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Abstract
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Doctor of Philosophy

Optical Flow Velocimetry: optimization, benchmarking and application to system
identification, modelling and control of shear flows

by Antonios GIANNOPOULOS

An integrated and fruitful journey of an Optical Flow Velocimetry system in various
fluid mechanics study cases is presented: From its development and benchmarking, to the
application of its results in instability analysis, modelling, dynamics prediction and control
of shear flows. Regarding development, the software (algorithm, Graphics User Interface)
and hardware parts (camera, workstation, laser) part of the system are presented and dis-
cussed. Furthermore, the system is benchmarked on various experimental and synthetic flu-
idic datasets. We explore its spatial precision from simple step displacements test-cases, to
synthetic homogeneous isotropic turbulence datasets and then grid-generated turbulence and
finally a bluff body turbulent wake. After the advantages regarding spatial resolution and
computational speed of the system comparing to other state-of-the-art velocimetry systems
are presented, a novel pressure reconstruction method is described and validated using the
global turbulent kinetic energy budget in the turbulent wake of a D-shaped body, resolving
scales down to the sub-Kolmogorov range. Then, Optical Flow measurements are used for
modelling and system identification of two experimental datasets: On one hand the forced
Turbulent Boundary Layer of a flat plate and on the other the Backward-Facing Step flow,
for a maximum Reh = 3090. Modern data-driven methods are utilised for this purpose: a
statistical learning approach and a Neural Network machine-learning approach. Last but not
least, more light on the 3D instability of the Backward-Facing Step is shed as well, followed
by a novel open-loop control strategy to reduce the volume of the recirculation bubble. Such
a full exploitation of a velocimetry system shares crucial insight on the importance of exper-
imental, non intrusive methods such as Optical Flow Velocimetry, in the study of complex
flows; flows that are often extremely costly or impossible to resolve numerically.
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Abstract
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Optical Flow Velocimetry: optimization, benchmarking and application to system
identification, modelling and control of shear flows

by Antonios GIANNOPOULOS

Un parcours intégré et fructueux d’un système de vélocimétrie à flux optique dans divers
cas d’étude de la mécanique des fluides est présenté : Depuis son développement et son
évaluation comparative, jusqu’à l’application de ses résultats dans l’analyse de l’instabilité,
la modélisation, la prédiction de la dynamique et le contrôle des écoulements cisaillés. En
ce qui concerne le développement, le logiciel (algorithme, interface utilisateur graphique)
et les composants matériels (caméra, station de travail, laser) du système sont présentés et
discutés. En outre, le système est évalué sur divers ensembles de données fluidiques expéri-
mentales et synthétiques. Nous explorons sa précision spatiale à partir de cas tests de sim-
ples déplacements par paliers, d’ensembles de données synthétiques de turbulence isotrope
homogène, puis de turbulence générée par grille et enfin d’un sillage turbulent d’un corps
bluffant. Après avoir présenté les avantages du système en termes de résolution spatiale
et de vitesse de calcul par rapport à d’autres systèmes de vélocimétrie de pointe, une nou-
velle méthode de reconstruction de la pression est décrite et validée en utilisant le bilan
global de l’énergie cinétique turbulente dans le sillage turbulent d’un corps en forme de
D, en résolvant les échelles jusqu’au domaine sub-Kolmogorov. Ensuite, les mesures de
flux optique sont utilisées pour la modélisation et l’identification du système de deux en-
sembles de données expérimentales : D’une part, la couche limite turbulente forcée d’une
plaque plane et, d’autre part, l’écoulement de la marche descendante, pour un maximum
de Reh = 3090. Des méthodes modernes basées sur les données sont utilisées à cette fin :
une approche d’apprentissage statistique et une approche d’apprentissage automatique par
réseau neuronal. Enfin, l’instabilité tridimensionnelle de la marche descendante est égale-
ment mise en lumière, suivie d’une nouvelle stratégie de contrôle en boucle ouverte visant à
réduire le volume de la bulle de recirculation. Une telle exploitation complète d’un système
de vélocimétrie nous donne un aperçu crucial de l’importance des méthodes expérimentales
et non intrusives telles que la vélocimétrie optique dans l’étude des écoulements complexes,
qui sont souvent extrêmement coûteux ou impossibles à résoudre numériquement.
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Part I

Introduction





3

Purpose and scope of the thesis

The present thesis was carried out in laboratory of PMMH, ESPCI, in the context of the
french industrial PhDs (CIFRE) under the organisation of the french National Technological
Research Association (ANRT). The industrial partner was Photon Lines, a leading supplier
of optical hardware and software solutions in France and the United Kingdom.

The thesis had a double goal: On the one hand, the goal was to develop and benchmark a
fast, accurate, and integrated Particle Image Velocimetry (PIV) system, based on an Optical
Flow (OF) algorithm. PIV is an important non-intrusive measurement methodology in order
to obtain velocity fields using only images of a particular flow; it has been applied in the fluid
mechanics research and industry since 40 years (Stanislas, Okamoto, and hler, 2003). By
PIV system development we mean the development of the software and its harmonious and
optimized functionality with the hardware components of a fast camera, a pulsating laser and
an optimised workstation. For these reasons, the said system was benchmarked in various
experimental and synthetic PIV datasets. Various image datasets from fluid experiments out-
side the PIV scope were also tested. We focused on all aspects of such a benchmarking study:
PIV computational time, spatial resolution, disk space occupancy; characteristics which were
compared with various other state-of-the-art cross-correlation PIV solutions. As part of this
industrial collaboration between PMMH and Photon Lines, i have been an active member
of the R&D team and participated in all the development phases of conception, software in-
tegration and debugging, hardware dimensionalisation, testing and final verification what is
currently a PIV product soon to be launched by Photon Lines.

The second goal regarded the use of this system in fluid mechanics experiments of tran-
sitional and turbulent flows: particularly focusing on modelling, system identification and
control. Transition to turbulence is an important phenomenon to understand, since many
structures and dynamics that appear in the transitional regime continue to exist and have an
important role in the turbulent regime (Sirovich, 1987). It can also give inspiring ideas on
how to delay this transition, hence control optimally the studied turbulent flow. Understand-
ing and controlling turbulent flows has thus great potential to reduce the devastating human
environmental impact of the transportation industry, including ground vehicles, trains, ships
and aeroplanes. Such studies, can play a definitive role in the reduction of CO2 emissions
as regulated recently in the European Union 2030 emission target plan EU-Council, 2014;
Parliament and EU, 2013 and the 2050 climate neutral plan Parliament and EU, 2020; reg-
ulations will not have any environmental impact unless other countries, and particularly the
commercial companions countries outside the European Union (that host a large part of its
production lines), follow as well.
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Thesis chronological unfolding

The thesis was conducted in the laboratory PMMH of ESPCI Paris, located in the Jussieu
campus of the University of Pierre and Marie Curie, under the supervision of Professor Jean-
Luc Aider, and the R&D department of Photon Lines SAS, under the supervision of managers
Julien Romain and Eric Drean. Chronologically, the thesis lasted 3.5 years (6 months extra
than the average PhD in France due to the Covid-19 crisis) and below can be found briefly
the main landmarks: The first year consisted in gaining expertise in the OF velocimetry ex-
periments in a hydrodynamic channel. A dynamic library, created in Microsoft Visual Studio
and containing all the OF velocimetry functions was integrated in the software Eyemotion
of See Fast Technologies (part of Photon Lines) in the form of a plugin. Eyemotion is a na-
tive code image acquisition software containing a large variety of built-in offline and online
(during acquisition) image processing tools; image compression, binarisation, convolution,
image cropping, Roberts/Sobel filter to name a few. It is compatible with a large variety of
cameras (PCO, BASLER, Zylon, etc). A software development using OPENCV and Mi-
crosoft visual studio was used to integrate the OF tools in this platform. The Graphic User
Interface (GUI) of the said PIV plugin was also designed for maximum functionality and user
comfort. The first year also included the moving of the experimental setup of the lab from
the campus of ESPCI to the campus of UMPC/Paris VI University. The setup consisted of a
3 meters long gravity-driven hydrodynamic channel. The process was long and complicated
and lasted 3 months; the opportunity was used to improved the experimental setup. A new
tower for the upper tank was constructed, improved flow straighteners were dimensionalised
tested (home-made, industrial ones and 3D-printed at PMMH were tested); dimensioning and
integrating a new smart and vibrationless pump was also achieved, together with positioning
the channel on top of antivibratory plastic material to reduce vibrations. All these amelio-
rations lead to diminishing the turbulence intensity in the channel from 2− 3% to 0.7%. A
parametric study was also conducted to obtain the optimal number of polyamid PIV particles
in the hydrodynamic channel according to the measurement plane.

The second year consisted in the conception and implementation of two novel machine-
learning studies for the dynamics prediction and order reduction of turbulent boundary layer
and the backward facing step experiment conducted in the lab hydrodynamic channel, using
the OF velocimetry. Such methods can be proved important in order to have fast diagnostic
tools of system with complicated dynamics, using only local and simple accessible sensors. A
transition to turbulence study was also conducted for the 3D instability of the BFS flow before
testing various open-loop control strategies as well. The results were presented in various
conferences and journal papers listed in the general conclusion section. A first working
proof presentation of the real-time PIV system on a hydrodynamic channel experiment was
presented in the presence of the CEO of Photon Lines SAS as well.

The third year we proceeded in the software and hardware optimization of the final PIV
product: The choice of Workstation and further benchmarking of the algorithm was made,
regarding turbulent spectra precision and pressure reconstruction. A pulsating laser syn-
chronisation was tested successfully during image acquisition software that hosted the PIV
algorithm as well. A final PIV system presentation was presented in July 2020. First client
interest begun in April 2020, providing positive feedback. Since then we have processed and
presented OF PIV results of image datasets of more than 6 potential industrial and academic
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clients, and received positive feedback.
During all of three and a halfyears of the PhD program i followed the official schedule

of the R&D team of Photon Lines SAS, taking part in monthly meetings and brainstorming
sessions regarding the various products and activities of the team.
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Thesis text structuring

The organisation of the present thesis unfolds in the following way: First, we start with
the PIV algorithm description and its main parameters and speed performance comparing to
Cross-Correlation PIV, followed by the integration of the algorithm in the software tools of
Photon Lines. We then present benchmarking studies of the system regarding spatial resolu-
tion and turbulent spectra precision in various experimental and synthetic datasets. A pressure
and acceleration reconstruction methodology using these Optical Flow measurements will be
presented as well. The design of an online, real-time PIV system will be presented after. This
is the first part of the thesis.

The second part consists of the presentation of the forced turbulent boundary layer flow
and 2 data-driven approaches: a dynamic observer method to obtain a reduced-order model
using statistical learning, as well as an artificial neural network (ANN) system identification
approach to reduce the order of the system and reconstruct the velocity fields using local
visual sensors.

In the third part, we will present the transition to turbulence of the Backward-Facing
Step (BFS) flow, its Kelvin-Helmholtz instability as well as the 3D instability, using 2D-2C
PIV. A novel open-loop approach to control will be presented as well, which successfully
reduced the recirculation bubble volume size by 64%. A ANN method, similar to the one
presented in chapter three, will be also applied in the same flow to reduce the order of the
system and predict the dynamics using visual sensors placed right next to the step. Last but
not least, general information regarding publications, courses and conferences attended will
be presented, together with the final conclusions.
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Part II

Optical Flow Velocimetry:
Development and benchmarking
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Chapter 1

PIV method introduction

Particle Image Velocimetry (PIV) has been widely used for almost 40 years in fluid dynamics
research and the industry and carries a long history of techniques which have gradually im-
proved over the years (Westerweel, 1993; Scarano and Riethmuller, 2012). A flow is seeded
by tracer-particles of low Stokes number and it is illuminated with a laser sheet, as illustrated
in figure 1.1. Digital PIV (DPIV) uses two separate images that record the displacement of
particles in such a flow over a dozen pixels. This method has been used extensively and gave
rise to different correlation methods to analyse these image pairs in order to obtain a snap-
shot of a vector fields in a plane from two instantaneous images. At this point, two methods
stand out: On one hand, Particle Tracking Velocimetry (PTV) is traditionally used to analyse
particle tracks from series of images where the tracks are used to obtain the velocity and ac-
celeration from sparse particles in an images. On the other hand PIV uses Cross Correlation
(CC) boxes to determine the mean displacement of particles from a correlation box based on
a couple or more instantaneous images of the flow. While this approach is widely used in
experimental fluid dynamics, different algorithms have been developed in order to calculate
the correlation between two successive frames.

The most widely used strategy for PIV considers CC-based algorithms, where most are
based on Fast Fourier Transform (FFT) to calculate the CC more efficiently than direct cor-
relation. Such algorithms have been extensively used across the literature and have been
adapted to a large range of flows. Despite its efficiency and high accuracy, FFT-based cross-
correlation algorithms present a few drawbacks. First, the size of the correlation box does
not evolve linearly with the number of pixels. In fact, because of the nature of the FFT, the
length of the correlation box evolves as a powers of 2 and can hardly be adapted below 16
pixels. In the field of PIV, various CC PIV algorithms were used as benchmark and com-
pared for various dataset during the 4 PIV challenges Stanislas, Okamoto, and Kahler, 2003;
Stanislas et al., 2005; Stanislas et al., 2008; Kähler et al., 2016. In addition, Foucaut, Car-
lier, and Stanislas, 2004 showed that overlapping the correlation boxes beyond 50% did not
improve the quality of the correlation, nor the accuracy of the gradients. In fact, the cut-off
frequency is only dependent on the size of the correlation box and remains constant where
wavenumbers greater than 2.8 times the size of the correlation box followed a top-hat filter
which translates into a sinus cardinal in Fourier space. This bound is extremely important,
and shows that in order to improve the accuracy of the correlation, one may either use very
large images with a very dense seeding, or design a fast algorithm that can perform equiva-
lently than direct correlation which does not suffer the curse of the box size. The same group
recently showed that George and Stanislas, 2020 when PIV is used to measure turbulence, it
can be treated as a time-dependent signal and hence the noise between different realisations
and different interrogation volumes is statistically independent.

Optical Flow (OF) algorithms, first introduced in the machine vision field by Horn and
Schunck, 1981, provided an interesting alternative to solve motion estimation problem. The
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FIGURE 1.1: A classic 2D PIV experimental setup, as illustrated by Raffel,
Willert, and Kompenhans, 1998.

estimation relies on finding the optimal [u,v] to achieve the energy minimization of an objec-
tive function which consists of a data energy term (based on brightness conservation assump-
tion) and a regularization energy term. Let x = (x,y) denote the position of a pixel in the
two-dimensional domain Ω, where x ε R2 and ω (x) = (u,v) the velocity vector. Let I(x,y)
be the brightness function. The original Horn and Schunck (HS) method can be formulated
as minimizing the quantity J in the full image domain Ω:

J(u,v) =
∫

Ω

[
(Ixu+ Iyv+ It)

2 +λ 2
(
|▽u|2 + |▽v|2

)]
dxdy (1.1)

where ▽ denotes the gradient operator in two dimensional directions and ∥·∥ the Eu-
clidean norm, and λ a weighting parameters between two terms. The formula can be solved
with calculus of variations. Their application in the field of PIV followed years after, with the
studies of Quénot, Pakleza, and Kowalewski, 1998; Ruhnau et al., 2005 and have been since
increasingly used in fluid mechanics laboratories (Gautier and Aider, 2013; Giannopoulos
and Aider, 2020b). Even if such OF algorithms give dense velocity fields (one vector per
pixel), it seems that their spatial resolution was no better than standard cross-correlation
Fast-Fourier Transform (FFT) PIV algorithms, although ranked among the top 5 for various
benchmarking tests in the so-called PIV challenges (Stanislas, Okamoto, and Kahler, 2003;
Stanislas et al., 2005). Recently, Seong et al., 2019 showed that OF can be used additionally
to improve cross-correlation PIV results. Turbulent data sets are an excellent case for the
comparison of PIV algorithms: they contain high gradients, large velocity differences inside
the same field, and are governed by universal laws for their relative spectra. Hence, they can
be used for benchmark and further understanding the advantages and disadvantages of each
algorithm. Very recently, machine learning algorithms have been also tested to perform PIV
with promising expectations for the future of the community Rabault, Kolaas, and Jensen,
2017a; Dosovitskiy et al., 2015a; Cai et al., 2020. Moreover, Schmidt and Sutton, 2019;
Schmidt and Sutton, 2020 proposed a wavelet-based OF method to improve the resolution
and accuracy of standard Cross-Correlation PIV, which is somewhat close to windowing the
correlation box but provides more flexibility on the sample size.
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Different approaches using neural networks have been also recently coming to the fore-
ground of the PIV community. They have a great potential since the number of easily accessi-
ble large datasets are getting larger and larger and the machine learning tools faster, optimized
and freely distributed in toolboxes like PyTorch for Python (pytorch, 2021). A first proof of
concept was presented by Rabault et al. (Rabault, Kolaas, and Jensen, 2017b), and after this
multiple studies were followed with faster and more accurate results (J.Rabault et al., 2018;
Dosovitskiy et al., 2015b). Moreover, an efficient optical-flow based PIV solution using deep
learning was presented and made freely available under the name PIV-LiteFlowNet a year
ago (Cai et al., 2019).
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Chapter 2

Cross-Correlation-based PIV

The principle of CC for PIV regards in calculating the correlation matrix between successive
images of particle-illuminated flows. The peak in the CC matrix gives the displacement
vector, as seen in figure 2.1. The present section presents the error measurement strategy for
the CC algorithm originally developed by Meunier & Leweke Meunier and Leweke, 2003a.
This open source CC PIV software is called DPIVsoft (Meunier and Leweke, 2003b) ; it is
a standard CC algorithm optimized for large velocity gradients. It is freely distributed for
MATLAB and it will be used for the benchmarking comparisons of chapter 4.

In their original work, Meunier & Leweke analysed errors generated two-dimensional CC
PIV algorithms (with window shifting), when high velocity gradients are present. In classical
CC-based PIV, a first bias error is due to the difference between the Lagrangian displacement
of a particle and the real velocity. This error has been calculated theoretically as a function of
the velocity gradients, and is shown to reach values up to 1 pixel if only one window is trans-
lated (Meunier and Leweke, 2003a). However, it becomes negligible when both windows are
shifted in a symmetric way. Meunier & Leweke also showed that a second error source is
linked to the image pattern deformation, which decreases the height of the correlation peaks.
In order to reduce this effect, the windows in DPIVSoft are deformed according to the veloc-
ity gradients in an iterative process (Meunier and Leweke, 2003a; Passaggia, Leweke, and
Ehrenstein, 2012a; Camassa et al., 2018; Passaggia et al., 2020; Shanmughan et al., 2020).
The problem of finding a sufficiently reliable starting point for the iteration is solved by ap-
plying a Gaussian filter to the images for the first correlation. The approach of Meunier &
Leweke implemented in DPIVSoft thereby minimises the displacement error in an iterative
manner, finding the optimal displacement and deformation for the correlation box. The re-
sults were found to recover the same accuracy than commercial software for still and moving
images of particles.

FIGURE 2.1: Sketch of the cross-correlation and peak-search process to es-
timate velocity vectors from a couple of successive images.
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2.1 Parameter discussion : Correlation window size

The size of the correlation box is set by different parameters such as the particle size, particle
density, and particle displacement Kähler, Scharnowski, and Cierpka, 2012. In the following
benchmarking studies, we will analyse the effect of the box size with dimensions increasing
with powers of 2, since the present CC is performed using Fast Fourier Transform (FFT)
which requires samples with powers of 2 to improve its accuracy. Thereby, squares boxes
with sizes 16, 32, and 64 pix2 will be considered.

2.2 Parameter discussion : multiple pass and pyramid levels

The FFT-based CC implemented in DPIVSoft is performed in an iterative way over succes-
sive passes such that each iteration is performed not only once but iterated several times in
order to converge towards optimal box displacements and optimal box shape modification
(Meunier and Leweke, 2003b). Hence, at the end of each iteration, the displacement vector
is stored and used as an update for the shapes and displacement of the correlation window.
In practice, no more than 5 iterations were found to be necessary in order to converge cor-
relations in each window. The second part of the iterative scheme deals with pyramid levels
which are implemented in DPIVSoft in a multigrid manner. At first, boxes with size 4X
(where X is the final size of the correlation box) are used for the cross correlation and iter-
ated as discussed previously. Then, a second grid is considered (i.e. with size 2X) which is
twice smaller than the original grid and therefore gives rise to four times more vectors. An
additional level is computed to reach the final box size X with up to 5 sub-iterations in order
to obtain the final velocity field.

The next section addresses the second strategy analysed in this chapter, which uses the
OF method. We will show later that both methods present different accuracy and robustness
to unresolved measurements.
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Chapter 3

Optical Flow for PIV

A variational OF method was first proposed by Horn and Schunck Horn and Schunck, 1981
to solve motion estimation problem. The estimation relied on finding the optimal displace-
ment field [u,v] to achieve the energy minimisation of an objective function which consists
of an intensity energy term (based on brightness conservation assumption) and a regulari-
sation energy term. Although firstly introduced in the field of machine vision, OF methods
have been applied in the field of fluid mechanics as well; various OF algorithms were bench-
marked multiple times in the 4 international PIV challenges (Stanislas, Okamoto, and Kahler,
2003; Stanislas et al., 2005; Stanislas et al., 2008; Kähler et al., 2016). Most of them were
found of equivalent precision and spatial resolution with CC PIV algorithms for most of the
benchmarks. Even a 3D PIV OF algorithm was benchmarked in such a 3D PIV challenge
Kähler et al., 2016, giving a performance amongst the top 5 competitors.

Among other OF efforts tested on PIV applications, we mention that a hybrid CC-OF
PIV method was presented by Liu et al., 2020b. Furthermore, Wang, He, and Wang, 2020
used a multi-pyramid-type scheme optimisation algorithm (used traditionally in OF) in or-
der to globally minimise an objective function consisting of a CC term, a penalty term for
smoothness and an empirical smoothing parameter. They thus obtained superior resolution
results comparing with standard CC PIV and outperforming OF for small vortex resolution,
but losing from OF for error analysis in particle concentration, particle image diameter, large
displacements and image noise. CC PIV and OF have also been used as a benchmark for
biological image dataset like in Vig, Hamby, and Wolgemuth, 2016. OF showed clear advan-
tages in order to extract additional biophysical/chemical information such as local vorticity
or net polymerisation rates from speckle microscopy. Last but not least, OF algorithms have
been increasingly more applied in experimental machine learning control and system identi-
fication studies with quite satisfying results (Giannopoulos and Aider, 2020c; Giannopoulos
and Aider, 2020a; Gautier and Aider, 2015b).

3.1 A dense Optical Flow PIV algorithm

The algorithm presented consists in a dense iterative Lukas-Kanade OF algorithm (Cham-
pagnat et al., 2011). It was developed at ONERA, and then optimized for the case of real
time calculations at the laboratory of PMMH at ESPCI PARIS (Gautier and Aider, 2013). It
is written in C++ language, implemented with CUDA C functions. This means that the core
calculations of the algorithm are performed in the GPU and are optimally parallelized with
the NVIDIA libraries that are freely distributed. The advantage of this algorithm compared
to a standard FFT-PIV algorithm is its high computational speed when implemented with
CUDA functions; it has been tested to be around 50 times faster than state-of-the-art PIV
software (C.Pan et al., 2015; Champagnat et al., 2011). This algorithm was used by Davoust,
Jacquin, and Leclaire, 2012; Sartor, Losfeld, and Bur, 2012 to fast post-process their snap-
shots for a turbulence jet flow study and for an investigation of the interaction between a
shock wave and a turbulent boundary layer, respectively. The code has been used numerous
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times both for time-resolved PIV measurements. A high spatial resolution was proven in
various physics experiments by Varon et al., 2017 as well as for flow control experiments
Gautier and Aider, 2013; Gautier, 2014; Gautier and Aider, 2015a; Varon et al., 2019. An-
other comparison Liu et al., 2015a showed superior performance for OF in comparison with
CC PIV regarding spatial resolution.

The algorithmic core idea of OF consists in minimising a criterion containing the differ-
ence of intensities and gradients of intensities of 2 successive flow images. Mathematically,
the most direct method to do this consists in the following: for each pixel m, we search the
displacement VVV(mmm) that minimises the sum of square differences between the intensity field
around m ,It , for time t and a second one for time t

′
= t + dt shifted by VVV(mmm) ,It

′
:

∑
k∈N (m)

(
It(k)− It ′(k+V (m))

)2
(3.1)

,where N (m) is a square IW centered in pixel m and of size 2∗KR+1. KR is an acronym
for the parameter Kernel Radius, as defined in figure 3.1. The estimated displacement at the
iteration step i,Vi(m), is thus calculated such as Vi(m) ∼ V (m). It is proven though that
V (m) ∼ V (k) can be assumed at each pixel k inside the IW to ensure fast convergence (Le
Besnerais and Champagnat, 2005). This assumption leads to the following equation:

∑
k∈N (m)

(
It(k)− It ′ (k+Vi(k)+V (m)−Vi(k))

)2
(3.2)

A first order expansion around k+Vi(k) of equation 3.2 leads to the form below:

∑
k∈N (m)

(
It(k)− It ′ (k+VVV iii(k))−∇It ′ (k+VVV iii(k))

T ∆VVV (k)
)2

(3.3)

We set the above expression to zero and define the operator H:

H = ∑
k∈N (m)

∇It ′ (k+Vi) ·∇It ′ (k+Vi)
T (3.4)

where H is defined as the Gauss-Newton approximation of the Hessian. Now solving for
the displacement Vm leads to the following expression:

VVV (m) = H−1 ∑
k∈N (m)

∇It ′ (k+VVV iii)
(

It(k)− It ′ (k+VVV iii)+∇It ′ (k+VVV iii)
T VVV iii

)
(3.5)

The computed displacement V (m) will then be used as a better estimation Vi+1(m) at the
next iteration until converging. We mention though that the integration on the IW N (m)
in equation 3.5 is in fact replaced by a convolution function (or a Gaussian Blurring) over
the whole snapshot, which implies that the IW is really warped instead of simply shifted.
This method as it is though, can only resolve very small displacements, around 1−2 pixels.
To increase the maximum displacement a standard computational pyramid reduction scheme
is implemented, particularly a Burt-Andelson one (Adelson et al., 1983). Going up one
level in the pyramid means reducing the size of the image by 2 at each direction, as seen
in figure 3.1. A better initial solution is calculated in the upper level, which is used to pass
in the lower levels, always minimizing iteratively the criterion 3.5. This is continued until
we reach the original image size. More pyramid levels help calculate larger displacements,
with no upper theoretical limit in the displacement. Practically though for most datasets, the
pyramid reduction method leads to a maximum displacement of up to 20 pixels. Hence, the
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FIGURE 3.1: A Burt-Andelson pyramid reduction scheme that allows for a
calculation of displacements up to 20 pixels. Kernel Radius definition.

3 main user parameters are the number of Gauss-Newton iterations to converge, the size of
the interrogation window noted as KR and the number of pyramid levels.

Regarding the handling of the boundaries, OF suffers as every window-based algorithm
the fact that particles move outside the picture frame. The solution used in OF relies on dy-
namic masks, which are updated at each iteration. Excluded pixels are either those whose
current displacement vector is located outside of the image or those whose IW contains more
than 80 of already excluded pixels. Displacement vectors are computed for the remaining
pixels; the missing pixels are then filled with the nearest valid vectors before the next itera-
tion.

The algorithm being in the OF family, can be used for type of experiments apart from PIV
ones. Every image dataset of high contrast and distinct gradients (up to a limit of the maxi-
mum displacement of 20 pixels) can be used to calculate displacements. This fact has been
tested for more than 15 datasets not coming from PIV experiments. In the example below,
during a collaboration with the acoustofluidics team of PMMH (particularly L. Lebollon),
the velocity of blood platelets was successfully measured in a microfluidic channel 3.2. In
another example, during a collaboration with University of Paris Diderot (Professor Matthieu
Labousse), we managed to calculate velocity fields of Liquid films emulsion, for the purpose
of vortex detection. Results are presented in figure 3.3. In a third example in figure 3.4, we
present velocity field measurements ombroscopy images of microjets (experiment from : J.L.
Aider and J.-E. Wesfreid). Multiple client datasets coming from industry clients of Photon
Lines were also processed to asses the algorithm; the results of which cannot be presented due
to confidentiality reasons. The development of a complete PIV system using this algorithm
was carried out during the present thesis. Such a development consisted in the software and
hardware part design and testing as well as its rigorous benchmarking on challenging flows,
results which will be presented in the sections below.

3.2 Parameter discussion : Kernel Radius

KR is defined in pixels and is the size of the Gaussian convolution window performed at
each pixel, for each pyramid level. Larger values yield more smoothed-convoluted results,
that are on the other hand more robust to noise and particle density variations. Smaller values
may increase the spatial resolution but also the spatial noise of the measurement. It plays a
secondary role in the computational time.



20 Chapter 3. Optical Flow for PIV

FIGURE 3.2: Blood platelets flow image (left) and velocity field calculation
using OF (right). Experiment from: L.Bellebon, PMMH.

FIGURE 3.3: Liquid film emulsion experiment and corresponding velocity
field calculation using OF.

FIGURE 3.4: Velocity field calculation using OF on a microjet Ombroscopy
image dataseta.
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3.3 Parameter discussion : Pyramid levels

Multipyramid computational schemes are standard algorithms widely used in computations;
they provide a better initial condition estimation for the iterative scheme and increase dras-
tically the number of maximum possible particle displacement. At each pyramid level, the
upper level is obtained by applying a low-pass filter, hence downsampling the image size by
a factor of 2. In the present algorithm a Burt-Andelson pyramid (Adelson et al., 1983) is im-
plemented. This specific parameter was introduced so that more than 2 pixels displacements
can be calculated ; a typical problem of initial OF algorithms Horn and Schunck, 1981. With
the increase of pyramid levels there is no upper limit on the maximum displacement that can
be calculated, practically though we rarely observe a non-fictitious velocity of more than 20
pixels.

3.4 Parameter discussion : Gauss-Newton iterations

The standard number of Gauss-Newton iterations for the minimisation criterion to converge
is 5-7, for the majority of datasets. The lower limit of the iterations can go down to 2 with
no problem for most datasets, with a more than double result in computational speedup.
Hence, a lower number of iterations is favourable for experiments that require rapid velocity
calculations like in Gautier et al., 2015; Gautier and Aider, 2015b.
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Chapter 4

Optimal window size, filtering effects
and benchmarking : Optical Flow vs
Cross-Correlation PIV

The content of this chapter is based on the article: A.Giannopoulos, P.Y.Passaggia, N.Mazellier,
J.L.Aider, Optimal window size, filtering effects and benchmarking : Optical Flow vs Cross-
Correlation PIV, to be submitted in Experiments in Fluids.

This section analyses the spatial resolution of two Particle Image Velocimetry (PIV) al-
gorithms applied to turbulent flows. Cross-correlation (CC) and an iterative multi-pyramid
Optical flow (OF) algorithm are compared side by side through various tests. The first anal-
ysis considers still images, which are used to evaluate the cut-off frequency induced by each
algorithm, while a step response analysis highlights the capabilities of each method to min-
imise the effect of unresolved velocity gradients. Benchmarks then consist of various tur-
bulent datasets, that go down to the sub-Kolmogorov scale. Particularly, three different data
sets are used to analyse the velocity spectra and the Turbulent Kinetic Energy dissipation
estimation. In the first dataset, a synthetic PIV dataset of homogeneous isotropic turbulence
(HIT) is processed and compared with Direct Numerical Simulation (DNS) results. In the
second dataset, a grid turbulence wind tunnel experimental dataset is processed to calculate
velocity spectra, which are compared with Laser Doppler Velocimetry spectra. In the third
dataset, the turbulent flow produced in the near wake of a D-shaped bluff body is examined
and velocity spectra are compared alongside with hot-wire measurements. These results all
point to the fact that, although OF is more diffusive and up to 5% less accurate than CC, the
numerical diffusion improves the calculation of sub-window unresolved gradients and allows
for directly measuring the onset of the viscous subrange from experimental measurements.

4.1 Benchmarking analysis outline

To this date, we were only able to find few comparative studies that analyses how OF, Direct-
Cross-Correlation, and FFT-based CC perform with respect to one another (Liu et al., 2015b;
Liu et al., 2020b; Champagnat et al., 2011). In this paper, we begin with the same ideas
than Foucaut, Carlier, and Stanislas, 2004 and analyse still images to understand how band-
pass filtering compares between OF and CC. In particular, we will show that CC is twice
more accurate than OF with a band-pass filter 50% smaller for CC than OF. The analysis
will be extended to the step displacement analysis to understand how unresolved velocity
gradients affect both CC and OF. In particular, we will extend the framework developed in
Kähler, Scharnowski, and Cierpka, 2012 and analyse the statistics (mean and variance) of the
step response. We will show that OF provides consistent results, independent of the Kernel
Radius (KR) used, and minimises the variance of unresolved gradients even for small values
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of KR = 8. As a reminder we mention here that the side of the interrogation window in the
OF algorithm has a size of 2 ∗KR+ 1 pixels. Moreover, the KR will be found to provide
optimal results (smallest error and minimum velocity gradient variance) when it is equal to
the size of the particle. On the other hand, CC shows a different behaviour and increasing the
window size improves the accuracy while minimising the variance of the velocity gradients.
Hence, the best compromise is obtained for square correlation windows of 32× 32 px2 as
already observed in the literature. We will therefore draw a clear picture on the advantages
and disadvantages of each method when applied to either laminar or turbulent flows.

Then, we will analyse a two-dimensional Homogeneous Isotropic Turbulence (HIT) dataset
generated from a Direct Numerical Simulation (DNS) without noise. We show that CC PIV
is again less diffusive than OF and predicts a more accurate dissipation spectrum, although
OF is able to outperform CC for small distances between vectors, which improves the the
spectrum in the deep viscous regime when compared with the DNS data. Finally, we will
consider the case of a turbulent flow behind a regular grid and the case of a turbulent wake
behind a D-shaped bluff body. These results show that optical aberrations such as particles
defocusing are limiting for both CC and OF. However, OF correlation boxes are only lim-
ited to the size of the particle itself whereas for CC, the correlation window size is limited
by the particle size itself Kähler, Scharnowski, and Cierpka, 2012. Our results will reveal
on both test cases that CC is outperformed by OF when attempting to directly measure the
Kolmogorov subrange.

Regarding the 3 PIV datasets studied in the present chapter, the mean displacement for
each experiment was found to be approximately 4 pix for the Homogeneous Isotropic Tur-
bulence (HIT) dataset, 8 pix for the grid- generated turbulence experiment and 12 pix for the
case of the turbulent wake behind a D-Shaped bluff body. For all experiments, the mean ra-
dius of the particles was approximately 3 pix except for the case of the D-shaped wake where
the particles were defocused and attained radius sizes close to 6 pix in average. Hence,
square correlation boxes of 32 pix in length for the first three cases and 64 pix in length for
the case of the wake were used in order to obtain 9 particles for the cross correlation for each
experiment.

4.2 Filtering effect of Optical Flow and Cross Correlation

4.2.1 Steady particle images : Noise response analysis

A single experimental field of still particles was used to study the filtering effect of each
approach. We tested still images obtained from Passaggia et al., 2020 which are neutrally
buoyant PIV particles at rest in a stratified fluid experiment. The average particle radius is
1.5 px while the mean particle concentration is 0.07 (px−2).

Window Number Mean disp. Mean disp. Std dev. Std dev.
size / Method of fields long x(pix) along y(pix) σu(pix) σv(pix)
16×16 CC 1 −0.008 0.0032 0.207 0.0452
32×32 CC 1 −0.003 0.0014 0.160 0.0159
64×64 CC 1 −0.004 0.0012 0.067 0.0164
16×16 OF 1 −0.008 0.004 0.174 0.128
32×32 OF 1 −0.008 0.003 0.112 0.061
64×64 OF 1 −0.007 0.002 0.086 0.044

TABLE 4.1: Systematic and random errors computed from no motion PIV
maps.
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Particle images can be considered as a two-dimensional discretised signal where parti-
cles are based on the pixel size. Assuming that the displacement of the particles is close to
null, there only remains the noise from the camera, the experimental setup such as the mis-
alignment or optical aberrations to only cite a few. following Foucaut, Carlier, and Stanislas,
2004, we proceed with a spectral analysis and compare how both CC and OF respond to
nearly-zero-displacement images. In particular, we adapt their analysis and assume that the
interrogation window used in both methods can be modelled by the convolution of the particle
image sample with a square window, whose Fourier transform corresponds to a multiplica-
tion by a sinc function in the spectral domain. As suggested by Lourenco, 2000, the power
spectra of the noise images can be expressed as:

Eii = Enoise

(
sin(kX/2)

kX/2

)2

, (4.1)

where Enoise is the white noise level introduced by measurement errors. In the present study,
Enoise corresponds to the intercept at the smallest wave numbers of the spectrum measured
from OF and CC which is assumed to have the form given by equation (4.1). The results
are compared in Fig. 4.1(a) and (b) for CC and Fig. 4.1(c) and (d) for OF with Enoise =
78.5×10−3 pix3 and 58.6×10−3 pix3 respectively for E11 and E22 for CC and Enoise = 158×
10−3 pix3 and 97.5×10−3 pix3 respectively for E11 and E22 in the case of OF.

For both methods, the noise level is therefore twice higher for E11 than for E22 in agree-
ment with the values of the standard deviation in Table 4.1 and the study of Foucaut, Carlier,
and Stanislas, 2004. In fact, Foucaut, Carlier, and Stanislas, 2004 argue that this difference
may be attributed to the type of sensor used which transfers data between the two successive
images which is also performed along the x direction by our CCD camera which is equivalent
to the one used in Foucaut, Carlier, and Stanislas, 2004. This is also consistent with the fact
that the particles in the present still images are neutrally buoyant in a stratified fluid which
further mitigates the vertical motions. The error between the horizontal and the vertical com-
ponent of the noise are reported in Table 4.2 and varies differently between OF and CC. Cross
correlation provides systematically smaller mean displacements than OF. However, there is
a substantial difference regarding the standard deviation where OF is weakly dependent on
the vertical or horizontal direction while CC is much more sensible and differences are much
larger depending on the direction. In the following, the results presented correspond to E22
and are generalised to Eii.

The cutoff frequency produced by each PIV method can be seen as the decrease by −3dB
between the Eii measured at the intercept (i.e. k = 0). This cutoff corresponds to the lower
significant wavenumber for which the velocity is not filtered by the interrogation window
size. As shown by the theoretical expression (4.1), the sinc function is the standard low-pass
filter introduced by the square window whose cutoff wavenumber gives kmin = 2.8 rad/pix
for CC and kmin = 1.34 rad/pix for OF. This value is shown in Fig. 4.1(a-d) by a vertical
dashed line. OF is therefore twice more diffusive than CC and it is therefore necessary to use
an interrogation window twice smaller for OF than CC to obtain results with similar cutoff
frequencies. In the following, an overlapping of 75% will be used in order to detect easily
the sinc function although an overlap larger than 50% is not necessary in practice.

Note that in the case of OF, there is no overlapping but the Kernel radius X is considered
instead. It is interesting to note that OF produces exactly the same windowing-type filter on
the spectra shown in Fig. 4.1(c) and Fig. 4.1(d). The dense approach to the Lucas-Kanade
algorithm can therefore be sub-sampled or binned down to near wavenumbers with values of
1.3Xrad/pix.

As a first step, an approach based on spectral computation varying the window size X
was carried out. This study shows that the cut-off frequency computed from kcX = kcY = 2.8
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FIGURE 4.1: Power spectra of displacement from no motion PIV maps with
75% overlap for cross correlation in (a) and (b) and optical flow in (c) and

(d) along x in (a) and (c) and along y (b) and (d).

remains universal for CC Foucaut, Carlier, and Stanislas, 2004. However, this is not the case
for OF where the cut-off wavenumber decreases to kcKR = 1.3 which is nearly twice lower
than what is found for CC. In other words, OF is twice more diffusive, both in noise amplitude
(see Tab. 4.2) and the cut-off frequency. Note that if this can first appear as a weakness in
the algorithm, it will later prove to introduce a numerical-type diffusion which will prove
important when considering unresolved velocity gradients and thus, turbulent flows.

In what follows, the representation of the spectra is rescaled with respect to the window
size X such that Eii = Eii(kX) for both CC and OF remains universal, independently of the
method. The noise level for CC is constant at a value of 17.5× 10−3 pix3, while we obtain
17.5×10−3 pix3 for OF. Then we compute both spectra varying Y = X . The Enoise values are
37, 60 and 78× 10−3 pix3 respectively for Y = X = 16,32 and 64 pixels for CC. The Enoise

values are 63, 103 and 160×10−3 pix3 respectively for Y = X = 16,32 and 64 pixels for OF.
As noted in Foucaut, Carlier, and Stanislas, 2004, it can be remarked that Enoise varies

with the inverse of Y and the data can be represented as Y Eii(kX/2). Rescaling the wavenum-
bers with (X/2) and multiplying the left-hand side by the interrogation window size Y ,
eq. (4.1) writes :

Y Eii = ζ
(

sin(kX/2)
kX/2

)2

. (4.2)

Fig. 4.1(a) and (b) show these spectra for CC while OF is depicted in Fig. 4.1 (c) and
Fig. 4.1 (d) computed for different window sizes (16,32 and 64 pixels) for square interroga-
tion windows with aspect ratios of 1.

The rescaled spectra given by eq. (4.2) is shown in Fig. 4.1(a-d) alongside the rescaled
no-motion spectra measured with CC and OF where a good agreement is obtained for both
methods. Note that at low wave numbers, OF shows a small departure when using large
kernel radii. Nevertheless ζ = EnoiseY remains essentially constant for all window size of
kernel radii and takes a constant value of 0.275 pix4 for CC and 0.38 pix4 for OF. This result
confirms that similarly to CC, the cut-off frequency obtained with OF due to the sinc function
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depends only on the window size X in the direction where the spectrum is computed. The
noise level Enoise depends only on the window size or the kernell radius for CC and OF in
a similar fashion. As a conclusion, the best spectrum is obtained for both methods using a
rectangular window with a small X to increase the cut-off frequency and a large Y to decrease
Enoise which is equivalent to the conclusions obtained in Foucaut, Carlier, and Stanislas, 2004.

The best compromise is thus to use square windows for CC or equivalently, a square
kernel for OF. We therefore reach the same conclusion than in Foucaut, Carlier, and Stanislas,
2004 where the standard deviation σu of the displacement decreases when the window size
increases independently of the method. As shown in Foucaut, Carlier, and Stanislas, 2004,
σu is the square root of the integral of the power spectra and relates to the amplitude of the
error. Based on eq. 4.2, σu can be directly obtained computing:

σu =

√
4ζ I
XY

, (4.3)

where I =
∫ 2π

0

(
sin(u)

u

)2
du = 1.492 and I = 1.418 when using an overlap of 50%. The value

of ζ1 and ζ2 obtained from Fig. 4.1(b) and the estimation of σu and σv computed with eq. 4.2
are reported in Tab. 4.2 for the displacement along x and y respectively using both CC and
OF. It is worth emphasising that the values of ζ1 and ζ2 are slightly larger for OF than CC
for small kernel radii and become essentially similar when increasing the kernel size.

Window sizes ζ1
(
pix4) ζ2

(
pix4) σu estimated σv estimated

16×16 CC 0.26 0.225 0.304 0.162
32×32 CC 0.28 0.239 0.156 0.116
64×64 CC 0.31 0.250 0.080 0.061
16×16 OF 0.34 0.316 0.324 0.224
32×32 OF 0.38 0.339 0.172 0.124
64×64 OF 0.41 0.357 0.102 0.064

TABLE 4.2: Spectral noise density and estimated standard deviations of
noise.

Although the correlation ( or interrogation) window sizes or the kernel radii are different,
the density ζ is quasi constant for a given direction. The small differences are probably due
to an effect of convergence of the spectra. In Table 4.2 the estimated standard deviations
compare favourably with the measured values given in Table 4.1.

4.2.2 Step-response analysis

To determine systematically the effective resolution for various interrogation windows and
different approaches systematically, the resolution limit can be analysed with a step-like ve-
locity profile, like in Kähler, Scharnowski, and Cierpka, 2012. Such a profile may be thought
as an infinitely thin shear layer or a small eddy eddy, given for instance by:

∆x (y) =
{

5 px, y ≥ 0
0 px, y < 0

(4.4)

The step response is also frequently used in electrical engineering and control theory to anal-
yse the transfer function associated with linear and nonlinear systems. In order to analyse
the resolution of CC and OF, the signal (particle image displacement) is changed in space
over an infinitely small distance. The response to a step profile is shown in the top profile
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FIGURE 4.2: Examples of tested synthetic images with different particle
concentration and particle size. Image size shown is 100×100 px2.

of Fig. 4.3(a,b) for window-correlation using three different interrogation window sizes X
for CC, and four KR sizes for OF. The width of the response function Step Response Width
(SRW) can be regarded as the resolution and describes the minimum distance between in-
dependent vectors. Only for distances larger than the SRW, the vector is not biased by the
aforementioned flow variations.

The sampling introduced by the window function, that is for both CC and OF can there-
fore be regarded as a convolution between a step or Heaviside function with a square window
function with a dimension KR for OF and Y for CC (since the shear is in the vertical direc-
tion). The theoretical expression is a piecewise linear ramp of width KR or equivalently Y ,
which is given by

U (y) =


0, y <−KR/2,
5/KR×Y−2.5, −KR/2 ≥ y ≥ KR/2,
1, y > KR/2.

(4.5)

The crucial point though is that not only we are interested in the velocity profile, but also
its derivatives and taking the vertical derivative of these profiles:

∂U
∂y

=


0, y <−KR/2,
5/KR, −KR/2 ≥ y ≥ KR/2,
0, y > KR/2.

(4.6)

The second-order derivative can also be analysed using the Fourier transform which is ob-
tained theoretically as a sinc function. In what follows, we analyse the Step Response Deriva-
tive Amplitude (SRDA) as well as its standard deviation for both CC and OF as a function
of the particle size dτ and particle concentration Cp = N/(nxny), where nx and ny are the
number of pixels in each direction respectively. Next, we determine how each methods is
able to resolve velocity gradients and its implication when applied to turbulent flows. This
aspect may shed light on how turbulent flows can be resolved using either OF or CC.

A synthetic PIV image generator provided by Thielicke and Stamhuis, 2014 was used to
create the images with varying parameters : maximum particle diameter tested dτ = 6 pix
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FIGURE 4.3: Step-response analysis showing the mean normalised vertical
profile of displacement U(x,y) for (a) CC and (b) OF and for several interro-
gation window and kernel sizes. Note that the horizontal axis is normalised
using the interrogation window size of each method. Mean value of the ver-
tical gradient of velocity computed along the horizontal direction x for CC
(c) and OF (d). The theoretical profile is shown with black dashed lines in
(a,b,c,d). Standard deviation of the vertical gradient along the spatial direc-
tion x for (e) CC and (f) OF. Here the particle size dτ = 3 pix and Cp = 2.1.

and maximum Cp = 2.7. The said generator satisfies all the requirements of standard PIV
images as defined by Raffel, Willert, and Kompenhans, 1998. The displacement was fixed
at 5 pixels. The PIV image generator generates pairs of images illuminated by a laser sheet
with a light intensity distribution varying like a Gaussian. The coordinates of the particles,
as well as an out of place motion are selected randomly Mendes, Bernardino, and Ferreira,
2020. The thickness of the laser sheet was given a standard value of 0.5. By this value, we
mean the out-of-plane distance including the region where laser intensity is larger than I0/e2,
where I0 is the maximum intensity and e = exp(1) is Euler’s number.
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Figure 4.4(a,b) shows the normalised step response, resolved for each method for dτ = 3
pix and Cp = 2.1 which will serve as a reference case. From these figures, the normal
direction is normalised with the window size and all curves collapse on the theoretical profile
given in eq. (4.5). As observed in Kähler, Scharnowski, and Cierpka, 2012, the step response
cannot be smaller than the window size. Note that in Fig. 4.3(b), OF shows slightly less
accuracy than CC where up to 5% velocity deficit can be observed for y/KR > 0.5 when
KR ≥ 16, which is consistent with the still image analysis.

The gradient is shown in Fig. 4.3(c,d) for both methods. The theoretical profile, given
in eq. (4.6) is clearly diffused since the normalised maximum for both CC and OF never
reaches 1, but is closer to 0.9 for all methods. This translates into a diffusion effect of 10%,
independently from the method used for the analysis. It is interesting to see that CC is less
diffusive than OF and that the derivative profile progressively steepens and approaches the
theoretical profile when the interrogation window decreases. The conclusion is somewhat
different for OF. The mean derivative profile remains self similar, almost independently from
the the KR. Note that for KR = 4, the method is even more diffusive as the SRW is larger
than for KR > 4. This aspect will be shown to have interesting implications for the analysis
of turbulent spectra for the analysis of synthetic images of turbulence.

More interesting is the standard deviation of the step response shown in Fig. 4.3(e,f)
computed along the horizontal direction x. This quantity relates the variance of the gradient,
which is directly related to the notion of dissipation and hence, the quality of the spatial
gradient resolution. Ideally, each curve in Fig. 4.3(e,f) should be 0 along y. However, the
noise in the reconstruction inevitably leads to variations, compared to the mean, shown in
Fig. 4.3(e,f). In the case of CC, as the interrogation window increases, the standard deviation
decreases to a value of 0.3 for X = Y = 64. The case of OF is more interesting since for
KR = [8,16,32], the standard deviation peaks at 0.27 for KR = 8 and decreases to 0.2 for
KR = [16,32]. Therefore, the numerical diffusion induced by OF decreases the sensitivity
for the step response which is particularly important for the calculation of turbulent flows. In
fact, although more diffusive, OF may prove to be more robust in approximating dissipation
in turbulent flows. This will be demonstrated in §4.4 on experimental datasets.

As a general conclusion, OF is more diffusive than CC when calculating the step response
to an infinitely thin shear layer but also more robust. In fact, Kernel radii with sizes KR = 4
and KR = 8 outperform results obtained with CC for interrogation windows with dimensions
X = 16. Recalling from §4.2.1 that the cut-off frequency for OF is twice smaller than for
CC, we can conclude that OF can be considered at least as twice more accurate to resolve
velocity gradients if one considers sacrificing a few percents for the precision of the actual
velocity as compared to CC. Next, we consider the effect of both particle concentration and
particle size on the standard deviation of the gradients.

4.2.3 The effect of particle size and particle concentration

A systematic study is now carried out on the effect of particle sizes and particle concentration
on the quality of the gradient statistics. As shown in Kähler, Scharnowski, and Cierpka,
2012, the particle size becomes a concern when the particle size increases beyond a third
of the size of the correlation window for the SRW. Here, we not really are interested in the
mean SRW but in the statistics of the derivatives. Hence, we analyse the standard deviation
of the gradients at y = 0 for both OF and CC for particle sizes dτ = [1,2,3,4,6] and particle
concentrations Cp = [0.1− 2.7]. Fig. 4.4(a) shows variations with respect to Cp while Fig.
4.4(b) reports variations with respect to the particle size dτ , both for a displacement ∆x = 5
pix. For both cases, the standard deviation is nearly constant for OF while decreasing the
interrogation window increases the standard deviation for CC. Also, decreasing the particle
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FIGURE 4.4: Maximum of the standard deviation computed in Fig. 4.3(e,f)
of the shear as a function of both (a) the particle concentration Cp computed
for dτ = 3 pix and (b) the actual particle size dτ for Cp = 2 pix−2. Here the
continuous lines corresponds to the results obtained with CC while dashed

line correspond to OF.

size and particle concentration degrades the quality of the reconstruction for CC while OF
remains essentially insensitive to both parameters.

As a first conclusion, OF provides greater robustness to parameter variations such as
particle size and particle concentration, at least for the parameters investigated in this study,
which is representative of experiments as will be shown in §4.4 and turbulent flow experi-
ments in general.

As a rule of thumb: OF appears be twice more precise when attempting to resolve veloc-
ity gradients but slightly more diffusive when measuring mean displacements from particle
images. The optimal KR should therefore be consistent the actual size of the particles and
independently from the particle concentration. This will be demonstrated from turbulent
measurements computed from both synthetic and real particle image turbulent experiments.

4.3 Two-dimensional turbulent dataset from synthetic images

The dataset used in the present study is available online and provided by Carlier, 2005. It
is a synthetic PIV dataset of a forced, time-resolved HIT flow computed from a DNS in
two dimensions, where particles are seeded without camera noise nor illumination variations.
These therefore correspond to synthetic PIV images from the 4th PIV-Challenge Kähler et al.,
2016. In this dataset, the average particle radius is 2 px while the mean particle concentration
is Cp = 0.014 (px−2).

For CC PIV, an interrogation window of 16 and overlap of 75% was used which provided
the best compromise between accuracy and resolution. In the case of OF, several kernel
radii were considered in order to investigate this interrogation window on the quality of the
reconstruction. snapshots of the velocity fields are shown in figure 4.6(a) for the DNS, 4.6(b)
for the results from OF and in figure 4.6(c) for CC. It is worth noting that the amplitudes
are well measured by both PIV strategies but the border in OF show a lack of resolution as
particles may leave or enter through these locations. Further, the gradients seem to be slightly
smoothed for both OF and CC for this first visual inspection.

The data are also compared with the actual velocities from DNS and the results are shown
for the mean horizontal spectrum in figure 4.5(a), while the compensated spectrum is shown
in 4.5(b). Welche’s method (Stoica and Moses, 2005) was used for the calculation of the
spectra, for which a Hamming window size equal to the full signal length was considered.
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(a) (b) (c)

FIGURE 4.5: Instantaneous velocity field results for the two-dimensional
homogeneous and isotropic turbulence dataset. DNS results (a), OF results

(b), CC PIV results (c).

(a) (b)

FIGURE 4.6: (a) Velocity spectra comparison for the turbulence homoge-
neous isotropic dataset. Comparison with spectra from reference DNS data.
10 iterations and 2 pyramid levels kept for OF calculations. (b) Dissipation
rate comparison for the turbulence homogeneous isotropic dataset. Compar-

ison with spectra from reference DNS data.

Note that here, we make the assumption of a two-dimensional isotropic and homogeneous
flow (Carlier, 2005). In addition, we mention that only 100 snapshots were available for the
comparison for the DNS while 1000 PIV snapshots of particles are provided online, but this
was not an issue in order to compare the results and obtain conclusive remarks.

The present results show that decreasing the KR improves the quality of the velocity
spectrum for OF approach. In fact, the best results are obtained from a KR of dimension
KR = 4 which for the largest to the smallest scales. Note that this KR size is nearly the
size of the particles themselves; this will turn out to be the same for all experiments. The
results for CC begin to depart from the DNS for k ≈ 2.8 rad/pix and a slope of k−2 which
is the point where the filtering effect induced by windowing was predicted. This estimates
therefore remains robust, even for complex flow fields (cf. figure 4.6(b)). In the case of
OF, the departure between the two spectra appears at a lower wavenumber. In particular, the
spectrum no longer displays a slope of k−17/3 but a steeper exponent is found which is an
interesting result in itself. This means that for synthetic data, the noise level is low enough so
that OF is able to either smooth or capture accurate gradients, even for lengthscales where a
spectrum close to k−6. This is also confirmed for the compensated spectrum shown in figure
4.6(b) where for the larger wavenumbers, the compensated energy decreases with increasing
k. Note that both CC and OF predict the peak of dissipation at k = 0.8 which is very close to
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the DNS.
This analysis confirms that the KR necessary to achieve an accurate PIV calculation us-

ing OF is close to the particle size itself, which is 4 times smaller than the needed window
size by CC. Note that here, the concentration is rather high while for the motionless particle
images, the concentration was nearly 2 times lower. Hence, it is important for an accurate
OF reconstruction, to ensure that particles are as small as possible and as dense as possible
in order to accurately measure velocity gradients. Note that this is not the case for CC, where
individual particles must appear individually because of the FFT used for the correlation and
the fact that several particles must be present in the interrogation window. Note also that we
performed CC using direct correlation and both method yield nearly identical results. As a
first rule of thumb, we can therefore conclude that the KR for OF has to be at least twice
smaller than the interrogation window for CC in order to obtain comparable measurements.
Furthermore, the optimal KR used in this benchmark was four times smaller than the interro-
gation window size used in CC, which should lead to a twice more accurate result. However,
the present test case makes it hard to confirm this assertion.

Next, we apply the same technique to experimental images, obtained in the case of a
turbulent flow behind a regular grid and further demonstrate the robustness of OF compared
to CC.

4.4 Benchmarking on experimental results

First it should be noted that the velocity fields presented in the following are obtained without
pre-processing or filtering of the raw images. In addition, sample snapshots of instantaneous
fields are provided as supplementary material with the paper.

In this section, we analyse experimental snapshots ranging from 1.3 Mpx image series
for the first case to 29 Mpx image series for the second test case. We therefore first analyse
the possible loss of quality for the resolution of the particles and in particular, the fact the
defocusing may lead to larger particles.

Kahler et al. Kähler, Scharnowski, and Cierpka, 2012 showed that increasing the magni-
fication may enhance the resolution of the measurements but this is remains essentially true
when the particle is actually resolved bu the pixel of the camera. On the other hand, optical
magnification may lead to detrimental effects, as will be explained later. The particle image
diameter as seen from the camera sensor is related to the particle size but other parameters
such as the optical magnification. Four key effects are described in Kähler, Scharnowski, and
Cierpka, 2012 when particles appear enlarged in the PIV images, as acquired by the optical
sensors and correspond to:

• 1. diffraction at the limited aperture of the objective lens

• 2. defocusing

• 3. lens aberrations

• 4. discretization and quantization of the continuous image signal into a discrete signal
with pixel size S.

In this subsection, we use the same nomenclature as Kähler, Scharnowski, and Cierpka,
2012 to understand which factor lead to the particle size acquired in our experiments. The
enlargement of the particle image due to diffraction and defocusing can be described by the
second and third terms under the square root of the following equation proposed by Olsen
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and Adrian Olsen and Adrian, 2000:

dτ =

√
(M ·dp)

2 +(2.44 · f#(M+ 1)λ )2 +

(
M · z ·Da

s0 + z

)2

(4.7)

where M is the magnification of the imaging system. Here, dp is the particle diameter, f# is
the ratio between the objective lens diameter and the apertures diameter, λ is the wavelength
of the scattered light from the particles, z is the objects distance from the focal plane, Da is
the lens aperture diameter, and s0 the object distance.

The variables used in eq. (4.7) are also summarised in Tab. 4.3. The three terms in the
square root of eq. 4.7 correspond to the geometric, diffraction, and defocusing components.
In macroscopic PIV, as for instance considered in the present study, z is usually 1 to 3 or-
ders of magnitude smaller than s0 for well-aligned optical systems Kähler, Scharnowski, and
Cierpka, 2012. Thus, for a large numerical aperture (small f#) and a wavelength in the range
of visible light, the particle images are smaller than the pixel size S of the camera sensor,
which is typically in the range of 520 µm for the typical CCD cameras used in the present
PIV analysis Hain, Kähler, and Tropea, 2007.

In the present analysis, particles are much smaller than the sensor size for the case of 1.3
Mpx images and the particles diameter dτ ≈ 2± 1px. However, in the case of the 29 Mpx
camera, the sensor size is close to the size of the particle dp ≈ 5µm. However, the lens used
in this experiment was a 50mm lens with aperture f# = 2.8. The distance between the laser
plane and the objective of the camera was 0.5m. The spatial resolution is res = 0.021mm and
the senors gathers 6600 px in the horizontal direction. The size of the sensor was 43.3mm
and the magnification for that particular lens was M = 1, and only the laser plane distance
from the focal plane (z) remains unknown.

Quantity Symbol Unit
Particle diameter dp µm

Particle image diameter dτ px
Particle diameter D px

Dynamic spatial range DSR m/m
Field of view FOV m

F-number f# m/m
Discrete sensor size L px

Optical magnification M m/m
Sensor pixel size S µm/px
Spatial resolution res m

Step response width SRW px
Shift vector components ∆X ,∆Y px

TABLE 4.3: Spectral noise density and estimated standard deviations of
noise.

The wavelength of the laser was 523nm and using these values in eq. (4.7), only the particles
should have appeared with a size of dτ ≈ 2± 1px. However, defocusing induced by hand
manipulations of the lens led to particles with diameter dτ ≈ 12±1px. Nevertheless, it will
be interesting to analyse the effect of defocusing on the quality of the reconstruction using
CC and OF.
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FIGURE 4.7: Grid turbulence experiment sketch. PIV plane and LDV mea-
surement planes. Only u component kept from LDV measurements

4.4.1 Grid-generated turbulence experiment

The experimental grid turbulence data-set was first presented in Mazellier, Danaila, and Re-
nou, 2010, to improve premixed combustion, although no turbulent spectra study was con-
ducted. Nonetheless, the second-order structure function showed that the Kolmogorov spec-
trum could be measured. Experiments were carried out in an open loop vertical wind-tunnel
Mazellier, Danaila, and Renou, 2010. The wind-tunnel cross section was 8x8 cm2. The test-
section was 40cm long and was allowed easy optical access. The turbulence intensity was
0.4% and the inlet free-stream velocity was 3.7 m/s.

In the present experiment, turbulence was generated by perforated plates. Each plate
consisted of a mesh of circular holes of 15 mm diameter each, that spans the entire wind
tunnel. The holes were arranged in a triangular network with a 24.7 mm spacing. Moreover,
the perforation is straight over the entire thickness of the plates and the holes network is
chosen such that the tunnels centre line coincide with a hole centre.

The data-set consisted in 1600 snapshots. Examples of instantaneous spanwise and
streamwise velocity components computed with OF are shown in Fig. 4.8 (a) and (b) re-
spectively. In this data-set, the average particle diameter is dτ = 3.5 px, while the mean
particle concentration is 0.014 px−2.

The spectra of the streamwise component were calculated on the streamwise profile along
the x axis in the middle of the snapshots (z = 0.03) and compared with spectra from time-
series in the same profile. Two positions were used for the LDV probe: x = 0.85 and x = 1.19
in the mid-channel plane as shown in Fig. 4.7. Welche’s method Stoica and Moses, 2005 was
again used for the calculation of the spectra, for which a Hamming window size equal to the
full signal length was consistently chosen. The spectra analysis results for various KR and
interrogation windows are presented in Fig. 4.9. Interestingly, the results are quite similar
when the interrogation window of CC is equal to twice the KR of OF. Nonetheless, only the
case of OF with KR = 8 allows for capturing the LDV measurements up to k = 5000 (rad/m)
and the onset of the Kolmogorov subrange. On the other hand, CC-PIV gave best results
with an optimal IW X = 16. The maximum wavelength with good agreement compared
to the LDV measurements is around k = 2000 (rad/m). In this test case, CC is not able to
capture the Kolmogorov lengthscale.
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(a) (b)

FIGURE 4.8: Instantaneous fields of wind tunnel grid turbulence experi-
ment. (a) Spanwise and (b) streamwise velocity components left and right
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FIGURE 4.9: Time-averaged velocity spectra of the streamwise component
in a streamwise profile in the centre of the field, compared with LDV mea-
surements spectra in 2 streamwise positions x = 0.85 and x = 1.19. Different
KR and interrogation windows are tested for OF and CC PIV respectively.
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(a)

(b)

FIGURE 4.10: Instantaneous velocity magnitude (V =
√

u2 + v2) computed
using OF with KR = 18 (top,a) and using CC PIV with X = Y = 32 (bot-
tom,b). The black vertical line corresponds to the spanwise profile used to
compute the spectra at (x = 3h). The blue dot shows the position of the

hot-wire probe at x = 3h.
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FIGURE 4.11: Velocity spectra comparison for D-shaped turbulent wake
flow. Comparison of different OF and PIV parameters with the hot-wire

spectrum (in black).

4.4.2 D-Shaped bluff body turbulent wake

The last application considers the near wake of a D-Shaped bluff body. The Reynolds number
is ReH = U∞×H

ν ≈ 53000, where the body height H = 4 cm, the free-stream velocity U∞ =
20 m.s−1 and the kinematic viscosity of air is ν = 15×10−6 m2.s−1. Using a high-definition
29 Mpx CCD camera our objective is to resolve scales from the integral lengthscale down to
the viscous sub-range.

The experiment setup and validation of the data are fully detailed in Shanmughan et al.,
2020. In the present paper, we analyse a novel dataset consisting of zoomed-in snapshots of
the flow in the near wake at x/H = [0,3.5] and y/H =±1.125 with a resolution of 6600 px in
the horizontal/streamwise direction x and 4400 px in the vertical/normal direction y. Sample
snapshots are shown in Fig. 4.10(a) for OF and Fig. 4.10(b) using CC where clear differences
can already be noticed.

In addition, hot-wire measurements have been carried out at y/H = 0.5 and at x = 3H
in order to compare the spectra of turbulence, similarly to the case of the grid turbulence.
This position corresponds to half the maximum of the mean streamwise velocity profile. The
acquisition of the hot-wire was performed at 80 kHz.

The low-speed wind tunnel cross section is 500 mm x 500mm and is approximately 2000
mm long. The D-shaped model has a cylindrical nose of diameter 40 mm, streamwise and
spanwise aspect ratios of 4 and 12.5, respectively. The model was 3-D printed and installed
at approximately 14H from the inlet of the test section.

The background turbulence level in the test section was measured using the hot-wire
anemometer and found to be less than 0.5%. The flow seeded with olive-oil droplets was
illuminated by a double-pulsed Nd:YAG laser with a pulse delay short enough to limit the
in-plane movement to a quarter of the interrogation window size. 5000 image pairs were
acquired at a rate of 0.825 Hz, sufficiently separated in time to recover time-uncorrelated
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data sets to obtain turbulent quantities. The ImperX BOBCAT 6620 CCD PIV cameras was
synchronised with the laser using a TSI LaserPulse Synchronizer Model 610036, with a
delay of 11 µs between each laser pulse while a laser engraved checker board was used for
the spatial calibration. Images were acquired with 12 bit-depth resolution. The KAI-29050
sensor is 43.3 mm in size which provides a resolution of 6.5µm per pixel which is close to
the size of the olive-oil droplets used to seed the flow.

Because of the defocusing introduced by hand-manipulation of the lens, the average par-
ticle image diameter is dτ ≈ 6px while the mean particle concentration is 0.004 (px−2). Re-
garding OF parameters, a KR of 9 and 18 px was tested. For CC PIV, an interrogation window
with dimensions X =Y = 32 and X =Y = 16 and an overlap of 50% was used. An overlap of
75% was also tested but provided worse results for the velocity gradients. Welche’s method
(Stoica and Moses, 2005) was used once again for the calculation of the spectra, for which a
Hamming window size equal to the full signal length was always chosen. Variables are made
dimensionless using the free-stream velocity U∞ and the height of the body H.

The different spectra are presented in Fig. 4.11. We can observe that for such large
particles, a KR 3 times bigger than the particle diameter dτ gives optimal results for OF.
The best CC PIV spectrum results were obtained for IW 32 and 64. IW of 16 failed to
give satisfying results for such large particles. In any case, the CC PIV fits with the hot-wire
spectrum with a cut-off wavenumber of k = 200 whereas OF shows excellent agreement up to
wavelengths around k = 1500. This can be explained with the gradient calculation robustness
of OF, for data-sets with low concentration Cp and large particle diameter dτ .

4.5 Conclusions

A rigorous comparison between OF velocimetry and CC PIV has been presented, down to
sub-Kolmogorov turbulent scales and for various PIV image parameters (particle concen-
tration and size). The performances of OF and CC-PIV have been evaluated on various
test cases, from still images, step displacement of synthetic images, 2D isotropic turbulence
and finally two experimental challenging turbulent flows (grid-generated turbulence and a
D-shaped bluff-body turbulent wake).

No-motion velocity fields show that OF and CC provides the same results in terms of
noise and transfer function guided by the window size, as shown in Foucault et al. Foucaut,
Carlier, and Stanislas, 2004. CC provides a lower noise level than OF and a twice higher
frequency cut-off for the gradient. Analysing the step-response, we have shown that OF is
indeed less accurate and more diffusive, but resolves better the gradients (std(dU/dy) was
found twice lower for OF than for CC). Step-motion tests showed that CC and OF behave
differently when varying KR and IW compared with the effective particle size dτ and the
particle concentration Cp. OF appears more consistent, keeping lower errors for a wider
range of image parameters.

Application to HIT from synthetic images confirms the same trend: OF is more diffusive
but more accurate in the spectrum. The grid turbulence experimental data-set showed the
same trend down to Kolmogorov length scales: OF is more diffusive but lower KR allows for
resolving nearly the entire range of scales. The application to the case of a turbulent wake
showed that sub-Kolmogorov spectrum is recovered using OF but not using CC.

Considering all the tested cases, we can conclude that CC PIV can be more precise than
OF based on pure velocity calculations. However, OF’s diffusion decreases the variance
of the velocity gradients. This proves to be a critical advantage when PIV is applied to
experimental turbulent flows, with windows nearly the size of the particles. OF is therefore
more relevant to study such flows when the camera sensor is able to resolve enough particles
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and achieving viscous sub-range resolution. This result opens new alleys to study the effect
of small-scale turbulence in high-Reynolds number turbulent flows.
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Chapter 5

A rapid PIV system development

5.1 Algorithm integration in software platform of Eyemotion

An intense collaboration with the industrial partner Photon Lines, and particular its R&D
team was carried out to implement the algorithms of PMMH lab in the software tools of
Photon Lines. Photon Lines has developed the software called Eyemotion; Eyemotion is a
native code image acquisition software containing a large variety of built-in offline and online
(real-time during acquisition) image processing tools like image compression, binarisation,
convolution, image cropping, Roberts/Sobel filters. It is compatible with a large variety of
cameras (PCO, BASLER, Zylon, to name a few).

Previous to the thesis, the OF algorithm had been integrated in the form of dynamic
library, and was operated in the laboratory of PMMH inside the graphics programming envi-
ronment of Labview for a number of years (Gautier, 2014). A development using OPENCV
and Microsoft Visual Studio was performed to integrate the OF algorithm of the lab inside the
software platform Eyemotion of Photon Lines: A common server was setup and accessed by
both the author and company engineers in order to have optimal and safe version verification
during the debugging and development period. A light benchmarking tool of the algorithm
was developed in order to fast check different GPU performances in different machines. The
API calls and memory handling of the external functions of the algorithmic core were opti-
mised. A new option has been added in order to save real-time the velocity fields and not the
images. This option will save around 50 % of hard disk space, for experiments where saving
the images is not needed.

The algorithm performance was analyzed using the NVIDIA Visual Profiler, in order to
find and optimize the most computationally costly functions. A time-line of all the functions
called can be visualised, together with the FLOPs (Floating Point Operations per second)
and bandwidth performances as seen in a screenshot in figure 5.1. It was found that around
50% of the computational time consisted in calls of the convolution function. An optimal
library from NVIDIA is used for this function in order to divide calculations of convolution
in row and column form. It was verified moreover that the GPU cores occupancy during
these function calls is the maximum possible; as seen in figure 5.2 we can see that we reach
a satisfying occupancy of more than 80 % (the theoretical maximum occupancy can almost
never be achieved practically). The computational speed was around 30 Mb/s of calculation
performance for 1 Mp images; a rigorous study on performance using various images and
hardware components is presented in section 5.3.

5.2 Graphics User Interface design

A full GUI design for the PIV interface inside the software of Eyemotion was performed,
regarding colorbars, vector plots, and visualisation windows, in the same line as other com-
mercial PIV products. Four windows were created. The image acquisition window, the PIV
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FIGURE 5.1: NVIDIA Visual Profiler analysis of a single displacement field
calculation using OF. Convolution functions occupying more than 40 % of

computational time.

FIGURE 5.2: Occupancy test of GTX 1070 GPU during a velocity field
calculation using the NVIDIA Visual Profiler.A satisfying GPU occupancy

of more than 80 % observed.

parameters window, the 2D plotting window and the 1D plotting window. In the image ac-
quisition window all the tools of real-time image processing (like filters and cropping) are
integrated and can be performed in parallel with the PIV plugin. In the PIV parameters win-
dow, a choice is given to the user to visualise velocity components or magnitudes, with or
without colours and with or without vectors. The density and size of the vectors is modifi-
able by the user, although an optimal default proposal is proposed by the software. In the 2D
plotting window we can visualise different 2D variables derived by the velocity calculations.
The 2D recirculation area, swirling strength and Q-criterion as well as the mean fields and
fluctuation kinetic energy was included. A screenshot of the GUI can be seen in figure 5.3.
In the 1D plotting window we included the visualisation of all scalar variables derived by
the velocity: The total recirculation area, the swirling strength and Q criteria calculated in a
window as well as the mean velocity value. The velocity profile along a line defined by the
user can be plotted in the same window.

A multi-GPU option, was also integrated and is currently being tested in order to reduce
the computational time. A window was integrated showing the list of the available NVIDIA
GPUs in the workstation; the user, can select the number of GPUs he wants to use for the
calculation in the window GPU, as seen in figure 5.3. When more than one GPUs is selected,
the image is divided in 2 parts and each GPU calculates the displacements for each one. An
optimal overlapping of the 2 parts of the images is selected in order to correctly reconstruct
the full field after the calculations in the separate GPUs is performed. Tests are currently
underway to test if this methodology reduces the computational time.
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FIGURE 5.3: Screenshot of the designed GUI for the PIV plugin, inte-
grated inside the software Eyemotion of SeeFast Technologies (PhotonLines,

2021). Backward-facing step flow velocity magnitude at Reh = 2700.
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FIGURE 5.4: Number of iterations, introduced error and fields per second
sensitivity study for 4.2 Mpixel PIV images using the RTX 2070 NVIDIA

GPU.

5.3 Speed performance measurements

There are three main parameters that affect the computation time of the present OF algorithm:
the image size and depth, and the number of Gauss-Newton iterations to converge. The
number of the maximum iterations of the OF algorithm can be selected by the user and has
been rigorously studied in Gautier, 2014. Results using the recent GPU RTX 2070 various
number of iterations are presented in 5.4; we mention that the standard number of iterations
for the solution of the displacement to converge is 5-7, but keeping a number of iterations as
low as 2 can double the computational, speed introducing only a 5 % error. In the case of
closed-loop control experiments though, where PIV is used as a sensor, these errors can be
negligible, as was seen in Gautier and Aider, 2014.

The image size and depth is also crucial for the computational speed, as shown in figure
5.5. Images up to 30 Mp have been tested. For real-time control experiments, where rapid
calculations are needed (Gautier and Aider, 2014), an 8 bit camera sensor can be used; with
as many as 3 iterations and a 1 Mp size sensor we can reach more than 100 fields per second
of real-time calculation, which is to our knowledge the fastest PIV setup presented. This
presents a real opportunity for visual sensors to be used in control experiments and is to our
knowledge the fastest PIV algorithm worldwide today.

Last but not least, each NVIDIA GPU generation includes various ameliorations (apart
from the clock speed and bandwidth that play and important role). Various GPUs have been
tested, showing better results for the newer generations, but without clear answer on which
GPU specification is the most important so far. Results of testing of 3 GPUs in the same
workstation (Windows 10, 64 bit, 64 Gb RAM and AMD EPYC 7302P 16-Core Processor
CPU at 3 GHz) are presented in figure 5.6 for a set of 16 bit images. Further investigation of
GPU comparisons are underway; they will shed more light on which GPU specifications are
most important for the OF algorithm and how to optimise the hardware setup.

5.4 Speed and disk occupancy comparisons with Cross-Correlation
PIV

The computation and saving time performance with a standard commercial CC PIV solution
was performed in the same 64bit workstation; a Precision 7920 Dell tower with an Intel
Xeon GOld 5120 CPU @ 2.2 Ghz and 128Gb RAM. Standard 1 Mp PIV images with 12bit



5.4. Speed and disk occupancy comparisons with Cross-Correlation PIV 45

FIGURE 5.5: Influence of image depth and size and number of Gauss-
newton iterations on the computational speed. Calculations performed on

the NVIDIA RTX 2070.

FIGURE 5.6: Fields per second calculated for different image sizes and 7
iterations. 3 different GPUs tested in the same workstation.

OF CC PIV
Mb saved field/Mb image 213 23
Mb saved field/vector 7.8e-6 4.8e-6
Mb saved total(image+field)/ vector /image 5.33E-06 1.01E-05
s/field calculated +saved 0.03 1.8
s/vector calculated +saved 1.16E-07 4.4E-05

TABLE 5.1: OF vs CC PIV comparison for overlap of 87.5%. Calculation
speed and disk space occupancy.
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OF CC PIV
Mb saved field/Mb image 15.1 31.3
Mb saved field/vector 1.4 e-5 4.2e-5
Mb saved total(image+field)/ vector /image 1.4e-5 4.2 e-5
s/field calculated +saved 1.25 14.7
s/vector calculated +saved 1.3e-6 2.3e-5

TABLE 5.2: OF vs CC PIV comparison for overlap of 50%. Calculation
speed and disk space occupancy.

image depth visualised in figure 5.3 were used. The workstation was equipped with a CUDA-
enabled GTX 1080 GPU; both algorithms made use of the GPU for parallel calculations. The
CC PIV algorithm tested in this section is the commercial software DaVis 10 from Lavision
(LaVision, 2021). Furthermore, the disk occupancy was compared as well. We mention
that in Eyemotion, we save the fields in a tif format, whereas DaVis has its proper saving
format in a MATLAB structure form (pivmat). The author would like to thank Tao Liu for
the post-processing of the results using DaVis 10.

The results for a standard parameter set (size of IW = 12, 50% overlap, 512x480 image
size) showed the following the results presented in table 5.1. OF was faster 60 times and
occupied 10 times less disk space as well, which verifies previous findings in a similar com-
parison with state-of-the-art CC PIV algorithms by Champagnat et al., 2011. For a dense
field calculation from CC PIV ( overlap of 87.5% image size 2016x480, 12 bit image) the
comparison showed one order of magnitude difference in calculation. The space occupancy
was twice larger for CCPIV as well. Result are presented in table 5.2.

5.5 Hardware part of the PIV system: integration and perspec-
tives

The hardware of the designed PIV system consists of a fast camera, a pulsating or continuous
laser (depending on the PIV application), and of course a powerful workstation with a CUDA-
enabled GPU. The choice of the GPU is very important. Strong hints revealed in the NVIDIA
Visual Profiler analysis (see figure 5.1, suggest that the L-K iterative OF algorithm is mostly a
memory-bound application, due to the multiple need of each pixel In the convolution during
Gaussian blurring for each pixel. A memory-bound application is a code where memory
access is what is slowing down the calculation (in our case GPU memory). Hence GPU
bandwidth could be more important than the concurrent threads per streaming multiprocessor
(which is proportional to the number of cores). Further investigation of GPU specifications
comparisons in the same workstation are currently underway to shed more light. We mention
that for compute-bound kernels, the register count typically limits the number of concurrent
threads per SM. The laboratory is equipped with various NVIDIA GPUs that are currently
being tested: the TESLA K80, RTX 2070, the GTX 1070, GEforce560, and more recently
the RTX 2080 Ti and the RTX 3090.

In figure 5.1 we can see the timeline of a single velocity field calculation. Each function
calling is displayed together with its computational time on the left. The separable convolu-
tion function is called more than 100 times and in total consists of more than 45 % of the total
computational time. The convolution function is called during Gaussian blurring, and can be
done fully in parallel in an FPGA card. This is one of the long-term strategies of the product
development, to transfer the algorithm in FPGA language, which would possibly reduce the
computational time since the convolution function is ideally parallelizable in an FPGA card.
This study though is beyond the scope of this thesis. The transfer of the matrices from host
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(meaning the RAM) to device (meaning the memory of the GPU) was found less than 10
% of the total calculation time and is considered to be eliminated with the unified memory
architecture that will be implemented in NVIDIA hardware the next years. The concept of
Unified Memory consists in a single memory address space accessible from any processor
in a system. The hardware long-term plans of NVIDIA regarding this idea are to install an
embarked CPU processor on the GPU card so that no time is wasted in the transfers with
motherboard buses.

5.5.1 RAID 0 disk implementation

A new workstation was dimensionalized in order for the motherboard to be able to host mul-
tiple GPUs together with a PCI or PCI express camera frame grabber. The timeline of a real-
time calculation can be thought as a series of actions of image acquisition, field calculation-
field or scalar velocity-derived variable calculation and result saving. A simple schema can
be found in figure 5.9. It is often seen that the slowest part of the system can be the saving
part in the disk, especially for large images. For this reason a RAID 0 implementation was
applied in our workstation; A RAID 0 disk configuration means that when we save a file, it is
divided in pieces to be saved at the same time in 2 different disks. That way the writing speed
is usually doubled. On the other hand, if one of the 2 disks is faulty then we result in losing
all the information, because each file is incremented in pieces during the saving process. In
the new workstation the RAID 0 system was tested with extremely satisfying speed results,
as presented below: With no RAID 0, on an SSD the writing speed was 299.46 Mo/s. In-
cluding the RAID 0 setup on latest generation SSDs the writing speed was tested to be more
than quadruple, 1336.5 Mb/s. we mention nonetheless that the developed software, Eyemo-
tion, does not work serially in the acquisition and calculation sequence and has a confidential
buffering system to maximize image acquisition and processing flow. Moreover, the option
for the user to save in real-time only the velocity fields and not the images was integrated.
This solution can be crucial when acquiring large images and can save up to 50 % of hard
disk space, for experiments where saving the images is not needed.

5.6 A real-time PIV system

As reported very early by Champagnat et al., 2011, the presented OF algorithm, when im-
plemented in CUDA functions, gives the opportunity of a 50x faster computational time than
other state-of-the-art PIV algorithms. A real-time PIV system of this algorithm was first
adapted by Gautier and Aider, 2013 in the laboratory of PMMH and is to our knowledge the
fasted PIV system today, with a speed of more than 100 fields per second as presented in
figure 5.5 in the previous chapter.

This extremely small computational time can not only give the user real-time feedback
when he is setting up experimental parameters like Kernel Radius window size, acquisition
frequency, maximum particle displacement and number of field to converge to a mean flow,
but also give access to further real-time calculations of velocity-derived variables as well,
like the recirculation area of a wake or the swirling strength vortex identification criteria.
Such post-PIV calculations have already been used as sensors for closed-loop flow control
experiments, while the OF algorithm was implemented in the software environment of Lab-
view (Gautier and Aider, 2013; Gautier and Aider, 2014). The above real-time PIV system
was integrated in the software of Eyemotion, since the latter gives access to optimized data
flow, more simultaneous image processing tools and is compatible with a larger variety of
cameras. The user has a variety of post-velocity variables to chose as sensor signals, like
recirculation area, vortex identification criteria, fluctuation kinetic energy and more as seen
in figure 5.8. A Region Of Interest can also be defined inside the software to restrict the
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FIGURE 5.7: Real-time experimental setup of the laboratory: a rapid PIV
software, synchronising fast camera and pulsating laser for real-time velocity
calculations and closed-loop control experiments (Gautier and Aider, 2014).

sensor and velocity calculations in a specialised region of the field. Furthermore, an option
is integrated in order to generate actuation signals in a closed-loop form inside the software,
according to velocity-derived sensors. The system to generate signals for actuators was suc-
cessfully tested, using the electropneumatic actuators SMC ITV 1010. This option can give
the opportunity to perform optimally closed-loop flow control experiments, based on the vi-
sual sensors coming from PIV calculations. A full schematic of the elements such a PIV
system with an actuator reaction mode integrated is presented in figure 5.7. A communica-
tion module between MATLAB and Eyemotion was also integrated, giving the chance to the
user to run MATLAB scripts while acquiring images.

As seen in figure 5.9, 2 PIV modes were integrated: pulsating (used mostly in wind-
tunnels) and continuous laser (for use mostly in hydrodynamic channels). In the second case,
no need for synchronisation with the laser is needed. We mention though that in the software
Eyemotion, the sequence of image acquisition and field calculation is not done in a serial
master-slave architecture as seen in the figure 5.9, rather than with a parallelized way using a
spacial buffering system; this maximises the data flow. More details cannot be discussed due
to confidentiality. The camera-laser synchronisation was tested successfully, using a double
cavity laser by Quantel-BigSkylaser.
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FIGURE 5.8: 2D instantaneous velocity-derived variables list available.

FIGURE 5.9: Sequence diagrams of laser pulse, image acquisition, and field
computation.
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Chapter 6

Acceleration and pressure
reconstruction from
non-time-resolved particle image
velocimetry: Application to turbulent
flows

The content of this chapter is based on the article: A.Giannopoulos, P.-Y.Passaggia, N.Mazellier,
A. Kourta, J.L.Aider, Acceleration and pressure reconstruction from non-time-resolved par-
ticle image velocimetry: application to turbulent flows, to be submitted in Physical Review
Fluids, 2021

The present chapter investigates the algorithmic approach to compute acceleration and
pressure from single-snapshot Particle Image Velocimetry (PIV), based on Optical Flow
(OF). Regarding the pressure reconstruction methodology is based on the recent work of
Passaggia et al. (2020). Regarding the acceleration term, we describe a method structured
on second-order finite differences and use the vorticity-streamfunction formulation to ex-
clude the pressure term and estimate the local acceleration only from an image pair. The
acceleration term is then used to estimate pressure in the two-dimensional plane; a quite sat-
isfying agreement is observed for Direct Numerical Simulation data and synthetic particle
images processed with the OF method in the case of two-dimensional homogeneous turbu-
lence. Then, we consider the mean Turbulent Kinetic Energy (TKE) budget in the near wake
of a bluff body at Re = 5×104 and show that all the terms can be accurately estimated using
an isotropy assumption. Using highly-resolved PIV measurements in the wake, we are able
to recover the pressure spectra as well as the mean pressure-velocity contribution in the en-
ergy budget, and provide an accurate estimate of the mean dissipation. More importantly, we
show that the pressure-correlation term plays a dominant role in the turbulence kinetic energy
budget when analysing the recirculation region area. The present method naturally extends to
non-time resolved three-dimensional tomographic measurements where all the components
to estimate pressure are readily available.

6.1 Introduction

Particle Image Velocimetry (PIV) is an important non-intrusive experimental technique widely
used for almost 40 years in fluid dynamics research and the industry for velocity field mea-
surements (Stanislas, Okamoto, and hler, 2003). Pressure measurement from non-intrusive
sensors plays a key role in various applications like fluid-structure interaction, compressible
and stratified flows and pipeline monitoring (Sadeghioon et al., 2014; Elsinga et al., 2004;
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Rapaka, Gayen, and Sarkar, 2013). An effort to use PIV as such a indirect pressure sen-
sor have been made in the past. In wave experiments, Jensen and Pedersen, 2004 used PIV
to determine the acceleration and pressure term, and Koengeter, 1999 investigated the pres-
sure variations in vortical structures occurring in the shear layer behind a surface mounted
obstacle. Kindere et al., 2019 relied on Taylor’s hypothesis to determine the pressure in a
non-time-resolved turbulent boundary layer PIV experiment ; a review of such efforts can
be found in (Oudheusden, 2013). Recently, a method to obtain instantaneous measurements
of pressure and wave flux in stratified incompressible flows were presented for the first time
using combined time-resolved PIV and Synthetic Schlieren (SS) (Passaggia et al., 2020).
Only PIV alone was shown to work only in limited cases and the best results were achieved
combining SS and PIV to calculate pressure. Results were validated against direct numerical
simulations for internal waves focusing above a three-dimensional Gaussian ring.

One of the key quantity to estimate instantaneous pressure from PIV comes from the
ability to measure highly accurate time derivatives of the velocity, thereby, the acceleration of
the fluid. To this end, triple- and quadruple-pulse PIV experiments were designed, but most
authors outlined the difficulty to measure accurate accelerations from such measurements
(Ding et al., 2013; Westerweel, Elsinga, and Adrian, 2013). Kurtulus, Scarano, and David,
2007 calculated acceleration from time-resolved PIV measurements using finite differences
in the case of a square cylinder flow, but in fact, using finite differences to estimate time
derivatives inherently introduces noise, which is particularly hard to control or minimise.

On the other hand, instantaneous pressure measurements is key to turbulent-flows analy-
sis, and in particular, to compute time-averaged budgets of coherent and fluctuating quanti-
ties. In this paper, we propose a novel approach to compute acceleration and pressure from
single two-dimensional-two component PIV snapshot. More precisely, we use the vortic-
ity equation and the streamfunction to obtain an estimate of the temporal derivative. This
quasi two-dimensional method is validated on time-resolved synthetic PIV images computed
from a two-dimensional direct numerical simulation of turbulence. The same method is
then applied to the TKE budget in the recirculation region of a turbulent flow behind a two-
dimensional D-shaped bluff body where PIV is calculated using the OF method. Using the
isotropy assumption for the missing terms, we show that the turbulence kinetic energy is ac-
curately predicted everywhere locally. The present method is also more accurate than using
the frozen Taylor’s hypothesis to estimate acceleration, in particular for regions where the
mean velocity is close to zero. These measurements are combined with instantaneous pres-
sure measurements which finally allows for an accurate estimation of the dissipation in the
wake which is validated using direct measurements from PIV.

The chapter is structured as follows; section 6.2.3 details the methodology to estimate
acceleration and pressure from instantaneous velocity measurements. The method is first
validated in section 6.3 on the synthetic dataset of two-dimensional homogeneous isotropic
turbulence (HIT), by comparing with the corresponding DNS data. The same technique is
then applied to the flow in the wake of a bluff body in section 6.4; further validation will
regard the TKE budget calculation, using direct high-resolution PIV measurements and a
global budget in the control volume available. Conclusions and perspectives are given in
section 6.5.

6.2 Acceleration and pressure from a single PIV snapshot

6.2.1 Projection onto a divergence-free field

The present model-based approach to estimate the temporal derivative from a single snap-
shot requires certain constraints on the velocity field. We begin with the definition of the
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streamfunction ψ which reads
∇2ψ = −ω , (6.1)

where ω is the vorticity vector defined as ω = ∇×u, u(x,y,z, t) is the velocity vector u =
(u,v,w), ∇ = [∂x,∂y,∂z] is the gradient operator, and ∇2 is the Laplacian ∇2 = [∂xx,∂yy,∂zz].
Solving equation (6.1) for ψ provides the solution to the Helmholtz equation with non-
homogeneous Neumann boundary conditions (∇×ψ) · n = u · n. In the two-dimensional
case, in the (x,y) plane, the vorticity and the streamfunction simplify to scalar equations of
the form

∇2ψz = −ωz, with boundary conditions, ∂xψz = −v and ∂yψz = u. (6.2)

In the case where the flow is expected to be two-dimensional, equation (6.2) provides a basis
to obtain the temporal derivative from the vorticity equation without approximation. In the
case of three-dimensional data, equation (6.1) has to be solved which is not a trivial task be-
cause of boundary conditions. In what follows, we will be only solving the two-dimensional
problem in the case of two-dimensional synthetic data. In the case of a three-dimensional
flow in a two-dimensional plane, as for turbulent flows in a 2D plane, we will have to pro-
ceed with approximations to the vorticity equation to estimate the temporal derivative.

6.2.2 A quasi two-dimensional approximation to the time-derivative

Assuming that the quality of the PIV data is sufficient to resolve all the details of the flow, we
propose an approach to calculate the temporal derivative of the velocity using a single snap-
shot of PIV. Note that the problem arising from unresolved spatial scales is left for future
work. Making the approximation that the flow is essentially driven by its two-dimensional
dynamics, the vorticity equation can be used to estimate the temporal derivative of the vor-
ticity in the z direction. The vorticity equation in vector form yields

Dω
Dt

= (ω ·∇)u+ν∇2ω . (6.3)

and reduces to
Dω
Dt

= ν∇2ω , (6.4)

in the two-dimensional case. In the present analysis, we are restricted to the streamwise and
normal velocity components (u,v) and the only contribution of the vorticity is ωz = ∂xv−∂yu.
While this is not an issue for two-dimensional flows where all components of the flow to solve
equation (6.4), The three-dimensional case is more challenging.

For instance, in a strongly turbulent flow, where viscosity is small compared to the other
terms, the vorticity equation in the (x,y) plane writes

∂ωz

∂ t
= −u

∂ωz

∂x
− v

∂ωz

∂y
−w

∂ωz

∂ z
+ωx

∂w
∂x

+ωy
∂w
∂y

+ωz
∂w
∂ z

. (6.5)

where the last term is the vortex stretching term component arising from the three-dimensional
nature of the flow and the two other production terms correspond to the vortex turning terms.

However, the only terms that can be directly estimated from equation (6.3) for the two
velocity components (u,v) in the (x,y) plane are

∂ωz

∂ t
= −u

∂ωz

∂x
− v

∂ωz

∂y
+ωz

∂w
∂ z

. (6.6)
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Furthermore, using the divergence condition (∇ ·u = 0), we can rewrite the above as

∂ω
∂ t

= −u
∂ωz

∂x
− v

∂ωz

∂y
−ωz

(
∂u
∂x

+
∂v
∂y

)
. (6.7)

Although several terms have been omitted in order to obtain equation (6.7), the latter al-
lows for obtaining a two-dimensional estimate of the temporal derivative term computing the
stream function ψ , defined as (u,v) = ∇×ψ . The problem to solve in order to estimate the
temporal derivative writes

∂
∂ t

(u,−v) = ∇× ∂ψ
∂ t

= −∇×∇−2
(

u
∂ωz

∂x
+ v

∂ωz

∂y
+ωz

(
∂u
∂x

+
∂v
∂y

))
. (6.8)

The first two terms on the right-hand-side of (6.8), in the parenthesis, are the advection
terms while the third term is the vortex stretching term. There are therefore 3 terms missing
here in the case of a three-dimensional flow for the out-of-plane vorticity ωz: the out-of-
plane advection term w(∂ωz/∂ z), the two vortex turning terms ωz(∂u/∂ z) and ωz(∂v/∂ z).
Introducing the mean and fluctuation such that

u(x, t) = U(x)+u′(x, t) and ωz(x, t) = Ωz(x)+ω ′
z(x, t) (6.9)

where U and Ωz are the temporal mean while u′ and ω ′
z are the perturbations of the velocity

and the vorticity respectively, we could estimate the right-hand side of (6.8) as to approximate
the acceleration as:

∂ψ
∂ t

= −∇−2

[(
U
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z
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z
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(
∂u′
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∂v′
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(6.10)

Non-homogeneous Neumann-type boundary conditions are given by ∂v/∂ t =−(∂ 2ψ)/(∂ t∂x)
and ∂u/∂ t = (∂ψ)/(∂ t∂y). However, the temporal derivative of the velocity is not mea-
sured at the boundary and is therefore remains an unknown in the present analysis. An
alternative way to estimate the temporal derivative is to use Taylor’s frozen hypothesis which
writes

∂ψ
∂ t

≈ ((U ·∇)ψ) ·n, (6.11)

where U is the time-averaged solution. One could have argued that Taylor’s frozen hypothesis
derivative could have been used to estimate the temporal derivative solely based on equation
(6.11). Although this assumption seems valid at first, it is not providing realistic temporal
derivatives in regions where the mean flow U is small. This is particularly true, for instance
in a recirculation region where there exists region where U = 0, that is at the tip of the
recirculation region and at the centre of the vortices. Using equation (6.11), the temporal
derivative would be null which is incorrect. Instead, the strategy proposed in (6.8) contains a
lot more information and could allow for tackling complex flow regions such as recirculation
regions. Nevertheless, we use Taylor’s frozen condition to estimate the boundary conditions
for (6.8) such that

∂
∂y

∂ψ
∂ t

=
∂u
∂ t

≈V
∂u
∂y

and − ∂
∂x

∂ψ
∂ t

=
∂v
∂ t

≈U
∂v
∂x

, (6.12)

Since we do not have access to the temporal derivative at the boundary. Note that when
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the mean flow is null, as for instance in the case of homogeneous and isotropic turbulence
dataset, homogeneous zero-Neumann type boundary conditions can be considered.

6.2.3 Pressure reconstruction methodology

Pressure estimation in PIV has remained challenging, since acceleration is required in or-
der to obtain an accurate estimation. However, measuring acceleration has remained an ex-
tremely challenging task in practice since it is particularly hard to measure acceleration from
dense particle images. Depending on how the Poisson problem for the pressure is formulated,
acceleration necessarily enters in the equations as

∇p = −∂tu− (u ·∇)u+ν∇2u, (6.13)

which can be solved in two directions using a least squares to compute p(x, t) or formulated
as a Poisson problem as

∇2 p = −∇ · ((u ·∇)u) , (6.14)

with non-homogeneous Neumann boundary conditions

∇p ·n =
(
−∂tu− (u ·∇)u+ν∇2u

)
·n, (6.15)

where n is the normal vector to the boundary. In fact, the only way to get rid from the tem-
poral derivative when computing pressure in a turbulent flow is to consider a fully periodic
domain (i.e. together with periodic data) where periodicity naturally eliminates the bound-
ary conditions. The later will be compared with calculations using boundary conditions to
evaluate the quality of the prediction of the pressure solving either (6.13) in the least squares
sense or the Poisson problem (6.14)-(6.15).

To solve (6.13) with a least-squares approach, we rely on the gradient field calculation,
followed by the pressure gradient term calculation. The differentiation matrices are centred
second-order stencils on a regular grid. The regularised least-squares Gradient-to-Surface
Tikhonov method is then applied to calculate the pressure term (Harker and O’Leary, 2013).
The order of the Tikhonov method was chosen equal to 2 and the parameter λ was chosen
after a parametric study as λ = 0.02 . Once the instantaneous pressure field is calculated, the
first mode of the pressure term, the mean pressure is subtracted in the case of homogeneous
and isotropic turbulence or estimated using a local pressure sensor. For the Poisson solver,
we use the same method as Passaggia et al. (2020). Note that both the Poisson solver and the
least squares solver were validated in their study on the focusing of internal waves on both
time-resolved synthetic Schlieren and PIV.

6.2.4 Particle Image Velocimetry with Optical Flow

The OF algorithm tested in the present study is a dense, multi-pyramid Lukas-Kanade Optical
Flow algorithm. The first version of the code has been developed at ONERA (Champagnat et
al., 2011) and later modified, optimized and adapted to the constraints of real-time measure-
ments by Gautier and Aider, 2015b. The advantage of this algorithm compared to a standard
FFT-PIV algorithm is its high computational speed when implemented on GPUs with CUDA
functions; it has been proved to be around 50 times faster than state-of the art PIV software
(C.Pan et al., 2015; Champagnat et al., 2011). The algorithm consists in estimating at each
pixel m the intensity displacement which minimises the sum of square differences between
the intensity over a warped interrogation window (IW) of size equal to the Kernel radius (KR)
at time t and the intensity over the warped IW at time t ′ = t + dt. The code has been used
numerous times both for time-resolved PIV measurements (Varon et al., 2017), as well as for
flow control experiments (Gautier and Aider, 2013; Gautier, 2014; Gautier and Aider, 2015a;
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FIGURE 6.1: Instantaneous fluctuation velocity field results for the HIT
dataset, DNS (a) and OF (b). Instantaneous divergence fields comparisons,

DNS (c), and OF with KR=8 (d).

Varon et al., 2019). The same algorithm was used by Davoust, Jacquin, and Leclaire, 2012;
Sartor, Losfeld, and Bur, 2012 to fast post-process their snapshots for a turbulence jet flow
study and for an investigation of the interaction between a shock wave and a turbulent bound-
ary layer, respectively. The solver was also recently analysed with respect to cross correlation
methods and showed more diffusion but also more robustness than cross-correlation-based
PIV methods when applied to turbulent flows and unresolved gradients (Giannopoulos et al.,
2021)

6.3 Validation on Homogeneous isotropic 2D turbulence from DNS

The dataset presented here is published open access provided kindly by Carlier, 2005. It is
the case of a self-sustained time-resolved Homogeneous Isotropic Turbulent (HIT) computed
from a Direct Numerical Simulation, and their corresponding synthetic PIV images. The
domain size is 2π and the number of snapshots used to gather statistics is 100. The time step
between two images is 0.1 and the density of particles Cp[N/px2] = 0.014, which translate
in a displacement ∆x ≈ 2.5px between two successive frames. The corresponding velocity
fields from the DNS are shown in figure 6.1(a) and the corresponding solution computed with
OF is shown in figure 6.1(b).

The case of two-dimensional isotropic turbulence is interesting to begin with since there
is no missing velocity component and that velocity derivatives are not required to estimate
pressure because of the periodic nature of the flow. Note that although the flow solution from
the simulation is essentially divergence free, that is not the case for the OF results (see figure
6.1(c)). The divergence term is an indication of PIV error since, in the HIT dataset, the third
component should be zero. A comparison for the divergence field DNS and the OF/ CC PIV
approach shows an error of similar order for the 2 approaches. The KR used for the OF
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FIGURE 6.2: Instantaneous vorticity fields ωz from DNS (left) and OF
(right).

FIGURE 6.3: Instantaneous acceleration term ∂u/∂ t from OF method with
Poisson solver (right) and DNS Second order central schema for DNS results

(left).

results in this dataset is KR = 8 pixels. The solution computed with the OF method therefore
introduces a bias which leads to significant discrepancies in the divergence, but this will turn
out not to be an issue for the estimation of the time derivative nor the estimation of pressure
using least-squares methods (see Shanmughan et al., 2020; Passaggia et al., 2020 for a more
complete discussion on this particular issue).

6.3.1 Border effect and filtering

The velocity field, which is our input for the acceleration and the pressure reconstruction
algorithm may fail near the borders of the images or in near-wall regions. Border error
effects are always present due to the fact that particles can be missing from the frame in
two successive images since they may leave or enter the image. Therefore, we removed the
first and last rows and columns of vectors for the analysis; particularly we cut each side a
number of pixels 24 pixels, which guarantees we observe no border effects during pressure
reconstruction, which was proven quite sensitive to this effect.

Furthermore, the gradient calculation used for the vorticity, the acceleration and pressure
reconstruction can lead to artefacts in the reconstruction of the acceleration and the pressure
field. In the HIT dataset, a spatio-temporal Savitzky-Golay filter was applied in the 3D
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FIGURE 6.4: Instantaneous term of du/dt component first order backward
schema for DNS results (left) and fourth order central schema (right).

FIGURE 6.5: Acceleration term spectra comparison for different calculation
schemes for OF and DNS: Direct finite differences of different orders and

vorticity-derived acceleration terms are compared for both datasets.
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FIGURE 6.6: Instantaneous pressure and velocity vector field for DNS (left)
and OF (right).

FIGURE 6.7: Time-averaged velocity (left) and pressure spectra (right),
compared between OF and DNS. For pressure reconstruction from OF, dif-

ferent schemas are compared for the acceleration part.

matrix containing all the fields. A spatial window with a filter window of 11 pixels in space
and 5 time-steps in time appeared to provide the best balance between signal and noise. The
results can be found in figure 6.2(a) for the vorticity obtained from the DNS and the vorticity
calculated using OF in figure 6.2(b).

6.3.2 Acceleration from single images in HIT

The temporal derivative for both the DNS and OF are estimated using equation (6.6) and
equation (6.8). The results are shown in figure 6.3(a) and 6.3(b) for the DNS and OF re-
spectively for ∂u/∂ t. The result looks qualitatively similar although very thin regions of the
acceleration are clearly not captured. In addition, the temporal derivative was also computed
using first and fourth order finite differences since the particular dataset is time-resolved, as
shown in figure 6.4(a) and 6.4(b) but are essentially similar. Note that the second order finite
difference estimate to ∂u/∂ t is extremely close to the figure shown in 6.3(a) and quantified
in figure 6.5 for each scale.

The time-averaged kinetic energy spectrum is shown in figure 6.7(left), where both the
DNS and OF are compared. The two spectra are essentially similar for k ≤ 2 but they differ
for larger wavenumbers where the reconstruction with OF shows a less steep spectrum with
an exponent close to k−2. The spatial pressure spectrum (averaged in time and space as well)
is shown in figure 6.7(right) for the DNS calculated using different methods: we begin com-
paring the results obtained with the spectral method against the vorticity equation to estimate
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the temporal derivative and the least-squares method to compute the Poisson equation. Both
methods provide nearly identical results except for k ≥ 4, where the physics is lost using both
methods. Note that both numerical strategies are significantly different but the results are es-
sentially identical. The results obtained using the velocity field computed with OF are shown
alongside. For wavenumbers k ≤ 4, all spectra display the same slope. Here, the temporal
term is computed using either second-order finite differences based on different snapshots in
time while the second strategy uses the temporal term estimated using the vorticity method.
For wavenumbers in the rage 1 < k < 4, both spectra computed using OF collapse and are
differ from the DNS by a factor 4. For lower wavenumbers, that is for k < 1, the temporal
term estimated using the OF method differs by a factor 2 approximately, which is consistent
with the results reported in figure 6.5 where the temporal derivative computed using OF is
also more diffusive than for temporal term computed using finite differences. Indeed, as the
quality of the data improves, this difference is expected to diminish and all spectra are ex-
pected to collapse for low wavenumbers. A fourth order scheme for the pressure calculation
is also currently being investigated showing promising results.

In the next section, we use the vorticity-based algorithm to estimate the temporal deriva-
tive and provide an estimate of the pressure in the case of three-dimensional turbulence. The
aim is to provide an accurate estimate of the transport equation for the TKE in both con-
servative and non-conservative form, using only 2D-2C PIV. In particular, we show that the
present method allows for precisely estimating the TKE dissipation in the near wake of a
bluff body.

6.4 Turbulent kinetic energy budget in the recirculation region of
a bluff body

6.4.1 Experimental setup

Next, we consider the case of the near wake of a D-shaped bluff body. The experimental setup
is also previously described used in the work by Giannopoulos et al., 2021 and analytically
described in Shanmughan et al., 2020. It considers a novel dataset consisting of zoomed-in
high-definition snapshots performed using a 29 Mpx ImperX CCD camera, with the aim of
resolving scales from the integral lengthscale down to the Kolmogorov lengthscale. The low-
speed wind tunnel cross section is 500mm500mm and is approximately 2000 mm long. The
D-shaped model has a cylindrical nose of diameter H = 40 mm. The characteristic length-
scale is the body height H and the streamwise and spanwise aspect ratios of L/H = 4 and
W /H = 12.5, respectively. The model was 3-D printed and installed at approximately 14H
from the inlet of the test section. The near wake is resolved and in particular, the region at
x/H = [0,3.5] and y/H =±1.125 with a resolution of 6600 px in the horizontal/streamwise
direction x and 4400 px in the vertical/normal direction y. A KR of 18 pixels was chosen for
the OF algorithm.

The Reynolds number is ReH = U∞H/ν ≈ 5.3×104, where the body height H = 4 cm,
the free-stream velocity U∞ = 20 m.s−1 and the kinematic viscosity of air is ν = 1.5 ×
10−5 m2.s−1. In addition, hot-wire measurements have been carried out at different vertical
positions for x = 3H. In particular, we report turbulence kinetic energy spectra at y/H = 0.5
in order to compare the spectra of turbulence. An instantaneous velocity field can been seen
in figure 6.8(a).

6.4.2 Pressure reconstruction and spectrum

We first analyse the velocity and pressure spectra obtained by OF in a vertical profile at x =
3H, as seen in figure 6.10(a). The velocity spectra are compared with hot-wire measurements,
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FIGURE 6.8: Instantaneous velocity field of D-shaped turbulent wake
dataset and position of hot-wire probe (left) and instantaneous pressure field

reconstruction of the same field (right).

FIGURE 6.9: Mean fields of D-shaped turbulent wake dataset. Streamwise
ux (left) and spanwise uy (right) components.
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FIGURE 6.10: (a) Velocity spectrum obtained with OF together with the
hot-wire measurements spectrum. (b) Pressure spectrum obtained from OF

measurements.

showing a good agreement for the larger wavenumbers, in the Kolmogorov cascade and in
the viscous subrange, up to k = 300. The first 2 modes of the pressure was subtracted,
using experimental measurements. A subsampling of the initially calculated velocity vectors
(which are the same as the number of pixels in the image) was made in the same order as
the KR before the pressure reconstruction, in order to ensure the correct calculation of non-
fictitious gradients.

Regarding the pressure reconstruction, the acceleration term computed using the method
described in section 6.2.3 is shown in figure 6.10(b). An instantaneous snapshot of the ve-
locity and its corresponding reconstructed pressure reconstruction field are also presented
in figure 6.8(a,b). It is worth recalling that in the case of the wake, the mean flow is not
null and that the boundary conditions to solve for the estimate of the acceleration are of
non-homogeneous Neumann type, given by equation (6.12). These boundary conditions can
be seen as advection-type boundary conditions for the velocity as often implemented in nu-
merical solvers Marquillie and Ehrenstein, 2003; Gallaire, Marquillie, and Ehrenstein, 2007;
Marquillie, Ehrenstein, Laval, et al., 2011; Passaggia and Ehrenstein, 2018 when collocation
points are considered for both the velocity and pressure. The mean velocity fields are shown
in figure 6.9 for reference. Note that at the top and the bottom boundaries, the mean vertical
velocity entrains fluid into the domain while the outlet only advects fluid parcels out of the
domain. At the inlet, both situations occur as velocity perturbations leave the domain in the
recirculation region and enter on both sides of the recirculation region. The mean pressure
spectra in the profile along x = 3, follows the theoretically expected −7/3 power law, as seen
again in figure 6.10 (George, Beuther, and Arndt, 1984; Tsuji and Kaneda, 2012).

In what follows, we consider the Turbulence Kinetic Energy (TKE) transport equation
and assess the quality of pressure reconstruction further, in order to validate our quasi two-
dimensional approach.

6.4.3 Direct TKE budget calculation

For this experimental dataset, given that sub-Kolmogorov scales is accessible through PIV as
presented in the spectrum in figure 6.10, an extra validation was performed.

The Navier-Stokes equations are first non-dimensionalised using the height of the body
H and the free-stream velocity U∞ such that

xi = x∗i /H, t = t∗U∞/H, ui = u∗i /U∞, p = p∗/ρU2
∞, (6.16)
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where the quantities with stars are dimensional variables. The Navier-Stokes equations in
non-dimensional form therefore write

Dui

Dt
= − ∂ p

∂xi
+

1
Re

∂ 2ui

∂x2
j

, (6.17)

where Re =U∞H/ν = 5.5×104 is the Reynolds number. Taking the dot product of equation
6.17 with the velocity vector u′i, one recovers the kinetic equation

Dk
Dt

= −∂ (ui p)
∂xi

− ε +
2

Re
∂

∂xi
(uiSi j) (6.18)

where k = (u2 + v2 +w2)/2 and Si j = (∂ui/∂x j +∂u j/∂xi)/2 is the symmetric part of the
velocity tensor. The flow variables (ui, p) are then decomposed between a temporal mean
(Ui,P) and a turbulent fluctuation (u′i, p′)

(ui(xi, t), p(xi, t)) = (Ui(xi),P(xi))+ (u′i(xi, t), p′(xi, t)). (6.19)

and equivalently for the mean and the turbulent kinetic energy,

K = (U2 +V 2 +W 2)/2 and k′ = (u′2 + v′2 +w′2)/2. (6.20)

From an ensemble averaging of the kinetic energy equation for the fluctuation, one recovers
the mean Turbulence Kinetic Energy (TKE) equation
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(6.21)
where each term is labelled for clarity and averaged using 4530 PIV snapshots. The last term
is the dissipation, also noted as ε = 2

Re S′i, jS
′
i, j. In particular, we are interested in analysing

the role of the pressure diffusion term. The mean reconstructed terms of the TKE transport
equation can be found in figure 6.11.

Note that to compute the pressure-diffusion term from equation 6.21, (∂u′j p′)/(∂x j), we

compute u′j(∂ p′/∂x j) since ∂u′j/∂x j = 0 by definition. This is particularly important since
p′ is defined up to constant which vanishes when computing the gradient. The same con-
clusion can be drawn form the turbulent-transport term in equation (6.21) (∂u′iu

′
iu

′
j)/(2∂x j)

which is computed as u′j(∂u′iu
′
i)/(2∂x j). In addition, because we only have access to two

components of the velocity, that is u′ and v′, we make use of the assumption of isotropy of
turbulence and use the following coefficient
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Finally, the dissipation is expressed using Taylor’s hypothesis

ε =
2

Re
S′i, jS

′
i, j ≈

6
Re
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∂u′
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+

(
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)2

+

(
∂v′

∂x
∂u′

∂y

)2
)

≈ 15
Re

(
∂u′

∂x

)2

. (6.23)
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FIGURE 6.11: Contour plots of all the terms of the direct TKE budget: ki-
netic energy (a), molecular viscous transport (b), advection (c), pressure dif-

fusion (d), turbulent transport (e), production (f) terms respectively.

FIGURE 6.12: Dissipation term (left) and summation of all terms of the
direct TKE budget calculation (right) in the PIV window.
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FIGURE 6.13: Direct budget calculation of the TKE transport terms along
the middle line. The summation of all the terms leads to a maximum error

of less than 10 % for all the wake inside the PIV window.

We begin with exploring the contribution of each of these terms in the streamwise direc-
tion, along the middle line, as seen in figure 6.13. At this particular location, the production
term and the pressure diffusion term are dominant and even balance one another near the
centre of the recirculation region at x = H/2. The molecular viscous transport term is three
orders of magnitude smaller than all the other terms. In figure 6.12, we observe that the total
sum of the budget is less that 10% for most regions of the turbulent wake, and close to 5%
in average. To the best of our knowledge, it is the first time that the TKE balance is obtained
with such an accuracy from experimental data alone in the case of for a bluff body turbulent
wake.

In addition, 29 hot-wire measurements were performed equidistantly on a vertical profile
along the y direction, at x = 3H (as presented in figure 6.8) . Comparing hot-wire mea-
surements and PIV data, we can see a good agreement for the mean fields and the terms
u′2, (∂u′/∂ t)2, and the dissipation term of the global TKE budget. Results are presented in
figures 6.14 and 6.15 for the mean streamwise and mean streamwise fluctuating component
of the velocity. We mention that in this very near-wake flow, the two-component X-type hot-
wire is not perfectly adapted to measure the large vertical velocity component. Nevertheless,
we compare the mean horizontal velocity between the hot wire and OF in figure 6.14(a) and
find 5% difference but the width of the wake is well captured. The mean streamwise fluctua-
tions together with the dissipation are shown in figure 6.14(b) and 6.15(c) respectively. Both
values are slightly underestimated by the hot wire by approximately 10%, in agreement with
the observations from the mean field. Figure 6.15(right) finally compares the mean tempo-
ral derivative at the same position in the wake where we can observe an overall agreement,
and slight differences between OF and hot-wire measurement as we move away from the
centerline. This difference is a direct consequence of the smoothing effect induced by the
second-order finite difference scheme. A fourth-order scheme is currently being investigated
showing ameliorated promising results.

Finally, we compare the Probability Density Function (PDF) for the pressure measured
at the base, at x = 0 and y = ±1/4H. Note that this pressure tap is shift in the transverse
direction at z = 1 from the tap used to compute the constant of the pressure field (see figure 7
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FIGURE 6.14: Hot-wire measurements compared with OF for the mean
streamwise velocity profile U(x = 3H,y) at x = 3H (left) and dissi-

pation estimated as ε = 15/Re(∂u′/∂x)2 from the hotwire and ε =

6/Re
(
(∂u′/∂x)2 +(∂v′/∂y)2 +(∂v′/∂x)(∂u′/∂y)

)
(right).

FIGURE 6.15: Same hot-wire OF comparison as figure 6.14 but for (left) the
mean streamwise fluctuating component of the velocity field u′2 and (right)

the mean fluctuating acceleration term
√
(∂u′/∂ t)2 (right).

FIGURE 6.16: Probability density function estimation comparison in be-
tween optical flow and base pressure sensors.
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FIGURE 6.17: Global budget control volume sensitivity study: the size in
the y direction is augmented symmetrically from the centre, and the size in
the x direction is augmented starting from the base of the body. Integral

limits A,B,C,D and middle plane line.

in Shanmughan et al., 2020 for the details of the model). The measurements of the pressure
scanner are compared with the pressure obtained with the PIV near the body base. The
results are shown in figure 6.16, where the measurements from the pressure scanner are
non Gaussian, in particular for the the low fluctuations of Cp which is characteristic of the
vortex shedding. At the contrary, the pressure measured with PIV is essentially Gaussian.
Note that both the amplitude and the standard deviation are well captured by our pressure
reconstruction technique but the rare events, probably associated with strong vortex tilting are
clearly not captured since they are not included in the formulation of the temporal derivative,
nor the transverse velocity is used for computing the solution to the pressure itself.

Next, we consider the TKE budget to estimate the dissipation, which is characteristic
from the smallest scales of the flow in a control volume. The aim is to assess the accuracy of
the present method to obtain an accurate estimate of the smallest term in the balance (i.e. ε)
based on the contribution from the other terms whose contributions are characterised by the
large-scales motions in the flow.

6.4.4 Global dissipation calculation in an arbitrary control volume

The volume integral of the dissipation can be calculated in an arbitrary Control Volume (CV)
in the near-wake region using equation (6.21) in divergence form as∫

A

(
U jk′+ u′j p′+

1
2

u′iu
′
iu

′
j −

1
Re

∂k′

∂x j

)
n j dA =

∫
V

u′iu
′
j Si, j − ε dV (6.24)

where A is the surface area over which the budget is calculated. As noted in the previous
subsection, the molecular viscous term is three orders of magnitude smaller than the other
terms and is neglected for the rest of the analysis.

Here we use a parrallelipedic CV, shown in figure 6.17 and once the quantities are pro-
jected onto the surfaces of the CV, the turbulence kinetic energy budget simplifies to

−
∫

V
ε dV =

∫
AB,DC

(
Uk′+ u′ p′ + u′k′

)
nx dy+

∫
AD,BC

(
V k′+ v′ p′ + v′k′

)
ny dx+

∫
V

u′
iu

′
jSi, j dV ,

(6.25)
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FIGURE 6.18: Global TKE budget terms: (a) v′p′, (b) u′p′, (c) v′k′, (d) u′k′,
(e) V k, (f) Uk respectively. The full PIV domain is used as a CV in these

results.

where the integral limits A,B,C,D of the CV are presented in figure 6.17. We mention that
the presented global budget methodology only requires knowledge if the boundary values of
the velocity and pressure, apart from the term of the production which is integrated in the
volume ( or in our case the surface since values are calculated per unit length). The evolution
of the different terms of equation (6.25) along the middle line are shown in figure 6.19. We
observe that the advection term in the x direction is dominant compared to all the other terms.
We can also note that the solution is essentially symmetric, even for the turbulent diffusion
term.

In the present dataset, the high resolution of the camera (29 Mpx) used for the PIV images
also provided access to a direct calculation of the mean turbulence kinetic energy dissipation
(see figure 6.12). Thus, the volume integral of the dissipation

∫
V ε dV is compared with the

direct dissipation calculation from equation 6.21, in order to find the optimal CV and un-
derstand the departure induced by the errors from the isotropy assumption given in equation
(6.22). In what follows, we compare the total direct budget calculation with the global bud-
get as calculated in the variable size control volume, containing the recirculation area and
the near-wake region. The CV is changed symmetrically from the middle plane regarding
the y direction, and starting from the base of the body in the streamwise direction x as seen
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FIGURE 6.19: Global TKE budget terms along the central line, as presented
in figure 6.18. A zoom representation for the non-dominant terms is pre-

sented in the bottom right corner.

in figure 6.17(a). Along the central line, the transport term is essentially balanced by the
production term. The turbulent transport, the pressure diffusion are of the same order.

In figure 6.20(a), we can see the evolution of the different terms calculated on the bound-
aries and in the volume of the TKE budget for an increasing CV size in the x direction. As
highlighted in the previous figure, the production is essentially balanced by advection. The
remaining terms are magnified in figure 6.17 (b) where the turbulent transport, the pressure
diffusion and the contributions from the upper and lower region are of the same order. Fur-
thermore the terms on the upper and lower boundary nearly have the same magnitude and are
somewhat symmetric although the CV is not exactly symmetric along the centre line.

The volume integral of the dissipation is finally compared in figure 6.21 estimated using
the direct calculation method and the budget changing the CV size along x, with satisfying
agreement for a CV longer than 2. The estimation is the least precise when x ≈ 1.25 which

FIGURE 6.20: Contribution of different terms in the global TKE budget,
augmenting the streamwise Control Volume size (left). A zoomed represen-

tation (right) reveals the evolution of the less dominant terms.
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FIGURE 6.21: (left) Direct calculation of the dissipation (solid line) and
global budget dissipation calculation (red circles) comparison changing the
CV length in the x direction for a fixed y = ±1. (right) Volume integral
of dissipation calculated by changing the size of the box in the y direction,
symmetrically from the middle and where the CV length in the streamwise

direction was kept constant at x = 3.
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FIGURE 6.22: Volume integral of dissipation error calculation as in figure
6.21 changing both the size of the control volume in the y (symmetrically)
and x direction (starting from the body). Relative error between global and
direct budget calculation (reference) is presented (left) and relative difference

normalized by the volume integral of the production term (right).

is very close to the length of the mean recirculation region. This region also corresponds to
the region where the error is largest, as shown in figure 6.13(b) for the local budget.

The influence of the size of the CV in the y direction is presented in figure 6.21 (b),
where the best approximation of the dissipation is obtained for a vertical size y = 1.9 which
corresponds to the largest control volume available from our measurements.

Finally, figure 6.22(a) shows a contour map of the relative error on the dissipation estima-
tion (i.e. (

∫
V εest −ε dV )/(

∫
V ε dV )) the influence of the CV size changing in both directions.

A quite satisfying agreement between the direct calculation and the global budget calculation
in the CV is observed when containing more than 2 body lengths in the streamwise direction
(i.e. x) and 1.7 H in the vertical direction y. Figure 6.22(b) is equivalent to figure 6.22(a) but
the error is now rescaled with the dominant term in the budget (cf. the production) and the
error writes (

∫
V εest − ε dV )/(

∫
V u′iu

′
jSi, j dV ). In this case, the error remains essentially be-

low 15%, except for x ≈ 1.25 where three-dimensional effects of the turbulence the isotropy
assumption may fall short provided the complex structure of the mean flow in this region.
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6.5 Conclusions and perspectives

With a high-resolution camera and a pressure sensor as sole hardware resources, a novel
methodology presented in this study shows the potential of 2D OF velocimetry to resolve
spatial scales down to sub-Kolmogorov scales, calculate the acceleration term and recon-
struct accurately the instantaneous pressure field in a plane. Two data sets were used to
validate the method, a homogeneous synthetic turbulent dataset and an experimental turbu-
lent wake of a D-shaped bluff body. Regarding the former, the velocity and pressure spectra
as well as instantaneous acceleration fields showed good agreement with the equivalent DNS
data. Regarding the latter, the methodology was validated on top of that with the TKE budget
calculation, whose final error was smaller or equal to 10 % for most of the region of the wake,
although measurements were limited to two components of the velocity from the PIV. The di-
rect calculation volume integral of the dissipation was compared with the one calculated from
the global budget in a CV of the near wake, with quite satisfying results. The CV size limits
in the streamwise and vertical direction were also investigated. The spectra comparisons for
the acceleration term showed deviations during comparisons with DNS-derived finite differ-
ences acceleration spectra. A perspective using a fourth order pressure reconstruction scheme
is currently being investigated to possibly ameliorate this comparison.

Moreover, the present methodology to obtain the acceleration and pressure is only based
on two-dimensional results. However, it provides an interesting tool to estimate pressure in
a PIV plane, and this at a large scale which was difficult to achieve, specially for intrusive
sensors measurements. Given that a DNS of high-Re turbulent bluff body wakes is often com-
putationally intensive to obtain because of the complexity of the flow, the salient edges, and
the broad range of time and length scales to resolve, we believe that such velocimetry exper-
iments can open new alleys in the systematic and efficient studies of turbulent flows, where
high-resolution and large acquisitions in time are required. Moreover, the present method
no longer requires to acquire time-resolved measurements to obtain acceleration which is
often technically challenging for high-definition CCD and CMOS cameras and difficult to
implement.

The quality of the estimation could be further improved using for instance stereo or to-
mographic PIV. Both the Savitzky-Golay filter and the acceleration solver can be naturally
extended in three dimensions with minor modifications to the present code. The extension
of the acceleration solver from single snapshots from stereo-PIV measurements is presently
under investigation and will be part of a follow-up study.
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Part III

Modelling and system identification of
a Turbulent Boundary Layer using

data-driven methods
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This part explores the feasibility of two data-driven methods in order to capture the dy-
namics of an experimental Turbulent Boundary Layer (TBL) flow. These methods are called
data-driven because they require a large amount of data in order to first interpolate (learning
part) and then extrapolate (validation part) correctly the dynamics behaviour of a particular
system. No prior knowledge of the equations is needed, only a few sensors coming from
PIV measurements. The first approach consists in a linear subspace identification method
to model and predict the dynamics of turbulent coherent structures, using local upstream
measurements. The second one, consists in a modern machine-learning learning approach,
particularly a shallow artificial neural network, that performs a regression of local measure-
ments and the global field dynamics.
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Chapter 7

Transition to turbulence in the flat
plate Boundary Layer flow

Due to its viscosity ν and the free stream U∞, the Boundary Layer (BL) flow near the wall
undergoes shear stress τw, as explained by Prandtl first. At low Reynolds numbers the dissi-
pative effect of the viscosity is more important than the shearing: this is the laminar regime.
Increasing the Reynolds number inverts the trend and the turbulent kinetic energy rises: this
is the turbulent regime. It produces vorticity, which is diffused vertically and advected down-
stream; the boundary layer thickness δ grows consequently.

There are many paths to transition to turbulence in the zero pressure gradient BL flow, and
they depend strongly on the incoming boundary conditions. Small free stream vortices pen-
etrating or generated in the boundary layer can be transformed into the so-called Tollmien-
Schlichting (T-S) waves by the natural instability. The critical Reynolds number based on the
local displacement thickness is defined as:

Reδ ∗
0
=

δ ∗
0 (x)U∞

ν
(7.1)

where U∞ is the free-stream velocity, ν is the kinematic viscosity, x the streamwise coor-
dinate (y and z being respectively the vertical and spanwise axis) and

δ
∗
0 =

∫ ∞

0
(1− u

U∞
)dy (7.2)

is the local displacement thickness at the inlet of the PIV window, at x0 = 37 cm from
the leading edge. The critical Reynolds number is Recrit

δ ∗ = 520 (Klebanoff, Tidstrom, and
Sargent, 1962a). The amplitude of these spanwise waves increases downstream until the
emergence of alternating peaks and valleys, going from two-dimensional stable to three-
dimensional unstable structure (Klebanoff, Tidstrom, and Sargent, 1962b). The waves finally
break down into hairpin eddies, becoming then a fully turbulent flow with small-scale struc-
tures (spots, eddies) and intense fluctuations. This instability is referred as a receptivity prob-
lem, since it linearly amplifies small specific upstream perturbations (Kachanov, 1994). A
typical visualisation experiment for this case is presented in figure 7.1. This path to transition
to turbulence can be observed in experiments only where free-stream turbulence, vibrations,
surface roughness and ambient noise have been carefully reduced to a minimum.

Another transition process may occur if the turbulence intensity of the incoming flow is
of the order of 1% (Morkovin, 1985) or higher: the bypass transition. Groups of streaks are
observed, which are streamwise structures periodically distributed in the spanwise direction
(Matsubara and Alfredsson, 2001; Beneitez et al., 2019), for Reynolds numbers as low as
Reyδ ∗(x) =300. It is called bypass, because it can bypass the T-S instability mechanism al-
together. The characteristic spanwise length is usually a few times the BL thickness. In the
wall-normal direction, the structures extend across the whole boundary layer. The streaks fur-
ther downstream undergo wavy motions and collapse into turbulence (Schlatter et al., 2008),
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FIGURE 7.1: Boundary layer transition to turbulence along a flat plate un-
der a Tollmien-Schlichting instability, visualisation experiment by Nichols

(Nichols, 2010) . Laminar, transitional and turbulent regime.

like the T-S waves. This instability can be forced and observed in a laboratory environment,
as Duriez, Aider, and Wesfreid, 2009 did to demonstrate the self-sustaining process between
the steaks and the streamwise vorticity. An extensive review on boundary layer transition can
be found in Lee and Jiang, 2019. Both transitions are not completely uncorrelated since the
streaky structures of the bypass transition look like the 3D shape of the T-S waves and the
natural transition spectrum signature is also identified in the streaks dynamics (Hughes and
Walker, 2000). Coexistence of T-S waves and streaks can also be observed (Beneitez et al.,
2019).

Delaying this transition is a good strategy to reduce the drag related to the skin friction.
For instance, at moderate turbulence intensity, the T-S waves can be stabilized by streaks of
low amplitude forcing (Cossu and Brandt, 2002; Fransson et al., 2006) or appear naturally
(Martin et al., 2015). The modelling and instantaneous field reconstruction of a subcritical,
wavy streak bypass transition is investigated in the present experiment, using visual sensors
coming from the OF PIV. The transition was triggered using a finite amplitude pulsating jet
perturbation described in section 7.1.1.

7.1 Turbulent Boundary Layer experimental setup

Experiments were carried out in a hydrodynamic channel driven by gravity. A divergent and
a convergent sections, separated by honeycombs, stabilise the flow ; the turbulence intensity
was Tu = σu/U∞ = 0.7%. The test section is 80 cm long and 15 cm wide in the spanwise
direction (see figure 7.2). The flat plate along which the boundary layer growths entirely
spans the test section width to manage 2D dynamics at best. The test section height height is
H = 8.5 cm.

A homemade leading edge, designed as a NACA 0020 profile, is used to smoothly start
the boundary layer. The origin is located at the beginning of the leading edge (x = 0), in
the vertical symmetry plane (y = 0) and on the flat plat (z = 0). For the present study, the
free-stream velocity range is U∞ = 0.188m/s in the inlet of the PIV window x0 = x∗w = 37 cm
downstream from the leading edge. This position, denoted x∗W and illustrated in figure 7.2, is
used to define the characteristic length of the flow δ ∗

0 = δ ∗(x∗W ) and the resulting Reynolds
number taken as reference Reδ ∗

0
. In the same way, the dimensionless time is defined as

t∗ = tU∞/δ ∗
0 . Velocities are non-dimensionalised by U∞.
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FIGURE 7.2: Experimental setup with the investigated PIV plane (red rect-
angle) starting at x∗W and the forcing jet (pink arrow) at x∗f orcing. Sketch of
the water channel is displayed on the bottom right. The origin of the (x,y)

axis is placed in the leading edge.
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(c)
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FIGURE 7.3: (a) Computer-aided design of the modified flat plate used in
the water channel. (b) Inclined slot sketch. (c) 3D view and (d) side view of

the jet injection system.

7.1.1 An experimental transition forcing mechanism

The flow for the maximum Re number of the channel followed a laminar profile. Hence, we
designed an efficient way to transition to turbulence in the BL flow, using a finite amplitude
pulsating jet perturbation. The perturbation is induced by a streamwise-inclined slotted jet,
whose angle to the wall is 45◦ described in figures 7.3(a-d). The injection system is com-
posed of glass beads between two pierced grids to avoid undesired structures. It is located at
x= 5 cm downstream the leading edge, as shown in figure 7.2. The jet outlet has a rectangular
cross-section which is 0.4 cm long (in the streamwise direction) and 9 cm wide (spanwise di-
rection). Thanks to this geometry, the perturbation can be considered as homogeneous along
the spanwise direction. As described in figure 7.5, the slotted jet is supplied by a pressurized
water tank, monitored by an SMC ITV 1010 electro-pneumatic regulator to control the jet
velocity u f orcing, which can be set regarding the frequency f f orcing, the amplitude U f orcing,
and the duration δTf orcing. This setup enables to induce random perturbations by changing
these parameters after each pulse. The command signal between the impulses remains at the
value avoiding any perturbation generation, as if the slot does not exist.

The random 2D pulsating jet of finite amplitude is created by sending a square signal of
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FIGURE 7.4: Flat plate geometry dimensions, perturbation slot and PIV win-
dow positions.
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FIGURE 7.5: Jet supply circuit.
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FIGURE 7.6: Generation or upstream vortical structures to perturb the
boundary layer. Jet position is found in the green arrow, with 45 degree

angle.

random frequency, to the pneumatic pressure controller. The random jet frequency was varied
between 0 and 5 Hz for a total time of around 40 s. The initial vortical structures created by
the spanwise invariant jet can be visualised in figure 7.6; they are initially of the order of
the size of the boundary layer or smaller. These pulsating jets introduce streamwise rolls
in the BL. Through the lift-up mechanism, they create streak groups organised in turbulent
spots. The streaks are expanding in the spanwise direction and advected downstream. The
full evolution of the streak energy in the streamwise direction is not possible due to the finite
field of view of the camera. In a matter of x = 100 δ ∗

0 , wavy streaks are observed covering
the full span, as found in figure 7.7. The experiment was repeated numerous times to cover
all the frequency range of the forcing up to 5 Hz and ensure repeatability of the results.

7.1.2 Optical flow PIV

The flow is seeded with 20 µm neutrally buoyant polyamid seeding particles. The vertical
symmetry plane of the test section is illuminated by a laser sheet created by a 8 W contin-
uous laser beam passing through a cylindrical lens and generated by the Genesis MX-6185
(Coherent, USA) operating at the wavelength 532 nm. A very thin layer of the fluorescent
paint FP Rhodamine 6G has been applied on the surface illuminated by the laser sheet, in
order to reduce the reflections. The snapshots of the illuminated particles are recorded by the
camera PCO DIMAX-cs . An optical filter selecting only the laser frequency is mounted on
the objective to reduce the light noise.

The two dimensional two components (2D-2C) velocity fields vx(x,z) and vz(x,z) (re-
spectively the streamwise and the wall-normal components) are computed at the frequency
fPIV = 150 Hz using a Lucas-Kanade Optical Flow algorithm. The first version of the code
has been developed at ONERA (Champagnat et al., 2011) and later modified, and adapted to
the constraints of real-time measurements by Gautier & Aider (Gautier and Aider, 2013). A
full description of the algorithm is presented in chapter 3.1. A kernel radius of 24 pixels was
used for the gaussian blurring process of the algorithm, together with 3 pyramid levels. A
low-pass filter has been applied to the raw data sets with a cutoff frequency fcut at least ten
times higher than the highest measured frequency of the forced boundary layer dynamics.
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FIGURE 7.7: Instantaneous spanwise (left) and streamwise (right) velocity
fluctuations in the horizontal plane TBL xy, for z∗ = 2.
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Chapter 8

Reduced-order modelling of a TBL
flow using statistical learning

8.1 Introduction on dynamics estimators

Dynamics estimation in fluid mechanics is an important step in the process of flow control
systems implementation. These methods go hand by hand with reduced-order modelling
since the dimensionality of fluidic systems can be huge. For example, for PIV database
consisting of 1 Mp snapshots, the dynamical system order is O(106). Proper orthogonal
(Berkooz and Titi, 1993) or Dynamic mode (Schmid, 2010) decomposition has been used for
reducing the order of such systems.

Estimators can be static or dynamic. Static estimators are basically a mapping between
optimal sensors and global flow dynamics at each time-step, without the notion of forecast-
ing, or taking into account the effect of the history of the dynamics in the present state of
the flow. The Linear Stochastic Estimation (LSE) techniques of Adrian (Adrian and Moin,
1988) were widely used to obtain static estimators, and particularly to characterise turbu-
lent structures using multiple observations of nearby points (Adrian and Moin, 1988; Clark,
Naghib-Lahouti, and Lavoie, 2014). A standard approach to obtain a dynamic estimator
(when the system equations are known) is the Kalman filter method, which comes down to
solving an algebraic Ricatti equation to obtain the estimator gain (B.Burl, 1998). Solving a
Ricatti equation though, can be very computationally expensive for the full order system, so
a reduced order model is usually needed. An extended Kalman filter method can also be used
for optimal dynamic estimation of non-linear problems as well (Stengel, 1994).

In many complex or experimental applications though, where the system equations are
unknown or a lot of system states hidden and unable to measure, System Identification (SI)
can also help obtain successfully a dynamic estimator. This can be done just by using mea-
surable input (sensor) and the output data available. Such data-based SI can be linear or
non-linear. Linear SI as been widely used and proven robust and easier to implement (Fa-
voreel, Moor, and Overschee, 2000; Guzmán, Sipp, and Schmid, 2014; Juillet, Schmid, and
Huerre, 2013; Juillet, McKeon, and Schmid, 2014). Non-linear SI was applied by Loiseau et
al. using the SINDy method for the case of cylinder flow for Re=100 (Loiseau, Noack, and
Brunton, 2018). The discrete empirical interpolation method has also been used for nonlinear
model order reduction (Pando, Schmid, and Sipp, 2015). Non-linear machine learning meth-
ods can also can also be used for SI. Güemes Jiménez, Discetti, and Ianiro, 2019 used wall
shear stress measurements and a convolutional Neural Network to reconstruct the large scale
motions in a turbulent channel flow. Wang et al. used deep neural networks for reduced-order
modelling of an ocean gyre and flow past a cylinder (Wang et al., 2018).

Turbulent structures are inherently non-linear. However, coherent structures always exist
in such flows. It has been shown that coherent structures in nonlinear flows can be identi-
fied using a linear framework. Resolvent analysis has been used for this complicated task
(Thomareis and Papadakis, 2018). To perform this estimation based on linear equations
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though, an extra eddy viscosity model can be needed, which makes the process more com-
plex (Illingworth, Monty, and Marusic, 2018; McKeon and Sharma, 2010). In this work,
we obtain a dynamic estimator for turbulent structures using a linear, statistical learning SI
approach. The estimator is implemented on an experimental PIV dataset of a non-linear flow:
a TBL flow under a bypass streak instability.

The section is organised as follows: First, we start with a description of the methodology,
which consists in a system order reduction followed by a subspace SI algorithm. This algo-
rithm creates a link between upstream local sensors and entire perturbation field dynamics
and discovers a reduced-order state-space model. Then, the results and different parameter
sensitivity studies are presented before turning into discussion and conclusions.

8.1.1 From streak dynamics to a linear time-invariant system

Statistical learning refers to a vast set of statistical tools used to understand data. They can be
divided in to supervised or unsupervised. Supervised learning consists of building a statistical
model for prediction, or estimation, of a specific output based on one or more inputs. In
unsupervised statistical learning, there are inputs but no supervising output; nevertheless we
can still learn relationships and and identify structures and features from such data. In the
current study we focus on a supervised algorithm.

As proposed first time by Guzmán, Sipp, and Schmid (2014) for the BL flow under the
TS instability, and later applied by Guzmán-Iñigo, Sodar, and Papadakis (2019) for the wake
of an aerofoil, the same scheme of statistical learning identification and field reconstruction
is applied here, for the Turbulent Boundary Layer. First, a POD is applied in the time-
resolved PIV dataset, and then a statistical learning method (N4SID) is applied to identify a
linear state-space model. The statistical learning method will use system realisations from an
experimental PIV dataset.

The complete dynamics of a forced amplifier flow are represented by the incompressible
NS equations including an unknown upstream forcing term FFFwwww(t):

∂tVVV +VVV .∇VVV = −∇PPP+Rey−1∆VVV +FFFwwww(t),∇.VVV = 0 (8.1)

where the velocity VVV and the pressure PPP are dimensionless and the physical meaning of
w(t) is given in the following section. Expressing the velocity and the pressure in equations
8.2 such as VVV = VVV base + vvv′′′ and PPP = PPPbase + ppp, where VVV base and PPPbase are respectively the
velocity and the pressure when w = 0 (base-flow), and vvv′′′ and ppp are the velocity and pressure
disturbances, leads to

∂tvvv′′′+VVV base.∇vvv′′′+ vvv′′′.∇VVV base = −∇ppp+Rey−1∆vvv′′′+FFFwwww(t),∇.vvv′′′ = 0 (8.2)

where linear perturbation dynamics are assumed.
The objective is thus to obtain the following linear time invariant (LTI) multiple-input-

multiple-output (MIMO) system:

x(n+ 1) = A x(n)+Bu(n)+w(n), (8.3a)

y(n) = C x(n)+Du(n)+ v(n), (8.3b)

where y(n) is the system output, x(n) is the system state, u(n) is the system input, w(n) is
the state noise, v(n) is the sensor noise, and A , B, C and D are the system matrices. w(n)
and v(n) being unknown, the state space model described in equations 8.3 rather predicts an
estimated output denoted ye when w = v = 0. The system matrices are consequently chosen
to minimize the difference between the estimated output, and the measured output y. We
point out that the states x(n) do not need to have a physical interpretation.
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8.1.2 POD reduced-order model

N consecutive velocity fields {VVV(nnn)}n=1...N are computed to form the so-called "learning"
data set. The proper orthogonal decomposition (POD) of this data set enables to build a
ranked and orthonormal basis containing N modes (Lumley, 1967; Sirovich, 1987) thanks to
the snapshots method. The first K modes {Φkkk}k=1...K with K ≤ N are chosen to compute the
approximated velocity field ṼVV(nnn)

ṼVV(nnn) =
K

∑
k=1

⟨Φkkk,VVV(nnn)⟩Φkkk, (8.4)

where the scalar product ⟨,⟩ is the energy-based inner product. By gathering all the POD
coefficients ak(n), defined as ak(n) = ⟨Φkkk,VVV(nnn)⟩, the system output is obtained through the
reduced state vector Y (n) = [a1(n) a2(n) ... aK(n)]T . The modes dynamics are contained in
their coefficients. The dynamics of the estimation Ye(n) of the reduced state vector Y (n) can
therefore be captured from sensor measurements s(n) by

Ye(n+ 1) = ÃsYe(n)+ L̃s(n), (8.5a)

s(n) = C̃Ye(n), (8.5b)

where Ãs is the linear evolution matrix, L̃ is the observer matrix, while C̃ is the measurement
matrix. These matrices are determined using system identification techniques based on the
input-output relation only and described hereafter. Assuming D = 0, the matrices of the de-
sired LTI MIMO system in equations 8.3 are related to equations 8.5 through Ãs = C A C−1

and L̃ = C B. Actually, the model has to consider the physical perturbations rather than the
measurements in equation 8.5 and also the noise in equation 8.5 to capture the real dynamics

Ye(n+ 1) = ÃwYe(n)+ B̃ww(n), (8.6a)

s(n) = C̃Ye(n)+ g(n), (8.6b)

where B̃ww(n) is the unknown driving term and g(n) is the measurement noise. The real
linear evolution matrix Ãw is directly computed from the other matrices, using equations 8.6,
8.5 and 8.6

Ãw = Ãs + L̃C̃. (8.7)

8.1.3 Subspace System identification

The SI comprises two steps, summarized in figure 8.2 : the statistical learning and the vali-
dation.

The POD coefficients are first computed from the learning data set, and are defined as
output y. A subspace identification algorithm (Qin, 2006) is applied to calculate the linear
state-space model matrices of the linear time-invariant system 8.3. the so-called "N4SID"
algorithm (Van Overschee and De Moor, 1994; Van Overschee and De Moor, 1995) is well
suited for this step. During the learning step, the system states x(n) are extracted and the
(extended) observability matrix, with rank equal to Nx is obtained. The crucial component
in this step is the singular value decomposition of a weighted matrix. Then the matrices A,
B and C, are calculated (to within a similarity transformation) from the system states x(n)
by a least squares regression. We note that the order Nx can be specified by the user and it
has been investigated in the next chapter. Initial states are treated as independent parameters
to be calculated together with the state-space model parameters. The learning data set must
contain enough snapshots to build an efficient reduced-order model. The POD coefficients
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FIGURE 8.3: Successive instantaneous streamwise (left) and vertical (right)
fluctuation velocity components of the velocity fields.

are defined as output and an appropriate sensor as input of the learning step ; their number
must by as high to obtain all the important dynamics of the flow but not too high in order for
the learning process to fail. A new dataset, that does not contain measurements used for the
learning process is then used, the validation dataset. It is a standard measure in data-driven
methods in order to avoid overfitting and test the extrapolation capability. The predicted
output POD coefficients are again compared to the experimental ones ones.

8.1.4 Flow characterisation

The free-stream velocity in the present experiment was U∞ = 0.188m/s. The incoming
boundary layer was laminar, with a displacement thickness at x0 = 37 cm δ ∗

0 = 2.95mm.
The corresponding Reynolds number is Reδ ∗

0
(x) = 488. The shape factor of the unperturbed

flow was H = 2.35 and for the forced flow is H = 1.33, which is typical of a turbulent flow.
A transition forcing mechanism, using upstream pulsating jets, was utilised to create the

turbulent boundary layer, which is analytically described in section 7.1.1. Groups of wavy
streaks were observed covering the full span, as presented in the same section; their signature
in the vertical field can be found in figure 8.3. The coherent structure advection speed is
calculated by the inclination angle of the space-time diagram. In plot 8.4 we can also see the
evolution of the total fluctuation kinetic energy of the streamwise direction along time, for
both planes xz and xy ; the structure advection speed was found 0.7-0.8 U∞.

The POD energy and the normalized POD modes of the streamwise velocity v∗x are given
in figure 8.5. The first 16 modes accumulate more than 85% of the total energy, the first one
being at 23.1%. The first POD mode corresponds to the three-dimensionality of the streaks,
due to their waviness. That way, structures can disappear or enter the plane, and this elon-
gated streaky structure appears with a low oscillation frequency (see first POD coefficient).
That way it does not come in pairs like the other convective modes. Hence, it was foreseen
that it could not be fully modelled with the current method. Dynamics of this mode cannot
connect with the dynamics of other modes, and this can be seen in the cross-correlation be-
tween the POD coefficient of these modes in figure 8.6. Pairing modes are 2-3, 4-6 , 7-8.
Modes 15-16 are also in pairs and show more complex and higher frequency streak interac-
tion.
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FIGURE 8.4: Space-time diagram of the sum of PKE in each position in the
streamwise direction, for the vertical xz (a) and the horizontal xy (b) planes.

8.2 Estimation results

The total perturbation (or fluctuation) kinetic energy (PKE) k∗ time-series, together with the
POD coefficient time-series are chosen as criteria to study the validation of the algorithm.

The retaining learning data set is composed of N = 3000 velocity snapshots sampled
at fPIV = 150Hz with a spatial resolution of 0.115 mm.px-1. The validation dataset con-
sisted of 1500 snapshots. The length of the learning data set is related to the occurrence of
recorded events. The fluctuation fields are gathered in the learning matrix, as explained in
figure 8.1. The size of this matrix was reduced by spatially down-sampling the fields and/or
sub-sampling the data set. In our case we subsampled by 2, keeping every second pixel in the
image in order to reduce the size of the matrices and computational time. A data standard-
isation was applied in the input and output data before the training process to help handling
possible different signal scales. The computational time on a standard desktop (CPU Intel
Xeon 5650 @ 2.66 GHz) was in the order of O(10) minutes depending on the model or-
der, reaching up to 3 hours of learning maximum for the highest order number. This made
analytical parameter sensitivity studies a difficult task.

8.2.1 Reduced-order model and validation

The reduced-order state-space model is finally computed using the algorithm N4SID, imple-
mented in MATLAB. Different model orders Norder ∈ [1 : 100] have been tested, since there
is no explicit rule to select it. Even if the validation data set is recorded with the same set-
tings as the ones generating the perturbations, it is independent from the learning data set. A
blog diagonal modal form was chosen for matrix tildeAw. To evaluate the global accuracy
of the prediction for the validation data set, the PKE is computed from the POD coefficients
as k∗POD = ∑i a2

i (Guzmán, Sipp, and Schmid, 2014). The difference between the real POD
coefficients and the ones estimated by the ROM is then calculated via the error in the total
PKE, defined as

kerror = 100
||k∗POD,real(t

∗)− k∗POD,model(t
∗)||

||k∗POD,real(t
∗)||

. (8.8)

Figure 8.12 gives the resulting kerror with respect to Norder for the sensor s= [⟨v′∗x ⟩ΩS
,⟨v′∗z ⟩ΩS

],
as well as 4 other sensors. It reveals that the best sensor is the double velocity sensor, with
kerror = 40.7% for Norder = 70. The results of the POD coefficient time series prediction for
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FIGURE 8.5: (a) POD energy (red) and accumulated energy (blue). The
85%-threshold is displayed (dashed black).(b-k) Normalized POD modes :

Φ1−8, Φ15, Φ16.
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FIGURE 8.6: Signal cross-correlation of 3 POD modes with the first one(1st
with 2nd 3rd and 4th), and cross correlation of the pair 4th and 5th. No
significant signal correlation is observed with the first mode and any other.

-0.03 -0.025 -0.02 -0.015 -0.01 -0.005 0 0.005

0

2

4

6

8

FIGURE 8.7: Instantaneous streamwise fluctuation profiles at different
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FIGURE 8.8: First six POD coefficient time series for validation dataset:
dynamic observer(red) and experiment(blue). Optimal sensor and model pa-

rameters used.

the validation dataset can be found in figure 8.8. Unfortunately, although the main oscillation
frequencies are captured, the amplitudes are not predicted with satisfying agreement.

For this state order, figure 8.9(a) compares the PKE resulting from the output POD co-
efficients of the model (red) and the real ones (blue). The amplitudes do not match exactly
during the validation step, but the model effectively captures most of the dynamics of the
fluctuations. It misses though two important PKE peaks at t∗ = 580 and t∗ = 630. The min-
imization of such fluctuations are a good objective for a closed-loop control. An advected
coherent structure is depicted by three successive instantaneous fields in figures 8.10(a,d,g).
Their corresponding POD reconstructions are given in figures 8.10(b,e,h). As expected from
figure 8.5(a), most of the large-scale structures are well contained by those 16 POD modes,
and the noise of the velocity fields is filtered by their projection onto the POD modes. Lastly,
the corresponding output fields from the model are shown in figures 8.10(c,f,i). The fields ap-
pear visually to be rather close to their real projections, confirming the results obtained with
the PKE. The estimated error arises also from the fact that initial conditions during prediction
are starting from random values and hence are estimated wrongly in the first steps.

8.3 SI parametric investigation

The method has 3 main parameters to chose for best learning and validation fit. The model
order, the number of outputs (POD rank) and the nature and number of the sensors and its
positioning.

8.3.1 Influence of the sensors

Instead of a wall sensor, as in the numerical work of Guzmán, Sipp, and Schmid (2014),
a different sensor has been used in the present experiment. Different values such as the
vorticity ωy and the λCi-criterion, have been monitored directly from the local fluctuations of
the velocity fields in the region of the instantaneous PIV snapshot. The size and location of
the sensor may play a role in the efficiency of the learning process because the former will act
as a spatial filter and the later will be crucial for its ability to detect relevant flow variations
(Guzmán, Sipp, and Schmid, 2016).
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(a)

(b)

(c)

FIGURE 8.9: (a) PKE from the POD coefficients k∗POD for the real validation
data (blue) and the output of the dynamic observer (red). Time series of (b)
the streamwise and (c) the normal components averaged over ΩS.Optimal

sensor and model parameters used.

FIGURE 8.10: Real (left), reconstructed by POD (middle) and model-
estimated (right) streamwise component of successive instantaneous velocity
fields (from top to bottom) separated of ∆t∗ = 5. Validation dataset fields are

presented.
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FIGURE 8.11: Instantaneous (a) streamwise and (b) vertical components of
the fluctuating velocities at t∗ = 310, together with the sensors area ΩS (rect-
angles). Time series of (c) the streamwise and (d) the vertical components

of the fluctuating velocity, both space-averaged over ΩS.

The sensors s1:J used are directly derived from the velocity fields. Various natures, posi-
tions and numbers of sensors have been tested. The streamwise v′∗x and the vertical compo-
nents v′∗z are first both monitored in the same region ΩS placed upstream at x∗s = 128 as shown
in figures 8.11(a) et (b). They constitute the sensor s = [⟨v′∗x ⟩ΩS

,⟨v′∗z ⟩ΩS
], which was optimal

as we show further in the article. The sensor does not contain the ten first pixels (interroga-
tion window radius) closest to the wall to limit noisy data. It is also not too large too avoid
a smoothing effect. The width of the window is 10 and the height 60 pixels. The position
of ΩS has been chosen to detect the perturbations incoming in the PIV window as upstream
as possible. A downstream sensor is avoided in purpose in the present study since the final
objective will be the design of a feed-forward control.Other sensors have been tested: the
velocity components alone, the swirling strength criterion λCi alone, then combined with the
streamwise component. As shown in figure 8.12, the streamwise and vertical velocity proved
the best sensors for Norder = 70, whereas it is the vortex identification criterion together with
the vertical velocity gave also almost equivalent results.

8.3.2 Influence of the model order

In general, a higher model order increases the number of system parameters to have an op-
timum fit. In system identification of experimental data though, the contained noise actually
might make a high-order model try to model the noise during the learning process, hence
actually increasing the error. A parametric sensitivity study of the model order is presented
in 8.12.

8.3.3 Influence of number of POD coefficients and sensor position on observ-
ability

For a system to be observable, the requirement that the input s(n) and the state Y(n) are well
correlated must be satisfied. This leads to the expression: s = C̃CC YYY . The measurement matrix
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FIGURE 8.12: Difference between the real PKE and the one estimated by
the ROM computed with various state orders Norder for different sensors.

Validation dataset error presented.

C̃CC can be calculated using a least squares method applied to the learning dataset as follows:

C̃CC = [s(1)s(2)...s(J)] [Y (1)Y (2)...Y (K)]† (8.9)

where † denotes the Moore-Penrose pseudo-inverse matrix.
The resulting sensor sPOD(K) is then compared to the real sensor s by defining an error

as follows:

sPOD,error(K) =
||sPOD(K)− s||

||s||
. (8.10)

Figure 8.13 shows the observability error results for the considered sensors at different
streamwise positions. Taking a low number of POD modes into account leads to slightly
better results for the sensors localized in the slightly more downstream part of the PIV win-
dow. Generally, we see that a minimum number of 15-20 POD modes are required from
the observability of the POD basis. Using more than 40 modes leads to an equivalent error
regarding all the positions, with a slight better performance of around 3 % of the downstream
positions. As mentioned also though above, sensors have to be kept as upstream as possible
in order to perform feed-forward control in the future.

8.4 Conclusions

A dynamic estimator method proposed firstly by Guzmán, Sipp, and Schmid (2014) and
Guzmán-Iñigo, Sodar, and Papadakis (2019) has been implemented for an experimentally
investigated transitional flow: the forced TBL flow, under a bypass transition. The inputs-
sensors data have been obtained from optical flow PIV measurements. Sensors consisted in
calculating a double visual sensor: the streamwise fluctuating velocity and either the vertical
fluctuating velocity or the swirling strength criterion in an upstream window of the flow. The
PKE increase induced by the streaks propagating along the flat plate has been identified and
model, though with less than acceptable agreement between the model and the real flow. The
sensor position and observability, model order and number of states were rigorously inves-
tigated. The non-linearity and weak three-dimensionality of the flow though is what makes
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FIGURE 8.13: Relative error between the real and the POD sensor at differ-
ent streamwise positions, and for different number of POD modes.

this modelling task complicated and not feasible with satisfying agreement; two important
peaks of the PKE evolution were missed during the prediction process.

Moreover, the computation of the POD modes and coefficients required large usage of
memory regarding the dense fields obtained via optical flow. The high data density inherent
to this velocimetry method may thus become a drawback in the present case, as it was fore-
seen by Champagnat et al. (2011). Nonetheless, spatially down-sampling the field turns out
to be a good solution, giving the choice (if the hardware allows it) between high space accu-
racy and lower computation cost for the estimation of the reduced-order model. A larger PIV
window (or the use of a second camera) would be beneficial to capture the streak energy evo-
lution. The description of the flow dynamics would be improved but it would consequently
increase the system state order. This would require to change the camera objective to keep
the spatial accuracy without extending the number of vectors and therefore the size of the
learning matrix.

8.5 Perspectives

The motivation of the presented work is its extension to flow control, in order to suppress
the captured coherent structures and reduce the PKE. Further works will therefore concern
the closed-loop control based on the proposed dynamic estimator (Ottonelli, 2014; Guzmán,
Sipp, and Schmid, 2014), since the actuator is already installed in the experiment. The region
investigated contains indeed a slotted jet designed like the one forcing the streaks, which
was covered with a plate visible in figure 7.2. The reduction of the PKE may be finally a
good objective to fix to the built system since it can also be tracked in real-time. The pre-
sented methodology is also currently under investigation for the horizontal plane xy fields like
the ones presented at figure 7.7. Distributed sensors in the spanwise direction are probably
needed for this complicated task.

On a different direction but with a similar goal, an artificial neural network methodology
has been already tested successfully in the same experimental dataset. The goal this time
was not to obtain a model, but to reduce the order of the studied system and reconstruct the
instantaneous velocity fields using the same visual sensors; all details and description of the
method are described in the next chapter; it will be proven that it provide an ameliorated
alternative for such system identification purposes.
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Chapter 9

System order reduction and velocity
field reconstruction of the TBL flow
using Artificial Neural Networks

The content of this chapter is based on the article: A.Giannopoulos, J.L. Aider, Data-driven
order reduction and velocity field reconstruction using neural networks: The case of a turbu-
lent boundary layer, Featured Article, Phys. Fluids 32, 095117 (2020).

We present a data-driven methodology to achieve identification of coherent structures
dynamics and system order reduction of an experimental Turbulent Boundary Layer (TBL)
flow. The flow is characterized using time-resolved Optical Flow Particle Image Velocimetry,
leading to dense velocity fields that can be used both to monitor the overall dynamics of the
flow and to define as many local visual sensors as needed. A Proper Orthogonal Decomposi-
tion (POD) is first applied to define a reduced-order system. A non-linear mapping between
the local upstream sensors (inputs-sensors) and the full-field dynamics (POD coefficients)
as outputs is sought using an optimal Focused Time-Delay (FTD) Artificial Neural Network
(ANN). The choices of sensors, ANN architecture and training parameters are shown to play
a critical role. It is verified that a shallow ANN, with the proper sensor memory size, can
lead to a satisfying full-field dynamics identification, coherent structure reconstruction, and
system order reduction of this turbulent flow.

9.1 Introduction

Current experimental methods such as Particle Image Velocimetry (PIV) or numerical meth-
ods such as Large Eddy Simulations (LES), used to characterize 3D non-stationary flows,
produce a large amount of data leading to high-order systems. It is generally necessary to use
an order reduction to derive some information that could be handled either to model or control
the targeted flow. Data-driven methods are nowadays becoming more and more efficient and
reliable even for fluid mechanics research (Guzmán-Iñigo, Sodar, and Papadakis, 2019; Deng
et al., 2019). Among successful applications, one can cite statistical learning (Guzmán, Sipp,
and Schmid, 2014) or machine learning (Wang et al., 2018; Gautier et al., 2015; Rabault and
Kuhnle, 2019) algorithms. More recently Artificial Neural Networks (ANNs) have been used
extensively for fluid mechanics, because of their architecture flexibility, needed for reduced-
order modelling (Pawar et al., 2019), turbulence modelling (Zhu et al., 2019; Maulik et al.,
2018; Xie et al., 2019), as well as for field reconstruction of complex non-linear flows (Liu et
al., 2020a). A short review on different applications of Deep Learning to Fluid Dynamics can
be found in (Nathan Kutz, 2017). Nevertheless, applying identification or modelling algo-
rithms to experimental fluid mechanics is still challenging because of various noises leading
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FIGURE 9.1: Control scheme for minimizing perturbation kinetic energy
using a neural-network identifier

to non physical errors as well as a limited number of sensors and the complexity of the ex-
perimental setup. Large datasets with both good spatial and temporal resolutions are needed
for successful applications of these data-hungry methods to experiments.

In an inverted flag flow experiment, Deng et al. (Deng et al., 2019) applied an ANN
identification method to reconstruct time-resolved velocity fields from a handful of velocity
sensors. It was also proven recently that ANNs can be used to predict the dynamics and
reconstruct the time-resolved fields of an experimental Backward-Facing Step (BFS) flow
(Giannopoulos and Aider, 2020b). We apply in this study a similar methodology to an ex-
perimental TBL flow, with the objective to identify correctly the dynamics, reconstruct the
velocity field and predict the total Perturbation Kinetic Energy (PKE) of the full velocity
field. The ANN algorithm will be used first to identify the global dynamics from upstream
local sensors and second to reduce drastically the order of the system to a handful of easily
measurable quantities. Such an algorithm would be an ideal part of a model-free control
loops (Gautier et al., 2015) aiming at reducing the PKE field, as shown in the Fig. 9.1.

9.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) can provide a non-linear mapping between one set of
inputs-signals (that are easily measurable) and some corresponding output signals (that may
be hard to measure in a final application, but still valuable for monitoring or control purposes)
(Goodfellow, Bengio, and Courville, 2016). Great progresses have been made lately due
to the ability to handle very large data-sets, the advancements of Graphics Processing Units
(GPU) parallel programming, and the increasing availability of multiple optimized toolboxes.
A short review of applications of deep ANN to fluid mechanics can be found in Nathan Kutz
(2017). ANNs can be divided into Feed-Back (or recurrent) and Feed-Forward. They can
also be discriminated according to their depth, either shallow or deep, depending on the
number of hidden layers (one or more). Finally, they can be divided into static or dynamic,
if the output of the current step depends on the previous steps as well, giving it a notion of
memory.

In the case of a feed-forward ANNs, the output of any layer only modifies the next layer,
not the previous ones. On the other hand, in a recurrent ANN the system output is calculated
from its previous past time-steps along with the input at the current time-step (eq. 9.1), hence
introducing a notion of output memory in the network.

yt = fw,b(yt−1,xt) (9.1)



9.2. Artificial Neural Networks 99

FIGURE 9.2: An example of a FTD ANN to perform a non-linear mapping
from N inputs to M outputs.

One category of recurrent ANNs are the Long-Short Term Memory (LSTM) networks.
They are gradient-based recurrent NNs used for supervised learning both in classification
and prediction problems (Vlachas et al., 2018). They were first developed by Hochreiter
and Schmidhuber (1997) to solve the vanishing or exploding gradient problem of the back-
propagated error (Bengio, Simard, and Frasconi, 1994). In an LSTM architecture, the net-
work is left to learn alone which past neuron contributions are important. They do so using a
sophisticated gate-neuron that determines if the input is important enough or if it should be
forgotten and when it should output its value.

9.2.1 Focused time-delay Artificial Neural Networks

The neural network used in the present System Identification (SI) study is a fully-connected
FTD ANN, which was first introduced for speech recognition (Waibel et al., 1989). It is
basically a standard feed-forward architecture along with a tapped constant time-delay (of
time-step size k) in the input (see Fig. 9.2). The term “focused" comes from the fact that
the notion of memory is introduced only in the input (sensors), and not in the output like
in LSTM ANNs. They are used to model long-range temporal dependencies by keeping a
number of k past measurements of the input at each time step xt . This leads to the following
expression for the output of the system :

yt = fw,b(xt ,xt−1, ...,xt−k) (9.2)

where w and b are weight and bias parameters. They have been used for rainfall predic-
tion (Charaniya and Dudul, 2012) as well as for effective acoustic modelling (Huang et al.,
2019), in deeper architectures.

For the above network with a non-linear activation function f1 in the hidden layer and a
linear activation function f2 in the linear layer, the equation giving the kth neuron output of a
single hidden layer network connected to the jth neuron of the previous layer is:

yk = f1

(
N2

∑
j=0

w(2)
k j f2(

N1

∑
i=0

(w(1)
k j xi + bi))+ b j

)
(9.3)

where N1 is the number of neurons in the first (hidden) non-linear layer and N2 the number
of neurons in the second (linear) layer. Regarding the choice of the non-linear activation
function f1, the tan-sigmoid or hyperbolic tangent function is used:

tanh(x) =
e2x −1
e2x + 1

(9.4)
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FIGURE 9.3: Instantaneous streamwise velocity fluctuation field of the TBL
experiment. Vertical field for z∗ = 0 (top) and horizontal field for plane

y = 2 d∗
0 (bottom). Streamwise velocity streaks can be clearly observed.

A widely used training process of the ANN (meaning finding the optimum weights and
biases connecting the neurons of different layers) consists in dividing the data-set between
a training data-set, a validation data-set and a testing dataset. For the training data-set we
chose one set of weights (randomly initialized in the first iteration) connecting the layers and
we use the same weights for each time step to calculate the output of the model. The error
of the real vs the model-generated output signal is computed and the weights and biases are
updated according to different back-propagation schemes (in our case the Scaled Conjugate
Gradient method). The above process is called one “epoch". We continue the process for
as many epochs as needed until a satisfactory fit error is achieved. The second data-set is
used to test the performance of the network on new data and verify the achieved error, hence
avoiding overfitting. The testing dataset is used to provide a single blind evaluation after the
training of the network, providing an unbiased evaluation of the training process.

In the following, we first present the experimental setup as well the main characteristics
of our TBL flow. The choice of the sensors of the ANN is then discussed and parametric
studies of different training parameters are presented. The efficiency of the ANN for the
dynamics identification and velocity field reconstruction is illustrated before turning to the
discussion and conclusion.

The dynamics identification and coherent structure reconstruction of a subcritical bypass
transition is investigated in the present experiment. The transition is triggered using a finite
amplitude pulsating jet (as described in the experimental setup section 7.1.1). Groups of
wavy streaks are observed as shown on Fig. 9.3. In the following all the spatial variables are
non-dimensionalized using the displacement thickness at the beginning of the PIV window δ ∗

0
(at x0 = 37 cm), for the unperturbed flow and noted (x∗,y∗,z∗). The velocity components are
non-dimensionalized with the freestream velocity U∞ and noted (u∗,v∗,w∗). Consequently,
we refer to the dimensionless time t

∗
= tU∞/δ ∗

0 .
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FIGURE 9.4: Block diagram showing the different steps used for the
experimental perturbation energy identification through POD and train-

ing/validation steps.

FIGURE 9.5: Location of the double visual sensors shown over the time-
averaged unperturbed streamwise velocity field u.
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PIV length (cm) 23.39
Snapshot size (pixels) 162x1978
Spatial resolution (mm/px) 0.116
# Snapshots 6400
Acquisition time (s) 41.3

TABLE 9.1: PIV experiment parameters

9.3 Time-resolved PIV measurements

The flow was seeded with 20 µm neutrally buoyant polyamide particles, illuminated by a
laser sheet created by a 10 W continuous laser (MX-6185, Coherent, USA) operating at
532 nm. A thin layer of fluorescent paint (FP Rhodamine 6G, Dantec) was applied to the
illuminated surface, absorbing the laser wavelength to avoid reflections and to allow correct
near-wall measurements. The camera used was a PCO DIMAX-cs with a sampling frequency
of 150 Hz. An narrow-band optical filter centered around 532 nm was mounted on the camera
to avoid any optical noise.

The velocity field is calculated from the acquisition of successive snapshots of the vertical
laser sheet in the middle of the test section using a home-made optical-flow algorithm. The
first version of the code has been developed at ONERA (Champagnat et al., 2011) and later
modified, optimized and adapted to the constraints of real-time measurements (Gautier and
Aider, 2015b). The advantage of this algorithm compared to a standard FFT-PIV algorithm
is its high computational speed when implemented on GPUs with CUDA functions (C.Pan
et al., 2015). The code has been used many times both for time-resolved PIV measurements
with a high spatial resolution (Varon et al., 2017) as well as for closed-loop flow control
experiments (Gautier and Aider, 2013; Gautier, 2014; Gautier and Aider, 2015a; Varon et
al., 2019).

The vertical (x, y) PIV plane was chosen for the present identification because a larger
experimental dataset was available, as seen in figure 7.4. Indeed, only the boundary layer re-
gion contains relevant information for the identification algorithm so that only the lower part
of the snapshots are used, which allows a significant reduction of computational time. Also,
the distribution of streaks in the spanwise direction was found homogeneous for the specific
forcing. The extension of the method in the horizontal plane and for different boundary layer
forcing scenarios could also be investigated. The parameters of the PIV experiments used
in the following are summarized in table 9.1. One should keep in mind that the optical flow
algorithm leads to dense vector fields with one vector per pixel.

9.3.1 Transition forcing mechanism

Experiments were carried out in an hydrodynamic channel in which the flow is driven by
gravity. The flow is stabilised by divergent and convergent sections separated by honeycombs
leading to a turbulence intensity of 0.6 %. A NACA 0020 profile is used to smoothly start
the boundary layer. The test section is 80 cm long with a rectangular cross-section 15 cm
wide and 8.5 cm high as shown in Fig. 7.4. The unperturbed flow is a laminar boundary
layer. The Reynolds number measured at the inlet of the PIV window is Reδ ∗ = 409 for a
freestream velocity U∞ = 0.188 m.s−1. No natural instability was observed without forcing.
The displacement thickness at x0 = 37 cm is δ ∗

0 = 2.5 mm leading to a shape factor H0 = 2.34,
typical of a laminar boundary layer.
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In order to evaluate the potential of ANN on a non-linear flow, the transition to turbu-
lence of the boundary layer is forced using a finite amplitude pulsating jet perturbation. The
perturbation is induced by a spanwise slotted inclined (45◦) jet as shown on Fig. 7.4. The
injection system is optimized to obtain an homogeneous velocity along the spanwise direc-
tion. It is located at x = 5 cm downstream the leading edge, as shown in Fig. 7.4. The jet
outlet has a rectangular cross-section which is 0.4 cm long (streamwise direction) and 9 cm
wide (spanwise direction). The jet is supplied by a pressurized water tank, monitored by
a SMC ITV 1010 electro-pneumatic regulator to control the jet frequency f f orcing and am-
plitude U f orcing. The frequency of the perturbation was random (0 < f f orcing < 5Hz), for a
constant maximum amplitude. The experiments were repeated multiple times showing the
same Proper Orthogonal Decomposition (POD) mode structures.

The shape factor H of the forced boundary layer is H = 1.31, which is typical of a
turbulent flow. The boundary layer thickness range in our PIV window was δ99 = [0.01−
0.016] and the skin friction coefficient range C f = [0.0062−0.0072]. The wall coordinate in
figure 9.3, bottom, was y+ = [1.39− 1.63]. The coherent structure advection velocity uadv
has been estimated around 0.75 U∞ (based on a space-time diagram of a horizontal profile of
the streamwise velocity perturbation inside the boundary layer).

9.3.2 Proper Orthogonal Decomposition

Decomposing a dynamical system in modes of decreasing importance can help reducing the
order of the variables of the system. N consecutive instantaneous velocity fields {UUU(n) =
(u∗,v∗)}n=1...N were computed from consecutive flow snapshots with an acquisition fre-
quency fac = 150 Hz. By calculating the mean field [u,v] we were able to obtain the velocity
fluctuations u′(t) = u∗(t)− u and v′(t) = v∗(t)− v, which contained all the dynamics and
were used to create the reduced-order system. The fluctuation matrices organised in columns
for each time-step were used to form the so-called “snapshot matrix" to be decomposed. The
reduced-order system is obtained using POD, which has been used extensively in fluid me-
chanics (Borée, 2003; Mendez et al., 2017). It allows us to build a ranked and orthonormal
basis containing N modes (Lumley, 1967; Sirovich, 1987). The first M modes {Φmmm}m=1...M
with M ≤ N containing a sufficient percentage of the total energy is then chosen to compute
the approximated velocity field ŨUU(nnn):

ŨUU(nnn) =
M

∑
m=1

⟨Φmmm,UUU(nnn)⟩Φmmm =
M

∑
m=1

am(n)Φmmm (9.5)

where the scalar product ⟨·, ·⟩ is the energy-based inner product. The system output to
be identified is obtained through the reduced state vector containing the M POD coefficients
am(n):

Y (n) = [a1(n) a2(n) ... aM(n)]T (9.6)

The full-field dynamics are now contained in their POD coefficients am(t). The balance
between the order and accuracy of the POD reduced-order system is crucial, because for a
large number of POD modes the SI methods are much more likely to fail.

9.3.3 Overview of the method

In the present SI method we first apply a POD to the time-resolved PIV snapshot matrix,
to perform a first system order compression. Then we proceed to train a FTD ANN for
the non-linear mapping between local upstream sensors and the dynamic POD coefficients.
All the dynamics information is then included in a 2 easily measurable quantities. More
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FIGURE 9.8: Evolution of 3rd (a) and 13th (b) dynamic POD coefficient.

specifically, the available time-resolved PIV dataset is divided into the learning or training
part, the validation part and the testing part. During the training step, the parameters of the
model (weight, bias) are updated accordingly using an appropriate learning algorithm which
takes into account the error between the expected output and the model-generated output
via a back-propagation learning algorithm, in our case the scaled conjugate gradient. After
each weight and bias update, an epoch has passed. As many epochs as needed are used to
obtain a satisfying fit error. Then, during the validation step, the model generated outputs are
compared with the new data, this time expecting equivalent fit results as during the training
step. Large validation fit errors yield over-fitting; meaning that the network does not provide
a generalizable extrapolative solution for new input data. The correctly trained network will
allow the accurate prediction of the PKE at any moment using just a few local PIV sensors.
The different steps of the overall identification process are summarized on the diagram shown
in Fig. 9.4.

9.3.4 Validation Criterion

To evaluate the efficiency of the identification, one has to define a relevant quantitative cri-
terion to compare the POD coefficient time-series results obtained with the different ANN
architectures to the ones obtained experimentally. In the present study, we compute the mean-
squared error (MSE) at each time-step n for each POD coefficient am(n):

MSEm =
1
N

N

∑
n=1

(aexp,m(n)−aNN,m(n))
2 (9.7)

Then the averaged MSE for all the coefficients (M = 17) time-series gives the final eval-
uation error for the specific ANN architecture:

MSE =
1
M

M

∑
m=1

MSEm (9.8)
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FIGURE 9.9: Time-series and power spectrum of velocity (s1) and swirling
strength (s2) sensor.

9.4 Sensors definition

First, we obtained the full dataset of N = 6400 consecutive snapshots, acquired with a sam-
pling frequency of 150 Hz. A POD was applied using the snapshot method. 17 POD modes
were needed to obtain satisfying results with at least 80 % the total energy. The energy of the
individual POD modes as well as their cumulative energy are shown in Fig. 9.6. The spatial
structure of the third and 13th POD modes can be found in Fig. 9.7 while their time evolution
is shown in Fig. 9.8. We clearly see the similarity of the 3rd POD mode with the large-scale
coherent structures visualized in the instantaneous field of Fig. 9.3.

9.4.1 Choice of the sensor

The visual sensors will be the inputs in the identification process. The choice of the sensor(s)
is then a critical step. There are many possible type of sensors as well as many possible size
and locations. The first step is to choose the physical nature of the sensor which should be
based on the two components of the instantaneous 2D velocity field measured at each time-
step. It can be simply one of, or the two components of the velocity field, or the velocity
magnitude measured in a given window defined in the PIV field. Because of their simplicity,
they are the first sensors we will test.

As we are interested in the dynamics of coherent structures advected into the boundary
layer, one can also choose to compute the vorticity field. As the vortical structures are em-
bedded into the boundary layer, it is better to use more refined detection criteria, like the Q
criterion or the λCi criterion, which are well adapted to the identification of vortical structures
inside a shear layer.

In the following, we will use the swirling strength λCi criterion, which was first in-
troduced by Chong, Perry, and Cantwell, 1990 who analyzed the velocity gradient tensor
D =

−→
∇−→u and proposed that the vortex core could be defined as a region where ∇u has

complex conjugate eigenvalues. It was subsequently improved by Zhou et al., 1999 and by
Chakraborty, Balachandar, and Adrian, 2005. It was also successfully applied by Cambonie
and Aider, 2014 to visualize the 3D vortices created by a Jet in Cross-Flow measured by Vol-
umetric Velocimetry or by Gautier and Aider, 2015a in a closed-loop flow control experiment
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n1 MSE Sensor choice
75 0.05 [ λci , v

′
]

110 0.11 v
′

90 0.32 λci

TABLE 9.2: Comparison of the validation data-set fit error obtained with a
single velocity input, a single swirling strength input and their combination.
Using the combination of the inputs minimises the MSE and the number of

neurons.

using a similar visual sensor. For 2D data, λCi can be computed quickly and efficiently using
eq. (9.9) when such a quantity is real (else λCi = 0):

λCi =
1
2

√
4det(∇u)− tr(∇u)2 (9.9)

9.4.2 Influence of number of sensors

On one hand, reducing the number of sensors leads to a reduction of the number of inputs
(and outputs) which generally would make the training of the system simpler. On the other
hand we may loose valuable dynamics information, helpful for the identification process.
A compromise has to be found. A combination of two inputs has been tested: first, the
wall-normal velocity measured at one point (averaged over the five neighbouring pixels) and
second, the swirling strength vortex identification criterion λCi (as a sum of all the pixels in
a 15 pixels-wide window). The combination of the 2 inputs was found to give better results
compared to the velocity sensors alone or the swirling strength alone or the local vorticity
and velocity combination. The main MSE results can be found in table9.2.

The swirling strength window allows a good detection of all the advected vortices. The
spectra of the two sensors (Fig. 9.9) show that the velocity sensor detects the large structures
passing in the neighbourhood with a frequency close to 1 Hz, while the swirling strength
criterion gives us more information about the high frequency dynamics up to 4.8 Hz. Some
frequencies can be found in both spectra, like a clear 2.32 Hz peak.

The efficiency of the combination of the two sensors can be explained through the cross-
correlation of the sensor signals with the time-series signals of the POD coefficients, as il-
lustrated in Fig. 9.10. One can clearly see that the 3rd POD coefficient is weakly correlated
with the swirling strength sensor, while it is strongly correlated to the velocity sensor. On
the opposite the 13th POD coefficient, which contains higher frequencies (see Fig. 9.8), is
strongly correlated with the swirling strength sensor. This could be one of the reasons why
the training using these two sensors is much more accurate than using a single sensor.

9.4.3 Influence of position and size of the sensor

The width of the swirling strength window plays an important role to obtain good SI results.
If it is too large, it creates an unnecessary smooth event, while if too small it can be too noisy,
especially for gradient variables computed from experimental data. A good compromise was
found for 0.7 y∗. The height of the window was chosen large (5 y∗), so that it contains entirely
the advected structures in the wall-normal direction, as observed in the POD modes.

The choice of the position of the sensors is also crucial. In general, the sensors should
be located as upstream as possible in order to measure and predict early the downstream
dynamics. The final position of the chosen sensors is shown in Fig. 9.5.
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FIGURE 9.10: Cross-correlation of the velocity (s1) and swirling strength
(s2) sensors with 3rd (a,b) and 13th (c,d) POD coefficient.

9.5 ANN parameter sensitivity studies

The architecture and parameters of the ANN can be changed to avoid overfitting and improve
the training process, mainly by choosing the appropriate number of neurons in the hidden
layer. The depth of the network (meaning number of hidden layers) can also be increased if
needed. Generally a deeper network (using the same number of total neurons) will allow the
identification of more complex features and information. The drawback is that the successful
training can become very tricky, especially since it increases significantly the computational
time for the training as well as the complexity of the network. This makes training parameter
sensitivity analysis almost impossible.

In the FTD ANNs used in the present study the input time-delay (meaning the size of
the sensor memory) can also be chosen accordingly to improve training and validation fit.
It was found critical for the success of the training. The training process had a very low
computational time: it was of the order of O(1) minute using a Intel Xeon E5-2630 CPU
running at 2.2 GHz. This allowed for a full parametric study to find the optimal time delay k
for the inputs and the minimum number of neurons for the hidden layer.

For all the ANN calculations (training, validation) the MATLAB Deep Learning Toolbox
was used. A basic scheme of the final FTD ANN can be shown in Fig. 9.11. An anti-causal
zero phase low-pass moving average (over four time-steps) filter has been applied to each
pixel time-series. The maximum frequency of the forced BL dynamics was 5 Hz, so seven
times lower than the low-pass filter cutoff frequency.

We mention that training with Long-Short term memories recurrent network architectures
was found inefficient in our case, with a strong increase of the computational time. A sim-
ple shallow Time-Delay ANN scheme with 75 neurons gave the best results. This actually
contradicts the result of Olekan et al. (2016) who have found out that deep architectures are
more efficient than single hidden layer models for noisy data sets. In our case a single hidden
layer model was sufficient. The ANN used contained a tan-sigmoid transfer function. As a
standard time-delay neural network it also contained an output layer with a linear transfer
function to the output.

9.5.1 Training parameters

The full data-set is divided into 3 parts: training or learning (85% of the snapshots), valida-
tion (10% of the snapshots) and over-fitting test data-set (5% of the snapshots) as summarized
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FIGURE 9.11: Structure of the FTD ANN used for this study, with 2 inputs-
sensors (v′ and λCi), a k time-delay, 1 hidden layer with 75 neurons and M

outputs (in our case M = 17 POD modes).
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FIGURE 9.12: Training and validation mean-squared error for each epoch
of the training process.
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FIGURE 9.13: Training and validation MSE for each POD coefficient time
series.
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FIGURE 9.14: Comparison of the 1st to 6th POD coefficients time-series
obtained from experimental data with the ones obtained with the ANN for
training(a) and validation (b) datasets. The network zero signal due to time-

delay is evident in the training set.
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# Inputs 2
# Outputs 17

# Training Snapshots 5440 (85%)
# Validation Snapshots 640 (10%)

# Overfitting check snapshots 320 (5%)

TABLE 9.3: Neural network training parameters configuration

in Table 9.3. The third data-set is used as an early stopping criterion to test if a rising error is
observed during the training process. As a common practice the data are shuffled randomly
before the beginning of the training process. It avoids bad models if the data are initially
classified. It also makes fitting faster because neighbouring points are not similar. Block
consecutive data-set division failed to give good fit results. We also mention that a data stan-
dardisation was applied before the training process which also helps when different inputs or
outputs have different scales. Lastly, we mention that the weights and biases of the network
are initialised randomly for the first epoch.

The optimum number of neurons for the hidden layer was found to be 75 and the best
sensor time-delay corresponded to k = 300.8× t⋆ snapshots (or around 4 s). The evolution
of MSE with the epoch number is shown in Fig. 9.12 for both training and validation. The
MSE decreases sharply for the first epochs and more smoothly for increasing epochs. The
optimum architecture and training parameters are summarized in the table 9.4.

Network layer structure 2-75-17-17
Activation function Hyperbolic Tangent

Loss function MSE
Training method Scaled Conjugate Gradient

Time-delay(s) 4

TABLE 9.4: Final choice for the neural network parameters.

In Fig. 9.13 we can see hat the MSE for each POD coefficient is around 5 % for most of
the coefficients and for both training and validation, which is very satisfactory. In Fig. 9.14
we compare the time-series of the six first POD modes with the time-series obtained in the
training step (a) and in the validation step (b). Both training and validation data are in very
good agreement with the experimental data.

9.5.2 Influence of the sensor memory

The influence of the time-delay in the inputs, is illustrated on the plot of the evolution of
the MSE as a function of the time-delay shown in Fig. 9.15. We observe that the sensor
memory is critical for the correct dynamics identification: a minimum of k = 150× t⋆ time
units is required to obtain for the first time a correct identification with an MSE lower than
50%. A sensor memory of 300.8× t⋆ breaks the error limit of 5%. The interpretation of the
physical meaning of an optimal neural network is often useful, but not frequently studied.
In our case we observe that an abrupt error drop occurs in the region of the sensor memory
size of t∗ = 150× t⋆ ; using the structure advection velocity we obtain a characteristic length
scale of 112.2 x∗, which is 1.22 times the size of our PIV domain (92 x∗). This shows that
the optimal memory size is actually a function of the sensor position, the structure advection
velocity and the size of the domain of which we are identifying the dynamics.
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FIGURE 9.16: Network validation performance as a function of the number
of neurons in the hidden layer.

9.5.3 Influence of the number of neurons in the hidden layer

Keeping an optimal constant time delay of 600 time-steps or 300.8 t*, we can study the
sensitivity of the validation errors as a function of the number of neurons in the hidden layer,
as shown in Fig. 9.16. A minimum of 70 neurons is needed to achieve an error of the order of
10 %. We also should keep in mind that increasing the number of neurons in the hidden layer
increases drastically the number of parameters and the complexity of this fully connected
architecture, even if the network is shallow.

9.5.4 Influence of the size of the training data-set

In Fig. 9.17 we show that decreasing the number of snapshots used for the training of the
network leads to an increase of the number of neurons in the hidden layer needed for an
equivalent validation error (keeping a constant time-delay of 301 time units t∗). Above a
given number of snapshots, increasing the number of neurons does not help: it introduces
overfitting hence increasing the validation error.

9.5.5 Optimal parameter results

Using the optimal time delay, the right number of neurons in the hidden layer and the proper
combination of double upstream sensors, we can check the efficiency of the network in the
POD coefficient signal prediction and the time-resolved instantaneous fields reconstruction.
The dynamic coefficient signals are accurately predicted. In Fig. 9.14 it is clear that the fit
error is similar for both training (left) and validation (right) datasets, which is strong evidence
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FIGURE 9.17: Network validation performance as a function of the number
of snapshots used for the training.
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FIGURE 9.18: Instantaneous horizontal fluctuation velocity field compari-
son between experiment (a) and ANN-reconstructed field (b). Movie online.
Time-steps are not consecutive due to the dataset shuffling process during

the training-validation division.

that we avoided overfitting. In Fig. 9.18 we see that the main large coherent structures are
well reconstructed.

Finally, the kinetic energy of these perturbations (PKE) computed for each pixel in the
PIV window is defined as:

PKE(t) =
1
2

∥∥∥(u
′
(t),v

′
(t)
)∥∥∥2

(9.10)

The sum of this quantity for each pixel is an interesting control quantity for the future
model-free control scheme, since it is an indication of the total advected turbulent fluctuations
intensity. So it is calculated and a compared, between ANN generated results and experiment.
For the validation data-set, the optimal ANN architecture gives us a MSE of 10.46 %. The
model and experimental time-series are in very good agreement as shown in Fig. 9.19.

9.6 Conclusions

A successful application of an ANN SI framework was presented for the case of an experi-
mental TBL flow. FTD ANNs were proven flexible enough to achieve sufficient prediction
precision, even for a high-order multiple-input multiple-output non-linear system. A non-
linear mapping between upstream sensors and the global dynamics of the flow (in the form
of POD coefficients) was presented. The cross correlation between sensors and coefficient
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FIGURE 9.19: Comparison of the sum of PKE computed in the PIV window
between decomposed experimental field and ANN-identified reconstructed

field. Zero network signal is due to sensor time-delay.

signals was proven a useful tool for the choice of the optimal sensors. Different sensors
correlate well with different coefficient signals. It was revealed why the collaboration of a
swirling strength sensor and a local velocity sensor resulted in an accurate network training.
The dynamics were identified, the turbulent coherent structures (wavy streaks) were recon-
structed, and the system order was reduced to two easily measurable signals. A physical
interpretation was given for the optimal sensor memory size in the final ANN architecture.
The difficultly in the estimation of the coherent structures in this TBL flow arises due to
streak wavyness and weak three-dimensionality. Still the ANN was proven efficient if the
sensor memory size and number of neurons are properly chosen. The achieved fit accuracy
is around 5%. The present study is the first step in identifying an efficient model-free control
law like in Gautier et al. (2015) and Li et al. (2017), that comes from deep knowledge and
precise prediction of the dynamics of each point in the velocity field. It will target the mini-
mization of the PKE, since this quantity can be tracked in real-time. We also mention that the
Reynolds number could also be integrated as an input, while the output could include POD
coefficients for the different Reynolds numbers, hence going towards a system of variable
velocity. The presented methodology could also be applied to the same turbulent flow but
based on the horizontal (spanwise-streamwise) PIV plane (Fig. 9.3). Spanwise-distributed
sensors and deeper networks are possibly needed for this complicated task but it clearly is
now feasible.

A few comments can be made regarding a comparison with the dynamic observer method
that used a statistical learning approach and was presented in the previous section: Even
though the ANN does not provide a model but just a local-to-global regression, it showed
remarkable adaptability on the weak-threedimensionality and waviness of the streaks, and
successfully predicted every fluctuation energy peak with remarkable accuracy. Last but not
least, the ANN approach required an order of magnitude less computational time and can be
a valuable machine-diagnostic tool where no model is needed.
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Part IV

Instabilities, dynamics and control of
the Backward-Facing Step flow
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Chapter 10

Transition to turbulence in the BFS
flow

10.1 Classic 2D scenario

Noise-amplifier flows are fluid systems which are globally stable, but which selectively am-
plify the upstream perturbations coming from random environment noise via convective in-
stability mechanisms (Huerre and Monkewitz, 1990; Chomaz, 2005). Typical examples are
the flat plate Boundary Layer and Backward-Facing Step (BFS) flows (Armaly et al., 1983;
Beaudoin et al., 2004b; Dergham, Sipp, and Robinet, 2013). Noise-amplifier flows play an
important role in many industrial flows, like separated flows around airfoils (Darabi and Wyg-
nanski, 2004) and the complex 3D wakes of ground vehicles (Aider et al., 2001; Beaudoin
et al., 2004a).

The BFS flow, particularly, is considered a very important test-case for separated flows;
separation is imposed by a sharp edge leading to a large recirculation bubble, secondary
corner recirculating regions (in the bottom corners or the in the ceiling of the channel as
well, for low vertical expansion ratios (Barkley, Gomes, and Henderson, 2002)) and a Kevin-
Helmholtz (K-H) instability leading to high frequency emission of vortices. The recirculation
bubble is usually associated to pressure drag (Dahan, Morgans, and Lardeau, 2012a). Its re-
duction is then a common objective to most flow control experiments targeting drag reduction
(Gautier and Aider, 2014). It has been also found subject to a flapping motion, with a magni-
tude of frequency lower than the shedding frequency (Spazzini et al., 2001). A new boundary
layer develops after the re-attachment of the flow, the position of which is important for heat
and mass transfer purposes. Tihon et al. (Tihon, Legrand, and Legentilhomme, 2001) studied
experimentally the re-attachment length for the Re number range [1200:12000]. It has been
observed that the low-frequency flapping of the recirculation bubble, together with the K-H
instability produces oscillations of this reattachment line (Dejoan and Leschziner, 2004).

In this spanwise-invariant description of the BFS flow we observe a convective instabil-
ity surrounded by upstream and downstream regions of stability. A sketch of the main 2D
observed phenomena, the recirculation length and reattachment zone can be found in figure
10.1. A LIF experiment performed at the PMMH lab showing the vortex shedding instan-
taneous snapshots for varying Re number can be found in figure 10.2. Since a very low Re
number though, as low as Reh = 200 (defined using the free-stream velocity and the step
height), a 3D instability is observed (Armaly et al., 1983; Kaiktsis, Karniadakis, and Orszag,
1991; Beaudoin et al., 2004b), hence making recirculation area (RA) calculations strongly
dependant on the measurement plane chosen. Particularly, Beaudoin et al. (Beaudoin et
al., 2004b) showed for the first time experimentally a periodically modulated reattachment
position in the spanwise direction, using PIV measurements.
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FIGURE 10.1: Main 2D-instability phenomena sketch of the BFS flow, as
illustrated by Aider, Danet, and Lesieur, 2007.

FIGURE 10.2: LIF experiment in the streamwise-wall normal direction vary-
ing the Reh number from Beaudoin et al., 2004b. Development of K-H vortex

shedding.
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10.2 3D instabilities

Beaudoin et al. demonstrated experimentally that the radius of the local streamlines can
vary the pressure along the boundary layer, triggering large scale streamwise longitudinal
vortices. Numerically, numerous studies have been carried out (Blackburn, Barkley, and
Sherwin, 2008; Wang, Wu, and Zhu, 2019; Lanzerstorfer and Kuhlmann, 2012) to study this
instability; the grand majority of them dealing with low expansion ratios and a Poiseuille flow
profile inlet and no slip upper boundary condition. These cases do not necessarily correspond
to the phenomena observed in the open flow cases, like in ground vehicle applications, due
to confinement effects. Barkley et al. (Barkley, Gomes, and Henderson, 2002) performed
a linear stability analysis in such a numerical BFS flow and showed that a steady three-
dimensional bifurcation observed at Reh = 748. They argued that earlier transitions are due
to artificial effect of the walls due to small aspect ratio. A study closer to the open flow
case, using an expansion ratio of 0.83 and a non-reflective upper boundary condition was
performed by Aider et al., using Large-eddy simulation scheme (Aider, Danet, and Lesieur,
2007). For a Reh = 5100 and a turbulent incoming boundary layer, they showed the existence
of coherent streamwise streaks creating a spanwise modulation, lasting 3-4 times the step
size downstream the step. They argued that this spanwise modulation was responsible for
the wavy modulation of the Kelvin-Helmholtz vortex rolls. A very similar 3D instability
is also experimentally observed in a separated boundary layer by Passaggia, Leweke, and
Ehrenstein, 2012b. By putting a bump in the flow and separating the boundary layer flow
they observed a transverse instability and a low frequency RA flapping, similarly observed
in the BFS flow. A lof of similarities can be found in the study by Faure et al. as well (Faure
et al., 2009), where a similar Görtler instability occurs in an open cavity flow. A full study
of the transition to unsteadiness of this flow was also investigated thoroughly numerically by
Picella et al. (Picella et al., 2018), showing the occurrence of two successive bifurcations
from which the first one, happening at Reynolds number Reh = 3430, also associated with
the emergence of (quasi-)steady Taylor Görtler vortices.

A surprisingly low number of experimental studies have been conducted. Experimentally,
Kitzhofer et al.(Kitzhofer et al., 2009), again with a Poiseuille-profile inlet flow studied the
BFS flow using volumetric velocimetry. The first and only experimental study regarding
the 3D BFS flow instability using a Blasius boundary layer inlet BFS flow is by Beaudoin
et al. (Beaudoin et al., 2004b). Using numerical results they showed the existence of an
intrinsic unstable three-dimensional mode, due to a centrifugal instability in the vicinity of
the reattached flow, in a region 8 times the step size away from the step position, outside of the
recirculation bubble. Using Laser-induced Fluorescence (LIF) in the same setup they verified
the existence of mushroom-like counter-rotating longitudinal vortices, as seen in figure 10.3.

The present study is directed towards the experimental investigation of this 3D instability
for the Reh number (based on the step height h and free-stream velocity) case from Reh = 290
to 3080. The correct identification of the structure scales (as the ReH number increase) is
critical, in order to design simple open or closed-loop jet actuators that will optimally act
on the flow. Shedding more light towards the understanding and controlling the BFS flow
for drag reduction purposes could be proved important for the CO2 diminishing goals of the
European Union (EU-Council, 2014).

The chapter is organised as follows: We first present a description of the experimental
setup and the 2D optical flow metrology that is used to further study this 3D instability, as
studied in a low Re hydrodynamic channel. We then present experimental results on the
characterisation of the BFS flow: the observed K-H as well the 3D instability observed in
the spanwise direction. Afterwards, a novel open-loop control strategy using pulsating jets
upstream of the step area is going to be presented, followed by a machine-learning dynamics
prediction algorithm using local visual sensors.
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FIGURE 10.3: LIF experiment visualisation in the spanwise-wall normal
direction from Beaudoin et al., 2004b. Counter-rotating streamwise vortices

appearing due to streak formation.
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Chapter 11

Experimental results on the 3D
instability

11.1 Experimental setup

11.1.1 Hydrodynamic channel

Experiments have been carried out in a hydrodynamic channel in which the flow is driven by
gravity, with a maximum free-stream velocity U∞ = 22 cm.s−1. The flow is stabilised by
divergent and convergent sections separated by honeycombs leading to a turbulence intensity
less than 1 %. A NACA 0020 profile is used to smoothly start the boundary layer. The test
section is 80 cm long with a rectangular cross-section w = 15 cm wide and H = 10 cm high
(Fig. 11.1). The step height is h= 1.5 cm. The maximum Reynolds numbers based on the step
height is Reh,max = U∞h/ν ≈ 3080. The vertical expansion ratio is Ay = H/(h+H) = 0.82
and the spanwise aspect ratio is Az = w/(h+H) = 1.76.

The flow is seeded with 20 µm neutrally buoyant polyamide particles, which are illu-
minated by a laser sheet created by a 2 W continuous laser (MX-6185, Coherent, USA)
operating at 532 nm. The Camera used was a 4 Mp PCO DIMAX-cs with an acquisition
frequency up to fac = 180 Hz. The camera has an embarked RAM giving a limit of 2000
images at 4Mp resolution, hence the total acquisition time was also limited by this factor.
An narrow-band optical filter was mounted on the camera to visualise only the laser light
reflected by the particles.
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y=0.4h
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y=h

y=1.2h
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FIGURE 11.1: Sketch of the BFS geometry and 8 horizontal planes scanned
with PIV. Results presented for Reh = 2709.
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FIGURE 11.2: Mean streamwise velocity field at y = 0.6 h, Reh = 1255.
First appearance of streaks near the middle plane.

FIGURE 11.3: Mean streamwise velocity fields for various Reh numbers,
y = 0.6 h; apprearance of spanwise periodic modulation due to streaks ap-

pearing after Reh = 669.
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FIGURE 11.4: Mean streamwise velocity component fields for different
horizontal planes changing the wall-normal height y. Results presented for

Reh = 2709, as for figure 11.1.

11.1.2 Optical flow measurements in the spanwise-streamwise plane

The time-resolved velocity fields are calculated from the acquisition of successive snapshots,
using a home-made Lucas-Kanade Optical Flow (LKOF) algorithm. The first version of the
code has been developed at ONERA (Champagnat et al., 2011) and later modified, optimised
and adapted to the constraints of real-time measurements by Gautier & Aider (Gautier and
Aider, 2013). Among the advantages of the LKOF algorithm compared to a standard FFT-
PIV algorithm is the calculation of a dense velocity field with one vector per pixel. It also
allows for high computational speed when implemented on a GPU with CUDA functions
(C.Pan et al., 2015). The high spatial resolution is important for near-wall measurements
while the high computation speed is important for real-time measurements that can be used
as inputs in closed-loop flow control experiments (Gautier and Aider, 2015b). The code has
been used many times both for time-resolved PIV measurements with a high spatial resolu-
tion (Varon et al., 2017), as well as for closed-loop flow control experiments (Gautier and
Aider, 2013; Gautier et al., 2015). The PIV calculations in the present study were performed
on a NVIDIA TESLA K80 GPU.

Eight horizontal, streamwise-spanwise plane xz were studied (at y = 0.2 : 0.2 : 1.6 h).
A sketch of the horizontal planes height positions can be seen in figure 11.1. The Reynolds
number in the present experiment is 290 < Reh < 3080, corresponding to a maximum free-
stream velocity u∞ = 25 cm.s−1. The incoming boundary layer, is laminar and follows a
Blasius profile.
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11.2 Observed phenomena

The observed instability consists of a linearly unstable centrifugal instability (Saric, 1994;
Beaudoin et al., 2004b), where the boundary layer interacts with the wall curvature leading
to streamwise counter-rotating vortex rolls, or streaks. They streaks modulate the streawise
velocity fields in the spanwise direction in a periodic manner. The lowest Re number to
observe this instability in our channel was Reh = 1255. The streak signature in the mean
streamwise field can be found in figure 11.2, where the first pair of counter-rotating vortices
appear in the center of the field. This first streak pair appearance for Reh = 1255 is also asso-
ciated with the birth of a turbulent spot. This turbulent spot observation is studied extensively
in section 11.7.

An extrinsic side-wall structure appears close to the side walls at z = 4 h and z = −4 h ,
existing from the lowest ReH number studied at Reh = 290. They are similar to the structures
studied by Williams et al. (“Numerical simulations of laminar flow over a 3D backward-
facing step”), Tylli (Tylli, Kaiktsis, and Ineichen, 2002) and Armaly et al. (Armaly et al.,
1983) and are inevitable in hydrodynamic channels. They can be clearly observed in the
streamwise mean field (figure 11.2). These extrinsic rolls could force this instability of the
streaks to occur slightly subcritically, before the actual critical Reh. For this reason we ob-
serve also a slight modulation of the streamwise field in Reh = 669. They are similar to the
adjacent Ekman structures in the endwalls of an experimental TaylorCouette flow (Czarny
et al., 2003). These extrinsic wall effects actually might penetrate to some extent over the
entire flow since they are superimposed wit the streaks (Benjamin, 1978).

The signature of the streaks can be observed through this spanwise modulation of the
mean streamwise velocity for varying Reh number in figure 11.3. We observe that the mod-
ulation extends to the full span for Reh = 1546 and above. The scanning of different plane
heights covering all the step and above can give access to the reconstruction of the stream-
wise velocity in the plane zy for different x = const planes using the velocities of the multiple
planes. The spanwise modulation for different streamwise distances is clearly revealed this
way, as seen in figure 11.6. The observed spanwise modulation is very similar to the three-
dimensional stall cells observed in two-dimensional airfoils (DellOrso, Tuna, and Amitay,
2016; Rodriguez and Theofilis, 2010). The vorticity calculation also reveals the longitudinal
vortices center position, as seen in figure 11.7.

Another way to reveal the spanwise modulation having scanned all these multiple hori-
zontal planes for y = 0.2 : 0.2 : 1.6 h , is to plot the reconstructed 3D isosurfaces for different
velocities. An example of such a reconstruction for Reh = 3080 and different iso-velocities
can be found in figures 11.14 and 11.8.

In the spanwise mean velocity fields we can observe large scale roll structures, of veloc-
ity one order of magnitude smaller than the small scale structures observed in the streamwise
field. Their evolution with the Reh number can be seen in figure 11.5. The large scale struc-
tures, which are in the form of convected quadrupole can be distinguished for the extrinsic
wall structures before and after the bifurcation from their 2D Fourier amplitude analysis, as
will be seen in next section. Before the instability, only the extrinsic wall vortices exist, and
as the Reh increases they are pushed more towards the side walls by the generation of streaks.
At the point of the instability and onwards, the large scale roll increases in amplitude due to
the quadrupole structures associated with the streaks, also observed in a channel flow transi-
tion to turbulence experiment (Lemoult et al., 2013). The separation of large and small scales
is possible by using appropriate Butterworth filters, as will be seen in the next section. To
find the appropriate filter limits we will use the 2D spatial Fast Fourier Transform (FFT) in
the mean and instantaneous fields.

The interaction of the streaks with the K-H roll leads as well to a spanwise-wavy K-
H roll as was previously observed by (Aider, Danet, and Lesieur, 2007). This wavyness
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FIGURE 11.5: Mean spanwise fields for various Reh numbers, y = 0.6 h.
Extrinsic wall structures always existing due to confinement; appearance of

large scale roll structure after Reh = 669.

was also observed in the streak structures for multiple heights as observed in figure 11.13.
The spanwise modulation of the K-H roll due to the streaks is also studied using Proper
Orthogonal Decomposition in the next paragraph. A sketch including schematically all the
observed phenomena for the Re range Reh = 1255−3080 can be found in 11.9.

11.3 Structure size analysis using 2D Fourier transform

The 2D Fourier transform of the mean and instantaneous fields was used to study the scales
of the observed structures; the Fourier transform reveals a peak at the wavelength of the
streaks and the large scale roll, as seen in figures 11.10 and 11.11 respectively. The results of
the characteristic streak width as a function of the Reh number are presented in figure 11.12.
We observe that after Reh = 2000 this length diminishes to about 2 cm or 1.3 h. A high-
pass spatial filter applied in the streamwise fields can actually reveal more clearly the streak
structure. For example for the case of Reh = 1960, applying a Butterworth high pass filter
at k = 26 in the streamwise mean field, we can really reveal naked the streaks structure and
more precisely measure its size, as seen in figure 11.10. The size of the streaks will be proven
very important for the design of an optimal pulsating jet actuator distribution to reduce the
recirculation bubble size, as will be seen in paragraph 13.

This 2D Fourier spectrum study of the spanwise fields reveals the characteristic length of
the large scale structures. We can see that the small scale structures that create the spanwise
modulation of the streamwise field have an order of magnitude larger amplitude than the large
scale structures (figures 11.16 and 11.15). A linear increase in both large and small scale am-
plitudes is observed as a function of Reh, although after Reh = 2381 the flow becomes more
turbulent and this trend is lost for the streamwise fields analysis. For the case of the large
scale structures appearing in the spanwise fields, by performing a linear fit before and after
the instability, we can distinguish the superimposed extrinsic wall structures amplitude from
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FIGURE 11.6: Mean streamwise velocity reconstruction for the plane yz,
for different x = const. Development of the spanwise modulation in the

streamwise direction: birth and death of streaks. Reh = 3080

FIGURE 11.7: Mean vorticity field for y = 0.6 h, Reh = 3080.
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FIGURE 11.8: 3D isosurface of different streamwise velocities, Reh = 1135.
Spanwise modulation revealed.
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FIGURE 11.9: Sketch of the BFS geometry and main phenomena, plane xz.
Coordinate system origin is placed in mid-span, bottom position.

the one of the large scale structures appearing after the instability. The Fourier amplitude
plots is a good way to spot the critical Re number; more experiments are needed and are
currently planed in order to precisely find the critical Re number for the 3D instability. For
the experiments so far it can be spotted between Reh = [669,1255], as seen in figure 11.16.
A similar scenario of streamwise longitudinal vortices of small scale but large magnitude and
large spanwise structures with small amplitude are found using the same 2D Fourier analysis
in the transition in the Couette-Poiseille flow (Klotz, Pavlenko, and Wesfreid, 2021).

11.4 Defitinitons: Recirculation bubble, recirculation length and
recirculation area

The detachment of the flow after the step leads to the creation of recirculation behind it. The
volume of the recirculation bubble, is the space inside (below) the separation surface, inside
which the fluid stays enclosed in. It can be defined as the point where the streamlines diverge,
and is an area of relatively low pressure that contributes greatly to the drag (Beaudoin et al.,
2004b). The recirculation bubble existing downstream a BFS has been studied using the
recirculation length, which is the position of the re-attachment of the flow (Henning et al.,
2007). Mathematically, it is described in equation 11.1. Reduction of this value can decrease
the value of the drag as well, since in general the recirculation bubble is a region of low
pressures (Armaly et al., 1983).

Xr = x (τw = 0) ,τw = η
∂v
∂y

∣∣∣∣
y=0

(11.1)
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FIGURE 11.10: 2D Fourier transform and high-pass filter application in
streamwise mean fields, Reh = 1960,y = 0.6 h.

The definition for the recirculation length Xr described in equation 11.1 is ill-suited to
2D velocity fields. The separation line is difficult to define using PIV, apart from the wall
position where the velocity changes sign. Nonetheless, these near-wall measurements can be
very tricky. A straightforward manner of qualifying recirculation in a 2D field is described
in equation 11.2. It regards on the 2D RA definition of Ar as :

Ar(t) =
∫∫

H(−ux(t,x,z))dxdz (11.2)

, where H is the Heaviside function. It has been seen that the dynamics of the the recircu-
lation length are correctly recovered using the above definition (Gautier, 2014). We mention
though that the time averaging operator does not commute with (3.2), this mean the time
averaged RA < Ar >t does not correspond to the RA of the time averaged velocity field.
This definition, which might underestimate slightly Ar (due to regions of positive streamwise
component near the walls) is quite straight forward to calculate experimentally in real-time
and contains the dynamics of the real bubble, along with the dynamics of the streaks and the
corner eddies. Particularly, the corner eddies increase in size with the ReH number, make the
underestimation possibly larger. Nonetheless, this definition, has been set a multiple times
as a minimization goal to be set in a closed-loop control scheme, like in the case of Gautier
et al., 2015. We could also call this region "back-flow area" instead of RA.

The 3D recirculation bubble size calculation can shed important light in the 3D instabil-
ity of the BFS flow (Armaly et al., 1983). This recirculation volume has been studied by
Gautier, 2014 using 3D Particle Tracking Velocimetry, a method which is enormously com-
putationally costly and requires huge amounts of disk space. A lighter method to study the
time-averaged 3D bubble is presented in this chapter, and consists of scanning multiple 2D
PIV planes in order to reconstruct the volume of the bubble.
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FIGURE 11.11: 2D Fourier transform and high-pass filter application in
spanwise mean fields, Reh = 1960, y = 0.6 h.

FIGURE 11.12: Mean field spanwise size of streaks, as a function of the Reh
number.
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FIGURE 11.13: Mean streamwise and spanwise velocity field for Re=3080,
y = 0.6 h.

FIGURE 11.14: 3D isosurface of zero streamwise velocity < ux >t= 0,
Reh = 3080. A spanwise modulation signature appears together with the

extrinsic wall structures.
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FIGURE 11.15: Fourier amplitude of spanwise component as a function of
Reh, for y=0.6h. Linear fitting can predict the effect of the extrinsic rolls
after the instability occurs. Mean streamwise fields indicate the start of the

streak appearance.

FIGURE 11.16: Fourier amplitude of streamwise component as a function
of Reh, for y = 0.6h. Linear fitting before and after the critical Re region.
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11.4.1 Recirculation area dynamics

The RA downstream a BFS often serves as the minimization goal of a control scheme, since
this can lead to a drag reduction or improve lift or vibrations in moving vehicles (Paschereit,
Gutmark, and Weisenstein, 2000; Simpson, 1996). Its view on the horizontal plane y =
const gives a general view on the spatial streaky structures structures together with the K-H
vortex roll and the RA. Measurements like the vertical recirculation length or RA for the
streamwise-wall normal xy plane (z=const.) are strongly dependant on the plane chosen,
which is the reason they cannot be compared easily from experiment to experiment in the
bibliography. The RA dynamics include as well as the low frequency flapping or breathing
of the recirculation bubble, which is of frequency of one order of magnitude less (Spazzini
et al., 2001). The streaks show a wavyness which can also affect the RA measurement in the
classic streamwise-wall normal plane.

The signature of all these dynamics can be studied using the different xz plane for dif-
ferent wall normal positions y. The higher horizontal planes have a stronger signature of
the K-H roll and the planes inside the bubble show better the peaks of the recirculation area
flapping and streak structures.

The results of the K-H vortex emission frequencies coming from the Fourier transform of
the velocity time signals can be found for varying Reh numbers in figure 11.18. An example
of some Fourier transform plots can be found for three Reh numbers in figure 11.17. The
results of the measurements of the K-H vortices emission frequency agree in the vertical (xy),
and horizontal (xz) measurements; the low-frequency flapping frequency of the RA could not
be well captured though, due to the low number of acquisition time that was imposed by the
embarked RAM of the camera.

In figure 11.19, we can see the mean RA for varying Re numbers. The xy plane for
z = 0 (middle plane) and xz plane for y = 0.6 h from bottom were studied. We also note
that the time averaging operator does not commute in equation 11.2; this meaning that the
time averaged RA < Ar >t does not correspond to the RA of the time averaged velocity
eld. For this reason the RA is calculated for each instantaneous field, and for each Reh
number 2000 fields or around 1 minute of measurements were acquired. The same peak is
observed in the two measurement planes xy and xz, particularly for Reh = 669 and Reh = 671
respectively, as seen in figure 11.19. This peak is observed just before the appearance of
the spanwise modulation and the longitudinal streaks. The same peak is recovered using
the recirculation length measurement by Gautier et al. in the vertical xy plane (Gautier,
2014).In the vertical plane we are only seeing the effect of the K-H roll and RA, which is
monotonously decreasing after the peak. In the horizontal plane xzthough, the flow after
Reh = 1135 is three-dimensional due to the wavyness of the streaks and the K-H roll, hence
the contribution of K-H , streaks and large scale flows change this descending pattern. We
mention that the size of the calculated RA in the 2 planes xy and xz is different due to the
different PIV window size and dimensioning with the step size.

11.5 K-H vortex roll and streak interaction

The instability of the K-H co-rotating vortex rolls, due to the presence of the streaks can
be studied using PIV in the horizontal planes y = h or above. For this heights, there is a
clear signature of the K-H roll creation and emission. The roll is deformed in the spanwise
direction due to the presence of the streaks, which leads to interaction with the next incoming
roll. An elliptic instability could also be present and affecting the roll interactions, but further
investigation is needed in this direction before concluding. The K-H vortex rolls interaction
was observed in the volumetric dye visualisation experiment in figure, 11.20 in which the
front pair always destabilises and penetrates the previous roll. A large set of instantaneous
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FIGURE 11.17: Time series and Fourier transform of RA signal for horizon-
tal planes xz, for y = 1.6 h.

FIGURE 11.18: K-H vortex emmision frequencies calculated from PIV mea-
surements in the xz and xy planes.
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FIGURE 11.19: Mean recirculation area using horizontal (zx-left) and ver-
tical (xy-right) plane measurements. Points are not connected because more

measurements are needed to have the complete curve.

fields were examined and various spanwise modulations have been observed for the deformed
vortex roll. Four characteristic K-H roll shapes can be found in figure 11.21. A Proper
Orthogonal Decomposition (POD) was performed in this large time resolved PIV dataset for
y = 1.6 h; it revealed the K-H roll interaction modes for mode 6 and 13,together with the
classical parallel equidistant vortex roll modes (modes 1− 5). The classical parallel rolls
dominate due to their more frequent appearance; results can be seen in figure 11.22. A large
number of image acquisitions could reveal the other roll pairing modes as well, but number
of image acquired was limited to the embarked RAM of the camera and the acquisition
frequency.

11.6 Conclusions and further perspectives

A preliminary study on the 3D instability of the BFS flow was studied using OF PIV. Differ-
ent phenomena have been observed: longitudinal streaks of large amplitude and large scale
spanwise structures of lower amplitude interact with the K-H vortex roll. This leads to a span-
wise modulation of the streamwise velocity measured at different heights y from the bottom.
The onset of the streak instability is placed after Reh = 700 but more precise experiments
are needed for the accurate definition. Extrinsic wall structures effect are observed since
Reh = 100 but their effect is limited in one step size maximum distance from the vertical
walls; The study has validated again after Beaudoin et al., 2004b, that streamwise counter-
rotating vortices appear downstream the BFS flow after the reattachment zone, which are
superimposed with the co-rotating K-H vortex-rolls and the recirculation bubble. This study
can shed more light in the 3D BFS instability of the open flow case, that has not been stud-
ied yet extensively experimentally by the community. More in-depth studies are needed to
decide if we observe the same bifurcation as the one observed numerically by Blackburn,
Barkley, and Sherwin, 2008. A water-channel of larger width, preferably mounted on an an-
tivibratory optical table could be used. Further experiments in order to localise precisely the
critical Reynolds number and disengage the vertical wall effects with the onset of the 3D in-
stability are needed. The same study using a camera streaming directly to the computer using
a PCI frame grabber, could also allow for a larger acquisition time and thus reveal well the
low-frequency flapping phenomena of the RA. Future perspective studies could also include
the investigation of the presented instability using stereo-PIV in order to obtain the missing
component of the velocity, giving more insight in the true rather than the plane-projected
dynamics of the structures.



136 Chapter 11. Experimental results on the 3D instability

FIGURE 11.20: Instantaneous successive snapshots of dye visualisation on
the xz plane of BFS flow for Reh = 1200 from Beaudoin, 2004. Spanwise

modulation of the K-H is observed.
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FIGURE 11.21: Different destabilisation processes of the K-H roll revealed
through instantaneous streamwise velocity fields. Parallel, inclined, and

spanwise modulated signatures appear at y = 1.6 h
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FIGURE 11.22: Proper orthogonal Decomposition of streamwise instanta-
neous fields, height y = 1.6 h, Reh = 2709.

11.7 Observation of turbulent spots in the BFS flow

The creation of turbulent spots are considered as one of the most intriguing features occurring
in the process of the transition to turbulence in shear flows. Up to now it has been observed
numerically or in well-controlled sub-critical shear-flow experiments like Poiseuille and Cou-
ette flows (Lemoult et al., 2014), in which they are triggered using proper perturbations or
occur naturally. In this experimental study we show that turbulent spots can also arise sponta-
neously in the curved shear layer surrounding the recirculation bubble created downstream a
Backward-Facing Step (BFS). We show that a single spot occurs at a critical Reynolds num-
ber, triggered by the natural perturbations contained inside the incoming boundary layer in
the form of streaks of streamwise velocity. We also show that for larger Reynolds numbers
multiple smaller turbulent spots are created around the recirculation bubble. The creation
of turbulent spots triggered by streamwise velocity streaks appears like a key step in the
transition to turbulence process of separated flows.

The first report on turbulent spots was made by Emmons (Emmons, 1951) in the transi-
tional boundary layer. They were defined as isolated regions of strong fluctuations advected
streamwise, growing in size and coalescing with neighbors. Later, Lindgren measured the ve-
locity of their leading and trailing edges (Lindgren, 1969). They have since been reported nu-
merous times in shear flows like the Couette flow (Lundbladh and Johansson, 1991; Couliou
and Monchaux, 2018).

The BFS flow, particularly, is considered a very important test-case for separated flows;
separation is imposed by a sharp edge leading to an low-frequency oscillating main recircu-
lation area , secondary corner recirculating regions (in the bottom corners or the in the ceiling
of the channel as well, for low vertical expansion ratios (Barkley, Gomes, and Henderson,
2002)) and a Kevin- Helmholtz instability leading to higher-frequency emission of vortices.
A new boundary layer develops after the re-attachment of the flow, the position of which
is important for heat and mass transfer purposes. Tihon et al. (Tihon, Legrand, and Leg-
entilhomme, 2001) studied experimentally the re-attachment length for the Re number range
[1200:12000]. In this spanwise-invariant description of the BFS flow we observe a convective
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FIGURE 11.23: Sketch of the BFS geometry. Shear layer, recirculation area,
re-attachment line and horizontal PIV window.

instability surrounded by upstream and downstream regions of stability.Since a very low Re
number though, a 3D instability is observed (Armaly et al., 1983; Kaiktsis, Karniadakis, and
Orszag, 1991; Beaudoin et al., 2004b), hence making recirculation area calculations strongly
dependant on the measurement plane chosen. Particularly, Beaudoin et al. (Beaudoin et al.,
2004b) showed for the first time a periodically modulated reattachment position in the span-
wise direction, using PIV measurements. To our knowledge, there is no experimental proof
of existence of turbulent spots in the BFS flow. Here we present and investigate such a case.

11.7.1 Experimental setup

Experiments have been carried out in a hydrodynamic channel in which the flow is driven by
gravity, with a maximum free-stream velocity U∞ = 22 cm.s−1. The flow is stabilised by
divergent and convergent sections separated by honeycombs leading to a turbulence intensity
of 0.8 %. A NACA 0020 profile is used to smoothly start the boundary layer. The test sec-
tion is 80 cm long with a rectangular cross-section w = 15 cm wide and H = 10 cm high
(Fig. 11.23). The step height is h = 1.5 cm. The maximum Reynolds numbers based on the
step height is Reh,max = U∞h/ν ≈ 3000. The vertical expansion ratio is Ay = H/(h+H) =
0.82 and the spanwise aspect ratio is Az = w/(h+H) = 1.76. The incoming boundary layer,
downstream from the leading edge, is laminar and follows a Blasius profile. PIV is used to
study the flow. The flow is seeded with 20 µm neutrally buoyant polyamide particles, which
are illuminated by a laser sheet created by a 2 W continuous laser (MX-6185, Coherent,
USA) operating at 532 nm. The Camera used was a 4 Mp PCO DIMAX-cs with an acquisi-
tion frequency fac = 50 Hz. An narrow-band optical filter was mounted on the camera to
visualize only the laser light reflected by the particles. The length of the PIV window 14.5 h
and its spanwise width is 10 h.

The time-resolved velocity fields are calculated from the acquisition of successive snap-
shots in different horizontal y planes at y = [0.2 : 0.2 : 1.6]h, using a home-made Lucas-
Kanade Optical Flow (LKOF) algorithm (Gautier and Aider, 2013).

11.7.2 Observations

The Reynolds number where the appearance of the first turbulent spot is Reh = 1135, corre-
sponding to a free-stream velocity u∞ = 7.13 cm.s−1. The turbulent spot is created repet-
itively in the vertical position between y = 0.4 h and y = 0.8 h. It is observed well in the
instantaneous fields.

Experimental evidence implies that the position of the birth of these spots is not random:
Reconstruction of the volumetric isosurface of ux = 0, we can get an idea of where the birth
happens regarding the recirculation bubble border. Superimposing this 3D surface with the
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FIGURE 11.24: Superimposed isosurface ux = 0 and contour of mean span-
wise velocity uy for y = 0.6 h. Extrinsic structures appear in the wall and
streak instability in the center. Large scale structures appear in the mean

spanwise field. Appearance of turbulent spot in form of quadrupole.
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FIGURE 11.25: Characteristic instantaneous spanwise (left) and streamwise
(right) velocity fields. The repetitive turbulent spot quadrupole nucleation
is observed around position x/h = 8. Ekman structures are observed in the
corners for x = 0 as well as the side walls, but without extending more than

one step size.

mean streamwise field, where the exact position is well defined we can come to the conclu-
sion below: birth of the spots is observed in the large curvature region of the recirculation
bubble, where the streak start to form. This can be seen in figure 11.24 . The proper orthog-
onal decomposition also revealed the structures of the spot in the first two modes, as seen in
figure 11.26. The energy of each mode was 12 %. A second observation, is that the number
of turbulent spots are observed to be increasing with the Re number, as the number of streaks
increases as well. Hence we suspect that there is a connection with the number of streaks and
the occurrence spatial frequency.

Increasing the Reh number, we can see more spot positions appearing, although less
clearly since the flow becomes more 3dimensional and turbulent. An intensive search in the
instantaneous fields is needed to verify this. Hence we suspect that the streak appearance is
what facilitates the birth of these spots and accelerates the transition to turbulence.

11.7.3 Conclusions

Turbulent spot nucleation can be seen as a key mechanism in the transition to turbulence in
the BFS flow. The number of nucleation spots increase with Re number, together with the
increase of streak numbers, as seen in figure 11.27. Further experiments should be conducted
to quantify the frequency of the appearance and relation with Reh number. Volumetric PIV
could actually shed more light in the exact position of birth of the spots and its relationship
with the curvature of the recirculation bubble border. A comparison with a numerical simula-
tion approaching the open-flow case (or at least a large vertical expansion ratio) could further
verify these experimental findings.
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FIGURE 11.26: First 4 POD modes and their corresponding energies. Reh =
1135 and plane y = 0.6

FIGURE 11.27: Turbulent spot nucleation as appearing in spanwise instanta-
neous fields. Reh = 1546 (a), 1960 (b) and 2709 (c) respectively. Horizontal

plane xz studied at y = 0.6
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Chapter 12

Prediction of the dynamics of the BFS
flow using neural networks

The content of this chapter is based on the article: A. Giannopoulos, J-L Aider: Prediction of
the dynamics of a backward-facing step flow using focused time-delay neural networks and
particle image velocimetry data-sets, International Journal of Heat and Fluid Flow, Volume
82,https://doi.org/10.1016/j.ijheatfluidflow.2019.108533.

The objective of this experimental work was to evaluate the potential of an artificial Neu-
ral Network (NN) to predict the full-field dynamics of a standard separated, noise-amplifier
flow: the Backward-Facing Step (BFS) flow at Reh = 1385. Different upstream local visual
sensors, based on the velocity fields measured by time-resolved Particle Image Velocimetry,
were tested as inputs for the Neural Network. The dynamic coefficients of a Proper Or-
thogonal Decomposition (POD) were defined as goals-outputs for this non-linear mapping.
The coefficients time-series were predicted and the instantaneous velocity fields were recon-
structed with satisfying accuracy using a Focused Time-Delay Neural Network (FTDNN).
Using a time-delay appears like a crucial choice to ensure an accurate prediction of the dy-
namics of the BFS flow. A shallow FTDNN is sufficient to obtain good accuracy with low
computational time. The influence of the choices of inputs-sensors, the size of the training
data-set, the number of neurons in the hidden layer as well as the sensor delay on the accuracy
of the predicted flow are discussed for this experimental fluid system.

12.1 Introduction

Shear layer flows like boundary layers (BL), mixing layers, jets or Backward-Facing Step
(BFS) flows (Beaudoin et al., 2004b; Dergham, Sipp, and Robinet, 2013) are ubiquitous in
nature as well as in industrial flows. One of their most important properties is that they are
convectively unstable (Huerre and Monkewitz, 1990; Chomaz, 2005) and very sensitive to
background noise. They are also called “noise-amplifier" flows because of their ability to
amplify some specific frequency ranges.

Noise-amplifier flows play an important role in many industrial flows, like separated
flows around airfoils (Darabi and Wygnanski, 2004) and the complex 3D wakes of ground
vehicles (Aider et al., 2001; Beaudoin et al., 2004a). Most of the time they are responsible
of loss of efficiency (increase of aerodynamic drag, lift crisis) or nuisances like aeroacoustic
noises or fluid-structure interactions. Controlling shear flows is then crucial for many indus-
trial applications. For instance, controlling the shear layers to reduce the wake of a bluff-body
or a ground vehicle has been proved to be a valuable strategy to reduce the aerodynamic drag
of ground vehicles (Aider, Beaudoin, and Wesfreid, 2009; Aider et al., 2014; Eulalie et al.,
2018; Li et al., 2016; Grandemange et al., 2014).

Nevertheless, closed-loop flow control experiments are still challenges both for academic
or industrial configurations. From a general point of view, the fist step is to choose sensors
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and actuators before searching for a proper control law allowing the modification of the tar-
geted flow by the actuators based on information coming from the sensors. One can choose
arbitrarily the sensors and actuators and propose a closed-loop law based on some physical
properties of the targeted flow, like the Kelvin-Helmholtz frequency of a shear layer (Gautier
and Aider, 2015b). One can also use a Machine Learning algorithm to search for a proper
control law (Gautier et al., 2015; Li et al., 2016; Debien et al., 2016; Machine Learning
Control-Taming Nonlinear Dynamics and Turbulence). Ultimately the problem of the rele-
vance of the sensors and their ability to represent the global dynamics of the flow becomes
crucial. One can use statistical data-based System Identification (SI) techniques to try to
find a relation between one or multiple sensors and the dynamics of the flow as shown by
(Guzmán, Sipp, and Schmid, 2014; Varon et al., 2015). Another option is to use machine
learning techniques to find the best combinations of sensors and a proper Reduced-Order
system to recover most of the dynamics of the flow. This is the objective of this study.

In modern experimental and testing / diagnosing techniques, data-driven methods are be-
coming of great interest, since they don’t require a priori knowledge of a model and the access
to large data-sets is becoming easier. This is especially true when studying thoroughly non-
stationary flows for different Reynolds numbers with various sensors such as Particle Image
Velocimetry (PIV) or multiple Pitot / multiple hot-wire probes. Methods like statistical and
machine learning algorithms, are becoming efficient and reliable for both academics or in-
dustrial applications. Regarding the machine learning family of algorithms NNs particularly,
are attracting more and more attention in this “Big-Data" revolution.

In fluid systems, feed-forward artificial NNs have been used for data-driven reduced-
order modelling (Müller, Milano, and Koumoutsakos, 1999; Wang et al., 2018; Pan and Du-
raisamy, 2018) with many results showing better field reconstruction than traditional POD
methods (San, Maulik, and Ahmed, 2018; Erichson et al., 2019). They were also used by Mi,
Ishii, and Tsoukalas, 1998 for experimental flow regime identification in multiphase flows.
We mention that it has also been proved by Baldi and Hornik, 1989, that a linear NN can
be equivalent to a Proper Orthogonal Decomposition (POD) basis structure. Convolutional
NNs have also been used for the efficient real-time 2D and 3D inviscid simulations (Tomp-
son et al., 2016) or along with pressure measurements for the velocity field prediction around
a cylinder (Jin et al., 2018). Furthermore, if there are hints of deeper understanding of the
underlying physics, simple shallow NNs can provide very good results in SI as well as for
control laws creation (Lee et al., 1997; Herbert, Fan, and Haritonidis, 1996; J.Rabault et al.,
2018). Their potential has been demonstrated early for modelling surface pressure and aero-
dynamic coefficients of 3-dimensional unsteady cases of aircrafts flows (Faller and Schreck,
1996). Finally, deep NNs are increasingly more important in the fluid mechanics commu-
nity, especially for the modelling of complex turbulent flows. Srinivasan et al. Srinivasan
et al., 2019 compared deep feed-forward and recurrent Long-Short Term Memory (LSTM)
networks for turbulent shear flows prediction. Recently Deng et al. (Deng et al., 2019), used
LSTM networks to reconstruct the POD coefficient time series using sub-sampled distributed
velocity sensors in an inverted flag flow PIV experiment. A short review of applications of
deep NN to fluid mechanics can be found in Nathan Kutz, 2017.

For complex flows, the number of degrees of freedom obtained from a 2D-2C (2 compo-
nents in a 2D velocity field) optical-flow PIV measurement of a few millions pixels image is
millions. Such a large system is impossible to handle and a reduced-order model (ROM) has
to be identified. A dynamic observer can identify such a model based only on input-output
measurements from measurable system quantities. As proposed firstly by Guzmán, Sipp, and
Schmid, 2014 and verified experimentally for PIV data by Varon et al., 2015 it is possible to
predict the full dynamics of a transitional flat-plate BL flow in the form of POD coefficients
using a few local upstream sensors. The first step in their method was to create a success-
ful reduced-order system using POD. The second step was to identify an optimal state-space
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model using a statistical learning process (the so-called N4SID algorithm), in order to predict
at any moment all the POD coefficients (outputs) by measuring one or two local variables up-
stream (sensors or inputs) in the flow. A similar approach was also presented in a paper from
Beneddine et al. Beneddine et al., 2016, where the full frequency spectrum was obtained
from local frequency information of the flow. Time-resolved field reconstruction was also
successfully obtained for time-resolved PIV data of a round jet flow using point sensors and
the mean flow Beneddine et al., 2017.

In the present study, we explore means of performing a local-to-global dynamics system
identification (SI) using a NN architecture. We show we can successfully apply a machine
learning data-driven identification process in a complex experimental fluidic data-set, in or-
der to learn the relation between local upstream sensors and the global fluctuation dynamics
of the system. A different data-set is used to validate the learning-training step. The pre-
dicted dynamics then allow the reconstruction of the full flow field, which would help design
realistic, experimental controllers targeting the kinetic energy of the full fluctuation field. We
show the importance of the various choices (from sensors, to NN parameters) in a successful
SI of an experimental, time-resolved, separated flow.

The following chapter is organised as follows: first, we present the various artificial NNs
that can be found in the literature. Then we present the experimental setup used to study the
BFS flow. The choice of the NN architecture is then discussed. Different NNs have been
tested; only one NN lead to satisfactory results with the least number of parameters and a
reasonable computational time. Then the choice of the sensors as well as of the NN parame-
ters like the training data-set size or the value of the time-delay are discussed. The efficiency
of the chosen shallow NN architecture for such a SI is then demonstrated through validation
data-sets comparisons between real and estimated POD coefficients time-series. Finally, the
reconstructed time-resolved velocity fields are successfully compared with measured velocity
fields, before turning to the conclusions.

12.2 Artificial Neural Networks

An artificial NN can provide a non-linear mapping between a set of inputs and a set of cor-
responding outputs. Great progresses have been made lately due to the availability of large
data-sets, the increasing number of optimised toolboxes and also the improvements of Graph-
ics Processing Units (GPU) parallel programming. This is the reason why NNs are becoming
more and more popular nowadays.

The key component of a NN is the neuron or “perceptron". In general, one defines a
weight wi associated to each ith neuron of the previous layer. To obtain the output of a
perceptron from a set on N neurons, one computes the sum of the N inputs multiplied by
their corresponding weight and adds a given bias bi. An activation function f is then used
to compute the output. A classic activation function is a step-function, but more refined
functions are usually needed. To improve the efficiency of classic NNs, it is possible to add
one or many “hidden" layers between the inputs and the outputs. It is theoretically proven
that any continuous function can be approximated with a single hidden layer (Cybenko, 1989;
Funahashi, 1989).

The simplest shallow, fully-connected NN architecture consists of an input layer (with n
neurons), a single hidden layer (with an arbitrary number of n1 neurons) and a linear layer
(with n2 = m neurons) connected to the output, as shown in Fig. 12.1. A standard rule for
the linear layer is to have the same number of neurons as the output layer. Regarding the
choice of the number of neurons in the hidden layer, it can be as high as needed to increase
accuracy, but without over-fitting. For a NN with a non-linear activation function f1 in the
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FIGURE 12.1: An example of a shallow NN non-linear mapping to monitor
m outputs Y using the n sensors X in a feed-forward architecture, with n1

neurons in the hidden layer.

hidden layer and a linear activation function f2 in the linear layer, the equation giving the kth
neuron output of a single hidden layer network connected to the jth neuron of the previous
layer is:

yk = f1

(
n2

∑
j=0

w(2)
k j f2(

n1

∑
i=0

(w(1)
k j xi + bi)+ b j

)
(12.1)

where n1 is the number of neurons in the first (hidden) non-linear layer and n2 the number
of neurons in the second (linear) layer. Regarding the choice of the non-linear activation
function f1, usually the popular tan-sigmoid or hyperbolic tangent function is used:

f1(x) =
e2x −1
e2x + 1

(12.2)

The correct training process of the network (i.e. finding the optimal weights and biases
connecting the neurons of different layers) consists of dividing the data-set into a training
data-set and a validation data-set. Starting with the training data-set, the first set of weights
connecting the layers is randomly initialised for this first iteration. The error of the real versus
the model-generated output is computed and the weights and biases are updated according
to different back-propagation schemes, in our case the Scaled Conjugate Gradient (SCG)
method. In this case, the step size is adjusted at each iteration in order to minimise the
performance function. The above process is called an “epoch". We continue the process for
as many epochs as needed until a satisfactory fit error is achieved (Fig. 12.2). The second
data-set is the “validation" data-set and is used to evaluate the performance of the network
on new data and the corresponding error, hence avoiding over-fitting.

12.2.1 Neural Network types

NNs can be divided into Feed-Back (or recurrent) and Feed-Forward. They can also be
discriminated according to their depth, either shallow or deep, depending on the number of
hidden layers (one or more). Finally, they can be divided into static or dynamic, if the output
of the current step depends on the previous steps as well, giving it a notion of memory.

In the case of a feed-forward NNs the output of any layer only modifies the next layer, not
the previous ones. System identifications using feed-forward NNs have been a common prac-
tice since the 90s (Narendra and Parthasarathy, 1990; Reynold Chu, Shoureshi, and Tenorio,
1990). Recently, deeper feed-forward NNs have also been implemented in complex SI cases
(Olekan et al., 2016).
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FIGURE 12.2: Block diagram of the NN System Identification training step.

On the other hand, in a feed-back NN the system output is calculated from its previous
past time-steps along with the input at the current time-step like in equation 12.3:

yt = fw,b(yt−1,xt) (12.3)

Recurrent NNs introduce a notion of memory in the output of the system. One specific
family of recurrent NN is the Non-linear Auto-Regressive eXogenous (NARX) models. They
are autoregressive because the outputs of the current time step depends on the output of a
number of previous steps. They are exogenous because the output depends also on a number
of inputs. The NARX models were first introduced by (Leontaritis and Billings, 1985) and
used with NN with significant success by Chen, Billings, and Grant, 1990 for multiple non-
linear SI cases. It is a natural extension of the Autoregressive Exogenous model (ARX),
which has been extensively used in linear black-box SI.

Another category of recurrent NNs are the Long-Short Term Memory (LSTM) networks.
They are gradient-based recurrent NNs used for supervised learning both in classification
and prediction problems (Vlachas et al., 2018). They were first developed by Hochreiter
and Schmidhuber, 1997 to solve the vanishing or exploding gradient problem of the back-
propagated error. In an LSTM architecture, the network is left to learn alone the size of the
memory of each neuron during the training process. They do so using a sophisticated gate-
neuron that determines if the input is important enough or if it should be forgotten and when
it should output its value.

12.2.2 Focused Time-Delay Neural Networks

Time-delays are frequently encountered in physical systems, and can be a source of instability
in NNs. This is the reason why delayed NNs have become more attractive. Delays can be
introduced in the output or the input of the NN and can be constant or time-varying (Yu, He,
and Wu, 2018). The network used in the present SI study is a fully-connected Focused Time-
Delay Neural Network (FTDNN) which was first introduced for speech recognition (Waibel
et al., 1989). It is basically a standard feed-forward architecture along with a tapped constant
time-delay (of time-step size k) in the input. The term “focused" comes from the fact that the
notion of memory is introduced only in the input and not in the output like in LSTM NNs.
They are used to model long-range temporal dependencies by keeping a number of k past
measurements of the input at each time step xt , leading to the following expression for the
output of the system :

yt = fw,b(xt ,xt−1, ...,xt−k) (12.4)
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FIGURE 12.3: Example of a scheme of a FTDNN architecture with a hidden
layer and an output layer.

h

w Shear Layer

H

FIGURE 12.4: Sketch of the BFS geometry and main flow features (shear
layer and recirculation bubble). The PIV window is shown in grey and the

visual sensor location shown as a red dot.

where w and b are weight and bias parameters. A scheme of a FTDNN architecture is
shown in Fig. 12.3. They have been used for rainfall prediction (Charaniya and Dudul, 2012)
as well as for effective acoustic modelling (Huang et al., 2019), in deep architectures.

Fuzzy logic can also be integrated in NNs, as for the case of Takagi and Sugeno fuzzy-
delayed NN. Shi et al. (Shi et al., 2018) proposed a new alterable sampled-data terminal
method to investigate the reliable asynchronous filtering problem with time-varying param-
eters, stochastic intermittent faults and controller gain fluctuation. Modelling neutral delays
in physical systems has led also to Neutral Neural network architectures. Li et al. (Li et al.,
2019) studied the master-slave synchronisation in such NNs.

12.3 Experimental setup

12.3.1 Hydrodynamic channel

Experiments have been carried out in a hydrodynamic channel in which the flow is driven
by gravity. The flow is stabilised by divergent and convergent sections separated by honey-
combs, leading to a turbulence intensity of 0.8 %. A NACA 0020 profile is used to smoothly
start the boundary layer. The test section is 80 cm long with a rectangular cross-section
w = 15 cm wide and H = 10 cm high (see figure 12.4). The step height is h = 1.5 cm.
The vertical expansion ratio is Ay = H/(h + H) = 0.82 and the spanwise aspect ratio is
Az = w/(h+H) = 1.76.
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12.3.2 Optical Flow PIV measurements parameters

The flow is seeded with 20 µm neutrally buoyant polyamide particles, which are illuminated
by a laser sheet created by a 2 W continuous laser (MX-6185, Coherent, USA) operating at
532 nm. A thin layer of fluorescent paint (FP Rhodamine 6G, Dantec) was applied to the
illuminated surface to absorb the laser wavelength and avoid reflections and to allow correct
near-wall measurements. The Camera used was a 4 Mp PCO DIMAX-cs with an acquisition
frequency fac = 150 Hz. An narrow-band optical filter was mounted on the camera to
visualise only the laser light reflected by the particles. The length of the PIV window 11.2 h
and its height is 3.7 h.

The time-resolved velocity fields are calculated from the acquisition of successive snap-
shots in the vertical symmetry plane at z = w /2, using a home-made Lucas-Kanade Optical
Flow (LKOF) algorithm. The first version of the code has been developed at ONERA (Cham-
pagnat et al., 2011) and later modified, optimised and adapted to the constraints of real-time
measurements by Gautier & Aider (Gautier and Aider, 2013). Among the advantages of the
LKOF algorithm compared to a standard FFT-PIV algorithm is the calculation of a dense
velocity field with one vector per pixel. It also allows for high computational speed when
implemented on a GPU with CUDA functions (C.Pan et al., 2015). The code has been used
many times both for time-resolved PIV measurements with a high spatial resolution (Varon
et al., 2017), as well as for closed-loop flow control experiments (Gautier and Aider, 2013;
Gautier et al., 2015; Gautier and Aider, 2015b). The PIV calculations in the present study
were performed on a NVIDIA TESLA K80 GPU.

12.4 The Backward-Facing Step flow

12.4.1 Characterisation of the BFS flow

The objective of this study is to evaluate the potential of a NN SI method on experimental data
of a shear-layer flow. We focus on a BFS flow which is a typical case of noise-amplifiers.
Upstream perturbations are amplified in the shear layer leading to significant downstream
disturbances. Separation is imposed by a sharp edge creating a strong shear layer where
Kelvin-Helmholtz instability leads to vortex shedding (Fig. 12.4). Another important feature
is the creation of a large separation bubble, which is usually associated to pressure drag (Da-
han, Morgans, and Lardeau, 2012a). Its reduction is then a common objective to most flow
control experiments targeting drag reduction. It is also considered as a benchmark case for
the study of separated flows. For this reason it has been extensively studied both numerically
and experimentally (Beaudoin et al., 2004b; Hung, Parviz, and John, 1997; Armaly et al.,
1983). The Reynolds number in the present experiment is Reh = 1385, corresponding to a
free-stream velocity u∞ = 11 cm.s−1. The incoming boundary layer, downstream from the
leading edge, is laminar and follows a Blasius profile. The boundary layer thickness just
upstream the step edge is δ0 = 7mm = 0.47 h corresponding to a shape factor H = 2.3, typ-
ical of a laminar boundary layer. The vortex shedding frequency is fshed = 1.13Hz, which
corresponds to a Strouhal number Sth =

fshedh
u∞

= 0.15.

12.4.2 Detection of vortical structures

As we are interested in the growth and dynamics of coherent structures, one can choose
to monitor the vorticity field. Since vortical structures are embedded into the shear layer,
it is better to use more refined criteria, like the Q criterion or the λCi criterion, which are
well adapted to the identification of vortical structures inside a shear layer. The λCi criterion
was first introduced by Chong et al. Chong, Perry, and Cantwell, 1990, who analysed the
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velocity gradient tensor D =
−→
∇−→u and proposed that the vortex core could be defined as a

region where ∇u has complex conjugate eigenvalues. It was subsequently improved by Zhou
et al. Zhou et al., 1999 and by Chakraborty et al. Chakraborty, Balachandar, and Adrian,
2005. It was also successfully applied by Cambonie and Aider, 2014, to visualise the 3D
vortices created by a Jet in Cross-Flow measured by Volumetric Velocimetry, and by Gautier
et al. Gautier and Aider, 2015a in a closed-loop flow control experiment using a similar
visual sensor. For 2D data, λCi can be computed quickly and efficiently using equation 12.5,
when such a quantity is real (else λCi = 0):

λCi =
1
2

√
4det(∇u)− tr(∇u)2 (12.5)

where “det" is the matrix determinant and “tr" is the trace of the matrix. An example of
detection of vortical structures using the λCi criterion is shown on Fig. 12.5 c. We mention,
that the spatial mean λCi has been proven to increase linearly with the Reh number in the BFS
flow, up to Reh = 3500 (Gautier, 2014).

12.4.3 Proper Orthogonal Decomposition

Decomposing a dynamical system in modes of decreasing importance can help reducing
the order of the variables of the system. N = 4197 consecutive instantaneous velocity fields
{UUU(n) = (u∗x ,u∗y)}n=1...N were computed from consecutive flow snapshots with an acquisition
frequency fac = 150 Hz. The size of each snapshot-velocity field is 346×1010 pixels, with a
spatial resolution of 0.166 mm/pixel. By calculating the mean field [Ux,Uy] we were able to
obtain the velocity fluctuations u′x(t) = u∗x(t)−Ux and u′y(t) = u∗y(t)−Uy, which contained
all the dynamics and were used to create the reduced-order system. The fluctuation matrices
organised in columns for each time-step were used to form the so-called “snapshot matrix"
to be decomposed. The reduced-order system is obtained using POD, which has been used
extensively in fluid mechanics (Borée, 2003; Mendez et al., 2017). It allows us to build a
ranked and orthonormal basis containing N modes (Lumley, 1967; Sirovich, 1987). The first
M modes {Φkkk}m=1...M with M ≤ N containing a sufficient percentage of the total energy is
then chosen to compute the approximated velocity field ŨUU(nnn):

ŨUU(nnn) =
M

∑
m=1

⟨Φmmm,UUU(nnn)⟩Φmmm =
M

∑
m=1

am(n)Φmmm (12.6)

where the scalar product ⟨·, ·⟩ is the energy-based inner product. The system output to
be identified is obtained through the reduced state vector containing the M POD coefficients
am(n):

Y (n) = [a1(n) a2(n) ... aM(n)]T (12.7)

The full-field dynamics are now contained in their POD coefficients am(t). The balance
between the order and accuracy of the POD reduced-order system is crucial, because it was
seen that for a large number of POD modes the SI methods are much more likely to fail.

The energies of the individual POD modes as well as their cumulative energy are shown
in Fig. 12.6. One can see that more than 50 % of the energy is contained in the three first
modes. The system size containing at least 80 % of the total energy was used. It corresponds
to M = 10 modes Φmmm and 10 POD coefficients am. The evolution of the 1st ,3rd and 5th

POD coefficients are shown in Fig. 12.7. We present the odd-numbered modes because since
they are convective, they come in pairs. The characteristic frequency of the 1st POD mode
corresponds to the Kelvin-Helmholtz frequency, i.e. the shedding of the vortices in the shear
layer.
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FIGURE 12.8: Sketch summarising the main steps of the identification pro-
cedure: from the time-resolved PIV experiment to a convincing reconstruc-

tion of the velocity fields using local upstream sensors.

12.5 System Identification steps

In the present study we explore the potential of artificial NNs for local-to-global dynamics
SI applied to a shear layer flow. A full scheme of the identification process is summarised
in Fig. 12.8. First, in the full data-set of time-resolved PIV experiment is decomposed to
identify the dynamics in the form of POD coefficients. Then, in this data-driven identifica-
tion process, we just rely on the input (optical sensors) - output offline measurements for a
period of time from the operation of the system. Once the machine (in our case an artificial
NN) has monitored a sufficient number of realisations (training data-set), it will identify the
relationship between the given input-sensor and the goal-output. If the method is successful,
then monitoring the sensor will allow us to predict successfully the full global dynamics (in
the form of POD coefficients) of the system in a new, unknown to the machine, data-set (val-
idation), with no further need for a time consuming field decomposition analysis. Then the
time-resolved field can be reconstructed from the identified NN-generated POD coefficients,
using only the local sensor measurements.

In the following sections we discuss the influence of the main parameters on the SI pro-
cess. We will especially show the importance of the choice of the physical parameters (nature,
number and location of the sensors) in the ability of the SI learning process to find the proper
NN weights and biases for each neuron. We will also show how the choice of the NN param-
eters (number of neurons in the hidden layer, time-delay) plays a crucial role in the efficiency
of the SI process.

12.5.1 Validation Criterion

To evaluate the efficiency of the identification, one has to define a quantitative criterion to
compare the POD coefficient time-series results obtained with the different NN architectures
to the ones obtained experimentally. In the following, we compute the mean-squared error
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(MSE) at each time-step n for each POD coefficient am(n):

MSEm =
1
N

N

∑
n=1

(aexp,m(n)−aNN,m(n))
2 (12.8)

Then the averaged MSE for all the coefficients (M = 10) time-series gives the final eval-
uation error for the specific NN architecture:

MSE =
1
M

M

∑
m=1

MSEm (12.9)

12.6 Influence of the sensor-input definition

12.6.1 Choice of the input(s)

Our sensor consists of selected measurements from the time-resolved velocity field. Different
inputs can be defined from these velocity measurements, or from velocity-derived variables
like the vorticity or vortex identification criteria. First, it is necessary to choose the physical
quantities measured by the sensor(s). As the optical sensors are the inputs in the identification
process, their choice is a critical step. Our challenge is to identify vortices embedded in
the shear layer, close to the BFS edge, in the receptivity region of the noise amplifier. For
this reason, the sensors can either be one or the two components of the fluctuation velocity
field, or more complex quantities based on the gradients of the velocity field, like the the λci

criterion.

12.6.2 Sensor position

The location of the sensor is critical. It should allow the detection of the perturbations during
the initial phase of the reciptivity-amplification process of the shear layer (Guzmán, Sipp,
and Schmid, 2014). So in such a noise-amplifier flow the sensor was placed as upstream in
the velocity field as possible, right after the separation in the high-shear region, as shown
in Fig. 12.5. The proximity to the wall also is important for the method to be realistically
applicable if other measuring devices, like hot-wires, were to be tested in the future. The
exact sensor location was finally chosen to be kept slightly away from the wall (x = 0.25 h),
in order to avoid possible noisy near-wall measurements. We mention that the flow field may
be difficult to measure experimentally because of the large velocity gradients in the sensor
region. Nonetheless, the good spatial resolution of the LKOF PIV measurements allows
for the computation of gradient-based quantities like the vorticity or the swirling strength
criterion.

12.6.3 Number and size of inputs

Reducing the number of sensors, as well as reducing the number of outputs, generally should
make the training of the network simpler (lower order multiple input-multiple output regres-
sion). On the other hand, using less sensors may lead to a loss of valuable information about
the flow, so a compromise has to be found. Single sensor configurations have been tested,
i.e. either only vertical fluctuation velocity uy or λci, as well as combinations of two or three
sensors.

The velocity component sensor s1 is computed as an average in a five neighbouring pixels
window. The swirling strength vortex identification input s2 is defined from an ensemble of
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n1 MSE Validation Sensor choice
50 0.065 [ λci , v ]
90 0.085 v
105 0.3787 λci

TABLE 12.1: Comparison of the validation data-set fit error obtained with a
single velocity input, a single swirling strength input and their combination.
Using the combination of the inputs minimises the MSE and the number of

neurons.

velocity sensors included in a window: the sum of λCi is computed over all the pixels in a
dx = 15 pixels-wide window :

s2 =
∫ y2

y1

∫ x2

x1

λCidxdy (12.10)

The height of the swirling strength window dy has to be close to the thickness of the shear,
so that the vortex activity can be properly monitored. A good compromise has been obtained
with dy = 0.5 h. The width of the swirling strength window also influences the quality of
identification results. If it is too large, it creates an unnecessary smooth result, while if too
small it can be too noisy, especially for gradient variables computed from experimental data.
Finally, a window width of dx = 0.15 h was used.

The SI error obtained using the different inputs separately or combined can be found in
Table 12.1. One can see that the choice of the input(s) is indeed critical. Using a single
swirling strength sensor leads to a large MSE (37.87%) together with a large number of
neurons (105). Using a single velocity sensor as input reduces the MSE (8.5%) but still needs
a large number of neurons (90). Finally, the best results are obtained with the combination of
the two inputs: the MSE is minimum (6.5%) and the number of neurons is strongly reduced
(50).

This result can be explained. Indeed, both sensors being placed inside the shear layer
just after separation, they contain a lot of information. This region is rich in frequencies
coming from the the initial receptivity and amplification process together with the shear layer
instability. This is also a region where measurement noise coming from the PIV measurement
will be maximum. Using both sensors helps the identification from the NN to be successful
in separating the physical from the unwanted frequencies, leading to a strong improvement
of the MSE fit (6.5%).

12.7 Results and discussion

12.7.1 Optimal NN identification procedure

The goal of the NN identification method is to predict at each time step n the POD coefficients
am(n) of the full field using local upstream sensors s j(n). The POD coefficients time-series
have been calculated based on the PIV velocity fields. The sensors s j(n) were also monitored
at the same time steps. The pairs [am(n),s j(n)] (n = 1 : 4197) is our identification data-set.

A FTDNN architecture has been chosen. Shallow and deeper LSTM architectures were
also tested for this specific study without satisfying validation results. A possible explana-
tion could be the spatial distance between the sensors and the dynamical structures to be
predicted downstream which may requires a memory on the sensor side, not the output. Fur-
thermore, the output comes from the decomposed field and thus contains significantly less
frequencies than the sensor, which comes from the initial PIV data. That is because a POD
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FIGURE 12.9: Structure of the optimal FTDNN non-linear mapping, with
j = 2 inputs-sensors (velocity and λCi), k = 400 steps of sensor memory (or
2.66 s), 1 hidden layer with n1 = 50 neurons and m = 10 POD coefficients

as outputs.
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FIGURE 12.10: Training and validation MSE for each epoch of the training
process.

introduces a filtering effect on the fields, while the shear layer specifically contains valuable
high frequencies from the amplifying vortical structures.

Our objective was then to identify the optimal sensor-inputs s j, the time delay k and
the number of neurons in the hidden layer n1. A basic scheme of the network is shown
in Fig. 12.9. An anti-causal, zero phase, low-pass moving average (over four time-steps)
filter has been applied to each pixel time-series, to reduce slightly the measurement noise.
We mention that the cut-off frequency of the filter is more than 10 times the vortex shedding
frequency. For all the NN calculations (training and validation) the MATLAB Deep Learning
Toolbox was used Beale, Hagan, and Demut, 2018.

Network layer structure 2-50-10-10
Activation function Hyperbolic Tangent

Loss function MSE
Training method Scaled Conjugate Gradient
Time-delay (s) 2.66

TABLE 12.2: Final choice for the optimal NN architecture and its training
hyperparameters.

A NN should be as efficient as possible (according to the chosen criteria) and at the
same time as simple as possible to easily check robustness and reduce computational time.
Simplicity means minimising the number of layers and the number of neurons in each layer.
The FTDNN networks tested used a tan-sigmoid transfer function and had a single hidden
layer. In this case the NN is considered as “shallow".
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FIGURE 12.11: Evolution of the MSE as a function of the time-delay k in the
sensor. Convergence is achieved for a memory size k higher than n = 300

time-steps.

The computational time for the training process, using a scaled conjugate gradient back-
propagation algorithm, was of the order of O(1) minute using a Intel Xeon E5-2630 CPU
running at 2.2 GHz. The low computational time allowed a full parametric test to find the
optimal time delay k for the input and the minimum number of neurons n1 for the hidden
layer.

For each NN architecture, the full data-set [am(n),s j(n)] (n = 1 : 4197) has been divided
into training (85% of snapshots), validation (10% of snapshots) and over-fitting check data-
set (5% of snapshots). The third data-set is used to monitor if high over-fitting is observed
during training. In this case the process is stopped immediately. As a common practice,
the data-set is shuffled randomly before the beginning of the training process. It avoids bad
models if the data are initially classified. It also makes fitting faster because neighbouring
points are not similar. Block consecutive data-set division failed to give good fit results.
We also mention, that a data standardisation was applied before the training process to help
handling different inputs or outputs with different scales. Lastly, the weights and biases of
the network are initialised randomly for the first epoch. No early stopping criterion has been
used.

The number of neurons of the hidden layer n1 was always changed iteratively, in order
to find the optimal number leading to a minimisation of the mean-squared error (MSE). The
same parametric study was carried out for the time-delay k, leading to a double loop para-
metric study from which the optimal combination of [k, n1] was found. The optimal number
of neurons for the hidden layer was found to be n1 = 50 and the best sensor time-delay cor-
responded to k = 400 time steps (2.66 s). A more detailed discussion about the time-delay
parameter can be found below.

The results of the training performance as a function of the increasing epochs of the opti-
mal architecture are shown in Fig. 12.10. 900 epochs were proved sufficient for a validation
MSE lower than 10 % for all POD coefficients. The optimal architecture and training pa-
rameters are summarised in the Table 12.2. This simple shallow FTDNN architecture (see
Fig. 12.9) avoids the complexity of deeper architectures which increases the computational
time for the training process and the need for a large amounts of training data (Canziani,
Paszke, and Culurciello, 2016), which are often difficult to obtain experimentally. This result
verifies that shallow architectures can still provide satisfying results in many fluid mechanics
applications (Srinivasan et al., 2019; Erichson et al., 2019; Tracey, Duraisamy, and Alonso,
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FIGURE 12.12: Network validation data-set performance as a function of
the number of snapshots used for the training and the number of hidden layer

neurons (n1) used.

FIGURE 12.13: Training and validation MSE for each POD coefficient time
series am.

2017).

12.7.2 Influence of the Time-Delay

The time-delay k in a FTDNN gives a notion of constant size memory in the sensors-inputs.
It is crucial for the identification of downstream dynamics, while our sensors contain only
information about the upstream dynamics in the Kelvin-Helmholtz instability region. The
optimal time-delay in the inputs can be found through a parametric study whose objective
is to minimise the MSE of the validation data-set, as shown in Fig. 12.11. Keeping a time
delay of k = 400 steps or 2.66 s, we can achieve a validation fit error lower than 7%. This
time-delay corresponds roughly to three oscillations of the 1st POD mode, which contains
the highest amount of energy and corresponds to the Kelvin-Helmholtz vortex shedding.

The “memory" of these three events is crucial for the success of the algorithm. It explains
why FTDNN with less memory or a standard feed-forward NN with zero time delay (k = 0)
failed to identify the dynamics (MSE > 90%). An intermediate transitional region with k =
170 up to k = 300 might actually give good identification results, but it strongly depends on
the random weight-bias initialisation and random shuffling of data. Convergence is achieved
only for k > 300 time-steps.
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FIGURE 12.15: Comparison between experimental instantaneous stream-
wise fluctuation velocity field (a) and NN-reconstructed fields (b) using the
double visual sensor and optimal NN architecture with n1 = 70 neurons in

the hidden layer and N = 2728 training snapshots. Movie online.

12.7.3 Influence of the size of the training data-set

As expected for any data-driven method, the more information is given to the machine the
better. It will figure out more easily the optimal weights and biases for the mapping we ask
it to perform. In Fig. 12.12 we can see that decreasing the number of snapshots used for the
training of the network leads to an increase of the number of neurons in the hidden layer for
an equivalent validation error (keeping a constant time-delay of k = 400 time steps). Below
a given number of learning snapshots, increasing the number of neurons does not help. It
just introduces over-fitting, and hence increases the validation error. The BFS flow PIV
experiment for Reh = 1385 is dominated by the vortex shedding frequency (more than 40%
of energy in the first two POD modes). Comparing the number of events (or oscillations)
with the accuracy of the identification shows that to obtain a MSE lower than 10% we need
least 20 events to train the network.

12.7.4 Reconstruction of the instantaneous velocity fields

In Fig. 12.13 we present the MSE fit results of 10 POD coefficients, using the optimal archi-
tecture. We can see that the MSE for each POD coefficient is equivalent for all the coefficients
at both training and validation, which proves we avoided over-fitting. In Fig. 12.14 we also
present the time-series of four POD coefficients, as measured from the experiment compared
with the time-series obtained in the training step (a-d) and in the validation step (e-h). We
used for this figure a training data-set of N = 2728 snapshots, with two visual sensors and
the NN using n1 = 70 neurons in the hidden layer and k = 400 time-steps sensor delay. Both
training and validation time-series are found in good agreement.
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Projecting the NN-predicted POD coefficients am to the POD modes Φm allows the re-
construction of the instantaneous fluctuation velocity fields of all time steps of the validation
data-set. It is then possible to compare the predicted velocity field with the real experimental
fields. The instantaneous experimental velocity field is compared to the one reconstructed
with the optimal double visual sensor information as shown in Fig. 12.15 and corresponding
video. One can see that most of the main features of the BFS flow are recovered with correct
amplitudes and spatial organisation throughout the velocity field. Some smaller structures
in the shear layer have reduced amplitude, due to the 80% energy threshold used during the
time-resolved field decomposition, as well as the NN identification process error itself.

12.8 Conclusions and perspectives

A successful application of a NN System Identification method to a time-resolved PIV ex-
periment of a typical noise-amplifier flow has been presented. We were able to predict with
satisfying precision the global dynamics of the flow (in the form of POD coefficients), us-
ing visual sensors coming from local velocity measurements. A shallow FTDNN architecture
was sufficient to recover the overall dynamics of the flow. There was no need for sophisticated
LSTM gates or more than one hidden layers, which would increase the training complexity
and the computational time.

This demonstrates the feasibility to reduce the order of such fluid systems from O(106)
(for typical LKOF PIV measurements) to only a handful of useful variables, which is cru-
cial for control purposes. The final NN architecture allows us to predict the dynamics of
the flow using local, upstream visual probes, without the need for time-consuming full-field
decomposition analysis or intrusive measuring devices like hot-wires or Pitot tubes. It was
demonstrated that the combination of the swirling strength and local velocity inputs leads to
a satisfying training and validation fit when comparing the POD coefficient time-series, even
though these sensors were located in a high-gradient and difficult to measure region of the
flow (early in the receptivity-amplification process of the noise-amplifier). The accuracy of
the method was also demonstrated through the reconstruction of the predicted instantaneous
velocity fields. The NN training process was found to be very fast on a standard desktop
computer (O(1) minutes). The double sensor approach is simple and fast to compute and is
ideal for a model-free closed-loop control scheme, like in Gautier et al., 2015; Li et al., 2017,
with the objective to reduce the turbulent kinetic energy of the flow.

Because of its accuracy and its computational efficiency, the Reh number could also be
integrated as an input, while the output could include POD coefficients from the different Reh
numbers, making it even more useful for flow control purposes (San, Maulik, and Ahmed,
2018). Distributed sensors, upstream and/or downstream, could also help achieve this com-
plicated task. A larger number of POD modes could be included for more precise represen-
tation of the initial experimental data-set as well. Reinforcement learning could also be a
key factor for the robustness of the NN when experiment parameters, like Reh number vary
greatly.
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Chapter 13

Control of the BFS flow

The BFS flow is a first simplistic but fundamental model of a shear flow that appears in the
wake of vehicles (Gautier and Aider, 2014). Hence, its successful control can give important
insights on drag reduction for vehicle aerodynamics applications. Control strategies can be
divided in open and closed loop.

Passive or open-loop control strategies are generally attempted before searching for more
complex means of control, and can shed more light in the dynamics of the flow as well.
Passive control strategies regard on changing boundary conditions of the flow without the
use of a sensor. Hence, monitoring cannot be achieved in case of changing of the flow
conditions. Active control consists in adding momentum/energy into the flow to modify
its characteristics using an actuator. A fundamental difference is also the fact that a sensor
component is required to monitor the state of system. They are more robust but complicated
and expensive; that is why they are rarely integrated in civilian vehicle applications (Heinz,
King, and Gölling, 2010). The opportunity of open loop control is to design a robust but
cheap way to reduce drag or control vehicle dynamics, so that civilian applications could
broadly install it. This could help reduce the C02 emissions as demanded by recent European
Union regulations (Parliament and EU, 2013). Various control strategies have been tested
in the past for such applications. For example, Godart and Stanislas (Godard and Stanislas,
2006; Godard, Foucaut, and Stanislas, 2006), used passive vortex generators are used to
control a decelerating boundary layer. In Aider et al. (Aider, Beaudoin, and Wesfreid, 2010)
active vortex generators (trapezoidal tabs) in order to reduce the drag of a 3D bluff body.

Two effects contribute to the total drag of a body: skin friction and pressure loses, and
at high Re separated flows the pressure is the dominant term. Hence, the reduction of the
recirculation bubble and the increase of pressure recovery is of great importance, although the
relationship between the 2 remains complex. Beaudoin et al.(Beaudoin et al., 2004b) showed
that while the drag is monotonously increasing with the Re number, this is not the case for
the recirculation length or recirculation area. This could be attributed to the 3D nature of the
flow and the different phenomena that occur in the normal plane. Hence, there are hints that
there is no guarantee that reducing the recirculation area reduces the drag (Dahan, Morgans,
and Lardeau, 2012b). To shed more light in the 3D aspect of the recirculation bubble , the
horizontal plane xz direction (streamwise-spanwise) was chosen in this study to perform PIV
as seen in figure 11.23. The third direction is studied by scanning numerous wall-normal
planes from y = [0.2 : 0.2 : 1] h, as seen in figure 11.1.

It has been proven that controlling the BFS flow could be effective when placing pulsating
jet actuators on the wall before the step (Gautier and Aider, 2014; Gautier et al., 2015). Such
actuators are quite easy to implement and remain the simplest way to effect actuation in a
dense fluid such as water. The coexistence of jets in cross-flows are found in various natural
and industrial processes such as air injection in gas turbines, thrust vector control for high
speed vehicles and exhaust plumes for power plants, hence making their study even more
relevant to industry (Karagozian, 2010; Fifty years of jet in cross flow research 1993). Past
researchers in the laboratory of PMMH have performed rigorous studies regarding the effect
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of jets on a cross-flow (Beaudoin et al., 2004b; Duriez, Aider, and Wesfreid, 2009; Cambonie,
2012).

Particularly, Gautier et al, using genetic programming closed-loop control and a spanwise-
invariant jet, managed to reduce the size of the recirculation area by 80%. Such a closed-loop
control system required one week of continuous experiments in order to find the optimal con-
trol law; apart from that, closed-loop control can be quite costly and complicated to integrate
in a lot of engineering applications. Given the fact also that since a Reh number of down to
Reh = 400 the BFS flow has a 3D nature due to the presence of streaks, spanwise distribution
of jets should be considered and 3D jet structures should be created to control such a flow.
The jet-slot size is key and was designed in the same lengthscale as the streaks observed, as
presented in the next paragraph.

13.1 Open-loop control using spanwise-distributed jets

The work presented in this manuscript features wall jets as actuators. The reason for this
is twofold: wall jets are relatively easy to implement and remain the simplest way to effect
actuation in a dense fluid such as water. Furthermore, this work was part of a broader research
effort by the instability, control and turbulence team at PMMH. Following a study regarding
jet-cross-flow interactions made during the thesis of Cambonie, 2012, an optimal 3D jet
distribution was chosen to apply an open-loop control scheme in the BFS flow. The jet is
supplied by a pressurised water tank at 2 bars maximum, monitored by a SMC ITV 1010
electro-pneumatic regulator to control the jet frequency f f orcing and amplitude U f orcing. The
frequencies checked were f f orcing =[1:1:5] Hz, with a duty cycle of 50 % and an amplitude
of to 2 Volts max. This corresponded to a jet exit velocity of 0.3 Uin f .

The schematic of this jet distribution is presented in figure 13.3, where θ = 45 deg and
the number of slots was N=22. The distance was chosen α = 7mm. The distance between
each slot pair was chosen as the average of the streak spanwise size for Reh = 1960−3080, as
presented in the Fourier scales study presented in figure 11.12; nonetheless we mention that
various different configurations have been also tested in the past (Cambonie, 2012). The se-
lected configuration though has been shown to develop the primary longitudinal vortex arms
as well as some secondary inner auxiliary arms. The latter tend to be intense but vanish much
quicker; The primary vortex arms though have a strong long lasting effect on the boundary
layer (Cambonie, 2012). A volumetric PIV analysis of a single pair of slots by Cambonie,
2012 shows the development of these arms in the presence of a laminar boundary layer, as
presented in figure 13.1. The development of these arms in the streamwise distance from the
exit slot can be seen in figure 13.2. We mention again that multiple horizontal planes were
used to calculate the mean recirculation bubble volume for y = [0.2 : 0.2 : 1] h , as seen in
figure 13.5. That way we are sure of the spatially accurate measurement of the back-flow
region under the streak spanwise modulation, which is not the case if we measure only the
vertical middle-plane xy.

13.2 Results

For the five horizontal planes scanned up to y = h, the RA (or back-flow region) is calculated
using the following definition of negative streamwise velocity component:

Ar(t) =
∫∫

H(−ux(t,x,z))dxdz (13.1)

, where H is the Heaviside function. The Reh number for the results presented below
is is Reh = 1960. Keeping the jet amplitude constant, the optimal frequency to reduce the
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FIGURE 13.1: Isosurfaces of vortex swirling strength criterion of a single
pair of slots of the selected jet configuration, and its interaction with a lami-
nar boundary layer. Robust primary and unstable secondary vortex arms are

observed. Plot from Cambonie, 2012.

recirculation bubble was found at 1 Hz, very close to the shedding frequency of the K-H rolls
as presented in figure 11.18. The final maximum total relative reduction of the recirculation
bubble with this simple control law was 64%. This can be seen in figure 13.4, where the total
RA in the spanwise direction taken into account, not just one vertical plane which would be
misleading. A volume reconstruction of the recirculation bubble from the multiple planes
scanned before and after the pulsating jet control activation can also reveal this reduction
as seen in figure 13.5. Furthermore, the isosurface results of streamwise velocity equal to
−0.5 % the free-stream velocity are indicative of the recirculation bubble size, since the
back-flow region is a region of negative streamwise velocity component. The controlled and
uncontrolled isosurfaces for 1 Hz pulsating jets can be found in figure 13.6. The scheme was
found robust up to Reh = 3080, although more experiments are needed to test the robustness
in higher Re numbers.

13.3 Conclusions and Perspectives

With sole resources a 2D-2C PIV system, without stereo nor volumetric PIV we present a
method to study meticulously the full volumic rescirculation bubble, including the spanwise
modulation of the 3D nature of the flow. An open-loop control system of pulsating jets at
low frequencies was implemented to reduce the volume of the recirculation bubble. The jets
were three-dimensional and distributed along the spanwise direction, upstream of the step.

The correct preparation of the incoming flow with this jet-cross flow boundary layer inter-
action led to a relative mean reduction of the recirculation bubble of 64% , a reduction which
was calculated precisely taking into account the volume of a bubble and not only a vertical
plane projection of it. Further parametric studies should be carried out to explore more con-
trol laws varying the frequency and amplitude of the jets; a genetic programming algorithm
could be useful to scan optimally this parametric space and make the control strategy robust
for a larger range of Reh numbers. Nonetheless, the obtained result is quite impressive since
using an open-loop method, we are approaching similar RA reduction results of a costly and
complex closed-loop control methods achieved by genetic programming closed-loop control
in the same setup , which was 80 % (Gautier et al., 2015).
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FIGURE 13.2: Horizontal and vertical velocity components of the jet-
boundary layer superposition in the spanwise-wall normal plane, as a func-
tion of the streamwise distance dx from the jet exit. Development of primary
arms, birth and death of inner auxiliary jet arms. Plot from Cambonie, 2012
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FIGURE 13.3: Synthetic jet scheme using a pressurised water tank. Jet dis-
tribution design.
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FIGURE 13.4: Recirculation bubble volume before and after pulsating jet
control. This plot integrates information from all the span of the step and thus
show a much better representation of the full recirculation bubble reduction.
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FIGURE 13.5: Time-averaged streamwise velocity component. Natural and
controlled flow for 1 Hz pulsating jets. Dark blue regions correspond to the

back-flow area.

FIGURE 13.6: Velocity isosurfaces of negative velocity as an indication of
the reduction of the total 3D recirculation bubble volume. Signature of the
streak spanwise modulation of the flow appears in the natural flow; traces of
this signature remain also after the control of 1 Hz pulsating jets is applied.
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Nonetheless, in the present setup studying the streamwise-spanwise plane poses some
important difficulties: The vertical position of the laser for the horizontal measurements
poses stability problems in the NORCAN aluminum structure that it is installed. The small
size of the step (1.5 cm) makes it difficult to be submilimetrically precise in the y position we
set the plane to, due to the thickness of the laser sheet, which is around 1 mm. A setup with
a larger step size would help scan more precisely more horizontal planes in the wall-normal
direction. Volumetric PIV results could give access also to more accurate recirculation bubble
size measurements and an important comparison with this 2D-2C PIV 3D reconstruction
method. A work in progress is also underway to verify the robustness of the method for Reh
numbers higher than Reh = 3080.
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Part V

General conclusions
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Chapter 14

Summarized thesis results

Optical Flow has been used by the fluid mechanics community as a velocimetry system more
than 20 years less than Cross-Correlation PIV and for far fewer case studies. The present the-
sis regarded an integrated journey of an Optical Flow Velocimetry system in various bench-
marking cases and novel applications.

The full development of an Optical Flow velocimetry system was described: its soft-
ware (algorithm, GUI) and hardware parts (camera, workstation, laser synchronisation). The
development took place in collaboration with the R & D team of Photon Lines; all the hard-
ware components, together with the velocimetry algorithm coded in CUDA functions, were
integrated in the software platform called Eyemotion, leading to a compact system with op-
timised data flow. Novel benchmarking test cases described in the present thesis showed
its great potential for the application on turbulent flows; the gradients of the velocities were
better resolved than state-of-the-art Cross-Correlation PIV, with an order of magnitude lower
computational time on top of that. It was emphasised that the real-time computational fre-
quency of the velocity fields can reach more than 100 fields per second, depending on the
image size and PIV parameters. Moreover, it was shown that saving up to 50 % of disk space
can be achieved as well during a PIV experiment, since the developed system has an innova-
tive integrated option: the user is able to save velocity fields without saving the images.

Understanding turbulence is of uttermost importance for the optimisation of engineering
applications in the transportation and energy industry. Such a precise velocimetry system,
along with a large camera sensor, was proven that can give access to the study of small turbu-
lent scales, down to sub-Kolmogorov range and reconstruct precisely the pressure and accel-
eration terms, for the case of a turbulent wake of a bluff body. More precisely, Optical Flow
was proven successful to calculate the total budget of the Turbulent Kinetic Energy transport
equation of the same flow using only 2D-2C PIV snapshots, with an impressive achieved
error of less than 10 % in the wake region. Hence, these results aim towards highlight-
ing the importance of the maximisation of the information we can gain from experiments,
when studying turbulent flows. This methodology could have a great impact on the study
of complex flows that are often difficult or impossible to simulate with Direct Numerical
Simulations.

Furthermore, novel machine-learning tools were presented in order to reduce the order
of large and complicated dynamical systems of turbulent flows. Such methods do not require
previous knowledge of equations of a system, but solely require large amounts of data, which
the proposed rapid Velocimetry system and an optimized experimental setup can provide
easily today. These studies can be extremely useful for applications where simple diagnos-
tic tools have to be implemented, in order to quickly monitor the state of a complex fluidic
system, without complicated measurements that are often impossible to access anyway. The
presented methods regarded two fundamental turbulent flows: the flat-plate turbulent Bound-
ary Layer and the Backward-Facing Step flow for Re number up to Reh = 3090. A handful
of simple velocity sensors were placed near walls and optimal shallow neural networks were
discovered and successfully trained; the flow dynamics were correctly correlated with the
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sensors and the system order was reduced from order O(10) to O(1). Instantaneous velocity
fields were successfully reconstructed as well. The simplicity and robustness of these meth-
ods, together with the low training time of the neural network (a few minutes), show great
potential for their integration in modern engineering applications, and can potentially play an
important role for the reduction of the CO2 emissions of ground vehicles and aeroplanes, in
accordance with the EU regulations (Parliament and EU, 2020).

Last but not least, the physics of the 3D instability of Backward-Facing Step flow, was
described and studied using 2D-2C PIV and scanning multiple horizontal planes. A 3D
reconstruction of the recirculation bubble volume was performed, and its relative reduction
of 64 % was achieved using an upstream, pulsating jet, open-loop control strategy.

To summarise, the general conclusion of the present thesis comes down to the suc-
cessful development and benchmarking of a promising Optical Flow Velocimetry system:
sub-Kolmogorov turbulent scales were resolved, modern machine learning techniques were
tested, instability and control studies were performed. A full journey of the exploitation of
this system is now completed, but many more journeys are now to be explored.
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Chapter 15

Conference participation list and
related publications

During this fruitful thesis, i had the privilege of taking part in the following conferences with
oral presentations, particularly:

• A. Giannopoulos, P.Chatelier, J-L Aider. A dense PIV system: a solution for rapid data
assimilation. 3rd Workshop and Challenge on Data Assimilation &CFD Processing for
PIV and LPT, Nov 2020, PARIS (en virtuel), France. pp.9 - 10. ffhal-03017749f.

• A. Giannopoulos, J.L.Aider, System identification using neural networks, GDR Flow
separation control worksop, 20-21/11/19, ENSAM , Paris

• A. Giannopoulos, Prediction of the dynamics of noise-amplifier flows using Artificial
Neural Networks, Laboratoire de Physique Statistique de l’Ecole Normale Superieure,
group seminar organised by Professor A.Alexakis, 13/11/2019, Paris

• A. Giannopoulos, J.L. Aider. System identification using Neural Networks applied to
experimental noise-amplifier flows characterized by real-time optical flow velocimetry.
17th EUROPEAN TURBULENCE CONFERENCE (ETC17), Sep 2019, Torino, Italy.

• A. Giannopoulos, J.L. Aider, Neural Network System Identification in Noise-Amplifier
Flows: an experimental study using Optical-Flow PIV, laboratory seminar of PMMH
laboratory, 11/7/2019,Paris.

• A. Giannopoulos, J.L. Aider. Neural network system identification in noise-amplifier
flows: an experimental study using optical-flow PIV data. 15th International Confer-
ence on Fluid Control, Measurements and Visualization, 5/2019, Naples, Italy.

The list of workshops and summer/winter schools i had the chance to attend can be found
below:

• Group De Recherche (GRD) Workshop in flow separation control ,France,19-20/11/2020

• Programming and Tuning Massively Parallel Systems + Artificial Intelligence summer
school,25-29/6/19, BSC, Barcelona, Spain

• GDR Workshop in flow separation control, IMFT, Toulouse,France,8-9/11/2018

• Ethics and Integrity of scientific research, Sorbonne University(8h), 10/2018, Paris

• La Vision Particle Image Velocimetry Training (8h) : DaVis 10 software for intelligent
imaging

• Workshop in Aerodynamics and Aeroacoustics of terrestrial vehicles (8h), CNRT-R2A,
ONERA - Centre de Meudon, Paris, 6/6/2018
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• Introduction to CUDA programming(40h) , Barcelona Supercomputing Center, Barcelona,
Spain, 16-20/4/2018

• Ultra High Dynamic Range Imaging: latest advances of this rapidly evolving tech-
nology (14h) from some of the most influential HDR imaging leaders, 7-8/12/2017,
Paris

The list of publications co-authored is found below:

• A.Giannopoulos, P.Y.Passaggia, N.Mazellier, J.L.Aider, Pressure reconstruction in tur-
bulent flows : a comparative study between optical flow and cross-correlation for tur-
bulent flows, to be submitted in Physical Review Fluids, 2021

• A.Giannopoulos, P.Y.Passaggia, N.Mazellier, J.L.Aider, On the optimal window size
in optical flow and cross-correlation in particle image velocimetry :
Application to turbulent flows, to be submitted in Experiments in fluids, 2021

• A.Giannopoulos, J.L. Aider, Data-driven order reduction and velocity field reconstruc-
tion using neural networks: The case of a turbulent boundary layer,featured article,
Phys. Fluids 32, 095117 (2020); https://doi.org/10.1063/5.0015870

• A. Giannopoulos, J-L Aider: Prediction of the dynamics of a backward-facing step
flow using focused time-delay neural networks and particle image velocimetry data-
sets, International Journal of Heat and Fluid Flow, Volume 82.

• A.Giannopoulos, J. Guzman, E.Varon, D.Sipp, P.Schmid, J.L.Aider , Experimental
application of a dynamic observer to predict the transient boundary layer dynamics
(considered to be submitted in Journal of Fluid Mechanics)

• A.Giannopoulos, J.-L.Aider, Observation of turbulent spots in a Backward-Facing Step
flow (to be submitted in Physical Review Fluids)

I mention also that a series of non-scientific obligatory courses are demanded by the
doctoral school; during the duration of the thesis i followed 90 hours of spanish language
courses under Professor Isabela Hojman Prati of the Consorcio ELSE, and have successfully
passed the official exams of level B1.1. Furthermore, i had the change to participate as well
in the supervision of three internships of engineering students in the laboratory of PMMH,
particularly:

• J.S.Pimienta, M2 Fluid mechanics, ENSAM Paris. Subject: Evaluation and bench-
marking of Optical flow algorithm for scientific applications. 1/3/2020-31/8/20

• Simon Calonne, 5th year of SUPAERO engineering school. Subject: Evaluation of
acoustic actuators and genetic-programming closed loop control. 5/2019-6/2019.

• Soufiane Cherroud, 5th year of SUPAERO engineering school, Subject: Characterisa-
tion of Backward -facing step flow using 2D2C Optical flow PIV measurements

Last but not least, since 2 years i have been a reviewer for the following journals:

• Physics of fluids (American institute of Physics)

• Journal of Physics: Conference Series

• Conference on Computer Science and Application Engineering
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