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General introduction

General context

Semiconductor is a highly competitive industry which has grown strongly in recent decades
due to the increasing demand for microelectronic in all devices (computers, cars, production
machines,...). In semiconductor manufacturing, the fierce competition between companies
to meet the increasing demands and to develop new products clashes with the investment
cost in semiconductor manufacturing facilities (also called fabs). Thus, the management of
companies seeks to maximize the use of the available capacity in fabs. To add insult to in-
jury, semiconductor manufacturing probably includes the most complex industrial processes,
involving hundreds of operations for each product and cycle times between two and three
months. For all these reasons, production planning is critical and should take into account
the congestion that can occur in production flows. This is where the thesis contributions
lie: Proposing new production planning models relevant for the semiconductor industry, and
new approaches to solve these models in short computational times.

Structure of the thesis

The manuscript is organized as follows. Chapter 1 details the characteristics of the semicon-
ductor industry. A generic perspective of the industry is first given. Then, the discussion
focuses on the first part of the semiconductor manufacturing process (also called "Front-
end"), where the different issues and factors of complexity are presented. In the last section
of the chapter, the data framework designed in the European project Productive 4.0 is in-
troduced and used to describe the data sets considered in our numerical experiments.
Chapter 2 provides a literature review on production planning for the semiconductor

industry. This literature review consists of a generic introduction to production planning
problems, the main features of production planning in semiconductor manufacturing, a re-
view of the main techniques to model congestion in semiconductor manufacturing and some
extensions of production planning problems in semiconductor manufacturing.
Chapter 3 presents a generic production planning model based on the semiconductor

manufacturing literature, and studies the question of which is the best objective to achieve
from an industrial point of view. Two alternative objectives are proposed: A productivity
objective which maximizes the number of operations that are performed and a financial
objective which maximizes the profit using the Net Present Value (NPV). The two objectives
are compared using computational experiments on academic and industrial instances.
Chapter 4 proposes to explore new flow constraints to allow more flexibility in the pro-

duction plan. Classical fixed lead time constraints are criticized, because they prevent any
flexibility on the internal production flows, i.e. the number of periods that products spend



CONTENTS

in each operation is fixed. Thus, flexible lead time constraints are proposed that enable
production quantities to wait in an operation. Computational experiments with different
lead time profiles on industrial instances are performed to illustrate the relevance of flexible
lead times.
Chapter 5 introduces a new formulation of the production planning problem with fixed

and flexible lead times, that relies on the concept of timed routes. In a timed route, each
operation is allocated to a fixed period. The timed route formulation can be solved by a
column generation approach when the number of timed routes becomes too large, which is
the case when flexible lead times are considered. Computational experiments in industrial
instances show that the computational times are greatly reduced compared to the classical
models of Chapter 4. New ways of analyzing the production flows allowed by the timed
route formulation are also investigated.
Chapter 6 extends the work of chapter 5, since the new timed route model offers many

possible extensions, many of which cannot be taken into, in the classical models of Chapter
4. Minimum and maximum cycle times are modeled, but also alternative objective functions
with penalties on production flows whose cycle times differ from a cycle time target or on
production flows with too long lead times in an operation.
Finally, in Chapter 7, conclusions are drawn and perspectives for future work are open,

in particular extensions of the new timed route formulation introduced in this thesis, such
as a more detailed modeling of the demand or modeling the entire supply chain instead of a
single factory.
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Chapter 1

Industrial context

1.1 Introduction

The semiconductor industry is probably the most complex and competitive industry. This
industry must deal with continuously increasing demand for very complex products, Inte-
grated Circuits (ICs), while continuously improving the performance of its products and
manufacturing. This industry is described in Section 1.2, with a global view of its supply
chain. Then, Section 1.3 focuses on the manufacturing part of the supply chain known as the
"Front-End" where most of the complexity and added values lie. Section 1.4 introduces a
formalization of the generic data model developed in the framework of the European project
Productive4.0, and describes the format and characteristics of the data sets used in the
numerical experiments of this thesis.

1.2 Semiconductor industry

1.2.1 Semiconductor market

The semiconductor industry refers to the making of electronic components based on semi-
conductor materials. It mainly concerns the fabrication of Integrated Circuits, but it can be
extended to products such as LEDs. Integrated Circuits (ICs) or chips are products heav-
ily used in our daily life (e.g. smartphones, computers, televisions, cars), but also within
industrial machines used in most factories or even in medical equipment. The current trend-
ing application is the Internet of Things (IoT), connected devices which share information
through the Internet. The boom of IC demands directly depends on the increase of the elec-
tronic market and the use of electronic devices in our everyday life. To sense the economic
impact of the semiconductor industry, Figure 1.1 shows the annual worldwide semiconduc-
tor revenues (in US dollars) from 1990 to 2019. Starting at the beginning of the century,
the global yearly revenue largely increased from 150 billion to 400 billion. Of course, the
semiconductor market does not always increase, and can suffer from economical hazards.
But still, one of the major issues of the semiconductor industry is to answer a constantly
increasing demand.
A critical characteristic of the semiconductor industry is the continuous technological im-

provement. As prophesied by Gordon Moore (former CEO of Intel), the number of transistors
in integrated circuits approximately doubles every two years. In fact, it is a self-realizing
prophecy because it has served to R&D departments as a goal to reach. However, nowadays,
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Figure 1.1: Worldwide revenue (in billions of US dollars) of semiconductor companies (data
from Semiconductor Industry Association)

the technological improvement can no longer follow Moore’s law. In fact, it is since the last
decade that the industry has acknowledged that Moore’s law is no longer applicable due to
the scale side effects on transistors (around 10 nanometers). But other ways have been found
to circumvent the issue, for example by developing multi-core chips.
Another major point impacting the semiconductor industry is the cost of its equipment.

Machines are worth between tens of thousands to several million dollars. Machines are rarely
fully stopped, and thus impose significant fixed electricity costs. Furthermore, integrated
circuits are manufactured in clean rooms (with very low density of dust particles, to avoid
altering of the product), which adds a significant cost to the costs of operating a factory.
Due to these fixed costs, semiconductor companies aim at running their equipment at full
capacity. Another way to cope with these very large fixed costs is the economy of scale.
The semiconductor industry has evolved to produce more integrated circuits by using larger
wafers of silicon (basic components on which hundreds of ICs are produced). The last way
to reduce costs (or to improve benefits) is in the management of operations, to which this
thesis intends to contribute. Another consequence of having very expensive machines is
the coexistence of old facilities, called "legacy fabs" (usually with wafers of 200 mm), and
facilities with the most recent machines, called "modern fabs" (usually with wafers of 300
mm).
Finally, semiconductor manufacturers are commonly divided into two categories. The

first one, called High Volume/Low Mix (HVLM) and usually corresponding to large com-
panies such as Intel and Samsung, mass-produce a small variety of products, and thus
naturally benefit from economies of scale. On the opposite, in the second category called
Low Volume/High Mix (LVHM), companies are manufacturing a large variety of special-
ized products, many in small quantities. The major European semiconductor manufacturing
companies (STMicroelectronics, Bosch and Infineon) are in the second category, and thus
have to deal with very complex challenges. The goal of advanced production management
approaches, such as the ones proposed in this thesis in the context of the European project

Page 6 EMSE-CMP Sébastien Beraudy



1.2. SEMICONDUCTOR INDUSTRY

Productive4.0, is to allow LVHM companies to be as effective and efficient than HVLM
companies.

1.2.2 Semiconductor supply chain

Let us consider the semiconductor supply chain process shown schematically in Figure 1.2.
It starts with silicone ingots, which are cut into raw wafers. These raw wafers are processed
in a manufacturing facility, called "wafer fab", where layers of resistors and transistors on a
wafer form hundreds or thousands of ICs. Finished wafers are tested to make an electronic
map of the defective dies. The "probing", as it is called, can be performed in the same
wafer fab or in another facility. Finally, wafers are diced, and the smaller parts are called
"dies". The defective dies are discarded and the good ones are either sent to a die bank or
directly dispatched to assembly facilities, where the dies are packaged to become the final
chips. A final test is performed to determine the quality and the performance of the chips
before sending them to customers. The average cycle time for an integrated circuit is 2.5
months, most of the time being spent in the wafer fab.

Figure 1.2: Overview of a semiconductor manufacturing Supply Chain (Schömig and Fowler
(2000))

The wafer manufacturing part of the supply chain is called "Front End". The second
part of the supply chain is called "Back End". Note that, nowadays, the frontier between
Front End and Back End is more blurred than defining as the "probing" stage. To add more
complexity in the vocabulary, even within the wafer manufacturing process, the first part
of the process is called the Frond End Of the Line (FEOL) and the second part is called
the Back End Of the Lines (BEOL). European semiconductor manufacturing companies
have Front End facilities still located in Europe, contrary to most Back End facilities which
are located in countries with low labor rates (e.g. Marocco, Singapore and China). For a
semiconductor manufacturing company, the cost of transporting the wafers is very small in
the overall cost of the products. Wafers are often transported by plane to decrease cycle
times, which can result in products, from raw wafers to finished integrated circuits, traveling
multiple times between continents.
In a semiconductor supply chain, contracting with external facilities is usual to meet the

demands on non-critical technologies. Because the most saturated capacities are those of
wafer fabs, it is generally the front end process which is outsourced. However, outsourcing
can also be done in the Back End, where intellectual property and technology are not as
critical as in the Front End.
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Figure 1.3: Planning decisions in a semiconductor manufacturing supply chain

In such a supply chain, multiple levels of planning decisions are required to manage the
entire industry. In Figure 1.3, a flowchart from Mönch et al. (2018a) describes the planning
process at the operational, tactical and strategic levels of the semiconductor industry hier-
archy. At the strategic level, there is the design of the supply chain network (with decisions
such as the acquisition of new factories). Then, by interfacing the strategic and tactical
levels, there is the capacity planning where the decision to buy new machines to increase the
capacities of the installations is made. Master planning and production planning are quite
linked as indicated by Mönch et al. (2018b) but, while production planning aims to determine
the quantities to be released in order to meet demand at wafer fab level, master planning
does the same with several installations taking into account the entire supply chain. Master
planning can be located between the strategic and tactical levels. Production planning is
considered to be at the tactical level, but needs relevant inputs from the operational level
(as it will be shown in Section 1.3). Sometimes, semiconductor manufacturing companies
introduce an intermediate planning stage, called “operational production planning” between
production planning and production scheduling, to ensure the feasibility of production plans
(see for example Christ et al. (2018)). At the operational level, decisions on the scheduling
of the product and on the machines assignment are taken, and also the transportation of
the products between machines. Material requirements and demand planning are linked to
several levels of the hierarchy, because they can be used with several levels of aggregation.
This thesis, in particular, focuses on production planning at the tactical level.
Within this organization, the many junctions between the different levels are critical.

While it is generally “easy” to disseminate decisions from the upper level to the lower level
(the hard part is ultimately that the lower level meets expectations), getting the information
back to the higher level could be difficult. However, it is essential to ensure that the higher-
level plans are realistic. Communication between different organizations and integration of
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the models used to take decisions are essential to improve the coordination of the whole
company.

1.3 Semiconductor manufacturing issues

This section focuses on the Front End part of the supply chain. A short description of the
processes involved completing a raw wafer is given. Next, the environment in which these
processes take place is described, as well as the various factors that complicate the manage-
ment of the wafer fab and a non-exhaustive list of important questions to be addressed.

1.3.1 Characteristics of a wafer manufacturing facility

Figure 1.4: Basic operations in wafer manufacturing (from Van Zant (2004))

Integrated circuits are made up of nanoscopic transistors and resistors and, to build such
small components, precise operations are carried out. Figure 1.4 shows in a simple way the
basic operations to build a chip. Layering and patterning are means of superimposing dif-
ferent materials and creating electronic patterns, while doping and ion implantation changes
the electronic structure of the material. These operations are repeated many times with a
specific recipe (how to perform the operation) for each processing step. Readers wishing
to learn more about the physical processes involved in wafer manufacturing are referred to
Van Zant (2004).
Figure 1.5 illustrates the structure and the flows in a wafer manufacturing facility. The

main “objects” used to characterize wafer manufacturing are defined below.
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Figure 1.5: Workshops and flows in a wafer manufacturing facility (Dauzère-Pérès, 2011)

– Product. It refers, at the lowest level, to a single type of wafers, associated with a
single production route. It can be aggregated with other products of the same “family”
or “technology”, depending on the level of aggregation. The physical representation of
a product is the wafer, which is usually grouped in a FOUP (Front Opening Unified
Pod, the red box in figure 1.5) of 25 wafers of the same product.

– Route. It corresponds to a sequence of operations, or processing steps needed to
complete a wafer. Note that, if routes are usually linear, some parts of a route may
have alternative paths leading to similar products. An expected cycle time (time to
transform a raw wafer into a finished product) is usually associated with each route.
The design of routes and operations is where most of the intellectual property resides
in semiconductor manufacturing.

– Operation. Operations or processing steps are the basic components of production
routes. To process an operation, a specific recipe should be followed, which details the
process parameters (such as gas pressure, temperature, time), the type of machines that
are required and sometimes auxiliary resources. With an operation is also associated
an expected Lead Time (which include the transportation time, waiting time and
processing time). Processing times range from a few minutes to several hours.

– Machine. Because of their costs, machines are very important in semiconductor
manufacturing. They are usually flexible, i.e. they can process numerous kinds of
operations. They can require a human operator or be fully automated. Some machines
can process products in batches (batching machines) or in different chambers (cluster
machines). With a machine is associated a dynamic list of operations which can be
processed on the machine, i.e. operations that the machine is “qualified” to process.
Qualifying a new operation on a machine might require a significant unique set-up
time.
Machines of the same type are aggregated into workshops, as shown in Figure 1.5 that
does not include some workshops such as metrology and test.
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1.3.2 Complexity factors

This section lists the major factors explaining the complexity associated with semiconductor
manufacturing.

1. Large problem dimensions. A European Front End manufacturing facility usually
has a portfolio of thousands of products. For each product, hundreds of process oper-
ations are needed in a facility that includes hundreds of machines. The weekly output
of a facility is larger than several thousands of completed wafers. In this context,
solving discrete optimization problems where the entire facility is considered is usually
unrealistic.

2. Re-entrant flows. The very large number of process operations is due to the fact
that wafers go through the same workshop many times (e.g. more than 40 times in the
photolithography workshop). Hence, not only different products at the same stage of
their manufacturing process compete for the same capacity, but also products that are
at different stages. Managing this competition is critical and difficult, and modeling
the associated congestion is important in production planning and in this thesis.

3. Aggressive production targets. Another reason for congestion is related to the huge
cost of machines which should thus work at full capacity. When capacity is saturated,
any incident can cause delays. Management also encourages shortening cycle times,
which are quite long (from two to three months). But due to Little’s Law, these two
objectives can be contradictory because one way to reduce cycle times is to reduce
Work In Process (WIP) inside the facility.

4. Continuous complexity increase in Front End manufacturing. The complexity
of Front End manufacturing is continuously increasing due to the introduction of more
complex products that require more operations to be completed. Moreover, some
products are personalized in their routes, or are merged with other products. This
leads to a more complex Bill-Of-Materials (BOM) than just sequences of operations.
Also, the number of time constraints between non-consecutive operations in the route
of new products is increasing, up to several thousand altogether.

5. Auxiliary resources. The need for critical auxiliary resources to perform some oper-
ations imposes the planning to take into account some additional delays. The primary
example is the photolithography workshop where masks (or reticles) are needed to make
specific patterns on the wafers. Masks are not always readily available and must be
brought from different storage areas, which can sometimes be time consuming. Other
critical auxiliary resources are operators that are required for various operations in the
oldest semiconductor manufacturing factories.

All these features of semiconductor manufacturing are depicted in Mönch et al. (2012),
with other features such as the sequence-dependent set-up times.

1.3.3 Issues arising in Front End manufacturing

After discussing major complexity factors, let us present a non-exhaustive list of issues in
semiconductor manufacturing.
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– Modernization of facilities. The main concern of legacy fabs (oldest fabs, mainly
200mm fabs) is to keep state-of-the-art processes. This is in particular done through
modernization projects such as adding AHMS (Automated Material Handling Sys-
tems). Modernization projects can be lengthy due to the desire of minimizing the
disruption of manufacturing while making significant changes to the production sys-
tem. Current modernization processes are often under the umbrella of what is called
"Industry 4.0".

– Balancing machine capacity. An important issue in semiconductor manufactur-
ing is to balance the capacity of machines between different activities: Production,
maintenance (to keep the machines up), engineering (to improve process performance)
and R&D (to develop future products). Machine capacity should also be balanced by
efficiently planning the qualifications of operation to perform on machines.

– Global fab management and local scheduling. Scheduling lots of wafers, even
at the workshop level, can be difficult, and finding feasible schedules might already
greatly help at the operational level. Furthermore, even if production planning deter-
mines the quantities to be released in the facility, ensuring consistency between global
fab management decisions and local scheduling decisions at the workshop level is chal-
lenging because of the multiple objectives to optimize. To cope with this issue, various
systems are used. A common one is to assign priorities to lots and use priority-based
dispatching rules to schedule lots. Another system consists in defining at the global
level production targets, in terms of quantity of each product to produce in a workshop
in a period, and to schedule the lots at the local level so that the production targets
are satisfied.

– Production planning. Semiconductor manufacturing facilities aim at obtaining real-
istic production plans that take into account the full complexity of the manufacturing
processes. As it will be shown in Chapter 2, it is a relevant research field for academics
and industries. One reason is that the manufacturing facility must commit to orders it
can meet. This requires fast production planning approaches that rely on an effective
modeling of the manufacturing system that usually does not consider the internal flows
in detail. This is the subject of this thesis.

Most of these issues were raised as points needing research in Chien et al. (2011). The
only point not discussed in this paper is the balancing of machine capacity, but works of
Rowshannahad et al. (2015), Perraudat et al. (2019) and Ziarnetzky, Mönch, Ponsignon and
Ehm (2019) show the importance of such balancing, even if they do not consider the whole
sources of capacity consumption.

1.4 Generic Data Model and industrial instances

During the European project Productive 4.0, a generic data model for the semiconductor
industry was established thanks to the cooperation of three European semiconductor man-
ufacturing companies and Mines Saint-Etienne. In section 1.4.1, the relevant structures for
production planning problems are presented. Industrial instances, provided by the site of
Crolles of STMicroelectronics in the format of the generic data model, are then detailed in
Section 1.4.2.
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1.4.1 Generic Data Model

Productive 4.0 is an ECSEL European project that started in May 2017. Within this project,
numerous industrial and academic partners are involved (more than 100). Inside the work
package in charge of the simulation and production control of the supply chain (to which this
thesis is associated), a generic data model for the semiconductor supply chain was developed.
Although version 1.1 of the model has been released, in the following, only the first release
(version 1.0) will be discussed, since the latest improvements did not change the core of the
data model. Version 1.0 of the generic data model is described in Laipple et al. (2018).

An important characteristic of the generic data model is that, to be used for many use
cases of the supply chain, it includes several aggregation levels. As it can be seen in Figure
1.6, five major entities are considered.

Figure 1.6: Generic Data Model for semiconductor Supply Chain from Georg Laipple’s poster
in Productive 4.0 Athens conference

– Major entities in green, blue and purple are called “Master entities”, and form the
backbone of the supply chain.
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– Green entities correspond to the physical system of the supply chain from the
roots (the equipment) to the top of aggregation (the plant). The supply chain
entity which links plants completes this major entity.

– Blue entities refer to the processes in semiconductor manufacturing. It contains
the description of operations, routes and time constraints occurring on the pro-
duction routes. Note that the set-up matrix which describes the set-up time
needed on a machine to process a new operation is colored in green, but could
eventually be colored in blue.

– Purple entities correspond to the products. Even if more levels are actually used
in practice, the number of product levels in the generic model is equal to four. The
highest level is called "Technology", where products are grouped by application.
Product Level 4 is the lowest level where each product refers to one route. The
Bill-Of-Materials (BOM) table helps to determine the link between products at
different stages of the supply chain.

– Entities in yellow are “tracing entities”, which include the historical data, using foreign
keys to connect the data to the master entities.

– Entities in red are “snapshot data”. They represent a one-time situation with the
current WIP, the current demand, the current status of machines, etc.

If a lot of the data can easily be shared with academics, this is not the case of the
production routes and most of the snapshot data (e.g. costs and profits, demands).

In the production planning use case, which is used in the whole manuscript, we use the
following tables: Workshop, product level 4, route, operation, equipment capability, current
WIP and demand. The equipment capacity is aggregated at the workshop level because, in
the available data, some operations can be processed on several equipment group, and it is
not in the scope of this thesis to decide on the assignment of operations to equipment groups.
Products are considered at their lowest aggregation level, but could have been aggregated.
An important issue with product aggregation is how to aggregate the different initial WIP
of products. Table “equipment capability” allows an operation to be associated with the
workshop on which the operation must be processed. Note that we consider that machines
are up on the planning horizon, thus we do not use the snapshot of the equipment state.
However, the available capacity of machines can be reduced to take into account the average
time they are down.

1.4.2 Academic and industrial instances

The first instance used in our computational experiments was presented in Kayton et al.
(1997) and is not industrial, but based on a reduced model of a manufacturing facility.
The instance was helpful to evaluate the impacts of our work. The second instance is an
industrial instance provided by STMicroelectronics. It corresponds to the full representation
of a manufacturing facility and was generated from a highly used capacity planning software.
The data set is a snapshot taken in 2018, from a 200mm fab. A research engineer worked
on the industrial data, so that they fit the generic data model. The characteristics of the
instances can be found in Table 1.1.

The small instance is depicted in Figure 1.7. Note that the first product has the longest
route. The second product shares a large part of its route with the first product. Finally,
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Reduced fab 200mm fab
Horizon length 61 {91, 119, 147}

Number of workshops 11 10
Number of machines 11 550

Number of active products 3 400
Actual number of products 3 {15, 40, 75}
Maximum route length 23 500

Demand scenarios {Low, Medium, High}

Table 1.1: Characteristics of the instances used in our computational experiments

the last product has a short route, and some of the workshops are not shared with the two
other products.

Figure 1.7: Reduced instance for production planning

Note that, for the industrial instance, the horizon should be long, because products have
cycle times that range between 40 and 80 periods. To generate demands, the historical output
over 6 months was considered. With these historical data, a frequency of orders, average
demand and standard deviation for each product were estimated. Then, a demand scenario
was randomly generated based on these characteristics. We only consider the products with
the highest demands. To be able to analyze the influence of the number of products, 3 sets
of products are considered. Among these top products, there are products with very small
routes (fewer than 20 operations), and we assume that they are R&D products or products
transferred from other fabs for few operations and are thus out of our scope. This is why
these products were not used in our experiments. Products without demands generated on
the horizon were also not considered. For the three instances, each demand scenario, related
to the number of products, is adjusted by a factor on the generated demand to produce three
scenarios with, respectively, a low and feasible demand, a medium demand that stresses the
capacity and a high demand that cannot be fully met.

Because costs were not provided in the industrial data set (too sensitive information),
the costs used in our computational experiment, and given in Table 1.2, were defined based
on Kacar et al. (2012).
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Profit 60
Backlog 50
Inventory 15
WIP management 0.001

Table 1.2: Unitary costs in our computational experiments

1.4.3 Conclusions

In this chapter, the context of the semiconductor industry, and more precisely of semicon-
ductor manufacturing, was introduced. The reasons explaining the causes of complexity
of the decision problems in semiconductor manufacturing were discussed, and also some of
the associated challenges. An important feature is the large dimensions of the problems
to solve (in terms of machines, products and operations). Because demand for Integrated
Circuits is continuously growing, production planning, which decides the quantities to be
produced over a planning horizon, is critical. This thesis aims at proposing novel approaches
to optimize production plans that are effective and efficient to deal with semiconductor man-
ufacturing characteristics. The literature on production planning, and more specifically in
semiconductor manufacturing, is surveyed in Chapter 2.
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Chapter 2

Literature review

2.1 Introduction

In this chapter, a review of the literature on production planning in semiconductor man-
ufacturing and related topics is given. In Section 2.2, the production planning problem is
defined with some history on the problem definition and a discussion on solution methods.
Section 2.3 discusses the literature on production planning in semiconductor manufacturing.
Section 2.4 focuses on congestion modeling in the semiconductor manufacturing literature,
while Section 2.5 explores extensions of the production planning problem in semiconductor
manufacturing.

2.2 Introduction on production planning

Our main concern in this thesis is the planning of the production of a wafer manufacturing
facility. Going back to the roots of the production planning problem, this section provides
some definitions and commonly used solution approaches to solve production planning prob-
lems.

2.2.1 Definition of production planning

Production planning aims to provide a tactical plan for production activities within one
or several production facilities. It is frequently extended to the ordering of raw materials.
Production plans are generally established on a mid-term horizon (several weeks to several
months). Classical objectives in production planning are to meet the demands while mini-
mizing total costs/maximizing total profits. Common decision variables on the production
are the quantities ordered and produced at specific periods and inventory levels, but it could
also include backlog levels, safety lead times on orders, etc. The facility environment can
add many specific constraints that must be satisfied such as limited capacity on stocks or on
production, setup costs and times in production periods, batches of products, etc.

2.2.2 A brief history of heuristics and exacts methods to solve pro-

duction planning problem

Looking on the academic side, the production planning problem has only been studied since
the second half of the 20th century, with the study of Modigliani and Hohn (1955) which
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analyzes the trade-off between the inventory cost and the production cost. This study has
greatly influenced the research in the field of production planning. A second major contri-
bution of this decade is the paper of Wagner and Whitin (1958), in which the uncapacitated
single product lot-sizing problem (LS-U) is described and solved using a dynamic program
that runs in a polynomial time. LS-U is a production planning problem that considers the
minimization of production, inventory and setup costs while deciding when and how much to
produce. Even if LS-U does not seem realistic, it is used in many decomposition methods for
more complex lot-sizing problems. The case when production capacity limit is considered in
LS-U is coined the capacitated single product lot-sizing problem. In the general case where
capacity varies over the time horizon, the problem is NP-Hard (Florian et al.; 1980). But,
in the specific case where capacity is time invariant, a polynomial algorithm is proposed
by Van Hoesel and Wagelmans (1996). Many extensions to these basic lot-sizing problems
have been considered: Lot sizing with backlog or lost sales decisions, multi-item lot sizing
with multiple products and various constraints on setups, multi-echelon multi-item lot sizing
where several production steps are considered, etc.

Exact methods are not commonly used in industrial applications. Many heuristics have
been successfully implemented and have led to better results for companies (compared to
their previous state without any optimization of their production plans) that may let some
companies in no need of advanced Operation Research methods. If methods to improve
the efficiency of a facility can be tracked down to Taylor (1911) and its Method-Time-
Measurement, methods to determine production plans in multi-level systems started with
Materiel Requirements Planning (MRP) in the 70s. MRP is still widely used in many
companies. However, MRP has a major drawback, it does not take into account production
capacities, or only indirectly through lead times. Between the 70s and the 90s, methods to
manage the bottleneck operations in factories arose, such as Theory of Constraints (Goldratt;
1990) or Just in Time (known for its implementation in the Toyota company with the Kanban
method (Sugimori et al.; 1977)). The 90s saw two main changes in companies due to the
democratization of IT systems. The first change is the improvement of MRP, which evolved
to Manufacturing Resource Planning (MRP II). MRP II (Wight; 1995) integrates limited
production capacities and more financial aspects of the business. The second change is the
introduction of Enterprise Resource Planning (ERP) systems in all transactions occurring
within the company are centralized. With a centralized access to the database, it is easier
to accurately plan production and, behind the planning functions of an ERP software, there
is often an MRP II module. Furthermore, since the beginning of the century, additional
decision modules, called Advanced Planning System (APS), can be plugged in ERP systems
in order to optimally plan at different stages and levels of the supply chain. The name
APS covers the use of Artificial Intelligence or Operations Research techniques, and it is not
simple to know which algorithms are running in an APS and what can be expected from the
solutions. However, in semiconductor manufacturing, ERP systems are mostly used for order
management and not so much for production planning (Mönch et al.; 2012). It lets place
for advanced Operations Research methods that integrate the specificities of semiconductor
manufacturing compared to the (too much) generic MRP II.
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2.3 Production planning in semiconductor manufactur-

ing

This section reviews the common characteristics of production planning problems in semi-
conductor manufacturing. Section 2.3.1 focuses on the modeling, while Section 2.3.2 covers
the methods used to solve the problem and the instances used. Finally, in Section 2.3.3, we
try to position the semiconductor manufacturing production planning problem among the
lot-sizing and production planning literature.

2.3.1 Modeling

Objective functions and decision variables

In semiconductor manufacturing, the production planning problem usually aims at mini-
mizing inventory and backlog costs, and sometimes Work In Process (WIP) management or
production costs are also considered (Kim and Kim; 2001; Asmundsson et al.; 2009; Kacar
et al.; 2012; Albey et al.; 2015; Ziarnetzky, Mönch and Uzsoy; 2019). Few articles (e.g. Hung
and Leachman (1996); Habla and Mönch (2008); Albey, Bilge and Uzsoy (2017)) propose
to maximize the total profit. However, to the best of our knowledge, only Chou and Hong
(2000) propose to study various objective functions for the production planning problem in
semiconductor manufacturing. In Chou and Hong (2000), profit maximization, machine use
maximization, and output maximization are studied (as well as some hybridization between
profit maximization and the two other objectives). Three main decision types of variables are
commonly used in semiconductor manufacturing production planning. Inventory variables
are always present in semiconductor manufacturing production planning models. Other com-
mon decision variables are the backlogged quantities, which model the possibility of delaying
the fulfillment of the demand. Other classical variables that can be found are the quantities
of finished products, manufactured at each period. But to capture and act on the production
flows in the manufacturing process, additional decision variables are considered to model the
quantities that are processed in each workshop (or machine) and to model (depending on
the approach) the WIP (Work In Process) quantities.

Domain of the variables

Due to the large size of the production planning instances that should be solved in semicon-
ductor manufacturing, the induced complexity of discrete variables can hardly be sustained.
This is why many articles experimenting on realistic data sets such as Hung and Leachman
(1996), Chen et al. (2010) and Bard et al. (2010) do not use integer variables. Mixed-Integer
Linear Programming (MILP) models can be found in Habla et al. (2007), Hwang and Chang
(2003) and Chou and Hong (2000), where integer variables model, respectively, integer quan-
tities of products, binary variables accounting for the processing of a lot at each operation
and period, and batching constraints.

Capacity constraints

In semiconductor manufacturing, the vast majority of research considers limited production
capacities that are shared between workshops. Due to the very large number of machines in a
facility, aggregating capacity (i.e. machines) at workshop level is very common. Some papers
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assume that capacity constraints can be relaxed on non-bottleneck workshops (e.g. Habla
et al. (2007)). An important effort to precisely model the capacity of the photolithography
workshop can be found in (Bang and Kim; 2010). This is because photolithography con-
centrates the most expensive machines and is a common bottleneck in Front End facilities.
However, only considering a single bottleneck workshop may be a too strong assumption.
In fact, bottleneck workshops are usually not fixed and dynamically arise in the facility, as
stated for instance by Chou and Hong (2000).

Failing and idle machines

A second matter when considering the capacity of workshops is the states of the machines.
Some machines might be on planned maintenance, others might be idle due to large setup
times to change their qualifications and some might be down due to failure. To model
these effects, the naive way is to consider a ratio of up/down machines within every work-
shop. Another way is to consider capacity variation over the time horizon, but it can only
model planned or anticipated maintenance operations and can only take machine failures
into account on average. Finally, the effect of machine failures can be captured by lead time
parameters or Clearing Functions (see Section 2.4) if failures frequently happen.

Setup times and costs

Due to the difficulty of solving models with integer variables, setup costs and times are
commonly not explicitly modeled even if they often occur in reality. Most of the time, setup
times are included in the lead times (this will be discussed in Section 2.4), and thus the
fact that setup times might be sequence-dependent is not taken into account. The same
remark holds for batching constraints. Batching operations are considered either by adding
capacity to the machines or by dividing the process time of the operations. However, these
assumptions can lead to unfeasible plans. Only Chou and Hong (2000) consider batching
constraints in production planning within their MILP model.

2.3.2 Solution methods and common production planning instances

in semiconductor manufacturing

In the semiconductor manufacturing literature, most solution methods are using commercial
linear programming solvers such as IBM ILOG CPLEX, SAS OR or Fico Xpress. In some
papers, such as Albey et al. (2015), Kriett et al. (2017) and Ziarnetzky, Mönch and Uzsoy
(2019), a rolling horizon is used to cope with large time horizons. Genetic algorithms are
also used in Liu et al. (2011) to solve a multi-objective problem (minimizing the mean and
variance of the total cost under uncertainties). Three papers, (Hwang and Chang; 2003),
(Habla et al.; 2007) and (Lim et al.; 2014), use Lagrangian relaxation to solve MILP models.
Chou and Hong (2000) propose a heuristic to solve their MILP model in a relatively short
computational time. The heuristic consists in determining with an iterative procedure the
bottleneck workshops, and then in simplifying the model to only consider the bottleneck
workshops. To cope with quadratic programs, (Albey et al.; 2014) and (Albey, Bilge and
Uzsoy; 2017) use solvers such as KNITRO and BARON. Few instances were shared in the
academic semiconductor manufacturing community. Various works exploit industrial data
without making the instances available. Due to industrial privacy, only the dimensions of
the studied data are provided. Some papers acknowledge that the instances come from
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industrial data without giving the name of the company. However, we can observe that
semiconductor companies partnering with academics on production planning are numerous:
Micron, Xfab, Infineon, Texas Instrument, Vanguard, ... According to Ewen et al. (2017),
there are only three instances shared between academics. They were all developed in the
nineties and have at most 3 products. The first one is the MIMAC instance (Fowler and
Robinson; 1995), which was developed based on SEMATEC data. A couple of years after,
Spier and Kempf (1995) came with the MiniFab data set while Kayton et al. (1997) propose
another reduced model of a fab approved by industrial partners (which was mainly used to
assert the potential of clearing functions). Some characteristics of these instances are shown
in Table 2.1.

Name Nb. machines Nb. workshops Nb. products
MIMAC I 215 70 2
MiniFab 5 3 2
Kayton’s 12 11 3

Table 2.1: Characteristics of common data sets

Note that some authors choose to generate their own data sets, (Kim et al.; 2014) and
(Lim et al.; 2014), but their data sets are not often used. Note also that a new realistic
instance called SMT2020 is proposed by Hassoun et al. (2019).

Time horizons are typically of several months (between 2 and 5 months), because smaller
horizons could lead to products unable to finish their processing routes if the horizon is
smaller than the cycle times of products. Usually, a period corresponds to one day or
one week depending on the considered horizon. In many articles, the period length is not
clearly defined. Note that the variability of the planning horizon is also due to the fact that
production planning in semiconductor manufacturing is at the interface between the tactical
and operational levels.

Table 2.2 identifies the data and the horizon used in the recent literature (note that the
list is not exhaustive). When the instance is created, a comment on the size of the instance
is given in parentheses.

2.3.3 Positioning production planning in semiconductor manufac-

turing in the production planning literature

In this section, the semiconductor manufacturing production planning problem is compared
to the multi-level dynamic lot-sizing problem, and to integrated lot-sizing and scheduling
problems. As a matter of fact, semiconductor production planning problems can be described
as multi-product multi-step production planning problems.

Multi-level dynamic lot-sizing

Dynamic lot-sizing problems are classical problems in production management, introduced
by Wagner and Whitin (1958). A generalization of this family of problems is the multi-level
capacitated lot-sizing problem (MLCLSP), proposed by Billington et al. (1983). Multi-
level lot sizing is generally separated into three branches depending on the Bill of Materials
(BOM) structure (note that other specific BOMs may occur). If each product has at most
one predecessor product and at most one successor product, it is called production in series.
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Article Instance Period Horizon

Hung and Leachman (1996) Industrial: Micron month 12 month
Chou and Hong (2000) Industrial ? ?
Kim and Kim (2001) Created (reduced size) ? 3 periods

Hwang and Chang (2003)
Industrial: Vanguard
International Semi. Corp.

day 60 days

Asmundsson et al. (2006) Kayton’s ? 70 periods

Habla et al. (2007)
Industrial: X-Fab
Semi. Foundries AG

? ?

Habla and Mönch (2008)
Industrial: Infineon
Technologies AG

week 50 weeks

Asmundsson et al. (2009) Kayton’s 2/4 hours 70 days
Chen et al. (2010) Industrial day 60 days
Irdem et al. (2010) Kayton’s week/day 14 weeks/91 days
Bang and Kim (2010) Industrial ? 4 months
Bard et al. (2010) Industrial: Texas Inst. hour 4-13 weeks
Kacar et al. (2012) Kayton’s ? 30 periods
Kacar et al. (2013) MIMAC I week 15 weeks
Lim et al. (2014) created (realistic) week 13 weeks
Albey et al. (2014) created (reduced size) 5 hours 60 hours
Kim et al. (2014) created (medium size) day 30 days
Albey et al. (2015) Industrial ? 3 periods
Kacar et al. (2016) MIMAC I ? 18 periods
Kim and Lee (2016) created (medium size) day 30 days
Albey, Bilge and Uzsoy (2017) created (reduced size) 5 hours 60 hours
Kriett et al. (2017) MIMAC I week 20 weeks
Albey et al. (2019) Kayton’s week 12 weeks
Ziarnetzky, Mönch and Uzsoy (2019) MIMAC I week 7 weeks
Zhang et al. (2020) Kayton’s week 26 weeks

Table 2.2: Characteristics of instances used in the semiconductor manufacturing literature
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In an assembly structure, each product has at most one successor, whereas each product has
at most one predecessor in a divergent structure. Lead times can be used at every level, not
only to model capacity (which is already considered in the capacitated case), but also to
consider that process times are not null. The MLCLSP was solved using various heuristics,
from Lagrangian heuristics to metaheuristics. The reader is referred to Buschkühl et al.
(2010) for a literature review on dynamic capacitated lot-sizing problems.

Semiconductor manufacturing production planning problems are in the family of serial
multi-level capacitated lot-sizing problems with lead times without setup costs or times.
Another characteristic of semiconductor production planning problems is the shared capacity
between levels.

Integrated lot sizing and scheduling

Integrated lot-sizing and scheduling problems have often been studied, according to the re-
view of Copil et al. (2017). While lot sizing aims at meeting the demand at the lowest cost,
scheduling corresponds to assigning and scheduling products on machines while minimizing
the makespan or other objective functions. Such a junction between tactical and operational
planning problems can lead to high complexity. Solving the full integrated mathematical
model with multiple machines and multiple operations is often unrealistic. For this reason,
solution methods can be separated into three kinds: Heuristics which solve the full problem
(e.g. Gómez Urrutia et al. (2014)), hierarchical methods which solve the problems sequen-
tially (e.g. Liberatore and Miller (1985)), and iterative methods (e.g. Dauzère-Pérès and
Lasserre (1994)). In the literature, the focus may vary between scheduling oriented model-
ing and lot sizing oriented modeling. Furthermore, various types of heuristics are proposed
depending on the problem to solve.

In semiconductor manufacturing production planning, the full integration of production
planning and detailed scheduling decisions would cause a great computational burden, but
some articles refer to the hierarchical methods except that the scheduling part is obtained
through a simulation model (these articles will be detailed in Section 2.4). Anyway, data
from the scheduling level is useful to plan production quantities in a smart way. Observed
lead times may not only denote the overuse of capacity from a workshop, but can also include
information of associated processes which might be limiting. To sum up, having a bottleneck
machine does not always mean it works at full capacity, and the production planner needs
to consider this information to improve his plans.

2.4 Congestion modeling

With the complexity of production flows in semiconductor manufacturing and the incentives
to produce more and more (to optimize the yield of high investment machines), congestion is
doomed to occur. Congestion is when a large workload induces longer lead times. However,
as stated by Pahl et al. (2005), the relationship between the lead times and the workload
is not linear. This non-linear effect in production planning is hard to model with only
the classical capacity constraints. This is why most of the semiconductor manufacturing
literature focuses on congestion modeling. In this section, the three most studied ways to
model congestion are presented. For a deeper review of the used methods, but not up to date
due to the recent progress of the use of clearing functions, the reader is referred to Armbruster
and Uzsoy (2012). For a complete review of production planning with congestion with a less
limited scope, the reader is referred to the book of Missbauer and Uzsoy (2020).
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2.4.1 Fixed lead times

The first and most straightforward way to model congestion is to use fixed lead times, which
are frequently assumed in production planning (Spitter et al. (2005) and Pahl (2012)). It
consists in assuming a fixed delay, called Lead Time (LT), at each operation. Thus, a
product entering in the waiting queue for an operation will be processed only LT periods
after. Lead times are usually determined based on historical data and include waiting times,
process times and also transportation times. Lead Times can account for machine failure
or unavailability of auxiliary resources with the waiting time. Fixed Lead Times are easy
to model and introduce low complexity, but they have several drawbacks. In particular,
the workload is usually not balanced on all periods of the lead time, but is only counted in
either the last period or the first period. In addition, production flows are not flexible and
the values of the lead times are critical. If the lead times are too short, production flows
must be strongly reduced in order to satisfy capacity constraints. Nevertheless, the fixed
lead times are convenient and can be improved by using non-integer lead times as shown in
Kacar et al. (2016).

2.4.2 Iterative procedures

An important fact is that lead times are not exogenous parameters. In fact, they directly
depend on the production flows of products which compete for the same resource in a period.
In short, lead times depend on the production plan. To address this circularity between
production planning and operational level execution, Hung and Leachman (1996) propose
an iterative procedure using both linear programming and discrete event simulation. The
linear programming model is used to find a production plan that takes into account the
lead times given by the simulation model, while the simulation model takes as inputs the
production plan and evaluate it. These two steps are repeated until convergence.

Since 1996, several articles have used iterative processes with similar mathematical mod-
els but different simulation models (e.g. Bang and Kim (2010) and Zhang et al. (2020)).
In fact, simulation is one of the major advantages of the iterative process because it allows
complex behaviors to be integrated such as batching constraints, uncertainties on machine
failures and repairs which are hardly tractable in an optimization model. However, as noted
by Irdem et al. (2010) or Missbauer (2020), the reason behind this convergence does not have
theoretical background except for the Kim and Kim (2001) method and other works based
on it. Furthermore, the experiments of Bang and Kim (2010) show that iterative procedures
are affected by the choice of the simulation model. In addition, a major drawback of iterative
procedures is their computational burden, which can be seen in Bang and Kim (2010) where
computational times range between 12 hours and 40 hours.

2.4.3 Clearing functions

The last main way to tackle congestion is the use of so-called Clearing Functions (CFs). Ini-
tially introduced by Graves (1986), Clearing Functions give the expected output of machines
(or workshops) as a function of the workload. In their current shape (since the paper of
Asmundsson et al. (2006)), CFs are non-linear functions that are estimated using simulation
or historical data. CF constraints are generally linearized and included in a single linear pro-
gramming model. In recent works, Albey, Bilge and Uzsoy (2017) study a CF that can deal
with multiple products and multiple stages and even can be used with robust optimization
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(Albey, Yanıkoğlu and Uzsoy; 2017). One of the main advantages of using CFs is the short
computational times compared to using iterative procedures, because the burden is moved
to the pre-processing phase (i.e. establishing CFs). But that is not the case with up-to-date
clearing functions which need a quadratic solver or even a conic solver, Gopalswamy (2019).
And for all CFs, when the structure of the facility changes, e.g. new machines are added,
the Clearing Functions need to be re-evaluated.

2.4.4 Other ways

In Albey et al. (2019), congestion is tackled with a fixed lead time under uncertainties. They
develop a robust optimization model to solve the problem. In Kriett et al. (2017), lead times
are not directly considered, but cycle times are controlled by maintaining WIP levels close
to targeted WIP levels.

2.5 Extension of production planning in semiconductor

manufacturing

If production planning is a critical matter in semiconductor manufacturing and not easily
solved, it does not mean that extensions of the problem were not studied. Even in the semi-
conductor industry where energy consumption of a facility can hardly be reduced (because
machines are never totally stopped and operating the clear room consumes the most en-
ergy), the question of sustainability arises (Villarreal et al. (2012) and Hamed et al. (2018)).
Ziarnetzky et al. (2017) propose a production planning problem that takes into account the
sourcing of energy by considering a facility endowed with solar photovoltaics and wind tur-
bines. In their model, they introduce penalties when using nonrenewable energy and a cost
reduction when producing too much renewable energy.

In another extension of production planning problems, (Ziarnetzky, Mönch, Ponsignon
and Ehm; 2019) consider the positive effect of engineering operations on the production
efficiency, but also workload balancing between engineering operations and production op-
erations. Note that the model was extended to the supply chain level with multiple facilities
and additional penalties when the workload is not balanced between similar facilities.

In Lim et al. (2014), the authors propose to integrate the assignment of lots to orders
in production planning. The objective is to minimize the total tardiness of lots. The MILP
program (with binary variables for lot assignments) is solved using a Lagrangian relaxation
approach.

Finally, master planning in the semiconductor industry is an extension of production
planning to all facilities of the semiconductor supply chain. Due to the change of scale,
more aggregations are needed, and also a longer time horizon to consider the life cycle of
products (Bansal et al.; 2020), and more particularly of new products. But, as stated by
Mönch et al. (2018b), master planning and production planning are quite similar. Up to
now, master planning problems have not been studied much in semiconductor manufacturing,
(Ponsignon and Eng; 2012), (Lowe and Mason; 2016) and (Ziarnetzky and Mönch; 2016).
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2.6 Conclusions

Production planning in semiconductor manufacturing has been frequently studied, with a
major focus on modeling production flows and congestion, aka phenomena deeply rooted
at the scheduling decision level. Due to this particularity, coupling optimization and sim-
ulation models in a dynamic way (hierarchical methods) or only to assess the efficiency of
the model is common. However, it comes with an additional computational burden if the
simulation model is detailed. A first point of improvement is to continue the discussion on
the objective functions opened by Chou and Hong (2000). A good objective function should
take into account industrial needs, but should also ease the explanation of decisions to the
decision makers. A second point of improvement is to keep digging the possibilities to model
congestion with smaller computational times and/or more detailed decisions. Another gap
to fill in the literature is the design of heuristics or other solution methods dedicated to pro-
duction planning problems that could either reduce the computational times or cope with
more complex models.
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Chapter 3

Maximization of productivity and profit

3.1 Introduction

One of the research priorities in semiconductor manufacturing, as presented in Chapter
2, is congestion modeling. The objective functions are usually minimizing a combination of
inventory and backlog costs. However, one of the most important objectives in semiconductor
manufacturing is also to maintain a high productivity level due to the high investment in each
facility. In the industry, productivity is measured by the number of operations performed
in the planning horizon. This performance indicator is also called the number of “moves”
in the industry jargon. To our knowledge, only Chou and Hong (2000) have proposed
several objective functions: (1) Total profit maximization, (2) Maximization of the number
of products, (3) Minimization of the residual capacity of machines and (4) Some hybrid
objective functions mixing two of the three previous objectives. However, when maximizing
the total profit, profit and costs are integrated in the same function and it is not easy to
analyze the source of the additional profit (or the cost reduction). Chou and Hong (2000)
lack a comparative analysis of the different objectives to highlight the side effects of each
objective function. In this chapter, we propose new objective functions and integrate them in
a classical production planning model with fixed lead times in order to enhance productivity
and maximize profit. We use the so-called actualization rate to model the Net Present Value
(NPV) of the profit. In Section 3.2, we generalize the classical semiconductor manufacturing
production planning model with fixed lead times (based on Kacar et al. (2013)). Contrary
to most studies, two timescales are considered. The first timescale (macro-periods) is used
to model the satisfaction of demands, while the second timescale (micro-periods) is used to
model the production process. In Section 3.3, a first alternative objective function, where the
number of “moves” is maximized, is presented. In Section 3.4, a second objective function is
proposed that considers the NPV of the total profit. Numerical experiments are conducted
in Section 3.5. The models are compared and analyzed using a data set from the literature
and an industrial data set with different demand profiles and actualization rates. In Section
3.6, the end of horizon effect is briefly studied and, to cope with this effect, a limit on the
inventory of the final macro-period is proposed.

3.2 Generic model

In this section, a compact formulation based on the literature is presented for planning the
production of P products over a discrete time horizon that has two timescales. The time
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horizon is decomposed into T micro-periods (typically days) and S macro-periods (typically
weeks). Demands Dps are given per product p and per macro-period s. Each product p

needs a sequence of operations Lp to be processed on K workshops. Each workshop k can
process a finite set of operations Lk

p for each product p and has a finite capacity Ck.
The plan is determined by optimizing internal production flows. The goal is to decide the

quantities Xplt of product p to be processed at operation l and period t. The set of operations
of product p and their resource consumption αpl provide the timing of operations. In order
to trace production flows, a variable Wplt that model the work in process of product p at
operation l and period t is introduced. A unit work in process cost wpl is associated with
each product p and operation l.

The goal is to satisfy demands while minimizing inventory, backlog and work in process
costs. We introduce a unit inventory cost hps and a unit backlog cost bps for each product
p and each period s (typically a week). Let us also introduce two decision variables Ips and
Bps, that respectively model the inventory and the backlog of product p at time period s.

Capacity congestion is first modeled with a fixed lead time LTpl for product p at operation
l. In this model, we assume that transportation times and costs between two workshops are
negligible or constant. Products that complete a given operation are placed in a waiting
queue for the next operation (the waiting queue is supposed to be uncapacitated, i.e. no
limited storage). We also assume that the processing time of each operation is lower than
one day (this assumption is justified since the longest operation usually needs less than half
a day). All lead times are expressed in full micro-periods.

Due to the large industrial data sets we address, only continuous variables are considered
in our models. For simplification reasons, batches are not explicitly taken into account,
but batching operations have their processing time divided by the number of products in a
typical batch of the operation. All sets, parameters and decision variables are summarized
below.

Notations

The following parameters are considered:

P : Number of products,
K: Number of workshops,
Lp: Sorted list of operations of product p,
Lk

p: Set of operations of product p processed in workshop k,
T : Number of micro-periods in the planning horizon,
S: Number of macro-periods in the planning horizon,
tss: First micro-period in {1, . . . , T} of macro-period s in {1, . . . , S},
tfs: Last micro-period in {1, . . . , T} of macro-period s in {1, . . . , S},
αpl: Unit resource consumption of operation l of product p,
Ck: Daily available resource capacity of workshop k,
LTpl: Lead time of operation l in L(p) of product p,
Dps: Demand of product p at the end of macro-period s,
hps: Unit inventory cost of product p at the end of macro-period s,
bps: Unit backlog cost of product p at the end of macro-period s,
wpl: Unit work in process cost of product p at operation l,
Bp0: Initial backlog of product p,
Ip0: Initial inventory of product p,
Wpl0: Initial work in process of product p at operation l.
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Two types of variables are used: Variables related to the internal production flows (Xplt,
Yplt and Wplt), and variables related to the demand of the final product (Ipt and Bpt).
Variables Y out

pt are linking both sets of variables. The variables are formally defined below:

Xplt: Quantity of product p to be released in micro-period t to operation l ∈ Lp,
X in

pt = Xp1t: Quantity of product p released in micro-period t,
Yplt: Quantity of product p completing its operation l ∈ Lp in micro-period t,
Y out
pt = Yp|Lp|t: Output quantity of product p in micro-period t,

Wplt: Work in process of product p at operation l ∈ Lp at the end of micro-period
t,
Ips: Inventory level of product p at the end of macro-period s,
Bps: Backlog level of product p at the end of macro-period s.

Note that variables such as inventory, backlog or WIP, have by extension their initial
value called respectively Ip0, Bp0 and Wpl0. They are given as parameter.

Mathematical formulation

The mathematical model with fixed lead times is formalized below.

min
P∑

p=1

∑

l∈Lp

T∑

t=1

wplWplt +
P∑

p=1

S∑

s=1

(hpsIps + bpsBps) (3.1)

s.t. Yplt = Xp(l+1)(t) ∀p ∈ {1, . . . , P}, ∀l ∈ {1, . . . , |Lp|−1}, ∀t ∈ {1, . . . , T}(3.2)

Wplt = Wpl(t−1) +Xplt − Yplt ∀p ∈ {1, . . . , P}, ∀l ∈ Lp, ∀t ∈ {1, . . . , T} (3.3)

Xplt = Ypl(t+LTpl) ∀p ∈ {1, . . . , P}, ∀l ∈ Lp, ∀t ∈ {1, ..., T − LTpl} (3.4)

Dps +Bp(s−1) =

tfs∑

τ=tss

Y out
pτ + Ip(s−1) − Ips +Bps

∀p ∈ {1, . . . , P}, ∀s ∈ {1, . . . , S} (3.5)

P∑

p=1

∑

l∈Lk
p

αplYplt ≤ Ck ∀k ∈ {1, . . . ,K}, ∀t ∈ {1, . . . , T} (3.6)

Xplt, Yplt,Wplt ≥ 0 ∀p ∈ {1, . . . , P}, ∀l ∈ Lp, ∀t ∈ {1, . . . , T} (3.7)

Ips, Bps ≥ 0 ∀p ∈ {1, . . . , P}, ∀s ∈ {1, . . . , S} (3.8)

The objective function (3.1) minimizes the total inventory, backlog and work in process
cost. Constraints (3.2)-(3.5) model flow conservation. Constraints (3.2) ensure the link
between the output of a given operation Yplt and the input of the next operation Xp(l+1)t.
Constraints (3.3) balance the work in process over the time horizon for each operation.
Constraints (3.4) guarantee the fixed lead time for each operation of each product. Con-
straints (3.5) are the flow conservation constraints of the products, ensuring the satisfaction
of demands through the inventory and the production in the current period or their back-
log to subsequent periods. The capacity constraints in each workshop are modeled through
Constraints (3.6). Constraints (3.7) and (3.8) ensure the non-negativity of decision variables.
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3.3 Maximization of a productivity Key Performance In-

dicator (KPI)

In the semiconductor industry, an important indicator of productivity is the number of per-
formed operations, also called “moves”. It corresponds to the number of completed operations
multiplied by the number of products processed per tool, workshop and plant. For example,
if we have 8 machines and if each machine processes 100 units, then the number of “moves”
is equal to 8 × 100 = 800. We propose to include this indicator in the previously defined
objective function (3.1) with a scaling factor E. The new objective function is given below
that maximizes the number of moves while minimizing the objective function (3.1).

max E

P∑

p=1

∑

l∈Lp

T∑

t=1

Yplt −
P∑

p=1

S∑

s=1

(hpsIps + bpsBps) (3.9)

3.4 Profit maximization using an actualization rate

Mixing the minimization of the costs and the maximization of the number of “moves” is not
the most natural way to improve productivity. In the following, we replace the maximization
of the number of "moves" by the maximization of the profit generated by the products. This
leads to a homogeneous objective function expressed in monetary units. Let us introduce Gp,
the profit per unit of product p. In addition, using this new objective function, it is possible
to model the fact that future profits and their associated decisions are less important than
the current profits. This is done by introducing the notion of NPV, which is often used
in Economics to calculate the return on investment taking into account the time value of
money (one monetary unit today is larger than the same monetary unit tomorrow). All
future financial flows are included in a single function with an actualization rate βs ∈ (0, 1]
that depends on the macro-period s, in order to emphasize the importance of the financial
results in the first macro-periods. Some articles (Hung and Leachman; 1996; Albey, Bilge
and Uzsoy; 2017) also consider profit maximization with time discount, but the discount
function is not given. In our model, this actualization rate is applied each week, which
means that the present value of the profit in macro-period s reduces as s increases. More
precisely, in the following, we use βs = β

(s−1)
0 . The discount rate applied week by week is

constant, thus we denoted it β . Equation (3.10) below models the new objective function.

max
P∑

p=1

S∑

s=1

β(s−1)(−hpsIps − bpsBps +

tfs∑

t=tss

GpY
out
pt ) (3.10)

3.5 Numerical experiments

In this section, we conduct numerical experiments using IBM ILOG CPLEX to solve the
models with the objective functions presented above. The quality of the solutions is as-
sessed by considering the total costs/profits, the productivity (represented by the number
of "moves") and the total output of products. In Section 3.5.1, the data sets used for the
numerical experiments and presented in Chapter 1 are summarized. Then, in Section 3.5.2,
we analyze the impact of the scaling parameter E on the objective function (3.9). Finally,
in Section 3.5.3, the impact of the NPV on the objective function (3.10) is analyzed.
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3.5.1 Data sets

Experiments are first conducted on the reduced data set from Kayton et al. (1997), that
includes three products with routes of 14 to 23 operations and 11 workshops. The first
product has the longest route, while the second product shares a large part of its route with
the first product. The third product has a short route, and some of its workshops are not
shared with the two other products.

According to the characteristics of the instance given by Kacar et al. (2012), lead times
are fixed as follows:

Operations on bottleneck machines have a lead time of 5 micro-periods,
Operations on unreliable machines have a lead time of 3 micro-periods,
Operations on batching machines have a lead time of 1 micro-period,
Operations on the remaining machines are given a lead time of 0 micro-period.

The horizon is divided into 61 micro-periods, i.e. 9 macro-periods. Three profiles of
static (not time-dependent) demands are considered.

Scenario 1. High infeasible demands: {45,15,15},
Scenario 2. Medium feasible demands: {33,11,11},
Scenario 3. Low feasible demands: {15,5,5}.

Then, the models are tested on the industrial data set of one the manufacturing facility
of ST Crolles, "C200", that includes 10 workshops. We only consider the demand of the 75
most produced products. To avoid an over-capacitated factory (due to the restricted number
of products considered), demands are slightly increased. As for the Kayton’s instance, three
scenarios of demand are considered. Experiments are conducted with a time horizon of 119
micro-periods (i.e. 17 macro-periods, which is equivalent to 4 months). Cycle times are
between 40 and 80 days in the data set. We tried to experiment our models with an initial
WIP based on a snapshot of the production facility, but the Fixed Lead Time model raises
an infeasibility error due to capacity constraint, while trying to process the initial WIP in
the first period. Thus, experiments are done with a reduced initial WIP (divided by two).

In this chapter, the work in process costs are set to zero in all the numerical experiments.
As in Kacar et al. (2012), the unit backlog cost is set to 50, the unit inventory cost to 15
and the profit per unit of product to 60.

3.5.2 Analysis of productivity maximization

Let us first analyze the impact of the scaling factor E on the total cost (
P∑

p=1

S∑

s=1

(hpsIps +

bpsBps), the number of moves (
P∑

p=1

∑

l∈Lp

T∑

t=1

Yplt) and the total output (
P∑

p=1

T∑

t=1

Y out
pt ) (denoted

respectively “Total Cost”, “#Moves” and “Total Output” in the following tables) when using
the objective function (3.9). The scaling factor E is fixed to 0, 1, 5 and 10. Tables 3.1, 3.2
and 3.3 summarize the results for the three demand profiles (resp. high demand, medium
demand and low demand). Column “E = 0” corresponds to the generic model (3.1)-(3.8)
and provides reference values. The deviation in percentage from these reference values is
given between brackets.

Tables 3.1, 3.2 and 3.3 show that the productivity can significantly be improved. Even
with a small scaling factor E, the number of “moves” increases from 7% for high demands up
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Table 3.1: Impacts of the scaling factor (E) on the number of “Moves” for high demands on
the Kayton’s instance.

E = 0 E = 1 E = 5 E = 10
Total Outputs 565 565 628 (+11.1%) 691 (+22.2%)
Total Costs 22,515 22,534 (+0.1%) 25,715 (+14.2%) 31,457 (+39.7%)
#Moves 9,750 10,473 (+7.4%) 11,464 (+17.6%) 12,341 (+26.6%)

Table 3.2: Impacts of the scaling factor (E) on the number of “Moves” for medium demands
on the Kayton’s instance.

E = 0 E = 1 E = 5 E = 10
Total Output 495 495 576 (+16.4%) 649 (+31.2%)
Total Costs 0 0 4,020 10,849
#Moves 8,940 10,003 (+11.9%) 11,251 (+25.9%) 12,295 (+37.5%)

to 82% for low demands. With larger values of E, larger improvements are obtained on the
number of moves. This is done at the expense of the total cost. There is a trade-off between
productivity and inventory and backlog costs. Note also from Tables 3.1, 3.2 and 3.3 that
the total output increases when the productivity is improved. Through these results, we
cannot find a correlation factor between E and #Moves.

The results on the industrial instances are summarized in Tables 3.4, 3.5 and 3.6. Here
again, the trade-off between productivity and inventory and backlog cost is quite visible.
Note that, with an increase of the total cost by 2 %, it is possible to increase the number
of "moves" by 50% (with E = 1 and high demand). Note also that the number of "moves"
obtained with a fixed scaling factor does not seem strongly dependent on the demand profile
(except for low demands where there is a lot of capacity left after the production of demand).

However, this first objective function is a naive way to improve productivity. This is why
we explore, in the following, the impact of considering the objective function that maximizes
the total profit.

3.5.3 Impact of using a financial objective

The profit maximization objective function helps to move from a pure cost-driven model to a
profit-driven model. As shown in the following, the NPV model also improves productivity.

The NPV model with different actualization rates β is compared to the results of the
Generic model (Column “Generic”), where β is fixed to 1 (i.e. no depreciation), 0.95 and 0.8.
The indicators “Total output” and “#Moves” are kept. Two other indicators are introduced:
The total profit considering no depreciation and the total profit considering an actualiza-
tion rate of 0.95. Tables 3.7, 3.8 and 3.9 summarize the results on the Kayton’s instance

Table 3.3: Impacts of the scaling factor (E) on the number of “Moves” for low demands on
the Kayton’s instance.

E = 0 E = 1 E = 5 E = 10
Total Output 225 227 (+0.7 %) 446 (+98.4%) 564 (+150.6%)
Total Costs 0 636 8,595 21,713
#Moves 4,138 7,525 (+81.9%) 9,927 (+139.9%) 11,900 (+187.6%)
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Table 3.4: Impacts of the scaling factor (E) on the number of “Moves” for high demands on
the industrial instance.

E = 0 E = 1 E = 5 E = 10
Total Outputs 3,294 3,224 (-2.1%) 3,685 (+11.9%) 4,499 (+36.6%)
Total Costs 241,517 247,604 (+2.5%) 321,753 (+33.2%) 504,083 (+108.7%)
#Moves 603,539 884,945 (+46.6%) 913,338 (+51.3%) 937,423 (+55.3%)

Table 3.5: Impacts of the scaling factor (E) on the number of “Moves” for medium demands
on the industrial instance.

E = 0 E = 1 E = 5 E = 10
Total Output 3,113 3,074 (-1.3%) 3,773 (+21.2%) 4,575 (+47.0%)
Total Costs 199,097 209,562 (+5.3%) 302,302 (+51.8%) 468,836 (+135.5%)
#Moves 567,849 885,105 (+55.9%) 916,721 (+61.4%) 939,582 (+65.5%)

considering high, medium and low demand profiles, respectively.
First, note that the objectives with the actualization rates β = 1, β = 0.95 and β = 0.8

are different by definition. From Tables 3.7 to 3.9, note that the actualization rates β = 1
and β = 0.95 provide similar results, while the actualization rate β = 0.8 provides a larger
total output which induces a larger number of moves (#Moves). By comparing the generic
model to models with a profit per product, the total output increases by 12% for instances
with high demands and up to 193% for instances with low demands. The total profit increase
is also significant, varying from 11% to 63%. A detailed analysis of the results shows that,
even if the total profit increases for high demands are greater in percentage compared to the
profit increases for medium demands, the absolute increase of the total profit for medium
demands (3,370) is larger than the absolute increase of the total profit for high demands
(2,164). This larger total profit can be explained by the fact that the demand of instances
with medium demands can be met while the demand of instances with high demands cannot
be met.

Tables 3.10, 3.11 and 3.12 summarize the results on the industrial instance, considering
high, medium and low demand profiles, respectively. First, note that, due to the inadequate
initial WIP, backlog and inventory costs in the first weeks are unavoidable and may lead to
negative profits. This helps understanding the negative profits when the weekly actualization
rate is fixed to 0.95. These negative values are due to the high impact of the first periods
on the objective function. Note that, when no actualization rate is applied (β = 1), the
profits can be positive. We also observe that the number of "moves" and the total output
of products are clearly boosted by maximizing the profit. However, although the quantity
of products increases when reducing the actualization rate, the number of "moves" slightly
decreases. It can be assumed that, with a lower actualization rate, more products with short

Table 3.6: Impacts of the scaling factor (E) on the number of “Moves” for low demands on
the industrial instance.

E = 0 E = 1 E = 5 E = 10
Total Output 2,890 2,947 (+2.0 %) 3,850 (+33.2%) 4,727 (+63.6%)
Total Costs 178,737 199,438 (+11.6%) 298,160 (+66.8%) 453,647 (+153.8%)
#Moves 520,279 889,179 (+70.9%) 921,855 (+77.2%) 943232 (+81.3%)
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Table 3.7: Variations of the actualization rate β for high demands on the Kayton’s instance.

Models Generic NPV β=1 NPV β=0.95 NPV β=0.8
Total output 565 633 (+12.0 %) 643 (+13.8%) 713 (+26.0%)
#Moves 9,750 10,645 (+9.2%) 10,787 (+10.6%) 11,727 (+20.3%)
Total profit with β=1 11,407 13,571 (+19.0%) 13,563 (+18.9%) 11,361 (-0.4%)
Total profit with β=0.95 11,249 12,761 (+13.4%) 12,793 (+13.7%) 11,588 (+3.0%)

Table 3.8: Variations of the actualization rate β for medium demands on the Kayton’s
instance.

Models Generic NPV β=1 NPV β=0.95 NPV β=0.8
Total output 495 595 (+20.2 %) 610 (+23.2%) 697 (+40.7%)
#Moves 8,940 10,266 (+14.8%) 10,458 (+17.0%) 11,672 (+30.6%)
Total profit with β=1 29,700 33,070 (+11.3%) 33,065 (+11.3%) 30,564 (+2.9%)
Total profit with β=0.95 24,404 26,747 (+9.6%) 26,795 (+9.8%) 25,421 (+4.1%)

routes and thus short cycle times are produced in the last periods, leading to a reduced
number of "moves".

Because profits with the generic model are always negative, it is not possible to compute
the increase ratio. But an important point is that, even if when minimizing costs leads to
negative profits, considering a profit per product leads to manufacture products that are not
ordered on the planning horizon and allows positive profits to be achieved.

3.6 End of horizon effect

With profit maximization, secondary objectives such as maximizing the total number of
products or maximizing the productivity (the number of "moves") are also improved. In
order to analyze in depth the production plans obtained with the profit maximization, we
focus on the throughput of products.

Figures 3.1a, 3.1b and 3.1c show the weekly total outputs for each experiment on the
Kayton’s instance compared to the demands for respectively high, medium and low demands.
Note that the generic model is not depicted in Figures 3.1b and 3.1c since it fits the demands.

From Figures 3.1b and 3.1c, note that all solution of the different models start by pro-
ducing the required demand in the first period, an then the solution of model with the lowest
actualization rate produces more than the demand. The solutions of the other models start
overproducing at the end of the horizon since there is no inventory cost. In our experiments,
we assume that the profit of a product is lost if it stays more than four weeks in the inven-
tory. The same remarks can be drawn for Figure 3.1a, where the NPV model with β = 1
and β = 0.95 follows the behavior of the generic model until the end of the horizon where
the NPV model starts overproducing.

Similar results are observed with the industrial instances. Because the demand in the
industrial instance is dynamic, Figures (3.2a), (3.2b) and (3.2c) show only the produced
quantities minus the demand (which is equivalent to remove the backlog quantities from
the inventories) on the horizon. If, for the first 5 weeks, the production plan is exactly the
same (due to the same initial WIP and fixed lead time constraints), note that there is a
large inventory in the last weeks when maximizing the profit. Note that production plans
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Table 3.9: Variations of the actualization rate β for low demands on the Kayton’s instance.

Models Generic NPV β=1 NPV β=0.95 NPV β=0.8
Total output 225 469 (+108.4 %) 487 (+116.7%) 660 (+193.2%)
#Moves 4,138 8,060 (+94.8%) 8,316 (+101.0%) 10,243 (+147.6%)
Total profit with β=1 13,500 22,105 (+63.7%) 22,104 (+63.7%) 17,543 (+29.9%)
Total profit with β=0.95 11,093 17,035 (+53.6%) 17,097 (+54.1%) 14,687 (+32.4%)

Table 3.10: Variations of the actualization rate β for high demands on the industrial instance.

Models Generic NPV β=1 NPV β=0.95 NPV β=0.8
Total output 3,294 4,824 (+46.4 %) 4,841 (+47.0%) 5,161 (+56.7%)
#Moves 603,539 784,199 (+29.9%) 780,573 (+29.3%) 760,756 (+26.0%)
Total profit with β=1 -43,875 12,255 11,577 -14,221
Total profit with β=0.95 -51,619 -26,691 (+48.3%) -26,404 (+48.8%) -35,060 (+32.1%)

Table 3.11: Variations of the actualization rate β for medium demands on the industrial
instance.

Models Generic NPV β=1 NPV β=0.95 NPV β=0.8
Total output 3,113 4,893 (+57.2 %) 4,913 (+57.8%) 5,185 (+66.6%)
#Moves 567,849 782,364 (+37.8%) 776,045 (+36.7%) 760,721 (+34.0%)
Total profit with β=1 -12,301 55,375 54,743 33,746
Total profit with β=0.95 -30,857 -1,816 (+94.1%) -1,482 (+95.2%) -8,755 (+71.6%)

Table 3.12: Variations of the actualization rate β for low demands on the industrial instance.

Models Generic NPV β=1 NPV β=0.95 NPV β=0.8
Total output 2,890 5,126 (+77.4 %) 5,127 (+77.4%) 5,316 (+83.9%)
#Moves 520,279 783,747 (+50.6%) 774,674 (+48.9%) 763,824 (+46.8%)
Total profit with β=1 -5,360 78,667 78,146 63,428
Total profit with β=0.95 -23,864 12,366 12,645 7,546
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(a) High demand

(b) Medium demand

(c) Low demand

Figure 3.1: Weekly outputs (Kayton’s instance).
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optimized with actualization rates of 1 and 0.95 are very close, contrary to the production
plans optimized with an actualization rate of 0.8.

(a) High demand

(b) Medium demand

(c) Low demand

Figure 3.2: Production quantities for different demand profiles (industrial instance).

These end-of-horizon effects were expected. In fact, financial results are increased at
the expense of meeting demands. The end-of-horizon overstock can be too large, and this
anticipated production may have to be limited if demands after the end of the horizon are not
expected to be large enough. A in-depth analysis of the production plan with the Kayton’s

29/09/2020 EMSE-CMP Page 37



CHAPTER 3. MAXIMIZATION OF PRODUCTIVITY AND PROFIT

instance shows that two of the three products are anticipated. These products are the ones
with the shortest routes, i.e. requiring less capacity to manufacture.

3.6.1 Limiting excessive production

End of horizon effects are quite common in production planning. With cost minimization,
the system tends to empty the work in process and the final inventories at the end of the
horizon. This is why Habla and Mönch (2008) or Kriett et al. (2017) extend the time horizon
and assign demands to the additional periods. When maximizing the total profit, the work
in process also tends to be empty, but the inventories in the last period of some products
increase.

One way to limit the end-of-horizon effect is to limit the inventory at the end of the
planning horizon for some specific products. In the following, we only consider the case with
medium demands and the NPV model with an actualization rate of 0.95 for the Kayton’s
instance. Figure 3.3a details the results obtained in Section 3.5.3 by depicting the weekly
outputs of the three products. This figure shows that the first product follows the demand
profile, while Products 2 and 3 are overproduced at the end of the horizon.

First, in Figure 3.3b, we start by limiting the inventory of the last period of Product 3
to four times the demand of the last period. Recall that Product 3 shares few non-critical
machines with other routes. Limiting its last period inventory has almost no impact on the
production plan of other products. Note that this additional constraint reduces the total
profit by 2% (considering an actualization rate of 0.95).

In Figure 3.3c, the inventory of the last period of Product 2 is limited to the demand
of the last period. This new constraint causes a transfer of production from Product 2 to
Product 1. This is because the routes of Products 1 and 2 share several critical machines.
Note that, in this case, adding a limit at the end of the horizon for Product 2 does not
significantly impact the total profit (a reduction of 0.3%).

3.7 Conclusion and perspectives

In this chapter, we introduced models with new objective functions that aim at optimizing
productivity and financial objectives for wafer manufacturing. These models were tested on
a data set of the literature and on a large-scale industrial data set. First, we proposed a
model that considers a classical industrial indicator (number of “moves”). The experiments
showed that there is a trade-off between productivity and classical costs (inventory costs
and backlog costs). Second, we developed a profit-driven model by introducing the NPV in
a profit function. The experiments illustrated that the profit-driven model ensures a better
productivity than a pure cost-driven model, but it can lead to overproduction (in particular
at the end of the horizon). Thus, we proposed to limit the inventory level of some products
at the end of the horizon. These limits are important for products that share capacities with
non-overproduced products.

In the future, it will be interesting to propose an approach to link these limits to the
demand forecasts (after the planning horizon) because, as stated in van den Heuvel and
Wagelmans (2005), knowing the future demand can considerably improve the solutions.
Another way to limit the extra inventory is to use a nonlinear function, i.e. a piecewise linear
function, such that the profit per unit of product decreases with the number of products in
the inventory. The profit per unit must be lower than the unit backlog cost to avoid favoring
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(a) No inventory limit

(b) Inventory limit on Product 3

(c) Inventory limit on Product 2

Figure 3.3: Weekly outputs by product (NPV model with β=0.95 and medium demand).
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the surplus of a product to meet the demand of another product. Figure 3.4 shows an
example of a piecewise linear profit function. The break point of the profit function could
be the target inventory of the product.
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Figure 3.4: Piecewise linear profit function

It will also be interesting to study the NPV objective function with financial closure dates
(e.g. quarters) to analyze the impact of closure dates and the end-of-horizon effects. In an
NPV objective function with closure dates, instead of having a depreciation at every macro-
period, the discount on profits occurs at some important financial macro-periods tj ∈ J ,
milestones such as the end of the month or end of the quarter, where facilities generally
have financial commitment. Let us assume that there cannot be two milestones in the same
macro-period. Thus, the objective can be written as follows:

max
∑

p∈P

∑

tj∈J

βj(

tj∑

tj−1+1

Gp × Y out
pt +

∑

s∈S
tfs≤tj+1

tss≥tj

hps × Ips + bps × Bps) (3.11)

where βj =
∏j

k=1 βk and tj=0 = 0 ∈ J .
An alternative to a NPV objective function with closure dates, that reproduces the

increase of inventory just before the closure dates, is to embed the NPV with a weekly
actualization on a rolling horizon where the last periods considered are the closure dates.
However, due to the length of the cycle times, it means that only a quarter could be used
as a closure date.

Note that other objective functions could be considered. For example, let us consider an
indicator which takes into account that machines are expensive and that managers want to
use them as much as possible in order to get a good return on investment. The indicator
could be the {Utilization time of Machine over the planning horizon} / {Machine price}.
By maximizing this indicator in the objective function, it may increase the productivity but
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the resulting plans could be different from the ones of the objective functions studied in this
chapter.

It can be noticed in this chapter, that the different models are compared using indicators
which are not specifically optimized. Even if profits, number of finished products and number
of "moves" seems strongly correlated, other solutions (with the same objective value) could
show better indicators. To clarify the advantages and drawbacks of the different objective
functions, lexicographic optimization could be used to determine the best possible value for
each indicator.

Finally, a strong limit of our models is the use of Fixed Lead Time constraints. The
limits of Fixed Lead Times are discussed in Chapter 4, and alternative lead time constraints
are proposed.
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Chapter 4

Flexible lead time in production plan-

ning

4.1 Introduction

Unlike Chapter 3, where different objectives have been studied, this chapter focuses on the
constraints used to model productions flows. Fixed lead times are certainly the most common
and easiest way to model congestion, but they suffer from some well-known drawbacks that
have pushed research towards iterative approaches and Clearing Functions. In this chapter,
we present another more flexible way to model lead times. In Section 4.2, fixed lead time
constraints and their drawbacks are discussed. In Section 4.3, new constraints called flexible
lead time constraints which replace fixed lead time constraints, are proposed. In Section
4.4, computational experiments are discussed, where different lead time profiles (fixed and
flexible) are compared on productivity, financial and cycle time indicators.

4.2 Drawback of fixed lead times

In Chapter 2.4, it was pointed out that the simplest way to model congestion is to use fixed
lead times, and that linear programming models with fixed lead time constraints can be
solved quickly. However, fixed lead times fail to take into account the circularity between
the quantities to be processed over a planning horizon and the induced capacity congestion.
Indeed, the relationship between the machine workloads and the actual lead times is not
explicitly modeled. These are not the only drawbacks of fixed lead time constraints (3.4).

First, note that the speed of resolution of models with fixed lead time constraints (de-
veloped in Chapter 3) is due to the fact that all production flows are determined by the
production releases. Due to Constraints (3.2) and (3.4), if a product is released in the
facility in period t, then operation l of the product will precisely be processed in period
t +

∑l

λ=1 LTλ. Hence, there are "only" TP important decision variables. However, this
limited number of decision variables considerably limits the operational decisions at the
scheduling level. Linear programming models with fixed lead time constraints can hardly
take into account changes in the product mix. More precisely, the fixed lead times usually
remain the same whether many products or very few products are being processed in the
factory. This is a classical drawback of MRP (Material Requirements Planning).

Second, the workshop capacity Ck is only consumed in period t+LTl, where l ∈ Lk is an
operation processed in workshop k and t is the period when a quantity of products arrived
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in the waiting queue for operation l. This means that, during LT − 1 periods (from t to
t+LTl−1), not a single product is assumed to be processed. This could be realistic in some
cases where products are being transported and waiting before being processed, but this is
irrelevant for most operations. The workload should be spread over the lead time, i.e. from
t to t+ LTl, rather than stressing the workshop capacity on a single period.

The combination of the two preceding effects can lead to an unnecessary reduction of
the production volumes, in particular if short fixed lead times are imposed. Because fixed
lead times must be satisfied, i.e. fixed lead time constraints are hard constraints, the only
adjustment variables are the quantities to produce.

Note also, that, if no history of past inputs is given, the first periods cannot be constrained
with fixed lead times larger than one period.

4.3 Flexible lead times

In this section, we introduce flexible lead time constraints that allow more flexibility in
production planning models than fixed lead time constraints. The principle of flexible lead
times is first discussed in Section 4.3.1. Then, in Section 4.3.2, flexible lead times are modeled
using flexible lead time constraints, formerly called WIP penetration constraints.

4.3.1 Principle

To answer most of their biases, fixed lead times are relaxed by considering minimum lead
times. With minimum lead times, products are not anymore forced to be processed and
go directly to the following operation after the end of the lead time, but can wait in the
Work-In-Process (WIP).

With flexible lead times, at any time, production capacity can focus on one product
(with high demand) during one period and on other products in subsequent periods. This is
not possible with fixed lead times, where each product must strictly follow the production
pace imposed by the lead times. Thus, using flexible lead times, it is possible to release as
many products as necessary in the factory while, when fixed lead times are imposed, the
release quantities are highly constrained by the production flows and how the lead times are
determined. In addition, only imposing minimum lead times means that products released in
a period may be processed during multiple periods after the minimum lead time. Hence, the
machine workload can be distributed over time, and be smoothed over the planning horizon.

To sum up, ensuring a minimum lead time without constraining the maximum lead time
to be identical allows the lead time to be flexible. Flexible lead times will be easier to satisfy
without disrupting the production flows.

4.3.2 Modeling

To the best of our knowledge, only two papers, (Hwang and Chang; 2003) and (Chen et al.;
2010), use constraints similar to the minimum lead time constraints discussed in Section
4.3.1. These constraints, called WIP penetration constraints, limit the number of operations
of a product that can be performed in a single period. With the right parameters, WIP
penetration constraints can model the minimum lead times discussed earlier, but can also
model minimum lead times on several consecutive operations.
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The first aim of WIP penetration constraints is to limit the flow of a product, by limiting
the number of operations that can be performed in a single period. In the following, these
constraints are called "flexible lead time constraints". Let us introduce omax(l), which is the
maximum number of operations before operation l (l included) which can be completed in
the same period as l. If there is no such limit, omax(l) is set to +∞. Constraints (4.1) below
are the flexible lead time constraints.

Yplt ≤
l∑

j=l−omax(l)

Wpj(t−1) ∀t ∈ {1, ..., T} ∀p ∈ {1, ..., P} ∀l ∈ Lp (4.1)

s.t. omax(l) 6= +∞

Constraints (4.1) bind the output of operation l with the Work-In-Process of the previous
operations, i.e. products which have not yet completed operation l − omax(l) cannot be
processed in operation l.

If omax(l) = 0, Constraints (4.1) ensure that only products already in the WIP of opera-
tion l can be processed, i.e. products will have to wait at least one period in the WIP of l,
which is a relaxation of the fixed lead time when LT = 1 (according to our industrial data,
a large majority of operations have a lead time smaller than 1).

In the model with fixed lead times (3.1)-(3.8), Constraints (3.4) are replaced by Con-
straints (4.1).

Property 1. For a product p, an operation l ∈ Lp and a period t, Constraint 4.1 with
omax = 0 is a relaxation of Constraint 3.4 with LT (l) = 1.

Proof. By mathematical induction on period t, it is possible to prove that, for product p

at operation l, Constraint (4.1) when omax(l) = 0 is a relaxation of Constraint (3.4) when
LT = 1.
Base case: When t = 1, because LT = 1, the initial WIP should be processed at period t = 1
but the first release products cannot. Thus Yplt = Wpl(t−1), which implies that Yplt ≤ Wpl(t−1).
Step case: Let t = τ and assume the induction hypothesis is true for t = τ − 1. Because
of Constraint (3.4), Yplt = Xpl(t−1). Then, using Constraint (3.3), Xpl(t−1) = Ypl(t−1) −
Wpl(t−2) + Wpl(t−1), thus Yplt = Ypl(t−1) − Wpl(t−2) + Wpl(t−1). By the induction hypothesis,
Ypl(t−1) ≤ Wpl(t−2), and thus Yplt ≤ Wpl(t−1). This concludes the proof.

When LT = 0, there are two possible relaxations. The first one is to set omax(l) = +∞,
and the second one is to remove the constraint. To reduce the size of the model, the second
option is chosen.

Moreover, Constraints (4.1) provide additional flexibility. By adjusting the parameter
omax(l), the limits on production flows can be relaxed to include the WIP of previous opera-
tions. Figure 4.1 shows the possible production flows that can be processed in operation l in
a single period when omax > 0, i.e. the products that are in the WIP of the omax operations
before l (l included). Products in the WIP of operation l− omax−1 and of operations earlier
in the route cannot be processed in operation l in a single period. A study of this additional
flexibility can be found in Section 4.4.3.
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op l-omax(l) op l-1 op l

WIP WIP WIP

Figure 4.1: Possible production flows processed in operation l in a single period

With flexible lead time constraints, many different models can be designed according to
the lead time profile used. In the following, 1 fixed lead time profile and 4 flexible lead time
profiles have been studied.

1. The first profile, Pfixed
LT , corresponds to the classical fixed lead times of Chapter 3.

2. The second profile, Pflex
LT , corresponds to the flexible lead times with parameters based

on profile Pfixed
LT , where products can wait in every operation as many periods as nec-

essary. The lead time constraints are relaxed as follows: If the fixed lead time for
operation l is equal to 0, then no constraint is used, otherwise a flexible lead time
constraint is introduced with omax(l) = 0.

3. Profile P
flex(+1)
LT , resp. P

flex(+2)
LT , is similar to profile Pflex

LT except that, rather than having
omax(l) = 0, omax(l) is set to 1, resp. 2. This means that only the WIP of the last
two, resp. three, operations can be processed in the operation where the lead time was
(strictly) positive. The impact of varying this parameter is studied in Section 4.4.3.

4. The last profile, Pflex
PT , corresponds to flexible lead times, but it is based on the actual

processing times, i.e. it is not related to the four other lead time profiles. With profile
Pflex

PT , production flows are only limited by the maximum number of operations for a
product that can be completed in a period, according to the cumulative process times
of these operations. In a sense, it is a relaxation of the previous model where delays
are not induced by exogenous parameters, but only by physical constraints. It is used
in Section 4.4.2 as the perfect plan where no congestion occurs.

4.4 Computational experiments

The design of our computational experiments is first introduced in Section 4.4.1. Then,
the results obtained with fixed lead time constraints and flexible lead time constraints are
compared in Section 4.4.2. Finally, in Section 4.4.3, we study, in a model with flexible lead
time constraints, the impact of the parameter omax(l), which introduces more flexibility in
the production flows but also change the cycle times.

4.4.1 Design of experiments

The five lead time profiles previously discussed are studied in this part.
The objective function (3.10) maximizing profit is considered with an actualization rate

β = 1 to mitigate the costs in the first periods induced by the lack of initial WIP. The costs
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are the ones in Table 1.2. Note that WIP management costs are needed to prevent models
with flexible lead times from introducing unnecessary products that may impact indicators
such as cycle times and machine utilization rates.

Note that we decided to only use the industrial instances in the experiments of this
section.

As indicated in Chapter 3, the initial WIP of the industrial data set induces unfeasible
solutions with the fixed lead time profile (which is not the case with the flexible lead time
profiles). For this reason, we first study the different lead time profiles without an initial
WIP (leading to large backlog costs). Then, the lead times profiles are studied with an initial
WIP that may not match the demand of the first periods. The planning horizon includes 91
micro-periods (equivalent to 13 macro-periods, approximately three months).

Note that a "real cycle time" (rCT) indicator is introduced. The real cycle time is
computed as the sum of the average "real lead times" computed for each operation. The
"real lead time" is the number of periods that are needed, in the optimized production plans,
to process a quantity of products that is released and the current WIP.

Note that the inherent complexity of each lead time profile should not be overlooked. The
average computational times of the solver for profiles Pfixed

LT , Pflex
LT and Pflex

PT , summarized in
Tables 4.1 and 4.2, are quite different. There is at least a factor 10 between the computational
times of each profile, making Pflex

PT the hardest profile to solve.

Table 4.1: Computational times (in seconds) for lead time profiles without initial WIP

Pfixed
LT Pflex

LT Pflex
PT

Avg. comput. time 75 1,391 18,926

When considering an initial WIP, the computational time slightly increases for profiles
Pflex

LT and Pflex
PT , with an increase of respectively 29% and 9%. Regarding fixed lead times, no

increase in computational time is observed.

Table 4.2: Computational times (in seconds) for lead time profiles with initial WIP

Pfixed
LT Pflex

LT Pflex
PT

Avg. comput. time 75 1,789 20,723

4.4.2 Comparison of fixed and flexible lead times

Production indicators

Profiles Pfixed
LT , Pflex

LT and Pflex
PT are compared using the industrial instances in the different

demand scenarios. Tables 4.3, 4.4 and 4.5 show, for the three lead time profiles and without
initial WIP: The total profit, the total output of finished products, the number of "moves",
the average and the standard deviation of the workshop utilization rates. Tables 4.6, 4.7
and 4.8 are equivalent to Tables 4.3, 4.4 and 4.5, but when there is an initial WIP.

First, note that, even if profile Pfixed
LT always leads to negative profits without initial WIP,

in a perfect world represented by Pflex
PT , large profits can be reached. A notable remark is

that the flexible relaxation of profile Pflex
LT allows large cost reduction (at least divided by a

factor 2) and even positive profits in the case of low demand when there is no initial WIP.
When an initial WIP is considered, the profit increase is huge, multiplied by more than 4
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Table 4.3: Comparison of fixed and flexible lead times without initial WIP and high demand

Pfixed
LT Pflex

LT Pflex
PT

Total profit -205,459 -126,070 216,270
Total output 3,130 4,044 (+29%) 4,539 (+45%)
# moves 535,688 597,441 672,525
Utilization rate
of workshops

Mean 46.6% 52.5% 58.8%
Std. dev. 21.8% 24.2% 17.8%

Table 4.4: Comparison of fixed and flexible lead times without initial WIP and medium
demand

Pfixed
LT Pflex

LT Pflex
PT

Total profit -172,483 -93,128 228,400
Total output 3,091 4,026 (+30%) 4,812 (+56%)
# moves 534,546 597,856 679,491
Utilization rate
of workshops

Mean 46.5% 52.5% 59.6%
Std. dev. 21.8% 24.5% 18.0%

Table 4.5: Comparison of fixed and flexible lead times without initial WIP and low demand

Pfixed
LT Pflex

LT Pflex
PT

Total profit -133,077 -52,554 243,481
Total output 3,064 4,055 (+32%) 5,137 (+68%)
# moves 534,709 598,673 688,112
Utilization rate
of workshops

Mean 46.4% 52.6% 60.5%
Std. dev. 21.9% 24.6% 17.3%

Table 4.6: Comparison of fixed and flexible lead times with initial WIP and high demand

Pfixed
LT Pflex

LT Pflex
PT

Total profit -16,069 73,955 285,543
Total output 3,626 4,763 (+31%) 5,960 (+64%)
# moves 554,338 610,158 699,992
Utilization rate
of workshops

Mean 48.5% 54.1% 62.1%
Std. dev. 17.8% 21.6% 15.6%

Table 4.7: Comparison of fixed and flexible lead times with initial WIP and medium demand

Pfixed
LT Pflex

LT Pflex
PT

Total profit 2,602 97,551 (+3,649%) 296,886 (+11,310%)
Total output 3,740 4,958 (+33%) 6,200 (+66%)
# moves 556,639 617,218 706,005
Utilization rate
of workshops

Mean 48.7% 54.8% 62.8%
Std. dev. 17.9% 21.1% 14.9%
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Table 4.8: Comparison of fixed and flexible lead times with initial WIP and low demand

Pfixed
LT Pflex

LT Pflex
PT

Total profit 22,224 126,414 (+469%) 310,844 (+1299%)
Total output 3,888 5,308 (+37%) 6,553 (+68%)
# moves 555,150 627,702 713,628
Utilization rate
of workshops

Mean 48.8% 55.9% 63.7%
Std. dev. 18.2% 20.8% 12.5%

when they are positive. This increase can be linked to the increase of the number of finished
products (close to 30%), which is half of the maximal number of finished products observed
with Pflex

PT . The increase of the number of finished products is followed by an increase of
the number of "moves" and of the workshop utilization rates. Note that the small average
utilization rate of workshops (about 50% of the capacity) hides the fact that the utilization
rate significantly varies from one workshop to another. Critical workshops are very much
used, and some others very little. For example, in the scenario with medium demand,
without initial WIP and when considering profile Pfixed

LT , the most used workshop has an
average utilization rate of 84%, while the average utilization rate of the least used workshop
is only 9%. The average utilization rates of other workshops range between 40% and 70%.
The standard deviation only reflects the variation of the utilization rate on the horizon and
not between the workshops. Profile Pflex

LT also leads to a slightly larger variability in the use
of the workshops, which can be attributed to the flexibility of the production plan.

To analyze how the costs are decreasing, let us focus on the backlogged quantities. The
inventory is very low, except in the last period with every lead time profile when there is
no initial WIP. In fact, with flexible lead times, because WIP management costs are much
smaller than inventory costs, it is almost always better to stop products a few operations
before they are completed, in order to avoid the inventory costs. The only reason to pay
inventory costs is if the workshops used by the last operations are saturated during the
macro-period of the demand. The only large inventories are observed for Pfixed

LT when there
is an initial WIP, but these inventories are mainly due to the initial WIP that does not
match with the demand. Note that this is not a problem with flexible lead time profiles,
since there is no limit on how much the WIP can wait at an operation. However, the main
cause of the profit increase is the increase of the number of finished products that was
already discussed, although the backlog reduction is not negligible. Figures 4.2a, 4.2b and
4.2c show the backlogged quantities on the planning horizon when there is no initial WIP,
where "FixLT" corresponds to profile Pfixed

LT , "FlexLTeq" to profile Pflex
LT and "FlexPTbased"

to profile Pflex
PT . Figures 4.3a, 4.3b and 4.3c are equivalent when there is an initial WIP. In

each figure, the backlog linearly increases until the sixth macro-period for profiles Pfixed
LT and

Pflex
LT . The largest backlog ends on the scenario, ranging from 900 (Low demand) to 1100

(High demand) without an initial WIP and from 500 to 600 with an initial WIP. Note that,
with profile Pflex

LT , the backlog begins to decrease in exactly the same macro-period as profile
Pfixed

LT , but the decrease is much more impressive. About Pflex
PT , the backlog is only in the first

period, which explains why the profits are much higher.

Cycle times

Finally, the production flows and their cycle times have not yet been discussed. Tables 4.9,
4.10 and 4.11 show, for every product, the mean of the real cycle times and the number of
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(a) High demands

(b) Medium demands

(c) Low demands

Figure 4.2: Weekly backlogged quantities for profiles Pfixed
LT , Pflex

LT and Pflex
PT with industrial

instance C200 without initial WIP.
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(a) High demands

(b) Medium demands

(c) Low demands

Figure 4.3: Weekly backlogged quantities for profiles Pfixed
LT , Pflex

LT and Pflex
PT with industrial

instance C200 with initial WIP.
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products for which the real cycle time matches with the cycle time observed with fixed lead
times (with a tolerated gap of one micro-period). Note that the cycle times of products for
Pflex

PT can be smaller than the cycles times of products when fixed lead times are considered,
i.e. for Pflex

LT . Tables 4.12, 4.13 and 4.14 are equivalent to Tables 4.9, 4.10 and 4.11 with an
initial WIP.

Note that, with an initial WIP, it is not possible to compute the cycle time of several
products because the initial WIP is enough to meet the demand. Another issue occurring
with or without initial WIP is that some products are not even produced, thus, depending
on the profile of lead times, the mean of the cycle times does not exactly include the same
products. Note also that the average real cycle time may not be the most accurate indicators
of the changes in the production flows, because it does not take into account the quantities of
products associated with each cycle time. A weighted average of real cycle times (weighted
by the quantities of finished products) would be a more relevant indicator.

Table 4.9: Comparison of cycle times for fixed and flexible lead times without initial WIP
and high demand

Pfixed
LT Pflex

LT Pflex
PT

Average rCT 54.7 72.8 11.3
Nb products with minimum CT 70/70 9/70 0/70

Table 4.10: Comparison of cycle times for fixed and flexible lead times without initial WIP
and medium demand

Pfixed
LT Pflex

LT Pflex
PT

Average rCT 54.9 71.4 12.1
Nb products with minimum CT 70/70 9/70 0/70

Table 4.11: Comparison of cycle times for fixed and flexible lead times without initial WIP
and low demand

Pfixed
LT Pflex

LT Pflex
PT

Average rCT 54.9 74.5 12.9
Nb products with minimum CT 70/70 8/70 0/70

Table 4.12: Comparison of cycle times for fixed and flexible lead times with initial WIP and
high demand

Pfixed
LT Pflex

LT Pflex
PT

Average rCT 54.2 71.4 23.1
Nb products with minimum CT 70/70 5/70 0/70

The average cycle time for profile Pfixed
LT is approximately equal to 55 micro-periods, while

it is equal to 70 micro-periods for profile Pflex
LT . Fixed lead time constraints ensure that the

expected cycle times are exactly met. The average cycle time significantly increases with
profile Pflex

LT , and only 10% of the products reach the cycle time of fixed lead times. This
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Table 4.13: Comparison of cycle times for fixed and flexible lead times with initial WIP and
medium demand

Pfixed
LT Pflex

LT Pflex
PT

Average rCT 54.1 70.8 24.8
Nb products with minimum CT 70/70 4/70 0/70

Table 4.14: Comparison of cycle times for fixed and flexible lead times with initial WIP and
low demand

Pfixed
LT Pflex

LT Pflex
PT

Average rCT 54.8 68.9 24.9
Nb products with minimum CT 70/70 5/70 1/70

means that, by lengthening the cycle time of specific products, it is possible to meet more
demands. This is because the additional flexibility in the production flows helps to better
use the production capacity.

It can also be seen that, with profile Pflex
PT , the average cycle time ranges between 25%

(without initial WIP) and 50% (with initial WIP) of the average cycle time of profile Pfixed
LT .

This is what could be expected if only process times are considered. In a sense, it matches

the industrial reality where the ratio
Cycle time

∑process times, called Xfactor, is always larger than

3.
We can conclude that the flexible lead times better handle the backlogs and inventories

that are due to the initial WIP that is inadequate to meet the demand. Thus, flexible
lead times are more appropriate than fixed lead times when demands are changing (or the
forecasts are updated), which makes it relevant in semiconductor manufacturing.

4.4.3 Analysis of the impact of parameter omax

In this section, we compare the results of profiles Pflex
LT , Pflex(+1)

LT and Pflex(+2)
LT when the

parameter omax is modified. The goal is to study the impact of the flexibility associated with
allowing more operations in a period on total profit and productivity.

Profit and productivity indicators

Tables 4.15, 4.16 and 4.17 (resp. Tables 4.18, 4.19 and 4.20) show the profit and productivity
indicators for the numerical experiments without an initial WIP (resp. with an initial WIP).

Table 4.15: Variation of parameter omax(l) without initial WIP and high demand

Pflex
LT Pflex(+1)

LT Pflex(+2)
LT

Total profit -126,070 -82,913 -22,281
Total output 4,044 4,265 (+5%) 4,184 (+3%)
# moves 597,441 608,832 625,143
Utilization rate
of workshops

Mean 52.5% 53.4% 54.7%
Std. dev. 24.2% 23.2% 24.0%
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Table 4.16: Variation of parameter omax(l) without initial WIP and medium demand

Pflex
LT P

flex(+1)
LT P

flex(+2)
LT

Total profit -93,128 -51,070 9,166
Total output 4,026 4,200 (+4%) 4,202 (+4%)
# moves 597,856 604,880 621,706
Utilization rate
of workshops

Mean 52.5% 53.1% 54.4%
Std. dev. 24.5% 23.8% 24.0%

Table 4.17: Variation of parameter omax(l) without initial WIP and low demand

Pflex
LT P

flex(+1)
LT P

flex(+2)
LT

Total profit -52,554 -14,476 43,451
Total output 4,055 4,155 (+2%) 4,263 (+5%)
# moves 598,673 602,142 623,102
Utilization rate
of workshops

Mean 52.6% 53.0% 54.6%
Std. dev. 24.6% 23.9% 24.1%

Table 4.18: Variation of parameter omax(l) with initial WIP and high demand

Pflex
LT P

flex(+1)
LT P

flex(+2)
LT

Total profit 73,955 109,186 (+48%) 147,980 (+100%)
Total output 4,763 4,835 (+2%) 5,103 (+7%)
# moves 610,158 614,091 636,942
Utilization rate
of workshops

Mean 54,1 54.5% 56.4%
Std. dev. 21.6 20.8% 20.8%

Table 4.19: Variation of parameter omax(l) with initial WIP and medium demand

Pflex
LT Pflex(+1)

LT Pflex(+2)
LT

Total profit 97,551 131,558 (+35%) 168,063 (+72%)
Total output 4,958 5,123 (+3%) 5,359 (+8%)
# moves 617,218 622,279 645,117
Utilization rate
of workshops

Mean 54.8% 55.3% 57.2%
Std. dev. 21.1% 20.2% 20.6%

Table 4.20: Variation of parameter omax(l) with initial WIP and low demand

Pflex
LT P

flex(+1)
LT P

flex(+2)
LT

Total profit 126,414 158,919 (+26%) 192,820 (+53%)
Total output 5,308 5,489 (+3%) 5,660 (+7%)
# moves 627,702 632,433 652,575
Utilization rate
of workshops

Mean 55.9% 56.4% 58.1%
Std. dev. 20.8% 19.6% 19.7%
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By allowing more flexibility on the lead time constraints, the total profit increases sharply.
For example, with an initial WIP and a high demand and compared to Pflex

LT , the total profit

increases by nearly 50% with P
flex(+1)
LT and doubles with P

flex(+2)
LT . However, the increase of

the number of finished products is more limited (at most 8% with P
flex(+2)
LT , medium demand

and an initial WIP) and cannot explain the significant increase of the total profit. Again,
the main reason is the reduction in backlog as shown in Figures 4.4a, 4.4b, 4.4c, 4.5a, 4.5b
and 4.5c, where "FlexLTeq" stands for Pflex

LT , "FlexLTeq+1" for P
flex(+1)
LT and "FlexLTeq+2"

for P
flex(+2)
LT . All backlog curves show the same linear increase in the first macro-period,

except for P
flex(+2)
LT where the decrease starts one macro-period before the other profiles. The

curves are somehow nested. While allowing more flexibility on the lead times, backlogs can
decrease more quickly.

The number of "moves" and the average workshop utilization rate are correlated to the
total output of finished products. When considering the standard deviation of the workshop
utilization rates, nothing can be concluded.

Cycle times

Tables 4.21, 4.22, 4.23, 4.24, 4.25 and 4.26 show the cycle times observed with flexible lead
times and the number of products that have a cycle time close to the cycle time observed
with fixed lead times. When considering an initial WIP, the average cycle time is shorter
with profiles Pflex(+1)

LT and P
flex(+2)
LT than the average cycle time with Pflex

LT . To explain these
smaller cycle times, the tables also give the number of products with an average cycle time
that is shorter than the cycle times given by the fixed lead times. Even without an initial
WIP, where the cycle times are larger than those with profile Pflex

LT , an increasing number
of products have a shorter cycle time than the cycle time obtained with fixed lead times.
This number is between 4 and 13 with profile P

flex(+1)
LT and doubles with profile P

flex(+2)
LT . As

expected, there is not such reduced cycle times with profile Pflex
LT .

Table 4.21: Cycle times observed when varying omax(l) without initial WIP and high demand

Pflex
LT P

flex(+1)
LT P

flex(+2)
LT

Avg rCT 72.8 75.6 74.3
Nb products with minimum CT 9/70 7/70 3/70
Nb products with CT
under minimum CT

0/70 7/70 13/70

Table 4.22: Cycle times observed when varying omax(l) without initial WIP and medium
demand

Pflex
LT P

flex(+1)
LT P

flex(+2)
LT

Avg rCT 71.4 79.9 72.3
Nb products with minimum CT 9/70 10/70 3/70
Nb products with CT
under minimum CT

0/70 6/70 16/70

If the average cycle time decreases when omax(l) increases, it is not only due to the
added flexibility, but also to the lead time constraints that are too relaxed, thus leading to a
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(a) High demands

(b) Medium demands

(c) Low demands

Figure 4.4: Weekly backlogged quantities for profiles Pflex
LT , P

flex(+1)
LT and P

flex(+2)
LT with indus-

trial instance C200 without initial WIP.
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(a) High demands

(b) Medium demands

(c) Low demands

Figure 4.5: Weekly backlogged quantities for profiles Pflex
LT , Pflex(+1)

LT and Pflex(+2)
LT with indus-

trial instance C200 with initial WIP.
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Table 4.23: Cycle times observed when varying omax(l) without initial WIP and low demand

Pflex
LT Pflex(+1)

LT Pflex(+2)
LT

Avg rCT 74.5 75.7 78.6
Nb products with minimum CT 8/70 11/70 6/70
Nb products with CT
under minimum CT

0/70 4/70 12/70

Table 4.24: Cycle times observed when varying omax(l) with initial WIP and high demand

Pflex
LT P

flex(+1)
LT P

flex(+2)
LT

Avg rCT 71.4 61.2 59.9
Nb products with minimum CT 5/70 11/70 7/70
Nb products with CT
under minimum CT

0/70 11/70 23/70

Table 4.25: Cycle times observed when varying omax(l) with initial WIP and medium demand

Pflex
LT Pflex(+1)

LT Pflex(+2)
LT

Avg rCT 70.8 63.8 60.3
Nb products with minimum CT 4/70 13/70 3/70
Nb products with CT
under minimum CT

0/70 10/70 24/70

Table 4.26: Cycle times observed when varying omax(l) with initial WIP and low demand

Pflex
LT Pflex(+1)

LT Pflex(+2)
LT

Avg rCT 68.9 64.1 61.1
Nb products with minimum CT 5/70 13/70 4/70
Nb products with CT
under minimum CT

0/70 13/70 24/70
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shorter minimum cycle time. The number of products with a cycle time shorter than expected
increases with omax(l). The reason might be that there are occurrences of overlapping flexible
lead times. Figures 4.6 and 4.7 give an example of such phenomena. Figure 4.6 illustrates
the production flows when two successive operations l and l + 1 have a positive lead time.
A product that completes operation l − 1 in period t will, at the earliest, be processed in
operation l in period t + 1, and therefore be processed in operation l + 1 in period t + 2.
However, as shown in Figure 4.7, by increasing omax and allowing one additional operation,
production quantities might not wait one period in the WIP of operation l+ 1, leading to a
reduction of one period of the minimum cycle time. More generally, the flexible lead times
of two operations l and l′, l 6= l′ overlap if their ranges [l − omax(l), l] and [l′ − omax(l

′), l′]
overlap.

The larger omax(l), the larger the number of overlapping lead times. Thus, when es-
tablishing a flexible lead time profile, we should be careful of the minimum cycle time it
induces.

op l

LT=1

op l + 1

LT=1WIP WIP

Period t Period t+ 1 Period t+ 2

Figure 4.6: Production flows with a fixed lead time of 1 period for two consecutive operations
(or equivalently with flexible lead times and omax = 0)

op l

LT=1

op l + 1

LT=1WIP WIP

Period t Period t+ 1

Figure 4.7: Possible production flows with flexible lead times and omax = 1
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4.5 Conclusions and perspectives

In this chapter, we have introduced flexible lead times, which are an alternative and a
relaxation of fixed lead times and which allow production flows to be more flexible. Flexible
lead times help to increase productivity but also reduce costs or increase profits, although
longer cycle times may be incurred. They make it possible to complete more finished products
by better using production capacity. Another modeling advantage of considering flexible lead
time constraints is that it is possible to adjust the degree of flexibility through the parameters
omax(l).

Depending on the setting of the parameters omax(l) in the flexible lead time constraints,
various flexible lead time profiles can be proposed. However, a first obstacle to the use of
flexible lead times is the sharp increase in the computational times of linear programs with
flexible lead time constraints. Another critical point to investigate is that the cycle times
of products subject to flexible lead time constraints are not limited, and can therefore be
very long and vary considerably for the same product. This may not be acceptable in an
industrial context. Indeed, with the flexible lead time constraints proposed in this chapter,
production flows cannot be traced and easily controlled as it is the case with fixed lead
times. These problems are solved by the reformulation of our production planning problem
proposed and solved in Chapter 5.
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Chapter 5

Timed routes approaches for produc-

tion planning

5.1 Introduction

As shown in Chapter 4, mathematical models with flexible lead times can take hours to be
solved. To address the semiconductor production planning problem in reasonable computa-
tional times, we propose the concept of timed routes. In the timed route of a product, each
production operation of the route of the product is assigned to a period in the planning hori-
zon. Timed routes are designed so that it is easy to use a column generation approach when
the number of timed routes is exponential in the mathematical model. Another drawback of
allowing flexible lead times is that, because lead times have no upper bounds, products may
remain in the manufacturing system too long and have very long cycle times. However, a
major advantage of timed routes is that the cycle time of products can be limited, by only
considering timed routes with a maximum number of periods between the period assigned
to the first operation of the route and the period assigned to the last operation of the route.
This chapter is structured as follows. Section 5.2 completes the literature review of Chap-

ter 2 with an overview of column generation approaches for production planning. Then, in
Section 5.3, a reformulation based on the new concept of timed routes is proposed. When
modeling flexible lead times instead of fixed lead times, the number of timed routes becomes
exponential. Hence, a column generation approach is presented in Section 5.4 to solve the
problem with flexible lead times. Computational experiments on industrial data are con-
ducted in Section 5.5, that shows the efficiency of the timed route reformulation. Conclusions
are drawn and future research directions are provided in Section 5.6.

5.2 Literature review on column generation for produc-

tion planning

Column generation has been successfully applied to various optimization problems such as
vehicle routing problems (e.g. Ceselli et al.; 2009), airplane crew scheduling problems (e.g.
Gamache et al.; 1999) or machine scheduling problems (e.g. van Den Akker et al.; 1999).
Column generation was introduced by Dantzig and Wolfe (1960), and consists in separating
the original problem into a master problem and a pricing problem that generates useful
columns for the master problem. At first, a Restricted Master Problem (RPM) with a
limited number of columns is solved. Then, using reduced costs, the pricing problem is
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solved to find one or several columns to add to the RPM. The process is iterated until
no new column is found. To better understand column generation, the reader can refer to
Barnhart et al. (1998), where different strategies of generation are discussed (in a branch
and price framework) or the extensive tutorial of Desrosiers and Lübbecke (2005).

In production planning and lot sizing, the first work on column generation was published
by Manne (1958), two years prior to the seminal paper of Dantzig and Wolfe (1960). Manne’s
paper is partially deficient and was corrected and implemented in Degraeve and Jans (2007).
Column generation was applied to solve lot-sizing problems in several kinds of industries such
as the tire industry (Jans and Degraeve; 2004), the paper industry (Bredström et al.; 2004)
and the steel industry (Yi et al.; 2019). The most commonly used column type is a production
plan column that specifies the production periods. However, in terms of production planning
without set-up costs, the production periods are not critical. That is why the formulation
proposed in our study is significantly different. As far as we know, column generation was
never applied to solve a multi-product multi-step lot-sizing problem.

In semiconductor manufacturing, to the best of our knowledge, column generation was
never used to solve production planning problems. Even in the entire semiconductor man-
ufacturing literature, only four articles using column generation were spotted: On lot allo-
cation to customers (Ng et al.; 2010), on cutting wafers (Nisted et al.; 2011), on capacity
expansion (Kim and Uzsoy; 2008) and on scheduling (Jampani and Mason; 2010).

5.3 A novel formulation using timed routes

In this section, a reformulation of the mathematical models introduced in Chapters 3 and 4 is
proposed. The new model is based on the new concept of “timed route” which is formalized in
Section 5.3.1. Timed routes allow production flows to be fully modeled. The mathematical
model using timed routes is introduced in Section 5.3.2. In Section 5.3.3, a polynomial time
algorithm to generate all possible timed routes with fixed lead times is presented.

5.3.1 Concept of timed route

Note that Leachman and Carmon (1992) were the first to discuss a route based formulation of
the semiconductor manufacturing production problem. Unfortunately, the authors discarded
the idea due to the large number of decision variables required by the model.

A production route is the sequence of operations that a product needs to follow to be
completed (see Figure 5.1). A timed route is a production route for which a processing
period is assigned to each operation (see Figure 5.2). More formally, in a timed route r, a
period t(p, r, l) is assigned to each operation l in the route of product p. For example, in
Figure 5.2, the timed route starts at period t and is completed at period t(p, r, |Lp|). Thus,
the cycle time of a timed route r of product p is:

CT (p, r) = t(p, r, |Lp|)− t(p, r, 1) + 1

With timed routes, it is possible to detail the production flows, and to know exactly where
and when capacity is consumed. The cycle time related to a timed route is explicit, contrary
to the classical lead time formulations of Chapter 3, where determining the cycle time means
looking at the set of lead time constraints on the operation of the route to extract the total
cycle time (and this is even more true with the flexible lead times of Chapter 4, where
only the minimum cycle time can be computed). With the full view of possible production
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flows, inconsistent or useless timed routes can be discarded. The timed routes could be
validated based on industrial knowledge. Moreover, new constraints on production flows can
be introduced such as minimum and maximum cycle times.

op 1 op l-1 op l op l+1 op |Lp|

Figure 5.1: A production route

t(p, r, 1) = t t(p, r, l-1) = t
t t+ 1 t(p, r, | Lp |)

Periods

op 1 op l-1 op l op l+1 op |Lp|

Figure 5.2: A timed route

5.3.2 Mathematical model

In the following, the timed route model is formalized. Let us denote Rp the set of timed
routes of product p. With each timed route r ∈ Rp, a Work in Process (WIP) management
unitary cost wpr is associated. The WIP cost of a timed route is equivalent to the sum of the
WIP costs of the different operations on the time horizon. Only the first operation of each
period (except for the first period) carries a WIP cost. This WIP cost can be counted several
times if no operation takes place in the subsequent periods. Let us write the total WIP cost of

a given timed route r,
∑

l∈Lp

b
pr
l wpl, where b

pr
l is the number of periods between the processing

periods of operation l− 1 and operation l in timed route r, i.e. bprl = t(p, r, l)− t(p, r, l− 1).
Note that waiting before the first operation of a route is not allowed, i.e. bpr1 = 0.

Let aprlt be a binary parameter which is equal to 1 if, in timed route r ∈ Rp of product p,
operation l is processed in period t, and is equal to 0 otherwise. Zpr is the decision variable
that corresponds to the quantity released on timed route r. Recall in table 5.1, the previous
notation of parameters and variables that remain used.

The timed route formulation is given below.
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Variables
Ips Inventory level of product p at the end of macro-period s

Bps Backlog level of product p at the end of macro-period s

Parameters
hps Unit inventory cost of product p at the end of macro-period s

bps Unit backlog cost of product p at the end of macro-period s

Ck is the daily capacity of workshop k

αpl Unit resource consumption of operation l of product p
Dps Demand of product p at the end of macro-period s

Table 5.1: Parameters and variables previously used

min
P∑

p=1

∑

r∈Rp

wprZpr +
P∑

p=1

S∑

s=1

(hpsIps + bpsBps) (5.1)

s.t.
P∑

p=1

∑

r∈Rp

∑

l∈Lk

a
pr
lt αplZpr ≤ Ck ∀k ∈ {1, . . . , K} ∀t ∈ {1, . . . , T} (5.2)

Ips ≥
∑

r∈Rp

tfs∑

τ=1

a
pr

|Lp|τ
Zpr −

s∑

σ=1

Dpσ ∀p ∈ {1, . . . , P} ∀s ∈ {1, . . . , S} (5.3)

Bps ≥ −
∑

r∈Rp

tfs∑

τ=1

a
pr

|Lp|τ
Zpr +

s∑

σ=1

Dpσ ∀p ∈ {1, . . . , P} ∀s ∈ {1, . . . , S} (5.4)

Zpr, Ips, Bps ≥ 0 ∀p ∈ {1, . . . , P} ∀r ∈ Rp ∀s ∈ {1, . . . , S} (5.5)

The objective function (5.1) minimizes the total backlog, inventory andWIP management
cost induced by the selected timed routes, which is equivalent to the objective function
(3.1). Constraints (5.2) model the limit on capacity consumption in each workshop at every
period, and correspond to Constraints (3.6). Constraints (5.3) and (5.4) ensure the inventory
balance. They are equivalent to Constraints (3.5) but are written separately to simplify the
writing of the dual problem. This formulation can be seen as a set covering problem.

5.3.3 Generation of timed routes associated with fixed lead times

Let us show how the set of timed routes is determined when fixed lead times are considered.
Due to Constraints (3.2) and (3.4) in the model with fixed lead times, all production flows
on a route follow the same pattern. If t is the first period of the route and |Lp| the number
of operations of product p, then the pattern can be designed as the timed route in Figure

5.3. The pattern is used for every period t with t ≤ T −
∑|Lp|

l=2 LTl. The complexity of an
algorithm creating all these timed routes is O(P |L|T ), where |L| is the average number of
operations in a route.

5.4 A column generation approach for flexible lead times

Because, as shown in this section, the number of timed routes with flexible lead times is
exponential, we propose a column generation approach to solve the timed route formulation.
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op 1

t

op 2

t+ LT2

op λ

t+
∑λ

l=2 LTl

op |Lp|

t+
∑|Lp|

l=2 LTl

Periods

Figure 5.3: Pattern of timed routes with Fixed Lead Times

In Section 5.4.1, a dynamic programming algorithm that generates all the timed routes when
considering flexible lead times is described. The column generation approach is introduced
in Section 5.4.2, where reduced costs associated with timed routes are evaluated and used
to implement a dominance rule to strengthen the algorithm of Section 5.4.1.

5.4.1 Dynamic program to generate timed routes for flexible lead

times

Using timed routes, all production flows can be described and traced. Thus, we can consider
other production flows than the ones generated using fixed lead times. Considering several
timed routes with different lead times for one operation leads to more flexibility. This is
the case with the flexible lead times presented in Chapter 4. Furthermore, when using the
timed route formulation with flexible lead times, it is possible to avoid products with too
large cycle times.

To establish a timed route, each operation needs to be assigned to a period in the horizon.
Representing this assignment by a graph, nodes are labeled (s,c,t,l) where s is the index of
the current partial route, c the current partial cost, t the period and l the last operation of
the partial timed route s. The directed edges are the possible sequences of nodes. Due to
the structure of a route, the graph can be seen as a graph with levels. Figure 5.4 provides
an example of such graph, with 2 operations and 3 periods. Using this kind of graphs, an
algorithm generating dynamically the edges and new vertices level by level will work well.

Rather than exploring the total space of possible states, the number of vertices is reduced
by using omax(l), the maximum number of operations processable after operation l in the
same period than l. The vertices and edges which can be used when omax(l) = 1 for every
operation are traced with plain arrows and in blue in Figure 5.4. Even with this reduction,
the total number of timed routes for product p is still in O(|Lp|

T ) because, at each operation
of the route, a period between 1 and T can be assigned.

A dynamic program can be implemented as described in Algorithms 5.1 and 5.2. The
main algorithm (Algorithm 5.1) generates all timed routes. It starts with a set of partial
timed routes only containing the partial timed route with no period assigned, labeled (0,0,0).
For each period, the algorithm tries to extend the set of partial timed routes by looking for
the children nodes of each partial timed route. This procedure is developed in Algorithm
5.2.

In Algorithm 5.2, the partial time routes are returned, which extend the input partial
timed route in period t. Extending a partial timed route means looking for each outgoing
edge from the last node in the graph depicted earlier. The number of partial timed routes
generated is omax(l) where l is the last operation assigned in the input partial timed route.
The information on the last operation is updated in the new partial timed routes.
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(0,0,0)

End

Non reachable nodes when omax(l) = 1

Period 1 Period 2 Period 3

(0,1,0) (0,2,0) (0,3,0)

(c1,1,1)

(c2,1,2)

(c3,2,1)

(c4,2,1)

(c5,2,2)

(c6,2,2)

(c7,3,1)

(c8,3,1)

(c9,3,1)

(c10,3,2)

(c11,3,2)

(c12,3,2)

Figure 5.4: Graph of states: Example with 2 operations and 3 periods

The dynamic program explores all possibilities, which leads to an exponential number of
routes. Assuming that the complexity of generating a new partial timed route is in O(1),
the total complexity of the algorithm is O(|Lp|

T ) for product p.

Algorithm 5.1 Generation of timed routes

CTR = ∅ // CTR: Set of complete timed routes
ir // ir: Initial partial timed route
lastop(ir)= 0 // No operation allocated in ir

PTR = {ir} // PTR: Set of current partial timed routes
for t = 1 to T do

for all s ∈ PTR do
CreateExtensions(s,t)

end for
end for
return CTR
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Algorithm 5.2 CreateExtensions(s,t)

l = lastop(s) + 1
for e = 0 to omax(l) do
sr = s

for i = 0 to e do
op(sr, l + i) = t

end for
lastop(sr)= l + e

if l + e = |Lp| then
CTR = CTR ∪ {sr}

else
PTR = PTR ∪ {sr}

end if
end for

5.4.2 Column generation approach

The set of timed routes for flexible lead times is exponential, as shown by the complexity
of the dynamic program. To handle this issue, we propose a column generation approach,
in which timed routes are generated dynamically. The framework of the approach can be
found in Figure 5.5.

Initial set of timed routes

Solve RMP
(Restricted Mas-
ter Problem)

Solve Pric-
ing Problem
Generation of
timed routes

New timed
route(s)? Problem solved

Add new column(s)

Dual variables
Yes

No

Figure 5.5: Framework of column generation approach for production planning

The master problem corresponds to the model in Section 5.3.2. Thus, the Restricted
Master Problem (RMP) is written with a restricted set of timed routes for each product.
The restricted set of timed routes is initialized with the timed routes generated with fixed
lead times. A fast resolution of the pricing problem, that generates new improving timed
routes, is critical to the success of the column generation approach. An efficient algorithm
is proposed in the following section.
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Solving the pricing problem

To determine the timed routes to insert in the RMP, we consider the reduced costs asso-
ciated with timed routes. The dual problem associated with the timed route formulation
corresponds to (5.6)-(5.9), where λ∗kt denotes the dual variables associated with Constraints
(5.2), and β+

ps (resp. β
−
ps) denotes the dual variables associated with Constraints (5.3) (resp.

Constraints (5.4)).

max −
T∑

t=1

K∑

k=1

Ckλ
∗
kt −

P∑

p=1

S∑

s=1

(
s∑

σ=1

Dpσ)β
+
ps +

P∑

p=1

S∑

s=1

(
s∑

σ=1

Dpσ)β
−
ps (5.6)

s.t. −
K∑

k=1

T∑

t=1

∑

l∈Lk

a
pr
lt αplλ

∗
kt −

S∑

s=1

tfs∑

τ=1

a
pr

|Lp|τ
β+
ps +

S∑

s=1

tfs∑

τ=1

a
pr

|Lp|τ
β−ps ≤ wpr

∀p ∈ {1, . . . , P} ∀r ∈ Rp (5.7)

β+
ps ≤ hps ∀p ∈ {1, . . . , P} ∀s ∈ {1, . . . , S} (5.8)

β−ps ≤ bps ∀p ∈ {1, . . . , P} ∀s ∈ {1, . . . , S} (5.9)

In the dual problem, only Constraints (5.7) are related to timed routes. Thus, in the
column generation approach, we only need to look for timed routes which violate the

most Constraints (5.7), i.e. timed routes with reduced cost wpr +
K∑

k=1

T∑

t=1

∑

l∈Lk

a
pr
lt αplλ

∗
kt +

S∑

s=1

tfs∑

τ=1

a
pr

|Lp|τ
β+
ps −

S∑

s=1

tfs∑

τ=1

a
pr

|Lp|τ
β−ps ≤ 0. Note that, since there is no constraint linking the

products in the pricing problem, timed routes can be generated separately for each product.
In order to define a route, we need to assign each operation l to a period t, i.e. to

determine aprlt . The reduced cost can be decomposed into three parts.

1. A period assignment cost which is denoted αplλ
∗
kt,

2. The WIP cost of the route, which can be decomposed into the WIP cost at each period,

3. Inventory and backlog costs. If the period of the last operation (i.e. when the product

is completed) is s∗, then the inventory and backlog costs are equal to
S∑

s=s∗

(β+
ps − β−ps).

Dominance rule

With such a complexity, the dynamic program can hardly be used in practice. In order to
keep the computational times under control, we consider a dominance rule that relies on
Property 2.

Property 2. For product p at a period t, if two partial timed routes s1 and s2 have achieved
the same number of operations l, then the route with the lowest partial reduced cost dominates
the other. In other words, for s1=(1,rc1,t,l) and s2 =(2,rc2,t,l), then s1 dominates s2 if and
only if rc1 ≤ rc2.

Proof. It can be shown by contradiction that, if the periods or the last operations are dif-
ferent, then an arbitrary large negative reduced cost can be introduced in the complete and
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dominated timed route. Thus, we can introduce s3, the optimal part to complete s1 and
s2 to form a complete timed route. We denote rc3 the reduced cost associated with s3 and
s1 ⊕ s3 (respectively s2 ⊕ s3) the complete timed route associated with s1 (resp. s2) and its
total reduced cost rc1⊕3 (resp. rc2⊕3). Because rc1⊕3 = rc1 + rc3 and rc2⊕3 = rc2 + rc3,
comparing the total reduced costs rc1⊕3 and rc2⊕3 is equivalent to comparing the partial
reduced costs rc1 and rc2.

Note that, if constraints on the duration of cycle times are introduced, some conditions
on the start period of partial timed routes are needed to apply this dominance rule.

By applying this dominance rule in the dynamic program, the number of new partial
timed routes at the end of each iteration/period is at most equal to the number of opera-
tions for a product. Thus, at iteration t of the algorithm for a given product p, the number
of partial timed routes before dominance is smaller than |Lp|

2. It reduces the complexity of
Algorithms 5.1 and 5.2 to O(|Lp|

2T ) for each product. To implement the dominance rule,
we use an array that contains the dominant partial timed routes (at the currently explored
period) for each operation of the route (except for the final step). The size of this array,
denoted ND[], is |Lp|. Thus, the overall complexity is in O(T

∑P

p=1|Lp|
2).

Algorithm 5.3 CreateNonDominatedExtension(s,t,ND[])

// ND[]: Array (of size |Lp| for product p) of dominant partial timed routes up to period
t-1 indexed by the last operation reached.
l = lastop(s) + 1
for e = 0 to omax(l) do
sr = s // Extend timed route s by e operations to perform at period t

for i = 0 to e do
op(sr, l + i) = t

UpdateReducedCost(sr)
end for
lastop(sr)= l + e

if l + e = |Lp| then
CTR = CTR ∪ {sr}

else
// Dominance check
if ReduceCost(sr) > ReducedCost(ND[l + e]) then
// sr dominates the former dominant partial timed route, which ends at period t

with operation l + e

PTR = PTR ∪ {sr}
PTR = PTR \ {ND[l + e]}
ND[l + e] = sr

end if
end if

end for
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5.5 Computational experiments

Computational experiments have been conducted on industrial data to show the efficiency
of the timed route formulation and of our column generation approach. In Section 5.5.1,
the design of the computational experiments is detailed. In Section 5.5.2, the compact
formulation (3.1)-(3.8) and the timed route reformulation (5.1)-(5.5) are compared for fixed
lead times. Section 5.5.3 compares the column generation approach with flexible lead times
and the compact formulation proposed in Chapter 4). Finally, Section 5.5.4 explores the
new ways of analyzing the production flows that the timed route formulation allows.

5.5.1 Design of experiments

Experiments are conducted on the first industrial data set of the 200mm semiconductor
manufacturing facility. The main characteristics of the instances are recalled in Table 5.2.
Crossing all choices of the characteristics, 27 scenarios are considered.

We only consider the most produced products. To study the influence of the number
of products, we consider 3 sets of products. Each demand scenario, related to the number
of products, is then adjusted by a factor on the generated demand to produce 3 scenarios
where respectively demand is low and feasible, demand is medium but stresses the facility
capacity and demand is high and cannot be fully met.

Horizon length {91, 119, 147}
Number of workshops 10 (aggregating about 500 machines)
Number of products {15, 40, 75}
Demand scenario {Low, Medium, High}

Table 5.2: Characteristics of the industrial instances

Furthermore, three profiles of lead times presented in Chapter 4, are studied by solving
the compact models and using the column generation approach.

1. The first profile, Pfixed
LT , corresponds to the classical fixed lead times.

2. The second profile, Pflex
LT , corresponds to flexible lead times and is based on Pfixed

LT , but
products can wait in every operation as many periods as necessary. This lead time
profile reduces the backlog and inventory costs by allowing more flexible production
flows.

3. The third profile, Pflex
PT , also corresponds to flexible lead times, but is based on the actual

processing times, i.e. it is not related to the two other lead time profiles. With profile
Pflex

PT , production flows are only limited by the maximum number of operations for a
product that can be completed in a period, according to the cumulative process times
of these operations. In a sense, it is a relaxation of the previous model where delays are
not induced by exogenous parameters. Note that, contrary to Pflex

LT where Constraint
(4.1) is not written, when LT (l) = 0 for an operation l, with Pflex

PT , Constraint (4.1) is
written for every operation.

As shown in the computational results of section 5.5.3, Pflex
PT leads to the most difficult

problems in terms of computational time. For example, with the compact formulation, on
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scenarios with medium or large dimensions, there is at least a factor of ten between the
computational times for Pflex

LT and Pflex
PT .

All numerical experiments were executed on a computer with a processor Intel(R) Xeon(R)
CPU W3550 and 16 Go of RAM Memory, using a JAVA program (JRE 1.8) and IBM ILOG
CPLEX (version 12.6).

5.5.2 Comparison between the compact formulation and the timed

route reformulation with fixed lead times

Due to the polynomial number of timed routes with fixed lead times, all timed routes are
generated and included in the model. Table 5.3 shows the computational times spent by
IBM ILOG CPLEX for several scenarios. First, note that the computational times do not
seem to change much with the demand level. Thus, only looking at the medium scenarios,
it can be seen that the timed route model performs significantly better than the compact
one. On average, the computational time is decreased by 94%, with a minimum decrease of
88%. When considering the impact of the horizon length, the results show that the timed
route formulation is more sensitive to the horizon length than the compact model. The gap
between the computational times of both models reduces as the horizon length increases.
For all these scenarios, the computational times of the timed route formulation are always
smaller than the smallest computational time with the compact formulation. For fixed lead
times, the timed route formulation is efficient when all the timed routes are generated.

Number of
products

Horizon
length

Low demand Medium demand High Demand
C TR C TR C TR

Low (15)
91 15 0 15 0 14 0
119 20 1 20 1 19 1
147 25 5 25 3 25 4

Medium (40)
91 40 1 41 1 40 1
119 58 3 57 4 58 4
147 68 7 70 7 71 7

Large (75)
91 84 1 83 1 83 2
119 113 4 114 8 114 5
147 145 16 147 15 145 16

Table 5.3: Computational times (in seconds) for profile Pfixed
LT (C: Compact formulation; TR:

Timed Route formulation)

5.5.3 Column generation approach for flexible lead times

In this section, the compact formulation and the timed route formulation with flexible lead
time profiles are compared. The first flexible lead time profile studied is Pflex

LT . The associated
compact model has a lower number of lead time constraints compared to the compact model
with fixed lead times. This is due to the fact that lead time constraints are only introduced
for positive lead times. The second flexible lead time profile is Pflex

PT . Its compact formulation
has about the same number of constraints as the compact formulation with fixed lead times,
but production flows are less constrained. The associated flexible lead time constraints are
based on the actual processing times of operations.
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As shown in Section 5.4.1, the timed route formulation with flexible lead times requires
an exponential number of timed routes. To get a feeling of the resulting complexity, we
generate all the timed routes for the Kayton’s instance. With 8 Gb of RAM and when the
horizon is larger than 15 periods, it is not possible to generate all timed routes for profile
Pflex

LT and a memory error arises.
In Section 5.5.3, the parameters and strategies used in the column generation approach

are detailed. The experimental results for profile Pflex
LT are presented in Section 5.5.3, while

the results for profile Pflex
PT are analyzed in Section 5.5.3.

Column generation strategy

Dominance rules are used to reduce computational times. To warm up the column generation
approach, all timed routes from Pfixed

LT are included in the model. Due to the light use of the
processor during the timed route generation, parallelism is enabled while generating timed
routes for each product. Note that, when disabling the parallelism, reduction of computation
time is weaker but still is important: the average reduction is of 70% for profile Pflex

LT and
84% for Pflex

PT .
The last parameter to choose is how many timed routes are selected for each product

at each iteration. This parameter is tuned with the case of Medium demand, with profile
Pflex

LT . Figure 5.6 shows the average decrease of the computational time compared to the
case in which only one timed route is generated by product. This figure is completed with
the maximum decrease and the minimum decrease obtained among the 27 scenarios. Note
that the average time spent to solve the timed route formulation limited to one new timed
route by product at each iteration is 239 seconds. It can be seen that, when the parameter
varies between 4 and 10, the decrease of the computational time is quite stable and the
lowest. With up to 150 timed routes by product (which is an upper bound to the number
of non-dominated timed routes generated by the dynamic program when T < 150), it can
be seen that the decrease of the computational time is similar to when the parameter is
set to 2. This figure shows the trade-off between generating numerous columns to converge
with fewer iterations and generating only the best columns to accelerate the resolution of
the restricted master problem.

In the following experiments, the number of timed routes by product at each iteration is
set to 5. This choice might not be the best in every scenario, but is relevant enough to show
the strength of our approach.

Comparison of computational times for profile Pflex
LT

Contrary to fixed lead times, the computational times for flexible lead time profiles depend on
the demand scenario. Table 5.4 shows the computational times to solve Pflex

LT . No simple rule
can be deduced (for both formulations) from the different scenarios because the complexity
of the problem depends on several parameters. Computational times to solve the timed
route model are quite close with medium and high demands, and are always larger than the
computational times with low demands.

The main result of the experiment is that the column generation approach always sig-
nificantly performs better. On average, the computational time is reduced by 87.5% while
the solution time for the compact model ranges from 2 minutes to 79 minutes. The least
impressive case is 73.3% when the time spent by the compact formulation is the lowest (120
seconds). Unlike fixed lead times, we cannot conclude anything about the behavior of the
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Figure 5.6: Number of timed routes by product at each iteration vs. ratio of CPU time

Number of
products

Horizon
length

Low demand Medium demand High Demand
C TR C TR C TR

Low (15)
91 192 14 142 31 120 32
119 409 59 266 67 284 66
147 580 95 595 121 580 124

Medium (40)
91 648 34 469 66 563 63
119 1,190 109 1,086 134 1,254 153
147 1,674 180 2,034 218 2,174 218

Large (75)
91 1,620 23 1,578 107 1,363 109
119 3,693 74 3,000 236 2,145 242
147 4,277 316 3,797 401 4,619 395

Table 5.4: Computational times (in seconds) for profile Pflex
LT (C: Compact formulation; TR:

Timed Route formulation)
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compact model when the horizon increases, only that the computational times increase with
the length of the horizon (which is expected due to the algorithm complexity).

Comparison of computational times for profile Pflex
PT

Considering profile Pflex
PT whose computational results can be found in Table 5.5, some con-

clusions are shared with Pflex
LT . For example, the computational times vary depending on the

demand scenario, but in the case of Pflex
PT , it can also be noted that the larger the demand,

the larger the CPU time to solve the problem, and the increase depends on the scenario.
The computational times are again highly reduced by the column generation approach on
the timed route formulation. On average, they are reduced by 95.8%. The computational
time for the compact model ranges from 3 minutes to more than 6 days (with a median of
2.5 hours).

Number of
products

Horizon
length

Low demand Medium demand High Demand
C TR C TR C TR

Low (15)
91 183 33 1,549 37 1,760 51
119 272 48 2,677 83 2,836 120
147 4,100 161 4,211 255 4,962 407

Medium (40)
91 5,587 84 6,254 156 6,486 233
119 8,939 167 10,092 298 10,277 429
147 13,014 291 14,407 587 16,152 793

Large (75)
91 979 95 10,516 179 11,902 246
119 18,862 193 18,498 346 20,472 460
147 599,443 404 323,891 678 546,596 1,273

Table 5.5: Computational times (in seconds) for profile Pflex
PT (C: Compact formulation; TR:

Timed Route formulation)

With the compact formulation, there is a huge gap in the computational times for the
three lead time profiles. Due to the extreme computational time in the scenarios with a large
number of products and a long horizon, the average computational time is a biased indicator.
Therefore, we prefer to analyze the median computational time. Over all the scenarios, the
median computational times are 58 seconds for Pfixed

LT , 1,190 seconds for Pflex
LT and 8,939

seconds for Pflex
PT . When using the timed route formulation and the column generation

approach, the computational times also increase as the lead time profile becomes more
complex, but the increase is much more limited. The overall medians of the computational
times for the compact formulation are equal to 3 seconds for Pfixed

LT , 109 seconds for Pflex
LT and

233 seconds for Pflex
PT . One reason which can explain why computational times for the timed

route formulation with Pflex
PT is close to Pflex

LT , might be the difference of these two lead time
profiles. It can be seen in Table 5.6 that, in most scenarios (except when the demand is
high and the horizon is long, in red, in Table 5.6), Pflex

PT needs fewer iterations of the column
generation approach to converge to the optimal solution.

The reason is probably that, while the compact formulation struggles with a huge number
of constraints, many useful timed routes are quickly generated in the column generation
approach, thus fewer iterations are needed before converging. It could be interesting to tune
the maximum number of timed routes by product at each iteration.
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Low demand Medium demand High DemandNumber of
products

Horizon
length Pflex

LT Pflex
PT Pflex

LT Pflex
PT Pflex

LT Pflex
PT

91 25 11 46 12 47 17
119 57 12 61 21 60 31Low (15)
147 60 31 72 50 71 80
91 22 12 37 23 36 35
119 38 16 43 30 48 46Medium (40)
147 47 23 46 45 47 66
91 8 7 32 14 35 19
119 16 11 40 18 43 25Large (75)
147 42 17 46 25 46 54

Table 5.6: Number of iterations in the column generation approach with flexible lead time
profiles

5.5.4 Detailed analysis of cycle times using timed routes

If a major advantage of the timed route formulation is the decrease of computational times,
another significant advantage is that production flows are explicitly characterized by the
timed routes that are used and the quantity allocated to each timed route. In this section,
we show how cycle times can be analyzed by looking at the selected timed routes of products.
We chose the scenario with flexible lead times (Pflex

LT ), a medium horizon length (119 micro-
period), a medium number of products (40) and medium demand. Table 5.7 provides, for
each product, its theoretical minimum cycle time induced by the lead time constraints,
its minimum, maximum and mean cycle times, and finally the maximum lead time at an
operation of the timed routes of the product. The mean cycle time is computed as the mean
of the cycle times of the timed routes of the product, weighted by the quantity allocated to
each timed route. Only timed routes with a strictly positive product quantity are considered
when computing the minimum and maximum cycle times and the maximum lead time. All
indicators are expressed in number of micro-periods.

Note that the mean cycle time is always strictly larger than the theoretical minimum
cycle time, see for example product 3 with a minimum cycle time of 40 micro-periods and
a mean cycle time of 52.4 micro-periods. The difference between the theoretical minimum
cycle time and the mean cycle time is always larger than 10 micro-periods in this instance.
However, looking at the minimum and maximum cycle times of timed routes that are used
(i.e. with positive production quantity), it can be seen that, for most products, the cycle
time ranges between the theoretical minimum cycle time and the number of micro-periods
in the planning horizon. Many products have a maximum cycle time that is larger than 110
micro-periods, see for example products 4, 15, 24 and 33. However, there are exceptions
such as product 19 with a maximum cycle time of 75 micro-periods or product 35 with a
maximum cycle time of 69 and a minimum cycle time of 68.

Note that, if a wide range between the minimum and maximum cycle times shows that
flexibility is exploited, too large cycle times are not welcome or even acceptable in practice.
In this instance, the large cycle times are mainly caused by one large lead time that occurs
a few operations after the start of the timed route. For example, products 1, 11 or 21 have
a maximum lead time which is larger than the minimum cycle time, so the timed route in
which these lead times occur is the one with the largest cycle times. We believe that the
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Product
Cycle Time Max

Lead
Time

Theor.
min

Min Max Mean

1 49 51 103 66.2 52
2 37 42 96 55.6 36
3 40 41 103 52.4 60
4 59 61 110 75.5 23
5 47 49 103 72.3 52
6 47 47 110 74.1 59
7 77 77 97 81.9 14
8 55 55 117 67.7 60
9 68 96 103 96.4 12
10 65 68 110 80.8 22
11 48 49 110 66.7 59
12 58 62 97 73.9 15
13 41 42 103 63.7 60
14 69 69 96 72.1 10
15 45 47 110 70.3 61
16 47 49 103 67.9 52
17 69 69 103 81.6 13
18 63 95 96 96.0 13
19 47 49 75 56.6 18
20 61 63 110 72.4 24
21 48 49 110 61.8 59
22 45 48 111 76.2 61
23 68 69 110 81.3 16
24 59 97 118 99.8 57
25 40 40 96 55.8 52
26 65 67 110 79.6 23
27 61 62 117 86.6 34
28 75 76 105 81.6 13
29 55 55 110 63.2 52
30 55 55 117 82.1 47
31 45 47 104 63.1 58
32 47 48 103 60.4 52
33 45 47 111 64.2 61
34 63 89 110 97.3 45
35 67 68 69 68.9 3
36 79 84 84 84.0 4
37 59 62 118 79.1 57
38 57 63 117 82.8 50
39 68 89 103 100.3 13
40 45 49 103 63.8 56

Table 5.7: Analysis of the cycle times of products in the scenario with profile Pflex
LT , medium

horizon, medium number of products and medium demand
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large lead times at the beginning of timed routes are due to the instance, where the lack
of initial WIP leads to more capacity being available to process the first operations of a
product in the first periods. This capacity is no longer available in later periods, once the
manufacturing facility is full. Nevertheless, constraints to avoid such large cycle times or
lead times can be implemented with the timed route formulation, whereas these constraints
will be very difficult to consider in the compact formulation with flexible lead times.

Some information is not shown in Table 5.7. In particular, each product uses several timed
routes (at least two) and the quantity allocated to each timed route may vary significantly.
A production quantity that is too small does not make sense, and our future research aims
to consider a minimum quantity per timed route in the timed route formulation and, more
importantly, in the column generation approach. Note that, again, a minimum production
quantity is much easier to model with the timed route formulation than with the compact
formulation.

5.6 Conclusions and perspectives

In this chapter, we introduced the novel concept of timed route that enables a new model
for multi-product multi-step production planning problems to be introduced. The timed
route approach was validated on industrial data, and experimental results show that the new
formulation significantly outperforms compact formulations for various lead time profiles. To
achieve such performance and because considering flexible lead times induces an exponential
number of columns, a column generation approach was presented with a polynomial dynamic
program that generates the timed routes in the pricing problem.

Many research opportunities are offered using timed routes and timed route formulations.
An interesting point to investigate is the various industrial rules that could only be developed
for mathematical models based on timed routes. As already discussed and by definition,
timed routes allow production flows and their cycle times to be explicitly modeled. On
the opposite, flexible lead time constraints in a compact mathematical model do not easily
allow cycle times to be limited and production flows to be explicitly managed. Hence,
many relevant industrial constraints can be taken into account through timed routes. For
example, timed routes could be generated by considering minimum or maximum cycle times
of products, or minimum or maximum lead times between two non-consecutive production
operations. Also, a cycle time for each product could be targeted in the objective function, by
introducing new costs on timed routes instead of the somehow artificial WIP management
costs. These costs could be associated with the deviation to the target cycle time. In
addition, costs based on the duration of the lead time in a production operation could be
proposed, that would be non-linear in compact models but linear in timed route models.
Some of these aspects are explored in Chapter 6.

Moreover, the computational times of the column generation approach could be accel-
erated by using smart column generation heuristics. Another research perspective is to
consider initial inventories in the product routes. Shorter timed routes will be required to
flush the initial inventories. Finally, we would like to study whether timed routes could be
used in other contexts, e.g. when modeling product flows in supply chains where the notion
of "route" is also relevant.
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Chapter 6

Extensions of the timed route approaches

6.1 Introduction

As discussed in the conclusion of Chapter 5, the concept of timed routes opens multiples
perspectives. First, it is possible to enrich the problem by only changing the construction
rules of the timed routes. This will make the pricing problem more complex without affecting
the structure of the master problem. In addition, the timed route formulation offers the
possibility of pricing the production flows knowing target lead times and target cycle times.
Due to the separation between the master problem and the pricing problem that generates
the timed routes, it is also possible to consider non-linear cost structures. Furthermore, the
analysis of the timed routes generated by the flexible lead times in Chapter 5 shows some
issues regarding the length of cycle times and even some abnormally long lead times. Thus,
the goal of this chapter is to control the production flows using the possibilities allowed by
the timed routes.

In Section 6.2, we first study the simultaneous integration of minimum and maximum
cycle time constraints. Then, we study the integration of both constraints separately. In
Section 6.3, we study the integration of target cycle times and maximum lead times. These
new constraints only impact the pricing problem by adapting the timed route generation
algorithm. Note that this chapter does not study all possibilities offered by the timed route
formulation. Other potential extensions are discussed in Section 6.4.

6.2 Controlling the cycle time

One of the flaws of flexible lead times is that cycle times can be as long as the time horizon
length (as shown in the numerical experiments of Chapter 5). As already mentioned, the
timed route formulation allows integrating minimum and maximum cycle times. In fact,
to handle these two constraints it is sufficient to only generate routes that satisfy these
constraints. One may claim that flexible lead times induce a minimum cycle time, but this
minimum cycle time can be very short and may affect the production processes. Indeed,
it might be preferable to avoid too fast production time routes, and possibly unrealistic,
by introducing minimum cycle times. This is mainly useful when trying to avoid that a
product is prioritized without considering the overall production process. In semiconductor
manufacturing, a useful indicator is called "X-factor". The X-factor is the ratio of the cycle

time to the total cumulative processing time of a route (

∑
l∈Lp

LTpl∑
l∈Lp

ptpl
, where ptpl is the process
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time for operation l). Except for some products without demand, most of the production
lots have their specific X-factor. Note that the X-factor makes sense only at the tactical
level because, at the operational level, the priority and speed of lots can vary along the time
horizon.

It is important to note that controlling cycle times using the compact formulation is a hard
task. First, because we have shown the limits of this formulation in previous sections. Second,
because controlling the cycle time for each product requires to follow the production flows
that leads to the introduction of other time indices in variables that make the formulation
even harder to handle. Additional constraints on the final inventory and the initial input
are also required. However, with the timed route formulation, we "only" need to adapt the
pricing problem, to better control the complexity and the computational time.

In this section, Algorithms 5.1 and 5.2 are adapted in order to handle minimum and
maximum cycle times. New dominance rules are proposed. The consideration of cycle time
bounds leads to a higher complexity, but both algorithms remain polynomial.

6.2.1 Considering minimum and maximum cycle times

In this section, we adapt the dynamic programming algorithms of Chapter 5 in order to
consider both minimum and maximum cycle times. We adapt Algorithms 5.1 and 5.3 to
generate only timed routes satisfying minimum and maximum cycle time constraints. In
order to adapt these algorithms, it is important to calculate the current cycle time at each
period. This calculation is possible since the start period of each partial time route is known,
which allows computing the cycle time of each partial timed route.

Algorithm 5.1 can be adapted by checking the feasibility of a timed route before inserting
it in the set of complete timed routes. A feasibility check is also introduced during the
construction of a timed route to check whether it can lead to a route that overpasses the
maximum allowed cycle time. This check is performed by summing the cycle time of the
current partial timed route and the minimum cycle time needed to complete the remaining
operations. If the resulting cycle time is higher than the maximum cycle time, this current
partial timed route can be discarded. A similar feasibility check cannot be performed for
minimum cycle times. In fact, the last operation can always occur far enough in order
to satisfy the needed minimum cycle time. With these feasibility checks, Algorithm 5.1 is
replaced by Algorithm 6.1 without impacting the complexity of the algorithm. The main
impact on complexity is when modifying the algorithm that extends partial timed routes.
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Algorithm 6.1 Generation of timed routes(CTmin, CTmax)

// remainingCT() is precalculated for every operation based on the lead time profile, else
it is equal to 0
CTR = ∅ // CTR: Set of complete timed routes
ir // ir: Initial partial timed route
lastop(ir)= 0 // No operation allocated in ir

PTR = {ir} // PTR: Set of current partial timed routes
for t = 1 to T do

for all s ∈ PTR do
if CycleTime(s)+remainingCT(lastop(s)) ≤ CTmax then
CreateNonDominatedExtensions(s,t,CTmin,CTmax,ND[][])

else
PTR = PTR− {s}

end if
end for

end for
return CTR

In fact, the dominance rule stated in Proposition 2 in Section 5.4.2 can no longer be used.
Recall that this dominance rule states that, if two partial timed routes complete the same
operation in the same period, one route dominates the other one only based on the reduced
costs. This dominance rule is not longer valid when considering constraints of cycle times
since one needs to know the period of the first operation. A partial timed route cannot be
dominated by another timed route that starts earlier even if its reduced cost is worse. In
fact, the first route can have more opportunities to improve its reduced cost.

Since, in this section, we consider both minimum and maximum cycle times, the following
dominance rule (Property 3) only considers partial timed routes starting at the same period.

Let us recall the following notation from Chapter 5: t(p, s, l) is the period assigned to
operation l in timed route s of product p.

Property 3. For a product p at a period t, if two partial timed routes s1 and s2, starting
at the same period, have achieved the same number of operations l, then the route with the
lowest partial reduced cost dominates the other. In other words, for s1=(1,rc1,t,l) and s2
=(2,rc2,t,l), then s1 dominates s2 if and only if t(p, s1, 1) = t(p, s2, 1) and rc1 ≤ rc2.

Proof. For the argument on the same operation, refer to the proof of Property 2 in Section
5.4.2. The rest of the proof is done by contradiction. Suppose that s1=(1,rc1,t,l) and s2
=(2,rc2,t,l) are two partial timed routes such that t(p, s1, 1) = t(p, s2, 1), rc1 ≤ rc2 and s1
does not dominate s2. This means that there are two partial timed routes s3 and s4 which
complete respectively s1 and s2 to obtain the corresponding optimal routes s1 ⊕ s3 and
s2 ⊕ s4. s1 does not dominate s2 means that rc1 + rc3 ≥ rc2 + rc4 and thus rc3 ≥ rc4 since
rc1 ≤ rc2. Since s1 and s2 start at the same period, s4 is also a valid extension of s1. Then
rc1 + rc4 ≤ rc2 + rc4. This means that s1 dominates s2 which contradicts the assumption
that s1 does not dominate s2.

Using the dominance rule of Property 3, Algorithm 5.3 is replaced by Algorithm 6.2.
Algorithm 6.2 uses an array of dominant partial timed routes with a size of T |Lp|. In our
forward dynamic programming algorithm, at most T |Lp| non-dominated labels are stored
since we also consider the start period to analyze the dominance. At each iteration of
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the algorithm, at most T |Lp|
2 partial timed routes are generated. Ultimately, the overall

complexity is in O(T 2
∑P

p=1|Lp|
2).

Algorithm 6.2 CreateNonDominatedExtension(s, t, CTmin, CTmax, ND[][])

// ND[][]: Array (of size |Lp|*T for product p) of dominant partial timed routes up to
period t-1 indexed by the last operation reached and the starting period.
l = lastop(s) + 1
for e = 0 to omax(l) do
sr = s // Extend timed route s by e operations to perform at period t

for i = 0 to e do
op(sr, l + i) = t

UpdateReducedCost(sr)
end for
lastop(sr)= l + e

if (l + e = |Lp|) AND (CTmin≤CycleTime(sr)≤CTmax) then
CTR = CTR ∪ {sr}

else
// Dominance check
if ReduceCost(sr) > ReducedCost(ND[l + e][startperiod(sr)]) then
// sr dominates the former dominant partial timed route, which ends at period t

with operation l + e and starting at the same period
PTR = PTR ∪ {sr}
PTR = PTR \ {ND[l + e][startperiod(sr)]}
ND[l + e][startperiod(sr)]= sr

end if
end if

end for

6.2.2 Minimum or maximum cycle times

In this section, we adapt the above developed algorithms in order to consider only minimum
or maximum cycle times. In these cases, the dominance rule of Proposition 3 and the
proposed algorithms 6.1 and 6.2 remain valid, but more effective dominance rules can be
proposed. These dominance rules are given by Proposition 4 (respectively Proposition 5)
when only maximum cycle times (respectively only minimum cycle times) are considered.

Property 4. For product p at a period t considering only maximum cycle time constraints,
if two partial timed routes s1 and s2, such that the starting period of s1 is larger than the
starting period of s2, and s1 and s2 have achieved the same number of operations l until
period t, then s1 dominates s2 if its partial reduced cost is lower than the partial reduced cost
of s2. In other words, for s1=(1,rc1,t,l) and s2 =(2,rc2,t,l), then s1 dominates s2 if and only
if t(p, s1, 1) ≥ t(p, s2, 1) and rc1 ≤ rc2.

Proof. We use the same argument as in the proof of property 3. The proof is done by
contradiction. Suppose that s1=(1,rc1,t,l) and s2 =(2,rc2,t,l) are two partial timed routes
such that t(p, s1, 1) ≥ t(p, s2, 1), rc1 ≤ rc2 and s1 does not dominate s2. This means that
there are two partial timed routes s3 and s4 which complete respectively s1 and s2 to obtain

Page 82 EMSE-CMP Sébastien Beraudy



6.2. CONTROLLING THE CYCLE TIME

the corresponding optimal routes s1 ⊕ s3 and s2 ⊕ s4. s1 does not dominate s2 means that
rc1 + rc3 ≥ rc2 + rc4 and thus rc3 ≥ rc4 since rc1 ≤ rc2. Since s1 starts after s2, s4 is also a
valid extension of s1. Then rc1 + rc4 ≤ rc2 + rc4. This means that s1 dominates s2, which
contradicts the assumption that s1 does not dominate s2.

Property 5. For product p at a period t considering only minimum cycle time constraints,
if two partial timed routes s1 and s2, such that the starting period of s1 is before starting
period of s2, and s1 and s2 have achieved the same number of operations l until period t,
then s1 dominates s2 if its partial reduced cost is lower than the partial reduced cost of s2.
In other words, for s1=(1,rc1,t,l) and s2 =(2,rc2,t,l), then s1 dominates s2 if and only if
t(p, s1, 1) ≤ t(p, s2, 1) and rc1 ≤ rc2.

Proof. This proof is similar to the proof of property 4

Note that to certify these dominance rules, more operations are needed than the rule of
Property 3 and a more complex algorithm is given by Algorithm 6.3 that replaces Algorithm
6.1. In Algorithm 6.3, all partial timed routes for a given start period are stored in an array
ND, indexed by the last operation reached and the start period. Contrary to Algorithm 6.2,
every partial timed route that satisfies the cycle time constraint is included in the array ND,
regardless of its reduced cost. The filtering of dominated partial timed routes is done at the
end of each iteration in Algorithm 6.3, and therefore only non-dominated timed routes can
be extended in the next iteration.

The additional complexity introduced by the filtering is in O(T 2|Lp|) for a given product
p. Thus, it does not affect the overall complexity.

Note that, when only considering minimum cycle time constraints, the algorithm can
be improved without reducing the worst-case complexity. In fact, the dominance rule of
Property 5 can be applied only when the minimum cycle time is not reached for a given set
of partial timed routes. Once the minimum cycle time is reached, the dominance rule of
Property 2 can be applied for these partial timed routes.

6.2.3 Numerical experiments

The experiments of this chapter are conducted on a single instance. In order to build on
the analysis of Chapter 5, we use the medium size instance with medium demand. Recall
that this instance is characterized by 119 micro-periods and 40 products. Note that the
experiments of this chapter are only conducted on a reference instance and provide first
insights. In order to validate all these insights, experiments on a large variety of instances
are needed.

In this section, we first analyze the impact of introducing minimum and maximum cycle
time constraints on the objective function and on the computational time. Second, we
analyze the relationship between the computational time and the allowed cycle time lengths.

As introduced previously, minimum and maximum cycle times are calculated based on
the X-factor. Recall that the X-factor is the ratio of the cycle time to the total cumulative
processing time of a route. The X-factor is identified by an interval. For our numerical
experiments, the minimum value is fixed to 3.5 and the maximum value to 7. Based on
these two values, the minimum cycle time is set to 3.5 times the cumulative processing time
and the maximum cycle time to 7 times the cumulative processing time.
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Algorithm 6.3 Generation of timed routes(CTmax)

CTR = ∅ // CTR: Set of complete timed routes
ir // ir: Initial partial timed route
lastop(ir)= 0 // No operation allocated in ir

PTR = {ir} // PTR: Set of current partial timed routes
for t = 1 to T do

for all s ∈ PTR do
if CycleTime(s)+leftoverCT(lastop(s)) ≤ CTmax then
CreateExtensions(s,t,0,CTmax,ND[][])

else
PTR = PTR− {s}

end if
end for
// Dominance check
for op = 1 to |Lp| do
CurrentTimedRoute = null
CurrentReducedCost = +∞
for τ = T to 1 do

if CurrentReducedCost>ReducedCost(ND[op][τ ]) then
if CurrentTimedRoute != null then
PTR∪{CurrentTimedRoute}

end if
CurrentTimedRoute = ND[op][τ ]
CurrentReducedCost = ReducedCost(ND[op][τ ])

end if
end for

end for
end for
return CTR
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Impact of cycle time constraints

In the following, we compare four variants of the flexible lead time model. All models
are solved using the column generation algorithm of Chapter 5 with the specific dynamic
programming algorithms introduced in this chapter to solve the associated subproblems.

• NoCT: The flexible lead time model without any constraint on cycle times. This
model is presented in Chapter 5,

• CTminmax: The flexible lead time model with minimum and maximum cycle time
constraints. The cycle time of a route ranges between 3.5 and 7 times its cumulative
processing time,

• CTmax: The flexible lead time model with only maximum cycle time constraints,

• CTmin: The flexible lead time model with only minimum cycle time constraints.

NoCT CTmin CTmax CTminmax
Total cost 395,025 395,025 447,570 (+13%) 461,029 (+17%)
CPU time (s) 134 2,265 253 475
# of iterations 43 54 23 26
Avg CPU time
by iteration (s)

1.2 39.2 9.4 16.8

Table 6.1: Analysis of the impacts of cycle time constraints

From Table 6.1, we can first notice that, as expected, more constraints on cycle times
leads to larger total costs. First, we observe that adding only minimum cycle time constraints
has no impact on the objective function. Then, the total cost increases by 13% when con-
sidering only maximum cycle time constraints. Finally, when introducing both minimum
and maximum cycle time constraints, the objective function increases by 17% compared to
the model without constraints on cycle times. The impact of adding constraints on cycle
times was expected but it is interesting to quantify this impact. We also notice from the
same table that the computational time is highly impacted when introducing cycle time
constraints. When introducing maximum cycle time constraints, the computational time
is almost doubled. When introducing minimum and maximum cycle time constraints, the
computational time is multiplied by 3.5. Surprisingly, the impact of introducing minimum
cycle time constraints on the computational time is very high since it is multiplied by almost
17. This increase can be explained by more iterations in the column generation algorithm
and the high average CPU time spent by each iteration of the column generation algorithm
(multiplied by 32). Note that, even if the theoretical complexity of the pricing algorithms for
CTmin and CTmax is the same, the computational time for CTmin is 4 times larger. This
difference can be explained by the feasibility check that can be performed for CTmax but not
for CTmin. Considering the average computational time needed to solve the subproblems
for CTmax and CTminmax, it also highly increases compared to the average computational
time of NoCT. It is multiplied by 8 when introducing maximum cycle time constraints and
by 14 when considering minimum and maximum cycle time constraints.

In order to better understand the results of Table 6.1, in the following we perform an
analysis per product. Table 6.2 provides the minimum, the maximum and the mean cycle
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time per product and per case. In this table, NoCT is abridged in "no", CTmin in "min",
Ctmax in "max" and CTminmax in "minmax".

First, let us analyze the results when introducing only minimum cycle time constraints.
We can notice that the difference from the results without any constraint on cycle times is
very small. 32 products out of 40 keep the same minimum, maximum and mean cycle times.
Note that to obtain the same results, CTmin generates and uses more routes than NoCT in
order to obtain the same total inventory and backlog costs. The impact on the cycle times
for the remaining 8 products is relatively minor. As expected, the major changes are on
minimum cycle times and thus on mean cycle times. A deeper analysis shows that products
31 and 33 have an increase in the minimum cycle time and products 2 and 26 have an
increase in the mean cycle time. The other products have a minor increase in the minimum
cycle time. We can conclude from these results that the impact of adding minimum cycle
time constraints is limited. These results can be explained by the characteristics of the
studied instance for which the demand is medium and thus the capacity is not as tight as
when considering fixed lead times. Note also that the minimum cycle time constraint might
already be respected with the minimum cycle time induced by the flexible lead times.

We can also notice that the impact of considering maximum cycle time constraints is
more significant. The introduction of maximum cycle time constraints highly decreases
the maximum cycle time (as expected) but also decreases the minimum cycle time. For
example, the maximum cycle time of product 24 decreases from 118 to 65 micro-periods and
its minimum cycle time decreases from 97 to 62 micro-periods. Only two products (products
35 and 36) out of 40 do not show a decrease in the maximum cycle time. 26 products have
seen their minimum cycle time decreasing. We also notice that the decrease of maximum
cycle times leads to the decrease of the mean cycle time. Only three products (products 14,
35 and 36) have seen their mean cycle time increasing. Note that product 30 has no timed
route, this is due to the strong constraint that forces the cycle time to be lower than 28
micro-periods. The same result can be found with the CTminmax model.

When introducing minimum and maximum cycle time constraints, one could expect
that the results will be similar to those obtained when introducing only maximum cycle
time constraints. In fact, we have noticed that the impact of minimum cycle constraints
is negligible. At best, we could expect that minimum cycle time constraints will limit the
decrease of the minimum cycle time observed with the CTmax model. The experiment
shows a more complex behavior. The results with CTmax are a good base of comparison
for CTminmax, the majority of products have minimum and maximum cycle times that are
close. However, the mean cycle time is very different for the majority of products. This
means that the allocation of the quantity of products to the timed routes is impacted by the
minimum cycle time constraints. Sixteen products have shown an increase in the minimum
cycle time. Sometimes, this increase goes beyond the minimum cycle time constraint. This
is the case for example for product 36, with a minimum cycle time that reaches 96 micro-
periods while, with CTmin or CTmax, it is equal respectively to 84 or 83 micro-periods.

Through this experiment, we can notice that the use of minimum cycle times does not
highly impact the results and does not provide the expected behavior. In fact, it looks more
interesting to integrate industrial knowledge on operations and their lead times rather than
fixing minimum cycle times. This will induce minimum cycle times when constructing the
timed routes.
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Product
Minimum cycle time Maximum cycle time Mean cycle time

no min max
min
max

no min max
min
max

no min max
min
max

1 51 51 50 50 103 103 58 58 66.2 66.2 53.8 53.7
2 42 42 39 38 96 96 54 54 55.6 54.6 43.6 43.0
3 41 41 41 41 103 103 56 56 52.4 52.4 44.7 44.6
4 61 61 59 61 110 110 65 63 75.5 75.5 61.8 62.1
5 49 49 48 48 103 103 62 62 72.3 72.3 52.8 52.4
6 47 47 47 48 110 110 59 58 74.1 74.1 50.2 49.1
7 77 77 77 77 97 97 83 83 81.9 81.9 80.6 79.9
8 55 55 55 55 117 117 59 59 67.7 67.7 55.6 55.7
9 96 96 68 70 103 103 74 70 96.4 96.4 72.8 70.0
10 68 67 65 68 110 110 71 73 80.8 80.5 68.3 69.8
11 49 49 49 49 110 110 57 57 66.7 66.7 51.5 51.1
12 62 62 57 59 97 97 65 65 73.9 73.9 60.8 60.4
13 42 42 42 42 103 103 57 57 63.7 63.7 42.4 42.4
14 69 69 73 70 96 96 74 72 72.1 72.1 73.6 70.2
15 47 47 45 45 110 110 55 55 70.3 70.3 48.8 47.6
16 49 49 47 48 103 103 56 56 67.9 67.9 48.8 49.0
17 69 69 69 70 103 103 75 74 81.6 81.6 73.2 70.3
18 95 89 63 68 96 96 63 68 96.0 95.6 63.0 68.0
19 49 49 48 48 75 75 60 60 56.6 56.6 53.4 53.5
20 63 63 62 62 110 110 68 68 72.4 72.4 63.3 63.9
21 49 49 49 49 110 110 54 54 61.8 61.8 49.9 49.7
22 48 48 46 46 111 110 59 54 76.2 75.8 50.7 47.3
23 69 68 68 69 110 110 72 73 81.3 81.3 71.1 71.4
24 97 97 62 60 118 118 65 63 99.8 99.8 63.1 62.0
25 40 40 40 40 96 96 56 56 55.8 55.8 44.3 43.7
26 67 67 65 69 110 110 72 73 79.6 80.5 68.7 69.9
27 62 62 61 62 117 117 74 74 86.6 86.6 66.3 63.8
28 76 76 75 76 105 105 85 85 81.6 81.6 79.1 79.9
29 55 55 55 55 110 110 58 59 63.2 63.2 55.6 55.7
30 55 55 - - 117 117 - - 82.1 82.1 - -
31 47 48 46 46 104 103 59 59 63.1 63.1 49.7 48.8
32 48 48 48 48 103 103 57 57 60.4 60.4 50.6 50.4
33 47 48 46 46 111 110 59 59 64.2 64.5 49.6 48.8
34 89 89 63 63 110 110 68 68 97.3 97.3 64.4 66.0
35 68 68 70 69 69 69 70 75 68.9 68.9 70 73.7
36 84 84 83 96 84 84 96 96 84.0 84.0 87.1 96.0
37 62 62 59 61 118 118 64 63 79.1 79.1 62.1 61.7
38 63 63 57 58 117 117 69 69 82.8 82.8 60.2 60.3
39 89 89 68 70 103 103 73 73 100.3 100.3 70.0 70.3
40 49 49 45 45 103 103 62 63 63.8 63.8 50.9 51.8

Table 6.2: Detailed results on the impact of cycle time constraints
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Analysis of the relation between computational time and cycle time range

To analyze the impact of the allowed cycle time range, we once again use the flexible lead
time model with minimum and maximum cycle time constraints. The minimal value of the
cycle time range is fixed to the minimum theoretical cycle time. The maximal value of the
cycle time range is calculated as a fraction of the maximum theoretical cycle time which is
equal to the length of the time horizon. In our experiments, four values are tested for the
maximal value: 100%, 75%, 50% and 25% of the length of the time horizon.

Table 6.3 reports the total inventory and backlogging costs ("Total cost") , the total
computational time ("CPU time (s)"), the number of iterations in the column generation
("# of iterations") and the average computational time by iteration ("Avg CPU time by
iteration (s)").

Range of cycle times
100% 75% 50% 25%

Total cost 395,414 397,410 403,714 419,551
CPU time (s) 2,572 2,304 1,608 1,012
# of iterations 46 48 44 42
Avg CPU time
by iteration (s)

52.8 45.2 (-14.4%) 34.3 (-35.0%) 22.3 (-57.8%)

Table 6.3: Variation of the cycle time range with CTminmax

From Table 6.3, it can be seen that the decrease of the range of cycle times slightly
increases the total cost. We notice that, by dividing the range of the cycle time by four, the
increase in the total cost is only 6.1%. Note that this observation does not generalize the
previously drawn observations when introducing the minimum and maximum cycle times
(see Table 6.1). As expected, we can notice from Table 6.3 that the total computational
time decreases as the range of cycle times decreases. Since there is no relationship between
the cycle time range and the number of iterations, let us focus on the average computational
by iteration of the column generation approach, which highly decreases as the range of cycle
times decreases. This is certainly due to the number of generated labels in the dynamic
programming algorithm when solving the subproblems. In fact, when the range of cycle
times is lower, less labels are generated.

To analyze the computational times when only maximum cycle time constraints are
considered, we experimented the same scenarios without considering minimum cycle time
constraints. Table 6.4 provides the same indicators as Table 6.3, when using only maximum
cycle time constraints.

The same conclusion can be drawn from Table 6.4 regarding the impact of the cycle time
range on the total cost. Regarding the computational time, we can notice that compared to
the computational time when considering minimum and maximum cycle times (Table 6.4),
the computational time when integrating only maximum cycle times is twice shorter. This
is mainly due to the strength of the dominance rule that generates less timed routes. If we
analyze the average computational time per iteration, we also observe a strong reduction of
the computational time when the maximum cycle time reduces. However this reduction is
less impressive than when introducing both minimum and maximum cycle times (Table 6.4).
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Range of cycle times
100% 75% 50% 25%

Total cost 395,082 395,551 397,264 409,319
CPU time (s) 982 925 795 442
# of iterations 50 50 48 35
Avg CPU time
by iteration (s)

17.3 16.2 (-6.4%) 14.4 (-16.8%) 10.9 (-37.0%)

Table 6.4: Variation of the cycle time range with CTmax

6.3 Alternative costs for timed routes

In Section 6.2, we mainly focused on strong constraints on cycle times. This is one way to
control cycle times. In this section, we model these constraints differently. In fact, usually
in industry, decision makers have in mind target cycle times or want to challenge their
production teams by fixing a target cycle time for some products. In previous chapters, in
order to control the cycle time, we introduced a WIP management cost for each product.
This WIP management cost has only an impact on the length of the cycle time but does not
model the objective to reach target cycle times. With the timed route formulation, it is now
possible to consider more explicit strategies to reach target cycle times. In Section 6.3.1,
we first introduce target cycle times with different penalties (linear or quadratic). We also
generalize the column generation approach to integrate these penalties. In Section 6.3.2, we
introduce constraints on intermediate lead times. These sections are supported by numerical
experiments to show the impact of these new strategies on the objective function and the
structure of the generated timed routes.

6.3.1 Target cycle times

As mentioned above, instead of fixing limits to cycle times, it is often relevant to target
a cycle time for some products. This can be achieved by penalizing the distance between
the effective cycle time and the target cycle time. This penalization can be counted only
when the partial timed route is complete. It penalizes the time routes whose effective cycle
time is longer or shorter than the target cycle time. Target cycle times are usually used in
semiconductor manufacturing in order to control cycle times. Target cycle times are also
used to challenge the actual reference cycle times of a factory in order to achieve shorter
cycle times.

To implement target cycle times, we introduce a penalty based on the difference between
the effective cycle time and the target cycle time. First, we considered the linear cost given
by the absolute value of their difference ∆

|CT |
pr = |CTtarget − CTr|. Then, we considered a

quadratic cost to balance cycle time difference ∆CT 2

pr = (CTtarget − CTr)
2.

∆
|CT |
pr and ∆CT 2

pr are penalized in the objective function by a small factor to limit the
impact of targeting cycle times compared to inventory and backlogging costs. These costs
replace the WIP management costs wpr in the objective function (5.1). Contrary to the WIP
management cost which is counted at each period, the difference from the target cycle time
is only counted at the end of the timed route. The dominance rule on partial timed routes
can only be applied on the routes that have the same start period. Thus, the dominance
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rule of Property 3 in Section 6.2.1 is applied when penalizing the distance to target cycle
times. A stronger dominance rule is applied at the end of the calculation of the final reduced
costs when integrating the target cycle time costs. Note that the master problem does not
change.

To show the efficiency of introducing target cycle times, we present numerical experiments
with four pricing strategies:

• WIP: Stationary WIP costs,

• Linear: Linear costs to target cycle times,

• Quad: Quadratic costs to target cycle times,

• Quad with tolerance Quadratic cost to target cycle times, with a tolerance of 4
micro-periods with no cost when exceeding the target cycle time.

Table 6.5 summarizes the experiments of the four above mentioned strategies on the
instance used in Section 6.2.3. Recall that this instance is characterized by 119 micro-
periods and 40 products. As in the previous tables, the columns "Total cost", "CPU time
(s)" and "# of iterations" correspond respectively to the sum of inventory and backlogging
costs, the total computational time in seconds and the number of iterations performed in
the column generation algorithm.

Note that the results are based on the use of the dominance rule of Property 2 in Section
5.4.2 rather than the dominance rule of Property 3. It is important to mention that the use
of the dominance rule of Property 2 is not sufficient to ensure the optimality of the solution.
However, its computational time is 10 times lower than the one when using the dominance
rule of Property 3. Our experiments showed that the gap to optimality when using the
dominance rule of Property 2 is very small (0.005%).

Let us now show why the dominance rule of Property 2 is not sufficient to obtain the
optimal solution. Suppose that we have two routes s1 and s2 with a target cycle time of 1
period. For timed route s1, the first operation is processed in period 1, the second one in
period 2 and the last one in period 3. For timed route s2, operations 1 and 2 are processed
in period 2 and the last operation in period 3. If we use the dominance rule of Property 2
at period 2, s1 dominates s2 if λ2,1 > λ2,2. However, s2 can lead to a better cost than s1 if
∆CT

2 −∆CT
1 > λ2,1−λ2,2. This shows that the dominance rule of Property 2 is not sufficient.

Using the same arguments as for the proof of Property 2, we can show that Property 3 is
valid for our problem.

Costs

WIP Linear Quad
Quad with
tolerance

Total costs 395,025 395,025 395,261 395,249
CPU time (s) 134 114 109 114
# of iterations 43 46 46 51

Table 6.5: Comparison of cost functions on the difference with target cycle times

From Table 6.5, we can notice that using a linear cost on target lead times does not
impact the total inventory and backlogging costs. However, we notice that using quadratic
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cost on target lead times slightly increases the total inventory and backlogging costs (0.06
%). This increase is smaller when a tolerance of a given number of periods with no cost is
allowed (0.057%). We can observe that the computational times are very close for the four
strategies. The number of iterations of the column generation algorithm slightly increases
when using a quadratic penalty with tolerance but the computational time is not impacted.

To analyze the impact of using target lead times on cycle times, a detailed analysis is
needed. Note that, in our case, the target lead times are fixed in order to converge toward
the theoretical minimum cycle times. Table 6.6 provides the maximum and mean cycle times
for each product and for each strategy.

From Table 6.6, we can observe that maximum cycle times do not change when using the
linear cost to the target cycle time. If we analyze in details the mean cycle times, we observe
very small changes. Over 40 products, the mean cycle time of four products (products 25,
33, 34 and 35) slightly increase while the mean cycle time of five products (products 14,
18, 23, 28 and 31) decrease. These variations are very small and correspond to a difference
of less than 0.1 micro-periods. The largest decrease of the mean cycle time is observed for
product 18, where the mean cycle time decreases from 96 to 93.1 micro-periods.

When analyzing the impact of the quadratic cost of the difference to the target cycle
times, we can observe more variations. The maximum cycle time of 15 products decrease by
at least one micro-period. This decrease can be very high for some products. For example,
the mean cycle time of product 21 decreased by more than 28 micro-periods. We can also
notice that the mean cycle time is also impacted by the quadratic strategy. A large decrease
of the mean cycle time can be observed for the products whose maximum cycle times have
decreased. For example, for product 5, the mean cycle time decrease from 72.3 to 58.1
micro-periods. Note that some products have seen their mean cycle times unchanged, even
if the maximum cycle times decrease. For products with unchanged maximum cycle times,
a small increase of the mean cycle time can be spotted (e.g. products 7 and 17). The largest
increase of the mean cycle time can be observed for product 14, with an increase by 5.6
micro-periods.

For the quadratic cost strategy with a tolerance of four micro-periods, the results are
close to those with the quadratic cost strategy without any tolerance. Only three products
(products 11, 14 and 22) have longer maximum cycle times than with the quadratic cost
strategy. Note that these maximum cycle times are smaller than those obtained with the
WIP cost strategy. These longer maximum cycle times are associated to some changes of the
mean cycle times. For products 11 and 22, the mean cycle time increases respectively by 2.1
and 0.5 micro-periods. For product 14, the mean cycle time decreases by 3.2 micro-periods.
Very small changes occur in the mean cycle time of 11 other products.

From these preliminary experiments, we can observe that introducing a tolerance in the
quadratic cost strategy does not significantly impact the results. Through these experiments,
we have shown that it is possible to easily integrate new constraints and objectives on cycle
times without significantly modifying the original column generation algorithm.

6.3.2 Smoothing lead times

An issue that might still occur, even when controlling cycle times, is that the cycle time is
not balanced along the route and some operations have large lead times. In order to balance
the lead times on route, we introduce a linear cost on the maximum lead time between
two consecutive operations. The maximum lead time of route r for product p is denoted
LTmax

pr = maxl(t(p, r, l)−t(p, r, l−1)). This maximum lead time is penalized and replaces the
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Product
Maximum cycle time Mean cycle time

WIP Linear Quad
Quad with
tolerance

WIP Linear Quad
Quad with
tolerance

1 103 103 88 88 66.2 66.2 66.2 62.2
2 96 96 83 83 55.6 54.6 52.9 52.9
3 103 103 82 82 52.4 52.4 47.6 47.5
4 110 110 110 110 75.5 75.5 75.5 75.5
5 103 103 96 96 72.3 72.3 58.1 58.1
6 110 110 103 103 74.1 74.1 67.5 67.5
7 97 97 97 97 81.9 81.9 82.0 82.0
8 117 117 117 117 67.7 67.7 67.7 67.7
9 103 103 103 103 96.4 96.4 96.4 96.4
10 110 110 110 110 80.8 80.8 81.1 80.6
11 110 110 89 96 66.7 66.7 54.1 56.2
12 97 97 97 97 73.9 73.9 74.0 74.0
13 103 103 74 74 63.7 63.7 47.7 47.7
14 96 96 95 96 72.1 72.0 77.7 74.5
15 110 110 110 110 70.3 70.3 70.0 69.9
16 103 103 103 103 67.9 67.9 67.8 67.8
17 103 103 103 103 81.6 81.8 82.1 82.6
18 96 96 96 96 96.0 93.1 96.0 96.0
19 75 75 75 75 56.6 56.6 56.6 56.6
20 110 110 110 110 72.4 72.4 72.4 72.4
21 110 110 82 82 61.8 61.8 56.4 56.4
22 111 111 75 90 76.2 76.2 64.3 64.8
23 110 110 110 110 81.3 81.2 78.9 80.2
24 118 118 118 118 99.8 99.8 99.8 99.8
25 96 96 96 96 55.8 55.9 55.8 56.4
26 110 110 110 110 79.6 79.6 80.2 80.7
27 117 117 117 117 86.6 86.6 86.6 86.6
28 105 105 105 105 81.6 82.1 81.3 81.1
29 110 110 110 110 63.2 63.2 63.2 63.2
30 117 117 117 117 82.1 82.1 82.1 82.1
31 104 104 103 103 63.1 63.0 62.9 63.0
32 103 103 82 82 60.4 60.4 55.5 55.5
33 111 111 97 97 64.2 64.4 62.8 62.4
34 110 110 103 103 97.3 97.8 95.8 95.7
35 69 69 69 69 68.9 69.0 69.0 69.0
36 84 84 84 84 84.0 84.0 84.0 84.0
37 118 118 118 118 79.1 79.1 79.1 79.1
38 117 117 105 105 82.8 82.8 80.3 80.3
39 103 103 103 103 100.3 100.3 101.3 101.2
40 103 103 103 103 63.8 63.8 62.6 62.3

Table 6.6: Detailed results for target cycle times
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WIP management cost wpr in the objective function (5.1). LTmax
pr can be computed during

the construction of the associated timed route. Note that we can also use a quadratic cost as
done with the target cycle time. As in the previous section, we compare the linear and the
quadratic cost of the maximum lead time to the classical WIP management cost strategy.

Note that the dominance rules in Property 2 and Property 3 are not sufficient. The
argument is given through the following counterexample. Suppose that we have two timed
routes s1 and s2 composed of four operations. s1 and s2 can be represented respectively by the
following arrays of periods where the four operations take place: [1][2][3][5] and [1][1][3][5].

We suppose that s2 dominates s1, i.e. that the reduced cost of s1 is larger than the
reduced cost of s2 since both routes have the same maximum lead time (equal to 2). We can
notice that the difference between the two routes occurs at operation 2 and the maximum
lead time is equal to 2 for both routes. s2 dominates s1 means that λ2,2 > λ2,1. Recall that
λo,t is the dual cost of operation o at period t.

However, if we apply the dominance rule of Property 2 on the partial timed routes at
period 3, s1 dominates s2 if λ2,2 − λ2,1 < maxLTcost(2, 3) − maxLTcost(1, 3) =, where
maxLTcost(r, t) is a cost function that provides cost associated with the maximum lead
time of timed route r observed at period t. This means that the timed route s2 is dominated
by route s1 at period 3, which contradicts the assumption that s2 dominates s1.

Table 6.7 summarizes the experiments of the three strategies: "WIP", "Linear" and
"Quadratic". As in the previous tables, the columns "Total cost", "CPU time (s)" and "#
of iterations" correspond respectively to the sum of the inventory and backlogging costs, the
total computational time in seconds and the number of iterations performed in the column
generation algorithm. We use the dominance rule of Property 2 in the pricing problem.

Costs
WIP Linear Quadratic

Total costs 395,026 395,025 395,179
CPU time (s) 134 114 107
# of iterations 43 47 44

Table 6.7: Comparison of various cost functions based on the maximum lead time

Table 6.7 shows the impact of the pricing strategy (WIP, Linear and Quadratic) is neg-
ligible. We can notice that, as in the previous section, the quadratic cost has a relatively
higher impact than the linear cost. Concerning the computational times, because of the use
of the dominance rule of Property 2, there is a very small difference between the three strate-
gies. The same remark can be drawn for the number of iterations for the column generation
algorithm.

Table 6.8 presents a detailed analysis by comparing the maximum lead time and the mean
cycle time for each product and for each pricing strategy: "WIP", "Linear" and "Quad".

From Table 6.8, we can notice that the linear cost of the maximum lead time does not
impact the mean cycle time of the products. Only 12 products out of 40 have seen changes
in their mean cycle time when using the linear cost instead of a WIP management cost.
The largest difference occurs for product 2 where the mean cycle time decreases by 1 micro-
period, but in most cases the differences are lower than 0.2 micro-periods. However, when
analyzing the maximum lead times, changes are more frequent and larger. The maximum
lead time remains stable for only 11 products. The changes are mostly a decrease of the
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Product
Max lead time Mean cycle time

WIP Linear Quad WIP Linear Quad
1 52 28 24 66.2 66.2 66.2
2 36 34 34 55.6 54.6 54.6
3 60 36 20 52.4 52.4 47.6
4 23 23 23 75.5 75.5 75.5
5 52 28 24 72.3 72.3 72.4
6 59 35 23 74.1 74.1 67.6
7 14 13 13 81.9 82.0 81.9
8 60 36 13 67.7 67.7 65.4
9 12 11 11 96.4 96.4 96.4
10 22 22 20 80.8 80.6 80.9
11 59 35 23 66.7 66.7 61.9
12 15 15 13 73.9 73.9 74.0
13 60 36 20 63.7 63.8 54.1
14 10 11 9 72.1 72.0 81.7
15 61 37 24 70.3 70.3 63.8
16 52 28 24 67.9 67.9 67.8
17 13 13 12 81.6 81.9 82.6
18 13 16 15 96.0 96.0 95.9
19 18 18 15 56.6 56.6 56.6
20 24 24 16 72.4 72.4 72.4
21 59 35 24 61.8 61.8 60.4
22 61 36 36 76.2 76.0 75.8
23 16 16 16 81.3 81.3 77.1
24 57 33 24 99.8 99.8 99.8
25 52 28 24 55.8 55.9 55.9
26 23 22 20 79.6 80.2 79.6
27 34 33 23 86.6 86.6 86.6
28 13 13 13 81.6 81.7 80.9
29 52 29 24 63.2 63.2 63.2
30 47 40 45 82.1 82.2 82.4
31 58 33 24 63.1 63.2 63.0
32 52 29 24 60.4 60.4 60.6
33 61 36 37 64.2 64.3 64.4
34 45 23 23 97.3 97.3 96.6
35 3 3 3 68.9 69.0 69.0
36 4 4 4 84.0 84.0 84.0
37 57 33 23 79.1 79.1 79.1
38 50 35 24 82.8 82.8 80.3
39 13 13 12 100.3 100.4 100.9
40 56 34 35 63.8 63.8 63.8

Table 6.8: Detailed results for maximum lead time strategies
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maximum lead time as with product 3, where the maximal lead time decreases from 60 to 36
micro-periods. We can observe that the larger the maximum lead time when using the WIP
management cost, the larger the reduction when using the maximum lead time strategies.
We can also notice that, for some products, maximum lead times are reduced. Products 14
and 18 which have originally "short" maximum lead times, present small increases of their
maximum lead times when using the linear cost of the maximum lead time.

When focusing on the quadratic cost of the maximum lead time, we can notice that
the impact on cycle times is more significant. The maximum lead times of 36 products is
reduced. Moreover, the decrease is larger than when using the linear cost of the maximum
lead time (for 25 products). For example, the maximum lead time of product 15 is reduced
from 61 to 24 micro-periods. The mean cycle time is also highly reduced for 13 products.
For example, the mean cycle time of product 13 reduces by 9.6 micro-periods. We also notice
a very small increase (of less than 0.1 micro-periods) of the mean cycle time for 11 products.
Only the mean cycle time of product 14 increases from 72.1 to 81.7 micro-periods.

Through these results, we can claim that the maximum lead time is reduced as expected.
Note that some maximum lead times are relatively long since they can reach 45 micro-
periods. However, the maximum cycle time is not highly impacted. We can also note that
the production quantity allocated to routes with long maximum lead times are relatively
small. In order to avoid such timed routes, hard constraints can be used in order to smooth
the lead times over the cycle time, and thus to generate timed routes with shorted lead times.

We have also observed that the impact of the linear cost on the violation of target cycle
times or maximum lead times on the solution is negligble. However, the quadratic cost has
more impact on the resulting solutions and tends to reach the objectives of shorter and
balanced timed routes. Still, the use of unitary penalty costs for the violation of the targets
cycle times does not completely forbid long timed routes. It only allocates less production
quantities to these routes in order to reduce the total cost. The same remark can be drawn
for maximum lead times. They only tend to balance the lead time over the timed route
without impacting the maximum cycle time. In order to enforce the control on the timed
routes, we can jointly consider hard constraints on cycle times and quadratic costs on the
timed routes. In fact, this may help to avoid long cycle times while keeping flexibility within
the timed routes.

6.4 Conclusion and perspectives

In this chapter, we studied some extensions of the timed route formulation to improve the
results obtained in the previous chapter. In fact, one of the drawbacks of using timed
routes is the possibility to generate very long cycle times. Thus, our first purpose in this
chapter was to introduce new objectives and constraints in order to better control cycle times.
First, we studied the construction of the timed routes that respect a minimum cycle time
and/or a maximum cycle time. We introduced new dominance rules to adapt the pricing
algorithm proposed in Chapter 5 and thus the column generation algorithm. Note that the
pricing algorithms remain polynomial when considering the new dominance rules. Note that
the proposed extensions can only be considered if they lead to efficient dominance rules
or preemptive checks. However, if the dominance rules do not lead to efficient algorithms
to solve the pricing problem, heuristics can be considered in order to speedup the column
generation algorithm.

Another issue addressed in this chapter is the relevance of using WIP management costs.
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In fact, these costs are generally artificial and their goal is to control lead times and cycle
times. However, this goal seems not to be reached by the classical formulation. We intro-
duced alternatives to the WIP management costs. The first alternative is to fix a target
cycle time per product and to penalize its difference to the actual cycle time. This penalty
cost replaces the WIP management cost in the objective function. The second alternative
is to penalize the maximum lead time between two operations for each timed route. This
cost also replaces the WIP management cost. For the two alternatives, we considered linear
and quadratic costs. We have shown that the quadratic cost is more efficient than the linear
cost. Note that other penalty functions could be used to obtain more balanced results.

Finally, we believe that it could be interesting to consider more operational constraints
within the master problem to deal with industrial needs. For example, the quantities al-
located to a route in our approach are continuous. However, in industry, the allocated
quantities are discrete or minimum production quantities are needed. This will lead to the
introduction of integer variables within the master problem to model minimum production
quantities or production using batches. A second extension of our model is to consider more
complex Bill of Materials, with production routes sharing common sequences of operations
and divergent sequences but leading to equivalent products that satisfy the same demands.
Nowadays, in industry in general and in semiconductor manufacturing in particular, the
trend is to tend toward the customization of products as late as possible. This means that
some products share the same routes up to certain operations and then, when the forecast
is accurate, each product follows its own final operations. For all these extensions, the use
of binary and/or integer variables is necessary and our column generation algorithm should
be adapted to solve the resulting problem in reasonable computational times.
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Chapter 7

General conclusion and perspectives

7.1 General conclusion

The goal of this thesis was to propose novel models and solutions approaches to tackle large-
scale production planning problems in semiconductor manufacturing. Our contributions are
summarized below.

First, the semiconductor manufacturing context was introduced in Chapter 1, discussing
the main issues of probably the most complex industry. Semiconductor manufacturing is
mainly characterized by hundreds of operations to complete products on hundreds of ma-
chines, long cycle times of several weeks and the high investment cost to build and operate
the facility. The semiconductor industry is also characterized with high profits, driven by a
growing demand.

Chapter 2 proposes a review of the semiconductor manufacturing literature on production
planning. We emphasized two main differences between production planning problems in
semiconductor manufacturing and classical production planning problems (in particular lot-
sizing problems):

1. The size of the problem instances to solve (hundreds of products, machines and opera-
tions), that makes the use of discrete variables (such as the ones used to model set-up
times) very difficult,

2. Long cycle times with many operations to perform, which are considered in the liter-
ature.

A first gap in the semiconductor manufacturing literature is the discussion on the most
relevant objective functions for managers. A second gap is the modeling of congestion. Due
to the long cycle times and the complexity of the production flows, congestion cannot be
ignored. The semiconductor manufacturing literature proposes three main ways to model
congestion (fixed lead times, iterative process updating the lead times and clearing functions).
We have tried in this thesis to fill these two gaps, at least partially.

Chapter 3 provided some answers to the first gap on the most relevant objective functions
in semiconductor manufacturing production planning. The production planner usually has
two main goals: Maximizing the productivity of the facility, but also reaching the financial
commitments of the facility. We show that maximizing the profit using the Net Present
Value, which relies on a discount rate, helps to achieve both goals. By maximizing the
profit, more products are completed, leading to more productivity. However, the end-of-
horizon effect needs to be controlled. Otherwise, there is too much inventory of a limited
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number of products. To control this effect, we proposed to limit the final inventory to a
fraction of the total demand for each product. An alternative is to use a piecewise linear
function to model the profit per finished product.

By analyzing the production planning model in Chapter 3, we noticed that fixed lead
time constraints were too restrictive, leading to non-smooth production flows. To cope with
this issue, we introduced flexible lead time constraints in Chapter 4. Flexible lead times
allow products to wait in the queue of an operation as long as needed, while respecting
minimum lead times. We have shown that flexible lead times allow larger profits at the cost
of longer cycle times. However, the two main flaws of flexible lead time constraints are that
(1) They induce significantly larger computational times and (2) Contrary to the fixed lead
times, the production flows cannot be controlled, i.e. some production quantities might have
very long cycle times.

In Chapter 5, we proposed a reformulation of the semiconductor production planning
problem using the new concept of timed route. A timed route is the allocation of each
operation of a production route to a period. Using timed routes, we were able to reformulate
the production planning problem with fixed lead times but also with flexible lead times.
Due to the exponential number of timed routes induced by flexible lead times, a column
generation approach was proposed, and a dominance rule established to reduce the time
complexity when solving pricing problems. For both fixed and flexible lead times, the timed
route formulation (with the column generation approach) performs significantly better in
terms of computational times. Moreover, timed routes allow the complete knowledge of the
production flows used in the plan.

The timed route formulation can be used in many other situations than just fixed or
flexible lead times without modifying the complexity of the master problem. This is what
we showed in Chapter 6 with several variations of the pricing problem in the column gener-
ation approach. First, we studied timed routes with bounded cycle times, by adapting the
algorithm used to solve the pricing problem. Then, we explored alternative costs to WIP
management costs such as penalties on the gap to cycle time targets or maximum lead times.
These new costs show that, with timed routes, it is also possible to consider nonlinear costs.
However, we are far from having fully exploited the potential of the timed route formulation.

7.2 Perspectives

There are many perspectives to this work, notably initiated by the introduction of the
timed route formulation. In this section, we detail what we think are the most interesting
perspectives, to investigate if they can be studied in a short or medium term or if they
require long-term research.

7.2.1 Polishing the timed route formulation

If the timed route formulation was proven efficient to reduce computational times and ex-
plicitly models the production flows (see Chapter 5), the following perspectives would be
interesting to investigate:

• Using other objective functions that are more relevant in semiconductor manufacturing
than cost minimization, as shown in Chapter 3. The new reduced cost associated with
the timed routes should be determined.
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• Integrating an initial WIP, that will lead proposing new timed route generation al-
gorithms for truncated timed routes. The initial WIP will be considered through
Constraints (7.1), where Rinit

pl is the set of truncated timed routes that can be used to
process the initial WIP of product p at operation l.

∑

r∈Rinit
pl

Zpr = Wpl0 ∀p ∈ {1, . . . , P} ∀l ∈ Lp, (7.1)

where Wpl0 is the initial WIP of product p waiting for operation l, and Zpr is the
decision variable associated to the quantity of product p allocated to timed route r.

Particular attention must be paid to the complexity induced by the integration of the
initial WIP.

• Integrating binary variables in the master problem (for example, with batch con-
straints, minimum quantities to process or set-up times). If the computational times
are too large, dedicated solution approaches should be developed.

• Introducing more complex bills of material. If semiconductor manufacturing’s bill of
material is always represented as sequential, in practice, it sometimes can be more com-
plex (some products can be merged, others are personalized in the last operations).
Moreover, we could consider applying timed route formulation to many different in-
dustries if all possible bills of material can be integrated with short computational
times.

7.2.2 Conclusive comparison of several objective functions

Another perspective opened by this thesis is to compare more efficiently several objective
functions for production planning and their hybridization. Rather than simply comparing
cost minimization, maximizing the number of "moves" and maximizing profits with Net
Present Value as done in Chapter 3, we could also consider maximizing the utilization rates
of machines and maximizing the number of finished products. These objective functions can
be compared using production planning models with fixed lead times, but also with flexible
lead times. Using the timed route formulation, comparisons could be made on cycle times
generated by these models.

7.2.3 Industrialization of the process

Before industrializing our work, there is at least one large step.

• Our experiments show that the optimized production plans saturate some workshops
that are not saturated in reality. We should investigate the reasons behind the catego-
rization of such workshops as bottlenecks. One way would be to simplify our model by
ignoring the workshops that are never considered as bottlenecks in the manufacturing
facility.

• Detailed procedures to choose the level of aggregation should be proposed. Regarding
the product level, we only used the lowest level of products, and thus we ignored
part of the demands that are small but not totally insignificant. To consider the full
demand, using a higher level of aggregation seems to be a good option. To determine
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the capacity consumption at a high level of product aggregation, two solutions can be
considered. The simplest is to consider, for each class of products, the most demanded
product and take it as the reference product, and only consider its production route.
The other alternative is to create a meta production route that, at an operation, can
consume resources from several workshops, with a fixed consumption ratio based on
the demand for low-level products. A remaining difficulty is the aggregation of the
initial WIP of low-level products.

• Rounding heuristics should be studied to provide integer quantities of lots to release.
If the rounding heuristics lead to sub-optimal plans due to possibly small production
quantities, minimum production quantity constraints should be used in the model.

7.2.4 Integrating a better demand qualification

An important aspect in production planning which is not yet very well covered in the lit-
erature is the qualification of demands. Some work has been carried out on the integration
of the evolution of demand forecast in production planning problems (Heath and Jackson;
1994), and transposed to semiconductor manufacturing (Albey et al.; 2015; Ziarnetzky et al.;
2018). But there are other ways to model a more detailed demand.

There are usually firm demands, for which deadlines are given, and "flexible" demands
(typically make-to-stock) with due dates that are not strict. Another dimension of the
demand that should not be forgotten is that some demands might be overestimated, while
others reflect the exact required quantity.

Considering a fixed demand and an additional demand for a product was discussed in
the perspectives of Chapter 3. By using a piecewise linear profit function for the products,
products that exceed their base demand can generate lower profits. In financial terms, it
makes sense if the quantity of additional products that can be sold is uncertain, and thus
the lower profit represents the mean profit between scenarios when products can be sold and
scenarios when they cannot.

7.2.5 Robustness and consistency of production plans

The main criteria to assess the quality of a production plan are not only the indicators that
are calculated directly, but others can be evaluated a posteriori. For example, production
plans can be evaluated in various situations that may not exactly match the input data.
Furthermore, we need to ensure that the simplifications assumed in the model do not lead
to infeasibility at the operational level. In "theory", the best way to test it could be to
implement the production plans in the industrial environment. However, due to the criticality
of this process and the associated costs/profits at stakes, it is not acceptable.

Usually, detailed simulation is used to assess the quality of production plans. Making a
realistic simulation model of an entire semiconductor manufacturing facility is not simpler
than establishing a decision model, simplifications are also required to keep a tractable model.
However, there are much less simplifications than in a production planning model, because
more computational times can be allocated if the simulation is not running in real time
(also known as a digital twin), but only offline to assess the consistency of the production
plans once and for all. A simulation model of "Front-End" semiconductor manufacturing
facilities is developed by Barhebwa-Mushamuka et al. (2019). The authors designed an
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optimization-simulation approach that seeks to maintain consistency between the global
production schedule and the local schedules in the workshops.

Another way to ensure that our models are resilient to variations of the input data
is to use robust optimization. The three main sources of uncertainties in semiconductor
manufacturing production planning are: Demands (as expressed in Section 7.2.4), lead times
and machine failures, i.e. available production capacities. If a production planning model
that considers robustness to lead time variations was established by Albey et al. (2019), it
could be interesting to adapt this approach to our timed route formulation. To the best of our
knowledge, no paper integrates uncertainties on production capacity in the semiconductor
production planning literature. Concerning demand uncertainties, considering the capacity
planning literature in semiconductor manufacturing (Hood et al.; 2003) could be useful as a
starting point.

7.2.6 Extending the models to the supply chain

Another interesting problem in semiconductor manufacturing is related to supply chain plan-
ning. It is usually called master planning and can be seen as an intermediate problem between
the tactical and strategic decision levels. As stated in Section 2.5, master planning problems
in semiconductor manufacturing have been less studied than other planning problems, and
only in recent years. Master planning broadly corresponds to production planning on multi-
ple facilities. We could generalize our timed route formulation by considering supply chain
routes.

However, master planning also brings new issues. When considering the back-end part of
the semiconductor manufacturing supply chain, the allocation of final products to customers
should be considered (and also the possible substitution of final products). But a new critical
issue in this master planning problem is how to model the life cycle of products (around one
year and a half) and the introduction of new products in the supply chain.
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Appendix A

Extended summary in French

Dans un contexte d’utilisation toujours plus importante d’appareil électroniques que ce soit
dans la vie de tous les jours ou dans un cadre industriel voir aussi médical, la demande
en semi-conducteur est fortement croissante. Les semi-conducteurs désignent les circuits
intégrés que l’on retrouve dans chacun de ses produits. A ce jour, l’industrie des semi-
conducteurs est sans doute celle qui présente une production des plus complexes. D’une
part, chaque achat de machine est une décision qui relève du domaine stratégique au vue des
sommes investis (qui peuvent dépasser le million de dollars). D’autre part il y a la complexité
des flux de productions. Les usines européennes de semi-conducteurs ont généralement
un portefeuille de plusieurs centaines de produits avec pour chacun des demandes réduites
qui empêche une économie d’échelle. Chaque produit nécessite des centaines d’opérations
qui sont réalisés par un parc de centaines de machines hétérogènes et polyvalentes. Parmi
ces opérations, de nombreuses nécessitent l’utilisation d’un même type de machine ce qui
entraine à la fois une compétition pour les capacités de production entre les différents produits
mais aussi entre un même produit à différente étapes de sa production. Cette complexité de
production est à la racine des congestions qui ont lieu et qui amènent à des temps de cycles
de 2 à 3 mois.

Tout cela amène à de nombreuse problématiques au sein des usines de production de semi-
conducteurs (plus communément appelées « fab ») comme la cohérence entre les objectifs
globaux de production de l’usine et les objectifs locaux au niveau des ateliers ou encore
l’équilibrage de l’utilisation de la capacité entre production, maintenance et recherche et
développement. La problématique qui nous concerne dans cette thèse est la planification de
la production (le choix des quantités de produits et du moment où ils seront lancés pour
répondre à la demande), une étape cruciale dans le milieu des semi-conducteurs.

Pour réaliser nos expérimentations numériques nous bénéficions, dans le cadre du pro-
jet européen Productive 4.0, d’un modèle générique des données qui formalise la structure
des données échangées entre académiques et industriels. C’est sous ce format que sont
structurées les données fournit par STMicroelectronics Crolle, partenaire de ce projet. Ces
données représentent l’intégralité d’un « fab », que cela soit les ateliers, les produits ou les
routes productions. Seul les coûts ne nous ont pas été fourni. Nous avons aussi utilisé une
instance de taille réduite présentée dans Kayton et al. (1997).

Dans le Chapitre 2, nous étudions la littérature sur la planification de la production et
tout particulièrement dans le cadre de la fabrication de semi-conducteurs. Un rappel est
donné concernant les modèles de Lot-Sizing, mais force est de constater que de nombreuses
entreprises se privent des méthodes de la recherche opérationnelle, leur préférant un simple
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MRP (Materiel Requirement Planning) qui a pour défaut majeur de ne pas prendre en
compte la capacité limitée des moyens de productions.

En ce qui concerne les usines de fabrications de semi-conducteurs, le constat est différent.
Face à la complexité des flux de production, de nombreuses collaborations entre académiques
et industriels ont donné naissance à des modèles linéaires de planification de la production.
Ces modèles ont, pour la grande majorité, comme objectif de minimiser les coûts que cela
soit d’inventaire ou d’arriéré. Ils s’appuient principalement sur des variables de décisions sur
les quantité produites et stockés. A noter qu’à cause des grandes dimensions des instances
industrielles, l’emploi de variables entières est quasi inexistant.

Le point d’étude majeur dans ce domaine est la modélisation de la congestion. Trois
méthodes majeures sont utilisées : les délais fixes de production, l’ajustement itératif de
ces délais de production en utilisant un modèle de simulation et les Clearing Functions qui
en fonction de la charge en entrée déterminent quelles quantités de produits pourront être
opérées.

Dans le Chapitre 3, nous nous sommes attelés à définir quelle serait la meilleure fonction
objective à chercher à satisfaire pour convenir aux besoins de l’entreprise. Dans un premier
temps, nous avons introduit toutes les notations nécessaires à la constitution d’un modèle
générique de planification de la production pour le semi-conducteur utilisant des contraintes
de délais fixes de production, avec pour seul changement par rapport aux classiques de la
littérature un horizon à double échelle. L’échelle micro correspond à la production tandis
que l’échelle macro correspond aux demandes et aux stocks.

Dans un second temps, afin favoriser la productivité, nous avons étudié une fonction
cherchant à maximiser le nombre d’opérations effectuées (tout en prenant en compte les
coûts d’inventaire et d’arriéré). Il s’est avéré qu’il y a un arbitrage à faire entre productivité
et les coûts classiques.

Il n’est pas chose aisée d’additionner un nombre d’opérations avec des coûts du fait des
unités différentes. Afin de parer à cela, la deuxième fonction objective étudiée n’intègre
que coûts et profits. Cette fonction vise à maximiser les revenus, mais afin de tenir compte
d’une plus grande importance des retours sur investissement rapides, une dévaluation heb-
domadaire des profits et coûts est considérée. Cette fonction objective peut être consid-
érée comme la Valeur Actuelle Nette, très connu du monde économique. Les expériences
numériques montrent qu’en ne considérant que la minimisation des coûts on passe à côté
d’une augmentation non négligeable des revenus. Cette augmentation des revenus est générée
par une plus grande production de produits qui ne répondent pas tous à une demande déjà
établie. Cela a donc aussi pour effet d’augmenter la productivité comme souhaité avec la
précédente fonction objective. Il est à noter que l’effet de fin d’horizon peut amener à générer
un très large inventaire d’un seul type de produit. Cet effet n’étant pas désirable il a fallu
rajouter des contraintes sur l’inventaire final de chaque produit, ce qui permet de mieux
équilibrer l’inventaire final entre tous les produits sans modifier significativement les profits.

Dans le Chapitre 4, la discussion s’est portée sur les contraintes de délais fixes de pro-
duction qui servent à modéliser les congestions. Dans un premier temps, nous avons exposé
les différents inconvénients que génèrent ces contraintes, notamment le manque de lissage
des charges sur l’horizon ou encore le fait qu’elles limitent les décisions sur la production
uniquement à déterminer les quantités de produits qui seront introduit dans le système à
chaque période, les décisions sur les quantités à opérer en chaque atelier étant déjà figées du
fait des délais fixes.
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Afin de corriger ces défauts, nous avons proposé une contrainte de délai flexible de pro-
duction. Le principe de cette contrainte est simple : on conserve un délai minimal à respecter
mais l’on autorise le produit à patienter plus longuement sans être opéré immédiatement à
la fin de son délai minimal comme avec les délais fixes. Ainsi cela permet à la charge d’être
lissée sur l’ensemble de l’horizon suivant le délai minimal et laisse des décisions à prendre au
niveau de chaque opération.

Les expériences numériques montrent que ces délais flexibles ont pour effet de faire quasi-
ment disparaitre les coûts d’inventaire et de réduire les arriérés grâce à une plus grande
flexibilité au niveau de l’utilisation de la capacité. Cependant, cela a aussi un coup en terme
de temps de calcul, qui est quasiment multiplié par 20. Un autre inconvénient des délais
flexibles est qu’il est beaucoup plus difficile de tracer les flux de production, et il est n’est
pas possible de déterminer si un produit va attendre jusqu’à la fin de l’horizon.

Le Chapitre 5 est l’occasion de reformuler intégralement le problème de planification
multi-étapes. Dans un premier temps nous introduisons le concept de route temporisée.
Cette construction permet d’allouer à chaque opération la période dans laquelle elle sera
réalisée. Ainsi on peut déterminer exactement les flux de productions en jeux, leur temps de
cycle ainsi que quand sera consumée la capacité. On peut ensuite reformuler le problème de
planification sous la forme d’un problème d’allocation de quantités de produits sur les dif-
férentes routes temporisées afin de répondre à la demande tout en respectant les contraintes
de capacité. Le problème restant était de déterminer quelles routes temporisées utiliser.
Dans le cas d’un modèle avec délais fixes de production, elles sont assez simples à déter-
miner et sont en nombre polynomial. Ainsi il est aisé de les introduire toutes directement
dans le modèle.

Cependant, en ce qui concerne le modèle avec délais flexibles cela devient un peu plus
complexe, le nombre potentiel de routes temporisées est exponentiel. Pour circonvenir ce
problème, une approche par génération de colonne est nécessaire. Un programme dynamique
qui permet de générer les routes temporisées est développé ainsi que la règle de dominance
suivante « pour deux routes temporisée qui arrivent à la même opération celle qui a le plus
fort coût réduit domine l’autre ». Ainsi à chaque itération de la génération de colonne la
complexité reste polynomiale. Du côté des expérimentations numériques, le résultat majeur
est l’importante réduction des temps de calculs. Pour le modèle avec délais fixes le temps
de calcul est réduit d’en moyenne 94%, tandis qu’avec le modèle avec délais flexibles il est
réduit d’en moyenne 87%. Un second aspect positif est que l’on a pu étudié précisément les
temps de cycles pour une instance du modèle avec délais flexibles. On s’est aperçu que les
temps de cycles maximaux étaient proches de la longueur de l’horizon et que régulièrement
les routes temporisées contenaient une opération avec un temps d’attente exorbitant qui
parfois représente la moitié du temps de cycle.

La formulation à base de routes temporisées recèle d’autres possibilités dont certaines
sont explorées dans le Chapitre 6. Afin de répondre à la problématique des temps de cycle
trop longs, avec les routes temporisées, on a pu envisager d’attribuer à chacune un coût
unitaire qui dépend de longueur du délai maximum entre deux opérations, que cela soit une
relation linéaire ou quadratique. Cela est tout simplement impossible avec la formulation
classique. De la même manière nous avons testé un coût unitaire qui pénalise l’écart à un
temps de cycle cible, avec une pondération linéaire, quadratique et possiblement avec des
seuils de tolérances où l’on considère que l’écart est suffisamment faible pour omettre le coût.
Dans tous les cas les expérimentations montrent que si l’utilisation des coûts linéaires à un
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faible (mais non négligeable) impact sur la solution, lorsque les coûts sont quadratiques, les
changements sont majeurs. Cependant même si ces solutions limitent les temps de cycle
longs cela ne les bannit pas pour autant. Pour en venir complètement à bout, il faut utiliser
des contraintes dures de temps cycle maximal et potentiellement de temps de cycle minimum.

Modifier l’espace des routes temporisées admissibles implique de retravailler les règles de
dominances selon si l’on se trouve dans le cas d’une simple contrainte de temps de cycle
maximal ou une contrainte qui encadre ce temps de cycle entre deux bornes. Les algo-
rithmes de générations des routes temporisées ont aussi été retravaillé, le tout menant à une
complexité plus importante que dans la génération sans contrainte mais toujours polynomi-
ale. Afin réduire un peu cette complexité, on a rajouté une vérification préemptive pour
déterminer si la route temporisée en cours de construction va dépasser le temps de cycle
maximal. Les résultats numériques montrent qu’imposer de telles limites aux temps de cy-
cle amène à augmenter de façon sensible les coûts totaux. En ce qui concerne le temps de
calcul il peut être doublé voire quadruplé dans le cas d’une contrainte en minimum et max-
imum, mais est très dépendant de l’intervalle entre temps cycle minimal et maximal autorisé.

En ce qui concernent les perspectives des travaux enclenchés dans cette thèse, plusieurs
pistes sont envisageables. Tout d’abord il faut perfectionner les routes temporisées, pouvoir
intégrer un inventaire intermédiaire initial et d’autres fonctions objectives. L’idéal serait
ensuite d’intégrer des variables binaires dans le problème maitre qui pourrait ainsi modéliser
des contraintes de quantité minimale à produire.

Une autre tâche concerne l’industrialisation de nos méthodes : il faudra faire encore un
peu de travail sur les données en entrée mais surtout sur les données en sortie. En effet des
quantités entières seraient plus pratique pour établir des consignes de productions que les
quantités en nombre réel déterminées par le programme linéaire. Il faudra donc trouver une
bonne heuristique d’arrondissement.

Un enrichissement possible de nos modèles passe par une meilleure compréhension des
demandes. Il faut pouvoir gérer des demandes fermes et d’autres plus variables, certaines
pouvant admettre un délai tandis que d’autres ne peuvent souffrir le moindre retard.

Enfin il faut s’assurer de la fiabilité des modèles en des conditions réalistes. Pour cela,
la première étape est de se confronter à des simulations détaillées d’une usine. Une seconde
étape serait d’utiliser une optimisation robuste sur l’un des critères portant à incertitude tel
que la demande, les délais, et les capacités de production.

La dernière perspective pour nos travaux serait d’étendre notre formulation à base de
routes temporisées au niveau de la Supply Chain. Dans le milieu des semi-conducteurs, les
similitudes sont nombreuses entre la planification de la production à l’échelle tactique celle
à l’échelle stratégique. Cependant il faudrait prendre en compte l’aspect cycle de vie du
produit qui n’est visible qu’à cette échelle de temps là.
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Abstract:

Conjugating highly increasing demands, limited capacity (because each machine costs a
lot) and cycle times larger than two months, the semiconductor industry (which produces
integrated circuits) is the most complex. In the semiconductor manufacturing, the produc-
tion planning is critical and should consider various phenomena such as re-entrant flows
and congestion. The semiconductor manufacturing literature strongly focuses on the way to
model congestion notably using fixed lead times.

We first discuss what goal should pursue the production planner. Only minimizing the
costs is not enough. To ensure profits and productivity of the facility, the chosen objective
function maximizes the profits under an actualization rate.

Our study was next dedicated to the fixed lead time constraints that are used to model
congestion. Acknowledging the drawbacks of fixed lead times, we propose news constraints
called flexible lead times. Flexible lead times offer more flexibility in the planning by allowing
products to wait more than the minimum lead time before being processed.

However, the flexible lead times lead to both a harder visualization of production flows
and large computational times. To answer these two drawbacks, we propose a reformulation
of the production planning problem using timed routes. In a timed route, each operation is
allocated to a fixed period.

Another advantage of the timed route formulation is that large cycle times and lead times
(that are common when using flexible lead times) can be banned or dissuaded.
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Résumé:

Entre demande fortement croissante, capacité limitée (car extrêmement coûteuse) et
processus longs de plus de deux mois, l’industrie des circuits intégrés (autrement appelés
semi-conducteurs) est des plus complexes. La planification de la production y est cruciale
et doit prendre en compte de nombreux phénomènes comme les flux réentrants de produits
et les congestions. Dans la littérature associée, un important effort a été fait pour modéliser
les congestions en utilisant notamment des délais fixes de production.

La discussion s’est d’abord portée sur les objectifs poursuivis par les entreprises qui ne
peuvent pas se contenter de minimiser les coûts. Afin de garantir les profits mais aussi la
productivité de l’usine, une fonction objective maximisant les profits avec dévaluation tem-
porelle de ces résultats financiers est préconisée. L’étude a ensuite porté sur les contraintes
de délais fixes de production qui servent à modéliser les congestions et montrer leurs incon-
vénients. Nous avons proposé des délais flexibles qui en autorisant de rallonger les délais
offrent plus de flexibilité au système de production.

Cependant ces délais flexibles mènent à la fois une moindre visibilité des flux de pro-
ductions et une augmentation importante du temps de calcul. Pour parer à cela, une re-
formulation du problème de planification de la production est proposée, en utilisant des
routes temporisées i.e. à chaque opération d’un produit est attribuée la période dans laque-
lle elle sera effectuée. Un autre avantage de cette formulation est que l’on peut interdire ou
décourager les temps de cycle et les délais trop longs, qui sont courants avec les modèles
utilisant des délais flexibles.


