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Résumé 
 
Le cancer infantile (CI) est la première cause de décès par maladie chez l’enfant, la 
leucémie (LI) étant le type le plus fréquent. Il s’agit d’une maladie rare dont l’étiologie 
est peu connue. L’oncogenèse pourrait débuter in utero, une période sensible où 
l’embryogenèse est contrôlée par des régulations épigénétiques héréditaires. Nous 
avons émis l’hypothèse que des dérégulations épigénétiques (méthylation de l’ADN) 
in utero constituent des mécanismes biologiques sous-jacents associant les facteurs 
précoces à la LI. Nous nous sommes focalisés sur trois facteurs intrinsèques 
étroitement liés : le poids à la naissance (l’un des phénotypes les plus précoces 
prédisposant à la LI), l’âge gestationnel et le sexe de l’enfant. 
 
Nous avons conduit des analyses épigénomiques en utilisant des méthodes 
biostatistiques optimisées dans des cohortes de naissance et avons trouvé de 
profondes associations entre le méthylome du sang de cordon et chacun des trois 
facteurs précoces. Nous avons ensuite étudié si les marqueurs identifiés sont liés 
significativement à un risque de CI. Enfin, nous avons recherché la proportion du 
méthylome agissant comme médiateur entre le poids à la naissance et la leucémie. 
Ces trois étapes constituent une modélisation triangulaire qui vise à identifier des 
mécanismes moléculaires liant une exposition précoce au cancer. 
 
Ce travail a permis d’identifier des marqueurs épigénétiques de facteurs précoces et 
de mieux comprendre les dérégulations épigénétiques in utero qui pourraient être à 
l’origine de la LI. Cette approche triangulaire pourra être utilisée pour d’autres études 
s’intéressant aux effets d’une exposition et aux mécanismes moléculaires sous-
jacents.  
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Abstract 
 
Childhood cancer (CC) is the leading cause of disease-related mortality in children, 
with childhood leukemia (CL) being the predominant type. CC is rare, and its risk 
factors and molecular precursors are poorly understood and may originate in utero. 
Fetal life represents a sensitive period during which epigenetic regulation constitutes 
heritable mechanisms driving embryogenesis. We hypothesize that epigenetic (DNA 
methylation) deregulation in utero underlies biological pathways linking early-life 
factors to CL. We focus on birthweight, as a collective proxy for early-life exposure 
and one of the earliest phenotypes predisposing to CL, as well as its closely related 
intrinsic factors, gestational age and child sex. 
 
We first performed epigenome-wide analysis with optimized biostatistics methodology 
in large population-based cohorts and found profound associations between each of 
the three factors and cord blood DNA methylome. Second, we investigated, in a 
subset of cohorts enriched in CL cases, whether the identified birthweight biomarkers 
significantly associate with cancer risk and are affected by gestational age and child 
sex. Third, we tested the proportion by which DNA methylation mediates the effect 
between birthweight and CL. These steps constitute a proposed ‘three-way 
modelling’ aiming to identify molecular mechanisms linking early-life exposure to CC 
risk. 
 
This work identified epigenetics markers of early-life factors based on some of the 
largest studies to date, yielding insights into epigenetic deregulation in utero that 
could be at the origin of CL. The described framework could be useful for other 
exposure-outcome studies investigating underlying molecular mechanisms. 
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Résumé en français 
Le cancer est la première cause de décès dû à une maladie chez les enfants, la 
leucémie étant le cancer pédiatrique le plus fréquent. L’étiologie du cancer chez 
l’enfant est encore peu connue. Cela est notamment lié au fait que cette maladie est 
rare et que les études prospectives sont manquantes. Or, les études prospectives 
ont une puissance plus forte que les études rétrospectives, potentiellement sources 
de biais de rappel et de sélection. Une collaboration internationale via des consortia 
est donc cruciale pour la collecte de données prospectives et d’échantillons 
biologiques, le Centre International de Recherche sur le Cancer jouant un rôle 
important dans les consortia majeurs que sont I4C (International Childhood Cancer 
Cohort Consortium) et CLIC (Childhood Leukemia International Consortium). Les 
consortia permettent également d’avoir un nombre suffisant d’individus à la fois 
exposés et malades. Une meilleure compréhension de l’étiologie du cancer chez 
l’enfant est essentielle afin d’améliorer le diagnostic précoce, mettre au point des 
thérapies ciblées et prévenir au mieux cette maladie. 

Une exposition à certains facteurs extrinsèques a été associée à un risque augmenté 
de cancer chez l’enfant aussi bien grâce à des études rétrospectives que 
prospectives. C’est le cas des radiations ionisantes, classées comme carcinogènes, 
ou encore des pesticides dont le risque concerne aussi bien une exposition 
professionnelle des parents avant la conception ou pendant la grossesse qu’une 
exposition résidentielle. Une exposition à des maladies infectieuses pendant la 
grossesse à quant à elle été associée à un risque moindre de cancer dans les 
premières années de vie, via un intermédiaire qu’est l’ordre de naissance au sein 
d’une fratrie. Un facteur intrinsèque, le poids à la naissance, a aussi été utilisé 
comme intermédiaire entre les expositions auxquelles l’enfant est exposé au cours 
de la grossesse et sa santé dans les premières années de vie. Un poids de 
naissance élevé a été associé à un risque accru de cancer chez l’enfant. Il s’agit de 
l’un des phénotypes les plus précoces de prédisposition à la leucémie infantile.  

Concernant les mécanismes biologiques, des analyses systématiques récentes ont 
montré que peu de mutations (voire aucune mutation) ne sont rencontrées lors de 
cancer chez l’enfant, dont les leucémies, par rapport aux cancers chez les adultes. 
Ces résultats mettent en évidence la contribution potentielle des facteurs non 
génétiques (notamment épigénétiques) au développement du cancer chez l’enfant. 
L’apparition dès le plus jeune âge du cancer (avant l’âge de 5 ans pour la leucémie) 
suggère que la maladie pourrait prendre son origine dès la grossesse. Notre 
attention s’est portée sur la vie intra-utérine, période sensible durant laquelle 
l’embryogenèse est contrôlée par des régulations épigénétiques héréditaires (dont la 
méthylation de l’ADN, un des mécanismes épigénétiques majeurs). L’épigénétique 
étudie les mécanismes impliqués dans le contrôle de l’expression des gènes sans 
changement de la séquence de l’ADN. Des dérégulations épigénétiques au cours de 
la grossesse pourraient constituer les mécanismes biologiques liant les facteurs 
précoces au cancer chez l’enfant.  
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Des marqueurs épigénétiques variés, associés à différents types de facteurs ou 
d’expositions ont été identifiés, notamment pour le tabagisme, l’âge, l’âge 
gestationnel, etc. Notre objectif est d’identifier des marqueurs épigénétiques des 
facteurs précoces et les mécanismes biologiques sous-jacents permettant de relier 
les facteurs précoces au cancer chez l’enfant. Nous avons appliqué une approche 
triangulaire afin d’étudier le lien entre l’exposition à des facteurs précoces, le cancer 
chez l’enfant et les mécanismes épigénétiques. 

Pour ce projet de thèse, nous avons utilisé des échantillons biologiques collectés 
chez des nouveau-nés sources de données épigénomiques et autres omiques ainsi 
que des questionnaires d’exposition pendant la grossesse de haute qualité obtenus 
prospectivement à partir de quatre consortia de cohortes de naissance 
internationaux. Les analyses ont été réalisées grâce à des technologies de pointe à 
haut débit et des méthodes bioinformatiques et biomathématiques avancées, afin de 
tester si une exposition fœtale et des précurseurs moléculaires in utero sont des 
processus responsables plus tard de la leucémie chez l'enfant. Les méthodes 
utilisées pour le traitement des données sont essentielles et doivent être optimisées 
afin d’obtenir ensuite des résultats pertinents. Nous avons ainsi participé à trois 
études qui ont conduit à la publication de deux articles, un troisième étant en 
révision. L’objectif de la première étude était d’identifier et de corriger les biais 
présents dans les données de méthylation à grande échelle tels que les effets de lot, 
qui sont parfois négligés mais qui deviennent problématiques surtout quand ils sont 
corrélés avec des variables biologiques d’intérêt. Le deuxième article s’est intéressé 
aux compétences nécessaires pour extraire les informations épigénomiques et des 
autres types d’omiques, les avancées technologiques récentes facilitant la collection 
de données omiques à grande échelle à partir de mêmes échantillons biologiques. 
Enfin, le dernier article représente une investigation pan-cancer utilisant les données 
génomiques et transcriptomiques pour l’évaluation du caractère moteur d’un 
ensemble de gènes épigénétiques (analyse intégrative des deux omiques).  

Afin de comprendre les mécanismes impliqués dans le développement du cancer 
chez l’enfant, nous avons recherché les marqueurs épigénétiques associés à trois 
facteurs intrinsèques étroitement liés : le poids à la naissance, l’âge gestationnel et le 
sexe de l’enfant. Le poids à la naissance est positivement corrélé à la durée de la 
grossesse et les garçons ont un poids de naissance plus grand en moyenne que les 
filles. Enfin, nous nous sommes concentrés sur la leucémie aiguë lymphoblastique, 
qui est le sous-type le plus fréquent, afin de limiter l’hétérogénéité des données et 
augmenter la puissance des études. Cette partie de la thèse a contribué à la 
publication de deux autres articles. Les marqueurs CpGs des facteurs précoces ont 
été recherchés dans des études basées sur une large population (nombreux sujets 
non-malades) utilisant une couverture large de l’épigénome (EWAS). Des méta-
analyses des résultats EWAS ont ensuite été réalisées pour le poids à la naissance, 
l’âge gestationnel et le sexe de l’enfant respectivement à partir de 8825, 6885 et 
8314 nouveau-nés provenant de 24, 20 et 16 cohortes de naissance au sein du 
consortium PACE (Pregnancy And Childhood Epigenetics). Nous avons trouvé une 
association profonde entre la méthylation de l’ADN à la naissance et chacun des trois 
facteurs intrinsèques. La méthylation de l’ADN dans le sang néonatal a été associée 
après une correction Bonferroni au poids à la naissance à 914 sites CpGs, à l’âge 
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gestationnel à 8,899 sites CpGs et au sexe de l’enfant à 46,554 sites CpGs pour les 
autosomes et 9,372 sites CpGs sur le chromosome X. Une proportion substantielle 
des signaux disparait au cours de l’enfance et l’adolescence pour le poids à la 
naissance et l’âge gestationnel, contrairement aux marqueurs CpGs du sexe dont la 
majorité persiste au cours de l’enfance. Cependant, la persistance de ces marqueurs 
épigénétiques n’est pas impérative, les évènements épigénétiques qui surviennent à 
une période critique du développement pouvant avoir des conséquences sur le long 
terme. Les CpGs de l'âge gestationnel identifiés dans le sang de cordon ont 
également été retrouvés dans les poumons et le cerveau (ces tissus provenant de 
feuillets embryonnaires différents). Les marqueurs épigénétiques identifiés dans le 
sang de cordon permettent donc de capter la plasticité épigénomique du 
développement prénatal à travers les tissus. Les marqueurs épigénétiques du poids 
à la naissance ont été étudiés plus en détail dans une nouvelle étude intégrant 
quatre types de données omiques et ont révélé un rôle important pour la biosynthèse 
du cholestérol. 

Une fois que des marqueurs ont été identifiés, l’objectif est de déterminer si ces 
derniers sont associés au cancer chez l’enfant. Nous avons ainsi étudié si les 
marqueurs du poids à la naissance identifiés dans notre étude sont associés à la 
leucémie chez l’enfant après ajustement des covariables : âge gestationnel, sexe, 
tabagisme maternel et composition en globules blancs. Parmi les 8696 sites CpGs 
du poids à la naissance, 414 sont associés à la leucémie chez l’enfant (p<0,005). De 
plus, deux analyses de médiation différentes ont indiqué un CpG sur un gène non 
codant qui associe le poids à la naissance et la leucémie (p ajusté = 0.0037) et qui 
n’est pas confondu par l’âge gestationnel ou le sexe de l’enfant. Le CpG identifié ne 
faisait pas partie des marqueurs épigénétiques de l'âge gestationnel. La vérification 
de ces résultats nécessite la réplication de l’analyse dans d’autres cohortes et une 
vérification expérimentale grâce à des essais fonctionnels.  

Nos résultats ont permis d’identifier de potentiels mécanismes biologiques reliant le 
poids à la naissance et ses facteurs intrinsèques étroitement liés (durée de 
grossesse et sexe de l'enfant) à la leucémie infantile. La réplication de ces résultats 
et une analyse fonctionnelle approfondie par le biais de modèles expérimentaux 
pourront aider à déterminer le rôle des marqueurs épigénétiques identifiés et à 
caractériser les gènes moteurs et les voies causales impliqués dans l’oncogénèse du 
cancer infantile. Notre approche triangulaire pourra être utilisée pour d’autres études 
s’intéressant à des effets de l’exposition et aux mécanismes moléculaires sous-
jacents.  
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I. Introduction 

A. Childhood cancer  
Childhood cancer (CC) refers to malignancies that occur in children between birth 
and the age of 15 to 20 years (variation of the cut-off among countries). The 
incidence of CC in the world in 2015 was estimated at 360000 cases, mainly in Asia 
and in Africa (respectively 54% and 28%, results shown in Figure 1) (1). A large 
European multicentric database founded by the International Agency for Research on 
Cancer (IARC) (2) shows that in recent years rates have increased in Europe by 1-
2%/year for most CC types, even though the causes of this increase are not 
understood (3).  

 

 

 

Figure 1. Estimated incidence of CC by continent in children aged <15 years in 2015. 
Values obtained from (1). 

CC is the second cause of death in children after accidents. Although cancer death 
rates have declined in the last years, cancer remains the disease that causes the 
most death among children, and a child dies of cancer every three minutes 
worldwide. The reasons for this are manifold.  

First, CC is a very heterogeneous group of malignancies. According to the American 
Cancer Society, the most common cancer types in children (0-14 years old) are 
childhood leukemias (CL, 29%), brain and other nervous system tumors (26%) 
followed by lymphomas and reticuloendothelial neoplasms (12%). The distribution is 
quite different in adolescents (aged of 15 to 19 years) as the most frequent cancers 
are brain and other nervous system tumors (21%), lymphomas (20%) and leukemias 
(13%) (4). This complexity is further compounded when considering the histological 
subtypes (main subtypes of CL: acute lymphoblastic leukemia (ALL, 75%) and acute 
myeloid leukemia (AML,19%))(4) as well as specific cytogenetic groups characterized 
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by chromosomal changes (translocation, deletion, and hyperdiploidy). While some 
CC are relatively easy to recognize (e.g. Burkitt’s lymphoma), other subtypes tend to 
present non-specific symptoms like fever (e.g. leukemia) or vomiting and weight loss 
(e.g. brain cancer) which adds another difficulty for the diagnosis of CC cases. 
Moreover, CC cannot be always treated like adult cancers. The subtypes of CC are 
distinct from those in adult cancers or may be not occur at all in adult ages. 
Additionally, cancer and its treatments may have different effects on children 
compared to adults and the growing bodies may respond differently to drugs.  

Second, CC is a rare disease, as reported by IARC (5), and adequately powered 
prospective studies are lacking which would be the preferred design. Most of the 
causal evidence comes from retrospective case-control studies, which incur two 
major limitations: recall bias and high likelihood of control selection bias.   

Lastly, there are differences between high income countries (HIC) and low- and 
middle-income countries (LMIC) in cancer incidence, diagnosis, treatment and 
mortality partly because LMIC health systems are insufficiently equipped. 
Approximately 8 in 10 of CC cases live in LMIC, and their survival rate is often near 
20%. This is in sharp contrast to HIC, where cure rates exceed 80% for many 
common CC (6,7). In 2018, the World Health Organization (WHO) established the 
WHO Global Childhood Cancer Initiative aiming to achieve at least 60% survival for 
all children diagnosed with cancer around the world by 2030, although this initiative 
will not address potential environmental causes underlying the disparities in the 
incidence of CC worldwide.  

The number of survivors from CC continues to increase. According to Erdmann et al. 
five-year survival rates from CC have increased from 30% in the 1960s to 80% 
nowadays in HIC, with striking differences in survival between cancer types. 
However, even if the improvement in survival resulted in a decrease in mortality 
rates, it also led to diversification of adverse effects in survivors during the life-course 
including increased risk of developing a second malignancy. Hence, there is an 
urgent need in better understanding of the etiology of this disease that will help 
enhancing early diagnosis, targeted therapy and prevention.  

The rarity of this disease, the various heterogeneous subtypes and the non-specificity 
of the symptoms are challenges faced by CC epidemiology in order to identify 
potential underlying risk factors of pediatric cancer. As most CC occur at early age 
(e.g. before 5 years for leukemias), it suggests that some cancers may start in the 
womb. Prenatal, fetal and early childhood exposures to extrinsic (ionizing radiation, 
pesticides and birth order) and intrinsic (birthweight) factors are potential CC risk 
factors. Emphasis is given to these particular risk factors because they are proved in 
both retrospective and prospective child cancer consortia, and we will describe each 
of them in the following sections.  
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B. Risk factors during early life 
1. Ionizing radiation  

Ionizing radiation (IR) occurs in two forms, waves (X-rays and gamma rays) and 
particles (alpha, beta, proton and neutron), and can be natural (80%; cosmic rays, 
solar rays, radon gas) or artificial (20%; primarily medical imaging like computed 
tomography (CT) scans, cancer radiotherapy and also nuclear power generation or 
even from military purposes) (9). Exposure to IR varies due to geographic factors but, 
as background IR is ubiquitous, zero exposure does not exist. The international units 
of measure for absorbed dose and equivalent doses are respectively the gray (Gy) 
and the sievert (Sv). Doses are rarely above 100mGy during diagnostic X-rays and 
CT scans, but they may exceed 50Gy during radiotherapy treatment of CC (10).  

IR is primarily genotoxic and the different types of IR were classified as Group-1 
carcinogen by the IARC Monograph, although some uncertainty remains about 
carcinogenicity of low dose levels (<100mSv) (11). However, a recent pooled study of 
nine cohorts examined the risk of CL with IR from various sources, and detected an 
increased risk at exposures <50 mSv and a threefold risk for AML and almost six-
fold for ALL with each increase of 100 mSv. This is so far the most convincing 
evidence of a low-dose IR effect at least in CL (12).  

The effects of IR were first investigated after the atomic bombings in Japan (13). The 
carcinogenic effects of IR are stronger in children, as they are more radiosensitive 
and have more years of potential life to express the risk. After the Hiroshima and 
Nagasaki atomic bomb detonations, increased rates of CL were identified 5–6 years 
later. Similarly, for solid cancers during childhood and adult life, studies of cancer 
incidence in survivors showed an increased risk in early childhood (up to six years), 
but not during the prenatal period (14). Interestingly, diminished solid cancer survival 
observed in children with decreasing age at time of exposure pointed to the 
importance of early-life exposures to lifetime cancer risks (15). Radio-iodine IR from 
the 1986 Chernobyl nuclear power plant accident resulted in increased rates of 
childhood thyroid cancer. For the recent Fukushima Daiichi nuclear accident, thyroid 
doses were manifold lower and an increase in thyroid cancer has so far been 
attributed to over-diagnosis (16).  

IR used for cancer treatment (radiotherapy) has been identified as a risk factor for 
CC. CC patients treated with radiotherapy have higher incidence of secondary 
cancers during childhood and young adulthood than both the general population, and 
those children treated with chemotherapy only (17–19). They exhibit an increased 
risk for development of secondary central nervous system (CNS), breast, thyroid, 
bone and soft tissue cancers (20). Strikingly, radiotherapy treatment for childhood 
Hodgkin’s lymphoma in particular, showed an increased lifetime risk of developing 
breast cancer, higher in these patients than in women carrying the well-known 
BRCA1 mutation (21).   

Prenatal exposure to radiation through diagnostic X-ray imaging was also associated 
with an increased risk of CC in a case-control study of 1,500 children (22). A detailed 
review in 2008 found on the contrary very little evidence for the association between 
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prenatal X-ray exposure and CC (23). These results however, do not necessarily 
contradict previous evidence as there are limitations in study design, study size, 
exposure measurement and involve very low exposures. Nevertheless, X-ray 
exposure should be limited during the pregnancy especially when other imaging 
techniques such as ultrasound may be used (24). Childhood X-exposure was also 
demonstrated to be associated with development of CL (25–29). Increasing use of 
CT scanning in children in most HIC raised awareness on its possible deleterious 
effects (10), although potential reverse causation is a concern. A dose-dependent 
association after exposure to CT scanning in childhood was established in several 
large studies including a population-based study of 10 million children and 
adolescents indicating an increased risk of many cancers including CL and brain 
cancer (30,31). While there is no doubt CT is an important diagnostic instrument, 
results may urge better dose adjustment when planned examinations with children 
are conducted. 

Mechanisms of IR-induced carcinogenesis have been well characterized. Exposure 
to IR results in a variety of molecular damage in the cell, including single- and 
double-strand breaks in DNA that can lead to mutations and chromosomal 
aberrations (32) and subsequently to cell death or oncogenic transformation. IR-
induced molecular changes may result directly in the activation of oncogenes or in 
the silencing of tumor suppressor genes promoting the malignant properties of 
normal cells. IR, in addition to being capable of producing mutations, can also induce 
epigenetic changes. Studies on the non-targeted effects of IR in unexposed cells or 
progeny of exposed cells (32,33) have revealed a role for epigenetic mechanisms 
such as radiation induced genomic instability (RIGI), which can also lead to the 
development of cancer despite never being exposed to radiation (34). RIGI produces 
mutations, chromosomal instability and gene amplification in the progeny of exposed 
cells, and it is hypothesized that these effects may be the result of inherited 
epigenetic signatures from the original exposed cells. Studies were conducted in 
animal and human models revealing alterations in DNA methylation patterns when 
exposed to IR. Genome-wide hypomethylation, genome instability, promoter specific 
hypermethylation and repression of tumor suppressor genes were observed in whole 
body irradiation with X-rays of rats, mice, hamsters and human cell lines (35–
37). Furthermore, exposure to plutonium in humans may increase the risk of 
adenocarcinoma through hypermethylation by inactivation of a key regulator of the 
cell cycle (P16 gene) (38).  

 

2. Pesticides 
According to WHO, pesticides are « chemical compounds used to kill pests (insects, 
rodents, fungi and unwanted plants (weeds)) » (39). They have been used worldwide 
for decades notably in agriculture to reduce crop losses. They are potentially toxic for 
humans and can have unwanted side-effect leading sometimes to cancer. More than 
20 pesticides have been classified as at least “probable or possible carcinogens” by 
IARC. Studying the risks of pesticides exposures is difficult as it comprises a 
heterogenous group of agents, with hundreds of pesticides and thousands of 
formulations (40).  



 

7 
 

Given that pesticides are widely used, people can be exposed to them from a large 
variety of sources. Humans can first of all be exposed at home both indoors and 
outdoors (lawn and garden, pesticides laden dust, pet insecticides, insecticidal 
shampoos for lice infestation…) or by eating or drinking contaminated food and 
water. They can also be exposed to pesticides during their professional activity (e.g. 
people working in farming and manufacturing). It is noteworthy that farming not only 
exposes farmers and their family but also contaminates surface water, grounds, 
crops, etc (41). 

Children can be exposed to pesticides through different ways. First, directly, as 
young children often put objects and their hands in their mouths and they spend a lot 
of time on the floor (42). There is also a possible indirect contamination from parental 
exposure before conception (from both parents) and during pregnancy. Paternal 
exposure might lead to germ cell damage while maternal exposure during pregnancy 
can result in fetal exposure. Consistent with this notion, pesticide residuals have 
been found in umbilical cord blood and meconium (43).  

Different studies have been conducted to assess if pesticides are environmental risk 
factors of CC and in particular of CL and CNS tumors. Environmental factors are 
generally difficult to measure accurately, notably in a retrospective setting (different 
biases are possible, as mentioned earlier) and there are very few prospective studies 
available. These studies are further hampered by the existence of numerous 
pesticides and lack of specific information about pesticide exposure. At last, given the 
low numbers of CC every year, individual studies often lack statistical power (44).  

In 2011, a systematic review and a meta-analysis were conducted in order to 
estimate the risk of residential exposure to pesticides and CL. Residential use of 
pesticides has been significantly associated with CL, with the greatest risk when the 
mothers were exposed during pregnancy. The strongest risk was for indoor 
exposure, for exposure to insecticides and their link to AML. The authors pointed out 
that the data were too scarce for causality assessment but it is important to take 
preventive measures and reduce the use of indoor insecticides during pregnancy 
(45). More recently, in 2015, Bailey and al. pooled data from 12 case-control studies 
participating in the Childhood Leukemia International Consortium (CLIC) (46) which 
permitted to have almost 8,000 leukemia cases and 15,000 controls. They found that 
parent’s pesticide exposure in the few months preceding conception and during 
pregnancy was associated with a higher risk of ALL and AML. Exposure after birth 
was associated with an increased risk of ALL but not AML. Little variation was noted 
by type of pesticide. Hence, they recommended that parents limit pesticide exposure 
in home during the year before birth and in the first years of childhood (47).  

In order to investigate CL risk of parental occupational exposure to pesticides in the 
prenatal period, Bailey and al. pooled data from 13 case-control studies participating 
in the CLIC. Maternal occupational exposure during pregnancy has been found to 
significantly increase the risk of AML (almost doubling risk). Paternal occupational 
exposure close to conception was associated with a slightly increased risk (stronger 
effect when diagnosis was established after 5 years old and for children suffering of T 
cell ALL) (48). A meta-analysis was conducted from 20 case-control and cohort 
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studies to evaluate the risk of parental exposure and the occurrence of brain tumors. 
Parental occupational exposure to pesticides was associated with an increased risk 
of brain tumors, especially for those exposed during prenatal period (for both 
parents). This study supports the recommendation of minimizing parental 
occupational exposure to pesticides (49). At last, a prospective study was conducted 
in the International Childhood Cancer Cohort Consortium (I4C) (50) to assess the risk 
of parental occupational exposures to pesticides for both CL and CNS tumors. It is a 
large prospective study as the data were collected on almost 330,000 participants 
from birth cohorts in five countries. The results showed that paternal exposures to 
pesticides were associated with higher risk of AML. However, exposures to 
pesticides did not increase the risk of CNS tumors and ALL. The risk of maternal 
exposure to pesticides could not be evaluated because of low exposure prevalence 
in pooled cohorts (51). In summary, the reported studies point out to an increased 
risk of CL associated with parental occupational exposure as well as residential 
exposure to pesticides of parents before conception and during pregnancy. 

Mechanisms of pesticide-induced carcinogenesis potentially include oxidative stress, 
genotoxicity and/or epigenetic changes (52). An in-vitro study showed that pesticides 
may modify gene promoter DNA methylation levels and suggests that epigenetic 
mechanisms may mediate the effect of pesticide exposure on cancer (53). Pesticide 
exposure in humans could also induce oxidation of guanine leading to DNA damage, 
based on a study on soybean farmers (54). People affected by occupational 
exposure also displayed genomic hypermethylation of DNA, which correlated with 
micronucleus frequency (54). A systematic review highlighted synergistic interactions 
in a small subset of pesticides mixtures (55).  

 

3. Birthweight 
Birthweight (BW) is a marker of prenatal growth which can be used as a proxy of 
cumulative effects of in utero exposures and of later health outcomes, including 
cancer. The potential links between birth characteristics (and more precisely BW) and 
CC were first suggested in the early 60s by MacMahon and Newill (56). 
Subsequently, this putative association was investigated using retrospective case 
control studies (57–62).  

A pooled (and similarly a meta-analysis) of 12 case-control studies participating in the 
CLIC demonstrated an increased risk of ALL for children who were large for, relative 
to appropriate for, gestational age (61). Another meta-analysis focusing on child 
neuroblastoma in 10 case-control studies and one cohort showed an increased risk 
for this cancer type with high BW, while the evidence for the association with low BW 
was less robust (58). Childhood brain tumors, specifically astrocytoma 
and medulloblastoma but not ependymoma, have also been positively associated 
with high BW in a meta-analysis of 8 studies encompassing 1,748,964 children, 
including 4,162 brain tumor cases (59). An updated meta-analysis on the same topic 
confirmed the association between high BW and astrocytoma and the absence of an 
association of high or low BW with ependymoma. The association of BW 
with medulloblastoma and/or primitive neuroectodermal tumors was inconclusive 
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(with a trend towards increased risk for both high and low BW) (62). Still, all the 
evidence presented so far is based on retrospective studies, with likelihood of recall 
and control selection bias. CC is rare, and well-powered prospective studies have 
been limited. More recently, the largest birth cohort study to date encompassing 
112,781 live births (including 377 cancer cases) from six geographically diverse 
cohorts by the I4C showed that high BW increases the risk of CL and overall cancers; 
high BW was also positively associated with non-leukaemia cancer among children 
diagnosed at age ≥ 3 years but not at younger age (63). Other single cohort or 
population-based registry studies have reported similar associations but are not 
covered herein due to the rarity of cases in individual studies (64–66). Overall, based 
on both retrospective and prospective evidence, BW represents one of the earliest 
predisposing phenotypes of CC.  

Additionally, BW was shown to be associated with outcomes occurring much later in 
life, including adult cancers. According to the World Cancer Research Fund (WCRF), 
there is “probable increased risk” of premenopausal breast cancer and “limited 
suggestive increased risk” of malignant melanoma by high BW (67), while the 
evidence pertinent to other cancer types is existent but not as solid.  

All these studies point out the importance of birth characteristics and of the fetal life, 
directly or indirectly, on the risk of different cancer types. To add a new dimension to 
the value of the current epidemiological studies, the next step and missing link is to 
investigate the molecular mechanisms underlying the associations between BW and 
cancer. Moreover, molecular studies can additionally generate biomarkers of 
exposure that can enhance exposure assessment in order to reinforce previous 
associations or identify new ones. Epigenetic mechanisms are particularly important 
in fetal life as they represent heritable mechanisms driving embryogenesis as well as 
molecular sensors of the environment (52). Our new study conducted in collaboration 
with the Pregnancy And Childhood Epigenetics (PACE) (68) Consortium, based on 
almost 9,000 neonates from 24 birth cohorts worldwide, shows thousands of 
differentially methylated markers in association with BW, among which 1.3% persist 
in childhood and adolescence (69).The study adds to the increasing evidence 
underscoring the importance of epigenetic mechanisms during early life.  

 

4. Birth order  
One of the prevailing theories on the etiology of CL outline the "delayed infection 
hypothesis", first formulated in 1988 (70), which states that reduced exposure to 
infection in early life yields “untrained” or naïve immune cells which, once affronted 
later by a microbial infection, would respond by an exaggerated hyper-proliferation 
and inflammation, eventually leading to cancer. Evidence on CL occurrence and 
direct exposure to specific infections (e.g. influenza) is lacking due to the difficulty to 
precisely measure them and due to the recall bias in retrospective studies. To 
pursue the investigation between infectious diseases and CL, proxies with evidence 
for their association with infection should be prioritized. Indeed, different proxy 
measures have been evaluated, including daycare attendance, breastfeeding, 
vaccination history, hospitalization or prescriptions for infection, as well as birth order 
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(71–73). In particular, birth order was associated with an increased risk of common 
infections found in blood (74). Additionally, birth order has also been used as a proxy 
for different hormonal exposures to the fetus, and higher birth order children might 
have higher levels of microchimerism (75).  

Birth order was first studied in relation to CC in 1962 by MacMahon and Newill who 
identified a decrease in CC mortality for increasing birth order (56). Then, further 
studies tried to unravel the relationship between birth order and CC in general or 
leukemia, generating, however, heterogeneous results (71,76,77) probably due to 
differences in study design or inconsistency in population characteristics. More 
recently, it has been shown that being later born (i.e. being more likely exposed to in 
utero infections due to presence of other siblings at the time of pregnancy) protects 
against CL, based on the largest prospective epidemiological study so far (78). 
Moreover, the association between birth order and CL was significantly strengthened 
by the interaction with BW (<3kg) and fathers age (30 or older). These two factors 
have been previously labeled as established (for BW (63) and potential (for parental 
age (79)) risk factors of CL. Long time considered as potential confounders for the 
association between birth order and CC, they are now assessed as modifiers 
of this association enhancing the investigation of etiological pathways leading to CL.  

Evidence for the birth order and epigenetics association is lacking, but this field is 
gaining interest as it can potentially represent the underlying mechanisms leading 
to later onset of diseases including CC. Multiple births and in particular twin 
birth were previously investigated to determine DNA methylation (one of the major 
types of epigenetics) in subsequent siblings (80) because of the changes caused to 
the intrauterine environment as the uterus is enlarged far more than with a singleton 
pregnancy. The results show different DNA methylation of siblings born before versus 
after a twin birth implying the possibility of a different disease (e.g. cancer) risks in 
later life. However, there is no direct evidence that twin birth changes the intrauterine 
environment. Hence, there is need of further studies to elucidate the mechanisms 
underlying these observations. One particularly appealing and relevant future aim 
would be to catalogue robust epigenetic markers of birth order in the same way it was 
previously done for BW.   

 

C. Epigenetics 
1. Major epigenetic mechanisms 

Epigenetics was first defined in the early 1940s by Conrad Hal Waddington as “the 
branch of biology which studies the causal interactions between genes and their 
products, which bring the phenotype into being” (81). Since then, the meaning of the 
word gradually evolved in “heritable changes in gene expression that are not due to 
any alteration in the DNA sequence” (82) and finally be narrowed to “the study of 
changes in gene function that are mitotically and/or meiotically heritable and that do 
not entail a change in DNA sequence” (83). It was rapidly acknowledged that 
epigenetics plays an important role in the control of gene expression (84) and 
development of disease, including cancer (85,86). Evidence highlighting the crucial 
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role of epigenetics accumulated in the recent years due to the development of 
powerful technologies and optimized biostatistical and bioinformatical methods. 

There are three major types of epigenetic regulations encompassing (i) 
posttranslational modifications of histone proteins and chromatin remodeling, (ii) non-
coding RNA interference and (iii) DNA methylation, all of which create an intricate 
and self-reinforcing interactions converging on a common cellular process i.e. 
regulating gene expression (although expression-independent effects of epigenetic 
mechanisms are being increasingly reported) (Figure 2) (87–89).  

 

 

Figure 2. Three majors types of epigenetic regulations, adapted from (90) 

 

Post-translational histone modifications refer to chromatin structure and in particular 
the histone protein octamer (2 of each histones H3, H4, H2A and H2B around which 
approximately 1.75 turns of DNA are coiled) that constitute the nucleosome. The 
nucleosome is hence made of histones and DNA and it is the first level of DNA 
compaction. Other types of proteins permit additional levels of compaction. Specific 
enzymes will act in distinct ways producing acetylation, phosphorylation, methylation 
and ubiquitylination of histones. The modifications will directly affect chromatin 
structure, or provide dynamic binding platforms for proteins with specific binding 
domains. Chromatin remodeling concerns the restructuring of nucleosomes within 
chromatin controlling the access to DNA. Indeed, DNA transcription into RNA is 
facilitated when chromatin is decondensed as it permits the access to DNA to the 
transcription complex. It plays an important role in several key biological processes, 
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including DNA replication and repair, apoptosis, development and pluripotency (91) 
and it has been associated with human diseases, such as cancer (92,93). Histone 
acetyltransferase (HAC) and histone deacetylase (HDAC) have notably an impact on 
DNA transcription. Histone deacetylation is generally linked to transcriptional 
inhibition (94). 

Although non-coding RNA remains the less studied mechanism in comparison with 
the two others, it also participates in regulating gene function. Most of the time, non-
coding RNAs act as molecular guides, and their huge number in typical cells certainly 
represents a crucial role in regulating all DNA processes. MicroRNAs (miRNAs) have 
been previously implicated in epigenetic inheritance across generations (95). 

DNA methylation is the most extensively studied epigenetic mechanism, with 
abnormal DNA methylation levels occurring in almost all human cancers (96). DNA 
methylation refers to the addition of a methyl group to the 5′ position of the cytosine 
pyrimidine ring. This reaction is mediated by particular enzymes named DNA 
methyltransferases (DNMTs). There are 3 major DNMTs: DNMT1, a maintenance 
DNMT, and DNMT3a and DNMT3b which are de novo DNMTs. DNMT1 has a role in 
DNA methylation maintenance through mitosis. After DNA replication, the synthetized 
strand is not methylated contrary to the parent strand. DNMT1 binds to CpG sites on 
the synthetized strain and ensures the methylation of cytosines in a pattern matching 
that of the parent strand (97). The de novo DNMT3a and DNMT3b have a key role in 
de novo methylation of DNA particularly during embryogenesis or later 
developmental processes that involve tissue differentiation (see section I.C.2.) (98). 
Methylated cytosine are often localized in regions rich in cytosine and guanine, called 
CpG islands, but can also occur in non-CpG contexts (99). DNA methylation patterns 
are faithfully propagated through cellular division and are hence stable and mitotically 
heritable. Aberrant DNA methylation changes are also stably propagated through cell 
division although they are, in contrast to mutations, potentially reversible. Removal of 
methyl group (demethylation) can be both active, with the intervention of TET family 
enzymes or passive, when DNA is replicated in the absence of maintenance DNA 
methylation by DNMT1 of newly synthesized DNA strands (100). Regions flanking 
CpG islands are called shores (< 2kb flanking CpG islands) and shelves (from 2kb to 
4 kb of CpG islands). The rest of the genome is called open sea. Methylation is more 
dynamic along the shores and shelves. It has notably been shown that differences of 
methylation pattern between tissues or between normal versus tumor cells often 
occur at shores rather than at CpG islands themselves (101,102). Cancer cells, 
unlike healthy cells, present a global DNA hypomethylation accompanied by 
hypermethylation in promoter regions of specific genes, among which the tumor 
suppressor genes are frequently affected (103). 

The mechanisms by which DNA methylation or demethylation lead to transcription 
silencing or activation are not necessarily identical, depending on the genomic site of 
occurrence (eg. gene promoters, gene bodies, repetitive elements, etc.). DNA 
methylation of promoter sequences often down-regulates gene expression; whereas, 
gene-body methylation has been positively correlated with gene expression. 
Paradoxically, DNA methylation is more prevalent within gene-bodies compared to 
promoters (104). Gene-body methylation levels are supposed to be predominantly 
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shaped via the accessibility of the DNA to methylating enzyme complexes (105). 
DNA methylation also impacts chromatin compaction, preventing the access to DNA 
to the transcription complex. In addition to regulating gene expression, DNA 
methylation is implicated in X-chromosome inactivation, gene imprinting and 
transposon silencing (106–111). About 50% of the human genome is composed of 
DNA repetitive elements (RE) which are relics of transposons. They can proliferate 
and move throughout the genome (112). DNA Methylation in RE hampers their 
mobility and maintains genomic stability. Decrease in methylation in RE is frequently 
observed in tumor (113). 

  

2. Epigenetics in the early-life period  
Not only the type of environmental exposure, but also its timing plays an important 
role in influencing disease risk. Fetal life represents an exposure-sensitive period in 
the human life course during which epigenetic regulation constitutes heritable 
mechanisms driving embryogenesis. It is hypothesized that epigenetic deregulation in 
utero lies at the heart of causal pathways linking early-life factors and CC (114).Fetal 
life is hence an important period as changes in cell fate during embryonic 
development could potentially have lifelong health consequences.  

Epigenetics can shed light on the mechanisms for the developmental origins of 
health and disease (DOHaD) approach (115). This concept aims to decipher 
biological pathways underlying existing epidemiological evidence linking early life 
exposure with later onset of diseases or to identify new risk factors by using 
epigenetic biomarkers as their proxies (116,117). Studying epigenetic mechanisms 
during development might explain the underlying causes of some diseases (109). 

The rapid advancement in computational approaches together with cutting-edge 
laboratory technologies allowed epigenetics to be used as a predictor for tobacco 
smoking status (as well as duration) (118), child sex (in preparation) , age (119), 
gestational age (120), cell type composition (121) and ethnicity (122). Numerous life-
course exposures were studied in relation to the epigenome expanding our 
knowledge of epigenetic signatures.  

DOHaD rationale particularly emphasizes the importance of the profound epigenetic 
reprograming (detailed below) which occur in early embryonic development and germ 
cell specification, during which methylation landscape is greatly remodelled (Figure 
3). Defects in this machinery have important repercussions on embryonic 
development and later life health (123).  
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Figure 3. Epigenetic reprogramming in early embryonic development and germ cell 
specification, adapted from (124) 

 
As shown in Figure 3, when the zygote is produced, demethylation of both paternal 
and maternal alleles initiates and continues in the daughter cells that are generated 
from the mitotic divisions afterwards to reach the blastocyst stage. The paternal 
alleles are actively demethylated by the action of TET enzymes that originate from 
the oocyte while the maternal alleles are demethylated passively by mitotic divisions 
in the absence of maintenance methylation. The only exceptions that escapes 
demethylation at this stage are imprinted genes. At blastocyst stage, remethylation 
initiates and further progresses in subsequent cell generations producing distinct 
methylome patterns in the different types of tissues, which include the primordial 
germ cells (PGCs) of the embryo. PGCs then undergo a second wave of global 
demethylation which also encompasses the imprinted genes, hence, erasing any 
parent-of-origin pattern of methylation. Once demethylation is complete in the PGCs, 
remethylation starts again in those cells in a sex-specific manner in order to give rise 
to gametes that contain sex-specific epigenetic signatures. In males, remethylation is 
reinitiated in utero while the PGCs are mitotically arrested and is completed at birth. 
Afterwards, PGCs proliferate during the lifetime and undergo meiosis starting at 
puberty in order to produce sperms. In females, remethylation starts at birth during 
meiotic arrest and is completed at puberty when meiosis resumes to produce 
oocytes. Although embryonic and germline demethylation is global, a substantial 
amount of DNA methylation escapes the erasure process, hence, serving as a 
potential vector of epigenetic inheritance (124).  

 
3.  Epigenetics and childhood cancer 

As CC can be diagnosed only few years after birth, the chance of acquiring enough 
mutations to drive oncogenesis is smaller than in adult cancers. This reinforces the 
earlier mentioned assumption that initiating events may have occurred around the in-
utero period. Recent large-scale genetic sequencing of childhood tumors identified 
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few or no mutations (125–127). Pediatric cancers harbor a low mutational burden 
compared to adult cancers (128). These findings highlight the potential contribution of 
non-genetic (notably epigenetic) factors to CC development (114). Epigenetic 
mechanisms play an important role in cancer development and progression (129) 
mediating gene-environment interactions and their effect throughout the 
tumorigenesis process (130), although the contribution of deregulated epigenetic 
mechanisms to childhood cancer is not well understood. 

Abnormal epigenetic states (induced by altered DNA methylation pattern, mutations 
in histones, etc.) are important for initiation and progression of many CCs. Factors 
influencing the oncogenic potential of epigenetic alterations include the particular 
development stages and specific cellular types in which the alterations occurred 
(128). The cell of origin in which the oncogenic event happens has a major 
importance for determining the phenotype of cancer, notably for leukemia (131). A 
large proportion of various CC types displayed alterations in genes encoding 
epigenetic regulators and chromatin complexes in a pan-cancer analysis (125,126). 
Epigenetic regulators refer to the genes whose products change the epigenome 
directly through DNA methylation, post-translational modification of chromatin or 
alteration of the structure of chromatin. They are frequently the target of mutations in 
cancer (132). A targeted sequencing of epigenetic regulators revealed that the 
highest frequency of epigenetic mutations occurred in high-grade glioma, ALL and 
medulloblastoma (133).  

Recently, recurrent mutations occurring in histone genes, named “oncohistones”, 
have been observed in CCs. For example, oncohistones mutations are found in over 
60% of all pediatric high grade glioma patients. These mutations result in global 
aberrant histone and altered DNA methylation pattern. These findings imply that 
defects of the chromatin architecture underlie pediatric glioblastoma pathogenesis 
(134,135). Similarly to DNA methylation changes, patterns and specific oncohistone 
mutations can be used for the diagnosis and classification of CNS and solid tumors 
(128). DNMT3a mutations are also frequent in AML patients, which results in 
aberrant DNA methylation patterns (136), as well as mutations in genes encoding 
HDAC in CL (125). Epigenetic alterations are potentially reversible and are therefore 
more prone to corrective therapy. Recently, the first therapies targeting epigenetic 
alterations have entered clinical trials. For example, HDAC inhibitors are being used 
in clinical trials for CL patients (128). 

Underlying biological mechanisms by which early-life factors contribute to CC are 
poorly understood. Hence, gene–environment interaction studies are becoming 
increasingly central in epidemiological research proposing to investigate associations 
between risk factors and disease. By assessing the exposure or lifestyle factor 
measurements, (epi)genomics can provide a molecular history of past and current 
exposure events, which can potentially be used as a prospective molecular 
assessment of archived biospecimen that are collected in retrospective study designs 
(137). The application of Mendelian randomization (MR) (138) using genetic proxies 
has helped strengthen causal inferences in observational studies. Integrating 
epigenomics, genomics and exposure timing in epidemiological research would be 
key to understanding causal factors driving CC, with important implications in 
biomarker-based diagnosis, targeted therapy and prevention.  
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D. Relevant publications 
 
 
The following book chapter represents a review work describing early-life 
environmental exposures including birthweight and their impact on later life health 
outcomes with focus on cancer in both child and adulthood. We also discuss the 
epigenetic mechanisms which may contribute to the association of each exposure to 
cancer incidence. Further research is needed to determine the extent to which 
epigenetic modifications mediate these links between early-life factors and tumor 
development. 
 
1) Sexton-Oates A, Novoloaca A, Ghantous A#, Herceg Z#. Cancer. Environmental 
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E. Methodological implications 
 
 
Methylation data like many other omics can be affected by systematic variation due 
to technical processing of the biospecimens or the time difference in processing the 
samples. Throughout the thesis work, we have invested in progressively optimizing 
existing bioinformatic and biostatistic pipelines for methylation data. Besides 
investigating DNA methylation data, we also studied other types of omics on the 
same samples. Individual analysis of one omic allows to identify specific signals for 
each dataset, however integrative analysis of several omics allows the identification 
of a shared pathway and this is particularly important in the case of a complex 
disease such as cancer. Due to the recent advances in high-throughput technologies, 
it is critical to continuously monitor and benchmark the different statistical methods in 
light of the rapid evolvement of the omics field. For these reasons, the second section 
of this manuscript will describe three major methodology investigations performed as 
part of the PhD thesis. 
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II. Hypothesis 
A variety of external and internal exposures affect human development and disease 
outcomes, including CC. The latency period between exposure and CC is relatively 
short, hence, facilitating follow-up from the time of exposure till disease onset. 
Moreover, the in utero period is a particularly vulnerable window to exposure 
because of the large capacity of changes in cell fate that could occur at this time 
point, with lifelong consequences. Epigenetic mechanisms are crucial herein because 
of their heritable nature and driver role in embryogenesis, dictating the fate of the 
various cell types which otherwise have identical genetic makeups (Figure 4). 
Therefore, we hypothesized that epigenetic mechanisms, particularly the well-
established DNA methylation, underlie biological pathways linking early-life 
factors to later onset of CC.  

 

 

 

Figure 4. Impact of in utero exposures on epigenetic reprogramming and the 
developmental origin of cancer. Adapted from (52) 
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III. Specific aims 
 

Aim 1: Characterize neonatal epigenomic biomarkers of early-life intrinsic factors and 
“intermediate” phenotypes that predispose to later onset of CC. Detailed exposure 
modelling and data harmonization was performed across cohorts. Among the early-
life factors (E), the thesis prioritized closely related intrinsic factors: BW, gestational 
age and child sex. The frequent use in studies of BW for gestational age (e.g. when 
studying different geographical regions) and of BW stratification by child sex (as BW 
is higher among males) endorse the tight relationship between these three variables. 
Furthermore, BW is considered a collective proxy of overall in utero exposure and is 
so far one of the few risk factors robustly associated to CC through both retrospective 
and prospective evidence (see Section I.B.3). Hence, BW represents an 
“intermediate” phenotype occurring during the latency period between exposure time 
and cancer onset. An important next step forward would be to study the mechanisms 
by which these factors associate to CC. Epigenetics (DNA methylation) was the 
major mechanism investigated due to its driver role during embryogenesis (the major 
time point herein), heritable nature (hence, long-lasting effects), reversible potential 
(hence, preventable) and known ability to act as molecular sensors of the 
environment (52). The DNA methylome was profiled (using Illumina Infinium bead 
arrays) on neonatal blood samples using a large sample from population-based birth 
cohorts (with abundant non-diseased subjects). Because blood represents a 
heterogeneous mixture of cells, confounding due to cell types was adjusted for by 
using reference-based (139) and reference-free methods (e.g. surrogate variable 
analysis).  

Aim 2: Identify DNA methylome precursors of childhood cancer in relation to early-life 
intrinsic factors and “intermediate” phenotypes. Among the CC, ALL was focused on 
because it is the most common subtype of CL and because otherwise including all 
CC would increase heterogeneity. A dataset based on a relatively homogeneous and 
largest subtype will likely have higher statistical power. Linking early-life exposures to 
ALL through epigenetic mechanisms requires sufficient numbers of “exposed” cancer 
cases, particularly given the large dimension of statistical tests of the human 
methylome. Therefore, we have designed a hypothesis-driven “three-way modelling” 
approach (see Sections IV and VI) that enables the identification of cross-talk 
associations between early-life factors, epigenetic mechanisms and cancer outcome. 
This approach focused on BW and its closely related gestational age and child sex as 
intrinsic early-life factors.  
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IV. Study design 
As CC is very rare, international effort is crucial to bring together data and 
biospecimen from multiple cohorts, which is why IARC plays a lead role in the major 
CC consortia, namely I4C (140) and CLIC (46). I4C provides a unique and the largest 
platform of prospective data and biospecimens (taken before CC develops) from 
different cohorts across the globe (and for which IARC is the International 
Biospecimen Coordinating Centre). I4C encompasses 445,000 subjects, including 
650 nested cases, which will be supplemented with additional cases from neonatal 
blood spot biobanks from the CLIC that are linked to national cancer registries (223 
ALL and 227 controls from California, USA, and 111 ALL and 111 controls from 
Melbourne, Australia, totaling 334 cases and 337 controls). Though not part of cohort 
studies, those blood spots capture a molecular snapshot of the epigenome before 
CC developed, so from a mechanistic perspective, they yield prospective evidence 
that is comparable to that collected from the I4C cohort studies. Methodology was 
optimized for methylome-wide analysis on neonatal blood samples (137). Additional 
controls will be included as well from our population-based (i.e. non cancer-enriched) 
cohort studies that incorporate omics data, namely, the EXPOsOMICS (141) and the 
PACE (68) consortia. These abundant (healthy) newborns offer sufficient sample 
sizes, hence statistical power, for high-coverage methylome profiling and adjustment 
for major confounders. In addition, this approach yields, based on a healthy set of 
individuals, biomarkers that are not biased by disease status (known as reverse 
causality) (52) and, by analysing relatively common “intermediate phenotypes”, 
statistical power is further increased. 
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Figure 5. Consortia scheme 

 

The thesis work focused to a large extent on the biostatistics/bioinformatics analysis 
of the datasets available from the four partner consortia above (Figure 5). The 
datasets comprise questionnaires on lifestyle and exposure factors at birth and 
perinatally as well as epigenomics (DNA methylome) data. In some cohorts, 
transcriptomics data was also used to evaluate the functional effect of DNA 
methylation changes on gene expression as well as other omics data that were 
integrated altogether to gain further mechanistic insights related to methylation 
alterations. Based on these datasets, the overarching objective is to decipher 
molecular pathways linking early-life exposure/lifestyle factors with CC risk.  

We tested our hypothesis through our proposed triangulation approach, cross-linking 
early-life factors (E), epigenetic mechanisms (M) and cancer outcome (C) (Figure 6). 
The orange axis represents the purely epidemiological studies associating early-life 
factors and CC (and these are being led by the epidemiology partners of our 
consortium). The purple axis investigates mechanistic precursors in direct association 
to CC risk, independent of exposure. As this axis represents an agnostic (hypothesis-
free) methylome-wide analysis covering ~450,000 CpGs, statistical power represents 
an important limitation of this approach, which would require additional sample sizes 
as well as cohorts in order to validate the robustness of findings and minimize 
potential effects of confounding. The green axis represents associations between 
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early-life factors and their epigenetic biomarkers, which when identified, can be 
investigated in relation to CC risk through a hypothesis-driven approach.  

 

 

Figure 6. Triangulation approach, cross-linking E, M and C 

 

Linking early-life exposures to CC through epigenetic mechanisms requires sufficient 
numbers of “exposed” cancer cases, particularly given the large dimension of 
statistical tests of the human methylome. Therefore, we have designed a hypothesis-
driven “three-way modelling” approach (see Section VI) that enables cross-talk 
between the (green) environment–epigenetics axis (such as in PACE/EXPOsOMICS) 
and the (purple) epigenetics–cancer outcome axis (such as in I4C/CLIC). Briefly, this 
approach consists of three steps. First, epigenetic biomarkers of early-life factors are 
screened for in large population-based studies with abundant non-diseased subjects 
(Aim 1). Second, the specific significant biomarkers of exposure and intermediate 
phenotypes obtained in the first step are analysed in the (smaller) subset of samples 
that are enriched for nested cancers (herein, statistical power is maintained due to a 
targeted low-coverage profiling). Third, statistical modelling such as mediation 
analysis is used to investigate whether the identified biomarkers mediate the effect of 
exposure on the cancer outcomes. This approach enables the potential identification 
of underlying molecular mechanisms linking risk factors to later onset of CC. 
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V. Methodology 
This thesis is part of a broader initiative led by the IARC Epigenetics Group involving 
large interdisciplinary projects. The choice of appropriate methods in such study 
settings with data generated using modern high-throughput techniques represents a 
challenging question. We describe below statistical and bioinformatics approaches 
developed and applied during the thesis, including epigenomics analysis pipeline, 
multi-omics data integration and cancer driver prediction tools. 

 

A. Analysis pipeline for methylation data 
The key focus was analyzing epigenetic data generated (partially in-house) using 
Illumina Infinium® HumanMethylation450 BeadChip array, which allows the 
interrogation of approximately 450,000 sites spanning all Reference Sequence 
(RefSeq) (142) genes and with proven reproducibility and practicability for studying 
DNA methylation in large cohort samples (143). However, methylation measures 
quantified by microarray techniques can be affected by systematic variation due to 
the technical processing. Thus, we describe below key steps from the in-house 
optimized pipeline for preprocessing, quality control and batch correction of 
methylome data.  

 

1. Preprocessing of data 
The majority of the results presented in this manuscript were obtained from the 
analysis of DNA methylation data using the Illumina Infinium® HumanMethylation450 
BeadChip assay. Bisulfite conversion was performed using the EZ-96 DNA 
Methylation kit (Zymo Research Corporation, Irvine, CA). From the 500 ng of 
bisulfite-converted DNA per sample, 250ng was used for hybridization on the 450K 
array. Each array consisted of 96 samples distributed equally among 8 chips. The 
study design was established such that batch effects (e.g. sample position and intra- 
and inter-variability in arrays and chips) did not completely confound with biological 
covariates. Specifically, each chip included proportional amounts of samples 
representing different confounder factors (e.g. case-control status, sex, etc.). The 
bias related to sample position on the chip was also demonstrated in our 
methodological paper for removing unwanted sources of variation (144). Raw 
fluorescence intensities (.idat files) were retrieved and preprocessed using the minfi 
R package (145). To calculate the methylation level of each CpG as the beta-value, 
we used the following formula: 

 

β=      ( )     ( )       ( )   
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β-values, therefore, represent the proportion of methylation at each CpG site (0 = 
completely unmethylated, 1 = completely methylated). Missing values in methylation 
data were imputed when their proportion was smaller than 5% per sample or per 
CpG and removed otherwise. Using raw methylation values, we were able to 
estimate the sex of the samples. Estimation of child sex is done by using the median 
values of measurements on the X and Y chromosomes, respectively, and compared 
with a cut-off. We then compared the estimated sex with sex status from 
questionnaires. Sex mismatches were consistently excluded from further analysis.  

 
2. Quality control 

One of the quality control (QC) steps involve use of getQC function to identify bad 
quality sample. Samples with a lower QC than the threshold are flagged as bad 
quality and removed from further analysis. To further explore the quality of the 
samples, it is useful to look at the methylation values densities of the samples. 
Indeed, a minor number of cases can pass the above-mentioned threshold but still 
display an unusual methylation distribution density of the 450K CpG probes. 
Visualizing box plots of both methylated (M) and unmethylated (U) channels allows 
us to verify the presence or absence of biases among samples. Furthermore, multi-
dimensional scaling (MDS) plot showing a 2-D projection of euclidean distances can 
pinpoint cluster of samples, including potential outliers.  

Although different normalization procedures are available for the Illumina Infinium® 
HumanMethylation450 platform, we used Functional normalization (Funnorm, minfi R 
package) that was shown to perform equally good or outperform existing 
normalization methods (146). It removes unwanted variation by regressing out 
variability explained by the control probes present on the array. 

The efficiency of the normalization can be depicted by replotting the methylation 
distribution of 450K CpG probes. This is followed by filtering of cross-reactive probes 
(that target repetitive sequences or co-hybridize to alternate sequences, thus, 
generating spurious signals), and sometimes of CpGs on sex chromosomes or of 
single-nucleotide polymorphism (SNP)-related CpG probes. Finally, we use surrogate 
variable analysis (SVA) (147) for batch correction, a choice validated by the findings 
of our benchmarking (144). SVA is also used as a reference-free method to adjust for 
differences in white blood cell (WBC) composition. 

WBC can be also predicted based on regression calibration algorithms (121) from 
450K microarrays using reference data pertinent to peripheral (148) or cord blood 
(149), which are the tissue types investigated in our work. For example, 
deconvoluting methylation data from blood will result in relative proportions of CD4+ 
and CD8+ T-cells, natural killer cells, monocytes, granulocytes, and B-cells in each 
sample, and these proportions can be adjusted for in subsequent analyses. 

 

3. Statistics 
A first step into the statistical investigation of the data is to proceed to CpG site-by-
site regression analysis. To reduce the number of false positive results, we control for 
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multiple testing using Benjamini Hochberg procedure (150) or more stringent 
Bonferroni approach (151). In order to minimize further the false positive rate and in 
case of several participant cohorts, a meta-analysis is conducted by one centre and 
re-assessed by a second « shadow » meta-analysis performed by independent 
group. We used METAL software (152) to perform a fixed (or random) effect with 
inverse variance based meta-analysis. Besides performing site-by-site analysis, we 
also used a dimension reduction approach (DMRcate) (153) to reduce the 450K 
individual sites into clusters of genetically proximal and correlated CpGs to enhance 
statistical power and aid biological inferences (as single CpG sites often have more 
subtle functional relevance than CpG clusters) , as per our previous work (154,155). 

Additionally, in some studies, we integrated DNA methylation data with other types of 
omics when available. Separate analyses of each data source capture important 
features that are specific to each source; whereas, joint analysis offers the 
opportunity to highlight the shared variation across several omics, which is 
particularly important especially in multi-layered diseases like cancer. The demand 
for such integrative methods motivates a dynamic area of statistics and 
bioinformatics, and we have benchmarked some major methods in this regards (156). 

 

B. Relevant publications 
The following papers describe three major methodology investigations performed as 
part of the PhD thesis. The first paper aims to identify and correct technical biases 
present in 450K methylation data. As epigenetics was the primary focus of the 
analyses and main source of findings, this step was of paramount importance.  
Indeed, before trying to biologically interpret the epigenetic findings, we need to be 
confident that upstream analyses were of highest quality. The second co-led paper 
comprises work started during the master internship and continued during the thesis. 
It focuses on extracting valuable information across several omic layers. Indeed, 
recent technical advances facilitated the collection of large-scale omics data from the 
same biological samples. As will be seen, the studies presented in the results chapter 
required skills in extracting information from epigenomics but also other types of 
omics. The third paper is a pan-cancer investigation using genomic and 
transcriptomic data for the assessment of epigenetic cancer driver genes. This study 
builds on a battery of novel biostatistic and bioinformatic tools in order to perform 
integrated analysis of the two omics. It required, inter alia, knowledge acquired in the 
first two papers and generated cancer driver prediction tools that can be applied in 
future studies on the epigenetic markers identified in this work in order to investigate 
whether such markers play a driver role in pediatric cancers (in addition to serving as 
early biomarkers detectable before disease onset). 
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Identifying and correcting epigenetics
measurements for systematic sources of
variation
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Abstract

Background: Methylation measures quantified by microarray techniques can be affected by systematic variation
due to the technical processing of samples, which may compromise the accuracy of the measurement process
and contribute to bias the estimate of the association under investigation. The quantification of the contribution
of the systematic source of variation is challenging in datasets characterized by hundreds of thousands of features.
In this study, we introduce a method previously developed for the analysis of metabolomics data to evaluate
the performance of existing normalizing techniques to correct for unwanted variation. Illumina Infinium
HumanMethylation450K was used to acquire methylation levels in over 421,000 CpG sites for 902 study participants of a
case-control study on breast cancer nested within the EPIC cohort. The principal component partial R-square (PC-PR2)
analysis was used to identify and quantify the variability attributable to potential systematic sources of variation. Three
correcting techniques, namely ComBat, surrogate variables analysis (SVA) and a linear regression model to compute
residuals were applied. The impact of each correcting method on the association between smoking status and DNA
methylation levels was evaluated, and results were compared with findings from a large meta-analysis.

Results: A sizeable proportion of systematic variability due to variables expressing ‘batch’ and ‘sample position’ within
‘chip’ was identified, with values of the partial R2 statistics equal to 9.5 and 11.4% of total variation, respectively. After
application of ComBat or the residuals’ methods, the contribution was 1.3 and 0.2%, respectively. The SVA technique
resulted in a reduced variability due to ‘batch’ (1.3%) and ‘sample position’ (0.6%), and in a diminished variability
attributable to ‘chip’ within a batch (0.9%). After ComBat or the residuals’ corrections, a larger number of significant
sites (k = 600 and k = 427, respectively) were associated to smoking status than the SVA correction (k = 96).

Conclusions: The three correction methods removed systematic variation in DNA methylation data, as assessed by the
PC-PR2, which lent itself as a useful tool to explore variability in large dimension data. SVA produced more conservative
findings than ComBat in the association between smoking and DNA methylation.
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Background
Epigenetics aims at investigating changes in gene activity
not attributable to changes in the DNA sequence [1]. An
increasing number of studies analysed epigenetics in
relation to modifiable environmental exposures of epide-
miologic interest, such as smoking [2–4], alcohol
consumption [5], maternal plasma folate [6] and other
vitamin involved in the one carbon metabolism pathway
[7], as well as the role of epigenetic profiles on the risk
of developing chronic diseases, including cancer [8].
DNA methylation is a mechanism of epigenetic regula-
tion that involves the addition of methyl groups (–CH3)
to the cytosine of a cytosine-guanine DNA sequence.
DNA methylation level at one CpG site is frequently
expressed as the percentage of cells that are methylated
at that specific site. The Illumina Infinium Human-
Methylation450K BeadChip (HM450K) quantifies DNA
methylation at more than 450,000 interrogated CpG
sites, expressing methylation level as the ratio of the
methylated probe intensity to the overall intensity, which
is the sum of the methylated and unmethylated probe
intensities [9].
Methylation levels are influenced by many factors

including aging [10] and environmental exposure [11,
12], but might also be affected by systematic variation
due to the processing of the biospecimens, e.g. variability
attributed to batch (a sub-group of samples processed at
the same time, 96 samples per batch in the HM450K),
chip position within batches (8 chips per batch in the
HM450K) and the position of the samples within the
chip [13]. Methods of correcting for the sources of
methylation variability include ComBat, based on an
empirical Bayes method [14] and the surrogate variables
analysis (SVA) [15, 16]. An alternative method consists
in the computation of residuals from a beta regression,
where methylation levels were regressed on the major
sources of methylation variability.
The large dimension of new generation methylation

arrays makes it difficult to quantify the amount of
variability attributable to systematic sources of variation.
The principal component partial R-square (PC-PR2)
method was developed to quantify the contribution of
sources of variation defined a priori in large dimensional
data [17].
Smoking exposure has been analysed in many studies

[2–4], which offers a large comparative pool of results.
Smoking has also been shown to have a major impact
on the epigenome and hence provides a large number of
significant CpGs to analyse. For these reasons, in this
work, we have chosen to evaluate the performance of
ComBat, SVA and the residuals’ method to correct for
potential systematic variability in methylation measure-
ments, in the association between smoking and DNA
methylation levels from DNA samples of subjects of a

nested case-control study on breast cancer conducted
within the European Prospective Investigation into Cancer
and nutrition (EPIC) study. The PC-PR2 method was used
to quantify the extent of total epigenetics variability before
and after applying each correcting method.

Methods
Study population
The EPIC study [18, 19] is a multicentre study that
recruited over 521,000 study participants, between 1992
and 2000 in 23 regional or national centres in 10 European
countries (Denmark, France, Germany, Greece, Italy,
Netherlands, Norway, Spain, Sweden and the UK). Among
the 367,903 women recruited in EPIC, we excluded 19,583
participants with prevalent cancers at recruitment (except
non-melanoma skin cancer) and 2892 women that were
lost during follow-up. Malignant primary breast cancer
(BC) occurred for 10,713 of them from 1992 to 2010. A
nested case-control study was designed among women
who completed dietary and lifestyle questionnaires and
provided blood samples at recruitment (baseline), which
included 3858 invasive BC cases. Each case was matched
to a randomly selected control among cancer-free women
by recruitment centre and the following baseline variables:
age, menopausal status, fasting status, current use of oral
contraceptive pill or hormone replacement therapy and
time of blood collection [20].

Genome-wide DNA profiling assessment
Genome-wide DNA-methylation profiles in buffy coat
samples was quantified using the Illumina Infinium
HumanMethylation450K (HM450K) BeadChip assay [9]
in 960 biospecimens of women included in the BC
nested case-control study [21]. The 480 cases were
selected based on estrogen receptor status and by selecting
equal proportions of subjects with above or below median
level of dietary folate. Matched controls were the same than
those selected for the whole study. A total of 20 biospeci-
mens with replicates were used to compare technical inter-
and intra-assay batch effects and then excluded from the
main analysis. We also excluded 19 matched pairs where at
least one of the two samples had a low-quality bisulfite
conversion efficiency (intensity signal < 4000) or which did
not pass all the Illumina GenomeStudio quality control
steps, which were based on built-in control probes for
staining, hybridization, extension, and specificity [22]. A
total of 451 completed matched pairs (n = 902) were
retained for the main statistical analyses. In any given
sample, probes with detection p value higher than 0.05
were assigned ‘missing’ status. After the exclusion of 14,548
cross-reactive probes, 47,963 probes overlapping known
SNPs with minor allele frequency (MAF) of ≥ 5% in the
overall population (European ancestry) [23] and 1483 low-
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quality probes (missing in more than 5% of the samples),
421,583 probes were included in the statistical analyses.
For each probe, β value was calculated as the ratio of

methylated intensity and the overall intensity, defined as
the sum of methylated and unmethylated intensities.
The following preliminary adjustment steps were applied
to the β values: (i) color bias normalization using smooth
quantile normalization to correct for the two color chan-
nels; (ii) quantile normalization [24]; (iii) type I and type II
bias correction using the beta-mixture quantile
normalization (BMIQ) [25]. Then, M values, defined as

Mvalues ¼ log2ð βvalues
1−βvalues

Þ, were computed [26]. In this work,

the β and M values obtained after the preliminary
normalization steps were referred to as the raw β and M
values.
The amount of white blood cell counts (T cells (CD8+T

and CD4+T), natural killer (NK) cells, B cells, monocytes
and granulocytes) was quantified using Houseman’s esti-
mation method [27]. The percentage of granulocytes was
not included in this analysis as it is collinear with the five
other white blood cell counts: the total of the percentages
of the six leukocyte subtype counts is 1.
For the DNA methylation measurements with the

HM450K BeadChip, samples were aliquoted into 10 batches;
each batch was made of 8 chips, and each chip contained 12
samples (located in 2 columns of 6 rows). Chip position
represented the position of the chips within a batch, as illus-
trated in Fig. 1a, and sample position represented the
position of the samples within a chip, as in Fig. 1b.

Lifestyle exposures
Data on lifestyle exposures were collected at recruitment
through country- or centre-specific dietary and lifestyle

questionnaires [18]. Smoking status was categorized into
ever (former/current) and never smokers and was not
associated to any of the technical covariates.

Statistical analyses
In order to inspect the variability of DNA methylation
levels, we first visually inspected, via box plots, global
DNA methylation levels by batch, chip and sample
positions. The principal component partial R-square
(PC-PR2) method was used to quantify the contribution
of laboratory factors and other characteristics of the
samples to the between-sample variability observed [17].
First, principal component analysis (PCA) was carried
out, by the PC-PR2, on the matrix X of epigenetics data
of dimension n × p (n = 902: number of study samples
and p = 421,583: number of probes). In PCA, eigenvalues
and eigenvectors are usually obtained from the matrix X
′X of dimension p × p. In this case, and in general with
-omics data, p is very large (p≫ n), and the decomposition
of X′X can be cumbersome. A particularly appealing pro-
cedure consists in extracting eigenvalues and eigenvectors
from the matrix XX′, of dimension n × n [28], which is
way easier to handle, being n much smaller than p. Once
eigenvalues were extracted, the q first components
explained an amount of total variability in X greater than
a given threshold, i.e. 80% in this study. Then, each of the
q first PCA score components was, in turn, linearly
regressed on a list of independent covariates (Z), compris-
ing of laboratory factors and characteristics of the samples.
Values of the partial R2 statistics were assessed for each Z
covariate, separately in each component-specific model
[29]. An overall partial R2 was computed for each Z covar-
iate with a weighted average of their component-specific
partial R2 using the corresponding q eigenvalues as
weights, conditional to all other covariates in the model.
The covariates that we have entered into the regression
include batch, chip position, row sample position, recruit-
ment centre, proportions of leukocyte subtypes (CD8+T,
CD4+T, NK, B cells and monocytes), alcohol consumption
(g/day), age (year), BMI (kg/m2), menopausal status (post-
vs. pre-menopause), smoking (ever vs. never smokers), BC
status (case or control) and dietary folate intake (μg/day).

Removing unwanted variation
To remove the two most important sources of variation
identified with the PC-PR2 from DNA methylation
levels, three different correcting techniques were applied
to raw β and M values: residuals, ComBat and SVA. The
ComBat method [14] is a procedure based on an empir-
ical Bayes approach that can correct only for one covari-
ate at the time. Given the presence of multiple sources
of variation, we have applied two parametric ComBat in
multiple sequential steps: ComBat was first applied to
remove batch variability, and then a second ComBat step

a b

Fig. 1 Description of laboratory variables. a Position of chips within
batches, each batch was made of 8 chips. b Sample position within
chips, each chip contains 12 samples
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was run to remove variability due to row sample
position. Methylation β values that after the application
of ComBat were lower than 0 or larger than 1 were set
to 0 and 1 respectively. The surrogate variables analysis
(SVA) is a method developed to remove pre-identified
sources of variability but also non-known sources of
variability, i.e. variability which is not specified in the
SVA model, using surrogate variables [15, 16]. Once
surrogate variables were assessed by SVA, residuals from
a regression modeling methylation level according to the
surrogate variables were computed to remove the
unwanted variation.
As the β values are continuous in the [0,1] interval,

the calculation of the residuals for the residuals’ method
and SVA method were based on beta regression. To be
comparable to the ComBat and raw (i.e. uncorrected)
data, residuals computed with the residuals’ and the SVA
methods needed to be rescaled as follows:

resscaled; j ¼
resraw; j− min resraw; j

� �

max resraw; j
� �

− min resraw; j
� � max raw j

� �
− min raw j

� �� �

þ max raw j
� �

where j = 1…421,583, rawj represents the raw β values
measured in site j and resraw, j the residuals computed
for site j before transformation.
In order to check the efficacy of the three correcting

techniques, a second PC-PR2 analysis was used to quan-
tify the contribution of each laboratory factor to total
variability, after each of the normalization methods.
Same approach was used for M values using a linear

regression instead of beta regression to compute resid-
uals from the residuals’ and the SVA methods.
In order to compare sample individual values before

and after correction, raw and corrected β and M values
of the probe cg00000029 were visually inspected. In this
site, in addition to the three tested methods, a second
residuals’ method was also computed using random
effects instead of fixed affects to remove unwanted
variation, from a beta or linear mixed regression,
respectively for β and M values.

CpG site-specific models
The association between smoking status and each of the
421,583 CpG sites was carried out before and after appli-
cation of each normalization method. Beta regression
models were used for β values and linear regression
models for M values, with adjustment for chip position,
recruitment centre, percentages of five leukocyte
subtypes, age at recruitment, menopausal status and BC
status. The standard adjustment models, i.e. models
using the raw methylation values, were also adjusted for
batch and row sample position. In order to compare the
epigenome-wide distribution of p values with the

expected null distribution of p values, the inflation factor
λ was computed and the quantile-quantile (QQ) plots
were generated. The inflation factor was defined as the
ratio of the median of the observed log10 transformed p
values and the median of the expected log10 transformed
p values. False discovery rate (FDR) was used to control
for multiple testing. In order to compare the performance
of the different correction methods with a nominal
reference, the list of k significant CpG sites (q values < 0.05)
associated with smoking was compared to the results of a
large meta-analysis carried out in the CHARGE consor-
tium, a recent large meta-analysis on the link between the
epigenetic signature of cigarette smoking that pooled data
from 16 studies, and included about 16,000 individuals [4].
In CHARGE, smoking status was statistically significantly
associated with DNA methylation level (β values) in 18,760
sites, after FDR correction of p values.
In order to compare the performance of the correction

methods, the relative sensitivity and specificity of each
correcting method were computed. We considered the
CpG sites significantly associated to smoking in the
CHARGE consortium as the true positives, i.e. an
arbitrary gold standard, given that this is a well-powered
reference study and the largest to date.
Preprocessing steps and statistical analysis were carried

out using the R software (https://www.r-project.org/) and
Bioconductor packages [30], including ‘lumi’ and ‘wateR-
melon’ for the adjustment step, ‘sva’ [31] for ComBat and
SVA corrections, and ‘betareg’ for beta regression models.
The PC-PR2 method was computed using the R code
available in Fages et al.’s supplementary material [17].

Results
DNA measurements of the first and the last batches
were conducted roughly 3 months apart. DNA measure-
ment of two consecutive batches varied from 3 to
14 days. Box plots of global methylation (i.e. mean of
methylation levels in all the CpG sites) showed a
random variation of global methylation levels between
batches, as reported in Fig. 2a for β values. Global
methylation between chip positions did not present large
variation (Fig. 2b). Sample position within the chip
systematically influenced global methylation, with levels
by rows, showing a progressive constant increase in
methylation, a feature not observed by column, as
displayed in Fig. 2c. The impact of row sample position
on global methylation was even stronger when batches
were evaluated separately (Fig. 2d). Global methylation
computed with M values gave similar results
(Additional file 1: Figure S1).
Tables 1 and 2 show the results of PC-PR2 to quantify

the amount of total variability of DNA methylation
explained respectively by laboratory factors and charac-
teristics of the samples (recruitment centre, the five
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Fig. 2 Box plots of global methylation (β values) according to laboratory factors. a Batch. b Chip position within batches. c Sample position within chips.
d Batches and sample position within chips
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percentages of leukocyte subtypes, alcohol intake, age,
BMI, menopausal status, smoking, breast cancer status
and diet folate intake), for raw β and M values. Findings
were similar for raw β and M values; the largest contri-
bution to the overall variability came from row sample
position and batch explaining, respectively, 11.4 and
9.5% (β values), and 12.3 and 9.7% (M values) of overall
methylation variation. Chip position contributed to 6.5
and 6.8%, for raw β and M values respectively. The per-
centages of leukocyte subtypes and centre explained
most of the variation of DNA methylation due to sample
characteristics for raw β and M values. Each of the

remaining tested other sample characteristics explained
less than 0.5% of total variation.

Removing unwanted variation
All the three correcting methods decreased the contri-
bution of row position and batch to similar neglectable
levels, whereas only SVA appeared to reduce the contri-
bution to variability due to chip position (Table 1). The
amount of variability explained by laboratory factors and
sample characteristics for raw β values decreased from
30.4 to 17.9% and 17.1% using, respectively, the resid-
uals’ method and ComBat, and to 6.5% after SVA. The
PC-PR2 approach applied on M values estimated values
of partial R2 for laboratory factors and sample character-
istics similar to those of β values.
Corrected methylation values of the probe cg00000029

were very similar using ComBat or the residuals’
methods for β values and Μ values (Fig. 3). SVA
corrected values were the corrected values most different
from the raw values. Using the residuals’ method with
fixed or random effects for batch and row sample position
gave similar results.

CpG site-specific models
The frequency k of sites associated with smoking status
is shown in Table 3, consistently for β and M values. For
β values adjusted by batch and row sample position
(standard adjustment), smoking status was significantly
associated to methylation levels in 444 sites. The
number of CpG sites significantly associated with smoking
status was equal to 427 for the residuals’ method, 600 for
ComBat and 96 for SVA after correction. According to the
inflation factors and QQ plots, there was no evidence of
inflation for any methods (Additional file 2: Figure S2).
These frequencies were compared to the list of 18,760

sites identified in the CHARGE meta-analysis (Joehanes
et al. [4]). A total of 77 sites overlapped across the standard
adjustment and the three correcting methods in this study
and the sites identified in the consortium, as shown in the
Venn diagram for β values in Fig. 4a. In addition to these
sites, the standard adjustment, the residuals’ method and
the ComBat method shared a list of 249 significant sites
with CHARGE. The ComBat method resulted in the
largest frequency of sites overlapping with results in
CHARGE (k = 411), but also in the largest percentage of
sites not observed in CHARGE (31%). In contrast, SVA
identified the lowest number of significant sites (k = 96)
but the vast majority of them (92%) were also identified in
CHARGE.
As for M values, 322 sites were associated to smoking

using the standard adjustment, k = 332 after the resid-
uals’ method, k = 387 using ComBat, k = 144 after SVA
correction. A total of 111 sites overlapped all the
methods and CHARGE, as shown in Fig. 4b. SVA was

Table 1 Values of weighted partial R2 (%) from PC-PR2 analysis
indicating the proportion of variability of methylation levels,
before and after normalization step, explained by a specific
set of laboratory factors

Values Methodsa Row sample
position

Batch Chip
position

Totalb

β values Raw 11.4 9.5 6.5 30.4

Residuals 0.2 1.3 5.9 17.9

ComBat 0.2 1.3 6.0 17.1

SVA 0.6 1.3 0.9 6.5

M values Raw 12.3 9.7 6.8 30.7

Residuals 0.2 1.2 5.8 16.5

ComBat 0.2 1.3 6.2 17.0

SVA 0.4 0.7 0.8 5.3
aResiduals, COMBAT and SVA methods used to correct effect due to batch and
row sample position (within the chips)
bTotal variability explained by laboratory factors and characteristics of the samples
(recruitment centre, the five percentages of leukocyte subtypes, alcohol consumption,
age and BMI, menopausal status, smoking, BC status and dietary folate)

Table 2 Values of weighted partial R2 (%) from PC-PR2 analysis
indicating the proportion of variability of raw methylation levels
explained by a specific set of covariates

Characteristics of samples β values M values

Recruitment centre 3.0 2.9

Percentages of leukocyte subtypes

CD4T 3.2 3.2

CD8T 3.7 3.1

Natural killers 5.2 4.7

B cells 1.7 1.1

Monocytes 0.4 0.4

Alcohol intake at recruitment 0.2 0.1

Age at recruitment 0.4 0.4

BMI at recruitment 0.1 0.1

Menopausal status 0.2 0.2

Smoking status 0.1 0.2

Breast cancer status 0.1 0.1

Dietary folate 0.1 0.1
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the method leading to the lowest number of significant
sites, but also to the largest percentage of sites also
identified by CHARGE (93%). This percentage ranged
between 85 and 90% for all the other methods. According
to the inflation factors and QQ plots, there was no
evidence of inflation for any methods for M values
(Additional file 3: Figure S3). SVA showed the least
inflation in both β values and M values.
Sensitivity was similar for the standard adjustment, the

residuals’ method and the ComBat method with a value
about 0.020 for β values and over 0.015 for M values
(Table 3). SVA sensitivity was four times less for β values
and twice less for M values. SVA was the most specific

method with 1-specificity equals to 0.2×10− 4 for β values
and M values whereas ComBat was the least specific
with 1-specificity equals to 4.7×10− 4 and 1.3×10− 4 for β
values and M values, respectively.

Discussion
Batch effects on DNA methylation measurements have
already been documented [13]. Various correcting methods
have been recently used, including standard adjustment [3],
ComBat [6] and SVA [2]. Our findings suggested that batch
was not the only source of variation in the DNA methyla-
tion data from our EPIC study, as the position of the
sample within the chip and, to a lesser extent, chips within
batches, also contributed to total variability. Noteworthy,
while variation by batch was essentially random, the
position of the sample within the chip contributed systematic
variation, with methylation levels progressively increasing by
row, but not by column. This might be due to the washing
step which is done row by row in each chip during the
measurement of DNA methylation using HM450K.
Eventually, batch and row sample positions explained
cumulatively more than 20% of the methylation levels and
were the most important sources of variation. Further
replications are needed in others dataset from other labs to
validate our findings.
PC-PR2 is a powerful method to identify and quantify

random and systematic sources of variation in large-
scale datasets. Here, the method, initially developed for
metabolomics data [17], was successfully applied to
epigenetics data, a challenging set characterized by
hundreds of thousands of features, and can easily be
extendable to other -omics data. It is based on the

Fig. 3 DNA methylation levels of the CpG site cg00000029 before and after normalization step. a β values. b M values

Table 3 CpG site-specific regression models before and after
normalization step

Values Methods Significant
sitesb

CHARGEc Sensitivity 1-Specificity

β values Standard
adjustmenta

444 357 (80%) 1.9×10−2 2.2×10−4

Residuals 427 365 (85%) 1.9×10− 2 1.5×10− 4

ComBat 600 411 (69%) 2.2×10− 2 4.7×10− 4

SVA 96 89 (92%) 0.5×10−2 0.2×10−4

M values Standard
adjustmenta

322 274 (85%) 1.5×10−2 1.2×10−4

Residuals 332 299 (90%) 1.6×10−2 0.8×10−4

ComBat 387 335 (87%) 1.8×10−2 1.3×10−4

SVA 144 134 (93%) 0.7×10−2 0.2×10−4

Models are adjusted for chip position, recruitment centre, the five percentages of
leukocyte subtypes and age at recruitment, menopausal status and BC status
aAlso adjusted for batch and sample position
bNumber of significant sites for smoking status after p values FDR correction
cNumber (and percentage) of significant sites identified by the CHARGE meta-analysis
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combination of a principal component analysis (PCA)
and the concept of partial R2 in multivariable linear
regression. PC-PR2 quantifies the contribution of
variability of continuous and/or categorical covariates to
total variability in the outcome data, and in general
offers high level of flexibility to capture specific features
such as, say, non-linear effects and longitudinal data. A
particularly appealing feature is the possibility of
performing PCA by decomposing the matrix XX′ of

dimension n × n rather than X′X of dimension p × p that
would be virtually untreatable in the -omics domain. The
PC-PR2 can also be extended to the Infinium Methyla-
tionEPIC BeadChip (850K), which is the updated version
of HM450K.
Identifying unwanted sources of variation in epigenetics

data is a crucial step prior to statistical analysis. Each of
the three tested methods succeeded to correct DNA
methylation levels for the pre-specified sources of variability.

Fig. 4 Venn diagram of significantly identified CpG sites for smoking status using each correcting methods and CHARGE. a β values. b M values.
p values were corrected for multiple testing with FDR
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Percentages of variability due to batch and row sample
position diminished to marginal levels after the use of the
three methods. Other unknown or unmeasured experimen-
tal conditions are also likely to modify DNA methylation
measurements, such as differences in sample handling and
preparation and the room temperature during sample
processing. Overall, the procedures for sample treatment
are way more challenging to control, possibly because
detailed information on each sample are not always docu-
mented, and it is rather assumed that these are relatively
homogeneous across recruitment centres. Statistical adjust-
ment for centre is a standard practice in the analysis of
epigenetics data and of any laboratory measurements. In
this respect, SVA turned out to provide a correction on top
of the pre-specified sources of variability through the
estimation of surrogate variables possibly influencing overall
variability. It was remarkable that the variability attributed
to chip position, whose partial R2 values was 6.5% in the
raw data, decreased to 0.9% after SVA, even if chip position
was not included in the list of covariates of which we want
to remove the variability, specified in the SVA model.
Indeed, the surrogate variables, computed by a PCA step in
the SVA algorithm, capture the variability in the methyla-
tion data which is not already explained by the a priori list
of covariates (batch and row sample position). A challenge
of DNA methylation data is the presence of outliers that
can generate spurious associations. Techniques have been
introduced to filter out outliers through preliminary quality
control checks globally on all CpG sites [32]. This was
achieved through the Illumina GenomeStudio quality in the
present study [22]. Nevertheless, outlier values passed the
GenomeStudio quality control screening and were detected
after applying the residuals or SVA methods. On the
contrary, ComBat is based on an empirical Bayesian
procedure with an additive and a multiplicative component,
the latter contributing to shrink all observations, including
outliers [14]. This makes ComBat an attractive solution to
control outlier values in large-dimension data. Another
interesting feature is that ComBat preserved the observed
variability of methylation data in the [0, 1] interval for β
values, unlike the residuals’ and SVA methods, for which
the corrected values could fall outside the [0, 1] range.
The performance of the various correction methods

was evaluated in this study through the comparison with
results of association between smoking and methylation
from the CHARGE consortium, one of the largest studies
available to date. This could be a debatable choice but
allowed a reference group to be established to compute
relative sensitivity and specificity of each normalizing
method. The low sensitivity across all methods in our
analysis might be explained by the lack of power due to
the sample size: over 16,000 samples were included in
CHARGE against 902 in our study. Some different charac-
teristics of our population and the one of the CHARGE

consortium might also explain the difference in terms of
significant sites. For example, only women are included in
our analysis and half of them developed latter a breast
cancer. This makes more difficult the identification of false
positives based on the results from the CHARGE consor-
tium. The analysis showed that ComBat had the highest
level of relative sensitivity, i.e. relatively less false negative
CpG associated to smoking, compared to the residuals
and SVA, consistently for β or M values. On the other
hand, SVA came across as the method with, by far, the
highest specificity, possibly indicating lesser predisposition
to the commit of false positives. As SVA made a much
more aggressive correction of systematic variability, the
sites identified by SVA are more likely to be universal
disruption due to smoking which can explain its higher
specificity and its lower sensitivity. In order to avoid over-
adjustment using SVA, latent covariates related to sub-
groups such as the chip position should not be included
in the regression model. SVA outperformed both the
residuals and, in particular, ComBat, whose lack of specifi-
city turned out to be substantial. In research domains
characterized by the danger of populating the scientific
literature with false positive findings, like in the -omics
era, the performance of SVA towards conservative results
was deemed to be a valuable feature. Our results would
need to be replicated in another dataset.
The β values are approximations of the percentage of

methylation in a CpG site. Their distribution is often
skewed and ranged from 0 to 1. On the other hand, M
values approximate a normal distribution but are more
complex to interpret, as they do not have an obvious bio-
logical meaning. It has been recommended to use M
values for conducting methylation analysis and to use the
β values when reporting results due to their intuitive bio-
logical interpretation [26]. In our study, the PC-PR2
method identified the same sources of variability explaining
a similar amount of the total variability usingM or β values.
This is likely a consequence on the fact that PC-PR2 is a
descriptive method that does not use statistical inference.
The association between smoking and DNA methylation
was slightly attenuated in terms of number of significant
sites using the M values, rather than β values, for the
standard adjustment, residuals’ correction and ComBat
correction. Only SVA identified more significant sites with
the Μ values. β values were more sensitive but less specific
than M values, i.e. more significant sites, including both
true and false positive sites.
Approaches for correcting batch effects have been

compared using microarray data of gene-expression
profiles [33]. In that study, a parametric prior ComBat
and a non-parametric ComBat were compared to SVA
and to three other methods, including distance-weighted
discrimination [34], mean-centering [35] and geometric
ratio-based [36] methods. Using two microarray datasets
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from brain RNA samples and two simulated datasets,
ComBat outperformed overall the other methods. In
particular, both parametric and non-parametric ComBat
algorithms allowed a better control of the variation
attributed to batch effect and a better increase of Pearson’s
correlation coefficient of the replicates in the microarray
data and determined the largest AUC in their assessment
of overall performance.
ComBat has also been compared to six other methods to

correct for batch effect in microarray data [37], including
Deming regression [38], Passing-Bablok regression [39],
linear mixed model, a third-grade polynomial regression,
the non-linear Qspline method [40] and the ReplicateRUV
approach [41]. The first five methods calculate residuals
based on different regression models. ReplicateRUV
removes unwanted variation based on negative control
genes and sample replicates. The combination of quantile
normalization and ComBat in large-scale gene expression
data in the Gutenberg Health Study removed batch effect
and preserved biological variability [37].
In this work, we chose to focus on the residuals,

ComBat and SVA approaches, because they are the
currently most common methods used to remove
unwanted variation in DNA methylation. This work can
also be applied to the newer methods which are recently
available such as the Bacon approach, a Bayesian method
to control bias and inflation in EWAS and TWAS based
on estimation of the empirical null distribution [42].

Conclusions
Our results suggest that in order to reduce the contribution
to systematic variation of DNA methylation, it is essential
to randomly allocate samples within chips and batches.
This is particularly relevant in nested studies for case-
control pairs, possibly within the same row position within
a chip. We have shown that the PC-PR2 method on DNA
methylation levels lent itself as a very useful tool to explore
an a priori list of laboratory factors and sample characteris-
tics and to identify the ones possibly determining unwanted
variability in large-scale dimension sets such as epigenetics
data. This step turned out to be essential to guide the
choice of correcting methods, such as the regression-
based residuals, ComBat or SVA, and to further appreciate
the extent of these corrections. These steps should be part
of the pre-processing analysis of any -omics data. SVA
should specifically be considered when sources of variabil-
ity are not known. ComBat and the residuals’ method
require that potential sources of variability are identified.
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Abstract

Recent advances in sequencing, mass spectrometry and cytometry technologies have enabled researchers to collect
large-scale omics data from the same set of biological samples. The joint analysis of multiple omics offers the opportunity
to uncover coordinated cellular processes acting across different omic layers. In this work, we present a thorough
comparison of a selection of recent integrative clustering approaches, including Bayesian (BCC and MDI) and matrix
factorization approaches (iCluster, moCluster, JIVE and iNMF). Based on simulations, the methods were evaluated on their
sensitivity and their ability to recover both the correct number of clusters and the simulated clustering at the common and
data-specific levels. Standard non-integrative approaches were also included to quantify the added value of integrative
methods. For most matrix factorization methods and one Bayesian approach (BCC), the shared and specific structures were
successfully recovered with high and moderate accuracy, respectively. An opposite behavior was observed on
non-integrative approaches, i.e. high performances on specific structures only. Finally, we applied the methods on the
Cancer Genome Atlas breast cancer data set to check whether results based on experimental data were consistent with
those obtained in the simulations.

Key words: benchmark; clustering; data integration; multi-omics; unsupervised analysis

Introduction
The accumulation of large molecular data sets has fueled
the development of translational bioinformatics and systems
biology that share a holistic view on omics data. While the
former aims to link biological to clinical data to improve our
understanding of disease mechanisms, the latter explores the
basic functional properties of living organisms based on the
premise that biological processes build upon the interplay

between macromolecules. Both approaches rely on the idea
that biological mechanisms (and, more generally, phenotypic
traits) can only be fully captured through the study of molecular
interactions among different omics layers.

Multi-omic approaches have received much attention in
recent years for their potential applications in clinics. In
genome-wide association studies for example, the mechanisms
by which the identified loci influence phenotypes remain
generally unknown and are likely to be unveiled using functional
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genomics. Cancer subtype diagnosis, commonly determined by
clinicopathologic parameters (i.e. morphological variables), tend
to underestimate inter-patient variability by classifying patients
with different responses to treatment or long-term prognosis
in the same group [1]. By crossing genomic, epigenomic,
transcriptomic and proteomic data, the Cancer Genome Atlas
(TCGA) network was able to refine breast cancer classes into
phenotypically homogeneous groups [2]. Quigley et al. [3]
demonstrated that genetic susceptibility in breast cancer is,
in some cases, context specific and requires the combination of
transcriptomic and epigenomic data to explain the mechanisms
of risk alleles. Similarly, Meng et al. [4] showed that the leukemia
extravasation signaling pathway could only be identified
through the integration of gene and protein expression. These
observations show that the integration of multiple sources has
the potential to (i) mitigate the risk of false positives when
multiple sources of evidence point to the same pathway [5],
(ii) lead to novel insights into the molecular crosstalk between
omics layers that underlies complex traits and (iii) identify new
biomarkers to stratify patients into novel, clinically relevant
disease subtypes [6].

The increasing availability of large heterogeneous data sets
(e.g. TCGA, the International Cancer Genome Consortium and
the Asian Cancer Research Group) has prompted the develop-
ment of novel integrative methods that aim to capture weak
yet consistent patterns across data types. This task is, however,
non-trivial due to (i) the increased dimensionality that makes
inference weaker, (ii) the challenge to decipher data-specific
from inter-source variations and (iii) the different types of noise
and confounding effects across platforms, resulting in data het-
erogeneity. For example, next-generation sequencing (NGS) and
microarray data are commonly modeled with negative binomial
and Gaussian distributions, respectively.

Despite these challenges, at least five major strategies have
been proposed to integrate heterogeneous omics data. The
first strategy, conceptual integration, consists of analyzing each
omics separately and combining the results at the interpretation
step. Because of its simplicity and the lack of gold standard in
the domain, this type of integration has been largely applied in
multi-omic analysis [7]. One obvious drawback of suchmethod is
its limited power to uncover modest but coordinated variations
acting at different biological layers [8]. The 2nd strategy, consen-
sus clustering, generates an overall sample classification after
an initial clustering step performed in each omics. Although
successfully applied in TCGA to refine breast cancer subtypes
[2], this two-step procedure of separate clusterings followed by
post hoc integration limits the power to detect crosstalk between
omics. The 3rd strategy, concatenation-based integration, allows
the application of standard machine learning techniques after
concatenation of omics measurements into a single matrix.
While such strategy turned out to have high discriminative
power in supervised framework [9], it is sensitive to the data size
when applied naively and consequently returns results biased
toward the omics with the most numerous features. However,
recent supervised concatenation approaches account for
unbalanced data sizes [10]. Additionally, concatenation-based
integration does not account for relationships across sources
and heterogeneous measurement error across platforms. The
4th strategy searches for common variations across omics using
matrix factorization, Bayesian and network-based approaches
specifically tailored for data integration. The 5th strategy,
multi-omic pathway enrichment, aims to find pathways that
correlate with a particular phenotypic end point, based on
their multi-omic profiles. In practice though, the current tools

perform pathway enrichment in each omics before combining
the obtained P-values [11, 12], similarly to the conceptual
integration.

Most of the effort in the area have been concentrated on
the 4th strategy where many methods propose to find a joint
cluster structure, from which patient stratification and molec-
ular mechanisms can be deduced. The methodological aspects
underlying integrative approaches have been recently reviewed
[13–16] and led to a classification according to two criteria;
whether or not the method under consideration relies on (i)
networks and (ii) Bayesian approaches, the network-free non-
Bayesian approaches being based on matrix factorization [17].

Most of these methods have been evaluated individually and
occasionally compared against iCluster (presented hereafter). To
our knowledge, only one benchmark of five network-based and
matrix factorization approaches has been performed so far [18],
leaving Bayesian methods aside. The methods were evaluated
with their default parameters, except for the best-performing
one.

In the present work, we propose a comparison of six popular
methods, one being in common with [18], using simulated and
real-world data (TCGA). Because we are interested in clustering
approaches that do not require any prior biological knowledge
and that can be widely applicable, the methods were selected on
the basis of their ability to deal with any data type and produce
clustering at both molecular and sample levels. Therefore, mod-
els tailored for specific omic types [19–21] and network-based
approaches focusing on patient stratification [22] or network
enrichment [23] were left aside.

The methods assessed in this work fall into two categories,
Bayesian approaches that extend the finite Dirichlet mixture
model and dimension reduction techniques aiming at identify-
ing shared latent variables. To avoid favoring one category over
the other in our study, the simulations were generated using
one model from each family. Also, like any clustering problem,
the determination of the optimal number of clusters is crucial
and needs to be addressed carefully. To do so, all methods pro-
pose guidelines (presented in their description hereafter) and,
in most cases, include the associated code. Because (i) this step
has a large impact on the final clustering, (ii) the code is not
systematically available and, (iii) in practice, users often test
different number of clusters and validate their choice using
orthogonal data [35], we decided to separately evaluate this step
of estimation of the number of clusters from the clustering itself.
In this latter evaluation of the clustering step, the methods were
run using the true (simulated) number of clusters and evaluated
on their ability to recover the simulated clustering.

The remainder of the paper is organized as follows: in the
first section, we briefly present the methods, the simulation
scenarios and the evaluation criteria. In the Results section, we
present the relative performances of the methods both on
simulated and TCGA data. Finally, in the light of the results, we
discuss the choice of methods in multi-omic framework in
Discussion and conclusion.

Methods
Methods overview

iCluster is a Gaussian joint latent variable model that seeks
a single-shared clustering structure across K data sets Xk of
dimensions pk × N (k = 1, · · · ,K) measured on the same N sam-
ples [24]. Its formulation relies on a latent variable model that
captures correlations among variables through latent factors.
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iCluster jointly fits K such models with the constraint that the
latent variable matrix is shared across data sets:

Xk = WkZ + εk, (1)

Z ∼ Nq(0, I),

where Wk is the pk × q loading matrix associated with data
set k, Z is the q × N common latent variable matrix and
εk is the pk × N uncorrelated error matrix that follows a
multivariate Gaussian distribution Npk (0,ψk) with zero mean
and diagonal covariance matrix ψk = diag(σ 2

k,1, · · · , σ 2
k,pk

). By
forcing the latent variables to be equal, iCluster assumes
that the K data sets derive from a set of common factors.
Parameter estimation is then performed using an expectation–
maximization algorithm on the multivariate normal distribu-
tion. The final cluster assignment is determined by k-means
clustering on the posterior expectation of the latent factors
E(Z|X). An l1 penalty can be imposed on the loading coefficients
to perform variable selection. The penalty parameter and the
number q of latent variables are tuned manually using the
proportion of deviance (a measure of cluster separability, [25])
from which the number of clusters can be deduced. Indeed,
Shen et al. [25] recall that a K − 1 rank matrix is sufficient
for separating K clusters. In Shen et al. [24], a cross-validated
Rand index (RI) (Clustering performance criteria), measuring
the clustering similarity between the training and the test sets,
is used for parameter tuning [24]. An extension of the model,
iClusterPlus (not evaluated in the present work), allows to
account for binary, counts and categorical data.

moCluster also decomposes each data set Xk into a product
of shared latent variables Z and a sparse, data-specific, load-
ing matrix Wk [26], similarly to iCluster. The main difference
between these two methods is that iCluster derives from factor
analysis, whereas moCluster relies on consensus PCA. For this
reason, iCluster separates the covariance from the variable-
specific variance, allowing heteroscedasticity among omic fea-
tures. Consensus PCA, on the other hand, assumes that the
noise has same variance across variables (σ 2

k,j := σ 2, for all
j = 1, . . . ,pk and k = 1, . . . ,K), making common and unique
variations no longer separable [24]. Although this assumption
is strong for the analysis of heterogeneous omics, moCluster
offers a 100–1000-fold speed increase as compared to iCluster
due to its deterministic parameter estimation based on the
NIPALS algorithm. A step of soft thresholding may be used for
variable selection. To determine the number of latent variables,
the authors suggest a visual inspection of the eigenvalues (scree
plot) or a permutation test on the same eigenvalues. Similarly,
the authors propose to perform a hierarchical clustering on the
latent variable matrix to obtain the final clustering, the number
of clusters being determined with the gap statistic [27].

JIVE extends iCluster andmoCluster by adding a data-specific
term [28]. This improvement is motivated by the biological inter-
est of studying individual structures and also by observing that
data-specific variations can dramatically impact the estimation
of the shared structure in partial least squares models [29].
Again, each term factorizes into a loading and a latent variable
matrix:

Xk = WkZ + Ws
kZ

s
k + εk, (2)

whereWs
k of size pk ×qk and Zs

k of size qk ×N are the data-specific
loading and latent variable matrices, respectively. Note that q

and qk are not necessarily equal, implying that the joint and
individual low-rank approximations may be of different dimen-
sions. To guarantee the identifiability of the decomposition, the
authors imposed an orthogonality constraint between the joint
and individual terms. The parameter estimation is performed by
estimating the joint and individual structures iteratively via SVD
by fixing one term at a time and minimizing the square norm
of the residual matrix for updating the other term. Sparsity is
induced during the estimation procedure by an l1 penalty on the
loading matrices. The level of sparsity is determined using the
Bayesian information criterion. As with moCluster, the number
of joint and individual latent variables is estimated using a
permutation approach on the eigenvalues. Unlike iCluster and
moCluster that provide tools to cluster samples from the latent
variables, Lock and Dunson [35] do not give guideline to generate
a final sample clustering.

Similarly to JIVE, iNMF aims to capture the shared and data-
specific structures with, however, two notable differences [30].
First, the latent variables are estimated using a non-negativity
constraint instead of orthogonality. Second, a coefficient matrix
Wk is shared between the data-specific Zs

k and the common Z
basis matrices where the coefficient and basis matrices are the
counterparts of the loading and latent variable matrices. iNMF
optimizes the following problem with a Euclidean loss function:

min
Z,Zs1,··· ,ZsK
W1,··· ,WK

K∑
k=1

||Xk − (
Z + Zs

k

)
Wk||2 + λ

K∑
k=1

||Zs
kWk||2. (3)

Again, the authors motivate the addition of data-specific effects
by demonstrating that jNMF [31], a similar approach without
data-specific term, is more sensitive to random noise and con-
founding effects. The choice of non-negativity factorization is,
on the other hand,motivated by its simple andmeaningful inter-
pretation that ‘the whole is an additive linear combination of
its parts’ [32].While non-negative factorization approaches have
a naturally sparse and parts-based representation [33], sparsity
is nevertheless induced in iNMF by applying an l1-penalization
on the data-specific term. This constraint imposed on the data-
specific effects implies that the parameter λ controls for the
factorization homogeneity. The authors also propose to apply
an l1-penalty on the coefficient matrix Wk to enforce variable
selection. The dimension of the shared and specific structures
(equal due to the shared coefficient matrix) is chosen through
a consensus-based approach that selects the number of latent
variables maximizing the clusters stability across multiple iNMF
runs. The λ parameter is, on the other hand, determined using
an ad hoc procedure that aims to attribute as much of the data
as possible to the specific structure while controlling for over-
fitting. Unlike the previous approaches, the authors propose a
method to perform clustering on the variables, which is out
of the scope of this work. Similarly to JIVE, no guidelines are
provided to obtain a final sample clustering.

Multiple data set integration (MDI) is a Bayesian method
that represents each data set k with a Dirichlet-multinomial
allocation mixture model [34]. Such mixture model has gained
increased popularity for the flexibility offered by the depen-
dency structure, and the different parametric forms the mixture
components can adopt. The originality of MDI arises from the
way it captures the common structures through pairwise depen-
dencies between data type clusterings. The sample assignment
in data set k can thus influence the sample assignment in
data set l, allowing the identification of samples that tend to
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cluster together in one, some or all data sets. This feature is
an important improvement over the previous approaches that
assume that the shared structure has to be common across all
data sets. The association among data sets is expressed at the
level of the component allocation variables with the conditional
prior

P(ci1, ci2, · · · ciK|φ) ∝
K∏

k=1

πcikk

K−1∏
k=1

K∏
l=k+1

(1+ φkl1(cik = cil)), (4)

where 1 is the indicator function, φkl controls the association
strength between data sets k and l, cik indicates the cluster
allocation of sample i in data set k and πcikk is the mixture pro-
portion associated with cluster cik in data set k. The parameters,
including the number of clusters in each source, are inferred
via Gibbs sampling. The authors then propose to maximize the
posterior expected adjusted Rand index (PEAR) across source-
specific clusterings to determine a single global clustering. As
pointed out by Wei et al. [14], the model could be extended
by modeling the pairwise association at the component level
instead of the data set level. Variable selection is not provided
by the method, and the maximal number of clusters needs to be
fixed by the user. For computational reasons, the authors recom-
mend to set this parameter to half the sample size. However, we
noticed that this value led to numerical instabilities and set it to
the sample size.

Bayesian consensus clustering (BCC) also extends the Dirich-
let mixture model [35]. However, instead of modeling cluster
dependency through pairwise association between sources, it
aims at uncovering a single common clustering across sources,
similarly to thematrix factorization approaches.This is achieved
by relating the source-specific clustering Lk in data set k to a con-
sensus clustering through the following dependence function:

P(Lkn = l|Cn) =
⎧⎨
⎩

αk if Cn = l
1−αk
1−q otherwise,

(5)

where, for sample n,Cn and Lkn are the overall and source-specific
cluster allocations in data source k, αk is the adherence of data
set k to the overall clustering and q is the maximum number
of clusters (both shared and source specific). The adherence
parameter αk models how intertwined specific and shared clus-
ters are. The parameter q is chosen so that the mean adherence
over the sources is maximized, which, according to the authors,
results in a small number of selected clusters. Similarly to MDI,
a Gibbs sampler is used to estimate the posterior distribution of
the parameters.

Data pre-processing

Depending on the model assumptions, the six methods propose
different pre-processing steps. Since moCluster and JIVE rely on
techniques that treat covariance and variance identically (con-
sensus PCA and SVD), these methods are sensitive to variable
scaling. For this reason, data sets are centered or standardized in
JIVE and moCluster, respectively. To circumvent the case where
‘the largest data set wins’, data matrices are further weighted by
the reverse of their first eigenvalue (moCluster) or their
Frobenius norm (JIVE). iNMF also normalizes each matrix by its
Frobenius norm after variance stabilization (log transformation)
and non-negativity transformation. By contrast, given that

iCluster allows heteroscedasticity, only a centering step is
performed. At last, no pre-processing is performed with MDI
and BCC, considering that Dirichlet mixture models offer
enough flexibility. A brief description of the methods, their
pre-processing and availability are provided in Table 1.

Simulation scenarios

Themethods presented abovewere evaluated both on simulated
and real data. On simulations, the methods were evaluated on
their ability to (i) recover the number of simulated clusters and
identify the correct clustering at the (ii) common and (iii) data-
specific levels as well as on their (iv) sensitivity. The sensitivity
was assessed by varying the level of signal-to-noise ratio (SNR)
and the dimension of the shared clusters. Overlaps between the
two structures were introduced to assess whether they could
hinder the identification of the shared structure. Since the tested
methods can roughly be divided in two groups (matrix factoriza-
tion and Bayesian models), simulations were generated under
iNMF (matrix factorization) and BCC (Bayesian model) models
to ensure an unbiased evaluation. Each simulation consists of
K = 3 matrices Xk of dimension pk ×N, with N = 60 samples, and
pk features in the 3 data matrices with P = (180, 210, 240). Each
matrix Xk consists of 3 common clusters made of 20 samples
each. Although the number of features is at least one order of
magnitude smaller than what is commonly observed in high-
throughput omics, they are more amenable to the present large-
scale evaluation in terms of runtimes. To evaluate the validity
of our results under more realistic settings though, i.e. higher
dimension and an important unbalanced number of features,
one scenario was also generated with P = (300, 600, 3000) fea-
tures. Details and illustrations of the following simulation sce-
narios are provided in Supplementary Materials. In addition, the
runtimes are provided in Supplementary Table 2.

iNMF-derived scenarios

The first simulation scenarios are derived from iNMF, in which
each data matrix Xk is built as the sum of three matrices:
one made of three shared diagonal blocks of same dimensions,
one with one or two data-specific off-diagonal blocks and one
made of random uniform noise. The blocks were constructed
by multiplying the binary latent variables (Z and Zk) with the
data-specific loadings Wk. The loadings were simulated under
a beta(2,2) distribution, satisfying thus the non-negativity con-
straint required by iNMF while not diverging too much from a
Gaussian distribution (the beta and Gaussian distribution are
symmetrical and have a bell shape). The same two levels of noise
used in [30] were also used here. This level of noise is controlled
by a ‘scattered error’ that replaces either a positive value with
zero or a zero with a randomly generated (beta(2, 2) × 2)2 with
a probability 1 − σs dependent of the desired level of noise. A
distinctive feature of the simulations in [30] is that the data-
specific blocks are aligned with the columns (variables) of the
shared structure. In practice, this premise implies that features
involved in shared and omic-specific mechanisms are identical.
Because probably unrealistic, we simulated specific blocks so
they do or do not overlap with the shared structure,where in the
first case, the specific blocks randomly overlap with one or two
shared block(s). In the context of our study, an overlap between
a common and a specific block means that they have some
variables in common (Supplementary Figure 1). For both overlap
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Table 1. Description, pre-processing and implementation of the evaluated methods

Method Description Pre-processing Implementation

Integrative methods iCluster Joint latent variable model Centering R package iCluster
moCluster Modified consensus PCA Standardization R package mogsa
JIVE Matrix factorization into common

and specific variations
Standardization R package r.jive

iNMF Joint non-negative matrix factorization Variance stabilization Python script
Non-negativity transformation
Frobenius normalization

MDI Dirichlet mixture models None Matlab script
BCC Dirichlet mixture models None R package bayesCC

Non-integrative methods GMM GMMs None R package mclust
Concatenation Concatenation and GMMs None R package mclust
Consensus
clustering

GMMs and maximization of PEAR None R packages mclust
and mcclust

and non-overlap simulations, a given observation belongs to one
common cluster and zero to two specific clusters.

Overall, 3 scenarios were generated: iNMF overlap, iNMF non-
overlap and iNMF high dimensional, the third being identical
to the first apart from the number of features equals to p =
(300, 600, 3000). For each combination of scenario and SNR, 100
simulations were generated, adding up to 600 simulations.

BCC-derived scenario

In the same way as the iNMF scenario, the simulation scenario
proposed in BCCwas extended in twoways: three to five specific
clusters adhering loosely to three overall consensus clusters
were simulated. Instead of simulating each feature with univari-
ate Gaussian distributions, realizations of pk-dimensional Gaus-
sian distributions were generated using the MixSim R package.
Unlike iNMF simulations, each observation is uniquely assigned
to one specific and one shared cluster. Furthermore, the level of
SNR is set by the hypercube parameter in MixSim that controls
the space inwhich the clustermeans are sampled.Again, 2 levels
of noise were tested, for each of which, 100 simulations were
generated, resulting in 200 simulations.

Sensitivity scenario

Methods’ sensitivity was only evaluated on the iNMF scenario
by reducing block sizes (both shared and specific). The matrix
dimensions were held constant, which implies that samples
outside the shared and specific blocks were generated with
noise. The number of samples by shared blocks nb took values
in {5, 8, 11, 14, 17, 20}. For each combination of noise, overlap
(same as in iNMF scenario) and block size, 20 simulations were
generated, adding up to a total of 480 simulations.

Clustering performance criteria

The consistency between two clusterings or partitions is com-
monly measured using the RI [36]. Given c and ĉ the simulated
and estimated clusterings (containing the cluster assignment for
each sample), the RI calculation relies on the classification of
each sample pair in one of four possible categories. Let a be the
number of sample pairs in the same cluster in c and ĉ, b be
the number of pairs in the same cluster in c but not in ĉ, c be
the number of pairs in the same cluster in ĉ but not in c and d
be the number of pairs in different clusters in c and ĉ.

The RI is then defined as

RI = a + d
a + b + c + d

.

For 2 partitions in perfect agreement, the RI is 1. However,
because the Rand index expectation of two random partitions
is not constant, Hubert and Arabie [37] introduced the adjusted
Rand index (ARI) as

ARI = RI − E(RI)
max(RI) − E(RI)

, (6)

where E(RI) is the expected RI in case of independence between
the two partitions. In the following, the measure of agreement
between simulated and estimated clusterings will be presented
using the ARI.

FromMethods overviewwe recall that for a given simulation,
global and data-specific clusterings are obtained for all methods
except iCluster and moCluster for which only a common clus-
tering is available.

Results
In the results presented hereafter, sparsity parameters were left
aside, which implies that no penalization was applied in any
analysis.

Simulated data

In this section, we evaluate (i) the methods’ ability to recover the
correct number of clusters, (ii) the consistency between simu-
lated and estimated clusterings and (iii) themethods’ sensitivity,
based on simulated data.

Determination of the number of common clusters

Before evaluating the clustering performances, we first sought
to assess the methods’ ability to estimate the number of
common clusters. To ensure an unbiased comparison, built-
in methods proposed by matrix factorization approaches to
estimate the number of latent variables and clusters as well
as the homogeneity parameter λ in iNMF were run according
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Figure 1. Ability to recover the correct number of simulated clusters: number of shared clusters estimated in each simulation scenario (rows) and SNR (columns).

to the authors’ guidelines (for each method, a summary is
provided in Methods overview). The other parameters were left
at their default values. We recall that the present evaluation
is performed at the cluster level, the clusters being generated
by all methods except JIVE and iNMF. An additional step of k-
means (100 repetitions to ensure stability) on the latent variables
was thus added for these 2 methods, the number of clusters
being either determined by the gap statistic for JIVE or set to
the number of estimated latent variables for iNMF. This choice
was motivated by the correspondence made by the authors of
iNMF between the number of ‘modules’ (latent variables) and
the number of bi-clusters.

The number of clusters estimated by each method on the
600 simulations is shown in Figure 1. We recall that each
simulation consists of three data sets sharing three global
clusters, as described in Simulation scenarios. One can first
notice that the methods correctly retrieved three clusters on
average. The distributions appear sharper around the modes
for the high SNR and the iNMF-overlap scenario. Conversely,
the methods globally perform poorly on the iNMF-non-overlap
scenario, probably because these simulations contain the same
number of shared and specific variables, and that common
blocks have half as many variables as those in the iNMF-overlap
scenario. Continuing with the iNMF-non-overlap scenario,
the estimated number of clusters is uniform for moCluster
and JIVE, while it successfully peaks around three clusters
for iCluster and BCC. These observations suggest that the
latter are more robust to the reduction of shared blocks. On
BCC simulations, unlike matrix factorization approaches, the
two Bayesian methods either do not detect clusters (MDI) or
fail to identify the three global clusters (BCC). These results
are surprising since one would expect a method run on
simulations generated with its own model to perform well.

The systematic absence of clustering returned by MDI for low
SNR simulations, regardless of the scenario, implies that the
method lacks robustness against noise. One can finally note
systematic biases in four methods: iNMF and iCluster on the
one hand, moCluster and MDI on the other hand suffer from
under and over-estimation, respectively. This is particularly
true on BCC and iNMF-non-overlap simulations. Overall, iNMF,
iCluster, JIVE, BCC, moCluster and MDI successfully recovered
three clusters in 62.7, 55.7, 55.5, 44.5, 43.5 and 21.8% of the
simulations respectively.

Method performances on shared and specific structures

After evaluating the methods’ ability to estimate the number of
clusters, we now assess the clustering quality by measuring the
coherence between simulated and estimated clusterings both
at the shared and data-specific levels. In this analysis, methods
were configured so that the expected number of clusters are set
to the true number of simulated clusters, except for Bayesian
approaches on specific clusters. Indeed, the specific clustering
depends on the simulation, matrix and method considered.
The dependence on the method exists because specific
structures are modeled differently in matrix factorization and
Bayesian methods. This modeling difference only arises in iNMF
simulations when a specific block overlap with two common
blocks; in this situation, matrix factorization methods (JIVE and
iNMF) are designed to recover all three blocks (two common and
one specific clusters), whereas Bayesian approaches see three
specific clusters. Therefore, when computing ARI for specific
structures, the expected clustering was provided by unique
blocks in Zs

k or Z + Zs
k when run with matrix factorization or

Bayesian approaches, respectively. Similarly, the number of
specific clusters was set to the number of these unique blocks.
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Table 2. Best-performing parameters selected by grid search before method comparison. The ranges tested for each parameter are indicated
in parenthesis (see Supplementary Figures 2–4)

JIVE iNMF BCC

Number of latent variables / modules 2 (2–5) 3 (2–6) –

Homogeneity level – 0.3 (0.01,0.03,0.1,0.3) –

Number of clusters iNMF simulations – – 3 (2–7 and ‘as simulated’)

BCC simulations – – as simulated (2–7 and ‘as simulated’)

To guarantee a fair comparison across methods, the param-
eters were set to their best-performing values defined as either
the value used in data simulation or the ones maximizing the
ARI with the global clustering. Indeed, some parameters were
straightforward to set because fixed in the simulations, namely,
the number of common and specific clusters as well as the num-
ber of latent variables in iCluster and moCluster [rank(Z) = 2].
For the others, i.e. the number of latent variables in JIVE, the
number of modules and the homogeneity level in iNMF, the
maximum number of clusters q in BCC, a grid search aiming
at finding the parameters maximizing the ARI was conducted.
Certain parameters in iNMF (homogeneity) and BCC (maximum
number of clusters) could favor the commonor specific structure
over the other. Since the goal in data integration is to identify
common variations, the parameters were tuned tomaximize the
ARI of the global clustering.

Supplementary Figures 2–4 display the performances of
these three methods on the common and specific structures for
all simulation scenarios. Starting with JIVE, the rank does not
show much effect on the method performances. For the specific
structures, ARIs are under 0.25, indicating a poor ability to
recover them. For the shared structures, ARIs appear on average
slightly higher when rank equals 2, value retained in themethod
comparison. For iNMF, a clear increase in ARI between two and
three modules followed by a plateau led to the selection of three
modules.Unsurprisingly, the homogeneity parameter has a large
impact on the recovery of the shared or specific structures, trend
particularly apparent on BCC simulations where the largest
(resp. smallest) homogeneity value allows an almost perfect
identification of the common (resp. specific) structures (ARI
≈1). The selected homogeneity value was the one favoring most
the common structure, i.e. λ = 0.3. Similarly, Supplementary
Figure 4 reveals an important effect of the number of clusters
on BCC performances for the first two simulation scenarios:
a bell-shaped curve peaking at three clusters is obtained with
iNMF simulations, while the highest ARIs are attained when
the number of clusters was set to this used in simulations
(‘As Simulated’) for BCC simulations and this for both shared
and specific structures. By contrast, the ARI shows almost no
variations across cluster numbers on the sensitivity scenario.
Those parameter values selected by grid search or from the
simulation design are summarized in Table 2.

We now turn to the method comparison at the shared level.
In addition to the six integrative methods, two alternatives
mentioned in the introduction were included to evaluate the
added value of integration: consensus clustering based on max-
imization of the PEAR [38] and Gaussian mixture model (GMM)
clustering on concatenatedmatrices using theMclust R package.
It can first be noticed that most integrative methods display
high ARI, suggesting a good ability to recover common clusters
(Figure 2a). The SNR has a large impact on the performances,
especially on MDI and the concatenation approach (BCC simu-
lations only), which both lack robustness against noise. Similar

trends are observed in overlap and non-overlap-iNMF simula-
tions where matrix factorization approaches have equivalent
ARI and outperform Bayesian methods, while non-integrative
approaches show smaller ARI. Similarly to the previous section,
the performances decrease in iNMF-non-overlap simulations,
which can again be attributed to the fact that common blocks
contain half as many variables as in the overlap scenario. This
drop is more accentuated with MDI, supporting the idea that
the method is more sensitive to data perturbations. Looking
at BCC simulations, iCluster, moCluster and iNMF outperform
again the others, shortly followed by consensus clustering, JIVE
and BCC. Matrix concatenation and MDI, on the other hand,
show relatively large ARIs when SNR is high but perform poorly
at low SNR.

The results with matrix concatenation are in line with the
previous study [9]. Overall, matrix factorization methods and,
more particularly, iCluster,moCluster and iNMF present the best
ability to recover common structures, and, this, regardless of
the simulation scenario. BCC shows an intermediate behavior
between matrix factorization approaches and MDI. Despite a
moderate robustness when shared and specific blocks do not
overlap, BCC displays fairly high ARIs on BCC simulations, prob-
ably because the simulations were generated from the same
model.

The detection of data-specific structures is not central in
this study given that standard clustering approaches are tai-
lored for this task. We nevertheless evaluated this functionality
because one is generally interested in both shared and spe-
cific structures when performing multi-omic studies. Similarly
to the evaluation of the shared structures, GMM was added
in the comparison to benchmark the four methods against a
standard (non-integrative) clustering approach. In the two sim-
ulation scenarios, GMM, closely followed by BCC, outperforms
the 3 other integrative methods with ARIs close to one in BCC
simulations (Figure 2b). Matrix factorization methods, JIVE in
particular, performs poorly in all scenarios. In the same way
as the shared structure evaluation, MDI achieves close to zero
ARI at low SNR confirming its lack of robustness to noise but
nevertheless showed intermediate ARI values at high SNR.These
results are not unexpected since GMM and BCC are designed
focus on data-specific clustering, whereas iNMF and JIVE aim to
recover shared clusters.

To conclude on this section, the six methods showed a real
improvement over non-integrative approaches to find shared
clusters on iNMF simulations,while only iCluster,moCluster and
iNMF did so on BCC simulations. By contrast, the methods failed
to reach GMM performances on specific clusters, except for
BCC. Unsurprisingly, no method could properly identify shared
and specific structures simultaneously. Because the detection
of either structure is largely influenced by parameters, the lat-
ter must be carefully tuned according to the study goals. The
same trends were also observed in the iNMF-high-dimensional
scenario, which indicates that the results also apply in high
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Figure 2. Consistency between simulated and estimated clusterings: ARI boxplots are displayed on shared (a) and specific (b) structures for each simulation scenario

(columns) and SNR (transparency).

dimension, when the number of features differs across data sets
(Supplementary Figures 5–7).

Evaluation of methods sensitivity

The present study of sensitivity aims at determining whether
the methods accurately identify common structures when their

size is reduced up to nb = 5 samples per block. No additional
tuning step was required as parameters were determined for all
scenarios, including the sensitivity ones, in the previous section.
Only the number of expected clusters was changed to 4 when
nb ≤ 17, i.e. when a noise cluster was present.

As already noticed in the previous results, SNR and
overlaps across structures largely influence the performances,
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Figure 3. Evaluation of methods’ sensitivity: ARI distributions are displayed for different block sizes (nb ∈ {5, 8, 11, 14, 17, 20}), simulation scenarios (rows) and SNRs

(transparency).

especially at nb = 5 where ARIs are roughly twice as large
in the iNMF-overlap as in the iNMF-non-overlap scenario
(Figure 3). As expected, the size of the blocks also impacts the
performances,with ARIs increasing with the number of samples
per block. Surprisingly, this trend is not linear at high SNR where
performances successively increase (nb ∈ {5, 8}), plateau or
slightly drop (nb ∈ {8, 17}) and increase again (nb ∈ {17, 20}).
To rule out possible simulation errors, the median ratio of
between to total sum of squares (BSS/TSS) was computed
for each block size. The resulting BSS/TSS correlated almost
perfectly with the blocks sizes (r = 0.94, 0.99 for overlapping and
non-overlapping scenarios, respectively), excluding thus this
hypothesis. A literature review on clustering evaluation indices
revealed that most of the existing measures, ARI included,
are sensitive to class size unbalance [39]. Given that the noise
cluster makes up from 0–75% of the simulations, we can suspect
that such unbalance between signal and noise clusters is
responsible for the observed behavior. The fact that this trend
does not occur at low SNR, however, questions this explanation
or suggests that the unbalance effect has a smaller impact at
low SNR.

The hierarchy among methods is similar between blocks
sizes, SNR levels and structures. iCluster and moCluster show
the highest ARIs when nb < 20 and remain high at nb = 20.
JIVE displays a sensitivity close to these two methods for all
blocks sizes. iNMF and BCC, on the other hand, are the least
sensitive with, however, a sharp improvement of iNMF for
nb = 20. Lastly, MDI did not return any results for nb < 20, which
again supports its lack of robustness against perturbations.
Although the results with nb = 20 are consistent with those
obtained in Methods overview, they are not exactly equal since
the numbers of variables (see Supplementary Materials) and
repetitions by block size are slightly different.

Application: TCGA breast cancer data set

We now examine how the six methods compare on the TCGA
breast cancer data set [2], the TCGA data being extensively
used in the evaluation of integrative approaches [24, 26, 28, 30,
35]. The breast cancer data set consists of SNP, RNA, miRNA,
DNAmethylation and protein (reverse phase protein array) mea-
surements in 825 patients. Here, the analysis is based on a
subset of 348 patients assayed across all platforms, for which
data were imputed and pre-processed by the authors of BCC
(see BayesCC R package). Of note, SNP data were left aside by
the authors. Because cancers are heterogeneous diseases, the
diagnostic accuracy is essential for both the prognostic and the
choice of treatment. The American Cancer Society classifies
breast cancer into fourmolecular subtypes,HER2 enriched, basal
(triple negative) and luminal A and B, based on the expres-
sion of proliferating protein Ki67 and the receptor status for
estrogen (ER), progesterone (PR) and human epidermal growth
factor 2 (HER2), as described in Table 3. Because tumors with
similar immunohistochemistry and clinicopathological profiles
may have different behaviors, recent omic approaches have
sought to refine this classification by identifying new molecular
signatures [40]. However, given that no consensus has emerged
yet, we will consider the classification from the American Can-
cer Society (used in clinics) as gold standard and evaluate the
integrative methods based on their consistency with subtypes
derived from the receptor status.

Since Ki67 was missing in the data, luminal A and B subtypes
could not be distinguished. For this reason, although integrative
methods were run with 4 clusters on 348 patients, only the 84
patients annotated as basal and HER2 from the clinical data
were kept in the computation of ARI. Similarly to the simulation
studies, consensus clustering, GMM clustering on concatenated
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Table 3. Breast cancer subtypes as defined by the American Cancer
Society [41]

Subtype Markers status

ER−
Basal PR−

HER2−
ER−

HER2 PR−
HER2+
ER+ and/or PR+

Luminal A HER2−

ER+ and/or PR+
Luminal B HER2+ or High Ki67

matrices and GMM clustering on single omics were included in
the comparison.

On Table 4, one can note that single-omic clusterings display
a wide range of performances, suggesting that these omics are
not impacted similarly during carcinogenesis.However, it cannot
be excluded that this result is due to the higher number of fea-
tures measured in mRNA and DNA methylation. Unexpectedly,
a null ARI was found with proteins, which can be attributed to
the high cluster unbalance obtained with GMM in this omic.
Although these observations contrastwith the high concordance
between protein and mRNA subtypes reported in the original
study [2], this may arise from a difference of samples used, our
analysis being based on patients assayed on all platforms.

In line with the simulation results, all integrative methods
but iCluster and JIVE outperformed single-omic approaches. The
hierarchy among methods slightly differs with this obtained in
the simulations; although moCluster and iNMF remain the top
performingmethods, they are closely followed by MDI then non-
integrative approaches and BCC. iCluster and JIVE, on the other
hand, present ARI 0.1 to 0.17 smaller than the others.

We then manually assigned (colored) clusters to their most
plausible subtype based on Table 3: clusters with small percent-
ages for all receptors were classified as basal, whereas those
with high percentages of ER and PR were assigned to luminal
A/B. As indicated above, luminal A and B clusters were merged
due to the absence of Ki67 in the data. All methods successfully
identified one basal and one to three luminal clusters, but none
recovered the HER2 subtype. The absence of HER2 cluster and
the over-representation of luminal ones are probably due to
their subtype prevalence, larger in the former [41]. Six methods
identified another cluster with average percentage values for all
receptors; although matching no subtype, this cluster is most
likely a mixture of HER2 and luminal patients. Because the
eight approaches identified the four expected subtypes with a
comparable,moderate accuracy, this step did not allow to further
refine the method hierarchy.

In the same way as the simulations, this application
confirmed that integrative approaches have an improved ability
to identify common structures over single omics. Although
moCluster and iNMF came first, Bayesian approaches surpassed
iCluster and JIVE, in contrast with the results obtained in the
simulations. We can, however, suppose that the use of sparsity
could significantly improve the results of the latter.

Discussion and conclusion
Six popular integrative clustering methods, representative of
matrix factorization and Bayesian approaches, were compared

Table 4. Cluster profiles in terms of receptor percentages; con-
sistency (ARI) between cancer subtypes and estimated clusterings.
Clusters are colored according to their similarity to the 4 subtypes
defined Table 3

Method %ER %PR %HER2 ARI

Consensus clustering 97 89 11 0.52
66 45 38
11 5 2
96 80 16

Concatenation 97 89 7 0.52
98 77 22
13 6 2
63 44 41

iCluster 95 71 26 0.42
96 85 8
90 81 18
12 5 9

moCluster 13 6 2 0.57
98 83 8
64 40 56
96 89 9

iNMF 8 56 41 0.56
97 9 6
13 6 7
100 87 8

JIVE 96 84 9 0.40
12 4 7
99 84 6
79 63 39

BCC 70 49 43 0.51
18 9 4
97 84 10
98 89 9

MDI 94 87 10 0.55
14 8 3
100 94 19
99 83 10

mRNAs – 0.50

DNA methylations – 0.41

miRNAs – 0.30

Proteins – 0.00

on simulations based on their (i) sensitivity and their ability to
recover the (ii) number of clusters, (iii) common and specific
structures across three data sets. Different simulation scenarios
based on 12 combinations of models, SNR, data set dimen-
sion (iNMF-high-dimensional, sensitivity study) and overlaps
between common and specific structures were tested to unveil
methods’ strengths and limitations.

The results from the simulations and application revealed
that matrix factorization methods were on average better at
identifying both common structures and the correct number
of clusters; iCluster and moCluster outperformed the other
methods on all criteria except on the application (iCluster)
or the enumeration of the number of clusters (moCluster).
Despite a probable lack of sensitivity, iNMF also showed a
great ability to detect common clusterings and offered a
homogeneity parameter, allowing the user to finely tune the
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matrix factorization between shared and specific structures,
as depicted in Supplementary Figure 3. JIVE was generally
close to the other matrix factorization methods, with however
lower performances on the application and the detection of
specific clusters. While BCC revealed a good ability to identify
common structures, except on the iNMF-non-overlap and
sensitivity scenarios, its main strength resides in its capability
to simultaneously detect shared and specific structures. Lastly,
MDI showed good performances in high SNR simulations and the
application but had little robustness against data perturbations
(noise and overlap between shared and specific structures). Of
note, despite their longer runtime, the two Bayesian approaches
were easier to parametrize. Additionally,we showed that neither
the dimensionality nor the unbalanced number of features
across data sets had an impact on the results. Some limitations
of ourworkmust be acknowledged. First, the evaluation criterion
utilized throughout this work was the coherence between
known and estimated sample clustering. A similar evaluation
could also be performed at the variable level. Second, because
a fair amount of time was invested in parameter tuning, we
decided not to include feature selection in it. It would however
be worth investigating the effect of penalization on the method
performances. Third, although we highlighted pros and cons
of these six methods through various simulation scenarios,
method robustness could also have been evaluated by adding
noise variables in varying proportions.

In addition to the presented benchmarking, our work demon-
strated on all simulations the advantage of integrative meth-
ods over non-integrative ones in the identification of common
structure, supporting their use in the identification of complex
structures across omic layers.

Key Points
• The integration of multiple omics shows a clear
improvement in clustering performance as compared
to non-integrative methods.

• Matrix factorization methods are on average better at
identifying common structure.

• Although iNMF showed a lack of sensitivity, it can
finely be tuned to recover either common or specific
structures.

• Despite moderate performances on shared clusters,
BCC displayed the best ability to recover both structures
simultaneously.

Supplementary Data
Supplementary data are available online at https://academic.
oup.com/bib.
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The recent identification of recurrently mutated epigenetic regulator genes (ERGs) supports their critical role in tumorigen-

esis. We conducted a pan-cancer analysis integrating (epi)genome, transcriptome, and DNA methylome alterations in a cu-

rated list of 426 ERGs across 33 cancer types, comprising 10,845 tumor and 730 normal tissues. We found that, in addition

to mutations, copy number alterations in ERGs were more frequent than previously anticipated and tightly linked to ex-

pression aberrations. Novel bioinformatics approaches, integrating the strengths of various driver prediction and multi-

omics algorithms, and an orthogonal in vitro screen (CRISPR-Cas9) targeting all ERGs revealed genes with driver roles with-

in and across malignancies and shared driver mechanisms operating across multiple cancer types and hallmarks. This is the

largest and most comprehensive analysis thus far; it is also the first experimental effort to specifically identify ERG drivers

(epidrivers) and characterize their deregulation and functional impact in oncogenic processes.

[Supplemental material is available for this article.]

Although it has long been known that human cancers harbor both
genetic and epigenetic changes, with an intricate interplay be-
tween the twomechanisms underpinning the hallmarks of cancer
(Hanahan andWeinberg 2011), it is onlywith the fruition of large-
scale international sequencing efforts that major enigmas of the
cancer (epi)genome have started to be solved (Jones et al. 2016;
Ng et al. 2018). One of the most remarkable findings of the inter-
national high-resolution cancer genome sequencing efforts, spear-
headed by The Cancer Genome Atlas (TCGA), is the high
frequency of genetic alterations in the genes encoding proteins
that directly regulate the epigenome (referred to here as epigenetic
regulator genes [ERGs]) (Gonzalez-Perez et al. 2013; Plass et al.
2013; Shen and Laird 2013; Timp and Feinberg 2013; Vogelstein
et al. 2013; Yang et al. 2015). This high rate of ERG genetic dereg-
ulation constitutes a “genetic smoking gun,” indicating that epige-
netic mechanisms lie at the very heart of cancer biology. These
discoveries have sparked a debate on the role of ERG deregulation
(either through mutational or nongenetic events) in ERG expres-
sion and in the mechanisms underlying tumorigenesis and epige-
nome alterations that are rampant in virtually all human
malignancies (Plass et al. 2013; Timp and Feinberg 2013). We
also still lack a systematic understanding of the functional impor-
tance of ERGdisruption in tumor development and progression, as
well as its impact on cancer cell phenotype.

ERGs are a group of more than 400 coding genes in the hu-
man genome,most of which encode enzymes that add (“writers”),
modify/revert (“editors”), or recognize (“readers”) epigeneticmod-
ifications (Plass et al. 2013; Vogelstein et al. 2013) controlling a
range of critical cellular processes. Based on the observation that
many ERGs are frequently disrupted across differentmalignancies,
they are candidates to be drivers of cancer development and pro-

gression, potentially acting as oncogenes or tumor suppressors
(Plass et al. 2013; Vogelstein et al. 2013). Although several distinct
definitions of “driver gene” exist in the literature (Sawan et al.
2008; Vogelstein et al. 2013), we define “driver genes” as those
genes that, when deregulated (through somatic mutations, copy
number variations, or aberrant expression), assume primary im-
portance in tumor development such as conferring a selective
growth advantage, immortalization, and invasiveness. This defini-
tion relies on inferencemodels for driver prediction and functional
data (based on the impact of the gene on cellular processes) com-
pared to other methods that are mostly based on statistical models
(largely driven by the mutation frequency of a gene) (Parmigiani
et al. 2009; Meyerson et al. 2010; Lahouel et al. 2020). In line
with this physiological definition, we refer to those ERGs that
make a net contribution to tumorigenesis as “epigenetic driver
genes” (henceforth called “epidrivers”). Our definition is different
from that used by other investigators (Vogelstein et al. 2013), who
define epidrivers as the genes (not necessarily among ERGs) that
are aberrantly expressed through changes in DNA methylation
and chromatin modifications and confer a selective growth
advantage.

The products of ERGs are involved in processes such as DNA
methylation, histone modification, chromatin remodeling, and
other chromatin-based modifications, and many ERGs may have
both histone and nonhistone substrates. All of these processes, in
turn, are involved in the proper control of not only gene expression
programs, required for the establishment and maintenance of cell
identity and function, but also DNA repair, recombination, and ge-
nome integrity (Murr et al. 2006; Bell et al. 2011). Because common
cancers represent the final outcome of a multistep process, epi-
driver-based disruption of cellular processes may not only assume
aprimary role at different stages of tumorigenesis but also constitute
critical mechanisms underpinning cancer cell plasticity and
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emergence of cancer resilience.Here,we conducted a systematic and
comprehensive pan-cancer investigation of (epi)genetics- and tran-
scriptome-based deregulation of all ERGs using in silico data cura-
tion in clinical samples and characterization of the driver
potential by different computational tools. We also developed and
tested a conceptual framework for experimental identification and
functional characterization of the mechanistically important epi-
drivers that reshape the epigenome and contribute to cancer pheno-
types. This framework builds on the latest knowledge of the cancer
(epi)genome and genomic databases and includes powerful new ex-
perimental models including state-of-the-art genome-editing
screens, phenotyping, and functional genomics.

Results

A four-stage strategy was used to identify and characterize ERGs
with cancer driver potential (Fig. 1A).We assembled a comprehen-
sive compendium of ERG genes by literature mining and manual
curation, resulting in a list of 426 genes coding for histone modifi-
ers, DNAmethylation regulators, chromatin remodelers, helicases,
and other epigenetic entities (Fig. 1B; Supplemental Tables S1, S2).
To identify the candidate epidrivers across different cancer types,
we first used comprehensive in silico data mining of genetic and
RNA expression alterations of ERGs using data from TCGA (Fig.
1A). Collectively, the data encompassed 33 different cancer types
from25 tissue types, with sequencing information from10,845 tu-
mor samples and 730 normal tissues, including a total of
90,144,805 genetic alterations, which encompassed 1,500,358
somatic mutations (single-nucleotide alterations [SNAs]) and
88,644,447 somatic copy number alterations (CNAs) (of which
4,294,698 were deep deletions/amplifications). We subsequently
characterized, across various cancer types, the driver potential of
ERGs based on ConsensusDriver scores (Bertrand et al. 2018),
which we complemented with our proposed Pan-Cancer Driver
and Multi-Omics Driver scores, and the implications of these
ERGs in cancer hallmark pathways. Finally, we performed an or-
thogonal validation of the driver potential of 426 ERGs in cell
linemodels in comparisonwith the findings from the clinical sam-
ples (Fig. 1A).

Pan-cancer analysis of genetic alterations in ERGs

To identify potential epidrivers, we first analyzed the frequency of
genetic disruption of ERGs (vs. all genes) across malignancies from
different anatomical sites. Our analysis revealed that the predom-
inant genetic alterations in ERGs were deep amplifications or
SNAs, depending on the cancer type (Fig. 2A,B). In comparison,
the predominant genetic alteration in all human genes was deep
amplification in most cancer types (Supplemental Fig. S1A,B).
Overall, higher proportions of amplifications than deletions
were observed in ERGs or in all genes across all cancer types except
a few (mainly, DLBC and PRAD) (Fig. 2A,B; Supplemental Fig. S1A–
C). Some cancer types (e.g., OV) had predominately CNAs with al-
most no SNAs (Fig. 2A–D; Supplemental Fig. S1A,B). In most can-
cer types, the CNAs (Supplemental Fig. S1D) and SNAs
(Supplemental Fig. S2) were uniformly distributed across chromo-
somes, with the exception of GBM, KIRP, and UVM, which
showed CNAs in specific chromosomes (Supplemental Fig. S1D).

Many specific ERGs were identified as being genetically al-
tered at noticeably high levels in different malignancies (Fig. 2E,
F). In particular, SNAs in IDH1 (Fig. 2E,G; Supplemental Fig. S2)
and deep CNAs in ACTL6A (Fig. 2F,H) had high proportions of al-

terations, exceeding 40%of samples in LGG and LUSC, respective-
ly. Several ERGs had the highest mutation frequency repeatedly in
many cancer types, namely the KMT2C/D family (seven cancers),
ARID1A (five cancers), BAP1 (three cancers), and ATRX (three can-
cers) (Fig. 2E,G; Supplemental Table S3). A similar observation was
made for deep CNAs in ERGs, namely BOP1 (four cancers), ATAD2
(four cancers), MECOM (three cancers), and PHF20L1 (three can-
cers) (Fig. 2F,H). A larger percentage of ERG alterations was also ob-
served when both deep and shallow CNAs were included (Fig. 2C,
D; Supplemental Fig. S1C,D). Among the top ERGs altered by deep
CNAs, the majority showed amplifications, with the exception of
HR, PHF11, and SETB2, which were commonly deleted in many
cancer types (Fig. 2H). Frequently amplified ERGs often co-oc-
curred in the same tumor sample in many cancer types; in partic-
ular, the aforementioned pan-cancer recurrent genes BOP1,
ATAD2, and PHF20L1 highly co-occurred (Supplemental Fig.
S3A). These co-occurrences remained prominent even when the
analysis was focused only on deep amplifications/deletions across
tumors (Supplemental Fig. S3B,C). Moreover, the family of TDRs
(TDRKH, TDRD10, and TDRD5) highly co-occurred together.
Generally little overlap was observed between the genes with a
high frequency of SNAs and those with a high frequency of
CNAs (except for a few ERGs) (Fig. 2E–H).

When ERGs were stratified by functional groups, similar total
proportions of genetic alterations were seen among ERG classes
(Fig. 2I). DNA methylation writers and editors were characterized
by a prominent proportion of SNAs in several cancer types, com-
pared with other ERG classes (Fig. 2I; Supplemental Fig. S4A,B).
Indeed, DNA methylation modulators appeared among the top
SNA profiles (Fig. 2G) but not among the top CNA profiles (Fig.
2H) of ERGs. Moreover, in many cancer types, DNA methylation
writers or editors, which are among the smallest ERG classes,
were the group showing the largest percentage of genetically al-
tered ERGs (Supplemental Fig. S4A,B). Among ERGs that could
be classified as tumor suppressors, KMT2D, KMT2C, ARID1A,
ATRX,CREBBP, and PBRM1were frequentlymutated inmany can-
cer types, whereas oncogenic ERGs were each mutated in specific
cancer types, mainly IDH1 in LGG and DNMT3A in LAML
(Supplemental Fig. S5A,B).

Pan-cancer analysis of RNA expression in relation to genetic

and DNA methylome aberrations of ERGs

The second approach in our analysis focused on RNA expression
deregulation (by RNA-seq) of ERGs across cancer types. For each
cancer type, the analysis consisted of two parts: expression varia-
tion across tumor samples relative to one another (independent
of the corresponding normal tissue) and expression changes in tu-
mor relative to adjacent normal tissue. By integrating genetic and
transcriptomic information matched to the same samples (using
the TCGA database) a higher proportion of tumor samples showed
significantly increased ERG expression (Z-score> 2) relative to
down-regulation (Z-score <−2) (Fig. 3A), in line with the observed
higher proportion of samples with ERG amplifications than with
deletions (Figs. 2A, 3A).

Amplifications and deletions significantly correlated (false
discovery rate [FDR] < 0.05)positivelywith increased anddecreased
expression, respectively, in all cancer types and chromosomes (Fig.
3A,B), except for Chromosome X, because of a statistical artifact
(Methods; Supplemental Fig. S6A,B). SNAs significantly correlated
(FDR<0.05) negatively or positively with expression across tumor
samples and chromosomes, so the correlation was not
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Figure 1. Study design. (A) A four-stage approach to identify and characterize ERGs with cancer driver potential. (B) The compendium of ERGs curated
and analyzed, comprising 426 genes classified into histone modifiers, DNA methylation regulators, chromatin remodeling factors (ChRC), helicases, and
other chromatin modifiers (some of which were further divided into subgroups based on function or their presence in molecular complexes). Histone acet-
ylation, histone methylation, and DNA methylation modifiers are further stratified each into “writers” (w), “editors” (e), and “readers” (r). (∗) The histone
modifying genes whose functions are not well characterized andwhich were, therefore, assigned based on ENCODEChIP sequencing data; (∗∗) the histone
modifying genes without assignment of residues in the histone tails.

Epigenetic driver genes in cancer
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Figure 2. Pan-cancer analysis of genetic alterations across ERG categories and classes. (A,B) The percentage of samples with genetic deregulation in ERGs
(A) and the percentage of ERGs showing different types of genetic deregulation (B), by cancer type. ERGs are considered altered if at least 1% of samples
harbor these genetic aberrations. (C) Proportion of samples with SNAs versus that with deletions (−1,−2) or amplifications (+1, +2) in ERGs for each cancer
type. Each gene is represented by two dots (red and green) depicting amplified and deleted CNAs, respectively. (D) Circos plots showing the relative
amount of deregulation in CNAs by chromosomal distribution in two representative cancer types (LUAD and THYM, characterized by high and low
CNA burden, respectively). The level of CNAs for each ERG was calculated as the proportion of samples considering all types of CNAs (amplification =
+1, +2 and deletion =−1, −2) in ERGs in each cancer type. (E,F) Box plots showing the percentage of samples with SNAs (E) and deep CNAs (F) by
gene and by cancer type. The most deregulated ERGs are highlighted for each cancer type. (G,H) Heatmaps representing the top genetically deregulated
genes showing SNAs (G) and CNAs (H) in at least 10% and 15%, respectively, of the samples for any cancer type. Only samples with deep CNAs were
included. ERGs are grouped into functional categories as indicated. (I) The percentages of ERGs that show genetic alteration among all cancer types by
functional groups. Genetic alterations: (SNA) single-nucleotide alteration, (amp) deep copy number amplification, (amp_SNA) deep amplification co-oc-
curring with SNA, (del) deep copy number deletion, (del_SNA) deep deletion co-occurring with SNA, and (ma) multiple alterations. In cases in which both
types of CNAs (amplification and deletion) of one genewere present in the samples, we reported in B andH the alteration thatwas at least twice as prevalent
as the other; otherwise, the alteration was reported under the multiple alteration category.
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Figure 3. RNA expression alterations of ERGs across cancer types, in relation to genetic and DNA methylome variations. (A) Multi-omics plot of SNA,
CNA, and RNA expression alterations across ERGs and cancer types. Amplifications, deletions, and SNAs were annotated as described in Methods. The
most deregulated ERGs in RNA expression (with the y-axis value above 10) are highlighted for each cancer type. (B,C) Circos plots showing Pearson’s cor-
relation between CNAs (B) or SNAs (C) and expression Z-scores in different cancer types across the chromosomal regions. Positive and negative correlations
are indicated in orange and blue, respectively. Only ERGs with correlation (R2) > 30% and FDR<0.05 in at least in one cancer type were considered for the
analysis in B; the R2 limit was set to 10% in C. (D) Expression quantitative trait methylation (eQTMs) analysis showing Pearson correlation values (x-axis)
between RNA (RSEM counts) andmethylation (beta) levels of promoter CpGs for each ERG in different cancer types. The line bar indicates highly significant
CpGs [−log(P-value) > 50]. Red, blue, and black dots represent CpGs with FDR<0.05, P<0.05, and P>0.05, respectively. (E) Number of ERGs or all genes
with differential RNA expression in tumor relative to adjacent normal tissues for each cancer type (|log FC| > 2 and FDR<0.05). The star denotes a P-value <
0.05 by a two-sample test of proportions of up- versus down-regulation. (F ) Heatmaps showing the most differentially expressed ERGs comparing tumor
samples with adjacent normal tissues among cancer types. Only the top differently expressed ERGs with |log FC| > 3 and FDR<0.05 are annotated.
(G) Volcano plots showing differentially expressed ERGs in tumors relative to adjacent normal tissues. ERGs are shown in blue (|log FC| > 1), and the
most deregulated ERGs with |log FC| > 3 are highlighted for each cancer type (FDR <0.05). Sample sizes for each cancer type are indicated in A and E.
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unidirectional (Fig. 3A,C). ERG-specific analysis revealed some
ERGs with noticeably high expression aberrations within tumor
samples (Fig. 3A). Among them, several ERGs were repeatedly up-
or down-regulated in several cancer types; the primary genes were
CHRAC1, PHC3, and BOP1, which were among the top 10 most
up-regulated ERGs recurrently observed in 18, 9, and 7, respective-
ly, out of 33 cancer types (Fig. 3A, only the top 5 ERGs are shown;
see Supplemental Table S3 for the top 10 ERGs). Many of the ERGs
with thehighest deregulatedexpressionare the sameERGswith the
highest CNAs of the corresponding cancer type (Fig. 3A vs. Fig. 2F).

Because epigenetic inactivation could be an additional mech-
anism for aberrant expression of ERGs, we performed concurrent
analyses of transcriptomic and DNA methylome data available
for the tumor samples in the TCGA.We correlated themethylation
with RNA-seq levels by limiting the comparison to CpGs in pro-
moter regions (−1000 to +500 bp of TSS) and RNA transcripts of
the overlapping gene. The most significantly correlated CpG for
each gene is shown in Figure 3D, and results for all analyzed
CpGsareprovided inSupplemental Table S4 and the figshare repos-
itory (https://figshare.com/articles/Supplemental_data/12613220).
All CpGs that were highly significant [−log(P-value) > 50] were neg-
atively correlated with the expression of their corresponding gene,
and many of them were recurrent in several tumor types, namely
CpGs in TDRD1 (n=16 tumor types), RNF17 (n=13 tumor types),
SP140L (n=5 tumor types), and STK31 (n=3 tumor types) (Fig. 3D).

Comparing the expression levels of ERGs in tumor relative to
adjacent normal tissue in each cancer type also revealed a predom-
inant pattern of overexpressed ERGs in most cancer types, except
GBM and KICH (Fig. 3E). Similar observations were made when
all human genes were analyzed (Fig. 3E). ERG-specific analysis re-
vealed several ERGs with significant deregulation of expression
(FDR<0.05) (Fig. 3F,G) and recurrence in several cancer types.
Several genes had similar recurrence across several cancer types,
namely PADI3 (in 11 of 18 cancers), PRDM13 (in 10 of 18 cancers),
AURKB (in 9 of 18 cancers), andHIST1H1B andHIST1H3B (each in
8 of 18 cancers), based on the selection of only the top genes (FDR
<0.05 and log10 fold change [log10FC] > 3) (Fig. 3G).

Characterizing the driver potential of deregulated ERGs across

cancer types

The third strategy in our analysis to characterize the potential driver
roles of ERGswas based onConsensusDriver, a novel approach that
provides a systematicway to integrate the strengths of various driver
prediction algorithms (Bertrand et al. 2018). The ERGswith a poten-
tial driver role (ConsensusDriver score >1.5) are shown for each can-
cer type (Fig. 4A) and are significantly enriched relative to the 233
total genes (Bailey et al. 2018) that have a driver score >1.5 (P=
4.0×10−22, Fisher’s exact test). Six additional ERGs would still be
classified as drivers at a score<1.5 but with manual curation by
Bailey et al. (2018), and these are ATR, EZH2, HIST1H1C, PHF6,
SMARCB1, and TET2. The ConsensusDriver score matched to a
high extent with the driver potential predicted based on SNA fre-
quencies in each cancer type, and to a lesser extent with that pre-
dicted based on CNA, FC, or Z-scores (Fig. 4A); the latter three, if
matching with ConsensusDriver score, never occurred without
SNAs, further emphasizing the importance of SNAs in the deriva-
tion of ConsensusDriver score (Fig. 4A). IDH1 had the highest
ConsensusDriver score, as evident in LGG, and this ERG showed a
driver role in six other cancer types, which explains why it addition-
ally had the highest pan-cancer ConsensusDriver score (PANCAN)
(Fig. 4A).

In comparison, ARID1A was the ERG with the most frequent
driver score, appearing in 13 cancer types, althoughwith a relative-
ly weak to modest driver role in individual cancer categories.
ConsensusDriver ERGs were enriched in several gene families
(namely ARID(1A/2), ASXL1/2, CHD3/4/8, IDH1/2, KDM(5C/6A),
KMT2A/B/C/D, NSD1/2, and SMARCA1/4) as well as in UCEC (n=
14 ERGs) and BLCA (n=10 ERGs) (Fig. 4A). Genetic deregulation
of ConsensusDriver ERGs often co-occurred in the same sample
across several cancer types, with KMT2D and ARID1A having the
highest co-occurrence scores. The ERGs within the same KMT2A/
B/C/D family highly co-occurred together even though they were
not mapped to the same chromosomes (Supplemental Fig. S3C),
whereas IDH1 and IDH2 were mutually exclusive (Fig. 4B).

We complemented ConsensusDriver (weighted for SNAs)
with our Multi-Omics Driver score that is weighted for each of
SNAs, CNAs, and expression aberrations. The Multi-Omics Driver
scores for all ERGs across cancer types is shown in Figure 4C and
Supplemental Table S5 (the figshare repository: https://figshare
.com/articles/Supplemental_data/12613220). This score revealed
ERGs with a high Multi-Omics Driver score in most cancer types
(such as ATAD2) against those showing single driver score (such
as IDH1, which has a high SNA driver score in LGG but relatively
lowCNAand expression driver scores).Wenext formulated anoth-
er score, the Pan-Cancer Driver score, that additionally weights for
pan-cancer coverage on top of SNAs, CNAs, and expression aberra-
tions (Fig. 4D). ATAD2 had the highest Pan-Cancer Driver score,
showing all the SNA, CNA, and expression Z-score alterations in
many cancer types. When we considered the top 39 Pan-Cancer
Driver genes, representing a sample size identical to that identified
fromConsensusDriver, we found several driver ERGs to be similar-
ly represented in both sets, namely, SMARCA4 (score= 11), ASXL1
(score = 12), BAP1 (score = 26), KMT2B (score = 38), and MECOM
(score = 37). HM andHA, but not DM,modulators were highly rep-
resented among the top 100 Pan-Cancer Driver ERGs, probably
because DM modulators are mostly altered by SNAs (Fig. 2G vs.
2H), and hence are characterized by ConsensusDriver (e.g., IDH1
and DNMT3A) (Fig. 4A) rather than Pan-Cancer Driver (Fig. 4D;
Supplemental Fig. S5B) profiles. Similarly, ARID1A, which is char-
acterized predominantly by the SNA type of genetic alterations,
showed ConsensusDriver potential in many cancer types (Fig.
4A) but did not appear among the top 100 Pan-Cancer Driver
ERGs (Fig. 4D; Supplemental Fig. S5B). Genetic deregulation of
Pan-Cancer Driver ERGs often co-occurred in the same sample
across several cancer types (Fig. 4E).

Next, we investigated whether epidrivers are enriched in
pathways affecting the 10 hallmarks of cancer. Our compendium
of 426 ERGs was significantly enriched in four hallmarks, namely
genome instability and mutation, evading growth suppressors,
sustaining proliferative signaling, and enabling replicative immor-
tality (Fig. 4F; Supplemental Fig. S7A,B), further supporting a
driver role of ERGs in tumorigenesis and characterizing the nature
of biological pathways inwhich ERGs play a functional role in can-
cer. These four hallmarks were also topmost significant in the 39
ConsensusDriver (P<0.05), top 39 Pan-Cancer Driver (P<0.1),
and 42 multi-omic driver (P<0.05) ERGs (Supplemental Fig. 7C).

Orthogonal CRISPR-Cas9 screen to assess the driver potential

of ERGs in epithelial-to-mesenchymal transition (EMT)

We conducted a CRISPR-Cas9 screen using a custom-made lentivi-
ral CRISPR library consisting of 1649 gRNAs targeting all 426 ERGs
(Fig. 5A; Supplemental Fig. S8) and A549 lung cancer cells stably
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Figure 4. Characterization of ERG driver potentials. (A) Heatmap showing the ConsensusDriver scores (with values ranging from 1.5 to 7.5) as obtained
by Bailey et al. (2018). ERGs with a score≥1.5 in at least one cancer type are shown. The top 10 deep amplifications or deletions (green circles), SNAs (blue
empty diamonds), or significant Z-score (purple crosses) of each cancer are overlapped onto the heatmap. (B) Significant (FDR <0.05) co-occurrence and
mutual exclusivity for ConsensusDriver ERGs in a pan-cancer analysis. The node size is proportional to both the number and thickness of its connections
with other nodes. Blue and red edges represent co-occurrence (odds ratio [OR] > 1) and mutual exclusivity (OR <1), respectively. The transparency of the
edges indicates the averageOR across cancer types, and their thickness is proportional to the number of cancer types in which the OR is significant. The co-
occurrence filter was set to at least 5% of the samples per cancer type (Methods). (C) Heatmap of the Multi-Omics Driver scores of ERGs per cancer type.
The ERGs shown represent a pooled set of the top three ERGs in each cancer type, as ranked by the mutli-omics driver score. (D) Top 100 ERGs by Pan-
Cancer Driver score using SNA (5% of samples), CNA (5% of samples), and expression data (15% of samples with significant Z-score or FDR<0,05
with log10FC>1). Results are represented as bar plots counting the number of cancers in which a given gene has a particular genomic or expression al-
teration. From outer to inner track: (1, pink) SNAs; (2, green) CNAs; (3, purple) Z-score; (4, orange) log10FC. Inside the last track, co-occurrence or mutual
exclusivity was calculated as in B, except that the co-occurrence filter was set to at least 10% of the samples per cancer type. Genes are aggregated by their
functional features. (E) Significant co-occurrence for the top 100 ERGs by Pan-Cancer Driver score. Co-occurrence ormutual exclusivity was calculated as in
D but ordered instead by chromosome number. (F) Spider pie chart showing enrichment of the 426 ERGs in pathways affecting the 10 hallmarks of cancer;
the corresponding P-values and ORs are illustrated by green gradients and black spots, respectively. The names of ERGs overlapping with the four signifi-
cantly enriched hallmarks are indicated.
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Figure 5. CRISPR-Cas9 screen to perform orthogonal assessment of the driver potential of ERGs in EMT. (A) The screening strategy used to identify pos-
itive and negative regulators of EMT among ERGs. (B)Western blot analysis of Cas9 expression in A549 lung cancer cells. “Pool” represents a heterogeneous
population of transduced and stably Cas9 expressing cells derived from the parental cells. Individual cell clones derived by cloning rings are numbered 1, 2,
5, 6, 7, 8, and 9. Actin beta was used to normalize for equal loading. (C) Validation of the transduction efficiency of the lentiviral CRISPR ERG library 10 d
after puromycin selection using FACS compared with uninfected A549 cells. (D) Enrichment of vimentin-positive (VIM+) population analyzed by FACS after
CRISPR ERG library transduction at day 14 after puromycin selection. (E) Validation of cell sorting for the enrichment of VIM+ population by FACS based on
the fluorescent antibody EPCAM (EPCAM loss is associated with the mesenchymal cell state) of VIM+, vimentin-negative (VIM−), uninfected cell line, and
negative control antibody IgG. (F) Confirmation of cell enrichment for VIM+ and VIM− fractions after sorting. FACS-sorted VIM+ and VIM− populations were
grown in culture for 2 wk and analyzed by FACS after staining with cadherin 2 (also known as N-cadherin) antibodies. (G) The overlap of the top EMT-
associated ERG gRNAs after Illumina MiSeq deep sequencing; the numbers are derived from two statistical methods (DESeq2 and edgeR) at days 14,
21, and 28 after transduction. (H) Heatmap showing the top ERGs based on enriched and depleted gRNAs at days 14, 21, and 28 after transduction com-
paredwith day 0. (I) Volcano plot of ERG gRNAs at day 28 after transduction. (J) Expression analysis by qRT-PCR of EMTmarkers (cadherin 1 [also known as
E-cadherin], vimentin, and cadherin 2) on single targeted A549-VimCas9 clones following EP400 loss of function, relative to expression in the parental A549
Vim Cas9 cell line. (∗) P<0.05, indicates results of one-way ANOVA test. Error bars are SEM of n=2. (K) Representative image of scratch assay performed on
the parental cell line and three generated EP400 KO clones at day 0 and after 24 h (left). On the right, a graph plot showing percentage area closure 24 h
after the scratch as averaged of at least six areas analyzed for each clone and for the parental cell line. Experiments were performed in duplicates.
Experiments were performed in duplicates. (L) Transwell migration assay showing increase of migration at 13 h for A549-Vim Cas9 EP400 KOCl4 compared
to the parental cell line. (KO) Knockout; (Cl) clone; (vim) vimentin. (M ) An example of network analysis of selected top ERGs (EP400) associated with the
EMT population, obtained with the GeneMANIA package. (N,O) The bar plots show themutation frequency of EMT-specific ERGs (identified in the CRISPR-
Cas9 screen) in clinical samples from nonmetastatic (M0) and metastatic (M1) subsets (based on the annotation of TCGA samples).
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expressing Cas9 (Fig. 5B,C), aimed at an orthogonal in vitro assess-
ment of driver potential of ERGs. The screen was conducted in
A549 lung cancer cells, considered a gold standard for studying
the epithelial-to-mesenchymal transition (EMT), a cellular pro-
gram conferring on cancer cells multiple traits associated with
higher-grade malignancy, which may have an underlying epige-
netic mechanism (Tam and Weinberg 2013). In the A549 cells, a
red fluorescent protein (RFP)-tagged reporter is under the control
of the endogenous vimentin promoter, thereby permitting the
real-time monitoring of the transition from epithelial to mesen-
chymal status of the cells (activation of vimentin-RFP expression,
mesenchymalmarker) (Fig. 5D–F). The transduced A549-VimCas9
cells were further grown and collected at days 14, 21, and 28 after
transduction, followed by flow cytometry (FACS) sorting to enrich
for vimentin-positive (VIM+) and vimentin-negative (VIM−) frac-
tions (Fig. 5C,D).

VIM+ cells were further confirmed to express additionalmark-
ers that are associated with the mesenchymal cell state, including
cadherin 2high, cadherin 1low, and EPCAMlow (Fig. 5E,F;
Supplemental Fig. S9). These EMT markers remained stable after
a prolonged culturing of VIM+ cells (Fig. 5F), showing RFP fluores-
cence in A549 cells that provides a quantitative readout of EMT. To
identify potential regulators of EMTamongERGs,we subjected the
cells to deep sequencing followed by enrichment or depletion
analysis of gRNA-targeting ERGs across the three different time
points (days 14, 21, and 28) (Fig. 5G–I; Supplemental Fig. S10A–
C). The top most significant hits identified belonged predomi-
nantly to histonewriters, histone readers, and chromatin remodel-
ers (Supplemental Table S6) and several biological pathways
(Supplemental Fig. S11). Among the topmost significant EMT-spe-
cific hits, one-third belonged to the category of histone methyla-
tion writers, whereas several ERGs (including KMT2A, EP400,
MBD5, and SRCAP) were found to be frequently targeted by genetic
alterations in several cancer types (Fig. 2E).

To validate our findings, we knocked out individually sever-
al of the identified targets in A549 cells by using three to four dis-
tinct gRNAs for each gene and analyzed the changes in
expression of the epithelial marker cadherin 1 and the EMT
markers cadherin 2 and vimentin in the mutant clones (Fig. 5J;
Supplemental Fig. S12). Moreover, because EMT is associated
with an increased tumor invasiveness, we evaluated whether an
increase in the migration capacity was observed in cells upon
loss of the candidate epidrivers of EMT by performing scratch
and transwell migration assays. Indeed, loss of several of the epi-
drivers candidates led to a significant gain in EMT markers and
was accompanied by a gain in the migration capacity of cells
(Fig. 5K,L; Supplemental Fig. S12). This was significant in all
knockout clones of EP400, KAT2B, ARID1B clone 2, and MBD5
clone 10 (Supplemental Fig. S12).

Next, we assessed the potential link of EMT-specific, en-
riched, or depleted ERGs to biological pathways using different
gene set enrichment bioinformatics tools and found that the
NOTCH1, WNT, and TP53 pathways were highly correlated
with EMT-associated ERGs identified in the CRISPR-Cas9
screen (Supplemental Fig. S11A–C). We further applied the
GeneMANIA prediction tool (Warde-Farley et al. 2010) to the
top ERGs identified in our screen and found several directional
dependencies (predominantly through physical interactions
and common pathways) (Fig. 5M; Supplemental Figs. S11D,
S13). EP400, KMT2A, SRCAP, and KAT2B were found to have di-
rect interactions with several genes known to be involved in
EMT, including PYGO1, PYGO2, and TWIST1, and a substantial

number of genes known to form multiprotein complexes, there-
by, connecting previously uncharacterized complexes/pathways
to the EMT process. Finally, the top ERGs identified in our
CRISPR-Cas9 screen (including MBD5 and JMJD8) were sig-
nificantly more frequently mutated in metastatic cancer cases
compared with their nonmetastatic counterparts across 21 differ-
ent cancer types (Fig. 5N,O), further corroborating the findings of
the CRISPR-Cas9 screen that EMT-specific ERGs may be involved
in conferring on cancer cells invasiveness and metastatic
potential.

Identifying epidrivers involved in sustaining proliferation

of cancer cells

To further expand our finding on the involvement of ERGs in hall-
marks of cancer, we next applied the CRISPR library targeting all
426 ERGs on the A549-Vim and an independent cell line
(MCF10A cells, the human mammary epithelial cell line widely
used in vitro model for studying oncogenic transformation) and
analyzed the ERGs involved in sustaining cell proliferative capaci-
ty. To this end, the cells A549-Vim and MCF10A cells expressing
Cas9 were infected with the CRISPR library. Following selection,
the cells were collected at different time points, subjected to
deep sequencing, and analyzed for significantly enriched and de-
pleted gRNAs (Fig. 6A; Supplemental Figs. S14, S15). We revealed
56 gRNAs that are enriched in MCF10A cells over the passages,
15 of whichwere also detected usingDESeq2 (an independent stat-
istical analysis method) (Supplemental Fig. S14B,C). The cell cycle
was found to be among the top pathways enriched on the list of
genes associated with enriched gRNAs (Supplemental Fig. S14D),
consistent with the notion that the loss of function of the ERGs
is linked with an increase in proliferation of MCF10A cells.
KEGG analysis also revealed NOTCH and FOXO signaling path-
ways, twomajor pathways involved in breast cancer development,
and several of the identified putative epidrivers (i.e.,ATRX, PHF11,
NAP1L2, and PRDM5) show high mutation rate, copy number
depletion, and/or decrease in expression in breast cancer
(Supplemental Table S3). Based on the analysis of depleted
gRNAs, we identified ERGs associated with cell cycle and cell sen-
escence (Supplemental Fig. S14F), and these ERGs showed higher
rate of copy number amplification or up-regulation in breast can-
cer (i.e., ARID4B and EZH2). Similarly, when the analysis was per-
formed onA549 cells (e.g., comparisonD0 vs. D14), we revealed 69
ERGs associated with enriched gRNAs (Supplemental Fig. S15),
among which several genes showed high mutation, copy number
alteration, or decrease in expression rates in lung cancer.

Finally, by overlapping the genes associated with enriched
gRNAs or depleted gRNAs in A549 and MCF10A, we identified
ERGs consistently implicated in proliferation in both cell types.
Nine genes (TET1, KDM1A, SMARCE1, IDH2, CBX3, BMI1,
NAP1L1, ARID1B, and HDAC2) were associated with enriched
gRNAs in both cancer types (Fig. 6B). Three genes (TET1,
ARID1B, and BAZ1A) are highlymutated in breast and lung cancer
types (Supplemental Table S3), whereas TET1, IDH2, and ARID1B
were also among the top genes altered in several cancer types
(Supplemental Table S3), further corroborating their putative
role as cancer drivers. A higher number of genes were identified
when depleted gRNAs were overlapped between the two cell lines
(Fig. 6C,D) several of which (i.e., BOP1, RSF1,ACTL6A,ASH2L, and
ATR) showed high copy number amplification or increase in ex-
pression in breast and lung cancer, suggesting that those genes
might play essential roles in cancer proliferation and viability.

Epigenetic driver genes in cancer
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Discussion

In the present study, we performed a pan-cancer analysis of (epi)
genomic and transcriptomic alterations in a comprehensive panel
of ERGs using available cancer genome data sets and a range of

novel and powerful bioinformatics tools, revealing candidate epi-
drivers across cancer types.We cataloged recurrent pan-cancermu-
tations or CNAs in specific ERGs or classes of ERGs. Application of
driver prediction algorithms and orthogonal CRISPR-Cas9 in vitro
screens revealed the ERGs with a potential driver role conferring

B
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C

D

Transcriptional misregulation in cancer

P53 signaling pathway
Viral carcinogenesis
Chronic myeloid leukemia
Longevity regulating pathway

Figure 6. CRISPR-Cas9 screen to perform orthogonal assessment of the driver potential of ERGs in cancer cell proliferation. (A) The screening strategy
used to identify regulators of cell proliferation among ERGs in both A549 and MCF10A cell lines/clones. (B,C, left) Venn diagrams showing the genes as-
sociatedwith significantly enriched (B) or depleted (C) gRNAs in the screens performed on A549 andMCF10A cells using edgeR analysis in CRISPRAnalyzeR.
(B,C, right) Heatmaps showing the adjusted P-values of the commonly enriched (B) or depleted (C ) gRNAs in both cell lines. Data are presented as –log10
(adjusted P-value). (D) KEGG pathway analysis performed on genes associated with commonly depleted gRNAs (left) and with commonly depleted and
enriched gRNAs (right) in both cell lines. All pathways in red show P < 0.05.
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on cancer cells the traits associated with the hallmarks of cancer.
This is the largest and most comprehensive analysis thus far of
the cancer-associated disruption of ERGs and the first experimen-
tal effort to identify epidrivers in oncogenic processes through an
ERG-wide screen.

Our finding that the predominant genetic alterations in ERGs
across tumor samples of most cancer types are CNAs, notably am-
plifications, reveals that in addition to recurrent mutations, both
amplifications and deletions in ERGs may play more important
roles than previously anticipated. These results extend the previ-
ous studies on a limited set of cancer types showing thatmutations
in ERGs are recurrent (Gonzalez-Perez et al. 2013; Plass et al. 2013;
Timp and Feinberg 2013; Vogelstein et al. 2013) and that amplified
regions are enriched for genes involved in epigenetic regulation
(Zack et al. 2013). The finding that some cancer types (such as
OV and SARC) show frequent deep CNAs with virtually no SNAs
argues that the roles of epidrivers in those cancer types may be
driven primarily by CNAs, with a relatively minor role of muta-
tions. Our results that different ERG classes showed similar pat-
terns of genetic alterations, with the exception of DNA
methylation writers, which showed a markedly high ratio of am-
plifications to deletions, suggest that amplification of this class
may be the principal mechanism of their genetic deregulation
across cancer types. These different patterns of alterations may re-
flect distinctmechanisms bywhich these CNAs are generated and/
or positive/negative selection during tumor development.

The importance of CNAs highlighted herein further suggests
that any driver prediction model, particularly for ERGs, would
need to account for genetic amplifications and deletions. The in-
clusion of other omics phenotypes, such as RNA expression, is
also important particularly given the high level of RNA expression
aberrations observed in ERGs across many cancer types. Recent ev-
idence questions the conventional interpretation of hotspotmuta-
tions as being evidence of positive selection and driver events
(Hess et al. 2019), further reinforcing the need to integrate multi-
ple omics in driver prediction models. Accordingly, we proposed
the Multi-Omics and Pan-Cancer Driver prediction tools, which
account for the SNAs, CNAs, and RNA expression aberrations
and complement (rather than overlap with) the ConsensusDriver
approach, which seems to be heavily weighted by SNA frequen-
cies, at least for ERG driver prediction based on our results. Where-
as our Multi-Omics Driver score highlighted the epidrivers within
each class of malignancy, our Pan-Cancer Driver score reflects the
recurrence of driver potential across cancer types.

We observed both cancer type–specific and cancer-wide ge-
netic deregulation of ERGs. A subset of ERGs was frequently genet-
ically altered across many malignancies (SNAs in the KMT2A/B/C/
D family members and ARID1A, and deep CNAs in BOP1 and
ATAD2 were each seen in several cancer types), consistent with
the notion that disruption of some ERGs represents a shared driver
mechanism operating across multiple cancer types. Little overlap
was observed between the ERGs showing a high frequency of
SNAs and those with a high frequency of CNAs (except for a few
ERGs) (Figs. 2E–H, 4C). Similarly, in expression analysis, we ob-
served both cancer type–specific and cancer-wide deregulation of
ERGs. Whereas ERG expression correlated highly with CNAs, it
correlated negatively with some SNAs and positively with others,
a finding consistent with recent evidence indicating that interac-
tion between driver mutations and transcription may be context
dependent (Ding et al. 2018). Furthermore, some discrepancy be-
tween mutation and expression alterations in ERGs may be ex-
plained by the impact of nonmutational mechanisms on gene

expression. This is supported by our observation that some cancer
types, such as GBM, have a low burden of SNAs (Fig. 2E) and CNAs
(Fig. 2F) in ERGs, in line with a lowwithin-tumor variation in ERG
expression (Fig. 3A), but a high number of ERGs with deregulated
expression in tumor samples relative to adjacent normal tissue
(Fig. 3E–G) and vice versa (e.g., STAD). Our analysis of DNAmeth-
ylation and RNA-seq levels revealed that tumor-specific differen-
tially methylated CpGs in promoter regions were negatively
correlated with the expression of their corresponding genes, un-
derscoring the notion that epigenetic inactivation could be an ad-
ditional mechanism for aberrant expression of ERGs.

ERGs, including top predicted driver genes, were commonly
enriched in four of ten cancer hallmarks: genome instability and
mutation, evading growth suppressors, sustaining proliferative sig-
naling, and enabling replicative immortality (Fig. 4F). The latter
two hallmarks overlapped, respectively, with cell cycle (accelerator
of proliferation) and cellular senescence (defined as irreversible cell
cycle arrest, hence, a decelerator of proliferation), which were
found to be among the top pathways deregulated in the genes as-
sociated with enriched gRNAs (Supplemental Figs. 14D and 15D).
Although it has been proposed that the hallmarks of cancer are ac-
quired through distinct mechanisms in different cancer types
(Hanahan and Weinberg 2011), our results suggest that many of
these functional capabilities may be acquired through the shared
mechanism involving the disruption of ERGs.

Our orthogonal in vitro CRISPR-Cas9 screen also identified a
set of specific ERGs affecting markers of tumorigenesis such as cell
proliferative potential and EMT. Our results that five epidriver can-
didates (SRCAP, EP400, ARID1B, MBD5, and KMT2A) among the
top 15 ERGs enriched in EMT fraction (Fig. 5H; Supplemental
Tables S6, S9) were found among the most mutated ERGs in clini-
cal samples across cancer types (Fig. 2G) support the driver role of
EMT-specific ERG tumorigenesis. In addition, an analysis of the in-
teraction networks of the top ERG hits associated with EMT
(KAT2B, EP400, SRCAP, ARID1B, and SUV39H1) uncovered several
directional dependencies involving genes known to play a role in
EMT and multiprotein complexes regulating chromatin structure
and function, connecting previously uncharacterized complexes/
pathways to the EMT process.

This study contributes to a greater understanding of the
deregulation of ERGs and their functional impact in cancer. This
insight should prove instrumental in the clinical application of
ERGs, especially considering a growing interest in developing epi-
genetics-based prognostic and therapeutic strategies. Developing
“epigenetic drugs” capable of modulating specific ERGs (epi-
drivers) can circumvent the high toxicity and off-target effects of
broad epigenome reprogrammers (DNMT inhibitors, histone
deacetylase inhibitors) and offer a potent tool for precision medi-
cine (Ahuja et al. 2016; Brien et al. 2016; Jones et al. 2016).
Therefore, the results of our study may provide the basis for trans-
lational approaches aimed at developing epigenetics-based early
detection and personalized cancer treatment and prevention.

Methods

Generating the compendium of epigenetic regulator genes

A compendium of genome-wide ERGs was generated by integrat-
ing the different available gene databases (The Human Gene
Database—GeneCards, https://www.genecards.org/; the NCBI
Eukaryotic Genome Annotation Pipeline https://www.ncbi.nlm
.nih.gov/genome/annotation_euk/process/; Cytoscape version
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3.6.1) and the most relevant publications (Gonzalez-Perez et al.
2013; Plass et al. 2013; Timp and Feinberg 2013; Vogelstein et al.
2013; Yang et al. 2015; Xu et al. 2017). This resulted in a compre-
hensive list of 426 genes, which we categorized into 12 groups
based on their functional features: (1) Histone methylation editor
(HM_e) =histone demethylases (HDMs); (2) histone methylation
writer (HM_w)=histone methyltransferases (HMTs); (3) histone
methylation reader (HM_r); (4) DNA methylation writer
(DM_w); (5) DNA methylation editor (DM_e); (6) DNA methyla-
tion reader (DM_r); (7) histone acetylation editor (HA_e) =histone
deacetylases (HDACs); (8) histone acetylation writer (HA_w)=
histone acetyltransferases (HATs); (9) histone acetylation reader
(HA_r); (10) chromatin remodeling complex (ChRC); (11) heli-
cases; and (12) other chromatin modifiers = the remaining ERGs
included in the study (Fig. 1B). To classify ERGs based on their po-
tential function as a tumor suppressor or an oncogene, we used the
TSGene (https://bioinfo.uth.edu/TSGene/) (Zhao et al. 2013) and
OncoKB (https://oncokb.org/) (Chakravarty et al. 2017) databases,
respectively.

Data resource

We downloaded the data sets using the publicly available TCGA
(provisional) database from cBioPortal (https://www.cbioportal
.org/datasets), which consists of data sets with genetic alterations,
including single-nucleotide alterations (SNAs) and copy number
alterations (CNAs), and gene expression (expression median and
Z-scores) of 426 ERGs. For reproducibility, analyses were repeated
using the TCGA expression and genetic data downloaded on
May 16, 2019, and March 26, 2019, respectively.

We used TCGA abbreviations for 33 cancer types as follows:
(LAML) acute myeloid leukemia; (ACC) adrenocortical carcinoma;
(BLCA) bladder urothelial carcinoma; (LGG) brain lower grade gli-
oma; (BRCA) breast invasive carcinoma; (CESC) cervical squamous
cell carcinoma and endocervical adenocarcinoma; (CHOL) chol-
angiocarcinoma; (COAD) colon adenocarcinoma; (ESCA) esopha-
geal carcinoma; (GBM) glioblastoma multiforme; (HNSC) head
and neck squamous cell carcinoma; (KICH) kidney chromophobe;
(KIRC) kidney renal clear cell carcinoma; (KIRP) kidney renal pap-
illary cell carcinoma; (LIHC) liver hepatocellular carcinoma;
(LUAD) lung adenocarcinoma; (LUSC) lung squamous cell carci-
noma; (DLBC) lymphoid neoplasm diffuse large B cell lymphoma;
(MESO) mesothelioma; (OV) ovarian serous cystadenocarcinoma;
(PAAD) pancreatic adenocarcinoma; (PCPG) pheochromocytoma
and paraganglioma; (PRAD) prostate adenocarcinoma; (READ) rec-
tum adenocarcinoma; (SARC) sarcoma; (SKCM) skin cutaneous
melanoma; (STAD) stomach adenocarcinoma; (TGCT) testicular
germ cell tumors; (THYM) thymoma; (THCA) thyroid carcinoma;
(UCS) uterine carcinosarcoma; (UCEC) uterine corpus endometrial
carcinoma; (UVM) uveal melanoma.

Pan-cancer analysis of genetic alterations in ERGs

The proportions of each of the CNAs and SNAs detected in ERGs
were calculated among tumor samples within each of the 33 can-
cer types. The raw SNA data set contained somatic, nonsynony-
mous mutations, which were transformed into data with
mutation status indicating the number of SNAs for a gene in
each sample. The raw CNA data set was used to characterize
CNAs by genomic position and amplitude as follows: CNA=0 in-
dicates diploid with no alteration; amplification=1 indicates a
shallow gain (a fewadditional copies, often broad); deep amplifica-
tion= 2 indicates a high-level amplification (more copies, often fo-
cal); shallow deletion=−1 indicates a shallow loss, possibly a
heterozygous deletion; deep deletion= −2 indicates a deep loss,

possibly a homozygous deletion (https://www.cbioportal.org/).
For more robust analyses, we regrouped CNAs into three groups:
(1) no alteration, (2) deep amplification (amp), and (3) deep dele-
tion (del). We then pooled together the resulting merged data sets
of SNAs and CNAs matched to the same sample ID. The same cri-
teriawere used for calculating genetic deregulation in all genes and
for ERG functional classes. Circos plotswere generated as described
previously (Krzywinski et al. 2009; Gu et al. 2014).

Multi-omics analysis of genomic and transcriptomic aberrations

in ERGs

To effectively visualizemultidimensional data sets of the deregula-
tion of ERGs across different cancer types, we integrated SNAs,
CNAs, and RNA expression alterations. For each ERG, the propor-
tions of CNAs versus SNAs were calculated among tumor samples
within each of 33 cancer types. The analysis included only
genetically deregulated genes that show SNAs and CNAs (amplifica-
tion=1, 2, and deletion=−1,−2) in at least 1% and 10%of the sam-
ples in any cancer, respectively. ERGs were then classified based on
theirmutationprofiles such that thoseharboringmostly SNAs,with
CNAs not passing the threshold of 10%, were considered as only
mutated; whereas genes with CNAs in at least 10% of the samples
were considered as amplified or deleted. Finally, pooled results of
SNAs and CNAs were integrated with RNA expression data, ex-
pressed as Z-score values for each corresponding ERG in each
cancer type. The percentage of samples with significant Z-scores
(Z>2 or Z<−2) was reported for each ERG in each cancer type.

Differential expression analysis of ERGs in tumor samples

and adjacent normal tissues

We downloaded HTSeq count files from the Genomic Data
CommonsData Portal (https://portal.gdc.cancer.gov) for each can-
cer type and divided adjacent normal samples and tumor samples
based on the ID annotation of TCGA samples. Of the total of 33
cancer types, we focused on 18 cancer types that had available
ID annotation for adjacent normal samples.We usedDESeq2 anal-
ysis to calculate expression changes comparing tumor samples
with adjacent normal tissues. Genes with coverage of fewer than
10 reads were excluded. Only ERGs with absolute values of log
FC>1 and FDR<0.05 were considered to be significantly differen-
tially expressed.

Co-occurrence and mutual exclusivity analysis

Co-occurrence and mutual exclusivity analysis was performed in
each cancer type separately and then meta-analyzed across cancer
types. The data setwas limited to the samples that had information
about both SNAs andCNAs from cBioPortal (nonsynonymousmu-
tations, fusions, deep amplifications, and deep deletions). For each
gene pair and cancer type, we calculated an odds ratio (OR) quan-
tifying how strongly the presence or absence of SNAs and/or CNAs
in the first gene was associated with the presence or absence of the
alterations in the second gene. The P-values were derived from the
ORs using the Fisher’s exact test and were further adjusted for mul-
tiple testing using the Benjamini–Hochberg FDR correction. The
Haldane-Anscombe correction was used to avoid a division-by-
zero error. The significant ORs (FDR<0.05) were averaged across
cancer types for each gene pair. ORs greater or less than 1 indicate
tendencies toward co-occurrence and mutual exclusivity, respec-
tively. Specifically, within each co-occurrent gene pair, the propor-
tion of samples with both genes mutated needed to represent at
least 5%–10% of the samples per cancer type.
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ERG driver prediction models

The characterization of potential driver roles for ERGs was based
on ConsensusDriver, a novel approach that provides a systematic
way to integrate the strengths of various driver prediction algo-
rithms (Bertrand et al. 2018). ConsensusDriver scores for ERGs
overlapping with the ConsensusDriver genes (Bailey et al. 2018)
were shown as a heatmap. The Pan-Cancer Driver score was gener-
ated for each of the 426 ERGs using a ranking method that ac-
counts for SNAs, CNAs, and RNA expression aberrations within
each cancer type and across multiple cancer types (the script pro-
vided on GitHub: https://github.com/IARCbioinfo/EPIDRIVE
R2020 and as Supplemental Code). First, in the SNA and CNA
data, we focused on ERGs that had a SNA or CNA (sharing the
same direction) in at least 5% of samples in any cancer type.
Then, for each gene, we counted the number of cancer types in
which that gene had a SNA or CNA; the number of cancer types
was used as a primary rankingmethod, and the percentage of sam-
ples showing alterations was used as the secondary ranking for
genes having identical primary ranks. The gene with the lowest
rank was given a score of 1, the second rank a score of 2, and so
on. Genes (n=x) with equal ranks “y” (based on both the primary
and secondary methods) were all assigned the same ranking score
“y”; a subsequent gene with rank “y+ 1”was then assigned a rank-
ing score of “y +x.” Two rankings were obtained, one for SNA and,
independently, another for CNA. For expression data, we used
both the Z-score and log10FC data and similarly calculated the
ranking by counting for each gene the number of cancer types in
which that gene had a |Z-score| > 2 or |log10FC| > 2 (and then using
a secondary ranking based on the exact proportion of samples
with| Z-score| > 2 or on the exact values of |log10FC|). Two rankings
were obtained, one for Z-score data and one for log10FC data. The
resulting four rankings were combined into one, such that SNA
and CNA rankings each had a weight of 1, whereas Z-score and
log10FC each had a weight of 0.5 (because both Z-score and log10-
FC reflect expression aberration).

Hallmarks of cancer enrichment of ERGs

To investigatewhether deregulated ERGs are enriched in pathways
affecting the 10 hallmarks of cancer (Hanahan and Weinberg
2011), an analysis was done separately for all ERGs or for genetical-
ly altered ERGs (by SNAs and independently by CNAs). For each
cancer type, we included only genes with CNA>1% or SNA>1%
across samples within a given cancer type. Then, for each cancer
type, we calculated the enrichment of its genetically deregulated
genes in every hallmark using the Fisher’s exact test and further ad-
justed for multiple testing using the Bonferroni correction.

Generation of cell clones stably expressing Cas9

A549 Vim RFP cells (ATCC CCL-185EMT) and MCF10A cells
(ATCC CRL-10317) were cultured according to the recommenda-
tion by ATCC. To generate stably expressing Cas9 cell lines,
A549 Vim RFP and MCF10A cells were transfected with lentiviral
particles containing Cas9 nuclease (GeneCopoeia 217LPP-CP-
LVC9NU-01-100-C) and Lenti-Cas9-2A-Blast plasmid (Addgene
73310), respectively, at a multiplicity of infection (MOI) of
5. Briefly, cells were cultured for 5 h in cell culture media supple-
mented with 8 μg/mL of polybrene. Spinoculation was then ap-
plied at 800g for 90 min at 37°C. At 48 h after transfection, 500
μg/mL G418 (cells transfected with 217LPP-CP-LVC9NU-01-100-
C) or 10 μg/mL blasticidin (cells transfected with Lenti-2A-Cas9-
blast) were used for positive selection of Cas9-transduced cells.
For each cell type, we then generated single clones stably express-
ingCas9 using cloning rings or serial dilutions followed by cultures

of single cell. The expression of Cas9 protein in individual cell
clones were determined by western blot analysis using Anti-
CRISPR-Cas9 antibody (Abcam 7A9-3A3). A549 Vim RFP Cas9
clone R6 and MCF10A Cas9 clones 2 and 11 were used for the
CRISPR-Cas9 library screenings.

Construction of the CRISPR-Cas9 sgRNA library and titration

We generated a CRISPR library comprising 1649 different gRNAs
targeting 426 human ERGs. Each candidate gene was targeted by
1–4 sgRNA (Supplemental Table S7). Lentiviral plasmids contain-
ing sgRNAs were obtained in bacterial glycerol stock from a com-
mercial source (Thermo Fisher Scientific). We pooled and
amplified together 10 μL of glycerol stock of each plasmid gRNA
to obtain a homogeneous representation of the library, followed
byDNA extraction usingMaxi prep (Qiagen). The librarywas pack-
aged in human embryonic kidney HEK293T cells using a third-
generation lentivirus expression system consisting of the mixture
of 20 μg of the transfer vector consisting of the pool of sgRNAs len-
tiviral plasmid constructs (20 μg), 12.5 μg of the packaging plasmid
I pMDLg/pRRE (Addgene 12251), 7.5 μg of the packaging
plasmid II pRSV-Rev (Addgene 12253), and 7.5 μg of envelope plas-
mid VSV-G - pMD2.G (Addgene 12259) in Opti-MEMdiluent. The
library lentiviral particles were produced using the polyethyleni-
mine method (Tebu-Bio). Two collected harvests were pooled to-
gether and concentrated using Lenti Concentrator (OriGene)
according to themanufacturer’s instructions. The resulting lentivi-
rus CRISPR library was aliquoted and stored at −80°C. The virus ti-
ter and optimal transduction efficiency (considered to be 40%) of
the lentivirus library were determined by colony formation assay
in A549 Vim Cas9 cells.

Evaluation of sgRNAs representation in the generated library

To evaluate the relative representation of sgRNAs in the library, we
performed deep sequencing usingMiSeq (Illumina) (Supplemental
Fig. S8). Briefly, we designed primers (forward, CGATACAAGGCT
GTTAGAGAGATA; reverse, GTTGCTATTATGTCTACTATTCTTT
CCC) to obtain a 430-bp amplicon of plasmid DNA containing
the sgRNA sequences. We followed the suggestion of Illumina to
have an amplicon length of >300 bp for the targeting sequencing,
using the Nextera XT DNA Sample Preparation Kit (Illumina) ac-
cording to the manufacturer’s instructions. A single gRNA of the
AKAP1 genewas chosen from the candidate gene list to be evaluat-
ed as a positive control for library distribution. Targeted sequenc-
ing of the pooled library and a single gRNA of the AKAP1 gene
was performed using the MiSeq Reagent Kit v2 (500 cycles,
Illumina) according to the manufacturer’s instructions. The
FastQC generated from MiSeq was analyzed in Galaxy using the
BLASTN tool (2.5.0+ Package: blast 2.5.0). The sgRNAs were
mapped against all sgRNA sequences present in the custom-
made CRISPR library. The representation of genes in the pooled li-
brary was calculated relative to the abundance of gRNA for each
gene (Supplemental Fig. S8).

CRISPR-Cas9 library screening for epidrivers of epithelial-to-

mesenchymal transition

A549 Vim RFP Cas9 cells were transduced with the lentivirus
CRISPR library at a MOI of 0.3. For a negative control, we used
the nontargeting sgRNA LentiArray CRISPR Negative Control
Lentivirus (Thermo Fisher Scientific). The baseline time point
(day 0) was designated as 4 d after puromycin selection (the time
point when untransduced A549 Vim RFP Cas9 cells were dead).
The library was applied in two technical duplicates and in two in-
dependent experiments. During cell passaging, ∼2×106 cells were
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maintained in culture to achieve on average 1000-fold coverage of
all 1649 sgRNAs in the library. We isolated the EMT population at
days 14, 21, and 28 using FACS sorting (S3e, Bio-Rad) for RFP
(Vimentin)-positive cells (Vimentin positive [VIM+]).

Validation of the isolated EMT population

RNA of control A549 Vim RFP Cas9 cells and the sorted VIM+ cells
(from all time points) were extracted using the AllPrep DNA/RNA
Mini Kit (Qiagen). To validate the EMT transition in VIM+ cells,
mRNA expression levels of several EMT markers were analyzed
by quantitative RT-PCR. Cadherin 1/cadherin 2 ratio and expres-
sion levels of SNAI1 (also known as SNAIL) and ZEB2 were deter-
mined and confirmed the EMT state of VIM+ cells (Supplemental
Fig. S16). Fluorescence microscopy was used to verify RFP Vimen-
tin-positive (red) cells (Supplemental Fig. S17) in VIM+ sorted cells
compared to the parental cell lines. For additional validation of the
isolated EMT population, intensity levels of the epithelial marker
EPCAM (Fig. 5E; Supplemental Fig. S9) and the mesenchymal
marker cadherin 2 (Fig. 5F) were determined using flow cytometry
(S3e, Bio-Rad) using EPCAM-APC antibody (Miltenyi Biotec 130-
111-000) and cadherin 2 antibody (R&D systems IC1388P).

CRISPR-Cas9 library screening for epidrivers of cell proliferation

A549VimCas9 Clone R6 andMCF10ACas9 Clone 2 and Clone 11
cells were transduced with the lentiviral CRISPR library of 1649
sgRNAs (MOI 0.3 and 0.1, respectively) and maintained in culture
for several passages. Cells were collected at two different time
points per cell line throughout their culture. The A549 cells were
collected at day 0 (the day following the end of puromycin selec-
tion, early time point) and day 14 (late time point). Because the
proliferation rate ofMCF10A cells is lower than A549, we collected
MCF10A cells at later passages. Two independent clones express-
ing Cas9 were used for MCF10A: Clone 2 and Clone 11 that were
collected at early time points (days 13 and 15, respectively) and lat-
er time points (day 31 and 53, respectively) following transduction
and puromycin selection. To achieve 1000-fold coverage of all
sgRNAs, ∼2×106 cells were kept in culture at each passage, and 2
×106 were collected at each time point.

Identification of enriched and depleted sgRNAs and their

associated candidate epidrivers

To identify the enriched and depleted sgRNAs in the CRISPR-Cas9
screens, genomicDNAwas isolated from2×106 cells of each of the
cell populations analyzed (VIM+ cells and transduced parental cell
lines at different time points) using AllPrep DNA/RNA Mini Kit.
DNA was subsequently subjected to PCR to amplify the same re-
gion as that used for the validation of library representation (see
above), containing sgRNA sequences using NEBNext High-
Fidelity 2X PCR Master Mix (Illumina). PCR products were used
for library preparation using the Nextera XT DNA Sample
Preparation Kit or NexteraDNA Flex library Prep (Illumina) accord-
ing to the manufacturer’s instructions and sequenced on an
Illumina MiSeq platform. The FastQC data generated by MiSeq
were first analyzed in Galaxy using the BLASTN tool (2.5.0+
Package: blast 2.5.0). To obtain read counts, we performed map-
ping of sgRNA against all sgRNA sequences present in the cus-
tom-made CRISPR library. To identify the enriched and depleted
sgRNAs in EMT epidriver screening, we performed paired analysis
comparing the sorted VIM+ populations at different time points
(days 14, 21, and 28) with cells collected at day 0. The differential
sgRNA abundance of the read counts was analyzed using
CRISPRAnalyzeR software (DKFZ, Version: 1.50) (Winter et al.
2016). The list of enriched and depleted sgRNAs for each time

point was defined by hit candidate overlapping the list of hit can-
didates identified by DESeq2 (Love et al. 2014) and edgeR
(Robinson et al. 2010; McCarthy et al. 2012) analyses (two inde-
pendent analysis methods) with statistically significant changes
of 0.001 and 0.01, respectively. The EMT candidate genes were
identified as the genes commonly associated with enriched or de-
pleted sgRNAs across different time points (days 14, 21, and 28)
(Fig. 5G). Significantly enriched and depleted sgRNAs in the
screening for epidrivers of cell proliferation were analyzed by
paired analyses comparing sgRNAs detected at late time points
with sgRNAs at early time point for each cell type using edgeR
and/or DESeq2 statistical analyses methods in CRISPRAnalyzeR.
Statistical significance was set at P<0.001 and P<0.01 for
DESeq2 and edgeR, respectively.

Generation of single targeted knockout clones for EMT-identified

epidrivers candidates

A549 Vim RFP Cas9 clone R6 was transfected with a pool of four
sgRNAs targeting the genes of interests: EP400, MBD5, ARID1B,
orKAT2B. Sequences of sgRNAs used are available in Supplemental
Table S7. Transfection was performed using Xfect Transfection Re-
agent (Takara Bio) and 2 μg of pooled sgRNAs according to the
manufacturer’s instructions. Cells were subjected to puromycin
(1 μg/mL) selection 36 h after transfection. After antibiotic selec-
tion, single clones were generated from the heterogeneous popula-
tion of transfected resistant cells by amplification of single cell
sorted by flow cytometry (FACSAria). To validate the alterations
in the generated single clones, we designed PCR primer amplifying
the regions surrounding the Cas9 cutting sites for each of the tar-
geted genes. Targeted regions were amplified from genomic DNA
extracted from the generated single clones, and PCR products
were sequenced (Sanger sequencing) (Supplemental Fig. S18; Sup-
plemental Table S8). Several alignment tools were used to analyse
the sequencing data (CRISPR-ID: http://crispid.gbiomed.kuleuven
.be; DSDecodeM: http://skl.scau.edu.cn/dsdecode; and https://
blast.ncbi.nlm.nih.gov/Blast.cgi).

Quantitative RT-PCR

Total RNA extraction was performed by using AllPrep DNA/RNA
Mini Kit (Qiagen) according to the manufacturer’s protocol using
primers shown in Supplemental Table S8.

Scratch wound healing assay

A549 Vim Cas9 R6 parental cell clone and all generated A549
single targeted knockout clones were analyzed by scratch wound
healing assay using a standard protocol. Briefly, cells were plated
in 12-well plates (2 × 105 cells/well); after reaching 90%–100%con-
fluence (∼24 h after plating), two scratches per well were per-
formed (in the form of a cross) using a 200-μL tip. Experiments
were performed in duplicates. To measure cell migration and
wound healing capacity, four different pictures were taken per
well using a Zeiss TELAVAL 31 microscope and a Nikon D40 cam-
era, both at 0-h (time of scratch) and 24-h time points. Closure of
the wound by cell migration was calculated by comparing the
scratched areas at both time points, using the ImageJ software (ver-
sion 1.52b).

Transwell migration assay

The migratory properties of A549 Vim Cas9 R6 parental cell clone
and all generated A549 single targeted knockout clones were ana-
lyzed by transwellmigration assay. Experimentswere performed in
duplicates for each clone using cell culture polycarbonate 8-μm
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inserts (Millicell) in 24-well plated (corning). Briefly, 1 × 104 cells
in 300 μL of serum free F-12K medium were added to the upper
part of cell inserts. To stimulate themigration, 500 μL of F-12Kme-
dium containing FBS were added to the lower part of the inserts.
Cells were incubated for 13 h at 37°C and 5% CO2. Thirteen hours
is an insufficient time for A549 Vim Cas9 R6 parental cells to mi-
grate. After incubation, the medium was carefully aspirated from
the inside of the insert. The interior of the inserts was then gently
swabbed with cotton-tipped swabs to remove nonmigratory cells.
To stain migratory cells, the insert was transferred to a clean well
containing 400 μL of crystal violet Cell Stain Solution and incubat-
ed for 20 min. After 2× washes with PBS, inserts were air dried and
images taken by Zeiss TELAVAL 31 microscope and Nikon D40
camera.

Assessing disruption of EMT-specific driver candidates in clinical

samples and pathway enrichment

To assess the disruption of EMT-specific driver candidates identi-
fied in the CRISPR-Cas9 screen in clinical samples, we analyzed
the TCGA data using the Genomic Data Commons Data Portal
(https://portal.gdc.cancer.gov/). We divided samples into nonme-
tastatic (M0) and metastatic (M1) subsets based on the American
Joint Committee on Cancermetastasis stage code. For more robust
analysis, we further selected samples based on tumor stage using
the American Joint Committee on Cancer neoplasm disease stage
code. Only stage I and IVwere considered to beM0 andM1, respec-
tively.Overall, we collected 873M0 and 371M1 cases across 21 dif-
ferent cancer types available in TCGA (Supplemental Table S9).
Based on these data sets, we calculated themean percentage ofmu-
tations of each of the EMT-specific ERGs in the M1 versus M0
subsets.

We performed the pathway enrichment analyses using bioin-
formatics mapping tools of different databases, including the NCI-
Nature 2016, Panther 2016, KEGG 2016, and Reactome 2016 data-
bases. We used Enrichr (Kuleshov et al. 2016) score of each data-
base to define the pathway enrichment of EMT-specific
epidrivers. The network of EMT-specific ERGs was constructed
with the GeneMANIA package (https://genemania.org/) (Warde-
Farley et al. 2010).

Data access

All raw sequencing data generated in this study have been depos-
ited in the NCBI BioProject database (https://www.ncbi.nlm.nih
.gov/bioproject/) under accession number: PRJNA655831. The
scripts used to generate Driver Scores were provided on GitHub
(https://github.com/IARCbioinfo/EPIDRIVER2020) and as
Supplemental Code.
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VI. Results  
In this part, we present results yielded from the three-way modelling, encompassing 
DNA methylation markers of BW, gestational age and child sex in relation to CL risk. 
Part of this work has been published (A. Finalized papers) and some ongoing (B. 
Ongoing work). The ongoing work also comprises a hypothesis-free approach 
representing an agnostic methylome-wide analysis in relation to ALL risk, and which 
could be complementary (hence, not necessarily yielding overlapping results) to the 
three-way modelling. Due to its agnostic nature, the hypothesis-free method is bound 
by limitations in statistical power and inability to sufficiently correct for potential 
confounders, hence, requiring the inclusion of larger sample sizes and additional 
cohorts which are in the scope of future follow up studies originating from the thesis 
work. 

A. Relevant publications 
The first three papers hereafter describe the results for the association of each of the 
three closely related intrinsic factors (BW (69), gestational age (157) and child sex (in 
preparation) and DNA methylation. They represent major findings that provide new 
insights into epigenetic mechanisms of early-life factors. In each study, we meta-
analyzed EWAS results from multiple international birth cohorts and found profound 
associations with DNA methylation at birth for each of these intrinsic factors. 
Specifically, DNA methylation in neonatal blood was associated after Bonferroni 
correction with birthweight at 914 CpG sites, with gestational age at 8899 CpGs sites 
and with child sex at 46,554 CpG sites on autosomes and 9,372 on the X 
chromosome. We observed a difference in BW ranging from -183 to 178 grams per 
10% increase in methylation. For GA, the largest association represents 2.5% 
methylation change per additional gestational week. For child sex, the differences in 
methylation levels were generally small with a median difference of 0.5%. Methylation 
levels of the CpGs identified in newborns were further investigated in older ages, and 
we identified that a substantial proportion of signals fades off in childhood and 
adolescence for BW and gestational age, unlike the CpG markers of child sex, the 
majority of which persisted throughout childhood. Functional impact of methylation 
changes on gene expression was observed for 84 BW CpGs and 246 gestational age 
CpGs. Furthermore, gestational age methylation markers in cord blood were also 
found significant in lung and brain, highlighting that the cord blood findings capture 
the epigenomic plasticity of pre-natal development across tissues. Our access to 
biospecimens and data was made possible by groundwork undertaken to establish 
the collaborations and resources. These three projects are part of large consortia that 
require significant amount of data harmonization, analysis and scrutiny as well as 
routine follow-up with several cohorts worldwide. Manuscript writing often requires 
substantially more time in these consortium workflows than is the case for other types 
of studies we have.  

In the fourth paper (158), we used the significant BW-associated CpGs identified in 
our previous study (69) and integrated four types of omic data (methylome, 
transcriptome, metabolome and a set of inflammatory proteins) measured in cord 
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blood samples from four birth-cohorts in order to investigate in further depth the 
molecular mechanisms that underlie changes in BW. Multi-omic analysis revealed 
interrelated epigenetic, transcriptional, metabolic and protein pathways converging 
on an important role for cholesterol biosynthesis in affecting BW. This finding was 
further reinforced by a significant association detected between measured cord blood 
cholesterol levels and BW. Further studies are required to determine the causality of 
these findings and their role on child health. 
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B. Ongoing Work 
1. Three-way modelling 

Exploring epigenetic mechanisms linking early-life factors to disease outcomes 
requires sufficient numbers of individuals that are both exposed and diseased. 
Hence, this can be challenging in a one-cohort setting, particularly when disease 
outcomes are rare, so international collaboration becomes crucial. We proposed a 
three-way modelling to address these challenges, and we test it on our hypothesis 
stipulating that DNA methylation deregulation in utero underlies the biological 
pathways linking early-life factors and CL. The approach consists of three 
consecutive steps as shown in the Figure 7 and detailed below: 
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Figure 7. Three-way modelling. The vertices in each radar chart correspond to: A – 
Number of tests; B – Sample size; C – Proportion of exposed samples; D – 
Proportion of diseased samples; E – Statistical power. 

 

First, CpG biomarkers of early-life factors are screened for in large population-based 
studies (abundant non-diseased subjects) using an epigenome-wide coverage 
(herein, the large sample sizes of PACE provide statistical power for high-coverage 
methylome profiling and adjustment for several confounders). We have applied this 
step on each of BW (69), gestational age (157) and child sex, which represent inter-
related intrinsic factors in association to exposure and CC risk (see section IV). For 
the next steps, we will focus on the 8696 FDR (False Discovery Rate) significant 
methylation markers of BW and assess if they associate to CC risk and are affected 
by gestational age and child sex.  

Second, the specifically significant CpGs obtained in the first step (reduced 
epigenetic dimension) are analyzed in a (smaller) subset of samples that are 
enriched for nested cancers using generalized linear models and adjusting for 
gestational age, child sex and maternal smoking. Herein, statistical power is 
maintained due to a targeted lower coverage profiling focusing on specific CpG 
markers. For this purpose, we used samples from the Norwegian Mother, Father and 
Child Cohort Study (MoBa) representing one of the two largest CC birth cohorts 
worldwide and encompassing prospectively collected DNA methylation data from 22 
preB-ALL cases and 180 controls. 

Third, statistical modelling such as mediation analysis (Figure 8) is used to 
investigate whether the identified CpG biomarkers mediate the effect of exposure 
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(BW) on cancer outcome (ALL risk). For this step, we applied two different mediation 
techniques that are subsequently described in more detail. 

 

 
Figure 8. Mediation analysis 

 

The first mediation approach (159) is studying a single mediator at a time. The well-
known Baron and Kenny procedure is used herein and consists of three consecutive 
steps when we verify the establishment of (i) an effect that may be mediated between 
the exposure and the outcome, (ii) an effect between the exposure and the mediator 
and finally (iii) an effect between the mediator and the outcome. Additionally, we 
performed the Sobel test, which is more accurate than the Baron and Kenny 
procedure in case of large sample sizes (160). However, as the Sobel test is based 
on normal distributions, small samples sizes or distribution skewness can 
compromise the method’s performance. For this reason, it is common practice to use 
both tests in mediation analyses.  

The second approach (161) is a high-dimensional mediation analysis (HIMA) 
conducted with a penalty (162) and a joint significance test for mediation effect. The 
use of this second method is motivated by the fact that Baron and Kenny procedure 
was designed for one single mediator, and this approach tries to deal with multiple 
mediators which is the case in our study. Additionally, the HIMA algorithm was 
implemented in a ready-to-use R package. 

To investigate the associations between the epigenetic markers of BW and CC 
status, we used a generalized linear model with adjustment for covariates: 
gestational age, gender, WBC composition and maternal smoking (known to have a 
strong effect on both the newborn’s epigenome (118) and BW). Among the 8696 
CpGs of BW, 414 were associated to CL (p.value < 0.05). Gene ontology enrichment 
of top most significant associations involves organ development pathways. Finally, 
both mediation techniques converged onto one CpG in a non-coding gene that 
mediates the association between BW and CL (adjusted p = 0.0037) and is not 
confounded by gestational age or child sex (Figure 9). Validating these findings 
requires replication of the analysis in other cohorts and experimental verification 
through functional assays. 
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Figure 9. Common CpG between the two mediation techniques  

 

This work (in preparation) may add a new dimension to the value of EWAS findings 
by extending its current ‘2D modelling’ (ie exposure- methylation or methylation-
outcome) to another level of ‘3D analysis’, hence, affording new opportunities for 
identifying robust epigenetic markers of exposure that function as precursors of 
disease endpoints, including rare ones.  

 

2. DNA Methylation and ALL 
Another complementary step was testing an agnostic approach to potentially identify 
differentially methylated regions between cases and controls in neonatal blood before 
the onset of ALL. This hypothesis-free investigation refers to the purple axis in the 
Figure 6. We used data from two studies, one from I4C (being MoBa) and one from 
CLIC (being California Childhood Leukemia Study (CCLS)) in a meet-in-the-middle 
framework that brings together the prospective and retrospective settings. We used 
neonatal bloodspots from CLIC collected retrospectively from archived samples and 
from which 450K data was generated. Neonatal methylome data from archived blood 
spots can capture a molecular snapshot of the early-life epigenome before cancer 
occurs, hence, making them potentially comparable to the prospective setting of I4C 
(which we attempt to demonstrate in this work as a proof-of-concept). To increase the 
statistical power of this agnostic methylome-wide approach, advanced bioinformatics 
and statistical modelling were implemented in order to reduce the dimension of the 
methylome into clusters of correlated and genomically proximal DNA methylation 
(CpG) sites, as per our previous work (154,155). Using the DMRcate statistical 
framework, we identified only a few (n = 4) differentially methylated regions, each 
spanning 3 to 16 CpG methylation sites, in neonatal blood before the onset of the 
leukemia in cases versus controls. Biological replication was successfully performed 
in a third study based on archived neonatal blood spots from the Melbourne study, 
Australia. The small number of significant results using this approach is expected due 
to the limited statistical power of this design. However, this pilot work suggests that 
archived neonatal blood spots from retrospective studies could yield comparable 
DNA methylome markers to those from prospectively collected neonatal blood 
samples. These results offer a means by which sample sizes of prediagnostic blood 
obtained from CC cases can be increased, especially that the rarity of such samples 
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in prospective settings represents a major roadblock. Therefore, follow-up studies 
seeking archived neonatal blood samples represent a promising way forward that 
could help the identification of epigenetic markers of CC risk using a hypothesis-free 
investigation.  
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Meta-analysis of epigenome-wide association
studies in neonates reveals widespread differential
DNA methylation associated with birthweight
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Birthweight is associated with health outcomes across the life course, DNA methylation may

be an underlying mechanism. In this meta-analysis of epigenome-wide association studies of

8,825 neonates from 24 birth cohorts in the Pregnancy And Childhood Epigenetics Con-

sortium, we find that DNA methylation in neonatal blood is associated with birthweight at

914 sites, with a difference in birthweight ranging from −183 to 178 grams per 10% increase in

methylation (PBonferroni < 1.06 x 10−7). In additional analyses in 7,278 participants, <1.3% of

birthweight-associated differential methylation is also observed in childhood and adolescence,

but not adulthood. Birthweight-related CpGs overlap with some Bonferroni-significant CpGs

that were previously reported to be related to maternal smoking (55/914, p = 6.12 x 10−74)

and BMI in pregnancy (3/914, p = 1.13x10−3), but not with those related to folate levels in

pregnancy. Whether the associations that we observe are causal or explained by confounding

or fetal growth influencing DNA methylation (i.e. reverse causality) requires further research.
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Intrauterine exposures, such as maternal smoking, pre-
pregnancy body mass index (BMI), hyperglycaemia, hyper-
tension, folate and famine are associated with fetal growth and

hence birthweight1–6. Observational studies show that birth-
weight is also associated with later-life health outcomes, including
cardio-metabolic and mental health, some cancers and mortal-
ity7–11. In these long-term associations, birthweight may act as a
proxy for potential effects of intrauterine exposures12,13. Several
mechanisms may explain the associations of intrauterine expo-
sures with birthweight and later-life health as we illustrate in
Fig. 1. Our overall conceptual framework in this study was that
the intrauterine environment induces epigenetic alterations,
which influence fetal growth and hence correlate with birth-
weight. This is partly supported by previous large-scale epigen-
ome-wide association studies (EWAS) that have reported
associations of relevant maternal pregnancy exposures, including
smoking, air pollution and BMI, with DNA methylation in off-
spring neonatal blood14–16. However, whilst four previous EWAS
have observed associations of DNA methylation with birth-
weight17–20, the evidence to date has been limited in scale and
power with sample sizes ranging from approximately 200 to 1000.

In this study, we hypothesised that there are associations
between DNA methylation and birthweight. We further aimed to
explore if these epigenetic alterations are associated with later
disease outcomes (Fig. 1). If birthweight is a proxy for a range of
adverse prenatal exposures, we might expect neonatal blood DNA
methylation to be associated with birthweight. However, we
acknowledge that any associations of DNA methylation with
birthweight may be explained by confounding21 or reflect fetal
growth influencing DNA methylation.

Here we present a large meta-analysis of multiple EWAS to
explore associations between neonatal blood DNA methylation and
birthweight. In further analyses, we explore whether any birthweight-
associated differential methylation persists at older ages. To aid
functional interpretation, we (i) explore the overlap of identified
cytosine-phosphate-guanine sites (CpGs) that are differentially
methylated in relation to birthweight with those known to be asso-
ciated with intrauterine exposure to smoking, famine and different
levels of BMI and folate; (ii) associate DNA methylation at identified
CpGs with gene expression and (iii) explore potential causal links
with birthweight and later-life health using Mendelian randomization
(MR)22. We show that DNA methylation in neonatal blood is
associated with birthweight and some of the differential methylation
is also observed in childhood and adolescence, but not in adulthood.

Also, we show overlap between birthweight-related CpGs and CpGs
related to intrauterine exposures. Potential causality of the associa-
tions needs to be studied further.

Results
Participants. We used data from 8825 neonates from 24 studies in
the Pregnancy And Childhood Epigenetics (PACE) Consortium,
representing mainly European, but also African and Hispanic eth-
nicities with similar proportions of males and females. Details of
participants used in all analyses are presented in Table 1, Supple-
mentary Data 1 and study-specific Supplementary Methods.

Meta-analysis. Primary, secondary and follow-up analyses are out-
lined in the study design in Fig. 2. Methylation at 8170 CpGs,
measured in neonatal blood using the Illumina Infinium® Human-
Methylation450 BeadChip assay and adjusted for cell-type hetero-
geneity23–25, was associated with birthweight (false discovery rate
(FDR) <0.05), of which 1029 located in or near 807 genes survived
the more stringent Bonferroni correction (p < 1.06 × 10−7, Supple-
mentary Data 2). We observed both positive (45%) and negative
(55%) directions of associations between methylation levels of these
1029 CpGs and birthweight (Fig. 3) and these CpGs were spread
throughout the genome (orange track (1) in Fig. 4 and Supplemen-
tary Fig. 1). We found evidence of between-study heterogeneity (I2 >
50%) for 115 of the 1029 sites (Supplementary Data 2), thus we
prioritised 914 CpGs, located in or near 729 genes, based on p <
1.06 × 10−7 and I2 ≤ 50% for further analyses (Fig. 3 and orange track
(1) in Fig. 4). The CpG with the largest positive association was
cg06378491 (in the gene body ofMAP4K2). For each 10% increase in
methylation at this site, birthweight was 178 g higher (95% con-
fidence interval (CI): 138, 218 g). The CpG with the largest negative
association was cg10073091 (in the gene body of DHCR24), which
showed a 183 g decrease in birthweight per 10% increase in methy-
lation (95% CI: −225, −142 g). The CpG with the smallest P-value
and I2 ≤ 50% was cg17714703 (in the gene body of UHRF1), which
showed a 130 g increase in birthweight for 10% increase in methy-
lation (95% CI: 109, 151 g).

Findings were consistent with results from our main analyses
when restricted to participants of European ethnicity, with a Pearson
correlation coefficient for effect estimates of 0.99 for the 914
birthweight-associated CpGs (Supplementary Fig. 2, blue track (2) in
Fig. 4 and Supplementary Data 3) and 0.90 for all 450k CpGs.
Comparing the main meta-analysis to the four Hispanic cohorts and
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Fig. 1 Hypothetical paths that might link intrauterine exposures to DNA methylation, birthweight and later-life health outcomes. Red arrows summarise the
paths that have motivated the analyses undertaken in this study (i.e. that maternal environmental exposures influence DNA methylation that in turn
influences fetal growth and hence birthweight). The EWAS meta-analysis undertaken sought to identify methylation associated with birthweight. Blue
arrows summarise other plausible paths, including that maternal exposures influence fetal growth first and it then influences DNA methylation or that
maternal exposures may influence fetal growth/birthweight and later-life health outcomes through other pathways than DNA methylation
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the two African cohorts revealed that 94.9% and 74.0% of the 914
CpGs showed consistent direction of association, with Pearson
correlation coefficients for point estimates of 0.82 and 0.48,
respectively (Supplementary Data 3). In leave-one-out analyses, in
which we reran the main meta-analysis repeatedly with one of the
24 studies removed each time, there was no strong evidence that any
one study influenced findings consistently across the 914 differen-
tially methylated CpGs that passed Bonferroni correction and for
which between-study heterogeneity had an I2 ≤ 50%. For 139/914
CpGs (15.2%) the difference in mean birthweight for a 10% greater
methylation at that site varied by ≥20% with removal of a study, but
the study resulting in the change was different for different CpGs.
Supplementary Fig. 3.1-3.20 show the results for a random 10 plots
where removal of one study changed the result by 20% or more and a
random 10 where this was not the case; full results are available on
request from the authors. Findings were broadly consistent when
birthweight was categorised to high (>4000 g, n= 1593) versus
normal (2500–4000 g, n= 6377) (Supplementary Data 4, yellow
track (5) in Fig. 4) and when we did not exclude neonates born
preterm or to women with pre-eclampsia or diabetes (Supplementary
Fig. 4 and Supplementary Data 5A and 5C, and red track (3) in
Fig. 4). Without these exclusions, we were able to examine
associations with low (<2500 g, n= 178) versus normal
(2500–4000 g, n= 4197) birthweight, though statistical power was

still limited. Four CpGs were associated with low versus normal
birthweight (Bonferroni-corrected threshold), none of which over-
lapped with the 914 CpGs from the main analysis (Supplementary
Data 5B, purple track (4) in Fig. 4). We identified that 161 of the 914
differentially methylated CpGs potentially contained a single-
nucleotide polymorphism (SNP) at cytosine or guanine positions
(i.e. polymorphic CpGs; Supplementary Data 6). Polymorphic CpGs
may affect probe binding and hence measured DNA methylation
levels26,27. We used one of the largest studies (ALSPAC; n= 633)
to explore this. We found no indication of bimodal distributions
for any of the 161 CpGs suggesting SNPs had not markedly affected
methylation measurements at these sites (dip test p-values:
0.299–1.00)28–30.

Analyses at older ages. We took the 914 neonatal blood CpGs that
were associated with birthweight at Bonferroni-corrected statistical
significance and with I2 ≤ 50% and examined their associations with
birthweight when measured in blood taken in childhood (2–13 years;
n = 2756 from 10 studies), adolescence (16–18 years; n= 2906 from
six studies) and adulthood (30–45 years; n= 1616 from three stu-
dies). Only participants from ALSPAC, CHAMACOS and Genera-
tion R had also contributed to the main neonatal blood EWAS. In
childhood, adolescence and adulthood, we observed 87, 49 and 42 of
the 914 CpGs to be nominally associated with birthweight (p < 0.05).

Table 1 Characteristics for the participating studies in the main meta-analysis for the association between neonatal blood DNA
methylation and birthweight

Study Total N Normal birthweight,
N (%)

High birthweight,
N (%)

Birthweight (g) Gestational age
(wk)

Ethnicity Boys,
N (%)

ALSPAC 633 547 (86.4) 79 (12.5) 3512 ± 443 39.7 ± 1.3 European 301 (47.6)
CBCa: Hispanic 127 106 (83.5) 19 (15.0) 3445 ± 484 39.8 ± 1.3 Hispanic 74 (58.3)
CBCa: Caucasian 136 108 (79.4) 26 (19.1) 3625 ± 472 39.7 ± 1.5 European 79 (58.1)
CHAMACOS 283 236 (83.4) 44 (15.5) 3520 ± 446 39.3 ± 1.2 Hispanic 142 (50.1)
CHSa 199 168 (84.4) 28 (14.1) 3486 ± 476 40.2 ± 1.2 Mixed 79 (39.7)
EARLI 131 113 (86.3) 16 (12.2) 3507 ± 480 39.3 ± 1.0 Mixed 70 (53.4)
EXPOsOMICS: Rhea,
Environage and Piccolipiu

324 297 (91.7) 22 (6.8) 3368 ± 437 39.4 ± 1.2 European 169 (52.1)

GECKO 255 206 (80.8) 46 (18.0) 3543 ± 533 39.7 ± 1.3 European 136 (53.3)
Gen3G 162 145 (89.5) 15 (9.3) 3408 ± 431 39.5 ± 1.1 European 74 (45.7)
Generation R 717 589 (82.1) 122 (17.0) 3572 ± 465 40.2 ± 1.1 European 372 (51.9)
GOYAb 947 649 (68.5) 294 (31.0) 3750 ± 501 40.4 ± 1.3 European 483 (51.0)
Healthy Start: African
American

77 – – 3059 ± 358 38.9 ± 1.3 African
American

42 (54.5)

Healthy Start: Hispanic 115 – – 3322 ± 395 39.1 ± 1.1 Hispanic 55 (47.8)
Healthy Start: Caucasian 240 220 (91.7) 14 (5.8) 3325 ± 425 39.3 ± 1.1 European 125 (52.1)
INMA 166 – – 3297 ± 400 39.9 ± 1.2 European 82 (49.4)
IOW F2 118 97 (82.2) 17 (14.4) 3432 ± 525 39.7 ± 1.6 European 59 (50.0)
MoBa1 1066 795 (74.6) 251 (23.5) 3644 ± 544 39.5 ± 1.6 European 568 (53.3)
MoBa2 587 435 (74.1) 146 (24.9) 3701 ± 487 40.1 ± 1.2 European 329 (56.0)
MoBa3 205 153 (74.6) 51 (24.9) 3706 ± 491 39.8 ± 1.2 European 106 (51.7)
NCLa 792 592 (74.7) 192 (24.2) 3671 ± 506 40.0 ± 1.3 European 453 (57.2)
NEST: African American 99 – – 3197 ± 534 39.3 ± 1.2 African

American
47 (47.5)

NEST: Caucasian 111 94 (84.7) 13 (11.7) 3446 ± 471 39.5 ± 1.2 European 50 (45.0)
NHBCS 96 84 (87.5) 12 (12.5) 3509 ± 453 39.6 ± 1.1 European 53 (55.2)
PREDO 540 428 (79.3) 99 (18.3) 3572 ± 478 40.1 ± 1.2 European 264 (48.8)
PRISM 138 – – 3385 ± 441 39.5 ± 1.1 Mixed 76 (55.1)
PROGRESS 143 – – 3124 ± 387 38.6 ± 1.1 Hispanic 77 (53.8)
RICHS 89 52 (58.4) 23 (25.8) 3335 ± 734 38.9 ± 1.2 European 35 (39.3)
Project Viva 329 263 (79.9) 64 (19.5) 3623 ± 473 40.0 ± 1.2 European 168 (51.1)
Total N 8825 6377 1593

Results are presented as mean ± SD or N (%). Normal birthweight: 2500−4000 g, high birthweight: >4000 g, low birthweight: <2500 g. Studies with mixed ethnicities analysed all participants together
with adjustment for ethnicities. g: grams, wk: weeks, y: years. Full study names can be found in study-specific Supplementary Methods. For some studies the sample size for defining normal/high BW was
too small
aCBC, CHS and NCL used heel prick blood spot samples instead of cord blood
bGOYA is a case-cohort study (cases are mothers with BMI>32 and controls are mothers randomly sampled from the underlying study population in which the cases were identified), in analyses where
we included a random sample with a normal BMI distribution results were essentially the same as in the main analyses
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All these CpGs showed consistent directions of association. Ten
CpGs showed differential methylation across all four age periods.
However, only a minority survived Bonferroni correction for 914
tests (p < 5.5 × 10–5): 12 (1.3%), 1 (0.1%) and 0 CpGs in childhood,
adolescence and adulthood, respectively (Supplementary Data 7; the
12 CpGs that persisted in childhood are presented in the green track
(6) in Fig. 4). Of the 914 CpGs, 50, 52 and 49% showed consistency
in direction of association in childhood, adolescence and adulthood,
but correlations of the associations of DNA methylation and birth-
weight between methylation measured in infancy and that measured
in childhood, adolescence and adulthood were weak (Pearson cor-
relation coefficients: 0.15, 0.06 and 0.02, respectively).

Intrauterine factors. We observed enrichment of previously pub-
lished maternal smoking-related CpGs in the birthweight-associated
CpGs14 (55/914 (6.0%) penrichment= 6.12 × 10−74, of which
cg00253658 and cg26681628 also showed persistent methylation

differences in the look-up in childhood). We additionally found
enrichment of maternal BMI-related CpGs in the list of birthweight-
related CpGs15 (3/914 (0.3%) penrichment= 1.13 × 10−3). All direc-
tions of association were consistent with the birthweight-lowering
influence of maternal smoking or the positive association of maternal
BMI with birthweight (Supplementary Data 8). We did not find
evidence for overlap with plasma folate31. For famine, we were
unable to explore overlap with DNA methylation at the Bonferroni-
significant level as the previous EWAS of famine only reported
results that reached a FDR level of statistical significance32. In
additional analyses for overlap between all FDR hits from the
birthweight EWAS with those FDR hits presented in the smoking,
maternal BMI, folate and famine EWAS, we found an overlap of 430/
8170 CpGs (5.3%, penrichment= 7.38 × 10−132) for smoking, 584/8170
CpGs (7.1%, penrichment= 3.34 × 10−62) for maternal BMI and 14/
8170 (0.2%, penrichment= 0.02) for folate. For famine we did not
observe overlap.

Study-specific epigenome-wide association studies

Main meta-analysis

Association of DNA methylation with birthweight as a continuous variable
Fixed effects inverse variance weighted meta-analysis

Secondary meta-analyses
Genome-wide analyses on all >450k CpGs

European ancestry only meta-analysis (n = 6,023 from 17 studies)

High (n = 1,593) vs normal birthweight (n = 6,377) from 21 studies

Including mother-offspring pairs with pre-eclampsia, gestational
diabetes and preterm delivery (9 studies**)
a.    Continuous birthweight (n = 5,414)
b.    High (n = 1,039) vs normal birthweight (n = 4,197)
c.    Low (n = 178) vs normal birthweight (n = 4,197)

a.     Childhood (n = 2,756 from 10 studies, 2–12y)
b.     Adolescence (n =2,906 from 6 studies, 16–18y)
c.     Adulthood (n =1,616 from 3 studies, 30–45y)

Follow up of methylation sites for function & causality
Focused on n = 914 prioritised CpGs (p < 1.06*10 –7 and l 2≤50%)

In silico explore overlap of CpGs associated with intrauterine exposures
a.   Maternal smoking and BMI
b.   Metastable epialleles and imprinted genes 

Functional analyses 
a.   In silico explore overlap with a publicly available list of cis-eQTMs
b.   Explore whole blood mRNA gene expression in 112 Spanish four-
      year-olds and 84 Gambian two-year-olds
c.   In silico functional enrichment analyses (GO and KEGG pathways) 

Explore causality with birth weight and later-life health using two-sample
Mendelian randomization with publicly available summary data 

Exploration of persistence at older ages
Focused on n = 914 prioritised CpGs (p < 1.06*10 –7 and l 2≤50%)

Associations with birthweight in blood samples collected at older ages

n = 8,825 neonates* from 24 birth cohorts

Fig. 2 Design of the study. Schematic representation of the main meta-analysis, secondary meta-analyses, follow-up analyses and exploration of
persistence at older ages. *We removed multiple births from all analyses and excluded preterm births (<37 weeks) and offspring of mothers with pre-
eclampsia or diabetes (three major pathological causes of differences). **For sufficient power in the low vs normal BW analyses, we only included nine
studies with >10 low birthweight cases
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Fig. 3 Volcano plot showing the direction of associations of DNA methylation with birthweight in 8825 neonates from 24 studies. The X-axis represents
the difference in birthweight in grams per 10% methylation difference, the Y-axis represents the −log10(P). The red line shows the Bonferroni-corrected
significance threshold for multiple testing (p < 1.06 × 10−7). Highlighted in orange are the 914 CpGs with p < 1.06 × 10−7 and I2≤ 50% and highlighted in
blue are the 115 CpGs with p < 1.06 × 10−7 and I2 > 50%
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Metastable epialleles and imprinted genes. We tested the
birthweight-associated CpGs for enrichment of metastable epialleles
(loci for which the methylation state is established in the peri-
conceptional period33,34). We additionally tested for enrichment of
CpGs annotated to imprinted genes (loci that depend on the main-
tenance of parental-origin-specific methylation marks in the pre-
implantation embryo, some of which are known to regulate fetal
growth35,36). We did not find evidence of enrichment for metastable
epialleles (3/1936 metastable epialleles overlap a birthweight-
associated CpG), imprinting control regions (0/741) or imprinted
gene transcription start sites (5/1728) (Supplementary Data 9).

Comparison with GWAS for birthweight. To compare these
EWAS results to those from genetic studies, we used the 60 recently
published fetal SNPs associated with birthweight in a GWAS meta-
analysis of 153,781 newborns37 and mapped the CpG sites identified
in the EWAS to these SNPs to seek evidence of co-localisation of

genetic and epigenetic variation (Supplementary Data 10). We
repeated this for the 10 recently published maternal SNPs associated
with birthweight in a GWAS meta-analysis of 86,577 women38

(Supplementary Data 11). We observed that one or more of the 914
birthweight-associated CpGs were within+/−2Mb of 34/60 fetal and
all 10 maternal birthweight-associated SNPs. Of the 34 fetal SNPs,
three were located in the same gene as the CpG, as was one of the ten
maternal SNPs. Ten fetal and four maternal SNPs were within 100 kb
of identified CpGs. In a look-up of the fetal and maternal SNPs from
GWAS of birthweight in an online cord blood methylation quanti-
tative trait loci (mQTL) database (mqtldb.org39), 35 fetal and four
maternal SNPs affected methylation at some CpG(s), but none at the
914 birthweight-associated CpGs specifically.

Functional analyses. We compared the 914 birthweight-
related CpGs with a recently published list of 18,881 expression
quantitative trait methylation sites (cis-eQTMs, +/−250 kb around
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Fig. 4 Circos plot showing the (Bonferroni-corrected p < 1.06 × 10−7) results for associations of DNA methylation with birthweight. Results are presented
as CpG-specific associations (−log10(P), each dot represents a CpG) by genomic position, per chromosome. From outer to inner track: [1, orange] Main
analysis results for associations between DNA methylation and birthweight as a continuous measure (n= 8825), [2, blue] Results from participants from
European ethnicity only, DNA methylation and birthweight as a continuous measure (n= 6023), [3, red] Results from analysis without exclusion for
preterm births, pre-eclampsia and maternal diabetes, DNA methylation and birthweight as a continuous measure n= 5414), [4, purple] Results from
logistic regression analysis without exclusion for preterm births, pre-eclampsia and maternal diabetes, for low (n= 178) vs normal (n= 4197) birthweight,
[5, yellow] Results from logistic regression analysis for associations between DNA methylation and high (n= 1590) vs normal (n= 6114) birthweight,
[6, green] Results from look-up analysis in methylation samples taken during childhood and its association with birthweight as a continuous measure (n=
2756). Track 1: highlighted in red are 115 CpGs with I2 > 50%. Tracks 2–6: highlighted in red are CpGs that were not found in the 914 main meta-analysis
hits (though note differences in sample size and hence statistical power for different analyses presented in the different tracks)
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the transcription start site), CpG sites known to correlate with gene
expression, from whole blood samples of 2101 Dutch adult indivi-
duals. We found that 82 of the 914 birthweight-associated CpGs
were associated with gene expression of 98 probes (cis-eQTMs)40

(penrichment < 1.73 × 10−11, Supplementary Data 12). Additionally, in
112 Spanish 4-year-olds41, we observed that 19 CpGs were
inversely associated with whole blood mRNA gene expression and
four CpGs were positively associated with gene expression
(FDR<0.05, Supplementary Data 13). Of these 23 CpGs, 13 were also
found in the publicly available cis-eQTM list40. In 84 Gambian
children (age 2 years)42, we found two CpGs that were inversely
associated with whole blood mRNA gene expression, but neither
were found in the Spanish results or the publicly available cis-eQTM
list. The 914 birthweight-associated CpGs showed no functional
enrichment of Gene Ontology (GO) terms or Kyoto Encyclopedia of
Genes and Genomes (KEGG) terms (FDR<0.05).

Mendelian randomization. We aimed to explore causality using
MR analysis, in which genetic variants associated with methylation
levels (methylation quantitative trait loci (mQTLs)) are used as
instrumental variables to appraise causality. For 788 (86%) of the
914 birthweight-associated CpGs, no mQTLs were identified in a
publicly available mQTL database39. For 108 (86%) of the remaining
126 CpGs, only one mQTL was identified and for the remainder
none had more than four mQTLs (Supplementary Data 14 provides
a complete list of all mQTLs identified for these 126 CpGs). Many of
the currently available methods that can be used as sensitivity
analyses to explore whether MR results are biased by horizontal
pleiotropy (a single mQTL influencing multiple traits) require more
than one genetic instrument (here mQTLs) and even with two or
three this can be difficult to interpret43. Having determined that it
was not possible to undertake MR analyses of 86% of the
birthweight-related differentially methylated CpGs (because we did
not identify any mQTLs), and for the majority of the remaining
CpGs we would not have been reliably able to distinguish causality
from horizontal pleiotropy (because only one mQTL could be
identified), we decided not to pursue MR analyses further.

Discussion
This large-scale meta-analysis shows that birthweight is associated
with widespread differences in DNA methylation. We observed
some enrichment of birthweight-associated CpGs among sites that
have previously been linked to smoking during pregnancy14 and
pre-pregnancy BMI15, consistent with the hypothesis that epigenetic
pathways may underlie the observational associations of those pre-
natal exposures with birthweight21,44,45. However, the actual overlap
in this analysis was modest, likely explained by the adjustments for
maternal smoking and BMI in the EWAS analyses. The overlap that
we observed with pregnancy smoking-related CpGs may reflect the
possibility that smoking-related CpGs capture smoking better than
self-report46,47, in line with expectations of pregnant women
underreporting their smoking behaviour. Adjustment for maternal
smoking and BMI may have masked a greater level of overlap
between our results and EWAS of these two maternal exposures.
The fact that we find an association of DNA methylation across the
genome with birthweight provides some support for our conceptual
framework shown in Fig. 1. However, we acknowledge that the
associations that we have observed may also be explained by causal
effects of maternal pregnancy exposures on both DNA methylation
and fetal growth, as well as subtle inflammatory responses in cell-
type proportions associated with maternal smoking that might not
have been completely captured with the currently available cell type
estimation methods.

The differential methylation associated with birthweight in neo-
nates persisted only minimally across childhood and into adulthood.

Larger (preferably longitudinal) studies are needed to explore per-
sistent differential methylation in more detail and with better power
at older ages. It is possible that inclusion of the Gambia study in the
childhood EWAS (which was the only non-European study in these
analyses and was not included in the main meta-analyses with
neonatal blood) might have impacted these results, although this
study made up just 7% of the total child follow-up sample. A rapid
attenuation of differential methylation in relation to birthweight in
the first years after birth has previously been reported19, but our
sample size for these analyses may have been too small to detect
persistence. This rapid decrease, if real, may indicate a reduction in
the dose of the child’s exposure to maternal factors such as smoking
once the offspring is delivered, with that reduction continuing as the
child ages. Persistence of birthweight-related differential DNA
methylation may not necessarily be a prerequisite for long-term
effects, as transient differential methylation in early life may cause
lasting functional alterations in organ structure and function that
predispose to later adverse health effects.

Methylation is known to be associated with gene expression48.
However, we found no consistent associations between birthweight-
related methylation and gene expression in two childhood studies.
This could be due to the relatively small sample sizes, differences in
ethnicities, age, or platforms to measure gene expression. The use of
blood, which is likely only a possible surrogate tissue for fetal growth
phenotypes, for gene expression analysis might also explain the lack
of findings. We did find multiple cis-eQTMs among the birthweight-
related CpGs at which methylation was related to gene expression in
blood when using a publicly available database from a larger adult
sample40, providing some evidence that birthweight-related differ-
entially methylated CpGs may be associated with gene expression.
These initial in silico association analyses need further exploration to
establish any underlying causal mechanisms.

In observational studies, birthweight has repeatedly been
associated with a range of later-life diseases. Change in DNA
methylation has been hypothesized as a potential mechanism
linking early exposures, birthweight and later health (Fig. 1). We
originally aimed to explore this using MR analysis. For the vast
majority of the birthweight-associated CpGs, no genetic instru-
mental variables were available. For the remaining 126 CpGs,
only one mQTL was available, which would make it impossible to
disentangle causality from horizontal pleiotropy. To ensure a
strong basis for future MR analyses on this topic, there is a clear
need for a more extensive mQTL resource.

Strengths of this study are its large sample size and the extensive
analyses that we have undertaken. In a post hoc power calculation
based on the sample size of 8825 with a weighted mean birthweight
of 3560 g (weighted mean standard deviation (SD): 483 g) and with
an alpha set at the Bonferroni-corrected level of P < 1.06 × 10−7 we
had 80% power, with a two-sided test, to detect a minimum differ-
ence of 0.13 SD (63 g) in birthweight for each SD increase in
methylation. The difference in methylation corresponding to a 1 SD
increase differs per CpG, as it depends on the distribution of the
methylation values. We acknowledge that smaller differences which
might be clinically or biologically relevant may not have been iden-
tified in the current analysis. Nonetheless, to our knowledge this
analysis has brought together all studies currently available with
relevant data and is the largest published study of this association.
DNA methylation patterns in neonatal blood, whilst easily accessible
in large numbers, may not reflect the key tissue of importance in
relation to birthweight. DNA methylation and gene expression in
placental tissue may be important targets for future studies. DNA
methylation varies between leucocyte subtypes49 and we used an
adult whole blood reference to correct for this in the main
analyses23,24, as the study-specific analyses were completed before the
widespread availability of specific cord blood reference datasets50,51.
However, we observed very similar findings in two studies
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(Generation R and GECKO) when we compared the results with
those using one of the currently available cord blood references50.
Although we adjusted for potential major confounders that may
affect both methylation and fetal growth, we acknowledge that the
main results cannot ascertain causality. That is, whilst we have
hypothesised that variation in fetal DNA methylation influences fetal
growth and hence birthweight, and undertaken the analyses
accordingly, we cannot exclude the possibility that differences in
neonatal blood DNA methylation are caused by variation in fetal
growth itself, or that the association is confounded by factors,
including maternal smoking and BMI, that independently influence
both fetal growth and DNA methylation (as suggested in Fig. 1). The
450k array that was used to measure genome-wide DNAmethylation
only covers 1.7% of the total number of CpGs present in the genome
and specifically targets CpGs in promoter regions and gene bodies52.
We removed the CpGs that were flagged as potentially cross-reactive,
as the measured methylation levels may represent methylation at
either of the potential loci. Also, although we did not find evidence
for polymorphic effects for the 161 potentially polymorphic CpGs in
ALSPAC, we cannot completely exclude these potential polymorphic
effects in the meta-analysed results. The majority of participants were
of European ethnicity and when analyses were restricted to those of
European ethnicity the results were essentially identical to those with
all studies included. Direct comparisons of the main analysis with
analyses in those of Hispanic or of African ethnicity for the 914 hits
suggested strong correlations with Hispanic but weaker with African
ethnicity. However, these results need to be treated with caution.
First, we had very few studies of Hispanic and African populations.
Second, we only compared the initial hits from the main meta-
analysis with all ethnicities included. A detailed exploration of ethnic
differences would require similar large samples for each ethnic group
and within ethnic EWAS, which is beyond the scope of the data
currently available.

Neonatal blood DNAmethylation at many sites across the genome
is associated with birthweight. Further research is required to
determine if these are causal and if so whether they mediate any
long-term effect of intrauterine exposures on future health.

Methods
Participants. In the main EWAS meta-analysis we explored associations of neo-
natal blood DNA methylation with birthweight using data from 8825 neonates
from 24 studies in the PACE Consortium53 (Table 1). We removed multiple births
from all analyses and excluded preterm births (<37 weeks) and offspring of
mothers with pre-eclampsia or diabetes (three major pathological causes of dif-
ferences in fetal growth). In follow-up analyses, we explored whether any sites
found in the main analysis were discernible in relation to birthweight when
examined in DNA from blood drawn during childhood (2–13 years; 2756 children
from 10 studies), adolescence (16–18 years; 2906 adolescents from six studies) or
adulthood (30–45 years; 1616 adults from three studies), see Supplementary
Data 1B. Informed consent was obtained from all participants, and all studies
received approval from local ethics committees. Study-specific methods and ethical
approval statements are provided in Supplementary Methods.

Birthweight, DNA methylation and covariates. Our primary outcome was
birthweight on a continuous scale (grams), adjusted for gestational age, and measured
immediately after birth or retrospectively reported by mothers in questionnaires. In
secondary analyses, we categorised and compared associations with high (>4000 g,
n= 1593) versus normal (2500–4000g, n= 6377) birthweight. We also explored all
associations with (continuous and categorical) birthweight in analyses that did not
exclude women with pre-eclampsia, diabetes or preterm delivery, which also resulted
in enough cases to explore low (<2500 g, n= 178) versus normal (2500–4000 g, n=
4197) birthweight (Supplementary Data 1C shows the characteristics of participants).
Primary, secondary and follow-up analyses are outlined in the study design in Fig. 2.
DNA methylation was measured in neonatal blood samples using the Illumina Infi-
nium® HumanMethylation450 BeadChip assay. All participants had cord blood
samples except for three studies with heel stick blood spots (n= 1254 [14.2%]). After
study-specific laboratory analyses, quality control, normalisation, and removal of
control probes (n= 65) and probes that mapped to the X (n= 11,232) and Y (n=
370) chromosomes, we included 473,864 CpGs. DNA methylation is expressed as the
proportion of cells in which the DNA was methylated at a specific site and hence takes
values from zero to one. We converted this to a percentage and present differences in

mean birthweight per 10% higher DNA methylation level at each CpG. All analyses
were adjusted for gestational age at delivery, child sex, maternal age at delivery, parity
(0/≥1), smoking during pregnancy (no smoking/stopped in early pregnancy/smoking
throughout pregnancy), pre-pregnancy BMI, socio-economic position, technical var-
iation, and estimated white blood cell proportions (B-cells, CD8+ T-cells, CD4+
T-cells, granulocytes, NK-cells and monocytes)23–25. In studies with participants from
multiple ethnic groups, each group was analysed separately and results were added
to the meta-analyses as separate studies. Further details are provided in the study-
specific Supplementary Methods.

Statistical methods. Robust linear (birthweight as a continuous outcome) or logit
(binary birthweight outcomes) regression EWAS were undertaken within each
study according to a pre-specified analysis plan. Quality control, normalisation and
regression analyses were conducted independently by each study. After confirming
comparability of study-specific summary statistics54, we combined results using a
fixed effects inverse variance weighted meta-analysis55. The meta-analysis was done
independently by two study groups and the results were compared in order to
minimise the likelihood of human error. We show (two-sided) results after cor-
recting for multiple testing using both the FDR<0.0556 and the Bonferroni cor-
rection (p < 1.06 × 10−7). We completed follow-up analyses for differentially
methylated CpGs that reached the Bonferroni-adjusted threshold and did not show
large between-study heterogeneity57 (I2 ≤ 50%). We annotated the nearest gene for
each CpG using the UCSC Genome Browser build hg1958,59. We explored whether
between-study heterogeneity might be explained by differences in ethnicity
between studies, by repeating the meta-analysis including only participants of
European ethnicity, which was by far the largest ethnic subgroup (n= 6023 from
17 studies) (Fig. 2). Ethnicity was defined using maternal or self-report, unless
specified otherwise in study-specific Supplementary Methods. We also did meta-
analyses only including the Hispanic studies and only including the African
American studies and present those results for illustrative purposes only, given the
much smaller sample size. All analyses were performed using R60, except for the
meta-analysis which was performed using METAL55. We removed CpGs that co-
hybridised to alternate sequences (i.e. cross-reactive sites), because we cannot
distinguish whether the differential methylation is at the locus that we have
reported or at the one that the probe cross-reacts with. We compared the
birthweight-related CpGs to lists of CpGs that are potentially influenced by a SNP
(polymorphic sites)26,27. For these CpGs, we determined if DNA methylation levels
were influenced by nearby SNPs, by assessing whether their distributions deviated
from unimodality using Hartigans’ dip test28,29 and visual inspection of density
plots in n= 742 cord blood samples in the ALSPAC study.

Analyses at older ages. Analyses of the associations with DNA methylation in
blood collected in childhood, adolescence and adulthood followed the same cov-
ariable adjustment and methods as for the main analyses (p < 5.5 × 10−5 for 914
tests). All participants and studies in these analyses at older ages had not been
included in the main meta-analysis in neonatal blood, except for ALSPAC (n= 633
in neonatal analyses, n= 605 in childhood and n= 526 in adolescence), CHA-
MACOS (n= 283 in neonatal analyses and n= 191 in childhood) and Generation
R (n= 717 in neonatal analyses and n= 372 in childhood). Characteristics are
shown in study-specific Supplementary Methods and Supplementary Data 1B.

Intrauterine factors. We used a hypergeometric test to explore the extent to which
any of the birthweight-related CpGs overlapped with those previously associated
with intrauterine exposure to smoking14 (n= 568 CpGs), BMI15 (n= 104 CpGs)
and plasma folate31 (n= 48 CpGs), using the same (Bonferroni-corrected) cut-off
for statistical significance. No CpGs reached the Bonferroni-corrected cut-off for
famine32. We additionally appraised this overlap using the FDR<0.05 cut-off for all
traits (n= 8170 birthweight-related CpGs, n= 6703 smoking-related CpGs, n=
16,067 BMI-related CpGs, n= 443 folate-related CpGs, n= 7 famine-related
CpGs). These FDR results were available from the publications for smoking, folate
and famine, and we obtained them from the corresponding author for BMI.

Metastable epialleles and imprinted genes. We tested the birthweight-
associated CpGs for enrichment of metastable epialleles and CpGs associated with
imprinted genes. The metastable epialleles were derived from a recently published
study that identified 1936 putative metastable epialleles34. For imprinted genes, we
first identified a set of CpGs falling within a curated set of imprinting control
regions; differentially methylated regions controlling the parental-specific expres-
sion of one or more imprinted genes36. Second, we extracted the set of imprinting
control region controlled genes from the above source and identified all 450k CpGs
within +/−10kbp of the gene transcription start site, including all known alter-
native TSS identified in grch37.ensembl.org using biomaRt61,62.

Comparison with GWAS for birthweight. We compared the birthweight-
associated CpGs with the 60 SNPs from the most recent GWAS meta-analyses of
fetal genotype associations with birthweight in >150,000 newborns37 and with
the 10 SNPs from the most recent GWAS meta-analysis of maternal genotype
associations with birthweight in >86,000 women38. With this comparison we
checked if the EWAS top hits were located within a 4Mb window (+/− 2Mb)
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surrounding these SNPs. We additionally checked whether SNPs and CpGs were
located in the same gene.

Functional analyses. To explore the association of methylation with gene
expression, we compared birthweight-related CpGs with a recently published list of
18,881 cis-eQTMs from whole blood samples of 2101 Dutch adult individuals40.
With a hypergeometric test, we calculated enrichment of cis-eQTMs in the list of
birthweight-associated CpGs. We further explored methylation of birthweight-
associated CpGs in relation to whole blood mRNA gene expression (transcript
levels) within a 500 kb region of the CpGs (+/−250 kb, FDR<0.05) in 112 Spanish
4-year-olds41 and 84 Gambian 2-year-olds42 (Supplementary Methods). To better
understand the potential mechanisms linking DNA methylation and birthweight,
we explored the potential functions of the birthweight-associated CpGs using GO
and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. We
used the missMethyl R package63, which enabled us to correct for the number of
probes per gene on the 450k array, based on the November 2018 version of the GO
and KEGG source databases. To filter out the large, general pathways we set the
number of genes for each gene set between 15 and 1000, respectively. We calculated
FDR at 5% corrected P-values for enrichment.

Mendelian randomization. MR uses genetic variants as instrumental variables to
study the causal effect of exposures on outcomes64,65. We aimed to use two-sample
MR22,66 to explore (a) evidence of a causal association of methylation levels at the
identified CpGs with birthweight and (b) evidence of a causal association of these
CpGs with later-life health outcomes (i.e. to explore our hypothesised causal
mechanisms shown in Fig. 1). We did this by first searching a publicly available
mQTL database39 to identify cis-mQTLs within 1Mb of each of the Bonferroni-
corrected, with I2 ≤ 50%, birthweight-related differentially methylated CpGs. These
mQTLs could then be used as genetic instrumental variables for methylation levels
of the birthweight-related CpGs. We then aimed to determine the association of
these mQTLs with birthweight and later-life health outcomes from publicly
available summary GWAS results66.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available within the article
and its Supplementary Information files or from the corresponding authors upon
reasonable request. All summary statistics from this EWAS meta-analysis are available
via doi: 10.5281/zenodo.2222287. A reporting summary for this Article is available as a
Supplementary Information file.

Code availability
The code used for this EWAS meta-analysis is available from the authors upon request.
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Abstract

Background: Preterm birth and shorter duration of pregnancy are associated with increased morbidity in neonatal
and later life. As the epigenome is known to have an important role during fetal development, we investigated
associations between gestational age and blood DNA methylation in children.

Methods: We performed meta-analysis of Illumina’s HumanMethylation450-array associations between gestational
age and cord blood DNA methylation in 3648 newborns from 17 cohorts without common pregnancy complications,
induced delivery or caesarean section. We also explored associations of gestational age with DNA methylation measured at
4–18 years in additional pediatric cohorts. Follow-up analyses of DNA methylation and gene expression correlations were
performed in cord blood. DNA methylation profiles were also explored in tissues relevant for gestational age health effects:
fetal brain and lung.

Results:We identified 8899 CpGs in cord blood that were associated with gestational age (range 27–42
weeks), at Bonferroni significance, P < 1.06 × 10− 7, of which 3343 were novel. These were annotated to 4966
genes. After restricting findings to at least three significant adjacent CpGs, we identified 1276 CpGs annotated
to 325 genes. Results were generally consistent when analyses were restricted to term births. Cord blood
findings tended not to persist into childhood and adolescence. Pathway analyses identified enrichment for
biological processes critical to embryonic development. Follow-up of identified genes showed correlations
between gestational age and DNA methylation levels in fetal brain and lung tissue, as well as correlation with
expression levels.

Conclusions: We identified numerous CpGs differentially methylated in relation to gestational age at birth
that appear to reflect fetal developmental processes across tissues. These findings may contribute to understanding
mechanisms linking gestational age to health effects.

Keywords: Development, Epigenetics, Gestational age, Preterm birth, Transcriptomics

Background
Preterm birth (birth before 37 weeks’ gestation) is associ-
ated with increased neonatal morbidity and mortality [1,
2], as well as later health [3–6]. In children born at very
young gestational ages, bronchopulmonary dysplasia, ret-
inopathy and neurodevelopmental impairment are major
health challenges [7–12]. Lower lung function is observed
in children born moderately preterm, i.e. between 32 and
36 completed weeks, compared to those born at term
[13]. Even variation in gestational age within the normal
range (37–41 weeks) is related to various health outcomes,
including neurological and cognitive development [14–17]
and respiratory disease [4]. Mechanisms for many of these
findings are not well understood.
The epigenome is known to have an important role during

fetal development. The best studied epigenetic modification
is methylation. DNA methylation patterns have been associ-
ated with environmental factors relevant to preterm birth, in-
cluding smoking, air pollution exposure, microbial and
maternal nutritional factors [18–22]. Such exposure-related
epigenetic patterns potentially influence gene expression pro-
files and/or susceptibility to chronic disease during the life-
course [23, 24]. Further, DNA methylation in whole blood at
birth may also reflect development across fetal life. It is pos-
sible that DNA methylation changes at birth may contribute
to the myriad immediate and late health outcomes that have
been associated with gestational age.

Knowledge about DNA methylation and gene expres-
sion profiles associated with length of gestation may help
to better understand both the molecular basis of abnor-
mal processes related to prematurity as well as normal
human development. Several studies have reported asso-
ciations of gestational age among both term and preterm
births with cord blood DNA methylation [25–29]. In the
largest EWAS to date (n = 1753 newborns), 5474 CpGs
in cord blood were associated with gestational age [30].
While these individual studies have identified wide-
spread associations of DNA methylation patterns at
birth with gestational age, meta-analysis of results from
multiple individual cohorts increases sample size and,
thus, greatly increases power to detect robust differential
methylation signals.
We examined DNA methylation levels in newborns in

relation to gestational age in a large-scale meta-analysis
and also examined functional effects on expression of
nearby genes of potential relevance for later health. We
meta-analysed harmonized cohort specific EWAS results
of the association of gestational age with cord blood
DNA methylation levels from the Pregnancy And Child-
hood Epigenetics (PACE) Consortium of pregnancy and
childhood cohorts [31]. We also examined associations
with continuous gestational age limited to term new-
borns. CpGs that were differentially methylated in cord
blood in relation to gestational age were then analysed
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in two fetal tissues (lung and brain), with relevance for
health impacts of low gestational age [7–12]. We con-
ducted analyses to explore whether associations of CpG
methylation with gestational age persisted in older chil-
dren aged 4–18 years. DNA methylation status at the
identified CpGs was analysed for association with gene
expression patterns of nearby genes in cord blood during
different developmental stages. Finally, we performed
pathway and functional network analysis of identified
genes to gain insight into the biological implications of
our findings.

Methods
Figure 1 gives an outline of the design of this study.

Study population
A total of 11,000 participants in 26 independent cohorts
were included in our study. In the “all births model”
meta-analysis, we included n = 6885 newborns from 20
cohorts. In our main “no complications model”, we ex-
cluded participants with maternal complications (mater-
nal pre-eclampsia or diabetes or hypertension) and
caesarean section delivery or delivery start with induc-
tion, leaving 3648 newborns from 17 cohorts for this
analysis (Additional file 1: Table S1). For the additional
look-up of persistent differential methylation at later
ages, we used participants from 4 cohorts with whole

blood DNA methylation in early childhood (4–5 years;
n = 453), 5 cohorts with whole blood DNA methylation at
school age (7–9 years; n = 899) and 5 cohorts with whole
blood DNA methylation in adolescence (16–18 years; n =
1129). Detailed methods for each cohort are provided in
Additional file 2: Supplementary information. All cohorts
acquired ethics approval and informed consent from par-
ticipants prior to data collection through local ethics com-
mittees (Additional file 2: Supplementary information).

Gestational age
In each cohort, information on gestational age at birth
was obtained from birth certificates (n = 725), medical
records using ultrasound estimation (n = 1931), or last
menstrual period date (n = 468), or combined estimate
from ultrasound and last menstrual period date (n =
6630), or otherwise from self-administrated question-
naires (n = 1246). Gestational age was analysed in days.
Women with a gestational age of more than 42 weeks
(294 days) were excluded from all models. Additionally,
multiple births were also excluded from the analysis.

Methylation measurements and quality control
DNA methylation from newborns and older children
was measured using the Illumina450K platform. Each
cohort conducted their own quality control and
normalization of DNA methylation data, as detailed in

Fig. 1 An overview of the study design
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Additional file 1: Table S2. Cohorts corrected for batch
effects in their data using surrogate variables, ComBat
[32], or by including a batch covariate in their models.
To reduce the impact of severe outliers in the DNA
methylation data on the meta-analysis, cohorts trimmed
the methylation beta values by removing, for each CpG,
observations more than three times the interquartile
range below the 25th percentile or above the 75th per-
centile [33]. Cohorts retained all CpGs that passed qual-
ity control and removed CpGs that were mapped to the
X (n = 11,232) or Y (n = 416) chromosomes and control
probes (n = 65), leaving a maximum total of 473,864
CpGs included in the meta-analysis.

Cohort-specific statistical analyses
Each cohort performed independent EWAS according to
a common, pre-specified analysis plan. Robust linear re-
gression (rlm in the MASS R package [34]) was used to
model gestational age as the exposure and DNA methy-
lation beta values as the outcome. In the primary ana-
lysis, gestational age was used as a continuous variable
excluding cohorts that had term-only infants. In second-
ary models, we modeled term-only children defined as a
gestational age ≥ 37 weeks (≥ 259 days), but less or equal
with 42 weeks. All models were adjusted for sex, mater-
nal age (years), maternal social class (variable defined by
each individual cohort; Additional file 1: Table S2), ma-
ternal smoking status (the preferred categorization was
into three groups: no smoking in pregnancy, stopped
smoking in early pregnancy, smoking throughout preg-
nancy, but a binary categorization of any versus no
smoking was also acceptable), parity (the preferred
categorization was into two groups: no previous chil-
dren, one or more previous children), birth weight in
grams, age of the child (years) included for older chil-
dren, batch or surrogate variables. Optionally, cohorts
could include ancestry, and/or selection covariates, if
relevant to their study. We also adjusted for potential
confounding by cell type using estimated cell type pro-
portions calculated from a cord blood cell type reference
panel [35] for newborn cohorts or the adult blood cell
type reference panel [36] for cohorts with older children
using the estimateCellCounts function in the minfi R
package [37].

Meta-analysis
We performed fixed-effects meta-analysis weighted by the
inverse of the variance with METAL [38]. A shadow
meta-analysis was also conducted independently by a sec-
ond study group (see author contribution) and the results
were compared [39] (and confirmed). All downstream
analyses were conducted using R version 2.5.1 or later
[40]. Multiple testing was accounted for by applying the
Bonferroni correction level for 473,864 tests (P < 1.06 ×

10− 7). A random effects model was performed using the
METASOFT tool [41]. We explored heterogeneity be-
tween studies using the I2 statistic [42]. A priori, we de-
fined I2 > 50% as reflecting a high level of between-study
variation. In case of I2 > 50%, we replaced values with ran-
dom effects estimates as these are attenuated in the face
of heterogeneity and thus more conservative. To focus
functional analyses and bioinformatics efforts on genes
and loci that were found to be robustly associated with
gestational age, we selected regions that had at least three
adjacent Bonferroni significant CpGs (P < 1.06 × 10− 7)
[43]. Genome-wide DNA methylation meta-analysis
summary statistics corresponding to the main analysis
presented in this manuscript are available at figshare
(https://doi.org/10.6084/m9.figshare.11688762.v1) [44].

Analyses of differentially methylated regions
Differentially methylated regions (DMRs) were identified
using two methods available for meta-analysis results
comb-p [45] and DMRcate [46]. Input parameters used
for the DMR calling in both algorithms are provided in
Additional file 2: Supplementary information. Comb-p
uses a one-step Šidák correction [45] and DMRcate uses
an FDR correction [46] per default. The selected regions
were defined based on the following criteria: the minimum
number of CpGs in a region had to be 2, regional informa-
tion can be combined from probes within 1000 bp and the
multiple-testing corrected P < 0.01 (Šidák-corrected P < 0
.01 from comb-p and FDR < 0.01 from DMRcate).

Analyses of embryonic DNA methylation
DNA methylation from lung tissue of 74 foetuses (esti-
mated ages 59 to 122 days post conception [47]) were
used for analyses of differentially methylated CpGs
(three or more adjacent Bonferroni significant CpGs,
P < 1.06 × 10− 7; n = 1276) from the newborn meta-
analysis. A linear regression model adjusted for sex and
in utero smoke exposure (IUS) was applied. A Bonfer-
roni look-up level correction (0.05/1030; P < 4.85 × 10− 5)
considered as significance threshold, followed by a com-
parison of the direction of effect with that in the cord
blood meta-analysis. We also performed look-up ana-
lyses of selected 1276 CpGs in another organ, fetal brain
tissue, from 179 foetuses collected between 23 and 184
days post-conception [48]. For these analyses, we kept
the available Bonferroni correction P < 1.06 × 10− 7 as
significance threshold, followed by a comparison of the
direction of effect with that in the cord blood meta-
analysis.

Look-up analyses in older ages
Differentially methylated CpGs (three or more adjacent
CpGs below the Bonferroni correction P < 1.06 × 10− 7;
n = 1276) from the newborn meta-analyses were
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analysed with a look-up approach using data from four
early childhood, five school age, and five adolescence co-
horts. Cohorts included the same covariates in these
analyses as in the cord blood analyses and child age. We
performed fixed effects inverse variance weighted meta-
analyses using METAL [38] for these three age groups.
For this hypothesis-driven analysis, CpG methylation as-
sociation with gestational age was considered statistically
significant at nominal P < 0.05, followed by a comparison
of the direction of effect with that in the cord blood
meta-analysis.

Longitudinal analysis
Longitudinal DNA methylation data from birth to early
childhood and from birth to adolescence were analysed
for the three or more adjacent Bonferroni significant
1276 CpGs found to be associated with gestational age.
DNA methylation from two time points (birth and 4
years) in INMA and three time points (birth, 7 and 17
years) in ALSPAC were analysed separately. To estimate
changes in DNA methylation, we applied linear mixed
models with repeated measurement taking into account
the within-person time effect. The models were adjusted
for covariates and estimated cell count similar to cross-
sectional analysis. Interaction terms between age and
gestational age were included in the model to capture
differences in methylation change between birth and 4
years, birth and 7 years and 7 and 17 years per day in-
crease in gestational age at delivery, respectively. The
stable CpGs that did not change significantly from birth
to adolescence had no association with age (at nominal
P < 0.05), and no interaction between gestational age and
childhood age (at nominal P < 0.05).

Enrichment and functional analysis
CpGs were annotated using FDb.InfiniumMethyla-
tion.hg19 R package, with enhanced annotation for near-
est genes within 10Mb of each site, as previously
described [20]. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses were performed using the overrep-
resentation analysis (ORA) tool ConsensusPathDB
(http://consensuspathdb.org/ [49, 50]). P values for en-
richment were adjusted for multiple testing using the
FDR method.

DNA methylation in relation to gene expression
Correlations between DNA methylation and gene ex-
pression levels were tested using paired DNA methyla-
tion and gene expression data in publicly available
datasets. We tested transcript levels of genes within a
500-kb region of the 1276 three adjacent CpGs (250 kb
upstream and 250 kb downstream). The mRNA gene ex-
pression (Affymetrix Human Transcriptome Array 2.0)

and methylation (Illumina Infinium® HumanMethyla-
tion450 BeadChip assay) were measured in cord-blood
samples from 38 newborns [51–53]. First, we created re-
siduals for mRNA expression and residuals for DNA
methylation and used linear regression models to evalu-
ate correlations between expression residuals and DNA
methylation residuals. These residual models were ad-
justed for covariates, estimated white blood cell propor-
tions, and technical variation. We corrected these
analyses for multiple testing using Bonferroni correction.

Results
Study characteristics
We meta-analysed Illumina’s HumanMethylation450-
array results from 17 independent cohorts with data on
newborn DNA methylation status, and 10 cohorts with
data on DNA methylation in older children (age 4 to 18
years), including 4 cohorts with DNA methylation data
both at birth and at an older age (Fig. 1). Table 1 summa-
rizes the characteristics of participating cohorts. A sum-
mary of methods used by each cohort is provided in
Additional file 1: Tables S1 and S2. In our main “no com-
plications” model, we excluded participants exposed to
maternal pregnancy complications (maternal diabetes,
hypertension or pre-eclampsia) and whose labour was in-
duced or who were delivered by caesarean section. With
continuous gestational age in the number of days as the
exposure (gestational age range 186–294 days correspond-
ing to 27–42 weeks), we analysed results from 3648 new-
borns and from 2481 older children. This model was
selected as the main model because associations of DNA
methylation with gestational age related to pregnancy
complications or potentially influenced by obstetric inter-
ventions may be less reflective of normal developmental
processes than newborns with spontaneous uncompli-
cated delivery. However, we also analysed a larger dataset
of 6885 newborns from 20 independent cohorts, including
pregnancies with pregnancy complications and obstetric
interventions, referred to as the “all births model” (see
below).

Associations between gestational age and newborn DNA
methylation
We identified 8899 CpGs in cord blood that were associ-
ated with gestational age (range 27–42 weeks), at Bonfer-
roni significance, P < 1.06 × 10–7, of which 3343 were
novel. These were annotated to 4966 genes. CpGs asso-
ciated with gestational age had a modest predominance
of negative (60%) versus positive (40%) direction of
effect, with an overall absolute median difference in
mean methylation of 0.36% per gestational week, IQR =
[0.26%–0.49%] (Fig. 2a). In general, results were highly
homogeneous; evidence of high between-study hetero-
geneity, using a criterion of I2 > 50%, was seen for only
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319 of the 8899 CpGs (Additional file 1: Table S3). Leave
one out analyses did not indicate an influential effect on
meta-analysis results of any single study. However, we
replaced fixed effects values with random effects esti-
mates for those CpGs with between study I2 > 50%, as
these are more conservative in the case of heterogeneity.
Differentially methylated CpGs spanned all chromosomes

(Fig. 2b). The CpG with the lowest P value (P = 2.7 × 10− 129

for cg16103712; Table 2) was annotated to MATN2 on chr
8, and the difference in mean methylation at this CpG was
2.13% lower per additional gestational week (equal to 0.30%
per day). The CpG with the largest negative association was
cg04347477, annotated to NCOR2 on chr 12 (Table 3), with
a lower mean methylation of 2.53% per additional gestational
week. B3GALT4 (chr 6) had the largest number of significant
CpGs negatively associated with gestational age (21 out of 52

Table 1 Characteristics of each cohort included in the association meta-analysis between gestational age (GA) and DNA
methylation in newborns and older children

Study
population

Cohort N N, pre-
term*

N,
term

Age
mean (SD)

Maternal age
mean (SD)

Mean GA
(days)

SD
GA

Min
GA

Max
GA

Ethnicity

Newborn ALSPAC** [29] 249 10 239 0 29.8 (4.6) 277 10.78 224 294 European

CBC (Hispanic) [54] 128 10 118 0 27.3 (5.8) 273 17.70 196 294 Hispanic

CBC (European) [54] 132 11 121 0 31.9 (5.7) 273 16.10 189 294 European

CHS [55] 120 7 113 0 29.4 (5.6) 277 11.20 230 294 Mixed

CHAMACOS [56] 110 11 99 0 25.3 (5.0) 272 10.66 210 294 Hispanic

EDEN [57] 100 2 98 0 30.8 (5.0) 276 10.11 217 287 European

EXPOSOMICS (Environage + PiccoliPlus +
RHEA) [58]

252 17 235 0 30.5 (4.8) 273 10.50 217 294 European

Generation R [59] 486 22 464 0 31.9 (4.2) 280 9.00 239 294 European

INMA [60] 134 2 132 0 30.5 (4.1) 278 9.57 234 286 European

IOW F2 [61] 93 2 91 0 23.2 (2.6) 278 10.95 236 294 European

MoBa1** [30] 749 18 731 0 29.9 (4.3) 279 10.36 209 294 European

MoBa2** [30] 460 15 445 0 30.0 (4.5) 278 10.49 209 294 European

MoBa3 [20] 177 3 174 0 29.6 (4.4) 279 10.38 199 294 European

PREDO [62] 308 5 303 0 33.4 (5.7) 278 11.20 186 294 European

Project Viva [63] 150 3 147 0 33.2 (4.5) 278 10.11 216 294 European

Meta-analysis 3648 138

Early
childhood

BAMSE [64] 145 10 135 4.3 (0.2) 31.2 (4.4) 275 16.22 187 293 European

EDEN [64] 89 2 87 5.6 (0.1) 30.8 (5.1) 276 9.23 245 287 European

INMA [64] 71 1 70 4.4 (0.2) 30.6 (4.3) 279 8.70 249 288 European

PIAMA [64] 148 4 144 4.1 (0.2) 30.6 (3.6) 278 10.51 233 294 European

Meta-analysis 453 17

School age ALSPAC [29] 273 12 261 7.5 (0.1) 29.9 (4.6) 277 10.99 224 294 European

BAMSE [64] 141 10 131 8.4 (0.4) 31.4 (4.5) 276 15.96 197 293 European

BAMSE_EpiGene [64] 232 8 224 8.3 (0.5) 30.8 (4.4) 278 11.47 209 294 European

PIAMA [64] 134 3 131 8.1 (0.3) 30.5 (3.6) 278 10.61 233 294 European

Project Viva [63] 119 2 117 7.8 (0.7) 33.5 (4.4) 278 10.32 216 294 European

Meta-analysis 899 35

Adolescence ALSPAC [29] 272 13 259 17.2 (1.0) 29.9 (4.6) 277 11.04 224 294 European

BAMSE [64] 159 7 152 16.7 (0.4) 31.2 (4.4) 278 12.70 187 294 European

IOW F1 [61] 97 2 95 17.1 (0.5) 27.1 (5.1) 280 9.83 238 294 European

NFBC86 [65] 287 9 276 16.1 (0.4) 29.0 (5.1) 280 8.65 237 294 European

RAINE [66] 314 9 305 17.0 (0.3) 29.0 (5.8) 274 11.90 196 294 European

Meta-analysis 1129 40

*Preterm birth categorized as GA less than 37 full weeks or 259 days and as term greater than 37 weeks or 259 days (but less than 42 full weeks). **This study was
included previous EWAS of gestational age [29, 30]. Cohort details and references can be found at Additional file 2 and in Felix et al. [31]
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(40%) tested CpGs annotated to B3GALT4). The largest posi-
tive association was observed for cg13036381 annotated to
LOC401097 (chr 3) (Table 3) with a difference in mean
methylation of 1.95% per additional gestational week. DDR1
(chr 6) had the largest number of significant CpGs positively
associated with gestational age (26/95 (27%) CpGs). A
complete list of associated CpGs is presented in Add-
itional file 1: Table S3 and the CpG variation across cohorts
in Additional file 3: Figure S1 (top CpGs).
We performed a sensitivity analysis by excluding co-

horts that were included in previous EWAS of gesta-
tional age [29, 30] (three cohorts: MoBa1, MoBa2 and
ALSPAC) in order to evaluate associations not driven by
previous results, and found a high correlation (r = 0.89)
of effect estimates (Additional file 3: Figure S2)

compared with results from all cohorts included in the
no complication model.
Next, we performed a meta-analysis of the larger dataset of

6885 participants from 20 studies without excluding mater-
nal complications and caesarean section delivery or induced
delivery. In this “all births model”, 17,095 CpGs located in or
near 7931 genes were associated with gestational age after
Bonferroni correction (P < 1.06 × 10− 7). Not surprisingly
given the higher levels of statistical significance in this much
larger data set, we found somewhat more between-study het-
erogeneity than in the no complications model, but high
levels (I2 > 50%) were observed for only 1784 out of these 17,
095 CpGs (Additional file 1: Table S4). We also observed a
considerable overlap of CpGs between the two models with
93% of the 8899 CpGs in the no complication model also

Fig. 2 A, B Volcano (A) and Manhattan (B) plots for the meta-analysis of gestational age and offspring DNA methylation association at birth, after
adjustment for covariates and estimated cell proportions. The effect size represents methylation change per gestational week
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reaching Bonferroni significance in the all birth model and
showing the same direction of effect.

CpG localization and regulatory region analyses
The 8899 differentially methylated CpGs in relation to
continuous gestational age in the no complications model
were enriched for localization to CpG island shores (33%
of the 8899 CpGs are in shores, whereas 23% of all CpGs
on the 450 K array are in shores, Penrichment = 4.1× 10− 100,
Fig. 3), open sea (45% versus 37%, Penrichment = 1.4 × 10− 63),
enhancers (37% versus 22%, Penrichment = 1.05 × 10− 236),
DNase hypersensitivity sites (18% versus 12%, Penrichment =
1.3× 10− 56) and CpG island shelves (12% versus 10%,

Penrichment = 1.2 × 10− 11) (Fig. 3). In contrast, we found rela-
tive depletion in CpG islands (10% versus 31%, Penrichment =
2.2 × 10− 308), FANTOM 4 promoters (2.3% versus 6.7%,
Penrichment = 6.7 × 10− 79) and promoter-associated regions
(11% versus 19%, Penrichment = 2.2 × 10− 104).

Analysis restricted to term-births
To evaluate whether observed DNA methylation differences
in relation to continuous gestational age were driven by
preterm birth, we repeated the no complication model in-
cluding only infants born at term (gestational age 37 to 42
weeks). In this analysis, we meta-analysed results from 18 co-
horts (one additional cohort with term-birth data only was

Table 2 The top 10 Bonferroni-significant CpGs from the meta-analysis on the association between continuous GA and offspring
DNA methylation at birth adjusted for estimated cell proportions

CpGID Chr Genomic
coordinates

Gene
(Illumina annotation)

Relation to
island

Distance to
nearest gene

UCSC known
gene

Coefficient* P value Direction of effect
in each cohort**

cg16103712 8 99,023,869 MATN2 OpenSea 7355 MATN2 − 0.0030 2.70E−129 ---------------

cg04685228 5 172,462,626 OpenSea 726 ATP6V0E1 − 0.0028 8.55E−109 ------?--------

cg04276536 16 57,567,813 CCDC102A N_Shelf 0 CCDC102A − 0.0012 1.20E−93 ------?--------

cg19744173 2 112,913,178 FBLN7 N_Shelf 0 FBLN7 − 0.0016 4.91E−92 ---------------

cg27518892 16 57,566,936 CCDC102A N_Shelf 0 CCDC102A − 0.0018 1.29E−89 ---------------

cg13924996 11 67,053,829 ADRBK1 S_Shore 0 ADRBK1 − 0.0016 8.59E−89 ------?--------

cg04494800 6 149,775,853 ZC3H12D N_Shore 1923 ZC3H12D − 0.0016 4.52E−82 ------?--------

cg27295118 14 22,902,226 OpenSea − 500 AK125397 − 0.0024 1.20E−81 ------?--------

cg26433582 11 68,848,232 TPCN2 N_Shore 917 TPCN2 − 0.0019 1.31E−81 ------?--------

cg18183624 17 47,076,904 IGF2BP1 S_Shore 0 IGF2BP1 0.0028 8.36E−80 +++++++++++++++

*Coefficient corresponding to methylation change per additional day of gestational age
**Order of included cohorts in the meta-analysis: MoBa1, MoBa2, MoBa3, EDEN, EXPOSOMICS (Environage+PiccoliPlus+RHEA), CHS, IOWF2, Generation R, Project
Viva, CBC (Hispanic), CBC (White), ALSPAC, PREDO, CHAMACOS and INMA.”?” Means that CpG was not measured in that cohort

Table 3 The top 10 Bonferroni-significant CpGs ranked by the magnitude of positive and negative effect (5 CpGs each) from the
meta-analysis on the association between continuous GA and offspring DNA methylation at birth adjusted for estimated cell
proportions

CpGID Chr Genomic
coordinates

Gene (Illumina
annotation)

Relation to
island

Distance to
nearest gene

UCSC
known gene

Coefficient* P value Direction of effect
in each cohort**

cg13036381 3 1.6E+ 08 LOC401097 N_Shore − 927 C3orf80 0.00278 1.01E−47 +++++ − +++++++++

cg18183624 17 47,076,904 IGF2BP1 S_Shore 0 IGF2BP1 0.00277 8.36E−80 +++++++++++++++

cg04213841 13 49,792,685 NA N_Shore − 1788 MLNR 0.00245 3.60E−43 +++++?+++++++++

cg07738730 17 47,077,165 IGF2BP1 S_Shore 0 IGF2BP1 0.00217 2.87E−65 +++++++++++++ − +

cg09476997 16 2,087,932 SLC9A3R2 N_Shore 0 SLC9A3R2 0.00208 2.41E−49 +++++++++++++++

cg04347477 12 1.25E+ 08 NCOR2 Island 833 NCOR2 −0.00361 3.38E−32 ---------------

cg08943494 11 36,422,615 PRR5L OpenSea 69 PRR5L −0.00360 1.95E−24 ---------------

cg20334115 1 2.26E+ 08 PYCR2 N_Shelf 0 PYCR2 −0.00350 1.40E−35 ---------------

cg16725984 16 89,735,184 C16orf55 Island 0 C16orf55 −0.00325 3.70E−26 ---------------

cg16103712 8 99,023,869 MATN2 OpenSea 7355 MATN2 −0.00304 2.70E−129 ---------------

*Coefficient corresponding to methylation change per additional day of gestational age
**Order of included cohorts in the meta-analysis: MoBa1, MoBa2, MoBa3, EDEN, EXPOSOMICS (Environage+PiccoliPlus+RHEA), CHS, IOWF2, Generation R, Project
Viva, CBC (Hispanic), CBC (White), ALSPAC, PREDO, CHAMACOS and INMA.”?” Means that CpG was not measured in that cohort
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included; GEN3G) (n= 3593). We identified 5930 sites sig-
nificantly associated with gestational age at Bonferroni
correction (P < 1.06 × 10− 7, median difference in mean
methylation per additional gestational week = 0.43%, IQR=
[0.32%–0.58%]). The vast majority (5399; 91%) of these dif-
ferentially methylated CpGs overlapped with those found in
the main analyses (no complications model) without exclu-
sion of those born preterm (Fig. 4).

Selection of CpGs for downstream analyses
Given the large number of significant associations in our
main model (8899 CpGs), we focused subsequent analyses
on loci including at least three adjacent CpGs that sur-
vived Bonferroni correction [43]. There were 1276 differ-
entially methylated CpGs in 325 unique genes that
fulfilled this criterion (Additional file 1: Table S5). As in
the overall data, we observed a slight predominance of
negative (n = 702; 55%) versus positive (n = 574; 45%) di-
rections of effect (Fig. 2a). The lowest P value, P = 1.2 ×
10− 93, was observed for cg04276536 (CCDC102A,
chromosome 16). As for the full EWAS results, the largest
negative and positive association effect sizes were ob-
served for cg04347477 (NCOR2) and cg13036381
(LOC401097), respectively. These 1276 CpGs had the
same CpG localization enrichment pattern as the full set
of Bonferroni-significant CpGs (n = 8899), except that
there was a relative depletion in CpG island shelves (7.6%
versus 10% overall, Penrichment = 2.3 × 10− 12) and open sea
(32% versus 37%, Penrichment = 2.4 × 10− 12) (Fig. 3).

Differentially methylated region (DMR) analyses
Using two different methods for DMR analysis of gesta-
tional age in relation to newborn DNA methylation, we

identified 4479 significant (Šidák-corrected P < 0.01)
DMRs from the comb-p method and 14,671 significant
(FDR P < 0.01) DMRs from DMRcate, respectively,
including 2375 DMRs (representing 11,861 CpGs) that
were significant based on both approaches (Add-
itional file 1: Table S6). Out of the 8899 Bonferroni
significant single CpGs, 2289 CpGs overlapped with CpGs
in identified in the combined DMR analyses (11,861
CpGs). Moreover, from loci included by the three or more
adjacent CpG selection (n = 1276), 521 CpGs overlapped
with those identified in the combined DMR analyses. Of
note, out of the 1276 CpGs, 1223 and 1231 CpGs were
captured by DMRs identified using the comb-p and
DMRcate independent approaches, respectively.

Assessment of CpG methylation in earlier embryonic
stages
We examined whether the CpGs detected in cord blood
(that originate from embryonic germ layer mesoderm)
were differentially methylated in relation to gestational
age in other fetal tissues, lung and brain that originate
from the two other embryonic germ layers, ectoderm
and endoderm, respectively, collected prenatally [47, 48].
To this end, we performed look-up analyses in DNA
methylation data for 74 fetal lung samples represent-
ing gestational age 59 to 122 days (~ 8 to 17 com-
pleted gestational weeks) [47]. Out of the 1276 CpGs,
selected based on three or more adjacent CpGs from
our no complications model, 1030 CpGs were avail-
able in the fetal lung dataset. We observed associa-
tions at Bonferroni look-up level correction
significance (0.05/1030; P < 4.85 × 10− 5) between DNA
methylation levels in fetal lung tissue and gestational

Fig. 3 Position enrichment analyses for CpGs. Salmon: all CpGs in the Illumina450k annotation file, green: CpGs significantly associated with GA
after Bonferroni correction (P < 1.06 × 10− 7) and blue: three or more adjacent CpGs associated with GA after Bonferroni correction (P < 1.06 × 10− 7).
“**” represent significant two-sided doubling mid P value of the hypergeometric test
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age at tissue collection for 151 (15%) CpGs (Add-
itional file 1: Table S7). Of these 151 (58 negatively
and 93 positively associated), 78 showed the same
direction of association with gestational age in cord
blood and fetal lung tissue. The look-up analyses of
fetal brain tissue were undertaken in 179 samples
representing 23 to 184 days (~ 3 to 26 completed
weeks) [48]. Out of the 1276 CpGs, we found signifi-
cant associations (using Bonferroni correction P <
1.06 × 10− 7 cut-off since only this data was available
for analyses; Additional file 1: Table S8) for 268 CpGs
(21%) in relation to gestational age at tissue collec-
tion. Of these 268 sites, 227 had same direction of ef-
fect in the cord blood and fetal brain data. We found
enrichment more than expected by chance for our
cord blood gestational age associated CpGs (n = 1276)
in fetal lung (P = 2.1 × 10− 4) and brain (P = 3.9 × 10−
57) tissue. Thirty CpGs showed significant associations
with gestational age in all three tissues (cord blood,
fetal lung and fetal brain).

Assessment of CpG methylation in older children
We examined whether the differentially methylated
CpGs detected in cord blood samples were associated
with gestational age at birth in whole blood from older
children. We conducted three separate meta-analyses
(no complications model) reflecting different age periods
in a total of 2481 children: (i) Early childhood (4–5 years;
n = 453 from 4 cohorts); (ii) school age (7–9 years; n =
899 from 5 cohorts) and (iii) adolescence (16–18 years;
n = 1129 from 5 cohorts), Additional file 1: Table S1. Of
the 1276 three or more adjacent genome-wide

significant CpGs from our analyses in cord blood, 1258
CpGs were available for analyses in all older age groups.
Out of these CpGs, we observed 40 sites in early child-
hood, 60 sites in school age, and 60 sites in adolescence
to be associated with gestational age at the nominal sig-
nificance level, P < 0.05 with the same direction of effect
(Additional file 1: Table S9). However, no CpG survived
Bonferroni look-up level correction (0.05/1258; P <
3.97 × 10− 5). One CpG (cg26385222 annotated to
TMEM176B) previously associated with gestational age
at birth [27] was nominally significant in all age groups
with same direction of effect.

Longitudinal analysis
The results of the longitudinal analyses of blood DNA
methylation in the INMA Study (n = 177 with paired
samples from birth and 4 years) and the ALSPAC Study
(n = 281 with samples collected at birth, 7 and 17 years)
are provided in Additional file 1: Table S10. The vast
majority of gestational age associated CpGs (n = 1054/
1276; 83%) underwent changes in methylation levels
with age. Both increasing and decreasing patterns of
change during early childhood (4 years) were observed,
followed by stabilization during school age (7 years). For
example, for cg08943494 in PRR5L on chr 11, an initial
level of 61.5% and 51.4% in cord blood DNA methyla-
tion in INMA and ALSPAC respectively, decreased by
8.2% per year on average during early childhood in
INMA and by 3.3% per year on average up to school age
in ALSPAC, but then negligible further changes were
seen from 7 to 17 years (Fig. 5A). In contrast, increasing
levels were seen for cg18183624 (chr 17; IGF2BP1), from
an initial 48.8% and 38.7% in cord blood DNA methyla-
tion in INMA and ALSPAC, respectively, with a 5.1%
per year on average between birth to 4 years in INMA
and 1.9% per year on average between birth to 7 years,
but after that no changes from 7 to 17 years. (Fig. 5B).
Of the 1054 CpGs displaying changes in DNA methy-

lation levels with age, there were 589 CpGs where gesta-
tional age was associated with changes in DNA
methylation levels (i.e. where an interaction between
gestational age and age was found) from birth to 4 years
(INMA) and 460 CpGs with changes from birth to 7
years (ALSPAC). However, only 30 of the 1054 CpGs
changed significantly in DNA methylation between 7
and 17 years (ALSPAC), suggesting that gestational age-
related changes in DNA methylation levels had largely
stabilized by age 7.
We identified 222 stable CpGs out of 1276 (17%) that did

not change appreciably from birth to adolescence. As an ex-
ample, the stable DNA methylation at cg27058497 (RUNX3,
chromosome 1) is shown in Fig. 5C. A much lower propor-
tion of the gestational age associated CpGs were stable from

Fig. 4 Overlap between Bonferroni-significant CpG sites from two
different analyses after exclusion of maternal and delivery start with
induction or caesarean section (“no complication” model). The blue
colour represents the continuous gestational age main model, and
the green represents the continuous model restricted to term only.
Overlap of findings alters the colour
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birth to adolescence compared to all CpGs on the array (17%
versus 71%, Penrichment = 2.23× 10− 308).

Enrichment for biological processes and pathways
Using the complete list of 8899 CpGs annotated to 4966
genes, these were enriched for 1784 GO terms including
regulation of cellular and biological processes, system de-
velopment, different signaling pathways and organ devel-
opment (Additional file 1: Table S11). Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analyses revealed
124 significant terms at FDR < 0.05 representing a variety
of human diseases, most notably various cancers, viral in-
fections, metabolic processes and immune-related disor-
ders (Additional file 1: Table S12). The 325 genes
annotated to the 1276 CpGs, selected by virtue of three or
more CpGs being localized to the same gene, were
enriched for 198 Gene Ontology (GO) terms very similar
to those identified using Bonferroni significant CpGs
(Additional file 1: Table S13). When restricting analyses to
the 222 longitudinally stable CpGs, corresponding to 139
genes, 13 significant KEGG terms were revealed, primarily
representing infection- and immune-related disorders

(Additional file 1: Table S14). For 186 genes annotated to
the 1054 CpGs changing with postnatal age, only one
KEGG terms were identified as statistically significant
(P = 1.2 × 10− 3 for the term MAPK signaling pathways;
Additional file 1: Table S14).

Correlation of DNA methylation and gene expression
For the 1276 CpGs differentially methylated in relation
to gestational age with at least 3 adjacent CpGs, we
assessed correlations between DNA methylation and
gene expression (cis-eQTMs). From a publicly available
dataset of expression and DNA methylation measured in
38 cord blood samples [51–53], 1174 out of the 1276
CpGs were located within a 500-kb (+/− 250 kb) window
of a transcript cluster. Of these 1174, 246 unique CpGs
(367 total CpG-transcript associations) correlated signifi-
cantly with gene expression (Bonferroni P < 0.05, Add-
itional file 1: Table S15). Forty-six percent of these DNA
methylation-expression correlations were negative, with
the lowest P = 3.55 × 10− 6 coeff = − 6.03 for cg01332054
and SEMA7A expression and the largest negative effect
estimate (− 12.69) for cg26179948 and JAZF1 expression

Fig. 5 Change in DNA methylation during childhood and adolescence for selected CpG sites associated with gestational age. A Decreasing methylation
levels from birth to childhood (A.1) and stabilization during adolescence (A.2). B Increasing methylation levels from birth to childhood and stabilization
during adolescence. C Stable CpGs that did not change during childhood or adolescence; (1) INMA from birth to early childhood and (2) ALSPAC from
birth to adolescence. The figures show representative single CpGs for each category (A–C)
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(Additional file 3: Figure S3 A, B). Fifty-four percent
were positive, with the lowest P = 1.04 × 10− 5 coeff =
2.88 for cg20139800 and MOG expression and the
largest positive effect estimate (19.35) for cg03665259
and CDSN expression (Additional file 3: Figure S3 C, D).

Discussion
In this large consortium-based meta-analysis, we identi-
fied 8899 sites across the genome where gestational age
at birth was associated with cord blood DNA methyla-
tion. We also identified numerous unique differentially
methylated regions (DMRs) associated with gestational
age by applying two independent methods. The results
were consistent when restricted to births at term, dem-
onstrating that the majority of our results were not
driven by preterm births. We confirmed many of the
findings from previously published EWAS of gestational
age [23, 26, 27, 29, 30, 67] and found a very high correl-
ation between the significant CpG point estimates in
previously published datasets compared to our study
(e.g. corr = 0.92 between Hannon et al. CpGs and our
data; Additional file 1: Table S16), but importantly, we
also found 3343 CpGs corresponding to 2577 genes that
had not been described previously. There was a general
lack of stability of the cord blood findings into childhood
and adolescence. However, there was a significant over-
lap of differentially methylated CpGs in cord blood, fetal
brain and lung tissues.
We found that various functional elements were

enriched among gestational age-associated CpGs. CpG
island shores, enhancers and DNase I hypersensitive
sites were particularly susceptible to DNA methylation
changes in relation to gestational age, suggesting that
these differentially methylated sites are of functional im-
portance [68].
We found clear overlap of differentially methylated

CpGs in cord blood, fetal brain and fetal lung tissues in
relation to gestational age. Thus, our cord blood findings
seem to partly capture the epigenomic plasticity of pre-
natal development across tissues. The gene with the lar-
gest negative magnitude of association with cord blood
DNA methylation in relation to gestational age, NCOR2,
was also differentially methylated in brain and lung fetal
tissues. NCOR2 is involved in vitamin A metabolism and
has previously been associated in GWAS with lung func-
tion [69]. Vitamin A supplementation is suggested to re-
duce the risk of bronchopulmonary dysplasia in
extremely preterm-born children [70]. Differential
methylation of NCOR2 in neurons associated with age-
ing has been reported [71]. The gene with the second
largest magnitude of negative association with methyla-
tion at birth, PRR5L, has been linked in GWAS to aller-
gic diseases, found downregulated (expression) in
osteoarthritis, and differentially methylated in type II

diabetes [72–74]. The gene with the lowest P value in
our EWAS, MATN2 plays a critical role in the differenti-
ation and maintenance of skeletal muscles, peripheral
nerves, liver and skin during development and regener-
ation [75] and is suggested as a potential biomarker in
the early stage of osteoarthritis [76].
Differentially methylated CpGs associated with gesta-

tional age in cord blood were also present in our child-
hood and adolescence analyses. The only CpG
(cg26385222, TMEM176B) that was associated with ges-
tational age at all three time points (birth, childhood and
adolescence) has been associated with gestational age in
cord blood in previous studies [27]. The protein encoded
by TMEM176B has also been suggested as a potential
biomarker for various cancers [77]. The low number of
significant associations with gestational age at older ages
with no CpG surviving multiple test correction may be
partially explained by smaller sample sizes in childhood
and adolescence than at birth and by the fact that many
later exposures may obscure the association. However,
in agreement with the cross-sectional analyses, our lon-
gitudinal analyses showed that DNA methylation at
gestational age-associated CpGs typically undergoes dy-
namic changes during early childhood to a much higher
degree than overall for CpGs on the 450K array. For the
majority of these dynamics CpGs, change was most
prominent during the first years of life, with many sites
tending stabilize in methylation levels by school age. We
also identified a subset of the CpGs differential methyl-
ated at birth (17%) which seem stable over time. For
these CpGs, the early alteration of methylation levels by
length of gestation was found stable postnatally across
childhood and into adolescence.
In recent analyses by Xu et al, 14,150 CpGs related to

childhood age were identified [78] and we found 280
overlapping with these CpGs among our 1276 CpG list.
Moreover, a study by Acevedo et al. showed 794 age-
modified CpGs within 3 to 60 months after birth and 57
CpGs were overlapping with our 1276 CpG list [79].
Thus, a proportion of gestational age-related CpGs are
also associated with postnatal ageing. But similar to re-
sults from Simpkin et al. [80], we observed very little
overlap (only 3 CpGs) with the CpGs used to derive epi-
genetic age by the Hannum and Horvath approach [81,
82] or the epigenetic clock for gestational age at birth
(10 CpGs overlapping) [28]. It should be noted that
these studies primarily used the Illumina 27K array for
analyses, which makes comparison difficult.
In the functional analyses, we observed significant

enrichment for several GO terms related to embry-
onic development, regulation of process and immune
system development. The pathway analyses identified
a subset of these genes linked to diseases also associ-
ated with low gestational age, for example asthma
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[83], inflammatory bowel disease [84], type I/II dia-
betes [85] and cancer (leukaemia) [86]. Importantly,
genes annotated to CpGs found stable across child-
hood also showed enrichment for infection- and
immune-related conditions. Whether cord blood DNA
methylation at these CpGs affects later disease risk
remains to be studied. Interestingly, differentially
methylated loci in relation to asthma development
have been recently identified in newborns [87]. The
stable CpG cg27058497 (RUNX3) has been associated
with in utero tobacco smoking exposure [88], child-
hood asthma [89], oesophagus squamous cell carcin-
oma [90] and chronic fatigue syndrome [91]. Despite
adjustment for maternal smoking in our gestational
age EWAS model, we observed overlap between all
FDR hits from our gestational age EWAS with those
FDR hits presented in the maternal smoking related
DNA methylation [20] with an overlap of 2302/47,324
CpGs (4.9%, Penrichment < 2.2 × 10− 308). This overlap
likely reflects some pregnant women under reporting
their smoking behaviour and the fact that smoking-
related CpGs capture quantitative smoking history
better than self-report [92, 93]. However, we cannot
rule out the possibility that some overlapping CpGs
could be involved in biologic pathways linking smok-
ing to the well-established consequence of shorter
gestational length [94]. Other potential confounders
not accounted for in this study such as maternal
obesity and alcohol intake may influence offspring
DNA methylation although we have found in the
PACE consortium that their impact on methylation
[95, 96] is very modest compared with maternal
smoking in pregnancy which was included in our
models.
This paper aimed at identifying CpGs associated with

gestational age while adjusting for birth weight. In a re-
cent PACE paper, we found 1071 CpGs at Bonferroni
significant levels association with birth weight [97]. Even
after adjustment of birth weight in our gestational age
EWAS, we observed overlap between the birth weight
EWAS and the current gestational age EWAS for 373/
1071 CpGs (34.9% Penrichment < 2.2 × 10− 308). These two
perinatal factors, birth weight and gestational age, may
have a shared impact on DNA methylation in newborns.
However, it is difficult to disentangle the effects of these
correlated factors.
To further investigate a potential functional impact of

our differentially methylated CpGs, we examined corre-
lations with gene expression in cord blood. We found
multiple cis-eQTMs among the gestational age-related
CpGs where methylation was strongly correlated with
gene expression in cord blood, implying that the identi-
fied CpGs may have a direct functional effect in new-
borns. IGF2BP1, known to be involved in adiposity and

cardiometabolic disease risk [98], and to play an essen-
tial role in embryogenesis and carcinogenesis [99, 100],
was the most significant positively differentially methyl-
ated CpG in cord blood. Low gestational age is a well-
established risk factor for later cardiometabolic disease
[101]. Our expression findings likely reflect relevant for
health outcomes associated with low gestational age.
There are potential study limitations in our study in-

cluding heterogeneity in normalization and quality con-
trol (QC) protocols since individual cohorts performed
their own QC and normalization. However, one of our
previous EWAS meta-analysis reported robust results
comparing the non-normalized methylation and differ-
ent data processing methods used across the cohorts for
normalization [20]. Furthermore, between-study hetero-
geneity at our pre-specified threshold was observed for
only a minority of differentially methylated CpGs. Co-
horts collected gestational age data from medical re-
cords, birth certificates or questionnaires in two ways,
either ultrasound estimates and/or according to last
menstrual period (or combined estimates), which may
introduce bias. However, gestational age determined by
ultrasound correlates well with last menstrual period
data [102]. Despite a large sample size, we had few ex-
treme premature births included in our dataset. Inter-
pretation of effects of DNA methylation on gene
expression was done for cis-effects only, not trans-ef-
fects. Since our analyses were primarily cross-sectional,
we cannot infer the temporality in the associations and
we cannot assume associations are causal [103]. We
recognize the possibility that the observed methylation
patterns represent fetal maturity, accompanying a “nor-
mal” developmental process or determining time in
utero; it was however not possible to include foetuses
who did not survive pregnancy most of whom will have
been delivered very early. The majority of study partici-
pants were of European ancestry, and very few cohorts
were Hispanic. We were unable to explore ethnic differ-
ences in detail since that would require large sample
sizes for each ethnic group. However, when analyses
were restricted to European-ancestry cohorts, the results
were essentially identical with correlation coefficient
0.97 (Additional file 3: Figure S4) to those with all co-
horts included. Finally, we acknowledge a potential limi-
tation by applying a filter (regions with at least three or
more adjacent CpGs with a Bonferroni-corrected P value
< 0.05) in order to capture a set of genes robustly af-
fected by gestational age, which may have led to poten-
tially important single CpGs not being included in the
functional analyses. In addition, genes with few CpGs
represented on the 450K array are likely under-
represented in the downstream analyses. The strengths
of our study are large sample size, the comprehensive
analyses using robust statistical methods, as well as the
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availability of samples at multiple ages and our ability to
compare our findings with those in fetal tissue datasets.
To account for potential cell type effects, we adjusted
our models for estimated cell counts using cord blood
and adult whole blood references [35, 36]. However, we
acknowledge the limitations of available blood cell type
reference data sets and recognize that some of the sig-
nals we identified as effects of gestational age might re-
flect differences in cell type composition that we did not
completely control. Larger panels that better capture
cell type composition across the range of gestational
age would be a useful advance. Although we present
data on all available participants in our all births
model, we based our study conclusions on the main
no complication model results, after excluding sam-
ples related to delivery induced by medical interven-
tions (induction and/or caesarean section) and
maternal complications.

Conclusions
We show that DNA methylation at numerous CpG sites
and DMRs across the genome is associated with gesta-
tional age at birth. Our results provide a comprehensive
catalogue of differential methylation in relation to this
important factor, which may serve as utility to the grow-
ing community of researchers studying the developmen-
tal origins of adult disease. Identified CpGs were linked
to multiple functional pathways related to human dis-
eases and enriched for several categories of biological
processes critical to fetal development. As such, many
sites might capture epigenomic plasticity of fetal devel-
opment across tissues. We also found that blood DNA
methylation levels in identified CpGs change over time
for a majority of CpGs and that levels stabilize after
school age. Taken together, our findings provide new
insight into epigenetics related to preterm birth and ges-
tational age.
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tational age three or more consecutive CpG list. Table S9. Methylation
look-up analyses in older children using the no complication gestational
age three or more consecutive CpG list. Table S10. Longitudinal analysis
of methylation levels in the INMA and ALSPAC studies using the no com-
plication gestational age three or more consecutive CpG list. Table S11.
Gene Ontology (GO) term enrichment analyses for bonferroni-significant
CpGs from the meta-analysis (no complications model). Table S12. KEGG
pathway analyses for bonferroni-significant CpGs from the meta-analysis
(no complications model). Table S13. Gene Ontology (GO) term enrich-
ment analyses for three or more CpGs being localized to the same gene.
Table S14. KEGG pathway analyses for stable and dynamic CpGs. Table
S15. Correlation between methylation and gene expression levels in cord
blood (cis-effects). Table S16. The replication of bonferroni-significant
CpGs from the meta-analysis (no complications model) in previous
publication.

Additional file 2. Supplementary information.

Additional file 3: Figure S1. Forest plot for the top 10 Bonferroni-
significant CpGs from the meta-analysis on the association between con-
tinuous GA and offspring DNA methylation at birth adjusted for esti-
mated cell proportions. Figure S2. Sensitivity analysis: Correlation of the
point estimates for the no complications model main association of DNA
methylation with gestational age (y-axis representing 3648 participants
from 17 cohorts) with point estimates for a meta-analysis after excluding
three cohorts (MoBa1, MoBa2 and ALSPAC) that were included in a previ-
ous publication1,2 (x-axis representing 2190 participants from 14 cohorts).
Figure S3. Correlations between methylation and gene expression levels
for selected four pairs. First, we created residuals for mRNA expression
and residuals for DNA methylation and used linear regression models to
evaluate correlations between expression residuals and methylation resid-
uals. These residual models were adjusted for covariates, estimated white
blood cell proportions, and technical variation. Figure S4. Sensitivity ana-
lysis: Correlation of the point estimates for the no complications model
main association of DNA methylation with gestational age (y-axis repre-
senting 3648 participants from 17 cohorts) with point estimates for a
meta-analysis after excluding Non-European three cohorts (CBC, CHS and
CHAMACOS) (x-axis representing 3290 participants from 14 cohorts).
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INTRODUCTION 

There is growing body of literature demonstrating that the in utero environment can 

impact health later in life.1-5 DNA methylation is a commonly studied epigenetic mark that can, 

influence gene expression without change in DNA sequence and is one mechanism through 

which early life exposures can contribute to the fetal origins of disease.6 Exposures to chemicals 

during pregnancy such as tobacco smoke and phthalates, among others, have been associated 

with differences in umbilical cord blood methylation.7, 8  Furthermore, site-specific differential 

methylation of cord blood has also been associated with later-life health outcomes including 

asthma and insulin sensitivity.9, 10   

In addition to exposures and health outcomes, inter-individual differences in DNA 

methylation levels are also impacted by host factors including sex. Prior studies have shown 

associations of sex with DNA methylation measured in blood at birth (umbilical cord blood),11-13 

in older children,14, 15 and in adults.15-19 As expected, there are widespread differences between 

sexes on the X chromosome CpG sites; however, these studies also reported significant 
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differences in methylation of autosomes.13, 15 With the exception of two studies performed 

primarily in adults15, 19 and one in children20, many of the previous studies were limited in 

sample size with fewer than 200 subjects. It is likely that a much larger meta-analysis focused on 

umbilical cord DNA methylation would identify many additional sites differentially methylated 

between boys and girls at birth, a critical developmental period.   

In this study, we meta-analyzed cohort-specific associations between sex of the child and 

Illumina 450K methylation data measured in 8,314 newborn blood samples as well as a follow-

up meta-analysis in blood from 5,676 older children within the Pregnancy and Childhood 

Epigenetics international consortium (PACE). We also investigated enrichment of sex-associated 

differential methylation in specific biological pathways and diseases. Significant sex differences 

in disease prevalence, age of onset, and susceptibility across the life course have been observed 

for various conditions such as asthma, immune response, and metabolic health.21-23 Therefore, 

identifying the differences in DNA methylation between boys and girls may highlight the genes 

that play an active role in the biological mechanisms involved in sex-dependent differences 

impacting health throughout childhood. 

METHODS 

Participating cohorts  

PACE consists of multiple international birth cohorts with a goal of meta-analyzing 

exposures and health outcomes in Epigenome Wide Association Studies (EWAS) to understand 

relationships which may impact maternal and childhood health and disease.24 Sixteen 

independent cohorts (N=8,314) contributed data to the analysis of cord blood methylation data 

and sex, and nine independent cohorts (N=5,676) contributed data (some from multiple time 

points) to the child methylation analysis. Detailed methods for individual cohorts and 
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information on which cohorts participated in the cord blood and child analyses are provided in 

the tables and supplementary methods. All cohorts obtained written informed consent from 

participants prior to data collection which was approved from local ethics committees.  

Methylation Measurement and Quality Control  

For all cohorts, DNA methylation was measured using the Illumina Infinium 

HumanMethylation450 BeadChip.25 DNA from newborn or child blood samples underwent 

bisulfite conversion using the EZ-96 DNA Methylation kit (Zymo Research Corporation, Irvine, 

USA). Methylation quality control and normalization was conducted at the cohort level, as 

described in the supplementary material. β-values representing proportion of methylation at each 

CpG site (0 = completely unmethylated, 1 = completely methylated) were used as the 

methylation outcome. In order to lessen the influence of outlier methylation values, β-values 

outside a 3IQR range were removed prior to all cohort analyses. 

Sex descriptive 

Each cohort used recorded child sex, using females as the reference group. As part of 

quality control, each cohort was asked to check for sex-mismatches using the getSex function in 

the R package minfi.26 This function predicts sex from the median methylation values of probes 

on the X and Y chromosomes. Any sex mismatches were removed prior to individual cohort 

analyses. The number of participants for each cohort are reported following the removal of sex 

mismatches.  

Covariates  

 Cohorts have run two separate models: (1) A crude model adjusting only for batch (and 

child age in older child models); and (2) the main model, model 1 with additional adjustment for 
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cell composition. Each study used batch covariates most appropriate for their cohort (e.g. 

principal components or plate number). Cell composition was estimated using 

estimateCellCounts in the minfi R package.26 For cord blood analyses, the ‘CordBlood’ reference 

data set27 was used to estimate proportions of 7 cell types (CD8+ T-cells, CD4+ T-cells, NK 

cells, B-cells, monocytes, granulocytes, and nucleated red blood cells), while older child models 

used the ‘Blood’ reference data set28 which estimates proportions of 6 cell types (CD8+ T-cells, 

CD4+ T-cells, NK cells, B-cells, monocytes, and granulocytes). Cohorts were also given the 

option to adjust for genetic ancestry in their models, and this information is included in cohort 

specific methods. Older child models adjusted for child age at blood draw (years) in all models.  

Cohort Specific Statistical Analyses 

Each cohort performed independent epigenome-wide association studies (EWAS) 

according to a common analysis plan approved by all participating cohorts. Models were run 

using M-type multiple robust linear regression [rlm() in the MASS R package]29 to control for 

potential heteroscedasticity and/or influential outliers in the methylation data. In the primary 

cord blood analysis, the exposure was sex with the outcome of newborn methylation β-values, 

adjusting for seven estimated cell counts and batch covariates. Two newborn cohorts, NEST and 

EARLI, ran separate models for subjects of European ancestry and non-European ancestry 

resulting in two separate datasets for each of these cohorts (N=2 cohorts, N=4 datasets). While 

most cohorts provided data for the X chromosome, four cohorts were unable to provide this data 

and were removed from the X chromosome analysis. In the primary older child models, the 

exposure was sex with the outcome of child methylation beta-values, adjusting for six estimated 

cell counts, age of the child at blood draw, and batch covariates.  

Meta-analysis  
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All cohorts submitted the results of their cohort level EWAS to the Children’s 

Environmental Health Laboratory (N.Holland-PI) at the University of California,  Berkeley. We 

then performed a fixed effects meta-analysis weighted by the inverse of the variance—using the 

software METAL30—for the main model, which adjusted for seven cell-type proportions and 

batch. Shadow meta-analyses were conducted independently by co-investigators at the 

University of Bristol to verify results by L.Kupers. All further analysis was conducted in R 

version 3.5.2. We excluded SNP control probes (n = 65). The majority of cohorts included 

probes mapping to the X and Y chromosomes; however, some cohorts were only able to provide 

results for autosomal probes leaving a total sample size of N = 8,314 for autosomes, and N = 

5,213 for subjects with data for sex chromosomes. Filtering of previously identified cross-

reactive probes31 was performed during processing of meta-analysis results. For autosomal 

probes, this left a total of 456,279 CpG sites measured for association with sex at birth in at least 

one cohort (331,405 [73%] were measured in all 18 datasets, 423,458 [93%] were measured in at 

least 17 datasets).  

Individual cohorts ran EWAS using R, which in most cases cannot represent numbers 

smaller than 5e-324. Since many CpG sites were strongly associated with sex, this number was 

automatically converted to a zero in the R output. To avoid using p-values of zero for the meta-

analysis, all zero p-values within a cohort were re-coded as the smallest non-zero p-value for that 

cohort prior to conducting the meta-analysis.  

We adjusted for multiple hypothesis testing using the stringent Bonferroni method, and 

considered CpG sites with Bonferroni adjusted p-values < 0.05 significant (e.g. 1.1 x 10-7 for 

456,279 tests). 

Enrichment Analyses  
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Before enrichment analysis was performed, gene universe was annotated to nearby genes 

using the IlluminaHumanMethylation450kanno.ilmn12.hg19 package. Using the differentially 

methylated CpGs, we performed enrichment analyses at three different levels: pathways, 

diseases, and molecular signatures. Enrichment for KEGG pathways was done using the 

enrichKEGG() function in the package clusterProfiler.32 Disease enrichment analysis was 

carried out using DisGeNET33 curated information and the enricher() function in 

clusterprofiler.32 The molecular signatures enrichment included analyses depending on the 15 

CpG chromatin states obtained from ROADMAP project34 and different transcription factors 

using LOLA.35  A Bonferroni corrected cutoff of 0.05 was used for significance of pathways, 

diseases and molecular signatures (e.g. 1.52 x 10-4 for 328 tests for pathways and 4.16 x 10-6 for 

12,028 tests for diseases).  

RESULTS  

Newborns 

Results from 16 independent cohorts from the 

 were included in the newborn meta-analysis (N=8,314). Newborn cohort 

sizes ranged from 53 to 1,319 participants with an average of 462 participants per dataset. There 

was an even distribution of boys (51%) and girls (49%). Two cohorts, NEST and EARLI, 

performed separate models for European and non-European participants, resulting in 2 additional 

datasets (N=18 datasets total). The majority of datasets were made up of participants of European 

ancestry (N=13 datasets, N=7,067 participants). Other datasets included Hispanic, Mexican-

American, African-American, and mixed ethnicities. A summary of the participating newborn 

cohorts and datasets are included in Table 1.  
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The results of the individual cohort level newborn models are summarized in Table 2. The 

average number of sex-associated autosomal CpG sites was 29,303 (after Bonferroni correction), 

while the average number of sex-associated X chromosome CpG sites was 9,645. For autosome 

only data, λ ranged from 1.18 to 2.67 with a sample-size weighted average of 1.92.  

For the meta-analysis in newborns, there were a total of 46,554 Bonferroni significant sex-

associated CpG sites in autosomes out of a total 456,279 total autosomal CpG sites. As expected, 

the majority of CpG sites on the X chromosome were significantly differentially methylated 

(N=9,372) between boys and girls. The ten autosomal CpG sites in newborns with the smallest p-

values are listed in Table 3. Among these top sites, directionality of methylation changes were in 

agreement in each individual cohort, suggesting there is no noticeable heterogeneity between the 

participating studies.  

The majority (67%) of sex-associated sites were hypomethylated in boys compared to girls. 

The Manhattan plot in Figure1a plots shows hypomethylated sites below the null line and 

hypermethylated sites above the null line. Figure 1a also represents an even distribution of 

methylation differences throughout the autosomal chromosomes. The CpG-specific difference in 

methylation level between boys and girls were generally small with a median difference of 0.5% 

(Figure 2a).  

Sites associated with sex in newborns were enriched for many biological processes and 

diseases. KEGG enrichment analyses showed 59 significantly enriched pathways of 328 tested. 

KEGG pathways fell into groups containing cancer, signaling, endocrine, addiction, and longevity 

pathways. Significant KEGG pathways are summarized in Figure 3a with results sorted from most 

to least significant, and size of circles representing the number of genes included in that pathway. 

Disease enrichment analyses showed 15 significant diseases of the 12,028 tested. There were 
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increased CpG sites in genes involved in many disorders, such as mental depression, mood 

disorders, unipolar disorder, anxiety, substance-abuse, and autism. There were also increased 

associations for obesity and breast neoplasms (Figure 4a).  

Children 

For the analysis in older children, data from nine independent cohorts were included (N = 

5,995) in the meta-analysis (Table 4). Child cohorts ranged from 124 to 1,053 participants with an 

average of 516 participants per cohort, and also had an even number of boys (52%) and girls (48%). 

Similar to the newborn participants, the majority of child datasets contained participants of 

European ancestry (N=8), with other contributions from Hispanic and Mexican-American cohorts.  

The average number of FDR-significant autosomal CpG sites per child cohort was 30,211. 

For the four older child cohorts that provided X chromosome data, there were an average of 9,345 

significant CpG sites. Lambdas for individual autosomal analyses ranged from 1.05 to 5.59, and 

1.12 to 5.53 for cohorts with X chromosome data (Table 5).  

In older children, there were 46,607 Bonferroni significant autosomal sites associated with 

child sex. In addition, again the majority of X chromosome sites (8,798) were significant. The top 

ten sites for older children are listed in Table 6. Similar to newborns, the majority of sites were 

hypomethylated in older boys compared to older girls which can be seen on the Manhattan plot in 

Figure 1b. The effect size of differential methylation was small with a median difference of 0.5% 

among the significant sites in older children (Figure 2b). 

 KEGG enrichment analyses for pathways in children showed 32 significantly enriched 

pathways of 328 tested. KEGG pathways predominantly belonged to groups associated with 

cancer, signaling, and endocrine functions. Significant KEGG pathways are summarized in Figure 
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3b with results sorted from most to least significant, and size of circles representing the number of 

genes included in that pathway. Disease enrichment analyses showed 10 diseases of the 12,028 

tested to be significant. There were increased CpG sites in genes involved in many mental 

disorders, such as depression, mood disorders, unipolar disorder, anxiety, memory disorders, and 

attention deficit hyperactivity disorder (ADHD) (Figure 4b).  

Comparison of newborns and older children  

The sample size was larger for the newborn analysis compared to the older child analysis 

(8,314 versus 5,995). There was considerable overlap between significant sites in newborns and 

children with 70% of child CpG sites also being differentially methylated in newborns (Figure 3). 

Of these overlapping sites, 99.6% show methylation differences in the same direction indicating 

that differential methylation is relatively stable over time in children. Similar patterns were seen 

in both meta-analyses and can also be seen in comparisons of Figures 1a/1b and Figures 2a/2b: 1)a 

majority  were European participants, 2) a large number of significant autosomal CpG sites found, 

3)nearly all X chromosome sites significant, 4)the majority of sites were hypomethylated in boys 

compared to girls, and 5)effect sizes were similarly small and  evenly distributed. Pathway and 

disease enrichment analyses also yielded similar results as can be seen in comparison of figures 

3a/3b and 4a/4b. Notably, cancer, signaling, and endocrine pathways dominated both cord blood 

and child KEGG enrichment analyses, and mental disorders were the most commonly seen in the 

disease enrichment analyses.  

DISCUSSION  

This study involving multiple cohorts shows there are widespread differences in 

methylation of autosomes between boys and girls at birth measured in cord-blood and the majority 

of these differences persist into later childhood. We report over 40,000 of the nearly 450,000 tested 
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CpG sites to be differentially methylated with small but statistically significant differences 

between boys and girls at birth and over 35,000 significant differences in older children with 

similar effect measurements. In both newborns and children, these differences were enriched in 

genes involved in cancer pathways and implicated in neurological disorders. This is the first meta-

analysis examining differential methylation by sex using the 450K BeadChip. This is also the first 

analysis of methylation differences between sexes at birth to adjust for cell-type heterogeneity 

using a cord-blood reference dataset.  

We compared our findings to prior studies investigating methylation differences by sex. 

Only one prior meta-analysis by McCarthy et al.15 has looked specifically at differential 

methylation between males and females, and this was assessed using the Illumina 27K chip. 

Although a few cohorts contributed cord-blood data, the majority of the cohorts included in their 

analysis used adult blood data. This study reported 184 significant autosomal hits, of which, in our 

newborn meta-analysis, we replicate 166 (90%) with 95% of hits with methylation change in the 

same direction. In our child meta-analysis, we replicate 165 (90%) with 94% in the same direction. 

Another study by Yousefi et al.13 reported 3,031 CpGs with sex differences in cord-blood for a 

subset of the CHAMACOS population (which also contributed data to this meta-analysis). Our 

newborn meta-analysis replicated 2,766 (91%) of the Yousefi et al. hits with 75% of hits in the 

same direction, and our child meta-analysis replicated 2,723 (90%) with 75% in the same direction. 

The newborn meta-analysis adds 43,485 autosomal CpGs not previously seen in studies focused 

on methylation differences by sex with increased sample size and after adjustment of cord blood 

cell-type heterogeneity. We also report 43,553 new autosomal CpG sites differentially methylated 

in the blood of older boys and girls.  
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In both newborns and older children, the majority of the significantly differentially 

methylated sites were hypomethylated in boys compared to girls, meaning that boys had lower 

methylation levels than girls. In general, greater gene expression is observed with lower 

methylation. Hypermethylation in girls is expected in X chromosome CpG sites due to X 

chromosome inactivation in females; however, these results show that the hypermethylation is not 

limited to sex-chromosomes. If these methylation changes subsequently impact gene expression, 

this could mean that genes with methylation differences are being expressed differently in boys 

compared to girls. These findings agree with the trend previously reported by Yousefi et al. 

showing hypomethylation in boys for both autosomal and X chromosome sites.  

Sex-specific differences are seen in numerous diseases and studies show evidence for a 

genetic role in sexual dimorphism for disease.36 Diseases with observed differences by sex include 

autoimmune diseases,37 cardiovascular diseases,38 and pediatric infectious diseases.23 Early 

differences between boys and girls also suggests an underlying developmental component.39 We 

report many biological pathways and diseases in which the differentially methylated sites are 

enriched in both newborns and children. Some of the most significantly enriched pathways and 

diseases have been previously shown to differ between sexes. The top disease pathways included 

many neurological and mood disorders, and studies have shown that anxiety disorders are more 

common and more severe in women.40 Autism is diagnosed in boys more often than girls, and 

there are differences in the features of autism in each sex.41 In children, genes involved in ADHD 

were significantly enriched for differentially methylated CpG sites. ADHD is twice more likely to 

be diagnosed in boys than girls with different behaviors associated between the sexes.42 A prior 

study in the CHAMACOS cohort also reported methylation differences in genes involved in 

neurological disorders.13 Our data suggest that DNA methylation may represent one mechanism 
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contributing to the developmental differences between boys and girls that impact sex-dependent 

differences in health. 

There are several strengths and limitations of our study. We report novel findings of 

autosomal methylation differences between boys and girls using robust statistical models with a 

large sample size that was well-powered to assess small effect sizes. We used a new cord blood 

reference dataset which includes nucleated red blood cells to estimate and adjust for cell-type 

heterogeneity.43 All cohorts ensured correct classification of sex prior to analyses using sex 

chromosome methylation data as a quality control measure. We also included analyses of 

methylation at two distinct time-points (newborns and older children) which shows the stability of 

these methylation differences throughout childhood. Although our study included cohorts of 

multiple ancestries, including European, Hispanic, and African American, the majority of 

participants were of European ancestry. More work involving a larger number of non-European 

participants is needed to ensure generalizability of results. Individual cohorts used different 

normalization methods for methylation data; however, prior studies within the PACE consortium 

show little difference in final EWAS results from differently normalized data, so we do not expect 

this to impact the final meta-analysis results.44 Since this study did not assess if the methylation 

changes are impacting expression, we cannot confirm if these methylation differences extend to 

functional changes. These results warrant further follow-up to assess if these methylation changes 

do indeed impact gene expression in order to confirm the biological significance of these findings 

and contribution towards the fetal origins of disease hypothesis.2, 45, 46  

In summary, our study observed many autosomal methylation differences between boys 

and girls which are enriched in diseases and pathways with differential prevalence between sexes. 

We replicated and expanded upon previous findings and patterns of autosomal differences and 
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conducted the largest study to date assessing sex methylation differences in cord blood with 

additional analysis in child blood. These findings may suggest that early life methylation 

difference is one potential mechanism through which we see differential disease prevalence. 
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Background: Birthweight reflects in utero exposures and later health evolution. Despite existing studies
employing high-dimensional molecular measurements, the understanding of underlying mechanisms of
birthweight remains limited.
Methods: To investigate the systems biology of birthweight, we cross-sectionally integrated the methylome, the
transcriptome, the metabolome and a set of inflammatory proteins measured in cord blood samples, collected
from four birth-cohorts (n = 489). We focused on two sets of 68 metabolites and 903 CpGs previously related
to birthweight and investigated the correlation structures existing between these two sets and all other omic fea-
tures via bipartite Pearson correlations.
Results: This dataset revealed that the set of metabolome and methylome signatures of birthweight have seven
signals in common, including three metabolites [PC(34:2), plasmalogen PC(36:4)/PC(O-36:5), and a compound
with m/z of 781.0545], two CpGs (on the DHCR24 and SC4MOL gene), and two proteins (periostin and CCL22).
CCL22, a macrophage-derived chemokine has not been previously identified in relation to birthweight. Since
the results of the omics integration indicated the central role of cholesterol metabolism, we explored the associ-
ation of cholesterol levels in cord blood with birthweight in the ENVIRONAGE cohort (n = 1097), finding that
higher birthweight was associated with increased high-density lipoprotein cholesterol and that high-density li-
poprotein cholesterol was lower in small versus large for gestational age newborns.
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Conclusions: Our data suggests that an integration of different omic-layers in addition to single omics studies is a
useful approach to generate new hypotheses regarding biological mechanisms. CCL22 and cholesterol metabo-
lism in cord blood play a mechanistic role in birthweight.
Crown Copyright © 2020 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The Developmental Origin of Health and Disease hypothesis
(DOHaD) states that later life diseasesmaybe influenced byexperiences
and conditions in prenatal life [1]. It is hypothesized that the interplay
between genotype and in utero environmental factors induces molecu-
larmodifications and possibly phenotype differentiation in the fetus [2].
This developmental plasticity is of crucial importance for postnatal life
but can induce impairments related to adverse health outcomes [3].
For example, exposure to detrimental environmental factors may in-
duce birthweight changes that in turnmay be associatedwith increased
mortality or risk of cardiovascular diseases, mental health problems,
and some cancers later in life [4–7]. Among several mechanisms pro-
posed to explain the link between in utero exposures, birthweight and
health and diseases in later life, molecular markers identified through
“omics” platforms, may play a central role. The theoretical foundation
that drives the present study is that birthweight induces molecular
modifications that in turn influence later life health, as exemplified in
the Fig. 1, however is also possible that birthweight is influenced bymo-
lecular changes determined by in utero exposures.

Recently two studies based on high-dimensional molecular mea-
surements in cord blood identifiedDNAmethylation signals andmetab-
olites associated with birthweight: 914 differentially methylated CpG
sites were discovered in 8825 neonates from 24 birth-cohorts and 68
metabolites were identified in 499 neonates from four birth-cohorts
[8,9]. These studies, together with several metabolomic, gene expres-
sion, proteomic, genomic, and epigenomic analyses, have increased
our understanding of underlying mechanisms of birthweight [10–20].
However, a study integratingmulti-omic levels in cord blood associated
with birthweight in the same samples has not yet been performed.

To decipher at several levels the molecular cascades that regulate
birthweight, in this paper we propose to integrate DNA-methylation,
gene expression data as well as metabolic profiles and a set of inflam-
matory proteins measured in cord blood samples (n = 489) collected
from four independent population-based birth-cohorts [21]. We used
two birthweight-related sets of molecular signals, metabolites [8] and

DNA methylation levels [9], to drive the integrated analyses and trans-
lated these signals to the other omic layers in the same samples. Based
on results common to the metabolite- and methylation-driven multi-
omic integrations, we aimed to identify key molecular associations
with birthweight.

2. Material and methods

2.1. Study population and samples collection

Our study population arises from the EXPOsOMICS European project
and includes 500 newborns from four population-based cohorts: 200
newborns from ENVIRONAGE, 100 from INMA, 99 from Piccolipiù, and
101 from Rhea [21–25]. Inclusion criteria and protocols are detailed in
the respective cohort descriptions and in the Supplementary methods.
Before the placenta was delivered, whole blood was withdrawn from
cord vessels and immediately frozen at −80 °C. Samples were sent to
different laboratories for metabolome, inflammatory proteins and
DNA methylome analysis [21]. The transcriptome was measured for
the 200 ENVIRONAGE samples participating in the EXPOsOMICS project
and cholesterol was measured for the entire ENVIRONAGE cohort.

2.2. Metabolomic profiles

Untargeted metabolomics was performed as previously described [8]
and detailed in the Supplementary Methods. Briefly, reversed phase liq-
uid chromatography-quadrupole time-of-flight mass spectrometry
(UHPLC-QTOF-MS) system was used in positive ion mode with 499 of
the 500 samples successfully analyzed. Raw data preprocessing was per-
formed with Agilent MassHunter software, and metabolic features pres-
ent in b60% of the samples were excluded, leaving 4712 features for
499 samples available for the subsequent analysis. Data were log-trans-
formed and missing values were imputed using the impute. QRILC func-
tion within the “imputeLCMD” R package. Identification of the features
of interest was done as previously described by Robinson et al. [8] and
level of identification was reported as proposed by Sumner et al. [26].

Fig. 1.Research hypothesis. The diagram exemplifies the central role of omics in the hypothetical path that drives the present study and according towhich birthweight inducesmolecular
modifications that in turn influence the later life health and disease (red arrows); and the alternative pathways where in utero exposures cause the changes in the omic layers leading to
variation of birthweight (grey arrows).
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2.3. DNA methylation profiles

Genomic DNA was extracted from buffy coats according to standard
protocol and underwent bisulphite conversion using the Zymo EZ DNA
methylationTM kit (Zymo, Irvine, CA, USA), hybridization to Illumina
HumanMethylation 450K BeadChip arrays and scanning using an
Illumina iScan. As detailed in the Supplementary Methods and else-
where, we used in-house software to preprocess the data, including re-
moval of probes based on signal intensities and control probes,
background subtraction and dye bias correction [27]. After quality con-
trol and filtering, 417572 CpG sites for 460 samples were retained for
subsequent analysis and methylation levels were expressed as beta
values. To account for technically-induced and tissue-related variation
in the methylation levels, we ran a preliminary linear model for the
methylation beta values (as outcome variable) adjusting for technical
variation (array row and position on the chip), as well as estimated
cell type composition using the Bakulski method [28].

2.4. Gene expression

Gene expression levels were measured in cord blood samples (n =
200) of the ENVIRONAGE cohort. RNA was extracted using the total
RNA miRNeasy mini kit (Qiagen, Venlo, Netherlands) according to the
manufacturer's protocol. As detailed in the Supplementary Methods,
samples were quality checked and further hybridized onto Agilent
Whole Human Genome 8 × 60 K microarrays coupled with Agilent
DNA G2505C Microarray Scanner. After preprocessing, quality control,
and normalization detailed in the Supplementarymethods, 29164 tran-
scripts for 165 samples were left available for further analysis. To ac-
count for technical noise, we ran a linear model for the observed gene
expression level (as outcome variable) adjusting for technical variation
(hybridization date) and white blood cells count.

2.5. Inflammatory proteins

We measured 22 inflammation-related proteins using an R & D
Luminex screening assay according to the protocol described by the
manufacturer, and c-reactive protein using Solid Phase Sandwich
ELISA. Excluding proteins detected in b40% of the study population,
we were left with 16 inflammatory proteins (Supplementary Table 1)
measured in 493 samples, of which three were excluded. For the re-
maining 490 samples missing values were imputed following an ap-
proach based on likelihood maximization estimation procedure [29].
Protein concentrations were subsequently log-transformed, and to cor-
rect for nuisance variation, we employed the same linear model ap-
proach described before setting the plate identification as technical
covariate.

2.6. Cholesterol

The plasma levels of high-density lipoprotein (HDL), low-density li-
poprotein (LDL), and total cholesterol were measured in entire
ENVIRONAGE population using Cobas 8000 C702 module analyzer
(Roche, Basel, Switzerland). Outliers (N5 standard deviations from
mean) were excluded from the analyses. Respectively 1139, 1109 and
1131 samples had valid HDL, LDL, and total cholesterol measurements.

2.7. Anthropometrics and covariates

Birthweight in grams was collected from medical records. In
ENVIRONAGE cohort, newborns were classified as small for gestational
age (SGA), adequate for gestational age (AGA) or large for gestational
age (LGA) if their birthweight for given gestational age, sex, and parity
status was respectively below the 10th percentile, between 10th per-
centile and 90th percentile, or above the 90th percentile calculated for

Flanders from the Study Centre for Perinatal Epidemiology (http://
www.neonatologie.ugent.be/SPE-standaarden.pdf).

As detailed in the Supplementary Material, covariates were selected
based on previous reported associationswith birthweight and included:
sex of the newborns, parity, gestational age, maternal and paternal age
and bodymass index (BMI),maternal smoking status duringpregnancy,
and maternal education.

2.8. Statistical analyses

The study design is schematically represented in Fig. 2.

2.8.1. Exploring correlation structure across omic profiles
We adopted an exposome globe approach to investigate the correla-

tion structures across the omic measurements available in our study
population and investigated Pearson's correlation coefficients for pairs
of omics measurement [30]. We used sets of molecular features from
two omic platforms to drive our integrated analyses [31]: (a) a set of
68 metabolites previously associated with birthweight (Supplementary
Table 2); and (b) a set of 903 (available from the total of 914, Supple-
mentary Table 2) CpGs previously associated with birthweight [8,9].
These sets were correlated with all the other untargeted omic features.
The statistical significance of all correlation coefficients was assessed by
deriving a z-score from Fisher transformation and running a Student's t-
test test assessing the null hypothesis of no correlation H0 : ρ = 0. We
corrected for multiple testing using the stringent Bonferroni correction
for the number of tests (i.e. the total number of pairs investigated) and
considered significant the correlations with Bonferroni corrected p-
valuesb0∙05. The number of samples participating in each analysis is
presented in Supplementary Table 3. Results were visualized by
means of Circos plots (Circos software version 0.69–6), where only sig-
nificant correlation coefficients were reported.

In order to assess if our results were biased by heterogeneity be-
tween the different cohorts, we used linear models adjusted on the fac-
tors differing across cohorts (namely: gestational age, parental ages,
weights and heights, parity andmaternal education) to test associations
between features significantly correlated in our main analyses. Stratifi-
cation by sex was performed as a sensitivity analysis in order to take
into account the birthweight sexual dysmorphism [32].

Finally, we compared the metabolite- and the methylation-driven
results to assess if any metabolite-CpG pairs and any omic were in
common.

2.8.2. Pathway analysis
We performed overrepresentation analyses (ORA) of all transcripts

and CpGs significantly correlated in the metabolite-driven analyses
and of the CpG significantly correlated with metabolites in the metabo-
lite-driven analysis using ConsensuspathDB online tool (http://
consensuspathdb.org/). A pathway was considered significantly
enriched if p-values were smaller than 0∙05 and included at least 3
genes.

Enriched metabolic pathways within metabolic features correlated
with CpGs in the methylation-driven analyses were identified using
the mummichog program (version 1.1.0) [33] through the
MetaboAnalyst platform [34]. We used all mass-to-charge ratio (m/z)
values and associated p-values of the metabolic features as software
input and set mummichog parameters to ‘positive mode’ at ±5ppm
mass tolerance. The p-value cutoff to identify the list of significant m/z
features was set to false discovery rate adjusted (FDR) p-value equal
to 0∙05, with the non-FDR significant features used as the reference
set. The algorithm searches tentative compound lists from metabolite
reference databases against an integrated model of human metabolism
to identify functional activity. A pathway was considered significant if
gamma adjusted p-values were smaller than 0∙05. Visualization of
enriched pathways on the KEGGscape network was performed through
the MetaboAnalyst platform [34].
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2.8.3. Correlation network analysis
We selected all significantly correlated omic features in the main

analyses and performed network correlation analysis. Correlation net-
works were plotted using “igraph” package with layout algorithm by
Fruchterman and Reingold (version 0.7.1). Only nodes with degree N2
and edges with Bonferroni corrected p-values b0∙05 were represented
in the networks. Communities were detected using the Louvain
algorithm.

2.8.4. In silico identification of methylation quantitative trait loci
We searched SNPs associated with the CpG sites significantly corre-

lated to the other omic layers in the publicly available methylation
quantitative trait loci (mQTL) database (http://www.mqtldb.org/). We
compared the localization on the genome of 233 SNPs associated with
own birthweight and 128 SNPs associated with offspring birthweight
in the NHGRI-EBI GWAS Catalog with the identifiedmethylation signals
(±2 Mb from the genetic variants) and we searched for mQTL associ-
ated with these SNPs [35].

2.8.5. Exploring key findings in the ENVIRONAGE cohort
Based on omics identified in significant pairs from both themetabo-

lite- and methylation-driven analyses, we generated a hypothesis on
mechanisms underlying birthweight. Common omic signals that were
significantly correlated with both the metabolite and CpGs
birthweight-related sets, were associated with cholesterol metabolism.
We ran linear regression models to assess (i) the associations between
omics identified in our multi-omic analyses and cholesterol levels and
(ii) the association between birthweight and cholesterol levels. These
analyses were restricted to the ENVIRONAGE cohort. All the models
were adjusted for gestational age, parity, newborn sex, maternal age,
maternal height, maternal BMI, smoking during pregnancy and

maternal education, total cholesterol levels (for HDL and LDL analyses),
plate (for proteins analyses), cell types composition, array row and po-
sition on the chip (for CpGs analyses). Paternal age and anthropometric
measurements were not included as adjustment covariates due to
missingness. In addition, we used linear models adjusted for the covar-
iates aforementioned to explore if being SGA, AGA and LGA (indepen-
dent variable) was associated with the levels of omic markers
identified and cholesterol (dependent variable). If p-values were
smaller than 0∙05 results were considered significant. Samples partici-
pating in each analysis are reported in the Supplementary Table 3.

3. Results

3.1. Population

Descriptive characteristics of the study population participating in
the main multi-omic study are presented by cohort in Table 1 and by
sex in Supplementary Table 4 and indicate heterogeneity across cohorts
for all covariates, except proportion of girls born and maternal smoking
habits during pregnancy.

3.2. Metabolite-driven integration of omics

By correlating the set of (n=68)metabolites (Supplementary Table
2), previously reported in these same four birth-cohorts to be associated
with birthweight by Robinson and colleagues, with the other omic
layers we identified 347 significantly correlated omic pairs involving
208 omic features (47 metabolites, 15 inflammatory proteins, 71 tran-
scripts and 75 CpGs) (Fig. 3A and Supplementary Table 5) [8].

Pairs involving transcripts were all positively correlated to metabo-
lites (Supplementary Figs. 1A and 2B), 68% of the metabolite-

Fig. 2. Study design. The figure shows the main analysis exploring the structure across omic profiles in the four EXPOsOMICS cohorts and the subsequent pathways analysis, network
correlation analysis, in silico identification of methylation quantitative trait loci, and the follow-up analysis exploring key findings in the ENVIRONAGE cohort.
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inflammatory protein pairs were positively correlated (Supplementary
Figs. 1C and 2C) while 82% of the significant metabolite-CpG pairs
showed negative correlation coefficients (Supplementary Figs. 1B and
2A). The strongest correlation coefficients in absolute value were ob-
served in pairs involving transcripts (absolute range r = 0∙42–0∙54),
followed by pairs involving CpG sites (absolute range r = 0∙28–0∙39),
and inflammatory proteins (absolute range r = 0∙18–0∙44) (Table 2).

We did not identify one single metabolite related to all three of the
other omic layers (Fig. 3B and Supplementary Table 6). Progesterone
was the annotated metabolite correlated with most omic features (n
= 47), including both proteins and transcripts.

The identified transcriptome signals were involved in 31 significant
pathways (p-valuesb0∙05), mainly related to immune response [e.g. In-
terleukin (IL)12-mediated signaling events and natural killer cell medi-
ated cytotoxicity] (Fig. 3C and Supplementary Table 7). Similarly, the
identified CpGs signals were mapped into seven significant pathways
(p-valuesb0∙05) including TNFalfa, thermogenesis, and insulin signaling
pathways (Fig. 3C and Supplementary Table 7).

To further characterize the 208 omic signals identified in the metab-
olite-driven analysis, we constructed a correlation network. This net-
work analyses revealed that identified molecules were mainly
grouped in distinct communities according to their omic layer (Fig.
3D). In all groups, except group 4, signals of other omics were also pres-
ent, e.g. progesterone and other four unassigned metabolites (U4, U5,
U6 and U46) that were groupedwith the transcripts (group 2) (Supple-
mentary Table 8). The network analysis unveiled novel correlations be-
tween proteins and CpGs groups but not between transcripts and CpGs
or transcripts and proteins.

No mQTL was identified for the identified 75 CpG sites. One to six
significant CpG sites were located ±2 Mb from 153 SNPs out of the
233 associated with own birthweight and from 39 SNPs out of the 128
SNPs associated with offspring birthweight (Supplementary Table 9).
One SNP, associated with own birthweight, was located in the same
gene (PDE4B) as a significant CpG.

Sensitivity analyses agreed mostly with the main analyses, except
for transcripts. 29 metabolites were still significantly associated with

32 omic features (17 CpG sites and 15 proteins) after adjustment for
gestational age, parental ages, parental weights and heights, parity
and maternal education (Supplementary Table 10). Out of the total
347 significant correlations from the main analyses, after stratification
by sex, 62 correlations remained significant in boys and 46 in girls (Sup-
plementary Fig. 3), three additional correlations became significant in
boys and five in girls (Supplementary Table 11).

3.3. Methylation-driven integration of omics

By correlating a set of 903 CpG sites that have been previously asso-
ciated with birthweight by Kupers and colleagues (Supplementary
Table 2) with the other omic layers, we identified 482 significant pairs
involving 241 omic measurements (58 CpGs, 157 transcripts, two pro-
teins, 24 metabolic features) (Fig. 4A, Supplementary Table 12) [9].

As indicated in Table 3, most of the CpG-transcript and CpG-inflam-
matory protein pairs were negatively correlated (92% and 75% respec-
tively, see Supplementary Figs. 4A,C and 5A–B), and the pairs
involving metabolites were predominantly positively correlated (79%,
Supplementary Figs. 4B and 5C).

The strongest correlationswere observed in the CpG-transcript pairs
(absolute range r = 0∙45–0∙57), followed by CpG-metabolic feature
pairs (absolute range r = 0∙26–0∙39) and CpG-inflammatory protein
pairs (absolute range r = 0∙22–0∙24).

No CpG site was correlated to all three types of omic data (Fig. 4D
and Supplementary Table 13). cg08217545 (located on the NFIC gene)
was the CpGs involved in the most significant correlations (n = 86).
Pathways analysis of the identified transcriptome signals resulted in
17 enriched pathways (Fig. 4B and Supplementary Table 14), mostly in-
volved in signal transduction and immune system (such as G beta:
gamma signaling through PI3Kgamma and TNF signaling pathway).

The 24 metabolic features identified were found to represent 14
unique compounds, of which nine could be identified [Unidentifiable
phosphatidylcholine (PC)/LysoPC, PC(30:0), PC(34:2), PC(36:4),
Plasmalogen PC(38:4) or PC(O-38:5), Plasmalogen PC(36:4) or PC(O-
36:5), Plasmalogen PC(36:3) or PC(O-36:4), Cholesterol, Cholestenone].

Table 1
Characteristics of the EXPOsOMICS population (by cohort) and the full ENVIRONAGE population.

EXPOsOMICS population n = 489 P-valuea Full ENVIRONAGE population n = 1097 P-valueb

ENVIRONAGE
n = 195

INMA
n = 97

Piccolipiù
n = 97

RHEA
n = 100

Birthweight, g 3389∙28 ± 478∙29 3305∙98 ± 399∙33 3217∙06 ± 431∙42 3258∙90 ± 429∙69 8∙85e−03 3413∙01 ± 468∙77 4∙645e−05
Birthweight, – –

SGA (b10thPi) 14 (7∙2) – – – 76 (6∙9)
AGA (≥10thPi& ≤ 90thPi) 155 (79∙5) – – – 880 (80∙2)
LGA (N90th Pi) 25 (12∙8) – – – 141 (12∙8)

Gestational age, weeks 39∙14 ± 1∙53 39∙71 ± 1∙41 39∙57 ± 1∙58 38∙43 ± 1∙32 2∙66e−09 39∙22 ± 1∙48 0∙70
Girls 95 (49∙0) 50 (51∙5) 43 (44∙3) 47 (47∙0) 0∙77 530 (48∙3) 0∙99
Maternal age, years 29∙41 ± 4∙43 31∙48 ± 4∙14 33∙28 ± 4∙46 30∙03 ± 4∙99 8∙25e−11 29∙41 ± 4∙58 4∙05e−07
Maternal BMI, Kg/m2 23∙94 ± 4∙06 23∙45 ± 3∙83 22∙63 ± 3∙87 25∙09 ± 5∙37 7∙87e−04 24∙52 ± 4∙78 3∙90e−03
Maternal weight, Kg 66∙09 ± 11∙88 62∙52 ± 11∙20 60∙95 ± 11∙16 66∙76 ± 15∙64 9∙28e−04 67∙82 ± 14∙26 3∙75e−06
Maternal height, cm 166∙14 ± 6∙81 163∙15 ± 6∙60 164∙05 ± 5∙70 162∙93 ± 5∙65 3∙22e−05 166∙189 ± 6∙48 1∙52e−06
Maternal smoking 25 (12∙9) 23 (24∙0) 20 (20∙6) 20 (20∙2) 0∙09 134 (12∙2) 2∙40e−03
Maternal education 1∙57e−03 0∙02

Primary school 27 (14∙6) 17 (17∙5) 8 (8∙2) 8 (8∙1) 139 (12∙7)
Secondary school 63 (34∙1) 46 (47∙4) 40 (41∙2) 57 (57∙6) 393 (35∙8)
University of higher 95 (51∙4) 34 (35∙1) 49 (50∙5) 34 (34∙3) 565 (51∙5)

Multiparity 87 (44∙8) 43 (44∙8) 51 (52∙6) 70 (71∙4) 1∙16e−04 511 (46∙5) 0.06
Paternal age, years 31∙75 ± 5∙89 33∙46 ± 4∙35 36∙47 ± 5∙57 34∙24 ± 5∙04 1∙94e−10 31∙95 ± 5∙47 4∙86e−07
Paternal BMI, Kg/m2 25∙78 ± 3∙46 27∙20 ± 3∙90 24∙97 ± 3∙03 25∙99 ± 4∙49 1∙06e−03 25∙96 ± 3∙87 0∙88
Paternal weight, Kg 83∙43 ± 15∙94 81∙11 ± 13∙36 78∙43 ± 10∙65 84∙97 ± 14∙47 5∙97e−03 83∙65 ± 13∙72 0∙09
Paternal height, cm 179∙07 ± 7∙54 177∙08 ± 6∙80 177∙20 ± 6∙30 176∙38 ± 7∙21 0∙01 179∙49 ± 7∙33 8∙08e−05

Counts (percentages) and means ± standard deviations are reported for categorical and continuous variables, respectively.
AGA=adequate for gestational age; LGA= large for gestational age; Pi=percentile calculated for Flanders from the Study Centre for Perinatal Epidemiology; SGA= small for gestational
age.

a P-value for associations between the four EXPOsOMICs birth-cohort. P-values b0∙05 are marked in bold.
b Between the pooled EXPOsOMICs population and the full ENVIRONAGE population are detected with analysis of variance test (for continuous variables) and chi square test (for

categorical variables). P-values b0∙05 are marked in bold.
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Full details on retention timesmasses, and levels of identification are re-
ported in Supplementary Table 15, with the chromatograms and mass
spectra in the Additional data. Pathways analysis for the metabolic sig-
nals identified (n = 201 metabolic features with 0∙05 FDR adjusted p-
values) revealed three significantly enriched pathways including C21-
steroid hormone biosynthesis and metabolism, porphyrin metabolism
and omega-3 fatty acid metabolism (Fig. 4C).

Network correlation analysis identified omics grouped in three
multi-omic communities of transcripts and CpGs (groups 1, 2 and 5)
and three communities mainly or uniquely populated by a single omic
type, e.g. groups 3 and 4 are only made of transcripts (Fig. 4E and

Supplementary Table 16). The network analysis unveiled novel correla-
tions between metabolites and proteins, and metabolites and
transcripts.

Three mQTLs were identified for the 58 significant CpG sites (Sup-
plementary Table 17). None of these three mQTLs has been previously
associated with birthweight. We identified one to seven significant
CpG sites located ±2 Mb from 188 SNPs out of the 233 associated
with own birthweight and from 96 SNPs out of the 128 associated
with offspring birthweight (Supplementary Table 18). Only one SNP as-
sociatedwith ownbirthweightwas located in the samegene (PIM3) as a
significant CpG site.

Fig. 3. Significant correlations in themetabolite-driven integration of omics. A The circular plot displays the results ofmetabolite-driven integration of omics. Tracks fromoutside to inside
are: ideogram, histogram plot and significant links between omic signals. The ideogram shows the omic features significantly correlated grouped in metabolites (green), CpGs (blue),
transcripts (orange) and inflammatory proteins (yellow). On the ideogram, features are identified by numbers as reported in the Supplementary Table 27. Alternating bands
distinguish classes of metabolites and proteins, genomic regions of genes associated to CpGs and chromosomes on which are located the genes associated to transcripts. The histogram
shows for each omic feature (on the x-axis) the scaled percentage of significant correlations per each omic set as identified by colors (on the y-axis in increasing order from outside to
inside). In the center of the circular plot each significant correlation coefficient is visualized through a link connecting the two correlated omics. Links are colored according to the sign
of the correlation coefficient, where red and blue links mean respectively positive and negative correlations. Thickness of the links grows according to increasing absolute value of
correlation coefficients. B The venn diagram shows the count of metabolites significant in the metabolite-inflammatory protein, metabolite-transcriptome and metabolite-methylome
analyses represented in yellow, orange and blue circles respectively, and their intersections. C The dot plot shows significant pathways grouped by function, from overrepresentation
analysis (ORA) of the transcripts and the CpGs identified in the metabolite-driven integration of omics. Dots size varies according the gene ratio and colors according the p-values. D
The network chart shows results from correlation network analysis. The nodes represent the omic features. Nodes are colored according the omic layer they belong to (metabolites in
green, CpGs in blue, transcripts in orange and inflammatory proteins in yellow) and are identified by numbers as reported in the Supplementary Table 27. Only nodes with degreeN2
and edges with Bonferroni corrected p-values b0∙05 are displayed. Hedges are colored according to the sign of the correlation coefficient, where red and blue links mean respectively
positive and negative correlations. Communities (groups 1–4), detected using the Louvain algorithm, are marked by circles. TSS = transcription start site; UTR = untranslated region;
GFs = growth factors.

Table 2
Overview of the metabolite-driven integration of omics.

Metabolite-inflammatory protein pairs Metabolite-transcript pairs Metabolite-CpG site pairs

Samples 489 164 460
Correlation pairs 1088 1,983,152 28,394,896
P-value threshold 4·60e−05 2·52e−08 1·76e−09

Significant correlations
Correlation pairs 133 (12·2) 129 (0·006) 85 (0·0002)
Omic features 44 metabolites (64·71)

15 proteins (93·75)
7 metabolites (10·29)
71 transcripts (0·24)

5 metabolites (7·35)
75 CpGs (0·02)

r absolute values range 0·18–0·44 0·42–0·54 0·28–0·39
Negative r 43 (32·33) 0 (0) 70 (82·35)

Counts (percentages) are reported. r = correlation coefficient.
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In sensitivity analyses 13 CpGs were still significantly associated
with 24 omics (seven metabolic features and 17 transcripts) after ad-
justment for gestational age, parental ages, weights and heights, parity
and maternal education (Supplementary Table 19). After stratification
by sex, of the 482 correlations significant in the main analyses four
remained significant in boys and nine in girls (Supplementary Fig. 6),
four additional correlations became significant in boys and four in girls
(Supplementary Table 20).

3.4. Signals in common between the metabolite- and methylation-driven
integration of omics

We identified seven features in common to both themetabolite- and
the methylation-driven integration of omics (Fig. 5A and Supplemen-
tary Table 21) which are part of 48 unique correlation pairs.

The seven features include three metabolites [PC(34:2),
plasmalogen PC(36:4)/PC(O-36:5), and an unidentifiable compound

Fig. 4. Significant correlations in the methylation-driven integration of omics. A The circular plot depicts the results of themethylation-driven integration of omics. Tracks from outside to
inside are: ideogram, histogram plot and significant links between omic signals. The ideogram shows the omic features significantly correlated grouped in CpGs (blue), metabolic features
(green), transcripts (orange) and inflammatory proteins (yellow). On the ideogram, features are identified with numbers as reported in the Supplementary Table 28. Alternating bands
distinguish classes of metabolites and proteins, genomic regions of genes associated to CpGs and chromosomes on which are located the genes associated to transcripts. The histogram
shows for each omic feature (on the x-axis) the scaled percentage of significant correlations per each omic set as identified by colors (on the y-axis in increasing order from outside to
inside). In the center of the circular plot each significant correlation coefficient is visualized through a link connecting the two correlated omics. Links are colored according to the sign
of the correlation coefficient, where red and blue links mean respectively positive and negative correlations. Thickness of the links grows according to increasing absolute value of
correlation coefficients. B The dot plot shows significant pathways, grouped by function, from overrepresentation analysis (ORA) of the transcripts identified in the methylation-driven
integration of omics. Dots size varies according the gene ratio and colors according the p-values. C Metabolic network visualization of significantly enriched pathways based on the
manually curated KEGG global metabolic network [34]. The metabolites of significantly enriched pathways are represented as nodes on the network. Empty nodes represent
compounds identified from the feature list by mummichog but not significant, while solid nodes represent significantly enriched features. Note not all metabolites from the KEGG
global network are displayed. D The venn diagram shows the count of significant CpGs in the CpG-inflammatory protein, CpG -transcriptome and CpG-metabolic feature analyses
represented in yellow, orange and green circles respectively, and their intersections. E The network chart shows results from correlation network analysis. The nodes represent the
omic features. Nodes are colored according the omic layer they belong to (metabolites in green, CpGs in blue, transcripts in orange and inflammatory proteins in yellow) and are
identified by numbers as reported in the Supplementary Table 28. Only nodes with degreeN2 and edges with Bonferroni corrected p-values b0∙05 are displayed. Hedges are colored
according to the sign of the correlation coefficient, where red and blue links mean respectively positive and negative correlations. Communities (groups 1–6), detected using the
Louvain algorithm, are marked by circles. TSS = transcription start site; UTR = untranslated region.

Table 3
Overview of the methylation-driven integration of omics.

Methylation-inflammatory protein pairs Methylation-transcript pairs Methylation-metabolic feature pairs

Samples 450 162 460
Correlation pairs 14,448 26,335,092 4,254,936
P-value threshold 3·46e−06 1·89e−09 1·17−08

Significant correlations
Correlation pairs 4 (0·03) 439 (0·002) 39 (0·0009)
Omic features 4 CpGs (0·44)

2 proteins (12·5)
49 CpGs (5·43)
157 transcripts (0·54)

13 CpGs (1·44)
24 metabolic features (0·51)

r absolute values range 0·22–0·24 0·45–0·57 0·26–0·39
Negative r 3 (75) 403 (91·80) 8 (20·51)

Counts (percentages) are reported. r = correlation coefficient.

7R. Alfano et al. / Metabolism Clinical and Experimental 110 (2020) 154292



(U)61 of m/z 781.0545], two CpG sites (cg17901584 on the DHCR24
gene, and cg05119988 on the SC4MOL gene), and two proteins (CCL22
and periostin).

No feature was in common between all omic-layers (Fig. 5B).
Despite that no single transcript was in common, pathways related

to immune system and signal transduction were enriched in both me-
tabolite- and the methylation-driven integration of omics (Fig. 5D)
and the “chemokine signaling pathway” in particular was significant
in both analyses, along with pathways involving IL-2 and JAK-STAT sig-
naling (Supplementary Tables 7 and 14).

Network correlation analysis confirmed the three metabolites were
correlated with the two CpGs (Fig. 5C).

No feature was found to be robust to adjustment for factors differing
by cohorts (Supplementary Table 22).

As both genes in which the common CpG sites are located are in-
volved in cholesterol biosynthesis we hypothesized that cholesterol
metabolism is associated with birthweight and the newly identified
omics signals and consequently followed-up our analyses with a verifi-
cation study in the ENVIRONAGE cohort.

3.5. Cholesterol analysis

To test our hypothesis that cholesterol is related to birthweight and
birthweight relatedmolecules, we analyzed themeasured levels of each

of the seven omics features, common to both the metabolite- and the
methylation-driven omic integration, in relation to cord bloodmeasure-
ments of cholesterol available in the ENVIRONAGE cohort (Supplemen-
tary Tables 3 and 23). Regressionsmodels were adjusted for gestational
age, parity, newborn sex, maternal age, maternal height, maternal BMI,
smoking during pregnancy, maternal education, total cholesterol levels
(for HDL and LDL analyses), plate (for proteins analyses), cell types
composition, array row and position on the chip (for CpGs analyses).
We found that an interquartile (IQR) increment of all three metabolic
features [PC(34:2), plasmalogen PC(36:4)/PC(O-36:5) and U61], and
the two CpG sites, cg05119988 (on the SC4MOL gene) and cg17901584
(on the DHCR24 gene), were respectively associated with an increase
in total cholesterol levels of 17, 27, 18, 6, 7 mg/dl (p-valueb0∙01 for all
the associations) (Table 4). Additionally, a IQR-increment of
plasmalogen PC(36:4)/PC(O-36:5) was associated with an increase of
5 mg/dl of HDL cholesterol (p-value = 0∙01) (Table 4).

Analyses stratified by sex showed similar results for total cholesterol
in girls and boys (only the p-value of association with CpGs lost statisti-
cal significance in girls). Associations involving HDL cholesterol lost sta-
tistical significance in the girls' analyses (Supplementary Table 24).

In a larger subset of the ENVIRONAGE cohort (n = 1096) (Supple-
mentary Tables 3 and 23), we found that an IQR-increment in
birthweight (equal to 618 g) was associated with an increment 1∙14
mg/dl of HDL cholesterol [95% confidence interval (95CI) = 0∙43 mg/

Fig. 5. Significant correlations common to the metabolite- and the methylation-driven integrations of omics. The figure represents the 48 significant correlations identified by the seven
omics commonly significant in the metabolite- and the methylation-driven integrations of omics. A In the circular plot tracks from outside to inside are: ideogram, histogram plot and
significant links between omic signals. The ideogram shows the omic features significantly correlated grouped in metabolites (green), CpGs (blue) and inflammatory proteins
(yellow). On the ideogram features are identified by numbers as reported in the Supplementary Table 29. Alternating bands distinguish classes of metabolites and proteins, and
genomic regions of genes associated to CpGs. The seven common omic features are highlighted in red. The histogram plot shows for each omics feature (on the x-axis) the scaled
percentage of significant correlations (on the y-axis in increasing order from outside to inside). In the center of the circular plot each significant correlation coefficient is visualized
through a link connecting the two correlated omics. Links are colored according to the sign of the correlation coefficient, where red and blue links mean respectively positive and
negative correlations. Thickness of the links grows according to increasing absolute value of correlation coefficients. B The venn diagram shows among the seven common omic
features how many are significantly correlated with inflammatory proteins, transcripts and metabolites represented in yellow, orange and green circles respectively, and their
intersections. C The network chart shows results from correlation network analysis. The nodes represent the omic features. Nodes are colored according the omic layer they belong to
(metabolites in green, and CpGs in blue) and are identified by omic names. Only nodes with degreeN2 and edges with Bonferroni corrected p-values b0∙05 are displayed. Hedges are
colored according to the sign of the correlation coefficient, where red and blue links mean respectively positive and negative correlations. Communities (groups 1–2), detected using
the Louvain algorithm, are marked by circles. D The dot plot shows significant pathways grouped by function, from overrepresentation analysis (ORA) of the transcripts identified in
the metabolite- and methylation-driven integration of omics. Dots size varies according the gene ratio and colors according the p-values. TSS = transcription start site; UTR =
untranslated region * intersection only between proteins and metabolites.
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dl to 1∙85mg/dl, p-value= 1∙71e-03] upon adjusted for gestational age,
parity, newborn sex, maternal age, maternal height, maternal BMI,
smoking during pregnancy and maternal education (Supplementary
Table 25). Analyses stratified by sex confirmed this association in girls
only (Supplementary Table 25).

Finally, we tested if the levels of omicmarkers identified and choles-
terol differ in SGA, LGA and AGA newborns. Among the seven omic
markers identified only methylation of the two CpG sites, cg05119988
(on the SC4MOL gene) and cg17901584 (on the DHCR24 gene), was sig-
nificantly higher in SGA compared to LGA (p-value = 0∙03 and 0∙01, re-
spectively), and methylation of cg17901584 was significantly lower in
LGA compared to AGA (p-value = 0∙03) (Supplementary Table 26).
Total cholesterol was significantly lower (estimate change = −4∙68
mg/dl, 95CI = −8∙84 mg/dl to –0∙50 mg/dl) in SGA compared to AGA
newborns (p-value = 0∙03) and HDL cholesterol was significantly
lower (estimate change = −2∙17 mg/dl, 95CI = −4∙24 mg/dl to
−0∙09 mg/dl) in SGA compared to LGA newborns (p-value = 0∙04)
(Fig. 6). In the analyses stratified by sex, HDL cholesterol levels were
lower in SGA girls compared to both AGA (p-value = 0∙05) and LGA
(p-value = 0∙03) (Supplementary Table 25).

4. Discussion

Through an in-depth exploration of birthweight-associated sets of
metabolites and methylation sites we have identified commonalities
and differences between signals from two different molecular layers
[8,9]. From millions of correlations between omic molecules measured
in cord blood, our study shows that the set of metabolome and
methylome signatures of birthweight have seven signals in common,
one of which, the macrophage-derived chemokine CCL22, has not
been previously identified in relation to birthweight. CCL22 was nega-
tively correlated to both the metabolite PC(C34:2) and cg17901584 on
the DHCR24 gene. CCL22 plays a crucial role in the control of T cell im-
munity [36]. Similarly, we found that the “Chemokine signaling path-
way” identified through the gene expression analysis, overlaps
between the metabolite- and methylation-driven analyses, supporting
a potential link between birthweight and the immune system.

Although a detailed discussion of specific molecules is beyond the
purpose of the present study and requires further experimental valida-
tion, we highlight here the example of progesterone, which was the an-
notated metabolite most frequently correlated in metabolite-driven

analyses. Higher levels of progesterone in cord blood are observed
with lower-weight births [8,37]. Progesterone plays an important role
in the suppression of immune responses promoting cord blood T cell
differentiation [38]. Furthermore, we observed that progesterone was
clustered with transcripts that were most enriched for the IL-12 signal-
ing pathway, which promotes Th1 differentiation and forms a link be-
tween innate resistance and adaptive immunity [39]. In the
methylation-driven analyses, JAK3 was the most frequently correlated
transcript and the JAK-STAT signaling pathway, which plays a critical
role orchestrating innate and adaptive immunity, was also significant
enriched in the gene expression pathway analysis [40]. No previous
study has linked this enzyme to birthweight, yet experimental evidence
has associated JAK3 with low grade inflammation, obesity and meta-
bolic syndrome [41]. Progesterone and JAK3 are two signals of many
we identified, that illustrate how the cross-omic approach can provide
deeper insight in the biological underlying mechanisms of birthweight
and highlight avenues for further investigation.

In general, by comparing the metabolite- and methylation-driven
analyses we could observe that: i) phosphatidylcholine metabolites,
particularly plasmalogens, have been identified in both analyses.Mater-
nal plasmalogens, that are able to cross the placenta, have been recently
associated with newborn body composition [42]. However, most previ-
ous studies identified lysoPCs rather than PCs as dominant cord blood
metabolites related to birthweight [15,18]. ii) In both analyses, metabo-
lites were grouped with two CpGs, albeit different CpGs (cg05119988
and cg17901584 in the metabolite-driven analysis and cg14195992
and cg15331996 in the methylation-driven analysis). iii) The metabo-
lite-driven network analysis showed relations to groups of features
from distinct omic layers while in the methylation-driven analysis
three groups contain a mix of different omic types, representing a
more profoundmulti-omics signal. iv) In both analyses we consistently
found stronger correlations with gene expression-methylation and
gene expression-metabolites than between the other layers. v) Both
analyses identified different gene expression signals which suggests
that post-transcriptional regulation is specific for metabolites or meth-
ylation signals. vi) Metabolite-CpG pairs in the metabolite-driven anal-
yses were mainly negatively correlated, while in the methylation-
driven analyses the opposite was observed. The latter difference may
arise from the fact that expression levels of genes are positively corre-
lated with the level of methylation within the transcribed region and
while only 12% of the CpGs related to metabolites in the metabolite-
driven analysis were located in the gene body - this percentage in-
creased to 46% in the methylation-driven analysis. In the methylation-
driven analyses the various negative associations may be due to the
large proportion of negative correlations between transcripts andmeth-
ylation sites (92%), conversely, a single cell study previously described a
more complex relation depending on the location of CpG islands [43]. In
addition, the analyses showed a general trend formetabolite candidates
being positively correlated with gene expression, in agreement with
previous literature [44].

CpGs in common between the methylation- and metabolite-driven
integrations of omics belong to genes (DHCR24 and SC4MOL) involved
in cholesterol biosynthesis. Furthermore, C21-steroid hormone biosyn-
thesis and metabolism was identified as an important metabolic path-
way both through our methylation-driven analysis and in direct
association with birthweight by Robinson et al. [8]. We therefore per-
formed a verification study in the ENVIRONAGE cohort and showed
that plasmalogen PC(36:4)/PC(O-36:5) was positively associated with
HDL cholesterol levels that in turn were positively associated with
higher birthweight. Phosphatidylcholine metabolism, and in particular
plasmalogens, may regulate several important cholesterol biosynthesis
processes which improve cholesterol sensing and facilitate
interorganelle cholesterol trafficking [45]. During fetal development
cholesterol and phospholipids are needed to build membranes, to de-
velop the central nervous system including the brain and they are pre-
cursors of bile acids and steroid hormones [46]. While in adults LDLs

Table 4
Results from the cholesterol analyses.

Total cholesterol HDL cholesterol LDL cholesterol

Change
(mg/dl)

P-value Change
(mg/dl)

P-value Change
(mg/dl)

P-value

Metabolitesa n = 182 n = 182 n = 182
PC(34:2) 17·08 7·82e−04 2·66 0·16 −1·07 0·48
Plasmalogen PC
(36:4)/PC
(O-36:5)

26·85 3·05e−07 5·28 0·01 −1·17 0·48

U61 17·70 3·32e−04 1·14 0·54 1·72 0·24
CpGsa n = 178–179 n = 178–179 n = 178–179

cg05119988 6·02 7·45e−03 0·55 0·51 0·17 0·80
cg17901584 6·87 1·56e−03 0·86 0·29 0·58 0·38

Proteinsa,b n = 176 n = 176 n = 176
CCL22 −5·39 0·25 −2·88 0·09 0·90 0·51
Periostin 8·19 0·09 −2·70 0·13 0·89 0·52

P-values b0.05 are marked in bold. CCL22 = macrophage-derived chemokine; change =
change in cholesterol levels (in mg/dl) for one interquartile range increment of metabolites,
CpGs and proteins; HDL = high-density lipoprotein; LDL = low-density lipoprotein; n =
numbers of observation; PC = phosphatidylcholine; U61 = unassigned metabolite 61.

a All the analyses are adjusted for gestational age, newborn sex, maternal age, maternal
height, maternal BMI, smoking during pregnancy, parity, maternal education, and total
cholesterol levels (for HDL and LDL analyses).

b Analyses of proteins were additionally adjusted on plate and analyses of CpGs were
additionally adjusted for chip, position and cell types composition.
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are the major plasma lipoproteins, at birth cord blood is richer in HDLs
because HDLs are produced in blood circulation and are not dependent
upon fetal liver production, conversely to LDLs [47]. In our study the
positive association between birthweight and HDL cholesterol was fur-
ther confirmed by the finding of SGA having decreased HDL cholesterol
levels compared to LGA newborns. Further, we also found decreased
total cholesterol levels in SGA compared to both AGA and LGA new-
borns. Inconsistent (mostly null) associations of cord total andHDL cho-
lesterol levels with birthweight and between SGA and AGA, that have
been previously reported in literature [48–55], may be due to limited
sample size or lack of adequate control regarding confounding. Con-
versely, positive associations between birthweight and HDL cholesterol,
in line with our results, have been described by a randomized control
trial in 343 obese pregnant women and an observational study in
1522newborns upon adjustment formain confounders [16,56]. Further,
this last study found lower total and HDL cholesterol levels in 105 SGA
compared to 1320 AGA newborns. Beyond the traditional association
of increased cardiovascular risk with concentrations of total and HDL
cholesterol, HDL may have beneficial or detrimental effects on systemic
inflammation, obesity and diabetes and aging depending on composi-
tion of HDL particles [57].

In the ENVIRONAGE cohort we explored if being SGA was a signifi-
cant predictor of the omic markers identified in our study. Methylation
levels of cg05119988 and cg17901584 located on SC4MOL and DHCR24
genes were higher in SGA compared to LGA, and methylation of
cg17901584 was lower in LGA compared to AGA. Cord blood levels of
the two CpGs have been previously associated with birthweight [9],
but never before to SGA. In our study the methylation of these CpGs
was further positively associated with total level of cord blood choles-
terol and positively correlated with plasmalogen PC(36:4)/PC(O-36:5)
and PC(34:2). Interestingly, previous research has associated methyla-
tion of cg17901584 with waist circumference, PC(36:5) C and with
HDL cholesterol in adults [58–60].

Our analysis had a number of weaknesses. Cord blood includes a
mixture of cell-types that may demonstrate similar phenotypes but
with distinct methylation and gene expression patterns [61,62]. The
protein-set was limited to inflammatory proteins (n=16) and theme-
tabolome analysis was limited to a single analytical platformwithmany
metabolites lacking annotation, which is common in metabolomics
analyses [63]. Also, the curation of human pathway databases is incom-
plete and possibly biased towards specific diseases. Although we were
not able to analyze genomic data in the same samples, we did not find
in silico evidence of genetic variants influencing the DNA methylation
sites. While we hypothesized that birthweight influences biomarkers
at different omic levels, the cross-sectional study design does not

allow assessment of causality and therefore we cannot exclude the pos-
sibility that the biomarkers themselves are responsible for birthweight
modifications. In this regard, a recent multi-omic study in adults
found through mendelian randomization that methylation of one of
the two CpGs common to our methylation- andmetabolite-driven inte-
grations of omics (cg17901584) seems to be a consequence rather thana
cause of obesity [64]. In sensitivity analyses we found differences by sex
but we were not able to detect a clear pattern.

The major strengths of our study are the combination of cord blood
samples from four different European birth-cohorts and an integrative
analysis of different omic levels accompanied by computational and
technical challenges. We acknowledge that our results may be affected
by differences in birthweight across individual cohorts (Table 1), how-
ever the top signals in the two approaches were unaffected by factors
differing between cohorts, indicating that study heterogeneity is not
the main driver of our findings. Different methods have been described
to integrate data obtained from different omic levels [31,65]. Our ap-
proach combines multi-omics correlation with pathway and network
correlation analysis and aimed at identifying the intermediate biological
mechanisms that link birthweight-related omic signatures from the
same individuals.

The translational potential of our results lays in the development of an
extensive catalog of birthweight associated signals. In observational stud-
ies, birthweight has repeatedly been associatedwith a variety of later-life
diseases [4–7]. In the context of the DOHaD, the signalswe foundmay re-
flect biomolecular changes exhibiting possible health effects later in life.
For example, among the key signatures we identified, lower levels of
cord blood PCs had been recently associated with higher risk of pulmo-
nary hypertension in infants [66] and cord blood CCL22 has been associ-
ated with IgE sensitization in two year-old children [67]. Further, the
finding of low levels of total and HDL cholesterol in SGA compared to
AGA and LGA respectively, and that methylation of CpGs identified in
ourmulti-omic study differed in SGA compared to LGA suggest a possible
route for tailored intervention in SGA newborns that have higher risk of
morbidity and mortality both in the perinatal period and in later life
[68]. Although multiple molecular layers are linked via complex mecha-
nisms,multi-omics integration, such as in our study, can further clarify re-
lations between the different omics and enable us to study early life
dynamics of molecular signals. Before we can translate this knowledge
into general applications, the causality of the identified associations
should be studied by longitudinal and in vivo experimental studies.

In conclusion, we further substantiated previously identified bio-
markers in cord blood linked to birthweight and identified new omic
features. Our data suggested that cholesterol and related metabolic
pathways are related to birthweight. Our results provide evidence that

Fig. 6. Cholesterol levels in ENVIRONAGE cohort. A Total, B HDL and C LDL cholesterol levels in cord blood (on the y-axis) in SGA, AGA and LGA newborns (on the x-axis) of the
ENVIRONAGE cohort (n = 1097) are graphically represented by boxplots. AGA = adequate for gestational age; LGA = large for gestational age; SGA = small for gestational age. *p-
value between SGA and AGA and ** between SGA and LGA from linear multivariate analysis adjusted for gestational age, newborn sex, maternal age, maternal height, maternal BMI,
maternal smoking during pregnancy, parity, maternal education, and cord blood total cholesterol levels (for HDL and LDL analyses) b 0∙05.
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integration of different omic layers is a useful tool to generate hypothe-
ses on mechanistic pathways. Further studies are required to discover
the role of these biomarkers in later life diseases.
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VII. Discussion  
A. Methodology 

This thesis investigated several different types of omic data with emphasis on 
population-based DNA methylome-wide studies. Generation, analysis and 
interpretation of this type of data are not straightforward (163,164). For this reason, 
we have invested in progressively optimizing existing bioinformatic and biostatistic 
pipelines for methylation data. This includes at the same time small but essential 
improvements as well as more extensive collaborative investigations. The first paper 
of the methods (144) focused on identifying and removing unwanted sources of 
variation such as batch effects which can be sometimes overlooked but may cause 
spurious results especially if they correlate with biological variables being studied 
(165). The paper compared the performance of several batch correction techniques 
on 902 samples from European Prospective Investigation into Cancer and Nutrition 
(EPIC) study (166). We concluded that the SVA approach outperforms the other 
methods tested for batch correction especially that, unlike the other methods, SVA 
estimates latent variables, thus, does not require the sources of variability to be 
known. The recent advances in high-throughput technologies create an important 
necessity for such or newer methods, and it is critical to continuously monitor and 
benchmark these types of approaches in light of the rapid evolvement of the omics 
field. 

The second methodology paper benchmarked six popular integrative clustering 
methods using data simulation and publicly available omics data from breast cancer 
tissues. The results from the simulations and application revealed that matrix 
factorization methods were generally better to identify shared variation across several 
omic datasets. Sample clustering constituted the main evaluation criterion; however, 
more complete comparison could be done by also assessing variable clustering 
performance. Most of the investigated methods offer the possibility to do feature 
selection. It would be worth investigating the impact of penalization techniques on the 
method performances. All our tested simulations also demonstrated an advantage of 
integrative over non-integrative methods in the identification of common structure, 
supporting their use in the identification of complex structures across omic layers and 
in complex diseases such as cancer. 

The third paper represents a pan-cancer investigation using publicly available data 
from The Cancer Genome Atlas (TCGA). These consisted of datasets with genetic 
alterations and gene expression of 426 epigenetic regulator genes (ERGs) in 33 
cancer types. The high frequency of genetic alterations in ERGs in common human 
cancers (87,167) constitutes a “genetic smoking gun” that epigenetic mechanisms lie 
at the very heart of cancer biology. This study contributes to a greater understanding 
of the deregulation of ERGs and their functional impact in cancer and should prove 
instrumental in the clinical application of ERGs. We developed statistical and 
bioinformatics tools to predict cancer driver potential of gene function and to 
disentangle driver from passenger genes from a plethora of differentially regulated 
molecular players in cancer, most of which are often a resultant of the cancer rather 
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than a (driver) cause to the cancer. We aim in follow-up studies to this work to test 
these tools on the epigenetic markers identified herein in order to characterize their 
potential diver roles in childhood carcinogenesis.   

 

B. Early-life factors, DNA methylation and 
childhood cancer 

The acquired methodology expertise was used for downstream analysis of DNA 
methylation and specific early-life factors, being BW, gestational age and child sex, 
which represents tightly linked intrinsic factors. Each of the three was investigated in 
some of the largest studies to date, and the resultant findings were analysed in 
relation to childhood cancer risk through a proposed three-way modelling approach 
(in preparation). To complement these findings, a hypothesis-free investigation was 
also performed, but statistical power and robustness of findings yielded from such an 
agnostic methylome-wide approach are limited, requiring further replication in larger 
sample sizes and additional cohorts as well as adjustment for potential confounders.  

 

1. Birthweight 
BW was investigated using a meta-analysis of epigenome-wide association studies of 
8,825 neonates from 24 birth cohorts in PACE consortium. We showed that DNA 
methylation in neonatal blood was associated with BW at 914 CpG sites (Bonferroni 
p.value < 0.05), with a difference in BW ranging from -183 to 178 grams per 10% 
increase in methylation. Pathway enrichment analysis of the significant CpGs 
involved in transcription regulation and skeletal and blood system development. The 
914 neonatal blood CpGs were examined in follow-up studies in older children. A 
small fraction (1.3%) of birthweight-associated CpGs remain differentially methylated 
in childhood and adolescence. Previous studies reported similar rapid attenuation of 
differential methylation in relation to BW in the first years after birth (168). Large 
longitudinal studies would explore persistence at older ages in more detail and with 
more power. That said, persistence of differential methylation may not be imperative 
in predisposing to later adverse health effects as specific epigenetic events during a 
critical developmental period could initiate a program which later in life could be 
important, regardless of the continued presence or absence of that initiator (a “hit and 
run” effect). We used the adult whole blood reference for estimating the WBC 
proportions because cohort-specific analyses were completed before the widespread 
use of the cord blood reference became available (149). However, we found similar 
results after rerunning a sensitivity analysis on two cohorts with the new cord blood 
estimations. 

We also undertook Mendelian randomization approach to explore potential causal 
associations with BW and later in life phenotypes using publicly available summary 
data. However, for the vast majority (86%) of the BW-associated CpGs, no genetic 
instrumental variables were identified; for 12%, only one instrumental variable was 
identified, and for the remaining 2%, none of the CpGs had more than 4 instrumental 
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variables. Having only one instrumental variable may often result in biases due to the 
horizontal pleiotropy (a single instrumental variable influencing multiple traits) and 
assumption of spurious causation. Although the MR results were not conclusive, we 
expect that future development of GWAS of EWAS databases could help tackle this 
problem. 

Post hoc power calculation indicates that despite being the largest study to date on 
DNA methylation association with BW, small but relevant differences may not have 
been identified in the current analysis. However, this scientific publication may have 
important public health impact in children and represents an important step forward to 
achieving the thesis aims. 

The newborn epigenetic biomarkers of BW were further investigated in a follow up 
study integrating four types of omic data: methylome, transcriptome, metabolome and 
a set of inflammatory proteins from four birth-cohorts from the EXPOsOMICS 
European project. Most of the identified signals across the different omic layers were 
related to cholesterol biosynthesis. This was further supported by significant 
associations between HDL cholesterol levels measured in cord blood and BW in the 
same cohorts. This study combines multi-omic integration skills acquired in the 
methodology paper and findings from the EWAS study on BW in an attempt to 
elucidate how cross-correlation between omic layers can further unravel biological 
pathways of birthweight. 

 

2. Gestational age 
The study in the second paper was based on 6,885 neonates from 20 cohorts 
worldwide and provided a comprehensive catalogue of DNA methylation markers of 
gestational age (range 27–42 weeks), a birth characteristic associated with later 
onset of diseases (169–174) including cancer (175). We identified 8899 CpGs in cord 
blood that were associated with pregnancy duration, at Bonferroni significance 
spanning all chromosomes after adjustment for confounders including cord blood 
estimated WBC. The largest association represents 2.5% methylation change per 
additional gestational week. The most significant positively differentially methylated 
CpG in cord blood was located in IGF2BP1, a gene known to be involved in adiposity 
and cardiometabolic disease risk (176), and to play an essential role in 
embryogenesis and carcinogenesis (177,178). Enrichment for biological pathways 
involved processes critical to development and related to autoimmune and 
inflammatory diseases. Given the large number of significant associations, we 
proceeded to a selection of CpGs via two different techniques: regions that had at 
least three adjacent significant CpGs and differentially methylated region (DMR) 
analysis. The latter identified more than 95% of the 1276 CpGs selected using at 
least three consecutive sites. These 1276 CpGs annotated to 325 genes and were 
used in the downstream analyses. We acknowledge that applying this filter may have 
led to potentially important single CpGs not being included in the functional analyses. 
In addition, genes with few CpGs represented on the 450K array are likely under-
represented in the downstream analyses. 
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We performed look-up analyses in older ages: early childhood (4–5 years), school 
age (7–9 years) and adolescence (16–18 years) in a total of 2481 children. Out of the 
1276 CpGs, we observed 40, 60 and 60 sites in the three age groups respectively to 
be associated with gestational age at the nominal significance level (p.value < 0.05) 
with the same direction of effect. One CpG located in TMEM176B gene and 
previously associated with gestational age at birth (179) was nominally significant in 
all age groups with same direction of effect. The protein encoded by this gene has 
been proposed as a potential biomarker for various cancers (180). The low number of 
significant sites which, in addition did not survive multiple test correction, may be 
partially explained by smaller sample sizes in children compared to newborn 
analyses and by the fact that many later exposures may obscure the association.  

We also completed a longitudinal analysis using DNA methylation from two time 
points (birth and 4 years) in one cohort and three times points (birth, 7 and 17 years) 
in another cohort. Blood methylation levels at most identified CpGs changed 
significantly during early childhood with stabilization at school age. However, a 
subset (17%) of stable CpGs changed little from birth to adolescence.  

In addition to the lookup and longitudinal analyses in blood over time, we investigated 
whether the CpGs detected in cord blood (which originates from the mesoderm 
embryonic layer) were differentially methylated in relation to gestational age in other 
fetal tissues, lung and brain (which originate from the two other embryonic germ 
layers, ectoderm and endoderm, respectively) (181). We found clear overlap of 
methylation markers, highlighting that the cord blood findings capture the epigenomic 
plasticity of pre-natal development across tissues. 

To further investigate a potential functional impact of methylation changes on gene 
expression in cord blood (with focus on cis-effects), publicly available datasets were 
used leading to the identification of multiple strong correlations between methylation 
and gene expression. Forty-six percent of these DNA methylation-expression 
correlations were negative and fifty-four percent were positive. These expression 
findings may reflect relevance for health outcomes associated with gestation age. 

This large-scale study expands our knowledge on newborn methylation differences in 
relation to pregnancy duration, some of them being observed later in childhood. The 
availability of samples at multiple ages and our ability to compare our findings with 
those in fetal tissue datasets represent major strengths of the study. This scientific 
article represents an essential element towards the achievement of the thesis 
objectives. 

 

3. Child sex 
It is known that many cancers exhibit a gender-bias and CC is not an exception. We 
have also shown that gender significantly influences the interaction between birth 
order and childhood leukemia risk (78) as well as the interaction between the 
methylome and childhood cancer (in preparation). Hence, we also completed an 
analysis aiming to decipher how autosomal methylation patterns dictate or are 
affected by sex (in addition to the well-characterized sex chromosome methylation 
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patterns). The meta-analysis of child sex and offspring DNA methylation association 
at birth was performed using 8314 cord blood samples from 16 cohorts within PACE 
consortium. Over 40,000 CpGs sites of the 450K methylation array were differentially 
methylated with small but statistically significant differences between boys and girls 
at birth. In the lookup analyses, most of the signals persisted in older ages with 
similar directions of effect. The significant CpGs were enriched in cancer pathways 
and neurological disorders in both newborns and children. Our findings proved an 
identical trend with a previous study (182) for hypomethylation (67%) in boys for both 
autosomal and X chromosome sites. These results suggest that DNA methylation 
may contribute to developmental differences between boys and girls that impact sex-
dependent differences in health.  

There are several strengths and limitations of this study. The association between 
child sex and DNA methylation was investigated using robust statistical models in the 
largest studies to date ensuring enough statistical power to assess small effect sizes. 
WBC composition was estimated using cord blood reference for newborns and adult 
whole blood reference for children and adjusted for in the different models. Having 
two distinct time-points allowed to investigate the stability in time of the differentially 
methylated CpGs found in newborns. Our study did not investigate if the methylation 
changes are impacting gene expression. Thus, follow-up studies are required to 
confirm if these methylation differences extend to functional changes in order to 
confirm the biological significance and contribution towards the fetal origins of 
disease hypothesis. 

 

4. Bringing it all together 
The three major studies on the identification of epigenetic markers of BW, gestational 
age and child sex incur some common limitations. Early-life factors and DNA 
methylation were measured at the same time point. Thus, causality and its direction 
are difficult to ascertain, despite the fact that we adjusted for potential confounders, 
including WBC composition. As the majority of the participants were of European 
ancestry, more studies involving a larger number of non-European samples are 
needed to ensure generalizability of results.   

The relationship between the identified methylation markers of intrinsic factors and 
childhood cancer risk is currently being investigated through our three-way modelling 
approach. The preliminary results highlight one CpG in a non-coding gene that 
mediates the association between BW and CL and is not confounded by gestational 
age or child sex. The mediation was significant via two different and well-established 
statistical methods, but requires replication in additional cohorts and further 
experimental verification through functional assays.  

We also agnostically investigated the association between DNA methylation and CC 
risk in a hypothesis-free approach. This has led to the identification of four 
differentially methylated genomic regions (each spanning 3 to 16 methylation sites). 
The CpGs obtained from the hypothesis-free approach were not enriched in BW 
markers, though this would require larger sample sizes to confirm and to adjust for 
potential interference from confounders, given that the agnostic investigation has 
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limited statistical power and was based on a small number of studies. The two 
approaches are complementary with a primary purpose to provide a more 
comprehensive coverage of significant molecular associations and are not expected 
to necessarily yield overlapping results.  

 

C. Future perspectives 
This project constitutes several steps, intricately linked in order to synthesize 
meaningful associations linking early-life factors, epigenetic mechanisms and CL risk. 
Ongoing efforts aim to additionally expand the cancer scope from leukemias to other 
less common forms, such as child brain cancers, especially that we have recently 
assembled larger sample sizes from various studies. Among other early-life factors, 
investigating extrinsic exposure factors would be a logical next step, and birth order is 
an interesting example to explore as it is one of the few and new prospectively 
established risk factors for CC. Birth order is often used as a proxy for early-life 
infection as it has been associated with an increased risk of common infections found 
in blood. Prospective evidence for pesticides indicates an increased risk for AML 
making it, along with birth order, interesting factors to be prioritized for future 
mechanistic studies.  

Another approach would be to use existing epigenetic biomarkers of early-life factors 
with for which evidence is not yet very convincing, namely maternal smoking and air 
pollution. Both factors were studied in relation to DNA methylation by meta-analyzing 
the results of 13 and 9 cohorts respectively. Smoking had a profound impact on the 
epigenome with among the results AHRR (118), one of the best biomarkers of 
smoking, which unlike cotinine that have a very short half-life, can persist up to 30 
years. Contrarily, air pollution showed a modest effect in association with DNA 
methylation for both particulate matter (PM) with diameter <10µm (PM10) and with 
diameter <2,5µm (PM2,5) (183). Furthermore, tobacco and air pollution are 
established carcinogens by IARC, and their relation to childhood cancer is planned to 
be investigated in the epidemiological arm of I4C. Three-way modelling approach 
may prove to be a useful tool to expand our work into more exposures, especially 
those for which we have already catalogued epigenetic markers in population-based 
studies (such as the case of tobacco smoking and air pollution). Finally, pediatric 
neoplasms could be scrutinized for “epidrivers” genes following the framework for 
adult cancers presented in the Methods section and using the cancer driver 
prediction tools we have developed. 
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VIII. Conclusion 
We have extensively developed and optimized statistical and bioinformatics 
frameworks needed for the overall analyses of this thesis, including epigenomics 
batch corrections, meta-analysis of molecular epidemiology data and multi-omics 
data integration. The three inter-related intrinsic early-life factors were shown to have 
a profound association with the neonatal epigenome. These findings provide a 
comprehensive catalogue of differential methylation in relation to these early-life 
factors, which may prove additionally useful to the growing community of researchers 
studying DOHaD. Studying the dynamics of identified CpGs in childhood and 
adolescence demonstrated that some of the newborn signals persisted in older ages. 
Functional pathway enrichment demonstrated the involvement of these epigenetic 
markers in human diseases and biological processes critical to fetal development.  
Our findings highlight potential biological mechanisms that could underlie the 
associations between BW, its closely related intrinsic factors gestational age and 
child sex, and childhood leukemia. Replication of these findings and further in-depth 
functional analysis through experimental models may help ascertain some of the 
identified epigenetic biomarkers and characterize driver genes and causal pathways 
that are implicated in pediatric carcinogenesis. Such studies have the potential to 
enhance our knowledge of CC etiology and provide an evidence base for cancer 
prevention. 
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