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Abstract

This thesis consists of three chapters including ten sections, which focus on beta-expansions,

related digit frequencies, generalized Thue-Morse sequences and their relations.

Chapter 1 is devoted to greedy beta-expansions and related digit frequencies. In Section
1.1, we study the distributions and numbers of full and non-full words in greedy beta-
expansions. In Sections 1.2 and 1.3, by studying Bernoulli-type measures and variational
formulae respectively, we obtain some exact formulae for the Hausdorff dimension of some

digit frequency sets in greedy beta-expansions.

Chapter 2 is devoted to general beta-expansions (not only the greedy ones) and related
digit frequencies. In Section 2.1, we systematically study expansions in multiple bases,
which are natural generalizations of usual expansions in one base. From Section 2.2 we
return to expansions in one base and consider digit frequencies. In Section 2.2, we give three
small results on the digit frequencies of general beta-expansions. In Section 2.3, we study
Bernoulli-type measures in a framework similar to Section 1.2, and as an application we

obtain the Hausdorff dimension of some frequency subsets of the set of univoque sequences.

Chapter 3 is devoted to some generalizations of the famous Thue-Morse sequence, in-
cluding their relations to beta-expansions and digit frequencies. In Section 3.1, we show
that a class of generalized shifted Thue-Morse sequences is strongly related to a bifurcation
phenomenon on the digit frequencies of unique beta-expansions. In Section 3.2, we study
expansions of generalized Thue-Morse numbers, which are defined by further generaliza-
tions of the generalized shifted Thue-Morse sequences given in Section 3.1. Finally we
consider another class of generalizations of the Thue-Morse sequence in Sections 3.3 and

3.4, and respectively we study related infinite products and generalized Koch curves.

Keywords

beta-expansions, digit frequencies, generalized Thue-Morse sequences.



Résumé

Cette thése se compose de trois chapitres comprenant dix sections, qui se concen-
trent sur les béta-expansions, les fréquences de chiffres associées, les suites de Thue-Morse

généralisées et leurs relations.

Le chapitre 1 est consacré aux béta-expansions gloutonnes et aux fréquences de chiffres
associées. Dans la section 1.1, nous étudions les distributions et les nombres de mots pleins
et non-pleins dans les béta-expansions gloutonnes. Dans les sections 1.2 et 1.3, en étudiant
respectivement les mesures de Bernoulli-type et les formules variationnelles, nous obtenons
des formules exactes pour la dimension de Hausdorff de certains ensembles de fréquences

de chiffres en béta-expansions gloutonnes.

Le chapitre 2 est consacré aux béta-expansions générales (pas seulement les plus glou-
tonnes) et aux fréquences de chiffres associées. Dans la section 2.1, nous étudions systé-
matiquement les expansions dans plusieurs bases, qui sont des généralisations naturelles
d’expansions habituelles dans une base. A partir de la section 2.2 nous revenons aux ex-
pansions dans une base et considérons les fréquences de chiffres. Dans la section 2.2, nous
donnons trois petits résultats sur les fréquences de chiffres des béta-expansions générales.
Dans la section 2.3, nous étudions les mesures de Bernoulli-type dans un cadre similaire a
la section 1.2, et comme application nous obtenons la dimension de Hausdorff de certains

sous-ensembles de fréquences de ’ensemble des séquences univoques.

Le chapitre 3 est consacré a certaines généralisations de la célébre suite de Thue-Morse,
y compris leurs relations avec les béta-expansions et les fréquences de chiffres. Dans la
section 3.1, nous montrons qu’une classe de suites de Thue-Morse décalées généralisées
est fortement liée & un phénomeéne de bifurcation sur les fréquences de chiffres des béta-
expansions uniques. Dans la section 3.2, nous étudions les expansions des nombres de
Thue-Morse généralisés, qui sont définis par d’autres généralisations des suites de Thue-
Morse décalées généralisées données dans la section 3.1. Enfin, nous considérons une autre
classe de généralisations de la suite de Thue-Morse dans les sections 3.3 et 3.4, et nous

étudions respectivement les produits infinis associés et les courbes de Koch généralisées.

Mots-clés

béta-expansions, fréquences de chiffres, suites de Thue-Morse généralisées.
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Introduction

To represent real numbers, the most common way is to use expansions in integer bases.
For example, expansions in base 10 are used in our daily lives and expansions in base 2 are
used in computer systems. As a natural generalization, expansions in non-integer bases
were introduced by Rényi [102] in 1957, and then attracted a lot of attention until now.
See for examples [5, 9, 29, 35, 66, 69, 91, 99, 104, 105].

Let N :={1,2,3,---} be the set of positive integers and R be the set of real numbers.
Given m € N, a base 8 € (1,m + 1] and = € R, in general, a sequence w = (wp)p>1 €

{0,1,--- ,m} is called a B-expansion of x if
2w
n
n=1

It is known that z has a S-expansion if and only if z € [0, 3%¢] (see for examples [23, 24,
25, 102)).

An interesting phenomenon is that an & may have many ([-expansions. For examples,
[61, Theorem 3| shows that if § € (1, 1+2\/g)7 every x € (0, ﬁ) has a continuum of
different [-expansions, and [107, Theorem 1| shows that if 5 € (1,2), Lebesgue almost

every x € [0, ﬁ] has a continuum of different S-expansions. For more on the cardinality of
[-expansions, see for examples [26, 62, 70]. We study the most common beta-expansions,
which are called greedy beta-expansions in Chapter 1 and then return to general beta-
expansions from Chapter 2.

Chapter 1 consists of three sections which are devoted to greedy beta-expansions and
related digit frequencies.

In Section 1.1 we completely characterize the structures of admissible words and then
study the distributions and numbers of full and non-full words (cylinders). Concretely,
on the one hand, the precise lengths of all the maximal runs of full and non-full words
among admissible words with same order are obtained, which generalizes the result on the
distribution of full cylinders given by Bugeaud and Wang [37] in 2014, and on the other
hand, delighted by the result on the total number of admissible words given by Rényi [102]
in 1957, for any base 8 > 1, we prove that the number of full words with length n is

comparable to 8", and this conclusion is also true for the non-full words if £ is not an

11
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integer.

Section 1.2 is a joint work with Mr. Bing Li and Mr. Tuomas Sahlsten at the end
of my master at Université Paris-Est Marne-la-Vallée (UPEM) under the guidance of Mr.
Lingmin Liao. Most of the content has already appeared in my master thesis at UPEM. I
still present it in this thesis for completeness and also for the convenience of the reader. We
study Bernoulli-type measures related to greedy beta-expansions, study their invariance
as dynamical properties and find out the unique equivalent ergodic probability measure
with respect to the S-transformation when the greedy [-expansion of 1 is finite. Then
we study the modified lower local dimension of measures related to S-expansions. As an
application, we prove that the Hausdorff dimension [64] of three kinds of frequency sets
are equal and obtain the exact formula when the greedy g-expansion of 1 is 10™10%° for
any non-negative integer m. This generalizes the relative well known result for 8 equal to
the golden ratio (v/5 + 1)/2.

In Section 1.3, we first give a proof of the useful folklore: for any 5 > 1, the Hausdorff
dimension of an arbitrary set in the shift space Sg is equal to the Hausdorff dimension of
its natural projection in [0,1]. It has been used in some former papers without explicit
proof (see for example [114, Section 5]). We will prove it by applying a covering property
given by Bugeaud and Wang [37] on the distribution of full cylinders. Then we clarify that
for calculating the Hausdorff dimension of frequency sets using variational formulae, one
only needs to focus on the Markov measures of explicit order when the greedy S-expansion
of 1 is finite. Concretely, it suffices to optimize a function with finitely many variables
under some restrictions. As an application, we obtain an exact formula for the Hausdorff
dimension of frequency sets for an important class of 5’s, which are called pseudo-golden
ratios (also called multinacci numbers).

From Chapter 2, which consists of three sections, we return to general beta-expansions,
not only the greedy ones, and we also study related digit frequencies.

Usually we expand real numbers in one given base. In Section 2.1, we begin to system-
atically study expansions in multiple given bases in a reasonable way, which is a general-
ization in the sense that if all the bases are taken to be the same, we return to the classical
expansions in one base. In particular, we focus on greedy, quasi-greedy, lazy, quasi-lazy and
unique expansions in multiple bases, and give lexicographic characterizations for greedy,
lazy and unique expansions. These recover some relative well known results on expansions
in one base including Parry’s criterion [99]. Note that Neunhduserer began the study of
expansions in two bases in his recent paper [98|, where he focused on the cardinality of the
expansions.

In Section 2.2, we return to expansions in one base and study their digit frequencies.
Consider the alphabet {0,1,--- ,m} and 8 € (1,m + 1) \ N. First we show that Lebesgue
almost every = € [0, %] has a f-expansion of a given frequency if and only if Lebesgue

almost every x € |0, %] has infinitely many B-expansions of the same given frequency.
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Then delighted by [25, Theorem 4.1| and [24, Theorem 2.1|, which are given by Baker and
Kong, on the one hand we prove that Lebesgue almost every x € [0, %] has infinitely many
balanced [-expansions, where an infinite sequence on the finite alphabet {0,1,--- ,m} is
called balanced if the frequency of the digit k is equal to the frequency of the digit m — k
for all k£ € {0,1,---,m}, and on the other hand we consider variable frequency and prove
that for every pseudo-golden ratio 8 € (1,2), there exists a constant ¢ = ¢(3) > 0 such
that for any p € [% — c,% + ¢|, Lebesgue almost every z € [0, ﬁ] has infinitely many
B-expansions on {0, 1} with frequency of 0’s equal to p.

In Section 2.3, for integer m > 3, we study the dynamical system (A(m),am) where
Al = {w € {0,1} : w does not contain 0™ or 1™} and oy, is the shift map on {0, 1}"
restricted to A, study the Bernoulli-type measures on A and find out the unique
equivalent o ,-invariant ergodic probability measure in a framework similar to Section 1.2.
As an application, we obtain the Hausdorff dimension of the set of univoque sequences,
the Hausdorff dimension of the set of sequences in which the lengths of consecutive 0’s and
consecutive 1’s are bounded, and the Hausdorff dimension of their frequency subsets. Here
we call ' := {w € {0,1}N : @ < oFw < w for all k > 1} the set of univoque sequences
since Erdds, Joo and Komornik [61] proved in 1990 that a sequence a = (v )n>1 € {0, 1}
is the unique expansion of 1 in some base 8 € (1,2) if and only if o € T.

Chapter 3 consists of four sections, which are devoted to some generalizations of the
famous Thue-Morse sequence, including their relations to beta-expansions, related infinite
products and generalized Koch curves.

Let (tn)n>0 be the well known classical Thue-Morse sequence
0110 1001 1001 0110 1001 0110 0110 1001 --- .

Since the work of Thue [115, 116] and Morse [97], this sequence has been widely studied
[4, 12, 15, 51, 56, 71, 96]. There are several equivalent definitions of this sequence. One is

to define the shifted Thue-Morse sequence (t,,),>1 as follows:
—+ —+ —+
tl = 1, tz = tl s t37f4 = tltz s t5t6t7t8 = t1t2t3t4 s

where 0 := 1, 1 := 0 and w := wy -+ - wp_1(w, + 1) for any finite word w = wy - - - wy,.
The unique q € (1,2) such that 3 7%, # = 1 is the well known Komornik-Loreti constant.

In Section 3.1, according to the above definition, we define generalized shifted Thue-
Mores sequences on alphabets with more than two digits, and we show that corresponding
generalized Komornik-Loreti constants are critical values of £’s, above which the digit
frequencies in unique S-expansions are much more flexible and opposite below them.

In Section 3.2, we generalize the concepts of generalized shifted Thue-Morse sequences
and generalized Komornik-Loreti constants in Section 3.1 a bit more, and then we introduce

generalized Thue-Morse numbers of the form mg(6) :== >~ | g—z where 0 = (05)n>1 is a
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generalized shifted Thue-Morse sequence and § € (1,00). This is a natural generalization
of the classical Thue-Morse number » > é—:@ We study when 6 will be the unique, greedy,
lazy, quasi-greedy and quasi-lazy -expansions of wg(#). In particular, we deduce that the
classical shifted Thue-Morse sequence (t,)n>1 is the unique S-expansion of y > é—z if and
only if it is the greedy expansion, if and only if it is the lazy expansion, if and only if it is
the quasi-greedy expansion, if and only if it is the quasi-lazy expansion, and if and only if
B is no less than the classical Komornik-Loreti constant.

One of the other equivalent definitions of the classical Thue-Morse sequence (t,)n>0 is

that it is the unique fixed point of the morphism

001
1—10
beginning with ¢y := 0. A natural generalization is: given m € N and 6y,--- ,0,, € {0,1},
we define the generalized Thue-Morse sequence (6y,),>0 to be the unique fixed point of the
morphism
00010,
1+—160;---6,,

beginning with 6y := 0, where 0 := 1 and 1 := 0.

In Section 3.3, for ad hoc rational functions R, we evaluate infinite products of the
forms H(R(n))(_l)en and JJ(R(n))%. This generalizes relevant results given by Allouche,
Riasat and Shallit [13] in 2019 on infinite products related to the classical Thue-Morse
sequence (tp)n>0 of the forms [T(R(n)V™ and [[(R(n))tr.

Since the 1982-1983 work of Coquet and Dekking, it is known that the classical Thue-
Morse sequence is strongly related to the famous Koch curve. As a natural generalization,
in Section 3.4, we use the above mentioned generalized Thue-Morse sequences to define
generalized Koch curves, and we prove that generalized Koch curves are the attractors of
corresponding iterated function systems. For special cases, the open set condition holds,
and then we obtain the Hausdorff, packing and box dimension of corresponding generalized

Koch curves. This recovers the result on the classical Koch curve.



Chapter 1

Greedy beta-expansions and related

digit frequencies

In this chapter we focus on greedy beta-expansions. For simplification, we use the term
“beta/[-expansion” instead of “greedy beta/B-expansion” throughout this chapter.

In Section 1.1, we study distributions and numbers of full and non-full words in
beta-expansions. Then in Section 1.2 we study Bernoulli-type measures related to beta-
expansions and apply them to obtain the Hausdorff dimension of some frequency sets.
Finally we use variational formulae to study the Hausdorff dimension of frequency sets for

more (’s in Section 1.3 to end this chapter.

1.1 Distributions and numbers of full and non-full words

Let 8 > 1 be a real number. Denoted by Eg the set of all admissible words with length
n € N. The projection to [0,1) of any word in Eg is a cylinder of order n (also say a
fundamental interval), which is a left-closed and right-open interval in [0,1). The lengths
of cylinders are irregular for § ¢ N, meanwhile, they are all regular for 8 € N, namely, the
length of any cylinder of order n equals 57".

A cylinder with order n is said to be full if it is mapped by the n-th iteration of -
transformation T} onto [0, 1) (see Definition 1.1.6 below, [44] or [120]) or equivalently its
length is maximal, that is, equal to =™ (see Proposition 1.1.8 below, [37] or [66]). An
admissible word is said to be full if the corresponding cylinder is full. Full words and
cylinders have very good properties. For example, Walters [120] proved that for any given
N > 0, [0,1) is covered by the full cylinders of order at least N. Fan and Wang [66]
obtained some good properties of full cylinders (see Propositions 1.1.8 and 1.1.9 below).
Bugeaud and Wang [37| studied the distribution of full cylinders, showed that for any
integer n > 1, among every (n + 1) consecutive cylinders of order n, there exists at least

one full cylinder, and used it to prove a modified mass distribution principle to estimate

15
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the Hausdorff dimension of sets defined in terms of S-expansions. Zheng, Wu and Li proved
that the extremely irregular set is residual with the help of the full cylinders (for details
see [129]).

In this section, we are interested in the distributions and numbers of full and non-full
words in X%, i.e., the distributions and numbers of full and non-full cylinders of order n
in [0,1). More precisely, we consider the lexicographically ordered sequence of all order n
admissible words, count the numbers of successive full words and successive non-full words,
and estimate the total numbers of full words and non-full words separately. Or, in what
amounts to the same thing, we look at all the fundamental intervals of order n, arranged
in increasing order along the unit interval, ask about numbers of successive intervals where
Tg is onto and where it is not onto, and estimate the total number of each kind of these
intervals.

Firstly Theorem 1.1.14 gives a unique and clear form of any admissible word, and
Corollaries 1.1.15 and 1.1.16 provide some convenient ways to check whether an admissible
word is full or not. Secondly in Definition 1.1.19 we introduce the concept of maximal run,
which is a new way to study the distributions of full and non-full words and cylinders,
and then Theorem 1.1.22 describes all the precise lengths of the maximal runs of full
words, which indicates that such lengths rely on the nonzero terms in the S-expansion
of 1. Consequently, the maximal and minimal lengths of the maximal runs of full words
are given in Corollaries 1.1.27 and 1.1.28 respectively. Thirdly by introducing a function
7g in Definition 1.1.30, a similar concept of numeration system and greedy algorithm, we
obtain a convenient way to count the consecutive non-full words in Lemma 1.1.34, which
can easily give the maximal length of the runs of non-full words in Corollary 1.1.36 and
generalize the result of Bugeaud and Wang mentioned above (see Remark 1.1.39). Finally,
all the precise lengths of the maximal runs of non-full words are stated in Theorem 1.1.40,
which depends on the positions of nonzero terms in the S-expansion of 1. Furthermore, the
minimal lengths of the maximal runs of non-full words are obtained in Corollary 1.1.41.
Moveover, the numbers of all full words and all non-full words are separately estimated in
Theorem 1.1.43.

This section is organized as follows. In Subsection 1.1.1, we introduce some basic
notation and preliminary work needed. In Subsection 1.1.2, we study the structures of
admissible words, including full words and non-full words. In Subsections 1.1.3 and 1.1.4,
we obtain all the precise lengths of the maximal runs of full words and non-full words

respectively. Finally Subsection 1.1.5 is devoted to the numbers of full and non-full words.

1.1.1 Notation and preliminaries

For any = € R, we use |z] and [x] to denote the greatest integer no larger than = and the
smallest integer no less than x respectively throughout this thesis.
Let 8 > 1. Define the alphabet Ag := {0,1,---,[5] — 1} and let Ag be the set of
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infinite sequences on Ag. Define the §-transformation Tpg : [0,1) — [0,1) by
Ts(x) := fx — |Bz| for z €]0,1). (1.1)
Given z € [0,1), for all n € N, let
ulw,8) = T3\ (@)) € As.

Then

The sequence e(x, 5) = ei(x, f)ea(z, B) - - -en(x, B) - -+ is called the greedy B-erpansion
of x. For simplification, we call it S-expansion throughout this chapter. The system
([0,1),Tp) is a B-dynamical system.

Define

Tp(1):=B— 8] and eu(1,0):=[BT5 '(1)] forallneN.

Then the number 1 can also be expanded into a series, denoted by

1= = En(laﬁ)'
2

The sequence (1, 3) := e1(1, 8)ea(1,8) - -en(1,B) -+ is called the (greedy) [-expansion
of 1. For simplicity, we use €169 ---€p, - -+ to denote the digits of (1, ) throughout this

section.

If there are infinitely many n with &, # 0, we say that (1, 3) is infinite. Otherwise,
there exists m € N such that e, # 0 with ¢; = 0 for all j > m, (1, §) is said to be finite,
and we say that (1, ) is finite with length m.

Let £*(1, 8) := (1, B)es(1,B8) - - -k (1,3) - - - be the quasi-greedy [-expansion of 1 de-
fined by

£(1,8) if (1, B) is infinite;
(1 em—1(em — 1))> if e(1, ) is finite with length m.

* Pp—
€ (17/8> T {
Here for a finite word w = wyws - - - wy,, we use w™ to denote the periodic sequence
wle"'wnwle"'wnwle"‘wn e,

Throughout this section, we use €j¢5---¢7 --- to denote the digits of £*(1, 5) no matter

whether (1, 3) is finite or not. Moreover, for any finite word or infinite sequence w, we

always use w, to denote its nth term.



18 CHAPTER 1

Let < and =< be the lexicographic order in .Ag. More precisely, w < w’ means that
there exists k € N such that w; = w] for all 1 < i < k and wy, < wj,. Besides, w < v’
means that w < w’ or w = w’. Similarly, the definitions of < and < are extended to the

finite words of the same length by identifying a word w with the sequence w0>.

For any w € A, we use wl;, to denote the prefix of w with length &, i.e., wyws - - - wy,
where k € N. For any w € A%, we use |w| := n to denote the length of w and w), to denote
the prefix of w with length k& where 1 < k < |w].

Let o : Ag — Ag be the shift map defined by
o(wiwy--+) == wowsz--- forw € Ag (1.2)
and 7g : Ag — R be the natural projection map defined by

ﬁg(w)::%—i—%—f--“-i-%—i—”- foerAg. (1.3)

Definition 1.1.1 (Admissibility).

(1) A word w € Aj for some n € N is called admissible, if there exists x € [0,1) such
that €;(x, B) = w; for alli € {1,--- ,n}. We define

(0.9}
5= {w € Aj 1 w is admissible} and Xj = U 5.

n=1

(2) A sequence w € Ag is called admissible, if there exists x € [0,1) such that e;(x, ) =
w; for all i € N. We define

Yg:={we .Ag s w is admissible}.

Obviously, if w € X3, then w|, € 25 and wy1wWp42 -+ - € Xg for any n € N. We prove

the following basic property for self-contained.

Lemma 1.1.2. For any n € N, €*(1, 8)[,, € X and is maximal in 3 with lexicographic

order.

Proof. (1) Prove that for all k € N we have 6’*@7“ + 6%—32 +---<1.

U . EZ E;; - €k o k
@ If e(1, B) is infinite, then 51—&— Bff—l—---— 6“—1— B§2+---—Tﬂ1<1.
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@ If e(1, B) is finite with length m € N, let p > 0 such that pm < k < (p+1)m — 1. Then

* *
€kt1 |, Ck42

4 s g
B B2
 Ch—pmtl ek, 1 e} ek, et er
_gk—pm—l-l L €m _ mpk—pm
- B + + 5(p+1)m—k - Tﬁ <L

(2) Prove that for all n € N we have *(1, 8)|n € ¥.
Let z := %1 —i—---—i—;—’*; € [0,1). It suffices to prove g;(z, 5) = ¢} for alli € {1,--- ,n}. First

we have

51('%'76) = \_/ij = L€1 + ﬁ tooet 5nri1J =&
where the last equality follows from
€5 e g5 €} by (1)
24y <2424 <1 1.4
p gt =g B2 (14
Then we have
use (1.4) « e} er «
eo(x, B) = | fTpx] le5 + ES 4+ 4 5n7i2j = €3,
where the last equality follows from
= I S S B
g pgn=2 B B -
.-+ Repeating the above process we get ¢;(z, ) = ¢} for all i € {1,--- ,n}.

(3) Prove that for all n € N, €*(1, 8)|, is maximal in X7%.

(By contradiction) Assume that there exists wy - - - wy, € 3 such that €] ---¢), < wy - - wy,.
Then there exists k € {1,--- ,n} such that ] ---&;_| = wy---wp_; and €, + 1 < wy. By
wy -+ wy € X, there exists € [0,1) such that e(z, B)], = w1 -+ w,. Then

wy wy _ €] €1 e+l Mer £
e R > 2o
B Bk =B pr=t = Bk B p?
which contradicts z € [0, 1). O

The following criterion for admissible sequence is due to Parry.

Lemma 1.1.3 (|99]). Let 8 > 1 and w € Ag. Then w is admissible (that is, w € ¥g) if
and only if
ok (w) < e*(1,8) for all k> 0.

The next lemma can be found in [86, Theorem 2.1].
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Lemma 1.1.4. Let w be a sequence of non-negative integers. Then w is the B-expansion
of 1 for some B > 1 if and only if oFw < w for all k > 1. Moreover, such B satisfies
wp < ﬁ <wp +1.

Definition 1.1.5 (Cylinder). Let n € N and w € ¥j. We call
] = {v € Sa: o =w, v = wn)
the cylinder of order n in X3 generated by w and
I(w) :=ma([w]) = {z €[0,1) : e1(z, B) = wr, - ,en(z, B) = wy }

the cylinder of order n in [0,1) generated by w. For any x € [0,1), the cylinder of order n

containing x 1s denoted by

In(x) = I(El(I’/B)E;?(‘rv ﬁ) o '€n($,6)).

Definition 1.1.6 (Full and non-full words and cylinders). Let w € Y5 for some n € N.
If Ty I(w) = [0,1), we call the word w and the cylinders [w], I(w) full. Otherwise, we call

them non-full.

Lemma 1.1.7 (|91], [66], [37]). Suppose the word wy ---w, is admissible and w, # 0.

Then w1 - - wp_qw), s full for any w], < wy,.

1.1.2 The structures of admissible words, full words and non-full words

The following proposition is a criterion of full words. The equivalence of (1), (2) and (4)
can be found in [66]. We give some proofs for self-contained and more characterizations
(3), (5), (6) are given here.

Proposition 1.1.8. Let w € 23 for some n € N. Then the following are equivalent.
(1) w is full, i.e., Tg[(w) =1[0,1);
@) |I(w)] = 6
(3) The sequence ww' is admissible for any w' € Xg;
(4) The word ww' is admissible for any w' € ¥%;

(5) The word we} - - - €} is admissible for any k > 1;
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Proof. (1) = (2) Since w is full, T§I(w) = [0,1). Noting that

wy +wn+T§$ ‘ € I(w)
r=—4+- -+ = or any x w),
B propr
we can get
w1 Wy, W1 Wy, 1
Iwy=[—++—,—++—+—).
- [ﬁ pro B pr 5”)

Therefore |I(w)| = 7.
(2) = (3) Let x, 2’ € [0, 1) such that e(z, ) = w0 and e(2’, 8) = w’. Then
n wi |, wh

p=2 40 and o= 22y
s pr B B '

Let

B ¥ wy wy, - wj wh
V=Tt = g Tt g T g T

We need to prove ww' € ¥g. It suffices to prove y € [0,1) and €(y, 8) = ww’. In fact,

since I(w) is a left-closed and right-open interval with G+ -+ G as its left endpoint
and |I(w)] = 87", we get

I(w)z[“g+---+1;Z,7”;1+~--+Z;‘+Bln)=[a:,x+ﬁ1n).

Soy € I(w) C[0,1) and €1(y, 8) = w1, ,en(y, B) = wy. That is

s T

w w Y Y

y=— bl P = A
p g g g

which implies T3y = 2’. Then for any k > 1,

entk(y, 8) = [BTEHy) = BTS2/ = er(a, ) = w.

Thus £(y, 8) = ww’. Therefore ww’ € Xg.
(3) = ()
(4) = (5) follows from e} - - -} € ¥ for any k > 1.

(5) = (1) We need to prove TgI(w) = [0,1). It suffices to show TZI(w) D [0,1) since the
reverse inclusion is obvious. Indeed, let z € [0,1) and u = wy - - - wper (z, Bea(x, B) - - -

At first, we prove u € Y. By Lemma 1.1.3, it suffices to prove o*(u) < ¢*(1, 8) for any
k > 0 below.

@ If k£ > n, we have

is obvious.

by Lemma 1.1.3

Uk(u) = Ek*n+1($7/8)5k*n+2(x7/8) = O'kin(g(x76)) = E*(l, ﬁ)
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@ If0<k<n-—1, we have

oF(u) = wpy1 - - wper(z, Bea(z, B) - --

Since e(z, B) < €*(1, B), there exists m € N such that e1(x, 5) =7, ,em-1(z, ) =€,

m—1

and em (z, ) < €, Combining wej --- &5, € X and Lemma 1.1.3, we get
P (u) < Wyt - wpet -5, 0° = o (wel - £5,0%) < (1, ).

Therefore u € ¥g.
Let y € [0,1) such that e(y, 8) = u. Then y € I(w). Since

ex(Thy, B) = BT 'y) = enir(y, B) = ex(w,B) for any k €N,

we get © = T3y € TFI(w).
(1) & (6) follows from the facts that the function e(-, 5) : [0,1) — X3 is bijective and the
commutativity e(Tsz, 8) = o(e(z, §)). O

Proposition 1.1.9. Let w,w’ € ¥} be full and |w| =n € N. Then
(1) the word ww' is full;
(2) the word o*(w) := wyy1 - wy is full for any k with 1 <k <n ;
(3) the digit w, < |B] if B ¢ N. In particular, w, =0 if 1 < 5 < 2.

Proof. (1) A proof has been given in [37]. We give another proof here to be self-contained.
Since w' is full, by Proposition 1.1.8 (5) we get w'e} - - - €}, € X for any m > 1. Then
ww'el ek, € 25 by the fullness of w and Proposition 1.1.8 (4), which implies that
ww' is full by Proposition 1.1.8 (5).

(2) Since w is full , by Proposition 1.1.8 (5) we get wy ---wpej---&5, € Xf, and also
Wht1 - WpEY -~ €5, € Z’g for any m > 1. Therefore wy1 - - - wy, is full by Proposition
1.1.8 (5).

(3) Since w is full, by (2) we know that ¢" 'w = w, is full. Then |I(w,)| = 1/8 by
Proposition 1.1.8 (2). Suppose w, = |3], then I(w,) = I(|8]) = [|5]/B,1) and
|I(wy)] = 1 —|B]/B < 1/B which is a contradiction. Therefore w, # |3]. So
wy, < | B noting that w, < [5].

g

Proposition 1.1.10.

(1) Any truncation of (1, 8) is not full (if it is admissible). That is, (1, 5)|r is not full
for any k € N (if it is admissible).
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(2) Let k € N. Then €*(1, 8)|i is full if and only if (1, 8) is finite with length m which

exactly divides k, i.e., mlk.

Proof. (1) We show the conclusion by the cases that ¢(1, ) is finite or infinite.

Cases 1. (1, 8) is finite with length m.

@ If k > m, then (1, B)|x = €1 - - - £,0* ™™ is not admissible.

@ If1 <k <m—1, combining ej1---£,0° = z-:(Tgl,B) € Xg, €1 EkERt1 - EMO® =
e(1,) ¢ X3 and Proposition 1.1.8 (1) (3), we know that e(1, )|, = €1 - - - & is not full.
Cases 2. (1, 8) is infinite. It follows from the similar proof with Case 1 ).

2) [<] Let p € N with £k = pm. For any n > 1, we know that &} ---¢ e¥---&f =
1 pm<1

n
*

e*(1, B)|k4n is admissible by Lemma 1.1.2. Therefore e*(1,8)[x = &} ---¢,,, is full by
Proposition 1.1.8 (1) (5).

(By contradiction) Suppose that the conclusion is not true, that is, either (1, 5) is
infinite or finite with length m, but m does not divide k exactly.

@ If e(1, B) is infinite, then €*(1, 8)|x = (1, B)|r is not full by (1), which contradicts our
condition.

@ If (1, B) is finite with length m, but m { k, then there exists p > 0 such that pm < k <
pm + m. Since €*(1, )| is full, combining

Ek—pm+1-° '5m000 = €(T§7pm1,ﬁ) € 25,

and Proposition 1.1.8 (1) (3), we get

* * oo : * * (e.e]
€] EpEk—pm+1 - Em—1Em0~ € Mg, le., &7 “EpmEl Em—1Em0~ € Xg,

which is false since mg(e] - - - €561+ - Em—16,0%°) = 1. O
The following lemma is a convenient way to show that an admissible word is not full.

Lemma 1.1.11. Any admissible word ends with a prefiz of (1, ) is not full. That is, if

there exists s € {1,--- ,n} such that w = wy -+ wWp_s€1 - €5 € 5 then w is not full.
Proof. Tt follows from Proposition 1.1.9 (2) and Proposition 1.1.10 (1). O]

Notation 1.1.12. Denote the first position where w and (1, 8) are different by
m(w) :=min{k > 1:w, < e} forwe Xy

and
m(w) := m(w0>)  for w € .
Remark 1.1.13.

(1) Let e(1,p) be finite with the length m. Then m(w) < m for any w in Xg or 3.
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(2) Letw € X5 and m(w) >n. Then w =¢€1 -+ ep_1w, with wy, < &,.

Proof. (1) follows from w < (1, 3).

2) follows from w1 = €1, -+ ,wp_1 = en_1 and w € X7, O
( 5

We give the complete characterizations of the structures of admissible words, full words

and non-full words by the following theorem and two corollaries.

Theorem 1.1.14 (The structure of admissible words). Let w € ¥ for some n € N. Then

w = wiws - - - Wy, can be uniquely decomposed to the form
€1 €k —1Wny €1 Eky—1Wny "+ €1 Ef,—1Wn, €1 E[—1Wn, (1.5)

where p > 0, ki, kp,l €N, n=Fky + ...+ kp +1, nj =k1 + -+ kj, wn; <eg, forall
1<5<p, w, <g; and the words €1+ € —1Wny," " ;1" “* Ek,—1Wn, are all full.
Moreover, if (1, ) is finite with length m, then ky,--- ,kp,l < m. For the case |l = m,

we must have w, < &,

Corollary 1.1.15 (The structural criterion of full words). Let w € X for some n € N

and wy 1= €1 -+ - gj_1wy, be the suffiz of w as in Theorem 1.1.14. Then
w s full <= wy s full <= wy, < €.

Corollary 1.1.16. Let w € 25 for some n € N. Then w s not full if and only if it ends
with a prefiz of €(1, 8). That is, when e(1, 8) is infinite (finite with length m), there exists
1<s<n (1<s<min{m — 1,n} respectively) such that w = wy - - - wp_s€1 -+ - €5.

Proof. follows from Theorem 1.1.14 and Corollary 1.1.15.
follows from Lemma 1.1.11. O

Proof of Theorem 1.1.14. Firstly, we show the decomposition by the cases that (1, 3) is
infinite or finite.

Case 1. (1, B) is infinite.

Compare w and (1, 3). If m(w) > n, then w has the form (1.5) with w = &1 ---&,_1wy,
by Remark 1.1.13 (2). If m(w) < n, let n; = k; = m(w) > 1. Then w|,, = €1 €k —1Wp,
with wy, < eg,. Continue to compare the tail of w and £(1, 8). If m(wp,4+1 - - wy) > n—ny,
then wp, 41wy = €1+ Ep_py—1wWy with w, < e,_,, by Remark 1.1.13 (2) and w has
the form (1.5) with w =1+ e, —1Wn, 61 En—ny—1Wn. If M(wp, 41 wy) < n —nq, let
ke = m(wp,41---wy) > 1 and ng = ng + ko. Then wp, = €1+ €51 Wny €1+ -+ Ey—1Wny
with wy, < eg,. Continue to compare the tail of w and (1, 5) for finite times. Then we
can get that w must have the form (1.5).

Case 2. (1, 8) is finite with length m.

By Remark 1.1.13(1), we get m(w) ,m(wp, 41 - Wy), -+, M(Wp, 41 W), -+, M(Wpyy1 - Wh)

<
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m in Case 1. That is, ki, kg, -+ ,kp,l < m in (1.5). For the case [ = m, combining
Wpptl = €1, s Wp—1 = Em—1 and Wy, 11+ Wy < €1+ Ep, We get wp < &y
Secondly, €1« €k, 1Wny,** ;€1 " Eg,—1Wy, are obviously full by Lemma 1.1.7. O

Proof of Corollary 1.1.15. By Proposition 1.1.9 (1) (2), we know that w is full <= w is
full. So it suffices to prove that w, is full <= w,, < Elws|-

By wy, € X%, we get w, < g. Suppose w, = ¢, then w, = €1---¢; is not full by
Proposition 1.1.10 (1), which contradicts our condition. Therefore w,, < ¢;.

Let wy, < g;. We show that w, is full by the cases that £(1, ) is infinite or finite.
Case 1. When £(1, ) is infinite. we know that wy is full by 1 ---¢;_1¢; € X5, wp < g and
Lemma 1.1.7.

Case 2. When ¢(1, 3) is finite with length m, we know [ < m by Theorem 1.1.14.

Ifl <m, wegeter - -g_16 € 22' Then w, is full by w, < ¢; and Lemma 1.1.7.

If | = m, we know that ¢;---¢;_1(e; — 1) = €1 -em_1(em — 1) = €] ---¢, is full by
Proposition 1.1.10 (2). Then w, is full by w, <& — 1 and Lemma 1.1.7. O

From Theorem 1.1.14, Corollaries 1.1.15 and 1.1.16 above, we can understand the
structures of admissible words, full words and non-full words clearly, and judge whether
an admissible word is full or not conveniently. They will be used for many times in the

following sections.

1.1.3 The lengths of the runs of full words
Definition 1.1.17. Let 5 > 1. Define {n;(8)} to be those positions of £(1,) that are
nonzero. That is,

ni(B) :=min{k > 1: ¢ # 0} and ni11(B) := min{k > n; : ¢ # 0}
if there exists k > n; such that e, # 0 for i > 1. We call {n;(8)} the nonzero sequence of
B, also denote it by {n;} if there is no confusion.

Remark 1.1.18. Let 8 > 1, {n;} be the nonzero sequence of 3. Then the following are

obviously true.
(1) n1 =1;
(2) e(1,B) is finite if and only if {n;} is finite;
(3) e(1,8) = epy 0+ 06,0+ - 0epp 0 - - -
Definition 1.1.19 (Run and maximal run).

(1) Denote by [w™M,---  w®] the I consecutive words from small to large in 25 with
lexicographic order, which is called a run of words and l is the length of the run of

words. If wD -+ w® are all full, we call [w(l), e ,w(l)] a run of full words.
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(2) A run of full words [w®, ... w®] is said to be mazimal, if it can not be elongated,
i.e., “ the previous word of w in Eg is not full or wM) = 0" 7 and  the next word
of w is not full or w®) =e*(1,8)|n ”

In a similar way, we can define a run of non-full words and a maximal run of non-full

words.

Definition 1.1.20. We use Fg to denote the set of all the mazimal runs of full words in
23 and Fy to denote the length set of F7, i.e.,

Fg:={l €N: there exists [w®, . wb] e Fi}-

Stmilarly, we use Ng to denote the set of all the maximal runs of non-full words and Ny
to denote the length set of Nj.
In F§ UNE, we use Sy,

m e Lo denote the mazimal run with €*(1, B)|, as its last element.

Remark 1.1.21. For any w € ¥j with w # 0™ and w, = 0, the previous word of w in the
lezicographic order in ¥ is w1 -+ - wy_1(wg — 1)e7 -+ -&; ) where k = max{l <i<n-—1:

(0 7&0}

Notice that we will use the basic fact above for many times in the proofs of the following

results in this section.

Theorem 1.1.22 (The lengths of the maximal runs of full words). Let 8 > 1 with § ¢ N,

{n;} be the nonzero sequence of B. Then

{en, 1 i < n} if €(1, B) is infinite or finite with length m > n;
Fg=¢ {en}U{e1 +em} if (1, B) is finite with length m < n and m|n;
{en, :ni #Fm}U{e1 +em} ife(l,5) is finite with length m < n and m { n.

Proof. Tt follows from Definition 1.1.19, Lemma 1.1.24, Lemma 1.1.25 and the fact that
n; < m for any ¢ when ¢(1, 5) is finite with length m. O

Remark 1.1.23. By Theorem 1.1.22, when 1 < 8 < 2, we have

n

{ {1} if e(1, B) is infinite or finite with length m > n;
5=

{1,2} ife(1,B) is finite with length m < n.

Lemma 1.1.24. Let f > 1 with B ¢ N, {n;} be the nonzero sequence of 5. Then the
length set of Fy\{Sp.qz}, i-e., {{ € N: there exists [w®, - wl] e Fi\Shaxt} is

{en, :mi <n} if e(1, B) is infinite or finite with length m > n;
{en; : mi £ m} if (1, 8) 1is finite with length m = n;
{en, i mi #Fm}U{e1 +em} ife(l,B) is finite with length m < n.
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Proof. Let [w®, w1 ... ® 1] e fg\{sng} and w which is not full be the next
word of w. By Corollary 1.1.16, there exist 1 < s <n,0<a<n-—1witha+s=mn
(s <m —1, when (1, 3) is finite with length m), such that w = wy - - - weeq - - - €.

(1) If s = 1, that is, w = w;---wy_1€1, then wl® = wy - wp—1(e7 — 1), w? =

wy - wp_1(e1 —2), -+, wE) = wy - w,_10 are full by Lemma 1.1.7.
D Ifn=1orwy - w,_1 =0""! it is obvious that | = &.
@ Ifn>2and wy w1 # 071, there exists 1 < k < n — 1 such that wj # 0 and

Wiyl = -+ = wp—1 = 0. Then the previous word of wED) s

e1+1) *

w( :wlwk‘fl(wk_]‘)gign—k

i) If (1, ) is infinite or finite with length m > n, then w1+ = wy - wp_; (wy, —
1)eq -+ - €p—g is not full by Lemma 1.1.11. Therefore | = ¢;.

ii) If (1, 5) is finite with length m < n, we divide this case into two parts according to
mtn—kor mn— k.
@ If mfn —k, then € ---¢*_, is not full by Proposition 1.1.10 (2) and w(€1*) is
also not full by Proposition 1.1.9 (2). Therefore [ = €.
® If m|n — k, then &} ---*_, is full by Proposition 1.1.10 (2) and w(®1*V) is also

full by Lemma 1.1.7 and Proposition 1.1.9 (1). Let w} - - - w),_,, := w1 - - - wg_1 (wg, —
Dei---er_j_,, Then
w(51+1) — wll e w;limgl e gm_l(gm —_ 1)

The consecutive previous words

2 /
w(51+ ) :wl...wnimgl...gm_l(gm _

w N
~— ~—

3 o
w(al"’_ ) — wl P wn_mgl e gmil(gm —

w(51+gm) — wg oW

€1+ gmilo

are all full by Lemma 1.1.7. Since &1 # 0 and m > 1, there exists 1 <t < m —1 such

that 4 # 0 and €441 = --- = €1 = 0. Then, as the previous word of w(51+€m),
w(€1+€m+1) — U]ll e w;‘_mgl e 5t—1(5t — 1)51 O

is not full by Lemma 1.1.11. Therefore | = &1 + €,,.

(2) If 2 < s < n, we divide this case into two parts according to €5 = 0 or not.
D Ifes =0, there exists 1 <t < s—1suchthate; #0and g1 =---=¢e5=0bye; #0.
Then w = wy - - - wgeq - - - €057, and w = wy -+ waeq - ep—1(er — 1)e1 - - - €5—¢ is not full

by Lemma 1.1.11, which contradicts our assumption.
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@ If e # 0, then

w(l) :w1-~-wa€1---6571(5s_ 1)
w(z) :wl-"wagl"‘gs—l(ES_Q)
w(es) :wl"'wagl"‘gs—lo

are full by Lemma 1.1.7. By nearly the same way of (), we can prove that the previous

word of w(s) is not full. Therefore [ = Es.

i) If (1, B) is infinite or finite with length m > n, combining 2 < s < n and ¢4 # 0, we
know that the set of all values of | = ¢; is {ep, : 2 < n; < n}.

ii) If (1, B) finite with length m < n, combining 2 < s < m — 1 and 5 # 0, we know
that the set of all values of | =5 is {ep, : 2 < n; < m}.

By the discussion above, we can see that in every case, every value of [ can be achieved.
Combining n; < m for any 7 when (1, 8) is finite with length m, ,, = €1 and all the cases

discussed above, we get the conclusion of this lemma. O

Lemma 1.1.25. Let § > 1 with 5 ¢ N. If €(1, ) is finite with length m and m|n, then
Shaz € Fj and the length of Sy, is €m. Otherwise, Sy, € N

max axr

Proof. Let w) =¢f--.¢%.
If £(1, 8) is finite with length m and m|n, then w(!) is full by Proposition 1.1.10 (2). We
get Spap € Fi. Let p = n/m —1 > 0. As the consecutive previous words of w®, w® =
(61 em1(em — ))Per - em_1(em — 2), -+, wlEm) = (61 em_1(Em — 1))Per - Em_10
are full by Lemma 1.1.7. By nearly the same way in the proof of Lemma 1.1.24 (2) (D, we
know that the previous word of w(m) is not full. Therefore the number of S%,, is €.

Otherwise, w™) is not full by Proposition 1.1.10 (2). We get S”.. € NE. O

max

Remark 1.1.26. All the locations of all the lengths in Theorem 1.1.22 can be found in the
proof of Lemma 1.1.24 and Lemma 1.1.25.

Corollary 1.1.27 (The maximal length of the runs of full words). Let 5 > 1 with § ¢ N.
Then

o |B] +em ife(1,B) is finite with length m < n;
max F} =
P | 3] if e(1, B) is infinite or finite with length m > n.

Proof. 1t follows from e,, <e&,, =¢; = |3] for any ¢ and Theorem 1.1.22. O
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Corollary 1.1.28 (The minimal length of the maximal runs of full words). Let 8 > 1 with
B ¢ N, {n;} be the nonzero sequence of 3. Then

min e,, ife(1,B) is finite with length m < n and m 1t n;
min F§ = <™

A min e,, otherwise.
n;<n

Proof. 1t follows from n; < m for any ¢ when £(1, 3) is finite with length m and Theorem
1.1.22. O

Remark 1.1.29. [t follows from Theorem 1.1.22 that the lengths of maximal runs of full

words rely on the nonzero terms in £(1,3), i.e., {en,}.

1.1.4 The lengths of the runs of non-full words

Let {n;} be the nonzero sequence of 3. We will use a similar concept of numeration system
and greedy algorithm in the sense of [16, Section 3.1] to define the function 73 below. For
any s € N, we can write s =) .. a;n; greedily and uniquely where a; € NU {0} for any ¢
and then define 75(s) = ;5| azj Equivalently, we have the following.

Definition 1.1.30 (The function 73). Let 8 > 1, {n;} be the nonzero sequence of B and
s € N. Define 73(s) to be the number needed to add up to s greedily by {n;} with repetition.
We define it precisely below.
Let n;, = max{n; : n; < s}. (Notice ny =1.)
If ny, = s, define 13(s) := 1.
Ifn;, <s, lett; = s —mn; and n;, = max{n; : n; < t1}.

If nyy, = t1, define 15(s) := 2.

If n;, < t1, let ta =t; — ni, and nj; = max{n; : n; < ta}.

Generally for j € N. Ifn;, = t;j_1(to := s), define 75(s) := j.
If ni; < tj-1, let tj=1;-1— ni; and Ni; 01 = max{ni in; < tj}.
Noting that ny = 1, it is obvious that there exist ni, > ni, > -+ > n;, all in {n;} such that
s =mn +ni, + -+ 04y, ie, ny, =tq_1. Define 13(s) :=d.
In the following we give an example to show how to calculate 75.

Example 1.1.31. Let 8 > 1 such that £(1,8) = 302000010 (such [ exists by Lemma
1.1.4). Then the nonzero sequence of B is {1,3,8}. The way to add up to 7 greedily with
repetition is 7 =3 4+ 3+ 1. Therefore 75(7) = 3.

Proposition 1.1.32 (Properties of 73). Let 3 > 1, {n;} be the nonzero sequence of  and
n € N. Then

(1) 78(ni) =1 for any i;
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(2) 78(s) = s forany 1 < s <ng—1, and 7(s) < s for any s € N;
(3) {1,2,--- ,k} C{7(s) : 1 < s <n} forany k € {15(s) : 1 < s <n};
(4) {ro(s) 1< 5 < m) = (1,2, max 7(s)}

Proof. (1) and (2) follow from Definition 1.1.30 and n; = 1.

(3) Let k € {73(s) : 1 < s <n}. If k =1, the conclusion is obviously true. If £ > 2, let
2 < tp < n such that k = 75(tp), ns, = max{n; : n; < to} and t; =ty — n;,. Then
1 <t <ty < n and it is obvious that k — 1 = 75(t1) € {73(s) : 1 < s < n} by
Definition 1.1.30. By the same way, we can get k —2,k—3,--- ;1 € {73(s) : 1 < s <
n}. Therefore {1,2,--- ,k} C {r3(s) : 1 < s < n}.

(4) The inclusion {75(s) : 1 < s <n} C {1,2,---, max 73(s)} is obvious and the reverse

1<s<n
inclusion follows from max 75(s) € {75(s) : 1 < s <n} and (3).

O

*

For n € N, we use r,(f) to denote the maximal length of the strings of 0’s in €} - - - &},

as in [68], [73] and [117], i.e.,
rp(f) =max{k >1:e/,, = =¢j;;, =0 forsome 0 <i<n—Fk}

with the convention that max () = 0.
The following relation between 75(s) and r¢(3) will be used in the proof of Corollary
1.1.38.

Proposition 1.1.33. Let § > 1. If €(1,8) is infinite, then 1(s) < r5(8) + 1 for any
s > 1. If (1, B) is finite with length m, then 75(s) < r4(B) + 1 is true for any 1 < s <m.

Proof. Let {n;} be the nonzero sequence of 5 and n;, = max{n; : n; < s}. No matter
(1, ) is infinite with s > 1 or finite with length m > s > 1, we have

78(s) =1 =73(s = niy) < s —niy <75(f)
since s —n;; = 0 or 8;(11'214’18);1«1'14’2 €5 = Eny +1En, 427 Es = 07T O

Lemma 1.1.34. Letn € N, 8 > 1 with § ¢ N and w € ¥ end with a prefix of e(1,8),
Q.€, W=wi - Wp_s€1- €5 where 1 < s < n. Then the previous consecutive Tg(s) words

starting from w in X% are not full, but the previous (75(s) + 1)-th word is full.

Remark 1.1.35. Notice that w = wy -+ wy_s€1 - - - €5 does not imply that wy -+ wp_s 18
full. For example, when 8 > 1 with £(1,5) = 1010010%°, let w = 001010 = wy - - - wye1€3.
But wy - - - wyq = 0010 4s not full by Lemma 1.1.11.
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Proof of Lemma 1.1.34. Let {n;} be the nonzero sequence of 8 and

1
w(l) ::wg)...wgll)gl...gs ::wl...wnisgl...gszw’

where a1 =n — s. It is not full by Lemma 1.1.11.

Generally for any j > 1, suppose w, wl=1 ... w® w® to be j consecutive non-full
words in X% where wl) = w§j) .. 'wc(fj)sl g4 g, tjo1 >0 (to := ). Let wlt) e X5 be

the previous word of w9 and ni; = max{n; : n; <tj_1}.

If n;; = tj—1, then &;,_, > 0 and wl+h = ng) . -w,gi)sl . "€tj_1—1(€tj_1 — 1) is full by

Lemma 1.1.7. We get the conclusion of this lemma since 75(s) = j at this time.
If ni; < tj-1, let t; =t;_1 — M- Then w) = ng) . '-w((fj)sl " Eny 0% and the previous

word 1is

j+1) () j o _. G+ j+1
w( )_wl ...wéj)gl...gnij_l(gnij 1)81"‘Et]- = wl '..wc(lj+1)€1"'8tj7

where aj+1 = aj + n;;. By Lemma 1.1.11, wUtD is also not full. At this time, wUTD,

w(j)7 SR w(z), w) are j + 1 consecutive non-full words in Eg.

Noting that ny = 1, it is obvious that there exist d € N such that w@ o w® are
not full, and s = n;, + nyy + -+ + N4y, e, ny, = ta_1. Then g, | > 0 and w@+) =
wgd) .. .wc(li)sl ey y—1(ety, — 1) is full by Lemma 1.1.7. We get the conclusion since
T3(s) = d. -

Corollary 1.1.36 (The maximal length of the runs of non-full words). Let 8 > 1 with
B ¢ N. Then

AT max{73(s) : 1 < s <n} if (1, B) is infinite;

max Nj =

A max{7g(s) : 1 < s <min{m —1,n}} ife(1,p) is finite with length m.
Proof. Let I € Njy and [w®, =D o w® ] e /\/’g Then, by Corollary 1.1.16, there

exists

1<sp<n if (1, B) is infinite
1 <so <min{m — 1,n} if e(1,/) is finite with length m

such that w() = wgl) X -wg_)soal - -€5, and we have | = 75(so) by Lemma 1.1.34. There-

fore

max{7g(s) : 1 < s <n} if (1, 8) is infinite

max Ng <
max{7g(s) : 1 <s <min{m —1,n}} if e(1, ) is finite with length m

by the randomicity of the selection of [. On the other hand, the equality follows from the
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fact that 0" fogy ... gy € 2% included, the previous consecutive 73(tp) words are not full

by Lemma 1.1.34 where

(to) max{7rg(s): 1 < s <n} if (1, B) is infinite;
T, =
o max{7g(s) : 1 <s <min{m —1,n}} if e(1,p) is finite with length m.

In the following we give an example to show how to calculate the maximal length of

the runs of non-full words in Eg.

Example 1.1.37. Let n = 8 and €(1,3) = €p,0e,,000e,,,0 - - - 0,0 - - - 0,0 - - -, where
ny = 1,ne =3,n3 ="7,n4 > 8,ep, # 0 for any i. Then, by Corollary 1.1.36, the mazimal
length of the runs of non-full words in E% is max{7g(s) : 1 < s < 8}. Since

1=1 =7(l)=1 2=1+1 =13(2)=2, 3=3 = 713(3) =1;
4=3+1 =1304)=2; 5b=3+1+1 =7305)=3; 6=3+3 = 13(6)=2;
T=T7 :>7'5(7)—1 8=7T+1 $T5(8):2,

we get that max{73(s) : 1 < s < 8} = 3 is the maximal length.

Corollary 1.1.38. Let 3> 1. We have max Ng < rn(B) + 1 for any n € N. Moreover, if
e(1,B) is finite with length m, then max Ny < ry,—1(8) + 1 for any n € N.

Proof. 1f £(1, 8) is infinite, then
max Ny = max{7s(s) : 1 <s <n} <max{rs(8)+1:1<s<n}=mnr(8)+ 1.
If (1, 8) is finite with length m, then
max Ng = max{7s(s) : 1 <s <min{m—1,n}} <max{rs(8)+1:1<s <min{m—1,n}}.

and we have max Ny < r,(8) + 1 and max Ny < rp—1(8) + 1. O

Remark 1.1.39. Combining Corollary 1.1.36 and 7g(n) < n (or Corollary 1.1.38 and
rn(B) +1 < n), we have max Ng < n for any n € N which contains the result about the
distribution of full cylinders given by Bugeaud and Wang [37, Theorem 1.2]. Moreover, if
e(1,B) is finite with length m, then max Ny <m—1 for any n € N. If B € Ag which is a
class of B given by Li and Wu [91], then max N has the upper bound max rs(B) + 1 which

does not rely on n.

Theorem 1.1.40 (The lengths of the maximal runs of non-full words). Let 5 > 1 with
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B ¢ N and {n;} be the nonzero sequence of 3. Then Ny is given by the following table.

Condition Conclusion
- Case
B 6(17 5) Nﬁ =
59 infinite D1 (1)
finite with length m D (2)
infinite ns {n} (3)
n > no Ds (4)
n<m {n} (5)
| <B<2 ng =m n=m {m —1} (6)
> D 7
finite with length m nom 1 (7)
n < ng {n} (8)
ngo<m | ng<n<m Ds (9)
n>m Ds (10)

Here D1 =1{1,2,--- ;max{7rg(s): 1 <s<n}}h
Dy ={1,2,--- ,max{73(s) : 1 <s <min{m — 1,n}}};
D3 ={1,2,--- ;max{rg(s) : 1 <s <m —1}};
Dy={1,2,--- ;min{n—m,m—1}} U{m — 1},
Ds={1,2,--- ;min{ng — 1I,n —na + 1}} U{73(s) 1 ng — 1 < s < n}.

Corollary 1.1.41 (The minimal length of the maximal runs of non-full words). Let 5 > 1
with B ¢ N and {n;} be the nonzero sequence of B. Then

m—1 if 1 <B<2ande(l,B) is finite with length m = ny = n;

min Ng = ¢ n if 1 < B <2andn < ng;
1 otherwise.
Proof. 1t follows from Theorem 1.1.40. O

Proof of Theorem 1.1.40. We prove the conclusions for the cases (1)-(10) from simple ones
to complicate as below.

Cases (3), (5) and (8) can be proved together. When 1 < < 2 and n < ng, no
matter £(1,3) is finite or not, noting that |3] = 1 and &(1,8)|,, = 10"2721, we get
€1+ €p = 10”1, Then all the elements in 25 from small to large are 0™, 0"~11, 0210,
-++, 10!, where 0" is full and the others are all not full by Lemma 1.1.11. Therefore
Ny ={n}.

Case (6). When 1 < 8 < 2, (1, ) is finite with length m and n = ng = m, noting
that |3] = 1 and &(1,3) = 10m210*, all the elements in EZ from small to large are 0™,
0m=11, 0m=210, ---, 010™2, 10™~ !, where 0™ is full, 10™~! is also full by Proposition
1.1.10 (2) and the others are all not full by Lemma 1.1.11. Therefore Ng = {m — 1}.
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Case (1). When 8 > 2 and £(1, 3) is infinite, it suffices to prove Ng D Dy since the
reverse inclusion follows immediately from Corollary 1.1.36. By Proposition 1.1.32 (4), it
suffices to show Ny D {75(s) : 1 < s < n}. In fact:

@ For any s € {1,---,n— 1}, let u = 0" *~110%. It is full by & = [3] > 2 and
Corollary 1.1.16. The previous word uD) = 0" 3¢, -+ . £ is not full by Lemma 1.1.11.
So 75(s) € N by Lemma 1.1.34.

@ For s =n, combining the fact that &1 - - - &5 is maximal in ¥ and Lemma 1.1.34, we

get 75(s) € Nj.
Therefore N g = Dy.

Case (2) can be proved by similar way as Case (1).

Case (10). When 1 < 8 < 2, &(1, ) is finite with length m and ny < m < n, we have
e(1,B) = 10" 21e,, 41 - - - £,0%°. Tt suffices to prove Ng O D3 since the reverse inclusion
follows immediately from Corollary 1.1.36. By Proposition 1.1.32 (4), it suffices to show
Ny D {rs(s) : 1 < s <m—1}. In fact:

@D Forany ng—1<s<m—1,let u =0""5"110% It is full by s > ny — 1 and Corollary
1.1.16. The previous word ull) = 0"=%¢¥...c* = 0" %, - ¢, is not full by Lemma
1.1.11. So 73(s) € Ng by Lemma 1.1.34.

@ Forany 1 < s <mng—2 weget ng—1<n3—ne by Lemma 1.14. Sol < s <
ng—2<ng—mg—1<m-ny—1<n-—n9g—1and thenn —nyg —s>1. Let

u = Onfnzfs 10n2+571

It is full by no+s—1 > ny—1 and Corollary 1.1.16. Noting that no < no+s—1 < ngs,
the previous word of u is

1 _ n—no—s+1lx _*
u( ) = 0 &1 Eng-‘rs—l

— On—ng—s+1€1 e Epgts—1
— Onfn275+1 107127210371

— On—ng—s+1 10n2—2€1 e Eg

which is not full by Lemma 1.1.11. So 74(s) € Ny by Lemma 1.1.34.

Therefore Ng = Ds.

Case (7). When 1 < 8 < 2, ¢(1, ) is finite with length m and n > ngo = m, we have
e(1,8) = 10m210°.
On the one hand, we prove Ng C Dy. Let le Ng and [w(l),w(l_l), e ,w(2),w(1)] € J\/:g‘
By Corollary 1.1.16, there exist 1 < s < m—1,2<n—-m+1<a < n-—1such
that a + s = n and w) = wy - wuey ---e5. Then [ = 73(s) = s by Lemma 1.1.34 and

s < no — 1. Moreover, wl) = wy - we 10571
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@ If wy ---wq = 0%, then the next word of w) is w := 0°~110° which is full by [w(l),
wd=D @) w(l)] € /\/'EL Combining s < m — 1 and Corollary 1.1.16, we get

s=m—1. Hencel=m —1 € Djy.

@ If wy---w, # 0% we get a > m by wyy1 -+ w,10° < &(1,8) = 10m~210* for any
k>0. Hence s <n—mand l = s € Dy.

On the other hand, we prove Ng D Dy.

D For m — 1, let w = 0" ™10™ ! which is full by Corollary 1.1.16. The consecu-
tive previous words are u(t) = gr—mtl1gm=2 ... y(m=1) — gn=11 (") = " where

u®, .- w1 are not full by Lemma 1.1.11, and (™ is full. Therefore m—1 € Ng.
@ For any 1 < s < min{n —m,m — 1}, let

u(l) — On—m—8€>i< . €Tn+s — On—m—slom—l 108—1 — On_m_slom_1€1 g

*
m+s

ii) If s <n—m,ie,n—m—s—12>0, then the next word of u) ig gr—m—s—lygmts
which is full by Corollary 1.1.16.
Hence we must have s = 73(s) € Nj by s <ng—1 and Lemma 1.1.34.

i) If s =n —m, then u) =¢% .. .¢ is maximal in 373.

Therefore N g = Dy.

Cases (4) and (9) can be proved together. When 1 < § < 2, ¢(1,0) is infinite
with n > ng or £(1,3) is finite with length m and ny < n < m, we have ¢(1,5) =
10"~21,, 1 16n,42 - - . By Proposition 1.1.32 (2), we get

D5 ={13(s) : 1 <s<minf{ny —1,n—na+1} or ng — 1 < s <n}.

On the one hand, we prove Ng C Ds. Let ] € Ng and [w(l),w(lfl), e ,w(2),w(1)] € Ng
By Corollary 1.1.16, there exist 1 < s < n, 0 < a < n —1 such that ¢« + s = n and
w) = w; - weey - €5. Then | = 75(s) by Lemma 1.1.34.

O If a=0, then s =n and [ = 73(n) € Ds.

® If a > 1, we divide it into two cases.
i) If wy - - - w,y = 0%, then the next word of w) is 0%~ 110° which is full by [w® w1,
;w® wM] e Ng. Combining (1, 5) = 10" *1ep,116ny42 - -+ and Corollary
1.1.16, we get s > ng — 1. Hence | = 73(s) € Ds.
i) If wy -+~ wg # 0% by

Wiy1 -+ we10%° < e(1, B) = 10"2*215n2+15n2+2 -« for any k > 0,
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we get a > ng — 1 Hence s <n —nqg + 1.
@ If s > ny —1, then | = 7154(s) € {15(s) : ng — 1 < s <n} C Ds.
® If s <ng—1, then | = 75(s) € {r5(s) : 1 < s <min{ny —1,n —ny+1}} C Ds.
On the other hand, we prove Ng D Ds.

@ For any ng —1 < s < n, let ul)) = 0"~%¢¥ ... . No matter whether £(1, ) is infinite
or finite with length m > n (which implies s < m), we get u(!) = 0" ¢ --- g, which
is not full by Lemma 1.1.11.
i) If s = n, then u() = ¥ ... &* is maximal in 5.
ii) If ng — 1 < s < n—1, then the next word of u® is 0"~5-110% which is full by
s > no — 1 and Corollary 1.1.16.
Hence we must have 75(s) € Nj by Lemma 1.1.34.

@ For any 1 < s <min{ng — 1,n —ny + 1}, let

*

(1) _ An—no—s+1_x
u =0 81”'81124»571‘

No matter ¢(1, ) is infinite or finite with length m > n (which implies ng +s—1 <

n < m), we get

1) _ qn—na—s+1
u) = gr—n2—s €1 Engts_1-

Since Lemma 1.1.4 implies ng — 1 < ng —ng, we get 1 < s <ng —1 < n3—n9 and
then ny < no + s — 1 < n3. Hence

u(l) — On—n2—8+1 10n2—2 105—1

—_ On—ng—s+1 10”2_281 e Eg

which is not full by Lemma 1.1.11.

i) If s =n —ng + 1, then u") = £} - £* is maximal in 5.

i) If s <n—ng+1,ie,n—ng—s >0, then the next word of u) ig Qrn2—sygrets—1
which is full by Corollary 1.1.16.

Hence we must have 75(s) € Nj by Lemma 1.1.34.

Therefore NV /"} = Ds. O

Remark 1.1.42. [t follows from Theorem 1.1.40 that the lengths of the maximal runs of

non-full words rely on the positions of nonzero terms in (1, 3), i.e., {n;}.

1.1.5 Numbers of full and non-full words

In 1957, Rényi [102] estimated the number of all the admissible words with the same length
(see Lemma 1.1.44 below). By applying the results in Subsection 1.1.2, we estimate the

numbers of full words and non-full words separately in this subsection.
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We say that two sequences (x,,)n>1 and (yn)n>1 in (0, +00) are comparable, and denote
it by @, = yy, if there exist ¢1,co > 0 such that ciz, < y, < cox, for all n € N. It is not
difficult to see that = is an equivalent relation.

Denote the sets of admissible words, full words and non-full words with length n by
Eg, 227 r and E%, ~ respectively. The result from Rényi means that #Eg (where # denotes
the cardinality) is comparable to 8™ which is an exponential growth. As the main result
of this subsection, the following theorem claims that #Eg’  is also comparable to 5", and
if 8¢ N, #ng is also comparable to 8.

Theorem 1.1.43. Let 8 > 1. Then
#XG p o #Xg =2 f

Moreover, if 8 ¢ N, then
#3052 #EG p o #3G 2 B

This is a combination of the following lemmas.

Lemma 1.1.44 ([102]). For all 5 >1 and n € N,

an+1
n < 4V .
B < #Xj < 31
Lemma 1.1.45. For all 3 > 1 and n € N,
#X5 p < B

Proof. Tt follows immediately from #X5 p ,Bi" < 1, where 5% is the length of any full

cylinder of order n (see Proposition 1.1.8). O

Lemma 1.1.46. Let 3> 1 and n € N.

(1) If p € N, then

#Xpp=P"
(2) If B > 2, then
#E5p > g_f - B
(3) If 1 < B <2, then
# > (E(l - 5)) 8"

where [[22,(1— %) >0

B
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Proof. For alln € N, let a,, := #X5 and b, := #X5 N Then a, + b, = #X5. Statement
(1) is obvious. We prove (2) and (3) as follows.
(2) Suppose § > 2.

@ Fornzl,wehave#ZbF: | 8] >ﬁ—1>%-ﬁ.
@ For n > 2, by Lemma 1.1.44, we get

B B
and then a,+b,—an_1—bp_1 > 8" —

g—-1 g—1

ap+bp > an p—1+bp—1 <

Since every cylinder has at most one non-full sub-cylinder, we have #Eg’ N =< #Eg_l,
ie., b, <ap_1+ by_1. Therefore a,, > " — % = % - B™.

(3) Suppose 1 < g < 2. For all n € N| let

1 1 1 b 1
cn;_(1—5)(1—B2)-.-(1—m)>g(1—5i>.

It suffices to prove
an > cpB". (1.6)

(By induction) When n =1, 1 > (1 — %),8 implies that (1.6) is true. Assume that n > 2
and (1.6) is true for 1,2,--- ,n — 1, i.e.,

a1 > 1B, az >’ e, ap1 > 1B (1.7)

Let {n;} denote the nonzero sequence of 5. By 1 < f < 2weknow e,,, =ep, =€ps =+ =
1. For the fixed n > 2, there exists a maximal £ € N such that ny < n. By Proposition
1.1.9 (1), Theorem 1.1.14 and Corollary 1.1.15, we get a classification of the full words

pr=23p1UXEpaU- - UXE pp

where

Shpa = {0wswy s ws - wy is a full word with length o — 1},
EE,F,z = {51 o Eng—10Whg g1 - Wy T Whyy1 - - - Wy 1S & full word with length n — ng},

Y5 pE = {61 < Enp—10Wp, 41+ Wy Why g1 - Wy s a full (or empty) word with length n — nk}
are all disjoint. Therefore

an, = Ap-1+anny+- -+ an_n, (if n = ng, define a,—p, :=1)
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(*) . B _ )
> ene1 BV ey BT ey, - B (if n= ny, define ¢y, = 1)
Z Cn1 - (ﬁn—l + Bn—ng 4t 5n—nk)

(¥%)
> ¢, "

where (x) follows from (1.7) and (xx) is equivalent to

11 1
1= (g+gmt+ 5w

Thus it suffices to prove (1.8) in the following.

) < —. (1.8)

@O Ife(1,8) =e1e2---€,,0%°, then 1 = % + /8%2 + -+ ﬁ%k, which implies (1.8).
@ If there exists m > k such that (1, 8) = €162+ - €y, - - - €p,,0°°, then

1 1 1 1 1 1
1_(7+7+”.+7):/8nk+1 +”.+ﬁnm <Bnk+1—1’

where the last inequality follows from the fact that the S-expansion of 1 is greedy.
Since k is the maximal integer such that ny < n, we have n < ngy; — 1 and then
L_ < ﬂ% Thus we get (1.8).

Bnk+171

@ If £(1, B) is infinite, in a way similar to @), we can get (1.8).

Lemma 1.1.47. Let 5> 1 with 5 ¢ N. Then
#35 N = B

Proof. (1) We have #Xj v < #X7 < % - B, where the last inequality follows from
Lemma 1.1.44
(2) Prove that there exists cg > 0 such that for all n € N, we have #EXG N = - B

@Whennzl,byBgéNweget#Zé’Nzlz%-ﬂ.

@ When n > 2, it follows from ¢ N that every full cylinder of order n — 1 has a
non-full sub-cylinder of order n. Thus #Eg N = #Zg}l Since Lemma 1.1.46 says
that there exists ¢ = ¢(3) > 0 such that #Zg_pl >c- "L we get #EE N = % - g™,

O

1.2 Bernoulli-type measures and frequency sets

This section is a joint work with Mr. Bing Li and Mr. Tuomas Sahlsten at the end of
my master at Université Paris-Est Marne-la-Valléee (UPEM) under the guidance of Mr.
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Lingmin Liao. Most of the content in this section has already appeared in my master
thesis at UPEM. For completeness and for the convenience of the reader, I still present it
here.

Let 8 > 1. Recall that Ag is the set of infinite sequences on Ag ={0,1,---,[3] — 1}
and X3 is the set of admissible sequences. Define the usual metric dg on .Ag (also on ¥g)
by

dg(w, v) = g HEZ0 Wk Zven} for 4 = (w;)is1,0 = (v3)is1 € Ag. (1.9)

Let B(Xg) be the Borel sigma-algebra on the metric space (X3,dg). Recall that we use
[w] to denote the cylinder in ¥g generated by the admissible word w. Given 3 € (1,2],

for p € (0,1), we define the (p,1 — p) Bernoulli-type measure j1,, on the measurable space
(X5,B(X3)) as follows:

I. Let
Hp(@) = 07 :U’p(zﬁ) = 17 HP[O] =D and :up[l] =1 —D-

II. Suppose p, has been defined for all cylinders of order k& € N. For any admissible

word w with length k, if w1 is admissible, we define

pp[wO0] := pup(w] and  pp[wl] := (1 — p)pp|wl;

if w1 is not admissible, then naturally
fp[w0] = pup[w].

III. By Carathéodory’s extension theorem, we extend the definition of j, from the family
of cylinders to B(Xg) by

pp(A) := inf { Zup[w(”)] cw™ e Y5, AC U[w(”)]}

for any A € B(Xg).
The corresponding image measure

Vp 1= Tglp ‘= [p O 7r6_1
is called the (p, 1 — p) Bernoulli-type measure on ([0, 1), B[0,1)), where B[0, 1) is the Borel
sigma-algebra on [0,1) and 75 : ¥g — [0, 1) is the natural projection map defined by (1.3)
restricted to X3 (so WEIA C g for any A C [0,1)). Moreover, we use og : ¥g — g to
denote the shift map o defined by (1.2) restricted to Xz (so O'ﬁ_lA C X for any A C ¥3),
and recall that Tj is the S-transformation on [0, 1) defined by (1.1). It is straightforward

to see that p, may not be og-invariant and v, may not be T-invariant. For example, if
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8= % is the golden ratio, then 11 is not an admissible word. We have

ppll] =1—=p, but pp(og'[1]) = pp[01] = p(1 —p).
Correspondingly,
1 1.1
VP[Bv 1) =1-p, but VP(TB [Ev 1)) :p(l _p)'

Hence we consider the following concepts.

Definition 1.2.1 (Quasi-invariance). Let (X, F,u) be a measure space and T be a mea-

surable transformation on it. Then

(1) w is quasi-invariant with respect to the transformation T if p and its image measure

T are mutually absolutely continuous (i.e. equivalent), that is,

p<LTu<p (e T~ p);

(2) w is strongly quasi-invariant with respect to the transformation T if there exists a
constant C' > 0 such that

C™'u(A) < T u(A) < Cu(A)

forany k € N and A € F. We also say p is C-strongly quasi-invariant if we know
such a C.

Definition 1.2.2 (Quasi-Bernoulli). A measure 1 on (X5, B(X3)) is called quasi-Bernoulli
if there exists a constant C > 0 such that

C™ plwlplw'] < pluw'] < Cplw]pw']

for every pair w,w'" € ¥ satisfying ww' € ¥j.

As the first main result of this section, the following theorem focuses on the invariance
of Bernoulli-type measures as dynamical properties. Recall from Section 1.1 that we use

e(x, B) to denote the -expansion of z.
Theorem 1.2.3. Let § € (1,2] and p € (0,1). Then
(1) Wy i quasi-invariant with respect to og;
(2) e(1, ) is finite if and only if p, is quasi-Bernoulli;

(3) e(1, ) is finite if and only if p, is strongly quasi-invariant with respect to og.
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By mgoog =T o mg, we get the following.
Corollary 1.2.4. Let B € (1,2] and p € (0,1). Then
(1) vy is quasi-invariant with respect to Tg;
(2) (1, ) is finite if and only if v, is strongly quasi-invariant with respect to Tg.
As the second main result of this section, we have the following.

Theorem 1.2.5. Let 5 € (1,2] andp € (0,1). Ife(1,B) is finite, then there exists a unique

Tg-ergodic probability measure m, on ([0, 1), B[0,1)) equivalent to vy, where my, is given by

n—1

my(B) = lim % > Tkv(B) for B € B[0,1).
k=0

In the following, we consider digit frequencies. Given 5 > 1, for any a € [0, 1], define

the frequency set, lower frequency set and upper frequency set by

Fg, = {a: €[0,1): lim #ilsksn:en(f) =0} = a},

n—00 n

Fg, = {1‘6[0,1); lim #{1§k§n:5k(ac,6):0}:a}

n—o00 n

and

Fpo:= {966[0,1); fim #{1§k§n:5k(x,ﬁ):0}:a}

n—00 n
respectively. As an application of the above Theorem 1.2.5 and Theorem 1.2.33 in Sub-
section 1.2.4, we have the following as the third main result of this section, where dimg

denotes the Hausdorff dimension.

Theorem 1.2.6. Let 5 € (1,2) such that (1, 8) = 10"™10%° for some integer m > 0.
(1) If0 < a < 24}, then Fgo = Fg, = Fp,=0. B
(2) If 255 < a <1, then dimy Fg o = dimpy Fj, = dimy Fq

(ma —m+ a)log(ma —m+a) — (ma —m+ 2a — 1)log(ma —m+2a — 1) — (1 —a)log(l — a)
log 8 '

In particular, dimpg Fy me1 = dimg F, me1 = dimyg F g me1 = dimg Fgi = dimHEﬂ 1=
. B, m+2 ’8’m+2 B m+2 ? )
dimH F/371 = 0.
Remark 1.2.7. Taking m = 0 in Theorem 1.2.6, we get the well known result
aloga — (2a — 1)log(2a — 1) — (1 — a) log(1l — a)

log 8

dimy Fg, =

where 8 = @ is the golden ratio and % < a < 1. See for examples [67, 92]. Note that
when 0 < a < 3, Fgq=10.
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This section is organized as follows. In Subsection 1.2.1, on the basis of Section 1.1, we
give more necessary notation and preliminaries on beta-expansions and measure theory.
In Subsection 1.2.2, we study some digit occurence parameters and their properties which
are useful for studying Bernoulli-type measures. In Subsection 1.2.3, we study Bernoulli-
type measures and prove Theorems 1.2.3 and 1.2.5. In Subsection 1.2.4, according to the
structure of cylinders, we define and study the modified lower local dimension of finite Borel
measures, where the main result Theorem 1.2.33 implies the modified mass distribution
principle given by Bugeaud and Wang [37]. It is a useful tool to estimate the upper and
lower bounds for the Hausdorff dimension of some sets defined in terms of beta-expansions.
In Subsection 1.2.5, we apply the Bernoulli-type measures and the modified lower local

dimension to prove the digit frequency result Theorem 1.2.6.

1.2.1 Notation and preliminaries

Let 8 > 1. For simplification, we still use e1e2---€,,--- and €je5---¢} --- to denote the
digits of (1, 8) and €*(1, ) respectively as in Section 1.1.
For n € N, let [,,(3) denote the number of 0’s following &7, i.e.,

In(B) :==sup{k > 1:¢},;,=0forall 1 <j <k}

where by convention sup ) := 0. The set of 8 > 1 such that the length of the strings of 0’s
in €*(1, B) is bounded is denoted by

Ao :={8>1:(ln(B))n>1 is bounded}.

Proposition 1.2.8 ([91]). Let § > 1. Then 5 € Ao if and only if there exists a constant
¢ > 0 such that for all x € [0,1) and n € N,
1 1
c- 7 < |I(z)| < —.
The following covering property is deduced from the length and distribution of full

cylinders.

Proposition 1.2.9. (/37, Proposition 4.1]) Let B > 1. For any x € [0,1) and n € N, the
interval [z — ﬂ%’ x+ BL”} intersected with [0,1) can be covered by at most 4(n+1) cylinders

of order n.

By the structure of cylinders, the following lemma follows from a similar proof of
Lemma 1 (i) in [120].

Lemma 1.2.10. Any cylinder (in ¥ or[0,1)) can be written as a countable disjoint union

of full cylinders.
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Definition 1.2.11. Let C be a family of certain subsets of a set X.
(1) C is called a monotone class on X if

@ {An}nzl CcCCand Ay C Ay C - = UzozlAnEC;
@ {An}nzlcc and A1 D Ay D - :>ﬂ20:1AnEC.

(2) C is called a semi-algebra on X if

@ bec;

@ A, BeC=ANBeC(C;

® AEC:>AC€CZJC

where A := X \ A and Cxy := {U:.L:lCi:Cl,--- ,Cp € C are disjoint, nGN}.

(The subscript s,y means finite disjoint union.)
3) C is called an algebra on X 4
g

D 0,X eC;
@ AelC= AceC;
® A, BeC=ANnBecC.

(4) C is called a sigma-algebra on X if

D 0, X eC;
@ AelC= A e(C;
@ Ay, Ay, Az, € C = ﬂzO:lAn eC.
In order to extend some properties from a small family to a larger one in some proofs in

Subsection 1.2.3, we recall the following well known theorem as basic knowledge of measure

theory. For more details, see for examples [39] and [57].

Theorem 1.2.12 (Monotone class theorem). Let A be an algebra and M (.A) be the smallest

monotone class containing A. Then M(A) is precisely the sigma-algebra generated by A,

i.e., sig(A) = M(A).
The following useful approximation lemma follows from Theorems 0.1 and 0.7 in [121].

Lemma 1.2.13. Let (X, B, u) be a probability space, C be a semi-algebra which generates
the sigma-algebra B and A be the algebra generated by C. Then

(1) A=Csy:={U;L,Ci: C1,---,Cy €C are disjoint, n € N};

(2) for each e > 0 and each B € B, there is some A € A with u(AAB) < e.
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We recall some well known concepts and theorems (see for examples [81, 121, 127])

needed to be used.

Theorem 1.2.14 (Carathéodory’s measure extension theorem). Let C be a semi-algebra
on X and p: C — [0,4+00] such that for all sets A € C for which there exists a countable
decomposition A = U2, A; in disjoint sets A; € C for i € N, we have pu(A) = 372, p(A;).
Then p can be extended to become a measure ' on sig(C) (the smallest sigma-algebra
containing C). That is, there exists a measure p' : sig(C) — [0, +00] such that its restriction
to C is equal to p (i.e., p|c = p). Moreover, if X € C and u(X) < +oo, then the extension

w' is unique.

Theorem 1.2.15 (Dominated convergence theorem). Let (X, F, u) be a probability space

and { fntnen be a sequence of real-valued measurable functions on X satisfying

lim f,(z) = f(z) for u-almost every xz € X.

n—oo

If there exists a real-valued integrable function g on X such that for allm € N, |f,(z)] <
g(x) for p-almost every x € X, then f is integrable and

o e / fdp.

Theorem 1.2.16 (Vitali-Hahn-Saks Theorem). Let (X, F,u) be a probability space and
{An}nen be a sequence of probability measures such that \,, < p for alln € N. If the finite
limy, 00 A (B) = X(B) exists for every B € F, then X is countable additive on F.

Definition 1.2.17 (Invariance and ergodicity). Let (X, F,u,T) be a measure-preserving
dynamical system, that is, (X, F, p) is a probability space and p is T-invariant, i.e., Ty =
. We say that the probability measure p is ergodic with respect to T if for every A € F
satisfying T~YA = A (such a set is called T-invariant), we have pu(A) = 0 or 1. We also
say that (X, F,u,T) is ergodic.

Theorem 1.2.18 (Birkhoft’s ergodic theorem). Let (X, F,pu,T) be a measure-preserving
dynamical system where the probability measure p is ergodic with respect to T'. Then for

any real-valued integrable function f: X — R, we have

n—1
Jm 2> = [ fau
k=0

for p almost every x € X.
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1.2.2 Digit occurence parameters

Definition 1.2.19 (Digit occurence parameters). Let 8 € (1,2]. Define
No(w) :={k > 0: wiy1 =0 and wiws ... wil is admissible}  for any w € 3g,

No(w) := {0 <k < |w| : wpy1 =0 and wiws ... wil is admissible}  for any w € X,
M(w) :={k>1:wp =1} for any w € Xg,
NMi(w) = {1 <k <|w|:wp =1}  for any w € ¥j

and let
No(w) := #No(w), Ni(w) := #Ni(w)  for any w € XU Xg,

N()(.T,Tl) = N()(%?(.’E,ﬁ)‘n), Nl(xan) = NI(E(xv/B)’n) fOT any T € [07 1)
where #N denotes the cardinality of the set N.

Noting that Nj(w) is just the number of the digit 1 appearing in w, it is immediate
from the definition that if w,w’ € Y% such that ww' € X%, then

Nl(ww') = Nl(w) + Nl(w').

Notation 1.2.20. Let 8 > 1. Denote the first position where w and £*(1, 8) are different

by
m(w) :=min{k > 1:w, <ep} forwe g

and m(w) :=m(w0>)  forw € ¥j.

For any w € ¥, combing the facts w < £*(1, ), (1, B)|n € 25 for alln € N and Lemma
1.1.7, we know that there exists k € N such that w|y is full. Therefore we can define

7(w) :=min{k > 1 :wly is full}  for any w € 3g,

and T(w):=T1(w0>®)  for any w € ¥p.

For any w € Z/}}, regarding w|o as the empty word which is full, we define
' (w) := max{0 < k < |w| : w|y is full}.
Lemma 1.2.21. Let 3 > 1. For any w € ¥gU E};, we have

(w) = m(w) if (1, B) is infinite;
TN min{m(w), MY if (1, B) is finite with length M.
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Proof. For any w € ¥3UX5. Let k = m(w). Then wly = €7 -+~ _jwg and wg, < 5. (When
w € ¥ and k > |w|, we regard wly = w1 -+ wy, as wy - -'w‘w‘Ok_m"). Byei - e; 165 €X5
and Lemma 1.1.7, w|j is full.

(1) When (1, ) is infinite, for any i € {1,--- ,k — 1}, we have w|; = *(1, 8)|; = (1, 8)/;
which is not full by Proposition 1.1.10. Therefore 7(w) = k = m(w).

(2) when e(1,8) = &1 - -0 with eps # 0:

@ If K < M, then for any i € {1,--- ,k — 1}, we have w|; = ¢*(1, §)|; which is not full by
Proposition 1.1.10. Therefore 7(w) = k = m(w).

@ If k > M, then w|y = *(1, B)|as is full by Proposition 1.1.10. For any ¢ € {1,--- , M —
1}, we have w|; = £*(1, 5)]; which is not full by Proposition 1.1.10. Therefore 7(w) =
M. O

Lemma 1.2.22. Let 3 > 1 and w € Xg. Then
(1) there exists a strictly increasing sequence (n;);j>1 such that wly; is full for any j € N;
(2) No(w) =400 ifl1 << 2.

Proof.

(1) Let kq := m(w), ny := ki, kj := m(c™1w) and nj := n;_1 +k; for any j > 2. Then n;
is strictly increasing. By e ---ey, _,e;, € Xj, wp, < & and Lemma 1.1.7, we know that
W1+ Wny—1Wpy = €]+ €, Wy, is full. Similarly for any j > 2, by 7 - -~€,’;j_1€,’;j € Xy,
Wy, < 6% and Lemma 1.1.7, we know that Wn, g +1° " Wnj—1Wn; = el 5’,gj71wnj is full.

Therefore, by Proposition 1.1.9 (1), w|,, is full for any j € N.

(2) Noting that 1 < 8 <2, by wy; < 5’,;]_, we get wy,; = 0,52]_ =1 for any j € N. Thus

=¥ * * * * * * *
wq - - 'wnj—ll = 61 P Ekl—lwnl ...... 51 . .gkj_l_lwnj71€1 “ee Ekj—lgkj (= EB

for any j € N by Proposition 1.1.9 (1) and Proposition 1.1.8 (5). Therefore Ny(w) =
+00. O

Lemma 1.2.23. Let B € (1,2] and w,w' € ¥} with ww' € X%5. Then
(1) No(w) < No(ww') < No(w) 4+ No(w');
(2) when w is full, we have No(ww') = No(w) + No(w');
(3) when e(1,8) =¢e1---ep0% with epr # 0, we have No(ww') > No(w) + No(w') — M.

Proof. Let a = |w| and b = |w'|. Then ww’ = wy - - wew} - - - wy.
(1) The first inequality No(w) < No(ww') follows from Np(w) C No(ww'). In the following
we prove the second inequality No(ww') < No(w) + No(w').
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We prove Ny(ww') C No(w) U (No(w') + a) first. Let k € No(ww').

If0 <k <a, then wy1 =0 and wy -+~ wil € ¥j. We get k € No(w).

Ifa <k <a+b, then wy_, ; =0and wy---wewy---wj_,1€ Y5 It follows from
wy-wy_,1 € X5 that k —a € Ny(w') and k € Np(w') + a.

Combining Ny(w) N (My(w') + a) = 0, #(No(w') + a) = #No(w') and i), we get
No(ww') < No(w) + No(w').

(2) We need to prove Nyo(ww') > Ny(w)+ No(w'). By #Np(w') = #(No(w')+a), it suffices
to prove Np(ww') D No(w)U(Ny(w')+a). For each k € Ny(w), obviously k € Ny(ww’). On
the other hand, if ¥ € (No(w')+a), then k—a € No(w'), wy_,,; = 0and wy---w;_,1 € X%,
Since w is full, by Proposition 1.1.8, we get ww] ---wj,_,1 € Y% and then k € No(ww').

(3) @ First we divide ww’ into three segments.

i)

ii)

iii)

Let ko := 7/(w), then 0 < ko < a. If kg = a, w is full. Then the conclusion follows
from (2) immediately. Therefore we assumes 0 < ky < a in the following proof. Let
u® =y - -wy, be full and \u(l)\ = ko. (When ko = 0, we regard u(!) as the empty
word and No(uM) :=0.)

Consider wy,41 -+ waw] - - - W € Dy (the admissibility follows from ww' € E};)

Let ki := 7(Wky41 - - - wew] - - wy) > 1. By the definition of kg = 7/(w) and Propo-
sition 1.1.9, we get k1 > a — ko. In the following, we assume k1 < a — kg + b
first. The case k1 > a — kg + b will be considered at the end of the proof. Let

u® = wpyp1 - wWew - - Wy 1y —q» then [u®| = ky.

Let u® := Wy iy —ar1 Wy (When ko + k1 — a = b, we regard u®) as the empty
word and No(u®) :=0.)

Up to now, we write ww’ = uMuPuB) as:

/ / / /
Wy Who Who+1 " WaWy ** " W4y —q Whotky—at+1 """ W -

lu(M|=ko [u(®| =k, [u(®)]

@ Estimate Ny(ww'), No(w) and No(w').

i)

i)

iii)

No(ww') = No(uDu@u®) _ulD full No(u®) + No(u@u®) _u® full No(u®) +
by (2) by (2)

N0<u(2)) + No(u(3))

u) full 1 by (1) 1 2
No(w) ==== 5 No(u) + No(wrgt1 - wa) < No(u) + No(ul?).
y
/ by (1) / / (3) (3) ; ;
No(w') < No(wj -+ wy, g, o)+ No(u'?) < M+ No(u'”)) where the last inequality

follows from

, ; ; , by Lemma 1.2.21
No(wi -+ Wy ipy—a) < ko+ k1 —a < kp = T(wWgg1 -+ - wawy - - - wy) < M.
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Combining i), ii) and iii), we get No(ww') > No(w) + No(w') — M.

To end the proof, it suffices to consider the case k1 > a — ko + b below. We define u(!)
as before and define u(?)
We do not define u®.
@ Prove No(u?) = 0.
By contradiction, we suppose No(u(®) # 0, then there exists k € My(u®), 0 < k <
a — ko + b such that u,(fll =0 and ugz) = -u,(f)l € X%. By Lemma 1.1.7, u(12) e ul(izl is full
which contradicts 7(u®) = ky > a — ko + b.

@ Estimate Ny(ww'), No(w) and No(w').

{= Why41 - Wew] - - - wj which is not full. Then [u®)| = a—ko+b.

by D

w@ full
by (2)

i) No(ww') = No(u(l)u@)) No(u(l)) + Ng(u(z)) No(u(l)).

u® full

by (2)
from No(wpgt1 - -wq) < NO(U(Q)) = 0.

ii) N() (w)

No(u(l))—i—Ng(kaH C W) = No(u(l)) where the last equality follows

by Lemma 1.2.21
i) No(w') <b<a—ko+b<k =7u?) < M.

Combining i), ii) and iii), we get No(ww’) > No(w) + No(w') — M. O

1.2.3 Bernoulli-type measures ;, and v,

Let 8 € (1,2]. Recall the definitions of the Bernoulli-type measures p, and v, from the

beginning of this section.

Remark 1.2.24. (1) We have

vp(I(w)) = pplw] = pNO(w)(l —p)Nl(“’) for any w € E%;
vp(I(wln)) = pplw],] = pNo®W) (1 — p)yNi@ln)  for any w € Sp and n € N;
vp(In(2)) = pple(z, B)]n] = pNo@M (1 —p)M@n) for any x € [0,1) and n € N.

(2) For any w € ¥g, as n — 400, by Lemma 1.2.22 (2) we get No(w|,) — +00 and then
pp[wln] = 0.

Proposition 1.2.25. The measures i, agup, vp and Tgyp have mo atoms. That is,

pp({w}) = U’Igup({w}) =vp({z}) = Tgup({x}) =0 for any single point w € ¥g, x € [0,1)
and k € N.

Proof. Tt follows immediately from p,[wl|,] — 0, #Jgk{w} < 2k #7751{1:} = 1 and
#Tﬁ_k{x} < 2k for any w € X5 and z € [0, 1). O

Combing Remark 1.2.24 (1), Lemma 1.2.23 and the fact that Ny(ww') = Ni(w) +
Ni(w') for any w,w’ € ¥} satisfying ww' € ¥, we have the following.
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Lemma 1.2.26. Let B € (1,2], p € (0,1) and w,w" € ¥} with ww' € ¥7.

(1) We have
pplw] = pplww’] = pplwlpp[w'].

(2) When w is full, we have
prplww’] = pplw] pp[w'].

(3) When e(1,8) =¢e1---ep0° with epr # 0, we have

pplww'] < p_MMp [w]pp [w],
and then p, is quasi-Bernoulli.
Now we can begin to prove our first main result.

Proof of Theorem 1.2.3. (1) (D First we prove p, < 0gip.
Let A € B(X3) with ogu,(A) = 0. It suffices to prove p,(A) = 0. For any € > 0, by

( 1nf{Zup Ezﬁ,aﬁlACU }:O,
there exists {w(™} C ¥} such that

ngA C U[w(")] and Zup[w( )

Since € can be small enough such that £1,[0] = p and pp[l] =1 —p > €, we can assume
an = |w™| > 2 for any n without loss of generality. By the fact that og : Xg — Mg is

surjective, we get

A=05(05'4) C o ™)) € | Joslw™] = Jogho{Pws” ] < | Jws" - - wl).

n

Therefore

Z MP an)]

; (n) M) 0
min{p, 1— p} ; Np[wl ]:“p[wQ wan ]

Hp(A)

IN

1
winfp 1=} 21l
e
min{p,1 — p}

for any € > 0. This implies p,(A4) = 0.
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@ Now we prove o, < fip.
Let B € B(X3) with p,(B) = 0. It suffices to prove ogpu,(B) = 0. For any integer m > 2,
we define B, :== B\ [g5--- ¢} ].

i)

i)

Prove that ogu,(By,) increase to ogu,(B).
@ If e(1, B) is finite, then eleiel -+ ¢ X, [e5--- €] decrease to (), By, increase to
B and og1,(By,) increase to ogpy(B).

® If (1, 8) is infinite, then e3eje] -+ = esezeq--- = e(T31,8) € Xg, [e5---€},]

m
decrease to {e5eje) - - - } (a single point set), By, increase to (B \ {e5eke}---}) and
ogltp(Bm) increase to o, (B\{e5e5e] - - - }). Since o, has no atom (by Proposition
1.2.25), we get ogu,(By,) increase to ogpy(B).

In order to get ogu,(B) = 0, by i) it suffices to prove that for any integer m > 2,

o ttp(Bm) = 0.
Fix an integer m > 2. By ppy(Bm) < p1p(B) = 0, we get

mf{z,u w™] : w™ € 33, By, cU }:0.

For any € > 0, there exists {w(™}, ey C X% with

B, C U [w™] such that Z 11 [0 ™)]

neN’ neN’

where N’ is an index set with cardinality at most countable. Since € can be small

enough such that
Om = min{py[w] : w € X, [w| <m — 1} > ¢,
we can assume a,, := |w(™| > m for all n € N’. Let
N:={neN :w", 1 #e -} CN.

By the facts that for any n € N, [w™] N [eh-- 5] = 0 and for any n € N’ \ N,
W] €[5+ -23], we et

Bm = Bu\l-enlC | (™)\[e3-- &)

neN neN’\N nenN

and then 03" By, C U,en 05 [w™)]. Let

={neN: 1w ¢ Y5} and Ny :={neN: 1w(™ e Y5}
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Then for any n € Ny, ng[w(")] = [0w™)] and for any n € Ny, agl[w(”)] = [ow(™] U

[1w(™]. Thus
o5 B (| J [0w™1) [ ( | [1w™])

neN neN;

and

1p(05 Bn) < Y mpl0w™] + > g [1w™] = Ry + Ry
neN neNy

where by Lemma 1.2.26 (2),

Ry = Zpup[w(”)] <p Z ,u,p[w(")] < pe.
neN neN’

Now we estimate the upper bounded of Rj.
For each n € Ny C N, by 1w§n) . --wfs)_l # ¢ejes - -er . there exists 1 <k, <m —1
such that 1 = sf,wgn) =eh, w,g:)_l =& and w,g:) <é&f 41 Sincee}---ef ef 4 €
Y%, by Lemma 1.1.7 and Proposition 1.1.9 (2), we know that both 1w1n) . -wli:) and

wgn) . -w,(cn) are full. It follows from Lemma 1.2.26 (2) that

n

1] = eyl ol -l
and
ol ™) = gl g, ),
Let
Cpy i= max{'up[lw] rw € X with 1w € ¥ and 1 < || Sm—l} < 00.
fiplw]

By k, <m — 1, we get pu,[lw™] < Cpppp[w™] for any n € Ny. This implies

Ry:= Y mp[lw™] < Coy D pp[w™] < Ch D7 pip[w™] < Che.

neNy neN neN’

Therefore ,up(angm) < (p+Cp)e for any 0 < € < d,,. We conclude that ogu,(Bp,) =
0.

(2) follows from Lemma 1.2.26.

(By contradiction) Assume that (1, ) = e1e9¢3 - - - is infinite. By eoe3--- = (131, 5) €
Y3 and Lemma 1.2.22 (2), we get Np(e2e3---) = +00. Then for any N € N, there exists
n € N such that Ny(eqez---€,) > N. Let w := e; = 1 and w’ := e9e3---¢,. Then

ww' = e --- g, and obviously

Ng(ww’) =0=04+N-N < N[)(’LU) +N0(w/) — N.
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By Remark 1.2.24 (1) and Ny (ww') = N1(w) + Ni(w'), we get

,up[ww'] > p_NHp[w]/‘p[wl]-

N

Since for any N € N, there exists w,w’ which satisfy the above inequality and p~* can be

arbitrarily large, we know that p, is not quasi-Bernoulli.

(3) (By contradiction) Assume that e(1,3) = e1e9e3--- is infinite. By egeg--- =
e(Ts1, ) € X3 and Lemma 1.2.22 (2), we get Np(ege3--+) = +0o. Then for any N € N,
there exists n € N such that Ny(egeg---€,) > N. Let w:=¢ey---&,. Then

Tatiplu] = pipl0w]+ pplLu] > ppferes -] = pOE S (L= p e - (1o p)Meren

and
'up[w] _ pNo(w)(l - p)Nl(w) < pN(l o p)Nl(gln.gn)—]_'

Thus
apuplw] > (1= p)p~ ™ pup[w].
Since for any N € N, there exists w which satisfies the above inequality and (1 — p)p*N
can be arbitrarily large, we know that p, is not strongly quasi-invariant.
Let e(1,8) = e1---ep0® with ep7 #0 and ¢ = p~™ > 0.
@ Prove ¢ tp,[w] < Ug,up[w] < cpplw] for all k € N and w € Xj.
Notice that

U/gk[w] = U [ug -+ upw]

is a disjoint union.

i) Estimate the upper bound of agup[w]:

o [w] = > pplur - upw)
ul---ukwexz
@
< Z piM:“p[ul s prp[w]

u1~~~ukw622

PiM Z pplun - - - g pp[w]
u1--~uk622§

= p Mpplw].

IN

where (@) follows from Lemma 1.2.26.
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ii) Estimate the lower bound of agup[w]:

upag’“[w] = Z pplur -+ - ugw] > Z ppluir - k—ar 0Mw].

u1~~-ukw62g ul-nuk,MOMwGEZ

(Without loss of generality, we assume k > M. Otherwise, we consider 0%w instead of
uy - - up—0Mw). By Proposition 1.1.16, uy - - - up_,, 0™ is full for any w1 - - up_pm €
¥%. Then by Proposition 1.1.8 (4), we get

wy - up_py0Mw e Y= urup_y € X

Therefore
Np("/;k[w] 2 Z prpluy - -+ up— 0™ w)

U1 up— M EXG

®

= S pplur - up—p0M ] w]
U1 up— M ENG

©

> Z pplug - uk_M]pM,up[w]

u1~--uk_M€ZE

pM pp[w]

where (®) and (¢) follow from Lemma 1.2.26 (2) and (1) respectively.

@ Prove ¢ 1u,(B) < Jg,u,p(B) < cpuy(B) for all k € N and B € B(Xg).
Let C := {[w] : w € 5} U{0}, Csp == {UiL, Ci : C1,- -+, Cy € C are disjoint, n € N} and

G:={BeB(Xs): cflup(B) < Ug,up(B) < cup(B) for all k € N}.

Then C is a semi-algebra, Cxy is the algebra generated by C (by Lemma 1.2.13 (1)) and
G is a monotone class. Since in () we have already showed C C G, it is obvious that
Cxy C G C B(X3). By monotone class theorem (Theorem 1.2.12), we get G = B(¥g). O

To prove our second main result Theorem 1.2.5, we need the following lemmas.

Lemma 1.2.27 ([58|). Let (X, B, u) be a probability space and T' be a measurable trans-
formation on X. If there exists a constant M such that for any E € B and any n > 1,

n—1

> wTFE) < Mu(E),
k=0

SEES
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then for any real integrable function f on X, the limit

lim 1712_:1 f(T*z)
e
exists for p-almost every x € X.
Lemma 1.2.28. Let 5 € (1,2] and p € (0,1).
(1) If B € B(Sp) with o5' B = B, then ju,(B) =0 or 1,
(2) If B € B[0,1) with Tng = B, then v,(B) =0 or 1.
Proof.
(1) Let F:={w € ¥} : w is full}.

@ Let w € F with [w| =n. We prove pp([w]Nog"A) = pp[w]p,(A) for any A € B(Xg)
as follows.

Since w is full and [ww'] = [w] N oz [w'] for any w' € T, we get

by
Lemma 1.2.26 (2)

pp([w] N Uﬁ_n[wl]) = Mp [ww'] pplw]pp [w'].

Let € == {[w] : v’ € B3} U {0} and G := {4 € B(Ep) : pp([w]Noy"4) =
pplwlpp(A)}. In the same way as the end of the Proof of Theorem 1.2.3, we get
G = B(Xg).

@ We use B¢ to denote the complement of B in Yg. For any ¢ > 0, by Lemma 1.2.13 and
Lemma 1.2.10, there exists a countable disjoint union of full cylinders Es = | J;[w(®]
with {w(®} C F such that pu,(B°AEs) < 4.

® Let B € B(X3) with oy !B = B. Then B = 0,"B and by @ we get

=0
pp(B N [w]) = pp(o5"™ B N [w]) = p1p(B) pp[w]

for any w € F where n = |w|. Thus
pp(BNEs) = Np(BﬂU[w ] Zﬂp B[w®]) Zﬂp = kp(B)pp(Es).-

Let a = pp((BU E5)), b = pp(B N Es), ¢ = pp(B\ Es) and d = p,(Es \ B). Then

b=(0b+c)(b+d), a+b<d(by®) and a+b+c+d=1.

(b+c)a+d—0)<(b+c)(b+d)=b<d,
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we get

b+c)a+d) <(1+b+c)d <26
which implies p,(B)pp(B€) < 26 for any 6 > 0. Therefore p,(B) = 0 or p,(B¢) = 0.

2) follows from (1). In fact, let B € B[0,1) with T, !B = B. By o 'n;'B=7;'T;'B =
B B "B B8 =B
7B € B(Z3) and (1), we get 7:'B)=0or1, ie., v,(B) =0 or 1. O
8 8 get tp\Tg p

Proof of Theorem 1.2.5. (1) For any n € N and B € B[0,1), define

1 n—1
my(B) = — vp(T; " B).
k=0
Then my; is a probability measure on ([0, 1), B[0,1)). By Corollary 1.2.4, there exists ¢ > 0
such that

¢ tuy(B) < m?

»(B) < cvp(B) for any B € B[0,1) and n € N. (1.10)

(2) For any B € B[0,1), prove that lim,_,. m

»(B) exists. In fact,

Jim m; (B) = J;H;ogZ s
= lim 1 Z 1p(TEx)dv,(z)
n—00 n B p

n—1
:/7}1_%20”2]13 Tﬁx)dyp( x),

noting that the last equality follows from the dominated convergence theorem where the

vp-a.e. existence of limy, oo S ]lB(Tgm) follows from Lemma 1.2.27 and (1.10).

(3) For any B € B[0,1), define my(B) := lim;, o my(B). Then by Theorem 1.2.16, m, is
a probability measure on ([0, 1), B[0,1)).

(4) my, ~ v, on B0, 1) follows from (1.10) and the definition of m,.

(5) Prove that my, is T-invariant.
For any B € B[0,1) and n € N, we have

1 n

-1 —k

my(T5'B) =~ > vy(T;"B) =
k=1

n+1 n+1

mrti(p) - 22B)

n n

As n — oo, we get mp(Tﬂ_lB) = my,(B).

(6) Prove that ([0, 1), B[0, 1), m,, T3) is ergodic.
Let B € BJ[0,1) such that Tﬁ_lB = B. Then by Lemma 1.2.28 (2), we get v,(B) = 0 or
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vp(B€) = 0 which implies m,(B) = 0 or m,(B¢) = 0 since m, ~ v,. Noting that m, is
Tg-invariant, we know that m,, is ergodic with respect to Tj.

(7) Prove that such m,, is unique on BJ0, 1).

Let mj, be a Tg-ergodic probability measure on ([0,1),5[0,1)) equivalent to v;,. Then for
any B € B|0, 1), by Birkhoff’s ergodic theorem, we get

1 n—1
my(B) = /]lemp = lim — Z ]lB(T/if:U) for my-a.e. z € 0,1)
k=0

n—oo N

and

. 1 n—1

my,(B) = / 1pdm, = nh_>n01o - Z IlB(Tgm) for my-a.e. x € [0,1).
k=0

Since my, ~ v, ~ mJ,, there exists z € [0, 1) such that my,(B) = lim, o0 + Zz;é ILB(Tgx) =

my,(B). Thus my, = m,,. O

1.2.4 Modified lower local dimension related to beta-expansions

Let v be a finite Borel measure on R™. The lower local dimension of v at x € R™ is defined
by

1 B
dim,_v(x) = lim &Y BE1)
r—0 logr

where B(xz,r) is the closed ball centered at x with radius r. Theoretically, we can use the
lower local dimension to estimate the upper and lower bounds of the Hausdorff dimension

by the following proposition.

Proposition 1.2.29. (/63, Proposition 2.3]) Let s > 0, E C R™ be a Borel set and v be a

finite Borel measure on R™.
(1) If dimy,.v(x) < s for all x € E then dimg E < s.
(2) If dim,.v(x) > s for allx € E and v(E) > 0 then dimyg E > s.

But in the definition of the lower local dimension, the Bernoulli-type measure of a ball
vp(B(x,r)) is difficult to estimate. Therefore, we use the measure of a cylinder v(I,(x))
instead of v(B(x,r)) to define the modified lower local dimension related to B-expansions

of a measure at a point.

Definition 1.2.30. Let § > 1 and v be a finite Borel measure on [0,1). The modified

lower local dimension of v at x € [0,1) is defined by

: log v(In())
dlmﬂ v(z):= lim ————~
dino. (@) n—oo log|I(z))|

where I, (x) is the cylinder of order n containing x.
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Combining Proposition 1.2.29 (1) and the following proposition, we can estimate the

upper bound of the Hausdorff dimension by the modified lower local dimension.

Proposition 1.2.31. Let § > 1 and v be a finite Borel measure on [0,1). Then for any
z € [0,1), we have

dimy) (v, z) > dimy,,.(v, 7).

Proof. For any = € [0,1) and n € N. Let 7, := |I,(2)|, then I,(z) C B(z,1,), v(In(x)) <
v(B(z,ry)) and —logv(I,(x)) > —logv(B(xz,1y,)). We get

—logv(I,(x)) S = log v(B(x, rn))

—log|Ly(z)] = —logr,
Therefore | / | B
i 08VUn@) oy 18 VBE ) o g,
n—ooo 108 |In(x)| T a5 logry

O

Remark 1.2.32. The reverse inequality in Proposition 1.2.31, i.e., @ic(y, z) < dimy,.(v, x)
is not always true. For example, let B be the golden ratio (v/5+1)/2, z =Bt and v = v,
be the (p,1 — p) Bernoulli-type measure with 0 < p < 1/2. For anyn € N, let r,, = |I,(z)]
and Jy, be the left consecutive cylinder of I,(x) with the same order n. When n > 2, we
have rp, = 87" > |J,| and B(z,75) D Jy. Then vy(B(z,7)) > vp(Jn) > p(1 —p)"~ ! and
vp(In(z)) = (1 — p)p" 2 which implies

. log(1 — p)p”_2 —logp
dim?® v, (z) = lim =
——loc p( ) oo log ﬁfn log B

and

. . logv,(B(z,ry)) . logp(1l— p)"‘1 —log(1 — p)
d <1 P ’ <1 = .
diioep(#) < M = e R T g log 3

When 0 < p < 1/2, we have @ic(yp, x) > dimy,,.(vp, ).

Although the reverse inequality in Proposition 1.2.31 is not always true, we are going
to establish the following theorem for estimating both of the upper and lower bounds of

the Hausdorff dimension by the modified lower local dimension.

Theorem 1.2.33. Let § > 1, s > 0, E C [0,1) be a Borel set and v be a finite Borel

measure on [0,1).
(1) [f@icu(x) < s forall x € E, then dimg FE < s.

(2) ]f@icy(x) > s for allz € E and v(E) > 0, then dimy E > s.
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Proof. (1) follows from Proposition 1.2.29 (1) and Proposition 1.2.31.
(2) follows from the following Lemma 1.2.35. In fact, if s = 0, dimpy E > s is obvious. If

s>0,let0<t<s. ForannyE,byliimn%m%Zs>t,thereexistsN€Nsuch

that any n > NN implies % > tand v(I,(z)) < |L(z)|t. So lim, 00 Tg?gﬁt) <l<2.
For any 0 < & < t, by Lemma 1.2.35, we get H'"°(E) > 0 (where H*(E) denotes the s-
dimensional Hausdorff measure of the set E.) and then dimy F >t —¢e. So dimyg E >t

for any t < s. Therefore dimyg E > s. O

Remark 1.2.34. The statement (2) in Theorem 1.2.83 obviously implies the Proposition
1.8 in [37] which is called the modified mass distribution principle.

Recall that we use H*(F) to denotes the s-dimensional Hausdorff measure of the set
E.

Lemma 1.2.35. Let f > 1,8 > 0,c¢ >0, E C [0,1) be a Borel set and v be a finite Borel
measure on [0,1). If lim, o0 I\/I(ir(ba(jl)s) < ¢ for all x € E, then for any ¢ € (0,s), we have
HE(E) > clv(E).

This lemma is a combination of the next two. First we introduce the following concept.
Let 8 >1,s>0and E C [0,1). For any § > 0, we define

’H;’ﬁ(E) := inf { Z |kl 2 || <O, E C U Ji, {Ji} are countable Cylinders}.
k k

It is increasing as § \, 0. We call H*#(E) := lims_,o 7—[;”3 (E) the s-dimensional Hausdorff

measure of E related to the cylinder net of 5.

Lemma 1.2.36. Let § > 1, s > 0 and E C [0,1). Then for any ¢ € (0,s) we have
HB(E) < H5(E).

Proof. Fix 0 < e < s.

(1) Choose ¢y > 0 small enough as below.

Since f("*tDe 5 50 much faster than 83°n — oo as n — oo, there exists ng € N such
that for any n > ng, 88°n < g(ntYe. By %%5 —1 — 00 as d — 0", there exists dg > 0
small enough such that % — 1 > ng. Then for any n > % — 1, we will have

835n < /B(n—o—l)s.
(2) Fix § € (0,9p). Let {U;} be a d-cover of E, ie., 0 < |U;] <6 and E C U;U;. Then for
each Uj;, there exists n; € N such that 37~! < |U;| < B7™. By Proposition 1.2.9, U; can

be covered by at most 8n; cylinders I; 1,1; 2, -+ , I; 8n, of order n;. Noting that

8n;

[Iigl < 87 < B|Ui| < 86 and B € |J | L
i j=1
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we get

8n;

) < ZZ | ;1% < Z ;Zz i Z W < Z |U;]5 <. (1.11)

v Jg=1

where (%) is because # < |U;| < 9o implies n; > _13)(;;%50 — 1 and then 8n;3* < pnitle
by (1). Taking inf on the right of (1.11), we get HE?(E) < H; °(E). It follows from
letting § — 0 that H*5(E) < H*~¢(E). O

Lemma 1.2.37. Let > 1,5 > 0,¢ >0, E C [0,1) be a Borel set and v be a finite Borel

measure on [0,1). If lim, o0 I\/I( (i)ls <c forallx € B, then H¥P(E) > ¢ 'v(E).

Proof. For any § > 0, let Es :={x € E : |I,(x)| < ¢ implies v(I,(x)) < c|I,(x)|*}.

(1) Prove that when 6 \, 0, E5  E as below.

@ If 0 < 62 < 61, then obviously Ej, D Ej, .

@ It suffices to prove E = Js- o Es.

follows from F O Ej for all § > 0.

Let z € E. By lim,_oo T}IT(L()‘)) < ¢, there exists N, € N such that any n > N, will
have v(I,(x)) < c|[I,(x)|*. Let §, = |In,(x)|, then |I,(z)| < §, will imply n > N, and
v(In(x)) < c[Ip(z)]*. Therefore x € Es, C Uswq Es.

(2) Fix 0 > 0. Let {Ji}rex be countable cylinders such that |J| < 6 and e Jr D E D
Es. Let K' ={k € K : Jy N Es # 0}. For any k € K’, there exists 23 € J; U Es. By the
definition of Es, we get v(Jg) < ¢|Jk|*. So

v(Bs) <v( | Jo) < D vl) < D ddulP < e Y[Rl

keK'’ keK'’ keK’ keK

Taking inf on the right, we get v(Ejs) < CH?B(E) < cH®P(E). Let § — 0 on the left, by
Es /' E, we conclude that v(E) < cH*8(E). O

1.2.5 Hausdorff dimension of some frequency sets

We apply the Bernoulli-type measures and the modified lower local dimension related to
[B-expansions to give some results on the Hausdorff dimension of frequency sets and prove

Theorem 1.2.6 in this subsection. First we prove the following.

Theorem 1.2.38 (Upper bound of the Hausdorff dimension of frequency sets). Let § €
(1,2] and a € [0,1]. Then

—aloga — (1 —a)log(l —a)

dimHF/&a, dimHEﬁ,a, dimHF@a S logﬂ

In particular, dimy Fgo = dimpy Fgo= dim g FB,O = dimy Fj; = dimy Fg,= dim g F@l =
0.
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Proof. We consider 0 < a < 1 first.
For any x € [0,1) and n € N, it follows from v, (I, (z)) = a™o®™) (1 — a)N1 (=) that

—logve(In(z)) = No(z,n)(—loga) + Ni(z,n)(—log(l — a))

< (n— Ni(z,n))(—loga) + Ni(x,n)(—log(l — a)).

By |I,(x)] < 87", we get

—logv(In(x)) _ (1= 1) (~loga) + ME (~log(1 — a))

1.12
“log|In(2)] log B (12
(1) For any x € F ,, it follows from lim,, , (1 — W) = @ and lim;,,_,oo w =1-a
that
o logva(Lu(@) _ limy, o (1— P (~loga) + Ty oo T (— log(1 — a)
noo l0g|In(z)] log
_ —aloga— (1—a)log(l—a)
- log 3 '
By Theorem 1.2.33 (1), we get
) —aloga — (1 —a)log(l —a
i gy < ~01080 == logl )
og B
(2) For any x € Fg 4, it follows from lim,, (1 — W) = ¢ and lim,,_, Nl(s’n) =1-a
that
o logva(fn(@)  _ Tmyc(1 - ME)(~loga) + lim, ., P (~ log(1 — a))
n—oo log|In(z)] 7 log 8
_ —aloga— (1—a)log(l—a)
N log 3 '

By Theorem 1.2.33 (1), we get

—aloga — (1 —a)log(l—a)

dimpy Fg, <
11 7 B,a > log,B

Therefore, it follows from Fg , = Fg,N F@a that

—aloga — (1 —a)log(l —a)
log 3 '

dimHF,g,a, dimHEB,a? dimHF@a S

Before proving dimpy Fgo = dimHE@O = dimHF@O = dimpy Fj3; = dimpg Eﬁﬂ =
dim g Fg’l = 0, we establish the following.



62 CHAPTER 1

Lemma 1.2.39. Let 8 € (1,2] and a € (0,1).

(1) Let
. {1 <k <n:e(w,B) =0}
= : < .
Fyeai={z€l0,1) lim - <a}
Then | log(1 )
. —aloga —log(l —a
dimpg Eﬁ,ga < log A .
(2) Let
_ - 1<k<n: =0
Fg>q:= {x €[0,1): lim #{l<k<n:ep@f) } > a}.
= n— o0 n
Then | (1 Jlog(1 )
. — —loga— (1 —a)log(l —a
d F < .
mpg B,2a = logﬁ
Proof.

(1) For any = € Fj ,, it follows from (1.12), lim
(Vn € N) that

1— Nl(xvn)) < a and Nl(:bﬁyn) <1

TL—)OO( n

Jim log vy (I, (z)) < —aloga —log(1 — a)‘
n—oo 108 I ()| log 8

By Theorem 1.2.33 (1), we get

) —aloga —log(l — a)
dimg Fgo, < log A .

(2) For any z € Fjg >, it follows from (1.12), lim,,_, w <l-aand1-— w <1
(Vn € N) that

lim log vg (I (z)) <z loga — (1 —a)log(l — a)'
n—oo log|In(z)| log

By Theorem 1.2.33 (1), we get

—loga — (1 —a)log(l —a)
log 8 '

dimg F@za <

Now we prove dimy Fgg = dimHE/B’O = dimHFB,O = dimpy Fg; = dimHEBJ =
dimy Fa1 = 0.
(1) For any 0 < a < 1, Fgg = Fpo C Fgo C Fg, implies dimpy Fpo = dimpy Fp <
dimy Fgo < dimg Fg <,. Let a — 0, by Lemma 1.2.39 (1), we get dimy Fpo = dimy Fgo =
dim g EB,O =0.

(2) Forany 0 < a < 1, Fg1 = Fg, C Fp1 C Fp>, implies dimpy Fz; = dimpy Fg, <
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dimgy F@l < dimpg FB,Za- Let a — 0, by Lemma 1.2.39 (2), we get dimpy Fp; = dimpg Fg,=
dimy Faq = 0. O

Before proving Theorem 1.2.6, we state the following two lemmas, which will be proved

at the end of this subsection.

Lemma 1.2.40. Let 8 € (1,2) such that (1, 3) = 10™10%° for some integer m > 0. Then
for any x € [0,1) and integer n > m + 2, we have

n < No(z,n) + (m+2)Ni(z,n) <n+m+ 1.
Lemma 1.2.41. Let 8 € (1,2) such that (1, 8) = 10™10%° for some integer m > 0. Then
for any p € (0,1), we have

1 m(l—p)+1

"0 S = G0 ) 4 1

where my, is given by Theorem 1.2.5.

Proof of Theorem 1.2.6. (1) For any x € [0,1), by Lemma 1.1.3, each digit 1 in e(z, §)
must be followed by at least m + 1 consecutive 0’s. Thus
Nl(:z:,n)< 1 #{1§k§n:€k(x,/3):0}>m+1

lim < and then lim >

m+1
for any z € [0,1). If 0 < a < 2H,

(2) @ First, we consider m+1 <a<l
For any = € [1,0) and n € N, by Proposition 1.2.8, we get

we get Fgo=Fg,=Fgq,=10.

1 < 1 < 1 '
nlogf —loge = —log|I,(z)] — nlogf

Let p := ma—miZazl gy mil g < 1 we get 0 < p < 1. Let v, be the (p,1 — p)

ma—m-+a m—+2
Bernoulli-type measure on [0,1). It follows from

—log vp(In(x)) = No(z,n)(—logp) + N1(z,n)(—log(1 - p))
that

Relin) (—logp) + MM (~log(1 —p)) _ log vy (In(2)) _ M5 (~logp) + MG (~ log(1 — p))
log B — o< = log|L(z)] — log 3

(1.13)

Taking lim we get

—Mn—0oQ’

No(z,n) (_ lo Ni(z,n) .
. .~ (= logp) + = (—log(1 — p))
dim® v (z) = lim L .
===loc p( ) o logﬁ
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i) Prove dimHEB,a < (1—=(m+2)(1—a)) (= lli))ggpﬁ)—’—(l a)(—log(1— p))
Ni(z,n)

For any = € Eﬁ,a? we have lim,,_o0
lim No@.n) — 1 — (m 4 2)(1 — a). Thus

= 1 — a and then by Lemma 1.2.40,

T —> 00 n
. lim, |, o) (66 p) 4 Tim, e P& (_10g(1 — p))
d'1711’15)(2]/]3(‘,1?) S = logﬂ
_ (A=(m+2)A—-a))(=logp) + (1 —a)(=log(1 —p))
log 8 ’

Then we apply Theorem 1.2.33 (1).

(1—=(m+2)(1—a))(—log p)+(1—a)(—log(1—p))
log 8 )
Ni(z,n)

ii) Prove dimgy F/g,a <

For any z € nga, we have lim = 1 — a and then by Lemma 1.2.40,

n— 00 n

Tty yo0 M2 — 4 — (1 4 2)(1 — @). Thus

dim? v, (z) im0 205 (—log p) + lim,, o &M (—og(1 — p))
===loc”P logﬁ
_ (1= (m+2)(1 —a))(~logp) + (1 — a)(~log(1 — p))
log B8 :

Then we apply Theorem 1.2.33 (1).

(1-(m+2)(1—a))(=logp)+(1—a)(—log(1—p))
log 8 .
Ni(z,n)

iii) Prove dimpy Fp, >
For any =z € Fj,, we have lim,
limy, 00 w =1—(m+2)(1—a). Thus

= 1 — a and then by Lemma 1.2.40,

(1= (m+2)(1 —a))(=logp) + (1 - a)(—log(l — p))
log 3 '

By Theorem 1.2.33 (2), it suffices to prove vp,(F3,) =1 > 0. Noting that

@gjcyp (l’) =

1
ex(2,) =06 (BT 2] =02 0< T u < 3 11[07%)(715*19@) =1,

we get

1
E#{lﬁkgnzak( ) =0} =~ Z]l Tkl

Since ([0,1), B[0, 1), my, T) is ergodic and the indicator function 1y, 1) is my,-integrable,
it follows from Birkhoff’s ergodic theorem that

)

|

k—1 _
nll_)ﬂ;()ﬁz}l[o,ﬁ (T ') /ﬂ[oﬁé)dmp_mp[o,

by m(l—p
Lemma 1.2.41 (m + 1)(1

~—

+1 by the
p——— )
p) + 1 definition of p
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for mp-a.e. x € [0,1). Therefore m,(Fpg,) = 1. By m;, ~ v}, we get vp(Fz o) =1 > 0.

Combining i), ii), iii) and Fg, = Fg, N Fg.q, we get

(1 —(m+2)(A ~a))(~logp) + (1 —a)(~log(1 — p))

dimpy Fp o, = dimpy Fg , = dimpy Fﬁ,a = log

ma—m-+2a—1
ma—m+a

We draw the conclusion by p =
@ For a = 1, by Theorem 1.2.38 we get dimy Fp; = dimg Fjg; = dimg Fp1=0.
@ Prove dimH Fﬁvmi-g = dimHE@ m+1 — dimHFB7m7+1 =0.

+ "m+2 m—+2
#{1<h<niey(2,8)=0} < m+l
n = m+2

By lim,, ., for any x € [0,1) in (1), we get Fgmi1 = Fﬂ mil.
'm+2 '"m—+2
Since F; mi1 C F 5 my1, it suffices to prove dim F , m+1 = 0.
6’m+2 5’ m+2 677777.4—2

For % <a<l,letp:= % Then 0 < p < 1. For any x € I3 -, (see Lemma
1.2.39 (1) for definition), we have lim, w > 1 — a and then by Lemma 1.2.40,

lim Nolwn) <1 (m+2)(1—a). It follows from W <1 (¥n € N) and (1.13) that

2=2222n—00 n =

i 087pUn(2)) (1= (m+2)(1—a))logp +log(1 —p)
oo log|In(z)] log 3

for any z € Fj3 ,. By Theorem 1.2.33 (1) and the definition of p, we get dimpy Fjg o, <

(ma —m+ 2a — 1)log(ma —m + 2a — 1) — (ma — m + 2a — 1) log(ma — m + a) + log(1 — p)

log 8
For any %i% < a < 1, E@% C Fg <, implies dimHE@% < dimpg Fg,. Let
a—)%, then p — 0 and we get dimHE&LH =0. O

m—+2

Proof of Lemma 1.2.40. Let w € 3. It suffices to prove

1) (2)
n < No(w)+ (m+2)Ni(w) < n+m+ 1.

(1) Let
Npp(w) :={2 <k <n:wp_qwi =10}, NMoo(w) :={3 <k <n:wp_swi_ 1w =100},

< Nigmir(w) :={m+2<k<n:wp_pm_1---wp = 10"}

and let
Nip(w) := #No(w), Nigo(w) := #Nioo(w), -+, Nigm+1(w) := #Njgm+1 (w).

Noting that by Proposition 1.1.16, u0™*! is full for any u € Y% and then u0™ 11 s
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admissible, we get

{1<k<n:wp=0}=No(w)+ 1) UNo(w) UNigo(w) U -+ UNjgm1
which is a disjoint union. Thus

#{1 <k <n:wy =0} = No(w) + Nio(w) + Nigo(w) + - - - + Nygm+1(w)

and then
n = No(w) + Nio(w) + Nigo(w) + -+ - + Nygm+1(w) + Ni(w).

By Nig(w), Nigo(w), - -+ , Nigm+1(w) < Ny(w), we get n < No(w) + (m + 2) Ny (w).
(2) If N1(w) = 0, the conclusion is obvious. If Nj(w) > 1, except for the last digit 1 in w,
by Lemma 1.1.3, the other 1’s must be followed by at least m + 1 consecutive 0’s, and non

of these (0’s can be replaced by 1 to get an admissible word. Therefore
Ni(w) + (m + (N1 (w) — 1) + No(w) <, e, No(w) + (m+ 2)Ni(w) <n+m+1.
O

Proof of Lemma 1.2.41. Notice that my[0, %) =1- mp[%, 1) where

n—1 n—1

1.1 el i
mp[571)—nll_>rrolonkZOVpTﬂ [B,l) _nh—{gonkzoﬂp% [1]

by Theorem 1.2.5. For any integer k& > 0, let

ay = Mpogk[l] = Z fplur - ugl]
u1~~uk162f3
and
by, == ,upa/;k[()mﬂ] = Z pipu - - - ugr 0.

ul--'uk0m+162g

By Theorem 1.2.5, the limits

= =
a:= nh—{gonkzoak and b:= nlingonkzobk
exist.
(1) Prove a = (1 — p)b. In fact,
b1 = > pip[us - - - ur 00" 4 > fiplu -+ upl0 ]

u1-~~uk00m+1622 ulmuklOmelGEg
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— Z fiplus - - up0™ 0] + Z ppluy - - - w10,

u1-~~uk0m+1622 uruRl€Xy

On the one hand, by Proposition 1.1.16, uy - - - u3,0™*! is full and then uy - - - u,0™ 11 € EE.
On the other hand, by Lemma 1.1.3, for any 0 < s < m, uj - - - ux10°10™ 5 ¢ EE and then
[ug -+ ur10mT) = [ug - - - ug1]. Thus, it follows from the definition of y, that

beer=p Y pplurw0™ Y pfun e ugl] = pby + ay.

u1---uk0m+1€EE up-uRlEX)

Let n — o0 in

1 n—1 1 n—1 1 n—1
~D be=p— Y bt ak.
k=0 k=0 k=0

We get b = pb+ a.

(2) Prove b+ (m + 1)a = 1. It follows from

( U [ug - ukOmH]) U < U [ug - uk1]>

u1-~-uk0’”+1622 u1~~~uk1622

U ( U [ul---uk+11])u---u< U [ul---uk+m1])
ur g1 1655 U 1€5%

= ( U [ug - - ukOmH]) U ( U [ug - - ukl()m]>
ul---ukom‘HGEg u1-"uk10m€2;§

U ( U [ug - - 'uk+110m_1]) U.--u ( U [ug - 'uk-i-ml])
u1-~~uk+110m*162f3 u1'~uk+m1622§

that by +ap + ag+1 + -+ ag+m = 1. Let n = o0 in

1 n—1 1 n—1 1 n—1 1 n—1

_ b _ _ e — =1.

D SURED SURED SNRERNES S
k=0 k=0 k=0 k=0

Wegetb+a+a+---+a=1

(3) It follows from (1) and (2) that a = (Tn—l-l;(;lp—p)-i-l' Therefore
1 m(l—p)+1

0,-)=1-a= .

mpl0: ) T mr)i-p +1
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1.3 Hausdorff dimension of frequency sets

Recall that Y is the set of admissible sequences and let Sg be its closure in the metric
space (.Ag, dg), where Ag is the alphabet {0,1,---,[3] — 1} and dg is the usual metric on
Ag (also on Sg) defined by (1.9). In this section, we use w5 : Sg — [0,1] to denote the
natural projection map defined by (1.3) restricted to Sz (so 7TB_1A C Sg forany A C [0, 1]).

As the first main result in this section, the following theorem is a folklore result used

in some former papers without explicit proof (for example [114, Section 5]).

Theorem 1.3.1. Let B > 1. The Hausdorff dimension of any set Z in (Sg,dg) is equal to

the Hausdorff dimension of its natural projection in [0,1], i.e.,
dimpy(Z,dg) = dimpg 7g(Z).

It is worth to note that dimg(Z,dg) > dimpy 7g(Z) follows immediately from the fact
that mg is Lipschitz continuous. But even if omitting countable many points to make
mg invertible, the inverse is not Lipschitz continuous. This makes the proof of the in-
verse inequality much more intricate. We will prove it by using a covering property (see
Proposition 1.2.9) given by a recent result on the distribution of full cylinders.

In the following, we consider the digit frequencies of the expansions. This is a classical
research topic began by Borel in 1909. His well known normal number theorem [31] implies
that, for Lebesgue almost every x € [0, 1], the digit frequency of 0’s in its binary expansion
is equal to 1. Given 3 > 1, for any a € [0, 1], recall from Section 1.2 that those z’s in [0, 1)

with digit frequencies of 0’s equal to a in their S-expansions constitute the frequency set

Fyu e {m E0.1): lm #{l<k< n;ék(wvﬁ) =0y _ a},
where e (z, 8) is the kth digit in the S-expansion of x and # denotes the cardinality. For
8 = 2, Borel’s normal number theorem means that FQ’% is of full Lebesgue measure, and
implies that Fy , is of zero Lebesgue measure for all a # % This leaves a natural question:
How large is Fb 4 in the sense of dimension? Forty years later, another well known result

given by Eggleston [59] showed that

—aloga — (1 —a)log(l—a)

dimpy Fp 4 = for all a € [0, 1].

log 2
For the case that 8 is not an integer, the above question, about giving concrete formulae
for the Hausdorff dimension of frequency sets, is almost entirely open. Although the
Hausdorff dimension of frequency sets can be given by some variational formulae (see for
examples [65, 111, 113]), they are abstract and concrete formulae are very scarce. Except
for Theorem 1.2.6 in this thesis, the previously known concrete formula is only the one in
Remark 1.2.7.
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As the second main result in this section, the next theorem takes a step from abstraction
to concreteness. It means that for calculating the Hausdorff dimension of frequency sets,
we only need to focus on the entropy (see [121] for definition) with respect to Markov
measures of explicit order (see Definition 1.3.11) when 8 € (1,2) and the S-expansion of
1 is finite. More concretely, it suffices to optimize a function with finitely many variables
under some restrictions.

For 8 > 1, recall that Yj is the set of admissible words with length n € N and
22‘3 = U;’lozlilg. For any w € ¥, we use

[w] := {v € S : v begins with w}

to denote the cylinder in Sg (not ¥g as in Sections 1.1 and 1.2) generated by w throughout
this section.

Recall that o is the shift map on .Ag defined by (1.2), and we also use it to denote its
restriction on S for simplification throughout this section (so o0 71A C Ss for any A C Sp).
Let M (Sg) be the set of o-invariant Borel probability measures on Sg and h, (o) be the
measure-theoretic entropy of o with respect to the measure p.

In the following, we regard 0log0, 0log %, max () and sup ) as 0.

Theorem 1.3.2. Let f > 1 such that £(1,5) = €1(1,8) - - -em(1, B)0> for some integer
m > 2 with e, (1, 8) # 0 and let a € [0,1]. Then

dimpy Fgq = -max {hu(a) i p € Mo (Sg), 1[0] = a, p is an (m—1)-Markov measure}.

1
log 8
More concretely,

1
dimpy Fpq = Tog B - max {h#(ﬁ,m) : i is a (B, m, a)-coordinated set functz’on},

where for a set function p defined from {[w] : w € UF X3} to [0,1],

plws - - - W]
,LL[w]. . e w’n’L71] ’

bu(/87m) = Z plwy -+ - wp] log

wl---meEgL

and p is called (B, m,a)-coordinated if

plol=a, > ppl=1, Y plwv]=plw] and Y pluw] = plw)

veAs vEAg ucAg
vaZE quZZ

for all w € U?;llﬁg.

Note that for any (m — 1)-Markov measure p € M,(Sg), hu(o) is exactly equal to
h.(B,m) (see Proposition 1.3.12).
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As applications of the above theorem, we can obtain exact formulae for the Hausdorff
dimension of frequency sets for the 8’s in Theorem 1.2.6 and for another important class

of B’s in the following theorem, which are called pseudo-golden ratios

Theorem 1.3.3. Let 5 € (1,2) such that €(1,3) = 1™0 for some integer m > 3.
(1) If0<a< i, then F3, =0 and dimpy Fg, = 0.
(2) If £ <a <1, then

. 1
dimpy Fﬁ’a - logﬁ . 11,@2}7&72 fa(xl’ o ’xm72)

where fo(x1,--+ , Tm—2)

=aloga — (a — x1)log(a — 1)

— (z1 — x2) log(z1 — x2)

— (Tm—3 — Tm—2)10g(Tm-3 — Tm—2)
—l—a—21——xmo)logl—a—x1 — - — xym_2)

—(r14+ -+ rpm3+ 22,2+ a—1)log(xy + -+ 23+ 2T,-2+a—1)

and the mazimum is taken over xi,--- ,Tm,m—o Ssuch that all terms in the log’s are non-
negative. That is, a > x1 > 29> -2 Tmo>0andx1+ -+ xm s+ xm o< 1—a<
1+ T3+ 2T 2.

In particular, dimpg FB,% =dimpy F; = 0.

Remark 1.3.4. For the case m = 3, i.e., €(1,8) = 1110%°, given any a € [%,1], by

calculating the derivative of fo(x1), it is straightforward to get

. 1 10a — 3 —v/—8a2 4+ 12a — 3 10a — 3 —v/—8a2 4+ 12a — 3
dimpFg ., = Iog 3 (a loga — 5 log 5
—2a+3—+v—-8a%24+12a — 3 —2a+3—+v—-8a%+12a — 3
— log
6 6
—a++v—8a%+12a — 3 —a++v—8a%+12a -3
— 3 log 3 )

In particular, dimg Fﬁ 1 =dimy Fg1 = 0.
'3

Base on Sections 1.1 and 1.2, we give additional and necessary preliminaries in Subsec-
tion 1.3.1, and then prove Theorems 1.3.1, 1.3.2 and 1.3.3 in Subsections 1.3.2, 1.3.3 and
1.3.4 respectively.

1.3.1 Notation and preliminaries

In Lemma 1.1.3, we introduce Parry’s criterion for ¥3. Here we also need the criterion for

Sp.
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Lemma 1.3.5 ([99]). Let 8 > 1 and w be a sequence in Ag. Then
weYy <= of(w)=<e"(1,8) forallk>0
and
we Sy = of(w)=e(1,8) forallk>0
where < and < denote the lexicographic order in Ag.

We prove the following useful proposition.

Proposition 1.3.6. Let 5 > 1 such that (1, 5) = €1(1,5) - - - em (1, 5)0™ for some integer
m > 2 with e,(1,8) # 0 and wy - - - wy, € Aj for some integer n > m, then

w1~--wn62};> if and only if w1 W, W+ Wpt1, - - ,wn,m+1---wn622§.

Proof. Obvious.
For simplification we use €1, - , &y, instead of £1(1,53), -+ ,em (1, 8) in the following.

Suppose

*
wlwm7w2wm+1’ ’wn_m_‘_lwnezﬁ

By Lemma 1.3.5 we get
Wy Wi, W+ W1+ s Wiomg 1+ Wn = €1+ Emt (Em — 1).
In order to get wy - --w, € EZ, by Lemma 1.3.5, it suffices to check
oF(wy - w,0°) < (€1 Em_1(em — 1)) for all k> 0.

If k£ > n, this is obvious. We consider k < n — 1 in the following. Let [ > 0 be the greatest
integer such that k +1im <n — 1. Then

Uk(wl o wp0%) = (Wha 1+ Whaom ) (Whamt 1+ Wht2m)

k+(l+1)m—n\noo
"'(wk+(lfl)m+1"'wk+lm)(wk+lm+1"'wn0 (1) )0

(51 . Em—l(gm _ 1))l(wk+lm+1 . wnokJr(lJrl)mfn)Ooo

(e1-+ em—1(em — 1)),

IA

A

where the last inequality follows from
Whtim+1 wn0k+(l+1)m_" €1 emat1(Em — 1), (1.14)

which can be proved as follows. In fact, by wp—my1---wy € E/’g and Lemma 1.3.5, we get

k+(l+1)mfn(

o Whpemt1 * Wr0%°) < (61 Em—1(em — 1))
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This implies (1.14). O

Definition 1.3.7 (Hausdorff measure and dimension in metric space). Let (X,d) be a
metric space. For any U C X, denote the diameter of U by |U| := sup, ,cpy d(z,y). For
any AC X,s>0 and é > 0, let

Hi(A,d) = inf { i |Ui|*: A C G Ui and |U;| < § for alli € N}.
i=1 i=1

We define the s-dimensional Hausdorff measure of A in (X,d) by
H(A,d) = lim H3(A,d)
6—0
and the Hausdorff dimension of A in (X,d) by
dimp (A, d) :=sup{s > 0: H*(A,d) = oo}.

In the space of real numbers R (equipped with the usual metric), we use H*(A) and dimg A
to denote the s-dimensional Hausdorff measure and the Hausdorff dimension of A respec-

tively for simplification.

Definition 1.3.8 (Lipschitz continuous). Let (X,d) and (X', d’) be two metric spaces. A

map f: X — X' is called Lipschitz continuous if there exists a constant ¢ > 0 such that

d(f(z), f(y)) <c-d(z,y) forall xz,y € X.

The following basic proposition can be deduced directly from the definitions.

Proposition 1.3.9. If the map f : (X,d) = (X', d’) between two metric spaces is Lipschitz

continuous, then for any A C X, we have
dimgy (f(A),d) < dimpy(A4,d).

Recall that M, (Sg) is the set of o-invariant Borel probability measures on Sz. The
following is a consequence of Carathéodory’s measure extension theorem and the fact that

for verifying the o-invariance of measures on Sg, one only needs to check it for the cylinders.

Proposition 1.3.10. Let 8 > 1. Any set function pu from {{w] : w € X3} to [0,1] satisfying

doull =1, > plwo]=pw] and Y pluw] = plw]

UE.A,(; UEA[} UE.Aﬁ
wveE;‘a uweE;‘a

for all w € E;‘g can be uniquely extended to be a measure in My(Sg).
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The following concept is well known (see for examples [65, Section 2| and [80, Section
6.2]).

Definition 1.3.11 (k-Markov measure). Let § > 1, k € N and pp € M(Sg). We call 1 a

k-Markov measure if

for all wy - - - wy € B with n > k.

Recall that h, (o) is the measure-theoretic entropy of o with respect to the measure p.
Using P := {[v] : v € Ag} as a partition generator of the Borel sigma-algebra on Sg, the

proof of the following proposition is straightforward.

Proposition 1.3.12. Let 5> 1, k € N and pp € M(Sg) be a k-Markov measure, then

plwy -+ Wi 1]

hu(o) = — Z plwy -+ wiy 1] log fwr - w]

k+1
w1 wk+1625

1.3.2 Proof of Theorem 1.3.1
The main we need to prove is the following technical lemma.

Lemma 1.3.13. Let > 1, s >0 and Z C Sg. Then for any € € (0,s), we have
H*(Z,dg) < H*™"(mp(Z)).

Proof. Fix e € (0,s). Let Zy := ZNXg. Since Sg\ X3 is countable, we only need to prove
HE(Zy, dﬁ) < 'Hsfa(Trﬁ(Zo)).

(1) Choose 9 € (0, %) small enough as follows. Since "D — oo much faster than
83°n — 0o as n — 0o, there exists ng € N such that for any n > ng, 83°n < g"tle. By
_1012%6 —1— oo as § — 01, there exists dp € (0, B) small enough such that —li(;g;o —1 > nyg.
Then for any n > léoggﬁéo — 1, we will have 83%n < gnt1he,

(2) For any d € (0,dp), let {U;} be a d-cover of 775(20) ie,0< |U] < d and m3(Zy) C U;U;.
Then for each U, there exists n; € N such that g i < |Ui| < 5% :

U; can be covered by at most 8n; cylinders I; 1,1; 2, - - , I; g, of order n;. It follows from

By Proposition 1.2.9,

8n;

< B|U;| < B and Zoczﬁmuwﬁ Uvic|JUEsnwg'ny)
i j=1

_ 1
Zs Nyl l = G

that

8n;

Hislody) S 03 9 ol = 30 3 £ 3 ey < SIS (119

i =1
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where (%) is because # < |Ui] < 8o implies n; > =182 _ 1 and then by (1) we have

log B
8n;3° < BtDe Taking inf on the right of (1.15), we get His(Zo,dg) < H5 “(m5(Zo)).
It follows from letting § — 0 that H*(Zy,dg) < H*°(mg(Zo)). O

Proof of Theorem 1.8.1. The inequality dimg(Z,dg) > dimpy 75(Z) follows from Propo-
sition 1.3.9 and the fact that mg is Lipschitz continuous. The inverse inequality fol-
lows from Lemma 1.3.13. In fact, for any ¢ < dimpy(Z,dg), there exists s such that
t < s < dimg(Z,dg). By H*(Z,dg) = oo and Lemma 1.3.13, we get H'(m3(Z)) = oo.
Thus t < dimpy 7g(Z). It means that dimpy(Z,dg) < dimpy 75(Z2). O

1.3.3 Proof of Theorem 1.3.2

We will deduce Theorem 1.3.2 from the following proposition, which is essentially from
[101].

Proposition 1.3.14. Let f > 1 and a € [0,1]. Then

dimpy Fj o = sup {hu(a) € Mo (Sp), ul0] = a}-

1
log g
For the convenience of the readers, we recall some definitions and show how Proposition

1.3.14 comes from [101].

Definition 1.3.15. Let 5 > 1.
(1) For any w € Sg and n € N, the empirical measure is defined by

n—1
1
gn(w> = g E 5in
=0

where &y, is the Dirac probability measure concentrated on w.

(2) Let A be an arbitrary non-empty parameter set and let

F = {(fa,ca,da) o€ A}

where fo 1 Sg — R is continuous and cq,do € R with co < dy for all « € A. Define

Sp F = {w €Sg:VaeAcy < lim [ fo dEp(w) < lim /fa d&,(w) < da}
n—00 n—00
and

Mg F = {u € My(Sg) :Va € A cq < /fa dp < da}.

Combining Theorems 5.2 and 5.3 in [101], we get the following.
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Lemma 1.3.16. Let 3 > 1. If Mg 7 is a non-empty closed connected set, then
hiop(Sp,F7,0) = sup {h#(o—) IS MB,]-‘}

where hiop(Sa.F,0) is the topological entropy of Sg r in the dynamical system (Sg,dg, o).
(See [32] for the definition of the topological entropy for non-compact sets.)

For 3> 1 and a € [0, 1], let

1< < . e
Sg,a::{wesﬁ: lim LS k<n:w O}Za}.

n—00 n

In Definition 1.3.15 (2), let F be the singleton {(1g),a,a)}, where the characteristic func-
tion 1pg : Sg — R is continuous. (Here we note that another characteristic function
Ly, 1y [0,1] — R is not continuous, which means that some other similar variational
formulae corresponding to dynamical systems on [0,1] can not be applied directly in our

case.) We get the following lemma as a special case of the above one.
Lemma 1.3.17.
htop(S,B,aa U) = sup {hu(a) HE Mo(Sﬂ),M[O] = a}'

Hence, Proposition 1.3.14 follows from

73(58,0)\FB,a

dlmH Fﬁ,a dlmH ﬂ_ﬁ(sﬂ’a)
is countable
by .
Theorem 1.3.1 lmH( B,a» ﬁ)
by 1

Lemma 1.3.18 log B8 tOp( Bia U)a

where m3(S3,4) \ Fj,q is countable since we can check m5(S3,4) \ F,, C m3(Ss \ Xg) and
Lemma 1.3.5 implies that Sg \ ¥ is countable.

Lemma 1.3.18. ([114, Lemma 5.3]) Let § > 1. For any Z C Sg, we have

. 1
dlmH(Z, d/@’) = @ . htop(27 O')

We give the following proofs to end this subsection.

Proof of Lemma 1.3.17. In Definition 1.3.15 (2), let F be the singleton {(1}, a,a)}. Then

n—1
557]: = {w S Sﬁ : lim l Z ]1[0](aiw) = a} = S@a
1=0

n—00 N 4
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and

denote
M= {1 € Mq(S5) : pl0] = af S22 Mg,

(1) If Mg, = 0, we can prove Sz, = () (and then the conclusion follows).
(By contradiction) If Sg, # 0, there exists w € Sg 4. For any n € N, let

pn = Ep(w) € M(Sg) := {Borel probability measures on Sg}.

Since M(Sg) is compact, there exists subsequence {jin, }ren C {pintneny and p € M 552
such that g, > p (i.e. p,, converge to p under the weak* topology). By g, oo~ ! %
poo~tand py, 007 — puy, 0, we get oot = p and then p € M, (Sg). It follows

from
. . 1 i i WESp,a
pl0] = [ L dp = lim [ Lpop dpin, = lim o ;0: Lioj(o'w) a

that u € Mg, which contradicts Mg, = 0.
(2) If Mg 4 # 0, by Lemma 1.3.16, it suffices to prove that Mg, is a closed connected set

® Prove that Mg, is closed.
Let {fin,n € N} C Mg, and g € M,(Sg) such that i, = p. It follows from

0] = | oy o= i, [ iy do = Jin 0] =
that p € Mpg,.

@ Prove that Mg, is connected.
It suffices to prove that Mg, is path connected. In fact, for any g, u1 € Mgq, we
define the path f : [0,1] — Mg, by f(s) := ps := (1 —5)po+sp1 for s € [0,1]. Then
f(0) = po, f(1) = p1 and f([0,1]) C Mpg,. It remains to show that f is continuous.
Let {s, sp,n > 1} C [0,1] such that s, — s. We only need to prove f(s,) — f(s),
ie., Ws, N ps. Let ¢ : Sg — R be a continuous function. It suffices to check [ ¢
dps, = [ ¢ dps, ie.,

(1—sn)/¢duo—|—sn/¢du1—>(1—s)/¢duo—|—s/¢dm.
This follows immediately from s, — s.

O

Proof of Theorem 1.53.2. By Proposition 1.3.14 it suffices to consider the following (1), (2)
and (3).
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(1) We have

sup {h#(a) i p € Mq(Sg), 1[0] = a, p is an (m — 1)-Markov measure}

<sup {u(0) : 1 € My (S), ul0] = a}

<sup {f)u(ﬁ,m) : 1 is a (8, m, a)-coordinated set function}.

Since the first inequality is obvious, we only prove the second one as follows. Let u €
M (Sp) such that p[0] = a. Restricted to {[w] : w € UjL X3}, p is obviously a (8, m, a)-
coordinated set function. It suffices to prove h, (o) < h,(8,m). Using P := {[v] : v € Ag}
as a partition generator of the Borel sigma-algebra on (Sg,ds), by simple calculation,
we get that the conditional entropy of P given \/ZL:_I1 o kP with respect to u, denoted
by H, (73 Vit U‘W’), is equal to h,(B8,m). Since H, <73 Vi) G_kP) decreases as n
increases and [121, Theorem 4.14| says that it converges to h, (o), we get hy,(c) < b, (8, m).

In the following we attached the calculation mentioned above.

(P 1V o2 = (p 1V o)
k=0

k=1
wPNo'Q)
p(o=1Q)

plws - - - wp]
ploHws - - wp))

=- > p(PNo~'Q)log

PeP, Qe lo kP

S Y g

wl‘--meE};

= > plwrwpllogplws - wn] = Y plwn e wp] log plws - wp)
wl"'meEZg w1---wm€EE

= > plwrwpllogplwy - wp] = Y plwn e wp]log plws - w)
w2~--wm622 w1~~-wm622

- Z p[wy - - Wy—1] log plwy - - - wp—1] — Z p[wy -+ - Wy ] log puwy - - - W)
w1~--wm—1622; wl“'meEz‘?

= Z plws - - wp] log plwy - - - wm—1] — Z plws - wim] log plwy - - - wn)
wl---meE; wl'-'meEZ

{hu(a) i€ My(Sg), 1[0] = a, p is an (m — 1)-Markov measure}

= {hu(ﬁ,m) 1 is a (8, m, a)-coordinated set function}.

follows from the facts that every (m — 1)-Markov measure p € My(Sg) with p[0] = a
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restricted to {[w] : w € UL 3%} is a (B, m, a)-coordinated set function and Proposition
1.3.12 implies hy, (o) = b,(8,m).

Let p be a (8, m,a)-coordinated set function. By the entropy formula Proposition
1.3.12, it suffices to show that p can be extended to be an (m — 1)-Markov measure in
M, (Sp). Note that p is already defined on all the cylinders of order < m. Suppose that
for some n > m, p is already defined on {[wy---wy] : wy - w, € Zg} Then for all

W1+ Wpa1 € Eg“ we define

Plwn—m+2 " - Wnt1]
[ wn—mt2 - wn]

,U/[wl .o wn+1] = /’L[wl wn] .

where the right hand side is regarded as 0 if one of p[w; - --wy], plwp—ms2---wy] and

p[Wn—m+2 - wpy1] is 0. By Proposition 1.3.10 it suffices to check

® Y ulwe]=pfw] ad @ S pluw] = lu]

veEAg ucAp
vaEg uwGEE

for all w € Xf with n > m. (Note that for n < m — 1, @ and ) are already guaranteed
by the condition that p is (5, m, a)-coordinated.)
@D Let n >m and wy -+ - w, € Eg. Then

’LU _ .. .’LU ’L)
Z pwy -+ wyv] = Z ”[wl"'wn]'u[[lj m+2 ---1:]] (;)M[wr-'wn],
vE.Ag UEAﬁ P Wn—m+2 n

wl---wnveEg w1---wnv622§

where (%) can be proved as follows.

i) If pfw; - - wy] = 0, then (%) is obvious.

i) If plwp—myo -+ - wy] = 0, since the fact that p is (5, m, a)-coordinated implies p[wy,—m41 - -

< plwp—mt2 - wy], we get plwp—mi1 - wy] = 0. Then

plwn—m+1 - wn]
M[wn—m—l—l e 'wn—l]

M[wlwn]:y][wlwnil] :0

and () follows.

iii) If plw; - - wy] # 0 and plwp—m+2 - - - wy] # 0, then (%) follows from

(%)
E /’L[wn—m+2 T wnv] = § M[wn—m+2 T wnv] = ,u[wn—m—i—Z T wn]a
veEAg vEAg
w1-~~wnv622 wn_m+2~--wnvezg

where the last equality follows from the fact that u is (8, m, a)-coordinated, and (%)

follows from the fact that wy - - - wy, € E; and Proposition 1.3.6 imply the equivalence

. wn]
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of wy---wyv € Ez} and Wy_mi2 WU € E’E.

@ Prove ) ueAg pluwy -+ wy] = plwy -+ - wy] for all wy ---w, € ¥ and n > m by
uw1---wn€EZ§

induction. Since p is (8, m,a)-coordinated, the conclusion is true for n = m — 1. Now
suppose that the conclusion is already true for some n > m — 1. We consider n + 1 in the

following. Let wy - - wp41 € Eg“. Then

—

> pluws - wngd] ;) > pluwy - wnga]

UE.AB uEAg
uw1~~~wn+1EEE uw1~~-wn622

PWn—m+2 * - Wnt1]
PWn—m2 - - - Wn]

I

(]
=
I
g

. 'wn] .
u€Ag
uw1~~-wn622

(%)

k% PWn—mt2 - Wnp1]

PWn—my2 - Wy

= plwy - wnial,

where (x) follows from the fact that wy - wy41 € E’E and Proposition 1.3.6 imply the
equivalence of uwi -+ wp41 € ZZ) and uwy - w, € EE, and (xx) follows from inductive
hypothesis.

(3) By the definition of (8, m,a)-coordinated set functions and b, (3, m), it is straightfor-

ward to see that the supremum of
{f)u(ﬁ,m) : uis a (8, m,a)-coordinated set function}

can be achieved as a maximum. O

1.3.4 Proof of Theorem 1.3.3

We need the following lemma which follows immediately from the convexity of the function

xlogx.

Lemma 1.3.19. Let ¢: [0,00) — R be defined by

¢(x):{0 if © = 0;

—xlogx if x > 0.
Then for all x,y € [0,00) and a,b > 0 with a +b =1,
ag(z) + bd(y) < pax + by).
The equality holds if and only if t =y, a =0 or b=0.

Proof of Theorem 1.3.3.
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(1) By €*(1,3) = (1™7'0)>* and Lemma 1.3.5, we know that for any x € [0, 1), every m

consecutive digits in £(z, 8) must contain at least one 0. This implies

n

#{1 <k <n:ey(z,p) =0} > LEJ

for all n € N, and then

him#{lgkgnzsk(x,B)ZO}Zl

n—00 n m

for any x € [0,1). f 0 <a < %, we get Fg, = 0.

(2) When % <a <1, f,is a continuous function on its domain of definition
Dy o = {(xl,acz, cee  Tp_2) € R™~2 : all terms in the log’s in f, are non—negative}
= {(:L‘l,arg,--- , Tm—2) € R" 2>z >a9> > amo>0 and

x1+‘~-+wm_3+xm_2Sl—a§x1+'~+xm_3+2xm_2}7

which is closed and non-empty since

1-2 1-2 e 1 1
(a, =5, ,7=9) € D if - <a<s3;
(1-a,0,---,0) € Dy q ifa>

Therefore MaX(z, ... w1 2)EDm.a fa(z1, -+ 2m_o) exists.

In order to get our conclusion, by Theorem 1.3.2, it suffices to prove

max {f)u(ﬁ, m) : p is a (B, m,a)-coordinated set function} = o ,zrgg()eDm . falz1, -y Tm—2)
(1.16)
in the following D and (2), which are enlightened by drawing figures of the cylinders in
[0,1) and understanding their relations.
(D Prove the inequality “<” in (1.16).
Let p be a (8, m, a)-coordinated set function. By Lemma 1.3.5 we get £ = {0, 1}™\{1™},
p[1m~10] = p[1™~1] and then

bu(B,m) = — Z M[ll"'lm]IOgM
i1, ime{0,1} gl tm—t
dgeim 1 £ T2
- (01 20] C1qy (01
—u[01™20) log B ——= — 4[01™ 1 log Y.
ul ] log o1 ul ] log 017
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For iy -+ ipm_1 # 1™ 2 and i,, € {0,1}, we can prove

. . p[0dg - - - i) ) _ ([Lig - - i) . . pli -+ ]
—p|0dg - - iy | log —————= — p[lia - i) log ————= < —pliz - i) log ——F.
p[0éz ] i — p[Lio ] o Tr— pliz ] I Pr—
(1.17)

In fact, if u[0ig - - - ip—1] = 0, then p[0ig - - - i) = 0. We get u[lig - ipm—1] = plia - im—1]—
iz - i) = pliz- - im-1] and plliz---ip] = plis---im] — pl0iz - -] = plis---in),

which imply (1.17). If u[lég - - - iy—1] = 0, in the same way we can get (1.17). If p[Oig - - - ip—1] #

0 and p[lig---im—1] # 0, then ulig---im—_1] # 0 and (1.17) follows from

p[0iz - - - i pulLia - - i)
022 - - 1] pllig -+ - i1
plOiz - im—1]  pl0i2- -] | [0tz ]
pliz - im—] © plOig- - ima] 7 p[Oig - - im]

plliz---im]  plliz---im] | = plliz--im] )
pliz - im—] © pllize - imaa] 7 pfli - cim]

piliz - - < i)
pliz -+ - im—1]’

—u[0dg - - - iy ] log — p[lig- - iy log

= plfis- --imq](

< —pliz- - im]log

where the last inequality follows from Lemma 1.3.19. Thus

hu(ﬁ, m) < — E pliz - -+ i) log M
i, im€{0,1} pliz - im-1]
igimo1£1™ 2
_ Olm_zO] [Olm 1]
:u’[ ] og M[Olm_2] [ ] og IU,[O]_ _2]

i1 fim1€{0,1} pltn e tm—2

LR SE S L
p[01m20] plorm1
p[01m2] p[017m2]

= — > plireime] logw
i1, im—1€{0,1} i m=2

Qg i F#1M 3

—u[01™720] log — u[01™ Y log

_ p[01™30] a1, p[017"72]
—u[01™730] log =————= — 4[01™2]1
] | log ) ] Jlog ———— 017 ]
_ u[01™20] 1 p[01™ 1]
—u[01™20] log B ——2 — y01™ 11 .
| | log P | |log ———2 017

For dg -+ ipm_o # 1™ 3 and i,,_1 € {0,1}, in the same way as proving (1.17), we get

p[0dz -+ - im—1]

[17,2 im 1]
p[0d2 -+ i 2]

[17,2 -1 72] ’

—p[0ig -+ - tm—1]log — p[lig - dm— 1]log < —pliz - im—1]log

(iliz - im—2]
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Thus

hulfom) < = Z plig -+ im—1]log
i27"'7im71€{071}
i2"'im72751m_3

_ M[Olm—30] _9 ,U[Olm_Q]
—u[01™ 0] log =g — pl017 ] log
B I 2 1 ,11[7 _ 1m 1 1

1[0 0] log 1[017m—2] ©[0 |log 0]

- Z plit -+ - im—2] log W

D1 o Ty
i1, yim—2€{0,1} pliv - im_3
i1 i3l

_ 01771—30] - M[Olm_Q]
- I 3 1 'u[i _ 1m 2 1
1[0 0] log u[01m_3] ©[0 |log M[Olm_g]
_ ,U«[Olm—Q()] _1 M[Olm_l]
—u[01™ 20110 BE2 L 011
/J,[ ] og M[Olm—Q] /J,[ ] og M[Olm—Q]

- Z pli1 - im—2]log M

Zl e T
i1, im—2€{0,1} ,u[ m—3
g i _3A1m 4

—p[017 0] log W — u[01 %] log 5{81:_3
—p[017730] log W — n[01" ] log 5{812_3
—u[01™720] log m — 101" log Z{gi:_l}
Repeat the above process a finite number of times. Finally we get
u(Bm) < —afo0]log “LL — o1 1og 1421
11[0] (0]
—11[010] log % — p[011]log %
—[01™730] log W — p[01™ 2] log M
—u[01™~20] log m — 101" log ﬁﬁ:_l}
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Since p is (8, m, a)-coordinated, we have

(

0] = a, pll]=1-a,
1£[00] + p[01] = p[0], 01 + p[11] = 1],
£2[010] + p[011] = pf01], p[011] + p[111] = p[11],

u[OL™=30] 4 012 = 0173, G172 4 1] = 2,
p[01™=20] + p[01™ 1] = p[01™ 2], p[01™ 1] = g1l

Let y1 := pu[01], 99 := p[011],- -+, ym_2 := u[01™"2]. Then we have

p[0] = a, u[00] = a — y1, u[010] = y1 — y2, u[0110] = y2 — ys,- -+ , u[01™720] = Yp—3 — Ym—2,
N[l] = lfaau[ll] :17a7y17"' Hu’[lmil] :1ia7y17y2*"'*ym—27
plo1™ N =1—a—y1—y2 = — Ym-2, 401" 20l =y1 +y2 + -+ Ym-3+ 2Ym-2+a — L.

By a simple calculation, we get

b#(ﬁam) < fa(yb' te 7ym*2)‘

It follows from p[00], 1[010], - - - , u[01™=30], £[01™~20], u[01™ 1] > 0 that (y1,- -+ , Ym—2) €
Dy, o. Therefore

hu(ﬁam) S max fa(xla"' ,l’m,Q).

(3717“' 7$m72)EDm,a

@ Prove that the inequality “<” in (1.16) can achieve “=" by some (8, m, a)-coordinated
set function.
Let (y1,- -+ ,Ym—2) € Dy q such that

fa(yla"' 7Z/m—2): max fa(xh"' ,.’Em_Q).
(xlv"'zanfQ)EDm,a
Define
p[0] == a, 1] :=1—a,
n[00] :=a — yr, p[01] = p[10] := w1, p[11]:=1-a -y,
p[010] == y1 — ya, p[011] = p[110] := ya, plIll]==1—a—y1 — ya,
p01™720] i = Y5 — Ym—2, p[01™ 2] = p[1M720] i= Yo, w1l i=l—a—y1— = Ym2,

,U/[Olm_20] = + 4+ Ym—3 + 2ym72 +a— 17 :U/[Olm_l] = M[lm_lo] =1l-a- Y — " = Ym-2
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and
m—2
pluwv] = W for u,v € {0,1} and we U <{O, 11\ {lk}> (1.18)
k=1

where p[uwv] is defined to be 0 if one of pu[w], pluw] and pfwv] is 0. Then u is a (B, m, a)-
coordinated set function. By (1.18) and Lemma 1.3.19, it is straightforward to check that
in the proof of (), all the “<” in the upper bound estimation of b, (5, m) can take “=" and
then

bu(B;m) = fa(yr, - s Ym—2) = max fa(@y, -+ 2m—2).

(5’317'“ 7xm—2)eD'm,a



Chapter 2

General beta-expansions and related

digit frequencies

In this chapter, we return to general beta-expansions, not only the greedy ones. First we
systematically study expansions of real numbers in multiple bases in Section 2.1. Then we
return to expansions in one base and study their digit frequencies in Section 2.2. Finally

we study frequency sets of univoque sequences in Section 2.3 to end this chapter.

2.1 Expansions in multiple bases

Until Neunhduserer [98] began the study of expansions in two bases recently in 2019, all
expansions studied were in one base. In this section, we begin the study of expansions in
multiple bases. Note that a lot of content (including Theorem 2.1.3, Proposition 2.1.11
and Proposition 2.1.15) in this section has been generalized to expansions in multiple bases
over general alphabets by Zou, Komornik and Lu recently in [130]

Recall the concept of expansion in one base first. Let m € N, g € (1,m+ 1] and z € R.

A sequence w = (w;)i>1 € {0,1,--- ,m} is called a 3-expansion of x if
P30
i=1 p
The following question is natural to be thought of: Givenm € N, 8o, 81, -+ ,8m > 1,z € R
and w = (w;);>1 € {0,1,--- ,m}Y, in which case should we say that w is a (8o, 81, , Bm)-
expansion of x, such that when g, 81, - , Bm are taken to be the same 3, we have x =

> %7 Proposition 2.1.1 may answer this question.

Let us give some notation first. For all m € N and By, 81, , Bm > 1, define

ak:zﬁ and bkzzﬁ mn

Br Be  BelBm—1)
85

for all & € {0,---,m}.
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Note that ag = 0 and b ™ For all m € N, let

m = B,—1
D,, = {(50,--- s Bm) : Bos 5 Pm > 1 and ap < agpr1 < b < bgyq for all k, ng‘gm—l}.

m—+1
——
It is worth to note that D,, is large enough to ensure that (5,---,8) € D,, for all g €
(I,m+ 1] and m € N, and (By, 51) € Dy for all By, f1 € (1,2].

Proposition 2.1.1. Let m € N, (Bo, -+ ,Pm) € Dy, and x € R. Then x € [0, %] if

and only if there exists a sequence w € {0, - - ,m}N such that
(o]
Wi

- Zz; ﬁuuﬁwz o ﬁwz

T

Thus we give the following.

Definition 2.1.2 (Expansions in multiple bases). Let m € N, Sy, ,fm > 1 and x € R.

We say that the sequence w € {0,--- ,m}Y is a (Bo, - , Bm)-expansion of x if
K]
€Tr = - .
lz:; Buuﬁwg e /Bwi
On the one hand, it is straightforward to see that when g, - - - , 8,, are taken to be the
same 3, (Bo, -+ , Bm)-expansions are just S-expansions. On the other hand, we will see in
Subsection 2.1.1 that many properties of S-expansions can be generalized to (5o, - , Bm)-

expansions. This further confirms that our definition of expansions in multiple bases is

reasonable.

Let o be the shift map defined by o(wjws---) := wows - -- for any sequence (w;);>1.

Given Sy, -, Bm > 1, for every integer k € {0,--- ,m}, we define the map T} by

Ti(x) := Brx — k  for x € R.

The main results in this section are the following theorem and corollaries, in which g¢*
and [* denote the quasi-greedy and quasi-lazy expansion maps respectively (see Definition
2.1.7 (2) and (4)), and <, =<, >, > denote the lexicographic order. These results focus on
determining greedy, lazy and unique expansions in multiple bases (see Definition 2.1.7 (1)
and (3)), and generalize some classical results on expansions in one base in some former

well known papers.
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0 /1 /2 /43 3
B3—1
Figure 2.1: The graph of Ty, Th,T> and T3 for some (Bo, 81, B2, f3) € Ds.

Theorem 2.1.3. Let m € N, (8o, ,8m) € Dm, x € [0, %], w € {0,---,m}YN be a

(Bo, -+, Bm)-expansion of x and

= T _ = i T;
£t 00X w(aps1), & o min k(Qkt1),
= Ty (by._ _ = in Tr(bp_1).
M= max k(bk—1), 7  nin k(br—1)

(1) @ If w is a greedy expansion, then o™w < g*(&4) whenever w, < m.
@ If o™w < g*({-) whenever wy, < m, then w is a greedy expansion.
(2) @ Ifw is a lazy expansion, then o"w = [*(n—) whenever wy, > 0.
@ If o"w = I*(n4) whenever w, > 0, then w is a lazy expansion.

(3) @ If w is a unique expansion, then

o"w < g*({&4+) whenever w, <m and o"w = 1*(n-) whenever w, > 0.

@ If

o"w < g*(§&-) whenever w, <m and o"w = 1*(ny) whenever wy, > 0,

then w s a unique expansion.
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For the case that there are at most two different bases, we get the following criteria
directly from Theorem 2.1.3.

Corollary 2.1.4. Let 5y, 1 € (1,2], x € 0, ﬁ] and w € {0,1}N be a (Bo, B1)-expansion
of . Then

(1) w is a greedy expansion if and only if c™w < g*(%) whenever wy, = 0;

(2) w is a lazy expansion if and only if o™ w > l*(% — 1) whenever w, = 1;

(3) w is a unique expansion if and only if

A1

Bo(B1 — 1)

o"w < g*(@) whenever w, =0 and o"w > *(

S

—1) whenever wy, = 1.

The following corollary provide some ways to determine whether an expansion is greedy,

lazy or unique by the quasi-greedy expansion of 1 and the quasi-lazy expansion of ,BTm—l —1.

Corollary 2.1.5. Let m € N, (Bo, -+, Bm) € D, x € [0, %] and w € {0,---,m}" be

a (Bo, - , Bm)-expansion of x.

(1) @ Suppose o < 1 < -+ < B Ifw is a greedy expansion, then c™w < g*(1) whenever
wy, < m.

@ Suppose By > 1> -+ > B If 0"w < ¢g*(1) whenever w, < m, then w is a greedy
exrpansion.

(2) @ Suppose By < By < -+ < By If w is a lazy expansion, then o™w > l*(Bn’ln_l -1

whenever w, > 0.

@ Suppose fg > 1>+ > B If c™w = l"‘(d:”‘_1 — 1) whenever w,, > 0, then w is a
lazy expansion.

(3) @ Suppose By < 1 < -+ < B If w is a unique expansion, then

o"w < ¢g*(1) whenever w, <m and o"w = I*( —1) whenever w, > 0.

m
Bm_l

@ Suppose Bo > 1 > -+ = B If

o"w < g*(1) whenever w, <m and o"w = I*( —1) whenever wy, >0,

m
ﬁm -1
then w s a unique expansion.

Take 8o, - -+, Bm to be the same 8. By Corollary 2.1.5, Proposition 2.1.18, Lemma
2.1.19 and Proposition 2.1.14, we get the following corollary, in which k := m — k for all
k€ {0,---,m} and w := (w;);>1 for all w = (w;);>1 € {0,--- ,m}".
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Corollary 2.1.6. Let m € N, B € (1,m+1], z € [0, 5%] and w € {0,--- ,m}N be a

B-expansion of x. Then:

(1) @ w is a greedy expansion if and only if c™w < ¢g*(1) whenever w, < m;

@ w is a lazy expansion if and only if c™w > g*(1) whenever wy, > 0;

B w is a unique expansion if and only if

o"w < g*(1) whenever w, <m and o"w > g*(1) whenever wy > 0.

(2) @ 0<z<1andw is a greedy expansion if and only if c™w < ¢g*(1) for all n > 0;

® % —1l<z< % and w is a lazy expansion if and only if c™w = g*(1) for all
n>0;

® B”jl — 1<z <1 andw is a unique expansion if and only if

g*(1) < oc"w < g*(1) for alln > 0.

This corollary recovers some classical results. See for examples [53, Theorem 1.1], [70,
Lemma 4| and [99, Theorem 3]. See also [11, Theorem 2.1| and [108, Lemma 2.11]).

Many papers on [-expansions are restricted to bases belonging to (m, m + 1] or ex-
pansion sequences belonging to {0,1,---,[8] — 1}V (see for examples [52, 53, 82]), where
[B] denotes the smallest integer no less than 8. Even if all £y, - - -, f,, are taken to be the
same [ throughout this section, we are working under a more general framework: bases
belonging to (1,m + 1] and expansion sequences belonging to {0,1,--- ,m}Y (for examples
Corollary 2.1.6 and Proposition 2.1.18. See also [23, 55, 76]).

This section is organized as follows. In Subsection 2.1.1, we give some notation and
study some basic properties of greedy, quasi-greedy, lazy and quasi-lazy expansions in
multiple-bases. Subsection 2.1.2 is devoted to the proof our main results. In the last

subsection, we present some further questions.

2.1.1 Greedy, quasi-greedy, lazy and quasi-lazy expansions

Let m € N and By, ---,8n > 1. We define the projection g, ... g, by

n
wj
TRy, , m(wl---w )Z: E S ——
fo g " i=1 5101511)2 : 6101

for wy - -wy € {0,--- ,m}"™ and n € N, and

o

. w
W i (0) = W () = T e (01 0a) = 3 e
i=1 w1 MW w;y
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for w = (w;)i>1 € {0,--- ,m}. When By, , B are understood from the context, we

usually use 7 instead of mg, ... g,, for simplification.
Definition 2.1.7 (Transformations and expansions). Let m € N and (8o, - , Bm) € Dp,.

(1) The greedy (Bo,- - , Bm)-transformation Gg, ... g,. : [0, #] — [0, %] 1s defined
by

Tix if x € [ak, agt1) for some k € {0,--- ,m — 1};

x— Gg, ... T =
Bo,-++Bm { Tmx if T € [am, b

For all z € [0, 57+] and n € N, let

kA GZ;.I..WBMQC € lag, ak+1) for some k € {0,--- ,m —1};

gn(‘r;/BO)"' "Bm) = { m ifGZ(;.l..,gml' S [amabm]'

We call the sequence g(z; Bo, - -+ Bm) = (gn(x; Bo,*~+ , Bm))n>1 the greedy (Bo,- -+, Bm)-
expansion of x.

(2) The quasi-greedy (Bo, - , Bm)-transformation G, B,
defined by

Tox  if z € [0,a1];
v Gy g = Tre if @ € (ag, apq] for some ke {1,--- ,m—1}
Tz if © € (Qm, by].

For all x € [0, | and n € N, let

BT
if (G, 5,)" e € [0,an];

gn(x; Boy-, Pm) =<K Kk if (GZO7,,.7Bm)”*1x € (ak, ags1] for some k€ {1,--- ,m —1};

m if (GEO7W7Bm)"_1x € (am,bm).

We call the sequence g*(x;Bo,- -, fm) = (g5(x; B0, , Bm))n>1 the quasi-greedy
(Boy -+, Bm)-expansion of x.
(3) The lazy (Bo,- -~ , Bm)-transformation Lg, ... g, : [0, #] — [0, %] is defined by

Tox ifz € [O,bo];

T — LBO>"'7BTYL37 = .
Tyx if v € (bg—1,bx] for some k € {1,--- ,m}.

For all z € [0, 57+] and n € N, let

0 if Ly L 5 x€[0,bo);

ln T, y s Pm) =
(s ) {k if Lt 5 @ € (be,by) for some k € {1,--- ,m}.
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We call the sequence L(z; Bo, - -+, Bm) == (In(23 Bos - -+ Bm))n>1 the lazy (Bos -+, Bm)-
expansion of x.

(4) The quasi-lazy (Bo, - , Bm)-transformation Ly 5" [0, #] — [0, #] is de-
fined by

Tox ifzx€ [O,bo);
v Ly .5 =9 Tpr ifx € [by_1,by) for some ke {1,--- ,m—1};
Tz if & € [Brt, b].

For all x € [0, 57%5] and n € N, let

0 i (L5, 5 )" a € [0,bo);
Loz Boy -+ s Bm) == k  if (L7307,,,7Bm)”*1x € [bk—1,bx) for some k € {1,--- ,m —1};
m o if (L. 5 )" € [buet, binl.

)

We call the sequence l*(x; Bo, -+, Bm) = (Ui (x; Bo, -+, Bm))n>1 the quasi-lazy (Bo, - -, Bm)-

expansion of x.

Generally, let g, ... 3, be the set of tuples (Io,- -, I,) which satisfy
Iy € {[0,61], [0,01)},

I, € {[Ckack—HL [Chs Cht1)s (Chs 1], (Ck,6k+1)}

forallk e {1,--- ,m—1}, and

m m
€qle Bm—l] (c Bm—l]
where
cr € [ag, byp—1] forallk e {1,---,m}
such that ¢y < ca < -+ < ¢, IpULU---UIL,, = [0, %] and Io, I, - - , I are all disjoint.

For any (Io,--- ,Im) € Ig,,... g,,, we define the (Io, - ,Im)-(Bo,- - , Bm)-transformation

" 7"'71771 .
T 2 [0, 5251 = [0, 575 by

Tég’::: é’; (x) :=Tk(z) for x € I where k € {0,---,m}.

For all x € [0, 775] and n € N, let

Bm

tn(x;BOa to aBm;I(]’ T 7Im) =k Zf (Tﬁlg”:é:r;)n_lx € Ik where k € {O’ e ,’I?’L}.

We call the sequence t(x; Bo, -, Bm; Lo, s Im) = (tn(z; B0, , Bms Lo, -+ s Im))n>1 the
(Io, -+ y Im)-(Bo, -+ -, Bm)-expansion of x.
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It is straightforward to see that greedy, quasi-greedy, lazy and quasi-lazy (5o, - , Bm)-
transformations/expansions are special cases of some (Io,- -, In)-(Bo, -+ , Bm)-transfor-
mations/expansions. For simplification, on the one hand, if 5y, - - - , B, are understood from
the context, we use G,G*, L, L*, g(x), g* (), l(x) and I"(z) instead of G ... g,.. G, .. 5.5
Ly Bns Ly . g, 9(@3 Bo, -+, Bo)y g™ (@3 Bo, -+, Bo)s Uzs Bo, -+, Bo) and I (3 Bo, -~ -, Bo)
respectively, and if z is also understood, we use gn, g5, l,, and ' instead of g,,(x; Bo, -+ , Bm),
gr(x; Bos- -+ Bm)s ln(x; Boy -+, Bm) and U (z; o, - -+, Bm) respectively for all n € N; on
the other hand, if By, - , B and I, - - - , I, are understood, we use T and ¢(x) instead of
Tb{g: :é’:l and t(x; Bo, -+, Bm; Lo, -+, Im) respectively, and if = is also understood, we use
t,, instead of t,(x; o, -+, Bm; Lo, -+ , Im) for all n € N.

For the case of a single base, greedy S-transformations and expansions were studied in
Chapter 1 and also in many papers [29, 33, 37, 66, 69, 104, 105]), lazy S-transformations
and expansions can be found in [42, 43, 54, 61, 77|, and quasi-greedy [-expansions were
introduced in [86, 90, 100].

In Proposition 2.1.9, we will see that the above definition really give (5o, -, Bm)-

expansions coincide with Definition 2.1.2. First we prove the following useful lemma.

Lemma 2.1.8. Let m € N, (Bo, -+ ,5m) € Dy, and x € |0,
ZLs,,... B> then for all n € N, we have

(b t) +
=7ty tn .
' Bty + B,
In particular, for all n € N, we have
G"x (G*)"x
c=m(grgn)t 77— =m(g1 )t 57—
Bor o+ By Bo; -+~ By,
L"x (L)t
=aly---ly)+———=7(]--- 1))+ ———
(h ) By -+ B, G Bz By

Proof. (By induction) Let k € {0,---,m} such that © € I. Then t; = k, Te = Tix =

Brx — k and we have
T:):_t1+Tx_@

5151 Btl B 5]{:

Suppose that the conclusion is true for some n € N, we prove that it is also true for n 4 1

m(t1) +

as follows. In fact, we have

T”+1.73 tn—l—l + Tn+1.’L’
7Tt1"'t 1+7:ﬂ't1...t +—
( n+ ) /Btl e /Btn+1 ( 'fl) /8t1 U /Btn+1
(*) ﬁtn+1Tnx

" /Bt1 o /Btn+1
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where the last equality follows from the inductive hypothesis and (x) can be proved as
follows. Let k € {0,--- ,m} such that T"x € Ij. Then t,41 = k and

tn+1 + Ty = tn+1 + Tk(Tn.%') =k+ (ﬂan.%' — k) = ﬂtn+1Tnx.
O

Proposition 2.1.9. Let m € N, (8o, -+ ,fm) € Dp, and x € [0, %] If (Iy, -+ ,I,) €

T3y, By then the (Lo, -+, In)-(Bo, - -+, Bm)-expansion of x is a (Bo, - - - , Bm)-expansion of
T, i.e.,
x = 7(t(z)),

and for all n € N we have
Ty = W(tn+1tn+2 ce )

In particular, greedy, quasi-greedy, lazy and quasi-lazy (Bo,- - - , Bm)-expansions of x are all

(Boy+ -+, Bm)-expansions of x, i.e.,

and for all n € N we have

G"r = 7m(gn+19n+2--+), (G*)"x =7(gni19m42" "),

L"s = n(lyppilna-+),  (L)'x =7l s ).

Proof. By Lemma 2.1.8 and

m _m
"z Brn—1

Br By, ~ (@in{Bo,-—  Bm))"

— 0

as n — 00, we get © = lim,, oo m(t1 - - - ;) = w(t(x)). That is,

T(tntitny2 - )

By B

It follows from Lemma 2.1.8 that 7"z = w(tp+1tnyo -+ ). O

z =7ty ty) +

Greedy, quasi-greedy, lazy and quasi-lazy expansions are not necessarily identical. A
real number may have many different expansions even in one given base as mentioned at

the beginning of Chapter 1.

Proof of Proposition 2.1.1. follows from Proposition 2.1.9.

Let w € {0,--- ,m} and x = 7(w). It suffices to prove = < 7.7 in the following.

(By contradiction) We assume z > #
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(1) Prove that for all v € {0,--- ,m}" and n € N, we have
Ty,o0--oTlyx>--->T,oTyx>T,x>x.

Let k € {0,--- ,m — 1}, by (Bo," -, Bm) € D, we get

f ™ bp < bpp1 <o <b o

o a1y Yk k+1 t = )

B Br(Bm — 1) ! " Bl
which implies % < gt Thus for all y > 5™ and k € {0,---,m}, we have
y > %, ie., Ty > y. Then we perform the maps T5,,--- ,T,, to x one by one to

get the conclusion.

(2) Let s € {0,---,m} such that Tsz = ming<y<,, Tyx. For all n € N, we prove

Twpiy 00 Tyyx — Ty, 0 0TLyyx > Tsx — 2.

In fact, it suffices to prove

T,

Wiyt O O Loy — Loy, 00 Tyyyw > 1T, T —T.

W41
This follows from

Twn+1 o Twn 0:--0 Twlx - Twn+1$ = (/me.lTwn 0---0 Tw1x - wn-‘rl) - (/Bwn.Hx - wn-f—l)
= ﬁwn+1 (Twn 0---0 Tw1x - ‘r)

>Ty, 0 oly,x—x

where the last inequality follows from Sy, ., > 1 and Ty, o -+ o Ty, —x > 0 (by

(1))-

(3) Deduce a contradiction.

On the one hand, for all n € N, we have

Ty, 0 0Ty,x=(Ty, o -0Tyx—"Ty, , 00Ty x)
+ (Twn—l o> OTwll‘ — 1"’wn_2 o> OTw1$)
4.
+ (T, © Tyyyx — Ty )
+ (Tp,x —x)+x
by (2)

> n(Tex — ) + z,

where Tsx — 2 > 0 by (1). This implies T}, 0 -+ 0 Ty, & — 00 as n — 0.
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On the other hand, by

we get

and then for all n € N,

T, © - -

which contradicts T, o - - -

EXPANSIONS IN MULTIPLE BASES

Wy
Buwnsr =~ Buy

m

oTy,x
i=n-+1
00

IN

Z (min{ﬁOv T ’Bm}y—n

1=n+1
m

min{ Sy, - - -

< 00,

76m}_]—

o Ty, — 00 as N — o0.

We should keep the following lemma in mind.

Lemma 2.1.10. Let m € N, (5o, - - -

and only if m(w) = 5.

Proof. is obvious.

(By contradiction) Suppose w # m> and

[e.e]

Ws; m

Zﬂwl"'ﬁwi :Bmfl‘

i=1

,Bm) € Dy, and w € {0,--- ,m}".

95

Then w = m®™ if

(2.1)

Then there exists k£ € N such that wy - --wp_; = m*~! and w; < m. By applying Tffl_l to

(2.1), we get
Wi,

— +

Buy,

e
w; m

6wk"'ﬁwi - Bm_l

i=k+1

It follows from applying T}, to the above equality that

oo

Wi+ mﬁwk

i=1 5wk+1 T ﬂwk_H- B Bm -1

— Wg.

(2.2)
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On the one hand, by Proposition 2.1.1 we know

W+ m

< . 2.3
i=1 B’warl e 6wk+i Bm -1 ( )
On the other hand, by (8o, - , Bm) € D and wi, < m, we get
wy, m m
——t 57— = by, <D < <y = :
Bur | Bug(Bm—1) — T " B — 1
which implies
m By, m
— wg >
ﬁm —1 g ﬁm -1
This contradicts (2.2) and (2.3). O

The following useful criteria generalize |61, Lemma 1].

Proposition 2.1.11 (Basic criteria of greedy, quasi-greedy, lazy and quasi-lazy expan-
sions). Let m € N, (Bo, -+ ,Bm) € Dm, © € [0,%] and w € {0,--- ,m¥N be a

(Boy+ -+, Bm)-expansion of x.
(1) w is the greedy expansion if and only if

T(WpWnt1 ) < G, +1 whenever w, < m.

(2) When x # 0, w is the quasi-greedy expansion if and only if it does not end with 0>
and

T(WpwWnt1 ) < A, +1  whenever w, < m.

(3) w is the lazy expansion if and only if

T(WpWpy1 -+ ) > by, —1  whenever w, > 0.

(4) When x # %, w is the quasi-lazy expansion if and only if it does not end with

o0

m> and

T(WpWrpiy1 -+ ) > by,—1 whenever wy, > 0.

Proof. (1) Suppose that w is the greedy (8o, - - , fm)-expansion of z, ie., (w;)i>1 =
(9i)i>1, and suppose w,, < m. By g, = w,, and the definition of g,,, we get G" o < ay, 11.
It follows from Proposition 2.1.9 that 7(gngn+1--+) < Gw,+1.- Thus T(wpwpi1---) <

Awp+1-
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We prove (w;)i>1 = (gi)i>1 by induction. Recall that

{ k if x € [ak, agyq1) for some k € {0,--- ,m — 1}
g1 =

m if x € [am, b
and (w;);>11s a (Bo, - -+ , Bm)-expansion of x, which implies x > @y, .
i) If wy = m, then x > a,,, which implies g1 = m = wy.

ii) If wy < m, by condition w(wiwsz - ) < Ay,+1 We get & < ay,+1. It follows from

T > Gy, that g1 = wy.

Suppose w1 - Wp—1 = g1 gn—1 for some n > 2. We need to prove w, = g, in the

following. Recall

TN m i Gz € [am, bm).

{ k if Gl € [ag, apy1) for some k € {0,--- ,m —1};
Since the fact that (w;);>1 is a (8o, - , Bm)-expansion of x implies

T(WnWnt1--+)
r=m(wy - Wp-1)+ (o,

( " ) ﬁwl“‘ﬁw'nfl

by Lemma 2.1.8 we know G" 1x = 7(wpwy41 - -+ ). This implies G" 1z > ay,, .

i) If w, = m, then G lg > am, which implies g, = m = w,.

ii) If w, < m, by condition T(wpwpi1---) < Gu,+1 We get G" 1z < ay, +1. It follows

from G" g > Gy, that g, = wy,.

(2) Suppose that w is the quasi-greedy (fBo,--- , Bm)-expansion of x, i.e., (w;)i>1 =
(97 )iz1-

i) Prove that w does not end with 0.

(By contradiction) Assume that there exists n € N such that wy,yjwp4a--+ = 0%.
By Proposition 2.1.9, we get (G*)"z = 7(0°°) = 0. It follows from the definition of
G* that (G*)" "z =0, (G*)" 22 =0, ---, G*z = 0 and x = 0, which contradicts
x # 0.

ii) Suppose wy,, < m. Similarly to (1) [=], we get m(wpwpy1 ) < Q41

follows in a way similar to (1) [<]
(3) and (4) follow in a way similar to (1) and (2) noting Lemma 2.1.10. O

Proposition 2.1.12 (Lexicographic order on greedy, quasi-greedy, lazy and quasi-lazy
expansions). Let m € N, (8o, -+, fm) € Dy and x € [0, #]
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(1) Among all the (Bo, -+, Bm)-expansions of x, the greedy expansion and the lazy ex-

pansion are mazrimal and minimal respectively in lexicographic order.

(2) Among all the (Bo,- - , Bm)-expansions of x which do not end with 0°°, the quasi-

greedy expansion is mazimal in lexicographic order.

(3) Among all the (Bo, - - , Bm)-expansions of x which do not end with m*, the quasi-lazy

expansion is minimal in lexicographic order.
Proof. (1) Let v € {0,--- ,m} be a (By, - , Bm)-expansion of x.

@ Prove v < g(x).
(By contradiction) Assume v > g(x). Then there exists n € N such that v - - - v,—1 =
g1+ gn-1 and v, > g,. Since Proposition 2.1.11 (1) implies 7(gngn+1---) <
ag,+1 and (Bo, -+, Bm) € Dy, implies ag,+1 < ag,42 < -+ < Gy, = B%’ we get
T(gngn+1- ) < [ZJ—"n and then

z=m(g9(x)) =m(g1- gn—1) + W
v

< 7T(’U1 ~--’Un_1)

+ n
6’1)1 e /an_lﬁvn

= ﬂ(vl...vn)

This contradicts x = 7(v).

(2 We can prove v = I(z) in a way similar to D) noting that Proposition 2.1.1 implies

Tt 2 T(Ung1tng2 - ).

(2) and (3) follow in the same way as (1), noting that v does not end with 0> implies
m(vy---vn) < 7(v), and v does not end with m> implies 7™ > 7(vpt1vp42--+) by
Proposition 2.1.1 and Lemma 2.1.8 for all n € N. O

The following definition on admissibility is a natural generalization of Definition 1.1.1
(2) (see also [91, Definition 2.1]).

Definition 2.1.13 (Admissibility). Letm € N and (Bo, -+ , Bm) € D, For fixed (I, -+ , L) €

Zsg. s @ sequence w € {0,--- ,m}N is called (Io,--- , I;n)-admissible if there exists
z € |0, %] such that w = t(x). We let T = T (Bo, -, Bm; Lo, -, I;m) denote the set
of (In, - -+, I, )-admissible sequences. In particular, a sequence w € {0,--- ,m}N is called

greedy, quasi-greedy, lazy and quasi-lazy (admissible) if there exists x € |0, %] such that
w = g(x), g*(x), l(z) and I*(x) respectively. The sets of greedy, quasi-greedy, lazy and
quasi-lazy sequences are denoted respectively by G = G(Bo, -+, Bm), G = G*(Bo, -+, Bm),
L=L(Bo, - Bm) and L* = L*(Bo, -, Bm).-
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Proposition 2.1.14 (Commutativity). Letm € N, (8o, -+ ,Bm) € D, and (Ip, -+ , Ip) €
Zsy.... By~ Then

(1) moo(w) =Ton(w) for allw €T and toT(x) = o ot(x) for all x € [0, z75];

(2) o(T) =T and T([0, 575]) = [0, 5
(3) tom(w) =w for allw € T and 7o t(x) = x for all x € [0, 775];

(4) ml7: T = [0, 52%5] and t : [0, 5] = T are both increasing bijections.

[
[o;:;_ﬁ B [o,ﬁgn:;_J

In particular, the above properties hold for the greedy, quasi-greedy, lazy and quasi-lazy

cases.

Proof. (1) @ Let w € T. We need to prove o o(w) = T o w(w). In fact, there exists
x € [0, 72=] such that w = t(x), and then m(w) = x by Proposition 2.1.9. On the one

9 Bm_l

hand,

00 w;
moo(w) = 7m(wows---) =

=2 B ﬁwl

On the other hand,

()
TOW(W):TZE:Tw1$:Bw1$ ﬁwlZB . B ZB . 6
w1 w; w2 wz

where (%) follows from the fact that ¢;(z) = w; implies x € I, .

@ Let z € [0, 5]. We need to prove t o T'(x) = o o t(x). In fact, it follows immediately
from the definition of ¢ that t,(Tx) = t;(T" 1 (Tx)) = t1(T"x) = t,y1(z) for all n € N.
(2) T([0, 5%5]) = [0, 5] follows from the definition of 7. We prove o(T) = T as
follows.

Let w € 7. Then there exists z € [0

oot(z) 2L o T(z) € T.
Let w € 7. Then there exists y € [0, 5775] such that w = t(y) and there exists

>0 o(t(x)) and

s gotg) such that w = ¢(z). Thus ow =

z € [0, 5] such that y = Tw. It follows from w = t(y) = t(Tz)
t(z) € T that w € o(T).

(3) @O For any w € T, there exists x € [0
implies ¢t o m(w) = t(z) = w.

,%] such that w = t(z) and 7(w) = x, which

@ For any z € [0, 5], 7(t(x)) = x follows from Proposition 2.1.9.
(4) By (3), it suffices to prove that 7|7 is increasing.
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Let w,v € T such that w < v. Then there exists n > 0 such that wy---w, = v1---v, and
Wny1 < Uny1. Let z,y € [0, 575] such that w = t(z) and v = ¢(y). We need to prove
x < y. In fact, by Lemma 2.1.8 we get

T x Ty
z=m(wy - -wy,) + —— and =m(vy- vy + ———. 2.4
( ! ) 5w1"'/8wn Y ( ! ) /81;1"'511” ( )

Since tp41(r) = wpyr and ty11(y) = vpgr imply Tz € I, and T"y € I, ., by
Wpt1 < Vpy1 we get T"x < T"y. It follows from (2.4) and wy ---w, = vy ---v, that

z <. O
The following is a generalization of |22, Proposition 3.4].

Proposition 2.1.15 (Relations between greedy /lazy and quasi-greedy/quasi-lazy expan-
sions). Let m € N, (8o, + , Bm) € Dy, and x € [0, %]
(1) Suppose x # 0.

@ g(x) does not end with 0°° if and only if g*(x) = g(x).
@ If g(x) ends with 0>, then
g*(l') =491 (l‘) T gnfl(x)g*(agn(z))
= g1(x) -+ gn-1(2)(gn(2) — 1)g" (T3, (2)-1(ag,(z)))

where n is the greatest integer such that g,(x) > 0.

(2) Suppose x # z"+.

@ l(x) does not end with m™> if and only if I*(z) = l(x).

@ Ifl(z) ends with m™>, then

*(x) = li(x) - L1 ()" (b, ()
=1h(x) - ln-1(2)(ln(x) + DI(T, ()41 (01, (2))

where n is the greatest integer such that l,,(x) < m.

Proof. (1) @ follows from Proposition 2.1.11 (2).

(By contradiction) Assume (g;)i>1 # (g])i>1. Then there exists n € N such that
91 Gn-1 =67 -gr_y and g, # g;,. Recall the definitions of g, ¢*,G and G*. By = # 0
and g1 = g7, we get x ¢ {ao, -+ ,am}, and then Gz = G*x # 0. By g2 = g5, we get
Gr = G*z ¢ {aop, -+ ,an}, and then G?z = (G*)?z # 0.--- By repeating the above

process, we get G" 1z = (G*)" "1z # 0. It follows from

anlx e [agn’agn-i-l) if 0 < dn <m-— 17
[am, 2] if gn = m,
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and g, # g that G" 1z = ag, This implies G"z = 0, and then for all 7 > n, Gz = 0.
Thus gn+19n+2 - -- = 0%, which contradicts that (g;)i>1 does not end with 0°°.
@ Suppose that g(x) ends with 0°° and n is the greatest integer such that g, > 0. We

need to consider the following i), ii) and iii).

i) Prove g7+ g5 1 =91 gn-1-
(By contradiction) Assume g --- ¢ 1 # g1 - gn—1. Then thereexists k € {1,--- ,n—
1} such that g} - gf | = g1+ gk—1 but g; # g. By Lemma 2.1.8 we get (G*)* 1z =
G* 2. Since g} # gk, there must exist j € {1,---,m} such that G*¥"'z = a;. This
implies G¥z = 0, and then for all i > k we have Gz = 0. Thus gp41grs2--- = 0%,
which contradicts g, > 0.

ii) Prove grgr 1+ = g*(ag,). In fact, we have

where (x) follows from Proposition 2.1.14 (1), and (%) follows from (G*)" "'z = a,,,

which is a consequence of i), Lemma 2.1.8 and

Qg,,

1‘:7‘(919 :ngg—l _i_i
( n) ( " ) 591'”597171

111) PrOVe g*(agn) = (g'fb - 1)9*(Tgn_1(a9n))'
In fact, on the one hand, gi(ag,) = gn — 1 follows directly from the definition of gj.
On the other hand, we have

(g (ag)) 2 0" (G* (a6,)) 2 4" (T 1(ag,)),

where (x) follows from Proposition 2.1.14 (1), and (xx) follows from g, > 0 and the
definition of G*.

(2) follows in a way similar to (1). O
In the proof of our main results, we need the following.

Proposition 2.1.16 (Interactive increase). Let m € N, (8o, -+ ,Bm) € Dy, and x,y €
[0, 3,711

(1) Let (o, s Im), Ly, -+, I},) € Ly, g, such that for all k € {0,--- ,m}, the inter-
vals Iy, and I, are at most different at the end points (i.e., they have the same closure),
t(x) be the (Lo, ,Im)-(Bo,- - , Bm)-expansion of x and t'(y) be the (If,---,I,)-
(Bo, -+, Bm)-expansion of y. If x <y, then t(x) < t'(y).

(2) In particular, if ¢ <y, we have g(x) < g*(y) and I*(x) < l(y).
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Proof. We only need to prove (1). Suppose 0 < z <y < z™. Since ¢(z) = t'(y) will
imply z = 7(t(z)) = m(t(y)) = y which contradicts < y, we must have t(x) # t'(y).
Thus there exists n > 0 such that t1(z)---t,(x) = t|(y) - t,,(y) and t,1(x) # t,11(y).
It suffices to prove t,41(x) <t (y) by contradiction.

In fact, by # < y and Lemma 2.1.8, we get T"x < (T")"y, where T is the (I, -+ , I;)-
(Bo, -+ , Bm)-transformation and 7" is the (I§,---,I},)-(Bo, - , Bm)-transformation. If
tny1(x) >t 4 (y), by T"w € I, () and (T')"y € Ié%ﬂ(y) we get

Tnl' Z lnf Itn+l(x) Z sup I£;+1(y) Z (T/>ny7

which contradicts Tz < (T")™y. O
Given z € [0, 57+], let

X8y, B () 1= {(wi)izl € {0, - ,m}N : (w;)i>1 1s a (Bo, - -+, Bm)-expansion of :c}

and
Qg () = {(si)i21 € {To, - T}V : (Sno---081)(x) € [o, %} for all n € N}.

As a generalization of [24, Lemma 3.1] and [25, Lemma 2.1| (see also [23]), the following

is a dynamical interpretation of (fy, - - , Bm)-expansions.

Proposition 2.1.17 (Dynamical interpretation). Let m € N and (8o, -+ , Bm) € Dy,. For
all v € [0, z75], the map which sends (w;i)i>1 to (Tw,)i>1 is a bijection from Zg, ... 5, ()
to Qgy.. gy (7).

Proof. (1) Prove that the mentioned map is well-defined.
Let (w;)i>1 € {0,--- ,m}N be a (Bo, -, Bm)-expansion of z and n € N. It suffices to
prove Ty, o+ -0 Ty, x € [0, 775]. In fact, by a simple calculation as in (3) in the proof of

Proposition 2.1.1, we get

Ty,0-oly = .
i=n+1 /B’u)n+1 o /sz
Thus
Wn+4 m
T, . = m(Wp41Wna2--+) € [0, 57—
b Z Bwn+1 : Bwn_H ( T ) [ 6m - 1]

by Proposition 2.1.1.

(2) The mentioned map is obviously injective. We prove that it is surjective as follows.
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Let (w;)i>1 € {0, -+ ,m}Y such that T, o+ 0Ty, € [0, 7o) for all n € N. By

m
0< T 0 0Tuw < g,
we get
Wn Wnp, m
— < Ty, 00Tz < + ,
ﬁwn ot “ /Bwn ﬁwn (Bm - 1)
Wp—1 w Wn—1 Wn, m

+ b < Ty,
/Bwn,1 /Bwnflﬁwn v ?

ool x<

Bons | BuniBun  BunBun(Bm—1)

)

ek SR T R - ST R — o
... _— S :1;‘ S .. y
Bun /Bwl ﬁwz 5101 e 6wn Bwl Bun ng /Buu o ﬁwn Bwl T Bwn (ﬁm - 1)

which implies

m

(B — 1)(min{Bo, -+, B })"

m(wy - wy) <z < w(wy - wy) +

for all n € N. Let n — oo, we get = m(wiwz - -+ ). Thus (w;)i>1 € Xga,.... g, (T). O

The following proposition on expansions in one base, which will be used in the proof of
Corollary 2.1.6, implies that w is lazy if and only if w is greedy (recall Definition 2.1.13) for
all w = (w;)i>1 € {0, ,m}Y, where W := (W;);>1 and k :=m — k for all k € {0,--- ,m}.
By Proposition 2.1.12 (1), we recover |45, Theorem 2.1] and |78, Lemma 1.

Proposition 2.1.18 (Reflection principle in one base). Let m € N and 8 € (1,m + 1].

For all z € [0, 3™1], we have

l(%—x) =g(x) and l*(l—x> = g*(x).

Proof. (1) Prove I(5%; — x) = g(z). Let w = g(z). By Proposition 2.1.11 (1) we get
T(WpWpt1 ) < Ay, +1 Whenever w, < m.
It follows from 7(wpwpi1 -+ ) + T(WpWpt1 -+ ) = % and ay, 11 + by, —1 = % that

(W Wpy1 -+ ) > by,—1 whenever w, > 0. (2.5)

Since w = g(z) implies 7(w) = z%; — x, by Proposition 2.1.11 (3) and (2.5) we get

(2) (527 — x) = g*(x) follows in a way similar to (1) by applying Proposition 2.1.11 (2)
and (4). O
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2.1.2 Proofs of the main results

First we give the following lemma, which is essentially stronger than Theorem 2.1.3 (1) @,
(2) @ and (3) @.

Lemma 2.1.19. Let m € N, (8o, - , Bm) € Dm, x € [0, #] and w € {0,--- ,m} be a
(Bos -+, Bm)-expansion of x.

(1) If w is the greedy expansion and w # m®, then
o"w < g*"(&4)  for alln > p,

where p :=min{i > 0 : G’z < &, } ewists, and &1 := maxXo<p<m—1 Tk(aks1)-

(2) If w is the lazy expansion and w # 0°°, then
o"w = 1"(n-) foralln > q,

where q :=min{i > 0 : L'z > n_} ezists, and n— := min <<, Ti(bp_1)-

Proof. (1) By (Bo,-++ ,Bm) € Dm, we get

ap < ag1 < by

for all k c {O’ cee L m — ]_} This 1mphes 0< 5—{- S Brr:n_l.

(@ Prove that there exists i > 0 such that Gz < &,
(By contradiction) Assume G'x > ¢, for all i > 0. Let r be the greatest integer in
{0,--- ,m} such that a, < &; and

() T — Bmxr+m if r =m;
c=c(z) =
min{z — Bpx + m,a,41 —&+F ifr <m—1.

It follows from w # m® (which implies = < Bn:n—l by Lemma 2.1.10) and the defini-
tion of r that ¢ > 0.

i) Prove that for all y € [{4, x|, we have y — Gy > c.
In fact, if y > ay, then y — Gy =y — By + m > x — Bz +m > ¢. We only
need to consider £ < y < a, in the following. By &4 < ay,, we know r < m—1
and

[§+7am) C [ara ar+1) ) [ar+1a ar+2) U---u [amfla am)-
There exists k € {r,r +1,--- ,m — 1} such that y € [ag, ax+1). Thus

y—Gy=y— By —k) =0 =By +k>(1—PBr)ag +k

= ap+1 — Te(ak+1) 2> arp1 —§4 > ¢
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ii) Deduce a contradiction.
Recall that we have assumed G’z > &, for all i > 0. First by z > ¢, and i), we
get © — Gx > ¢. Then by &, < Gz < z and i) again, we get Gx — G?z > c. ---
For all n > 1, we can get G"'x — G™z > c¢. It follows from the summation of
the above inequalities that x — G™x > nc, where nc — +00 as n — +o00. This
contradicts Gz > &, for all i > 0.

@ For all n > p, c™w < ¢g*(&4+) follows from

« (x)
o"w=c"(g(z)) ® 9(G"z) < g*(&4),

where (%) follows from Proposition 2.1.14 (1), and (xx) follows from Proposition
2.1.16 and G"z < &4, which can be proved as follows. First we have GPx < & by
the definition of p. It suffices to prove that for all y € [0,£;), we have Gy < ;. In
fact, let y € [0,£4) C [0, %) If y > ay,, then

Gy =Tny=Pmy —m <y <&
If y < a,, then there exists k € {0,--- ,m — 1} such that y € [ak, ag4+1) and we have

Gy = Try < Ti(ars1) < &4

(2) follows in a way similar to (1) by using ay < bp_1 < by instead of ap < ap1 < by for
all ke {1,--- ,m}. O

Proof of Theorem 2.1.3. (1) (D Suppose that w is the greedy (8o, - - - , Bm)-expansion of z

and wy, < m. Then G" 'z € [ay,,, @w,+1) and

It follows from Lemma 2.1.19 (1) that oc™w < g*(&4).
@ Suppose w, < m. By Proposition 2.1.11 (1), we only need to prove m(w,wp41---) <
Ay, +1, Which is equivalent to m(wp+1wWn42--+) < Tw,, (Qw,+1)-

For simplification, we use g/ to denote g} ({-) for all ¢ € N in the following.

First by condition o"w < ¢*({-), we get wpp1wWpt2--- < g7gs---. Then there exist
s1 € N and n; = n + s1 such that

* * *
Wp+41 " Wny—1 = g1 """ Gsy—1 and Wn, <gsl'

By condition o™w < g*(§-), we get wp,41Wn, 42+ < gigs ---. Then there exist so € N



106 CHAPTER 2
and ny = nj + s9 such that
Wpy 41" Wny—1 = g7 " Ggo—1  and Wy, < g, .
For general j > 2, if there already exist s; € N and n; = n;_; + s; such that
Wy 417 Wny—1 = g1 gy, and  wy; < gy,

by condition 6w < g*(£-) we get Wn,;41Wn;+2 - < g1g5 -+ - Then there exist 5,41 € N
and nj41 = n; + s;41 such that

_ * * *
wnj+1 e wnj+1*1 =91 gsj+1_1 a‘nd wnj+1 < gSj+1'

For all i > 1, s; and n; are well defined by the above process. Since

wn +1° 'wnz‘+1)
7"-(wrri-lwn-i-Q : Z
Bwn+1/8wn+2 e /Bwni
and -
a ( wn awn +1) TwnH_l (awnH_l +1)
w w +1 Z -
" " = /Bwn+1 /Bwn+2 e /Bw"z‘ /Bwn.t,.l /Bwn.i,-Q e /Bw"iJrl
where ng :=n and By, 1 Bw,ys *** Bwn, = 1, we only need to prove

Twni+1 (a’wnl+1 +1)

510”#1 5“’”#2 /Bwn

T( Wyt - wn¢+1) < Twni (awni+1) -
i+1

CL’w"z«&»l +1

ie., m(wpq1- - Wnyy,—1)+ < Twni(awnﬁl) for all 7 > 0.

ﬁwn +1ﬁ’wn +2 7 Bwni+171
In fact, for all ¢ > 0, by wp, 41 wp, ;-1 = 97 -+ g5,,,—1 and wp,, +1 < g5 (which

implies auw,,, +1 < ags, | ), we get

awn +1 ag
i+1 * * Si41
5 Sﬂ—(gl"'gsi+1_1)

Wn,

i+1—1 591’892 5gsi+1—l
“Gey)

2 r(g"(€) =€ < Tu (dun,41),

ﬂ—(wni‘f'l e wni+1—1) 5 5
Wn ;41 Wn; 42

where (%) follows from the fact that g*(£_) does not end with 0 (recalling Proposition
2.1.11 (2)).

(2) follows in a way similar to (1).

(3) follows immediately from (1), (2) and Proposition 2.1.12 (1). O

Corollary 2.1.4 follows directly from Theorem 2.1.3.
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Corollary 2.1.5 follows from Theorem 2.1.3, the facts that 5y < 51 < --- < 8, implies
§+§1and7]_2#—1,502&2-~2ﬁmimplies§_ Zlandmrg#—l,and
the increase of g* and {* (by Proposition 2.1.14 (4)).

Proof of Corollary 2.1.6. Since (1) follows immediately from Corollary 2.1.5 and Proposi-
tion 2.1.18, in the following we only prove (2).

©) follows from Lemma 2.1.19 (1), in which £ =1 and p = 0.

First by (1) @, we know that w is the greedy expansion g(z). Then it follows from
g(x) = w < g"(1) < g(1) and the strictly increase of g (by Proposition 2.1.14 (4)) that
r <1

@) follows from Proposition 2.1.18 and Lemma 2.1.19 (2), in which n— = 5”7 — 1 and
q=0.

First by (1) @), we know that w is the lazy expansion [(z). Then it follows from
lz) =w > g*(1) = "(g%5 — 1) =2 (5% — 1) and the strictly increase of [ (by Proposition
2.1.14 (4)) that o > 27 — 1.

B
@ follows from (@), 2 and Proposition 2.1.12 (1). O

2.1.3 Further questions

On the one hand, although necessary and sufficient conditions for sequences to be greedy,
lazy and unique expansions in two bases and one base are obtained in Corollaries 2.1.4
and 2.1.6 respectively, for general cases, i.e., in more than two bases, Theorem 2.1.3 and
Corollary 2.1.5 can only give necessary conditions and sufficient conditions separately. We
look forward to getting necessary and sufficient conditions for general cases. (This was

answered by Zou, Komornik and Lu very recently in [130, Theorem 1.2].)

2.2 Digit frequencies of beta-expansions

From this section, we return to expansions in one base and consider digit frequencies. Let
m € Nand 8 € (1,m+1]. Given z € R, recall that a sequence w = (w;);>1 € {0,1,--- ,m}

is called a B-expansion of x if

It is known that « has a S-expansion if and only if = € [0, 3%1].

For any sequence w = (w;);>1 € {0,1,--- ,m}N, we define the upper-frequency, lower-
frequency and frequency of the digit k by
— #{i:1<i<nw =k}

Freqy,(w) := nh_)rglo -

'§1<>< Z:k
Freqk(w) = lim #li:1<i<nw }

n—00 n
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and 1 <1 < k
Freqy(w) := lim #li: 1 <i<nwi =k}

n—o0 n

(assuming the limit exists) respectively, where # denotes the cardinality. If p = (pg, -+ , D),

p=(p, - »p,) €10,1]™ satisty
Fre(lk(UJ) = TDk and Freqk(w) = Bk for all k € {07 17 Ce ,’I’)’L},

we say that w is of frequency (p,p). The following theorem is the first main result in this

section.

Theorem 2.2.1. For allm € N, € (1,m+ 1) \N and p,p € [0,1]™", Lebesgue almost

, %] has a B-expansion of frequency (p, p) if and only if Lebesgue almost every
has infinitely many [-expansions of frequency (p,p).

every z € [0
z € [0, 374]

As the second main result, the next theorem focuses on a special kind of frequency.
Given m € N, a sequence w on {0,1,--- ,m} is called balanced if Freqy(w) =Freq,,_x(w)
for all k € {0,1,--- ,m}.

Theorem 2.2.2. For allm € N and § € (1,m+1)\N, Lebesgue almost every x € [0, 575]

has infinitely many balanced B-expansions.

In the following, we consider variable frequency. Recently, Baker proved in [24]| that

for any 8 € (1, 1+2\/‘F’), there exists ¢ = ¢(8) > 0 such that for any p € [ — ¢, + ¢] and

x € (0, ﬁ), there exists a S-expansion of x on {0, 1} with frequency of zeros equal to p.
1+2\/5 ,2

This result is sharp, since for any 3 € | ), there exists an z € (0, ﬁ) such that for

any [-expansion of x on {0, 1} its frequency of zeros exists and is equal to either 0 or %
(see the statements between Theorems 1.1 and 1.2 in [25]). It is natural to ask for which
B e [1+—2‘/5, 2), the result can be true for almost every z € (0, ﬁ) We give a class of such

B in Theorem 2.2.3 as the third main result in this section. They are the pseudo-golden

ratios, i.e., the 8 € (1,2) such that g™ — g™~ —... — 3 —1 = 0 for some integer m > 2.
Note that the smallest pseudo-golden ratio is the golden ratio 1+72\/5
Theorem 2.2.3. Let B € (1,2) such that ™ — ™1 — ... — 3 —1 =0 for some integer

mZQandletc:%

every z € [0, ﬁ] has infinitely many [-expansions on {0,1} with frequency of zeros equal

(> 0). Then for any p € [3 — ¢, 5 + |, Lebesgue almost
to p.

We give some notation and preliminaries in Subsection 2.2.1, prove the main results in

Subsection 2.2.2 and end this section with further questions in the last subsection.
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2.2.1 Notation and preliminaries

Let m € Nand 8 € (1,m+ 1]. For all k € {0,--- ,m}, we define the maps Ty : R — R by
Ti(x) :=px—k forxeR

. Given z € [0, 57%],

Ygm(x) = {('wi)iZI € {0, -- ,m}N : ;Iﬂuz = x}
and

Qgm(z) = {(ai)i21 e (T, T}V : (ano---0ar)(z) € [0, %} for all n € N}.

The following lemma given by Baker is a dynamical interpretation of S-expansions.

Lemma 2.2.4 ([23, 24]). For any z € [0, 3%1], we have #Xgm(x) = #Q m(x). Moreover,

the map which sends (w;)i>1 to (Tw,)i>1 is a bijection from Xg p,(x) to Qg m(x).

2.2.2 Proof of the main results

Proof of Theorem 2.2.1. Let m € N, 8 € (1,m+ 1) \N and p,p € [0,1]™+!. The “if” part
is obvious. We only need to prove the “only if” part. Let £ denote the Lebesgue measure.

Suppose that L-a.e. (almost every) x € [0, %] has a (-expansion of frequency (p, p). Let

Ugm = {ZE € [0, ﬂl] : x has a unique ﬁ—expansion}

and

g’i = {x € [o, %] : « has no f-expansions of frequency (p, Q)}

On the one hand, it is well known that £(Usm) = 0 (see for example [87]). On the other
hand, by condition we know E(Ng’fn) =0. Let

— oo D.
U o— (uﬁ,m UNP:%) U U U TJ: 0---0 TJII (Z/l@m UNP,%)'
n=1

wl?“‘ 7wne{07“. 7m}

Then L£(V) = 0. Let z € [0, 5%;] \ ¥. It suffices to prove that z has infinitely many
different S-expansions of frequency (p,p).

Let (w;)i>1 be a B-expansions of x. Since x ¢ W implies z ¢ Ug,,,  has another

[B-expansion (v(1

5 ))izl- There exists n1 € N such that vgl)"-v(l) = Wy Wp,—1 and

ni—1 —
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Unl) # Wp,. By

T o oTy, —10-oTyx=Tao---oT WDT = Z nlﬂ
ni ni

(1)

we know that (v, ',

)i>1 is a B-expansion of T u) o Ty, —1 00Ty x. Since z ¢ ¥
> &

. . p7p M
implies Tv%) 0 Ty, —10 0Ty x ¢ NB’;n, Tv%ll) 0 T, —1 0 -+ 0Ty, has a (B-expansion

® @)

(w(l) )i>1 of frequency (p, p). Let wgl) S W Why = WL Wiy 11)7(11). Then (w 1(1))Z>1

ni+1
is a B-expansion of x of frequency (p, p) with wm) # wy,, which implies that (w;);>; and

(w?

)i>1 are different.
Note that (wp,+i)i>1 is a B-expansion of Ty, oo Ty,x. Since x ¢ ¥ implies
T, 0 0Ty, ® & U m, Tuw,, o+ 0Ty, has another S-expansion (”7(121)+i
2 2 2
ng > ny such that UT(n)H . '022)71 = Wp,+1 " Wpy—1 and vﬁm) # Wp,. By

)i>1. There exists

n +z
TUT(fQ)OTwn2_1o-..OTw1$:TU5122) O - OT(z O(,_rwn1 O-..oTwll' Z 2 s

”1 —+1

(2)

we know that (v,

)i>1 is a B-expansion of T (2 o Tiy,,—1 0 -+ 0 Ty 2. Since z ¢ ¥
'n.2

N P.p .
implies TU%) 0 Tpy—10 0Ty x ¢ Nﬁ7;n, TU%) 0 Th,,—1 0 -+ o Ty, x has a B-expansion

7(122)+i)¢21 of frequency (p,p). Let wgz) . -w,(i)_lw%) = wi - wn2 11)7(12). Then (wZ@) )i>1
(2)

is a (-expansion of z of frequency (p,p) with wy,” = wy,, and wn2 # Wy,, which implies
that (w;)i>1, (wgl))izl and (wz@))izl are all different.

(w

- Generally, suppose that for some j € N we have already constructed (wEl))izl, (’wz@))izl,

L (wY

i’ )i>1, which are all -expansions of x of frequency (p, p) such that

w’SLll) 7& wnp
(2)

(2)
Wny = Wnpy, Wny # Wny

(3) (3) (3)
wnl == wnlywng - wTLQ) wTL3 # wn37

(J) (4) (4) £ w
nj:

wnl —wnl,Wn2 _wn2"" Wn] 1 _wn] 1,wn]

Note that (wy,;44)i>1 is a B-expansion of Twnj o---0Ty,x. Since z ¢ ¥ implies Twn]_ 0---0

(j+1

T, x ¢ U m, Twnj o---o0Ty, x has another -expansion (Unj+i))1-21. There exists nji1 > n;

. (J+1) (G+1)  _ (J+1)
such that Upidd Uy m1 = Wiyl Wny oy —1 and vy |, % Wn, - By
MEAS)

n 1—1—1
T(J+1) 0Ty, , —10-" OTw1x—T(J+1) o OT(]+1) O(T W, ; O"'OTwl«T E J+
i1 Jt+1 i1 i J
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we know that (’Ufjiizﬂ)l>1 is a B-expansion of T’ (ijl) oTy, ja-1070 Tw,x. Since x ¢ U
implies T WD 0T, 10 0Ty, ¢ Np’p T WD oTw,,,,—10 0Ty x hasa B-expansion
(w%ﬁli)za of frequency (p,p). Let w(JH) wq(fjﬂ)_lw,%ﬁ) = Wy Wnjy - 1’07(1‘7;}).
Then (w§j+1))i21 is a B-expansion of z of frequency (p, p) with w7(1j1+1) = Wy, ,wr(ljjﬂ) =
wyp; and w%ﬂ) # Wn;,,, which implies that (w;)i>1, (wl(-l))izl, . (wl(jﬂ))izl are all
different.

- It follows from repeating the above process that x has infinitely many different S-

expansions of frequency (p, p). O]

Proof of Theorem 2.2.2. Let m € N and g € (1,m+ 1) \ N. By Theorem 2.2.1, it suffices
to prove that L-a.e. x € [0, %] has a balanced S-expansion. Let

m 1 m 1
zoi=———— and z4 1= ——+ .

206—1) 2

For all k € {1,--- ,m}, define

m n 2k —1
2p 1=
28(6-1) 28
Then T1(z1) = To(z2) = -+ = Tin(zm) = 2— and Ty(z1) = Thi(22) = -+ = T—1(2m) = 2+
First we prove that L-a.e. x € [z_, z;] has a balanced [-expansion. If § € (1,2) and
m is odd, let a_ := 2(’%7:11) and a4 = 2@;11) Then Tm 'm-1(a_) = a_ and TmTH(aJr) =a;.
Considering T' m—1 restricted on [a_,ay — f] and Tm+l restrlcted on [a_ + %, a+], by [25,

Theorem 4.1] and Lemma 2.2.4, we know that L-a. e x € [a_,ay] [2_,24]) has a (-

(>
% Thus we only need

expansion w on {251, H} satisfying Freqm 1 (w) =Freqms (w) =
2

to consider that 8 > 2 or m is even in the followmg.

Define T': [0, z27] — [0, 577] by
To(x) = Bz for z € [0, 21),
T(x):=< Ti(z)=pPx— for x € [z, zx4+1) and k € {1,2,--- ;m — 1},
Tm(z) = Bz —m for x € [2m, 377].

We consider the restriction T'|,_ ..y : [2—,2+) — [2—, 24). By Theorem 5.2 in [124], there
exists a T'|[,_ ., -invariant ergodic Borel probability measure p on [2_, 2} ) equivalent to
L. Let r be the smallest in {1,2,--- ,m} such that z_ < z,. Then m + 1 —r is the largest
in {1,2,--- ,m} such that z,, 41—, < z4. Let

2y i= 2o, 2y 4o =24 and 23 =z for allk € {r,r +1,--- ,;m —r + 1}.
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0

Q.

Figure 2.2: The graph of T and T'[j,_ .. ) for m = 8 and some j € (4,5).

For any = € [2_,z4) which is not a

< Zmepi1 < Zmria-
preimage of a discontinuity point of T|;,_ .. ), by symmetry,

! /
r—1 < 2y

Then z

we know that for any k €

.}’

,m—r+1}andie€{0,1,2,--

{r—1,r,--

; —k+1)'

—k>*m

€ (2,

— 1+ 1}, it follows from Birkhoft’s ergodic theorem that for

— X

m

5-1

Ti(@) € (s, 2hs1) & T'

,m
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and for L-a.e. y € [z, z4),

n—1

(o) = [ L o dp=lim 2310 (T'w)
H m—k> “m—k+1 - L (Zm—k7zm—k+1) ’LL_TL—)OO’)’L P (Zm—k’zm—k+l) vl

which implies that for L-a.e. (5% — ) € (2—,24),

n—1
1 m

:u(('z’:n—kv Z;n—k;—&-l)) = nll_{](f)lo ﬁ L ﬂ(z;n_wzin_kﬂ) (T’(ﬁ — :c))

7=

So this is also true for L-a.e € (z_, z4). Recalling (2.7), we get
M((Z;€7Z;i)+1)) :M((z;n—kvz;n—k—l-l)) for k € {7“— Lor .- ,m—r—i—l}. (28)

For every = € [z_,z;) and i € N, there exists k; € {r — L,r,--- ,m —r,m —r + 1}
such that T~ 'z € [z} , 2, ), then we define g;(z) := k; and denote &(z) := (£i(2))i>1 €
r—1,r,---m—r+ 1. Forall ke {r —1,7,--- ,m —r+1}, i € {0,1,2,---} and
x € [2_, z4), we have

Uepop ) (T'0) = 1 T €[5, 240) © £osa(a) = k.

By (2.6), we know that for all k € {r — 1,7,--- ;m —r+ 1} and L-ae. x € [z2_,24),

Freqy(e(z)) = lim U LS IS ma@ =k _ o0 )

n—00 n

It follows from (2.8) that for all k € {r — 1,r,--- ,m —r + 1} and L-ae. z € [2_, z}),

Freqy((x)) = Freq,, _4(=(x)). (2.9)

oo gi(x)
i=1 "
In fact, by Lemma 2.2.4, it suffices to show T, ()0 0T, ;)(x) € [0, %] for all

(1) For any = € [z_, z+), we prove that £(z) is a S-expansion of z, i.e., Y =z
n € N. We only need to prove T, (zy0---oT, () (z) = T"(x) by induction as follows.
For z € [z—,24), let ky € {r — 1,7,--- ;m —r,m —r + 1} such that = € [z} , 2, ).
Then e1(x) = k1 and

Tsl(w)(x) =Tk, (SU) = T(x)

Assume that for some n € N we have T ()0---0T, () (x) = T"(x). Let kpy1 € {r—
1,r,-+- ,m—r,m—r+ 1} such that T"(z) € [zl;n+1,z;§n+1+1). Then &,41(x) = kpt1
and

T () © Tan(x) 0---0 Tsl(x)(x) =Tk, © T (x) = Tn+1(x),

En+1

Combining (1) and (2.9), we know that L-a.e. x € [z_, 24| has a balanced S-expansion.



114

Let

CHAPTER 2

N = {JJ € [o, ] : « has no balanced B—expansions}.

m
8—1

We have already proved L(N N[z_, z+]) = 0. To end the proof, we need to show L(N) = 0.
In fact, it suffices to prove L(N N (0,2-)) = LN N (24, 774)) = 0.

B

i) Prove L(N N (0,2-)) = 0.

By L(NN[z_,24]) = 0, we know that for any n € N and vy,--- ,v, € {0,--- ,7—1},
L(T; o oT, (NN [z, 24])) = 0. It suffices to prove

o
Nn(,z)c | U Tyl oo Ty H(N N o, 24]).
n=1vy, v, {0, ,r—1}

(By contradiction) Let z € NN(0, z_) and assume that x is not contained in the right
hand side. By = € (0, z_), one can verify that there exist vy,--- ,vx € {0,--- ,r—1}
such that Ty, o --- o T, (v) € [z2—,24]. (In fact, it suffices to use T'jp._).) Since
x ¢ T, to---oT, 1(NN[z_,2;]), we must have T, o- - -0T,, (z) ¢ N. This means that
there exists a balanced sequence (w;);>1 on {0,--- ,m} such that T}, o--- 0T, (z) =
>y 3+, and then

o0 oo
V1 V2 Vk W; (¥
x:—+—+---+—+§ .::E —
B 32 Bk — Bk+i — Bi

where vg4; = w; for i > 1. It follows that (v;);>1 is a balanced (-expansion of z,

which contradicts € N.

ii) The fact L(N N (z4, %)) = 0 follows in a way similar to i) by applying Ty, Trn—1,

-+, Tyn—ry1 instead of Ty, 11, -+, Tr—1.

Proof of Theorem 2.2.3. Let B € (1,2) such that g™ — gm~! —... = 3 —1 = 0 for some
integermZQandletc:M. We have ¢ > 0 since m—1>0,2— 8 > 0 and

(mB+B—2m)

mfB + [ — 2m > 0, which is a consequence of

2

m—|—1<2m<2(ﬁm_1—|—---—|—ﬁ+1):257”:72_67

where the equalities follows from

pm -
B—1"

="t 4+ 84+1=
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For any = € [0, ﬁ — 1], define

(8- 1)(1 — (m —1)z)

1
B_l ; //
b+1Ak r 77777777777777777 ‘7777777777777j/“//
‘ I 1
bt [Hmmmm e  EEREEEEE :
0 b bi1 b+1 1
B T B—1
Figure 2.3: The graph of T.
Then
81 1 1 mB+1—2m 1
0)=———"—7"—== d ——1)=—=— —¢,
JO) =5 5—am —ate ™ fgg- V=055 -am 2 ¢

ie., [f(ﬁ —1), f(0)] = [3 —¢, 3 +¢]. Since f is continuous, for any p € [§ —c, 3 +¢], there
-1

exists b € [0, ﬁ —1] such that f(b) = p. We only consider b € [0, %1
since the proof for the case b € (0, ﬁ — 1] is similar. Define T": [0, ﬁ] — [0, ﬁ] by

) in the following,

T(z):= { To(x) = Bz for x € 0 %)’

Ti(x) = Bz —1 forz € [BEL L.

Noting that To(b%) =b+1 and Tl(%) = b, by Section 3 in [89], there exists a
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T-invariant ergodic measure pu < £ on [0, ﬁ] such that for L-a.e. z € [0, 5],

B—1
du = Lo 41 (7)) o= Lpo,rn () (%)
)= s N (2.10)
L n=0 'Bn n=0 ﬁn
and v := m - pu is a T-invariant ergodic probability measure on [0, ﬁ}
(1) For 1 <n <m—1, prove T"(b) = "b < b+71 <pwHpr-prl - B -1 =
T7(b+1). Note that 7 = f7~! 4. 4+ g+ 1 = 251
@Byb<511 1_6 _ﬁnﬂ 1,Wegetf3”b<bg1
@ By g+ +gimr < g+t gw =1, weget f -+ F+1 < " and then
B4 B+14b < fmH 47T which implies S5 < gmp44m - - — -1,

(2) For n > m, prove T"™(b) =T™(b+ 1).
It suffices to prove T (b) = T™(b+ 1). In fact, this follows from (1) and ™b =
ﬁmb-i-ﬁm—ﬁm_l—"'—,@—l.

Combining (2.10) and (2), we know that for L-a.e. x € |0, ﬁ],

du - mz_:l Lo, 7 b41) (%) = Ljo, 7 (v)] (CC)‘

L T (2.11)

n=0

Thus

b+1
b+1 _ B du
©l0, ——) = /0 E(m)dw

=t min{T"(b + 1), b+1} min{7"(b), b%}
Bn

where the last equality follows from % + -4 BL"L =1. By

1 ﬂldu
05D = [ e

LT (b+ 1) — T7(b)

by (1) 1+Z,8"_ﬁn—1_..._5_1
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m—1 1 1
0
_ _— m—1 m-2 B 1
B /82 Bm—l’
we get
1 1 m  om— 1 -2 1
— . (0 _ e
CRALLY Bt Rl iy B
It follows from the subtraction of the above two equalities that p([0, ﬁ]) = mﬁ}‘#
Therefore v = m - 1 and
b+1. (B—1)(1—(m—1)b
[0, )= (B-1)A—( )b) _ f(b) = p.

B mB+ 3 —2m

Since T : [0, ﬁ] — [0, ﬁ] is ergodic with respect to v, it follows from Birkhoff’s Ergodic

Theorem that for v-a.e. x € [0, ﬁ] we have

By (2.11) and (1), we know that for L-a.e. x € [b,b+ 1], g—ﬁ( ) > 1. This implies

L < p(~v) on [b,b+ 1], and then for L-a.e. x € [b,b+ 1], we have

o1 k
Jim 5 2 BoapTH@) =,
For every z € |0, ﬁ], define a sequence £(z) = (¢;(z))i>1 € {0, 1} by
0 if Tz e o, L
gi(z) = { l i,lx [b+1ﬁ )1 for all i > 1.
1 ifT S [T, ﬁ]

Then by

b+1
Lo o) (T0) =1 Thw € o, ;) o ep(z) =0,

we know that for L-a.e. x € [b,b+ 1],

lim #lsisn:e) =0} =p, ie., Freqy(e(x))

n—o00 n

(2.12)

|
IS
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By the same way as in the proof of Theorem 2.2.2, we know that for every = € [0, ﬁ], the
e(z) defined above is a S-expansion of x, and L-a.e. x € [0, ﬁ] has a [-expansion with

frequency of zeros equal to p. Then we finish the proof by applying Theorem 2.2.1. O

2.2.3 Further questions

First we wonder whether Theorem 2.2.1 can be generalized.

Question 2.2.5. Let m € N, 8 € (1,m + 1)\ N and p,p € [0, 1™+t Is it true that
Lebesgue almost every x € |0, %} has a B-expansion of frequency (p,p) if and only if

Lebesgue almost every x € [0, %] has a continuum of B-expansions of frequency (p,p)?

If a positive answer is given to this question, by Theorem 2.2.2, there is also a positive

answer to the following question.

Question 2.2.6. Let m € N and 8 € (1,m+ 1)\ N. Is it true that Lebesque almost every

z € [0, %] has a continuum of balanced 5-expansions?

Even if a negative answer is given to Question 2.2.5, there may be a positive answer
to Question 2.2.6 when m > 2. An intuitive reason is that, when #{0,1,--- ,m} > 3,
balanced f-expansions are much more flexible than simply normal S-expansions (see |25,
Theorem 4.1]).

The last question we want to ask is on the variability of the frequency related to

Theorem 2.2.3. Let 8 > 1. If there exists ¢ = ¢(8) > 0 such that for any po, p1,- -+ , P11 €

[[7}3] —c, ﬁ + ] with po +p1 + - + prgj—1 = 1, every z € (0, [g]__ll) has a [-expansion
w = (wﬂiZl with
Freqo(w) = po, Freqs(w) =p1,---, Freqrg_(w) = prg-1,

we say that § is a variational frequency base. Similarly, if there exists ¢ = ¢(8) > 0 such

that for any po, p1,- -+ ,pg1—1 € [ﬁ —c, ﬁ +¢] with po +p1 +--- +pg1—1 = 1, Lebesgue

almost every z € [0, (?:11] has a (-expansion w = (w;);>1 with

Freqg(w) = po, Freq;(w) = p1,--- , Freqrg_1(w) = prg1-1.

we say that 3 is an almost variational frequency base.
Obviously, all variational frequency bases are almost variational frequency bases. Baker’s

results (see the statements between Theorems 2.2.2 and 2.2.3) say that all numbers in

(1,145 145 9)

frequency bases. Fortunately, Theorem 2.2.3 says that pseudo-golden ratios (which are all
in [157%,2))
52,2)

) are variational frequency bases and all numbers in | are not variational

are almost variational frequency bases. We wonder whether all numbers in

are almost variational frequency bases.
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For all integers 8 > 1, we know that Lebesgue almost every x € [0, 1] has a unique

B-expansion w = (w;);>1, and this expansion satisfies

Freqo(w) = Freq, (w) = - -+ = Freqg_, (w) = ;

by Borel’s normal number theorem. Therefore all integers are not almost variational fre-

quency bases. It is natural to ask the following question.

Question 2.2.7. Is it true that all non-integers greater than 1 are almost variational

frequency bases?

2.3 Bernoulli-type measures and frequency sets of univoque

sequences

Let {0,1}* := [J22,{0,1}" be the set of finite words and recall that {0, 1} is the set of

infinite sequences on {0,1}. For any integer m > 3, define

AM = {w € {0,1} : w does not contain 0™ or 1m},

Al = {w € {0,1}" : w does not contain 0™ or lm}

and
Amm = {w € {0,1}" : w does not contain 0™ or 1m}

where n € N. Given w € A™" we call
wl = {o €A™ 10w = w, )

the cylinder of order n in A™) generated by w.

Let B(A(™) be the Borel sigma-algebra on A(™ (equipped with the usual metric dp)
and p € (0,1). We define the (p,1 — p) Bernoulli-type measure p, on (A B(AU™)) as

follows:

I. Let
(@) =0, pp(AU™):=1, 0] :=p, and p,[1]:=1—p.

II. Suppose that 11, has been defined for all cylinders of order n € N. For any w € Alm)n
if w0, wl € A"+ we define

pp[wO0] := puy(w] and  pplwl] := (1 — p)pp|w];
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if w0 € A"+ but wl ¢ A+ then [w0] = [w] and naturally we have

pip[w0] = pplw];

if wl € A"+ but w0 ¢ AU+ then [wl] = [w] and naturally we have
piplwl] = pip[w].

III. By Carathéodory’s measure extension theorem, we uniquely extend p, from its defi-

nition on the family of cylinders to become a measure on B(A(™).

Let oy, : A — A(™) be the shift map defined by
om(wiwaws - -+ ) 1= wawzwy - -+ for (wp)p>1 € A,

The first main result in this section is the following.

Theorem 2.3.1. Let m > 3 be an integer and p € (0,1). Then there exists a unique
om-invariant ergodic probability measure A, on (A B(A™)) equivalent to p, where A,

s given by

Ap(B) := lim — Zamup (B) for B e B(A™).

n—oo0 N

As an application of this theorem, we consider frequency sets of univoque sequences in

the following. Define
I:= {we{O,l}N:@<akw<wforallk2 1}

where ¢ is the shift map on {0,1}Y,0:=1,1:= 0 and @ := W Wz - - - forallw = wyws - -- €
{0, 1},

The set I' is strongly related to two well known research topics, iterations of unimodal
functions and unique expansions of real numbers (see [9] for more details).

On the one hand, in 1985, Cosnard [41] proved that a sequence o = (a)n>1 € {0, 1}
is the kneading sequence of 1 for some unimodal function if and only if 7(«) € IV, where
7:{0,1}N — {0,1}" is a bijection defined by 7(w) := (31, w; (mod 2)),>1 and

F’;:{we{0,1}N:@jakijforallk20}

is similar to I' in the sense that I'"\ {periodic sequences} = I'. The structure of I\ {(10)>°}
was studied in detail by Allouche [3] (see also [7]). The generalizations of I' and I” (to
more than two digits) were studied in [3, 10].

On the other hand, in 1990, Erdés, Jo6 and Komornik [61] proved that a sequence

a = (an)n>1 € {0,1}V is the unique expansion of 1 in some base 3 € (1,2) if and only if
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a € I'. Thus we call T" the set of univoque sequences in this section. Note that the term

"univoque sequence" is different in some papers [45, 52, 53].

Recall from Section 2.2 that for any sequence w = (wp)n>1, we use Freqy(w), Freq, (w)
and Freq (w) to denote respectively the frequency, lower frequency and upper frequency
of the digit k£ in w.

Given a € [0, 1], define the frequency subsets of T by
Ly := {w € I': Freqg(w) = a},

r,:= {w el: Freqo(w) = a},
T, := {w € I': Freqg(w) = a},

and define the frequency subsets of
A= {w € {0, 1} : the lengths of consecutive 0’s and consecutive 1’s in w are bounded}

by

Ay {w € A : Freqp(w) = a},

A, {wEA:@O(w):a},

Ay = {w € A : Freqy(w) = a}.

It is straightforward to check I' C A. Let
U= {ﬁ € (1,2) : 1 has a unique S-expansion on {0, 1}}

be the set of univoque bases. It is proved in [46, 83| that U is of full Hausdorff dimension.
That is,
dimg U = 1.

For more research on U, we refer the reader to [55, 86, 88|.

On frequency sets, recall the well known result given by Eggleston [59], which says that

for any a € [0, 1], the classical Eggleston-Besicovitch set has Hausdorff dimension

—al — (1 —a)log(1 —
dimp {a: €1[0,1) : Freqq(e(z)) = a} — —aoed (1 = a) log( a), (2.13)
log 2
where e(z) 1= e1(z)ea(x) - - - en(x) - - - is the greedy binary expansion of x, and 0log0 := 0.

Motivated by the above mentioned results, correspondingly, we study the set of uni-
voque sequences I, the larger set A, and their frequency subsets Ty, L', Ta, Ag, Ay, Ay By

as £2q»

applying Theorem 2.3.1, we give the next theorem as the second main result in this section.
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Let dimg (-, d2) denote the Hausdorff dimension in {0, 1} equipped with the usual metric
ds.

Theorem 2.3.2. (1) We have dimpy(T',d2) = dimpg (A, d2) = 1.

(2) For all a € [0,1] we have

dimH(Fa, dg) = dimH(Ea,dg) = dimH(fa, dg)

- —al — (1 —a)log(l —
=dimp (Ag, d2) = dimg(A,, ds) = dimp (A, da) = aloga — (1 —a)log(l —a)

)

log 2
where 0log 0 := 0.

It is known that by defining Bernoulli measures, and then calculating the lower local
dimension of the measures and using Billingsley Lemma [63, Proposition 2.3|, the Haus-
dorff dimension of classical Eggleston-Besicovitch sets mentioned above can be obtained.
But this is based on the fact that only expansions in integer bases are considered in clas-
sical Eggleston-Besicovitch sets, there are no forbidden words in the symbolic space and
the Bernoulli measures are invariant and ergodic with respect to the shift map. Ergodic-
ity garuantees that classical Eggleston-Besicovitch sets have positive Bernoulli measures,
which is a condition needed for applying Billingsley Lemma to get the lower bound of
the Hausdorff dimension. If there are forbidden words, such as expansions in non-integer
bases in Section 1.2, the corresponding Bernoulli-type measures are not ergodic (actually
not invariant). This makes some difficulties to be overcome. In Section 1.2, after defining
Bernoulli-type measures, we found out the equivalent invariant ergodic measures, studied
the relation between the equivalent measures and the original measures and obtained the
Hausdorff dimension of Eggleston-Besicovitch (frequency) sets for a class of non-integer
bases (see Theorem 1.2.6) by applying an avatar of the Billingsley Lemma. This section
follows a similar framework and construction, but most of the details we need to confirm
are different.

For any a € [0, 1] we define the global frequency sets in {0,1} by
G = {w € {0, 1} : Freqq(w) = a},
G, = {w e {0,1}": Freq, (w) = a},

Gy = {w e {0, 1} : Freqq(w) = a},

and for any integer m > 3 we let
A =AM NG,

Here we give an outline for the proof of Theorem 2.3.2 (2) to explain how the concepts

in this section interact. Following the simple argument at the beginning of the Proof of
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Theorem 2.3.2 in Subsection 2.3.4, we know that it suffices to consider the lower bound of
dimg(Ty, d2). Since (2.16) says that dimg (T, d2) > dimH(Agm), ds) for any integer m > 3,
we only need to find a good lower bound for dim H(Aém), d2). Hence we apply the Bernoulli-
type measure f, to the Billingsley Lemma in metric space (Proposition 2.3.5), and the
unique equivalent o,,-invariant ergodic measure A, in Theorem 2.3.1 (with a suitable p)

2

can guarantee that A, ’ has positive measure, which is needed by the Billingsley Lemma.

Then we obtain a good lower bound of dimH(Agm), dz) in Lemma 2.3.16.

This section is organized as follows. In Subsection 2.3.1, we recall some basic notation
and preliminaries. In Subsection 2.3.2, we study related digit occurrence parameters and
their properties which will be used later. In Subsection 2.3.3, we study Bernoulli-type

measures and prove Theorem 2.3.1. Finally we prove Theorem 2.3.2 in Subsection 2.3.4.

2.3.1 Notation and preliminaries

For a finite word w € {0,1}*, we use |w|, |w|p and |w|; to denote its length, the number of
0’s in w and the number of 1’s in w respectively. Recall that w|; := wiws - - - wy, denotes
the prefix of w with length k for w € {0,1} or w € {0,1}" where n > k.

First we recall the following concept.

Definition 2.3.3. Let p be a finite Borel measure on a metric space (X,d). The lower

local dimension of p at x € X is defined by

) . log u(B(x,r))
dim;, p(z) := lim ———————=
== C/’I’( ) 0 10g7a

where B(x,r) is the closed ball centered at x with radius r.

In R™, recall that we can use the lower local dimension to estimate the upper and lower
bounds of the Hausdorff dimension by the following proposition, which is called Billingsley

Lemma.

Proposition 2.3.4 ([63] Proposition 2.3). Let E C R™ be a Borel set, u be a finite Borel

measure on R™ and s > 0.
(1) If dimy,.p(z) < s for all x € E, then dimy E < s.
(2) If dimy,.p(z) > s for all x € E and p(E) > 0, then dimy E > s.

We need to use the following version which is a generalization to metric spaces. For

the sake of completeness we give a self-contained proof.

Proposition 2.3.5. Let (X,d) be a metric space, E C X be a Borel set, pu be a finite
Borel measure on X and s > 0. If w(E) > 0 and dim;,.u(z) > s for all v € E, then
dimg(E,d) > s.



124 CHAPTER 2

The main we need to prove is the following.

Lemma 2.3.6. Let (X,d) be a metric space, E C X be a Borel set, p be a finite Borel

measure on X, s > 0 and ¢ > 0. If lim,_y M < c forall x € E, then H*(E,d) >

uE)

Proof. For any § > 0, let
Es:={x € E: p(B(z,r)) <cr’forall r € (0,9)}.
(1) Prove that Ej is a Borel set. We define
F,={x € E: u(B(z,q)) <cq’} forqeQ.

It suffices to prove the following (D and (2.

@ Prove Es = (\seqn(o,6) Fa-
follows from E5 C Fy for all ¢ € QN (0,9).

Let x € anQﬁ(O,&) F,,. For any r € (0,9), there exist g1, ¢2, - , qn, - € QN(0,6)
decreasing to . By z € (2 Fy,, we get pu(B(x,¢,)) < cgg for all n € N. Thus

u(B(e,r) = p([) Bx,q)) = lim p(B(z,qx)) < lim cq; = cr®.

n=1
This implies x € Ej.

@ Prove that F} is a Borel set.
Define f(z) := p(B(z,q)) for x € X. Then F, = EN f~1(—o0, cq®]. We only need to
prove that f is a Borel function. For any a € R, it suffices to prove that f~!(—o0, a)

is an open set. If f~!(—o0,a) = 0, it is obviously open. We only need to consider
f~Y(—00,a) # 0 in the following.

Let 9 € f~!(—00,a). Then u(B(xo,q)) < a. Since u(B(xo,q + §)) decreases to
w(B(xo,q)) as 0 decreases to 0, there exists dp > 0 such that p(B(zo,q + o)) < a.
It suffices to prove that the open ball B°(xg,d00) = {x € X : d(z,z0) < do} C

fﬁl(_ooaa)'
In fact, for any x € B°(zo,dp), by B(x,q) C B(xo,q + do) we get u(B(z,q)) <
w(B(xo,q + 6)) < a, which implies x € f~!(—o0,a).

(2) Prove that Ej increases to E as d decreases to 0.
@ If 0 < 62 < 61, then obviously Ej, C Es,.

@ Prove E = Us~oEs.
follows from E D FEj for all § > 0.
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Let + € E. By Tim,_o XEB@n) - ¢, there exists J, > 0 such that for all

rs

r € (0,0;), w(B(x,r)) < cr®. Thus z € Es, C Us>oEs.

(3) Prove H*(E,d) > k),

C

Fix § > 0. Let {Uk}rex be a countable d-cover of E, i.e.,

Ul <6 forallke K and | J Uy D E (D Ey).
keK

Let K':={k € K : U NEs # 0}. Then J, . Ur D E5. For any k € K', let 2, € Uy N Es
and By, := B(xy, |Ug|) D Uy. Then J,c g Br O Es. It follows that

1(Es)

ol

Sl = LS e 2L S wB v = L B =

keK keK’ keK’ keK’

where (x) follows from zj € Es. By the randomness of the choice of the d-cover {Uy}rer,
we get H3(E,d) > @ and then H*(E,d) > @ Let 6 — 0, by (1) and (2) we get
He (B, d) > “E). 0

Proof of Proposition 2.3.5. If s = 0, the conclusion is obvious. If s > 0, let ¢t € (0,s). For
any z € E, by lim__, W > t, there exists 0, € (0, 1) such that for any r € (0,05),

logutBr.r) ¢ and then w(B(x,r)) < rt. Thus lim,_o wB@r) <1 <2 forall 2 € E. By

logr rt

Lemma 2.3.6, we get H'(E,d) > “E) > 0. Thus dimpg(E,d) > t for all ¢ € (0, s), which

implies dimgy (F,d) > s. O

2.3.2 Digit occurrence parameters

The digit occurrence parameters and their properties studied in this subsection will be
used in Subsections 2.3.3 and 2.3.4.

Definition 2.3.7 (Digit occurrence parameters). Let m > 3 be an integer. For any
w e A™* | define

Ném)(w) = {k: 1<k <|w|,wr =0 and w;y ... wp_11 € A(m)’*},

Nl(m)(w) = {k 1<k <|w|,wy=1and wy ... w10 € A(m)’*},

and let
Ném) (w) :== #Ném) (w) and Nl(m) (w) :== #Nl(m) (w).

Proposition 2.3.8. Let m > 3 be an integer and w,v € A™* such that wv € A
Then

(1) N§™ () + Ng™ (v) = 1 < N™ (wo) < NJ™ (w) + N§™ (v);



126 CHAPTER 2

2) N™(w) + NI (0) =1 < N (wo) < NI (w) + N™ ().

Proof. Let a = |w| and b = |v|.

(1) @ Prove N™ (wv) < N™ (w) + N{™ (v).

It suffices to prove N()(m) (wv) C /\/O(m)(w) U (Ném)(v) + a), where /\/O(m)(v) +a:={j+a:
j e NI )} Let k € N™ (wo).

i) If 1 <k <a, then wy =0, wy - wy_11 € AU™* and we get k € /\/O(M)(w),

i) fa+1<k<a+b, then vp_, =0 and wy -+ wav1 ++ - Vk_gq_11 € A™)* Tt follows
from vy - vp_q 11 € AU")* that k —a € ./\/'ém) (v) and k € Ném) (v) + a.

@ Prove Ném) (w) + Ném) (v) < Ném) (wv) + 1.

When v = 1°, we get Ném) (v) = 0 and then the conclusion follows immediately from
Ném)(w) < Ném)(wv). Thus it suffices to consider v # 1° in the following. Let s €
{1,---,b} be the smallest such that v; = -+ = v4_; = 1 and vy = 0. In order to get
the conclusion, it suffices to show ./\/'O(m) (w)U (a +./\/'0(m) (v)) C Ném) (wv) U {a + s}. Since
Ném) (w) C ./\/ém) (wv), we only need to prove (a —i—/\/o(m)(v)) C Ném) (wv) U{a + s}. Let
ke N()(m) (v)\ {s}. It suffices to check a+k € N()(m) (wv). By v, = 0, we only need to prove
Wy wvy - vp_q1 € A, (By contradiction) Assume wy -+ wqvy -+ - vg—11 & Am)*

Then wq - - - wqvy - - - vp_11 contains 0™ or 1™.

i) If wy - wauy - vE_11 contains 0™, then w; - - - wavy - - - V1 contains 0. This con-

tradicts wv € AM)*,

i) If wy -« wevy - vE_11 contains 1™, by k > s+ 1, we know that

Wy - WaV1 V5100541 - vp—11
contains 1”. Thus wy --- w1 - - - vs—1 contains 1™ or vsyq---vE_11 contains 1™.
But wq - - -wgvy - - - vs—1 contains 1™ will contradict wv € A(m)’*, and vgqq - vp_11

contains 1™ will imply vy - - - v5—11 contains 1™ which contradicts k € Ném) (v).
(2) follows in the same way as (1). O
Proposition 2.3.9. Let m > 3 be an integer and w € A™*. Then
(1) m-fuwlo < (m — DNG™ (w) + fu;
(2) m-fuly < (m = DN (w) + [l

Proof. (1) Let n = |w|. If n < m — 1, the conclusion follows immediately from Ném) (w) =

|wlp. In the following, we assume n > m. Recall

N()(m)(w) = {k: 1 <k<nw,=0w - wp_1l€ A(m)’*} and Ném)(w) = #No(m)(w).
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We define

Nl(:nn)lo( ) = {k :m < k < n,Wg—m+1 " Wpg-1WE = 1m—10} and Nlm 10 # 1m 10( )

@Prove{k‘:lgkgn,wk:()}:/\fé (w )UNm 10(w).

Obvious.

Let k € {1,~~- ,n} such that wy = 0. If k ¢ Ném)(w), then £k > m and
wy - wp—11 ¢ A* By wy--wp_y € A" we get wp_py1 - wp—g = 1ML
This implies k € Nm 10(w).

@ Prove Ny™ (w) "N, (w) = 0.
(By contradiction) Assume that there exists k € ./\fo(m (w )ﬂ./\f m_ 10( w). Then k > m,
Whema1 - Wh—1 = 1™ " and wy - wp_11 € A These imply wy -+ - Wh_p, 1™

A™)* which contradicts the definition of A™)*,
Combining D and @), we get |wlp = Ném)( ) + N(m)lo( ). It follows from (m —

DN ) < fwh = wl = [wlo that (m — D)(Jwlo — N{™ (W) < |w| = wlo, ie.,

m - Jwlo < (m — NS™ (w) + |w),

(2) follows in the same way as (1). O

2.3.3 Proof of Theorem 2.3.1

Let p € (0,1). Recall the definition of the Bernoulli-type measure p, from the introduction.

Remark 2.3.10. We have

(m)

pp[w] = pN(m>( )1 —p)M @) for all w e A,

Note that j, is not op,-invariant. In fact, for all p € (0,1), we have
ppl0™ 1] = p™ 2 (1 — p),
but
(0 (07 21]) = g [0 M) + g [L07721) = p™ 7 p™ (1L = ) # T (1= ).
Combing Remark 2.3.10 and Proposition 2.3.8, we have the following.

Lemma 2.3.11. Let m > 3 be an integer, p € (0,1) and w,v € A")* such that wv €
A= Then
pplwlpplv] < pplwo] < p~ (1= p) ™ pplw]pp[v].

The proof of Theorem 2.3.1 is based on the following lemmas.
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Lemma 2.3.12. Let m > 3 be an integer and p € (0,1). Then there exists a constant
¢ > 1 such that

C_INP(B) < Uizﬂp(B) < cpp(B)
for all k €N and B € B(A™).

Proof. Let c=p~2(1 —p)~2 > 1.
(1) Prove ¢ py[w] < of p,[w] < cppw] for any k € N and w € AT™)*,

Fix w € A™* and k € N. Note that

m (W] = U e w]

up -upweA M) *

is a disjoint union.

@ Estimate the upper bound of ¥, s, [w]:

Z il - - - upw]

up - upweA(m),*

HpO gzk [w]

—
*
N

< Yoo =) plua - gl ]
wp - upwEA (M) *
< ptA-p)t D> mplun e uppp[w]
ul-"ukGA(m)’*
= p '(1—p) " pplw]
< cpplw]

where (x) follows from Lemma 2.3.11.
@ Estimate the lower bound of o¥, p,[w]:
i) Prove p,0,,F[0] > p?(1 — p) and p,o,.*[1] > p(1 — p)?. In fact, when k = 1, the

conclusion is obvious. When k& > 2, we have

/LpO';lk [0] = Z Mp[ul v UkO]
ul...ukOEA(m),*
2 Z pplur - - - up 17k —10]
Wy U1 g1 0EA (M) *
e B
o Z fplun - - - ug—10g—10]

Uy up_q EALM)*

> ppl0] Z pplur - - g1 prp[Ug—1]

uynuk,lEA(m)’*
> p > mplwrua]-p(1-p)
ul---uk,1€A(m)’*

= p’(1-p),
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where (x) follows from
Uy - uk}—lﬂkj—lo c A(m)v* S U U1 € A(m)v*

and (%x) follows from Lemma 2.3.11. In the same way, we can get u,o;F[1] >
p(1 —p)*.

ii) Prove p,0,F[w] > ¢ tp,[w]. In fact, when w; = 0, we have

o w] = > fiplus -+ - upw]
up -upweA (M) *
> Z pplut - - - up—11w]
u1~--uk_11wEA(m)v*
(*)
= Z pplur - - up—11w]

U up— 1 1EA(M)*
> Z prplu - - - ug—11]pp[w]
up-up_11€AM)*

= Mpa;z(k_l) [1]pap[w]

> p(1—p)uplw).

where (%) follows from w; = 0 and w € AU™* (xx) follows from Lemma 2.3.11 and
(% % ) follows from i). When w; = 1, in the same way, we can get j,0,,F[w] >

p2(1 - P)Mp[w]~

(2) Prove ¢ puy(B) < 0F 11,(B) < cpp(B) for all k € N and B € B(A™). Let

C:= {[w] Tw € A(m)’*} U {@},

Cyy:= { OCi :Cq, -+ ,C, € C are disjoint, n € N}

=1
and
G = {B e BA™): ¢ uy(B) < okypp(B) < cyuy(B) for all k € N}.

Then C is a semi-algebra on A Csy is the algebra generated by C (by Lemma 1.2.13
(1)) and G is a monotone class. Since in (1) we have already proved C C G, it follows that
CsyCGC B(A(™). Noting that B(A(™) is the smallest sigma-algebra containing Csy, it
follows from the Monotone Class Theorem (Theorem 1.2.12) that G = B(A(™). O

Lemma 2.3.13. Let m > 3 be an integer and p € (0,1). For any B € B(A"™)) satisfying
o.'B = B, we have p,(B) =0 or 1.
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Proof. Let a = p?(1 —p)? > 0.

(1) Let w € AU™* and n = |w|. For any A € B(A™), we prove ap,[w]p,(A) < pp([w] N
—(n+2)

om A).

@ For any v € A™* prove ayu,[w] i, [v] < pp([w] N o [v]).

In fact, it follows from ww,7v € AC™* and [w] N oy, v] D [wwy,viv] that

pp([w] Mo, [o]) > i [w,T10] e pp[wlp @l pp 1] p 0] > (p(1=p))? pplwpaplo]

where (%) follows from Lemma 2.3.11.

@ Let
C:= {[v] v € A(m)’*} U {@}

and
Gu = {4 € BIA™) s apylulip(A) < pip(fw] N 0,72 4) }.
Then G, is a monotone class. Since in (I) we have already proved C C G, in the

same way as the end of the proof of Lemma 2.3.12, we get G,, = B(A(™).

(2) We use B¢ to denote the complement of B in A For any e > 0, by Lemma 1.2.13,
there exist finitely many disjoint cylinders {[w(i)]} C C such that p,(B°AE.) < € where
E. = Ui[w(i)]-
(3) Let B € B(A™)) with ¢,' B = B. For any w € A")* by B = om“ B and (1) we
get

11y (B)itpl] < oI B (1 [w]) = (B 1 [w]).

Thus
app(B)pp(Ee) = Z O‘Np(B)/Jp[w(i)] < Z pp(BN [w(i)]) = NP(BHU[U)@]) = up(BNE;).

Let a = pup,((BU E.)), b = pp(BNE;), ¢ = pp(B \ E.) and d = p,(E. \ B). Then we

already have
alb+c)(b+d) <b, a+b<e (by u,(B°AE;) <e) and a+b+c+d=1

It follows from
abt+c)la+d—e)<alb+c)(b+d) <b<e

that ) )
b+c)a+4d) < (a+b+c)€ < (a+1)e.

This implies 11,(B)py(B¢) < (£ +1)e for any £ > 0. Therefore p,(B)(1 — y1p(B)) = 0 and
then p,(B) =0 or 1. O
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Proof of Theorem 2.3.1. (1) For any n € N and B € B(A(™), define

1 n—1
= Z Hp(ar;ka)-
k=0

Then A} is a probability measure on (A" B(A(™)). By Lemma 2.3.12, there exists ¢ > 0
such that

¢ pp(B) < X2(B) < cpip(B)  for any B € B(A™) and n € N. (2.14)

(2) For any B € B(A™), prove that lim,, o0 Ay
Let 1 : A — {0,1} be defined by

1 fweB
15(w) ::{ itw¢ B

(B) exists.

for any w € A™). Then
i 08 = i 1> / s

. 1 k
= nh—>120/ - Z 1p(opw) dppy(w)
k=0
n—1

1
:/nlirréonZIBa w) dpy(w)

where the last equality is an application of the dominated convergence theorem, in which

the fi-a.e. (almost every) existence of limy, oo = Zz;é 1p(ok,

1.2.27, Lemma 2.3.12 and (2.14).

w) follows from Lemma

(3) For any B € B(A™), define
Ap(B) = nh_}nolo Ay (B).
By the well known Vitali-Hahn-Saks Theorem, ), is a probability measure on (A, B(A(™)).

(4) The fact A, ~ g, on B(A(™) follows from (2.14) and the definition of \,.

(5) Prove that A, is op,-invariant.
In fact, for any B € B(A™)) and n € N, we have

(7' B) = Zﬂp 08 = £ (o) - L2 Ly 16lB)
k:O
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Let n — 0o, we get A\p(0,,' B) = \,(B).

m
(6) Prove that (A(™ B(A(™) )\, 0,,) is ergodic.

In fact, for any B € B(A™) satisfying o;,' B = B, by Lemma 2.3.13 we get u,(B) = 0 or
1, which implies A,(B) = 0 or 1 since A, ~ fip.

(7) Prove that such ), is unique on B(A(™)).

Let A}, be a op,-invariant ergodic probability measure on (A B(A(™)) equivalent to Lp-
Then for any B € B(A"™), by the Birkhoff Ergodic Theorem, we get

n—1
1
Ap(B) = / Ip d\, = Jim - Z Ip(opw) for N-ae. we A
k=0

and
n—1

1
Ap(B) = / g d\, = lim = " 1p(okw) for \pae we A,
k=0

n—oo N
Since \j, ~ 1, ~ Ay, there exists w € A(™ such that Ap(B) = limy 00 1 Z;é 1g(ckw) =

Ap(B). Tt means that A}, and A, are the same on B(AM). O

2.3.4 Proof of Theorem 2.3.2

For any a € [0, 1], recall the definition of the global frequency sets G, G, and G, from the
introduction. The following lemma follows immediately from (2.13), Theorem 1.2.38 and

the invariance of Hausdorff dimension under the projection ms.

Lemma 2.3.14. For any a € [0, 1], we have

—aloga— (1 —a)log(l—a)

dimp (G, dp) = dimp (G, ds) = dimp (Gq, da) = log 2

To prove Theorem 2.3.2, we also need the next two lemmas, which will be proved later.

Lemma 2.3.15. Letm > 3 be an integer, p € (0,1) and \, be the measure on (A™ B(A(™)))
defined in Theorem 2.3.1. Then

p—p"

MO = T e

For any integer m > 3 and a € [0, 1], recall AE[”) =AM NQG,.

Lemma 2.3.16. Let a € (0,1) and m > 3 be an integer large enough such that % <a<
1-— % Define fp, : (0,1) = R by
z—a™m

fm(z) == [ —am (=) for x € (0,1).
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Then there exists pp, € (0,1) such that fm(pm) = a and

ma — 1) logpy, — (m —ma — 1) log(1 — py,)
(m —1)log2

dimg (AT dy) > =

Moreover, pp, — a as m — oo.

Proof of Theorem 2.3.2. First we prove (2). Let a € [0,1]. Since it is straightforward to
check I C A, we have

l,CcA,CG,, T,cl,cA,CG, and T,CT,CA,CG,.

By Lemma 2.3.14, we only need to prove

—aloga— (1 —a)log(l—a)

dimH(Fa,dQ) > (2.15)

log 2

If a = 0 or 1, this follows immediately from 0log0 := 0 and 1log1 = 0. So we only need

to consider 0 < @ < 1 in the following. For any integer m > 3, we define

a

@(m) = {w - Ga DWWy = 12m7wkm+1 c Whem+m ¢ {Om, 1m} for all &k 2 2}

and

[1]

(m) . {w € Go : Wimat -+ Wmam & (0™, 1M} for all k > 0}.
Then

(exx)

(*) (+%)
dimp (T, dg) > dimg (O™, dy) > dimy (20, dy) > dimp(AU™,dy)  (2.16)

where (%) follows from I'y 5 O™, () follows from Z{™ 5 A{™ | and (x) follows from

a2m(®£f”)) = =™ and the fact that o2 is Lipschitz continuous (since dz (o™ (w), 0?™(v)) <
22Mdy(w, v) for all w,v € {0,1}Y). By (2.16) and Lemma 2.3.16, for m large enough, there
exists pp, € (0,1) such that p,, — a (as m — oo) and

—(ma — 1) log pp, — (m — ma — 1) log(1 — pp,)
(m—1)log2

dlmH (Fa7 d2) >

Let m — oo, we get (2.15).
Finally we deduce (1) from (2). In fact, since (2) implies dimg (T’ 1 dy) =1, it follows
from F% c T c Ac{0,1}N that dimy (T, ds) = dimg (A, ds) = 1. O

Finally we prove Lemmas 2.3.15 and 2.3.16 to end this section.

Proof of Lemma 2.3.16. Since f,, is continuous on (0, 1), lim,_,o+ fim(x) = %, lim, ;- fm(z) =

1—2Land L <a<1- L1, there exists pp, € (0,1) such that f,,(pm) = a.

m
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(1) Prove p,, — a as m — oo. Notice that

)| = [Pl = Pm) = Pm(1 = pm)"™

’pm_a| = |pm_fm(pm 1_pm_(1_pm)m

Let
2™l —x)—z(l—x)™

l—am—(1—x)m

gm(z) == for x € (0,1).

Then

[Pm — al = |gm(pm)| < sup |gm(z)].
z€(0,1)

In order to prove p,, — a, it suffices to check |g,,(x)| < — for all x € (0,1). That is,
m-lzm(1—z)—2z(1—2)"| <1—2™—(1—2)"™ forall z e (0,1).

@D When z € (0, 3], we get (1 — x) — z(1 — 2)™ < 0. It suffices to prove (m — mz —
a™+1— (mz+1)(1 —x)™ > 0. Since m —mz — 1 > 0, we only need to prove
B () == (ma +1)(1 — 2)™ < 1 for all « € [0, 1]. This follows from h,,(0) = 1 and
W, (z) = —m(m+ 1)z(1l —2)™ 1 <0 for all 2 € [0, 3.

@ When z € (3,1), we get 2™(1 — z) — (1 — 2)™ > 0. It suffices to prove (mz —
DA =—2)"4+1—(1+m—mz)z™ > 0. Since mxz —1 > 0, we only need to prove
B (z) := (1 4+ m — ma)z™ < 1 for all z € [5,1]. This follows from h,,(1) = 1 and
W, (z) =m(m+1)(1—z)z™ 1 >0 for all z € [L,1].

(2) We apply Proposition 2.3.5 to get the lower bound of dlmH(A( ™) ,dg). Let p,,, be the
(Pms 1 — prm) Bernoulli-type measure on (A™), B(A(™)).

(D The fact that A™ = AM A G, is a Borel set in (A dy) follows from the fact that
G, is a Borel set in ({0,1}Y, dy).

® Prove pp,, (Aflm)) = 1.

Let \,,, be the measure defined in Theorem 2.3.1 such that (AT B(A(™) N\, 0y,) is
ergodic. It follows from Birkhoff’s ergodic theorem that

B by Pm — Pm _ _
nlggo ; Z H[O U /ﬂ[o]d)\pm - Apm [0} Lemma 2.3.15 1 —pm - (1 - pm)m B fm(pm) -

Jwy -- wn|0

for \p,,-almost every w € A™). By =1 Zk Zo L (ofw), we get

L wwls
m —

=a for A, -almost every w € A,
n—o0 n

which implies A, (A((lm)) = 1. It follows from \p,, ~ fp,, that . (A((lm)) = 1.
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® For all w € At(lm), we have

i 108 P (B(w, 7))

r—00 logr
(g) lim log fp,, [w1 -+ - w]
n—00 10g 2—n
. —logpm ( wr wn)( pm)N§m>(w1"'wn)
= lim
n—00 nlog 2
™) (0 _ oY
lim,,_, o, 20 (og p) + Tim,, o M) ( log(1 — )
- log 2
(xx) lim,, o (m(‘:;l—li)vr?lo o ml—l)(_ logpm) +lim,, , (m(lszl—li)vryll B ml—l)(_ log(l — Pm))
- log 2
(3xx) —(ma — 1) log pm — (m — ma — 1) log(1 — py,)
B (m —1)log2

where (% x x) follows from w € Agm), (xx) follows from Proposition 2.3.9 and (x) can be

proved as follows. For any r € (0,1), there exists n = n(r) € N such that 5= < r <
z=1. Then by B(w,r) = [wy -+~ wy] and log i, [wy - wy] < 0, we get 108 tpm (Blw.r))

logr =
10g Lpy, [W1 W] w_»
—Eipm (In fact, (%) can take “=".)

Thus the lower bound of dimy (Af{”), dy) follows from (D), @), 3 and Proposition 2.3.5.

0
Proof of Lemma 2.3.15. By the definition of \,, we know
lim =
bl ;&HZWU
For any integer k > 0, let
Ak = ,upa_k[O] = Z prpluy - - - ugO], by = Npa_k[l] = Z pplu -+ ugl],
Ul“'ukOEA(m)’* ul-“’u.leA(m)'*
e = ppo "01] = Z fiplur - - ug01],  dy := ppo *[10] = Z Pp [t - - - ug10].
wp - uR0LEA(M),* wy-up 10EA(M)*

By Theorem 2.3.1, the following limits exist:

n—1 n—1

1 .1
= nlgfolo " kzoak =Mp[0], b:= nlgfolo n kzobk = Mp[1],

1
nh_)rr;oEch = d:= 7}1_}1"{)1052@ = \,[10].
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(1) We have a + b = 1 since \,[0] + \p[1] = A, (A(™).
(2) We have ¢ = d since \,[00] + A,[01] = A,[0] = A\,0~1[0] = A, [00] + A,[10].
(3) Prove (1 —p)a+p™~'d = cand pb+ (1 — p)™ lc =d.

@ For k > m, we have

ar = dp—1 +pdi—o+ -+ p" Bdp_mio + 0" 2dk—mi1,

since
> piplua - - - ur0]
u1~<~uk0€A(m)=*
= > ppua - - - uk—110] + > ppua - - - uk—100]
wp g 10€A0M),* w1 ug_ 1 00€A(M).*
=dp_1+ Z tplur -+ up—2100] + Z tplur -+ - up—2000]
wy--ug_o100€A(M),* wy - ug_o000€A (M), *
@+ Z Phtplut -+ - up—210] + Z pplui - - - ug—2000]
wy-ug_o10€A(M)* wp--ug_o000€A (M), *
=dp_1 +pdp_o+ > pip[un - - - ug—31000] + > piplur - - - u—30000]
uy--ug_31000€ A (M) up-up_30000€A (M) *
() di—1 + pdr—2 + Z pz,up[ul o uk—310] + Z tplur -+ uk—304]
up - uk_310€A(M),* wy-up_g04eA(m),*
=dp14pdpo+ -+ " Pdp_myo+ Z fput - Uk— 20"
u1~~~uk_m+20m_1€A(m)w*
=dp_1+pdi—2+ - +p" Pdpomia + Z fplut - Uk mg110™ 7Y
ulH,uk77n+1107n7161\(m),*
() di1+pde_o+-+p™ Pdp_myo+ Z P P pp[un - - g1 10]

UL UL g1 LOEA(M) %

=dp—1+pdi—2+ -+ " Pdp—miz + " P di—mi,
where (%), (xx) and (x % ) follow from

-~ ug_2100 € A(m)’* S up-c-up_o010 € A(m)’*
= uy---up_2101 € A(m)’*

- up_31000 € A oy w510 € AF
= up - up_3101,uy - - up_31001 € A(m)’*
and
Uy - - -uk_m+110m_1 e AM* oy - “Ug—m+110 € Al

= Uy U1 101, U - Uy 11001, - -+ g - -+ Up— g1 10™ 721 € A

respectively, recalling the definition of s,.
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@ For k > m, we have

ek =(1—p)dp—1+ (1 —p)pdi—2 + -+ (L = p)p" Pdi—mia + P *dj—ms1,

since

Z Mp[ul "'uk01]

wy-up01€A(M)*

= Z tplur -+ ug—1101] + Z tplur -+ - ur—1001]
ug w1 101€A(M) > uy-ug_1001€A (M),
@ S (- ppplur - uko10] + 3 piplur -+~ ug—1001]
wyug_110€A(m),* wy-ug_1001€A(M)*
=(1—p)dp_1+ > pplur - up—21001] 4 > fipltn - - up—20001]
wy-ug_91001€A (M), * wy-ug_20001€A (M), *
**) 3
=1 - _ — D)ty _ N
(1 - p)diy + > p(1 = p)pplus - uk—210] + > fplur - - ug—2071]
up-ug_o10€A(M)* wyup_p031€A(m) *
=1 —=p)dp—1+p(1 —p)dx—2 + Z fiplur - - uk—310°1] + Z fip[u - - up—30*1]
up-ug_31031€A(m),* wy-ug_g041eAlm),*
=1 —p)dr—1+ (1 —p)pdi—z+ -+ (1 = p)p™ *dp—ms2 + > pplu -+ k20" ]
ul.,.uk7m‘+20'm711EA(m),*
= (1= p)dp—1 + (1 = p)pd—z + -+ (1 = p)p"™ *di—mi2 + > fip[ua -+ Uk 1 1077
Uy U g1 10M =L TEA(M)
2 (1 = p)das + (1= p)pdi—z + -+ (1 = p)p™ P di—ms + > P pplun - w1 10]

ul"'uk—m+110€1\(m)’*

= (1 =p)di+ (1 =p)pdi—2+ -+ (1= p)p" *dk—mi2 +p" *di—m11,
where (%), (x%) and (x % ) follow from

wp - up_ 1101 € A oy w110 € A

= up - up_1100 € A

uy - up_21001 € AF ooy o510 € A
= uy - up_9101, up - - - up_21000 € A

and
Uy -+ uk_m+110m_11 S A(m)’* S UL Ug—m+110 € A(m)’*

= Up U1 101, -+ ug - U 110MT 21 € AL
but w - - - U1 107710 ¢ A
respectively, recalling the definition of 1.

Combining @ and @ we get (1 — p)(ar — p™ 2dk—m+1) = ¢k — P 2dj—m+1,

ie, (1—pag + " Y1 = ¢ for any k > m.



138 CHAPTER 2

That is,
(1 = p)aksm + " 'dks1 = Cppm  for any k > 0,

which implies

1 n—1 1 n—1 1 n—1
m—1 _
(1- p)a 1;—0 Qk+m + D I kE_O dpq1 = o kE_O Ck+m-

Let n — oo, we get (1—p)a+p™~1d = c. It follows in the same way that pb+(1—p)™ lc = d.

Combining (1), (2) and (3) we get a = %.



Chapter 3

Generalized Thue-Morse sequences

In this chapter, we study some generalizations of the well known Thue-Morse sequence,
including their relations to beta-expansions in Sections 3.1 and 3.2, related infinite products

in Section 3.3 and generalized Koch curves in Section 3.4.

3.1 Bifurcations of digit frequencies in unique expansions
Let (tn)n>0 be the famous Thue-Morse sequence
0110 1001 1001 0110 1001 0110 0110 1001 ---.

It is well known that there are several equivalent definitions of this sequence [15]. One of
them is
to:=0, t1:=ty, tats:=1tol1, tatstetr := totitats,

where 0 := 1 and 1 := 0. Hence it is straightforward to see that the shifted Thue-Morse
sequence (tn)n>1,

1101 0011 0010 1101 0010 1100 1101 0011 ---, (3.1)
can be defined by

tii=1, ty:=1;, taty:=0ty , tstelrls = tilalsts

where wt := wy -+ wy_1(wy, + 1) for any finite word w = wy - - - wy,.

First we generalize the shifted Thue-Morse sequence according to the above definition.
For any m € N and k € {1,---,m}, we define a sequence of finite words {95:;2}”20 by
induction as follows:

7“‘1’
00 =k and 00TV =06 foralln >0, (3:2)

mik * T m;

139
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where W := wy - - - w; for any word w = wy - - - w; and j :=m — j for any j € {0,1,--- ,m}.
When m and k are understood from the context, we use () instead of 07(7% for simplifi-
cation. We call the infinite sequence

0= (0;)i>1 := lim 0™ = k(k+ D)kk k(k — Dk(k +1) k(k — Dkk k(k + Dkk ---

n—oo

the (m; k)-shifted- Thue-Morse sequence, and call the unique q = gy, € (1,m + 1) such
that

the (m;k)-Komornik-Loreti constant.

Note that the (1;1)-shifted-Thue-Morse sequence is exactly the classical shifted Thue-
Morse sequence (t,)n>1 and the (1;1)-Komornik-Loreti constant is exactly the classical
Komornik-Loreti constant (8, 84].

In the following, we will study the relation between the above generalized Komornik-
Loreti constants and digit frequencies in unique expansions.

Let m € N, 8 € (1,m + 1] and z € R. Recall that a sequence w = (w;);>1 €

{0,1,--- ,m}" is called a B-expansion of z if

z =mg(w) = Z %
i=1

An z may have many different S-expansions, or it may have a unique (S-expansion. We
focus on unique expansions, which got a lot of attention in the last three decades [2, 5, 45,
53, 60, 83, 86]. For m € N and 8 € (1, m + 1], let

Lypi= {w €{0,1,--- ,m} : w is the unique S-expansion of ﬂg(w)} \ {OOO, moo}

be the set of unique [-expansions except 0°° and m.

For any m € N, let

p+1 if m = 2p for some integer p > 1
Gm .—

pF+1+4/p?+6p+5
2

if m = 2p + 1 for some integer p > 0
be the generalized golden ratio. Baker [23| showed that:

(1) for all 8 € (1,Gy,), we have 'y, g = 0;

(2) for all 8 € (G, m+ 1], we have T'y, g # 0.

We study digit frequencies of the sequences in Iy, g. Baker’s result make us only need

to consider 8 € (G, m + 1]. Recall from Section 2.2 that for any infinite sequence w,
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the frequency, lower-frequency and upper-frequency of the digit k in w are denoted by
Freqy,(w), Freq, (w) and Freqy, (w) respectively.

Let 31 be the unique zero in (1,2) of the polynomial 3 — 22 —2x+1. It is straightforward
to check that (3 is strictly larger than the golden ratio G7. In [75, Lemma 2.3] Jordan,
Shmerkin and Solomyak showed that:

(1) if B € (G, B1], then for all w € T'y g,

1
Freq; (w) and Freqy(w) exist and are equal to 3

(2) if B € (81,2), then
dimg {w € I'y g : Freq; (w) and Freqy(w) do not exist} > 0,
and there exists ¢ = ¢(f) > 0 such that for all r € (—c¢, ¢),
dimpg {w € I'1 g : Freq;(w) — Freqg(w) = T} > 0,

where dimp denotes the Hausdorff dimension in {0,1}Y equipped with the usual

metric do.

This is a bifurcation phenomenon of digit frequencies in unique expansions on the
alphabet {0, 1}. We are going to show similar bifurcation phenomenons on larger alphabets.
Interestingly, in our first main result, the bifurcations are exactly the generalized Komornik-

Loreti constants, which are defined by the generalized shifted Thue-Morse sequences.
Theorem 3.1.1. Let m > 2 be an integer, k € {[%5] +1,--- ,m} and B € (G, m + 1].

(1) If B € (Gm, G}, then for all w € Ty, g,

Freq(w) and Freqp(w) exist and are equal.

(2) 1f B € (@ + 1], then
dim g {w € 'y, 5 : Freqg(w) and Freqg(w) do not exz'st} > 0,

N

where dimp denotes the Hausdorff dimension in {0,1,--- ,m}" equipped with the

usual metric dpy1.-

For integer m > 2 and k € {[%§] 4+ 1,--- ,m}, let

E+1+Vk2—6k+4m+5
2

Bm;k =
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be the unique zero in (1,m + 1) of the polynomial 22 — (k + 1)z + 2k —m — 1. One can
verify Bk > Gk > G for all k € {[%] +1,--- ,m}. The following is our second main

result.
Theorem 3.1.2. Let m > 2 be an integer, k € {[%5] +1,---,m} and 8 € (G, m + 1].

(1) If B € (Gm, Bmskl, then for all w € Ty, g, we have

Freqy,(w) = Freqp(w) and Freq, (w) = Freqz(w).

(2) If B € (Bmsk, m + 1], then there exists ¢ = c¢(8) > 0 such that for all r € (—c,c), we
have

dimpy {w € 'y, 5 : Freqy(w) — Freqg(w) = r} > 0,

N

where dimy denotes the Hausdorff dimension in {0,1,--- ,m}" equipped with the

usual metric dp+1.

Remark 3.1.3. The domains B € (G, Q] in Theorem 3.1.1 (1) and B € (G, Bm:k) in
Theorem 3.1.2 (1) can be extended to € (1, qp] and B € (1, Bm:x) respectively. In fact,
on the one hand, the condition B > G, has not been used in the proof of Theorem 5.1.1 or
8.1.2, and is just used to guarantee I'y, 3 # ; on the other hand, even if f < G, makes
I3 =0, the statements of Theorem 3.1.1 (1) and Theorem 3.1.2 (1) still hold.

We will give some notation and preliminaries in Subsection 3.1.1, and then prove The-

orems 3.1.1 and 3.1.2 in the last subsection.

3.1.1 Notation and preliminaries

Given a finite word w, recall that we use |w| and |w|; to denote its length and the number
of the digit k in w respectively. If w = wy---wp_1wy,, we define w* = wy- - wy_1,
wt = wywp_1(w, + 1) and w™ = wy-wp_1(w, — 1). For m € N and k €
{0,1,--- ,m}, the bar operation is defined by k := m — k, extended to all infinite se-
quences w = wiwsg - -+ € {0,1,--- ,m}N by W := wW,wWs - - - and extended to all finite words
w=wy - w, €{0,1,--- ,;m}"™ by w:=w; ---w, for all n € N.

Let m € N. On {0,1,---,m}", recall that the usual metric d,,1 is defined by

dm+1(w,v) := (m + 1)_inf{”20:w”+17§”"+1} for w,v € {0,1,--- ,m}Y,
and the shift map o is defined by
o(w) := wowswy - -+ for w = wywows--- € {0,1,--- ,m}N.

For B € (1,m + 1], we use g*(1,8) = (g:(1,8))n>1 € {0,1,--- ,m} to denote the
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quasi-greedy [B-expansion of 1 (the largest expansion in lexicographic order among all the
p-expansions of 1 which do not end with 0°°).

Between two infinite sequences or two finite words with the same length, we use <, <,
> and > to denote the lexicographic order. The following lexicographic criteria for unique
expansions can be found in [55, Theorem 2.5|, [85, Theorem 3.1, [76, Lemma 2.2| and
Corollary 2.1.6 in this thesis.

Lemma 3.1.4. Let m € N, 8 € (I,m+ 1] and e € {0,--- ,m}" be a B-expansion of 1.

Then € is the unique expansion if and only if
o"e < ¢ whenever e, <m and o > & whenever g, > 0.

Lemma 3.1.5. Let m € N, g € (1,m+ 1], z € [0,%] and w € {0,--- ,m}N be a

B-expansion of x. Then w is the unique expansion if and only if
oc"w < g*(1, 8) whenever w, <m and o"w > g*(1, ) whenever w, > 0.

The next lemma follows from [55, Proposition 2.3] (see also [22, Theorem 2.2]).
Lemma 3.1.6. Let m € N and (1,52 € (1,m + 1]. If 1 < B2, then g*(1,51) < ¢*(1, B2).
The following lemma on Cesaro limit can be proved straightforwardly.
Lemma 3.1.7. Let ai,as,--- > 0. If a, — oo then % — 00 as n — 0.

Proof. Fix any M > 0. By a,, — 00 as n — oo, there exists N € N such that for alln > N
we have a, > 2M. Then for all n > 2N, we have
a1+---+an>aN+1—|—---+an>(n—N)-2M 2NM

= 2M —
n n n n

> M.

The following concept and basic property are well known [64].

Definition 3.1.8 (Holder continuity). Let (X, d), (X', d’) be two metric spaces and > 0.
A map f: X — X' is called a-Hélder continuous if there exists a constant ¢ > 0 such that

d'(f(z), f(y)) < c- (d(z,y))* forallz,y € X.

Proposition 3.1.9. Let (X,d), (X',d') be two metric spaces, & > 0 and f : X — X' be

an a-Hélder continuous map. Then for any E C X, we have
dimy (E,d) > a-dimg(f(E),d).

Besides, we recall two useful basic results (see for examples Lemma 2.3.14 and |24, 59]).
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Proposition 3.1.10. For all a € (0,1), we have
dimpy ({w € {0,1}" : Freqy(w) = a}, dz)
Proposition 3.1.11.

dimg ({w € {0,1} : Freqy(w) and Freq, (w) do not e:cz'st},d2> =1

3.1.2 Proofs of the main results

Throughout this subsection, m > 2 and k € {[%] 4+ 1,---,m} are given integers. Recall
from the introduction that (©, 91 ... 9™ ... are defined by (3.2), and 6 = (6;)i>1 =
limy,_so0 0 is the (m; k)-shifted-Thue-Morse sequence. Before proving Theorem 3.1.1, we

give some necessary technical lemmas first.
Lemma 3.1.12. For all integers n > 0, we have the following.
(1) o) = 2n.

(2" —1)/3 if n is even,

2) g1, = |p(M)— |- =
(@) 1677 e = 10 { (2" +1)/3 ifn is odd.

2" 42 ) )
(3) \9(”)\k:{ (2" 4+ 2)/3 if n is even, and |00

) @"=1)/3 ifn is even,
(2" +1)/3 if nis odd, B

(2" —2)/3 if n is odd.

Proof. (1) follows from the definition of #(™).

(2) @ Prove [§(M) |, = [0~ |,

Forn=0,by 0~ =k —1land k <k —1<k, we get |00~ |, = |00~ = 0. For n > 1,
it follows from (™~ = g(=Dg(n=1) that [§)~|, = |9 T

@ Let |9~ e = 00|, +0™~|. By @ it remains to prove

o, - = { 2(2" —1)/3 if n is even,

k, 2(2" 4+1)/3 if n is odd.

In fact we can prove that

{ 00V~ |7 = 2(2" — 1)/3 and 0(")~ ends with k — 1 if n is even, 33)
k=

|0, 2(2" +1)/3 and "~ ends with k if n is odd,
by induction. For n = 0, (3.3) is true since /%~ =k —1 and k < k—1 < k. Suppose that

(3.3) is true for some n > 0.

i) If n is even, then |§(")~ .7 = 2(2"—1)/3 and §™~ ends with k—1, which implies that
9 ends with k. By ("+D— = 9(Mg(n) | we know that |0(”+1)_],€E = 2(\9(")_|kg +
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1) = 2(2"*! +1)/3 and 6t~ ends with k, where n + 1 is odd. Thus (3.3) is true
for n + 1.

ii) If n is odd, then |§(™)~ ln5 = 2(2"+1)/3 and 0™~ ends with &, which implies that 6(")
ends with k+1. By (ntD)= = 9()g(n) we know that ‘9(n+1)_|k,E = 2(|9(”)_|k;— )=
2(27*t1 — 1)/3 and A"V~ ends with k — 1, where n 4 1 is even. Thus (3.3) is true
for n + 1.

(3) follows from (2) and (3.3). O
By [10, Theorem 1], [3, Part 3, pp. 74, Lemma 3| and (3.3), we get the following.

Lemma 3.1.13. (1) For alln > 1, we have < 08 < 6.
(2) Let j € N and u,v be finite words on {0,--- ,m} such that 09)* = wv, where u is

non-empty and v may be empty. Then

wvk < vku < v(k + 1)u < uvk if j 1is even,
w(k —1) <v(k — 1V)u < vku < uwv(k +1) if j is odd.

Lemma 3.1.14. Let n, s be integers such that 0 < n < s. Then 0% begins with 6 ()*.

Proof. Tt follows immediately from §)* = gls=Dgls—Dx gls—1* — gls=2)g(s=2)x ...

g(n+2)x — pn+1)g(nt)x apd Hn+D)* — gn)gn)*. O
Lemma 3.1.15. For any n € N, there exist integers 1 > lo > -+ > Iy > 0 such that
n =20 4224 ... 42k gpg

, g g(a) . .. g—1)g(le) if t is even,
1rePn = ) gz) . .. gli—2)g(ls—1) Q) if t is odd.

Proof. Let n € N. Then there exists I; € {0,1,2,---} such that 2" <n <20+l 1. By
the definition of 6, we know that 01 - - -0y, = 0(1) and

011 10511 o - - begins with G()*, (3.4)

If n =24 then 6;---6, = 6(1) and the conclusion follows.
Ifn> 211, by n — oh < ol _ 1, there exists Iy € {0,---,1; — 1} such that 2k < p —2h <

2l2+1 _ 1. By Lemma 3.1.14 we know that 8(1)* begins with (2)9(2)* Tt follows from
(34) that 9211+1 R 9211+212 = 6(l2) and

92l1 +2l2+192l1 +2l2+2 e begins Wlth 0(l2)*

For general j > 2, suppose that there already exist integers Iy > ls > --- > 1; > 0 such
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that 26 <mp—20 — ... —2Li-1 < oL+l 1 g, ... Ogty 1oty = 9)gla) ... gli-1)gL) (we

only consider that j is even since the case that j is odd is similar), and

. . I
Ogts 4 ..ioti 19911 4. joli 4o - begins with gli)*, (3.5)

Ifn=2"4...42 then 6;---6, = 0U)gl) ...9li-1)90) and the conclusion follows.

Ifn>20+... 425 byn—2h —... -2 <2l — 1, there exists lit1€{0,---,l; —1} such
that 2li+1 <n—2h —... — 2L < 2i+1+1 _ 1. By Lemma 3.1.14 we know that #()* begins
with 001+ Tt follows from (3.5) that Oy, , ot 1Oy oty = 041 and

0 0 - begins with i+1)*,

ol 4o 2ti+1 410 oy oliti 49

The above process must stop in a finite number of times since n is finite. Therefore the

conclusion follows. O

To show Theorem 3.1.1 (1), the main we need to prove is the following.

Lemma 3.1.16. Let m > 2 be an integer, k € {[Z]+1,--- ,m} and w € {0,--- ,m}"
such that

o"w < 0 whenever w, < m (3.6)
and
o"w >0 whenever wy, > 0. (3.7)

(1) @ For all s € N such that ws < m and ws11 = k, there exist integers jo > 1 and

jl)j27 P Z 0 such that ws+1ws+2 e — 9(]0)_9(]1)_0(]2)_ e
@ For all s € N such that ws > 0 and weyr1 = k, there exist integers jo > 1 and
g1, 72, -+ > 0 such that wg 1w g - -+ = HU0)=HU1)=HU2)— ...

(2) For all integers s >0, jo > 1 and j1,j2,- - > 0 such that

Wep Wy - = plio)—pli)—gl2)— . .. (or 9lo)—gi)—hG2)— . .. ),

we have the following.

@D Jnt1 = jn —1 for allm > 0.
® If jur1 = jgn — 1 for some n >0, then jpi2 > jn.
@ ]f]n—i—l = ]n -1 and jn+2 = ]n for some n 2 O; th@n jn+3 2 ]n + 1.

@ If {jn}tn>0 is bounded, then w ends with (M=) (or (§M)=)®) where M =

maxn>0 Jn -
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® If {jn}n>0 is not bounded, then j, — oo as n — oco.
(3) If w ¢ {0, m}, then Freqy(w) = Freqz(w).

Proof. (1) Since the proofs of (D and @) are similar, we only prove (D as follows.
i) For all s € N such that ws < m and wsy1 = k, prove that there exists j € N such that

Wei1 " Wy ioj = 16))
Note that 01 --- 05 = 0@ for all i > (0 and 0 = k. On the one hand it follows from

by (3.6) -
00weyo = woprweys < 0165 =00 = 90O

that
Wspo < WJF .

On the other hand it follows from (3.7) that

wst2 > 01 = 00

Thus wsya = 90 or WJF. If wgyo = W, then

W 1wsyg = 0090 = o=

will complete the proof. If wsyo = WJF, then
OYIOREPIE))
We41Ws4+2 = 0 0(0) =0\,

On the one hand it follows from

by (3.6)

0w, gweys = wei1 Weps < 010 =03 = SroN

that
——+
Ws43Wstq < VIORS

On the other hand it follows from (3.7) that

Wst3Wsia > 0102 = 0.

Thus wsy3wsyqs = o or ﬁf If weyrgwsiq = W, then

will complete the proof. If wsyzwsiqg = ﬁt then

Wap1+ waypg = ODID " = @),
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For general i € N, if we have already had wst1 -+ - wy 91 = 6@, on the one hand it follows
from

, by (3.6) , —
9(1)w3+2i+1 Wit = Weyl Wy igitr < 01 fyipr = pli+1) — g+

that
S
Wepgigy  Wepgit1 < 0D

on the other hand it follows from (3.7) that

Wyigip " Weygitl > 010y = 6().

Thus Wy g4y - Wyypen = 00 or 90 It Wiy Wepgit1 = 000, then
Wer1 - Wyygirr = HDHO = gU+D=

——t
will complete the proof. If wygiy -« wyigir1 = 0 | then

The above process must end in a finite number of times (otherwise we get wsiwsta -+ =
lim; 500 ) = 6, which contradicts (3.6)). Thus there must exist j € N such that

Wei1 - Wy ioj = pU)—
ii) Let s € N such that ws < m and w41 = k. Prove that there exist integers jo > 1 and
41,72, > 0 such that weyjweys - -- = U —gl)—gl2)— ...

In fact, by the definition of #®) and induction, it is straightforward to check that for
all 7 € N, we have

9D~ ends with kk if 7 is odd

and
0~ ends with (k + 1)k(k —1) if i is even.

Recall from i) that there exists jo € N such that wei1---w, 05 = g(do)—
(@ If jo is even, then 9lio)~ ends with (E+ I)E(kz —1) and

Wg9i0 —2Ws42i0 —1Wgy2i0 """ = (E + 1%("3 - 1)ws+2j0+1ws+2j0+2 Tt
On the one hand by (3.6) we get

Wy yio 41 Wepnioyo - <O =k(k+1)---,
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which implies w, i, ; < k. On the other hand by (3.7) we get
E(k — D)W, 9i0 41 Weiio 2 > 0 = k(k — Dkk-- -,

which implies w, 9jo 1 > k. Thus w,,9i,, 1 = k. Since w9, = k —1 < m, by
applying i), there exists j; € N such that w gjo 1~ Wy, 9i0 401 = 01~ and then

W41« " Wey9i042i1 = ‘9(]0)_9(]1)_~

® If jo is odd, then U0~ ends with kk and

Wt 2i0—1Wgy2i0 " * " = kkws+2jo +1Wsy2i042 """ -

By (3.6) we get
Wy ojo 1 Weyoioro <O =k(k+1)--,

which implies wg, 5i5 1 < k.
L If w, oio1 =k, by i) there exists j; € N such that w, o1 - W, 000100 = )=
and then

Wil Wy 0io i = glio)—g(in)—

I If wy, 9jo 41 < k — 1, it follows from

— by (3.7) - _—
kwg 9io 11 Wsi0i042 - > 0=k(k—1)k--

that wy, 9jo, 1 =k — 1 and w, 9jo o > k. Since (3.6) implies w,, 5jo o < 01 =k, we
get Wy 9io4o = k, and then w, 9o Wy 9io 1o = (k — 1)k. By i) there exists jo € N
such that

_ o — pl2)—
Weyoio42 " Weyio42i241 = 0 .

Let j1 = 0. Then w,, 9jo,1 =k —1= 91~ and
(Go)—gi1)—g(i2)—

Wg+1 * " Wgy 97042014972 — 0

By applying i) and repeating the above process again and again, we know that there exist
j17j27 e Z 0 Such that We41Wey2 "+ = 0(]0)79(‘71)70(32)7 e

(2) Let s >0, jo > 1 and ji, j2, - - > 0 such that wsyjwsqo- - = glo)—glin)—gli2)— . .. (the
case Wy Wsig -+ = OU0)=9U1)=9U2)= ... is similar). For all n > 0 such that j, > 1, by
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gUn)= = gUn=19Gn—1) we get

Wei1Wepo - -+ = OO~ ... glin=2)=gln-1)=g(n—1) g(jn—1)gUn+1)=gln+2)= ...

It follows from (3.7) that
OUn—1)gUn+1)=gUn+2)=... 5§  whenever j, > 1. (3.8)

@ Let n > 0 be an integer. If j, < 1, then j,11 > j, — 1 is obvious. We only need to

consider j, > 2 and prove j,t+1 > jn, — 1 in the following.
Lt
(By contradiction) Assume j,.1 < jn, — 1. Since # begins with #Ur=1gGn—1)"

we know that 6 begins with #Un—1)gUn—1= where AUn~~ begins with §Un+1) by

Lemma 3.1.14. Thus @ begins with #(»—=1@Un+1) This contradicts (3.8).

Suppose jn+1 = jn — 1 for some n > 0. We need to prove j,+2 > j, in the following.
Jn+ -
(By contradiction) Assume j, 12 < jp. Since 6 begins with

0 gG T = gln—DgGa D G T
we know that 6 begins with

9Un—1)gUn—1)—gln)— — g(jn—l)Q(J'n+1)*9(]'n)*7

where Un)~ begins with #Un+2) by Lemma 3.1.14. Thus 0 begins with §(Gn—1)gln+1)=glin+2)
This contradicts (3.8).

® Suppose jpt+1 = jn—1 and jpi9 = j, for some n > 0. We need to prove jpi+3 > jn+1
in the following.

(By contradiction) Assume jj,4+3 < jn. Since 6 begins with

UGGt D) T = gUn)gGn) T gUmgUn) = gln=DgGn—1) ' 9Gn) T gUm)gUn)

we know that @ begins with

Q(jnfl)g(jn_l)_Q(jn)_g(jn) — Q(jnfl)Q(jn+1)_0(jn+2)_9(j7l)’

where Un) = Un+3) if j. o = j, and #U) begins with #Ur+3) if j, .3 < j, by Lemma

3.1.14. Thus 0 begins with §Un—1)gUn+1)=gln+2)=gln+3)  This contradicts (3.8).

@ If {jn}n>0is bounded, let M = maxy>g jn. Then there exists p > 0 such that j, = M.
By @ we get jpr1 > M —1. Thus jy4.1 =M —1or M. If j,p1 =M—1(=j,—1),it
follows from @ that j,1+2 > j, (= M), which implies j,y2 = j,. Then by @) we get
Jp+3 = Jp+1 (= M 4 1). This contradicts the definition of M. Thus j,11 # M — 1
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and we must have j,+1 = M. In the same way we can get jy42 = M, jp13 =M, --

Fix any M > 0. Since {j,}n>1 is not bounded, there exists N € N such that
JN > M + 2. Tt suffices to prove j, > M for all n > N. Let p > N be the smallest
integer such that j, = min,>y j,. We only need to prove j, > M. It suffices to
prove j, > jn — L.

(By contradiction) Assume j, < jy —2. Then p # N. By p > N we get p > N + 1,
ie., p—12> N. It follows from the definition of p that j,—1 > j, +1. By @ we get
Jp—1 = jp + 1. This implies j,—1 < jy — 1, and then by p —1 > N we must have
p—1>N+1,ie,p—22>N. It follows from the definition of p that j,—2 > j, +1
(= jp—1). Since @ implies j,—2 < jp—1 + 1, we get jp—2 = jp—1 or jp—1 + 1. If
Jp—2 = Jp—1 + 1, by @ we get j, > j,—2, which contradicts j,—2 = jp—1 + 1 = j, + 2.
Thus we must have j,_o = jp—1 = jp + 1.

For general ¢ > 2, if we have already had p —7 > N and j,—; = jp—i+1 = Jjp + 1, by
Jp < IN—2we get j,—; < jnv—1, and then by p—i > N we must have p—i > N+1, i.e.,
p—1i—1> N. It follows from the definition of p that j,—i—1 > jp,+1 (= jp—i). Since
@ implies jp—i—1 < Jp—i+1, we get jp—i—1 = Jp—i or Jp—i+1. If jp_i_1 = jp—i+1, by
@ we get jp—i+1 > Jp—i—1, which contradicts j,—i—1 = jp—i + 1 = jp—i+1 + 1. Thus
we must have j,_;_1 = j,—; = jp + 1. This implies j,_;—1 < jy — 1, and then by
p—it—1>Nwemusthavep—71—1>N+1,ie,p—1—2> N.

By induction we get p — ¢ > N for all ¢ € N. This is impossible.

(3) @ If k = m, it suffices to prove Freqy(w) = Freq,, (w).

i) If wy =0, by w # 0%, there exists s € N such that w; - --ws = 0° and wsy1 > 0.

@ When ws11 = m (= k), we have w = 0°mwsiowsys---. By (1) @ there exist
jo > 1 and ji,ja, - - - > 0 such that w = 0%9U0)—gU)—gl2)— ...

I If {jn}n>0 is bounded, let M = max,>0jn. By (2) @ we know that w ends
with (#(M)=)%° which implies that both Freqy(w) and Freq,,(w) exist. Since
Lemma 3.1.12 (2) implies |[§M)~|g = |§M)~|,,,, we get Freqy(w) = Freq,, (w).

II. If {jn}n>0 is not bounded, we can prove Freqy(w) = Freq,,(w) = % Since
the proofs of Freqy(w) = 1 and Freqm(w)' = %'are similar, we only prove
Freqy(w) = % as follows. Let v := 9U1)=9(2)—9Us)— ... It suffices to prove
Fredp(v) = §, d.e., limy o0 250200 = 4.

Let ¢ > 0. Since 2%1 — 0 as t — o0, there exists tg € N such that for all ¢t > t,

we have

— <& (3.9)
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By the fact that 271 + ... 4 277 — 0o as p — 00, there exists py € N such that
for all p > pgy we have

to

IR T <e. (3.10)

Since {jp}p>0 is not bounded, by (2) ¢ we get j, — 0o as p — oo, which implies

2/ — 0o, and then w — 0o by Lemma 3.1.7. Thus there exists p; > po

such that for all p > p; we have

p

€
—_— < . 3.11
2]1_|_..._|_2Jp<2 ( )

Let N, := [001)902) ... 9Up)| = 271 4 202 ... 4 2Jm . Then for any n > N,

we only need to check \w i <e

In fact, for any n > N, there exists p > p; such that 19U ...9Up)| < n <
|9(Jl) P 6(]P)9(]P+1)| Let rTi=n — ’9(-71) o e 9(.7?)’ < |0(]P+1)‘ Since the proof for
the case r = 0 is similar and more straightforward, we only consider > 1 in the
following. By QUrt1)* = ¢, ... 0sips1_; and Lemma 3.1.15, there exist integers
l1 >y >--->1; >0such that r = 201 4 202 ... 4 2l and

9l — ... 9Up) =) p@2) . .. pli—1)g(ls) if ¢ is even,
vt = PUD— ... gUp)—gl)g(2) ... gli—2) (1) 9(t)  if ¢ is odd.

It follows from Lemma 3.1.12 that

| | <23‘1+2+ +2ﬂ'p+2 211+2+ +2lt+2
/U .../U o« o e ) .
Linlo =77y 3 3 3

Byn:2j1_|_..._+_2jp+211+-~+21t we get

|'Ul ...fvn‘o
n

2(p+t) 1
< —
3n _3+3

2 p tyby311) 1 e 2t
by - - - - - D .12
(2J1+---+2ﬂp+n) < 34_34—371(3 )

1,
-3
If t <tg, then

t t to by (3.10)
— < = — < — -
n = 2 4. 20 T 201 ..+ 2Ip

E.

It follows from (3.12) that w <i+te

Ift >ty + 1, then
)
<5 - <

t by (3.9)
20
1

t
7T < &

(recall 1 > Iy > --- > 1; > 0). By (3.12) we

S|+

where (x) follows from Iy >t —
get 7|v1":”|0 <i+e

It follows in the same way that w > 1 —¢. Thus ]w — i < e for all
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n > Np,.

® When 1 < w1 < m—1, since wg42, Wst3, Wstd, - -+ & {0, m} will imply Freq,(w) =
Freq,,(w) = 0 directly, we only need to consider that there exists t > s+ 1 such that
wr1 € {0,m}. Assume that such ¢ is the smallest one. Then wgi1, wsto, - ,wy ¢

{0, m}.

I. If wgyr1 = 0, then

w = Os’ws+1 < wQwppoweyg - -

By (1) @, there exist jo > 1 and j1, jo,--- > 0 such that

w = 08w5+1 e wte(jo)_g(jl)_e(j2)_ e

In the same way as (a), we get Freq,(w) = Freq,, (w).

II. If wy41 = m, then

S
W= 0"Wsy1* WeMWyy2Wey3 -+ .

By (1) @, there exist jo > 1 and j1, jo,--- > 0 such that
w = 0°wsiq - wtg(jo)—g(jl)—g(h)— e
In the same way as (a), we get Freqy(w) = Freq,, (w).
ii) If wy = m, then Freqy(w) = Freq,, (w) follows in the same way as 1).

i) If 1 < w; < m — 1, since wa, w3, wy, -+ ¢ {0,m} will obviously imply Freqy(w) =
Freq,, (w) = 0, we only need to consider that there exists a smallest s > 1 such that
wst1 € {0,m} but wy,ws, -+ ,ws ¢ {0,m}. By (1) D and @), there exist jo > 1 and
J1, 72, -+ > 0 such that

wy - - wefI0) =P =P02)= ... if weq = 0.

It follows in the same way as i) (@ that Freqy(w) = Freq,, (w).

@If [F]+ 1<k <m—1, we need to prove Freq,(w) = Freqz(w). Since wi,wz, w3, - ¢
{k,k+1,--- k —1,k} will imply Freq,(w) = Freqz(w) = 0 directly, we only need to
consider that there exists t € N such that 0 < k < w; < k < m. By (3.6) and (3.7), we get
0<k<w1 <k<m. By (3.6)and (3.7) again, we get 0 < k < wy,2 <k <m. --- By
induction we get 0 < k < w, < k < m for all n > t. Since w1, w2, wiys, - ¢ {k, k}
will obviously imply Freq,(w) = Freqz(w) = 0, it suffices to consider that there exists
s > t such that ws1 € {k,k}. By 0 < ws < m, (1) @ and (2, there exist jo > 1 and
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j1,72,++- > 0 such that

wy - - wefI) U=l = if g = Ky
w = - - - -
wy - w0 =)=~ ... if wy g = k.
It follows in the same way as (D i) (@ that Freqy(w) = Freqz(w). O

Proof of Theorem 3.1.1. By Lemma 3.1.13 (1) and Lemma 3.1.4 we know that 6 is the
unique q,,.;-expansion of 1.

(1) Let 8 € (Gm, Qmsi) and w € Ty, 3. By Lemma 3.1.5 we get
o"w < g*(1,8) whenever w, <m and o¢"w > g*(1,3) whenever w, > 0.
It follows from 3 < ;.1 and Lemma 3.1.6 that
o"w < g*(1, qmx) whenever w, <m and ¢"w > g*(1, k) whenever w, > 0.
Since 6 is the unique q,,,,-expansion of 1, we have
o"w < 0 whenever w, <m and o¢"w > 6 whenever w,, > 0.

It follows from Lemma 3.1.16 (3) that Freq,(w) = Freqz(w).

(2) Let 8 € (G, m + 1]. Since € is the unique gy,.;-expansion of 1, by Lemma 3.1.6 we
get g*(1,3) > 0 and then g¢j(1,3) > k.

@ If g;(1,8) > k + 1, by Lemma 3.1.5 we get {k,k}" C T, 5. Define

Aﬁj = {w € {k,k}" : Freqy,(w) and Freqz(w) do not exist}.

Then
Ai% C {w € I'yn g« Freqy(w) and Freqg(w) do not exist}.

It suffice to prove dimpg (Aﬁ o dm+1) > 0. In fact, this follows from

®  log2 (%)
: J g : 2
dlmH(Ak,E’ dmi1) = log(m + 1) .dlmH(Ak,E’ d2) > 0,

where () follows from Proposition 3.1.9 and the fact that the identity map from (A? _ dp,11)

k&
to (A’é 7 d2) is 1082 __H5lder continuous, and (xx) follows from Proposition 3.1.11.

log(m+1)
@ If g7(1,8) =k, by g*(1, 5) > 0, there exists n > 2 such that

gr(laﬂ) o g;fl(laﬁ) = 91 T 971—1 and 92(176) > 071'
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Let j > 1 be an integer large enough such that 27! > n. Then

9" (1,8) > gi(1,8) - g5(1,8)0%° > 1 - - 0,m> > 0y - - Oy am™ = gUTIm>_ (3.13)
Define

. . N—— N

= = {9(])—(9(3)—’9(3)9(;)}

= {w e {0,--- ,m}N D Wpgiti gyt Wing1).00+1 = 0=~ or 90)90) for all n > O}.

i) Prove 25 C I'y, 8.

Let w € ;. By Lemma 3.1.5 and (3.13), it suffices to prove that for all n € N, we
have 0U+1D0® < g™w < AUTDM™ ie.,

NP0 < g™y < G(j)ermoo. (3.14)

If n is a multiple of |#\9)|, by the definition of Z;, 0™w must begin with 00)= )g0),

000Y) or 90HD =)~ This implies (3.14). If n is not a multiple of |§9)], then
there exist finite words u and v, where u is non-empty and v may be empty, such

that 0U)* = wv and o"w begins with

v(k — 1)u, vku or Tku if j is even (implies that /)~ ends with k — 1 by (3.3));
vku,v(k + 1)@ or 5(k — 1)u if j is odd (implies that )~ ends with k by (3.3)).

It follows from Lemma 3.1.13 (2) that (3.14) is true.

For any v € {0,1}, we define ¥(v) := th(v1)(va)--- where (0) := #W~=9U)~ and

Y(1) := 000U, Let

Ef = {w € 2 : Freq;,(w) and Freqz(w) do not exist}.
By i) we get
=% {w € I'y, 3« Freq,(w) and Freqz(w) do not exist}.
It suffices to prove dimH(Ef, dm+1) > 0. Let

Aal = {v € {0,1} : Freqy(v) and Freq; (v) do not exist}.
Then we have
Q) (%) log 2 (00%)

dimp (25, dims1) > dimp(V(A] ), dims1) > T og(m 5 T) ~dimp(Ad 1, do) > 0,
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where (* x x) follows from Proposition 3.1.11, (xx) follows from Proposition 3.1.9 and
the facts that ¥ : {0,1}N — =, is bijective and ¥~! : (Zj,dpi1) — ({0,1},do) is
W%-Hélder continuous, and (x) follows from \If(Ag’l) C E?, which can be proved
as follows.

Let v € Ag}l and w := ¥(v). It suffices to prove w € E? Since the proofs of Freqy, (w) #
Freq, (w) and Freqg(w) # Freq (w) are similar. We only prove Freqy(w) # Freq, (w) in
the following.

(@ If j is odd, by Lemma 3.1.12 we get

N 27 +1 , 27 +1 — ; 29 —2
6V k=3 IH(J)lk:T and |00, = |6V = —5
Then
N 2i+l 4 9 ) N 9+l _q
[(0) |k = 209" | = —g— and ()= 169 + 160 |5 = s
Note that Lemma 3.1.17 implies
¥(0 Y1)k —
Freqy, (w) | 2§.+)1|k Freqy(v) + | 25._31’ - (1 = Freqy(v))
e (0) ()
k k
Freq, (w) = S Freq, (v) + S (1 — Freq,(v)).

By v € Ag’l we get Freqy(v) # Freq (v). It follows from [¢(0)[x # [¢(1)[x that
Freqy,(w) # Freq, (w).

® If j is even, by Lemma 3.1.12 we get

; 2/ —1 , 27 +2 — ; 27 —1
@)=y, == - @, =2 T2 N, — 1p0)|— — =2 — —
0% 5 1070 5 and 0D =0V 3
Then
L 9j+1 _ 9 : — 2+l 41
[(0)] = 209 [, = —5— and [Pk = 095, + |00, = ——.
Note that Lemma 3.1.17 implies
e YDk w— Y(0)lx —
Freqy(w) = | 25.+)1| - Freq; (v) + | 25.31’ - (1 — Freq, (v))
. () 9(0)
k k
Freq, (w) = oYES - Freq, (v) + e (1 — Freq, (v)).

By v € A(;;,l we get Freq;(v) # Freq (v). It follows from [¢(1)|, # [¢(0)[x that
Freqy,(w) # Freq, (w).



3.1. BIFURCATIONS OF DIGIT FREQUENCIES IN UNIQUE EXPANSIONS 157

O

Proof of Theorem 3.1.2. Let m > 2 be an integer and k € {[%] + 1,---,m}. Since
Bk € (1,m + 1) is a zero of the polynomial 22 — (k + 1)z + 2k —m — 1, we get

k k+1 Ek+1 k+1

3 2 3 ;T =1L
m;k m;k m;k m;k

It follows from Lemma 3.1.4 that k(k 4+ 1)> is the unique [, ;-expansion of 1.
(1) Let 8 € (G, Bm;k) and w € T'yy, g. In the same way as the proof of Theorem 3.1.1 (1),

we get

o"w < k(k+1)*° whenever w, <m (3.15)
and

o"w > k(k —1)*  whenever w,, > 0. (3.16)
@ If K = m, then we have

o"w < ml® whenever w, <m (3.17)

and

o"w > 0(m —1)>* whenever w, > 0. (3.18)

It suffices to prove Freqy(w) = Freq,,(w) and Freq (w) = Freq (w).

i) If wy =0, by w # 0°°, there exists s > 2 such that w; -+ - ws_1 = 05~! and w, > 0.

(@ When ws = m we have
w = 0°""tmws i wsga - .

By (3.17) we get mwsyijwsyo -+ < m1°, which implies that there exists i; > s+ 1

such that wgy1---wy 1 = 197571 w; =0 and
w = 05_1m1i1_5_10wi1+1wi1+2 HR

It follows from (3.18) that Ow;, 11w, +2 -+ > 0(m—1)*°. Thus there exists ia > i1 +1

such that wy, 11+ w1 = (m—1)27471 w;, =m and

w = 0""Tm1" 7 0(m — )2 maw, wipe



158 CHAPTER 3
-+ Repeating the above process, we get

w = 0"'m1710(m — 1)2m1530(m — 1)7 ...

for some integers ji, j2, j3, ja, - - - > 0. Therefore
[ R w DY w w PR w
|[Freqg(w) — Freqm(w)| = ’ lim (sup M) — lim (sup‘l"‘mﬂ
P00 N\ p>p n P00 X\ p>p n
_ 1 w1 - - - wy o R
= lim |[sup————— —sup——
P In>p n n>p n

w .. .w —_— w .. .w
S lim sup “ 1 n|0 | 1 n|m}
P70 n>p n

.o s—1
< lim =
p—}OO p

0,
and }Freqo (w) — Freqm(w)‘ = 0 follows in a similar way noting that

|w1"'wn|0 . |w1wn|m
7*1nf _—

. w1 -+~ wnlo — [w1 - - - whm]
inf < sup
n>p n n>p n n>p n

for all p € N.

® When 1 < ws < m—1, since wst1, Wst2, Wsyt3, - ¢ {0,m} will imply Freqy(w) =
Freq,, (w) = 0 directly, we only need to consider that there exists i; > s+ 1 such that

wj, € {0,m}. Assume that such i; is the smallest one. Then wg, wsy1, - ,wi;—1 ¢
{0,m}.

I. If w;, =0, then

s—1
w =20 ws---wil,l()wilﬂwiﬁz--- .

By (3.18) we get OQw;, +1wi 42 -+ > 0(m — 1)°°, which implies that there exists
i9 > i1 + 1 such that w41+ wj,—1 = (M — 1)”_“_1, w;, = m and
ip—i1—1

-1
w=0"""ws - w;—10(m — 1) MWiy 41 Wig42 * " -

It follows from (3.17) that mw;,1wi,+2 - - - < m1°°. Thus there exists i3 > ia+1

such that wj, 41 wi;—1 = 1i3—ia—1 wi, = 0 and

w = 0" wg - wiy, 10(m — 1) m1BT2T 0w, wi e
.-+ Repeating the above process, we get

w = 0" wg -+ wi, _10(m — 1)7'm1720(m — 1)%m174 ...

for some integers ji, j2,j3,j4, -+ > 0. In the same way as (&), the conclusion
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follows.

II. If w;, = m, in the same way as I, we get
w = 01w - wiy, 1m170(m — 1)2m1530(m — 1)% - - -

for some integers ji, jo, j3, j4, - - - > 0, and then the conclusion follows.
ii) If w; = m, the conclusion follows in the same way as i).

iii) If 1 < w; < m — 1, since wa, w3, w4, --- ¢ {0,m} will obviously imply Freqq(w) =
Freq,, (w) = 0, we only need to consider that there exists a smallest i; > 2 such that
w;, € {0,m} but wy,ws, -+ ,w;;—1 ¢ {0,m}. In the same way as i) ® I and II, we

get
wy - wiy—10(m — 1)Am1720(m — 1)73m19 .. if w;, =0,
w= . 4 . .
wy - wi—1m1I0(m — 1)72m1I30(m — 1) -+ if w, = m,
for some integers ji, jo, j3, j4,- -+ > 0, and then the conclusion follows.
@QU[F|+1<k<m-—1, Weineied to prove Freq,(w) = Freqp(w) and Freq, (w) =
Freq (w). Since wi, wa, w3, - & {k,k+1,--- ,k—1,k} will imply Freqk(iﬁ) = Freqz(w) =
0 directly, we only need to consider that there exists ¢ € N such that 0 < k < w; < k <m.

By (3.15) and (3.16), we get 0 < k < w1 < k < m. By (3.15) and (3.16) again, we get
0<k< W2 < k < m. --- By induction we get

0<k<w,<k<m foraln>t (3.19)

Since wyi1, Wita, Wits, - ¢ {k,k} will obviously imply Freq,(w) = Freqg(w) = 0, it
suffices to consider that there exists s >t + 1 such that ws € {k, k}.

i) If ws = k, by ws_1 < m and (3.15) we get kwsi1wsio--- < k(k + 1), It follows
from (3.19) that there exists i > s + 1 such that wgyq---w; 1 = (k+ 1)L

w;, = k and

w=ws--- ws_lk(k + 1)i1_5—1Ewi1+1wi1+2 s

By (3.16) we get kw;, +1w;, 42+ - > k(k—1)>. It follows again from (3.19) that there

exists 49 > 41 + 1 such that w;, 41 wi,—1 = (k—1)27471 w;,, =k and
w=wi - ws_1k(k+ 1) (k= 1)27 0 kwy,  wiy o
.-+ Repeating the above process, we get
w=wy - ws_1k(k + 1) Ek(k — 1)2k(k + 1)83k(k —1)% ...

for some integers j1, jo, j3,j4, -+ > 0. In the same way as (D i) (@), the conclusion



160 CHAPTER 3

follows.

ii) If wy = k, in the same way as above, we get
w=wy - ws_1k(k — DIk(k +1)2k(k — 1)B3k(k+1)% ...

for some integers ji, jo2, j3,j4, -+ > 0 and then the conclusion follows.

(2) Let 8 € (Bmk,m + 1]. Since k(k 4+ 1)* is the unique By, x-expansion of 1, by Lemma
3.1.6 we get g*(1,3) > k(k + 1)> and then g} (1, 3) > k.
@ If g;(1,8) > k + 1, by Lemma 3.1.5 we get {k,k}¥ C T, 5. Let ¢ = 1. For any

r € (—c,c), we define

Apr = {w € {k, k}"" : Freqy (w) — Freqg(w) = T}'

Then
Ar © {w € L. : Freqy(w) — Freqg(w) = T}'

It suffices to prove dimH(A;E, dm+1) > 0. In fact, this follows from

) ., (*) log 2 . , (%)
dlmH(Ak’E, derl) 2 m . dlmH(Ak7E, d2) > O,

where (x) follows from Proposition 3.1.9 and the fact that the identity map from (AZ,E’ dm+1)

to (AZ,E’ dy) is bg?%—H'dlder continuous, and (xx) follows from combining
. — 1+7r
Alc,E = {w e {k, K} : Freqy(w) = 5 },

Proposition 3.1.10 and 0 < 12i < 1.
@ If gi(1,8) = k, by g*(1, 8) > k(k + 1)*, there exists s € N such that

91(1,8)g5(L,B) - gi(1,8) = k(k+1)*"" and g}, (1,8)>k+ 1.

Let

[1]

_ _ N
b= {k:k:k(k: 1), kR (k — 1)5}
=dwe{0,---,m: W (s43)+1 " " W(nt1)(s43) = kkk(k +1)® or kkk(k — 1)° for all n > O}.

Then by Lemma 3.1.5 we get
Ek;,E - Fmﬁ.

For any v € {k, k}N, define W (v) := v(v1)1(ve) - - - where ¥(k) := kkk(k+1)* and ¢ (k) :=
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kkk(k —1)%. Let ¢ = H% For any r € (—c, ), we define

B g = {w € 2,7 : Freqy (w) — Freqz(w) = r}_

Then
E;,E - {w € 'y g« Freqy(w) — Freqg(w) = r}.

—_
—

It suffices to prove dimg (_2 o dm+1) > 0. Let

Al(:%g)T = {v € {k,k}" : Freqy,(v) — Freqz(v) = (s + 3)7“}.

Since W : {k, k}Y — E). 5 Is bijective and vl (Ek;, dnt1) = ({k, K}V, dg) is (s-qrg)lﬁ)%'

Holder continuous, by Proposition 3.1.9 we get

log 2

s+ 3)log(m+1)
log 2

~ (s+3)log(m+1)

—_
—

dimH(‘—‘Z’E7 derl) > (

. dimH(\I’_l(EZ’E), dg)

. dimH(Agg?’)r, dy)

where the last inequality follows from \IJ*I(EZ ) DA

)

](j; 3" which can be directly proved

by Lemma 3.1.17. It follows from

1+(s+3)r}’

(s+3)r _ TN . _
Akf = {U € {k,k}" : Freq(v) = 5

k

Proposition 3.1.10 and 0 < 5% < 1 that dimy (A", dy) > 0. Thus dimp (Z] -, dm1) >

0. O

To end this section, we prove the following lemma, which has already been used in the
proofs of Theorem 3.1.1 (2) and Theorem 3.1.2 (2).

Lemma 3.1.17. Let a,b be two digits, s € N and v € {a,b}". Define U(v) := 1 (v1)(va) - - -

where ¢(a) and (b) are two finite words satisfying [1p(a)| = [ (b)] = s. If [{(a)|e > |¥(D)]¢
for some digit £, then

Froqg (#(0)) = " Freg, () + PO (1 Freq, () (3.20)
and
Freq, (0(0)) = X Freq () + 0N (1 Freq (v)). (3:21)

Proof. Let v € {a,b}" and w := ¥(v). Since the proofs of (3.20) and (3.21) are similar,
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we only prove (3.20) in the following. Let p := Freq,(v). It suffices to prove

W b
o sup e Ol e
J 70 >4 1 S S
Fix any € > 0. By
: V1 vtfa
lim sup — = p,
n—00 ;> t
there exists integer N > % such that for all n > N we have
sup Jor-vila <p-+e (3.22)
t>n t
and
sup for-- vle >p—ec. (3.23)
t>n t
Let j > Ns (> £) be an integer. It suffices to prove
wy - W a b
p e (10 WO () o
i>] t S S

Recall that for any z € R, [z]| and |x] denote the smallest integer no less than x and the

greatest integer no larger than x respectively. On the one hand we have

w w5 e + 5
sup w1 | w e < sw L) ¢
i>j v i>j ¢
(W(vr--vp))le g
< sup — + =
i>j 1 J
L= vpila - [W(a)lg + o1 vpaglo - [2(b)]e
< sup 2 - s + e
i>j ¢
o102 o [(@)le + (L5] = o102 la) - [0 (D)]e
= Sup S - s +E
i>j t
o1+ -0 o - ([0(a)le = [(0)|e) + L] - [4(b)]e
< sup 2 5 +e
> <]
_ o104 ]a
_ @l =l il e
S i>j | ] s
() -
D W@l = WOl oewda Ol
S tZL%J t S
by (3.22) — (b b
P Bl WOle o WOk
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_ |¢(g)|5 o+ W(j)!é 1—p)+ (!1/1(@)15 ; WOl 1)e
< I@b(:)lg ot W’(j)’f (1= p)+ 2,

where (%) follows from the fact that ¢ > j implies [£] > L%J On the other hand we have

o, jwy - wpigle — s
supw > sup [.S] ‘
i>j t i>j t
(W (vy - 'U[i])k s
> sup — - =
i>j ¢ J
vy - - SUpa la - [(a)le + |vr--- Urig b - [¥(D)|¢
> sup s - . —¢&
i>j !
o1 vpsgla - [(@)le + (151 = Jor - vpagla) - [0 (0)]e
= sup - —€
i>j !
o1+ vpa7la - (I(a)le — [EO)e) + [£1 - [(b)le
> sup : i €
i>j HEE
- |rU cee i |a
M@l vl e
s i [5] s
@ @l WOl | lneul |, 6O
s r) i
by (3.23 — |(b b
y(> ) |¢(a)|£s |¢( )|§‘(p_€)+|1p(s)‘5_
a b a)le — |¥(b
sl WOk el Ok
L @k Ol
s s
where (xx) follows from the fact that ¢ > [%1 implies ts > j. O

3.2 Expansions of generalized Thue-Morse numbers

Base on the generalized shifted Thue-Morse sequences defined in the last section, we gen-
-0, € {0,---,m} with

. ,eq}n20 by induction as follows:

eralize this concept a bit more first. For any m,q € N and 6, - -
(n)

0, # 0, we define a sequence of finite words {Hm,gl )

o) -

m§91:"' 70(1 ’

and H(nH)

m;917... 79

0, --

g g
q

m;01,--,0q " m;01,- 04

-0y for all n > 0,
where w* := wy -+ w;_1(w; + 1) and W := wy - - - w; for any finite word w = wy - - - w; and

k:=m—kforany k € {0,1,--- ,m}. Whenm, 0y, -- , 04 are understood from the context,
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)

we use 0" instead of 6?7(:;_ 01, 0 for simplification. We call the infinite sequence

0 =(6;)is1:= lm 0 =60, 0,0, Or- 0y 016y

n—oo

the (m; 01, -, 0,)-shifted- Thue-Morse sequence, and call the unique By € (1, m + 1) such
that

o
9,
by
i=1 Ba
the (m; 01, - -, 04)-Komornik-Loreti constant. An equivalent definition of the (m; 6y, - -, 6,)-

shifted-Thue-Morse sequence 6 = (;);>1 is that for all integers [ > 0,

Oytgyj = 0; forje{l,--- 2'q—1},

022111 = 9q and 9221+1q = g;
It is worth to note that these generalized shifted Thue-Morse sequences were previously
studied in [3, 53, 87, 88| in different terms. The classical shifted Thue-Morse sequence
(tn)n>1 given in (3.1) is not only the (1;1) but also the (1;1,1)-shifted-Thue-Morse se-
quence in our terms.

For any (m;#6y,--- ,0,)-shifted-Thue-Morse sequence 6§ = (6;);>1 and 8 € (1,00), we

w3(0) == —ZZ
5 ;ﬂ

the B-(m;61,- - ,0)-Thue-Morse number. The classical Thue-Morse number > o0 | £
is exactly the 2-(1;1)-Thue-Morse number (also the 2-(1; 1, 1)-Thue-Morse number), and
more generally the Thue-Morse(-Mahler) number > 7, Z—’,ﬁ for integer b > 2 is exactly
the b-(1;1)-Thue-Morse number (also the b-(1;1,1)-Thue-Morse number) in our terms.
These numbers are transcendental [16, 47, 95] and received a lot of attention recently
[1, 20, 21, 34, 36).

Recall that for m € N, g € (I,m + 1] and z € R, a sequence w = (wy)p>1 €

call

{0,1,--- ,m}" is called a B-expansion of z if
oo
Wn
T = —.
n=1 ﬁn
An (m;6y,--- ,04)-shifted-Thue-Morse sequence 6 is naturally a [-expansion of the f-
(m; 61, -+ ,04)-Thue-Morse number m3(6). Our goal in this section is to study when will

this expansion be unique, greedy, lazy, quasi-greedy and quasi-lazy.
Recall that o is the shift map on {0, - - ,m}N, and <, <, >, > denote the lexicographic
order between infinite sequences and also between finite words with the same length. First

we have the following purely combinatorial proposition, which generalizes [87, Theorem
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4.4] since one can directly verify that a block s1---s, € {0,---,m}9 with s, # m is called

admissible in [87] if and only if s1 --- s} satisfies (1) in the following proposition.

Proposition 3.2.1. Let m > 1, g > 2 be integers, 61,--- ,0, € {0,--- ,m} with 6, # 0
and 0 be the (m;6y,-- - ,0y)-shifted-Thue-Morse sequence. The following are all equivalent.

(1) Forallne{l,---,q—1} we hcwem< Opt1---0g <010y
(2) For alln > 1 we have § < o™0 < 0.
(3) For alln > 1 we have o™ < 0.
(4) For allm > 1 we have ™0 > 0.
(5) Whenever 0, < m we have o™ < 6.
(6) Whenever 0,, > 0 we have "8 > 0.
The following is our main result.

Theorem 3.2.2. Let m > 1,q > 2 be integers, 01,--- ,0, € {0,--- ,m} with 8, # 0, 0 be
the (m; 6, - ,04)-shifted-Thue-Morse sequence and [y be the (m;61,--- ,60,)-Komornik-
Loreti constant.

(1) Let B € (1, m+1]. If 0 is the greedy, lazy, quasi-greedy, quasi-lazy or unique [3-expansion
of mg(0), then 8 > [3g.

(2) The following are all equivalent.

@© Forallne{l, -+ ,q—1} we have 01 -+ 0y < Opy1-- 05 <01 Oyy.
Q) 0 is the unique Bg-expansion of 1.

(® 0 is the greedy Bg-expansion of 1.

@ 0 is the lazy By-expansion of 1.

(®) 0 is the quasi-greedy Bg-expansion of 1.

® 0 is the quasi-lazy By-expansion of 1.

@ {Be(1,m+1]:0 is the unique B-expansion of m3(8)} = [Bp, m + 1].
{Be(,m+1]:0 is the greedy B-expansion of m3(8)} = [Bp, m + 1].

© {Be(,m+1]:0 is the lazy B-expansion of mg(0)} = [By, m + 1].

{B € (1,m+1]:0 is the quasi-greedy [-expansion of m3(8)} = [Bp, m + 1].

@ {8 e (,m+1]:0 is the quasi-lazy -expansion of mg(0)} = [By, m + 1].
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Recall that (¢, )n>0 is the classical Thue-Morse sequence, wg((tn)n>1) = D oney é—’; is the
B-(1;1,1)-Thue-Morse number and the classical Komornik-Loreti constant is the (1;1,1)-
Komornik-Loreti constant. Since the (1;1,1)-shifted-Thue-Morse sequence (i.e., the clas-
sical shifted Thue-Morse sequence (t,)n,>1) satisfies Theorem 3.2.2 (2) @, by @, ®, ©),
and @), we get the following.

Corollary 3.2.3. Let § € (1,2] and consider the alphabet {0,1}. The following are all

equivalent.
(1) (tn)n>1 ts the unique B-expansion of wa((tn)n>1)-
(2) (th)n>1 ts the greedy B-expansion of wa((tn)n>1)-
(3) (tn)n>1 ts the lazy B-expansion of mg((tn)n>1)-
(4) (tn)n>1 ts the quasi-greedy [-expansion of ma((tn)n>1)-
(5) (th)n>1 ts the quasi-lazy B-expansion of ma((ty)n>1)-
(6) B is no less than the classical Komornik-Loreti constant.

We recall some notation and preliminaries in Subsection 3.2.1, and then prove Propo-

sition 3.2.1 and Theorem 3.2.2 in the last subsection.

3.2.1 Notation and preliminaries

T
greedy and quasi-lazy S-expansions of x by taking By, - - - , B to be the same 5 in Definition

Let m e N, g € (1,m+ 1] and = € |0, 6%] Recall the definitions of greedy, lazy, quasi-

2.1.7 in Section 2.1. Note that Proposition 2.1.12 gives equivalent definitions: among all
w € {0,---,m}N satisfying mg(w) = x, the lexicographically largest and smallest ones
are called the greedy and lazy [-expansions of = respectively; among all w € {0, --- ,m}"
not end with 0°° and satisfying mg(w) = x, the lexicographically largest one is called the
quasi-greedy B-expansion of ; among all w € {0, --- ,m}" not end with m> and satisfying
ng(w) = x, the lexicographically smallest one is called the quasi-lazy B-expansion of .
Recall that given m € N, for any digit k € {0,--- ,m}, k denotes m — k. The following
criterion for greedy, quasi-greedy, lazy and quasi-lazy expansions, which is a direct conse-
quence of Proposition 2.1.11 (see also |61, Lemma 1]), plays an important role in the proof

of Theorem 3.2.2.
Proposition 3.2.4. Let m €N, B € (1,m + 1] and w = (w;)i>1 € {0,--- ,m}N.

(1) w is the greedy [-expansion of mg(w) if and only if

/82

o

W s
g "1 whenever wy, < m.
i=1



3.2. EXPANSIONS OF GENERALIZED THUE-MORSE NUMBERS 167

(2) When w # 0, it is the quasi-greedy [3-expansion of mg(w) if and only if it does not

end with 0°° and
wn—i—z

<1 whenever w, < m.

M

(3) w is the lazy B-expansion of mg(w) if and only if

w.
Z "1 whenever wy, > 0.

(4) When w # m™>, it is the quasi-lazy -expansion of mg(w) if and only if it does not

end with m® and

w
Z "< whenever wy, > 0.

Almost immediately we get the following.
Proposition 3.2.5. Let m €N, By € (1,m + 1] and w € {0,--- ,m}N. Then
w is the greedy/quasi-greedy/lazy/quasi-lazy/unique Bo-expansion of mg,(w)
if and only if for all B € [By, m + 1],
w s the greedy/quasi-greedy/lazy/quasi-lazy/unique (B-expansion of mg(w).

Proof. Obvious.

We only prove the greedy case since the others are similar. Suppose that w is the
greedy Bo-expansion of mg,(w). Let 8 € [Bo,m + 1]. Suppose w, < m for some n € N.
By Proposition 3.2.4 (1), it suffices to check Y :2, w"“ < 1. In fact, since w is the greedy

Po-expansion of mg,(w), by Proposition 3.2.4 (1) we get Yoy w”“ < 1. It follows from
B> By that > 2 “’"“ < 1. O

For the sake of completeness we prove the following basic combinatorial fact, in which
(1) and (3) are mentioned in [55, Proposition 2.2 and Theorem 2.5] and [61, Remark 1].

Proposition 3.2.6. Let m € N and w = (w;);i>1 € {0,--- ,m}.

(1) We have
o"w<w foralln>1

if and only if

w#m™ and o"w <w whenever w, < m.
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(2) We have
w = Okwk+1m°° for some k>1 or oc"w>w foralln>1

if and only if

w#0% and o"w>w whenever wy > 0.

(3) We have
w<o"w<w foralln>1

if and only if

w#m™, o"w<w whenever w, <m and o"w >w whenever wy, > 0.

Proof. (1) is obvious.

It suffices to consider w, = m for some n > 1 and prove ¢"w < w.

@ If wy---w, =m", we need to prove wypi1Wnio -+ < M Wpy1Wpyo---. This follows

immediately from w # m®.

@ If wy--w, # m", recalling w, = m, there exists a largest k € {1,--- ,n — 1} such
that wi # m but wg4q = -+ = w, = m. Thus
—k
oW = Wy 1 Wng2 - <M Wy 1 Wit + = Whp 1 Wiy -+ - < W,

where the last inequality follows from the condition o*w < w when wy, < m.
(2) We have the following two cases.

@ If w = 0Fwym™ for some k > 1, then w # 0°°, and for all n > 1 with w,, > 0 we

have o"w = m™ > w.
@ If o™w > w for all n > 1, we obviously have w # 0°° and ¢™w > W whenever w, > 0.

Suppose w # 0°° and

o"w >w whenever w, >0 (3.24)

@ If w; = 0, by w # 0%, there exists k € N such that wy ---w;, = 0F and W41 > 0.
By (3.24) we get o*Tlw > W, which implies wy4o > W1 = m. By (3.24) again we get
o*t2w > w, which implies Wgt3 > W1 = m. --- Finally we get wgiowg4s--- = m™

and w = Okwkﬂmoo.

@ If wy # 0, it suffices to consider w, = 0 for some n > 1 and prove c"w > w. By
wy # 0 and w,, = 0, there exists a largest k € {1, -+ ,n — 1} such that wy # 0 but
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Wiy1 = -+ = wy, = 0. It follows that
" I by (3.24)
"W = Wpt1Wpyo--- >0 Wi 1Wnt2 ** = W1 W2 -+ > W.
(3) is obvious.
follows from (1) and (2), noting that c™w < w whenever w,, < m implies w # 0° and
w # 0Fwyym™ for any k > 1. O

Besides, we need the following lemmas.

Lemma 3.2.7. (/85, Theorem 2.1]) Let m € N, 8 € (1,m + 1] and € € {0,--- ,m}" be a
B-expansion of 1. Then ¢ is the greedy expansion if and only if

o"e <& whenever g, < m.

The next lemma follows from [3, Page 72, Theorem a)| with different notation.

Lemma 3.2.8. For s € N and alphabet A = {ag, a1, - ,as} where digits ag < a1 < --- <
as, let
(s, A) = {we AN : wy = a; and for alln > 0,w < o"w < w}.

Then for any integer ¢ > 2 and g-mirror sequence u = (up)p>1 on the alphabet A with

up = as and ug = a; (i #0), we have

uel'(s,A) if and only if (uq---ug—1ai—1)> € I'(s, A) with smallest period q.

3.2.2 Proofs of Proposition 3.2.1 and Theorem 3.2.2

Let m > 1, ¢ > 2 be integers, 6q,---,0, € {0,---,m} with 6, # 0 and 6 be the
(m; 61, - ,0,)-shifted-Thue-Morse sequence. By [3, Page 70, 3)] we know that 6 is not

eventually periodic. In particular § does not end with 0% or m®.

Proof of Proposition 3.2.1. (3)<(5) follows from Proposition 3.2.6 (1) noting that 6 #
m®.
(4)<(6) follows from Proposition 3.2.6 (2) noting that # # 0> and € does not end with
m®.
(2)<%(3) and (4)” is obvious.

In the following we only need to prove (3)<(4) and (1)<(2).

(3)=(4) Let n > 1. We need to prove 0" < 6 in the following.

D If n < g — 1, since 0™0 begins with

+
Opir - 0y < Opp1 - Oy = Oginsr - g,
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we get

. by (3
718 < o1+mg V< g

@ If n > ¢, then there exists integer ¥ > 0 and j € {0,1,--- ,2kg — 1} such that
n = 2%+ j. Since o"f = 02"*4+if begins with

02kq+j+1 s 92kq+2kq - 9j+1 e 9;“] < 0j+1 e 02kq,

we get
_ . by (3)
o"d <ol < 0.

(4)=(3) Suppose
0if <6 foralli>1. (3.25)

Let n > 1. We need to prove o™ < 6 in the following. For all £ > 0 large enough such
that n +1 < 2%¢ — 1, 0™ begins with

Opy1 -+ 02kq—1 = 02kq+n+1 T 92kq+2kq—1'

Since (3.25) implies

02kq+n+1 T 62"’q+2kq71 <O ‘92kq7n71’

we get

Ont1 - Oorgg <0109k, 1 for all k large enough.

Thus 0y 41642+ < 0169 ---, ie., ™0 < 0. Since 6 is not periodic, we get "0 # 6 and
then o™0 < 6.

(2)=(1) For all n € {1,---,q — 1}, we get Opy1---0; < 61---04_,, immediately from
0™0 < 6, and thus we only need to prove ;- -+ 0y, < Op41---0, in the following. Noting
that (2) implies ; < 6, < 61 for all n € N, we only need to consider the alphabet
{61,60 +1,--- 61 — 1,6,}. Since 6, # 0 (otherwise O, = @;r = 0] > 01), by applying

Lemma 3.2.8 we get

(01 0g-10q ) < 0" (01 04-10,)%) < (01---05-10,)>
for all n > 0. This implies that for all n € {1,--- ,¢q — 1} we have
01 Og10g < Ony1-- 0g10,01- 0y

and then
01 to gq—n < Hn-‘rl to 9q—10;7
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which is equivalent to

01 Ogp < Opi1---0,.

(1)=(2) Noting that (1) and the definition of # imply 6; < 6,, < 6 for all n € N, we only
need to consider the alphabet {6,607 +1,--- ,6; — 1,61}. Since 6 is not periodic, we have
™0 # 0 and 00 # 0 (otherwise 020 = 0) for all n > 1. In order to prove (2), by applying
Lemma 3.2.8, noting that (1) implies 6, # 01, we only need to prove the following (@) and

®@.

@© Prove (61 04-10q ) < o™((01---05-10,)>°) < (01---04-10,)> for all n > 0. It
suffices to prove that for all n € {1,---,¢ — 1} we have

0104103 <Oni1--0g10,01---0, <b1---0,10,,

where the second inequality follows from the fact that (1) implies 6,41 - - - 0410, <
01---04—n. We only need to prove the first inequality in the following. Let n €
{1,---,q — 1}. Replacing n by ¢ — n in the first inequality in (1), we get

01 0n <Oy pi1---0,

and then
010 <0y pi1- ..9q_19q—7

which is equivalent to

Ogns1--0g 105 <010,

Since the first inequality in (1) also implies
01 tee eqfn < 0n+1 T aqfleq_a

we get

0104107 =01 Og—p Og—ni1- - 0g—10g < Opi1-- 0g_10, 010y

@ Prove that the smallest period of (61 --- 0,10, )> is ¢. In fact, foralln € {1,--- , ¢~

1} we have

by (1)
0‘”((91 s qulgq—)oo) = (0n+1 s GQ*lgq_Hl s Qn)oo < 9n+1 s quoo < (91 s 0q,19q_)°°

which implies

(01 04-107)) # (61---6,10,).
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Proof of Theorem 3.2.2. (1) Let § € (1,m + 1].
(O Suppose that 0 is the greedy (-expansion of mg(f). For all j € N, by the definition

of 6 we get
03.2jq = 92j+1q+2jq = ngq = gq or (9; < m.

It follows from Proposition 3.2.4 (1) that

Z 03 27 q+z
7

which implies

03~2jq+1 93-2jq+2 03~2jq+2jq—1
5 4 P . W <1
for all j € N. By
03.97g4103.2iq42 " O3.2ig12ig-1 = boit1graigr1boitigroigra Oait1g42ig42i9—1

025 q4102ig+2 "+ O2ig12ig—1

= 010y Oy,
we get
gt
for all j € N. Thus > 2, gi < 1. Tt follows from ) .2, 51 =1 that 8 > fy.

Suppose that 6 is the lazy S-expansion of m5(8). For all j € N, by the definition of
B

0 we get
O2iq = 04 or @;‘ > 0.

It follows from Proposition 3.2.4 (3) that

Z L
)

which implies

§2jq+1 §2jq+2 L ngq-&-qu—l <1
ERE F2r
fOI" all _] € N. By szq+1921q+2 s 02jq+2jq_1 = 9192 s 92jq_1 we get
61 0 021 g—1
E+@+"‘+52jq_1<1

for all j € N. Thus >.°°, % < 1. It follows from > °°

i=1 G =1 that 8 > By.

1151
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(® The “quasi-greedy” case follows in a way similar to () by applying Proposition 3.2.4
(2) instead of (1).

@ The “quasi-lazy” case follows in a way similar to (2) by applying Proposition 3.2.4 (4)
instead of (3).

(3 The “unique” case follows immediately from (1), @), 3) or (@.

(2) Since @=), ®=0®, ®=0©), ®=010, ®=@ follow from (1) and Proposition 3.2.5,

and their reverses follow immediately from 7g,(§) = 1, we only need to check the equiva-

lence of @O, @, @), @, ® and ©). In fact we can show Q=Q2@=@=0=0=F=O as

follows.
@» = (@ follows from Lemma 3.1.4 and Proposition 3.2.1.
@ = (@ is obvious.
® = (© follows from the fact that 6 does not end with m.

(® = (® Suppose that 4 is the quasi-lazy Sg-expansion of 1. We need to prove that 6 is
the quasi-greedy Sy-expansion of 1. Suppose 0, < m for some n € N. By Proposition
3.2.4 (2), it suffices to prove

(e 9]

2 6};{? <1

i=1

In fact, let s € N such that n < 2°q. Then for all j > s we have 0y;,,, = 0, > 0. It
follows from Proposition 3.2.4 (4) that

; .
L
i=1 0
which implies B B B
92jq+n+1 92jq+n+2 o 021q+2jq—1 <1
2 2ig—n—1
Be Be 59
for all j > s. By 0oiq1nt102ig4nr2 O2igraig—1 = Ont10n+2 -+ 09541 we get
Ont1 | Ont2 T 0211 <1
Bo B85 2q—n—1
0 0

for all j > s. Thus ) .2, egf’ <1
6

() = (@ Suppose that 0 is the quasi-greedy Sg-expansion of 1. If the greedy Bg-expansion
of 1 ends with 0°°, then the quasi-greedy Sp-expansion of 1 must be periodic (see for
examples Proposition 2.1.15 (1) @ and [22, Proposition 3.4 (b)]). This contradicts
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that 0 is not periodic. Thus the greedy Sg-expansion of 1 must not end with 0°°. It

follows that the greedy and quasi-greedy [y-expansions of 1 are the same.

® = @ follows immediately from Lemma 3.2.7 and the equivalence of (1) and (5) in
Proposition 3.2.1.

O

3.3 Infinite products related to generalized Thue-Morse se-

quences

In this and the next sections, we consider another class of generalizations of the famous
Thue-Morse sequence. We study infinite products related to these generalized Thue-Morse
sequences in this section.

At the beginning of Section 3.1, we introduce one of the equivalent definitions of the

classical Thue-Morse sequence
0110 1001 1001 0110 1001 0110 0110 1001 --- .

Here we consider another one: the Thue-Morse sequence (¢,),>0 is the unique fixed point
of the morphism
001

1—10

beginning with to := 0. A natural generalization is the following: given any integer q > 2

and 61,---,6,-1 € {0,1}, we call the unique fixed point of the morphism

0*—)091"-9(171
151610,

beginning with 6y := 0 the (0,61, - ,0,—1)-Thue-Morse sequence, where 0 := 1 and 1 :=
0. Note that the classical Thue-Morse sequence (t,),>0 is exactly the (0,1)-Thue-Morse
sequence in our terms.

Generalized Thue-Morse sequences defined above are essentially contained in the con-
cept of generalized Morse sequences in [79]. In fact, given any integer ¢ > 2 and 6y, - -,
0,-1€{0, 1}, by Proposition 3.3.15 (1) and inductive, one can check that the (0,61, - - ,0,—1)-

Thue-Morse sequence 6 = (6,,)n>0 is exactly
(Ovela"' agqfl) X (07017"' 79q71) X (07017"' 7'9q71) X

where we use the notation of products of blocks mentioned in [79]. It follows from |79,
Lemma 1] that 6 is periodic if and only if # = 0% or (01)*°. Therefore, if 6 is not the
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trivial 0% or (01)*°, it is a generalized Morse sequence in the sense of [79].

Recently, for rational functions R, Allouche, Riasat and Shallit [13] studied infinite

products related to the classical Thue-morse sequence (ty)n>0 of the forms

()

obtained a class of equalities involving variables in [13, Theorem 2.2 and Corollary 2.3],
and obtained many concrete equalities in [13, Corollary 2.4 and Theorem 4.2]. In this
section, we generalize these results by studying infinite products related to the generalized

Thue-Morse sequence (0y,)n>0 of the forms

0 (-1 O [e'e) 0,
H (R(n)) and H (R(n)) .
n=1 n=1
Let N, Ng and C be the sets of positive integers 1,2,3,---, non-negative integers
0,1,2,--- and complex numbers respectively. Moreover, for simplification we define §,, :=

(=1)% € {+1, -1} for all n € Ny throughout this section.

First we have the following convergence theorem, which is a generalization of [13,
Lemmas 2.1 and 4.1] (see also [103, Lemma 1]|) and guarantees the convergence of all the

infinite products given in the results in this section.

Theorem 3.3.1. Let ¢ > 2 be an integer, g = 0, (01, ,0,-1) € {0,1}971\ {0971},
(On)n>0 be the (0,61, ,0q—1)-Thue-Morse sequence and R € C(X) be a rational function
such that the values R(n) are defined and non-zero for all n € N. Then:

(1) the infinite product T[22, (R(n))°" converges if and only if the numerator and the

denominator of R have the same degree and the same leading coefficient;

(2) the infinite product T[22, (R(n))% converges if and only if the numerator and the
denominator of R have the same degree, the same leading coefficient and the same

sum of roots (in C).

Although Theorem 3.3.1 is a natural generalization of [13, Lemmas 2.1 and 4.1], the

proof is more intricate and relies on Proposition 3.3.15 as we will see.

In the following Subsections 3.3.1 and 3.3.2, we introduce our results concerning prod-
ucts of the forms [J(R(n))% and [[(R(n))’" respectively. Then we give some preliminaries

in Subsection 3.3.3 and prove all the results in Subsection 3.3.4.
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3.3.1 Products of the form [](R(n))®"

In order to study the infinite product [[°%,(R(n))%", by Theorem 3.3.1 (1), it suffices to
study products of the form

where a,b € C\ {—1,—2,-3,---}. For the (0, 1)-Thue-Morse sequence (t,),>0, the special
form f(%, 2y =TT ( QTQLT;L )ED™ s used to define new functions and is further studied
in [13, Theorem 2.2] and [103, Definition 1] (see also [38, Remark 6.5]). For infinite products

involving the first 2™ terms of (t,),>0, see the equalities (23) and (24) in |38, Section 6].

As the first main result in this section, the following theorem generalizes [13, Theorem
2.2 and Corollary 2.3 (i)] (see also [103, Lemma 2| and the equalities (6) and (7) in [103,
Section 4]).

Theorem 3.3.2. Let ¢ > 2 be an integer, 09 = 0, (61, ,0,-1) € {0,1}971\ {0971} and
(On)n>0 be the (0,61, - ,04—1)-Thue-Morse sequence. Then for alla,b € C\{—-1,-2,-3,---
we have

fla) = () (=)

a+1 b4+1\% +q—1 b+qg—1\%
(== (=)

which is equivalent to

ﬁ(n—i—a‘qn—l—b(qn—i—b—i—l)gl”‘(qn—l—b—l—q—l)(gq_l)én_(a+1)61.”<a+q—1)6q1
L \n+bgntaqnt+a+l gm+atqg—1 C\b+1 b+q—1

This theorem implies many neat equalities.

Corollary 3.3.3. Let ¢ > 2 be an integer, 0y =0, (01, ,0,—1) € {0,1}971\ {0971} and
(On)n>0 be the (0,61, - ,04—1)-Thue-Morse sequence.

(1) For all a,be C\{0,—1,-2,---}, we have

cr/n4+a qn+b,gn+b+1.s gn+b+qg—1.5,_,\%
[ (Ahe omebn ity (@bba-lyiog

i ntb ogntatqnta+tl gn+a+qg—1

(2) Foralla e C\{0,—1,—-2,---}, we have

[e.9]

H( n+a .qn+a+1(qn+a+2)51<qn+a+3)52'“( gn+a-+q )5(171)671
n+a-+1 gn+a ‘qgn+a+1 qgn+a+2 gn+a+q—1

n=0

and

H(qn+qa gn +1 )51( qn +2 )52...(M)6q71)6":q,

o qn+a qn—l—a+1 qn+a—+ 2 gn+a+qg—1
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(3) We have

o0
gn+q,qn+1.5 ,qn+2.s gn+q—1.5,_,\%
[T ()" ()™ (o —)™)

gn+1gn+2 qn +3 qn +q -7

Remark 3.3.4. It may seem that the conditions on the domains of a and b in Corollary
3.8.8 are more restrictive than Theorem 3.53.2. In fact they are equivalent, since Corollary
3.3.3 (1) is the case that a # 0 and b # 0 in Theorem 3.3.2, the second equality in (2) of
Corollary 3.3.3 is the case that a # 0 and b = 0 (the same as a =0 and b # 0) in Theorem
3.8.2, and obviously the case that a = b =0 in Theorem 3.5.2 is trivial.

Let ¢ > 2 be an integer. For k = 1,2,---,¢q — 1, define Ny, 4(n) to be the number of

occurrences of the digit £ in the base ¢ expansion of the non-negative integer n, and let

-1

sq(n) 1= kN, q(n)
1

Q

f

be the sum of digits. It is obtained in [18, Example 11 and Corollary 5] (see also [109, 110])

respectively that
= qnt kN (-D)NRa™ 5.9
nl;[() (qn +k+ 1) N (3.26)

SE

fork=1,2,--- ,g—1, and

qn + k (—1)5‘1(">_ 1
[T (o)™ -4 027

n=00<k<gq
k odd

For more infinite products related to (sq(n))n>0, see for example [93, Propositions 6 and 7].
Equalities (3.26) and (3.27) are two ways to represent % in the form of infinite products
and generalize the well known Woods-Robbins product [125, 126]

/20 + 1\ (-Din 1
G - 029

where (t,)n>0 is the (0, 1)-Thue-Morse sequence. We give one more such way in the first

equality in the following corollary.

Corollary 3.3.5. Let ¢ > 2 be an integer, k € {1,2,--- ,q—1},0p =601 =---=0,_1 =0,
Op = Opp1 = -+ = 04—1 = 1 and (0,)n>0 be the (0,01, ,0,-1)-Thue-Morse sequence.
Then

and

fie) -
e T

(n+a)(qgn + a + k)? on
H <(n+a+1)(qn+a)(qn+a+q)> =1

n=0
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foralla e C\{0,—-1,-2,---}.

For more generalizations of the Woods-Robbins product (3.28), we refer the reader to
[6, 14, 106].

Note that for any integer ¢ > 2, the (0, - -- ,0)-Thue-Morse sequence is the trivial 0°°.
For ¢ = 2, the only nontrivial case, related to the (0, 1)-Thue-Morse sequence, is already
studied in [103| and [13, Section 2|. In the following three examples, we study nontrivial
cases for ¢ = 3 in detail, related to the (0,0, 1), (0,1,1) and (0, 1, 0)-Thue-Morse sequences.

Example 3.3.6. Let (6,,)n>0 be the (0,0, 1)-Thue-Morse sequence.
(1) For all a,b e C\ {0,—1,—-2,---} we have

ﬁ ((n+a)(3n+b)(3n+b+1)(3n+a+2)>5n .

LN+ b)Bn+a)Bnt+a+1)(3n+b+2)

(2) For alla € C\ {0,—1,-2,---} we have

::18

® (n+a)(3n + a + 2)? ))(51’1,:1’

(n+a+1)Bn+a)3n+a+3

3
I
o

(3n+1)(3n+ 3a (3n+a+2))5n_3
3n+2 JBn+a)Bn+a+1) -

®
::]8

3
I
o

®
::18

i
o

(

(

<3n+1 )(3n + 3a (3n+a+2))6n:\/§,
o II(

)

(

)
3n+3)3n+a)(3n+a+1)

)

(

(6n+1 3n+3a(3n+a+2))5n_1
(6n+5)(3n+a)(3n+a+1) -

\\,’:]8

(3) The following concrete equalities hold.

> DG -% o fi(nnery

o MEmseD) = o D -

® f[o((fsnfg)&?il5))é”:7 ® ﬁ(ggi;gzii)an

o I (G [l (Gt don om0y
o U(smaness) -+ @ HEeers) -7
© ﬁ (("752;31’3(“?7;;32’314»6” - % © ﬁ ( (Bn+1) ?éii%(gnm)% - %

n=0
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( (n+2)(3n + 4)2 ))an _

( (n+2)(3n +4)2 )5717 1
(n+3)(Bn+2)(3n+5 )y

(n+3)(3n+3)(3n+5 V3’
( (3n + 1)( 6n+3)(6n—3))5n _s

© (3n+2)(6n +1)(6n —1)

o 1l o 1l
Il o 1l

( (n+2)( 9n+4)(9n+7)>5n_1
(n+1)(9+6)(9n+10)/ 7

Example 3.3.7. Let (0,,)n>0 be the (0,1,1)-Thue-Morse sequence.
(1) For all a,b € C\ {0,—1,—2,---} we have

S (n+a)Bn+b)(Bn+a+1)3n+a+2)\n
I1( )

UGt @+ b+ DB+ b+2)

(2) For alla € C\ {0,—1,-2,---} we have

(n+a)(3n+a+1)? o
© H < (n+a+1 (3n+a)(3n+a+3)> =1

3n+a+1)3n+a+2)(3n+ 3a)\o
® H<( ) )( )) _3

oot Bn+1)(3n+2)(3n + a)

(e 9]

(B3n+a+1)(3n+a+2)(3n + 3a)\on
® H( (3n+2)(3n+3)(3n + a) ) = V3.

(3) The following concrete equalities hold.

O 11(22195:\}3 ® ﬁ<3n—g1j+3;+6)5 _ 3

® Tﬁ)((ang)ELG?im))%: @ f[o(égZi? 321’8)5

o I (Grigmry) = @ﬁggggy:ﬁ

o AGRimsm - o Msasels -

o I(Ginmiames) =vs I (2ol ot
o IM(Liiiniye g (U
o DGy D) =4 o (ate ) -
o fl(Erdtriorgy 1 o (@i,

Note that the (0, 1, 0)-Thue-Morse sequence is exactly 01010101 - - -, which implies 6,, :=
(=1)% = (=1)" for all n € Ny. The next example is deduced from Corollary 3.3.3, and can
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also be deduced from Theorem 3.3.13 and Proposition 3.3.14, which are classical results

on the Gamma function.

Example 3.3.8. (1) For all odd q > 3, we have

ﬁ ( (gn+1)(gn+3)---
oot (gn+2)(gn+4)--

(2) For all odd ¢ > 3 and all a € C\ {0, —1,

(qn+q—2)>(—1)” 1
(qn+q—1) a

e

2,---} we have

ﬁ ( (qn+a)(gn+a+2)(gn+at4).--
(gn +qa)(gn+a+1)(gn+a+3)---

(3) The following concrete equalities hold.

o TG -

o MG -7
o M(Giismes) -
o U(Gery) -7
o I %
o T(nramm) ™ -4
o M(Grsmrs)  ~7
o T(Eee "

In [74] Hu studied infinite sums of the form

1

-

(gn+a+q—1) )(*1)” _
(gqn+a+q—2)

S
NG

,ﬁ;@ )

(G ses)
Euézz:iﬁzzmi)( oL
Imem - S
(o)™ - 5
1 (s ~ v
(G e e =

S (e S afm)

n>0

(lacl)ELw,B

where a,, g(n) denote the number of occurrences of the word w in the base B expansion of

the non-negative integer n, f is any function that verifies certain convergence conditions,

and L, p is a computable finite set of pairs (I,¢;) where [ is a polynomial with integer

coefficients of degree 1 and ¢; is an integer. If f is taken to be an appropriate composition of

a logarithmic function and a rational function, after exponentiating, some infinite products

of the form Hn(R(n))(_l)aw’B(n) can be obtained, where R is a rational function depending
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on the sequence (a,, g(n))n>0. For instance the above Example 3.3.8 (3) D is also obtained
in [74, Section 5| (see also [18, Section 4.4]).

3.3.2 Products of the form [](R(n))%

In order to study the infinite product [[°%, (R(n))%", by Theorem 3.3.1 (2), it suffices to
study products of the form

' rr ((ntar) - (n4ag)\on
flar, -+ ,aq;b1,- -+ ,bq) '_}_[1<(n+b1)-"(n+b:ll))

where d € N and ay, -+ ,aq,b1, - ,bg € C\ {—1,-2,-3,---} satisfy a1 + -+ + aqg =
by + -+ + bg. As the second main result in this section, the following theorem (which

implies Corollary 3.3.11) generalizes [13, Theorem 4.2].

Theorem 3.3.9. Let ¢ > 2 be an integer, 0y =0, (61, ,0,-1) € {0,1}971\ {0971} and
(On)n>0 be the (0,01, -- ,0q—1)-Thue-Morse sequence. Then for alld € N and ay, -- -, aq,
by, -+, bg € C\ {—1,-2,-3,---} satisfying a1 +---+ aq = b1 + -+ - + by, we have

q—1 d T b,+k)
q

- q-1 REY
f(al"”’ad;bl’.”’bd)ZH(HF o )ekH (f(a1+k7_..7ad+k;b1+k7...7bd+k))( 1)%
k=1

i=1 q k=0 q q 4 4

which 1s equivalent to

) d g1 n 0 q-1 d bi+k X
(G TG ™))" = (k)

k=1 =1 q

where I' denotes the Gamma function.
This theorem implies a large number of equalities for products of the form [[(R(n))%"

as we will see in the following corollaries, which can also be viewed as special examples.

Corollary 3.3.10. Let ¢ > 2 be an integer, O = 0, (61, ,0,-1) € {0,1}971\ {0971}
and (0n)n>0 be the (0,01, ,0,_1)-Thue-Morse sequence.
(1) For all a,b,c € C such that a,b,a +c,b+c ¢ {—1,—2,-3,--- } we have

b)(n+a+c) (gn+a+k)(gn+b+c+k)

ﬁ( Yn+b+c)® H ((qn+b+k‘)(qn+a+c+k)>(—1)9"’) _ li[( EF( +§+k)>9k'

k=0

(2) For alld € N and ay,--- ,aq € C\ {—1,-2,-3,---} such that a1 + --- + ag = 0 we
have

o A ontga; Y n —1)% - (F(k))d k
H (H(qqn_:—qai .H(qnq+;ﬁ—k)( ) )) 1;[( k . F(Wﬂ)>0'
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(3) For all a € C\ Z we have

o0 -

n+qa)(gn =g n+ k)2 N = O
E(qqn—:'qa q”_z U<qn+afk)—:]jz—a+k)) ) :k_l(r(ka)w> :

In particular for the well known (0, 1)-Thue-Morse sequence, we have the following
corollary, in which (5) @), ® and @ recover [13, Theorem 4.2].

Corollary 3.3.11. Let (tn)n>0 be the (0,1)-Thue-Morse sequence.
(1) For alld e N and ay,--- ,aq,b1,--- ,bqg € C\{—1,—2,-3,---} such that a1 +---+aq =
b1 + -+ 4 bg we have

ﬁ(ﬁ n+ a;) 2n+b¢)(2n+a¢—|—1)>tn_ﬁF(biQI)
L1 (n+b)(2n 4 ai)(2n + b; + 1) izlr(agl)'

(2) For all a,b,c € C such that a,b,a+c,b+c ¢ {—1,—2,-3,--- } we have

ﬁ ( a)n+b+c)2n+b)2n+a+1)2n+a+c)2n+b+c+ 1))tn B F(%)F(”C“)
oate bin+a+ec)2n+a)2n+b+1)2n+b+c)2n+a+c+1)/ atl '

(3) @ For all a,b € C such that a,b,a+b ¢ {—1,—2,-3,---} we have

ﬁ< n+a)( n+b)(2n+a+1)(2n+b+1)(2n+a+b)) Vv [(ethtl)
SEACn+1D)(n+a+b)(2n+a)(2n+b)2n+a+b+1) r(ef)reEt)

Q..l\.')

@ For all a,b € C such that a,b,2a +1,a+b ¢ {—1,—2,-3,--- } we have

ﬁ ((n+a+b)(2n+a+2)(2n+2a+1)(2n+b)(2n+a+b+l)> NG OINE
(n+2a+1)2n+a+1)(2n+b+1)(2n + 2b)(2n + a + b) VNS

~—

n=1

4 Foralla € C\ {—1,—2,-2, -3 ...} we have
2 2

H ( n+a) 2n+a+2)(2n—|—2a+1)>tn:2a.

(n+2a+1)2n+1)(2n + a)

@ Forallae C\{-1, —%, -2, —%, .-+ } we have

o+ D)(n+a+2)2n+a+3)(2n+2a+1)\ta  2¢
I1 ( )" =

22N (n42)(n+2a+1)(2n+3)2n +a+1) a+1

® For alla € C\ Z we have
ﬁ ( 2n+a+1)(2n—a+1)(2n+2a)(2n—2a))tn ~ o
(2n+1)2(2n+a)(2n — a) B 27

n=1
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@ Forallae C\ (ZU{3,

2.7 .
202

- }) we have

183

I (

2n+1

® Forallae C\ {£3,£5,47,---

2n+a+1)(2n—a—|—1)(2n+2a)(2n—4a—|—2))tn 00 e ™0
= 2%cos
)(2n +a)(2n —a+2)(2n — 2a + 1)

} we have

? .

® For all d € N we have

= Cn+a+1)2n—a+1)(4n+a+3)4n—a+3) th
H( (2n+2)?2(4n+a+1)(4n—a+1) ) Y

(n+1)(2n + d)(2n + 2)%4-1

Il

n=1

(5) The following concrete equalities hold.

o (Gt =2

o I (Eir) =v2

? i(mm) —2,

7 ﬁo (& ﬁ;?iﬁ?&ﬂ 1))% =4,

© ﬁ (<zn(-2’§)+<2?22+(46’§@§)+ )= 21:;)7
o I (g ey =2,

o () -7
o [l B -+,

3.3.3 Notation and preliminaries

Let {0,1}* :

words u,v € {0,1}*, we have

Besides, we need the following concept.

¢ (uv)

((n +d)(2n+d+1)(2n + 1)2d-1

tn d—1
=712 I(—).
)" =)

3
Il
<}

= @n+1)(dn+3)\ _ T()

nl;[o (2n+2)(4n+1)) \/57&’

7 ((8n+ )(8n+7) tn

H (8n +3)(8n +5) ) 2v2 -
)

&
—
—~
W
~—
=
—~
[
~

3n+226n+5)

,’:]8

oot ((3n+ 3)2(6n+1 4Ans ’
ﬁ( (2n+1)*(4n — 1) )%_F(i)
Lo N2n = 1)(2n+2)(4n +1) T og3
1"—"[( (2n — 1)(4n + 3)* )t T}
o 2n+2)(4n+1)(4n —1) oopd’
ﬁ( 4n—|—2 (8n —1) )tn—zi
LAN@dn-DAn+1)Bn+7)/ 7
H((n+1)(3n+7 6n+5)) _5.9-%
LN+ 2)(3n + 2)(6n +9)
ﬁ((5n+4) (10n + 1)( 10n+5))tn_\/5_1
(5n + 2)(10n + 3)(10n + 7) Y

0

3
I

= U {0,1}". A map ¢ : {0,1}* — {0,1}* is called a morphism if for all

= o(u)¢(v).

Definition 3.3.12 ([18, 118]). Let ¢ > 2 be an integer. A sequence u = (uy)p>0 € CN0 is
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called strongly q-multiplicative if ug = 1 and
Ung+k = UnUg

for allk € {0,1,--- ,q — 1} and n € Ny.

The following theorem is a classical result on the Gamma function I' (see for examples
[38, Theorem 1.1] and [123, Section 12.13]).

Theorem 3.3.13. Let d € N and ai,ag, - ,ad,bl,bg,-~ ,bd € C\{O,—1,_2a"’}- ]f
a1 +azs+---+ag=>by +bs+---+ by, then

ﬁ n+ai)(n+a) - (n+aq) _ T'(b1)T(b2) - --T'(ba)
n+bl n+b2)-~-(n+bd) F(al)F(ag)---F(ad)'

Besides, we need the properties on the Gamma function gathered in the following

proposition.

Proposition 3.3.14 (|19, 30, 122])
(1) For alln € N and z € C\ {0,—1, -2 -3 4.3 we have

n’ n’ n’ n’

-1 n—
DTy = (2n) " T nE T (n2).

I'(2)T(z+ %)F(z + %) T(z+ -

(2) For all z € C\ {0,—1,—2,---} we have

I(z+1) =2I'(z)

and )
z+ 2
rCrcth =2 vrre).
(3) For all z € C\ Z we have
T
I'z)r'd—=z2) =
(2)( : sinmz
(4) We have
M)=r@=1 I(})=v7 amd 1()=""
3.3.4 Proofs of the results
Let ¢ > 2 be an integer, 6y =0, 61,--- ,0,—1 € {0,1} and (6,,)n>0 be the (0,61, ,0,-1)-

Thue-Morse sequence. Recall that (0,),>0 is defined by &, = (—=1)% for all n € Ng. At
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the same time (0,,)n>0 can be view as the unique fixed point of the morphism

1 1,481, 041

-1+ *1,*51, s ,*(Sqfl

(3.29)

beginning with §y = +1. Define the sequence of partial sums of (6, )r>0 by
Ag:=0 and A, : =080+ + ++0,—1 foralln>1.

Note that (Ay,),>0 depends on the choice of (61, ,d,—1) € {+1,—1}9"1. Before proving

Theorem 3.3.1, we need the following proposition on (Ay,),>0, which is itself valuable.
Proposition 3.3.15. Let g > 2 be an integer.

(1) For all k,s € Ng and t € {0,1,--- ,¢* — 1} we have

5sqk+t =050 and Asqurt = AsAqk + 0sAs.

(2) With the convention 0° := 1, for all k € Ny we have A = A’;,
masc {|Age] (61, 04-1) € {+1, =11\ {(+ 1)} = (g - 2)%,
max { A 10 <n < g5 (01,0, 0,1) € {1, 1N+ = T4(g=2)+--+(g-2)"
(3) If (61, ,04—1) # (+1)27L, then for all n large enough we have

|A,| < nlo8ala=1),

Proof. (1) (@ Prove 0k, s = 056; for all k, s € Ng and ¢ € {0, 1,--- ,q" —1}.
i) Prove that (6y)n>0 is strongly g-multiplicative, i.e.,
dsq+t = 050; for all s € Ny and t € {0,1,--- ,¢q— 1}.

Let 1 denote the morphism (3.29). Then by ((do,d1,92,--+)) = (o, 1,02, )
we get P(ds) = (dsq, Osq1, 7+, 0(s41)g—1) for all s € No. It follows from ¢(+1) =
(+1,401,- -+ ,+04—1) and ¢(—1) = (=1, =61, -+, —0g—1) that dgg4+ = 056 for all
te{0,---,q—1}.

ii) Let k € N, s € Npand t € {0,---,¢" —1}. Then there exist | € Ny and s;,-- - , 51, S0,
tk—1,-- ,t1,t0 € {0,1,--- ,q — 1} such that

s=sq +--+s1qg+so and t=tp_ 1"+ Ftig+to.
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By i) and [18, Proposition 1] we get
6sqk+t = 681 T 5815805%4 o '5151 5tov

(55 = 6sl s 651(550 and 6t = 5tk71 s 6t15t0-

Thus dggk4 = 50t

@ Prove Ak iy = AsAge + 05 for all k,s € Ng and ¢ € {0,1,--- ,¢" —1}. In fact, we

have

Aggeyy = (bo+ 01+ +0p_1) + (6gr + 0grpy + -+ Ogh(gb—1))
Fo A (0ot F0s-n)gha1 T O nyghr(g-1)
+(0gqh + Osqhpr + -+ Ogghgr1)

= 0G0+ 01t By y) 01 (Fo + By e+ O )
ot b1 (G0 04 Oy
103(Bo 4+ 61+ 4 1)

= A+ A

where the second equality follows from (D).
(2) ©® We have A x = Alg for all £ € Ny since (1) @ implies A, = AjA, for all [ € Np.
@) For all k € Ny, the fact

maX{‘AqH : (517 T 75(1—1) € {+17 _1}q—1 \ {(+1)q—1}} = (q - Q)k

follows from (O and

mesc {[ 4]+ (91, 8,1) € (+1, =1\ {(+1)" 1} =g -2

@ In order to prove the last equality in statement (2), since the case k = 0 is trivial and
@ implies [Ay| <1+ (¢—2)+ (¢ —2)* + - + (¢ — 2)F, it suffices to verify that for all
k € N, we have
max {\An\ L0<n < qb—1,(01,,0,1) € {+1, -1} {(+1)q*1}}

=1+ (g-2)+(@-22++(q-2"

(By induction on k) For k = 1, obviously we have |Agl, |Aq], - ,[Aj—1] < ¢ — 1.
Suppose that for some k € N and all I € {0,1,--- ,k}, we have already had

|A0‘7|A1‘77’Aql—1‘gl+(q_2)+(q_2)2++(q_2)l
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Let n € {0,1,--- ,q’€+1 — 1}. It suffices to prove
An <14+(q—2)+(q—2%+---+ (¢ —2)". (3.30)

If n < ¢* — 1, this follows immediately from the inductive hypothesis. We only
need to consider ¢* < n < ¢**! — 1 in the following. Let s € {1,---,¢ — 1} and
t €{0,1,---,¢* — 1} be such that n = s¢* +t. By (1) @ we get

Ap = AsAgk + 054
If s <qg—2, then

|An|

IN

|As] - [Agk] + A
s(@—2F+ 1+ (=2 +(q—2%+ -+ (¢ -2
< 1+(q—2)+(q—2)2+...+(q_2)k+1

IN

where the second inequality follows from (2) and the inductive hypothesis. In the

following we only need to consider s = ¢ — 1. It means that
A, = Aq—lAqk + 5q—1At-

If there exists p € {0,1,---,¢ — 2} such that ¢, = —1, then |A;_;| < ¢ —3 and

IN

|Ap| (g = 3)|Agk| + A
(=3 (q=2 +1+(q—2)+(q—2>+ -+ (-2

< 14(q=2)4+(g—2>2+---+ (¢ —2)k!

IN

where the second inequality follows from (2) and the inductive hypothesis. Thus it

suffices to consider dg = d; = --- = d4—2 = +1 in the following. By (01, ,dq-1) #
(+1)97 1 we get 6,1 = —1. It follows from Ay_; = ¢—1 and A = A’; =(q—2)k
that

Ap=(q-1)(¢-2)" ~ Ay
Thus proving (3.30) is equivalent to verifying
—1—(g=2) = —(¢=2" <A <1+ (g=2)+--+ (g2 + (- 1)(g—2)".

Since the second inequality follows immediately from the inductive hypothesis, we

only need to prove the first inequality. Let u € {0,1,--- ,¢g—1}andv € {0,1,--- ,¢* 1~
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1} be such that t = ug*~' +v. By (1) @ we get
Ay = AyAgi—1 + 64Dy,

Since 6g =01 = -+ =0g—2 = +1,0-1 = —land 0 <u < ¢g—1imply A, =u >0,
Ayj=qg—2and Aj-1 = Al;*l =(q—2)1>0, by §, € {+1,—1} we get

Ay>—|A)>-1-(q=2) = —(¢—2)""

where the last inequality follows from the inductive hypothesis.

Let 01 = 02 = -+ = 0q—2 = +1 and d;,—1 = —1. It suffices to prove that for all £ € N
we have
App_gptogr=(q=2F++(q@—2+(q—2) + 1. (3.31)

(By induction) For k = 1 we have A,_1 = g—1. Suppose that (3.31) is true for some
k € N. Then for k + 1, we have

Agett_gbogbtocgm1 = B(go2)gb+(gh—gh—1——q-1)
= AgaBg 0y 9Bty
= (=22 +(@=2) +-+(q-27+(¢—-2) +1
= (@2 + @2+ +(@-2*+(@-2)+1

where the second equality follows from (1) 2 and the third equality follows from (D)
and the inductive hypothesis.

(3) For n € N large enough, there exists k¥ € N large enough such that ¢* +1 < n < ¢+

By (2) 3 we get
Au S 14+ (g=2) + o+ (g = DM < (g = DF = (¢9)o8(0D < sl
where the second inequality can be verified straightforwardly for &k large enough. O

Proof of Theorem 3.3.1. Since (2) follows in the same way as in the proof of [13, Lemma
4.1] by applying (1), we only need to prove (1) in the following.

Suppose that [[°;(R(n))® converges. Then (R(n))’* — 1 as n — oo. Since
Op € {+1,—1} for all n € N, we get R(n) — 1 as n — oo. Thus the numerator and
the denominator of R have the same degree and the same leading coefficient.

Suppose that the numerator and the denominator of R have the same leading coef-
ficient and the same degree. Decompose them into factors of degree 1. To prove that
[1°%,(R(n))% converges, it suffices to show that Hzo:l(%;‘;)‘s" converges for all a,b € C

n=1

satisfying n + a # 0 and n 4+ b # 0 for all n € N (that is, a,b € C\ {-1,—-2,-3,---}).
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Since (Z—j;‘;’)‘s” — 1 as n — oo, we only need to prove that
ﬁ ((qn + a)6qn (qn + ]‘ + a)5qn+1 L. (qn + q - ]' + a)aqTH»qfl)
ol qn+b gn+1+5b gn+q—1+b
converges. Since Proposition 3.3.15 (1) implies dgy, = 0500, dgn+1 = Ond1, -, Ogntq—1 =

0ndq—1, it suffices to show that

[e.9]

(r(n))™

n=1

converges, where

qn+a)50(qn+1+a)51._'(qn+q—1+a)5q_1
gn+b gn+1+5b gn+q—1+b

r(n) = (

This is equivalent to showing that

i dp Inr(n) (3.32)
n=1

converges. Since there exist co,c1, -+ ,¢q—1,do,d1,- - ,dg—1 € C such that
r(n) = q'nd +cgni™ 4 +ente 14 (cg=1 = dg—1)n?"" + -+ + (1 — di)n + (co — do)
Cqint4dynil 4 +din+dy qind + dg_1niL + -+ din + do ’
we get
Cqg—1 — dg— 1
Inr(n) — 2 1~ To-l =0(=),
qin n

which implies that

> Cq_1 — dq_1
nz::l%(lnr(n) — T)

converges absolutely. In order to prove that (3.32) converges, we only need to show that
>
n
n=1

converges. Enlightened by partial summation (see for example the equality (6.5) in [28|
related to the Thue-Morse sequence), we consider the following (0) and (2), which complete

the proof.

@ Prove that

SRR
~ n(n+1)
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converges. In fact, since Proposition 3.3.15 (3) implies

|An| 1
<
n2 = 9-log, (1) for all n large enough,

where 2 —log, (¢ — 1) > 1, it follows that } 2, %g converges absolutely. So does

Yo n(n *15- Thus we only need to check that > (6?('”_:1?” - n(ﬁj_l)) converges.

This follows immediately from [6; + -+ + 8, — Ap| = [0, — o] < 2.

Prove that

6, O 4+
260 ey

n=1

converges to 0. In fact, for all N € N we have

N
O S G+ 8~ )

M) =

ot n(n+1) ot n n+1
N N N
1 1 1 1 1 1
—5 - 5 - cds :
1;(71 n+1)jL 2;(71 n—l—l)+ + NT;V(TL n+1
1 1 1 1 1
—51(1 — —— - . -
W=y ) G - ) TG - )
_XN:(SH_(51+52+"-+5N
_n:1n N+1 ’
which implies
i(én_61+---+5n)_51+52+---+5N_AN+1—1
—'n nn+1) N+1  N+1 -

Since Proposition 3.3.15 (3) implies

[An1l 1
N+1 = (N +1)'loggla=1)

for all N large enough,

where 1 —log,(¢ — 1) > 0, as N — oo we get Nlﬁf — 0 and then ZTIYZI(% -

01+-+4
n(n+1)") — 0.

Proof of Theorem 3.3.2. Since Proposition 3.3.15 (1) implies 6gn, = 6,00, Ogn+1 = Ond1,




3.3. INFINITE PRODUCTS 191

, Ogntq—1 = 0ndq—1 for all n € Ny, we get f(a,b)

(qn—l—a) an ﬁ (qn+1—|—a)5qn+1 ﬁ (qn+q—1+a)5qn+q—1
gn+b oulerd qgn+1+b i gn+q—1+0b
(qn+a)5n5o ﬁ (qn+a+1)5n51 10—0[ (qn+a+q—1)5n5q—1
gn+b o gn+b+1 o gm+b+qg-—1
)6061 (a+q—1)505q—1 ﬁ (n+§)6n60 ﬁ (n+ )6 nor ﬁ (n+“+3‘1)5n6q1
_ b b+1 b+g—1
b+q 1 n=1 n—’_a n=1 n+ q n=1 n+ ‘(11

o
()" D) B ) (gt

u,’:]é% 8

a
q
O

Proof of Corollary 3.53.3. (1) follows from Theorem 3.3.2 after multiplying by the factor
corresponding to n = 0. The first equality in (2) follows from taking b = a+ 1 in (1). The
second equality in (2) follows from taking b = 0 in Theorem 3.3.2 and then multiplying the
factor corresponding to n = 0. We should note that it does not follow from taking b = 0 in

(1). Finally (3) follows immediately from taking a = 1 in the second equality in (2). O

Proof of Corollary 3.3.5. These two equalities follow from Corollary 3.3.3 (3) and the first
equality in (2) of Corollary 3.3.3 respectively. O]

Proof of Example 3.5.6. (1) follows from Corollary 3.3.3 (1).
(2) @ and @) follow from Corollary 3.3.3 (2).

®) follows from (@) and the fact that the first equality in Corollary 3.3.5 implies

> /3n 4+ 2\ 1
=, 3.33
};[0(3724—3) V3 (3.33)

@ follows from taking b =  in (1).

(3) @ is the above equality (3.33).
®), ), ® and @ follow from taking a = —%, %, 1 and 2 respectively in (2) @©.
®), ®), ® and @9 follow from taking a = %, %,% and —% respectively in (2) @.
@ follows from multiplying 3) and ().
@ follows from taking a = % in (2) @.

19, @, @ and @) follow respectively from ©), @9, @ and (3 by applying (D).

@ follows from taking a = 2 and b = % (1).
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O

Proof of Example 3.3.7. (1) follows from Corollary 3.3.3 (1).
(2) @ and @) follow from Corollary 3.3.3 (2).

® follows from (@) and the fact that the first equality in Corollary 3.3.5 implies

i)
L \3n+3 V3

(3) @ is the above equality.
@ follows from taking a = 2 in (2) ®.
(® and (®) follow from taking a = % and 2 respectively in (2) @.
®, ®, @ and @9 follow from taking a = %, %, 3 and 3 respectively in (2) @.
), @ and @9 follow respectively from (5), ® and (9) by applying (D).
@ follows from taking a = 2 and b= £ in (1).
@ and @ follow respectively from multiplying and dividing @ by @©.
follows from combining the results of taking a = 5 and —% in (2) @.

@ follows from taking a = 1,b = % in (1) and then multiplying by @©.

Proof of Example 3.3.8. Forodd ¢ > 3,1let 01 =03 =--- =0, 2=1and 0y =04 =--- =
04—1 = 0. Then the (0,0, --,8,-1)-Thue-Morse sequence (6,,)n>0 is exactly (01)>. It
follows that d,, := (—1)% = (—=1)" for all n > 0.

(1) By the second equality in Corollary 3.3.3 (2) we get

ﬁ(anrqa qn+a+1)(qn+2)(qn+a+3)(qn+4)---(qn+a+q72)(qn+q71))(—1)":
Lt N(nta)(gn+1)(gn+a+2)(gn+3)(gnta+4) - (gn+q—2)(gn+a+q—1)

(3.34)
for all a € C\ {0,—1,—2,---}. Then we conclude (1) by taking a =1 in (3.34).
(2) follows from (3.34) and (1).
(3) Note that for all ¢ € Nand a € C\ {0,—1,—-2,---} we have
ﬁ( (qn +a)(gn +a+q) )(‘””:1 (3.35)
(gn + ga)(gn + qa + q) q

since the left hand side is

i L. ata <a+q a+2q) a+2q a+3q (a—l—kq a+(l~c+1)q)(1)k
im . . .
k—o0 qa qa—i—q ga+q qa+2q qa+2q qa+3q qga+kq qga+ (k+1)q
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= lim —
k—o0 qa

a a+ (k+1)g\-D* 1
(qa—l—(k—f—l)q) :6'

We prove the concrete equalities in the following.

@ and @ follow from taking ¢ = 3 and 5 respectively in (1).

@, @), ® and @ follow from taking ¢ = 3, and then a = 3,2, 2 and 3 respectively in (2).

@, ©, @ and @ are deduced by applying (D noting that (3.35) Wlth g = 3 and then

a =2, %, Land —% give respectively

ﬁ<3n—|—2 3n+5)) H<9n+2 9n+11))(*1)"_1
Lo \(Bn+6)(3n +9) 2o N (On +6)(9n +15) Bl

10:‘1 ((9n+1)(9n+10))(*1)" :% i H ( (9n — 1)( 9n—|—8)>(*1)" _

1
(9n + 3)(9n + 12) 9n — 3)(9n + 6) 3

®), ®, @ and @9 follow respectively from dividing (5) by (O, multiplying (7) by @O, dividing

© by (6 and dividing @3 by @.

and @5 follow from taking ¢ = 5, and then a = % and 3 respectively in (2). O

Before proving Theorem 3.3.9, we need the following proposition.

Proposition 3.3.16. Let ¢ > 2 be an integer, 6y = 0, (01, ,0,—1) € {0,1}771\ {0971}
and (0p)n>0 be the (0,01, ,0,—1)-Thue-Morse sequence. Then for all n € Ng and k €
{0,1,--- ,q— 1} we have

Ongrk = On(—1)% + 6.

Proof. Let h denote the morphism

O'—>091‘--9q_1
1 107001

where 0 := 1 and 1:= 0. By h(6p6162---) = 0p0165 - - - we get
h(0n) = Ongng+1 - - - Ong+q—1

for all n € Ny. It follows from h(0) = 0y0; - - - 04—1 and h(1) = 6pb; - - - 6,1 that

0p if6, =0
Ongir =4 & ! = 0,(~1)% + 6, forallke{0,1,--,q—1}.
0 if6, =1
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Proof of Theorem 3.8.9. We have f(ay, -+ ,aq;b1,- -+ ,bg)

_ ﬁ(ﬁn—i—a,)@n
ot i b
B ﬁ(ﬁk—i—@i)‘% ﬁﬁ( nq+k+az> ng-+k
1 i:1k+bi gl i nq—i—k—i—b
ﬁ<ﬁ%+’f)9’“-ﬁﬁ<d”*“@*’f)@“”k”k
Pt izlbi—i—k o b Vi gn+b; + k
_ Cﬁ(ﬁaﬂrk)e’“,ﬁql‘[( d qn+az+k>9k ﬁq1< d anraiJr/’<:>9n(—1)9’c
Pt izlbi—i—k el leqn—i—b +k el :1qn—|—bi+k
(%) ql(ﬁai—l—k)@k i h( d qn—i—ai—l—k)@k'ql—[lﬁ( d qn—i—ai—i-k:)%(—l)ek
it Vi iR nlimt o btk imonoi Vo qP bR
B ﬁql(ﬁqn—i-ai—i-k)%.ql(ﬁ( d qn—i—ai—l—k)@n)(—l)ek
okt Vi gn+b; + k Pt Yevier izlqnﬁ-bi—i—k
gzl oo d 4 itk o0 g7l oo d n+ai+k On (—1)0k
= I ) (T ) )
o) I DR o I a4tk ag+k b+ by + k. (~1)%
(M pat) L 2 2 00)

where (x), (%x) and (x x x) follow from Proposition 3.3.16, §y = 0 and Theorem 3.3.13
respectively. O

Proof of Corollary 3.5.10. (1) follows from taking d = 2, a; = a, a = b+ ¢, by = b and
bo = a + ¢ in Theorem 3.3.9.

(2) follows from taking by = --- = by = 0 in Theorem 3.3.9.

(3) follows from taking d = 2, a1 = a and az = —a in (2). O

Proof of Corollary 8.5.11. In the following proof, for calculations related to the Gamma
function, we use Proposition 3.3.14 frequently without invoking it explicitly. (1) and (2)
follow from Theorem 3.3.9 and Corollary 3.3.10 (1) respectively.

(3) @ follows from taking b = 0 in (2) and then replacing all ¢ by b.

@ follows from taking ¢ = a — 1 in (2) and then replacing all a by a + 1.
(4) @ follows from multiplying (3) @ and @.

@ follows from taking b =2 in (3) @.

® and @ follow from taking b = —a and 1 — 2a respectively in (3) @.
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(® follows from taking d = 2,a; = 1'5—”,(12 = 1;2a’b1 =0 and by =1 in (1).
ollows from taking a1 =---=aq=1,00 =dand bg =--- =064 =0 1n .
follows f; ki 1,bp =d and b bg=01in (1
(5) @ follows from taking a = % in (4) @®.
@ and (®) follow from taking a = 0 and % respectively in (4) ®.

®), ®, @, @ and @ follow from taking a = %, 1,2, —
.

and —3 respectively in (4)

Wl

@, ® and @ follow from taking a = 1, % and % respectively in (4) @.

®), ©@ and @ follow respectively from multiplying (1) by (2), multiplying (5) by
and dividing ) by .

@ and @) follow from taking a = % and % respectively in (4) @.

3.4 Generalized Koch curves and Thue-Morse sequences

Recall that N, Np, R and C are the sets of positive integers 1,2, 3, - - - | non-negative integers
0,1,2,---, real numbers and complex numbers respectively. Denote the base of the natural
logarithm by e and the imaginary unit by ¢ as usual. We still use (,)n>0 to denote the
classical Thue-Morse sequence 0110100110010110 - - - in this section. It is well known that
t, = s(n) mod 2 for all n € Ny where s(n) denotes the sum of binary digits of n. In the
1983 paper [40], Coquet interested in the behavior of the sum 3, _, (—1)*G*) introduced
Z,Kn(—l)tke% and obtained the Koch curve [119] as a by-product in [40, Page 111]. In
addition, Dekking found in [49, Pages 32-05 and 32-06] that the points

n—1 )
p(0) =0, p(n):=> (-5 (n=1,2,3,-)

k=0

traverse the unscaled Koch curve on the complex plane (see also [50, Page 107]| and [72,
Page 304]). For more on the relation between the Koch curve and the classical Thue-Morse

sequence, we refer the reader to [17, 94, 128].

Given any m € N and 6y,---,0,, € {0,1}, recall from the last section that the
(0,61, ,0m)-Thue-Morse sequence (6,,)n>0 is the unique fixed point of the morphism
00016,
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beginning with 6 := 0, where 0 := 1 and 1 := 0. Define 6,, := (—1)% for all n € Ny. Then

(0n)n>0 is the unique fixed point of the morphism

+1 0 +1, 461, , +0m
1= —=1,-61,- ,—0m

beginning with dg = +1 and 01, -+, € {41, —1}. Wecall § = (6,,)n>0 the (+1,01,- -+, 0m)-

Thue-Morse sequence. Let

2kmi

n—1
Pm,s(0) :=0 and pp5(n) = Z5k€ m forn=1,2,3---.
k=0

Noting that the classical +1 Thue-Morse sequence ((—1)'"),>¢ is not only the (+1,—1)
but also the (+1,—1,—1,+1)-Thue-Morse sequence in our terms, the above p,, 5 depends

not only on § but also on m. For n € Ny, let

(m+1)"
Prsn) =) [Pmslk—1),pms(k)]
k=1

be the polygonal line connecting the points pp, 5(0), Prm,s(1), -+, pm,s((m + 1)™) one by
one, where [z1, z2] 1= {cz1 + (1 — ¢)2z2 : ¢ € [0, 1]} is the segment connecting z; and z3 on
the complex plane C. In addition, if p,, s(m + 1) # 0, for all j € {0,1,--- ,m}, we define
Smsj: C— Chy

27
i)+ ;e m 2
Sm,s,j(2) == Pms(7) +9 for z € C
Pm,s(m+ 1)
When |py, s(m+1)| > 1, obviously Sy, 50, Sm.s,15 - » Sm.,s,m are all contracting similarities,

and we call {Sy, 5 }o<j<m the (+1,61,- -, 6m)-IFS (iterated function system). We can see
that the attractor of the (41, —1,—1,+1)-IFS is exactly the Koch curve.

For simplification, if m and the (+1, 1, - - - , 0, )-Thue-Morse sequence ¢ are understood

from the context, we use p, P and S; instead of p,, 5, P, 5 and Sy, s5; respectively.

Let dp be the Hausdorff metric and write ¢Z := {cz : z € Z} for any c € C and Z C C.

The following is our main result.

Theorem 3.4.1. Let m € N, §p = +1, 41, ,0m € {+1,—1} and 6 = (dp)n>0 be
the (41,01, ,0m)-Thue-Morse sequence. If |p(m + 1)| > 1, then there exists a unique
compact set K C C such that

(p(m+1))""P(n) IR asn— 00,

and K is a continuous image of [0,1]. Moreover, K is the unique attractor of the (+1, o1,
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oo, Om)-IFS {S;}o<j<m. That is, K is the unique non-empty compact set such that

K =] s;(x).
=0
Furthermore,
dimy K = —oem+1)_
log [p(m + 1)

if and only if there exists € > 0 such that

i £(P))

> 0,

where L is the Lebesque measure on the plane and A® := {z € C: |z —a| < € for some a €

A} for A cC C.

We call K in Theorem 3.4.1 the (41,81, ,0m)-Koch curve. See the figures in the
next two pages for some examples for m = 3 and 4. Note that the classical Koch curve is
exactly the (+1,—1,—1,+41)-Koch curve in our terms.

It is well known that the classical Koch curve has Hausdorff, packing and box dimen-
sion log4/log 3 since the corresponding IFS satisfies the open set condition (OSC). As a
generalization, we have the following, where we recall that || denotes the greatest integer

no larger than z.

Corollary 3.4.2. Let m > 2 be an integer, g = --- = 6k%J = 41, 5L%J+1 = ... =
5m—L%J—1 =1, 5m—L%J = =0 =41 and § = (6n)n>0 be the (+1,01,-- -, 0m)-Thue-
Morse sequence. Then p(m + 1) is a real number in [3,m + 1], the (+1,d1,- -+ ,dm)-IFS
satisfies the OSC, and the (+1,01,- - ,0m)-Koch curve has Hausdorff, packing and box
dimension log(m + 1)/logp(m + 1).

To obtain the Hausdorff dimension of the (41,61, - ,d,,)-Koch curve in Corollary
3.4.2, one can try to use the last statement in Theorem 3.4.1. But here we use classical
theory on IFS by verifying the OSC.

We give some notation and preliminaries in Subsection 3.4.1, and then prove Theorem
3.4.1 and Corollary 3.4.2 in Subsection 3.4.2.

3.4.1 Notation and preliminaries

For any 21,22 € C, we use [21,22] := {cz1 + (1 — ¢)z2 : ¢ € [0,1]} to denote the segment
connecting z; and zo. For any ¢ € Cand Z C C, let ¢Z :={cz : z € Z} and ¢+ Z :=
{c+ z: 2z € Z}. Besides, for any z € C we use Re z and Im z to denote respectively the

real part and the imaginary part of z.
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Construction of the Construction of the

(+1,—1,—1,41)-Koch curve. (+1,41, —1,+1)-Koch curve.

Construction of the Construction of the

(+1,+1,—1,—1)-Koch curve. (+1,—-1,+1, —1)-Koch curve.
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Construction of the Construction of the

(+1,+1,—1,41,4+1)-Koch curve. (+1,41, -1, -1, 41)-Koch curve.

Construction of the Construction of the

(+1,41,+1, -1, 4+1)-Koch curve. (+1,41, -1, -1, —1)-Koch curve.
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Let A be a finite alphabet of symbols and A* := U2 ;A" be the free monoid generated
by A. A map ¢ : A* — A* is called a morphism if

P(uv) = ¢(u)¢(v)

for all words u,v € A*. Moreover ¢ is called null-free if ¢(a) is not the empty word for
any a € A, and called primitive if there exists an n € N such that a € ¢"(b) for all
a,b € A, where u € v denotes that u occurs in v for any words u,v € A*. For a morphism
¢ A* — A*, the corresponding matrix My = (mgp)apea is defined by myp = |d(a)lp,
where |w|, denotes the number of the symbol b in the word w. In addition, recall that we
use |w| to denote the length of the finite word w.

A map f: A* — C is called a homomorphism if

fluv) = fu) + f(v)

for all words u,v € A*, and an R-linear map L : C — C (regarded as R? — R?) is called
expanding if both eigenvalues have modulus more than one.

Let H(C) be the set of all non-empty compact subsets of C and dy be the Hausdorff
metric on H(C) defined by

du(Zy, Zs) = max{ sup inf |z — 22|, sup inf |z; — 22]} for 7, Zy € H(C).
21E€7, 22€22 20€ 74 21€21

The following result was given by Dekking.
Theorem 3.4.3. ([48, Theorem 2.4]) Let ¢ : A* — A* be a null-free morphism, f: A* —
C be a homomorphism, L : C — C be an expanding R-linear map such that
feg=Lof,
and K : A* — H(C) be a map satisfying

K(uw) = K(u) U (f(u) + K(v))

for all u,v € A*. Then for any non-empty word w € A*, there exists a unique compact set
W such that
L™K (¢"(w)) W asn— 00,

and W is a continuous image of [0, 1].

In the following we recall some preliminaries on iterated function systems. A map
S : C — Cis called a contraction if there exists ¢ € (0,1) such that

|S(z1) — S(22)| < ¢|z1 — 22| for all 21,29 € C.
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Moreover, if equality holds, i.e., if [S(z1) — S(22)| = c|z1 — 22| for all 21,22 € C, we say
that S is a contracting similarity.

A finite family of contractions {S1, Sa, - -, Sn}, with n > 2, is called an iterated function
system (IFS). The following is a fundamental result. See for example [64, Theorem 9.1].

Theorem 3.4.4. Any family of contractions {S1,--- ,Sn} has a unique attractor F, i.e.,

a non-empty compact set such that
n
F=|]s;p).
j=1

We say that an IFS {S,---,S,} satisfies the open set condition (OSC) if there exists

a non-empty bounded open set V' such that
n
Us,vycv
j=1

with the union disjoint. The following theorem is well known. See for example [64, Theorem
9.3].

Theorem 3.4.5. If the OSC holds for the contracting similarities S; : C — C with the
ratios c; € (0,1) for all j € {1,--- ,n}, then the attractor of the IFS {Si,---,Sn} has

Hausdorff, packing and box dimension s, where s is given by

n
s _
Z c; =1
=1
To end this subsection, we present the following basic property for contractions.

Proposition 3.4.6. Let S1,S52,---,S, be contractions on C. Write

S(A) := O Sj(A)  forall AcC C.
j=1

Then for all F, Fy, Fy,--- C C such that F}, A Foas k- oo, we have S(Fy) A, S(F).
Proof. This follows from the fact that for all k¥ € N we have

dH(S(Fk),S(F)) S max dH(S](Fk),S](F)) S max deH(Fk,F),

1<j<n 1<j<n

where for each j € {1,---,n}, ¢; € (0,1) satisfies [S;(21) — Sj(22)| < ¢j|z1 — 22| for all
z1,29 € C. O
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3.4.2 Proofs of Theorem 3.4.1 and Corollary 3.4.2

Proof of Theorem 3.4.1. Let m € N, 69 = +1, §1,--- ,0m € {+1,—1} and 6 = (6,)n>0 be
the (+1,d1,- -+, d)-Thue-Morse sequence such that |[p(m + 1)| > 1.
(1) Prove that there exists a unique compact set K C C such that

(p(m+1))""P(n) Iy g asn — oo

and K is a continuous image of [0, 1] by using Theorem 3.4.3.
@ If m is odd, let A :={0,1,2,---,2m — 1}. Define the morphism ¢ : A* — A* by

at— da,Oda,l te da,m

for all a € A where

dg =

i

a+ 2k mod 2m if § = +1
a+2k+m mod2m if § = —1

for all £ € {0,1,---,m}. Obviously d,o = a for all a € A and it is straightforward to
check

dg (a42k)mi
e m = k‘e m

for all k € {0,1,--- ,m}. Let € be the empty word. Define f(¢) := 0 and

n

f(wl .. wn) — Z ewfnm

k=1

for any wy - - - w, € A*. Then f: A* — C is a homomorphism satisfying

ami

fla)=em
for all a € A and
fluwv) = f(u) + f(v)

for all u,v € A*. Let L : C — C be the linear map defined by
L(z) :=p(m+1)- -2z

for all z € C. It follows from |p(m + 1)| > 1 that L is expanding.
We can check fo¢p = Lo f. In fact, for the empty word we have fop(e) = f(e) =0 =
L(0) = Lo f(e), for any a € A we have
daykﬂ’i m

= “ M ami 2kmi
f0¢(a) = f(da,O"'da,m)zze m :Z(Sk;e m =em Z(Skem
k=0 k

k=0 =0
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= fla)p(m+1) = Lo f(a),
and for any wy - - - w, € A* we have

fod(wr---wn) = f(p(wr) - d(wn)) = f(Pp(w1)) + - + f(d(wn))
= L(f(w1)) + -+ 4 L(f(wn)) = L(f(w1) + -+ + f(wn)) = Lo flwy - wn).

Define K (¢) to be the singleton {0},

K(a) == [0, f(a)]

for any a € A, and
K(wy - wy) = U (f(u)1 Cewg—1) F K(wk)>
k=1

for any wy -+ - w, € A*, where f(wy---wg_1) is regarded as 0 for k = 1. Then K : A* —
H(C) satisfies

K(uw) = K(u) U (f(u) + K(v))
for all u,v € A*. Now applying Theorem 3.4.3, there exists a unique compact set K C C

such that
(p(m+1))""K(¢"(0)) g s — 0,

and K is a continuous image of [0,1]. In the following we only need to check K(¢"(0)) =
P(n) for all n € Ny.

i) First we prove that for all a € A, j € {1,2,--- ,m} and n € {0,1,2,---} we have

ami

F(6™(da -+ daj1)) = € p(j(m +1)") (3.36)

by induction on n. In fact, for n = 0 we have

f(da70"‘da,j—1): e m = ke m  =em p(j).
k=0 k=0

Suppose that (3.36) is true for some n > 0. Then for n + 1, on the one hand

j(m+1)"—1

(@ (dag - dajr)) = LU (dag o)) = plm + e 3 5e™
r=0

where the first equality follows from f o ¢ = L o f and the second equality follows



204

ii)

CHAPTER 3

from the definition of L and the inductive hypothesis, and on the other hand

_ j(mA1)nti—1 _ j(mA+1)" =1 r(m+1)4+m _
e%p(j(m + 1)”+1) —em Z 6;43% —em Z Z 6;{;6%.
k=0 r=0 k=r(m+1)
It suffices to check
_ r(m+1)+m _
p(m + 1)5re% = Z Spem
k=r(m+1)

for all r € {0,1,--- ,j(m +1)" — 1}. In fact we have

r(m+1)+m

m
2kmi 2(r(m+1)+k)7‘rz 2rmi  2kmi 2rmi
g dpe m g Or(m+1)+k€ m g pope m e m =plm+l)de m ,
k=r(m+1) k=0 k=0

where the second equality follows from 6,.(;,11)4x = 6-0) (see Proposition 3.3.15 (1)).

To check K (¢™(0)) = P(n) for all n € Ny, it suffices to prove

ami

K(¢"(a)) =em P(n) forallae A (3.37)

by induction on n. In fact, for n = 0 we have

K(a)=[0,e] = [0,1] = e P(0).
Suppose that (3.37) is true for some n > 0. Then for n + 1, on the one hand

K(¢""(a))
= K(¢n(da,0 T da,m))

m

— (f(gb"(da,o codajo1)) + K(cb”(da,j)))

(where f(¢"(da,0 -+ dq,j—1)) is regarded as 0 for j = 0)

dg j7i

= U (¢Fpitm+1)") + 43¢ 5 P(n))

P(n))

= e | (plitm + 1) + 855
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where (x) follows from the inductive hypothesis and (3.36), and on the other hand

P(n+1)

(m41)ntt
= U [pk-1),pk)

k=1

m (G+1)(m+1)"
=UJ U [bk-1p%)

3=0 k=j(m+1)"+1

(m+1)"

- [p(i(m +1)" + k= 1), p(j(m + 1)" + k)]
j=0 k=1
m (m4+1)" j(m+1)"+k—2 - Jj(mA1)" k-1 _
= U [ Z 57"6%, Z 57“6277:1]
=0 k=1 r=0 r=0

(where Z is regarded as 0 if a > b)

m j(m—:l:):—l L DT jma k=2 md ) kel
= U ( Z ore m + [ Z ope m Z (57,67})
=0 r=0 k=1 r=j(m4+1)" r=j(m+1)”
" (mﬂ)n =2 233 (mt )" r)mi 204 (mt )" )i
= U ( (j(m+1) U Z(S; m+1)n4r€ m Z j(m+1)n+r€ m ])
Jj=0 k=1 =0 r=0
() | S 2(j4r)mi 2(J+r)m
2U (pum+m+ U Zaae = 2556 )
Jj=0 k=1 =0
m o (m+1)”
= U (pitm+ 1M + 8¢5 | otk = 1), p(k)])
j=0 k=1

p(G(m+1)") + ;¢ P(n))

<
Il
=)

I
s

where (#x) follows from (4 1yn 4 = 0,0, (see Proposition 3.3.15 (1)). Thus K (¢"(a))

=em P(n+1).

@ If m is even, let A:={0,1,2,--- ,m — 1}. Define the morphism ¢ : A* — A* by

a da,Oda,l < odam

for all a € A where

Ao a+k mod m if 6 = +1
ok a+k+% modm ifé=-1
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for all £ € {0,1,---,m}. Obviously d,o = a for all a € A and it is straightforward to
check

2dg i 2(a+k)mi
e m = 0€ m

for all k € {0,1,---,m}. Define f(¢) := 0 and

2wy i
flwy - wy) = e m
k=1

for any wy - - - w, € A*. Then f: A* — C is a homomorphism satisfying

2ami

fa) =

for all @ € A and
fluv) = f(u) + f(v)
for all u,v € A*. Let L : C — C and K : A* — H(C) be defined in the same way as (.

Then we can prove

2ami

f(@"(dao -+ daj—1)) =€ m

for all j € {1,2,--- ,m}, a € A and n € Ny, and then

(G(m+1)") (3.38)

2ami

K(¢"(a)) = e P(n).

Thus K(¢"(0)) = P(n) for all n € Ny. By applying Theorem 3.4.3, there exists a unique
compact set K C C such that

(p(m+1))""P(n) I K asn o 00,

and K is a continuous image of [0, 1].
(2) Prove that K is the unique attractor of the IFS {S;}o<j<m.
By Theorem 3.4.4 it suffices to show K = UJL,5;(K). Let @ := (p(m + 1))7"P(n) for

all n € Ny. Since Q, 91, K and Proposition 3.4.6 imply U7.,S;(Qn) A, U7 oS5 (K) as
n — 0o, we only need to prove Qn+1 = UJL5;(Qn) for all n € Ny in the following. In fact,

Qni1 = (pm+1) "D Pn+1)

2 plm+ 1) (pGm+ 1)) + e Pn) )
j=0

N

[
s

((wm + 1) Dp(im +1)") + (p(m + 1)~V g5e 5 P(n) )

.
Il
o

2jmi

((p(m + 1)) 7p(G) + (p(m + 1)~ Ve;e ™ P(n))

18
=

<
Il
o
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[
s

(p(m -+ 1) (p(5) + e Qu)

.
Il
o

[
s
R
o
<

<
Il
o

where (x) follows from the recurrence relation between P(n + 1) and P(n) deduced at the
end of the proof in (1) @ (noting that this relation is true no matter m is odd or even),

and (*x*) follows from p(0) = 0 and

. by (3.36)
p(j(m+1)") i (53 f(@™(doo - - doj-1))
o¢p=Lo n
Joo=Lof o (f(doo---doj1))
by (3.36) .
—_— 1 n
o ) (p(m +1))"p(j)
for all j € {1,2,--- ,m} and n € Ny.
(3) Prove that
. log(m + 1)
dimg K = —A——————
H log [p(m + 1)|

if and only if there exists € > 0 such that

i ZP)Y)

> 0.

Noting that |¢™(0)] = (m + 1), K(¢"(0)) = P(n) is proved in (1) and L : C — C
(regarded as R? — R?) is a similarity with eigenvalues of the same modulus |p(m+1)| > 1,
by applying [27, Dekking’s conjecture| (which was proved), we only need to check that the
eigenvalue of My (the corresponding matrix of ¢) with greatest modulus is m + 1 and ¢
is primitive. Note that according to whether m is odd or even, the definition of ¢ in (1) is
different.

@® If m is odd, recall A :={0,1,2,---,2m — 1}. On the calculation between the symbols
in A, we consider the mod 2m congruence class (for example 5 4+ (2m — 3) = 2). Recall
the definition of ¢. For any a,b € A, the equivalences of d, = b and dq41 = b+ 1 for all
ke {0,1,---,m} imply |¢(a)ly = |#(a+1)|p+1. This means that My is a circulant matrix,
and the eigenvalue with greatest modulus is [¢(0)[o + |#(0)|1 4+ - - - + |#(0)|2m-1 = |¢(0)]| =
m + 1.

In the following we prove that ¢ is primitive. That is, there exists n € N such that
b e ¢"(a) for all a,b € A, where u € v means that u occurs in v for any words u,v € A*.

For any word w = wy - - - wi € A* and any symbol a € A, write

wta=wy - wg+a:=(w+a) - (wg+a).
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Then we have
P(w+a) = dpwr +a) - dp(w + a) = (d(w1) +a) - (¢(wr) + a) = ¢(w) +a, (3.39)
where the second equality follows from
d(b+ a) = dpya,0dbta1 - doram = (oo +a)(dp1 +a) - (dpm +a) = ¢(b) + a
for any a,b € A. By applying (3.39) consecutively, for all a € A and n € N we have
¢"(a) = ¢"(9(0) + a) = ¢"2(¢%(0) +a) =+ = ¢"(0) +a, (3.40)

and then b € ¢"(a) is equivalent to b—a € ¢™(0) for all b € A. Thus we only need to prove
that there exists n € N such that a € ¢™(0) for all a € A.

i) Suppose 01 = +1. Then
do1 =2,do1 =4,ds1 =6, ,dom—a1 =2m — 2,

which imply

2€ ¢(0),4 € ¢(2),6 € p(4),--- ,2m — 2 € ¢(2m — 4).
By iterating ¢ we get

2 € ¢(0),4 € ¢%(0),6 € ¢>(0),---,2m — 2 € $™1(0) (3.41)
one by one. It follows from

0 € 6(0) € $*(0) € --- € " 7(0) € ¢™(0) (3.42)

that 0,2,4,---,2m — 2 € ¢™(0). It suffices to prove 1,3,5,--- ,2m — 1 € ¢™(0) in
the following. Since §; = -+ = d,,, = +1 will imply p(m + 1) = 1 (which contradicts
|[p(m + 1)| > 1), noting ; = +1, there exists [ € {2,3,--- ,m} such that §; = —1.
This implies

dojl:2l+m,d27l:2l—|—m—1—2,d4,l:2l—|—m+4,--- ,dgm_gjl:2l+3m—2
and then

2 +m e ¢(0),2l +m+2€ p2),2l + m+4€p(4),---,20+3m —2 € (2m — 2).
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It follows from (3.41) that
2l +m e ¢(0),2l+m+2 € d*(0),2l + m+4 € $3(0),--- , 20 + 3m — 2 € ¢"(0).

By (3.42) we get 2l +m, 2l + m 4+ 2,2l + m +4,--- ,2l + 3m — 2 € ¢"(0), which is
equivalent to 1,3,5,--- ,2m — 1 € ¢"(0). Therefore a € ¢™(0) for all a € A.
Suppose 6; = —1. Then dp; =m +2. By m +2 € ¢(0), we get

y (3.39)

2Am+2) =m+2+m+2ed0) +m+2= é(m +2) € ¢2(0).

In the same way we get 3(m + 2) € ¢3(0)74(m + 2) € ¢4(0)a e 7(2m — 1)(m + 2) S
#*™=1(0). Tt follows from

0€ ¢(0) € ¢°(0) € -+ € $*"7(0)
that
0,m+2,2(m +2),3(m+2), -, (2m — 1)(m + 2) € ¢*"1(0). (3.43)

Since m is odd, we know that m + 2 and 2m are relatively prime. This implies that
0,m+2,2(m+2),3(m+2),---,(2m—1)(m+2) construct a complete residue system
mod 2m. By (3.43) we get 0,1,2,---,2m — 1 € > 1(0).

@ If m is even, recall A := {0,1,2,--- ,m — 1}. On the calculation between the symbols

in A, we consider the mod m congruence class (for example 5 + (m — 3) = 2). Recall the

definition of ¢. In the same way as (), we know that the eigenvalue of My with greatest

modulus is m + 1.

In the following it suffices to prove that ¢ is primitive. In the same way as 1), we get

¢"(a) =¢"(0)+a forallae AandneN, (3.44)

and we only need to prove that there exists n € N such that a € ¢™(0) for all a € A.

i)

Suppose §; = +1. Then
dop =1,d11 =2,d21 =3, ,dp21=m—1
which imply

1€¢(0),2 € ¢(1),3€ ¢(2), - ,m—1€ p(m—2).
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By iterating ¢ we get
1€ ¢(0),2 € ¢*(0),3 € $*(0),--- ,m —1 € ™ (0)
one by one. It follows from
0 € ¢(0) € ¢*(0) € --- € ¢"1(0)
that 0,1,2,--- ,m — 1 € ¢™ 1(0).
Suppose d; = —1. Then do; = % + 1 and dm 11 = 2, which imply B +1e€ 90
and 2 € ¢(Z +1). It follows from ¢(% + 1) € ¢*(0) that 2 € ¢*(0), and then

#*(2) € $*(0). Since (3.44) implies ¢?(2) = ¢2(0) + 2, we get 4 € ¢*(0). Repeating

this process we get
2 € ¢2(0),4 € ¢*(0),6 € ¢%(0),--- ,m — 2 € ¢™2(0). (3.45)
It follows from 0 € ¢2(0) € ¢*(0) € --- € ™ 2(0) that
0,2,4,--- ,m —2¢€ ¢ 2(0). (3.46)

First we prove that there exits an odd a € A such that a € ¢(0) by contradiction.
Assume a ¢ ¢(0) for all odd a € A. By ¢(0) = doodo1---dom we know that

do,0,do,1, - ,dom are all even. Then do; = § + 1 implies that % is odd. By
k if (Sk = +1
do k= o
k+15 if op = —

for all k € {0,1,--- ,m}, we get
(50:62:(54::(5771:4—1 and 51:53:“':6777,—1:_1-

It follows that

m F
b 1) = SO 1 SR 3 (et
k=0 k=1 k=241
where
m m m m
S (ke = 2 (—1)% the T 2 (—1)FHemie st = 2 (—1)ke
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and
m 1/rm 1/rm
m L(m_y) 3 (71
2 2(2 2\ 2
2kmi ; 2(2j+1)mi 2(25)7i
(—1)re™m = ()P e ™ + (—=1)%e " m
k=1 =0 j=1
BE L gy
¥ T . JTe
= e m T4 e m
j=0 7j=1
1(m_q) 3(3-1)
22 I L Ajmi
= E e m + e m
j=0 7=1
o b3 2
45T 4571 %”
= E e m —|— e m = E e 2 = 0
Jj=1(Z+1) J=1 J=1

This implies p(m + 1) = 1, which contradicts |p(m + 1)| > 1. Thus there must exist
an odd a € A such that a € ¢(0), which implies

¢*(a) € ¢*(0),¢"(a) € 6°(0), -+ , " *(a) € $"7(0).
It follows from ¢(0) € ¢3(0) € ¢°(0) € --- € ™ 1(0) that
a,¢*(a),¢"(a), - , "™ *(a) € ™ 1(0). (3.47)
Since (3.44) implies
¢*(a) = ¢°(0) + a,¢"(a) = ¢*(0) +a,--- ,¢"*(a) = ¢"*(0) +a,
by (3.45) we get
a+2¢d*a),a+4¢cd*(a), - ,a+m—2¢c " (a).

It follows from (3.47) that a,a+2,a+4,--- ,a+m—2 € ¢™ 1(0). Recalling that a is
odd, we get 1,3,5,--- ,m—1 € ¢™1(0). Since 0 € ¢(0) implies ¢"™2(0) € ™ 1(0),
by (3.46) we get 0,2,4,--- ,m —2 € ¢ 1(0). Therefore 0,1,2,3,--- ,m — 1 €
6m1(0).

Proof of Corollary 3.4.2. Let m > 2 be an integer, g = --- = 5[% = +1, 5L%J+1 ==
Om—|m)—1 ==L, 0p|m| =+ =0p=+1and § = (dn)n>0 be the (+1,01,-- -, p)-Thue-

Morse sequence.
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(1) Prove 3 < p(m+ 1) <m+ 1. In fact, by

i k 2k
p(m+1) Zékem:n :Zékcosﬁ—kiz&gsin%,

it suffices to consider the following ) and (2.
@ We have 31" 0y sin 25T = 0 since for all k € {0,1,---, [ 2]},

Ok smzk—ﬂ + O ksinM O =Om 5k(s1n2k—7r + sin(2r — 2k—ﬁ)) 0.
m m m

@ Prove 3< 300, (Skcos%ﬁ7T <m+1.
Since &), cos 2% =1 for k € {0,m} and dycos 2% < 1 for k € {1,2---,m — 1}, we
only need to check Zzn;ll df, cos Qkﬁ > 1. It suffices to consider the following i) and
ii).
i) Prove oy cos 2% > 0 for all k € {1,--- ,m — 1}.
@ If0<k< L%J,wehaveék:+1and0<2k—”<5
® If[2]+1<k<m-—|2]—1, wehave 0 = —1 and § < 2km < 31

m

@Ifm—L%JSkgm,wehavecsk:—i—land%ﬂg%ﬁg2w.

.. . 2- g
ii) @ If m is even, we have dm cos —2— = 1.
2 m
(® If m is odd, we have
. mTfl o 2. mTJrl T - o
dm—1 COS + 0m+y1 cos —=—— = —cos(m — —) — cos(m + —)
2 2 m m m

= 2cos1 > 2COSE =1.
m 3
(2) Since Theorem 3.4.1 says that the (+1,61,- -, d,,)-Koch curve is the unique attractor
of the (+1,61,- -+, 6m)-IFS {S;j}o<j<m, to complete the proof, by applying Theorem 3.4.5,
it suffices to check that {S;}o<j<m satisfies the OSC.
When m = 2, we have dg = +1,01 = —1,62 = +1, p(m + 1) = 3, So(2) = 3, S1(z) =
2+ 1 and S(z) = £ + 2 for z € C, and we can take the open set {z +yi: 2,y € (0,1)}.
When m = 3, we have o = +1,01 = 0y = —1,03 = +1, p(m +1) = 3, So(z) = 3,

T

Sl()—§—3e3 Sa(z) = g—%ea‘—%es and S3(z) = £ + 2 for z € C. The attractor

of this IFS is exactly the classical Koch curve and this IFS satisfies the OSC, where the
open set can be taken by the open isosceles triangle {x + yi : z,y € R,y < 0,z + /3y >
0,z — 3y < 1}.
In the following we consider m > 4. Let
iy 9l L7 9k
Am = cos— and by, := sin —.

m
k=0 k=0
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Then ay,, by > 0 and p([F] + 1) = am + i,
@® If m=0,1 or 2 mod 4, define

V.= {x—i—yi:a;,yeR,y>0,bmx—amy>O,bmx+amy<bm}-

See Figures 3.1, 3.2 and 3.3. Obviously V' is the non-empty bounded open isosceles tri-
angle with base [0,1] and vertex % + ;l—mmi. Note that for each j € {0,1,---,m}, S,
is the composition of the rotation 5je%-, the scaling (p(m + 1))~ and the transla-
tion - + p(frgizl)’ and S; maps [0,1] to [p(i(lﬁl), 5(%—:11))]. It is straightforward to see that
{S;(V)}o<j<m are the disjoint open isosceles triangles with bases {[p(igj_gl), ij(%ill))]}ogjgm

and vertexes {Sj(% + Zzb—mmi)}ogjgm all on the upper side of the polygonal line p(l;(_lk)l). To

verify UJL,S;(V) C V, in the following we check Im p(™H) > 0 if m is odd and Im
p(%5) > 0 if m is even.

i) If m is odd, by m = 1 mod 4, we have 251 = 2|2 | and then

1 2k = 2k
Imp(%) = sin%— Z sinﬁ7T

k=1 k=[] +1
L] L) 2(2] 2 1—-k
= Zsin%—ﬁ—Zsm ( LZJJF _ )W
k=1 m k=1 m
L7
= Y (sin 2Ty GRS
k=1

ii) If m is even and m = 2 mod 4, by & — 1 = 2[}], in a way similar to i) we can get
Im p(7F) = 0.

iii) If m is even and m = 0 mod 4, we have

m -1
m L 2%kw . 2km
Im p(E) = E sin — — E sin —

m m
k=0 k=141
%_1 m % 1 m
k 2-2 .7 2(% — k)
= sm—7T + sin 4 — E sin (2 )
m m m
k=1 k=1
FEn (m — 2k)
m — T
+ g (sin - - )
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@ If m = 3 mod 4, we have 1 — 1 =2[2| + 1 and then

m 2] ™ |41
(") — S TN g %
p B) = sin - sin -
k=0 k=] ]+1
L] L) 2(2] & 1—-k
= Zsin%—ﬂ-—Zsm ( LZJ_F _ )W
k=0 m k=0 m
s 2km 2k + 1)m
= (sin — sin ) <0
— m m
Let "
I m4+1
Cm 1= — mp(*3) >0
p(m+1)
and define

V.= {x—l—yi:x,yGR,bmx—amy>O,bmx—|—amy< bm, 2¢mx +1y > 0,2cpx —y < QCm}.

See Figure 3.4. Obviously V is the non-empty bounded open quadrilateral containing two
isosceles triangles with the same base [0, 1] and one has vertex % + QZZTmmi and the other has

vertex 3 —cpi. It is straightforward to see that {S;(V)}o<j<m are open quadrilaterals, each

p(j)  p(+1)
p(m+1)? p(m+1)
P(1)

has vertex Sj(% + ;L—mmz) on the upper side of the polygon m and the other has vertex

Sj(3 — emi) on the lower side. By simple geometrical relation we know that {S;(V)}o<j<m

containing two isosceles triangles with the same base | ] where one triangle

are all disjoint and contained in V. O
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Figure 3.1: The open sets V, So(V), -+, S (V) and geometrical relation for m = 0 mod 4

where m > 4.

Figure 3.2: The open sets V, So(V), -, Sn(V) and geometrical relation for m = 1 mod 4

where m > 4.
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Figure 3.3: The open sets V, So(V), -+, S (V) and geometrical relation for m = 2 mod 4

where m > 4.

Figure 3.4: The open sets V, So(V), -+, S (V) and geometrical relation for m = 3 mod 4

where m > 4.
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e Yao-Qiang Li and Bing Li, Distributions of full and non-full words in beta-expansions, J.
Number Theory 190 (2018), 311-332.

e Yao-Qiang Li, Digit frequencies of beta-expansions, Acta Math. Hungar. 162 (2020),
403-418.

e Yao-Qiang Li, Expansions in multiple bases, Acta Math. Hungar. 163 (2021), 576-600.
e Yao-Qiang Li, Divisibility Properties of Factors of the Discriminant of Generalized Fi-
bonacci Numbers, Fibonacci Quart. 59 (2021), 65-77.

e Yao-Qiang Li, Infinite products related to generalized Thue-Morse sequences, Monatsh.
Math. 194 (2021), 577-600.

e Yao-Qiang Li, Hausdorff dimension of frequency sets of univoque sequences, Dyn. Syst.
36 (2021), 340-361.

e Yao-Qiang Li, Generalized Koch curves and Thue-Morse sequences, accepted by Fractals
(2021).

e Yao-Qiang Li, Hausdorff dimension of frequency sets in beta-expansions, arXiv:1905.01481v3
e Bing Li, Yao-Qiang Li, and Tuomas Sahlsten, Random walks associated to beta-shifts,
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