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This thesis consists of three chapters including ten sections, which focus on beta-expansions, related digit frequencies, generalized Thue-Morse sequences and their relations.

Chapter 1 is devoted to greedy beta-expansions and related digit frequencies. In Section 1.1, we study the distributions and numbers of full and non-full words in greedy betaexpansions. In Sections 1.2 and 1.3, by studying Bernoulli-type measures and variational formulae respectively, we obtain some exact formulae for the Hausdorff dimension of some digit frequency sets in greedy beta-expansions.

Chapter 2 is devoted to general beta-expansions (not only the greedy ones) and related digit frequencies. In Section 2.1, we systematically study expansions in multiple bases, which are natural generalizations of usual expansions in one base. From Section 2.2 we return to expansions in one base and consider digit frequencies. In Section 2.2, we give three small results on the digit frequencies of general beta-expansions. In Section 2.3, we study Bernoulli-type measures in a framework similar to Section 1.2, and as an application we obtain the Hausdorff dimension of some frequency subsets of the set of univoque sequences.

Chapter 3 is devoted to some generalizations of the famous Thue-Morse sequence, including their relations to beta-expansions and digit frequencies. In Section 3.1, we show that a class of generalized shifted Thue-Morse sequences is strongly related to a bifurcation phenomenon on the digit frequencies of unique beta-expansions. In Section 3.2, we study expansions of generalized Thue-Morse numbers, which are defined by further generalizations of the generalized shifted Thue-Morse sequences given in Section 3.1. Finally we consider another class of generalizations of the Thue-Morse sequence in Sections 3.3 and 3.4, and respectively we study related infinite products and generalized Koch curves.

Résumé

Cette thèse se compose de trois chapitres comprenant dix sections, qui se concentrent sur les bêta-expansions, les fréquences de chiffres associées, les suites de Thue-Morse généralisées et leurs relations.

Le chapitre 1 est consacré aux bêta-expansions gloutonnes et aux fréquences de chiffres associées. Dans la section 1.1, nous étudions les distributions et les nombres de mots pleins et non-pleins dans les bêta-expansions gloutonnes. Dans les sections 1.2 et 1.3, en étudiant respectivement les mesures de Bernoulli-type et les formules variationnelles, nous obtenons des formules exactes pour la dimension de Hausdorff de certains ensembles de fréquences de chiffres en bêta-expansions gloutonnes.

Le chapitre 2 est consacré aux bêta-expansions générales (pas seulement les plus gloutonnes) et aux fréquences de chiffres associées. Dans la section 2.1, nous étudions systématiquement les expansions dans plusieurs bases, qui sont des généralisations naturelles d'expansions habituelles dans une base. À partir de la section 2.2 nous revenons aux expansions dans une base et considérons les fréquences de chiffres. Dans la section 2.2, nous donnons trois petits résultats sur les fréquences de chiffres des bêta-expansions générales.

Dans la section 2.3, nous étudions les mesures de Bernoulli-type dans un cadre similaire à la section 1.2, et comme application nous obtenons la dimension de Hausdorff de certains sous-ensembles de fréquences de l'ensemble des séquences univoques.

Le chapitre 3 est consacré à certaines généralisations de la célèbre suite de Thue-Morse, y compris leurs relations avec les bêta-expansions et les fréquences de chiffres. Dans la section 3.1, nous montrons qu'une classe de suites de Thue-Morse décalées généralisées est fortement liée à un phénomène de bifurcation sur les fréquences de chiffres des bêtaexpansions uniques. Dans la section 3.2, nous étudions les expansions des nombres de Thue-Morse généralisés, qui sont définis par d'autres généralisations des suites de Thue-Morse décalées généralisées données dans la section 3.1. Enfin, nous considérons une autre classe de généralisations de la suite de Thue-Morse dans les sections 3.3 et 3.4, et nous étudions respectivement les produits infinis associés et les courbes de Koch généralisées.

Mots-clés

bêta-expansions, fréquences de chiffres, suites de Thue-Morse généralisées.
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Contents Introduction

To represent real numbers, the most common way is to use expansions in integer bases.

For example, expansions in base 10 are used in our daily lives and expansions in base 2 are used in computer systems. As a natural generalization, expansions in non-integer bases were introduced by Rényi [START_REF] Rényi | Representations for real numbers and their ergodic properties[END_REF] in 1957, and then attracted a lot of attention until now.

See for examples [START_REF] Allouche | Periodic unique beta-expansions: the Sharkovskiȋ ordering[END_REF][START_REF] Allouche | Non-integer bases, iteration of continuous real maps, and an arithmetic self-similar set[END_REF][START_REF] Blanchard | β-expansions and symbolic dynamics[END_REF][START_REF] Bugeaud | Uniform Diophantine approximation related to b-ary and β-expansions[END_REF][START_REF] Fan | On the lengths of basic intervals in beta expansions[END_REF][START_REF] Frougny | Finite beta-expansions[END_REF][START_REF] Li | Beta-expansion and continued fraction expansion[END_REF][START_REF] Parry | On the β-expansions of real numbers[END_REF][START_REF] Schmeling | Symbolic dynamics for β-shifts and self-normal numbers[END_REF][START_REF] Schmidt | On periodic expansions of Pisot numbers and Salem numbers[END_REF].

Let N := {1, 2, 3, • • • } be the set of positive integers and R be the set of real numbers.

Given m ∈ N, a base β ∈ (1, m + 1] and x ∈ R, in general, a sequence w = (w n

) n≥1 ∈ {0, 1, • • • , m} N is called a β-expansion of x if x = ∞ n=1 w n β n .
It is known that x has a β-expansion if and only if x ∈ [0, m β-1 ] (see for examples [START_REF] Baker | Generalized golden ratios over integer alphabets[END_REF][START_REF] Baker | Digit frequencies and self-affine sets with non-empty interior. Ergodic Theory Dynam[END_REF][START_REF] Baker | Numbers with simply normal β-expansions[END_REF][START_REF] Rényi | Representations for real numbers and their ergodic properties[END_REF]).

An interesting phenomenon is that an x may have many β-expansions. For examples, [START_REF] Erdös | Characterization of the unique expansions 1 = ∞ i=1 q -n i and related problems[END_REF]Theorem 3] shows that if β ∈ (1, 1+ √ 5

2 ), every x ∈ (0, 1 β-1 ) has a continuum of different β-expansions, and [107, Theorem 1] shows that if β ∈ (1, 2), Lebesgue almost every x ∈ [0, 1 β-1 ] has a continuum of different β-expansions. For more on the cardinality of β-expansions, see for examples [START_REF] Baker | Expansions in non-integer bases: lower order revisited[END_REF][START_REF] Erdös | On the number of q-expansions[END_REF][START_REF] Glendinning | Unique representations of real numbers in non-integer bases[END_REF]. We study the most common beta-expansions, which are called greedy beta-expansions in Chapter 1 and then return to general betaexpansions from Chapter 2.

Chapter 1 consists of three sections which are devoted to greedy beta-expansions and related digit frequencies.

In Section 1.1 we completely characterize the structures of admissible words and then study the distributions and numbers of full and non-full words (cylinders). Concretely, on the one hand, the precise lengths of all the maximal runs of full and non-full words among admissible words with same order are obtained, which generalizes the result on the distribution of full cylinders given by Bugeaud and Wang [START_REF] Bugeaud | Distribution of full cylinders and the Diophantine properties of the orbits in β-expansions[END_REF] in 2014, and on the other hand, delighted by the result on the total number of admissible words given by Rényi [START_REF] Rényi | Representations for real numbers and their ergodic properties[END_REF] in 1957, for any base β > 1, we prove that the number of full words with length n is comparable to β n , and this conclusion is also true for the non-full words if β is not an CONTENTS integer.

Section 1.2 is a joint work with Mr. Bing Li and Mr. Tuomas Sahlsten at the end of my master at Université Paris-Est Marne-la-Vallée (UPEM) under the guidance of Mr. Lingmin Liao. Most of the content has already appeared in my master thesis at UPEM. I still present it in this thesis for completeness and also for the convenience of the reader. We study Bernoulli-type measures related to greedy beta-expansions, study their invariance as dynamical properties and find out the unique equivalent ergodic probability measure with respect to the β-transformation when the greedy β-expansion of 1 is finite. Then we study the modified lower local dimension of measures related to β-expansions. As an application, we prove that the Hausdorff dimension [START_REF] Falconer | Fractal geometry. Mathematical foundations and applications[END_REF] of three kinds of frequency sets are equal and obtain the exact formula when the greedy β-expansion of 1 is 10 m 10 ∞ for any non-negative integer m. This generalizes the relative well known result for β equal to the golden ratio ( √ 5 + 1)/2.

In Section 1.3, we first give a proof of the useful folklore: for any β > 1, the Hausdorff dimension of an arbitrary set in the shift space S β is equal to the Hausdorff dimension of its natural projection in [0, 1]. It has been used in some former papers without explicit proof (see for example [START_REF] Thompson | Irregular sets, the β-transformation and the almost specification property[END_REF]Section 5]). We will prove it by applying a covering property given by Bugeaud and Wang [START_REF] Bugeaud | Distribution of full cylinders and the Diophantine properties of the orbits in β-expansions[END_REF] on the distribution of full cylinders. Then we clarify that for calculating the Hausdorff dimension of frequency sets using variational formulae, one only needs to focus on the Markov measures of explicit order when the greedy β-expansion of 1 is finite. Concretely, it suffices to optimize a function with finitely many variables under some restrictions. As an application, we obtain an exact formula for the Hausdorff dimension of frequency sets for an important class of β's, which are called pseudo-golden ratios (also called multinacci numbers).

From Chapter 2, which consists of three sections, we return to general beta-expansions, not only the greedy ones, and we also study related digit frequencies.

Usually we expand real numbers in one given base. In Section 2.1, we begin to systematically study expansions in multiple given bases in a reasonable way, which is a generalization in the sense that if all the bases are taken to be the same, we return to the classical expansions in one base. In particular, we focus on greedy, quasi-greedy, lazy, quasi-lazy and unique expansions in multiple bases, and give lexicographic characterizations for greedy, lazy and unique expansions. These recover some relative well known results on expansions in one base including Parry's criterion [START_REF] Parry | On the β-expansions of real numbers[END_REF]. Note that Neunhäuserer began the study of expansions in two bases in his recent paper [START_REF] Neunhäuserer | Non-uniform expansions of real numbers[END_REF], where he focused on the cardinality of the expansions.

In Section 2.2, we return to expansions in one base and study their digit frequencies.

Consider the alphabet {0, 1, • • • , m} and β ∈ (1, m + 1) \ N. First we show that Lebesgue almost every x ∈ [0, m β-1 ] has a β-expansion of a given frequency if and only if Lebesgue almost every x ∈ [0, m β-1 ] has infinitely many β-expansions of the same given frequency.

Then delighted by [START_REF] Baker | Numbers with simply normal β-expansions[END_REF]Theorem 4.1] and [START_REF] Baker | Digit frequencies and self-affine sets with non-empty interior. Ergodic Theory Dynam[END_REF]Theorem 2.1], which are given by Baker and

Kong, on the one hand we prove that Lebesgue almost every x ∈ [0, m β-1 ] has infinitely many balanced β-expansions, where an infinite sequence on the finite alphabet {0, 1, • • • , m} is called balanced if the frequency of the digit k is equal to the frequency of the digit m -k for all k ∈ {0, 1, • • • , m}, and on the other hand we consider variable frequency and prove that for every pseudo-golden ratio β ∈ (1, 2), there exists a constant c = c(β) > 0 such that for any p ∈ [ 1 2 -c, 1 2 + c], Lebesgue almost every x ∈ [0, 1 β-1 ] has infinitely many β-expansions on {0, 1} with frequency of 0's equal to p.

In Section 2.3, for integer m ≥ 3, we study the dynamical system (Λ (m) , σ m ) where Λ (m) := w ∈ {0, 1} N : w does not contain 0 m or 1 m and σ m is the shift map on {0, 1} N restricted to Λ (m) , study the Bernoulli-type measures on Λ (m) and find out the unique equivalent σ m -invariant ergodic probability measure in a framework similar to Section 1.2.

As an application, we obtain the Hausdorff dimension of the set of univoque sequences, the Hausdorff dimension of the set of sequences in which the lengths of consecutive 0's and consecutive 1's are bounded, and the Hausdorff dimension of their frequency subsets. Here we call Γ := w ∈ {0, 1} N : w ≺ σ k w ≺ w for all k ≥ 1 the set of univoque sequences since Erdös, Joó and Komornik [START_REF] Erdös | Characterization of the unique expansions 1 = ∞ i=1 q -n i and related problems[END_REF] proved in 1990 that a sequence α = (α n ) n≥1 ∈ {0, 1} N is the unique expansion of 1 in some base β ∈ (1, 2) if and only if α ∈ Γ. Since the work of Thue [START_REF] Thue | Über unendliche Zeichenreihen[END_REF][START_REF] Thue | Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen[END_REF] and Morse [START_REF] Morse | Recurrent geodesics on a surface of negative curvature[END_REF], this sequence has been widely studied [START_REF] Allouche | Thue, combinatorics on words, and conjectures inspired by the Thue-Morse sequence[END_REF][START_REF] Allouche | Hankel determinants of the Thue-Morse sequence[END_REF][START_REF] Allouche | The ubiquitous Prouhet-Thue-Morse sequence. Sequences and their applications[END_REF][START_REF] De Luca | Some combinatorial properties of the Thue-Morse sequence and a problem in semigroups[END_REF][START_REF] Drmota | Rarified sums of the Thue-Morse sequence[END_REF][START_REF] Goldstein | The fractal structure of rarefied sums of the Thue-Morse sequence[END_REF][START_REF] Mauduit | Multiplicative properties of the Thue-Morse sequence[END_REF]. There are several equivalent definitions of this sequence. One is to define the shifted Thue-Morse sequence (t n ) n≥1 as follows: where 0 := 1, 1 := 0 and w + := w 1 • • • w n-1 (w n + 1) for any finite word w = w 1 • • • w n .

t 1 := 1, t 2 := t 1 + ,
The unique q ∈ (1, 2) such that ∞ n=1 tn q n = 1 is the well known Komornik-Loreti constant. In Section 3.1, according to the above definition, we define generalized shifted Thue-Mores sequences on alphabets with more than two digits, and we show that corresponding generalized Komornik-Loreti constants are critical values of β's, above which the digit frequencies in unique β-expansions are much more flexible and opposite below them.

In Section 3.2, we generalize the concepts of generalized shifted Thue-Morse sequences and generalized Komornik-Loreti constants in Section 3.1 a bit more, and then we introduce generalized Thue-Morse numbers of the form π β (θ) := ∞ n=1 θn β n where θ = (θ n ) n≥1 is a CONTENTS generalized shifted Thue-Morse sequence and β ∈ (1, ∞). This is a natural generalization of the classical Thue-Morse number ∞ n=1 tn 2 n . We study when θ will be the unique, greedy, lazy, quasi-greedy and quasi-lazy β-expansions of π β (θ). In particular, we deduce that the classical shifted Thue-Morse sequence (t n ) n≥1 is the unique β-expansion of ∞ n=1 tn β n if and only if it is the greedy expansion, if and only if it is the lazy expansion, if and only if it is the quasi-greedy expansion, if and only if it is the quasi-lazy expansion, and if and only if β is no less than the classical Komornik-Loreti constant.

One of the other equivalent definitions of the classical Thue-Morse sequence (t n ) n≥0 is that it is the unique fixed point of the morphism 0 → 01 1 → 10 beginning with t 0 := 0. A natural generalization is: given m ∈ N and θ 1 , • • • , θ m ∈ {0, 1}, we define the generalized Thue-Morse sequence (θ n ) n≥0 to be the unique fixed point of the morphism

0 → 0θ 1 • • • θ m 1 → 1θ 1 • • • θ m
beginning with θ 0 := 0, where 0 := 1 and 1 := 0.

In Section 3.3, for ad hoc rational functions R, we evaluate infinite products of the forms (R(n)) (-1) θn and (R(n)) θn . This generalizes relevant results given by Allouche, Riasat and Shallit [START_REF] Allouche | More infinite products: Thue-Morse and the gamma function[END_REF] in 2019 on infinite products related to the classical Thue-Morse sequence (t n ) n≥0 of the forms (R(n)) (-1) 

Greedy beta-expansions and related digit frequencies

In this chapter we focus on greedy beta-expansions. For simplification, we use the term "beta/β-expansion" instead of "greedy beta/β-expansion" throughout this chapter.

In Section 1.1, we study distributions and numbers of full and non-full words in beta-expansions. Then in Section 1.2 we study Bernoulli-type measures related to betaexpansions and apply them to obtain the Hausdorff dimension of some frequency sets.

Finally we use variational formulae to study the Hausdorff dimension of frequency sets for more β's in Section 1.3 to end this chapter.

Distributions and numbers of full and non-full words

Let β > 1 be a real number. Denoted by Σ n β the set of all admissible words with length n ∈ N. The projection to [0, 1) of any word in Σ n β is a cylinder of order n (also say a fundamental interval), which is a left-closed and right-open interval in [0, 1). The lengths of cylinders are irregular for β / ∈ N, meanwhile, they are all regular for β ∈ N, namely, the length of any cylinder of order n equals β -n .

A cylinder with order n is said to be full if it is mapped by the n-th iteration of βtransformation T n β onto [0, 1) (see Definition 1.1.6 below, [START_REF] Dajani | Ergodic theory of numbers[END_REF] or [START_REF] Walters | Equilibrium states for β-transformations and related transformations[END_REF]) or equivalently its length is maximal, that is, equal to β -n (see Proposition 1.1.8 below, [START_REF] Bugeaud | Distribution of full cylinders and the Diophantine properties of the orbits in β-expansions[END_REF] or [START_REF] Fan | On the lengths of basic intervals in beta expansions[END_REF]). An admissible word is said to be full if the corresponding cylinder is full. Full words and cylinders have very good properties. For example, Walters [START_REF] Walters | Equilibrium states for β-transformations and related transformations[END_REF] proved that for any given N > 0, [0, 1) is covered by the full cylinders of order at least N . Fan and Wang [START_REF] Fan | On the lengths of basic intervals in beta expansions[END_REF] obtained some good properties of full cylinders (see Propositions 1.1.8 and 1.1.9 below).

Bugeaud and Wang [START_REF] Bugeaud | Distribution of full cylinders and the Diophantine properties of the orbits in β-expansions[END_REF] studied the distribution of full cylinders, showed that for any integer n ≥ 1, among every (n + 1) consecutive cylinders of order n, there exists at least one full cylinder, and used it to prove a modified mass distribution principle to estimate CHAPTER 1 the Hausdorff dimension of sets defined in terms of β-expansions. Zheng, Wu and Li proved that the extremely irregular set is residual with the help of the full cylinders (for details see [START_REF] Zheng | The topological property of the irregular sets on the lengths of basic intervals in beta-expansions[END_REF]).

In this section, we are interested in the distributions and numbers of full and non-full words in Σ n β , i.e., the distributions and numbers of full and non-full cylinders of order n in [0, 1). More precisely, we consider the lexicographically ordered sequence of all order n admissible words, count the numbers of successive full words and successive non-full words, and estimate the total numbers of full words and non-full words separately. Or, in what amounts to the same thing, we look at all the fundamental intervals of order n, arranged in increasing order along the unit interval, ask about numbers of successive intervals where

T n
β is onto and where it is not onto, and estimate the total number of each kind of these intervals.

Firstly Theorem 1.1.14 gives a unique and clear form of any admissible word, and Corollaries 1.1.15 and 1.1.16 provide some convenient ways to check whether an admissible word is full or not. Secondly in Definition 1.1.19 we introduce the concept of maximal run, which is a new way to study the distributions of full and non-full words and cylinders, and then Theorem 1.1.22 describes all the precise lengths of the maximal runs of full words, which indicates that such lengths rely on the nonzero terms in the β-expansion of 1. Consequently, the maximal and minimal lengths of the maximal runs of full words are given in Corollaries 1.1.27 and 1.1.28 respectively. Thirdly by introducing a function τ β in Definition 1.1.30, a similar concept of numeration system and greedy algorithm, we obtain a convenient way to count the consecutive non-full words in Lemma 1.1.34, which can easily give the maximal length of the runs of non-full words in Corollary 1.1.36 and generalize the result of Bugeaud and Wang mentioned above (see Remark 1.1.39). Finally, all the precise lengths of the maximal runs of non-full words are stated in Theorem 1.1.40, which depends on the positions of nonzero terms in the β-expansion of 1. Furthermore, the minimal lengths of the maximal runs of non-full words are obtained in Corollary 1.1.41.

Moveover, the numbers of all full words and all non-full words are separately estimated in Theorem 1.1. 43. This section is organized as follows. In Subsection 1.1.1, we introduce some basic notation and preliminary work needed. In Subsection 1.1.2, we study the structures of admissible words, including full words and non-full words. In Subsections 1.1.3 and 1.1.4, we obtain all the precise lengths of the maximal runs of full words and non-full words respectively. Finally Subsection 1.1.5 is devoted to the numbers of full and non-full words.

Notation and preliminaries

For any x ∈ R, we use x and x to denote the greatest integer no larger than x and the smallest integer no less than x respectively throughout this thesis. (1) for all n ∈ N.

Then the number 1 can also be expanded into a series, denoted by

1 = ∞ n=1 ε n (1, β) β n .
The sequence ε(1, β) If there are infinitely many n with ε n = 0, we say that ε(1, β) is infinite. Otherwise, there exists m ∈ N such that ε m = 0 with ε j = 0 for all j > m, ε(1, β) is said to be finite, and we say that ε(1, β) is finite with length m.

:= ε 1 (1, β)ε 2 (1, β) • • • ε n (1, β) • • •
Let ε * (1, β) := ε * 1 (1, β)ε * 2 (1, β) • • • ε * n (1, β) • • • be the quasi-greedy β-expansion of 1 de- fined by ε * (1, β) := ε(1, β) if ε(1, β) is infinite; (ε 1 • • • ε m-1 (ε m -1)) ∞ if ε(1, β) is finite with length m.
Here for a finite word w = w 1 w 2 • • • w n , we use w ∞ to denote the periodic sequence

w 1 w 2 • • • w n w 1 w 2 • • • w n w 1 w 2 • • • w n • • • .
Throughout this section, we use

ε * 1 ε * 2 • • • ε * n • • •
to denote the digits of ε * (1, β) no matter whether ε(1, β) is finite or not. Moreover, for any finite word or infinite sequence w, we always use w n to denote its nth term.
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Let ≺ and be the lexicographic order in A N β . More precisely, w ≺ w means that there exists k ∈ N such that w i = w i for all 1 ≤ i < k and w k < w k . Besides, w w means that w ≺ w or w = w . Similarly, the definitions of ≺ and are extended to the finite words of the same length by identifying a word w with the sequence w0 ∞ .

For any w ∈ A N β , we use w| k to denote the prefix of w with length k, i.e., w 1 w 2 • • • w k where k ∈ N. For any w ∈ A n β , we use |w| := n to denote the length of w and w| k to denote the prefix of w with length k where 1 ≤ k ≤ |w|.

Let σ : A N β → A N β be the shift map defined by

σ(w 1 w 2 • • • ) := w 2 w 3 • • • for w ∈ A N β (1.2)
and π β : A N β → R be the natural projection map defined by

π β (w) := w 1 β + w 2 β 2 + • • • + w n β n + • • • for w ∈ A N β .
(1.3) Definition 1.1.1 (Admissibility).

(1) A word w ∈ A n β for some n ∈ N is called admissible, if there exists x ∈ [0, 1) such that ε i (x, β) = w i for all i ∈ {1, • • • , n}. We define Σ n β := {w ∈ A n β : w is admissible} and

Σ * β := ∞ n=1 Σ n β .
(2) A sequence w ∈ A N β is called admissible, if there exists x ∈ [0, 1) such that ε i (x, β) = w i for all i ∈ N. We define

Σ β := {w ∈ A N β : w is admissible}.
Obviously, if w ∈ Σ β , then w| n ∈ Σ n β and w n+1 w n+2 • • • ∈ Σ β for any n ∈ N. We prove the following basic property for self-contained. Lemma 1.1.2. For any n ∈ N, ε * (1, β)| n ∈ Σ n β and is maximal in Σ n β with lexicographic order.

Proof. (1) Prove that for all k ∈ N we have

ε * k+1 β + ε * k+2 β 2 + • • • ≤ 1. 1 If ε(1, β) is infinite, then ε * k+1 β + ε * k+2 β 2 + • • • = ε k+1 β + ε k+2 β 2 + • • • = T k β 1 < 1.
2 If ε(1, β) is finite with length m ∈ N, let p ≥ 0 such that pm ≤ k ≤ (p + 1)m -1. Then

ε * k+1 β + ε * k+2 β 2 + • • • = ε * k-pm+1 β + • • • + ε * m β (p+1)m-k + 1 β (p+1)m-k ε * 1 β + • • • + ε * m β m + ε * 1 β m+1 + • • • + ε * m β 2m + • • • = ε k-pm+1 β + • • • + ε m β (p+1)m-k = T k-pm β 1 ≤ 1.
(2) Prove that for all n ∈ N we have ε 1). It suffices to prove ε i (x, β) = ε * i for all i ∈ {1, • • • , n}. First we have

* (1, β)| n ∈ Σ n β . Let x := ε * 1 β + • • • + ε * n β n ∈ [0,
ε 1 (x, β) = βx = ε * 1 + ε * 2 β + • • • + ε * n β n-1 = ε * 1 ,
where the last equality follows from

ε * 2 β + • • • + ε * n β n-1 < ε * 2 β + ε * 3 β 2 + • • • by (1) 
≤ 1.

(1.4)

Then we have

ε 2 (x, β) = βT β x use (1.4) = ===== = ε * 2 + ε * 3 β + • • • + ε * n β n-2 = ε * 2 ,
where the last equality follows from

ε * 3 β + • • • + ε * n β n-2 < ε * 3 β + ε * 4 β 2 + • • • by (1)
≤ 1.

• • • Repeating the above process we get ε i (x, β) = ε * i for all i ∈ {1, • • • , n}. (3) Prove that for all n ∈ N, ε * (1, β)| n is maximal in Σ n β . (By contradiction) Assume that there exists

w 1 • • • w n ∈ Σ n β such that ε * 1 • • • ε * n ≺ w 1 • • • w n . Then there exists k ∈ {1, • • • , n} such that ε * 1 • • • ε * k-1 = w 1 • • • w k-1 and ε * k + 1 ≤ w k . By w 1 • • • w n ∈ Σ n β , there exists x ∈ [0, 1) such that ε(x, β)| n = w 1 • • • w n . Then x ≥ w 1 β + • • • + w k β k ≥ ε * 1 β + • • • + ε * k-1 β k-1 + ε * k + 1 β k by (1) ≥ ε * 1 β + ε * 2 β 2 + • • • = 1,
which contradicts x ∈ [0, 1).

The following criterion for admissible sequence is due to Parry.

Lemma 1. 1.3 ([99]). Let β > 1 and w ∈ A N β . Then w is admissible (that is, w ∈ Σ β ) if and only if σ k (w) ≺ ε * (1, β) for all k ≥ 0.

The next lemma can be found in [START_REF] Komornik | On the topological structure of univoque sets[END_REF]Theorem 2.1].
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Lemma 1.1.4. Let w be a sequence of non-negative integers. Then w is the β-expansion of 1 for some β > 1 if and only if σ k w ≺ w for all k ≥ 1. Moreover, such β satisfies w 1 ≤ β < w 1 + 1. Definition 1.1.5 (Cylinder). Let n ∈ N and w ∈ Σ n β . We call

[w] := v ∈ Σ β : v 1 = w 1 , • • • , v n = w n
the cylinder of order n in Σ β generated by w and

I(w) := π β ([w]) = x ∈ [0, 1) : ε 1 (x, β) = w 1 , • • • , ε n (x, β) = w n
the cylinder of order n in [0, 1) generated by w. For any x ∈ [0, 1), the cylinder of order n containing x is denoted by

I n (x) := I(ε 1 (x, β)ε 2 (x, β) • • • ε n (x, β)).
Definition 1.1.6 (Full and non-full words and cylinders). Let w ∈ Σ n β for some n ∈ N. If T n β I(w) = [0, 1), we call the word w and the cylinders [w], I(w) full. Otherwise, we call them non-full. Lemma 1. 1.7 ([91], [START_REF] Fan | On the lengths of basic intervals in beta expansions[END_REF], [START_REF] Bugeaud | Distribution of full cylinders and the Diophantine properties of the orbits in β-expansions[END_REF]). Suppose the word w 1 • • • w n is admissible and w n = 0.

Then w 1 • • • w n-1 w n is full for any w n < w n .

The structures of admissible words, full words and non-full words

The following proposition is a criterion of full words. The equivalence of (1), ( 2) and ( 4) can be found in [START_REF] Fan | On the lengths of basic intervals in beta expansions[END_REF]. We give some proofs for self-contained and more characterizations (3), [START_REF] Allouche | Periodic unique beta-expansions: the Sharkovskiȋ ordering[END_REF], [START_REF] Allouche | Dirichlet series and curious infinite products[END_REF] are given here. Proposition 1.1.8. Let w ∈ Σ n β for some n ∈ N. Then the following are equivalent.

(1) w is full, i.e., T n β I(w) = [0, 1);

(2) |I(w)| = β -n ;

(3) The sequence ww is admissible for any w ∈ Σ β ;

(4) The word ww is admissible for any w ∈ Σ * β ;

(5) The word wε * 1 • • • ε * k is admissible for any k ≥ 1;

(6) σ n [w] = Σ β .

Proof. (1) ⇒ (2) Since w is full, T n β I(w) = [0, 1). Noting that

x = w 1 β + • • • + w n β n +
T n β x β n for any x ∈ I(w),

we can get

I(w) = [ w 1 β + • • • + w n β n , w 1 β + • • • + w n β n + 1 β n ).
Therefore |I(w)| = β -n .

(

) ⇒ (3) Let x, x ∈ [0, 1) such that ε(x, β) = w0 ∞ and ε(x , β) = w . Then x = w 1 β + • • • + w n β n and x = w 1 β + w 2 β 2 + • • • . Let y = x + x β n = w 1 β + • • • + w n β n + w 1 β n+1 + w 2 β n+2 • • • . 2 
We need to prove ww ∈ Σ 

I(w) = [ w 1 β + • • • + w n β n , w 1 β + • • • + w n β n + 1 β n ) = [x, x + 1 β n ). So y ∈ I(w) ⊂ [0, 1) and ε 1 (y, β) = w 1 , • • • , ε n (y, β) = w n . That is y = w 1 β + • • • + w n β n + T n β y β n = x + T n β y β n , which implies T n β y = x . Then for any k ≥ 1, ε n+k (y, β) = βT n+k-1 β y = βT k-1 β x = ε k (x , β) = w k .
Thus ε(y, β) = ww . Therefore ww ∈ Σ β .

(3) ⇒ (4) is obvious.

(4) ⇒ (5) follows from ε * 1 • • • ε * k ∈ Σ * β for any k ≥ 1. (5) ⇒ (1) We need to prove T n β I(w) = [0, 1). It suffices to show T n β I(w) ⊃ [0, 1) since the reverse inclusion is obvious. Indeed, let x ∈ [0, 1) and u = w 1 • • • w n ε 1 (x, β)ε 2 (x, β) • • • . At first, we prove u ∈ Σ β . By Lemma 1.1.3, it suffices to prove σ k (u) ≺ ε * (1, β) for any k ≥ 0 below. 1 If k ≥ n, we have σ k (u) = ε k-n+1 (x, β)ε k-n+2 (x, β) • • • = σ k-n (ε(x, β)) by Lemma 1.1.3 ≺ ε * (1, β). CHAPTER 1 2 If 0 ≤ k ≤ n -1, we have σ k (u) = w k+1 • • • w n ε 1 (x, β)ε 2 (x, β) • • • . Since ε(x, β) ≺ ε * (1, β), there exists m ∈ N such that ε 1 (x, β) = ε * 1 , • • • , ε m-1 (x, β) = ε * m-1 and ε m (x, β) < ε * m . Combining wε * 1 • • • ε * m ∈ Σ * β and Lemma 1.1.3, we get σ k (u) ≺ w k+1 • • • w n ε * 1 • • • ε * m 0 ∞ = σ k (wε * 1 • • • ε * m 0 ∞ ) ≺ ε * (1, β). Therefore u ∈ Σ β . Let y ∈ [0, 1) such that ε(y, β) = u. Then y ∈ I(w). Since ε k (T n β y, β) = βT n+k-1 β y = ε n+k (y, β) = ε k (x, β) for any k ∈ N, we get x = T n β y ∈ T n β I(w). (1) ⇔ (6) follows from the facts that the function ε(•, β) : [0, 1) → Σ β is bijective and the commutativity ε(T β x, β) = σ(ε(x, β)).
Proposition 1.1.9. Let w, w ∈ Σ * β be full and |w| = n ∈ N. Then

(1) the word ww is full;

(2) the word σ k (w) := w k+1 • • • w n is full for any k with 1 ≤ k < n ;

(3) the digit w n < β if β / ∈ N. In particular,

w n = 0 if 1 < β < 2.
Proof. (1) A proof has been given in [START_REF] Bugeaud | Distribution of full cylinders and the Diophantine properties of the orbits in β-expansions[END_REF]. We give another proof here to be self-contained.

Since w is full, by Proposition 1.1.8 [START_REF] Allouche | Periodic unique beta-expansions: the Sharkovskiȋ ordering[END_REF] we get

w ε * 1 • • • ε * m ∈ Σ * β for any m ≥ 1. Then ww ε * 1 • • • ε * m ∈ Σ *
β by the fullness of w and Proposition 1.1.8 (4), which implies that ww is full by Proposition 1.1.8 (5).

(2) Since w is full , by Proposition 1.1.8 [START_REF] Allouche | Periodic unique beta-expansions: the Sharkovskiȋ ordering[END_REF] we get

w 1 • • • w n ε * 1 • • • ε * m ∈ Σ * β , and also w k+1 • • • w n ε * 1 • • • ε * m ∈ Σ * β for any m ≥ 1. Therefore w k+1 • • • w n is full by Proposition 1.1.8 (5). (3) Since w is full, by (2) we know that σ n-1 w = w n is full. Then |I(w n )| = 1/β by Proposition 1.1.8 (2). Suppose w n = β , then I(w n ) = I( β ) = [ β /β, 1) and |I(w n )| = 1 -β /β < 1/β which is a contradiction. Therefore w n = β . So w n < β noting that w n ≤ β . Proposition 1.1.10. (1) Any truncation of ε(1, β) is not full (if it is admissible). That is, ε(1, β)| k is not full for any k ∈ N (if it is admissible). (2) Let k ∈ N. Then ε * (1, β)| k is full if and only if ε(1, β
) is finite with length m which exactly divides k, i.e., m|k.

Proof. (1) We show the conclusion by the cases that ε(1, β) is finite or infinite.

Cases 1. ε(1, β) is finite with length m. 1 If k ≥ m, then ε(1, β)| k = ε 1 • • • ε m 0 k-m is not admissible. 2 If 1 ≤ k ≤ m -1, combining ε k+1 • • • ε m 0 ∞ = ε(T k β 1, β) ∈ Σ β , ε 1 • • • ε k ε k+1 • • • ε m 0 ∞ = ε(1, β) / ∈ Σ β and Proposition 1.1.8 (1) (3), we know that ε(1, β)| k = ε 1 • • • ε k is not full. Cases 2. ε(1, β) is infinite.
It follows from the similar proof with Case 12 .

(

) ⇐ Let p ∈ N with k = pm. For any n ≥ 1, we know that ε * 1 • • • ε * pm ε * 1 • • • ε * n = ε * (1, β)| k+n is admissible by Lemma 1.1.2. Therefore ε * (1, β)| k = ε * 1 • • • ε * pm is full by Proposition 1.1.8 (1) (5). 2 
⇒ (By contradiction) Suppose that the conclusion is not true, that is, either ε(1, β) is infinite or finite with length m, but m does not divide k exactly.

ε k-pm+1 • • • ε m 0 ∞ = ε(T k-pm β 1, β) ∈ Σ β ,
and Proposition 1.1.8 (1) (3), we get

ε * 1 • • • ε * k ε k-pm+1 • • • ε m-1 ε m 0 ∞ ∈ Σ β , i.e., ε * 1 • • • ε * pm ε 1 • • • ε m-1 ε m 0 ∞ ∈ Σ β , which is false since π β (ε * 1 • • • ε * pm ε 1 • • • ε m-1 ε m 0 ∞ ) = 1.
The following lemma is a convenient way to show that an admissible word is not full.

Lemma 1.1.11. Any admissible word ends with a prefix of ε(1, β) is not full. That is, if (1) Let ε(1, β) be finite with the length m. Then m(w) ≤ m for any w in Σ β or Σ * β .

there exists s ∈ {1, • • • , n} such that w = w 1 • • • w n-s ε 1 • • • ε s ∈ Σ n β ,
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(2) Let w ∈ Σ n β and m(w) ≥ n. Then w = ε 1 • • • ε n-1 w n with w n ≤ ε n .
Proof.

(1) follows from w ≺ ε(1, β).

(2) follows from

w 1 = ε 1 , • • • , w n-1 = ε n-1 and w ∈ Σ n β .
We give the complete characterizations of the structures of admissible words, full words and non-full words by the following theorem and two corollaries.

Theorem 1.1.14 (The structure of admissible words). Let w ∈ Σ n β for some n ∈ N. Then w = w 1 w 2 • • • w n can be uniquely decomposed to the form

ε 1 • • • ε k 1 -1 w n 1 ε 1 • • • ε k 2 -1 w n 2 • • • ε 1 • • • ε kp-1 w np ε 1 • • • ε l-1 w n , (1.5 
)

where p ≥ 0, k 1 , • • • , k p , l ∈ N, n = k 1 + ... + k p + l, n j = k 1 + • • • + k j , w n j < ε k j for all 1 ≤ j ≤ p, w n ≤ ε l and the words ε 1 • • • ε k 1 -1 w n 1 , • • • , ε 1 • • • ε kp-1 w np are all full. Moreover, if ε(1, β) is finite with length m, then k 1 , • • • , k p , l ≤ m. For the case l = m,
we must have w n < ε m .

Corollary 1.1.15 (The structural criterion of full words). Let w ∈ Σ n β for some n ∈ N and w * := ε 1 • • • ε l-1 w n be the suffix of w as in Theorem 1.1.14. Then

w is full ⇐⇒ w * is full ⇐⇒ w n < ε l . Corollary 1.1.16. Let w ∈ Σ n
β for some n ∈ N. Then w is not full if and only if it ends with a prefix of ε(1, β). That is, when ε(1, β) is infinite (finite with length m), there exists

1 ≤ s ≤ n ( 1 ≤ s ≤ min{m -1, n} respectively) such that w = w 1 • • • w n-s ε 1 • • • ε s .
Proof. ⇒ follows from Theorem 1.1.14 and Corollary 1.1.15.

⇐ follows from Lemma 1.1.11.

Proof of Theorem 1.1.14. Firstly, we show the decomposition by the cases that ε

(1, β) is infinite or finite. Case 1. ε(1, β) is infinite. Compare w and ε(1, β). If m(w) ≥ n, then w has the form (1.5) with w = ε 1 • • • ε n-1 w n by Remark 1.1.13 (2). If m(w) < n, let n 1 = k 1 = m(w) ≥ 1. Then w| n 1 = ε 1 • • • ε k 1 -1 w n 1 with w n 1 < ε k 1 . Continue to compare the tail of w and ε(1, β). If m(w n 1 +1 • • • w n ) ≥ n-n 1 , then w n 1 +1 • • • w n = ε 1 • • • ε n-n 1 -1 w n with w n ≤ ε n-n 1 by Remark 1.1.13 (2) and w has the form (1.5) with w = ε 1 • • • ε k 1 -1 w n 1 ε 1 • • • ε n-n 1 -1 w n . If m(w n 1 +1 • • • w n ) < n -n 1 , let k 2 = m(w n 1 +1 • • • w n ) ≥ 1 and n 2 = n 1 + k 2 . Then w| n 2 = ε 1 • • • ε k 1 -1 w n 1 ε 1 • • • ε k 2 -1 w n 2 with w n 2 < ε k 2 .
Continue to compare the tail of w and ε(1, β) for finite times. Then we can get that w must have the form (1.5). Case 2. ε(1, β) is finite with length m. By Remark 1.1.13(1), we get m(w),m(w (1.5). For the case l = m, combining

n 1 +1 • • • w n ), • • • , m(w n j +1 • • • w n ), • • • , m(w np+1 • • • w n ) ≤ m in Case 1. That is, k 1 , k 2 , • • • , k p , l ≤ m in
w np+1 = ε 1 , • • • , w n-1 = ε m-1 and w np+1 • • • w n ≺ ε 1 • • • ε m , we get w n < ε m . Secondly, ε 1 • • • ε k 1 -1 w n 1 , • • • , ε 1 • • • ε kp-1 w np are obviously full by Lemma 1.1.7.
Proof of Corollary 1.1.15. By Proposition 1.1.9 (1) (2), we know that w is full ⇐⇒ w * is full. So it suffices to prove that w * is full ⇐⇒ 1), which contradicts our condition. Therefore w n < ε l .

w n < ε |w * | . ⇒ By w * ∈ Σ * β , we get w n ≤ ε l . Suppose w n = ε l , then w * = ε 1 • • • ε l is not full by Proposition 1.1.10 (
⇐ Let w n < ε l . We show that w * is full by the cases that ε(1, β) is infinite or finite. 1.10 (2). Then w * is full by w n ≤ ε l -1 and Lemma 1.1.7.

Case 1. When ε(1, β) is infinite. we know that w * is full by ε 1 • • • ε l-1 ε l ∈ Σ * β , w n < ε l and Lemma 1.1.7. Case 2. When ε(1, β) is finite with length m, we know l ≤ m by Theorem 1.1.14. If l < m, we get ε 1 • • • ε l-1 ε l ∈ Σ * β . Then w * is full by w n < ε l and Lemma 1.1.7. If l = m, we know that ε 1 • • • ε l-1 (ε l -1) = ε 1 • • • ε m-1 (ε m -1) = ε * 1 • • • ε * m is full by Proposition 1.
From Theorem 1.1.14, Corollaries 1.1.15 and 1.1.16 above, we can understand the structures of admissible words, full words and non-full words clearly, and judge whether an admissible word is full or not conveniently. They will be used for many times in the following sections.

The lengths of the runs of full words

Definition 1.1.17. Let β > 1. Define {n i (β)} to be those positions of ε(1, β) that are nonzero. That is,

n 1 (β) := min{k ≥ 1 : ε k = 0} and n i+1 (β) := min{k > n i : ε k = 0}
if there exists k > n i such that ε k = 0 for i ≥ 1. We call {n i (β)} the nonzero sequence of β, also denote it by {n i } if there is no confusion.

Remark 1.1.18. Let β > 1, {n i } be the nonzero sequence of β. Then the following are obviously true.

(1) n 1 = 1;

(2) ε(1, β) is finite if and only if {n i } is finite; (1) Denote by [w (1) , • • • , w (l) ] the l consecutive words from small to large in Σ n β with lexicographic order, which is called a run of words and l is the length of the run of words. If w (1) , • • • , w (l) are all full, we call [w (1) , • • • , w (l) ] a run of full words.

(3) ε(1, β) = ε n 1 0 • • • 0ε n 2 0 • • • 0ε n 3 0 • • • .
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(2) A run of full words [w (1) , • • • , w (l) ] is said to be maximal, if it can not be elongated, i.e., " the previous word of w (1) in Σ n β is not full or w (1) = 0 n " and " the next word of w (l) is not full or w

(l) = ε * (1, β)| n ".
In a similar way, we can define a run of non-full words and a maximal run of non-full words.

Definition 1.1.20. We use F n β to denote the set of all the maximal runs of full words in Σ n β and F n β to denote the length set of F n β , i.e.,

F n β := {l ∈ N : there exists [w (1) , • • • , w (l) ] ∈ F n β }.
Similarly, we use N n β to denote the set of all the maximal runs of non-full words and N n β to denote the length set of N n β . In F n β ∪ N n β , we use S n max to denote the maximal run with ε * (1, β)| n as its last element.

Remark 1.1.21. For any w ∈ Σ n β with w = 0 n and w n = 0, the previous word of w in the lexicographic order in

Σ n β is w 1 • • • w k-1 (w k -1)ε * 1 • • • ε * n-k where k = max{1 ≤ i ≤ n -1 : w i = 0}.
Notice that we will use the basic fact above for many times in the proofs of the following results in this section.

Theorem 1.1.22 (The lengths of the maximal runs of full words). Let β > 1 with β / ∈ N, {n i } be the nonzero sequence of β. Then

F n β =      {ε n i : n i ≤ n} if ε(1, β
) is infinite or finite with length m ≥ n;

{ε n i } ∪ {ε 1 + ε m } if ε(1, β
) is finite with length m < n and m|n; 

{ε n i : n i = m} ∪ {ε 1 + ε m } if ε(
F n β = {1} if ε(1, β) is infinite or finite with length m ≥ n; {1, 2} if ε(1, β) is finite with length m < n.
Lemma 1.1.24. Let β > 1 with β / ∈ N, {n i } be the nonzero sequence of β. Then the length set of F n β \{S n max }, i.e., {l ∈ N : there exists [w (1) ,

• • • , w (l) ] ∈ F n β \{S n max }} is      {ε n i : n i ≤ n} if ε(1, β
) is infinite or finite with length m > n;

{ε n i : n i = m} if ε(1, β) is finite with length m = n; {ε n i : n i = m} ∪ {ε 1 + ε m } if ε(1, β) is finite with length m < n.
Proof. Let [w (l) , w (l-1) , • • • , w (2) , w (1) ] ∈ F n β \{S n max } and w which is not full be the next word of w (1) . By Corollary 1.1.16, there exist

1 ≤ s ≤ n, 0 ≤ a ≤ n -1 with a + s = n (s ≤ m -1, when ε(1, β) is finite with length m), such that w = w 1 • • • w a ε 1 • • • ε s . (1) If s = 1, that is, w = w 1 • • • w n-1 ε 1 , then w (1) = w 1 • • • w n-1 (ε 1 -1), w (2) = w 1 • • • w n-1 (ε 1 -2), • • • , w (ε 1 ) = w 1 • • • w n-1 0 are full by Lemma 1.1.7. 1 If n = 1 or w 1 • • • w n-1 = 0 n-1 , it is obvious that l = ε 1 . 2 If n ≥ 2 and w 1 • • • w n-1 = 0 n-1 , there exists 1 ≤ k ≤ n -1 such that w k = 0 and w k+1 = • • • = w n-1 = 0. Then the previous word of w (ε 1 ) is w (ε 1 +1) = w 1 • • • w k-1 (w k -1)ε * 1 • • • ε * n-k . i) If ε(1, β) is infinite or finite with length m ≥ n, then w (ε 1 +1) = w 1 • • • w k-1 (w k - 1)ε 1 • • • ε n-k is not full by Lemma 1.1.11. Therefore l = ε 1 . ii) If ε(1, β
) is finite with length m < n, we divide this case into two parts according to

m n -k or m|n -k. a If m n -k, then ε * 1 • • • ε * n-k is not full by Proposition 1.1.10 (2) and w (ε 1 +1) is also not full by Proposition 1.1.9 (2). Therefore l = ε 1 . b If m|n -k, then ε * 1 • • • ε * n-k is full by Proposition 1.1.10 (2) and w (ε 1 +1
) is also full by Lemma 1.1.7 and Proposition 1.1.9 (1). Let

w 1 • • • w n-m := w 1 • • • w k-1 (w k - 1)ε * 1 • • • ε * n-k-m . Then w (ε 1 +1) = w 1 • • • w n-m ε 1 • • • ε m-1 (ε m -1).
The consecutive previous words

w (ε 1 +2) = w 1 • • • w n-m ε 1 • • • ε m-1 (ε m -2) w (ε 1 +3) = w 1 • • • w n-m ε 1 • • • ε m-1 (ε m -3) • • • w (ε 1 +εm) = w 1 • • • w n-m ε 1 • • • ε m-1 0
are all full by Lemma 1.1.7. Since ε 1 = 0 and m > 1, there exists

1 ≤ t ≤ m -1 such that ε t = 0 and ε t+1 = • • • = ε m-1 = 0.
Then, as the previous word of w (ε 1 +εm) ,

w (ε 1 +εm+1) = w 1 • • • w n-m ε 1 • • • ε t-1 (ε t -1)ε 1 • • • ε m-t
is not full by Lemma 1.1.11. Therefore l = ε 1 + ε m .

(2) If 2 ≤ s ≤ n, we divide this case into two parts according to ε s = 0 or not.

1 If ε s = 0, there exists 1 ≤ t ≤ s -1 such that ε t = 0 and ε t+1 = • • • = ε s = 0 by ε 1 = 0. Then w = w 1 • • • w a ε 1 • • • ε t 0 s-t , and w (1) = w 1 • • • w a ε 1 • • • ε t-1 (ε t -1)ε 1 • • • ε s-t is not full
by Lemma 1.1.11, which contradicts our assumption.
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2 If ε s = 0, then w (1) = w 1 • • • w a ε 1 • • • ε s-1 (ε s -1) w (2) = w 1 • • • w a ε 1 • • • ε s-1 (ε s -2) • • • w (εs) = w 1 • • • w a ε 1 • • • ε s-1 0
are full by Lemma 1.1.7. By nearly the same way of 1 , we can prove that the previous word of w (εs) is not full. Therefore l = ε s .

i) If ε(1, β) is infinite or finite with length m > n, combining 2 ≤ s ≤ n and ε s = 0, we know that the set of all values of l = ε s is {ε n i : 2 ≤ n i ≤ n}. ii) If ε(1, β) finite with length m ≤ n, combining 2 ≤ s ≤ m -1 and ε s = 0, we know that the set of all values of l = ε s is {ε n i : 2 ≤ n i < m}.
By the discussion above, we can see that in every case, every value of l can be achieved.

Combining n i ≤ m for any i when ε(1, β) is finite with length m, ε n 1 = ε 1 and all the cases discussed above, we get the conclusion of this lemma.

Lemma 1.1.25. Let β > 1 with β / ∈ N. If ε(1, β
) is finite with length m and m|n, then

S n max ∈ F n β and the length of S n max is ε m . Otherwise, S n max ∈ N n β . Proof. Let w (1) = ε * 1 • • • ε * n . If ε(1, β
) is finite with length m and m|n, then w (1) is full by Proposition 1.1.10 (2). We get S n max ∈ F n β . Let p = n/m -1 ≥ 0. As the consecutive previous words of w (1) ,

w (2) = (ε 1 • • • ε m-1 (ε m -1)) p ε 1 • • • ε m-1 (ε m -2), • • • , w (εm) = (ε 1 • • • ε m-1 (ε m -1)) p ε 1 • • • ε m-1 0
are full by Lemma 1.1.7. By nearly the same way in the proof of Lemma 1.1.24 (2) 1 , we know that the previous word of w (εm) is not full. Therefore the number of S n max is ε m . Otherwise, w (1) is not full by Proposition 1.1.10 (2). We get S n max ∈ N n β .

Remark Then 

max F n β = β + ε m if ε(1, β) is finite with length m < n; β if ε(1, β) is infinite or finite with length m ≥ n. Proof. It follows from ε n i ≤ ε n 1 = ε 1 = β

The lengths of the runs of non-full words

Let {n i } be the nonzero sequence of β. We will use a similar concept of numeration system and greedy algorithm in the sense of [START_REF] Allouche | Automatic sequences. Theory, applications, generalizations[END_REF]Section 3.1] to define the function τ β below. For any s ∈ N, we can write s = i≥1 a i n i greedily and uniquely where a i ∈ N ∪ {0} for any i and then define τ β (s) = i≥ 1 a i . Equivalently, we have the following.

Definition 1.1.30 (The function τ β ). Let β > 1, {n i } be the nonzero sequence of β and s ∈ N. Define τ β (s) to be the number needed to add up to s greedily by {n i } with repetition.

We define it precisely below.

Let n i 1 = max{n i : n i ≤ s}. (Notice n 1 = 1.)

If n i 1 = s, define τ β (s) := 1. If n i 1 < s, let t 1 = s -n i 1 and n i 2 = max{n i : n i ≤ t 1 }. If n i 2 = t 1 , define τ β (s) := 2. If n i 2 < t 1 , let t 2 = t 1 -n i 2 and n i 3 = max{n i : n i ≤ t 2 }. • • • Generally for j ∈ N. If n i j = t j-1 (t 0 := s), define τ β (s) := j.
If n i j < t j-1 , let t j = t j-1 -n i j and n i j+1 = max{n i :

n i ≤ t j }. • • • Noting that n 1 = 1, it is obvious that there exist n i 1 ≥ n i 2 ≥ • • • ≥ n i d all in {n i } such that s = n i 1 + n i 2 + • • • + n i d , i.e., n i d = t d-1 . Define τ β (s) := d.
In the following we give an example to show how to calculate τ β . (2) τ β (s) = s for any 1 ≤ s ≤ n 2 -1, and τ β (s) ≤ s for any s ∈ N;

(3) {1, 2, • • • , k} ⊂ {τ β (s) : 1 ≤ s ≤ n} for any k ∈ {τ β (s) : 1 ≤ s ≤ n}; (4) {τ β (s) : 1 ≤ s ≤ n} = {1, 2, • • • , max 1≤s≤n τ β (s)}.
Proof. (1) and (2) follow from Definition 1.1.30 and n 1 = 1. For n ∈ N, we use r n (β) to denote the maximal length of the strings of 0's in ε

(3) Let k ∈ {τ β (s) : 1 ≤ s ≤ n}. If k = 1, the conclusion is obviously true. If k ≥ 2, let 2 ≤ t 0 ≤ n such that k = τ β (t 0 ), n i 1 = max{n i : n i ≤ t 0 } and t 1 = t 0 -n i 1 . Then 1 ≤ t 1 < t 0 ≤ n and it is obvious that k -1 = τ β (t 1 ) ∈ {τ β (s) : 1 ≤ s ≤ n} by Definition 1.1.30. By the same way, we can get k -2, k -3, • • • , 1 ∈ {τ β (s) : 1 ≤ s ≤ n}. Therefore {1, 2, • • • , k} ⊂ {τ β (s) : 1 ≤ s ≤ n}. (4) The inclusion {τ β (s) : 1 ≤ s ≤ n} ⊂ {1, 2, • • • , max 1≤s≤n τ β (s)} is
* 1 • • • ε * n
as in [START_REF] Fang | Approximation orders of real numbers by β-expansions[END_REF], [START_REF] Hu | On consecutive 0 digits in the β-expansion of 1[END_REF] and [START_REF] Tong | On the maximal length of consecutive zero digits of β-expansions[END_REF], i.e.,

r n (β) = max{k ≥ 1 : ε * i+1 = • • • = ε * i+k = 0 for some 0 ≤ i ≤ n -k}
with the convention that max ∅ = 0.

The following relation between τ β (s) and r s (β) will be used in the proof of Corollary

1.1.38. Proposition 1.1.33. Let β > 1. If ε(1, β) is infinite, then τ β (s) ≤ r s (β) + 1 for any s ≥ 1. If ε(1, β) is finite with length m, then τ β (s) ≤ r s (β) + 1 is true for any 1 ≤ s ≤ m.
Proof. Let {n i } be the nonzero sequence of β and n i 1 = max{n i :

n i ≤ s}. No matter ε(1, β) is infinite with s ≥ 1 or finite with length m ≥ s ≥ 1, we have τ β (s) -1 = τ β (s -n i 1 ) ≤ s -n i 1 ≤ r s (β) since s -n i 1 = 0 or ε * n i 1 +1 ε * n i 1 +2 • • • ε * s = ε n i 1 +1 ε n i 1 +2 • • • ε s = 0 s-n i 1 . Lemma 1.1.34. Let n ∈ N, β > 1 with β / ∈ N and w ∈ Σ n β end with a prefix of ε(1, β), i.e., w = w 1 • • • w n-s ε 1 • • • ε s where 1 ≤ s ≤ n.
Then the previous consecutive τ β (s) words starting from w in Σ n β are not full, but the previous (τ β (s) + 1)-th word is full.

Remark 1.1.35. Notice that w = w 1 • • • w n-s ε 1 • • • ε s does not imply that w 1 • • • w n-s is full. For example, when β > 1 with ε(1, β) = 1010010 ∞ , let w = 001010 = w 1 • • • w 4 ε 1 ε 2 . But w 1 • • • w 4 = 0010 is not full by Lemma 1.1.11.
Proof of Lemma 1.1.34. Let {n i } be the nonzero sequence of β and

w (1) := w (1) 1 • • • w (1) a 1 ε 1 • • • ε s := w 1 • • • w n-s ε 1 • • • ε s = w,
where a 1 = n -s. It is not full by Lemma 1.1.11.

• • •

Generally for any j ≥ 1, suppose w (j) , w (j-1) , • • • , w (2) , w (1) to be j consecutive non-full words in Σ n β where w (j) = w

(j) 1 • • • w (j) a j ε 1 • • • ε t j-1 , t j-1 > 0 (t 0 := s).
Let w (j+1) ∈ Σ n β be the previous word of w (j) and n i j := max{n i : n i ≤ t j-1 }.

If n i j = t j-1 , then ε t j-1 > 0 and w (j+1) = w (j) 1 • • • w (j) a j ε 1 • • • ε t j-1 -1 (ε t j-1 -1) is full by Lemma 1.1.7.
We get the conclusion of this lemma since τ β (s) = j at this time.

If n i j < t j-1 , let t j = t j-1 -n i j . Then w (j) = w (j) 1 • • • w (j) a j ε 1 • • • ε n i j 0 t j
and the previous word is

w (j+1) = w (j) 1 • • • w (j) a j ε 1 • • • ε n i j -1 (ε n i j -1)ε 1 • • • ε t j =: w (j+1) 1 • • • w (j+1) a j+1 ε 1 • • • ε t j ,
where a j+1 = a j + n i j . By Lemma 1.1.11, w (j+1) is also not full. At this time, w (j+1) , 2) , w (1) are j + 1 consecutive non-full words in (1) are not full, and 2) , w (1) ] ∈ N n β . Then, by Corollary 1.1.16, there exists

w (j) , • • • , w ( 
Σ n β . • • • Noting that n 1 = 1, it is obvious that there exist d ∈ N such that w (d) , • • • , w
s = n i 1 + n i 2 + • • • + n i d , i.e., n i d = t d-1 . Then ε t d-1 > 0 and w (d+1) = w (d) 1 • • • w (d) a d ε 1 • • • ε t d-1 -1 (ε t d-1 -1)
β / ∈ N. Then max N n β = max{τ β (s) : 1 ≤ s ≤ n} if ε(1, β) is infinite; max{τ β (s) : 1 ≤ s ≤ min{m -1, n}} if ε(1, β) is finite with length m. Proof. Let l ∈ N n β and [w (l) , w (l-1) , • • • , w ( 
1 ≤ s 0 ≤ n if ε(1, β) is infinite 1 ≤ s 0 ≤ min{m -1, n} if ε(1, β) is finite with length m such that w (1) = w (1) 1 • • • w (1) n-s 0 ε 1 • • • ε s 0 and we have l = τ β (s 0 ) by Lemma 1.1.34. There- fore max N n β ≤ max{τ β (s) : 1 ≤ s ≤ n} if ε(1, β) is infinite max{τ β (s) : 1 ≤ s ≤ min{m -1, n}} if ε(1, β) is finite with length m
by the randomicity of the selection of l. On the other hand, the equality follows from the CHAPTER 1

fact that 0 n-t 0 ε 1 • • • ε t 0 ∈ Σ n β included
, the previous consecutive τ β (t 0 ) words are not full by Lemma 1.1.34 where

τ β (t 0 ) = max{τ β (s) : 1 ≤ s ≤ n} if ε(1, β) is infinite; max{τ β (s) : 1 ≤ s ≤ min{m -1, n}} if ε(1, β) is finite with length m.
In the following we give an example to show how to calculate the maximal length of the runs of non-full words in Σ n β .

Example 1.1.37.

Let n = 8 and ε(1, β) = ε n 1 0ε n 2 000ε n 3 0 • • • 0ε n 4 0 • • • 0ε n 5 0 • • • ,
where 

n 1 = 1, n 2 = 3, n 3 = 7, n 4 > 8, ε n i = 0 for any i.
(s) : 1 ≤ s ≤ 8}. Since 1 = 1 ⇒ τ β (1) = 1; 2 = 1 + 1 ⇒ τ β (2) = 2; 3 = 3 ⇒ τ β (3) = 1; 4 = 3 + 1 ⇒ τ β (4) = 2; 5 = 3 + 1 + 1 ⇒ τ β (5) = 3; 6 = 3 + 3 ⇒ τ β (6) = 2; 7 = 7 ⇒ τ β (7) = 1; 8 = 7 + 1 ⇒ τ β (8) = 2, we get that max{τ β (s) : 1 ≤ s ≤ 8} = 3 is the maximal length. Corollary 1.1.38. Let β > 1. We have max N n β ≤ r n (β) + 1 for any n ∈ N. Moreover, if ε(1, β) is finite with length m, then max N n β ≤ r m-1 (β) + 1 for any n ∈ N. Proof. If ε(1, β) is infinite, then max N n β = max{τ β (s) : 1 ≤ s ≤ n} ≤ max{r s (β) + 1 : 1 ≤ s ≤ n} = r n (β) + 1. If ε(1, β) is finite with length m, then max N n β = max{τ β (s) : 1 ≤ s ≤ min{m-1, n}} ≤ max{r s (β)+1 : 1 ≤ s ≤ min{m-1, n}}.
and we have max β / ∈ N and {n i } be the nonzero sequence of β. Then N n β is given by the following table.

N n β ≤ r n (β) + 1 and max N n β ≤ r m-1 (β) + 1.
Condition Conclusion Case β ε(1, β) N n β = β > 2 infinite D 1 (1) 
finite with length m D 2

(2)

1 < β < 2 infinite n < n 2 {n} (3) n ≥ n 2 D 5 (4) 
finite with length m

n 2 = m n < m {n} (5) n = m {m -1} (6) 
n > m D 4 (7) 
n 2 < m n < n 2 {n} (8) 
n 2 ≤ n < m D 5 (9) n ≥ m D 3 (10) 
Here Proof of Theorem 1.1.40. We prove the conclusions for the cases (1)- (10) from simple ones to complicate as below.

D 1 = {1, 2, • • • , max{τ β (s) : 1 ≤ s ≤ n}}; D 2 = {1, 2, • • • , max{τ β (s) : 1 ≤ s ≤ min{m -1, n}}}; D 3 = {1, 2, • • • , max{τ β (s) : 1 ≤ s ≤ m -1}}; D 4 = {1, 2, • • • , min{n -m, m -1}} ∪ {m -1}; D 5 = {1, 2, • • • , min{n 2 -1, n -n 2 + 1}} ∪ {τ β (s) : n 2 -1 ≤ s ≤ n}.
Cases (3), ( 5) and ( 8) can be proved together. When 1 < β < 2 and n < n 2 , no matter ε(1, β) is finite or not, noting that β = 1 and ε(1, β)| n 2 = 10 n 2 -2 1, we get

ε 1 • • • ε n = 10 n-1
. Then all the elements in Σ n β from small to large are 0 n , 0 n-1 1, 0 n-2 10, • • • , 10 n-1 , where 0 n is full and the others are all not full by Lemma 1.1.11. Therefore

N n β = {n}. Case (6). When 1 < β < 2, ε(1, β
) is finite with length m and n = n 2 = m, noting that β = 1 and ε(1, β) = 10 m-2 10 ∞ , all the elements in Σ n β from small to large are 0 m , 0 m-1 1, 0 m-2 10, • • • , 010 m-2 , 10 m-1 , where 0 m is full, 10 m-1 is also full by Proposition Therefore N n β = D 1 . Case (2) can be proved by similar way as Case (1).

Case (10). When 1 < β < 2, ε(1, β) is finite with length m and n 2 < m ≤ n, we have 

ε(1, β) = 10 n 2 -2 1ε n 2 +1 • • • ε m 0 ∞ .
N n β ⊃ {τ β (s) : 1 ≤ s ≤ m -1}.
In fact:

1 For any n 2 -1 ≤ s ≤ m -1, let u = 0 n-s-1 10 s . It is full by s ≥ n 2 -1 and Corollary 1.1.16. The previous word u (1) = 0 n-s ε * 1 • • • ε * s = 0 n-s ε 1 • • • ε s is not full by Lemma 1.1.11. So τ β (s) ∈ N n β by Lemma 1.1.34. 2 For any 1 ≤ s ≤ n 2 -2, we get n 2 -1 ≤ n 3 -n 2 by Lemma 1.1.4. So 1 ≤ s ≤ n 2 -2 ≤ n 3 -n 2 -1 ≤ m -n 2 -1 ≤ n -n 2 -1 and then n -n 2 -s ≥ 1. Let u = 0 n-n 2 -s 10 n 2 +s-1 .
It is full by n 2 +s-1 ≥ n 2 -1 and Corollary 1.1.16. Noting that n 2 ≤ n 2 +s-1 < n 3 , the previous word of u is

u (1) = 0 n-n 2 -s+1 ε * 1 • • • ε * n 2 +s-1 = 0 n-n 2 -s+1 ε 1 • • • ε n 2 +s-1 = 0 n-n 2 -s+1 10 n 2 -2 10 s-1 = 0 n-n 2 -s+1 10 n 2 -2 ε 1 • • • ε s which is not full by Lemma 1.1.11. So τ β (s) ∈ N n β by Lemma 1.1.34.
Therefore N n β = D 3 . Case (7). When 1 < β < 2, ε(1, β) is finite with length m and n > n 2 = m, we have

ε(1, β) = 10 m-2 10 ∞ .
On the one hand, we prove N n β ⊂ D 4 . Let l ∈ N n β and [w (l) , w (l-1) , • • • , w (2) , w (1) ] ∈ N n β . By Corollary 1.1.16, there exist

1 ≤ s ≤ m -1, 2 ≤ n -m + 1 ≤ a ≤ n -1 such that a + s = n and w (1) = w 1 • • • w a ε 1 • • • ε s . Then l = τ β (s) = s by Lemma 1.1.34 and s ≤ n 2 -1. Moreover, w (1) = w 1 • • • w a 10 s-1 . 1 If w 1 • • • w a = 0 a ,
then the next word of w (1) is w := 0 a-1 10 s which is full by [w (l) , w (l-1) , • • • , w (2) , w (1) ] ∈ N n β . Combining s ≤ m -1 and Corollary 1.1.16, we get

s = m -1. Hence l = m -1 ∈ D 4 . 2 If w 1 • • • w a = 0 a , we get a ≥ m by w k+1 • • • w a 10 ∞ ≺ ε(1, β) = 10 m-2 10 ∞ for any k ≥ 0. Hence s ≤ n -m and l = s ∈ D 4 .
On the other hand, we prove N n β ⊃ D 4 .

1 For m -1, let u = 0 n-m 10 m-1 which is full by Corollary 1.1.16. The consecutive previous words are u (1) 1) are not full by Lemma 1.1.11, and u (m) is full. Therefore m-1 ∈ N n β .

= 0 n-m+1 10 m-2 , • • • , u (m-1) = 0 n-1 1, u (m) = 0 n where u (1) , • • • , u (m-
2 For any 1 ≤ s ≤ min{n -m, m -1}, let 

u (1) = 0 n-m-s ε * 1 • • • ε * m+s = 0 n-m-s 10 m-1 10 s-1 = 0 n-m-s 10 m-1 ε 1 • • • ε s . i) If s = n -m, then u (1) = ε * 1 • • • ε * m+s is maximal in Σ n β . ii) If s < n -m, i.e.,n -m -s -1 ≥ 0, then the next word of u (1) is 0 n-m-s-1
D 5 = {τ β (s) : 1 ≤ s ≤ min{n 2 -1, n -n 2 + 1} or n 2 -1 ≤ s ≤ n}.
On the one hand, we prove N n β ⊂ D 5 . Let l ∈ N n β and [w (l) , w (l-1) , • • • , w (2) , w (1) ] ∈ N n β . By Corollary 1.1.16, there exist 1 ≤ s ≤ n, 0 ≤ a ≤ n -1 such that a + s = n and

w (1) = w 1 • • • w a ε 1 • • • ε s . Then l = τ β (s) by Lemma 1.1.34. 1 If a = 0, then s = n and l = τ β (n) ∈ D 5 . 2 If a ≥ 1, we divide it into two cases. i) If w 1 • • • w a = 0 a ,
then the next word of w (1) is 0 a-1 10 s which is full by [w (l) , w (l-1) ,

• • • , w (2) , w (1) 

] ∈ N n β . Combining ε(1, β) = 10 n 2 -2 1ε n 2 +1 ε n 2 +2 • • • and Corollary 1.1.16, we get s ≥ n 2 -1. Hence l = τ β (s) ∈ D 5 . ii) If w 1 • • • w a = 0 a , by w k+1 • • • w a 10 ∞ ≺ ε(1, β) = 10 n 2 -2 1ε n 2 +1 ε n 2 +2 • • • for any k ≥ 0, CHAPTER 1 we get a ≥ n 2 -1 Hence s ≤ n -n 2 + 1. a If s ≥ n 2 -1, then l = τ β (s) ∈ {τ β (s) : n 2 -1 ≤ s ≤ n} ⊂ D 5 . b If s ≤ n 2 -1, then l = τ β (s) ∈ {τ β (s) : 1 ≤ s ≤ min{n 2 -1, n -n 2 + 1}} ⊂ D 5 .
On the other hand, we prove N n β ⊃ D 5 .

1 For any

n 2 -1 ≤ s ≤ n, let u (1) = 0 n-s ε * 1 • • • ε * s .
No matter whether ε(1, β) is infinite or finite with length m > n (which implies s < m), we get u (1) 

= 0 n-s ε 1 • • • ε s which is not full by Lemma 1.1.11. i) If s = n, then u (1) = ε * 1 • • • ε * n is maximal in Σ n β . ii) If n 2 -1 ≤ s ≤ n -1,
then the next word of u (1) is 0 n-s-1 10 s which is full by s ≥ n 2 -1 and Corollary 1.1.16.

Hence we must have τ β (s) ∈ N n β by Lemma 1.1.34.

2 For any 1

≤ s ≤ min{n 2 -1, n -n 2 + 1}, let u (1) = 0 n-n 2 -s+1 ε * 1 • • • ε * n 2 +s-1 .
No matter ε(1, β) is infinite or finite with length m > n (which implies n 2 + s -1 ≤ n < m), we get

u (1) = 0 n-n 2 -s+1 ε 1 • • • ε n 2 +s-1 . Since Lemma 1.1.4 implies n 2 -1 ≤ n 3 -n 2 , we get 1 ≤ s ≤ n 2 -1 ≤ n 3 -n 2 and
then n 2 ≤ n 2 + s -1 < n 3 . Hence

u (1) = 0 n-n 2 -s+1 10 n 2 -2 10 s-1 = 0 n-n 2 -s+1 10 n 2 -2 ε 1 • • • ε s which is not full by Lemma 1.1.11. i) If s = n -n 2 + 1, then u (1) = ε * 1 • • • ε * n is maximal in Σ n β . ii) If s < n-n 2 +1, i.e.
, n-n 2 -s ≥ 0, then the next word of u (1) is 0 n-n 2 -s 10 Then

#Σ n β,F #Σ n β β n . Moreover, if β / ∈ N, then #Σ n β,N #Σ n β,F #Σ n β β n .
This is a combination of the following lemmas.

Lemma 1. 1.44 ([102]). For all β > 1 and n ∈ N,

β n ≤ #Σ n β < β n+1 β -1 .
Lemma 1.1.45. For all β > 1 and n ∈ N, 

#Σ n β,F ≤ β n . Proof. It follows immediately from #Σ n β,F • 1 β n ≤ 1,
∈ N. (1) If β ∈ N, then #Σ n β,F = β n .
(

) If β > 2, then #Σ n β,F > β -2 β -1 • β n . (3) If 1 < β < 2, then #Σ n β,F > ∞ i=1 (1 - 1 β i ) • β n , where ∞ i=1 (1 -1 β i ) > 0 CHAPTER 1 2 
Proof. For all n ∈ N, let a n := #Σ n β,F and b n := #Σ n β,N . Then a n + b n = #Σ n β . Statement (1) is obvious. We prove (2) and (3) as follows.

(2) Suppose β > 2.

1 For n = 1, we have #Σ 1 β,F = β > β -1 > β-2 β-1 • β.
2 For n ≥ 2, by Lemma 1.1.44, we get

a n +b n ≥ β n , a n-1 +b n-1 < β n β -1 and then a n +b n -a n-1 -b n-1 > β n - β n β -1 .
Since every cylinder has at most one non-full sub-cylinder, we have

#Σ n β,N ≤ #Σ n-1 β , i.e., b n ≤ a n-1 + b n-1 . Therefore a n > β n -β n β-1 = β-2 β-1 • β n .
(3) Suppose 1 < β < 2. For all n ∈ N, let

c n := (1 - 1 β )(1 - 1 β 2 ) • • • (1 - 1 β n ) > ∞ i=1 (1 - 1 β i ).
It suffices to prove

a n > c n β n . (1.6) (By induction) When n = 1, 1 > (1 -1 β )β implies that (1.6) is true. Assume that n ≥ 2 and (1.6) is true for 1, 2, • • • , n -1, i.e., a 1 > c 1 β, a 2 > c 2 β 2 , • • • , a n-1 > c n-1 β n-1 .
(1.7)

Let {n i } denote the nonzero sequence of β. By

1 < β < 2 we know ε n 1 = ε n 2 = ε n 3 = • • • = 1.
For the fixed n ≥ 2, there exists a maximal k ∈ N such that n k ≤ n. By Proposition 1.1.9 (1), Theorem 1.1.14 and Corollary 1.1.15, we get a classification of the full words

Σ n β,F = Σ n β,F,1 ∪ Σ n β,F,2 ∪ • • • ∪ Σ n β,F,k
where

Σ n β,F,1 := 0w 2 • • • w n : w 2 • • • w n is a full word with length n -1 , Σ n β,F,2 := ε 1 • • • ε n2-1 0w n2+1 • • • w n : w n2+1 • • • w n is a full word with length n -n 2 , • • • , Σ n β,F,k := ε 1 • • • ε n k -1 0w n k +1 • • • w n : w n k +1 • • • w n is a full (or empty) word with length n -n k are all disjoint. Therefore a n = a n-1 + a n-n 2 + • • • + a n-n k (if n = n k , define a n-n k := 1) ( * ) ≥ c n-1 • β n-1 + c n-n 2 • β n-n 2 + • • • + c n-n k • β n-n k (if n = n k , define c n-n k := 1) ≥ c n-1 • (β n-1 + β n-n 2 + • • • + β n-n k ) ( * * ) > c n • β n .
where ( * ) follows from (1.7) and ( * * ) is equivalent to

1 -( 1 β + 1 β n 2 + • • • + 1 β n k ) < 1 β n . (1.8)
Thus it suffices to prove (1.8) in the following.

1 If ε(1, β) = ε 1 ε 2 • • • ε n k 0 ∞ , then 1 = 1 β + 1 β n 2 + • • • + 1 β n k , which implies (1.8). 2 If there exists m > k such that ε(1, β) = ε 1 ε 2 • • • ε n k • • • ε nm 0 ∞ , then 1 -( 1 β + 1 β n 2 + • • • + 1 β n k ) = 1 β n k+1 + • • • + 1 β nm < 1 β n k+1 -1 ,
where the last inequality follows from the fact that the β-expansion of 1 is greedy.

Since k is the maximal integer such that n k ≤ n, we have n ≤ n k+1 -1 and then

1 β n k+1 -1 ≤ 1
β n . Thus we get (1.8).

3 If ε(1, β) is infinite, in a way similar to 2 , we can get (1.8).

Lemma 1.1.47. Let β > 1 with β / ∈ N. Then

#Σ n β,N β n . Proof. (1) We have #Σ n β,N ≤ #Σ n β < β β-1 • β n
, where the last inequality follows from Lemma 1.1.44

(2) Prove that there exists c β > 0 such that for all n ∈ N, we have

#Σ n β,N ≥ c β • β n . 1 When n = 1, by β / ∈ N we get #Σ 1 β,N = 1 ≥ 1 β • β.
2 When n ≥ 2, it follows from β / ∈ N that every full cylinder of order n -1 has a non-full sub-cylinder of order n.

Thus #Σ n β,N ≥ #Σ n-1 β,F . Since Lemma 1.1.46 says that there exists c = c(β) > 0 such that #Σ n-1 β,F ≥ c • β n-1 , we get #Σ n β,N ≥ c β • β n .

Bernoulli-type measures and frequency sets

This section is a joint work with Mr. Bing Li and Mr. Tuomas Sahlsten at the end of my master at Université Paris-Est Marne-la-Vallée (UPEM) under the guidance of Mr.
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Lingmin Liao. Most of the content in this section has already appeared in my master thesis at UPEM. For completeness and for the convenience of the reader, I still present it here.

Let β > 1. Recall that A N β is the set of infinite sequences on A β = {0, 1, • • • , β -1} and Σ β is the set of admissible sequences. Define the usual metric d β on A N β (also on Σ β ) by 

d β (w, v) := β -inf{k≥0: w k+1 =v k+1 } for w = (w i ) i≥1 , v = (v i ) i≥1 ∈ A N β . ( 1 
µ p (A) := inf n µ p [w (n) ] : w (n) ∈ Σ * β , A ⊂ n [w (n) ] for any A ∈ B(Σ β ).
The corresponding image measure )), where B[0, 1) is the Borel sigma-algebra on [0, 1) and π β : Σ β → [0, 1) is the natural projection map defined by (1.3) restricted to Σ β (so π -1 β A ⊂ Σ β for any A ⊂ [0, 1)). Moreover, we use σ β : Σ β → Σ β to denote the shift map σ defined by (1.2) restricted to Σ β (so σ -1 β A ⊂ Σ β for any A ⊂ Σ β ), and recall that T β is the β-transformation on [0, 1) defined by (1.1). It is straightforward to see that µ p may not be σ β -invariant and ν p may not be T β -invariant. For example, if

ν p := π β µ p := µ p • π -1 β is called the (p, 1 -p) Bernoulli-type measure on ([0, 1), B[0, 1 
β = 1+ √ 5 2
is the golden ratio, then 11 is not an admissible word. We have

µ p [1] = 1 -p, but µ p (σ -1 β [1]) = µ p [01] = p(1 -p).
Correspondingly,

ν p [ 1 β , 1) = 1 -p, but ν p (T -1 β [ 1 β , 1)) = p(1 -p).
Hence we consider the following concepts.

Definition 1.2.1 (Quasi-invariance). Let (X, F, µ) be a measure space and T be a measurable transformation on it. Then

(1) µ is quasi-invariant with respect to the transformation T if µ and its image measure T µ are mutually absolutely continuous (i.e. equivalent), that is,

µ T µ µ (i.e. T µ ∼ µ);
(2) µ is strongly quasi-invariant with respect to the transformation T if there exists a constant C > 0 such that

C -1 µ(A) ≤ T k µ(A) ≤ Cµ(A)
for any k ∈ N and A ∈ F. We also say µ is C-strongly quasi-invariant if we know such a C.

Definition 1.2.2 (Quasi-Bernoulli). A measure µ on (Σ β , B(Σ β )) is called quasi-Bernoulli if there exists a constant C > 0 such that C -1 µ[w]µ[w ] ≤ µ[ww ] ≤ Cµ[w]µ[w ]
for every pair w, w ∈ Σ * β satisfying ww ∈ Σ * β .

As the first main result of this section, the following theorem focuses on the invariance of Bernoulli-type measures as dynamical properties. Recall from Section 1.1 that we use ε(x, β) to denote the β-expansion of x.

Theorem 1.2.3. Let β ∈ (1, 2] and p ∈ (0, 1). Then

(1) µ p is quasi-invariant with respect to σ β ;

(2) ε(1, β) is finite if and only if µ p is quasi-Bernoulli;

(3) ε(1, β) is finite if and only if µ p is strongly quasi-invariant with respect to σ β .
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By π β • σ β = T β • π β , we get the following.

Corollary 1.2.4. Let β ∈ (1, 2] and p ∈ (0, 1). Then

(1) ν p is quasi-invariant with respect to T β ;

(2) ε(1, β) is finite if and only if ν p is strongly quasi-invariant with respect to T β .

As the second main result of this section, we have the following.

Theorem 1.2.5. Let β ∈ (1, 2] and p ∈ (0, 1). If ε(1, β) is finite, then there exists a unique T β -ergodic probability measure m p on ([0, 1), B[0, 1)) equivalent to ν p , where m p is given by

m p (B) = lim n→∞ 1 n n-1 k=0 T k β ν p (B) for B ∈ B[0, 1).
In the following, we consider digit frequencies. Given β > 1, for any a ∈ [0, 1], define the frequency set, lower frequency set and upper frequency set by

F β,a := x ∈ [0, 1) : lim n→∞ #{1 ≤ k ≤ n : ε k (x, β) = 0} n = a , F β,a := x ∈ [0, 1) : lim n→∞ #{1 ≤ k ≤ n : ε k (x, β) = 0} n = a and F β,a := x ∈ [0, 1) : lim n→∞ #{1 ≤ k ≤ n : ε k (x, β) = 0} n = a
respectively. As an application of the above Theorem 1.2.5 and Theorem 1.2.33 in Subsection 1.2.4, we have the following as the third main result of this section, where dim H denotes the Hausdorff dimension.

Theorem 1.2.6. Let β ∈ (1, 2) such that ε(1, β) = 10 m 10 ∞ for some integer m ≥ 0.

(

) If 0 ≤ a < m+1 m+2 , then F β,a = F β,a = F β,a = ∅. (2) If m+1 m+2 ≤ a ≤ 1, then dim H F β,a = dim H F β,a = dim H F β,a = (ma -m + a) log(ma -m + a) -(ma -m + 2a -1) log(ma -m + 2a -1) -(1 -a) log(1 -a) log β . 1 
In particular, dim

H F β, m+1 m+2 = dim H F β, m+1 m+2 = dim H F β, m+1 m+2 = dim H F β,1 = dim H F β,1 = dim H F β,1 = 0.
Remark 1.2.7. Taking m = 0 in Theorem 1.2.6, we get the well known result

dim H F β,a = a log a -(2a -1) log(2a -1) -(1 -a) log(1 -a) log β where β = √ 5+1 2
is the golden ratio and 1 2 ≤ a ≤ 1. See for examples [START_REF] Fan | Level sets of β-expansions[END_REF][START_REF] Li | Hausdorff dimensions of some irregular sets associated with βexpansions[END_REF]. Note that when 0 ≤ a < 1 2 , F β,a = ∅.

This section is organized as follows. In Subsection 1.2.1, on the basis of Section 1.1, we give more necessary notation and preliminaries on beta-expansions and measure theory.

In Subsection 1.2.2, we study some digit occurence parameters and their properties which are useful for studying Bernoulli-type measures. In Subsection 1.2.3, we study Bernoullitype measures and prove Theorems 1.2.3 and 1.2.5. In Subsection 1.2.4, according to the structure of cylinders, we define and study the modified lower local dimension of finite Borel measures, where the main result Theorem 1.2.33 implies the modified mass distribution principle given by Bugeaud and Wang [START_REF] Bugeaud | Distribution of full cylinders and the Diophantine properties of the orbits in β-expansions[END_REF]. It is a useful tool to estimate the upper and lower bounds for the Hausdorff dimension of some sets defined in terms of beta-expansions.

In Subsection 1.2.5, we apply the Bernoulli-type measures and the modified lower local dimension to prove the digit frequency result Theorem 1.2.6.

Notation and preliminaries

Let β > 1. For simplification, we still use

ε 1 ε 2 • • • ε n • • • and ε * 1 ε * 2 • • • ε * n • • • to denote the digits of ε(1, β) and ε * (1, β) respectively as in Section 1.1.
For n ∈ N, let l n (β) denote the number of 0's following ε * n , i.e.,

l n (β) := sup{k ≥ 1 : ε * n+j = 0 for all 1 ≤ j ≤ k}
where by convention sup ∅ := 0. The set of β > 1 such that the length of the strings of 0's in ε * (1, β) is bounded is denoted by [START_REF] Li | Beta-expansion and continued fraction expansion[END_REF]). Let β > 1. Then β ∈ A 0 if and only if there exists a constant c > 0 such that for all x ∈ [0, 1) and n ∈ N,

A 0 := {β > 1 : (l n (β)) n≥1 is bounded}. Proposition 1.2.8 ([
c • 1 β n ≤ |I n (x)| ≤ 1 β n .
The following covering property is deduced from the length and distribution of full cylinders.

Proposition 1.2.9.

([37, Proposition 4.1]) Let β > 1. For any x ∈ [0, 1) and n ∈ N, the interval [x -1 β n , x + 1 β n ]
intersected with [0, 1) can be covered by at most 4(n + 1) cylinders of order n.

By the structure of cylinders, the following lemma follows from a similar proof of Lemma 1 (i) in [START_REF] Walters | Equilibrium states for β-transformations and related transformations[END_REF].

Lemma 1.2.10. Any cylinder (in Σ β or [0, 1)) can be written as a countable disjoint union of full cylinders.
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Definition 1.2.11. Let C be a family of certain subsets of a set X.

(1) C is called a monotone class on X if

1 {A n } n≥1 ⊂ C and A 1 ⊂ A 2 ⊂ • • • ⇒ ∞ n=1 A n ∈ C; 2 {A n } n≥1 ⊂ C and A 1 ⊃ A 2 ⊃ • • • ⇒ ∞ n=1 A n ∈ C.
(2) C is called a semi-algebra on X if

1 ∅ ∈ C; 2 A, B ∈ C ⇒ A ∩ B ∈ C; 3 A ∈ C ⇒ A c ∈ C Σf where A c := X \ A and C Σf := n i=1 C i : C 1 , • • • , C n ∈ C are disjoint, n ∈ N . (The subscript Σf means finite disjoint union.) (3) C is called an algebra on X if 1 ∅, X ∈ C; 2 A ∈ C ⇒ A c ∈ C; 3 A, B ∈ C ⇒ A ∩ B ∈ C. (4) C is called a sigma-algebra on X if 1 ∅, X ∈ C; 2 A ∈ C ⇒ A c ∈ C; 3 A 1 , A 2 , A 3 , • • • ∈ C ⇒ ∞ n=1 A n ∈ C.
In order to extend some properties from a small family to a larger one in some proofs in Subsection 1.2.3, we recall the following well known theorem as basic knowledge of measure theory. For more details, see for examples [START_REF] Cohn | Measure theory[END_REF] and [START_REF] Dudley | Real analysis and probability[END_REF].

Theorem 1.2.12 (Monotone class theorem). Let A be an algebra and M (A) be the smallest monotone class containing A. Then M (A) is precisely the sigma-algebra generated by A, i.e., sig(A) = M (A).

The following useful approximation lemma follows from Theorems 0.1 and 0.7 in [START_REF] Walters | An introduction to ergodic theory[END_REF].

Lemma 1.2.13. Let (X, B, µ) be a probability space, C be a semi-algebra which generates the sigma-algebra B and A be the algebra generated by C. Then

(1) A = C Σf := { n i=1 C i : C 1 , • • • , C n ∈ C are disjoint, n ∈ N};
(2) for each ε > 0 and each B ∈ B, there is some A ∈ A with µ(A B) < ε.

We recall some well known concepts and theorems (see for examples [START_REF] Klenke | Probability theory. A comprehensive course[END_REF][START_REF] Walters | An introduction to ergodic theory[END_REF][START_REF] Yosida | Functional analysis[END_REF]) needed to be used.

Theorem 1.2.14 (Carathéodory's measure extension theorem). Let C be a semi-algebra on X and µ : C → [0, +∞] such that for all sets A ∈ C for which there exists a countable

decomposition A = ∪ ∞ i=1 A i in disjoint sets A i ∈ C for i ∈ N, we have µ(A) = ∞ i=1 µ(A i ).
Then µ can be extended to become a measure µ on sig(C) (the smallest sigma-algebra containing C). That is, there exists a measure µ : sig(C) → [0, +∞] such that its restriction to C is equal to µ (i.e., µ | C = µ). Moreover, if X ∈ C and µ(X) < +∞, then the extension µ is unique.

Theorem 1.2.15 (Dominated convergence theorem). Let (X, F, µ) be a probability space and {f n } n∈N be a sequence of real-valued measurable functions on X satisfying

lim n→∞ f n (x) = f (x) for µ-almost every x ∈ X.
If there exists a real-valued integrable function g on X such that for all n ∈ N, |f n (x)| ≤ g(x) for µ-almost every x ∈ X, then f is integrable and

lim n→∞ f n dµ = f dµ.
Theorem 1.2.16 (Vitali-Hahn-Saks Theorem). Let (X, F, µ) be a probability space and {λ n } n∈N be a sequence of probability measures such that λ n µ for all n ∈ N. If the finite lim n→∞ λ n (B) = λ(B) exists for every B ∈ F, then λ is countable additive on F.

Definition 1.2.17 (Invariance and ergodicity). Let (X, F, µ, T ) be a measure-preserving dynamical system, that is, (X, F, µ) is a probability space and µ is T -invariant, i.e., T µ = µ. We say that the probability measure µ is ergodic with respect to T if for every A ∈ F satisfying T -1 A = A (such a set is called T -invariant), we have µ(A) = 0 or 1. We also say that (X, F, µ, T ) is ergodic.

Theorem 1.2.18 (Birkhoff's ergodic theorem). Let (X, F, µ, T ) be a measure-preserving dynamical system where the probability measure µ is ergodic with respect to T . Then for any real-valued integrable function f : X → R, we have 

lim n→∞ 1 n n-1 k=0 f (T k x) = f dµ for µ almost every x ∈ X.
N 0 (w) := #N 0 (w), N 1 (w) := #N 1 (w) for any w ∈ Σ * β ∪ Σ β , N 0 (x, n) := N 0 (ε(x, β)| n ), N 1 (x, n) := N 1 (ε(x, β)| n ) for any x ∈ [0, 1)
where #N denotes the cardinality of the set N .

Noting that N 1 (w) is just the number of the digit 1 appearing in w, it is immediate from the definition that if w, w ∈ Σ * β such that ww ∈ Σ * β , then For any w ∈ Σ β , combing the facts w ≺ ε * (1, β), ε * (1, β)| n ∈ Σ * β for all n ∈ N and Lemma 1.1.7, we know that there exists k ∈ N such that w| k is full. Therefore we can define τ (w) := min{k ≥ 1 : w| k is full} for any w ∈ Σ β , and τ (w) := τ (w0 ∞ ) for any w ∈ Σ * β .

N 1 (ww ) = N 1 (w) + N 1 (w ).
For any w ∈ Σ * β , regarding w| 0 as the empty word which is full, we define

τ (w) := max{0 ≤ k ≤ |w| : w| k is full}. Lemma 1.2.21. Let β > 1. For any w ∈ Σ β ∪ Σ * β , we have τ (w) = m(w) if ε(1, β) is infinite; min{m(w), M } if ε(1, β) is finite with length M. Proof. For any w ∈ Σ β ∪Σ * β . Let k = m(w). Then w| k = ε * 1 • • • ε * k-1 w k and w k < ε * k . (When w ∈ Σ * β and k > |w|, we regard w| k = w 1 • • • w k as w 1 • • • w |w| 0 k-|w| ). By ε * 1 • • • ε * k-1 ε * k ∈ Σ * β
and Lemma 1.1.7, w| k is full.

(

) When ε(1, β) is infinite, for any i ∈ {1, • • • , k -1}, we have w| i = ε * (1, β)| i = ε(1, β)| i 1 
which is not full by Proposition 1.1.10. Therefore τ (w) = k = m(w).

(

) when ε(1, β) = ε 1 • • • ε M 0 ∞ with ε M = 0: 1 If k ≤ M , then for any i ∈ {1, • • • , k -1}, we have w| i = ε * (1, β)| i which is not full by Proposition 1.1.10. Therefore τ (w) = k = m(w). 2 If k > M , then w| M = ε * (1, β)| M is full by Proposition 1.1.10. For any i ∈ {1, • • • , M - 1}, we have w| i = ε * (1, β)| i which is not full by Proposition 1.1.10. Therefore τ (w) = M . 2 
Lemma 1.2.22. Let β > 1 and w ∈ Σ β . Then

(1) there exists a strictly increasing sequence (n j ) j≥1 such that w| n j is full for any j ∈ N;

(2

) N 0 (w) = +∞ if 1 < β ≤ 2.
Proof.

(

) Let k 1 := m(w), n 1 := k 1 , k j := m(σ n j-1 w) and n j := n j-1 + k j for any j ≥ 2. Then n j is strictly increasing. By ε * 1 • • • ε * k 1 -1 ε * k 1 ∈ Σ * β , w n 1 < ε * k 1 and Lemma 1.1.7, we know that w 1 • • • w n 1 -1 w n 1 = ε * 1 • • • ε * k 1 -1 w n 1 is full. Similarly for any j ≥ 2, by ε * 1 • • • ε * k j -1 ε * k j ∈ Σ * β , w n j < ε * k j and Lemma 1.1.7, we know that w n j-1 +1 • • • w n j -1 w n j = ε * 1 • • • ε * k j -1 1 
w n j is full. Therefore, by Proposition 1.1.9 (1), w| n j is full for any j ∈ N.

(2) Noting that 1 < β ≤ 2, by w n j < ε * k j , we get w n j = 0, ε * k j = 1 for any j ∈ N. Thus

w 1 • • • w n j -1 1 = ε * 1 • • • ε * k 1 -1 w n 1 • • • • • • ε * 1 • • • ε * k j-1 -1 w n j-1 ε * 1 • • • ε * k j -1 ε * k j ∈ Σ * β
for any j ∈ N by Proposition 1.1.9 (1) and Proposition 1.1.8 [START_REF] Allouche | Periodic unique beta-expansions: the Sharkovskiȋ ordering[END_REF]. Therefore N 0 (w) = +∞.

Lemma 1.2.23. Let β ∈ (1, 2] and w, w ∈ Σ * β with ww ∈ Σ * β . Then (1) N 0 (w) ≤ N 0 (ww ) ≤ N 0 (w) + N 0 (w );
(2) when w is full, we have N 0 (ww ) = N 0 (w) + N 0 (w );

(3) when ε(1, β) = ε 1 • • • ε M 0 ∞ with ε M = 0, we have N 0 (ww ) ≥ N 0 (w) + N 0 (w ) -M . Proof. Let a = |w| and b = |w |. Then ww = w 1 • • • w a w 1 • • • w b .
(1) The first inequality N 0 (w) ≤ N 0 (ww ) follows from N 0 (w) ⊂ N 0 (ww ). In the following we prove the second inequality N 0 (ww ) ≤ N 0 (w) + N 0 (w ).

1 We prove N 0 (ww ) ⊂ N 0 (w) ∪ (N 0 (w ) + a) first. Let k ∈ N 0 (ww ). If 0 ≤ k < a, then w k+1 = 0 and w 1 • • • w k 1 ∈ Σ * β . We get k ∈ N 0 (w). If a ≤ k < a + b, then w k-a+1 = 0 and w 1 • • • w a w 1 • • • w k-a 1 ∈ Σ * β . It follows from w 1 • • • w k-a 1 ∈ Σ * β that k -a ∈ N 0 (w ) and k ∈ N 0 (w ) + a. 2 Combining N 0 (w) ∩ (N 0 (w ) + a) = ∅, #(N 0 (w ) + a) = #N 0 (w ) and i), we get N 0 (ww ) ≤ N 0 (w) + N 0 (w ).
(2) We need to prove N 0 (ww

) ≥ N 0 (w)+N 0 (w ). By #N 0 (w ) = #(N 0 (w )+a), it suffices to prove N 0 (ww ) ⊃ N 0 (w)∪(N 0 (w )+a). For each k ∈ N 0 (w), obviously k ∈ N 0 (ww ). On the other hand, if k ∈ (N 0 (w )+a), then k-a ∈ N 0 (w ), w k-a+1 = 0 and w 1 • • • w k-a 1 ∈ Σ * β . Since w is full, by Proposition 1.1.8, we get ww 1 • • • w k-a 1 ∈ Σ * β and then k ∈ N 0 (ww ). (3) 1 First we divide ww into three segments. i) Let k 0 := τ (w), then 0 ≤ k 0 ≤ a. If k 0 = a,
w is full. Then the conclusion follows from (2) immediately. Therefore we assumes 0 ≤ k 0 < a in the following proof. Let u (1) := w 1 • • • w k 0 be full and |u (1) | = k 0 . (When k 0 = 0, we regard u (1) as the empty word and N 0 (u (1) 

) := 0.) ii) Consider w k 0 +1 • • • w a w 1 • • • w b ∈ Σ * β (the admissibility follows from ww ∈ Σ * β ). Let k 1 := τ (w k 0 +1 • • • w a w 1 • • • w b ) ≥ 1.
By the definition of k 0 = τ (w) and Proposition 1.1.9, we get k 1 > a -k 0 . In the following, we assume

k 1 ≤ a -k 0 + b first. The case k 1 > a -k 0 + b will be considered at the end of the proof. Let u (2) := w k 0 +1 • • • w a w 1 • • • w k 0 +k 1 -a , then |u (2) | = k 1 . iii) Let u (3) := w k 0 +k 1 -a+1 • • • w b . (When k 0 + k 1 -a = b,
we regard u (3) as the empty word and N 0 (u (3) ) := 0.)

Up to now, we write ww = u (1) u (2) u (3) as:

w 1 • • • w k 0 |u (1) |=k 0 w k 0 +1 • • • w a w 1 • • • w k 0 +k 1 -a |u (2) |=k 1 w k 0 +k 1 -a+1 • • • w b |u (3) | . 2 Estimate N 0 (ww ), N 0 (w) and N 0 (w ). i) N 0 (ww ) = N 0 (u (1) u (2) u (3) ) u (1) full ====== by (2) N 0 (u (1) ) + N 0 (u (2) u (3) ) u (2) full ====== by (2) N 0 (u (1) ) + N 0 (u (2) ) + N 0 (u (3) ). ii) N 0 (w) u (1) full ====== by (2) N 0 (u (1) ) + N 0 (w k 0 +1 • • • w a ) by (1)
≤ N 0 (u (1) ) + N 0 (u (2) ).

iii) N 0 (w ) by ( 1) (3) ) where the last inequality follows from

≤ N 0 (w 1 • • • w k 0 +k 1 -a )+N 0 (u (3) ) ≤ M +N 0 (u
N 0 (w 1 • • • w k 0 +k 1 -a ) ≤ k 0 + k 1 -a ≤ k 1 = τ (w k 0 +1 • • • w a w 1 • • • w b ) by Lemma 1.2.21 ≤ M.
Combining i), ii) and iii), we get N 0 (ww ) ≥ N 0 (w) + N 0 (w ) -M .

To end the proof, it suffices to consider the case k 1 > a -k 0 + b below. We define u (1) as before and define u (2) 

:= w k 0 +1 • • • w a w 1 • • • w b which is not full. Then |u (2) | = a -k 0 + b.
We do not define u (3) .

1 Prove N 0 (u (2) ) = 0.
By contradiction, we suppose N 0 (u (2) ) = 0, then there exists k ∈ N 0 (u (2) ), 0

≤ k < a -k 0 + b such that u (2) k+1 = 0 and u (2) 1 • • • u (2) k 1 ∈ Σ * β . By Lemma 1.1.7, u (2) 
1 • • • u (2) k+1 is full which contradicts τ (u (2) ) = k 1 > a -k 0 + b. 2 Estimate N 0 (ww ), N 0 (w) and N 0 (w ). i) N 0 (ww ) = N 0 (u (1) u (2) ) u (1) full ====== by (2)
N 0 (u (1) ) + N 0 (u (2) ) by 1

===== N 0 (u (1) ).

ii) N 0 (w) (1) ) where the last equality follows 

u (1) full ====== by (2) N 0 (u (1) )+N 0 (w k 0 +1 • • • w a ) = N 0 (u
from N 0 (w k 0 +1 • • • w a ) ≤ N 0 (u (2) ) = 0. iii) N 0 (w ) ≤ b < a -k 0 + b < k 1 = τ (u (2) ) by Lemma 1.2.21 ≤ M . Combining i), ii) and iii), we get N 0 (ww ) ≥ N 0 (w) + N 0 (w ) -M .
ν p (I(w)) = µ p [w] = p N 0 (w) (1 -p) N 1 (w) for any w ∈ Σ * β ; ν p (I(w| n )) = µ p [w| n ] = p N 0 (w|n) (1 -p) N 1 (w|n) for any w ∈ Σ β and n ∈ N; ν p (I n (x)) = µ p [ε(x, β)| n ] = p N 0 (x,n) (1 -p) N 1 (x,n) for any x ∈ [0, 1) and n ∈ N.
(2) For any w ∈ Σ β , as n → +∞, by Lemma 1.2.22 (2) we get N 0 (w| n ) → +∞ and then

µ p [w| n ] → 0. Proposition 1.2.25. The measures µ p , σ k β µ p , ν p and T k β ν p have no atoms. That is, µ p ({w}) = σ k β µ p ({w}) = ν p ({x}) = T k β ν p ({x}) = 0 for any single point w ∈ Σ β , x ∈ [0, 1) and k ∈ N. Proof. It follows immediately from µ p [w| n ] → 0, #σ -k β {w} ≤ 2 k , #π -1 β {x} = 1 and #T -k β {x} ≤ 2 k for any w ∈ Σ β and x ∈ [0, 1).
Combing Remark 1.2.24 (1), Lemma 1.2.23 and the fact that N 1 (ww ) = N 1 (w) + N 1 (w ) for any w, w ∈ Σ * β satisfying ww ∈ Σ * β , we have the following. (1) We have

µ p [w] ≥ µ p [ww ] ≥ µ p [w]µ p [w ].
(2) When w is full, we have

µ p [ww ] = µ p [w]µ p [w ].
(

) When ε(1, β) = ε 1 • • • ε M 0 ∞ with ε M = 0, we have µ p [ww ] ≤ p -M µ p [w]µ p [w ], 3 
and then µ p is quasi-Bernoulli.

Now we can begin to prove our first main result.

Proof of Theorem 1.2.3. (1) 1 First we prove µ p σ β µ p . Let A ∈ B(Σ β ) with σ β µ p (A) = 0. It suffices to prove µ p (A) = 0. For any ε > 0, by µ p (σ -1 β A) = inf n µ p [w (n) ] : w (n) ∈ Σ * β , σ -1 β A ⊂ n [w (n) ] = 0, there exists {w (n) } ⊂ Σ * β such that σ -1 β A ⊂ n [w (n) ] and n µ p [w (n) ] < ε.
Since ε can be small enough such that µ p [0] = p and µ p [1] = 1 -p > ε, we can assume

a n := |w (n) | ≥ 2
for any n without loss of generality. By the fact that σ β : Σ β → Σ β is surjective, we get

A = σ β (σ -1 β A) ⊂ σ β ( n [w (n) ]) ⊂ n σ β [w (n) ] = n σ β [w (n) 1 w (n) 2 • • • w (n) an ] ⊂ n [w (n) 2 • • • w (n) an ].
Therefore

µ p (A) ≤ n µ p [w (n) 2 • • • w (n) an ] ≤ 1 min{p, 1 -p} n µ p [w (n) 1 ]µ p [w (n) 2 • • • w (n) an ] ≤ 1 min{p, 1 -p} n µ p [w (n) ] < ε min{p, 1 -p} for any ε > 0. This implies µ p (A) = 0. Let B ∈ B(Σ β ) with µ p (B) = 0. It suffices to prove σ β µ p (B) = 0. For any integer m ≥ 2, we define B m := B \ [ε * 2 • • • ε * m ]. i) Prove that σ β µ p (B m ) increase to σ β µ p (B). a If ε(1, β) is finite, then ε * 2 ε * 3 ε * 4 • • • / ∈ Σ β , [ε * 2 • • • ε * m ] decrease to ∅, B m increase to B and σ β µ p (B m ) increase to σ β µ p (B). b If ε(1, β) is infinite, then ε * 2 ε * 3 ε * 4 • • • = ε 2 ε 3 ε 4 • • • = ε(T β 1, β) ∈ Σ β , [ε * 2 • • • ε * m ] decrease to {ε * 2 ε * 3 ε * 4 • • • } (a single point set), B m increase to (B \ {ε * 2 ε * 3 ε * 4 • • • }) and σ β µ p (B m ) increase to σ β µ p (B\{ε * 2 ε * 3 ε * 4 • • • }). Since σ β µ p has no atom (by Proposition 1.2.25), we get σ β µ p (B m ) increase to σ β µ p (B).
ii) In order to get σ β µ p (B) = 0, by i) it suffices to prove that for any integer m ≥ 2,

σ β µ p (B m ) = 0. Fix an integer m ≥ 2. By µ p (B m ) ≤ µ p (B) = 0, we get inf n µ p [w (n) ] : w (n) ∈ Σ * β , B m ⊂ n [w (n) ] = 0.
For any ε > 0, there exists

{w (n) } n∈N ⊂ Σ * β with B m ⊂ n∈N [w (n) ] such that n∈N µ p [w (n) ] < ε
where N is an index set with cardinality at most countable. Since ε can be small enough such that

δ m := min{µ p [w] : w ∈ Σ * β , |w| ≤ m -1} > ε,
we can assume

a n := |w (n) | ≥ m for all n ∈ N . Let N := {n ∈ N : w (n) | m-1 = ε * 2 • • • ε * m } ⊂ N .
By the facts that for any

n ∈ N , [w (n) ] ∩ [ε * 2 • • • ε * m ] = ∅ and for any n ∈ N \ N , [w (n) ] ⊂ [ε * 2 • • • ε * m ], we get B m = B m \ [ε * 2 • • • ε * m ] ⊂ n∈N [w (n) ] \ [ε * 2 • • • ε * m ] = n∈N [w (n) ] \ [ε * 2 • • • ε * m ] n∈N \N [w (n) ] \ [ε * 2 • • • ε * m ] = n∈N [w (n) ] and then σ -1 β B m ⊂ n∈N σ -1 β [w (n) ]. Let N 0 := {n ∈ N : 1w (n) / ∈ Σ * β } and N 1 := {n ∈ N : 1w (n) ∈ Σ * β }. CHAPTER 1 Then for any n ∈ N 0 , σ -1 β [w (n) ] = [0w (n) ] and for any n ∈ N 1 , σ -1 β [w (n) ] = [0w (n) ] ∪ [1w (n) ]. Thus σ -1 β B m ⊂ n∈N [0w (n) ] n∈N 1 [1w (n) ]
and

µ p (σ -1 β B m ) ≤ n∈N µ p [0w (n) ] + n∈N 1 µ p [1w (n) ] =: R 1 + R 2
where by Lemma 1.2.26 (2),

R 1 := n∈N pµ p [w (n) ] ≤ p n∈N µ p [w (n) ] < pε.
Now we estimate the upper bounded of R 2 .

For each n ∈ N 1 ⊂ N , by 1w

(n) 1 • • • w (n) m-1 = ε * 1 ε * 2 • • • ε * m , there exists 1 ≤ k n ≤ m -1 such that 1 = ε * 1 , w (n) 1 = ε * 2 , • • • w (n) kn-1 = ε * kn and w (n) kn < ε * kn+1 . Since ε * 1 • • • ε * kn ε * kn+1 ∈ Σ *
β , by Lemma 1.1.7 and Proposition 1.1.9 (2), we know that both 1w

(n) 1 • • • w (n)
kn and w

(n) 1 • • • w (n) kn are full. It follows from Lemma 1.2.26 (2) that µ p [1w (n) ] = µ p [1w (n) 1 • • • w (n) kn ]µ p [w (n) kn+1 • • • w (n) an ]
and

µ p [w (n) ] = µ p [w (n) 1 • • • w (n) kn ]µ p [w (n) kn+1 • • • w (n) an ].
Let

C m := max µ p [1w] µ p [w] : w ∈ Σ * β with 1w ∈ Σ * β and 1 ≤ |w| ≤ m -1 < ∞. By k n ≤ m -1, we get µ p [1w (n) ] ≤ C m µ p [w (n) ] for any n ∈ N 1 . This implies R 2 := n∈N 1 µ p [1w (n) ] ≤ C m n∈N 1 µ p [w (n) ] ≤ C m n∈N µ p [w (n) ] < C m ε. Therefore µ p (σ -1 β B m ) < (p+C m )ε for any 0 < ε < δ m . We conclude that σ β µ p (B m ) = 0.
(2) ⇒ follows from Lemma 1.2.26.

⇐ (By contradiction) Assume that ε(1, β) = ε 1 ε 2 ε 3 • • • is infinite. By ε 2 ε 3 • • • = ε(T β 1, β) ∈ Σ β and Lemma 1.2.22 (2), we get N 0 (ε 2 ε 3 • • • ) = +∞. Then for any N ∈ N, there exists n ∈ N such that N 0 (ε 2 ε 3 • • • ε n ) ≥ N . Let w := ε 1 = 1 and w := ε 2 ε 3 • • • ε n . Then ww = ε 1 • • • ε n and obviously N 0 (ww ) = 0 = 0 + N -N ≤ N 0 (w) + N 0 (w ) -N.
By Remark 1.2.24 (1) and N 1 (ww ) = N 1 (w) + N 1 (w ), we get

µ p [ww ] ≥ p -N µ p [w]µ p [w ].
Since for any N ∈ N, there exists w, w which satisfy the above inequality and p -N can be arbitrarily large, we know that µ p is not quasi-Bernoulli.

(3) ⇐ (By contradiction) Assume that ε(1, β) = ε 1 ε 2 ε 3 • • • is infinite. By ε 2 ε 3 • • • = ε(T β 1, β) ∈ Σ β and Lemma 1.2.22 (2), we get N 0 (ε 2 ε 3 • • • ) = +∞. Then for any N ∈ N, there exists n ∈ N such that N 0 (ε 2 ε 3 • • • ε n ) ≥ N . Let w := ε 2 • • • ε n . Then σ β µ p [w] = µ p [0w] + µ p [1w] ≥ µ p [ε 1 ε 2 • • • ε n ] = p N 0 (ε 1 •••εn) (1 -p) N 1 (ε 1 •••εn) = (1 -p) N 1 (ε 1 •••εn) and µ p [w] = p N 0 (w) (1 -p) N 1 (w) ≤ p N (1 -p) N 1 (ε 1 •••εn)-1 . Thus σ β µ p [w] ≥ (1 -p)p -N µ p [w].
Since for any N ∈ N, there exists w which satisfies the above inequality and (1 -p)p -N can be arbitrarily large, we know that µ p is not strongly quasi-invariant.

⇒ Let ε(1, β) = ε 1 • • • ε M 0 ∞ with ε M = 0 and c = p -M > 0. 1 Prove c -1 µ p [w] ≤ σ k β µ p [w] ≤ cµ p [w] for all k ∈ N and w ∈ Σ * β . Notice that σ -k β [w] = u 1 •••u k w∈Σ * β [u 1 • • • u k w] is a disjoint union. i) Estimate the upper bound of σ k β µ p [w]: µ p σ -k β [w] = u 1 •••u k w∈Σ * β µ p [u 1 • • • u k w] a ≤ u 1 •••u k w∈Σ * β p -M µ p [u 1 • • • u k ]µ p [w] ≤ p -M u 1 •••u k ∈Σ * β µ p [u 1 • • • u k ]µ p [w] = p -M µ p [w].
where a follows from Lemma 1.2.26.
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ii) Estimate the lower bound of σ k β µ p [w]:

µ p σ -k β [w] = u 1 •••u k w∈Σ * β µ p [u 1 • • • u k w] ≥ u 1 •••u k-M 0 M w∈Σ * β µ p [u 1 • • • k-M 0 M w].
(Without loss of generality, we assume k ≥ M . Otherwise, we consider 0 k w instead of

u 1 • • • u k-M 0 M w). By Proposition 1.1.16, u 1 • • • u k-m 0 M is full for any u 1 • • • u k-m ∈ Σ * β .
Then by Proposition 1.1.8 (4), we get

u 1 • • • u k-M 0 M w ∈ Σ * β ⇐⇒ u 1 • • • u k-M ∈ Σ * β .
Therefore

µ p σ -k β [w] ≥ u 1 •••u k-M ∈Σ * β µ p [u 1 • • • u k-M 0 M w] b = u 1 •••u k-M ∈Σ * β µ p [u 1 • • • u k-M 0 M ]µ p [w] c ≥ u 1 •••u k-M ∈Σ * β µ p [u 1 • • • u k-M ]p M µ p [w] = p M µ p [w]
where b and c follow from Lemma 1.2.26 ( 2) and ( 1) respectively.

2 Prove c -1 µ p (B) ≤ σ k β µ p (B) ≤ cµ p (B) for all k ∈ N and B ∈ B(Σ β ). Let C := {[w] : w ∈ Σ * β } ∪ {∅}, C Σf := { n i=1 C i : C 1 , • • • , C n ∈ C are disjoint, n ∈ N} and G := {B ∈ B(Σ β ) : c -1 µ p (B) ≤ σ k β µ p (B) ≤ cµ p (B) for all k ∈ N}.
Then C is a semi-algebra, C Σf is the algebra generated by C (by Lemma 1.2.13 (1)) and G is a monotone class. Since in 1 we have already showed C ⊂ G, it is obvious that

C Σf ⊂ G ⊂ B(Σ β )
. By monotone class theorem (Theorem 1.2.12), we get G = B(Σ β ).

To prove our second main result Theorem 1.2.5, we need the following lemmas.

Lemma 1.2.27 ([58]). Let (X, B, µ) be a probability space and T be a measurable transformation on X. If there exists a constant M such that for any E ∈ B and any n ≥ 1,

1 n n-1 k=0 µ(T -k E) ≤ M µ(E),
then for any real integrable function f on X, the limit

lim n→∞ 1 n n-1 k=0 f (T k x)
exists for µ-almost every x ∈ X.

Lemma 1.2.28. Let β ∈ (1, 2] and p ∈ (0, 1).

(

) If B ∈ B(Σ β ) with σ -1 β B = B, then µ p (B) = 0 or 1. 1 
(

) If B ∈ B[0, 1) with T -1 β B = B, then ν p (B) = 0 or 1. 2 
Proof.

(

) Let F := {w ∈ Σ * β : w is full}. 1 
Since w is full and

[ww ] = [w] ∩ σ -n β [w ] for any w ∈ Σ * β , we get µ p ([w] ∩ σ -n β [w ]) = µ p [ww ] by ============ Lemma 1.2.26 (2) µ p [w]µ p [w ]. Let C := {[w ] : w ∈ Σ * β } ∪ {∅} and G := {A ∈ B(Σ β ) : µ p ([w] ∩ σ -n β A) = µ p [w]µ p (A)}.
In the same way as the end of the Proof of Theorem 1.2.3, we get

G = B(Σ β ).
2 We use B c to denote the complement of B in Σ β . For any δ > 0, by Lemma 1.2.13 and Lemma 1.2.10, there exists a countable disjoint union of full cylinders

E δ = i [w (i) ] with {w (i) } ⊂ F such that µ p (B c E δ ) < δ. 3 Let B ∈ B(Σ β ) with σ -1 β B = B. Then B = σ -n β B
and by1 we get

µ p (B ∩ [w]) = µ p (σ -n β B ∩ [w]) = µ p (B)µ p [w]
for any w ∈ F where n = |w|. Thus

µ p (B∩E δ ) = µ p (B∩ i [w (i) ]) = i µ p (B∩[w (i) ]) = i µ p (B)µ p [w (i) ] = µ p (B)µ p (E δ ). Let a = µ p ((B ∪ E δ ) c ), b = µ p (B ∩ E δ ), c = µ p (B \ E δ ) and d = µ p (E δ \ B). Then b = (b + c)(b + d), a + b < δ (by 2 ) and a + b + c + d = 1.
By

(b + c)(a + d -δ) ≤ (b + c)(b + d) = b < δ, CHAPTER 1
we get

(b + c)(a + d) < (1 + b + c)δ ≤ 2δ which implies µ p (B)µ p (B c ) ≤ 2δ for any δ > 0. Therefore µ p (B) = 0 or µ p (B c ) = 0.
(2) follows from (1). In fact, let

B ∈ B[0, 1) with T -1 β B = B. By σ -1 β π -1 β B = π -1 β T -1 β B = π -1 β B ∈ B(Σ β ) and (1), we get µ p (π -1 β B) = 0 or 1, i.e., ν p (B) = 0 or 1.
Proof of Theorem 1.2.5.

(1) For any n ∈ N and B ∈ B[0, 1), define

m n p (B) := 1 n n-1 k=0 ν p (T -k β B).
Then m n p is a probability measure on ([0, 1), B[0, 1)). By Corollary 1.2.4, there exists c > 0 such that

c -1 ν p (B) ≤ m n p (B) ≤ cν p (B) for any B ∈ B[0, 1) and n ∈ N. (1.10) (2) For any B ∈ B[0, 1), prove that lim n→∞ m n p (B) exists. In fact, lim n→∞ m n p (B) = lim n→∞ 1 n n-1 k=0 1 T -k β B dν p = lim n→∞ 1 n n-1 k=0 1 B (T k β x)dν p (x) = lim n→∞ 1 n n-1 k=0 1 B (T k β x)dν p (x),
noting that the last equality follows from the dominated convergence theorem where the ν p -a.e. existence of lim n→∞ (5) Prove that m p is T β -invariant.

1 n n-1 k=0 1 B (T k β x) follows from Lemma 1.2.
For any B ∈ B[0, 1) and n ∈ N, we have

m n p (T -1 β B) = 1 n n k=1 ν p (T -k β B) = n + 1 n m n+1 p (B) - ν p (B) n . As n → ∞, we get m p (T -1 β B) = m p (B). (6) Prove that ([0, 1), B[0, 1), m p , T β ) is ergodic. Let B ∈ B[0, 1) such that T -1 β B = B.
Then by Lemma 1.2.28 (2), we get ν p (B) = 0 or

ν p (B c ) = 0 which implies m p (B) = 0 or m p (B c ) = 0 since m p ∼ ν p .
Noting that m p is T β -invariant, we know that m p is ergodic with respect to T β . (7) Prove that such m p is unique on B[0, 1).

Let m p be a T β -ergodic probability measure on ([0, 1), B[0, 1)) equivalent to ν p . Then for any B ∈ B[0, 1), by Birkhoff's ergodic theorem, we get

m p (B) = 1 B dm p = lim n→∞ 1 n n-1 k=0 1 B (T k β x) for m p -a.e. x ∈ [0, 1)
and

m p (B) = 1 B dm p = lim n→∞ 1 n n-1 k=0 1 B (T k β x) for m p -a.e. x ∈ [0, 1). Since m p ∼ ν p ∼ m p , there exists x ∈ [0, 1) such that m p (B) = lim n→∞ 1 n n-1 k=0 1 B (T k β x) = m p (B). Thus m p = m p .

Modified lower local dimension related to beta-expansions

Let ν be a finite Borel measure on R n . The lower local dimension of ν at x ∈ R n is defined by (

dim loc ν(x) := lim
) If dim loc ν(x) ≤ s for all x ∈ E then dim H E ≤ s. 1 
(

) If dim loc ν(x) ≥ s for all x ∈ E and ν(E) > 0 then dim H E ≥ s. 2 
But in the definition of the lower local dimension, the Bernoulli-type measure of a ball ν p (B(x, r)) is difficult to estimate. Therefore, we use the measure of a cylinder ν(I n (x))

instead of ν(B(x, r)) to define the modified lower local dimension related to β-expansions of a measure at a point.

Definition 1.2.30. Let β > 1 and ν be a finite Borel measure on [0, 1). The modified lower local dimension of ν at x ∈ [0, 1) is defined by

dim β loc ν(x) := lim n→∞ log ν(I n (x)) log |I n (x)|
where I n (x) is the cylinder of order n containing x.
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Combining Proposition 1.2.29 (1) and the following proposition, we can estimate the upper bound of the Hausdorff dimension by the modified lower local dimension.

Proposition 1.2.31. Let β > 1 and ν be a finite Borel measure on [0, 1). Then for any

x ∈ [0, 1), we have

dim β loc (ν, x) ≥ dim loc (ν, x).
Proof. For any x ∈ [0, 1) and n ∈ N. Let

r n := |I n (x)|, then I n (x) ⊂ B(x, r n ), ν(I n (x)) ≤ ν(B(x, r n )) and -log ν(I n (x)) ≥ -log ν(B(x, r n )). We get -log ν(I n (x)) -log |I n (x)| ≥ -log ν(B(x, r n )) -log r n .
Therefore

lim n→∞ log ν(I n (x)) log |I n (x)| ≥ lim n→∞ log ν(B(x, r n )) log r n ≥ dim loc ν(x).
Remark 1.2.32. The reverse inequality in Proposition 1.2.31, i.e., dim β loc (ν, x) ≤ dim loc (ν, x) is not always true. For example, let β be the golden ratio

( √ 5 + 1)/2, x = β -1 and ν = ν p be the (p, 1 -p) Bernoulli-type measure with 0 < p < 1/2. For any n ∈ N, let r n = |I n (x)|
and J n be the left consecutive cylinder of I n (x) with the same order n. When n ≥ 2, we have

r n = β -n ≥ |J n | and B(x, r n ) ⊃ J n . Then ν p (B(x, r n )) ≥ ν p (J n ) ≥ p(1 -p) n-1 and ν p (I n (x)) = (1 -p)p n-2 which implies dim β loc ν p (x) = lim n→∞ log(1 -p)p n-2 log β -n = -log p log β and dim loc ν p (x) ≤ lim n→∞ log ν p (B(x, r n )) log r n ≤ lim n→∞ log p(1 -p) n-1 log β -n = -log(1 -p) log β . When 0 < p < 1/2, we have dim β loc (ν p , x) > dim loc (ν p , x).
Although the reverse inequality in Proposition 1.2.31 is not always true, we are going to establish the following theorem for estimating both of the upper and lower bounds of the Hausdorff dimension by the modified lower local dimension.

Theorem 1.2.33. Let β > 1, s ≥ 0, E ⊂ [0, 1) be a Borel set and ν be a finite Borel measure on [0, 1).

(

) If dim β loc ν(x) ≤ s for all x ∈ E, then dim H E ≤ s. 1 
(

) If dim β loc ν(x) ≥ s for all x ∈ E and ν(E) > 0, then dim H E ≥ s. 2 
Proof.

(1) follows from Proposition 1.2.29 (1) and Proposition 1.2.31.

(2) follows from the following Lemma 1.2.35. In fact, if

s = 0, dim H E ≥ s is obvious. If s > 0, let 0 < t < s. For any x ∈ E, by lim n→∞ log ν(In(x)) log |In(x)| ≥ s > t, there exists N ∈ N such that any n > N implies log ν(In(x)) log |In(x)| > t and ν(I n (x)) < |I n (x)| t . So lim n→∞ ν(In(x)) |In(x)| t ≤ 1 < 2. For any 0 < ε < t, by Lemma 1.2.35, we get H t-ε (E) > 0 (where H s (E) denotes the s- dimensional Hausdorff measure of the set E.) and then dim H E ≥ t -ε. So dim H E ≥ t for any t < s. Therefore dim H E ≥ s.
Remark 1.2.34. The statement (2) in Theorem 1.2.33 obviously implies the Proposition 1.3 in [START_REF] Bugeaud | Distribution of full cylinders and the Diophantine properties of the orbits in β-expansions[END_REF] which is called the modified mass distribution principle.

Recall that we use H s (E) to denotes the s-dimensional Hausdorff measure of the set

E. Lemma 1.2.35. Let β > 1, s > 0, c > 0, E ⊂ [0, 1) be a Borel set and ν be a finite Borel measure on [0, 1). If lim n→∞ ν(In(x)) |In(x)| s < c for all x ∈ E, then for any ε ∈ (0, s), we have H s-ε (E) ≥ c -1 ν(E).
This lemma is a combination of the next two. First we introduce the following concept.

Let β > 1, s ≥ 0 and E ⊂ [0, 1). For any δ > 0, we define

H s,β δ (E) := inf k |J k | s : |J k | ≤ δ, E ⊂ k J k , {J k } are countable cylinders .
It is increasing as δ 0. We call H s,β (E) := lim δ→0 H s,β δ (E) the s-dimensional Hausdorff measure of E related to the cylinder net of β.

Lemma 1.2.36. Let β > 1, s > 0 and E ⊂ [0, 1). Then for any ε ∈ (0, s) we have

H s,β (E) ≤ H s-ε (E).
Proof. Fix 0 < ε < s.

(1) Choose δ 0 > 0 small enough as below.

Since

β (n+1)ε → ∞ much faster than 8β s n → ∞ as n → ∞, there exists n 0 ∈ N such that for any n > n 0 , 8β s n ≤ β (n+1)ε . By -log δ log β -1 → ∞ as δ → 0 + , there exists δ 0 > 0 small enough such that -log δ 0 log β -1 > n 0 . Then for any n > -log δ 0 log β -1, we will have 8β s n ≤ β (n+1)ε . (2) Fix δ ∈ (0, δ 0 ). Let {U i } be a δ-cover of E, i.e., 0 < |U i | ≤ δ and E ⊂ ∪ i U i . Then for each U i , there exists n i ∈ N such that β -n i -1 < |U i | ≤ β -n i . By Proposition 1.2.9, U i can be covered by at most 8n i cylinders I i,1 , I i,2 , • • • , I i,8n i of order n i . Noting that |I i,j | ≤ β -n i < β|U i | ≤ βδ and E ⊂ i 8n i j=1 I i,j , CHAPTER 1 we get H s,β βδ (E) ≤ i 8n i j=1 |I i,j | s ≤ i 8n i β n i s ( ) ≤ i 1 β (n i +1)(s-ε) < i |U i | s-ε . (1.11)
where ( ) is because 1 (1). Taking inf on the right of (1.11), we get

β n i +1 < |U i | < δ 0 implies n i > -log δ 0 log β -1 and then 8n i β s ≤ β (n i +1)ε by
H s,β βδ (E) ≤ H s-ε δ (E). It follows from letting δ → 0 that H s,β (E) ≤ H s-ε (E). Lemma 1.2.37. Let β > 1, s ≥ 0, c > 0, E ⊂ [0, 1) be a Borel set and ν be a finite Borel measure on [0, 1). If lim n→∞ ν(In(x)) |In(x)| s < c for all x ∈ E, then H s,β (E) ≥ c -1 ν(E). Proof. For any δ > 0, let E δ := {x ∈ E : |I n (x)| < δ implies ν(I n (x)) < c|I n (x)| s }.
(1) Prove that when δ 0, E δ E as below.

1 If 0 < δ 2 < δ 1 , then obviously E δ 2 ⊃ E δ 1 .
2 It suffices to prove

E = δ>0 E δ . ⊃ follows from E ⊃ E δ for all δ > 0. ⊂ Let x ∈ E. By lim n→∞ ν(In(x)) |In(x)| s < c, there exists N x ∈ N such that any n > N x will have ν(I n (x)) < c|I n (x)| s . Let δ x = |I Nx (x)|, then |I n (x)| < δ x will imply n > N x and ν(I n (x)) < c|I n (x)| s . Therefore x ∈ E δx ⊂ δ>0 E δ . (2) Fix δ > 0. Let {J k } k∈K be countable cylinders such that |J k | < δ and k∈K J k ⊃ E ⊃ E δ . Let K = {k ∈ K : J k ∩ E δ = ∅}. For any k ∈ K , there exists x k ∈ J k ∪ E δ . By the definition of E δ , we get ν(J k ) < c|J k | s . So ν(E δ ) ≤ ν( k∈K J k ) ≤ k∈K ν(J k ) < k∈K c|J k | s ≤ c k∈K |J k | s .
Taking inf on the right, we get ν

(E δ ) ≤ cH s,β δ (E) ≤ cH s,β (E). Let δ → 0 on the left, by E δ E, we conclude that ν(E) ≤ cH s,β (E).

Hausdorff dimension of some frequency sets

We apply the Bernoulli-type measures and the modified lower local dimension related to β-expansions to give some results on the Hausdorff dimension of frequency sets and prove Theorem 1.2.6 in this subsection. First we prove the following. Then

dim H F β,a , dim H F β,a , dim H F β,a ≤ -a log a -(1 -a) log(1 -a) log β . In particular, dim H F β,0 = dim H F β,0 = dim H F β,0 = dim H F β,1 = dim H F β,1 = dim H F β,1 = 0.
Proof. We consider 0 < a < 1 first.

For any x ∈ [0, 1) and n ∈ N, it follows from ν a (I n (

x)) = a N 0 (x,n) (1 -a) N 1 (x,n) that -log ν a (I n (x)) = N 0 (x, n)(-log a) + N 1 (x, n)(-log(1 -a)) ≤ (n -N 1 (x, n))(-log a) + N 1 (x, n)(-log(1 -a))
.

By |I n (x)| ≤ β -n , we get -log ν a (I n (x)) -log |I n (x)| ≤ (1 -N 1 (x,n) n )(-log a) + N 1 (x,n) n (-log(1 -a)) log β .
(1.12)

(1) For any x ∈ F β,a , it follows from lim n→∞ (1

-N 1 (x,n) n ) = a and lim n→∞ N 1 (x,n) n = 1 -a that lim n→∞ log ν a (I n (x)) log |I n (x)| ≤ lim n→∞ (1 -N 1 (x,n) n )(-log a) + lim n→∞ N 1 (x,n) n (-log(1 -a)) log β = -a log a -(1 -a) log(1 -a) log β .
By Theorem 1.2.33 (1), we get

dim H F β,a ≤ -a log a -(1 -a) log(1 -a) log β .
(2) For any x ∈ F β,a , it follows from lim n→∞ (1

-N 1 (x,n) n ) = a and lim n→∞ N 1 (x,n) n = 1 -a that lim n→∞ log ν a (I n (x)) log |I n (x)| ≤ lim n→∞ (1 -N 1 (x,n) n )(-log a) + lim n→∞ N 1 (x,n) n (-log(1 -a)) log β = -a log a -(1 -a) log(1 -a) log β .
By Theorem 1.2.33 (1), we get

dim H F β,a ≤ -a log a -(1 -a) log(1 -a) log β . Therefore, it follows from F β,a = F β,a ∩ F β,a that dim H F β,a , dim H F β,a , dim H F β,a ≤ -a log a -(1 -a) log(1 -a) log β . Before proving dim H F β,0 = dim H F β,0 = dim H F β,0 = dim H F β,1 = dim H F β,1 =
dim H F β,1 = 0, we establish the following.
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Lemma 1.2.39. Let β ∈ (1, 2] and a ∈ (0, 1).

(1) Let

F β,≤a := x ∈ [0, 1) : lim n→∞ #{1 ≤ k ≤ n : ε k (x, β) = 0} n ≤ a .
Then

dim H F β,≤a ≤ -a log a -log(1 -a) log β .
(2) Let

F β,≥a := x ∈ [0, 1) : lim n→∞ #{1 ≤ k ≤ n : ε k (x, β) = 0} n ≥ a .
Then

dim H F β,≥a ≤ -log a -(1 -a) log(1 -a) log β .
Proof.

(1) For any x ∈ F β,≤a , it follows from (1.12), lim n→∞ (1

-N 1 (x,n) n ) ≤ a and N 1 (x,n) n ≤ 1 (∀n ∈ N) that lim n→∞ log ν a (I n (x)) log |I n (x)| ≤ -a log a -log(1 -a) log β .
By Theorem 1.2.33 (1), we get

dim H F β,≤a ≤ -a log a -log(1 -a) log β .
(2) For any x ∈ F β,≥a , it follows from (1.12), lim n→∞

N 1 (x,n) n ≤ 1 -a and 1 -N 1 (x,n) n ≤ 1 (∀n ∈ N) that lim n→∞ log ν a (I n (x)) log |I n (x)| ≤ -log a -(1 -a) log(1 -a) log β .
By Theorem 1.2.33 (1), we get

dim H F β,≥a ≤ -log a -(1 -a) log(1 -a) log β . Now we prove dim H F β,0 = dim H F β,0 = dim H F β,0 = dim H F β,1 = dim H F β,1 = dim H F β,1 = 0.
(1) For any 0 < a < 1,

F β,0 = F β,0 ⊂ F β,0 ⊂ F β,≤a implies dim H F β,0 = dim H F β,0 ≤ dim H F β,0 ≤ dim H F β,≤a . Let a → 0, by Lemma 1.2.39 (1), we get dim H F β,0 = dim H F β,0 = dim H F β,0 = 0.
(2) For any 0 < a < 1,

F β,1 = F β,1 ⊂ F β,1 ⊂ F β,≥a implies dim H F β,1 = dim H F β,1 ≤ dim H F β,1 ≤ dim H F β,≥a . Let a → 0, by Lemma 1.2.39 (2), we get dim H F β,1 = dim H F β,1 = dim H F β,1 = 0.
Before proving Theorem 1.2.6, we state the following two lemmas, which will be proved at the end of this subsection. 

n ≤ N 0 (x, n) + (m + 2)N 1 (x, n) ≤ n + m + 1. Lemma 1.2.41. Let β ∈ (1, 2) such that ε(1, β) = 10 m 10 ∞
for some integer m ≥ 0. Then for any p ∈ (0, 1), we have

m p [0, 1 β ) = m(1 -p) + 1 (m + 1)(1 -p) + 1 ,
where m p is given by Theorem 1.2.5.

Proof of Theorem 1.2.6. (1) For any x ∈ [0, 1), by Lemma 1.1.3, each digit 1 in ε(x, β) must be followed by at least m + 1 consecutive 0's. Thus 1 First, we consider m+1 m+2 < a < 1. For any x ∈ [1, 0) and n ∈ N, by Proposition 1.2.8, we get

lim n→∞ N 1 (x, n) n ≤ 1 m + 2 and then lim n→∞ #{1 ≤ k ≤ n : ε k (x, β) = 0} n ≥ m + 1 m + 2 for any x ∈ [0, 1). If 0 ≤ a < m+1 m+2 , we get F β,a = F β,a = F β,a = ∅. (2)
1 n log β -log c ≤ 1 -log |I n (x)| ≤ 1 n log β .
Let p := ma-m+2a-1 ma-m+a . By m+1 m+2 < a < 1 we get 0 < p < 1. Let ν p be the (p, 1 -p) Bernoulli-type measure on [0, 1). It follows from

-log ν p (I n (x)) = N 0 (x, n)(-log p) + N 1 (x, n)(-log(1 -p)) that N0(x,n) n (-log p) + N1(x,n) n (-log(1 -p)) log β -log c n ≤ log ν p (I n (x)) log |I n (x)| ≤ N0(x,n) n (-log p) + N1(x,n) n (-log(1 -p)) log β .
(1.13)

Taking lim n→∞ , we get

dim β loc ν p (x) = lim n→∞ N 0 (x,n) n (-log p) + N 1 (x,n) n (-log(1 -p)) log β . CHAPTER 1 i) Prove dim H F β,a ≤ (1-(m+2)(1-a))(-log p)+(1-a)(-log(1-p)) log β .
For any x ∈ F β,a , we have lim n→∞ N 1 (x,n) n = 1 -a and then by Lemma 1.2.40,

lim n→∞ N 0 (x,n) n = 1 -(m + 2)(1 -a). Thus dim β loc ν p (x) ≤ lim n→∞ N 0 (x,n) n (-log p) + lim n→∞ N 1 (x,n) n (-log(1 -p)) log β = (1 -(m + 2)(1 -a))(-log p) + (1 -a)(-log(1 -p)) log β .
Then we apply Theorem 1.2.33 (1).

ii

) Prove dim H F β,a ≤ (1-(m+2)(1-a))(-log p)+(1-a)(-log(1-p)) log β .
For any x ∈ F β,a , we have lim n→∞

N 1 (x,n) n
= 1 -a and then by Lemma 1.2.40,

lim n→∞ N 0 (x,n) n = 1 -(m + 2)(1 -a). Thus dim β loc ν p (x) ≤ lim n→∞ N 0 (x,n) n (-log p) + lim n→∞ N 1 (x,n) n (-log(1 -p)) log β = (1 -(m + 2)(1 -a))(-log p) + (1 -a)(-log(1 -p)) log β .
Then we apply Theorem 1.2.33 (1).

iii

) Prove dim H F β,a ≥ (1-(m+2)(1-a))(-log p)+(1-a)(-log(1-p)) log β .
For any x ∈ F β,a , we have lim n→∞ N 1 (x,n) n = 1 -a and then by Lemma 1.2.40,

lim n→∞ N 0 (x,n) n = 1 -(m + 2)(1 -a). Thus dim β loc ν p (x) = (1 -(m + 2)(1 -a))(-log p) + (1 -a)(-log(1 -p)) log β .
By Theorem 1.2.33 [START_REF] Barrera | Entropy, topological transitivity, and dimensional properties of unique q-expansions[END_REF], it suffices to prove ν p (F β,a ) = 1 > 0. Noting that

ε k (x, β) = 0 ⇔ βT k-1 β x = 0 ⇔ 0 ≤ T k-1 β x ≤ 1 β ⇔ 1 [0, 1 β ) (T k-1 β x) = 1, we get 1 n #{1 ≤ k ≤ n : ε k (x, β) = 0} = 1 n n k=1 1 [0, 1 β ) (T k-1 β x).
Since ([0, 1), B[0, 1), m p , T β ) is ergodic and the indicator function

1 [0, 1 β ) is m p -integrable, it follows from Birkhoff's ergodic theorem that lim n→∞ 1 n n k=1 1 [0, 1 β ) (T k-1 β x) = 1 [0, 1 β ) dm p = m p [0, 1 β ) by = ======== = Lemma 1.2.41 m(1 -p) + 1 (m + 1)(1 -p) + 1 by the = ======== = definition of p a for m p -a.e. x ∈ [0, 1). Therefore m p (F β,a ) = 1. By m p ∼ ν p , we get ν p (F β,a ) = 1 > 0. Combining i), ii), iii) and F β,a = F β,a ∩ F β,a , we get dim H F β,a = dim H F β,a = dim H F β,a = (1 -(m + 2)(1 -a))(-log p) + (1 -a)(-log(1 -p)) log β .
We draw the conclusion by p = ma-m+2a-1 ma-m+a . 2 For a = 1, by Theorem 1.2.38 we get dim

H F β,1 = dim H F β,1 = dim H F β,1 = 0. 3 Prove dim H F β, m+1 m+2 = dim H F β, m+1 m+2 = dim H F β, m+1 m+2 = 0. By lim n→∞ #{1≤k≤n:ε k (x,β)=0} n ≥ m+1 m+2 for any x ∈ [0, 1) in (1), we get F β, m+1 m+2 = F β, m+1 m+2 . Since F β, m+1 m+2 ⊂ F β, m+1 m+2 , it suffices to prove dim F β, m+1 m+2 = 0.
For m+1 m+2 < a < 1, let p := ma-m+2a-1 ma-m+a . Then 0 < p < 1. For any x ∈ F β,≤a (see Lemma 1.2.39 (1) for definition), we have lim n→∞

N 1 (x,n) n
≥ 1 -a and then by Lemma 1.2.40,

lim n→∞ N 0 (x,n) n ≤ 1 -(m + 2)(1 -a). It follows from N 1 (x,n) n ≤ 1 (∀n ∈ N) and (1.13) that lim n→∞ log ν p (I n (x)) log |I n (x)| ≤ - (1 -(m + 2)(1 -a)) log p + log(1 -p) log β
for any x ∈ F β,≤a . By Theorem 1.2.33 (1) and the definition of p, we get dim

H F β,≤a ≤ - (ma -m + 2a -1) log(ma -m + 2a -1) -(ma -m + 2a -1) log(ma -m + a) + log(1 -p) log β .
For any m+1 m+2 < a < 

≤ N 0 (w) + (m + 2)N 1 (w) (2) 
≤ n + m + 1.

(1) Let Noting that by Proposition 1.1.16, u0 m+1 is full for any u ∈ Σ * β and then u0 m+1 1 is CHAPTER 1 admissible, we get

N 10 (w) := {2 ≤ k ≤ n : w k-1 w k = 10}, N 100 (w) := {3 ≤ k ≤ n : w k-2 w k-1 w k = 100}, • • • , N 10 m+1 (w) := {m + 2 ≤ k ≤ n : w k-m-1 • • • w k = 10
{1 ≤ k ≤ n : w k = 0} = (N 0 (w) + 1) ∪ N 10 (w) ∪ N 100 (w) ∪ • • • ∪ N 10 m+1
which is a disjoint union. Thus

#{1 ≤ k ≤ n : w k = 0} = N 0 (w) + N 10 (w) + N 100 (w) + • • • + N 10 m+1 (w)
and then

n = N 0 (w) + N 10 (w) + N 100 (w) + • • • + N 10 m+1 (w) + N 1 (w)
.

By N 10 (w), N 100 (w), • • • , N 10 m+1 (w) ≤ N 1 (w), we get n ≤ N 0 (w) + (m + 2)N 1 (w).
(

) If N 1 (w) = 0, the conclusion is obvious. If N 1 (w) ≥ 1, except for the last digit 1 in w, 2 
by Lemma 1.1.3, the other 1's must be followed by at least m + 1 consecutive 0's, and non of these 0's can be replaced by 1 to get an admissible word. Therefore

N 1 (w) + (m + 1)(N 1 (w) -1) + N 0 (w) ≤ n, i.e., N 0 (w) + (m + 2)N 1 (w) ≤ n + m + 1. Proof of Lemma 1.2.41. Notice that m p [0, 1 β ) = 1 -m p [ 1 β , 1)
where

m p [ 1 β , 1) = lim n→∞ 1 n n-1 k=0 ν p T -k β [ 1 β , 1) = lim n→∞ 1 n n-1 k=0 µ p σ -k β [1]
by Theorem 1.2.5. For any integer k ≥ 0, let

a k := µ p σ -k β [1] = u 1 •••u k 1∈Σ * β µ p [u 1 • • • u k 1] and b k := µ p σ -k β [0 m+1 ] = u 1 •••u k 0 m+1 ∈Σ * β µ p [u 1 • • • u k 0 m+1 ].
By Theorem 1.2.5, the limits

a := lim n→∞ 1 n n-1 k=0 a k and b := lim n→∞ 1 n n-1 k=0 b k exist. (1) Prove a = (1 -p)b. In fact, b k+1 = u 1 •••u k 00 m+1 ∈Σ * β µ p [u 1 • • • u k 00 m+1 ] + u 1 •••u k 10 m+1 ∈Σ * β µ p [u 1 • • • u k 10 m+1 ] = u 1 •••u k 0 m+1 ∈Σ * β µ p [u 1 • • • u k 0 m+1 0] + u 1 •••u k 1∈Σ * β µ p [u 1 • • • u k 10 m+1 ].
On the one hand, by Proposition 1.1.16,

u 1 • • • u k 0 m+1 is full and then u 1 • • • u k 0 m+1 1 ∈ Σ * β . On the other hand, by Lemma 1.1.3, for any 0 ≤ s ≤ m, u 1 • • • u k 10 s 10 m-s / ∈ Σ * β and then [u 1 • • • u k 10 m+1 ] = [u 1 • • • u k 1]. Thus, it follows from the definition of µ p that b k+1 = p u 1 •••u k 0 m+1 ∈Σ * β µ p [u 1 • • • u k 0 m+1 ] + u 1 •••u k 1∈Σ * β µ p [u 1 • • • u k 1] = pb k + a k . Let n → ∞ in 1 n n-1 k=0 b k+1 = p • 1 n n-1 k=0 b k + 1 n n-1 k=0 a k .
We get b = pb + a.

(2) Prove b + (m + 1)a = 1. It follows from

u 1 •••u k 0 m+1 ∈Σ * β [u 1 • • • u k 0 m+1 ] ∪ u 1 •••u k 1∈Σ * β [u 1 • • • u k 1] ∪ u 1 •••u k+1 1∈Σ * β [u 1 • • • u k+1 1] ∪ • • • ∪ u 1 •••u k+m 1∈Σ * β [u 1 • • • u k+m 1] = u 1 •••u k 0 m+1 ∈Σ * β [u 1 • • • u k 0 m+1 ] ∪ u 1 •••u k 10 m ∈Σ * β [u 1 • • • u k 10 m ] ∪ u 1 •••u k+1 10 m-1 ∈Σ * β [u 1 • • • u k+1 10 m-1 ] ∪ • • • ∪ u 1 •••u k+m 1∈Σ * β [u 1 • • • u k+m 1] = Σ β that b k + a k + a k+1 + • • • + a k+m = 1. Let n → ∞ in 1 n n-1 k=0 b k + 1 n n-1 k=0 a k + 1 n n-1 k=0 a k+1 + • • • + 1 n n-1 k=0 a k+m = 1. We get b + a + a + • • • + a = 1.
(3) It follows from ( 1) and ( 2) that a =

1-p (m+1)(1-p)+1 . Therefore m p [0, 1 β ) = 1 -a = m(1 -p) + 1 (m + 1)(1 -p) + 1
.
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Hausdorff dimension of frequency sets

Recall that Σ β is the set of admissible sequences and let S β be its closure in the metric

space (A N β , d β ), where A β is the alphabet {0, 1, • • • , β -1} and d β is the usual metric on A N
β (also on S β ) defined by (1.9). In this section, we use π β : S β → [0, 1] to denote the natural projection map defined by (1.3) restricted to S β (so π -1 β A ⊂ S β for any A ⊂ [0, 1]). As the first main result in this section, the following theorem is a folklore result used in some former papers without explicit proof (for example [START_REF] Thompson | Irregular sets, the β-transformation and the almost specification property[END_REF]Section 5]).

Theorem 1.3.1. Let β > 1. The Hausdorff dimension of any set Z in (S β , d β ) is equal to the Hausdorff dimension of its natural projection in [0, 1], i.e., dim H (Z, d β ) = dim H π β (Z).
It is worth to note that dim H (Z, d β ) ≥ dim H π β (Z) follows immediately from the fact that π β is Lipschitz continuous. But even if omitting countable many points to make π β invertible, the inverse is not Lipschitz continuous. This makes the proof of the inverse inequality much more intricate. We will prove it by using a covering property (see Proposition 1.2.9) given by a recent result on the distribution of full cylinders.

In the following, we consider the digit frequencies of the expansions. This is a classical research topic began by Borel in 1909. His well known normal number theorem [START_REF] Borel | Les probabilités dénombrables et leurs applications arithmétiques[END_REF] implies that, for Lebesgue almost every x ∈ [0, 1], the digit frequency of 0's in its binary expansion is equal to 1 2 . Given β > 1, for any a ∈ [0, 1], recall from Section 1.2 that those x's in [0, 1) with digit frequencies of 0's equal to a in their β-expansions constitute the frequency set

F β,a := x ∈ [0, 1) : lim n→∞ #{1 ≤ k ≤ n : ε k (x, β) = 0} n = a ,
where ε k (x, β) is the kth digit in the β-expansion of x and # denotes the cardinality. For

β = 2, Borel's normal number theorem means that F 2, 1 2
is of full Lebesgue measure, and implies that F 2,a is of zero Lebesgue measure for all a = 1 2 . This leaves a natural question: How large is F 2,a in the sense of dimension? Forty years later, another well known result given by Eggleston [START_REF] Eggleston | The fractional dimension of a set defined by decimal properties[END_REF] showed that

dim H F 2,a = -a log a -(1 -a) log(1 -a) log 2 for all a ∈ [0, 1].
For the case that β is not an integer, the above question, about giving concrete formulae Recall that σ is the shift map on A N β defined by (1.2), and we also use it to denote its restriction on S β for simplification throughout this section (so σ -1 A ⊂ S β for any A ⊂ S β ).

Let M σ (S β ) be the set of σ-invariant Borel probability measures on S β and h µ (σ) be the measure-theoretic entropy of σ with respect to the measure µ.

In the following, we regard 0 log 0, 0 log 0 0 , max ∅ and sup ∅ as 0.

Theorem 1.3.2. Let β > 1 such that ε(1, β) = ε 1 (1, β) • • • ε m (1, β)0 ∞ for some integer m ≥ 2 with ε m (1, β) = 0 and let a ∈ [0, 1]. Then dim H F β,a = 1 log β •max h µ (σ) : µ ∈ M σ (S β ), µ[0] = a, µ is an (m-1)-Markov measure .
More concretely,

dim H F β,a = 1 log β • max h µ (β, m) : µ is a (β, m, a)-coordinated set function ,
where for a set function µ defined from

{[w] : w ∈ ∪ m n=1 Σ n β } to [0, 1], h µ (β, m) := - w 1 •••wm∈Σ m β µ[w 1 • • • w m ] log µ[w 1 • • • w m ] µ[w 1 • • • w m-1 ] ,
and

µ is called (β, m, a)-coordinated if µ[0] = a, v∈A β µ[v] = 1, v∈A β wv∈Σ * β µ[wv] = µ[w] and u∈A β uw∈Σ * β µ[uw] = µ[w] for all w ∈ ∪ m-1 n=1 Σ n β .
Note that for any (m -1)-Markov measure µ ∈ M σ (S β ), h µ (σ) is exactly equal to

h µ (β, m) (see Proposition 1.3.12).
As applications of the above theorem, we can obtain exact formulae for the Hausdorff dimension of frequency sets for the β's in Theorem 1.2.6 and for another important class of β's in the following theorem, which are called pseudo-golden ratios

Theorem 1.3.3. Let β ∈ (1, 2) such that ε(1, β) = 1 m 0 ∞ for some integer m ≥ 3. (1) If 0 ≤ a < 1 m , then F β,a = ∅ and dim H F β,a = 0. (2) If 1 m ≤ a ≤ 1, then dim H F β,a = 1 log β • max x 1 ,••• ,x m-2 f a (x 1 , • • • , x m-2 )
where

f a (x 1 , • • • , x m-2 ) = a log a -(a -x 1 ) log(a -x 1 ) -(x 1 -x 2 ) log(x 1 -x 2 ) • • • -(x m-3 -x m-2 ) log(x m-3 -x m-2 ) -(1 -a -x 1 -• • • -x m-2 ) log(1 -a -x 1 -• • • -x m-2 ) -(x 1 + • • • + x m-3 + 2x m-2 + a -1) log(x 1 + • • • + x m-3 + 2x m-2 + a -1)
and the maximum is taken over

x 1 , • • • , x m-2 such that all terms in the log's are non- negative. That is, a ≥ x 1 ≥ x 2 ≥ • • • ≥ x m-2 ≥ 0 and x 1 + • • • + x m-3 + x m-2 ≤ 1 -a ≤ x 1 + • • • + x m-3 + 2x m-2 .
In particular, dim

H F β, 1 m = dim H F β,1 = 0. Remark 1.3.4.
For the case m = 3, i.e., ε(1, β) = 1110 ∞ , given any a ∈ [ 1 3 , 1], by calculating the derivative of f a (x 1 ), it is straightforward to get

dim H F β,a = 1 log β a log a - 10a -3 - √ -8a 2 + 12a -3 6 log 10a -3 - √ -8a 2 + 12a -3 6 - -2a + 3 - √ -8a 2 + 12a -3 6 log -2a + 3 - √ -8a 2 + 12a -3 6 - -a + √ -8a 2 + 12a -3 3 log -a + √ -8a 2 + 12a -3 3 .
In particular, dim H F β,

1 3 = dim H F β,1 = 0.
Base on Sections 1.1 and 1. 

Notation and preliminaries

In Lemma 1.1.3, we introduce Parry's criterion for Σ β . Here we also need the criterion for

S β .
Lemma 1.3.5 ([99]). Let β > 1 and w be a sequence in A N β . Then

w ∈ Σ β ⇐⇒ σ k (w) ≺ ε * (1, β) for all k ≥ 0 and w ∈ S β ⇐⇒ σ k (w) ε * (1, β) for all k ≥ 0
where ≺ and denote the lexicographic order in A N β .

We prove the following useful proposition.

Proposition 1.3.6. Let β > 1 such that ε(1, β) = ε 1 (1, β) • • • ε m (1, β)0 m for some integer m ≥ 2 with ε m (1, β) = 0 and w 1 • • • w n ∈ A n β for some integer n ≥ m, then w 1 • • • w n ∈ Σ * β if and only if w 1 • • • w m , w 2 • • • w m+1 , • • • , w n-m+1 • • • w n ∈ Σ * β .
Proof. ⇒ Obvious.

⇐ For simplification we use

ε 1 , • • • , ε m instead of ε 1 (1, β), • • • , ε m (1, β) in the following.
Suppose

w 1 • • • w m , w 2 • • • w m+1 , • • • , w n-m+1 • • • w n ∈ Σ * β .
By Lemma 1.3.5 we get

w 1 • • • w m , w 2 • • • w m+1 , • • • , w n-m+1 • • • w n ε 1 • • • ε m-1 (ε m -1).
In order to get

w 1 • • • w n ∈ Σ * β , by Lemma 1.3.5, it suffices to check σ k (w 1 • • • w n 0 ∞ ) ≺ (ε 1 • • • ε m-1 (ε m -1)) ∞ for all k ≥ 0.
If k ≥ n, this is obvious. We consider k ≤ n -1 in the following. Let l ≥ 0 be the greatest integer such that k + lm ≤ n -1. Then

σ k (w 1 • • • w n 0 ∞ ) = (w k+1 • • • w k+m )(w k+m+1 • • • w k+2m ) • • • (w k+(l-1)m+1 • • • w k+lm )(w k+lm+1 • • • w n 0 k+(l+1)m-n )0 ∞ (ε 1 • • • ε m-1 (ε m -1)) l (w k+lm+1 • • • w n 0 k+(l+1)m-n )0 ∞ ≺ (ε 1 • • • ε m-1 (ε m -1)) ∞ ,
where the last inequality follows from

w k+lm+1 • • • w n 0 k+(l+1)m-n ε 1 • • • ε m-1 (ε m -1), (1.14) 
which can be proved as follows. In fact, by w n-m+1 

σ k+(l+1)m-n (w n-m+1 • • • w n 0 ∞ ) ≺ (ε 1 • • • ε m-1 (ε m -1)) ∞ .
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This implies (1.14).

Definition 1.3.7 (Hausdorff measure and dimension in metric space). Let (X, d) be a metric space. For any U ⊂ X, denote the diameter of U by |U | := sup x,y∈U d(x, y). For any A ⊂ X, s ≥ 0 and δ > 0, let

H s δ (A, d) := inf ∞ i=1 |U i | s : A ⊂ ∞ i=1 U i and |U i | ≤ δ for all i ∈ N .
We define the s-dimensional Hausdorff measure of A in (X, d) by

H s (A, d) := lim δ→0 H s δ (A, d)
and the Hausdorff dimension of A in (X, d) by

dim H (A, d) := sup{s ≥ 0 : H s (A, d) = ∞}.
In the space of real numbers R (equipped with the usual metric), we use H s (A) and dim H A to denote the s-dimensional Hausdorff measure and the Hausdorff dimension of A respectively for simplification.

Definition 1.3.8 (Lipschitz continuous). Let (X, d) and (X , d ) be two metric spaces. A map f : X → X is called Lipschitz continuous if there exists a constant c > 0 such that

d (f (x), f (y)) ≤ c • d(x, y) for all x, y ∈ X.
The following basic proposition can be deduced directly from the definitions.

Proposition 1.3.9. If the map f : (X, d) → (X , d ) between two metric spaces is Lipschitz continuous, then for any A ⊂ X, we have

dim H (f (A), d ) ≤ dim H (A, d).
Recall that M σ (S β ) is the set of σ-invariant Borel probability measures on S β . The following is a consequence of Carathéodory's measure extension theorem and the fact that for verifying the σ-invariance of measures on S β , one only needs to check it for the cylinders.

Proposition 1.3.10. Let β > 1. Any set function µ from {[w] : w ∈ Σ * β } to [0, 1] satisfying v∈A β µ[v] = 1, v∈A β wv∈Σ * β µ[wv] = µ[w] and u∈A β uw∈Σ * β µ[uw] = µ[w]
for all w ∈ Σ * β can be uniquely extended to be a measure in M σ (S β ).

The following concept is well known (see for examples [65, Section 2] and [80, Section 6.2]).

Definition 1.3.11 (k-Markov measure). Let β > 1, k ∈ N and µ ∈ M σ (S β ). We call µ a k-Markov measure if µ[w 1 • • • w n ] = µ[w 1 • • • w n-1 ] • µ[w n-k • • • w n ] µ[w n-k • • • w n-1 ] for all w 1 • • • w n ∈ Σ n β with n > k.
Recall that h µ (σ) is the measure-theoretic entropy of σ with respect to the measure µ.

Using P := {[v] : v ∈ A β }
as a partition generator of the Borel sigma-algebra on S β , the proof of the following proposition is straightforward.

Proposition 1.3.12. Let β > 1, k ∈ N and µ ∈ M σ (S β ) be a k-Markov measure, then h µ (σ) = - w 1 •••w k+1 ∈Σ k+1 β µ[w 1 • • • w k+1 ] log µ[w 1 • • • w k+1 ] µ[w 1 • • • w k ] . 1.3.2 Proof of Theorem 1.3.1
The main we need to prove is the following technical lemma.

Lemma 1.3.13. Let β > 1, s > 0 and Z ⊂ S β . Then for any ε ∈ (0, s), we have

H s (Z, d β ) ≤ H s-ε (π β (Z)).
Proof. Fix ε ∈ (0, s). Let Z 0 := Z ∩ Σ β . Since S β \ Σ β is countable, we only need to prove

H s (Z 0 , d β ) ≤ H s-ε (π β (Z 0 )).
(1) Choose δ 0 ∈ (0, 1 β ) small enough as follows. Since β (n+1)ε → ∞ much faster than 8β s n → ∞ as n → ∞, there exists n 0 ∈ N such that for any n > n 0 , 8β s n ≤ β (n+1)ε . By

-log δ log β -1 → ∞ as δ → 0 + , there exists δ 0 ∈ (0, 1 β ) small enough such that -log δ 0 log β -1 > n 0 . Then for any n > -log δ 0 log β -1, we will have 8β s n ≤ β (n+1)ε . (2) For any δ ∈ (0, δ 0 ), let {U i } be a δ-cover of π β (Z 0 ), i.e., 0 < |U i | ≤ δ and π β (Z 0 ) ⊂ ∪ i U i .
Then for each U i , there exists n i ∈ N such that 1

β n i +1 < |U i | ≤ 1 β n i . By Proposition 1.2.9, U i can be covered by at most 8n i cylinders I i,1 , I i,2 , • • • , I i,8n i of order n i . It follows from |Σ β ∩ π -1 β I i,j | = 1 β n i < β|U i | ≤ βδ and Z 0 ⊂ Σ β ∩ i π -1 β U i ⊂ i 8n i j=1 (Σ β ∩ π -1 β I i,j ) that H s βδ (Z 0 , d β ) ≤ i 8n i j=1 |Σ β ∩ π -1 β I i,j | s = i 8n i β n i s ( ) ≤ i 1 β (n i +1)(s-ε) < i |U i | s-ε , (1.15)
where ( ) is because 1

β n i +1 < |U i | < δ 0 implies n i > -log δ 0 log β -1
, and then by (1) we have 8n i β s ≤ β (n i +1)ε . Taking inf on the right of (1.15), we get

H s βδ (Z 0 , d β ) ≤ H s-ε δ (π β (Z 0 )). It follows from letting δ → 0 that H s (Z 0 , d β ) ≤ H s-ε (π β (Z 0 )).
Proof of Theorem 1.3.1. The inequality dim H (Z, d β ) ≥ dim H π β (Z) follows from Proposition 1.3.9 and the fact that π β is Lipschitz continuous. The inverse inequality follows from Lemma 1.3.13. In fact, for any t < dim H (Z, d β ), there exists s such that

t < s < dim H (Z, d β ). By H s (Z, d β ) = ∞ and Lemma 1.3.13, we get H t (π β (Z)) = ∞. Thus t ≤ dim H π β (Z). It means that dim H (Z, d β ) ≤ dim H π β (Z).

Proof of Theorem 1.3.2

We will deduce Theorem 1.3.2 from the following proposition, which is essentially from [START_REF] Pfister | Large deviations estimates for dynamical systems without the specification property. Applications to the β-shifts[END_REF].

Proposition 1.3.14. Let β > 1 and a ∈ [0, 1]. Then dim H F β,a = 1 log β • sup h µ (σ) : µ ∈ M σ (S β ), µ[0] = a .
For the convenience of the readers, we recall some definitions and show how Proposition (1) For any w ∈ S β and n ∈ N, the empirical measure is defined by

E n (w) := 1 n n-1 i=0 δ σ i w
where δ w is the Dirac probability measure concentrated on w.

(2) Let A be an arbitrary non-empty parameter set and let

F := (f α , c α , d α ) : α ∈ A where f α : S β → R is continuous and c α , d α ∈ R with c α ≤ d α for all α ∈ A. Define S β,F := w ∈ S β : ∀α ∈ A, c α ≤ lim n→∞ f α dE n (w) ≤ lim n→∞ f α dE n (w) ≤ d α and M β,F := µ ∈ M σ (S β ) : ∀α ∈ A, c α ≤ f α dµ ≤ d α .
Combining Theorems 5.2 and 5.3 in [START_REF] Pfister | Large deviations estimates for dynamical systems without the specification property. Applications to the β-shifts[END_REF], we get the following.

Lemma 1.3.16. Let β > 1. If M β,F is a non-empty closed connected set, then h top (S β,F , σ) = sup h µ (σ) : µ ∈ M β,F
where h top (S β,F , σ) is the topological entropy of S β,F in the dynamical system (S β , d β , σ).

(See [START_REF] Bowen | Topological entropy for noncompact sets[END_REF] for the definition of the topological entropy for non-compact sets.)

For β > 1 and a ∈ [0, 1], let S β,a := w ∈ S β : lim n→∞ #{1 ≤ k ≤ n : w k = 0} n = a .
In Definition 1.3.15 (2), let F be the singleton {(1 [0] , a, a)}, where the characteristic function 1 [0] : S β → R is continuous. (Here we note that another characteristic function

1 [0, 1 β ] : [0, 1] → R is not continuous
, which means that some other similar variational formulae corresponding to dynamical systems on [0,1] can not be applied directly in our case.) We get the following lemma as a special case of the above one.

Lemma 1.3.17.

h top (S β,a , σ) = sup h µ (σ) : µ ∈ M σ (S β ), µ[0] = a .
Hence, Proposition 1.3.14 follows from

dim H F β,a π β (S β,a )\F β,a ========== is countable dim H π β (S β,a ) by ========== Theorem 1.3.1 dim H (S β,a , d β ) by = ======== = Lemma 1.3.18 1 log β • h top (S β,a , σ), where π β (S β,a ) \ F β,a is countable since we can check π β (S β,a ) \ F β,a ⊂ π β (S β \ Σ β ) and Lemma 1.3.5 implies that S β \ Σ β is countable. Lemma 1.3.18. ([114, Lemma 5.3]) Let β > 1. For any Z ⊂ S β , we have dim H (Z, d β ) = 1 log β • h top (Z, σ).
We give the following proofs to end this subsection.

Proof of Lemma 1.3.17. In Definition 1.3.15 (2), let F be the singleton {(1 [0] , a, a)}. Then → µ (i.e. µ n k converge to µ under the weak* topology). By

S β,F = w ∈ S β : lim n→∞ 1 n n-1 i=0 1 [0] (σ i w) = a = S β,a
µ n k • σ -1 w * → µ • σ -1 and µ n k • σ -1 -µ n k w * → 0, we get µ • σ -1 = µ and then µ ∈ M σ (S β ). It follows from µ[0] = 1 [0] dµ = lim k→∞ 1 [0] dµ n k = lim k→∞ 1 n k n k -1 i=0 1 [0] (σ i w) w∈S β,a = ==== = a that µ ∈ M β,a , which contradicts M β,a = ∅.
(

) If M β,a = ∅, by Lemma 1.3.16, it suffices to prove that M β,a is a closed connected set in M σ (S β ). 1 Prove that M β,a is closed. Let {µ n , n ∈ N} ⊂ M β,a and µ ∈ M σ (S β ) such that µ n w * → µ. It follows from µ[0] = 1 [0] dµ = lim n→∞ 1 [0] dµ n = lim n→∞ µ n [0] = a that µ ∈ M β,a . 2 
2 Prove that M β,a is connected. It suffices to prove that M β,a is path connected. In fact, for any µ 0 , µ 1 ∈ M β,a , we define the path f :

[0, 1] → M β,a by f (s) := µ s := (1 -s)µ 0 + sµ 1 for s ∈ [0, 1]. Then f (0) = µ 0 , f (1) = µ 1 and f ([0, 1]) ⊂ M β,a . It remains to show that f is continuous. Let {s, s n , n ≥ 1} ⊂ [0, 1] such that s n → s. We only need to prove f (s n ) → f (s), i.e., µ sn w * → µ s . Let φ : S β → R be a continuous function. It suffices to check φ dµ sn → φ dµ s , i.e., ( 1 
-s n ) φ dµ 0 + s n φ dµ 1 → (1 -s) φ dµ 0 + s φ dµ 1 .
This follows immediately from s n → s.

Proof of Theorem 1.3.2. By Proposition 1.3.14 it suffices to consider the following (1), ( 2) and ( 3).

(1) We have

sup h µ (σ) : µ ∈ M σ (S β ), µ[0] = a, µ is an (m -1)-Markov measure ≤ sup h µ (σ) : µ ∈ M σ (S β ), µ[0] = a ≤ sup h µ (β, m) : µ is a (β, m, a)-coordinated set function .
Since the first inequality is obvious, we only prove the second one as follows.

Let µ ∈ M σ (S β ) such that µ[0] = a. Restricted to {[w] : w ∈ ∪ m n=1 Σ n β }, µ is obviously a (β, m, a)- coordinated set function. It suffices to prove h µ (σ) ≤ h µ (β, m). Using P := {[v] : v ∈ A β }
as a partition generator of the Borel sigma-algebra on (S β , d β ), by simple calculation, we get that the conditional entropy of P given m-1 k=1 σ -k P with respect to µ, denoted by H µ P | m-1 k=1 σ -k P , is equal to h µ (β, m). Since H µ P | n-1 k=1 σ -k P decreases as n increases and [START_REF] Walters | An introduction to ergodic theory[END_REF]Theorem 4.14] says that it converges to h µ (σ), we get h µ (σ) ≤ h µ (β, m).

In the following we attached the calculation mentioned above.

H µ P | m-1 k=1 σ -k P = H µ P | σ -1 ( m-2 k=0 σ -k P) = - P ∈P, Q∈ m-2 k=0 σ -k P µ(P ∩ σ -1 Q) log µ(P ∩ σ -1 Q) µ(σ -1 Q) = - w 1 •••wm∈Σ * β µ[w 1 • • • w m ] log µ[w 1 • • • w m ] µ(σ -1 [w 2 • • • w m ]) = w 1 •••wm∈Σ * β µ[w 1 • • • w m ] log µ[w 2 • • • w m ] - w 1 •••wm∈Σ * β µ[w 1 • • • w m ] log µ[w 1 • • • w m ] = w 2 •••wm∈Σ * β µ[w 2 • • • w m ] log µ[w 2 • • • w m ] - w 1 •••wm∈Σ * β µ[w 1 • • • w m ] log µ[w 1 • • • w m ] = w 1 •••w m-1 ∈Σ * β µ[w 1 • • • w m-1 ] log µ[w 1 • • • w m-1 ] - w 1 •••wm∈Σ * β µ[w 1 • • • w m ] log µ[w 1 • • • w m ] = w 1 •••wm∈Σ * β µ[w 1 • • • w m ] log µ[w 1 • • • w m-1 ] - w 1 •••wm∈Σ * β µ[w 1 • • • w m ] log µ[w 1 • • • w m ] = - w 1 •••wm∈Σ * β µ[w 1 • • • w m ] log µ[w 1 • • • w m ] µ[w 1 • • • w m-1 ] = h µ (β, m).
(2) Prove ⊃ Let µ be a (β, m, a)-coordinated set function. By the entropy formula Proposition 1.3.12, it suffices to show that µ can be extended to be an (m -1)-Markov measure in M σ (S β ). Note that µ is already defined on all the cylinders of order ≤ m. Suppose that for some n ≥ m, µ is already defined on

h µ (σ) : µ ∈ M σ (S β ), µ[0] = a, µ is an (m -1)-Markov measure = h µ (β, m) : µ is a (β,
{[w 1 • • • w n ] : w 1 • • • w n ∈ Σ n β }. Then for all w 1 • • • w n+1 ∈ Σ n+1 β we define µ[w 1 • • • w n+1 ] := µ[w 1 • • • w n ] • µ[w n-m+2 • • • w n+1 ] µ[w n-m+2 • • • w n ]
where the right hand side is regarded as

0 if one of µ[w 1 • • • w n ], µ[w n-m+2 • • • w n ] and µ[w n-m+2 • • • w n+1 ] is 0. By Proposition 1.3.10 it suffices to check 1 v∈A β wv∈Σ * β µ[wv] = µ[w] and 2 u∈A β uw∈Σ * β µ[uw] = µ[w]
for all w ∈ Σ n β with n ≥ m. (Note that for n ≤ m -1, 1 and 2 are already guaranteed by the condition that µ is (β, m, a)-coordinated.)

1 Let n ≥ m and w 1 • • • w n ∈ Σ n β . Then v∈A β w 1 •••wnv∈Σ * β µ[w 1 • • • w n v] = v∈A β w 1 •••wnv∈Σ * β µ[w 1 • • • w n ] • µ[w n-m+2 • • • w n v] µ[w n-m+2 • • • w n ] ( ) = µ[w 1 • • • w n ],
where ( ) can be proved as follows.

i

) If µ[w 1 • • • w n ] = 0, then ( ) is obvious. ii) If µ[w n-m+2 • • • w n ] = 0, since the fact that µ is (β, m, a)-coordinated implies µ[w n-m+1 • • • w n ] ≤ µ[w n-m+2 • • • w n ], we get µ[w n-m+1 • • • w n ] = 0. Then µ[w 1 • • • w n ] = µ[w 1 • • • w n-1 ] • µ[w n-m+1 • • • w n ] µ[w n-m+1 • • • w n-1 ] = 0
and ( ) follows.

iii

) If µ[w 1 • • • w n ] = 0 and µ[w n-m+2 • • • w n ] = 0, then ( ) follows from v∈A β w 1 •••wnv∈Σ * β µ[w n-m+2 • • • w n v] ( ) = v∈A β w n-m+2 •••wnv∈Σ * β µ[w n-m+2 • • • w n v] = µ[w n-m+2 • • • w n ],
where the last equality follows from the fact that µ is (β, m, a)-coordinated, and ( ) follows from the fact that w 1 • • • w n ∈ Σ * β and Proposition 1.3.6 imply the equivalence

of w 1 • • • w n v ∈ Σ * β and w n-m+2 • • • w n v ∈ Σ * β . 2 Prove u∈A β uw 1 •••wn∈Σ * β µ[uw 1 • • • w n ] = µ[w 1 • • • w n ] for all w 1 • • • w n ∈ Σ n
β and n ≥ m by induction. Since µ is (β, m, a)-coordinated, the conclusion is true for n = m -1. Now suppose that the conclusion is already true for some n ≥ m -1. We consider n + 1 in the following. Let

w 1 • • • w n+1 ∈ Σ n+1 β . Then u∈A β uw 1 •••w n+1 ∈Σ * β µ[uw 1 • • • w n+1 ] ( ) = u∈A β uw 1 •••wn∈Σ * β µ[uw 1 • • • w n+1 ] = u∈A β uw 1 •••wn∈Σ * β µ[uw 1 • • • w n ] • µ[w n-m+2 • • • w n+1 ] µ[w n-m+2 • • • w n ] ( ) = µ[w 1 • • • w n ] • µ[w n-m+2 • • • w n+1 ] µ[w n-m+2 • • • w n ] = µ[w 1 • • • w n+1 ],
where ( ) follows from the fact that

w 1 • • • w n+1 ∈ Σ * β and Proposition 1.3.6 imply the equivalence of uw 1 • • • w n+1 ∈ Σ * β and uw 1 • • • w n ∈ Σ * β
, and ( ) follows from inductive hypothesis.

(3) By the definition of (β, m, a)-coordinated set functions and h µ (β, m), it is straightforward to see that the supremum of h µ (β, m) : µ is a (β, m, a)-coordinated set function can be achieved as a maximum.

Proof of Theorem 1.3.3

We need the following lemma which follows immediately from the convexity of the function

x log x. Lemma 1.3.19. Let φ : [0, ∞) → R be defined by φ(x) = 0 if x = 0; -x log x if x > 0.
Then for all x, y ∈ [0, ∞) and a, b ≥ 0 with a + b = 1, aφ(x) + bφ(y) ≤ φ(ax + by).

The equality holds if and only if x = y, a = 0 or b = 0.

Proof of Theorem 1.3.3.

CHAPTER 1

(1) By ε * (1, β) = (1 m-1 0) ∞ and Lemma 1.3.5, we know that for any x ∈ [0, 1), every m consecutive digits in ε(x, β) must contain at least one 0. This implies

#{1 ≤ k ≤ n : ε k (x, β) = 0} ≥ n m
for all n ∈ N, and then

lim n→∞ #{1 ≤ k ≤ n : ε k (x, β) = 0} n ≥ 1 m for any x ∈ [0, 1). If 0 ≤ a < 1 m , we get F β,a = ∅.
(

) When 1 m ≤ a ≤ 1, f a is a continuous function on its domain of definition D m,a := (x 1 , x 2 , • • • , x m-2 ) ∈ R m-2 : 2 
all terms in the log 's in f a are non-negative

= (x 1 , x 2 , • • • , x m-2 ) ∈ R m-2 : a ≥ x 1 ≥ x 2 ≥ • • • ≥ x m-2 ≥ 0 and x 1 + • • • + x m-3 + x m-2 ≤ 1 -a ≤ x 1 + • • • + x m-3 + 2x m-2 ,
which is closed and non-empty since

(a, 1-2a m-2 , • • • , 1-2a m-2 ) ∈ D m,a if 1 m ≤ a < 1 2 ; (1 -a, 0, • • • , 0) ∈ D m,a if a ≥ 1 2 . Therefore max (x 1 ,••• ,x m-2 )∈Dm,a f a (x 1 , • • • , x m-2 ) exists.
In order to get our conclusion, by Theorem 1.3.2, it suffices to prove

max h µ (β, m) : µ is a (β, m, a)-coordinated set function = max (x1,••• ,xm-2)∈Dm,a f a (x 1 , • • • , x m-2 ) (1.16)
in the following 1 and 2 , which are enlightened by drawing figures of the cylinders in [0, 1) and understanding their relations.

1 Prove the inequality "≤" in (1.16).

Let µ be a (β, m, a)-coordinated set function. By Lemma 1.3.5 we get

Σ m β = {0, 1} m \{1 m }, µ[1 m-1 0] = µ[1 m-1 ] and then h µ (β, m) = - i 1 ,••• ,im∈{0,1} i 2 •••i m-1 =1 m-2 µ[i 1 • • • i m ] log µ[i 1 • • • i m ] µ[i 1 • • • i m-1 ] -µ[01 m-2 0] log µ[01 m-2 0] µ[01 m-2 ] -µ[01 m-1 ] log µ[01 m-1 ] µ[01 m-2 ] . For i 2 • • • i m-1 = 1 m-2 and i m ∈ {0, 1}, we can prove -µ[0i 2 • • • i m ] log µ[0i 2 • • • i m ] µ[0i 2 • • • i m-1 ] -µ[1i 2 • • • i m ] log µ[1i 2 • • • i m ] µ[1i 2 • • • i m-1 ] ≤ -µ[i 2 • • • i m ] log µ[i 2 • • • i m ] µ[i 2 • • • i m-1 ]
.

(1.17)

In fact, if µ[0i 2 • • • i m-1 ] = 0, then µ[0i 2 • • • i m ] = 0. We get µ[1i 2 • • • i m-1 ] = µ[i 2 • • • i m-1 ]- µ[0i 2 • • • i m-1 ] = µ[i 2 • • • i m-1 ] and µ[1i 2 • • • i m ] = µ[i 2 • • • i m ] -µ[0i 2 • • • i m ] = µ[i 2 • • • i m ],
which imply (1.17

). If µ[1i 2 • • • i m-1 ] = 0,
in the same way we can get (1.17

). If µ[0i 2 • • • i m-1 ] = 0 and µ[1i 2 • • • i m-1 ] = 0, then µ[i 2 • • • i m-1 ] = 0 and (1.17) follows from -µ[0i 2 • • • i m ] log µ[0i 2 • • • i m ] µ[0i 2 • • • i m-1 ] -µ[1i 2 • • • i m ] log µ[1i 2 • • • i m ] µ[1i 2 • • • i m-1 ] = µ[i 2 • • • i m-1 ] µ[0i 2 • • • i m-1 ] µ[i 2 • • • i m-1 ] (- µ[0i 2 • • • i m ] µ[0i 2 • • • i m-1 ] log µ[0i 2 • • • i m ] µ[0i 2 • • • i m-1 ] ) + µ[1i 2 • • • i m-1 ] µ[i 2 • • • i m-1 ] (- µ[1i 2 • • • i m ] µ[1i 2 • • • i m-1 ] log µ[1i 2 • • • i m ] µ[1i 2 • • • i m-1 ] ) ≤ -µ[i 2 • • • i m ] log µ[i 2 • • • i m ] µ[i 2 • • • i m-1 ]
,

where the last inequality follows from Lemma 1.3.19. Thus

h µ (β, m) ≤ - i 2 ,••• ,im∈{0,1} i 2 •••i m-1 =1 m-2 µ[i 2 • • • i m ] log µ[i 2 • • • i m ] µ[i 2 • • • i m-1 ] -µ[01 m-2 0] log µ[01 m-2 0] µ[01 m-2 ] -µ[01 m-1 ] log µ[01 m-1 ] µ[01 m-2 ] = - i 1 ,••• ,i m-1 ∈{0,1} i 1 •••i m-2 =1 m-2 µ[i 1 • • • i m-1 ] log µ[i 1 • • • i m-1 ] µ[i 1 • • • i m-2 ] -µ[01 m-2 0] log µ[01 m-2 0] µ[01 m-2 ] -µ[01 m-1 ] log µ[01 m-1 ] µ[01 m-2 ] = - i 1 ,••• ,i m-1 ∈{0,1} i 2 •••i m-2 =1 m-3 µ[i 1 • • • i m-1 ] log µ[i 1 • • • i m-1 ] µ[i 1 • • • i m-2 ] -µ[01 m-3 0] log µ[01 m-3 0] µ[01 m-3 ] -µ[01 m-2 ] log µ[01 m-2 ] µ[01 m-3 ] -µ[01 m-2 0] log µ[01 m-2 0] µ[01 m-2 ] -µ[01 m-1 ] log µ[01 m-1 ] µ[01 m-2 ] . For i 2 • • • i m-2 = 1 m-3 and i m-1 ∈ {0, 1}
, in the same way as proving (1.17), we get

-µ[0i2 • • • im-1] log µ[0i2 • • • im-1] µ[0i2 • • • im-2] -µ[1i2 • • • im-1] log µ[1i2 • • • im-1] µ[1i2 • • • im-2] ≤ -µ[i2 • • • im-1] log µ[i2 • • • im-1] µ[i2 • • • im-2] . CHAPTER 1 Thus h µ (β, m) ≤ - i 2 ,••• ,i m-1 ∈{0,1} i 2 •••i m-2 =1 m-3 µ[i 2 • • • i m-1 ] log µ[i 2 • • • i m-1 ] µ[i 2 • • • i m-2 ] -µ[01 m-3 0] log µ[01 m-3 0] µ[01 m-3 ] -µ[01 m-2 ] log µ[01 m-2 ] µ[01 m-3 ] -µ[01 m-2 0] log µ[01 m-2 0] µ[01 m-2 ] -µ[01 m-1 ] log µ[01 m-1 ] µ[01 m-2 ] = - i 1 ,••• ,i m-2 ∈{0,1} i 1 •••i m-3 =1 m-3 µ[i 1 • • • i m-2 ] log µ[i 1 • • • i m-2 ] µ[i 1 • • • i m-3 ] -µ[01 m-3 0] log µ[01 m-3 0] µ[01 m-3 ] -µ[01 m-2 ] log µ[01 m-2 ] µ[01 m-3 ] -µ[01 m-2 0] log µ[01 m-2 0] µ[01 m-2 ] -µ[01 m-1 ] log µ[01 m-1 ] µ[01 m-2 ] = - i 1 ,••• ,i m-2 ∈{0,1} i 2 •••i m-3 =1 m-4 µ[i 1 • • • i m-2 ] log µ[i 1 • • • i m-2 ] µ[i 1 • • • i m-3 ] -µ[01 m-4 0] log µ[01 m-4 0] µ[01 m-4 ] -µ[01 m-3 ] log µ[01 m-3 ] µ[01 m-4 ] -µ[01 m-3 0] log µ[01 m-3 0] µ[01 m-3 ] -µ[01 m-2 ] log µ[01 m-2 ] µ[01 m-3 ] -µ[01 m-2 0] log µ[01 m-2 0] µ[01 m-2 ] -µ[01 m-1 ] log µ[01 m-1 ] µ[01 m-2
] .

• • •

Repeat the above process a finite number of times. Finally we get

h µ (β, m) ≤ -µ[00] log µ[00] µ[0] -µ[01] log µ[01] µ[0] -µ[010] log µ[010] µ[01] -µ[011] log µ[011] µ[01] • • • -µ[01 m-3 0] log µ[01 m-3 0] µ[01 m-3 ] -µ[01 m-2 ] log µ[01 m-2 ] µ[01 m-3 ] -µ[01 m-2 0] log µ[01 m-2 0] µ[01 m-2 ] -µ[01 m-1 ] log µ[01 m-1 ] µ[01 m-2 ] .
Since µ is (β, m, a)-coordinated, we have

                     µ[0] = a, µ[1] = 1 -a, µ[00] + µ[01] = µ[0], µ[01] + µ[11] = µ[1], µ[010] + µ[011] = µ[01], µ[011] + µ[111] = µ[11], • • • , • • • , µ[01 m-3 0] + µ[01 m-2 ] = µ[01 m-3 ], µ[01 m-2 ] + µ[1 m-1 ] = µ[1 m-2 ], µ[01 m-2 0] + µ[01 m-1 ] = µ[01 m-2 ], µ[01 m-1 ] = µ[1 m-1 ].
Let

y 1 := µ[01], y 2 := µ[011], • • • , y m-2 := µ[01 m-2 ]. Then we have      µ[0] = a, µ[00] = a -y 1 , µ[010] = y 1 -y 2 , µ[0110] = y 2 -y 3 , • • • , µ[01 m-3 0] = y m-3 -y m-2 , µ[1] = 1 -a, µ[11] = 1 -a -y 1 , • • • , µ[1 m-1 ] = 1 -a -y 1 -y 2 -• • • -y m-2 , µ[01 m-1 ] = 1 -a -y 1 -y 2 -• • • -y m-2 , µ[01 m-2 0] = y 1 + y 2 + • • • + y m-3 + 2y m-2 + a -1.
By a simple calculation, we get

h µ (β, m) ≤ f a (y 1 , • • • , y m-2 ). It follows from µ[00], µ[010], • • • , µ[01 m-3 0], µ[01 m-2 0], µ[01 m-1 ] ≥ 0 that (y 1 , • • • , y m-2 ) ∈ D m,a . Therefore h µ (β, m) ≤ max (x 1 ,••• ,x m-2 )∈Dm,a f a (x 1 , • • • , x m-2 ).
2 Prove that the inequality "≤" in (1.16) can achieve "=" by some (β, m, a)-coordinated set function.

Let (y 1 , • • • , y m-2 ) ∈ D m,a such that f a (y 1 , • • • , y m-2 ) = max (x 1 ,••• ,x m-2 )∈Dm,a f a (x 1 , • • • , x m-2 ).
Define

µ[0] := a, µ[1] := 1 -a, µ[00] := a -y 1 , µ[01] = µ[10] := y 1 , µ[11] := 1 -a -y 1 , µ[010] := y 1 -y 2 , µ[011] = µ[110] := y 2 , µ[111] := 1 -a -y 1 -y 2 , • • • , • • • , • • • , µ[01 m-3 0] := y m-3 -y m-2 , µ[01 m-2 ] = µ[1 m-2 0] := y m-2 , µ[1 m-1 ] := 1 -a -y 1 -• • • -y m-2 , µ[01 m-2 0] := y 1 + • • • + y m-3 + 2y m-2 + a -1, µ[01 m-1 ] = µ[1 m-1 0] := 1 -a -y 1 -• • • -y m-2 and µ[uwv] := µ[uw] • µ[wv] µ[w] for u, v ∈ {0, 1} and w ∈ m-2 k=1 {0, 1} k \ {1 k } (1.18)
where µ[uwv] is defined to be 0 if one of µ[w], µ[uw] and µ[wv] is 0. Then µ is a (β, m, a)coordinated set function. By (1.18) and Lemma 1.3.19, it is straightforward to check that in the proof of 1 , all the "≤" in the upper bound estimation of h µ (β, m) can take "=" and then

h µ (β, m) = f a (y 1 , • • • , y m-2 ) = max (x 1 ,••• ,x m-2 )∈Dm,a f a (x 1 , • • • , x m-2 ).
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General beta-expansions and related digit frequencies

In this chapter, we return to general beta-expansions, not only the greedy ones. First we systematically study expansions of real numbers in multiple bases in Section 2.1. Then we return to expansions in one base and study their digit frequencies in Section 2.2. Finally we study frequency sets of univoque sequences in Section 2.3 to end this chapter.

Expansions in multiple bases

Until Neunhäuserer [START_REF] Neunhäuserer | Non-uniform expansions of real numbers[END_REF] began the study of expansions in two bases recently in 2019, all expansions studied were in one base. In this section, we begin the study of expansions in multiple bases. Note that a lot of content (including Theorem 2.1.3, Proposition 2.1.11 and Proposition 2.1.15) in this section has been generalized to expansions in multiple bases over general alphabets by Zou, Komornik and Lu recently in [START_REF] Zou | Expansions in multiple bases over general alphabets[END_REF] Recall the concept of expansion in one base first. Let m ∈ N, β ∈ (1, m + 1] and x ∈ R.

A sequence w = (w i ) i≥1 ∈ {0, 1, • • • , m} N is called a β-expansion of x if x = ∞ i=1 w i β i .
The following question is natural to be thought of: 

Given m ∈ N, β 0 , β 1 , • • • , β m > 1, x ∈ R and w = (w i ) i≥1 ∈ {0, 1, • • • , m} N ,
0 , β 1 , • • • , β m > 1, define a k := k β k and b k := k β k + m β k (β m -1)
for all k ∈ {0, • • • , m}.
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Note that a 0 = 0 and b m = m βm-1 . For all m ∈ N, let

D m := (β 0 , • • • , β m ) : β 0 , • • • , β m > 1 and a k < a k+1 ≤ b k < b k+1 for all k, 0 ≤ k ≤ m-1 .
It is worth to note that D m is large enough to ensure that (

m+1 β, • • • , β) ∈ D m for all β ∈
(1, m + 1] and m ∈ N, and

(β 0 , β 1 ) ∈ D 1 for all β 0 , β 1 ∈ (1, 2]. Proposition 2.1.1. Let m ∈ N, (β 0 , • • • , β m ) ∈ D m and x ∈ R. Then x ∈ [0, m βm-1 ] if and only if there exists a sequence w ∈ {0, • • • , m} N such that x = ∞ i=1 w i β w 1 β w 2 • • • β w i .
Thus we give the following.

Definition 2.1.2 (Expansions in multiple bases). Let m ∈ N, β 0 , • • • , β m > 1 and x ∈ R.
We say that the sequence

w ∈ {0, • • • , m} N is a (β 0 , • • • , β m )-expansion of x if x = ∞ i=1 w i β w 1 β w 2 • • • β w i .
On the one hand, it is straightforward to see that when β 0 , • • • , β m are taken to be the same β, (β 0 , • • • , β m )-expansions are just β-expansions. On the other hand, we will see in Subsection 2.1.1 that many properties of β-expansions can be generalized to

(β 0 , • • • , β m )-
expansions. This further confirms that our definition of expansions in multiple bases is reasonable.

Let σ be the shift map defined by σ(w

1 w 2 • • • ) := w 2 w 3 • • • for any sequence (w i ) i≥1 . Given β 0 , • • • , β m > 1, for every integer k ∈ {0, • • • , m}, we define the map T k by T k (x) := β k x -k for x ∈ R.
The main results in this section are the following theorem and corollaries, in which g * and l * denote the quasi-greedy and quasi-lazy expansion maps respectively (see Definition 2.1.7 (2) and ( 4)), and ≺, , , denote the lexicographic order. These results focus on determining greedy, lazy and unique expansions in multiple bases (see Definition 2.1.7 (1) and ( 3)), and generalize some classical results on expansions in one base in some former well known papers. a0 a1 a2 a3

3 β 3 -1 b0 b1 b2 b3 T 0 T 1 T 2 T 3 3 β 3 -1 Figure 2.1: The graph of T 0 , T 1 , T 2 and T 3 for some (β 0 , β 1 , β 2 , β 3 ) ∈ D 3 . Theorem 2.1.3. Let m ∈ N, (β 0 , • • • , β m ) ∈ D m , x ∈ [0, m βm-1 ], w ∈ {0, • • • , m} N be a (β 0 , • • • , β m )-expansion of x and ξ + := max 0≤k≤m-1 T k (a k+1 ), ξ -:= min 0≤k≤m-1 T k (a k+1 ), η + := max 1≤k≤m T k (b k-1 ), η -:= min 1≤k≤m T k (b k-1 ).
(1) 1 If w is a greedy expansion, then σ n w ≺ g * (ξ + ) whenever w n < m.

2 If σ n w ≺ g * (ξ -) whenever w n < m, then w is a greedy expansion.

(2) 1 If w is a lazy expansion, then σ n w l * (η -) whenever w n > 0.

2 If σ n w l * (η + ) whenever w n > 0, then w is a lazy expansion.

(3) 1 If w is a unique expansion, then σ n w ≺ g * (ξ + ) whenever w n < m and σ n w l * (η -) whenever w n > 0.

2 If σ n w ≺ g * (ξ -) whenever w n < m and σ n w l * (η + ) whenever w n > 0, then w is a unique expansion.

For the case that there are at most two different bases, we get the following criteria directly from Theorem 2.1.3.

Corollary 2.1.4. Let β 0 , β 1 ∈ (1, 2], x ∈ [0, 1 β 1 -1
] and w ∈ {0, 1} N be a (β 0 , β 1 )-expansion of x. Then (1) w is a greedy expansion if and only if σ n w ≺ g * ( β 0 β 1 ) whenever w n = 0;

(2) w is a lazy expansion if and only if σ n w l * ( β 1 β 0 (β 1 -1) -1) whenever w n = 1;

(3) w is a unique expansion if and only if

σ n w ≺ g * ( β 0 β 1
) whenever w n = 0 and σ n w l * (

β 1 β 0 (β 1 -1)
-1) whenever w n = 1.

The following corollary provide some ways to determine whether an expansion is greedy, lazy or unique by the quasi-greedy expansion of 1 and the quasi-lazy expansion of m βm-1 -1.

Corollary 2.1.5. Let m ∈ N, (β 0 , • • • , β m ) ∈ D m , x ∈ [0, m βm-1 ] and w ∈ {0, • • • , m} N be a (β 0 , • • • , β m )-expansion of x. (1) 1 Suppose β 0 ≤ β 1 ≤ • • • ≤ β m . If w is a greedy expansion, then σ n w ≺ g * (1) whenever w n < m. 2 Suppose β 0 ≥ β 1 ≥ • • • ≥ β m . If σ n w ≺ g * (1
) whenever w n < m, then w is a greedy expansion.

(

) 1 Suppose β 0 ≤ β 1 ≤ • • • ≤ β m . 2 
If w is a lazy expansion, then σ n w l * ( m βm-1 -1) whenever w n > 0. (1) 1 w is a greedy expansion if and only if σ n w ≺ g * (1) whenever w n < m; 2 w is a lazy expansion if and only if σ n w g * (1) whenever w n > 0;

2 Suppose β 0 ≥ β 1 ≥ • • • ≥ β m . If σ n w l * ( m βm-1 -1) whenever w n > 0, then w is a lazy expansion. (3) 1 Suppose β 0 ≤ β 1 ≤ • • • ≤ β m . If w is a unique expansion, then σ n w ≺ g * (1) whenever w n < m and σ n w l * ( m β m -1 -1) whenever w n > 0. 2 Suppose β 0 ≥ β 1 ≥ • • • ≥ β m . If
3 w is a unique expansion if and only if σ n w ≺ g * (1) whenever w n < m and σ n w g * (1) whenever w n > 0.

(2) 1 0 ≤ x < 1 and w is a greedy expansion if and only if σ n w ≺ g * (1) for all n ≥ 0;

2 m β-1 -1 < x ≤ m
β-1 and w is a lazy expansion if and only if σ n w g * (1) for all n ≥ 0; See also [START_REF] Baker | Generalized golden ratios over integer alphabets[END_REF][START_REF] Vries | Topology of the set of univoque bases[END_REF][START_REF] Kalle | On the bifurcation set of unique expansions[END_REF]).

3 m β-1 -1 < x < 1
This section is organized as follows. In Subsection 2.1.1, we give some notation and study some basic properties of greedy, quasi-greedy, lazy and quasi-lazy expansions in multiple-bases. Subsection 2.1.2 is devoted to the proof our main results. In the last subsection, we present some further questions.

Greedy, quasi-greedy, lazy and quasi-lazy expansions

Let m ∈ N and β 0 , (1) The greedy

• • • , β m > 1. We define the projection π β 0 ,••• ,βm by π β 0 ,••• ,βm (w 1 • • • w n ) := n i=1 w i β w 1 β w 2 • • • β w i for w 1 • • • w n ∈ {0, • • • , m} n and n ∈ N, and 
π β 0 ,••• ,βm (w) = π β 0 ,••• ,βm (w 1 w 2 • • • ) := lim n→∞ π β 0 ,••• ,βm (w 1 • • • w n ) = ∞ i=1 w i β w 1 β w 2 • • • β w i CHAPTER 2 for w = (w i ) i≥1 ∈ {0, • • • , m} N . When β 0 , • • • , β m are
(β 0 , • • • , β m )-transformation G β 0 ,••• ,βm : [0, m βm-1 ] → [0, m βm-1 ] is defined by x → G β 0 ,••• ,βm x := T k x if x ∈ [a k , a k+1 ) for some k ∈ {0, • • • , m -1}; T m x if x ∈ [a m , b m ].
For all x ∈ [0, m βm-1 ] and n ∈ N, let

g n (x; β 0 , • • • , β m ) := k if G n-1 β 0 ,••• ,βm x ∈ [a k , a k+1 ) for some k ∈ {0, • • • , m -1}; m if G n-1 β 0 ,••• ,βm x ∈ [a m , b m ].
We call the sequence g(x;

β 0 , • • • , β m ) := (g n (x; β 0 , • • • , β m )) n≥1 the greedy (β 0 , • • • , β m )- expansion of x.
(2) The quasi-greedy

(β 0 , • • • , β m )-transformation G * β 0 ,••• ,βm : [0, m βm-1 ] → [0, m βm-1 ] is defined by x → G * β 0 ,••• ,βm x :=      T 0 x if x ∈ [0, a 1 ]; T k x if x ∈ (a k , a k+1 ] for some k ∈ {1, • • • , m -1}; T m x if x ∈ (a m , b m ].
For all x ∈ [0, m βm-1 ] and n ∈ N, let

g * n (x; β 0 , • • • , β m ) :=      0 if (G * β 0 ,••• ,βm ) n-1 x ∈ [0, a 1 ]; k if (G * β 0 ,••• ,βm ) n-1 x ∈ (a k , a k+1 ] for some k ∈ {1, • • • , m -1}; m if (G * β 0 ,••• ,βm ) n-1 x ∈ (a m , b m ].
We call the sequence g * (x;

β 0 , • • • , β m ) := (g * n (x; β 0 , • • • , β m )) n≥1 the quasi-greedy (β 0 , • • • , β m )-expansion of x. (3) The lazy (β 0 , • • • , β m )-transformation L β 0 ,••• ,βm : [0, m βm-1 ] → [0, m βm-1 ] is defined by x → L β 0 ,••• ,βm x := T 0 x if x ∈ [0, b 0 ]; T k x if x ∈ (b k-1 , b k ] for some k ∈ {1, • • • , m}.
For all x ∈ [0, m βm-1 ] and n ∈ N, let

l n (x; β 0 , • • • , β m ) := 0 if L n-1 β 0 ,••• ,βm x ∈ [0, b 0 ]; k if L n-1 β 0 ,••• ,βm x ∈ (b k-1 , b k ] for some k ∈ {1, • • • , m}.
We call the sequence l(x; β 0 ,

• • • , β m ) := (l n (x; β 0 , • • • , β m )) n≥1 the lazy (β 0 , • • • , β m )- expansion of x.
(4) The quasi-lazy

(β 0 , • • • , β m )-transformation L * β 0 ,••• ,βm : [0, m βm-1 ] → [0, m βm-1 ] is de- fined by x → L * β 0 ,••• ,βm x :=      T 0 x if x ∈ [0, b 0 ); T k x if x ∈ [b k-1 , b k ) for some k ∈ {1, • • • , m -1}; T m x if x ∈ [b m-1 , b m ].
For all x ∈ [0, m βm-1 ] and n ∈ N, let

l * n (x; β 0 , • • • , β m ) :=      0 if (L * β 0 ,••• ,βm ) n-1 x ∈ [0, b 0 ); k if (L * β 0 ,••• ,βm ) n-1 x ∈ [b k-1 , b k ) for some k ∈ {1, • • • , m -1}; m if (L * β 0 ,••• ,βm ) n-1 x ∈ [b m-1 , b m ].
We call the sequence l * (x;

β 0 , • • • , β m ) := (l * n (x; β 0 , • • • , β m )) n≥1 the quasi-lazy (β 0 , • • • , β m )- expansion of x.
Generally, let I β 0 ,••• ,βm be the set of tuples (I 0 , • • • , I m ) which satisfy

I 0 ∈ [0, c 1 ], [0, c 1 ) , I k ∈ [c k , c k+1 ], [c k , c k+1 ), (c k , c k+1 ], (c k , c k+1 )
for all k ∈ {1, • • • , m -1}, and

I m ∈ [c m , m β m -1 ], (c m , m β m -1 ] ,
where

c k ∈ [a k , b k-1 ] for all k ∈ {1, • • • , m} such that c 1 < c 2 < • • • < c m , I 0 ∪I 1 ∪• • •∪I m = [0, m βm-1 ] and I 0 , I 1 , • • • , I m are all disjoint. For any (I 0 , • • • , I m ) ∈ I β 0 ,••• ,βm , we define the (I 0 , • • • , I m )-(β 0 , • • • , β m )-transformation T I 0 ,••• ,Im β 0 ,••• ,βm : [0, m βm-1 ] → [0, m βm-1 ] by T I 0 ,••• ,Im β 0 ,••• ,βm (x) := T k (x) for x ∈ I k where k ∈ {0, • • • , m}.
For all x ∈ [0, m βm-1 ] and n ∈ N, let

t n (x; β 0 , • • • , β m ; I 0 , • • • , I m ) := k if (T I 0 ,••• ,Im β 0 ,••• ,βm ) n-1 x ∈ I k where k ∈ {0, • • • , m}.
We call the sequence t(x; β 0 , 

• • • , β m ; I 0 , • • • , I m ) := (t n (x; β 0 , • • • , β m ; I 0 , • • • , I m )) n≥1 the (I 0 , • • • , I m )-(β 0 , • • • , β m )-expansion of x.
* (x) instead of G β 0 ,••• ,βm , G * β 0 ,••• ,βm , L β 0 ,••• ,βm , L * β 0 ,••• ,βm , g(x; β 0 , • • • , β 0 ), g * (x; β 0 , • • • , β 0 ), l(x; β 0 , • • • , β 0 ) and l * (x; β 0 , • • • , β 0
) respectively, and if x is also understood, we use g n , g * n , l n and l * n instead of g n (x;

β 0 , • • • , β m ), g * n (x; β 0 , • • • , β m ), l n (x; β 0 , • • • , β m ) and l * n (x; β 0 , • • • , β m
) respectively for all n ∈ N; on the other hand, if β 0 , • • • , β m and I 0 , • • • , I m are understood, we use T and t(x) instead of

T I 0 ,••• ,Im β 0 ,••• ,βm and t(x; β 0 , • • • , β m ; I 0 , • • • , I m
) respectively, and if x is also understood, we use

t n instead of t n (x; β 0 , • • • , β m ; I 0 , • • • , I m ) for all n ∈ N.
For the case of a single base, greedy β-transformations and expansions were studied in Chapter 1 and also in many papers [START_REF] Blanchard | β-expansions and symbolic dynamics[END_REF][START_REF] Brucks | Topics from one-dimensional dynamics[END_REF][START_REF] Bugeaud | Distribution of full cylinders and the Diophantine properties of the orbits in β-expansions[END_REF][START_REF] Fan | On the lengths of basic intervals in beta expansions[END_REF][START_REF] Frougny | Finite beta-expansions[END_REF][START_REF] Schmeling | Symbolic dynamics for β-shifts and self-normal numbers[END_REF][START_REF] Schmidt | On periodic expansions of Pisot numbers and Salem numbers[END_REF]), lazy β-transformations and expansions can be found in [START_REF] Dajani | Invariant densities for random β-expansions[END_REF][START_REF] Dajani | From greedy to lazy expansions and their driving dynamics[END_REF][START_REF] Vries | Expansions in non-integer bases[END_REF][START_REF] Erdös | Characterization of the unique expansions 1 = ∞ i=1 q -n i and related problems[END_REF][START_REF] Kalle | Beta-expansions, natural extensions and multiple tilings associated with Pisot units[END_REF], and quasi-greedy β-expansions were introduced in [START_REF] Komornik | On the topological structure of univoque sets[END_REF][START_REF] Lai | Developments in non-integer bases: representability of real numbers and uniqueness[END_REF][START_REF] Pedicini | Greedy expansions and sets with deleted digits[END_REF].

In Proposition 2.1.9, we will see that the above definition really give (β 0 , • • • , β m )expansions coincide with Definition 2.1.2. First we prove the following useful lemma.

Lemma 2.1.8. Let m ∈ N, (β 0 , • • • , β m ) ∈ D m and x ∈ [0, m βm-1 ]. If (I 0 , • • • , I m ) ∈ I β 0 ,••• ,βm , then for all n ∈ N, we have x = π(t 1 • • • t n ) + T n x β t 1 • • • β tn .
In particular, for all n ∈ N, we have

x = π(g 1 • • • g n ) + G n x β g 1 • • • β gn = π(g * 1 • • • g * n ) + (G * ) n x β g * 1 • • • β g * n = π(l 1 • • • l n ) + L n x β l 1 • • • β ln = π(l * 1 • • • l * n ) + (L * ) n x β l * 1 • • • β l * n . Proof. (By induction) Let k ∈ {0, • • • , m} such that x ∈ I k . Then t 1 = k, T x = T k x = β k x -k and we have π(t 1 ) + T x β t 1 = t 1 + T x β t 1 = β k x β k = x.
Suppose that the conclusion is true for some n ∈ N, we prove that it is also true for n + 1 as follows. In fact, we have

π(t 1 • • • t n+1 ) + T n+1 x β t 1 • • • β t n+1 = π(t 1 • • • t n ) + t n+1 + T n+1 x β t 1 • • • β t n+1 ( ) = π(t 1 • • • t n ) + β t n+1 T n x β t 1 • • • β t n+1 = x,
where the last equality follows from the inductive hypothesis and ( ) can be proved as follows. Let k ∈ {0, • • • , m} such that T n x ∈ I k . Then t n+1 = k and

t n+1 + T n+1 x = t n+1 + T k (T n x) = k + (β k T n x -k) = β t n+1 T n x. Proposition 2.1.9. Let m ∈ N, (β 0 , • • • , β m ) ∈ D m and x ∈ [0, m βm-1 ]. If (I 0 , • • • , I m ) ∈ I β 0 ,••• ,βm , then the (I 0 , • • • , I m )-(β 0 , • • • , β m )-expansion of x is a (β 0 , • • • , β m )-expansion of x, i.e., x = π(t(x)),
and for all n ∈ N we have

T n x = π(t n+1 t n+2 • • • ).
In particular, greedy, quasi-greedy, lazy and quasi-lazy

(β 0 , • • • , β m )-expansions of x are all (β 0 , • • • , β m )-expansions of x, i.e., x = π(g(x)) = π(g * (x)) = π(l(x)) = π(l * (x)),
and for all n ∈ N we have

G n x = π(g n+1 g n+2 • • • ), (G * ) n x = π(g * n+1 g * n+2 • • • ), L n x = π(l n+1 l n+2 • • • ), (L * ) n x = π(l * n+1 l * n+2 • • • ).
Proof. By Lemma 2.1.8 and

T n x β t 1 • • • β tn ≤ m βm-1 (min{β 0 , • • • , β m }) n → 0 as n → ∞, we get x = lim n→∞ π(t 1 • • • t n ) = π(t(x)). That is, x = π(t 1 • • • t n ) + π(t n+1 t n+2 • • • ) β t 1 • • • β tn . It follows from Lemma 2.1.8 that T n x = π(t n+1 t n+2 • • • ).
Greedy, quasi-greedy, lazy and quasi-lazy expansions are not necessarily identical. A real number may have many different expansions even in one given base as mentioned at the beginning of Chapter 1.

Proof of Proposition 2.1.1. ⇒ follows from Proposition 2.1.9.

⇐ Let w ∈ {0, • • • , m} N and x = π(w). It suffices to prove x ≤ m βm-1 in the following. (By contradiction) We assume x > m βm-1 .
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(1) Prove that for all v ∈ {0, • • • , m} N and n ∈ N, we have

T vn • • • • • T v 1 x > • • • > T v 2 • T v 1 x > T v 1 x > x. Let k ∈ {0, • • • , m -1}, by (β 0 , • • • , β m ) ∈ D m , we get k β k + m β k (β m -1) = b k < b k+1 < • • • < b m = m β m -1 , which implies k β k -1 < m βm-1 .
Thus for all y > m βm-1 and k ∈ {0, • • • , m}, we have y > k β k -1 , i.e., T k y > y. Then we perform the maps T v 1 , • • • , T vn to x one by one to get the conclusion.

(2) Let s ∈ {0, • • • , m} such that T s x = min 0≤k≤m T k x. For all n ∈ N, we prove

T w n+1 • • • • • T w 1 x -T wn • • • • • T w 1 x > T s x -x.
In fact, it suffices to prove

T w n+1 • • • • • T w 1 x -T wn • • • • • T w 1 x > T w n+1 x -x.
This follows from

T w n+1 • T wn • • • • • T w 1 x -T w n+1 x = (β w n+1 T wn • • • • • T w 1 x -w n+1 ) -(β w n+1 x -w n+1 ) = β w n+1 (T wn • • • • • T w 1 x -x) > T wn • • • • • T w 1 x -x
where the last inequality follows from β w n+1 > 1 and

T wn • • • • • T w 1 x -x > 0 (by (1)).
(3) Deduce a contradiction.

On the one hand, for all n ∈ N, we have

T wn • • • • • T w 1 x =(T wn • • • • • T w 1 x -T w n-1 • • • • • T w 1 x) + (T w n-1 • • • • • T w 1 x -T w n-2 • • • • • T w 1 x) + • • • + (T w 2 • T w 1 x -T w 1 x) + (T w 1 x -x) + x by (2)
≥ n(T s x -x) + x, where T s x -x > 0 by (1). This implies

T wn • • • • • T w 1 x → ∞ as n → ∞.
On the other hand, by

x = ∞ i=1 w i β w 1 • • • β w i ,
we get

T w 1 x = ∞ i=2 w i β w 2 • • • β w i , T w 2 • T w 1 x = ∞ i=3 w i β w 3 • • • β w i , • • • ,
and then for all n ∈ N,

T wn • • • • • T w 1 x = ∞ i=n+1 w i β w n+1 • • • β w i ≤ ∞ i=n+1 m (min{β 0 , • • • , β m }) i-n = m min{β 0 , • • • , β m } -1 < ∞, which contradicts T wn • • • • • T w 1 x → ∞ as n → ∞.
We should keep the following lemma in mind. Proof. ⇒ is obvious.

⇐ (By contradiction) Suppose w = m ∞ and ∞ i=1 w i β w 1 • • • β w i = m β m -1 . (2.1)
Then there exists k ∈ N such that

w 1 • • • w k-1 = m k-1 and w k < m. By applying T k-1 m to (2.1), we get w k β w k + ∞ i=k+1 w i β w k • • • β w i = m β m -1 .
It follows from applying T w k to the above equality that

∞ i=1 w k+i β w k+1 • • • β w k+i = mβ w k β m -1 -w k . (2.2) CHAPTER 2
On the one hand, by Proposition 2.1.1 we know

∞ i=1 w k+i β w k+1 • • • β w k+i ≤ m β m -1 . (2.3)
On the other hand, by (β 0 , • • • , β m ) ∈ D m and w k < m, we get

w k β w k + m β w k (β m -1) = b w k < b w k +1 < • • • < b m = m β m -1 , which implies mβ w k β m -1 -w k > m β m -1 .
This contradicts (2.2) and (2.3).

The following useful criteria generalize [61, Lemma 1].

Proposition 2.1.11 (Basic criteria of greedy, quasi-greedy, lazy and quasi-lazy expan-

sions). Let m ∈ N, (β 0 , • • • , β m ) ∈ D m , x ∈ [0, m βm-1 ] and w ∈ {0, • • • , m} N be a (β 0 , • • • , β m )-expansion of x.
(1) w is the greedy expansion if and only if π(w n w n+1 • • • ) < a wn+1 whenever w n < m.

(2) When x = 0, w is the quasi-greedy expansion if and only if it does not end with 0 ∞ and π(w n w n+1 • • • ) ≤ a wn+1 whenever w n < m.

(3) w is the lazy expansion if and only if Proof. (1) ⇒ Suppose that w is the greedy (β 0 , • • • , β m )-expansion of x, i.e., (w i ) i≥1 = (g i ) i≥1 , and suppose w n < m. By g n = w n and the definition of g n , we get G n-1 x < a wn+1 .

π(w n w n+1 • • • ) > b wn-1 whenever w n > 0.
It follows from Proposition 2.1.9 that π(g

n g n+1 • • • ) < a wn+1 . Thus π(w n w n+1 • • • ) < a wn+1 . ⇐ We prove (w i ) i≥1 = (g i ) i≥1 by induction. Recall that g 1 := k if x ∈ [a k , a k+1 ) for some k ∈ {0, • • • , m -1} m if x ∈ [a m , b m ] and (w i ) i≥1 is a (β 0 , • • • , β m )-expansion of x, which implies x ≥ a w 1 . i) If w 1 = m, then x ≥ a m , which implies g 1 = m = w 1 . ii) If w 1 < m, by condition π(w 1 w 2 • • • ) < a w 1 +1 we get x < a w 1 +1 . It follows from x ≥ a w 1 that g 1 = w 1 .
Suppose

w 1 • • • w n-1 = g 1 • • • g n-1
for some n ≥ 2. We need to prove w n = g n in the following. Recall

g n := k if G n-1 x ∈ [a k , a k+1 ) for some k ∈ {0, • • • , m -1}; m if G n-1 x ∈ [a m , b m ].
Since the fact that

(w i ) i≥1 is a (β 0 , • • • , β m )-expansion of x implies x = π(w 1 • • • w n-1 ) + π(w n w n+1 • • • ) β w 1 • • • β w n-1 , by Lemma 2.1.8 we know G n-1 x = π(w n w n+1 • • • ). This implies G n-1 x ≥ a wn . i) If w n = m, then G n-1 x ≥ a m , which implies g n = m = w n .
ii) If w n < m, by condition π(w n w n+1 • • • ) < a wn+1 we get G n-1 x < a wn+1 . It follows from G n-1 x ≥ a wn that g n = w n .

(2) ⇒ Suppose that w is the quasi-greedy

(β 0 , • • • , β m )-expansion of x, i.e., (w i ) i≥1 = (g * i ) i≥1 .
i) Prove that w does not end with 0 ∞ .

(By contradiction) Assume that there exists n ∈ N such that

w n+1 w n+2 • • • = 0 ∞ .
By Proposition 2.1.9, we get (G * ) n x = π(0 ∞ ) = 0. It follows from the definition of

G * that (G * ) n-1 x = 0, (G * ) n-2 x = 0, • • • , G * x = 0 and x = 0, which contradicts x = 0.
ii) Suppose w n < m. Similarly to (1) ⇒ , we get π(w

n w n+1 • • • ) ≤ a wn+1 .
⇐ follows in a way similar to (1) ⇐ .

(3) and (4) follow in a way similar to (1) and (2) noting Lemma 2.1.10.

Proposition 2.1.12 (Lexicographic order on greedy, quasi-greedy, lazy and quasi-lazy

expansions). Let m ∈ N, (β 0 , • • • , β m ) ∈ D m and x ∈ [0, m βm-1 ].
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(1) Among all the (β 0 , • • • , β m )-expansions of x, the greedy expansion and the lazy expansion are maximal and minimal respectively in lexicographic order.

(2) Among all the (β 0 , • • • , β m )-expansions of x which do not end with 0 ∞ , the quasigreedy expansion is maximal in lexicographic order.

(3) Among all the (β 0 , • • • , β m )-expansions of x which do not end with m ∞ , the quasi-lazy expansion is minimal in lexicographic order.

Proof.

(1) Let v ∈ {0, • • • , m} N be a (β 0 , • • • , β m )-expansion of x.
1 Prove v g(x).

(By contradiction) Assume v g(x). Then there exists n ∈ N such that

v 1 • • • v n-1 = g 1 • • • g n-1 and v n > g n . Since Proposition 2.1.11 (1) implies π(g n g n+1 • • • ) < a gn+1 and (β 0 , • • • , β m ) ∈ D m implies a gn+1 ≤ a gn+2 ≤ • • • ≤ a vn = vn βv n , we get π(g n g n+1 • • • ) < vn βv n
and then

x = π(g(x)) = π(g 1 • • • g n-1 ) + π(g n g n+1 • • • ) β g 1 • • • β g n-1 < π(v 1 • • • v n-1 ) + v n β v 1 • • • β v n-1 β vn = π(v 1 • • • v n ) ≤ π(v).
This contradicts x = π(v). 2 We can prove v l(x) in a way similar to 1 noting that Proposition 2.1.1 implies

m βm-1 ≥ π(v n+1 v n+2 • • • ).
(2) and (3) follow in the same way as (1), noting that v does not end with 0 ∞ implies 

π(v 1 • • • v n ) < π(v),
, • • • , β m ) ∈ D m . For fixed (I 0 , • • • , I m ) ∈ I β 0 ,••• ,βm , a sequence w ∈ {0, • • • , m} N is called (I 0 , • • • , I m )-admissible if there exists x ∈ [0, m βm-1 ] such that w = t(x). We let T = T (β 0 , • • • , β m ; I 0 , • • • , I m ) denote the set of (I 0 , • • • , I m )-admissible sequences.
In particular, a sequence w ∈ {0, • • • , m} N is called greedy, quasi-greedy, lazy and quasi-lazy (admissible) if there exists x ∈ [0, m βm-1 ] such that w = g(x), g * (x), l(x) and l * (x) respectively. The sets of greedy, quasi-greedy, lazy and quasi-lazy sequences are denoted respectively by

G = G(β 0 , • • • , β m ), G * = G * (β 0 , • • • , β m ), L = L(β 0 , • • • , β m ) and L * = L * (β 0 , • • • , β m ). Proposition 2.1.14 (Commutativity). Let m ∈ N, (β 0 , • • • , β m ) ∈ D m and (I 0 , • • • , I m ) ∈ I β 0 ,••• ,βm . Then (1) π • σ(w) = T • π(w) for all w ∈ T and t • T (x) = σ • t(x) for all x ∈ [0, m βm-1 ];
(2) σ(T ) = T and T ([0, m βm-1 ]) = [0, m βm-1 ];

(3) t • π(w) = w for all w ∈ T and π • t(x) = x for all x ∈ [0, m βm-1 ];

(4) π| T : T → [0, m βm-1 ] and t : [0, m βm-1 ] → T are both increasing bijections.

T σ / / π T π [0, m βm-1 ] T / / t O O [0, m βm-1 ] t O O
In particular, the above properties hold for the greedy, quasi-greedy, lazy and quasi-lazy cases.

Proof.

(1) 1 Let w ∈ T . We need to prove π • σ(w) = T • π(w). In fact, there exists

x ∈ [0, m βm-1 ] such that w = t(x), and then π(w) = x by Proposition 2.1.9. On the one hand,

π • σ(w) = π(w 2 w 3 • • • ) = ∞ i=2 w i β w 2 • • • β w i .
On the other hand,

T • π(w) = T x ( ) = T w 1 x = β w 1 x -w 1 = β w 1 ∞ i=1 w i β w 1 • • • β w i -w 1 = ∞ i=2 w i β w 2 • • • β w i ,
where ( ) follows from the fact that t 1 (x) = w 1 implies x ∈ I w 1 .

2 Let x ∈ [0, m βm-1 ]. We need to prove t • T (x) = σ • t(x). In fact, it follows immediately from the definition of t that t n (T

x) = t 1 (T n-1 (T x)) = t 1 (T n x) = t n+1 (x) for all n ∈ N. (2) T ([0, m βm-1 ]) = [0, m βm-1 ]
follows from the definition of T . We prove σ(T ) = T as follows. ===== σ(t(x)) and t(x) ∈ T that w ∈ σ(T ).

⊂ Let w ∈ T . Then there exists x ∈ [0, m βm-1 ] such that w = t(x). Thus σw = σ • t(x)
(3) 1 For any w ∈ T , there exists x ∈ [0, m βm-1 ] such that w = t(x) and π(w) = x, which implies t • π(w) = t(x) = w.
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Let w, v ∈ T such that w ≺ v. Then there exists n ≥ 0 such that w

1 • • • w n = v 1 • • • v n and w n+1 < v n+1 . Let x, y ∈ [0, m βm-1
] such that w = t(x) and v = t(y). We need to prove x < y. In fact, by Lemma 2.1.8 we get

x = π(w 1 • • • w n ) + T n x β w 1 • • • β wn and y = π(v 1 • • • v n ) + T n y β v 1 • • • β vn . (2.4)
Since t n+1 (x) = w n+1 and t n+1 (y) = v n+1 imply T n x ∈ I w n+1 and T n y ∈ I v n+1 , by

w n+1 < v n+1 we get T n x < T n y. It follows from (2.4) and w 1 • • • w n = v 1 • • • v n that x < y.
The following is a generalization of [START_REF] Baiocchi | Greedy and quasi-greedy expansions in non-integer bases[END_REF]Proposition 3.4].

Proposition 2.1.15 (Relations between greedy/lazy and quasi-greedy/quasi-lazy expan-

sions). Let m ∈ N, (β 0 , • • • , β m ) ∈ D m and x ∈ [0, m βm-1 ]. (1) Suppose x = 0.
1 g(x) does not end with 0 ∞ if and only if g * (x) = g(x).

2 If g(x) ends with 0 ∞ , then

g * (x) = g 1 (x) • • • g n-1 (x)g * (a gn(x) ) = g 1 (x) • • • g n-1 (x)(g n (x) -1)g * (T gn(x)-1 (a gn(x) ))
where n is the greatest integer such that g n (x) > 0.

(2) Suppose x = m βm-1 .

1 l(x) does not end with m ∞ if and only if l * (x) = l(x).

2 If l(x) ends with m ∞ , then

l * (x) = l 1 (x) • • • l n-1 (x)l * (b ln(x) ) = l 1 (x) • • • l n-1 (x)(l n (x) + 1)l * (T ln(x)+1 (b ln(x) ))
where n is the greatest integer such that l n (x) < m.

Proof. (1) 1 ⇐ follows from Proposition 2.1.11 [START_REF] Barrera | Entropy, topological transitivity, and dimensional properties of unique q-expansions[END_REF].

⇒ (By contradiction) Assume (g i ) i≥1 = (g * i ) i≥1 . Then there exists n ∈ N such that g 1 • • • g n-1 = g * 1 • • • g * n-1 and g n = g * n .
Recall the definitions of g, g * , G and G * . By x = 0 and g 1 = g * 1 , we get x / ∈ {a 0 , • • • , a m }, and then Gx = G * x = 0. By g 2 = g * 2 , we get

Gx = G * x / ∈ {a 0 , • • • , a m }, and then G 2 x = (G * ) 2 x = 0.• • • By repeating the above process, we get G n-1 x = (G * ) n-1 x = 0. It follows from G n-1 x ∈ [a gn , a gn+1 ) if 0 ≤ g n ≤ m -1, [a m , m βm-1 ] if g n = m,
and g n = g * n that G n-1 x = a gn This implies G n x = 0, and then for all i ≥ n, G i x = 0. Thus g n+1 g n+2 • • • = 0 ∞ , which contradicts that (g i ) i≥1 does not end with 0 ∞ .

2 Suppose that g(x) ends with 0 ∞ and n is the greatest integer such that g n > 0. We need to consider the following i), ii) and iii).

i) Prove g * 1 • • • g * n-1 = g 1 • • • g n-1 . (By contradiction) Assume g * 1 • • • g * n-1 = g 1 • • • g n-1 . Then there exists k ∈ {1, • • • , n- 1} such that g * 1 • • • g * k-1 = g 1 • • • g k-1 but g * k = g k . By Lemma 2.1.8 we get (G * ) k-1 x = G k-1 x. Since g * k = g k , there must exist j ∈ {1, • • • , m} such that G k-1 x = a j
. This implies G k x = 0, and then for all i ≥ k we have

G i x = 0. Thus g k+1 g k+2 • • • = 0 ∞ , which contradicts g n > 0. ii) Prove g * n g * n+1 • • • = g * (a gn ).
In fact, we have

σ n-1 (g * (x)) ( ) = g * ((G * ) n-1 x) ( ) = g * (a gn ),
where ( ) follows from Proposition 2.1.14 (1), and ( ) follows from (G * ) n-1 x = a gn , which is a consequence of i), Lemma 2.1.8 and

x = π(g 1 • • • g n ) = π(g 1 • • • g n-1 ) + a gn β g 1 • • • β g n-1
.

iii) Prove g * (a gn ) = (g n -1)g * (T gn-1 (a gn )).

In fact, on the one hand, g * 1 (a gn ) = g n -1 follows directly from the definition of g * 1 . On the other hand, we have σ(g * (a gn ))

( ) = g * (G * (a gn )) ( ) = g * (T gn-1 (a gn )),
where ( ) follows from Proposition 2.1.14 (1), and ( ) follows from g n > 0 and the definition of G * .

(2) follows in a way similar to (1).

In the proof of our main results, we need the following. (2) In particular, if x < y, we have g(x) ≺ g * (y) and l * (x) ≺ l(y).
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Proof. We only need to prove (1). Suppose 0 ≤ x < y ≤ m βm-1 . Since t(x) = t (y) will imply x = π(t(x)) = π(t (y)) = y which contradicts x < y, we must have t(x) = t (y).

Thus there exists n ≥ 0 such that t

1 (x) • • • t n (x) = t 1 (y) • • • t n (y) and t n+1 (x) = t n+1 (y).
It suffices to prove t n+1 (x) < t n+1 (y) by contradiction.

In fact, by x < y and Lemma 2.1.8, we get T n x < (T ) n y, where T is the

(I 0 , • • • , I m )- (β 0 , • • • , β m )-transformation and T is the (I 0 , • • • , I m )-(β 0 , • • • , β m )-transformation. If t n+1 (x) > t n+1 ( 
y), by T n x ∈ I t n+1 (x) and (T ) n y ∈ I t n+1 (y) we get

T n x ≥ inf I t n+1 (x) ≥ sup I t n+1 (y) ≥ (T ) n y, which contradicts T n x < (T ) n y. Given x ∈ [0, m βm-1 ], let Σ β 0 ,••• ,βm (x) := (w i ) i≥1 ∈ {0, • • • , m} N : (w i ) i≥1 is a (β 0 , • • • , β m )-expansion of x
and

Ω β 0 ,••• ,βm (x) := (S i ) i≥1 ∈ {T 0 , • • • , T m } N : (S n • • • • • S 1 )(x) ∈ 0, m β m -1 for all n ∈ N .
As a generalization of [24, Lemma 3.1] and [25, Lemma 2.1] (see also [START_REF] Baker | Generalized golden ratios over integer alphabets[END_REF]), the following is a dynamical interpretation of (β 0 , • • • , β m )-expansions. 

(w i ) i≥1 to (T w i ) i≥1 is a bijection from Σ β 0 ,••• ,βm (x) to Ω β 0 ,••• ,βm (x).
Proof. (1) Prove that the mentioned map is well-defined.

Let (w i ) i≥1 ∈ {0, • • • , m} N be a (β 0 , • • • , β m )-expansion of x and n ∈ N. It suffices to prove T wn • • • • • T w 1 x ∈ [0, m βm-1 ].
In fact, by a simple calculation as in (3) in the proof of Proposition 2.1.1, we get

T wn • • • • • T w 1 x = ∞ i=n+1 w i β w n+1 • • • β w i .
Thus

T wn • • • • • T w 1 x = ∞ i=1 w n+i β w n+1 • • • β w n+i = π(w n+1 w n+2 • • • ) ∈ [0, m β m -1 ]
by Proposition 2.1.1.

(2) The mentioned map is obviously injective. We prove that it is surjective as follows.

Let

(w i ) i≥1 ∈ {0, • • • , m} N such that T wn • • • • • T w 1 x ∈ [0, m βm-1 ] for all n ∈ N. By 0 ≤ T wn • • • • • T w 1 x ≤ m β m -1 , we get w n β wn ≤ T w n-1 • • • • • T w 1 x ≤ w n β wn + m β wn (β m -1) , w n-1 β w n-1 + w n β w n-1 β wn ≤ T w n-2 • • • • • T w 1 x ≤ w n-1 β w n-1 + w n β w n-1 β wn + m β w n-1 β wn (β m -1) , • • • , w 1 β w 1 + w 2 β w 1 β w 2 +• • •+ w n β w 1 • • • β wn ≤ x ≤ w 1 β w 1 + w 2 β w 1 β w 2 +• • •+ w n β w 1 • • • β wn + m β w 1 • • • β wn (β m -1)
,

which implies π(w 1 • • • w n ) ≤ x ≤ π(w 1 • • • w n ) + m (β m -1)(min{β 0 , • • • , β m }) n for all n ∈ N. Let n → ∞, we get x = π(w 1 w 2 • • • ). Thus (w i ) i≥1 ∈ Σ β 0 ,••• ,βm (x).
The following proposition on expansions in one base, which will be used in the proof of For all x ∈ [0, m β-1 ], we have

l m β -1 -x = g(x) and l * m β -1 -x = g * (x). Proof. (1) Prove l( m β-1 -x) = g(x). Let w = g(x)
. By Proposition 2.1.11 (1) we get 

π(w n w n+1 • • • ) < a wn+1 whenever w n < m. It follows from π(w n w n+1 • • • ) + π(w n w n+1 • • • ) = m β-1 and a wn+1 + b wn-1 = m β-1 that π(w n w n+1 • • • ) > b wn-1 whenever w n > 0. (2.5) Since w = g(x) implies π(w) = m β-1 -x,
= l( m β-1 -x). (2) l * ( m β-1 -x) = g * (x)
follows in a way similar to (1) by applying Proposition 2.1.11 (2) and (4).

Proofs of the main results

First we give the following lemma, which is essentially stronger than Theorem 2.1.3 (1) 1 , (2)

1 and (3) 1 . Lemma 2.1.19. Let m ∈ N, (β 0 , • • • , β m ) ∈ D m , x ∈ [0, m βm-1 ] and w ∈ {0, • • • , m} N be a (β 0 , • • • , β m )-expansion of x.
(1) If w is the greedy expansion and w = m ∞ , then σ n w ≺ g * (ξ + ) for all n ≥ p, where p := min{i ≥ 0 : G i x < ξ + } exists, and ξ + := max 0≤k≤m-1 T k (a k+1 ).

(2) If w is the lazy expansion and w = 0 ∞ , then σ n w l * (η -) for all n ≥ q, where q := min{i ≥ 0 : L i x > η -} exists, and η -:= min 1≤k≤m T k (b k-1 ).

Proof. (1) By

(β 0 , • • • , β m ) ∈ D m , we get a k < a k+1 ≤ b k for all k ∈ {0, • • • , m -1}. This implies 0 < ξ + ≤ m βm-1 .
1 Prove that there exists i ≥ 0 such that G i x < ξ + .

(By contradiction) Assume G i x ≥ ξ + for all i ≥ 0. Let r be the greatest integer in {0, • • • , m} such that a r ≤ ξ + and

c = c(x) := x -β m x + m if r = m; min{x -β m x + m, a r+1 -ξ + } if r ≤ m -1.
It follows from w = m ∞ (which implies x < m βm-1 by Lemma 2.1.10) and the definition of r that c > 0. i) Prove that for all y ∈ [ξ + , x], we have y -Gy ≥ c.

In fact, if y ≥ a m , then y -Gy = y -β m y + m ≥ x -β m x + m ≥ c. We only need to consider ξ + ≤ y < a m in the following. By ξ + < a m , we know r ≤ m -1 and

[ξ + , a m ) ⊂ [a r , a r+1 ) ∪ [a r+1 , a r+2 ) ∪ • • • ∪ [a m-1 , a m ). There exists k ∈ {r, r + 1, • • • , m -1} such that y ∈ [a k , a k+1 ). Thus y -Gy = y -(β k y -k) = (1 -β k )y + k > (1 -β k )a k+1 + k = a k+1 -T k (a k+1 ) ≥ a r+1 -ξ + ≥ c.
ii) Deduce a contradiction.

Recall that we have assumed G i x ≥ ξ + for all i ≥ 0. First by x ≥ ξ + and i), we get x -Gx ≥ c. Then by ξ + ≤ Gx ≤ x and i) again, we get Gx -G 2 x ≥ c. • • • For all n ≥ 1, we can get G n-1 x -G n x ≥ c. It follows from the summation of the above inequalities that x -G n x ≥ nc, where nc → +∞ as n → +∞. This contradicts G i x ≥ ξ + for all i ≥ 0.

2 For all n ≥ p, σ n w ≺ g * (ξ + ) follows from

σ n w = σ n (g(x)) ( ) = g(G n x) ( ) ≺ g * (ξ + ),
where ( ) follows from Proposition 2.1.14 (1), and ( ) follows from Proposition 2.1.16 and G n x < ξ + , which can be proved as follows. First we have G p x < ξ + by the definition of p. It suffices to prove that for all y ∈ [0, ξ + ), we have Gy < ξ + . In

fact, let y ∈ [0, ξ + ) ⊂ [0, m βm-1 ). If y ≥ a m , then Gy = T m y = β m y -m < y < ξ + . If y < a m , then there exists k ∈ {0, • • • , m -1} such that y ∈ [a k , a k+1
) and we have

Gy = T k y < T k (a k+1 ) ≤ ξ + .
(2) follows in a way similar to (1) by using

a k ≤ b k-1 < b k instead of a k < a k+1 ≤ b k for all k ∈ {1, • • • , m}.
Proof of Theorem 2.1.3. (1) 1 Suppose that w is the greedy

(β 0 , • • • , β m )-expansion of x and w n < m. Then G n-1
x ∈ [a wn , a wn+1 ) and

G n x = G(G n-1 x) = T wn (G n-1 x) < T wn (a wn+1 ) ≤ ξ + .
It follows from Lemma 2.1.19 (1) that σ n w ≺ g * (ξ + ).

2 Suppose w n < m. By Proposition 2.1.11 (1), we only need to prove π(w

n w n+1 • • • ) < a wn+1 , which is equivalent to π(w n+1 w n+2 • • • ) < T wn (a wn+1 ).
For simplification, we use g * i to denote g * i (ξ -) for all i ∈ N in the following. First by condition σ n w ≺ g * (ξ -), we get

w n+1 w n+2 • • • ≺ g * 1 g * 2 • • • . Then there exist s 1 ∈ N and n 1 = n + s 1 such that w n+1 • • • w n 1 -1 = g * 1 • • • g * s 1 -1 and w n 1 < g * s 1 .
By condition σ n 1 w ≺ g * (ξ -), we get

w n 1 +1 w n 1 +2 • • • ≺ g * 1 g * 2 • • • . Then there exist s 2 ∈ N CHAPTER 2
and n 2 = n 1 + s 2 such that

w n 1 +1 • • • w n 2 -1 = g * 1 • • • g * s 2 -1 and w n 2 < g * s 2 .
For general j ≥ 2, if there already exist s j ∈ N and n j = n j-1 + s j such that

w n j-1 +1 • • • w n j -1 = g * 1 • • • g * s j -1 and w n j < g * s j , by condition σ n j w ≺ g * (ξ -) we get w n j +1 w n j +2 • • • ≺ g * 1 g * 2 • • • . Then there exist s j+1 ∈ N and n j+1 = n j + s j+1 such that w n j +1 • • • w n j+1 -1 = g * 1 • • • g * s j+1 -1 and w n j+1 < g * s j+1 .
For all i ≥ 1, s i and n i are well defined by the above process. Since

π(w n+1 w n+2 • • • ) = ∞ i=0 π(w n i +1 • • • w n i+1 ) β w n+1 β w n+2 • • • β wn i and T wn (a wn+1 ) = ∞ i=0 T wn i (a wn i +1 ) β w n+1 β w n+2 • • • β wn i - T wn i+1 (a wn i+1 +1 ) β w n+1 β w n+2 • • • β wn i+1
where n 0 := n and β w n+1 β w n+2 • • • β wn 0 := 1, we only need to prove

π(w n i +1 • • • w n i+1 ) < T wn i (a wn i +1 ) - T wn i+1 (a wn i+1 +1 ) β w n i +1 β w n i +2 • • • β wn i+1 , i.e., π(w n i +1 • • • w n i+1 -1 ) + a wn i+1 +1 β w n i +1 β w n i +2 • • • β w n i+1 -1 < T wn i (a wn i +1
) for all i ≥ 0.

In fact, for all i ≥ 0, by

w n i +1 • • • w n i+1 -1 = g * 1 • • • g * s i+1 -1 and w n i+1 + 1 ≤ g * s i+1 (which implies a wn i+1 +1 ≤ a g * s i+1
), we get

π(w n i +1 • • • w n i+1 -1 ) + a wn i+1 +1 β w n i +1 β w n i +2 • • • β w n i+1 -1 ≤ π(g * 1 • • • g * s i+1 -1 ) + a g * s i+1 β g * 1 β g * 2 • • • β g * s i+1 -1 = π(g * 1 • • • g * s i+1 ) ( ) < π(g * (ξ -)) = ξ -≤ T wn i (a wn i +1 ),
where ( ) follows from the fact that g * (ξ -) does not end with 0 ∞ (recalling Proposition 2.1.11 (2)).

(2) follows in a way similar to (1).

(3) follows immediately from ( 1), ( 2) and Proposition 2.1.12 (1). 

β 0 ≤ β 1 ≤ • • • ≤ β m implies ξ + ≤ 1 and η -≥ m βm-1 -1, β 0 ≥ β 1 ≥ • • • ≥ β m implies ξ -≥ 1 and η + ≤ m βm-1 -1
, and the increase of g * and l * (by Proposition 2.1.14 ( 4)).

Proof of Corollary 2.1.6. Since (1) follows immediately from Corollary 2.1.5 and Proposition 2.1.18, in the following we only prove (2).

1 ⇒ follows from Lemma 2.1.19 (1), in which ξ + = 1 and p = 0. ⇐ First by (1) 1 , we know that w is the greedy expansion g(x). Then it follows from g(x) = w < g * (1) ≤ g(1) and the strictly increase of g (by Proposition 2.1.14 ( 4)) that

x < 1.

2 ⇒ follows from Proposition 2.1.18 and Lemma 2.1.19 [START_REF] Barrera | Entropy, topological transitivity, and dimensional properties of unique q-expansions[END_REF], in which η -= m β-1 -1 and q = 0.

⇐ First by (1) 2 , we know that w is the lazy expansion l(x). Then it follows from

l(x) = w > g * (1) = l * ( m β-1 -1) ≥ l( m β-1 -1)
and the strictly increase of l (by Proposition 2.1.14 ( 4)) that x > m β-1 -1. 3 follows from 1 , 2 and Proposition 2.1.12 (1).

Further questions

On the one hand, although necessary and sufficient conditions for sequences to be greedy, 

Digit frequencies of beta-expansions

From this section, we return to expansions in one base and consider digit frequencies. Let As the second main result, the next theorem focuses on a special kind of frequency.

m ∈ N and β ∈ (1, m+1]. Given x ∈ R, recall that a sequence w = (w i ) i≥1 ∈ {0, 1, • • • , m} N is called a β-expansion of x if x = ∞ i=1 w i β i .

It is known that x has a β-expansion if and only if

x ∈ [0, m β-1 ]. For any sequence w = (w i ) i≥1 ∈ {0, 1, • • • , m} N ,
Given m ∈ N, a sequence w on {0, 1, • • • , m} is called balanced if Freq k (w) =Freq m-k (w) for all k ∈ {0, 1, • • • , m}. Theorem 2.2.2. For all m ∈ N and β ∈ (1, m + 1) \ N, Lebesgue almost every x ∈ [0, m β-1
] has infinitely many balanced β-expansions.

In the following, we consider variable frequency. Recently, Baker proved in [START_REF] Baker | Digit frequencies and self-affine sets with non-empty interior. Ergodic Theory Dynam[END_REF] that for any β ∈ (1, 1+ √ 5

2 ), there exists c = c(β) > 0 such that for any p ∈ [ 1 2 -c, 1 2 + c] and x ∈ (0, 1 β-1 ), there exists a β-expansion of x on {0, 1} with frequency of zeros equal to p. This result is sharp, since for any β ∈ [ 1+ √ 5 2 , 2), there exists an x ∈ (0, 1 β-1 ) such that for any β-expansion of x on {0, 1} its frequency of zeros exists and is equal to either 0 or 1 2 (see the statements between Theorems 1.1 and 1.2 in [START_REF] Baker | Numbers with simply normal β-expansions[END_REF]). It is natural to ask for which

β ∈ [ 1+ √ 5 2 ,
2), the result can be true for almost every x ∈ (0, 1 β-1 ). We give a class of such β in Theorem 2.2.3 as the third main result in this section. They are the pseudo-golden ratios, i.e., the

β ∈ (1, 2) such that β m -β m-1 -• • • -β -1 = 0 for some integer m ≥ 2.

Note that the smallest pseudo-golden ratio is the golden ratio

1+ √ 5 2 . Theorem 2.2.3. Let β ∈ (1, 2) such that β m -β m-1 -• • • -β -1 = 0 for some integer m ≥ 2 and let c = (m-1)(2-β) 2(mβ+β-2m) (> 0). Then for any p ∈ [ 1 2 -c, 1 2 + c], Lebesgue almost every x ∈ [0, 1 β-1
] has infinitely many β-expansions on {0, 1} with frequency of zeros equal to p.

We give some notation and preliminaries in Subsection 2.2.1, prove the main results in Subsection 2.2.2 and end this section with further questions in the last subsection.

Notation and preliminaries

Let m ∈ N and β ∈ (1, m + 1]. For all k ∈ {0, • • • , m}, we define the maps T k : R → R by

T k (x) := βx -k for x ∈ R . Given x ∈ [0, m β-1 ], let Σ β,m (x) := (w i ) i≥1 ∈ {0, • • • , m} N : ∞ i=1 w i β i = x
and

Ω β,m (x) := (a i ) i≥1 ∈ {T 0 , • • • , T m } N : (a n • • • • • a 1 )(x) ∈ [0, m β -1
] for all n ∈ N .

The following lemma given by Baker is a dynamical interpretation of β-expansions.

Lemma 2.2.4 ( [START_REF] Baker | Generalized golden ratios over integer alphabets[END_REF][START_REF] Baker | Digit frequencies and self-affine sets with non-empty interior. Ergodic Theory Dynam[END_REF]). For any

x ∈ [0, m β-1 ], we have #Σ β,m (x) = #Ω β,m (x). Moreover, the map which sends (w i ) i≥1 to (T w i ) i≥1 is a bijection from Σ β,m (x) to Ω β,m (x).

Proof of the main results

Proof of Theorem 2. ] : x has no β-expansions of frequency (p, p) .

On the one hand, it is well known that L(U β,m ) = 0 (see for example [87]). On the other hand, by condition we know L(N

p,p β,m ) = 0. Let Ψ := U β,m ∪ N p,p β,m ∪ ∞ n=1 w 1 ,••• ,wn∈{0,••• ,m} T -1 wn • • • • • T -1 w 1 U β,m ∪ N p,p β,m . Then L(Ψ) = 0. Let x ∈ [0, m β-1 ] \ Ψ.
It suffices to prove that x has infinitely many different β-expansions of frequency (p, p).

Let (w i ) i≥1 be a β-expansions of x. Since x / ∈ Ψ implies x / ∈ U β,m , x has another β-expansion (v (1) 
i ) i≥1 . There exists n 1 ∈ N such that v

(1)

1 • • • v (1)
n 1 -1 = w 1 • • • w n 1 -1 and v (1)
n 1 = w n 1 . By T v (1) n 1 • T wn 1 -1 • • • • • T w 1 x = T v (1) n 1 • • • • • T v (1) 1 x = ∞ i=1 v (1) n 1 +i β i , we know that (v (1) 
n 1 +i ) i≥1 is a β-expansion of T v (1) n 1 • T wn 1 -1 • • • • • T w 1 x. Since x / ∈ Ψ implies T v (1) n 1 • T wn 1 -1 • • • • • T w 1 x / ∈ N p,p β,m , T v (1) n 1 • T wn 1 -1 • • • • • T w 1 x has a β-expansion (w (1) 
n 1 +i ) i≥1 of frequency (p, p). Let w (1) 1 • • • w (1)
n 1 -1 w

(1)

n 1 := w 1 • • • w n 1 -1 v (1)
n 1 . Then (w (1) 
i ) i≥1 is a β-expansion of x of frequency (p, p) with w

(1)

n 1 = w n 1 , which implies that (w i ) i≥1 and (w (1) i ) i≥1 are different. Note that (w n 1 +i ) i≥1 is a β-expansion of T wn 1 • • • • • T w 1 x. Since x / ∈ Ψ implies T wn 1 • • • • • T w 1 x / ∈ U β,m , T wn 1 • • • • • T w 1 x has another β-expansion (v (2) 
n 1 +i ) i≥1 . There exists n 2 > n 1 such that v (2) n 1 +1 • • • v (2) n 2 -1 = w n 1 +1 • • • w n 2 -1 and v (2) n 2 = w n 2 . By T v (2) n 2 • T wn 2 -1 • • • • • T w 1 x = T v (2) n 2 • • • • • T v (2) n 1 +1 • (T wn 1 • • • • • T w 1 x) = ∞ i=1 v (2) n 2 +i β i , we know that (v (2) n 2 +i ) i≥1 is a β-expansion of T v (2) n 2 • T wn 2 -1 • • • • • T w 1 x. Since x / ∈ Ψ implies T v (2) n 2 • T wn 2 -1 • • • • • T w 1 x / ∈ N p,p β,m , T v (2) n 2 • T wn 2 -1 • • • • • T w 1 x has a β-expansion (w (2) 
n 2 +i ) i≥1 of frequency (p, p). Let w

(2)

1 • • • w (2) n 2 -1 w
(2)

n 2 := w 1 • • • w n 2 -1 v (2) n 2 . Then (w (2) 
i ) i≥1 is a β-expansion of x of frequency (p, p) with w • • • Generally, suppose that for some j ∈ N we have already constructed (w 

(1) i ) i≥1 , (w (2) i ) i≥1 , • • • , (w (j) i ) i≥1 , which are all β-expansions of x of frequency (p, p) such that                w (1)
n 1 = w n 1 , w (2) 
n 1 = w n 1 , w (2) 
n 2 = w n 2 , w (3) 
n 1 = w n 1 , w (3) 
n 2 = w n 2 , w (3) 
n 3 = w n 3 , • • • w (j) n 1 = w n 1 , w (j) n 2 = w n 2 , • • • , w (j) n j-1 = w n j-1 , w (j) n j = w n j . Note that (w n j +i ) i≥1 is a β-expansion of T wn j • • • • • T w 1 x. Since x / ∈ Ψ implies T wn j • • • • • T w 1 x / ∈ U β,m , T wn j • • • • • T w 1 x has another β-expansion (v (j+1) n j +i ) i≥1 . There exists n j+1 > n j such that v (j+1) n j +1 • • • v (j+1) n j+1 -1 = w n j +1 • • • w n j+1 -1 and v (j+1) n j+1 = w n j+1 . By T v (j+1) n j+1 • T wn j+1 -1 • • • • • T w 1 x = T v (j+1) n j+1 • • • • • T v (j+1) n j +1 • (T wn j • • • • • T w 1 x) = ∞ i=1 v (j+1) n j+1 +i β i , we know that (v (j+1) n j+1 +i ) i≥1 is a β-expansion of T v (j+1) n j+1 • T wn j+1 -1 • • • • • T w 1 x. Since x / ∈ Ψ implies T v (j+1) n j+1 •T wn j+1 -1 •• • ••T w 1 x / ∈ N p,p β,m , T v (j+1) n j+1 •T wn j+1 -1 •• • ••T w 1 x has a β-expansion (w (j+1) n j+1 +i ) i≥1 of frequency (p, p). Let w (j+1) 1 • • • w (j+1) n j+1 -1 w (j+1) n j+1 := w 1 • • • w n j+1 -1 v (j+1) n j+1 . Then (w (j+1) i ) i≥1 is a β-expansion of x of frequency (p, p) with w (j+1) n 1 = w n 1 , • • • , w (j+1) n j = w n j and w (j+1) n j+1 = w n j+1 , which implies that (w i ) i≥1 , (w (1) i ) i≥1 , • • • , (w (j+1) i
z -:= m 2(β -1) - 1 2 and z + := m 2(β -1) + 1 2 .
For all k ∈ {1, • • • , m}, define

z k := m 2β(β -1) + 2k -1 2β . Then T 1 (z 1 ) = T 2 (z 2 ) = • • • = T m (z m ) = z -and T 0 (z 1 ) = T 1 (z 2 ) = • • • = T m-1 (z m ) = z + .
First we prove that L-a.e. 

expansion w on { m-1 2 , m+1 2 } satisfying Freq m-1 2 (w) =Freq m+1 2 (w) = 1 2 .
Thus we only need to consider that β > 2 or m is even in the following.

Define T : [0, m β-1 ] → [0, m β-1 ] by T (x) :=      T 0 (x) = βx for x ∈ [0, z 1 ), T k (x) = βx -k for x ∈ [z k , z k+1 ) and k ∈ {1, 2, • • • , m -1}, T m (x) = βx -m for x ∈ [z m , m β-1 ].
We consider the restriction

T | [z -,z + ) : [z -, z + ) → [z -, z + )
. By Theorem 5.2 in [START_REF] Wilkinson | Ergodic properties of a class of piecewise linear transformations[END_REF], there 

exists a T | [z -,z + ) -invariant ergodic Borel probability measure µ on [z -, z + ) equivalent to L. Let r be the smallest in {1, 2, • • • , m} such that z -< z r . Then m + 1 -r is the largest in {1, 2, • • • , m} such that z m+1-r < z + . Let z r-1 := z -, z m-r+2 := z + and z k := z k for all k ∈ {r, r + 1, • • • , m -r + 1}. 0 z 1 z 2 z - z 3 z 4 z 5 z 6 z + z 7 z 8 8 β-1 z - z + 8 β-1
Then z r-1 < z r < • • • < z m-r+1 < z m-r+2 . For any x ∈ [z -, z + ) which is not a preimage of a discontinuity point of T | [z -,z + ) , by symmetry, we know that for any k ∈ {r -1, r, • • • , m -r + 1} and i ∈ {0, 1, 2, • • • }, T i (x) ∈ (z k , z k+1 ) ⇔ T i m β -1 -x ∈ (z m-k , z m-k+1 ).
For all k ∈ {r -1, r, • • • , m -r + 1}, it follows from Birkhoff's ergodic theorem that for

L-a.e. x ∈ [z -, z + ), µ((z k , z k+1 )) = z + z - 1 (z k ,z k+1 ) dµ = lim n→∞ 1 n n-1 i=0 1 (z k ,z k+1 ) T i (x) (2.6) = lim n→∞ 1 n n-1 i=0 1 (z m-k ,z m-k+1 ) T i m β -1 -x , (2.7) 
and for L-a.e. y ∈ [z -, z + ),

µ((z m-k , z m-k+1 )) = z + z - 1 (z m-k ,z m-k+1 ) dµ = lim n→∞ 1 n n-1 i=0 1 (z m-k ,z m-k+1 ) T i (y) ,
which implies that for L-a.e.

( m β-1 -x) ∈ (z -, z + ), µ((z m-k , z m-k+1 )) = lim n→∞ 1 n n-1 i=0 1 (z m-k ,z m-k+1 ) T i m β -1 -x .
So this is also true for L-a.e x ∈ (z -, z + ). Recalling (2.7), we get

µ((z k , z k+1 )) = µ((z m-k , z m-k+1 )) for k ∈ {r -1, r, • • • , m -r + 1}. (2.8)
For every x ∈ [z -, z + ) and i ∈ N, there exists

k i ∈ {r -1, r, • • • , m -r, m -r + 1} such that T i-1 x ∈ [z k i , z k i +1 ), then we define ε i (x) := k i and denote ε(x) := (ε i (x)) i≥1 ∈ {r -1, r, • • • , m -r + 1} N . For all k ∈ {r -1, r, • • • , m -r + 1}, i ∈ {0, 1, 2, • • • } and x ∈ [z -, z + ), we have 1 [z k ,z k+1 ) (T i x) = 1 ⇔ T i x ∈ [z k , z k+1 ) ⇔ ε i+1 (x) = k.
By (2.6), we know that for all k ∈ {r -1, r, • • • , m -r + 1} and L-a.e. x ∈ [z -, z + ),

Freq k (ε(x)) = lim n→∞ #{i : 1 ≤ i ≤ n, ε i (x) = k} n = µ((z k , z k+1 )).
It follows from (2.8) that for all k ∈ {r -1, r, • • • , m -r + 1} and L-a.e. x ∈ [z -, z + ),

Freq k (ε(x)) = Freq m-k (ε(x)).
(2.9)

(1) For any x ∈ [z -, z + ), we prove that ε(x) is a β-expansion of x, i.e., ∞ i=1 ε i (x)

β i = x. In fact, by Lemma 2.2.4, it suffices to show T εn(x) • • • • • T ε 1 (x) (x) ∈ [0, m β-1 ] for all n ∈ N. We only need to prove T εn(x) • • • • • T ε 1 (x) (x) = T n (x) by induction as follows. For x ∈ [z -, z + ), let k 1 ∈ {r -1, r, • • • , m -r, m -r + 1} such that x ∈ [z k 1 , z k 1 +1 ). Then ε 1 (x) = k 1 and T ε 1 (x) (x) = T k 1 (x) = T (x).
Assume that for some n ∈ N we have

T εn(x) • • • • • T ε 1 (x) (x) = T n (x). Let k n+1 ∈ {r - 1, r, • • • , m -r, m -r + 1} such that T n (x) ∈ [z k n+1 , z k n+1 +1 ). Then ε n+1 (x) = k n+1 and T ε n+1 (x) • T εn(x) • • • • • T ε 1 (x) (x) = T k n+1 • T n (x) = T n+1 (x).
Combining ( 1) and (2.9), we know that L-a.e. x ∈ [z -, z + ] has a balanced β-expansion.
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Let

N := x ∈ [0, m β -1 ] :
x has no balanced β-expansions .

We have already proved L(N ∩ [z -, z + ]) = 0. To end the proof, we need to show L(N ) = 0.

In fact, it suffices to prove L(N ∩ (0,

z -)) = L(N ∩ (z + , m β-1 )) = 0. i) Prove L(N ∩ (0, z -)) = 0. By L(N ∩ [z -, z + ]) = 0, we know that for any n ∈ N and v 1 , • • • , v n ∈ {0, • • • , r -1}, L(T -1 v 1 • • • • • T -1 vn (N ∩ [z -, z + ])) = 0. It suffices to prove N ∩ (0, z -) ⊂ ∞ n=1 v 1 ,••• ,vn∈{0,••• ,r-1} T -1 v 1 • • • • • T -1 vn (N ∩ [z -, z + ]).
(By contradiction) Let x ∈ N ∩(0, z -) and assume that x is not contained in the right hand side. By x ∈ (0, z -), one can verify that there exist

v 1 , • • • , v k ∈ {0, • • • , r -1} such that T v k • • • • • T v 1 (x) ∈ [z -, z + ]. (In fact, it suffices to use T | [0,z -) .) Since x / ∈ T -1 v 1 •• • ••T -1 v k (N ∩[z -, z + ]), we must have T v k •• • ••T v 1 (x) / ∈ N . This means that
there exists a balanced sequence

(w i ) i≥1 on {0, • • • , m} such that T v k • • • • • T v 1 (x) = ∞ i=1 w i
β i , and then

x = v 1 β + v 2 β 2 + • • • + v k β k + ∞ i=1 w i β k+i =: ∞ i=1 v i β i
where v k+i := w i for i ≥ 1. It follows that (v i ) i≥1 is a balanced β-expansion of x, which contradicts x ∈ N .

ii) The fact L(N ∩ (z + , m β-1 )) = 0 follows in a way similar to i) by applying

T m , T m-1 , • • • , T m-r+1 instead of T 0 , T 1 , • • • , T r-1 . Proof of Theorem 2.2.3. Let β ∈ (1, 2) such that β m -β m-1 -• • • -β -1 = 0 for some integer m ≥ 2 and let c = (m-1)(2-β) 2(mβ+β-2m) . We have c > 0 since m -1 > 0, 2 -β > 0 and mβ + β -2m > 0, which is a consequence of m + 1 < 2m < 2(β m-1 + • • • + β + 1) = 2β m = 2 2 -β ,
where the equalities follows from Then

β m = β m-1 + • • • + β + 1 = β m -1 β -1 . For any x ∈ [0, 1 β-1 -1], define f (x) := (β -1)(1 -(m -1)x) mβ + β -2m . 0 b b+1 β b + 1 1 β-1 b b + 1 1 β-1
f (0) = β -1 mβ + β -2m = 1 2 + c and f ( 1 β -1 -1) = mβ + 1 -2m mβ + β -2m = 1 2 -c, i.e., [f ( 1 β-1 -1), f (0)] = [ 1 2 -c, 1 2 + c]. Since f is continuous, for any p ∈ [ 1 2 -c, 1 2 + c], there exists b ∈ [0, 1 β-1 -1] such that f (b) = p. We only consider b ∈ [0, 1 β-1 -1) in the following, since the proof for the case b ∈ (0, 1 β-1 -1] is similar. Define T : [0, 1 β-1 ] → [0, 1 β-1 ] by T (x) := T 0 (x) = βx for x ∈ [0, b+1 β ), T 1 (x) = βx -1 for x ∈ [ b+1 β , 1 β-1 ].
Noting that T 0 ( b+1 β ) = b + 1 and T 1 ( b+1 β ) = b, by Section 3 in [START_REF] Kopf | Invariant measures for piecewise linear transformations of the interval[END_REF], there exists a

CHAPTER 2 T -invariant ergodic measure µ L on [0, 1 β-1 ] such that for L-a.e. x ∈ [0, 1 β-1 ], dµ dL (x) = ∞ n=0 1 [0,T n (b+1)] (x) β n - ∞ n=0 1 [0,T n (b)] (x)
β n (2.10)

and ν :=

1 µ([0, 1 β-1 ]) • µ is a T -invariant ergodic probability measure on [0, 1 β-1 ]. (1) For 1 ≤ n ≤ m -1, prove T n (b) = β n b < b+1 β ≤ β n b + β n -β n-1 -• • • -β -1 = T n (b + 1). Note that β m = β m-1 + • • • + β + 1 = β m -1 β-1 . 1 By b < 1 β-1 -1 = 1 β m -1 ≤ 1 β n+1 -1 , we get β n b < b+1 β . 2 By 1 β + • • • + 1 β n+1 ≤ 1 β + • • • + 1 β m = 1, we get β n + • • • + β + 1 ≤ β n+1 and then β n +• • •+β+1+b ≤ β n+1 +β n+1 b which implies b+1 β ≤ β n b+β n -β n-1 -• • •-β-1.
(

) For n ≥ m, prove T n (b) = T n (b + 1). 2 
It suffices to prove T m (b) = T m (b + 1). In fact, this follows from (1) and

β m b = β m b + β m -β m-1 -• • • -β -1.
Combining (2.10) and ( 2), we know that for L-a.e. x ∈ [0,

1 β-1 ], dµ dL (x) = m-1 n=0 1 [0,T n (b+1)] (x) -1 [0,T n (b)] (x) β n . (2.11) Thus µ[0, b + 1 β ) = b+1 β 0 dµ dL (x)dx = m-1 n=0 min{T n (b + 1), b+1 β } -min{T n (b), b+1 β } β n by (1) ===== m-1 n=0 b+1 β -β n b β n = 1 -(m -1)b
where the last equality follows from

1 β + • • • + 1 β m = 1. By µ([0, 1 β -1 ]) = 1 β-1 0 dµ dL (x)dx = m-1 n=0 T n (b + 1) -T n (b) β n by (1) ===== 1 + m-1 n=1 β n -β n-1 -• • • -β -1 β n = 1 + m-1 n=1 (1 - 1 β -• • • - 1 β n ) = m - m -1 β - m -2 β 2 -• • • - 1 β m-1 , we get 1 β • µ([0, 1 β -1 ]) = m β - m -1 β 2 - m -2 β 3 -• • • - 1 β m .
It follows from the subtraction of the above two equalities that µ([0,

1 β-1 ]) = mβ+β-2m β-1 . Therefore ν = β-1 mβ+β-2m • µ and ν[0, b + 1 β ) = (β -1)(1 -(m -1)b) mβ + β -2m = f (b) = p. Since T : [0, 1 β-1 ] → [0, 1 β-1
] is ergodic with respect to ν, it follows from Birkhoff's Ergodic Theorem that for ν-a.e. x ∈ [0, 1 β-1 ] we have 

lim n→∞ 1 n n-1 k=0 1 [0, b+1 β ) T k (x) = 1 β-1 0 1 [0, b+1 β ) dν = ν[0, b + 1 β ) = p,
lim n→∞ 1 n n-1 k=0 1 [0, b+1 β ) T k (x) = p. For every x ∈ [0, 1 β-1 ], define a sequence ε(x) = (ε i (x)) i≥1 ∈ {0, 1} N by ε i (x) := 0 if T i-1 x ∈ [0, b+1 β ) 1 if T i-1 x ∈ [ b+1 β , 1 β-1 ]
for all i ≥ 1.

Then by

1 [0, b+1 β ) (T k x) = 1 ⇔ T k x ∈ [0, b + 1 β ) ⇔ ε k+1 (x) = 0, we know that for L-a.e. x ∈ [b, b + 1], lim n→∞ #{1 ≤ i ≤ n : ε i (x) = 0} n = p, i.e., Freq 0 (ε(x)) = p.
(2.12)

By the same way as in the proof of Theorem 2.2.2, we know that for every x ∈ [0, 1 β-1 ], the ε(x) defined above is a β-expansion of x, and L-a.e. x ∈ [0, 1 β-1 ] has a β-expansion with frequency of zeros equal to p. Then we finish the proof by applying Theorem 2.2.1.

Further questions

First we wonder whether Theorem 2.2.1 can be generalized. If a positive answer is given to this question, by Theorem 2.2.2, there is also a positive answer to the following question. The last question we want to ask is on the variability of the frequency related to Theorem 2.2.3. Let β > 1. If there exists c = c(β) > 0 such that for any p 0 , p 1 ,

• • • , p β -1 ∈ [ 1 β -c, 1 β + c] with p 0 + p 1 + • • • + p β -1 = 1, every x ∈ (0, β -1 β-1 ) has a β-expansion w = (w i ) i≥1 with Freq 0 (w) = p 0 , Freq 1 (w) = p 1 , • • • , Freq β -1 (w) = p β -1 ,
we say that β is a variational frequency base. Similarly, if there exists c = c(β) > 0 such that for any p 0 , p 1 ,

• • • , p β -1 ∈ [ 1 β -c, 1 β + c] with p 0 + p 1 + • • • + p β -1 = 1, Lebesgue almost every x ∈ [0, β -1 β-1 ] has a β-expansion w = (w i ) i≥1 with Freq 0 (w) = p 0 , Freq 1 (w) = p 1 , • • • , Freq β -1 (w) = p β -1 ,
we say that β is an almost variational frequency base.

Obviously, all variational frequency bases are almost variational frequency bases. α ∈ Γ. Thus we call Γ the set of univoque sequences in this section. Note that the term "univoque sequence" is different in some papers [START_REF] Daróczy | Univoque sequences[END_REF][START_REF] Vries | On the number of unique expansions in non-integer bases[END_REF][START_REF] Vries | Unique expansions of real numbers[END_REF].

Recall from Section 2.2 that for any sequence w = (w n ) n≥1 , we use Freq k (w), Freq k (w) and Freq k (w) to denote respectively the frequency, lower frequency and upper frequency of the digit k in w.

Given a ∈ [0, 1], define the frequency subsets of Γ by

Γ a := w ∈ Γ : Freq 0 (w) = a , Γ a := w ∈ Γ : Freq 0 (w) = a , Γ a := w ∈ Γ : Freq 0 (w) = a ,
and define the frequency subsets of Λ := w ∈ {0, 1} N : the lengths of consecutive 0's and consecutive 1's in w are bounded by

Λ a := w ∈ Λ : Freq 0 (w) = a , Λ a := w ∈ Λ : Freq 0 (w) = a , Λ a := w ∈ Λ : Freq 0 (w) = a . It is straightforward to check Γ ⊂ Λ. Let U := β ∈ (1, 2) : 1 has a unique β-expansion on {0, 1}
be the set of univoque bases. It is proved in [START_REF] Daróczy | On the structure of univoque numbers[END_REF][START_REF] Komornik | Hausdorff dimension of univoque sets and devil's staircase[END_REF] that U is of full Hausdorff dimension.

That is,

dim H U = 1.
For more research on U, we refer the reader to [START_REF] Vries | Topology of the set of univoque bases[END_REF][START_REF] Komornik | On the topological structure of univoque sets[END_REF][START_REF] Kong | Univoque bases and Hausdorff dimension[END_REF].

On frequency sets, recall the well known result given by Eggleston [START_REF] Eggleston | The fractional dimension of a set defined by decimal properties[END_REF], which says that for any a ∈ [0, 1], the classical Eggleston-Besicovitch set has Hausdorff dimension

dim H x ∈ [0, 1) : Freq 0 (ε(x)) = a = -a log a -(1 -a) log(1 -a) log 2 , (2.13) 
where ε(x

) := ε 1 (x)ε 2 (x) • • • ε n (x) • • •
is the greedy binary expansion of x, and 0 log 0 := 0.

Motivated by the above mentioned results, correspondingly, we study the set of univoque sequences Γ, the larger set Λ, and their frequency subsets Γ a , Γ a , Γ a , Λ a , Λ a , Λ a . By applying Theorem 2.3.1, we give the next theorem as the second main result in this section.
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Let dim H (•, d 2 ) denote the Hausdorff dimension in {0, 1} N equipped with the usual metric

d 2 . Theorem 2.3.2. (1) We have dim H (Γ, d 2 ) = dim H (Λ, d 2 ) = 1.
(2) For all a ∈ [0, 1] we have

dim H (Γ a , d 2 ) = dim H (Γ a , d 2 ) = dim H (Γ a , d 2 ) = dim H (Λ a , d 2 ) = dim H (Λ a , d 2 ) = dim H (Λ a , d 2 ) = -a log a -(1 -a) log(1 -a) log 2 ,
where 0 log 0 := 0. For any a ∈ [0, 1] we define the global frequency sets in {0, 1} N by

G a := w ∈ {0, 1} N : Freq 0 (w) = a , G a := w ∈ {0, 1} N : Freq 0 (w) = a , G a := w ∈ {0, 1} N : Freq 0 (w) = a ,
and for any integer m ≥ 3 we let

Λ (m) a := Λ (m) ∩ G a .
Here we give an outline for the proof of Theorem 2.3.2 (2) to explain how the concepts in this section interact. Following the simple argument at the beginning of the Proof of Theorem 2.3.2 in Subsection 2.3.4, we know that it suffices to consider the lower bound of

dim H (Γ a , d 2 ). Since (2.16) says that dim H (Γ a , d 2 ) ≥ dim H (Λ (m) a , d 2 )
for any integer m ≥ 3, we only need to find a good lower bound for dim H (Λ (m) a , d 2 ). Hence we apply the Bernoullitype measure µ p to the Billingsley Lemma in metric space (Proposition 2.3.5), and the unique equivalent σ m -invariant ergodic measure λ p in Theorem 2.3.1 (with a suitable p) can guarantee that Λ (m) a has positive measure, which is needed by the Billingsley Lemma.

Then we obtain a good lower bound of dim H (Λ (m) a , d 2 ) in Lemma 2.3.16. This section is organized as follows. In Subsection 2.3.1, we recall some basic notation and preliminaries. In Subsection 2.3.2, we study related digit occurrence parameters and their properties which will be used later. In Subsection 2.3.3, we study Bernoulli-type measures and prove Theorem 2.3.1. Finally we prove Theorem 2.3.2 in Subsection 2.3.4.

Notation and preliminaries

For a finite word w ∈ {0, 1} * , we use |w|, |w| 0 and |w| 1 to denote its length, the number of 0's in w and the number of 1's in w respectively. Recall that w| k := w 1 w 2 • • • w k denotes the prefix of w with length k for w ∈ {0, 1} N or w ∈ {0, 1} n where n ≥ k.

First we recall the following concept. (

) If dim loc µ(x) ≤ s for all x ∈ E, then dim H E ≤ s. 1 
(2) If dim loc µ(x) ≥ s for all x ∈ E and µ(E) > 0, then dim H E ≥ s.

We need to use the following version which is a generalization to metric spaces. For the sake of completeness we give a self-contained proof.

Proposition 2.3.5. Let (X, d) be a metric space, E ⊂ X be a Borel set, µ be a finite Borel measure on X and s ≥ 0. If µ(E) > 0 and dim loc µ(x) ≥ s for all x ∈ E, then

dim H (E, d) ≥ s.
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The main we need to prove is the following.

Lemma 2.3.6. Let (X, d) be a metric space, E ⊂ X be a Borel set, µ be a finite Borel measure on X, s ≥ 0 and c > 0.

If lim r→0 µ(B(x,r)) r s < c for all x ∈ E, then H s (E, d) ≥ µ(E) c .
Proof. For any δ > 0, let

E δ := {x ∈ E : µ(B(x, r
)) ≤ cr s for all r ∈ (0, δ)}.

(1) Prove that E δ is a Borel set. We define

F q := {x ∈ E : µ(B(x, q)) ≤ cq s } for q ∈ Q.
It suffices to prove the following 1 and 2 .

1 Prove E δ = q∈Q∩(0,δ) F q . ⊂ follows from E δ ⊂ F q for all q ∈ Q ∩ (0, δ).

⊃ Let x ∈ q∈Q∩(0,δ) F q . For any r ∈ (0, δ), there exist

q 1 , q 2 , • • • , q n , • • • ∈ Q∩(0, δ) decreasing to r. By x ∈ ∞ n=1 F qn we get µ(B(x, q n )) ≤ cq s n for all n ∈ N. Thus µ(B(x, r)) = µ( ∞ n=1 B(x, q n )) = lim n→∞ µ(B(x, q n )) ≤ lim n→∞ cq s n = cr s .
This implies x ∈ E δ .

2 Prove that F q is a Borel set. Define f (x) := µ(B(x, q)) for x ∈ X. Then F q = E ∩ f -1 (-∞, cq s ]. We only need to prove that f is a Borel function. For any a ∈ R, it suffices to prove that f

-1 (-∞, a) is an open set. If f -1 (-∞, a) = ∅,
it is obviously open. We only need to consider

f -1 (-∞, a) = ∅ in the following. Let x 0 ∈ f -1 (-∞, a)
. Then µ(B(x 0 , q)) < a. Since µ(B(x 0 , q + δ)) decreases to µ(B(x 0 , q)) as δ decreases to 0, there exists δ 0 > 0 such that µ(B(x 0 , q + δ 0 )) < a.

It suffices to prove that the open ball

B o (x 0 , δ 0 ) := {x ∈ X : d(x, x 0 ) < δ 0 } ⊂ f -1 (-∞, a).
In fact, for any x ∈ B o (x 0 , δ 0 ), by B(x, q) ⊂ B(x 0 , q + δ 0 ) we get µ(B(x, q)) ≤ µ(B(x 0 , q + δ 0 )) < a, which implies x ∈ f -1 (-∞, a).

(2) Prove that E δ increases to E as δ decreases to 0.

1 If 0 < δ 2 < δ 1 , then obviously E δ 1 ⊂ E δ 2 .
2 Prove E = ∪ δ>0 E δ .

⊃ follows from E ⊃ E δ for all δ > 0.

⊂ Let x ∈ E. By lim r→0 µ(B(x,r)) r s < c, there exists δ x > 0 such that for all r ∈ (0, δ x ), µ(B(x, r)) ≤ cr s . Thus x ∈ E δx ⊂ ∪ δ>0 E δ .

(

) Prove H s (E, d) ≥ µ(E) c . Fix δ > 0. Let {U k } k∈K be a countable δ-cover of E, i.e., |U k | ≤ δ for all k ∈ K and k∈K U k ⊃ E (⊃ E δ ). Let K := {k ∈ K : U k ∩ E δ = ∅}. Then k∈K U k ⊃ E δ . For any k ∈ K , let x k ∈ U k ∩ E δ and B k := B(x k , |U k |) ⊃ U k . Then k∈K B k ⊃ E δ . It follows that k∈K |U k | s ≥ 1 c k∈K c|U k | s ( ) ≥ 1 c k∈K µ(B(x k , |U k |)) ≥ 1 c • µ( k∈K B k ) ≥ µ(E δ ) c 3 
where ( ) follows from x k ∈ E δ . By the randomness of the choice of the δ-cover 1) and ( 2) we get

{U k } k∈K , we get H s δ (E, d) ≥ µ(E δ ) c and then H s (E, d) ≥ µ(E δ ) c . Let δ → 0, by (
H s (E, d) ≥ µ(E) c .
Proof of Proposition 2.3.5. If s = 0, the conclusion is obvious. If s > 0, let t ∈ (0, s). For any x ∈ E, by lim r→0 log µ(B(x,r)) log r > t, there exists δ x ∈ (0, 1) such that for any r ∈ (0, δ

> t and then µ(B(x, r)) < r t . Thus lim r→0 µ(B(x,r)) r t ≤ 1 < 2 for all x ∈ E. By Lemma 2.3.6, we get H t (E, d) ≥ µ(E) 2 > 0. Thus dim H (E, d) ≥ t for all t ∈ (0, s), which implies dim H (E, d) ≥ s.

Digit occurrence parameters

The digit occurrence parameters and their properties studied in this subsection will be used in Subsections 2.3.3 and 2.3.4. Definition 2.3.7 (Digit occurrence parameters). Let m ≥ 3 be an integer. For any w ∈ Λ (m), * , define 

N (m) 0 (w) := k : 1 ≤ k ≤ |w|, w k = 0 and w 1 . . . w k-1 1 ∈ Λ (m), * , N (m) 1 (w) := k : 1 ≤ k ≤ |w|, w k = 1 and w 1 . . . w k-1 0 ∈ Λ (m), * ,
N (m) 0 (w) + N (m) 0 (v) -1 ≤ N (m) 0 (wv) ≤ N (m) 0 (w) + N (m) 0 (v); CHAPTER 2 (2) N (m) 1 (w) + N (m) 1 (v) -1 ≤ N (m) 1 (wv) ≤ N (m) 1 (w) + N (m) 1 (v). Proof. Let a = |w| and b = |v|. (1) 1 Prove N (m) 0 (wv) ≤ N (m) 0 (w) + N (m) 0 (v). It suffices to prove N (m) 0 (wv) ⊂ N (m) 0 (w) ∪ (N (m) 0 (v) + a), where N (m) 0 (v) + a := {j + a : j ∈ N (m) 0 (v)}. Let k ∈ N (m) 0 (wv). i) If 1 ≤ k ≤ a, then w k = 0, w 1 • • • w k-1 1 ∈ Λ (m), * and we get k ∈ N (m) 0 (w). ii) If a + 1 ≤ k ≤ a + b, then v k-a = 0 and w 1 • • • w a v 1 • • • v k-a-1 1 ∈ Λ (m), * . It follows from v 1 • • • v k-a-1 1 ∈ Λ (m), * that k -a ∈ N (m) 0 (v) and k ∈ N (m) 0 (v) + a. 2 Prove N (m) 0 (w) + N (m) 0 (v) ≤ N (m) 0 (wv) + 1. When v = 1 b , we get N (m) 0 (v) = 0 and then the conclusion follows immediately from N (m) 0 (w) ≤ N (m) 0 (wv). Thus it suffices to consider v = 1 b in the following. Let s ∈ {1, • • • , b} be the smallest such that v 1 = • • • = v s-1 = 1 and v s = 0. In order to get the conclusion, it suffices to show N (m) 0 (w) ∪ (a + N (m) 0 (v)) ⊂ N (m) 0 (wv) ∪ {a + s}. Since N (m) 0 (w) ⊂ N (m) 0 (wv), we only need to prove (a + N (m) 0 (v)) ⊂ N (m) 0 (wv) ∪ {a + s}. Let k ∈ N (m) 0 (v) \ {s}. It suffices to check a + k ∈ N (m) 0 (wv). By v k = 0, we only need to prove w 1 • • • w a v 1 • • • v k-1 1 ∈ Λ (m), * . (By contradiction) Assume w 1 • • • w a v 1 • • • v k-1 1 / ∈ Λ (m), * .
Then

w 1 • • • w a v 1 • • • v k-1 1 contains 0 m or 1 m . i) If w 1 • • • w a v 1 • • • v k-1 1 contains 0 m , then w 1 • • • w a v 1 • • • v k-1 contains 0 m . This con- tradicts wv ∈ Λ (m), * . ii) If w 1 • • • w a v 1 • • • v k-1 1 contains 1 m , by k ≥ s + 1, we know that w 1 • • • w a v 1 • • • v s-1 0v s+1 • • • v k-1 1 contains 1 m . Thus w 1 • • • w a v 1 • • • v s-1 contains 1 m or v s+1 • • • v k-1 1 contains 1 m . But w 1 • • • w a v 1 • • • v s-1 contains 1 m will contradict wv ∈ Λ (m), * , and v s+1 • • • v k-1 1 contains 1 m will imply v 1 • • • v k-1 1 contains 1 m which contradicts k ∈ N (m) 0 (v).
(2) follows in the same way as (1).

Proposition 2.3.9. Let m ≥ 3 be an integer and w ∈ Λ (m), * . Then

(1) m • |w| 0 ≤ (m -1)N (m) 0 (w) + |w|; (2) m • |w| 1 ≤ (m -1)N (m) 1 (w) + |w|. Proof. (1) Let n = |w|. If n ≤ m -1, the conclusion follows immediately from N (m) 0 (w) = |w| 0 . In the following, we assume n ≥ m. Recall N (m) 0 (w) = k : 1 ≤ k ≤ n, w k = 0, w 1 • • • w k-1 1 ∈ Λ (m), *
and

N (m) 0 (w) = #N (m) 0 (w). CHAPTER 2 Proof. Let α = p 2 (1 -p) 2 > 0.
(1) Let w ∈ Λ (m), * and n = |w|. For any A ∈ B(Λ (m) ), we prove

αµ p [w]µ p (A) ≤ µ p ([w] ∩ σ -(n+2) m A). 1 For any v ∈ Λ (m), * , prove αµ p [w]µ p [v] ≤ µ p ([w] ∩ σ -(n+2) m [v]).
In fact, it follows from

ww n v 1 v ∈ Λ (m), * and [w] ∩ σ -(n+2) m [v] ⊃ [ww n v 1 v] that µ p ([w] ∩ σ -(n+2) m [v]) ≥ µ p [ww n v 1 v] ( ) ≥ µ p [w]µ p [w n ]µ p [v 1 ]µ p [v] ≥ (p(1 -p)) 2 µ p [w]µ p [v]
where ( ) follows from Lemma 2.3.11.

2 Let C := [v] : v ∈ Λ (m), * ∪ ∅
and

G w := A ∈ B(Λ (m) ) : αµ p [w]µ p (A) ≤ µ p ([w] ∩ σ -(n+2) m A) .
Then G w is a monotone class. Since in 1 we have already proved C ⊂ G w , in the same way as the end of the proof of Lemma 2.3.12, we get G w = B(Λ (m) ).

(2) We use B c to denote the complement of B in Λ (m) . For any ε > 0, by Lemma 1.2.13, there exist finitely many disjoint cylinders [w (i) ] ⊂ C such that µ p (B c ∆E ε ) < ε where Thus

E ε = i [w (i) ]. (3) 
αµ p (B)µ p (E ε ) = i αµ p (B)µ p [w (i) ] ≤ i µ p (B ∩ [w (i) ]) = µ p (B ∩ i [w (i) ]) = µ p (B ∩ E ε ). Let a = µ p ((B ∪ E ε ) c ), b = µ p (B ∩ E ε ), c = µ p (B \ E ε ) and d = µ p (E ε \ B). Then we already have α(b + c)(b + d) ≤ b, a + b < ε (by µ p (B c ∆E ε ) < ε) and a + b + c + d = 1.
It follows from

α(b + c)(a + d -ε) ≤ α(b + c)(b + d) ≤ b < ε that (b + c)(a + d) < ( 1 α + b + c)ε ≤ ( 1 α + 1)ε.
This implies µ p (B)µ p (B c ) ≤ ( 1 α + 1)ε for any ε > 0. Therefore µ p (B)(1 -µ p (B)) = 0 and then µ p (B) = 0 or 1.

Proof of Theorem 2.3.1. (1) For any n ∈ N and B ∈ B(Λ (m) ), define

λ n p (B) := 1 n n-1 k=0 µ p (σ -k m B).
Then λ n p is a probability measure on (Λ (m) , B(Λ (m) )). By Lemma 2.3.12, there exists c > 0 such that

c -1 µ p (B) ≤ λ n p (B) ≤ cµ p (B) for any B ∈ B(Λ (m) ) and n ∈ N. (2.14) 
(2) For any B ∈ B(Λ (m) ), prove that lim n→∞ λ n p (B) exists.

Let 1 B : Λ (m) → {0, 1} be defined by

1 B (w) := 1 if w ∈ B 0 if w / ∈ B
for any w ∈ Λ (m) . Then

lim n→∞ λ n p (B) = lim n→∞ 1 n n-1 k=0 1 σ -k m B dµ p = lim n→∞ 1 n n-1 k=0 1 B (σ k m w) dµ p (w) = lim n→∞ 1 n n-1 k=0 1 B (σ k m w) dµ p (w)
where the last equality is an application of the dominated convergence theorem, in which the µ p -a.e. (almost every) existence of lim n→∞

1 n n-1 k=0 1 B (σ k
m w) follows from Lemma 1.2.27, Lemma 2.3.12 and (2.14).

(3) For any B ∈ B(Λ (m) ), define

λ p (B) := lim n→∞ λ n p (B).
By the well known Vitali-Hahn-Saks Theorem, λ p is a probability measure on (Λ (m) , B(Λ (m) )).

(4) The fact λ p ∼ µ p on B(Λ (m) ) follows from (2.14) and the definition of λ p .

(5) Prove that λ p is σ m -invariant.

In fact, for any B ∈ B(Λ (m) ) and n ∈ N, we have

λ n p (σ -1 m B) = 1 n n k=1 µ p (σ -k m B) = 1 n n k=0 µ p (σ -k m B) - µ p (B) n = n + 1 n λ n+1 p (B) - µ p (B) n .
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Let n → ∞, we get λ p (σ -1 m B) = λ p (B).

(6) Prove that (Λ (m) , B(Λ (m) ), λ p , σ m ) is ergodic.

In fact, for any B ∈ B(Λ (m) ) satisfying σ -1 m B = B, by Lemma 2.3.13 we get µ p (B) = 0 or 1, which implies λ p (B) = 0 or 1 since λ p ∼ µ p . (7) Prove that such λ p is unique on B(Λ (m) ).

Let λ p be a σ m -invariant ergodic probability measure on (Λ (m) , B(Λ (m) )) equivalent to µ p .

Then for any B ∈ B(Λ (m) ), by the Birkhoff Ergodic Theorem, we get

λ p (B) = 1 B dλ p = lim n→∞ 1 n n-1 k=0 1 B (σ k m w) for λ p -a.e. w ∈ Λ (m)
and

λ p (B) = 1 B dλ p = lim n→∞ 1 n n-1 k=0 1 B (σ k m w) for λ p -a.e. w ∈ Λ (m) . Since λ p ∼ µ p ∼ λ p , there exists w ∈ Λ (m) such that λ p (B) = lim n→∞ 1 n n-1 k=0 1 B (σ k m w) = λ p (B)
. It means that λ p and λ p are the same on B(Λ (m) ).

Proof of Theorem 2.3.2

For any a ∈ [0, 1], recall the definition of the global frequency sets G a , G a and G a from the introduction. The following lemma follows immediately from (2.13), Theorem 1.2.38 and the invariance of Hausdorff dimension under the projection π 2 . Lemma 2.3.14. For any a ∈ [0, 1], we have

dim H (G a , d 2 ) = dim H (G a , d 2 ) = dim H (G a , d 2 ) = -a log a -(1 -a) log(1 -a) log 2 .
To prove Theorem 2.3.2, we also need the next two lemmas, which will be proved later.

Lemma 2.3.15. Let m ≥ 3 be an integer, p ∈ (0, 1) and λ p be the measure on (Λ (m) , B(Λ (m) ))

defined in Theorem 2.3.1. Then

λ p [0] = p -p m 1 -p m -(1 -p) m .
For any integer m ≥ 3 and a ∈

[0, 1], recall Λ (m) a = Λ (m) ∩ G a .
Lemma 2.3.16. Let a ∈ (0, 1) and m ≥ 3 be an integer large enough such that

1 m < a < 1 -1 m . Define f m : (0, 1) → R by f m (x) := x -x m 1 -x m -(1 -x) m for x ∈ (0, 1).
Then there exists p m ∈ (0, 1) such that f m (p m ) = a and

dim H (Λ (m) a , d 2 ) ≥ -(ma -1) log p m -(m -ma -1) log(1 -p m ) (m -1) log 2 .
Moreover, p m → a as m → ∞.

Proof of Theorem 2.3.2. First we prove [START_REF] Barrera | Entropy, topological transitivity, and dimensional properties of unique q-expansions[END_REF]. Let a ∈ [0, 1]. Since it is straightforward to check Γ ⊂ Λ, we have

Γ a ⊂ Λ a ⊂ G a , Γ a ⊂ Γ a ⊂ Λ a ⊂ G a and Γ a ⊂ Γ a ⊂ Λ a ⊂ G a .
By Lemma 2.3.14, we only need to prove

dim H (Γ a , d 2 ) ≥ -a log a -(1 -a) log(1 -a) log 2 . ( 2.15) 
If a = 0 or 1, this follows immediately from 0 log 0 := 0 and 1 log 1 = 0. So we only need to consider 0 < a < 1 in the following. For any integer m ≥ 3, we define

Θ (m) a := w ∈ G a : w 1 • • • w 2m = 1 2m , w km+1 • • • w km+m / ∈ {0 m , 1 m } for all k ≥ 2 and 
Ξ (m) a := w ∈ G a : w km+1 • • • w km+m / ∈ {0 m , 1 m } for all k ≥ 0 . Then dim H (Γ a , d 2 ) ( ) ≥ dim H (Θ (m) a , d 2 ) ( ) ≥ dim H (Ξ (m) a , d 2 ) ( ) ≥ dim H (Λ (m) a , d 2 ) (2.16)
where

( ) follows from Γ a ⊃ Θ (m) a , ( ) follows from Ξ (m) a ⊃ Λ (m) 
a , and ( ) follows from

σ 2m (Θ (m) a ) = Ξ (m) a
and the fact that σ 2m is Lipschitz continuous (since d 2 (σ 2m (w), σ 2m (v)) ≤ 2 2m d 2 (w, v) for all w, v ∈ {0, 1} N ). By (2.16) and Lemma 2.3.16, for m large enough, there exists p m ∈ (0, 1) such that p m → a (as m → ∞) and

dim H (Γ a , d 2 ) ≥ -(ma -1) log p m -(m -ma -1) log(1 -p m ) (m -1) log 2 .
Let m → ∞, we get (2.15).

Finally we deduce (1) from (2). In fact, since (2

) implies dim H (Γ 1 2 , d 2 ) = 1, it follows from Γ 1 2 ⊂ Γ ⊂ Λ ⊂ {0, 1} N that dim H (Γ, d 2 ) = dim H (Λ, d 2 ) = 1.
Finally we prove Lemmas 2.3.15 and 2.3.16 to end this section.

Proof of Lemma 2.3.16. Since f m is continuous on (0, 1), lim

x→0 + f m (x) = 1 m , lim x→1 -f m (x) = 1 -1 m and 1 m < a < 1 -1 m , there exists p m ∈ (0, 1) such that f m (p m ) = a. CHAPTER 2 (1) Prove p m → a as m → ∞. Notice that |p m -a| = |p m -f m (p m )| = p m m (1 -p m ) -p m (1 -p m ) m 1 -p m m -(1 -p m ) m . Let g m (x) := x m (1 -x) -x(1 -x) m 1 -x m -(1 -x) m for x ∈ (0, 1).
Then

|p m -a| = |g m (p m )| ≤ sup x∈(0,1) |g m (x)|.
In order to prove p m → a, it suffices to check |g m (x)| ≤ 1 m for all x ∈ (0, 1). That is,

m • |x m (1 -x) -x(1 -x) m | ≤ 1 -x m -(1 -x) m for all x ∈ (0, 1). 1 When x ∈ (0, 1 2 ], we get x m (1 -x) -x(1 -x) m ≤ 0. It suffices to prove (m -mx - 1)x m + 1 -(mx + 1)(1 -x) m ≥ 0. Since m -mx -1 > 0, we only need to prove h m (x) := (mx + 1)(1 -x) m ≤ 1 for all x ∈ [0, 1 2 ]. This follows from h m (0) = 1 and h m (x) = -m(m + 1)x(1 -x) m-1 ≤ 0 for all x ∈ [0, 1 2 ]. 2 When x ∈ ( 1 2 , 1), we get x m (1 -x) -x(1 -x) m ≥ 0. It suffices to prove (mx - 1)(1 -x) m + 1 -(1 + m -mx)x m ≥ 0. Since mx -1 > 0, we only need to prove h m (x) := (1 + m -mx)x m ≤ 1 for all x ∈ [ 1 2 , 1]. This follows from h m (1) = 1 and h m (x) = m(m + 1)(1 -x)x m-1 ≥ 0 for all x ∈ [ 1 2 , 1].
(2) We apply Proposition 2.3.5 to get the lower bound of dim H (Λ

(m) a , d 2 ). Let µ pm be the (p m , 1 -p m ) Bernoulli-type measure on (Λ (m) , B(Λ (m) )). 1 The fact that Λ (m) a = Λ (m) ∩ G a is a Borel set in (Λ (m) , d 2 ) follows from the fact that G a is a Borel set in ({0, 1} N , d 2 ). 2 Prove µ pm (Λ (m) a ) = 1. Let λ pm be the measure defined in Theorem 2.3.1 such that (Λ (m) , B(Λ (m) ), λ pm , σ m ) is ergodic. It follows from Birkhoff's ergodic theorem that lim n→∞ 1 n n-1 k=0 1 [0] (σ k m w) = 1 [0] dλ pm = λ pm [0] by = ======== = Lemma 2.3.15 p m -p m m 1 -p m m -(1 -p m ) m = f m (p m ) = a for λ pm -almost every w ∈ Λ (m) . By |w 1 •••wn| 0 n = 1 n n-1 k=0 1 [0] (σ k m w), we get lim n→∞ |w 1 • • • w n | 0 n = a for λ pm -almost every w ∈ Λ (m) , which implies λ pm (Λ (m) a ) = 1. It follows from λ pm ∼ µ pm that µ pm (Λ (m) a ) = 1.
3 For all w ∈ Λ (m) a , we have

lim r→∞ log µ pm (B(w, r)) log r ( ) ≥ lim n→∞ log µ pm [w 1 • • • w n ] log 2 -n = lim n→∞ -log p N (m) 0 (w 1 •••wn) m (1 -p m ) N (m) 1 (w 1 •••wn) n log 2 ≥ lim n→∞ N (m) 0 (w 1 •••wn) n (-log p m ) + lim n→∞ N (m) 1 (w 1 •••wn) n (-log(1 -p m )) log 2 ( ) ≥ lim n→∞ m•|w 1 •••wn| 0 (m-1)n -1 m-1 (-log p m ) + lim n→∞ m•|w 1 •••wn| 1 (m-1)n -1 m-1 (-log(1 -p m )) log 2 ( ) = -(ma -1) log p m -(m -ma -1) log(1 -p m ) (m -1) log 2
where ( )

follows from w ∈ Λ (m)
a , ( ) follows from Proposition 2.3.9 and ( ) can be proved as follows. For any r ∈ (0, 1), there exists n = n(r) ∈ N such that 1 2 n ≤ r <

1 2 n-1 . Then by B(w, r) = [w 1 • • • w n ] and log µ pm [w 1 • • • w n ] < 0, we get log µp m (B(w,r)) log r ≥ log µp m [w 1 •••wn] log 2 -n
. (In fact, ( ) can take "=".)

Thus the lower bound of dim H (Λ

a , d 2 ) follows from 1 , 2 , 3 and Proposition 2.3.5.

Proof of Lemma 2.3.15. By the definition of λ p , we know

λ p [0] = lim n→∞ 1 n n-1 k=0 µ p σ -k [0].
For any integer k ≥ 0, let

a k := µ p σ -k [0] = u1•••u k 0∈Λ (m), * µ p [u 1 • • • u k 0], b k := µ p σ -k [1] = u1•••u k 1∈Λ (m), * µ p [u 1 • • • u k 1], c k := µ p σ -k [01] = u1•••u k 01∈Λ (m), * µ p [u 1 • • • u k 01], d k := µ p σ -k [10] = u1•••u k 10∈Λ (m), * µ p [u 1 • • • u k 10].
By Theorem 2.3.1, the following limits exist:

a := lim n→∞ 1 n n-1 k=0 a k = λ p [0], b := lim n→∞ 1 n n-1 k=0 b k = λ p [1], c := lim n→∞ 1 n n-1 k=0 c k = λ p [01], d := lim n→∞ 1 n n-1 k=0 d k = λ p [10].
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That is,

(1 -p)a k+m + p m-1 d k+1 = c k+m for any k ≥ 0, which implies (1 -p) 1 n n-1 k=0 a k+m + p m-1 1 n n-1 k=0 d k+1 = 1 n n-1 k=0 c k+m .
Let n → ∞, we get (1-p)a+p m-1 d = c. It follows in the same way that pb+(1-p) m-1 c = d.

Combining (1), ( 2) and ( 3) we get a =

p-p m 1-p-(1-p) m .
Chapter 3

Generalized Thue-Morse sequences

In this chapter, we study some generalizations of the well known Thue-Morse sequence, including their relations to beta-expansions in Sections 3.1 and 3.2, related infinite products in Section 3.3 and generalized Koch curves in Section 3.4. It is well known that there are several equivalent definitions of this sequence [START_REF] Allouche | The ubiquitous Prouhet-Thue-Morse sequence. Sequences and their applications[END_REF]. One of them is

Bifurcations of digit frequencies in unique expansions

t 0 := 0, t 1 := t 0 , t 2 t 3 := t 0 t 1 , t 4 t 5 t 6 t 7 := t 0 t 1 t 2 t 3 , • • •
where 0 := 1 and 1 := 0. Hence it is straightforward to see that the shifted Thue-Morse sequence (t n ) n≥1 , 1101 0011 0010 1101 0010 1100 1101 0011

• • • , (3.1) 
can be defined by

t 1 := 1, t 2 := t 1 + , t 3 t 4 := t 1 t 2 + , t 5 t 6 t 7 t 8 := t 1 t 2 t 3 t 4 + , • • • where w + := w 1 • • • w n-1 (w n + 1) for any finite word w = w 1 • • • w n .
First we generalize the shifted Thue-Morse sequence according to the above definition.

For any m ∈ N and k ∈ {1, • • • , m}, we define a sequence of finite words {θ 

:= θ (n) m;k θ (n) m;k + for all n ≥ 0, (3.2) 
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where w := w 1 • • • w i for any word w = w 1 • • • w i and j := m -j for any j ∈ {0, 1, • • • , m}.

When m and k are understood from the context, we use θ (n) instead of θ (n) m;k for simplification. We call the infinite sequence

θ = (θ i ) i≥1 := lim n→∞ θ (n) = k(k + 1)kk k(k -1)k(k + 1) k(k -1)kk k(k + 1)kk • • • the (m; k)-shifted-Thue-Morse sequence, and call the unique q = q m;k ∈ (1, m + 1) such that ∞ i=1 θ i q i = 1 the (m; k)-Komornik-Loreti constant.
Note that the (1; 1)-shifted-Thue-Morse sequence is exactly the classical shifted Thue-Morse sequence (t n ) n≥1 and the (1; 1)-Komornik-Loreti constant is exactly the classical Komornik-Loreti constant [START_REF] Allouche | The Komornik-Loreti constant is transcendental[END_REF][START_REF] Komornik | Unique developments in non-integer bases[END_REF].

In the following, we will study the relation between the above generalized Komornik-Loreti constants and digit frequencies in unique expansions.

Let m ∈ N, β ∈ (1, m + 1] and x ∈ R. Recall that a sequence w = (w i ) i≥1 ∈ {0, 1, • • • , m} N is called a β-expansion of x if x = π β (w) := ∞ i=1 w i β i .
An x may have many different β-expansions, or it may have a unique β-expansion. We focus on unique expansions, which got a lot of attention in the last three decades [START_REF] Barrera | Entropy, topological transitivity, and dimensional properties of unique q-expansions[END_REF][START_REF] Allouche | Periodic unique beta-expansions: the Sharkovskiȋ ordering[END_REF][START_REF] Daróczy | Univoque sequences[END_REF][START_REF] Vries | Unique expansions of real numbers[END_REF][START_REF] Erdös | On the uniqueness of the expansions 1 = q -n i[END_REF][START_REF] Komornik | Hausdorff dimension of univoque sets and devil's staircase[END_REF][START_REF] Komornik | On the topological structure of univoque sets[END_REF]. For m ∈ N and β ∈ (1, m + 1], let

Γ m,β := w ∈ {0, 1, • • • , m} N : w is the unique β-expansion of π β (w) \ 0 ∞ , m ∞
be the set of unique β-expansions except 0 ∞ and m ∞ .

For any m ∈ N, let

G m := p + 1 if m = 2p for some integer p ≥ 1 p+1+ √ p 2 +6p+5 2
if m = 2p + 1 for some integer p ≥ 0 be the generalized golden ratio. Baker [START_REF] Baker | Generalized golden ratios over integer alphabets[END_REF] showed that:

(1) for all β ∈ (1, G m ), we have Γ m,β = ∅;

(2) for all β ∈ (G m , m + 1], we have Γ m,β = ∅.

We study digit frequencies of the sequences in Γ m,β . Baker's result make us only need to consider β ∈ (G m , m + 1]. Recall from Section 2.2 that for any infinite sequence w, the frequency, lower-frequency and upper-frequency of the digit k in w are denoted by

Freq k (w), Freq k (w) and Freq k (w) respectively.

Let β 1 be the unique zero in (1, 2) of the polynomial x 3 -x 2 -2x+1. It is straightforward to check that β 1 is strictly larger than the golden ratio G 1 . In [75, Lemma 2.3] Jordan, Shmerkin and Solomyak showed that:

(1) if β ∈ (G 1 , β 1 ], then for all w ∈ Γ 1,β , Freq 1 (w) and Freq 0 (w) exist and are equal to 1 2 ;

(2) if β ∈ (β 1 , 2), then dim H w ∈ Γ 1,β : Freq 1 (w) and Freq 0 (w) do not exist > 0, and there exists c = c(β) > 0 such that for all r ∈ (-c, c),

dim H w ∈ Γ 1,β : Freq 1 (w) -Freq 0 (w) = r > 0,
where dim H denotes the Hausdorff dimension in {0, 1} N equipped with the usual

metric d 2 .
This is a bifurcation phenomenon of digit frequencies in unique expansions on the alphabet {0, 1}. We are going to show similar bifurcation phenomenons on larger alphabets.

Interestingly, in our first main result, the bifurcations are exactly the generalized Komornik-Loreti constants, which are defined by the generalized shifted Thue-Morse sequences. We will give some notation and preliminaries in Subsection 3.1.1, and then prove Theorems 3.1.1 and 3.1.2 in the last subsection. 

Notation and preliminaries

w = w 1 • • • w n ∈ {0, 1, • • • , m} n by w := w 1 • • • w n for all n ∈ N.
Let m ∈ N. On {0, 1, • • • , m} N , recall that the usual metric d m+1 is defined by

d m+1 (w, v) := (m + 1) -inf{n≥0:w n+1 =v n+1 } for w, v ∈ {0, 1, • • • , m} N ,
and the shift map σ is defined by

σ(w) := w 2 w 3 w 4 • • • for w = w 1 w 2 w 3 • • • ∈ {0, 1, • • • , m} N . For β ∈ (1, m + 1], we use g * (1, β) = (g * n (1, β)) n≥1 ∈ {0, 1, • • • , m} N to denote the CHAPTER 3 that 2 l j ≤ n -2 l 1 -• • • -2 l j-1 ≤ 2 l j +1 -1, θ 1 • • • θ 2 l 1 +•••+2 l j = θ (l 1 ) θ (l 2 ) • • • θ (l j-1
) θ (l j ) (we only consider that j is even since the case that j is odd is similar), and

θ 2 l 1 +•••+2 l j +1 θ 2 l 1 +•••+2 l j +2 • • • begins with θ (l j ) * . (3.5) If n = 2 l 1 + • • • + 2 l j , then θ 1 • • • θ n = θ (l 1 ) θ (l 2 ) • • • θ (l j-1
) θ (l j ) and the conclusion follows.

If

n > 2 l 1 + • • • + 2 l j , by n -2 l 1 -• • • -2 l j ≤ 2 l j -1, there exists l j+1 ∈ {0, • • • , l j -1} such that 2 l j+1 ≤ n -2 l 1 -• • • -2 l j ≤ 2 l j+1 +1 -1.
By Lemma 3.1.14 we know that θ (l j ) * begins with θ (l j+1 ) θ (l j+1 ) * . It follows from (3.5) that θ

2 l 1 +•••+2 l j +1 • • • θ 2 l 1 +•••+2 l j+1 = θ (l j+1
) and

θ 2 l 1 +•••+2 l j+1 +1 θ 2 l 1 +•••+2 l j+1 +2 • • • begins with θ (l j+1 ) * .

• • •

The above process must stop in a finite number of times since n is finite. Therefore the conclusion follows.

To show Theorem 3.1.1 (1), the main we need to prove is the following. (1) 1 For all s ∈ N such that w s < m and w s+1 = k, there exist integers j 0 ≥ 1 and

j 1 , j 2 , • • • ≥ 0 such that w s+1 w s+2 • • • = θ (j 0 )-θ (j 1 )-θ (j 2 )-• • • .
2 For all s ∈ N such that w s > 0 and w s+1 = k, there exist integers j 0 ≥ 1 and

j 1 , j 2 , • • • ≥ 0 such that w s+1 w s+2 • • • = θ (j 0 )-θ (j 1 )-θ (j 2 )-• • • .
(2) For all integers s ≥ 0, j 0 ≥ 1 and j 1 , j 2 , • • • ≥ 0 such that

w s+1 w s+2 • • • = θ (j 0 )-θ (j 1 )-θ (j 2 )-• • • (or θ (j 0 )-θ (j 1 )-θ (j 2 )-• • • ),
we have the following.

1 j n+1 ≥ j n -1 for all n ≥ 0.

2 If j n+1 = j n -1 for some n ≥ 0, then j n+2 ≥ j n .

3 If j n+1 = j n -1 and j n+2 = j n for some n ≥ 0, then j n+3 ≥ j n + 1.

5 If {j n } n≥0 is not bounded, then j n → ∞ as n → ∞.

(

) If w / ∈ {0 ∞ , m ∞ }, then Freq k (w) = Freq k (w). 3 
Proof.

(1) Since the proofs of 1 and 2 are similar, we only prove 1 as follows.

i) For all s ∈ N such that w s < m and w s+1 = k, prove that there exists j ∈ N such that

w s+1 • • • w s+2 j = θ (j)-. Note that θ 1 • • • θ 2 i = θ (i)
for all i ≥ 0 and θ (0) = k. On the one hand it follows from

θ (0) w s+2 = w s+1 w s+2 by (3.6) ≤ θ 1 θ 2 = θ (1) = θ (0) θ (0) + that w s+2 ≤ θ (0) + .
On the other hand it follows from (3.7) that

w s+2 ≥ θ 1 = θ (0) .
Thus w s+2 = θ (0) or θ (0) + . If w s+2 = θ (0) , then

w s+1 w s+2 = θ (0) θ (0) = θ (1)-
will complete the proof. If w s+2 = θ (0) + , then w s+1 w s+2 = θ (0) θ (0) + = θ (1) .

On the one hand it follows from θ (1) 

w s+3 w s+4 = w s+1 • • • w s+4 by (3.6) ≤ θ 1 • • • θ 4 = θ (2) = θ (1) θ (1) + that w s+3 w s+4 ≤ θ (1) + .
On the other hand it follows from (3.7) that w s+3 w s+4 ≥ θ 1 θ 2 = θ (1) .

Thus w s+3 w s+4 = θ (1) or θ (1) + . If w s+3 w s+4 = θ (1) , then

w s+1 • • • w s+4 = θ (1) θ (1) = θ (2)-
will complete the proof. If w s+3 w s+4 = θ (1) + , then 1) θ (1) + = θ (2) .

w s+1 • • • w s+4 = θ (

• • •

For general i ∈ N, if we have already had w s+1 • • • w s+2 i = θ (i) , on the one hand it follows from

θ (i) w s+2 i +1 • • • w s+2 i+1 = w s+1 • • • w s+2 i+1 by (3.6) ≤ θ 1 • • • θ 2 i+1 = θ (i+1) = θ (i) θ (i) + that w s+2 i +1 • • • w s+2 i+1 ≤ θ (i) + ;
on the other hand it follows from (3.7) that

w s+2 i +1 • • • w s+2 i+1 ≥ θ 1 • • • θ 2 i = θ (i) .
Thus

w s+2 i +1 • • • w s+2 i+1 = θ (i) or θ (i) + . If w s+2 i +1 • • • w s+2 i+1 = θ (i) , then w s+1 • • • w s+2 i+1 = θ (i) θ (i) = θ (i+1)- will complete the proof. If w s+2 i +1 • • • w s+2 i+1 = θ (i) +
, then

w s+1 • • • w s+2 i+1 = θ (i) θ (i) + = θ (i+1) .

• • •

The above process must end in a finite number of times (otherwise we get w s+1 w s+2 • • • = lim i→∞ θ (i) = θ, which contradicts (3.6)). Thus there must exist j ∈ N such that

w s+1 • • • w s+2 j = θ (j)-.
ii) Let s ∈ N such that w s < m and w s+1 = k. Prove that there exist integers j 0 ≥ 1 and

j 1 , j 2 , • • • ≥ 0 such that w s+1 w s+2 • • • = θ (j 0 )-θ (j 1 )-θ (j 2 )-• • • .
In fact, by the definition of θ (i) and induction, it is straightforward to check that for all i ∈ N, we have θ (i)-ends with kk if i is odd and

θ (i)-ends with (k + 1)k(k -1) if i is even.
Recall from i) that there exists j 0 ∈ N such that w s+1 • • • w s+2 j 0 = θ (j 0 )-.

a If j 0 is even, then θ (j 0 )-ends with (k + 1)k(k -1) and

w s+2 j 0 -2 w s+2 j 0 -1 w s+2 j 0 • • • = (k + 1)k(k -1)w s+2 j 0 +1 w s+2 j 0 +2 • • • .
On the one hand by (3.6) we get

w s+2 j 0 +1 w s+2 j 0 +2 • • • < θ = k(k + 1) • • • ,
which implies w s+2 j 0 +1 ≤ k. On the other hand by (3.7) we get

k(k -1)w s+2 j 0 +1 w s+2 j 0 +2 • • • > θ = k(k -1)kk • • • ,
which implies w s+2 j 0 +1 ≥ k. Thus w s+2 j 0 +1 = k. Since w s+2 j 0 = k -1 < m, by applying i), there exists j 1 ∈ N such that w s+2 j 0 +1 • • • w s+2 j 0 +2 j 1 = θ (j 1 )-and then

w s+1 • • • w s+2 j 0 +2 j 1 = θ (j 0 )-θ (j 1 )-.
b If j 0 is odd, then θ (j 0 )-ends with kk and

w s+2 j 0 -1 w s+2 j 0 • • • = kkw s+2 j 0 +1 w s+2 j 0 +2 • • • .
By (3.6) we get

w s+2 j 0 +1 w s+2 j 0 +2 • • • < θ = k(k + 1) • • • , which implies w s+2 j 0 +1 ≤ k. I. If w s+2 j 0 +1 = k, by i) there exists j 1 ∈ N such that w s+2 j 0 +1 • • • w s+2 j 0 +2 j 1 = θ (j 1 )-
and then

w s+1 • • • w s+2 j 0 +2 j 1 = θ (j 0 )-θ (j 1 )-.
II. If w s+2 j 0 +1 ≤ k -1, it follows from

kw s+2 j 0 +1 w s+2 j 0 +2 • • • by (3.7) > θ = k(k -1)k • • •
that w s+2 j 0 +1 = k -1 and w s+2 j 0 +2 ≥ k. Since (3.6) implies w s+2 j 0 +2 ≤ θ 1 = k, we get w s+2 j 0 +2 = k, and then w s+2 j 0 +1 w s+2 j 0 +2 = (k -1)k. By i) there exists j 2 ∈ N such that

w s+2 j 0 +2 • • • w s+2 j 0 +2 j 2 +1 = θ (j 2 )-.
Let j 1 = 0. Then w s+2 j 0 +1 = k -1 = θ (j 1 )-and

w s+1 • • • w s+2 j 0 +2 j 1 +2 j 2 = θ (j 0 )-θ (j 1 )-θ (j 2 )-.
By applying i) and repeating the above process again and again, we know that there exist

j 1 , j 2 , • • • ≥ 0 such that w s+1 w s+2 • • • = θ (j 0 )-θ (j 1 )-θ (j 2 )-• • • . (2) Let s ≥ 0, j 0 ≥ 1 and j 1 , j 2 , • • • ≥ 0 such that w s+1 w s+2 • • • = θ (j 0 )-θ (j 1 )-θ (j 2 )-• • • (the case w s+1 w s+2 • • • = θ (j 0 )-θ (j 1 )-θ (j 2 )-• • • is similar)
. For all n ≥ 0 such that j n ≥ 1, by CHAPTER 3 θ (jn)-= θ (jn-1) θ (jn-1) we get

w s+1 w s+2 • • • = θ (j 0 )-• • • θ (j n-2
)-θ (j n-1 )-θ (jn-1) θ (jn-1) θ (j n+1 )-θ (j n+2 )-• • • .

It follows from (3.7) that

θ (jn-1) θ (j n+1 )-θ (j n+2 )-• • • > θ whenever j n ≥ 1. (3.8)
By the fact that 2 j 1 + • • • + 2 jp → ∞ as p → ∞, there exists p 0 ∈ N such that for all p ≥ p 0 we have

t 0 2 j 1 + • • • + 2 jp < ε.
(3.10)

Since {j p } p≥0 is not bounded, by (2) 5 we get j p → ∞ as p → ∞, which implies 2 jp → ∞, and then 2 j 1 +• such that for all p ≥ p 1 we have

p 2 j 1 + • • • + 2 jp < ε 2 . (3.11) Let N p 1 := |θ (j 1 ) θ (j 2 ) • • • θ (jp 1 ) | = 2 j 1 + 2 j 2 + • • • + 2 jp 1 . Then for any n > N p 1 ,
we only need to check

| |v 1 •••vn| 0 n -1 3 | < ε. In fact, for any n > N p 1 , there exists p ≥ p 1 such that |θ (j 1 ) • • • θ (jp) | ≤ n < |θ (j 1 ) • • • θ (jp) θ (j p+1 ) |. Let r := n -|θ (j 1 ) • • • θ (jp) | < |θ (j p+1 ) |.
Since the proof for the case r = 0 is similar and more straightforward, we only consider r ≥ 1 in the following. By θ (j p+1 ) * = θ 1 • • • θ 2 j p+1 -1 and Lemma 3.1.15, there exist integers

l 1 > l 2 > • • • > l t ≥ 0 such that r = 2 l 1 + 2 l 2 + • • • + 2 lt and v 1 • • • v n = θ (j 1 )-• • • θ (jp)-θ (l 1 ) θ (l 2 ) • • • θ (l t-1 ) θ (lt) if t is even, θ (j 1 )-• • • θ (jp)-θ (l 1 ) θ (l 2 ) • • • θ (l t-2 ) θ (l t-1 ) θ (lt) if t is odd.
It follows from Lemma 3.1.12 that

|v 1 • • • v n | 0 ≤ 2 j 1 + 2 3 + • • • + 2 jp + 2 3 + 2 l 1 + 2 3 + • • • + 2 lt + 2 3 . By n = 2 j 1 + • • • + 2 jp + 2 l 1 + • • • + 2 lt we get |v 1 • • • v n | 0 n ≤ 1 3 + 2(p + t) 3n ≤ 1 3 + 2 3 p 2 j1 + • • • + 2 jp + t n by (3.11) < 1 3 + ε 3 + 2t 3n .(3.12)
If t ≤ t 0 , then

t n ≤ t 2 j 1 + • • • + 2 jp ≤ t 0 2 j 1 + • • • + 2 jp by (3.10) < ε. It follows from (3.12) that |v 1 •••vn| 0 n < 1 3 + ε. If t ≥ t 0 + 1, then t n ≤ t 2 l 1 ( ) ≤ t 2 t-1 by (3.9) < ε, where ( ) follows from l 1 ≥ t -1 (recall l 1 > l 2 > • • • > l t ≥ 0). By (3.12) we get |v 1 •••vn| 0 n < 1 3 + ε. It follows in the same way that |v 1 •••vn| 0 n > 1 3 -ε. Thus | |v 1 •••vn| 0 n -1 n > N p 1 .
b When 1 ≤ w s+1 ≤ m-1, since w s+2 , w s+3 , w s+4 , • • • / ∈ {0, m} will imply Freq 0 (w) = Freq m (w) = 0 directly, we only need to consider that there exists t ≥ s + 1 such that w t+1 ∈ {0, m}. Assume that such t is the smallest one. Then w s+1 , w s+2 , • • • , w t / ∈ {0, m}.

I. If w t+1 = 0, then

w = 0 s w s+1 • • • w t 0w t+2 w t+3 • • • .
By (1) 2 , there exist j 0 ≥ 1 and

j 1 , j 2 , • • • ≥ 0 such that w = 0 s w s+1 • • • w t θ (j 0 )-θ (j 1 )-θ (j 2 )-• • • .
In the same way as a , we get Freq 0 (w) = Freq m (w).

II. If w t+1 = m, then

w = 0 s w s+1 • • • w t mw t+2 w t+3 • • • .
By (1) 1 , there exist j 0 ≥ 1 and

j 1 , j 2 , • • • ≥ 0 such that w = 0 s w s+1 • • • w t θ (j 0 )-θ (j 1 )-θ (j 2 )-• • • .
In the same way as a , we get Freq 0 (w) = Freq m (w).

ii) If w 1 = m, then Freq 0 (w) = Freq m (w) follows in the same way as i).

iii) If 1 ≤ w 1 ≤ m -1, since w 2 , w 3 , w 4 , • • • / ∈ {0, m} will obviously imply Freq 0 (w) = Freq m (w) = 0, we only need to consider that there exists a smallest s ≥ 1 such that w s+1 ∈ {0, m} but w 1 , w 2 , • • • , w s / ∈ {0, m}. By (1) 1 and 2 , there exist j 0 ≥ 1 and

j 1 , j 2 , • • • ≥ 0 such that w = w 1 • • • w s θ (j 0 )-θ (j 1 )-θ (j 2 )-• • • if w s+1 = m; w 1 • • • w s θ (j 0 )-θ (j 1 )-θ (j 2 )-• • • if w s+1 = 0.
It follows in the same way as i) a that Freq 0 (w) = Freq m (w). will obviously imply Freq k (w) = Freq k (w) = 0, it suffices to consider that there exists s ≥ t such that w s+1 ∈ {k, k}. By 0 < w s < m, (1) 1 and 2 , there exist j 0 ≥ 1 and

2 If m 2 + 1 ≤ k ≤ m -1, we need to prove Freq k (w) = Freq k (w). Since w 1 , w 2 , w 3 , • • • / ∈ {k, k + 1, • • • , k -1,
j 1 , j 2 , • • • ≥ 0 such that w = w 1 • • • w s θ (j 0 )-θ (j 1 )-θ (j 2 )-• • • if w s+1 = k; w 1 • • • w s θ (j 0 )-θ (j 1 )-θ (j 2 )-• • • if w s+1 = k.
It follows in the same way as 1 i) a that Freq k (w) = Freq k (w).

Proof of Theorem 3.1.1. By Lemma 3.1.13 (1) and Lemma 3.1.4 we know that θ is the unique q m;k -expansion of 1.

(1) Let β ∈ (G m , q m;k ] and w ∈ Γ m,β . By Lemma 3.1.5 we get σ n w < g * (1, β) whenever w n < m and σ n w > g * (1, β) whenever w n > 0.

It follows from β ≤ q m;k and Lemma 3.1.6 that σ n w < g * (1, q m;k ) whenever w n < m and σ n w > g * (1, q m;k ) whenever w n > 0.

Since θ is the unique q m;k -expansion of 1, we have σ n w < θ whenever w n < m and σ n w > θ whenever w n > 0.

It follows from Lemma 3.1.16 (3) that Freq k (w) = Freq k (w).

( It suffice to prove dim H (Λ k,k , d m+1 ) > 0. In fact, this follows from

dim H (Λ k,k , d m+1 ) ( ) ≥ log 2 log(m + 1) • dim H (Λ k,k , d 2 ) ( ) > 0,
where ( ) follows from Proposition 3.1.9 and the fact that the identity map from (Λ k,k , d m+1 )

to (Λ k,k , d 2 ) is log 2 log(m+1) -Hölder continuous, and ( ) follows from Proposition 3.1.11.

2 If g * 1 (1, β) = k, by g * (1, β) > θ, there exists n ≥ 2 such that g * 1 (1, β) • • • g * n-1 (1, β) = θ 1 • • • θ n-1 and g * n (1, β) > θ n .
Let j ≥ 1 be an integer large enough such that 2 j+1 ≥ n. Then

g * (1, β) ≥ g * 1 (1, β) • • • g * n (1, β)0 ∞ > θ 1 • • • θ n m ∞ ≥ θ 1 • • • θ 2 j+1 m ∞ = θ (j+1) m ∞ . (3.13) Define Ξ j := θ (j)-θ (j)-, θ (j) θ (j) N = w ∈ {0, • • • , m} N : w n•2 j+1 +1 • • • w (n+1)•2 j+1 = θ (j)-θ (j)-or θ (j) θ (j) for all n ≥ 0 . i) Prove Ξ j ⊂ Γ m,β .
Let w ∈ Ξ j . By Lemma 3.1.5 and (3.13), it suffices to prove that for all n ∈ N, we have θ (j+1) 0 ∞ < σ n w < θ (j+1) m ∞ , i.e.,

θ (j) θ (j)-0 ∞ < σ n w < θ (j) θ (j) + m ∞ . (3.14)
If n is a multiple of |θ (j) |, by the definition of Ξ j , σ n w must begin with θ (j)-, θ (j) θ (j) , θ (j) θ (j) or θ (j) θ (j)-θ (j)-. This implies (3.14). If n is not a multiple of |θ (j) |, then there exist finite words u and v, where u is non-empty and v may be empty, such that θ (j) * = uv and σ n w begins with v(k -1)u, vku or vku if j is even (implies that θ (j)-ends with k -1 by (3.3)); vku, v(k + 1)u or v(k -1)u if j is odd (implies that θ (j)-ends with k by (3.3)).

It follows from Lemma 3.1.13 (2) that (3.14) is true.

For any v ∈ {0, 1} N , we define Ψ(v) := ψ(v 1 )ψ(v 2 ) • • • where ψ(0) := θ (j)-θ (j)-and ψ(1) := θ (j) θ (j) . Let Ξ j := w ∈ Ξ j : Freq k (w) and Freq k (w) do not exist .

By i) we get

Ξ j ⊂ w ∈ Γ m,β : Freq k (w)
and Freq k (w) do not exist .

It suffices to prove dim H (Ξ j , d m+1 ) > 0. Let Λ 0,1 := v ∈ {0, 1} N : Freq 0 (v) and Freq 1 (v) do not exist .

Then we have

dim H (Ξ j , d m+1 ) ( ) ≥ dim H (Ψ(Λ 0,1 ), d m+1 ) ( ) ≥ log 2 2 j+2 log(m + 1) • dim H (Λ 0,1 , d 2 ) ( ) > 0,
where ( ) follows from Proposition 3.1.11, ( ) follows from Proposition 3.1.9 and the facts that Ψ : {0, 1} N → Ξ j is bijective and

Ψ -1 : (Ξ j , d m+1 ) → ({0, 1} N , d 2 ) is log 2
2 j+2 log(m+1) -Hölder continuous, and ( ) follows from Ψ(Λ 0,1 ) ⊂ Ξ j , which can be proved as follows.

Let v ∈ Λ 0,1 and w := Ψ(v). It suffices to prove w ∈ Ξ j . Since the proofs of Freq k (w) =

Freq k (w) and Freq k (w) = Freq k (w) are similar. We only prove Freq k (w) = Freq k (w) in the following.

a If j is odd, by Lemma 3.1.12 we get

|θ (j)-| k = 2 j + 1 3 , |θ (j) | k = 2 j + 1 3 and |θ (j) | k = |θ (j) | k = 2 j -2 3 .
Then

|ψ(0)| k = 2|θ (j)-| k = 2 j+1 + 2 3 and |ψ(1)| k = |θ (j) | k + |θ (j) | k = 2 j+1 -1 3 .
Note that Lemma 3.1.17 implies

Freq k (w) = |ψ(0)| k 2 j+1 • Freq 0 (v) + |ψ(1)| k 2 j+1 • (1 -Freq 0 (v))
and b If j is even, by Lemma 3.1.12 we get

Freq k (w) = |ψ(0)| k 2 j+1 • Freq 0 (v) + |ψ(1)| k 2 j+1 • (1 -Freq 0 (v)).
|θ (j)-| k = 2 j -1 3 , |θ (j) | k = 2 j + 2 3 and |θ (j) | k = |θ (j) | k = 2 j -1 3 .
Then

|ψ(0)| k = 2|θ (j)-| k = 2 j+1 -2 3 and |ψ(1)| k = |θ (j) | k + |θ (j) | k = 2 j+1 + 1 3 .
Note that Lemma 3.1.17 implies

Freq k (w) = |ψ(1)| k 2 j+1 • Freq 1 (v) + |ψ(0)| k 2 j+1 • (1 -Freq 1 (v))
and

Freq k (w) = |ψ(1)| k 2 j+1 • Freq 1 (v) + |ψ(0)| k 2 j+1 • (1 -Freq 1 (v))
.

By v ∈ Λ 0,1 we get Freq 1 (v) = Freq 1 (v). It follows from |ψ(1)| k = |ψ(0)| k that Freq k (w) = Freq k (w).
Proof of Theorem 3.1.2. Let m ≥ 2 be an integer and

k ∈ { m 2 + 1, • • • , m}. Since β m;k ∈ (1, m + 1) is a zero of the polynomial x 2 -(k + 1)x + 2k -m -1, we get k β m;k + k + 1 β 2 m;k + k + 1 β 3 m;k + k + 1 β 4 m;k + • • • = 1.
It follows from Lemma 3.1.4 that k(k + 1) ∞ is the unique β m;k -expansion of 1.

(1) Let β ∈ (G m , β m;k ] and w ∈ Γ m,β . In the same way as the proof of Theorem 3.1.1 (1), we get

σ n w < k(k + 1) ∞ whenever w n < m (3.15)
and

σ n w > k(k -1) ∞ whenever w n > 0. (3.16) 
1 If k = m, then we have i) If w 1 = 0, by w = 0 ∞ , there exists s ≥ 2 such that w 1 • • • w s-1 = 0 s-1 and w s > 0.

σ n w < m1 ∞ whenever w n < m (3.17 
a When w s = m we have

w = 0 s-1 mw s+1 w s+2 • • • .
By (3.17) we get mw s+1 w s+2 • • • < m1 ∞ , which implies that there exists i 1 ≥ s + 1

such that w s+1 • • • w i 1 -1 = 1 i 1 -s-1 , w i 1 = 0 and w = 0 s-1 m1 i 1 -s-1 0w i 1 +1 w i 1 +2 • • • . It follows from (3.18) that 0w i 1 +1 w i 1 +2 • • • > 0(m-1) ∞ . Thus there exists i 2 ≥ i 1 +1 such that w i 1 +1 • • • w i 2 -1 = (m -1) i 2 -i 1 -1 , w i 2 = m and w = 0 s-1 m1 i 1 -s-1 0(m -1) i 2 -i 1 -1 mw i 2 +1 w i 2 +2 • • • . CHAPTER 3
• • • Repeating the above process, we get w = 0 s-1 m1 j 1 0(m -1) j 2 m1 j 3 0(m -1)

j 4 • • • for some integers j 1 , j 2 , j 3 , j 4 , • • • ≥ 0. Therefore Freq 0 (w) -Freq m (w) = lim p→∞ sup n≥p |w 1 • • • w n | 0 n -lim p→∞ sup n≥p |w 1 • • • w n | m n = lim p→∞ sup n≥p |w 1 • • • w n | 0 n -sup n≥p |w 1 • • • w n | m n ≤ lim p→∞ sup n≥p |w 1 • • • w n | 0 -|w 1 • • • w n | m n ≤ lim p→∞ s -1 p = 0,
and Freq 0 (w) -Freq m (w) = 0 follows in a similar way noting that

inf n≥p |w 1 • • • w n | 0 n -inf n≥p |w 1 • • • w n | m n ≤ sup n≥p |w 1 • • • w n | 0 -|w 1 • • • w n | m n for all p ∈ N. b When 1 ≤ w s ≤ m -1, since w s+1 , w s+2 , w s+3 , • • • / ∈ {0, m} will imply Freq 0 (w) =
Freq m (w) = 0 directly, we only need to consider that there exists i 1 ≥ s + 1 such that w i 1 ∈ {0, m}. Assume that such i 1 is the smallest one. Then w s , w s+1 , • • • , w i 1 -1 / ∈ {0, m}.

I. If w i 1 = 0, then w = 0 s-1 w s • • • w i 1 -1 0w i 1 +1 w i 1 +2 • • • . By (3.18) we get 0w i 1 +1 w i 1 +2 • • • > 0(m -1)
∞ , which implies that there exists

i 2 ≥ i 1 + 1 such that w i 1 +1 • • • w i 2 -1 = (m -1) i 2 -i 1 -1 , w i 2 = m and w = 0 s-1 w s • • • w i 1 -1 0(m -1) i 2 -i 1 -1 mw i 2 +1 w i 2 +2 • • • . It follows from (3.17) that mw i 2 +1 w i 2 +2 • • • < m1 ∞ . Thus there exists i 3 ≥ i 2 +1 such that w i 2 +1 • • • w i 3 -1 = 1 i 3 -i 2 -1 , w i 3 = 0 and w = 0 s-1 w s • • • w i 1 -1 0(m -1) i 2 -i 1 -1 m1 i 3 -i 2 -1 0w i 3 +1 w i 3 +2 • • • .
• • • Repeating the above process, we get

w = 0 s-1 w s • • • w i 1 -1 0(m -1) j 1 m1 j 2 0(m -1) j 3 m1 j 4 • • •
for some integers j 1 , j 2 , j 3 , j 4 , • • • ≥ 0. In the same way as a , the conclusion follows.

II. If w i 1 = m, in the same way as I, we get

w = 0 s-1 w s • • • w i 1 -1 m1 j 1 0(m -1) j 2 m1 j 3 0(m -1) j 4 • • •
for some integers j 1 , j 2 , j 3 , j 4 , • • • ≥ 0, and then the conclusion follows.

ii) If w 1 = m, the conclusion follows in the same way as i).

iii

) If 1 ≤ w 1 ≤ m -1, since w 2 , w 3 , w 4 , • • • / ∈ {0, m} will obviously imply Freq 0 (w) =
Freq m (w) = 0, we only need to consider that there exists a smallest i 1 ≥ 2 such that

w i 1 ∈ {0, m} but w 1 , w 2 , • • • , w i 1 -1 / ∈ {0, m}.
In the same way as i) b I and II, we

get w = w 1 • • • w i 1 -1 0(m -1) j 1 m1 j 2 0(m -1) j 3 m1 j 4 • • • if w i 1 = 0, w 1 • • • w i 1 -1 m1 j 1 0(m -1) j 2 m1 j 3 0(m -1) j 4 • • • if w i 1 = m,
for some integers j 1 , j 2 , j 3 , j 4 , • • • ≥ 0, and then the conclusion follows. 

2 If m 2 + 1 ≤ k ≤ m -1, we need to prove Freq k (w) = Freq k (w) and Freq k (w) = Freq k (w). Since w 1 , w 2 , w 3 , • • • / ∈ {k, k + 1, • • • , k -1,
≥ s + 1 such that w s+1 • • • w i 1 -1 = (k + 1) i 1 -s-1 , w i 1 = k and w = w 1 • • • w s-1 k(k + 1) i 1 -s-1 kw i 1 +1 w i 1 +2 • • • . By (3.16) we get kw i 1 +1 w i 1 +2 • • • > k(k -1) ∞ . It follows again from (3.19) that there exists i 2 ≥ i 1 + 1 such that w i 1 +1 • • • w i 2 -1 = (k -1) i 2 -i 1 -1 , w i 2 = k and w = w 1 • • • w s-1 k(k + 1) i 1 -s-1 k(k -1) i 2 -i 1 -1 kw i 2 +1 w i 2 +2 • • • .
• • • Repeating the above process, we get

w = w 1 • • • w s-1 k(k + 1) j 1 k(k -1) j 2 k(k + 1) j 3 k(k -1) j 4 • • •
for some integers j 1 , j 2 , j 3 , j 4 , • • • ≥ 0. In the same way as 1 i) a , the conclusion CHAPTER 3

follows.

ii) If w s = k, in the same way as above, we get

w = w 1 • • • w s-1 k(k -1) j 1 k(k + 1) j 2 k(k -1) j 3 k(k + 1) j 4 • • •
for some integers j 1 , j 2 , j 3 , j 4 , • • • ≥ 0 and then the conclusion follows.

( 

Then Λ r k,k ⊂ w ∈ Γ m,β : Freq k (w) -Freq k (w) = r . It suffices to prove dim H (Λ r k,k , d m+1 ) > 0. In fact, this follows from dim H (Λ r k,k , d m+1 ) ( ) ≥ log 2 log(m + 1) • dim H (Λ r k,k , d 2 ) ( ) > 0,
where ( ) follows from Proposition 3.1.9 and the fact that the identity map from (Λ r k,k , d m+1 ) to (Λ r k,k , d 2 ) is log 2 log(m+1) -Hölder continuous, and ( ) follows from combining

Λ r k,k = w ∈ {k, k} N : Freq k (w) = 1 + r 2 , Proposition 3.1.10 and 0 < 1+r 2 < 1. 2 If g * 1 (1, β) = k, by g * (1, β) > k(k + 1) ∞ , there exists s ∈ N such that g * 1 (1, β)g * 2 (1, β) • • • g * s (1, β) = k(k + 1) s-1 and g * s+1 (1, β) > k + 1. Let Ξ k,k := kkk(k + 1) s , kkk(k -1) s N = w ∈ {0, • • • , m} N : w n(s+3)+1 • • • w (n+1)(s+3) = kkk(k + 1) s or kkk(k -1) s for all n ≥ 0 .
Then by Lemma 3.1.5 we get

Ξ k,k ⊂ Γ m,β . For any v ∈ {k, k} N , define Ψ(v) := ψ(v 1 )ψ(v 2 ) • • • where ψ(k) := kkk(k + 1) s and ψ(k) := kkk(k -1) s . Let c = 1 s+3 . For any r ∈ (-c, c), we define Ξ r k,k := w ∈ Ξ k,k : Freq k (w) -Freq k (w) = r . Then Ξ r k,k ⊂ w ∈ Γ m,β : Freq k (w) -Freq k (w) = r . It suffices to prove dim H Ξ r k,k , d m+1 > 0. Let Λ (s+3)r k,k := v ∈ {k, k} N : Freq k (v) -Freq k (v) = (s + 3)r . Since Ψ : {k, k} N → Ξ k,k is bijective and Ψ -1 : Ξ k,k , d m+1 → {k, k} N , d 2 is log 2
(s+3) log(m+1) -Hölder continuous, by Proposition 3.1.9 we get

dim H (Ξ r k,k , d m+1 ) ≥ log 2 (s + 3) log(m + 1) • dim H (Ψ -1 (Ξ r k,k ), d 2 ) ≥ log 2 (s + 3) log(m + 1) • dim H (Λ (s+3)r k,k , d 2 )
where the last inequality follows from

Ψ -1 (Ξ r k,k ) ⊃ Λ (s+3)r k,k
, which can be directly proved by Lemma 3.1.17. It follows from

Λ (s+3)r k,k = v ∈ {k, k} N : Freq k (v) = 1 + (s + 3)r 2 , Proposition 3.1.10 and 0 < 1+(s+3)r 2 < 1 that dim H (Λ (s+3)r k,k , d 2 ) > 0. Thus dim H (Ξ r k,k , d m+1 ) > 0.
To end this section, we prove the following lemma, which has already been used in the proofs of Theorem 3.1.1 (2) and Theorem 3.1.2 (2). 

ξ (Ψ(v)) = |ψ(a)| ξ s • Freq a (v) + |ψ(b)| ξ s • (1 -Freq a (v)) (3.20)
and 

Freq ξ (Ψ(v)) = |ψ(a)| ξ s • Freq a (v) + |ψ(b)| ξ s • (1 -Freq a (v)). ( 3 
• • • w i | ξ i = |ψ(a)| ξ s • p + |ψ(b)| ξ s • (1 -p).
Fix any ε > 0. By

lim n→∞ sup t≥n |v 1 • • • v t | a t = p,
there exists integer N > 1 ε such that for all n ≥ N we have

sup t≥n |v 1 • • • v t | a t < p + ε (3.22)
and

sup t≥n |v 1 • • • v t | a t > p -ε. (3.23) 
Let j > N s (> s ε ) be an integer. It suffices to prove

sup i≥j |w 1 • • • w i | ξ i - |ψ(a)| ξ s • p + |ψ(b)| ξ s • (1 -p) < 2ε.
Recall that for any x ∈ R, x and x denote the smallest integer no less than x and the greatest integer no larger than x respectively. On the one hand we have

sup i≥j |w 1 • • • w i | ξ i ≤ sup i≥j |w 1 • • • w i s •s | ξ + s i ≤ sup i≥j |Ψ(v 1 • • • v i s )| ξ i + s j < sup i≥j |v 1 • • • v i s | a • |ψ(a)| ξ + |v 1 • • • v i s | b • |ψ(b)| ξ i + ε = sup i≥j |v 1 • • • v i s | a • |ψ(a)| ξ + ( i s -|v 1 • • • v i s | a ) • |ψ(b)| ξ i + ε ≤ sup i≥j |v 1 • • • v i s | a • (|ψ(a)| ξ -|ψ(b)| ξ ) + i s • |ψ(b)| ξ i s • s + ε = |ψ(a)| ξ -|ψ(b)| ξ s • sup i≥j |v 1 • • • v i s | a i s + |ψ(b)| ξ s + ε ( ) ≤ |ψ(a)| ξ -|ψ(b)| ξ s • sup t≥ j s |v 1 • • • v t | a t + |ψ(b)| ξ s + ε by (3.22) < |ψ(a)| ξ -|ψ(b)| ξ s • (p + ε) + |ψ(b)| ξ s + ε = |ψ(a)| ξ s • p + |ψ(b)| ξ s • (1 -p) + ( |ψ(a)| ξ -|ψ(b)| ξ s + 1)ε ≤ |ψ(a)| ξ s • p + |ψ(b)| ξ s • (1 -p) + 2ε,
where ( ) follows from the fact that i ≥ j implies i s ≥ j s . On the other hand we have

sup i≥j |w 1 • • • w i | ξ i ≥ sup i≥j |w 1 • • • w i s •s | ξ -s i ≥ sup i≥j |Ψ(v 1 • • • v i s )| ξ i - s j > sup i≥j |v 1 • • • v i s | a • |ψ(a)| ξ + |v 1 • • • v i s | b • |ψ(b)| ξ i -ε = sup i≥j |v 1 • • • v i s | a • |ψ(a)| ξ + ( i s -|v 1 • • • v i s | a ) • |ψ(b)| ξ i -ε ≥ sup i≥j |v 1 • • • v i s | a • (|ψ(a)| ξ -|ψ(b)| ξ ) + i s • |ψ(b)| ξ i s • s -ε = |ψ(a)| ξ -|ψ(b)| ξ s • sup i≥j |v 1 • • • v i s | a i s + |ψ(b)| ξ s -ε ( ) ≥ |ψ(a)| ξ -|ψ(b)| ξ s • sup t≥ j s |v 1 • • • v t | a t + |ψ(b)| ξ s -ε by (3.23) > |ψ(a)| ξ -|ψ(b)| ξ s • (p -ε) + |ψ(b)| ξ s -ε = |ψ(a)| ξ s • p + |ψ(b)| ξ s • (1 -p) -( |ψ(a)| ξ -|ψ(b)| ξ s + 1)ε ≥ |ψ(a)| ξ s • p + |ψ(b)| ξ s • (1 -p) -2ε,
where ( ) follows from the fact that t ≥ j s implies ts ≥ j.

Expansions of generalized Thue-Morse numbers

Base on the generalized shifted Thue-Morse sequences defined in the last section, we generalize this concept a bit more first. For any m, q ∈ N and θ 1 , • • • , θ q ∈ {0, • • • , m} with θ q = 0, we define a sequence of finite words {θ (n) m;θ 1 ,••• ,θq } n≥0 by induction as follows: These numbers are transcendental [START_REF] Allouche | Automatic sequences. Theory, applications, generalizations[END_REF][START_REF] Dekking | Transcendance du nombre de Thue-Morse[END_REF][START_REF] Mahler | Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen[END_REF] and received a lot of attention recently [1,[START_REF] Badziahin | Thue-Morse constant is not badly approximable[END_REF][START_REF] Badziahin | On the irrationality measure of the Thue-Morse constant[END_REF][START_REF] Bugeaud | On the rational approximation to the Thue-Morse-Mahler numbers[END_REF][START_REF] Bugeaud | On rational approximation of the binary Thue-Morse-Mahler number[END_REF].

θ (0) m;θ 1 ,••• ,θq := θ 1 • • • θ q and θ (n+1) m;θ 1 ,••• ,θq := θ (n) m;θ 1 ,••• ,θq θ (n) m;θ 1 ,••• ,θq
Recall that for m ∈ N, β ∈ (1, m + 1] and x ∈ R, a sequence w = (w n ) n≥1 ∈ {0, 1, • • • , m} N is called a β-expansion of x if x = ∞ n=1 w n β n . An (m; θ 1 , • • • , θ q )-shifted-Thue-Morse sequence θ is naturally a β-expansion of the β- (m; θ 1 , • • • , θ q )-
Thue-Morse number π β (θ). Our goal in this section is to study when will this expansion be unique, greedy, lazy, quasi-greedy and quasi-lazy.

Recall that σ is the shift map on {0, • • • , m} N , and <, ≤, >, ≥ denote the lexicographic order between infinite sequences and also between finite words with the same length. First we have the following purely combinatorial proposition, which generalizes [87, Theorem (2) When w = 0 ∞ , it is the quasi-greedy β-expansion of π β (w) if and only if it does not end with 0 ∞ and ∞ i=1 w n+i β i ≤ 1 whenever w n < m.

(3) w is the lazy β-expansion of π β (w) if and only if 

∞ i=1 w n+i β i < 1 whenever w n > 0. ( 4 
) When w = m ∞ ,
, m + 1],
w is the greedy/quasi-greedy/lazy/quasi-lazy/unique β-expansion of π β (w).

Proof. ⇐ Obvious.

⇒ We only prove the greedy case since the others are similar. Suppose that w is the greedy β 0 -expansion of π β 0 (w). Let β ∈ [β 0 , m + 1]. Suppose w n < m for some n ∈ N.

By Proposition 3.2.4 (1), it suffices to check ∞ i=1 w n+i β i < 1. In fact, since w is the greedy β 0 -expansion of π β 0 (w), by Proposition 3.2.4 (1) we get

∞ i=1 w n+i β i 0 < 1. It follows from β ≥ β 0 that ∞ i=1 w n+i β i < 1.
For the sake of completeness we prove the following basic combinatorial fact, in which In order to study the infinite product ∞ n=1 (R(n)) δn , by Theorem 3.3.1 (1), it suffices to study products of the form 1) tn is used to define new functions and is further studied in [13, Theorem 2.2] and [103, Definition 1] (see also [START_REF] Chamberland | On gamma quotients and infinite products[END_REF]Remark 6.5]). For infinite products involving the first 2 m terms of (t n ) n≥0 , see the equalities ( 23) and ( 24) in [START_REF] Chamberland | On gamma quotients and infinite products[END_REF]Section 6].

f (a, b) := ∞ n=1 n + a n + b δn , where a, b ∈ C \ {-1, -2, -3, • • • }. For the (0, 1)-Thue-Morse sequence (t n ) n≥0 , the special form f ( x 2 , x+1 2 ) = ∞ n=1 ( 2n+x 2n+x+1 ) (-
As the first main result in this section, the following theorem generalizes [13, Theorem 2.2 and Corollary 2.3 (i)] (see also [START_REF] Riasat | Infinite products involving binary digit sums[END_REF]Lemma 2] and the equalities ( 6) and ( 7) in [START_REF] Riasat | Infinite products involving binary digit sums[END_REF]Section 4]).

Theorem 3.3.2. Let q ≥ 2 be an integer,

θ 0 = 0, (θ 1 , • • • , θ q-1 ) ∈ {0, 1} q-1 \ {0 q-1 } and (θ n ) n≥0 be the (0, θ 1 , • • • , θ q-1 )-Thue-Morse sequence. Then for all a, b ∈ C\{-1, -2, -3, • • • }, we have f (a, b) = a + 1 b + 1 δ1 • • • a + q -1 b + q -1 δq-1 f ( a q , b q ) f ( a + 1 q , b + 1 q ) δ1 • • • f ( a + q -1 q , b + q -1 q ) δq-1 which is equivalent to ∞ n=1 n + a n + b • qn + b qn + a qn + b + 1 qn + a + 1 δ 1 • • • qn + b + q -1 qn + a + q -1 δ q-1 δn = a + 1 b + 1 δ 1 • • • a + q -1 b + q -1 δ q-1
.

This theorem implies many neat equalities.

Corollary 3.3.3. Let q ≥ 2 be an integer, θ 0 = 0, (θ 1 , • • • , θ q-1 ) ∈ {0, 1} q-1 \ {0 q-1 } and (θ n ) n≥0 be the (0, θ 1 , • • • , θ q-1 )-Thue-Morse sequence.

(

) For all a, b ∈ C \ {0, -1, -2, • • • }, we have ∞ n=0 n + a n + b • qn + b qn + a qn + b + 1 qn + a + 1 δ1 • • • qn + b + q -1 qn + a + q -1 δq-1 δn = 1. 1 
(

) For all a ∈ C \ {0, -1, -2, • • • }, we have ∞ n=0 n + a n + a + 1 • qn + a + 1 qn + a qn + a + 2 qn + a + 1 δ1 qn + a + 3 qn + a + 2 δ2 • • • qn + a + q qn + a + q -1 δq-1 δn = 1 and ∞ n=0 qn + qa qn + a qn + 1 qn + a + 1 δ1 qn + 2 qn + a + 2 δ2 • • • qn + q -1 qn + a + q -1 δq-1 δn = q. (3) We have ∞ n=0 qn + q qn + 1 qn + 1 qn + 2 δ1 qn + 2 qn + 3 δ2 • • • qn + q -1 qn + q δq-1 δn = q. 2 
Remark 3. Let q ≥ 2 be an integer. For k = 1, 2, • • • , q -1, define N k,q (n) to be the number of occurrences of the digit k in the base q expansion of the non-negative integer n, and let

s q (n) := q-1 k=1 kN k,q (n)
be the sum of digits. It is obtained in [START_REF] Allouche | Infinite products with strongly B-multiplicative exponents[END_REF]Example 11 and Corollary 5] (see also [START_REF] Sondow | Problem 11222[END_REF][START_REF] Sondow | GCHQ Problem Solving Group Cheltenham, An infinite product based on a base: 11222[END_REF])

respectively that ∞ n=0 qn + k qn + k + 1 (-1) N k,q (n) = 1 √ q (3.26) for k = 1, 2, • • • , q -1, and ∞ n=0 0<k<q k odd qn + k qn + k + 1 (-1) sq (n) = 1 √ q . ( 3.27) 
For more infinite products related to (s q (n)) n≥0 , see for example [START_REF] Li | Generalized Dirichlet series of n variables associated with automatic sequences[END_REF]Propositions 6 and 7].

Equalities (3.26) and (3.27) are two ways to represent 1 √ q in the form of infinite products and generalize the well known Woods-Robbins product [START_REF] Woods | Problems and Solutions: Elementary Problems: E2692[END_REF][START_REF] Woods | Problems and Solutions: Solutions of Elementary Problems: E2692[END_REF] 

∞ n=0 2n + 1 2n + 2 (-1) tn = 1 √ 2 (3.28)
where (t n ) n≥0 is the (0, 1)-Thue-Morse sequence. We give one more such way in the first equality in the following corollary.

Corollary 3.3.5. Let q ≥ 2 be an integer, k ∈ {1, 2, • • • , q -1}, θ 0 = θ 1 = • • • = θ k-1 = 0, θ k = θ k+1 = • • • = θ q-1 = 1 and (θ n ) n≥0 be the (0, θ 1 , • • • , θ q-1 )-Thue-Morse sequence. Then ∞ n=0 qn + k qn + q δn = 1 √ q and ∞ n=0 (n + a)(qn + a + k) 2 (n + a + 1)(qn + a)(qn + a + q) δn = 1 CHAPTER 3 for all a ∈ C \ {0, -1, -2, • • • }.
For more generalizations of the Woods-Robbins product (3.28), we refer the reader to [START_REF] Allouche | Dirichlet series and curious infinite products[END_REF][START_REF] Allouche | Infinite products associated with counting blocks in binary strings[END_REF][START_REF] Shallit | On infinite products associated with sums of digits[END_REF].

Note that for any integer q ≥ 2, the ( q 0, • • • , 0)-Thue-Morse sequence is the trivial 0 ∞ . For q = 2, the only nontrivial case, related to the (0, 1)-Thue-Morse sequence, is already studied in [START_REF] Riasat | Infinite products involving binary digit sums[END_REF] and [13, Section 2]. In the following three examples, we study nontrivial cases for q = 3 in detail, related to the (0, 0, 1), (0, 1, 1) and (0, 1, 0)-Thue-Morse sequences.

Example 3.3.6. Let (θ n ) n≥0 be the (0, 0, 1)-Thue-Morse sequence.

( (3) The following concrete equalities hold.

1) For all a, b ∈ C \ {0, -1, -2, • • • } we have ∞ n=0 (n + a)(3n + b)(3n + b + 1)(3n + a + 2) (n + b)(3n + a)(3n + a + 1)(3n + b + 2) δn = 1. (2) For all a ∈ C \ {0, -1, -2, • • • } we have 1 ∞ n=0 (n + a)(3n + a + 2) 2 (n + a + 1)(3n + a)(3n + a + 3) δn = 1, 2 ∞ n=0 (3n + 1)(3n + 3a)(3n + a + 2) (3n + 2)(3n + a)(3n + a + 1) δn = 3,
1 ∞ n=0 3n + 2 3n + 3 δn = 1 √ 3 , 2 ∞ n=0 (6n -3)(6n + 3) (6n -1)(6n + 5) δn = 1, 3 ∞ n=0 (3n + 1)(6n + 5) (3n + 2)(6n + 1) δn = 3, 4 ∞ n=0 (3n + 1)(6n + 5) (3n + 3)(6n + 1) δn = √ 3, 5 ∞ n=0 (6n + 7) 2 (6n + 3)(6n + 15) δn = 1, 6 ∞ n=0 (9n + 3)(9n + 8) (9n + 2)(9n + 5) δn = 3, 7 ∞ n=0 (18n + 3)(18n + 17) (18n + 5)(18n + 11) δn = 1, 8 ∞ n=0 (2n + 3)(3n + 1)(6n + 7) (2n + 1)(3n + 2)(6n + 5) δn = 3, 9 ∞ n=0 (n + 1)(3n + 3) 2 (n + 2)(3n + 1)(3n + 4) δn = 1, 10 ∞ n=0 (n + 1)(3n + 2)(3n + 3) (n + 2)(3n + 1)(3n + 4) δn = 1 √ 3 , 11 ∞ n=0 (n + 1)(3n + 2) 2 (n + 2)(3n + 1)(3n + 4) δn = 1 3 , 12 ∞ n=0 (3n + 2) 3 (3n + 1)(3n + 4)(3n + 6) δn = 1 3 √ 3 , 13 ∞ n=0 (n + 2)(3n + 4) 2 (n + 3)(3n + 2)(3n + 5) δn = 1, 14 ∞ n=0 (n + 2)(3n + 4) 2 (n + 3)(3n + 3)(3n + 5) δn = 1 √ 3 , 15 ∞ n=0 (n + 2)(9n + 4)(9n + 7) (n + 1)(9n + 6)(9n + 10) δn = 1, 16 ∞ n=0 (3n + 1)(6n + 3)(6n -3) (3n + 2)(6n + 1)(6n -1) δn = 3.
Example 3.3.7. Let (θ n ) n≥0 be the (0, 1, 1)-Thue-Morse sequence.

(

) For all a, b ∈ C \ {0, -1, -2, • • • } we have ∞ n=0 (n + a)(3n + b)(3n + a + 1)(3n + a + 2) (n + b)(3n + a)(3n + b + 1)(3n + b + 2) δn = 1. 1 
(

) For all a ∈ C \ {0, -1, -2, • • • } we have 1 ∞ n=0 (n + a)(3n + a + 1) 2 (n + a + 1)(3n + a)(3n + a + 3) δn = 1, 2 ∞ n=0 (3n + a + 1)(3n + a + 2)(3n + 3a) (3n + 1)(3n + 2)(3n + a) δn = 3, 3 ∞ n=0 (3n + a + 1)(3n + a + 2)(3n + 3a) (3n + 2)(3n + 3)(3n + a) δn = √ 3. 2 
(3) The following concrete equalities hold. (1) For all odd q ≥ 3, we have

8 ∞ n=0 (n + 2)(3n + 3) 2 (n + 3)(3n + 2)(3n + 5) δn = 1, 9 ∞ n=0 (n + 2)(3n + 1)(3n + 3) (n + 3)(3n + 2)(3n + 5) δn = 1 √ 3 , 10 ∞ n=0 (n + 2)(3n + 1) 2 (n + 3)(3n + 2)(3n + 5) δn = 1 3 , 11 ∞ n=0 (n + 3)(3n + 4)(3n + 5) (n + 1)(3n + 1)(3n + 2) δn = 3, 12 ∞ n=0 (n + 3)(3n + 4)(3n + 5) (n + 1)(3n + 2)(3n + 3) δn = √ 3, 13 ∞ n=0 (3n + 4)(3n + 5)(3n + 9) (3n + 1) 2 (3n + 2) δn = 3 √ 3, 14 ∞ n=0 (2n -1)(6n + 1) 2 (2n + 1)(6n -1)(6n + 5) δn = 1,
∞ n=0 (qn + 1)(qn + 3) • • • (qn + q -2) (qn + 2)(qn + 4) • • • (qn + q -1) (-1) n = 1 √ q .
(2) For all odd q ≥ 3 and all a

∈ C \ {0, -1, -2, • • • } we have ∞ n=0 (qn + a)(qn + a + 2)(qn + a + 4) • • • (qn + a + q -1) (qn + qa)(qn + a + 1)(qn + a + 3) • • • (qn + a + q -2) (-1) n = 1 √ q .
(3) The following concrete equalities hold. 

1 ∞ n=0 3n + 1 3n + 2 (-1) n = 1 √ 3 , 2 ∞ n=0 (n + 1)(3n + 5) (n + 3)(3n + 4) (-1) n = 1 √ 3 , 3 ∞ n=0 (3n + 2)(3n + 4) (3n + 3)(3n + 6) (-1) n = 1 √ 3 , 4 ∞ n=0 (3n + 1)(3n + 5) (3n + 6)(3n + 9) (-1) n = 1 3 √ 3 , 5 ∞ n=0 (9n + 2)(9n + 8) (9n + 5)(9n + 6) (-1) n = 1 √ 3 , 6 ∞ n=0 (9n + 2)(9n + 8) (9n + 3)(9n + 5) (-1) n = 1, 7 ∞ n=0 (9n + 1)(9n + 7) (9n + 3)(9n + 4) (-1) n = 1 √ 3 ,
(-1) n = 1 √ 3 , 12 ∞ n=0 (9n -1)(9n + 8) (9n -3)(9n + 3) (-1) n = 1 √ 3 , 13 ∞ n=0 (5n + 1)(5n + 3) (5n + 2)(5n + 4) (-1) n = 1 √ 5 , 14 ∞ n=0 (10n + 1)(10n + 9) (10n + 3)(10n + 7) (-1) n = 1 √ 5 , 15 ∞ n=0 (n + 1)(5n + 3)(5n + 7) (n + 3)(5n + 4)(5n + 6) (-1) n = 1 √ 5 , 16 ∞ n=0 (n + 1)(5n + 2)(5n + 7) (n + 3)(5n + 1)(5n + 6) (-1) n = 1.
In [START_REF] Hu | Patterns in numbers and infinite sums and products[END_REF] Hu studied infinite sums of the form

n≥0 (-1) a w,B (n) (l,c l )∈L w,B c l f (l(n))
where a w,B (n) denote the number of occurrences of the word w in the base B expansion of the non-negative integer n, f is any function that verifies certain convergence conditions, and L w,B is a computable finite set of pairs (l, c l ) where l is a polynomial with integer coefficients of degree 1 and c l is an integer. If f is taken to be an appropriate composition of a logarithmic function and a rational function, after exponentiating, some infinite products of the form n (R(n)) (-1) a w,B (n) can be obtained, where R is a rational function depending on the sequence (a w,B (n)) n≥0 . For instance the above Example 3.3.8 (3) 1 is also obtained in [74, Section 5] (see also [START_REF] Allouche | Infinite products with strongly B-multiplicative exponents[END_REF]Section 4.4]).

Products of the form (R(n)) θn

In order to study the infinite product ∞ n=1 (R(n)) θn , by Theorem 3.3.1 [START_REF] Barrera | Entropy, topological transitivity, and dimensional properties of unique q-expansions[END_REF], it suffices to study products of the form

f(a 1 , • • • , a d ; b 1 , • • • , b d ) := ∞ n=1 (n + a 1 ) • • • (n + a d ) (n + b 1 ) • • • (n + b d ) θn where d ∈ N and a 1 , • • • , a d , b 1 , • • • , b d ∈ C \ {-1, -2, -3, • • • } satisfy a 1 + • • • + a d = b 1 + • • • + b d .
As the second main result in this section, the following theorem (which implies Corollary 3.3.11) generalizes [13, Theorem 4.2]. Theorem 3.3.9. Let q ≥ 2 be an integer,

θ 0 = 0, (θ 1 , • • • , θ q-1 ) ∈ {0, 1} q-1 \ {0 q-1 } and (θ n ) n≥0 be the (0, θ 1 , • • • , θ q-1 )-Thue-Morse sequence. Then for all d ∈ N and a 1 , • • • , a d , b 1 , • • • , b d ∈ C \ {-1, -2, -3, • • • } satisfying a 1 + • • • + a d = b 1 + • • • + b d , we have f(a 1 , • • • , a d ; b 1 , • • • , b d ) = q-1 k=1 d i=1 Γ( bi+k q ) Γ( ai+k q ) θ k • q-1 k=0 f a 1 + k q , • • • , a d + k q ; b 1 + k q , • • • , b d + k q (-1) θ k which is equivalent to ∞ n=1 d i=1 n + a i n + b i • q-1 k=0 qn + b i + k qn + a i + k (-1) θ k θn = q-1 k=1 d i=1 Γ( b i +k q ) Γ( a i +k q ) θ k .
This theorem implies a large number of equalities for products of the form (R(n)) θn as we will see in the following corollaries, which can also be viewed as special examples.

Corollary 3.3.10. Let q ≥ 2 be an integer,

θ 0 = 0, (θ 1 , • • • , θ q-1 ) ∈ {0, 1} q-1 \ {0 q-1 } and (θ n ) n≥0 be the (0, θ 1 , • • • , θ q-1 )-Thue-Morse sequence. (1) For all a, b, c ∈ C such that a, b, a + c, b + c / ∈ {-1, -2, -3, • • • } we have ∞ n=1 (n + a)(n + b + c) (n + b)(n + a + c) • q-1 k=0 (qn + b + k)(qn + a + c + k) (qn + a + k)(qn + b + c + k) (-1) θ k θn = q-1 k=1 Γ( b+k q )Γ( a+c+k q ) Γ( a+k q )Γ( b+c+k q ) θ k . ( 2 
) For all d ∈ N and a 1 , • • • , a d ∈ C \ {-1, -2, -3, • • • } such that a 1 + • • • + a d = 0 we have ∞ n=1 d i=1 qn + qa i qn + a i • q-1 k=1 qn + k qn + a i + k (-1) θ k θn = q-1 k=1 (Γ( k q )) d Γ( a1+k q ) • • • Γ( a d +k q ) θ k . CHAPTER 3 (3) For all a ∈ C \ Z we have ∞ n=1 (qn + qa)(qn -qa) (qn + a)(qn -a) • q-1 k=1 (qn + k) 2 (qn + a + k)(qn -a + k) (-1) θ k θn = q-1 k=1 (Γ( k q )) 2 Γ( k+a q )Γ( k-a q ) θ k .
In particular for the well known (0, 1)-Thue-Morse sequence, we have the following corollary, in which (5) 2 , 3 and 4 recover [13, Theorem 4.2].

Corollary 3.3.11. Let (t n ) n≥0 be the (0, 1)-Thue-Morse sequence.

(1) For all d ∈ N and a

1 , • • • , a d , b 1 , • • • , b d ∈ C\{-1, -2, -3, • • • } such that a 1 +• • •+a d = b 1 + • • • + b d we have ∞ n=1 d i=1 (n + a i )(2n + b i )(2n + a i + 1) (n + b i )(2n + a i )(2n + b i + 1) tn = d i=1 Γ( b i +1 2 ) Γ( a i +1 2 )
.

(

) For all a, b, c ∈ C such that a, b, a + c, b + c / ∈ {-1, -2, -3, • • • } we have ∞ n=1 (n + a)(n + b + c)(2n + b)(2n + a + 1)(2n + a + c)(2n + b + c + 1) (n + b)(n + a + c)(2n + a)(2n + b + 1)(2n + b + c)(2n + a + c + 1) tn = Γ( b+1 2 )Γ( a+c+1 2 ) Γ( a+1 2 )Γ( b+c+1 2 
) .

(

) 1 For all a, b ∈ C such that a, b, a + b / ∈ {-1, -2, -3, • • • } we have ∞ n=1 2(n + a)(n + b)(2n + a + 1)(2n + b + 1)(2n + a + b) (2n + 1)(n + a + b)(2n + a)(2n + b)(2n + a + b + 1) tn = √ π Γ( a+b+1 2 ) Γ( a+1 2 )Γ( 3 
.

2 For all a, b ∈ C such that a, b, 2a + 1, a + b / ∈ {-1, -2, -3, • • • } we have ∞ n=1 (n + a + b)(2n + a + 2)(2n + 2a + 1)(2n + b)(2n + a + b + 1) (n + 2a + 1)(2n + a + 1)(2n + b + 1)(2n + 2b)(2n + a + b) tn = 2 a Γ( a+1 2 )Γ( b+1 2 ) √ π Γ( a+b+1 2 
) .

(

) 1 For all a ∈ C \ {-1, -3 2 , -2, -5 2 , • • • } we have ∞ n=1 (n + a)(2n + a + 2)(2n + 2a + 1) (n + 2a + 1)(2n + 1)(2n + a) tn = 2 a . 2 For all a ∈ C \ {-1, -3 2 , -2, -5 2 , • • • } we have ∞ n=1 (n + 1)(n + a + 2)(2n + a + 3)(2n + 2a + 1) (n + 2)(n + 2a + 1)(2n + 3)(2n + a + 1) tn = 2 a a + 1 . 3 For all a ∈ C \ Z we have ∞ n=1 (2n + a + 1)(2n -a + 1)(2n + 2a)(2n -2a) (2n + 1) 2 (2n + a)(2n -a) tn = cos πa 2 . 4 For all a ∈ C \ (Z ∪ { 3 2 , 5 2 , 7 2 , • • • }) we have ∞ n=1 (2n + a + 1)(2n -a + 1)(2n + 2a)(2n -4a + 2) (2n + 1)(2n + a)(2n -a + 2)(2n -2a + 1) tn = 2 a cos πa 2 . 5 For all a ∈ C \ {±3, ±5, ±7, • • • } we have ∞ n=1 (2n + a + 1)(2n -a + 1)(4n + a + 3)(4n -a + 3) (2n + 2) 2 (4n + a + 1)(4n -a + 1) tn = √ π Γ( 3+a 4 )Γ( 3-a 4 ) 4 
. 6 For all d ∈ N we have

∞ n=1 (n + 1)(2n + d)(2n + 2) 2d-1 (n + d)(2n + d + 1)(2n + 1) 2d-1 tn = π d-1 2 Γ( d + 1 2 
).

(5) The following concrete equalities hold.

1 ∞ n=0 (2n + 1)(4n -1) (2n -1)(4n + 3) tn = √ 2, 2 ∞ n=0 (2n + 1)(4n + 3) (2n + 2)(4n + 1) tn = Γ( 1 4 ) √ 2π 3 4 , 3 ∞ n=0 (n + 1)(4n + 5) (n + 2)(4n + 1) tn = √ 2, 4 ∞ n=0 (8n + 1)(8n + 7) (8n + 3)(8n + 5) tn = 2 √ 2 -2, 5 ∞ n=0 (n + 1)(2n + 3) 2 (n + 3)(2n + 1) 2 tn = 2, 6 ∞ n=0 (3n + 2) 2 (6n + 5) (3n + 3) 2 (6n + 1) tn = √ 3 Γ( 1 3 )Γ( 1 6 ) 4π 3 2 , 7 ∞ n=0 (n + 2) 2 (2n + 5) (n + 1)(n + 5)(2n + 1) tn = 4, 8 ∞ n=0 (2n + 1) 2 (4n -1) (2n -1)(2n + 2)(4n + 1) tn = Γ( 1 4 ) π 3 4 , 9 ∞ n=0 (2n + 3) 2 (4n -1) (2n -1)(2n + 6)(4n + 1) tn = 2Γ( 1 4 ) π 3 4 , 10 ∞ n=0 (2n -1)(4n + 3) 2 (2n + 2)(4n + 1)(4n -1) tn = Γ( 1 4 ) 2π 3 4 , 11 ∞ n=0 (3n -1) 2 (6n + 3) (3n + 2)(3n -2)(6n -1) tn = 2 2 3 , 12 ∞ n=0 (4n + 2) 2 (8n -1) (4n -1)(4n + 1)(8n + 7) tn = 2 1 4 , 13 ∞ n=0 (n + 1)(2n + 7)(4n + 9) (n + 4)(2n + 3)(4n + 5) tn = 4 √ 2 5 , 14 ∞ n=0 (n + 1)(3n + 7)(6n + 5) (n + 2)(3n + 2)(6n + 9) tn = 3 • 2 -5 3 , 15 ∞ n=0 (3n + 1)(6n -1)(6n + 3) (3n -1)(6n + 1)(6n + 5) tn = 2 1 3 , 16 ∞ n=0 (5n + 4)(10n + 1)(10n + 5) (5n + 2)(10n + 3)(10n + 7) tn = √ 5 -1 2 2 5 
.

Notation and preliminaries

Let {0,

1} * := ∪ ∞ n=0 {0, 1} n . A map φ : {0, 1} * → {0, 1} * is called a morphism if for all words u, v ∈ {0, 1} * , we have φ(uv) = φ(u)φ(v).
Besides, we need the following concept. Definition 3.3.12 ( [START_REF] Allouche | Infinite products with strongly B-multiplicative exponents[END_REF][START_REF] Uchida | On p and q-additive functions[END_REF]). Let q ≥ 2 be an integer.

A sequence u = (u n ) n≥0 ∈ C N 0 is Let n ∈ {0, 1, • • • , q k+1 -1}. It suffices to prove |∆ n | ≤ 1 + (q -2) + (q -2) 2 + • • • + (q -2) k+1 .
(3.30)

If n ≤ q k -1, this follows immediately from the inductive hypothesis. We only need to consider q k ≤ n ≤ q k+1 -1 in the following. Let s ∈ {1, • • • , q -1} and t ∈ {0, 1, • • • , q k -1} be such that n = sq k + t. By (1) 2 we get

∆ n = ∆ s ∆ q k + δ s ∆ t .
If s ≤ q -2, then

|∆ n | ≤ |∆ s | • |∆ q k | + |∆ t | ≤ s(q -2) k + (1 + (q -2) + (q -2) 2 + • • • + (q -2) k ) ≤ 1 + (q -2) + (q -2) 2 + • • • + (q -2) k+1
where the second inequality follows from 2 and the inductive hypothesis. In the following we only need to consider s = q -1. It means that

∆ n = ∆ q-1 ∆ q k + δ q-1 ∆ t .
If there exists p ∈ {0, 1, • • • , q -2} such that δ p = -1, then |∆ q-1 | ≤ q -3 and

|∆ n | ≤ (q -3)|∆ q k | + |∆ t |
≤ (q -3)(q -2) k + (1 + (q -2) + (q -2) 2 + • • • + (q -2) k )

≤ 1 + (q -2) + (q -2) 2 + • • • + (q -2) k+1
where the second inequality follows from 2 and the inductive hypothesis. Thus it suffices to consider δ 0 = δ 1 = • • • = δ q-2 = +1 in the following. By (δ 1 , • • • , δ q-1 ) = (+1) q-1 we get δ q-1 = -1. It follows from ∆ q-1 = q -1 and ∆ q k = ∆ k q = (q -2) k that ∆ n = (q -1)(q -2) k -∆ t .

Thus proving (3.30) is equivalent to verifying -1 -(q -2) -• • • -(q -2) k-1 ≤ ∆ t ≤ 1 + (q -2) + • • • + (q -2) k+1 + (q -1)(q -2) k .

Since the second inequality follows immediately from the inductive hypothesis, we only need to prove the first inequality. Let u ∈ {0, 1, • • • , q-1} and v ∈ {0, 1, • • • , q k-1 -Since ( n+a n+b ) δn → 1 as n → ∞, we only need to prove that 

δ 0 qn + 1 + a qn + 1 + b δ 1 • • • qn + q -1 + a qn + q -1 + b δ q-1 .
This is equivalent to showing that ∞ n=1 δ n ln r(n) (3.32) converges. Since there exist c 0 , c 1 , • • • , c q-1 , d 0 , d 1 , • • • , d q-1 ∈ C such that r(n) = q q n q + c q-1 n q-1 + • • • + c 1 n + c 0 q q n q + d q-1 n q-1 + •

• • + d 1 n + d 0 = 1 + (c q-1 -d q-1 )n q-1 + • • • + (c 1 -d 1 )n + (c 0 -d 0 ) q q n q + d q-1 n q-1 + • • • + d 1 n + d 0 ,
we get ln r(n) -c q-1 -d q-1 q q n = O( 1 n 2 ), which implies that ∞ n=1 δ n ln r(n) -c q-1 -d q-1 q q n converges absolutely. In order to prove that (3.32) converges, we only need to show that ∞ n=1 δ n n converges. Enlightened by partial summation (see for example the equality (6.5) in [START_REF] Bettin | Greedy approximations by signed harmonic sums and the Thue-Morse sequence[END_REF] related to the Thue-Morse sequence), we consider the following 1 and 2 , which complete the proof. Γ( b i +k q ) Γ( a i +k q ) (3) 1 follows from taking b = 0 in (2) and then replacing all c by b.

θ k • q-1 k=0 f a 1 + k q , • • • , a d + k q ; b 1 + k q , • • • , b d + k q (-1) θ k
2 follows from taking c = a -1 in (2) and then replacing all a by a + 1.

(4) 1 follows from multiplying (3) 1 and 2 .

2 follows from taking b = 2 in (3) 2 .

3 and 4 follow from taking b = -a and 1 -2a respectively in (3) 1 .

• • • , δ m )-IFS {S j } 0≤j≤m . That is, K is the unique non-empty compact set such that K = m j=0 S j (K). 

Notation and preliminaries

z 1 ∈Z 1 inf z 2 ∈Z 2 |z 1 -z 2 |, sup z 2 ∈Z 2 inf z 1 ∈Z 1 |z 1 -z 2 |
for Z 1 , Z 2 ∈ H(C).

The following result was given by Dekking. To end this subsection, we present the following basic property for contractions. Proof. This follows from the fact that for all k ∈ N we have (1) Prove that there exists a unique compact set K ⊂ C such that (p(m + 1)) -n P (n) (2) Prove that K is the unique attractor of the IFS {S j } 0≤j≤m . 2 If m is even, recall A := {0, 1, 2, • • • , m -1}. On the calculation between the symbols in A, we consider the mod m congruence class (for example 5 + (m -3) = 2). Recall the definition of φ. In the same way as 1 , we know that the eigenvalue of M φ with greatest modulus is m + 1.

In the following it suffices to prove that φ is primitive. In the same way as 1 , we get φ n (a) = φ n (0) + a for all a ∈ A and n ∈ N,

and we only need to prove that there exists n ∈ N such that a ∈ φ n (0) for all a ∈ A. 

Chapter 3

 3 consists of four sections, which are devoted to some generalizations of the famous Thue-Morse sequence, including their relations to beta-expansions, related infinite products and generalized Koch curves. Let (t n ) n≥0 be the well known classical Thue-Morse sequence 0110 1001 1001 0110 1001 0110 0110 1001 • • • .

  tn and (R(n)) tn . Since the 1982-1983 work of Coquet and Dekking, it is known that the classical Thue-Morse sequence is strongly related to the famous Koch curve. As a natural generalization, in Section 3.4, we use the above mentioned generalized Thue-Morse sequences to define generalized Koch curves, and we prove that generalized Koch curves are the attractors of corresponding iterated function systems. For special cases, the open set condition holds, and then we obtain the Hausdorff, packing and box dimension of corresponding generalized Koch curves. This recovers the result on the classical Koch curve. Chapter 1

Let β > 1 . 1 β

 11 Define the alphabet A β := {0, 1, • • • , β -1} and let A N β be the set of infinite sequences on A β . Define the β-transformation T β : [0, 1) → [0, 1) by T β (x) := βx -βx for x ∈ [0, 1).(1.1)Given x ∈ [0, 1), for all n ∈ N, let ε n (x, β) := βT n-The sequence ε(x, β):= ε 1 (x, β)ε 2 (x, β) • • • ε n (x, β) • • • is called the greedy β-expansion of x.For simplification, we call it β-expansion throughout this chapter. The system([0, 1), T β ) is a β-dynamical system.Define T β (1) := β -β and ε n (1, β) := βT n-1 β

1 .

 1 is called the (greedy) β-expansion of For simplicity, we use ε 1 ε 2 • • • ε n • • • to denote the digits of ε(1, β) throughout this section.

  β . It suffices to prove y ∈ [0, 1) and ε(y, β) = ww . In fact, since I(w) is a left-closed and right-open interval with w 1 β + • • • + wn β n as its left endpoint and |I(w)| = β -n , we get

Notation 1 . 1 . 12 .

 1112 then w is not full. Proof. It follows from Proposition 1.1.9 (2) and Proposition 1.1.10 (1). Denote the first position where w and ε(1, β) are different by m(w) := min{k ≥ 1 : w k < ε k } for w ∈ Σ β and m(w) := m(w0 ∞ ) for w ∈ Σ * β . Remark 1.1.13.

Definition 1 . 1 . 19 (

 1119 Run and maximal run).

1 . 1 . 26 .

 1126 All the locations of all the lengths in Theorem 1.1.22 can be found in the proof of Lemma 1.1.24 and Lemma 1.1.25. Corollary 1.1.27 (The maximal length of the runs of full words). Let β > 1 with β / ∈ N.

Example 1 . 1 . 31 .

 1131 Let β > 1 such that ε(1, β) = 302000010 ∞ (such β exists by Lemma 1.1.4). Then the nonzero sequence of β is {1, 3, 8}. The way to add up to 7 greedily with repetition is 7 = 3 + 3 + 1. Therefore τ β (7) = 3. Proposition 1.1.32 (Properties of τ β ). Let β > 1, {n i } be the nonzero sequence of β and n ∈ N. Then (1) τ β (n i ) = 1 for any i; CHAPTER 1

  obvious and the reverse inclusion follows from max 1≤s≤n τ β (s) ∈ {τ β (s) : 1 ≤ s ≤ n} and (3).

  is full by Lemma 1.1.7. We get the conclusion since τ β (s) = d. Corollary 1.1.36 (The maximal length of the runs of non-full words). Let β > 1 with

Remark 1 . 1 . 39 .

 1139 Combining Corollary 1.1.36 and τ β (n) ≤ n (or Corollary 1.1.38 and r n (β) + 1 ≤ n), we have max N n β ≤ n for any n ∈ N which contains the result about the distribution of full cylinders given by Bugeaud and Wang [37, Theorem 1.2]. Moreover, if ε(1, β) is finite with length m, then max N n β ≤ m -1 for any n ∈ N. If β ∈ A 0 which is a class of β given by Li and Wu [91], then max N n β has the upper bound max s≥1 r s (β) + 1 which does not rely on n. Theorem 1.1.40 (The lengths of the maximal runs of non-full words). Let β > 1 with

Corollary 1 . 1 . 41 (m - 1

 11411 The minimal length of the maximal runs of non-full words). Let β > 1 with β / ∈ N and {n i } be the nonzero sequence of β. Then min N if 1 < β < 2 and ε(1, β) is finite with length m = n 2 = n; n if 1 < β < 2 and n < n 2 ; 1 otherwise. Proof. It follows from Theorem 1.1.40.

1. 2 . 2

 22 Digit occurence parameters Definition 1.2.19 (Digit occurence parameters). Let β ∈ (1, 2]. Define N 0 (w) := {k ≥ 0 : w k+1 = 0 and w 1 w 2 . . . w k 1 is admissible} for any w ∈ Σ β , N 0 (w) := {0 ≤ k < |w| : w k+1 = 0 and w 1 w 2 . . . w k 1 is admissible} for any w ∈ Σ * β , N 1 (w) := {k ≥ 1 : w k = 1} for any w ∈ Σ β , N 1 (w) := {1 ≤ k ≤ |w| : w k = 1} for any w ∈ Σ * β and let

Notation 1 . 2 . 20 .

 1220 Let β > 1. Denote the first position where w and ε * (1, β) are different by m(w) := min{k ≥ 1 : w k < ε * k } for w ∈ Σ β and m(w) := m(w0 ∞ ) for w ∈ Σ * β .

1. 2 . 3

 23 Bernoulli-type measures µ p and ν p Let β ∈ (1, 2]. Recall the definitions of the Bernoulli-type measures µ p and ν p from the beginning of this section. Remark 1.2.24. (1) We have

CHAPTER 1 Lemma 1 . 2 . 26 .

 11226 Let β ∈ (1, 2], p ∈ (0, 1) and w, w ∈ Σ * β with ww ∈ Σ * β .

  27 and (1.10). (3) For any B ∈ B[0, 1), define m p (B) := lim n→∞ m n p (B). Then by Theorem 1.2.16, m p is a probability measure on ([0, 1), B[0, 1)).

( 4 )

 4 m p ∼ ν p on B[0, 1) follows from (1.10) and the definition of m p .

r→0

  log ν(B(x, r)) log r , where B(x, r) is the closed ball centered at x with radius r. Theoretically, we can use the lower local dimension to estimate the upper and lower bounds of the Hausdorff dimension by the following proposition. Proposition 1.2.29. ([63, Proposition 2.3]) Let s ≥ 0, E ⊂ R n be a Borel set and ν be a finite Borel measure on R n .

Theorem 1 . 2 . 38 (

 1238 Upper bound of the Hausdorff dimension of frequency sets). Let β ∈ (1, 2] and a ∈ [0, 1].

Lemma 1 . 2 . 40 .

 1240 Let β ∈ (1, 2) such that ε(1, β) = 10 m 10 ∞ for some integer m ≥ 0. Then for any x ∈ [0, 1) and integer n ≥ m + 2, we have

  m+1 } and let N 10 (w) := #N 10 (w), N 100 (w) := #N 100 (w), • • • , N 10 m+1 (w) := #N 10 m+1 (w).

1. 3 .

 3 14 comes from [101]. Definition 1.3.15. Let β > 1.

CHAPTER 1 and( 1 )

 11 M β,F = µ ∈ M σ (S β ) : µ[0] = a denote = ==== = by : M β,a . If M β,a = ∅, we can prove S β,a = ∅ (and then the conclusion follows). (By contradiction) If S β,a = ∅, there exists w ∈ S β,a . For any n ∈ N, let µ n := E n (w) ∈ M(S β ) := {Borel probability measures on S β }. Since M(S β ) is compact, there exists subsequence {µ n k } k∈N ⊂ {µ n } n∈N and µ ∈ M(S β ) such that µ n k w *

  m, a)-coordinated set function .⊂ follows from the facts that every(m -1)-Markov measure µ ∈ M σ (S β ) with µ[0] = a CHAPTER 1 restricted to {[w] : w ∈ ∪ m n=1 Σ n β } is a (β, m, a)-coordinated set function and Proposition 1.3.12 implies h µ (σ) = h µ (β, m).

  in which case should we say that w is a(β 0 , β 1 , • • • , β m )expansion of x, such that when β 0 , β 1 , • • • ,β m are taken to be the same β, we have x = ∞ i=1 w i β i ? Proposition 2.1.1 may answer this question. Let us give some notation first. For all m ∈ N and β

σ n w ≺ g * ( 1 ) 1 - 1 )Corollary 2 . 1 . 6 .

 111216 whenever w n < m and σ n w l * ( m β m -whenever w n > 0, then w is a unique expansion. Take β 0 , • • • , β m to be the same β. By Corollary 2.1.5, Proposition 2.1.18, Lemma 2.1.19 and Proposition 2.1.14, we get the following corollary, in which k := m -k for all k ∈ {0, • • • , m} and w := (w i ) i≥1 for all w= (w i ) i≥1 ∈ {0, • • • , m} N . Let m ∈ N, β ∈ (1, m + 1], x ∈ [0, m β-1] and w ∈ {0, • • • , m} N be a β-expansion of x. Then:

  and w is a unique expansion if and only if g * (1) ≺ σ n w ≺ g * (1) for all n ≥ 0. This corollary recovers some classical results. See for examples [53, Theorem 1.1], [70, Lemma 4] and [99, Theorem 3]. See also [11, Theorem 2.1] and [108, Lemma 2.11]). Many papers on β-expansions are restricted to bases belonging to (m, m + 1] or expansion sequences belonging to {0, 1, • • • , β -1} N (see for examples [52, 53, 82]), where β denotes the smallest integer no less than β. Even if all β 0 , • • • , β m are taken to be the same β throughout this section, we are working under a more general framework: bases belonging to (1, m + 1] and expansion sequences belonging to {0, 1, • • • , m} N (for examples Corollary 2.1.6 and Proposition 2.1.18.

  understood from the context, we usually use π instead of π β 0 ,••• ,βm for simplification. Definition 2.1.7 (Transformations and expansions). Let m ∈ N and (β 0 , • • • , β m ) ∈ D m .

CHAPTER 2

 2 It is straightforward to see that greedy, quasi-greedy, lazy and quasi-lazy(β 0 , • • • , β m )transformations/expansions are special cases of some (I 0 , • • • , I m )-(β 0 , • • • , β m )-transfor-mations/expansions. For simplification, on the one hand, if β 0 , • • • , β m are understood from the context, we use G, G * , L, L * , g(x), g * (x), l(x) and l

Lemma 2 . 1 . 10 .

 2110 Let m ∈ N, (β 0 , • • • , β m ) ∈ D m and w ∈ {0, • • • , m} N . Then w = m ∞ if and only if π(w) = m βm-1 .

( 4 )

 4 When x = m βm-1 , w is the quasi-lazy expansion if and only if it does not end with m ∞ and π(w n w n+1 • • • ) ≥ b wn-1 whenever w n > 0.

1 ( 2 )

 12 and v does not end with m ∞ implies m βm-1 > π(v n+1 v n+2 • • • ) by Proposition 2.1.1 and Lemma 2.1.8 for all n ∈ N. The following definition on admissibility is a natural generalization of Definition 1.1.(see also [91, Definition 2.1]).

Definition 2 . 1 . 13 (

 2113 Admissibility). Let m ∈ N and (β 0

by ( 1 )

 1 ===== t • T (x) ∈ T .⊃ Let w ∈ T . Then there exists y ∈ [0, m βm-1 ] such that w = t(y) and there exists x ∈ [0, m βm-1 ] such that y = T x. It follows from w = t(y) = t(T x)by(1) 

Proposition 2 . 1 . 16 (( 1 )

 21161 Interactive increase). Let m ∈ N, (β 0 , • • • , β m ) ∈ D m and x, y ∈ [0, m βm-1 ]. Let (I 0 , • • • , I m ), (I 0 , • • • , I m ) ∈ I β 0 ,••• ,βm such that for all k ∈ {0, • • • ,m}, the intervals I k and I k are at most different at the end points (i.e., they have the same closure), t(x) be the (I 0 , • • • , I m )-(β 0 , • • • , β m )-expansion of x and t (y) be the (I 0 , • • • , I m )-(β 0 , • • • , β m )-expansion of y. If x < y, then t(x) ≺ t (y).

Proposition 2 . 1 . 17 (

 2117 Dynamical interpretation). Let m ∈ N and (β 0 , • • • , β m ) ∈ D m . For all x ∈ [0, m βm-1 ], the map which sends

Corollary 2 . 1 . 6 ,

 216 implies that w is lazy if and only if w is greedy (recall Definition 2.1.13) for all w = (w i ) i≥1 ∈ {0, • • • , m} N , where w := (w i ) i≥1 and k := m -k for all k ∈ {0, • • • , m}. By Proposition 2.1.12 (1), we recover [45, Theorem 2.1] and [78, Lemma 1]. Proposition 2.1.18 (Reflection principle in one base). Let m ∈ N and β ∈ (1, m + 1].

  lazy and unique expansions in two bases and one base are obtained in Corollaries 2.1.4 and 2.1.6 respectively, for general cases, i.e., in more than two bases, Theorem 2.1.3 and Corollary 2.1.5 can only give necessary conditions and sufficient conditions separately. We look forward to getting necessary and sufficient conditions for general cases. (This was answered by Zou, Komornik and Lu very recently in [130, Theorem 1.2].)

Theorem 2 . 2 . 1 .

 221 we define the upper-frequency, lowerfrequency and frequency of the digit k by Freq k (w) := lim n→∞ #{i : 1 ≤ i ≤ n, w i = k} n , Freq k (w) := lim n→∞ #{i : 1 ≤ i ≤ n, w i = k} n and Freq k (w) := lim n→∞ #{i : 1 ≤ i ≤ n, w i = k} n (assuming the limit exists) respectively, where # denotes the cardinality. If p = (p 0 , • • • , p m ), p = (p 0 , • • • , p m ) ∈ [0, 1] m+1 satisfy Freq k (w) = p k and Freq k (w) = p k for all k ∈ {0, 1, • • • , m}, we say that w is of frequency (p, p). The following theorem is the first main result in this section. For all m ∈ N, β ∈ (1, m + 1) \ N and p, p ∈ [0, 1] m+1 , Lebesgue almost every x ∈ [0, m β-1 ] has a β-expansion of frequency (p, p) if and only if Lebesgue almost every x ∈ [0, m β-1 ] has infinitely many β-expansions of frequency (p, p).

2 . 1 .

 21 Let m ∈ N, β ∈ (1, m + 1) \ N and p, p ∈ [0, 1] m+1 . The "if" part is obvious. We only need to prove the "only if" part. Let L denote the Lebesgue measure. Suppose that L-a.e. (almost every) x ∈ [0, m β-1 ] has a β-expansion of frequency (p, p). Let U β,m := x ∈ [0, m β -1 ] : x has a unique β-expansion and N

n 1 =

 1 w n 1 and w (2) n 2 = w n 2 , which implies that (w i ) i≥1 , (w (1) i ) i≥1 and (w (2) i ) i≥1 are all different.

)

  i≥1 are all different. • • • It follows from repeating the above process that x has infinitely many different βexpansions of frequency (p, p). Proof of Theorem 2.2.2. Let m ∈ N and β ∈ (1, m + 1) \ N. By Theorem 2.2.1, it suffices to prove that L-a.e. x ∈ [0, m β-1 ] has a balanced β-expansion. Let

2 ( 2 ( 1 2

 221 x ∈ [z -, z + ] has a balanced β-expansion. If β ∈ (1, 2) and m is odd, let a -:= m-1 2(β-1) and a + := m+1 2(β-1) . Then T m-1 a -) = a -and T m+1 a + ) = a + . Considering T m-restricted on [a -, a + -1 β ] and T m+1 2 restricted on [a -+ 1 β , a + ], by [25, Theorem 4.1] and Lemma 2.2.4, we know that L-a.e. x ∈ [a -, a + ] (⊃ [z -, z + ]) has a β-

Figure 2 . 2 :

 22 Figure 2.2: The graph of T and T | [z -,z + ) for m = 8 and some β ∈ (4, 5).

Figure 2 . 3 :

 23 Figure 2.3: The graph of T .

  which implies that for ν-a.e. x ∈ [b, b + 1b+1 β ) T k (x) = p. By (2.11) and (1), we know that for L-a.e. x ∈ [b, b + 1], dµ dL (x) ≥ 1. This implies L µ(∼ ν) on [b, b + 1], and then for L-a.e. x ∈ [b, b + 1], we have

Question 2 . 2 . 5 .

 225 Let m ∈ N, β ∈ (1, m + 1) \ N and p, p ∈ [0, 1] m+1 . Is it true that Lebesgue almost every x ∈ [0, m β-1 ] has a β-expansion of frequency (p, p) if and only if Lebesgue almost every x ∈ [0, m β-1 ] has a continuum of β-expansions of frequency (p, p)?

Question 2 . 2 . 6 .

 226 Let m ∈ N and β ∈ (1, m + 1) \ N. Is it true that Lebesgue almost every x ∈ [0, m β-1 ] has a continuum of balanced β-expansions? Even if a negative answer is given to Question 2.2.5, there may be a positive answer to Question 2.2.6 when m ≥ 2. An intuitive reason is that, when #{0, 1, • • • , m} ≥ 3, balanced β-expansions are much more flexible than simply normal β-expansions (see [25, Theorem 4.1]).

  It is known that by defining Bernoulli measures, and then calculating the lower local dimension of the measures and using Billingsley Lemma [63, Proposition 2.3], the Hausdorff dimension of classical Eggleston-Besicovitch sets mentioned above can be obtained.But this is based on the fact that only expansions in integer bases are considered in classical Eggleston-Besicovitch sets, there are no forbidden words in the symbolic space and the Bernoulli measures are invariant and ergodic with respect to the shift map. Ergodicity garuantees that classical Eggleston-Besicovitch sets have positive Bernoulli measures, which is a condition needed for applying Billingsley Lemma to get the lower bound of the Hausdorff dimension. If there are forbidden words, such as expansions in non-integer bases in Section 1.2, the corresponding Bernoulli-type measures are not ergodic (actually not invariant). This makes some difficulties to be overcome. In Section 1.2, after defining Bernoulli-type measures, we found out the equivalent invariant ergodic measures, studied the relation between the equivalent measures and the original measures and obtained the Hausdorff dimension of Eggleston-Besicovitch (frequency) sets for a class of non-integer bases (see Theorem 1.2.6) by applying an avatar of the Billingsley Lemma. This section follows a similar framework and construction, but most of the details we need to confirm are different.

Definition 2 . 3 . 3 .

 233 Let µ be a finite Borel measure on a metric space (X, d). The lower local dimension of µ at x ∈ X is defined by dim loc µ(x) := lim r→0 log µ(B(x, r)) log r , where B(x, r) is the closed ball centered at x with radius r. In R n , recall that we can use the lower local dimension to estimate the upper and lower bounds of the Hausdorff dimension by the following proposition, which is called Billingsley Lemma. Proposition 2.3.4 ([63] Proposition 2.3). Let E ⊂ R n be a Borel set, µ be a finite Borel measure on R n and s ≥ 0.

Proposition 2 . 3 . 8 .

 238 Let m ≥ 3 be an integer and w, v ∈ Λ (m), * such that wv ∈ Λ (m), * .Then(1) 

  Let B ∈ B(Λ (m) ) with σ -1 m B = B. For any w ∈ Λ (m), * , by B = σ -(|w|+2) m B and (1) we get αµ p (B)µ p [w] ≤ µ(σ -(|w|+2) m B ∩ [w]) = µ p (B ∩ [w]).

Let

  (t n ) n≥0 be the famous Thue-Morse sequence 0110 1001 1001 0110 1001 0110 0110 1001 • • • .

  } n≥0 by induction as follows: θ (0) m;k := k and θ (n+1) m;k

Theorem 3 . 1 . 1 .( 1 )

 3111 Let m ≥ 2 be an integer, k ∈ { m 2 + 1, • • • , m} and β ∈ (G m , m + 1]. If β ∈ (G m , q m;k ], then for all w ∈ Γ m,β ,Freq k (w) and Freq k (w) exist and are equal.

( 2 ) 2 CHAPTER 3 be( 1 )

 2231 If β ∈ (q m;k , m + 1], then dim H w ∈ Γ m,β : Freq k (w) and Freq k (w) do not exist > 0,where dim H denotes the Hausdorff dimension in {0, 1, • • • , m} N equipped with the usual metric d m+1 .For integer m ≥ 2 and k ∈ { m 2 + 1, • • • , m}, let β m;k := k + 1 + √ k 2 -6k + 4m + 5 the unique zero in (1, m + 1) of the polynomial x 2 -(k + 1)x + 2k -m -1. It is straightforward to check β m;k > q m;k > G m for all k ∈ { m 2 + 1, • • • , m}.The following is our second main result. Theorem 3.1.2. Let m ≥ 2 be an integer, k ∈ { m 2 + 1, • • • , m} and β ∈ (G m , m + 1]. If β ∈ (G m , β m;k ], then for all w ∈ Γ m,β , we have Freq k (w) = Freq k (w) and Freq k (w) = Freq k (w).

( 2 )Remark 3 . 1 . 3 .

 2313 If β ∈ (β m;k , m + 1], then there exists c = c(β) > 0 such that for all r ∈ (-c, c), we have dim H w ∈ Γ m,β : Freq k (w) -Freq k (w) = r > 0, where dim H denotes the Hausdorff dimension in {0, 1, • • • , m} N equipped with the usual metric d m+1 . The domains β ∈ (G m , q m;k ] in Theorem 3.1.1 (1) and β ∈ (G m , β m;k ] in Theorem 3.1.2 (1) can be extended to β ∈ (1, q m;k ] and β ∈ (1, β m;k ] respectively. In fact, on the one hand, the condition β > G m has not been used in the proof of Theorem 3.1.1 or 3.1.2, and is just used to guarantee Γ m,β = ∅; on the other hand, even if β ≤ G m makes Γ m,β = ∅, the statements of Theorem 3.1.1 (1) and Theorem 3.1.2 (1) still hold.

  Given a finite word w, recall that we use |w| and |w| k to denote its length and the number of the digit k in w respectively. Ifw = w 1 • • • w n-1 w n , we define w * := w 1 • • • w n-1 , w + := w 1 • • • w n-1 (w n + 1) and w -:= w 1 • • • w n-1 (w n -1). For m ∈ N and k ∈ {0, 1, • • • , m}, the bar operation is defined by k := m -k, extended to all infinite sequences w = w 1 w 2 • • • ∈ {0, 1, • • • , m} N by w := w 1 w 2• • • and extended to all finite words

Lemma 3 . 1 . 16 .

 3116 Let m ≥ 2 be an integer, k ∈ { m 2 + 1, • • • , m} and w ∈ {0, • • • , m} N such that σ n w < θ whenever w n < m(3.6)and σ n w > θ whenever w n > 0.(3.7)

  k} will imply Freq k (w) = Freq k (w) = 0 directly, we only need to consider that there exists t ∈ N such that 0 < k ≤ w t ≤ k < m. By (3.6) and (3.7), we get 0 < k ≤ w t+1 ≤ k < m. By (3.6) and (3.7) again, we get 0 < k ≤ w t+2 ≤ k < m. • • • By induction we get 0 < k ≤ w n ≤ k < m for all n ≥ t. Since w t+1 , w t+2 , w t+3 , • • • / ∈ {k, k}

  ) Let β ∈ (q m;k , m + 1]. Since θ is the unique q m;k -expansion of 1, by Lemma 3.1.6 we get g * (1, β) > θ and then g * 1 (1, β) ≥ k. 1 If g * 1 (1, β) ≥ k + 1, by Lemma 3.1.5 we get {k, k} N ⊂ Γ m,β . Define Λ k,k := w ∈ {k, k} N : Freq k (w) and Freq k (w) do not exist . Then Λ k,k ⊂ w ∈ Γ m,β : Freq k (w) and Freq k (w) do not exist .

By v ∈ Λ 0, 1

 1 we get Freq 0 (v) = Freq 0 (v). It follows from |ψ(0)| k = |ψ(1)| k that Freq k (w) = Freq k (w).

  ) and σ n w > 0(m -1) ∞ whenever w n > 0.(3.18)It suffices to prove Freq 0 (w) = Freq m (w) and Freq 0 (w) = Freq m (w).

  ) Let β ∈ (β m;k , m + 1]. Since k(k + 1) ∞ is the unique β m;k -expansion of 1, by Lemma 3.1.6 we get g * (1, β) > k(k + 1) ∞ and then g * 1 (1, β) ≥ k. 1 If g * 1 (1, β) ≥ k + 1,by Lemma 3.1.5 we get {k, k} N ⊂ Γ m,β . Let c = 1. For any r ∈ (-c, c), we define Λ r k,k := w ∈ {k, k} N : Freq k (w) -Freq k (w) = r .

Lemma 3 . 1 . 17 .

 3117 Let a, b be two digits, s ∈ N and v ∈ {a, b} N . Define Ψ(v) := ψ(v 1 )ψ(v 2 ) • • • where ψ(a) and ψ(b) are two finite words satisfying |ψ(a)| = |ψ(b)| = s. If |ψ(a)| ξ ≥ |ψ(b)| ξ for some digit ξ, then

Freq

  

. 21 )

 21 Proof. Let v ∈ {a, b} N and w := Ψ(v). Since the proofs of (3.20) and (3.21) are similar, we only prove (3.20) in the following. Let p := Freq a (v). It suffices to prove lim j→∞ sup i≥j |w 1

+n=1 tn 2 n

 2 for all n ≥ 0, where w + := w 1 • • • w i-1 (w i + 1) and w := w 1 • • • w i for any finite word w = w 1 • • • w i andk := m-k for any k ∈ {0, 1, • • • , m}. When m, θ 1 , • • • , θ q are understood from the context,It is worth to note that these generalized shifted Thue-Morse sequences were previously studied in[START_REF] Allouche | Théorie des Nombres et Automates[END_REF][START_REF] Vries | Unique expansions of real numbers[END_REF] 87,[START_REF] Kong | Univoque bases and Hausdorff dimension[END_REF] in different terms. The classical shifted Thue-Morse sequence (t n ) n≥1 given in (3.1) is not only the (1; 1) but also the (1; 1, 1)-shifted-Thue-Morse sequence in our terms.For any (m; θ 1 , • • • , θ q )-shifted-Thue-Morse sequence θ = (θ i ) i≥1 and β ∈ (1, ∞), we call π β (θ) := ∞ i=1 θ i β i the β-(m; θ 1 , • • • , θ q )-Thue-Morse number. The classical Thue-Morse number ∞ is exactly the 2-(1; 1)-Thue-Morse number (also the 2-(1; 1, 1)-Thue-Morse number), and more generally the Thue-Morse(-Mahler) number ∞ n=1 tn b n for integer b ≥ 2 is exactly the b-(1; 1)-Thue-Morse number (also the b-(1; 1, 1)-Thue-Morse number) in our terms.

( 1 )Proposition 3 . 2 . 6 .( 1 ) 3 3. 3 . 1

 13261331 and (3) are mentioned in [55, Proposition 2.2 and Theorem 2.5] and [61, Remark 1]. Let m ∈ N and w = (w i ) i≥1 ∈ {0, • • • , m} N . We have σ n w < w for all n ≥ 1 if and only if w = m ∞ and σ n w < w whenever w n < m. CHAPTER Products of the form (R(n)) δn

3 . 4 .

 34 It may seem that the conditions on the domains of a and b in Corollary 3.3.3 are more restrictive than Theorem 3.3.2. In fact they are equivalent, since Corollary 3.3.3 (1) is the case that a = 0 and b = 0 in Theorem 3.3.2, the second equality in (2) of Corollary 3.3.3 is the case that a = 0 and b = 0 (the same as a = 0 and b = 0) in Theorem 3.3.2, and obviously the case that a = b = 0 in Theorem 3.3.2 is trivial.

  1)(3n + 3a)(3n + a + 2) (3n + 3)(3n + a)(3n + a + 1) 1)(3n + 3a)(3n + a + 2) (6n + 5)(3n + a)(3n + a + 1) δn = 1.

3 .

 3 Note that the (0, 1, 0)-Thue-Morse sequence is exactly 01010101 • • • , which implies δ n := (-1) θn = (-1) n for all n ∈ N 0 . The next example is deduced from Corollary 3.3.3, and can CHAPTER 3 also be deduced from Theorem 3.3.13 and Proposition 3.3.14, which are classical results on the Gamma function. Example 3.3.8.

  δqn qn + 1 + a qn + 1 + b δ qn+1 • • • qn + q -1 + a qn + q -1 + b δ qn+q-1 converges. Since Proposition 3.3.15 (1) implies δ qn = δ n δ 0 , δ qn+1 = δ n δ 1 , • • • , δ qn+q-1 =δ n δ q-1 , it suffices to show that

CHAPTER 3 Proof of Theorem 3 . 3 . 9 .=

 3339 We have f(a 1 , • • • , a d ; b 1 , • • • , b d ) i + k qn + b i + k θn(-1) θ k +θ k = a i + k qn + b i + k a i + k qn + b i + k θn(-1) θ k a i + k qn + b i + k a i + k qn + b i + k θn (-1) θ k

,

  where ( ), ( ) and ( ) follow from Proposition 3.3.16, θ 0 = 0 and Theorem 3.3.13 respectively. Proof of Corollary 3.3.10. (1) follows from taking d = 2, a 1 = a, a 2 = b + c, b 1 = b and b 2 = a + c in Theorem 3.3.9. (2) follows from taking b 1 = • • • = b d = 0 in Theorem 3.3.9. (3) follows from taking d = 2, a 1 = a and a 2 = -a in (2). Proof of Corollary 3.3.11. In the following proof, for calculations related to the Gamma function, we use Proposition 3.3.14 frequently without invoking it explicitly. (1) and (2) follow from Theorem 3.3.9 and Corollary 3.3.10 (1) respectively.

4 = 4 - 1 = - 1 , δ m-m 4 =

 44114 log |p(m + 1)| if and only if there exists ε > 0 such that lim n→∞ L((P (n)) ε ) (m + 1) n > 0, where L is the Lebesgue measure on the plane and A ε := {z ∈ C : |z -a| < ε for some a ∈ A} for A ⊂ C. We call K in Theorem 3.4.1 the (+1, δ 1 , • • • , δ m )-Koch curve. See the figures in the next two pages for some examples for m = 3 and 4. Note that the classical Koch curve is exactly the (+1, -1, -1, +1)-Koch curve in our terms. It is well known that the classical Koch curve has Hausdorff, packing and box dimension log 4/ log 3 since the corresponding IFS satisfies the open set condition (OSC). As a generalization, we have the following, where we recall that x denotes the greatest integer no larger than x. Corollary 3.4.2. Let m ≥ 2 be an integer, δ 0 = • • • = δ m +1, δ m 4 +1 = • • • = δ m-m • • • = δ m = +1 and δ = (δ n ) n≥0 be the (+1, δ 1 , • • • , δ m )-Thue-Morse sequence. Then p(m + 1) is a real number in [3, m + 1], the (+1, δ 1 , • • • , δ m )-IFS satisfies the OSC, and the (+1, δ 1 , • • • , δ m )-Koch curve has Hausdorff, packing and box dimension log(m + 1)/ log p(m + 1). To obtain the Hausdorff dimension of the (+1, δ 1 , • • • , δ m )-Koch curve in Corollary 3.4.2, one can try to use the last statement in Theorem 3.4.1. But here we use classical theory on IFS by verifying the OSC. We give some notation and preliminaries in Subsection 3.4.1, and then prove Theorem 3.4.1 and Corollary 3.4.2 in Subsection 3.4.2.

For any z 1 , z 2 ∈

 12 C, we use [z 1 , z 2 ] := {cz 1 + (1 -c)z 2 : c ∈ [0, 1]} to denote the segment connecting z 1 and z 2 . For any c ∈ C and Z ⊂ C, let cZ := {cz : z ∈ Z} and c + Z := {c + z : z ∈ Z}. Besides, for any z ∈ C we use Re z and Im z to denote respectively the real part and the imaginary part of z.

- 1 , - 1 ,- 1 , 3 Let

 1113 +1)-Koch curve. (+1, +1, -1, +1)-Koch curve. +1, +1)-Koch curve. (+1, +1, -1, -1, +1)-Koch curve. A be a finite alphabet of symbols and A * := ∪ ∞ n=0 A n be the free monoid generated by A. A map φ : A * → A * is called a morphism if φ(uv) = φ(u)φ(v) for all words u, v ∈ A * . Moreover φ is called null-free if φ(a) is not the empty word for any a ∈ A, and called primitive if there exists an n ∈ N such that a ∈ φ n (b) for all a, b ∈ A, where u ∈ v denotes that u occurs in v for any words u, v ∈ A * . For a morphism φ : A * → A * , the corresponding matrix M φ = (m a,b ) a,b∈A is defined by m a,b := |φ(a)| b , where |w| b denotes the number of the symbol b in the word w. In addition, recall that we use |w| to denote the length of the finite word w.A map f : A * → C is called a homomorphism if f (uv) = f (u) + f (v)for all words u, v ∈ A * , and an R-linear map L : C → C (regarded as R 2 → R 2 ) is called expanding if both eigenvalues have modulus more than one. Let H(C) be the set of all non-empty compact subsets of C and d H be the Hausdorff metric on H(C) defined by d H (Z 1 , Z 2 ) := max sup

Theorem 3 . 4 . 3 .Theorem 3 . 4 . 4 .Theorem 3 . 4 . 5 .

 343344345 [START_REF] Dekking | Recurrent sets[END_REF] Theorem 2.4]) Let φ : A * → A * be a null-free morphism, f : A * → C be a homomorphism, L : C → C be an expanding R-linear map such thatf • φ = L • f, and K : A * → H(C) be a map satisfying K(uv) = K(u) ∪ (f (u) + K(v))for all u, v ∈ A * . Then for any non-empty word w ∈ A * , there exists a unique compact setW such that L -n K(φ n (w)) d H -→ W as n → ∞,and W is a continuous image of [0, 1].In the following we recall some preliminaries on iterated function systems. A mapS : C → C is called a contraction if there exists c ∈ (0, 1) such that |S(z 1 ) -S(z 2 )| ≤ c|z 1 -z 2 | for all z 1 , z 2 ∈ C. Moreover, if equality holds, i.e., if |S(z 1 ) -S(z 2 )| = c|z 1 -z 2 | for all z 1 , z 2 ∈ C,we say that S is a contracting similarity. A finite family of contractions {S 1 , S 2 , • • • , S n }, with n ≥ 2, is called an iterated function system (IFS ). The following is a fundamental result. See for example [64, Theorem 9.1]. Any family of contractions {S 1 , • • • , S n } has a unique attractor F , i.e., a non-empty compact set such that F = n j=1 S j (F ). We say that an IFS {S 1 , • • • , S n } satisfies the open set condition (OSC ) if there exists a non-empty bounded open set V such that n j=1 S j (V ) ⊂ V with the union disjoint. The following theorem is well known. See for example [64, Theorem 9.3]. If the OSC holds for the contracting similarities S j : C → C with the ratios c j ∈ (0, 1) for all j ∈ {1, • • • , n}, then the attractor of the IFS {S 1 , • • • , S n } has Hausdorff, packing and box dimension s, where s is given by

Proposition 3 . 4 . 6 .

 346 Let S 1 , S 2 , • • • , S n be contractions on C. Write S(A) := n j=1 S j (A) for all A ⊂ C. Then for all F, F 1 , F 2 , • • • ⊂ C such that F k d H -→ F as k → ∞, we have S(F k ) d H -→ S(F ).

d 3 3. 4 . 2 2 Proof of Theorem 3 . 4 . 1 .

 3422341 H (S(F k ), S(F )) ≤ max 1≤j≤n d H (S j (F k ), S j (F )) ≤ max 1≤j≤n c j d H (F k , F ), where for each j ∈ {1, • • • , n}, c j ∈ (0, 1) satisfies |S j (z 1 ) -S j (z 2 )| ≤ c j |z 1 -z 2 | for all z 1 , z 2 ∈ C.CHAPTER Proofs of Theorem 3.4.1 and Corollary 3.4.Let m ∈ N, δ 0 = +1, δ 1 , • • • , δ m ∈ {+1, -1} and δ = (δ n ) n≥0 be the (+1, δ 1 , • • • , δ m )-Thue-Morse sequence such that |p(m + 1)| > 1.

1=δ r δ k e 2rπi m e 2kπi m2 2 mod m if δ k = - 1 CHAPTER 3 for= δ k e 2 (e 2w k πi m for any w 1 •

 2kπi21321 as n → ∞ and K is a continuous image of [0, 1] by using Theorem 3.4.3. If m is odd, let A := {0, 1, 2, • • • , 2m -1}. Define the morphism φ : A * → A * by a → d a,0 d a,1 • • • d a,m for all a ∈ A where d a,k := a + 2k mod 2m if δ k = +1 a + 2k + m mod 2m if δ k = -1 for all k ∈ {0, 1, • • • , m}. Obviously d a,0 = a for all a ∈ A and it is straightforward to check e d a,k πi m = δ k e (a+2k)πi m for all k ∈ {0, 1, • • • , m}. Let ε be the empty word. Define f (ε) := 0 andf (w 1 • • • w n ) := m for any w 1 • • • w n ∈ A * . Then f : A * → C is a homomorphism satisfying f (a) = e aπi mfor all a ∈ A andf (uv) = f (u) + f (v)for all u, v ∈ A * . Let L : C → C be the linear map defined byL(z) := p(m + 1) • z for all z ∈ C. It follows from |p(m + 1)| > 1 that L is expanding.We can check f • φ = L • f . In fact, for the empty word we have f• φ(ε) = f (ε) = 0 = L(0) = L • f (ε), for any a ∈ A we have f • φ(a) = f (d a,0 • • • d a,m ) = f (a)p(m + 1) = L • f (a),and for anyw 1 • • • w n ∈ A * we have f • φ(w 1 • • • w n ) = f (φ(w 1 ) • • • φ(w n )) = f (φ(w 1 )) + • • • + f (φ(w n )) = L(f (w 1 )) + • • • + L(f (w n )) = L(f (w 1 ) + • • • + f (w n )) = L • f (w 1 • • • w n ).Define K(ε) to be the singleton {0},K(a) := [0, f (a)]for any a ∈ A, andK(w 1 • • • w n ) := n k=1 f (w 1 • • • w k-1 ) + K(w k ) for any w 1 • • • w n ∈ A * , where f (w 1 • • • w k-1 ) is regarded as 0 for k = 1. Then K : A * → H(C) satisfies K(uv) = K(u) ∪ (f (u) + K(v))for all u, v ∈ A * . Now applying Theorem 3.4.3, there exists a unique compact set K ⊂ C such that(p(m + 1)) -n K(φ n (0)) d H -→ K as n → ∞,and K is a continuous image of [0, 1]. In the following we only need to check K(φ n (0)) =P (n) for all n ∈ N 0 . i) First we prove that for all a ∈ A, j ∈ {1, 2, • • • , m} and n ∈ {0, 1, 2, • • • } we have f (φ n (d a,0 • • • d a,j-1 )) = e aπi m p(j(m + 1) n ) (3.36)by induction on n. In fact, for n = 0 we havef (d a,0 • • • d a,j-1 ) =Suppose that (3.36) is true for some n ≥ 0. Then for n + 1, on the one handf (φ n+1 (d a,0 • • • d a,j-1 )) = L(f (φ n (d a,0 • • • d a,j-1 ))) = p(m+1)e aπi m j(m+1) n -1 r=0 δ r e 2rπi m where the first equality follows from f • φ = L • f and the second equality follows CHAPTER 3 from the definition of L and the inductive hypothesis, and on the other hand e aπi m p(j(m + 1) n+1 ) = e all r ∈ {0, 1, • • • , j(m + 1) n -1}. In fact we have = p(m+1)δ r e 2rπi m , where the second equality follows from δ r(m+1)+k = δ r δ k (see Proposition 3.3.15 (1)).ii) To check K(φ n (0)) = P (n) for all n ∈ N 0 , it suffices to proveK(φ n (a)) = e aπi m P (n) for all a ∈ A (3.37)by induction on n. In fact, for n = 0 we haveK(a) = [0,Suppose that (3.37) is true for some n ≥ 0. Then for n + 1, on the one handK(φ n+1 (a)) = K(φ n (d a,0 • • • d a,m )) = m j=0 f (φ n (d a,0 • • • d a,j-1 )) + K(φ n (d a,j ))wheref (φ n (d a,0 • • • d a,j-1 )) is regarded as 0 for j = 0 (m + 1) n ) + δ j e 2jπi m P (n)where ( * ) follows from the inductive hypothesis and (3.36), and on the other hand j(m + 1)n + k -1), p(j(m + 1) n + k)] (m + 1) n ) + δ j e 2jπi m (m+1) n k=1 [p(k -1), p(k)]= m j=0 p(j(m + 1) n ) + δ j e 2jπi m P (n) where ( * * ) follows from δ j(m+1) n +r = δ j δ r (see Proposition 3.3.15 (1)). Thus K(φ n+1 (a)) If m is even, let A := {0, 1, 2, • • • , m -1}. Define the morphism φ : A * → A * by a → d a,0 d a,1 • • • d a,m for all a ∈ A where d a,k := a + k mod m if δ k = +1 a + k + m all k ∈ {0, 1, • • • , m}. Obviously d a,0 = a for all a ∈ A and it is straightforward to check e 2d a,k πi m a+k)πi m for all k ∈ {0, 1, • • • , m}. Define f (ε) := 0 andf (w 1 • • • w n ) := n k=1 • • w n ∈ A * . Then f : A * → C is a homomorphism satisfying f (a) = e 2aπi mfor all a ∈ A andf (uv) = f (u) + f (v)for all u, v ∈ A * . Let L : C → C and K : A * → H(C) be defined in the same way as 1 .Then we can prove f (φ n (d a,0 • • • d a,j-1 )) = e 2aπi m p(j(m + 1) n ) (3.38) for all j ∈ {1, 2, • • • , m}, a ∈ A and n ∈ N 0 , and then K(φ n (a)) = e 2aπi m P (n). Thus K(φ n (0)) = P (n) for all n ∈ N 0 . By applying Theorem 3.4.3, there exists a unique compact set K ⊂ C such that (p(m + 1)) -n P (n) d H -→ K as n → ∞, and K is a continuous image of [0, 1].

3

 3 Theorem 3.4.4 it suffices to show K = ∪ m j=0 S j (K). Let Q n := (p(m + 1))-n P (n) for all n ∈ N 0 . Since Q n d H -→ K and Proposition 3.4.6 imply ∪ m j=0 S j (Q n ) d H -→ ∪ m j=0 S j (K) as n → ∞, we only need to prove Q n+1 = ∪ m j=0 S j (Q n ) for all n ∈ N 0 in the following. In fact, Q n+1 = (p(m + 1)) -(n+1) P (n + 1) m + 1)) -(n+1) p(j(m + 1) n ) + (p(m + 1)) -(n+1) δ j e 2jπi m P (n) ( * * ) = m j=0 (p(m + 1)) -1 p(j) + (p(m + 1)) -(n+1) δ j e 2jπi m P (n) CHAPTER Then we have φ(w + a) = φ(w 1 + a) • • • φ(w k + a) = (φ(w 1 ) + a) • • • (φ(w k ) + a) = φ(w) + a, (3.39)where the second equality follows fromφ(b + a) = d b+a,0 d b+a,1 • • • d b+a,m = (d b,0 + a)(d b,1 + a) • • • (d b,m + a) = φ(b) + afor any a, b ∈ A. By applying (3.39) consecutively, for all a ∈ A and n ∈ N we haveφ n (a) = φ n-1 (φ(0) + a) = φ n-2 (φ 2 (0) + a) = • • • = φ n (0) + a,(3.40)and then b ∈ φ n (a) is equivalent to b -a ∈ φ n (0) for all b ∈ A. Thus we only need to prove that there exists n ∈ N such that a ∈ φ n (0) for all a ∈ A.i) Suppose δ 1 = +1. Then d 0,1 = 2, d 2,1 = 4, d 4,1 = 6, • • • , d 2m-4,1 = 2m -2,which imply2 ∈ φ(0), 4 ∈ φ(2), 6 ∈ φ(4), • • • , 2m -2 ∈ φ(2m -4).By iterating φ we get2 ∈ φ(0), 4 ∈ φ 2 (0), 6 ∈ φ 3 (0), • • • , 2m -2 ∈ φ m-1 (0)(3.41)one by one. It follows from0 ∈ φ(0) ∈ φ 2 (0) ∈ • • • ∈ φ m-1 (0) ∈ φ m (0) (3.42) that 0, 2, 4, • • • , 2m -2 ∈ φ m (0). It suffices to prove 1, 3, 5, • • • , 2m -1 ∈ φ m (0) in the following. Since δ 1 = • • • = δ m = +1 will imply p(m + 1) = 1 (which contradicts |p(m + 1)| > 1), noting δ 1 = +1, there exists l ∈ {2, 3, • • • , m} such that δ l = -1.This impliesd 0,l = 2l + m, d 2,l = 2l + m + 2, d 4,l = 2l + m + 4, • • • , d 2m-2,l = 2l + 3m -2 and then 2l + m ∈ φ(0), 2l + m + 2 ∈ φ(2), 2l + m + 4 ∈ φ(4), • • • , 2l + 3m -2 ∈ φ(2m -2). It follows from (3.41) that 2l + m ∈ φ(0), 2l + m + 2 ∈ φ 2 (0), 2l + m + 4 ∈ φ 3 (0), • • • , 2l + 3m -2 ∈ φ m (0).By (3.42) we get 2l + m, 2l + m + 2, 2l + m + 4, • • • , 2l + 3m -2 ∈ φ m (0), which is equivalent to 1, 3, 5, • • • , 2m -1 ∈ φ m (0). Therefore a ∈ φ m (0) for all a ∈ A.ii) Suppose δ 1 = -1. Then d 0,1 = m + 2. By m + 2 ∈ φ(0), we get2(m + 2) = m + 2 + m + 2 ∈ φ(0) + m + 2 by (3.39) = ===== = φ(m + 2) ∈ φ 2 (0).In the same way we get3(m + 2) ∈ φ 3 (0), 4(m + 2) ∈ φ 4 (0), • • • , (2m -1)(m + 2) ∈ φ 2m-1 (0). It follows from 0 ∈ φ(0) ∈ φ 2 (0) ∈ • • • ∈ φ 2m-1 (0) that 0, m + 2, 2(m + 2), 3(m + 2), • • • , (2m -1)(m + 2) ∈ φ 2m-1 (0).(3.43)Since m is odd, we know that m + 2 and 2m are relatively prime. This implies that 0, m + 2, 2(m + 2), 3(m + 2), • • • , (2m -1)(m + 2) construct a complete residue system mod 2m. By (3.43) we get 0, 1, 2, • • • , 2m -1 ∈ φ 2m-1 (0).

i) Suppose δ 1 =

 1 +1. Thend 0,1 = 1, d 1,1 = 2, d 2,1 = 3, • • • , d m-2,1 = m -1 which imply 1 ∈ φ(0), 2 ∈ φ(1), 3 ∈ φ(2), • • • , m -1 ∈ φ(m -2).

CHAPTER 3 By iterating φ we get 1 ∈ 2 + 1 and d m 2 +1, 1 = 2 ,+ m 2 if δ k = - 1 2 k=1(- 1 ) k+1 e πi e 2kπi m = m 2 k=1(- 1 ) k e 2kπi m and m 2 k=1( 4 = 4 =( 2 ) 3 + 1 3S 3 (z) = z 3 + 2 3

 31221221212124423132 φ(0), 2 ∈ φ 2 (0), 3 ∈ φ 3 (0), • • • , m -1 ∈ φ m-1 (0)one by one. It follows from0 ∈ φ(0) ∈ φ 2 (0) ∈ • • • ∈ φ m-1 (0) that 0, 1, 2, • • • , m -1 ∈ φ m-1 (0). ii) Suppose δ 1 = -1. Then d 0,1 = m which imply m 2 + 1 ∈ φ(0) and 2 ∈ φ( m 2 + 1). It follows from φ( m 2 + 1) ∈ φ 2 (0) that 2 ∈ φ 2 (0), and then φ 2 (2) ∈ φ 4 (0). Since (3.44) implies φ 2 (2) = φ 2 (0) + 2, we get 4 ∈ φ 4 (0). Repeating this process we get 2 ∈ φ 2 (0), 4 ∈ φ 4 (0), 6 ∈ φ 6 (0), • • • , m -2 ∈ φ m-2 (0). (3.45) It follows from 0 ∈ φ 2 (0) ∈ φ 4 (0) ∈ • • • ∈ φ m-2 (0) that 0, 2, 4, • • • , m -2 ∈ φ m-2 (0).(3.46)First we prove that there exits an odd a ∈ A such that a ∈ φ(0) by contradiction.Assume a / ∈ φ(0) for all odd a ∈ A. By φ(0) = d 0,0 d 0,1 • • • d 0,m we know that d 0,0 , d 0,1 , • • • , d 0,m are all even. Then d 0,1 = m 2 + 1 implies that m 2 is odd. By d 0,k := k if δ k = +1 k for all k ∈ {0, 1, • • • , m}, we get δ 0 = δ 2 = δ 4 = • • • = δ m = +1 and δ 1 = δ 3 = • • • = δ m-1 = -1.This implies p(m + 1) = 1, which contradicts |p(m + 1)| > 1. Thus there must exist an odd a ∈ A such that a ∈ φ(0), which impliesφ 2 (a) ∈ φ 3 (0), φ 4 (a) ∈ φ 5 (0), • • • , φ m-2 (a) ∈ φ m-1 (0). It follows from φ(0) ∈ φ 3 (0) ∈ φ 5 (0) ∈ • • • ∈ φ m-1 (0) that a, φ 2 (a), φ 4 (a), • • • , φ m-2 (a) ∈ φ m-1 (0).(3.47)Since (3.44) implies φ 2 (a) = φ 2 (0) + a, φ 4 (a) = φ 4 (0) + a, • • • , φ m-2 (a) = φ m-2 (0) + a, by (3.45) we geta + 2 ∈ φ 2 (a), a + 4 ∈ φ 4 (a), • • • , a + m -2 ∈ φ m-2 (a). It follows from (3.47) that a, a + 2, a + 4, • • • , a + m -2 ∈ φ m-1 (0). Recalling that a is odd, we get 1, 3, 5, • • • , m -1 ∈ φ m-1 (0). Since 0 ∈ φ(0) implies φ m-2 (0) ∈ φ m-1 (0), by (3.46) we get 0, 2, 4, • • • , m -2 ∈ φ m-1 (0). Therefore 0, 1, 2, 3, • • • , m -1 ∈ φ m-1 (0).Proof of Corollary 3.4.2. Let m ≥ 2 be an integer,δ 0 = • • • = δ m +1, δ m 4 +1 = • • • = δ m-m 4 -1 = -1, δ m-m • • • = δ m = +1 and δ = (δ n ) n≥0 be the (+1, δ 1 , • • • , δ m )-Thue-Morse sequence. = -cos(π -Since Theorem 3.4.1 says that the (+1, δ 1 , • • • , δ m )-Koch curve is the unique attractor of the (+1, δ 1 , • • • , δ m )-IFS {S j } 0≤j≤m , to complete the proof, by applying Theorem 3.4.5, it suffices to check that {S j } 0≤j≤m satisfies the OSC. When m = 2, we have δ 0 = +1, δ 1 = -1, δ 2 = +1, p(m + 1) = 3, S 0 (z) = z 3 , S 1 (z) = z and S 2 (z) = z 3 + 2 3 for z ∈ C, and we can take the open set {x + yi : x, y ∈ (0, 1)}. When m = 3, we have δ 0 = +1, δ 1 = δ 2 = -1, δ 3 = +1, p(m + 1) = 3, S 0 (z) = z 3 , for z ∈ C. The attractor of this IFS is exactly the classical Koch curve and this IFS satisfies the OSC, where the open set can be taken by the open isosceles triangle {x + yi : x, y ∈ R, y < 0, x + √ 3y > 0, x -√ 3y < 1}.In the following we consider m ≥ 4. Let a m :=
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 31 Figure 3.1: The open sets V, S 0 (V ), • • • , S m (V ) and geometrical relation for m ≡ 0 mod where m ≥ 4.
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 32 Figure 3.2: The open sets V, S 0 (V ), • • • , S m (V ) and geometrical relation for m ≡ 1 mod where m ≥ 4.
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 33 Figure 3.3: The open sets V, S 0 (V ), • • • , S m (V ) and geometrical relation for m ≡ 2 mod where m ≥ 4.

Figure 3 . 4 :

 34 Figure 3.4: The open sets V, S 0 (V ), • • • , S m (V ) and geometrical relation for m ≡ 3 mod where m ≥ 4.
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  t 3 t 4 := t 1 t 2 + , t 5 t 6 t 7 t 8 := t 1 t 2 t 3 t 4

+ , • • •

  Remark 1.1.29. It follows from Theorem 1.1.22 that the lengths of maximal runs of full words rely on the nonzero terms in ε(1, β), i.e., {ε n i }.

	min F n β =	 	min n i <m
			

for any i and Theorem 1.1.22. Corollary 1.1.28 (The minimal length of the maximal runs of full words). Let β > 1 with β /

∈ N, {n i } be the nonzero sequence of β. Then

ε n i if ε(1, β

) is finite with length m < n and m n;

min n i ≤n ε n i otherwise.

Proof. It follows from n i ≤ m for any i when ε(1, β) is finite with length m and Theorem 1.1.22.

  It suffices to prove N n β ⊃ D 3 since the reverse inclusion follows immediately from Corollary 1.1.36. By Proposition 1.1.32 (4), it suffices to show

  10 m+s which is full by Corollary 1.1.16. Hence we must have s = τ β (s) ∈ N n β by s ≤ n 2 -1 and Lemma 1.1.34.

	Therefore N n β = D 4 .
	Cases (4) and (9) can be proved together. When 1 < β < 2, ε(1, β) is infinite
	with n ≥ n 2 or ε(1, β) is finite with length m and n 2 ≤ n < m, we have ε(1, β) =
	10 n 2 -2 1ε n 2 +1 ε n 2 +2 • • • . By Proposition 1.1.32 (2), we get

n 2 +s-1

  We say that two sequences (x n ) n≥1 and (y n ) n≥1 in (0, +∞) are comparable, and denote it by x n y n , if there exist c 1 , c 2 > 0 such that c 1 x n ≤ y n ≤ c 2 x n for all n ∈ N. It is not difficult to see that is an equivalent relation.

	Denote the sets of admissible words, full words and non-full words with length n by
	Σ n β , Σ n β,F and Σ n β,N respectively. The result from Rényi means that #Σ n β (where # denotes
	the cardinality) is comparable to β n which is an exponential growth. As the main result
	of this subsection, the following theorem claims that #Σ n β,F is also comparable to β n , and
	if β / ∈ N, #Σ n β,N is also comparable to β n .
	Theorem 1.1.43. Let β > 1.
	which is full by Corollary 1.1.16.
	Hence we must have τ β (s) ∈ N n β by Lemma 1.1.34.
	Therefore N n β = D 5 .
	Remark 1.1.42. It follows from Theorem 1.1.40 that the lengths of the maximal runs of
	non-full words rely on the positions of nonzero terms in ε(1, β), i.e., {n i }.
	1.1.5 Numbers of full and non-full words
	In 1957, Rényi [102] estimated the number of all the admissible words with the same length
	(see Lemma 1.1.44 below). By applying the results in Subsection 1.1.2, we estimate the
	numbers of full words and non-full words separately in this subsection.

where 1 β n is the length of any full cylinder of order n (see Proposition 1.1.8). Lemma 1.1.46. Let β > 1 and n

  

  As the second main result in this section, the next theorem takes a step from abstraction to concreteness. It means that for calculating the Hausdorff dimension of frequency sets, we only need to focus on the entropy (see[START_REF] Walters | An introduction to ergodic theory[END_REF] for definition) with respect to Markov measures of explicit order (see Definition 1.3.11) when β ∈ (1, 2) and the β-expansion of

	1 is finite. More concretely, it suffices to optimize a function with finitely many variables
	under some restrictions.
	For β > 1, recall that Σ n β is the set of admissible words with length n ∈ N and
	Σ * β := ∪ ∞ n=1 Σ n β . For any w ∈ Σ * β , we use
	[w] := {v ∈ S

for the Hausdorff dimension of frequency sets, is almost entirely open. Although the Hausdorff dimension of frequency sets can be given by some variational formulae (see for examples

[START_REF] Fan | Recurrence, dimension and entropy[END_REF][START_REF] Takens | On the variational principle for the topological entropy of certain non-compact sets[END_REF][START_REF] Tempelman | Multifractal analysis of ergodic averages: a generalization of Eggleston's theorem[END_REF]

), they are abstract and concrete formulae are very scarce. Except for Theorem 1.2.6 in this thesis, the previously known concrete formula is only the one in Remark 1.2.7. β : v begins with w} to denote the cylinder in S β (not Σ β as in Sections 1.1 and 1.2) generated by w throughout this section.

  Corollary 2.1.5 follows from Theorem 2.1.3, the facts that

Corollary 2.1.4 follows directly from Theorem 2.1.3.

  k} will imply Freq k (w) = Freq k (w) = 0 directly, we only need to consider that there exists t ∈ N such that 0< k ≤ w t ≤ k < m. Since w t+1 , w t+2 , w t+3 , • • • / ∈ {k,k} will obviously imply Freq k (w) = Freq k (w) = 0, it suffices to consider that there exists s ≥ t + 1 such that w s ∈ {k, k}. i) If w s = k, by w s-1 < m and (3.15) we get kw s+1 w s+2 • • • < k(k + 1) ∞ . It follows from (3.19) that there exists i 1

	By (3.15) and (3.16), we get 0 < k ≤ w t+1 ≤ k < m. By (3.15) and (3.16) again, we get
	0 < k ≤ w t+2 ≤ k < m. • • • By induction we get	
	0 < k ≤ w n ≤ k < m for all n ≥ t.	(3.19)

  it is the quasi-lazy β-expansion of π β (w) if and only if it does not end with m ∞ and

	∞	w n+i
	i=1	β

i ≤ 1 whenever w n > 0.

Almost immediately we get the following.

Proposition 3.2.5. Let m ∈ N, β 0 ∈ (1, m + 1] and w ∈ {0, • • • , m} N . Then

w is the greedy/quasi-greedy/lazy/quasi-lazy/unique β 0 -expansion of π β 0 (w) if and only if for all β ∈ [β 0

If ε(1, β) is infinite, then ε * (1, β)| k = ε(1, β)| k is not full by (1), which contradicts our condition.

If ε(1, β) is finite with length m, but m k, then there exists p ≥ 0 such that pm < k < pm + m. Since ε * (1, β)| k is full, combining

Now we prove σ β µ p µ p .

Let w ∈ F with |w| = n. We prove µ p ([w] ∩ σ -n β A) = µ p [w]µ p (A) for any A ∈ B(Σ β ) as follows.

For any x ∈ [0, m βm-1 ], π(t(x)) = x follows from Proposition 2.1.9. (4) By[START_REF] Allouche | Théorie des Nombres et Automates[END_REF], it suffices to prove that π| T is increasing.

, 2) are almost variational frequency bases.

If {j n } n≥0 is bounded, then w ends with (θ (M )-) ∞ (or (θ (M )-) ∞ ) where M = max n≥0 j n .

Let n ≥ 0 be an integer. If j n ≤ 1, then j n+1 ≥ j n -1 is obvious. We only need to consider j n ≥

and prove j n+1 ≥ j n -1 in the following.

If w 1 = 0, it suffices to consider w n = 0 for some n ≥ 1 and prove σ n w > w. By w 1 = 0 and w n = 0, there exists a largest k ∈ {1, • • • , n -1} such that w k = 0 but

The "quasi-greedy" case follows in a way similar to 1 by applying Proposition 3.2.4 (2) instead of (1).

The "quasi-lazy" case follows in a way similar to 2 by applying Proposition 3.2.4 (4) instead of (3).

(+1, +1, -1, -1)-Koch curve.(+1, -1, +1, -1)-Koch curve.
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For all integers β > 1, we know that Lebesgue almost every x ∈ [0, 1] has a unique β-expansion w = (w i ) i≥1 , and this expansion satisfies where n ∈ N. Given w ∈ Λ (m),n , we call

the cylinder of order n in Λ (m) generated by w.

Let B(Λ (m) ) be the Borel sigma-algebra on Λ (m) (equipped with the usual metric d 2 ) and p ∈ (0, 1). We define the (p, 1 -p) Bernoulli-type measure µ p on (Λ (m) , B(Λ (m) )) as follows:

I. Let µ p (∅) := 0, µ p (Λ (m) ) := 1, µ p [0] := p, and µ p [1] := 1 -p. II. Suppose that µ p has been defined for all cylinders of order n ∈ N. For any w ∈ Λ (m),n , if w0, w1 ∈ Λ (m),n+1 , we define III. By Carathéodory's measure extension theorem, we uniquely extend µ p from its definition on the family of cylinders to become a measure on B(Λ (m) ).

Let σ m : Λ (m) → Λ (m) be the shift map defined by

The first main result in this section is the following.

Theorem 2.3.1. Let m ≥ 3 be an integer and p ∈ (0, 1). Then there exists a unique σ m -invariant ergodic probability measure λ p on (Λ (m) , B(Λ (m) )) equivalent to µ p , where λ p is given by

As an application of this theorem, we consider frequency sets of univoque sequences in the following. Define Γ := w ∈ {0, 1} N : w ≺ σ k w ≺ w for all k ≥ 1 where σ is the shift map on {0, 1} N , 0 := 1, 1 := 0 and w :=

The set Γ is strongly related to two well known research topics, iterations of unimodal functions and unique expansions of real numbers (see [START_REF] Allouche | Non-integer bases, iteration of continuous real maps, and an arithmetic self-similar set[END_REF] for more details).

On the one hand, in 1985, Cosnard [START_REF] Cosnard | Étude de la classification topologique des fonctions unimodales[END_REF] proved that a sequence α = (α n ) n≥1 ∈ {0, 1} N is the kneading sequence of 1 for some unimodal function if and only if τ (α) ∈ Γ , where τ : {0, 1} N → {0, 1} N is a bijection defined by τ (w) := ( n i=1 w i (mod 2)) n≥1 and Γ := w ∈ {0, 1} N : w σ k w w for all k ≥ 0 is similar to Γ in the sense that Γ \{periodic sequences} = Γ. The structure of Γ \{(10) ∞ } was studied in detail by Allouche [START_REF] Allouche | Théorie des Nombres et Automates[END_REF] (see also [7]). The generalizations of Γ and Γ (to more than two digits) were studied in [START_REF] Allouche | Théorie des Nombres et Automates[END_REF]10].

On the other hand, in 1990, Erdös, Joó and Komornik [START_REF] Erdös | Characterization of the unique expansions 1 = ∞ i=1 q -n i and related problems[END_REF] proved that a sequence α = (α n ) n≥1 ∈ {0, 1} N is the unique expansion of 1 in some base β ∈ (1, 2) if and only if

We define

1 m-1 0 (w).

1 m-1 0 (w). ⊃ Obvious.

This implies k ∈ N (m) 1 m-1 0 (w). 2 Prove N (2) follows in the same way as (1).

Proof of Theorem 2.3.1

Let p ∈ (0, 1). Recall the definition of the Bernoulli-type measure µ p from the introduction. Remark 2.3.10. We have

Note that µ p is not σ m -invariant. In fact, for all p ∈ (0, 1), we have

Combing Remark 2.3.10 and Proposition 2.3.8, we have the following.

Lemma 2.3.11. Let m ≥ 3 be an integer, p ∈ (0, 1) and w, v ∈ Λ (m), * such that wv ∈ Λ (m), * . Then

The proof of Theorem 2.3.1 is based on the following lemmas.

CHAPTER 2

Lemma 2.3.12. Let m ≥ 3 be an integer and p ∈ (0, 1). Then there exists a constant

for all k ∈ N and B ∈ B(Λ (m) ).

(

is a disjoint union. 1 Estimate the upper bound of σ k m µ p [w]:

where ( ) follows from Lemma 2.3.11.

2 Estimate the lower bound of

In fact, when k = 1, the conclusion is obvious. When k ≥ 2, we have

where ( ) follows from

and ( ) follows from Lemma 2.3.11. In the same way, we can get

In fact, when w 1 = 0, we have

where ( ) follows from w 1 = 0 and w ∈ Λ (m), * , ( ) follows from Lemma 2.3.11 and ( ) follows from i). When w 1 = 1, in the same way, we can get

Then C is a semi-algebra on Λ (m) , C Σf is the algebra generated by C (by Lemma 1.2.13

(1)) and G is a monotone class. Since in (1) we have already proved C ⊂ G, it follows that

) is the smallest sigma-algebra containing C Σf , it follows from the Monotone Class Theorem (Theorem 1.2.12) that G = B(Λ (m) ).

Lemma 2.3.13. Let m ≥ 3 be an integer and p ∈ (0, 1). For any B ∈ B(Λ (m) ) satisfying

(

1 For k ≥ m, we have

where ( ), ( ) and ( ) follow from

and

respectively, recalling the definition of µ p .

2 For k ≥ m, we have

where ( ), ( ) and ( ) follow from

respectively, recalling the definition of µ p .

Combining 1 and 2 we get

quasi-greedy β-expansion of 1 (the largest expansion in lexicographic order among all the β-expansions of 1 which do not end with 0 ∞ ).

Between two infinite sequences or two finite words with the same length, we use <, ≤, Then ε is the unique expansion if and only if

Then w is the unique expansion if and only if σ n w < g * (1, β) whenever w n < m and σ n w > g * (1, β) whenever w n > 0.

The next lemma follows from [55, Proposition 2.3] (see also [START_REF] Baiocchi | Greedy and quasi-greedy expansions in non-integer bases[END_REF]Theorem 2.2]).

The following lemma on Cesàro limit can be proved straightforwardly.

Proof. Fix any M > 0. By a n → ∞ as n → ∞, there exists N ∈ N such that for all n > N we have a n > 2M . Then for all n > 2N , we have

The following concept and basic property are well known [START_REF] Falconer | Fractal geometry. Mathematical foundations and applications[END_REF].

Definition 3.1.8 (Hölder continuity). Let (X, d), (X , d ) be two metric spaces and α > 0.

A map f : X → X is called α-Hölder continuous if there exists a constant c > 0 such that

Proposition 3.1.9. Let (X, d), (X , d ) be two metric spaces, α > 0 and f : X → X be an α-Hölder continuous map. Then for any E ⊂ X, we have

Besides, we recall two useful basic results (see for examples Lemma 2.3.14 and [START_REF] Baker | Digit frequencies and self-affine sets with non-empty interior. Ergodic Theory Dynam[END_REF][START_REF] Eggleston | The fractional dimension of a set defined by decimal properties[END_REF]).

CHAPTER 3

Proposition 3.1.10. For all a ∈ (0, 1), we have

dim H w ∈ {0, 1} N : Freq 0 (w) and Freq 1 (w) do not exist , d 2 = 1.

Proofs of the main results

Throughout this subsection, m ≥ 2 and k ∈ { m 2 + 1, • • • , m} are given integers. Recall from the introduction that θ (0) , θ (1) 

give some necessary technical lemmas first. Lemma 3.1.12. For all integers n ≥ 0, we have the following.

Proof.

(1) follows from the definition of θ (n) .

(

In fact we can prove that

2(2 n+1 -1)/3 and θ (n+1)-ends with k -1, where n + 1 is even. Thus (3.3) is true for n + 1.

(3) follows from ( 2) and (3. (2) Let j ∈ N and u, v be finite words on {0, • • • , m} such that θ (j) * = uv, where u is non-empty and v may be empty. Then

Lemma 3.1.15. For any n ∈ N, there exist integers

and

and the conclusion follows.

By Lemma 3.1.14 we know that θ (l 1 ) * begins with θ (l 2 ) θ (l 2 ) * . It follows from

• • •

For general j ≥ 2, suppose that there already exist integers

and we must have j p+1 = M . In the same way we can get j p+2 = M, j p+3 = M, • • • .

5 Fix any M > 0. Since {j n } n≥1 is not bounded, there exists N ∈ N such that j N ≥ M + 2. It suffices to prove j n > M for all n ≥ N . Let p ≥ N be the smallest integer such that j p = min n≥N j n . We only need to prove j p > M . It suffices to prove j p ≥ j N -1.

(By contradiction) Assume j p ≤ j N -2. Then p = N . By p ≥ N we get p ≥ N + 1,

i.e., p -1 ≥ N . It follows from the definition of p that j p-1 ≥ j p + 1. By 1 we get j p-1 = j p + 1. This implies j p-1 ≤ j N -1, and then by p -1 ≥ N we must have

Thus we must have j p-2 = j p-1 = j p + 1.

For general i ≥ 2, if we have already had p -i ≥ N and j p-i = j p-i+1 = j p + 1, by j p ≤ j N -2 we get j p-i ≤ j N -1, and then by p-i ≥ N we must have p-i ≥ N +1, i.e.,

Thus we must have j p-i-1 = j p-i = j p + 1. This implies j p-i-1 ≤ j N -1, and then by

By induction we get p -i ≥ N for all i ∈ N. This is impossible.

(3) 1 If k = m, it suffices to prove Freq 0 (w) = Freq m (w).

i) If w 1 = 0, by w = 0 ∞ , there exists s ∈ N such that w 1 • • • w s = 0 s and w s+1 > 0.

a When w s+1 = m (= k), we have w = 0 s mw s+2 w s+3 • • • . By (1) 1 there exist 4 we know that w ends with (θ (M )-) ∞ , which implies that both Freq 0 (w) and Freq m (w) exist. Since Lemma 3.1.12 (2) implies

II. If {j n } n≥0 is not bounded, we can prove Freq 0 (w) = Freq m (w) = 1 3 . Since the proofs of Freq 0 (w) = 1 3 and Freq m (w) = 1 3 are similar, we only prove

, there exists t 0 ∈ N such that for all t ≥ t 0 we have (1

(6) β is no less than the classical Komornik-Loreti constant.

We recall some notation and preliminaries in Subsection 3.2.1, and then prove Proposition 3.2.1 and Theorem 3.2.2 in the last subsection. Recall that given m ∈ N, for any digit k ∈ {0, • • • , m}, k denotes m -k. The following criterion for greedy, quasi-greedy, lazy and quasi-lazy expansions, which is a direct consequence of Proposition 2.1.11 (see also [61, Lemma 1]), plays an important role in the proof of Theorem 3.2.2.

Notation and preliminaries

(1) w is the greedy β-expansion of π β (w) if and only if
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(2) We have

if and only if w = 0 ∞ and σ n w > w whenever w n > 0.

(3) We have w < σ n w < w for all n ≥ 1 if and only if w = m ∞ , σ n w < w whenever w n < m and σ n w > w whenever w n > 0.

Proof.

(1) ⇒ is obvious.

⇐ It suffices to consider w n = m for some n ≥ 1 and prove σ n w < w.

where the last inequality follows from the condition σ k w < w when w k < m.

(2) ⇒ We have the following two cases.

1 If w = 0 k w k+1 m ∞ for some k ≥ 1, then w = 0 ∞ , and for all n ≥ 1 with w n > 0 we have σ n w = m ∞ > w.

2 If σ n w > w for all n ≥ 1, we obviously have w = 0 ∞ and σ n w > w whenever w n > 0.

⇐ Suppose w = 0 ∞ and σ n w > w whenever w n > 0 (3.24)

By (3.24) we get σ k+1 w > w, which implies w k+2 ≥ w 1 = m. By (3.24) again we get

> w.

(3) ⇒ is obvious.

⇐ follows from ( 1) and ( 2), noting that σ n w < w whenever w n < m implies w = 0 ∞ and

Besides, we need the following lemmas.

Then ε is the greedy expansion if and only if

The next lemma follows from [3, Page 72, Theorem a)] with different notation.

Lemma 3.2.8. For s ∈ N and alphabet

Then for any integer q ≥ 2 and q-mirror sequence u = (u n ) n≥1 on the alphabet A with u 1 = a s and u q = a i (i = 0), we have

) ∞ ∈ Γ(s, A) with smallest period q.

3.2.2 Proofs of Proposition 3.2.1 and Theorem 3.2.2

Let m ≥ 1, q ≥ 2 be integers, θ 1 , • • • , θ q ∈ {0, • • • , m} with θ q = 0 and θ be the (2)⇔"(3) and ( 4)" is obvious.

In the following we only need to prove (3)⇔( 4) and (1)⇔(2).

(3)⇒(4) Let n ≥ 1. We need to prove σ n θ < θ in the following. 1 If n ≤ q -1, since σ n θ begins with

we get

< θ.

2 If n ≥ q, then there exists integer k ≥ 0 and j ∈ {0, 1,

we get

≤ θ.

(4)⇒(3) Suppose

Let n ≥ 1. We need to prove σ n θ < θ in the following. For all k ≥ 0 large enough such

Since (3.25) implies

we get

Since θ is not periodic, we get σ n θ = θ and then σ n θ < θ.

(

σ n θ < θ, and thus we only need to prove

we only need to consider the alphabet

, by applying Lemma 3.2.8 we get

for all n ≥ 0. This implies that for all n ∈ {1, • • • , q -1} we have

and then

which is equivalent to

(1)⇒(2) Noting that (1) and the definition of θ imply θ 1 ≤ θ n ≤ θ 1 for all n ∈ N, we only need to consider the alphabet

Since θ is not periodic, we have σ n θ = θ and σ n θ = θ (otherwise σ 2n θ = θ) for all n ≥ 1. In order to prove (2), by applying Lemma 3.2.8, noting that (1) implies θ q = θ 1 , we only need to prove the following 1 and 2 .

1 Prove (θ

∞ for all n ≥ 0. It suffices to prove that for all n ∈ {1, • • • , q -1} we have

where the second inequality follows from the fact that (1) implies

. We only need to prove the first inequality in the following. Let n ∈ {1, • • • , q -1}. Replacing n by q -n in the first inequality in (1), we get

which is equivalent to

Since the first inequality in (1) also implies

we get

2 Prove that the smallest period of (θ

CHAPTER 3 that θ is not periodic. Thus the greedy β θ -expansion of 1 must not end with 0 ∞ . It follows that the greedy and quasi-greedy β θ -expansions of 1 are the same.

3 ⇒ 1 follows immediately from Lemma 3.2.7 and the equivalence of ( 1) and ( 5) in Proposition 3.2.1. Here we consider another one: the Thue-Morse sequence (t n ) n≥0 is the unique fixed point of the morphism 0 → 01 1 → 10 beginning with t 0 := 0. A natural generalization is the following: given any integer q ≥ 2 and θ 1 , • • • , θ q-1 ∈ {0, 1}, we call the unique fixed point of the morphism

Infinite products related to generalized

beginning with θ 0 := 0 the (0, θ 1 , • • • , θ q-1 )-Thue-Morse sequence, where 0 := 1 and 1 := 0. Note that the classical Thue-Morse sequence (t n ) n≥0 is exactly the (0, 1)-Thue-Morse sequence in our terms.

Generalized Thue-Morse sequences defined above are essentially contained in the concept of generalized Morse sequences in [START_REF] Keane | Generalized Morse sequences[END_REF]. In fact, given any integer q ≥ 2 and θ 1 , • • • , θ q-1 ∈{0, 1}, by Proposition 3.3.15 (1) and inductive, one can check that the (0, θ 1 , • • • , θ q-1 )-

where we use the notation of products of blocks mentioned in [START_REF] Keane | Generalized Morse sequences[END_REF]. It follows from [79, Lemma 1] that θ is periodic if and only if θ = 0 ∞ or (01) ∞ . Therefore, if θ is not the trivial 0 ∞ or (01) ∞ , it is a generalized Morse sequence in the sense of [START_REF] Keane | Generalized Morse sequences[END_REF].

Recently, for rational functions R, Allouche, Riasat and Shallit [START_REF] Allouche | More infinite products: Thue-Morse and the gamma function[END_REF] studied infinite products related to the classical Thue-morse sequence (t n ) n≥0 of the forms 

Let N, N 0 and C be the sets of positive integers 1, 2, 3, • • • , non-negative integers 0, 1, 2, • • • and complex numbers respectively. Moreover, for simplification we define δ n := (-1) θn ∈ {+1, -1} for all n ∈ N 0 throughout this section.

First we have the following convergence theorem, which is a generalization of [13, Lemmas 2.1 and 4.1] (see also [START_REF] Riasat | Infinite products involving binary digit sums[END_REF]Lemma 1]) and guarantees the convergence of all the infinite products given in the results in this section.

Theorem 3.3.1. Let q ≥ 2 be an integer, θ 0 = 0, (θ 1 , • • • , θ q-1 ) ∈ {0, 1} q-1 \ {0 q-1 }, (θ n ) n≥0 be the (0, θ 1 , • • • , θ q-1 )-Thue-Morse sequence and R ∈ C(X) be a rational function such that the values R(n) are defined and non-zero for all n ∈ N. Then:

(1) the infinite product ∞ n=1 (R(n)) δn converges if and only if the numerator and the denominator of R have the same degree and the same leading coefficient;

(2) the infinite product ∞ n=1 (R(n)) θn converges if and only if the numerator and the denominator of R have the same degree, the same leading coefficient and the same sum of roots (in C).

Although Theorem 3.3.1 is a natural generalization of [13, Lemmas 2.1 and 4.1], the proof is more intricate and relies on Proposition 3.3.15 as we will see.

In the following Subsections 3.3.1 and 3.3.2, we introduce our results concerning products of the forms (R(n)) δn and (R(n)) θn respectively. Then we give some preliminaries in Subsection 3.3.3 and prove all the results in Subsection 3.3.4.
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called strongly q-multiplicative if u 0 = 1 and

The following theorem is a classical result on the Gamma function Γ (see for examples [START_REF] Chamberland | On gamma quotients and infinite products[END_REF]Theorem 1.1] and [START_REF] Whittaker | A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions: with an account of the principal transcendental functions[END_REF]Section 12.13]).

Besides, we need the properties on the Gamma function gathered in the following proposition.

Proposition 3.3.14 ([19, 30, 122]).

(1) For all n ∈ N and z

(2) For all z ∈ C \ {0, -1, -2, • • • } we have

and

(3) For all z ∈ C \ Z we have

(4) We have

Proofs of the results

Let q ≥ 2 be an integer,

Thue-Morse sequence. Recall that (δ n ) n≥0 is defined by δ n = (-1) θn for all n ∈ N 0 . At the same time (δ n ) n≥0 can be view as the unique fixed point of the morphism

beginning with δ 0 = +1. Define the sequence of partial sums of (δ n ) n≥0 by

Note that (∆ n ) n≥0 depends on the choice of (δ 1 , • • • , δ q-1 ) ∈ {+1, -1} q-1 . Before proving Theorem 3.3.1, we need the following proposition on (∆ n ) n≥0 , which is itself valuable.

Proposition 3.3.15. Let q ≥ 2 be an integer.

(1) For all k, s ∈ N 0 and t ∈ {0, 1, • • • , q k -1} we have

(2) With the convention 0 0 := 1, for all k ∈ N 0 we have

(3) If (δ 1 , • • • , δ q-1 ) = (+1) q-1 , then for all n large enough we have

|∆ n | ≤ n log q (q-1) .

Proof.

(1) 1 Prove δ sq k +t = δ s δ t for all k, s ∈ N 0 and t ∈ {0, 1, • • • , q k -1}.

i) Prove that (δ n ) n≥0 is strongly q-multiplicative, i.e.,

Let ψ denote the morphism (3.29). Then by ψ((δ
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By i) and [18, Proposition 1] we get

Thus δ sq k +t = δ s δ t .

In fact, we have

where the second equality follows from 1 .

(2) 1 We have ∆ q k = ∆ k q for all k ∈ N 0 since (1) 2 implies ∆ q•q l = ∆ q ∆ q l for all l ∈ N 0 . 2 For all k ∈ N 0 , the fact

3 In order to prove the last equality in statement (2), since the case k = 0 is trivial and

Suppose that for some k ∈ N and all l ∈ {0, 1, • • • , k}, we have already had

where the last inequality follows from the inductive hypothesis.

(By induction) For k = 1 we have ∆ q-1 = q -1. Suppose that (3.31) is true for some k ∈ N. Then for k + 1, we have

where the second equality follows from (1) 2 and the third equality follows from 1 and the inductive hypothesis.

(3) For n ∈ N large enough, there exists k ∈ N large enough such that q k + 1 ≤ n ≤ q k+1 . By (2) 3 we get

where the second inequality can be verified straightforwardly for k large enough.

Proof of Theorem 3.3.1. Since (2) follows in the same way as in the proof of [START_REF] Allouche | More infinite products: Thue-Morse and the gamma function[END_REF]Lemma 4.1] by applying (1), we only need to prove (1) in the following.

Thus the numerator and the denominator of R have the same degree and the same leading coefficient.

⇐ Suppose that the numerator and the denominator of R have the same leading coefficient and the same degree. Decompose them into factors of degree 1. To prove that 

1 n 2-log q (q-1) for all n large enough, where 2 -log q (q -1) > 1, it follows that ∞ n=1 ∆n n 2 converges absolutely. So does

converges to 0. In fact, for all N ∈ N we have

Since Proposition 3.3.15 (3) implies

(N + 1) 1-log q (q-1) for all N large enough, where 1 -log q (q -1) > 0, as N → ∞ we get

Proof of Theorem 3.3.2. Since Proposition 3.3.15 (1) implies

.

Proof of Corollary 3. (2) 1 and 2 follow from Corollary 3.3.3 (2). (3) 1 is the above equality (3.33).

2 , 5 , 9 and 13 follow from taking a = -1 2 , 3 2 , 1 and 2 respectively in (2) 1 .

3 , 6 , 8 and 16 follow from taking a = 1 2 , 2 3 , 3 2 and -1 2 respectively in (2) 2 .

4 follows from multiplying 3 and 1 .

7 follows from taking a = 5 6 in (2) 4 .

10 , 11 , 12 and 14 follow respectively from 9 , 10 , 11 and 13 by applying 1 .

15 follows from taking a = 2 and b = 4 3 in (1). (2) 1 and 2 follow from Corollary 3.3.3 (2).

3 follows from 2 and the fact that the first equality in Corollary 3.3.5 implies

(3) 1 is the above equality.

2 follows from taking a = 2 in (2) 3 .

3 and 8 follow from taking a = 3 2 and 2 respectively in (2) 1 .

4 , 5 , 11 and 16 follow from taking a = 1 3 , 2 3 , 3 and 3 2 respectively in (2) 2 .

6 , 9 and 10 follow respectively from 5 , 8 and 9 by applying 1 .

7 follows from taking a = 5 8 and b = 7 8 in (1).

12 and 13 follow respectively from multiplying and dividing 11 by 1 .

14 follows from combining the results of taking a = 1 2 and -1 2 in (2) 2 .

15 follows from taking a = 1, b = 1 2 in (1) and then multiplying by 1 .

Proof of Example 3.3.8. For odd q ≥ 3, let θ

It follows that δ n := (-1) θn = (-1) n for all n ≥ 0.

(1) By the second equality in Corollary 3.3.3 (2) we get ∞ n=0 (qn + qa)(qn + a + 1)(qn + 2)(qn + a + 3)(qn + 4) • • • (qn + a + q -2)(qn + q -1) (qn + a)(qn + 1)(qn + a + 2)(qn + 3)(qn + a + 4) • • • (qn + q -2)(qn + a + q -1)

for all a ∈ C \ {0, -1, -2, • • • }. Then we conclude (1) by taking a = 1 in (3.34).

(2) follows from (3.34) and ( 1).

(3) Note that for all q ∈ N and a

(qn + a)(qn + a + q) (qn + qa)(qn

We prove the concrete equalities in the following.

1 and 13 follow from taking q = 3 and 5 respectively in (1).

2 , 3 , 5 and 7 follow from taking q = 3, and then a = 3, 2, 2 3 and 1 3 respectively in (2). 4 , 9 , 10 and 12 are deduced by applying 1 noting that (3.35) with q = 3 and then a = 2, 2 3 , 1 3 and - 14 and 15 follow from taking q = 5, and then a = 1 2 and 3 respectively in [START_REF] Barrera | Entropy, topological transitivity, and dimensional properties of unique q-expansions[END_REF].

Before proving Theorem 3.3.9, we need the following proposition.

Proposition 3.3.16. Let q ≥ 2 be an integer, θ 0 = 0, (θ 1 , • • • , θ q-1 ) ∈ {0, 1} q-1 \ {0 q-1 } and (θ n ) n≥0 be the (0, θ 1 , • • • , θ q-1 )-Thue-Morse sequence. Then for all n ∈ N 0 and k ∈ {0, 1, • • • , q -1} we have

Proof. Let h denote the morphism

where 0 := 1 and 1 := 0. By h(θ

(5) 1 follows from taking a = 1 2 in (4) 3 .

2 and 6 follow from taking a = 0 and 1 3 respectively in (4) 5 .

3 , 5 , 7 , 11 and 12 follow from taking a = 1 2 , 1, 2, -2 3 and -1 4 respectively in (4) 1 .

4 , 15 and 16 follow from taking a = 1 4 , 2 3 and 2 5 respectively in (4) 4 .

8 , 9 and 10 follow respectively from multiplying 1 by 2 , multiplying 5 by 8 and dividing 2 by 1 .

13 and 14 follow from taking a = 3 2 and 1 3 respectively in (4) 2 . Given any m ∈ N and θ 1 , • • • , θ m ∈ {0, 1}, recall from the last section that the

Generalized Koch curves and Thue-Morse sequences

beginning with θ 0 := 0, where 0 := 1 and 1 := 0. Define δ n := (-1) θn for all n ∈ N 0 . Then (δ n ) n≥0 is the unique fixed point of the morphism Noting that the classical ±1 Thue-Morse sequence ((-1) tn ) n≥0 is not only the (+1, -1)

but also the (+1, -1, -1, +1)-Thue-Morse sequence in our terms, the above p m,δ depends not only on δ but also on m. For n ∈ N 0 , let The following is our main result. In the following we prove that φ is primitive. That is, there exists n ∈ N such that • Yao-Qiang Li, Hausdorff dimension of frequency sets in beta-expansions, arXiv:1905.01481v3

• Bing Li, Yao-Qiang Li, and Tuomas Sahlsten, Random walks associated to beta-shifts, arXiv:1910.13006