functional validation benchmark, and the performance benchmarks.
Experimental results are then analyzed: baremetal benchmarks show very good scaling
on a 36-core host but Linux-based benchmark are not efficiently supported at that
point.

Consequently, Chapter 5 further analysis the challenges brought by the simulation of
complex guest OS simulation and introduces additional solutions including: a variable
accuracy system coupled with adaptive parallel/sequential evaluation for simulation
fast-forwarding; and a simulated-CPU-mode-based process scheduling algorithm for
improved conflict avoidance before giving the final experimental results. The solutions
and results presented in this chapter have been submitted to the ASP-DAC 2020
journal and are under second review.

16

Chapter 1

Parallel Computing and SystemC
Simulation Background

1.1 Introduction . 18
1.2 Concurrency and Parallelism . 18

1.2.1 Concurrency . 18
1.2.2 Fine-Grained Control Over Concurrency with Coroutines 19
1.2.3 Parallelism . 21
1.2.4 Enabling Parallel Computation with Threads 23

1.3 SystemC Modeling and Simulation Overview 26
1.3.1 Virtual Prototyping in the SoC Design Flow 26
1.3.2 The SystemC Modeling Language 27
1.3.3 Discrete Event Simulation of SystemC Models 29

1.4 TLM-2.0 . 33
1.4.1 TLM: Abstraction of the Communication Layer 33
1.4.2 Coding Styles in TLM . 34

17

Parallel Computing and SystemC Simulation Background

1.1 Introduction
In this chapter, concepts that are necessary to the understanding of the rest of the
manuscript are exposed. The primary goal is to illustrate these concepts and to help
build an intuition of them. This chapter does not aim at being an exhaustive lecture
on these topic but instead attempts to hide the complexity of some aspects of these
topics when possible.

First, the general concepts of concurrency and parallelism as used in this document
are explained: what are they, what are their similarities but above all, what makes them
different and often incompatible? An algorithmic approach is first used to introduce
these concepts before presenting how they can be used when programming actual
applications. Then the SystemC HDL is introduced through the industrial needs that
motivate its use. Next, the fundamentals of SystemC are exposed through a simple
RTL use case. Modules, ports, channels, processes, and simulation kernel are defined at
that point. Finally, the TLM level of abstraction, the target of this work, is explained
as well as DMI and the global quantum, two standard acceleration techniques that we
strive to support with our parallel SystemC simulation kernel.

1.2 Concurrency and Parallelism
Concurrency and parallelism are two closely related concepts yet very different. This
section aims at defining and differentiating them to better understand the standard
SystemC mechanisms and the contribution of this thesis: SystemC parallelization. It
should be noticed that SystemC-specific concepts are not used in this section.

1.2.1 Concurrency
In this section, we define a process1 as a succession of related instructions being
executed. In the context of computer science, a process consists in a processor fetching
and executing coded instructions (e.g., x86 or ARMv8 [Int19; ARM20]) often located
in memory to perform the corresponding register manipulations and memory accesses.

It is often assumed that a process is executed in isolation, that is without interacting
with other processes. As a result, when a process reads several times a given memory
location without writing to it in between, it can expect to read the same value again
and again. On the opposite, if a process is not running in isolation, unexpected state
mutations (e.g., register content modification) can compromise the process validity.

One such case where processes no longer are in isolation occurs when several
processes run concurrently, that is if they are in progress simultaneously. Formally, with
process A (respectively process B) executing during the time interval TA (respectively
TB), then A and B are concurrent if and only if TA ∩ TB �= ∅. In particular, if two

1Process is not used in the sens of a SystemC process in this section.

18

Parallel Computing and SystemC Simulation Background

processes A and B are running concurrently, it does not imply that A and B are
doing progress simultaneously at any time. As a result, concurrency can be achieved
on singlecore processors by doing process multiplexing, that is by executing several
processes alternately, each for a small period of time.

In practice, concurrency can be observed at many places in a conventional computer
system. At the Operating System (OS) level, thousands of processes can coexist
simultaneously. One of the major OS roles is then to keep all of these processes isolated
from each other while letting them share the available processing time as fairly as
possible. At the program level, the developer can exploit the concurrency capabilities of
its system and language to implement control flows that rely on multiple call stacks as
detailed in Section 1.2.2. At the hardware level, multiple processing units can execute
multiple processes concurrently and even simultaneously as developed in Section 1.2.3.

1.2.2 Fine-Grained Control Over Concurrency with
Coroutines

Concurrency can be exploited and controlled at the program level using coroutines to
implement cooperative multi-tasking. A coroutine is an independent control flow (i.e.
an execution stack) that is resumed and suspended by the application programmer. In
each thread, these control flows are active one at a time as they get suspended and
resumed by the programmer. When a coroutine suspends itself, it is said that it yields.

Coroutines effectively allow a program to be composed of multiple tasks interacting
with each-other in a cooperative manner, that is, all tasks are aware of what each other
do and of when they do it. Because a coroutine has its own call stack, that is its own
context of execution, the terms context and coroutine can often be substituted.

Coroutine usage is illustrated by Algorithms 1 and 2 describe two different imple-
mentations of the Fibonacci sequence generation. The goal is to generate the numbers
of the Fibonacci sequence one at a time and to print each value before generating the
next: the values cannot be stored in an array before being all printed at once, that is
the values generation and printing must happen concurrently. We also assume that
the Fibonacci sequence generator is provided by an external source, which means that
the printing cannot be inserted in the middle of the Fibonacci generation function.
Such apparently artificial constraints are representative of typical SystemC use cases:
several complex IP models provided by various vendors as black boxes and assembled
together by the end user.

In Algorithm 1, the generator is a classic function that returns a value and takes
no argument. It implies that a specific mechanism is needed to memorize the last
computed value in order not to return the same value over and over. Here, two values
of the Fibonacci sequence are memorized instead of one to speedup the computation of
the next value. The printing function is then responsible for printing the successive
values returned by the generator.

19

Parallel Computing and SystemC Simulation Background

On the opposite, in Algorithm 2, the generator function does not need to specify
what data needs to be persistent as it never returns, and its stack frame is never cleared.
Instead, it stores the successive computed values in a global buffer accessible to the
printing coroutine. Once a new value is computed, the generator self-suspends to pass
control to the printing loop which later also self-suspends to pass control back to the
generator, and so on.

Algorithm 1 Iterative computation of the n first values of the Fibonacci sequence
1: procedure print(n)
2: for i in [0..n[do
3: print(fibonacciGenerator())
4: end for
5: end procedure
6: procedure fibonacciGenerator
7: static fib0 = 0 � Local persistent state
8: static fib1 = 1 � Local persistent state
9: ret = fib0

10: next = fib0 + fib1
11: fib0 = fib1
12: fib1 = next
13: return ret
14: end procedure

Algorithm 2 Coroutine-based computation of the n first values of the Fibonacci
sequence

1: fib = 0 � Global state shared by all coroutines
2: procedure print(n)
3: for i in [0..n[do
4: print(fib)
5: resume fibonacciGenerator
6: end for
7: end procedure
8: procedure fibonacciGenerator � Runs in a dedicated coroutine
9: fib1 = 1 � Local state persistent across yields

10: while true do
11: next = fib + fib1
12: fib = fib1 � Set global variable to pass the new computed value
13: fib1 = next
14: resume print
15: end while
16: end procedure

In that simple example, the coroutine based version seems needlessly complex but it
quickly takes the advantage when the persistent state gets more complex, for instance,

20

Parallel Computing and SystemC Simulation Background

in the presence of a lot of data or when the suspend and resume points can change.
Without co-routines, the entire state of each task needs to be explicitly saved and
restored each time the task suspends and resumes, which is cumbersome, error prone
and less flexible. Therefore, coroutines are well suited to programs where several mostly
unrelated complex tasks need to run concurrently. Coroutines are typically used in
graphical user interface engines. Hardware modeling happens to fall right under this
category and SystemC, as most hardware modeling languages, relies on coroutines to
model hardware behavior as detailed in Section 1.3.

However, while coroutines are well suited to program concurrent tasks, they are often
bad candidates for parallel execution as they specifically expect to run in alternance
with one another but never in parallel. The next sections explain what parallelism
is, how it is achieved on regular computers and why it does not combine well with
coroutines.

1.2.3 Parallelism
While concurrency describes several tasks in progress at the same time, parallelism
describes several tasks doing progress at the same time.

Despite being semantically close, parallelization sets strong additional constraints
on the tasks involved. Indeed, with cooperative multitasking, coroutines suspend and
resume at deterministic points in the program, making all interactions happen in a well-
defined and easily predictable order. When enabling parallelism between tasks, they will
inevitably desynchronize without the programmer introducing extra synchronization.
In other words, the tasks will progress at different speeds and interactions will happen
in an undefined and unpredictable order. When the order of a sequence of interactions
between several parallel tasks is not well defined and can cause variations in the program
output, this is called a race condition.

Race conditions sometimes have no impact on the validity of the program but can
also compromise it, as in Algorithm 3. Here, the printing loop is running while the
Fibonacci generator loop computes the successive values of the Fibonacci sequence.
Unless the printing loop iterates at exactly the same speed as the generator loop, they
will desynchronize, and the printed values will not be those of the Fibonacci sequence
like on the example Figure 1.1.

Printer

Generator

print 0

fib=1 fib=2 fib=3

print 3 print 3

fib=5

print 5

Figure 1.1 – Possible interleaving when executing the printing and the Fibonacci generator
loops in parallel without synchronization like in Algorithm 3.

21

Parallel Computing and SystemC Simulation Background

Algorithm 3 Parallel computation and printing of the n first values of the Fibonacci
sequence with race conditions

1: fib = 0
2: Start print and fibonacciGenerator in parallel
3: procedure print(n)
4: for i in [0..n[do
5: print(fib)
6: end for
7: end procedure
8: procedure fibonacciGenerator
9: fib1 = 1

10: while true do
11: next = fib + fib1
12: fib = fib1
13: fib1 = next
14: end while
15: end procedure

In order for tasks to run in parallel and interact in a well-defined manner, synchro-
nization must be added by the programmer. Synchronization can take several forms
like:

1. waiting: A task waits for one or more tasks to complete some specific operations
before continuing. Mutual exclusion, barriers or condition variables are common
primitives used to wait for various types of events.

2. atomic operations: the state on which an atomic operation is performed can
either be observed before the operation starts or after it finishes but never while
it is happening. Atomic instructions like compare-and-swap or transactional
memories [HLR10] enable atomic operations on memory.

In Algorithm 3, additional synchronization is required. A simple approach imple-
mented in Listing 1 would be for example to add a flag specifying if the generator
is allowed to write fib, the only shared variable: if the flag is true, the generator is
allowed to write to fib but the printer cannot read it safely and vice versa if the flag is
false. Both tasks then wait for the flag to have the appropriate value before doing an
access to fib and flips it once done before continuing to release the other task. In that
case, the generator can compute the next value while the printer prints the current one
and only needs to wait before updating fib. The program is now not only concurrent
but also parallel.

Parallelizing a program in practice however involves several technicalities at the
software and hardware level that are introduced in the next section.

22

Parallel Computing and SystemC Simulation Background

Threads

Process

Threads

Process

Threads

Process

OS scheduler

CPU

cores

CPU

cores

Figure 1.2 – Organization of a multi-core dual-socket system executing multithreaded pro-
cesses

1.2.4 Enabling Parallel Computation with Threads
The notion of thread starts at the language level and percolates down to the hardware
layer through the operating systems as illustrated in Figure 1.2. While the semantics
of a thread is completely defined at the programming language level, the performance
of a multi-threaded program is conditioned by the hardware behavior. This section
describes the most important of these aspects regarding the developments of this work.

Threads at the Language Level

Threads of execution are the fundamental concept behind parallel programming. As a
coroutine, a thread is an independent control flow in an application but as opposed to
a coroutine, threads can execute simultaneously. A program that makes use of multiple
threads is said to be multithreaded.

In order to program a multithreaded application, the language must first provide
the thread construct either natively or via a library. For instance, in C++11 [C] or later,
a thread can be spawned using the std::thread class. The Listing 1 is a parallel C++
implementation of Algorithm 3 with a flag used to order the accesses to fib done by
each thread.

Functions fibonacciGenerator and print are both called in a dedicated thread at
lines 28 and 30. The generator thread is then detached, that is it becomes independent
from the main thread. It allows the program to exit normally without waiting for the
generator thread to finish as it will never finish. The printer thread is joined, that is the
main thread waits for it to finish (i.e., the print function returns) before proceeding

23

Parallel Computing and SystemC Simulation Background

Listing 1 C++ parallel implementation of the printing of the Fibonacci sequence.

1 #include <thread>
2 #include <atomic>
3 #include <iostream>
4

5 int fib = 0;
6 std::atomic_bool write_fib(false);
7

8 void print(int n){
9 for(int i = 0 ; i < n ; ++i){

10 while(write_fib){} // Wait
11 std::cout << fib << std::endl;
12 write_fib = !write_fib; // Let the generator resume
13 }
14 }
15 void fibonacciGenerator(){
16 int fib1 = 1;
17 while(true){
18 int next = fib + fib1;
19 int next1 = fib1;
20 fib1 = next;
21 while(!write_fib){} // Wait
22 fib = next1;
23 write_fib = !write_fib; // Let the printer resume
24 }
25 }
26 int main(){
27 // Start the generator and let it run independently
28 std::thread(fibonacciGenerator).detach();
29 // Start the printer and wait for it to finish
30 std::thread(print, 8).join();
31 }

to the end of the program.

It can be noticed that the write_fib flag is of type std::atomic_bool instead of
bool. This is mandatory to avoid data races, that is concurrent accesses to a same
memory location with at least one write. A data race would here occur between lines
11 and 22: the printer reads fib and the generator writes to it. Another data race
would also occur on the write_fib flag itself. Defining the flag as an atomic boolean
instead of a regular boolean solves the issue by constraining the order of execution of
the program statements surrounding the atomic memory accesses. Incidentally, when
defining write_fib as a regular bool instead, depending on the optimization level and

24

Parallel Computing and SystemC Simulation Background

on whether gcc or clang is used to compile the program, the printer thread will either
print the Fibonacci sequence, print only zeros or fall into an infinite empty loop. This
is the result of a data race making the program ill-formed, which basically lets the
compiler produce whatever behavior it wants.

Atomic variables are the first step toward the complex and sometimes remarkably
counter intuitive C++ memory model defined starting from version 11 upwards. Some
brief incursions into the C++ memory model will be required to demonstrate some key
aspects of the contributions of this thesis like in Section 3.2.2. Without getting into
details, a memory model describes the semantics of memory accesses: it constrains
how memory accesses can be reordered and in which order memory writes should
appear to the other threads. Indeed, all CPU — or more accurately all Instruction Set
Architectures (ISA’s) — have their own memory model according to which instructions
and specifically memory accesses can be reordered. Fortunately, as long as the program
is well defined and the compiler is standard-compliant, the programmer does not need
to think about the CPU memory model but only to the (usually simpler) language
memory model.

Threads at the System Level

Threads at the program level are supported at the OS level using OS threads. OS
threads are basically what the OS scheduler can manage. When a thread is spawned in
a process, it leads to the creation of an OS thread that can be scheduled independently
from other threads. As a result, all threads become independent tasks executed
whenever the OS scheduler decides to. While the scheduler strives to be fair amongst
all threads, significant execution time variations between threads can still be observed.

At the hardware level, OS threads are executed by the CPU, specifically, one CPU
core can execute one thread at a time2. The OS scheduler then decides which thread is
executed by which core at what time.

Now that everything is setup to program and run multithreaded parallel applications,
one should wonder whether it will be faster than its equivalent sequential version. The
answer is far from being always yes. Several algorithmic and hardware considerations
can make a parallel program slower than its sequential counterpart, among them being:

• Overloading the CPU by spawning many more active threads than there are
available cores will result in numerous context switches as a result of the OS
scheduler attempting to be fair to all threads.

• Poorly decoupled threads, i.e., threads that constantly wait for each other.

• Frequent non-read-only data sharing causing systematic cache line invalidation
on coherent architectures like all mainstream computers.

2Simultaneous MultiThreading (SMT) can raise this limit to 2 or more

25

Parallel Computing and SystemC Simulation Background

• False sharing, that is two or more pieces of data that are not shared between
several threads but happen to live in the same cache line3, causing frequent cache
line invalidation despite no data being shared in the program.

• Use of inappropriate synchronization primitives.

• Non-Uniform Memory Access (NUMA), which describes a configuration where
some memory locations are slower to access than others depending on the core
being considered.

• SMT where all logical cores mapped onto the same physical core must share
most of its resources. Thus, scheduling two threads on the same core is often not
advisable for best performance.

Luckily, the OS scheduler is usually decent enough at dealing with NUMA and SMT
to dispense the programmer from thinking about it. The rest is left to the programmer
and has been carefully refined in the present work in order for the proposed parallel
SystemC kernel to be faster than the sequential reference version.

1.3 SystemC Modeling and Simulation Overview
Now that the general computer science notions useful to the understanding of SystemC
and its parallelization are laid down, this section explains the fundamental concepts
of SystemC and TLM-2.0 modeling and simulation, as well as their role in the SoC
industry.

1.3.1 Virtual Prototyping in the SoC Design Flow
An SoC is an integrated circuit that gathers on a single chip one or more processing
units, memory and optionally a GPU, external communication modules and various
accelerators. The electronic design industry refers to these components as IPs that are
interconnected with either a bus or more recently a Network on a Chip (NoC). SoCs
are most often tailored to specific applications requiring various sets of features from
computing power to wireless communication capabilities including security, efficient
codec decoding or other specialized data processing. In addition, the SoC design
industry is increasingly competitive with rapidly evolving technologies and needs. The
ability to design an SoC in a reduced amount of time is key to fulfill the ever-tighter
time-to-market constraints: typically, a new high-end smartphone chip is released every
year with strong timing constraints involving huge market shares.

Designing a new SoC involves two major tasks: the hardware design and validation
and the software development. These two tasks are strongly interdependent: the
software needs the hardware to be developed and tested and the hardware can require an

3Even two adjacent cache lines can cause false sharing on Intel processors for instance.

26

Parallel Computing and SystemC Simulation Background

upgrade if, for instance, the performance of the software cannot meet the requirements
on a given hardware.

In order for software to be developed independently from hardware availability, the
industry relies on VP. A VP is a software model of the hardware under development
able to run the software targeting this hardware. Thanks to VP, the hardware design
and software development are decoupled and can happen simultaneously in a process
called hardware/software co-design, cutting down on the overall SoC design cycle
duration.

However, for a VP to be profitable, it must be fast to develop. This is achieved
mostly through IP model reuse. Most IP vendors license there products together
with models that can be used to develop VPs. But for models to be compatible
with each other out of the box, they must conform to a same standard. One of
them is SystemC/TLM-2 [IEE12; Ayn09], a C++ based hardware modeling library
and simulation engine. SystemC/TLM-2 offers a collection of constructs suitable for
hardware modeling. But more importantly, it specifies the interfaces that IP models
must expose so that they can integrate conveniently and reliably with other models
inside full SoC models.

Also, VPs must run fast enough not to slow down the build-test-fix software
development cycle. The main variable of adjustment is the speed-accuracy trade-off:
the more details are simulated, the slower the simulation. This thesis aims at providing
solutions to accelerate simulations without sacrificing accuracy.

1.3.2 The SystemC Modeling Language
SystemC is a C++-based HDL standardized in 2005 as IEEE Std 1666™-2005 and
updated in 2011 as IEEE Std 1666™-2011 [IEE12]. It initially aimed at competing
with other HDL such as VHDL [VHD97] or Verilog [Ver91]. It quickly became a
popular VP tool by enabling system-level modeling at various and possibly mixed
levels of abstraction ranging from cycle-accurate-bit-accurate to loosely-timed TLM
and including RTL. This thesis being focused on TLM model simulation, RTL models
will only be used in this section to illustrate the general principles of SystemC modeling
and simulation.

An SoC is composed of hierarchical hardware blocks that communicate together
through various communication channels such a wires, buses or NoCs. SystemC being
based on the object-oriented language C++, such modular hardware design naturally
translates into class-based modeling. A collection of SystemC classes provide the basic
interfaces and features to model each building block of an SoC:

• sc_module is the base class for all hardware blocks.

• sc_port and sc_export are the base classes for block ports, that is interfaces
for sc_modules to connect to the outer world.

27

Parallel Computing and SystemC Simulation Background

Fibonacci
generator 5 3 2

FIFO
Screen
controller

reset

next

update

Input port Output port Module

Figure 1.3 – A simple SystemC model of a hardware implementation of Algorithm 2 with
the addition of the control signals reset, next and update.

• sc_prim_channel and sc_channel are the base classes for communication chan-
nels between blocks and are meant to connect instances of sc_port and/or
sc_export together.

A variety of specializations of these classes are provided to model the most common
type of components. For instance, sc_in, sc_out and sc_inout are specialization
of sc_port that provide specialized interfaces used to read and/or write from/to a
channel. Also, sc_signal models a simple wire and sc_fifo models a fixed capacity
queue. Both are specializations of sc_prim_channel and can carry a wide variety of
data types thanks to template parameterization4.

The aforementioned classes allow to describe the architecture of a design. The
internal logic of the components can then be defined using SystemC processes. Processes
are special methods in the sc_module they belong to. A process can then access and
modify all the data contained in its sc_module just as a regular method can. SystemC
processes can be of two kinds:

• sc_method: A process that always runs from start to end without persistent
context from an execution to the next (i.e., a regular function).

• sc_thread: A process with persistent context that can suspend and resume
(i.e., a coroutine). sc_thread processes present a slight memory and speed
overhead over sc_method.

To illustrate these concepts, the Fibonacci sequence generator and printer example
is modeled in Figure 1.3 using a seven-segment display controller as a printer. If there
is some room left in the FIFO and the next signal rises, the generator computes a
new value and stores it in the FIFO. The display controller fetches a new value from
the FIFO whenever the update signal rises and the fifo is not empty. The Fibonacci

4Specific requirements can be imposed on the types used as template arguments like being trivially
copiable.

28

Parallel Computing and SystemC Simulation Background

generator module is connected to the reset and next signal using two input ports. Its
output port is connected to the head of the FIFO channel whose tail is connected to
an input port on the display controller. The display controller also has an input port
used to trigger an update of the screen.

The generator behavior must be implemented as an sc_thread to preserve the
context from one iteration to the next, just as in the Algorithm 2. The display controller
only requires an sc_method sensitive to the update signal as it only fetches data
from the FIFO and computes the command of the display.

The next section will now describe when and how the processes in a SystemC
simulation are executed to simulate the behavior of a real hardware system.

1.3.3 Discrete Event Simulation of SystemC Models
Just as with most HDL, a SystemC model can be simulated using Discrete Event
Simulation (DES) [Nan93]. DES models a system as a succession of events occurring
at discrete successive time points. As a broad outline, the simulator advances time
to the next closest scheduled event and runs the processes sensitive to this event in
a sequential fashion. These processes may then schedule new events to occur in the
future. This sequence repeats until the end time is reached or no more events are
scheduled.

SystemC applies this scheme following the execution flow chart Figure 1.4. The
platform is first initialized by running all processes once and then starts the main
simulation loop. It is composed of these three steps:

1. The evaluation phase: all runnable processes are evaluated in a sequential un-
specified order. Please note that though unspecified the order is deterministic
for a given SystemC kernel with a given SystemC model to ensure reproducible
simulation

2. The update phase: when accessing an sc_prim_channel like an sc_signal during
the evaluation phase, any modification of the state of the channel is postponed
to the following update phase. That way, the visible state of all channels is
immutable during each evaluation phase.

3. The delta or timed notification phase: the earliest notification time (which is the
current time in case of a delta notification) is computed and the corresponding
events are triggered, making the sensitive processes runnable during the next
evaluation phase.

Processes can be made sensitive to an event either using static sensitivity or dynamic
sensitivity. Static sensitivity is defined during the initialization of the platform using the
sensitive SystemC command right after declaring a process. Also, an sc_method

29

Parallel Computing and SystemC Simulation Background

Start simulation

Initialization

Evaluation

Update

is delta notif?

Events
remaining?

End simulation

Delta notifications Timed notifications

Advance time to
next event(s)

no

no

yes

yes

Figure 1.4 – Flow chart of the reference Accellera SystemC simulation kernel.

30

Parallel Computing and SystemC Simulation Background

(resp. an sc_thread) can be made dynamically sensitive to an event by calling
next_trigger() (resp. wait()) with an event and/or a delay as parameters. For
instance, in Figure 1.3, the generator sc_thread is statically sensitive to a rising
edge on the reset signal and on the next signal and the display controller sc_method
is statically sensitive to a rising edge on the update signal.

Let us now assume that we want to simulate the time required for the generator to
compute a new value and for the controller to convert an input into a command. In DES,
processes evaluation always takes place in a null simulated time. Thus, the simulation
accounts for the duration of the simulated tasks between processes evaluation, during
the timed notification phase. This is achieved by adding timing information in the
processes in the form of wait(time) or next_trigger(time) statements. These
statements will trigger the continuation of the process evaluation after the timing
statement.

A complete SystemC model of the generator in the example Figure 1.3 could then be
like on Listing 2. It can be noticed that genThread is registered as an sc_thread and
thus is executed as a coroutine with a persistent state (fib0 and fib1 in that case). The
events triggered by a rising edge of reset or next are registered in the static sensitivity
list of the genThread process in the constructor. The time taken by either the reset
or the next value computation is accounted for by calling wait(sc_time) with the
desired amount of time before calling wait() without arguments to wait for an input
signal rising edge.

Though, modeling at this level of abstraction (RTL) is time consuming and simula-
tions are very slow at a few thousand simulated instructions per second for full system
simulation. For fast virtual prototyping and (much) higher simulation speed, the TLM
level of abstraction is a better choice.

31

Parallel Computing and SystemC Simulation Background

Listing 2 SystemC model of the Fibonacci sequence generator.

1 #include <systemc>
2 using namespace sc_core;
3

4 // Macro for sc_module definition
5 SC_MODULE(fibo_gen){
6 sc_in<bool> reset, next;
7 sc_out<int> out;
8

9 void genThread(){
10 // Initialization
11 int fib0 = 0, fib1 = 1;
12 wait();
13 // Infinite loop
14 for(;;){
15 if(reset){
16 fib0 = 0;
17 fib1 = 1;
18 // Account for reset duration (2ns)
19 wait(sc_time(2, SC_NS));
20 } else if(next) {
21 out = fib0;
22 int fib2 = fib1 + fib0;
23 fib0 = fib1;
24 fib1 = fib2;
25 // Account for computation duration (10ns)
26 wait(sc_time(10, SC_NS));
27 }
28 wait(); // wait for reset or next signal
29 }
30 }
31 // Macro for sc_module constructor declaration
32 SC_CTOR(fibo_gen){
33 // Register genThread as an SC_THREAD
34 SC_THREAD(genThread);
35 // Register reset and next rising edges in
36 // the static sensitivity list of genThread
37 sensitive << reset.pos() << next.pos();
38 }
39 };

32

Parallel Computing and SystemC Simulation Background

1.4 TLM-2.0
TLM-2.0 [Ayn09] (which will now be referred to as TLM) is a standard built on top
of SystemC and released in 2008. It provides an interoperability layer together with
utility features to facilitate model development and improve cross compatibility for
model reuse. The main goal of TLM is to speed up VP development and simulation
speed of memory-mapped bus-based platforms. The present manuscript describes a
new parallelization technique targeted at the loosely-timed TLM models.

1.4.1 TLM: Abstraction of the Communication Layer
TLM introduces new constructs for communication modeling. While in classic SystemC,
communication between models usually involves signals and protocol simulation, TLM
communications rely on interface method calls. When in classic SystemC a module
writes data on a channel in order for the module on the other end to receive this data,
a TLM-enabled module sends data to another module calling an interface method
directly exposed by the targeted module.

This form of memory access simulation is referred to as a transaction. It consists
in the transmission of a data structure called the payload that packs together all the
information needed to describe a memory access request. It includes (among other
things) the type of memory access (read or write), the targeted address, the length of
the access, the status of the transaction and the data being either read or written.

A simple TLM model is illustrated in Figure 1.5. Three types of modules can be

CPU

RAMUART RTC ITC

BUS

TLM-2.0 socket Ports

Figure 1.5 – A basic platform modeled at the TLM abstraction level. A single CPU is
connected to a RAM memory, a UART, a real time clock and an interrupt controller. Address
based communications rely on TLM while interrupt signals use regular ports and channels.

33

Parallel Computing and SystemC Simulation Background

distinguished on this example:

• Initiator: a module that actively initiates transactions targeted at other modules.
A processor is a typical example of initiator.

• Target: a module that passively responds to transactions initiated by other
modules. Memories, peripherals, and coprocessors are often target modules.

• Interconnect: a module that transmits transactions initiated and targeted by and
to other modules. Buses and NoCs are classic interconnects.

In order for modules to be compatible with each other, the TLM standard defines a
set of standard interfaces called sockets. An initiator module exposes initiator sockets,
a target module exposes target sockets, and an interconnect exposes both target and
initiator sockets.

As a result, a TLM transaction consists in a generic payload being passed from a
module to the next through a succession of interface method calls. Each module on the
path of a transaction can alter the payload according to its intended behavior. Once
the payload has reached its target, it follows the backward path to the initiator and
each module can check and update the transaction status.

1.4.2 Coding Styles in TLM
TLM defines two coding styles: approximately timed (TLM-AT) and loosely timed (TLM-
LT). The former provides greater timing accuracy at the cost of a slower simulation
speed. On the opposite, the later gives access to several standard acceleration techniques
like the global quantum and the DMI. Both techniques provide consequent speedup at
the cost of a coarser grain timing. The coding styles defined in the TLM standard are
only guidelines that the user is strongly encouraged to use. They enforce no specific
modeling rules. It is however assumed that these guidelines are followed by the user in
the rest of this manuscript.

This work focuses on TLM-LT as it provides the greatest base speed. However,
TLM-AT will also be presented as many of the work introduced in Chapter 2 target
the TLM-AT coding style.

TLM-AT

Let us begin with the most accurate but also most complex coding style: TLM-AT.
Using the TLM-AT coding style, transactions can be split into several phases to better
represent the real communication protocol and timing of the simulated system. In
particular, the query and answer phases of a transaction, called forward and backward
paths, are modeled in two distinct steps. Two different socket interfaces are used for the
two phases of a transaction: nb_transport_fw (for non-blocking transport forward) of

34

Parallel Computing and SystemC Simulation Background

Initiator

Interconnect

Target

nb_
transport_

fw
() re

tu
rn

ac
kn

o.

Route transactionnb_
transport_

fw
() re

tu
rn

ac
kn

o.

Handle accesss

nb_
transport_

bw
() re

tu
rn

ac
kn

o.

Route backward

nb_
transport_

bw
() re

tu
rn

ac
kn

o.

Continues concurrently

Continues

Figure 1.6 – Chronogram of a non-blocking transaction from initiator to target routed
through interconnect.

target sockets and nb_transport_bw (for non-blocking transport backward) of initiator
sockets. Such transactions are said to be non-blocking as an initiator does not have to
wait for a transaction to complete to continue.

A TLM-AT transaction would then follow the lines in Figure 1.6: The initiator
starts the transaction using the nb_transport_fw interface of the interconnect target
socket. The interconnect acknowledges the transaction to the initiator which can then
continue to run concurrently. In the meantime, the interconnect routes the payload
to the target following the same protocol. Once the target has processed the request,
it calls the nb_transport_bw of the interconnect and the transaction is routed back
to the initiator similarly to the way it got to the target in the first place. After every
step of the transaction, i.e., roughly after every acknowledgment, the corresponding
simulation time required can be consumed by calling wait(). It is important to note
that the transaction is handed over from a process to the next by transferring the
payload. It allows each process to continue running concurrently to the transaction,
thus better representing the real hardware concurrency.

This coding style allows for modeling complex phenomenons such as interconnect
contention but limits the simulation speed to only a few Million Simulated Instructions
Per Second (MIPS). Also, the complexity of TLM-AT models makes them a rather
unusual choices for VP as ease of development is a key feature.

35

Parallel Computing and SystemC Simulation Background

CPU

BUS

RAM

b_
transport()

route transaction b_
transport()

handle access

re
tu

rn
re

tu
rn

Figure 1.7 – Chronogram of a blocking transaction from CPU to RAM routed through BUS
in Figure 1.5.

TLM-LT

When using the TLM-LT coding style, a process is allowed to perform several operations
and account for the total amount of time they took with a single call to wait(). For
instance, a complete memory access can be simulated in a single evaluation phase.
This helps reducing the number of context switches between processes to accelerate
the simulation.

In TLM-LT, transactions are said to be blocking and thus use the b_transport (for
blocking transport) target socket interface. Blocking means that a transaction completes
in a single function call and a single evaluation phase. As a result, interconnect and
target modules are not allowed to call wait() and the entire transaction is executed in
the context of the initiator process.

In order to account for the simulated processing time of the various modules on
the path of a blocking transaction, a delay variable follows the payload and is updated
at every step of the transaction. On the example Figure 1.5, if the CPU performs a
blocking transaction toward the RAM, the access will be simulated according to the
chronogram Figure 1.7.

Direct Memory Interface

TLM enables DMI accesses. It consists for an initiator to directly access the underlying
memory buffer of a target. This protocol is exclusively used for memory components
as their only function is to store data in a buffer. It is also much more common in
combination with the TLM-LT coding style as it would seriously degrade TLM-AT
timing accuracy.

In order for an initiator to access a target with DMI, the target must first provide

36

Parallel Computing and SystemC Simulation Background

a pointer to its internal memory buffer. An initiator knows if a target supports DMI
by looking at the DMI hint field in the payload after completing a transaction. If the
target supports DMI, it should have set it to true. The initiator can then query the
DMI pointer by sending a specific request to the target using the get_direct_mem_ptr
target socket interface. The initiator can finally access the memory of the target as a
classic C-style array. A rough access time estimation also provided by the target can
be used to preserve decent timing accuracy when using DMI.

A target module can revoke DMI permissions by calling the initiator socket interface
called invalidate_direct_mem_ptr. It can happen in case the target configuration
has changed or if the target is an accelerator only providing DMI between computational
phases for instance.

Temporal Decoupling

Temporal decoupling5 is the last standard feature of TLM that aims at speeding up
simulations. It is also reserved to the TLM-LT coding style as it favors speed against
timing accuracy, too. It allows an initiator to run ahead of global simulation time by a
certain amount of time called the global quantum.

Temporal decoupling is illustrated Figure 1.8. Without temporal decoupling, all
three initiator processes are evaluated alternately for short periods of time usually
corresponding to a single transaction. It results in numerous context switches between
processes but also with the SystemC simulation kernel. On the contrary, with temporal
decoupling, each initiator process evaluates for much longer periods of time (typically
100 to 10.000 times longer depending on the quantum and average transaction durations)
until their local time gets greater than the global quantum.

As a result, the number of context switches is reduced by several orders of magnitude
which provides consequent speedups. Combined with DMI, simulation speed can reach
hundreds of MIPS.

5Not to be confused with time decoupling which relates to Parallel Discrete Event Simulation
(PDES) as explained in Chapter 2

37

Parallel Computing and SystemC Simulation Background

Without
temporal

decoupling

With
temporal

decoupling

process 1 process 2 process 3 kernel

Figure 1.8 – Illustration of the effect of temporal decoupling on a three process simulation.
Context switches happen at every color change and are symbolized by a small gap. Simulation
time is only updated during kernel phases.

38

Chapter 2

Parallel SystemC Simulation:
Challenges and Existing Solutions

2.1 Parallel SystemC-TLM Simulation: Problem Statement 40
2.1.1 SystemC Acceleration Strategies 40
2.1.2 Parallelizing SystemC . 41

2.2 Existing Approaches . 44
2.2.1 Synchronous SystemC Parallelization 47
2.2.2 Time Decoupling . 50
2.2.3 SCale 1.0: Runtime Processes Interactions Monitoring 55

39

Parallel SystemC Simulation: Challenges and Existing Solutions

2.1 Parallel SystemC-TLM Simulation: Problem
Statement

2.1.1 SystemC Acceleration Strategies

Just as for any software, there are many ways of accelerating SystemC simulations.
The most classic way would consist in optimizing the existing code. It most often
relies on using better algorithms for expensive computations, reducing the number of
dynamic memory allocation, caching the result of heavy computations if they need
to be reused, improving memory access patterns, reducing the number of conditional
branching, etc. On the model side, such optimizations are different for every single
simulator and must be carried out on every model independently. On the kernel side,
the reference Accellera SystemC kernel is already well optimized for the general case
and there is not much room for improvement.

Simulation speedup can also be achieved through hardware acceleration. Offloading
some computations to dedicated resources such as a GPU can potentially yield great
accelerations. The most straightforward application would consist in finding processes
in the simulation that perform expensive computations and to accelerate them if
possible. For instance, the logic of a video decoding IP would probably present a lot of
data level parallelism and run much faster on a GPU. However, a general approach to
hardware accelerated SystemC simulation is much more difficult. We discuss some of
them in Section 2.2.

The two previous approaches do not change the behavior of the model they are
applied to. On the opposite, other acceleration techniques require to change the model
behavior, usually sacrificing accuracy for speed. The use of TLM, temporal decoupling
and DMI, presented in Section 1.4.2, are examples of model transformations that result
in significant speedups in the orders of magnitude of up to 10× each. Because these two
techniques are now largely adopted in the industry, we want the approach presented in
this manuscript to be compatible with them and provide an additional speedup. This,
by itself, is a big differentiation factor from most of the other approaches that typically
do not support efficiently DMI or temporal decoupling.

Finally, the last classic way of accelerating a program is to parallelize it at the
thread level. SystemC, as a Discrete Event Simulator (DES), natively uses a single
thread to run the simulation and thus does not take advantage of parallelization. As a
result, SystemC parallelization is the most common approach to SystemC acceleration.
This is also the approach chosen in this manuscript. However, parallelizing SystemC
presents a variety of obstacles that are addressed in the next section.

40

Parallel SystemC Simulation: Challenges and Existing Solutions

2.1.2 Parallelizing SystemC

Parallelization opportunities

Not all programs can be parallelized, at least not in a profitable way. Parallelizing a
program requires that some of the steps in this program be independent from each
other so that they can run simultaneously. Specifically, two tasks can run in parallel
if they do not have to wait for each other. Wait must be understood in every sense.
For instance, if a task A needs a result being computed by a task B, A is said to be
waiting for B. But also, if A and B attempt to perform two actions that compete on
a same resource, either A or B must wait for the other task to complete the action
before proceeding. For instance, in C/C++, {x++;} evaluated by two threads without
additional synchronization causes a data race, leading to undefined program behavior.
Whether x++ is performed under mutex protection or using an atomic fetch_add
operation, one task will wait for the other to complete at some point. If a task A waits
for another task B, A must stop until B has done the expected action, thus eliminating
parallelism during that wait.

Also, running a set of tasks in parallel is only beneficial if the tasks are long enough.
Indeed, spawning a thread, waking it up or simply passing data to it takes some time
that can be significantly longer than the time required to run the task itself. In the case
of SystemC, the simulation process can be split between three alternating tasks: the
notification phase during which the processes that must run during the next evaluation
phase are setup, the evaluation phase during which the model is simulated and the
update phase during which channels that have been accessed perform extra actions.
Depending on the type of model, the relative length of these tasks varies greatly. For
instance, the evaluation and update phases can be of comparable length on a detailed
RTL model while the evaluation phase can take up for close to 100% of the time on a
TLM-LT model with temporal decoupling enabled.

The main focus of this manuscript being on TLM-LT models simulation, the
evaluation phase represents the vast majority of the simulation process and thus is
the logical target of parallelization. Though, we will see in Chapter 4 that once the
evaluation phase gets fast enough, the other phases represent a non-negligible part of
the total simulation. Accelerating them is however not the topic of this manuscript
and belongs to the future work.

Parallelizing the evaluation phase could consist in the introduction of parallelism
inside SystemC processes themselves. But this would not be a general approach as it
would be specific to each model that is not known from the simulation kernel. Indeed,
from its perspective, the evaluation phase only is a succession of process evaluations:
sc_methods and sc_threads. The content of these processes is then unknown from
the kernel which sees them as black boxes.

Because we want to propose a SystemC acceleration thanks to parallelization, we
cannot make assumptions on the content of SystemC processes. As a result, the only

41

Parallel SystemC Simulation: Challenges and Existing Solutions

P0

P1

w(a, 1) w(a, 2)

r(a)

Figure 2.1 – An example of process atomicity violation caused by concurrent accesses to a
same memory location: a is initially 0, P1 reads a as 1, which would be an impossible value
in sequential evaluation.

parallelism that we can introduce in a SystemC simulation is between the processes
of the evaluation phase themselves. Adding intra-process parallelism is more of the
user responsibility from our perspective but remains compatible with the proposed
approach.

Process Atomicity Violation And thread-safety

The vast majority of SystemC parallelization approaches focus on the evaluation phase
for the reasons exposed in Section 2.1.2. Whether it is applied to RTL or TLM models,
parallelizing the evaluation phase presents several challenges described in [Döm16;
BMC16]. The first and biggest of them is the co-routine semantics of SystemC. It
requires that all processes scheduled during a given evaluation cycle be evaluated
atomically. The SystemC standard however allows parallel evaluation as long as this
co-routine semantics is preserved but it does not give hints about how to achieve it.

TLM is, in itself, very challenging for parallel simulation as it replaces the channel-
based (e.g., sc_signal or sc_fifo) communication between modules with interface
method calls, that is classic C++ function calls. When using channels to communicate,
the various modules’ states and processes tend to remain mostly isolated during the
evaluation phase. Each process reads its inputs on a channel and writes its output on
another one. The SystemC primitive channels provide a good isolation between the
reading and writing processes (constant values are read until next update phase). On
the other side, TLM causes much more state sharing between processes because of the
shared slave TLM modules, especially the shared memories. Indeed, if, for instance, two
processors simulated by two different sc_threads access the same shared memory,
they might, during a given evaluation phase, both access the same address inside this
memory and cause an atomicity violation like in Figure 2.1. In that example, the
process P1 reads a value that only exists in the middle of the evaluation of P0. If the
evaluation of P0 was atomic, like required by the SystemC standard, P1 would not have
been able to read this value.

Most solutions presented in Section 2.2 try to preserve the co-routine semantics at
the cost of various restrictive assumptions. The main assumption is that the different
SystemC processes are isolated, that is they do not share data while they are being
evaluated or they only use the allowed communication media. For instance, only
signals or TLM sockets can be used for cross-process communication depending on the

42

Parallel SystemC Simulation: Challenges and Existing Solutions

approach. The event notification policy can also be constrained to provide guarantees
that can be exploited by the parallel simulator.

Also, when dealing with classic TLM models, thread-safety is usually not guaranteed
as these models are designed with a sequential mindset, that is expecting they will never
run simultaneously with other processes. This implies that evaluating the processes of
a TLM model in parallel will most likely cause various data races making the outcome
of the simulation undefined. For instance, all processes that use a same DMI pointer
are susceptible to cause data-races when using it if evaluated in parallel. The fact that
all C++ constructs like global variables are allowed in SystemC makes it even harder
to ensure even only thread-safety, let alone processes atomicity. Protecting shared
resources with critical sections (e.g., mutexes) helps with thread-safety but does not
ensure process atomicity and severely hampers performance in most cases.

To make matters worse, TLM-2.0 enables temporal decoupling, allowing processes
to run for much longer periods of time during each evaluation phase. This multiplies
the risk of process atomicity violation like in Figure 2.1. Indeed, a single process can
typically perform hundreds of memory accesses per evaluation phase under temporal
decoupling.

Synchronized Process Scheduling

Another threat to parallelization especially present in TLM models is the lack of
natural synchronization between processes, that is the fact that very few processes are
scheduled at the same date during a simulation. As a result, little parallelism seems
achievable in a TLM simulation as opposed to an RTL simulation where most processes
are synchronized on a clock.

Indeed, at first sight, only processes scheduled during the same evaluation cycle
are good candidates for parallel evaluation. For instance, if a SystemC scheduler was
to evaluate in the same evaluation phase two processes P1 and P2 scheduled at two
different time points T1 < T2, an event at time T3 ∈ [T1, T2[could be notified by P1. A
process P3 sensitive to that event would then be evaluated later than P2 with respect
to the wall clock time, despite being notified by an earlier event with respect to the
simulation time. If the evaluation of P3 influences the evaluation of P2, that is if P2
depends on P3, then this scenario is a causality violation, which is of course prohibited
by DES principles. In [BMC16], the authors show that most of the time, less than two
processes can be scheduled simultaneously in a classic TLM model. This constraint,
however, is tackled by PDES (Section 2.2.2). Because the speedup is bounded by the
number of processes that can run in parallel, a way must be found to raise this number.

Fast CPU Simulation

Except maybe for some embarrassingly parallel problems, parallelizing a program
always incurs some overhead, that is each part of the problem individually takes longer
when processed in parallel to others. This overhead must then be compensated by a

43

Parallel SystemC Simulation: Challenges and Existing Solutions

good enough parallel implementation to achieve an overall speedup. The very first
source of overhead lies in synchronization, that is when two threads access a shared
resource. For instance, due to hardware optimizing features such as memory caching,
the more threads one uses to increment a same variable N times, the longer it takes.
Also, the higher the access frequency to a shared variable, the slower each access tends
to get.

Anticipating a bit on the core of this manuscript, we parallelize SystemC processes by
monitoring their interactions to preserve their atomicity. If such interactions monitoring
incurs a lot of cross-thread communication and synchronization, the speedup will suffer
for the reason previously mentioned. In the case of process interactions monitoring,
the amount of cross-thread communications is correlated with the number of simulated
CPU instructions since the SystemC model activity is mostly driven by loads and
stores initiated by the simulated CPU and the more there are, the more interactions
between processes occur.

CPU are simulated using ISS’s which have gotten very fast in the recent years, exe-
cuting millions of simulated memory accesses per second. For instance, QEMU [Bel05]
reaches speeds above 1000 MIPS using a single core of the host machine [CBM+19].
The memory access simulation on the SystemC side then must be extremely fast and
typically involves a couple of very short function calls thanks to DMI. Monitoring such
a short and frequent event could rapidly lead to huge parallelization overhead. The
instrumentation technique must then be extremely optimized in this context compared,
for instance, to a model that do not use DMI.

Having highlighted the major challenges of SystemC parallelization, Section 2.2
presents the existing work related to parallel SystemC simulation and shows that many
of these issues remain unsolved.

2.2 Existing Approaches
To this day, all attempts to parallelize SystemC simulations have made some restrictive
assumptions. They are usually related to the abstraction level of the models that can
be efficiently simulated in compliance with the SystemC semantics and, by extension,
to the type of communications used inside these models. A summary of the presented
solution is listed in Table 2.1 as well as a general classification in Figure 2.2. Some
solutions require sc_prim_channel-based communications only between processes
(most commonly sc_signal) to preserve decoupling. Other solutions targeting higher
levels of abstraction prefer the message-passing paradigm enabled by channels like
TLM sockets. Communication using shared variables is rarely supported in a standard-
compliant way and often compromises simulation repeatability if not the simulation
validity altogether.

Channel-based communication often implies that the simulated design can be split
in subsystems called partitions and that will run in parallel like in Figure 2.3. Reducing

44

Parallel SystemC Simulation: Challenges and Existing Solutions

Table 2.1 – List of the related works presented in Section 2.2 with pointers to the pages
where they are detailed.

References Authors Tool name Main characteristics Page

[CCZ06] Chopard et al. N/A Distributed synchronous simulation and
centralized time computation. 47

[SLP+10;
SWL+14] Schumacher et al. parSC,

legaSCi

Processes mapped to workers and
evaluated in parallel. Resource protection
through containment zones.

48
and 49

[VPS+14] Ventroux et al. RAVES Dedicated manycore for process evaluation
and SystemC kernel hardware acceleration. 49

[VCB+12] Vinco et al. SAGA GPU acceleration with process duplication
for better thread decoupling. 50

[HLH+09] Hao et al. ArchSC Distributed simulation using the ArchSim
framework. Enables time decoupling. 51

[VPG06;
MMG+10]

Viaud et al. &
Mello et al. TLM-DT

Each partition has its local time that it
updates upon communication with other
partitions.

52

[WML+16;
WLA+16] Weinstock et al. SystemC-

Link
Communication delay between partitions is
constrained to enable PDES.

52
and 53

[CHD12; LSD16;
SLD17; SCD18;
CAD20]

Chen et al. & Liu
et al. & Schmidt
et al. & Cheng et
al.

RISC
Compiler based processes dependencies
analysis to issue parallel process evaluation
scheduling.

53
and 54

[Bec17] Becker et al. DystemC Multi kernel simulation relying on Kahn
process networks for communication. 54

[VSV+16] Virtanen et al. IPTLM TLM protocol adapted to use shared
memory for multi-process simulation. 54

[VS16; BSV+20] Ventroux, Sassolas
& Busnot et al. SCale Shared resource access monitoring for

process atomicity enforcement. 55

the amount of communication between these partitions is very important as it limits
the frequency of time consuming synchronizations. However, not all models can be
partitioned in a sensible manner. For instance, systems based on a central shared
memory will see the partition containing the memory permanently interacting with
the others and act as a bottleneck, slowing down the whole simulation as a result.

Despite these common characteristics, parallel SystemC solutions differ by many
aspects: multi-thread, multi-process, distributed on several hosts, hardware accelerated,
single kernel, multi kernel, static code-base analysis driven or even introduction of new
semantics on top of SystemC. Yet, a fundamental difference between two solutions
lies in the way they manipulate the simulation time: synchronously or in a decoupled
fashion.

Synchronous simulation (Section 2.2.1) is well suited to RTL models as they tend
to be synchronized with a central clock, thus offering a lot of parallelism in each
evaluation phase. However, with TLM, time decoupling1 (Section 2.2.2) is better suited
to allow processes scheduled at close-enough time points to run in parallel. Similarly,
temporal decoupling can also be exploited to restore process simultaneity but only
SCale 1.0 [VS16] presented in Section 2.2.3 and the work presented in this manuscript

1Not to be confused with temporal decoupling.

45

Parallel SystemC Simulation: Challenges and Existing Solutions

Distributed simulation

Multi-thread & single simulation kernel

Hardware
acceleration

Partitioned design & special channel communications

Dependencies analysis

Adds new
SystemC semantics

No coroutine
semantics

Synchronized
simulation

Time decoupled
simulation

[CCZ06]

[SLP+10] [SWL+14]

[VPS+14]
[VCB+12]

[Bec17]

[VS16]
[BSV+20]

[CHD12]
[LSD16]
[SLD17]
[SCD18]
[CAD20]

[Moy13]

[VPG06]
[MMG+10]

[WML+16]
[WLA+16]

[HLH+09]

[VSV+16]

RTL oriented TLM oriented

Figure 2.2 – Positioning of existing works on parallel SystemC simulation. All references
in a same dashed frame relate to a same tool or to tools developed by the same research team.
The main discriminant represented on the horizontal axis is the level of synchronization of
the simulation that mostly correlates with the targeted level of abstraction. The resulting
order is not strict but rather represents a general progression as relaxed synchronization is
implemented in different manners by the various papers.

that has been first introduced in [BSV+20] deal with some TLM-LT specific issues like
the tight coupling of processes.

46

Parallel SystemC Simulation: Challenges and Existing Solutions

CPU 0 CPU 1 CPU 2

RAM 0

Subsystem
0

adapter

RAM 1

Subsystem
1

adapter

RAM 2

Subsystem
2

adapter

BUS

Shared
memoryTimer I/OSubsystem

4

adapter adapter adapter

E.g., sc_signal
or TLM socket

OptionalInter-segment
protocol

Figure 2.3 – Classic example of a model decomposed into several mostly independent
subsystems communicating through channels. Each CPU is assumed to mostly communicate
with its local memory and seldom with the peripherals and the shared memory. Adapters can
optionally be used at the interface between subsystems if the decoupling offered by the SystemC
channel is not sufficient or if some protocol conversion is required like in a multi-OS-processes
simulator for instance.

2.2.1 Synchronous SystemC Parallelization
In synchronous parallel SystemC simulation, all processes use the global simulation
time and stay synchronized with it during the whole simulation. As illustrated in
Figure 2.4, only processes that are scheduled during a same evaluation phase can be
evaluated in parallel. As a general principle, the SystemC processes are assigned to
several units of execution (e.g., OS threads or processes) that we call workers2 and that
run in parallel. After every evaluation phase, all workers must synchronize with each
other and the next simulation time is computed in a centralized way before stepping
to the next evaluation phase. Thus, synchronous parallel SystemC simulation tends to
be well suited to clocked RTL models.

Among synchronous parallelization solutions, a conservative approach is presented
in [CCZ06]. The design to be simulated must be split into several subsystems chosen
to be as independent as possible as in Figure 2.3. These subsystems will be distributed
on several nodes connected via ethernet and simulated in parallel using a dedicated
sequential SystemC kernel for each of them. Processes from different subsystems

2for the sake of uniformity of this thesis presentation, though sometimes named otherwise by their
authors.

47

Parallel SystemC Simulation: Challenges and Existing Solutions

Clock

Process P0

Process P1
Simulated time

Events

Worker W0

Worker W1

Wall-clock time

P0 P1 P1 P0

P0 P1 P1 P0

Kernel
synchronization

Figure 2.4 – Example of synchronous parallel SystemC simulation. All processes are
scheduled at every rising edge of the simulated system clock.

communicate using regular channels (with host network adapters in the middle) to
ensure decoupling during each evaluation phase. Indeed, the values written on SystemC
channels are not available to readers before the next evaluation phase. The value
presented to the reader is then constant for the whole duration of the evaluation phase.
One of the simulation nodes, called the master node, is in charge of computing the next
simulation time after each evaluation phase. This process can become a bottleneck
when the number of processes grows as it must gather information from all sequential
kernels and broadcast back the next simulation time between each evaluation phase.
Shared variables and remote timed event notifications are not supported by this solution.
This simulator architecture is shared by many other solutions, including TLM-oriented
ones. Constraining communications between processes evaluated in parallel to use
a certain type of channel gives control to the simulation kernel(s) to ensure process
decoupling.

In [SLP+10], parSC, a centralized parallel SystemC scheduler uses multiple workers
to run the evaluation phase. SystemC processes are mapped to these workers and the
evaluation phase is bounded with barriers to synchronize the workers. The rest of the
kernel logic remains sequential, including requests to the kernel that are buffered by
each worker and processed sequentially after each evaluation phase. It is however the
responsibility of the user to protect all resources shared between concurrently running
processes using conventional synchronization mechanisms like mutexes. It is likely that
in case of resource sharing, process atomicity is compromised together with simulation
reproducibility.

48

Parallel SystemC Simulation: Challenges and Existing Solutions

3 3Process 00
print(x++);

Process 01
print(x++);
print(y++);

x = 0

Zone 0
Process 10

print(y++);
print(x++);

Process 11
print(y++);

y = 0

Zone 1

zo
ne

tr
an

sfe
r

rr

1 2 1 2

Figure 2.5 – Example of atomicity violation in a simulation using [SWL+14]. Circled figures
give the order in which processes access each variable. We assume that processes access x
and y only to print their current value and increment them. For Process 01 and Process 10
to access y and x respectively, they must first undergo a zone transfer.

LegaSCi [SWL+14], the sequel to parSC with better support for TLM, addresses
this issue with the introduction of containment zones. All resources (data and processes)
belong to a given zone. Only processes of a given zone can access resources of the
same zone and processes of a zone run sequentially, thus preventing race conditions
from happening. Data from a remote zone must only be accessed through a TLM
Interface Method Call (IMC). In particular, shared variables between processes are
forbidden. In case a process crosses a zone boundary through an IMC, it is migrated to
the accessed zone and blocked until all processes of this zone are evaluated. However,
the user must ensure that a migrated process does not access data from its original
zone after migration unless no other process of its original zone accesses this data again.
Otherwise, data races could occur between the migrated process and a process from
its original zone that might be evaluated in parallel. However, this mechanism does
not prevent process atomicity violation as illustrated on Figure 2.5. In that case, two
processes (Process 01 and process 10) migrate in each other’s zone. It allows them
to read data previously written by the other process. Process 01 will see y = 2 and
Process 10 will see x = 2, which would be impossible in a sequential evaluation. Yet,
this should not threaten simulation reproducibility in most cases. However, the order
in which migrated processes are evaluated relatively to each other constitutes a race
condition and can compromise reproducibility.

Hardware acceleration has also been explored, especially for synchronous RTL
models. For instance, RAVES [VPS+14] is a specialized multicore shared memory SoC
coupled with a SystemC kernel accelerator. While the processes of a same evaluation
phase are evaluated in parallel by the numerous available cores, the update and
notification phases are hardware accelerated. The update phase relies on a parity
register telling which value is to be read or written on each signal. Only sc_signals
update can be accelerated that way, but they represent the majority of the channels in
most RTL models. The notification phase uses a parallel search to find the processes
sensitive to each triggered event. Communication between processes is obviously limited
to signals as race and processes atomicity violations are not considered.

49

Parallel SystemC Simulation: Challenges and Existing Solutions

6

7

4 3

5

2 1

dataflow decoupling

6

4 3

2 1 2

3

1

5

7

Figure 2.6 – Dataflow decoupling using process duplication as in [VCB+12]. Nodes are
processes and edges indicate the data flow between processes. Processes 5 and 6 initially
depend on 1, 2 and 3. After dataflow decoupling, 6 depends on 1, 2 and 3 and 5 depends on
duplicates of 1, 2 and 3. The two resulting flows are independent and can be evaluated in
parallel.

GP-GPU computing is another approach to hardware acceleration adopted with
SAGA [VCB+12]. An RTL model is statically analyzed to construct the process
dependency graph based on the model signals. Independent dataflows between processes
are then extracted. Some processes can be duplicated to reduce dataflow coupling
as illustrated in Figure 2.6. Indeed, when one or more processes take part in two
different dataflows, it can be advantageous to duplicate them to have two independent
dataflows, each with its version of the duplicated processes. This is especially true
when targetting GPUs as they offer good parallel performance as long as all tasks do
not interact with each other. Each dataflow is then executed on a different GPU warp
in a sequential order respecting the dependency between processes. Warps synchronize
after all processes of each dataflow have been evaluated, that is at least before every
timed notification. While a GP-GPU can support great amounts of parallelism, this
solution will only be the most efficient on designs with a lot of data level parallelism
across processes. Also, not all of C++ is compatible with CUDA kernels, thus limiting
the expressiveness of SystemC when simulated on a GP-GPU. In particular, TLM
processes are unlikely to support GP-GPU evaluation.

2.2.2 Time Decoupling
At the root of all the approaches presented in this section is Parallel Discrete Event
Simulation (PDES) [Fuj90]. This technique essentially allows to evaluate in parallel
processes scheduled at different times while maintaining timing consistency. This
principle is illustrated in Figure 2.7. A time window called lookahead time defines at
every instant the processes that can be evaluated: all events scheduled to be triggered
inside the time window can be notified. The sensitive processes can then be evaluated
in parallel to each other. The size of this window depends on the simulated model and
the guarantees it provides. It is usually defined as the longest period of time during
which it can be guaranteed that no event will occur.

PDES can then be either conservative or optimistic. The former guarantees that

50

Parallel SystemC Simulation: Challenges and Existing Solutions

Process P0

Process P1
Simulated time

Lookahead time

Events

Worker W0

Worker W1

Wall-clock time

P0 P1 P1 P0

P0 P0 P1 P1

Kernel
synchronization

Figure 2.7 – Overall principle of PDES. Processes that are scheduled in a same time window
can run in parallel on several workers.

the local time of each part of the design will never be greater than any event received
by this part (i.e., timing violations never occur). In other word, if the local time of a
part P of the design is tP , a conservative model must ensure that no other part will
send an event to P with a timestamp lower than tP . This guarantee can be extremely
difficult in dynamic systems that include, for instance, CPU. If not, a timing violation
occurs and only optimistic PDES allows that. Indeed, in optimistic PDES, the risk is
taken that sometimes timing violations occur, but a rollback mechanism is provided
to recover from such an error. Optimistic PDES allows for larger lookahead time and
increased parallelism but rollback incurs potentially large overheads. Optimistic PDES
is considered too hard to apply to SystemC due to the complex state of a simulation
preventing a general and efficient approach to rollback and thus is never used in practice.
Yet, the approach proposed in this work could be perceived as a derivative of PDES in
that sense that it speculates on the absence of illegal interactions between processes
before checking it and doing a rollback if an error occurred.

ArchSC, a distributed SystemC simulation framework is described in [HLH+09]. It
is based on ArchSim [HLX+09], a distributed simulation platform for system-level High
Performance Computer (HPC) design. It mainly requires that processes communicate
only through channels and that the design can be partitioned into relatively independent
subsystems. These subsystems are then mapped to several host computers using the
ArchSim [HLX+09] parallel simulation framework3. Each subsystem has its own
SystemC scheduler. Communications between subsystems are achieved using ArchSim
channels that wrap and multiplex the behavior of conventional SystemC channels in a
distributed context. Time synchronization between processes is achieved by waiting
on all remote input channels of each node to determine the next earliest timestamped
message. According to this and to its own internal events, each subsystem can compute
its next simulation time. As required by PDES, timestamped messages must be
delivered in order by the remote processes to avoid timing violations. Remote timed

3ArchSim is not specific to SystemC.

51

Parallel SystemC Simulation: Challenges and Existing Solutions

event notifications are not supported either. Distributed simulation can scale up to
hundreds of nodes but synchronization between these nodes relies on networking whose
latency is orders of magnitude higher than shared memory synchronization. Also, the
amount of parallelism will often be limited by the number of relatively independent
parts in the simulated system. For instance, with the advent of Uniform Memory
Access (UMA) chips reaching up to 64 cores to this day, distributed simulation might
become less attractive in these cases.

While the previous approach is more oriented toward RTL simulations, [VPG06]
tackles TLM simulations with TLM-DT for Distributed Time. This solution is explicitly
targeted at shared memory SoC simulation. Thus, three types of components are
defined (initiator, interconnect, and target), as well as three types of communications
(request from an initiator to a target going through an interconnect, the associated
response and an interrupt from a target to an initiator). Here, each component of the
design has its own local time and there is no more global simulation time. Initiators
are free to run until they send a request to a target or they reach the lookahead time
set by the user before the simulation. Interconnects wait for a packet to be present on
all their inputs to make sure to process the earliest one. They can then compute its
new local time before forwarding the earliest request to the correct target. The target
updates its local time in turn using the transaction timestamp before sending back the
answer. The transaction delay is added to the request timestamp at each processing
step so that the initiator can update its own local time at the end of the transaction.
However, interrupts cannot be handled in the same way as it would cause deadlock.
For instance, an interrupt could be sent by a target to an initiator which is waiting for
an answer from this same target, the initiator and the target would end up waiting for
each other. Thus, interrupt requests are polled by initiators between transactions and
handled as soon as their local time is greater than the interrupt timestamp, causing
small timing errors and non-determinism. The timing accuracy of a TLM-DT model
is comparable to a TLM-AT model. SystemC-SMP, a parallel simulator dedicated
to these types of models is proposed in [MMG+10]. Processes are grouped to favor
internal communications and then mapped to different CPU, each running its own
local scheduler.

Both [HLH+09; VPG06] could be subject to deadlock if they had not used null
messages as suggested by the PDES algorithm. Null messages are timestamped messages
that require no action from their recipient. They are only sent to let the recipient know
the current time of the sender as on the example Figure 2.8. Indeed, with conservative
PDES, an actor is not allowed to advance past the earliest timestamped message it
might receive. As a result, all actors must send null messages at bounded time intervals
to let the recipients know they will not send messages with an earlier timestamp than
the null message.

The lookahead time is exploited differently in [WML+16]. While it was only a
limit to the amount of time a process can run without synchronizing in [VPG06],
the lookahead time tla also defines the minimum amount of time that a remote event

52

Parallel SystemC Simulation: Challenges and Existing Solutions

P0

P1

P2

mess(x, t = 3)

mess(null, t = 6)

mess(y, t = 4)

Figure 2.8 – Usage of null messages to prevent deadlocks. P2 must wait to be sure that P0
will not send a message earlier than P1 before processing the message from P1. However, P0
is waiting for P1 to process its message and before answering, P1 needs P2 to answer its own
message. Without the null message from P0 to P2, both would be indirectly waiting for each
other.

notification must be triggered in advance. For instance, if the local time of a process
is tp, then it must not notify events to process in other time zones with a timestamp
earlier than tp + tla. This requirement guarantees that the remote process will not see
the event in the past as it must not run in advance of tp by more than tla. This is a
direct application of conservative PDES. However, this constraint can be hard to honor
in a real-world model so the authors introduced flexible time decoupling. It consists in
automatically adjusting all remote event notification delays according to the chosen
policy. The accurate policy forbids any adjustment and raises errors if the lookahead is
not respected. The deterministic mode increases the notification delay just as much as
required for the lookahead to be respected. Finally, the fast mode increases the delay
to be just ahead of the targeted thread time, which sacrifices determinism but avoids
timing violations. The deterministic and fast modes do modify the behavior of the
system compared to a standard sequential SystemC evaluation. This solution can take
advantage of temporal decoupling as the local time advance guarantees that events
will be notified ahead of time of remote processes.

SystemC-Link [WLA+16] brings an additional refinement defining delays for each
channel linking two time zones. This delay becomes a kind of local lookahead time that
is applied only to processes in time zones connected by the channel. Two scheduling
policies are also provided: as-soon-as-possible and as-late-as-possible. The former
makes each process yield whenever it wants to advance its local time while the later
lets processes run until they reach the maximum lookahead allowed by the delays of
the neighbor channels. Choosing between these two options depends on whether speed
or accuracy respectively is prioritized.

Imposing no constraint on the simulated design, [CHD12] presents an approach
based on compiler-driven static analysis. A standard model can be analyzed by a
SystemC-semantics-aware compiler to detect the dependencies between code segments
(i.e., the code between two scheduling points). Based on this analysis, segments can
run in parallel if they do not have dependencies like accessing a same variable. But
also, if the compiler can prove that a given segment will not receive any event before its
next scheduling time, this segment can be issued in advance. This is called out-of-order

53

Parallel SystemC Simulation: Challenges and Existing Solutions

parallel evaluation. Load balancing based on the compiler-estimated run time of each
segment is added in [LSD16]. A major limitation of this approach, however, is its lack
of support for programmatically constructed platforms (e.g., CPU instantiated in a
for loop). This is addressed in [SLD17] where the previously compile-time information
can now be completed at run-time after platform elaboration. Also, closed source
libraries can be manually annotated to be handled appropriately by the scheduling
algorithm. In order to reduce false positives when analysing inter-process dependencies,
the module interconnections are taken into account in what is called port-call-path-
sensitive analysis [SCD18]: two segments of modules that are not connected are
guaranteed not to have dependencies. Finally, [CAD20] adds event delivery prediction
so that processes can be scheduled even before any of their sensitive events is triggered.
The major limitation of this approach, however, is the drastic pessimization caused
by pointer dereferencing: two segments that dereference a pointer are systematically
conflicting if the content of the pointer is not statically known. As a result, a Symmetric
Multiprocessing (SMP) TLM-LT model will always run sequentially because of the
dynamically defined address of transactions targeting the shared memory component.

In [Bec17], a modeling technique based on Kahn networks [Kah74] is proposed.
The parallel SystemC simulation infrastructure, called DistemC, requires splitting the
simulated design into several partitions connected using single-producer single-consumer
blocking fifo queues. Each partition is then simulated by a dedicated SystemC kernel.
Kahn’s networks guarantee determinism as long as all processes only rely on data
read from these fifo queues. By providing an efficient implementation of a lockless
fifo queue called FOFIFON, the authors accelerated a complex industrial design that
includes both TLM components and RTL hardware accelerators like a video decoding
IP generated from High Level Synthesis (HLS).

Some sort of time decoupling is also provided by the sc_during semantics defined
in [Moy13]. While in classic DES, a task always run instantaneously before catching up
by waiting for the amount of time it would have taken on the real system, sc_during
allows to start a task with a duration associated. The explicit use of a duration
helps determining which tasks are independent so that they can run in parallel: two
tasks whose durations overlap are independent as they do not need the result from
the other one to start. Additional functionalities are provided to control running
sc_during tasks and interact with the simulation kernel from such task. Tasks with
duration is implemented as an independent library and thus can be used with any
standard-compliant SystemC simulation kernel. This approach introduces parallelism
in a very simple way. However, this is the responsibility of the user to guarantee that
tasks are running in isolation, otherwise race conditions and non-determinism could
occur.

Finally, with raw simulation speed and ease of use in mind, [VSV+16] proposes a
multiprocess and multi-kernel simulation engine designed around IPTLM, an inter-
process adaptation of the TLM protocol. Inter-process communications are then
strictly restricted to blocking messages going through IPTLM sockets implemented

54

Parallel SystemC Simulation: Challenges and Existing Solutions

using POSIX shared memories. In particular, shared variables and events are strongly
discouraged as both are only visible from inside a same process. Determinism is not
guaranteed anymore and there are no references to time synchronization between
processes, indicating that very loosely-timed models are targeted. Also, inter-process
communications must be avoided as much as possible to keep performance high due to
the latency of inter-process message-passing compared to regular memory accesses.

2.2.3 SCale 1.0: Runtime Processes Interactions Monitoring
SCale 1.0 Positioning

As they require frequent enough synchronization most of the aforementioned standard-
compliant approaches target at most TLM-AT models, which are rather slow at a few
MIPS, or TLM-LT models offering sufficient architectural decoupling. On the opposite,
TLM-LT models can reach hundreds of MIPS thanks to temporal decoupling but
present several additional obstacles to parallelization as they tend to make extensive
use of shared host resources. It is especially true when considering the DMI interface
which bypasses transactions altogether and is not efficiently supported by any of the
aforementioned approaches in the classic case of an SMP model with a single shared
memory for instance. Also, as the time between two synchronizations increases, so
does the risk of atomicity violations. As a result, quantum-based temporal decoupling
is an additional obstacle to the use of all previously described approaches.

These problems are addressed by SCale 1.0, the parallel SystemC kernel described
in [VS16]. SCale 1.0 principally aims at simulating in parallel TLM-LT models that
use temporal decoupling, while respecting the co-routine semantics of processes. As the
name suggests, SCale 1.0 is the starting point for SCale 2.0, the work presented in this
manuscript, which shares the same objectives. Both SCale 1.0 and SCale 2.0 rely on the
same general principle: memory accesses monitoring. However, aside from the original
infrastructure of SCale 1.0 that provides SystemC primitives support and worker-based
process evaluation, SCale 2.0 is a major upgrade of the memory access monitoring
system. In particular, it provides both more flexibility, more compatibility and a lot
more performance at the same time while improving on subtle points. This section will
describe in details the aspects of SCale 1.0 that have been reused in SCale 2.0 but also
highlight the major components that have been reworked from scratch in SCale 2.0.

SCale 1.0 Execution Model

Both SCale versions are synchronous simulation kernels. They rely on the use of
the global quantum to restore simultaneity between processes. While in an RTL
model, processes are synchronized by a clock, in a temporally decoupled TLM-LT
model, processes must synchronize by the quantum as illustrated Figure 2.9. While
the standard use of the quantum preconizes to wait for the local time offset as soon
as it gets bigger than the quantum, SCale recommends waiting for the quantum size
instead. This does not affect the overall model accuracy but is mandatory to achieve
good speedups. As a result, SCale parallelizes simulation at the delta cycle level.

55

Parallel SystemC Simulation: Challenges and Existing Solutions

Start evaluation

Process P0

Process P1

Process P2

50 90 110 10 30

40 80 100 0 60

70 90 105 5 40

Local time offset

Synchronization
(quantum=100)

Figure 2.9 – Three processes synchronized thanks to the use of a temporal decoupling. When
the local offset of each process gets higher to the global quantum, the process wait for the size
of the length of the global quantum. As a result, all three processes waits for 100 and get
scheduled together in the same evaluation phase. The local time offset exceeding the global
quantum is transferred to the next evaluation phase.

During the elaboration phase, SystemC processes are grouped by the user to be
assigned to different workers. Workers run in parallel to each other and each worker is
responsible for evaluating sequentially its processes that are scheduled in the current
evaluation phase. It results in the alternance of parallel evaluation phases surrounded
by sequential update and notification phases which we refer to as kernel phases. Also,
the kernel phase is handled by a dedicated thread. As such, this model of execution is
very similar to [SWL+14].

However, workers can be unscheduled during their evaluation in case there is a risk
of process atomicity violation. Such risk is explained in Section 2.2.3. Interrupted
workers will then complete during the sequential evaluation phase that follows the
parallel evaluation phase. As the name suggests, workers run one at a time during the
sequential phase. It allows to safely access the shared memory locations that caused
the workers to be unscheduled in the first place.

Preventing Process Atomicity Violations

The main objective of SCale is to prevent process atomicity violations like in Figure 2.1.
It uses simulated memory access monitoring as its central mechanism to prevent and
detect such hazard. In order to monitor memory accesses, each of them must be
preceded by a call to the instrumentation function mem_instr provided by SCale. This
function takes the targeted address, the burst length and the type of access (read or
write) as argument.

Everything that happens inside mem_instr differs from SCale 1.0 to SCale 2.0. In
Scale 1.0, the addresses touched by the memory access are first compared to two lists:

56

Parallel SystemC Simulation: Challenges and Existing Solutions

• The safe memory ranges, that is the memory ranges that are only read by
processes or that are never accessed concurrently.

• The list of shared memory ranges, that is the memory ranges that are accessed
concurrently using reads and writes.

These two lists are defined by the user at the beginning of the simulation according
to its knowledge of the application running on the simulated platform. For instance,
synchronization variables such as mutexes are good candidates to be declared as shared
while the input data, if it is statically linked inside the application, will likely be safe.

If calls to mem_instr only concern addresses declared as safe, mem_instr returns
immediately. Safe addresses thus are used only to reduce instrumentation overhead.
If calls to mem_instr concern at least one address declared as shared, SCale checks if
another worker has already accessed a shared address during the current evaluation
phase. If not, then mem_instr registers the access and returns. If so, then the calling
worker is unscheduled to complete its execution during the sequential phase. This
mechanism is illustrated in Figure 2.10. Finally, if a worker accesses at least one address
that is not declared as safe nor shared, the access is registered for process atomicity
verification after the evaluation phase as described in Section 2.2.3.

In order to reduce the instrumentation overhead, an address resolution is defined
by the user at the begining of the simulation. The address resolution is used to
group adjacent addresses under the same address number. For instance, if the address
resolution is 4, then every access to an aligned 4-byte int is considered as a single
access while an access to an aligned 8-byte double is considered as two accesses to
two adjacent addresses. The address resolution can be seen as the byte size for SCale,
that is the smallest addressable chunk of memory for SCale. The lower the address
resolution value, the more accurate and the slower the instrumentation. The higher the
resolution, the more likely false conflict may be detected amongst adjacent addresses.

Process Atomicity Verification

During each evaluation phase, all memory accesses except those targeted at safe
addresses are registered. It allows for building a dependency graph for each evaluation
phase. This dependency graph reflects dependencies between workers instead of
dependencies between processes. This is a valid simplification of the dependencies
analysis because if workers have been evaluated atomically, then processes also have
been evaluated atomically. However, it is also a slight pessimization as registering
a dependency between two workers means that all processes of the first worker are
considered to depend on all workers of the second one, even if only one process of
the first worker depends on one process of the second worker. This simplification has
been preserved in SCale 2.0 as it has implications in the lowest layers of SCale 1.0
and would have required extensive refactoring that is out of the scope of this thesis.

57

Parallel SystemC Simulation: Challenges and Existing Solutions

Kernel

Worker W0

Worker W1

Worker W2

P0 P1

P2 P2 P3

P4 P5 P5

Parallel phase Sequential phase

Evaluation phase

x accesses

x accesses
denied

Processes P2i and P2i+1 are assigned to worker Wi, i ∈ {0, 1, 2}.
x is a memory location written by P0 and read by P2 and P5.
This is assumed to be the only shared access among all processes.

Figure 2.10 – Example of SCale evaluation phase. P2 and P5 attempt to access x which is a
memory location declared as shared and first accessed by P0. It results in workers W1 and W2
being unscheduled to complete during the sequential phase. The kernel thread is idle during
the evaluation phase while workers are idle during kernel phases. The resulting evaluation is
equivalent to the purely sequential evaluation W0 → W1 → W2.

However, there is no theoretical limit to applying SCale concepts to SystemC process
dependencies instead of worker dependencies.

A dependency between workers Wa and Wb written as Wa → Wb is created when
a pair of accesses to a same memory location implies that an equivalent sequential
schedule of the current evaluation phase must evaluate Wa before Wb to yield the same
result. Specifically, a dependency exists when one of the following pair of accesses to a
given memory location involves two different workers:

• Read After Write (RAW): If Wb reads a value after Wa wrote it during a parallel
evaluation, a sequential schedule where Wb comes before Wa would make Wb read
a possibly different value.

• Write After Read (WAR): The reason is similar to the RAW case.

• Write After Write (WAW): If Wb overwrites a value previously written by Wa,
the final value differs from a sequential schedule where Wb comes before Wa.

In order to register dependencies efficiently, the memory space is split into pages

58

Parallel SystemC Simulation: Challenges and Existing Solutions

of a few kilobytes lazily allocated and stored in a map. A page is an array that
contains for each one of the addresses in the page (taking the address resolution into
account) a dependency graph. During the simulation, each memory access leads to
the corresponding dependency graph to be updated according to the RAW, WAR and
WAW rules. A dependency graph in SCale 1.0 and SCale 2.0 is a directed graph with
the workers as vertices and an edge from Wa to Wb (Wa → Wb) if Wb depends on Wa.

Once the evaluation phase is completed, it can be checked whether workers have
been evaluated atomically by checking if there exists a sequential schedule that yields
the same state at the end of the evaluation phase, that is if and only if the global
dependency graph of the evaluation phase defines a partial order on the workers, that
is if and only if it is acyclic.

This global dependency graph is obtained by combining the dependency graphs of
all addresses in a page into an intermediate dependency graph, and then combining
these intermediate dependency graphs into the global dependency graph. Combining
two graphs simply consists in cumulating their edges. If there is a circular dependency
in one of these graphs, this is called a conflict and the simulation is not compliant to
the SystemC standard anymore. Also, data races might have occurred in the simulated
memory, making the simulation invalid altogether. In that case, the user is suggested
to declare the lacking shared addresses and run a new simulation. The graphs acyclicity
is checked for each address, for each page and for the global graph to indicate potential
conflict as accurately as possible (address level, page level or global level).

This check is performed after every evaluation phase. If the graph is acyclic, then it
can be used to define an equivalent sequential schedule of workers for simulation replay
and debug purpose. Only the workers involved in dependencies need to be scheduled
sequentially during the simulation replay.

Simulation Replay

Many processes are implemented such that they could be evaluated without enforcing
strict atomicity. For instance, every time a process checks if its local time has reached
the global quantum, it expects to yield. Thus, processes are usually coded as if they
were atomic only between two local time checks against the global quantum.

However, preserving global process atomicity is useful to provide simulation replay
for debug purposes for instance. Indeed, if processes were interleaved, no partial order
could be defined between them at the end of some evaluation phases. Without this
partial order, there is no way to guarantee that a given evaluation phase during a new
simulation is equivalent to this same evaluation phase in the original simulation, all
inputs being equal.

Because SCale guarantees worker atomicity (and so processes atomicity as well), it
can define a partial order on the workers that guarantees an equivalent replay. This
partial order is defined by the dependency graph as: if W1 depends on W0 (W0 → W1)

59

Parallel SystemC Simulation: Challenges and Existing Solutions

W0

W1

W2

W3

W4

W5cycle

Conflict
No equivalent schedule

W0

W1

W2

W3

W4

W5

Equivalent schedule:
parallel = {W1, W5}

sequential = (W0 → W3 → W4 → W2)

Figure 2.11 – Extraction of an equivalent schedule from a dependency graph. The left graph
present a conflict (cycle) so no equivalent schedule can be extracted as opposed to the right
graph.

then W1 must be scheduled after W0 in case of replay (hence the “→” notation). All
workers that take part in no dependencies can still run in parallel. An example is given
in Figure 2.11.

The replay trace in SCale 1.0 then consists in serializing to a file a map that
associates to every evaluation phase identified by a pair (time, delta) the ordered list
of workers that must be evaluated sequentially (the other being evaluated in parallel).
This file can be loaded at the beginning of a simulation to instruct SCale 1.0 to perform
a replay. SCale 1.0 will then check before every evaluation phase if the current time
and delta cycle number is present in the replay map. If so, all workers that are not
present in the associated list will first run in parallel. Then the workers in the list
will be evaluated sequentially according to the list order. In SCale 2.0, the replay
mechanism has been redesigned and is now used in additional situations like rollback
as exposed in Chapter 3.

SCale 1.0 Limitations

First, it is often very hard to predict which memory regions are going to be shared
during the simulation, especially in the presence of dynamic memory allocation which
prevents static code analysis from providing the addresses of the shared variables. Also,
SCale manipulates only physical addresses. If the simulated software is targeted at an
OS such a Linux, then it only manipulates virtual addresses. Physical addresses will
then be allocated at runtime, making it impossible for the user to anticipate the shared

60

Parallel SystemC Simulation: Challenges and Existing Solutions

W0

W1

mem_instr(w(a, 1)) w(a, 1)

mem_instr(r(a)) r(a)

W0 → W1
W1 → W0

Figure 2.12 – Example of bad memory access recording order. The dependency W0 → W1
is recorded while the dependency caused by the actual memory accesses is W1 → W0.

addresses (without looking at the virtual memory management implementation in the
OS kernel, at least).

Also, shared memory regions often move during a simulation. For instance, in the
Deriche filter [Der87], the processed image is first copied in a working buffer. Then the
buffer is processed in lines, making each line accessed only by the thread in charge of this
line. However, the buffer is then processed in columns, making the columns accessed
only by one thread each. Overall, almost all pixels are accessed by two different threads:
one during the horizontal pass and another one during the vertical pass. Should the
whole buffer be considered as shared? The Deriche filter, as simple as it is, could not
be simulated in parallel by SCale 1.0. However, it is required to do so to guarantee
that no conflict will occur when switching from horizontal to vertical processing and
vice versa. In the context of dynamic virtual memory allocation, memory reuse gets
even more frequent and unpredictable. A more flexible and powerful mechanism was
thus required to tackle this limitation overcome by SCale 2.0.

Another limitation comes from the fact that memory accesses must be recorded in
the same order as they are simulated in order for the conflict checking to be correct.
If, like in Figure 2.12, the accesses are recorded in a different order than the actual
memory accesses, the recorded dependency is the opposite of the real dependency. This
would then lead to incorrect conflict detection and prevent correct simulation replay.
However, SCale 1.0 leaves to the user to ensure that memory accesses are recorded in
the correct order and provides no helping mechanism. The simplest solution consists in
putting the instrumentation and the access together inside a critical section protected
by a mutex, but this solution hampers performances and does not accommodate higher
worker counts starting from about 4 after our experience.

Performance-wise, the shared data structures used to record dependencies often do
not support concurrent accesses, requiring several mutex. This can result in a very high
instrumentation overhead and a poor scaling when the number of workers increases.
Also, every evaluation phase must be checked for conflicts before starting the next
evaluation phase. This can greatly extend the duration of the kernel phase, which can
significantly reduce overall parallelism.

Finally, SCale only supports processes that interact through shared memory exclu-

61

Parallel SystemC Simulation: Challenges and Existing Solutions

sively. If they interact using non-addressable resources like interrupt lines or shared
variables in the model, SCale cannot monitor these interactions.

SCale 2.0, the work presented in this manuscript is inspired from SCale 1.0 and
reuses a part of its infrastructure but tackles its main functional limitations while
providing significant speed and scaling improvements through a major redesign. In
particular, shared and safe address ranges no longer need to be manually declared by
the user but are detected at runtime instead. Instrumentation and accesses are always
performed in the correct order without requiring any additional synchronization from
the user. Finally, the approach has been generalized to all types of interactions instead
of only shared memory related ones. SCale 2.0 thus drastically improves the speed of
baremetal applications (c.f., Section 4.3.1) and enables the simulation of Linux-based
applications (c.f., Section 5.5) while greatly simplifying the simulator usage.

62

Chapter 3

Proposed Solution for LT-TLM
Parallel Simulation

3.1 Overview . 64
3.1.1 Simplified Model . 64
3.1.2 General Execution Flow . 65
3.1.3 mem_instr Outline . 67

3.2 The Parallel Evaluation Phase . 68
3.2.1 Advantages of Zero Dependencies Parallel Phase 68
3.2.2 The Address Monitoring FSM 69
3.2.3 Correct Memory Access Recording Order 74
3.2.4 Efficient FSMs Reset . 75
3.2.5 Fast Scalable FSM Storage . 77

3.3 The Sequential Evaluation Phase . 79
3.3.1 Choosing the Sequential Evaluation Order 80
3.3.2 Asynchronous Dependencies Analysis 81
3.3.3 Simulation Replay . 85
3.3.4 Rollback-Based Conflict Recovery 87

3.4 Generalization to Any Shared Resources 94

63

Proposed Solution for LT-TLM Parallel Simulation

This chapter is the core of this manuscript. It presents the mechanisms developed in
SCale 2.0 to allow SystemC standard-compliant parallel simulation of TLM-LT models.
The first part of the chapter gives an overview of SCale 2.0 architecture before diving
into each component’s details.

3.1 Overview

3.1.1 Simplified Model
For the sake of simplicity, it is assumed in this chapter that the only shared resource
of the simulation is the model shared memory. We explain in Section 3.4 how the
presented system is easily generalized to any form of shared resources like peripherals,
interrupt lines, etc. Thus, let us consider the simplified model Figure 3.1. In this model,
processors are considered as pure initiators that can only read and write a shared
memory. We also assume that each processor is simulated by a single sc_thread
and no other processes are defined. The memory is a simple wrapper around a big
contiguous memory buffer, and it provides as many input ports as there are processors.

Processors access memory atomically, that is the order between memory accesses
is always well defined and there is no risk of data race. Memory accesses also have
no side effects on other accesses aside from changing the written value if the access
is a write. As a result, processors can only interact by accessing a common memory
location. Any other action is guaranteed to be interaction free between processors.

With such model in mind, processes are evaluated atomically if and only if memory
accesses to all location are performed in an order equivalent to a given sequential
evaluation of processes with except for reads that can reordered relatively to each other.
This is obviously not guaranteed if processes are evaluated in parallel. Hence, the
simplified problem that we are trying to solve requires to control the order of memory
accesses in this context of parallel execution.

CPU0 CPU1 . . . CPUn

RAM

Figure 3.1 – A simplified representation of a simulated model. Processors can only interact
through shared memory. Other peripherals, interconnects or caches are ignored.

64

Proposed Solution for LT-TLM Parallel Simulation

3.1.2 General Execution Flow
The flow chart of the parallel evaluation phase of SCale 2.0 is represented Figure 3.2.
Like SCale 1.0, SCale 2.0 parallelizes the evaluation phases at the delta cycle level:
all processes scheduled in a same delta cycle are launched in parallel. The evaluation
phase is also split into the parallel phase and the (possibly empty) sequential phase.

We also assume here that the user has correctly instrumented all memory accesses
through a call to the provided function mem_instr before each memory access in
our simplified platform model, as required by SCale 1.0. In this simplified model,
mem_instr must be inserted only once in the ISS SystemC wrapper, anywhere before
the memory access initiation point. In SCale 2.0 too, mem_instr is responsible for
unscheduling workers trying to access a memory location considered hazardous. In
SCale 2.0, an access is considered hazardous as soon as it can introduce a dependency
between two workers. This criterion is further developed in Section 3.2.1. In case some
workers are unscheduled during the parallel phase, the sequential phase takes place.

One major difference with SCale 1.0 is the way SCale 2.0 checks for conflicting
memory accesses, that is circular dependencies between workers. This check is necessary
to ensure that process atomicity has not been violated at the end of each evaluation
phase. This aspect is detailed in Section 3.3.2. Instead of performing the check at
the end of every evaluation phase, SCale 2.0 only does it when the sequential phase
is not empty, that is when at least one worker has been unscheduled. The reason for
that is explained in Section 3.2.1. Also, conflict checks are performed asynchronously
while the simulation continues, thus exploiting more parallelism by greatly reducing the
kernel phase duration. Conflict check results are then collected by the kernel thread
when it is waiting for the worker to complete the parallel phase.

Because SCale 2.0 does not rely on preliminary declaration of all shared memory
regions, it is expected that conflict may occur even when simulating a perfectly valid
software on a correctly instrumented model. Such expected errors are then recovered
automatically through a rollback to the last valid checkpointed state. To that extent,
the simulation is periodically checkpointed. The rollback mechanism is explained in
Section 3.3.4.

Finally, as in SCale 1.0, the collected dependencies can be stored to disk to replay
the simulation. SCale 2.0 does so in a more efficient way, though (c.f. Section 3.3.3).

65

Proposed Solution for LT-TLM Parallel Simulation

Start evaluation phase

Run ready pro-
cesses in parallel

Collect ready de-
pendencies analysis

Conflict?

Wait for run-
ning processes

Some workers
were unscheduled?

Start asynchronous
dependencies analysis

End evaluation phase

R
ol

lb
ac

k

sc_process
evaluation

Sequential evaluation

no

yes

yesno

notifies

co
lle

ct
ed

fro
m

pr
ev

io
us

ph
as

es

Figure 3.2 – Evaluation phase flow chart of SCale 2.0.

66

Proposed Solution for LT-TLM Parallel Simulation

3.1.3 mem_instr Outline
Aside from functions used to configure SCale 2.0 during simulation initialization, the
memory access instrumentation function mem_instr is the only function the user needs
to adapt our simplified model to SCale 2.0. It is only required that every memory
access is preceded by a call to this function.

mem_instr is outlined on Algorithm 4. It takes three arguments: the accessed
address, the number of bytes accessed and the type of access (read or write). mem_instr
does the following main operations:

1. Compute the reduced address according to the address resolution (Line 4). The
reduced address is the quotient of the address by the address resolution. Two
addresses that correspond to the same reduced address are associated to the same
monitoring state.

2. Update the monitoring state associated to the reduced address (Line 6). This
monitoring state is used to determine if the access to the targeted address can be
performed.

3. Wait until the sequential phase if the access cannot be performed during the
parallel phase (Line 8).

4. Record the memory access characteristics (Line 11) in case a conflict check is
later needed. It can be noticed that the full address is used here, not the reduced
one. This is done to reduce the risk of false positives during the dependencies
analysis as the extra memory and computation required is not significant.

Algorithm 4 mem_instr function outline
1: procedure mem_instr(addr, nBytes, isWrite)
2: if not in sequential phase then
3: p ← getCurrentWorkerId()
4: a ← reducedAddr(addr) � c.f. 3.2.2
5: m ← FSMarray[a] � c.f. 3.2.5
6: go ← m.updateFSM(p, isWrite) � c.f. 3.2.2
7: if not go then
8: wait sequential phase � c.f. 3.3
9: end if

10: end if
11: recordAccess(addr, nBytes, isWrite, p) � c.f. 3.3.2
12: end procedure

One fundamental enhancement of SCale 2.0 over SCale 1.0 is that mem_instr does
not require extra synchronization to record the correct memory access order and avoid
the problem presented in Figure 2.12 where memory accesses are recorded in a different

67

Proposed Solution for LT-TLM Parallel Simulation

order than they are performed. The only requirement is that mem_instr is called before
the access it instruments. This is one of the many benefits of the zero dependencies
guarantee introduced in Section 3.2.1.

3.2 The Parallel Evaluation Phase
All evaluation phases start with a parallel phase where ready processes are evaluated by
the worker they are attached to. Workers run in parallel and evaluate their processes
sequentially.

3.2.1 Advantages of Zero Dependencies Parallel Phase
During a simulation, the vast majority of the evaluation phases do not present any
dependencies. In other words, all processes access only independent or read-only data
during most of the evaluation phases. This can be explained by the fact that accesses to
shared variables tend to be rare in real world applications to preserve execution speed.
For that reason, we have made design choices that take advantage of this assessment.
In particular, we enforce that no dependency occurs during the parallel evaluation phase,
postponing all the complex logic to the sequential phase.

Assuming that zero dependencies can occur during the parallel phase, several major
properties are obtained and detailed in the following sections:

1. “Instrumentation + memory access” need not be atomic as long as instrumentation
comes first.

2. Memory accesses during the parallel phase can be recorded in parallel as they
never depend on each other, so their order is not important.

3. If no worker is unscheduled during the parallel phase, then no dependencies exist
which implies that no conflicts have occurred, and the check is not required.

Hence, the “zero dependencies during parallel phase” property is a strict prerequisite
to enable vital optimizations across the whole parallel simulation system.

A straightforward way to provide this guarantee could be to record, for each
address, all accesses of the evaluation phase and determine for each new access if it
incurs a dependency with the previous accesses. If so, the offending worker would get
unscheduled. It is optimal in the sense that there is no false unscheduling, that is no
worker is unscheduled unless it is about to cause a dependency. Still, this solution is slow
to implement for several reasons. Among them, it requires an expensive lookup at every
memory access, and it relies on a variable-size container which requires synchronized
accesses as a consequence.

68

Proposed Solution for LT-TLM Parallel Simulation

Instead, we provide the zero dependencies guarantee using an FSM-based access
granting policy detailed in the next section. While being heuristic and (slightly)
sub-optimal, it allows extremely fast implementation.

3.2.2 The Address Monitoring FSM
Generality

Keeping in mind that zero dependencies must occur during the parallel phase, we must
define a memory access granting policy to determine which accesses can be performed
during the parallel phase and which must be postponed to the sequential phase.

As introduced in the previous section, the optimal policy described in the previous
section does not perform well enough in practice. Thus, we must define a memory access
policy with a much faster decision time, even if false positive dependency detection
could occur. Let us go through the process of designing an efficient policy starting from
a simplistic one and improving on it. This will help in understanding why the chosen
policy has no simple alternative under the zero dependencies guarantee constraints.

A preliminary optimization consists in grouping addresses into blocks of size S,
defined by the user and called the address resolution as in SCale 1.0. An appropriate
size typically is the largest number of bytes accessible with a single CPU instruction
(e.g., 8 bytes on RISC-V 64 bits or 16 bytes on AMD64 without Single Instruction
Multiple Data (SIMD) extensions). With such address resolution, it is guaranteed that
each regular memory access can be instrumented in a single call to mem_instr.

When calling mem_instr with address a as argument, the reduced address a′ is
computed first (Algorithm 4 line 4) as a′ = a/S. If the worker is not unscheduled, it can
then safely access any address in the range [a′, a′ +S). Choosing an appropriate address
resolution is key to reducing monitoring cost. Grouping addresses is a conservative
approximation: we may unschedule a worker that could have been granted the access,
but we never grant an access to a non-protected address.

In case a memory access spreads among several aligned S-bytes intervals because it
is either misaligned or it accesses more than S bytes, a helper function mem_instr_slow,
that calls mem_instr several times to protect all the accessed memory, must be used
instead of mem_instr. We have chosen to have two functions so that memory accesses
that require a single call to mem_instr are instrumented as fast as possible.

Toward an Access-Granting Policy

In this section, the design process of the final address monitoring FSM is exposed. The
detailed presentation of the final FSM takes place in the next section.

One of the simplest access policy one could use to guarantee no dependency between
workers could be to provide exclusive access to a single worker on each reduced address.

69

Proposed Solution for LT-TLM Parallel Simulation

The simplest approach would be to chose the first worker to access each address to
become the owner of this address for the current quantum. The address is said to be in
the owned state. An algorithmic representation of such policy is given on Algorithm 5.
Notice that, as is, this algorithm presents a data race between Lines 4 and 5 that must
be carefully handled in a real implementation. We only focus on the logic for now,
though.

Algorithm 5 Memory access granting policy #1
1: procedure canDoAccess1(address, workerID)
2: if wasAccessed(address) AND workerID �= owner(address) then
3: return false
4: else if NOT wasAccessed(address) then
5: registerOwner(address, workerID)
6: end if
7: return true
8: end procedure

Policy #1 is good if all workers almost never access shared memory locations during
the whole evaluation phase. However, shared read-only data — which is extremely
common — is very badly handled by such policy as a single worker can access each
address during each parallel phase, whether it is for writing or reading. Thus, a
refinement is needed to allow either a single worker to access each address in both read
and write mode or to allow only reads during the parallel phase: a read-only state is
needed. Exclusive ownership and read-only are the only two ways a variable can be
accessed during a parallel phase while respecting the zero dependencies guarantee.

But it must now be decided whether the first access of the evaluation phase to an
address should set it in the owned state or the read_only state. If the first access
is a write, then read_only is not an option and the address necessarily becomes
owned. If the first access is a read, both owned and read_only are valid options.
Though, if owned is chosen, this new policy would be equivalent to policy #1. In
order to differentiate from policy #1, read_only is the only option in case the first
access is a read. It translates into the Algorithm 6 which must also be implemented
with data race hazards in mind.

But policy #2 also has a major drawback. Let us assume an address a where a
loop index i used by a process evaluated by worker W is stored. This loop index i
is being used for a few evaluation phases already and a new evaluation phase begins.
Will the first access of W at address a be a read or a write? It is likely to be a read
(e.g., testing for the end condition of the loop). With policy #2, a would in that case
be classified as read_only, which will then prevent W to write i during the whole
parallel phase. This will apply to most addresses in the working set of W , resulting
in its quasi systematic unscheduling. It would in the end lead to a quasi-exclusively
sequential evaluation of all workers.

70

Proposed Solution for LT-TLM Parallel Simulation

Algorithm 6 Memory access granting policy #2
1: procedure canDoAccess2(address, isRead, workerID)
2: if isRead AND isReadOnly(address) then
3: return true
4: else if isWrite AND isReadOnly(address) then
5: return false
6: else if isRead AND NOT wasAccessed(address) then
7: setReadOnly(address)
8: return true
9: else if isWrite AND NOT wasAccessed(address) then

10: registerOwner(address, workerID)
11: return true
12: else
13: return canDoAccess1(address, workerID) � c.f. Algorithm 5
14: end if
15: end procedure

Proposed Access-Granting Policy

The actual access granting policy used in the rest of this manuscript is defined by the
FSM described Figure 3.3. One instance of this FSM is associated to each reduced
address using a custom data structure described in Section 3.2.5. Each reduced address
can independently be in one of these 4 states:

1. no_access: Before the first access of the evaluation phase.

2. owned: When an address has been accessed by only one worker and with at
least one write. This worker is called the owner of the address.

3. read_exclusive: When an address has been only read by a single worker. This
worker is also called the owner of the address.

4. read_shared: When an address has been only read and by at least two workers
since last reset.

The main idea behind this FSM is the same as for policy #2. It aims at allowing
workers to freely access the memory they are not sharing (the owned state) and to
allow read-only memory to be accessed concurrently (the read_shared state) to
unschedule as few workers as possible. But as explained, these two states are not
sufficient and the read_exclusive state is crucial to make the FSM efficient: it
allows to wait until it is possible to choose between owned and read_shared based
on more than only reads from a single worker. This state corresponds to the case where
an address is both read-only and accessed by a single worker. The address will leave
this state as soon as either the owner writes to it or another worker reads it.

71

Proposed Solution for LT-TLM Parallel Simulation

no_access
Owner=⊥

owned
Owner=x

read_exclusive
Owner=x

read_shared
Owner=⊥

w(x) r(x)

rw(x)

rw(x̄)

w(x)

r(x̄)

r(x)

w(x̄)

w(x|x̄) r(x|x̄)

Figure 3.3 – Memory access monitoring FSM. x is the worker identifier (WID) of the
worker doing the access from no_access; x̄ designates any worker other than x; r and w
stand for read and write. Workers are unscheduled on transitions.

It can be noticed that any access causing a dependency corresponds to a “ ”
transition, causing the offending worker to be unscheduled. Thus, the zero dependencies
guarantee is provided by this FSM.

If the policy based on the FSM Figure 3.3 is proven efficient in Chapters 4 and 5, it
is also due to the fast implementation it enables. Indeed, the FSM state is composed
of the following fields packed in 4 bytes to allow for a fast atomic Compare And Swap
(CAS): the state id (4 possible values), the owner’s WID and a generation counter for
a fast reset (see Section 3.2.4).

Upon memory access, Algorithm 7 is used as the updateFSM function of mem_instr
(i.e., at Line 6 of Algorithm 4 for a fast and wait-free1 FSM update. The transition
computation getNewS is defined by Figure 3.3 and consists in a 4-case switch statement
with a couple of ternary expressions per case. getNewS returns the new state and a
boolean which is true if and only if the transition is not a “ ”, that is if the access is
granted.

It can be noticed that the transition application requires an atomic CAS as two
or more workers might attempt to update the FSM concurrently. However, doing the
CAS is required only if changing the state of the FSM as shown by the test at Line 4
of Algorithm 7. This optimization brings speedups ranging from ×1.2 to ×2.2 on
baremetal benchmarks.

1wait-free means that the number of steps required to perform the FSM update and the time
required for each step are bounded, no matter what other workers do and how many of them there are.

72

Proposed Solution for LT-TLM Parallel Simulation

Algorithm 7 FSM update algorithm
1: procedure updateFSM(PID, accessType)
2: Sold ← S � S is the FSM 4-byte state
3: Snew, go ← getNewS(Sold, P ID, accessType)
4: if Snew! = Sold then
5: S.CAS(expected=Sold, new=Snew)
6: if CAS failed then
7: return updateFSM(PID, accessType)
8: end if
9: end if

10: return go
11: end procedure

In order to prove this optimization, the semantics of the FSM must be reminded:
the FSM arbitrates which access can be performed during the parallel phase and which
cannot. It receives a non-ordered set of inputs and processes them in sequence, thus
introducing an order between the memory accesses. For a total order to exist between
successive transitions, each transition must be atomic and sequentially consistent. It is
equivalent to saying that each transition takes place instantly at a given point in time
called the serialization point of the transition [Zak17]. In the case where the transition
is not fixed (i.e., it changes the state), the serialization point is the CAS when it is
successful. If the CAS fails, then it has no effect and the whole FSM update procedure
is restarted from the state loading. If the transition is fixed (i.e., it does not change
the state), the serialization point is the initial atomic state load, which has the same
effect as loading the state, computing the transition, and doing a successful CAS, all
atomically.

Thanks to this implementation, once an FSM has reached its final state (in one or
two actual CAS), all subsequent granted accesses do not need to write a single byte of
data in the FSM. Because the vast majority of memory accesses fall into that category,
the instrumentation mechanism provides great scalability with the number of workers.

In order to maximize the benefits of the optimization Line 4, the state of the FSM
should be preserved across several evaluation phases to minimize the number of state
changes. Indeed, addresses tend to be used in the same way for relatively long periods
of time (c.f. temporal reference locality principle [Den05]). But just as an address is
not used for a single purpose for the whole power-on time of a computer, keeping the
same state for an address during the whole simulation is not efficient either. Thus,
FSMs still need to be reset sometimes but not at every evaluation phase. Choosing a
good reset policy is a difficult question by itself and is discussed in Section 3.2.4.

73

Proposed Solution for LT-TLM Parallel Simulation

3.2.3 Correct Memory Access Recording Order
One crucial simulation correctness condition is that the memory accesses are recorded
in an order that is equivalent to the order in which they are simulated. More precisely,
they must be recorded in an order that exhibits the same dependencies as their real
order2. In this section, a first counter example is given to illustrate the issue. Then,
the zero dependencies guarantee provided by the address monitoring FSM will be
used to relax the ordering constraints to the point where equivalent recording order is
guaranteed at no additional cost.

Let us assume an alternate FSM that does not provide the zero-dependencies
guarantee applied to the example Figure 2.12 page 61. The instrumentation records
the write of P0 to address a before the read of P1 while P1 reads a before P0 writes
it. The dependencies analysis would then consider P0 → P1 because of a RAW on
a while the real dependency is P1 → P0 because of a WAR. Such error could lead
to undetected conflicts which would not be acceptable from a correctness standpoint.
An obvious workaround would be to include the instrumentation and the access in a
critical section prohibiting at least the other memory accesses to the same variable to
happen simultaneously, but that would result in severe performance degradation.

However, enforcing strictly identical order of accesses and recorded accesses is not
necessary if the correct dependencies are detected. In particular, if the recorded order
of independent memory accesses differs from their real order, no dependencies are
missed as theses accesses cannot introduce dependencies at all. The zero dependencies
guarantee provided by our FSM implies that no two dependent memory accesses can
occur concurrently during the parallel phase. In particular, the scenario in Figure 2.12
cannot happen as P1 would be unscheduled before the read to a is both recorded and
performed. In general, the order in which memory accesses are recorded during the
parallel phase is not significant under the zero dependencies guarantee. Indeed, any
reordering of the recorded accesses would produce no dependencies.

Eventually, we do not guarantee strict memory access recording order. Instead, we
provide a sufficient guarantee so that the instrumentation and the corresponding access
need not be protected by any sort of additional synchronization for the recorded order
to be correct: if the access is granted, then it can be recorded in any order relative to
the other accesses of the parallel phase. In other words, the accesses recorded during
the parallel phase form a set without specific ordering between its elements. This
has a major impact on performance as it allows each worker to record accesses in
its own independent container, enabling perfect algorithmic scaling with the number
of workers running in parallel. During the sequential phase, preserving ordering of
recorded accesses is trivial as workers run one after the other.

To put the performance enabled by this feature in perspective, it can be compared to
the necessary use of a per-address reader-writer lock to provide atomic instrumentation

2A well-defined total order is not guaranteed to exist unless sequential consistency is enforced on
all memory accesses, which is not the default on AMD64.

74

Proposed Solution for LT-TLM Parallel Simulation

and access together. It has been tried in a first attempt to improving SCale 1.0 and
resulted in high overhead and, above all, poor scaling above 2 workers.

3.2.4 Efficient FSMs Reset

In the FSM depicted in Figure 3.3 no transitions leave owned and read_shared
states: they are end points. As a Therefore, once reached, such state would last during
the entire simulation. This accommodates programs whose memory accesses pattern
is constant over its execution. For instance, if the simulated program only consists
in multiplying two squared matrices of size n and storing the result in a third one:
C = A × B. Each one of the N threads is responsible for computing n

N
consecutive

lines of C. As depicted in Figure 3.4, A would stay in the read_exclusive state as
each line is only read by a single worker. B would stay in the read_shared state as
all workers read the entire matrix. C would stay in the owned state as each line is
written by a single worker.

However, addresses are often used by a worker for a certain amount of time and
then by another like in the Deriche filter. In this algorithm, horizontal and vertical
passes on an image are alternated. In a naive parallel implementation, the image
is split horizontally for the horizontal pass and vertically for the vertical pass. As
a consequence, as shown in Figure 3.5 pixels are all in the owned state after the
horizontal pass and need to change owner before the vertical pass in order not to
unschedule workers after every memory access in the image buffer. However, setting
the owner of an address is only possible from the no_access state, hence the need
for FSMs reset at some points during the simulation.

Efficient simulation of the Deriche filter (and of most algorithms), hence requires to
be able to reset the FSMs at well-chosen instants. We will discuss here two aspects of
the problem:

a11 a12 a13 a14
a21 a22 a23 a24

a31 a32 a33 a34
a41 a42 a43 a44

⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

c11 c12 c13 c14
c21 c22 c23 c24

c31 c32 c33 c34
c41 c42 c43 c44

⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

read_exclusive
owner = W0

read_exclusive
owner = W1

read_shared
owner = ⊥

owned
owner = W0

owned
owner = W1

Figure 3.4 – Classification of the memory addresses during a 4 × 4 matrix multiplication
using 2 processes assigned to 2 workers. Traversals are represented by zigzaging arrows.

75

Proposed Solution for LT-TLM Parallel Simulation

owned
owner = W0

owned
owner = W1

owned
owner = W0

owned
owner = W1

Figure 3.5 – Classification of the memory addresses during a Deriche image filtering.

1. When to reset the FSMs?

2. How to reset the FSMs efficiently?

Ideally, an FSM should be reset whenever its state does not reflect the actual usage
of the associated address (e.g., between two passes in the Deriche filter). This is very
hard to detect accurately from the SystemC model standpoint, but an incorrectly
classified address will cause quasi systematic unscheduling, which is easy to measure.
A first approach could be to reset all addresses that caused some unscheduling during
the previous quantum. However, a worker can only be unscheduled once per quantum
so no more addresses than there are workers can be reset in each quantum with this
approach. This is inefficient as large amounts of addresses usually have to change
owner simultaneously (e.g., the whole image in the Deriche filter, again).

Though, setting apart the addresses that need to be reset from those that do not is
impossible as it depends on the future of the simulation. As a result, we have chosen
to reset all addresses every time a worker is unscheduled. That way, all addresses
can transit to their most appropriate state from that point. Addresses that did not
need to be reset will only incur at most a couple of additional CAS that are relatively
inexpensive and performed in parallel by all workers. Resetting all addresses is a
good strategy to avoid further workers unscheduling caused by some memory changing
owner.

It must be noticed that a truly shared address such as a mutex will, when accessed,
systematically cause except the first to be unscheduled. It will each time result in the
reset of all FSM with the small performance costs that could add up. However, truly
shared addresses are usually accessed relatively infrequently in a well written parallel
program. This potential weakness of this reset policy thus is not a concern. The small
amount of sequential evaluation is demonstrated in Figure 5.1.

Choosing to reset either none or all FSMs also enables O(1) reset implementation
using a generation-based reset. As mentioned in Section 3.2.2, a generation counter
is part of the state of the FSM. To virtually reset all FSM, a single counter called
fsm_gen needs to be incremented before starting the next evaluation phase. The value
of fsm_gen is then passed to updateFSM as third argument in Algorithm 7 which

76

Proposed Solution for LT-TLM Parallel Simulation

is updated as in Algorithm 8 to perform lazy reset. This way, FSMs are only reset
if they are accessed and directly by the very first worker accessing them. The zero
dependencies guarantee is maintained as the reset of an FSM can only occur right
before the very first access of the quantum.

Algorithm 8 FSM update algorithm with lazy reset
1: procedure updateFSM(PID, accessType, gen)
2: Sold ← S
3: curGen ← Sold.gen
4: if curGen �= gen then � reset
5: Stmp.state ← no_access
6: Stmp.owner ← ⊥
7: Stmp.gen ← gen
8: else Stmp ← Sold

9: end if
10: Snew, go ← getNewS(Stmp, P ID, accessType)
11: if Snew �= Sold then
12: S.CAS(expected=Sold, new=Snew)
13: if CAS failed then
14: return updateFSM(PID, accessType)
15: end if
16: end if
17: return go
18: end procedure

3.2.5 Fast Scalable FSM Storage
On the one hand, in order for memory accesses instrumentation to be fast and scalable
with the number of workers, FSMs must be stored in a container that supports
concurrent accesses while requiring little to no synchronization upon lookups. Yet,
the only mandatory operation is constant-time random access to rapidly get the FSM
instance associated to an address. Most of the classic operations such as iteration or
deletion are not required thanks to the use of a lazy-reset approach.

On the other hand, the memory map of the simulated platform can be shaped
in arbitrary ways. It can span over huge memory ranges, be sparse or even runtime
defined (e.g., the PCI-e protocol). The memory usage of our map must also remain
contained as it affects rollback performance (c.f. Section 3.3.4).

Let us first briefly discuss the most common containers and why they do not fulfill
our requirements:

• A statically allocated contiguous array of FSMs would potentially guzzle huge
amounts of memory to cover the whole address map of the simulated platform.

77

Proposed Solution for LT-TLM Parallel Simulation

L0
offset L1

offset L2
offset

⎧⎪⎪⎨⎪⎪⎩

Accessed address
M

SB
LSB

001100010101 100110100 010010101

. . .

&L1
. . .
. . .
. . .

. . .

. . .

&L2
. . .

. . .

. . .

+ +

Figure 3.6 – Multi-level FSM table. Only tables hit by the access are drawn.

• Splitting it into a list of arrays to cover only the used memory ranges is still quite
memory intensive, requires additional target-dependent parameterization from
the user, is algorithmically inefficient if there are many holes in the memory map
and does not support dynamically defined memory maps.

• std::map and std::unordered_map both require external synchronization for
concurrent accesses, which would compromise performances.

Instead, we designed a custom container inspired from multilevel page tables as
illustrated Figure 3.6. Accessing an element is done using the successive fields of the
address to compute offsets in successive levels of nested tables. If the table is defined
with N levels, the N − 1 first levels (the intermediate levels) contain pointers to the
next level tables. The last level contains the elements themselves (i.e., the FSMs in
our case).

When an intermediate table is allocated, all pointers are set to nullptr. When a
worker W reaches a nullptr on the path to an FSM, the next levels of the table need
to be allocated. To that extent, W first allocates the next level of the table before
attempting an atomic CAS on the null pointer to make it point to the freshly allocated
next level of the table. If the CAS fails, it means that another worker has concurrently
allocated the next level so W can free the allocated next level and proceed. This
wastes an allocation and initialization but happens extremely rarely, though. When
allocating the last level of the table, all FSMs must be initialized to the no_access
state. Non-null pointers in the intermediate levels of the table being constant, no
synchronization is required for concurrent access once initialized.

This container supports constant-time wait-free concurrent random accesses. It is
also compatible out of the box with a 64-bit physical memory map with a memory usage
dedicated to FSM storage close to the real memory usage of the simulated software.

78

Proposed Solution for LT-TLM Parallel Simulation

Indeed, each reduced address (typically each 8-bytes block) is associated to a 4-bytes
FSM instance and contiguous addresses have contiguous FSM except at the last level
arrays boundaries. As a result, and due to the principle of spatial memory locality,
last level tables tend to be well used, that is a good proportion of the allocated FSM
instances are accessed.

A software caching system that memorizes the lastly accessed page(s) of FSM could
also be implemented to reduce the number of table traversals, but the additional logic
cancels the theoretical benefit with a 64-bit simulated address space. Though, this
could be profitable in a 128-bit context as the depth of the page table would roughly
double to keep a good sparsity. The lookup would then take twice as long on average
and is likely slower than checking if the targeted page is software-cached.

We have implemented a template-parameterized page table allowing us to experiment
several configurations. Such structure presents a speed-memory trade-off as increasing
the number of levels tends to improve the allocation granularity but increases at the
same time the number of pointer indirections required to access an element. The best
configuration can depend slightly on the simulated platform but usually lies between 3
and 4 levels. Using a larger first level (allocated only once) and successive levels of
decreasing size seems to give the best compromise on the experiments conducted but
the impact is small. Also stepping down to 2 levels in case of a 32-bit target platform
does not show any significant speedup (∼ 1%).

We eventually chose a 3-level table with the first level array containing 223 pointers
to second level arrays, each containing 221 pointers to third level arrays, each containing
220 FSM instances. This configuration can cover all individual bytes in a 64-bit address
space (23 + 21 + 20 = 64). The table geometry is statically configured to generate
optimized compiled code. As a result, the full 64-bit space is covered, even in case the
user choses to run SCale with a 1-byte address resolution. It should be noted that the
simulated platform has a 32-bit address space, but we chose to configure SCale 2.0 for
the more general 64-bit case.

3.3 The Sequential Evaluation Phase

When one or more workers have been unscheduled during the parallel phase, they must
complete their execution during the sequential phase. First, we need to choose an order
in which to resume them (Section 3.3.1). Also, dependencies can appear during the
sequential phase, so we perform dependencies analysis at the end of each sequential
phase (Section 3.3.2). In case no conflict is detected but dependencies exist, they are
recorded to be used during simulation replay (Section 3.3.3). However, if a conflict did
occur, then the simulation is no longer valid so we rollback to start over from the last
checkpointed valid state (Section 3.3.4).

79

Proposed Solution for LT-TLM Parallel Simulation

W0

W1

Parallel
phase

w(x)

×unsched

×
unsched

Sequential
W1

r(x)

Sequential
W0

w(x)
W1 → W0 W0 → W1

a

W0

W1

Parallel
phase

w(x)

×unsched

×
unsched

Sequential
W0

w(x)

Sequential
W1

r(x)W1 → W0

W1 → W0

b

Figure 3.7 – Two sequential worker scheduling leading to different dependencies.

3.3.1 Choosing the Sequential Evaluation Order

The workers that have been unscheduled during the parallel phase are resumed during
the sequential phase to complete their evaluation. A priori, any worker resuming order
is equally valid, but some orders are more likely to trigger conflicts than others. Indeed,
the dependencies formed during the sequential phase depend on the order in which
workers are resumed. Figure 3.7 illustrates how the sequential scheduling can cause a
conflict or avoid it. In this example, we assume W0 and W1 are unscheduled because of
an access to an already owned address not part of the illustration. Independently from
this unscheduling access, they both access the shared variable x during the evaluation
phase. If W1 is scheduled before W0 like in case (a) a conflict is formed as W1 reads
between the two writes of W0. However, if W0 is scheduled before W1 like in case (b),
both writes happen before the read from W1, avoiding the conflict.

This simple example illustrates the need for an efficient sequential scheduling policy.
Having no existing dependency at the beginning of the sequential phase, these cannot
be used to constrain the scheduling order. Ideally, the memory accesses to be performed
by each worker would be known in advance and the sequential phase could be scheduled
according to that. In that case, all avoidable conflicts could be avoided. However, the
memory accesses performed by each worker cannot be anticipated as they result from
the simulated software. Also, workers can interact with each other and influence each
other’s execution in a different manner depending on the sequential phase scheduling
order.

In fact, there is a single memory access per worker that is known in advance of

80

Proposed Solution for LT-TLM Parallel Simulation

the sequential phase: the memory access that caused the worker to be unscheduled.
Specifically, when a worker W0 is unscheduled due to an access to an address a owned
by another worker W1, it is likely that W1 has accessed a during the current parallel
phase. As a result, it is likely that when W0 will resume and do the access to a, the
dependency W1 → W0 will be created, whatever the chosen sequential scheduling. A
reasonable choice, then, is to schedule W1 before W0 in the sequential phase to minimize
the risk of dependency W0 → W1, which would result in a conflict. If the address a
that caused W0 to be unscheduled has no owner (i.e., it is in the read_only state),
then W0 might create a dependency during the sequential phase with all the readers of
a which are unknown. As a result, the best that can be done is to schedule W0 as late
as possible to increase the odds that it runs after the readers of a.

Based on this principle, to determine the complete scheduling order, every time a
worker is unscheduled, a dependency with the owner of the accessed address (if it exists)
is registered in a temporary dependency graph G. At the end of the parallel phase, we
attempt a topological sort on G to obtain an optimized scheduling order. The workers
that have been unscheduled but are not in G have tried to write a read_shared
address, thus have no identified predecessor. Thus, these are added at the end of the
sequential schedule.

In case G is cyclic, it does not necessarily mean that a conflict will occur. Indeed,
the owner of an address that caused another worker to be unscheduled might not have
accessed the address during the current evaluation phase. Thus, dependencies in G are
likely but not certain. For that reason, we schedule all workers in ascending process
identifier (PID) order in case G is cyclic.

We have observed about 40% more conflicts when always scheduling workers
ascending PID order compared to using the intermediate dependency graph in Linux
benchmarks simulation. An improvement to the ascending PID order when G is cyclic
could be to break cycles in G removing specific edges and do the topological sort not
to discard all registered dependencies. This has not been implemented and is left to
future work.

One thing to keep in mind, though, is that the sequential phase might or might not
issue a conflict, independently from the shape of the intermediate dependency graph
G. G is only a heuristic which has proven to give significantly better results than
random sequential phase scheduling on most applications. Because a conflict might
occur anyway, a strict dependencies analysis is always required at the end of sequential
phases as explained in the next section.

3.3.2 Asynchronous Dependencies Analysis
Dependencies Analysis algorithm

We have demonstrated in Section 3.2 that dependencies cannot occur during the parallel
phase thanks to our memory access granting policy and worker unscheduling. In case

81

Proposed Solution for LT-TLM Parallel Simulation

W0

W1

W2 Access record
traversal

Parallel phase Sequential phase

Figure 3.8 – Structure used to record memory accesses with a valid traversal order used for
dependencies analysis.

there is no sequential phase because no workers have been unscheduled — which is the
case more than 99% of the time for most applications — we can simply proceed to the
next evaluation phase without any extra precaution.

In case a worker has been unscheduled during the parallel phase, a conflict check
must take place to detect either a conflict or determine the dependencies between
worker for a later simulation replay. To that extent, during both the parallel and the
sequential phases, all memory accesses are recorded to construct the worker dependency
graph at the end, if need be (line 11 of Algorithm 4). The stored information for each
access is the accessed address, the number of bytes, the type of access and the ID of
the accessing worker.

Recording all accesses during the parallel phase in a conventional ordered container
such as a std::vector would create huge contention as pushing elements requires
exclusive access to the container. Fortunately, thanks again to the zero dependencies
guarantee, the recording order of memory accesses during the parallel phase does not
change the final dependencies. We only need that all accesses recorded during the
parallel phase are recorded before the accesses of the sequential phase. The sequential
phase then must be recorded in correct order.

Recording the sequential phase in the real order is achieved using an std::vector
shared by all workers in the sequential phase. For the parallel phase where the order
does not matter, we use one vector per worker to guarantee maximum decoupling of
memory accesses recording. Accesses can then be enumerated one vector at a time
finishing with the vector of the sequential phase like in Figure 3.8. We call the global
structure composed of one vector per worker for the parallel phase and a shared vector
for the sequential phase an access record.

Dependencies are analyzed at the byte level, meaning that accesses that hit the
same reduced address but different bytes inside the reduced address will not cause
dependencies. For instance, if an access hits 4 bytes, it will be treated as 1 access
for each one of the 4 bytes. Doing so reduces false positives at the cost of a slower
dependencies analysis.

Specifically, the dependencies analysis consists in enumerating all accesses of the

82

Proposed Solution for LT-TLM Parallel Simulation

Step Worker Access
1 0 w
2 0 r
3 2 r
4 1 r
5 0 r
6 1 w

lw: 0
lr: []

1
lw: 0
lr: [0]

2
lw: 0
lr: [0, 2]

3
lw: 0
lr: [0, 2, 1]

4 & 5

0
1

2

lw: 1
lr: []6

Figure 3.9 – Algorithm used to record dependencies caused by accesses to one byte. The
array describes an example sequence of accesses done at this byte. r and w respectively
designate read and write accesses. The global dependency graph and both the last write (lw)
and the last readers (lr) are assumed to be initially empty. At the 6th step, dependencies since
previous write are registered all at once in the global dependency graph.

access record in a valid order such as in Figure 3.8. For each access, it updates a small
data structure associated with each byte and represented on figure Figure 3.9. This
structure contains the ID of the last writer and of all readers of the address since the
last write. Upon read, the set of last readers only is updated with the ID of the current
reader. Upon write, three sets of dependencies are recorded in the global dependency
graph:

• A dependency between the previous writer and all the previous readers already
recorded in the structure.

• A dependency between all the previous readers and the current writer.

• A dependency between the previous writer and the current writer (in case there
is no previous reader).

The previous readers are then cleared, and the previous writer is replaced with the
current one. Once all accesses have been enumerated, the dependencies between the
last writer and the following readers are recorded to avoid missing dependencies due to
reads not followed by a write, as the dependencies are normally recorded upon writes.

A topological sort is then attempted on the global dependency graph. If there is no
conflict, a linear ordering of the workers involved in the dependencies is produced to
be saved in the output replay vector alongside the analyzed evaluation phase index. It
can later be used to replay the simulation (c.f. Section 3.3.3). If the topological sort
fails because the graph is cyclic, there has been a conflict and simulation must rollback
to the previous checkpoint (c.f. Section 3.3.4).

83

Proposed Solution for LT-TLM Parallel Simulation

Access records to check

Check results

Empty access records

Kernel
thread

analyzer thread
pool

Figure 3.10 – Asynchronous dependencies analysis infrastructure.

Asynchronous Dependencies Analysis

While the dependencies analysis could be performed by the kernel thread before the
update phase, it is performed asynchronously by another OS thread. The simulation
can then proceed without waiting for the check to complete. This optimization can
be done as the result of the dependencies analysis is not required for the future of the
simulation. Indeed, if no conflict was detected, then the workers sequential ordering is
only used in a later simulation replay. If there was a conflict, then the simulation must
rollback to the previous checkpoint, and continuing the simulation was useless but also
harmless. As there is usually no conflict, continuing the simulation speculatively brings
an important speedup that can be higher than ×2.2 on the MobileNet Benchmark for
instance.

In order to perform the conflict analysis asynchronously, a pool of OS threads called
analyzer threads is created at the begininng of the simulation. These threads wait for a
new memory access record to be submitted for a check. If a dependencies analysis is
required, the access record is submitted by the kernel thread in a queue to be fetched
by an analyzer thread as represented in Figure 3.10. When the analyzer thread is done
with an access record, it pushes the result in another queue to be fetched back by the
kernel thread. The kernel thread fetches pending dependencies analysis results when it
is waiting for the workers to finish a later evaluation phase.

Another optimization consists in recycling the access records once they are analyzed.
Indeed, growing newly constructed vectors causes numerous memory reallocations
and initializations that are expensive compared to the rest of the memory accesses
monitoring procedure. For that reason, the vectors that compose the access records
are only cleared to preserve their internal buffer. Indeed, the C++ 11 (and newer)
standard [C] specifies that the capacity of an std::vector, that is the size of the
underlying buffer, shall not change upon calls to std::vector::clear, effectively
guaranteeing that the underlying buffer is not freed.

84

Proposed Solution for LT-TLM Parallel Simulation

The impact of this optimization varies greatly with the number of interactions
between processes, that is with the number of dependencies analysis, but a ×1.3
speedup has been observed on Matmul when recycling memory access records.

3.3.3 Simulation Replay
SCale 2.0 allows for simulation replay. That is, the first run of a simulation, which we
call the recording run generates an execution trace that can be used during subsequent
runs of the same simulation to reproduce the same behavior. We call such run a replay
run. Notice that the recording run, while being non-deterministic in the sense that
the equivalent sequential schedule of each phase is not predetermined, respects the
co-routine semantics so it is standard-compliant.

However, the SystemC standard also requires that for a given model without
intrinsic non-determinism (e.g., keyboard inputs, wall-clock-time dependent actions,
etc.), all simulation runs that use the same input must produce the same output. Thus,
simulation replay is a required feature which is usefull to efficient debugging. Indeed,
Simulation replay is useful for debugging purpose to reproduce a faulty behavior,
identify its cause and fix it. However, replaying a simulation requires determinism,
which is our first motivation in achieving standard-compliant parallel simulation, that
is having each evaluation phase be equivalent to a sequential evaluation.

Replay Trace Generation

In order to be able to replay a simulation, it is needed to know which sequential schedule
each evaluation phase is equivalent to. This is achieved during the recording run using
worker dependencies analysis yielding an equivalent partially ordered sequential schedule
after each sequential evaluation phase. Only the workers involved in dependencies
appear in this sequential schedule. For instance, if there are 5 workers with IDs ranging
from 0 to 4 and the dependency graph after evaluation phase E is

2 → 0, 2 → 3

then the equivalent sequential schedule provided by the dependencies analysis can be
2 → 0 → 3 or 2 → 3 → 0. As 1 and 4 are not part of it, it implicitly means that they
are completely independent from the other workers and that they can be scheduled at
any time in the equivalent sequential schedule of E. In practice, they are evaluated
simultaneously to the sequential evaluation of the other workers.

Instead of a sequential evaluation of the workers involved in dependencies, they
could be evaluated in a succession of parallel sub-phases. In the case above, only 2
would be evaluated in the first sub-phase while 0 and 3 would be evaluated in the second
sub-phase.down in the used benchmarks, this optimization has not been implemented
yet.

To enable simulation replay, the recording run needs to store in a file all the
equivalent partial sequential schedules returned by the dependencies analysis. Each

85

Proposed Solution for LT-TLM Parallel Simulation

of them is then associated to the index of the evaluation phase they relate to. This
identifier is simply an integer incremented before each evaluation phase.

Replay Scheduling

When replay is activated by passing the trace file to the simulator, an input replay
vector is initialized from the replay file content. The input replay vector then is a
list of pairs (eval_phase_index, eval_order). These pairs are sorted in decreasing
order so that the earliest phase is at the end of the input replay vector. This way, the
next replay information to be used is at the end of the input replay vector and can be
popped in constant time compared to linear time relative to the vector size if it was in
the front.

The scheduler logic in replay mode is then described in Algorithm 9. Line 3 is
responsible for testing if the upcoming evaluation phase has a constrained order by
checking the phase identifier of the last element of the input replay vector; Line 4
retrieves this order; Line 5 pops the last entry in the input replay vector; Line 10
performs the constrained evaluation.

Algorithm 9 Replay run scheduler logic outline. irv is the input replay vector.
1: procedure evaluateNextPhaseReplay(irv)
2: ++phaseID
3: if phaseID == irv.back().phaseID then
4: seq ← irv.back().orderedworkers
5: irv.pop_back()
6: else
7: seq ← ∅
8: end if
9: par ← {pid | pid is ready and pid /∈ seq}

10: parAndSeqEval(par, seq)
11: end procedure

Memory accesses instrumentation can also be completely disabled in replay mode,
making the instrumentation function to return immediately. It is assumed in that
case that the model instrumentation was correct during the recording run. Thus,
all dependencies have been correctly identified. In that case, assuming the same
2 → 3 → 0 constrain on the upcoming evaluation phase. Because 1 and 5 do not
depend on any worker, they can run at any moment during the replayed evaluation
phase. In particular, 1 and 5 can run in parallel to 2 → 3 → 0 that will run sequentially.
This replay evaluation strategy provides a speedup by superposing the parallel and
sequential phase.

Replay is not only used by the user for debugging purpose but also in case of
rollback as developed in the next section.

86

Proposed Solution for LT-TLM Parallel Simulation

3.3.4 Rollback-Based Conflict Recovery
In case of conflict, the simulation is no longer valid, and it must rollback to the last
valid checkpointed state.

Existing SystemC Simulation Checkpoint and Restore Solutions

While rollback has never been considered for optimistic PDES of SystemC models due
to its cost and complexity, it has been used for other purposes. For instance, [KLP+09]
proposes a Checkpoint/Restore (C/R) framework for SystemC virtual platform that
enables resuming a regular SystemC simulation at different points for debugging
purpose. Similarly, [Geo09] is an industrial solution that proposes Save and Restore
for SystemC virtual platforms. The implementation is not detailed but it allows to
save on boot time by saving the end-of-boot state of the platform and loading it in
later simulations.

In [MES+10], the state of a SystemC simulation can be saved by wrapping up the
member variables of all modules in a special class called gs_param. For instance, int x;
becomes gs_param<int> x;. This wrapper is in charge of saving and restoring each
member variable state and to restore it when needed. Simulation kernel state save and
restore procedures are also available to save the simulation context. TLM.open [Hel09]
offers a similar approach at the module level instead of the member level. Because
these two approaches are being done exclusively on the user side (e.g., no system calls)
and because it focuses exclusively on the data that compose the simulation state, it is
very fast and space efficient. However, it requires a good amount of code changes to
update SystemC models using gs_param, if the model source code is available at all.

In a completely different approach, [JSD+19] proposes to rely on posix’s fork() to
recover from timing errors (e.g. causality violations) caused by temporal decoupling in
the context of regular sequential SystemC simulation. The fork() posix system call
allows to rapidly duplicate a process using the Copy on Write (CoW) mechanism. That
is, instead of duplicating the whole process memory when calling fork, the memory
is copied in a lazy fashion every time a page is written by either the caller or callee
of fork. However, fork() cannot be used for multithreaded process checkpointing
because threads do not survive forking.

A complimentary and non SystemC-specific approach can be found in the rr-
project [Rr-]. rr —for record and replay— runs a process in a virtually sequential
environment while recording all its inputs (e.g., data returned by system calls). It allows
to replay execution of large-scale processes such as a full featured browser but enforces
sequential execution where SCale 2.0 aims at the opposite: adding parallelism to an
originally sequential and deterministic simulator. These two approaches to record and
replay are not to be confused but could be combined to increase SCale 2.0 compatibility
with simulations that rely on external outputs.

In SCale 2.0, rollback is used for a different purpose than all the aforementioned

87

Proposed Solution for LT-TLM Parallel Simulation

approaches. Indeed, rollback is not supposed to be used by the user but by the
simulation kernel to recover from simulation errors. In that sense, it is similar to
optimistic PDES but errors in SCale 2.0 are not timing errors but loss of atomicity
errors. In practice, the error frequency in SCale 2.0 compared to timing errors in a
typical optimistic PDES makes the rollback approach much more realistic.

Process-Level Rollback Performance Analysis

For simulation rollback, we rely on process C/R using CRIU [Cri]. This tool can
perform full OS process state checkpoint to drive and restore a process from these
generated files. Also, CRIU supports incremental checkpoints: it can checkpoint only
the memory that has been modified since the last process checkpoint. This speeds up
drastically the checkpointing operation allowing to increase their frequency. Together
with OS automatic file caching or the use of a RAM disk, process checkpoint overhead
is limited.

Prior to selecting CRIU for our rollback mecanism, (and even prior to envision the
possibility of using rollback in SCale 2.0), we have performed synthetic benchmarking
to characterize checkpoint and restore speed. Results are shown Figures 3.11 and 3.12.
The test application consists in N threads allocating S bytes of memory between each
checkpoint, N and S being the variables of the experiment. After each checkpoint,
the application exits and is restored to the last checkpoint. Checkpoint and restore
times are measured separately and the average of 8 repetitions is reported to cope
with performance instability. Checkpoints are stored on a tmpfs file system, that is a
directory located in RAM as it provides the fastest speed by a great margin compared
to regular storage. Such file system is not persistent across reboot, but it is usually not
a concern in the context of process checkpointing for rollback.

Overall, both checkpoint and restore costs have two components: a fixed cost
associated to the number of threads in the application and a proportional cost associated
to the amount of memory used by the application. The cost associated to the number
of thread alone can reach 1.5s when using 128 threads. However, in the context of
parallel SystemC simulation, such a high number of thread is very unlikely. Typically,
up to 36 threads are used in our experiments with SCale 2.0 as we run them on a 36
core host. In that case, the fixed cost associated to the 36 threads is closer to 120ms.
The cost associated with the amount of checkpointed/restored memory depends on
the storage medium speed. In the case of a ramdisk, 3GB/s is a typical bandwidth.
Based on these figures, a simulation using around 1 GB of physical memory can be
checkpointed in less than 500ms while incremental checkpoints take about 120 ms for
a few tens of megabytes of modified memory between checkpoints.

SCale 2.0 Rollback Infrastructure

In order for checkpoint and restore to be used as a rollback mechanism, additional
mechanisms must be implemented. In particular, one must be able to pass information

88

Proposed Solution for LT-TLM Parallel Simulation

100 101 102 103 104 105 106

Memory usage (kB)

102

103

tim
e

(m
s) Threads

128
64
32
16
8
4
2
1

Figure 3.11 – Checkpoint time to RAM disk using CRIU depending on the number of threads
in the application and the total memory used by all threads.

100 101 102 103 104 105 106

Memory usage (kB)

101

102

103

tim
e

(m
s) Threads

128
64
32
16
8
4
2
1

Figure 3.12 – Restore time from RAM disk using CRIU depending on the number of threads
in the application and the total memory used by all threads.

89

Proposed Solution for LT-TLM Parallel Simulation

Initial
checkpoint

Evaluate
next phase

Checkpoint? Wait pending
dep. analysis

Conflict?

Rollback
simulation

Checkpoint
simulation

Restored?

Setup input
replay vector

yesno

yes

no

no

yes

re
pl

ay

Restored
here

Figure 3.13 – Rollback-based conflict recovery. Note that when living the “Checkpoint
simulation” block, it must be tested if it follows an actual checkpoint or a rollback. Indeed, a
rollback restores the simulation inside the checkpoint procedure.

from the erroneous simulation to the rolled back simulation in order for the later to
avoid the error that led to a rollback.

Figure 3.13 illustrates the overall rollback-based conflict recovery logic of SCale 2.0.
An initial dump is performed before the first evaluation phase. Then, the simulation
runs until a conflict occurs. If so, the simulation is restored to the last valid checkpointed
state and run again in replay mode until the conflicting evaluation phase is reached.
This phase is sequentially evaluated to prevent the conflict from occurring again. A
new snapshot is made right after this phase to be used as the next restore point
in case another conflict arises later. Checkpointing once the conflicting evaluation
phase is finished guarantees faster simulation progress in case another conflict occurs
briefly after. This is especially true as conflicts tend to be grouped together after our
experience.

Notice that simulation replay must be used between the restored checkpoint and the
conflicting phase. Otherwise, a new conflict could occur before the conflict that caused
a rollback in the first place. It would then cause the simulation to rollback to the same
checkpoint several times in a raw, preventing progress. It is also mandatory to wait for
all pending dependencies analysis to complete before checkpointing to ensure that the

90

Proposed Solution for LT-TLM Parallel Simulation

next checkpoint contains a valid state of the simulation.

An important parameter of rollback is the checkpoint frequency. If conflict frequency
does not depend on it, checkpoint frequency impacts performance in two ways:

• Each incremental checkpoint takes a few hundred milliseconds.

• The more time since last checkpoint the more there is to simulate a second time
in case of rollback.

Figure 3.14 shows the simulation speed depending on the checkpoint interval. The
benchmarks used for this experiment are further detailed in Section 4.1.3 page 100. It
appears that the impact on global performance does not vary much above a checkpoint
interval of about 2 seconds. This is due to the fact that if the base checkpoint frequency
is lower than the conflict frequency, checkpoint will be done exactly once after recovering
from a conflict, no matter how large the base frequency (flat section on the right of
the curves) is. On the opposite, if the base checkpoint frequency is too high, it will
dominate the simulation time (decreasing section on the left of the curves).

Still, excessively increasing the checkpoint interval will incur a longer replay phase
after each extended conflict-free period, canceling the small benefit of a large checkpoint
interval (incremental checkpoints are cheap). These two factors however appear to
self-balance resulting in an almost flat curve, which is probably a coincidence. We
settled on a 2-second checkpoint interval as a good compromise.

Performing a rollback is useful only if able to memorize the information required to
avoid the conflict the next time. In our case, we want to transfer the conflicting phase
index and the replay instructions between the last checkpoint and the conflicting phase.
The conflicting phase index is stored as an extra replay instruction: if the conflict
occurred during evaluation phase P , the entry P → (0, 1, ..., N) is added to the replay
instructions, effectively causing the entire phase P to be evaluated sequentially.

Figure 3.15 illustrates the principles of the rollback system designed for conflict
recovery in SCale 2.0. The rollback infrastructure is packaged as an external library
as rollback-based error recovery could be applied to other applications than SystemC
simulation.

While the simulation can self-checkpoint by sending a request to the CRIU service,
it cannot self-restore. Hence, for a C/R cycle to complete autonomously, we need two
processes: the driver and the simulation. The simulation is the actual workload that
can encounter errors and require a rollback. The driver is an idle process that only
spawns the simulation and wakes up to serve rollback requests from the simulation.
The simulation and the driver communicate together with named pipes as the link
must survive one of the two processes dying. The CRIU service process (third party
software) listens to checkpoint and restore requests on a UNIX-domain socket.

91

Proposed Solution for LT-TLM Parallel Simulation

0 1000 2000 3000 4000 5000
checkpoint interval (ms)

50

100

150

200

250

300

sim
ul

at
io

n
tim

e

deriche
matmul
blackscholes
swaptions

Figure 3.14 – Influence of checkpoint frequency on overall simulation speed with 32 simulated
cores and 32 workers.

CRIU

Driver

Simulation

spaw
n

ch
ec

kp
oi

nt
re

qu
es

t

checkpoint

×
Error
×er

ro
r

in
fo

wait
end en

d
re

st
or

e
re

qu
es

t

restore error
info

|
Error
Avoided

ch
ec

kp
oi

nt
re

qu
es

t

checkpoint

restored to
this point

Will be
replayed

. . .
. . .
here

Figure 3.15 – Protocol of interaction between CRIU, driver and simulation. In SCale 2.0,
an error always corresponds to a conflict during an evaluation phase.

92

Proposed Solution for LT-TLM Parallel Simulation

When the simulation needs to be restored, it sends a request to the driver together
with some serialized data before aborting. Once the simulation process is done, the
driver sends to CRIU a restore request. Finally, once the simulation is restored, it
retrieves the serialized data that the driver immediately sends back and starts simulating
again. In our case, the serialized data are the replay instructions between the last
checkpoint and the conflicting phase.

Technical Limitations of CRIU

However, while being a fast and powerful C/R tool, CRIU has not been designed
for error recovery using rollback. It presents several limitations that require some
additional engineering on our side to circumvent. The major limitation is that a process
can only be checkpointed and restored with the same OS process identifier. However, if
such an identifier has been recycled for another process between simulation abort and
restore, CRIU will not restore the simulation until the process identifier is freed. In
order for rollback to be usable, we had to run simulations in a process identifier (PID)
namespace [Man].

A PID namespace is a feature offered by Linux-based OS. It allows to spawn a
new process (e.g., a terminal) so that it appears to be the root process (PID 1) of the
system from inside this process tree only. As a result, listing existing processes from
inside a PID namespace only shows the process spawned at the namespace creation
and its children.

A subtlety of PID namespaces is that the root process is not init as it usually is
on a Linux system. Among other things, the init process is responsible for adopting
orphaned processes, that is processes whose parent died. When a process terminates, it
becomes a zombie until its parent waits on it (it is called zombie reaping). When the
parent is either a shell or the init process, zombies are instantly reaped as both shell
and init expect their subprocesses to finish. But in the context of PID namespaces,
orphaned processes — which become children of the root process — never get reaped
if the root process chosen to spawn the namespace is not designed to do it.

Zombies are usually not a big issue as they only occupy an entry in the PID table.
But in our case, the simulation PID must be freed so that it can be reused by CRIU to
restore the simulation. In other words, the simulation must be reaped every time it
asks for a restore. If the driver were the parent of the simulation, it could take care of
that. However, the simulation is not spawned as a child of the driver but rather as a
daemon, that is as a child of PID 1. This is due to the fact that CRIU cannot restore
the parent-child relationship of a process, so it always restores processes as children
of init. As a result, a special root process called dumb-init [Kue] is used at the PID
namespace creation. It mainly takes care of zombie simulations reaping for us so that
CRIU can restore them afterward.

Additional minor limitations are CRIU’s flat refusal to restore processes with handles
to files whose size have changed. For instance, if a file contained 35kB at checkpoint

93

Proposed Solution for LT-TLM Parallel Simulation

time but is 42kB at restore time, CRIU refuses to proceed for safety reasons. This
could be fixed as a patch on CRIU side to ignore such check (thus overwriting the
content written after the last checkpoint) or by truncating all files to their checkpoint
size before sending the restore request. The simplest fix is to flush streams to files only
right before each checkpoint, when the simulation has been fully checked up to this
point and it is guaranteed it will never need to revert to an earlier checkpoint.

Also, CRIU accesses some kernel facilities restricted to root, thus requiring starting
its service manually or to run the whole simulation as root. Lastly, incremental memory
dump is not supported for the first checkpoint after a rollback, requiring a full and
slower dump. As a result, even if memory can be checkpointed and restored at close
to 3GB/s, freeing unnecessary memory before checkpoints can be beneficial to both
restore and non-incremental checkpoint speed. We do so by freeing all memory access
records used as part of the dependencies analysis system. The cost of reallocating
access records buffers every 2 seconds or so is negligible. This limitation could however
also be relatively easily fixed on CRIU side and is currently under discussion on their
side.

3.4 Generalization to Any Shared Resources
As explained in the Section 3.1, we have assumed up to this point that the worker
interactions only come from shared model memory accesses. However, interactions
could happen at many other locations of a SystemC model. For instance, the interrupt
management system of an ISS such a QEMU is a complex set of variables read and
written from both inside and outside the ISS. All these shared resources must be
handled carefully.

We distinguish 2 types of shared resources based on the type of interactions they
cause:

1. with side effects: changing the order of interaction affects the behavior of the
simulation processes. For instance, model memory accesses, interrupt raising, or
timer component accesses often have consequences on the rest of the simulation.

2. without side effects: changing the order of interaction does not affect the behavior
of the processes. For instance, incrementing an atomic access counter on a
component, allocating system memory, or reading a constant shared variable
does not influence the rest of the simulation. However, the value of an atomic
counter must never be read by a SystemC process to perform another action or
this counter will become a shared variable with side effects.

It is up to the user to detect all potential interactions between SystemC processes,
just as when checking interactions between threads in a regular multithreaded program.
A number of these interactions cause data races but end up being without external

94

Proposed Solution for LT-TLM Parallel Simulation

side effects once protected either using atomic operations or mutexes. The rest of the
interactions (i.e., with external side effects) must be protected using our instrumentation
mechanism.

To that extent, the user first must define each shared resource perimeter. Just as
memory bytes are grouped to increase memory access monitoring efficiency, a shared
resource such as the interrupt management system of an ISS can either be considered
as a set of shared resources (each one of its variables) or as a unique resource. Similarly,
a timer module like the one conceptually described in Listing 3 has some internal logic
that is shared between several processes (initiators and timer sc_thread). Making
this timer thread-safe only (e.g., using mutexes) could change the final event delivery
order: two interrupts scheduled at the same date could be triggered in a different
order depending on which one has been registered first. This might influence the rest
of the simulation. Consequently, this makes the timer a resource with external side
effects, thus requiring monitoring accesses to its internal data. The question is again
whether the timer should be considered as a single resource or as a set of resources.
Our experience shows that considering such aggregated resources as a unique resource
is often the safest and fastest choice.

At this point, shared resources are identified and delimited, but we have only
explained how we can protect a full 64-bit memory map. We generalize this approach
by classifying all operations on a resource as reads or writes. The former are operations
that do not modify the state of the accessed resource while the later are the rest. Then,
we define identifiers for all these resources and associate an FSM to each one of them.
The identifiers can be any value that can act as a unique identifier such as contiguous
integers or character strings.

In the context of this work, one of a set of contiguous integers is assigned to each
non-address resource. An FSM is associated to each one of these identifiers using a
pre-allocated vector of FSMs. Finally, the user just needs to insert calls to the provided
generic_instr function that does the same as the mem_instr function but for the
other resources designated as generic resources. In case it is not clear whether some
code, for instance hidden inside an ISS, performs reads or writes, it is a conservative
choice to chose to declare the whole operation as a write.

All the required elements for standard-compliant parallel simulation of time-
decoupled TLM-LT models have been exposed. Chapter 4 will demonstrate that
speedup as high as ×21 can be achieved with the exposed functionalities of SCale
2.0. Yet, Chapter 5 will discuss some extra functionalities brought to answer some
Linux-specific issues raised by experiments conducted in Chapter 4.

95

Proposed Solution for LT-TLM Parallel Simulation

Listing 3 Pseudo implementation of a SystemC timer. Only the important internals
and the interrupt scheduling and raising are shown. Most of SystemC boilerplate
relative to the definition of a module and its processes is omitted.

1 class timer: public sc_module{
2 std::map<cpu*, sc_time> pending_interrupts;
3 sc_event new_pending_interrupt;
4 public:
5 // This method is typically called by an initiator
6 // through a TLM access
7 void schedule_interrupt(cpu* cpu_ptr, sc_time t){
8 pending_interrupts[cpu_ptr] = t;
9 }

10 // This method can be called by both an initiator
11 // or the time SC_THREAD
12 void cancel_interrupt(cpu* cpu_ptr){
13 // sc_max_time() returns the maximum simulated time value.
14 // It is assumed to never be reached.
15 pending_interrupts[cpu_ptr] = sc_max_time();
16 }
17 private:
18 void timer_scthread(){
19 // sc_thread usually never returns
20 while(true){
21 // get_next_pending_interrupt() is supposed to retrieve
22 // the next item in pending_interrupts with respect to
23 // simulated time
24 auto cpu_and_t = get_next_pending_interrupt();
25 cpu* cpu_ptr = cpu_and_t.first;
26 sc_time t = cpu_and_t.second;
27 // If scheduled time is not reached yet
28 if(t > sc_time_stamp){
29 sc_time to_wait = t - sc_time_stamp();
30 // Wait until the next pending interrupt time is reached
31 // or pending_interrupts is updated
32 wait(to_wait, new_pending_interrupt);
33 }
34 // If wait returned because pending_interrupts has been
35 // updated, scheduled time might not be reached,
36 // hence this test
37 if(sc_time_stamp() >= t){
38 cpu_ptr->raise_timer_interrupt();
39 cancel_interrupt(cpu_ptr);
40 }
41 }
42 }
43 };

96

Chapter 4

Evaluation of the Proposed
Simulation Technique

4.1 Experimental Setup and Use Cases . 98
4.1.1 The Host Computer . 98
4.1.2 Simulated Architecture . 99
4.1.3 Simulated Software . 100
4.1.4 Metrics and Measurement Protocol 102

4.2 Functional Validation . 104
4.2.1 Case Study: the Spinlock-Based Barrier 104
4.2.2 Experimental Functional Validation 108

4.3 Performance on Baremetal and Linux-Based Use Cases 109
4.3.1 Baremetal Performance Evaluation 109
4.3.2 Linux Performance Evaluation 113

97

Evaluation of the Proposed Simulation Technique

The previous chapter described the core of the proposed parallel SystemC simulation
technique. This chapter now evaluates the efficiency of this technique on both baremetal
and Linux-based simulated applications. The experimental setup is presented together
with the simulated platform and the benchmarks. A preliminary reflection is also
conducted on the behavior of SCale 2.0 during the simulation of a thread barrier. It
will help understanding how SCale 2.0 efficiently avoids conflicts when simulating a
classic shared-variable-based synchronization like a barrier. The baremetal benchmarks
performance is then presented before the first results on Linux-based benchmarks that
are further detailed in the next chapter.

4.1 Experimental Setup and Use Cases

4.1.1 The Host Computer
Experiments have been conducted on a 36-core bi-Xeon Gold 6154 server running
Ubuntu server 18.04 with kernel version 4.15.1. CPU cores were downclocked at 3.5GHz
maximum boost. The P-state frequency driver recommended for this generation of
Intel processors does not allow the user to set an arbitrary lower limit for the frequency.
As a result, only the maximum frequency has been caped to prevent thermal throttling
and the governor has been set to performance mode to raise the processor frequency as
aggressively as possible.

Two effects must be considered when looking at the performance results. These
two effects are very hard to quantify so they are only listed to give a better context
for experimental results interpretation. First, even with the most aggressive governor,
cores frequency is not maintained at its maximum. In particular, the less heavy-loaded
cores, i.e., those executing the less heavily loaded workers, tend to drop their frequency,
resulting in abnormally long evaluation times when the load suddenly raises. This
effect should not be present on baremetal benchmarks as they are very homogeneous
both over time and among workers. It is likely to have more of an effect in Linux-based
benchmarks which are less homogeneous.

Second, in a dual-socket host, two NUMA nodes are exposed. This can negatively
impact the performance of multi-threaded applications with a lot of data sharing.
In the case of SCale 2.0, data sharing between nodes reflects data sharing in the
simulated application behavior for one part: if the simulated application shares a lot
of data, SCale 2.0 will too, via the shared resources monitoring infrastructure, too.
More communication between NUMA nodes is required upon dependencies analysis to
transfer the access records of workers that run on a different node than the dependencies
analysis threads. Dependencies analysis frequency heavily depends on the simulated
application, though.

The biggest downside of having several NUMA nodes is likely to be the latency
that SCale 2.0 is subject to during the kernel phases. Indeed, all workers bring their
process queues, event lists and other worker-specific data into their node’s memory

98

Evaluation of the Proposed Simulation Technique

hierarchy during the evaluation phase. The kernel thread then needs to bring back
all that data into its own node consequently to successive L3 cache-misses which are
notoriously time consuming when not hidden by prefetching. The simulation kernel’s
pseudo-random memory access patterns prevent most automatic hardware prefetching.
Manual kernel phase optimization was out of the scope of this thesis, despite having
a potentially strong impact on performance. Insufficient kernel phase performance is
partially hidden by longer quantum durations as explained in Section 4.3.1.

4.1.2 Simulated Architecture

The reference VP used for the evaluation of our contributions is a RISC-V SMP platform
illustrated Figure 4.1. Each core is modeled by an instance of QEMU encapsulated in a
SystemC wrapper implemented after [CBM+19]. More details are given in Section 5.3.2.
The platform is composed of 1 to 32 simulated cores for baremetal benchmarks assigned
to 1 to 32 workers. Three dependencies analysis OS threads were used in all cases,
saturating the last remaining cores when using 32 workers (i.e., 1 SystemC kernel
thread, 32 workers and 3 dependencies analysis threads). For Linux benchmarks, only
the 32-core version of the platform is used with a variable number of workers. Simulated
cores are connected through a bus to a RAM, a UART, a real time clock (RTC) and
an interrupt controller.

A general mindset adopted during the model implementation was to provide maxi-
mum simulation speed while using the Accellera kernel before accelerating it with SCale
2.0. Functional validity with maximum speed was the main goal while timing accuracy
was a secondary objective. As a result, when adding SCale 2.0 instrumentation to
such a fast SystemC model, any small overhead would immediately result in mediocre
speedups.

To that extent, DMI is used to access the main model memory. In our case, SystemC
simulation of memory accesses only adds to the internal QEMU logic for memory access
emulation: a couple of virtual functions calls, bounds checking to assert that the
current access targets the RAM, a 4-case switch on the memory access size, and a copy
of the value to its destination before returning to QEMU. This is pretty much the
shortest memory access simulation that can be done in SystemC. Any extra logic like,
for instance, a b_transport transaction that reaches cache models and/or a complex
interconnect would severely increase memory access simulation time. In particular, the
call to mem_instr that is inserted right before the actual access to the model memory
is required to have a very small overhead.

Also, relatively big quantums are used as explained in Section 4.3.1 so that most of
the simulation time is actual guest code simulation instead of SCale 2.0 kernel fiddling
with events and processes. This choice has been made as SCale 2.0 event and process
management is mostly inherited from SCale 1.0 with a lot of room left for optimization.
In order to focus on the evaluation phase performance, which is the target of this thesis,
kernel phase time has been reduced by using a larger quantum of about 10,000 ns, that

99

Evaluation of the Proposed Simulation Technique

CPU0 CPU1 CPU2 CPU3

RAMUART RTC ITC

BUS

TLM2.0 socket Custom interface method call

Figure 4.1 – Architecture of the simulated platform, here with 4 cores

is 10,000 instructions per simulated CPU in our configuration.

4.1.3 Simulated Software
We have selected five benchmarks to evaluate the performance of the proposed approach.
Three of them are implemented both in baremetal, that is to run without the support
and complexity of a guest OS, and on Linux:

1. Matmul: 10 iterations of a parallel multiplication of two square matrices of size
512. Each thread computes a horizontal block of the result as illustrated in
Figure 3.4. Threads only synchronize between each of the 10 multiplications.

2. Deriche [Der87]: A 10-pass Deriche filtering is applied in place to a 4-megapixel
image. This benchmark is composed of horizontal and vertical filtering, making
the whole image shared by all threads as illustrated previously in Figure 3.5.
Threads synchronize between each pass.

3. MobileNet [HZC+17]: 3 iterations of a 31-layer classification convolutional neural
network analyzing a triple channel 160 × 160 image. The parallelism potential
varies depending on the computed layer and much more synchronizations occur
than in the first two benchmarks as a barrier is placed between each layer.

All these three applications were ported to Linux using posix’s threads. Synchronization
between simulated threads is achieved in both Linux and baremetal versions using the
same spinlock-based barrier. This barrier is used as a case study in Section 4.2.1. No
extra system-provided features have been used in the Linux version of the baremetal
benchmarks. In other words, except for threads creation, binaries are approximately the

100

Evaluation of the Proposed Simulation Technique

same for baremetal and Linux versions of these three applications. Despite baremetal
and Linux binaries being very similar, virtual memory management and file system
management will significantly alter the actual behavior of the program.

It must be noted that the Linux variant of Mobilenet have exhibited errors under
replay for unknown reasons, yet. This might be due to a subtle bug in SCale 2.0
implementation like a data race or to a badly instrumented shared resource deep inside
QEMU. In any case, issues can show up much later after a bug occurs and debugging
becomes an extremely difficult task, especially when the issue happens relatively rarely
and only with a complex simulated software like the Linux kernel. In fact, debugging
the core of SCale 2.0 has mostly consisted in careful reading of the about 3,000 lines
of code that compose it, trying to guess which part of it could eventually cause the
observed behavior.

The fact that all other benchmarks have shown perfect stability under all conditions
while MobileNet under Linux is very unstable raises questions that does not have
an answer yet. However, this does not question the theory under SCale 2.0. An
efficient debug infrastructure dedicated to complex execution flow produced by parallel
execution could help in tracking the implementation/usage error underneath. It must
be highlighted that more than 650 simulations of hundreds of thousands of evaluation
phases involving up to hundreds of rollbacks and generating up to hundreds of kilobytes
of replay instructions have been conducted without a single failure when using the
latest version of SCale 2.0.

Two other benchmarks from the PARSEC 3.0 suite [BKS+08] were only used on
Linux as they make extensive use of OS-supported functionalities that were not available
in our baremetal environment (e.g., dynamic memory allocation or file system accesses):

1. Blackscholes: An Intel Recognition, Mining and Synthesis (RMS) benchmark
computing options pricing using the Black-Scholes partial differential equation.

2. Swaptions: Another Intel RMS benchmark computing options pricing but using
the Heath-Jarrow-Morton framework.

Despite looking similar from the description standpoint, these two applications have
drastically different behaviors when simulated using SCale 2.0. Blackscholes exhibits few
conflicts and good parallelism during most of the benchmark duration while Swaptions
causes numerous conflicts but mostly during the first part of the benchmark where
parallelism is not optimal. The simlarge dataset was used in both case to increase the
simulation time and reduce variations in measurements.

101

Evaluation of the Proposed Simulation Technique

4.1.4 Metrics and Measurement Protocol
MIPS and time

Two performance metrics are used depending on whether baremetal or Linux-based
benchmarks are studied. Baremetal benchmark performances are reported using MIPS
as a widely adopted metric. Baremetal applications also exhibit the highest simulation
speed in terms of MIPS so they can be used as a reference for SCale 2.0 peak performance
when using the QEMU ISS.

However, Linux benchmarks performance cannot be measured in a meaningful way
using MIPS due to the Wait For Interrupt (WFI) instruction that happens to never be
used in our baremetal benchmarks. When executed, this instruction causes a processor
to idle until it gets interrupted, which is a mandatory power-saving feature exploited
by most if not all modern OS. Natively, WFI is implemented in QEMU as a NOP1,
making idle CPU spin inside the idle loop of Linux instead of truly idling.

While decently fast when using QEMU in standalone mode, that is without it being
integrated into a SystemC model, spinning in the idle routine generates an incredible
amount of useless memory accesses that severely hamper performances, whatever the
SystemC kernel in use is. Indeed, when calling WFI, it is guaranteed that the processor
will not be interrupted before it yields as enforced by process atomicity, making polling
pointless. As a result, in our platform, the WFI instruction is instrumented on QEMU’s
side. Instead of only doing a NOP, control is handed over to the SystemC model to
handle the WFI as in Algorithm 10. That way, the process of the processor that is
executing a WFI can yield instantly for the rest of the evaluation phase (i.e., for the
quantum duration). When an interrupt is raised by a peripheral in the SystemC model,
the process of the targeted processor returns to QEMU at the beginning of the next
evaluation phase. Overall, when a processor executes a WFI instruction and until it
gets interrupted, each evaluation phase is simulated in a short constant time.

Algorithm 10 WFI simulation
1: procedure waitForInterrupt
2: wasInterrupted ← true � wasInterrupted can be modified by other processes
3: while not wasInterrupted do
4: remainingTime ← quantumKeeper.getRemainingTime()
5: wait(remainingTime)
6: end while
7: end procedure

Now comes the question of the MIPS relevance in such a context. Strictly speaking,
1A NOP instruction (for No Operation) causes a processor to do nothing during one cycle. This is

an approximate but satisfying definition in this context. Of course, the program counter is incremented
by a NOP, hardware counters might be modified, and superscalar or pipelined processors might still
do something else while executing the NOP but this is of little interest in the context of QEMU, which
is far from a cycle-accurate processor simulator.

102

Evaluation of the Proposed Simulation Technique

a WFI is a single instruction so until the next interrupt, a single simulated instruction
should be accounted for, which artificially lowers the MIPS when idle time increases.
Even worse, the longer a processor idles, the lower the sim_time/sim_duration ratio
(lower is better) but the lower the MIPS (higher is better). This demonstrates that
MIPS is not a relevant metric in the presence of the WFI instruction.

However, if the quantum duration is, say, 1,000 ns — which corresponds to 1,000
cycles on a 1 GHz processor —, a thousand cycles can be simulated in the time required
to loop once inside Algorithm 10, which is basically none. More generally, if the
quantum size tends toward infinity, the number of simulated cycles per second tends
toward infinity as well, which makes it a bad metric, too.

In the end, we chose to use only wall clock time to compare all results on Linux
benchmarks and report speedups as a relative performance metric.

Rollback and Timeline

Timing various actions like, checkpoint, restore or sequential evaluation time during a
simulation seems straightforward: it suffices to time each action using regular timing
functions provided by the C++ language or by the system and accumulate the resulting
durations in counters. But let us focus on the actions that took place since the last
checkpoint. In case of rollback, if no care is taken, the durations accounted for these
actions would vanish as everything gets reset to the state saved in the checkpointed
image, including the time counters.

In particular, restore time would always be zero as from the terminated simulation
standpoint, there have been no errors, hence no restores. More generally, everything
that took place between a checkpoint and the point where it gets restored is definitely
lost if not saved before restore. When profiling a simulation to measure the time taken
for various actions, omitting those that took place during these rolled-back periods is
not a reasonable approximation.

Hence, a dedicated timeline mechanism has been developed. First, time points
returned by std::chrono::steady_clock::now()2 are recorded instead of durations.
For instance, when starting a checkpoint, a timestamped checkpoint_start event is
recorded. When it is done, a timestamped checkpoint_end event is recorded. The
duration of the checkpoint then corresponds to the difference between these two
timepoints. Then, the timeline is split into two sections: the committed and the
pending sections. New events are always recorded in the pending section which gets
committed right after each checkpoint.

When a rollback is initiated, the committed section of the timeline is anterior to
the checkpoint being restored so it will remain after rollback. Though, the pending

2std::chrono::steady_clock is the only clock in the C++ standard that is guaranteed never
to go back in time. On our host system, it is the same as std::chrono::high_resolution_clock,
which is the most accurate clock with a resolution of 10 ns.

103

Evaluation of the Proposed Simulation Technique

section needs to be serialized to be sent together with the simulation replay data. After
rollback is done, the pending timeline is rebuilt using the serialized information and
the simulation proceeds. After the next checkpoint — which happens right after the
phase that caused a conflict in the first place —, the pending section is committed. In
the end, the final timeline contains the timestamps for all events, even those that got
rolled back. To determine the time spent on each action, post-processing is applied to
a JSON dump of the timeline to compute the various time intervals required.

4.2 Functional Validation
In this section, the functional validity of the approach is studied. The goal is not to
perform a formal proof of the technique correctness. The fact that processes can run
in parallel as long as they are independent, then get evaluated sequentially and finally
dependencies are analyzed to check that they are equivalent to a sequential order is a
runtime verification that processes were evaluated atomically.

Whether this principle is correctly implemented in SCale 2.0, that is without
bugs, is a different question. Using a formal method to verify SCale 2.0 correctness
might very well be even more complex than SCale 2.0 itself so this approach was not
considered. Instead, we performed an experimental validation, which is to consider as
a proof-of-concept more than as a formal proof3. This is detailed in Section 4.2.2.

Before diving into the benchmark used for SCale 2.0 functional validation, let us first
analyze the simulation flow of a spinlock-based barrier under SCale 2.0 to understanD
how process atomicity violation gets avoided efficiently in such cases.

4.2.1 Case Study: the Spinlock-Based Barrier
Atomic Operations Simulation

Before diving into the barrier case study, a discussion about atomic operations simulation
must take place. So far, we have considered that all operations on shared resources are
either reads or writes. As a reminder, a read is a non-modifying access to a resource,
anything else being a write.

What about a hybrid operation such as a fetch-add which reads and then writes to
an address? According to the definition of read and write given above, a fetch-add is a
modifying access so it is a write from SCale 2.0 perspective.

However, many ISS do not support parallel execution natively as they assume
that they are the only instance accessing the simulated system memory. As a result,

3As explained in Section 4.1.3, it is proven that the current implementation of SCale 2.0 or of the
simulated platform instrumentation presents a small non identified flaw as MobileNet on Linux cannot
be replayed properly in certain configurations. It mostly demonstrates that the proof-of-concept
implementation of the presented techniques presents a small bug that needs to be fixed but is very
unlikely to question the whole approach which works properly in the other tested situations.

104

Evaluation of the Proposed Simulation Technique

they often simulate complex atomic operations such as fetch-add using three distinct
operations (and sometimes a lot more): a load, an arithmetic operation, and a store.
This breaks the atomicity of the simulated operation. This is the case of QEMU and it
is the user’s responsibility to restore atomicity in such a situation. At that point, even
in classic sequential SystemC, atomic simulation of such an atomic instruction is not
guaranteed as a process could yield between the load and the store that delimit the
fetch-add operation.

In order to ensure correct atomic instructions simulation, it is the responsibility
of the user to prevent a process from yielding during the simulation of an atomic
instruction. To that extent, every time QEMU begins to simulate an atomic operation,
a flag is set on SystemC side until the atomic operation completes. The process that
simulates an atomic instruction is then prevented from yielding as long as this flag is
set.

An optimization can then be performed with SCale 2.0 to reduce slightly the risk of
conflict related to atomic operations. It consists in instrumenting all accesses to shared
resources involved in an atomic operation as writes. It ensures that if the first access
that simulate the atomic operations is a read like in the fetch-add case, it will still
be considered as a write by SCale 2.0. This provides exclusive access to the targeted
address for the first process accessing it. The next processes get unscheduled before
their first access related to the atomic operation on the shared variable.

On the opposite, if the atomic operation was instrumented as a read followed by a
write instead of two writes, several processes might get read access before one of them
tries to perform the write. In the case of an atomic read-modify-write operation, no
two processes should be allowed to read the initial value of the variable as it violates
the atomicity of the operation. Thus, it would lead to a conflict necessitating a rollback.
Instrumenting all atomic operations as writes thus reduces the risk of atomicity violation
of the atomic operations and thus of the process simulating them altogether.

The Barrier Case

In this section, the spinlock-based barrier case is analyzed. Analyzing the interaction
of SCale 2.0 with the spinlock programming pattern gives some interesting insights
about how SCale 2.0 behaves. It helps in understanding why most programs that only
access shared data protected with mutex-like constructs cannot cause conflicts.

Let us first analyze the barrier code itself. It is given as C++ code in Listing 4.
Variables sense and count are shared amongst all callers of the barrier function as
they are static. Each thread T entering the function first saves the current value of
sense. T then atomically increments count and gets the resulting value to compare it
against n. If the test fails, other threads must be waited-upon and T falls into a loop
that waits for the value of sense to be toggled. If the test succeeds, then T is the last
thread, and it can release the other threads. To that extent, the last thread toggles
sense after resetting count to prepare for the next use of the barrier. T will then pass

105

Evaluation of the Proposed Simulation Technique

Listing 4 C++ implementation of the spinlock-based barrier used in the baremetal
benchmarks. It takes the number of participants as arguments, that is the number of
threads that must synchronize.

1 void barrier(size_t n){
2 static atomic_bool sense{false};
3 static atomic_size_t count{0};
4

5 bool current_sense = sense;
6 if(n == ++count){
7 count = 0;
8 sense = !current_sense;
9 }

10 while(current_sense == sense)
11 ; //LOOP
12 }

the loop after a single test and leave the barrier function.

It must be noted that all operations on atomic variables are atomic and sequentially
consistent by default. It means that no reordering between operations can happen
around the atomic operations. Also, all threads see operations in the same order
relatively to atomic operations. In other words, this code exhibits no unexpected
behavior and does exactly what is written.4

Let us now decompose in Table 4.1 the sequence of load (L) and store (S) operations
performed on the shared variables sense and count by each thread. We assume that
the FSMs related to the barrier variables are reset. On step 1, all threads read sense
before sense gets written to on step 4 by the last thread reaching step 2 (last increment
of count). Thus, sense ends up in the read_shared state and all threads are granted
read access on step 1 without a single dependency introduced.

On line 2, we assume that the atomic increment of count is simulated with a
separate load and store. If the load is instrumented as a read, then several processes
might be granted access for the load before one of them attempts to do the store. It
will obviously result in a conflict as no two processes can read the same value when
they are all performing fetch-add operations only. However, if this load is instrumented
as a write as recommended previously in the case of atomic operations, then the first
worker that executes line 2 (called W0) sets count’s FSM state to owned and the
following processes are all unscheduled before doing their load. W0 will then jump to

4An optimized version of this algorithm would specify more relaxed memory ordering constraints
for each atomic operation. Here, all non-ynchronizing operations can be relaxed, that is without
memory ordering constraints. Only the sense toggling and the sense reading in the loop condition
must use respectively the release and acquire semantics.

106

Evaluation of the Proposed Simulation Technique

Step Code line Variable Access
1 5 sense L

2 6 count L
S

(3) 7 count S
(4) 8 sense S
5+ 10 sense L

Table 4.1 – Sequence of accesses performed on the shared variables of the barrier function:
sense and count. The line column points to the corresponding line of code in Listing 4. L
stands for load and S for store. The 2nd step corresponds to the increment and can either be
seen as a single atomic operation or as two operations depending on the ISS. The 3rd and 4th

steps are only performed by the thread that unlocks the barrier. The 5th step can repeat an
unlimited number of times.

line 5 and loop there until the end of its evaluation phase.

Then follows the sequential phase where all unscheduled workers are resumed at
the beginning of line 2. All unscheduled workers except the last to be resumed (which
we call Wl) will execute line 2 and then jump to line 5 where they will finish their
evaluation phase on the spinlock, one after another. Line 2 introduces a dependency
between each worker and the next to execute it but line 5 does not introduce any
dependencies (sense is still only read).

Up to this point, no worker can depend on the last evaluated worker Wl as Wl

has only read sense, an address that has only been read so far. Also, whatever Wl

does after it is resumed, it cannot make the other workers depend on it as it is the
last evaluated worker. So, the last worker Wl will then execute line 2, pass the test
and finally execute lines 3, 4 and 5 before leaving the barrier function. Eventually, no
conflicts can form until the end of the evaluation phase.

At the beginning of the next evaluation phase, all workers blocked on line 5 will see
that sense has been toggled so they will be released after a single test. No dependencies
will be introduced as sense is only read by these workers. The final dependency chain
created by the barrier function eventually strictly reflects the order in which workers
have incremented count.

Finally, as long as memory accesses that are part of an atomic operation are all
instrumented as writes, no conflicts can be introduced by the barrier function. Thus, if
no data is shared by the code between the barriers (except read-only data), no conflicts
can be introduced either by the barriers themselves nor by the rest of the code and the
whole benchmark is guaranteed to be conflict-free. This is what we have observed in
the baremetal benchmarks as synchronization is exclusively performed with this barrier
function.

107

Evaluation of the Proposed Simulation Technique

h1=hash(h1)

Core 1

. . . hn=hash(hn)

Core N

h1 . . . hn

Wait timer
interrupt

Core 0

interrupt interrupt

⊕ ⊕⊕
result

Figure 4.2 – Principle of the non-deterministic benchmark used to assert SCale 2.0 ability
to reproduce highly non-deterministic parallel simulations. Looping arrows symbolize loops
while straight arrows are active upon interrupt or value change. All values are combined using
a XOR operation (⊕) to yield a single result value that is the output of the program.

4.2.2 Experimental Functional Validation

In addition to performance evaluations, functional validity and robustness of simulation
replay have been experimentally asserted using a synthetic baremetal benchmark. The
benchmark diagram is presented Figure 4.2. It consists in a master thread (Core 0) that
sends software interrupts to a set of slave threads upon reception of a timer interrupt
scheduled at regular intervals. Between interrupts, slave threads hash a local variable
hi repeatability in an infinite loop. When these threads receive an interrupt, they all
pause and the value of hi for each thread is collected by the master thread and hashed
into a total variable. This cycle is repeated up to 1024 times varying the timer
interrupt interval. The output of the program is the final value of total which shows
pseudo random variations from an execution to the next when not using deterministic
replay as interrupts are raised and handled at non-deterministic times during each
threads’ evaluation. To the contrary, the value of total at the end of the replay runs
is always the same as the one at the end of the corresponding recording run.

We also checked on Blackscholes and Swaptions as well as on other complex
Linux applications from the PARSEC suite (e.g., ferret, fluidanimate, freqmine) that
replay with monitoring enabled exhibits no conflict nor deadlocks caused by atomicity
violations for instance. Considering some of these applications can cause hundreds of
rollbacks and generate replay traces with tens of thousands of scheduling constraints,
we consider this as an additional experimental proof of validity.

108

Evaluation of the Proposed Simulation Technique

4.3 Performance on Baremetal and Linux-Based
Use Cases

As the baremetal and Linux-based applications behave differently with SCale 2.0, they
are analyzed in separate sections, respectively Sections 4.3.1 and 4.3.2.

4.3.1 Baremetal Performance Evaluation
Baremetal applications present the advantage of being very predictable and homoge-
neous. They offer the highest simulation speed in most simulators, including SCale 2.0.
We use them as semi-synthetic use cases to characterize the impact of our approach
on simulation speed (mainly the speedup from parallelization and instrumentation
overhead) and as a comparison against SCale 1.0. The baremetal benchmarks presented
here never cause conflicts for the reason explained in Section 4.2.1 as they implement
a fork-join model based on the same barrier as in the case study. For that reason,
rollback impact cannot be observed here. Yet, it is an opportunity to test SCale 2.0
instrumentation and conflict checking without interfering with rollback. SCale 2.0 with
all its features enabled is tested in Section 4.3.2.

Figure 4.3 illustrates the impact of quantum size on simulation speed using 32
workers. As expected, increasing the quantum size results in a significant speedup
reaching up to 2300 MIPS with Matmul. However, when the quantum gets too large,
speed decreases for Deriche and MobileNet and stagnates for Matmul. This is due to
the much higher number of synchronizations in a single quantum. Relying on shared
variables, each synchronization leads to process sequentializations and FSMs reset.
When the quantum increases, the amount of time spent waiting for the barrier in
sequential phases because of process unscheduling increases to a point where it is no
longer compensated by the speedup in the parallel phase. For the rest of the baremetal
evaluations, we use a quantum of 30,000 ns as a performance compromise between the
three benchmarks.

To evaluate the influence of memory accesses instrumentation and processes se-
quentialization, four versions of SCale are compared in Figure 4.4 using 32 workers:
3 variants of SCale 2.0 and SCale 1.0. The fastest variant of SCale 2.0 (1) enables
free parallel evaluation. In this variant, instrumentation and process unscheduling are
disabled but a few extra protections for atomic memory accesses are added to preserve
functional validity. The second fastest variant of SCale 2.0 (2) only disables process
unscheduling but instrumentation is preserved. The same atomic memory accesses
extra protection as for (1) is used. The last variant (3) is the actual SCale 2.0 with all
features enabled. SCale 1.0 is the fourth variant (4).

The overhead of instrumentation and sequentialization compared to fully parallel
simulation ((3) Vs. (1)) ranges from 34 to 48%. A part of this speed reduction is due
to sequentialization, the rest being caused by shared resources access monitoring. It
should be noted that the overhead of instrumentation in Matmul is more than twice as

109

Evaluation of the Proposed Simulation Technique

102 103 104 105

quantum duration [ns]

102

103

M
IP

S
2311

660

963

matmul
deriche
mobileNet

Figure 4.3 – Simulation speed analysis depending on the simulation quantum size on
baremetal benchmarks with 32 simulated cores and 32 workers. The highest point of each
curve is annotated.

big as in the two other benchmarks. This can be explained by the huge base speed of
this benchmark. Indeed, Matmul is twice as fast as the other benchmarks.

For its part, sequentialization overhead is hardly compressible as it mostly results
from strict co-routine semantics enforcement. Also, the increase in speed compared
to [VS16] is significant ranging from ×60 to ×110. It is mostly due to the much faster
instrumentation technique together with the asynchronous conflict checking. However,
such speed difference implies that SCale 1.0 would lag far behind the reference Accellera
kernel in these benchmarks. This is due to the especially demanding configuration of
this experiment: memory intensive benchmarks running on 32 cores which saturate
SCale 1.0 instrumentation system.

As a reminder, SCale 1.0 memory access instrumentation procedure requires to
take 2 to 3 mutexes per memory access. Also, dependencies analysis was performed
after every evaluation phase. Such approach brought satisfying result on the model it
was tested against when under development. This model was composed of multiple
processors with non-coherent caches. As a result, only the traffic leaving the last
level cache needed to be instrumented, reducing by about 2 orders of magnitude the
number of instrumentations. On the contrary, SCale 1.0 has been tested here without
adding the required synchronization that preserve ordering between instrumentation
and accesses. Any naive implementation of such synchronization by the user would have
further reduced performances by enforcing strong contention on this synchronization

110

Evaluation of the Proposed Simulation Technique

matmul deriche mobileNet
0

500

1000

1500

2000

2500

3000

3500
M

IP
S

-3
7%

-4
8%

-1
00

%

-1
7%

-3
4%

-9
9%

-1
7%

-4
1%

-9
9%

1 Free par. exec. (non std SC)
2 Free par. exec + instr. (non std SC)
3 SCale 2.0
4 SCale 1.0

Figure 4.4 – Impact of instrumentation and processes unscheduling compared to free parallel
execution when simulating baremetal applications on 32 cores with 32 workers. Version (1)
consists in a parallel simulation without enforcing processes atomicity. It includes the required
synchronization for peripheral accesses or atomic instructions simulation for instance. Version
(2) shows the overhead of instrumentation without process sequentialization. The same extra
synchronization as version (1) is used. Version (3) implements all the contributions of
this paper and is standard-compliant. Yet, rollback was not solicitated in these baremetal
benchmarks. Version (4) is the same platform model but linked with version 1.0 of SCale
from [VS16] without the ensuring correct memory order recording as explained in Section 3.2.3.

mechanism.

Figure 4.5 illustrates how our simulation kernel scales with the number of workers
used to simulate a 32-core platform. It compares SCale 2.0 using N workers against
SCale 2.0 using 1 worker. It can be noted that using SCale 2.0 with a single worker
is pointless in real world applications but is done here for scaling measurement. If
sequential simulation is desired, linking with the Accellera kernel whose SCale 2.0 is a
drop-in replacement for is a much better approach. Indeed, in order not to slow down
SCale 2.0 in the multi-worker case, the special case with a single worker is not handled
differently than the others: instrumentation is still performed, even if no conflict can
occur.

Figure 4.5 shows that for homogeneous benchmarks, SCale 2.0 provides significant
speedups: almost linear up to 16 workers and reaching between ×17 and ×21 using 32
workers. It must be noted that linear speedup is theoretically not achievable according
to Amdahl’s law: the kernel phase is sequential and is not negligible starting from 8

111

Evaluation of the Proposed Simulation Technique

1 2 4 8 16 32
workers

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Sp
ee

du
p

Vs
.

sin
gl

e-
wo

rk
er

matmul
deriche
mobileNet

Figure 4.5 – SCale 2.0 performance scaling with the number of workers of the simulation
speed of baremetal benchmark on 32 simulated cores.

workers. It is demonstrated by the homogeneous worker’s host processors idle time
observed during the experiments that ranges between 10% and 40% depending on the
benchmark, which corresponds to the time they wait for the kernel phase to finish.
Kernel phase acceleration is one of the next steps in SCale 2.0 but is not part of this
work.

Figure 4.6 shows the impact of simulated platform complexity (number of simulated
cores) on speed when always using one worker per simulated core. The goal here is
to demonstrate that the simulation speed does not decrease proportionally with the
platform complexity like it is the case with a sequential kernel but rather remains
stable. As explained above, using the Accellera kernel is faster to simulate a single core
platform by about 30% in Deriche and MobileNet and nearly 100% in Matmul due to
a simpler scheduler and the absence of instrumentation. Yet the speedup is already
greater than ×1 on a dual-core platform simulated in parallel and increases the more
cores are to be simulated. Speedup against Accellera kernel reaches up to ×15 on a
32-core simulated platform running Matmul.

112

Evaluation of the Proposed Simulation Technique

1 2 4 8 16 32
Simulated cores

0

20

40

60

80

100

120

140
M

IP
S/

co
re

matmul
deriche
mobileNet

parallel SC
accellera SC

Figure 4.6 – Baremetal simulation speed per simulated core with parallel (1 worker per
simulated core) and sequential simulation (Accellera kernel).

4.3.2 Linux Performance Evaluation
In this section, SCale 2.0 is directly compared against the reference Accellera kernel. For
the reasons exposed in Section 4.1.4, MIPS are no longer a suitable unit of measurement
and the raw time spent to complete simulations is used instead.

Figure 4.7 shows SCale 2.0 speedup against the Accellera kernel in both recording
and replay simulation run on several benchmarks. The time spent between boot start
and end of power off is measured to produce these speedup values. A quick look at the
graph reveals deceiving results: speedups cap at ×3.2 during the recording run and
is sometimes lower than ×1, going down to ×0.5. During the replay run, results are
better with speedup of at least ×2 but never higher that ×8.5.

The bad performance of Linux-based benchmark parallel simulation has several
identified causes either internal or external to SCale 2.0. They are investigated in detail
in the next chapter but the difference between recording and replay run on Figure 4.7
already indicates that conflicts and associated rollbacks are in cause. Solutions to
restore good performances in this context are also presented.

113

Evaluation of the Proposed Simulation Technique

2 4 8 16 32
nb workers

1

2

4

8

sp
ee

du
p

deriche-record
deriche-replay
matmul-record
matmul-replay
mobilenet-record
mobilenet-replay
blackscholes-record
blackscholes-replay
swaptions-record
swaptions-replay

Figure 4.7 – Speedup of SCale 2.0 compared to the Accellera reference SystemC kernel
depending on the number of workers in recording or replay mode on Linux-based simulated
application. Results in this graph include the Linux boot and power off. (Due to instabilities
using 2 and 4 workers with the MobileNet benchmark, some values are absent from the graph
for the MobileNet benchmark.)

114

Chapter 5

Full Software Stack Simulation
Challenges and Solutions

5.1 Introduction . 116
5.2 Investigating the Performance of Linux-Based Benchmark Simulation . 116
5.3 Fast Sequential Mode . 119

5.3.1 Region of Interest . 119
5.3.2 Variable Accuracy . 120
5.3.3 Dynamic Scheduling Policy . 122

5.4 CPU-Mode-Based Unscheduling . 123
5.4.1 Conflicts Study . 123
5.4.2 Executing OS Kernel Code Sequentially 128

5.5 Final SCale 2.0 Performance Evaluation 130

115

Full Software Stack Simulation Challenges and Solutions

5.1 Introduction
In this chapter, Linux-based benchmarks simulation will be referred to as Linux simula-
tion for the sake of brevity. We showed that the base principles of SCale 2.0 allowed
getting functional correctness on Linux-based benchmarks but were not sufficient to
achieve good performance. In this chapter, the cause of these lower performances of
Linux simulation will be investigated in the first part of this chapter. First, an overview
of the potential causes of slowdown is given to set up the context of the analysis. It
is based on a profiling of the simulations to identify accurately the root causes of
slowdown that need to be tackled. It will also help set some realistic expectations on
the performance level that can be reached in such situation.

Unsurprisingly, the main cause of slowdown is the relatively important number of
evaluation phases resulting in a conflict that arise during Linux simulation leading to
as many rollbacks. However, this is not the only culprit as Linux simulation exhibits
less parallelism potential than baremetal benchmarks simulation because of much
more process interactions caused by memory management and file system as well as
intrinsically sequential procedures like boot. While the intrinsic lack of parallelism
of the simulation cannot be fixed by attempting to add more parallelism, it can be
circumvented by adopting alternative acceleration techniques when possible. Linux
boot and power off are particularly badly suited to parallel simulation at the TLM
level. Thus, SCale 2.0 can fall back to sequential mode in these sections to enable more
aggressive simulation techniques only applicable to sequential simulation. It mainly
relies on variable-accuracy simulation developed in Section 5.3.2.

Yet, the sections of the simulation that exhibit good levels of parallelism still cause
many conflicts. The origin of these conflicts is investigated in Section 5.4.1. It appears
to be Linux code itself that makes parallel simulation very hard. Countermeasures are
then elaborated. They consist in running sequentially the small portions of Linux code
to prevent reliably conflicts coming from them. The resulting performances are finally
measured in Section 5.5.

5.2 Investigating the Performance of Linux-Based
Benchmark Simulation

Poor performances can result from many factors both on SCale 2.0 side as well as on the
model and the simulated software side. For instance, bad parallelism in the simulated
platform causes unbalanced load between workers. This is not the case here as each
worker evaluates the same number of SystemC processes, each simulating symmetrical
processor cores. This is verified by the good scaling observed in baremetal benchmarks
that would not be possible without a good balance among workers.

Bad parallelism in the simulated software can also cause bad load balancing among
workers. For instance, simulating an idle core is almost instantaneous in our model

116

Full Software Stack Simulation Challenges and Solutions

thanks to the WFI instruction simulation technique described in Section 4.1.4. It
results in workers simulating more idle cores waiting for those simulating busier cores.
This is the case during the Linux boot and power off which are mostly sequential
procedures. It also occurs during some parts of each benchmark executed under Linux:
setup, result aggregation, etc. are all procedures that are often single threaded. The
actual parallel section of the benchmark can thus account for a small part of the whole
simulation. For instance, the parallel section of the Blackscholes benchmark accounts
for less than 50% of the total simulation duration when simulated on the Accellera
kernel, the rest of the simulation being mostly single threaded. According to Amdahl’s
law, the maximum speedup achievable through parallelization is less than 2 in that
case.

In general, when simulating a full software stack that includes numerous sequential
sections, the maximum achievable speedup cannot be proportional to the number of
workers, but the upper limit is very hard to determine accurately. To eliminate this
unknown from the causes of sub-linear speedup, all subsequent measures ignore the
boot, the power off and the benchmark loading procedure from the measure to focus on
the parallel workload only. These ignored parts of the simulation are also accelerated
using variable accuracy and scheduling described in Section 5.3.

In addition, OS provided functionalities such as virtual memory or file system
management can introduce massive amounts of synchronizations compared to the
benchmark workload itself. Synchronization is mandatory as the role of the OS is to
provide threads access to resources they are likely to be competing for (e.g., memory
or file system accesses). The resulting numerous SystemC process interdependencies
lead to a lot of sequential process evaluations that can be a major cause of sub-linear
speedup in some portions of the simulation. Still, sequential process evaluation accounts
for less than 5% of the total simulation time in all benchmarks as shown in Figure 5.1,
making it a secondary cause of reduced speedup.

It is important to note that the sequential simulation time reported in Figure 5.1 is
the time spent in the sequential phases. It does not refer to the time spent simulating
sequential parts of the benchmark. For instance, the Linux boot despite being very
sequential is not reported as sequential evaluation time except for when sequential
phases occur.

Frequent checkpointing cost is also to be considered in the slowdown causes. While
baremetal benchmarks require little to no checkpointing as conflicts are rare if at
all present, Linux benchmarks require much more of them. As a rough estimate,
checkpointing frequency is best at around one checkpoint every 2 seconds as illustrated
by Figure 3.14. While incremental checkpointing drastically reduces its cost, each
checkpoint causes the simulation to pause (including all its threads). Then, context
switches to CRIU for memory dump and then switches back to the simulation. Many
small potential slow-down causes add up, like colder caches after checkpoints, possible
worker migration on another processor or CPU frequency drop due to the short idle

117

Full Software Stack Simulation Challenges and Solutions

deriche matmul mobilenet blackscholes swaptions
0

20

40

60

80

100

%
of

to
ta

ls
im

ul
at

io
n

tim
e

checkpoints
rollbacks

resimulation
sequential

parallel+kernel

Figure 5.1 – Analysis of the time spent in parallel and sequential simulation, in checkpointing
and rollback procedures as well as the overhead caused by re-simulation after rollback, when
using 8 workers (the trend is the same with all numbers of workers). It should be noted
that non-parallel simulated code can still be simulated during the parallel phase. Thus, the
sequential time only reflects the amount of time spent in sequential evaluation phases, not the
nature of the simulated code.

period. In our case, checkpointing alone accounts for up to 25% of the total simulation
time according to Figure 5.1.

However, the cost of the sources of slowdown are dominated by the cost of conflicts
as shown in Figure 5.1. Indeed, the following time-consuming steps must be taken to
recover from each conflict:

1. Wait for all ongoing conflict checks to complete to know when the first conflict
is1.

2. Terminate the erroneous simulation process.

3. Restore the simulation in the last valid recorded state.
1It must be remembered that dependencies analysis is conducted asynchronously. As a result,

results from later evaluation phase can be available before those of earlier phases. To give proper
replay instructions, the first conflicting phase in phase number order must be identified. A small
optimization consists in not waiting for conflict checks of phases that are latter than the earliest
known conflicting phase. This has not been implemented as conflict check results collection does not
account for a significant enough part of rollback.

118

Full Software Stack Simulation Challenges and Solutions

4. Redo the simulation up to the last detected conflicting phase (called resimulation).

5. Perform a costly full simulation checkpoint as incremental checkpoints cannot be
done right after a restore due to limitations in CRIU.

Rollback and resimulation alone account for close to 40% of the total simulation time.
Adding the cost of the non-incremental checkpoint required after each rollback, conflicts
account for closer to 50% of the total simulation time. As a result, reducing the number
of conflicts to a minimum is essential to preserve overall simulation speed. This issue
is tackled in Section 5.4.

5.3 Fast Sequential Mode
As explained in the previous section, some parts of the simulation expose a bad level
of parallelism. This can be caused by the simulated software itself. In that case, little
can be done on SCale 2.0 side. Instead, an alternative strategy has been adopted to
efficiently handle parts of the simulation like Linux boot, power off or benchmark setup.
It relies on two components: variable accuracy detailed in Section 5.3.2 and deactivable
parallel scheduling described in Section 5.3.3. But first, the notion of Region of Interest
(ROI) is defined in Section 5.3.1.

5.3.1 Region of Interest
Some simulated code sections are of little interest to the simulator user who usually
wants to analyze the behavior of its platform in the application under development,
not the OS boot and power off procedures.

We define the ROI as the part of the code where the user needs more accurate
information about the simulated platform behavior such as timing or cache behavior.
On the opposite, we assume that the user only needs the platform behavior to be
functionally correct outside of the ROI. It generally requires that the instruction set and
peripheral accesses are consistently simulated to guarantee progress and valid model
state. Yet, timing information or cache hierarchy simulation is of little interests outside
of the ROI. The simulation of these elements thus is optional. However, SystemC
semantics must be observed both inside and outside of the ROI to ensure overall
simulation repeatability. The two next sections develop how this is achieved.

Yet, to adapt the simulator behavior to the section of simulated code, the ROI
must be identified. The only solution is for the simulated application to signal to the
platform by one way or another the ROI entry and exit points. It is up to the user
to find out the most convenient way to achieve that. One solution could be to have a
simulation controller peripheral with a memory mapped register in which the simulated
software can write various codes that correspond to certain events. However, writing
into a device requires a (simple) driver to be developed and is not a trivial task.

119

Full Software Stack Simulation Challenges and Solutions

We have chosen a simpler approach. Instead of using a dedicated peripheral, we
have exploited the existing UART peripheral that happens to be very well natively
supported by Linux. We have defined a list of strings associated to the ROI start and
end: “ROI start” and “ROI end”. These strings are then printed at the beginning and
end of the ROI respectively using any of the tty printing techniques available (e.g.,
printf, cout or echo). Then, the UART component has been wrapped to snoop the
traffic sent to it. Whenever one of the registered patterns is detected, a callback is
called to enable or disable the suitable features described below.

As is, this technique is perfectly suited to dynamic configuration of sequential
simulations. However, it is not compatible with SCale 2.0. Indeed, if a string printed
on the UART triggers a callback in the middle of the parallel phase to change some
arbitrary parameters, it is likely that this will violate some other processes’ atomicity.
The first solution would then consist in monitoring accesses to these simulation settings
that can be accessed by SystemC processes. However, if this setting is read a lot while
being written only a few times during the simulation, requiring instrumentation before
every read is not optimal. An example of such setting is the one used for variable
accuracy simulation and detailed in Section 5.3.2. Instead, we have introduced the
concept of critical process to better handle such situation.

A critical process simply is a process that is scheduled in isolation before the parallel
evaluation phase starts. In the case of the UART driven settings change, delegating
callback calls to a critical process prevents process atomicity violation in case these
callbacks interact with other processes. Any small process can be defined as critical as
an alternative to instrumenting all its accesses to shared resources. In addition, if such
process is the only one to write a given resource (e.g., a simulation setting), making
it critical also removes the need for instrumenting all the reads performed by other
processes on this setting. This is a major advantage in the case of variable accuracy in
Section 5.3.2 whose setting value is read before every single simulated memory access.
However, because the variable accuracy setting is modified by a critical process only,
all regular processes can read it without extra precautions during the parallel phase.

5.3.2 Variable Accuracy
Accurate and Fast mode

To maximize simulation speed outside of the ROI, parallel execution is not always
the fastest option if timing accuracy is optional. As explained previously, if the simu-
lated software parallelism is not sufficient, parallel simulation cannot bring significant
speedups. However, QEMU on its own can reach very high simulation speeds at the
instruction set simulation level thanks to dynamic binary translation. Though, as
detailed in [CBM+19], integrating QEMU into a timed SystemC/TLM model requires
memory accesses (i.e., load, stores, and fetches) to be instrumented to hand over to
the SystemC model when required. This instrumentation, while being a simple pair of
function calls followed by a DMI memory access in our case significantly slows down
QEMU but still maintains top level performances in the SystemC/TLM models’ class.

120

Full Software Stack Simulation Challenges and Solutions

To take advantage outside of the ROI of the huge raw speed of QEMU while preserv-
ing modeling accuracy inside, we have setup dynamic accuracy also briefly described
in [CBM+19]. It allows to switch during the simulation between what we call accurate
mode and fast mode. The accurate mode enables memory access instrumentation
in QEMU so that they are simulated by the SystemC model. This allows for more
accurate platform behavior simulation but is about an order of magnitude slower than
the fast mode.

The fast mode restricts memory access instrumentation to peripheral accesses that
can only be simulated by the SystemC model and instruction counting for rough
timing estimation. The memory accesses that cannot be simulated directly by QEMU
correspond to the accesses that cannot use the DMI interface provided by TLM 2.0.
The other accesses can be executed directly inside QEMU provided that QEMU has
access to the DMI pointer of the targeted component.

Optional TLM Memory Access simulation

QEMU executes target code using Dynamic Binary Translation (DBT). When given a
target binary to execute, QEMU divides it into Basic Block (BB). QEMU’s definition
of BB is a bit off of the classic one but it basically consists in a block of consecutive
instructions of maximum size with a single branching instruction at the end. Every time
the execution flow enters a BB that has not been translated to host binary instructions,
the BB is translated and connected to the already translated BB before it gets executed.
That way, the behavior of all target instructions is emulated using equivalent fast host
instructions and the translation is done only once for each instruction.

Memory access instructions are special in that they have an effect outside of the
simulated core, that is outside of QEMU. Natively, QEMU emulates load and store
instructions using equivalent host instructions. However, to integrate QEMU to a
SystemC model that will simulate memory accesses, all memory accesses in QEMU
translated code are instrumented with a function call that optionally delegates the
memory access simulation to the SystemC model through a TLM transaction or a DMI
access.

The variable accuracy mechanism consists in switching at runtime between using the
translated host memory access instruction or the function call to the SystemC model.
As a result, QEMU needs to decide for each access whether it can directly execute
the host memory access or if it must delegate it to the SystemC model. This decision
is to be taken on a per access basis because peripheral accesses cannot be simulated
using a host memory access instruction (accessing peripherals control registers usually
triggers extra processes) while memory accesses can. To that extent, the user sets the
desired behavior on a per-address-range basis. For instance, it can set the RAM to be
accessed using host instructions and the UART to only be accessed through SystemC
transactions. A flag called call_systemc is then attached to each address range set by
the user. Every time QEMU is about to perform a memory access, it now first checks

121

Full Software Stack Simulation Challenges and Solutions

the flag associated to the accessed address and proceeds accordingly.

It must be noted that each component can cancel fast (DMI) accesses (and
thus host instruction-based access) whenever it wants using the standard function
invalidate_direct_mem_ptr(). Thus, the call_systemc value for a given address
is false when and only when both the user (through the variable accuracy setting)
and the targeted component (through DMI pointer validity management) allow direct
access to the corresponding memory. This way, even if the user sets a peripheral to
be accessible with direct host memory accesses, the peripheral will prevent it through
DMI pointer invalidation to preserve model functional correctness.

Finally, when the user decides to change the accuracy setting (e.g., to switch from
fast to accurate mode on the RAM), the corresponding call_systemc flag value is
set to true on the SystemC model side and QEMU will immediately see the change
when it will check it again. Such accuracy setting change can be triggered by any event
programmed by the user. In the model presented in this manuscript, the UART is
used to react to specific printed strings that correspond to the benchmark ROI bounds.
As explained in Section 5.3.1, the accuracy settings are only changed using a critical
process in order not to incur process atomicity violations with SCale 2.0.

5.3.3 Dynamic Scheduling Policy

One major drawback of the previously introduced fast memory access simulation mode
is that it cannot use SCale 2.0 memory accesses instrumentation, that is mem_instr
cannot be called before fast memory accesses. This is because that SCale 2.0 Application
Programming Interface (API) is not directly reachable from inside QEMU. Also, leaving
QEMU generated code always has a very high cost relatively to QEMU speed. Thus, it
has been decided that when using the fast memory accesses simulation mode, parallel
evaluation would not be allowed as process dependencies analysis cannot be conducted.

To that extent, SCale 2.0 scheduler can now skip the parallel phase to evaluate
all workers exclusively during the sequential phase. Whether parallel or sequential
scheduling policy is adopted is decided based on a SCale 2.0 flag called force_seq_eval
which is set by the user. Just like the dynamic accuracy setting, force_seq_eval value
can be changed in response to strings printed on the UART for instance. In the present
work, sequential evaluation is chosen outside of the ROI to preserve process atomicity
despite the fast memory access simulation mode. Parallel evaluation is enabled inside
the ROI, where the accurate memory accesses simulation mode is enabled.

As a result, Linux boot and power off speed with SCale 2.0 is now much closer to that
of the Accellera kernel. The small difference is mainly due to processes being evaluated
by workers which all have their own context, and which frequently communicate with
the kernel thread. Also, the scheduling logic is more complex in SCale 2.0 than in
the Accellera kernel. Though, this difference can be further reduced using of a larger
quantum outside of the ROI. Variable quantum size has not been implemented as

122

Full Software Stack Simulation Challenges and Solutions

efforts have been focused on the parallel evaluation of the ROI.

Overall, Linux boot for a 32-core platform requires under 15 seconds and power
off, which is strongly affected by quantum size as it includes a long idle time, takes a
comparable amount of time. The rest of this chapter now focuses on the ROI which is
the only significantly parallel section of the simulated software.

5.4 CPU-Mode-Based Unscheduling
In this section, the focus is on the benchmark ROI simulation. Only this part of the
simulation is done in parallel while the rest relies on fast but less accurate sequential
simulation. Also, as a reminder, only the 32-core version of the simulated platform
is used with Linux benchmarks to reduce the number of variables. The first part of
this section studies the conflicts repartition in all five Linux-based benchmarks. It will
give important hints about the main conflict cause in Linux-based benchmarks. The
second part presents the solution adopted to avoid these conflicts and drop the conflict
frequency to an acceptable level.

5.4.1 Conflicts Study
Experimental Conflict Analysis

We have studied the conflicts temporal distribution in each benchmark ROI using 2, 8
and 32 workers in Figure 5.2 with rollback disabled as it is useless in this context. On
these curves, the total number of conflicts that occurred during the ROI is reported
as a function of the wall clock time. For instance, on the Deriche benchmark with 8
workers, the number of conflicts rapidly reaches around 75 before stabilizing for a long
time. A few more conflicts arise at the end of the ROI.

It is hard to draw universal conclusions based on these benchmarks, yet trends take
shape. First, the more workers the more conflicts. It is especially visible in Deriche
and Blackscholes while Swaptions shows that 32 workers cause twice as much conflicts
as 2 and 8 which are almost identical. MobileNet, for its part, shows around 10 times
more conflicts with 8 and 32 workers compared to 2 workers. More workers usually
leads to more conflicts because the more workers the higher the probability of an illegal
interleavings occuring during their parallel evaluation.

Yet, less workers can cause more conflicts in some situations like with Matmul.
Almost 4 times more conflicts occur with 2 workers than with 8 and 32 workers, which
is unexpected. The exact cause is yet to be identified but could lie in false positives.
For instance, let us assume a 4-core platform simulated on 2 workers W0 and W1. Cores
C0 and C1 are simulated by W0 and cores C2 and C3 are simulated by W1. Let us
now assume that at the end of the evaluation phase, the following dependencies exist:
C0 → C3 and C2 → C1. At the process level, no circular dependencies exist, yet at the
worker level, the first dependency is W0 → W1 and the second is W1 → W0, which is a

123

Full Software Stack Simulation Challenges and Solutions

start end
0

5

10

15
Matmul

start end
0

50

100

Deriche

start end
0

100

200

300

MobileNet

start end
0

10

20

30

Blackscholes

start end
0

25

50

75

Swaptions

2 workers
8 workers
32 workers

Figure 5.2 – Temporal repartition of conflicts in ROI when simulating a 32-core platform
(cumulative curves).

conflict. If each process were evaluated on a different worker, the conflict would likely
not have existed. However, dependencies are analyzed at the worker level for historical
reasons and switching to a process-level mechanism would involve heavy modifications
to SCale 2.0 which belong to the future works. Still, less workers can, in particular
situations, cause more conflicts than more workers.

The other trend shown by Figure 5.2 is that conflicts are often located at the
beginning and end of the ROI. This is especially true for Deriche, Swaptions and
Matmul. This holds also for Blackscholes to a lesser extent, yet the curves are steeper
at the extremities. MobileNet is the perfect counter example with a very homogeneous
conflict repartition during the whole ROI. Let us forget about MobileNet in the
reasoning below. Final results will show that the conclusions also apply to it despite it
behaving differently at first sight.

Based on the observation that more conflicts occur at the beginning and end of the
ROI, let us figure out what is different from the middle of the ROI. The quick answer
is the amount of kernel code executed at the extremities of the ROI. To explain that,
an introduction about binary loading and execution in Linux and most OS is required.
This is a big picture that obviously does not describes accurately all the subtleties
of a modern OS. A more detailed introduction to ELF files execution can be found
in [Dry15].

124

Full Software Stack Simulation Challenges and Solutions

When a binary gets executed, a new process is spawn. For this new process, a clear
virtual address space is created, and the binary is mapped to it2. However, the binary
content (code, static data, etc.) is not loaded into physical memory in order not to
waste memory with instructions and data that might not even get used. Instead, every
time a page of memory that does not reside in main memory is hit, a page fault occurs
and the operating system figures where the expected data lives. If it is in a file like the
executed binary, then the relevant part of this file is copied into physical memory and
the process resumes from the page fault without even knowing that the accessed data
was not in memory when the access was initiated.

A good experiment to demonstrate the lazy binary loading phenomenon is to
create a C program with a default initialized static array of about a gigabyte3. Then,
progressively accessing the array at random indices shows the physical memory usage
of the process raising gently by a few kilobytes at a time4.

Let us go back to the benchmarks with conflicts showing up mostly at the beginning
and end of the ROI. The three benchmarks derived from the baremetal ones have all
their input data and working memory buffer preallocated in the form of static arrays
thus located inside the binary. Blackscholes has its input data located in an external
file and Swaptions generates it procedurally. Both Blackscholes and Swaptions rely
on dynamically allocated buffers for loaded inputs and working buffers. In any case,
the first access to any page of memory causes a page fault which results in a complex
handling procedure by the OS. Once memory buffers are warmed up, though, page faults
become much rarer and OS code is seldom executed, if at all. Regarding the end of the
ROI, the only common point between all benchmarks is the thread join operated by
the main thread. We did not investigate the thread joining mechanism, but it definitely
includes some system-level resource releasing and cross thread synchronization.

From this brief overview of the binary execution mechanism and especially lazy
memory management, the biggest suspect in these conflicts is the OS code, like page
fault handlers and threading machinery. To validate these assumptions, four versions
of the Matmul, Deriche and MobileNet benchmarks have been edited:

2In the case of an ELF file [Dry15] for instance, the file does not map directly to memory. Some
sections like the text or the data section do, yet the BSS section where all zero-initialized static
variables live is only described by its size and the loader deduces the corresponding memory space
image.

3Runtime initialization would cause the entire array to be mapped to physical memory and defy
the purpose of the experiment.

4Another interesting experiment consists in comparing zero-initialization of the static array (default
behavior if no explicit initialization) versus initialization with non-null data only in the very first cell
(e.g., static char t[HUGE_VALUE] = {1};). The zero-initialized static array is stored implicitely
in the BSS section where only the size of the section in stored, resulting in a tiny compiled binary
file whatever the array size. However, the non-zero-initialized static array, even if it contains a single
non-zero byte, goes into the data section where it is explicitly initialized, resulting in a binary file
slightly bigger than the array size. Yet, executing the binary results in roughly the same tiny memory
usage independently from the array size.

125

Full Software Stack Simulation Challenges and Solutions

Table 5.1 – Number of conflicts depending on benchmark variant and number of workers

Benchmark Variant Conflicts
(nb. workers)
2 8 32

Matmul

original 15 4 4
no join 2 5 3
warmup 14 5 3
warmup no join 11 0 0

Deriche

original 50 99 130
no join 34 107 132
warmup 2 5 5
warmup no join 4 0 1

MobileNet

original 91 418 518
no join 103 411 461
warmup 16 28 13
warmup no join 6 5 5

1. native: No modifications.

2. no join: The end of the ROI is triggered before the final thread join.

3. warmup: All data buffers used during the benchmark are accessed once before
the ROI starts5.

4. warmup no join: Both 2. and 3.

The number of conflicts in each one of these variations is shown Table 5.1. Setting aside
Matmul with 2 workers which behaves abnormally compared to the other benchmarks
and configurations, each variant in the list is an improvement over the previous one,
with the variants 3 and 4 being significantly better than the others. Indeed, the warmup
aims at loading into physical memory all buffers outside of the ROI before they get
used inside. It results in the actual code executed during the ROI being much closer
to the baremetal code where all data is statically stored into memory even before
simulation starts. It must be noted that the warmup is an efficient countermeasure
even in the case of the MobileNet benchmark that did not exhibit the same conflict
repartition as the other benchmarks in Figure 5.2.

Conjecture on the Conflict Cause

While it has been demonstrated in Section 4.2.1 that a spinlock-based barrier cannot
cause conflicts alone and that it can be extended to most spinlock-based synchronization
patterns, other programming techniques enable data-race free multi-threaded execution.

5This version is not achievable on the more complex Blackscholes and Swaptions benchmarks,
hence their exclusion of this experiment.

126

Full Software Stack Simulation Challenges and Solutions

Listing 5 foo() and bar() both define two integer variables initialized to zero which
they both increment concurrently twice. foo() and bar() use respectively the lock-
based function incr_lock() and the lock-free function incr_lockfree().

1 #include <atomic>
2 #include <thread>
3 // Lock-based atomic increment of two variables (each increment is atomic)
4 void incr_lock(int& x, int& y){
5 // A boolean flag that can be tested an set atomically
6 static std::atomic_flag flag = ATOMIC_FLAG_INIT;
7 while(!flag.test_and_set())
8 ; // Wait
9 ++x;

10 // Release one waiting thread
11 flag.clear();
12 while(!flag.test_and_set())
13 ;
14 ++y;
15 flag.clear();
16 }
17 void foo(){
18 int x{0}, y{0};
19 // Increment both variables in a different order in two threads
20 std::thread(incr_lock, std::ref(x), std::ref(y));
21 std::thread(incr_lock, std::ref(y), std::ref(x));
22 }
23 ///
24 // Lock-free atomic increment
25 void incr_lockfree(std::atomic_int& x, std::atomic_int& y){
26 x.fetch_add(1, std::memory_order_relaxed);
27 y.fetch_add(1, std::memory_order_relaxed);
28 }
29 void bar(){
30 std::atomic_int x{0}, y{0};
31 std::thread(incr_lockfree, std::ref(x), std::ref(y));
32 std::thread(incr_lockfree, std::ref(y), std::ref(x));
33 }

Lock-free programming that is based on atomic memory operations is one of them and
probably the most famous one. Such programming technique encourages disordered
accesses to shared variable as opposed to lock-based patterns that makes threads queue
at the entry of critical sections and enter one at a time. These two approaches can be
compared on Listing 5.

In the case of the incr_lock lock-based function under SCale 2.0, the atomic flag
causes all but the first process entering the function to get unscheduled on the atomic

127

Full Software Stack Simulation Challenges and Solutions

flag before accessing any other shared variable. As a result, dependencies will form in
the order in which processes get to successfully set the atomic flag, avoiding a circular
dependency from forming. On the contrary, in the case of the incr_lockfree function,
the first thread might increment x while the second is incrementing y. When they
will try to increment the second variable, they will both get unscheduled by SCale 2.0
but the circular dependency will form anyway during the sequential phase. Note that
before the second increment of both thread, there is no reason to think that a conflict
might happen from SCale 2.0 perspective: two independent variables x and y have
been accessed by two different threads, which is not a reason for preventing parallel
evaluation of any of them. As a matter of fact, the Linux kernel makes heavy use of
lock-free code like the Read-Copy-Update (RCU) pattern [MBW12].

One major advantage of lock-free programming against regular lock-based pro-
gramming lies in performance. Lock manipulations are expensive operations which
sometimes are not necessary. The typical scenario where locks are notoriously inefficient
occurs in the presence of “often read, rarely written” data. This is precisely the first
use case of the RCU where it noticeably increases performance and scalability. While
it is still a conjecture, this kind of programming techniques are likely to be responsible
of the numerous observed conflicts. Confirming this conjecture is part of the future
works.

The conclusions of this study is that the kernel code is responsible for the vast
majority of conflicts. The next section proposes a simple solution to that problem that
will further demonstrate these conclusions.

5.4.2 Executing OS Kernel Code Sequentially
To reduce the number of conflicts, we have chosen to run all the OS kernel code during
the sequential phase. Doing so requires two features:

1. Detecting kernel code execution.

2. Unscheduling the process executing kernel code during the sequential phase.

Even if it does not hold true for every single line of code that compose an OS
kernel, kernel code is mostly composed of what is called privileged code. At least virtual
memory management and file system operations are handled by privileged code. Most
ISA’s including RISC-V define several privilege levels [WLP14] that are necessary to
implementing safety and security features in OS. In RISC-V, for instance, 4 levels of
privilege are defined, from the lowest to the highest: user, supervisor, hypervisor, and
machine. Each level of privilege increases the set of actions that the CPU can do. The
level of privilege of a CPU is called its mode.

By default, a program runs in the user privilege level as it offers the least freedom
and, therefore, the best amount of protection against programming mistakes or malicious

128

Full Software Stack Simulation Challenges and Solutions

software. When a user level program needs to perform an action that requires a higher
level of privilege, it asks the OS to do it instead, either explicitly through a system call
or implicitly by triggering an exception6. Either possibility leads to the privilege level
of the processor to be raised to execute specific handlers that can serve the request
after careful permission control. The most famous example of unauthorized action
showing protection mechanisms at work is probably the “segmentation fault”. The page
fault handler decides that the program is trying to perform an illegal memory access
and sends a SIGSEGV signal to the offending process that results in its immediate
death unless the signal is handled.

As a result, it is assumed that kernel code is executed with a non-user level of
privilege (usually supervisor) and that only user code can run during the parallel phase.
In QEMU for RISC-V, the privilege level is represented by a simple enum which is only
modified in the set_privilege() function. A single callback in set_privilege() has
been added to QEMU to catch CPU mode changes and notify the SystemC model of
those changes.

Finally, a force_sequential(bool) function has been added to SCale 2.0. This
function allows a worker to self unschedule and be executed sequentially when call-
ing force_sequential(true). When this worker calls force_sequential(false),
it will run in the sequential phase during the next evaluation phase. The func-
tion force_sequential(bool) uses the exact same unscheduling mechanisms as the
mem_instr function. Thus, to run all privileged code (e.g., most system code) sequen-
tially,

force_sequential(new_mode != user_mode)

is called upon every CPU mode change. An example of evaluation phase that includes
privileged code is represented in Figure 5.3.

Finally, if the user code makes use of lockless programming for instance, SCale 2.0
will struggle to prevent conflicts from happening

6Kernel loadable modules (i.e., drivers) also give the ability to run privileged code outside of the
kernel to support new hardware. Communication with modules uses special files located in the /dev
directory on all major Linux distributions.

129

Full Software Stack Simulation Challenges and Solutions

User Wait Kernel UserW0

User Wait Kernel UserW1

Unscheduled before
kernel code

Parallel phase Sequential phase

Figure 5.3 – Two workers that get unscheduled at the moment they start executing kernel
(privileged) code. They resume during the sequential phase. Conflicts caused by the kernel code
are all avoided that way. It must be noted that the relative size of the user and kernel sections
on the figure is not representative of the five tested benchmarks: the user code accounts for
the vast majority of the benchmark code in practice.

5.5 Final SCale 2.0 Performance Evaluation
In this last section, the overall performance gains offered by SCale 2.0 against the
Accellera kernel are exposed. The comparison focuses on the ROI as it is where
speedups are to be expected. The rest of the code being mostly sequential and of
little interest in the user perspective (boot, power off and benchmark setup), it is fast
forwarded thanks to the variable accuracy and dynamic scheduling features. The speed
of both SCale and Accellera is comparable in these sections when using a 10,000 ns
quantum.

The number of conflicts when executing the system code sequentially as well as
the speedup in the ROI compared to the Accellera kernel are shown on Table 5.2
and Figure 5.4. It can be observed that the number of conflicts is drastically reduced
to between 0 and 3 for the whole simulation (this number varies slightly from one
recording run to the other). It leads to a speedup greater than 1 in all benchmarks
using 2 to 32 workers. Overall, depending on the benchmark, the recording run speedup
ranges from ×9 to ×13 and the replay run speedup ranges from ×11.5 to ×24.

Specifically, Swaptions, Blackscholes and Matmul present very similar speedup
profiles during the recording run with almost ×6 using 8 workers but then diminishing

Table 5.2 – Number of conflicts during the ROI using force_sequential() with benchmarks
Matmul, Deriche, Blackscholes and Swaptions7, enabling 2, 4, 8, 16, and 32 workers

Nb. workers 2 4 8 16 32
Deriche 2 1 0 0 0
Matmul 1 1 1 1 1
Blackscholes 2 5 0 0 3
Swaptions 0 0 2 2 3

130

Full Software Stack Simulation Challenges and Solutions

2 4 8 16 32
nb workers

1
2

4

8

16

sp
ee

du
p

Deriche-record
Deriche-replay
Matmul-record
Matmul-replay
Blackscholes-record
Blackscholes-replay
Swaptions-record
Swaptions-replay

Figure 5.4 – Speedup Vs. OSCI kernel during the ROI using force_sequential() with
benchmarks Matmul, Deriche, Blackscholes and Swaptions, enabling 2, 4, 8, 16, and 32
workers

returns appear. Going from 8 to 16 workers raises the speedup close to ×8 and going
from 16 to 32 workers only to ×9 on these three benchmarks. Several factors can explain
that, including longer checkpointing times with more workers, increased number of
conflicts, worse socket locality (18 cores per socket) or non-ideal benchmark parallelism.
To explain these results, Figure 5.5 presents profiling results of the recording runs
reported in Figure 5.4.

Focusing on the recording run, several results can be explained by Figure 5.5. First,
the amount of time spent in parallel evaluation and kernel phases has greatly improved
compared to Figure 5.1, proving the great efficiency of sequential OS kernel code
simulation. Yet questions remain like, for instance, the bad speedup of Matmul when
using 4 workers is the result of a surprisingly high amount of sequential evaluation. The
cause of this high sequential simulation time in this configuration remains unknown,
though. On the opposite, the good scaling results on Deriche are the consequence of
the absence of conflicts using 8 workers and more.

For Matmul (excluding the 4-worker configuration), Blackscholes and Swaptions, it
appears that the total time spent on sequential evaluation, checkpoints, rollback and
resimulation does not vary much. However, the time spent in the parallel phase and in
the kernel does not shrink proportionally to the number of workers, especially between
16 and 32 workers. The cause of the bad speedup between these two configurations is to

131

Full Software Stack Simulation Challenges and Solutions

2 2 2 22 2 2 22 2 2 22 2 2 22 2 2 24 4 4 44 4 4 44 4 4 44 4 4 44 4 4 48 8 8 88 8 8 88 8 8 88 8 8 88 8 8 816 16 16 1616 16 16 1616 16 16 1616 16 16 1616 16 16 1632 32 32 3232 32 32 3232 32 32 3232 32 32 3232 32 32 32
Number of workers

0

20

40

60

80

100

Re
la

tiv
e

tim
e

checkpoints
rollbacks

resimulation
sequential

parallel + kernel

deriche matmul blackscholes swaptions

Figure 5.5 – Profiling of the recording run of the ROI simulation when executing OS kernel
code during the sequential phase. All times are displayed using the 2 workers configuration as
the 100 base time.

be found behind this constatation. However, a more detailed profiling would be required
to separate the parallel evaluation time from the kernel time. This would require a
different tool than the timeline used to generate these figures, though. The outcome
would then either exhibit long kernel phases reducing the amount of parallelism or long
parallel phases revealing inefficient parallelism. The first is a known issue that will be
tackled in future works while the second would require even more investigations to find
the cause of this inefficient parallelism.

Though, when including the replay runs in the analysis, two profiles show up:
Blackscholes and Deriche that both benefit from going from 16 to 32 workers and
Swaptions and Matmul that do not. The first profile corresponds precisely to the
benchmarks that demonstrate little reduction in the parallel+kernel time going from 16
to 32 workers in the recording run while the seconds show a clear reduction. Because
the replay run involves no shared resource accesses monitoring, no worker unscheduling
and no dependencies analysis, these mechanisms that could slow down either the
evaluation or the kernel phase are exonerated. As a result, a bad scaling in performance
during replay can only be a consequence of insufficient parallelism between processes.
If caused by too much replay constraints causing frequent sequential evaluations, then
the amount of sequential evaluation during the recording run would be significant,
which is not the case. The only option that remains is insufficient parallelism in the
simulated software. Still, this is counterintuitive especially in the case of Matmul that

132

Full Software Stack Simulation Challenges and Solutions

is embarrassingly parallel so this conclusion would deserve a confirmation.

In any case, the proposed technique augmented with sequential OS kernel code
simulation (and variable accuracy for less parallel simulated code sections) has shown
very good results on demanding scenarios like manycore platform simulation running
real-world applications under Linux. The very high level of abstraction of the simulated
model and the great native speeds it exhibits make efficient parallelization even more
challenging. Achieving such speedups thus is a very satisfying result and the few
observations made at the end of this section sets up interesting case studies to further
improve SCale 2.0 and better understand very high speed parallel SystemC simulation.

133

Conclusion

Summary

Simulation speed has increased by several orders of magnitude thanks to the transition
from RTL to TLM and the introduction of DMI and temporal decoupling. However,
besides the advent of multi-threaded host architectures, raw simulation speed has been
stagnating for close to a decade as none of the proposed parallelization solutions was
compatible with the aforementioned acceleration techniques.

In this thesis, a new parallel SystemC kernel named SCale 2.0 that tackles this very
challenge has been developed. It enables standard-compliant parallel simulation of any
SystemC model and its main differentiating features focus on LT-TLM models, the
fastest class of models, where it brings an additional order of magnitude in simulation
speed. Specifically, temporal decoupling that induces long running SystemC processes
and the DMI protocol are supported, including for full stack Linux-based software
simulation.

SCale 2.0 shares its fundamental architecture with SCale 1.0. In particular, parallel
simulation is achieved by distributing SystemC processes among workers, each worker
running its processes sequentially in a different OS thread. Using SCale 2.0 only
requires from the user to add a few lines of instrumentation to existing SystemC models
to register all accesses to shared resources of the model. Based on this information,
SCale 2.0 can unschedule workers to avoid violating processes atomicity. Because of the
sheer number parallel accesses to possibly shared resources performed by the workers,
SCale 1.0 monitoring mechanism was overwhelmed, leading to poor performances.
Thus, the monitoring strategy of SCale 2.0 has been completely reworked compared
to SCale 1.0 and heavily optimized to propose the smallest overhead possible while
scaling up to high numbers of workers to take advantage of the high core count of
modern hosts.

A fundamental new property of SCale 2.0 is the zero dependencies guarantee that
ensures that no two workers can interact during the parallel phase. This property
enables several vital optimizations like relaxed ordering requirements for access recording
and instantaneous dependencies analysis after most evaluation phases. The zero
dependencies guarantee is enforced by a shared resources access policy based on an
FSM instance attached to every single shared resource of the model like addresses of the

135

Full Software Stack Simulation Challenges and Solutions

simulated memory. Heavily optimized implementation, storage and reset mechanisms
for the FSM have also been introduced, with each one of these components being
essential to the final achieved performances.

However, evaluation conflicts, that is process atomicity violations can still occur.
SCale 2.0 thus includes a process-level rollback mechanism based on CRIU to recover
from such errors. Relying on process-level rollback is not the fastest available option
but it enables rollback for arbitrary models without any modification from the user.

This setup enables standard-compliant parallel SystemC simulation of arbitrary
models but suffers from too many rollbacks in more complex applications and especially
full-software stack simulation including an OS like Linux. It has been observed that
Linux kernel code was responsible for the vast majority of conflicts, so it has been
decided to prevent parallel simulation of privileged code. By simply monitoring the
privilege level of the simulated CPU to evaluate them sequentially when needed,
the number of conflicts has been reduced by 2 orders of magnitude in Linux-based
benchmarks, restoring good speedups in all tested applications.

Finally, some simulated applications present little inherent parallelism, which trans-
lates into unbalanced sc_thread complexity leading to poor speedups in SCale 2.0.
In case the user is not interested in simulating accurately some parts of the software like
the boot procedure, SCale 2.0 provides the possibility to switch to sequential evaluation
in conjunction with variable simulation accuracy to fast forward through these parts.

Experimental Results

SCale 2.0 has been evaluated on a 36-core dual socket host. On baremetal benchmarks,
speedups reach ×15 against the Accellera kernel with 32 simulated CPU on 32 workers
and greater than ×1 speedups starting from 2 simulated CPU in all benchmarks.
Equally important is the good scaling exhibited when raising the number of workers
for a given model with speedups between ×17 and ×21 with 32 workers compared to
using a single worker.

In details, shared resources accesses monitoring overhead has been measured using
32 workers on baremetal applications at 17% on Deriche and MobileNet and 37% percent
on Matmul. This is a reasonable overhead when considering the instrumentation-free
parallel simulation speed reaching 3,200 MIPS on Matmul, 950 MIPS on Deriche, and
1,700 MIPS on MobileNet, constituting upper bounds to the maximum achievable speed.
When including worker unscheduling, the overhead ranges between 34% and 48% for
simulation speeds ranging from 800 to 2,000 MIPS. Perhaps the most interesting result
to put SCale 2.0 performance in perspective is the comparison with SCale 1.0. While
SCale 1.0 was a strong performer when experimented on a previous relatively slow
model with much less memory traffic, SCale 2.0 runs 60 to 110 times faster on our
demanding SMP RISC-V model based on QEMU and DMI.

136

Full Software Stack Simulation Challenges and Solutions

Finally, on Linux-based benchmarks, SCale 2.0 has first shown very mitigated
results with speedup using 32 workers caped at ×3 and going as low as ×0.5 during the
recording run. During the replay run, speedups were better but there was still room for
improvement: from ×2 to ×8.5 using 32 workers. This was due to the boot and power
off being poorly parallelizable and to the Linux kernel code causing many conflicts in
general. These two issues have been mitigated by focusing parallelization efforts on
the parallel parts of the benchmarks — the only that can exhibit a good speedup —
and simulating Linux kernel code sequentially. As a result, speedups between ×9 and
×13 were achieved during the recording run and between ×12 and ×24 during the
replay run, an unprecedented result in the state of the art especially when simulating
Linux-based software.

Future Works
Now that it has been identified that Linux kernel code is responsible for many conflicts,
it would be interesting to investigate exactly which parts of this code are causing
these conflicts to mitigate the cause in a more refined way. Two approaches have
been considered: memory accesses pattern analysis and Linux source code analysis.
We have experimented the former method that revealed complex conflicting access
patterns that require more advanced data processing to deliver exploitable results. In
particular, many conflicts involve more than two workers (often all workers) and more
than one cycle (often nested and interleaved cycles) in the dependency graph. Also,
tens of shared resources can be involved in conflicts, making the identification of specific
memory access patterns very hard. This is even harder as the observed conflicting
addresses are hardware addresses that cannot be easily associated to software addresses
and thus to simulated program variables.

In addition, the influence of quantum size on conflicts needs to be investigated
in further details. While a shorter quantum seems to reduce the risk of conflict in
each evaluation phase, it also increases the number of evaluation phases. First-hand
experience has shown no evident correlation between the quantum size and the number
of conflicts so more work is needed.

In any case, SCale 2.0 kernel logic related to notification phase and specifically
processes scheduling are not up to the speed of recent ISS’s like QEMU anymore. In
the context of parallel SystemC simulation, a fast kernel phase is mandatory not to
spoil the speedup gained by evaluation phase parallelization. Also, monopolizing an
extra core for the kernel is not necessary and wastes resources, especially on smaller
workstations. Seizing the opportunity of a SCale 2.0 kernel refactoring, switching to
a per-process-based dependencies analysis and scheduling granularity instead of the
current per-worker one could be profitable.

Finally, SCale 2.0 provides repeatable simulation on closed models, that is on models
that do not communicate with the outer world through, e.g., user I/O or networking.
However, enabling such features would instantly cancel repeatability. Coupling SCale

137

Full Software Stack Simulation Challenges and Solutions

2.0 with a tool like rr [Rr-] for system calls recording would generalize parallel simulation
reproducibility to any class of model.

138

Acronyms

API Application Programming Interface. 122

BB Basic Block. 121

C/R Checkpoint/Restore. 87, 88, 91, 93

CAS Compare And Swap. 72, 73, 76, 78

CEA Commissariat à l’Énergie Atomique et aux Énergies Alternatives. 13

CoW Copy on Write. 87

CPU Central Processing Unit. 13, 25, 33, 36, 44, 47, 51, 52, 54, 69, 98, 100, 102, 117,
128, 129, 136

DBT Dynamic Binary Translation. 121

DES Discrete Event Simulation. 29, 31, 43, 54

DES Discrete Event Simulator. 40

DMI Direct Memory Interface. 15, 18, 34, 36, 37, 40, 43, 44, 55, 99, 120, 121, 122,
135, 136

EDA Electronic Design Automation. 14

ESL Electronic System Level. 13

FSM Finite State Machine. 10, 11, 16, 63, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 95,
106, 109, 135, 136

GPU Graphical Processing Unit. 13, 26, 40, 50

HDL Hardware Description Language. 14, 15, 18, 27, 29

HLS High Level Synthesis. 54

HPC High Performance Computer. 51

139

ACRONYMS

IMC Interface Method Call. 49

IoT Internet of Things. 13

IP Intellectual Property. 13, 14, 19, 26, 27, 40, 54

ISA Instruction Set Architecture. 25, 128

ISS Instruction Set Simulator. 15, 44, 65, 94, 95, 102, 104, 107, 137

LECA Design Automation & Architecture Laboratory. 13

LIP Laboratoire de l’Informatique du Parallélisme. 13

MIPS Million Simulated Instructions Per Second. 35, 37, 44, 55, 102, 103, 109, 113,
136

NoC Network on a Chip. 26, 27, 34

NUMA Non-Uniform Memory Access. 26

OS Operating System. 19, 25, 26, 47, 60, 61, 84, 88, 93, 99, 100, 101, 102, 117, 119,
124, 125, 128, 129, 131, 132, 133, 135, 136

PDES Parallel Discrete Event Simulation. 37, 43, 45, 50, 51, 52, 53, 87, 88

PFE Projet de Fin d’Études. 13

PID process identifier. 81

RAW Read After Write. 58, 59, 74

RCU Read-Copy-Update. 128

RMS Recognition, Mining and Synthesis. 101

ROI Region of Interest. 119, 120, 121, 122, 123, 124, 125, 126, 130, 131, 132

RTL Register Transfer Level. 15, 18, 27, 31, 41, 42, 43, 45, 47, 49, 50, 52, 54, 55, 135

SIMD Single Instruction Multiple Data. 69

SMP Symmetric Multiprocessing. 54, 55, 99, 136

SMT Simultaneous MultiThreading. 25, 26

SoC System on a Chip. 13, 14, 15, 26, 27, 49, 52

TLM Transaction-Level Modeling. 14, 15, 18, 27, 31, 33, 34, 36, 37, 40, 42, 43, 44, 45,
46, 48, 49, 50, 52, 54, 55, 95, 116, 121, 135

140

UMA Uniform Memory Access. 52

VP Virtual Prototyping. 14, 27, 35

VP Virtual Prototype. 14, 15, 27, 33, 99

WAR Write After Read. 58, 59, 74

WAW Write After Write. 58, 59

WFI Wait For Interrupt. 102, 103, 117

WID worker identifier. 72

141

Bibliography

[ARM20] ARM. Arm Architecture Reference Manual. 2020. url: https://documentation-
service.arm.com/static/5f106e060daa596235e81ea4?token=.

[Ayn09] J. Aynsley. “OSCI TLM-2.0 language reference manual”. In: Open Sys-
temC Initiative (OSCI), Tech. Rep (2009).

[Bec17] Denis Becker. Parallel SystemC/TLM Simulation of Hardware Com-
ponents described for High-Level Synthesis. Tech. rep. Dec. 2017. url:
https://hal.archives-ouvertes.fr/tel-01709813v3.

[Bel05] Fabrice Bellard. “QEMU, a Fast and Portable Dynamic Translator”. In:
USENIX Annual Technical Conference, FREENIX . . . (2005).

[BKS+08] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. “The
PARSEC benchmark suite: Characterization and architectural implica-
tions”. In: Parallel Architectures and Compilation Techniques - Conference
Proceedings, PACT. 2008. isbn: 9781605582825. doi: 10.1145/1454115.
1454128.

[BMC16] Denis Becker, Matthieu Moy, and Jerome Cornet. “Challenges for the
parallelization of loosely timed SystemC programs”. In: Proceedings
- IEEE International Symposium on Rapid System Prototyping, RSP.
Vol. 2016-Febru. IEEE, Oct. 2016, pp. 54–60. isbn: 9781467382762. doi:
10.1109/RSP.2015.7416547. url: http://ieeexplore.ieee.org/
document/7416547/.

[BSV+20] Gabriel Busnot, Tanguy Sassolas, Nicolas Ventroux, and Matthieu Moy.
“Standard-Compliant Parallel SystemC Simulation of Loosely-Timed
Transaction Level Models”. In: Proceedings of the Asia and South Pacific
Design Automation Conference, ASP-DAC. Vol. 2020-Janua. Institute
of Electrical and Electronics Engineers (IEEE), Mar. 2020, pp. 363–368.
isbn: 9781728141237. doi: 10.1109/ASP-DAC47756.2020.9045568.

[C] C++. ISO - ISO/IEC 14882:2003 - Programming languages — C++. url:
https://www.iso.org/standard/38110.html (visited on 05/01/2020).

[CAD20] Zhongqi Cheng, Emad Arasteh, and Rainer Dömer. “Event Delivery
using Prediction for Faster Parallel SystemC Simulation”. In: Institute
of Electrical and Electronics Engineers (IEEE), Mar. 2020, pp. 357–362.
doi: 10.1109/asp-dac47756.2020.9045492.

143

[CBM+19] Amir Charif, Gabriel Busnot, Rania Mameesh, Tanguy Sassolas, and Nico-
las Ventroux. “Fast virtual prototyping for embedded computing systems
design and exploration”. In: ACM International Conference Proceeding
Series. Vol. Part F1483. New York, New York, USA: ACM Press, 2019,
pp. 1–8. isbn: 9781450362603. doi: 10.1145/3300189.3300192. url:
http://dl.acm.org/citation.cfm?doid=3300189.3300192.

[CCZ06] Bastien Chopard, Philippe Combes, and J. Zory. “A conservative approach
to SystemC parallelization”. In: Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics). Vol. 3994 LNCS. Springer Verlag, 2006, pp. 653–660.
isbn: 3540343857. doi: 10.1007/11758549_89.

[CHD12] Weiwei Chen, Xu Han, and Rainer Dömer. “Out-of-order parallel simula-
tion for ESL design”. In: Proceedings -Design, Automation and Test in
Europe, DATE. IEEE, Mar. 2012, pp. 141–146. isbn: 9783981080186. doi:
10.1109/date.2012.6176447. url: http://ieeexplore.ieee.org/
document/6176447/.

[Cri] Criu. Criu. url: https://criu.org/Main_Page.
[Den05] Peter J. Denning. The locality principle. July 2005. doi: 10.1145/1070838.

1070856. url: http://portal.acm.org/citation.cfm?doid=1070838.
1070856.

[Der87] Rachid Deriche. “Using Canny’s criteria to derive a recursively imple-
mented optimal edge detector”. In: International Journal of Computer Vi-
sion 1.2 (1987), pp. 167–187. issn: 09205691. doi: 10.1007/BF00123164.

[Döm16] Rainer Dömer. “Seven Obstacles in the Way of Standard-Compliant
Parallel SystemC Simulation”. In: IEEE Embedded Systems Letters 8.4
(Dec. 2016), pp. 81–84. issn: 19430663. doi: 10.1109/LES.2016.2617284.
url: http://ieeexplore.ieee.org/document/7589063/.

[Dry15] David Drysdale. “How programs get run : ELF binaries”. In: 3 (2015).
url: https://lwn.net/Articles/631631/.

[Fuj90] Richard M. Fujimoto. “Parallel discrete event simulation”. In: Communi-
cations of the ACM 33.10 (Oct. 1990), pp. 30–53. issn: 15577317. doi:
10.1145/84537.84545. url: http://portal.acm.org/citation.cfm?
doid=84537.84545.

[Geo09] Georgef. How to Save OS Boot Time In Your SystemC Virtual Platform
With Save and Restore - System Design and Verification - Cadence Blogs
- Cadence Community. 2009. url: https://community.cadence.com/
cadence_blogs_8/b/sd/posts/how- to- save- os- boot- time- in-
your-systemc-virtual-platform-with-save-and-restore (visited
on 08/29/2020).

[Hel09] Claude Helmstetter. TLM.open: a SystemC/TLM Front-end for the CADP
Verification Toolbox. Tech. rep. Oct. 2009. url: https://hal.archives-
ouvertes.fr/hal-00429070.

144

[HLH+09] Ziyu Hao, Qian Lei, Li Hongliang, Xie Xianghui, and Zhang Kun. “A
parallel SystemC environment: ArchSC”. In: Proceedings of the Interna-
tional Conference on Parallel and Distributed Systems - ICPADS. 2009,
pp. 617–623. isbn: 9780769539003. doi: 10.1109/ICPADS.2009.28.

[HLR10] Tim Harris, James Larus, and Ravi Rajwar. “Transactional memory, 2nd
edition”. In: Synthesis Lectures on Computer Architecture. Vol. 11. Morgan
& Claypool Publishers, July 2010, pp. 1–263. isbn: 9781608452354. doi:
10.2200/S00272ED1V01Y201006CAC011.

[HLX+09] Yong Qin Huang, Hong Liang Li, Xiang Hui Xie, Lei Qian, Zi Yu Hao,
Feng Guo, and Kun Zhang. “ArchSim: A System-Level Parallel Simulation
Platform for the Architecture Design of High Performance Computer”. In:
Journal of Computer Science and Technology 24.5 (Sept. 2009), pp. 901–
912. issn: 10009000. doi: 10.1007/s11390-009-9281-9.

[HZC+17] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
“MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications”. In: (Apr. 2017). arXiv: 1704.04861. url: http://arxiv.
org/abs/1704.04861.

[IEE12] IEEE. IEEE Standard for Standard SystemC ® Language Reference Man-
ual IEEE Computer Society. Vol. 2011. January. 2012, p. 638. isbn:
9780738168012. doi: 10.1109/IEEESTD.2012.6134619.

[Int19] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual. 2019.
url: https://software.intel.com/sites/default/files/managed/
39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf.

[JSD+19] Matthias Jung, Frank Schnicke, Markus Damm, Thomas Kuhn, and
Norbert Wehn. “Speculative Temporal Decoupling Using fork()”. In:
Proceedings of the 2019 Design, Automation and Test in Europe Con-
ference and Exhibition, DATE 2019. IEEE, Mar. 2019, pp. 1721–1726.
isbn: 9783981926323. doi: 10.23919/DATE.2019.8714823. url: https:
//ieeexplore.ieee.org/document/8714823/.

[Kah74] Gilles Kahn. The semantics of a simple language for parallel programming.
1974. doi: 10.1007/BF00288686.

[KLP+09] Stefan Kraemer, Rainer Leupers, Dietmar Petras, and Thomas Philipp.
“A checkpoint/restore framework for systemC-based virtual platforms”.
In: 2009 International Symposium on System-on-Chip - Proceedings, SoC
2009. IEEE, Oct. 2009, pp. 161–167. isbn: 9781424444670. doi: 10.1109/
SOCC.2009.5335656. url: http://ieeexplore.ieee.org/document/
5335656/.

[Kue] Chris Kuehl. Yelp/dumb-init: A minimal init system for Linux containers.
url: https://github.com/Yelp/dumb-init (visited on 05/28/2020).

145

[LSD16] Guantao Liu, Tim Schmidt, and Rainer Dömer. “A segment-aware multi-
core scheduler for system C PDES”. In: 2016 IEEE International High
Level Design Validation and Test Workshop, HLDVT 2016. IEEE, Oct.
2016, pp. 100–107. isbn: 9781509042708. doi: 10.1109/HLDVT.2016.
7748262. url: http://ieeexplore.ieee.org/document/7748262/.

[Man] Manpages. pid_namespaces(7) - Linux manual page. url: http://man7.
org/linux/man- pages/man7/pid_namespaces.7.html (visited on
05/25/2020).

[MBW12] Paul E McKenney, Silas Boyd-Wickizer, and Jonathan Walpole. “RCU
usage in the Linux kernel: one decade later”. In: Tech Report (2012). url:
https://pdos.csail.mit.edu/6.828/2018/readings/rcu-decade-
later.pdf.

[MES+10] Màrius Monton, Jakob Engblom, Christian Schröder, Jordi Carrabina,
and Mark Burton. “Checkpoint and restore for systemC models”. In:
Lecture Notes in Electrical Engineering. 2010. isbn: 9789048193035. doi:
10.1007/978-90-481-9304-2_3.

[MMG+10] Aline Mello, Isaac Maia, Alain Greiner, and François Pêcheux. “Parallel
simulation of systemC TLM 2.0 compliant MPSoC on SMP workstations”.
In: Proceedings -Design, Automation and Test in Europe, DATE (Mar.
2010), pp. 606–609. issn: 15301591. doi: 10.1109/date.2010.5457136.

[Moy13] Matthieu Moy. “Parallel programming with SystemC for loosely timed
models: A non-intrusive approach”. In: Proceedings -Design, Automation
and Test in Europe, DATE (2013), pp. 9–14. issn: 15301591. doi: 10.
7873/date.2013.017. url: http://dl.acm.org/citation.cfm?id=
2485288.2485294.

[Nan93] Richard E. Nance. “A history of discrete event simulation programming
languages”. In: ACM SIGPLAN Notices 28.3 (Jan. 1993), pp. 149–175.
issn: 15581160. doi: 10.1145/155360.155368. url: http://portal.
acm.org/citation.cfm?doid=155360.155368.

[Rr-] Rr-project. rr: lightweight recording & deterministic debugging. url:
https://rr-project.org/ (visited on 06/30/2020).

[SCD18] Tim Schmidt, Zhongqi Cheng, and Rainer Dömer. “Port call path sen-
sitive conflict analysis for instance-Aware parallel SystemC simulation”.
In: Proceedings of the 2018 Design, Automation and Test in Europe Con-
ference and Exhibition, DATE 2018. Vol. 2018-Janua. IEEE, Mar. 2018,
pp. 349–354. isbn: 9783981926316. doi: 10.23919/DATE.2018.8342034.
url: http://ieeexplore.ieee.org/document/8342034/.

[ScR] ScRefImpl. SystemC reference implementation. url: https : / / www .
accellera.org/downloads/standards/systemc (visited on 07/03/2019).

146

[SLD17] Tim Schmidt, Guantao Liu, and Rainer Dömer. “Hybrid analysis of
SystemC models for fast and accurate parallel simulation”. In: Proceedings
of the Asia and South Pacific Design Automation Conference, ASP-DAC.
IEEE, Jan. 2017, pp. 226–231. isbn: 9781509015580. doi: 10.1109/
ASPDAC.2017.7858324. url: http://ieeexplore.ieee.org/document/
7858324/.

[SLP+10] Christoph Schumacher, Rainer Leupers, Dietmar Petras, and Andreas
Hoffmann. “parSC: Synchronous parallel SystemC simulation on multi-
core host architectures”. In: Embedded Systems Week 2010 - Proceedings
of the 8th IEEE/ACM/IFIP International Conference on Compilers,
Architecture and Synthesis for Embedded Systems, CODES+ISSS’2010
(2010), pp. 241–246. doi: 10.1145/1878961.1879005.

[SWL+14] Christoph Schumacher, Jan Henrik Weinstock, Rainer Leupers, Gerd
Ascheid, Laura Tosoratto, Alessandro Lonardo, Dietmar Petras, and
Andreas Hoffmann. “LegaSCi: Legacy systemc model integration into
parallel simulators”. In: ACM Transactions on Embedded Computing
Systems 13.5s (Oct. 2014), pp. 1–24. issn: 15583465. doi: 10.1145/
2678018. url: https://dl.acm.org/doi/10.1145/2678018.

[VCB+12] Sara Vinco, Debapriya Chatterjee, Valeria Bertacco, and Franco Fummi.
“SAGA: SystemC acceleration on GPU architectures”. In: Proceedings -
Design Automation Conference (2012), pp. 115–120. issn: 0738100X. doi:
10.1145/2228360.2228382. url: http://dl.acm.org/citation.cfm?
doid=2228360.2228382.

[Ver91] Verilog. Verilog Reference Guide Verilog Reference Guide Foundation
Express with Verilog HDL Description Styles Structural Descriptions
Expressions Functional Descriptions Register and Three-State Inference
Foundation Express Directives Writing Circuit Description. Tech. rep.
1991.

[VHD97] VHDL. VHDL Reference Manual. Tech. rep. 1997. url: www.synario.
com.

[VPG06] Emmanuel Viaud, François Pêcheux, and Alain Greiner. “An efficient
TLM/T modeling and simulation environment based on conservative
parallel discrete event principles”. In: Proceedings -Design, Automation
and Test in Europe, DATE. Vol. 1. 2006. isbn: 3981080114. doi: 10.1109/
date.2006.244003.

[VPS+14] N. Ventroux, J. Peeters, T. Sassolas, and James C. Hoe. “Highly-parallel
special-purpose multicore architecture for SystemC/TLM simulations”. In:
Proceedings - International Conference on Embedded Computer Systems:
Architectures, Modeling and Simulation, SAMOS 2014. 2014, pp. 250–257.
isbn: 9781479937707. doi: 10.1109/SAMOS.2014.6893218.

147

[VS16] Nicolas Ventroux and Tanguy Sassolas. “A new parallel SystemC kernel
leveraging manycore architectures”. In: Proceedings of the 2016 Design,
Automation and Test in Europe Conference and Exhibition, DATE 2016
(2016), pp. 487–492. doi: 10.3850/9783981537079_0325. url: http:
//ieeexplore.ieee.org/abstract/document/7459359/.

[VSV+16] Janne Virtanen, Panu Sjövall, Marko Viitanen, Timo D. Hämäläinen,
and Jarno Vanne. “Distributed systemc simulation on manycore servers”.
In: NORCAS 2016 - 2nd IEEE NORCAS Conference. IEEE, Nov. 2016,
pp. 1–6. isbn: 9781509010950. doi: 10.1109/NORCHIP.2016.7792920.
url: http://ieeexplore.ieee.org/document/7792920/.

[WLA+16] Jan Henrik Weinstock, Rainer Leupers, Gerd Ascheid, Dietmar Petras,
and Andreas Hoffmann. “SystemC-link: Parallel SystemC simulation using
time-decoupled segments”. In: Proceedings of the 2016 Design, Automation
and Test in Europe Conference and Exhibition, DATE 2016. 2016, pp. 493–
498. isbn: 9783981537062. doi: 10.3850/9783981537079_0114.

[WLP14] Andrew Waterman, Yunsup Lee, and David Patterson. “The RISC-V
Instruction Set Manual”. In: I (2014).

[WML+16] Jan Henrik Weinstock, Luis Gabriel Murillo, Rainer Leupers, and Gerd
Ascheid. “Parallel SystemC Simulation for ESL Design”. In: ACM Trans-
actions on Embedded Computing Systems 16.1 (Oct. 2016), pp. 1–25. issn:
15399087. doi: 10.1145/2987374. url: http://dl.acm.org/citation.
cfm?doid=3008024.2987374.

[Zak17] Yannick Zakowski. “Verification of a Concurrent Garbage Collector”. PhD
thesis. Dec. 2017. url: https://hal.inria.fr/tel-01680213v2.

148

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

