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Abstract

Dans un solide désordonné ou aléatoire, les fonctions d’onde des états électroniques peuvent s’écarter
des états de Bloch étendus et au contraire, étre localisées de maniere exponentielle dans 'espace. Ce
changement radical de la structure spatiale des fonctions d’onde a une forte influence sur les propriétés
de transport du systéme et peut, par exemple, étre responsable de la transition métal/isolant dans les
alliages désordonnés. Dans les années récentes, un nouvel outil théorique appelé le paysage de localisation
a émergé pour I’étude de cette localisation induite par le désordre. Dans cette these, nous utilisons la
théorie du paysage de localisation afin d’étudier divers aspects de la localisation des ondes. Ce manuscrit
commence donc par une breve introduction sur des différents développements historiques dans le sujet
de la localisation d’Anderson qui concerne le travail abordé lors de cette these.

Tout d’abord, nous montrons comment extraire efficacement la structure spatiale de localisation a
n’importe quelle dimension en adaptant 'algorithme dit de watershed. Cet algorithme s’appuie sur
I’identification de minima locaux du paysage pour définir des régions de localisation. L’étape suivante
consiste a utiliser les propriétés du paysage pour éliminer les régions qui ne sont pas capables d’accueillir
une fonction propre localisée.

Puis nous passons a l'analyse des propriétés spectrales et calculons la distribution des valeurs propres
(la densité intégrée des états) dans des modeles d’Anderson en tight-binding en utilisant de nouvelles
approximations dérivées du paysage de localisation. Nous montrons que la théorie du paysage permet
d’obtenir un tres bon encadrement de la densité intégrée des états.

Nous étudions ensuite comment le paysage de localisation permet de comprendre ’existence d’un seuil
de mobilité a plus haute énergie, en fonction de la dimension. Ces résultats semblent indiquer que le
potentiel effectif joue un role crucial dans la localisation des fonctions propres en dimension supérieure
et égale a 3.

Enfin, nous nous intéressons & un potentiel déterministe de désordre, le modele d’Aubry-André, et ex-
plorons quelles informations sur le systeme peuvent étre déduites du formalisme de localisation du paysage.
Nous trouvons des résultats similaires que dans le cas de la localisation d’Anderson, mais souvent avec
des constantes qui different.
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Chapter 1

The role of disorder in quantum
systems

In this chapter we first introduce the concept of Anderson localization. In section [[] we lay down the
theoretical groundwork that we will need in the manuscript. We briefly cover important past works on
the topic. This leads us to some of the remaining open questions. In section[[V] we present the localization
landscape theory which is a different and deterministic approach to Anderson localization. From there
we overview the accomplishments of the localization landscape theory as well as several remaining points
at issue.

I Anderson localization

1.1 Overview of electronic transport in disordered materials

What allows a quantum wave to pass through the greatest of barriers, and yet to be trapped in the
weakest of disorders? This perplexing question was first considered by Anderson more than sixty years
ago in his famous paper Absence of Diffusion in Certain Random Lattices [8]. Before examining this
question further, we will review the relevant discoveries that led to the emergence of this phenomenon.

One of the first microscopic models of electron transport is the Drude model [26]. This is a classical
model that considers the electrons as an ideal gas of point-like particles scattering off the different atoms
forming the crystal. The average distance between two collisions on the lattice is the mean free path /.
In the presence of an electric field, the electrons move collectively at a stabilized speed which depends on
the electric field and on ¢.

This model was successful in describing the conductivity in metals at room temperature as well as the
Hall effect. However, the behavior of insulators and semiconductors or the low temperature behavior was
not explained by this model. After the emergence of quantum mechanics, the next step was to develop
a quantum theory of electronic transport.

Combining the Drude model with the quantum mechanical Fermi-Dirac statistics, Sommerfeld developed
a simple theory called the free electron model that accurately predicted additional features such as the
shape of the electronic density of states. Interactions between the electrons were still neglected, as well
as the interactions between the valence electrons and the ions. Nonetheless, many aspects remained
unexplained, especially in the low temperature limit. Furthermore, this model offered no explanation for
the conductive or insulating nature of materials: what fundamental property makes some of them metals
and others insulators?

In 1928, Bloch developed the electronic band structure theory that complemented the free electron model.
The electrons are described as non-interacting quantum waves with the same periodicity as the one of the
crystal lattice. This is known as the Bloch theorem. The electronic wave functions are characterized by
a wave vector k and a wavelength \. In this model, the electrons are only allowed to fill certain bands of
energy, according to Fermi-Dirac statistics. At zero temperature, the last energy band filled is called the



valence band while the lowest vacant energy band is called the conduction band. One defines the band
gap as the difference in energy between the lowest state of the conduction band and the highest state in
the valence band. Materials whose Fermi level lies in the conduction band are defined as metals. Those
for which the Fermi level lies in the band gap are either insulators (with a large band gap, of the order
of 10 e€V) or semiconductors. This description of materials was the first to offer an explanation to the
origin of the conducting or insulating properties of materials.

Under the action of an electric field, the electrons under the Fermi level may acquire enough energy to
go over it, which creates an electrical current. In metals, any small electric field will put the electrons
in motion, since the Fermi level is in the conduction band. In insulators where the band gap is very
large, only very strong electric fields will put a small amount of electrons in motion. Semiconductors
are in between, where a strong enough electric field will allow current to flow. They can also be doped,
which can shift the Fermi level closer to either the valence or conduction bands. Contrary to metals,
semiconductors’ conductivity increases with temperature since the states at the bottom of the conduction
band are in the exponential part of the Fermi-Dirac factor, making their number very dependent on the
temperature. A key takeaway from this model is that electrons in perfect crystals move as if they were
in a vacuum ignoring the crystal, but with a renormalized mass, noted m*.

If there is a vacant spot in the valence band, an electron in the conduction band can emit a photon or a
phonon and descend to the valence band. Its energy will necessarily be greater than or equal to the band
gap, with it more likely to be close to the band gap. In the case of a photon, since energy and frequency
are linked (F = hv), the emission spectrum of semiconductors is therefore narrow enough to appear as a
pure color to the human eye.

This model is the backbone upon which other models are built on to understand the electronic states
in materials. The study of the spatial and spectral structure of the eigenstates of the Hamiltonian
of electrons in solid systems is necessary for comprehending the transport properties of these electrons.
Implementing Boltzmann’s kinetic theory to the system by considering interactions between the electrons
and phonons gives a good description of the transport properties of metals. This is also known as the
semi-classical model of electron dynamics. For a more in-depth introduction on electronic transport in
materials, the reader can consult Ashcroft and Mirmin’s “Solid States Physics” [12].

These models are effective in describing the electric properties of materials that have crystalline structures.
However, in reality no crystal is perfect. The existence of small defects or impurities, which can be missing
atoms in the crystal or atoms replaced by different atoms (substitution defects), means we can no longer
assume that the wave functions of the electrons are Bloch states. A possibility is then to treat the disorder
as a perturbation to produce corrections to the eigenstates. The disorder must necessarily be quite small
for this sort of calculation. This description is adequate for low concentration of impurities, for instance
for lightly doped semiconductors.

For many materials, treating the disorder as a small perturbation is fundamentally inadequate. For
example, the different elements of metallic alloys can have concentrations of the same order of magnitude,
and be randomly distributed in the crystal. In this case, instead of having small defects in an ordered
crystal, the different elements of the crystal occupy random sites and there is no underlying structure.
Similarly, certain semiconductor alloys such as indium gallium nitride (InGaN) are specifically designed
to emit at a certain wavelength by tuning the concentration of indium with respect to gallium (more
gallium increases the band gap which decreases the emitted wavelength).

Another approach to describing the electronic structure of materials is the tight-binding model. The
idea behind it is the opposite of the Bloch model. Here, the electrons are considered to be bound to
their respective atoms, and therefore the atomic orbitals are used as the basis states of the Hamiltonian.
Because they are so strongly bound, the overlap with the neighboring atoms is very small. Therefore, the
electrons can be described as bound to an isolated atom, with a slight perturbation due to its neighbors.
The wave function of the electrons in this model is projected on a discrete basis: the various localized
sites of the lattice. The Hamiltonian for such a model is:

H= Z eala; —t Z (ajaj + h.c.) , (1.1)

<i,j>

where ¢; corresponds to the energy at the site 1, aj and a; are the creation and annihilation second
quantization operators that respectively create and destroy an electron at site ¢, and ¢ is the hopping



term that represents the coupling or the overlap between two neighboring states. The < 4,5 > symbol
indicates that the sum is run over nearest neighbors, and h.c. stands for Hermitian conjugate. These are
the basic elements of the tight-binding model with nearest neighbor coupling.

1.2 Anderson localization

In 1958, Anderson imagined a tight-binding model where the on-site energies would be random [§]. This
model was meant to be the simplest capturing the fluctuations of the potential due to a random quenched
disorder in the system. An example of such a system is displayed in Figure In his original paper, the
on-site energies follow a general random law P(E)dFE, the width of this distribution being W (which we
will very often call Vj,.x in this manuscript). The two parameters of the model are the potential strength
Vinax and the overlap between neighboring sites ¢. The ratio Viyax/t is a dimensionless parameter that
represents the strength of the disorder.

y
A
[ ) [ ) [ ) [ )
t
o 6 o o
Ei Ej

> X
Figure 1.1: Two-dimensional Anderson tight-binding model with nearest neighbor hopping.

Studying the wave function at a site ¢ at a time 7, ¢;(7), Anderson argued that if this quantity goes to
0 at infinite time, the wave will have completely delocalized, i.e. it will have spread out on the entire
domain. However if this quantity stays finite, it means that the wave function remains localized: it did
not spread out in the entire domain. Anderson showed that for sufficiently large ratios of Vi,ax/t, the
eigenfunctions remain localized (in reality, it was shown later on that this critical disorder strength does
not always exist and depends on other factors such as the embedding dimension of the system). Physically
speaking, for strong enough disorders and weak overlap between neighboring sites, the eigenfunctions do
not propagate in the medium. This critical ratio was later defined as the mobility edge by Mott in his
papers from the 1960s [59] [60].

<~ f—

Figure 1.2: The two different states for a quantum wave function. Left: Delocalized
states with mean free path ¢. Right: Exponentially localized state of localization length €.
Reprinted from [52].

Furthermore, Anderson showed that the eigenfunctions decay exponentially from site to site (see Fig-
ure . This brings into play another parameter, the localization length £, which governs this exponen-
tial decay: 1 ~ exp(—z/£). This is the first description of Anderson localization, also known as strong
localization.



Since then, this phenomenon has been studied extensively, and shown to exist in other systems. Most
notably, the continuous Hamiltonian equivalent of the Anderson tight-binding model is:

) K2
Hy = (—QmA + V) b, (1.2)

where A is the Laplacian operator, £ is the reduced Planck constant, m is the mass of the electron, V is
the random potential, and ¥ are the continuous wave functions.

Let us take an example. Consider a two-dimensional system following equation (1.2). In the absence
of a potential, the solutions to such an equation are plane waves, with some examples represented in

Figures 1.3

0.5
0.5 2

Figure 1.3: (a) Example of the probability density of a delocalized eigenfunction of the
Schrodinger operator without any potential. This is an excited mode. (b) Example of a
delocalized eigenfunction of the Schrédinger operator without any potential. This is the
tenth excited mode.

In Figure [I.4 we have represented a two-dimensional potential following a Boolean random law and taking
values in [0, 10]. If we solve equation ((1.2]) with this potential, the solutions are not plane waves and are
now localized, as can be seen in Figure

10

Figure 1.4: A 2D potential with a Boolean random law. The potential is piece-wise constant,
taking values 0 with a 60% chance (in blue) and Viyax = 10 with 40% chance (in red).

As can be seen in Figure the V' = 0 part of this Boolean potential percolates. A classical particle
starting from this region with any positive energy in the center of the domain could travel to the edge

10
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Figure 1.5: The first 5 eigenfunctions that are solutions to the Schrédinger equation (1.2]).
They each occupy a distinct area in the domain.

without being stopped. And yet the eigenfunctions of the Anderson Hamiltonian with this potential are
localized. This behavior can only be understood with a wave-like description of the particles.

In order to understand how waves localize instead of propagating through a medium, and the role wave
interference plays in in this process, let us consider a simplified description of an electron traveling from
a point A to a point B, as depicted in Figure In Feynman’s path integral formulation, calculating
the probability amplitude P for the electron to travel from A to B requires considering all paths from A
to B and sum the probability amplitudes of each individual path C;:

2

:Z|ci|2+2q.c; (1.3)

i#]

P:

2.G

Figure 1.6: An example of the different paths an electron can take to go from point A
to point B. In the quantum theory setting, all paths must be considered and summed to
calculate the probability for the electron movement. Reprinted from [73].

Two terms contribute to the total probability. The first corresponds to the addition of contributions from
the paths that do not interact with each other, it is therefore classical by nature. The second corresponds
to interferences between the different paths, it is due to the wave nature of the quantum particle. In
general, the sum in the second term averages to zero since the various phase contributions usually cancel
each other out. In those cases, the probability ends up being: P =3, |C’i|2 = Pass-

There is an exception to this case. If the starting and end points are identical, or for self-crossing
paths as shown in Figure [I.7] a path going one way will positively interfere with a path going the
other way, due to the time-reversal symmetry of the Hamiltonian. Furthermore, the electron must

11



maintain coherence along its path. The contribution of these two paths to the probability is now given
by: P:2|C’|2 +2C,C; = 4|C|2 = 2P,14ss- In this case, it is therefore twice as likely for a quantum particle
to return to its starting point than for a classical particle.

*/'

A=B

Figure 1.7: An example of a self-crossing path. The starting and end points are identical,
which leads to a constructive interference. Reprinted from [73].

This phenomenon is called coherent backscattering, and is the origin of the phenomenon called weak
localization which has been extensively studied in various papers [4, [6, 57]. The following works offer an
excellent review of the topic [15, 20] 52 [5]. When light is shined into a medium with randomly placed
scatterers, some of the light comes back, and there is a sharp peak in intensity at exactly the angle at
which the initial light was shined. This example shows that wave interference is crucial for generating
localization of eigenfunctions in disordered media.

Anderson localization has been treated in many different ways since its inception. Historically, there
have been numerous different ways to characterize the localization/delocalization transition, but we will
focus on three for the purpose of this manuscript. The first is to use the localization length as a measure
of how localized the eigenstates were. Another way is to study the conductivity, which goes to zero as
disorder increases in the localization regime. And finally a more mathematical approach is to consider
the statistics of the distribution of the eigenvalues. The goal is not to present an exhaustive review of
the literature [70} 52}, 27, ], but to develop specific points that pertain to the rest of the manuscript. We
have just presented Anderson localization and weak localization. We will now examine the scaling theory
of localization, as it established central results on the transition between localized and delocalized states
depending on the dimensionality. This will be followed by a presentation of random matrix theory as it
has elaborated tools to quantify how localized eigenfunctions are. Afterwards we will look at Lifshitz’s
model of disorder and the Lifshitz tails, which are a feature in the integrated density of states of disordered
systems. And finally we will give an overview of the main questions left concerning localization and how
we plan to address them.

1.3 Scaling theory

Concurrently with the first steps of Anderson localization, renormalization group theories emerged for
studying transitions and critical phenomena. It did not take very long for others to formulate a scaling
theory of localization: Thouless was the first to present these ideas in a paper in 1974 [70]. The foundations
of the scaling theory were built upon and clearly formulated by Abrahams, Anderson, Licciardello and
Ramakrishnan a few years later [2].

In localization/delocalization transition phenomena different length scales are involved. The smallest
length scales are the de Broglie wavelength A and the correlation length of the disorder (. If { < A, the
details of the disorder are not seen by the electron [61]. If A < ¢, it is the opposite, which is the case
for example in optical speckle potentials [16]. The larger length scales are the mean free path £ and the
localization length £. Depending on the details of the system, (the type of disorder, the dimensionality)
these two length scales can take on different values. For instance, in 3D with low disorder strength,
& = oo while in 1D, for weak disorder, a transfer matrix calculation gives £ = 2/.

12



Figure 1.8: The different length scales involved in the localization/delocalization transition.
The three areas separated by the dotted lines correspond to the three different regimes:
ballistic, diffusive and localized (from left to right). Reprinted from [61].

The scaling theory of localization describes how changing the system size allows to pass from one regime
to another. If the system size L is smaller than the mean free path ¢ the particles do not have time
to diffuse and the movement is therefore ballistic. For ¢ < L < &, the transport is diffusive with weak
localization corrections. The localized regime is reached when L > £. If the localization length is infinite
then the localization regime can never be reached. The different length scales and their relation with one
another are displayed in Figure [I.8]

The general idea behind scaling theories is that the exact nature of the eigenfunctions and eigenvalues of
a hypercube of size L? (d being the dimension) will be determined by its specific properties such as the
realization of disorder. A scaling theory provides a procedure that enables us to retrieve information on
these finite sized systems at the thermodynamic limit. Let us consider the cube of side-length L and let
us make copies of it in order to stack them up to assemble a hypercube of size (2L)d. How do the system
properties change in this operation?

The first step of the scaling theory is to determine a parameter that characterizes the transition that is
to be studied (in our case the localization/delocalization transition). This parameter should depend on
as few variables as possible, ideally only one. As mentioned before for the Anderson transition, different
quantities measure how localized the eigenfunctions are. Let us establish such a criterion. Considering the
aforementioned hypercube of size L, if the system is closed, the eigenfunctions of the different hypercubes
will not intermix, and the average spacing between the eigenvalues is determined by AE = (pLd) _1, with
p the density of states. Now if the system is open, the time it would take for a particle to diffuse from
that hypercube to the other is 7p = % where D is the diffusion constant. Through its diffusion, that
particle’s energy resolution §F is such that §E7p ~ h.

When AFE > §FE, the eigenfunctions’ energy resolution is very small, meaning that their frequency
resolution is also. This implies that the eigenfunctions are spatially extended. They therefore overlap
considerably and the eigenvalues are close to each other. We are in the delocalized regime. On the
other hand, if AF < 0F, the overlap between in the eigenfunctions is very small compared to how far
apart the eigenvalues are. This is the localized regime. The ratio of these two quantities is our criterion:
AE/SE. Thouless further argued that the conductance G is linearly related to the quantity AE/JE [7Q].
Furthermore, we can express this quantity in units of e2/A:

G _p
e2/h  O0F

9= (1.4)

g is referred as the dimensionless conductance. It is important to realize that as we are doubling the
system size, the new value of the conductance depends only on the old value. The idea behind scaling
theory is to study the 8 function which measures how the conductance evolves with the system size:

~dlng

89) = qur

(1.5)

The main hypothesis we make here is that this function is only dependent on g. S(g) gives all the
information that is needed in order to determine the behavior of the eigenfunctions as the system size
goes to infinity. Indeed, if § is negative, that means as the size is increased, the conductance decreases,

13



eventually going to 0. While if it is positive, the conductance will increase. We can determine the
asymptotic behavior of 5 by using the known expressions of ¢ for small and large values of g.

Figure 1.9: The evolution of the 8 function for three different dimensions. The slope of § at
gc is related to the critical exponents. If there was a minimal conductivity in 2D, 8 would
go to 0 at a distinct value, instead of asymptotically going to 0. S would behave like the
dashed curve that prolongs from the d = 2 curve. Reprinted from [2].

One can derive formulas for g, and therefore for 8(g) in the strongly localized regime: 3(g) = In q% = —%

using the fact that g decays exponentially, and in the delocalized regime: §(g) = d — 2 using Ohm’s law.

After obtaining the asymptotic behavior of the 8 function for both small and large g, and assuming 5(g)
behaves reasonably, we can link these two asymptotics together as simply as possible, i.e., monotonically.
As can be seen in Figure [ stays negative for d = 1 and d = 2. No matter the initial conditions, the
process of doubling the system size as detailed above always decreases g. At the thermodynamic limit,
the conductance always vanishes, meaning that the eigenfunctions are all localized. In 3D however, 3 is
negative for small g, and positive for large g. This means that there is a critical value g. where 5(g.) = 0.
For g above this value, the scaling process increases the conductance, while for g under this value, the
eigenfunctions become more and more localized as the system size is increased.

According to the scaling theory of localization, there is no minimal finite value for the conductivity:
omin = 0. This was one of the first results of the theory. The other main prediction was the value for the
critical exponents for the localization transition in 3D.

In the theory of critical phenomena, a transition is characterized by a certain order parameter. As
mentioned before, one can choose different parameters, but one that makes sense in the localized phase is
the localization length £. In the Anderson model, this parameter depends on the potential strength W:

E~ (W =W, (1.6)

where W, is the critical potential strength and v is the critical exponent. To obtain a value for v, we start
by expanding the expression for 8(g) around the critical point g.. The simplest models have given v ~ 1.63
which is quite close to values found through various numerical simulations: v = 1.58 & 0.01 [61], 68|, 33].
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This comparison of length scales raises another question. All previous considerations have been expressed
in the thermodynamic limit, i.e., in an infinitely sized sample. In practice however, systems are of finite
size. Usually this is not a problem as the length scales involved are much smaller than real sized samples.
For instance, 2D Anderson localization remains difficult to observe experimentally as the localization
length is very large: &p ~ lexp (3kpl) [62, 48] (where kp is the Fermi wave vector). For instance, in
a cold atoms experiment [16], with £ = 100 um and kp = 2.5 pm™!, this gives &p ~ £e*%0) which is
obviously much larger than the system size. The dependence on the mean free path is exponential, so in
systems with weak disorder the size is often smaller than this length. This creates an additional difficulty
in the observation of the mobility edge: how to differentiate a truly delocalized state from a localized state
with excessively large localization length? The concept of effective mobility edge, which can be defined
as the energy over which the localization length of the eigenfunctions are greater than the system size,
has emerged to characterize this phenomenon. In finite-size systems, eigenfunctions over the effective
mobility edge will appear delocalized. The origin of the effective mobility, which in practice mainly
concerns speckle potentials in cold atoms, comes from correlations in the disordered potential [65] 28].

Predicting the exact values for the mobility edge and the effective mobility edge is one of the open
questions left today in Anderson localization.

1.4 Random matrix theory

In 1955, Wigner introduced the random matrix theory in order to model the spectra of the nuclei of
heavy atoms [75]. Since then, the use of random matrices has spread to other domains in physics such
as the physics of disordered systems. The idea behind this theory is that the statistics of the spectrum
of a random operator are heavily dependent on the symmetries of that operator and on whether its
eigenfunctions are localized or delocalized.

The argument goes as follows: consider a very localized system where the different eigenfunctions have
very little overlap with one another. Pushing this argument to the extreme, the matrix will essentially
be diagonal with off-diagonal elements either very small or 0. In this case, the system being disordered,
the diagonal elements are the eigenvalues and are determined randomly. The level spacings are defined
as the difference between consecutive eigenvalues: s, = En+1 — E,. As the energy at each site is
determined randomly, the spacings can be interpreted as a Poisson process, and therefore follow a Poisson
distribution [66]:

Pp(s) = %exp (—g) , (1.7)

where § = (s) is the average value of the s,. Physically, this indicates that when the eigenfunctions are
localized, they behave independently: there is no repulsion between the different eigenvalues.

However, when the the eigenstates are delocalized the statistics of the spacings are different and depend
on the symmetries of the Hamiltonian [7, [35]. The most studied operators belong either to the Gaussian
Orthogonal Ensemble (GOE), the Gaussian Unitary Ensemble (GUE), or the Gaussian Symplectic En-
semble (GSE). In each case, the elements of the matrix associated to the operator are random variables
following a normal distribution. Depending on the ensemble, there is an added constraint: the matrix
must be orthogonal for the GOE, unitary for the GUE, and symplectic for the GSE. An orthogonal matrix
corresponds to a Hamiltonian with time-reversal symmetry, a unitary matrix to a Hamiltonian without
time-reversal symmetry, and a symplectic matrix to a Hamiltonian with time-reversal symmetry but no
spin rotational symmetry. The statistics of the level spacings of the spectra of each type of matrix are
different. The following formulae are obtained for 2 x 2 matrices, but describe the statistics of larger
matrices very well. This is called the Wigner surmise.

T T
Poor(s) = 5 5exp (—252) , (1.8)
2 s
Paun(s) = 2% exp (= 57) | (1.9)
18 64
Post(s) = 55" exp <97T52> (1.10)
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Figure 1.10: For three-dimensional systems, as the disorder strength increases, the eigen-
states go from delocalized to localized. Therefore the probability distributions of the level
spacings go from Poisson-like to Wigner-like. Reprinted from [66].

The Anderson model usually exhibits time-reversal symmetry, so the statistics of the GOE are relevant
in this case. Certain models add a magnetic field interaction which destroys time-reversal symmetry. In
that case, the GUE statistics are relevant.

According to these statistics, for delocalized eigenstates, it is very unlikely for two consecutive eigenvalues
to be close to each other since the probability density of the spacings at 0 vanishes. It is just as unlikely
for two consecutive eigenvalues to be infinitely apart, there is therefore a value of the spacing where the
probability is maximal. Figure displays the transition between the Wigner surmise and the Poisson
statistics.

The distribution of the energy spacings is another useful tool in studying the localization/delocalization
transition, as determining these distributions requires only the calculation of the eigenvalues and not the
eigenfunctions, which is considerably more computationally costly.

IT Other manifestations of localization

In this section we will present other examples of disordered systems where localization occurs. Each case
is interesting to us because they either exhibit new characteristics of localization (the Lifshitz tails) or
demonstrate localization in novel ways (the Aubry-André model). The latter can then be used as a test
bed for the localization landscape theory.

II.1 Lifshitz tails

In parallel to Anderson, Lifshitz developped his own model of disorder known as the Lifshitz model [55, [56].
In this model, instead of considering a tight-binding model, the model is continuous, with repulsive
impurities added at specific points of the lattice:

h2
“om AUV + Y UG =750 = By, (1.11)
J

where V is the periodic potential due to the crystal and U is the potential due to the impurities, which
is summed over the various sites j of impurities.
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In the absence of disorder for free electrons, the dispersion relation is quadratic. This leads to a density
of states following a power law: p ~ E4/2~1 Since the aforementioned dispersion relation does not hold
in the presence of disorder, neither does the expression for the density of states. Instead, Lifshitz showed
that the integrated density of states (or counting function) at the bottom of the spectrum tends towards

—d/2:

. Wm(n(N(E) d
A M E—Ey) 2 (1.12)

This behavior is called the Lifshitz tails, and has interested mathematicians and physicists alike. The
former were at first interested in determining which types of potentials were responsible for the appearance
of these tails. Initially, it was only proven for this particular type of potential, but later on others
generalized these results. Pastur, Benderskii [14] and Kirsch [45] expanded the theory to a large class
of potentials. In 1985, Simon showed that the Lifshitz tails occurred in Anderson type potentials [67].
Klopp studied the weak disorder limit of the Anderson model and found an expression for these Lifshitz
tails [46] 47]. For further information on the mathematical side of the topic, the read can refer to these
comprehensive reviews [44] [62] 50].

From the experimental physicist’s perspective, these tails in the integrated density of states have an
impact on other observables. For disordered crystals, Urbach observed that the absorption curve also
exhibits exponentially decreasing tails [(2]. He then proposed a phenomenological law to account for this:

a(hv) = agel=EV/Eu(T) (1.13)

where «y is a constant, F7 is the energy limit of the extended band-like states, and Ey the Urbach energy.
These parameters are to be determined experimentally. Several works have attempted to establish a
universal theory for these tails [25], 42]. A possible explanation lies in thermal disorder or in the disorder
induced localization of the electrons and holes, but there is still debate as to which phenomenon is the
leading cause of the Urbach tails.

Throughout this thesis we will be concerned only with the mathematical aspect of these exponential tails.
A more precise behavior than equation ([1.12)) is sought after, especially its dependency on the parameters
of the random law governing the disorder.

II.2  The Aubry-André model

In this introduction, we have always treated Anderson localization through the prism of independently
and identically distributed (i.i.d.) random potentials. Anderson localization is always studied statistically
since the potentials depend on the realization of disorder. It does not make sense to try to solve the
eigen-equations analytically since there is no expression for the potential.

However randomness is not a necessary condition to produce localization. Another class of potentials
known as quasi-periodic or pseudo-random exhibit some aspects of localization. In tight-binding models,
these potentials have a cosine term but with a spatial frequency that is incommensurate with the lattice
spacing. In this way, values are never repeated and seem random.

We consider a discrete Hamiltonian H)»* in 1D :

H) Py = byt + Pn_1 + 2X cos [27 (w + na) ]y, = By, (1.14)

which depends on three parameters, the potential strength A, the spatial frequency «, and the phase w.

In practice, the lattice spacing is taken equal to 1, and therefore the frequency must be an irrational
number so that the spatial frequency is incommensurate with the lattice spacing. In physics, Aubry and
André were the first to propose such a model, and showed localization of the eigenfunctions [I3]. The
model had been introduced to study specific phenomena, the Peierls instabilities, but has since been used
as a foil to the Anderson model since it behaves similarly.

Independently, Hofstadter developed a comparable equation while working on two-dimensional Bloch
electrons in a magnetic field [36], which also had an incommensurate potential. Hofstadter’s paper is
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Figure 1.11: The Hofstadter "butterfly” plot. The x axis represents the energy; the y axis
represents the irrational frequency «. Reprinted from [36].

famous for predicting the “butterfly” figure represented in Figure It is a representation of the
spectra for the different values of the frequency «, for the specific value of the potential strength A = 1.
This set has a fractal-like structure. This model was shown to be a special case of the Aubry-André
model afterwards [41]. It has been extensively studied, and many of its properties are known. All the
eigenfunctions are either localized or delocalized [39], depending on the value of A (delocalized for A < 1,
localized for A > 1), regardless of the dimension [I7] (in Z¢). Furthermore, Jitomirskaya and collaborators
have shown that the eigenfunctions possess a hierarchical structure determined by the continued fraction
expansion of the irrational frequency « [40]. From the physics perspective, these quasi-periodic potentials
are an excellent way to study localization experimentally in a cold atoms setting [64], as well as being
a base model to research more complex phenomena from a theoretical point of view such as many-
body localization [38], higher dimensional transitions [24], topological zero energy phases [34] and their
transport properties ﬂﬁgﬂ

The Aubry-André model is therefore an excellent case study of computable wave localization. Many of its
properties are known and well understood which makes it ideal to compare and contrast with Anderson
localization.

III Several remaining open questions

We would like to summarize some of the remaining essential questions in the field of Anderson localization
that will be addressed in this thesis:

e The precise asymptotic behavior of the Lifshitz tails depending on the disorder parameters is an on-
going question. The current description of the exponential decay of the counting function involving
the limit of the logarithm of the logarithm of the counting function is in a weak form.

e High-energy localization is well understood in one dimension thanks to transfer matrix calculations:
quantities such as the localization length can be derived [43, 48], 58] [71]. Less results are known in
two dimensions, and we still do not understand the mechanisms behind the emergence of a mobility
edge at higher dimensions.

e Finally, one of the main questions is the analytical characterization and description of the mobility
edge, the critical exponents, as well as the effective mobility edge. The mobility edge is one of the
defining feature of localization. And yet we are not fully capable of predicting and characterizing it
depending on the features of the disorder of the system. The same goes for the critical exponents.
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Perhaps as important is the effective mobility edge. Being able to differentiate the two mobility
edges is critical for the study of the true mobility edge. Indeed, experimentally and numerically,
one is often confronted with the situation where delocalization seems to be observed because the
system size is not large enough.

IV  The localization landscape: a deterministic approach to lo-
calization

As was seen in the previous sections, approaches to Anderson localization have largely been statistical.
The properties of the system are averaged over many realizations of the disorder. However, because of
this, little can be said on the localization structure for particular realizations of disorder.

The localization landscape theory departs completely from this paradigm. It is a deterministic approach
to study the localization properties of the eigenfunctions. In this way, information can be acquired directly
from the system under study. One useful application is for relating theory with experiments, since more
often than not experimental physicists can only measure the properties of one or a few samples.

IV.1 The spatial properties of the localization landscape

The localization landscape theory was first introduced in 2012 [31] with the aim of explaining the mech-
anisms at work in weak or Anderson localization. The idea was to consolidate many different vibrating
systems in a universal mathematical framework.

Figure 1.12: Left: Example of a random potential on a 2D domain. The domain is divided
into 20 x 20 squares, and on each square the potential is piecewise constant with values
uniformly distributed between 0 and V., = 8000. Right: The associated eigenfunctions
of the Schrodinger equation. There is no clear and obvious relationship between the two.
Reprinted from [31].

Let us start with a simple example. In Figure the random potential seems to give no information
whatsoever on the location of the eigenfunctions. Intuitively, one can guess that the low energy eigen-
functions will appear spatially in places where the potential is lowest. However, an eigenfunction also
requires space to exist, meaning that the determining factor is not the location of the minimum, but more
the location of the minimum of some sort of potential averaged on a length scale that is to be determined.

We define H = —A + V as the operator of the system on the domain © and consider the Green’s
function G(z,y) such that H,G(x,y) = d,(x). Thus, for any function v, we have [, H,G(x,y)v(x)dz =
Jo 0y(z)v(x)dz = v(y). Here, H is a self-adjoint elliptic operator and the Green’s function is symmetric.
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We now show how to define a new function u that explains the localization structure of the eigenfunctions.
Considering an eigenfunction ¥ of eigenvalue A, we can show the first fundamental inequality for the
localization landscape:

[Y(@)| < B¢ oul=), (1.15)
where
U(w)E/QIG(rE,y)Id% (1.16)

is the definition of the localization landscape. If the Green’s function is positive (which is the case of all
Hamiltonians H = —A + V with positive potential), then the expression of u is simplified:

u(w) = [ Gl (117)
Q
and u is now the solution to the following equation:

[ .Gy = A, [ Gy = o) = [ 5, =1 (1.18)

This last equation is the most commonly found definition of the localization landscape in the literature,
ie.,

Hu=(—A+V)u=1. (1.19)

Figure 1.13: Left: The localization landscape calculated from the random potential of Fig-
ure Center: A top view of the aforementioned localization landscape. Red corresponds
to peaks while blue to valleys. The thick blue lines delineate several subregions in the do-
main. Right: The five first eigenfunctions superimposed on the valleys defined previously.
These eigenfunctions each fit exclusively in a single sub-region enclosed within the valleys.
Reprinted from [31].

From inequality , one can recognize that areas where u is “very small” define locations where 1 is
“small” as well. In Figure the localization sub-regions are well defined by the valleys (the ((d — 1)-
dimensional set of curves whose points are local minima [22]) of the localization landscape. At higher
energies the inequality does not restrict the eigenfunctions anymore.

Further work on the landscape has led to the discovery of the effective confining potential, which unlocks
even more properties for the localization landscape theory [I1]. Considering the original Schrodinger
equation (—A 4+ V)¢ = Ev , let us define the auxiliary function ) = u¢. The equation is transformed
in the following way:

(A +V) (ug) = Eug (1.20)
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Figure 1.14: Several eigenfunctions are represented here. As the eigenfunctions’ energy
increases, the barriers between the sub-regions open up. The eigenfunctions are no longer
confined in the small initial sub-regions. Reprinted from [31].

from which we obtain:

1
Ap—2 Y ot to— o (1.21)
u u
which finally gives us:
1
—ﬁv- (W’V¢) + W¢ = Eg, (1.22)

where we have defined W = % This quantity is homogeneous to an energy. The new function ¢ thus obeys
a Schrodinger-like equation where the differential Laplacian operator has been replaced by #V . (uQV),
and the original potential has been replaced by W, which we will call the effective confining potential.
The reason behind this name is justified by the following identity satisfied by any quantum state |¢)):

ittt = (v (2)]uv (£)) + wiiviv). (1.23)

From this equation one can observe that instead of being the sum of a kinetic and a potential energy,
the energy is now split in two different terms: the first one is akin to a reduced kinetic energy while the
second is likened to an effective potential energy, hence the name given to W.

The new Schrédinger-like operator has exactly the same spectrum as the original Hamiltonian. The
eigenfunctions of the transformed equation divided by u are the same as those of the initial equation.
There is a one-to-one correspondence between the solutions to the analogous equation and those of the
original equation.

This fact casts a new light on the mechanism of localization. It appears in fact as a more classical
localization in the new potential defined by W. The valleys of the localization landscape are the crestlines
of the effective confining potential which determine the sub-regions of localization. When the energy F
of an eigenfunction is larger than the crestlines of the effective confining potential surrounding the sub-
region of localization of the eigenfunction, it is not longer confined by it. The eigenfunctions can then
spread out into other sub-regions. The larger the energy, the more the eigenfunction can spread out,
until finally the entire domain is accessible and therefore it is delocalized, as can be seen in Figure

Following these findings, a series of papers have explored additional properties of the localization land-
scape. The first one established approximations of the fundamental eigenvalues and eigenfunctions of the
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different localization regions defined by the landscape [32], while others detail different applications of
these approximations [63}, [54].

Among these findings, one can mention that, in each localization sub-region €2; able to host a localized
eigenfunction, the fundamental of that region v is well approximated by the restriction of the landscape
u to that sub-region:

e (1.24)

P
il

Moreover, the energy of the fundamental, Ef, can also be approximated by the landscape:

d

B~ o 104 (1.25)

J; Q u?(r)ddr
A recent exhaustive study in various dimensions (1D and 2D) and for different random potentials (uniform,
binary, etc.) has not only corroborated the approximation of the fundamental eigenfunctions by the
landscape, but has also found a more general relation between the landscape and the energies of the
local fundamentals [0]. The authors showed that these eigenvalues are approximately proportional to the
minimum of the effective confining potential in the localization sub-regions with a factor depending only
on the dimensionality of the system:

i

Bl ~ (1 + Z) x min W (1.26)

—3

0 128 256 0 128 256
(a) (b)

Figure 1.15: (a) Example of an effective confining potential. The first four minima are
labeled in ascending order. The authors estimated the width of the eigenfunctions with the
size of the regions. (b) The actual eigenfunctions are displayed on top of the predictions.
They are labeled in ascending order of their energy. Reprinted from [9J]

In Figure we see an example of how we can use the localization landscape to predict the shape of
the fundamental eigenfunctions in each localization region as well as the order in increasing value of the
eigenvalues. One aspect that we have glossed over is how should these sub-regions be defined. While it
is simple enough in 1D, it is actually more complex in 2D or 3D than we have let on. The crestlines of
the effective confining potential are a good first estimate of the borders of the localization sub-regions.
This topic will be explored more thoroughly in the next chapter.

The authors of the study [9] also compared the eigenvalues with the minima of the effective confining
potential and found the relation . The agreement between the computed eigenvalues and the
approximations obtained from the local minima was calculated to be within 2%. This equation is a
very robust method for estimating the fundamental eigenvalues of Schrédinger operators with random
potentials.
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Figure 1.16: (a) The 1%, 10", and 25" eigenvalues and minima of the effective confining
potential for many different realizations of a random potential in 1D, plotted against their
associated local minimum. (b) Similar computation for 2D. Reprinted from [9]

IV.2 Spatial and spectral structures of eigenfunctions

The effective confining potential not only helps predict the localization sub-regions, but also can be used to
construct an Agmon distance pg which controls the exponential decay of the localized eigenfunctions [11]
[3]. For a given energy F, the Agmon distance pg (71, r3) between any two points 7] and 75 is defined as:

pi (71, 72) = min </7 J (@) - E)+ds> , (1.27)

where (z)4 = max(z,0), and the minimum is taken over all possible paths that go from 7 to 7.

An eigenfunction whose peak is centered at 7y decays as:

[y ()] < emPelon), (1.28)

According to the inequality (|1.28]), the decay only occurs when W < E. In Figure the eigenfunction
decays mostly in the barriers of W and not in its valleys.

Another important quantity that appears frequently is the integrated density of states, or counting
function, N(E) which is defined as the number of states smaller than the energy E. As the counting
function is difficult to compute, it is possible to obtain its asymptotic behavior using Weyl’s law.

The idea behind Weyl’s law comes from some of the basic principles of Fourier analysis. A function with
a small extension in space necessarily has a large extension in spatial frequency, and vice versa. For
a wave’s Fourier transform to be supported on a single frequency, it must be spread out on the entire
domain. This is the idea behind the uncertainty principle.

Every eigenfunction, due to their orthogonality, occupies a box of size of order one in phase space, i.e.
sets where |x — x| < § and |k —ko| < §~!. Calculating the volume of the subset of phase space where the
energy is less than a certain value E should give the counting function N (E), as this subset should be able
to fit in N(F) boxes of size 1. This especially works asymptotically at high values of energy [74] 19, [37]:

1
N(E) ~ 7// d%zd?k. 1.29
(&) (2m)d H(Z,k)<E ( )

If one considers a Hamiltonian of the form H = h; 7’:: + V(x), the double integral reduces to a single
integral in the following way:

1
Ny = / / d?zd. 1.30
(27T)d 5227122 +V(2)<E ( )
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Figure 1.17: (a) An effective confining potential in 1D. (b) The same effective confining
potential in the background, with the third excited eigenstate in log scale. The horizontal
blue line corresponds to the energy of the eigenfunction. The vertical gray bars correspond
to the wells of W for this state, i.e. the areas where E < W(z). (c) The effective confin-
ing potential in 2D. The boundaries correspond to the crests of the potential, and define
localization regions. (d) The fundamental eigenfunction in log scale. The boundaries of the
effective confining potential are featured as well. Reprinted from [IT]

Which gives in 1D:

_ Vam
Ny == /V(I)SE J(E-V(2)), de. (1.31)

As seen before, W operates as an effective potential energy with wells and barriers that delineate the
localization sub-regions of the eigenfunctions. Using the effective confining potential instead of the original
potential considerably improves the approximation given by Weyl’s law [I1], as can be seen in Figure
even at low energy. At higher energies, both laws are asymptotically equivalent to the integrated density
of states.

We have seen that transforming the eigenvalue equation in order to exhibit the W term reveals another
role of the landscape with many new properties. While, initially, most of these claims were only par-
tially substantiated theoretically and mostly conjectural, many were also proven rigorously in a recent

paper [10].

More recently, an even more powerful relationship between the localization landscape and the counting
function has been unveiled [23]. For a given value E, let us divide the domain into d-cubes (intervals in
1D, squares in 2D, cubes in 3D...) of sidelength 1/\/E, which is the natural scaling of the Laplacian.
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Figure 1.18: (a) The counting function (or integrated density of states) of a continuous
1D system with random piecewise constant potential taking values uniformly in [0,1]. The
actual integrated density of states is displayed in black, the Weyl’s law approximation with
V in dashed blue lines, and the approximation with W in dashed red lines. (b) Similar but
for a boolean potential taking values 0 and 1. Reprinted from [I1]

We define the function N, (F) (which we will call the landscape law counting function) as the number of
d-cubes where the minimum of W in that d-cube is smaller than E. In other words:

1
N, (FE) = | number of cubes of size — where W < F | . 1.32
= VE ) 1)

This counting function has two important properties. First, throughout the spectrum, the expected value
of the landscape law counting function satisfies a double inequality governing the expected value of the
actual counting function:

where the constants C5 and Cg depend only on the dimension and on the expectation value of the random
potential, and Cy only on the dimension. The optimal values of these constants are not known at the
moment.

Secondly, the landscape law counting function allows to predict more precisely the behavior of the asymp-
totic scaling of the counting function near 0. In the case of a random piecewise constant potential with
i.i.d variable following the same cumulative distribution function F', we obtain the inequality:

—d)2

B F(cpEYE " < N(B) < nEV2F(epBy=® " for B < B* (1.34)

where E*, c¢p, 71, and 5 are constants depending on the dimension and on the expectation value of the
random variable, and c¢p, 3, and 4 are constants that only depend on the dimension.

Because of the presence of the cumulative distribution function, this inequality demonstrates the exact
dependence of the Lifshitz tails on the random law. For instance, in the case of a uniform random law
taking values in [0, 1], the inequality gives:

Y3 B2nE M08 E < N(B) < 4 BU2e02E s B (1.35)

while for a binary random law taking values 0 or 1 the inequality loses the logarithmic dependence on F
inside the exponent:

d/2

73Ed/2e_74E7d/2 < N(E) <y EY2e=7=2E" (1.36)
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Once again, the constants involved are not known as of yet, but nonetheless these inequalities provide
the asymptotic behavior of the counting function. Furthermore, if these constants were to be either
determined exactly by theory or approximated numerically, one would get closer to understanding the
fine behavior of the Lifshitz tails.

IV.3 Remaining challenges for the localization landscape theory

The localization of waves is a very general phenomenon that can occur in many various types of systems,
which can be classical or quantum [I8, 51], 29] [30, [49]. One of the strengths of the localization landscape
formalism is its adaptability to different equations [21}[30, 53]. One of the only requirements is the presence
of a positive elliptic operator, which are abundant in electrostatics, wave mechanics and continuum
mechanics.

The main question we will attempt to answer in this thesis is: what information does the localization
landscape bring on the spatial and spectral structures of the eigenfunctions in a disordered potential?

These preceding sections have laid the foundation for the topics that this thesis will address:

e How do we accurately and reliably determine the sub-regions that actually host localized eigenfunc-
tions?

e How do we predict the spectrum of the Hamiltonian in a disordered potential, asymptotically (near
0) or not?

e What can be said about the high energy behavior of the eigenstates?

e Finally, we will look at a deterministic example: the Aubry-André model.
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Chapter 2

Extracting the spatial structure of
localization

I The sub-regions of localization

One feature of the localization landscape is to provide a deterministic method for approximating the
eigenfunctions and eigenvalues of a given realization of disorder [2], 3,8} [9]. In these papers, the localization
landscape has been found to define sub-regions where localization occurs. The authors used the valley
lines of the localization landscape to define these sub-regions in two dimensions.

Let us recall the fundamental property of the localization landscape, i.e. |[¢(z)| < E u(x) for a given
eigenfunction v of eigenvalue E. For this specific eigenpair, the eigenfunction is only bound in the surfaces
(in 2D) or volumes (in 3D) where u(z) < 1/E (these surfaces or volumes are also called sublevel sets).

<

Figure 2.1: Example of a random potential and its localization landscape. (a) The domain
is divided in 20 x 20 elementary square cells. The potential is piecewise constant taking
values according to a uniform random law between 0 and 8000. (b) The localization land-
scape determined from the potential. The valley line network of the localization landscape
delineates the different sub-regions of localization for a certain eigenpair (¢, ). Reprinted
from [9.

Through the localization landscape inequality, the various eigenfunctions are compelled to be small along
the lines (in 2D) or surfaces (in 3D) where u is locally minimal. These lines or surfaces are defined as
the valleys of the landscape. They form a network that is the basis for understanding the localization
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properties of the operator. Figure[2.I]depicts the valley line network. This network partitions the domain
into disjoint regions, as can be seen in Figure [2.1

We define NV (E) the effective valley network at energy F [g], as the subset of the valley line network (in
2D) where 1/u(x) < E. The effective valley network shows how the valley line network opens up as the
energy increases, as can be seen in Figure[2:2] With increasing energy, the various sub-regions defined by
the network merge. For each eigenpair, there is an associated effective valley network, and thus a specific
partition of the domain consisting in more or less large sub-regions of localization.
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Figure 2.2: Representation of the evolving effective valley network for the same localization

landscape as shown in Figure 8 eigenfunctions are displayed (numbers 1, 2, 3, 11, 31,
45, 56, and 59). As the eigenvalue increases, the network opens up. Reprinted from [9].

Unfortunately, sub-regions defined this way do not always accurately depict the regions of localization.
The reason for this is that this definition of sub-regions does not consider whether the effective confining
potential is deep enough to host a localized stationary wave. Indeed, if a sub-region defined this way
is very “shallow” (we will clarify and define this notion more precisely later on), we can see that no
eigenfunction can be hosted by such a sub-region.

In this chapter we will first present the algorithm we have developed for determining the localization
sub-regions. To this end, we start by looking at an algorithm that finds the valley line network, called
the watershed algorithm. We then find and implement a criterion that determines whether a sub-region
defined by the valley line network is capable of hosting a localized eigenfunction. Then, we construct a
procedure that merges small sub-regions together so that the newly formed sub-regions may be able to
host localized eigenfunctions. And finally, the last step of our algorithm is to eliminate excess sub-regions
that, even after the merging procedure, are still unable to host a localized eigenfunction.

We will then assess the effectiveness of this new algorithm quantitatively. And finally, we will look at a
real case of the implementation of this algorithm for a complicated domain shape.

In the following we will mainly work with the effective confining potential instead of the localization
landscape. Since W is the reciprocal of u, finding the valley line network of the landscape is the same as
finding the crest line network of the effective confining potential.
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II The watershed algorithm

II.1 The initial watershed
II.1.a Basic principles

The most commonly used algorithm in image processing to segment an image into different parts is the
watershed algorithm [6]. To understand how it works and the reason for this name, the reader should
envision a graphical representation of a function with one variable (y = f(z)). Then, the reader should
imagine a water source flooding each local minimum. When the various pools growing around each
minimum meet, the boundaries define the borders and therefore the sub-regions as well.

For more clarity, here is a one-dimensional example of how the algorithm operates:

e First, the local minima of the function must be identified and labeled differently. In this example,
we use three different colors, red, blue, and green, to label the local minima. These local minima
are the starting points of the sub-regions that are to be constructed (see figure [2.3]).

Third
Minimum
. Second
First minimum
Minimum

Figure 2.3: Identify and label the local minima.

e Next, the level of water is slowly raised so that all neighboring points with a value of the function
smaller than the ”level of water” are labeled as well. (hence the name, watershed). In practice,
this means going through the neighboring points of the local minima and labeling them the same
way as their local minimum, defining the beginning of a sub-region. We then repeat this process
by considering the neighboring points of the set of points we have just defined (see Figure .

e As these differently labeled sets of points increase in size, the points at which the sets meet define
the barriers between the future sub-regions (see figure . These points are labeled differently
then the other points so as to mark them as barrier points. In practice, once a point has been
labeled, it cannot be labeled differently.

e Finally, once the algorithm is finished, all of the points of the domain have been labeled. Each set
of points with the same label defines a sub-region. The points that have been labeled as barrier
points separate the different sub-regions. These are also known as border points, or crest points.

In the domain of image processing, there are different methods that can be employed to reduce over-
segmenting, but no method is clearly better than the other. In our case, we have to develop a method in
order to answer the specific problems at hand, i.e. determining the sub-regions of wave localization.

One has two options to reduce over-segmenting. The first method is to reduce the number of sub-regions
identified at the start of the procedure. This can be done in different ways. For example, one can search
for local minima that are minima on larger sets of points. One can also impose a minimal distance
between two different starting points. The easiest way is to manually exclude local minima from the list
of starting points until the resulting partition of the domain looks satisfactory. The second method is to
merge the different sub-regions together depending on a specific criterion at the end of the procedure.
These two methods are not exclusive.
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Figure 2.4: The different steps of the algorithm. (a) First the minima are labeled. (b) Then
the water level is raised. All points under this level are labeled (painted) in the same way as
the neighboring local minimum. (b) As the level rises, sets of points are labeled differently.
(d) When two sets of points meet, they define a barrier between them. (e) The water level
is raised until all the barriers have been defined.

For the purpose of this thesis, we have exclusively studied the merging of the sub-regions, as we had a
physical criterion to do so. Let us first see how a standard watershed algorithm partitions the domain.

II.1.b Results of the basic watershed

In this chapter, we will be studying a 2D system since interesting topological problems arise above (and
including) 2 dimensions. In 1D it is quite trivial to determine local minima and maxima and define
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sub-regions of localization. In dimension larger than 1, the shapes of the sub-regions can become more
complex.

For our simulations, we consider piece-wise L x L = 50 x 50 periodic 2D random potentials with cells
of side-length 1 (see Figure . We use two different potentials, the first one following a uniform law
taking values in the interval [0; Vinax], and the second following a Boolean law taking values in {0, Vijax }
with Vinax € {4,8,12}. We then compute the landscape using the programming language FreeFem++
[12], via a finite element method. The landscape is approximated on a basis of P1 functions. For the
mesh, we choose as basic elements triangles defined by squares of size b X h = 0.2 x 0.2 then divided in
two. The number of degrees of freedom of our system is therefore N = L x L x h~2 = 50 x 50 x 25 = 62500.
The potential is represented in Figure

Figure 2.5: (a) Example of a potential following a uniform random law taking values in [0, 4].
(b) The effective confining potential of the corresponding potential. (c¢) The same effective
confining potential with the boundaries computed from the standard watershed algorithm.

We have also imposed periodic boundary conditions in order to avoid boundary effects. The resulting
effective confining potential is shown in Figure with the initial result of the watershed algorithm.

At first glance, the resulting partition in Figure [2.6b| appears far too segmented. The superimposed
eigenfunctions are clearly localized, but the algorithm does not always properly identify their localization
sub-regions. For instance, in the example above, the first, second, and fourth eigenfunctions lie in their
localization sub-region, while the third and fifth do not. The origin of this problem lies in the small
fluctuations (ripples) of the effective confining potential that can be observed in Figure which is a 3D
topographical view of the effective confining potential with the partition of the domain computed from

35



Figure 2.6: (a) The five first eigenfunctions are displayed on top of the network of sub-
regions defined by the watershed algorithm. The coordinates of the maximum of each
consecutive eigenfunction are: {23.8;26}, {13.6;16.8}, {10.4;50.0}, {30.8;47.8}, {23.2;41.2}.
Their eigenvalues are respectively: 1.40, 1.41, 1.48, 1.51, 1.55. (b) A close-up look at the fifth
eigenfunction. Its sub-region of localization has clearly been over-segmented into multiple
sub-regions.

2.5

1.5

Figure 2.7: A 3D view of the effective confining potential and the borders defined by the wa-
tershed algorithm. The arrows point towards the large basins that have been over-segmented
into multiple sub-regions due to small fluctuations and ripples of the effective confining po-
tential.

the watershed algorithm. One observes large basins that should clearly host a localization sub-region,
but they have been over-segmented into many sub-regions.

The next step is to find an effective protocol to merge the initial sub-regions found by the watershed
algorithm.
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II.2 Merging the sub-regions
II.2.a First implementation

We will use the image of a quantum particle in an effective potential to assist us. For a quantum particle
to be trapped in a well of the effective confining potential, its energy must be smaller that the potential
barriers surrounding it. Since the barriers are thick, we assume that tunneling effects can be neglected
at this stage.

How do we express this idea quantitatively? The localization landscape formalism fortunately provides a
good estimate for an eigenfunction’s eigenvalue, dependent on the local minimum of the effective confining
potential in that sub-region [2]:

Z- N
Ey~ (1+ Z)HSIZIDW (2.1)

Therefore, for a potential well to contain an eigenfunction, the crest points bordering the potential well
must all be larger than the eigenvalue of the fundamental mode of that sub-region, which is equal to
1+ %) times the local minimum of the effective confining potential. Mathematically, the condition is:

El < %g?(W) = min (W) x <1+ Z) < min (W). (2.2)

i i

This condition allows us to formulate a criterion for merging the different sub-regions determined by the
initial watershed algorithm. Figure [2.8|shows an example of a situation where two sub-regions separated
by a small barrier are to be merged.

Aw

Wy, /W, < 1.25
Wy, /W, < 1.25

)X

Figure 2.8: A ripple inside a 1D potential well. The two smaller wells inside the larger are
unable to host an eigenfunction since the potential barrier separating them is too small.

The problem reduces to a graph where only the local minima of each sub-region Irflzin(W) (which correspond
to the nodes) and the minima on the crest along the shared border of the sub-regions aﬂmigQ (W) (which
1MoL

correspond to the lines of the graph) are important. An example graph is depicted in Figure

One may be tempted to simply merge sub-regions that are too “shallow” to host an eigenfunction with
surrounding sub-regions. However, this approach not only is dependent on the order in which sub-regions
are merged, but also causes small sub-regions to be merged with deep sub-regions that are already capable
of hosting an eigenfunction, i.e. sub-regions where all of its crest points are larger than (1 + %) times the
local minimum of the effective confining potential. The sub-regions are then much too large compared
to the actual sizes of the localized eigenfunctions. This is the situation portrayed in Figure [2.10,

We therefore require that the condition must be verified by both sub-regions in order to merge them
together. The ratio between the lowest crest point on the border between two sub-regions and the local
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Figure 2.9: Example of a graph network for reducing the problem. The nodes correspond

to %in(W) and the lines to BQmng (W). The gray lines correspond to the borders between
i 1MoL

the sub-regions.

Wy, /W, < 1.25
Wy, /W, > 1.25

)X

Figure 2.10: A deep 1D potential well bordered by a shallow 1D potential well. As the deep
well is capable of hosting an eigenfunction, these two sub-regions are not to be merged.

minima must be smaller than (1 + 4). This leads to the following criterion:

min (W)
omnon, T . d (2.3)
min (W) 4 ’

7

Using this principle, we can now devise an algorithm that proceeds through every sub-region, combining
them with their neighbors if need be:

e First, we sort the sub-regions by increasing value of their local minima.

e Next, we create a function that links every pair of neighboring sub-regions to the minimum of their
corresponding mutual border.

e We then iterate through all the sub-regions, comparing them with their neighbors according to
the criterion. If it is met, we combine them, and put the sub-region back into the queue (see

Figure [2.11)).

The final result features less sub-regions, with some being very large (see Figure [2.12). The low energy
eigenfunctions are now well contained in this new partition (see Figure [2.13).

The order in which the algorithm merges the sub-regions is important. Indeed, when two sub-regions
are merged, the new local minimum is now defined as the smallest of the two former minima. So the
sub-region with the greatest local minimum which would have been a priori able to merge with other
sub-regions, is unable to merge now that it has been merged with a lower sub-region. See for example
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Figure 2.11: (a) The initial partition of the domain. (b) The first merge occurs at the
sub-region of coordinates: {13.6;16.8}. (c) The second merge occurs at the sub-region
of coordinates: {23.8;26}. (d) The third merge occurs at the sub-region of coordinates:
{30.8;47.8}. (e) The 50" step of the algorithm. (f) The 100" step of the algorithm.

the situation depicted in Figure If the middle sub-region labeled 2 is first merged with the right
sub-region labeled 3, it can then be merged with the left sub-region labeled 1. However, if we first merge
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Figure 2.13: (a) The five first eigenfunctions are displayed on top of the network of sub-
regions defined by the watershed algorithm followed by the merging procedure. The co-
ordinates of the maximum of each consecutive eigenfunction are: {23.8;26}, {13.6;16.8},
{10.4;50.0}, {30.8;47.8}, {23.2;41.2}. Their eigenvalues are respectively: 1.40, 1.41, 1.48,
1.51, 1.55. (b) A close-up look at the fifth eigenfunction. The previously defined sub-
regions of localization have been merged into one single sub-region fully encapsulating the
eigenfunction.

the sub-regions 1 and 2, the sub-region 3 will be excluded.

Our goal is to devise an algorithm that accurately predicts the localization sub-regions. For this purpose,
since the most localized eigenfunctions are those of lowest energy, we decided to first merge the sub-
regions with the smallest local minima. This insures that the most confining sub-regions are the most
accurately determined.

I1.2.b  Refining the merging condition

The merging procedure we just defined (see Figure [2.12)) is quite lenient, in that two well defined sub-
regions will be merged if only a single point on their common border dips under the criterion we decided.
We would like to restrict the merging criterion slightly to avoid this situation.
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Figure 2.14: Three potential wells with different depths and different barrier heights sep-
arating them. Comparing them one on one, these wells meet the criterion to be merged.
However, once sub-regions 1 and 2 have been merged, the last barrier separating the two
remaining sub-regions is too high. The order of merging determines the final result.

The basis of the “(1 + %)” condition is that an eigenfunction surrounded by a high enough potential
barrier will be localized inside it. However, this is a classical view while the objects that we are confining
are wave functions. From a wave perspective, we can consider that a wave cannot “escape” a confining
potential through an aperture that is much smaller than its wavelength.

In order to account for this, instead of considering the minimum along a crest line, we consider the
average over a certain number of points of the crest line around this minimum. This average is taken over
a length that corresponds to the localization length of the localized eigenfunctions. For our example, this
corresponds to a distance of 2 on the figures (which amounts to 10 points) and has been determined by
measuring the size of the fundamental eigenfunction of the system. Qualitatively, this partition seems to
produce sub-regions that are closer in size to the localized eigenfunctions that we have shown before (see

Figure [2.15).

10 20 30 40 50

Figure 2.15: Result of the merging process while considering the average value of the crest
line between two sub-regions around its minimum.

The low energy eigenfunctions seem to be well contained inside these sub-regions (see Figure[2.13a)). Even
as the energies of the eigenfunctions increase and the eigenfunctions start delocalizing on more than one
sub-region, they stay contained inside the boundaries determined by the watershed algorithm.

The parameter governing the distance over which the crest line must be averaged around its minimum
has been determined by computing the lowest energy eigenfunction and measuring its localization length.
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Figure 2.16: The 30 first eigenfunctions are represented 5 at a time. (a) Eigenvalues: 1.40,

1.41, 1.48, 1.51, 1.55. (b) Eigenvalues: 1.59, 1.62, 1.63, 1.64, 1.65. (c) Eigenvalues: 1.66,
1.68, 1.68, 1.70, 1.70. (d) Eigenvalues: 1.71, 1.72, 1.73, 1.74, 1.75. (e) Eigenvalues: 1.75,
1.75, 1.75, 1.78, 1.79. (f) Eigenvalues: 1.79, 1.81, 1.83, 1.84, 1.85.

Admittedly, we would rather not have to resort to computing eigenfunctions for this procedure, however in
this model there is no prediction for the localization length which is not the case for other 2D models [I1].
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II.3 Eliminating excess sub-regions

One of the future goals of the localization landscape (that is not the objective of this thesis) is to establish
a transport theory by hopping mechanism between the localization sub-regions. Hopping mechanisms
between impurities is a very common method to model transport in disordered systems [5], [14] [15].

The idea behind this model is that, at low injection, the electrons hop from one localization sub-region to
another when an electric field is applied. The various sub-regions defined by the partition of the domain
form a network of sites upon which the electrons travel. The hopping probability could be defined in
different ways such as depending on the height of the potential barrier separating the sub-regions, or from
the Agmon distance between the sub-regions [4]. Our goal is therefore to define a network of sub-regions
where each one is capable of hosting at least one localized eigenfunction, as in Figure [2.9

The algorithm we have developed is effective in identifying the sub-regions of localization, but there are
some disturbing features still present (which can be seen in Figure 7 namely that the partition defines
tiny spurious sub-regions. These small sub-regions are very unlikely to host a localized eigenfunction as
they are high in energy and the potential barrier surrounding them is low comparatively to their local
minimum.

10 20 30 40 50

Figure 2.17: The result of removing the excess sub-regions. Compared to the actual sub-
regions of localization (see Figure , many of them seem to be excluded although they
host localized eigenfunctions.

We therefore want to eliminate these excess sub-regions from the graph network. In order to do so, for

each node on the graph, we compare the ratio between its local minimum and the minimum of the border

between it and its neighboring sub-regions (891111(191Q (W)) with the criterion (1+ £) (see Equation (23)).
M08

The minimum on a border between two sub-regions is calculated in the same way as before which means
that the average around the minimum is the actual value that is considered.

Unfortunately, this has the effect of removing far too many sub-regions (see Figure [2.17)). For instance,
the seventh eigenfunction depicted in Figure [2.16b| is clearly localized but its sub-region of localization
has been grayed out by the algorithm.

The criterion must therefore be modified and relaxed to obtain the results we would expect. We consider
three different criteria: the minimum, the average, or the maximum of the minima of the border points.
Regarding the graph network, this corresponds to considering for each node either the minimum, the
average, or the maximum of the links. In Figure [2.18] we have represented the results of the watershed
using the average and the maximum of the links. This new criterion excludes less sub-regions. The
topographic view shows that the sub-regions that have been excluded are those very high in energy that
resemble plateaus.

Compared with the sub-regions occupied by the localized eigenfunctions (see Figure [2.13b]), the new
sub-regions match the locations where the eigenfunctions localize (see Figure[2.16)). None of the excluded
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Figure 2.18: (a) Result of the exclusion process taking the average of the crest minima. (b)
The result of the exclusion process taking the maximum of the crest minima. (c) Result of
the exclusion process taking the average of the crest minima (topographic view). (d) Result
of the exclusion process taking the maximum of the crest minima (topographic view).

sub-regions host any of the lowest energy eigenfunctions. Obviously, at high energy this is not true
anymore as the localization length of the eigenfunctions becomes larger than the domain size. These two
methods produce similar satisfying results. The criterion where we consider only the maximum of the
crest minima excludes less sub-regions, but these extra sub-regions do not seem to be very relevant for
the localization of eigenfunctions.

This concludes the presentation of the watershed algorithm before moving on to a quantitative assessment
of its performance. To summarize, the algorithm starts in a very standard fashion by identifying and
labeling the local minima. These minima define the candidate sub-regions. Then the domain is “flooded”:
points are added incrementally to the existing sub-regions. At the end of the procedure, the initial
watershed lines are drawn. Next, the sub-regions are merged one after another according to the (1 4+ %)
criterion, so that each final sub-region is capable of hosting an eigenfunction. And finally, some sub-
regions are excluded according to the same criterion and following the same reasoning. This is the
procedure we follow to determine the sub-regions of localization from the effective confining potential.
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IIT Assessing the effectiveness of the algorithm

This new partition is qualitatively satisfying. We will now devise a way to quantitatively measure how
effective a given partition is in regard to defining the sub-regions of localization. For this analysis, we will
be using all aforementioned parameters (type of mesh, type of potential, etc.). We will vary the potential
strength from 4 to 8 to 12, and use both random uniform and random binary laws.

Ideally, the size of the eigenfunctions should be at most the same size as the sub-regions. The standard
way to measure the size over which the eigenfunction is localized is to use the participation ratio defined
as

(Jhfar)”
Ro ) (2.4
T 1ol

which we have normalized by the system size. We have:

1 delocalized

PR ~
{ % localized

Roughly speaking, the PR represents the fraction of the domain that is occupied by the eigenfunction.
Therefore, when multiplied by the system size, it represents the size of the effective support of the
eigenfunction.

We compute the participation ratios of the 50 first eigenfunctions for 10 different realizations of the
random potential, and compare them with the sizes of the sub-regions determined by the watershed
algorithm in Figure We compare three different cases: the watershed without the merging procedure
(Figure , the full watershed using the average of the crest minima which we will call exclusion
method 1 (Figure , and the full watershed using the maximum of the crest minima which we will
call exclusion method 2 (Figure[2.19¢). The red line corresponds to the bissector of the plane, i.e., where
the size of the eigenfunctions deduced from the PR are the same size as the sub-regions they are located
in.

Let us first comment on the differences between the figures before and after the merging procedure. While
it may seem that the original watershed produces sub-regions that are more likely to be the same size as
the eigenfunctions, having points under the red curve is not satisfactory. The reason being that we do not
want the algorithm to underestimate the size of the eigenfunctions, since this underestimation reduces the
accuracy of the eigenfunction approximation obtained from the localization landscape (1 ~ ﬁ [10]).
It is therefore better for the sizes of the sub-regions to be overestimated than underestimated. In that
regard, the process of merging the sub-regions produces better results. The watershed underestimates
the size of the sub-regions 47.8% of the time without the merging procedure, and only 8.8% and 8.2%
with the merging procedures using the average and the maximum of the minima of the crest points

respectively.

Uniform random law Binary random law
exclusion exclusion exclusion exclusion
Vinax | no merging | method 1 method 2 no merging | method 1 method 2
(average) | (maximum) (average) | (maximum)
4 47.8% 8.8% 8.2% 12.2% 4.6% 4.6%
8 11.8% 2% 2% 1.2% 0.4% 0.4%
12 3% 0.2% 0.2% 0.4% 0.2% 0.2%

Table 2.1: The percentage of sub-regions underestimated by the different algorithms for
various parameters.

Now comparing the merging procedures between them, the difference is small but significant. Indeed
from Figure we can see that the sizes of some sub-regions are evaluated at 0. This happens when
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Figure 2.19: Participation ratio of the first 50 eigenfunctions for 10 different realizations
of disorder versus the size of the localization sub-regions determined by: (a) The original
watershed algorithm without merging; (b) The watershed algorithm using the average of
the crest minima to exclude sub-regions; (¢) The watershed algorithm using the maximum
of the crest minima to exclude sub-regions. The red line represents the ‘PR=Size’ curve.

a sub-region is excluded although it hosts an eigenfunction. This however does not happen very often,
but is more likely when the strength of the potential is low.

It is apparent that the merging procedure is therefore beneficial in identifying the sub-regions of localiza-
tion. While especially effective at low potential strengths and with a uniform random law, the merging
procedure improves the identification of sub-regions for all sets of parameters.

Another statistical measure of the improvement achieved through the merging procedure is obtained
by computing the norm of the eigenfunction restricted to its sub-region, i.e., the sub-region where the
eigenfunction is maximal. We also call this the restricted norm, ||¢[|g . This value tells us what is the
fraction of an eigenfunction present in a given sub-region.

Once again, let us start by comparing the situation between merging and no merging, regardless of the
exclusion procedure. From Figure [2.20] it seems that, on average, the points have migrated upwards
(i.e. that the eigenfunctions occupy a greater portion of their sub-region) between Figure and
Figures and Especially at low energies, all eigenfunctions end up with a restricted norm
close to 1. For the same reason as before, this is proof that the newly defined sub-regions are larger and
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Figure 2.20: The restricted norm of the first 50 eigenfunctions for 10 different realizations of
disorder versus the eigenvalue for: (a) The original watershed algorithm without merging.
(b) The watershed algorithm using the average of the crest minima to exclude sub-regions.
(c) The watershed algorithm using the maximum of the crest minima to exclude sub-regions.

better represent the sub-regions of localization.

Uniform random law Binary random law
exclusion exclusion exclusion exclusion
Vinax | no merging | method 1 method 2 no merging | method 1 method 2
(average) | (maximum) (average) | (maximum)
4 0.54 0.73 0.74 0.78 0.85 0.85
8 0.77 0.88 0.88 0.90 0.93 0.93
12 0.84 0.93 0.93 0.92 0.94 0.94

Table 2.2: Average value of the restricted norm of the eigenfunctions for the different algo-
rithms and various values of the parameters.

This observation is confirmed through histogram plots (Figure which represent the distribution of
the values of the restricted norm of the eigenfunctions. The difference between merging and not merging
is much clearer here. While the distribution is more or less uniform without the merging procedure,
adding it creates a spike in the distribution towards 1 which is evidence that merging the sub-regions is
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Figure 2.21: Histograms of the restricted norm of the first 50 eigenfunctions for 10 different
realizations of disorder. (a) The original watershed algorithm without merging. (b) The
watershed algorithm using the average of the crest minima to exclude sub-regions. (c¢) The
watershed algorithm using the maximum of the crest minima to exclude sub-regions.

important for the identification of the sub-regions of localization.

Comparing the different merging procedures reveals subtle differences once again. The histograms in
Figure 2:21] and the scatter plots of Figure [2:20] show that a few eigenfunctions have a restricted norm
close to 0 when taking the average of the crest minima when excluding sub-regions. These eigenfunctions
do not have a restricted norm close to 0 when the maximum is taken. However, the data from Table
show that this improvement between exclusion method 1 and 2 is limited to the case of low potential
strengths and uniform random laws.

The above table also shows the significant improvement brought by the merging procedure, especially at
low potential strengths. We observe that the difference is not as important at higher potential strengths.
These additional features added to the watershed algorithm are expected to be very beneficial in improving
the computation of the localization sub-regions.
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IV A case study: mechanical vibrations in clamped plates

We now present a case where we adapted the watershed algorithm to irregular meshes. This work (which
is the continuation of other studies on the localization of mechanical waves [7, [I3]) has been performed in
collaboration with Patrick Sebbah and Kun Tang from Bar Ilan University. Essentially, the system under
study is a metallic plate with geometric irregularities. The plate is set in vibration and the different
vibrational modes are measured. The harmonic solutions can be written as w(x,y,t) = W(z, y) exp(iwt)
where we have separated the spatial and temporal variables. The eigenmodes of vibration Wy, satisfy the
equation:

1
?A2Wk = w,%Wk, (25)

where

[12p(1—v?)
o=/ TR (2.6)

is a constant depending on the the density of the plate p, the Poisson ratio of the material v, the Young
modulus of the material F, and the plate thickness h. wy is the angular frequency of the vibrations.

Similarly to the quantum case, the eigenmodes become localized with enough disorder, and the sub-
regions of localization are difficult to predict. As can be seen in Figure[2.22] the metallic plate is clamped
in certain places somewhat randomly. The landscape predicts where the eigenmodes localize.

The localization landscape corresponding to the eigenvalue problem (12.5)) is the solution of the Dirichlet
problem:

1
?Nu =1 (2.7)

It is therefore proportional to the out-of-plane static deformation under uniform load (we remind the
reader that the landscape is related to the Green’s function by: u(z,y) = [ G(2’,v', z,y)dzdy), which
makes it easy to measure. More background on the use of the landscape for these sort of systems can be
found in the literature [7, 8 [13].
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Figure 2.22: Bottom: Sketch of the metallic plate. The blue segments and points corre-
spond to the areas where the plate is clamped. Top: The associated localization landscape.
Reprinted from [I3].

In Tang and Sebbah’s experiment, a metallic plate was randomly clamped in different points. The
computed effective confining potential of this setup can be seen in Figure Since the landscape
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Figure 2.23: The effective confining potential calculated from the landscape provided by
Tang and Sebbah. For clarity, values over 100 are removed. This is the picture obtained
using a square mesh to model the system.
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Figure 2.24: The watershed partition computed from the above effective confining potential.
The red arrow points towards a border line that is not smooth.

vanishes at the clamped points and on the borders of the domain, the potential W should diverge, but it

is capped at 100 at these points on the figure for the sake of clarity.

From this effective confining potential we wish to determine the sub-regions of localization by using
the watershed algorithm we have developed. One important difference between this wave equation and
the quantum case lies in the relation between the local fundamental mode and the respective local
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minimum of the effective confining potential. Instead of having E§ ~ (1 + %) n{lzin W, this relation is now:

wo,; ~ 1.27/ II(l}n(W) with w§ ; = E{ (see Supplementary Material in [13]).

The resulting partition from the watershed algorithm (see Figures and is a good start, but
improvements could be made. Indeed, one of the problems of using a square mesh is that the lines
delineating different sub-regions must necessarily follow the grid, and so are either straight or jagged.
The red arrow points to a border line that is not smooth, and that does not really follow the gradient of
the curve. This is not the only border line that is problematic. The problem is that the clamped points
are represented as disks on the domain, and the mesh is not fine enough to resolve the curvature of these
disks.

100
80

60
40

20

min(W,100)

Figure 2.25: The watershed partition superimposed on the landscape. The red arrow points
towards a border line that is not smooth.

The algorithm we have developed was adapted to a grid type mesh, where each point has exactly 2d
neighbors (4 in the case of our 2D system). These types of meshes are the simplest to implement and
work well, required that the geometry of the problem is simple. For instance in the Anderson model, the
lattice is Z%, therefore the distances between neighboring sites remain constant.

This choice however is not always optimal. For example, when studying randomly distributed impurities,
or a solid that does not form a crystal (like a glass), modeling the system by a grid is not possible. In
some cases, using a grid either forces to make approximations or to use a mesh refined to the point that
computation times become unrealistic.

For problems where a regular mesh is not adequate, the finite element method is suitable for any kind of
mesh. The literature on the finite element method is extensive: a good review can be found in the book
by Zienkiewicz, Taylor, and Zhu [I]. Our algorithm was developed for solutions using finite differences
methods, and not finite elements methods. The algorithm, nonetheless, can be well adapted for these
types of problems.

For this problem, we therefore used an adaptive triangular mesh that is finer in areas where more detail is
needed. An example of this can be seen in Figure The mesh gets progressively finer the closer it gets
to the clamped points. This is required by the vanishing boundary conditions on the landscape on the
borders of the domain and at the edges of the clamped points and also because the differential equation
is now a fourth order equation instead of a second order one. It then increases over short distances away
from the boundaries and the clamped points. In areas where we know the landscape is constant, or does
not vary much, the mesh becomes larger again, so as to not waste computing power.
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Figure 2.26: (a) The adaptive mesh of the domain. (b) A close-up look on an area where
the mesh size varies significantly.

We had to adapt the watershed algorithm to work on any type of mesh. The same foundation of the
algorithm can be used. The only crucial difference is how the algorithm evaluates neighboring points.
Beforehand, it was quite straightforward. The neighbors of any point were its adjacent points on the grid.
Now each point has its own set of neighbors defined by the connections between the vertices of the mesh.
The algorithm needs only to consider this when identifying local minima. Every other step is identical.

The result can be observed in Figure 2.:27] The lines delineating the sub-regions are no longer straight
and follow the curvature of the landscape better. We superimpose this network with three different modes
(the second, sixth and ninth) in Figure in different scales. The “log gradient” portion of the figure
corresponds to the norm of the gradient of the eigenfunction in logarithmic scale. What is remarkable is
the agreement between the network obtained from the algorithm and the lines where the gradient of the
eigenfunction is maximum. These lines correspond to points where the eigenfunction drops off, where the
decay of the eigenfunction is the largest.

This figure also highlights the importance of adapting the mesh to the domain. In this case, the system
has irregularities (the randomly placed clamped points) which makes an irregular mesh more suitable.

In conclusion, the watershed algorithm can now be adapted to irregular meshes obtained from the finite
element method, which is essential for modeling a wider variety of problems.
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Figure 2.27: (a) The effective confining potential with the initial watershed partition. (b)
The same effective confining potential with the new watershed partition.
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Mode 2
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Figure 2.28: The second, sixth and ninth vibration modes with the effective valley network
obtained from the watershed algorithm. Left: linear scale. Center: logarithmic scale. Right:
the norm of the gradient of the eigenfunctions in logarithmic scale. (Courtesy of Kun Tang.)
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V Conclusion

We have reviewed the workings of the watershed algorithm with the aim of defining the localization
sub-regions as accurately as possible. The main steps of the algorithm are the identification and labeling
of the local minima, the computation of the initial sub-regions, the merging of these sub-regions, and
finally the exclusion of the superfluous sub-regions.

This algorithm is, before anything else, an image processing tool that must be tuned for the task at hand.
For instance, the merging criterion we established can change value depending on what type of system is
being studied (1.5 for 2D Anderson, 1.75 for 3D Anderson, wy; =~ 1.27/4/maxgq, (u) for 2D pinned plates,
etc.).

Developing a universal method for merging the localization sub-regions for Anderson localization is an
important step in the study of the spatial structure of the eigenfunctions. This has numerous appli-
cations, such as the study of electronic transport by hopping mechanism on a network of localization
sub-regions, the approximation of localized eigenfunctions restricted to the localization sub-regions, or
the computation of the eigenfunctions using iterative methods using the preceding approximation. We
expect this algorithm to participate in future studies of Anderson localized eigenfunctions.
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Chapter 3

Lifshitz Tails

I The Lifshitz tails

I.1 Introduction

In single-particle quantum systems subject to random potential, the Integrated Density of States (IDOS,
or counting function, defined as the number of eigenvalues per unit volume smaller than a given energy
and denoted hereafter as N(E)) departs significantly at low energy from the high energy asymptotic
behavior known as Weyl’s formula. According to the latter, in the absence of any potential, N(FE) scales
as E%? where d is the ambient dimension. However, in the presence of a disordered or random potential
the IDOS exhibits a very slowly growing tail at low energy. In 1964, Lifshitz proposed a model based on
scattered impurities where the integrated density of states would drop off exponentially as E approaches
its minimum value Ey, forming what is known as a Lifshitz tasl [21], 20]:

N(E) ~ Cexp (—c(E - EO)*%) . (3.1)

Since then, understanding the precise behavior of the density of states in the presence of disorder has
been the subject of a very rich literature (for an extended review on the topic, the reader can refer
to [19, 28| 15, M3} 18]). The existence of Lifshitz tails for the Poisson random potential was proved in
[BL @, 24, 27]. Later Kirsch and Martinelli gave a proof close to Lifshitz’s intuition for a large class of
random potentials in the continuous setting in [I4], while Simon generalized the argument to the tight
binding model [30]. These are only a few isolated results and we do not aim to provide an exhaustive list
of the literature. It is important to mention however that there exist exact asymptotic results on Lifshitz
tails for specific models [30} 23] [6] [I8]. Nonetheless, we are still lacking a general understanding for all
models, and the only mathematical statement that could be rigorously proven in full generality does not
have the form of Eq. but rather the weaker form:
In([In(N(E))) _ d

__4 2
Eobe  In(E — Eo) 2 (3:2)

These results are asymptotic in the limit of vanishing F — Fy. Away from the asymptotic behavior at
low energy, Klopp and Elgart showed that in the weak disorder limit these Lifshitz tails extend roughly
up to the average of the potential [16] [I'7, 10]. To this day, many unsolved questions remain concerning
these Lifshitz tails: (i) Can one improve the known results by deriving a general estimate on In(N(E))
and not on In(|ln(N(E))|)? (ii) If so, how does disorder enter the estimate? For instance, can one
quantify existing results showing logarithmic corrections for random uniform disorder as compared to
binary disorder [25],[29]7 (iii) Can one derive precise estimate for the full spectrum instead of asymptotic
near the lower bound of the spectrum?

In this article, we present a new function, denoted by N, (E) and called Landscape Law [8], that provides
the first estimates from above and below of the actual counting function throughout the spectrum. This
function is obtained from the localization landscape, a theoretical tool introduced in 2012 and developed
in the recent years [12] [3]. Not only do these estimates cover the entire range of energy for any type of
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potential or disorder in continuous models, but they also provide the asymptotic behavior of In(N(E))
at low energy for random uniform or binary disorder, thus removing a log from the previously known
results. In particular, they recover the logarithmic correction in the case of the uniform Anderson model.
We investigate numerically the optimal constants involved in the bounds, and observe their similarity
for both binary and uniform Anderson models. Finally, we test whether these mathematically proven
bounds from above and below could in fact be merged into one single approximate formula based on N,
thus providing a very fast and efficient way of predicting the behavior of the IDOS on the entire spectrum
even in a random or complicated system.

1.2 Numerical Model

We consider a d-dimensional tight-binding model. The corresponding Hamiltonian is

H= Z Viagai —t Z (ajaj + h.c.) , (3.3)

(4,9)

where (i,j) denotes the sum over nearest neighbors, ¢ is the hopping term, V; is the on-site random
potential (on a grid of lattice parameter 1), and al-t and a; are the creation and annihilation operators,
respectively. From now on, ¢ will be taken equal to 1, thus setting the energy scale. The V; are i.i.d. vari-
ables and follow a random law which can be either uniform or binary in [0, Vinax]. The localization
landscape u in this system is defined as the solution to Hu = 1, the right-hand side being the constant
vector. In order to ensure that the landscape is positive everywhere, the potential V is uplifted by a
quantity 2d, where d is the embedding dimension. Consequently, the lowest bound Ej of the spectrum in
all subsequent examples is Fy = 0 and the spectrum lies in the interval [0, Vinax + 4d]. It has been shown
in [22] that the function W = 1/u defines an effective potential for all quantum states in the tight-binding
model, and that this potential provides a remarkably accurate estimate of the energy of the lower-energy
states.

Using this effective potential, the function N, (F) is defined as follows: for a given energy E, we partition
the entire domain into d-cubes (intervals in 1D, squares in 2D,...) of side length E~/2. N, (FE) is then
defined as the fraction of such cubes for which the minimum of W over the cube is smaller than E:

1 1
N, (F) = — x ([ number of cubes of size —
(B) = = ( =
where min(W) < E) . (3.4)

For the continuous model, it has been mathematically proven in [8] that there exist constants Cy, Cs, Cs
such that N, satisfies the following inequalities:

CsN, (C4E) < N(E) < N, (C4E), (3.5)

where N(F) is the IDOS per unit volume. The constants Cs and Cg depend only on the dimension d and
on the average of the potential, and Cy; depends only on the dimension. When the potential is random,
this inequality is verified for the expectations of the IDOS (note that these expectations become finite
deterministic quantities in the limit of an infinite domain). To our knowledge, these inequalities are the
first universal bounds for the counting function N(FE) of a Schrédinger Hamiltonian throughout the entire
spectrum. In other words, unlike Weyl’s formula or Lifshitz tails, they are not asymptotic. The proof
is rather technical and is based on the analysis of the low values of the effective potential W. A sketch
of the proof is given in Supplementary Material. We are currently preparing a version of this proof for
discrete tight-binding models [4].

An example of the sharpness and the predictive power of this inequality is provided in Fig. which
displays the actual IDOS N(FE) (blue) and the landscape law N, (E) (red) for one realization of a random
i.i.d. binary disorder with periodic boundary conditions. The potential can take the values either 0 or
Vimax = 1 with equal probability on each site of a one-dimensional domain of N = 10° sites. NN (E) is
computed using the LDLT factorization and Sylvester’s law of inertia [26]. One can see how the two
curves, plotted on a log-log scale, follow each other very closely. On this log-log plot, the upper and lower
bounds of would correspond simply to horizontal and vertical translations of the graph of N, (E).
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Figure 3.1: Counting function N(E) (blue) and landscape law N, (E) (red) for one realization
of a one-dimensional binary Anderson tight-binding model. The number of sites is N = 10°
and the values of the on-site potential are either 0 or 1.

While Ref. [§] proves the existence of constants Cy, Cs, Cg fulfilling , it does not bring any insight
on their sharpest values. Indeed, strictly speaking, [8] gives a “tube” containing the IDOS (in log-log
plot), and while it is remarkable that the tube diameter does not depend on the energy, it could be
quite wide if the constants are very different. The goal of this study is threefold: first, to demonstrate
the accuracy of the Landscape Law in approximating the actual IDOS. Secondly, we indicate how to
determine numerically the sharpest values for the constants entering the bounds in . This is of
particular relevance for Cy which is predicted to be universal, i.e., to depend only on the dimension d and
not on the particular potential. Thirdly, we assess the possibility to provide an optimal approximation
to the IDOS N(FE) (rather than a tube), i.e., to find a constant Cs g, such that N(E) = Cs Ny (Cs E).

II Sharpest values

One starts with the same system as in Fig. but this time N(E) is averaged over 1000 realizations.
Figure displays the corresponding N(E) and N, (E) together with their standard deviations repre-
sented as error bars (the bottom bars are not displayed when they are larger than the value itself, i.e.,
when they cross the horizontal axis). In order to determine the constants Cy, Cs, Cg, we first restrict our
study to the domain E > 0.02 to avoid the noise at very low energy. We observe that the graph of N, (FE)
is always above the graph of N(FE), which means that Cy < 1. This fact derives from the definition of
N, and we will discuss it further down. The value of the constant Cy corresponds in log-log scale to the
largest possible right-shift of the graph of N, (or in other words to the smallest possible value of C) such
that N(E) < N,(CE). Here, this value is found to be Cy =~ 0.79 (or 1/Cy &~ 1.26). To find the values
of C5 and Cg, we first look for the optimal value C' such that N(E)/N,(CE) is as constant as possible.
This is achieved by taking the minimum of the standard deviation of In(N(E)/N,(CFE)) when varying
C. Figure displays this standard deviation for values of C ranging from 0.5 to 1. One observe a
clear minimum at Cg & 0.90 (or 1/Cs = 1.11). Finally the minimum of the graph of N(FE)/N,(C¢F)
provides us the sharpest value of C5 (see Fig. ): it is here C5 = 0.18. However, one can observe
that if we were looking for a best fit for C5 (instead of a lower bound for ), then the best fit would
be closer to Cs ¢ ~ 1/4.08 (obtained by computing the average of In(N(E)/N,(CsFE)) for E > 0.02).
With these constants, the agreement between the actual IDOS and the rescaled formula based on the
localization landscape is excellent throughout the computed spectrum (see Fig. ) This means that
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the inequalities in (3.5)) can almost be transformed into an equality:
N(E) =~ Cs gt Ny (CsE) . (3.6)

The same methodology is then applied to one-dimensional uniform Anderson tight-binding model (N =
10°), and to two-dimensional binary and uniform Anderson tight-binding models. Figuredisplays the
results for a uniform Anderson model of disorder amplitude Viy.x = 1. Here also, we observe that the
landscape law N, (F) follows very closely the actual IDOS N(FE). After computation, the value found
for Cy in this case is Cy &~ 0.78 = 1/1.28. Further analysis of the standard deviation of the values of
Ny (CE)/N(FE) as a function of C (see Fig.|3.3b) yields Cs ~ 0.84 = 1/1.19. Plotting now N,,(CsE)/N(E)
as a function of E (Fig.[3.3f), one observes that it oscillates slowly between 3 and 5 in the noiseless part
of the graph. A possible choice for C5 is then C5 = 1/4.85, but the best fit is obtained for Cs ¢ = 1/3.94,
as confirmed in Fig. |3.3(d.
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Figure 3.2: (a) N(E) (blue) averaged over 1000 random realizations, and averaged landscape
law N, (E) (red), for a one-dimensional binary Anderson tight-binding model of size N = 10°
and Vyax = 1. The error bars show the standard deviation over the 1000 realizations
(the bottom bars are not displayed when they are larger than the value itself, i.e., when
they cross the horizontal axis). (b) Standard deviation of the distribution of values of
In(N,(CE)/N(E)) for various values of C. The minimum around C' = 0.90 ~ 1/1.11
provides the value of Cg. (c) Plot of N, (CgE)/N(FE). The maximum shows that one can
take C5 = 1/5.45. A best fit for N(E) is obtained by taking the average value Cs g, ~ 1/4.08.
(d) Final comparison between the original N(E) (blue), the best fit C5 gy N, (CsE) (dashed
red), and the two bounds from above of below in Eq. Ny (C4E) and C5N,(CsE)
(dotted lines). Note that the best fit is so close to the actual IDOS that the blue line is
almost invisible.

In order to check the validity of our approach, we have investigated the role of the domain size for
these one-dimensional Hamiltonians (we could not run such a study in 2D because the computation time
did not allow us to explore a large enough range of domain sizes). Domain sizes N = 103, 10*, and
10° were simulated, for both Anderson binary and Anderson uniform models. We also tested several
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Figure 3.3: (a) N(E) (blue) averaged over 1000 random realizations, and averaged landscape
law N, (E) (red), for a one-dimensional uniform Anderson tight-binding model of size N =
10° and Vipax = 1. (b) Standard deviation of the distribution of values of In(N,(CE)/N(E))
for various values of C. The minimum around C' = 0.84 ~ 1/1.19 provides the value of Cs.
(c) Plot of N,(CsE)/N(E). The maximum shows that one can take C5 = 1/4.85. A best
fit for N(E) is obtained by taking the average value Cs g ~ 1/3.94. (d) Final comparison
between the original N(E) (blue), the best fit C5 gy N, (C6E) (dashed red), and the two
bounds from above of below N, (C,E) and Cs N, (CsE) (dotted lines).

values of the potential amplitude, Vi .x = 1, 2, and 4. For instance, Fig. displays the analysis of the
Anderson uniform model for V.« = 4. Once again, one can observe that the fit is excellent throughout
the spectrum, justifying looking for constants that satisfy Eq. (3.6) (see Table for the summary of
these results).

We then turned our study of two-dimensional systems. The considered domain is a square of side length
L = 1500 which corresponds to N = 2.25 x 10° sites. Given that this system size is more than 10
times the size of the studied one-dimensional systems, we could average only over 100 realizations for
computational reasons. The fact that the side length of the system has been reduced by three orders
of magnitude when going from 1D to 2D shifted considerably the lower bound of the energy range that
could be explored. In the following simulations, we were unable to go below Fi, =~ 0.2.

Figure displays the analysis for a 2D binary Anderson model. The constants extracted from the
analysis are Cy = 1/1.53, C5 gy = 1/14.5, C4 = 1/1.42. The agreement between N(E) and the rescaled
landscape law is still good in the whole energy range, even though one can see now that the ratio
Nu.(CsE)/N(E) oscillates much more than in the one-dimensional case (see Fig. [3.2k). This observation
is even more marked in the case of the 2D uniform Anderson case (see Fig.[3.6). One can observe that
the upper and lower bounds are significantly apart in this case, especially at larger energy. This reflects
the fact that the prefactor of N, (FE) has to be different at low and at high energy in order to approximate
N(E) accurately.

Table B.1] summarizes the values obtained for the constants in all cases. For the three one-dimensional
cases displayed in Figs 3.4l we performed an error bar analysis by splitting the 1000 realizations into
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Figure 3.4: (a) N(E) (blue) averaged over 1000 random realizations, and averaged landscape
law N, (E) (red), for a one-dimensional uniform Anderson tight-binding model of size N =
10° and Vipax = 4. (b) Standard deviation of the distribution of values of In(N,(CE)/N(E))
for various values of C. The minimum around C' = 0.82 ~ 1/1.22 provides the value of
Cs. (c) Plot of N, (CeE)/N(E). The maximum in the noiseless part of the graph shows
that one can take C5 = 1/2.77. A best fit for N(F) is obtained by taking the average
value Cs gy ~ 1/2.23. (d) Final comparison between the original N(E) (blue), the best
fit Cs.a¢ N, (CsE) (dashed red), and the two bounds from above of below N, (C4E) and
C5N,(CsE) (dotted lines).

20 samples of 50 realizations, and computing the constants separately for each sample. The numbers to
the right of the symbol + correspond to twice the standard deviation.

This table triggers several comments. First, the values of the constants Cy4, Cs, Cs g, Cs do not seem to
depend at all on the domain size (for the same potential law). For instance, for Vi,.x = 1 and a binary
disorder, the values of C;l are 1.26, 1.27, 1.26, for