
HAL Id: tel-03367892
https://theses.hal.science/tel-03367892

Submitted on 6 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of the spatial and spectral structures of
localized eigenfunctions in Anderson models through the

localization landscape theory
Perceval Desforges

To cite this version:
Perceval Desforges. Analysis of the spatial and spectral structures of localized eigenfunctions in
Anderson models through the localization landscape theory. Disordered Systems and Neural Networks
[cond-mat.dis-nn]. Institut Polytechnique de Paris, 2021. English. �NNT : 2021IPPAX027�. �tel-
03367892�

https://theses.hal.science/tel-03367892
https://hal.archives-ouvertes.fr


626

N
N

T
:2

02
1I

P
PA

X
02

7

Analysis of the spatial and spectral
structures of localized eigenfunctions in

Anderson models through the
localization landscape theory
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Abstract

Dans un solide désordonné ou aléatoire, les fonctions d’onde des états électroniques peuvent s’écarter
des états de Bloch étendus et au contraire, être localisées de manière exponentielle dans l’espace. Ce
changement radical de la structure spatiale des fonctions d’onde a une forte influence sur les propriétés
de transport du système et peut, par exemple, être responsable de la transition métal/isolant dans les
alliages désordonnés. Dans les années récentes, un nouvel outil théorique appelé le paysage de localisation
a émergé pour l’étude de cette localisation induite par le désordre. Dans cette thèse, nous utilisons la
théorie du paysage de localisation afin d’étudier divers aspects de la localisation des ondes. Ce manuscrit
commence donc par une brève introduction sur des différents développements historiques dans le sujet
de la localisation d’Anderson qui concerne le travail abordé lors de cette thèse.

Tout d’abord, nous montrons comment extraire efficacement la structure spatiale de localisation à
n’importe quelle dimension en adaptant l’algorithme dit de watershed. Cet algorithme s’appuie sur
l’identification de minima locaux du paysage pour définir des régions de localisation. L’étape suivante
consiste à utiliser les propriétés du paysage pour éliminer les régions qui ne sont pas capables d’accueillir
une fonction propre localisée.

Puis nous passons à l’analyse des propriétés spectrales et calculons la distribution des valeurs propres
(la densité intégrée des états) dans des modèles d’Anderson en tight-binding en utilisant de nouvelles
approximations dérivées du paysage de localisation. Nous montrons que la théorie du paysage permet
d’obtenir un très bon encadrement de la densité intégrée des états.

Nous étudions ensuite comment le paysage de localisation permet de comprendre l’existence d’un seuil
de mobilité à plus haute énergie, en fonction de la dimension. Ces résultats semblent indiquer que le
potentiel effectif joue un rôle crucial dans la localisation des fonctions propres en dimension supérieure
et égale à 3.

Enfin, nous nous intéressons à un potentiel déterministe de désordre, le modèle d’Aubry-André, et ex-
plorons quelles informations sur le système peuvent être déduites du formalisme de localisation du paysage.
Nous trouvons des résultats similaires que dans le cas de la localisation d’Anderson, mais souvent avec
des constantes qui diffèrent.
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Chapter 1

The role of disorder in quantum
systems

In this chapter we first introduce the concept of Anderson localization. In section I we lay down the
theoretical groundwork that we will need in the manuscript. We briefly cover important past works on
the topic. This leads us to some of the remaining open questions. In section IV, we present the localization
landscape theory which is a different and deterministic approach to Anderson localization. From there
we overview the accomplishments of the localization landscape theory as well as several remaining points
at issue.

I Anderson localization

I.1 Overview of electronic transport in disordered materials

What allows a quantum wave to pass through the greatest of barriers, and yet to be trapped in the
weakest of disorders? This perplexing question was first considered by Anderson more than sixty years
ago in his famous paper Absence of Diffusion in Certain Random Lattices [8]. Before examining this
question further, we will review the relevant discoveries that led to the emergence of this phenomenon.

One of the first microscopic models of electron transport is the Drude model [26]. This is a classical
model that considers the electrons as an ideal gas of point-like particles scattering off the different atoms
forming the crystal. The average distance between two collisions on the lattice is the mean free path `.
In the presence of an electric field, the electrons move collectively at a stabilized speed which depends on
the electric field and on `.

This model was successful in describing the conductivity in metals at room temperature as well as the
Hall effect. However, the behavior of insulators and semiconductors or the low temperature behavior was
not explained by this model. After the emergence of quantum mechanics, the next step was to develop
a quantum theory of electronic transport.

Combining the Drude model with the quantum mechanical Fermi-Dirac statistics, Sommerfeld developed
a simple theory called the free electron model that accurately predicted additional features such as the
shape of the electronic density of states. Interactions between the electrons were still neglected, as well
as the interactions between the valence electrons and the ions. Nonetheless, many aspects remained
unexplained, especially in the low temperature limit. Furthermore, this model offered no explanation for
the conductive or insulating nature of materials: what fundamental property makes some of them metals
and others insulators?

In 1928, Bloch developed the electronic band structure theory that complemented the free electron model.
The electrons are described as non-interacting quantum waves with the same periodicity as the one of the
crystal lattice. This is known as the Bloch theorem. The electronic wave functions are characterized by
a wave vector ~k and a wavelength λ. In this model, the electrons are only allowed to fill certain bands of
energy, according to Fermi-Dirac statistics. At zero temperature, the last energy band filled is called the

7



valence band while the lowest vacant energy band is called the conduction band. One defines the band
gap as the difference in energy between the lowest state of the conduction band and the highest state in
the valence band. Materials whose Fermi level lies in the conduction band are defined as metals. Those
for which the Fermi level lies in the band gap are either insulators (with a large band gap, of the order
of 10 eV) or semiconductors. This description of materials was the first to offer an explanation to the
origin of the conducting or insulating properties of materials.

Under the action of an electric field, the electrons under the Fermi level may acquire enough energy to
go over it, which creates an electrical current. In metals, any small electric field will put the electrons
in motion, since the Fermi level is in the conduction band. In insulators where the band gap is very
large, only very strong electric fields will put a small amount of electrons in motion. Semiconductors
are in between, where a strong enough electric field will allow current to flow. They can also be doped,
which can shift the Fermi level closer to either the valence or conduction bands. Contrary to metals,
semiconductors’ conductivity increases with temperature since the states at the bottom of the conduction
band are in the exponential part of the Fermi-Dirac factor, making their number very dependent on the
temperature. A key takeaway from this model is that electrons in perfect crystals move as if they were
in a vacuum ignoring the crystal, but with a renormalized mass, noted m∗.

If there is a vacant spot in the valence band, an electron in the conduction band can emit a photon or a
phonon and descend to the valence band. Its energy will necessarily be greater than or equal to the band
gap, with it more likely to be close to the band gap. In the case of a photon, since energy and frequency
are linked (E = ~ν), the emission spectrum of semiconductors is therefore narrow enough to appear as a
pure color to the human eye.

This model is the backbone upon which other models are built on to understand the electronic states
in materials. The study of the spatial and spectral structure of the eigenstates of the Hamiltonian
of electrons in solid systems is necessary for comprehending the transport properties of these electrons.
Implementing Boltzmann’s kinetic theory to the system by considering interactions between the electrons
and phonons gives a good description of the transport properties of metals. This is also known as the
semi-classical model of electron dynamics. For a more in-depth introduction on electronic transport in
materials, the reader can consult Ashcroft and Mirmin’s “Solid States Physics” [12].

These models are effective in describing the electric properties of materials that have crystalline structures.
However, in reality no crystal is perfect. The existence of small defects or impurities, which can be missing
atoms in the crystal or atoms replaced by different atoms (substitution defects), means we can no longer
assume that the wave functions of the electrons are Bloch states. A possibility is then to treat the disorder
as a perturbation to produce corrections to the eigenstates. The disorder must necessarily be quite small
for this sort of calculation. This description is adequate for low concentration of impurities, for instance
for lightly doped semiconductors.

For many materials, treating the disorder as a small perturbation is fundamentally inadequate. For
example, the different elements of metallic alloys can have concentrations of the same order of magnitude,
and be randomly distributed in the crystal. In this case, instead of having small defects in an ordered
crystal, the different elements of the crystal occupy random sites and there is no underlying structure.
Similarly, certain semiconductor alloys such as indium gallium nitride (InGaN) are specifically designed
to emit at a certain wavelength by tuning the concentration of indium with respect to gallium (more
gallium increases the band gap which decreases the emitted wavelength).

Another approach to describing the electronic structure of materials is the tight-binding model. The
idea behind it is the opposite of the Bloch model. Here, the electrons are considered to be bound to
their respective atoms, and therefore the atomic orbitals are used as the basis states of the Hamiltonian.
Because they are so strongly bound, the overlap with the neighboring atoms is very small. Therefore, the
electrons can be described as bound to an isolated atom, with a slight perturbation due to its neighbors.
The wave function of the electrons in this model is projected on a discrete basis: the various localized
sites of the lattice. The Hamiltonian for such a model is:

H =
∑
i

εia
†
iai − t

∑
<i,j>

(
a†iaj + h.c.

)
, (1.1)

where εi corresponds to the energy at the site i, a†i and ai are the creation and annihilation second
quantization operators that respectively create and destroy an electron at site i, and t is the hopping
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term that represents the coupling or the overlap between two neighboring states. The < i, j > symbol
indicates that the sum is run over nearest neighbors, and h.c. stands for Hermitian conjugate. These are
the basic elements of the tight-binding model with nearest neighbor coupling.

I.2 Anderson localization

In 1958, Anderson imagined a tight-binding model where the on-site energies would be random [8]. This
model was meant to be the simplest capturing the fluctuations of the potential due to a random quenched
disorder in the system. An example of such a system is displayed in Figure 1.1. In his original paper, the
on-site energies follow a general random law P (E)dE, the width of this distribution being W (which we
will very often call Vmax in this manuscript). The two parameters of the model are the potential strength
Vmax and the overlap between neighboring sites t. The ratio Vmax/t is a dimensionless parameter that
represents the strength of the disorder.

Figure 1.1: Two-dimensional Anderson tight-binding model with nearest neighbor hopping.

Studying the wave function at a site i at a time τ , ψi(τ), Anderson argued that if this quantity goes to
0 at infinite time, the wave will have completely delocalized, i.e. it will have spread out on the entire
domain. However if this quantity stays finite, it means that the wave function remains localized: it did
not spread out in the entire domain. Anderson showed that for sufficiently large ratios of Vmax/t, the
eigenfunctions remain localized (in reality, it was shown later on that this critical disorder strength does
not always exist and depends on other factors such as the embedding dimension of the system). Physically
speaking, for strong enough disorders and weak overlap between neighboring sites, the eigenfunctions do
not propagate in the medium. This critical ratio was later defined as the mobility edge by Mott in his
papers from the 1960s [59, 60].

Figure 1.2: The two different states for a quantum wave function. Left: Delocalized
states with mean free path `. Right: Exponentially localized state of localization length ξ.
Reprinted from [52].

Furthermore, Anderson showed that the eigenfunctions decay exponentially from site to site (see Fig-
ure 1.2). This brings into play another parameter, the localization length ξ, which governs this exponen-
tial decay: ψ ∼ exp(−x/ξ). This is the first description of Anderson localization, also known as strong
localization.
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Since then, this phenomenon has been studied extensively, and shown to exist in other systems. Most
notably, the continuous Hamiltonian equivalent of the Anderson tight-binding model is:

Ĥψ =

(
− ~2

2m
∆ + V

)
ψ, (1.2)

where ∆ is the Laplacian operator, ~ is the reduced Planck constant, m is the mass of the electron, V is
the random potential, and ψ are the continuous wave functions.

Let us take an example. Consider a two-dimensional system following equation (1.2). In the absence
of a potential, the solutions to such an equation are plane waves, with some examples represented in
Figures 1.3.

(a) (b)

Figure 1.3: (a) Example of the probability density of a delocalized eigenfunction of the
Schrödinger operator without any potential. This is an excited mode. (b) Example of a
delocalized eigenfunction of the Schrödinger operator without any potential. This is the
tenth excited mode.

In Figure 1.4 we have represented a two-dimensional potential following a Boolean random law and taking
values in [0, 10]. If we solve equation (1.2) with this potential, the solutions are not plane waves and are
now localized, as can be seen in Figure 1.5.

Figure 1.4: A 2D potential with a Boolean random law. The potential is piece-wise constant,
taking values 0 with a 60% chance (in blue) and Vmax = 10 with 40% chance (in red).

As can be seen in Figure 1.4, the V = 0 part of this Boolean potential percolates. A classical particle
starting from this region with any positive energy in the center of the domain could travel to the edge
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Figure 1.5: The first 5 eigenfunctions that are solutions to the Schrödinger equation (1.2).
They each occupy a distinct area in the domain.

without being stopped. And yet the eigenfunctions of the Anderson Hamiltonian with this potential are
localized. This behavior can only be understood with a wave-like description of the particles.

In order to understand how waves localize instead of propagating through a medium, and the role wave
interference plays in in this process, let us consider a simplified description of an electron traveling from
a point A to a point B, as depicted in Figure 1.6. In Feynman’s path integral formulation, calculating
the probability amplitude P for the electron to travel from A to B requires considering all paths from A
to B and sum the probability amplitudes of each individual path Ci:

P =

∣∣∣∣∣∑
i

Ci

∣∣∣∣∣
2

=
∑
i

|Ci|2 +
∑
i 6=j

CiC
∗
j (1.3)

Figure 1.6: An example of the different paths an electron can take to go from point A
to point B. In the quantum theory setting, all paths must be considered and summed to
calculate the probability for the electron movement. Reprinted from [73].

Two terms contribute to the total probability. The first corresponds to the addition of contributions from
the paths that do not interact with each other, it is therefore classical by nature. The second corresponds
to interferences between the different paths, it is due to the wave nature of the quantum particle. In
general, the sum in the second term averages to zero since the various phase contributions usually cancel
each other out. In those cases, the probability ends up being: P =

∑
i |Ci|

2
= Pclass.

There is an exception to this case. If the starting and end points are identical, or for self-crossing
paths as shown in Figure 1.7, a path going one way will positively interfere with a path going the
other way, due to the time-reversal symmetry of the Hamiltonian. Furthermore, the electron must
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maintain coherence along its path. The contribution of these two paths to the probability is now given
by: P=2|C|2 + 2CiC

∗
j = 4|C|2 = 2Pclass. In this case, it is therefore twice as likely for a quantum particle

to return to its starting point than for a classical particle.

Figure 1.7: An example of a self-crossing path. The starting and end points are identical,
which leads to a constructive interference. Reprinted from [73].

This phenomenon is called coherent backscattering, and is the origin of the phenomenon called weak
localization which has been extensively studied in various papers [4, 6, 57]. The following works offer an
excellent review of the topic [15, 20, 52, 5]. When light is shined into a medium with randomly placed
scatterers, some of the light comes back, and there is a sharp peak in intensity at exactly the angle at
which the initial light was shined. This example shows that wave interference is crucial for generating
localization of eigenfunctions in disordered media.

Anderson localization has been treated in many different ways since its inception. Historically, there
have been numerous different ways to characterize the localization/delocalization transition, but we will
focus on three for the purpose of this manuscript. The first is to use the localization length as a measure
of how localized the eigenstates were. Another way is to study the conductivity, which goes to zero as
disorder increases in the localization regime. And finally a more mathematical approach is to consider
the statistics of the distribution of the eigenvalues. The goal is not to present an exhaustive review of
the literature [70, 52, 27, 1], but to develop specific points that pertain to the rest of the manuscript. We
have just presented Anderson localization and weak localization. We will now examine the scaling theory
of localization, as it established central results on the transition between localized and delocalized states
depending on the dimensionality. This will be followed by a presentation of random matrix theory as it
has elaborated tools to quantify how localized eigenfunctions are. Afterwards we will look at Lifshitz’s
model of disorder and the Lifshitz tails, which are a feature in the integrated density of states of disordered
systems. And finally we will give an overview of the main questions left concerning localization and how
we plan to address them.

I.3 Scaling theory

Concurrently with the first steps of Anderson localization, renormalization group theories emerged for
studying transitions and critical phenomena. It did not take very long for others to formulate a scaling
theory of localization: Thouless was the first to present these ideas in a paper in 1974 [70]. The foundations
of the scaling theory were built upon and clearly formulated by Abrahams, Anderson, Licciardello and
Ramakrishnan a few years later [2].

In localization/delocalization transition phenomena different length scales are involved. The smallest
length scales are the de Broglie wavelength λ and the correlation length of the disorder ζ. If ζ < λ, the
details of the disorder are not seen by the electron [61]. If λ < ζ, it is the opposite, which is the case
for example in optical speckle potentials [16]. The larger length scales are the mean free path ` and the
localization length ξ. Depending on the details of the system, (the type of disorder, the dimensionality)
these two length scales can take on different values. For instance, in 3D with low disorder strength,
ξ =∞ while in 1D, for weak disorder, a transfer matrix calculation gives ξ = 2`.
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Figure 1.8: The different length scales involved in the localization/delocalization transition.
The three areas separated by the dotted lines correspond to the three different regimes:
ballistic, diffusive and localized (from left to right). Reprinted from [61].

The scaling theory of localization describes how changing the system size allows to pass from one regime
to another. If the system size L is smaller than the mean free path ` the particles do not have time
to diffuse and the movement is therefore ballistic. For ` < L < ξ, the transport is diffusive with weak
localization corrections. The localized regime is reached when L > ξ. If the localization length is infinite
then the localization regime can never be reached. The different length scales and their relation with one
another are displayed in Figure 1.8.

The general idea behind scaling theories is that the exact nature of the eigenfunctions and eigenvalues of
a hypercube of size Ld (d being the dimension) will be determined by its specific properties such as the
realization of disorder. A scaling theory provides a procedure that enables us to retrieve information on
these finite sized systems at the thermodynamic limit. Let us consider the cube of side-length L and let
us make copies of it in order to stack them up to assemble a hypercube of size (2L)

d
. How do the system

properties change in this operation?

The first step of the scaling theory is to determine a parameter that characterizes the transition that is
to be studied (in our case the localization/delocalization transition). This parameter should depend on
as few variables as possible, ideally only one. As mentioned before for the Anderson transition, different
quantities measure how localized the eigenfunctions are. Let us establish such a criterion. Considering the
aforementioned hypercube of size Ld, if the system is closed, the eigenfunctions of the different hypercubes

will not intermix, and the average spacing between the eigenvalues is determined by ∆E =
(
ρLd

)−1
, with

ρ the density of states. Now if the system is open, the time it would take for a particle to diffuse from

that hypercube to the other is τD = L2

D where D is the diffusion constant. Through its diffusion, that
particle’s energy resolution δE is such that δEτD ∼ ~.

When ∆E � δE, the eigenfunctions’ energy resolution is very small, meaning that their frequency
resolution is also. This implies that the eigenfunctions are spatially extended. They therefore overlap
considerably and the eigenvalues are close to each other. We are in the delocalized regime. On the
other hand, if ∆E � δE, the overlap between in the eigenfunctions is very small compared to how far
apart the eigenvalues are. This is the localized regime. The ratio of these two quantities is our criterion:
∆E/δE. Thouless further argued that the conductance G is linearly related to the quantity ∆E/δE [70].
Furthermore, we can express this quantity in units of e2/~:

g =
G

e2/~
=

∆E

δE
. (1.4)

g is referred as the dimensionless conductance. It is important to realize that as we are doubling the
system size, the new value of the conductance depends only on the old value. The idea behind scaling
theory is to study the β function which measures how the conductance evolves with the system size:

β(g) =
d ln g

d lnL
. (1.5)

The main hypothesis we make here is that this function is only dependent on g. β(g) gives all the
information that is needed in order to determine the behavior of the eigenfunctions as the system size
goes to infinity. Indeed, if β is negative, that means as the size is increased, the conductance decreases,
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eventually going to 0. While if it is positive, the conductance will increase. We can determine the
asymptotic behavior of β by using the known expressions of g for small and large values of g.

Figure 1.9: The evolution of the β function for three different dimensions. The slope of β at
gc is related to the critical exponents. If there was a minimal conductivity in 2D, β would
go to 0 at a distinct value, instead of asymptotically going to 0. β would behave like the
dashed curve that prolongs from the d = 2 curve. Reprinted from [2].

One can derive formulas for g, and therefore for β(g) in the strongly localized regime: β(g) = ln g
g0

= −Lξ
using the fact that g decays exponentially, and in the delocalized regime: β(g) = d− 2 using Ohm’s law.

After obtaining the asymptotic behavior of the β function for both small and large g, and assuming β(g)
behaves reasonably, we can link these two asymptotics together as simply as possible, i.e., monotonically.
As can be seen in Figure 1.9, β stays negative for d = 1 and d = 2. No matter the initial conditions, the
process of doubling the system size as detailed above always decreases g. At the thermodynamic limit,
the conductance always vanishes, meaning that the eigenfunctions are all localized. In 3D however, β is
negative for small g, and positive for large g. This means that there is a critical value gc where β(gc) = 0.
For g above this value, the scaling process increases the conductance, while for g under this value, the
eigenfunctions become more and more localized as the system size is increased.

According to the scaling theory of localization, there is no minimal finite value for the conductivity:
σmin = 0. This was one of the first results of the theory. The other main prediction was the value for the
critical exponents for the localization transition in 3D.

In the theory of critical phenomena, a transition is characterized by a certain order parameter. As
mentioned before, one can choose different parameters, but one that makes sense in the localized phase is
the localization length ξ. In the Anderson model, this parameter depends on the potential strength W :

ξ ∼ (W −Wc)
−ν
, (1.6)

where Wc is the critical potential strength and ν is the critical exponent. To obtain a value for ν, we start
by expanding the expression for β(g) around the critical point gc. The simplest models have given ν ≈ 1.63
which is quite close to values found through various numerical simulations: ν = 1.58± 0.01 [61, 68, 33].
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This comparison of length scales raises another question. All previous considerations have been expressed
in the thermodynamic limit, i.e., in an infinitely sized sample. In practice however, systems are of finite
size. Usually this is not a problem as the length scales involved are much smaller than real sized samples.
For instance, 2D Anderson localization remains difficult to observe experimentally as the localization
length is very large: ξ2D ∼ l exp

(
π
2 kF l

)
[52, 48] (where kF is the Fermi wave vector). For instance, in

a cold atoms experiment [16], with ` = 100 µm and kF = 2.5 µm−1, this gives ξ2D ∼ `e400, which is
obviously much larger than the system size. The dependence on the mean free path is exponential, so in
systems with weak disorder the size is often smaller than this length. This creates an additional difficulty
in the observation of the mobility edge: how to differentiate a truly delocalized state from a localized state
with excessively large localization length? The concept of effective mobility edge, which can be defined
as the energy over which the localization length of the eigenfunctions are greater than the system size,
has emerged to characterize this phenomenon. In finite-size systems, eigenfunctions over the effective
mobility edge will appear delocalized. The origin of the effective mobility, which in practice mainly
concerns speckle potentials in cold atoms, comes from correlations in the disordered potential [65, 28].

Predicting the exact values for the mobility edge and the effective mobility edge is one of the open
questions left today in Anderson localization.

I.4 Random matrix theory

In 1955, Wigner introduced the random matrix theory in order to model the spectra of the nuclei of
heavy atoms [75]. Since then, the use of random matrices has spread to other domains in physics such
as the physics of disordered systems. The idea behind this theory is that the statistics of the spectrum
of a random operator are heavily dependent on the symmetries of that operator and on whether its
eigenfunctions are localized or delocalized.

The argument goes as follows: consider a very localized system where the different eigenfunctions have
very little overlap with one another. Pushing this argument to the extreme, the matrix will essentially
be diagonal with off-diagonal elements either very small or 0. In this case, the system being disordered,
the diagonal elements are the eigenvalues and are determined randomly. The level spacings are defined
as the difference between consecutive eigenvalues: sn = En+1 − En. As the energy at each site is
determined randomly, the spacings can be interpreted as a Poisson process, and therefore follow a Poisson
distribution [66]:

PP (s) =
1

δ
exp

(
−s
δ

)
, (1.7)

where δ = 〈s〉 is the average value of the sn. Physically, this indicates that when the eigenfunctions are
localized, they behave independently: there is no repulsion between the different eigenvalues.

However, when the the eigenstates are delocalized the statistics of the spacings are different and depend
on the symmetries of the Hamiltonian [7, 35]. The most studied operators belong either to the Gaussian
Orthogonal Ensemble (GOE), the Gaussian Unitary Ensemble (GUE), or the Gaussian Symplectic En-
semble (GSE). In each case, the elements of the matrix associated to the operator are random variables
following a normal distribution. Depending on the ensemble, there is an added constraint: the matrix
must be orthogonal for the GOE, unitary for the GUE, and symplectic for the GSE. An orthogonal matrix
corresponds to a Hamiltonian with time-reversal symmetry, a unitary matrix to a Hamiltonian without
time-reversal symmetry, and a symplectic matrix to a Hamiltonian with time-reversal symmetry but no
spin rotational symmetry. The statistics of the level spacings of the spectra of each type of matrix are
different. The following formulae are obtained for 2 × 2 matrices, but describe the statistics of larger
matrices very well. This is called theWigner surmise.

PGOE(s) =
π

2
s exp

(
−π

4
s2
)
, (1.8)

PGUE(s) =
32

π2
s2 exp

(
−π

4
s2
)
, (1.9)

PGSE(s) =
218

36π3
s4 exp

(
− 64

9π
s2

)
. (1.10)
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Figure 1.10: For three-dimensional systems, as the disorder strength increases, the eigen-
states go from delocalized to localized. Therefore the probability distributions of the level
spacings go from Poisson-like to Wigner-like. Reprinted from [66].

The Anderson model usually exhibits time-reversal symmetry, so the statistics of the GOE are relevant
in this case. Certain models add a magnetic field interaction which destroys time-reversal symmetry. In
that case, the GUE statistics are relevant.

According to these statistics, for delocalized eigenstates, it is very unlikely for two consecutive eigenvalues
to be close to each other since the probability density of the spacings at 0 vanishes. It is just as unlikely
for two consecutive eigenvalues to be infinitely apart, there is therefore a value of the spacing where the
probability is maximal. Figure 1.10 displays the transition between the Wigner surmise and the Poisson
statistics.

The distribution of the energy spacings is another useful tool in studying the localization/delocalization
transition, as determining these distributions requires only the calculation of the eigenvalues and not the
eigenfunctions, which is considerably more computationally costly.

II Other manifestations of localization

In this section we will present other examples of disordered systems where localization occurs. Each case
is interesting to us because they either exhibit new characteristics of localization (the Lifshitz tails) or
demonstrate localization in novel ways (the Aubry-André model). The latter can then be used as a test
bed for the localization landscape theory.

II.1 Lifshitz tails

In parallel to Anderson, Lifshitz developped his own model of disorder known as the Lifshitz model [55, 56].
In this model, instead of considering a tight-binding model, the model is continuous, with repulsive
impurities added at specific points of the lattice:

− ~2

2m
∆ψ + V (~r)ψ +

∑
j

U(~r − ~rj)ψ = Eψ, (1.11)

where V is the periodic potential due to the crystal and U is the potential due to the impurities, which
is summed over the various sites j of impurities.

16



In the absence of disorder for free electrons, the dispersion relation is quadratic. This leads to a density
of states following a power law: ρ ∼ Ed/2−1. Since the aforementioned dispersion relation does not hold
in the presence of disorder, neither does the expression for the density of states. Instead, Lifshitz showed
that the integrated density of states (or counting function) at the bottom of the spectrum tends towards
−d/2:

lim
E→E0

ln (ln (N(E)))

ln (E − E0))
= −d

2
. (1.12)

This behavior is called the Lifshitz tails, and has interested mathematicians and physicists alike. The
former were at first interested in determining which types of potentials were responsible for the appearance
of these tails. Initially, it was only proven for this particular type of potential, but later on others
generalized these results. Pastur, Benderskii [14] and Kirsch [45] expanded the theory to a large class
of potentials. In 1985, Simon showed that the Lifshitz tails occurred in Anderson type potentials [67].
Klopp studied the weak disorder limit of the Anderson model and found an expression for these Lifshitz
tails [46, 47]. For further information on the mathematical side of the topic, the read can refer to these
comprehensive reviews [44, 62, 50].

From the experimental physicist’s perspective, these tails in the integrated density of states have an
impact on other observables. For disordered crystals, Urbach observed that the absorption curve also
exhibits exponentially decreasing tails [72]. He then proposed a phenomenological law to account for this:

α(hν) = α0e
(hν−E1)/EU (T ), (1.13)

where α0 is a constant, E1 is the energy limit of the extended band-like states, and EU the Urbach energy.
These parameters are to be determined experimentally. Several works have attempted to establish a
universal theory for these tails [25, 42]. A possible explanation lies in thermal disorder or in the disorder
induced localization of the electrons and holes, but there is still debate as to which phenomenon is the
leading cause of the Urbach tails.

Throughout this thesis we will be concerned only with the mathematical aspect of these exponential tails.
A more precise behavior than equation (1.12) is sought after, especially its dependency on the parameters
of the random law governing the disorder.

II.2 The Aubry-André model

In this introduction, we have always treated Anderson localization through the prism of independently
and identically distributed (i.i.d.) random potentials. Anderson localization is always studied statistically
since the potentials depend on the realization of disorder. It does not make sense to try to solve the
eigen-equations analytically since there is no expression for the potential.

However randomness is not a necessary condition to produce localization. Another class of potentials
known as quasi-periodic or pseudo-random exhibit some aspects of localization. In tight-binding models,
these potentials have a cosine term but with a spatial frequency that is incommensurate with the lattice
spacing. In this way, values are never repeated and seem random.

We consider a discrete Hamiltonian Hλ,α
ω in 1D :

Hλ,α
ω ψn = ψn+1 + ψn−1 + 2λ cos [2π (ω + nα)]ψn = Eψn, (1.14)

which depends on three parameters, the potential strength λ, the spatial frequency α, and the phase ω.

In practice, the lattice spacing is taken equal to 1, and therefore the frequency must be an irrational
number so that the spatial frequency is incommensurate with the lattice spacing. In physics, Aubry and
André were the first to propose such a model, and showed localization of the eigenfunctions [13]. The
model had been introduced to study specific phenomena, the Peierls instabilities, but has since been used
as a foil to the Anderson model since it behaves similarly.

Independently, Hofstadter developed a comparable equation while working on two-dimensional Bloch
electrons in a magnetic field [36], which also had an incommensurate potential. Hofstadter’s paper is
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Figure 1.11: The Hofstadter ”butterfly” plot. The x axis represents the energy; the y axis
represents the irrational frequency α. Reprinted from [36].

famous for predicting the “butterfly” figure represented in Figure 1.11. It is a representation of the
spectra for the different values of the frequency α, for the specific value of the potential strength λ = 1.
This set has a fractal-like structure. This model was shown to be a special case of the Aubry-André
model afterwards [41]. It has been extensively studied, and many of its properties are known. All the
eigenfunctions are either localized or delocalized [39], depending on the value of λ (delocalized for λ < 1,
localized for λ > 1), regardless of the dimension [17] (in Zd). Furthermore, Jitomirskaya and collaborators
have shown that the eigenfunctions possess a hierarchical structure determined by the continued fraction
expansion of the irrational frequency α [40]. From the physics perspective, these quasi-periodic potentials
are an excellent way to study localization experimentally in a cold atoms setting [64], as well as being
a base model to research more complex phenomena from a theoretical point of view such as many-
body localization [38], higher dimensional transitions [24], topological zero energy phases [34] and their
transport properties [69].

The Aubry-André model is therefore an excellent case study of computable wave localization. Many of its
properties are known and well understood which makes it ideal to compare and contrast with Anderson
localization.

III Several remaining open questions

We would like to summarize some of the remaining essential questions in the field of Anderson localization
that will be addressed in this thesis:

• The precise asymptotic behavior of the Lifshitz tails depending on the disorder parameters is an on-
going question. The current description of the exponential decay of the counting function involving
the limit of the logarithm of the logarithm of the counting function is in a weak form.

• High-energy localization is well understood in one dimension thanks to transfer matrix calculations:
quantities such as the localization length can be derived [43, 48, 58, 71]. Less results are known in
two dimensions, and we still do not understand the mechanisms behind the emergence of a mobility
edge at higher dimensions.

• Finally, one of the main questions is the analytical characterization and description of the mobility
edge, the critical exponents, as well as the effective mobility edge. The mobility edge is one of the
defining feature of localization. And yet we are not fully capable of predicting and characterizing it
depending on the features of the disorder of the system. The same goes for the critical exponents.
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Perhaps as important is the effective mobility edge. Being able to differentiate the two mobility
edges is critical for the study of the true mobility edge. Indeed, experimentally and numerically,
one is often confronted with the situation where delocalization seems to be observed because the
system size is not large enough.

IV The localization landscape: a deterministic approach to lo-
calization

As was seen in the previous sections, approaches to Anderson localization have largely been statistical.
The properties of the system are averaged over many realizations of the disorder. However, because of
this, little can be said on the localization structure for particular realizations of disorder.

The localization landscape theory departs completely from this paradigm. It is a deterministic approach
to study the localization properties of the eigenfunctions. In this way, information can be acquired directly
from the system under study. One useful application is for relating theory with experiments, since more
often than not experimental physicists can only measure the properties of one or a few samples.

IV.1 The spatial properties of the localization landscape

The localization landscape theory was first introduced in 2012 [31] with the aim of explaining the mech-
anisms at work in weak or Anderson localization. The idea was to consolidate many different vibrating
systems in a universal mathematical framework.

Figure 1.12: Left: Example of a random potential on a 2D domain. The domain is divided
into 20 × 20 squares, and on each square the potential is piecewise constant with values
uniformly distributed between 0 and Vmax = 8000. Right: The associated eigenfunctions
of the Schrödinger equation. There is no clear and obvious relationship between the two.
Reprinted from [31].

Let us start with a simple example. In Figure 1.12, the random potential seems to give no information
whatsoever on the location of the eigenfunctions. Intuitively, one can guess that the low energy eigen-
functions will appear spatially in places where the potential is lowest. However, an eigenfunction also
requires space to exist, meaning that the determining factor is not the location of the minimum, but more
the location of the minimum of some sort of potential averaged on a length scale that is to be determined.

We define H = −∆ + V as the operator of the system on the domain Ω and consider the Green’s
function G(x, y) such that HxG(x, y) = δy(x). Thus, for any function v, we have

∫
Ω
HxG(x, y)v(x)dx =∫

Ω
δy(x)v(x)dx = v(y). Here, H is a self-adjoint elliptic operator and the Green’s function is symmetric.
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We now show how to define a new function u that explains the localization structure of the eigenfunctions.
Considering an eigenfunction ψ of eigenvalue λ, we can show the first fundamental inequality for the
localization landscape:

|ψ(x)| ≤ E‖ψ‖∞u(x), (1.15)

where

u(x) ≡
∫

Ω

|G(x, y)|dy, (1.16)

is the definition of the localization landscape. If the Green’s function is positive (which is the case of all
Hamiltonians H = −∆ + V with positive potential), then the expression of u is simplified:

u(x) =

∫
Ω

G(x, y)dy, (1.17)

and u is now the solution to the following equation:

∫
Ω

HxG(x, y)dy = Hx

∫
Ω

G(x, y)dy = Hxu(x) =

∫
Ω

δy(x)dy = 1 (1.18)

This last equation is the most commonly found definition of the localization landscape in the literature,
i.e.,

Hu = (−∆ + V )u = 1. (1.19)

Figure 1.13: Left: The localization landscape calculated from the random potential of Fig-
ure 1.12. Center: A top view of the aforementioned localization landscape. Red corresponds
to peaks while blue to valleys. The thick blue lines delineate several subregions in the do-
main. Right: The five first eigenfunctions superimposed on the valleys defined previously.
These eigenfunctions each fit exclusively in a single sub-region enclosed within the valleys.
Reprinted from [31].

From inequality (1.15), one can recognize that areas where u is “very small” define locations where ψ is
“small” as well. In Figure 1.13, the localization sub-regions are well defined by the valleys (the ((d− 1)-
dimensional set of curves whose points are local minima [22]) of the localization landscape. At higher
energies the inequality (1.15) does not restrict the eigenfunctions anymore.

Further work on the landscape has led to the discovery of the effective confining potential, which unlocks
even more properties for the localization landscape theory [11]. Considering the original Schrödinger
equation (−∆ + V )ψ = Eψ , let us define the auxiliary function ψ ≡ uφ. The equation is transformed
in the following way:

(−∆ + V ) (uφ) = Euφ (1.20)
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Figure 1.14: Several eigenfunctions are represented here. As the eigenfunctions’ energy
increases, the barriers between the sub-regions open up. The eigenfunctions are no longer
confined in the small initial sub-regions. Reprinted from [31].

from which we obtain:

−∆φ− 2
∇u
u
· ∇φ+

1

u
φ = Eφ (1.21)

which finally gives us:

− 1

u2
∇·

(
u2∇φ

)
+Wφ = Eφ, (1.22)

where we have defined W ≡ 1
u . This quantity is homogeneous to an energy. The new function φ thus obeys

a Schrödinger-like equation where the differential Laplacian operator has been replaced by 1
u2∇·

(
u2∇

)
,

and the original potential has been replaced by W , which we will call the effective confining potential.
The reason behind this name is justified by the following identity satisfied by any quantum state |ψ〉:

〈ψ|Ĥ|ψ〉 =

〈
u∇
(
ψ

u

)∣∣∣∣u∇(ψu
)〉

+ 〈ψ|Ŵ |ψ〉 . (1.23)

From this equation one can observe that instead of being the sum of a kinetic and a potential energy,
the energy is now split in two different terms: the first one is akin to a reduced kinetic energy while the
second is likened to an effective potential energy, hence the name given to W .

The new Schrödinger-like operator has exactly the same spectrum as the original Hamiltonian. The
eigenfunctions of the transformed equation divided by u are the same as those of the initial equation.
There is a one-to-one correspondence between the solutions to the analogous equation and those of the
original equation.

This fact casts a new light on the mechanism of localization. It appears in fact as a more classical
localization in the new potential defined by W . The valleys of the localization landscape are the crestlines
of the effective confining potential which determine the sub-regions of localization. When the energy E
of an eigenfunction is larger than the crestlines of the effective confining potential surrounding the sub-
region of localization of the eigenfunction, it is not longer confined by it. The eigenfunctions can then
spread out into other sub-regions. The larger the energy, the more the eigenfunction can spread out,
until finally the entire domain is accessible and therefore it is delocalized, as can be seen in Figure 1.14.

Following these findings, a series of papers have explored additional properties of the localization land-
scape. The first one established approximations of the fundamental eigenvalues and eigenfunctions of the
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different localization regions defined by the landscape [32], while others detail different applications of
these approximations [63, 54].

Among these findings, one can mention that, in each localization sub-region Ωi able to host a localized
eigenfunction, the fundamental of that region ψi0 is well approximated by the restriction of the landscape
u to that sub-region:

ψi0 ≈
u

‖u‖
(1.24)

Moreover, the energy of the fundamental, Ei0, can also be approximated by the landscape:

Ei0 ≈
∫

Ωi
u(~r)ddr∫

Ωi
u2(~r)ddr

(1.25)

A recent exhaustive study in various dimensions (1D and 2D) and for different random potentials (uniform,
binary, etc.) has not only corroborated the approximation of the fundamental eigenfunctions by the
landscape, but has also found a more general relation between the landscape and the energies of the
local fundamentals [9]. The authors showed that these eigenvalues are approximately proportional to the
minimum of the effective confining potential in the localization sub-regions with a factor depending only
on the dimensionality of the system:

Ei0 ≈
(

1 +
d

4

)
×min

Ωi
W (1.26)

(a) (b)

Figure 1.15: (a) Example of an effective confining potential. The first four minima are
labeled in ascending order. The authors estimated the width of the eigenfunctions with the
size of the regions. (b) The actual eigenfunctions are displayed on top of the predictions.
They are labeled in ascending order of their energy. Reprinted from [9]

In Figure 1.15, we see an example of how we can use the localization landscape to predict the shape of
the fundamental eigenfunctions in each localization region as well as the order in increasing value of the
eigenvalues. One aspect that we have glossed over is how should these sub-regions be defined. While it
is simple enough in 1D, it is actually more complex in 2D or 3D than we have let on. The crestlines of
the effective confining potential are a good first estimate of the borders of the localization sub-regions.
This topic will be explored more thoroughly in the next chapter.

The authors of the study [9] also compared the eigenvalues with the minima of the effective confining
potential and found the relation (1.26). The agreement between the computed eigenvalues and the
approximations obtained from the local minima was calculated to be within 2%. This equation is a
very robust method for estimating the fundamental eigenvalues of Schrödinger operators with random
potentials.
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(a) (b)

Figure 1.16: (a) The 1st, 10th, and 25th eigenvalues and minima of the effective confining
potential for many different realizations of a random potential in 1D, plotted against their
associated local minimum. (b) Similar computation for 2D. Reprinted from [9]

IV.2 Spatial and spectral structures of eigenfunctions

The effective confining potential not only helps predict the localization sub-regions, but also can be used to
construct an Agmon distance ρE which controls the exponential decay of the localized eigenfunctions [11,
3]. For a given energy E, the Agmon distance ρE(~r1, ~r2) between any two points ~r1 and ~r2 is defined as:

ρE(~r1, ~r2) = min
γ

(∫
γ

√
(W (~r)− E)+ds

)
, (1.27)

where (x)+ = max(x, 0), and the minimum is taken over all possible paths that go from ~r1 to ~r2.

An eigenfunction whose peak is centered at ~r0 decays as:

|ψ(~r)| . e−ρE(~r0,~r). (1.28)

According to the inequality (1.28), the decay only occurs when W < E. In Figure 1.17 the eigenfunction
decays mostly in the barriers of W and not in its valleys.

Another important quantity that appears frequently is the integrated density of states, or counting
function, N(E) which is defined as the number of states smaller than the energy E. As the counting
function is difficult to compute, it is possible to obtain its asymptotic behavior using Weyl’s law.

The idea behind Weyl’s law comes from some of the basic principles of Fourier analysis. A function with
a small extension in space necessarily has a large extension in spatial frequency, and vice versa. For
a wave’s Fourier transform to be supported on a single frequency, it must be spread out on the entire
domain. This is the idea behind the uncertainty principle.

Every eigenfunction, due to their orthogonality, occupies a box of size of order one in phase space, i.e.
sets where |x−x0| < δ and |k−k0| < δ−1. Calculating the volume of the subset of phase space where the
energy is less than a certain value E should give the counting function N(E), as this subset should be able
to fit in N(E) boxes of size 1. This especially works asymptotically at high values of energy [74, 19, 37]:

N(E) ≈ 1

(2π)d

∫∫
H(~x,~k)≤E

ddxddk. (1.29)

If one considers a Hamiltonian of the form H = ~2k2

2m + V (x), the double integral reduces to a single
integral in the following way:

NV ≡
1

(2π)d

∫∫
~2k2

2m +V (x)≤E
ddxddk. (1.30)
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(a) (b)

(c) (d)

Figure 1.17: (a) An effective confining potential in 1D. (b) The same effective confining
potential in the background, with the third excited eigenstate in log scale. The horizontal
blue line corresponds to the energy of the eigenfunction. The vertical gray bars correspond
to the wells of W for this state, i.e. the areas where E < W (x). (c) The effective confin-
ing potential in 2D. The boundaries correspond to the crests of the potential, and define
localization regions. (d) The fundamental eigenfunction in log scale. The boundaries of the
effective confining potential are featured as well. Reprinted from [11]

Which gives in 1D:

NV =

√
2m

π~

∫
V (x)≤E

√
(E − V (x))+ dx. (1.31)

As seen before, W operates as an effective potential energy with wells and barriers that delineate the
localization sub-regions of the eigenfunctions. Using the effective confining potential instead of the original
potential considerably improves the approximation given by Weyl’s law [11], as can be seen in Figure 1.18,
even at low energy. At higher energies, both laws are asymptotically equivalent to the integrated density
of states.

We have seen that transforming the eigenvalue equation in order to exhibit the W term reveals another
role of the landscape with many new properties. While, initially, most of these claims were only par-
tially substantiated theoretically and mostly conjectural, many were also proven rigorously in a recent
paper [10].

More recently, an even more powerful relationship between the localization landscape and the counting
function has been unveiled [23]. For a given value E, let us divide the domain into d-cubes (intervals in
1D, squares in 2D, cubes in 3D...) of sidelength 1/

√
E, which is the natural scaling of the Laplacian.
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(a) (b)

Figure 1.18: (a) The counting function (or integrated density of states) of a continuous
1D system with random piecewise constant potential taking values uniformly in [0, 1]. The
actual integrated density of states is displayed in black, the Weyl’s law approximation with
V in dashed blue lines, and the approximation with W in dashed red lines. (b) Similar but
for a boolean potential taking values 0 and 1. Reprinted from [11]

We define the function Nu(E) (which we will call the landscape law counting function) as the number of
d-cubes where the minimum of W in that d-cube is smaller than E. In other words:

Nu(E) ≡
(

number of cubes of size
1√
E

where W ≤ E
)
. (1.32)

This counting function has two important properties. First, throughout the spectrum, the expected value
of the landscape law counting function satisfies a double inequality governing the expected value of the
actual counting function:

C5Nu (C6E) ≤ N(E) ≤ Nu (C4E) , (1.33)

where the constants C5 and C6 depend only on the dimension and on the expectation value of the random
potential, and C4 only on the dimension. The optimal values of these constants are not known at the
moment.

Secondly, the landscape law counting function allows to predict more precisely the behavior of the asymp-
totic scaling of the counting function near 0. In the case of a random piecewise constant potential with
i.i.d variable following the same cumulative distribution function F , we obtain the inequality:

γ3E
d/2F (c̃PE)γ4E

−d/2
≤ N(E) ≤ γ1E

d/2F (cPE)γ2E
−d/2

for E < E∗ (1.34)

where E∗, cP , γ1, and γ2 are constants depending on the dimension and on the expectation value of the
random variable, and c̃P , γ3, and γ4 are constants that only depend on the dimension.

Because of the presence of the cumulative distribution function, this inequality demonstrates the exact
dependence of the Lifshitz tails on the random law. For instance, in the case of a uniform random law
taking values in [0, 1], the inequality gives:

γ3E
d/2eγ4E

−d/2 logE ≤ N(E) ≤ γ1E
d/2eγ2E

−d/2 logE , (1.35)

while for a binary random law taking values 0 or 1 the inequality loses the logarithmic dependence on E
inside the exponent:

γ3E
d/2e−γ4E

−d/2
≤ N(E) ≤ γ1E

d/2e−γ2E
−d/2

. (1.36)
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Once again, the constants involved are not known as of yet, but nonetheless these inequalities provide
the asymptotic behavior of the counting function. Furthermore, if these constants were to be either
determined exactly by theory or approximated numerically, one would get closer to understanding the
fine behavior of the Lifshitz tails.

IV.3 Remaining challenges for the localization landscape theory

The localization of waves is a very general phenomenon that can occur in many various types of systems,
which can be classical or quantum [18, 51, 29, 30, 49]. One of the strengths of the localization landscape
formalism is its adaptability to different equations [21, 30, 53]. One of the only requirements is the presence
of a positive elliptic operator, which are abundant in electrostatics, wave mechanics and continuum
mechanics.

The main question we will attempt to answer in this thesis is: what information does the localization
landscape bring on the spatial and spectral structures of the eigenfunctions in a disordered potential?

These preceding sections have laid the foundation for the topics that this thesis will address:

• How do we accurately and reliably determine the sub-regions that actually host localized eigenfunc-
tions?

• How do we predict the spectrum of the Hamiltonian in a disordered potential, asymptotically (near
0) or not?

• What can be said about the high energy behavior of the eigenstates?

• Finally, we will look at a deterministic example: the Aubry-André model.
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Aubry-André-Harper models. Phys. Rev. Lett., 110(180403), 2013. doi:https://doi.org/10.1103/
PhysRevLett.110.180403.

[35] T. Guhr, A. Müller–Groeling, and H. A. Weidenmüller. Random-matrix theories in quantum
physics: common concepts. Phys. Rep., 299(4):189 – 425, 1998. doi:https://doi.org/10.1016/

S0370-1573(97)00088-4.

[36] D. R. Hofstadter. Energy levels and wave functions of Bloch electrons in rational and irrational
magnetic fields. Phys. Rev. Lett., 14(6), 1976. doi:10.1103/PhysRevB.14.2239.
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Chapter 2

Extracting the spatial structure of
localization

I The sub-regions of localization

One feature of the localization landscape is to provide a deterministic method for approximating the
eigenfunctions and eigenvalues of a given realization of disorder [2, 3, 8, 9]. In these papers, the localization
landscape has been found to define sub-regions where localization occurs. The authors used the valley
lines of the localization landscape to define these sub-regions in two dimensions.

Let us recall the fundamental property of the localization landscape, i.e. |ψ(x)| ≤ E u(x) for a given
eigenfunction ψ of eigenvalue E. For this specific eigenpair, the eigenfunction is only bound in the surfaces
(in 2D) or volumes (in 3D) where u(x) ≤ 1/E (these surfaces or volumes are also called sublevel sets).

(a) (b)

Figure 2.1: Example of a random potential and its localization landscape. (a) The domain
is divided in 20 × 20 elementary square cells. The potential is piecewise constant taking
values according to a uniform random law between 0 and 8000. (b) The localization land-
scape determined from the potential. The valley line network of the localization landscape
delineates the different sub-regions of localization for a certain eigenpair (ψ,E). Reprinted
from [9].

Through the localization landscape inequality, the various eigenfunctions are compelled to be small along
the lines (in 2D) or surfaces (in 3D) where u is locally minimal. These lines or surfaces are defined as
the valleys of the landscape. They form a network that is the basis for understanding the localization
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properties of the operator. Figure 2.1 depicts the valley line network. This network partitions the domain
into disjoint regions, as can be seen in Figure 2.1.

We define N (E) the effective valley network at energy E [8], as the subset of the valley line network (in
2D) where 1/u(x) ≤ E. The effective valley network shows how the valley line network opens up as the
energy increases, as can be seen in Figure 2.2. With increasing energy, the various sub-regions defined by
the network merge. For each eigenpair, there is an associated effective valley network, and thus a specific
partition of the domain consisting in more or less large sub-regions of localization.

Figure 2.2: Representation of the evolving effective valley network for the same localization
landscape as shown in Figure 2.1. 8 eigenfunctions are displayed (numbers 1, 2, 3, 11, 31,
45, 56, and 59). As the eigenvalue increases, the network opens up. Reprinted from [9].

Unfortunately, sub-regions defined this way do not always accurately depict the regions of localization.
The reason for this is that this definition of sub-regions does not consider whether the effective confining
potential is deep enough to host a localized stationary wave. Indeed, if a sub-region defined this way
is very “shallow” (we will clarify and define this notion more precisely later on), we can see that no
eigenfunction can be hosted by such a sub-region.

In this chapter we will first present the algorithm we have developed for determining the localization
sub-regions. To this end, we start by looking at an algorithm that finds the valley line network, called
the watershed algorithm. We then find and implement a criterion that determines whether a sub-region
defined by the valley line network is capable of hosting a localized eigenfunction. Then, we construct a
procedure that merges small sub-regions together so that the newly formed sub-regions may be able to
host localized eigenfunctions. And finally, the last step of our algorithm is to eliminate excess sub-regions
that, even after the merging procedure, are still unable to host a localized eigenfunction.

We will then assess the effectiveness of this new algorithm quantitatively. And finally, we will look at a
real case of the implementation of this algorithm for a complicated domain shape.

In the following we will mainly work with the effective confining potential instead of the localization
landscape. Since W is the reciprocal of u, finding the valley line network of the landscape is the same as
finding the crest line network of the effective confining potential.
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II The watershed algorithm

II.1 The initial watershed

II.1.a Basic principles

The most commonly used algorithm in image processing to segment an image into different parts is the
watershed algorithm [6]. To understand how it works and the reason for this name, the reader should
envision a graphical representation of a function with one variable (y = f(x)). Then, the reader should
imagine a water source flooding each local minimum. When the various pools growing around each
minimum meet, the boundaries define the borders and therefore the sub-regions as well.

For more clarity, here is a one-dimensional example of how the algorithm operates:

• First, the local minima of the function must be identified and labeled differently. In this example,
we use three different colors, red, blue, and green, to label the local minima. These local minima
are the starting points of the sub-regions that are to be constructed (see figure 2.3).

Figure 2.3: Identify and label the local minima.

• Next, the level of water is slowly raised so that all neighboring points with a value of the function
smaller than the ”level of water” are labeled as well. (hence the name, watershed). In practice,
this means going through the neighboring points of the local minima and labeling them the same
way as their local minimum, defining the beginning of a sub-region. We then repeat this process
by considering the neighboring points of the set of points we have just defined (see Figure 2.4c).

• As these differently labeled sets of points increase in size, the points at which the sets meet define
the barriers between the future sub-regions (see figure 2.4e). These points are labeled differently
then the other points so as to mark them as barrier points. In practice, once a point has been
labeled, it cannot be labeled differently.

• Finally, once the algorithm is finished, all of the points of the domain have been labeled. Each set
of points with the same label defines a sub-region. The points that have been labeled as barrier
points separate the different sub-regions. These are also known as border points, or crest points.

In the domain of image processing, there are different methods that can be employed to reduce over-
segmenting, but no method is clearly better than the other. In our case, we have to develop a method in
order to answer the specific problems at hand, i.e. determining the sub-regions of wave localization.

One has two options to reduce over-segmenting. The first method is to reduce the number of sub-regions
identified at the start of the procedure. This can be done in different ways. For example, one can search
for local minima that are minima on larger sets of points. One can also impose a minimal distance
between two different starting points. The easiest way is to manually exclude local minima from the list
of starting points until the resulting partition of the domain looks satisfactory. The second method is to
merge the different sub-regions together depending on a specific criterion at the end of the procedure.
These two methods are not exclusive.
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(a) (b)

(c) (d)

(e)

Figure 2.4: The different steps of the algorithm. (a) First the minima are labeled. (b) Then
the water level is raised. All points under this level are labeled (painted) in the same way as
the neighboring local minimum. (b) As the level rises, sets of points are labeled differently.
(d) When two sets of points meet, they define a barrier between them. (e) The water level
is raised until all the barriers have been defined.

For the purpose of this thesis, we have exclusively studied the merging of the sub-regions, as we had a
physical criterion to do so. Let us first see how a standard watershed algorithm partitions the domain.

II.1.b Results of the basic watershed

In this chapter, we will be studying a 2D system since interesting topological problems arise above (and
including) 2 dimensions. In 1D it is quite trivial to determine local minima and maxima and define
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sub-regions of localization. In dimension larger than 1, the shapes of the sub-regions can become more
complex.

For our simulations, we consider piece-wise L × L = 50 × 50 periodic 2D random potentials with cells
of side-length 1 (see Figure 2.5a). We use two different potentials, the first one following a uniform law
taking values in the interval [0;Vmax], and the second following a Boolean law taking values in {0, Vmax}
with Vmax ∈ {4, 8, 12}. We then compute the landscape using the programming language FreeFem++
[12], via a finite element method. The landscape is approximated on a basis of P1 functions. For the
mesh, we choose as basic elements triangles defined by squares of size h× h = 0.2× 0.2 then divided in
two. The number of degrees of freedom of our system is therefore N = L×L×h−2 = 50×50×25 = 62500.
The potential is represented in Figure 2.5a.

(a)

(b) (c)

Figure 2.5: (a) Example of a potential following a uniform random law taking values in [0, 4].
(b) The effective confining potential of the corresponding potential. (c) The same effective
confining potential with the boundaries computed from the standard watershed algorithm.

We have also imposed periodic boundary conditions in order to avoid boundary effects. The resulting
effective confining potential is shown in Figure 2.5, with the initial result of the watershed algorithm.

At first glance, the resulting partition in Figure 2.6b appears far too segmented. The superimposed
eigenfunctions are clearly localized, but the algorithm does not always properly identify their localization
sub-regions. For instance, in the example above, the first, second, and fourth eigenfunctions lie in their
localization sub-region, while the third and fifth do not. The origin of this problem lies in the small
fluctuations (ripples) of the effective confining potential that can be observed in Figure 2.7, which is a 3D
topographical view of the effective confining potential with the partition of the domain computed from
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(a) (b)

Figure 2.6: (a) The five first eigenfunctions are displayed on top of the network of sub-
regions defined by the watershed algorithm. The coordinates of the maximum of each
consecutive eigenfunction are: {23.8; 26}, {13.6; 16.8}, {10.4; 50.0}, {30.8; 47.8}, {23.2; 41.2}.
Their eigenvalues are respectively: 1.40, 1.41, 1.48, 1.51, 1.55. (b) A close-up look at the fifth
eigenfunction. Its sub-region of localization has clearly been over-segmented into multiple
sub-regions.

Figure 2.7: A 3D view of the effective confining potential and the borders defined by the wa-
tershed algorithm. The arrows point towards the large basins that have been over-segmented
into multiple sub-regions due to small fluctuations and ripples of the effective confining po-
tential.

the watershed algorithm. One observes large basins that should clearly host a localization sub-region,
but they have been over-segmented into many sub-regions.

The next step is to find an effective protocol to merge the initial sub-regions found by the watershed
algorithm.
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II.2 Merging the sub-regions

II.2.a First implementation

We will use the image of a quantum particle in an effective potential to assist us. For a quantum particle
to be trapped in a well of the effective confining potential, its energy must be smaller that the potential
barriers surrounding it. Since the barriers are thick, we assume that tunneling effects can be neglected
at this stage.

How do we express this idea quantitatively? The localization landscape formalism fortunately provides a
good estimate for an eigenfunction’s eigenvalue, dependent on the local minimum of the effective confining
potential in that sub-region [2]:

Ei0 ≈ (1 +
d

4
) min

Ωi
W. (2.1)

Therefore, for a potential well to contain an eigenfunction, the crest points bordering the potential well
must all be larger than the eigenvalue of the fundamental mode of that sub-region, which is equal to
(1 + d

4 ) times the local minimum of the effective confining potential. Mathematically, the condition is:

Ei0 < min
∂Ωi

(W ) ⇒ min
Ωi

(W )×
(

1 +
d

4

)
< min

∂Ωi
(W ) . (2.2)

This condition allows us to formulate a criterion for merging the different sub-regions determined by the
initial watershed algorithm. Figure 2.8 shows an example of a situation where two sub-regions separated
by a small barrier are to be merged.

Figure 2.8: A ripple inside a 1D potential well. The two smaller wells inside the larger are
unable to host an eigenfunction since the potential barrier separating them is too small.

The problem reduces to a graph where only the local minima of each sub-region min
Ωi

(W ) (which correspond

to the nodes) and the minima on the crest along the shared border of the sub-regions min
∂Ωi∩∂Ωj

(W ) (which

correspond to the lines of the graph) are important. An example graph is depicted in Figure 2.9.

One may be tempted to simply merge sub-regions that are too “shallow” to host an eigenfunction with
surrounding sub-regions. However, this approach not only is dependent on the order in which sub-regions
are merged, but also causes small sub-regions to be merged with deep sub-regions that are already capable
of hosting an eigenfunction, i.e. sub-regions where all of its crest points are larger than (1 + d

4 ) times the
local minimum of the effective confining potential. The sub-regions are then much too large compared
to the actual sizes of the localized eigenfunctions. This is the situation portrayed in Figure 2.10.

We therefore require that the condition 2.2 must be verified by both sub-regions in order to merge them
together. The ratio between the lowest crest point on the border between two sub-regions and the local
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Figure 2.9: Example of a graph network for reducing the problem. The nodes correspond
to min

Ωi
(W ) and the lines to min

∂Ωi∩∂Ωj
(W ). The gray lines correspond to the borders between

the sub-regions.

Figure 2.10: A deep 1D potential well bordered by a shallow 1D potential well. As the deep
well is capable of hosting an eigenfunction, these two sub-regions are not to be merged.

minima must be smaller than (1 + d
4 ). This leads to the following criterion:

min
∂Ωi∩∂Ωj

(W )

min
Ωi

(W )
< 1 +

d

4
. (2.3)

Using this principle, we can now devise an algorithm that proceeds through every sub-region, combining
them with their neighbors if need be:

• First, we sort the sub-regions by increasing value of their local minima.

• Next, we create a function that links every pair of neighboring sub-regions to the minimum of their
corresponding mutual border.

• We then iterate through all the sub-regions, comparing them with their neighbors according to
the criterion. If it is met, we combine them, and put the sub-region back into the queue (see
Figure 2.11).

The final result features less sub-regions, with some being very large (see Figure 2.12). The low energy
eigenfunctions are now well contained in this new partition (see Figure 2.13).

The order in which the algorithm merges the sub-regions is important. Indeed, when two sub-regions
are merged, the new local minimum is now defined as the smallest of the two former minima. So the
sub-region with the greatest local minimum which would have been a priori able to merge with other
sub-regions, is unable to merge now that it has been merged with a lower sub-region. See for example
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(a) (b)

(c) (d)

(e) (f)

Figure 2.11: (a) The initial partition of the domain. (b) The first merge occurs at the
sub-region of coordinates: {13.6; 16.8}. (c) The second merge occurs at the sub-region
of coordinates: {23.8; 26}. (d) The third merge occurs at the sub-region of coordinates:
{30.8; 47.8}. (e) The 50th step of the algorithm. (f) The 100th step of the algorithm.

the situation depicted in Figure 2.14. If the middle sub-region labeled 2 is first merged with the right
sub-region labeled 3, it can then be merged with the left sub-region labeled 1. However, if we first merge
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Figure 2.12: The final step of the merging process. The sub-regions are now much larger.

(a) (b)

Figure 2.13: (a) The five first eigenfunctions are displayed on top of the network of sub-
regions defined by the watershed algorithm followed by the merging procedure. The co-
ordinates of the maximum of each consecutive eigenfunction are: {23.8; 26}, {13.6; 16.8},
{10.4; 50.0}, {30.8; 47.8}, {23.2; 41.2}. Their eigenvalues are respectively: 1.40, 1.41, 1.48,
1.51, 1.55. (b) A close-up look at the fifth eigenfunction. The previously defined sub-
regions of localization have been merged into one single sub-region fully encapsulating the
eigenfunction.

the sub-regions 1 and 2, the sub-region 3 will be excluded.

Our goal is to devise an algorithm that accurately predicts the localization sub-regions. For this purpose,
since the most localized eigenfunctions are those of lowest energy, we decided to first merge the sub-
regions with the smallest local minima. This insures that the most confining sub-regions are the most
accurately determined.

II.2.b Refining the merging condition

The merging procedure we just defined (see Figure 2.12) is quite lenient, in that two well defined sub-
regions will be merged if only a single point on their common border dips under the criterion we decided.
We would like to restrict the merging criterion slightly to avoid this situation.
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Figure 2.14: Three potential wells with different depths and different barrier heights sep-
arating them. Comparing them one on one, these wells meet the criterion to be merged.
However, once sub-regions 1 and 2 have been merged, the last barrier separating the two
remaining sub-regions is too high. The order of merging determines the final result.

The basis of the “(1 + d
4 )” condition is that an eigenfunction surrounded by a high enough potential

barrier will be localized inside it. However, this is a classical view while the objects that we are confining
are wave functions. From a wave perspective, we can consider that a wave cannot “escape” a confining
potential through an aperture that is much smaller than its wavelength.

In order to account for this, instead of considering the minimum along a crest line, we consider the
average over a certain number of points of the crest line around this minimum. This average is taken over
a length that corresponds to the localization length of the localized eigenfunctions. For our example, this
corresponds to a distance of 2 on the figures (which amounts to 10 points) and has been determined by
measuring the size of the fundamental eigenfunction of the system. Qualitatively, this partition seems to
produce sub-regions that are closer in size to the localized eigenfunctions that we have shown before (see
Figure 2.15).

Figure 2.15: Result of the merging process while considering the average value of the crest
line between two sub-regions around its minimum.

The low energy eigenfunctions seem to be well contained inside these sub-regions (see Figure 2.13a). Even
as the energies of the eigenfunctions increase and the eigenfunctions start delocalizing on more than one
sub-region, they stay contained inside the boundaries determined by the watershed algorithm.

The parameter governing the distance over which the crest line must be averaged around its minimum
has been determined by computing the lowest energy eigenfunction and measuring its localization length.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.16: The 30 first eigenfunctions are represented 5 at a time. (a) Eigenvalues: 1.40,
1.41, 1.48, 1.51, 1.55. (b) Eigenvalues: 1.59, 1.62, 1.63, 1.64, 1.65. (c) Eigenvalues: 1.66,
1.68, 1.68, 1.70, 1.70. (d) Eigenvalues: 1.71, 1.72, 1.73, 1.74, 1.75. (e) Eigenvalues: 1.75,
1.75, 1.75, 1.78, 1.79. (f) Eigenvalues: 1.79, 1.81, 1.83, 1.84, 1.85.

Admittedly, we would rather not have to resort to computing eigenfunctions for this procedure, however in
this model there is no prediction for the localization length which is not the case for other 2D models [11].
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II.3 Eliminating excess sub-regions

One of the future goals of the localization landscape (that is not the objective of this thesis) is to establish
a transport theory by hopping mechanism between the localization sub-regions. Hopping mechanisms
between impurities is a very common method to model transport in disordered systems [5, 14, 15].

The idea behind this model is that, at low injection, the electrons hop from one localization sub-region to
another when an electric field is applied. The various sub-regions defined by the partition of the domain
form a network of sites upon which the electrons travel. The hopping probability could be defined in
different ways such as depending on the height of the potential barrier separating the sub-regions, or from
the Agmon distance between the sub-regions [4]. Our goal is therefore to define a network of sub-regions
where each one is capable of hosting at least one localized eigenfunction, as in Figure 2.9.

The algorithm we have developed is effective in identifying the sub-regions of localization, but there are
some disturbing features still present (which can be seen in Figure 2.15), namely that the partition defines
tiny spurious sub-regions. These small sub-regions are very unlikely to host a localized eigenfunction as
they are high in energy and the potential barrier surrounding them is low comparatively to their local
minimum.

Figure 2.17: The result of removing the excess sub-regions. Compared to the actual sub-
regions of localization (see Figure 2.13), many of them seem to be excluded although they
host localized eigenfunctions.

We therefore want to eliminate these excess sub-regions from the graph network. In order to do so, for
each node on the graph, we compare the ratio between its local minimum and the minimum of the border
between it and its neighboring sub-regions ( min

∂Ωi∩∂Ωj
(W )) with the criterion (1 + d

4 ) (see Equation (2.3)).

The minimum on a border between two sub-regions is calculated in the same way as before which means
that the average around the minimum is the actual value that is considered.

Unfortunately, this has the effect of removing far too many sub-regions (see Figure 2.17). For instance,
the seventh eigenfunction depicted in Figure 2.16b is clearly localized but its sub-region of localization
has been grayed out by the algorithm.

The criterion must therefore be modified and relaxed to obtain the results we would expect. We consider
three different criteria: the minimum, the average, or the maximum of the minima of the border points.
Regarding the graph network, this corresponds to considering for each node either the minimum, the
average, or the maximum of the links. In Figure 2.18, we have represented the results of the watershed
using the average and the maximum of the links. This new criterion excludes less sub-regions. The
topographic view shows that the sub-regions that have been excluded are those very high in energy that
resemble plateaus.

Compared with the sub-regions occupied by the localized eigenfunctions (see Figure 2.13b), the new
sub-regions match the locations where the eigenfunctions localize (see Figure 2.16). None of the excluded
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(a) (b)

(c) (d)

Figure 2.18: (a) Result of the exclusion process taking the average of the crest minima. (b)
The result of the exclusion process taking the maximum of the crest minima. (c) Result of
the exclusion process taking the average of the crest minima (topographic view). (d) Result
of the exclusion process taking the maximum of the crest minima (topographic view).

sub-regions host any of the lowest energy eigenfunctions. Obviously, at high energy this is not true
anymore as the localization length of the eigenfunctions becomes larger than the domain size. These two
methods produce similar satisfying results. The criterion where we consider only the maximum of the
crest minima excludes less sub-regions, but these extra sub-regions do not seem to be very relevant for
the localization of eigenfunctions.

This concludes the presentation of the watershed algorithm before moving on to a quantitative assessment
of its performance. To summarize, the algorithm starts in a very standard fashion by identifying and
labeling the local minima. These minima define the candidate sub-regions. Then the domain is “flooded”:
points are added incrementally to the existing sub-regions. At the end of the procedure, the initial
watershed lines are drawn. Next, the sub-regions are merged one after another according to the (1 + d

4 )
criterion, so that each final sub-region is capable of hosting an eigenfunction. And finally, some sub-
regions are excluded according to the same criterion and following the same reasoning. This is the
procedure we follow to determine the sub-regions of localization from the effective confining potential.
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III Assessing the effectiveness of the algorithm

This new partition is qualitatively satisfying. We will now devise a way to quantitatively measure how
effective a given partition is in regard to defining the sub-regions of localization. For this analysis, we will
be using all aforementioned parameters (type of mesh, type of potential, etc.). We will vary the potential
strength from 4 to 8 to 12, and use both random uniform and random binary laws.

Ideally, the size of the eigenfunctions should be at most the same size as the sub-regions. The standard
way to measure the size over which the eigenfunction is localized is to use the participation ratio defined
as

PR =

(∫
|ψ|2dx

)2

|Ω|
∫
|ψ|4dx

(2.4)

which we have normalized by the system size. We have:

PR ≈
{

1 delocalized
ξd

Ω localized

Roughly speaking, the PR represents the fraction of the domain that is occupied by the eigenfunction.
Therefore, when multiplied by the system size, it represents the size of the effective support of the
eigenfunction.

We compute the participation ratios of the 50 first eigenfunctions for 10 different realizations of the
random potential, and compare them with the sizes of the sub-regions determined by the watershed
algorithm in Figure 2.19. We compare three different cases: the watershed without the merging procedure
(Figure 2.19a), the full watershed using the average of the crest minima which we will call exclusion
method 1 (Figure 2.19b), and the full watershed using the maximum of the crest minima which we will
call exclusion method 2 (Figure 2.19c). The red line corresponds to the bissector of the plane, i.e., where
the size of the eigenfunctions deduced from the PR are the same size as the sub-regions they are located
in.

Let us first comment on the differences between the figures before and after the merging procedure. While
it may seem that the original watershed produces sub-regions that are more likely to be the same size as
the eigenfunctions, having points under the red curve is not satisfactory. The reason being that we do not
want the algorithm to underestimate the size of the eigenfunctions, since this underestimation reduces the
accuracy of the eigenfunction approximation obtained from the localization landscape (ψi0 ≈ u

‖u‖ [10]).

It is therefore better for the sizes of the sub-regions to be overestimated than underestimated. In that
regard, the process of merging the sub-regions produces better results. The watershed underestimates
the size of the sub-regions 47.8% of the time without the merging procedure, and only 8.8% and 8.2%
with the merging procedures using the average and the maximum of the minima of the crest points
respectively.

Uniform random law Binary random law

Vmax

exclusion exclusion exclusion exclusion
no merging method 1 method 2 no merging method 1 method 2

(average) (maximum) (average) (maximum)
4 47.8% 8.8% 8.2% 12.2% 4.6% 4.6%
8 11.8% 2% 2% 1.2% 0.4% 0.4%
12 3% 0.2% 0.2% 0.4% 0.2% 0.2%

Table 2.1: The percentage of sub-regions underestimated by the different algorithms for
various parameters.

Now comparing the merging procedures between them, the difference is small but significant. Indeed
from Figure 2.19b we can see that the sizes of some sub-regions are evaluated at 0. This happens when
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(a)

(b) (c)

Figure 2.19: Participation ratio of the first 50 eigenfunctions for 10 different realizations
of disorder versus the size of the localization sub-regions determined by: (a) The original
watershed algorithm without merging; (b) The watershed algorithm using the average of
the crest minima to exclude sub-regions; (c) The watershed algorithm using the maximum
of the crest minima to exclude sub-regions. The red line represents the ‘PR=Size’ curve.

a sub-region is excluded although it hosts an eigenfunction. This however does not happen very often,
but is more likely when the strength of the potential is low.

It is apparent that the merging procedure is therefore beneficial in identifying the sub-regions of localiza-
tion. While especially effective at low potential strengths and with a uniform random law, the merging
procedure improves the identification of sub-regions for all sets of parameters.

Another statistical measure of the improvement achieved through the merging procedure is obtained
by computing the norm of the eigenfunction restricted to its sub-region, i.e., the sub-region where the
eigenfunction is maximal. We also call this the restricted norm, ‖ψ‖Ωi . This value tells us what is the
fraction of an eigenfunction present in a given sub-region.

Once again, let us start by comparing the situation between merging and no merging, regardless of the
exclusion procedure. From Figure 2.20, it seems that, on average, the points have migrated upwards
(i.e. that the eigenfunctions occupy a greater portion of their sub-region) between Figure 2.20a and
Figures 2.20b and 2.20c. Especially at low energies, all eigenfunctions end up with a restricted norm
close to 1. For the same reason as before, this is proof that the newly defined sub-regions are larger and
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(a)

(b) (c)

Figure 2.20: The restricted norm of the first 50 eigenfunctions for 10 different realizations of
disorder versus the eigenvalue for: (a) The original watershed algorithm without merging.
(b) The watershed algorithm using the average of the crest minima to exclude sub-regions.
(c) The watershed algorithm using the maximum of the crest minima to exclude sub-regions.

better represent the sub-regions of localization.

Uniform random law Binary random law

Vmax

exclusion exclusion exclusion exclusion
no merging method 1 method 2 no merging method 1 method 2

(average) (maximum) (average) (maximum)
4 0.54 0.73 0.74 0.78 0.85 0.85
8 0.77 0.88 0.88 0.90 0.93 0.93
12 0.84 0.93 0.93 0.92 0.94 0.94

Table 2.2: Average value of the restricted norm of the eigenfunctions for the different algo-
rithms and various values of the parameters.

This observation is confirmed through histogram plots (Figure 2.21) which represent the distribution of
the values of the restricted norm of the eigenfunctions. The difference between merging and not merging
is much clearer here. While the distribution is more or less uniform without the merging procedure,
adding it creates a spike in the distribution towards 1 which is evidence that merging the sub-regions is
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(a)

(b) (c)

Figure 2.21: Histograms of the restricted norm of the first 50 eigenfunctions for 10 different
realizations of disorder. (a) The original watershed algorithm without merging. (b) The
watershed algorithm using the average of the crest minima to exclude sub-regions. (c) The
watershed algorithm using the maximum of the crest minima to exclude sub-regions.

important for the identification of the sub-regions of localization.

Comparing the different merging procedures reveals subtle differences once again. The histograms in
Figure 2.21 and the scatter plots of Figure 2.20 show that a few eigenfunctions have a restricted norm
close to 0 when taking the average of the crest minima when excluding sub-regions. These eigenfunctions
do not have a restricted norm close to 0 when the maximum is taken. However, the data from Table 2.2
show that this improvement between exclusion method 1 and 2 is limited to the case of low potential
strengths and uniform random laws.

The above table also shows the significant improvement brought by the merging procedure, especially at
low potential strengths. We observe that the difference is not as important at higher potential strengths.
These additional features added to the watershed algorithm are expected to be very beneficial in improving
the computation of the localization sub-regions.
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IV A case study: mechanical vibrations in clamped plates

We now present a case where we adapted the watershed algorithm to irregular meshes. This work (which
is the continuation of other studies on the localization of mechanical waves [7, 13]) has been performed in
collaboration with Patrick Sebbah and Kun Tang from Bar Ilan University. Essentially, the system under
study is a metallic plate with geometric irregularities. The plate is set in vibration and the different
vibrational modes are measured. The harmonic solutions can be written as w(x, y, t) = W (x, y) exp(iωt)
where we have separated the spatial and temporal variables. The eigenmodes of vibration Wk satisfy the
equation:

1

α2
∆2Wk = ω2

kWk, (2.5)

where

α =

√
12ρ (1− ν2)

Eh2
, (2.6)

is a constant depending on the the density of the plate ρ, the Poisson ratio of the material ν, the Young
modulus of the material E, and the plate thickness h. ωk is the angular frequency of the vibrations.

Similarly to the quantum case, the eigenmodes become localized with enough disorder, and the sub-
regions of localization are difficult to predict. As can be seen in Figure 2.22, the metallic plate is clamped
in certain places somewhat randomly. The landscape predicts where the eigenmodes localize.

The localization landscape corresponding to the eigenvalue problem (2.5) is the solution of the Dirichlet
problem:

1

α2
∆2u = 1. (2.7)

It is therefore proportional to the out-of-plane static deformation under uniform load (we remind the
reader that the landscape is related to the Green’s function by: u(x, y) =

∫
G(x′, y′, x, y)dxdy), which

makes it easy to measure. More background on the use of the landscape for these sort of systems can be
found in the literature [7, 8, 13].

Figure 2.22: Bottom: Sketch of the metallic plate. The blue segments and points corre-
spond to the areas where the plate is clamped. Top: The associated localization landscape.
Reprinted from [13].

In Tang and Sebbah’s experiment, a metallic plate was randomly clamped in different points. The
computed effective confining potential of this setup can be seen in Figure 2.23. Since the landscape
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Figure 2.23: The effective confining potential calculated from the landscape provided by
Tang and Sebbah. For clarity, values over 100 are removed. This is the picture obtained
using a square mesh to model the system.

Figure 2.24: The watershed partition computed from the above effective confining potential.
The red arrow points towards a border line that is not smooth.

vanishes at the clamped points and on the borders of the domain, the potential W should diverge, but it
is capped at 100 at these points on the figure for the sake of clarity.

From this effective confining potential we wish to determine the sub-regions of localization by using
the watershed algorithm we have developed. One important difference between this wave equation and
the quantum case lies in the relation between the local fundamental mode and the respective local
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minimum of the effective confining potential. Instead of having Ei0 ≈ (1 + d
4 ) min

Ωi
W , this relation is now:

ω0,i ≈ 1.27/
√

min
Ωi

(W ) with ω2
0,i = Ei0 (see Supplementary Material in [13]).

The resulting partition from the watershed algorithm (see Figures 2.24 and 2.25) is a good start, but
improvements could be made. Indeed, one of the problems of using a square mesh is that the lines
delineating different sub-regions must necessarily follow the grid, and so are either straight or jagged.
The red arrow points to a border line that is not smooth, and that does not really follow the gradient of
the curve. This is not the only border line that is problematic. The problem is that the clamped points
are represented as disks on the domain, and the mesh is not fine enough to resolve the curvature of these
disks.

Figure 2.25: The watershed partition superimposed on the landscape. The red arrow points
towards a border line that is not smooth.

The algorithm we have developed was adapted to a grid type mesh, where each point has exactly 2d
neighbors (4 in the case of our 2D system). These types of meshes are the simplest to implement and
work well, required that the geometry of the problem is simple. For instance in the Anderson model, the
lattice is Zd, therefore the distances between neighboring sites remain constant.

This choice however is not always optimal. For example, when studying randomly distributed impurities,
or a solid that does not form a crystal (like a glass), modeling the system by a grid is not possible. In
some cases, using a grid either forces to make approximations or to use a mesh refined to the point that
computation times become unrealistic.

For problems where a regular mesh is not adequate, the finite element method is suitable for any kind of
mesh. The literature on the finite element method is extensive: a good review can be found in the book
by Zienkiewicz, Taylor, and Zhu [1]. Our algorithm was developed for solutions using finite differences
methods, and not finite elements methods. The algorithm, nonetheless, can be well adapted for these
types of problems.

For this problem, we therefore used an adaptive triangular mesh that is finer in areas where more detail is
needed. An example of this can be seen in Figure 2.26. The mesh gets progressively finer the closer it gets
to the clamped points. This is required by the vanishing boundary conditions on the landscape on the
borders of the domain and at the edges of the clamped points and also because the differential equation
is now a fourth order equation instead of a second order one. It then increases over short distances away
from the boundaries and the clamped points. In areas where we know the landscape is constant, or does
not vary much, the mesh becomes larger again, so as to not waste computing power.
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(a) (b)

Figure 2.26: (a) The adaptive mesh of the domain. (b) A close-up look on an area where
the mesh size varies significantly.

We had to adapt the watershed algorithm to work on any type of mesh. The same foundation of the
algorithm can be used. The only crucial difference is how the algorithm evaluates neighboring points.
Beforehand, it was quite straightforward. The neighbors of any point were its adjacent points on the grid.
Now each point has its own set of neighbors defined by the connections between the vertices of the mesh.
The algorithm needs only to consider this when identifying local minima. Every other step is identical.

The result can be observed in Figure 2.27. The lines delineating the sub-regions are no longer straight
and follow the curvature of the landscape better. We superimpose this network with three different modes
(the second, sixth and ninth) in Figure 2.28 in different scales. The “log gradient” portion of the figure
corresponds to the norm of the gradient of the eigenfunction in logarithmic scale. What is remarkable is
the agreement between the network obtained from the algorithm and the lines where the gradient of the
eigenfunction is maximum. These lines correspond to points where the eigenfunction drops off, where the
decay of the eigenfunction is the largest.

This figure also highlights the importance of adapting the mesh to the domain. In this case, the system
has irregularities (the randomly placed clamped points) which makes an irregular mesh more suitable.

In conclusion, the watershed algorithm can now be adapted to irregular meshes obtained from the finite
element method, which is essential for modeling a wider variety of problems.
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(a)

(b)

Figure 2.27: (a) The effective confining potential with the initial watershed partition. (b)
The same effective confining potential with the new watershed partition.
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Figure 2.28: The second, sixth and ninth vibration modes with the effective valley network
obtained from the watershed algorithm. Left: linear scale. Center: logarithmic scale. Right:
the norm of the gradient of the eigenfunctions in logarithmic scale. (Courtesy of Kun Tang.)
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V Conclusion

We have reviewed the workings of the watershed algorithm with the aim of defining the localization
sub-regions as accurately as possible. The main steps of the algorithm are the identification and labeling
of the local minima, the computation of the initial sub-regions, the merging of these sub-regions, and
finally the exclusion of the superfluous sub-regions.

This algorithm is, before anything else, an image processing tool that must be tuned for the task at hand.
For instance, the merging criterion we established can change value depending on what type of system is
being studied (1.5 for 2D Anderson, 1.75 for 3D Anderson, ω0,i ≈ 1.27/

√
maxΩi(u) for 2D pinned plates,

etc.).

Developing a universal method for merging the localization sub-regions for Anderson localization is an
important step in the study of the spatial structure of the eigenfunctions. This has numerous appli-
cations, such as the study of electronic transport by hopping mechanism on a network of localization
sub-regions, the approximation of localized eigenfunctions restricted to the localization sub-regions, or
the computation of the eigenfunctions using iterative methods using the preceding approximation. We
expect this algorithm to participate in future studies of Anderson localized eigenfunctions.
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Chapter 3

Lifshitz Tails

I The Lifshitz tails

I.1 Introduction

In single-particle quantum systems subject to random potential, the Integrated Density of States (IDOS,
or counting function, defined as the number of eigenvalues per unit volume smaller than a given energy
and denoted hereafter as N(E)) departs significantly at low energy from the high energy asymptotic
behavior known as Weyl’s formula. According to the latter, in the absence of any potential, N(E) scales
as Ed/2 where d is the ambient dimension. However, in the presence of a disordered or random potential
the IDOS exhibits a very slowly growing tail at low energy. In 1964, Lifshitz proposed a model based on
scattered impurities where the integrated density of states would drop off exponentially as E approaches
its minimum value E0, forming what is known as a Lifshitz tail [21, 20]:

N(E) ∼ C exp
(
−c(E − E0)−

d
2

)
. (3.1)

Since then, understanding the precise behavior of the density of states in the presence of disorder has
been the subject of a very rich literature (for an extended review on the topic, the reader can refer
to [19, 28, 15, 13, 18]). The existence of Lifshitz tails for the Poisson random potential was proved in
[5, 9, 24, 27]. Later Kirsch and Martinelli gave a proof close to Lifshitz’s intuition for a large class of
random potentials in the continuous setting in [14], while Simon generalized the argument to the tight
binding model [30]. These are only a few isolated results and we do not aim to provide an exhaustive list
of the literature. It is important to mention however that there exist exact asymptotic results on Lifshitz
tails for specific models [30, 23, 6, 18]. Nonetheless, we are still lacking a general understanding for all
models, and the only mathematical statement that could be rigorously proven in full generality does not
have the form of Eq. (3.1) but rather the weaker form:

lim
E→E0

ln(|ln(N(E))|)
ln(E − E0)

= −d
2

. (3.2)

These results are asymptotic in the limit of vanishing E − E0. Away from the asymptotic behavior at
low energy, Klopp and Elgart showed that in the weak disorder limit these Lifshitz tails extend roughly
up to the average of the potential [16, 17, 10]. To this day, many unsolved questions remain concerning
these Lifshitz tails: (i) Can one improve the known results by deriving a general estimate on ln(N(E))
and not on ln(|ln(N(E))|)? (ii) If so, how does disorder enter the estimate? For instance, can one
quantify existing results showing logarithmic corrections for random uniform disorder as compared to
binary disorder [25, 29]? (iii) Can one derive precise estimate for the full spectrum instead of asymptotic
near the lower bound of the spectrum?

In this article, we present a new function, denoted by Nu(E) and called Landscape Law [8], that provides
the first estimates from above and below of the actual counting function throughout the spectrum. This
function is obtained from the localization landscape, a theoretical tool introduced in 2012 and developed
in the recent years [12, 3]. Not only do these estimates cover the entire range of energy for any type of
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potential or disorder in continuous models, but they also provide the asymptotic behavior of ln(N(E))
at low energy for random uniform or binary disorder, thus removing a log from the previously known
results. In particular, they recover the logarithmic correction in the case of the uniform Anderson model.
We investigate numerically the optimal constants involved in the bounds, and observe their similarity
for both binary and uniform Anderson models. Finally, we test whether these mathematically proven
bounds from above and below could in fact be merged into one single approximate formula based on Nu,
thus providing a very fast and efficient way of predicting the behavior of the IDOS on the entire spectrum
even in a random or complicated system.

I.2 Numerical Model

We consider a d-dimensional tight-binding model. The corresponding Hamiltonian is

Ĥ =
∑
i

Via
†
iai − t

∑
〈i,j〉

(
a†iaj + h.c.

)
, (3.3)

where 〈i, j〉 denotes the sum over nearest neighbors, t is the hopping term, Vi is the on-site random

potential (on a grid of lattice parameter 1), and a†i and ai are the creation and annihilation operators,
respectively. From now on, t will be taken equal to 1, thus setting the energy scale. The Vi are i.i.d. vari-
ables and follow a random law which can be either uniform or binary in [0, Vmax]. The localization
landscape u in this system is defined as the solution to Ĥu = 1, the right-hand side being the constant
vector. In order to ensure that the landscape is positive everywhere, the potential V is uplifted by a
quantity 2d, where d is the embedding dimension. Consequently, the lowest bound E0 of the spectrum in
all subsequent examples is E0 = 0 and the spectrum lies in the interval [0, Vmax + 4d]. It has been shown
in [22] that the function W ≡ 1/u defines an effective potential for all quantum states in the tight-binding
model, and that this potential provides a remarkably accurate estimate of the energy of the lower-energy
states.

Using this effective potential, the function Nu(E) is defined as follows: for a given energy E, we partition
the entire domain into d-cubes (intervals in 1D, squares in 2D,. . . ) of side length E−1/2. Nu(E) is then
defined as the fraction of such cubes for which the minimum of W over the cube is smaller than E:

Nu(E) ≡ 1

|Ω|
×
(

number of cubes of size
1√
E

where min(W ) ≤ E
)
. (3.4)

For the continuous model, it has been mathematically proven in [8] that there exist constants C4, C5, C6

such that Nu satisfies the following inequalities:

C5Nu (C6E) ≤ N(E) ≤ Nu (C4E) , (3.5)

where N(E) is the IDOS per unit volume. The constants C5 and C6 depend only on the dimension d and
on the average of the potential, and C4 depends only on the dimension. When the potential is random,
this inequality is verified for the expectations of the IDOS (note that these expectations become finite
deterministic quantities in the limit of an infinite domain). To our knowledge, these inequalities are the
first universal bounds for the counting function N(E) of a Schrödinger Hamiltonian throughout the entire
spectrum. In other words, unlike Weyl’s formula or Lifshitz tails, they are not asymptotic. The proof
is rather technical and is based on the analysis of the low values of the effective potential W . A sketch
of the proof is given in Supplementary Material. We are currently preparing a version of this proof for
discrete tight-binding models [4].

An example of the sharpness and the predictive power of this inequality is provided in Fig. 3.1 which
displays the actual IDOS N(E) (blue) and the landscape law Nu(E) (red) for one realization of a random
i.i.d. binary disorder with periodic boundary conditions. The potential can take the values either 0 or
Vmax = 1 with equal probability on each site of a one-dimensional domain of N = 105 sites. N(E) is
computed using the LDLT factorization and Sylvester’s law of inertia [26]. One can see how the two
curves, plotted on a log-log scale, follow each other very closely. On this log-log plot, the upper and lower
bounds of (3.5) would correspond simply to horizontal and vertical translations of the graph of Nu(E).
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Figure 3.1: Counting functionN(E) (blue) and landscape lawNu(E) (red) for one realization
of a one-dimensional binary Anderson tight-binding model. The number of sites is N = 105

and the values of the on-site potential are either 0 or 1.

While Ref. [8] proves the existence of constants C4, C5, C6 fulfilling (3.5), it does not bring any insight
on their sharpest values. Indeed, strictly speaking, [8] gives a “tube” containing the IDOS (in log-log
plot), and while it is remarkable that the tube diameter does not depend on the energy, it could be
quite wide if the constants are very different. The goal of this study is threefold: first, to demonstrate
the accuracy of the Landscape Law in approximating the actual IDOS. Secondly, we indicate how to
determine numerically the sharpest values for the constants entering the bounds in (3.5). This is of
particular relevance for C4 which is predicted to be universal, i.e., to depend only on the dimension d and
not on the particular potential. Thirdly, we assess the possibility to provide an optimal approximation
to the IDOS N(E) (rather than a tube), i.e., to find a constant C5,fit such that N(E) ≈ C5,fitNu(C6E).

II Sharpest values

One starts with the same system as in Fig. 3.1, but this time N(E) is averaged over 1000 realizations.
Figure 3.2a displays the corresponding N(E) and Nu(E) together with their standard deviations repre-
sented as error bars (the bottom bars are not displayed when they are larger than the value itself, i.e.,
when they cross the horizontal axis). In order to determine the constants C4, C5, C6, we first restrict our
study to the domain E > 0.02 to avoid the noise at very low energy. We observe that the graph of Nu(E)
is always above the graph of N(E), which means that C4 < 1. This fact derives from the definition of
Nu, and we will discuss it further down. The value of the constant C4 corresponds in log-log scale to the
largest possible right-shift of the graph of Nu (or in other words to the smallest possible value of C) such
that N(E) ≤ Nu(CE). Here, this value is found to be C4 ≈ 0.79 (or 1/C4 ≈ 1.26). To find the values
of C5 and C6, we first look for the optimal value C such that N(E)/Nu(CE) is as constant as possible.
This is achieved by taking the minimum of the standard deviation of ln(N(E)/Nu(CE)) when varying
C. Figure 3.2b displays this standard deviation for values of C ranging from 0.5 to 1. One observe a
clear minimum at C6 ≈ 0.90 (or 1/C6 ≈ 1.11). Finally the minimum of the graph of N(E)/Nu(C6E)
provides us the sharpest value of C5 (see Fig. 3.2c): it is here C5 ≈ 0.18. However, one can observe
that if we were looking for a best fit for C5 (instead of a lower bound for (3.5)), then the best fit would
be closer to C5,fit ≈ 1/4.08 (obtained by computing the average of ln(N(E)/Nu(C6E)) for E > 0.02).
With these constants, the agreement between the actual IDOS and the rescaled formula based on the
localization landscape is excellent throughout the computed spectrum (see Fig. 3.2d). This means that
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the inequalities in (3.5) can almost be transformed into an equality:

N(E) ≈ C5,fitNu(C6E) . (3.6)

The same methodology is then applied to one-dimensional uniform Anderson tight-binding model (N =
105), and to two-dimensional binary and uniform Anderson tight-binding models. Figure 3.3 displays the
results for a uniform Anderson model of disorder amplitude Vmax = 1. Here also, we observe that the
landscape law Nu(E) follows very closely the actual IDOS N(E). After computation, the value found
for C4 in this case is C4 ≈ 0.78 = 1/1.28. Further analysis of the standard deviation of the values of
Nu(CE)/N(E) as a function of C (see Fig. 3.3b) yields C6 ≈ 0.84 = 1/1.19. Plotting now Nu(C6E)/N(E)
as a function of E (Fig. 3.3c), one observes that it oscillates slowly between 3 and 5 in the noiseless part
of the graph. A possible choice for C5 is then C5 = 1/4.85, but the best fit is obtained for C5,fit = 1/3.94,
as confirmed in Fig. 3.3d.

(a) (b)

(c) (d)

Figure 3.2: (a) N(E) (blue) averaged over 1000 random realizations, and averaged landscape
law Nu(E) (red), for a one-dimensional binary Anderson tight-binding model of size N = 105

and Vmax = 1. The error bars show the standard deviation over the 1000 realizations
(the bottom bars are not displayed when they are larger than the value itself, i.e., when
they cross the horizontal axis). (b) Standard deviation of the distribution of values of
ln(Nu(CE)/N(E)) for various values of C. The minimum around C = 0.90 ≈ 1/1.11
provides the value of C6. (c) Plot of Nu(C6E)/N(E). The maximum shows that one can
take C5 = 1/5.45. A best fit for N(E) is obtained by taking the average value C5,fit ≈ 1/4.08.
(d) Final comparison between the original N(E) (blue), the best fit C5,fit Nu(C6E) (dashed
red), and the two bounds from above of below in Eq. (3.5) Nu(C4E) and C5Nu(C6E)
(dotted lines). Note that the best fit is so close to the actual IDOS that the blue line is
almost invisible.

In order to check the validity of our approach, we have investigated the role of the domain size for
these one-dimensional Hamiltonians (we could not run such a study in 2D because the computation time
did not allow us to explore a large enough range of domain sizes). Domain sizes N = 103, 104, and
105 were simulated, for both Anderson binary and Anderson uniform models. We also tested several
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(a) (b)

(c) (d)

Figure 3.3: (a) N(E) (blue) averaged over 1000 random realizations, and averaged landscape
law Nu(E) (red), for a one-dimensional uniform Anderson tight-binding model of size N =
105 and Vmax = 1. (b) Standard deviation of the distribution of values of ln(Nu(CE)/N(E))
for various values of C. The minimum around C = 0.84 ≈ 1/1.19 provides the value of C6.
(c) Plot of Nu(C6E)/N(E). The maximum shows that one can take C5 = 1/4.85. A best
fit for N(E) is obtained by taking the average value C5,fit ≈ 1/3.94. (d) Final comparison
between the original N(E) (blue), the best fit C5,fit Nu(C6E) (dashed red), and the two
bounds from above of below Nu(C4E) and C5Nu(C6E) (dotted lines).

values of the potential amplitude, Vmax = 1, 2, and 4. For instance, Fig. 3.4 displays the analysis of the
Anderson uniform model for Vmax = 4. Once again, one can observe that the fit is excellent throughout
the spectrum, justifying looking for constants that satisfy Eq. (3.6) (see Table 3.1 for the summary of
these results).

We then turned our study of two-dimensional systems. The considered domain is a square of side length
L = 1500 which corresponds to N = 2.25 × 106 sites. Given that this system size is more than 10
times the size of the studied one-dimensional systems, we could average only over 100 realizations for
computational reasons. The fact that the side length of the system has been reduced by three orders
of magnitude when going from 1D to 2D shifted considerably the lower bound of the energy range that
could be explored. In the following simulations, we were unable to go below Emin ≈ 0.2.

Figure 3.5 displays the analysis for a 2D binary Anderson model. The constants extracted from the
analysis are C4 = 1/1.53, C5,fit = 1/14.5, C6 = 1/1.42. The agreement between N(E) and the rescaled
landscape law is still good in the whole energy range, even though one can see now that the ratio
Nu(C6E)/N(E) oscillates much more than in the one-dimensional case (see Fig. 3.2c). This observation
is even more marked in the case of the 2D uniform Anderson case (see Fig. 3.6). One can observe that
the upper and lower bounds are significantly apart in this case, especially at larger energy. This reflects
the fact that the prefactor of Nu(E) has to be different at low and at high energy in order to approximate
N(E) accurately.

Table 3.1 summarizes the values obtained for the constants in all cases. For the three one-dimensional
cases displayed in Figs 3.2-3.4, we performed an error bar analysis by splitting the 1000 realizations into
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(a) (b)

(c) (d)

Figure 3.4: (a) N(E) (blue) averaged over 1000 random realizations, and averaged landscape
law Nu(E) (red), for a one-dimensional uniform Anderson tight-binding model of size N =
105 and Vmax = 4. (b) Standard deviation of the distribution of values of ln(Nu(CE)/N(E))
for various values of C. The minimum around C = 0.82 ≈ 1/1.22 provides the value of
C6. (c) Plot of Nu(C6E)/N(E). The maximum in the noiseless part of the graph shows
that one can take C5 = 1/2.77. A best fit for N(E) is obtained by taking the average
value C5,fit ≈ 1/2.23. (d) Final comparison between the original N(E) (blue), the best
fit C5,fitNu(C6E) (dashed red), and the two bounds from above of below Nu(C4E) and
C5Nu(C6E) (dotted lines).

20 samples of 50 realizations, and computing the constants separately for each sample. The numbers to
the right of the symbol ± correspond to twice the standard deviation.

This table triggers several comments. First, the values of the constants C4, C5, C5,fit, C6 do not seem to
depend at all on the domain size (for the same potential law). For instance, for Vmax = 1 and a binary
disorder, the values of C−1

4 are 1.26, 1.27, 1.26, for L = 105, 104, 103, respectively, while for the same
Vmax and a uniform disorder the corresponding values are 1.28, 1.28, and 1.27. Similarly, the values of
C−1

6 are 1.11, 1.1, 1.08 for the same domain sizes for a binary disorder and 1.19, 1.18, and 1.16 for a
uniform disorder. The values of C−1

5,fit are 4.08, 4.15, 4.27 for a binary disorder, and 3.94, 4.05, 4.29 for a

uniform disorder. Finally, the values of C−1
5 are 5.45, 8.18, 5.96 for the binary disorder and 4.85, 7.81,

8.86 for a uniform disorder. These last values are slightly more dispersed, and the reason is that they are
determined by the maxima of the curves in frames (c) (Figs 3.2-3.6) which depend on the accuracy of
the data in the lower part of the spectrum. This dispersion justifies looking for the values of C5,fit which
are much more reliable than the ones of C5.

Secondly, the values of 1/C4 are quite close to the value 1 + d/4, where d is the ambient dimension. This
value arises in the localization landscape approach as the ratio between a local fundamental eigenvalue
inside a localization region and the local minimum of the effective potential W = 1/u [2, 1]. From the
definition of Nu(E), at a given energy E, a d-cube of side length E−1/2 contributes to Nu(E) only if
min(W ) inside the cube is smaller than E. In that situation, one would expect a local fundamental
eigenvalue roughly at (1 + d/4)Wmin. Consequently, there is a natural multiplicative shift in energy
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Figure 3.5: (a) N(E) (blue) averaged over 100 random realizations, and averaged landscape
law Nu(E) (red), for a two-dimensional binary Anderson tight-binding model of size N =
(1500)2. (b) Standard deviation of the distribution of values of ln(Nu(CE)/N(E)) for various
values of C. The minimum around C = 0.7 ≈ 1/1.42 provides the value of C6. (c) Plot of
Nu(C6E)/N(E). Its maximum for E > 0.3 shows that one can take C5 = 1/66.4 which is
also almost the best fit C5,fit ≈ 1/14.8. (d) Final comparison between the original N(E)
(blue), the best fit C5,fit Nu(C6E) (dashed red), and the two bounds from above of below
Nu(C4E) and C5Nu(C6E) (dotted lines).

between N(E) and Nu(E), by a factor 1 + d/4. This is what is found in our 1D and 2D simulations.
One has to note that this shift has already been observed in a very different model, namely the “pieces
model” in which a one-dimensional system is partitioned into sub-intervals of random length following a
Poisson law [7, 11].

Thirdly, the values of C6 follow rather closely those of C4, being only slightly larger (C−1
6 < C−1

4 ). We
observe that the values of C6 are closer to those of C4 for Anderson uniform models.

Fourthly, the results displayed in Table 3.1 help us understand the influence of the disorder strength Vmax.
To that end, we have set Vmax = 1, 2, or 4 for Anderson binary and Anderson uniform models in 1D and
2D. The theory developed in [8] states that the constants involved in the bounds and which depend on the
potential, should in fact not depend of its maximum value but rather on its average value. However, in
both Anderson binary and Anderson uniform models, the average value of the potential is 〈V 〉 = Vmax/2,
so it is still directly determined by the disorder strength. In all computed cases, we observe that the
values of C4 and C6 remain almost unchanged while the value of C5,fit appears to be roughly proportional

to V
1/2
max, which is a natural scaling in the problem at hand.
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Figure 3.6: (a) N(E) (blue) averaged over 100 random realizations, and averaged landscape
law Nu(E) (red), for a two-dimensional uniform Anderson tight-binding model of size N =
(1500)2. (b) Standard deviation of the distribution of values of ln(Nu(CE)/N(E)) for various
values of C. The minimum around C = 0.76 ≈ 1/1.31 provides the value of C6. (c) Plot of
Nu(C6E)/N(E). Its maximum for E > 0.4 shows that one can take C5 = 1/298 while the
best fit leads to C5,fit ≈ 1/23.5. (d) Final comparison between the original N(E) (blue),
the best fit C5,fit Nu(C6E) (dashed red), and the two bounds from above of below Nu(C4E)
and C5Nu(C6E) (dotted lines).

Model L Vmax 1/C4 1/C5 1/C5,fit 1/C6

1D

binary
105

1 1.26 5.45 4.08 1.11

2 1.3 3.78 3.03 1.2

4 1.26 2.91 2.04 1.32

104

1
1.27 8.18 4.15 1.1

103 1.26 5.96 4.27 1.08

uniform
105

1 1.28 4.85 3.94 1.19

2 1.24 8.14 3.36 1.19

4 1.24 2.77 2.23 1.22

104

1
1.28 7.81 4.05 1.18

103 1.27 8.86 4.29 1.16

2D
binary

1500

1 1.53 46.4 14.5 1.42

2 1.54 33.8 9.00 1.44

uniform
1 1.39 111 20.1 1.31

2 1.47 3.34 1.62 1.48

Table 3.2: Summary of the values found for the constants C4, C5, C5,fit, and C6. L is the
sidelength (so that the system size is |Ω| = Ld), and Vmax is the maximum value of the
potential.
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Model L Vmax 1/C4 1/C5 1/C5,fit 1/C6

1D

bin.
105

1 1.26±0.05 5.45 ± 5 4.08 ± 0.15 1.11 ± 0.02

2 1.3 3.78 3.03 1.2

4 1.26 2.91 2.04 1.32

104

1
1.27 8.18 4.15 1.1

103 1.26 5.96 4.27 1.08

uni.
105

1 1.28±0.02 4.85±4.3 3.94±0.2 1.19±0.02

2 1.24 8.14 3.36 1.19

4 1.24±0.03 2.77±1.2 2.23±0.05 1.22±0.01

104

1
1.28 7.81 4.05 1.18

103 1.27 8.86 4.29 1.16

2D
bin.

1500

1 1.53 66.4 14.8 1.42

2 1.54 33.8 9.00 1.44

uni.
1 1.39 298 23.5 1.31

2 1.47 4.64 1.83 1.48

Table 3.1: Summary of the values found for the constants C4, C5, C5,fit, and C6. The
Anderson models are one- or two-dimensional, with binary or uniform random laws. L is
the side length (so that the system size is |Ω| = Ld), and Vmax is the disorder strength.
For the 3 cases presented in Figs 3.2-3.4, error bars were computed. The numbers displayed
after the ± symbol correspond to two standard deviations. The 2D computations performed
were with too few realizations to derive meaningful statistics.

III Low energy scaling law

One can mention an alternative way of relating N(E) and Nu(E) at the bottom of the spectrum, and
therefore of extracting the constants involved in Eq. (3.6). This consists of using a corollary of the
Landscape Law pertaining to the scaling at low energies for all random i.i.d. potentials. In Ref. [8], it
is shown that, in the case of an Anderson tight-binding model where the on-site potential values {Vi}
follow a random law of cumulative distribution function F (i.e., the probability to have Vi ≤ E is F (E)),
there exist constants γ1, γ2, γ3, γ4, c1, c2 such that

γ3F (c2E)
γ4E

− d
2 ≤ N(E)

E
d
2

≤ γ1F (c1E)
γ2E

− d
2
. (3.7)

More specifically, in the case of binary and uniform random laws, one has F (E) = 1/2 and F (E) = E
for 0 < E < 1, respectively. Therefore, with a slight change of the meaning of γ4,

γ3 e
γ4E

− d
2 ≤ N(E)E−

d
2 ≤ γ1 e

γ2E
− d

2 , (3.8)

γ3e
γ4E

− d
2 | ln(E)| ≤ N(E)E−

d
2 ≤ γ1e

γ2E
− d

2 | ln(E)| . (3.9)

Let us consider the binary Anderson model. The inequality (3.8) can be rewritten as

γ4 + ln(γ3)E
d
2 ≤ E d

2 ln
(
N(E)E−

d
2

)
≤ γ2 + ln(γ1)E

d
2 . (3.10)

In other words, the quantity E
d
2 ln

(
N(E)E−

d
2

)
can be bounded between two affine functions of E

d
2 . In
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the uniform Anderson model, a similar expression holds with a logarithmic correction:

γ4 + ln(γ3)
E
d
2

| ln(E)|
≤ E

d
2

| ln(E)|
ln
(
N(E)E−

d
2

)
≤ γ2 + ln(γ1)

E
d
2

| ln(E)|
. (3.11)

Figure 3.7 displays the graphs of these quantities near E = 0 in three different cases already examined:
(i) a 1D binary Anderson model (cf. Fig. 3.2), (ii) a 1D uniform Anderson model (cf. Fig. 3.3), and (iii)
a 2D uniform Anderson model (cf. Fig. 3.6). In each case, the values of γ1, γ2, γ3, γ4 are extracted from
the scaling behavior of N(E) and Nu(E) (the linear scaling relations expressed in Eqs. (3.10) and (3.11)
are shown in dotted lines in the graphs), and then used to compute the effective values of C5 and C6

relating N to Nu. The findings are grouped in Table 3.3. One has to underline that the huge computation
time required to reach very low values of E limited the accuracy and the range of the data on which
the scaling behavior could be efficiently be tested, and led to significant error bars. It precluded us from
performing this analysis in the 2D uniform Anderson model. Even in the 2D binary Anderson model
(Fig. 3.7c), the scaling is observed for a very limited range of energies. Yet, we observe in 1D the scaling
predicted by the mathematical proof in [8] (see Fig. 3.7a,b). The parameters C5 and C6 are consistent
with the values reported in Table 3.1, confirming that Nu can be used through Eq. (3.6) to approximate
N(E) throughout the spectrum. Finally, in 2D (Fig. 3.7c), the discrepancy in the values of C5 clearly
indicates that one cannot find a single prefactor satisfying Eq. (3.6), and that this prefactor has in fact
to be modified into a very slowly varying function from E = 0 to the largest eigenvalue.

(a) (b)

(c)

Figure 3.7: Scaling behavior of N(E) and Nu(E) near E = 0. The straight lines correspond
to the asymptotic linear behaviors appearing in Eqs. (3.10) and (3.11). (a) 1D binary
Anderson model. (b) 1D uniform Anderson model. (c) 2D binary Anderson model.

The general picture that emerges from this exhaustive numerical study is that Nu(E) follows very closely
the behavior of the actual IDOS N(E) throughout the entire energy range while being at the same time
much easier to compute and to handle. Although it is not always possible to approximate N(E) through
one single expression such as Eq. 3.6, one can wonder whether we could obtain a very good estimate with
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Table I scaling

Model Vmax 1/C5,fit 1/C6 1/C5 1/C6

1D
binary 1 4.08 1.11 2.55 1.2

uniform 1 3.95 1.19 4.05 1.44

2D binary 1 14.5 1.42 0.84 1.62

Table 3.3: Comparisons between the constants C5,fit and C6 from Table 3.1 and the constants
C5 and C6 obtained from the scaling analysis near E = 0.

almost universal constants. First, we remind that the values found for the constant C6 are all very close
to 1/(1 + d/4), for a reason expressed in [1]. A natural universal approximation for N(E), without any
fitting parameter, could thus be proportional to Nu (E/(1 + d/4)). To test this hypothesis, we plot the
ratio N(E)/Nu (E/(1 + d/4)) vs. E for all cases reported in Table 3.1, see Fig. 3.8.

We observe that in 1D, all curves for all tested potentials (binary or Anderson models, different disorder
strengths, different system sizes) follow the same pattern, i.e., a slow evolution from a value close to 2 at
low energy to a value close to 4 at larger energy. In 2D, the structure is similar with a wider dynamics,
from about 1 to about 16. This means that while the IDOS N(E) spans several orders of magnitude
(about 6 to 10 in our examples), the function Nu(E/(1+d/4)) remains always remarkably close to N(E).
The prefactor appears to be different in the low and high energy regime, although it seems within reach,
at least in 1D, to derive a very slowly varying function of the energy that would account for this change of
prefactor. This change of prefactor between the low and the high energy regimes can be understood. One
knows that, at least in the continuous setting, N(E)/Nu(E) is equivalent to ωd/(2π)d at higher energy
(so independent of the potential), with ωd the volume of the unit ball in dimension d. Therefore, as soon
as E > Vmax, all cubes satisfy the condition in Eq. (3.4) and Nu(E) = Ed/2. On the other hand, in the
low energy limit, one expects N(E) to behave as Nu(E/(1 + d/4)) which implies a different prefactor
depending on the type of potential.

(a) (b)

Figure 3.8: Ratio Nu (E/(1 + d/4)) /N(E) plotted as a function of the energy E. (Top) For
all 1D models reported in Table 3.1. (Bottom) The same plot for all 2D models reported in
Table 3.1.

IV Conclusion

In conclusion, we have presented here a new function called the Landscape Law which, for the first time,
provides bounds from above and below for the integrated density of states of quantum systems on the
entire spectrum. This Landscape Law, derived from the localization landscape, is not only much faster to
compute than the entire IDOS especially in random or disordered systems, but it also captures the scaling
behavior of Anderson models near the bottom of the spectrum in full generality, for instance accounting
for the logarithmic correction distinguishing the binary and uniform Anderson models. In one dimension,
the bounds are so close that a single formula approximates the IDOS throughout the entire spectrum,
with only a prefactor C5 and a multiplicative shift on the energy C6 (consistent with the “1 + d/4”
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formula found in [1]). In two dimensions, the bounds still provide a satisfactory approximation to the
IDOS, but they cannot be merged into a single formula. Instead, one needs to adjust the prefactor from
the bottom to the top of the spectrum. In summary, the Landscape Law promises to be a remarkable
tool for investigating the properties of IDOS in many random or disordered potentials, with or without
spatial correlations, not only theoretically but also numerically. In particular, it opens the perspective of
assessing accurately the density of states in systems of very large sizes without having to compute any
eigenvalues.

This concludes our study on the properties of the localization landscape on the low energy portion of the
spectrum, which started in Chapter 2 where we focused on the information the localization landscape
gives on the spatial structure of the eigenfunctions, and ended in this chapter which was focused on the
spectral structure. We now move on to the higher energy behavior of the eigenfunctions as we try to
understand the reasons for localization when the effective potential no longer confines the eigenfunctions.
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Chapter 4

High Energy Localization

I Introduction

In the preceding chapters, we have focused on the properties of the low energy eigenfunctions. This
is because, in the localization landscape formalism, the effective confining potential gives an almost
classical interpretation of the energy of the localized eigenfunctions at the bottom of the spectrum.
These eigenfunctions correspond to localized modes in a given sub-region through the equation (1.23)
which we recall here [3, 4, 5, 12, 13]:

〈ψ|Ĥ|ψ〉 =

〈
u∇
(
ψ

u

)∣∣∣∣u∇(ψu
)〉

+ 〈ψ|Ŵ |ψ〉 . (4.1)

The energy is almost contained in the effective potential term for low-energy eigenfunctions. However,
under certain conditions, namely in 1D and 2D for Anderson-like potentials, the eigenfunctions remain
localized at higher energies. On the contrary, in 3D, depending on the amplitude of disorder, a local-
ization/delocalization transition might exist (Anderson transition). In that situation, the eigenfunctions
delocalize above a certain energy threshold, also called the mobility edge. Although scaling theory has
been used to show the existence of this mobility edge [1], there is as of yet no theory that predicts an-
alytically this threshold, nor the critical exponents that govern the divergence of the localization length
in the vicinity of the threshold.

In this chapter, we explore the high energy localization through the lens of the localization landscape
approach. Below is the reduced eigen-equation (1.22) which is obtained by the conjugaison operation of
the Hamiltonian ( 1

u Ĥ u):

− 1

u2
∇·

(
u2∇φ

)
+Wφ = Eφ, (4.2)

where ψ ≡ uφ. Obviously, the localization of ψ is equivalent to the localization of φ. The second
term of the left-hand side is the aforementioned effective potential term responsible for the low-energy
localization, while the first term of the left-hand side can be understood as a Laplace-Beltrami operator.

Previously, we have ignored the effects of the first term on the localization of the eigenfunctions, arguing
that this first term corresponds to an effective kinetic energy while the second term corresponds to an
effective potential energy. For the study of the high-energy localization, we will this time do the opposite:
ignore the potential term (since at high enough energies it can be neglected) and look at the localization
properties of the eigenfunctions of the newly defined operator.

We will from now investigate the properties of the equation (which we will call the reduced equation):

− 1

u2
∇·

(
u2∇φ

)
= Eφ. (4.3)

(4.3) defines a spectral problem. In this chapter we will study the properties of these eigenfunctions
and their level statistics for 1D, 2D and 3D systems in order to observe the localization/delocalization
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transition. We will use the finite element method for the numerical computations. Once again we will
rely on the PETSc and SLEPc libraries for C++ [9, 8, 19, 31].

II The one-dimensional case: absence of transition and small
localization lengths

We will start by studying the one-dimensional case where the most results are known. Indeed, in tight-
binding models transfer matrix and perturbation methods have shown that localization occurs no matter
the potential strength and have also provided an expression for the localization length [20, 21, 24, 33].

II.1 Study of the eigenfunctions and their localization length

The goal of this first part is to assess the eigenfunctions’ localization at high energies whether we consider
the original or the reduced equation.

The domain size is 10,000 and the discretization is such that there are 10 points per unit length, which
means that there are a total of 100,000 points in the mesh. The potential is piece-wise constant on each
interval of length 1 and its values follow a uniform random law taking values in [0, 1] . In Figure 4.1, we
see the change in the eigenfunctions of the original equation as the energy increases. They are always
localized but their localization length increases. As can be seen in the right column where the figures are
zoomed in on intervals of size 200, the eigenfunctions’ effective support increases as their energy increases.
In Figure 4.2, we display the change in the properties of the eigenfunctions at different energies. This
time, at very small energies, the eigenfunctions are delocalized completely. They then localize sharply as
the energy increases. Beyond that, they remain localized, but with a localization length that increases
with energy.

Figure 4.1: Three eigenfunctions (in black) with the effective confining potential (in blue).
The graphs of the eigenfunctions are centered vertically on their energy with respect to the
effective confining potential. In the top row we have displayed the entire domain, while the
bottom row is a zoomed in view (constant interval of size 200). Left: E = 0.215. Center:
E = 0.758. Right: E = 1.04.
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(a) (b) (c)

(d) (e) (f)

Figure 4.2: Six eigenfunctions (in black) with the effective confining potential (in blue).
The graphs of the eigenfunctions are centered vertically on their energy with respect to the
effective confining potential. (a) E = 3 · 10−6. (b) E = 1.89 · 10−4. (c) E = 7.63 · 10−4. (d)
E = 3.07 · 10−3. (e) E = 0.740. (f) E = 1.04.

These few examples seem to indicate that the eigenfunctions of the reduced equations are all localized
above a small energy and have a localization length that increases with their energy.

Computing the localization length can be tricky. It is defined as the rate of the exponential decay of
the envelope of the localized wave functions: ψ(r) ∼ e−|r/ξ|. While the eigenfunction in Figure 4.2c has
a clearly defined exponentially decaying envelope, the eigenfunction in Figure 4.2d has secondary peaks
which makes this computation difficult.

In order to overcome this difficulty, we use the participation ratio, defined as:

PRn =

(∫
|ψn|2dx

)2

|Ω|
∫
|ψn|4dx

, (4.4)

which we have normalized by the system size.

We now compute the participation ratio of all eigenfunctions at the bottom of the spectrum for various
parameters of our problem (dimensions, strength of potential, original or reduced equation). For the
purpose of this analysis (and for all other analyses in this chapter) we limit ourselves in our computations
to at most the 10% first eigenfunctions, as the numerical results for the rest have much larger errors [34].

We have calculated the participation ratio for all eigenfunctions from E = 0 to E ≈ 25 (Figure 4.3).
Figures 4.3a and 4.3b correspond to the original and reduced equations, respectively, with Vmax = 1. We
now have confirmation of what we observed in Figures 4.1 and 4.2: the low-energy eigenfunctions are
localized, and their localization lengths increase with energy (the participation ratio increases with the
localization length). The very first eigenfunctions, in the case of the reduced equation, are delocalized at
very low energies as can be seen in Figure 4.4. This equation can be rewritten as:

− 1

u2
∇·

(
u2∇φ

)
= Eφ. (4.5)

⇔ −∆φ−
(
∇ log u2

)
·∇φ = Eφ (4.6)

73



(a) (b)

(c) (d)

Figure 4.3: The PR of all eigenfunctions from E = 0 to around E = 25 for different
parameters. (a) Original equation and Vmax = 1. (b) Reduced equation and Vmax = 1. (c)
Original equation and Vmax = 4. (d) Reduced equation and Vmax = 4.

There is an immediate obvious solution to equation 4.6 which is the constant solution of eigenvalue 0. This
solution is the most delocalized function that can exist, and has an PR of the order of 1. According to
their PRs (Figures 4.3b and 4.3d), the eigenfunctions then transition from delocalized states to localized
states very rapidly (for energies of the order of 10−3).

(a) (b)

Figure 4.4: The PR of all eigenfunctions from E = 0 to E = 0.01 of the reduced equation
for (a) Vmax = 1 and (b) Vmax = 4.

There is a particularity in Figure 4.3 we want to stress here. It is more obvious in Figure 4.3c and 4.3d,
but there is a drop in the participation ratio around E = 10. This would seem to indicate that the
eigenfunctions localize once again at a certain energy. Figure 4.5 shows the behavior of the eigenfunctions
near this anomalous energy. We can see from these figures that indeed the localization length of these
eigenfunctions decreases with increasing energy at this particular range. As of yet we have been unable
to explain this phenomenon. We cannot exclude numerical errors, but this behavior has been consistently
reproduced over our simulations.

Finally, in Figure 4.6, we have represented a condensed version of our data on the PRs. We calculated
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the PRs for 7 different potential strengths and for 5 different realizations of disorder. Then, we computed
the average of the PRs of the eigenfunctions of energy in intervals of size 0.01. Regardless of the potential
strength and of the type of equation (original or reduced), the PRs remain low, which suggests that
the eigenfunctions are localized. The PRs increase with E/Vmax, since the localization length of the
eigenfunctions increases with their energy.

(a) (b) (c)

(d) (e) (f)

Figure 4.5: Sample eigenfunctions of both the original and reduced equation for Vmax = 4
(top row: original equation; bottom row: reduced equation). (a) Original equation: E =
11.57. (b) Original equation: E = 11.81. (c) Original equation: E = 12.01. (d) Reduced
equation: E = 9.99. (e) Reduced equation: E = 10.04. (f) Reduced equation: E = 10.09.

(a) (b)

Figure 4.6: The PR of the (a) original and (b) reduced equations for Vmax = 0.5, 1, 2, 4, 6, 8,
and 10. We compare eigenfunctions of same reduced energy E/Vmax. Each point is the
average of the PRs of all eigenfunctions whose energy are in the same interval of size 0.01
and for 5 different realizations of disorder.
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II.2 The distribution of the energy spacings and their ratios: characterizing the localizing phase

II.2.a Energy spacings

Our conjecture is this: removing the effective confining potential term in the Anderson equation does not
change the localization properties of the eigenfunctions in 1D. To test this assumption, we now explore
the statistics of the eigenvalues, as previously explained in Chapter 1. We recall that one possible way to
test the onset of localization or delocalization is through the distribution of the energy spacings by fitting
the computed distribution with the Poisson and Wigner distributions [2, 18, 32, 10] or of their ratios by
comparing the average of these distributions with the known averages [7, 11, 17, 27].

We use mostly the same data as for the calculation of the participation ratios. We compute all the
eigenvalues in a certain interval, and then calculate the differences of the subsequent eigenvalues: sn =
En − En−1. These are the energy spacings. We then divide these spacings by their average δ = 〈s〉 to
normalize the distribution.

There are many different types of distributions the energy spacings can follow. We will focus mainly
here on two, the first one being the Poisson distribution: PP (s) = 1

δ exp
(
− sδ
)
, which is characterized

by no repulsion between subsequent levels (since the most probable value for the difference between
subsequent levels is 0). The Poisson distribution therefore corresponds to localized eigenfunctions, since
they do not “interact” with each other. Conversely, the Wigner distribution, PGOE(s) = π

2 s exp
(
−π4 s

2
)

is characterized by repulsion between the subsequent eigenvalues. This distribution is therefore linked to
delocalized eigenfunctions.

We compute these distributions for the original and the reduced equations for various values of the
potential strength. After computing these statistics, we fit them with either the Poisson distribution or
the Wigner distribution by calculating the coefficient of determination R2. We also compare the average
spacing δ for each parameter.

The statistics of the eigenfunctions for the 1D equation are displayed in Figure 4.7.
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(a) (b)

(c) (d)

Figure 4.7: Statistics of the energy spacings (in blue bars) of about 10,000 eigenfunctions
starting at the beginning of the spectrum for different potential strengths. We have also
displayed the exact Poisson distribution in red. A summary of the values of δ and R2 is
displayed in Table 4.1. (a) Original equation and Vmax = 1. (b) Reduced equation and
Vmax = 1. (c) Original equation and Vmax = 4. (d) Reduced equation and Vmax = 4.

Given the first eigenfunctions for the reduced equations are always delocalized, we have excluded them
from our analysis, so as to not mix different types of eigenfunctions together. We have therefore excluded
the 1000 first eigenvalues for the reduced equation.

The results from Figure 4.7 and Table 4.1 are quite clear, all of these statistics fit the Poisson distribution,
with the smallest R2 = 0.9792. Interestingly, the average spacing δ increases with the potential strength
for the original equation, stays quite constant for the reduced equation.

(a) (b)

Figure 4.8: The values found for δ and R2 for the various potential strengths
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Original Reduced

Vmax δ R2 δ R2

0.5 5.2 10−4 1.00 6.9 10−4 0.970

1 5.5 10−4 0.988 7.0 10−4 0.996

2 6.4 10−4 0.989 7.1 10−4 0.988

4 8.4 10−4 0.988 7.3 10−4 0.983

6 1.1 10−3 0.987 7.4 10−4 0.980

8 1.3 10−3 0.983 7.6 10−4 0.978

10 1.5 10−3 0.980 7.8 10−4 0.969

Table 4.1: Summary of the values found for δ and R2.

II.2.b The energy spacings ratios

The problem with the definition of the energy spacings is that the average δ = 〈s〉 is supposed to
represent the “local” average gap, which is difficult to determine when considering a very large range of
eigenvalues [27]. To overcome this challenge, we define the energy spacings ratios as:

rn = min (sn, sn+1)/max (sn, sn+1). (4.7)

The distribution of the ratios differ from the distributions of the spacings. For localized eigenfunctions the
distribution is: Pl(r) = 2/(1+r)2 with support [0, 1] and its average is 〈r〉P = 2 ln 2−1 ≈ 0.386 [7, 6]. The
distribution of the ratios for delocalized eigenstates is not known analytically although it does resemble
the Wigner distribution mentioned before. We do know the numerical value for the average of the ratios:
〈r〉 ≈ 0.5295.
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(a) (b)

(c) (d)

Figure 4.9: Statistics of the energy spacings ratios (in blue bars) of about 5,000 eigenfunc-
tions starting at the beginning of the spectrum for different potential strengths. We have
also displayed the exact 2/(1 + r)2 distribution in red. A summary of the values of 〈r〉 and
R2 is displayed in Table 4.2. (a) Original equation and Vmax = 1. (b) Reduced equation
and Vmax = 1. (c) Original equation and Vmax = 4. (d) Reduced equation and Vmax = 4.

(a) (b)

Figure 4.10: The values found for 〈r〉 and R2 for the various potential strengths

We have repeated the same analysis as in subsection II.2.a but this time considering the energy spacings
ratios. In Figure 4.9 we have displayed the histograms of these ratios for both the original and reduced
equations for Vmax = 1 and 4. A summary of the values computed for 〈r〉 and R2 is shown in Figure 4.10
and Table 4.2. These results are similar to the results for the analysis of the spacings, but not as conclusive
for the low potential strength case. Indeed, for Vmax = 0.5, the fit is not accurate, and the values of 〈r〉
are far off from the exact value of 0.383. For potential strengths greater than 0.5 however, the coefficients
of determination are all close to 1, and the values of 〈r〉 are off by at most 2%. Evidently for potential
strengths that are too weak, the eigenstates appear delocalized because of finite size effects: the domain
is too small compared to their localization length. We have once again further evidence that in 1D, the
eigenfunctions of the original and reduced equations are all localized (barring the first few eigenfunctions
of the reduced equation).
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Original Reduced

Vmax 〈r〉 R2 〈r〉 R2

0.5 0.425 0.612 0.424 0.396

1 0.383 0.993 0.400 0.931

2 0.399 0.965 0.384 0.973

4 0.389 0.975 0.391 0.967

6 0.387 0.972 0.386 0.978

8 0.384 0.976 0.380 0.966

10 0.380 0.974 0.389 0.983

Table 4.2: Summary of the values found for 〈r〉 and R2.

To summarize the results of this section, we have shown first qualitative evidence and then quantitative
evidence that in 1D, both the original and reduced eigen-equations have localized eigenstates. We have
done the former by observing the spatial distribution of the eigenfunctions, and the latter by computing
the PRs of the eigenfunctions as a surrogate for the localization length, and by studying the distributions
of both the energy spacings and their ratios.

III The two-dimensional case

In two dimensions, the scaling theory suggests that there is no localization/delocalization transition, and
that all the eigenfunctions remain localized [1, 14, 23]. However, there is no explicit formula for the
localization length except for a few specific cases [15, 16]. We do know that it increases exponentially
with the mean free path [22]. However, for computational reasons, it is much more difficult to compute
in domains of large side-length. It is however possible to compensate this by increasing the potential
strength.

In this section we reiterate the analysis already performed in the 1D case. We will start by looking
qualitatively at the eigenfunctions, followed by a more quantitative approach where we will compute the
PRs and the distributions of the energy spacings and their ratios.

III.1 Study of the eigenfunctions and their localization length

Our objective here is to show visually that the eigenfunctions of both the original and reduced equations
are localized throughout the spectrum. We chose a domain size of L2 = 100 × 100 and a mesh size of
0.2 × 0.2 for a total of 250,000 degrees of freedom. The potential is piece-wise constant on each square
of side-length 1 and its values follow a uniform random law taking values in [0, 100]. We have increased
the potential strength compared to the 1D case since our domain is smaller and we therefore require the
eigenfunctions to be more localized.

In Figure 4.11, as in the 1D case, we see the change in the eigenfunctions of the original equation as the
energy increases. They are always localized but their localization length increases. In Figure 4.12, we
display 4 eigenfunctions of the reduced equation. As in the one-dimensional case, at very small energies,
the eigenfunctions are delocalized completely. They then localized sharply as the energy increases. Beyond
that, they remain localized, but with an increasing localization length.

We have shown qualitative evidence that the eigenfunctions of both the original and reduced equations
remain localized throughout the spectrum, but we would like quantitative evidence. In the same fashion
as in the preceding section, we will use the participation ratio as a surrogate to study the localization
length, as it is even more difficult to compute in the 2D case than in the 1D case.

Figure 4.14 summarizes our results. Each point represents the average PR of all eigenfunctions in an
energy interval of size 0.01 around E. We would like to explore higher potential strengths, however, the
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(a) (b) (c)

(d) (e) (f)

Figure 4.11: (a) The effective confining potential for a piece-wise. The other frames display
sample eigenfunctions. (b) E = 7.53. (c) E = 11.8. (d) E = 20.7. (e) E = 54.8. (f)
E = 75.0.

(a) (b) (c)

Figure 4.12: Sample eigenfunctions of the reduced equation. (a) E = 0.00157. (b) E =
0.00638. (c) E = 0.0494.

(a) (b) (c)

Figure 4.13: Sample eigenfunctions of the reduced equations in log scale. (a) E = 0.834.
(b) E = 2.49. (c) E = 4.25.

amount of eigenfunctions that needs to be computed in order to reach eigenfunctions of energy Vmax is
much larger than for lower potential strengths. Indeed, the eigenvalues are included in an interval that
depends on the potential strength and the mesh size. The eigenvalues of a 2D tight-binding system with
random potential are found in the interval [−4t, 4t+ Vmax] where t is the hopping term and if we assume
a positive potential. If t is fixed, increasing the potential strength increases the number of eigenvalues
that are in the interval [0, Vmax]. T By analogy with this tight-binding system, the same phenomenon is
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happening in our 2D continuous problem, where the mesh size plays the role of the hopping term. We are
reaching the maximum amount of eigenfunctions we can compute using this computational method [34].
The solution would be to use higher order finite elements or to use a finer mesh, but this increases the
computation times too much.

The results we have in Figure 4.14 are not very conclusive. For the original equation, the eigenfunctions
start out localized, and their PR (and therefore their localization length) increases before reaching an
upper limit due to the finite size of the domain. For the reduced equation, the data suggest that local-
ization lengths of the eigenfunctions are comparable to the size of the domain (because their PRs are of
the order of 1).

(a) (b)

Figure 4.14: PR of the (a) original and (b) reduced equations for Vmax = 1, 5, and 10. We
compare eigenfunctions of same reduced energy E/Vmax. Each point is the average of the
PRs of all the eigenfunctions whose energy are in the same interval of size 0.01.

III.2 The distribution of the energy spacings and their ratios

We analyze now the distribution of the energy spacings and their ratios as already explained in the
previous section. The goal here is to investigate the localization properties of the eigenfunctions for large
enough potential strength.

III.2.a The energy spacings

The statistics of the spacings of the eigenvalues for the 2D equation are displayed in Figures 4.15 and 4.17.
In Figure 4.15 we have computed the spacings of the first 10,000 eigenvalues (skipping the first 1,000
for the reduced equation) for both the original and reduced equations and for Vmax = 1, 10, and 100.
Figure 4.16 and Table 4.3 summarize the results for δ, R2

P (which is the coefficient of determination
with respect to the Poisson distribution), and R2

W (which is the coefficient of determination with respect
to the Wigner distribution). As expected for the original equation, as the potential strength increases,
the Poisson distribution becomes a better and better fit for the data (the coefficient of determination
increases). For the reduced equation, we observe a similar but slower trend. The problem is that we

(a) (b)
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(c) (d)

(e) (f)

Figure 4.15: Statistics of the energy spacing of the first 10,000 eigenvalues (in blue bars) for
different parameters. We have also displayed the exact Poisson or Wigner distribution in
red. (a) Original equation and Vmax = 1. (b) Reduced equation and Vmax = 1. (c) Original
equation and Vmax = 10. (d) Reduced equation and Vmax = 10. (e) Original equation and
Vmax = 100. (f) Reduced equation and Vmax = 100.

are considering a large amount of eigenvalues. It is possible that only the very first eigenfunctions are
localized with a localization length smaller than the domain size. The other eigenfunctions therefore
appear delocalized and carry the spectral signature of delocalization.

In Figure 4.17, we have displayed the same distributions of the spacings with the same parameters,
only this time we have only considered the first 1000 eigenvalues (once again skipping the 1000 first
for the reduced equation). This way we keep only the most localized eigenfunctions. Figure 4.18 and
Table 4.4 summarizes the results for δ, R2

P , and R2
W . The trend is now much clearer. With increasing

potential strength, the fit of the data by the Poisson distribution improves (the coefficient of determination
increases), regardless of the equation type (original or reduced) although this transition occurs at a lower
potential strength for the original equation compared to the reduced equation (around Vmax = 10 for the
former, and Vmax = 100 for the latter). This suggests that in 2D, the eigenfunctions of both the original
and reduced equations are localized.

(a)
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(b) (c)

Figure 4.16: The values found for δ and R2 for the various potential strengths. (a) Aver-
age energy spacing δ for both the original and the reduced equation, against the potential
strength. (b) R2 for the original equation. The arrow points at the potential strength where
the curves cross, which indicates a transition. (c) R2 for the reduced equation. The arrow
points at the potential strength where the curves cross, which indicates a transition.

Original Reduced

Vmax δ R2
P R2

W δ R2
P R2

W

1 1.3 10−3 0.626 0.963 1.3 10−3 0.663 0.919

5 1.4 10−3 0.562 0.991 1.3 10−3 0.531 0.997

10 1.6 10−3 0.644 0.960 1.4 10−3 0.516 0.997

20 2.0 10−3 0.776 0.834 1.4 10−3 0.521 0.995

30 2.4 10−3 0.841 0.721 1.4 10−3 0.543 0.996

40 2.8 10−3 0.915 0.622 1.5 10−3 0.582 0.990

50 3.2 10−3 0.960 0.506 1.5 10−3 0.594 0.986

60 3.5 10−3 0.972 0.420 1.5 10−3 0.601 0.984

70 3.9 10−3 0.976 0.382 1.5 10−3 0.622 0.977

80 4.2 10−3 0.973 0.357 1.5 10−3 0.639 0.969

90 4.5 10−3 0.969 0.337 1.6 10−3 0.645 0.970

100 4.8 10−3 0.970 0.341 1.6 10−3 0.665 0.959

500 1.3 10−2 0.970 0.332 1.7 10−3 0.781 0.882

1000 2.0 10−2 0.975 0.347 1.7 10−3 0.825 0.855

Table 4.3: Summary of the values found for δ and R2.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.17: Statistics of the energy spacing of the first 1,000 eigenvalues (in blue bars) for
different parameters. We have also displayed the exact Poisson or Wigner distribution in
red. (a) Original equation and Vmax = 1. (b) Reduced equation and Vmax = 1. (c) Original
equation and Vmax = 10. (d) Reduced equation and Vmax = 10. (e) Original equation and
Vmax = 100. (f) Reduced equation and Vmax = 100.

(a)
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(b) (c)

Figure 4.18: The values found for δ and R2 for the various potential strengths when only
considering the 1,000 first eigenvalues. (a) Average energy spacing δ for both the original and
the reduced equation, against the potential strength. (b) R2 for the original equation. The
arrow points at the potential strength where the curves cross, which indicates a transition.
(c) R2 for the reduced equation. The arrow points at the potential strength where the curves
cross, which indicates a transition.

Original Reduced

Vmax δ R2
P R2

W δ R2
P R2

W

1 1.3 10−3 0.509 0.966 1.3 10−3 0.588 0.965

5 2.0 10−3 0.783 0.759 1.3 10−3 0.508 0.987

10 3.2 10−3 0.956 0.421 1.4 10−3 0.519 0.974

20 5.0 10−3 0.946 0.352 1.5 10−3 0.508 0.979

30 6.5 10−3 0.923 0.294 1.5 10−3 0.642 0.936

40 7.8 10−3 0.927 0.300 1.6 10−3 0.747 0.845

50 8.9 10−3 0.945 0.315 1.6 10−3 0.792 0.858

60 9.9 10−3 0.918 0.232 1.6 10−3 0.873 0.743

70 1.1 10−2 0.939 0.293 1.6 10−3 0.905 0.641

80 1.2 10−2 0.937 0.289 1.6 10−3 0.919 0.574

90 1.3 10−2 0.963 0.339 1.6 10−3 0.927 0.628

100 1.4 10−2 0.959 0.345 1.7 10−3 0.955 0.552

500 3.9 10−2 0.967 0.314 1.7 10−3 0.980 0.496

1000 5.6 10−2 0.949 0.333 1.7 10−3 0.977 0.508

Table 4.4: Summary of the values found for δ and R2 when considering only the first 1,000
eigenvalues.
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III.2.b Energy spacings ratios

In a similar fashion as in the preceding section, we now study the energy spacings ratios. We use the
same data and compute the ratios from the spacings, and compare the average value of the ratios 〈r〉
with the two characteristic values for the localized and delocalized phases (0.383 and 0.5295).

(a) (b)

(c) (d)

(e) (f)

Figure 4.19: Statistics of the energy spacing ratios of the first 10,000 eigenvalues (in blue
bars) for different parameters. We have also displayed the 2/(1+r)2 distribution in red when
appropriate. (a) Original equation and Vmax = 1. (b) Reduced equation and Vmax = 1. (c)
Original equation and Vmax = 10. (d) Reduced equation and Vmax = 10. (e) Original
equation and Vmax = 100. (f) Reduced equation and Vmax = 100.

Figure 4.19 shows the distribution of the ratios for a few selected potential strengths (Vmax = 1, 10, and
100) and for both the original and reduced equations. Figure 4.20 summarizes the values of 〈r〉 we have
found. The trend is the same as for the distribution of the spacings: the average of the ratios gets closer
and closer to 0.383 as Vmax increases for the original equation.

In summary, in this section we have shown (albeit less conclusively than in the 1D case) that the eigen-
functions of the reduced equation are also localized, although their localization length is greater than
that of the eigenfunctions of the original equation. This evidence is less conclusive because localization
lengths of 2D localized eigenfunctions increase quickly with the energy of the eigenfunctions, and we can
only work with limited domain sizes.
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Figure 4.20: The values found for 〈r〉 and R2 for the various potential strengths.

IV The three-dimensional case: the localization-delocalization
transition

We now move on to three-dimensional systems. For Anderson-type potentials, these systems are known
to undergo a localization/delocalization transition at a threshold called the mobility edge [1, 25, 26].
Our question for this section is this: does the reduced equation also exhibit a phase transition between
localized and delocalized states?

We first proceed qualitatively in the same way as before by looking at the spatial distribution of the
eigenfunctions. We then move on to more quantitative tools. We do not use the participation ratios,
as they do not tell us much for the same reasons they were unhelpful in 2D. We will instead rely on
the distributions of the energy spacings and their ratios to distinguish localized from delocalized phases.
Finally we implement a new tool called finite-size scaling analysis which enables us to identify a possible
localization-delocalization transition for the eigenfunctions of the reduced equation.

IV.1 Spatial structure of the eigenfunctions

We start our investigation by representing the spatial distributions of sample eigenfunctions of both the
original and reduced equations.

The domain size is L3 = 20×20×20 and the mesh size is 0.2×0.2×0.2 for a total of 1,000,000 degrees of
freedom. The potential follows a uniform random law taking values in [0, 100]. In Figure 4.21, we see the
change in the eigenfunctions of the unmodifed equation as the energy increases. They start out localized
but become more and more delocalized. This is the behavior we would expect in an infinitely-sized
system.

In Figure 4.22, we have displayed sample low, medium and high energy eigenfunctions of the reduced
equation for a potential following a uniform random law taking values in [0, 100]. All three eigenfunctions
are delocalized in the entire domain, even though the potential strength is high. We will now move on the

(a) (b)
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(c) (d)

(e) (f)

Figure 4.21: The following figures are 3D representations of the eigenfunctions ((a), (c), and
(e)) and of the effective confining potential ((b), (d), and (f)) for a potential following a
uniform random law taking values in [0, 100]. These functions are represented on slices of
the total domain, one slice parallel to the Oxy plane, another parallel to the Oyz plane, and
the last parallel to the Oxz plane. The point at the intersection of these slices is chosen to
be the maximum of the represented eigenfunction (on the left). We then display on the right
the effective confining potential with the same slices. The eigenvalues are: (a) E = 11.7; (c)
E = 20.8; (e) E = 100.0.

(a) (b)

the study of the spectral structure of the eigenfunctions for a more quantitative measure of how localized
the eigenfunctions are.
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(c) (d)

(e) (f)

Figure 4.22: The following figures are 3D representations of the eigenfunctions ((a), (c),
and (e)) and of the effective confining potential ((b), (d), and (f)) for a potential following a
uniform random law taking values in [0, 100]. These functions are represented on slices of the
total domain, one slice parallel to the Oxy plane, another parallel to the Oyz plane, and the
last parallel to the Oxz plane. The point at the intersection of these slices is chosen to be the
maximum of the represented eigenfunction (on the left). We then display on the right the
effective confining potential with the same slices. The eigenvalues are: (a) E = 6.9× 10−2;
(c) E = 10.0; (e): E = 100.0.

IV.2 Distribution of the energy spacings and their ratios

As mentioned at the beginning of this section, we will not attempt to study the localization lengths by
computing the PRs, since it would require us to compute too high energy eigenfunctions with therefore
a large error. Instead we will move on directly to the study of the distributions of the spacings and their
ratios.

IV.2.a The energy spacings

We start our analysis in the same way as before: we compare the distributions of the energy spacings for
the first 10,000 eigenvalues of both the original and reduced equations. In Figure 4.23 we have displayed
a few examples of the computed distributions. Figure 4.24 and Table 4.5 summarize our results. Looking
at the progression of both R2

P and R2
W as the potential strength increases, we see that in the case of

the original equation, the distributions shift from Poisson-like behavior to Wigner-like behavior. On the
contrary, the distributions of the spacings of the eigenfunctions of the reduced equation do not evolve
and remain Wigner-like.

Once again, in Figure 4.25, we have displayed the same distributions of the spacings with the same
parameters, only this time we have only considered the first 1000 eigenvalues (once again skipping the
1000 first for the reduced equation). Figure 4.26 and Table 4.6 summarize the results for δ, R2

P , and R2
W .
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The trend is the same as in the preceding table, and indicates that over a certain potential strength the
eigenfunctions of the original equation transition to delocalized to localized states. This change is not
observable for the eigenfunctions of the reduced equation.

(a) (b)

(c) (d)

(e) (f)

Figure 4.23: Statistics of the energy spacing of the first 10,000 eigenvalues (in blue bars)
for different parameters. We have also displayed the exact Poisson or Wigner distribution
in red. (a) Original equation and Vmax = 10. (b) Reduced equation and Vmax = 10. (c)
Original equation and Vmax = 100. (d) Reduced equation and Vmax = 100. (e) Original
equation and Vmax = 1000. (f) Reduced equation and Vmax = 100.

(a)
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(b) (c)

Figure 4.24: The values found for δ and R2 for the various potential strengths. (a) Aver-
age energy spacing δ for both the original and the reduced equation, against the potential
strength. (b) R2 for the original equation. The arrow points at the potential strength where
the curves cross, which indicates a transition. (c) R2 for the reduced equation.

Original Reduced

Vmax δ R2
P R2

W δ R2
P R2

W

1 1.9 10−3 0.785 0.589 1.7 10−3 0.766 0.599

5 2.0 10−3 0.623 0.957 1.7 10−3 0.604 0.978

10 2.1 10−3 0.634 0.942 1.7 10−3 0.565 0.992

50 3.3 10−3 0.743 0.743 1.8 10−3 0.574 0.987

100 4.7 10−3 0.759 0.636 1.9 10−3 0.586 0.979

500 1.2 10−2 0.943 0.283 2.0 10−3 0.630 0.946

1000 1.7 10−2 0.943 0.281 2.1 10−3 0.646 0.922

Table 4.5: Summary of the values found for δ and R2.

(a) (b)

(c) (d)
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(e) (f)

Figure 4.25: Statistics of the energy spacing of the first 1000 eigenvalues (in blue bars) for
different parameters. We have also displayed the exact Poisson or Wigner distribution in
red. (a) Original equation and Vmax = 10. (b) Reduced equation and Vmax = 10. (c)
Original equation and Vmax = 100. (d) Reduced equation and Vmax = 100. (e) Original
equation and Vmax = 1000. (f) Reduced equation and Vmax = 1000.

(a)

(b) (c)

Figure 4.26: The values found for δ and R2 for the various potential strengths. (a) δ. (b)
R2 for the original equation. The arrow points at the potential strength where the curves
cross, which indicates a transition. (c) R2 for the reduced equation.
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Original Reduced

Vmax δ R2
P R2

W δ R2
P R2

W

1 3.8 10−3 0.706 0.453 2.3 10−3 0.579 0.971

5 4.0 10−3 0.605 0.837 2.4 10−3 0.508 0.987

10 4.6 10−3 0.668 0.912 2.4 10−3 0.514 0.993

50 1.1 10−2 0.930 0.390 2.7 10−3 0.506 0.973

100 1.7 10−2 0.938 0.286 3.0 10−3 0.512 0.980

500 4.2 10−2 0.939 0.286 3.4 10−3 0.525 0.972

1000 5.9 10−2 0.919 0.260 3.4 10−3 0.546 0.877

Table 4.6: Summary of the values found for δ and R2.

IV.2.b The energy spacings ratios

We have reiterated the analysis of the energy spacings conducted before but this time computing the
energy spacings ratios. We consider the exact same parameters. The results, which are summarized in
Figure 4.27 and in Figure 4.28 are much more conclusive than for those for the energy spacings. Indeed,
we can clearly see that the average value 〈r〉 of the energy spacings ratios of the eigenvalues of the original
equation remains at around 0.53 (which corresponds to delocalized eigenstates) before dropping to around
0.38 (which corresponds to localized eigenstates) for potential strengths above 50. Additionally, for the
reduced equation, this average value 〈r〉 does not vary significantly and stays are around 0.53, which
corresponds to delocalized eigenstates. This suggests that the eigenfunctions of the reduced equation
remain delocalized regardless of the potential strength.

(a) (b)

(c) (d)
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(e) (f)

Figure 4.27: Statistics of the energy spacing ratios of the first 10000 eigenvalues (in blue
bars) for different parameters. We have also displayed the 2/(1+r)2 distribution in red when
appropriate. (a) Original equation and Vmax = 10. (b) Reduced equation and Vmax = 10.
(c) Original equation and Vmax = 100. (d) Reduced equation and Vmax = 100. (e) Original
equation and Vmax = 1000. (f) Reduced equation and Vmax = 1000.

Figure 4.28: The values found for 〈r〉 and R2 for the various potential strengths

Original Reduced

Vmax 〈r〉 〈r〉

1 0.494 0.487

5 0.529 0.524

10 0.530 0.531

50 0.517 0.530

100 0.503 0.532

500 0.396 0.530

1000 0.387 0.529

Table 4.7: Summary of the values found for 〈r〉.

IV.3 Highlighting the transition: finite-size scaling analysis

In the previous subsections, we have observed through various numerical simulations that in 3D for strong
enough random potentials, the eigenfunctions of the original equation are localized under a certain energy,
and delocalized over it, while the eigenfunctions of the reduced equation are all delocalized. The issue
with this analysis is that we have not shown whether the eigenfunctions of the reduced equation are truly
delocalized, or if they are just localized with a very large localization length.

To examine more closely the possible delocalization/localization transition, we implement a finite-size
scaling procedure [11, 28, 29, 30]. We start this analysis by computing an eigenfunction ψ close to a
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certain energy E. We then cut up the domain in boxes of size `3. There are (L/`)3 ≡ λ−3 such boxes.
We then compute the probability of finding ψ in each box k:

µk =
∑
i∈k
|ψi|2. (4.8)

(a)

(b)

Figure 4.29: The multifractal analysis for the original eigen equation. α̃0 is calculated for
different values of the potential strength (Vmax = 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and
100) and for different domain sizes (domain side-length L = 10, 12, 14, 16, 18, and 20). We
computed α̃0 for a certain sample by averaging all the eigenfunctions in an interval [19.5, 20.5]
over five different samples of random disorder. (a) All the points computed. (b) A close up
at the transition.
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We define these boxes (coarse-graining) in order to compare systems of different sizes. Indeed, by fixing
λ, the distributions µk are all the same size regardless of the domain size. It can be shown that the
distribution:

α̃k ≡ logµk/ log λ (4.9)

at fixed λ does not depend on the system size at the critical point. We use the mean value of this
distribution α̃0 ≡ 〈logµk〉/ log λ as a dimensionless finite-scaling observable. If we assume the following
finite-size scaling law:

α̃0(L, Vmax) = f((Vmax − Vmax,c)L
1/ν) (4.10)

where Vmax,c is the critical potential strength (under which all the eigenfunctions are delocalized, and
over which the lowest eigenfunctions are localized), ν is the critical exponent, and f is some universal
function, then when plotting α vs. Vmax, the curves should intersect at the critical point. Figure 4.29
shows this transition. When increasing the domain side-length L, the curves become steeper and exhibit
a more abrupt transition. In Figure 4.29b, we have zoomed on the small values of potential strength. We
can see that α̃0 is larger for smaller domain sizes at these potential strengths, while the opposite is true
for large potential strengths (for Vmax over 50). This indicates that all the curves should intersect at a
single point corresponding to Vmax,c.

For our simulations we have fixed the coarse-graining parameter λ = 0.2. We sampled Vmax over
{1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100} and L over {10, 12, 14, 16, 18, 20}. α̃0 was averaged over all the
eigenfunctions in the interval [19.5, 20.5], and over five different samples of random disorder. We chose
this interval so as to be sure that no matter the potential strength we would have some eigenfunctions.

The goal of these computations is not to determine the values of the critical potential strength or of the
critical exponent, but to merely to show the presence of a transition in the case of the original equation.

Figure 4.30: The multifractal analysis for the reduced eigen-equation. α̃0 is calculated for
different values of the potential strength (Vmax = 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and
100) and for different domain sizes (domain side-length L = 10, 12, 14, 16, 18, and 20). α̃0 is
computed for a certain sample by averaging all the eigenfunctions in an interval [4.5, 5.5].

We have repeated this exact procedure for the eigenfunctions of the reduced equation. Instead of the
intervals [19.5, 20.5] we chose the interval [4.5, 5.5] since the spectrum always starts at 0 for the reduced
equation. The results are displayed in Figure 4.30. The curves do not intersect in a single point like they
do for the eigenfunctions of the original equation when there is a transition. We therefore conclude that
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the eigenfunctions of the reduced equation do not appear to exhibit any critical behavior: there is no
phase transition. Our initial observations in the previous subsections suggested that the eigenfunctions
of the reduced equation were delocalized. Furthermore, the values found for α̃0 for the eigenfunctions of
the reduced equation are consistent with those found for the eigenfunctions of the original equation with
low potential strengths (see Figure 4.29b), i.e. around 3.0. According to these simulations, no matter
the potential strength, the eigenfunctions are always delocalized.

V Conclusion and Outlook

In this chapter, we have presented substantial evidence using various methods that the differential term
in the reduced equation − 1

u2∇·
(
u2∇φ

)
can be sufficient to localize eigenfunctions, without the presence

of a confining potential. We showed this first by looking at the eigenfunctions, then by studying their
localization lengths by analyzing their participation ratios as well as the the statistics of the distributions
of the energy spacings of the eigenfunctions and their ratios, and finally by using multifractal analysis.
We have seen that in 1D and 2D, the removal of the effective confining potential term does not modify
the localization properties of the eigenfunctions. However in 3D without this term, there is no phase
transition between localizing and delocalizing phases, which, alongside the fact that the distributions of
the energy spacings and their ratios exhibit all the characteristics of delocalization, indicates that the
eigenfunctions of the 3D require the confining potential for them to localize.

We therefore hypothesize that the differential term is responsible for localization at high energies in 1D
and 2D. However we still do not understand by which mechanisms this term induces localization, and
why these mechanisms break down for dimensions greater than 2. Understanding this mechanism would
be a future topic of research to investigate.
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Chapter 5

The Aubry-André Model

I Introduction

This final chapter is dedicated to the study of the Aubry-André model, a deterministic model mimicking
some features of disordered systems. The previous chapters have delved into what information the
localization landscape provides on the spatial structure of the eigenfunctions (Chapter 2) and on their
spectral structure (Chapters 3 and 4). We now investigate how the Aubry-André model, which has been
presented already in the introduction, can be studied using the localization landscape formalism. There
are various experimental [19, 17, 12] and numerical [9, 20] setups that use this model, making it an
interesting case study.

The Aubry-André model is unique in that it displays properties associated to randomness while being
completely deterministic [3, 16, 14, 6]. This allows us to study localization in a frame containing analytical
equations, which is not possible usually with disordered or random potentials. As it is a tight-binding
model, the localization landscape equation reduces to a simpler relation, as opposed to the eigen-equation,
and we will show that the landscape can be obtained through an exact closed formula.

In this chapter, we investigate the localization landscape for the one dimensional Aubry-André model,
using results from the lattice landscape [18]. Our goal is to provide a base framework in the Aubry-André
model to ease the study of more general quasiperiodic potentials, at greater dimensions for instance.

II The Aubry-André landscape

II.1 The Aubry-André model

The Aubry-André model is a tight-binding model of a quantum particle inside a periodic potential whose
periodicity is incommensurate with that of the lattice. We recall the one-dimensional Aubry-André
equation which reads:

Hλ,α
ω ψn = ψn+1 + ψn−1 − 2λ cos [2π (ω + nα)]ψn = Eψn (5.1)

with three different parameters, λ > 0 the potential’s strength, α ∈ [0; 1] the frequency (which is taken
to be irrational in order to obtain an incommensurate potential) and ω ∈ [0; 1] an additional phase. The
“ψn+1 +ψn−1” term represents the hopping term in a tight-binding nearest neighbor model. The hopping
term can also be likened to the Laplacian term in what would be a continuous equation. We also recall
that there are three different regimes for this equation:

• λ > 1: the eigenfunctions are all localized (pure point spectrum).

• λ < 1: the eigenfunctions are delocalized (absolutely continuous spectrum).
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• The λ = 1 case is the critical regime where the spectral measure of the operator is zero, i.e. it
is singular continuous [7]. The spectrum has a fractal and self-similar structure (the Hofstadter
butterfly seen in the introduction).

In this chapter we study the localizing regime of the operator, i.e. for λ > 1. Since this is a discrete
system, the spectrum can only take values in the interval [−2λ − 2, 2λ + 2]. In order to work only with
positive eigenvalues, we apply a constant shift (2λ+ 2) to the potential which does not modify the spatial
structure of the eigenfunctions nor the structure of the spectrum. We also chose to multiply the cosine
term by −1 which once again does not change any of the results. The consequence is that the potential
vanishes at n = 0 which makes finding the fundamental mode easier since the global minimum of the
potential is at n = 0. Figure 5.1 displays two examples of Aubry-André potentials (5.1a and 5.1b) as well
as two corresponding eigenfunctions (5.1c and 5.1d). The second example was chosen so that the irrational
frequency is close to 1/2, making the potential seem almost periodic to the naked eye. The frequency of
the first example was chosen to be “highly irrational”, in practice far away from the “simplest” fractions
(1/2, 1/3, 1/4, 1/5, etc.) so that patterns in the potential are more difficult to discern, and so that it
seems more “random”. The pseudo-random potentials exhibit regularly spaced peaks and valleys, but
the values they take are never repeated. The eigenfunctions exhibit several peaks spaced out at specific
intervals in a hierarchical structure.

(a) (b)

(c) (d)

Figure 5.1: (a) Aubry-André potential for λ = 8 and α = 3000/7919 ≈ 0.379 (b) Aubry-
André potential for λ = 8 where α = 4000/7919 ≈ 0.505. (c) An eigenfunction of eigenvalue
E = 1.93 corresponding to the potential of α = 3000/7919 ≈ 0.379. (d) An eigenfunction of
eigenvalue E = 1.91 corresponding to the potential of α = 4000/7919 ≈ 0.505.

In order to simulate a pseudo-random potential numerically we have to design a finite-system-size ap-
proximation of Eq. (5.1) [9]. To mimic an infinite domain, we use periodic boundary conditions, which
means that αL ∈ Z so that Vn+L = Vn, L being the domain size. Furthermore, for the potential to be
incommensurate, we also require that no value is to be repeated, which demands that Vn 6= Vn′ from
which follows that gcd(αL,L) = 1 (where gcd(a, b) is the greatest common divisor between a and b). In
practice, taking the domain size L to be a prime number and defining the frequency as α = nα

L with nα
an integer between 1 and L is sufficient to properly approximate equation 5.1.
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II.2 The localization landscape of the Aubry-André model: extensions of the landscape properties in
the discrete setting

Although initially designed for continuous systems, one can also derive a discrete version of the localization
landscape [18]. It is obtained by solving the analogous landscape equation:

un+1 + un−1 + (2λ+ 2− 2λ cos [2π (ω + nα)])un = 1. (5.2)

Most of the properties of the landscape have been proven in the continuous case. In this subsection we
will express the discrete versions of these properties. One of the first ones is a control inequality that
provides an upper bound for the eigenfunctions’ amplitude:

|ψn| < Eun. (5.3)

The fundamental inequality (5.3) has been explicitly confirmed. As seen in Chapter 2, this relation
means that the eigenfunctions’ amplitude has to be small in regions where the landscape is small as well.
However, this conclusion only holds when un < 1

E since the eigenfunctions are L∞ normalized in the
inequality. In Figure 5.2, we have displayed the four first eigenfunctions of a tight-binding Hamiltonian
with a potential following a uniform random law with values in [2t; 4t] alongside the localization landscape.
We can see that the latter predicts the regions where localization occurs.

Figure 5.2: Four first eigenstates of a tight-binding Hamiltonian with a potential following a
uniform random law with values in [2t; 4t]. The system is of size L = 100. The localization
landscape is plotted in blue, while in red are the 4 first eigenstates. Reprinted from [18].

Since this is a discrete system, localization also occurs at the top of the spectrum. In Figure 5.3, we can
see that the last eigenstates at the top of the spectrum oscillate with a frequency equal to the inverse of
the lattice parameter. We can study their envelope by transforming the eigenfunction and removing the
high frequency contribution: ψn = (−1)nϕn. The eigen-equation then becomes:

(ϕn+1 + ϕn−1) + (2λ+ 2− 2λ cos [2π (ω + nα)])ϕn = Eϕn (5.4)

There is a symmetry by change of sign of the hopping amplitude (here set at 1) which reverses the order
of the eigenstates (the low energy eigenfunctions become high energy and vice-versa). We apply a shift
to the potential so that all the eigenvalues are positive again. We can then define a dual landscape that
has similar properties to that of the original localization landscape except applied to the envelopes of the
original high energy eigenstates (that are now low energy with this transformation):

−(u∗n+1 + u∗n−1) + (Vshift + 2λ+ 2− 2λ cos [2π (ω + nα)])u∗n = 1, (5.5)

where u∗ is the dual landscape. The new confining inequality reads ϕn < u∗i (Vshift − E∗).
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Figure 5.3: Four last eigenstates of a tight-binding Hamiltonian with a potential following
a uniform random law with values in [2t; 4t]. The system is of size L = 100. The dual
landscape is plotted in blue, while in red are the 4 last eigenstates. Reprinted from [18].

As mentioned before in the continuous case, the localization landscape defines an effective confining
potential W ≡ 1/u [2] which is a smoothed version of the original potential. This effective confining
potential allows for approximations of not only the fundamental eigenvalue of each localized sub-region,

but also its corresponding eigenfunction. The estimate for the fundamentals in each sub-region is E
(m)
0 ≈(

1 + d
4

)
min
Ωm

W , where d is the dimensionality of the system [1, 11]. It also enables us to define an Agmon

distance:

ρE(~r1, ~r2) = min
γ

(∫
γ

√
(W (~r)− E)+ds

)
. (5.6)

Although there was no mathematical proof of a discrete counterpart of the continuous Agmon distance,
a natural extension of this notion to the tight-binding model would be:

ρE(n1, n2) = min
γ

∑
i

√
(Wi − E)+. (5.7)

Extending from the continuous result, an eigenfunction centered at n0 is therefore expected to decay as
ψi . e−ρE(n0,ni).

Very recently, an exact discrete version of the Agmon distance has been proven [22]:

ρE(n1, n2) = inf
γ∈P(n,m)

k(γ)∑
j=1

ln

(
1 +

√
min

[
(Wγj − E)+, (Wγj+1 − E)+

])
, (5.8)

where P(n,m) is the collection of paths going from n tom and γ a path. Eq. (5.7) is a good approximation
of Eq. (5.8), which allows us to use the former expression.

The asymptotic behavior of the integrated density of states can be determined using Weyl’s law. This
law uses the potential in its expression:

NV (E) ∝
∫
V (x)<E

√
(E − V (x))+dx. (5.9)

In disordered systems, replacing the potential with the effective confining potential in Weyl’s law has
been found to give better approximations:

NW (E) ∝
∫
W (x)<E

√
(E −W (x))+dx, (5.10)
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which translates to:

NW (E) ∝
∑
Wi<E

√
E −Wi. (5.11)

Recent research on the integrated density of states for random potentials in localization landscape theory
has led to upper and lower bounds of the counting function [8]. We recall the landscape law counting
function (3.4) defined in Chapter 1.

Nu(E) =
1

|Ω|
×
(

the number of cubes Q ∈ {Q}κµ−1/2 such that min
Q

1

u
≤ E

)
(5.12)

as well as the following inequality with constants the C4, C5, and C6:

C5Nu(C6E) ≤ N(E) ≤ Nu(C4E), (5.13)

We now have all the tools necessary to study tight-binding Hamiltonians with the localization landscape.
We display some examples of the localization landscape calculated for Aubry-André potentials to provide
visual examples. Doing so, we show qualitatively that the effective confining potential is a good predictor
of the localization sub-regions.

(a) (b)

(c) (d)

Figure 5.4: Eigenfunctions displayed over the effective confining potential. The parameters
of the Aubry-André potential are: λ = 8 and α = 3000/7919 ≈ 0.379. The red line
corresponds to the energy of the eigenfunction. In the top left of each figure is displayed the
the position of the eigenvalue in the energy-frequency graph. (a) E = 1.93 (b) Zoomed in
version of (a). (c) E = 3.57 (d) Zoomed in version of (c).

We start by displaying for two different localized eigenfunctions for two different irrational frequencies
(α = 3000/7919 ≈ 0.379 and α = 0.505) and with λ = 8 (localized regime) (see Figures 5.4 and 5.5).
We have selected the two same irrational frequencies as for our first examples in Figure 5.1, and two
eigenfunctions whose energy is at the bottom of the spectrum, as can be seen in the energy-frequency
graphs displayed in the top right corner of each eigenfunction plot.
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In Figures 5.4b, 5.4d, 5.5b, and 5.5d, one can see that the maximum of the eigenfunction occurs on the
lattice point where its energy intersects the effective confining potential. The eigenfunctions then decay
from this maximum, but re-increases on lattice points where their energy is greater than W .

The minima of the effective confining potential predict where the eigenfunctions will be maximal, and W
also indicates how the eigenfunctions decay.

(a) (b)

(c) (d)

Figure 5.5: Eigenfunctions displayed over the effective confining potential. The parameters
of the Aubry-André potential are: λ = 8 and α = 4000/7919 ≈ 0.505. The red line
corresponds to the energy of the eigenfunction.In the top left of each figure is displayed the
the position of the eigenvalue in the energy-frequency graph. (a) E = 1.91 (b) Zoomed in
version of (a). (c) E = 3.58 (d) Zoomed in version of (c).

III A closed formula for the localization landscape

It turns out that an exact closed formula can be derived for the localization landscape in finite sized
systems, by exploiting the fact that in one-dimension, the Aubry-André localization landscape equation
reduces to a second order recurrence equation, which we will present in this section.

First we will directly calculate the localization landscape by using the forward sweep or Thomas algorithm,
which is presented in the appendix 5.A.1. We will then use the fact that numerical results shown in
Figures 5.4 and 5.5 suggest that the solution to this equation is the sum of sines and cosines. We
therefore search for a solution using the discrete Fourier transform (DFT) of the localization landscape.

III.1 Direct calculation

We start by simplifying the equation to make it more manageable. Since we have periodic boundary
conditions and because we have α = nα/N , the potential Vk is symmetric and even: Vk = VN−k and
Vk = V−k. The same is therefore true for the landscape. We only need to solve the second order recurrence
equation on half the lattice points thanks to this symmetry.

Defining gk = 2λ+ 2− 2λ cos
(

2π(k−1)nα
N

)
, the system reduces to:
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if N is odd: H =


gk −2 ... 0
−1 ... ... 0
... ... ... ...
0 ... −1 gN+1

2
− 1

 (5.14)

if N is even: H =


gk −2 ... 0
−1 ... ... 0
... ... ... ...
0 ... −2 gN

2

 (5.15)

One introduces the vectors Uk and Xk defined as: Uk = uk−1 and Xk = 1. From this

HU = X (5.16)

In the same way, we can define two sequences ck and ek:

c1 = g1 = 2 ck = gk −
1

ck−1
= gk −

1

gk−1 − 1
...−1

e1 = 1 ek = 1 +
ek−1

ck−1
= 1 +

1

ck−1
+

1

ck−1ck−2
+ ... = 1 +

k−1∑
j=1

k−1∏
l=j

1

cl

(5.17)

(a) (b)

(c)

Figure 5.6: (a) The localization landscape computed numerically with the following param-
eters: N = 491 and α : 251/491 ≈ 0.511. (b) The localization landscaped computed using
the direct formula 5.18. (c) Difference between the landscape computed using numerical
methods and the closed formula 5.18.

And then, using the Thomas algorithm presented in the appendix 5.A.1, the localization landscape is
given by:
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UN+1
2

=
eN+1

2

cN+1
2

=

N+1
2∑
j=1

N+1
2∏
l=j

1

cl

Uk =
ek + Uk+1

ck
=
ek
ck

+
1

ck

ek+1

ck+1
+ ...+

1

ck...cN−1
2

eN+1
2

cN+1
2

Uk =

k∑
j=1

k∏
l=j

1

cl
+

1

ck

k+1∑
j=1

k+1∏
l=j

1

cl
+ ...+

1

ck...cN−1
2

N+1
2∑
j=1

N+1
2∏
l=j

1

cl
=

N+1
2∑

m=k

(
m−1∏
m′=k

1

cm′

) m∑
j=1

m∏
l=j

1

cl


(5.18)

Figure 5.6 compares the localization landscape computed numerically and the one obtained through the
direct formula (5.18) (top left and right respectively), as well as the difference between this computational
method and traditional numerical methods (bottom frame). The difference is very small (which are of
the order of 10−13) when compared to the values of the landscape (of the order of 0.1 as can be seen
in Figures 5.6a and 5.6b). Interestingly, the difference is larger in the second half of the domain. This
is most likely because the direct method exploits the symmetry of the localization landscape while the
numerical computational method does not.

While this formula gives results that are essentially identical to the real landscape, it is not very inter-
pretable, and does not give any information on the structure of the landscape.

III.2 Discrete Fourier Transform

We now move on to the second method using the discrete Fourier Transform for determining a closed
formula for the localization landscape. As mentioned before, the structure of the landscape is very
periodic. For instance, in Figure 5.5, the landscape seems to be the product of three cosines: one with
a wavelength equal to the lattice spacing, another with a wavelength equal to about 200, and a last one
with a wavelength of around 100. It therefore makes sense to search for a solution using the discrete
Fourier Transform.

We define the inverse discrete Fourier transform (DFT) as:

un =
1

N

N−1∑
k=0

ũke
2πi
N kn (5.19)

The method of calculation is quite similar to what was done in the previous subsection. The reader
should refer to the appendix 5.A.2 for more details. In the direct calculation, the terms in relation to one
another are the adjacent ones. What we mean by this is that uk is expressed with uk+1 and uk−1. Once
the landscape equation has been rewritten for its Fourier coefficients, the coefficients that are in relation
to one another are no longer the adjacent ones, but those nα apart. It is therefore necessary to reorder
these coefficients in order to apply the Thomas algorithm. We define: Ũ ′k+1 = ũk nα as the reordered
Fourier coefficients.

In the case of odd N , we define the sequences bk and dk:

b1 = 1 bk = fk −
1

bk−1
= fk −

1

fk−1 − 1
...−1

d1 =
N

2λ
dk =

dk−1

bk−1
=

N
2λ

bk−1...b1
.

(5.20)

We can then express the reordered Fourier coefficients as:
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Ũ ′N+1
2

=
dN+1

2

bN+1
2

=
N
2λ

bN+1
2
...b1

Ũ ′k =
dk
bk

+
Ũ ′k+1

bk
=
N

2λ

(
1

b1...bk
+

1

b1...b2kbk+1
+ ...+

1

b1...b2k...b
2
N+1

2 −1
bN+1

2

) (5.21)

(a) (b)

(c)

Figure 5.7: (a) Localization landscape computed numerically with the following parameters:
N = 491 and α : 251/491 ≈ 0.511. (b) Localization landscaped computed using the DFT
method. (c) The difference between the landscape computed using numerical methods and
the DFT method.

This allows for an iterative method to calculate the Fourier coefficients directly starting from the last
reordered Fourier coefficient and then computing the rest by backwards iteration. In Figure 5.7 we can
see that this method produces very accurate results. The first two figures show an example of localization
landscape calculated with the same parameters (N = 491 and nα = 251) using numerical methods (on
the left) and the iterative formula (on the right). The bottom figure shows the difference between these
two methods (of the order of 10−13).

The various computations of Ũ ′k in Figure 5.8 suggest that the reordered Fourier coefficients decrease. In
Figure 5.8a, the increase and decrease of the Fourier coefficients follow a regular pattern that is difficult
to discern, whereas in Figure 5.8b, where the terms have been rearranged, consecutive terms clearly
decrease regularly.

We have unfortunately been unable to prove that the reordered Fourier coefficients decrease, but all of our
numeric evidence suggests it. In Figure 5.9, we have plotted a histogram of the distribution of the values
of Ũ ′k+1/Ũ

′
k for N = 491 and for all values of nα. These ratios are all strictly between 0.5 and 1, which

shows that the reordered Fourier coefficients are always decreasing. The rate at which the coefficients
decrease depends on the value of nα, and the distribution of these rates does not have a well defined
shape. Nonetheless, if we assume that on average the rate at which the coefficients decreases is equal to
the mean of the distribution of the ratios Ũ ′k+1/Ũ

′
k, i.e. 0.624, then on average the 11th coefficient will

be around 0.62410 ≈ 0.01 times the value of the first coefficient.

The agreement is very good between both closed formulae we have derived and the numerical computa-
tions. Unfortunately, the method we have just described to derive these formulae does not generalize at
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(a) (b)

Figure 5.8: (a) The Fourier coefficients of the localization landscape calculated for N = 491
and 3 different values of nα = {79, 157, 251} in logarithmic scale. (b) First terms of the
reordered Fourier coefficients Ũ ′k for the same N and nα.

Figure 5.9: Histogram of the distribution of the values of Ũ ′k+1/Ũ
′
k for N = 491 and for

nα ∈ {1, 490}. For each value of nα, we computed the ratio for the 51 first reordered Fourier
coefficients. The maximum value of this distribution is 0.955, the mean is 0.624, and the
minimum is 0.5.

all at higher dimensions.

IV Structure of eigenfunctions and eigenvalues

The structure of the eigenfunctions is already well understood: in the localization regime the exact
asymptotics of the eigenfunctions determined by the continued fraction of the frequency are known [4, 15].
The goal in this section is to assess whether the properties of the localization landscape presented before
remain true for Aubry-André potentials.

IV.1 Structure and localization of the eigenfunctions

To begin with, the Agmon distance already presented in section II.2 and defined via the effective confining
potential, controls the decay of the exponentially localized eigenfunctions [2]. In Figure 5.10 we have
displayed an eigenfunction and its Agmon estimate for two different potentials. The estimate is calculated
by computing the Agmon distance between the maximum of the eigenfunction and each point. We see
that the Agmon estimate controls the exponential decay of the eigenfunction, but does not account
for the resonances of the eigenfunctions. According to the definition of the Agmon distance (5.6), it
is a decreasing function from its starting point, whereas the eigenfunction can increase again (this is
particularly apparent in Figure 5.10d).

To study localization, an essential issue is to be able to identify quantitatively whether eigenfunctions
are localized or delocalized. We have used the inverse participation ratio (IPR), which we have presented
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(a) (b)

(c) (d)

Figure 5.10: In each figure is displayed the effective confining potential for a certain set of
parameters N , λ and α, alongside an eigenfunction (in dots) and its Agmon estimate (in
crosses). The red horizontal line corresponds to the energy of the eigenfunction. The grayed
out areas correspond to points where the eigenvalue is greater than the effective confining
potential. (a) The potential’s parameters are: N = 7919, λ = 8 and α = 4000/7919 ≈ 0.505.
The eigenvalue is E = 1.91. (b) Same as (a) but zoomed in. (c) The potential’s parameters
are: N = 7919, λ = 8 and α = 3000/7919 ≈ 0.379. The eigenfunction is of energy E = 1.93.
(d) The potential’s parameters are: N = 7919, λ = 3 and α = 773/7919 ≈ 0.0976. The
eigenfunction is of energy E = 0.96. In this case the eigenfunction increases again on the
lattice points where its energy is less than W (the grayed out areas).

before in Chapter 2, to measure the localization of eigenfunctions. We recall the definition of the IPR as:

IPR =

(∑
n |ψn|4

)
(
∑
n |ψn|2)

2 . (5.22)

We also remind the reader that a completely localized eigenfunction which only exists in one point has
an inverse participation ratio of 1. Contrarily, a delocalized eigenfunction has an inverse participation
equal to 1/N , which tends towards 0 in the limit of the infinite system size.

We then replace the eigenfunction in the expression of the inverse participation ratio by the Agmon
estimate defined before in order to determine whether this estimate is accurate in determining if the
eigenfunctions are localized or not.

As expected, as can be seen in Figure 5.11, in the low energy part of the spectrum, the approximation
derived from the Agmon distance given by the localization landscape provides a result that is in accord
with what the eigenfunctions would give. We define r as the absolute difference between the IPR computed
from both methods used to obtain it. We show this absolute difference in the bottom part of Figure 5.11.
In the more localizing regimes, at the bottom of the spectrum, the difference between the IPRs approaches
0 in the interval α ∈ [0.1, 0.9]. For the λ = 8 case, in this frequency interval, the average absolute difference
for the 50 first eigenfunctions is 〈r〉 = 0.049, and for 82% of the eigenfunctions the r is less than 0.1. In
the λ = 3 case, the error for frequencies close to 0.25, 0.33, 0.5, 0.66, and 0.75 are greater compared to
all the other frequencies. In Figure 5.12 we have zoomed in on Figure 5.11b and drawn arrows pointing
at the areas where the error is greater. These frequencies correspond to where the potential resembles
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.11: The low energy part of the energy-frequency graphs. Top row: color repre-
sentation of the inverse participation ratio of the eigenfunctions for three different values
of λ = 1, 3 and 8 (See Eq. (5.22)). Middle row: color representation of the inverse partici-
pation ratio calculated from the Agmon estimate for three different values of λ = 1, 3 and
8 (ψi ≈ e−ρE(n0,ni)). Bottom row: color representation of the absolute difference of the
exact IPR of the eigenfunctions and the IPR computed using the Agmon estimate for three
different values of λ = 1, 3 and 8.

the most a periodic potential, meaning the eigenfunctions are slightly more delocalized, as can be seen
in Figure 5.11b. This behavior is not captured by the Agmon distance approximation of the IPRs.

To summarize, the Agmon distance and the approximation derived from it provide an accurate estimate
of the eigenfunctions at the bottom of the spectrum, granted that the eigenfunctions are localized (which
is not so much the case when the frequency of the potential gets close to certain rational frequencies).

IV.2 Relationship between minima of effective confining potential and eigenvalues

The ratio between the minima of the effective confining potential and the first eigenvalues has been
measured consistently around (1+d/4) in the continuous case for many types of disordered potential [1].
In this subsection, we investigate whether this still holds in the Aubry-André model. We computed the
first eigenfunctions, their eigenvalues, and their respective minimum of the effective confining potential
for different potential strengths and irrational frequencies. We compared these eigenvalues and these
minima in order to study the relationship between them.
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Figure 5.12: A closer look at a color representation of the absolute difference of the IPR
calculated using both methods for λ = 3. The arrows point at areas of the low energy
spectrum where the error is large.

In Figure 5.13, we have displayed the first 500 eigenvalues versus their corresponding minima values of
the effective confining potential as well as their ratios for a strongly localizing Aubry-André potential.
We have repeated this study for all values of α and different values of λ (different potential strengths).
Figure 5.14 shows the range of values the ratios can take for different irrational frequencies. Figure 5.15
shows the average of these ratios for each frequency, while Figure 5.16 shows the standard deviation of
the distribution of the ratios.

Our first observation in Figure 5.13 is that these ratios remain remarkably constant for frequencies in
the interval [0.1 0.9]. This is where the standard deviation of the distribution of ratios is the closest to 0
(σ < 0.015) according to Figure 5.16. Furthermore the standard deviation decreases when the potential
strength is larger. This makes sense as the eigenfunctions are more localized on individual sites when the
potential is stronger.

Our second observation from Figure 5.13 is that the average of the ratio between the eigenvalues and the
corresponding minima value is not (1 + d/4), but varies depending on the frequency and the potential
strength. For λ = 8, the average ratio goes from 1.27 at α ≈ 0.1 to 1.07 at α ≈ 0.4 before going back
up to 1.1 at α ≈ 0.5. For λ = 3, it goes from 1.30 at α ≈ 0.1 to 1.17 at α ≈ 0.4 before going to 1.12 at

(a) (b)
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(c)

(d)

Figure 5.13: Top: the first 500 eigenvalues versus their corresponding minima values of
the effective confining potential. (a) N = 7919, λ = 8 and α = 3000/7919 ≈ 0.379. (b)
N = 7919, λ = 8 and α = 4000/7919 ≈ 0.505. Bottom: the ratios between the first 500
eigenvalues and their corresponding minima values of the effective confining potential: (c)
N = 7919, λ = 8 and α = 3000/7919 ≈ 0.379. The average of the distribution of the ratios
between the two values is 〈Ei/minW 〉 ≈ 1.07 and its standard deviation is 2.84 10−4. (d)
N = 7919, λ = 8 and α = 4000/7919 ≈ 0.505. The average of the distribution of the ratios
between the two values is 〈Ei/minW 〉 ≈ 1.09 and its standard deviation is 9.26 10−3.

(a) (b)

Figure 5.14: Scatter plot of the ratio between the first 500 eigenvalues and their correspond-
ing minima values of the effective confining potential for all values of α and for N = 7919.
(a) λ = 8. (b) λ = 3.

(a) (b)

Figure 5.15: The average of the ratio between the first 500 eigenvalues and their correspond-
ing minima values of the effective confining potential for all values of α and for N = 7919.
(a) λ = 8. (b) λ = 3.

α ≈ 0.5. We remind the reader that the spectrum is symmetric with respect to the point α = 0.5. The
same spectrum is produced for α = 0.5 + α′ and α = 0.5− α′.
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(a) (b)

Figure 5.16: The standard deviation of the distribution of the ratios between the first 500
eigenvalues and their corresponding minima values of the effective confining potential for all
values of α and for N = 7919. (a) λ = 8. (b) λ = 3.

(a) (b)

(c)

Figure 5.17: (a) Scatter plot of the ratio between the first 100 eigenvalues and their corre-
sponding minima values of the effective confining potential for all values of α for N = 7919
and λ = 8. (b) The average of the ratio between the first 500 eigenvalues and their corre-
sponding minima values of the effective confining potential for all values of α for N = 7919
and λ = 8. (c) The standard deviation of the distribution of the ratios between the first 500
eigenvalues and their corresponding minima values of the effective confining potential for all
values of α for N = 7919 and λ = 8.

These results indicate that in the same vein as the continuous case, in a large interval of frequencies, the
ratios between the eigenvalues and their corresponding local minima are almost constant (around 1.1)
which means that the localization landscape estimates are very good predictors of the eigen-energies of
the localized eigenfunctions. However, this ratio is not the same as in the continuous case, and seems to
break down for very low and high frequencies. A possible explanation for this is that at low frequencies,
the potential forms very few but very large “wells”. Since there are less local minima, there are less
local fundamental modes. Symmetry dictates that the same is true at very high frequencies. Because the
relation we are trying to establish relates the local fundamentals with their respective local minima of
the effective confining potential, if we consider more eigenfunctions than there are of local fundamentals,
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we will be counting higher energy local modes for which the relation should not work. In Figure 5.17, we
have repeated the same figures as before but considering only 100 eigenfunctions this time. The range
of frequencies for which the standard deviation is low and ratios remain constant has increased. It goes
now from about α = 0.01 to α = 0.99.

These results suggest that there is a relationship between the energy of the eigenfunctions and their
respective local minima of the effective confining potential. This relation varies from about 1.3 for fre-
quencies close to 0 and 1, to around 1.07 for frequencies close to 0.5. It also depends on the potential
strength. In Table 5.1, we have summarized the average ratios across all frequencies for different potential
strengths. The ratios decrease as the potential strength increases. So while there is no universal relation-
ship between the local minima of the effective confining potential and the eigenvalue of the associated
localized eigenfunction like in the continuous case, the ratio varies depending on the parameters of the
potential.

λ = 1 λ = 3 λ = 5 λ = 8 λ = 10

〈Ei/minW 〉i,α 1.33 1.22 1.17 1.12 1.10

Table 5.1: Summary of the values found for the average of the ratios across all frequencies
for different potential strengths λ.

IV.3 Hofstadter’s butterfly, the energy-frequency graphs and its gaps

Fixing the potential strength λ and plotting the spectra of the Aubry-André Hamiltonians for various
values of the frequency α in the (E,α)-plane (which we will call the energy-frequency graphs) reveals
interesting figures. For λ = 1, the object created is a fractal, and the spectrum is of measure 0. It is
known in the litterature as Hofstadter’s butterfly [13].

(a) (b) (c)

Figure 5.18: The structure of the eigenvalues E versus the frequency of the pseudo-random
potential α for three different values of the potential intensity (λ = 1, 3, 8 respectively).

Is the localization landscape able to replicate these unique structures? To reproduce the low energy half
of the energy-frequency graphs, we employ the approximation for the eigenvalues we have just determined
in the previous subsection. We saw in the previous section that the coefficient that relates the eigenvalues
and the local minima depends on the frequency, but we will be using the average values over all frequencies
found in Table 5.1 for different potential strengths.

Similarly, for the high energy half of the energy-frequency graphs, we exploit the same estimation using
the dual landscape defined in equation (5.5) and defining a dual effective confining potential. We compute
the dual landscape using this equation as well as the eigenvalues of the dual equation E∗i , and retrieve the
eigenvalues of the original equation by applying the shift: Ei = Vshift − E∗i . The dual effective confining
potential is defined as the reciprocal of the dual landscape: W ∗ ≡ 1/u∗.

From the previous subsection, the approximations given by the localization landscape are more accurate
when estimating low energy eigenvalues and when the potential is higher in intensity. Comparing fig-
ures 5.18 and 5.19, the outline of the low energy part of the energy-frequency graphs is kept when using
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(a) (b) (c)

Figure 5.19: The structure of the eigenvalues E approximated using the localization land-
scape versus the frequency of the pseudo-random potential α for three different values of
the potential intensity (λ = 1, 3, 8 respectively).

the landscape approximation, while the finer details especially present for λ = 1 are absent. Moreover,
the gaps that appear in the energy-frequency graphs (which are most visible in Figure 5.18b) are not
always replicated when using the localization landscape approximation, but this is to be expected since
the estimate using the local minima of W is only applicable for the local fundamental modes inside a
confining potential well, and not for the local excited states of these same wells.

(a) (b)

(c) (d)

Figure 5.20: The potential’s parameters are: N = 7919, λ = 3, and α = 773/7919 ≈
0.0976. (a) An eigenfunction localized at the lattice point 7459 of energy E = 0.96. (b) An
eigenfunction localized at the same local minimum but at higher energy: E = 2.77. It is the
first excited state. (c) The second excited state with E = 3.75. (d) The third excited state
with E = 6.02.

What causes these gaps to appear ? We have seen in subsection II.2 that the eigenfunctions localize in
the local minima of the effective confining potential. The first eigenvalues are therefore determined by the
distribution of the minima of W . If the local minima are deep enough, the next eigenstate localized in that
site will be that local minimum’s first excited state. For example, Figure 5.20 depicts four consecutive
eigenfunctions in the same local minimum of W . At this value of α (around 0.1), all local minima of W
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are around the same value. The jump in energy between each subsequent eigenvalue causes the presence
of gaps in the energy-frequency graphs.

(a) (b)

(c) (d)

Figure 5.21: We display the energy of the eigenfunctions versus the value of their respective
local minimum of the effective confining potential for domains of size N = 7919 and different
values of α. Each color represents the number of the local eigenstate (blue is the local
fundamental, orange is the local first excited state, etc.). (a) α = 491/7919 ≈ 0.0620.
There are 491 sub-regions. (b) α = 773/7919 ≈ 0.0976. There are 773 sub-regions. (c)
α = 1483/7919 ≈ 0.187. There are 1483 sub-regions. (d) α = 2137/7919 ≈ 0.270. There are
2137 sub-regions.

The domain is divided up in intervals delimited by the successive local maxima of the effective confining
potential. These are sub-regions of localization. Each interval contains one local minimum of W . For all
the eigenstates in the first half of the spectrum, we determine their maximum and associate them to a
local minimum of W/sub-region of localization. In Figure 5.21, we display a scatter plot of the energy of
the eigenfunctions versus their associated local minimum of W for different values of α. We see that the
number of sub-regions is equal to nα, and therefore increases with α (until α = 0.5). The less sub-regions
there are, the more local excited states. Interestingly, the local fundamentals are related linearly to the
local minima, as we have shown before. However, according to Figure 5.21a, the energy of the local first
excited states increases as the local minima decreases. Then the opposite occurs, and so forth. For every
value of α, there is always a jump in energy between the local fundamentals and the local first excited
states, which explains the gaps that occur in the energy-frequency graphs, such as in Figure 5.18c.

In conclusion while the relationship between the local minima and the energies of the eigenfunctions
is less straightforward (there is a constant ratio in the continuous case), the structure of the effective
confining potential (of its minima) is not only a good predictor of the local fundamentals but also of the
higher local modes.
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V The density of states

V.1 Weyl’s law

We remind the reader that in the continuous setting, Weyl’s law provides an asymptotic at higher energy
for the integrated density of states. However, as discussed before, in disordered systems, a more accurate
version of Weyl’s law can be found by replacing the potential by the effective confining potential [2]. This
modified version of Weyl’s law has been shown to be effective even at low energies. The updated Weyl’s
law using the effective confining potential for discrete systems that we will study is:

NW (E) =
1

π

∑
Wi<E

√
(E −Wi)+, (5.23)

as it is a good approximation of the exact equation (5.8).

(a) (b)

Figure 5.22: (a) The counting function N(E) is displayed in blue for λ = 8 and α = 0.505114.
The approximation given by Weyl’s law using the effective confining potential is in red. (b)
The derivative of NW (E) is not constant and is slightly increasing.

In Figure 5.22a we have displayed the counting function alongside the estimate of the counting function
derived from Weyl’s law using the effective confining potential. The estimate seems to be linear, but in
Figure 5.22b we have plotted its derivative (the density of states, DOS) which is not constant, showing
that it is slightly superlinear. Regardless, the updated Weyl’s law does not describe the counting function
well. This is not surprising since Weyl’s law originally is meant to give the asymptotic behavior of the
counting function for continuous systems. Here we are using it for a discrete system and for the low
energy part of the counting function.

V.2 The landscape law

We then turn to the recent landscape law that we have already studied in the previous chapter for a
more accurate approximation of the integrated density of states [8]. Our hope is that, similarly to our
previous study in Chapter 3 on the Lifshitz tails, the general aspect of Nu is very close to the real counting
function. We will then determine the sharpest values for the constants C4, C5, and C6.

We recall the basis of our analysis to determine the sharpest values of the constants. First, we compute
the landscape law counting function by dividing the domain in boxes of size 1/

√
E and then counting

all the boxes where W < E. We then compute the ratio Nu(CE)/N(E) for many different values of C
and determine C4 by finding the smallest value of C for which this ratio is always grater than 1. C6 is
determined by finding the value of C for which the standard deviation of the ratio Nu(CE)/N(E) is the
smallest. C5 is defined by the maximum of the ratio Nu(C6E)/N(E), and C5,fit is the average of that
ratio.

In Figures 5.24 we have displayed the results of the analysis we have just detailed. The parameters of the
potential are: λ = 8 and α = 4000/7919 ≈ 0.505. Figure 5.23 shows that the landscape law captures not
only the asymptotic behavior of the integrated density of states, but also the behavior at the beginning
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(a) (b)

Figure 5.23: The counting function N has been calculated and displayed in blue for λ = 8
and α = 0.505114. The approximation given by the landscape law is in red. On the left is
a linear plot, while on the right is a loglog plot.

(a) (b)

(c) (d)

Figure 5.24: The parameters are L = 7919, α = 0.505114 and λ = 8. (a) Standard
deviation of the distribution of ln (NE

u (CE)/NE(E)) for various values of C. The minimum
corresponds to the sharpest value of C6. (b) The ratio (NE

u (C6E)/NE(E)). The maximum
yields the sharpest value of C5, the best fit for N(E) is deduced from the average of this
ratio. (c) The corresponding fit by the landscape law of the integrated density of states
divided by unit length.

of the spectrum. The sharpest values for the constants C4, C5, and C6 determined by this method are:
1/C4 ≈ 1.08, 1/C5 ≈ 1.4, 1/C5,fit ≈ 1.0, and 1/C6 ≈ 1.09. Interestingly, the values are not exactly the
same as in our previous study (we do not find 1/C4 ≈ 1/C6 ≈ 1.25) but this not necessarily surprising.
Indeed, in the preceding section, we showed that the relationship between the minima of the effective
confining potential and the eigenvalues is not the same as in a traditional Anderson system, and in fact
the values we have found here are more consistent vith the ratios between the energies and the local
minima of W we obtained previously. The fit of the counting function by the landscape law counting
function with the constants C5,fit and C6 is remarkably accurate throughout the spectrum as can be seen
in Figure 5.24d. We have repeated this fit with different parameters of λ and α in Figure 5.25, and given
a summary of the results in Table 5.2.
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(a) (b)

(c) (d)

Figure 5.25: Comparison between the Landscape Law and the the integrated density of states
(per unit length) for different values of λ and α. The summary of the sharpest values is given
in Table 5.2. (a) λ = 3 and α = 1999/7919 ≈ 0.252. (b) λ = 3 and α = 3000/7919 ≈ 0.379.
(c) λ = 8 and α = 1999/7919 ≈ 0.252. (d) λ = 8 and α = 3000/7919 ≈ 0.379.

λ α 1/C4 1/C5 1/C5,fit 1/C6

3
0.252 1.22 1.75 1.04 1.22

0.379 1.17 2.60 1.05 1.17

8
0.252 1.1 1.01 0.99 1.11

0.379 1.04 1.01 1.00 1.06

Table 5.2: Summary of the values found for the constants C4, C5, C5,fit, and C6 found in
Figures 5.25.

We have reiterated this analysis for all possible α and for different values of λ: 1, 3, 5, 8, and 10 in
Figures 5.26. The main takeaway is that these sharpest values are not constant, and depend on the
parameters α and λ. However at constant α, the sharpest values of C4 and C6 converge towards a
specific value as the potential strength increases. Another interesting observation is that the shape of the
curves for the values of C−1

4 and C−1
6 in the strongly localizing regime (λ ≥ 5) is reminiscent of the shape

of the curve of the ratio between the eigenvalues and their corresponding local minima of the effective
confining potential (Figure 5.14). For instance, for λ = 8, the ratio goes from 1.27 at α ≈ 0.1 to 1.07
at α ≈ 0.4 before going back up to 1.1 at α ≈ 0.5. For these same parameters, C−1

6 goes from 1.25 at
α ≈ 0.1 to 1.07 at α ≈ 0.4 before going back up to 1.09 at α ≈ 0.5, which are all very close to the values
of the ratios.

To summarize, the fact that these sharpest values are not constant with respect to λ and α is not
surprising, as the ratios between the eigenvalues and their respective minima of the effective confining
potential are not constant as well. The landscape law is nonetheless effective in approximating the
counting function using the values of C6 and C5,fit.
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(a) (b)

(c) (d)

Figure 5.26: The sharpest values have been calculated for a system of size N = 7919 for five
different values of λ: 1, 3, 5, 8, and 10, and for all possible α. (a) Sharpest values of C4. (b)
Sharpest values of C5. (c) Sharpest values of C5,fit. (d) Sharpest values of C6.
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VI Conclusion

We have introduced the localization landscape for the Aubry-André model. We have shown that some of
the essential properties of the localization landscape were conserved even though most of them pertained
to continuous systems. Notably, the reciprocal of u (which we have called W ) possesses similar properties
to the effective confining potential defined in the continuous setting. W allows for a prediction of the
eigenvalues and of the localization regions. Moreover, we can define an Agmon distance from W that
correctly controls the initial exponential decay of the eigenfunctions, but not the resonances that occur
throughout the domain. The discrete nature of the tight-binding model induces another localization at
the top of the energy band. Another localization landscape (called dual landscape) can be defined that
allows to generalize the properties of the landscape given for low energies to high energies. Finally, the
new landscape law captures the aspect of the integrated density of states.

Moreover we have established a closed formula for the localization landscape for these quasi-periodic
potentials. Although we were unable to clearly demonstrate it, the Fourier coefficients of the discrete
Fourier transform of the localization landscape seem to decrease exponentially in a very specific pattern
which can be linked to the hierarchical structure of the eigenfunctions [4, 15]. Unfortunately, the methods
we have used for these calculations should not work for higher dimensional systems, so generalizing these
formulae is most likely not possible.

Several properties of the localization landscape theory are no longer valid for Aubry-André potentials.
Interestingly, the linear relationship between the eigenvalues of the localized eigenfunctions and the
minima of the effective potential is conserved. However, the ratio is not the one found in the continuous
setting. For a large interval (about [0.1 0.9]), it is practically constant, but increases for both low and
high α. For this reason, the sharpest values for the constants C4, C5, and C6 also depend on these two
parameters contrarily to the values of the constants for the Anderson tight-binding model we have studied
in Chapter 3.

While the spatial structure of the eigenfunctions and their spectral structure was already well understood
in one-dimension [15], there remain questions concerning for instance the localization/delocalization tran-
sition in higher dimensions [9, 24] and in interacting systems [10, 23]. The localization landscape formalism
could potentially open the way for new methods to study these problems, especially considering there
have been recent breakthroughs extending this formalism to many-body systems [5].
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5.A Details for closed formula calculations

5.A.1 Forward sweep or Thomas algorithm

The Thomas algorithm is a special case of the Gaussian elimination algorithm for tridiagonal matrices [21].
For a matrix M of size n, an unknown vector X, and a known vector D, we assume the following
notation: where (ai)i ∈ {2...n} (sud-diagonal terms), (bi)i ∈ {1...n} (diagonal terms), (ci)i ∈ {1...n− 1}
(superdiagonal terms), (di)i ∈ {1...n} (known elements), and (xi)i ∈ {1...n} (unknown elements):



b1 c1 0
a2 b2 c2

a3 b3
. . .

. . .
. . . cn−1

0 an bn




x1

x2

x3

...
xn

 =


d1

d2

d3

...
dn

 (5.24)

The first step of the algorithm is to proceed with a forward sweep. For i = 2, 3, ..., n we redefine:

bi := bi −
ai
bi−1

ci−1 (5.25)

di := di −
ai
bi−1

di−1. (5.26)

The second step is a backwards substitution going from n to 1:

xn =
dn
bn

(5.27)

xi =
di − cixi+1

bi
(5.28)

The algorithm is considerably simplified if the elements are simple enough (0s or 1s for example, as in
out case).

5.A.2 Details for Discrete Fourier Transform calculation

We recall that we are calculating the Fourier coefficients ũk of the localization landscape. Inserting the
definition of the coefficients in the Aubry-André equation gives:

N−1∑
k=0

ũk

(
−e 2πi

N k(n+1) − e 2πi
N k(n−1)(2λ+ 2− 2λ cos (

2πnαn)

N
))e

2πi
N kn

)
= N (5.29)

Rearranging terms we obtain:

N−1∑
k=0

e
2πi
N kn

(
(−e 2πi

N k − e
−2πi
N k + (2λ+ 2))ũk − λ(ũk+nα + ũk−nα)

)
= N (5.30)

with k ∈ Z \N . Defining ωn = e−
2πi
N n:

N−1∑
k=0

ωkn
(
ũk(2λ+ 2− ωk1 − ω−k1 )− λũk+nα − λũk−nα

)
= N (5.31)
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We can therefore write the previous equation in matrix form:

V CŨ = NX, (5.32)

where V is a symmetric Vandermonde matrix: Vkl = ωl−1
k−1, C a matrix defined by: Ckl = (2λ+ 2−ωk1 −

ω−k1 )δkl − λ(δk(l+nα) + δk(l−nα)), and X a vector with all of its elements equal to one.

Noticing that:

N−1∑
j=0

ω̄kj ω
j
l = Nδkl, (5.33)

we can determine the inverse of V which is: V −1 = 1
N V̄ where ¯ stands for the complex conjugation

operation.

Therefore we have:

CŨ =
1

N
V̄ X (5.34)

In the same way, noticing that

N−1∑
k=0

ωki = δi0 (5.35)

the matrix equation is equivalent to:

(2λ+ 2− ωk1 − ω−k1 )ũk − λ(ũk+nα + ũk−nα) = Nδk0 ∀k ∈ Z \N. (5.36)

We will now reorder the terms in order to obtain a tridiagonal system. By defining a new vector Ũ ′k+1 =
ũknα , the previous system becomes a tridiagonal system:

C ′ =


2λ+ 2− 2 cos

(
2πknα
N

)
−λ ... −λ

−λ ... ... 0
... ... ... ...

−λ ... −λ 2λ+ 2− 2 cos
(

2π(N−1)nα
N

)
 (5.37)

and

Ũ ′ =


Ũ ′1
...

Ũ ′k
...

Ũ ′N

 X ′ =


N
0
...
...
0

 (5.38)

give us:

C ′Ũ ′ = X ′. (5.39)

Since the solution u is real, the Fourier coefficients verify ũk = ũN−k (which translates to Ũ ′k+1 =

Ũ ′N−k+1). We therefore only need to solve for twice as less unknowns. The first equation for example

gives us Ũ ′1 = Ũ ′2 + N
2λ . However now we need to separate the cases where N is odd or even for the last

equation.
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If N is odd, only Ũ ′1 is unique, thus we now have N+1
2 terms. The last equation of the matrix links terms

Ũ ′N+1
2 −1

, Ũ ′N+1
2

and Ũ ′N+1
2 +1

. The new matrix has the following form:

if N is odd: C ′ =


2λ+ 2− 2 cos

(
2π(k−1)nα

N

)
−2λ ... 0

−λ ... ... 0
... ... ... ...

0 ... −λ λ+ 2− 2 cos
(
π(N−1)nα

N

)
 (5.40)

If N is even, Ũ ′1 and Ũ ′N
2 +1

are unique, thus we have N
2 + 1 terms. The last equation this time links Ũ ′N

2

,

Ũ ′N
2 +1

and Ũ ′N
2 +2

. The matrix has the following form:

if N is even: C ′ =


2λ+ 2− 2 cos

(
2π(k−1)nα

N

)
−2λ ... 0

−λ ... ... 0
... ... ... ...
0 ... −2λ 2λ+ 2− 2 cos (πnα)

 (5.41)

Dividing by λ equation 5.36 (2λ for the first equation), as well as defining special functions fk =
2λ+2−2 cos ( 2π(k−1)nα

N )
λ simplifies the expression further. The new C ′ matrix is now :

if N is odd: C ′ =


1 −1 ... 0
−1 fk ... 0
... ... ... ...
0 ... −1 fN−1

2
− 1

 (5.42)

and

if N is even: C ′ =


1 −1 ... 0
−1 fk ... 0
... ... ... ...
0 ... −2 fN

2

 (5.43)

Using the forward sweep that is presented in the appendix 5.A.1 again, we can solve this system. We
will look only at the case where N is odd but the procedure is quite similar if N is even. If we define
sequences bk and dk as

b1 = 1, bk = fk −
1

bk−1
= fk −

1

fk−1 − 1
...−1

d1 =
N

2λ
, dk =

dk−1

bk−1
=

N
2λ

bk−1...b1
,

(5.44)

then the Uk terms can be rewritten:

Ũ ′N+1
2

=
dN+1

2

bN+1
2

=
N
2λ

bN+1
2
...b1

Ũ ′k =
dk
bk

+
Ũ ′k+1

bk
=
N

2λ

(
1

b1...bk
+

1

b1...b2kbk+1
+ ...+

1

b1...b2k...b
2
N+1

2 −1
bN+1

2

) (5.45)
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Chapter 6

Conclusion and perspectives

Throughout this thesis, we have expanded upon the already numerous properties of the localization
landscape, which helps the study of the spatial and spectral structure of eigenfunctions in disordered
media. In its first iterations, the localization landscape was seen as an effective tool for predicting
the sub-regions of localization. However more and more evidence points towards the fact that it is an
unavoidable underlying structure.

In a first part, we have developed the localization landscape and especially the effective confining po-
tential’s role in the confinement of the low energy eigenstates. We accounted for the wave-like nature
of the localized eigenfunctions to perfect the watershed algorithm that defines the various sub-regions of
localization. We have also shown how the localization landscape is used in defining the landscape law
for approximating the Lifshitz tails (the near 0 asymptotic behavior of the integrated density of states).
These two methods could prove to be instrumental in future computation techniques that look to ap-
proximate the counting function for low energy eigenstates without solving the eigen-equation for either
systems that are very large or of high dimensionality.

We then moved on to the high energy localization, and have shown that when the Hamiltonian is rewritten
to reveal the effective confining potential and the differential term 1

u2∇·
(
u2∇

)
, this latter term is capable

of localizing eigenfunctions at higher energies in 1D and 2D, but not at higher dimensions. While we
have presented evidence that the differential term can be a source of localization, we do not yet have any
clear understanding on its mechanism. The question whether this term could explain the emergence of
localization/delocalization transition at higher dimension remains open to conjecture.

And finally we used the Aubry-André model as a case study for the localization landscape, and established
some closed formula for the landscape. Nonetheless, many of the properties of localization landscape
theory in the continuous setting were interestingly not reproduced as such in Aubry-André potentials. It
is not yet clear whether the reason behind this is because of the discrete or pseudo-random nature of the
potential. The implication is that these incommensurate potentials should really be treated as a distinct
case and not be grouped with random potentials. Localization in Aubry-André potentials is a different
phenomenon from Anderson localization.

Through the works we have presented in this thesis, the localization landscape offers many new opportu-
nities in the study of localization. We have already suggested how it can help answer questions concerning
high energy localization and the localization/delocalization transition. The next direction that should
be taken is in addressing the question of many-body localization as that is the field with the most open
questions as of now. There have been a few attempts in trying to develop the landscape to include
interactions, but there is still work to be done in simplifying the theory and making it more manageable.
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