
HAL Id: tel-03364589
https://theses.hal.science/tel-03364589

Submitted on 4 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evolution of Web Test Suite
Wei Chen

To cite this version:
Wei Chen. Evolution of Web Test Suite. Programming Languages [cs.PL]. Université de Bordeaux,
2021. English. �NNT : 2021BORD0204�. �tel-03364589�

https://theses.hal.science/tel-03364589
https://hal.archives-ouvertes.fr

ACADÉMIE DE BORDEAUX

U N I V E R S I T É D E B O R D E A U X
Sciences et Technologies

THÈSE

Présentée au Laboratoire Bordelais de Recherche en Informatique pour
obtenir le grade de Docteur de l’Université de Bordeaux

Spécialité : Informatique
Formation Doctorale : Informatique
École Doctorale : Mathématiques et Informatique

Evolution of Web Test Suite

par

Wei CHEN

Soutenance prévue pour le 09 September 2021, devant le jury composé de :

Directeur de thèse
Xavier BLANC, Professeur . Université de Bordeaux, France

Rapporteurs
David BROMBERG, Professeur . Université de Rennes I, France
Tewfik ZIADI, Professeur . LIP6 & Université de Pierre et Marie Curie, France

Examinateurs
Laurent RÉVEILLÈRE, Professeur. Université de Bordeaux, France
Pascal DESBARATS, Professeur . Université de Bordeaux, France

Abstract

Developers rely more and more on so-called End To End (E2E) tests to test the web applica-
tions they develop and to check that they have no bug from an end-user point of view. An E2E
test simulates the actions performed by the user with his/her browser, and checks that the web
application returns the expected outputs. It considers that a web application is a black box, and
only knows what are the user actions and what are their expected outputs. However, once some
evolutions are performed on a web application, the user actions may change (move the button to
another location, add a new button or delete a button). As a result, the E2E test needs to evolve
with the evolution of web applications, such as repair the broken test, add the new test, and delete
the obsolete test. But it takes a lot of time to evolve E2E tests, especially for large web applications.
As such, we do a systematic mapping study to evaluate the existing literature to find gaps in web
test suite. We then present an approach, named WebTestSuiteRepair(WTSR), to help the develop-
ers who face broken test scripts. In this thesis, WTSR aims at comparing test suite graphs to repair
broken actions, hence helps to efficiently repair the E2E tests for web applications automatically.
Those approach has been validated through several case studies. We describe some future work to
improve our solution, and some research problems that our approaches can target.

Keywords: Web Application, Test Script, Test Evolution, E2E Test, Test Suite Evolution

Résumé

Les développeurs s’appuient de plus en plus sur les tests End To End (E2E) pour tester les ap-
plications Web qu’ils développent et pour vérifier qu’ils n’ont pas de bogue du point de vue de
l’utilisateur final. Un test E2E simule les actions effectuées par l’utilisateur avec son navigateur et
vérifie que l’application Web renvoie les sorties attendues. Il considère qu’une application Web est
une boîte noire, et ne sait que quelles sont les actions de l’utilisateur et quelles sont leurs sorties
attendues. Toutefois, une fois que certaines évolutions sont effectuées sur une application Web,
les actions de l’utilisateur peuvent changer (déplacer le bouton vers un autre emplacement, ajou-
ter un nouveau bouton ou supprimer un bouton). En conséquence, le test E2E doit évoluer avec
l’évolution des applications Web, telles que la réparation du test cassé, ajouter le nouveau test, et
supprimer le test obsolète. Mais il faut beaucoup de temps pour faire évoluer les tests E2E, en parti-
culier pour les grandes applications web. En tant que tel, nous effectuons une étude cartographique
systématique pour évaluer la littérature existante afin de trouver des lacunes dans la suite de tests
Web. Nous présentons ensuite une approche, nommée WebTestSuiteRepair (WTSR), pour aider les
développeurs confrontés à des scripts de test cassés. Dans cette thèse, WTSR vise à comparer les
graphiques de la suite de tests pour réparer les actions cassées, contribuant ainsi à réparer effi-
cacement les tests E2E des applications Web automatiquement. Cette approche a été validée par
plusieurs études de cas. Nous décrivons certains travaux futurs pour améliorer notre solution et
certains problèmes de recherche que nos approches peuvent cibler.

Mots clés : Application Web, Script de Test, Test Evolution, Test E2E, Test Suite Evolution

LaBRI — 351, Cours de la Libération — 33400 Talence — France

Contents

1 Introduction 1
1.1 Context . 2
1.2 Problem Statement . 4
1.3 Contributions . 7

1.3.1 A systematic mapping study of web test case 7
1.3.2 An approach for DOM-based web test suite repair 8

1.4 Thesis Outline . 8

2 Background 9
2.1 Web Application and Evolution . 10
2.2 Web Testing Techniques . 11

2.2.1 E2E Web Testing . 11
2.2.2 Black-Box testing . 12
2.2.3 Regression testing . 14

2.3 Test case generation . 14
2.4 Test Breakage . 16
2.5 Summary . 19

3 A systematic mapping study of web test case 21
3.1 Introduction . 22
3.2 Motivation . 22

3.2.1 Goal and research questions . 22
3.3 Methodology . 24

3.3.1 Study search . 25
3.3.2 Study selection . 26

i

ii CONTENTS

3.3.3 Snowballing . 29
3.3.4 Data Synthesis and Extraction Method 29

3.4 Systematic Mapping Results . 32
3.4.1 RQ 1.1 - Type of contribution . 33
3.4.2 RQ 1.2 - Type of research facet . 34
3.4.3 RQ 1.3 - Web test case activity . 35
3.4.4 RQ 1.4 - Techniques used . 36
3.4.5 RQ 1.5 - Location in test case . 38
3.4.6 RQ 1.6 - Automated level . 38
3.4.7 RQ 1.7 - Provided tools . 39
3.4.8 RQ 1.8 - Web Applications Under Test 41
3.4.9 RQ 2.1 - Publication trend per year 44
3.4.10 RQ 2.2 - Citation analysis of publications 44
3.4.11 RQ 2.3 - Top related venues . 45

3.5 Discussions . 46
3.5.1 Findings . 47
3.5.2 Threats to validation . 48

3.6 Conclusion . 49

4 An approach for DOM-based web test suite repair 51
4.1 Introduction . 52
4.2 Methodology . 52

4.2.1 Overview . 52
4.2.2 Create Test Suite Graph Release 1 . 53
4.2.3 Generate Test Suite Graph Release 2 56
4.2.4 Compare TSGs . 57

4.3 Evaluation . 60
4.3.1 E2E Test Subjects . 60
4.3.2 Process . 61
4.3.3 Results . 62
4.3.4 Threats to Validity . 65

4.4 Conclusion . 66

5 Conclusion 67
5.1 Summary of contributions . 67
5.2 Perspectives . 68

5.2.1 The dependence of web test cases . 68
5.2.2 Refining test repair strategies in WTSR using machine learning

techniques . 68

A Résumé en Français 71

CONTENTS iii

List of Figures 87

List of Tables 89

CHAPTER

1
Introduction

This chapter introduces the context, problem, motivations, and contributions of this
thesis. We describe the fragile problem of test cases maintenance caused by web
evolution. This thesis aims to automatically repair test scripts corresponding to the
evolution of web applications. As contributions, we first conduct a systematic map-
ping study of the web test case to investigate a comprehensive understanding of web
test cases. We then present an approach to repair broken test scripts by comparing
test suite graphs to find a substitute for damaged action. In this chapter, we also
describe the structure of this thesis.

Contents
1.1 Context . 2

1.2 Problem Statement . 4

1.3 Contributions . 7

1.4 Thesis Outline . 8

1

2 CHAPTER 1. INTRODUCTION

1.1 Context

Since the creation of the World Wide Web in the early 1990s [Berners-Lee et al., 1992],
the use of Web applications in our daily lives has greatly increased. A web application is a
system usually composed of a database (back-end) and some web pages (front-end). Users
can interact with it through a network using a browser. As we all know, web applications
have becomed an essential part of daily life [Tonella et al., 2014]. Nowadays millions of web
applications are utilized by millions of users every day. 1 For example, Google is one of the
most famous web applications. It processes more than 68671 search queries per second
on average, equivalent to more than 6 billion searches per day, and 2.1 trillion searches
per year globally. 2 This means that web applications are widely used to provide critical
services to our society.

The widespread use of web applications puts strict demands on the quality levels that
web application developers need to provide [Myers et al., 2011]. To ensure software qual-
ity, web testing has been widely used for various artifacts in the industry as a quality assur-
ance technology [Li et al., 2014]. Software testing [Binder, 1996; Fewster and Graham, 1999;
Berner et al., 2005] plays a vital role in the production of high-quality software, especially
for web application [Ricca and Tonella, 2001; Tonella et al., 2014]. This is because the spe-
cific functionality of web-based software makes the assessment of correctness challenging
for developers. Therefore, with the widespread use of web applications, the quality and
correctness of web applications are highly important.

Web applications have to evolve for satisfying their users’ needs. For example, there
are 228 different releases of web app Joomla 3 from July 27, 2011, to our searched day on
April 18, 2019, which means 28.5 releases every year. Moodle 4 has 325 releases from Aug
19, 2002 to April 18, 2019, which means 19.1 releases every year. Each new release im-
proves the quality of the services proposed by a web application and/or updates its ap-
pearance and style. To ensure a high level of quality, the developers should test the new
web application release and check that it has no bug from an end-user point of view. Some
developers manually interact with the web application to check whether its output is as ex-
pected [Stocco et al., 2016]. However, it is error-prone and time-consuming [Stocco et al.,
2016; Ricca et al., 2019] to test web applications manually, especially for regression testing
[Agrawal et al., 1993; Chen et al., 1994; Gao et al., 2015b]. To that extent, test automation
techniques [Tonella et al., 2014] are chosen to enable end-to-end (E2E) functional testing
of web applications, which is called automated E2E test [Yoo and Harman, 2012]. This test
becomes more and more important [Ricca et al., 2019] with the evolution of web applica-
tions. Because developers want to ensure that their latest changes to the source code will
not cause errors in existing functionality [Ahmad et al., 2019].

1. https://www.alexa.com/topsites
2. http://www.internetlivestats.com/one-second/
3. https://github.com/joomla/joomla-cms
4. https://github.com/moodle/moodle

https://www.alexa.com/topsites
http://www.internetlivestats.com/one-second/
https://github.com/joomla/joomla-cms
https://github.com/moodle/moodle

1.1. CONTEXT 3

An automated E2E test aims to validate a user scenario. It simulates the actions per-
formed by the user with his/her browser (i.e. go to a URL, click on a button, fulfill a form,
etc.), and checks that the web application returns the expected outputs [Wong et al., 1997;
Rothermel et al., 2001; Nguyen et al., 2014]. An automated E2E test is also called an au-
tomated test script to verify the normal functionality of the web application under test
(WAUT) [Ricca et al., 2019]. An E2E test considers that a web application is a black box. It
only knows what are the user actions and what are their expected outputs. A test should
be reusable [Memon and Soffa, 2003], and it should always produce the same assertion
when executing a test case on the same version of the web application under test. Several
well-known E2E frameworks exist and help developers to design and run E2E tests (i.e. Se-
lenium 5, Segment 6, Puppeteer 7, Cypress 8, Nightwatch 9, Sikuli [Chang et al., 2010], JAu-
tomate [Alegroth et al., 2013], etc.). Nowadays, test execution tools use the DOM-based
technique and vision-based technique to interact with web page elements. DOM-based
tools (i.e. Selenium, Puppeteer) target and interact with web elements by using Document
Object Model (DOM) objects (located in the hierarchy of HTML pages through ID, XPath,
or LinkText). Vision-based tools (i.e. Sikuli, JAutomate) use image recognition technology
to identify screenshots that represent the visual appearance of web page elements in the
browser.

However, the evolutions that are performed on a web application may change its graph-
ical interface (a button can been added, deleted or just moved to another location), which
may break the E2E test [Grechanik et al., 2009; Leotta et al., 2015b]. A broken E2E test is
an E2E test that cannot be played because one of its user actions cannot be performed.
Such action is called a broken action [Leotta et al., 2016b]. Structural changes and logi-
cal changes are the main causes of test breakages [Hammoudi et al., 2016b; Leotta et al.,
2016a], and more detailed reasons for the damaged test are presented by Hammoudi in the
paper [Hammoudi et al., 2016b].

To tackle the breakage problem of the web test script, WATER [Choudhary et al., 2011]
and VISTA [Stocco et al., 2018] try to repair broken scripts directly, and some techniques
[Christophe et al., 2014; Leotta et al., 2014b; Yandrapally et al., 2014; Leotta et al., 2015b,
2016b] try to increase the robustness of web test script. WATER [Choudhary et al., 2011]
is a technique to automatically suggest repairs for web test scripts. Waterfall [Hammoudi
et al., 2016a] improves the algorithm of Water and repairs the breakages that occurred in
the intermediate minor release between two major releases of a web application. However,
it is still challenging for these DOM-based technologies because the breakages do not al-
ways occur at the same location where the test execution breaks [Hammoudi et al., 2016b].
Moreover, in many cases, there is more than one breakage in a web test suite. VISTA [Stocco

5. https://selenium.dev/
6. https://open.segment.com
7. https://pptr.dev/
8. https://www.cypress.io/
9. https://nightwatchjs.org/

https://selenium.dev/
https://open.segment.com
https://pptr.dev/
https://www.cypress.io/
https://nightwatchjs.org/

4 CHAPTER 1. INTRODUCTION

et al., 2018] is an automated test repair technique, which uses visual analysis to repair web
test breakages automatically. However, in some situations, although the appearance of
web UI is the same, the selector in DOM will change during the web evolution process,
which is difficult for vision-based technologies.

The article [Leotta et al., 2015b] proposes multi-locator to prevent test script breaking
by selecting the best locator among a candidate set of locators. ROBULA [Leotta et al.,
2014b] generates robust XPath-based locators to partially prevent reducing the aging of
web test cases. Leotta et al. [Leotta et al., 2015b] propose a voting algorithm to select
the most robust DOM element locator from multi-locators to increase the robustness of
the locators for web test cases. Bajaj et al. [Bajaj et al., 2015] improve this algorithm by
generating locators from positive and negative examples of DOM elements for multiple
DOM elements. Their preventive methods improve the robustness of test suites, but there
are still some breakages that require the use of techniques to repair broken tests.

1.2 Problem Statement

After clarifying the research context, we try to introduce the problems in more detail
in this section. More specifically, we discuss the main reasons for breaking web tests, then
present motivations and our goals.

Web Release n+k

Developers
Test Suites

Web Release n

Web Evolution

Test Suites Evolution

Evolved Test Suites

Figure 1.1 – The Problem of Web Evolution

1.2. PROBLEM STATEMENT 5

Figure 1.1 indicates the problem caused by web evolution. As it shows, developers cre-
ate a test suite consists of several test cases. These test cases can work well on web release
n. However, a new release n+k is committed which is regarded as the evolution of the web
application. Some test cases are interrupted due to changes in the web application (such
as add, move, or delete elements of the web application). This inevitable web evolution
makes it difficult to repair test cases, so test cases must be constantly evolving to match
the new web release n + k.

In [Hammoudi et al., 2016b], Hammoudi et al. show that locators of web elements are
the main reason for test breakage. It is expensive to maitain web element locators [Leotta
et al., 2014a]. A locator [Bajaj et al., 2015] is a specific command utilized by test automation
tools to identify web elements before performing actions on web GUI. The actions of a test
case can simulate users, such as clicking on a hyperlink or filling in a text field in a form.
For example, when clicking on a hyperlink, the locator is used to identify and locate its web
element.

In [Leotta et al., 2014a], Leotta et al. show that even minor modifications to Web Ap-
plication Under Test (WAUT) will have a massive influence on locators. For example, web
page layout changes or other simple change (such as renaming web elements) can disable
the locator. Becausse the target element cannot be identified on the web page using this
unusable locator. Therefore, compared to maintaining test cases for desktop applications,
the specific characteristics of web applications make test cases more fragile, making it ex-
tremely difficult and expensive to maintain.

Figure 1.2 shows an example of test breakage, which illustrates how web evolution af-
fects locator. As it depicts, there is a simplified web page for entering user information.
The test case for release n of this page has four actions to fill out the form and submit. In
this way, developers can test the functionality of inserting information in this web appli-
cation. When excuting this test, it will automatically enter user information and click the
submit button (lines from 1 to 4 in test case n correspond to tags from 1© to 4© in order).
For example, the first action (line 1 in test case n) locates the Name field through locator
"#form>tr[1]>td[2]" and enters text content Bob. It is similar for actions 2 and 3 (lines 2
and 3 in test case n). Action 4 (line 4 in test case n) targets the Submit Button by the locator
"#submit-button" and then clicks it. Therefore, the locator in action is very important for
identifying web page elements.

As Figure 1.2 shows, the developer then commits a new release of this web application,
Web Release n+k (n>0, k>0). The appearance of this web page remains the same, but the
attribute of Submit Button is changed. Its ID is changed from "submit-button" to "submit".
Action 4 will break because the locator "#submit-button" cannot select the Submit Button
in new release n+k. Hence, the test case needs to be fixed by the developer. For the sake
of clarity, we present this simplified example of a broken web test. There are other broken
conditions in the actual test, which are not introduced in this section.

The main objective of our thesis is to repair the broken test cases of web applications.
So we want to know if there is an abstraction that gathers the test cases for releases n and

6 CHAPTER 1. INTRODUCTION

Name:

E-mail:

Company: Google

123@gmail

Bob

Submit Button 4'

3'

2'

1'

4

3

2

1

Web Release n Web Release n+k

1 .type("#form>tr[1]>td[2]", "Bob");
.

2 .type("#form>tr[2]>td[2]", "123@gmail");
.

3 .type("#form>tr[3]>td[2]", "Google");
.

4 .click("#submit-button")

1 .type("#form>tr[1]>td[2]", "Bob");
.

2 .type("#form>tr[2]>td[2]", "123@gmail");
.

3 ..type("#form>tr[3]>td[2]", "Google");
.

4 .click("#submit")

Test Case n Test Case n+k

Yes Break

Repair

Yes

Name:

E-mail:

Company: Google

123@gmail

Bob

Submit Button

Figure 1.2 – The Example of Test Breakage

n+1, and that can be used to repair the broken test cases. This questioning leads us to the
first research question that we investigate in this thesis:

— RQ1: Is there an abstraction that gathers the test cases for releases n and n+1, and
that can be used to repair the broken test cases?

To answer this research question, we run the test cases on two releases of a web appli-
cation. More specifically, it respectively runs original test cases on web release n and web
release n+k to generate test suite graphs (abstract models) for these two releases. The test
suite model consists of test cases, actions, and connection relation between actions. More
details about the test suite abstract model will be presented in Chapter 4.

After generating the test suite abstract model for two releases of a web application, we
try to compare them to repair broken tests. So we want to know how to automatically repair
the broken web test suite or if it is useful for test repair by comparing test suite models of
two web releases. This questioning leads us to the second research question:

1.3. CONTRIBUTIONS 7

— RQ2: Is it possible to automatically and efficiently evolve these test suite for large
web applications by comparing their test suite models?

To solve this problem, we propose a novel approach, Web Test Suite Repair (WTSR),
to automatically repair broken web test cases. By comparing these two graphs (abstract
models), it updates the test suite model of release n+k and repairs the broken tests at the
same time. Further, WTSR is developed for test suite evolution, so we want to know if it is
effective or not. This questioning leads us to the third research question that we investigate
in this thesis:

— RQ3: How effective is this proposed approach for the evolution of test suite?

To answer this question, we choose three real web applications for empirical verifica-
tion. We use WTSR to create test suite models and to automatically repair broken web test
cases. Then, we calculate the number of repaired test cases and their execution time.

1.3 Contributions

We present our contributions to address the issues that we have detailed previously.
The ultimate goal of this thesis is to solve a few problems when developers encounter
breakage of E2E tests for their web applications. To this extent, we propose the main con-
tributions.

1.3.1 A systematic mapping study of web test case

Throughout the web test evolution cycle, the test suite has several different activities,
such as generation, prevention of breakage, and repair. To help the researchers and testers,
we systematically identify, summarize the existing literature of the web test suite in this
paper. To the best of our knowledge, this paper is the first systematic mapping study in the
area of the web test suite. The main contributions of our mapping study are:

— We provide a general classification scheme for categorizing papers in the field of the
web test suite.

— We do a systematic mapping study in the field of the web test suite by capturing and
analyzing the included papers to structure related research works over the past two
decades.

— We present a demographic trend analysis and bibliometrics in the field of the web
test suite.

— We identify the gaps in this area for future research.

8 CHAPTER 1. INTRODUCTION

1.3.2 An approach for DOM-based web test suite repair

To help web application developers who want evolve test suites, we overcome the diffi-
culties and peopose an approach to repair test suite. We present contributions of our web
test repair approach:

— We provide an automatic and efficient approach to generate test suite models for two
different releases of web applications.

— We propose web test repair approach to automatically and efficiently repair the test
suites for web applications by comparing their test suite models.

— We then present how effective is our approach can be used to repair test suites.

1.4 Thesis Outline

The remainder of this document is organized as follows. We first present in Chapter 2
the background in the field of web test cases. In Chapter 3, we do a systematic mapping
study on web test cases to identify the gaps in this area for future research. Then, in Chap-
ter 4, we present an approach to automatically identify candidate actions for broken ac-
tions to repair test scripts of web applications. Finally, we conclude in Chapter 5 by sum-
marizing the contributions and the main perspectives.

CHAPTER

2
Background

In this chapter, we present the web testing concepts that are needed to understand
the remainder of this thesis. We describe some basic definitions for web applications
and E2E tests. We provide background information on web testing techniques. We
explain how to automatically generate test cases for web applications. It then high-
lights how an evolution that is performed on a web application may cause an E2E
test to break, due to a broken action.

Contents
2.1 Web Application and Evolution . 10

2.2 Web Testing Techniques . 11

2.3 Test case generation . 14

2.4 Test Breakage . 16

2.5 Summary . 19

9

10 CHAPTER 2. BACKGROUND

2.1 Web Application and Evolution

In this section, we introduce an example of a web application and a web evolution. A
web application is a client-server software system where the client part (including the user
interface and client-side logic) runs in a web browser 1. As we all know, web applications
are related to many aspects of our society and daily lives [Tonella et al., 2014; Garousi et al.,
2013]. Through the web application, people can easily study, go shopping, or conduct
business.

Figure 2.1 – Web application Joomla, its evolution from Release 3.6.0 to Release 3.7.0

In the architecture of the web, there are usually two entities, the client and the server.
That can be referred to as the client-server architecture of the web application. When we
request a web page on the client-side through a browser, the server will respond to the
HTTP request of the client. After receiving the HTTP request, the server will analyze the

1. https://en.wikipedia.org/wiki/Web_application

https://en.wikipedia.org/wiki/Web_application

2.2. WEB TESTING TECHNIQUES 11

URL, extract the requested document, obtain the data from the database, and provide the
client with the requested result. In this thesis, the E2E test focuses on the client-side.

The Figure 2.1 presents a screen-shot of a real web application named Joomla 2 and
its evolution. Joomla is a free and open-source content management system (CMS) for
publishing web content. At the top of Figure 2.1, it is the client-side page of web release
3.6.0.

The HTML page can be described as a Document Object Model (DOM) with the struc-
ture and relationships between different elements on the web page. 3 The DOM of a web
page represents a document that contains web elements, regarded as a logical hierarchical
tree. Elements in the form of web pages, such as buttons or hyperlinks, can be accessed
using a hierarchical object structure of DOM. These elements can be selected as objects by
the locator, which can be used for automated testing.

To satisfy its users’ needs, developers submit a new release 3.7.0 of web application
Joomla. With the improvement in both the quality and quantity of web pages, web appli-
cations frequently evolve. Figure 2.1 illustrates a very basic evolution of web applicaiton.
Joomla evolves from release 3.6.0 to release 3.7.0. For the sake of clarity, we consider these
two releases of the web application as R1 and R2. On the web page of R1, there are three
menus, Articles (tag 1©), Categories (tag 2©), Featured Articles (tag 3©). However, on R2’s
web page, the layout is changed: Fields (tag 4©’) and Field Groups (tag 5©’) are added to the
menu list.

2.2 Web Testing Techniques

In this section, we discuss some techniques related to End-to-end (E2E) testing. As a
kind of classification, web testing can be divided into black-box testing and white box test-
ing. End-to-end testing is a kind of black-box testing [Leotta et al., 2016a]. With the evo-
lution of web applications, regression testing is needed. End-to-end testing is also a type
of regression testing. Moreover, the test case can be generated by using Capture-Replay
tools (i.e., Puppeteer and Selenium) or using programmable web testing techniques. These
technologies will be described in detail as follows.

2.2.1 E2E Web Testing

End-to-end web testing is a technique that tests the entire software product from end
view to ensure the application flow behaves as expected. End-to-end web testing is one of
the main techniques to ensure the quality of web applications [Ricca and Tonella, 2001].
The goal of end-to-end web testing is to test the web application by detecting bugs or fail-
ures from the end of users’ views. To achieve end-to-end web testing, developers need to

2. https://www.joomla.org/
3. https://www.w3.org/

https://www.joomla.org/
https://www.w3.org/

12 CHAPTER 2. BACKGROUND

write E2E tests. An E2E test is also called a test case or test script. The definition of E2E Test
is:

[. E2E Test] An E2E test is composed of a sequence of user actions that simulates ac-
tions performed by an user on its browser (open a page, click a button, fulfill a form,
etc.). In addition to that, the E2E test is also composed of assertions that check the
expected outputs.

For example, Figure 2.2 is a web page of Joomla to add a new user, and Figure 2.3
presents its E2E test which is composed of 7 user actions (written with the Puppeteer
framework). This E2E test is written to test the functionality of adding new users.

Figure 2.2 – The web page of Joomla to add a new user.

When executing this test case, the browser will automatically launch and go to the tar-
get web page (line 4). It then runs the actions from line 5 to line 10 in Figure 2.3, which
means it enters Name, Login Name, Password, Confirm Password, Email, and clicks the
Save button (tags from 1© to 6© in Figure 2.2. This simple example shows an E2E test that
can simulate the behavior of users interacting with web pages. This test case is an ordered
list of actions, which describes a scenario that can be completed by a web user through a
browser. It treats the web application as a black box and only tests it from the end view.

2.2.2 Black-Box testing

As we discussed before, the functionality of adding new users of Joomla can be tested
by treating the web application as a black box. Black-box testing is a software testing pro-

2.2. WEB TESTING TECHNIQUES 13

1 const puppeteer = require("puppeteer");
2 const browser = puppeteer.launch();
3 const page = await browser.newPage();
4 page.goto("http://localhost:8888/Joomla/administrator/newuser");
5 page.type("#name", "Jack");
6 page.type("#jform-username", "userJack");
7 page.type("#password", "123456");
8 page.type("#confirm-password", "123456");
9 page.type("#email", "12345@gmail.com");

10 page.click("#saveButton");
11 page.evaluate(function() {
12 title = document.getElementsByTagName("h1")[0].innerHTML;
13 title.should.equal("New-User-Complete");
14 });
15 page.close();
16 browser.close();

Figure 2.3 – The test script of web application Joomla to add a new user.

cedure designed to meet the functional requirements of the software, treating the software
as a black box, and ignoring the internal content [Jan et al., 2016]. It means that the testers
do not know the internal design of software while performing black-box testing[Pressman,
2005]. This type of testing is a technique in which testers do not need to access the source
code. It focuses on system functionality according to requirements specification, so testers
only check whether the system performs the expected work [Nidhra and Dondeti, 2012].
Black-box testing of web applications is usually performed during the execution of test
cases [Halfond and Orso, 2007; Chapman and Evans, 2011]. This technique is used to en-
sure that all inputs required by the system are accepted in a specified way and provide the
correct output [Pressman, 2005]. In addition to the web domain, black-box testing can also
be used for other GUI tests [Memon et al., 2003].

Although generating and maintaining test cases is a challenge, black-box software test-
ing techniques have the following advantages [Jan et al., 2016]. The test is entirely based
on the user’s point of view, so testers do not need to access the source code and do not
need to have knowledge of a specific programming language [Nidhra and Dondeti, 2012].
Therefore, testers and programmers are independent of each other. It is an effective and
very suitable technique for testing software with large code segments.

14 CHAPTER 2. BACKGROUND

2.2.3 Regression testing

According to the definition of ISTQB 4 in 2018, regression testing is "A type of change-
related testing to detect whether defects have been introduced or uncovered in unchanged
areas of the software." After modification, test the previously tested components or sys-
tems to ensure that no defects are introduced or found in the unchanging areas of the soft-
ware. When the source code of software changes, regression testing is required to ensure
the quality of software because some source code changes will cause errors in the software
system.

The technique [Andrews et al., 2010b] propose finite state model for regression test-
ing of web applications. Some researchers propose behavioral regression testing approach
by generating test cases for changed parts of source code [Orso and Xie, 2008; Jin et al.,
2010]. When changes are made to existing software, regression testing will be performed
[Andrews et al., 2010a]. The article [Gao et al., 2015b] presents a new way to regression test-
ing. This new method can fully automatically generate test cases for GUI testing and ora-
cle database testing. The purpose of regression testing is to ensure that newly introduced
changes will not interfere with the behavior of the existing unchanged parts of the software
[Yoo and Harman, 2012]. Yoo [Yoo and Harman, 2012] provides surveys about regression
testing, including test suite minimization, test suite selection and test suite prioritization.

In order to implement regression testing, test cases need to be generated for the web
application. Some functional and regression testing tools are available as free or commer-
cial software, such as Selenium [Bruns et al., 2009] and Ranorex [KAKARAPARTHY, 2017].
Capture and replay tools [Leotta et al., 2013] support automatic regression testing by re-
playing a given test script on a new version of the Web Application Under Test (WAUT).

2.3 Test case generation

In this section, we will introduce the background information of test case generation,
which is a very important part of web testing. There are a variety of techniques to generate
web test cases, such as capture-replay techniques, crawl-based techniques, and model-
based techniques.

Capture-replay: The capture and replay technique [Moreira et al., 2017] is designed to
record the tester’s interactions with the WAUT, such as mouse clicks and keyboard input,
which can be used to generate test cases. When the system needs to be tested, these test
cases will be replayed. Implementing test cases using this technique is a simple task [Leotta
et al., 2013]. And the main advantage of capture-replay technique is that once the test cases
are recorded, this technique can save the time of creating test cases without writing test
cases again. The disadvantage of this technique is that manual intervention is required to
record test cases.

4. https://glossary.istqb.org/en/search/regression%20testing

https://glossary.istqb.org/en/search/regression%20testing

2.3. TEST CASE GENERATION 15

Selenium provides extensions to be used in browsers (i.e., Chrome, Firefox), allowing all
interactions to be recorded and saved as test cases [Bruns et al., 2009]. It can be replayed
later and used as a regression test. This is a semi-automated tool that requires manual
interaction when recording testers’ events on a web page. Testers can add an assertion to
the test script after the recorded actions. When replaying a test case, it can automatically
launch the browser and simulate user events, such as mouse clicks and text input.

Crawling-based: Crawljax [Mesbah et al., 2008] is a popular open-source web crawler
that can process AJAX-based applications by dynamically analyzing changes of user in-
terface state in web browsers. It is specifically developed to meet the needs of crawling
websites that use AJAX elements. Some researchers build navigation models for web ap-
plications by using the crawling technique [Mesbah and Van Deursen, 2009]. Specifically,
they use Crawljax to generate a state flow graph, which consists of states and transitions,
and is used to model the web application under test. They then develop a tool called Atusa
that uses this inferred model to generate test cases with predefined invariants.

Moreover, the article [Mesbah and Prasad, 2011] provides a flexible plug-in architec-
ture, which makes Crawljax very extensible. Some researchers [Mirshokraie and Mesbah,
2012; Silva and Campos, 2013] have used the plug-in architecture and extended Crawljax
for different applications. Researcher Tanida [Tanida et al., 2011] proposes an automated
approach for system testing of modern dynamic web applications. Tanida [Mesbah et al.,
2012] then proposes a guided crawling tool to facilitate a more comprehensive and scalable
crawling behavior, which helps testers to create test cases.

Search-based: Search-based web testing can use search techniques or algorithms to
generate test cases automatically. Researchers investigated the use of search-based tech-
niques and provide a survey of test generation [McMinn, 2004; Chen et al., 2013]. Re-
searchers [Biagiola et al., 2017]have presented Subweb, a web testing tool for the joint gen-
eration of test inputs and feasible navigation paths using search-based and model-based
techniques. They show that this method can guide search to generate test cases that are
not affected by path infeasibility issues [Biagiola et al., 2017]. These algorithms can ef-
fectively guide the generation of test case input and are suitable for system-level testing
[Zeller, 2017].

Search-based techniques iteratively sample the input space, selecting the fittest candi-
date test cases, and evolving the fittest ones using genetic search operators to create new
test cases. Since these algorithms can effectively guide the generation of test cases even for
large input spaces, they are suited for system-level testing [Zeller, 2017]. Concerning the
web domain, an effective fitness function can be defined based on approximate informa-
tion available in the navigational model specifically the actions’ guards. Researchers have
shown that this approach can guide the search toward generating test cases unaffected by
the path infeasibility problem [Biagiola et al., 2017].

However, this approach needs the manual specification of all guards for each action, a
task that is time-consuming and laborious for testers. Indeed, such information depends
on the web application business logic and intended behavior, and thus cannot be gen-

16 CHAPTER 2. BACKGROUND

erated fully automatically. Additionally, the evaluation of the fitness function is costly, be-
cause it requires a large number of candidates to be generated and executed in the browser
before converging to an adequate set of tests.

Search-based software testing uses heuristic search techniques to develop algorithms
to generate test cases automatically. These algorithms reduce the cost of the testing pro-
cess while they maximize the acquirement of test goals. There are two approaches with
search-based algorithms: genetic algorithm and combinations of different optimization
algorithms, and dynamic execution of symbolic inputs. The Genetic algorithm tries to find
the best feasible solution that meets all the constraints. Dynamic Symbolic Execution is
a technique to manage data structures dynamically. It collects path constraints on input
from predicates encountered in branch instructions. A survey of the use of this technique
is provided in [Chen et al., 2013].

Model-based: In the field of end-to-end web testing, many researchers have proposed
model-based techniques to generate test cases. Researchers propose event flow graphs of
web applications [Kung et al., 2000; Memon et al., 2001]. This model represents the event
flow of a Web GUI with nodes and edges. As an improvement, Memon merged different
models into a scalable event flow model by using a semi-automatic reverse engineering
algorithm [Memon, 2007].

Some researchers use both crawl-based and model-based techniques for web testing.
They use Crawljax to create a navigation model of a web application, which includes DOM
state events and their interactions [Mesbah et al., 2012]. Such a model is an event flow
graph that can be utilized to generate test cases. This method uses the shortest path al-
gorithm to extract test cases from the model and is implemented as Atusa [Mesbah et al.,
2011]. In this method, Atusa sorts multiple paths by length and selects the shortest path to
generate test cases.

In addition to the event flow graph, there are other web application models, such as
finite state machines (FSM). Researchers [Andrews et al., 2005; Miao and Yang, 2010] found
that by comparing FSM and EFG, in some cases (i.e., Dynamically modified GUI objects),
FSM can be better modeled than EFG.

Researchers have proposed a method to improve the effectiveness of building models
from GUI by using reverse engineering [Grilo et al., 2010]. And Maciel proposed a model-
driven approach to keep test specifications consistent with requirements specifications
[Maciel et al., 2019].

2.4 Test Breakage

Software systems undergo several changes during their evolution. For example, Joomla
evolves from R1 to R2, illustrated in Figure 2.1. Unfortunately, such changes might affect
the corresponding test cases. Even small changes to the DOM or GUI may break previously
developed test cases. In the face of software evolution, E2E web testing is notoriously frag-

2.4. TEST BREAKAGE 17

ile [Hammoudi et al., 2016b; Leotta et al., 2016a]. Then, the tests will need to be repaired
to match the updated version of the application. The definition of broken test is following:

[. Broken E2E Test, Broken Action] A broken E2E test is an E2E test that cannot be
executed on a given version of a web application. A broken action is an action of a
broken E2E test that cannot be performed.

(a) Web pages of Joomla R1. (b) Web pages of Joomla R2.

Figure 2.4 – Web application Joomla, its evolution of function from R1 to R2

In addition, to make the scope of this study more clear, we should make a distinction
between breakage and error. According to Definition 2.4, a breakage occurs that a test
case T can be performed in web release Rn but break in the following web release Rn+i

(i>0), which is caused by web evolution. Differently, an error is that a test case fails due to
bugs in web applications. In our research, we focus on the breakages of test cases, not test
errors.

In a recent study, some researchers have classified the reasons for the break of web tests,
which are available in the literature [Hammoudi et al., 2016b]. They extract the causes of
test case breakages and collect them into a single taxonomy. This taxonomy subsumes the
taxonomy of causes of test case breakages for web applications [Hammoudi et al., 2016b].
They concluded that locator is the first major cause of breakage (73.62% of all causes of test
breakages), and value is the second major cause of breakage (15.21% of all causes of test
breakages) [Hammoudi et al., 2016b]. In this study, we focus on locator cause because it
merits the greatest attention [Hammoudi et al., 2016b], and we do not target value reason
because data of input is related to the backend database. For example, if password value

18 CHAPTER 2. BACKGROUND

(see line 2 at the top of Figure 2.5) is the cause of test case breakage, then repairing the test
case is a huge challenge.

Further, the locator breakage can be divided into non-selection breakage and mis-
selection breakage [Hammoudi et al., 2016b; Imtiaz et al., 2019]. For non-selection break-
age, a locator can target the DOM element in release Rn but is unable to select the target
element in release Rn+i (i>0), which usually warnings that could not find the locator. For
mis-selection breakage, a locator target a DOM element in release Rn but select a wrong
element in release Rn+i (i>0), which causes the interruption of the following action or as-
sertion.

1 puppeteer.page.type("input[name=’username’]", "admin")
2 puppeteer.page.type("input[name=’password’]", "123456")
3 puppeteer.page.click("#login")
4 puppeteer.page.click(".Articles")
5 puppeteer.page.click("#content > DIV:nth-child(3)")
6 puppeteer.page.type("input[name=’search’]", "Article")
7 puppeteer.page.click(".Search")

1 puppeteer.page.type("input[name=’username’]", "admin")
2 puppeteer.page.type("input[name=’password’]", "123456")
3 puppeteer.page.click("#login-button")

4 puppeteer.page.click(".Articles")
5 puppeteer.page.click("#content > DIV:nth-child(5)")

6 puppeteer.page.type("input[name=’search’]", "Article")
7 puppeteer.page.click(".Search")

Figure 2.5 – The test case in two releases of Joomla.

For non-selection example, the web application Joomla evolves from R1 to R2. The
locator of button Login is changed from "#login" to "#login-button" (see line 3 at the top
of Figure 2.5 and line 3 at the bottom of Figure 2.5). This is because the login button of web
application is changed from <button id=“login”> Login </button> (HTML for Figure 2.4a)
to <button id=“login-button”> Login </button> (HTML for Figure 2.4b). Therefore, the test
case is broken because it targets a CSS selector "#login" that does not exist anymore. This
example is a kind of non-selection breakage.

For mis-selection example, the layout of Sub-Menu Page is changed that Fields (tag 8©’
in Figure 2.4b) and Fields Groups (tag 9©’ in Figure 2.4b) are newly added in R2. The locator
of Featured Articles in R1 (tag 5© in Figure 2.4a) is "#content > DIV:nth-child(3)" (line 5 at
top of Figure 2.5). However, when the test case is performed on R2, this locator selects the
Fields (tag 8©’ in Figure 2.4b) not Featured Articles (tag 5©’ in Figure 2.4b). Because of this
mis-selection, the next action to input search content (see line 6 in Figure 2.5) is broken,
which is an example of mis-selection breakage.

2.5. SUMMARY 19

2.5 Summary

We summarize a background of web testing, including web evolution and test break-
ages. The state of the art brings a lot of information about the usage of E2E testing in the
context of web applications. As a summary, we list the three main lessons that are learned
from the existing literature:

— Our first question is about the generation of a model for test repair. We summarize
the existing literature that is helpful for us to repair broken tests. Model-based tech-
nology is useful for generating test cases, and it inspired us to use it to repair broken
tests. Therefore, we try to build test suite graphs as the model to repair tests. In this
thesis, we first execute test cases on R1 of the web application to generate R1’s test
suite graph using crawling technology. We then execute test cases on R2 of the same
web application to build R2’s test suite graph.

— Our second problem aims to repair the broken tests. So we try to implement a tool
named Web Test Suite Repair (WATER) to repair tests. After the generation of test
suite graphs for two releases of a web application, we first compare them and repair
the broken tests by identifying the candidate actions.

— Our third research question is related to the effectiveness of the test suite repair.
To illustrate the effectiveness of our method for repairing test suites, we use three
real web applications and their test cases to implement experimental verification re-
search. We first choose three web applications as experiment subjects. And we per-
form the test cases on them to generate test suite graphs and repair the broken tests.
We then calculate how many broken tests can be repaired and how much execution
time is required using our approach.

CHAPTER

3
A systematic mapping study of web

test case

We do a systematic mapping study to evaluate the existing literature to find gaps in
this area. We first describe the systematic mapping study goal and research ques-
tions. We present the research methodology on how we do this mapping study. We
then provide the classification scheme we have developed for the web test suite and
the process used for constructing it. We also present the synthesis results of the ex-
tracted data from the selected studies and answers the research questions. We dis-
cuss the mapping study results and their implications for researchers and practition-
ers. In the end, we discuss the threats to validity and present the conclusions in this
mapping study.

Contents
3.1 Introduction . 22

3.2 Motivation . 22

3.3 Methodology . 24

3.4 Systematic Mapping Results . 32

3.5 Discussions . 46

3.6 Conclusion . 49

21

22 CHAPTER 3. A SYSTEMATIC MAPPING STUDY OF WEB TEST CASE

3.1 Introduction

Throughout the web testing evolution cycle, the test suite has many different aspects,
such as creation, prevention of breakage, repair, dependence, and metrics. To help re-
searchers and testers, we systematically identify and summarize the existing literature of
the web test suite in this chapter.

To the best of our knowledge, this chapter conducts the first systematic mapping study
in the field of web test suites. The main contributions of this chapter are:

— We provide a general classification scheme for categorizing papers in the field of the
web test suite.

— We do a systematic mapping study in the field of the web test suite by capturing and
analyzing 76 included papers to structure related research works over the past two
decades.

— We present a demographic trend analysis and bibliometrics in the field of the web
test suite.

— We identify the gaps in this area for future research.

3.2 Motivation

In this article, we follow the widely accepted guidelines [Petersen et al., 2008; Keele,
2007; Petersen et al., 2015; Kitchenham et al., 2009] to perform this mapping study. We first
present the goal and questions. Then we design the methodology to perform this mapping
study.

3.2.1 Goal and research questions

The main goal of this systematic mapping study is to analyze primary studies on Web
Test Suite and to provide an overview of the web test suite. It aims to investigate a compre-
hensive understanding of web test suite from the perspective of testers and researchers in
the context of web application evolution. That contributes to summarize the body of web
test suite in the domain of software development knowledge. Moreover, it also collects di-
rect efforts for the future research of web test suites during web evolution, to identify the
existing problems of web test suites, and to figure out the research trend of web test suites.
To that extent, we specify the following research questions:

RQ1: What is the current state-of-the-art in the field of web test script? And analysis of
related web applications under test. This RQ can be divided into several sub-questions in
the following:

— RQ 1.1 – Type of contribution: What are the contributions of different studies in the
field of web test scripts? And how many studies present techniques, tools, frame-
works, models, metrics, guidelines, and processes in the field of web test scripts?

3.2. MOTIVATION 23

These types of contributions are presented as a guideline in [Petersen et al., 2008].
So we can follow this guideline to extract contribution facet from each study and
classify the article in the corresponding class.

— RQ 1.2 – Type of research facet: What type of research facets or methods are uti-
lized in the published articles in the field of web test script? The guideline [Petersen
et al., 2008] presents several types of research methods, such as solution research,
validation research, evaluation research, and experience research. Each article can
be categorized as at least one of these research methods.

— RQ 1.3 – Web test case activity: What type of web test script activities are presented
in each article? We can divide articles into the following categories: test script gen-
eration, test script execution, test script break reasons, test script robustness, test
script repair, and test script dependency. The activity of the web test script has im-
portant implications for researchers and developers. Because researchers and testers
can easily select articles that are related to their own research.

— RQ 1.4 – Techniques used: What types of techniques are used for web test script in
each study? The studies proposed approaches that can divide into the following cate-
gories: event-based approach, dom-based approach, page-pattern approach, state-
based approach, visual approach, diversity-based approach.

— RQ 1.5 – Location in web test script: Which part of the web test script will be studied
in each article? A test case consists of input, actions, and assertion. So we categories
location in the test case as input, actions, assertion, and test case.

— RQ 1.6 – Automated level of the techniques or tools: What is the automatic level
of the proposed techniques or tools for web test scripts? According to the level of
manual intervention, we can category the techniques as automatic, semi-automatic,
manual.

— RQ 1.7 – Provided tools: What is the name of the test suite tool proposed and de-
scribed in each article? How many of them can be downloaded for free? Or how
many tools of test script freely available for download?

— RQ 1.8 – Types of web applications under test: What types of web apps are chosen by
each study to evaluate the approaches for web test scripts? To answer this question,
we identify the web applications chosen by each article and summarize the size, type.

RQ2: What is the demographic data of the publications? It has several aspects, such as
publication venue and publication year. We can use Zotero to view existing bibliometric
studies to obtain demographic data. This RQ can be divided into several sub-questions in
the following:

— RQ 2.1 – Publication year: What is the publication year of each study?

— RQ 2.2 – Publication venue: What is the name of the publication venue of each
study?

— RQ 2.3 – Citations: What is the number of citations for each study?

24 CHAPTER 3. A SYSTEMATIC MAPPING STUDY OF WEB TEST CASE

3.3 Methodology

In this article, we follow the widely accepted guidelines [Petersen et al., 2015; Keele,
2007; Petersen et al., 2008; Kitchenham et al., 2009] to perform this mapping study. The
whole procedure of this mapping study is shown in the following Figure 3.1. In this section,
we designed the process of this methodology to search the papers in electronic databases
and filter the studies we needed. Then snowballing was presented to supplement the pa-
pers in case that some studies were missing during the study search. After getting all the
studies, we extracted the data from these selected studies and synthesized the data for this
mapping study.

Begin

End

Study Search

Study Selection

Snowballing

Extract Data

Data Synthesis

Select by
metadata

Select by
abstract

Select by
full text

Get References in
Google Scholar

Select by metadata

Select by abstract

Select by full text

Selected
Papers<=0?

Yes

No

Figure 3.1 – The process of this systematic mapping study.

3.3. METHODOLOGY 25

3.3.1 Study search

The first step of the procedure to perform this study is searching the publications from
the electronic databases and retrieve the relevant studies for our mapping study on the
web test suite. It is highly significant for a mapping study to define the search period time
and electronic databases since it will affect the completeness of initial studies that will
potentially associate with the research topic. During the search phase, it is also essential to
design the search strategy for the same reason.

Search time period:

We choose 2000 as the start time of the search period. We choose 2019 as the end of the
search period in that we started this mapping study in January 2020. In the end, the year
covered by search is from 2000 (included) to 2019 (included).

Search electronic databases:

To perform this mapping study, we identify almost all the electronic databases that are
related to software engineering, which were suggested in [Petersen et al., 2015; Keele, 2007;
Brereton et al., 2007; Chen et al., 2010], listed in the table 3.1.

Table 3.1 – Search electronic databases.

Database Selected

DB1 IEEE Xplore Yes
DB2 ACM Digital Library Yes
DB3 Science Direct Yes
DB4 Springer Link Yes
DB5 Scopus Yes
DB6 Inspect Yes
DB7 Google Scholar Yes
DB8 Wiley InterScience No
DB9 CiteSeer No
DB10 ISI Web of Science No
DB11 EI Compendex No

If we can, we would select and use all the electronic databases mentioned in table 3.1 to
include all the related studies. For the last four databases Wiley InterScience (DB8), Cite-
Seer (DB9), ISI Web of Science (DB10), and EI Compendex (DB11), we are not accessible
in our university. Most studies can be searched in the other selected databases(DB1-DB8).
Moreover, we will do snowballing by searching for all the references to find the missing

26 CHAPTER 3. A SYSTEMATIC MAPPING STUDY OF WEB TEST CASE

publications. For these reasons, the last four databases(DB8-DB11) were not selected for
this study.

Search keywords:

The topic of our mapping study is about web test suite, and to include all the publi-
cations of this topic, we try to search in the databases by applying the search string "test
suite". However, the publications of the searching results showing that there are a consid-
erable number of papers not interrelated to the web for the papers just including the "test
suite" but in other domains such as desktop apps or mobile apps. Then we want to use
"web test" as the keywords. But the scope is too big because it includes the other test tech-
niques which are not related to testing suites. And considering that some papers do not
use the term “web test suite” explicitly but use the other phrases, such as "web test script",
"web test scenario" or "web test case". Therefore, we choose "Web AND Test AND (Suite
OR Script OR Scenario OR Case)"as our searching string in the end.

3.3.2 Study selection

After the process of study search, the potentially relevant primary studies have been
obtained, which need to be assessed for their actual relevance [Petersen et al., 2015; Keele,
2007]. To ensure that the results of the study selection are impartial and objective, we de-
signed the study selection criteria and the study selection process.

Study selection criteria

To identify and select the studies that present the evidence of research questions, both
inclusion and exclusion criteria are defined based on the questions mentioned above. Cri-
teria are essential to reduce the bias of study selection and correctly classify the primary
studies. The criteria were divided into two categories, inclusion criteria and exclusion cri-
teria.

The following inclusion criterias:

C1: The paper should be peer-reviewed, i.e.,published in journals, conference proceed-
ing, workshop proceedings, or book chapters.

C2: The paper should make a contribution to web test suite.

C3: If a paper generates the web test suite in details, which is helpful for developers and
researchers to build the web test suite, it will be included.

C4: If a paper talks about the maintenance of web test suite, including the prevention or
repairation of breakage of web test suite, it will be included.

C5: If a paper discusses execution of web test suite, including the replay of web test suite
for regression test, it will be included.

3.3. METHODOLOGY 27

C6: If a paper talks about the indicators of web test suite quality, including the coverage
about web test suite, it will be included.

C7: If a paper makes contributes to improving the quality of a test suite, it will be in-
cluded.

The following exclusion criteria:

C8: The website or blog which is not a publication will be excluded.

C9: Any paper not published in the English language will be excluded.

C10: Any paper published in the form of an abstract, tutorial, or talk is excluded.

C11: Papers that are not related to the web test suite should be excluded

C12: Books teaching how to use web test suite to do web testing will be excluded.

C13: Any paper just mentions the concept of the web test suite, without contribution to
the web test suite, then this paper will be excluded.

C14: If a paper just mentions the design of a web test suite without the details of how to
generate it, then this paper will be excluded.

C15: If a paper just uses a web test suite as a part of a program to do a web test, it will be
excluded.

C16: If a paper just contributes to the test suite but does not in the web domain, it will
be excluded. For example, papers that contribute to web service, web API, android
apps, or desktop apps are not included.

Study selection process

Table 3.2 – Study selection process.

Step Check object Criterias

1 Metadata C1/C8/C9/C10

2 Abstract C2/C3/C4/C5/C6/C7
/C11/C12/C13/14/15/16

3 Full text C2/C3/C4/C5/C6/C7
/C11/C12/C13/14/15/16

First, one researcher filtered papers based on metadata including title, keywords, and
venue name applying the criteria in table 3.2. If the paper is not explicitly excluded, we will
keep this paper for the next step of selection.

Second, two researchers independently filtered papers by reading the abstracts of the
papers left in the first selection process and applying the criteria in table 3.2. If these two

28 CHAPTER 3. A SYSTEMATIC MAPPING STUDY OF WEB TEST CASE

developers have different inclusion results of the study paper, the other two developers
filtered the conflicting papers by reading the abstracts of the papers. If our team did not
get the conclusion that whether the paper should be excluded, this paper will be included
temporarily and will be selected in the next step together with other include papers.

Last, two researchers independently filtered papers by reading the full text of the pa-
pers left in the second-round selection and applying the criteria in table 3.2. If these two
researchers own different inclusion opinions of studies, our team will reread the studies
and discuss them together to decide whether to include them.

Get References in
Google Scholar

Select by metadata

Select by abstract

Select by full text

Selected Papers<=0?

Selected Papers

End

Yes

No

Begin

Figure 3.2 – The process of snowballing.

3.3. METHODOLOGY 29

3.3.3 Snowballing

The snowballing procedure is essential for a systematic mapping study, which is pre-
sented by researchers to avoid missing relevant studies [Wohlin, 2014; Petersen et al., 2015].
The process of snowballing is shown in Figure 3.2.

After study searching and study selection, we get the relevant studies, which are the
foundation data of the snowballing. We utilize these selected studies as input and find
their references. We then conduct the study selection process to filter the references by
metadata, abstract, and full text. If we get selected studies from the references, we do it
again by applying the newly selected studies as input. This iterative process will be stopped
until there are no selected papers.

3.3.4 Data Synthesis and Extraction Method

Table 3.3 – Data collection and classification scheme for research questions

RQs Data categories Possible outcomes Multiple

RQ 1.1 Type of contribution
technique, tool, framework, model, p
metrics, guideline, and process.

RQ 1.2 Type of research facet
solution research, validation research,

×evaluation research, philosophical paper,
opinion paper, experience research.

RQ 1.3 Web test case activity

test case generation, test case execution,
ptest case break reasons, test case repair,

test case robustness, test case dependency,
test case minimization, test case migration.

RQ 1.4 Techniques presented
model-based, diversity-based, crawling, p
page object pattern, user-session-based,
vision-based, search-based, state-based.

RQ 1.5 Location in test case test case, input, action, assertion, locator.
p

RQ 1.6 Automated level automated, semi-automated, manual. ×
RQ 1.7 Provided tools Tool names provided (if any).

p

RQ 1.8 WAUT
Informations of WAUT: p
Name, Size of WAUT (LOC), Language,
Description of WAUT, Quantity.

The principle of data synthesis is to simplify the evidence representation in nominated
papers to simplify the data extraction process [Keele, 2007; Petersen et al., 2015]. To ex-
tract data for this systematic mapping study, a classification scheme needs to be obtained

30 CHAPTER 3. A SYSTEMATIC MAPPING STUDY OF WEB TEST CASE

through careful analysis of basic research [Petersen et al., 2008; Cornelissen et al., 2009].
This will help extract data from the paper to answer the research questions accurately.

Our classification scheme started from the initial version and improved during the data
extraction process through attribute generalization and iterative refinement steps. We
used Zotero to tag each study according to the scheme when we review them. After that,
we summarize the extracted data in Google Docs, which is an online spreadsheet. Newly
discovered categories will be added, and existing categories can be merged, split, or re-
moved. If necessary, the classification scheme will be updated. When we add research to a
category, we need to provide a short reason why it should fall into this category. Each study
will be reviewed by at least two reviewers, and differences of opinion will be discussed in
detail until a final decision is made.

Table 3.3 lists our final classification scheme, and the research questions (RQs) are an-
swered by each attribute of the map. Now, we discuss the properties of the classification
scheme. The columns of the table show the research question (RQ), the data categories,
the possible results, and whether there are multiple results. For the "Multiple" parame-
ter in the fourth column, this means that sometimes the possible outcomes are multiple
rather than unique. For example, in Table 3.3, RQ 1.1 shows the contribution type of a pa-
per, but the paper may have multiple contributions. The paper may propose a technique
and provide a tool at the same time, which means multiplecontributions. According to the
data categories in Table 3.3, we explain the classification schemes in following:

RQ 1.1 - Type of contribution:

In our system mapping research, we adopt the researcher’s guidelines and suggestions
[Petersen et al., 2015, 2008]. It proposes that a contribution facet (corresponding to RQ
1.1) denotes the type of contribution(s) proposed in each study: method/technique, tool,
model, metric, process, or other. In the context of our web test case, these contribution
facets would turn to the following: tool, technique, framework, and others.

RQ 1.2 - Type of research facet:

The type of research facet corresponds to RQ 1.2. The guidelines [Petersen et al., 2008,
2015] propose several types of research facet, including Solution Proposal, Validation Re-
search, Evaluation Research, Philosophical Papers, Opinion Papers, and Experience Pa-
pers. In our systematic mapping study, we do not find Philosophical Papers, Opinion Pa-
pers, and Experience Papers in our selected studies. Therefore, we choose Solution Pro-
posal, Validation Research, and Evaluation Research as the research types for our study.

Solution Proposal: It is a solution to a specific problem that can be a novel solution
or a major extension of one existing technique. The potential benefits and applicability of
this solution are shown through a good line of argumentation, a small example. Therefore,
studies with only examples are classified in the solution proposal.

3.3. METHODOLOGY 31

Validation Research: Techniques investigated are novel and have not yet been im-
plemented in practice. These techniques are validated in a lab through experiments. So
studies that have a verification part in a lab, but do not have all the contents of a system-
atic empirical study in practice, are classified in verification research.

Evaluation Research: Techniques are implemented in practice and an evaluation of
the technique is conducted. This means that it shows how the technique is implemented
in practice (solution implementation in the industry), and what are the pros and cons of
the technique (evaluated as an actual project). If the study uses systematic empirical eval-
uation (such as a controlled experiment) to evaluate the proposed technique comprehen-
sively, at the same time it also wholly discuss the advantages, disadvantages, and threats to
the validity of the results, we then classify this study as an evaluation research.

RQ 1.3 - Web test case activity:

The fourth row in Table 3.3 is the activity of web test cases presented in each study
(corresponding to RQ 1.3). In the mapping study, we divide the activities of test cases into
the following 12 types: test case generation, test case dependence, test case repair, test case
flakiness, test case metrics, test case prioritization, test minimization, test case isolation,
test case robustness, test case evolution, test case regeneration, test case comparison, test
case execution. We formed this specific classification by reviewing papers and used it for
our classification scheme, which is very suitable for studies in our pool.

RQ 1.4 - Techniques used:

Researchers presented many techniques for web test cases, including model-based
techniques, page object pattern, user-session-based techniques, crawling techniques, etc.
This attribute is related to RQ 1.4, and these types of techniques are used to generate, main-
tain, or repair test cases. We review each article to generate the distribution of these used
techniques, which will be analyzed as the mapping results in Section 3.4.

RQ 1.5 - Location in test case:

The location of a web test case can be input, action, locator, assertion, or the entire
test case. Some articles present approaches to create the test cases of web applications,
and some studies focus on generating the input data of a test case. Some papers focus on
the locator of the action in the test case to improve its robustness. Also, some researchers
target the assertion of the test case.

32 CHAPTER 3. A SYSTEMATIC MAPPING STUDY OF WEB TEST CASE

RQ 1.6 - Automated level :

The automation levels of the approaches in the articles are divided into three cate-
gories: manual, semi-automated, or automated. We review each study and classify it into
one of three categories based on the human intervention of the approach in each study.

— Manual: The techniques are fully assisted by testers and always require manual in-
tervention.

— Semi-automated: The proposed approach can automatically complete part of the
test jobs, but some processes of this approach still require manual intervention.

— Automated: The proposed technique can automatically investigate web test cases
without any manual intervention.

RQ 1.7 - Provided tools :

When researchers propose a technique or algorithm, they usually implement it as a
tool, which is very significant for turning academic research into practical web applications
in the industry. These tools are vital in the industry because they can be used directly for
web testing to save testers time. Therefore, we summarize the existing tools proposed in
each study.

RQ 1.8 - WAUT :

As shown in Table 3.3, we try to extract the following attributes for web applications
under test (WAUT) used during empirical validations or evaluations in each paper.

— Number of WAUT in each paper

— Name of WAUT

— Lines of Code (LOC): the size of WAUT

— Development language of WAUT

— Descripbtion of WAUT

— Number of used times for each web application

3.4 Systematic Mapping Results

In this section, we will present the results of the system mapping study and use the
extracted data to answer each of our research questions.

3.4. SYSTEMATIC MAPPING RESULTS 33

Number of studies

Ty
pe

 o
f s

tu
dy

 c
on

tri
bu

tio
n

tool

technique

framework

metric

others

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Figure 3.3 – Type of contribution.

3.4.1 RQ 1.1 - Type of contribution

Figure 3.3 shows the distribution of paper contribution types for all 76 papers included
in our research. It shows that there are three main types of study contributions, technique,
tool, framework, and others. As Figure 3.3 illustrates, most researchers have contributed
to presenting techniques, not only proposing new techniques but also improving existing
techniques. It attracted approximately 80.26% (61 out of 76 studies) to focus on techniques.
Besides, a relatively high percentage of studies (about 52.63%, 40 out of 76) implement
tools for web test cases. The other five studies provide frameworks for web test cases, and
the proportion is about 6.58% (5 out of 76). Three studies (about 3.95%, 3 out of 76)focused
on the metrics or indicators for Web test case evaluation. Because there are 7 papers that
cannot be classified into these four contribution types, so we classify them as "other".

In terms of contribution aspects, some studies have more than one type of contribu-
tion. For example, S10 [Stocco et al., 2017] makes two types of contributions. First, it
presents a new techniques for the automatic generation of page objects for web appli-
cations. Second, it implements a tool called APOGEN that can automatically derive test
models by reverse-engineering the target web application, which is useful for generating
test cases. For another example, S4 [Artzi et al., 2011] makes two contributions, too. It

34 CHAPTER 3. A SYSTEMATIC MAPPING STUDY OF WEB TEST CASE

implements a tool called Artemis and also provided a framework for feedback-oriented
testing of JavaScript applications.

3.4.2 RQ 1.2 - Type of research facet

Numbers of studies

R
es

ea
rc

h
Ty

pe
 F

ac
et

solution research

validation research

evaluation
research

0 5 10 15 20 25 30 35 40 45 50 55

Figure 3.4 – Type of research facet.

Figure 3.4 illustrates paper types of research facet, which corresponds to RQ 1.2. The
research of web test cases is mainly based on verification research. There are 52 pieces of
such study, accounting for 68.42%. This means that many researchers not only propose
a new technique but also conduct verification experiments on the applicability and effec-
tiveness of the proposed technique. For example, S27 [Biagiola et al., 2019b] provides a
diversity-based web test generation approach, which is implemented in a tool called DIG
and evaluated by generating test cases for six different web applications. Solution research
account 18.42% (14 out of 76). These studies propose solutions that are helpful for web
test cases, only give a simple example to support their arguments without validation ex-
periments. There are 10 studies that are categorized in evaluation research, which is a
reasonable share in comprehensive experimental research (accounting for 13.16%).

3.4. SYSTEMATIC MAPPING RESULTS 35

3.4.3 RQ 1.3 - Web test case activity

Number of studies

Te
st

 c
as

e
ac

tiv
ity

test case generation
test case dependence

test case repair
test case flakiness

test case metrics
test case prioritization

test minimization
test case migration
test case isolation

test case robustness
test case evolution

test case regeneration
test case comparison

test case execution

0 5 10 15 20 25 30 35 40 45

Figure 3.5 – Web test case activity.

Figure 3.5 depicts the distribution of web test case activity in the pool of our map-
ping study. Of the total 76 studies included in our mapping research pool, 45 articles
(about 59.21%) generate test cases by proposing novel techniques or improving existing
approaches. For example, S29 [Wassermann et al., 2008] proposes an automatic input test
generation algorithm for web applications by dynamically using information from pre-
vious executions. S21 [Stocco et al., 2016] presents an approach to automatically create
page objects, which is a model for generating test cases of web applications. The study
S16 [Hanna et al., 2018] proposes a test automation framework named SAT, which can be
successfully used to automate the creation of web test scripts.

As shown in Figure 3.5, 11 articles (approximately 14.47%) propose algorithms or tech-
niques to improve the robustness of web test cases. These algorithms or techniques can
prevent the breakage of test cases to a certain extent. S56 proposes a tool named ROBULA
[Leotta et al., 2014b], which generates robust XPath-based locators to prevent reducing the
aging of web test cases. S68 [Leotta et al., 2015b] proposes a voting algorithm to select the
most robust DOM element locator from multi-locators to increase the robustness of the
locators for web test cases.

Another popular research activity is test case repair, with a ratio of 10.53% (8 out of 76).
The activity of test case evolution has attracted similar attention, accounting for 9.21% (7
out of 76). For example, Water (S72) [Choudhary et al., 2011] and Waterfall (S73) [Ham-
moudi et al., 2016a] have proposed DOM-based techniques to repair broken tests of web
applications automatically. Besides, S70 proposes a tool named Vista [Stocco et al., 2018].

36 CHAPTER 3. A SYSTEMATIC MAPPING STUDY OF WEB TEST CASE

It uses a fast image-processing pipeline to analyze relevant visual pictures obtaining from
test execution and suggest potential fixes of test breakages to testers.

In addition, test minimization and test case execution have also been described as test
activities. Both of them have six studies, with the same ratio of 7.89% (6 out of 76). In Figure
3.5, there are also some papers that fall in other types of test activities, such as test case
dependence, test case flakiness, test case metrics, test case migration, test case isolation,
test case regeneration, and test case comparison.

3.4.4 RQ 1.4 - Techniques used

Number of studies

Te
ch

ni
qu

es
 u

se
d

model-based

page object pattern

state-based

visual-based

diversity-based

search-based

user-session-based

crawling

usage pattern

others

0 5 10 15 20 25 30 35 40 45

Figure 3.6 – Techniques used.

Figure 3.6 demonstrates the distribution of techniques used in the studies for web test
cases. Model-based techniques are the most popular methods for researchers to deal with
web test cases, accounting for 57.89% (44 out of 76). For example, S9 uses artificially con-
structed models to analyze and generate test cases of web applications. It uses model-
based techniques provided by users to derive test cases. And 12 (about 15.79%) articles
propose or utilize page object pattern to generate web test cases. S10 [Stocco et al., 2017]
uses page specifications to automatically generate page objects, which is useful for web
test generation through HTTP communication with the server. The third popular one is

3.4. SYSTEMATIC MAPPING RESULTS 37

user-session-based technique, which is account for 13.16% (10 out of 76). Crawling is also
popular and used in 8 papers (10.53%).

On the other hand, vision-based and state-based techniques have also attracted the at-
tention of researchers dedicated to web test cases. Vision-based techniques account for
6.58% (5 out of 76), and state-based approaches have four studies accounting for 5.26%.
Moreover, the category of “other” techniques in this scheme included diversity-based tech-
nique to generate web test cases of S27 [Biagiola et al., 2019b]. For another example, S3
[Azizi and Do, 2018] proposed usage pattern approach for test case prioritization in web
applications. S74 [Biagiola et al., 2019a] uses the NLP technique to present a test depen-
dency for web test cases.

As we know from Figure 3.6, some articles use more than one technique to investigate
web test cases. We can classify one paper as multiple types of techniques (if any). For ex-
ample, S72 [Choudhary et al., 2011] uses two techniques (crawling, model-based) to repair
test cases for web applications. S10 [Stocco et al., 2017] uses three techniques (crawling,
page object pattern, and model-based) to create a test model of a web application, which
can be utilized to generate a web test script in the context of a case study.

Number of studies

Lo
ca

tio
n

in
 te

st
 c

as
e

test case

input

action

assertion

locator

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Figure 3.7 – Location in test case.

38 CHAPTER 3. A SYSTEMATIC MAPPING STUDY OF WEB TEST CASE

3.4.5 RQ 1.5 - Location in test case

The distribution of location in test case is shown in Figure 3.7. As it depicts, the majority
of studies focus on the entire test case, accounting for 84.21% (64 out of 76 articles). For
example, S74 [Biagiola et al., 2019a] proposed a test dependency technique for E2E web
test cases based on string analysis and NLP implemented in a tool called TEDD. There
are 12 studies that focus on the input of a test case, accounting for 15.79%. For example,
S60 [Biagiola et al., 2017] generates input data for test cases of web applications. Some
researchers (about eight articles) focused on the locators of test cases, which accounts for
10.53%. Take the locators as an example, S68 [Leotta et al., 2015b] use multi-locators to
increase the robustness of web test cases. Some articles focus on the other two categories,
namely actions and assertions. Each category has three articles, respectively accounting
for 13%.

3.4.6 RQ 1.6 - Automated level

Number of studies

A
ut

om
at

ed
 le

ve
l

automated

semi-automated

manual

not mentioned

0 5 10 15 20 25 30 35 40 45

Figure 3.8 – Automated level.

As Figure 3.8 displays, each of 45 papers (about 59.21%) provides a fully automated
approach for the investigation of web test cases. The automated approach for web test
cases is the most popular topic because it can reduce the human effort for web testing. For

3.4. SYSTEMATIC MAPPING RESULTS 39

example, S11 [Leotta et al., 2015a] proposes an automated method for migrating test cases
from DOM-based web tests to visual web tests. And S27 [Biagiola et al., 2019b] presents an
automated approach for web test generation.

The approaches in 12 studies (approximately 15.76%) are semi-automated, including
automated and manual aspects. Article S46 [Mariani et al., 2014] try to generate test inputs
by exploiting the web data. To achieve this goal, it provides a tool called Link to create a
model of input values and extract data to generate test inputs. As they stated, they can au-
tomatically generate test inputs from the model. However, manual intervention is required
during model creation to redefine the model.

In another set of five papers (about 6.58%) presented manual approaches and then
are classified as manual. And nine studies (11.84%) are not clear because of the lack of
information on automatic levels.

3.4.7 RQ 1.7 - Provided tools

Table 3.4 demonstrates the different characteristics of existing tools developed by re-
searchers for web applications. The first column is the study number, and not all studies
in our pool provide tools for their techniques. In their papers, the researchers named the
implemented tools, which are listed in column two. The third column is the target of each
tool, such as test case generation, test minimization, test case robustness, test case depen-
dency, test sequence repair, etc. The fourth column describes the year that each tool was
implemented. And the last column represents if the tool is available to be download. The
symbol

p
indicates that a download link of each tool is provided in the paper (may still be

downloadable, or the download link is not supported now). And the symbol×means that
no download link of the tool is provided in the paper.

As shown in Table 3.4, there are 17 studies (S4, S9, S12, S16, S17, S27, S32, etc.) that
provide tools for the generation of web test cases. Five tools (S22, S50, S70, S72, and S73)
can repair damaged web test cases. Three tools (S56, S58, and S59) are designed to improve
the robustness of web test cases. And three tools (S9, S10, and S43) attempt to create test
models for web applications. Besides, other tools are provided for achieving other different
goals (for example, test case priority, test case migration, test case metrics, test minimiza-
tion, test case dependency, etc.).

Table 3.4 – Tools presented in studies

Study Tool Name Target Year Available
S3 Recommender test case priority 2018 ×
S4 Artemis test case generation 2011

p

S9
ReWeb model creation

2001 ×TestWeb test case generation
Continued on next page

40 CHAPTER 3. A SYSTEMATIC MAPPING STUDY OF WEB TEST CASE

Table 3.4 – Continued from previous page
Study Tool Name Target Year Available

S10
APOGEN model creation

2017

×S21 2016
S75 2015
S11

PESTO test case migration
2015 p

S51 2014
S52 2018
S12 MBUITC test case generation 2019

p
S16 SAT test case generation 2018 ×
S17 SWAT test case generation 2011 ×
S18 DWASTIC test case metrics 2010 ×
S22 COLOR test case repair 2019 ×
S26 FlakcLoc test case flakiness 2019 ×
S27 DIG test case generation 2019

p
S28 DomCovery test case metrics 2014

p
S32 FEEDEX test case generation 2013

p
S33 Testler test minimization (reduction) 2018

p
S35 WATEG test case generation 2013 ×
S36 WAM test case generation 2007 ×
S39

ATUSA test case generation
2009 p

S40 2012
S41 JSART test case generation 2012

p
S42 Testilizer test case generation 2014

p
S43 KeyjaxTest model creation 2019 ×
S50 ReAssert test case repair 2010

p
S53 WAM-SE test case generation 2009 ×
S56 ROBULA test case robustness 2014

p
S57 CRAWLJAX test case generation 2010

p
S58 ROBULA+ test case robustness 2016 ×
S59 ATA-QV test case robustness 2014

p
S60 Subweb test case generation 2017 ×
S61 SART test case regeneration 2012 ×
S65 TEC test case execution 2017

p
S70 VISTA test case repair 2018

p
S71 WaRR test case generation 2011 ×
S72 WATER test case repair 2011 ×
S73 WATERFALL test case repair 2016 ×

Continued on next page

3.4. SYSTEMATIC MAPPING RESULTS 41

Table 3.4 – Continued from previous page
Study Tool Name Target Year Available

S74 TEDD test case dependence 2019
p

3.4.8 RQ 1.8 - Web Applications Under Test

Figure 3.9 describes the number of WAUTs used in each article. As shown, 22 articles
(about 28.95%) validated their approaches using one web application as a case study. And
7 articles do not use WAUT to validate their approaches. There were ten articles (about
13.16%) that evaluated their approaches with two WAUTs. And there were 5, 7, 5, 10 articles
respectively used 3, 4, 5, 6 WAUTs for validation. Three articles (approximately 3.95%) used
more than 10 WAUTs for experimental validation. The total number of WAUT (includes
duplications) used in all articles is 273, and the average number of WAUTs used per article
is 3.6. After removing duplicates, a total of 119 unique WAUTs were used.

Number of WAUTs

N
um

be
r o

f a
rti

cl
es

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10+

Figure 3.9 – The number of WAUT in each article.

There were too many different WAUTs used. For the clarity of this thesis, we list the
top used 20 WAUTs in table 3.5. As it depicts, the first column shows the names of WAUTs

42 CHAPTER 3. A SYSTEMATIC MAPPING STUDY OF WEB TEST CASE

that be provided by researchers. The LOC of each WAUT is in the second column. The
third column is the development language of each WAUT, such as PHP, JSP, or Java. A brief
description of each WAUT is given in the fourth column. The last column represents the
number of times each WAUT was selected to validate the research approach. We provide
more information about WAUT on Google spreadsheets 1.

Table 3.5 – WAUT presented in at least three papers, ranked by amount of papers.

Web Names LOC Language Description Amount
AddressBook 35675 PHP address/phone book 16

Bookstore 19402 JSP an e-commerce bookstore site 13
Claroline 352537 PHP collaborative learning environment 11

PPMA 575976 PHP password manager 9
MRBS 34486 PHP meeting rooms manager system 8

MantisBT 141607 PHP a bug tracking system 7
Collabtive 264642 PHP collaboration software 6
TuduList 23000 Java management of personal todo lists 5

CPM 9300 Java a course project manager 4
Joomla 312978 PHP a content management system 4

PetClinic 6100 Java a veterinary clinic web application 3
Schoolmate 8183 PHP School admin system 3

Webchess 8589 PHP Online chess game 3
Timeclock 23403 PHP Employee time tracker 3

PHPBB 22280 PHP Customisable web forum 3
PHP-Fusion 256899 PHP a content management system 3

PhotoGallery 6000 PHP an online photo gallery 3
WordPress 342097 PHP a content management system 3
Classifieds 10759 JSP Portal for advertisements 3

Events 7164 JSP Portal for event announcements 3

We obtained 120 WAUTs from all articles, but not all articles reported the LOC size of
WAUT during the article publication. Only 85 out of 120 WAUTs reported LOC size. Figure
3.10 shows the histogram of the LOC size of WAUTs. The average LOC size of WAUT is
89788.48. The minimum LOC size of WAUT (named DynamicArticles) is 156 in research S6
[Artzi et al., 2011]. The maximum LOC size of WAUT (called Zimbra) is 1025410 in research

1. https://docs.google.com/spreadsheets/d/1_9SDhR6TW98uMTSe0lDQg6a9L1kBoPsFkqpbg_
p4Bk0/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1_9SDhR6TW98uMTSe0lDQg6a9L1kBoPsFkqpbg_p4Bk0/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1_9SDhR6TW98uMTSe0lDQg6a9L1kBoPsFkqpbg_p4Bk0/edit?usp=sharing

3.4. SYSTEMATIC MAPPING RESULTS 43

LOC

N
um

be
r o

f W
A

U
Ts

0

5

10

15

20

<500 500-1000 1k-5k 5k-10k 10k-50k 50k-100k 100k-500k 500k+

Figure 3.10 – The LOC of WAUTs.

S56 [Christophe et al., 2014]. As shown in Figure 3.10, many large WAUTs (more than 10
KLOC) are selected for validation in the articles.

As we all know, the LOC size of WAUT may be different in different articles, because
researchers have chosen different versions of WAUT. And some articles do not choose the
entire WAUT, only use the subsystem of WAUT, which also makes the LOC size of WAUT
different. Therefore, when WAUTs with different LOC sizes appear in different articles, we
choose the maximum LOC size of this WAUT.

Figure 3.11 shows the number of WAUT development languages used in the articles.
From the distribution of development languages, we can see that PHP is the most com-
monly used language for WAUT. There are 36 kinds of WAUTs (about 30%) are developed
using PHP. Not all WAUTs provide development languages in published articles. 29 WAUTs
are classified as "N/A", meaning "not applicable". Java is the second popular language of
WAUT in the article pool. WAUTs are also developed using ASP.NET, C++, JSP, JS, or Python.

We want to know the types of WAUT in the articles, such as academic, open-source, and
commercial. Figure 3.12 depicts the histogram of WAUT types. 80 WAUTs (about 66.67%)
are open source. Commercial WAUT accounts for 15% (18 WAUTs out of 120 WAUTs). And
there are only seven academic experiments WAUTs. As shown in the figure, a large number

44 CHAPTER 3. A SYSTEMATIC MAPPING STUDY OF WEB TEST CASE

Language

N
um

be
r o

f a
rti

cl
es

0

10

20

30

40

ASP.NET C++ Java JSP JS PHP Python N/A

Figure 3.11 – The development languages of WAUT.

of open-source WAUTs were selected during the verification process of the article, while
the number of academic WAUTs was relatively small.

3.4.9 RQ 2.1 - Publication trend per year

The annual publication volume of articles for web test cases is depicted in Figure 3.13.
In terms of publication year, Figure 3.13 shows that the number of articles used for web
test cases fluctuates. In other words, the publication volume trend for web test cases is
relatively not stable. For example, there are 0 articles in 2002. There has been a relatively
significant reduction in 2006, 2009, and 2015. However, it is an overall upward trend, which
means more developers focus on web test cases to conduct automated web testing.

3.4.10 RQ 2.2 - Citation analysis of publications

In this subsection, we try to analyze the citation of each article based on counting of
citations. We extracted the citation data of each article from Google Scholar on October 16,
2020. For papers that appear both as conference publications and as journal extensions,
we will respectively count the citations of these two editions. Figure 3.14 visualizes the
citation count of each article vs. publication year as an X–Y plot.

Since these research papers were published in different periods, the publication year of
each paper should be considered when analyzing the number of citations. Therefore, we
take the average of the normalized values [Nassiri et al., 2013] as the following:

3.4. SYSTEMATIC MAPPING RESULTS 45

Number of articles

Ty
pe

Academic

Commercial

Open source

N/A

0 20 40 60 80

Figure 3.12 – The types of WAUT.

N SI = Ci t ati ons

2021−Y ear
(3.1)

For example, the approach Water of paper [Choudhary et al., 2011] has 64 total citations
as of this writing and was published in 2011. Thus, its normalized citations is calculated
as: NSI(Water) = 64/(2021 - 2011) = 6.4, and we generate Figure 3.15 after normalizing the
citations.

As Figure 3.15 shown, the normalized citations returns the average number of citations
of a paper each year since its publication year. The top publication with the normalized
citations (37.11) is [Ricca and Tonella, 2001]. And paper [Andrews et al., 2005] is the second
most cited publication based on the normalized citations (29.73).

3.4.11 RQ 2.3 - Top related venues

In order to rank the related venues, we count the number of our selected papers pub-
lished in each venue. Table 3.6 shows the top related venues ranked by the number of
papers. It indicates the top 10 venues in this table. Among them, there are 8 confer-
ences/Symposium, and two journals. There are many major software engineering con-
ferences and journals on this list. For example, the venue with the most papers (9 papers)
is ISSTA, which accounts for 11.84% of the total number of papers. Recently, it has attracted
and published many papers related to web test suites.

46 CHAPTER 3. A SYSTEMATIC MAPPING STUDY OF WEB TEST CASE

Year

N
um

be
r o

f a
rti

cl
es

0

2

4

6

8

10

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

Figure 3.13 – The publication trend per year.

Table 3.6 – Venues ranked by the number of papers

Venue Acronym #

International Symposium on Software Testing and Analysis ISSTA 9
International Symposium on Foundations of Software Engineering FSE 6
International Conference on Software Engineering ICSE 6
International Conference on Software Testing ICST 6
International Conference on Automated Software Engineering ASE 4
International Conference on Software Maintenance and Evolution ICSME 4
IEEE Transactions on Software Engineering TSE 2
International Symposium on Software Reliability Engineering ISSRE 2
Journal of Systems and Software JSS 2
ACM Symposium On Applied Computing SAC 2

3.5 Discussions

In this section, we summarize our findings of this systematic mapping study and the
threats to validation.

3.5. DISCUSSIONS 47

Year

C
ita
tio
n

0

200

400

600

800

200
0

200
2

200
4

200
6

200
8

201
0

201
2

201
4

201
6

201
8

Figure 3.14 – Citations of each article vs. publication year.

3.5.1 Findings

RQ 1.1 shows that most of the articles (80.26%) have proposed techniques for web test
cases. And some articles have made more than one contribution to web test cases. For
RQ 1.2, most papers (68.42%) have empirically verified their approaches. However, these
validations are conducted on empirical experiments, not industrial evaluations. Only ten
articles (13.16%) conduct industrial evaluations. As a result, it still needs much attention
for researchers to validate their techniques on industrial web applications.

RQ 1.3 shows that most articles focus on the generation of test cases, and other activi-
ties require more attention, such as repair of test cases, dependency of test cases, priority of
test cases, etc. For RQ 1.4, most articles used model-based techniques for web test cases. A
variety of various technologies have been used and proposed for web test cases. And there
are some articles using more than one technique in their approaches.

In term of the location in test case, the majority of the work has focused the whole test
case in the past (RQ 1.5). The second majority focused on the input of test case. A few
articles paid attention to action and assertion of test case.

RQ 1.6 indicates that most articles proposed automated level approaches for web test
cases. There are also a mix of manual and automatic methods. Few articles used manual
approach in web testing.

RQ 1.7 shows that many articles proposed tools in their studies. Some tools (50%) can
be downloaded for free, but 50% of the provided tools can not be download (many are not
available). It needs more attention for researchers to provide available tools for testers.

For RQ 1.8, a lot of WAUTs are used by researchers to validate their approaches. Most

48 CHAPTER 3. A SYSTEMATIC MAPPING STUDY OF WEB TEST CASE

Year

N
or

m
al

iz
ed

 C
ita

tio
ns

0

10

20

30

40

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

Figure 3.15 – Normalized citations of each article vs. publication year.

of articles only use one WAUT in the process of validation. Few articles use more than ten
WAUTs for emprical verification. As Table 3.5 dipicts, the AddressBook are utilized by 16
articles, which are most commonly used. As shown in Figure 3.10, the LOC size of most
WAUTs ranges from 10k to 50K. The WAUTs used in the article have various (LOC) sizes.
Figure 3.11 illustrates that most of WAUT’s development language is PHP. And the second
most commonly used development language of WAUTs is Java. Figure 3.12 shows that most
of the WAUTs are open source, which are avalible online freely.

RQ 2.1 reveals that as time goes on, the number of articles per year increases. RQ 2.2
presents the citations of each article and their normalized citations. The number of cita-
tions indicates the quality of each article, and there is no necessary correlation with the
year. RQ 2.3 shows the venues ranked by the number of papers in our pool. And there are
many major software engineering conferences and journals in Table 3.6.

3.5.2 Threats to validation

In this subsection, we discuss potential threats to validity of this mapping study. The re-
sults of systematic mapping study may be affected by many factors, such as the researcher
who conducts the research, the selected data source, the search term, and the range of
selected time.

As we discussed before, we have defined our inclusion and exclusion rules. We have
divided our groups to minimize the personal biases of our team members. When our team
members disagree with each other, we will hold a meeting and discuss together until we

3.6. CONCLUSION 49

reach an agreement. However, like other systematic mapping studies, personal bias can
not be eliminated. It is a threat to our mapping study. But we believe that our main con-
clusions drawn from the identified articles should not deviate from our findings.

In Section 3.3.1, we have introduced the search terms and databases utilized in this
mapping study. To obtain a complete study set that can cover the research topic, we sys-
tematically generate search keywords. However, since there are multiple choices and dif-
ferent combinations of terms for web test cases, the list may be incomplete, and alternative
terms may affect the number of articles found, which is one of the threats to our mapping
research. We have tried the primary electronic databases that our university can access. We
also performed a snowballing process to complete the research paper set. However, some
articles in the alternative databases may not be found, which is a threat to this mapping
study.

3.6 Conclusion

Due to the complexity and dynamics of web applications, it is well known that test
automation is a huge challenge for web developers. This is why many researchers work
in this domain. In this paper, we present the first systematic mapping of articles in the
area of web test cases, published between 2000 and 2019. Moreover, we provide the first
bibliometric analysis of web test cases to understand annual publication trends, citations
and venues.

Our system mapping study shows that web test automation is an active research area,
and the number of publications of web test cases is increasing. This mapping study
provides guidance by discovering research areas that require more attention to help re-
searchers plan future work. For example, compared with test case generation, researchers
also need pay attention to other aspects, such as test case repair, test case dependence, etc.

Our mapping study present guidence for testers to choose the tools according to the
activities of web test case. For example, developers and testers can find tools with target
activities in Table 3.4. In addition, researchers interested in web test cases can shoose the
WAUTs shown in our map.

CHAPTER

4
An approach for DOM-based web test

suite repair

How to repair test scripts during web test evolution? The rest of this chapter is struc-
tured as follows: We first introduce the motivation. We then describes our approach
that proposes substitutes for broken actions efficiently. We also conduct an empirical
evaluation to validate our method. Finally, we get empirical results and conclusions.

Contents
4.1 Introduction . 52

4.2 Methodology . 52

4.3 Evaluation . 60

4.4 Conclusion . 66

51

52 CHAPTER 4. AN APPROACH FOR DOM-BASED WEB TEST SUITE REPAIR

4.1 Introduction

As we presented in Chapter 2, the test cases sometimes break due to the evolution of
web application. To scope our approach, we also presented the break type of DOM-based
web test case that we are target to repair in Chapter 2. In this chapter, we present our
approach to repair the broken tests. We also summarize our contributions for web test
repair.

In this chapter, we try to focus on web domains other than other GUI apps to repair
DOM-based test cases. We build Test Suite Graphs (TSG) for different releases of a web ap-
plication and compare these two TSGs to help developers repair their broken tests. To this
extent, we propose an approach named WebTestSuiteRepair, which will compare TSGs to
identify substitutes for broken actions, and hence that developers can utilize this approach
to repair broken tests automatically. In this study, we make the following contributions:

— An approach to generate test suite graphs of web applications, which helps to repair
web test cases.

— An algorithm to automatically repair the DOM-based test suite by comparing TSGs
of web applications.

— An implemented tool WTSR for testers or developers to repair broken web test cases.

— An empirical evaluation of our approach to repair broken tests for three real web
applications.

4.2 Methodology

This section presents our approach WebTestSuiteRepair (WTSR), which aims to repair
the test suite for web applications. Atif Memon[Memon et al., 2003] and Zebao Gao[Gao
et al., 2015a] present the event-flow graph (EFG) of Graphical User Interfaces for soft-
ware test. Different from the existing technology, our approach WTSR generates Test Suite
Graphs (TSGs) from a test suite of test cases of the web application. It creates TSGs for
two releases of a web application separately. And it repairs broken test cases by comparing
these two TSGs. In this section, we first introduce an overview of WTSR and then detail all
of its parts.

4.2.1 Overview

Fig. 4.1 presents an overview of WTSR. We assume that testers capture the initial test
cases from Release 1 of a web app.

First, WTSR tries to execute the initial E2E tests on Release 1 to build the TSG. For the
sake of clarity, the graph for Release 1 is named TestSuiteGraphRelease1 (TSGR1). The graph
for Release 2 is named TestSuiteGraphRelease2 (TSGR2). TSGR1 and TSGR2 are both TSG,
corresponding to different releases.

4.2. METHODOLOGY 53

TestSuiteGraphRelease 1
(TSGR1)

Get

Release 1

 Execute on

Release 2

TestSuiteGraphRelease 2
(TSGR2)

Broken Tests

Initial Test Cases

Compare

Repair

Repaired Test Cases

 Execute on

Figure 4.1 – The architecture of web test suite repair.

Second, WTSR runs these initial test cases on Release 2 to build the TSGR2. It creates
the same type of 5-tuple graph through the same process of TSGR1. During this process, it
will crawl HTML element data from the web page after each action in the test case to create
the selectors. After creating efficient and robust CSS selectors for HTML elements, WTSR
can generate different kinds of actions. These crawled candidate actions are part of TSG.

Third, WTSR compares these two TSGs to repair the test suite. It repairs broken cases
by utilizing a substitute to replace broken action in Release 2. It set the no longer useful test
cases as a delete state by finding the deleted actions in the TSGR2. The following subsec-
tions will present all these steps in detail.

4.2.2 Create Test Suite Graph Release 1

For web application developers, we assume that they have written test suite composed
of test cases for web application’s Release 1, which can be described as an initial test suite,
the input of our approach WTSR. WTSR plays these test cases over the web application’s
Release 1 to create the TSGR1 (line 2 in Algorithm 1). To create TSG, it will run each test
case (from line 7 to line 9).

To play a test case, it will perform cach action to interact with the web application (from
line 12 to line 31 in Algorithm 1). We use Puppeteer 1 to run each action and get the web
page (line 14). On different pages, actions with the same content or selector maybe have
a different meaning. So we use URLs to distinguish these actions. For each test case, it

1. https://github.com/puppeteer/puppeteer

https://github.com/puppeteer/puppeteer

54 CHAPTER 4. AN APPROACH FOR DOM-BASED WEB TEST SUITE REPAIR

Algorithm 1 Algorithm to automatically repair web test suite

Require: Initial Test Suite (I T Sset) // A set of Test Cases
Ensure: The Repaired Test Suite

1: procedure WEBTESTSUITEREPAIR:
2: T SGR1 ←Cr eateT SG(I T Sset)
3: T SGR2 ←Cr eateT SG(I T Sset)
4: TestRepai r ←Compar e(T SGR1,T SGR2)
5: end procedure
6: function CREATETSG(I T Sset)
7: for E ach(testC asei) in I T Sset do
8: T SG ← Pl ay(testC asei)
9: end for

10: return T SG
11: end function
12: function PLAY(testC asei)
13: for E ach(acti oni) in testC asei do
14: W ebPag e ← br ow ser.r un(acti oni)
15: if W ebPag e.tr ue then
16: T SG .ur l ← saveUr l s(W ebPag e.ur l)
17: T SG .acti on ← saveRunned Acti ons(acti oni)
18: T SG .l i nk ← saveLi nks(acti oni−1, acti oni)
19: El ementset ← br ow ser.cr awl (W ebPag e)
20: C Aset ← g ener ateC As(El ementset)
21: T SG .candi d ate ←C Aset

22: else
23: T SG .br eakIn f o ← g etBr oken Acti on(W ebPag e)
24: T SG .sui te ← saveBr okenC ase(testC asei)
25: end if
26: end for
27: if Acti onsInTestC asei RunSuccess f ul l y then
28: T SG .sui te ← saveSucceedC ase(testC asei)
29: end if
30: return T SG
31: end function

records the URL of each action and saves these URLs to MongoDB (line 16). It can extract
the actions and links between actions from initial test cases (lines 17 and 18). And, it crawls
web pages to obtain DOM to extract web elements (line 20). The target web elements (e.g.,
a hypertext reference link, a text field, a single box, etc.) are the parameters of the candidate
actions. It then creates the candidate action set using these elements (line 21). To generate

4.2. METHODOLOGY 55

candidate actions, we use the JS library 2 that were developed before. If an action of test
case fails, this failed test case and its interrupt information will be saved to MongoDB (lines
23 and 24). If the test case runs successfully, this succeeded case will be saved to MongoDB
(line 28 in Algorithm 1).

The TSG can be regarded as a 5-tuple structure <S, U, A, L, C>:

— S is a test suite that consists of a set of test cases representing all tests.

— U is a set of URLs representing all web pages of test cases.

— A is a set of actions representing object events in the URLs, and actions in different
URLs are different.

— L ⊆ A × A is a set of links that may follow edges between actions. (Ai, Aj) means Aj
executes immediately after Ai.

— C is a set of candidate actions after each test action.

In Section 2, we have presented a test case example. Now we use two similar test cases
to explain 5-tuple <S, U, A, L, C> architecture of TSG. For example, TSGR1 in Fig. 4.2 keeps
these two test cases in the mongo database. In Fig. 4.2, TS1 includes A1, A2, A3, A4, and
assertion. TS2 includes A1, A5, A6, A7, and assertion. TSGR1 also keeps these actions and
their links in the database. Every action belongs to a web page (URL), and we use the URL
and its selector to distinguish them. So the URL of every action is stored in MongoDB. The
link (A1, A2) means Action 2 is performed directly after Action 1. During the execution of
the test case, WTSR crawls the candidate actions after each action and saves them in the
database. For TSGR1, it is only a simple example in Fig. 4.2. TSGR1 is more complicated in
an actual web application that contains more test cases and a lot of actions.

Candidate actions can be crawled from the web page after each test case command.
These candidate actions are potentially used to replace broken action to repair a breaking
case.

[. Candidate Action] Candidate Action is an action that can be performed after the
previous action. Candidate actions are represented as C Ai = C A1,C A2, . . . In the case
of a given web page, all CSS selectors on the web page can be crawled to generate a set
of candidate actions.

For example, every action on the left side of Fig. 4.2 has many candidate actions that are
recorded from the HTML web page. On the right side of the Fig. 4.2, C A1,C A2,C A3, . . .C An

are the candidates actions after the previous action Ai . The candidate actions of Ai consti-
tute the action set that can be performed after Ai . Candidate action has the same 4-tuple
structure < type, selector, text, URL> as the actions in the initial test case.

2. https://github.com/webautotester/scenario

https://github.com/webautotester/scenario

56 CHAPTER 4. AN APPROACH FOR DOM-BASED WEB TEST SUITE REPAIR

A4

A3

A2

A1

A6

A5

AssertAssert

A1

Ai

CA1 Aj

An

CA2 CA3 CAn......

CAs

Assert

A7

TS1 TS2

Figure 4.2 – The test suite graph release 1.

4.2.3 Generate Test Suite Graph Release 2

In this step, we aim to generate TSGR2 by executing all the test cases on web application
release 2. This process for generating TSGR2 is the same as the process of creating TSGR1.
In Algorithm 1, input test suite and use the same function to create TSGR2 (line 3). For all
the test cases, run them on web app release 2 from line 7 to line 9. The function to play
each test case is from line 12 to line 31, which has been presented details in Section ??.
Actions and links are also saved to TSGR2 as the same as TSGR1 (lines 17 and 18). And
there appeared interruptions (lines 23 and 24) in some test cases during this process of
creating TSGR2 because of the evolution of web application.

In Algorithm 1, after performing each action, WTSR will also crawl the web page to
obtain DOM to extract web elements, which can be used to generate candidate actions
(from line 19 to line 21). However, during the process of creating TSGR2, some test cases are
broken due to web evolution. So WTSR needs to get the broken test cases and the stopped
actions (lines 23 and 24). And it will repair these damaged cases in the next Section ??. For
example, A3 on the left side of Fig. 4.3 is a broken action that can not be performed. So TS1

′

keeps the breaking information with A3. Fig. 4.3 presents an example of TSGR2 that needs
to be replenished and updated in the next Section ?? by comparing TSGs.

4.2. METHODOLOGY 57

A4

A3

A2

A1

Assert

TS1'

Break

A6

A7

Assert

A5

TS2'

A1

Ai

CA1 Aj

An

CA2 CA3 CAn......

CAs

Assert

Break
Repaired

Figure 4.3 – The test suite graph release 2.

4.2.4 Compare TSGs

After creating these two different TSGs, the next step is to compare them to repair test
cases. In Algorithm 2, it compares the TSGs to find the broken tests (line 2). For these
damaged tests, try to identify a substitute action from the candidate set as a replacement
of broken action to repair the breaking test case (from line 3 to line 20). During the process
of repairing the test case, WTSR gets the candidate action set (line 6). It then compares the
candidates for different releases to get the candidate set(line 7). And WTSR orders these
candidate actions (line 8) owing to that top-ranked action is more likely to be a substi-
tute. This is because elements close to each other are more similar [Heil et al., 2016]. For
instance, Action 4 is broken in Fig. 4.3, and we identify the substitute action CA3 from or-
dered candidates to repair the break test in Fig. 4.3.

In Algorithm 2, WTSR then tries to find the correct substitute to replace the broken
path on the right side of Fig. 4.3. For this purpose, we present a loop in approach WTSR
to try each candidate action to repair the broken test from line 9 to line 18 in Algorithm 2.
And play the new case (line 11) to judge whether this replacement is correct. If this new
case can run successfully (line 12), then it means the replacement is correct, and we will
push to store it in RepairedTestCase (line 13). If this test case has more than one breakage,
WTSR will redo the repair process again for other broken actions (line 16). The function of
RedoRepair is from line 4 to line 19. And Algorithm2 feedbacks to TSGs and repair results
in Algorithm 1. If we can not find the substitute action, there may be a mis-selection in

58 CHAPTER 4. AN APPROACH FOR DOM-BASED WEB TEST SUITE REPAIR

Algorithm 2 Algorithm to compare TSGs

Require: TSGR1 and TSGR2
Ensure: The Repaired Test Cases

1: function COMPARE(T SGR1,T SGR2)
2: Br okenTestR2set ← g etBr okenTest s(T SGR2)
3: for E ach(TestC asei) in Br okenTestR2set do
4: br eakLocati on ← g et (TestC asei .br eakLocati on)
5: for j ← 1 to br eakLocati on do
6: (R1C Aset ,R2C Aset) ← g etC A(acti oni)
7: C Aset ← compar eC A(R1C Aset ,R2C Aset)
8: OC Aset ←Or der (C Aset)
9: for E ach(C Ai) in OC Aset do

10: C andi TestC ase ← r epl ace(br eak Acti on,C Ai)
11: C andi Resul t ← pl ay(C andi TestC ase)
12: if C andi Resul t .r unSuccess then
13: Repai r edTestC ase.push(C andi TestC ase)
14: end if
15: if C andi Resul t .another Br eak then
16: RedoRepai r (C andi TestC ase)
17: end if
18: end for
19: end for
20: end for
21: end function

previous actions. For example, the locator of action Ai in Fig. 4.3 does not change, but the
corresponding element on the web page is different from R1. So action Ai is a mis-selection
resulting in the breakage of action A j . We use the same method to find a substitute for
action Ai to repair the broken test. Therefore, we make a loop to find a substitute for mis-
selection action to repair broken tests (from line 5 to line 19).

To rank these candidate actions, WTSR will calculate the distance between candidate
actions and broken action (from line 2 to line 4 in Algorithm 3). By comparing the selectors
(i.e. #id-left > DIV:nth-child(1) > A:nth-child(1)) between broken action and each candi-
date action, WTSR can get their distances. WTSR then sorts these candidates according
to their distances with broken action from near to far (line 6 in Algorithm 3). WTSR then
feedback these ordered candidates to TSGs (line 8 in Algorithm 2). WTSR tries to identify
correct action from sorted candidate actions that can repair the broken test case (line 10 in
Algorithm 2).

4.2. METHODOLOGY 59

[. Action Distance] Action Distance is the distance between two action nodes of a DOM
Tree.

di st ance(n1,n2) = Depth(n1)+Depth(n2)−2∗Depth(LC A) (4.1)

"n1" and "n2" are the two given action nodes. "root" is the root of a given DOM Tree.
"LCA" is Lowest Common Ancestor a of n1 and n2. Depth is a function to get the depth
of a node. Intuitively, the depth of a node is the number of edges from the node to the
tree’s root node. distance(n1, n2) is the function to calculate the distance between n1
and n2.

a. https://en.wikipedia.org/wiki/Lowest_common_ancestor

Algorithm 3 Algorithm to order candidate actions

Require: Candidate actions, Broken action
Ensure: The ordered candidate actions

function ORDERCANDIDATE(C andi d ate,Br oken Acti on)
2: for E ach(C Ai) in C Aset do

C Ai .di st ace ← di st ance(br eak.l ocator,C Ai .l ocator)
4: end for

for E ach(C Ai) in C Aset do
6: OC Aset .push(i denti f yShor testDi st ance(C Ai))

end for
8: end function

A0

A9A8

......A3

A14

A7 A11 A12

A2 A5A4 A6......

............

........................ A13

A1

root

Figure 4.4 – A distance example between two action nodes in a DOM tree of a webpage.

https://en.wikipedia.org/wiki/Lowest_common_ancestor

60 CHAPTER 4. AN APPROACH FOR DOM-BASED WEB TEST SUITE REPAIR

To calculate the distance between candidate action and the broken action, WTSR uses
a DOM tree of a web page. All the actions in Fig. 4.4, from A0 to A14 and other actions of
ellipsis, are on the same web page. One of them is broken action, and other actions are
candidates. We assume A7 is the broken action to explain how to calculate distance. WTSR
will calculate the distance between A7 and other candidates. For example in Fig. 4.4, dis-
tance(A7, A8) = Depth(A7) + Depth(A8) -2*Depth(A3) = 2 + 2 - 2*1 = 2. The result of dis-
tance(A7, A2) is 3. And the distance(A7, A9) is 4. WTSR then sorts these actions according
to the distances.

4.3 Evaluation

To evaluate the feasibility and efficiency of our approach to evolving the test suite, we
choose three research subjects and present a set of experiments with quantitative analysis.
We follow the guidelines by Wohlin [Wohlin et al., 2012] on designing and reporting empir-
ical studies in software engineering. Then we present experimental results and threats to
the validity of our approach.

To evaluate the effectiveness of our approach WTSR in this study, we try to answer three
research questions:

— RQ1: Is it possible to generate test suite graphs for two different releases of a web
application?

— RQ2: Is it possible to automatically and efficiently repair these test cases for web
applications by comparing their test suite graphs?

— RQ3: How effective is our test suite evolution method?

The experiment verification is based on three real web applications. For RQ1, we count
the actions and links in each TSG. We count the candidates after each action in TSG. And
we count broken tests in TSG. We also record the execution time that indicates how long
it takes to create TSG. For RQ2, we count the number of repaired test cases. For RQ3, we
record how long it takes to repair broken test cases.

4.3.1 E2E Test Subjects

Based on this research, we implemented a tool called WTSR 3. To apply our tool to E2E
tests of web applications, we have searched and selected web apps on SOURCEFORGE as
our subjects of this experiment. When we search the test subjects, we input the "web" as
keywords to search on SOURCEFORGE. Then, we got 65,074 programs as search results
(searched on April 18, 2019). However, there are too many programs to select by reviewing
each one of them. Therefore, we designed a filtering process and criteria to systematically

3. https://github.com/WebTestSuiteRepair/WebTestSuiteRepair

https://github.com/WebTestSuiteRepair/WebTestSuiteRepair

4.3. EVALUATION 61

select subjects that: (i) sort them by "most popular", (ii) filter from the most popular 100
samples, (iii) the program should be a web application, not a desktop or mobile applica-
tion, (iv) the program is a library, package or tool that is not a web application should be
excluded, (v) the program has at least 100 releases.

Table 4.1 – E2E Test Subjects of Web Applications

Web App Releases # Release 1 # Release 2

Joomla 228 3.6.0 (Jul 12, 2016) 3.7.0 (Apr 25, 2017)
Moodle 325 3.5.0 (May 16, 2018) 3.6.0 (Dec 2, 2018)
Dolibarr 112 5.0.0(Feb 27, 2017) 6.0.0 (Aug 30, 2017)

As shown in Table 4.1, after we filter the searching results, we choose three web apps
Joomla, Moodle, and Dolibarr. They are real subjects that can contribute to evaluating the
potential performance and efficiency of our framework in a real test environment. Joomla 4

is a Content Management System (web system) that enables people to build websites.
Moodle 5 is an open source learning platform (web platform). Dolibarr 6 is open-source
web software to manage an organization’s activity (contacts, suppliers, orders, etc.).

To obtain different releases of the web applications, we checked their releases under
each repository at Sourceforge and Github. They are sorted by release date, and we can get
all the releases for each target web application. The second column in Table 4.1 presents
the total release number of each web application (searched on April 18, 2019). From these
releases, we randomly select two different major releases for each web application. For
these two major releases, we assume that the lower is Release 1 (R1) and the higher is Re-
lease 2 (R2). In Table 4.1, the third column is Release 1 of each web app with its release
date. The fourth column is Release 2 of each web app with its release date. Therefore, R1
and R2 of each web application are arbitrary to avoid prejudice.

4.3.2 Process

After obtaining two releases of each web application, we try to design the experimental
process. We first committed to creating an original test suite (a set of test cases) for each
web application. Then we run these test cases on two releases of each web application to
build TSGs and use our approach to evolve the test suite by comparing TSGs. At last, we
compare WTSR with Water [Choudhary et al., 2011] to validate the efficiency and correct-
ness of our approach.

4. https://sourceforge.net/software/product/Joomla/
5. https://sourceforge.net/projects/moodle/
6. https://sourceforge.net/projects/dolibarr/

https://sourceforge.net/software/product/Joomla/
https://sourceforge.net/projects/moodle/
https://sourceforge.net/projects/dolibarr/

62 CHAPTER 4. AN APPROACH FOR DOM-BASED WEB TEST SUITE REPAIR

Write Original Test Suite: To simplify the writing of test cases, we used the previously
developed chrome plugin 7. It is an extension to record the actions into a test case. We use
this tool to create test cases for web applications. To create the original test suite, we design
criteria for creating test cases: (i) all the test cases start from the index web page of the web
application (e.g., g oto("ht t p://l ocalhost :8888/Jooml a_3_6_0")), (ii) test cases need to
cover the main functionalities and events of a web app, (iii) test cases cannot be duplicated
and should be unique.

Repair Test Suite: As mentioned in Section 4.2.2, TSG is a 5-tuple <S, U, A, L, C> ar-
chitecture. We run the original test suite on two releases of each web application to build
TSGs. During execution, WTSR can get the URL of each action and crawl candidates after
each action. And WTSR saves these two TSGs to MongoDB. WTSR then compares these
two TSGs by comparing their test cases. For damaged test cases, WTSR tries to fix them by
finding a substitute that can replace the broken action in the sorted candidates. After that,
we can get the evolved test suite for R2, including repaired test cases.

Check Efficiency: During the evolution of a test suite, WTSR records how much time
it takes to build TSGs and how long it needs to repair broken tests. And we analyze data
about test suite evolution, such as how many test cases are successfully repaired. We then
use the same subjects and same test suites to perform on Water [Choudhary et al., 2011],
comparing the repair time and repair number with our approach WTSR.

4.3.3 Results

After getting the results of this implementation, we then conduct a qualitative analysis
in this subsection.

Table 4.2 – Test Suite Graphs of Web Applications

WebApp Re Suite(B/T) URL(ge/up) Action(ge/up) Link(ge/up) CA Time(s)

Joomla
R1 96 50 214 205 94.8 986
R2 38/96 28/51 142/209 145/211 97.73 845

Moodle
R1 39 27 72 77 45.47 393
R2 36/39 5/29 10/73 7/80 35.86 201

Dolibarr
R1 47 57 130 131 29.58 423
R2 27/47 35/55 63/132 63/134 29.57 352

For RQ1: WTSR generates two TSGs for three real web apps, and the data of TSGs
are shown in Table 4.2. The first column presents the name of web applications, such as
Joomla, Moodle, and Dolibarr. The second column is the releases (Abbreviated as Re) of
each web app subject. From the third column to the seventh column is the <S, U, A, L, C>.

7. https://github.com/webautotester/wat/tree/master/chrome_plugin

https://github.com/webautotester/wat/tree/master/chrome_plugin

4.3. EVALUATION 63

The third column is the test suite, which contains the number of test cases, including the
number of broken test cases and the total number of test cases. B represents the number
of Broken test cases, and T represents the Total number of test cases in R2. For example,
a total of 96 test cases have been written for Joomla R1. However, when executed on R2,
38 test cases were broken. The fourth column is the number of URLs. The same URL has
been excluded, which means that the same URL can only be counted once. For example,
a total of 96 test cases for Joomla has 50 different URLs during performed on R1. However,
WTSR only generates (abbreviated as ge in Table 4.2) 28 URLs when performed on Joomla
R2 because some URLs can not be recorded due to broken cases. When comparing TSGs,
WTSR can explore more URLs by repairing broken tests. After the update (abbreviated as
up in Table 4.2), there are 51 URLs of Joomla R2. The fifth column is the number of actions,
and the sixth column is the number of links. The seventh column is the average number
of candidate actions (CA) after each action. And the last column is the total cost time to
generate TSG for each web app release. For instance, WTSR takes 986 seconds to create
TSG for Joomla R1, including the navigation time between web pages.

The numbers of breakage for each app are different. As shown in Table 4.2, Joomla has
38 broken test cases over a total of 96 tests and the corresponding breaking percentage
over the total number of tests is 39.58%. Moodle has a total of 39 test cases created from
R1, and there are 36 breaks when they are running on R2. The breaking radio of Moodle
is 92.31%. Dolibarr has 27 breaks over a total of 47 test cases and the percentage of test
breakage is 57.45%. The test case was interrupted due to changes in the web application
evolution, Hammoudi [Hammoudi et al., 2016b] has detailed the reasons for these breaks.
The breakages show that not all the test cases are still usable for the next release when web
applications evolve. This illustrates that test cases are fragile and not robust to overcome
the problem of web application evolution. So it is necessary for testers to find an approach
like our framework WTSR to overcome the evolution issue of test cases. Furthermore, the
time cost of generating TSG is related to the number of test cases. More precisely, the time
cost of generating TSG is related to the number of actions in test cases. As Table 4.2 depicts,
the time has a linear relationship with the number of total actions. The more actions it
runs, the more time it takes.

Table 4.3 – Web Application Test Suite Repair Results

WTSR Water
WebApp #(R/B) ReRatio Time(s) AT(s) #(R/B) ReRatio Time(s) AT(s)

Joomla 33/38 86.84% 1182 35.81 25/38 65.79% 1073 42.92
Moodle 28/36 77.78% 674 24.07 19/36 52.78% 721 37.95
Dolibarr 22/27 81.48% 896 40.73 16/27 59.26% 834 52.13

Total 83/101 82.17% 2752 33.16 60/101 59.41% 2628 43.80

For RQ2 and RQ3: After comparing test cases and candidates in TSGs, WTSR evolves

64 CHAPTER 4. AN APPROACH FOR DOM-BASED WEB TEST SUITE REPAIR

the test suite by repairing broken test cases. We count the number of repaired tests and
record the execution time for test suite repair. Table 4.3 indicates test suite repair results,
including the repaired number of test cases, execution time, and repair ratios. The first
column is the web app subjects. The second column shows the number (#) of test cases
repaired (R) by WTSR from the broken (B) tests. The repair ratio (ReRatio) of each web app
using WTSR is in the third column. The fourth column presents the total execution time
for repairing broken test cases. And the fifth column is the average time (AT) to repair one
test case. Table 4.3 also illustrates the running result of Water from column 6 to 9.

The repair time is related to the number of test cases that need to be repaired. When
the number of these cases is larger, the execution time will be longer. For the repair ratio
of each web app, the second column in Table 4.3 illustrated details. Joomla’s repair ratio
of broken tests is 86.84%. For web app Moodle, the ratio of repairing tests is 77.78%. And
Dolibarr’s percentage of test repair is 81.48%. For these three web subjects, WTSR has re-
paired 83 cases of a total of 101 broken tests and the corresponding repair ratio is 82.17%.
Water can repair 60 cases of 101 broken tests, which repair ratio is 59.41%. Water’s execu-
tion time is less than WTSR, but the difference is small. Therefore, building TSGs is useful
for the repair of test cases. Our approach can help testers repair broken tests effectively.

Table 4.4 – Number of Broken Actions of Each Test Case

WebApp one two three four five six

Joomla 28 8 2 0 0 0
Moodle 11 13 5 6 0 1
Dolibarr 18 5 1 1 1 1

Total 57 26 8 7 1 2

Each test case may be interrupted in multiple places. Table 4.4 shows the number of
broken actions in each test case. The second column means the number of test cases that
has one broken action. The third column is the number of test cases that have two broken
actions. Take Joomla as an example, 28 test cases have one interrupted action in each test
case. By observing the data in each row, the number of test cases is inversely proportional
to the number of interrupts. With the number of broken actions in each test case increase,
the number of test cases decreases.

Because there is sometimes more than one interruption in a test case, WTSR executes
in a loop to fix more broken actions in the test case. Fig. 4.5 presents the repair ratio of
the test case with a different number of interrupts. The horizontal axis means the number
of broken actions in each test case. And the vertical axis is the repair ratio. For example,
Joomla has 28 test cases with one interrupt, 27 of which have been successfully repaired,
and the repair ratio is 96.42% for the test case with one breakage. Fig. 4.5 indicates that the
repair ratio is inversely proportional to the number of broken actions. With the number of

4.3. EVALUATION 65

The number of broken cations in each test scrip

R
ep

ai
r

ra
tio

0.00%

25.00%

50.00%

75.00%

100.00%

one two three four five six

Joomla Moodle Dolibarr

Figure 4.5 – The repair ratio of test case with multiple breaks.

broken actions in each test case increases, the repair ratio will decrease. The test case with
more than five broken actions can not be repaired anymore.

4.3.4 Threats to Validity

In this subsection, we discuss threats to the validity of our framework that need to be
cautious about. One threat to validity is that the number of web applications and test cases
is limited in the experiment. However, it is enough to prove the effectiveness of our ap-
proach in experiments, which can apply to general web test repair. Moreover, the test exe-
cutions may be affected by the changes of external third-party components because some
libraries are called in approach WTSR. Furthermore, because of the robot restriction of the
website, the case may not be executed due to it that our approach will be forbidden when
requesting too many times on this website.

66 CHAPTER 4. AN APPROACH FOR DOM-BASED WEB TEST SUITE REPAIR

4.4 Conclusion

With the development of web applications, some damaged test cases need to be re-
paired. So test cases need to evolve according to the evolution of web applications. For
this reason, we proposed a novel framework WTSR that efficiently evolve test cases by re-
pairing broken tests. Our experiments show that: (1) the cost of time spent to build TSGs
is related to the number of actions, and they have a positive linear correlation; (2) build-
ing TSGs is useful for the evolution of test cases; (3) the key issue in the evolution of web
testing is to repair broken tests; (4) the more actions break in a test case, the harder it is to
repair this case; (5) WTSR is effective to repair test case for web apps. Therefore, WTSR can
evolve test cases corresponding to the evolution of web applications. We believe that our
approach can apply to general web test evolution, which is helpful to developers to repair
test cases.

In our future work, we plan to: (1) Collect user feedbacks on our technique to make our
approach better for web test repair; (2) Experiment our approach to the web applications
with bugs to study how do bugs affect the usefulness of this test repair approach; (3) Do
a case study of all the web test repair tools by comparing their efficiency; (4) Update our
intelligent algorithm to continuously improve the efficiency of test suites repair and try to
deal with value-caused breakages.

CHAPTER

5
Conclusion

Given the recent advances in the field of web engineering, test automation with test
cases has become the leading solution for testing web applications. Generally, many re-
searchers have proposed approaches to create web test cases for these solutions, and these
approaches are provided to many customers in the form of dedicated web test tools. How-
ever, some of the generated web test cases break due to the evolution of web applications.
Although it is possible to perform the repair of this broken test case manually, it can be a
tedious and error-prone task to complete. Some researchers have proposed methods to
repair the broken tests, but it is still a challenging task to complete. Effectively repairing
damaged test cases is not a simple task, especially when considering many different types
of breakages. In this concluding chapter, we summarize our contributions in web test cases
and present some interesting research perspectives.

5.1 Summary of contributions

In this thesis, we conducted a systematic mapping study on web test cases to find out
the gap between the required techniques and the existing methods that are introduced in
the literature. Furthermore, we propose a method to automatically repair broken test cases
by using a test model of the web application. We then provide the contribution details in
this thesis.

As presented in Chapter 3, our first contribution aims to systematically identify, ana-
lyze, and classify the publications and provide an overview of the trends in the field of web
test cases. We conducted a systematic mapping study to form knowledge views related to
web test cases by reviewing existing articles. We first define inclusion and exclusion crite-
ria to select articles from the publications. After selecting, our study includes 76 articles
published in the field of web test cases between 2000 and 2019. Second, we systematically

67

68 CHAPTER 5. CONCLUSION

develop and refine classification schemes to extract data from selected articles. Based on
these data, we can build the entire picture in the field of web test cases. Then, we derive
the observed trends, such as test case generation, test case repair, or test case dependency.

Our second contribution, presented in Chapter 4, aims at identifying and repair the
broken actions of web test cases from the end-points of view. To achieve this goal, it needs
a solution to quickly identify damaged actions and provide a way to find replacements
for these damaged cations in test cases. For this purpose, we present an approach called
WTSR to generate TestSuiteGraphs, which can be used to repair broken tests. Our WTSR
approach first creates TestSuiteGraph 1 by running test cases on web release 1. It then
runs these test cases on web release 2 to build TestSuiteGraph 2. By comparing these two
kinds of TestSuiteGraphs, WTSR identifies the substitutes of broken actions and repair the
broken test cases by replacing broken actions. This contribution has been published in the
International Conference on Web Engineering 2021 (Accepted).

5.2 Perspectives

As demonstrated throughout this dissertation, the web test case of test automation is
a complex domain of research, requiring expertise in several fields such as software engi-
neering, web engineering, web testing, and test automation. Also, the application of these
areas in an industrial environment brings its challenges, which leaves room for a lot of in-
teresting research axes worth investigating. We propose several perspectives of web test
cases in this section.

5.2.1 The dependence of web test cases

In Chapter 3, we conducted a systematic mapping study on web test cases to create
a knowledge view using end-to-end web testing, including the activities of web test cases
such as generation, maintenance, repair, and dependency. Based on this mapping study,
one of the interesting research axes is the dependence of web test cases. Now only a few
researchers try to detect test dependencies present in E2E web test suites. Due to the het-
erogeneous and multi-layered nature of modern web applications, E2E web test suites are
prone to test dependencies, which makes it difficult for developers to create isolated test
cases. And it is worth investigating using the test dependency technique to generate or
repair E2E web test cases.

5.2.2 Refining test repair strategies in WTSR using machine learning
techniques

In Chapter 4, we presented an approach to efficiently repair broken web test cases
based on test models, aiming to improve the efficiency of test automation as much as pos-

5.2. PERSPECTIVES 69

sible. Since most repair work is performed at a given frequency, it is possible to gradually
estimate the substitute of a broken action for a given test case, thereby improving the strat-
egy for identifying substitutes over time. Therefore, we envision an improved strategy to
identify the replacement of broken actions in the test case. Using machine-learning tech-
niques, a runtime profile can be established for each repair, which can be used to improve
repair accuracy.

APPENDIX

A
Résumé en Français

Les développeurs s’appuient de plus en plus sur les tests End To End (E2E) pour tester
les applications Web qu’ils développent et pour vérifier qu’ils n’ont pas de bogue du point
de vue de l’utilisateur final. Un test E2E simule les actions effectuées par l’utilisateur avec
son navigateur et vérifie que l’application Web renvoie les sorties attendues. Il consid-
ère qu’une application Web est une boîte noire, et ne sait que quelles sont les actions de
l’utilisateur et quelles sont leurs sorties attendues. Toutefois, une fois que certaines évolu-
tions sont effectuées sur une application Web, les actions de l’utilisateur peuvent changer
(déplacer le bouton vers un autre emplacement, ajouter un nouveau bouton ou supprimer
un bouton). En conséquence, le test E2E doit évoluer avec l’évolution des applications
Web, telles que la réparation du test cassé, ajouter le nouveau test, et supprimer le test
obsolète. Mais il faut beaucoup de temps pour faire évoluer les tests E2E, en particulier
pour les grandes applications web. En tant que tel, nous présentons une approche, nom-
mée WebTestSuiteRepair (WTSR), pour aider les développeurs qui font face à cette situa-
tion. Dans cette thèse, WTSR vise à comparer les scripts de test graphique pour réparer les
actions cassées, d’identifier de nouvelles actions, et de supprimer l’action obsolète, con-
tribue donc à faire évoluer efficacement les tests E2E pour les applications Web automa-
tiquement.

Le Chapitre 1 présente d’abord brièvement le contexte, nous présentons ensuite les
problèmes et les défis liés à l’évolution des tests E2E dans le Chapitre 1 qui couvre
l’introduction. Dans ce même Chapitre 1, trois questions de recherche sont identifiées
et deux contributions principales sont résumées, notamment une étude cartographique
systématique des tests d’applications Web et l’approche WTSR.

Dans cette thèse, nous visons à aider les développeurs à utiliser la réparation des cas
de test endommagés des applications web. Nous essayons d’introduire les trois questions
de recherche. RQ1: Y a-t-il une abstraction qui rassemble les cas de test pour les versions

71

72 APPENDIX A. RÉSUMÉ EN FRANÇAIS

n et n + 1, et qui peut être utilisée pour réparer les cas de test cassés? Pour répondre à cette
question de recherche, nous exécutons les cas de test sur deux versions d’une application
web. Plus spécifiquement, il exécute respectivement des cas de test originaux sur la ver-
sion web n et la version web n + k pour générer des graphiques de suite de tests (modèles
abstraits) pour ces deux versions.

Après avoir généré des modèles abstraits de suite de tests, il aurait la deuxième question
RQ2: Est-il possible de réparer automatiquement et efficacement ces suites de tests pour
les applications Web en comparant leurs modèles de suites de tests? Pour résoudre ce
problème, nous proposons une nouvelle approche, Web Test Suite Repair (WTSR), pour
réparer automatiquement les cas de test Web défectueux. En comparant ces deux modèles
abstraits, il met à jour le modèle de la suite de tests de la version n + k et répare les tests
cassés en même temps.

WTSR est développé pour l’évolution des suites de tests, nous voulons donc savoir s’il
est efficace ou non. Ce questionnement nous amène à la troisième question de recherche
que nous explorons dans cette thèse: RQ3: Quelle est l’efficacité de l’approche proposée
pour l’évolution de la suite? Pour répondre à cette question, nous choisissons trois appli-
cations Web réelles pour une vérification empirique. Nous utilisons WTSR pour créer des
modèles de suite de tests et pour réparer automatiquement les cas de test Web défectueux.
Ensuite, nous calculons le nombre de cas de test réparés et leur temps d’exécution.

À la fin du Chapitre 1, nous résumons également les grandes lignes du reste de la
thèse. Le reste de ce document est organisé comme suit. Nous présentons d’abord dans
le Chapitre 2 le contexte dans le domaine des cas de test Web. Au Chapitre 3, nous effec-
tuons une étude cartographique systématique sur des cas de test Web afin d’identifier les
lacunes dans ce domaine pour les recherches futures. Ensuite, dans le Chapitre 4, nous
présentons une approche pour identifier automatiquement les actions candidates pour
les actions cassées afin de réparer les scripts de test des applications Web. Enfin, nous
concluons au Chapitre 5 en résumant les contributions et les principales perspectives.

Le Chapitre 2 de cette thèse s’intitule Contexte et contient dix pages. Il couvre le con-
texte requis pour renforcer la compréhension des défis abordés par cette thèse dans le
domaine des tests Web. Nous présentons principalement Application Web et Evolution et
les techniques existantes de test d’application Web et de génération de cas de test. Plus
précisément, ce chapitre, en deux parties principales, donne un aperçu des techniques de
test Web. La première partie illustre un exemple d’évolution logicielle qui conduit à la rup-
ture de tests. Il nous donne l’opportunité de présenter différentes techniques de test telles
que les tests de bout en bout, en boîte noire et de régression. La deuxième partie se con-
centre sur la génération de cas de test en introduisant diverses techniques pour générer
des cas de test Web telles que les techniques de capture-rejeu, d’exploration et de mod-
èle. Nous vous expliquons de manière claire ces différentes techniques. Enfin, le concept
de rupture de test est introduit avec une distinction claire entre rupture de test et erreur. Il
peut représenter une bonne base pour les chercheurs travaillant sur les tests d’applications
Web.

73

Dans ce Chapitre 2, nous présentons les concepts de test Web qui sont nécessaires pour
comprendre le reste de cette thèse. Nous décrivons quelques définitions de base pour
les applications Web et les tests E2E. Nous fournissons des informations générales sur les
techniques de test Web. Nous expliquons comment générer automatiquement des cas de
test pour les applications Web. Il met ensuite en évidence comment une évolution effec-
tuée sur une application web peut provoquer l’échec d’un test E2E, en raison d’une action
cassée.

Notre première contribution est présentée au Chapitre 3. Nous effectuons une étude
cartographique systématique pour évaluer la littérature existante afin de trouver des la-
cunes dans ce domaine. Nous décrivons d’abord l’objectif de l’étude de cartographie sys-
tématique et les questions de recherche. Nous présentons la méthodologie de recherche
sur la façon dont nous réalisons cette étude cartographique. Nous fournissons ensuite le
schéma de classification que nous avons développé pour la suite de tests Web et le pro-
cessus utilisé pour la construire. Nous présentons également les résultats de synthèse
des données extraites des études sélectionnées et répondons aux questions de recherche.
Nous discutons des résultats de l’étude cartographique et de leurs implications pour les
chercheurs et les praticiens.

Tout au long du cycle d’évolution des tests Web, la suite de tests comporte de nom-
breux aspects différents, tels que la création, la prévention de la casse, la réparation, la
dépendance et les métriques. Pour aider les chercheurs et les testeurs, nous identifions
et résumons systématiquement la littérature existante de la suite de tests Web dans ce
chapitre. L’objectif principal de cette étude cartographique systématique est d’analyser
les études primaires sur Web Test Suite et de fournir une vue d’ensemble de la suite de
tests Web. Il vise à étudier une compréhension globale de la suite de tests Web du point
de vue des testeurs et des chercheurs dans le contexte de l’évolution des applications Web.
Cela contribue à résumer l’ensemble des suites de tests Web dans le domaine des connais-
sances en développement logiciel. De plus, il recueille également des efforts directs pour la
recherche future de suites de tests Web au cours de l’évolution du Web, pour identifier les
problèmes existants des suites de tests Web et pour déterminer la tendance de recherche
des suites de tests Web. Nous introduisons ensuite les questions de recherche associées en
suivant les lignes directrices publiées dans la littérature. Cela comprend deux questions de
recherche principales et 13 questions de recherche secondaires. Ensuite, nous concevons
la méthodologie pour réaliser cette étude cartographique.

Dans le Chapitre 3, nous avons conçu le processus de cette méthodologie pour
rechercher les articles dans des bases de données électroniques et filtrer les études dont
nous avions besoin. Pour garantir que les résultats de la sélection des études sont im-
partiaux et objectifs, nous avons conçu les critères de sélection des études et le proces-
sus de sélection des études. Après la recherche d’études et la sélection d’études, nous
obtenons les études pertinentes, qui sont les données de base de l’effet boule de neige.
Nous utilisons ces études sélectionnées comme entrée et trouvons leurs références. Nous
menons ensuite le processus de sélection des études pour filtrer les références par méta-

74 APPENDIX A. RÉSUMÉ EN FRANÇAIS

données, résumé et texte intégral. Si nous obtenons des études sélectionnées à partir des
références, nous le faisons à nouveau en appliquant les études nouvellement sélection-
nées en entrée. Ce processus itératif sera interrompu jusqu’à ce qu’il n’y ait plus d’articles
sélectionnés. Ensuite, des boules de neige ont été présentées pour compléter les articles
au cas où certaines études seraient manquantes lors de la recherche d’études. Après avoir
obtenu toutes les études, nous avons extrait les données de ces études sélectionnées et
synthétisé les données pour cette étude cartographique. Toutes les données utilisées sont
présentées et discutées. Enfin, nous discutons des résultats et des conclusions de cette
étude cartographique.

Notre deuxième contribution est présentée au Chapitre 4. Nous proposons une ap-
proche nommée WebTestSuiteRepair, qui comparera les TSG pour identifier les substituts
aux actions interrompues, et donc que les développeurs peuvent utiliser cette approche
pour réparer automatiquement les tests cassés. En détail, nous proposons une approche
pour générer des graphiques de suites de tests d’applications web, ce qui permet de ré-
parer les cas de test web. Nous présentons un algorithme pour réparer automatiquement
la suite de tests DOM en comparant les TSG des applications web. Nous implémentons
l’outil WTSR pour les testeurs ou les développeurs afin de réparer les cas de test web dé-
fectueux. Nous effectuons une évaluation empirique de notre approche pour réparer les
tests cassés pour trois applications web réelles.

Dans le Chapitre 4, nous présentons un aperçu de WTSR. Nous supposons que les tes-
teurs capturent les cas de test initiaux de la version 1 d’une application Web. Tout d’abord,
WTSR essaie d’exécuter les tests E2E initiaux sur la version 1 pour créer le TSG. Par souci
de clarté, le graphique de la version 1 est nommé TestSuiteGraphRelease1 (TSGR1). Le
graphique de la version 2 est nommé TestSuiteGraphRelease2 (TSGR2). TSGR1 et TSGR2
sont tous deux des TSG, correspondant à des versions différentes. Deuxièmement, WTSR
exécute ces cas de test initiaux sur la version 2 pour construire le TSGR2. Il crée le même
type de graphe à 5 tuples via le même processus de TSGR1. Au cours de ce processus, il ex-
plorera les données des éléments HTML à partir de la page Web après chaque action dans
le scénario de test pour créer les sélecteurs. Après avoir créé des sélecteurs CSS efficaces
et robustes pour les éléments HTML, WTSR peut générer différents types d’actions. Ces
actions candidates explorées font partie du TSG. Troisièmement, WTSR compare ces deux
TSG pour réparer la suite de tests. Il répare les cas cassés en utilisant un substitut pour
remplacer l’action cassée dans la version 2. Il définit les cas de test qui ne sont plus utiles
comme état de suppression en trouvant les actions supprimées dans le TSGR2. En même
temps, le TSGR2 est mis à jour pendant le processus de réparation.

Pour évaluer la faisabilité et l’efficacité de notre approche pour faire évoluer la suite de
tests, nous choisissons trois sujets de recherche et présentons un ensemble d’expériences
avec analyse quantitative. Nous choisissons trois applications Web Joomla, Moodle et
Dolibarr. Ce sont de véritables applications web qui peuvent contribuer à évaluer les per-
formances potentielles et l’efficacité de notre framework dans un environnement de test
réel. Joomla est un système de gestion de contenu (système Web) qui permet aux util-

75

isateurs de créer des sites Web. Moodle est une plateforme d’apprentissage open source
(plateforme web). Dolibarr est un logiciel web open source pour gérer l’activité d’une or-
ganisation (contacts, fournisseurs, commandes, etc.). Dans l’ensemble, il apparaît que le
WTSR a de bonnes performances en termes de taux de réparation et de coût en temps.
Ces résultats montrent notre approche pratique et efficace. Nous montrons également les
bénéfices des tests cassés identifiés, notamment avec un taux de réparation de 77% à 86%.
Enfin, nous discutons de certaines menaces à la validité liées à l’approche proposée et
présentons honnêtement ses limites.

Enfin, le Chapitre 5 conclut cette thèse en résumant nos contributions, et en présentant
plusieurs perspectives possibles pour élargir notre travail. Nous résumons les travaux de la
thèse en rappelant la démarche suivie, les contributions obtenues, et en donnant quelques
pistes de travaux futurs. Nous concluons la thèse en discutant de la manière dont les dif-
férentes contributions ont répondu aux défis initiaux. Nous discutons également d’un en-
semble de perspectives qui ouvrent de nombreuses pistes de recherche intéressantes.

Bibliography

Agrawal, H., Horgan, J. R., Krauser, E. W., and London, S. A. (1993). Incremental regression
testing. In 1993 Conference on Software Maintenance, pages 348–357. IEEE. Cited page
2.

Ahmad, A., Leifler, O., and Sandahl, K. (2019). Empirical analysis of factors and their effect
on test flakiness-practitioners’ perceptions. arXiv preprint arXiv:1906.00673. Cited page
2.

Alegroth, E., Nass, M., and Olsson, H. H. (2013). Jautomate: A tool for system-and
acceptance-test automation. In 2013 IEEE Sixth International Conference on Software
Testing, Verification and Validation, pages 439–446. IEEE. Cited page 3.

Andrews, A., Azghandi, S., and Pilskalns, O. (2010a). Regression testing of web applications
using fsmweb. In Proceedings of the International Conference on Software Engineering
and Applications. Cited page 14.

Andrews, A. A., Offutt, J., and Alexander, R. T. (2005). Testing web applications by modeling
with fsms. Software & Systems Modeling, 4(3):326–345. Cited pages 16 and 45.

Andrews, A. A., Offutt, J., Dyreson, C., Mallery, C. J., Jerath, K., and Alexander, R. (2010b).
Scalability issues with using fsmweb to test web applications. Information and Software
Technology, 52(1):52–66. Cited page 14.

Artzi, S., Dolby, J., Jensen, S. H., Møller, A., and Tip, F. (2011). A framework for automated
testing of javascript web applications. In Proceedings of the 33rd International Confer-
ence on Software Engineering, pages 571–580. Cited pages 33 and 42.

77

78 BIBLIOGRAPHY

Azizi, M. and Do, H. (2018). A collaborative filtering recommender system for test case
prioritization in web applications. In Proceedings of the 33rd Annual ACM Symposium
on Applied Computing, pages 1560–1567. Cited page 37.

Bajaj, K., Pattabiraman, K., and Mesbah, A. (2015). Synthesizing web element locators (t). In
2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE),
pages 331–341. IEEE. Cited pages 4 and 5.

Benedikt, M., Freire, J., and Godefroid, P. (2002). Veriweb: Automatically testing dynamic
web sites. In In Proceedings of 11th International World Wide Web Conference (WW
W’2002. Citeseer. Not cited.

Berner, S., Weber, R., and Keller, R. K. (2005). Observations and lessons learned from auto-
mated testing. In Proceedings of the 27th international conference on Software engineer-
ing, pages 571–579. Cited page 2.

Berners-Lee, T., Cailliau, R., Groff, J.-F., and Pollermann, B. (1992). World-wide web: the
information universe. Internet Research. Cited page 2.

Biagiola, M., Ricca, F., and Tonella, P. (2017). Search based path and input data genera-
tion for web application testing. In International Symposium on Search Based Software
Engineering, pages 18–32. Springer. Cited pages 15 and 38.

Biagiola, M., Stocco, A., Mesbah, A., Ricca, F., and Tonella, P. (2019a). Web test dependency
detection. In Proceedings of the 2019 27th ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Foundations of Software Engineering, pages
154–164. Cited pages 37 and 38.

Biagiola, M., Stocco, A., Ricca, F., and Tonella, P. (2019b). Diversity-based web test gener-
ation. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering, pages
142–153. Cited pages 34, 37, and 39.

Binder, R. V. (1996). Testing object-oriented software: a survey. Software Testing, Verifica-
tion and Reliability, 6(3-4):125–252. Cited page 2.

Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M., and Khalil, M. (2007). Lessons
from applying the systematic literature review process within the software engineering
domain. Journal of systems and software, 80(4):571–583. Cited page 25.

Bruns, A., Kornstadt, A., and Wichmann, D. (2009). Web application tests with selenium.
IEEE software, 26(5):88–91. Cited pages 14 and 15.

BIBLIOGRAPHY 79

Chang, T.-H., Yeh, T., and Miller, R. C. (2010). Gui testing using computer vision. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 1535–
1544. Cited page 3.

Chapman, P. and Evans, D. (2011). Automated black-box detection of side-channel vulner-
abilities in web applications. In Proceedings of the 18th ACM conference on Computer
and communications security, pages 263–274. Cited page 13.

Chen, L., Ali Babar, M., and Zhang, H. (2010). Towards an evidence-based understanding
of electronic data sources. Cited page 25.

Chen, T., Zhang, X.-s., Guo, S.-z., Li, H.-y., and Wu, Y. (2013). State of the art: Dynamic
symbolic execution for automated test generation. Future Generation Computer Systems,
29(7):1758–1773. Cited pages 15 and 16.

Chen, Y.-F., Rosenblum, D. S., and Vo, K.-P. (1994). Testtube: A system for selective regres-
sion testing. In Proceedings of 16th International Conference on Software Engineering,
pages 211–220. IEEE. Cited page 2.

Choudhary, S. R., Zhao, D., Versee, H., and Orso, A. (2011). Water: Web application test
repair. In Proceedings of the First International Workshop on End-to-End Test Script En-
gineering, pages 24–29. Cited pages 3, 35, 37, 45, 61, and 62.

Christophe, L., Stevens, R., De Roover, C., and De Meuter, W. (2014). Prevalence and main-
tenance of automated functional tests for web applications. In 2014 IEEE International
Conference on Software Maintenance and Evolution, pages 141–150. IEEE. Cited pages 3
and 43.

Cornelissen, B., Zaidman, A., Van Deursen, A., Moonen, L., and Koschke, R. (2009). A sys-
tematic survey of program comprehension through dynamic analysis. IEEE Transactions
on Software Engineering, 35(5):684–702. Cited page 30.

Daniel, B., Gvero, T., and Marinov, D. (2010). On test repair using symbolic execution. In
Proceedings of the 19th international symposium on Software testing and analysis, pages
207–218. Not cited.

Dobolyi, K., Soechting, E., and Weimer, W. (2011). Automating regression testing using
web-based application similarities. International journal on software tools for technol-
ogy transfer, 13(2):111–129. Not cited.

Elbaum, S., Karre, S., and Rothermel, G. (2003). Improving web application testing with
user session data. In 25th International Conference on Software Engineering, 2003. Pro-
ceedings., pages 49–59. IEEE. Not cited.

80 BIBLIOGRAPHY

Fewster, M. and Graham, D. (1999). Software test automation. Addison-Wesley Reading.
Cited page 2.

Gao, Z., Chen, Z., Zou, Y., and Memon, A. M. (2015a). Sitar: Gui test script repair. Ieee
transactions on software engineering, 42(2):170–186. Cited page 52.

Gao, Z., Fang, C., and Memon, A. M. (2015b). Pushing the limits on automation in gui
regression testing. In 2015 IEEE 26th international symposium on software reliability
engineering (ISSRE), pages 565–575. IEEE. Cited pages 2 and 14.

Garousi, V., Mesbah, A., Betin-Can, A., and Mirshokraie, S. (2013). A systematic mapping
study of web application testing. Information and Software Technology, 55(8):1374–1396.
Cited page 10.

Grechanik, M., Xie, Q., and Fu, C. (2009). Maintaining and evolving gui-directed test
scripts. In 2009 IEEE 31st International Conference on Software Engineering, pages 408–
418. IEEE. Cited page 3.

Grilo, A. M., Paiva, A. C., and Faria, J. P. (2010). Reverse engineering of gui models for
testing. In 5th Iberian Conference on Information Systems and Technologies, pages 1–6.
IEEE. Cited page 16.

Guarnieri, M., Tsankov, P., Buchs, T., Torabi Dashti, M., and Basin, D. (2017). Test execution
checkpointing for web applications. In Proceedings of the 26th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, pages 203–214. ACM. Not cited.

Halfond, W. G. and Orso, A. (2007). Improving test case generation for web applications us-
ing automated interface discovery. In Proceedings of the the 6th joint meeting of the Eu-
ropean software engineering conference and the ACM SIGSOFT symposium on The foun-
dations of software engineering, pages 145–154. Cited page 13.

Hammoudi, M., Rothermel, G., and Stocco, A. (2016a). Waterfall: An incremental approach
for repairing record-replay tests of web applications. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pages 751–
762. Cited pages 3 and 35.

Hammoudi, M., Rothermel, G., and Tonella, P. (2016b). Why do record/replay tests of web
applications break? In 2016 IEEE International Conference on Software Testing, Verifica-
tion and Validation (ICST), pages 180–190. IEEE. Cited pages 3, 5, 17, 18, and 63.

Hanna, M., Aboutabl, A. E., and Mostafa, M.-S. M. (2018). Automated software testing
framework for web applications. International Journal of Applied Engineering Research,
13(11):9758–9767. Cited page 35.

BIBLIOGRAPHY 81

Heil, S., Bakaev, M., and Gaedke, M. (2016). Measuring and ensuring similarity of user
interfaces: The impact of web layout. In International Conference on Web Information
Systems Engineering. Cited page 57.

Imtiaz, J., Sherin, S., Khan, M. U., and Iqbal, M. Z. (2019). A systematic literature review of
test breakage prevention and repair techniques. Information and Software Technology,
113:1–19. Cited page 18.

Jacob, P. M. and Prasanna, M. (2016). A comparative analysis on black box testing strategies.
In 2016 International Conference on Information Science (ICIS), pages 1–6. IEEE. Not
cited.

Jan, S. R., Shah, S. T. U., Johar, Z. U., Shah, Y., and Khan, F. (2016). An innovative approach to
investigate various software testing techniques and strategies. International Journal of
Scientific Research in Science, Engineering and Technology (IJSRSET), Print ISSN, pages
2395–1990. Cited page 13.

Jin, W., Orso, A., and Xie, T. (2010). Automated behavioral regression testing. In 2010 Third
international conference on software testing, verification and validation, pages 137–146.
IEEE. Cited page 14.

KAKARAPARTHY, D. (2017). Overview and analysis of automated testing tools: Ranorex,
test complete, selenium. Cited page 14.

Keele, S. (2007). Guidelines for performing systematic literature reviews in software engi-
neering. In Technical report, Ver. 2.3 EBSE Technical Report. EBSE. sn. Cited pages 22, 24,
25, 26, and 29.

Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J., and Linkman, S. (2009).
Systematic literature reviews in software engineering–a systematic literature review. In-
formation and software technology, 51(1):7–15. Cited pages 22 and 24.

Kung, D. C., Liu, C.-H., and Hsia, P. (2000). An object-oriented web test model for testing
web applications. In Proceedings First Asia-Pacific Conference on Quality Software, pages
111–120. IEEE. Cited page 16.

Lemos, O. A. L., Silveira, F. F., Ferrari, F. C., and Garcia, A. (2018). The impact of software
testing education on code reliability: An empirical assessment. Journal of Systems and
Software, 137:497–511. Not cited.

Leotta, M., Clerissi, D., Ricca, F., and Tonella, P. (2013). Capture-replay vs. programmable
web testing: An empirical assessment during test case evolution. In 2013 20th Working
Conference on Reverse Engineering (WCRE), pages 272–281. IEEE. Cited page 14.

82 BIBLIOGRAPHY

Leotta, M., Clerissi, D., Ricca, F., and Tonella, P. (2014a). Visual vs. dom-based web locators:
An empirical study. In International Conference on Web Engineering, pages 322–340.
Springer. Cited page 5.

Leotta, M., Clerissi, D., Ricca, F., and Tonella, P. (2016a). Approaches and tools for auto-
mated end-to-end web testing. In Advances in Computers, volume 101, pages 193–237.
Elsevier. Cited pages 3, 11, and 17.

Leotta, M., Stocco, A., Ricca, F., and Tonella, P. (2014b). Reducing web test cases aging
by means of robust xpath locators. In 2014 IEEE International Symposium on Software
Reliability Engineering Workshops, pages 449–454. IEEE. Cited pages 3, 4, and 35.

Leotta, M., Stocco, A., Ricca, F., and Tonella, P. (2015a). Automated generation of visual web
tests from dom-based web tests. In Proceedings of the 30th Annual ACM Symposium on
Applied Computing, pages 775–782. Cited page 39.

Leotta, M., Stocco, A., Ricca, F., and Tonella, P. (2015b). Using multi-locators to increase
the robustness of web test cases. In 2015 IEEE 8th International Conference on Software
Testing, Verification and Validation (ICST), pages 1–10. IEEE. Cited pages 3, 4, 35, and
38.

Leotta, M., Stocco, A., Ricca, F., and Tonella, P. (2016b). Robula+: An algorithm for gener-
ating robust xpath locators for web testing. Journal of Software: Evolution and Process,
28(3):177–204. Cited page 3.

Li, X., Chang, N., Wang, Y., Huang, H., Pei, Y., Wang, L., and Li, X. (2017). Atom: Automatic
maintenance of gui test scripts for evolving mobile applications. In 2017 IEEE Interna-
tional Conference on Software Testing, Verification and Validation (ICST), pages 161–171.
IEEE. Not cited.

Li, Y.-F., Das, P. K., and Dowe, D. L. (2014). Two decades of web application testing—a
survey of recent advances. Information Systems, 43:20–54. Cited page 2.

Maciel, D., Paiva, A. C., and da Silva, A. R. (2019). From requirements to automated accep-
tance tests of interactive apps: An integrated model-based testing approach. Cited page
16.

Mariani, L., Pezzè, M., Riganelli, O., and Santoro, M. (2014). Link: exploiting the web of data
to generate test inputs. In Proceedings of the 2014 International Symposium on Software
Testing and Analysis, pages 373–384. Cited page 39.

McMinn, P. (2004). Search-based software test data generation: a survey. Software testing,
Verification and reliability, 14(2):105–156. Cited page 15.

BIBLIOGRAPHY 83

Memon, A., Banerjee, I., and Nagarajan, A. (2003). Gui ripping: Reverse engineering of
graphical user interfaces for testing. In 10th Working Conference on Reverse Engineering,
2003. WCRE 2003. Proceedings., pages 260–269. Citeseer. Cited pages 13 and 52.

Memon, A. M. (2007). An event-flow model of gui-based applications for testing. Software
testing, verification and reliability, 17(3):137–157. Cited page 16.

Memon, A. M. (2008). Automatically repairing event sequence-based gui test suites for re-
gression testing. ACM Transactions on Software Engineering and Methodology (TOSEM),
18(2):1–36. Not cited.

Memon, A. M. and Soffa, M. L. (2003). Regression testing of guis. ACM SIGSOFT Software
Engineering Notes, 28(5):118–127. Cited page 3.

Memon, A. M., Soffa, M. L., and Pollack, M. E. (2001). Coverage criteria for gui testing.
In Proceedings of the 8th European software engineering conference held jointly with 9th
ACM SIGSOFT international symposium on Foundations of software engineering, pages
256–267. Cited page 16.

Mesbah, A., Bozdag, E., and Van Deursen, A. (2008). Crawling ajax by inferring user inter-
face state changes. In 2008 Eighth International Conference on Web Engineering, pages
122–134. IEEE. Cited page 15.

Mesbah, A. and Prasad, M. R. (2011). Automated cross-browser compatibility testing. In
Proceedings of the 33rd International Conference on Software Engineering, pages 561–
570. Cited page 15.

Mesbah, A. and Van Deursen, A. (2009). Invariant-based automatic testing of ajax user
interfaces. In 2009 IEEE 31st International Conference on Software Engineering, pages
210–220. IEEE. Cited page 15.

Mesbah, A., Van Deursen, A., and Lenselink, S. (2012). Crawling ajax-based web applica-
tions through dynamic analysis of user interface state changes. ACM Transactions on the
Web (TWEB), 6(1):1–30. Cited pages 15 and 16.

Mesbah, A., Van Deursen, A., and Roest, D. (2011). Invariant-based automatic testing
of modern web applications. IEEE Transactions on Software Engineering, 38(1):35–53.
Cited page 16.

Meszaros, G. (2003). Agile regression testing using record & playback. In Companion of the
18th annual ACM SIGPLAN conference on Object-oriented programming, systems, lan-
guages, and applications, pages 353–360. Not cited.

84 BIBLIOGRAPHY

Miao, Y. and Yang, X. (2010). An fsm based gui test automation model. In 2010 11th In-
ternational Conference on Control Automation Robotics & Vision, pages 120–126. IEEE.
Cited page 16.

Mirshokraie, S. and Mesbah, A. (2012). Jsart: Javascript assertion-based regression testing.
In International Conference on Web Engineering, pages 238–252. Springer. Cited page 15.

Mittal, S. and Mattela, V. (2019). A survey of techniques for improving efficiency of mobile
web browsing. Concurrency and Computation: Practice and Experience, 31(15):e5126.
Not cited.

Moreira, R. M., Paiva, A. C., Nabuco, M., and Memon, A. (2017). Pattern-based gui testing:
Bridging the gap between design and quality assurance. Software Testing, Verification
and Reliability, 27(3):e1629. Cited page 14.

Myers, G. J., Sandler, C., and Badgett, T. (2011). The art of software testing. John Wiley &
Sons. Cited page 2.

Nassiri, I., Masoudi-Nejad, A., Jalili, M., and Moeini, A. (2013). Normalized similarity index:
An adjusted index to prioritize article citations. Journal of Informetrics, 7(1):91–98. Cited
page 44.

Nguyen, B. N., Robbins, B., Banerjee, I., and Memon, A. (2014). Guitar: an innovative tool
for automated testing of gui-driven software. Automated software engineering, 21(1):65–
105. Cited page 3.

Nidhra, S. and Dondeti, J. (2012). Black box and white box testing techniques-a literature
review. International Journal of Embedded Systems and Applications (IJESA), 2(2):29–50.
Cited page 13.

Orso, A. and Xie, T. (2008). Bert: Behavioral regression testing. In Proceedings of the 2008
international workshop on dynamic analysis: held in conjunction with the ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA 2008), pages 36–42.
Cited page 14.

Panichella, A., Kifetew, F. M., and Tonella, P. (2017). Automated test case generation as a
many-objective optimisation problem with dynamic selection of the targets. IEEE Trans-
actions on Software Engineering, 44(2):122–158. Not cited.

Petersen, K., Feldt, R., Mujtaba, S., and Mattsson, M. (2008). Systematic mapping studies
in software engineering. In 12th International Conference on Evaluation and Assessment
in Software Engineering (EASE) 12, pages 1–10. Cited pages 22, 23, 24, and 30.

BIBLIOGRAPHY 85

Petersen, K., Vakkalanka, S., and Kuzniarz, L. (2015). Guidelines for conducting systematic
mapping studies in software engineering: An update. Information and Software Tech-
nology, 64:1–18. Cited pages 22, 24, 25, 26, 29, and 30.

Pressman, R. S. (2005). Software engineering: a practitioner’s approach. Palgrave macmil-
lan. Cited page 13.

Ricca, F., Leotta, M., and Stocco, A. (2019). Three open problems in the context of e2e web
testing and a vision: Neonate. In Advances in Computers, volume 113, pages 89–133.
Elsevier. Cited pages 2 and 3.

Ricca, F. and Tonella, P. (2001). Analysis and testing of web applications. In Proceedings
of the 23rd International Conference on Software Engineering. ICSE 2001, pages 25–34.
IEEE. Cited pages 2, 11, and 45.

Rothermel, G., Untch, R. H., Chu, C., and Harrold, M. J. (2001). Prioritizing test cases for
regression testing. IEEE Transactions on software engineering, 27(10):929–948. Cited
page 3.

Silva, C. E. and Campos, J. C. (2013). Combining static and dynamic analysis for the reverse
engineering of web applications. In Proceedings of the 5th ACM SIGCHI symposium on
Engineering interactive computing systems, pages 107–112. Cited page 15.

Sprenkle, S., Sampath, S., Gibson, E., Pollock, L., and Souter, A. (2005). An empirical com-
parison of test suite reduction techniques for user-session-based testing of web applica-
tions. In 21st IEEE International Conference on Software Maintenance (ICSM’05), pages
587–596. IEEE. Not cited.

Stocco, A., Leotta, M., Ricca, F., and Tonella, P. (2016). Clustering-aided page object gener-
ation for web testing. In International Conference on Web Engineering, pages 132–151.
Springer. Cited pages 2 and 35.

Stocco, A., Leotta, M., Ricca, F., and Tonella, P. (2017). Apogen: automatic page object
generator for web testing. Software Quality Journal, 25(3):1007–1039. Cited pages 33, 36,
and 37.

Stocco, A., Yandrapally, R., and Mesbah, A. (2018). Visual web test repair. In Proceedings
of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 503–514. Cited pages 3
and 35.

Tanida, H., Prasad, M. R., Rajan, S. P., and Fujita, M. (2011). Automated system testing of
dynamic web applications. In International Conference on Software and Data Technolo-
gies, pages 181–196. Springer. Cited page 15.

86 BIBLIOGRAPHY

Tonella, P., Ricca, F., and Marchetto, A. (2014). Recent advances in web testing. In Advances
in Computers, volume 93, pages 1–51. Elsevier. Cited pages 2 and 10.

Wassermann, G., Yu, D., Chander, A., Dhurjati, D., Inamura, H., and Su, Z. (2008). Dynamic
test input generation for web applications. In Proceedings of the 2008 international sym-
posium on Software testing and analysis, pages 249–260. Cited page 35.

Wohlin, C. (2014). Guidelines for snowballing in systematic literature studies and a repli-
cation in software engineering. In Proceedings of the 18th international conference on
evaluation and assessment in software engineering, page 38. ACM. Cited page 29.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén, A. (2012). Ex-
perimentation in software engineering. Springer Science & Business Media. Cited page
60.

Wong, W. E., Horgan, J. R., London, S., and Agrawal, H. (1997). A study of effective re-
gression testing in practice. In PROCEEDINGS The Eighth International Symposium On
Software Reliability Engineering, pages 264–274. IEEE. Cited page 3.

Yakovlev, I. V. (2007). Web 2.0: Is it evolutionary or revolutionary? IT Professional Magazine,
9(6):43. Not cited.

Yandrapally, R., Thummalapenta, S., Sinha, S., and Chandra, S. (2014). Robust test au-
tomation using contextual clues. In Proceedings of the 2014 International Symposium on
Software Testing and Analysis, pages 304–314. Cited page 3.

Yoo, S. and Harman, M. (2012). Regression testing minimization, selection and prioritiza-
tion: a survey. Software Testing, Verification and Reliability, 22(2):67–120. Cited pages 2
and 14.

Zeller, A. (2017). Search-based testing and system testing: a marriage in heaven. In 2017
IEEE/ACM 10th International Workshop on Search-Based Software Testing (SBST), pages
49–50. IEEE. Cited page 15.

List of Figures

1.1 The Problem of Web Evolution . 4
1.2 The Example of Test Breakage . 6

2.1 Web application Joomla, its evolution from Release 3.6.0 to Release 3.7.0 10
2.2 The web page of Joomla to add a new user. 12
2.3 The test script of web application Joomla to add a new user. 13
2.4 Web application Joomla, its evolution of function from R1 to R2 17
2.5 The test case in two releases of Joomla. 18

3.1 The process of this systematic mapping study. 24
3.2 The process of snowballing. 28
3.3 Type of contribution. 33
3.4 Type of research facet. 34
3.5 Web test case activity. 35
3.6 Techniques used. 36
3.7 Location in test case. 37
3.8 Automated level. 38
3.9 The number of WAUT in each article. 41
3.10 The LOC of WAUTs. 43
3.11 The development languages of WAUT. 44
3.12 The types of WAUT. 45
3.13 The publication trend per year. 46
3.14 Citations of each article vs. publication year. 47
3.15 Normalized citations of each article vs. publication year. 48

87

88 List of Figures

4.1 The architecture of web test suite repair. 53
4.2 The test suite graph release 1. 56
4.3 The test suite graph release 2. 57
4.4 A distance example between two action nodes in a DOM tree of a webpage. . . 59
4.5 The repair ratio of test case with multiple breaks. 65

List of Tables

3.1 Search electronic databases. 25
3.2 Study selection process. 27
3.3 Data collection and classification scheme for research questions 29
3.4 Tools presented in studies . 39
3.5 WAUT presented in at least three papers, ranked by amount of papers. 42
3.6 Venues ranked by the number of papers . 46

4.1 E2E Test Subjects of Web Applications . 61
4.2 Test Suite Graphs of Web Applications . 62
4.3 Web Application Test Suite Repair Results . 63
4.4 Number of Broken Actions of Each Test Case . 64

89

List of Tables 91

	Introduction
	Context
	Problem Statement
	Contributions
	A systematic mapping study of web test case
	An approach for DOM-based web test suite repair

	Thesis Outline

	Background
	Web Application and Evolution
	Web Testing Techniques
	E2E Web Testing
	Black-Box testing
	Regression testing

	Test case generation
	Test Breakage
	Summary

	A systematic mapping study of web test case
	Introduction
	Motivation
	Goal and research questions

	Methodology
	Study search
	Study selection
	Snowballing
	Data Synthesis and Extraction Method

	Systematic Mapping Results
	 RQ 1.1 - Type of contribution
	 RQ 1.2 - Type of research facet
	 RQ 1.3 - Web test case activity
	 RQ 1.4 - Techniques used
	 RQ 1.5 - Location in test case
	 RQ 1.6 - Automated level
	 RQ 1.7 - Provided tools
	 RQ 1.8 - Web Applications Under Test
	 RQ 2.1 - Publication trend per year
	 RQ 2.2 - Citation analysis of publications
	 RQ 2.3 - Top related venues

	Discussions
	 Findings
	 Threats to validation

	Conclusion

	An approach for DOM-based web test suite repair
	Introduction
	Methodology
	Overview
	Create Test Suite Graph Release 1
	Generate Test Suite Graph Release 2
	Compare TSGs

	Evaluation
	E2E Test Subjects
	Process
	Results
	Threats to Validity

	Conclusion

	Conclusion
	Summary of contributions
	Perspectives
	The dependence of web test cases
	Refining test repair strategies in WTSR using machine learning techniques

	Résumé en Français
	List of Figures
	List of Tables

