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Summary

Summary:

This PhD lies at the intersection of Random Matrix Theory and Free Probability Theory.
The study of random matrices originated from outside of the field of mathematics, first in
statistics and data analysis with Wishart [1], and then during the second part of the twentieth
century in physics with Wigner [2]. As time went on, more and more connections with other
fields of mathematics and physics were made. In particular, Free Probability emerged as a new
field between Operator Algebra and Random Matrix Theory. It was created in the 1980s by
Dan Voiculescu as a non-commutative probability theory where the notion of freeness plays the
role of independence. This notion of freeness is intimately related with the notion of freeness
in groups. In the seminal paper [3] published in 1991, he realized that the asymptotic behavior
of many random matrices can be described within the framework of Free Probability. He
studied GUE random matrix, which are Hermitian random matrices with Gaussian coefficients
of variance 1, and whose law is invariant by the action by conjugation of the unitary group. He
showed that a family of independent GUE matrices is asymptotically free in the sense that the
trace of their joint moments converges towards those of free semicircular variables. The later
can be described in terms of non-crossing pair partitions. A consequence of Voiculescu’s result
is that the empirical measure of the eigenvalues of a polynomial in independent GUE matrices,
provided that it is a self-adjoint matrix, converges weakly towards the spectral measure of the
same polynomial evaluated in free semicircular variables. Free Probability has been widely
used since then in Random Matrix Theory, see for example chapter 22 of [4] for a more detailed
survey. The link between Random matrix Theory and Operator Algebra is extremely fruitful
in both ways and applies beyond these two fields (see for example [5] for a survey of the
different techniques used in Quantum Information Theory). One of the spectacular application
of the uses of Random matrix Theory in Operator Algebra was provided by Haagerup and
Thorbjørnsen in [6] who proved by using random matrices that the Ext-invariant for the reduced
C∗-algebra of the free group on 2 generators is not a group but only a semi-group.

The first chapter of this manuscript is a brief introduction to the fields of Random Matrix
Theory and Free Probability, as well as the papers that we present in this manuscript. In
the second chapter, which is based on [7], we got, through new methods, an estimate on the
non renormalized trace of some smooth functions in GUE matrices which in turns gives us a
different proof of the main result of Haagerup and Thorbjørnsen in [6]. That is, the convergence
of the norm of any polynomials in independent GUE random matrices. Our result also allows
to consider polynomials in GUE matrices, deterministic matrices and tensor matrices. In the
third chapter, based on [8], we prove similar results but for Haar unitary matrices instead of
GUE matrices by adapting our method to the unitary case. Although some of those results were
already proved in [9], this new method has the advantage of giving us quantitative estimates. In
the fourth chapter, which is based on [10], we refine the method used in the first paper to prove
a finite Taylor expansion around the dimension N of the non renormalized trace of some smooth
functions in GUE matrices of size N . This also gives several interesting corollary on the local
spectrum of polynomials in independent GUE matrices. In the fith chapter, based on [11], we
use the estimates obtained in [8] to get measure concentration estimates on a random set. This
set is defined as the output of a very specific quantum channel which is related to an important
problem in Quantum Information Theory. The concentration estimates that we obtained give
us explicit parameters of the size of the solutions. Finally in the last chapter, which is based
on the paper [12], we expand Voiculescu’s result of convergence in law of the empirical measure
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of non-commutative polynomials in independent GUE matrices to non-commutative rational
function.
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Summary

Résumé:

Ce doctorat est au croisement de la théorie des matrices aléatoires et de celle des probabilités
libres. Les matrices aléatoires ont d’abord été étudiées en dehors du cadre des mathématiques
théoriques, notamment en statistiques et en analyse de données grâce aux travaux de Wishart
(voir [1]), puis durant la seconde moitié du vingtième siècle, en physique avec Wigner (voir [2]).
Au fur et à mesure du temps, de plus en plus de connexions se sont faites entre la théorie des
matrices aléatoires et d’autres domaines des mathématiques et de la physique. Notamment, les
probabilités libres sont un domaine récent des mathématiques à mi-chemin entre la théorie des
algèbres d’opérateurs et celle des matrices aléatoires. Sa naissance remonte aux années 1980
via les travaux de Dan Voiculescu qui inventa cette théorie des probabilités non commutatives
où la notion de liberté remplace celle d’indépendance dans la théorie classique des probabilités.
Comme son nom l’indique, la notion de liberté en probabilité libre est fortement reliée à celle
que l’on définit dans la théorie des groupes. Dans son article fondateur [3] publié en 1991, il
démontra que le comportement asymptotique de nombre de modèles de matrice aléatoire peut
être décrit dans le cadre des probabilités libres. Il étudia la matrice du GUE, qui est l’unique
matrice aléatoire Hermitienne dont les coefficients sont des Gaussiennes de variance 1, et dont
la loi est invariante par conjuguaison par des matrices unitaires. Il démontra qu’une famille de
matrices du GUE indépendantes est asymptotiquement libre au sens où la trace d’un monôme
en ces matrices converge vers la trace du même monôme mais évalué en des semicirculaires
libres. Cette dernière peut être définie à l’aide d’outils combinatoires. Une conséquence du
résultat de Voiculescu est que la mesure empirique définie à partir des valeurs propres d’un
polynôme évalué en des matrices du GUE indépendantes, sous l’hypothèse que ce polynôme
de matrices est lui-même une matrice auto-adjointe, converge en loi vers la mesure spectral du
même polynôme évalué en des semicirculaires libres. Les probabilités libres ont aujourd’hui
de nombreuses applications en théorie des matrices aléatoires, voir par exemple le chapitre 22
de [4] pour une étude détaillée. Le lien entre la théorie des algèbres d’opérateurs et celle des
matrices aléatoires a généré de nombreux résultats qui ont eux-mêmes des applications dans
d’autre domaines (voir par exemple [5] pour une étude exhaustive des différentes méthodes en
lien avec les deux précédents domaines qui sont utilisées en théorie de l’information quantique).
Une application particulièrement spectaculaire de l’utilisation des matrices aléatoires en théorie
des algèbres d’opérateurs nous est donnée par Haagerup et Thorbjørnsen dans leur article [6]
dans lequel ils démontrent que l’invariant extérieur de la C∗-algèbre réduite du groupe libre à
deux générateurs n’est pas un groupe mais seulement un semi-groupe.

Le premier chapitre de ce manuscrit est une courte introduction à la théorie des matrices
aléatoires et de celle des probabilités libres, ainsi que des articles écrits pendant ma thèse. Dans
le second chapitre, qui se base sur l’article [7], nous calculons grâce à de nouvelles méthodes une
estimée de la trace non renormalisée de certaines fonctions lisses évaluées en des matrices du
GUE indépendantes. Nous en déduisons une nouvelle preuve du résultat principal de Haagerup
et Thorbjørnsen dans leur article [6]. C’est-à-dire la convergence de la norme d’un polynôme
évalué en des matrices du GUE indépendantes. Notre preuve nous permet également de prouver
un résultat similaire pour des polynômes évalués en des matrices du GUE indépendantes, des
matrices déterministes, ainsi que des tenseurs de matrices. Dans le troisième chapitre, qui se
base sur [8], nous démontrons des résultats similaires mais pour des matrices unitaires de Haar
au lieu des matrices du GUE. Notre approche consista à adapter notre méthode au cas unitaire.
Bien que certains de ces résultats aient déjà été démontrés dans [9], cette nouvelle méthode à
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l’avantage de donner des estimées quantitatives. Dans le quatrième chapitre, qui se base sur
l’article [10], nous avons amélioré la méthode utilisée dans notre premier article [7] pour prouver
un développement limité (en la dimension N de nos matrices aléatoires) de la trace de certaines
fonctions lisses évaluées en des matrices du GUE. Nous en déduisons plusieurs corollaires sur
le spectre local d’un polynôme en des matrices du GUE indépendantes. Dans le cinquième
chapitre, qui se base sur l’article [11], nous utilisons les résultats obtenus précédemment dans
[8] pour en déduire des estimées de concentration de la mesure d’un ensemble aléatoire. Cet
ensemble correspond aux données de sortie d’un canal quantique qui a été utilisé comme contre-
exemple pour résoudre un problème important en théorie de l’information quantique. Cette
estimée nous permet d’obtenir des paramètres explicites sur la taille des solutions à ce prob-
lème. Finalement dans le dernier chapitre, qui se base sur [12], nous élargissons le résultat de
Voiculescu de convergence en loi de la mesure empirique d’un polynôme non commutatif évalué
en des matrices du GUE indépendantes à l’ensemble des expressions rationnelles.



Acknowledgments

Acknowledgments:

Naturally I would like to thank first and foremost my PhD supervisors, Benoît Collins and
Alice Guionnet without whom I would never have been able to go anywhere with my research.
Their guidance when I was stuck was always really helpful, and I mean it. I would like to point
out their patience and ability to make time for me even when busy. Especially since handling
the administrative work and the logistic of a cosupervised PhD between France and Japan has
proved to be sometimes challenging and time consuming.

Similarly I would also like to thank Mikael de la Salle for numerous fruitful conversations
during the time I spent at the UMPA. He gave me several good lead for some lemma I was
struggling with. I am also grateful towards him as well as Grégory Miermont for writing letters
of recommendation for my applications to postdocs. Grégory Miermont was also a professor I
did some teaching duty for, and I thank him for making it as easy as possible by providing a lot
of teaching materials and organizing weekly meetings to talk about it. Among the people that
helped me quite a bit with this PhD, there are obviously my co-authors. First my supervisors,
Benoît Collins and Alice Guionnet, but also Tobias Mai, Akihiro Miyagawa and Sheng Yin. I
would also like to thank Philippe Biane and Dima Shlyakhtenko for accepting to review this
manuscript. Their feedback was especially useful to perfect this manuscript. As well as Mireille
Capitaine, Mikael de la Salle, Masaki Izumi, Mylene Maida, Masanori Hino for being part of
the dissertation committee along with Philippe Biane and my supervisors.

More generally I would like to thank the UMPA and the lab of Kyoto university as a whole.
The administration department was always on point when I had questions. And I had many.
This definitely made my travel much easier and the regular paperwork way less tiresome. The
atmosphere at my lab was always very good and I will definitely miss having lunch with the
different PhD or Postdoc students from the UMPA, as well as the regular cake, beer or dinner
coupled with board games and not so serious conversations. I would like to thank in particular
Mickaël Maazoun and Benoit Loisel with whom I shared an office for most of my PhD, but
there are many many more people that I intend on continuing to see regularly.

There were obviously many people outside of mathematics which were of great help during
my PhD. Christian A in particular, with whom I have been friend for now more than twenty
years and that has the impressive ability to always lift up my mood when we meet. Song Hui
K, the first friend that I made in Japan, thank you for helping me to have such a great first stay
and motivating me to invest myself in the student organization to help international students
when I came back to France. By the way, I have to thank the people who shared with me this
memorable experience that the ASSET was, Laura B, Elodie H, Ophélie S, Blanche T. Just by
yourselves, you made the time invested in this association more than worth it. Through the
ASSET, I also met Denis T with whom I always have a great time when we manage to meet.
Anatole E, with whom I made the entirety of my studies in Lyon, including my PhD. Antoine
H, with whom I will definitely meet again since we still have to go on a hike together.

I also have to thank my flatmates with whom I spent so much time during my PhD. First,
Joachim C, Thibaut B and Isabel M from my last year of master, hopefully we can meet again
to share a bottle of cider as usual. During those last three years, I spent most of my time
in France at the 231 avenue Jean Jaurès, thank you to my past, present or almost flatmates,
Quentin B, Mathieu D, Nassima M, Marie C and Léna D. Thank you for always being motivated
to spend time together in the common room, and the memorable party that we had. In Japan,
I would like to thank the many people of HdB for making my life as a PhD student so much

v



fun. Thank you in particular to Mathieu F for introducing me to HdB, Rutvika M for trying
so hard to correct my english accent, Richard W for being himself.

Et enfin, merci à ma famille, merci de toujours m’avoir motivé à faire ce que je fais.



Contents

1 Introduction 1
1.1 Random Matrix Theory and Free Probability . . . . . . . . . . . . . . . . . . . . 2

1.1.1 A short introduction to Random Matrix Theory . . . . . . . . . . . . . . 2
1.1.2 A short introduction to Free Probability . . . . . . . . . . . . . . . . . . 3
1.1.3 Seminal works preceding our research . . . . . . . . . . . . . . . . . . . . 5
1.1.4 The Stein’s method for free probability . . . . . . . . . . . . . . . . . . . 6

1.2 Summary of research results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 On the operator norm of noncommutative polynomials in deterministic

matrices and iid GUE matrices . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 On the operator norm of noncommutative polynomials in deterministic

matrices and iid Haar unitary matrices . . . . . . . . . . . . . . . . . . . 12
1.2.3 Asymptotic expansion of smooth functions in polynomials in determinis-

tic matrices and iid GUE matrices . . . . . . . . . . . . . . . . . . . . . . 13
1.2.4 Concentration estimates for random subspaces of a tensor product, and

application to Quantum Information Theory . . . . . . . . . . . . . . . . 16
1.2.5 Convergence for noncommutative rational functions evaluated in random

matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 On the operator norm of noncommutative polynomials in deterministic
matrices and iid GUE matrices 21
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Framework and standard properties . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Usual definitions in free probability . . . . . . . . . . . . . . . . . . . . . 28
2.2.2 Non-commutative polynomials and derivatives . . . . . . . . . . . . . . . 30
2.2.3 GUE random matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Proof of Theorem 2.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.1 Overview of the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.2 Proof of Theorem 2.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Consequences of the main result . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.4.1 Proof of Corollary 2.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.4.2 Proof of Corollary 2.1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.4.3 Proof of Theorem 2.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.4.4 Proof of Theorem 2.1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3 On the operator norm of noncommutative polynomials in deterministic
matrices and iid Haar unitary matrices 69
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

vii

https://arxiv.org/abs/1912.04588
https://arxiv.org/abs/1912.04588
https://arxiv.org/abs/2005.13834
https://arxiv.org/abs/2005.13834
https://arxiv.org/abs/2011.04146
https://arxiv.org/abs/2011.04146
https://arxiv.org/search/math?searchtype=author&query=Parraud%2C+F
https://arxiv.org/search/math?searchtype=author&query=Parraud%2C+F
https://arxiv.org/abs/2103.05962
https://arxiv.org/abs/2103.05962


CONTENTS

3.2 Framework and standard properties . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2.1 Usual definitions in free probability . . . . . . . . . . . . . . . . . . . . . 75
3.2.2 Non-commutative polynomials and derivatives . . . . . . . . . . . . . . . 76
3.2.3 Free stochastic calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.2.4 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.2.5 Random matrix model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.3.1 A matricial inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.3.2 A Poincaré type equality . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.3.3 Convergence of the free unitary Brownian motion . . . . . . . . . . . . . 90
3.3.4 Free stochastic calculus and free unitary Brownian motion . . . . . . . . 92

3.4 Proof of Theorem 3.1.1, the main result . . . . . . . . . . . . . . . . . . . . . . . 95
3.4.1 Overview of the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.4.2 Proof of Theorem 3.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.5 Proof of Corollaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.5.1 Proof of Corollary 3.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.5.2 Proof of Corollary 3.1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.5.3 Proof of Theorem 3.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4 Asymptotic expansion of smooth functions in polynomials in deterministic
matrices and iid GUE matrices 115
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.2 Framework and standard properties . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.2.1 Usual definitions in free probability . . . . . . . . . . . . . . . . . . . . . 120
4.2.2 Non-commutative polynomials and derivatives . . . . . . . . . . . . . . . 121
4.2.3 GUE random matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.3 Proof of Theorem 4.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.3.1 A Poincaré type equality . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.3.2 A first rough formulation of the coefficients . . . . . . . . . . . . . . . . . 128
4.3.3 Proof of Theorem 4.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.4 Consequences of Theorem 4.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.4.1 Proof of corollary 4.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.4.2 Proof of Corollary 4.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5 Concentration estimates for random subspaces of a tensor product, and
application to Quantum Information Theory 149
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.2 Notations and main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.3 Proof of main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.4 Application to Quantum Information Theory . . . . . . . . . . . . . . . . . . . . 161

5.4.1 Preliminaries on entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.4.2 Corollary of the main result . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.4.3 Application to violation of the Minimum Output Entropy of Quantum

Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6 Convergence for noncommutative rational functions evaluated in random
matrices 165

viii



6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.2.1 Noncommutative rational functions and expressions . . . . . . . . . . . . 168
6.2.2 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.2.3 Self-adjointness for matrix-valued noncommutative rational expressions . 175
6.2.4 Unbounded random variables . . . . . . . . . . . . . . . . . . . . . . . . 178
6.2.5 The quantity ∆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.3 Evaluations of non-degenerate matrix-valued noncommutative rational expressions180
6.3.1 Evaluations in random matrices . . . . . . . . . . . . . . . . . . . . . . . 180
6.3.2 Evaluation in operators with maximal ∆ . . . . . . . . . . . . . . . . . . 183

6.4 Convergence in law of the spectral measure . . . . . . . . . . . . . . . . . . . . . 184
6.4.1 Estimate on the cumulative distribution function of the spectral measure

of self-adjoint operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
6.4.2 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Bibliography 191





Chapter 1
Introduction

This chapter is a brief introduction to the fields of Random Matrix Theory and Free Prob-
ability, as well as a presentation of the papers that are contained in this manuscript. We first
introduce usual definitions and notations that arise regularly in this manuscript. Then we
summarize important results of older papers on which this PhD is built on. Finally we present
the research results that I and my co-authors obtained and how they connect to each others.
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Chapter 1. Introduction

1.1 Random Matrix Theory and Free Probability

1.1.1 A short introduction to Random Matrix Theory
One of the most studied model of random matrices is the Gaussian Unitary Ensemble

(GUE), one can view it as the natural generalization of the Gaussian random variable to the
vector space of Hermitian matrices. Indeed if dA denotes the Lebesgue measure on the set of
N × N Hermitian matrices, then a N × N self-adjoint random matrix is said to be a GUE
matrix if its distribution is proportional to the measure exp (−N Tr(A2)/2) dA. Another way
to define a GUE matrix is as the unique random Hermitian matrix whose coefficients are all
independent Gaussian and whose law is invariant by conjuguation by any deterministic unitary
matrix. This random matrix model has been studied thoroughly, in particular we have an
explicit expression for the probability density of the distribution of the eigenvalues of a GUE
random matrix.

Proposition 1.1.1. Let XN be a GUE random matrix, if λ1 ≤ · · · ≤ λN are its eigenvalues,
then with ZN a renormalization constant, for any A ∈ RN ,

P
(
λ1, . . . , λN ∈ A

)
= 1
ZN

∫
A

1x1≤···≤xN
∏

1≤i<j≤N
|xj − xi|2

∏
1≤i≤N

e−
x2
i

2 dx1 . . . dxN . (1.1)

For a proof, see Theorem 2.5.2 from [13]. GUE random matrices are at the heart of my
research. More precisely, I study polynomials in several independent copies of these matrices,
which depend not only on the eigenvalues but also on the eigenvectors. Similarly, I also study
Haar unitary matrices, which in fact describe the joint distribution of the eigenvectors of GUE
matrices. A matrix is said to be a Haar unitary matrix of size N if its law is simply the Haar
measure on the group of unitary matrices of size N . Like the GUE, this random matrix has
been extensively studied and we have an explicit expression of its eigenvalue probability density.
However in the world of Random Matrix Theory, it is very rare to actually have such exact
formula. For most random matrix models, in order to study their eigenvalues we have to rely
on different methods. To do so, we study instead the so-called empirical measure.

Definition 1.1.2. Let A be a self-adjoint matrix of size N , let λ1 ≤ · · · ≤ λN be its eigenvalues,
then one defines the empirical measure associated to A by

µA = 1
N

N∑
i=1

δλi ,

where δλ is the Dirac measure in λ.

The link between the empirical measure and the eigenvalues is rather straightforward, if σ(A)
is the spectrum of A, then for any interval [a, b],

µA([a, b]) = #{λ ∈ σ(A) | a ≤ λ ≤ b}
N

.

Thus if AN is a sequence of random matrices, one gets a sequence of random measures µAN .
Then one usually proceeds to show that almost surely this sequence converges in law towards
some deterministic measure µ. Thus, assuming that the limiting measure has no atom, by
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1.1. Random Matrix Theory and Free Probability

Portmanteau theorem this implies that the proportion of eigenvalues in the segment [a, b] con-
verges towards µ([a, b]). The natural way to show the convergence of the empirical measure is
to exploit the connection with traces, indeed if f is a continuous function, then

µA(f) = 1
N

∑
λ∈σ(A)

f(λ) = 1
N

Tr(f(A)). (1.2)

This means that to prove the convergence in law of the empirical measure, we simply need
to prove the convergence of traces of smooth functions. Besides, assuming that the limiting
measure has a compact support, which is the case for the overwhelming majority of models
of random matrix studied, since one can approximate smooth functions by polynomials, it is
sufficient to prove the convergence of the traces of the moments of our random matrices. This
is where the connection with free probability starts.

1.1.2 A short introduction to Free Probability
In a nutshell, Free Probability stems from applying definitions and strategies from probabil-

ity in operator algebra by viewing operators as random variables. In particular, if the Gaussian
random variable is one of the most important random variable in classical probability, then the
semicircular variable is just as important in Free Probability. It is defined as follows,

Definition 1.1.3. If A is a C∗-algebra endowed with a trace τ , then x ∈ A is said to be a
semicircular variable if it is self-adjoint and for any k ∈ N,

τ(xk) = 1
2π

∫ 2

−2
tk
√

4− t2 dt. (1.3)

It has been known for a very long time that almost surely the trace of the moments of a GUE
random matrix converges towards the trace of the moments of a semicircular variable. This
prompts us to define the notion of convergence in distribution.

Definition 1.1.4. let A = (a1, . . . , ak) be a k-tuple of elements of a C∗-algebra endowed with a
trace τ , we denote those elements as noncommutative random variables. The joint distribution
of the family A is the linear form

P ∈ C〈X1, . . . , X2k〉 7→ τ
[
P (A,A∗)

]
∈ C

on the set of polynomials in 2k noncommutative indeterminates.

Definition 1.1.5. Let (AN)N≥1 = (aN1 , . . . , aNk )N≥1 be a sequence of families of noncommutative
variables in C∗-algebras AN ,∗ endowed with a trace τN , we say that AN converges in distribution
towards A if the map

P 7→ τN
[
P (AN , A∗N)

]
converges pointwise towards the map

P 7→ τN
[
P (A,A∗)

]
.

3



Chapter 1. Introduction

In Random Matrix Theory, one usually has AN = MN(C) and τN = N−1 Tr. Thus almost
surely a GUE random matrix converges in distribution towards a semicircular variable. This
definition also applies to the Haar unitary matrix. Indeed u ∈ A is said to be a free Haar
unitary if uu∗ = u∗u = 1 and for any k ∈ Z, τ(uk) = 1k=0. And a Haar unitary matrix almost
surely converges in distribution towards a free Haar unitary. However, both of those results
are more of a reformulation of long-known properties of GUE and Haar unitary matrices and
do not justify by themselves the introduction of the notion of convergence in distribution. It is
only when we start working with families of several random matrices that this definition fully
makes sense.

Dan Voiculescu paved the way to tackle this kind of problem with the concept of freeness.
In order to explain it, let us draw a parallel between classical and free independence. Indeed
one can define classical independence as such, if A is a σ-algebra endowed with an expectation
E, the sub-σ-algebras A1, . . . ,An are said to be independent if for any I ⊂ [1, n] and Ai ∈ Ai,

E

∏
i∈I

(1Ai − E[1Ai ])
 = 0.

This prompts us to define the following notion of free independence.
Definition 1.1.6. If A is a C∗-algebra endowed with a trace τ , the sub-algebras A1, . . . ,An are
said to be freely independent if for any k ≥ 1, for any i1, . . . , ik such that for any j, ij 6= ij+1
and aj ∈ Aij ,

τ

 ∏
1≤j≤k

(aj − τ(aj))
 = 0.

The fact that we need to take an unlimited number k of indices, unlike the classical case
where k = n is enough, is due to non-commutativity. While given several C∗-algebra Ai
one can build an explicit C∗-algebra which contains free copies of the Ai, in Random Matrix
Theory we usually do not use this construction. Indeed, in classical probability we can build
an explicit probability space which contains copies of independent random variables but we
never use it beyond the fact that it exists, we only work with the distribution of the random
variables. Similarly, in Random Matrix Theory we are mainly interested by the existence of
free noncommutative random variables, and the previous formula gives a way to compute the
trace of their mixed moments. If (x1, . . . , xd) are free noncommutative random variables, and
P is a self-adjoint polynomial, that is such that P (x1, . . . , xd, x

∗
1, . . . , x

∗
d) is self-adjoint, then

the trace of its moments define a unique measure µP such that

τ(P (x1, . . . , xd, x
∗
1, . . . , x

∗
d)k) =

∫
tkdµP (t).

More rigorously, one defines µP by using usual notion of operator algebra. Notably if y is a self-
adjoint element of of a C∗-algebra, then by functional calculus, for every continuous function
f , one can define the operator f(y) such that the map f ∈ C0(R) 7→ f(y) is a morphism of
algebra.
Definition 1.1.7. Let y be a self-adjoint element of a C∗-algebra endowed with a trace τ . Then
by the Riez theorem, there exist a unique probability measure νy, whose support is bounded by
‖y‖, such that for any f ∈ C0(R),

τ(f(y)) =
∫
f dνy.

4



1.1. Random Matrix Theory and Free Probability

We say that νy is the spectral measure of y. Then we set µP = νP (x1,...,xd,x
∗
1,...,x

∗
d
).

It turns out that thanks to equation (1.2), approximation by polynomials coupled with the fact
that the spectral measure of an element of a C∗-algebra is always compactly supported, the con-
vergence in distribution of a family of matrices XN = (XN

1 , . . . , X
N
d ) towards x = (x1, . . . , xd)

implies that for any self-adjoint polynomial P , the empirical measure of P (XN , XN ∗) converges
in law towards the spectral measure of P (x, x∗). As previously mentioned this gives an estimate
on the proportion of eigenvalues of P (XN , XN ∗) in a given segment. It was only until 1991
that the first result of convergence in distribution linking Free Probability and Random Matrix
Theory was proved by Dan Voiculescu in the seminal work [3]:

Theorem 1.1.8. Let XN = (XN
1 , . . . , X

N
d ) be a family of independent GUE matrices, then

almost surely it converges in distribution towards a family x = (x1, . . . , xd) of free semicircular
variables.

Later in [14], he proved a similar result for independent Haar unitary matrices and free Haar
unitaries. While this result is quite important, it leaves a few questions open. For example, it
does not give an approximation of the number of eigenvalues in an interval whose size converges
towards 0. It also does not tell anything about the existence of outliers, that is whether the
support of the empirical measure converges towards the support of the limiting measure, or
in other words, whether there are eigenvalues outside of the support of a neighborhood of the
limiting measure.

1.1.3 Seminal works preceding our research
In a few words, the convergence of the empirical measure of the eigenvalues of a matrix

does not say much about the local properties of its spectrum. When dealing with a single
matrix, very precise results are known. For exemple it is well-known that the largest eigenvalue
of a GUE random matrix converges almost surely towards 2. More precisely, if XN is a GUE
random matrix of size N , then almost surely

lim
N→∞

‖XN‖ = 2.

The proof, for the more general case of a Wigner matrix with entries with finite moments, was
given in [15]. This result was later obtained under the optimal assumption that their fourth
moment is finite in [16]. Concerning the GUE, much more precise results were obtained by
Tracy and Widom in the early nineties in [17]. The main result of their paper is the existence
of a continuous decreasing function F2 from R to [0, 1] such that if λ1(XN) denotes the largest
eigenvalue of XN ,

lim
N→∞

P
(
N2/3(λ1(XN)− 2) ≥ s

)
= F2(s).

This was recently generalized to Wigner matrices [18, 19, 20, 21] up to optimal hypotheses.
One can as well study the localization of the eigenvalues in the bulk as well as their fluctuations
[22, 19].

On the other hand, there are much less results available when one deals with a polynomial
in several random matrices. In fact, up to today, the only local fluctuations results concern
perturbative polynomials [23] or local laws [24] under some assumptions which are shown to
hold for homogeneous polynomials of degree two. However, a beautiful breakthrough was made
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Chapter 1. Introduction

in 2005 by Haagerup and Thorbjørnsen [6]: they proved the almost sure convergence of the
norm of a polynomial evaluated in independent GUE matrices. For P a self-adjoint polynomial,
they proved that almost surely, for N large enough,

σ
(
P (XN

1 , . . . , X
N
d )
)
⊂ SuppµP + (−ε, ε) , (1.4)

where σ(H) is the spectrum of H and SuppµP the support of the measure µP . This is equiv-
alent to saying that for any polynomial P ,

∥∥∥P (XN
1 , . . . , X

N
d )
∥∥∥ converges almost surely towards

sup {|x| |x ∈ SuppµP}. The result (1.4) was a major progress in free probability and was refined
in multiple ways. In [25], Schultz used the method of [6] to prove the same result with Gaussian
orthogonal or symplectic matrices instead of Gaussian unitary matrices. In [26], Capitaine and
Donati-Martin proved it for Wigner matrices under some technical hypothesis on the law of
the entries. This result itself was then extended by Anderson in [27] to remove most of the
technical assumptions. In [28], Male made a conceptual improvement to the result of Haagerup
and Thorbjørnsen, by allowing to work both with GUE and deterministic matrices. Finally,
Belinschi and Capitaine proved in [29] that one could even work with Wigner and determinisic
matrices, while keeping the same assumptions on the Wigner matrices as Anderson. As for the
unitary case, Collins and Male proved in [9] the same result with unitary Haar matrices instead
of GUE matrices by using Male’s former paper.

With the exception of [9], all of these results are essentially based on the method introduced
by Haagerup and Thorbjørnsen. Their first tool is called the linearization trick: it allows to
relate the spectrum of a polynomial of degree d with coefficients in C by a polynomial of degree
1 with coefficients in Mk(d)(C) where k(d) is an integer which only depends on d. The second
idea to understand the spectrum of this larger matrix is to study its Stieltjes transform close
to the real axis by using the Dyson-Schwinger equations. An issue of this method is that it
does not allow to retrieve easily sharp quantitative estimates and it is hard to generalize to
other models such as Haar unitary matrices. Solving this issue ended up being the starting
point of my PhD. In order to do so, we had to find an alternative proof of Haageruup and
Thorbjørnsen’s result of convergence of the norm.

1.1.4 The Stein’s method for free probability
In this subsection we present the heuristic behind many of the proofs in my PhD. The Stein’s

method is an old trick from classical probability introduced by Charles Stein in [30] to estimate
the difference between the distribution of a random variable Y and a Gaussian distribution.
Although this is not the approach we initially took in the beginning of my PhD, through a
discussion with Martin Venker, it turned out that one could view the method that we were
developing and using as an adaptation of the Stein’s method to a free probability setting. More
specifically this explains why we can expect interesting results when we interpolate random
matrices with their free limit through an Ornstein-Uhlenbeck process. Stein’s method can be
summarized as such, it is known that Z is a centered Gaussian variable of variance 1 if and
only if for any smooth function f ,

E [Zf(Z)] = E [f ′(Z)] . (1.5)

Thus if we set A : f ∈ C∞(R) 7→ (x → f ′(x) − xf(x)), the Gaussian distribution is the
unique solution to the system of equations {∀f smooth, E[Af(Z)] = 0}. One can wonder

6



1.1. Random Matrix Theory and Free Probability

if there is some sort of continuity, that is if Y is such that for any function f , E[Af(Y )] is
small, then how close from a Gaussian distribution is the one of Y ? Indeed, this intuition is
confirmed by stochastic calculus. If we consider (Bt)t≥0 a Brownian motion, then (Xt)t≥0 is an
Ornstein-Uhlenbeck process started in Y if it satisfies

∀t ≥ 0, Xt = Y − 1
2

∫ t

0
Xsds+Bt.

It is known that independently of the distribution of Y , as t goes to infinity, Xt converges
in law towards a Gaussian random variable Z. So basically X0 = Y , and X∞ = Z. Besides
an Ornstein-Uhlenbeck process is a Markov process whose generator is A composed with the
differentiation, without going into detail for the computations, thanks to stochastic calculus,

E [f(Z)]− E [f(Y )] = 1
2

∫ ∞
0

E [Af ′(Xt)] dt

= 1
2

∫ ∞
0

e−t/2E [Agt(Y )] dt,

where gt : x → E
[
f ′(e−t/2x+ (1− e−t)1/2Z)

]
. Hence if E[Af(Y )] is small for any smooth f ,

we do get that the distribution of Y is close from a Gaussian one.
It is natural to generalize Stein’s method to the matricial case. Instead of a Gaussian random

variable we will take a GUE random matrix X of size N . By definition, its coefficients are
all independent Gaussian random variable (except to respect the self-adjointness) of variance
N−1/2, real on the diagonal and complex off-diagonal. Then thanks to equation (1.5), with
τN = N−1 Tr and Er,s the matrix whom every coefficient is 0 but the one at line r and column
s which is 1, for any p ≥ 0,

E [τN(Xp)] = 1
N

∑
r,s

E
[
Xr,s Tr(Er,s Xp−1)

]

= 1
N2

∑
r,s

p−1∑
i=1

E
[
Tr(Er,s X i−1Es,rX

p−i−1)
]

= E

p−1∑
i=1

τN(X i−1) τN(Xp−i−1)
 .

Hence a GUE matrix satisfies the system of equations

∀p ≥ 0, E
τN(Xp)−

p−1∑
i=1

τN(X i−1) τN(Xp−i−1)
 = 0. (1.6)

Wigner matrices are defined similarly to GUE matrices but without the assumption that the
coefficients are Gaussian. It turns out that if Y is a centered random variable of variance 1,
with all moments finite, one can show that for any smooth functions f ,

E [Y f(Y )] = E [f ′(Y )] +O(‖f (2)‖).

Thus it turns out that with the same kind of computation, if W is a Wigner matrix then

∀p ≥ 0, E
τN(W p)−

p−1∑
i=1

τN(W i−1) τN(W p−i−1)
 = O(N−1/2). (1.7)

7
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Once again, similarly to the scalar case, one can define a Hermitian Brownian motion (Ht)t≥0
which is defined similarly to GUE random matrices but with Brownian motions instead of Gaus-
sian random variables. Then we can define a Hermitian Ornstein-Uhlenbeck process started in
W by

Xt = W − 1
2

∫ t

0
Xsds+Ht.

Naturally, the distribution of a Hermitian Ornstein-Uhlenbeck process converges towards the
one of a GUE random matrix since every coefficients are scalar Ornstein Uhlenbeck process.
Then finally through stochastics calculus,

E [τN (W p)]− E [τN (Xp)] = p

2

∫ ∞
0

E

τN (Xp
t )−

p−1∑
i=1

τN
(
X i−1
t

)
τN
(
Xp−1−i
t

) dt.
Hence with the help of equations (1.6) and (1.7), we get that the expectation of the moments
of X and W are N−1/2-close. As it turns out, it has been known for a long time (see [3])
that the moments of GUE random matrices converge towards the moments of the semicircle
distribution. Hence this generalizes to Wigner matrices too. This result is nothing new and the
assumption on the moments of the Wigner matrices are far from optimal, however this gives a
good strategy on how to tackle the question of estimating the difference between the trace of
random matrices and free operators.

In free probability, the semicircular variable is a well-known object. As we said previously
in equation (1.3), it is an operator whose trace of its moments matches those of the semicircle
distribution. We also stated that it is known that if P is a polynomial, E

[
1
N

Tr
(
P (XN)

)]
con-

verges towards τ(P (x)). But how can we estimate the difference between those two quantities?
The starting idea of my PhD was precisely to create a free version of Stein’s method to do so.
It is known that the semicircular variable satisfies the following equations,

∀p ≥ 0, τ(xp)−
p−1∑
i=1

τ(xi)τ(xp−1−i) = 0. (1.8)

Besides we know that a GUE random matrix will satisfy (1.6), so by using well-known measure
concentration estimate, we get that

∀p ≥ 0, E [τN(Xp)]−
p−1∑
i=1

E
[
τN(X i−1)

]
E
[
τN(Xp−i−1)

]
= O(N−2). (1.9)

And once again there exists a free equivalent to the usual Brownian motion, the free Brownian
motion, with whom we can build a free Ornstein-Uhlenbeck process started in X. There also
exists a theory of free stochastic calculus and free Markov processes. Besides the generator of
the free Ornstein-Uhlenbeck process matches with equation (1.8). However we are not simply
considering moments of matrices and operators, that is the polynomial case, but as we said
previously, we need to consider smooth functions. This makes the computations way more
difficult since we cannot proceed by induction on the degree of the polynomial. We also need to
get sharp enough asymptotic estimates since we are mostly interested by the non-renormalized
trace. Finally, unlike the simplified case which we exposed in this subsection, we will be working
with several independent matrices.
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1.2 Summary of research results
This is the summary of the research results obtained during my PhD, each subsection

corresponds to one paper. Each of the following chapter in this manuscript will also be dedicated
to one paper. All of them are available on arXiv and the first four were submitted to different
journals. Among them, the first, fourth and fifth papers were written in collaboration with
other researchers, whereas the second and third one are single authored. By chronological
order we have,

1. On the operator norm of noncommutative polynomials in deterministic matrices and
iid GUE matrices, Benoît Collins, Alice Guionnet and Félix Parraud, arXiv:1912.04588,
2019, submitted to Cambridge Journal of Mathematics.

2. On the operator norm of noncommutative polynomials in deterministic matrices and iid
Haar unitary matrices, Félix Parraud, arXiv:2005.13834, 2020, submitted to Probability
Theory and Related Fields.

3. Asymptotic expansion of smooth functions in polynomials in deterministic matrices and
iid GUE matrices, Félix Parraud, arXiv:2011.04146, 2020, submitted to Communications
in Mathematical Physics.

4. Concentration estimates for random subspaces of a tensor product, and application to
Quantum Information Theory, Benoît Collins and Félix Parraud, arXiv:2012.00159, 2020,
submitted to Probability and Mathematical Physics.

5. Convergence for noncommutative rational functions evaluated in random matrices, Benoît
Collins, Tobias Mai, Akihiro Miyagawa, Félix Parraud and Sheng Yin, arXiv:2103.05962,
2021.

1.2.1 On the operator norm of noncommutative polynomials in de-
terministic matrices and iid GUE matrices

As mentioned previously, my goal was to find an alternative proof of Haageruup and
Thorbjørnsen’s result of convergence of the norm of a polynomial in several independent
GUE matrices. In Random Matrix Theory, we say that a sequence of family of matrices
(AN)N≥1 = (aN1 , . . . , aNk )N≥1 converges strongly if for any polynomials in those matrices, both
the trace and the operator norm of this polynomial converge. More precisely if A is a family
of operator in a C∗-algebras with a trace τ such that for any polynomial P ,

1
N

Tr(P (AN)) −→N→∞ τ(P (A)),

∥∥∥P (AN)
∥∥∥ −→N→∞ ‖P (A)‖ ,

then we say that AN converges strongly towards A. As mentioned in the first subsection, the
strong convergence of a family of independent GUE matrices was proved in [6]. In [28] Male
proved the strong convergence of a family of independent GUE matrices and deterministic
matrices under some assumption. Finally in [31], the author also considered tensor matrices of
size N1/4 where N is the size of the GUE matrices. A tensor matrix is defined as follows: if
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Ei,j ∈MN(C) is the matrix whose coefficients are all 0 but the coefficient (i, j) which is 1, Ek,l ∈
MM(C) is similarly defined, then Ei,j⊗Ek,l ∈MNM(C) is defined by Ei,j⊗Ek,l = EkN+i,lN+j. In
[7], we worked with the following random matrices. First we naturally have independent GUE
matrices XN = (XN

1 , . . . , X
N
d ), we also consider deterministic matrices ZN = (ZN

1 , . . . , Z
N
q )

and Y M = (Y M
1 , . . . , Y M

r ) with M an integer which depends on N such that M = o(N1/3). We
then proved the strong convergence of the family (XN

i ⊗ IM , ZN
j ⊗ IM , IN ⊗ Y M

l )i,j,l assuming
that the family ZN and Y M converges strongly themselves. Compared to [6] and [28], our result
gives better quantitative bounds but also allows to consider tensors in higher dimension.

Before stating theorems, let us explain the heuristic behind the proof. To minimize nota-
tions, we focus on the case where we do not have any matrices Y M or ZN , but part of why this
proof is interesting is that the general case is not much more difficult or different. Thanks to
classical concentration of measure estimates for Gaussian random variables, one only need to
show the convergence of the expectation of the norm. Then the first and most important steps
was to get a quantitative estimate of the difference between

E
[ 1
N

Tr
(
f(P (XN))

)]
(1.10)

and its deterministic limit for general sufficiently smooth function f . Indeed if κ(P ) is the limit
of
∥∥∥P (XN)

∥∥∥, then let fε be a non-negative function equal to 1 on the interval [κ(P ) + ε,∞), 0
on (−∞, κ(P )], then for any α > 0,

E
[∥∥∥P (XN)

∥∥∥]− κ(P ) ≤ α +
∫ ∞
α

P
(∥∥∥P (XN)

∥∥∥ ≥ κ(P ) + ε
)
dε (1.11)

≤ α +
∫ ∞
α

P
(
Tr
(
fε(P (XN))

)
≥ 1

)
dε

≤ α +
∫ ∞
α

E
[
Tr
(
fε(P (XN))

)]
dε.

Hence getting an estimate on (1.10) lets us prove that the right-hand side of (1.11) is converging
towards 0, which means that lim

N→∞
E
[∥∥∥P (XN)

∥∥∥] ≤ κ(P ). Since the other inequality is an easy
consequence of Voiculescu’s result, the conclusion follows. This leads us to the first important
theorem of the paper, the estimation of the expectation of the trace.
Theorem 1.2.1. Let the following objects be given,

• XN = (XN
1 , . . . , X

N
d ) independent GUE matrices in MN(C),

• x = (x1, . . . , xd) a system of free semicircular variables,

• ZNM = (ZNM
1 , . . . , ZNM

q ) deterministic matrices in MN(C)⊗MM(C),

• P a self-adjoint polynomial,

• f ∈ C6(R).
Then there exists a constant lP which only depends on P such that for any N,M ,

∣∣∣∣∣∣E
[
τNM

(
f
(
P
(
XN ⊗ IM , ZNM , ZNM ∗

)) )]
− τNM

(
f
(
P
(
x⊗ IM , ZNM , ZNM ∗

)) )∣∣∣∣∣∣
≤ M2

N2 ‖f‖C6

(
1 +

∥∥∥ZNM
∥∥∥)lP ,
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where
∥∥∥ZNM

∥∥∥ = sup
1≤i≤q

∥∥∥ZNM
i

∥∥∥ and ‖f‖C6 is the sum of the supremum on R of the first six
derivatives.

To better understand this theorem, it is important to realize that the variables x ⊗ IM and
ZNM live in the same space. Namely the tensor of MM(C) with the free product of MN(C) and
the C∗-algebra in which our semicircular variables x are. Besides τNM is the trace on this space.
In particular, when restricted to MN(C) ⊗ MM(C), as it is the case under the expectation,
this trace is simply (NM)−1 TrMN (C)⊗TrMM (C). It is worth noting that although Haagerup and
Thorbjørnsen could probably have retrieved a similar result through the Stieljes transform and
the linearization trick, this would yield an estimate with a worse upper bound with respect to
M and f , which then has an impact on the corollaries that one can deduce from Theorem 1.2.1.
Indeed, from 1.2.1 we get an estimate on the Stieljes transform of any polynomials and another
one on the bounded Lipschitz metric between the empirical measure of a random polynomial
and the spectral measure towards which it converges. It also gives us a concentration estimate
of the norm. We refer to Corollary 1.3 and 1.4, as well as Theorem 1.5 from [7] for a full
statement of those results. The main corollary of Theorem 1.2.1 remains the following result
of strong convergence.

Theorem 1.2.2. Let the following objects be given:

• XN = (XN
1 , . . . , X

N
d ) independent GUE matrices of size N ,

• x = (x1, . . . , xd) a system of free semicircular variables,

• Y M = (Y M
1 , . . . , Y M

p ) random matrices of size M a function of N ,

• ZN = (ZN
1 , . . . , Z

N
q ) random matrices of size N .

Assuming that Y M and ZN almost surely converges strongly in distribution towards y and z
families of noncommutative random variables free from x, then the following holds true:

• If XN and ZN are independent, almost surely, (XN , ZN) converges strongly in distribution
towards (x, z).

• If XN and Y M are independent and M = o(N1/3), almost surely, (XN ⊗ IM , IN ⊗ Y M)
converges strongly in distribution towards (x⊗ 1, 1⊗ y).

The M2 that appears in Theorem 1.2.1 is especially interesting since if we assume that the
matrices in the family Y M commutes it disappears. Not being able to get rid of this term
has for consequences in Theorem 1.2.2 that we need to assume that MN = o(N1/3). Up to
this day we have not found a way to improve this bound in all generality, however once again
if we assume that the matrices in the family Y M commutes, then one could even prove that
strong convergence still holds ifM is exponentially large relatively to N thanks to computations
similar to those of [10]. The case where Y M are independent GUE matrices and M = N is
of special interest since Ben Hayes proved in [32] that it is equivalent to the Peterson-Thom
conjecture. While our result does not allow us to answer this question yet, we have been having
interesting result by changing our approach. Namely we have been getting partial results by
dropping the analytical approach, that is studying the trace of a smooth function evaluated in
a polynomial P (XN ⊗ IM , IN ⊗ Y M) , and instead using the moment method, that is studying
the trace of P (XN ⊗ IM , IN ⊗ Y M)k for k � log(N). However this is still ongoing work.

11



Chapter 1. Introduction

1.2.2 On the operator norm of noncommutative polynomials in de-
terministic matrices and iid Haar unitary matrices

In [8], we proved similar results but for Haar unitary matrices instead of GUE matrices.
While those two models of random matrices are quite different, which means that the compu-
tations have not much in common, the heuristic of the proofs remains the same. To understand
the heuristic on how to adapt this method to the unitary case, one can simply make the follow-
ing remark. In the self-adjoint setting, we interpolate GUE matrices and semicircular variables
by a free Ornstein Uhlenbeck process. To do so, in the proof we also make use of the Hermitian
Ornstein Uhlenbeck process. One of the reason we work with those processes is that those
are Markov processes whose invariant law are respectively the semicircular variable for the free
Ornstein Uhlenbeck process, and the law of a GUE random matrix for the Hermitian one. In
the unitary case, it turns out that the Markov process whose invariant law is the law of a Haar
unitary matrix is the unitary Brownian motion, and the free Markov process whose invariant
law is a free Haar unitary is unsurprisingly the free unitary Brownian motion. From there on,
the overarching structure of the proof remains the same although many technical lemmas and
most of the actual computations differ greatly. This yields a theorem very similar to 1.2.1.

Theorem 1.2.3. We define

• u = (u1, . . . , up, u
∗
1, . . . , u

∗
p) a family of p free Haar unitaries and their adjoints,

• UN = (UN
1 , . . . , U

N
p , (UN

1 )∗, . . . , (UN
p )∗) random i.i.d. Haar unitary matrices of size N

and their adjoints.

• ZNM = (ZNM
1 , . . . , ZNM

q ) deterministic matrices and their adjoints,

• P a self-adjoint polynomial,

• f : R→ R a smooth enough function.

Then there exists a constant lP which only depends on P such that for any N,M ,

∣∣∣∣∣∣E
[
τMN

(
f
(
P
(
UN ⊗ IM , ZNM

)) )]
− τNM

(
f
(
P
(
u⊗ IM , ZNM

)) )∣∣∣∣∣∣
≤ M2

N2

(
1 +

∥∥∥ZNM
∥∥∥)lP × ‖f‖C7 .

where
∥∥∥ZNM

∥∥∥ = sup
1≤i≤q

∥∥∥ZNM
i

∥∥∥ and ‖f‖C7 is the sum of the supremum on R of the first seven
derivatives.

Once again, we have similar limitations and deduce similar corollaries. The term M2 dis-
appears when we assume that the family Y M does commute but we do not have a lead on how
to improve this result. We also get an estimate on the Stieljes transform of any polynomials
and another one on the bounded Lipschitz metric between the empirical measure of a random
polynomial and the spectral measure towards which it converges. We refer to Corollary 1.1 and
1.2 from [8] for a full statement of those results. We do also get a result of strong convergence.
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1.2. Summary of research results

Theorem 1.2.4. Let the following objects be given:

• UN = (UN
1 , . . . , U

N
d ) independent unitary Haar matrices of size N ,

• u = (u1, . . . , ud) a system of free Haar unitaries,

• Y M = (Y M
1 , . . . , Y M

p ) random matrices of size M , a function of N ,

• ZN = (ZN
1 , . . . , Z

N
q ) random matrices of size N .

Assuming that Y M and ZN almost surely converges strongly in distribution towards y and z
families of noncommutative random variables free from u, then the following holds true:

• If UN and ZN are independent, almost surely, (UN , ZN) converges strongly in distribution
towards (u, z).

• If UN and Y M are independent and M = o(N1/3), almost surely, (UN ⊗ IM , IN ⊗ Y M)
converges strongly in distribution towards (u⊗ 1, 1⊗ y).

The first point of the previous theorem is the same as Theorem 1.4 from [9], the second
one however is entirely new. That being said, the most interesting part of this paper remains
Theorem 1.2.3 and its corollaries, indeed the strategy in [9] was to view a Haar unitary matrix
as a random function evaluated in a GUE random matrix, then to prove that almost surely
this random function converges towards a deterministic function f . Then naturally if x is a
semicircular, f(x) is a free Haar unitary, and to conclude one simply need to apply the main
result of Camille Male in [28], which is an improvement of the result of strong convergence of
Haagerup and Thorbjørnsen to include deterministic matrices. The main issue of this method
is that one has to approximate the random function by a random polynomial obtained by
applying Weierstrass theorem almost surely. As a consequence, getting any kind of explicit
estimate on the speed of convergence out of this proof seems impossible. On the contrary, our
method does not have this drawback.

1.2.3 Asymptotic expansion of smooth functions in polynomials in
deterministic matrices and iid GUE matrices

Topological expansion in Random Matrix Theory is a topic which has received a lot of
attention. It creates bridges between different worlds, including topology, statistical mechanics,
and quantum field theory. In mathematics, a breakthrough was made in 1986 by Harer and
Zagier in [33] who used the large dimension expansion of the moments of Gaussian matrices to
compute the Euler characteristic of the moduli space of curves. A good introduction to this
topic is given in the survey [34] by Zvonkin. In physics, the seminal works of t’Hooft [35] and
Brézin, Parisi, Itzykson and Zuber [36] related matrix models with the enumeration of maps of
any genus, hence providing a purely analytical tool to solve these hard combinatorial problems.
Considering matrices in interaction via a potential, the so-called matrix models, indeed allows to
consider the enumeration of maps with several vertices, including a possible coloring of the edges
when the matrix model contains several matrices. This relation allowed to associate matrix
models to statistical models on random graphs [37, 38, 39, 40, 41], as well as in [42] and [43] for
the unitary case. This was also extended to the so-called β-ensembles in [44, 45, 46, 47, 48, 49].
Among other objects, these works study correlation functions and the so-called free energy and
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Chapter 1. Introduction

show that they expand as power series in the inverse of the dimension, and the coefficients of
these expansions enumerate maps sorted by their genus. To compute asymptotic expansions,
often referred to in the literature as topological expansions, one of the most successful methods
is the loop equations method, see [50] and [51]. Depending on the model of random matrix,
those are Tutte’s equations, Schwinger-Dyson equations, Ward identities, Virasoro constraints,
W-algebra or simply integration by part. This method was refined and used repeatedly in
physics, see for example the work of Eynard and his collaborators, [52, 53, 54, 55]. At first
those equations were only solved for the first few orders, however in 2004, in [53] and later [56]
and [57], this method was refined to push the expansion to any orders recursively in [58].

While the paper [10], whom this subsection focuses on, does fit in the continuity of the pre-
viously mentioned papers. It is also very much in the continuity of the work of Dan Voiculescu,
Haagerup and Thorbjørnsen. Indeed in [3], Dan Voiculescu proved that given a smooth function
f and a self-adjoint polynomial P , then

E
[ 1
N

(
P (XN)

)]
= τ(P (x)) + o(1).

Then through the papers [6, 28, 7], it was proved that actually the last term was of order
N−2, the question that then arises is what happens at the next order? Among previous works,
there is notably the paper [59] from Haagerup and Thorbjørnsen which does precisely that by
computing a finite Taylor expansion for the previous quantity but only in the case where the
family XN consists of a single random GUE matrix. To do so, they use repeatedly the explicit
formula (1.1) of the law of the probability distribution of the eigenvalues of a GUE matrix.
Since there are no equivalent of such a formula for polynomials in several independent GUE
matrices, it was not possible to adapt this proof. This is where free probability comes into
play, the idea was to reuse the strategy from [7] but instead of using upper bound we would
do exact computations. At first we kept the tensor matrices and got an explicit expression for
the term of order N−2M2. However we realized that if we dropped the tensor matrices (i.e.
M = 1), then we could apply the very same strategy to the term of order N−2, thus getting a
deterministic term of order N−2 and a term of order N−4. And thus by induction we ended up
proving a finite order Taylor expansion around N .

Theorem 1.2.5. Let the following objects be given,

• XN = (XN
1 , . . . , X

N
d ) independent GUE matrices in MN(C),

• ZN = (ZN
1 , . . . , Z

N
q ) deterministic matrices in MN(C) whose norm is uniformly bounded

over N,

• P a self-adjoint polynomial,

• f ∈ C4k+6(R).

Then there exist deterministic constants (αPi (f, ZN))i∈N such that,

E
[ 1
N

Tr
(
f(P (XN , ZN))

)]
=

∑
0≤i≤k

1
N2iα

P
i (f, ZN) +O(N−2(k+1)).

Besides, if the support of f and the spectrum of P (x, ZN) are disjoint, then for any i, αPi (f, ZN) =
0.
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1.2. Summary of research results

In order to make theorem 1.2.5 easier to read, we give an abridged version of the theorem we
proved, see Theorem 1.1 from [10] for the full statement. In particular it is worth noting that
one has an estimate of the term O(N−2(k+1)) in function of every parameters, such as P ,f or k.
Which means that one can assume that those parameters have a dependency in N . This has
for consequence that if the support of f is disjoint from the spectrum of P (x, ZN), then since
the coefficients of the topological expansion are all 0, E

[
1
N

Tr
(
f(P (XN , ZN))

)]
is actually

exponentially small with respect to N . This also gives rise to several interesting corollaries,
the first shows that almost surely the spectrum of P (XN , ZN) is very close from the one of its
free limit. If E and F are subset of R, we say that E ⊂ F + ε if every element of E is at most
ε-close from an element of F .

Corollary 1.2.6. Let XN be independent GUE matrices of size N , ZN a family of deterministic
matrices whose norm is uniformly bounded over N , x be a free semicircular system and P a
self-adjoint polynomial. Given α < 1/2, almost surely for N large enough,

σ
(
P (XN , ZN)

)
⊂ σ

(
P (x, ZN)

)
+N−α,

where σ(X) is the spectrum of X, and x is free from MN(C).

One can show that a family of random matrices converges strongly if and only if the spectrum
of any self-adjoint polynomial converges for the Hausdorff distance towards its free limit, see
Proposition 2.2 from [7] for example. In a sense, Corollary 1.2.6 is a quantitative estimate of
the speed of convergence.

We also derived another corollary from Theorem 1.2.5, it is a concentration inequality of
the norm of a polynomial around the norm of its free limit. The aim was to try to prove a
version of Ledoux’s bound (see Lemma 3.3.2 from [13]) for general polynomial in i.i.d GUE
random matrices. Ledoux’s bound main interest is in being the first hint that when properly
centered and rescaled beN2/3, the tail of distribution of the largest eigenvalue converges towards
the Tracy-Widom distribution. However we could not prove a result as strong for general
polynomials and in the following we only rescale by N1/2 ln−4 N . While we are still trying to
improve this result, it is not entirely sure that it is possible to do so, since studying the norm
isn’t exactly the same as studying the largest eigenvalue, even for self-adjoint polynomials.

Corollary 1.2.7. Let XN be a tuple of independent GUE matrices of size N , AN a family
of deterministic matrices whose norm is uniformly bounded over N , x be a free semicircular
system and P a polynomial. Then there exists a constant C such that for N large enough,

P
( √

N

ln4 N

(∥∥∥P (XN , AN)
∥∥∥− ∥∥∥P (x,AN)

∥∥∥) ≥ C (δ + 1)
)
≤ e−N + e−δ

2 ln8 N .

One of the unexpected corollary of Theorem 1.2.5, is that it can very well be applied to
polynomials. However the polynomial has already been extensively studied through other
methods. Indeed in 1986, Harer and Zagier proved in [33] an asymptotic expansion for the
trace of moments of a GUE matrix. There is also a generalization to the trace of the mixed
moments of independent GUE matrices which can be found in [60], chapter 22. The coefficients
of this expansion are defined with the help of map enumeration. More precisely we say that a
graph on a surface is a map if it is connected and its faces are homeomorphic to discs. It is of
genus g if it can be embedded in a surface of genus g but not g− 1. For an edge-colored graph
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Chapter 1. Introduction

on an orientated surface we say that a vertex is of type q = Xi1 . . . Xip if it has degree p and
when we look at the half-edges going out of it, starting from a distinguished one and going in
the clockwise order the first half-edge is of color i1, the second i2, and so on. IfMg(Xi1 . . . Xip)
is the number of such maps of genus g with a single vertex, then given XN

i independent GUE
matrices

E
[ 1
N

Tr
(
XN
i1 . . . X

N
ip

)]
=
∑
g∈N

1
N2gMg(Xi1 . . . Xip). (1.12)

And thus, thanks to my own expansion methods, we were able to get an alternative formula
forMg(Xi1 . . . Xip) defined through Free Probability. We refer to remark 3.8 of [10] for more
details.

Finally, it is worth noting that even though it could not be done in time for this manuscript,
one can prove a similar result for unitary Haar matrices instead of GUE matrices.

1.2.4 Concentration estimates for random subspaces of a tensor
product, and application to Quantum Information Theory

One of the first problems that we worked on at the beginning of my PhD was the ques-
tion of the additivity of the so-called Minimum Output Entropy (MOE). To summarize the
problem, the main goal was to determine whether a certain map defined on quantum channels
was additive or not. This problem was solved in [61] with important preliminary work from
[62]. However all proofs available so far are not constructive in the sense that constructions
rely on the probabilistic method. After the initial construction of [61], the probabilistic tools
involved in the proof have been found to have deep relation with random matrix theory in
many respects, including large deviation principle [63], Free probability [64], convex geometry
[65] and Operator Algebra [66]. The last two probably give the most conceptual proofs, and
in particular convex geometry gives explicit numbers. Free probability gives the best numbers
for the output dimension [64] but was unable to give estimates for the input dimension so far.
Thus our aim was to find explicit and as optimal as possible parameters for both the input and
output dimension.

For X a matrix, its von Neumann entropy is defined by functional calculus by H(X) =
−Tr(X lnX), where 0 ln 0 is assumed by continuity to be zero. In other words, H(X) =
−∑λ∈σ(X) λ ln λ where the sum is counted with multiplicity. A quantum channel Φ : Md(C)→
Mk(C) is a completely positive trace preserving linear map. The Minimum Output Entropy of
Φ is defined by

Hmin(Φ) = min
X∈Dd

H(Φ(X)), (1.13)

where Dd is the set of non-negative self-adjoint matrices of non-renormalized trace 1 in Md(C).
During the last decade, a crucial problem in Quantum Information Theory was to determine
whether one can find two quantum channels Φ1 and Φ2 such that

Hmin(Φ1 ⊗ Φ2) < Hmin(Φ1) +Hmin(Φ2). (1.14)

Indeed it is easy to prove that Hmin(Φ1 ⊗ Φ2) ≤ Hmin(Φ1) + Hmin(Φ2). But if this inequality
had turned out to be an equality, then Hmin would have been said to be additive for the tensor
operation. This would have implied the additivity of the so-called Holevo capacity, which is in
turn related to another very important quantity in Quantum Information Theory, the classical
capacity of a quantum channel. It describes the transmission rate of classical information which
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1.2. Summary of research results

can be transmitted through repeated use of the quantum channel. If φ is a quantum channel
and χ(φ) is its Holevo capacity, then C(φ) the classical capacity of φ is defined by

C(φ) = lim
r→∞

1
r
χ(φ⊗r).

Thus, should the Holevo capacity be additive, then we would have C(φ) = χ(φ). This is
especially strong since in general computing the Holevo capacity is much easier that computing
the classical capacity. However, as said previously, in all generality it was proved that the
MOE is not additive, but none of the proof provided until now gave a constructive example
of quantum channels. With Φi : Mdi(C) → Mki(C) for i = 1, 2, the aim of our paper was
to remedy to this issue by giving explicit parameter di, ki for whom one could find quantum
channels Φ1 and Φ2 such that (1.14) is true.

The strategy that we used relied on [67], a previous work of Belinschi, Collins and Nechita
in which they obtained a law of large number on the output of a random quantum channel,
but since the speed of convergence was not explicit it could not be used directly. Indeed the
method they used relied heavily on the strong convergence of a family of Haar unitary and
deterministic matrices, proved in [9], but as we said in subsection 1.2.2, those do not provides
any quantitative estimates. However thanks to my paper [8], we now have such estimates.
Before giving the result that we got, let me explain the general strategy.

Let d, k, n ∈ N, let U be distributed according to the Haar measure on the unitary group
of Mkn(C), let Pn be the canonical projection from Cd to Ckn, that is the matrix with kn lines
and d columns with 1 on the diagonal and 0 elsewhere. With Trn the trace on Mn(C), we define
the following random linear map,

Φn : X ∈Md(C) 7→ idk ⊗ Trn(UPnXP ∗nU∗) ∈Mk(C). (1.15)

This map is trace preserving, linear and completely positive and as such, it is a quantum
channel. Let t ∈ (0, 1). We fix d an integer sequence (depending on n) such that d ∼ tkn, and
define

Kn,k,t = Φn(Dd). (1.16)
We also define the conjugate channel Φn similarly to Φn but with U instead of U . Then we
have

Hmin(Φn) = Hmin(Φn) = min
X∈Kn,k,t

H(X).

In [67], they proved that almost surely, Kn,k,t converges towards a deterministic set Kk,t. Thus
Hmin(Φn) +Hmin(Φn) converges towards ct = 2 minX∈Kk,t H(X). Then in [64] they proved that
Hmin(Φn⊗Φn) has a deterministic upper bound which is strictly smaller than ct. Thus almost
surely, for n large enough

Hmin(Φn ⊗ Φn) < Hmin(Φn) +Hmin(Φn).

To get explicit parameters, we get measure concentration estimate on Kn,k,t around Kk,t for the
Hausdorff distance, which in turn gives us measure concentration estimate on Hmin(Φn) and
let us conclude. To get those concentration estimates, we use first use a geometric description
of Kn,k,t, indeed one can show that

Kn,k,t = {X ∈ Dk | ∀A ∈ Dk,Trk(XA) ≤ ‖P ∗nU∗A⊗ InUPn‖}.

Then, to summarize, we use Theorem 1.2.3 with measure concentration properties of unitary
Haar matrices to conclude. Eventually we get the following theorem.
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Theorem 1.2.8. If we endow Mk(C) with the norm M 7→
√

Trk(M∗M), and that we assume
d ≤ tkn, then for n ≥ 34 × 229 × ln2(kn)× k3ε−4,

P (Kn,k,t 6⊂ Kk,t + ε) ≤ ek
2(ln(3k2ε−1))−n

k
× ε2

576 .

Which in turn gives us after some computations the following explicit parameters.
Theorem 1.2.9. For the following values (k, t, n) = (184, 1/10, 1052), (185, 1/10, 2 × 1051),
(200, 1/10, 1047), (500, 1/10, 4× 1045), (500, 1/2, 6× 1044) violation of additivity is achieved with
probability at least 1− exp(−1020).

1.2.5 Convergence for noncommutative rational functions evaluated
in random matrices

This paper is a bit different from the first four since it does not rely on this idea of in-
terpolating random matrices and free operator through free stochastic calculus. However it
is still very much in the continuity of the work of Dan Voiculescu. Indeed as mentioned in
the introduction, he proved that almost surely the trace of the moments of independent GUE
matrices converges towards the trace of the moments of free semicircular variables. And if we
define a self-adjoint polynomial P as a polynomial such that for any self-adjoint matrices Xi,
P (X1, . . . , Xd) is self-adjoint, then Voiculescu’s result is equivalent to the convergence in law of
the empirical measure of any self-adjoint polynomial P evaluated in GUE matrices towards the
spectral measure of the same polynomial evaluated in free semicirculars. In this paper we prove
a similar result for more general functions. Indeed one can define the set of noncommutative
polynomials by induction as the functions we can build with C, X1, . . . , Xd and the operation +
and ×. If we add the operation (.)−1, then this is the set of noncommutative rational expression.

In their recent works [68] and [69], Mai, Speicher and Yin proved that it made sense to eval-
uate rational expressions in different free operators by viewing them as unbounded operators.
Thus our aim is to show the convergence of the spectrum of self-adjoint rational expressions
evaluated in independent random matrices towards the spectrum of the same rational expres-
sions evaluated in free operators. Surprisingly one of the most technical and difficult part of
the proof was simply to show that if we evaluate a rational expression in independent ran-
dom matrices, it is indeed almost surely well-defined. Eventually though we did manage to
prove that we could do so for some type of random matrices, such as Haar unitary matrices,
or self-adjoint random matrix with a density with respect to the Lebesgue measure. Then we
proved that as long as we could evaluate our rational expression r in both the matrices XN

and the limit operators x, the convergence in law of the empirical measure of r(XN) towards
the spectral measure of r(x) was simply a corollary of the convergence in distribution of the
family XN towards x.
Theorem 1.2.10. Let XN = (XN

1 , . . . , X
N
d1) be a d1-tuple of self-adjoint random matrices and

let UN = (UN
1 , . . . , U

N
d2 ) be a d2-tuple of unitary random matrices. Further, let R be a non-

degenerate square matrix-valued noncommutative rational expression in d = d1 + d2 variables
which is self-adjoint of type (d1, d2); see Definition 6.2.9. Suppose that the following conditions
are satisfied:

1. (XN , UN) converges almost surely in ∗-distribution towards a d-tuple of noncommuta-
tive random variables (x, u) in some tracial W ∗-probability space (M, τ) satisfying the
regularity condition ∆(x, u) = d; see Sections 6.2.4 and 6.2.5.
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2. For N large enough R(XN , UN) is well-defined almost surely.

Then R(x, u) is well-defined, and the empirical measure of R(XN , UN) converges almost surely
in law towards the analytic distribution of R(x, u).

The assumption 2 is satisfied for random matrix models (XN , UN) whose law on MN(C)d1
sa×

UN(C)d2 is absolutely continuous with respect to the product measure of the Lebesgue measure
on MN(C)sa and the Haar measure on UN(C).

In particular, the assumptions 1 and 2 are satisfied for random matrix models satisfying the
following conditions:

• (XN , UN) are almost surely asymptotically free.

• The law of each XN
j has a density with respect to the Lebesgue measure on MN(C)sa and

its eigenvalue distribution almost surely converges weakly to some compactly supported
probability measure on R that is non-atomic.

• UN are i.i.d. Haar distributed.

Let us provide an outline of the proof. It is known that given a self-adjoint rational
expression r, we can find a self-adjoint linearization ρ = (Q,w). That is a matrix Q ∈
Mk(〈X1, . . . , Xd〉) and a vector w ∈ Ck such that r(X) = w∗Q(X)−1w. Thanks to the Portman-
teau theorem, we only need to show the convergence of the cumulative distribution function to
conclude. Then we prove that the cumulative distribution function of the spectral measure of
an operator (not necessarily bounded) is in a way continuous with respect to the rank. This
implies that we can ignore the singularity in 0 of Q(x, u, u∗)−1 as long as the spectral measure
of Q(x, u, u∗) has no atom in 0. Thus it turns out that the cumulative distribution function
of w∗Q(XN , UN , UN∗)−1w is close from the one of w∗fε(Q(XN , UN , UN∗))w where fε is a con-
tinuous function which is equal to t 7→ t−1 outside of a neighborhood of 0 of size ε. Then we
can use the convergence in ∗-distribution of the family (XN , UN) to show that the cumulative
distribution function of w∗fε(Q(XN , UN , UN∗))w converges towards the correct limit when we
let N go to infinity and ε go to 0.





Chapter 2
On the operator norm of noncommutative
polynomials in deterministic matrices and iid
GUE matrices

Let XN = (XN
1 , . . . , X

N
d ) be a d-tuple of N × N independent GUE random matrices and

ZNM be any family of deterministic matrices in MN(C) ⊗ MM(C). Let P be a self-adjoint
noncommutative polynomial. A seminal work of Voiculescu shows that the empirical measure
of the eigenvalues of P (XN) converges towards a deterministic measure defined thanks to free
probability theory. Let now f be a smooth function, the main technical result of this paper is
a precise bound of the difference between the expectation of

1
MN

TrMN (C)⊗TrMM (C)
(
f(P (XN ⊗ IM , ZNM))

)
,

and its limit when N goes to infinity. If f is six times differentiable, we show that it is
bounded by M2 ‖f‖C6 N−2. As a corollary we obtain a new proof and slightly improve a result
of Haagerup and Thorbjørnsen, later developed by Male, which gives sufficient conditions for
the operator norm of a polynomial evaluated in (XN , ZNM , ZNM ∗) to converge almost surely
towards its free limit.

This chapter is adapted from [7], which is a joint work with Benoît Collins and Alice Guion-
net.
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Chapter 2. On the operator norm of noncommutative polynomials in deterministic
matrices and iid GUE matrices

2.1 Introduction
Given several deterministic matrices whose spectra are known, the spectra of a noncom-

mutative polynomial evaluated in these matrices is not well defined since it depends as well
on the eigenvectors of these matrices. If one takes these vectors at random, it is possible to
get some surprisingly good results, in particular when the dimension of these matrices goes to
infinity. Indeed, the limit can then be computed thanks to free probability. This theory was
introduced by Voiculescu in the early nineties as a noncommutative probability theory equipped
with a notion of freeness analogous to independence in classical probability theory. Voiculescu
showed that this theory was closely related with Random Matrix Theory in a seminal paper
[3]. He considered independent matrices taken from the Gaussian Unitary Ensemble (GUE),
which are random matrix is an N × N self-adjoint random matrix whose distribution is pro-
portional to the measure exp (−N/2 TrN(A2)) dA, where dA denotes the Lebesgue measure on
the set of N ×N Hermitian matrices. We refer to Definition 2.2.8 for a more precise statement.
Voiculescu proved that given XN

1 , . . . , X
N
d independent GUE matrices, the renormalized trace

of a polynomial P evaluated in these matrices converges towards a deterministic limit α(P ).
Specifically, the following holds true almost surely:

lim
N→∞

1
N

TrN
(
P (XN

1 , . . . , X
N
d )
)

= α(P ). (2.1)

Voiculescu computed the limit α(P ) with the help of free probability. If AN is a self-adjoint
matrix of size N , then one can define the empirical measure of its (real) eigenvalues by

µAN = 1
N

N∑
i=1

δλi ,

where δλ is the Dirac mass in λ and λ1, . . . , λN are the eingenvalue of AN . In particular, if P is a
self-adjoint polynomial, that is such that for any self adjoint matrices A1, . . . , Ad, P (A1, . . . , Ad)
is a self-adjoint matrix, then one can define the random measure µP (XN

1 ,...,XN
d

). In this case,
Voiculescu’s result (2.1) implies that there exists a measure µP with compact support such that
almost surely µP (XN

1 ,...,XN
d

) converges weakly towards µP : it is given by µP (xk) = α(P k) for all
integer numbers k.

However, the convergence of the empirical measure of the eigenvalues of a matrix does not
say anything about the local properties of its spectrum, in particular about the convergence of
the norm of this matrix, or the local fluctuations of its spectrum. When dealing with a single
matrix, incredibly precise results are known. For exemple it is well-known that the largest
eigenvalue of a GUE random matrix converges almost surely towards 2. More precisely, if XN

is a GUE random matrix of size N , then almost surely

lim
N→∞

‖XN‖ = 2.

The proof, for the more general case of a Wigner matrix with entries with finite moments, was
given in [15]. This result was later obtained under the optimal assumption that their fourth
moment is finite [16]. Concerning the GUE, much more precise results were obtained by Tracy
and Widom in the early nineties in [17]. The main result of their paper is the existence of
a continuous decreasing function F2 from R to [0, 1] such that if λ1(XN) denotes the largest
eigenvalue of XN ,
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2.1. Introduction

lim
N→∞

P
(
N2/3(λ1(XN)− 2) ≥ s

)
= F2(s).

This was recently generalized to Wigner matrices [18, 19, 20, 21] up to optimal hypotheses.
One can as well study the localization of the eigenvalues in the bulk as well as their fluctuations
[22, 19].

On the other hand, there are much less results available when one deals with a polynomial
in several random matrices. In fact, up to today, the only local fluctuations results concern
perturbative polynomials [23] or local laws [24] under some assumptions which are shown to
hold for homogeneous polynomials of degree two. However, a beautiful breakthrough was made
in 2005 by Haagerup and Thorbjørnsen [6]: they proved the almost sure convergence of the
norm of a polynomial evaluated in independent GUE matrices. For P a self-adjoint polynomial,
they proved that almost surely, for N large enough,

σ
(
P (XN

1 , . . . , X
N
d )
)
⊂ SuppµP + (−ε, ε), (2.2)

where σ(H) is the spectrum of H and SuppµP the support of the measure µP . This is equiv-
alent to saying that for any polynomial P ,

∥∥∥P (XN
1 , . . . , X

N
d )
∥∥∥ converges almost surely towards

sup {|x| |x ∈ SuppµP} (see proposition 2.2.2). The result (2.2) was a major progress in free
probability. It was was refined in multiple ways. In [25], Schultz used the method of [6] to
prove the same result with Gaussian orthogonal or symplectic matrices instead of Gaussian
unitary matrices. In [26], Capitaine and Donati-Martin proved it for Wigner matrices under
some technical hypothesis on the law of the entries. This result itself was then extended by
Anderson in [27] to remove most of the technical assumptions. In [28], Male made a concep-
tual improvement to the result of Haagerup and Thorbjørnsen, by allowing to work both with
GUE and deterministic matrices. Finally, Belinschi and Capitaine proved in [29] that one could
even work with Wigner and determinisic matrices, while keeping the same assumptions on the
Wigner matrices as Anderson. It is also worth noting that Collins and Male proved in [9] the
same result with unitary Haar matrices instead of GUE matrices by using Male’s former paper.

With the exception of [9], all of these results are essentially based on the method introduced
by Haagerup and Thorbjørnsen. Their first tool is called the linearization trick: it allows to
relate the spectrum of a polynomial of degree d with coefficients in C by a polynomial of degree
1 with coefficients in Mk(d)(C). The second idea to understand the spectrum of the spectral
measure of this larger matrix is to study its Stieltjes transform close to the real axis by using
the Dyson-Schwinger equations. An issue of this method is that it does not give easily good
quantitative estimates. One aim of this paper is to remedy to this problem. We develop a
new method that allows us to give a new proof of the main theorem of Male in [28], and thus
a new proof of the result of Haagerup and Thorbjørnsen. Our approach requires neither the
linearization trick, nor the study of the Stieljes transform and attacks the problem directly.
In this sense the proof is more direct and less algebraic. We will apply it to a generalization
of GUE matrices by tackling the case of GUE random matrices tensorized with deterministic
matrices.

A usual strategy to study outliers, that are the eigenvalues going away from the spectrum,
is to study the non-renormalized trace of smooth non-polynomial functions evaluated in inde-
pendent GUE matrices i.e. if P is self-adjoint:

TrN
(
f(P (XN

1 , . . . , X
N
d ))

)
.
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This strategy was also used by Haagerup, Thorbjørnsen and Male. Indeed it is easy to see that
if f is a function which takes value 0 on (−∞, C − ε], 1 on [C,∞) and in [0, 1] elsewhere, then

P
(
λ1(P (XN

1 , . . . , X
N
d )) ≥ C

)
≤ P

(
TrN

(
f(P (XN

1 , . . . , X
N
d ))

)
≥ 1

)
Hence, if we can prove that TrN

(
f(P (XN

1 , . . . , X
N
d ))

)
converges towards 0 in probability, this

would already yield expected results. The case where f is a polynomial function has already
been studied a long time ago, starting with the pioneering works [70, 71], and later formalized
by the concept of second order freeness [72]. However here we have to deal with a function f
which is at best C∞. This makes things considerably more difficult and forces us to adopt a
completely different approach. The main result is the following Theorem. For the notations,
we refer to Section 2.2 – for now, let us specify that 1

N
TrN denotes the usual renormalized trace

on N ×N matrices whereas τ denotes its free limit.

Theorem 2.1.1. Let the following objects be given,

• XN = (XN
1 , . . . , X

N
d ) independent GUE matrices in MN(C),

• x = (x1, . . . , xd) a system of free semicircular variables,

• ZNM = (ZNM
1 , . . . , ZNM

q ) deterministic matrices in MN(C)⊗MM(C),

• P ∈ C〈X1, . . . , Xd+2q〉sa a self-adjoint polynomial,

• f ∈ C6(R).

Then there exists a polynomial LP ∈ R+[X] which only depends on P such that with
∥∥∥ZNM

∥∥∥ =
sup

1≤i≤q

∥∥∥ZNM
i

∥∥∥, for any N,M ,

∣∣∣∣∣∣E
[ 1
MN

TrMN

(
f
(
P
(
XN ⊗ IM , ZNM , ZNM ∗

)) )]
− τN ⊗ τM

(
f
(
P
(
x⊗ IM , ZNM , ZNM ∗

)) )∣∣∣∣∣∣
≤ M2

N2 ‖f‖C6 LP
(∥∥∥ZNM

∥∥∥) ,
where ‖f‖C6 is the sum of the supremum on R of the first six derivatives. Besides if ZNM =
(IN ⊗ Y M

1 , . . . , IN ⊗ Y M
q ) and that these matrices commute, then we have the same inequality

without the M2.

This theorem is a consequence of the slightly sharper, but less explicit, Theorem 2.3.1. It
is essentially the same statement, but instead of having the norm C6 of f , we have the fourth
moment of the Fourier transform of f . The above Theorem calls for a few remarks.

• We assumed that the matrices ZNM were deterministic, but thanks to Fubini’s Theorem
we can assume that they are random matrices as long as they are independent from XN .
In this situation though, LP

(∥∥∥ZNM
∥∥∥) in the right side of the inequality is a random

variable (and thus we need some additional assumptions if we want its expectation to be
finite for instance).
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2.1. Introduction

• In Theorems 2.1.1 and 2.3.1 we have XN ⊗ IM and x ⊗ IM , however it is very easy to
replace them by XN ⊗ Y M and x⊗ Y M for some matrices Y M

i ∈MM(C). Indeed we just
need to apply Theorem 2.1.1 or 2.3.1 with ZNM = IN ⊗ Y M . Besides, in this situation,
LP

(∥∥∥ZNM
∥∥∥) = LP

(∥∥∥Y M
∥∥∥) does not depend on N . What this means is that if we have a

matrix whose coefficients are polynomial in XN , and that we replace XN by x, we only
change the spectra of this matrix by M2N−2 in average.

• Unfortunately we cannot get rid of the M2 in all generality. The specific case where we
can is when ZNM = (IN ⊗ Y M

1 , . . . , IN ⊗ Y M
q ), where the Y M

i commute: this indicates
that the M2 term is really a noncommutative feature.

A detailed overview of the proof is given in Subsection 2.3.1. The main idea of the proof is
to use a free version of Stein’s method by interpolating GUE matrices with a free semicircular
system with the help of a free Ornstein-Uhlenbeck process. For a reference, see [73]. When
using this process, the Schwinger-Dyson equations, which can be seen as an integration by part
formula, appear in the computation. We we refer to Proposition 2.2.10 for more information
which will play a major role in this paper. Theorem 2.1.1 is the crux of the paper and allows us
to deduce many corollaries. Firstly we rederive a new proof of the following theorem. The first
statement is basically Theorem 1.6 from [28]. The second one is an improvement of Theorem 7.8
from [31] on the size of the tensor from N1/4 to N1/3. This theorem is about strong convergence
of random matrices, that is the convergence of the norm of polynomials in these matrices, see
definition 2.2.1.

Theorem 2.1.2. Let the following objects be given:

• XN = (XN
1 , . . . , X

N
d ) independent GUE matrices of size N ,

• x = (x1, . . . , xd) a system of free semicircular variable,

• Y M = (Y M
1 , . . . , Y M

p ) random matrices of size M , which almost surely, as M goes to
infinity, converge strongly in distribution towards a p-tuple y of noncommutative random
variables in a C∗- probability space B with a faithful trace τB,

• ZN = (ZN
1 , . . . , Z

N
q ) random matrices of size N , which almost surely, as N goes to infinity,

converges strongly in distribution towards a q-tuple z of noncommutative random variables
in a C∗- probability space with a faithful trace.

Then, the following holds true:

• If XN and ZN are independent, almost surely, (XN , ZN) converges strongly in distribution
towards F = (x, z), where F belongs to a C∗- probability space (A, ∗, τA, ‖.‖) in which x
and z are free.

• If (MN)N≥1 is a sequence of integers such that MN = o(N1/3), XN and Y MN are indepen-
dent, then almost surely (XN⊗IMN

, IN⊗Y MN ) converges strongly in distribution towards
F = (x⊗1, 1⊗y) when N goes to infinity. The family F thus belongs to A⊗minB (see def-
inition 2.4.1). Besides if the matrices Y MN commute, then we can weaken the assumption
on MN by only assuming that MN = o(N).

25
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As we mentioned earlier, understanding the Stieljes transform of a matrix gives a lot of
information about its spectrum. This was actually a very important point in the proof of
Haagerup and Thorbjørnsen’s Theorem. Our proof does not use this tool, however our final
result, Theorem 2.3.1, allows us to deduce the following estimate with sharper constant than
what has previously been done. Being given a self- adjoint NM × NM matrix, we denote by
GA its Stieltjes transform:

GA(z) = 1
NM

TrNM
( 1
z − A

)
.

This definition extends to the tensor product of free semi-circular variables by replacing (NM)−1

TrNM by τN ⊗ τM .

Corollary 2.1.3. Given

• XN = (XN
1 , . . . , X

N
d ) independent GUE matrices of size N ,

• x = (x1, . . . , xd) a system of free semicircular variable,

• Y M = (Y M
1 , . . . , Y M

p , Y M
1
∗
, . . . , Y M

p
∗) deterministic matrices of size M and their adjoints,

• P ∈ C〈X1, . . . , Xd, Y1, . . . , Y2p〉sa a self-adjoint polynomial,

there exists a polynomial LP ∈ R+[X] such that for every Y M , z ∈ C\R, M,N ∈ N,

∣∣∣E [GP (XN⊗IM ,IN⊗YM )(z)
]
−GP (x⊗IM ,IN⊗YM )(z)

∣∣∣ ≤ LP
(∥∥∥Y M

∥∥∥)M2

N2

(
1

|=(z)|5
+ 1
|=(z)|2

)
,

where
∥∥∥Y M

∥∥∥ = sup
1≤i≤p

∥∥∥Y M
i

∥∥∥.
One of the limitation of Theorem 2.1.1 is that we need to pick f regular enough. Actually

by approximating f , we can afford to take f less regular at the cost of a slower speed of
convergence. In other words, we trade some degree of regularity on f for a smaller exponent in
N . The best that we can achieve is to take f Lipschitz. Thus it makes sense to introduce the
Lipschitz-bounded metric. This metric is compatible with the topology of the convergence in
law of measure. Let FLU be the set of Lipschitz functions from R to R, uniformly bounded by
1 and with Lipschitz constant at most 1, then

dLU(µ, ν) = sup
f∈FLU

∣∣∣∣∫
R
fdµ−

∫
R
fdν

∣∣∣∣ .
For more information about this metric we refer to Annex C.2 of [13]. In this paper, we get
the following result:

Corollary 2.1.4. Under the same notations as in Corollary 2.1.3, there exists a polynomial
LP ∈ R+[X] such that for every matrices Y M and M,N ∈ N,

dLU
(
E[µP (XN⊗IM ,IN⊗YM )], µP (x⊗IM ,IN⊗YM )

)
≤ LP

(∥∥∥Y M
∥∥∥) M2

N1/3 .
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One of the advantage of Theorem 2.1.1 over the original proof of Haagerup and Thorbjørnsen
is that if we take f which depends on N , we get sharper estimates in N . For exemple if we
assume that g is a C∞ function with bounded support, as we will see later in this paper we
like to work with f : x 7→ g(Nαx) for some constant α. Then its n-th derivative will be of
order Nnα. In the original work of Haagerup, Thorbjørnsen (see [6], Theorem 6.2) the eighth
derivative appears for the easiest case where our polynomial P is of degree 1, and the order
is even higher in the general case. But in Theorem 2.1.1 the sixth derivative appears in the
general case. Actually if we look at the sharper Theorem 2.3.1, the fourth moment of the Fourier
transform appears, which is roughly equivalent to the fourth derivative for our computations.
This allows us to compute an estimate of the difference between E

[∥∥∥P (XN ⊗ IM , IN ⊗ Y M)
∥∥∥]

and its limit. To do that, we use Proposition 2.4.8 from [74, Theorem 1.1] which implies that
if we denote by µP (x⊗IM ,1⊗YM ) the spectral measure of P (x ⊗ IM , 1 ⊗ Y M), then there exists
β ∈ R+ such that

limsup
ε→0

ε−βµP (x⊗IM ,1⊗YM )

([∥∥∥P (x⊗ IM , 1⊗ Y M)
∥∥∥− ε, ∥∥∥P (x⊗ IM , 1⊗ Y M)

∥∥∥]) > 0. (2.3)

With the help of standard measure concentration estimates, we then get the following Theorem:

Theorem 2.1.5. We consider

• XN = (XN
1 , . . . , X

N
d ) independent GUE matrices of size N ,

• x = (x1, . . . , xd) a system of free semicircular variable,

• Y M = (Y M
1 , . . . , Y M

p ) deterministic matrices of size M a fixed integer and their adjoints.

For any polynomial P ∈ C〈X1, . . . , Xd, Y1, . . . , Yp〉, there exists constants K and C such that
for any δ > 0 and N ∈ N,

P
(
N1/4

(∥∥∥P (XN ⊗ IM , IN ⊗ Y M)
∥∥∥− ∥∥∥P (x⊗ IM , 1⊗ Y M)

∥∥∥) ≥ δ + C
)

(2.4)

≤ e−Kδ
2√N + de−N ,

P
(
N1/(3+β)

(∥∥∥P (XN ⊗ IM , IN ⊗ Y M)
∥∥∥− ∥∥∥P (x⊗ IM , 1⊗ Y M)

∥∥∥) ≤ −δ − C) (2.5)

≤ e−Kδ
2N

1+β
3+β + de−N .

This theorem is interesting because of its similarity with Tracy and Widom’s result about
the tail of the law of the largest eingenvalue of a GUE matrix. We have smaller exponent in
N , and thus we can only show the convergence towards 0 with exponential speed, however we
are not restricted to a single GUE matrix, we can chose any polynomial evaluated in GUE
matrices. Besides by applying Borel-Cantelli’s Lemma, we immediately get:

Theorem 2.1.6. We consider

• XN = (XN
1 , . . . , X

N
d ) independent GUE matrices of size N ,

• x = (x1, . . . , xd) a system of free semicircular variable,
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• Y M = (Y M
1 , . . . , Y M

p ) deterministic matrices of size M a fixed integer and their adjoints.

Then almost surely, for any polynomial P ∈ C〈X1, . . . , Xd, Y1, . . . , Yp〉, there exists a constant
c(P ) > 0 such that for any c(P ) > α > 0,

lim
N→∞

Nα

∣∣∣∣ ∥∥∥P (XN ⊗ IM , IN ⊗ Y M)
∥∥∥− ∥∥∥P (x⊗ IM , 1⊗ Y M)

∥∥∥ ∣∣∣∣ = 0.

Moreover, if β satisfies (2.3), then almost surely for any α < (3 + β)−1 and ε < 1/4, for N
large enough,

−N−α ≤
∥∥∥P (XN ⊗ IM , IN ⊗ Y M)

∥∥∥− ∥∥∥P (x⊗ IM , 1⊗ Y M)
∥∥∥ ≤ N−ε.

In order to conclude this introduction, we would like to say that while it is not always easy
to compute the constant β in all generality, it is possible for some polynomials. In particular, if
our polynomial is evaluated in a single GUE matrix, then the computation is heavily simplified
by the fact that we know the distribution of a single semicircular variable. Finally, the constant
(3 + β)−1 is clearly a worst case scenario and can be easily improved if β is explicit.

This paper is organised as follows. In Section 2.2, we recall the definitions and properties of
free probability, noncommutative calculus and Random Matrix Theory needed for this paper.
Section 2.3 contains the proof of Theorem 2.1.1. And finally in Section 2.4 we give the proof
of the remaining Theorem and Corollaries.

2.2 Framework and standard properties

2.2.1 Usual definitions in free probability
In order to be self-contained, we begin by reminding the following definitions from free

probability.

Definition 2.2.1. • A C∗-probability space (A, ∗, τ, ‖.‖) is a unital C∗-algebra (A, ∗, ‖.‖)
endowed with a state τ , i.e. a linear map τ : A → C satisfying τ(1A) = 1 and τ(a∗a) ≥ 0
for all a ∈ A. In this paper we always assume that τ is a trace, i.e. that it satisfies
τ(ab) = τ(ba) for any a, b ∈ A. An element of A is called a (noncommutative) random
variable. We will always work with a faithful trace, namely, for a ∈ A, τ(a∗a) = 0 if and
only if a = 0. In this case the norm is determined by τ thanks to the formula:

‖a‖ = lim
k→∞

(
τ
(
(a∗a)2k

))1/2k
.

• Let A1, . . . ,An be ∗-subalgebras of A, having the same unit as A. They are said to be free
if for all k, for all ai ∈ Aji such that j1 6= j2, j2 6= j3, . . . , jk−1 6= jk:

τ
(

(a1 − τ(a1))(a2 − τ(a2)) . . . (ak − τ(ak))
)

= 0.

Families of noncommutative random variables are said to be free if the ∗-subalgebras they
generate are free.
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• Let A = (a1, . . . , ak) be a k-tuple of random variables. The joint distribution of the family
A is the linear form µA : P 7→ τ

[
P (A,A∗)

]
on the set of polynomials in 2k noncommuta-

tive indeterminates. By convergence in distribution, for a sequence of families of variables
(AN)N≥1 = (aN1 , . . . , aNk )N≥1 in C∗-algebras

(
AN ,∗ , τN , ‖.‖

)
, we mean the pointwise con-

vergence of the map
µAN : P 7→ τN

[
P (AN , A∗N)

]
,

and by strong convergence in distribution, we mean convergence in distribution, and point-
wise convergence of the map

P 7→
∥∥∥P (AN , A∗N)

∥∥∥.
• A family of noncommutative random variables x = (x1, . . . , xp) is called a free semicircular

system when the noncommutative random variables are free, selfadjoint (xi = x∗i , i =
1 . . . p), and for all k in N and i = 1, . . . , p, one has

τ(xki ) =
∫
tkdσ(t),

with dσ(t) = 1
2π

√
4− t2 1|t|≤2 dt the semicircle distribution.

The strong convergence of noncommutative random variables is actually equivalent to the
convergence of the spectrum of their polynomials for the Hausdorff distance. More precisely
we have the following proposition whose proof can be found in [9, Proposition 2.1] :

Proposition 2.2.2. Let xN = (xN1 , . . . , xNp ) and x = (x1, . . . , xp) be p-tuples of variables in C∗-
probability spaces, (AN , .∗, τN , ‖ · ‖) and (A, .∗, τ, ‖ · ‖), with faithful states. Then, the following
assertions are equivalent.

• xN converges strongly in distribution to x.

• For any self-adjoint variable hN = P (xN), where P is a fixed polynomial, µhN converges
in weak-∗ topology to µh where h = P (x). Weak-∗ topology means relatively to continuous
functions on C. Moreover, the spectrum of hN converges in Hausdorff distance to the
spectrum of h, that is, for any ε > 0, there exists N0 such that for any N ≥ N0,

σ(hN) ⊂ σ(h) + (−ε, ε). (2.6)

In particular, the strong convergence in distribution of a single self-adjoint variable is equivalent
to its convergence in distribution together with the Hausdorff convergence of its spectrum.

It is important to note that thanks to [60, Theorem 7.9], that we recall below, one can
consider free version of any random variable.

Theorem 2.2.3. Let (Ai, φi)i∈I be a family of C∗-probability spaces such that the functionals
φi : Ai → C, i ∈ I, are faithful traces. Then there exist a C∗-probability space (A, φ) with φ a
faithful trace, and a family of norm- preserving unital ∗-homomorphism Wi : Ai → A, i ∈ I,
such that:

• φ ◦Wi = φi, ∀i ∈ I.
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• The unital C∗-subalgebras form a free family in (A, φ).

Let us finally fix a few notations concerning the spaces and traces that we use in this paper.

Definition 2.2.4. • (AN , τN) is the free sum of MN(C) with a system of d free semicircular
variable, this is the C∗- probability space built in Theorem 2.2.3. Note that when restricted
to MN(C), τN is just the regular renormalized trace on matrices. The restriction of τN to
the C∗-algebra generated by the free semicircular system x is denoted as τ .

• TrN is the non-renormalized trace on MN(C).

• MN(C)sa is the set of self adjoint matrix of MN(C). We denote Er,s the matrix with
coefficients equal to 0 except in (r, s) where it is equal to one.

• We regularly identify MN(C)⊗Mk(C) with MkN(C) through the isomorphism Ei,j⊗Er,s 7→
Ei+rN,j+sN , similarly we identify TrN ⊗Trk with TrkN .

• If AN = (AN1 , . . . , ANd ) and BM = (BM
1 , . . . , BM

d ) are two families of matrices, then we
denote AN ⊗ BM = (AN1 ⊗ BM

1 , . . . , ANd ⊗ BM
d ). We typically use the notation XN ⊗ IM

for the family (XN
1 ⊗ IM , . . . , XN

1 ⊗ IM).

2.2.2 Non-commutative polynomials and derivatives
We set Ad,q = C〈X1, . . . , Xd, Y1, . . . , Yq, Y

∗
1 , . . . , Y

∗
q 〉 the set of noncommutative polynomial

in d+ 2q indeterminates. We endow this vector space with the norm

‖P‖A =
∑

Mmonomial
|cM(P )|AdegM , (2.7)

where cM(P ) is the coefficient of P for the monomial M and degM the total degree of M (that
is the sum of its degree in each letter X1, . . . , Xd, Y1, . . . , Yq, Y

∗
1 , . . . , Y

∗
q ). Let us define several

maps which we use frequently in the sequel First, for A,B,C ∈ Ad,q, let

A⊗B#C = ACB,

A⊗B#̃C = BCA,

m(A⊗B) = BA.

Definition 2.2.5. If 1 ≤ i ≤ d, one defines the noncommutative derivative ∂i : Ad,q −→
Ad,q ⊗Ad,q by its value on a monomial M ∈ Ad,q given by

∂iM =
∑

M=AXiB
A⊗B,

and then extend it by linearity to all polynomials. Similarly one defines the cyclic derivative
Di : Ad,q −→ Ad,q for P ∈ Ad,q by

DiP = m ◦ ∂iP .
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2.2. Framework and standard properties

The map ∂i is called the noncommutative derivative. It is related to Schwinger-Dyson
equation on semicircular variable thanks to the following property 2.2.6. One can find a proof
of the first part in [13], Lemma 5.4.7. As for the second part it is a direct consequence of the
first one which can easily be verified by taking P monomial and then concluding by linearity.

Proposition 2.2.6. Let x = (x1, . . . , xp) be a free semicircular system, y = (y1, . . . , yq) be
noncommutative random variables free from x, if the family (x, y) belongs to the C∗-probability
space (A, ∗, τ, ‖.‖), then for any P ∈ Ad,q,

τ(P (x, y, y∗) xi) = τ ⊗ τ(∂iP (x, y, y∗)) .

Moreover, one can deduce that if ZNM are matrices in MN(C) ⊗MM(C) that we view as a
subspace of AN ⊗MM(C), then for any P ∈ Ad,q,

τN ⊗ τM
(
P (x⊗ IM , ZNM , ZNM ∗) xi ⊗ IM

)
= τM

(
(τN ⊗ IM)

⊗
(τN ⊗ IM)

(
∂iP (x⊗ IM , ZNM , ZNM ∗)

))
.

We define an involution ∗ on Ad,q such that

(Xi)∗ = Xi, (Yi)∗ = Y ∗i , (Y ∗i )∗ = Yi

and then we extend it to Ad,q by the formula (αPQ)∗ = αQ∗P ∗. P ∈ Ad,q is said to be self-
adjoint if P ∗ = P . Self-adjoint polynomials have the property that if x1, . . . , xd, z1, . . . , zq are
elements of a C∗- algebra such as x1, . . . , xd are self-adjoint, then so is P (x1, . . . , xd, z1, . . . , zq,
z∗1 , . . . , z

∗
q ). Now that we have defined the notion of self-adjoint polynomial we remark for later

use that

Proposition 2.2.7. Let the following objects be given,

• x = (x1, . . . , xp) a free semicircular system ,

• XN = (XN
1 , . . . , X

N
d ) self-ajoint matrices of size N ,

• XN
t = e−t/2XN + (1− e−t)1/2x elements of AN ,

• ZNM matrices in MN(C)⊗MM(C),

• f ∈ C0(R),

• P a self-adjoint polynomial.

Then the following map is measurable:

(XN , ZNM) 7→ τN ⊗ τM
(
f
(
P (XN

t ⊗ IM , ZNM , ZNM ∗)
))
.

Proof. This is obvious if f is a polynomial and the general case is obtained by approximation.

Actually we could easily prove that this map is continuous, however we do not need it. The
only reason we need this property is to justify that if XN is a d-tuple of independent GUE
matrices, then the random variable τN ⊗ τM

(
f
(
P (XN

t ⊗ IM , ZNM , ZNM ∗)
))

is well-defined
and measurable.
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2.2.3 GUE random matrices

We conclude this section by reminding the definition of Gaussian random matrices and
stating a few useful properties about them.

Definition 2.2.8. A GUE random matrix XN of size N is a self adjoint matrix whose coeffi-
cients are random variables with the following laws:

• For 1 ≤ i ≤ N , the random variables
√
NXN

i,i are independent centered Gaussian random
variables of variance 1.

• For 1 ≤ i < j ≤ N , the random variables
√

2N <XN
i,j and

√
2N =XN

i,j are independent
centered Gaussian random variables of variance 1, independent of

(
XN
i,i

)
i
.

We now present two of the most useful tools when it comes to computation with Gaus-
sian variable, the Poincaré inequality and Gaussian integration by part. Firstly, the Poincaré
inequality:

Proposition 2.2.9. Let (x1, . . . , xn) be i.i.d. centered Gaussian random variable with variance
1, let f : Rn → R be C1, then

Var
(
f(x1, . . . , xn)

)
≤ E

[
‖∇f(x1, . . . , xn)‖2

2

]
.

For more details about the Poincaré inequality, we refer to Definition 4.4.2 in [13]. As for
Gaussian integration by part, it comes from the following formula, if Z is a centered Gaussian
variable with variance 1 and f a C1 function, then

E[Zf(Z)] = E[∂Zf(Z)] . (2.8)

A direct consequence of this, is that if x and y are centered Gaussian variable with variance 1,
and Z = x+iy√

2 , then

E[Zf(x, y)] = E[∂Zf(x, y)] and E[Zf(x, y)] = E[∂Zf(x, y)] , (2.9)

where ∂Z = 1
2(∂x+ i∂y) and ∂Z = 1

2(∂x− i∂y). When working with GUE matrices, an important
consequence of this are the so-called Schwinger-Dyson equation, which we summarize in the
following proposition. For more information about these equations and their applications, we
refer to [13], Lemma 5.4.7.

Proposition 2.2.10. Let XN be GUE matrices of size N , Q ∈ Ad,q, then for any i,

E
[ 1
N

TrN(XN
i Q(XN))

]
= E

[( 1
N

TrN
)⊗2

(∂iQ(XN))
]
.

Proof. One can write XN
i = 1√

N
(xir,s)1≤r,s≤N and thus
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E
[ 1
N

TrN(XN
i Q(XN))

]
= 1
N3/2

∑
r,s

E
[
xir,s TrN(Er,s Q(XN))

]
= 1
N3/2

∑
r,s

E
[
TrN(Er,s ∂xir,sQ(XN))

]
= 1
N2

∑
r,s

E
[
TrN(Er,s ∂iQ(XN)#Es,r)

]

= E
[( 1
N

TrN
)⊗2

(∂iQ(XN))
]
.

Now to finish this section we state a property that we use several times in this paper:

Proposition 2.2.11. There exist constants C,D and α such that for any N ∈ N, if XN is a
GUE random matrix of size N , then for any u ≥ 0,

P
(∥∥∥XN

∥∥∥ ≥ u+D
)
≤ e−αuN .

Consequently, for any k ≤ αN/2,

E
[∥∥∥XN

∥∥∥k] ≤ Ck.

Proof. The first part is a direct consequence of Lemma 2.2 from [40] in the specific case of the
GUE. As for the second part, if k ≤ αN/2, then we have,

E
[∥∥∥XN

∥∥∥k] = k
∫ ∞

0
P
(∥∥∥XN

∥∥∥ ≥ u
)
uk−1du

≤ kDk + k
∫ ∞
D

e−Nα(u−D)uk−1du

≤ kDk + keDNα
∫ ∞
D

e(k−Nα)udu

≤ kDk + 2k
αN

ekD ≤ Ck

for some C independent of N and k. In the third line we used that ln |u| ≤ u for all positive
real numbers,

2.3 Proof of Theorem 2.1.1

2.3.1 Overview of the proof
Given two families of non-commutative random variables, (XN ⊗ IM , Z

NM) and (x ⊗
IM , Z

NM), we want to study the difference between their distributions. As mentioned in the
introduction, the main idea of the proof is to interpolate these two families with the help of
d free Ornstein-Uhlenbeck processes X t,N started in the matrices XN . However, as we shall
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explain just below, we are only interested into the law of the marginals at time t of this process,
and thus since there exists a simplified expression of this law, we do not need to define it as
a stochastic process. We refer to [73] for the reader interested by the global definition. Many
properties of the free Ornstein-Uhlenbeck process are similar to the classical case. For example,
if (St)t is an Ornstein-Uhlenbeck process, then it is well-known that for any function f and
t ≥ 0,

E[f(St)] = E[f(e−t/2S0 + (1− e−t)1/2X)]
where X is a centered Gaussian random variable of variance 1 independent of S0. Likewise, if
µ is the trace on the C∗-algebra which contains (XN

t )t≥0, we have for any function f such that
this is well-defined and t ≥ 0,

µ(f(XN
t )) = τN

(
f(e−t/2XN + (1− e−t)1/2x)

)
(2.10)

where x is a system of free semicircular variables, free from MN(C). Thus a free Ornstein-
Uhlenbeck process started at time t has the same distribution in the sense of Definition 2.2.1
as the family

e−t/2XN + (1− e−t)1/2x .

Consequently, from now on, we write XN
t = e−t/2XN + (1 − e−t)1/2x. Since our aim in this

subsection is not to give a proof but to outline the strategy used in subsection 2.3.2, we also
assume that we have no matrix ZNM and that M = 1. Now under the assumption that this is
well-defined, if Q ∈ Ad,0 = C〈X1, . . . , Xd〉,

E
[ 1
N

TrN
(
Q
(
XN

) )]
− τ

(
Q (x)

)
= −

∫ ∞
0

E
[
d

dt

(
τN
(
Q(XN

t )
) )]

dt .

On the other hand, it is known that by using the free Markov property of the free Brownian
motion, we have for Q ∈ Ad,0

d

dt
τN(Q(XN

t )) = −1
2
∑
i

{
τN
(
(XN

t )i(DiQ)(XN
t )
)
− τN ⊗ τN

(
(∂iDiQ)(XN

t )
)}
.

One can already recognize the Schwinger-Dyson equation. Indeed thanks to Proposition 2.2.10,
one can see that

E
[
d

dt
τN(Q(XN

t ))
] ∣∣∣∣∣

t=0
= −1

2
∑
i

E
[
τN
(
XN
i (DiQ)(XN)

)
− τN ⊗ τN

(
(∂iDiQ)(XN)

)]
= 0 .

And then, thanks to Proposition 2.2.6,

E
[
d

dt
τN(Q(XN

t ))
] ∣∣∣∣∣

t=∞
= −1

2
∑
i

{τ (xi (DiQ)(x))− τ ⊗ τ ((∂iDiQ)(x))} = 0 .

However what happens at time t is much harder to estimate and is the core of the proof. The
main idea to deal with this issue is to view the family (XN , x) as the asymptotic limit when k
goes to infinity of the family (XN ⊗ Ik, RkN) where RkN are independent GUE matrices of size
kN and independent of XN .
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Another issue is that to prove Theorem 2.1.1, we would like to set Q = f(P ) but since f
is not polynomial this means that we need to extend the definition of operators such as ∂i. In
order to do so we assume that there exist µ a measure on R such that,

∀x ∈ R, f(x) =
∫
R
eixy dµ(y) .

While we have to assume that the support of µ is indeed on the real line, µ can be a complex
measure. However we will usually work with measure such that |µ|(R) is finite. Indeed under
this assumption we can use Fubini’s Theorem, and we get

E
[ 1
M

TrN
(
f
(
P (XN)

) )]
− τ

(
f (P (x))

)
=
∫
R

{
E
[ 1
N

TrN
(
eiyP(XN)

)]
− τ

(
eiyP (x)

)}
dµ(y) .

We can then set Q = eiyP . And even though this is not a polynomial function, since it is a power
series, most of the properties associated to polynomials remain true with some assumption on
the convergence. The main difficulty with this method is that we need to find a bound which
does not depend on too high moments of y. Indeed terms of the form∫

R
|y|l d|µ|(y)

appear in our estimates. Thanks to Fourier integration we can relate the exponent l to the
regularity of the function f , thus we want to find a bound with l as small as possible. It turns
out that with our proof l = 4.

2.3.2 Proof of Theorem 2.1.1
In this section we focus on proving Theorem 2.1.1 from which we deduce all of the important

corollaries. It will be a consequence of the following Theorem :
Theorem 2.3.1. Let the following objects be given,

• XN = (XN
1 , . . . , X

N
d ) independent GUE matrices of size N ,

• x = (x1, . . . , xd) a system of free semicircular variables,

• ZNM = (ZNM
1 , . . . , ZNM

q ) deterministic matrices,

• P ∈ Ad,q a polynomial that we assume to be self-adjoint,

• f : R 7→ R such that there exists a measure on the real line µ with
∫

(1+y4) d|µ|(y) < +∞
and for any x ∈ R,

f(x) =
∫
R
eixy dµ(y) .

Then, there exists a polynomial LP ∈ R+[X] which only depends on P such that with
∥∥∥ZNM

∥∥∥ =
sup

1≤i≤q

∥∥∥ZNM
i

∥∥∥, for any N,M ,

∣∣∣∣∣∣E
[ 1
MN

TrMN

(
f
(
P
(
XN ⊗ IM , ZNM , ZNM ∗

)) )]
− τN ⊗ τM

(
f
(
P
(
x⊗ IM , ZNM , ZNM ∗

)) )∣∣∣∣∣∣
≤ M2

N2 LP
(∥∥∥ZNM

∥∥∥) ∫
R
(|y|+ y4) d|µ|(y) .
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The proof is a direct corollary of Lemmas 2.3.3 and 2.3.4 below. The first one shows that
the crux of the proof lies in understanding the following quantity:

Definition 2.3.2. Let the following objects be given,

• α, β ∈ [0, 1],

• A,B,C,D ∈ Ad,q monomials,

• XN
t = e−t/2XN + (1− e−t)1/2x

• ZN
t = (XN

t ⊗ IM , ZNM , ZNM ∗),

• St = (AeiβyPB)(ZN
t ),

• Vt = (CeiαyPD)(ZN
t ).

Then we define:

Sα,βN,t

(
A,B,C,D

)
= E

 1
N

∑
1≤s,r≤N

τN ⊗ τM
(
Es,r ⊗ IM × St × Er,s ⊗ IM × Vt

)
− E

[
τM

(
(τN ⊗ IM)(St) (τN ⊗ IM)(Vt)

)]
.

We can now state the next lemma which explains why this object appears:

Lemma 2.3.3. Let f be a function such that there exists a measure µ such that for any x ∈ R,

f(x) =
∫
R
eixydµ(y)

We also assume that
∫
R(1 + y4)d|µ|(y) <∞. Then one can write

E
[ 1
MN

Tr
(
f
(
P
(
XN ⊗ IM , ZNM , ZNM ∗

)) )]
− τN ⊗ τM

(
f
(
P
(
x⊗ IM , ZNM , ZNM ∗

)) )

as a finite linear combination of terms of the following kinds :

∫ ∞
0

e−t
∫
y2

∫ 1

0
Sα,1−αN,t (A,B,C,D)dα dµ(y) dt , (2.11)

and ∫ ∞
0

e−t
∫
y S1,0

N,t(A,B,C,D)dµ(y) dt (2.12)

where the monomials A,B,C,D ∈ Ad,q and the coefficients of the linear combination are
uniquely determined by P .
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Proof. First, we define the natural interpolation between the trace of matrices at size N and
the trace of semicircular variables,

s(t, y) = E
[
τN ⊗ τM

(
eiyP (ZNt )

)]
.

By definition of f we have

∫
R
s(0, y) dµ(y) = E

[ 1
MN

TrMN

(
f(P (XN ⊗ IM , ZNM , ZNM ∗))

)]
,∫

R
s(∞, y) dµ(y) = τN ⊗ τM

(
f(P (x⊗ IM , ZNM , ZNM ∗))

)
.

Thus under the assumption that this is well-defined, we have

E
[ 1
MN

TrMN

(
f
(
P
(
XN ⊗ IM , ZNM , ZNM ∗

)) )]
− τN ⊗ τM

(
f
(
P
(
x⊗ IM , ZNM , ZNM ∗

)) )
= −

∫ ∞
0

∫
R
∂ts(t, y) dµ(y) dt . (2.13)

We compute

∂ts(t, y) = iy
e−t

2 E
[
τN ⊗ τM

(
eiyP (ZNt ) ∑

i

∂iP (ZN
t )#

((
xi

(1− e−t)1/2 − e
t/2XN

i

)
⊗ IM

))]
.

(2.14)

Since we assumed that µ is such that
∫

(1 + y4)dµ(y) < +∞ and that since XN
i and xi have all

moments uniformly bounded by Lemma 2.2.11, we can find a constant C independent from y
and t such that

|∂ts(t, y)| ≤ C ye−t/2,

we can deduce that (2.13) is well-defined. Besides, writing P = ∑
cV (P )V with monomials

V ∈ Ad,q, we get

∂ts(t, y) = iy
e−t

2
∑

cV (P )
∑

V=BXiA
E

τN ⊗ τM
A(ZN

t )eiyP (ZNt ) B(ZN
t ) (2.15)

×
(

xi
(1− e−t)1/2 − e

t/2XN
i

)
⊗ IM

.
Hence, ∂ts is a finite linear combination of terms of the form

ye−tSt(A,B) = ye−tS1
t (A,B)− ye−tS2

t (A,B) (2.16)

with
S1
t (A,B) = St(A,B, (1− e−t)−1/2xi) and S2

t (A,B) = St(A,B, et/2XN
i )

where
St(A,B,G) = E

[
τN ⊗ τM

(
A(ZN

t ) eiyP (ZNt )B(ZN
t )×G⊗ IM

)]
. (2.17)
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We first study S2
t (A,B). We denote by Q = AeiyPB. We want to use Gaussian integration by

part: if we set
√
NXN

i = (xis,r)1≤s,r≤N , then with ∂xis,r as in equations (2.8) and (2.9), thanks
to Duhamel formula

√
Net/2 ∂xis,rQ(ZN

t ) = ∂iA(ZN
t )#(Er,s ⊗ IM) eiyP (ZNt )B(ZN

t )

+ iy
∫ 1

0
A(ZN

t )ei(1−α)yP (ZNt ) ∂iP (ZN
t )#(Er,s ⊗ IM) eiαyP (ZNt )B(ZN

t ) dα
(2.18)

+ A(ZN
t )eiyP (ZNt ) ∂iB(ZN

t )#(Er,s ⊗ IM).

Consequently, expanding in S2
t (A,B) the product by XN

i in terms of its entries, we have

S2
t (A,B) =et/2E

[
τN ⊗ τM

(
(AeiyPB)(ZN

t ) XN
i ⊗ IM

)]
= N−1/2et/2 ∑

1≤s,r≤N
E
[
xis,r τN ⊗ τM

(
Es,r ⊗ IM (AeiyPB)(ZN

t )
)]

= 1
N

∑
1≤s,r≤N

E
[
τN ⊗ τM

(
Es,r ⊗ IM et/2∂xis,rQ(ZN

t )
)]

= E

 1
N

∑
1≤s,r≤N

τN ⊗ τM
(
Es,r ⊗ IM ∂iA#(Er,s ⊗ IM) eiyPB

)
+ iy

∫ 1

0
E

 1
N

∑
1≤s,r≤N

τN ⊗ τM
(
Es,r ⊗ IM Aei(1−α)yP ∂iP#(Er,s ⊗ IM) eiαyPB

) dα
+ E

 1
N

∑
1≤s,r≤N

τN ⊗ τM
(
Es,r ⊗ IM AeiyP ∂iB#(Er,s ⊗ IM)

) (2.19)

where A,B, P are evaluated at ZN
t . To deal with S1

t (A,B), since a priori we defined free
integration by parts only for polynomials, we expand the exponential as a power series,

τN ⊗ τM
(
A(ZN

t ) eiyP (ZNt ) B(ZN
t ) xi ⊗ IM

(1− e−t)1/2

)

=
∑
k≥0

1
k! τN ⊗ τM

(
A(ZN

t ) (iyP (ZN
t ))k B(ZN

t ) xi ⊗ IM
(1− e−t)1/2

)
.

We define (τN ⊗ IM)⊗(τN ⊗ IM) : (AN ⊗MM(C))⊗2 →MM(C) the linear map which is defined
on simple tensor by (τN ⊗ IM)⊗(τN ⊗ IM)(A ⊗ B) = (τN ⊗ IM)(A) × (τN ⊗ IM)(B). Hence,
thanks to Proposition 2.2.6, with the convention that A × (B ⊗ C) × D = (AB) ⊗ (CD), we
have
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τN ⊗ τM
(
A(ZN

t ) (iyP (ZN
t ))k B(ZN

t ) xi ⊗ IM
(1− e−t)1/2

)

= τM

(
(τN ⊗ IM)

⊗
(τN ⊗ IM)

(
∂iA(ZN

t ) (iyP (ZN
t ))k B(ZN

t )
))

+ iyτM

(τN ⊗ IM)
⊗

(τN ⊗ IM)
(
A(ZN

t ) (iy)k−1 ∑
1≤l≤k

P (ZN
t )l−1∂iP (ZN

t ) P (ZN
t )k−l B(ZN

t )
)

+ τM

(
(τN ⊗ IM)

⊗
(τN ⊗ IM)

(
A(ZN

t ) (iyP (ZN
t ))k ∂iB(ZN

t )
))

.

Now we can use the fact that

1
k! =

∫ 1

0

αl−1(1− α)k−l
(l − 1)!(k − l)!dα,

to deduce that

τM

(τN ⊗ IM)
⊗

(τN ⊗ IM)
(
A(ZN

t )
∑
k≥1

(iy)k−1

k!

k∑
l=1

P (ZN
t )l−1∂iP (ZN

t ) P (ZN
t )k−lB(ZN

t )
)

=
∫ 1

0

∑
k≥1

k∑
l=1

τM

(τN ⊗ IM)
⊗

(τN ⊗ IM)
A(ZN

t ) (iyαP (ZN
t ))l−1

(l − 1)! ∂iP (ZN
t )

(iy(1− α)P (ZN
t ))k−l

(k − l)! B(ZN
t )
dα

=
∫ 1

0
τM

(
(τN ⊗ IM)

⊗
(τN ⊗ IM)

(
A(ZN

t ) ei(1−α)yP (ZNt ) ∂iP (ZN
t ) eiαyP (ZNt ) B(ZN

t )
))

dα.

And thus, after summation, we obtain

S1
t (A,B) = τM

(
(τN ⊗ IM)

⊗
(τN ⊗ IM)

(
∂iA eiyPB

))
+ iy

∫ 1

0
τM

(
(τN ⊗ IM)

⊗
(τN ⊗ IM)

(
Aei(1−α)yP ∂iP eiαyPB

))
dα

+ τM

(
(τN ⊗ IM)

⊗
(τN ⊗ IM)

(
A eiyP ∂iB

))
.

Therefore, after making the difference (2.16) to compute St(A,B), we conclude that the dif-
ference we wish to estimate in (2.13) is a linear combination of terms, whose coefficients only
depend on P , of the form (2.11) and (2.12).

Thus the next step is to study the quantity Sα,βN,t (A,B,C,D). More precisely we show:
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Lemma 2.3.4. There is a polynomial L ∈ R+[X] which only depends on A,B,C,D and P

such that with
∥∥∥ZNM

∥∥∥ = sup
1≤i≤q

∥∥∥ZNM
i

∥∥∥, for any α, β ∈ [0, 1], N ∈ N, t ∈ R+ and y ∈ R,
∣∣∣∣Sα,βN,t

(
A,B,C,D

)∣∣∣∣ ≤ (1 + y2)M2

N2 L
(∥∥∥ZNM

∥∥∥) .
This lemma is a direct consequence of Lemmas 2.3.6 and 2.3.7. We first show that the family

(XN⊗IM , x⊗IM , ZNM) is actually the asymptotic distribution (in the sense of Definition 2.2.1)
as k goes to infinity of the family (XN ⊗ IkM , RkN ⊗ IM , ZNM ⊗ Ik) where RkN is a family of
independent GUE random matrices of size kN . The advantage of this representation is that it
allows us to use classical analysis, and to treat the GUE variables and the semi-circle variables in
a more symmetric way. A direct proof using semi-circular variables should however be possible.

Proposition 2.3.5. If RkN is a family of independent GUE random matrices of size kN ,
independent of XN , we set

Uk
t =

( (
e−t/2XN ⊗ Ik + (1− e−t)1/2RkN

)
⊗ IM , ZNM ⊗ Ik, ZNM ∗ ⊗ Ik

)
.

Then if q = AeiβyPB, we have that PXN -almost surely for any t,

(τN ⊗ IM)
(
q(ZN

t )
)

= lim
k→∞

ER
[
(τkN ⊗ IM)

(
q(Uk

t )
)]
,

where ER is the expectation with respect to RkN . Here M,N are kept fixed.

Proof. This proposition is mostly a corollary of Theorem 5.4.5 of [13]. Indeed this theorem
states that if RkN are GUE matrices and DkN are deterministic matrices such that

sup
l∈N

max
i

sup
k∈N

( 1
N

Tr(|DkN
i |l)

)1/l
<∞,

and if DkN converges in distribution towards a family of noncommutative random variables
d, then the family (RkN , DkN) in the noncommutative probability space (MkN(C), ∗,E[ 1

kN
Tr])

converges in distribution towards the family (x, d) where x is a system of free semicircular
variables free from d. In our situation we can write for every i,

ZNM
i =

∑
1≤r,s≤N

Er,s ⊗ AMr,s,i.

Thus, if EN = (Er,s)1≤r,s≤N , we fix DkN = (XN ⊗ Ik, EN ⊗ Ik), d = (XN , EN), and we can
apply Theorem 5.4.5 from [13] to get that for any non-commutative polynomial P ,

lim
k→∞

ER
[
τkN(P (RkN , XN ⊗ Ik, EN ⊗ Ik))

]
= τN

(
P (x,XN , EN)

)
.

Consequently, for any non-commutative polynomial P , we also have

lim
k→∞

ER
[
τkN ⊗ IM(P (RkN ⊗ IM , XN ⊗ IkM , EN ⊗ IkM , IkN ⊗ AM , IkN ⊗ (AM)∗)

]
= τN

(
P (x⊗ IM , XN ⊗ IM , EN ⊗ IM , IN ⊗ AM , IN ⊗ (AM)∗)

)
.

Hence, for any P ∈ Ad,q,
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lim
k→∞

ER
[
τkN ⊗ IM(P (Uk

t ))
]

= τN ⊗ IM
(
P (ZN

t )
)
. (2.20)

Thanks to Property 2.2.11, we know that there exist α > 0 and D < ∞ such that for all
u ≥ D, for N large enough, ∀i ∈ [1, d],

P
(∥∥∥RkN

i

∥∥∥ ≥ u
)
≤ e−α u kN . (2.21)

Since if cM(P ) is the coefficient of P associated with the monomial M , one has
∥∥∥P (Uk

t )
∥∥∥ ≤ ∑

M monomials
|cM(P )|

∥∥∥M(Uk
t )
∥∥∥ ,

there exist constants L and C which do depend on
∥∥∥ZNM

j

∥∥∥ and
∥∥∥XN

i

∥∥∥ such that for N large
enough

P
(∥∥∥P (Uk

t )
∥∥∥ ≥ C

)
≤ e−LkN . (2.22)

Knowing this, let fε ∈ C[X] be a polynomial which is ε-close from x 7→ eiβyx on the interval
[−1−C,C + 1]. Since one can always assume that C >

∥∥∥P (ZN
t )
∥∥∥, we have, with q = AeiβyPB :

‖(τN ⊗ IM)
(
q(ZN

t )
)
− (τN ⊗ IM)

(
(Afε(P )B)(ZN

t )
)
‖ ≤ Dε,

where D is some constant which can depend on the dimensions N,M but not on k. Thus

‖(τN ⊗ IM)
(
q(ZN

t )
)
− ER

[
(τkN ⊗ IM)

(
q(Uk

t )
)]
‖

≤ Dε+DER
[∥∥∥(q − Afε(P )B)(Uk

t )
∥∥∥1‖P (Ukt )‖≥C+1

]
+ ‖(τN ⊗ IM)

(
(Afε(P )B)(ZN

t )
)
− ER

[
(τkN ⊗ IM)

(
(Afε(P )B)(Uk

t )
)]
‖

The last term goes to zero as k goes to infinity by (2.20). Besides

ER
[∥∥∥(q − Afε(P )B)(Uk

t )
∥∥∥1‖P (Ukt )‖≥C+1

]
≤ ER

[(∥∥∥A(Uk
t )
∥∥∥ ∥∥∥B(Uk

t )
∥∥∥+

∥∥∥(Afε(P )B)(Uk
t )
∥∥∥)2

]1/2
P(
∥∥∥P (Uk

t )
∥∥∥ ≥ C + 1)1/2.

The first term is bounded independently of k thanks to (2.21) and the second converges expo-
nentially fast towards 0 thanks to (2.22). Consequently

limsup
k→∞

‖(τN ⊗ IM)
(
q(ZN

t )
)
− ER

[
(τkN ⊗ IM)

(
q(Uk

t )
)]
‖ ≤ Dε.

Hence the conclusion follows since the left hand side does not depend on ε.
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Recall that by definition

Sα,βN,t

(
A,B,C,D

)
:= E[Λα,β

N,t

(
A,B,C,D

)
] (2.23)

with, following the notations of Definition 2.3.2 :

Λα,β
N,t

(
A,B,C,D

)
= 1
N

∑
1≤s,r≤N

τN ⊗ τM
(
Es,r ⊗ IM × St × Er,s ⊗ IM × Vt

)

− τM
(

(τN ⊗ IM)(St) (τN ⊗ IM)(Vt)
)
.

By Proposition 2.3.5, we deduce that

Λα,β
N,t

(
A,B,C,D

)
= lim

k→∞
Λα,β
k,N,t

(
A,B,C,D

)
(2.24)

where Λα,β
k,N,t

(
A,B,C,D

)
equals

ER
[ 1
N

∑
1≤s,r≤N

τkN ⊗ τM
(
Es,r ⊗ Ik ⊗ IM (AeiβyPB)(Uk

t ) Er,s ⊗ Ik ⊗ IM (CeiαyPD)(Uk
t )
)]

−τM
(
ER

[
τkN ⊗ IM(AeiβyPB)(Uk

t )
]
ER

[
τkN ⊗ IM(CeiαyPD)(Uk

t ))
] )

(2.25)

We can now prove the following intermediary lemma in view of deriving Lemma 2.3.4.

Lemma 2.3.6. Define Uk
t as in Proposition 2.3.5, and let

• P1,2 = IN ⊗ E1,2 ⊗ IM ,

• Q = (AeiβyPB)(Uk
t ),

• T = (CeiαyPD)(Uk
t ).

Then there is a constant C and a polynomial L ∈ R+[X, Y ] which only depend on A,B,C,D

and P such that with
∥∥∥ZNM

∥∥∥ = sup
1≤i≤q

∥∥∥ZNM
i

∥∥∥ and
∥∥∥XN

∥∥∥ = sup
1≤i≤d

∥∥∥XN
i

∥∥∥, for any α, β ∈ [0, 1],

M,N ∈ N, t ∈ R+ and y ∈ R,

|Λα,β
k,N,t

(
A,B,C,D

)
| ≤ (1 + y2)M2

N2 L
(∥∥∥ZNM

∥∥∥ , ∥∥∥XN
∥∥∥) (2.26)

+ k3 |τM (ER [(τkN ⊗ IM)(QP1,2)]ER [(τkN ⊗ IM)(TP1,2)])| .

Proof. We denote in short Λα,β
k,N,t

(
A,B,C,D

)
= Λk,N,M = τM (ER[Γk,N,M ])−Θk,N,M with

Γk,N,M = 1
N

∑
1≤s,r≤N

τkN ⊗ IM (Es,r ⊗ Ik ⊗ IM Q Er,s ⊗ Ik ⊗ IM T )

Θk,N,M = τM
(
ER [τkN ⊗ IMQ]ER [τkN ⊗ IM(T ))]

)
(2.27)

Let (gi)i∈[1,N ] and (fi)i∈[1,k] be the canonical basis of CN and Ck, Ei,j is the matrix whose only
non-zero coefficient is (i, j) and this coefficient has value 1, the size of the matrix Ei,j will

42



2.3. Proof of Theorem 2.1.1

depend on the context. We use the fact that Er,s = grg
∗
s and Ik = ∑

lEl,l with El,l = f ∗l fl to
deduce that

Γk,N,M = 1
N

∑
1≤s,r≤N

∑
1≤l,l′≤k

τkN ⊗ IM (Es,r ⊗ El,l ⊗ IM Q Er,s ⊗ El′,l′ ⊗ IM T )

= 1
N2k

∑
1≤l,l′≤k

∑
1≤r≤N

g∗r ⊗ f ∗l ⊗ IM Q gr ⊗ fl′ ⊗ IM
∑

1≤s≤N
g∗s ⊗ f ∗l′ ⊗ IM T gs ⊗ fl ⊗ IM

= 1
k

∑
1≤l,l′≤k

(τN ⊗ IM) (IN ⊗ f ∗l ⊗ IM Q IN ⊗ fl′ ⊗ IM)

× (τN ⊗ IM) (IN ⊗ f ∗l′ ⊗ IM T IN ⊗ fl ⊗ IM)
= k

∑
1≤l,l′≤k

(τkN ⊗ IM)
(
Q IN ⊗ El′,l ⊗ IM

)
(τkN ⊗ IM)

(
T IN ⊗ El,l′ ⊗ IM

)
. (2.28)

The last line of the above equation prompts us to set Pl′,l = IN ⊗El′,l ⊗ IM . If (ei)i∈[1,M ] is the
canonical basis of CM , we set

F q
l,l′,u,v(RkN) = e∗u (τkN ⊗ IM)

(
q
(
(e−t/2XN ⊗ Ik + (1− e−t

Nk
)1/2RkN)⊗ IM , ZNM , ZNM ∗

)
Pl′,l

)
ev

with q = Q = AeiβyPB or q = T = CeiαyPD. We thus have with (2.28)

τM (ER [Γk,N,M ]) = k
∑

1≤l,l′≤k
τM

(
ER

[
(τkN ⊗ IM)

(
Q Pl′,l

)
(τkN ⊗ IM)

(
T Pl,l′

)])
(2.29)

= k

M

∑
1≤l,l′≤k

1≤u,v≤M

CovR
(
FQ
l,l′,u,v(RkN), F T

l′,l,u,v(RkN)
)

+k
∑

1≤l,l′≤k
τM

(
ER

[
(τkN ⊗ IM)

(
Q Pl′,l

)]
ER

[
(τkN ⊗ IM)

(
T Pl,l′

)])
.

However, the law of Uk
t is invariant under conjugation by IN ⊗ U ⊗ IM , where U ∈ Mk(C)

is a permutation matrix. Therefore, if l = l′, ER[τkN(Q Pl′,l)] = ER[τkN(Q P1,1)], and if
l 6= l′, ER[τkN(Q Pl′,l)] = ER[τkN(Q P1,2)]. We get the same equation when replacing Q by T .
Consequently, we get

k
∑

1≤l,l′≤k
ER
[
(τkN ⊗ IM)

(
Q Pl′,l

)]
ER
[
(τkN ⊗ IM)

(
T Pl,l′

)]
= k2 ER[(τkN ⊗ IM)(QP1,1)] ER[(τkN ⊗ IM)(TP1,1)]
+(k − 1)k2 ER[(τkN ⊗ IM)(QP1,2)] ER[(τkN ⊗ IM)(TP1,2)].

where the trace τM of the first term in the right hand side equals Θk,N,M = τM(ER[(τkN ⊗
IM)(Q)]ER[(τkN ⊗ IM)(T )]) because IM = ∑

l Pl,l. Thus equation (2.29) yields

|Λk,N,M | ≤
k

M

∑
1≤l,l′≤k

1≤u,v≤M

∣∣∣CovR
(
FQ
l,l′,u,v(RkN), F T

l′,l,u,v(RkN)
)∣∣∣ (2.30)

+
∣∣∣∣k3τM

(
ER[(τkN ⊗ IM)(QP1,2)] ER[(τkN ⊗ IM)(TP1,2)]

)∣∣∣∣ .
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Hence, we only need to bound the first term to complete the proof of the lemma. Thanks
to Cauchy-Schwartz’s inequality, it is enough to bound the covariance of F q

l,l′,u,v(RkN), for
q = Q and T . To study these variances, we shall use the Poincaré inequality, see Proposition
2.2.9. If we set xir,s and yir,s the real and imaginary part of

√
2kN(RkN

i )r,s for r < s and
xir,r =

√
kN(RkN

i )r,r, then these are real centered Gaussian random variables of variance 1 and
one can view F q

l,l′,u,v as a function on (xir,s)r≤s,i and (yir,s)r<s,i. By a computation similar to
(2.18), we find

kN

1− e−t
∥∥∥∇F q

l,l′,u,v

∥∥∥2

2
=
∑
i

∑
1≤r,s≤kN

e∗u (τkN ⊗ IM)
(
∂iq#Er,s ⊗ IM Pl′,l

)
ev (2.31)

×e∗v (τkN ⊗ IM)
(
∂iq#Er,s ⊗ IM Pl′,l

)∗
eu.

It is worth noting that here the matrices Er,s have size kN in this formula. Thanks to Poincaré
inequality (see Proposition 2.2.9), we deduce

k

M

∑
1≤u,v≤M

VarR(F q
l,l′,u,v(RkN)) ≤ k

M

∑
1≤u,v≤M

E
[∥∥∥∇F q

l,l′,u,v

∥∥∥2

2

]

≤ 1
N

∑
i

∑
1≤r,s≤kN

ER

 1
M

∑
1≤u,v≤M

e∗u (τkN ⊗ IM)
(
∂iq#Er,s ⊗ IM Pl′,l

)
eve
∗
v (2.32)

× (τkN ⊗ IM)
(
∂iq#Er,s ⊗ IM Pl′,l

)∗
eu


≤ 1
N

∑
i

∑
1≤r,s≤kN

ER
[
τM

(
(τkN ⊗ IM)

(
∂iq#Er,s ⊗ IM Pl′,l

)

× (τkN ⊗ IM)
(
∂iq#Er,s ⊗ IM Pl′,l

)∗)]
.

Moreover we have, if el is an orthornormal basis of Ck,

∑
1≤l,l′≤k

τM

(
(τkN ⊗ IM)

(
∂iq#Er,s ⊗ IM Pl′,l

)
(τkN ⊗ IM)

(
∂iq#Er,s ⊗ IM Pl′,l

)∗)

= 1
k2

∑
1≤l,l′≤k

τM

e∗l ⊗ IM (τN ⊗ Ik ⊗ IM)
(
∂iq#Er,s ⊗ IM

)
el′e
∗
l′ ⊗ IM (2.33)

(τN ⊗ Ik ⊗ IM)
(
∂iq#Er,s ⊗ IM

)∗
el ⊗ IM


= 1
k
τk ⊗ τM

(
(τN ⊗ Ik ⊗ IM)

(
∂iq#Er,s ⊗ IM

)
(τN ⊗ Ik ⊗ IM)

(
∂iq#Er,s ⊗ IM

)∗)
.

Hence by combining equations (2.32) and (2.33) we have proved that
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k

M

∑
1≤l,l′≤k

1≤u,v≤M

VarR
(
F q
l,l′,v,u(RkN)

)

≤ 1
kN

∑
i

∑
1≤r,s≤kN

ER
[
τk ⊗ τM

(
(τN ⊗ IkM)

(
∂iq#Er,s ⊗ IM

)
(τN ⊗ IkM)

(
∂iq#Er,s ⊗ IM

)∗)]
(2.34)

Moreover, let us remind that, with the convention A× (B ⊗C)×D = (AB)⊗ (CD), we have
(for q = Q = AeiβyPB but with obvious changes for q = T )

∂iq = ∂iA eiβyP B + iβyA
∫ 1

0
ei(1−u)βyP ∂iP eiuβyP Bdu+ A eiβyP ∂iB.

Consequently, (2.34) is a finite linear combination of terms of the three following types Qi
N =

ER[qiN ], 1 ≤ i ≤ 3, with

q1
N = 1

kN

∑
1≤r,s≤kN

τk ⊗ τM
(

(τN ⊗ IkM)
(
A1Er,s ⊗ IM A2e

iβyP A3

)

(τN ⊗ IkM)
(
B3Es,r ⊗ IM B2e

−iβyP B1

))
,

q2
N = βy

kN

∫ 1

0

∑
1≤r,s≤kN

τk ⊗ τM

(τN ⊗ IkM)
(
A1e

i(1−u)βyP A2Er,s ⊗ IM A3e
iuβyP A4

)

(τN ⊗ IkM)
(
B3 Es,r ⊗ IM B2e

−iβyP B1

)du,

q3
N = (βy)2

kN

∫ 1

0

∫ 1

0

∑
1≤r,s≤kN

τk⊗τM

(τN ⊗ IkM)
(
A1e

i(1−u)βyP A2Er,s ⊗ IM A3e
iuβyP A4

)
(2.35)

(τN ⊗ IkM)
(
B4e

−ivβyP B3Es,r ⊗ IM B2e
−i(1−v)βyP B1

)du dv,

where the Ai and Bi are monomials in Uk
t . Besides the coefficients of this linear combination

only depend on A,B and P . We first show how to estimate q3
N . Let us recall that we set

(ei)1≤i≤N , (fi)1≤i≤k and (gi)1≤i≤M as the canonical basis of CM , Ck and CN . Then, for any
matrices A,B,C,D ∈MN(C)⊗Mk(C)⊗MM(C), we have
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∑
1≤r,s≤kN

TrkM

TrN ⊗IkM
(
A Er,s ⊗ IM B

)
× TrN ⊗IkM

(
C Es,r ⊗ IM D

) (2.36)

=
∑

1≤a,b,r1,s1≤N
1≤c,d,r2,s2≤k
1≤e,f,g,h≤M

g∗a ⊗ f ∗c ⊗ e∗e A gr1 ⊗ fr2 ⊗ ef × g∗s1 ⊗ f
∗
s2 ⊗ e

∗
f B ga ⊗ fd ⊗ eg

× g∗b ⊗ f ∗d ⊗ e∗g C gs1 ⊗ fs2 ⊗ eh × g∗r1 ⊗ f
∗
r2 ⊗ e

∗
h D gb ⊗ fc ⊗ ee

=
∑

1≤a≤N
1≤c,d≤k

1≤e,f,g,h≤M

g∗a ⊗ f ∗c ⊗ e∗e A IN ⊗ Ik ⊗ (efe∗h) D IN ⊗ (fcf ∗d )⊗ (eee∗g)

× C IN ⊗ Ik ⊗ (ehe∗f ) B ga ⊗ fd ⊗ eg

=
∑

1≤u,v≤M
TrN

(
IN ⊗ TrkM(A IkN ⊗ eue∗v D) IN ⊗ TrkM(C IkN ⊗ eve∗u B)

)
.

Let KM be a GUE matrix of size M , independent of everything else. Performing a Gaussian
integration by part, we get

1
M

∑
1≤u,v≤M

TrN
(
IN ⊗ TrkM(A IkN ⊗ eue∗v D) IN ⊗ TrkM(C IkN ⊗ eve∗u B)

)
(2.37)

= EK

TrN

IN ⊗ TrkM
(
A IkN ⊗KM D

)
IN ⊗ TrkM

(
C IkN ⊗KM B

).
Consequently by combining equations (2.36) and (2.37), we have

q3
N =

(
βyM

N

)2 ∫ 1

0

∫ 1

0
EK

τN
(IN ⊗ τkM)

(
A1e

i(1−u)βyPA2 IkN ⊗KM B2e
−i(1−v)βyPB1

)

× (IN ⊗ τkM)
(
B4e

−ivβyPB3 IkN ⊗KM A3e
iuβyPA4

)du dv.
Since P is self-adjoint, we know that for any real r,

∥∥∥ei rP (Ukt )
∥∥∥ = 1. Besides ‖IN ⊗ τkM(A)‖ ≤

‖A‖, thus we can bound q3
N in (2.35) by

|q3
N | ≤

(
yM

N

)2
‖A1‖ ‖A2‖ ‖A3‖ ‖A4‖ ‖B1‖ ‖B2‖ ‖B3‖ ‖B4‖ EK

[
‖KM‖2

]
. (2.38)

Finally, by [15], EK
[
‖KM‖2

]
is bounded by 3. One can bound similarly q1

N and q2
N , the only

difference on the final result is that we would have 1 or y instead of y2. Finally after taking the
expectation with respect to RkN in equation (2.38) and using Proposition 2.2.11, we deduce
that there exists S which only depends on A,B and P , hence is independent of N,M, y, t, α or
β, such that the covariance in (2.34) is bounded by
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k

M

∑
1≤l,l′≤k

1≤u,v≤M

VarR
(
F q
l,l′,v,u(RkN)

)
≤ (1 + y2)M2

N2 S
(∥∥∥XN

∥∥∥ , ∥∥∥ZNM
∥∥∥) .

Thus, we deduce that there exists a polynomial H which only depends on A,B,C,D and
P such that the first term in the right hand side of (2.30) is bounded by

k

M

∑
1≤l,l′≤k

1≤u,v≤M

∣∣∣CovR
(
FQ
l,l′,u,v(RkN), F T

l′,l,u,v(RkN)
)∣∣∣ ≤ (1 + y2)M2

N2 H
(∥∥∥XN

∥∥∥ , ∥∥∥ZNM
∥∥∥) . (2.39)

This completes the proof of the Lemma in the general case. For the specific case where ZNM =
(IN ⊗ Y M

1 , . . . , IN ⊗ Y M
q ) and that these matrices commute, we can get better estimate in

equation (2.38) thanks to a refinement of equation (2.37). Indeed if A,B,C,D are monomials
in Uk

t , then we can write A = A1⊗A2 in MkN(C)⊗MM(C) and likewise for B,C,D such that
A2, B2, C2, D2 commute. Thus,

1
M

∑
1≤u,v≤M

TrN
(
IN ⊗ TrkM(A IkN ⊗ eue∗v D) IN ⊗ TrkM(C IkN ⊗ eve∗u B)

)

= 1
M

TrN
(
IN ⊗ Trk(A1D1) IN ⊗ Trk(C1B1)

) ∑
1≤u,v≤M

TrM(A2 eue
∗
v D2) TrM(C2 eue

∗
v B2)

= 1
M

TrN
(
IN ⊗ Trk(A1D1) IN ⊗ Trk(C1B1)

)
TrM(D2A2B2C2)

= 1
M

TrN
(
IN ⊗ Trk(A1D1) IN ⊗ Trk(C1B1)

)
TrM(A2D2C2B2)

= 1
M

TrNM
(
INM ⊗ Trk(AD) INM ⊗ Trk(CB)

)
.

By linearity and density this equality is true if we assume that A,B,C,D are power series in
Uk
t . Thus combining this equality with equation (2.36), we get that in this case

|q3
N | ≤

(
y

N

)2
‖A1‖ ‖A2‖ ‖A3‖ ‖A4‖ ‖B1‖ ‖B2‖ ‖B3‖ ‖B4‖ .

The same argument as in the general case applies and the proof follows.

In order to prove Lemma 2.3.4, we show in the following lemma that the term appearing in
the second line of equation (2.26) vanishes.

Lemma 2.3.7. Let Uk
t , P1,2, Q and T be defined as in Lemma 2.3.6, then PXN -almost surely,

lim
k→∞

k3τM (ER [(τkN ⊗ IM)(QP1,2)]ER [(τkN ⊗ IM)(TP1,2)]) = 0.

Proof. It is enough to show that given y ∈ R and monomial A and B, we have

lim
k→∞

k3/2ER
[
(τkN ⊗ IM)((A eiyP B)(Uk

t ) P1,2)
]

= 0.

47



Chapter 2. On the operator norm of noncommutative polynomials in deterministic
matrices and iid GUE matrices

For this purpose, let us define for monomials A,B and y ≥ 0

fA,B(y) = ER
[
(TrkN ⊗IM)((A eiyP B)(Uk

t ) P1,2)
]
.

We want to show that fA,B goes to zero faster than k−1/2. We first show that we can reduce
the problem to the case y = 0. To this end, we also define

dn(y) = sup
deg(A)+deg(B)≤n

‖fA,B(y)‖ .

We know thanks to Proposition 2.2.11 that there exist constants α and C such that for any i
and n ≤ αkN/2,

E
[∥∥∥RkN

i

∥∥∥n] ≤ Cn.

Besides, with as previously (fi)i∈[1,k] the canonical basis of Ck,∥∥∥(TrkN ⊗IM)((A eiyP B)(Uk
t ) P1,2)

∥∥∥ =
∥∥∥(TrN ⊗IM)(f ∗2 ⊗ IMN (A eiyP B)(Uk

t ) f1 ⊗ IMN)
∥∥∥

≤ N ×
∥∥∥f ∗2 ⊗ IMN (A eiyP B)(Uk

t ) f1 ⊗ IMN

∥∥∥
≤ N ×

∥∥∥A(Uk
t )
∥∥∥ ∥∥∥B(Uk

t )
∥∥∥ .

Consequently, PXN -almost surely, there exist constants γ and D (which do depend on, N ,
∥∥∥XN

∥∥∥
and

∥∥∥ZNM
∥∥∥) such that for any n ≤ γk,

dn(y) ≤ Dn. (2.40)

It is important to point out that this constant D can be very large when N is, it does not
matter since, in the end, we will show that this quantity will go towards 0 when k goes to
infinity and the other parameters such as N,M or y are fixed. Next, we define

gk,a(y) =
∑

0≤n≤γk
dn(y)an.

But we have
dfA,B(y)
dy

= iER
[
(TrkN ⊗IM)((A PeiyP B)(Uk

t ) P1,2)
]

so that if we set cL(P ) to be the coefficient associated to the monomial L in P , P = ∑
cL(P )L,∣∣∣∣∣dfA,B(y)

dy

∣∣∣∣∣ ≤ ∑
L monomials

|cL(P )| ddeg(A)+deg(B)+deg(L)(y).

Thus, for any y ≥ 0, any monomials A,B with deg(A) + deg(B) = n,

fA,B(y) ≤ fA,B(0) +
∑

L monomials
|cL(P )|

∫ y

0
dn+deg(L)(u) du.

Therefore, we have for y ≥ 0 and any n ≥ 0,

andn(y) ≤ andn(0) +
∑

L monomials
|cL(P )|a− deg(L)

∫ y

0
dn+deg(L)(u)an+deg(L) du.
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And with ‖.‖a−1 defined as in (2.7), thanks to (2.40), we find a finite constant ca independent
of k such that

gk,a(y) ≤ gk,a(0) + ca(aD)γk + ‖P‖a−1

∫ y

0
gk,a(u)du,

As a consequence of Gronwall’s inequality, we deduce that for y ≥ 0,

gk,a(y) ≤
(
gk,a(0) + ca(aD)γk

)
ey‖P‖a−1 . (2.41)

Next we will prove that for a small enough, gk,a(0) = O(1/k). Then at the cost of by replacing
P by −P , thanks to equation (2.41) we have that for a small enough and any y ∈ R, gk,a(y) =
O(1/k). This completes the proof since with A,B,C,D as in Lemma 2.3.6, for a small enough
and k large enough ∣∣∣k3τM (ER [(τkN ⊗ IM)(QP1,2)]ER [(τkN ⊗ IM)(TP1,2)])

∣∣∣
≤ k × ddeg(A)+deg(B)(βy)ddeg(C)+deg(D)(αy)
≤ k × a− deg(A)−deg(B)−deg(C)−deg(D)gk,a(βy) gk,a(αy)

Hence, it is enough to find an estimate on gk,a(0). First for any j, one can write ZNM
j =∑

1≤u,v≤N Eu,v ⊗ Ik ⊗ Aju,v for some matrices Aju,v, then we define

UN,k =
(
RkN , XN ⊗ Ik, (Eu,v ⊗ Ik)u,v

)
, cn = sup

deg(L)≤n, L monomial
|ER [TrkN(L(UN,k) P1,2)]| .

Note that since we are taking the trace of L(UN,k)P1,2 with P1,2 = IN ⊗ f1f
∗
2 ⊗ IM , we have

c0 = c1 = 0. We consider K the supremum over u, v, j of
∥∥∥Aju,v∥∥∥, we also assume without loss

of generality that K ≥ 1. Thus, since

ZNM
j =

∑
1≤u,v≤N

Eu,v ⊗ Ik ⊗ Aju,v, XN
t = e−t/2XN ⊗ Ik + (1− e−t)1/2RkN ,

if L is a monomial in Uk
t = (XN

t ⊗ IM , ZNM ⊗ Ik, ZNM ∗ ⊗ Ik) of degree n, then we can view
L(Uk

t ) as a sum of at most 2nN2n monomials in e−t/2XN ⊗ Ik, (1− e−t)1/2RkN , Eu,v⊗ Ik⊗Aju,v,
Ev,u ⊗ Ik ⊗ Aju,v

∗. Consequently, since supu,v,j
∥∥∥Aju,v∥∥∥ ≤ K, we have∥∥∥ER [TrkN ⊗IM(L(Uk
t )P1,2)

]∥∥∥ ≤ 2nN2nKncn.

Thus, if we set
fp(a) =

∑
0≤n≤p

cna
n,

we have
gk,a(0) ≤ fγk(2N2Ka). (2.42)

Now we need to study the behaviour of fk(a) when k goes to infinity for a small enough.
In order to do so, let us consider a monomial L in UN,k. Since XN ⊗ Ik and Eu,v ⊗ Ik commute
with P1,2, one can assume that L = RkN

i S for some i (unless L is a monomial in XN ⊗ Ik
and Eu,v ⊗ Ik in which case TrkN(LP1,2) = 0), thus thanks to Schwinger-Dyson equation (see
Proposition 2.2.10),
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ER [TrkN(LP1,2)] = 1
Nk

ER [TrkN ⊗TrkN(∂i(SP1,2))] = 1
Nk

∑
S=URiV

E[TrNk(U) TrNk(V P1,2)].

(2.43)
To use this Schwinger-Dyson equation as an inductive bound we shall use Poincaré inequality
to bound the covariance in the above right hand side.We hence compute for any monomial V ,

‖∇TrkN(V P1,2)‖2
2 = 1

Nk

∑
i

∑
r,s

TrkN(∂sV#Er,sP1,2) TrkN(∂sV#Es,rP1,2)∗

=
∑
i

∑
V=ARiB,V=CRiD

1
Nk

TrkN(BP1,2AC
∗P ∗1,2D

∗) (2.44)

Thus with Θ = max
{
C,
∥∥∥XN

∥∥∥ , 1}, since P1,2 is of rank N , we get

VarR(TrkN(V P1,2)) ≤ 1
k

(deg V )2Θ2 deg V .

Likewise, for any monomial U , we find

VarR(TrkN(U)) ≤ (degU)2Θ2 degU .

Therefore, if n is the degree of L, we deduce from (2.44), (2.43) and Poincaré inequality that

|ER [TrkN(LP1,2)]| ≤ 1
k3/2N

n−2∑
i=0

i(n− 2− i)Θn +
∑

S=URiV

∣∣∣∣ 1
Nk

ER[TrkN(U)]ER[TrkN(V P1,2)]
∣∣∣∣

≤ n3Θn

k3/2N
+

∑
S=URiV

|ER[TrkN(V P1,2)]|ΘdegU .

By replacing D by max{D,Θ}, we can always assume that Θ < D. We also bound N−1 by 1,
thus for n ≥ 2,

cn ≤
n3Dn

k3/2 +
n−2∑
i=0

ciD
n−2−i.

We use this estimate to bound fg(a) with g such that g3Dg ≤
√
k. Since c0 = c1 = 0 and for

any n ≤ g, n3Dnk−3/2 ≤ k−1, we have for aD < 1

fg(a) =
g∑

n=2
cna

n ≤ 1
k
× a2 − ag+1

1− a + a2
g−2∑
m=0

m∑
n=0

ciD
n−ian ≤ 1

k
× a2

1− a + a2 fg(a)
1−Da.

Thus, for a small enough,

fg(a) ≤ (1−Da)a2

(1− a)(1−Da− a2) ×
1
k
.

50



2.3. Proof of Theorem 2.1.1

Besides, we want g such that g3Dg ≤
√
k, hence we can take g the integer part of ln k

2(lnD+3) .
Since by definition we have cn ≤ Θn, this also means that cn ≤ Dn, thus

∑
g<n≤γk

cna
n ≤

∑
n>g

(Da)n ≤ (Da)g+1

1−Da ≤ k
ln(Da)

2(lnD+3) × 1
1−Da.

Thus, if we fix a small enough, fγk(a) = O(1/k). Hence, we deduce from (2.42) that for a small
enough (depending on N,K but not k) there exists a finite constant C independent of k such
that

gk,a(0) ≤ fk(2N2Ka) ≤ C

k
.

We can now prove Theorem 2.1.1.

Proof of Theorem 2.1.1. It is based on Theorem 2.3.1. To use it, we would like to take the
Fourier transform of f and use Fourier inversion formula. However we did not assume that f
is integrable. Thus the first step of the proof is to show that up to a term of order e−N , we
can assume that f has compact support. Thanks to Proposition 2.2.11, there exist constants
D and α such that for any N and i, for any u ≥ 0,

P
(∥∥∥XN

i

∥∥∥ ≥ u+D
)
≤ e−αuN .

Thus, there exist constants C and K, independent of M,N,P and f , such that

∣∣∣∣E [ 1
MN

Tr
(
f
(
P
(
XN ⊗ IM , ZNM , ZNM ∗

)) )
1{∃i,‖XN

i ‖>D+1}
]∣∣∣∣

≤ E
[∥∥∥f (P (XN ⊗ IM , ZNM , ZNM ∗

))∥∥∥1{∃i,‖XN
i ‖>D+1}

]
≤ ‖f‖∞ P

(
∃i,

∥∥∥XN
i

∥∥∥ > D + 1
)

≤ C ‖f‖∞ e
−KN .

There exists a polynomial H ∈ R+[X] which only depends on P such that
∥∥∥P (XN ⊗ IM , ZNM , ZNM ∗

)∥∥∥1{∀i,‖XN
i ‖≤D+1} ≤ H

(∥∥∥ZNM
∥∥∥) .

We can also assume that
∥∥∥P (x⊗ IM , ZNM , ZNM ∗)

∥∥∥ ≤ H
(∥∥∥ZNM

∥∥∥). We take g a C∞-function
which takes value 1 on [−H

(∥∥∥ZNM
∥∥∥) , H (∥∥∥ZNM

∥∥∥)], 0 on [−H
(∥∥∥ZNM

∥∥∥)− 1, H
(∥∥∥ZNM

∥∥∥)+ 1]c
and belongs to [0, 1] elsewhere. From the bound above, we deduce
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∣∣∣∣E [ 1
MN

Tr
(
f
(
P
(
XN ⊗ IM , ZNM , ZNM ∗

)) )]
− τ

(
f
(
P
(
x⊗ IM , ZNM , ZNM ∗

)) )∣∣∣∣
≤

∣∣∣∣∣∣E
[ 1
MN

Tr
(
f
(
P
(
XN ⊗ IM , ZNM , ZNM ∗

)) )
1{∀i,‖XN

i ‖≤D+1}
]

− τ
(
f
(
P
(
x⊗ IM , ZNM , ZNM ∗

)) )∣∣∣∣∣∣+ C ‖f‖∞ e
−KN (2.45)

≤

∣∣∣∣∣∣E
[ 1
MN

Tr
(

(fg)
(
P
(
XN ⊗ IM , ZNM , ZNM ∗

)) )]

− τ
(

(fg)
(
P
(
x⊗ IM , ZNM , ZNM ∗

)) )∣∣∣∣∣∣+ 2C ‖f‖∞ e
−KN .

Since fg has compact support and can be differentiated six times, we can take its Fourier
transform and then invert it so that with the convention ĥ(y) = 1

2π
∫
R h(x)e−ixydx, we have

∀x ∈ R, (fg)(x) =
∫
R
eixyf̂ g(y) dy.

Besides, since if h has compact support bounded by K then
∥∥∥ĥ∥∥∥

∞
≤ 2K ‖h‖∞, we have

∫
R
(|y|+ y4)

∣∣∣f̂ g(y)
∣∣∣ dy ≤ ∫

R

|y|+ |y|3 + y4 + y6

1 + y2

∣∣∣f̂ g(y)
∣∣∣ dy

≤
∫
R

∣∣∣∣(̂fg)(1)(y)
∣∣∣∣+ ∣∣∣∣(̂fg)(3)(y)

∣∣∣∣+ ∣∣∣∣(̂fg)(4)(y)
∣∣∣∣+ ∣∣∣∣(̂fg)(6)(y)

∣∣∣∣
1 + y2 dy

≤ 2
(
H
(∥∥∥ZNM

∥∥∥)+ 1
)
‖fg‖C6

∫
R

1
1 + y2 dy

≤ C
(
H
(∥∥∥ZNM

∥∥∥)+ 1
)
‖f‖C6 ,

for some absolute constant C. Hence fg satisfies the hypothesis of Theorem 2.3.1 with µ(dy) =
f̂ g(y)dy. Therefore, combining with equation (2.45), we conclude that

∣∣∣∣E [ 1
MN

Tr
(
f
(
P
(
XN ⊗ IM , ZNM , ZNM ∗

)) )]
− τ

(
f
(
P
(
x⊗ IM , ZNM , ZNM ∗

)) )∣∣∣∣
≤ ‖f‖∞ e

−KN + M2

N2 LP
(∥∥∥ZNM

∥∥∥) ∫
R
(|y|+ y4)

∣∣∣f̂ g(y)
∣∣∣ dy

≤ M2

N2

(
CLP

(∥∥∥ZNM
∥∥∥) (H (∥∥∥ZNM

∥∥∥)+ 1
)

+ e−KN
)
‖f‖C6 .
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2.4 Consequences of the main result
In this section, we deduce Corollaries 2.1.3 and 2.1.4, as well as Theorems 2.1.2 and 2.1.5.

2.4.1 Proof of Corollary 2.1.3
We could directly apply Theorem 2.1.1 to fz : x → (z − x)−1, however we have ‖f‖C6 =

O ((=z)7) when we want an exponent 5. Since GP (x)(z) = GP (x)(z) we can assume that =z < 0,
but then

fz(x) =
∫ ∞

0
eixy (ie−iyz) dy.

Consequently, with µz(dy) = ie−iyz dy, we have

∫ ∞
0

(y + y4) d|µz|(y) = 1
|=z|2

+ 24
|=z|5

.

Thus, by applying Theorem 2.3.1 with ZNM =
(
IN ⊗ Y M

1 , . . . , IN ⊗ Y M
p

)
, P and fz, we have

∣∣∣E [GP (XN⊗IM ,IN⊗YM )(z)
]
−GP (x⊗IM ,IN⊗YM )(z)

∣∣∣ ≤ M2

N2 LP
(∥∥∥ZNM

∥∥∥) ∫
R
(1 + y4) d|µz|(y).

Now since ∥∥∥ZNM
∥∥∥ = sup

1≤i≤p

∥∥∥Y M
i

∥∥∥ =
∥∥∥Y M

∥∥∥
which does not depend on N , we get the desired estimate

∣∣∣E [GP (XN⊗IM ,IN⊗YM )(z)
]
−GP (x⊗IM ,IN⊗YM )(z)

∣∣∣ ≤ M2

N2 LP
(∥∥∥Y M

∥∥∥)( 1
|=z|2

+ 24
|=z|5

)
.

2.4.2 Proof of Corollary 2.1.4
Let f : R→ R be a Lipschitz function uniformly bounded by 1 and with Lipschitz constant

at most 1. We want to bound from above the quantity

∆N,M(f) =
∣∣∣∣∣∣E
[ 1
MN

TrNM
(
f
(
P
(
XN ⊗ IM , IN ⊗ YM

)) )]
−τ⊗τM

(
f (P (x⊗ IM , IN ⊗ YM))

)∣∣∣∣∣∣
(2.46)

Firstly, one can see that with the same argument as in the proof of Theorem 2.1.1 (in particular
equation (2.45)), we can assume that the support of f is bounded by a constant S = H(

∥∥∥Y M
∥∥∥)

for some polynomial H independent of everything. However, we cannot apply directly Theorem
2.1.1 since f is not regular enough. In order to deal with this issue we use the convolution with
Gaussian random variable, thus let G be a centered Gaussian random variable, we set

fε : x→ E[f(x+ εG)].
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Since f has Lipschitz constant 1, we have for any x ∈ R,

|E[f(x+ εG)]− f(x)| ≤ ε.

Since fε is regular enough we could now apply Theorem 2.1.1, however we a get better result
by using Theorem 2.3.1. Indeed we have

fε(x) = 1√
2π

∫
R
f(x+ εy)e−y2/2 dy

= 1√
2π

∫
R
f(y)e

− (x−y)2

2ε2

ε
dy

= 1
2π

∫
R
f(y)

∫
R
ei(x−y)ue−(uε)2/2 du dy.

Since the support of f is bounded, we can apply Fubini’s Theorem:

fε(x) = 1
2π

∫
R
eiux

∫
R
f(y)e−iyu dy e−(uε)2/2 du.

And so with the convention ĥ(u) = 1
2π
∫
R h(y)e−iuydy, we have

fε(x) =
∫
R
eiuxf̂(u)e−(uε)2/2 du.

Thus, if we set µε(dy) = f̂(y)e−(yε)2/2 dy, then, since ‖f‖∞ ≤ 1,∫
R
(1 + y4)d|µε|(y) ≤ 2S

∫
R
(1 + y4)e−y2/2 dy ε−5.

Consequently, we can apply Theorem 2.3.1 with fε and since ‖f − fε‖∞ ≤ ε, there exists a
polynomial RP such that the difference in (2.46) can be bounded by:

∆N,M(f) ≤ 2ε+RP

(∥∥∥Y M
∥∥∥) M2

N2ε5 .

We finally choose ε = N−1/3 to get the desired bound

∆N,M(f) ≤ 2RP

(∥∥∥Y M
∥∥∥) M2

N1/3 .

2.4.3 Proof of Theorem 2.1.2
Firstly, we need to define properly the operator norm of tensor of C∗-algebras. When writing

the proof it appears that we should work with the minimal tensor product.

Definition 2.4.1. Let A and B be C∗-algebras with faithful representations (HA, φA) and
(HB, φB), then if ⊗2 is the tensor product of Hilbert spaces, A ⊗min B is the completion of
the image of φA ⊗ φB in B(HA ⊗2 HB) for the operator norm in this space. This definition is
independent of the representations that we fixed.

The following two lemmas are well known facts in operator algebra. The first one is Lemma
4.1.8 from [75]:
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Lemma 2.4.2. Let (A, τA) and (B, τB) be C∗-algebra with faithful traces, then τA ⊗ τB extends
uniquely to a faithful trace τA ⊗min τB on A⊗min B.

We did not find a reference with an explicit proof for the following Lemma, so we give our
own. In order to learn more about this second lemma, especially how to weaken the hypothesis,
we refer to [31].

Lemma 2.4.3. Let C be an exact C∗-algebra endowed with a faithful state τC, let Y N ∈ AN be a
sequence of families of noncommutative random variables in a C∗-algebra AN which converges
strongly towards a family Y in a C∗-algebra A endowed with a faithful state τA. Let S ∈ C be a
family of noncommutative random variables, then the family (S⊗ 1, 1⊗Y N) converges strongly
in distribution towards the family (S ⊗ 1, 1⊗ Y ).

Proof. The following sets

M =
{

(xN)N∈N
∣∣∣∣∣ xN ∈ AN , sup

N≥0
‖xN‖ <∞

}
,

I =
{

(xN)N∈N ∈M
∣∣∣∣ lim
N→∞

‖xN‖ = 0
}
,

are C∗-algebras for the norm ‖x‖ = supN≥0 ‖xN‖. We also define

B = C∗ ((YN)N∈N , I) ,

the C∗-algebra generated by I and the family (YN)N∈N. Since I is a closed ideal of B, by
Theorem 3.1.4 of [76], B/I is a C∗-algebra for the quotient norm. We naturally have the
following exact sequence

0→ I → B → B/I → 0.

And by hypothesis, since C is exact, we have the following exact sequence

0→ C ⊗min I → C ⊗min B → C ⊗min (B/I)→ 0.

By definition, this means that (C ⊗min B)/(C ⊗min I) ' C ⊗min (B/I). If πI is the quotient map
from B to B/I, the isomorphism between these two spaces is

f : x+ C ⊗min I 7→ idC ⊗min πI(x).

Hence
f(P

(
1⊗ (YN)N∈N, S ⊗ 1

)
+ C ⊗min I) = P

(
1⊗ ((YN)N∈N + I), S ⊗ 1

)
. (2.47)

Let (H,ϕ) be a faithful representation of C, and (HN , ϕN) a faithful representation of AN . The
direct sum (⊕N∈NHN ,

⊕
N∈N ϕN) is a faithful representation ofM and consequently of B too.

More precisely, it is defined by

⊕
N∈N

HN =
{

(xN)N∈N
∣∣∣∣∣ xN ∈ HN ,

∑
N

‖xN‖2
2 <∞

}
.

Consequently, by definition of the spatial tensor product, it is the completion of the algebraic
tensor C ⊗ B in the operator space B (H ⊗2 (⊕NHN)) endowed with the operator norm. The
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notation ⊗2 means that we completed the algeraic tensor H ⊗ (⊕NHN) to make it a Hilbert
space. It is important to see that this space is isomorphic to ⊕N(H ⊗2 HN), indeed it means
that if P is a noncommutative polynomial, then∥∥∥P(1⊗ (YN)N∈N, S ⊗ 1

)∥∥∥
C⊗minB

= sup
N≥0

∥∥∥P(1⊗ YN , S ⊗ 1
)∥∥∥
C⊗minAN

.

Consequently by using the definition of the quotient norm, we have∥∥∥P(1⊗ (YN)N∈N, S ⊗ 1
)

+ C ⊗min I
∥∥∥

(C⊗minB)/(C⊗minI)
= limsup

N→∞

∥∥∥P(1⊗ YN , S ⊗ 1
)∥∥∥
C⊗minAN

.

(2.48)
Since f is a C∗-algebra isomorphism, thanks to (2.47), we have∥∥∥P(1⊗ (YN)N∈N, S ⊗ 1

)
+ C ⊗min I

∥∥∥
(C⊗minB)/(C⊗minI)

=
∥∥∥P(1⊗ ((YN)N∈N + I), S ⊗ 1

)∥∥∥
C⊗min(B/I)

.

By definition of I, if P is a noncommutative polynomial, we have

‖P ((YN)N∈N + I)‖B/I = ‖P (Y )‖A .

For our purposes, we can assume that A = C∗(Y ). Therefore the map

P ((YN)N∈N + I) ∈ C〈(YN)N∈N + I〉 7→ P (Y ) ∈ C〈Y 〉

is well-defined and is an isometry. Thus since C〈(YN)N∈N + I〉 is dense in B/I and C〈Y 〉 is
dense in A, this isometry extends into an isomorphism between B/I and A. Consequently∥∥∥P(1⊗ ((YN)N∈N + I), S ⊗ 1

)∥∥∥
C⊗min(B/I)

=
∥∥∥P(1⊗ Y, S ⊗ 1

)∥∥∥
C⊗minA

.

Thus, combined with (2.48), we have

limsup
N→∞

∥∥∥P(1⊗ YN , S ⊗ 1
)∥∥∥
C⊗minAN

=
∥∥∥P(1⊗ Y, S ⊗ 1

)∥∥∥
C⊗minA

. (2.49)

Finally let f be a function which takes value 0 on (−∞, ‖P (1⊗ Y, S ⊗ 1)‖C⊗minA − ε] and
positive value on (‖P (1⊗ Y, S ⊗ 1)‖C⊗minA− ε,∞). Since the family (S⊗ 1, 1⊗ Y N) converges
clearly in distribution towards the family (S ⊗ 1, 1⊗ Y ), we have

lim
N→∞

τC ⊗min τAN

(
f(P (1⊗ YN , S ⊗ 1))

)
= τC ⊗min τA

(
f(P (1⊗ Y, S ⊗ 1))

)
.

Thanks to Lemma 2.4.2, we know that τC ⊗min τA is faithful, consequently

τC ⊗min τA

(
f(P (1⊗ Y, S ⊗ 1))

)
> 0.

This means that for N large enough, τC⊗min τAN

(
f(P (1⊗YN , S⊗1))

)
> 0, thus for any ε > 0,

liminf
N→∞

∥∥∥P(1⊗ YN , S ⊗ 1
)∥∥∥
C⊗minAN

≥
∥∥∥P(1⊗ Y, S ⊗ 1

)∥∥∥
C⊗minA

− ε.

This allows to conclude with (2.49) that

56



2.4. Consequences of the main result

lim
N→∞

∥∥∥P(1⊗ YN , S ⊗ 1
)∥∥∥
C⊗minAN

=
∥∥∥P(1⊗ Y, S ⊗ 1

)∥∥∥
C⊗minA

.

In order to prove Theorem 2.1.2 we use well-known concentration properties of Gaussian
random variable coupled with an estimation of the expectation, let us begin by stating the
concentration properties (see [13] Lemma 2.3.3).

Proposition 2.4.4. Let G be a Lipschitz function on Rn with Lipschitz constant K for the `2-
norm ‖γ‖2 = (∑i γ

2
i )1/2, γ = (γ1, . . . , γn) independent centered Gaussian random variable of

variance 1. Then for all δ > 0,

P (G(γ)− E[G(γ)] ≥ δ) ≤ e−
δ2

2K2 .

In our situation, we have p independent GUE matrices (XN,i)s of size N , hence we fix γ the
random vector of size dN2 which consists of the union of (

√
NXN,i

s,s )i,s, (
√

2N <XN,i
s,r )s<r,i and

(
√

2N =XN,i
s,r )s<r,i which are indeed centered Gaussian random variable of variance 1 as stated

in Definition 2.2.8. We would like to apply Proposition 2.4.4 to

GN(γ) =
∥∥∥P ∗P (XN ⊗ IM , ZNM , ZNM ∗)

∥∥∥ .
However GN is not Lipschitz on RdN2 because of its polynomial behaviour at infinity. Hence we
cannot use directly Proposition 2.4.4. The following lemma is a well-known tool for this kind
of situation, the proof can be found in [77, Lemma 5.9].

Lemma 2.4.5. Let (X, d) be a metric space and µ a probability measure on (X, d) which
satisfies a concentration inequality, i.e. for all f : X → R with Lipschitz constant |f |L, for all
δ > 0,

µ
(
|f − µ(f)| ≥ δ

)
≤ e

−g
(

δ
|f |L

)
for some increasing function g on R+. Let B be a subset of X and |f |BL be the Lipschitz constant
of f as a function from B to R. Let δ(f) = µ( 1x∈Bc(|f(x)| + supu∈B |f(u)| + |f |BLd(x,B)) ),
then

µ
(
|f − µ(f)| ≥ δ + δ(f)

)
≤ µ(Bc) + e

−g
(

δ

|f |BL

)
.

We can now prove the concentration inequality that we will use in the rest of this paper.
To simplify notations we will write M instead of MN . We also set ZNM = (ZN ⊗ IM , IN ⊗Y M)
and Z = (z ⊗ 1, 1⊗ y).

Proposition 2.4.6. Let P ∈ Ad,p+q, there are some polynomials HP , KP ∈ R+[X] which only
depends on P such that with

∥∥∥ZNM
∥∥∥ = sup

1≤i≤q

∥∥∥ZNM
i

∥∥∥, for any N,M ,

P
( ∣∣∣ ∥∥∥P ∗P (XN ⊗ IM , ZNM , ZNM ∗)

∥∥∥− E
[∥∥∥P ∗P (XN ⊗ IM , ZNM , ZNM ∗)

∥∥∥] ∣∣∣
≥ δ +KP

(∥∥∥ZNM
∥∥∥) e−N

)
≤ d e−2N + e

− δ2N
HP (‖ZNM‖) .
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Proof. We want to use Lemma 2.4.5 and Proposition 2.4.4. The metric space we will work with
is Rn endowed with the Euclidian norm, and we can take the function g to be g : x 7→ x2/2 by
Lemma 2.4.4. Thus we get that for any B ⊂ Rn, for any G : Rn 7→ R, if γ = (γ1, . . . , γn) is a
vector of independent centered Gaussian random variables of variance 1, then for all δ > 0,

P (G(γ)− E[G(γ)] ≥ δ + δ(G)) ≤ e
− δ2

2(|G|BL )2
. (2.50)

If 0 ∈ B as it will be the case later on, we have δ(G) ≤ E[1γ /∈B(|G(γ)| + supu∈B |G(u)| +
|f |BL ‖γ‖2)]. We set BN =

{
∀i,

∥∥∥XN
i

∥∥∥ ≤ D
}
where D was chosen thanks to 2.2.11 such that for

any N and i,

P
(∥∥∥XN

i

∥∥∥ ≥ D
)
≤ e−2N . (2.51)

Thus we have P(Bc
N) ≤ d e−2N . With γ the vector of size dN2 which consists of the union of

(
√
NXN,i

s,s )i,s, (
√

2N <XN,i
s,r )s<r,i and (

√
2N =XN,i

s,r )s<r,i, we set

GN(γ) =
∥∥∥P ∗P (XN ⊗ IM , ZNM , ZNM ∗)

∥∥∥ .
One can see that on BN we can find a polynomial H ′P such that for any N and ZNM ,

|GN(γ)−GN(γ̃)| ≤ H ′P
(∥∥∥ZNM

∥∥∥)∑
i

∥∥∥XN
i − X̃N

i

∥∥∥ ,
where ‖.‖ is the operator norm. Besides

∑
i

∥∥∥XN
i − X̃N

i

∥∥∥ ≤∑
i

TrN
(
(XN

i − X̃N
i )∗(XN − X̃N

i )
)1/2
≤ 2d√

N
‖γ − γ̃‖2 .

Thus, on BN , GN has Lipschitz constant 2dH ′P
(∥∥∥ZNM

∥∥∥)N−1/2. Consequently with (2.50), we
get that

P (GN(γ)− E[GN(γ)] ≥ δ + δ(GN)) ≤ e
− δ2N

2d+1H′
P

(‖ZNM‖)2
.

Therefore, we set HP = 2d+1H ′P , we also have that ‖γ‖2
2 = N

∑
i TrN((XN

i )2). Consequently
we have some polynomial K ′P such that,

δ(G) ≤ E

1{∃i,‖XN
i ‖>D}

|GN(γ)|+K ′P (
∥∥∥ZNM

∥∥∥) + 2dH ′P
(∥∥∥ZNM

∥∥∥)N1/2
√∑

i

‖XN
i ‖

2


Hence the conclusion thanks to Proposition 2.2.11 and our choice of D in equation (2.51).

We can now prove Theorem 2.1.2. Firstly, we can assume that ZN and Y M are deterministic
matrices by Fubini’s Theorem. The convergence in distribution is a well-known theorem, we re-
fer to [13], Theorem 5.4.5. We set g a C∞ function which takes value 0 on (−∞, 1/2] and value 1
on [1,∞), and belongs to [0, 1] otherwise. Let us define fε : t 7→ g(ε−1(t−‖PP ∗(x⊗ 1, Z, Z∗)‖)).
By Theorem 2.1.1, there exists a constant C which only depends on P , supM

∥∥∥Y M
∥∥∥ and

supN
∥∥∥ZN

∥∥∥ (which is finite thanks to the strong convergence assumption on ZN) such that,
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∣∣∣∣∣∣E
[
TrMN

(
fε
(
PP ∗

(
XN ⊗ IM , ZNM , ZNM ∗

)) )]

−MNτN ⊗ τM
(
fε
(
PP ∗

(
x⊗ IM , ZNM , ZNM ∗

)) )∣∣∣∣∣∣
≤ Cε−6M

3

N
.

According to Theorem A.1 from [28], (x, ZN)N≥1 converges strongly in distribution towards
(x, z). Besides thanks to Lemma 2.4.3 and Corollary 17.10 from [78], we have that (x ⊗
IM , 1 ⊗ Y M)M≥1 converges strongly in distribution towards (x ⊗ 1, 1 ⊗ y). In Theorem 2.1.2,
we are interested in the situation where ZNM = ZN ⊗ IM or ZNM = IN ⊗ Y M . So, without
loss of generality, we restrict ourselves to this kind of ZNM . We know that (x ⊗ IM , Z

NM)
converges strongly towards (x⊗ 1, Z), but since the support of fε is disjoint from the spectrum
of PP ∗(x ⊗ 1, Z, Z∗), thanks to Proposition 2.2.2, for N large enough, τN ⊗ τM

(
fε(PP ∗(x ⊗

IM , Z
NM , ZNM ∗))

)
= 0 and therefore,

E
[
TrMN

(
fε
(
PP ∗

(
XN ⊗ IM , ZNM , ZNM ∗

)) )]
≤ Cε−6M

3

N
. (2.52)

Hence, using Proposition 2.2.11, we deduce for N large enough,

E
[∥∥∥PP ∗(XN ⊗ IM , ZNM , ZNM ∗)

∥∥∥]− ‖PP ∗(x⊗ IM , Z, Z∗)‖
≤ ε+

∫ ∞
ε

P
(∥∥∥PP ∗(XN ⊗ IM , ZNM , ZNM ∗)

∥∥∥ ≥ ‖PP ∗(x⊗ IM , Z, Z∗)‖+ α
)

dα

≤ ε+
∫ K

ε
P
(
TrNM

(
fα(PP ∗(XN ⊗ IM , ZNM , ZNM ∗))

)
≥ 1

)
dα + Ce−N

≤ ε+ C ′ε−5M
3

N
.

Finally we get that,

limsup
N→∞

E
[∥∥∥PP ∗(XN ⊗ IM , ZNM , ZNM ∗)

∥∥∥] ≤ ‖PP ∗(x⊗ IM , Z, Z∗)‖ .
Besides, we know thanks to Theorem 5.4.5 of [13] that if h is a continuous function taking

positive values on (‖PP ∗(x⊗ 1, Z, Z∗)‖ − ε,∞) and taking value 0 elsewhere. Then

1
MN

TrMN(h(PP ∗(XN ⊗ IM , Z, Z∗)))

converges almost surely towards τA ⊗min τB(h(PP ∗(x ⊗ 1, Z, Z∗))). If this quantity is positive
for any h, then for any ε > 0, for N large enough,∥∥∥PP ∗(XN ⊗ IM , ZNM , ZNM ∗)

∥∥∥ ≥ ‖PP ∗(x⊗ 1, Z, Z∗)‖ − ε.

59



Chapter 2. On the operator norm of noncommutative polynomials in deterministic
matrices and iid GUE matrices

Since h is non-negative and the intersection of the support of h with the spectrum of PP ∗(x⊗
1, Z, Z∗) is non-empty, we have that h(PP ∗(x⊗ 1, Z, Z∗)) ≥ 0 and is not 0. Besides, we know
that the trace on the space where z is defined is faithful, and so is the trace on the C∗-algebra
generated by a single semicircular variable, hence by Theorem 2.2.3, so is τA. Thus, since both
τA and τB are faithful, by Lemma 2.4.2, so is τA⊗minτB and τA⊗minτB(h(PP ∗(x⊗1, Z, Z∗))) > 0.
As a consequence, almost surely,

liminf
N→∞

∥∥∥P (XN ⊗ IM , ZNM , ZNM ∗)
∥∥∥ ≥ ‖P (x⊗ 1, Z, Z∗)‖ . (2.53)

Thanks to Fatou’s Lemma, we deduce

liminf
N→∞

E
[∥∥∥PP ∗(XN ⊗ IM , ZNM , ZNM ∗)

∥∥∥] ≥ ‖PP ∗(x⊗ IM , Z, Z∗)‖ .
We conclude that

lim
N→∞

E
[∥∥∥PP ∗(XN ⊗ IM , ZNM , ZNM ∗)

∥∥∥] = ‖PP ∗(x⊗ IM , Z, Z∗)‖ . (2.54)

Let us define the following objects,

εN =
∣∣∣E [∥∥∥PP ∗(XN ⊗ IM , ZNM , ZNM ∗)

∥∥∥]− ‖PP ∗(x⊗ IM , Z, Z∗)‖∣∣∣ ,
K = sup

N,M≥0
KP

(∥∥∥ZNM
∥∥∥)+HP

(∥∥∥ZNM
∥∥∥) .

K is finite thanks to the strong convergence of the families ZN and Y M . Then thanks to
Proposition 2.4.6, we have that for any δ > 0,

P
( ∣∣∣ ∥∥∥P ∗P (XN ⊗ IM , ZNM , ZNM ∗)

∥∥∥− ‖PP ∗(x⊗ IM , Z, Z∗)‖ ∣∣∣ ≥ δ +Ke−N + εN

)
≤ d e−2N + e−

δ2N
K .

Since this is true for any δ > 0, by Borel-Cantelli’s Lemma, almost surely,

lim
N→∞

∥∥∥PP ∗(XN ⊗ IM , ZNM , ZNM ∗)
∥∥∥ = ‖PP ∗(x⊗ 1, Z, Z∗)‖ .

We finally conclude thanks to the fact that for any y in a C∗-algebra, ‖yy∗‖ = ‖y‖2.

2.4.4 Proof of Theorem 2.1.5
We first prove the following estimate that we use multiple times during the proofs.

Lemma 2.4.7. Let g be a C∞ function which takes value 0 on (−∞, 1/2] and value 1 on [1,∞),
and in [0, 1] otherwise. We set fε : t 7→ g(ε−1(t − α)) with α =

∥∥∥PP ∗(x⊗ IM , 1⊗ Y M)
∥∥∥, then

there exists a constant C such that for any ε > 0 and N ,

E
[ 1
MN

TrNM
(
fε(PP ∗(XN ⊗ IM , IN ⊗ Y M))

)]
≤ C

ε−4

N2 .
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Proof. To estimate the above expectation we use the same method as in the proof of Theorem
2.1.2 with a few refinements to have an optimal estimate with respect to ε. We set fκε : t 7→
g(ε−1(t − α))g(ε−1(κ − t) + 1) with α = ‖PP ∗(x⊗ IM , 1⊗ YM)‖ and κ > α. Since g has
compact support and is sufficiently smooth we can apply Theorem 2.3.1. Setting h : t 7→
g(t− ε−1α)g(ε−1κ+ 1− t) = f̂κε (εt), we have

2π
∫
y4|f̂κε (y)| dy =

∫
y4
∣∣∣∣∫ g(ε−1(t− α))g(ε−1(κ− t) + 1)e−iyt dt

∣∣∣∣ dy
=
∫
y4
∣∣∣∣∫ h(t)e−iyεt εdt

∣∣∣∣ dy
= ε−4

∫
y4
∣∣∣∣∫ h(t)e−iyt dt

∣∣∣∣ dy
≤ ε−4

∫ 1
1 + y2 dy

∫
(|h(4)(t)|+ |h(6)(t)|) dt.

The derivatives h(4) and h(6) are uniformly bounded independently of t or ε. Since the support
of these functions is included in [ε−1α, ε−1α+ 1]∪ [ε−1κ, ε−1κ+ 1], there is a universal constant
C such that for any ε and κ, ∫

y4|f̂κε (y)| dy ≤ Cε−4.

With similar computations we can find a constant C such that for any ε and κ,∫
(|y|+ y4)|f̂κε (y)| dy ≤ Cε−4. (2.55)

Since the support of fκε is disjoint from the spectrum of PP ∗(x ⊗ IM , 1 ⊗ Y M), for any ε and
N one have τ ⊗ τM

(
fκε (PP ∗(x⊗ IM , 1⊗ Y M))

)
= 0. Consequently thanks to Theorem 2.3.1,

we have a constant C such that for any N , ε and κ,

E
[ 1
MN

TrNM
(
fκε (PP ∗(XN ⊗ IM , IN ⊗ Y M))

)]
≤ C

ε−4

N2 .

Then by the monotone convergence Theorem, we deduce

E
[
TrNM

(
fε(PP ∗(XN ⊗ IM , IN ⊗ Y M))

)]
= lim

κ→∞
E
[
TrNM

(
fκε (PP ∗(XN ⊗ IM , IN ⊗ Y M))

)]
.

Hence we have a constant C such that for any N and ε > 0,

E
[ 1
MN

TrNM
(
fε(PP ∗(XN ⊗ IM , IN ⊗ Y M))

)]
≤ C

ε−4

N2 .

We finally complete the proof of Theorem 2.1.5. One can view XN = (XN
1 , . . . , X

N
d ) as the

random vector of size dN2 which consists of the union of (
√
NXN,i

s,s )i,s, (
√

2N <XN,i
s,r )s<r,i and

(
√

2N =XN,i
s,r )s<r,i which are indeed centered Gaussian random variable of variance 1 as stated

in Definition 2.2.8. Thus we can apply the Poincaré inequality (see Proposition 2.2.9) to the
function
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ϕ : XN 7→ 1
MN

TrMN

(
fε(PP ∗(XN ⊗ IM , IN ⊗ Y M))

)
,

and we get

Var
(
ϕ(XN)

)
≤ 1

(MN)2E[‖∇ϕ(XN)‖2
2]

Besides, as in the proof of Lemma 2.3.6, if Q ∈ Ad,p+q,

N
∥∥∥∇TrMN

(
Q(XN ⊗ IM , IN ⊗ Y M)

)∥∥∥2

2

=
∑
s

∑
i,j

TrMN

(
DsQ Ei,j ⊗ IM

)
TrMN

(
DsQ Ei,j ⊗ IM

)∗
.

Besides, if fk is a polynomial with a single variable, then Dsfk(PP ∗) = ∂s(PP ∗)#̃f ′k(PP ∗).
Thus, taking fk such that f ′k converges towards f ′ε for the sup norm on the spectrum of
PP ∗(XN ⊗ IM , IN ⊗ Y M), we deduce that

Var
(
ϕ(XN)

)
≤ 1
M2N3

∑
s,i,j

E
[

TrMN

(
∂s(PP ∗)#̃f ′ε(PP ∗) Ei,j ⊗ IM

)

× TrMN

(
∂s(PP ∗)#̃f ′ε(PP ∗) Ei,j ⊗ IM

)∗]
.

Now with A = ∂s(PP ∗)#̃f ′ε(PP ∗),

∑
i,j

TrMN

(
A Ei,j ⊗ IM

)
TrMN

(
A Ei,j ⊗ IM

)∗
=
∑
i,j,k,l

g∗j ⊗ e∗kAgi ⊗ ek g∗i ⊗ e∗lA∗gj ⊗ fl

=
∑
j,k,l

g∗j (IN ⊗ e∗k A IN ⊗ ek IN ⊗ e∗l A∗ IN ⊗ el) gj

= TrN (IN ⊗ TrM(A) IN ⊗ TrM(A∗))
= TrN (IN ⊗ TrM(A) (IN ⊗ TrM(A))∗) .

So by contractivity of the conditional expectation over MN(C) ⊗ IM , that is IN ⊗ 1
M

TrM , we
have

∑
i,j

TrMN

(
A Ei,j ⊗ IM

)
TrMN

(
A Ei,j ⊗ IM

)∗
≤ TrMN(AA∗) M.

As a consequence, we find that

Var
(
ϕ(XN)

)
≤ 1
N3M

∑
s

E
[
TrMN

(
∂s(PP ∗)#̃f ′ε(PP ∗) (∂s(PP ∗)#̃f ′ε(PP ∗))∗

)]
.
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Besides, if U, V and W are monomials,

|TrMN(Uf ′ε(PP ∗)V f ′ε(PP ∗)W )| ≤
√

TrMN(Uf ′ε2(PP ∗)U∗) TrMN(V f ′ε(PP ∗)WW ∗f ′ε(PP ∗)V ∗)
≤ TrMN(f ′ε

2(PP ∗)) ‖U‖ ‖V ‖ ‖W‖ .

Therefore there is a constant C depending only on P and supi
∥∥∥Y M

i

∥∥∥ such that

Var
(
ϕ(XN)

)
≤ C

N2E
[∏
s

(∥∥∥XN
s

∥∥∥2 degP
+ 1

) 1
MN

TrNM
(∣∣∣f ′ε(PP ∗(XN ⊗ IM , IN ⊗ Y M))

∣∣∣2)] .
Thanks to Proposition 2.2.11, we can find w and α such that for any s and u ≥ 0,

P
(∥∥∥XN

s

∥∥∥ ≥ w + u
)
≤ e−αuN .

There is a constant C independent of N and ε such that

Var
(
ϕ(XN)

)
≤ C

N2

(
E
[ 1
MN

TrNM
(
(f ′ε)2(PP ∗(XN ⊗ IM , IN ⊗ Y M))

)]
+ ε−2e−N

)
. (2.56)

We can now apply Theorem 2.3.1 to the right hand side of the above equation, noticing that
(2.55) still holds if we replace fκε by (εf ′ε)2. As a consequence, we find an inequality similar the
one of Lemma 2.4.7 and thus a constant C such that for any N or ε,

Var
( 1
MN

TrNM(fε(PP ∗(XN ⊗ IM , IN ⊗ Y M)))
)
≤ C

(
ε−6

N4 + ε−2e−N
)
.

Therefore, thanks to Lemma 2.4.7 there exists a constant C such that for any N ∈ N and ε
such that ε4 > CM

N
,

P
(∥∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M)

∥∥∥ ≥ ∥∥∥PP ∗(x⊗ IM , 1⊗ Y M)
∥∥∥+ ε

)
≤ P

( 1
MN

TrNM
(
fε(PP ∗(XN ⊗ IM , IN ⊗ Y M))

)
≥ 1
MN

)
≤ P

(∣∣∣∣ 1
MN

TrNM (fε(PP ∗))− E
[ 1
MN

TrNM (fε(PP ∗))
]∣∣∣∣ ≥ 1

MN
− C

N2ε4

)
≤ C

(
ε−6

N4 + ε−2e−N
)( 1

MN
− C

N2ε4

)−2
.

Let us now set s = cN−1/4 with c a constant such that for any N ,

1
MN

− C

N2s4 ≥
1

2MN
.

Therefore, if x+ = max(x, 0), we have for some constant C,
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E
[(∥∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M)

∥∥∥− ∥∥∥PP ∗(x⊗ IM , 1⊗ Y M)
∥∥∥)

+

]
=
∫
R+

P
(∥∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M)

∥∥∥ ≥ ∥∥∥PP ∗(x⊗ IM , 1⊗ Y M)
∥∥∥+ ε

)
dε

≤ s+ 4CM2N2
∫ ∞
s

ε−6

N4 + ε−2e−N dε ≤ s+ 4CM2N2(s−5N−4 + s−1e−N)

≤ CN−1/4.

On one side, we have

P
(∥∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M)

∥∥∥− E
[∥∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M)

∥∥∥] ≥ δ +KP

(∥∥∥Y M
∥∥∥) e−N

)
≥ P

( ∥∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M)
∥∥∥− ∥∥∥PP ∗(x⊗ IM , 1⊗ Y M)

∥∥∥
≥ δ +KP (

∥∥∥Y M
∥∥∥)e−N + E

[(∥∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M)
∥∥∥− ∥∥∥PP ∗(x⊗ IM , 1⊗ Y M)

∥∥∥)
+

] )
≥ P

(∣∣∣∥∥∥P (XN ⊗ IM , IN ⊗ Y M)
∥∥∥− ∥∥∥P (x⊗ IM , 1⊗ Y M)

∥∥∥∣∣∣ ≥ δ + CN−1/4

‖P (x⊗ IM , 1⊗ Y M)‖

)
.

On the other side, thanks to Proposition 2.4.6, we have

P
(∥∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M)

∥∥∥− E
[∥∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M)

∥∥∥] ≥ δ +KP

(∥∥∥Y M
∥∥∥) e−N

)
≤ e

− δ2
HP (‖YM‖)

N + de−2N .

Hence we can find constants K and C such that for any N ∈ N and δ > 0,

P
(∥∥∥P (XN ⊗ IM , IN ⊗ Y M)

∥∥∥− ∥∥∥P (x⊗ IM , 1⊗ Y M)
∥∥∥ ≥ δ + CN−1/4

)
≤ e−Kδ

2N + de−2N .

And we get (2.4) by replacing δ by N−1/4δ.

The other inequality is trickier because we need to study the spectral measure of PP ∗(x⊗
IM , 1 ⊗ Y M), which is far from easy. We mainly rely on the Theorem 1.1 from [74]. We
summarize the part of this theorem which is interesting for us in the proposition below.

Proposition 2.4.8. Let x = (x1, . . . , xd) be a system of free semicircular variable, pi,j ∈
C〈X1, . . . , Xd〉 be such that S = (pi,j(x))i,j is self-adjoint with spectral measure ρ with support
K. Then there exists a finite subset A ⊂ R such that if I is a connected component of R\A,
then either ρ|I = 0, or I ⊂ K. In the second situation there exists an analytic function g defined
for some δ > 0 on

W := {z ∈ C| |=z| < δ} \
⋃
a∈A

{
a− it

∣∣∣ t ∈ R+
}
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such that for each a ∈ A, there exist N ∈ N and ε > 0 such that (z − a)Ng(z) admits an
expansion on W ∩{z ∈ C| |z − a| < ε} as a convergent powerseries in rN(z−a) where rN(z) is
the analytic N th-root of z defined with branch C \ {−it| t ∈ R+}. Then =g|I is the probability
density function of ρ|I .

What this means for us is that at the edge of the spectrum of PP ∗(x⊗ IM , 1⊗ Y M), either
we have an atom or the density of the spectral measure decays like 1

|x−a|r with r ∈ Q when
approaching a. Consequently we can find β ≥ 0 such that if ρ is the spectral measure of
PP ∗(x⊗ IM , 1⊗ Y M) then for ε > 0 small enough,

ρ
([∥∥∥PP ∗(x⊗ IM , 1⊗ Y M)

∥∥∥− ε,∞]) ≥ εβ.

Consequently if once again g is a C∞ function which takes value 0 on (−∞, 0], 1 on [1/2,∞),
and belongs to (0, 1] otherwise. We then take fε : t 7→ g(ε−1(t−

∥∥∥PP ∗(x⊗ IM , 1⊗ Y M)
∥∥∥+ ε))

for some ε ≥ 0. Then

P
(∥∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M)

∥∥∥ ≤ ∥∥∥PP ∗(x⊗ IM , 1⊗ Y M)
∥∥∥− ε)

= P
( 1
MN

TrNM
(
fε(PP ∗(XN ⊗ IM , IN ⊗ Y M))

)
= 0

)
≤ P

(∣∣∣∣ 1
MN

TrNM (fε(PP ∗))− E
[ 1
MN

TrNM (fε(PP ∗))
]∣∣∣∣ ≥ E

[ 1
MN

TrNM (fε(PP ∗))
])

≤
Var

(
1

MN
TrNM (fε(PP ∗))

)
E
[

1
MN

TrNM (fε(PP ∗))
]2 .

Thanks to (2.56), we have

Var
( 1
MN

TrN (fε(PP ∗))
)
≤ C

N2

(
E
[ 1
MN

TrNM
(
(f ′ε)2(PP ∗)

)]
+ ε−2e−N

)
≤ C

N2

(
‖f ′ε‖

2 + ε−2
)
≤ C ′

N2 ε
−2.

On the contrary, with the same kind of computations which let us get Lemma 2.4.7, we can
find constants C and K such that

E
[ 1
MN

TrNM (fε(PP ∗))
]
≥ τ ⊗ τM(fε(PP ∗))− C

ε−4

N2

≥ ρ
([∥∥∥PP ∗(x⊗ IM , 1⊗ Y M)

∥∥∥− ε/2,∞])− Cε−4

N2

≥ K min(1, ε)β − Cε
−4

N2 .

Therefore we find finite constants C and K such that

P
(∥∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M)

∥∥∥ ≤ ∥∥∥PP ∗(x⊗ IM , 1⊗ Y M)
∥∥∥− ε)

≤ K

N2ε2

(
min(1, ε)β − Cε

−4

N2

)−2

.
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Now we fix r = cN−1/(3+β), with c constant such that for any N ,

min(1, r)β − C

N2r4 ≥
min(1, r)β

2 .

Then, we have

E
[(∥∥∥PP ∗(x⊗ IM , 1⊗ Y M)

∥∥∥− ∥∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M)
∥∥∥)

+

]
=
∫
R+

P
(∥∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M)

∥∥∥ ≤ ∥∥∥PP ∗(x⊗ IM , 1⊗ Y M)
∥∥∥− ε) dε

≤ r + 4KN−2
∫ ∞
r

ε−2 min(1, ε)−2β dε ≤ r + 4KN−2(r−1−2β + 1)

≤ CN−1/(3+β).

We deduce the following bound

P
(∥∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M)

∥∥∥− E
[∥∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M)

∥∥∥] ≤ −δ −KP

(∥∥∥Y M
∥∥∥) e−N

)
≥ P

( ∥∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M)
∥∥∥− ∥∥∥PP ∗(x⊗ IM , 1⊗ Y M)

∥∥∥
≤ −δ −KP (

∥∥∥Y M
∥∥∥)e−N − E

[(∥∥∥PP ∗(x⊗ IM , 1⊗ Y M)
∥∥∥− ∥∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M)

∥∥∥)
+

] )
≥ P

( ∥∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M)
∥∥∥− ∥∥∥PP ∗(x⊗ IM , 1⊗ Y M)

∥∥∥ ≤ −δ − CN−1/(3+β)
)
.

Since on the event
{
∀i,

∥∥∥XN
i

∥∥∥ ≤ D
}
with D as in (2.51), we have

∥∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M)
∥∥∥− ∥∥∥PP ∗(x⊗ IM , 1⊗ Y M)

∥∥∥
≤
(∥∥∥P (XN ⊗ IM , IN ⊗ Y M)

∥∥∥− ∥∥∥P (x⊗ IM , 1⊗ Y M)
∥∥∥) (JP (

∥∥∥Y M
∥∥∥) +

∥∥∥P (x⊗ IM , 1⊗ Y M)
∥∥∥) ,

we deduce that

P
(∥∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M)

∥∥∥− E
[∥∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M)

∥∥∥] ≤ −δ −KP

(∥∥∥Y M
∥∥∥) e−N

)
≥ P

( ∥∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M)
∥∥∥− ∥∥∥PP ∗(x⊗ IM , 1⊗ Y M)

∥∥∥ ≤ −δ − CN−1/(3+β)

and ∀i,
∥∥∥XN

i

∥∥∥ ≤ D
)

≥ P
(∥∥∥P (XN ⊗ IM , IN ⊗ Y M)

∥∥∥− ∥∥∥P (x⊗ IM , 1⊗ Y M)
∥∥∥ ≤ −δ − CN−1/(3+β)

JP (‖Y M‖) + ‖P (x⊗ IM , 1⊗ Y M)‖

)
− P(∃i,

∥∥∥XN
i

∥∥∥ ≥ D)

≥ P
(∥∥∥P (XN ⊗ IM , IN ⊗ Y M)

∥∥∥− ∥∥∥P (x⊗ IM , 1⊗ Y M)
∥∥∥ ≤ −δ − CN−1/(3+β)

JP (‖Y M‖) + ‖P (x⊗ IM , 1⊗ Y M)‖

)
− de−2N .

On the other side thanks to Proposition 2.4.6, we have
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P
(∥∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M)

∥∥∥− E
[∥∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M)

∥∥∥] ≤ −δ −KP

(∥∥∥Y M
∥∥∥) e−N

)
≤ d e−2N + e

− δ2N
HP (‖YM‖) .

Hence we can find constants K and C such that for any N ∈ N and δ > 0,

P
(∥∥∥P (XN ⊗ IM , IN ⊗ Y M)

∥∥∥− ∥∥∥P (x⊗ IM , 1⊗ Y M)
∥∥∥ ≤ −δ − CN−1/(3+β)

)
≤ e−Kδ

2N+2d e−2N .

And we get (2.5) by replacing δ by N−1/(3+β)δ.
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Chapter 3
On the operator norm of noncommutative
polynomials in deterministic matrices and iid
Haar unitary matrices

Let UN = (UN
1 , . . . , U

N
p ) be a p-tuple of N × N independent Haar unitary matrices and

ZNM be any family of deterministic matrices in MN(C) ⊗ MM(C). Let P be a self-adjoint
non-commutative polynomial. In [14], Voiculescu showed that the empirical measure of the
eigenvalues of this polynomial evaluated in Haar unitary matrices and deterministic matrices
converges towards a deterministic measure defined thanks to free probability theory. Now, let
f be a smooth function. The main technical result of this paper is a precise bound of the
difference between the expectation of

1
MN

TrMN (C)⊗TrMM (C)
(
f(P (UN ⊗ IM , ZNM))

)
,

and its limit when N goes to infinity. If f is seven times differentiable, we show that it is
bounded by M2 ‖f‖C6 ln2(N) × N−2. As a corollary we obtain a new proof with quantitative
bounds of a result of Collins and Male which gives sufficient conditions for the operator norm of
a polynomial evaluated in Haar unitary matrices and deterministic matrices to converge almost
surely towards its free limit. Our result also holds in much greater generality. For instance,
it allows to prove that if UN and Y MN are independent and MN = o(N1/3 ln−2/3(N)), then
the norm of any polynomial in (UN ⊗ IMN

, IN ⊗ Y MN ) converges almost surely towards its free
limit. Previous results required that M = MN is constant.

This chapter is adapted from [8].
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3.1 Introduction
Understanding the behaviour of random matrices in large dimension is the core of random

matrix theory. In the early nineties Voiculescu showed that one could get very accurate results
with the help of non-commutative probability theory. This theory is equipped with a notion
of freeness, analogous to independence in classical probability theory, which often describes
accurately the asymptotic behaviour of random matrices. In [3] he studied the asymptotic
behaviour of independent matrices taken from the Gaussian Unitary Ensemble (GUE). In a
later paper he proved a similar theorem for Haar unitary matrices, which are random matrices
whose law is the Haar measure on the unitary group UN . In a nutshell, Voiculescu proved
in [14] that given UN

1 , . . . , U
N
p independent Haar unitary matrices, the renormalized trace of

a polynomial P evaluated in these matrices converges towards a deterministic limit α(P ).
Specifically, the following holds true almost surely:

lim
N→∞

1
N

TrN
(
P (UN

1 , . . . , U
N
p , U

N
1
∗
, . . . , UN

p

∗)
)

= α(P ). (3.1)

Voiculescu computed the limit α(P ) with the help of free probability. To give more detail, let
BN be a self-adjoint matrix of size N , then one can define the empirical measure of its (real)
eigenvalues by

µBN = 1
N

N∑
i=1

δλi ,

where δλ is the Dirac mass in λ and λ1, . . . , λN are the eingenvalue of BN . In particular, if P is a
self-adjoint polynomial, that is such that for any matrices A1, . . . , Ad, P (A1, . . . , Ad, A

∗
1, . . . , A

∗
d)

is a self-adjoint matrix, then one can define the random measure µP (UN1 ,...,UNp ,U
N
1
∗
,...,UNp

∗). In this
case, Voiculescu’s result (3.1) implies that there exists a measure µP with compact support
such that almost surely µP (UN1 ,...,UNp ,U

N
1
∗
,...,UNp

∗) converges weakly towards µP : its moments are
given by µP (xk) = α(P k) for all integer numbers k.

However, the convergence of the empirical measure of the eigenvalues of a matrix does not
say much about the local properties of its spectrum, in particular about the convergence of the
norm of this matrix, or the local fluctuations of its spectrum. For a comprehensive survey of
important milestones related to these questions, we refer to the introduction of our previous
paper [7]. In a nutshell, when dealing with a single matrix, incredibly precise results are known.
Typically, concerning the GUE, very precise results were obtained by Tracy and Widom in the
early nineties in [17]. On the other hand, there are much less results available when one deals
with a polynomial in several random matrices. One of the most notable result was found
by Haagerup and Thorbjørnsen in 2005 in [6]: they proved the almost sure convergence of the
norm of a polynomial evaluated in independent GUE matrices. Equivalently, for P a self-adjoint
polynomial, they proved that almost surely, for N large enough,

σ
(
P (XN

1 , . . . , X
N
d )
)
⊂ SuppµP + (−ε, ε), (3.2)

where σ(H) is the spectrum of H and SuppµP the support of the measure µP . The result (3.2)
was a major breakthrough in the context of free probability and was refined in multiple ways,
see [25, 26, 27, 29, 31, 7]. Those results all have in common that the basic random matrix
is always self-adjoint. Much less is known in the non self-adjoint case. However Collins and
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Male proved in [9] the same result as in [28] but with unitary Haar matrices instead of GUE
matrices by using Male’s former paper. With the exception of [9] and [7], all of these results
are essentially based on the method introduced by Haagerup and Thorbjørnsen who relies on
the so-called linearization trick. The main idea of this tool is that given a polynomial P , the
spectrum of P (XN

1 , . . . , X
N
d ) is closely related to the spectrum of

LN = a0 ⊗ IN +
d∑
i=1

ai ⊗XN
i ,

where a0, . . . , ad are matrices of size k depending only on P . Thus we trade a polynomial of
degree d with coefficient in C by a polynomial of degree 1 with coefficient in Mk(d)(C). In
[9], the main idea was to view Haar unitary matrices as a random function of a GUE random
matrix. Then the authors showed that almost surely this random function converges uniformly
and they concluded by using the main result of [28]. An issue of this method is that it does not
give any quantitative estimate. An important aim of this paper is to remedy to this problem.
Our approach requires neither the linearization trick, nor the study of the Stieljes transform
and attacks the problem directly without using previous results about the strong convergence of
GUE random matrices. In this sense the proof is more direct and less algebraic. We will apply
it to a generalization of Haar unitary matrices by tackling the case of Haar unitary matrices
tensorized with deterministic matrices.

A usual strategy to study outliers, that are the eigenvalues going away from the spectrum,
is to study the non-renormalized trace of smooth non-polynomial functions evaluated in inde-
pendent Haar matrices i.e. if P is self-adjoint:

TrN
(
f
(
P
(
UN

1 , . . . , U
N
p , U

N
1
∗
, . . . , UN

p

∗)))
.

This strategy was also used by Haagerup, Thorbjørnsen and Male. Indeed it is easy to see that
if f is a function which takes value 0 on (−∞, C − ε], 1 on [C,∞) and in [0, 1] elsewhere, then
with λ1(X) the largest eigenvalue of X,

P
(
λ1(P (UN

1 , . . . , U
N
p , U

N
1
∗
, . . . , UN

p

∗)) ≥ C
)
≤ P

(
TrN

(
f(P (UN

1 , . . . , U
N
p , U

N
1
∗
, . . . , UN

p

∗))
)
≥ 1

)
.

Hence, if we can prove that TrN
(
f(P (UN

1 , . . . , U
N
p , U

N
1
∗
, . . . , UN

p
∗))
)
converges towards 0 in

probability, this would already yield expected results. The above is just a well-known ex-
ample, but one can get much more out of this strategy. Therefore, we need to study the
non-renormalized trace. The case where f is a polynomial function has already been studied a
long time ago, starting with the pioneering works [70, 71], and later formalized by the concept
of second order freeness [72, 79]. However here we have to deal with a function f which is at
best C∞. This makes things considerably more difficult and forces us to adopt a completely
different approach. The main result is the following theorem (for the notations, we refer to
Section 3.2 – for now, let us specify that 1

N
TrN denotes the usual renormalized trace on N ×N

matrices whereas τ denotes its free limit):

Theorem 3.1.1. We define

• u = (u1, . . . , up, u
∗
1, . . . , u

∗
p) a family of p free Haar unitaries and their adjoints,

• UN = (UN
1 , . . . , U

N
p , (UN

1 )∗, . . . , (UN
p )∗) i.i.d. Haar unitary matrices of size N , and their

adjoints.
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• ZNM = (ZNM
1 , . . . , ZNM

q ) ∈MN(C)⊗MM(C) deterministic matrices and their adjoint,

• P a self-adjoint polynomial,

• f : R 7→ R a function at least six times differentiable.

Then there exists a polynomial LP ∈ R+[X] which only depends on P such that for any N,M ,

∣∣∣∣∣∣E
[ 1
MN

TrMN

(
f
(
P
(
UN ⊗ IM , ZNM

)) )]
− τN ⊗ τM

(
f
(
P
(
u⊗ IM , ZNM

)) )∣∣∣∣∣∣
≤ ln2(N)M2

N2 LP
(∥∥∥ZNM

∥∥∥)× ‖f‖C6 .

where
∥∥∥ZNM

∥∥∥ = sup
1≤i≤q

∥∥∥ZNM
i

∥∥∥ and ‖f‖Ck is the sum of the supremum on R of the first k

derivatives. If ZNM = (IN⊗Y M
1 , . . . , IN⊗Y M

q ) and that these matrices commute, then we have
the same inequality without the M2.

This theorem is a consequence of the slightly sharper, but less explicit, Theorem 3.4.1.
Those two theorems are essentially the same, but in Theorem 3.4.1, instead of having the norm
C6 of f , we have the fourth moment of the Fourier transform of f . The above theorem calls
for a few remarks.

• We assumed that the matrices ZNM were deterministic, but thanks to Fubini’s theorem
we can assume that they are random matrices as long as they are independent from UN .
In this situation though, LP

(∥∥∥ZNM
∥∥∥) in the right side of the inequality is a random

variable (and thus we need some additional assumptions on the law of ZNM if we want
its expectation to be finite for instance).

• In Theorems 3.1.1 and 3.4.1 we have UN ⊗ IM and u ⊗ IM , however it is very easy to
replace them by UN ⊗ Y M and u⊗ Y M for some matrices Y M

i ∈MM(C). Indeed we just
need to apply Theorem 3.1.1 or 3.4.1 with ZNM = IN ⊗ Y M . Besides, in this situation,
LP

(∥∥∥ZNM
∥∥∥) = LP

(∥∥∥Y M
∥∥∥) does not depend on N . What this means is that if we have

a matrix whose coefficients are polynomial in UN , and that we replace UN by u, we only
change the spectra of this matrix by M2N−2 in average.

• In the specific case where ZNM = (IN ⊗ Y M
1 , . . . , IN ⊗ Y M

q ) and the Y M
i commute, as

we stated in Theorem 3.1.1, we have the same inequality without the M2. Lowering the
exponent in all generality would yield a direct improvement to Theorem 3.1.2 but we
currently do not know whether it is actually possible. A lead to do so would be to prove a
sharper version of Lemma 3.3.1. While this seems unrealistic for deterministic matrices,
it might be possible to get some results when the matrices Y M

i are random.

A detailed overview of the proof is given in Subsection 3.4.1. Similarly to [7], we interpolate
Haar unitary matrices and free Haar unitaries with the help of a free Ornstein-Uhlenbeck process
on the unitary group, i.e. the free unitary Brownian motion. For a reference, see Definition
3.2.11. However in [7] this idea was only to understand the intuition of the proof. In this paper
the computations involved were quite different, indeed since we were considering the usual free
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Ornstein-Uhlenbeck process, we could use a computation trick to replace this process by a well-
chosen interpolation between GUE matrices and free semicirculars. This means that we did
not need to use free stochastic calculus. There is no such trick for the free unitary Brownian
motion, hence the computations use much more advanced tools.

When using this process, the Schwinger-Dyson equations, which can be seen as an inte-
gration by part, appear in the computation. For more information about these equations we
refer to [80] to find numerous applications. In the specific case of the unitary group it is worth
checking the proof of Theorem 5.4.10 from [13]. Even though those equations only come into
play in the proof of Lemma 3.4.6, they play a major role in the proof since we could get a
theorem similar to Theorem 3.1.1 for any random matrices which satisfies those equations.

Theorem 3.1.1 is the crux of the paper and allows us to deduce many corollaries. Firstly we
get the following result. The first statement is basically Theorem 1.4 from [9]. The second one
is entirely new and let us tensorize by matrices whose size goes to infinity when until now we
could only work with tensor of finite size. This theorem is about strong convergence of random
matrices, that is the convergence of the norm of polynomials in these matrices, see Definition
3.2.1.

Theorem 3.1.2. Let the following objects be given:

• UN = (UN
1 , . . . , U

N
p ) independent unitary Haar matrices of size N ,

• u = (u1, . . . , up) a system of free Haar unitaries,

• Y M = (Y M
1 , . . . , Y M

q ) random matrices of size M , which almost surely, as M goes to
infinity, converges strongly in distribution towards a q-tuple y of non-commutative random
variables in a C∗- probability space B with a faithful trace τB.

• ZN = (ZN
1 , . . . , Z

N
q ) random matrices of size N , which almost surely, as N goes to in-

finity, converges strongly in distribution towards a q-tuple z of non-commutative random
variables in a C∗- probability space with a faithful trace,

then the following holds true.

• If UN and ZN are independent, almost surely, (UN , ZN) converges strongly in distribution
towards F = (u, z), where F belongs to a C∗- probability space (A, ∗, τA, ‖.‖) in which u
and z are free.

• If (MN)N≥0 is a sequence of integers such thatMN = o(N1/3 ln−2/3(N)), UN and Y MN are
independent, then almost surely (UN ⊗ IMN

, IN ⊗Y MN ) converges strongly in distribution
towards F = (u⊗1, 1⊗y) when N goes to infinity. The family F thus belongs to A⊗minB
(see Definition 3.2.6). Besides if the matrices Y MN commute, then we can weaken the
assumption on MN by only assuming that MN = o(N ln−2(N)).

Understanding the Stieljes transform of a matrix gives a lot of information about its spec-
trum. This was actually a very important point in the proof of Haagerup and Thorbjørnsen’s
theorem. Our proof does not use this tool, however our final result, Theorem 3.4.1, allows us
to deduce the following estimate. Being given a self-adjoint NM ×NM matrix, we denote by
GA its Stieltjes transform:

GA(z) = 1
NM

TrNM
( 1
z − A

)
.
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This definition extends to the tensor product of free Haar unitaries with deterministic matrices
by replacing (NM)−1 TrNM by τN ⊗ τM .

Corollary 3.1.3. Given

• u = (u1, . . . , up, u
∗
1, . . . , u

∗
p) a family of p free Haar unitaries and their adjoints,

• UN = (UN
1 , . . . , U

N
p , (UN

1 )∗, . . . , (UN
p )∗) i.i.d. Haar unitary matrices of size N , and their

adjoints.

• Y M = (Y M
1 , . . . , Y M

q , Y M
1
∗
, . . . , Y M

q
∗) deterministic matrices of size M and their adjoints,

• P a self-adjoint polynomial,

there exists a polynomial LP such that for every Y M , z ∈ C\R, M,N ∈ N,

∣∣∣E [GP (UN⊗IM ,IN⊗YM )(z)
]
−GP (u⊗IM ,1⊗YM )(z)

∣∣∣ ≤ LP
(∥∥∥Y M

∥∥∥)M2 ln2(N)
N2

(
1

|=(z)|5
+ 1
|=(z)|2

)
.

where
∥∥∥Y M

∥∥∥ = sup
1≤i≤q

∥∥∥Y M
i

∥∥∥.
One of the limitation of Theorem 3.1.1 is that we need to pick f regular enough. Actually

by approximating f , we can afford to take f less regular at the cost of a slower speed of
convergence. In other words, we trade some degree of regularity on f for a smaller exponent
in N . The best that we can achieve is to take f Lipschitz. Thus it makes sense to introduce
the Lipschitz-bounded metric which is the standard metric to metrize the topology of the weak
convergence of probability measures on R. Let FLU be the set of Lipschitz function from R to
R, uniformly bounded by 1 and with Lipschitz constant at most 1, then

dLU(µ, ν) = sup
f∈FLU

∣∣∣∣∫
R
fdµ−

∫
R
fdν

∣∣∣∣ .
This metric is a slight weakening of the Wasserstein-1 distance which is defined similarly but
without the assumption of boundedness on the functions f . For more information about this
metric we refer to Appendix C.2 of [13]. In this paper, we get the following result:

Corollary 3.1.4. Under the same notations as in Corollary 3.1.3, there exists a polynomial
LP such that for every matrices Y M and M,N ∈ N,

dLU
(
E[µP (UN⊗IM ,IN⊗YM )], µP (u⊗IM ,1⊗YM )

)
≤ LP

(∥∥∥Y M
∥∥∥)M2

(
lnN
N

)1/3

.

This paper is organized as follows. In section 3.2 we give many usual definitions and
notations in free probability, commutative and non-commutative stochastic calculus. Section
3.3 contains the proof of many important properties which we will need later on. Section 3.4
contains the proof of Theorem 3.1.1. Finally in section 3.5 we prove all of the corollaries.
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3.2 Framework and standard properties

3.2.1 Usual definitions in free probability
In order to be self-contained, we begin by reminding the following definitions of free prob-

ability.

Definition 3.2.1. • A C∗-probability space (A, ∗, τ, ‖.‖) is a unital C∗-algebra (A, ∗, ‖.‖)
endowed with a state τ , i.e. a linear map τ : A → C satisfying τ(1A) = 1 and τ(a∗a) ≥ 0
for all a ∈ A. In this paper we always assume that τ is a trace, i.e. that it satisfies
τ(ab) = τ(ba) for any a, b ∈ A. An element of A is called a (non commutative) random
variable. We will always work with faithful trace, that is such that if a ∈ A, τ(a∗a) = 0 if
and only if a = 0, in which case the norm is determined by τ thanks to the formula:

‖a‖ = lim
k→∞

(
τ
(
(a∗a)2k

))1/2k
.

• Let A1, . . . ,An be ∗-subalgebras of A, having the same unit as A. They are said to be free
if for all k, for all ai ∈ Aji such that j1 6= j2, j2 6= j3, . . . , jk−1 6= jk:

τ
(

(a1 − τ(a1))(a2 − τ(a2)) . . . (ak − τ(ak))
)

= 0.

Families of non-commutative random variable are said to be free if the ∗-subalgebras they
generate are free.

• Let A = (a1, . . . , ak) be a k-tuple of non-commutative random variables. The joint distri-
bution of the family A is the linear form µA : P 7→ τ

[
P (A,A∗)

]
on the set of polynomials

in 2k non commutative indeterminates. By convergence in distribution, for a sequence
of families of variables (AN)N≥1 = (aN1 , . . . , aNk )N≥1 in C∗-algebras

(
AN ,∗ , τN , ‖.‖

)
, we

mean the pointwise convergence of the map

µAN : P 7→ τN
[
P (AN , A∗N)

]
,

and by strong convergence in distribution, we mean convergence in distribution, and point-
wise convergence of the map

P 7→
∥∥∥P (AN , A∗N)

∥∥∥.
• A non commutative random variable u is called a Haar unitary when it is unitary, that

is uu∗ = u∗u = 1A, and for all n ∈ Z, one has

τ(un) =
{

1 if n = 0,
0 else.

The strong convergence of non-commutative random variable is actually equivalent to the
convergence of its spectrum for the Hausdorff distance. More precisely we have the following
proposition whose proof can be found in [9] (see Proposition 2.1):

Proposition 3.2.2. Let xN = (xN1 , . . . , xNp ) and x = (x1, . . . , xp) be p-tuples of variables in C∗-
probability spaces, (AN , .∗, τN , ‖ · ‖) and (A, .∗, τ, ‖ · ‖), with faithful states. Then, the following
assertions are equivalent.
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• xN converges strongly in distribution to x.

• For any self-adjoint variable hN = P (xN ,x∗N), where P is a fixed polynomial, µhN con-
verges in weak-∗ topology to µh where h = P (x,x∗). Weak-∗ topology means relatively to
continuous functions on C. Moreover, the spectrum of hN converges in Hausdorff distance
to the spectrum of h, that is, for any ε > 0, there exists N0 such that for any N ≥ N0,

σ(hN) ⊂ σ(h) + (−ε, ε). (3.3)

In particular, the strong convergence in distribution of a single self-adjoint variable is equivalent
to its convergence in distribution together with the Hausdorff convergence of its spectrum.

It is important to note that thanks to Theorem 7.9 from [60], that we recall below, one can
consider free copy of any random variable.

Theorem 3.2.3. Let (Ai, φi)i∈I be a family of C∗-probability spaces such that the functionals
φi : Ai → C, i ∈ I, are faithful traces. Then there exist a C∗-probability space (A, φ) with φ a
faithful trace, and a family of norm-preserving unital ∗-homomorphism Wi : Ai → A, i ∈ I,
such that:

• φ ◦Wi = φi, ∀i ∈ I.

• The unital C∗-subalgebras (Wi(Ai))i∈I form a free family in (A, φ).

3.2.2 Non-commutative polynomials and derivatives
We set C〈Y1, . . . , Yd〉 the set of non-commutative polynomials in d indeterminates and in

particular we fix Pd = C〈Y1, . . . , Y2d〉. Given a constant A ∈ R, we can endow this vector space
with the norm

‖P‖A =
∑

M monomial
|cM(P )|AdegM , (3.4)

where cM(P ) is the coefficient of P for the monomial M . In this subsection we define several
maps on Pd which we use multiple times in the rest of the paper, but first let us set a few
notations. For A,B,C non-commutative polynomials,

(A⊗B)#C = ACB,

(A⊗B)#̃C = BCA,

m(A⊗B) = BA.

We define an involution ∗ on Pd by fixing for all i ∈ [1, d], (Yi)∗ = Yi+d, (Yi+d)∗ = Yi and then
extending it to Pd with the formula (αPQ)∗ = αQ∗P ∗. We then define the following maps.
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Definition 3.2.4. If 1 ≤ i ≤ d, one set ∂i : Pd −→ Pd ⊗ Pd such that for P,Q ∈ Pd,

∂i(PQ) = ∂iP × 1⊗Q+ P ⊗ 1× ∂iQ,

∂iYj = 1i=j1⊗ 1.
We also define Di : Pd −→ Pd by DiP = m ◦ ∂iP . We similarly define ∂∗i and D∗i with the
difference that for any j, ∂∗i Yj = 1i+d=j1⊗ 1.

Because they satisfy the Leibniz’s rule, the maps ∂i and ∂∗i are called non-commutative
derivatives. It is related to Schwinger-Dyson equations on semicircular variable, for more
information see [13], Lemma 5.4.7. While we do not use those equations in this paper, we use
those associated with Haar unitary matrices. To do so, we define the following non-commutative
derivative.

Definition 3.2.5. If 1 ≤ i ≤ d, one set δi : Pd −→ Pd ⊗ Pd such that for P,Q ∈ Pd,

δi(PQ) = δiP × 1⊗Q+ P ⊗ 1× δiQ,

∀j ∈ [1, d], δiYj = 1i=jYi ⊗ 1, δiYj+d = −1i=j1⊗ Yi+d.
We also define Di : Pd −→ Pd by DiP = m ◦ δiP .

We would like to apply the map δi to power series, more precisely the exponential of a
polynomial, however since this is not well-defined in all generality we will need a few more
definitions. Firstly, we need to define properly the operator norm of tensor of C∗-algebras.
Since we use it later in this paper, we work with the minimal tensor product also named the
spatial tensor product. For more information we refer to chapter 6 of [76].

Definition 3.2.6. Let A and B be C∗-algebra with faithful representations (HA, φA) and (HB, φB),
then if ⊗2 is the tensor product of Hilbert spaces, A ⊗min B is the completion of the image of
φA ⊗ φB in B(HA ⊗2 HB) for the operator norm in this space. This definition is independent
of the representations that we fixed.

Consequently if P ∈ Pd, z = (z1, . . . , zd) belongs to a C∗-algebra A, then (δiP k)(z, z∗)
belongs toA⊗minA, and

∥∥∥(δiP k)(z, z∗)
∥∥∥ ≤ CPk ‖P (z, z∗)‖k−1 for some constant CP independent

of k. Thus we can define
(δieP )(z, z∗) =

∑
k∈N

1
k! (δiP

k)(z, z∗). (3.5)

While we will not always be in this situation during this paper, it is important to note that
if A = MN(C), then up to isomorphism A ⊗min A is simply MN2(C) with the usual operator
norm. Now we prove the following property whose proof is inspired of the one of Duhamel’s
formula which states that given two operators a and b,

ea − eb =
∫ 1

0
eαa(a− b)e(1−α)b dα. (3.6)

Proposition 3.2.7. Let P ∈ Pd, z = (z1, . . . , zd) elements of a C∗-algebra A, then
(
δie

P
)

(z, z∗) =
∫ 1

0

(
eαP δiP e(1−α)P

)
(z, z∗) dα,

with convention
A× (B ⊗ C)×D = (AB)⊗ (CD).
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Proof. One has,

∫ 1

0

(
eαP δiP e(1−α)P

)
(z, z∗) dα =

∑
n,m

∫ 1

0

αn(1− α)m
n!m! dα (P n δiP Pm) (z, z∗)

=
∑
k

∑
n+m=k

∫ 1

0

αn(1− α)m
n!m! dα (P n δiP Pm) (z, z∗).

But if m > 0, by integration by part,∫ 1

0
αn(1− α)mdα = m

n+ 1

∫ 1

0
αn+1(1− α)m−1dα.

Thus for any n,m,
∫ 1

0

αn(1− α)m
n!m! dα =

∫ 1

0

αn+m

(n+m)!dα = 1
(m+ n+ 1)! .

Hence,

∫ 1

0

(
eαP δiP e(1−α)P

)
(z, z∗) dα =

∑
k

1
(k + 1)!

∑
n+m=k

(P n δiP Pm) (z, z∗) =
(
δi e

P
)

(z, z∗).

3.2.3 Free stochastic calculus
The main idea of this paper is to use an interpolation between Haar unitary matrices and

their free limit. In order to do so, we will need some notion of free stochastic calculus. The
main reference in this field is the paper [81] of Biane and Speicher to which we refer for most
of the proofs in this subsection. For the sake of completeness we had to introduce notations
and objects that we will not necessarily use outside of this subsection. For the reader not
familiar with free probability, we would suggest to focus on understanding Theorem 3.2.10 and
Definition 3.2.11.

From now on, (A, τ) is aW ∗-non-commutative probability space, that isA is a von Neumann
algebra, and τ is a faithful, normal (i.e. continuous for the ultraweak topology), tracial state
on A. We take A filtered, that is there exists a family (At)t∈R+ of unital, weakly closed ∗-
subalgebras of A,such that As ⊂ At for all s ≤ t. Besides we also assume that there exist p
freely independent (At)t∈R+-free Brownian motions ((Sit)t∈R+)1≤i≤p. That is t 7→ Sit is weakly
continuous, Sit is a self-adjoint element of At with semi-circular distribution of mean 0 and
variance t, and for all s ≤ t, Sit − Sis is free with As, and has semi-circular distribution of
mean 0 and variance t − s. Besides since the state τ is tracial, for any unital, weakly closed
∗-subalgebra B of A, there exists a unique conditional expectation onto B. We shall denote it
by τ(.|B). A map t ∈ R+ 7→ Mt ∈ A will be called a martingale with respect to the filtration
(At)t∈R+ if for every s ≤ t one has τ(Mt|As) = Ms.

We define the opposite algebra Aop as the algebra A endowed of the same addition, norm
and involution, but with the product a× b = b · a where · is the product in A. We can endow
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Aop with a faithful normal tracial state τ op, which as a linear map on A is actually τ . Similarly
to the minimal tensor product, we will denote L∞(τ ⊗ τ op) the von Neuman algebra generated
by A ⊗ Aop in B(L2(A, τ) ⊗2 L

2(Aop, τ op)) where ⊗2 is the usual tensor product for Hilbert
spaces. Similarly to classical stochastic calculus, we now introduce piecewise constant maps.

Definition 3.2.8. A simple biprocess is a piecewise constant map t 7→ Ut from R+ into the
algebraic tensor product A ⊗ Aop, such that Ut = 0 for t large enough. Besides it is called
adapted if for any t ≥ 0, Ut ∈ At ⊗At.

The space of simple biprocesses form a complex vector space that we can endow with the
norm

‖U‖2
B∞ =

∫ ∞
0
‖Us‖2

L∞(τ⊗τop) ds. (3.7)

We will denote by B∞a the completion of the vector space of adapted simple biprocesses for
this norm. Now that we have defined the notion of simple process, we can define its stochastic
integral that we will later extend to the space B∞a .

Definition 3.2.9. Let (St)t≥0 be a free Brownian motion, U be a simple adapted biprocess,
we can find a decomposition U = ∑n

j=1 A
j ⊗ Bj and 0 = t0 ≤ t1 ≤ · · · ≤ tm such that for

t ∈ [ti, ti+1), Ajt = Ajti ∈ Ati and B
j
t = Bj

ti ∈ A
op
ti . We define its stochastic integral by

∫ ∞
0

Us#dSs =
m−1∑
i=0

Uti#(Sti+1 − Sti) =
n∑
j=1

m−1∑
i=0

Ajti(Sti+1 − Sti)B
j
ti .

This definition is independent of the decomposition chosen. Besides t 7→
∫ t

0 Us#dXs is a mar-
tingale.

Thanks to Burkholder-Gundy inequality, that is Theorem 3.2.1 of [81], if we see the stochas-
tic integral as a linear map from the space of adapted simple biprocesses endowed with the norm
‖.‖B∞ to A, then this map is continuous. Hence we can extend it to B∞a and the martingale
property remains true. Before talking about Itô’s formula, as in the classical case, we need
to introduce the quadratic variation. We will not develop the idea, but by studying random
matrices, in the case of simple tensors, we are prompted to define

〈〈a⊗ b, c⊗ d〉〉 = a τ(bc) d.

We denote by ] the product law in A⊗Aop. If by contrast we want to use the usual product
in A ⊗ A, we will not put any sign. Let † be the linear map such that on simple tensors,
(a⊗ b)† = b⊗ a. In all generality for any Z, Y ∈ A⊗Aop,

〈〈Z, Y 〉〉 = (1A ⊗ τ op)
(
Z](Y †)

)
.

Since ‖〈〈Z, Y 〉〉‖ ≤ ‖Z‖L∞(τ⊗τop) ‖Y ‖L∞(τ⊗τop), we can extend this bilinear map to Z, Y ∈
L∞(τ ⊗ τ op). Besides by Cauchy-Schwarz, for U, V ∈ B∞a , 〈〈U, V 〉〉 is integrable.

Now that we have defined all of the necessary object to do stochastic calculus, we can
state Itô’s formula. We will need to handle polynomials in several processes, however Biane
and Speicher only stated Itô’s formula for a product of two processes, that is if X0, Y0 ∈ A,
U i, V i ∈ B∞a and K,L ∈ L1(R+,A), we set
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Yt = Y0 +
∫ t

0
Ksds+

∑
1≤i≤p

∫ t

0
U i
s#dSis,

Zt = Z0 +
∫ t

0
Lsds+

∑
1≤i≤p

∫ t

0
V i
s#dSis,

then for any t ≥ 0,

YtZt = Y0Z0 +
∫ t

0

YsLs +KsZs +
∑

1≤i≤p
〈〈U i

s, V
i
s 〉〉

 ds (3.8)

+
∑

1≤i≤p

∫ t

0

(
(Ys ⊗ 1A)V i

s + U i
s(1A ⊗ Zs)

)
#dSis.

To find a proof of (3.8), see Theorem 4.1.2 in [81]. While this theorem only proves the case
where there is a single Brownian motion and L = K = 0, deducing equation (3.8) does not
require much more work. We can then deduce from equation (3.8), the general Itô’s formula.
Even though this formula is used without a proof by Dabrowski in [82], we do not know of
any satisfying reference. Hence we include a proof for self-containedness. Let us first fix a few
notations.

• If P ∈ C〈X1, . . . , Xd〉, X ∈ (L∞(R+,A))d and K ∈ (L1(R+,A))d, then

∂P (X)#K =
∑

1≤j≤d
∂jP (X)#Kj.

• Similarly if U ∈ (B∞a )d, then ∂P (X)]U = ∑
1≤j≤d ∂jP (X)]Uj.

• Finally if U, V ∈ B∞a , A,B,C ∈ L∞(R+,A), then (A⊗B⊗C)# (U, V ) = ((A⊗B)]U, (1⊗
C)]V ).

Theorem 3.2.10. Let X0 ∈ Ad, P be a non-commutative polynomial in d indeterminates, for
any t ≥ 0, K ∈ (L1([0, t],A))d and for every i ∈ [1, p], (1s≤tU i

s)s∈R+ ∈ (B∞a )d. With I the
identity map on Pd, we define

Xt = X0 +
∫ t

0
Ksds+

∑
1≤i≤p

∫ t

0
U i
s#dSis,

∆U(P )(X) =
∑

1≤i≤p

∑
1≤j,k≤d

〈〈 ((∂j ⊗ I) ◦ ∂kP (X)) #(U i,j, U i,k) 〉〉.

Then for any t ≥ 0, ∂P (X)#K and ∆U(P )(X) ∈ L1([0, t],A)), and (1s≤t∂P (Xs)]Us)s∈R+ ∈
B∞a . Finally for any t ≥ 0,

P (Xt) = P (X0) +
∫ t

0
∂P (Xs)#Ks ds+

∑
1≤i≤p

∫ t

0

(
∂P (X)]U i

s

)
#dSis +

∫ t

0
∆U(P )(Xs) ds.

Proof. Thanks to Burkholder-Gundy inequality, that is Theorem 3.2.1 of [81], we know that

sup
0≤s≤t

∥∥∥Xj
s

∥∥∥ ≤ ∥∥∥Xj
0

∥∥∥+
∥∥∥Kj

s

∥∥∥
L1([0,t],A)

+
∑

1≤i≤p

∥∥∥U i,j1[0,t]

∥∥∥
B∞a

.
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Thus for any t ∈ R+, (Xs)s∈[0,t] ∈ L∞([0, t],A)d, hence for any polynomial P , ∂P (X)#K ∈
L∞([0, t],A), and (1s≤t∂P (Xs)]Us)s∈R+ ∈ B∞a . Given that

‖〈〈Z, Y 〉〉‖ ≤ ‖Z‖L∞(τ⊗τop) ‖Y ‖L∞(τ⊗τop) ,

we also have that ∆U(P )(X) ∈ L1([0, t],A)). Finally to prove the formula, we proceed recur-
rently. If P is of degree 1, there is nothing to prove. For larger degree, by linearity we only
need to deal with the case where P is a monomial. Thus we can write P = QR with Q and R
monomials of smaller degree for which the formula is verified. Thus thanks to equation (3.8),
we have that

P (Xt) = Q(X0)R(X0) +
∫ t

0
Q(Xs)× (∂R(Xs)#Ks) + (∂Q(Xs)#Ks)×R(Xs)ds

+
∫ t

0
Q(Xs) ∆U(R)(Xs) + ∆U(Q)(Xs) R(Xs) +

∑
1≤i≤p

〈〈 ∂Q(Xs)]U i
s, ∂R(Xs)]U i

s 〉〉 ds

+
∑

1≤i≤p

∫ t

0

(
(Q(Xs)⊗ 1A)× (∂R(Xs)]U i

s) + (∂Q(Xs)]U i
s)× (1A ⊗R(Xs))

)
#dSis.

It is clear that,
∂(QR)(Xs)#Ks = Q(Xs)× (∂R(Xs)#Ks) + (∂Q(Xs)#Ks)×R(Xs),

∂(QR)(Xs)]U i
s = (Q(Xs)⊗ 1A)× (∂R(Xs)]U i

s) + (∂Q(Xs)]U i
s)× (1A ⊗R(Xs)).

And finally,
∆U(QR)(X) =

∑
1≤i≤p

∑
1≤j,k≤d

〈〈 ( (∂j ⊗ I) ◦ ∂k(QR)(X) ) #(U i,j, U i,k) 〉〉

=
∑

1≤i≤p

∑
1≤j,k≤d

∑
Q=AXjBXkC

〈〈 (A(X)⊗B(X)⊗ C(X))#(U i,j, U i,k) 〉〉R(X)

+
∑

R=AXjBXkC
Q(X)〈〈 (A(X)⊗B(X)⊗ C(X))#(U i,j, U i,k) 〉〉

+
∑

Q=AXjB,R=CXkD
〈〈 (A(X)⊗ (BC)(X)⊗D(X))#(U i,j, U i,k) 〉〉

=Q(X) ∆U(R)(X) + ∆U(Q)(X) R(X) +
∑

1≤i≤p
〈〈 ∂Q(X)]U i, ∂R(X)]U i 〉〉.

Finally, one of the fundamental tool that we use in this paper is the free unitary Brownian
motion, a good reference on the matter is [83]. In particular one can find a proof of its existence.
Definition 3.2.11. Let (St)t≥0 be a free Brownian motion adapted to a filtered W ∗-probability
space (A, (At)t≥0, τ), the free unitary Brownian motion (ut)t≥0 is the unique solution to the
equation

∀t ≥ 0, ut = 1A −
∫ t

0

us
2 ds+ i

∫ t

0
(us ⊗ 1A)#dSs. (3.9)

In particular, for any t ≥ 0, ut is unitary, that is utu∗t = u∗tut = 1A.
Although we do not use this notation in this paper, similarly to the classical case, it is usual

to write equation (3.9) as

u0 = 1A, dut = −ut2 dt+ i(ut ⊗ 1A)#dSt.
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3.2.4 Notations
Let us now fix a few notations concerning the spaces and traces that we use in this paper.

Definition 3.2.12. • (AN , τN) is the free product of MN(C) with the von Neuman algebra
A from the former subsection. To build AN we use Theorem 3.2.3 and we get a C∗-
probability space C with a faithful trace ϕ. Since we want (AN , τN) to be a von Neuman
algebra, we set L2(C,ϕ) as the completion of C for the norm a 7→ φ(a∗a)1/2, we have an
injective C∗-algebra morphism from C to B(L2(C,ϕ)). We then proceed to take AN the
closure of the image of C in this space for the weak topology. As for τN , since we can
extend (x, y) 7→ ϕ(x∗y) to a scalar product 〈., .〉ϕ on L2(C,ϕ), we set for a ∈ B(L2(C,ϕ)),
τN(a) = 〈a(1), 1〉ϕ.

• Note that when restricted to MN(C), τN is just the regular renormalized trace on matrices.
Similarly we will usually denote τM and τk the renormalized trace on MM(C) and Mk(C).
As in the former subsection, the restriction of τN to the C∗-algebra A is denoted as τ .

• TrN is the non-renormalized trace on MN(C).

• Ei,j is the matrix whose only non-zero coefficient is (i, j) and this coefficient has value 1,
the size of the matrix Ei,j will depend on the context.

• In general we identify MN(C)⊗Mk(C) with MkN(C) through the isomorphism Ei,j⊗Er,s 7→
Ei+(r−1)N,j+(s−1)N , similarly we identify TrN ⊗Trk with TrkN .

• If AN = (AN1 , . . . , ANd ) and BM = (BM
1 , . . . , BM

d ) are two families of matrices, then we de-
note AN⊗BM = (AN1 ⊗BM

1 , . . . , ANd ⊗BM
d ) and ifM = N , ANBN = (AN1 BN

1 , . . . , A
N
d B

N
d ).

We typically use the notation XN ⊗ IM for the family (XN
1 ⊗ IM , . . . , XN

d ⊗ IM).

• If P ∈ Pd, in order to avoid cumbersome notations when evaluating P in (X,X∗), instead
of denoting P (X,X∗) we will write P̃ (X).

• We define (ei)i∈[1,M ], (gi)i∈[1,N ] and (fi)i∈[1,k] the canonical basis of CM , CN and Ck

A polynomial P ∈ Pd is said to be self-adjoint if P ∗ = P . Self-adjoint polynomials have
the property that if z1, . . . , zd are elements of a C∗-algebra, then P (z1, . . . , zd, z

∗
1 , . . . , z

∗
d) is self-

adjoint. Now that we have defined the notion of self-adjoint polynomial we give a property
which justifies computations that we will do later on:

Proposition 3.2.13. Let the following objects be given,

• u = (u1
t , . . . , u

p
t )t≥0 a family of p freely independent free unitary Brownian motions,

• f ∈ C(R) the set of continuous function on R,

• P a self-adjoint polynomial.

Then with UN the group of unitary matrices of size N , the following map is measurable:

(UN , ZNM) ∈ Up
N ×MNM(C)d−p 7→ τN ⊗ τM

(
f
(
P̃
(
(UNut)⊗ IM , ZNM

)))
.
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For a full proof we refer to [7], Proposition 2.7. But in a few words, it is easy to see the
measurability when f is a polynomial since then this map is also polynomial in the coefficient
of UN and ZNM , and we conclude by density. Actually we could easily prove that this map is
continuous, however we do not need it. The only reason we need this property is to justify that if
UN is a family of random matrices, then the random variable τN ⊗ τM

(
f
(
P̃ (uNt ⊗ IM , ZNM)

))
is well-defined. To conclude this subsection we introduce different notations related to maps
defined on tensor spaces.

Definition 3.2.14. Let n : A ⊗ B ∈ MM(C)⊗2 7→ AB ∈ MM(C), we define the linear map
(τN ⊗ IM)⊗(τN ⊗ IM) : (AN ⊗MM(C))⊗2 →MM(C) as

(τN ⊗ IM)
⊗

(τN ⊗ IM) = n ◦ (τN ⊗ IM)⊗2.

We will also use the shorter notation (τN ⊗ IM)
⊗

2.

3.2.5 Random matrix model
We conclude this section by giving the definition and a few properties on the models of

random matrices that we will study.

Definition 3.2.15. A Haar unitary matrix of size N is a random matrix distributed according
to the Haar measure on the group of unitary matrices of size N .

Definition 3.2.16. A Hermitian Brownian motion (XN
t )t∈R+ of size N is a self-adjoint matrix

whose coefficients are random variables with the following laws:

• For 1 ≤ i ≤ N , the random variables
√
N((XN

t )i,i)t∈R+ are independent Brownian mo-
tions.

• For 1 ≤ i < j ≤ N , the random variables (
√

2N <(XN
t )i,j)t∈R+ and (

√
2N =(XN

t )i,j)t∈R+

are independent Brownian motions, independent of
√
N((XN

t )i,i)t∈R+.

To study the free unitary Brownian motion, we will need to study its finite dimensional
equivalent, the unitary Brownian motion. Typically it is defined as the Markov process whose
infinitesimal generator is the Laplacian operator on the unitary group. However given the
upcoming computations in this paper, it is better to use an equivalent definition as the solution
of a stochastic differential equation. We refer to subsection 2.1 of [84] for a short summary on
the different definitions.

Definition 3.2.17. Let XN be a Hermitian Brownian motion, then the unitary Brownian
motion (UN

t )t≥0 is the solution of the following stochastic differential equation:

dUN
t = iUN

t dX
N
t −

1
2U

N
t dt, UN

0 = IN , (3.10)

where we formally define UN
t dX

N
t by simply taking the matrix product

(UN
t dX

N
t )i,j =

∑
k

(UN
t )i,kd(XN

t )k,j.

In particular, almost surely, for any t, UN
t is a unitary matrix of size N .
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The following property is typical of the kind of computation that we can do with unitary
Brownian motion with classical stochastic calculus, see [84] for example.

Proposition 3.2.18. Let UN
1 , . . . , U

N
p be independent unitary Brownian motions of size N ,

ANp+1, . . . , A
N
d be deterministic matrices, Q ∈ Pd be a monomial, we set Qs the monomial

evaluated in (UN
1,s, . . . , U

N
p,s, A

N
p+1, . . . , A

N
d ) and their adjoints, |Q|B the degree of Q with respect

to (U1, . . . , Up, U
∗
1 , . . . , U

∗
p ). Then there exists a martingale J such that,

dTrN Qs = dJs −
|Q|B

2 TrN Qs ds−
1
N

∑
i≤p, Q=AUiBUiC

TrN(AsUN
i,sCs) TrN(BsU

N
i,s) ds

− 1
N

∑
i≤p, Q=AU∗i BU

∗
i C

TrN
(
AsU

N
i,s

∗
Cs
)

TrN
(
BsU

N
i,s

∗)
ds

+ 1
N

∑
i≤p, Q=AUiBU∗i C

Tr(AsCs) Tr(Bs) ds

+ 1
N

∑
i≤p, Q=AU∗i BUiC

Tr(AsCs) Tr(Bs) ds.

3.3 Preliminaries

3.3.1 A matricial inequality

We are indebted to Mikael de la Salle for supplying us with the proof of the following lemma.

Lemma 3.3.1 (de la Salle). Let A be a C∗-algebra, A1, A2 ∈ A, B1, B2 ∈ MM(C), as in
subsection 3.2.3 we define (A1⊗B1)](A2⊗B2) = (A1A2)⊗ (B2B1). Then if x, y ∈ A⊗MM(C),
with the operator norm in their respective space,

‖x]y‖ ≤M ‖x‖ ‖y‖ .

Proof. We write x = ∑
1≤i,j≤M xi,j ⊗ Ei,j, y = ∑

1≤k,l≤M yk,l ⊗ Ek,l, then

x]y =
∑
i,j,k

xk,jyi,k ⊗ Ei,j.

We define Ak = ∑
i,j xk,jyi,k ⊗ Ei,j, Xk = ∑

j xk,j ⊗ Ek,j ⊗ IM , Yk = ∑
i yi,k ⊗ IM ⊗ Ei,k. Then

by using the fact that Xk and Yk are band matrices, we have ‖Xk‖ ≤ ‖x‖ and ‖Yk‖ ≤ ‖y‖.
Besides ‖x]y‖ ≤ ∑1≤k≤M ‖Ak‖. Finally we have for any k,
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‖XkYk‖2 = ‖XkYk(XkYk)∗‖

=
∥∥∥∥∥∥
∑

i,j

xk,jyi,k ⊗ Ek,j ⊗ Ei,k

∑
i,j

xk,jyi,k ⊗ Ek,j ⊗ Ei,k

∗∥∥∥∥∥∥
=
∥∥∥∥∥∥
∑
i,j,u,v

xk,jyi,ky
∗
u,kx

∗
k,v ⊗ Ek,jEv,k ⊗ Ei,kEk,u

∥∥∥∥∥∥
=
∥∥∥∥∥∥
∑
i,j,u

xk,jyi,ky
∗
u,kx

∗
k,v ⊗ Ek,k ⊗ Ei,jEv,u

∥∥∥∥∥∥
= ‖AkA∗k ⊗ Ek,k‖
= ‖Ak‖2 .

Thus ‖x]y‖ ≤ ∑1≤k≤M ‖Ak‖ ≤M ‖x‖ ‖y‖.

3.3.2 A Poincaré type equality
One of the main tool when dealing with GUE random matrices is the Poincaré inequality

(see Definition 4.4.2 from [13]), which gives us a sharp majoration of the variance of a function
in these matrices. Typically this inequality shows that the variance of the renormalized trace of
a polynomial in GUE random matrices, which a priori is of order O(1), is of order O(N−2). In
this paper we need a similar type of inequality but instead of working with independent GUE
random matrices, we work with marginal of independent unitary Brownian motions at times t.
We will follow the approach of [85], Proposition 6.1. I would like to thank one of the reviewer for
pointing out that an alternative approach could be to use the more general Theorem 4.3 from
[86]. This theorem deals with Brownian motions defined with the help of two parameters r and
s, and the unitary Brownian motion matches with the case where (r, s) = (1, 0). However the
proof of Proposition 3.3.2 that we give below is a good introduction to the kind of computations
that we deal with in this paper unlike the approach taken in [86] and needs less prerequisite to
be understood.

Proposition 3.3.2. Let Q ∈ Pd, (UN
t )t∈R+, (V N

t )t∈R+, (WN
t )t∈R+ be independent families of p

unitary Brownian motions of size N . Let AN be a family of d− p deterministic matrices, with
notations as in Definition 3.2.12, one has for any T ≥ 0,

Var
(

TrN
(
Q̃(UN

T , A
N)
))

= 1
N

∑
1≤k≤p

∫ T

0
E
[

TrN
(
D̃kQ(V N

T−tU
N
t , A

N)×D̃kQ(WN
T−tU

N
t , A

N)∗
)]
dt.

Proof. To simplify notations, we will not write the index N in UN
t , V

N
t ,W

N
t and AN . For

U ∈ MN(C)p, we set f : (U,U∗) 7→ TrN(Q(U,A, U∗, A∗)). We can view f as a polynomial in
the coefficients of the matrices U and their conjuguates, since those are complex variables we
use the notion of complex differential. That is if g : (x, y) ∈ R2 → g(x, y) ∈ C is a differentiable
function, we define ∂zg = 1

2 (∂xg − i∂yg) and ∂zg = 1
2 (∂xg + i∂yg). If ui,jk is the (i, j)-coefficient
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of the k-th matrix in U , we denote the differential of f with respect to ui,jk by ∂ui,j
k
f , and the

differential of f with respect to the conjuguate of this coefficient by ∂∗
uj,i
k

f . In particular,

∂ui,j
k

((Uk)i,j) = 1, ∂∗
ui,j
k

((U∗k )i,j) = 1,

∂ui,j
k

((Uk)a,b) = 0, ∂∗
ui,j
k

((U∗k )a,b) = 0, for all (a, b) 6= (i, j),

∂ui,j
k

((U∗k )a,b) = 0, ∂∗
ui,j
k

((Uk)a,b) = 0, for any (a, b).

Next we introduce
Mt = PT−tf(Ut, U∗t ),

where PT−tf(U,U∗) = EV [f(VT−tU, (VT−tU)∗)] with (Vt)t≥0, p independent unitary Brownian
motions of size N and EV the expectation with respect to (Vt)t≥0. We will follow the approach
of [85], Proposition 6.1, and show that (Mt)0≤t≤T is a martingale. It will follow that,

Var
(

TrN
(
Q̃(UN

T , A
N)
))

= E[|f(UT , U∗T )|2 − |E[f(UT , U∗T )]|2]

= E[MTMT −M0M0] (3.11)
= E

[
〈MT ,MT 〉

]
.

If we set (Xt)t≥0, p independent Hermitian Brownian motions of size N , and ft = PT−tf , then

dMt = (∂tft)(Ut, U∗t )dt+
∑

1≤k≤p, 1≤i,j≤N
(∂ui,j

k
ft)(Ut, U∗t ) d(Uk,t)i,j + (∂∗

ui,j
k

ft)(Ut, U∗t ) d(U∗k,t)i,j

+ 1
2

∑
1≤k≤p, 1≤i,j,r,s≤N

ε1,ε2∈{1,∗}

(∂ε1
ui,j
k

∂ε2
ur,s
k
ft)(Ut, U∗t ) d〈(U ε1

k,t)i,j, (U ε2
k,t)r,s〉t.

By using equation (3.10), we can isolate the martingale term in the previous equation. As
for the term associated to dt, as long as we show that (Mt)t≥0 is a martingale it will be 0.
To do so, we set Ft = σ((Us)0≤s≤t), then Ft is a filtration adapted to (Mt)t≥0. Besides if we
set Nt = E[f(UT , U∗T ) | Ft], then since if we redefine VT−t = UTU

∗
t , it is still a family of p

independent unitary Brownian motions of size N , independent of Ft. This implies that

Nt = E[f(UT , U∗T ) | Ft] = E[f(VT−tUt, (VT−tUt)∗) | Ft] = EV [f(VT−tUt, (VT−tUt)∗)] = Mt.

Hence (Mt)t≥0 is a martingale and

dMt = i
∑

1≤k≤p, 1≤i,j≤N
(∂ui,j

k
ft)(Ut, U∗t ) (Uk,t dXN

k,t)i,j − (∂∗
ui,j
k

ft)(Ut, U∗t ) ((Uk,t dXN
k,t)∗)i,j, (3.12)

Therefore, as we saw in equation (3.11), we are left with computing the bracket of Mt. To
begin with we have,

〈(Uk,t dXN
k,t)i,j, (Uk,t dXN

k,t)r,s〉 = 1i=r,j=s
dt

N
,

〈((Uk,t dXN
k,t)∗)i,j, ((Uk,t dXN

k,t)∗)r,s〉 = 1i=r,j=s
dt

N
,
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〈(Uk,t dXN
k,t)i,j, ((Uk,t dXN

k,t)∗)r,s〉 = (Uk,t)i,r(Uk,t)s,j
dt

N
,

〈((Uk,t dXN
k,t)∗)i,j, (Uk,t dXN

k,t)r,s〉 = (U∗k,t)s,j(U∗k,t)i,r
dt

N
.

Let us remind that f : (U,U∗) 7→ TrN(Q(U,A, U∗, A∗)), thus one has

(∂ui,j
k
ft)(Ut, U∗t ) = EV

[
TrN(D̃kQ(VT−tUt, A) Vk,T−tEi,j)

]
,

(∂∗
ui,j
k

ft)(Ut, U∗t ) = EV
[
TrN(V ∗k,T−t D̃∗kQ(VT−tUt, A) Ei,j)

]
.

We will now compute four different brackets, and by summing them we will get the bracket of
Mt (see equation (3.12)). First,

〈∑
i,j,k

(∂ui,j
k
ft)(Ut, U∗t ) (Uk,t dXN

k,t)i,j,
∑
i,j,k

(∂ui,j
k
ft)(Ut, U∗t ) (Uk,t dXN

k,t)i,j
〉

(3.13)

=
∑
k

∑
i,j,r,s

(∂ui,j
k
ft)(Ut, U∗t ) (∂ur,s

k
ft)(Ut, U∗t )

〈
(Uk,t dXN

k,t)i,j, (Uk,t dXN
k,t)r,s

〉
= 1
N

∑
k

∑
i,j

(∂ui,j
k
ft)(Ut, U∗t ) (∂ui,j

k
ft)(Ut, U∗t ) dt

= 1
N

∑
k

∑
i,j

EV
[
TrN(D̃kQ(VT−tUt, A) Vk,T−tEi,j)

]
EV

[
TrN(Ej,i(Vk,T−t)∗D̃kQ(VT−tUt, A)∗ )

]
dt

= 1
N

∑
k

EV,W
[
TrN(D̃kQ(VT−tUt, A) Vk,T−tW ∗

k,T−tD̃kQ(WT−tUt, A)∗)
]
dt.

Similarly one has,

〈∑
i,j,k

(∂∗
ui,j
k

ft)(Ut, U∗t ) ((Uk,t dXN
k,t)∗)i,j,

∑
i,j,k

(∂∗
ui,j
k

ft)(Ut, U∗t ) ((Uk,t dXN
k,t)∗)i,j

〉
(3.14)

= 1
N

∑
k

EV,W
[
TrN

(
V ∗k,T−t D̃

∗
kQ(VT−tUt, A) D̃∗kQ(WT−tUt, A)∗ Wk,T−t

)]
dt.

Next we have,
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〈∑
i,j,k

(∂ui,j
k
ft)(Ut, U∗t ) (Uk,t dXN

k,t)i,j,
∑
i,j,k

(∂∗
ui,j
k

ft)(Ut, U∗t ) ((Uk,t dXN
k,t)∗)i,j

〉
(3.15)

=
∑
k

∑
i,j,r,s

(∂ui,j
k
ft)(Ut, U∗t ) (∂∗ur,s

k
ft)(Ut, U∗t )

〈
(Uk,t dXN

k,t)i,j, ((Uk,t dXN
k,t)∗)r,s

〉
= 1
N

∑
k

∑
i,j,r,s

(∂ui,j
k
ft)(Ut, U∗t ) (∂∗ur,s

k
ft)(Ut, U∗t ) (Uk,t)i,r(Uk,t)s,j dt

= 1
N

∑
k

∑
i,j,r,s

EV
[
TrN(D̃kQ(VT−tUt, A) Vk,T−tEi,j)

]
× EW

[
TrN(Es,rD̃∗kQ(WT−tUt, A)∗ Wk,T−t)

]
(Uk,t)i,r(Uk,t)s,j dt

= 1
N

∑
k

EV,W

 ∑
i,j,r,s

(
D̃kQ(VT−tUt, A) Vk,T−t

)
j,i

(Uk,t)i,r (3.16)

×
(
D̃∗kQ(WT−tUt, A)∗ Wk,T−t

)
r,s

(Uk,t)s,j

dt
= 1
N

∑
k

EV,W
[
TrN

(
D̃kQ(VT−tUt, A) Vk,T−tUk,t D̃∗kQ(WT−tUt, A)∗ Wk,T−tUk,t

)]
dt.

And similarly,

〈∑
i,j,k

(∂∗
ui,j
k

ft)(Ut, U∗t ) ((Uk,t dXN
k,t)i,j,

∑
i,j,k

(∂ui,j
k
ft)(Ut, U∗t ) (Uk,t dXN

k,t)i,j
〉

(3.17)

= 1
N

∑
k

EV,W
[
TrN

(
(Vk,T−tUk

t )∗D̃∗kQ(VT−tUt, A) (Wk,T−tU
k
t )∗D̃kQ(WT−tUt, A)∗

)]
dt.

We sum equations (3.13) to (3.17).

Var
(

TrN(Q̃(UN
T , A

N))
)

= 1
N

∑
k

∫ T

0
E
[

TrN
(
D̃kQ(VT−tUt, A) Vk,T−tUk,t (Wk,T−tUk,t)∗D̃kQ(WT−tUt, A)∗

+ (Vk,T−tUk,t)∗ D̃∗kQ(VT−tUt, A) D̃∗kQ(WT−tUt, A)∗ Wk,T−tUk,t

− D̃kQ(VT−tUt, A) Vk,T−tUk,t D̃∗kQ(WT−tUt, A)∗ Wk,T−tUk,t

− (Vk,T−tUk
t )∗D̃∗kQ(VT−tUt, A) (Wk,T−tU

k
t )∗D̃kQ(WT−tUt, A)∗

)]
dt

= 1
N

∑
k

∫ T

0
E
[

TrN
( (

D̃kQ(VT−tUt, A) Vk,T−tUk,t − (Vk,T−tUk,t)∗ D̃∗kQ(VT−tUt, A)
)
×

(
D̃kQ(WT−tUt, A)Wk,T−tUk,t − (Wk,T−tUk,t)∗D̃∗kQ(WT−tUt, A)

)∗ )]
dt.

Hence the conclusion.
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Corollary 3.3.3. Let P,Q ∈ Pd, (UN
t )t∈R+, (V N

t )t∈R+, (WN
t )t∈R+ be independent families of p

unitary Brownian motions of size N . Let ZNM be a family of deterministic matrices. With

h : x⊗ y ∈ (MN(C)⊗MM(C))⊗2 7→ y]x ∈MN(C)⊗MM(C),

and notations as in subsection 3.2.4, one has for any T ≥ 0,

E
[
(TrN ⊗IM)

⊗
2
(
P̃ (UN

T ⊗ IM , ZNM)⊗ Q̃(UN
T ⊗ IM , ZNM)

) ]
− E[TrN ⊗IM ]

⊗
2
(
P̃ (UN

T ⊗ IM , ZNM)⊗ Q̃(UN
T ⊗ IM , ZNM)

)
= − 1

N

∑
1≤k≤p

∫ T

0
E
[

TrN ⊗IM
(
h ◦ δkP̃ (V N

T−tU
N
t ⊗ IM , ZNM)h ◦ δkQ̃(WN

T−tU
N
t ⊗ IM , ZNM)

)]
dt.

Besides if ZNM = (IN ⊗Y M
1 , . . . , IN ⊗Y M

q ) and that these matrices commute, then we have the
same equality but with Dk instead of h ◦ δk.

Proof. LetAN be a family of deterministic matrices, by polarization and the fact thatDk(Q∗)∗ =
−DkQ, we have

E
[

TrN
(
P̃ (UN

T , A
N)
)

TrN
(
Q̃(UN

T , A
N)
) ]
− E

[
TrN

(
P̃ (UN

T , A
N)
) ]

E
[

TrN
(
Q̃(UN

T , A
N)
) ]

= E

(TrN
(
P̃ (UN

T , A
N)
)
− E

[
TrN

(
P̃ (UN

T , A
N)
) ])

×
(

TrN
(
Q̃∗(UN

T , A
N)
)
− E

[
TrN

(
Q̃∗(UN

T , A
N)
) ])

= 1
N

∑
k≤p

∫ T

0
E
[

TrN
(
D̃kP (V N

T−tU
N
t , A

N)× D̃kQ∗(WN
T−tU

N
t , A

N)∗
)]
dt

= − 1
N

∑
k≤p

∫ T

0
E
[

TrN
(
m ◦ δkP̃ (V N

T−tU
N
t , A

N)×m ◦ δkQ̃(WN
T−tU

N
t , A

N)
)]
dt.

Now we want to study a polynomial in (UN
T ⊗ IM , ZNM) and their adjoints. By linearity we

can assume that P is a monomial. One can also assume that ZNM
i is a simple tensor, i.e. that

ZNM
i = Ai ⊗ Bi where Ai ∈ MN(C) and Bi ∈ MM(C). Indeed if ZNM

i = ∑
lAi,l ⊗ Bi,l, then a

polynomial in (UN
T ⊗IM , ZNM) is a linear combination in monomials in (UN

T ⊗IM , (Ai,l⊗Bi,l)i,l).
Thus

P̃ (UN
T ⊗ IM , ZNM) = P̃ (UN

T , A)⊗ P̃ (IM , B).

Thus assuming that P and Q are monomials, we have
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E
[
(TrN ⊗IM)

⊗
2
(
P̃ (UN

T ⊗ IM , ZNM)⊗ Q̃(UN
T ⊗ IM , ZNM)

) ]
− E[TrN ⊗IM ]

⊗
2
(
P̃ (UN

T ⊗ IM , ZNM)⊗ Q̃(UN
T ⊗ IM , ZNM)

)
=
(
E[TrN(P̃ (UN

T , A)) TrN(Q̃(UN
T , A))]− E[TrN(P̃ (UN

T , A))] E[TrN(Q̃(UN
T , A))]

)
⊗ P̃ (IM , B)Q̃(IM , B)

= − 1
N

∫ T

0
E
[

TrN
(
m ◦ δkP̃ (V N

T−tU
N
t , A)×m ◦ δkQ̃(WN

T−tU
N
t , A)

)]
⊗ P̃ (IM , B)Q̃(IM , B) dt

= − 1
N

∑
k≤p

∫ T

0
E
[

TrN ⊗IM
(
h ◦ δkP̃ (V N

T−tU
N
t ⊗ IM , ZNM)× h ◦ δkQ̃(WN

T−tU
N
t ⊗ IM , ZNM)

)]
dt.

Hence the conclusion by linearity. Besides if ZNM = (IN ⊗ Y M
1 , . . . , IN ⊗ Y M

q ), and that these
matrices commute, then for any p-tuple of unitary matrices U , with Z = (Y M

i )i,

h ◦ δkP̃ (U ⊗ IM , ZNM) =
∑

P=SYkT
T̃ (U, IN)S̃(U, IN)Uk ⊗ S̃(IM , Z)T̃ (IM , Z)

−
∑

P=SYk+dT

U∗k T̃ (U, IN)S̃(U, IN)⊗ S̃(IM , Z)T̃ (IM , Z)

=
∑

P=SYkT
(T̃ (U, IN)⊗ T̃ (IM , Z))(S̃(U, IN)⊗ S̃(IM , Z))× Uk ⊗ IM

−
∑

P=SYk+dT

U∗k ⊗ IM × (T̃ (U, IN)⊗ T̃ (IM , Z))(S̃(U, IN)⊗ S̃(IM , Z))

= DkP̃ (U ⊗ IM , ZNM)

Hence once again the conclusion by linearity.

3.3.3 Convergence of the free unitary Brownian motion
If ut is a free unitary Brownian motion at time t, one can define µut as in Definition 3.2.1.

Then thanks to Riesz theorem, there is a measure νt such that for any polynomial P in two
commuting variables,

τ(P (ut, u∗t )) =
∫
C
P (z, z∗) dνt(z).

The measure νt is well-known albeit not explicit. The proof of the following theorem can be
found in [83].

Theorem 3.3.4. For every t > 0, the measure νt is absolutely continuous with respect to the
Haar measure on T = {z ∈ C | |z| = 1}. For t > 4, the support of νt is equal to T, and its
density is positive on T. We set κ(t, ω) the density of νt at the point ω ∈ T. Then for t > 4,
κ(t, ω) is the real part of the only solution with positive real part of the equation,

z − 1
z + 1e

t
2 z = ω. (3.18)
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The following theorem states that given a free unitary Brownian motion (ut)t≥0, there exists
a family of Haar unitaries (ũt)t≥0 such that when t goes to infinity, ut and ũt are exponentially
close for the operator norm topology. And more importantly it gives explicit estimates.
Proposition 3.3.5. There exists a C∗-algebra C which contains u1

t , . . . , u
p
t freely independent

free unitary Brownian motions at time t ≥ 5 and ũ1
t , . . . , ũ

p
t freely independent Haar unitaries

such that for any i, ‖uit − ũit‖ ≤ 4e2πe−
t
2 .

Proof. We view B(L2([0, 2π])) as the C∗-algebra endowed with the state
τ(u) = 〈u(1[0,2π]),1[0,2π]〉L2([0,2π].

The endomorphism x : f 7→ (t → tf(t)) is self-adjoint and has distribution (as defined in
3.2.1) µx(f) =

∫
[0,2π] f . Consequently we set g : s → κ(t, eis) and G : s →

∫ s
0 g(u) du. Since g

is positive, we can define ut = eiG−1(x) which has the distribution of a free unitary Brownian
motion at time t, indeed for any polynomial P in two commuting indeterminates,

τ(P (ut, u∗t )) =
∫ 2π

0
P
(
eiG−1(s), e−iG−1(s)

)
ds =

∫ 2π

0
P (eis, e−is))g(s)ds =

∫
C
f(z, z∗) dνt(z).

And similarly, u = eix is a Haar unitary. Besides, since

ut − u =
∫ 1

0
eiαG−1(x)(G−1(x)− x)ei(1−α)xdα,

thanks to the fact that G is a diffeomorphism of [0, 2π],

‖ut − u‖ ≤
∥∥∥G−1(x)− x

∥∥∥ = sup
s∈[0,2π]

|G−1(s)− s| = sup
s∈[0,2π]

|s−G(s)| ≤ 2π sup
s∈[0,2π]

|1− g(s)|.

We set y(s) the imaginary part of the only solution with positive real part of the equation
(3.18). Then we have for any s,

(g(s)− 1)2 + y(s)2

(g(s) + 1)2 + y(s)2 ≤ e−tg(s).

However since (g(s)− 1)2 ≤ (g(s) + 1)2, we have,
(g(s)− 1)2

(g(s) + 1)2 ≤
(g(s)− 1)2 + y(s)2

(g(s) + 1)2 + y(s)2 ≤ e−tg(s).

First in the case where g(s) ≥ 1, then since we assumed t ≥ 4, |g(s) − 1| ≤ (|g(s) − 1| +
2)e−2|g(s)−1|e−

t
2 , and since the function u→ (u+2)e−2u is decreasing, we have, |g(s)−1| ≤ 2e− t2 .

If g(s) ≤ 1, then after studying the graph of the function h : g 7→ e−tg/2− 1−g
1+g , we have that this

function takes value 0 in in 0, is negative on (0, ct) for some ct ∈ (0, 1), and finally is positive
for g > ct. Since we know that g(s) is positive for t > 4 and h(g(s)) ≥ 0, if we find g such that
h(g) ≤ 0, then g(s) ≥ g. Besides for t ≥ 5, we have that h

(
ln(t/2)2

t

)
≤ 0. Thus necessarily

g(s) ≥ ln(t/2)2
t
, consequently since g(s) ≤ 1, we know that 1− g(s) ≤ 2e− t2g(s). Hence,

1− g(s) ≤ 2e− t2×ln(t/2) 2
t = 4

t
.

Thus by bootstrapping, for any s,

1− g(s) ≤ 2e−
t
2(1− 4

t ) = 2e2e−
t
2 .

Consequently ‖ut − u‖ ≤ 4e2πe−t/2, and thanks to Theorem 3.2.3, to conclude we just need to
take the free product of p copies of B(L2([0, 2π])).
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3.3.4 Free stochastic calculus and free unitary Brownian motion
In this subsection, we consider uNt = (UN

1 u
1
t , . . . , U

N
p u

p
t ), i.e. free unitary Brownian started

in UN . As we will see later, thanks to Proposition 3.3.5, this will let us interpolate between
UN = (UN

1 , . . . , U
N
p ) random Haar unitary matrices and u = (u1, . . . , up) free Haar unitaries.

Concretely if P ∈ Pd, we set

H(t) = τN ⊗ τM
(
P̃ (uNt ⊗ IM , ZNM)

)
.

Then,
H(0) = 1

NM
TrMN

(
P̃ (UN ⊗ IM , ZNM)

)
,

H(∞) = lim
t→∞

H(t) = τN ⊗ τM
(
P̃ (u⊗ IM , ZNM)

)
.

To prove the second line, that is to prove that H converges towards H(∞), we first use Propo-
sition 3.3.5 to prove that H converges towards τN ⊗ τM

(
P̃ ((UNu)⊗ IM , ZNM)

)
. Then thanks

to the invariance of the distribution of a Haar unitary by multiplication by a unitary operator,
almost surely this quantity is equal to H(∞). The invariance can easily be proved by using the
fact (see Theorem 5.4.10 of [13]) that if V kN = (V kN

1 , . . . , V kN
p ) are independent Haar unitary

matrices of size kN , then for any polynomial P ,

τ(P̃ (UNu)) = lim
k→∞

E
[
τN ⊗ τk(P̃ (UN ⊗ Ik × V kN))

]
= lim

k→∞
E
[
τkN(P̃ (V kN))

]
= τ(P̃ (u)).

Consequently as long as the integral is well-defined, we can write

1
NM

TrMN

(
P̃ (UN ⊗ IM , ZNM)

)
− τN ⊗ τM

(
P̃ (u⊗ IM , ZNM)

)
=
∫ ∞

0

dH

dt
(t) dt.

Hence we need to compute the differential of H with respect to t, which we do in the following
proposition.

Proposition 3.3.6. Let the following objects be given,

• u = (u1
t , . . . , u

p
t )t≥0 a family of p free unitary Brownian motions,

• UN = (UN
1 , . . . , U

N
p ) matrices of size N ,

• uNt = (UN
1 u

1
t , . . . , U

N
p u

p
t ) elements of AN ,

• ZNM = (ZNM
p+1 , . . . , Z

NM
d ) matrices in MN(C)⊗MM(C),

• P ∈ Pd.

With notation as in subsection 3.2.4, the map H : t 7→ τN ⊗ τM
(
P̃
(
uNt ⊗ IM , ZNM

))
is differ-

entiable on R+ and,

dH

dt
(t) = −1

2
∑

1≤i≤p
τM

(
(τN ⊗ IM)

⊗
(τN ⊗ IM)

(
δiDiP̃

(
uNt ⊗ IM , ZNM

)))
.
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Proof. We want to use Theorem 3.2.10 to write H as an integral which we can then easily
differentiate. We need to define X0 ∈ Ad, K such that for any t ≥ 0, K ∈ (L1([0, t],A))d, U
such that for any t ≥ 0, (1s≤tU i

s)t∈R+ ∈ (B∞a )d, and then,

Xt = X0 +
∫ t

0
Ksds+

∑
i

∫ t

0
U i
s#dSis.

By using the linearity of the trace and the non-commutative differential, we can assume that
ZNM
i = Ai ⊗ Bi where Ai ∈ MN(C) and Bi ∈ MM(C). We then set Xt = (uNt , uNt

∗
, A,A∗).

Since (A,A∗) is free from A, the processes K and U associated to (A,A∗) are zero. As for
(uNt , uNt

∗), by definition of a free unitary Brownian motion, we have

∀t ≥ 0, uNt = UN −
∫ t

0

uNs
2 ds+ i

∫ t

0
(uNs ⊗ 1A) #dSs,

∀t ≥ 0, (uNt )∗ = (UN)∗ −
∫ t

0

(uNs )∗
2 ds− i

∫ t

0
(1A ⊗ (uNs )∗) #dSs.

To minimize cumbersome notations, for the rest of this proof we will forget about the N in uNt ,
and assimilate uNt with ut. Consequently we set for any s ≥ 0,

∀i ∈ [1, p],∀j ∈ [1, p], Kj
s = −uj,s/2, U i,j

s = i 1i=juj,s ⊗ 1A,
∀i ∈ [1, p],∀j ∈ [p+ 1, 2p], Kj

s = −u∗j,s/2, U i,j
s = −i 1i=j1A ⊗ u∗j,s,

∀i ∈ [1, p],∀j > 2p, Kj
s = 0, U i,j

s = 0⊗ 0.

Thus we have for any monomial Q,

∂Q(X)#K = −1
2

∑
1≤i≤p

∂iQ(X)#ui + ∂∗iQ(X)#(ui)∗,

∆U(Q)(X) = −
∑

1≤i≤p
〈〈 ( (∂i ⊗ I) ◦ ∂iQ(X) )#(ui ⊗ 1A, ui ⊗ 1A) 〉〉

− 〈〈 ( (∂i ⊗ I) ◦ ∂∗iQ(X) )#(ui ⊗ 1A,1A ⊗ (ui)∗ 〉〉
− 〈〈 ( (∂∗i ⊗ I) ◦ ∂iQ(X) )#(1A ⊗ (ui)∗, ui ⊗ 1A) 〉〉
+ 〈〈 ( (∂∗i ⊗ I) ◦ ∂∗iQ(X) )#(1A ⊗ (ui)∗,1A ⊗ (ui)∗) 〉〉.

And thanks to Theorem 3.2.10, we have for any t ≥ 0,

Q(Xt) = Q(X0) +
∫ t

0
∂Q(Xs)#Ks ds+

∑
1≤i≤p

∫ t

0
(∂Q(X)]U i

s) #dSis +
∫ t

0
∆U(Q)(Xs) ds.

Thus if we fix t ∈ R+, then for any ε ≥ −t,

Q(Xt+ε)−Q(Xt) =
∫ t+ε

t
∂Q(Xs)#Ks ds+

∑
1≤i≤p

∫ t+ε

t
(∂Q(X)]U i

s) #dSis +
∫ t+ε

t
∆U(Q)(Xs) ds.
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As we said in section 3.2.3,
(∑

i

∫ t
0(∂Q(X)]U i

s) #dSis
)
t≥0

is a martingale, thus

τN(Q(Xt+ε))− τN(Q(Xt)) =
∫ t+ε

t
τN(∂Q(Xs)#Ks) ds+

∫ t+ε

t
τN(∆U(Q)(Xs)) ds.

Finally we have,
dτN(Q(Xt))

dt
= τN(∂Q(Xt)#Kt) + τN(∆U(Q)(Xt)). (3.19)

Besides,
τN(∂Q(Xt)#Kt) = −1

2
∑

1≤i≤p
τN(DiQ(Xt) ui,t) + τN(u∗i,tD∗iP (Xt)),

and,

τN (〈〈 (∂i ⊗ I) ◦ ∂iQ(X)#(ui ⊗ 1A, ui ⊗ 1A) 〉〉) =
∑

Q=AYiBYiC
τN(C(X)A(X)ui)τN(uiB(X)),

τN (〈〈 (∂i ⊗ I) ◦ ∂∗iQ(X)#(ui ⊗ 1A,1A ⊗ u∗i 〉〉) =
∑

Q=AYiBY ∗i C
τN(A(X)uiu∗iC(X))τN(B(X)),

τN (〈〈 (∂∗i ⊗ I) ◦ ∂iQ(X)#(1A ⊗ u∗i , ui ⊗ 1A) 〉〉) =
∑

Q=AY ∗i BYiC
τN(A(X)C(X))τN(uiu∗iB(X)),

τN (〈〈 (∂∗i ⊗ I) ◦ ∂∗iQ(X)#(1A ⊗ u∗i ,1A ⊗ u∗i ) 〉〉) =
∑

Q=AY ∗i BY
∗
i C

τN(C(X)A(X)u∗i )τN(u∗iB(X)).

Besides we also have,

τN ⊗ τN (δiDiQ(X)× 1⊗ ui) = 2
∑

Q=AYiBYiC
τ(B(X)ui)τ(C(X)A(X)ui)

−
∑

Q=AY ∗i BYiC
τ(C(X)A(X))τ(B(X)uiu∗i )

−
∑

Q=AYiBY ∗i C
τ(B(X))τ(C(X)uiu∗iA(X)),

τN ⊗ τN (δiD∗iQ(X)× u∗i ⊗ 1) =− 2
∑

Q=AY ∗i BY
∗
i C

τ(u∗iB(X))τ(C(X)A(X)u∗i )

+
∑

Q=AY ∗i BYiC
τ(B(X)uiu∗i )τ(C(X)A(X))

+
∑

Q=AYiBY ∗i C
τ(C(X)uiu∗iA(X))τ(B(X)).

Which means that

τN (∆U(Q)(X)) = −1
2
∑

1≤i≤p
τN ⊗ τN (δiDiQ(X)× 1⊗ ui)− τN ⊗ τN (δiD∗iQ(X)× u∗i ⊗ 1) .
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And thus when combined with equation (3.19), we get that
dτN(Q(Xt))

dt
= −1

2
∑

1≤i≤p
τN(DiQ(Xt) ui,t) + τN ⊗ τN (δiDiQ(Xt)× 1⊗ ui,t)

+ τN(u∗i,tD∗iQ(Xt))− τN ⊗ τN
(
δiD

∗
iQ(Xt)× u∗i,t ⊗ 1

)
= −1

2
∑

1≤i≤p
τN ⊗ τN (δi (DiQ(Xt)ui,t))− τN ⊗ τN

(
δi
(
u∗i,tD

∗
iQ(Xt)

))
= −1

2
∑

1≤i≤p
τN ⊗ τN (δiDiQ(Xt)) .

Now we want to study a polynomial in (uNt , ZNM) and their adjoints. If P is a monomial, we
have,

P̃ (uNt ⊗ IM , ZNM) = P̃ (uNt , A)⊗ P̃ (IM , B).
Therefore,

dH

dt
(t) = −1

2
∑

1≤i≤p
τN ⊗ τN

(
δiDiP̃ (uNt , A)

)
× τM

(
P̃ (IM , B)

)
.

And since for any S, T ∈ Pd,

τN ⊗ τN(δiT̃ S(uNt , A))× τM
(
S̃T (IM , B)

)
= τM

(
(τN ⊗ IM)

⊗
(τN ⊗ IM)

(
δiT̃ S

(
uNt ⊗ IM , A⊗B

)))
.

Hence after summing,
d

dt
τN ⊗ τM

(
P̃
(
uNt , Z

NM
))

= −1
2
∑

1≤i≤p
τM

(
(τN ⊗ IM)

⊗
(τN ⊗ IM)

(
δiDiP̃

(
uNt , Z

NM
)))

,

and we conclude by linearity.

3.4 Proof of Theorem 3.1.1, the main result

3.4.1 Overview of the proof
If we take the point of view of free probability – for details we refer to the third point of

Definition 3.2.1 – we have two families of non-commutative random variables, (UN ⊗ IM , ZNM)
and (u ⊗ IM , Z

NM), and we want to study the difference between their distributions. As
mentioned in the introduction the main idea of the proof is to interpolate those two families
with the help of p free unitary Brownian motions (uNt )t≥0 started in the Haar unitary matrices
UN . A big difference with the case of the GUE which was treated in [7] is that we do not
have an explicit expression of the law of uNt in function of UN and u, which is why we had to
introduce notions of free stochastic calculus.

This idea of interpolating random matrices is not entirely new. Indeed in [84], the authors
proved in theorem 1.3 that given (UN

t )t≥0 a unitary Brownian motion of size N and (ut)t≥0 a
free unitary Brownian motion, for any n ∈ N,∣∣∣E [τN((UN

t )n)
]
− τ(unt )

∣∣∣ ≤ t2n4

N2 . (3.20)
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The main idea of their proof was to interpolate E
[
τN((UN

t )n)
]
and E

[
τN((U2N

t )n)
]
through a

stochastic process defined with a unitary Brownian motion. Thus they get an estimate of the
difference between those two expectations, and by iterating this method they get an estimate
of

E
[
τN((U2iN

t )n)
]
− E

[
τN((U2i+1N

t )n)
]

for any i. Then by summing over i they get equation (3.20). In this paper, while the method
used are very different, we do keep this idea of interpolation. But instead of doing it step by
step from 2iN to 2i+1N , we directly interpolate between N and ∞.

Since our aim in this subsection is not to give a proof but to outline the strategy used in
subsection 3.4.2, we assume that we have no matrix ZNM and that M = 1. Now under the
assumption that this is well-defined, if Q is a non-commutative polynomial,

E
[ 1
N

TrN
(
Q
(
UN

))]
− τ

(
Q (u)

)
= −

∫ ∞
0

E
[
d

dt

(
τN
(
Q(uNt )

))]
dt.

In the classical case, if (St)t≥0 is a Markov process with generator θ, then under the appropriate
assumption we have

d

dt
E[f(St)] = E[(θf)(St)].

And if the law of the process at time 0 is invariant for this Markov process we have that for
any t, E[(θf)(St)] = 0. Since (uNt )t≥0 is a free Markov process, we expect to get similarly that

d

dt

(
τN
(
Q(uNt )

))
= τN

(
(ΘQ)(uNt )

)
,

for some generator Θ which we will compute with the help of Proposition 3.3.6. Besides the
invariant law of a free Brownian motion is the law of free Haar unitaries. Thus if (ut)t≥0 is
a free Brownian motion started in free Haar unitaries, we have that τ ((ΘQ)(ut)) = 0. Since
unitary Haar matrices converges in distribution towards free Haar unitaries (see [13], Theorem
5.4.10), we have that τN

(
(ΘQ)(uNt )

)
converges towards τ ((ΘQ)(ut)) = 0. As we will see in

this proof, the convergence happens at a speed of N−2. To prove this, the main idea is to view
free unitary Brownian motions started in UN as the asymptotic limit when k goes to infinity
of a unitary Brownian motion of size kN started in UN ⊗ Ik (see Proposition 3.4.4).

Another issue is that to prove Theorem 3.1.1, we would like to set Q = f(P ) but since f
is not polynomial this means that we need to extend the definition of operators such as δi. In
order to do so we assume that there exists µ a measure on R such that,

∀x ∈ R, f(x) =
∫
R
eixy dµ(y).

While we have to assume that the support of µ is indeed on the real line, µ can be a complex
measure. However we will usually work with measure such that |µ|(R) is finite. Indeed under
this assumption we can use Fubini’s theorem, and we get

E
[ 1
M

TrN
(
f
(
P (UN)

) )]
− τ

(
f (P (u))

)
=
∫
R

{
E
[ 1
N

TrN
(
eiyP(UN)

)]
− τ

(
eiyP (u)

)}
dµ(y).

We can then set Q = eiyP . And even though this is not polynomial, since it is a power series,
most of the properties associated to polynomials remain true with some assumption on the
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convergence. The main difficulty with this method is that we need to find a bound uniform in
y, indeed we have terms of the form ∫

R
|y|l d|µ|(y)

which appear. Thanks to Fourier integration we can relate the exponent l to the regularity of
the function f , thus we want to find a bound with l as small as possible. It turns out that with
our proof l = 4.

3.4.2 Proof of Theorem 3.4.1
In this section we focus on proving theorem 3.4.1 from which we deduce all of the important

corollaries, and notably Theorem 3.1.1. Since this subsection is dedicated to proving only one
theorem but is the longest of the paper, in the next few paragraphs we explain the structure
of the proof. Unlike subsection 3.4.1 where we gave ideas on the method of the proof, here me
mainly focus on which specific purpose serves every lemma. We begin by applying Proposition
3.3.6 to directly obtain Lemma 3.4.2 which states that the difference between the trace at time
N , that is a trace in Haar unitary matrices, and at infinity, that is a trace in free Haar unitaries,
can be written as an integral with respect to t of a trace in free unitary Brownian motions at
time t. We then proceed to study the term under the integral that we name SNt,y(A,B) in
Definition 3.4.3.

The next two lemmas are technical lemmas that we need to justify further computations.
First Proposition 3.4.4 shows that one can see a trace of a power series in free unitary Brown-
ian motions and matrices UN of size N as the limit of the trace of the same power series but
evaluated in independent unitary Brownian motions of size kN and UN ⊗ Ik. The proof of
Proposition 3.4.4 can be summarized as using well-known theorems on the convergence in dis-
tribution of random matrices. The proof of the second one, Lemma 3.4.5, is much more subtle.
It gives an estimate in k of the non diagonal coefficients of our power series in independent
unitary Brownian motions of size kN and UN ⊗ Ik. The proof relies on Gronwall’s inequality
to reduce the problem to the polynomial case and classical stochastic calculus to deal with the
former.

Lemma 3.4.6 let us write SNt,y(A,B) as a linear combination of covariance terms. Indeed,
thanks to Proposition 3.4.4 one can write SNt,y(A,B) as the limit when k goes to infinity of a
linear combination of products of expectations of traces in power series in independent unitary
Brownian motions of size kN started in UN ⊗ Ik where UN are Haar unitary matrices. It
turns out that the expectation of the product of those traces converges towards 0 when k goes
to infinity thanks to Lemma 3.4.5 and the properties of Haar unitary matrices. Hence every
product of expectations can be viewed as a covariance term. Interestingly enough, this is the
only part of the proof where we use that UN are Haar unitary matrices. More precisely we use
that the law of such a random matrix is invariant by multiplication by a unitary matrix. In
every other part of the proof one only need to assume at most that UN are unitary matrices.

Finally, in Lemma 3.4.7, we use Corollary 3.3.3 to get an upper bound independent of k of
those covariance terms. Thus we can let k go to infinity to get an upper bound of SNt,y(A,B).
As usual, the covariance of renormalized traces on MN(C) is of order N−2. And even though
we are not exactly working with a trace on MN(C) here, when using Corollary 3.3.3 the upper
bound that we get is of order N−2. Which means that so is the difference between the trace at
time N and at infinity. Finally this upper bound immediately yields Theorem 3.4.1. Then we
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conclude this section by a proof of Theorem 3.1.1 which, up to a trick to assume that they have
compact support, mainly consist in checking that the functions that we consider in Theorem
3.1.1 satisfies the hypothesis of Theorem 3.4.1.

Theorem 3.4.1. We define

• u = (u1, . . . , up) a family of p free Haar unitaries,

• UN = (UN
1 , . . . , U

N
p ) i.i.d. Haar unitary matrices of size N .

• ZNM = (ZNM
p+1 , . . . , Z

NM
d ) deterministic matrices,

• P ∈ Pd a self-adjoint polynomial,

• f : R 7→ R such that there exists a measure on the real line µ with
∫

(1+y4) d|µ|(y) < +∞
and for any x ∈ R,

f(x) =
∫
R
eixy dµ(y).

Then there exists a polynomial LP ∈ R+[X] which only depends on P such that for any N,M ,∣∣∣∣∣∣E
[ 1
MN

TrMN

(
f
(
P̃
(
UN ⊗ IM , ZNM

)) )]
− τN ⊗ τM

(
f
(
P̃
(
u⊗ IM , ZNM

)) )∣∣∣∣∣∣
≤ ln2(N)M2

N2 LP
(∥∥∥ZNM

∥∥∥)× ∫
R
(|y|+ y4) d|µ|(y).

where
∥∥∥ZNM

∥∥∥ = sup
p+1≤i≤d

∥∥∥ZNM
i

∥∥∥.
Even though we do not give an explicit expression for LP , it is possible to compute it rather

easily by following the proof of Lemma 3.4.7. In particular given a set of polynomials whose
degree and coefficients are uniformly bounded, we can find a polynomial R such that for any P
in this set and any matrices ZNM , LP

(∥∥∥ZNM
∥∥∥) ≤ R

(∥∥∥ZNM
∥∥∥). Besides, if we replace P by αP

where α ∈ C, then up to a constant independent from α, we can bound LαP by (|α|+ |α|5)LP ,
or even (|α| + |α|4)LP if one picks the first expression in the minimum. It is also wort noting
that the set of function f : R 7→ C such that there exists a Borel complex measure on the real
line µ with

∫
y4 d|µ|(y) < +∞ and for any x ∈ R, f(x) =

∫
R e

ixy dµ(y), is the so-called 4th

Wiener space W4(R). We refer to [87], section 4.3 for a brief introduction on the matter.
The first step to prove this theorem is the following lemma, who is a direct consequence of

Proposition 3.3.6 and equation (3.5),

Lemma 3.4.2. With the same notation as in Theorem 3.4.1, we define

• u = (u1
t , . . . , u

p
t )t≥0 a family of p free unitary Brownian motions,

• uNt = (UN
1 u

1
t , . . . , U

N
p u

p
t ) elements of AN .

Then with notation as in subsection 3.2.4, almost surely
1

MN
TrMN

(
f
(
P̃
(
UN ⊗ IM , ZNM

)))
− τN ⊗ τM

(
f
(
P̃
(
uNT ⊗ IM , ZNM

)))
= 1

2
∑
i≤p

∫ ∫ T

0
τM

(
(τN ⊗ IM)

⊗
(τN ⊗ IM)

(
δi

(
Di eiyP̃

) (
uNt ⊗ IM , ZNM

)))
dt dµ(y).
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Since Di eiyP = iy δiP #̃ eiyP , this prompts us to define the following quantity.

Definition 3.4.3. Let A,B ∈ Pd, we set

SNt,y(A,B) = E
[
τM

(
(τN ⊗ IM)

⊗
(τN ⊗ IM)

(
δi
(
A eiyP B

) (
ZN
t

)))]
,

where ZN
t =

(
uNt ⊗ IM , ZNM , (uNt )∗ ⊗ IM , (ZNM)∗

)
.

The following proposition justifies why the family (UN ⊗ IM , ut⊗ IM , ZNM) has in the large
k limit the distribution – in the sense of Definition 3.2.1 – of the family (UN ⊗ IkM , U

kN
t ⊗

IM , Z
NM ⊗ Ik) where UkN

t are independent unitary Brownian motions of size kN at time t.

Proposition 3.4.4. If UkN
t are unitary Brownian motions of size kN at time t, independent

of UN , we set

Y k
t =

(
(UN ⊗ Ik UkN

t )⊗ IM , ZNM ⊗ Ik, (UN ⊗ Ik UkN
t )∗ ⊗ IM , (ZNM)∗ ⊗ Ik

)
.

Then if q = AeiyPB, we have that for any t, almost surely with respect to UN ,

(τN ⊗ IM)
(
q(ZN

t )
)

= lim
k→∞

Ek
[
(τkN ⊗ IM)

(
q(Y k

t )
)]
,

where Ek is the expectation with respect to (UkN
t )t≥0.

Proof. It has been known for a long time that the unitary Brownian motion converges in distri-
bution towards the free unitary Brownian motion, see [88]. However since we also have to con-
sider deterministic matrices we will use Theorem 1.4 of [84]. This theorem states that if (UkN

t )t≥0
are independent unitary Brownian motions and DkN is a family of deterministic matrices which
converges strongly in distribution towards a family of non-commutative random variables d, the
family (UkN

t , DkN) in the non-commutative probability space (MkN(C), ∗,Ek[ 1
kN

Tr]) converges
strongly in distribution towards the family (ut, d) where ut are freely independent free unitary
Brownian motions at time t free from d. That being said, we do not use the convergence of
the norm, we only need the convergence in distribution which is way easier to prove through
induction and stochastic calculus. In our situation we can write for every i,

ZNM
i =

∑
1≤r,s≤N

Er,s ⊗ AMr,s,i.

Thus if EN = (Er,s)1≤r,s≤N , we fix DkN = (UN ⊗ Ik, EN ⊗ Ik), and we can apply Theorem 1.4
of [84] to get that for any non-commutative polynomial P ,

lim
k→∞

Ek
[
τkN(P̃ (UkN

t , DkN))
]

= τN
(
P̃ (ut, UN , EN)

)
.

Consequently, for any non-commutative polynomial P , we also have

lim
k→∞

Ek
[
τkN ⊗ IM(P̃ (UkN

t , DkN , AM))
]

= τN ⊗ IM
(
P̃ (ut, UN , EN , AM)

)
.

Hence for any P ∈ Pd,

lim
k→∞

Ek
[
τkN ⊗ IM(P (Y k

t ))
]

= τN ⊗ IM
(
P (ZN

t )
)
.
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Now since UkN
t are unitary matrices, we can find a polynomial L such that for any k,

∥∥∥P (Y k
t )
∥∥∥ ≤

C = L
(∥∥∥UN

∥∥∥ , ∥∥∥ZNM
∥∥∥). Knowing this, let fε ∈ C[X] be a polynomial which is ε-close to

x 7→ eiyx on the interval [−C,C]. Since one can always assume that C >
∥∥∥P (ZN

t )
∥∥∥, we have a

constant K such that∥∥∥(τN ⊗ IM)
(
q(ZN

t )
)
− (τN ⊗ IM)

(
(Afε(P )B)(ZN

t )
∥∥∥ ≤ Kε,∥∥∥(τN ⊗ IM)

(
q(Y k

t )
)
− (τN ⊗ IM)

(
(Afε(P )B)(Y k

t )
∥∥∥ ≤ Kε.

Thus ∥∥∥(τN ⊗ IM)
(
q(ZN

t )
)
− Ek

[
(τkN ⊗ IM)

(
q(Y k

t )
)]∥∥∥

≤
∥∥∥(τN ⊗ IM)

(
(Afε(P )B)(ZN

t )
)
− Ek

[
(τkN ⊗ IM)

(
(Afε(P )B)(Y k

t )
)]∥∥∥+ 2Kε.

Consequently

limsup
k→∞

∥∥∥(τN ⊗ IM)
(
q(ZN

t )
)
− Ek

[
(τkN ⊗ IM)

(
q(Y k

t )
)]∥∥∥ ≤ 2Kε.

This completes the proof.

The next lemma shows that the non-diagonal coefficients can actually be neglected.

Lemma 3.4.5. We define Y k
t as in Proposition 3.4.4, P1,2 = IN ⊗E1,2⊗ IM , q = AeiyPB, then

lim
k→∞

k1/2Ek
[
(TrkN ⊗IM)(q(Y k

t )P1,2)
]

= 0.

Proof. Let us first define for A,B ∈ Pd,

f tA,B(y) = Ek
[
(TrkN ⊗IM)

(
(Ã eiyP̃ B̃)(UN ⊗ IkM , UkN

t ⊗ IM , ZNM ⊗ Ik) P1,2

)]
,

dtn(y) = sup
A,B∈Pd monomials,

deg(AB)≤n
0≤s≤t

∥∥∥f tA,B(y)
∥∥∥ .

Since given a matrix Z ∈MNkM(C), we have

‖(TrkN ⊗IM)(ZP1,2)‖ = ‖(TrN ⊗IM)(INM ⊗ f ∗2 × Z × INM ⊗ f1)‖
≤ N ‖INM ⊗ f ∗2 × Z × INM ⊗ f1‖
≤ N ‖Z‖ .

Consequently, we can find a constant D such that for any n, dtn(y) ≤ Dn. Note that this
constant D can be exponentially large in N or M , indeed it does not matter since in the end
we will show that this quantity tends to 0 when k goes to infinity and the other parameters
such as N,M or y are fixed. This implies that for a small enough,

gtk,a(y) =
∑
n≥0

dtn(y)an,
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is well-defined. But if we set cR(P ) the coefficient associated to the monomial R in P , we have
for any s ≤ t, ∣∣∣∣∣df

s
A,B(y)
dy

∣∣∣∣∣ ≤ ∑
R monomials

|cR(P )| dtdeg(AB)+deg(R)(y).

Thus if deg(AB) ≤ n, we have for any y ≥ 0,

f sA,B(y) ≤ f sA,B(0) +
∑

R monomials
|cR(P )|

∫ y

0
dtn+deg(R)(u) du.

Thus we have for y ≥ 0 and any n ≥ 0,

andtn(y) ≤ andtn(0) +
∑

L monomials
|cR(P )|a− deg(L)

∫ y

0
dtn+deg(R)(u)an+deg(L) du.

And with ‖.‖a−1 defined as in (3.4), we have

gtk,a(y) ≤ gtk,a(0) + ‖P‖a−1

∫ y

0
gtk,a(u)du.

Thanks to Gronwall’s inequality, we have for y ≥ 0,

gtk,a(y) ≤ gtk,a(0)ey‖P‖a−1 . (3.21)

In order to conclude the proof, we are going to show that

gtk,a(0) = O(k−2). (3.22)

In combination with equation (3.21), it will yields∣∣∣k3/2Ek
[
(τkN ⊗ IM)(q(Y k

t )P1,2)
]∣∣∣ ≤ k1/2a− deg(AB)gtk,ak(y) = O(k−3/2).

Hence the conclusion. To show equation (3.22), first one can find deterministic matrices Lu,vj ∈
MN(C) such that for every j ∈ [p+ 1, d], ZNM

j = ∑
1≤u,v≤M Lu,vj ⊗Eu,v where Eu,v ∈MM(C) is

the matrix whose every coefficient is 0 but the (u, v) coefficients. Thus with L = (Lu,vj )j,u,v, we
proceed by defining

V t
N,k =

(
UkN
t , (UkN

t )∗, UN ⊗ Ik, (UN)∗ ⊗ Ik, L⊗ Ik, L∗ ⊗ Ik
)
, (3.23)

ctn = sup
deg(Q)≤n, Q monomial

0≤s≤t

∣∣∣Ek [TrkN(Q(V s
N,k) P1,2)

]∣∣∣ .
where for the rest of the proof P1,2 = IN ⊗ E1,2. Then for any A ∈ Pd monomials,

(TrkN ⊗IM)
(
Ã(UN ⊗ IkM , UkN

t ⊗ IM , ZNM ⊗ Ik) P1,2

)
(3.24)

is a linear combination of at most M2n terms of the form

TrkN
(
Ar(V t

N,k) P1,2

)
× Eu,v, (3.25)
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where (Ar)r are monomials. Consequently we have

dtn(0) ≤M2nctn.

Thus if we set
f tk(a) =

∑
n≥0

ctna
n,

we have
gtk,a(0) ≤ f tk(M2a).

So all we need to do is to prove that for a small enough, f tk(a) = O(k−2). Let Q be a monomial,
we define Qt as the monomial Q evaluated in V t

N,k. Thanks to Proposition 3.2.18,

d

dt
Ek [TrkN (QtP1,2)] =− |Q|B2 Ek [TrkN (QtP1,2)]

− 1
kN

∑
1≤i≤p, Q=AUiBUiC

Ek
[
TrkN

(
AtU

kN
i,t CtP1,2

)
TrkN

(
BtU

kN
i,t

)]
− 1
kN

∑
1≤i≤p, Q=AU∗i BU

∗
i C

Ek
[
TrkN

(
AtU

kN
i,t

∗
CtP1,2

)
TrkN

(
BtU

kN
i,t

∗)]

+ 1
kN

∑
1≤i≤p, Q=AUiBU∗i C

Ek [TrkN(AtCtP1,2) TrkN(Bt)]

+ 1
kN

∑
1≤i≤p, Q=AU∗i BUiC

Ek [TrkN(AtCtP1,2) TrkN(Bt)] .

Since Ek [TrkN (Q0P1,2)] = 0, we have for any t,

Ek [TrkN (QtP1,2)]

=
∫ t

0
e−
|Q|B

2 (t−s)

− 1
kN

∑
1≤i≤p, Q=AUiBUiC

Ek
[
TrkN

(
AsU

kN
i,s CsP1,2

)
TrkN

(
BsU

kN
i,s

)]
− 1
kN

∑
1≤i≤p, Q=AU∗i BU

∗
i C

Ek
[
TrkN

(
AsU

kN
i,s

∗
CtP1,2

)
TrkN

(
BsU

kN
i,s

∗)]

+ 1
kN

∑
1≤i≤p, Q=AUiBU∗i C

Ek [TrkN(AsCsP1,2) TrkN(Bs)]

+ 1
kN

∑
1≤i≤p, Q=AU∗i BUiC

Ek [TrkN(AsCsP1,2) TrkN(Bs)]
ds.

As in Proposition 3.3.2, we consider (V kN
t )t∈R+ and (W kN

t )t∈R+ independent families of p unitary
Brownian motions of size kN , independent of (UkN

t )t∈R+ . We define V r,1
N,k and V r,2

N,k as V r
N,k

(see (3.23)) but with V kN
s−rU

kN
r and W kN

s−rU
kN
r instead of UkN

r . Thanks to Proposition 3.3.2, by
polarization and the fact that (DiQ∗)∗ = −DiQ, we have with Cov(X, Y ) = E[XY ]−E[X]E[Y ],

Covk (TrkN(AsCsP1,2),TrkN(Bs))

= − 1
kN

∑
i≤p

∫ s

0
Ek
[

TrkN
(

(δi(AC)#̃P1,2)
(
V r,1
N,k

)
(DiB)

(
V r,2
N,k

) )]
dr.
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Since P1,2 is a matrix of rank N , we now fix D = max(1, supu,v
∥∥∥Lu,vj ∥∥∥), we have

|Covk (TrkN(AsCsP1,2),TrkN(Bs))| ≤
s

k
deg(AC) deg(B) Ddeg(ABC).

We now assume that Q has degree at most n, then |Covk (TrkN(AsCsP1,2),TrkN(Bs))| ≤ s
k
n2Dn.

Thus we have,

|Ek [TrkN (QtP1,2)]| ≤ n4t2Dn

k2N

+ 1
kN

∫ t

0
e−
|Q|B

2 (t−s)

 ∑
i≤p, Q=AUiBUiC

∣∣∣Ek [TrkN
(
AsU

kN
i,s CsP1,2

)]
Ek
[
TrkN

(
BsU

kN
i,s

)]∣∣∣
∑

i≤p, Q=AU∗i BU
∗
i C

∣∣∣Ek [TrkN
(
AsU

kN
i,s

∗
CtP1,2

)]
Ek
[
TrkN

(
BsU

kN
i,s

∗)]∣∣∣
∑

i≤p, Q=AUiBU∗i C
|Ek [TrkN(AsCsP1,2)]Ek [TrkN(Bs)]|

∑
i≤p, Q=AU∗i BUiC

|Ek [TrkN(AsCsP1,2)]Ek [TrkN(Bs)]|
ds.

This means that,

|Ek [TrkN (QtP1,2)]| ≤ n4t2Dn

k2N
+
∫ t

0
e−
|Q|B

2 (t−s)

 ∑
1≤i≤p, Q=AUiBUiC

ctdeg(AC)+1D
deg(B)+1

+
∑

1≤i≤p, Q=AU∗i BU
∗
i C

ctdeg(AC)+1D
deg(B)+1

+
∑

1≤i≤p, Q=AUiBU∗i C
ctdeg(AC)D

deg(B)

+
∑

1≤i≤p, Q=AU∗i BUiC
ctdeg(AC)D

deg(B)

ds
≤ n4t2Dn

k2N
+
∫ t

0
|Q|Be−

|Q|B
2 sds

∑
0≤d≤n−1

Ddctn−1−d

≤ n4t2Dn

k2N
+ 2

∑
0≤d≤n−1

Ddctn−1−d.

Hence, for any n ≥ 1,
ctn ≤

n4t2Dn

k2N
+ 2

∑
0≤d≤n−1

Ddctn−1−d.

Since we are taking the trace of L(V s
N,k)P1,2 with P1,2 = IN ⊗ E1,2, we have c0 = 0. We fix

s : a 7→ ∑
n≥0

n4t2(aD)n
N

, thus for a small enough,

f tk(a) ≤ s(a)
k2 + 2

∑
n≥1

 ∑
0≤d≤n−1

Ddctn−1−d

 an
≤ s(a)

k2 + 2a
1− aDf

t
k(a)
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Thus for a small enough, f tk(a) ≤ 2s(a)k−2. Which means that f tk(a) = O(k−2), hence the
conclusion.

We can now prove the following intermediary lemma that will allow us to derive Lemma
3.4.7. This lemma is the only one where the law of UN actually plays an important part. To
be more precise, we use the invariance of the law of a Haar unitary matrix by multiplication
by a deterministic unitary matrix.

Lemma 3.4.6. We define Y k
t as in Proposition 3.4.4, we set

• Pl,l′ = IN ⊗ El,l′ ⊗ IM ,

• q = A eiyP B.

Then for every M,N ∈ N, t ∈ R+ and y ∈ R,

SNt,y(A,B) = lim
k→∞
− 1
kN2E

τM
 ∑

1≤l,l′≤k
Ek
[
(TrkN ⊗IM)

⊗
2
(
δiq(Y k

t )× Pl′,l ⊗ Pl,l′
) ]

− Ek[TrkN ⊗IM ]
⊗

2
(
δiq(Y k

t )× Pl′,l ⊗ Pl,l′
)

where thanks to Proposition 3.2.7, we set

δiq = δiA eiyP B + iyA
∫ 1

0
eiαyP δiP ei(1−α)yP Bdα + A eiyP δiB. (3.26)

Proof. Since all of our random variables are unitary matrices, thanks to Proposition 3.4.4 and
the dominated convergence theorem,

SNt,y(A,B) = lim
k→∞

E
[
τM

(
Ek[τkN ⊗ IM ]

⊗
Ek[τkN ⊗ IM ]

(
δi
(
A eiyP B

) (
Y k
t

)))]
, (3.27)

where Ek[τkN⊗IM ]⊗Ek[τkN⊗IM ]
(
A⊗B

(
Y k
t

))
= Ek[τkN⊗IM(A(Y k

t ))]Ek[τkN⊗IM(B(Y k
t ))].

Since given V ∈ UN , (UkN
t,1 , U

N
1 ⊗ Ik, . . . , UkN

t,p , U
N
p ⊗ Ik) has the same law as ((V ∗⊗ Ik)UkN

t,1 (V ⊗
Ik), (UN

1 V )⊗ Ik, UkN
t,2 , U

N
2 ⊗ Ik, . . . , UkN

t,p , U
N
p ⊗ Ik), we have

E[q(Y k
t )] = E

[
q̃
(

(UN
1 ⊗ Ik UkN

t,1 )⊗ IM (V ⊗ IkM),

(UN
2 ⊗ Ik UkN

t,2 )⊗ IM , . . . , (UN
p ⊗ Ik UkN

t,p )⊗ IM , ZNM ⊗ Ik
)]
.

Hence let H be an skew-Hermitian matrix, then for any s ∈ R, esH ∈ UN , thus by taking V
this matrix and differentiating with respect to s we get that, E

[
δ1q(Y k

t )#(H ⊗ IkM)
]

= 0. And
similarly we get that for any i,

E
[
δiq(Y k

t )#(H ⊗ IkM)
]

= 0.
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Since every matrix is a linear combination of skew-Hermitian matrices (indeed if A ∈ MN(C),
then 2A = (A−A∗) + i× (−i)(A∗+A) ), this is true for any matrix H ∈MN(C), and thus for
any i,

E
[
(TrN ⊗IkM)

⊗
2
(
δiq(Y k

t )
) ]

=
∑

1≤r,s≤N
g∗r ⊗ IkM E

[
δiq(Y k

t )#(Er,s⊗ IkM)
]
gs⊗ IkM = 0 (3.28)

Let S, T ∈MNkM(C) be deterministic matrices, then

Trk⊗IM
(
(TrN ⊗IkM)

⊗
2 (S ⊗ T )

)
=

∑
1≤m,n≤N

TrNk⊗IM (S Em,n ⊗ IkM T En,m ⊗ IkM)

=
∑

1≤l,l′≤k

∑
1≤m≤N

g∗m ⊗ f ∗l ⊗ IM S gm ⊗ fl′ ⊗ IM
∑

1≤n≤N
g∗n ⊗ f ∗l′ ⊗ IM T gn ⊗ fl ⊗ IM

=
∑

1≤l,l′≤k
TrN ⊗IM(IN ⊗ f ∗l ⊗ IM S IN ⊗ fl′ ⊗ IM) TrN ⊗IM(IN ⊗ f ∗l′ ⊗ IM T IN ⊗ fl ⊗ IM)

=
∑

1≤l,l′≤k
TrkN ⊗IM

(
S IN ⊗ El′,l ⊗ IM

)
TrkN ⊗IM

(
T IN ⊗ El,l′ ⊗ IM

)
.

Thus by using equation (3.28), we have for any i,

∑
1≤l,l′≤k

E
[
(TrkN ⊗IM)

⊗
2
(
δiq(Y k

t )× Pl′,l ⊗ Pl,l′
) ]

= 0.

And consequently,
∑

1≤l,l′≤k
E
[
(TrkN ⊗IM)

⊗
2
(
δiq(Y k

t )× Pl′,l ⊗ Pl,l′
) ]

− E
[
Ek[TrkN ⊗IM ]

⊗
2
(
δiq(Y k

t )× Pl′,l ⊗ Pl,l′
)]

(3.29)

= −
∑

1≤l,l′≤k
E
[
Ek[TrkN ⊗IM ]

⊗
2
(
δiq(Y k

t )× Pl′,l ⊗ Pl,l′
)]
.

Let V,W ∈ Mk(C) be permutation matrices. Since INM ⊗ V commutes with ZNM ⊗ Ik and
UN ⊗ IkM , and that the law of UkN

t is invariant by conjugation by a unitary matrix, it follows
that the law of every matrix of Y k

t is invariant by conjugation by INM ⊗ V or INM ⊗W . Thus,

Ek[TrkN ⊗IM ]
⊗

2
(
δiq(Y k

t )× Pl′,l ⊗ Pl,l′
)

= Ek[TrkN ⊗IM ]
⊗

2
(
δiq(Y k

t )× V Pl′,lV ∗ ⊗WPl,l′W
∗
)
.

Thus by using well-chosen matrices, we get

• if l = l′,

Ek[TrkN ⊗IM ]
⊗

2
(
δiq(Y k

t )× Pl′,l ⊗ Pl,l′
)

= Ek[TrkN ⊗IM ]
⊗

2
(
δiq(Y k

t )× P1,1 ⊗ P1,1
)
,

• if l 6= l′,

Ek[TrkN ⊗IM ]
⊗

2
(
δiq(Y k

t )× Pl′,l ⊗ Pl,l′
)

= Ek[TrkN ⊗IM ]
⊗

2
(
δiq(Y k

t )× P1,2 ⊗ P1,2
)
.

105



Chapter 3. On the operator norm of noncommutative polynomials in deterministic
matrices and iid Haar unitary matrices

Consequently, we have that

• equation (3.29) is equal to

∑
1≤l,l′≤k

E
[
(TrkN ⊗IM)

⊗
2
(
δiq(Y k

t )× Pl′,l ⊗ Pl,l′
) ]

− E
[
Ek[TrkN ⊗IM ]

⊗
2
(
δiq(Y k

t )× Pl′,l ⊗ Pl,l′
)]

= −kE
[
Ek[TrkN ⊗IM ]

⊗
2
(
δiq(Y k

t )× P1,1 ⊗ P1,1
)]

− k(k − 1)E
[
Ek[TrkN ⊗IM ]

⊗
2
(
δiq(Y k

t )× P1,2 ⊗ P1,2
)]
.

• Whereas the quantity inside the trace τM in equation (3.27) is equal to

E
[
Ek[τkN ⊗ IM ]

⊗
Ek[τkN ⊗ IM ]

(
δiq

(
Y k
t

))]
= 1

(kN)2

∑
1≤l,l′≤k

E
[
Ek[TrkN ⊗IM ]

⊗
2
(
δiq

(
Y k
t

)
× Pl,l ⊗ Pl′,l′

)]
= 1
N2E

[
Ek[TrkN ⊗IM ]

⊗
2
(
δiq

(
Y k
t

)
× P1,1 ⊗ P1,1

)]
.

Thus, we have

SNt,y(A,B) = lim
k→∞
− 1
kN2 τM

 ∑
1≤l,l′≤k

E
[
(TrkN ⊗IM)

⊗
2
(
δiq(Y k

t )× Pl′,l ⊗ Pl,l′
) ]

− E
[
Ek[TrkN ⊗IM ]

⊗
2
(
δiq(Y k

t )× Pl′,l ⊗ Pl,l′
)]

−k − 1
N2 E

τM
Ek[TrkN ⊗IM ]

⊗
2
(
δiq(Y k

t )× P1,2 ⊗ P1,2
) .

Thanks to Lemma 3.4.5 and Proposition 3.2.7, the last term converges towards 0, which gives
the expected formula.

Lemma 3.4.6 makes a covariance appears. Thus it is natural to want to use Corollary 3.3.3
to get an upper bound of SNt,y(A,B), explicit in all of its parameters.

Lemma 3.4.7. There exists a polynomial LP ∈ R+[X] such that for any t, y,N,M,ZNM ,

|SNt,y(A,B)| ≤ LP
(∥∥∥ZNM

∥∥∥)M2

N2 (1 + |y|3) t. (3.30)

Besides if ZNM = (IN ⊗Y M
1 , . . . , IN ⊗Y M

q ) and that these matrices commute, then we have the
same inequality without the M2.

Proof. As mentioned in equation (3.26), we have

δiq = δiA eiyP B + iyA
∫ 1

0
eiαyP δiP ei(1−α)yP Bdα + A eiyP δiB.
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Consequently, we set q1 = A1e
iαyPB1 and q2 = A2e

i(1−α)yPB2 where A1, B1, A2, B2 ∈ Pd are
monomials, then thanks to equation (3.5) and Proposition 3.2.7, we can use Lemma 3.3.3 even
though q1 and q2 are not exactly polynomials and we get that

τM

(
Ek
[
(TrkN ⊗IM)

⊗
2
(
q1(Y k

t )Pl′,l ⊗ q2(Y k
t )Pl,l′

) ]
− Ek[TrkN ⊗IM ]

⊗
2
(
q1(Y k

t )Pl′,l ⊗ q2(Y k
t )Pl,l′

))
=

∑
1≤j≤p

∫ t

0
Ek
[
τkN ⊗ τM

(
h ◦ δj(q̃1Pl′,l)(UN ⊗ IkV kN

t−sU
kN
s , ZNM ⊗ IM)

× h ◦ δj(q̃2Pl′,l)(UN ⊗ IkW kN
t−sU

kN
s , ZNM ⊗ IM)

)]
ds,

where (V kN
s )s∈R and (W kN

s )s∈R are p-tuples of independent unitary Brownian motions of size
kN . Thus thanks to Lemma 3.3.1, we get that there exist a polynomial LA1,B1,A2,B2,P such that∣∣∣∣τM(Ek[(TrkN ⊗IM)

⊗
2
(
q1(Y k

t )Pl′,l ⊗ q2(Y k
t )Pl,l′

) ]
− Ek[TrkN ⊗IM ]

⊗
2
(
q1(Y k

t )Pl′,l ⊗ q2(Y k
t )Pl,l′

))∣∣∣∣
≤ LA1,B1,A2,B2,P

(∥∥∥ZNM
∥∥∥)× (1 + y2)M

2t

k
,

where we used the fact that Pl′,l has rank NM and that the renormalized trace of a matrix of
rank NM in MkN(C)⊗MM(C) is smaller than its norm renormalized by k.

Since this upper bound does not depend on α, it remains true if we integrate with respect
to α from 0 to 1. But then δiq is a finite linear combination of such terms. Consequently, one
gets that there exists a polynomial LP such that for any k,∣∣∣∣∣∣ 1

kN2 τM

 ∑
1≤l,l′≤k

E
[
(TrkN ⊗IM)

⊗
2
(
δiq(Y k

t )× Pl′,l ⊗ Pl,l′
) ]

− E
[
Ek[TrkN ⊗IM ]

⊗
2
(
δiq(Y k

t )× Pl′,l ⊗ Pl,l′
)]∣∣∣∣∣∣

≤ LP
(∥∥∥ZNM

∥∥∥)× (1 + |y|3)M
2t

N2 .

Finally, when the matrices ZNM commute, as specified in Lemma 3.3.3, we have the same proof
where we replaced h ◦ δj by Dj, hence we do not need to use Lemma 3.3.1 and hence we have
the same inequality without theM2. Finally we get the conclusion thanks to Lemma 3.4.6.

We now have the tools to prove Theorem 3.4.1.

Proof of Theorem 3.4.1. Thanks to Lemma 3.4.2, and since Di eiyP = iy δiP #̃ eiyP , there exist
a family of monomials (Ak, Bk)k and a constant C which only depends on P such that,∣∣∣∣∣∣E

[ 1
MN

TrMN

(
f
(
P̃
(
UN ⊗ IM , ZNM

)) )
− τN ⊗ τM

(
f
(
P̃
(
UNuT ⊗ IM , ZNM

)) )] ∣∣∣∣∣∣
≤ C

∑
k

∫
|y|
∫ T

0

∣∣∣SNt,y(Ak, Bk)
∣∣∣ dt d|µ|(y).
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Thanks to equation (3.30), we get that for some polynomial LP ,∣∣∣∣∣∣E
[ 1
MN

TrMN

(
f
(
P̃
(
UN ⊗ IM , ZNM

)) )
− τN ⊗ τM

(
f
(
P̃
(
UNuT ⊗ IM , ZNM

)) )] ∣∣∣∣∣∣
≤ T 2 M

2

N2 LP
(∥∥∥ZNM

∥∥∥)× ∫
R
(|y|+ y4) d|µ|(y) .

And besides if ZNM = (IN ⊗ Y M
1 , . . . , IN ⊗ Y M

q ) and that these matrices commute, we have
the same inequality without theM2. Finally, thanks to Proposition 3.3.5, thanks to Duhamel’s
formula (3.6) we can find a polynomial L′P such that

∣∣∣∣∣∣τN ⊗ τM
(
eiyP̃(u⊗IM ,ZNM)

)
− τN ⊗ τM

(
eiyP̃(UNuT⊗IM ,ZNM)

)∣∣∣∣∣∣
=
∣∣∣∣∣∣τN ⊗ τM

(
eiyP̃(UNu⊗IM ,ZNM)

)
− τN ⊗ τM

(
eiyP̃(UNuT⊗IM ,ZNM)

)∣∣∣∣∣∣
≤ e−T/2L′P

(∥∥∥ZNM
∥∥∥)× |y|.

Hence the conclusion by fixing T = 4 ln(N).

We can finally prove Theorem 3.1.1.

Proof of Theorem 3.1.1. We want to use Theorem 3.4.1. To do so we would like to take the
Fourier transform of f and use Fourier inversion formula. However we did not assume that
f is integrable. Thus the first step of the proof is to show that we can assume that f has
compact support. Since UN and u are unitaries, there exists a polynomial H ∈ R+[X] which
only depends on P such that

∥∥∥P̃ (UN ⊗ IM , ZNM
)∥∥∥ ≤ H

(∥∥∥ZNM
∥∥∥). Consequently since we

also have that
∥∥∥P̃ (u⊗ IM , ZNM)

∥∥∥ ≤ H
(∥∥∥ZNM

∥∥∥), we can replace f by fg where g is a C∞

function which takes value in [0, 1], takes value 1 in [−H
(∥∥∥ZNM

∥∥∥) , H (∥∥∥ZNM
∥∥∥)] and 0 outside

of [−H
(∥∥∥ZNM

∥∥∥)− 1, H
(∥∥∥ZNM

∥∥∥)+ 1]. Since f can be differentiated six times, we can take its
Fourier transform and then invert it so that with the convention f̂(y) = 1

2π
∫
R f(x)e−ixydx, we

have

∀x ∈ R, f(x) =
∫
R
eixyf̂(y) dy.

Besides since if f has compact support bounded by H
(∥∥∥ZNM

∥∥∥)+ 1, then

∥∥∥f̂∥∥∥
∞
≤ 2

(
H
(∥∥∥ZNM

∥∥∥)+ 1
)
‖f‖∞ ,

we get that
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∫
R
(|y|+ y4)

∣∣∣f̂(y)
∣∣∣ dy ≤ ∫

R

|y|+ |y|3 + y4 + y6

1 + y2

∣∣∣f̂(y)
∣∣∣ dy

≤
∫
R

∣∣∣∣(̂f)(1)(y)
∣∣∣∣+ ∣∣∣∣(̂f)(3)(y)

∣∣∣∣+ ∣∣∣∣(̂f)(4)(y)
∣∣∣∣+ ∣∣∣∣(̂f)(6)(y)

∣∣∣∣
1 + y2 dy

≤ 2
(
H
(∥∥∥ZNM

∥∥∥)+ 1
)
‖f‖C6

∫
R

1
1 + y2 dy

≤ 2π
(
H
(∥∥∥ZNM

∥∥∥)+ 1
)
‖f‖C6 ,

Hence it satisfies the hypothesis of Theorem 3.4.1 with µ(dy) = f̂(y)dy, thus we have

∣∣∣∣E [ 1
MN

Tr
(
f
(
P̃
(
UN ⊗ IM , ZNM

)) )]
− τ

(
f
(
P̃
(
u⊗ IM , ZNM

)) )∣∣∣∣
≤ M2 ln2(N)

N2 LP
(∥∥∥ZNM

∥∥∥) ∫
R
(|y|+ y4)

∣∣∣f̂(y)
∣∣∣ dy

≤ M2 ln2(N)
N2 × 2πLP

(∥∥∥ZNM
∥∥∥) (H (∥∥∥ZNM

∥∥∥)+ 1
)
‖f‖C6 .

And finally, if ZNM = (IN ⊗ Y M
1 , . . . , IN ⊗ Y M

q ) and that these matrices commute, then we
have the same inequality without the M2 as specified in Theorem 3.4.1.

3.5 Proof of Corollaries

3.5.1 Proof of Corollary 3.1.3
We could directly apply Theorem 3.1.1 to fz : x→ (z− x)−1, however for z such that =z is

small, we have ‖f‖C6 = O ((=z)−7) when we want O ((=z)−5) instead. Since P is self-adjoint,
GP (z) = GP (z), thus we can assume that =z < 0, but then

fz(x) =
∫ ∞

0
eixy (ie−iyz) dy.

Consequently with µz(dy) = ie−iyz dy, we have

∫ ∞
0

(y + y4) d|µz|(y) = 1
|=z|2

+ 24
|=z|5

.

Thus by applying Theorem 3.4.1 with ZNM =
(
IN ⊗ Y M

1 , . . . , IN ⊗ Y M
p

)
, P and fz, we have
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∣∣∣E [GP (UN⊗IM ,IN⊗YM )(z)
]
−GP (u⊗IM ,1⊗YM )(z)

∣∣∣ ≤ M2 ln2(N)
N2 LP

(∥∥∥ZNM
∥∥∥) ∫

R
(1 + y4) d|µz|(y).

Now since
∥∥∥ZNM

∥∥∥ =
∥∥∥Y M

∥∥∥ which does not depend on N , we finally have

∣∣∣E [GP (UN⊗IM ,IN⊗YM )(z)
]
−GP (u⊗IM ,1⊗YM )(z)

∣∣∣ ≤ M2 ln2(N)
N2 LP

(∥∥∥Y M
∥∥∥)( 1
|=z|2

+ 24
|=z|5

)
.

3.5.2 Proof of Corollary 3.1.4
Let f : R→ R be a Lipschitz function uniformly bounded by 1 and with Lipschitz constant

at most 1, we want to find an upper bound on

∣∣∣∣∣∣E
[ 1
MN

TrNM
(
f
(
P
(
UN ⊗ IM , IN ⊗ YM

)) )]
− τ ⊗ τM

(
f (P (u⊗ IM , 1⊗ YM))

)∣∣∣∣∣∣. (3.31)

Firstly, since UN are unitary matrices, we can assume that the support of f is bounded by a
constant S = H(

∥∥∥Y M
∥∥∥) for some polynomial H ∈ R+[X] independent of everything. However

we cannot apply directly Theorem 3.1.1 since f is not regular enough. In order to deal with this
issue we use the convolution with gaussian random variable, thus let G be a centered gaussian
random variable, we set

fε : x→ E[f(x+ εG)].

Since f has Lipschitz constant 1, we have for any x ∈ R,

|E[f(x+ εG)]− f(x)| ≤ ε.

Since fε is regular enough we could now apply Theorem 3.1.1, however we a get better result
by using Theorem 3.4.1. Indeed we have

fε(x) = 1√
2π

∫
R
f(x+ εy)e−y2/2 dy

= 1√
2π

∫
R
f(y)e

− (x−y)2

2ε2

ε
dy

= 1
2π

∫
R
f(y)

∫
R
ei(x−y)ue−(uε)2/2 du dy.

Since the support of f is bounded, we can apply Fubini’s theorem:

fε(x) = 1
2π

∫
R
eiux

∫
R
f(y)e−iyu dy e−(uε)2/2 du.

And so with the convention ĥ(u) = 1
2π
∫
R h(y)e−iuydy, we have
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fε(x) =
∫
R
eiuxf̂(u)e−(uε)2/2 du.

Thus if we set µε(dy) = f̂(y)e−(yε)2/2 dy, then, since ‖f‖∞ ≤ 1,∫
R
(1 + y4)d|µε|(y) ≤ 2S

∫
R
(1 + y4)e−y2/2 dy ε−5.

Consequently we can apply Theorem 3.4.1 with fε and since ‖f − fε‖∞ ≤ ε, there exists a
polynomial RP such that (3.31) can be bounded by

2ε+RP

(∥∥∥Y M
∥∥∥)M2 ln2(N)

N2ε5 .

Thus we can now fix ε = (N−1 ln(N))1/3 and we get that for any f Lipschitz function uniformly
bounded by 1 and with Lipschitz constant at most 1, (3.31) can be bounded by

2RP

(∥∥∥Y M
∥∥∥)M2

(
lnN
N

)1/3

.

3.5.3 Proof of Theorem 3.1.2
Firstly, we need to set the operator norm of tensor of C∗-algebras we will work with. When

writing the proof it appears that it is the minimal tensor product as defined in 3.2.6. The
following two lemmas were used in [7], see Lemma 4.1.8 from [75] for a proof of the first one
and Lemma 4.3 from [7] for the second one. In order to learn more about the second lemma,
especially how to weaken the hypothesis, we refer to [31].

Lemma 3.5.1. Let (A, τA) and (B, τB) be C∗-algebras with faithful traces, then τA⊗ τB extends
uniquely to a faithful trace τA ⊗min τB on A⊗min B.

Lemma 3.5.2. Let C be an exact C∗-algebra endowed with a faithful state τC, let Y N ∈ AN be
a sequence of family of noncommutative random variable in a C∗-algebra AN which converges
strongly towards a family Y in a C∗-algebra A endowed with a faithful state τA. Let S ∈ C be a
family of noncommutative random variable, then the family (S ⊗ 1, 1⊗ Y N) converges strongly
in distribution towards the family (S ⊗ 1, 1⊗ Y ).

In order to prove Theorem 3.1.2 we use well-known concentration properties of unitary Haar
matrices coupled with an estimation of the expectation, let us begin by stating the concentration
properties that we will use.

Proposition 3.5.3. Let f be a continuous function on Up
N , such that for any X, Y ∈ Up

N ,

|f(X)− f(Y )| ≤ C
∑
i

TrN ((Xi − Yi)(Xi − Yi)∗)1/2 .

Then if W is a family of p independent random matrices distributed according to the Haar
measure on SUN , and U a family of p independent unitary Haar matrices of size N independent
from W , we have,

P (|f(U)− EW [f(WU)]| ≥ δ) ≤ 4p e−( δ
2pC )2

N .
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Proof. We want to use Corollary 4.4.28 from [13], in order to do so let us first assume that f
takes real values. We then set,

f iUi+1,...,Up
: Ui → EW1,...,Wi−1 [f(W1U1, . . . ,Wi−1Ui−1, Ui, Ui+1, . . . , Up)] .

Thus,
f(U)− EW [f(WU)] =

∑
1≤i≤p

f iUi+1,...,Up
(Ui)− EWi

[
f iUi+1,...,Up

(WiUi)
]
.

Besides for any Ui, Vi, we have that

|f iUi+1,...,Up
(Ui)− f iUi+1,...,Up

(Vi)| ≤ C TrN ((Ui − Vi)(Ui − Vi)∗)1/2 .

Thus thanks to Corollary 4.4.28 from [13] we have that,

P (|f(U)− EW [f(WU)]| ≥ δ) ≤
∑
i

P
(∣∣∣f iUi+1,...,Up

(Ui)− EYi
[
f iUi+1,...,Up

(WiUi)
]∣∣∣ ≥ δ

p

)

≤ 2p e−( δ
pC )2

N .

Finally we conclude by taking the real and imaginary part of f .

We can now prove the concentration inequality that we will use in the rest of this paper.
To simplify notations we will write M instead of MN . We also set ZNM = (ZN ⊗ IM , IN ⊗Y M)
and Z = (z ⊗ 1, 1⊗ y).

Proposition 3.5.4. Let P ∈ Pd, there are polynomials HP , KP ∈ R+[X] which only depends
on P such that for any N,M ,

P

 ∣∣∣ ∥∥∥P̃ (UN ⊗ IM , ZNM)
∥∥∥− E

[∥∥∥P̃ (UN ⊗ IM , ZNM)
∥∥∥] ∣∣∣ ≥ δ +

KP (
∥∥∥ZNM

∥∥∥)
N

 ≤ e
− δ2N
HP (‖ZNM‖) ,

where
∥∥∥ZNM

∥∥∥ = sup
i

∥∥∥ZNM
i

∥∥∥.
Proof. We set GN : X 7→

∥∥∥P̃ (X ⊗ IM , ZNM)
∥∥∥. One can find a polynomial LP ∈ R+[X] such

that for any N and ZNM ,

|GN(X)−GN(Y )| ≤ LP
(∥∥∥ZNM

∥∥∥)∑
i

‖Xi − Yi‖ ,

where ‖.‖ is the operator norm. Besides∑
i

‖Xi − Yi‖ ≤
∑
i

TrN ((Xi − Yi)∗(Xi − Yi))1/2 .

Hence with Proposition 3.5.3, there is a polynomial HP ∈ R+[X] which only depends on P
such that for any N,M ,

P
( ∣∣∣ ∥∥∥P̃ (UN ⊗ IM , ZNM)

∥∥∥− EW
[∥∥∥P̃ (WUN ⊗ IM , ZNM)

∥∥∥] ∣∣∣ ≥ δ
)
≤ e

− δ2N
HP (‖ZNM‖) .
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Besides for any matrix U ∈ UN , there exist S ∈ SUN and θ ∈ [0, 2π] such that U = ei θ
N S.

Indeed we just have to pick θ such that eiθ = det(U). Thus there is a polynomial KP such that

∣∣∣EW [∥∥∥P̃ (WUN ⊗ IM , ZNM)
∥∥∥]− E

[∥∥∥P̃ (UN ⊗ IM , ZNM)
∥∥∥]∣∣∣ ≤ KP (

∥∥∥ZNM
∥∥∥)

N
.

This concludes the proof.

We can now prove Theorem 3.1.2. Firstly, we can assume that ZN and Y M are de-
terministic matrices by Fubini’s theorem. The convergence in distribution is a well-known
theorem, we refer to [13], Theorem 5.4.10. We set g a function of class C∞ which takes
value 0 on (−∞, 1/2] and value 1 on [1,∞), and belongs to [0, 1] otherwise. Let us define
fε : t 7→ g

(
ε−1

(
t−

∥∥∥P̃ P̃ ∗(u⊗ 1, Z)
∥∥∥)). By Theorem 3.1.1, there exists a constant C which

only depends on P , supM
∥∥∥Y M

∥∥∥ and supN
∥∥∥ZN

∥∥∥ (which is finite thanks to the strong convergence
assumption on Y M and ZN) such that,

∣∣∣∣∣∣E
[
TrMN

(
fε
(
P̃ P̃ ∗

(
UN ⊗ IM , ZNM

)) )]
−MNτN ⊗ τM

(
fε
(
P̃ P̃ ∗

(
u⊗ IM , ZNM

)) )∣∣∣∣∣∣
≤ Cε−6M

3 ln2(N)
N

.

According to Theorem A.1 from [28], (u, ZN)N≥1 converges strongly in distribution towards
(u, z) since, given a system of free semi-circular variable, we can write ui = f(xi) for a specific
function f built with the help of Lemma 3.1 of [9]. Besides thanks to Lemma 3.5.2 and Corollary
17.10 from [78], we have that (u⊗ IM , 1⊗ Y M)M≥1 converges strongly in distribution towards
(u⊗ 1, 1⊗ y). In Theorem 3.1.2, we are interested in the situation where ZNM = ZN ⊗ IM or
ZNM = IN ⊗ Y M . So, without loss of generality, we restrict ourselves to this kind of ZNM . We
know that (u⊗ IM , ZNM) converges strongly towards (u⊗ 1, Z), but since the support of fε is
disjoint from the spectrum of P̃ P̃ ∗(u⊗ 1, Z), thanks to Proposition 3.2.2, for N large enough,
τN ⊗ τM

(
fε
(
P̃ P̃ ∗

(
u⊗ IM , ZNM

)) )
= 0 and therefore,

E
[
TrMN

(
fε
(
P̃ P̃ ∗

(
UN ⊗ IM , ZNM

)) )]
≤ Cε−6M

3 ln2(N)
N

. (3.32)

Hence, we deduce for N large enough,

E
[∥∥∥P̃ P̃ ∗ (UN ⊗ IM , ZNM

)∥∥∥]− ∥∥∥P̃ P̃ ∗(u⊗ 1, Z)
∥∥∥

≤ ε+
∫ ∞
ε

P
(∥∥∥P̃ P̃ ∗ (UN ⊗ IM , ZNM

)∥∥∥ ≥ ∥∥∥P̃ P̃ ∗(u⊗ 1, Z)
∥∥∥+ α

)
dα

≤ ε+
∫ K

ε
P
(
TrNM

(
fα
(
P̃ P̃ ∗

(
UN ⊗ IM , ZNM

)))
≥ 1

)
dα

≤ ε+ C ′ε−6M
3 ln2(N)
N

.
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Finally we get that,

limsup
N→∞

E
[∥∥∥P̃ P̃ ∗ (UN ⊗ IM , ZNM

)∥∥∥] ≤ ∥∥∥P̃ P̃ ∗(u⊗ 1, Z)
∥∥∥ .

Thanks to Proposition 3.5.4, by taking δN = N−1/4 and using Borel-Cantelli lemma, we get
that almost surely,

lim
N→∞

∥∥∥P̃ P̃ ∗ (UN ⊗ IM , ZNM
)∥∥∥− E

[∥∥∥P̃ P̃ ∗ (UN ⊗ IM , ZNM
)∥∥∥] = 0

And consequently almost surely,

limsup
N→∞

∥∥∥P̃ P̃ ∗ (UN ⊗ IM , ZNM
)∥∥∥ ≤ ∥∥∥P̃ P̃ ∗(u⊗ 1, Z)

∥∥∥ .
Besides, we know thanks to Theorem 5.4.10 of [13] that if h is a continuous function taking

positive values on
(∥∥∥P̃ P̃ ∗(u⊗ 1, Z)

∥∥∥− ε,∞) and taking value 0 elsewhere. Then

1
MN

TrMN(h(P̃ P̃ ∗(UN ⊗ IM , ZNM)))

converges almost surely towards τA⊗min τB(h(P̃ P̃ ∗(u⊗1, Z))). If this quantity is positive, then
almost surely for N large enough so is 1

MN
TrMN(h(P̃ P̃ ∗(UN ⊗ IM , ZNM))), thus∥∥∥P̃ P̃ ∗(UN ⊗ IM , ZNM)
∥∥∥ ≥ ∥∥∥P̃ P̃ ∗(u⊗ 1, Z)

∥∥∥− ε.
Since h is non-negative and the intersection of the support of h with the spectrum of P̃ P̃ ∗(u⊗
1, Z) is non-empty, we have that h(P̃ P̃ ∗(u⊗ 1, Z)) ≥ 0 and is not 0. Besides, we know that the
trace on the space where z is defined is faithful, and so is the trace on the C∗-algebra generated
by a single semicircular variable, hence by Theorem 3.2.3, so is τA. Thus, since both τA and
τB are faithful, by Lemma 3.5.1, so is τA ⊗min τB and τA ⊗min τB(h(P̃ P̃ ∗(u⊗ 1, Z))) > 0. As a
consequence, almost surely,

liminf
N→∞

∥∥∥P̃ P̃ ∗ (UN ⊗ IM , ZNM
)∥∥∥ ≥ ∥∥∥P̃ P̃ ∗(u⊗ 1, Z)

∥∥∥ .
We finally conclude thanks to the fact that for any y in a C∗-algebra, ‖yy∗‖ = ‖y‖2.
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Chapter 4
Asymptotic expansion of smooth functions in
polynomials in deterministic matrices and iid
GUE matrices

Let XN be a family of N × N independent GUE random matrices, ZN a family of deter-
ministic matrices, P a self-adjoint noncommutative polynomial, that is for any N , P (XN , ZN)
is self-adjoint, f a smooth function. We prove that for any k, if f is smooth enough, there exist
deterministic constants αPi (f, ZN) such that

E
[ 1
N

Tr
(
f(P (XN , ZN))

)]
=

k∑
i=0

αPi (f, ZN)
N2i + O(N−2k−2).

Besides the constants αPi (f, ZN) are built explicitly with the help of free probability. In par-
ticular, if x is a free semicircular system, then when the support of f and the spectrum of
P (x, ZN) are disjoint, for any i, αPi (f, ZN) = 0. As a corollary, we prove that given α < 1/2,
forN large enough, every eigenvalue of P (XN , ZN) isN−α-close from the spectrum of P (x, ZN).

This chapter is adapted from [10].
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Chapter 4. Asymptotic expansion of smooth functions in polynomials in deterministic
matrices and iid GUE matrices

4.1 Introduction

Asymptotic expansions in Random Matrix Theory created bridges between different worlds,
including topology, statistical mechanics, and quantum field theory. In mathematics, a break-
through was made in 1986 in [33] by Harer and Zagier who used the large dimension expansion
of the moments of Gaussian matrices to compute the Euler characteristic of the moduli space
of curves. A good introduction to this topic is given in the survey [34] by Zvonkin. In physics,
the seminal works of t’Hooft [35] and Brézin, Parisi, Itzykson and Zuber [36] related matrix
models with the enumeration of maps of any genus, hence providing a purely analytical tool to
solve these hard combinatorial problems. Considering matrices in interaction via a potential,
the so-called matrix models, indeed allows to consider the enumeration of maps with several
vertices, including a possible coloring of the edges when the matrix model contains several ma-
trices. This relation allowed to associate matrix models to statistical models on random graphs
[37, 38, 39, 40, 41], as well as in [42] and [43] for the unitary case. This was also extended to
the so-called β-ensembles in [44, 45, 46, 47, 48, 49]. Among other objects, these works study
correlation functions and the so-called free energy and show that they expand as power series in
the inverse of the dimension, and the coefficients of these expansions enumerate maps sorted by
their genus. To compute asymptotic expansions, often referred to in the literature as topologi-
cal expansions, one of the most successful methods is the loop equations method, see [50] and
[51]. Depending on the model of random matrix, those are Tutte’s equations, Schwinger-Dyson
equations, Ward identities, Virasoro constraints, W-algebra or simply integration by part. This
method was refined and used repeatedly in physics, see for example the work of Eynard and his
collaborators, [52, 53, 54, 55]. At first those equations were only solved for the first few orders,
however in 2004, in [53] and later [56] and [57], this method was refined to push the expansion
to any orders recursively [58].

In this paper we want to generalize Harer-Zagier expansion for the moments of Gaussian
matrices to more general smooth functions. Instead of a single GUE matrix, we will consider
several independent matrices and deterministic matrices. We repeatedly use Schwinger-Dyson
equations associated to GUE matrices to carry out our estimates. While we do not use the link
between the coefficients of our expansion and map enumeration, as a corollary we get a new
expression of these combinatorial objects. We show that the number of colored maps of genus
g with a single specific vertex can be expressed as an integral, see remark 4.3.8 for a precise
statement.

Most papers quoted above have in common that they deal with polynomials or exponentials
of polynomial evaluated in random matrices. With a few exceptions, such as [37] and [59],
smooth functions have not been considered. However being able to work with such functions
is important for the applications. In particular we need to be able to work with functions
with compact support to prove strong convergence results, that is proving the convergence of
the spectrum for the Hausdorff distance. In this paper we establish a finite expansion of any
orders around the dimension of the random matrix for the trace of smooth functions evaluated in
polynomials in independent GUE random matrices. We refer to Definition 4.2.16 for a definition
of those objects. The link between maps and topological expansion is a good motivation to
prove such kind of theorem. Another motivation is to study the spectrum of polynomials in
these random matrices: because we consider general smooth functions, our expansion will for
instance allow to study the spectrum outside of the limiting bulk. In the case of a single GUE
matrix, we have an explicit formula for the distribution of the eigenvalues of those random
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matrices, see Theorem 2.5.2 of [13]. However, if we consider polynomials in independent GUE
matrices, we have no such result. The first result in this direction dates back to 1991 when
Voiculescu proved in [3] that the renormalized trace of such polynomials converges towards
a deterministic limit α(P ). In particular given XN

1 , . . . , X
N
d independent GUE matrices, the

following holds true almost surely:

lim
N→∞

1
N

TrN
(
P (XN

1 , . . . , X
N
d )
)

= α(P ) . (4.1)

Voiculescu computed the limit α(P ) with the help of free probability. Besides if AN is a self-
adjoint matrix of size N , then one can define the empirical measure of its (real) eigenvalues
by

µAN = 1
N

N∑
i=1

δλi ,

where δλ is the Dirac mass in λ and λ1, . . . , λN are the eigenvalue of AN . In particular, if P is a
self-adjoint polynomial, that is such that for any self adjoint matrices A1, . . . , Ad, P (A1, . . . , Ad)
is a self-adjoint matrix, then one can define the random measure µP (XN

1 ,...,XN
d

). In this case,
Voiculescu’s result (4.1) implies that there exists a measure µP with compact support such
that almost surely µP (XN

1 ,...,XN
d

) converges weakly towards µP : it is given by µP (xk) = α(P k)
for all integer numbers k. Consequently, assuming we can apply Portmanteau theorem, the
proportion of eigenvalues of AN = P (XN

1 , . . . , X
N
d ) in the interval [a, b], that is µAN ([a, b]),

converges towards µP ([a, b]).
Therefore in order to study the eigenvalues of a random matrix one has to study the renor-

malized trace of its moments. However if instead of studying the renormalized trace of polyno-
mials in AN , we study the non-renormalized trace of smooth function in AN , then we can get
precise information on the location of the eigenvalues. It all comes from the following remark,
let f be a non-negative function such that f is equal to 1 on the interval [a, b], then if σ(AN)
is the spectrum of AN ,

P
(
σ(AN) ∩ [a, b] 6= ∅

)
≤ P

(
TrN (f(AN)) ≥ 1

)
≤ E

[
TrN (f(AN))

]
.

Thus if one can show that the right-hand side of this inequality converges towards zero when
N goes to infinity, then asymptotically there is no eigenvalue in the segment [a, b]. In the case
of the random matrices that we study in this paper, that is polynomials in independent GUE
matrices, a breakthrough was made in 2005 by Haagerup and Thorbjørnsen in [6]. They proved
the almost sure convergence of the norm of those matrices. More precisely, they proved that
for P a self-adjoint polynomial, almost surely, for any ε > 0 and N large enough,

σ
(
P (XN

1 , . . . , X
N
d )
)
⊂ SuppµP + (−ε, ε) , (4.2)

where SuppµP is the support of the measure µP . In order to do so, they showed that given a
smooth function f , there is a constant αP0 (f), which can be computed explicitly with the help
of free probability, such that

E
[ 1
N

TrN (f(AN))
]

= αP0 (f) +O(N−2).

A similar equality was proved in [7] with a better estimation of the dependency in the parameters
such as f and ZN in the O(N−2). Given the important consequences that studying the first
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two orders had, one can wonder what happens at the next order. More precisely, could we
write this expectation as a finite order Taylor expansion, and what consequences would it have
on the eigenvalues? That is, can we prove that for any k, if f is smooth enough, there exist
deterministic constants αPi (f) such that

E
[ 1
N

Tr
(
f(P (XN

1 , . . . , X
N
d ))

)]
=

k∑
i=0

αPi (f)
N2i + O(N−2k−2)?

In 2002, by using Riemann-Hilbert techniques, Ercolani and McLaughlin gave in [37] a positive
answer for the case of a single random matrix (but not necessarily a GUE random matrix),
that is d = 1. Haagerup and Thorbjørnsen gave a simplified proof in 2010 (see [59]) for the
specific case of a single GUE matrix. However the method of the proof relied heavily on the
explicit formula of the law of the eigenvalues of a GUE matrix and since there is no equivalent
for polynomials in GUE matrices we cannot adapt this proof. Instead, we developed a proof
whose main tool is free probability. The main idea of the proof is to interpolate independent
GUE matrices and free semicirculars with free Ornstein-Uhlenbeck processes. It is similar to
the method used in [7]. The main result is the following Theorem.

Theorem 4.1.1. We define,

• XN = (XN
1 , . . . , X

N
d ) independent GUE matrices of size N ,

• ZN = (ZN
1 , . . . , Z

N
r , Z

N
1
∗
, . . . , ZN

r
∗) deterministic matrices whose norm is uniformly

bounded over N ,

• P a self-adjoint polynomial which can be written as a linear combination of m monomials
of degree at most n and coefficients at most cmax,

• f : R 7→ R a function of class C4(k+1)+2. We define ‖f‖Ci the sum of the supremum on R
of the first i-th derivatives of f .

Then there exist deterministic coefficients (αPi (f, ZN))1≤i≤k and constants C,K and c indepen-
dent of P , such that with KN = max{

∥∥∥ZN
1

∥∥∥ , . . . , ∥∥∥ZN
q

∥∥∥ , K}, Cmax(P ) = max{1, cmax}, for any
N , if k ≤ cNn−1,∣∣∣∣∣∣E

[ 1
N

TrN
(
f(P (XN , ZN))

)]
−

∑
0≤i≤k

1
N2iα

P
i (f, ZN)

∣∣∣∣∣∣ (4.3)

≤ 1
N2(k+1) ‖f‖C4(k+1)+2 ×

(
C × n2Kn

NCmaxm
)4(k+1)+1

× k12k.

Besides if we define K̂N like KN but with 2 instead of K, then we have that for any i,
∣∣∣αPi (f, ZN)

∣∣∣ ≤ ‖f‖C4i+2 ×
(
C × n2K̂n

NCmaxm
)4i+1

× i12i. (4.4)

Finally if f and g are functions of class C4(k+1) equal on a neighborhood of the spectrum
of P (x, ZN), where x is a free semicircular system free from MN(C), then for any i ≤ k,
αPi (f, ZN) = αPi (g, ZN). In particular if the support of f and the spectrum of P (x, ZN) are
disjoint, then for any i, αPi (f, ZN) = 0.
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This theorem is a consequence of the slightly sharper, but less explicit, Theorem 4.3.4. It is
essentially the same statement, but instead of having the norm Ck of f , we make the moment
of the Fourier transform of f appears. We also give an explicit expression for the coefficients
αPi . The above Theorem calls for a few remarks.

• We assumed that the matrices ZN are deterministic, but thanks to Fubini’s theorem we
can assume that they are random matrices as long as they are independent from XN . In
this situation though, Kn

N in the right side of the inequality is a random variable (and thus
we need some additional assumptions if we want its expectation to be finite for instance).

• We assumed that the matrices ZN were uniformly bounded over N . This is a technical
assumption which is necessary to make sure that the coefficients αPi are well-defined.
However as we can see in Theorem 4.3.4, one can relax this assumption. That being said,
in order for equation (4.3) to be meaningful one has to be careful that the term Kn

N
4 is

not compensating the term N−2.

• The exponent 12 in the term k12k is very suboptimal and could easily be optimized a bit
more in the proof of Theorem 4.1.1. For a better bound we refer to Theorem 4.3.4, where
the term k12k is replaced by k3k. However in order to work with the norm Ck instead of
the moments of the Fourier transform, we were forced to increase this term.

• Although we cannot take k = ∞, hence only getting a finite Taylor expansion, we can
still take k which depends on N . However to keep the last term under control we need
to estimate the k-th derivative of f .

• Since the probability that there is an eigenvalue of P (XN , ZN) outside of a neighborhood
of P (x, ZN) is exponentially small as N goes to infinity. The hypothesis of smoothness on
f only need to be verified on a neighborhood of P (XN , ZN) for an asymptotic expansion
to exist.

As we said earlier in the introduction, by studying the trace of a smooth function evaluated
in P (XN

1 , . . . , X
N
d ), Haagerup and Thorbjørnsen were able to show in [6] that the spectrum

of P (XN
1 , . . . , X

N
d ) converges for the Hausdorff distance towards an explicit subset of R. We

summarized this result in equation (4.2). With the full finite order Taylor expansion, by
taking f : x → g(Nαx) where g is a well-chosen smooth function, one can show the following
proposition.

Corollary 4.1.2. Let XN be independent GUE matrices of size N , AN a family of deterministic
matrices whose norm is uniformly bounded over N , x be a free semicircular system and P a
self-adjoint polynomial. Given α < 1/2, almost surely for N large enough,

σ
(
P (XN , AN)

)
⊂ σ

(
P (x,AN)

)
+N−α,

where σ(X) is the spectrum of X, and x is free from MN(C).

In the case of a single GUE matrix, much more precise results were obtained by Tracy and
Widom in [17]. They proved the existence of a continuous decreasing function F2 from R to
[0, 1] such that if λ1(XN) denotes the largest eigenvalue of XN ,

lim
N→∞

P
(
N2/3(λ1(XN)− 2) ≥ s

)
= F2(s) .
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This was generalized to β-matrix model in [89] and to polynomials in independent GUE matrices
which are close to the identity in [23]. But there is no such result for general polynomials in
independent GUE matrices. However with Theorem 4.1.1 we managed to get an estimate on
the tail of the distribution of

√
N
∥∥∥P (XN , AN)

∥∥∥.
Corollary 4.1.3. Let XN be a family of independent GUE matrices of size N , AN a family
of deterministic matrices whose norm is uniformly bounded over N , x be a free semicircular
system and P a polynomial. Then there exists a constant C such that for N large enough,

P
( √

N

ln4 N

(∥∥∥P (XN , AN)
∥∥∥− ∥∥∥P (x,AN)

∥∥∥) ≥ C (δ + 1)
)
≤ e−N + e−δ

2 ln8 N .

This corollary is similar to Theorem 1.5 obtained in [7], but with a substantial improvement
on the exponent since in this theorem, instead of 1/2, we only had 1/4. Theorem 1.5 of [7]
also gave a similar bound on the probability that

∥∥∥P (XN)
∥∥∥ be smaller than its deterministic

limit, but Theorem 4.3.4 does not yield any improvement on this inequality. The proof of this
corollary can be summarized in two steps: first use measure concentration to get an estimate
on the probability that

∥∥∥P (XN , AN)
∥∥∥ is far from its expectation, and secondly use Theorem

4.1.1 to estimate the difference between the expectation and the deterministic limit. Finally it
is worth noting that the exponent 1/2 comes from the fact that for every N2 that we gain in
equation (4.3), we also have to differentiate our function f four more times. Thus if we take
f : x → g(Nαx) where g is smooth, then in order for N−2 to compensate the differential, we
have to take α = 1/2. If we only had to differentiate our function three more times, then we
could take α = 2/3 which is the same exponent as in Tracy-Widom.

4.2 Framework and standard properties

4.2.1 Usual definitions in free probability
In order to be self-contained, we begin by recalling the following definitions from free prob-

ability.

Definition 4.2.1. • A C∗-probability space (A, ∗, τ, ‖.‖) is a unital C∗-algebra (A, ∗, ‖.‖)
endowed with a state τ , i.e. a linear map τ : A → C satisfying τ(1A) = 1 and τ(a∗a) ≥ 0
for all a ∈ A. In this paper we always assume that τ is a trace, i.e. that it satisfies
τ(ab) = τ(ba) for any a, b ∈ A. An element of A is called a (noncommutative) random
variable. We will always work with a faithful trace, namely, for a ∈ A, τ(a∗a) = 0 if and
only if a = 0.

• Let A1, . . . ,An be ∗-subalgebras of A, having the same unit as A. They are said to be free
if for all k, for all ai ∈ Aji such that j1 6= j2, j2 6= j3, . . . , jk−1 6= jk:

τ
(

(a1 − τ(a1))(a2 − τ(a2)) . . . (ak − τ(ak))
)

= 0.

Families of noncommutative random variables are said to be free if the ∗-subalgebras they
generate are free.
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• Let A = (a1, . . . , ak) be a k-tuple of random variables. The joint distribution of the
family A is the linear form µA : P 7→ τ

[
P (A,A∗)

]
on the set of polynomials in 2k

noncommutative variables.

• A family of noncommutative random variables x = (x1, . . . , xd) is called a free semicircular
system when the noncommutative random variables are free, self-adjoint (xi = x∗i ), and
for all k in N and i, one has

τ(xki ) =
∫
tkdσ(t),

with dσ(t) = 1
2π

√
4− t2 1|t|≤2 dt the semicircle distribution.

It is important to note that thanks to [60, Theorem 7.9], that we recall below, one can
consider free copies of any noncommutative random variable.

Theorem 4.2.2. Let (Ai, φi)i∈I be a family of C∗-probability spaces such that the functionals
φi : Ai → C, i ∈ I, are faithful traces. Then there exist a C∗-probability space (A, φ) with φ a
faithful trace, and a family of norm-preserving unital ∗-homomorphism Wi : Ai → A, i ∈ I,
such that:

• φ ◦Wi = φi, ∀i ∈ I.

• The unital C∗-subalgebras form a free family in (A, φ).

Let us finally fix a few notations concerning the spaces and traces that we use in this paper.

Definition 4.2.3. • (AN , τN) is the free sum of MN(C) with a system of d free semicircular
variable, this is the C∗-probability space built in Theorem 4.2.2. Note that when restricted
to MN(C), τN is just the regular renormalized trace on matrices. The restriction of τN to
the C∗-algebra generated by the free semicircular system x is denoted as τ . Note that one
can view this space as the limit of a matrix space, we refer to Proposition 3.5 from [7].

• TrN is the non-renormalized trace on MN(C).

• We denote Er,s the matrix with coefficients equal to 0 except in (r, s) where it is equal to
one.

• We regularly identify MN(C)⊗Mk(C) with MkN(C) through the isomorphism Ei,j⊗Er,s 7→
Ei+rN,j+sN , similarly we identify TrN ⊗Trk with TrkN .

• If AN = (AN1 , . . . , ANd ) and Bk = (Bk
1 , . . . , B

k
d) are two families of random matrices, then

we denote AN ⊗ Bk = (AN1 ⊗ Bk
1 , . . . , A

N
d ⊗ Bk

d). We typically use the notation XN ⊗ Ik
for the family (XN

1 ⊗ Ik, . . . , XN
1 ⊗ Ik).

4.2.2 Non-commutative polynomials and derivatives
Let Ad,2r = C〈X1, . . . , Xd, Y1, . . . , Y2r〉 be the set of noncommutative polynomial in p + 2r

variables. We set q = 2r to simplify notations. We endow this vector space with the norm

‖P‖A =
∑

Mmonomial
|cM(P )|AdegM , (4.5)
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where cM(P ) is the coefficient of P for the monomial M and degM the total degree of M (that
is the sum of its degree in each letter X1, . . . , Xd, Y1, . . . , Y2r). Let us define several maps which
we use frequently in the sequel. First, for A,B,C ∈ Ad,q, let

A⊗B#C = ACB, A⊗B#̃C = BCA, m(A⊗B) = BA. (4.6)
We define an involution ∗ on Ad,q by X∗i = Xi, Y ∗i = Yi+r if i ≤ d + r, Y ∗i = Yi−r else,
and then we extend it to Ad,q by linearity and the formula (αPQ)∗ = αQ∗P ∗. P ∈ Ad,q
is said to be self-adjoint if P ∗ = P . Self-adjoint polynomials have the property that if
x1, . . . , xd, z1, . . . , zr are elements of a C∗-algebra such as x1, . . . , xd are self-adjoint, then so
is P (x1, . . . , xd, z1, . . . , zr, z

∗
1 , . . . , z

∗
r ).

Definition 4.2.4. If 1 ≤ i ≤ d, one defines the noncommutative derivative ∂i : Ad,q −→
Ad,q ⊗Ad,q by its value on a monomial M ∈ Ad,q given by

∂iM =
∑

M=AXiB
A⊗B ,

and then extend it by linearity to all polynomials. We can also define ∂i by induction with the
formulas,

∀P,Q ∈ Ad,q, ∂i(PQ) = ∂iP × 1⊗Q+ P ⊗ 1× ∂iQ,

∀i, j, ∂iXi = ∂i,j1⊗ 1.
(4.7)

Similarly, with m as in (4.6), one defines the cyclic derivative Di : Ad,q −→ Ad,q for P ∈ Ad,q
by

DiP = m ◦ ∂iP .

Definition 4.2.5. We define Fd,q to be the ∗-algebra generated by Ad,q and the family{
eiQ | Q ∈ Ad,q self-adjoint

}
.

Then, as we will see in the next proposition, a natural way to extend the definition of ∂i
(and Di) to Fd,q is by setting

∂ie
iQ = i

∫ 1

0
eiαQ ⊗ 1 ∂iQ 1⊗ ei(1−α)Qdα. (4.8)

However we cannot define the integral properly on Fd,q⊗Fd,q. After evaluating our polynomials
in C∗-algebras, the integral will be well-defined as we will see. Firstly, we need to define properly
the operator norm of tensor of C∗-algebras. We work with the minimal tensor product also
named the spatial tensor product. For more information we refer to chapter 6 of [76].

Definition 4.2.6. Let A and B be C∗-algebra with faithful representations (HA, φA) and (HB, φB),
then if ⊗2 is the tensor product of Hilbert spaces, A ⊗min B is the completion of the image of
φA ⊗ φB in B(HA ⊗2 HB) for the operator norm in this space. This definition is independent
of the representations that we fixed.

While we will not always be in this situation during this paper, it is important to note that
if A = MN(C), then up to isomorphism A ⊗min A is simply MN2(C) with the usual operator
norm. If P ∈ Ad,q, z = (z1, . . . , zd+q) belongs to a C∗-algebra A, then (∂iP k)(z) belongs to
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A⊗minA, and
∥∥∥(∂iP k)(z)

∥∥∥ ≤ CPk ‖P (z)‖k−1 for some constant CP independent of k. Thus we
can define

(∂ieP )(z) =
∑
k∈N

1
k! (∂iP

k)(z). (4.9)

We have now defined the noncommutative differential of the exponential of a polynomial twice,
in (4.8) and (4.9). However those two definitions are compatible thanks to the following propo-
sition (see [8], Proposition 2.2 for the proof).

Proposition 4.2.7. Let P ∈ Ad,q, z = (z1, . . . , zd+q) elements of a C∗-algebra A, then with
(∂ieP )(z) defined as in (4.9),(

∂ie
P
)

(z) =
∫ 1

0
eαP (z) ⊗ 1 ∂iP (z) 1⊗ e(1−α)P (z) dα.

We explained why (4.8) was well-defined when we evaluate our polynomials in a C∗-algebra.
However in order to be perfectly rigorous we need to give the following definition for the
noncommutative differential that we use in the rest of this paper.

Definition 4.2.8. For α ∈ [0, 1], let ∂α,i : Fd,q → Fd,q ⊗ Fd,q which satisfies (4.7) and such
that for any P ∈ Ad,q self-adjoint,

∂α,ie
iP = ieiαP ⊗ 1 ∂iP 1⊗ ei(1−α)P .

And then, given z = (z1, . . . , zd+q) elements of a C∗-algebra, we define for any Q ∈ Fd,q,

∂iQ(z) =
∫ 1

0
∂α,iQ(z) dα.

In particular, it means that we can define rigorously the composition of those maps. Since the
map ∂α,i goes from Fd,q to Fd,q ⊗Fd,q it is very easy to do so. For example one can define the
following operator (see Definition 4.2.10 for the notation ∂1

i , ∂2
i and �). We will use a similar

one later on.

Definition 4.2.9. Let Q ∈ Fd,q, given z = (z1, . . . , zd+q) elements of a C∗-algebra, let i, j ∈
[1, d], we define

∂jDiQ(z) =
∫

[0,1]2
∂α2,j ◦ (m ◦ ∂α1,i)Q(z) dα.

For the sake of clarity, we introduce the following notation which is close to Sweedler’s
convention. Its interest will be clear in section 4.3.

Definition 4.2.10. Let Q ∈ Fd,q, C be a C∗-algebra. Then let α : Fd,q → C and β : Fd,q → C
be morphisms. We also set n : A⊗B ∈ C ⊗ C 7→ AB ∈ C. Then we use the following notation,

α(∂1
i P ) � β(∂2

i P ) = n ◦ (α⊗ β(∂iP )).

This notation is especially useful when our maps α and β are simply evaluation of P as it
is the case in section 4.3. Indeed we typically denote, ∂1

i P (X) � ∂2
i P (Y ), rather than define

hX : P → P (X) and use the more cumbersome and abstract notation, n ◦ (hX ⊗ hY (∂iP )).

The map ∂i is related to the so-called Schwinger-Dyson equations on semicircular variable
thanks to the following proposition. One can find a proof for polynomials in [13], Lemma 5.4.7,
and then extend it to Fd,q thanks to Definition (4.9).
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Proposition 4.2.11. Let x = (x1, . . . , xd) be a free semicircular system, y = (y1, . . . , yr) be
noncommutative random variables free from x, if the family (x, y) belongs to the C∗-probability
space (A, ∗, τ, ‖.‖), then for any Q ∈ Fd,q,

τ(Q(x, y, y∗) xi) = τ ⊗ τ(∂iQ(x, y, y∗)) .

Now that we have defined the usual noncommutative polynomial spaces, we build a very
specific one which we need to define properly the coefficients of the topological expansion.

Definition 4.2.12. Let (cn)n be the sequence such that c0 = 0, cn+1 = 6cn + 6. We define by
induction, J0 = {∅} and for n ≥ 0, j ∈ [1, 2n],

J j,1n+1 =
{
{s1 + cn, . . . , sj−1 + cn, sj + cn, sj, . . . , s2n, 3cn + 1}

∣∣∣∣ I = {s1, . . . , s2n} ∈ Jn
}
,

J2n+1,1
n+1 =

{
{s1 + cn, . . . , s2n + cn, 3cn + 2, 3cn + 1}

∣∣∣∣ I = {s1, . . . , s2n} ∈ Jn
}
,

J j,2n+1 =
{
{s1 + 2cn, . . . , sj−1 + 2cn, sj + 2cn, sj, . . . , s2n, 3cn + 1}

∣∣∣∣ I = {s1, . . . , s2n} ∈ Jn
}
,

J2n+1,2
n+1 =

{
{s1 + 2cn, . . . , s2n + 2cn, 3cn + 3, 3cn + 1}

∣∣∣∣ I = {s1, . . . , s2n} ∈ Jn
}
.

We similarly define J̃ j,1n+1 and J̃ j,2n+1 by adding 3cn + 3 to every integer in every set. Finally we
fix

Jn+1 =
⋃

1≤j≤2n+1
J j,1n+1 ∪ J

j,2
n+1 ∪ J̃

j,1
n+1 ∪ J̃

j,2
n+1.

Then we define And,q = C〈Xi,I , 1 ≤ i ≤ d, I ∈ Jn, Y1, . . . , Y2r〉. We also define Fnd,q as the
∗-algebra generated by And,q and the family

{
eiQ | Q ∈ And,q self-adjoint

}
.

Definition 4.2.13. Similarly to Definition 4.2.8, we define ∂i and ∂i,I on Fnd,q which satisfies
(4.7) and (4.8) and

∀i, j ∈ [1, p], I,K ∈ Jn, ∂i,IXj,K = δi,jδI,K1⊗ 1, ∂iXj,K = δi,j1⊗ 1.

We then define Di = m ◦ ∂i and Di,I = m ◦ ∂i,I on Fnd,q.

In particular, F0
d,q = Fd,q and the two definitions of ∂i coincide. The following lemma will

be important for a better estimation of the remainder term in the expansion.

Lemma 4.2.14. Given s ∈ [1, cn], there exists a unique l ∈ [1, n] such that for any I =
{s1, . . . , s2n} ∈ Jn, either sl = s or s /∈ I. We refer to l as the depth of s in Jn, and will denote
it depthn(s).

Proof. Let’s proceed by induction. If this is true for Jn, then let s ∈ [1, cn+1]. If s ≤ 3cn + 3
then it will only appear in the elements of J j,1n+1 and J j,2n+1 for j from 1 to n+ 1. If s > 3cn + 3
then on the contrary it will only appear in the elements of J̃ j,1n+1 and J̃ j,2n+1 for j from 1 to n+ 1.
Since both cases are identical, one can assume that s ≤ 3cn + 3. If s is equal to 3cn + 3, 3cn + 2
or 3cn + 1, then it is straightforward. Thus there remains three possibilities:
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• Either s ∈ [1, cn], then let l be the depth of s in Jn, then by construction the depth of s
in Jn+1 will be l + 1.

• Either s ∈ [cn + 1, 2cn], then with l the depth of s− cn in Jn, the depth of s in Jn+1 will
also be l.

• Either s ∈ [2cn + 1, 3cn], then with l − 2cn the depth of s in Jn, the depth of s in Jn+1
will also be l.

This prompts us to define the following non-commutative derivative on Fnd,q.

Definition 4.2.15. Given s ∈ [0, cn] with depth l in Jn, then we set

∂i,s,n =
∑

I∈Jn such that s∈I
∂i,I =

∑
I∈Jn such that sl=s

∂i,I .

And finally we define Di,s,n = m ◦ ∂i,s,n.

4.2.3 GUE random matrices
We conclude this section by reminding the definition of Gaussian random matrices and

stating a few useful properties about them.

Definition 4.2.16. A GUE random matrix XN of size N is a self-adjoint matrix whose coef-
ficients are random variables with the following laws:

• For 1 ≤ i ≤ N , the random variables
√
NXN

i,i are independent centered Gaussian random
variables of variance 1.

• For 1 ≤ i < j ≤ N , the random variables
√

2N <XN
i,j and

√
2N =XN

i,j are independent
centered Gaussian random variables of variance 1, independent of

(
XN
i,i

)
i
.

When doing computations with Gaussian variables, the main tool that we use is Gaussian
integration by part. It can be summarized into the following formula, if Z is a centered Gaussian
variable with variance 1 and f a C1 function, then

E[Zf(Z)] = E[∂Zf(Z)] . (4.10)

A direct consequence of this, is that if x and y are centered Gaussian variable with variance 1,
and Z = x+iy√

2 , then

E[Zf(x, y)] = E[∂Zf(x, y)] and E[Zf(x, y)] = E[∂Zf(x, y)] , (4.11)

where ∂Z = 1
2(∂x+ i∂y) and ∂Z = 1

2(∂x− i∂y). When working with GUE matrices, an important
consequence of this are the so-called Schwinger-Dyson equations, which we summarize in the
following proposition. For more information about these equations and their applications, we
refer to [13], Lemma 5.4.7.
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Proposition 4.2.17. Let XN be GUE matrices of size N , Q ∈ Fd,q, then for any i,

E
[ 1
N

TrN(XN
i Q(XN))

]
= E

[( 1
N

TrN
)⊗2

(∂iQ(XN))
]
.

Proof. Let us first assume that Q ∈ Ad,q. One can write XN
i = 1√

N
(xir,s)1≤r,s≤N and thus

E
[ 1
N

TrN(XN
i Q(XN))

]
= 1
N3/2

∑
r,s

E
[
xir,s TrN(Er,s Q(XN))

]
= 1
N3/2

∑
r,s

E
[
TrN(Er,s ∂xir,sQ(XN))

]
= 1
N2

∑
r,s

E
[
TrN(Er,s ∂iQ(XN)#Es,r)

]

= E
[( 1
N

TrN
)⊗2

(∂iQ(XN))
]
.

If Q ∈ Fd,q, then the proof is pretty much the same but we need to use Duhamel’s formula
which states that for any matrices A and B,

eB − eA =
∫ 1

0
eαB(B − A)e(1−α)A dα. (4.12)

Thus this let us prove that

∂xir,se
iP (XN ) = i

∫ 1

0
eiαP (XN ) ∂iP (XN)#Es,r ei(1−α)P (XN ) dα.

And the conclusion follows.

Now to finish this section we state a property that we use several times in this paper. For
the proof we refer to Proposition 2.11 in [7].

Proposition 4.2.18. There exist constants C,D and α such that for any N ∈ N, if XN is a
GUE random matrix of size N , then for any u ≥ 0,

P
(∥∥∥XN

∥∥∥ ≥ u+D
)
≤ e−αuN .

Consequently, for any k ≤ αN/2,

E
[∥∥∥XN

∥∥∥k] ≤ Ck.

4.3 Proof of Theorem 4.1.1

4.3.1 A Poincaré type equality
One of the main tool when dealing with GUE random matrices is the Poincaré inequality

(see Definition 4.4.2 from [13]), which gives us a sharp upper bound of the variance of a function
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in these matrices. Typically this inequality shows that the variance of a trace of a polynomial
in GUE random matrices, which a priori is of order O(1), is of order O(N−2). In this paper we
use the same kind of argument which are used to prove the Poincaré inequality to get an exact
formula for the variances we are interested in.

Proposition 4.3.1. Let P,Q ∈ Fd,q, RN , SN , TN be independent families of d independent
GUE matrices of size N . Let AN be a family of deterministic matrices and their adjoints. With
convention Cov(X, Y ) = E[XY ]− E[X]E[Y ], for any t ≥ 0, we have:

Cov
(

TrN
(
P
(
(1− e−t)1/2RN , AN

))
,TrN

(
Q
(
(1− e−t)1/2RN , AN

)) )
= 1
N

∑
i

∫ t

0
E
[

TrN
(
DiP

(
(e−s − e−t)1/2RN + (1− e−s)1/2SN , AN

)
×DiQ

(
(e−s − e−t)1/2RN + (1− e−s)1/2TN , AN

))]
ds.

Proof. We define the following function,

h(s) = E
[

TrN
(
P
(
(e−s − e−t)1/2RN + (1− e−s)1/2SN , AN

))
TrN

(
Q
(
(e−s − e−t)1/2RN + (1− e−s)1/2TN , AN

)) ]
.

To simplify notations, we set

SNs =
(
(e−s − e−t)1/2RN + (1− e−s)1/2SN , AN

)
,

TNs =
(
(e−s − e−t)1/2RN + (1− e−s)1/2TN , AN

)
.

Then we have,

Cov
(

TrN
(
P
(
(1− e−t)1/2RN , AN

))
,TrN

(
Q
(
(1− e−t)1/2RN , AN

)) )
= −

∫ t

0

dh

ds
(s) ds.

Thanks to Duhamel’s formula (see (4.12)) we find

dP
(
SNs , A

N
)

ds
= −e

−s

2

d∑
i=1

∂iP
(
SNs , A

N
)

#
(

RN
i

(e−s − e−t)1/2 −
SNi

(1− e−s)1/2

)
.

Since TrN(∂iP#B) = TrN(DiP ×B), we compute,

dh

ds
(s) = −e

−s

2
∑
i

E

TrN
(
DiP

(
SNs

)( RN
i

(e−s − e−t)1/2 −
SNi

(1− e−s)1/2

))
TrN

(
Q
(
TNs

))

+ TrN
(
P
(
SNs

))
TrN

(
DiQ

(
SNs

)( RN
i

(e−s − e−t)1/2 −
TNi

(1− e−s)1/2

)).
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But by using integration by part formula (4.11), we get that

E

TrN
(
DiP

(
SNs

) RN
i

(e−s − e−t)1/2

)
TrN

(
Q
(
TNs

)) 
= 1
N

∑
1≤a,b≤N

E

TrN
(
Ea,b ∂iDiP

(
SNs

)
#Eb,a

)
× TrN

(
Q
(
TNs

))

+ TrN
(
DiP

(
SNs

)
Ea,b

)
× TrN

(
DiQ

(
TNs

)
Eb,a

) .
And similarly

E

TrN
(
DiP

(
SNs

) SNi
(1− e−s)1/2

)
TrN

(
Q
(
TNs

)) 
= 1
N

∑
1≤a,b≤N

E

TrN
(
Ea,b ∂iDiP

(
SNs

)
#Eb,a

)
× TrN

(
Q
(
TNs

))  .
Therefore with similar computations we conclude,

dh

ds
(s) = − 1

N
e−s

∑
i

E

TrN
(
DiP

(
SNs

)
DiP

(
SNs

)).
Hence the conclusion.

4.3.2 A first rough formulation of the coefficients
In this subsection we prove the following lemma which will be the backbone of the proof of

the topological expansion. The heuristic behind this lemma is that if Q ∈ Fd(p+1),q, XN is a
family of d independent GUE matrices, (yi)i≥1 are systems of d free semicircular variables free
between each other. Then we can find R ∈ F6d(p+1)+1,q such that

E
[
τN

(
Q
(
XN , (yi)1≤i≤p

)
, ZN

)]
− τN

(
Q (x, (yi)1≤i≤p) , ZN

)
= 1
N2E

[
τN

(
R
(
XN , (yi)1≤i≤6p+6, Z

N
))]

.

Then we will only need to apply this lemma recursively to build the topological expansion. Note
that thanks to the definition of AN in Definition 4.2.3, it makes sense to consider matrices and
free semicirculars in the same space. One can also assume that those matrices are random
thanks to Proposition 2.7 of [7].

Lemma 4.3.2. Let the following objects be given,

• XN = (XN
1 , . . . , X

N
d ) independent GUE matrices of size N ,

• x, z1, z2 free families of d free semi-circular variables,
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• ys = (ys,1, . . . , ys,ds) for s from 1 to n, systems of free semicircular variables, free between
each other and from x,

• vs, ws free copies of ys, free between each other,

• ZN = (ZN
1 , . . . , Z

N
q ) deterministic matrices and their adjoints,

• Y N =
(
(1− e−t1)1/2y1, . . . , (1− e−tn)1/2yn, X

N , ZN
)
,

• Y =
(
(1− e−t1)1/2y1, . . . , (1− e−tn)1/2yn, x, Z

N
)
,

• z1
r =

(
(1− e−t1)1/2v1, . . . , (1− e−tn)1/2vn, (1− e−r)1/2z1 + (e−r − e−t)1/2x+ e−tXN , ZN

)
,

• for s from 1 to n,

z1,s
r =

(
(1− e−t1)1/2v1, . . . , (1− e−r)1/2vs + (e−r − e−ts)1/2ys,

(1− e−ts+1)1/2ys+1, . . . , (1− e−tn)1/2yn, (1− e−t)1/2x+ e−tXN , ZN
)
,

• z1
r and z2,s

r , defined similarly but with w and z2 instead of v and z1,

• z̃1
r , z̃

2
r , z̃

1,s
r and z̃2,s

r defined similarly but where we replaced vs, ws, ys, z1, z2, x by free copies,

• Q ∈ Fd1+···+dn+d,q.

Then, for any N , with ∂s,j the noncommutative differential as defined in 4.2.4 but with respect
to (1− e−ts)1/2ys,j

E
[
τN

(
Q
(
Y N

) )]
− τN

(
Q (Y )

)
= 1

2N2

∫ ∞
0

e−t
∑

1≤i≤d
1≤s≤n,
1≤j≤ds

∫ ts

0
E
[
τN

((
∂2
s,j

(
∂1
iDiQ

)
(z1,s
r ) � ∂1

s,j

(
∂1
iDiQ

)
(z̃1,s
r )

)

�
(
∂2
s,j

(
∂2
iDiQ

)
(z̃2,s
r ) � ∂1

s,j

(
∂2
iDiQ

)
(z2,s
r )

))]
dr dt

+ 1
2N2

∫ ∞
0

e−t
∑

1≤i,j≤d

∫ t

0
E
[
τN

((
∂2
j

(
∂1
iDiQ

)
(z1
r ) � ∂1

j

(
∂1
iDiQ

)
(z̃1
r )
)

�
(
∂2
j

(
∂2
iDiQ

)
(z̃2
r ) � ∂1

j

(
∂2
iDiQ

)
(z2
r )
))]

dr dt.

First we need to prove the following technical lemma.

Lemma 4.3.3. If Y kN is a family of l independent GUE matrices of size kN , then let

Sk =
(
Y kN , XN ⊗ Ik, ZN ⊗ Ik

)
With P1,2 = IN ⊗ E1,2, Ek the expectation with respect to Y kN , given Q ∈ Fl+d,q, we have that

lim
k→∞

k3/2Ek [τkN (Q(Sk)P1,2)] = 0
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Proof. Given A1, . . . , Al, B1, . . . , Bl ∈ Al+d,q, we define the following quantity,

fA(y) = Ek
[
τkN

(
(A1e

iyB1 . . . Ale
iyBl)(Sk)P1,2

)]
,

dn(y) = sup∑
i

degAi≤n, Ai monomials
|fA(y)| .

Thanks to Proposition 4.2.18, we know that there exists constants γ and D (depending on
N ,
∥∥∥XN

∥∥∥ and
∥∥∥ZN

∥∥∥) such that for any n ≤ γk, |dn(y)| ≤ Dn. Consequently we define

g(a, y) =
∑

n≤γk/2
dn(y)an.

Let m = supi degBi and A be such that ∑i degAi ≤ n, there exists a constant CB which only
depends on the coefficients of the Bi such that∣∣∣∣∣dfA(y)

dy

∣∣∣∣∣ ≤ CB dn+m(y).

Naturally we get that for any y ∈ [0, 1]

|fA(y)| ≤ |fA(0)|+ CB

∫ y

0
dn+m(y)dy.

And by taking the supremum over A, we get that

dn(y) ≤ dn(0) + CB

∫ y

0
dn+m(y).

Hence by summing over n, we have for a small enough,

g(a, y) ≤ g(a, 0) + CBa
−m

 ∑
1≤i≤m

(aD)γk/2+i−1 +
∫ y

0
g(a, y)dy

 .
Thanks to Grönwall’s inequality we get that there exist a constant κ such that for any y ∈ [0, 1],

g(a, y) ≤
g(a, 0) + CBa

−m ∑
1≤i≤m

(aD)γk/2+i−1

 eyCBa−m .
Thus for a < 1/D, we have

limsup
k→∞

k3/2g(a, y) ≤ eyCBa
−m limsup

k→∞
k3/2g(a, 0).

However, we have

g(a, 0) =
∑

n≤γk/2
an sup

A monomial, degA≤n
|Ek [τkN (A(Sk)P1,2)]| .

We refer to the proof of Lemma 3.7 of [7] to prove that limsupk→∞ k3/2g(a, 0) = 0 (with the
notations of [7], it is the same thing as to show that k3/2fγk/2(a) converges towards 0). Hence
for any A,B,

limsup
k→∞

k3/2
∣∣∣Ek [τkN ((A1e

iyB1 . . . Ale
iyBl)(Sk)P1,2

)]∣∣∣ ≤ a−
∑

i
degAi limsup

k→∞
k3/2g(a, 1) = 0.

Hence the conclusion.
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Proof of Lemma 4.3.2. With
Yt =

(
(1− e−t1)1/2y1, . . . , (1− e−tn)1/2yn, (1− e−t)1/2x+ e−t/2XN , ZN

)
,

we have,

E
[
τN

(
Q
(
Y N

))]
− τN

(
Q (Y )

)
= −

∫ ∞
0

E
[
d

dt
τN

(
Q
(
Y N
t

))]
dt.

We can compute
d

dt
τN

(
Q
(
Y N
t

) )
= e−t

2
∑
i

τN

(
DiQ

(
Y N
t

)( xi
(1− e−t)1/2 − e

t/2XN
i

))

Thus thanks to Gaussian integration by part (see (4.11)) and Schwinger-Dyson equations (see
Proposition 4.2.11), we get that

E
[
d

dt
τN

(
Q
(
Y N
t

))]

= E

e−t
2
∑
i

(
τN ⊗ τN

(
∂iDiQ

(
Y N
t

) )
− 1
N

∑
u,v

τN

(
Eu,v ∂iDiQ

(
Y N
t

)
#Ev,u

)). (4.13)

Let

ΛN,t = τN ⊗ τN
(
∂iDiQ

(
Y N
t

) )
− 1
N

∑
u,v

τN

(
Eu,v ∂iDiQ

(
Y N
t

)
#Ev,u

)
.

Thanks to Theorem 5.4.5 of [13], we have that if

Zk =
(
(1− e−t1)1/2Y kN

1 , . . . , (1− e−tn)1/2Y kN
n , (1− e−t)1/2Y kN

n+1 + e−tXN ⊗ Ik, ZN ⊗ Ik
)

with Y kN
s being independent families of ds independent GUE matrices (with dn+1 = d). Then

with Ek the expectation with respect to Y kN
s for every s,

ΛN,t = lim
k→∞

Ek[τkN ]⊗ Ek[τkN ]
(
∂iDiQ (Zk)

)
(4.14)

− Ek

 1
N

∑
1≤u,v≤N

τkN

(
Eu,v ⊗ Ik ∂iDiQ (Zk) #Ev,u ⊗ Ik

).
For more information, we refer to Proposition 3.5 of [7]. See also the definition of AN in
Definition 4.2.3. Let A,B be matrices of MN(C)⊗Mk(C), with (ga)1≤a≤N the canonical basis
of CN and (fb)1≤b≤k the one of Ck, since Ik = ∑

lEl,l and τkN(M) = ∑
a,b g

∗
a ⊗ f ∗bMga ⊗ fb,

1
N

∑
1≤u,v≤N

τkN

(
Eu,v ⊗ Ik A Ev,u ⊗ Ik B

)

= 1
N

∑
1≤u,v≤N

∑
1≤l,l′≤k

τkN (Eu,v ⊗ El,l A Ev,u ⊗ El′,l′ B)

= 1
N2k

∑
1≤l,l′≤k

∑
1≤v≤N

g∗v ⊗ f ∗l A gv ⊗ fl′
∑

1≤u≤N
g∗u ⊗ f ∗l′ B gu ⊗ fl

= 1
k

∑
1≤l,l′≤k

τN(IN ⊗ f ∗l A IN ⊗ fl′) τN(IN ⊗ f ∗l′ B IN ⊗ fl)

= k
∑

1≤l,l′≤k
τkN

(
A IN ⊗ El′,l

)
τkN

(
B IN ⊗ El,l′

)
.
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Hence with convention Pl,l′ = IN ⊗ El,l′ , we have
1
N

∑
1≤u,v≤N

τkN

(
Eu,v⊗Ik ∂iDiQ (Zk) #Ev,u⊗Ik

)
= k

∑
1≤l,l′≤k

τkN⊗τkN
(
∂iDiQ (Zk)×Pl′,l⊗Pl,l′

)
(4.15)

Consequently, we get that

ΛN,t = lim
k→∞

Ek[τkN ]⊗ Ek[τkN ]
(
∂iDiQ (Zk)

)
(4.16)

− Ek

k ∑
1≤l,l′≤k

τkN ⊗ τkN
(
∂iDiQ (Zk)× Pl′,l ⊗ Pl,l′

).
Let U ∈Mk(C) be a unitary matrix, then since for any i,

IN ⊗ U XN
i ⊗ Ik IN ⊗ U∗ = XN

i ⊗ Ik,
IN ⊗ U ZN

i ⊗ Ik IN ⊗ U∗ = ZN
i ⊗ Ik,

and that the law of Y kN
s,j is invariant by conjugation by a unitary matrix, we get that for any

unitary matrices U and V ,

Ek [τkN ]⊗ Ek [τkN ]
(
∂iDiQ (Zk)× Pl′,l ⊗ Pl,l′

)
= Ek [τkN ]⊗ Ek [τkN ]

(
∂iDiQ (Zk)× (IN ⊗ U∗Pl′,lIN ⊗ U)⊗ (IN ⊗ V ∗Pl,l′IN ⊗ V )

)
.

Thus if l = l′, we can pick U such that U∗El′,lU = E1,1, and if l 6= l′, we can pick U such that
U∗El′,lU = E1,2. By doing the same for V , we have

k
∑

1≤l,l′≤k
Ek[τkN ]⊗ Ek[τkN ]

(
∂iDiQ(Zk)Pl′,l ⊗ Pl,l′

)

= k2Ek[τkN ]⊗ Ek[τkN ]
(
∂iDiQ(Zk)P1,1 ⊗ P1,1

)
(4.17)

+ k2(k − 1)Ek[τkN ]⊗ Ek[τkN ]
(
∂iDiQ(Zk)P1,2 ⊗ P1,2

)
.

Similarly we also have,

Ek[τkN ]⊗ Ek[τkN ]
(
∂iDiQ(Zk)

)
=

∑
1≤l,l′≤k

Ek[τkN ]⊗ Ek[τkN ]
(
∂iDiQ(Zk) Pl,l ⊗ Pl′,l′

)
(4.18)

= k2 Ek[τkN ]⊗ Ek[τkN ]
(
∂iDiQ(Zk) P1,1 ⊗ P1,1

)
.

By combining equations (4.16),(4.17) and (4.18), we get that

ΛN,t = lim
k→∞

−

k ∑
1≤l,l′≤k

Ek
[
τkN ⊗ τkN

(
∂iDiQ(Zk)Pl′,l ⊗ Pl,l′

)]

− Ek[τkN ]⊗ Ek[τkN ]
(
∂iDiQ(Zk)Pl′,l ⊗ Pl,l′

)

+ k2(k − 1)Ek[τkN ]⊗ Ek[τkN ]
(
∂iDiQ(Zk)P1,2 ⊗ P1,2

).
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Thanks to Lemma 4.3.3, the last term converges towards 0. Consequently,

ΛN,t = lim
k→∞

− k

 ∑
1≤l,l′≤k

Ek
[
τkN ⊗ τkN

(
∂iDiQ(Zk)Pl′,l ⊗ Pl,l′

)]
(4.19)

− Ek[τkN ]⊗ Ek[τkN ]
(
∂iDiQ(Zk)Pl′,l ⊗ Pl,l′

).
Let RkN

s , SkNs for s from 1 to n + 1 be independent families of ds independent GUE random
matrices. We set the following notations,

Z1
k,r =

(
(1− e−t1)1/2SkN1 , . . . , (1− e−tn)1/2SkNn ,

(1− e−r)1/2SkNn+1 + (e−r − e−t)1/2Y kN
n+1 + e−tXN ⊗ Ik, ZN ⊗ Ik

)
,

Z1,s
k,r =

(
(1− e−t1)1/2SkN1 , . . . , (1− e−r)1/2SkNs + (e−r − e−ts)1/2Y kN

s , (1− e−ts+1)1/2Y kN
s+1,

. . . , (1− e−tn)1/2Y kN
n , (1− e−t)1/2Y kN

n+1 + e−tXN ⊗ Ik, ZN ⊗ Ik
)
,

And similarly we define Z2
k,r and Z

2,s
k,r but with RkN

1 , . . . , RkN
s instead of SkN1 , . . . , SkNs . Thanks

to Proposition 4.3.1, we get that

k
∑

1≤l,l′≤k
Ek
[
τkN ⊗ τkN

(
∂iDiQ(Zk)Pl′,l ⊗ Pl,l′

)]
− Ek[τkN ]⊗ Ek[τkN ]

(
∂iDiQ(Zk)Pl′,l ⊗ Pl,l′

)

= k
∑

1≤l,l′≤k

∑
1≤s≤n

Ek
[
τkN

(
∂1
iDiQ(Z1,s

k,0)Pl′,l � ∂1
iDiQ(Z2,s

k,0)Pl,l′
)]

− Ek
[
τkN

(
∂1
iDiQ(Z1,s

k,ts
)Pl′,l � ∂1

iDiQ(Z2,s
k,ts

)Pl,l′
)]

+ Ek
[
τkN

(
∂1
iDiQ(Z1

k,0)Pl′,l � ∂1
iDiQ(Z2

k,0)Pl,l′
)]

− Ek
[
τkN

(
∂1
iDiQ(Z1

k,t)Pl′,l � ∂1
iDiQ(Z2

k,t)Pl,l′
)]

= 1
k2N3

∑
1≤l,l′≤k

∑
1≤s≤n,
1≤j≤ds

∫ ts

0
Ek
[

TrkN
(
∂s,j

(
∂1
iDiQ

)
(Z1,s

k,r)#̃Pl′,l � ∂s,j
(
∂2
iDiQ

)
(Z2,s

k,r)#̃Pl,l′
)]
dr

+
∑

1≤j≤d

∫ t

0
Ek
[

TrkN
(
∂j
(
∂1
iDiQ

)
(Z1

k,r)#̃Pl′,l � ∂j
(
∂2
iDiQ

)
(Z2

k,r)#̃Pl,l′
)]
dr,

where ∂s,j is the noncommutative differential as defined in 4.2.4 but with respect to (1 −
e−ts)1/2Y kN

s,j . Besides if U, V are matrices of MN(C)⊗Mk(C), then∑
1≤l,l′≤k

TrkN(UPl′,lV Pl,l′) = TrN(IN ⊗ Trk(U)IN ⊗ Trk(V )).

Hence given A,B,C,D ∈ Fd1+···+dn+d,q,
1

k2N

∑
1≤l,l′≤k

Ek
[
TrkN

(
B(Z1,s

k,r)Pl′,lA(Z1,s
k,r)D(Z2,s

k,r)Pl,l′C(Z2,s
k,r)

)]
= Ek

[
τN
(
IN ⊗ τk

(
A(Z1,s

k,r)D(Z2,s
k,r)

)
IN ⊗ τk

(
C(Z2,s

k,r)B(Z1,s
k,r)

))]
.
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If Q = A(Z1,s
k,r)D(Z2,s

k,r) and T = C(Z2,s
k,r)B(Z1,s

k,r), then thanks to Proposition 4.3.1,

τN (Ek [IN ⊗ τk(Q)IN ⊗ τk(T )])

= 1
Nk2

∑
1≤i,j≤N
1≤l,l′≤k

Ek
[
g∗i ⊗ f ∗l Qgj ⊗ fl × g∗j ⊗ f ∗l′Tg∗i ⊗ f ∗l′)

]

= 1
Nk2

∑
1≤i,j,m,m′≤N

1≤l,l′≤k

Ek
[
g∗m ⊗ f ∗l Q× Ej,i ⊗ Ik gm ⊗ fl × g∗m′ ⊗ f ∗l′ T × Ei,j ⊗ Ik gm′ ⊗ fl′

]

= 1
Nk2

∑
1≤i,j≤N

Ek [TrkN(QIk ⊗ Ej,i) TrkN(TIk ⊗ Ei,j)]

= O(k−2) + 1
Nk2

∑
1≤i,j≤N

Ek [TrkN(QIk ⊗ Ej,i)] [TrkN(TIk ⊗ Ei,j)]

= O(k−2) + τN(Ek [IN ⊗ τk(Q)]Ek [IN ⊗ τk(T )]).

We can view a GUE matrix of size kN as a matrix of size N with matrix coefficients. The
diagonal coefficients are independent GUE matrices of size k multiplied by N−1/2. The upper
non-diagonal coefficients are independent random matrices of size k which have the same law
as (2N)−1/2(X + iY ) where X and Y are independent GUE matrices of size k, and the lower
non-diagonal coefficients are the adjoints of the upper coefficients. Thus if UkN is a family of l
independent GUE matrices of size kN , u a family of l free semicircular variables, we then define
uN as a family of l matrices of sizeN whose diagonal coefficients are free semicirculars multiplied
by N−1/2, and the upper non-diagonal coefficients are free between each other, free from the
diagonal one, and they are of the form (2N)−1/2(a + ib) where a and b are free semicirculars.
Finally the lower non-diagonal coefficients are the adjoints of the upper coefficients. We also
assume that semicirculars from different matrices are free and that all of those semicirculars
live in a C∗-algebra endowed with a trace τ . Then with ŨkN an independent copy of UkN , ũ a
free copy of u and ũN a free copy of uN , for L,K ∈ Fl,q,

lim
k→∞

τN
(
Ek
[
IN ⊗ τk(L(UkN , ZN ⊗ Ik))

]
Ek
[
IN ⊗ τk(K(UkN , ZN ⊗ Ik))

])
= τN

(
IN ⊗ τ(L(uN , ZN))× IN ⊗ τ(K(uN , ZN))

)
= τN ⊗ τ

(
L(uN , ZN)×K(ũN , ZN)

)
= lim

k→∞
Ek
[
τkN

(
L(UkN , ZN ⊗ Ik)×K(ŨkN , ZN ⊗ Ik)

)]
= τN

(
L(u, ZN)×K(ũ, ZN)

)

Consequently, we have that

lim
k→∞

1
k2N

∑
1≤l,l′≤k

Ek
[
TrkN

(
B(Z1,s

k,r)Pl′,lA(Z1,s
k,r)D(Z2,s

k,r)Pl,l′C(Z2,s
k,r)

)]
= τN

(
B(z1,s

r )A(z̃1,s
r )D(z̃2,s

r )C(z2,s
r )

)
.
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This means that

lim
k→∞

1
k2N

∑
1≤l,l′≤k

Ek
[

TrkN
(
∂s,j

(
∂1
iDiQ

)
(Z1,s

k,r)#̃Pl′,l � ∂s,j
(
∂2
iDiQ

)
(Z2,s

k,r)#̃Pl,l′
)]

= τN

((
∂2
s,j

(
∂1
iDiQ

)
(z1,s
r ) � ∂1

s,j

(
∂1
iDiQ

)
(z̃1,s
r )

)
�
(
∂2
s,j

(
∂2
iDiQ

)
(z̃2,s
r ) � ∂1

s,j

(
∂2
iDiQ

)
(z2,s
r )

))
.

Which in turn means that ΛN,t is equal to

− 1
N2

∑
1≤s≤n,
1≤j≤ds

∫ ts

0
τN

((
∂2
s,j

(
∂1
iDiQ

)
(z1,s
r ) � ∂1

s,j

(
∂1
iDiQ

)
(z̃1,s
r )

)

�
(
∂2
s,j

(
∂2
iDiQ

)
(z̃2,s
r ) � ∂1

s,j

(
∂2
iDiQ

)
(z2,s
r )

))
dr

− 1
N2

∑
1≤j≤d

∫ t

0
τN

((
∂2
j

(
∂1
iDiQ

)
(z1
r ) � ∂1

j

(
∂1
iDiQ

)
(z̃1
r )
)

�
(
∂2
j

(
∂2
iDiQ

)
(z̃2
r ) � ∂1

j

(
∂2
iDiQ

)
(z2
r )
))
dr.

Thus by using this result in equation (4.13), we have in conclusion

E

 d
dt
τN

(
Q
(
Y N
t

))
= − e−t

2N2

∑
1≤i≤d
1≤s≤n,
1≤j≤ds

∫ ts

0
E
[
τN

((
∂2
s,j

(
∂1
iDiQ

)
(z1,s
r ) � ∂1

s,j

(
∂1
iDiQ

)
(z̃1,s
r )

)

�
(
∂2
s,j

(
∂2
iDiQ

)
(z̃2,s
r ) � ∂1

s,j

(
∂2
iDiQ

)
(z2,s
r )

))]
dr

− e−t

2N2

∑
1≤i,j≤d

∫ t

0
E
[
τN

((
∂2
j

(
∂1
iDiQ

)
(z1
r ) � ∂1

j

(
∂1
iDiQ

)
(z̃1
r )
)

�
(
∂2
j

(
∂2
iDiQ

)
(z̃2
r ) � ∂1

j

(
∂2
iDiQ

)
(z2
r )
))]

dr.

4.3.3 Proof of Theorem 4.1.1
In this section we focus on proving Theorem 4.1.1 from which we deduce all of the important

corollaries. It will mainly be a corollary of the following theorem, which is slightly stronger but
less explicit. We refer to Definition 4.3.6 for the definition of LTi and Lemma 4.3.5 for the one
of xTi .

Theorem 4.3.4. Let the following objects be given,

• XN = (XN
1 , . . . , X

N
d ) independent GUE matrices of size N ,
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• ZN = (ZN
1 , . . . , Z

N
q ) deterministic matrices and their adjoints,

• P ∈ Ad,q a polynomial that we assume to be self-adjoint,

• f : R 7→ R such that there exists a measure on the real line µ with
∫

(1+y4(k+1)) d|µ|(y) <
+∞ and for any x ∈ R,

f(x) =
∫
R
eixy dµ(y) . (4.20)

Then with notations as in Lemma 4.3.5 and Proposition 4.3.7 if we set,

αPi (f, ZN) =
∫
R

∫
Ai
τN

((
LT̃1 . . . LT̃i

)
(eiyP )(xT̃i , ZN)

)
dt1 . . . dt2i dµ(y),

and that we write P = ∑
1≤i≤Nb(P ) ciMi where the Mi are monomials and ci ∈ C, if we set

Cmax(P ) = max{1,maxi |ci|}, then there exist constants C,K and c independent of P such that
with KN = max{

∥∥∥ZN
1

∥∥∥ , . . . , ∥∥∥ZN
q

∥∥∥ , K}, for any N and k ≤ cN(degP )−1,∣∣∣∣∣∣E
[
τN

(
f(P (XN , ZN))

)]
−

∑
0≤i≤k

1
N2iα

P
i (f, ZN)

∣∣∣∣∣∣ (4.21)

≤ 1
N2k+2

∫
R
(|y|+ y4(k+1))d|µ|(y)×

(
C ×KdegP

N Cmax(P )Nb(P )(degP )2
)4(k+1)

× k3k.

Besides if we define K̂N like KN but with 2 instead of K, then we have that for any j ∈ N∗,
∣∣∣αPj (f, ZN)

∣∣∣ ≤ ∫
R
(|y|+ y4j)d|µ|(y)×

(
C × K̂degP

N Cmax(P )Nb(P )(degP )2
)4j
× j3j. (4.22)

Finally if f and g satisfies (4.20) and are bounded functions equal on a neighborhood of the
spectrum of P (x, ZN), where x is a free semicircular system free from MN(C), then for any i,
αPi (f, ZN) = αPi (g, ZN). In particular if f is a bounded function such that its support and the
spectrum of P (x, ZN) are disjoint, then for any i, αPi (f, ZN) = 0.

The following lemma allows us to define the coefficients of the topological expansion by
induction. It is basically a reformulation of Lemma 4.3.2 with the notations of Definitions
4.2.12 and 4.2.13. Although the notations in this formula are a bit heavy, such a formulation
is necessary in order to get a better upper bound on the remainder term. It is the first step of
the proof of Theorem 4.3.4.

Lemma 4.3.5. Let x, y1, . . . , ycn be free semicircular systems of d variables. Then with Tn =
{t1, . . . , t2n} an increasing sequence of non-negative number and I = {s1, . . . , s2n} ∈ Jn, with
t0 = 0, we set

XN,Tn
i,I =

2n∑
l=1

(e−tl−1 − e−tl)1/2ysli + e−tn/2XN
i ,

xTni,I =
2n∑
l=1

(e−tl−1 − e−tl)1/2ysli + e−tn/2xi.

We define the following subfamily of (Xi,I)i∈[1,d],I∈Jn+1,

Xl,1 = (Xi,I)i∈[1,d],I∈J l,1n+1
, Xl,2 = (Xi,I)i∈[1,d],I∈J l,2n+1

,
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X̃l,1 = (Xi,I)i∈[1,d],I∈J̃ l,1n+1
, X̃l,2 =

(
X̃i,I

)
i∈[1,d],I∈J̃ l,2n+1

.

Since there is a natural bijection between Jn and J l,1n+1, one can evaluate an element of Fnd,q in
(Xl,1, Z) where Z = (Y1, . . . , Y2r) as in Definition 4.2.12, and similarly for Xl,2, X̃l,1 and X̃l,2.
Then given a set Tn+1 of 2n+ 2 numbers, we define the following operators from Fnd,q to Fn+1

d,q ,
for l from 1 to 2n,

L
Tn+1
l (Q) := 1

2
∑

1≤i,j≤d
s∈[1,cn],

depth(s)=l

e−t2n+2−tl−1 τN

((
∂2
j,s,n

(
∂1
iDiQ

)
(Xl,1, Z) � ∂1

j,s,n

(
∂1
iDiQ

) (
X̃l,1, Z

) )

�
(
∂2
j,s,n

(
∂2
iDiQ

) (
X̃l,2, Z

)
� ∂1

j,s,n

(
∂2
iDiQ

)
(Xl,2, Z)

))
.

We also define

L
Tn+1
2n+1(Q) := 1

2
∑

1≤i,j≤d
e−t2n+2−t2n τN

((
∂2
j

(
∂1
iDiQ

)
(X2n+1,1, Z) � ∂1

j

(
∂1
iDiQ

) (
X̃2n+1,1, Z

) )

�
(
∂2
j

(
∂2
iDiQ

) (
X̃2n+1,2, Z

)
� ∂1

j

(
∂2
iDiQ

)
(X2n+1,2, Z)

))
.

And finally we set

LTn+1(Q) :=
∑

1≤l≤2n
1[tl−1,tl](t2n+1)LTn+1

l (Q) + 1[t2n,t2n+2](t2n+1)LTn+1
2n+1(Q). (4.23)

Given Q ∈ Fnd,q, if Tn+1 a set of 2n+ 2 numbers, then T̃n+1 is the same set but whose elements
have been sorted by increasing order, then ,

E
[
τN

(
Q(XN,Tn , ZN)

)]
− τN

(
Q(xTn , ZN)

)
=
∫ ∞
t2n

∫ t2n+2

0
τN

(
LT̃n+1(Q)

(
XN,T̃n+1 , ZN

))
dt2n+1dt2n+2 .

Proof. With the notations of Lemma 4.3.2, let S ∈ Fd(cn+1),q be such that

S
(
(1− e−(t1−t0))(ys){s| depthn(s)=1}, . . . , (1− e−(t2n−t2n−1))(ys){s| depthn(s)=2n}, X

N , ZN
)

= Q

( 2n∑
l=1

e−tl−1/2(1− e−(tl−tl−1)1/2ysli + e−t2n/2XN
i

)
I∈Jn

, ZN


Consequently ∂iDiS = e−t2n ∂iDiQ where on the left side we used the non-commutative differ-
ential defined in 4.2.4 which is also the one used in Lemma 4.3.2, whereas on the right side we
used the non-commutative differential defined in Definition 4.2.13. Thus with the convention
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of Definition 4.2.15, we set dl to be d times the number of s ∈ Jn which have depth l, then

E
[
τN

(
S
(
Y N

) )]
− τN

(
S (Y )

)
= 1

2N2

∫ ∞
0

e−t
∑

1≤i≤d
1≤l≤2n,
1≤j≤dl

∫ tl−tl−1

0
E
[
τN

((
∂2
l,j

(
∂1
iDiS

)
(z1,l
r ) � ∂1

l,j

(
∂1
iDiS

)
(z̃1,l
r )
)

�
(
∂2
l,j

(
∂2
iDiS

)
(z̃2,l
r ) � ∂1

l,j

(
∂2
iDiS

)
(z2,l
r )
))]

dr dt

+ 1
2N2

∫ ∞
0

e−t
∑

1≤i,j≤d

∫ t

0
E
[
τN

((
∂2
j

(
∂1
iDiS

)
(z1
r ) � ∂1

j

(
∂1
iDiS

)
(z̃1
r )
)

�
(
∂2
j

(
∂2
iDiS

)
(z̃2
r ) � ∂1

j

(
∂2
iDiS

)
(z2
r )
))]

dr dt.

Consequently, since S(Y N) = Q(XN,Tn , ZN) and S(Y ) = Q(xTn , ZN), if we set

X
N,Tn+1
l,1 =

(
X
N,Tn+1
I

)
I∈J l,1n+1

, X
N,Tn+1
l,2 =

(
X
N,Tn+1
I

)
I∈J l,2n+1

,

X̃
N,Tn+1
l,1 =

(
X
N,Tn+1
I

)
I∈J̃ l,1n+1

, X̃
N,Tn+1
l,2 =

(
X̃
N,Tn+1
I

)
I∈J̃ l,2n+1

,

we have that

E
[
τN

(
Q(XN,Tn , ZN)

)]
− τN

(
Q(xTn , ZN)

)
= 1

2N2

∫ ∞
0

e−t−t2n
∑

1≤i,j≤d
1≤l≤2n

∑
s∈[1,cn],

depth(s)=l

e−tl−1

∫ tl−tl−1

0

E
[
τN

((
∂2
j,s,n

(
∂1
iDiQ

) (
X
N,{Tn,r+tl−1,t+t2n}
l,1

)
� ∂1

j,s,n

(
∂1
iDiQ

) (
X̃
N,{Tn,r+tl−1,t+t2n}
l,1

))
�
(
∂2
j,s,n

(
∂2
iDiQ

) (
X̃
N,{Tn,r+tl−1,t+t2n}
l,2

)
� ∂1

j,s,n

(
∂2
iDiQ

) (
X
N,{Tn,r+tl−1,t+t2n}
l,2

) ))]
dr dt

+ 1
2N2

∫ ∞
0

e−t−2t2n
∑

1≤i,j≤d

∫ t

0

E
[
τN

((
∂2
j

(
∂1
iDiQ

) (
X
N,{Tn,r+t2n,t+t2n}
n+1,1

)
� ∂1

j

(
∂1
iDiQ

) (
X̃
N,{Tn,r+t2n,t+t2n}
n+1,1

) )
�
(
∂2
j

(
∂2
iDiQ

) (
X̃
N,{Tn,r+t2n,t+t2n}
n+1,2

)
� ∂1

j

(
∂2
iDiQ

) (
X
N,{Tn,r+t2n,t+t2n}
n+1,2

)))]
dr dt.

Thus if we set Tn+1 = {Tn, r, t}, after a change of variable, we get that
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E
[
τN

(
Q(XN,Tn , ZN)

)]
− τN

(
Q(xTn , ZN)

)
= 1

2N2

∑
1≤i,j≤d
1≤l≤2n
s∈[1,cn],

depth(s)=l

∫ ∞
t2n

e−t−tl−1

∫ tl

tl−1
E
[
τN

((
∂2
j,s,n

(
∂1
iDiQ

) (
X
N,Tn+1
l,1

)
� ∂1

j,s,n

(
∂1
iDiQ

) (
X̃
N,Tn+1
l,1

) )

�
(
∂2
j,s,n

(
∂2
iDiQ

) (
X̃
N,Tn+1
l,2

)
� ∂1

j,s,n

(
∂2
iDiQ

) (
X
N,Tn+1
l,2

)))]
dr dt

+ 1
2N2

∫ ∞
t2n

e−t−t2n
∑

1≤i,j≤d

∫ t

t2n
E
[
τN

((
∂2
j

(
∂1
iDiQ

) (
X
N,Tn+1
n+1,1

)
� ∂1

j

(
∂1
iDiQ

) (
X̃
N,Tn+1
n+1,1

))

�
(
∂2
j

(
∂2
iDiQ

) (
X̃
N,Tn+1
n+1,2

)
� ∂1

j

(
∂2
iDiQ

) (
X
N,Tn+1
n+1,2

)))]
dr dt.

Hence the conclusion by renaming r in t2n+1 and t in t2n+2.

This prompts us to define the following operator:

Definition 4.3.6. In order to be perfectly rigorous, as pointed out in Definition 4.2.8, we have
to define L̃Tn+1

αn,βn,γn,δn
: Fnd,q → Fn+1

d,q as in (4.23) but where we replaced every non-commutative
differential by their equivalent defined in 4.2.8. Then given x = (xI)I∈Jn+1 and z elements of a
C∗-algebra, we define LTn+1(Q)(x, z) as the integral of L̃Tn+1

αn,βn,γn,δn
(Q)(x, z) over αn, βn, γn and

δn.

Thus we get directly the following proposition.

Proposition 4.3.7. Let x be a free semicircular system, (yi)i≥1 be free semicircular systems
free from x, and XN be independent GUE matrices. We define XN,Tn and xTn as in 4.3.5,
Ai = {t2i ≥ t2i−2 ≥ · · · ≥ t2 ≥ 0} ∩ {∀s ∈ [1, i], t2s ≥ t2s−1 ≥ 0} ⊂ R2i, then for any Q ∈ Fd,q,

E
[
τN

(
Q(XN , ZN)

)]
=

∑
0≤i≤k

1
N2i

∫
Ai
τN

((
LT̃i . . . LT̃1

)
(Q)(xT̃i , ZN)

)
dt1 . . . dt2i

+ 1
N2(k+1)

∫
Ak+1

E
[
τN

((
LT̃k+1 . . . LT̃1

)
(Q)(XN,T̃k+1 , ZN)

)]
dt1 . . . dt2(k+1).

Before giving the proof of Theorem 4.3.4, as mentioned in the introduction, the former
proposition gives some insight in map enumeration.

Remark 4.3.8. We say that a graph on a surface is a map if it is connected and its faces
are homeomorphic to discs. It is of genus g if it can be embedded in a surface of genus g but
not g − 1. For an edge-colored graph on an orientated surface we say that a vertex is of type
q = Xi1 . . . Xip if it has degree p and when we look at the half-edges going out of it, starting
from a distinguished one and going in the clockwise order the first half-edge is of color i1, the
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second i2, and so on. If Mg(Xi1 . . . Xip) is the number of such maps of genus g with a single
vertex, then given XN

i independent GUE matrices

E
[ 1
N

TrN
(
XN
i1 . . . X

N
ip

)]
=
∑
g∈N

1
N2gMg(Xi1 . . . Xip).

For a proof we refer to [33] for the one matrix case and [60], chapter 22, for the multimatrix
case. Thanks to Proposition 4.3.7, we immediately get that

Mg(Xi1 . . . Xip) =
∫
Ag
τ
(
LT̃g . . . LT̃1

(
Xi1 . . . Xip

)
(xT̃g)

)
dt1 . . . dt2g .

We can now prove Theorem 4.3.4.

Proof of Theorem 4.3.4. Thanks to Proposition 4.3.7, we immediately get that

E
[
τN

(
f(P (XN , ZN))

)]
=

∑
0≤i≤k

1
N2iα

P
i (f, ZN)

+ 1
N2(k+1)

∫
R

∫
Ak+1

E
[
τN

((
LT̃k+1 . . . LT̃1

)
(eiyP )(XN,T̃k+1 , ZN)

)]
dt1 . . . dt2(k+1) dµ(y).

All we need to do from now on is to get an estimate on the last line. To do so we use the
following remark. Let Q ∈ Fnd,q, then we can write

Q =
∑

1≤i≤Nb(Q)
ciMi

where ci ∈ C andMi ∈ Fnd,q are monomials (not necessarily distinct). We also define Cmax(Q) =
max{1, supi |ci|}. Since for any I ∈ Jn,

∥∥∥XN,Tn
i,I

∥∥∥ ≤ 2 +
∥∥∥XN

i

∥∥∥, given
B =

{
2 +

∥∥∥XN
i

∥∥∥}
1≤i≤p

⋃{∥∥∥ZN
j

∥∥∥}
1≤j≤q

,

and DN the maximum of this family, we get that∥∥∥Q(XN,Tn , ZN)
∥∥∥ ≤ Nb(Q)× Cmax(Q)×Ddeg(Q)

N . (4.24)

It is worth noting that this upper bound is not optimal at all and heavily dependent on the
decomposition chosen. Now let us consider L̃T̃n+1

αn,βn,γn,δn
defined as in Definition 4.3.6. We also

consider F̃nd,q the ∗-algebra generated by And,q and the family{
eiλyP ((Xi,I)1≤i≤d,Z) | I ∈ Jn, λ ∈ [0, 1]

}
.

Then L̃T̃n+1
αn,βn,γn,δn

send F̃nd,q to F̃n+1
d,q . Let Q ∈ F̃nd,q, then we get that

deg
(
L̃
T̃n+1
αn,βn,γn,δn

(Q)
)
≤ degQ+ 4 degP,

Cmax

(
L̃
T̃n+1
αn,βn,γn,δn

(Q)
)
≤ e−t2n+2

2 (1 + |y|)4 Cmax(P )4 Cmax(Q),
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Nb
(
L̃
T̃n+1
αn,βn,γn,δn

(Q)
)
≤ deg(Q)(degQ+ degP )(degQ+ 2 degP )

× (degQ+ 3 degP )× (Nb(P ) degP )4 ×Nb(Q).

Thus if we define by induction Q0 = eiyP , and Qn+1 = L̃
T̃n+1
αn,βn,γn,δn

Qn, by a straightforward
induction we get that

degQn ≤ 4n degP (4.25)

Cmax(Qn) ≤
∏n
r=1 e

−t2r

2n (1 + |y|)4n Cmax(P )4n (4.26)

Nb(Qn) ≤
(
Nb(P )(degP )2

)4n
(4n)! (4.27)

Actually since we have Dδ1,ie
iyP = iy ∂δ1,iP #̃eiyP , one can replace (1 + |y|)4n in equation (4.26)

by |y|(1 + |y|)4n−1. Thus thanks to (4.24), we get that∥∥∥∥L̃T̃k+1
αk+1,βk+1,γk+1,δk+1

. . . L̃T̃1
α1,β1,γ1,δ1Q(XN,T̃k+1 , ZN)

∥∥∥∥
≤

k+1∏
r=1

e−t2r

2 × |y|
1 + |y|

×
(

(1 + |y|)Cmax(P )Nb(P )(degP )2
)4(k+1)

(4(k + 1))!×D4(k+1) degP
N

Consequently after integrating over αn, βn, γn, δn, we get that∣∣∣∣∣
∫
R

∫
Ak+1

E
[
τN

((
LT̃k+1 . . . LT̃1

)
(eiyP )(XN,T̃k+1 , ZN)

)]
dt1 . . . dt2(k+1) dµ(y)

∣∣∣∣∣
≤

∫
tk+1≥t2k≥...t2≥0

k+1∏
r=1

t2re
−t2r

2 dt2 dt4 . . . dt2k+2 ×
∫
R
|y|(1 + |y|)4k+3d|µ|(y)

×
(
Cmax(P )Nb(P )(degP )2

)4(k+1)
(4(k + 1))!× E

[
D

4(k+1) degP
N

]
.

Besides ∫
t2k+2≥t2k≥...t2≥0

k+1∏
r=1

t2re
−t2r

2 dt1 . . . dtk+1 = 2−k−1
∫

0≤t1≤···≤tk+1

k+1∏
r=1

tre
−tr dt1 . . . dtk+1

≤ 2−k−1
∫

0≤t1≤···≤tk+1

k+1∏
r=1

e−tr/2 dt1 . . . dtk+1

=
∫

0≤t1≤···≤tk+1

k+1∏
r=1

e−tr dt1 . . . dtk+1

= 1
(k + 1)! ,

and ∫
R
|y|(1 + |y|)4k+3d|µ|(y) ≤ 24k+3

∫
R
(|y|+ y4(k+1))d|µ|(y).
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Thanks to Proposition 4.2.18 we can find constants K and c such that with

KN = max{K,
∥∥∥ZN

1

∥∥∥ , . . . , ∥∥∥ZN
q

∥∥∥},
then for any k ≤ c(degP )−1N,

E
[
D

4(k+1) degP
N

]
≤ K

4(k+1) degP
N .

Thus thanks to Stirling formula, there exists a constant C such that∣∣∣∣∣
∫
R

∫
Ak+1

E
[
τN

((
LT̃k+1 . . . LT̃1

)
(eiyP )(XN,T̃k+1 , ZN)

)]
dt1 . . . dt2(k+1) dµ(y)

∣∣∣∣∣
≤
∫
R
(|y|+ y4(k+1))d|µ|(y)×

(
C ×KdegP

N Cmax(P )Nb(P )(degP )2
)4(k+1)

× k3k.

Hence we get equation (4.21). We get equation (4.22) very similarly. Finally to prove the last
affirmation, we only need to consider a function which takes value 0 on a neighborhood of the
spectrum of P (x, ZN). Let X lN be independent GUE matrices of size lN , then we get that for
any k such that f is smooth enough, thanks to equation (4.21),

E
[
τN

(
f(P (X lN , ZN ⊗ Il))

)]
=

∑
0≤i≤k

1
(lN)2iα

P
i (f, ZN ⊗ Il) +O(l−2(k+1)).

But in the sense of Definition 4.2.1, for any i, (xTi , ZN ⊗ Il) and (xTi , ZN) have the same
distribution, hence

E
[
τN

(
f(P (X lN , ZN ⊗ Il))

)]
=

∑
0≤i≤k

1
(lN)2iα

P
i (f, ZN) +O(l−2(k+1)).

Consequently, if there exists i such that αPi (f, ZN) 6= 0, then we can find constants c and k
(dependent on N) such that

E
[
τN

(
f(P (X lN , ZN ⊗ Il))

)]
∼l→∞ c× l−2k. (4.28)

We are going to show that the left hand side decays exponentially fast in l, hence proving a
contradiction. Now if we set E the support of f , then∣∣∣∣E [τN(f(P (X lN , ZN ⊗ Il))

)]∣∣∣∣ ≤ ‖f‖∞ P
(
σ
(
P (X lN , ZN ⊗ Il)

)
∩ E 6= ∅

)
.

However thanks to Proposition 4.2.18, there exist constants A and B such that for any l,

P
(∥∥∥P (X lN , ZN ⊗ Il)

∥∥∥ ≥ A
)
≤ e−Bl.

Thus,∣∣∣∣E [τN(f(P (X lN , ZN ⊗ Il))
)]∣∣∣∣ ≤ ‖f‖∞ (P (σ (P (X lN , ZN ⊗ Il)

)
∩ E ∩ [−A,A] 6= ∅

)
+ e−Bl

)
.
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Let g be a C∞-function, with compact support disjoint from the spectrum of P (x, ZN) such
that g|E∩[−A,A] = 1. Then,∣∣∣∣E [τN(f(P (X lN , ZN ⊗ Il))

)]∣∣∣∣ ≤ ‖f‖∞ P
(∥∥∥g (P (X lN , ZN ⊗ Il)

)∥∥∥ ≥ 1
)

+ e−Bl.

Since g is C∞ and has compact support, thanks to the Fourier transform it satisfies (4.20) for
any k, thus for any self-adjoint matrices U and V ,

‖g(U)− g(V )‖ =
∥∥∥∥∫ y

∫ 1

0
eiyUα(U − V )eiyV (1−α)dαdµ(y)

∥∥∥∥
≤ ‖U − V ‖

∫
|y|d|µ|(y).

Hence there is a constant CB such that for any self-adjoint matrices Xi, Yi ∈ MlN(C) whose
operator norm is bounded by B,∥∥∥g(P (X,ZN))− g(P (Y, ZN))

∥∥∥ ≤ CB
∑
i

‖Xi − Yi‖ .

Consequently, with a proof very similar to the one of Proposition 4.6 of [7], we get that there
exist constant D and S such that for any δ > 0,

P
(∣∣∣∥∥∥g (P (X lN , ZN ⊗ Il)

)∥∥∥− E
[∥∥∥g (P (X lN , ZN ⊗ Il)

)∥∥∥]∣∣∣ ≥ δ +De−N
)
≤ pe−2N + e−Sδ

2l.

But then thanks to Theorem 1.6 of [28] and Weierstrass theorem, we know that almost surely∥∥∥g(P (X lN , ZN ⊗ Il)
)∥∥∥ converges towards 0. Hence thanks to Proposition 4.2.18 and dominated

convergence theorem, we get that E
[∥∥∥g (P (X lN , ZN ⊗ Il)

)∥∥∥] also converges towards 0. Hence
for l large enough, there exist a constant S such that

P
(∥∥∥g (P (X lN , ZN ⊗ Il)

)∥∥∥ ≥ 1
)
≤ e−Sl.

Consequently we get that there exist constants A and B such that∣∣∣∣E [τN(f(P (X lN , ZN ⊗ Il))
)]∣∣∣∣ ≤ Ae−Bl,

which is in contradiction with equation (4.28). Hence the conclusion.

We can now prove Theorem 4.1.1, the only difficulty of the proof is to use the hypothesis
of smoothness to replace our function f by a function which satisfies (4.20) without losing too
much on the constants.

Proof of Theorem 4.1.1. To begin with, let

h : x→
{
e−x

−4−(1−x)−4 if x ∈ (0, 1),
0 else.

LetH be the primitive of h which takes value 0 on R− and renormalized such that it takes value 1
for x ≥ 1. Then given a constantm one can define the function g : x→ H(m+1−x)H(m+1+x)
which takes value 1 on [−m,m] and 0 outside of (−m − 1,m + 1). Let B be the union over i
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of the events {
∥∥∥XN

i

∥∥∥ ≥ D + α−1} where D and α where defined in Proposition 4.2.18. Thus
P(B) ≤ pe−N . By adjusting the constant K defined in Theorem 4.3.4 we can always assume
that it is larger than D+α−1, thus if for any i,

∥∥∥XN
i

∥∥∥ ≤ D+α−1,
∥∥∥P (XN , ZN)

∥∥∥ ≤mCmaxK
n
N .

We fix m = mCmaxK
n
N , thus if P (XN , ZN) has an eigenvalue outside of [−m,m], necessarily

XN ∈ B. Thus

E
[
τN

(
f(1− g)(P (XN , ZN))

)]
≤ ‖f‖∞ P(B) ≤ ‖f‖∞ p× e

−N . (4.29)

Since fg has compact support and is a function of class C4(k+1)+2, we can take its Fourier
transform and then invert it so that with the convention ĥ(y) = 1

2π
∫
R h(x)e−ixydx, we have

∀x ∈ R, (fg)(x) =
∫
R
eixyf̂ g(y) dy .

Besides, since if h has compact support bounded by m+ 1 then
∥∥∥ĥ∥∥∥

0
≤ 1

π
(m+ 1) ‖h‖0, we have

∫
R
(|y|+ y4(k+1))

∣∣∣f̂ g(y)
∣∣∣ dy ≤ ∫

R

∑4(k+1)+2
i=0 |y|i

1 + y2

∣∣∣f̂ g(y)
∣∣∣ dy

≤
∫
R

∑4(k+1)+2
i=0

∣∣∣∣(̂fg)(i)(y)
∣∣∣∣

1 + y2 dy

≤ 1
π

(m+ 1) ‖fg‖C4(k+1)+2

∫
R

1
1 + y2 dy

≤ (m+ 1) ‖fg‖C4(k+1)+2 ,

Hence fg satisfies the hypothesis of Theorem 4.3.4 with µ(dy) = f̂ g(y)dy. Therefore, combining
with equation (4.29), by adjusting the constant C, we get that∣∣∣∣∣∣E

[
τN

(
f(P (XN , ZN))

)]
−

∑
0≤i≤k

1
N2iα

P
i (fg, ZN)

∣∣∣∣∣∣
≤ 1
N2k+2 ‖fg‖C4(k+1)+2 ×

(
C ×KdegP

N Cmax(P )Nb(P )(degP )2
)4(k+1)+1

× k3k.

Since the norm of the family ZN is uniformly bounded overN , the second line is of orderN−2k−2.
Hence if (βi)1≤i≤k is a family of scalar such that E

[
τN

(
f(P (XN , ZN))

)]
−∑0≤i≤kN

−2iβi is also
of order N−2k−2, then so is ∑0≤i≤k(αPi (fg, ZN) − βi)N−2i. Thus for any i, βi = αPi (fg, ZN).
Thus since it does not depends on g, one can set αPi (f, ZN) = αPi (fg, ZN).
Finally, one can write the j-th derivative of x → e−x

−4 on R+ as x → Qj(x−1)e−x−4 for
some polynomial Qj. By studying Nb(Qj), Cmax(Qj) and deg(Qj), as in the proof of Theorem
4.3.4, we get that the infinity norm of the j-th derivative of this function is smaller than
20jj!(5j/4)5j/4. Hence by adjusting C and using Stirling formula,∣∣∣∣∣∣E

[
τN

(
f(P (XN , ZN))

)]
−

∑
0≤i≤k

1
N2iα

P
i (fg, ZN)

∣∣∣∣∣∣
≤ 1
N2k+2 ‖f‖C4(k+1)+2 ×

(
C ×KdegP

N Cmax(P )Nb(P )(degP )2
)4(k+1)+1

× k12k.
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4.4. Consequences of Theorem 4.3.4

The other points of the Theorem are a direct consequence of Theorem 4.3.4.

4.4 Consequences of Theorem 4.3.4

4.4.1 Proof of corollary 4.1.2
Let g be a non-negative C∞-function which takes value 0 on (−∞, 1/2], 1 on [1,∞) and in

[0, 1] elsewhere. For any a, b ∈ R, we define hε[a,b] : x 7→ g(ε−1(x− a))g(−ε−1(x− b)). Then let
I be the collection of connected components of the complementary set of σ(P (x,AN)). Then
we define

hε =
∑
I∈I

hεI .

This function is well-defined since the spectrum of P (x,AN) is compact, hence its complemen-
tary set has a finite number of connected components of measure larger than ε. And since if
b− a ≤ ε, hε[a,b] = 0, the sum over I ∈ I is actually a finite sum. Besides, we have that

P
(
σ(P (XN , AN)) 6⊂ σ(P (x,AN)) + ε

)
≤ P

(∥∥∥hε(P (XN , AN))
∥∥∥ ≥ 1

)
≤ E

[
TrN

(
hε(P (XN , AN))

)]
.

Besides thanks to Theorem 4.1.1 since the spectrum of P (x,AN) and the support of hε are
disjoint, and that the operator norm of the matrices AN is uniformly bounded over N , for any
k ∈ N, we get that there is a constant Ck such that for any ε and for N large enough,

E
[
TrN

(
hε(P (XN , AN))

)]
≤ Ck

ε−4k−2

N2k−1 .

Thus if we set ε = N−α with α < 1/2, then by fixing k large enough we get that

P
(
σ(P (XN , AN)) 6⊂ σ(P (x,AN)) +N−α

)
= O(N−2).

Hence the conclusion by Borel-Cantelli lemma.

4.4.2 Proof of Corollary 4.1.3
Firstly, we need the following lemma.

Lemma 4.4.1. Let g be a C∞ function which takes value 0 on (−∞, 1/2] and value 1 on [1,∞),
and in [0, 1] otherwise. We set fε : t 7→ g(ε−1(t− α)) with α =

∥∥∥PP ∗(x,AN)
∥∥∥, then there exist

constants C and c such that for any k ≤ cN , ε > 0 and N ,

E
[
TrN

(
fε(PP ∗(XN , AN))

)]
≤ N × Ck

(
ε−2

N

)2k

k12k .

Proof. To estimate the above expectation we once again want to use the Fourier transform
with a few refinements to have an optimal estimate with respect to ε. We set fκε : t 7→
g(ε−1(t − α))g(ε−1(κ − t) + 1) with κ > α. Since g has compact support and is sufficiently
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smooth we can apply Theorem 4.3.2. Setting h : t 7→ g(t− ε−1α)g(ε−1κ + 1− t) = fκε (εt), we
have for k ∈ N∗,

∫
y4k|f̂κε (y)| dy = 1

2π

∫
y4k

∣∣∣∣∫ g(ε−1(t− α))g(ε−1(κ− t) + 1)e−iyt dt
∣∣∣∣ dy

= 1
2π

∫
y4k

∣∣∣∣∫ h(t)e−iyεt εdt

∣∣∣∣ dy
= ε−4k

2π

∫
y4k

∣∣∣∣∫ h(t)e−iyt dt

∣∣∣∣ dy
≤ ε−4k

2π

∫ 1
1 + y2 dy

∫
(|h(4k)(t)|+ |h(4k+2)(t)|) dt

≤ ε−4k
(∥∥∥h(4k)

∥∥∥
∞

+
∥∥∥h(4k+2)

∥∥∥
∞

)
.

In the last line we used the fact the support of the derivatives of h are included in [ε−1α, ε−1α+
1]∪ [ε−1κ, ε−1κ+ 1]. Thus thanks to Theorem 4.3.4 and by using the function g defined in the
proof of Theorem 4.1.1, we get that there exist constants C and c such that for any k ≤ cN ,
for any κ > α,

E
[
TrN

(
fκε (PP ∗(XN , AN))

)]
≤ N × Ck

(
ε−2

N

)2k

k12k .

Hence the conclusion by dominated convergence theorem.

Consequently, with x+ = max(x, 0), for any r > 0,

E
[(∥∥∥PP ∗(XN , AN)

∥∥∥− ∥∥∥PP ∗(x,AN)
∥∥∥)

+

]
≤ r +

∫ ∞
r

P
(∥∥∥PP ∗(XN , AN)

∥∥∥ ≥ ∥∥∥PP ∗(x,AN)
∥∥∥+ ε

)
dε

≤ r +
∫ ∞
r

P
(

TrN
(
fε(PP ∗(XN , AN))

)
≥ 1

)
dε

≤ r +
∫ ∞
r

E
[
TrN

(
fε(PP ∗(XN , AN))

)]
dε

≤ r + r ×N × Ck

(
r−2

N

)2k

k12k.

Thus by taking r = N−a, we get that

E
[(∥∥∥PP ∗(XN , AN)

∥∥∥− ∥∥∥PP ∗(x,AN)
∥∥∥)

+

]
≤ N−a ×

(
1 +N1+2k(2a−1) × Ckk12k

)
.

Now we want to pick a and k such that N1+2k(2a−1)×Ckk12k is bounded by 1 uniformly over N
(while keeping in mind that k has to be an integer). It is sufficient to pick a and k such that,

lnC + lnN
k

+ 12 ln k ≤ 2× (1− 2a) lnN.
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We fix k = dlnNe, then we need to pick a such that
lnC + 1 + 12 lndlnNe ≤ 2× (1− 2a) lnN.

Which means that we can pick a = 1
2 − 4 ln lnN

lnN , and for N large enough,

E
[(∥∥∥PP ∗(XN , AN)

∥∥∥− ∥∥∥PP ∗(x,AN)
∥∥∥)

+

]
≤ 2N−a = 2 ln4 N√

N
.

Thanks to Proposition 4.6 from [7] we have that for N ≥ ln(p), there exist constants K and
D such that

P
( ∣∣∣ ∥∥∥P ∗P (XN , AN)

∥∥∥− E
[∥∥∥P ∗P (XN , AN)

∥∥∥] ∣∣∣ ≥ δ +Ke−N
)
≤ e−N + e−Dδ

2N .

Thus with x+ = max(x, 0), we immediately get that

P

(∥∥∥P (XN , AN)
∥∥∥− ∥∥∥P (x,AN)

∥∥∥) ≥ δ +Ke−N + 2 ln4 N√
N

‖P (x,AN)‖


≤ P

((∥∥∥P (XN , AN)
∥∥∥− ∥∥∥P (x,AN)

∥∥∥)× (∥∥∥P (XN , AN)
∥∥∥+

∥∥∥P (x,AN)
∥∥∥) ≥ δ +Ke−N + 2 ln4 N√

N

)

≤ P
(∥∥∥P ∗P (XN , AN)

∥∥∥− ∥∥∥P ∗P (x,AN)
∥∥∥ ≥ δ +Ke−N + 2 ln4 N√

N

)

≤ P
( ∥∥∥P ∗P (XN , AN)

∥∥∥− ∥∥∥P ∗P (x,AN)
∥∥∥ ≥ δ +Ke−N

+ E
[(∥∥∥P ∗P (XN , AN)

∥∥∥− ∥∥∥P ∗P (x,AN)
∥∥∥)

+

] )
≤ P

( ∥∥∥P ∗P (XN , AN)
∥∥∥− ∥∥∥P ∗P (x,AN)

∥∥∥ ≥ δ +Ke−N + E
[∥∥∥P ∗P (XN , AN)

∥∥∥− ∥∥∥P ∗P (x,AN)
∥∥∥] )

≤ P
( ∥∥∥P ∗P (XN , AN)

∥∥∥− E
[∥∥∥P ∗P (XN , AN)

∥∥∥] ≥ δ +Ke−N
)

≤ e−N + e−Dδ
2N .

Since the family (AN)N is uniformly bounded over N , so is the sequence (
∥∥∥P (x,AN)

∥∥∥)N , hence
by replacing δ by D−1/2δ, we get that there is a constant C such that

P
(∥∥∥P (XN , AN)

∥∥∥− ∥∥∥P (x,AN)
∥∥∥ ≥ C

(
δ + ln4 N√

N

))
≤ e−N + e−δ

2N .

Finally by replacing δ by ln4 N√
N
δ, we get that

P
( √

N

ln4 N

(∥∥∥P (XN , AN)
∥∥∥− ∥∥∥P (x,AN)

∥∥∥) ≥ C (δ + 1)
)
≤ e−N + e−δ

2 ln8 N .
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Chapter 5
Concentration estimates for random subspaces
of a tensor product, and application to
Quantum Information Theory

Given a random subspace Hn chosen uniformly in a tensor product of Hilbert spaces Vn⊗W ,
we consider the collection Kn of all singular values of all norm one elements of Hn with respect
to the tensor structure. A law of large numbers has been obtained for this random set in
the context of W fixed and the dimension of Hn, Vn tending to infinity at the same speed by
Belinschi, Collins and Nechita.

In this paper, we provide measure concentration estimates in this context. The probabilis-
tic study of Kn was motivated by important questions in Quantum Information Theory, and
allowed to provide the smallest known dimension for the dimension an an ancilla space allowing
Minimum Output Entropy (MOE) violation. With our estimates, we are able, as an applica-
tion, to provide actual bounds for the dimension of spaces where violation of MOE occurs.

This chapter is adapted from [11], which is a joint work with Benoît Collins.
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Chapter 5. Concentration estimates for random subspaces of a tensor product, and
application to Quantum Information Theory

5.1 Introduction
One of the most important questions in Quantum Information Theory (QIT) was to figure

out whether one can find two quantum channels Φ1 and Φ2 such that

Hmin(Φ1 ⊗ Φ2) < Hmin(Φ1) +Hmin(Φ2), (5.1)

where Hmin is the Minimum Output Entropy (MOE), defined in section 5.4. This problem was
solved by [61], with important preliminary work by [62] (see also references therein). This was
especially important in QIT, since there was hope such quantum channels did not exist and
consequently that the MOE would be additive, i.e. that the inequality of equation (5.1) would
be an equality. In this case, it would give a systematic way to compute the classical capacity
of a quantum channel. For more explanation we refer to [90].

All proofs available so far are not constructive in the sense that constructions rely on the
probabilistic method. After the initial construction of [61], the probabilistic tools involved in
the proof have been found to have deep relation with random matrix theory in many respects,
including large deviation principle [63], Free probability [64], convex geometry [65] and Oper-
ator Algebra [66]. The last two probably give the most conceptual proofs, and in particular
convex geometry gives explicit numbers. Free probability gives the best numbers for the output
dimension [64] but was unable to give estimates for the input dimension so far. More gener-
ally, the optimal violation obtained in [64] relates to a LLN obtained in [67] whose speed of
convergence was not explicit, and in turn, did not give any estimate on the smallest dimension
of the input space. In order to obtain explicit parameters, measure concentration estimates,
ideally large deviation estimates, are required. And from a theoretical point of view, this is
the goal of this paper. Our main results (Theorem 5.2.2 and 5.4.3) give precise estimates for
the probability of additivity violation and the dimension of the violating channel in a natural
random channel model. The proof is based on the far reaching approach of [8] – see as well [7].
As a corollary, we obtain the following important application in Quantum Information Theory:

Theorem 5.1.1 (For the precise statement, see Theorem 5.4.3). There exist a quantum channel
from M368×1051(C) to M184(C) such that combined with its conjugate channel, it yields violation
of the MOE.

The paper is organized as follows. After this introduction, section 2 is devoted to introducing
necessary notations and state the main theorem. Section 3 contains the proof of the main
theorem, and section 4 contains application to Quantum Information Theory.

Acknowledgements: B.C. was supported by JSPS KAKENHI 17K18734, 17H04823 and
20K20882. F.P. was supported by a JASSO fellowship and Labex Milyon (ANR-10-LABX-
0070) of Université de Lyon. This work was initiated while the second author was doing his
MSc under the supervision of Alice Guionnet and he would like to thank her for insightful
comments and suggestions on this work. The authors would also like to thank Ion Nechita for
an interesting remark on the minimum dimension with respect to k.

5.2 Notations and main theorem
We denote by H a Hilbert space, which we assume to be finite dimensional. B(H) is the

set of bounded linear operators on H, and D(H) ⊂ B(H) is the collection of trace 1, positive
operators – known as density matrices. In the case of matrices, we denote it by Dk ⊂Mk(C).
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5.2. Notations and main theorem

Let d, k, n ∈ N, let U be distributed according to the Haar measure on the unitary group of
Mkn(C), let Pn be the canonical injection from Cd to Ckn, that is the matrix with kn lines and
d columns with 1 on the diagonal and 0 elsewhere. With Trn the trace on Mn(C), we define
the following random linear map,

Φn : X ∈Md(C) 7→ idk ⊗ Trn(UPnXP ∗nU∗) ∈Mk(C). (5.2)

This map is trace preserving, linear and completely positive and as such, it is known as a
quantum channel. Let t ∈ [0, 1]. Let (dn)n∈N be an integer sequence such that d ∼ tkn, and
define

Kn,k,t = Φn(Ddn). (5.3)
There is a much more geometric definition of Kn,k,t thanks to the following proposition. Actu-
ally, while the quantum channel (5.2) is random, we do not use this fact in the proof, and we
could very well prove the same result for a quantum channel defined as in equation (5.2) but
with a deterministic unitary matrix instead of a Haar unitary matrix U .

Proposition 5.2.1. We have,

Kn,k,t = {X ∈ Dk | ∀A ∈ Dk,Trk(XA) ≤ ‖P ∗nU∗A⊗ InUPn‖}. (5.4)

Besides for any A ∈ Dk, {X ∈ Kn,k,t | Trk(XA) = ‖P ∗nU∗A⊗ InUPn‖} is non-empty.

Proof. Let Y ∈ Ddn , A ∈ Dk, then

Trk(Φn(Y )A) = Trkn(UPnY P ∗nU∗ · A⊗ In)
= Trd(

√
Y P ∗nU

∗ · A⊗ In · UPn
√
Y )

≤ Trd(Y ) ‖P ∗nU∗ · A⊗ In · UPn‖
= ‖P ∗nU∗ · A⊗ In · UPn‖ .

Let us write E for the right member of the equation (5.4), we just showed that Kn,k,t =
Φn(Ddn) ⊂ E. Besides if Px is the orthogonal projection on the vector x, we have that

‖P ∗nU∗ · A⊗ In · UPn‖ = max
x∈Cd

Trd(P ∗nU∗ · A⊗ In · UPnPx) = max
x∈Cd

Trk(A Φn(Px)).

Thus, for every ε > 0 and A ∈ Dk, we can find an element of Kn,k,t in {X ∈ Dk | Trk(XA) ≥
‖P ∗nU∗A⊗ InUPn‖ − ε}. By compactness of Kk,n,t, we can even find an element of Kn,k,t in
{X ∈ Dk | Trk(XA) = ‖P ∗nU∗A⊗ InUPn‖}.

If we see E as a convex set of Mk(C)sa, let X ∈ E be an exposed point of E, that is there
exists A ∈Mk(C)sa and C such that the intersection of E and {Y ∈Mk(C)sa | Trk(AY ) = C}
is reduced to {X} and that E is included in {Y ∈ Mk(C)sa | Trk(AY ) ≤ C}. We have the
following equality for λ large enough since if Y ∈ Dk, Trk(Y ) = 1,

{Y ∈ Dk | Trk(AY ) = C} =
{
Y ∈ Dk | Trk

(
A+ λIk

Trk(A+ λIk)
Y

)
= C + λ

Trk(A+ λIk)

}
.

Thus, we can find B ∈ Dk and c such that such that the intersection of E and {Y ∈
Dk | Trk(BY ) = c} is reduced to {X} and that E is included in {Y ∈ Dk | Trk(BY ) ≤ c}. To
summarize:
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• The intersection of Kn,k,t and {Y ∈ Dk | Trk(BY ) = ‖P ∗nU∗ ·B ⊗ In · UPn‖} is non-
empty.

• Kn,k,t ⊂ E, so the intersection of E and {Y ∈ Dk | Trk(BY ) = ‖P ∗nU∗ ·B ⊗ In · UPn‖}
is non-empty.

• The intersection of E and {Y ∈ Dk | Trk(BY ) = c} is exactly {X}.

• E is included in both {Y ∈ Dk | Trk(BY ) ≤ c} and

{Y ∈ Dk | Trk(BY ) ≤ ‖P ∗nU∗ ·B ⊗ In · UPn‖}.

Hence it implies that c = ‖P ∗nU∗B ⊗ InUPn‖ and that X ∈ Kn,k,t. Thus we showed that the
exposed point of E belongs to Kn,k,t. By a result of Straszewicz ([91],theorem 18.6) the set
of exposed points is dense in the set of extremal points, so the set of extremal points of E is
included in Kn,k,t. Since Kn,k,t is convex, E is included in Kn,k,t.

Thanks to Theorem 1.4 of [9], we know that ‖P ∗nU∗ · A⊗ In · UPn‖ converges almost surely
towards a limit ‖A‖(t), which we now describe in terms of free probability (for the interested
reader we refer to [92], but a non expert reader can take limn ‖P ∗nU∗ · A⊗ In · UPn‖ as the
definition of ‖A‖(t) without loss of generality). For A ∈Mk(C), we set:

‖A‖(t) := ‖ptApt‖ , (5.5)

where on the right side we took the operator norm of ptApt, with pt a self-adjoint projection of
trace t, free from A. Consequently, we define

Kk,t = {X ∈ Dk | ∀A ∈ Dk,Trk(XA) ≤ ‖A‖(t)}. (5.6)

Given their definition, it seems natural to say that Kn,k,t converges towards Kk,t. However
it is not quite as straightforward. The convergence for the Hausdorff distance was proved in
[67], Theorem 5.2. More precisely the authors proved that given a random subspace of size
dn, Fn,k,t the collection of singular values of unit vectors in this subspace converges for the
Hausdorff distance towards a deterministic set Fk,t. It turns out that Kn,k,t (respectively Kk,t)
is the convex hull of the self-adjoint matrices whose eigenvalues are in Fn,k,t (respectively Fk,t).
However our paper is self-contained and we do not use this theorem. The main result of this
paper is a measure concentration estimate and can be stated as follows.

Theorem 5.2.2. If we assume dn ≤ tkn, then for n ≥ 34 × 230 × ln2(kn)× k3ε−4,

P (Kn,k,t 6⊂ Kk,t + ε) ≤ ek
2(ln(3k2ε−1))−n

k
× ε2

576 ,

where Kk,t + ε = {Y ∈ Dk | ∃X ∈ Kk,t, ‖X − Y ‖2 ≤ ε} with ‖M‖2 :=
√

Trk(M∗M).

While this does not prove the convergence for the Hausdorff distance of Kn,k,t towards Kk,t

since we do not study the probability that Kk,t 6⊂ Kn,k,t + ε. We could adapt our proof to get
this result, but without getting estimates with explicit constants which would be detrimental
to our aim of finding explicit parameters for violation of the additivity of the MOE.
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5.3 Proof of main theorem
We will combine this geometrical description with the following lemma to get an estimate.

Proposition 5.3.1. If we define Kk,t + ε = {Y ∈ Dk | ∃X ∈ Kk,t, ‖X − Y ‖2 ≤ ε} with
‖M‖2 :=

√
Trk(M∗M), then the following implication is true,

∀A ∈ Dk, ‖P ∗nU∗A⊗ InUPn‖ ≤ ‖A‖(t) + ε

k
=⇒ Kn,k,t ⊂ Kk,t + ε.

Before proving it, we need a small lemma on the structure of Kk,t.

Lemma 5.3.2. Let A ∈ Dk, then {X ∈ Kk,t | Trk(XA) = ‖A‖(t)} is non-empty.

Proof. Thanks to Proposition 5.2.1 we know that for any n, {X ∈ Kn,k,t | Trk(XA) =
‖P ∗nU∗A⊗ InUPn‖} is non-empty. Hence there exists Xn such that:

• Trk(XnA) = ‖P ∗nU∗A⊗ InUPn‖},

• ∀B ∈ Dk, Trk(XnB) ≤ ‖P ∗nU∗B ⊗ InUPn‖}.

By compactness of Dk, we can assume that Xn converges towards a limit X. But then as
we said in the previous section, thanks to Theorem 1.4 from [9], ‖P ∗nU∗B ⊗ InUPn‖ converges
towards ‖B‖(t). Thus X is such that:

• Trk(XA) = ‖A‖(t)},

• ∀B ∈ Dk, Trk(XB) ≤ ‖B‖(t)}.

That is, X belongs to {X ∈ Kk,t | Trk(XA) = ‖A‖(t)}.

We can now prove Proposition 5.3.1.

Proof of Proposition 5.3.1. We assume that Kn,k,t 6⊂ Kk,t + ε, then thanks to the compactness
of Kn,k,t and Kk,t, we can find X ∈ Kk,t and Y ∈ Kn,k,t such that ‖X − Y ‖2 > ε, and
Kk,t ∩ B(Y, ‖X − Y ‖2) is empty. We set U = Y−X

‖Y−X‖2
, A = 1

k
(U + Ik), then A ∈ Dk. We are

going to show that ‖P ∗nU∗A⊗ InUPn‖ > ‖A‖(t) + ε
k
. To do so we define

PC =
{
B ∈ Kk,t

∣∣∣∣ Trk(AB) = C + 1
k

}
= {B ∈ Kk,t | Trk (UB) = C} .

Let us assume that for C > Trk(UX), PC is not empty, then let S ∈ PC . We can write
C = Trk(U(X + tU)) for some t > 0, thus Trk(US) = Trk(U(X + tU)), that is Trk((Y −
X)(X − S)) = −t ‖Y −X‖2. Hence the following estimate:

‖Y − (αX + (1− α)S)‖2
2 = Trk

((
Y −X + (1− α)(X − S)

)2
)

= ‖Y −X‖2
2 − 2t(1− α) ‖Y −X‖2 +©((1− α)2).

Consequently since Kk,t is convex, for any α, αX + (1 − α)S ∈ Kk,t, thus for 1 − α small
enough we could find an element of Kk,t in B(Y, ‖X − Y ‖2). Hence the contradiction. Thus for
C > Trk(UX), PC is empty. By Lemma 5.3.2, we get that Trk(UX)+1

k
≥ ‖A‖(t). Next we define

QC =
{
B ∈ Kn,k,t

∣∣∣∣ Trk(AB) = C + 1
k

}
= {B ∈ Kn,k,t | Trk (UB) = C} .
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Then clearly for C = Trk(UY ), QC is non-empty since Y ∈ QTrk(UY ). Hence thanks to the
geometric definition (5.4) of Kn,k,t, we have that Trk(UY )+1

k
≤ ‖P ∗nU∗ · A⊗ In · UPn‖. Thus we

have,

‖P ∗nU∗A⊗ InUPn‖ ≥
Trk(U(Y −X))

k
+ ‖A‖(t) = ‖Y −X‖2

k
+ ‖a‖(t) >

ε

k
+ ‖A‖(t) .

Actually with a very similar proof, we could even show that almost surely there exist A ∈ Dk
such that

dH(Kn,k,t, Kk,t) = k ×
∣∣∣‖P ∗nU∗ · A⊗ In · UPn‖ − ‖A‖(t)

∣∣∣ ,
where dH is the Hausdorff distance associated to the norm ‖.‖2 which comes from the scalar
product (U, V ) 7→ Trk(UV ). However this result will not be useful in this paper since the
absolute value would be detrimental for the computation of our estimate. The following lemma
is a rather direct consequence of the previous proposition.
Lemma 5.3.3. Let u > 0, let Su = {uM | M ∈ Mk(C)sa, ∀i ≥ j, <(mi,j) ∈

{
N + 1

2

}
∩

[0, du−1e], ∀i > j, =(mi,j) ∈
{
N + 1

2

}
∩ [0, du−1e] }, let PDk be the convex projection on Dk.

Then with u =
√

2ε
3k2 ,

P (Kn,k,t 6⊂ Kk,t + ε) ≤
∑
M∈Su

P
(
‖P ∗nU∗(PDkM ⊗ In)UPn‖ > ‖PDkM‖(t) + ε

3k

)
.

Proof. We immediately get from proposition 5.3.1 that

P (Kn,k,t 6⊂ Kk,t + ε) ≤ P
(
∃A ∈ Dk, ‖P ∗nU∗ · A⊗ In · UPn‖ > ‖A‖(t) + ε

k

)
.

Now, let A ∈ Dk, by construction of Su, there exists M ∈ Su such that the real part
and the imaginary part of the coefficients of M are u/2-close from those of A. Thus we have
‖A−M‖2 ≤

ku√
2 . Hence if we fix u =

√
2ε

3k2 , then we can always find M ∈ Su such that
‖A−M‖2 ≤

ε
3k . Besides we have,∣∣∣‖A‖(t) − ‖PDkM‖(t)

∣∣∣ ≤ ‖A− PDkM‖ ≤ ‖A− PDkM‖2 ,∣∣∣∣ ‖P ∗nU∗A⊗ InUPn‖ − ‖P ∗nU∗(PDkM ⊗ In)UPn‖
∣∣∣∣ ≤ ‖A− PDkM‖ ≤ ‖A− PDkM‖2 .

Hence since PDkA = A and that PDk is 1-lipschitz, we have ‖A− PDkM‖2 ≤ ‖A−M‖2 ≤
ε

3k .
Consequently,{
‖P ∗nU∗ · A⊗ In · UPn‖ > ‖A‖(t) + ε

k

}
⊂
{
‖P ∗nU∗(PDkM ⊗ In)UPn‖ > ‖PDkM‖(t) + ε

3k

}
.

Hence, {
∃A ∈ Dk, ‖P ∗nU∗ · A⊗ In · UPn‖ > ‖A‖(t) + ε

k

}
⊂

⋃
M∈Su

{
‖P ∗nU∗(PDkM ⊗ In)UPn‖ > ‖PDkM‖(t) + ε

3k

}
.

The conclusion follows.
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The next lemma shows that there exist a smooth function which verifies some assumptions
on the infinite norm of its derivatives.

Lemma 5.3.4. There exists g a C6 function which takes value 0 on (−∞, 0] and value 1 on
[1,∞), and in [0, 1] otherwise. Besides for any j ≤ 6,

∥∥∥g(j)
∥∥∥
∞

= 2
j(j+1)

2 .

Proof. Firstly we define,

f : t ∈ [0, 1] 7→
{

2t if t ≤ 1/2
2(1− t) if t ≥ 1/2 ,

H : C0([0, 1]) → C0([0, 1])

f 7→ t 7→
{
f(2t) if t ≤ 1/2
−f(2t− 1) if t ≥ 1/2

.

Inspired by Taylor’s Theorem, we define

h : x ∈ [0, 1] 7→
∫ x

0

(x− t)5

5! H5f(t) dt.

It is easy to see that h ∈ C6([0, 1]) with

∀j ≤ 5, h(j) : x ∈ [0, 1] 7→
∫ x

0

(x− t)5−j

(5− j)! H
5f(t) dt, h(6) = H5f.

Thus one can easily extend h by 0 on R− and h remains C6 in 0, as for what happens in 1 it is
way less obvious. In order to build g we want to show that

∀1 ≤ j ≤ 6, h(j)(1) = 0, h(1) > 0.

To do so let w ∈ C0([0, 1]), then for any k ≥ 0,
∫ 1

0
(1− t)kHw(t)dt =

∫ 1/2

0
(1− t)kw(2t)dt−

∫ 1

1/2
(1− t)kw(2t− 1)dt

= 1
2k+1

∫ 1

0

(
(2− t)k − (1− t)k

)
w(t)dt

= 1
2k+1

∫ 1

0

∑
0≤i<k

(
k

i

)
(1− t)iw(t)dt.

Thus recursively one can show that ∀1 ≤ j ≤ 6, h(j)(1) = 0. We also get that

h(1) =
∫ x

0

(1− t)5

5! H5f(t) dt = 2−
∑

2≤i≤6 i
∫ x

0
f(t) dt = 2−21.

Hence we fix g = 221h, further studies show that
∥∥∥g(j)

∥∥∥
∞

= 2
j(j+1)

2 .

In the next lemma, we prove a first rough estimate on the deviation of the norm with respect
to its limit. It is the only one where we use that dn ≤ tkn.
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Lemma 5.3.5. For any A ∈ Dk, ε > 0,

P
(
‖P ∗nU∗A⊗ InUPn‖ ≥ ‖A‖(t) + ε

)
≤ 3× 222 × ln2(kn)

kn
ε−4. (5.7)

Proof. For a better understanding of the notations and tools used in this proof, such as free
stochastic calculus, we refer to [8]. In particular τkn is the trace on the free product of Mkn(C)
with a C∗-algebra which contains a free unitary Brownian motion, see Definition 2.8 of [8]. As
for δ,D and �, see Definition 2.5 of [8] and 2.10 from [10]. If you are not familiar with free
probability, it is possible to simply admit equation (5.9) to avoid having to understand the
previous notations.

Since ‖P ∗nU∗ · A⊗ In · UPn‖ = ‖PnP ∗nU∗ · A⊗ In · UPnP ∗n‖, we will rather work with P =
PnP

∗
n since it is a square matrix. To simplify notations, instead of A ⊗ In we simply write A.

Let us now consider a function f such that

∀x ∈ R, f(x) =
∫
R
eixydµ(y), (5.8)

for some measure µ. We set vs = U ⊗ Il × V lkn
t−sU

lkn
s and wt = U ⊗ Il × W lkn

t−sU
lkn
s where

(Umkn
t )t≥0, (V mkn

t )t≥0, (Wmkn
t )t≥0 are independent unitary Brownian motions of sizemkn started

in the identity. We also set Pl,l′ = Ikn ⊗ El,l′ where El,l′ is the matrix of size m whom all
coefficients are zero but the (l, l′) one which is 1. Then thanks to Lemma 4.2, 4.6 and Corollary
3.3 from [8], with uT a free unitary Brownian motion at time T started in 1,we have the following
expression,

E
[ 1
kn

Trkn
(
f(P U∗A U P )

)]
− E

[
τkn

(
f(P u∗TU

∗ A UuT P )
)]

= lim
m→∞

1
2m2(kn)3

∑
1≤l,l′≤m

∫ ∫ T

0

∫ t

0
Trmkn

δ ◦ δ1 ◦ D
(
eiyPv∗sAvsP

)
#̃Pl′,l

� δ ◦ δ2 ◦ D
(
eiyPw∗sAwsP

)
#̃Pl,l′

dsdt dµ(y).

Then if we set Rs
1 = Pv∗sAvsP and Rs

2 = Pw∗sAwsP , after a lengthy computation,

Trmkn

δ ◦ δ1 ◦ D
(
eiyPv∗sAvsP

)
#̃Pl′,l � δ ◦ δ2 ◦ D

(
eiyPw∗sAwsP

)
#̃Pl,l′


=− iyTrlkn

(
δ(v∗sAvs)#̃Pl′,l × δ(PeiyRs2P )#̃Pl,l′

)
− iyTrlkn

(
δ(PeiyRs1P )#̃Pl′,l × δ(w∗sAws)#̃Pl,l′

)
+ y2

∫ 1

0
Trlkn

(
δ(v∗sAvsPeiyαRs1Pv∗sAvs)#̃Pl′,l × δ(Peiy(1−α)Rs2P )#̃Pl,l′

)
dα

− y2
∫ 1

0
Trlkn

(
δ(v∗sAvsPeiyαRs1P )#̃Pl′,l × δ(w∗sAwsPeiy(1−α)Rs2P )#̃Pl,l′

)
dα

+ y2
∫ 1

0
Trlkn

(
δ(PeiyαRs1P )#̃Pl′,l × δ(w∗sAwsPeiy(1−α)Rs2Pw∗sAws)#̃Pl,l′

)
dα

− y2
∫ 1

0
Trlkn

(
δ(PeiyαRs1Pv∗sAvs)#̃Pl′,l × δ(Peiy(1−α)Rs2Pw∗sAws)#̃Pl,l′

)
dα
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Since the norm of A,P, vs and ws are smaller than 1, and that the rank of Pl,l′ is kn, by
using the fact that the non-renormalized trace of a matrix of norm smaller than 1 is smaller or
equal to its rank, we finally get that for any t,

1
kn

∣∣∣∣∣∣Trmkn

δ ◦ δ1 ◦ D
(
eiyPv∗sAvsP

)
#̃Pl′,l � δ ◦ δ2 ◦ D

(
eiyPw∗sAwsP

)
#̃Pl,l′

∣∣∣∣∣∣
≤ 8y2 + 2y2

∫ 1

0
(4 + 2α|y|)× 2(1− α)|y| dα + 2y2

∫ 1

0
(2 + 2α|y|)× (2 + 2(1− α)|y|) dα

= 16y2 + 16|y|3 + 8
3y

4.

Consequently, we get that

∣∣∣∣E [ 1
kn

Trkn
(
f(P U∗A U P )

)]
− E

[
τkn

(
f(P u∗TU

∗ A UuT P )
)]∣∣∣∣

≤ T 2

(kn)2

∫
4y2 + 4|y|3 + 2

3y
4 d|µ|(y).

Thanks to Proposition 3.3 from [8], we get that

∣∣∣∣τkn(eiyPu∗TU
∗AUuTP

)
− τ

(
eiyPu∗AuP

)∣∣∣∣
=
∣∣∣∣τkn(eiyPu∗TU

∗AUuTP
)
− τkn

(
eiyPu∗U∗AUuP

)∣∣∣∣
=
∣∣∣∣y ∫ 1

0
τ
(
eisyPu∗TAuTPP (u∗TU∗AUuT − ũ∗TU∗AUũT )P ei(1−s)yP ũ∗TAũTP

)
ds
∣∣∣∣

≤ 8e2πe−T/2|y|.

Consequently, if the support of f and the spectrum of Pu∗AuP are disjoint, then τ
(
f(P u∗ A⊗

In u P )
)

= 0, and

∣∣∣∣E [ 1
kn

Trkn
(
f(P U∗ A⊗ In U P )

)]∣∣∣∣ (5.9)

≤ 8e2πe−T/2
∫
|y| d|µ|(y) +

(
T

kn

)2 ∫
4y2 + 4|y|3 + 2

3y
4 d|µ|(y).

Let g be a C6 function which takes value 0 on (−∞, 0] and value 1 on [1,∞), and in [0, 1]
otherwise. We set fε : t 7→ g(2ε−1(t − α) − 1)g(2ε−1(1 − t) + 1) with α = ‖A‖(t). Then
the support of f is included in [‖A‖(t) ,∞), whereas the spectrum of Pu∗AuP is bounded
by ‖Pu∗AuP‖ = ‖A‖dn(kn)−1 ≤ ‖A‖(t) since dn ≤ tkn. Hence fε satisfies (5.9). Setting
h : t 7→ g(t− 2ε−1α− 1)g(2ε−1 + 1− t), we have with convention f̂(x) = (2π)−1 ∫

R f(y)e−ixydy,
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for 0 ≤ k ≤ 4 and any β > 0,∫
|y|k|f̂ε(y)| dy = 1

2π

∫
|y|k

∣∣∣∣∫ g(2ε−1(t− α)− 1)g(2ε−1(1− t) + 1)e−iyt dt
∣∣∣∣ dy

= 1
2π

∫
|y|k

∣∣∣∣∣
∫
h(βt)e−iyεβt/2 εβ

2 dt

∣∣∣∣∣ dy
= 1

2π2kε−kβ−k
∫
|y|k

∣∣∣∣∫ h(βt)e−iyt dt

∣∣∣∣ dy
≤ 1

2π2kε−k
∫ 1

1 + y2 dy
∫

(|h(k)(βt)|+ β2|h(k+2)(βt)|) dt

≤ 2k−1ε−k
(
β−1

∥∥∥g(k)
∥∥∥
∞

+ β
∥∥∥g(k+2)

∥∥∥
∞

)
.

In the last line we used the fact that we can always assume that α + ε ≤ 1 (otherwise
P(‖P ∗nU∗ · A⊗ In · UPn‖ ≥ ‖A‖(t) + ε) = 0 and there is no need to do any computation)
and thus that the support of t 7→ g(t − 2ε−1α − 1) and the derivative of t 7→ g(2ε−1 + 1 − t)
are disjoint. Thus by fixing β =

√
‖g(k)‖∞ ‖g(k+2)‖−1

∞ we get∫
|y|k|f̂ε(y)| dy ≤ 2kε−k

√
‖g(k)‖∞ ‖g(k+2)‖∞ .

Consequently, since fε satisfies (5.8) with dµ(y) = f̂ε(y)dy, by using (5.9) we get

∣∣∣∣E [ 1
kn

Trkn
(
fε(P U∗ A⊗ In U P )

)]∣∣∣∣
≤ 16e2πe−T/2

√
‖g(1)‖∞ ‖g(3)‖∞ε

−1 +
(
T

kn

)2
16ε−2

√
‖g(2)‖∞ ‖g(4)‖∞

+
(
T

kn

)2
32ε−3

√
‖g(3)‖∞ ‖g(5)‖∞ +

(
T

kn

)2 32
3 ε
−4
√
‖g(4)‖∞ ‖g(6)‖∞.

Combined with Lemma 5.3.4 and fixing T = 4 ln(kn), we get

∣∣∣∣E [ 1
kn

Trkn
(
fε(P U∗ A⊗ In U P )

)]∣∣∣∣
≤ 2 15

2 e2π
ε−1

(kn)2 + 229/2
(

ln(kn)
kn

)2

ε−2 + 239/2
(

ln(kn)
kn

)2

ε−3 + 249/2

3

(
ln(kn)
kn

)2

ε−4.

Since for any n, almost surely ‖P ∗nU∗ · A⊗ In · UPn‖ ≤ 1, we have

P
(
‖P ∗nU∗A⊗ InUPn‖ ≥ ‖A‖(t) + ε

)
= P

(
∃λ ∈ σ(PU∗A⊗ InUP ), fε(λ) = 1

)
≤ P

(
Trkn

(
fε(P ∗U∗A⊗ InUP )

)
≥ 1

)
≤ E

[
Trkn

(
fε(P U∗ A⊗ In U P )

)]
≤ 2 15

2 e2π
ε−1

kn
+ ln2(kn)

kn

(
229/2ε−2 + 239/2ε−3 + 249/2

3 ε−4
)
.
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5.3. Proof of main theorem

One can always assume that ln2(kn) ≥ 1 since for small value of k and n, (5.7) is easily verified
since the right member of the inequality is larger than 1. One can also assume that ε < 1 since
almost surely ‖P ∗nU∗A⊗ InUPn‖ ≤ 1. We get the conclusion by a numerical computation.

We can now refine this inequality by relying on corollary 4.4.28 of [13], we state the part
that we will be using in the next proposition.

Proposition 5.3.6. We set SUN = {X ∈ UN | det(X) = 1}, let f be a continuous, real-valued
function on UN . We assume that there exists a constant C such that for every X, Y ∈ UN ,

|f(X)− f(Y )| ≤ C ‖X − Y ‖2 (5.10)

Then if we set νG the law of the Haar measure on G, for all δ > 0:

νUN

(∣∣∣∣f(.)−
∫
f(Y.)dνSUN (Y )

∣∣∣∣ ≥ δ
)
≤ 2e−

Nδ2
4C2 (5.11)

Lemma 5.3.7. For any A ∈ Dk, ε > 0, if kn ≥ 230 × ln2(kn)× ε−4, we have

P
(
‖P ∗nU∗ · A⊗ In · UPn‖ ≥ ‖A‖(t) + ε

)
≤ 2e−kn× ε

2
64 .

Proof. We set,
f : U 7→ ‖P ∗nU∗A⊗ InUPn‖ ,

h : X ∈ Un 7→
∫
f(Y X)dνSUkn(Y ).

If U1 is a random matrix of law νSUkn , and α a scalar of law νU1 independent of U1. Then the
law of αU1 is νUkn since its law is invariant by multiplication by a unitary matrix. Consequently
for any X ∈ Ukn,

h(X) = E[f(U1X)] = E[f(αU1X)] = E[f(αU1)] =
∫
f(Y )dνUkn(Y ).

The third inequality is true since for any scalar α and X ∈ Ukn, f(X) = f(αX). Besides we
also have that for any U, V ∈ Ukn,

|f(U)− f(V )| ≤ 2 ‖U − V ‖ ≤ 2 ‖U − V ‖2 .

Thus by using Proposition 5.3.6, we get

P
(∣∣∣∣‖P ∗nU∗ · A⊗ In · UPn‖ − E

[
‖P ∗nU∗A⊗ InUPn‖

]∣∣∣∣ ≥ δ
)
≤ 2e− knδ

2
16 .
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Besides if for x ∈ R, we denote x+ = max(0, x), then

P
(
‖P ∗nU∗A⊗ InUPn‖ ≥ ‖A‖(t) + ε

)
≤ P

(
‖P ∗nU∗A⊗ InUPn‖ − E [‖P ∗nU∗A⊗ InUPn‖]

≥ ε− E
[(
‖P ∗nU∗A⊗ InUPn‖ − ‖A‖(t)

)
+

])
≤ P

( ∣∣∣∣‖P ∗nU∗A⊗ InUPn‖ − E
[
‖P ∗nU∗A⊗ InUPn‖

]∣∣∣∣
≥ ε− E

[(
‖P ∗nU∗A⊗ InUPn‖ − ‖A‖(t)

)
+

])

≤ 2e
−kn

(
ε−E

[(
‖P ∗nU∗A⊗InUPn‖−‖A‖(t)

)
+

])2

/16
.

Besides thanks to our first estimate, i.e. Lemma 5.3.5, we get that for any r > 0,

E
[(
‖P ∗nU∗ · A⊗ In · UPn‖ − ‖A‖(t)

)
+

]
≤ r +

∫ 1

r
P
(
‖P ∗nU∗A⊗ InUPn‖ ≥ ‖A‖(t) + α

)
dα

≤ r + 222 × ln2(kn)
kn

∫ 1

r
3× α−4dα

≤ r + 222 × ln2(kn)
kn

r−3

And after fixing r =
(
222 × ln2(kn)

kn

)1/4
, we get that

E
[(
‖P ∗nU∗ · A⊗ In · UPn‖ − ‖A‖(t)

)
+

]
≤
(

226 × ln2(kn)
kn

)1/4

.

Hence if kn ≥ 230 × ln2(kn)× ε−4, we have

P
(
‖P ∗nU∗ · A⊗ In · UPn‖ ≥ ‖A‖(t) + ε

)
≤ 2e−kn× ε

2
64 .

We can finally prove Theorem 5.2.2 by using the former lemma in combination with Lemma
5.3.3.

Proof of Theorem 5.2.2. If we set u =
√

2ε
3k2 , then with Su = {uM | M ∈ Mk(C)sa, ∀i ≥

j, <(mi,j) ∈
{
N + 1

2

}
∩ [0, du−1e], ∀i > j, =(mi,j) ∈

{
N + 1

2

}
∩ [0, du−1e] }, Lemma 5.3.3 tells

us that

P (Kn,k,t 6⊂ Kk,t + ε) ≤
∑
M∈Su

P
(
‖P ∗nU∗(PDkM ⊗ In)UPn‖ > ‖PDkM‖(t) + ε

3k

)
.

But thanks to Lemma 5.3.7, we know that for any A ∈ Dk, if n ≥ 34 × 230 × ln2(kn)× k3ε−4,
then

P
(
‖P ∗nU∗A⊗ InUPn‖ ≥ ‖A‖(t) + ε

3k

)
≤ 2e−nk× ε2

576 .
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Thus since the cardinal of Su can be bounded by (u−1 + 1)k2 , we get that for n ≥ 34×230×
ln2(kn)× k3ε−4,

P (Kn,k,t 6⊂ Kk,t + ε) ≤ 2(u−1 + 1)k2
e−

n
k
× ε2

576 ≤ ek
2(ln(3k2ε−1))−n

k
× ε2

576 .

5.4 Application to Quantum Information Theory

5.4.1 Preliminaries on entropy
For X ∈ D(H), its von Neumann entropy is defined by functional calculus by H(X) =

−Tr(X lnX), where 0 ln 0 is assumed by continuity to be zero. In other words, H(X) =∑
λ∈spec(X)−λ ln λ where the sum is counted with multiplicity. A quantum channel Φ : B(H1)→

B(H2) is a completely positive trace preserving linear map. The Minimum Output Entropy
(MOE) of Φ is

Hmin(Φ) = min
X∈D(H1)

H(Φ(X)). (5.12)

During the last decade, a crucial problem in Quantum Information Theory was to determine
whether one can find two quantum channels

Φi : B(Hji)→ B(Hki), i = {1, 2},

such that
Hmin(Φ1 ⊗ Φ2) < Hmin(Φ1) +Hmin(Φ2).

Let e1 = (1, 0, . . . , 0) ∈ Rk and let

x∗t =

||e1||t,
1− ||e1||t
k − 1 , . . . ,

1− ||e1||t
k − 1︸ ︷︷ ︸

k−1 times

 . (5.13)

If we view x∗t as a diagonal matrix, then it can be easily checked that x∗t ∈ Kk,t, and the
following is the main result of [64]:
Theorem 5.4.1. For any p > 1, the maximum of the lp norm on Kk,t is reached at the point
x∗t .

By letting p→ 1 it implies that the minimum of the entropy on Kk,t is reached at the point
x∗t and this is what we will be using. For the sake of making actual computation, it will be
useful to recall the value of ||e1||t. For this, we use the following notation:

(1j0k−j) = (1, 1, . . . , 1︸ ︷︷ ︸
j times

, 0, 0, . . . , 0︸ ︷︷ ︸
k−j times

) ∈ Rk, (5.14)

and 1k = (1k00). It was proved in the early days of free probability theory (see [92]) that for
j = 1, 2, . . . , k, one has

∥∥∥(1j0k−j)∥∥∥
(t)

= φ(u, t) =
t+ u− 2tu+ 2

√
tu(1− t)(1− u) if t+ u < 1,

1 if t+ u ≥ 1,

where u = j/k.
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5.4.2 Corollary of the main result
The following is a direct consequence of the main theorem in terms of possible entropies of

the output set.

Theorem 5.4.2. With Sn,k,t = minA∈Kn,k,t H(A) = Hmin(Φn) and Sk,t = minA∈Kk,t H(A), if we
assume dn ≤ tkn, then for n ≥ 34 × 230 × ln2(kn)× k3ε−4 where 0 < ε ≤ e−1,

P
(
Sn,k,t ≤ Sk,t − 3kε| ln(ε)|

)
≤ ek

2(ln(3k2ε−1))−n
k
× ε2

576 .

Proof. Let A,B ∈ Dk such that ‖A−B‖2 ≤ ε with ‖M‖2 =
√

Trk(M∗M), with eigenvalues
(λi)i and (µi)i. Then with x̃ = max{ε, x},∣∣∣∣|Trk(A ln(A))| − |Trk(B ln(B))|

∣∣∣∣ =
∣∣∣∣∑
i

λi ln(λi)−
∑
i

µi ln(µi)
∣∣∣∣

≤ 2k sup
x∈[0,ε]

|x ln(x)|+
∣∣∣∣∑
i

λ̃i ln(λ̃i)−
∑
i

µ̃i ln(µ̃i)
∣∣∣∣

≤ 2kε| ln(ε)|+
∑
i

|λi − µi|| ln(ε)|

≤ 2kε| ln(ε)|+ k ‖A−B‖ | ln(ε)|
≤ 3kε| ln(ε)|

Thus if we endow Mk(C) with the norm M 7→
√

Trk(M∗M), then if Kn,k,t ⊂ Kk,t + ε, then
Sn,k,t ≥ minA∈Kk,t+ε |Trk(A ln(A))| ≥ Sk,t − 3kε| ln(ε)|. Hence

P
(
Sn,k,t ≤ Sk,t − 3kε| ln(ε)|

)
≤ P (Kn,k,t 6⊂ Kk,t + ε) .

Theorem 5.2.2 then allows us to conclude.

5.4.3 Application to violation of the Minimum Output Entropy of
Quantum Channels

In order to obtain violations for the additivity relation of the minimum output entropy, one
needs to obtain upper bounds for the quantity Hmin(Φ⊗Ψ) for some quantum channels Φ and
Ψ. The idea of using conjugate channels (Ψ = Φ̄) and bounding the minimum output entropy
by the value of the entropy at the Bell state dates back to Werner, Winter and others (we
refer to [62] for references). To date, it has been proven to be the most successful method of
tackling the additivity problem. The following inequality is elementary and lies at the heart of
the method:

Hmin(Φ⊗ Φ̄) ≤ H([Φ⊗ Φ̄](Ed)), (5.15)
where Ed is the maximally entangled state over the input space (Cd)⊗2. More precisely, Ed is
the projection on the Bell vector

Belld = 1√
d

d∑
i=1

ei ⊗ ei, (5.16)

162



5.4. Application to Quantum Information Theory

where {ei}di=1 is a fixed basis of Cd.
For random quantum channels Φ = Φn, the random output matrix [Φn ⊗ Φ̄n](Edn) was

thoroughly studied in [93] in the regime dn ∼ tkn; we recall here one of the main results of
that paper. There, it was proved that almost surely, as n tends to infinity, the random matrix
[Φn ⊗ Φ̄n](Edn) ∈Mk2(C) has eigenvalues

γ∗t =

t+ 1− t
k2 ,

1− t
k2 , . . . ,

1− t
k2︸ ︷︷ ︸

k2−1 times

 . (5.17)

This result improves on a bound [62] via linear algebra techniques, which states that the largest
eigenvalue of the random matrix [Φn ⊗ Φ̄n](Edn) is at least dn/(kn) ∼ t. Although it might
be possible to work directly with the bound provided by (5.17) with additional probabilistic
consideration, for the sake of concreteness we will work with the bound of [62]. Thus if the
largest eigenvalue of [Φn⊗Φ̄n](Edn) is dn/(kn), since Trk⊗Trk([Φn⊗Φ̄n](Edn)) = 1, the entropy
is maximized if we take the remaining k2− 1 eigenvalues equal to 1−dn/(kn)

k2−1 , thus it follows that

Hmin(Φ⊗ Φ̄) ≤ H([Φ⊗ Φ̄](Edn)) ≤ H

 dnkn, 1− dn
kn

k2 − 1 , . . . ,
1− dn

kn

k2 − 1︸ ︷︷ ︸
k2−1 times


Therefore, it is enough to find n, k, dn, t such that

− dn
kn

log
(
dn
kn

)
−
(

1− dn
kn

)
log

[(
1− dn

kn

)
/(k2 − 1)

]
< 2H(x∗t ). (5.18)

In [64] it was proved with the assistance of a computer that this can be done for any k ≥ 184, as
long as we take t around 1/10, see figure 1 from [64]. However for k large enough, the difference
between the right and left term of (5.18) is maximal for t = 1/2. As soon as we take ε such
that 3kε| ln(ε)| is less than the difference, we are done. For example, we obtain the following
theorem

Theorem 5.4.3. For the following values (k, t, n) = (184, 1/10, 2× 1052), (185, 1/10, 4× 1051),
(200, 1/10, 2× 1047), (500, 1/10, 8× 1045), (500, 1/2, 2× 1045) violation of additivity is achieved
with probability at least 1− exp(−1020).

Proof. We make sure to work with n a multiple of 10 so that we can set dn = tkn, then since
Hmin(Φn) = Hmin(Φ̄n),

P
(
Hmin(Φn ⊗ Φ̄n) < Hmin(Φn) +Hmin(Φ̄n)

)
= P

(
Hmin(Φn ⊗ Φ̄n) < 2Hmin(Φn)

)
≤ P

(
− t log(t)− (1− t) log

[
(1− t)/(k2 − 1)

]
< 2Hmin(Φn)

)
= 1− P

(
Hmin(Φn) ≤ − t2 log(t)− 1− t

2 log
( 1− t
k2 − 1

))
= 1− P (Sn,k,t ≤ Sk,t − δk,t) ,
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with

δk,t = t

2 log(t) + 1− t
2 log

( 1− t
k2 − 1

)
− ‖e1‖(t) log(‖e1‖(t))− (1− ‖e1‖(t)) log

(1− ‖e1‖(t)

k − 1

)
.

Then we conclude with Theorem 5.4.2 to compute explicit parameters.

Let us remark that in [64] what was actually proved is that violation of additivity can occur
for any k ≥ 183. However, for the output dimension k = 183, a probabilistic argument is
needed – namely, the limiting distribution of the output of a Bell state and in turn, the fact
that one can give a good estimate in probability for liminfnHmin(Φn ⊗ Φ̄n) (again, we refer to
[93, 64] for details). However this estimate is difficult to evaluate explicitly as a function of
n, therefore, in this paper, we replace it by a slightly weaker estimate that is always true and
that yields violation for any k ≥ 184. In other words we lose one dimension. To conclude,
since our bound is explicit, we solve the problem of supplying actual input dimensions for any
valid output dimension, for which the violation of MOE will occur. From a point of view
of theoretical probability, this is a step towards a large deviation principle. And although
our bound is not optimal, our results presumably give the right speed of deviation. However
conjecturing a complete large deviation principle and a rate function seems to be beyond the
scope of our techniques.



Chapter 6
Convergence for noncommutative rational
functions evaluated in random matrices

One of the main application of free probability is to show that for appropriately chosen in-
dependent copies of d random matrix models, any noncommutative polynomial in these d vari-
ables has a spectral distribution that converges asymptotically and can be described through
free convolutions. The goal of this paper is to show that this can be extended to noncommu-
tative rational fractions, hereby answering an open question by Roland Speicher.

This chapter is adapted from [12], which is a joint work with Benoît Collins, Tobias Mai,
Akihiro Miyagawa and Sheng Yin.
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6.1 Introduction

Free probability was invented by Voiculescu 40 years ago as an attempt to understand the
group von Neumann algebra of free product of groups. In general, non-trivial free products
of groups yield ICC class groups, and their von Neumann algebra is a factor. Therefore they
have only one finite trace, and it was natural to study free product factors from the point of
view of non-commutative probability spaces – a pair consisting of an algebra and a trace. This
point of view has been spectacularly successful, and arguably one of its biggest – and initially
unexpected – achievements was to be able to describe the limiting spectrum of noncommutative
polynomials in i.i.d. random matrices. This phenomenon is known as asymptotic freeness. It
was initially described in [3, 14]. It has been subsequently enhanced in many directions, and a
notable direction of improvement was the study of the norm of random matrix models (strong
asymptotic freeness), cf. [9]. This result has allowed to turn an area of pure mathematics into
a very useful tool for applied mathematics who rely heavily on random matrix models.

The models whose limiting behavior is well understood thanks to asymptotic freeness in-
volve the arithmetic operations of multiplication, addition, scalar multiplication. Other useful
operations have also been successfully studied through free probability, such as taking matrix
values, or Hadamard products (asymptotic freeness with amalgamation). We refer to [94] for
an exposition of many classical and recent results in this direction. Recently, it has also been
possible to involve systematically the composition with smooth functions, even at the level of
strong convergence, cf. [7, 8].

However, one arithmetic operation that remains largely unexplored in the context of random
matrix models is the inverse. The purpose of this paper is to address this question. A recent
result in [95] shows that taking inverse is a stable operation if the convergence in distribution is
replaced by the strong convergence for matrices. More precisely, for a sequence of matrices that
strongly converges in distribution towards a limiting object – an operator which we also call
a (noncommutative) random variable – the sequence of their inverses will eventually be well
defined and strongly converges in distribution to the inverse of the limiting random variable,
provided that this random variable has a bounded inverse. Furthermore, such a result can
be extended from an inverse to noncommutative rational functions in multiple variables (a
counterpart of commutative rational functions that has been developed by many pioneers, see,
for examples [96, 97]) by a recursive structure of rational functions (and their representing
rational expressions) or by a linearization trick for rational functions.

However, in order to go beyond the case of bounded evaluations, a problem that one faces
about the inverse is that using it might fail to result in a well-defined model, when the inverse
is performed on non-invertible matrices. On the other hand, the limiting object has been at
the center of the attention of free probabilists recently, and many breakthroughs have been
obtained, see among others [69]. Incidentally, the limiting theory relies on the theory of non-
commutative rational functions and the embedding question of the rational functions in the
generating operators into the algebra of unbounded operators affiliated with the underlying
von Neumann algebra. This embedding question was affirmatively answered long ago in [98],
whose goal was to provide an answer to the Atiyah conjecture for some family of groups in-
cluding the free groups. It was recently noted that this result also provided the answer to
the well-definedness question for rational functions in freely independent Haar unitary random
variables in the context of free probability. Moreover, in [69] the well-definedness was further
proved for a large family of random variables beyond the free Haar unitaries.
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Let us also mention that there are many natural random matrix models involving the inverse
operation and that this is an important topic nowadays, see e.g. [99, 100]. One goal of our
manuscript is to provide an unified approach to the study of the limiting spectral distribution
under such generality. Therefore, the natural questions are:

• can we make sense of random matrix models involving inverses?

• do they converge towards their natural limiting candidates, whose properties have been
unveiled recently?

These questions have been phrased by Speicher during a meeting at MFO in 2019, [101].
Partial answer has been given under some assumptions such as bounded evaluation and specific
random matrix models, cf. [95, 99, 102]. The purpose of this paper is to settle these questions
in a very general setup. Our main results can be stated as follows.

Theorem 6.1.1. Let XN = (XN
1 , . . . , X

N
d1) be a d1-tuple of self-adjoint random matrices and

let UN = (UN
1 , . . . , U

N
d2 ) be a d2-tuple of unitary random matrices. Further, let R be a non-

degenerate square matrix-valued noncommutative rational expression in d = d1 + d2 variables
which is self-adjoint of type (d1, d2); see Definition 6.2.9. Suppose that the following conditions
are satisfied:

1. (XN , UN) converges almost surely in ∗-distribution towards a d-tuple of noncommuta-
tive random variables (x, u) in some tracial W ∗-probability space (M, τ) satisfying the
regularity condition ∆(x, u) = d; see Sections 6.2.4 and 6.2.5.

2. For N large enough R(XN , UN) is well-defined almost surely.

Then R(x, u) is well-defined, and the empirical measure of R(XN , UN) converges almost surely
in law towards the analytic distribution of R(x, u).

The assumption 2 is satisfied for random matrix models (XN , UN) whose law on MN(C)d1
sa×

UN(C)d2 is absolutely continuous with respect to the product measure of the Lebesgue measure
on MN(C)sa and the Haar measure on UN(C).

In particular, the assumptions 1 and 2 are satisfied for random matrix models satisfying the
following conditions:

• (XN , UN) are almost surely asymptotically free.

• The law of each XN
j has a density with respect to the Lebesgue measure on MN(C)sa and

its eigenvalue distribution almost surely converges weakly to some compactly supported
probability measure on R that is non-atomic.

• UN are i.i.d. Haar distributed.

The main part of Theorem 6.1.1 will be proven in Theorem 6.3.6 and Theorem 6.4.4. In
Theorem 6.3.1, we prove that condition 2 is satisfied for “absolutely continuous” random ma-
trix models (XN , UN). In combination with this, Corollary 6.2.16 ensures that the particular
random matrix model (XN , UN) satisfies the assumptions 1 and 2 of Theorem 6.1.1.

An interpretation of our results is as follows: the free field C (<x1, . . . , xd )> together with a ∗-
structure can be endowed with a non-commutative probability structure through its embedding
in the ∗-algebra of operators affiliated to a II1 factor. Let us elaborate on this non-commutative
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probability structure. To each selfadjoint rational function R of the free field one can associate
a real valued probability (i.e. an element of P(R)), which is in general unbounded. One sees
that this map C (<x1, . . . , xd )>sa → P(R) strictly supersedes the data of the tracial map on
the ∗-algebra generated by the generators, because in general, elements of the free field do
not have moments. In addition, it allows to define directly a non-commutative probability
structure on a ∗-free field without necessarily resorting to von Neumann algebras and affil-
iated operators. In this context, our result says that any matrix approximation of the free
non-commutative tracial ∗-algebra generated by the generators of the free field in the sense
of non-commutative distribution convergence, can be upgraded into a pointwise convergence
of the map C (<x1, . . . , xd )>sa → P(R). As a consequence, this interpretation may allow us to
read information on the algebraic side (the free field) out of information on the probabilis-
tic side (probability measures). For example, the inner rank of a self-adjoint matrix A over
C (<x1, . . . , xd )> can be seen from the asymptotic proportion of zero eigenvalues in the spectrum
of the evaluation of A at any approximation matrices that model the free field.

For a d-tuple X satisfying ∆(X) = d, we know from [69] that the division closure D(X)
of C〈X〉 in the ∗-algebra W̃ ∗(X) of all closed and densely defined operators that are affiliated
withW ∗(X) provides a model of the free field C (<x )>. It would be interesting to find a criterion
similar to [103, 104] which allows us to decide whether an element in W̃ ∗(X) belongs to the
division closure D(X). If d ≥ 2 and X are free Haar unitaries, thenW ∗(X) is isomorphic to the
free group factor L(Fd); in this case, such a criterion was provided by Linnell in [104], building
on the paper [103] by Duchamp and Reutenauer in which they proved a conjecture of Connes
[105].

This paper is organized as follows: following this introductory section, section 6.2 gathers
necessary facts about non-commutative rational functions and expressions; section 6.3 shows
that the random matrix model is well-defined for dimension large enough and section 6.4 eval-
uates the limiting distribution.
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6.2 Preliminaries

6.2.1 Noncommutative rational functions and expressions
Let us denote by C〈x1, . . . , xd〉 the algebra of noncommutative polynomials over C in the

indeterminates x1, . . . , xd. It is well-known that for its commutative counterpart, namely the
ring of commutative polynomials, one can construct uniquely the field of fractions of this poly-
nomial ring by the quotients of polynomials. However, to construct a skew field of fractions of
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C〈x1, . . . , xd〉 is highly non-trivial. Moreover, there exist skew fields of fractions of C〈x1, . . . , xd〉
which are not isomorphic (see, for example, [97, Exercise 7.2.13]). Nevertheless, there exists a
unique field of fractions of C〈x1, . . . , xd〉 which has some universal property. We call this skew
field of fractions of C〈x1, . . . , xd〉 the free field and denote it by C (<x1, . . . , xd )>. An element in
the free field is called a noncommutative rational function.

Since the precise definition of the universal property of the free field is not relevant to this
paper, we refer the interested reader to [97, Chapter 7] for a more detailed description (as well
as some ring-theoretic construction) of the free field. We take the existence of the free field for
granted and apply some recent results about it.

Like a commutative rational function can be represented by a class of quotients of polyno-
mials, a noncommutative rational function can be represented by a class of noncommutative
rational expressions. One can think of a noncommutative rational expression as a represen-
tation of a noncommutative rational function. Actually, in [96], Amitsur constructed the free
field C (<x1, . . . , xd )> from noncommutative rational expressions (see also [107, Section 2]).

More precisely, noncommutative rational expressions are syntactically valid combinations of
C and symbols x1, . . . , xd with +, ·, −1, and (), which are respectively corresponding to addition,
multiplication, taking inverse, and ordering these operations. For the sake of completeness, let
us mention that polynomial expressions are obtained in precisely the same manner but without
involving inverses. We admit that this definition, though easy to grasp, is not entirely rigorous as
it relies on the tacit agreement about what is meant by syntactically valid. Thus we refer here to
[108] for an alternative definition based on the graph theory, by which arithmetic operations for
rational expressions can be interpreted as operations on graphs (see also [102, Section IV.1]). We
emphasize that noncommutative rational expressions (in contrast to noncommutative rational
functions which we are going to define later) are completely formal objects obeying absolutely
no arithmetic rules like commutativity or associativity. For example, x1 + (−1) · x1 and 0 are
two distinct rational expressions though clearly they represent the same function. Similarly,
x1 · (x2 · x1) and (x1 · x2) · x1 are different noncommutative rational expressions, but since
they show the same behavior when evaluated on associative algebras, we will write shorthand
x1 · x2 · x1 or even x1x2x1 for better legibility as the inherent ambiguity does not cause any
problems.

One can also define matrix-valued noncommutative rational expressions; see Definition 2.1
in [109]. Those are possible combinations of symbols A ⊗ 1 and A ⊗ xj for j = 1, . . . , d, for
each rectangular matrix A over C of arbitrary size, with +, ·, −1, and (), where the operations
are required to be compatible with the matrix sizes. Notice that ⊗ has only symbolic meaning
here, but will turn into the ordinary tensor product (over C) under evaluation as will be defined
below.

Let us enumerate the rules which allow to recursively compute for every matrix-valued
noncommutative rational expression R the domain domA(R) of R for every unital complex
algebraA and evaluationsR(X) ofR at any pointX ∈ domA(R); note that the evaluationR(X)
of a p× q matrix-valued noncommutative rational expression R and every point X ∈ domA(R)
belongs to Mp×q(C)⊗A ∼= Mp×q(A).

• If R = A ⊗ 1 for some A ∈ Mp×q(C), then R is a p × q matrix-valued noncommutative
rational expression with domA(R) := Ad and R(X) := A⊗ 1A for every X ∈ Ad.

• If R = A ⊗ xj for some A ∈ Mp×q(C) and 1 ≤ j ≤ d, then R is a p × q matrix-valued
noncommutative rational expression with domA(R) := Ad and R(X) := A⊗Xj for every
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X = (X1, . . . , Xd) ∈ Ad.

• If R1, R2 are p × q matrix-valued noncommutative rational expressions, then R1 + R2
is a p × q matrix-valued noncommutative rational expression with domA(R1 + R2) :=
domA(R1)∩domA(R2) and (R1 +R2)(X) := R1(X) +AR2(X) for every X ∈ domA(R1 +
R2), where +A stands for the addition Mp×q(A)×Mp×q(A)→Mp×q(A).

• If R1, R2 are p× q respectively q× r matrix-valued noncommutative rational expressions,
then R1 ·R2 is a p× r matrix-valued noncommutative rational expression with domA(R1 ·
R2) := domA(R1) ∩ domA(R2) and (R1 · R2)(X) := R1(X) ·A R2(X) for every X ∈
domA(R1 · R2), where ·A stands for the matrix mutliplication Mp×q(A) × Mq×r(A) →
Mp×r(A).

• If R is a p× p matrix-valued noncommutative rational expression, then

domA(R−1) := {X ∈ domA(R) | R(X) is invertible in Mp(A)}

and R−1(X) := R(X)−1 for every X ∈ domA(R−1).

Note that the (scalar-valued) noncommutative rational expressions which we have intro-
duced before belong to the strictly larger class of 1× 1 matrix-valued noncommutative rational
expressions; see Remark 2.11 in [109].

For reader’s convenience, we introduce two types of matrix-valued noncommutative rational
expressions which are important in a practical sense.

• A noncommutative rational expression evaluated in formal tensor products of matrices
and formal variables like as

R = r(A1 ⊗ x1, A2 ⊗ x2, . . . , Ad ⊗ xd)

where r is a (scalar-valued) noncommutative rational expression and Ai ∈ Mp(C) for
1 ≤ i ≤ d. In other words, in this case we amplify formal variables by matrices and then
consider their (scalar-valued) rational expression.

• A matrix which consists of (scalar-valued) noncommutative rational expressions

R = (rij)1≤i≤p,1≤j≤q.

This can be seen as a p× q matrix-valued non-commutative rational expression by iden-
tifying with ∑ij(ai ⊗ 1)rij(bj ⊗ 1) where ai ∈ Mp×1(C) and bj ∈ M1×q(C) are standard
basis of Cp and Cq. We will implicitly use this viewpoint later (for example, in the proof
of Proposition 6.3.4).

A class of matrix-valued noncommutative polynomial expressions are affine linear pencils.
An affine linear pencil (in d variables with coefficients from Mk(C)) is a k × k matrix-valued
noncommutative polynomial expression of the form

A = A0 ⊗ 1 + A1 ⊗ x1 + · · ·+ Ad ⊗ xd

with coefficient matrices A0, A1, . . . , Ad belonging to Mk(C). Notice, once again, that we omit
the parentheses for better readability as each syntactically valid placement of parentheses will
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produce the same result under evaluation. If A is any unital complex algebra and X ∈ Ad,
then

A(X) = A0 ⊗ 1A + A1 ⊗X1 + · · ·+ Ad ⊗Xd ∈Mk(C)⊗A ∼= Mk(A).

Of particular interest are matrix-evaluations. For each matrix-valued noncommutative ra-
tional expression R, we put

domM(C)(R) :=
∞∐
N=1

domMN (C)(R),

i.e., domM(C)(R) is the subset of all square matrices over C where evaluation of R is well-
defined. A matrix-valued noncommutative rational expression R is said to be non-degenerate
if it satisfies domM(C)(R) 6= ∅. In the sequel, we will make use of the following important fact.

Theorem 6.2.1 (Remark 2.3 in [109]). Let R be a non-degenerate matrix-valued noncommuta-
tive rational expression. Then there exists some N0 = N0(R) ∈ N such that domMN (C)(R) 6= ∅
for all N ≥ N0.

Two non-degenerate matrix-valued noncommutative rational expressions R1, R2 are called
M(C)-evaluation equivalent if the condition R1(X) = R2(X) is satisfied for all X in the inter-
section of domM(C)(R1) and domM(C)(R2).

As we mentioned earlier, one can construct the free field out of noncommutative rational
expressions. This construction can be done by evaluating (scalar-valued) noncommutative
rational expressions on scalar-valued matrices. For a non-degenerate noncommutative rational
expression r, we denote by [r] its equivalence class of noncommutative rational expressions with
respect to M(C)-evaluation equivalence. We endow the set of all such equivalence classes with
the arithmetic operations + and · defined by [r1]+[r2] := [r1 +r2] and [r1]·[r2] := [r1 ·r2]. Notice
that the arithmetic operations are indeed well-defined as one has domM(C)(r1)∩domM(C)(r2) 6= ∅
for any two non-degenerate scalar-valued noncommutative rational expressions r1 and r2; see
the footnote on page 52 of [107], for instance. It is known (see Proposition 2.2 in [107]) that
the set of all equivalence classes of noncommutative rational expressions with respect toM(C)-
evaluation equivalence endowed with the arithmetic operations + and · forms the free field
C (<x1, . . . , xd )>.

6.2.2 Linearization
Let us recall the following terminology that was introduced in [110, Definition 4.10].

Definition 6.2.2 (Formal linear representation). Let R be a p× q matrix-valued noncommuta-
tive rational expression in the variables x1, . . . , xd. A formal linear representation ρ = (u,A, v)
of R (of dimension k) consists of an affine linear pencil

A = A0 ⊗ 1 + A1 ⊗ x1 + · · ·+ Ad ⊗ xd

in d variables and with coefficients A0, A1, . . . , Ad from Mk(C) and matrices u ∈ Mp×k(C)
and v ∈ Mk×q(C), such that the following condition is satisfied: for every unital complex
algebra A, we have that domA(R) ⊆ domA(A−1) and for each X ∈ domA(R) it holds true that
R(X) = uA(X)−1v, where A(X) ∈Mk(A).
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Note that we use here a different sign convention by requiring R(X) = uA(X)−1v instead of
R(X) = −uA(X)−1v; this, however, does not affect the validity of the particular results that we
will take from [110]. Furthermore, as we will exclusively work with formal linear representations
for matrix-valued noncommutative rational expressions, we will go without specifying them as
matrix-valued formal linear representations like it was done in [110].

It follows from [110, Theorem 4.12] that indeed every matrix-valued noncommutative ratio-
nal expression R admits a formal linear representation ρ = (u,A, v). For the reader’s conve-
nience, we include with Theorem 6.2.3 the precise statement as well as its constructive proof.
In doing so, we will see that Algorithm 4.11 in [110], on which the proof of Theorem 4.12 in
the same paper relies, provides a formal linear representation ρ = (u,A, v) of the p× q matrix-
valued noncommutative rational expression R with the additional property that the dimension
k of ρ is larger than max{p, q} and that both u and v have maximal rank; we will call such ρ
proper. Note that if R is a scalar-valued rational expression, then a proper formal linear repre-
sentation ρ simply means that u and v are non-zero vectors. In general, due to the restriction
k ≥ max{p, q}, we have that the rank of u is p and the rank of v is q for any proper formal
linear representation ρ = (u,A, v) of R. This notion of proper formal linear representation will
be important in the sequel.

Theorem 6.2.3 (Theorem 4.12 in [110]). Every matrix-valued noncommutative rational ex-
pression admits a formal linear representation in the sense of Definition 6.2.2 which is also
proper.

Proof. Here, we give the algorithm which inductively builds a proper linear representations of
any matrix-valued noncommutative rational expression. For R = A⊗1 or R = A⊗xj for some
A ∈Mp×q(C) and 1 ≤ j ≤ d we have

R(X) =
(
Ip 0p×q

)( Ip ⊗ 1A −R(X)
0q×p Iq ⊗ 1A

)−1 ( 0p×q
Iq

)

where Ip ∈Mp(C) is an identity matrix. Clearly we obtain a proper formal linear representation
in this way.

If the p × q matrix-valued noncommutative expressions R1 and R2 admit proper formal
linear representations (u1, A1, v1) and (u2, A2, v2) then we have

(R1 +R2)(X) =
(
u1 u2

)( A1(X) 0k1×k2

0k2×k1 A2(X)

)−1 (
v1
v2

)
.

This gives us a proper formal linear representation since (u1 u2), resp. (v1 v2)T is of rank p,
resp. q.

If R1, R2 are p × q, resp. q × r matrix-valued noncommutative rational expressions and
admit formal linear representations (u1, A1, v1), resp. (u2, A2, v2) of dimension k1, resp. k2 then
we have

(R1 ·R2)(X) =
(
u1 0p×k2

)( A1(X) −v1u2
0k2×k1 A2(X)

)−1 ( 0k1×r
v2

)
.

We obtain a proper formal linear representation since (u1 0p×k2), resp. (0k1×r v2)T is of rank p,
resp. q.
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If R is a p × p matrix-valued noncommutative rational expression which admits a formal
linear representation (u,A, v) of dimension k, then we have

R−1(X) =
(
Ip 0p×k

)( 0p×p u
v A(X)

)−1 ( −Ip
0k×p

)
,

where X belongs to an appropriate domain for each step. It is clear that this gives us a proper
formal linear representation.

Finally, since all matrix-valued noncommutative rational expressions can be represented by
finitely many of the above steps, any matrix-valued noncommutative rational expression has
such a formal linear representation which is proper.

In the non-degenerate case, formal linear representations are connected with the concept of
representations for noncommutative rational functions which is used, for instance, in [111, 112];
this will be addressed in Remark 6.2.5 and Remark 6.2.8. Before, we need to recall the following
terminology.
Definition 6.2.4 (Inner rank and fullness). Let R be a ring. For A ∈Mn×m(R) we define the
inner rank ρR(A) by

ρR(A) = min{r ∈ N | A = BC, B ∈Mn×r(R), C ∈Mr×m(R)},

and ρR(0) = 0. In addition we call A full if ρR(A) = min{n,m}.
Remark 6.2.5. 1. Let A be a matrix over noncommutative polynomials in a tuple x =

(x1, . . . , xd) of formal variables. According to Theorem 7.5.13 in [97] (see also A.2 in
[68]), we have

ρC〈x〉(A) = ρC (<x )>(A).
For this reason, we just say A is full, for a square matrix A over the noncommutative
polynomials, without mentioning which algebra we consider.

2. Let A be an affine linear pencil in x with coefficients taken from Mk(C). We may view
A as an element in Mk(C)⊗C〈x〉 ∼= Mk(C〈x〉), i.e., A = A(x) is considered as a matrix
over the ring C〈x〉. We notice that if there exists a tuple X ∈MN(C)d such that A(X) is
invertible in Mk(C) ⊗MN(C) ∼= MkN(C), or equivalently, if domM(C)(A−1) 6= ∅, then A
must be full. In fact, if A is not full, then any factorization A = BC with B ∈Mk×r(C〈x〉)
and C ∈ Mr×k(C〈x〉) for r = ρ(A) < k yields under evaluation A(X) = B(X)C(X) at
any point X ∈MN(C)d, so that A(X) is never invertible.
On the other hand, if A is full, then A is invertible as a matrix over C (<x )>. Indeed,
fullness and invertibility are equivalent for any skew field (see Lemma 5.20 in [68]).

3. Now, let R be a non-degenerate matrix-valued noncommutative rational expression. From
Theorem 6.2.3, we know that there exists a formal linear representation ρ = (u,A, v); in
particular, we have that

domM(C)(R) ⊆ domM(C)(A−1)

=
∞∐
N=1
{X ∈MN(C)d | A(X) invertible in MkN(C)}.

Since R is non-degenerate, we find X ∈ domM(C)(R); from the aforementioned inclusion
and 2, we infer that A is a full matrix.
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4. Suppose that R is a non-degenerate p × p matrix-valued noncommutative rational ex-
pression such that R−1 is non-degenerate as well. Let ρ = (u,A, v) be a formal linear
representation of R; we associate to ρ the affine linear pencil

Ã :=
(

0p×p u
v A

)
.

We claim that both A and Ã are full. For A, we already know from 3 that this is true. To
check fullness of Ã, we use that R−1 is non-degenerate, which guarantees the existence of
some X ∈ domM(C)(R−1). Since in particular X ∈ domM(C)(R), we get as ρ is a formal
linear representation of R that A(X) is invertible and R(X) = uA(X)−1v. Because
X ∈ domM(C)(R−1), we know that R(X) is invertible. Hence, by the Schur complement
formula, it follows that the matrix Ã(X) is invertible. Thanks to 2, this implies that the
affine linear pencil Ã is full.

The following lemma explains that non-degenerate matrix-valued noncommutative rational
expressions induce in some very natural way matrices over the free field.

Lemma 6.2.6. Let R be a p×q matrix-valued noncommutative rational expression in d formal
variables. If R is non-degenerate, then x = (x1, . . . , xd) ∈ domC (<x1,...,xd )>(R) and consequently
R(x) ∈Mp×q(C (<x )>).

Proof. Let us denote by R0 the set of all non-degenerate matrix-valued noncommutative ratio-
nal expressions R which have the property x ∈ domC (<x )>(R). We want to show that R0 consists
of all non-degenerate matrix-valued noncommutative rational expressions. In order to verify
this assertion, we proceed as follows. Firstly, we notice that both R1 + R2 and R1 · R2 belong
to R0 whenever we take R1, R2 ∈ R0 for which the respective arithmetic operation is defined.
Secondly, we consider some R ∈ R0 which is of size p × p and has the property that R−1 is
non-degenerate. By Theorem 6.2.3, there exists a formal linear representation ρ = (u,A, v) of
R, say of dimension k, and according to Remark 6.2.5 4 we have that both A and the associated
affine linear pencil

Ã :=
(

0p×p u
v A

)

are full, i.e., A(x) ∈Mk(C〈x〉) and Ã(x) ∈Mk+p(C〈x〉) become invertible as matrices over the
free field C (<x )>. Since x ∈ domC (<x )>(R) as R ∈ R0, we get R(x) = uA(x)−1v, because ρ is a
formal linear representation of R. Putting these observations together, the Schur complement
formula yields that R(x) ∈ Mp(C (<x )>) must be invertible, i.e., x ∈ domC (<x )>(R−1) and thus
R−1 ∈ R0, as desired.

Remark 6.2.7. With arguments similar to the proof of Lemma 6.2.6 as based on Remark
6.2.5 4, one finds that if R1, R2 are non-degenerate matrix-valued noncommutative rational
expressions satisfying R1(x) = R2(x), then R1 ∼M(C) R2. In other words, matrix identities
over C (<x )> are preserved under well-defined matrix evaluations.

Remark 6.2.8. In the scalar-valued case, the conclusion of Lemma 6.2.6 can be strengthened
slightly. For that purpose, it is helpful to denote the formal variables out of which the non-
commutative rational expressions are built by χ1, . . . , χd in order to distinguish them from the
variables x1, . . . , xd of the free skew field C (<x1, . . . , xd )>; note that accordingly xj = [χj] for
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j = 1, . . . , d. Now, if r is any scalar-valued noncommutative rational expression in the formal
variables χ1, . . . , χd, then Lemma 6.2.6 tells us that x ∈ domC (<x )>(r) and r(x) ∈ C (<x )>. More-
over, we have the equality r(x) = [r]. This can be shown with a recursive argument similar to the
proof of Lemma 6.2.6; notice that if a non-degenerate rational expression r satisfies r(x) = [r]
and has the additional property that r−1 is non-degenerate, then r(x) = [r] is invertible in
C (<x )>, which implies x ∈ domC (<x )>)(r−1) with r−1(x) = [r]−1 = [r−1].

This has the consequence that every formal linear representation ρ = (u,A, v) of r satisfies
[r] = r(x) = uA(x)−1v. In the language of [111, 112], this means that the formal linear repre-
sentation ρ of r induces a (pure and linear) representation of the corresponding noncommutative
rational function [r].

6.2.3 Self-adjointness for matrix-valued noncommutative rational
expressions

When evaluations of matrix-valued noncommutative rational expressions R at points X =
(X1, . . . , Xd) ∈ domA(R) for ∗-algebras A are considered, it is natural to ask for conditions
which guarantee that the result R(X) is self-adjoint, i.e., R(X)∗ = R(X). Those conditions
shall concern the matrix-valued noncommutative rational expression R itself, but depending
on the particular type of its the arguments X1, . . . , Xd. The case when X1, . . . , Xd are all self-
adjoint was discussed in [110, Section 2.5.7]. The following definition generalizes the latter to
matrix-valued noncommutative rational expressions in self-adjoint and unitary variables.

Recall that an element X in a complex ∗-algebra A with unit 1A is called self-adjoint if
X∗ = X, and U ∈ A is said to be unitary if U∗U = 1A = UU∗.

Definition 6.2.9 (Self-adjoint matrix-valued noncommutative rational expressions). Let R be
a square matrix-valued noncommutative rational expression in d1 + d2 formal variables which
we denote by x1, . . . , xd1, u1, . . . , ud2. We say that R is self-adjoint of type (d1, d2), if for
every unital complex ∗-algebra A and all tuples X = (X1, . . . , Xd1) and U = (U1, . . . , Ud2) of
self-adjoint respectively unitary elements in A, the following implication holds:

(X,U) ∈ domA(R) =⇒ R(X,U)∗ = R(X,U)

One comment on this definition is in order. The reader might wonder why the matrix-valued
noncommutative rational expressions do not explicitly involve further variables u∗1, . . . , u∗d2 serv-
ing as placeholder for the adjoints of u1, . . . , ud2 . In fact, for (scalar-valued) noncommutative
rational expressions such an approach was presented, for instance, in the appendix of [99] (a ver-
sion for noncommutative polynomials appears also in [113]); more precisely, noncommutative ra-
tional expressions in collections of self-adjoint variables x, non-self-adjoint variables y, and their
adjoints y∗ were considered. For our purpose, however, this has the slight disadvantage that
non-degenerate noncommutative rational expressions of this kind (take r(y, y∗) = (yy∗ − 1)−1,
for example) may have no unitary elements in their domain. On the other hand, there are
noncommutative rational expressions (or even noncommutative polynomial expressions such as
yyy∗ + y∗yy∗) which are not self-adjoint on their entire domain but self-adjoint on unitaries.

The following example illustrates Definition 6.2.9 and highlights the effect of having two
types of variables.
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Example 6.2.10. x1+x−1
2 , i(u1−u−1

1 ) and u−1
1 x−1

1 u1 are self-adjoint non-commutative rational
expressions since we have for self-adjoint elements X1, X2 and a unitary U1 in their domain,

(X1 +X−1
2 )∗ = X∗1 + (X∗2 )−1 = X1 +X−1

2

i(U1 − U−1
1 )∗ = −i(U∗1 − (U∗1 )−1) = i(U1 − U−1

1 )
(U−1

1 X−1
1 U1)∗ = U∗1 (X∗1 )−1(U∗1 )−1 = U−1

1 X−1
1 U1.

However, u1 +u−1
2 , i(x1−x−1

1 ) and x−1
1 u−1

1 x1 are not self-adjoint in our definition. So we need
to be careful to the roles of formal variables when we consider self-adjoint rational expressions.
For the matrix-valued case, the 2× 2 respectively 1× 1 matrix-valued noncommutative rational
expressions (

x−1
1 u1
u−1

1 x−1
2

)
and

(
u1 x1 + iu2

)( 1 −iu1
iu−1

1 x2

)−1 (
u−1

1
x1 − iu−1

2

)

are self-adjoint of type (2, 1) and (2, 2), respectively.

Like in [110, Definition 4.13] for the case of self-adjoint arguments, we can introduce self-
adjoint formal linear representations; see also [99, Definition A.5] for the scalar-valued case.

Note that in order to make the machinery of self-adjoint linearizations ready for further
applications, we will switch from now on to a more general situation.

Definition 6.2.11 (Self-adjoint formal linear representation). Let R be a p× p matrix-valued
noncommutative rational expression in d formal variables x1, . . . , xd. A tuple ρ = (Q,w) con-
sisting of an affine linear pencil

Q = A0 ⊗ 1 +
d∑
j=1

(
Bj ⊗ xj +B∗j ⊗ x∗j

)
in the formal variables x1, . . . , xd and x∗1, . . . , x∗d, with coefficients being (not necessarily self-
adjoint) matrices B1, . . . , Bd in Mk(C) for some k ∈ N, some self-adjoint matrix A0 ∈ Mk(C)
and some matrix w ∈ Mk×p(C) is called a self-adjoint formal linear representation of R (of
dimension k) if the following condition is satisfied: for every unital complex ∗-algebra A and
all tuples X = (X1, . . . , Xd) of (not necessarily self-adjoint) elements in A, one has

X ∈ domA(R) =⇒ (X,X∗) ∈ domA(Q−1)

and for every X ∈ domA(R) for which R(X) is self-adjoint, it holds true that

R(X) = w∗Q(X,X∗)−1w.

We point out that in contrast to the related concept introduced in [110, Definition 4.13] the
existence of a self-adjoint formal linear representation in the sense of the previous Definition
6.2.11 does not enforce R to be self-adjoint at any distinguished points in its domain. In fact,
we have the following theorem which says that every square matrix-valued noncommutative
rational expression admits a self-adjoint formal linear representation; this is analogous to [110,
Theorem 4.14].

Like for formal linear representations, we will say that a self-adjoint formal linear represen-
tation ρ = (Q,w) of a self-adjoint p × p matrix-valued noncommutative rational expression R
is proper if the dimension k of ρ is larger than p and if w has full rank (i.e., the rank of w is p).
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Theorem 6.2.12. Every square matrix-valued noncommutative rational expression in d formal
variables admits a self-adjoint formal linear representation in the sense of Definition 6.2.11
which is proper.

Proof. Let ρ = (v,Q,w) be a formal linear representation of R in the variables x1, . . . , xd with
the affine linear pencil Q being of the form

Q = A0 ⊗ 1 +
d∑
j=1

Bj ⊗ xj.

We consider ρ̃ = (Q̃, w̃) with the affine linear pencil

Q̃ = Ã0 ⊗ 1 +
d∑
j=1

(
B̃j ⊗ xj + B̃∗j ⊗ x∗j

)
in the variables x1, . . . , xd, x∗1, . . . , x∗d given by

Ã0 :=
(

0 A∗0
A0 0

)
, B̃j :=

(
0 0
Bj 0

)
, and w̃ :=

(
1
2v
∗

w

)
.

One verifies that ρ̃ = (Q̃, w̃) is a self-adjoint formal linear representation of R which is moreover
proper whenever ρ is proper.

Notice that if R is a p × p matrix-valued noncommutative rational expression in d1 + d2
formal variables x1, . . . , xd1 , u1, . . . , ud2 which is self-adjoint of type (d1, d2), then each self-
adjoint formal linear representation of R can be brought into the simplified form ρ = (Q,w)
with an affine linear pencil

Q = A0 ⊗ 1 +
d1∑
j=1

Aj ⊗ xj +
d2∑
j=1

(
Bj ⊗ uj +B∗j ⊗ u∗j

)
in the formal variables x1, . . . , xd1 , u1, . . . , ud2 , u∗1, . . . , u∗d2 with coefficients being self-adjoint
matrices A0, A1, . . . , Ad1 and (not necessarily self-adjoint) matrices B1, . . . , Bd2 in Mk(C) for
some k ∈ N and some matrix w ∈ Mk×p(C); indeed Theorem 6.2.12 yields a self-adjoint
formal linear representation of R with an affine linear pencil in the formal variables x1, . . . , xd1 ,
x∗1, . . . , x

∗
d1 and u1, . . . , ud2 , u∗1, . . . , u∗d2 , from which we obtainQ of the asserted form by replacing

x∗1, . . . , x
∗
d1 by x1, . . . , xd1 and merging their coefficients. In particular, we have

(X,U) ∈ domA(R) =⇒ (X,U, U∗) ∈ domA(Q−1)

and for every (X,U) ∈ domA(R) it holds true that

R(X,U) = w∗Q(X,U, U∗)−1w.

Example 6.2.13. We return to the self-adjoint noncommutative rational expressions presented
in Example 6.2.10. Let us construct a self-adjoint formal linearization of x1 + x−1

2 . Using the
algorithm from [110] which we recalled in the proof of Theorem 6.2.3, we obtain first a formal
linear representation

X1 +X−1
2 =

(
1 0 1

) 1 −X1 0
0 1 0
0 0 X2


−1 0

1
1

 .
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Out of the latter, we construct with the help of Theorem 6.2.12 the self-adjoint formal linear
representation

X1 +X−1
2 =

(
1
2 0 1

2 0 1 1
)


0 0 0 1 0 0
0 0 0 −X1 1 0
0 0 0 0 0 X2
1 −X1 0 0 0 0
0 1 0 0 0 0
0 0 X2 0 0 0



−1

1
2
0
1
2
0
1
1


.

The second example is u1 + u−1
1 . Since we have for unitary U1 in any ∗-algebra

U1 + U−1
1 =

(
1 0 1

) 1 −U1 0
0 1 0
0 0 U2


−1 0

1
1

 ,
we have a formal self-adjoint linearization

U1 + U−1
1 =

(
1
2 0 1

2 0 1 1
)


0 0 0 1 0 0
0 0 0 −U∗1 1 0
0 0 0 0 0 U∗1
1 −U1 0 0 0 0
0 1 0 0 0 0
0 0 U1 0 0 0



−1

1
2
0
1
2
0
1
1


.

6.2.4 Unbounded random variables
In this subsection, we set (M, τ) to be a tracial W ∗-probability space (i.e., a von Neumann

algebra M that is endowed with a faithful normal tracial state τ : M → C). The condition
that τ is a trace is necessary since we are going to consider closed and densely defined operators
affiliated with the von Neumann algebra M. We will simply call these operators unbounded
operators. In general, unbounded operators might not well-behave under either addition or
composition. However, in the case of tracial W ∗-probability space, they form a ∗-algebra,
denoted by M̃, which provides us a framework in which one has well-defined evaluations of
rational expressions.

In a language of probability, this framework allows us to consider random variables that
may not have compact support or even finite moments. For a normal random variable X in a
W ∗-probability space (M, τ), we know that X has finite moments of all orders and its analytic
distribution µX determined by the moments (i.e., the probability measure associated to X by
a representation theorem of Riesz) has a compact support. For an (unbounded) operator X
in M̃, it may not have finite moments. But we could still associate a probability measure to
X via the spectral theorem. We refer the interested reader to [114, 115] for more details on
unbounded operators (which are also known as measurable operators as the noncommutative
analogue of measurable functions, cf. [116]).

Let P(M) denote the set of self-adjoint projections in M and let M̃sa be the set of self-
adjoint elements in M̃. Given an element X ∈ M̃sa, for a Borel set B on R, we denote by
1B(X) ∈ P(M) the spectral projection of X on B given by the spectral theorem (see, for
example, [117]). Then we can associate a probability measure µX to X as follows.
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Definition 6.2.14. For X ∈ M̃sa, we define its analytic distribution µX by

µX(B) := τ(1B(X)), for all Borel sets B ⊆ R.

Furthermore, we define the cumulative distribution function of X as the function FX : R →
[0, 1] given by,

FX(t) :=
∫ t

−∞
1dµX(s) = τ(1(−∞,t](X)).

In particular, if we takeM = L∞(Ω,P) and τ = E for some probability measure space (Ω,P),
then M̃ is the ∗-algebra consisting of all measurable functions, i.e., classical random variables.
Moreover, the analytic distribution and cumulative distribution defined above coincide with
their classical counterparts.

Recall that for a probability measure µ on R. A number λ ∈ R is called an atom of µ if
µ({λ}) 6= 0. Thus for a random variable X in M̃sa, we say that λ ∈ R is an atom for X if λ
is an atom for µX . Moreover, we see that X has an atom λ ∈ R if and only if pker(λ−X) 6= 0,
where pker(λ−X) ∈ P(M) is the orthogonal projection onto the kernel of λ−X (in the Hilbert
space L2(M, τ)). For an atom λ of X, we have

µX({λ}) = τ(pker(λ−X)).

A closely related notion is a rank defined via the image. That is, we define

rk(X) := τ(pimX),

where pimX is the orthogonal projection onto the closure of the image of X. The following
alternative description of this rank will be needed later:

rk(X) = inf{τ(r) | r ∈ P(M), rX = X}. (6.1)

Clearly, since pim(X)X = X, we have inf{τ(r) | r ∈ P(M), rX = X} ≤ τ(pim(X)) = rk(X). To
see it is an equality, note that for any r ∈ P(M) satisfying rX = X, im(X) ⊆ im(r), which
implies that pim(X) ≤ r.

6.2.5 The quantity ∆
The regularity condition which we impose in Theorem 6.4.4 on the limit of the considered

random matrix model involves the quantity ∆ which was introduced by Connes and Shlyakht-
enko in [118]. We briefly recall the definition. Let (M, τ) be a tracialW ∗-probability space and
consider a tuple x = (x1, . . . , xd) of (not necessarily self-adjoint) noncommutative random vari-
ables inM. We denote by F(L2(M, τ)) the ideal of all finite rank operators on L2(M, τ) and
by J Tomita’s conjugation operator, i.e., the conjugate-linear map J : L2(M, τ) → L2(M, τ)
that extends isometrically the conjugation x 7→ x∗ onM. We then put

∆(x) := d− dimM⊗Mop

{
(T1, . . . , Td) ∈ F(L2(M, τ))d

∣∣∣∣∣
d∑
j=1

[Tj, Jx∗jJ ] = 0
}HS

,

where the closure is taken with respect to the Hilbert-Schmidt norm. Note that in contrast to
[118], we do not require the set {x1, . . . , xd} to be closed under the involution ∗; see also [69].
Despite this slight deviation from the setting of [118], the following result remains true.
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Theorem 6.2.15 (Theorem 3.3 (e) in [118]). Let 1 ≤ k < d and suppose that the sets
{x1, . . . , xk} and {xk+1, . . . , xd} are freely independent, then

∆(x1, . . . , xd) = ∆(x1, . . . , xk) + ∆(xk+1, . . . , xd).

Further, we recall from [69, Corollary 6.4] that ∆(u) = d for every d-tuple u of freely
independent Haar unitary elements in (M, τ).

In the particular case of a d-tuple x consisting of self-adjoint operators inM, Corollary 4.6
in [118] says that d ≥ ∆(x) ≥ δ(x), where δ(x) denotes the so-called microstates free entropy
dimension which was introduced by Voiculescu in [119, Definition 6.1]. Now, if the x1, . . . , xd
are freely independent, then Proposition 6.4 in [119] tells us that

δ(x) = d−
d∑
j=1

∑
t∈R

µxj({t})2,

where µxj is the analytic distribution of the operator xj in the sense of Definition 6.2.14.
We infer that ∆(x1, . . . , xd) = d if x1, . . . , xd are self-adjoint, freely independent and their
individual analytic distributions µx1 , . . . , µxd are all non-atomic. For reference, we summarize
these observations by the following corollary.

Corollary 6.2.16. Let x = (x1, . . . , xd1) be a d1-tuple of self-adjoint and freely independent
elements in (M, τ) with µx1 , . . . , µxd1

being non-atomic. Further, let u = (u1, . . . , ud2) be a
d2-tuple of freely independent Haar unitary elements in (M, τ). Suppose that x and u are freely
independent. Then ∆(x, u) = d1 + d2.

6.3 Evaluations of non-degenerate matrix-valued non-
commutative rational expressions

By definition, every non-degenerate matrix-valued noncommutative rational expression has
a non-empty domain when evaluations in matrices of sufficiently large size are considered.
In this section, we show that actually much more is true. Namely, we establish that the
assumptions of Theorem 6.4.4 are satisfied in very general situations.

6.3.1 Evaluations in random matrices
The following result asserts loosely spoken that one can almost surely evaluate every non-

degenerated matrix-valued noncommutative rational expressions in “absolutely continuous”
random matrix models, provided that their size is large enough. The precise statement reads
as follows.

Theorem 6.3.1. Let R be a matrix-valued noncommutative rational expression in d = d1 +
d2 formal variables which is non-degenerate. Suppose that µNd1,d2 is a probability measure on
MN(C)d1

sa × UN(C)d2 which is absolutely continuous with respect to the product measure of the
Lebesgue measure on MN(C)sa and the Haar measure on UN(C). If (XN , UN) is a tuple of
random matrices in MN(C)d1

sa × UN(C)d2 with law µNd1,d2, then there exists some N0 ∈ N such
that almost surely (XN , UN) ∈ domMN (C)(R) for all N ≥ N0.
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Remark 6.3.2. For the validity of Theorem 6.3.1, it is essential to work over the field of
complex numbers. In order to see this, consider the scalar-valued noncommutative rational
expression r = (x1x2 − x2x1)−1. Note that there are real matrices X1, X2 at which one can
evaluate r, but in MN(R) for N odd there cannot exist symmetric real matrices X1, X2 at which
evaluation r(X1, X2) would be defined, since necessarily det(X1X2 −X2X1) = 0 because

det(X1X2 −X2X1) = det
(
(X1X2 −X2X1)T

)
= − det(X1X2 −X2X1).

It is consistent with this observation that the proof of Proposition 6.3.3, on which Theorem
6.3.1 relies, will make use of complex analysis techniques.

One can also see an algebraic description of existence of a symmetric matrix in a domain
of noncommutative rational expression in [120, Remark 6.7].

The proof of Theorem 6.3.1 relies on a study of evaluations of affine linear pencils. The first
step is the following proposition, which requires some notation. Consider an affine linear pencil

Q = A0 ⊗ 1 +
d1∑
j=1

Aj ⊗ xj +
d2∑
j=1

Bj ⊗ uj (6.2)

in the variables x = (x1, . . . , xd1) and u = (u1, . . . , ud2), say with coefficients A0, A1, . . . , Ad1

and B1, . . . , Bd2 taken from Mk(C). We regard Q as an element in

Mk(C)⊗ C〈x, u〉 ∼= Mk(C〈x, u〉).

Given an d-tuple Z = (Z ′, Z ′′) of matrices in MN(C), we consider the evaluation of Q at Z
which is given by

Q(Z) := A0 ⊗ 1 +
d1∑
j=1

Aj ⊗ Z ′j +
d2∑
j=1

Bj ⊗ Z ′′j ,

where Q(Z) lies in Mk(C)⊗MN(C) ∼= MkN(C). Building on such evaluations, we associate to
Q functions

φ
(N)
Q : MN(C)d −→ C, Z 7−→ det(Q(Z))

for every N ∈ N. Notice that φ(N)
Q is a holomorphic commutative polynomial in the dN2

complex matrix entries appearing in the tuple Z. This allows us to use the complex analysis
machinery in order to relate φ(N)

Q and its restriction to the real space MN(C)d1
sa × UN(C)d2 .

Proposition 6.3.3. Let Q be an affine linear pencil of the form (6.2) in Mk(C)⊗C〈x, u〉 and
let N ∈ N. If φ(N)

Q |MN (C)d1
sa×UN (C)d2 ≡ 0, then φ(N)

Q ≡ 0.

Proof. Fix any Z = (Z ′, Z ′′) ∈ MN(C)d1 ×MN(C)d2 and suppose that the d2-tuple Z ′′ con-
sists of invertible matrices. We write Z ′ = X + iY with the tuples X = (X1, . . . , Xd1), Y =
(Y1, . . . , Yd1) ∈MN(C)d1

sa that are given by Xj := <(Z ′j) and Yj := =(Z ′j) for j = 1, . . . , d1. Fur-
ther, for j = 1, . . . , d2, we consider the polar decomposition Z ′′j = PjUj of Z ′′j with a positive
definite matrix Pj ∈MN(C) and Uj ∈ UN(C). As the matrices P1, . . . , Pd2 are positive definite,
we can define a holomorphic function f : C→ C by

f(z) := φ
(N)
Q

(
X1 + zY1, . . . , Xd1 + zYd1 , exp(−iz log(P1))U1, . . . , exp(−iz log(Pd2))Ud2

)
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for z ∈ C. Due to the assumption that φ(N)
Q |MN (C)d1

sa×UN (C)d2 ≡ 0, we have that f |R ≡ 0. Thus,
by the identity principle, it follows that f vanishes identically on C. In particular, φ(N)

Q (Z) =
f(i) = 0. This shows that φ(N)

Q vanishes on all d-tuples Z = (Z ′, Z ′′) ∈ MN(C)d1 ×MN(C)d2

satisfying the condition that Z ′′ consists of invertible matrices. Since those are dense inMN(C)d,
the assertion follows.

With the help of Proposition 6.3.3, we see that fullness of affine linear pencils Q can be
detected by evaluations of Q at points in MN(C)d1

sa × UN(C)d2 .

Proposition 6.3.4. Let Q be an affine linear pencil of the form (6.2) in Mk(C)⊗C〈x, u〉 which
is full. Then there exists N0 ∈ N with the following property: for each N ≥ N0, we have that
φ

(N)
Q |MN (C)d1

sa×UN (C)d2 6≡ 0, i.e., one can find some d-tuple (XN , UN) ∈ MN(C)d1
sa × UN(C)d2 for

which Q(XN , UN) becomes invertible in MkN(C).

Proof. First, we note that there exists some N0 ∈ N such that φ(N)
Q 6≡ 0 for all N ≥ N0. This

fact is well-known (see Proposition 2.4 in [121], for instance), but we include the argument
for the sake of completeness. Since Q is full, Q(x) is invertible as a matrix over the free
skew field C (<x, u )>; see Remark 6.2.5 2. Its inverse Q(x)−1 ∈ Mk(C (<x, u )>) is represented by
some non-degenerate k× k matrix-valued noncommutative rational expression R, i.e., we have
Q−1(x) = R(x); this follows by applying Remark 6.2.8 entrywise. From Theorem 6.2.1, we
know that there exists some N0 ∈ N such that domMN (C)(R) 6= ∅ for all N ≥ N0. Thanks to
Remark 6.2.7, the identity Q(x, u)R(x, u) = Ik over C (<x, u )> continues to hold on domM(C)(R),
and by applying determinants, we infer that φ(N)

Q 6≡ 0 for all N ≥ N0, as desired.
Having this, Proposition 6.3.3 guarantees that φ(N)

Q does not vanish identically on all of
MN(C)d1

sa × UN(C)d2 , as we wished to show.

In the next step, we involve the concrete random matrix model that we want to consider.

Proposition 6.3.5. Let Q be an affine linear pencil of the form (6.2) in Mk(C)⊗C〈x, u〉 which
is full. For N ∈ N, let (XN , UN) be a random matrix in MN(C)d1

sa ×UN(C)d2 with an absolutely
continuous law µNd1,d2 like in Theorem 6.3.1. Then there exists N0 ∈ N such that almost surely
Q(XN , UN) is invertible in Mk(C)⊗MN(C) ∼= MkN(C) for all N ≥ N0.

Proof. Thanks to Proposition 6.3.4, since Q is supposed to be full, there is an N0 ∈ N such
that none of the functions φ(N)

A |MN (C)d1
sa×UN (C)d2 for N ≥ N0 can vanish identically. Notice

that MN(C)d1
sa × UN(C)d2 is a real manifold of dimension dN2. In suitable local charts, we

see that φ(N)
Q |MN (C)d1

sa×UN (C)d2 induces a real analytic functions on an open subset of RdN2 and
can therefore vanish only on a set of Lebesgue measure 0. Due to the choice of µNd1,d2 , we
conclude that, for each N ≥ N0, the random matrix Q(XN , UN) is almost surely invertible in
MkN(C).

Proof of Theorem 6.3.1. We define the set R0 of all non-degenerate matrix-valued noncom-
mutative rational expressions R for which the conclusion of Theorem 6.3.1 is true, i.e., there
exists N0 ∈ N such that almost surely (XN , UN) ∈ domMN (C)(R) for all N ≥ N0. We have
to prove that R0 consists in fact of all non-degenerate matrix-valued noncommutative rational
expressions.

Notice that obviously all matrix-valued noncommutative polynomial expressions belong to
R0. Further, it is easily seen that both R1 +R2 and R1 ·R2 are in R0 whenever we take R1, R2 ∈
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R0 for which the respective arithmetic operation makes sense. Therefore, it only remains to
prove that if R ∈ R0 is square and enjoys the property that R−1 is non-degenerate, then
necessarilyR−1 ∈ R0. In order to verify this, we take any square matrix-valued noncommutative
rational expression R belonging to R0 for which R−1 is non-degenerate. Further, let ρ =
(v,Q,w) be a formal linear representation of R in the sense of Definition 6.2.2, say of dimension
k; see Theorem 6.2.3.

By assumption, we have that R−1 is a non-degenerate matrix-valued noncommutative ra-
tional expression. Thus, Remark 6.2.5 4 gives us that the affine linear pencil in d variables with
coefficients from Mk+p(C) which is given by

Q̃ :=
(

0p×p v
w Q

)

is full. Therefore, Proposition 6.3.5 tells us that an N0 ∈ N exists such that almost surely
Q̃(XN , UN) is invertible in M(k+p)N(C) for all N ≥ N0. Since R ∈ R0, we may suppose that
(after enlarging N0 if necessary) that at the same time almost surely (XN , UN) ∈ domMN (C)(R)
for all N ≥ N0. Because ρ is a formal linear representation, the latter implies that almost
surely Q(XN , UN) is invertible and R(XN , UN) = vQ(XN , UN)−1w for all N ≥ N0. Putting
these observations together, we see, again with the help of the Schur complement formula,
that almost surely R(XN , UN) is invertible for all N ≥ N0. In other words, we have almost
surely that (XN , UN) ∈ domMN (C)(R−1) for all N ≥ N0. The latter means that R−1 ∈ R0, as
desired.

6.3.2 Evaluation in operators with maximal ∆
It follows from [69, Theorem 1.1] that for any d-tuple X = (X1, . . . , Xd) of (not necessarily

self-adjoint) operators in some W ∗-probability space (M, τ) which satisfy the “regularity con-
dition” ∆(X) = d, where ∆ stands for a quantity that was introduced in [118] and which we
discussed in Section 6.2.5, then the canonical evaluation homomorphism

evX : C〈x1, . . . , xd〉 →M

which is determined by 1 7→ 1 and xj 7→ Xj for j = 1, . . . , d extends to an injective homomor-
phism

EvX : C (<x1, . . . , xd )>→ M̃
into the ∗-algebra M̃ of all closed and densely defined operators affiliated withM; see Section
6.2.4.

While the result of [69] addresses evaluations of noncommutative rational functions, it leaves
open the question whether also all non-degenerate rational expressions can be evaluated; indeed,
this is not immediate as the domain of a rational function is larger than the domain of any of its
representing non-degenerate noncommutative rational expressions. This question is answered
to the affirmative by the next theorem, which gives the conclusion even in the matrix-valued
case. For that purpose, we will consider the canonical amplifications

Ev•X : M•(C (<x1, . . . , xd )>)→M•(M̃).

Theorem 6.3.6. Let X = (X1, . . . , Xd) be a d-tuple of (not necessarily self-adjoint) operators in
some tracial W ∗-probability space (M, τ) satisfying ∆(X) = d. Then, for every non-degenerate
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matrix-valued noncommutative rational expression R, we have that X ∈ domM̃(R) and R(X) =
Ev•X(R(x)), where R(x) is the matrix over C (<x1, . . . , xd )> associated to R via Lemma 6.2.6.

Proof. The proof is similar to the proof of Theorem 6.3.1. Here, we consider the set R0 of all
non-degenerate matrix-valued noncommutative rational expressions r for which the conclusion
of Theorem 6.3.6 is true, i.e., we have X ∈ domM̃(R) and R(X) = Ev•X(R(x)). We want to
show thatR0 consists of all non-degenerate matrix-valued noncommutative rational expressions.
This can be done in almost the same way as in Theorem 6.3.1, except some slight modification
in the last step. Suppose that R ∈ R0 is of size p × p and has the property that R−1 is non-
degenerate. Consider a formal linear representation ρ = (u,A, v) of r, say of dimension k. Like
in the proof of Theorem 6.3.1, we deduce from Remark 6.2.5 4 that the associated affine linear
pencil

Ã :=
(

0 u
v A

)

is full. Now, by applying [69, Theorem 5.6] instead of Proposition 6.3.5, we get that Ã(X) is
invertible. Having this, we can proceed again like in the proof of Theorem 6.3.1 and we arrive at
X ∈ domM̃(R−1). Moreover, since R(X) = Ev•X(R(x)) by the assumption R ∈ R0, we further
get that R−1(X) = R(X)−1 = Ev•X(R(x))−1 = Ev•X(R(x)−1) = Ev•X(R−1(x)); notice that R(x)
is invertible because Lemma 6.2.6 guarantees that x ∈ domC (<x )>(R−1) as R−1 was assumed to
be non-degenerate. In summary, we see that R−1 ∈ R0.

6.4 Convergence in law of the spectral measure

6.4.1 Estimate on the cumulative distribution function of the spec-
tral measure of self-adjoint operators

In this subsection we simply list and prove a few properties that we need in the next sub-
section to prove Theorem 6.4.4 about the convergence of the empirical measure of a self-adjoint
non-degenerate matrix-valued noncommutative rational expression evaluated in matrices to-
wards the analytic distribution of the limiting operator.

Lemma 6.4.1 (Lemma 3.2 in [122]). For X ∈ M̃sa and t ∈ R we have

FX(t) = max{τ(p) | p ∈ P(M), p(t−X)p ≥ 0}.

The crux of the proof of Theorem 6.4.4 lies in the following two lemmas.

Lemma 6.4.2. Let X, Y ∈ M̃sa, then

sup
t∈R
|FX(t)−FX+Y (t)| ≤ rk(Y ).

Proof. We fix t ∈ R. Let r ∈ P(M) be such that rY = Y and q ∈ P(M) such that q(t−X)q ≥
0. Then if we set p = q ∧ (1− r), we have pY = 0 and pq = p, thus

p(t−X − Y )p = p(t−X)p = pq(t−X)qp ≥ 0.

Consequently
FX+Y (t) ≥ τ(p) ≥ τ(q)− τ(r).
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By taking the supremum over q and the infimum over r we get that

FX+Y (t) ≥ FX(t)− rk(Y ).

Now let’s assume that q is such that q(t−X −Y )q ≥ 0, then similarly with p = q ∧ (1− r),

p(t−X)p = p(t−X − Y )p = pq(t−X − Y )pq ≥ 0.

Hence
FX(t) ≥ τ(p) ≥ τ(q)− τ(r).

And once again by taking the supremum over q and the infimum over r we get that

FX(t) ≥ FX+Y (t)− rk(Y ).

Hence the conclusion.

The authors are indebted to Mikael de la Salle for indicating them the following lemma.

Lemma 6.4.3. Let p ∈ P(M), X ∈ M̃sa, then rk(pXp) ≤ rk(X).

Proof. Let q ∈ P(M) be such that qX = X, r = p ∧ (1− q), then r + 1− p is such that

(r + 1− p)pXp = rpXp = rXp = rqXp = 0.

Consequently (p− r)pXp = pXp. And since p ≥ r, p− r is a self-adjoint projection, hence

rk(pXp) ≤ τ(p− r) ≤ τ(q).

Hence the conclusion by taking the infimum over q.

6.4.2 Main result
This subsection focuses on proving the convergence in law of the empirical measure of

matrix-valued noncommutative rational expressions evaluated in matrices satisfying some as-
sumptions. Theorem 6.4.4 is for deterministic matrices, but it can easily be extended to random
matrices by applying this result almost surely.

Theorem 6.4.4. Let XN = (XN
1 , . . . , X

N
d1) be a d1-tuple of deterministic self-adjoint matrices

and let UN = (UN
1 , . . . , U

N
d2 ) be a d2-tuple of deterministic unitary matrices. Further, let R

be a non-degenerate square matrix-valued noncommutative rational expression in d = d1 + d2
variables which is self-adjoint of type (d1, d2) in the sense of Definition 6.2.9. Suppose that the
following conditions are satisfied:

1. (XN , UN) converges in ∗-distribution towards a d-tuple of noncommutative random vari-
ables (x, u) in some tracial W ∗-probability space (M, τ) satisfying ∆(x, u) = d.

2. For N large enough R(XN , UN) is well-defined, i.e., there exists N0 ∈ N such that
(XN , UN) ∈ domMN (C)(R) for all N ≥ N0.

Then (x, u) ∈ domM̃(R), so that R(x, u) is well-defined, and the empirical measure of R(XN , UN)
converges in law towards the analytic distribution of R(x, u).
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The fact that (x, u) ∈ domM̃(R) holds was established already in Theorem 6.3.6. Accord-
ingly, the main statement of Theorem 6.4.4 is the convergence of the empirical measure of
R(XN , UN) towards the spectral measure of R(x, u). This convergence result actually holds in
a more general setting than the above theorem. We summarize it as the following proposition.

Proposition 6.4.5. For each N ∈ N, let XN = (XN
1 , . . . , X

N
d ) be a d-tuple of noncommutative

random variables in some tracial W ∗-probability space (M(N), τ (N)). Further, let XN converge
in ∗-distribution towards a d-tuple X = (X1, . . . , Xd) of noncommutative random variables in
some tracial W ∗-probability space (M, τ). Let R be a square matrix-valued noncommutative
rational expression in d variables such that, for all N ∈ N which are sufficiently large,

1. XN ∈ domM̃(N)(R) and X ∈ domM̃(R),

2. R(XN) and R(X) are self-adjoint.

Then the analytic distribution of R(XN) converges in law towards the analytic distribution of
R(X).

Once Proposition 6.4.5 is shown, the statement on the convergence in Theorem 6.4.4 follows
immediately. Indeed, the condition formulated in Item 1 of Proposition 6.4.5 is satisfied as
we have (XN , UN) ∈ domMN (C)(R) for all N ≥ N0 by Item 2 of Theorem 6.4.4 and (x, u) ∈
domM̃(R) by Theorem 6.3.6; further, we have that R(XN , UN) for all N ≥ N0 and R(x, u) are
self-adjoint thanks to Definition 6.2.9 as R is supposed to be self-adjoint of type (d1, d2), so
that the condition in Item 2 of Proposition 6.4.5 is fulfilled as well.

Let us provide an outline of the proof of Proposition 6.4.5. Let ρ = (Q,w) be a self-adjoint
formal linear representation of R in the sense of Definition 6.2.11 which is moreover proper
as given by Theorem 6.2.12. Thanks to Lemma 6.4.2, we can ignore the singularity in 0 of
Q(X,X∗)−1. More precisely, as long as the spectral measure of Q(X,X∗) has no atom at 0,
we can use Lemma 6.4.2 to prove that the cumulative distribution function of w∗Q(X,X∗)−1w
is close to the one of w∗fε(Q(XN , XN∗))w where fε is a continuous function which is equal
to t 7→ t−1 outside of a neighborhood of 0 of size ε. Then we can use the convergence in
∗-distribution of XN to show that the cumulative distribution function of w∗fε(Q(XN , XN∗))w
converges towards the correct limit when we let N go to infinity and ε go to 0.

It is important to note that in this subsection, by convergence in ∗-distribution of XN of
noncommutative random variables XN = (XN

1 , . . . , X
N
d ), we mean that the trace of any non-

commutative ∗-polynomial P evaluated in XN converges towards the trace of P (X,X∗) where
X is a d-tuple of noncommutative random variables in some tracial W ∗-probability space. In
particular, this does not exclude the case where the operator norm of XN

i is not bounded over
N . This forces us to do a few more computations since the convergence in law of the analytic
measure of P (XN , XN∗) towards the analytic measure of the limiting operator, while still true,
is not immediate anymore.

Proof of Proposition 6.4.5. Let ρ = (Q,w) be a proper self-adjoint formal linear representation
(of dimension k) of R. If p ∈ N is the size of R, then since k ≥ p and w has full rank, there
exist a matrix T ∈ GLk(C) such that w = Tw0 where w0 ∈Mk×p(C) is the rectangular matrix
whose diagonal coefficients are all 1, and non diagonal coefficients are all 0. By replacing Q by
T ∗QT , one can assume without loss of generality that w = w0.

Notice that by assumptionQN := Q(XN , XN∗) is invertible in M̃(N) andR(XN) = w∗Q−1
N w.

Further, we have also that Q∞ := Q(X,X∗) is invertible in M̃ and R(X) = w∗Q−1
∞ w. To prove
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the convergence in law, we need to prove that Fw∗QNw(t) converges towards Fw∗Q∞w(t) for
t ∈ R such that the function s 7→ Fw∗Q∞w(s) is continuous in t. To do so, let g : t 7→ t−1 and
fε : R→ R be a continuous function such that on the complementary set of [−ε, ε], fε = g. We
have for any t ∈ R,∣∣∣Fw∗Q−1

N w(t)−Fw∗Q−1
∞ w(t)

∣∣∣ ≤ ∣∣∣Fw∗fε(QN )w(t)−Fw∗fε(Q∞)w(t)
∣∣∣

+
∣∣∣Fw∗Q−1

N w(t)−Fw∗fε(QN )w(t)
∣∣∣

+
∣∣∣Fw∗Q−1

∞ w(t)−Fw∗fε(Q∞)w(t)
∣∣∣ .

Thus thanks to Lemma 6.4.2,∣∣∣Fw∗Q−1
N w(t)−Fw∗Q−1

∞ w(t)
∣∣∣ ≤ ∣∣∣Fw∗fε(QN )w(t)−Fw∗fε(Q∞)w(t)

∣∣∣
+ rk(w∗(fε − g)(QN)w)
+ rk(w∗(fε − g)(Q∞)w).

Since w = w0, we have that for any X ∈Mp(M̃),

rk(wXw∗) = rk
(

X 0p×(k−p)
0(k−p)×p 0k−p

)

= p

k
rk(X).

This implies that

rk(w∗(fε − g)(Q∞)w) = k

p
× rk(ww∗(fε − g)(Q∞)ww∗) ≤ k

p
× rk((fε − g)(Q∞)),

where in the last inequality we used Lemma 6.4.3. Besides 1[−ε,ε](Q∞) is a self-adjoint projection
such that 1[−ε,ε](Q∞)(fε−g)(Q∞) = (fε−g)(Q∞). Consequently with Trk the non-renormalized
trace on Mk(C) and τ the trace onM,

rk(w∗(fε − g)(Q∞)w) ≤ 1
p

Trk⊗τ( 1[−ε,ε](Q∞) ).

Let hε be a continuous function which takes value 1 on [−ε, ε], 0 outside of [−2ε, 2ε] and in
[0, 1] elsewhere, then

rk(w∗(fε − g)(Q∞)w) ≤ 1
p

Trk⊗τ( hε(Q∞) ). (6.3)

Hence with similar computations we get∣∣∣Fw∗Q−1
N w(t)−Fw∗Q−1

∞ w(t)
∣∣∣ ≤ ∣∣∣Fw∗fε(QN )w(t)−Fw∗fε(Q∞)w(t)

∣∣∣
+ 1
p

Trk⊗τ( hε(Q∞) )

+ 1
p

Trk⊗τ (N)( hε(QN) ).
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In order to use the Portmanteau theorem, we want to prove that the analytic distribution
of w∗fε(QN)w converges towards the analytic distribution of w∗fε(Q∞)w. However since this
self-adjoint operator is uniformly bounded over N , we simply need to prove the convergence of
the moments. That is, that

lim
N→∞

1
p

Trp⊗τ (N)
(
(w∗fε(QN)w)l

)
= 1
p

Trp⊗τ
(
(w∗fε(Q∞)w)l

)
for any l. The strategy consists in approximating fε by a polynomial then use the convergence
in ∗-distribution of XN . However, the fact that we did not assume the operator norm of the
matrices XN

i to be bounded over N , forces us to make additional estimates.
Let C = ‖Q∞‖ + 1, and h be a non-negative continuous function which takes value 0 on

[−C,C], 1 outside of [−C − 1, C + 1] and in [0, 1] elsewhere. Let Pm be a polynomial such that
‖fε − Pm‖C0([−C−1,C+1]) ≤ 1/m. We set

BN :=
(
fε(QN)− Pm(QN)

)
(1− h(QN)) and CN :=

(
fε(QN)− Pm(QN)

)
h(QN),

then
1
p

Trp⊗τ (N)
(
(w∗fε(QN)w)l

)
− 1
p

Trp⊗τ (N)
(
(w∗Pm(QN)w)l

)
=

l∑
i=1

1
p

Trp⊗τ (N)
(
(w∗fε(QN)w)i−1w∗(BN + CN)w(w∗Pm(QN)w)l−i

)
.

Thanks to the Cauchy-Schwarz inequality, we have for any i,∣∣∣∣∣1p Trp⊗τ (N)
(
(w∗fε(QN)w)i−1w∗(BN + CN)w(w∗Pm(QN)w)l−i

)∣∣∣∣∣
≤
(√

1
p

Trp⊗τ (N) (w∗BNww∗BNw) +
√

1
p

Trp⊗τ (N) (w∗CNww∗CNw)
)

×
√

1
p

Trp⊗τ (N) ((w∗Pm(QN)w)2(l−i)(w∗fε(QN)w)2(i−1))

≤
(√

Trk⊗τ (N) ((BN)2) +
√

Trk⊗τ (N) ((CN)2)
)

×
(

1
p

Trp⊗τ (N)
(
(w∗Pm(QN)w)4(l−i)

))1/4

×
(

1
p

Trp⊗τ (N)
(
(w∗fε(QN)w)4(i−1)

))1/4

.

Since fε is bounded by a constant K, we have that
1
p

Trp⊗τ (N)
(
(w∗fε(QN)w)4(i−1)

)
≤ K4(i−1).

Thanks to the convergence in ∗-distribution of XN , and since the expression w∗Pm(QN)w is a
matrix of polynomials in XN , we have

lim
N→∞

1
p

Trp⊗τ (N)
(
(w∗Pm(QN)w)4(l−i)

)
= 1
p

Trp⊗τ
(
(w∗Pm(Q∞)w)4(l−i)

)
,
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which means that

lim
N→∞

1
p

Trp⊗τ (N)
(
(w∗Pm(QN)w)4(l−i)

)
≤ (K + 1/m)4(l−i).

We also have
Trk⊗τ (N)

(
(BN)2

)
≤ k

m
.

Finally since fε is bounded, there exists an integer g such that for any t ∈ R, |fε(t)− Pm(t)| ≤
(1 + t2)g, thus for any r ≥ 0,

Trk⊗τ (N)
(
(CN)2

)
≤

Trk⊗τ (N)
(
(CN)2Q2r

N

)
NC2r

≤ Trk⊗τ (N) ((1 +Q2
N)2gQ2r

N )
NC2r .

And so for any r ≥ 0,

lim
N→∞

Trk⊗τ (N)
(
(CN)2

)
≤ Trk⊗τ ((1 +Q2

∞)2gQ2r
∞)

C2r

≤ k
∥∥∥(1 +Q2

∞)2g
∥∥∥ (C − 1)2r

C2r .

So by letting r go to infinity, we get

lim
N→∞

Trk⊗τ (N)
(
(CN)2

)
= 0.

By combining those results, we obtain

limsup
N→∞

∣∣∣∣∣1p Trp⊗τ (N)
(
(w∗fε(QN)w)l

)
− 1
p

Trp⊗τ
(
(w∗fε(Q∞)w)l

)∣∣∣∣∣ = O(1/m).

Thus, by letting m go to infinity we get the convergence of the moments. This implies
that the analytic distribution of w∗fε(QN)w converges towards the analytic distribution of
w∗fε(Q∞)w. Thanks to Portmanteau’s theorem and Lemma 6.4.1, we have

Fw∗fε(Q∞)w(t) ≥ limsup
N→∞

Fw∗fε(QN )w(t)

≥ liminf
N→∞

Fw∗fε(QN )w(t) ≥ lim
s→t,s<t

Fw∗fε(Q∞)w(s).

Consequently,

limsup
N→∞

∣∣∣Fw∗Q−1
N w(t)−Fw∗Q−1

∞ w(t)
∣∣∣

≤ lim
s→t,s<t

∣∣∣Fw∗fε(Q∞)w(t)−Fw∗fε(Q∞)w(s)
∣∣∣+ 2

p
Trk⊗τ( hε(Q∞) ),

where we used the convergence in ∗-distribution of XN once again in the last line, coupled
with an argument similar to the one which let us prove the convergence of the moments of
w∗fε(QN)w. But by using Lemma 6.4.2 one more time we have∣∣∣Fw∗fε(Q∞)w(t)−Fw∗fε(Q∞)w(s)

∣∣∣
≤
∣∣∣Fw∗Q−1

∞ w(t)−Fw∗Q−1
∞ w(s)

∣∣∣+ 2 rk(w∗(fε − g)(Q∞)w).
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Hence by using equation (6.3), we have that

limsup
N→∞

∣∣∣Fw∗Q−1
N w(t)−Fw∗Q−1

∞ w(t)
∣∣∣

≤ lim
s→t,s<t

|Fw∗Q∞w(t)−Fw∗Q∞w(s)|+ 4
p

Trk⊗τ( hε(Q∞) ).

Since we made the assumption that t was a point of continuity of the function s 7→
Fw∗Q∞w(s), we have that lims→t,s≤t |Fw∗Q∞w(t)−Fw∗Q∞w(s)| = 0. Besides, by the dominated
convergence theorem, limε→0 Trk⊗τ(hε(Q∞)) = Trk⊗τ(1{0}(Q∞)), which is equal to 0 since
otherwise the distribution of Q∞ would have an atom in 0, in contradiction to the invertibility
of Q∞; indeed, analogous to the proof of [69, Corollary 5.13], we notice that Q∞1{0}(Q∞) = 0
and conclude from the latter that since Q∞ is invertible over M̃ we necessarily have that
1{0}(Q∞) = 0 and hence µQ∞({0}) = 1

k
Trk⊗τ(1{0}(Q∞)) = 0.
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