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Titre. Méthodes eulériennes pour les problèmes inverses en transport optimal

Résumé. Cette thèse a pour but de développer de nouvelles méthodes numériques
pour résoudre des problèmes inverses en transport optimal. On trouve les prob-
lèmes inverses dans diverses disciplines telles que l’astronomie, la géophysique, ou
l’imagerie médicale, mais aussi dans des domaines plus proches du sujet de cette
thèse, à savoir la vision par ordinateur, l’informatique graphique, et l’apprentissage
automatique. Les problèmes inverses sont en général difficiles à résoudre car ils
sont souvent mal posés (nombre infini de solutions, instabilités), et les modèles
non-linéaires du transport optimal apportent des défis supplémentaires. Cependant,
ces problèmes sont importants à résoudre car ils nous permettent d’obtenir des
résultats sur des quantités qui ne sont pas directement observables, ce qui peut
apporter de précieuses informations dans de nombreux cas. Les techniques exis-
tantes pour résoudre les problèmes inverses en traitement d’image et du signal et
en apprentissage automatique considèrent souvent les histogrammes comme des
vecteurs euclidiens. Elles ne parviennent donc pas à saisir et traiter correctement les
relations sous-jacentes entre les bins des histogrammes, définies par la géométrie du
domaine. Le transport optimal résout ce problème en définissant une distance entre
histogrammes (et plus généralement entre distributions de probabilité) basée sur les
distances entre les bins. Dans cette thèse, nous adaptons deux tâches classiques de
l’apprentissage automatique à la géométrie du transport optimal : l’apprentissage de
dictionnaire et l’apprentissage de métrique. Nos méthodes résolvent ces tâches en
tant que problèmes d’optimisation et sont fondées sur la régularisation entropique
du transport optimal, et la différentiation automatique. La régularisation fournit
des approximations rapides, robustes et régulières (lisses) du transport, ce qui est
essentiel pour obtenir des algorithmes d’optimisation efficaces. La différentiation
automatique apporte une alternative rapide et fiable à la dérivation analytique
manuelle, ce qui conduit à des méthodes flexibles. Nous illustrons nos deux al-
gorithmes sur des applications en traitement d’image et en traitement du langage
naturel.

Keywords. Transport optimal, Problèmes inverses, Optimisation, Informatique
graphique, Vision par ordinateur, Machine learning
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Title. Eulerian methods for inverse problems using optimal transport

Abstract. The goal of this thesis is to develop new numerical methods to address
inverse problems using optimal transport. Inverse problems appear in many disci-
plines such as astronomy, geophysics or medical imaging, but also in fields closer to
the focus of this thesis, namely computer vision, computer graphics, and machine
learning. They are difficult problems by nature as they are often not well posed:
they may have an infinite number of solutions and/or instabilities. Furthermore,
inverse problems that involve non-linear models such as optimal transport yield
additional challenges. However, they are important problems to solve since they give
access to quantities that are not directly observable, which provides major insight in
many cases. Existing techniques for inverse problems in signal/image processing
and machine learning often treat histograms as Euclidean data, thus failing to grasp
the underlying relationships between the bins, defined by the geometry of the do-
main. Optimal transport addresses this issue by building on the distance between
bins to produce a distance between histograms (and more generally probability
distributions). In this thesis, we adapt two well-known machine learning tasks to the
optimal transport framework: dictionary learning and metric learning. Our methods
address these tasks as optimization problems and rely on the entropic regularization
of optimal transport, and automatic differentiation. The regularization provides fast,
robust and smooth approximations of the transport, which are essential features for
efficient optimization schemes. Automatic differentiation provides a fast and reliable
alternative to manual analytical derivation, resulting in flexible frameworks. We
illustrate our algorithms with applications in image processing and natural language
processing.

Keywords. Optimal transport, Inverse problems, Optimization, Computer graphics,
Computer vision, Machine learning
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Résumé en français

Cette thèse a pour but de développer de nouvelles méthodes numériques pour
résoudre des problèmes inverses en transport optimal. Les problèmes inverses
sont une large catégorie de problèmes où l’on cherche les facteurs qui expliquent
l’observation d’un phénomène donné. Par exemple, en astronomie, l’image d’une
étoile obtenue avec un télescope est légèrement déformée et floutée par les lentilles,
par rapport à l’image réelle. Le problème inverse dans ce cas consiste à retrouver
l’image réelle de l’étoile, à partir de l’image obtenue par le télescope, et d’un modèle
de la manière dont le télescope déforme la réalité.

Mathématiquement, appelons f la fonction (ou le modèle) qui transforme les fac-
teurs (ou paramètres) x en observations y = f(x). Le problème direct consiste
à trouver y à partir de x et est généralement résoluble car il suffit s’appliquer la
fonction f à x. Dans l’exemple précédent, il s’agit simplement de capturer une image
de l’étoile avec le télescope. Le problème inverse est l’inverse du problème direct,
c’est-à-dire qu’il faut retrouver les paramètres x qui amènent à l’observation d’un y

donné : trouver la vraie image de l’étoile à partir de l’image capturée. En général,
on considère les problèmes inverses pour lesquels f est une fonction complexe
et non inversible. Ils sont souvent difficiles à résoudre car ils peuvent être mal
posés (nombre infini de solutions, instabilités), et les modèles non linéaires (tels
que ceux du transport optimal) apportent des défis supplémentaires. Cependant,
ces problèmes sont importants à résoudre car ils nous permettent d’obtenir des
résultats sur des quantités qui ne sont pas directement observables, ce qui peut
apporter des informations précieuses dans de nombreux cas. On trouve également
les problèmes inverses dans des disciplines plus proches du sujet de cette thèse, telles
que la vision par ordinateur (“shape from shading”, séparation de signaux, super
résolution), l’informatique graphique (problème de rendu inverse, “inpainting”)
et l’apprentissage automatique (estimation de paramètres, inférence statistique,
apprentissage supervisé).

En tant que sciences des données, ces disciplines utilisent fréquemment des outils
statistiques tels que des distributions de probabilité, par exemple sous la forme
d’histogrammes. Cependant, les méthodes existantes résolvant des problèmes in-
verses considèrent souvent les histogrammes comme des vecteurs euclidiens de R

N .
Elles ne parviennent donc pas à saisir et traiter correctement les relations sous-
jacentes entre les bins des histogrammes, définies par la géométrie du domaine.

Le transport optimal est une théorie mathématique qui résout ces problèmes en
utilisant la distance entre les bins pour définir une distance entre histogrammes

1



(et plus généralement entre distributions de probabilité) qui est géométriquement
plus significative que la distance euclidienne. Le transport optimal a été introduit
par le mathématicien Gaspard Monge dans son “Mémoire sur la théorie des déblais
et des remblais” en 1781 [Mon81]. Il pose le problème comme suit : étant donné
un tas de terre d’un volume donné et un trou du même volume négatif, quelle est
la manière optimale de transporter toute la terre du tas vers le trou ? Transporter
une portion de terre a un coût qui dépend de la distance parcourue, et le coût total
de transport est obtenu en additionnant le coût de transport de chaque portion de
terre multipliée par sa masse. Un transport est dit optimal quand il minimise ce
coût total, et c’est ce coût minimal qui définit la distance entre des distributions
de probabilités (vues comme des tas de terre), appelée distance de Wasserstein. La
théorie du transport optimal ne définit pas seulement une distance, elle fournit aussi
de puissants outils non linéaires pour modéliser des problèmes faisant appel à des
notions de moyenne, de chemin ou de coût. En particulier, la moyenne pondérée
entre des distributions, au sens de la distance de Wasserstein est appelée barycentre
de Wasserstein, et la trouver est un problème inverse en soi.

Les problèmes inverses auxquelles nous nous sommes intéressés dans cette thèse
sont ceux qui utilisent ces barycentres de Wasserstein dans le modèle, c’est-à-dire
dans le problème direct. Nous cherchons donc à inverser un modèle qui contient
lui-même des résolutions de problèmes inverses. Ce genre de problème a encore
été peu étudié : la majorité des problèmes inverses impliquant le transport optimal
n’utilisent que des distances de Wasserstein et pas de barycentres. Nos algorithmes
font appel à la régularisation entropique du transport optimal, qui fournit des ap-
proximations rapides, robustes et régulières (lisses) du transport, ce qui est essentiel
pour obtenir des algorithmes d’optimisation efficaces. Ils utilisent également les
techniques de différenciation automatique, qui apportent une alternative rapide
et fiable à la dérivation analytique manuelle, et qui conduit à des méthodes flexi-
bles. Nous étendons deux problèmes classiques de l’apprentissage automatique à la
géométrie du transport optimal : l’apprentissage de dictionnaire et l’apprentissage
de métrique.

L’apprentissage de dictionnaire consiste à trouver, à partir de plusieurs éléments
en entrée (images, histogrammes, etc.), un dictionnaire restreint d’éléments de
référence (appelés atomes) qui en soient les plus représentatifs. Pour s’assurer
que les atomes soient représentatifs, il faut qu’ils puissent ensemble reconstruire
chaque élément d’entrée le plus fidèlement possible (selon un certain critère).
Dans le cas classique, cette reconstruction s’opère avec des combinaisons linéaires
entre les atomes, pondérées par des poids. Nous étendons le cas classique aux
histogrammes, en remplaçant les combinaisons linéaires par des barycentres de
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Wasserstein, également pondérés par des poids. Nous posons le problème comme la
minimisation de l’erreur de reconstruction des histogrammes d’entrée, et optimisons
conjointement les atomes et les poids. Nous illustrons notre algorithme au travers
d’applications en traitement d’image et traitement du langage naturel, et présentons
également quelques extensions de cet algorithme.

L’apprentissage de métrique consiste classiquement à apprendre un ensemble de
distances entre des éléments, afin qu’elles correspondent aux informations prescrites
de similarité et dissimilarité entre ces éléments. En transport optimal, la distance de
Wasserstein est directement dépendante de la distance entre les points du domaine,
souvent appelée la métrique. Quand cette métrique est le carré de la distance
euclidienne, tous les éléments de matières (portions de terre) se déplacent en ligne
droite lors du transport. Dans le cas où on observerait un transport de matière
dont les trajectoires ne sont pas rectilignes, on peut tenter de résoudre le problème
inverse suivant : existe-t-il une métrique pour laquelle ce déplacement est optimal,
et si oui, laquelle ? Nous posons le problème d’apprendre, à partir d’une séquence
de déplacement de matière sur un graphe, la métrique selon laquelle ce transport
serait optimal. La séquence de déplacements est un ensemble de distributions de
probabilité sur les noeuds d’un graphe à différents instants, et la métrique est une
métrique de graphe, c’est-à-dire un poids sur chaque arête traduisant la facilité
de déplacement de la matière à travers cette arête. Nous calculons les distances
géodésiques sur le graphe à l’aide de l’équation de diffusion, ce qui permet un
algorithme d’optimisation efficace. Nous validons notre approche sur des données
synthétiques, puis sur l’apprentissage de variations de couleurs dans des séquences
d’images.
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Introduction 1
Inverse problems are a broad category of problems in which we aim to find the
factors that explain the observation of a phenomenon. A classical inverse problem
in signal processing is the source separation, also known as the “cocktail party
problem”: if you record the sound of people chatting at a cocktail party, you get a
superposition of different voices and chatter. The problem is then to recover the
factors that explain the recorded sound, which in this case consists in separating
individual voices in the crowd. Another typical inverse problem is tomography, an
imaging technique in which we reconstruct an image of a physical body’s interior,
from sectional measurements taken from outside. Tomography is used for example
in radiology to reconstruct the volume of a body part from absorption or emission
measurements along multiple directions (CT-Scan, MRI, etc.), but also in geophysics
to retrieve physical properties (density, conductivity, etc.) of the Earth’s interior from
acoustic waves observed at its surface. These examples demonstrate the relevance
of inverse problems in various fields, and the importance of studying them.

Mathematically, let f be the function that transforms the factors, or parameters x

into the observations y = f(x). The direct or forward problem is to find y given x,
and is generally solvable assuming we are able to apply f . The inverse problem is
the “inverse” of the direct problem, that is, to find the parameters x that explain the
observation of y. In general, we consider inverse problems where f is a complex
non-invertible function. Such problems are important and theoretically interesting
because they inform us on quantities that are not directly observable, which provides
major insight in many disciplines. Inverse problems where f is a linear function
have been well studied. When they are discrete (or discretized), they result in
linear systems of equations, and a large panel of tools exists to solve these systems.
Non-linear inverse problems, however, are inherently more challenging as there is no
“one-fits-all” approach to solve them. One usually tackles them using optimization
methods, as we detail in the next section. They are still actively studied and are the
problems of interest in this dissertation.

Inverse problems are frequent in data-oriented disciplines such as image/signal
processing and machine learning, which are important bricks of our fields of interest,
that is, computer graphics and computer vision. These two fields can actually be seen
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as inverse to each other: one goes from a structured scene to rendered images while
the other infers structure from real images. Inverse problems in signal processing
include deconvolution, inpainting, source separation, super resolution or shape from
shading. In machine learning, tasks such as model fitting, statistical inference, or
supervised learning can be considered inverse problems.

As data sciences, signal processing and machine learning commonly use statistical
distributions, such as histograms, to model, represent or summarize data. Some
examples are color palettes or reflectance functions in computer graphics, SIFT
features, histograms of oriented gradients, or Hough transforms in computer vision,
and bag-of-words, histogram features or distance histograms in machine learning.
In these fields, existing techniques for solving inverse problems involving histograms
often treat them as Euclidean data i.e. (feature) vectors in R

N . Therefore, they fail
to grasp the underlying relationships between the bins, defined by the geometry
of the “ground” domain. For instance, when comparing two color histograms, two
neighboring bins represent similar colors, however the Euclidean distance only
compares histograms bin-wise and therefore does not account for that similarity.

Optimal transport (OT) is a mathematical theory that addresses this issue by building
on the ground distance between bins to establish a distance between histograms
(and more generally probability distributions) that is geometrically more meaningful
than the Euclidean distance. OT was introduced by the French mathematician
Gaspard Monge in “Mémoire sur la théorie des déblais et des remblais” in 1781
[Mon81]. Informally, he posed the problem as follows: Given a pile of earth of a
certain volume and a pit of that same negative volume, what is the optimal way to
transport earth from the pile to the pit? An illustration is provided in Figure 1.4.
Transporting earth has a cost, which depends on the distance traveled by each
particle of earth. The total cost of transport is obtained by summing the transport
costs of each particle. A transport is optimal when it minimizes this total cost. This
minimum cost defines a distance between probability distributions (piles of earth).
Not restricted to distances, optimal transport also provides powerful non-linear
modeling tools for problems dealing with averages, paths or costs. We are thus
interested in solving inverse problems for which the forward problem involves OT
and is therefore non-linear.

One of the main challenges in this thesis is posed by non-linear inverse problems:
they are often not well posed (see [Kir11]), which makes them difficult to solve. For
example, different values for the parameters x may lead to the same observations y.
Moreover, solving OT problems is costly and addressing OT inverse problems is even
more so, as it requires repeated calls to OT solvers during the optimization process.
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Therefore, another challenge is to develop scalable and robust algorithms to mitigate
these issues and solve inverse problems of large size in reasonable time.

1.1 Context of the thesis

In this section, we introduce inverse problems in further detail, then present some
basic notions of probability theory and finally present a brief historical review on
optimal transport.

1.1.1 Inverse problems

Following the notations of the introduction, f is a function, and x and y are elements
of the domain and codomain of f respectively, such that y = f(x). We often
designate f as a model depending on parameters x, producing a prediction f(x) to
model the observations y. See Figure 1.1 for an illustration.

x yf

Direct problem

Inverse problem

Figure 1.1: Illustration of the direct and inverse problems

We will not recall the theory of linear inverse problems, which are solved as linear
systems of equations, but refer the reader to textbooks on linear algebra. As we just
mentioned, interesting non-linear inverse problems are generally not well posed
(what is called ill-posed [Kir11]), which means that they might have either zero or
more than one solutions, or that they may have stability issues : the parameters
x do not vary continuously with changes in the observations y. When inverse
problems have no solution (i.e. they are over-constrained), one either relaxes some
constraints of the problem, or finds the best approximate solution, which is the
one that minimizes a given similarity criterion between y and f(x). When inverse
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problems have multiple solutions (i.e. they are under-constrained), one often resorts
to the regularization of the problem which adds prior assumptions about the solution,
such as sparsity, smoothness, etc. This restriction of the problem reduces the space
of solutions and averts overfitting.

Inverse problems are typically written as optimization problems, as we attempt to
minimize the difference between the prediction of the model and the observations.
Formally, they can be written as

min
x

E(x) def.= L(f(x), y) , (1.1)

where L is a similarity criterion, also called loss function, and E is called the energy
or objective function. When there are multiple observations and the model aims to
reconstruct each of them as faithfully as possible, the formulation simply extends
to

min
x

E(x) def.=
∑

i

L(f(x, i), yi). (1.2)

Solving an inverse problem is then achieved with an optimization method chosen
according to the problem at hand, and generally requires the computation of the
gradient of the energy E with respect to the parameters x.

1.1.2 Notions of probability

In this dissertation, the mathematical objects of interest are probability distributions,
also called probability measures. A probability distribution is a real-valued function
that assigns to sets of events, the probability of their realization. Identical to random
variables, probability distributions can be discrete or continuous, depending on
whether they measure a countable or uncountable set of possible outcomes Ω. For
example, the roll of a die leads to a discrete set of possible outcomes {1, 2, 3, 4, 5, 6},
whereas the random variable describing the angle at which a weather vane points is
measured on the continuous set [0, 2π[.

We define the probability simplex as the set of vectors whose components are positive
and sum up to 1:

ΣN
def.=
{

a ∈ R
N
+
∣∣ N∑

i=1
ai = 1

}
. (1.3)

8 Chapter 1 Introduction



Figure 1.2: Left column: 1-D discrete distribution of a fair die (top) and of a trick die
(bottom) Right column: 1-D continuous distribution of wind directions in Lyon
(top) and Marseille (bottom).

We define a discrete distribution (or discrete measure) α as a sum of weighted Dirac
distributions supported at locations x1, . . . , xM :

α =
M∑

i=1
aiδxi , (1.4)

with the weight vector a = (ai)i belonging to the probability simplex ΣM .

When a probability distribution is continuous, it is generally associated with a
probability density function: the probability of a (continuous) subset of Ω is then
obtained by integrating the density function over that subset. Illustrations of 1-
dimensional discrete and continuous distributions are shown in Figure 1.2.

Dealing with continuous distributions on a computer requires a proper discretization.
Two common ways to do so are the Lagrangian and Eulerian approaches, borrowed
from the field of fluid mechanics. When we consider a fluid motion, the Lagrangian
approach is to follow individual particles and study their properties such as their
position, velocity, etc. On the other hand, the Eulerian approach is to look at fixed
points of the domain and study quantities such as the fluid density or velocity at
each of those points. See Figure 1.3 for examples of such discretizations on a 2-D
distribution. In summary:
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• A Lagrangian discretization of a continuous distribution is a discrete distribu-
tion with point locations sampled from the continuous one, and fixed weights
(generally uniform).

• A Eulerian discretization of a continuous distribution is a discrete distribution
with fixed point locations (usually) on a grid, and weights matching the density
function of the continuous distribution integrated over each cell defined by
the grid.

(a) (b) (c) (d)

Figure 1.3: (a) 2-D continuous distribution. (b) Lagrangian discrete distribution, which
is a realization of the first one (samples are drawn from it). (c) Eulerian
discrete distribution of the first distribution, also called a histogram. (d) 3-D
representation of the histogram, with height proportional to the density of the
continuous distribution.

We call a “histogram” a Eulerian discretization of a continuous distribution. His-
tograms can be defined solely by their weight vector (and the extent of their domain)
since the point locations are implicitly defined by the grid. In this dissertation,
we deal with histograms that are defined on square d-dimensional domains, such
that the number of bins N = nd, with n the number of grid samples per axis.
We generally refer to the domain dimension d as the histogram’s dimension, even
though that term can sometimes be interpreted as its total size N in the literature.
We will interchangeably use the terms “distribution”, “measure” or “density” for
general distributions (either discrete or continuous). Probability is often referred to
as “mass”, by analogy with the law of mass conservation in physics, since the total
probability over a domain Ω is always 1.

1.1.3 Optimal transport

We now present OT more formally, starting with the Monge problem, introduced
in 1781 [Mon81]. We consider two probability distributions μ and ν supported on
respective measure spaces X and Y . The Monge problem is to find a transport map
T that assigns to every x ∈ X a single y = T (x) ∈ Y , such that all mass of μ is
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transported to ν, and the total transport cost is minimized (see Figure 1.4). The
Monge problem is therefore written as

min
T s.t. T#μ=ν

∫
X

c(x, T (x))dμ(x), (1.5)

with c : X × Y → R the cost function, often taken as a power p of the Euclidean
distance. Essentially, we sum for each point x in X the amount of mass dμ(x)
present at that point multiplied by the cost c(x, y) of transporting it to its destination
y = T (x), and seek to minimize that sum. The rigorous definition of the push-
forward operator T# is beyond the scope of this thesis, but it is essentially the “twin”
of the map T that acts on probability distributions instead of points. Therefore,
T#μ = ν ensures that all mass of μ is transported to ν, i.e. no mass is lost.

Figure 1.4: Illustration of optimal transport between two distributions μ and ν supported
on 1-D spaces X and Y . The map T transports each point x of X to a point
y = T (x) in Y .

When dealing with discrete distributions, the Monge formulation can model an
optimal assignment problem. Indeed, when both distributions have the same number
of Dirac masses and uniform weights, the Monge problem searches for a one-to-one
matching (a bijection) between points, that minimizes the total cost.

In 1942, the Russian mathematician Leonid Kantorovich recast this problem [Kan42]
and applied it to the optimal allocation of resources, for which he won a Nobel prize
in economics. The Kantorovich formulation is a relaxation of the Monge formulation
(1.5). Instead of modeling the point assignments with a map T , it uses a joint
probability distribution (or coupling) π over the product space X × Y , with π(x, y)
giving how much mass is transported from x to y. This allows a separation of the
mass present at x to different destinations y, which was not possible in the Monge
formulation since T is a map (to each x is assigned a single y = T (x)). Therefore,
the Kantorovich problem is to find

L (μ, ν) def.= min
π∈U(μ,ν)

∫
X×Y

c(x, y)dπ(x, y) (1.6)
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Figure 1.5: Illustration of a coupling π with its two marginals μ and ν. Integrating π along
one axis gives μ, and integrating it along the other axis gives ν. This coupling is
not optimal, it is simply the product π(x, y) = μ(x)ν(y).

with U(μ, ν) the set of couplings that have μ and ν as marginals, i.e. that verifies

∫
Y

dπ(x, y) = dμ(x) and
∫

X
dπ(x, y)dν(y) (1.7)

An illustration of a coupling and its marginals is shown in Figure 1.5.

In practice, we generally use the Kantorovich formulation to solve OT problems
because it is less restrictive and easy to discretize, as described in the following
chapter (2.1.1).

One of the main advantages of OT is that it defines a distance between probability
distributions. If the cost is taken as a power of a distance d on the domain X = Y :
c(x, y) = d(x, y)p, then L (μ, ν)1/p defines a distance between probability measures,
called the p-Wasserstein distance. This distance is often more geometrically signifi-
cant than other distribution distances, because it takes into account the underlying
geometry of the domain, which is encoded in the distance function d. It is worthy to
note that the p-Wasserstein distance is defined for arbitrary distributions, meaning
that they can be discrete or continuous (see Figure 1.3). This versatility enables the
use of OT in various fields of application.

The p-Wasserstein distance is often referred to as the earth mover’s distance (EMD)
when p = 1 and as the quadratic Wasserstein distance when p = 2. In this thesis,
we focus on the latter, which we simply call Wasserstein distance for simplicity. The
space of probability measures endowed with the Wasserstein distance is called the
Wasserstein space. The distance function d on the domain is frequently referred to
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as the ground distance, following Rubner et al. [Rub+00], and the domain as the
ground space by extension.

The next surge of interest for OT appeared in the mathematics community in the
nineties, with the landmark paper of Brenier [Bre91]. Further research unveiled the
intermediate role of optimal transport between fluid mechanics, probability theory,
geometry, optimization and partial differential equations. In particular, some of these
advances were rewarded with Fields medals, for C. Villani in 2010 and A. Figalli in
2018. As many applied mathematicians and statisticians worked on developing the
optimal transport theory, efficient methods to solve OT problems computationally
appeared in the 2010’s, which led to an increasing use of the tools provided by OT,
in data science, computer graphics and computer vision. Applications of OT in these
fields are detailed in the next chapter (2.1.6). We refer the reader to the books by
Villani for a theoretical review of OT [Vil03; Vil09], and to those by Peyré and Cuturi
[PC18], and Santambrogio [San15] for a more computational review.

To summarize, optimal transport is an attractive tool from both the theoretical and
applied perspectives, and is getting increasingly popular in various communities for
its versatility.

We are therefore interested in tackling inverse problems in computer graphics, com-
puter vision and machine learning, using optimal transport. Such problems are
important as they could improve existing methods dealing with probability distribu-
tions, since OT handles them in a geometrically meaningful way. One specificity of
the inverse problems we address is that, contrary to most learning problems using
OT, they do not employ the Wasserstein distance simply as a loss function. They
involve quantities that are themselves built upon the Wasserstein distance, such as
Wasserstein barycenters (see 2.1.4). OT is therefore used in the model we aim to
invert, rather than solely at its output for comparing reconstructions.

In this manuscript, we solve two inverse problems that are machine learning prob-
lems, namely dictionary learning and metric learning, in the context of optimal
transport. In brief, dictionary learning consists in finding a restricted basis of ele-
ments which can best represent a (large) dataset, and metric learning is the search
of a set of distances between elements in a space, so that they match prescribed sim-
ilarity information. Both of our algorithms are based on the entropic regularization
of OT, which smooths computed quantities (distances, barycenters). This introduces
bias in the results, but allows for fast computations and differentiability.
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1.2 Structure of the manuscript

In chapter 2, we introduce the concepts of OT in greater detail, as well as the
background on dictionary learning and metric learning. In chapter 3, we develop
a non-linear unsupervised dictionary learning algorithm in the Wasserstein space.
In chapter 4, we introduce a new framework to learn the ground metric of optimal
transport, where it is restricted to be a geodesic distance on a graph. Finally, we
conclude this thesis in chapter 5, and discuss possible future work.

1.3 Notations

• u: vectors are in lowercase bold letters

• A: matrices are in uppercase bold letters

• AT : transpose of matrix A

• 1N : vector of ones of size N

• IdN , Id: identity matrix of size N × N or of implicit size

• diag(u): matrix with diagonal u and zero otherwise

• 〈u, v〉 def.= uT v = ∑
i uivi: inner product between vectors

• 〈A, B〉 def.= tr(AT B) = ∑
ij AijBij: Frobenius inner product between matrices

• �: Hadamard (entry-wise) product between vectors or matrices

• log(·), exp(·): entry-wise logarithm and exponential of vectors and matrices

• [ai]j: j-th coordinate of the i-th vector of a family A = [a1, . . . , am].
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Preliminaries 2
In this chapter, we first provide the background on computational optimal transport,
and in particular on its entropic regularization. We then proceed to a state of the
art on applications of OT in machine learning and computer graphics, as well as on
the two concepts our contributions rely on, that is, dictionary learning and metric
learning.

2.1 Optimal transport

In the introduction, we have presented optimal transport in the more theoretical
continuous setting. Since this thesis focuses on the computation of optimal transport,
we present the context in the discrete setting, and consider distributions that are
histograms. We define the set of admissible couplings between two histograms a and
b as the set of matrices having a and b as marginal distributions (discrete equivalent
of (1.7)):

Π(a, b) def.=
{

P ∈ R
N×N
+ | P1N = a and PT1N = b

}
. (2.1)

An admissible coupling matrix P ∈ Π(a, b) is also called a transport plan, because
Pi,j can be interpreted as the amount of mass to be transported from bin i of a to
bin j of b.

2.1.1 The Kantorovich problem

Optimal transport aims to find the transport plan P that minimizes a total cost,
which is the mass transported multiplied by its cost of transportation. This is called
the Kantorovich problem and it is written

WC(a, b) def.= min
P∈Π(a,b)

〈C, P〉 (2.2)

The matrix C ∈ R
N×N
+ defines the cost Ci,j of transporting one unit of mass from

bin i to j. In the Eulerian setting (our case of study), this cost matrix is fixed, as the
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point locations are the same for all histograms defined on the grid. In the Lagrangian
setting however this cost matrix is computed for each pair of distribution. This
nuance is important when differentiating WC(a, b) with respect to its inputs.

As mentioned in 1.1.3, if the cost matrix derives from a distance d on the domain, i.e.
Ci,j = Dp

i,j = d(xi, xj)p, then WC(a, b)1/p defines a distance between histograms,
called the p-Wasserstein distance.

The transportation problem (2.2) is a linear program (LP), and was in fact one of
the choice applications during the developments of linear programming algorithms,
pioneered by, among others, Tolstoı [Tol30], Hitchcock [Hit41] and Kantorovich
himself [Kan42]. We refer to [PC18, §3.1] for more details on the Kantorovich linear
program, and to [Bon+11] for a comparison of simplex algorithms to solve it.

2.1.2 Entropic regularization

Solving optimal transport has been a challenge until the last decade because of
the computational burden it involves. The best linear solver to date for OT is the
network simplex [KK12] with a worst-case time complexity of O(N3), and O(N2) in
some configurations [Bon+11]. Moreover, p-Wasserstein distances lack smoothness
and are not very robust. Indeed, a slight change in the input measures can perturb
the transport plan to a significant extent.

For this reason, cheaper approximations and regularizations of the original problem
(2.2) have been proposed in order to address those issues. For example, the sliced
approximation computes OT distances between d-dimensional histograms, from
OT distances between their 1D projections, which are computable in closed-form
[Rab+11; Bon+15]. Some methods seek embeddings of the Wasserstein space to
reduce the complexity of computing distances, using the Wavelet transform [SJ08],
or auto-encoders [Cou+17]. Better theoretical bounds on additive approximations
of the transport have recently been proposed, based on specialized linear programs
[Qua18].

Another line of research relies on regularizations of the problem. Among them, the
entropy regularization [Cut13] adds a trade-off between a minimum transport cost
and a maximum Shannon entropy of the transport plan. This leads to a simple
and computationally efficient algorithm, which we detail later on. The entropic
regularization has had a large impact in the fields of machine learning and computer
graphics (see section 2.1.6).
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Other regularizations of the transport map have been proposed. Some of them aim
to reduce artifacts in color transfer, either as a post-processing step via non-local
filtering [Rab+10], or directly integrated in the formulation using the Lp norm of
the transport map’s gradient [Fer+13]. Others, like the entropic regularization, are
designed to reduce the complexity of the problem. An example is the quadratic
regularization [Blo+18; ES18] which, unlike the entropic one, leads to sparse
approximations of the transport plan. Finally, unified frameworks to handle any
strongly convex regularizers have also been introduced [Dvu+18; Des+18b].

In this thesis we have worked mainly with the entropic regularization, because it
produces smooth, and thus differentiable quantities which is very convenient for
solving inverse problems. Moreover, the scalability it provides compared to simplex
algorithms is crucial for machine learning and computer graphics applications
involving large size histograms. The entropy-regularized problem is written as

Wε
C(a, b) def.= min

P∈Π(a,b)
〈C, P〉 − εH(P), (2.3)

where H(P) def.= −∑
i,j Pi,j (log(Pi,j) − 1) is the discrete entropy.

This regularization introduces a smoothness in the transport plan by allowing its
entropy to increase. The obtained quantity is a smooth approximation of the exact
Wasserstein distance, which is controlled by ε. One can see the addition of entropy
as having a probabilistic assignment, meaning that we tolerate that points are not
matched one to one, but are rather distributed among the neighboring target points.
Moreover, it transforms the problem into one that is solvable through an inexpensive
iterative scaling method, as we are about to see.

Equation (2.3) is a constrained optimization problem, and in order to solve it as
an unconstrained one, we add Lagrange multipliers for the constraints [Uza14].
Introducing the vectors f and g for the equality constraints in Π(a, b), the Lagrangian
of (2.3) is

L(P, f , g) def.= 〈C, P〉 − εH(P) − 〈f , P1N − a〉 −
〈
g, PT1N − b

〉
. (2.4)
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Let us now write the first order optimality condition of this functional, for each entry
Pi,j:

∂L(P, f , g)
∂Pi,j

= 0

⇒ Ci,j − ε log(Pi,j) − f i − gj = 0
⇒ ε log(Pi,j) = −Ci,j + f i + gj

⇒ Pi,j = exp(f i/ε) exp(−Ci,j/ε) exp(gj/ε). (2.5)

As a result, the optimal transport plan can be written as

P = diag(u)K diag(v), (2.6)

with the kernel K, and the so-called scaling vectors u and v defined as:

K def.= exp(−C/ε) (2.7)

u
def.= exp(f/ε) (2.8)

v
def.= exp(g/ε). (2.9)

The vectors f and g are also called the dual potentials, because they appear in the
dual problem associated with (2.3), see [PC18, §4.4].

The kernel K is sometimes referred to as the Gibbs kernel, in analogy with the
Gibbs measure, which is also known in physics as the Boltzmann distribution. This
distribution is used to describe the probability that a system is in a particular state (or
configuration), depending on that state’s energy and the temperature. Following that
analogy, the entropic parameter ε is sometimes called the “temperature” [Dup+16;
Fey+19], in particular in the seminal paper that first proposed the Sinkhorn algo-
rithm to solve an assignment problem [KY94].

The Sinkhorn algorithm

Sinkhorn and Knopp [SK67] proved that a fixed-point iteration can be used to obtain
such a decomposition. It consists in alternatively scaling the rows and columns of
the kernel K so that it satisfies the marginal constraints of Π(a, b) : P1 = a and
PT1 = b. This is equivalent to performing Bregman projections [Bre67] for the
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Kullback-Leibler divergence, as described later in this section. Denoting P(0) = K,
this iterative procedure can be written as follows:

P(2l+1) = diag
(

a

P(2l)1

)
P(2l) (2.10)

P(2l+2) = P(2l+1) diag
(

b

P(2l+1)T
1

)
. (2.11)

However, considering the decomposition (2.6), we show hereafter that these iterates
can be simplified to handle only the scaling vectors u and v.

Let us denote P(2l) = diag(u(l))K diag(v(l)) and P(2l+1) = diag(u(l+1))K diag(v(l)),
and recall that a � b

def.= diag(a)b is the component-wise multiplication of vectors.
Then, we can simply the following terms:

P(2l)1 = diag(u(l))K diag(v(l))1
= diag(u(l))Kv(l)

= u(l) � Kv(l) (2.12)

P(2l+1)T
1 =

(
diag(u(l+1))K diag(v(l))

)T
1

= diag(v(l))T KT diag(u(l+1))T1

= v(l) � KT u(l+1). (2.13)

Equation (2.10) thus becomes

diag(u(l+1))K diag(v(l)) = diag
(

a

u(l) � Kv(l)

)
diag(u(l))K diag(v(l))

⇒ diag(u(l+1)) = diag
(

a

u(l) � Kv(l)

)
diag(u(l))

⇒ u(l+1) = a

Kv(l) .

By a similar calculation for (2.11), we obtain the following scheme, which is known
by many names in the literature (see [PC18, Remark 4.4] for a historical review),
among which, the Sinkhorn algorithm:

u(l+1) = a

Kv(l) (2.14)

v(l+1) = b

KT u(l+1) ,

with v(0) = 1N . The corresponding algorithm is detailed in Algorithm 1.

This simplification is a major advantage of this method, as it does not require the
computation or storage of the full coupling matrix P. Moreover, it only performs
matrix-vector products and element-wise multiplications and divisions, which is
highly parallelizable, as shown at the end of this section.
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The regularized Wasserstein distance Wε
C(a, b) can also be computed without con-

structing the entire coupling matrix, relying only on the scaling vectors and the input
histograms. From (2.5), we have that log P = log u1T + log K + 1 log uT . Then,
(2.3) becomes

〈C, P〉 − εH(P) = 〈−ε log K, P〉 + ε 〈P, log P〉
= ε 〈P, log P − log K〉
= ε

〈
P, log u1T + 1 log vT

〉
= ε

〈
P, log u1T

〉
+
〈
P,1 log vT

〉
= ε 〈P1, log u〉 +

〈
1T P, log vT

〉
= ε 〈P1, log u〉 +

〈
PT1, log v

〉
.

At convergence, the marginal constraints are satisfied, therefore the regularized
Wasserstein distance, also called the Sinkhorn distance, can be approximated through
L iterations:

Wε
C

(L)(a, b) = ε
(〈

a, log(u(L))
〉

+
〈
b, log(v(L))

〉)
. (2.15)

Algorithm 1 Sinkhorn: Computation of the entropy-regularized Wassersein distance
Wε

C(a, b)
Input: Histograms a, b ∈ ΣN , kernel K = exp(−C/ε) ∈ R

N×N , number of
iterations L
v(0) = 1N

for l = 1 . . . L do
u(l) = a/Kv(l−1)

v(l) = b/KT u(l)

end for
Output: Wε

C
(L)(a, b) = ε

(〈
a, log(u(L))

〉
+
〈
b, log(v(L))

〉)

Influence of the regularization parameter

In Figure 2.1, we show how the regularization parameter ε controls the entropy
(smoothness) of the transport plan. The left-most image is obtained by setting ε

high enough, such that P reaches maximum entropy: h(P) = h(a) + h(b). It is
then equivalent to the contingency table of two independent variables distributed
according to a and b: P = abT . The following images show how the entropy
(diffuseness) of the transport plan decreases as ε tends to 0. The right-most image is
the true transport plan P∗ obtained by solving the LP (2.2) with a network simplex
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Figure 2.1: Effect of entropic regularization on the transport plan, depending on ε. Large
values of ε result in a transport plan equivalent to the outer-product abT (far-
left). As ε decreases, the approximation gets closer and closer to the exact
transport plan (far-right), but it requires more and more iterations (thus more
time) since convergence decreases with ε.

algorithm [Bon+11], which corresponds to ε = 0 in (2.3), and the state of minimal
entropy.

It is important to note that as ε decreases, the Sinkhorn algorithm is slower to
converge. The convergence of the Sinkhorn algorithm can be estimated by looking
at the marginal constraint violation, which we measure as a relative error:

ε(l) =

∣∣∣∣∣∣P(l)1 − a
∣∣∣∣∣∣

2
||a||2

=

∣∣∣∣∣∣u(l)Kv(l) − a
∣∣∣∣∣∣

2
||a||2

. (2.16)

Empirically, we observe that ε(L) = O(εL), which means that when decreasing ε, the
number of iterations L necessary to reach the same level of convergence grows in
O(ε−1). The convergence of the algorithm is therefore independent of the histogram
size N , as demonstrated in [Cut13, §5]. In this empirical study, Cuturi [Cut13] also
argues that in practice, it is sufficient to set a fixed number L of iterations, rather
than choosing a stopping criterion that depends on a convergence measure such as
ε(l) or the relative reduction of the energy.

A practical issue with the Sinkhorn algorithm is that numerical instability increases
as ε decreases. Figure 2.2 illustrates the evolution of the transport plan and the
scaling vectors u and v during the Sinkhorn algorithm. We see that for ε = 1.10−3,
after 5000 iterations the range of values in the scalings is [10−141, 10109]. In the
example of Figure 2.1, numerical limits (i.e. division by zero which leads to NaN)
are reached in the scaling vectors, for ε = 3.10−4 and L = 500. This issue can
however be addressed by conducting the Sinkhorn iterations in the log domain, as
mentioned by Benamou et al. [Ben+15] and implemented in Schmitzer [Sch16].
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(a) Transport plan (b) Scaling u (c) Scaling v

Figure 2.2: Evolution of the transport plan and scaling vectors u and v during
Sinkhorn iterations (from blue to red), for logarithmically spaced iterations:
{4, 17, 71, 292, 1209, 5000}, and ε = 1.10−3.

To conclude, tuning the parameter ε is a trade-off between the coarseness of the ap-
proximation, the diffusiveness of the optimal transport plan, and the computational
effort required to solve the problem.

Links to the KL divergence

The Kullback-Leibler divergence, also known as relative entropy or information gain,
between coupling matrices is defined as

KL(P|K) def.=
∑
i,j

Pi,j

(
log

(
Pi,j

Ki,j

)
− 1

)
. (2.17)

Problem (2.3) can be rewritten as a KL projection of the kernel K on the constraint
polytope Π(a, b):

Wε
C(a, b) = min

P∈Π(a,b)
〈P, C〉 − εH(P)

= min
P∈Π(a,b)

∑
i,j

Pi,jCi,j + ε (Pi,j log(Pi,j) − Pi,j)

= min
P∈Π(a,b)

∑
i,j

Pi,j(−ε log(Ki,j)) + ε (Pi,j log(Pi,j) − Pi,j)

= min
P∈Π(a,b)

ε
∑
i,j

Pi,j log( Pi,j

Ki,j
) − Pi,j

= min
P∈Π(a,b)

ε KL(P|K). (2.18)

The optimal coupling P∗
ε is therefore the one that minimizes the information gained

from K to P, while still lying in the convex polytope Π(a, b).
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The admissibility set Π(a, b) can be written as the intersection of two convex sets:

C1
def.=
{

P ∈ R
N×N
+ | P1N = a

}
and C2

def.=
{

P ∈ R
N×N
+ | PT1N = b

}
. (2.19)

As mentioned in [Ben+15], starting from P(0) = K, iteratively performing Bregman
projections (for the KL divergence) of P on the two convex sets C1 and C2 converges
to the optimal solution of (2.18). This is in essence what the Sinkhorn algorithm
(2.14) does.

Parallelization

The Sinkhorn algorithm can easily be generalized to compute multiple distances at
once. Indeed, considering there are R distances to compute, one only needs to stack
the scaling vectors into N × R matrices U and V, stack the marginals into matrices
A and B, and obtain the parallel Sinkhorn algorithm:

U(l) = A
KV(l−1) (2.20)

V(l) = B
KT U(l) ,

with U(0) = 1N×R. All operations are highly parallelizable, which makes the
algorithm very efficient when implemented on a multicore CPU or on a GPU.

Kernel applications and separability

As noted in [Sol+15], when histograms lie on a Euclidean grid and the transport
cost is the squared Euclidean distance, a special structure arises in the kernel K
which allows for faster applications of it. Since K = exp(−D2/ε), the application to
a vector Kb can be replaced by a convolution with a Gaussian kernel of standard
deviation σ =

√
ε. This avoids computing and storing the full kernel K of size N2,

which would be prohibitive in memory for large-scale applications.

Moreover, the squared Euclidean distance is separable, meaning that it can be
separated along each axis:

c(x, y) = ||x − y||22 =
d∑

i=1
(xi − yi)2 =

d∑
i=1

ci(xi, yi). (2.21)

2.1 Optimal transport 23



The separability of the cost into a sum makes the kernel separable into a product of
1-dimensional kernels. We can then simply apply each of those d kernels sequentially.
This reduces computation time when histograms have dimension d > 1.

We illustrate this process on a 2-dimensional grid of size n × n. We use different
notations than the vector and matrix ones used so far, for the sake of generality.
Applying a kernel of the form K = exp

(− c
ε

)
to a 2-D function b is performed as

such:

r2(i, j) def.=
n∑

k=1

n∑
l=1

exp
(

−c((i, j), (k, l))
ε

)
b(k, l).

Assuming a separable cost such that c((i, j), (k, l)) def.= cy(i, k) + cx(j, l), this operation
amounts to performing two 1-dimensional kernel applications:

r1(k, j) =
n∑

l=1
exp

(
−cx(j, l)

ε

)
b(k, l)

r2(i, j) =
n∑

k=1
exp

(
−cy(i, k)

ε

)
r1(k, j).

For a d-dimensional histogram of N = nd bins, applying a separable kernel amounts
to performing a sequence of d steps, where each step computes n operations per
point. This results in a time complexity in O(nd+1) = O(N d+1

d ) instead of O(N2).

Extensions

Recently, Altschuler et al. [Alt+18] introduced a method to accelerate the Sinkhorn
algorithm. Simultaneously, there have been considerable efforts to study the conver-
gence and approximation properties of the Sinkhorn algorithm [Alt+17; CK18] and
its variances [Dvu+18].

2.1.3 Displacement interpolation

Given two histograms a and b, WC(a, b) not only represents the total cost of
transporting one to the other, but also a distance, which is the length of the shortest
path (a geodesic) between them in the Wasserstein space.
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Figure 2.3: Comparison of Euclidean (top row) and displacement interpolation (bottom
row) for 1-dimensional histograms

Figure 2.4: Comparison of Euclidean (top row) and displacement interpolation (bottom
row) for 2-dimensional histograms (images)

A displacement interpolation [McC97] is a way of walking along the geodesic from a

to b. It is defined for t ∈ [0, 1] as

γC(a, b, t) def.= min
r∈ΣN

(1 − t)WC(a, r) + tWC(r, b). (2.22)

Contrary to its Euclidean counterpart, such an interpolation allows lateral displace-
ments of mass on the domain, as seen in Figure 2.3 and Figure 2.4. This ability to
take into account the geometry of the domain is one of the reasons OT has been
adopted in many scientific communities to handle probability distributions.

In practice, we can approximate displacement interpolations using regularized
Wasserstein barycenters (see next section). We denote such approximations by γε

C.

2.1.4 Wasserstein barycenters

The Fréchet mean is a generalization of the weighted Euclidean average to metric
spaces, that is, the point that minimizes the weighted sum of squared distances to
each point of a set. The Wasserstein barycenter, introduced by Agueh and Carlier
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[AC11], follows that definition and is a weighted average of histograms in the
Wasserstein space. It is also the generalization of the displacement interpolation to
more than 2 histograms. Let A = a1, . . . , aS ∈ ΣN be a family of histograms, and
λ ∈ ΣS be weights associated to each of them, the Wasserstein barycenter is defined
as

pC (A, λ) def.= argmin
b∈ΣN

S∑
s=1

λsWC(as, b). (2.23)

This definition assumes that all histograms lie on the same grid. Otherwise, separate
cost matrices Cs must be used for each distance, and care must be taken to optimize
the positions of the barycenter’s masses [CD14; Ben+15; Ye+17; Cla+18]. When
all weights are equal (λs = 1/S), we call the barycenter centroid.

Cuturi and Doucet [CD14] introduced the regularized counterpart of the Wasserstein
barycenter, which is the building block of the learning algorithms we developed.
The entropy-regularized Wasserstein barycenter of the family A, with weights λ is
defined as

pε
C (A, λ) def.= argmin

b∈ΣN

S∑
s=1

λsW ε
C(as, b). (2.24)

When the metric C is Euclidean, we simply denote the regularized barycenter as
pε (A, λ).

This new formulation yields a smooth and convex functional, which can be solved
with a generalization of the Sinkhorn algorithm [Ben+15]: let v

(0)
s = 1N , ∀s ∈

[1, . . . , S],

u(l)
s = as

Kv
(l−1)
s

, ∀s ∈ {1, . . . , S} (2.25)

b(l) =
S∏

s=1
(KT u(l)

s )λs

v(l)
s = b(l)

KT u
(l)
s

, ∀s ∈ {1, . . . , S}.

We denote p
(L)
ε = b(L) the approximate regularized barycenter after L iterations,

as can be done for regularized Wasserstein distances (see 2.1.2). These iterations
implicitly optimize S coupling matrices Ps = diag(us)K diag(vs), each describing
the transport between histogram as and the barycenter b. The corresponding
algorithm is detailed in Algorithm 2. We show examples of barycenters of different
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shapes in Figure 2.5, for the 2-D and 3-D setting. We also demonstrate the smoothing
effect of the entropic regularization on the barycenters in Figure 2.6.

Algorithm 2 SinkhornBarycenter: Computation of the entropy-regularized Wasser-
stein barycenter pε (A, λ)

Input: Histograms A = a1, . . . , aS ∈ ΣN , weights λ ∈ ΣS , kernel K =
exp(−C/ε) ∈ R

N×N , number of iterations L
v(0) = 1N

for l = 1 . . . L do
∀s, q

(l)
s = KT

(
as

Kv
(l−1)
s

)
b(l) = ∏

s(q(l)
s )λs

∀s, v
(l)
s = b(l)

q
(l)
s

end for
Output: Barycenter p

(L)
ε = b(L)

There are many alternatives to compute Wasserstein barycenters. Some of them use
descent algorithms on the dual problem, either through non-smooth optimization
[Car+15], or by smoothing the problem [CP15; CP18] with entropic regularization.
Others use semi-discrete formulations to compute barycenters of continuous distri-
butions i.e. for which samples can be drawn [Sta+17; Cla+18], with applications
in large-scale Bayesian inference, super-sampling and blue-noise approximations.
Finally, recent methods have been developed to compute sharper barycenters than
what the Sinkhorn barycenter can do, using proximal point methods [Xie+18], or
a new formulation of the gradient of the sharp Sinkhorn loss [Lui+18]. However,
both methods require the full computation of the transport plan or the kernel, which
is prohibitive in large-scale applications.

2.1.5 Other numerical methods for optimal transport

Solving OT problems numerically is not restricted to the linear program and the
entropic regularization. There exist multiple formulations of optimal transport,
leading to a multitude of methods, specific to parameters such as the dimension of
the data, the nature of the distributions, the types of problems, or the cost function.
In this section, we briefly present the main formulations of optimal transport.

As mentioned in 1.1.3, when dealing with two discrete distributions with the same
number of Dirac masses and uniform weights, optimal transport boils down to an
assignment problem, which can be solved with combinatorial algorithms, such as
the Hungarian algorithm [Kuh55], or the auction algorithm [Ber81]. Other schemes

2.1 Optimal transport 27



(a) Barycenters of 2-dimensional shapes (b) Barycenters of 3-dimensional shapes

Figure 2.5: Examples of Wasserstein barycenters of 2 and 3-dimensional shapes. Extracted
from Peyré and Cuturi [PC18]. The shapes displayed here are thresholded
densities.

Figure 2.6: Influence of the entropic regularization for barycenters in dimension 2. Barycen-
tric interpolation between 2 distributions (on each row), for different values of
ε, top to bottom 3.10−4, 1.10−3, 3.10−3, 1.10−2 , and L = 200 iterations.
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have been developed to accelerate the computation for particular settings or cost
functions [LO07; Del+10].

The semi-discrete setting involves the computation of optimal transport between
a continuous measure and a discrete one. It is closely related to the geometrical
concept of Laguerre diagrams [Aur+98], which are weighted versions of Voronoi
diagrams. The semi-discrete problem can be solved with convex optimization in
2-D [Mér11] and 3-D [Lév15]. Contrary to entropic regularization which finds an
approximation of the transport, these algorithms solve the exact problem, which can
be necessary for some applied inverse problems, such as caustic design [Mey+18].
However, existing algorithms only solve the problem for standard cost functions,
such as the squared Euclidean distance, but not for arbitrary ones. Applications
include shape interpolation [Lév15], fluid simulation [GM18], or early-universe
reconstruction [Bre+03].

The dynamic formulation of optimal transport, initiated by Benamou and Brenier
[BB00], searches for the optimal transport as a geodesic in the Wasserstein space. It
can be transformed into a fluid mechanics formulation, where we seek a velocity
field transporting one measure to the other, and all intermediate densities. The
conservation of mass between the two input measures is enforced by restricting the
velocity field to be incompressible. Such a scheme is solved through the discretization
on a grid, and first-order convex non-smooth optimization schemes, based on the
proximal operator. The addition of the time dimension in the equation makes the
problem computationally involved. More details can be found in the review article
on dynamical OT problems by Papadakis et al. [Pap+14].

The sliced paradigm computes Wasserstein distances between high-dimensional
densities, by computing the 1-D transport between their projections on random
1-dimensional lines (slices). For 1-dimensional densities, the Wasserstein distance
is computable in closed-form through their inverse cumulative density functions.
The numerical algorithm consists in approximating the integral over all possible
directions of the 1-D transport via Monte-Carlo integration. This formulation is a
new metric between measures based on OT, rather than an approximation of the
true Wasserstein distance: the optimality of the transport between slices does not
guarantee the optimality of the transport in the higher-dimensional space. However,
the two distances behave similarly in several cases, which makes sliced OT a com-
petitive alternative. Sliced OT has been used mainly in computer graphics [Pit+05;
Rab+11; Bon+15; BC19] and machine learning [Kol+16; Car+17; Des+18a].

Another set of approaches to solve optimal transport numerically is based on stochas-
tic optimization [Gen+16; Arj+17; Bou+17; Gen+17]. It is used for large-scale OT
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problems, i.e. when dealing with large amounts of high-dimensional data. These
approaches have been especially useful for training generative adversarial networks
(see also 2.1.6), and rely on reformulations of the transport problem, cast as expec-
tation maximization problems. However, these methods are designed to compare
high-dimensional continuous distributions, which means they are discretized with a
Lagrangian approach, and we can only access them by sampling from them.

We refer to the books of Peyré and Cuturi [PC18] and Santambrogio [San15] for
extensive surveys on computational optimal transport.

2.1.6 Applications of optimal transport in computer graphics and
machine learning

Optimal transport appeared in machine learning and computer graphics through
computer vision. Rubner et al. [Rub+00] used the Wasserstein distance as a dissim-
ilarity measure between distributions of texture descriptors and color, to perform
an image retrieval task via clustering. At the time, the best solver available for OT
was the transportation simplex, whose complexity limited applications to small his-
tograms (less than 300 samples). Fortunately, the last 10 years have seen many new
numerical methods to solve OT problems, which has led to fruitful investigations in
the aforementioned research areas.

Computer graphics The displacement interpolation is a popular tool for its ability
to warp, deform, and transport distributions in a meaningful way, depending on
the chosen cost function. Such interpolations have been used for shapes [Sol+15;
Lév15], BRDFs [Bon+11], and distributions on discrete surfaces [Lav+18]. A
recurrent application of OT is color transfer, with the seminal work of Pitié and
Kokaram [PK07], because the transport plan precisely defines a mapping between
histogram bins. It has then been extended to reduce artifacts [Rab+10], or improve
robustness to mass variation [Fer+13]. Because color spaces are 2 or 3-dimensional
and require fine discretizations to avoid quantization errors, early works relied on
approximations such as 1D projections [Rab+10; Bon+15], or worked on coarse
discretizations [Fer+13]. The advent of entropic regularization led to consider
large-scale histograms in 2 and 3 dimensions [Sol+15; Bon+16]. Color transfer
has served as a demonstration application for new numerical frameworks to solve
OT problems [Blo+18; KT17; BC19], in particular barycenters [Pap+11; Fer+13;
Bon+15; Bon+16], because they allow for color normalization (or midway histogram
equalization [Del04]) between multiple images, and for transferring colors of a
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family of images to a single target. Optimal transport has been used in medical
imaging, to define a distance between brain MRIs [GM17], to average brain MRIs
[Bon+16], for image registration and warping [Hak+04], and for surface and fiber
registration [Fey+17]. Other applications include texture synthesis and mixing
[Rab+11; Bon+15; Tar+16], gradient flows [Pey15; CP15; Ben+16; Sch16], image
editing [Per+16], image segmentation [RP15; SS13], image denoising [Lel+14],
caustic design [Mey+18] and fluid simulation [GM18]. A sample of visuals from
different applications of OT to computer graphics is shown in Figure 2.7.

Machine learning Distributions are ubiquitous in machine learning, because they
provide insight into data, holding more information than aggregate quantities
such as the mean, or the standard deviation. Because optimal transport compares
distributions in a way that is sensitive to the underlying geometry, it has been
adopted as a loss function to replace distances and divergences that cannot handle
shifted patterns, such as L2 or KL. Moreover, the entropic regularization [Cut13]
has helped the development of learning algorithms involving OT, since it converts
the original Wasserstein distance into a fast, smooth, differentiable, and more robust
loss. The Wasserstein loss is used for example in representation learning, via matrix
factorization [SL11; Zen+14], dictionary learning [Rol+16], discriminant analysis
[Fla+18], or auto-encoders [Cou+17].

The Wasserstein distance has also been used for generative models, where it replaces
information-based divergences (KL, Jensen-Shannon) classically used to measure
the goodness of fit between a parametric distribution and the empirical distribution
of the observations. The idea of using the Wasserstein distance for minimum distance
estimation and density fitting dates back to the theoretical work of [Bas+06]. Recent
examples include Boltzmann machines [Mon+16], statistical inference [Ber+17]
and generative adversarial networks [Arj+17]. Various generative models have
also been used to motivate the use of different formulations and approximations of
the Wasserstein distance, improving tractability [Gen+17], convergence [Seg+18],
stability [Des+18a] or accuracy [Xie+18].

OT is also used for domain adaptation, where the quantity of interest is the trans-
port plan. Indeed, OT can define a mapping between the source and target data
distribution, in order to assign labels in the target dataset from those in the source
one [Cou+14; Per+16; Cou+16].

A common representation of text in machine learning and natural language pro-
cessing (NLP) is the bag-of-words model, which considers texts or documents as
multisets (unordered, allowed repetitions) of words. A histogram of words can
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Figure 2.7: A sample of applications of optimal transport to computer graphics, extracted
from different publications. Top to bottom, left to right : shape interpolation
[LS17], image segmentation [SS13], color transfer [Bon+16], texture synthesis
and color transfer [Bon+15], interpolation on discrete surfaces [Lav+18],
blue-noise approximation [de +12], and vector field interpolation [Sol+14].
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then be assembled, giving the frequency of occurence of each word. Consequently,
the histogram forms a sort of signature, or feature of its document, and it can be
used for machine learning tasks, such as classification or clustering. The introduc-
tion of word embeddings in Euclidean space, based on contextual words [Mik+13;
Pen+14] allowed the definition of a ground metric in the word space that is close to
a semantic distance. These embeddings have been largely used as a ground metric
for OT to compare distributions of words. Examples include comparing image tags
[Fro+15], defining a distance (the Word Mover’s Distance) between documents for
k-NN-based classification [Kus+15; Hua+16], or finding topics through barycenters
of documents [Rol+16]. Recent methods jointly learn the topics and the word
embeddings [Xu+18a], or use a hierarchical model of documents, topics and words
known as Latent Dirichlet Allocation (LDA) [Ble03], to handle large-scale datasets
[Yur+19]. In LDA, documents are modeled as distributions over topics and topics as
distributions over words. This model involves a sparse Dirichlet distribution prior on
topics and documents, which translates the idea that documents cover a restricted
number of topics, and topics comprise a restricted number of words.

In the next sections, we will further discuss the two machine learning tasks of
interest in this dissertation, that is, dictionary learning and metric learning.

2.1.7 Inverse problems in optimal transport

Even though the frameworks that use OT for learning tasks can be seen as inverse
problems, the OT loss has also been used for more “classical” inverse problems when
the data are probability distributions. For instance, Indyk and Price [IP11] perform
sparse recovery and compressed sensing under the EMD loss, and Burger et al.
[Bur+12] regularize a density estimation problem using the Wasserstein metric
as a data fidelity term. The OT loss has also proven useful in tomography as it
accounts for misalignments and shifted patterns in the data. Karlsson and Ringh
[KR17] introduce a general scheme to regularize inverse problems with the OT
loss, based on a Sinkhorn-like proximal operator, and apply it to computerized
tomography (CT scans). Adler et al. [Adl+17] also work on reconstructing CT scans
using a Wasserstein loss, but they propose to learn a reconstruction operator with
neural networks, based on a primal-dual scheme. Finally, Abraham et al. [Abr+17]
attempt to use multi-marginal OT in order to reconstruct CT scans from only a few
views. Other examples of tomography using the OT loss have been proposed in
geophysics for full waveform inversion, using different formulations of the transport,
namely the Kantorovich-Rubinstein norm [Mét+16], or the Monge-Ampère equation
[Eng+16].

2.1 Optimal transport 33



Most of these methods only use OT as the loss function to compare the output of
the model with the ground truth. In this thesis, we are more interested in nested
inverse problems, i.e. ones that optimize quantities that are already built upon
the Wasserstein distance, such as Wasserstein barycenters. For instance, Bonneel
et al. [Bon+16] search for histogram projections on a histogram simplex, through
the regression of the Wasserstein barycentric coordinates. The framework we
present in chapter 3 is in line with this method, since we additionally regress the
vertices of the histogram simplex to obtain a non-linear (Wasserstein) dictionary
learning method (WDL) [Sch+18]. Simou and Frossard [SF18] adapt WDL for
signals supported on graphs, and apply it on small synthetic graphs. Dognin et
al. [Dog+19] use Wasserstein barycenters for consensus computations in model
ensembling methods, with applications in multilabel learning and classification. Xu
et al. [Xu+18a] perform the joint learning of topics and word embeddings in a
Wasserstein fashion, leading to an approach that combines dictionary (topic) learning
with Wasserstein barycenters, and ground metric (word embedding) learning. Our
second contribution which is detailed in chapter 4 also fits that category, since
we optimize the ground metric with a functional that involves a displacement
interpolation computed through Wasserstein barycenters. Finally, let us note the
work of Yurochkin et al. [Yur+19], which involves two nested OT problems for
document classification, based on the hierarchical LDA model mentioned earlier.
However, the authors do not optimize the two problems jointly; they instead resort
to a precomputation of the inner one.

2.2 Dictionary learning

In this section, we introduce the preliminaries and the context of our first contribu-
tion which is the Wasserstein dictionary learning algorithm presented in chapter 3.
We first introduce the concept of dictionary learning (DL), and recall the previous
work in its linear and non-linear form. We then detail DL methods that use optimal
transport.

2.2.1 Linear dictionary learning

Dictionary learning belongs to the more general concept of representation learning
(or feature learning), which encompasses all methods that search for a new repre-
sentation of some raw data (i.e. new coordinates in a new basis or space), in order
to improve a task such as classification, or clustering.
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The linear version of dictionary learning seeks a matrix decomposition of the form

X ≈ DΛ (2.26)

where:

• the input data X ∈ R
N×M contains M data points of dimension N

• the dictionary D ∈ R
N×S contains S atoms of dimension N

• the codes Λ ∈ R
S×M are M weight vectors of dimension S.

Therefore, DL aims to find a basis of elements that represents the input data, and
weights that specify how to reconstruct each data point from that new basis.

Dictionary learning methods differ by the constraints they impose on the dictionary
and the codes, and by the completeness of the dictionary. Methods that seek a
complete or under-complete dictionary (S ≤ N) are useful for dimensionality
reduction. One of them is the well-known principal component analysis (PCA)
[Pea01]. It can be seen as a matrix decomposition which constrains atoms to be
orthogonal, and that maximizes the variance explained by each atom. Non-negative
matrix factorization (NMF) [LS99] enforces all values in the dictionary and the codes
to be positive, which leads to a parts-based decomposition. Independent component
analysis (ICA) [HO00] seeks a dictionary of atoms that are statistically independent,
which is often sought for blind source separation [ZP01].

Other methods consider that there are more independent causes that could ex-
plain a given data point, than its number of dimensions, therefore they learn an
over-complete dictionary (S > N). Sparse coding [OF97; Lee+07] is one of these
methods and adds the constraint that data points should be represented by very few
atoms, which means that codes must be sparse. It contrasts with sparse approxima-
tion techniques, where signals are sparsely decomposed over a predefined dictionary,
such as the Fourier or wavelet basis. Sparse PCA [D’a+05] on the other hand im-
poses sparsity constraints on the dictionary, leading to atoms that do not necessarily
explain all the variance, or are not orthogonal, contrary to PCA. Nevertheless, this
sort of decomposition is desirable when each dimension of the input data can be
interpreted separately, and therefore atoms can be assigned to them more easily.
K-SVD [Aha+06; Rub+08] is a generalization of the k-means algorithm, where K

atoms are learned, and the sparsity constraint on the weights is less strict.

Dictionary learning methods have been successfully applied to many scientific
domains, and have been extended many times. For example, Smaragdis and Raj
[SR06] propose PLCA, which extends NMF to handle probability distributions, by
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adding the constraints that each atom and each code must belong to the probability
simplex (i.e. weights sum to one), and uses the KL divergence as a reconstruction
loss. Mairal et al. [Mai+09] introduce a supervised dictionary learning method,
where they learn a dictionary that is shared between classes and adapted to the
classification task, and an indicator function for class association. Mairal et al.
[Mai+10] adapt some of these classical DL methods for large-scale datasets, by
proposing online learning versions based on stochastic optimization. Thanou et al.
[Tha+14] develop a sparse coding algorithms for graph signals, effectively taking
into account the irregular geometry of the domain. At the intersection of dictionary
learning and metric learning, Wang et al. [Wan+12] propose a multi-metric learning,
where a dictionary of base metrics is learned and each training instance has a metric
that is a linear combination of the base metrics (see 2.3). For more details on sparse
coding and dictionary learning, many surveys have been published for different
methods or applications, and are well reported in [Xu+17].

2.2.2 Non-linear dictionary learning

Dictionary learning can be made non-linear by changing the linear combination to
reconstruct the data points, by a non-linear function:

X ≈ f(D, Λ) (2.27)

One of the most common methods to introduce non-linearity is to use the kernel
method, or the “kernel trick”. It consists in using a non-linear kernel function that
sends data points to a higher-dimensional space in which a linear classifier could
potentially separate classes. The role of the kernel is therefore to linearize the non-
linearity that is inherent to the input data. Kernel methods have been successfully
applied to dictionary learning methods such as PCA [Sch+97], K-SVD [Ngu+12],
NMF [Lee+09] or supervised dictionary learning [Gan+13]. Manifold learning
consists in accounting for the intrinsic geometric properties of data points that lie
on a manifold when performing clustering or dimensionality reduction on them.
Dictionary learning and sparse coding have been generalized to data on Riemannian
manifolds [Xie+13], Grassmanian manifolds [Har+11] or the space of positive
symmetric definite (PSD) matrices [Jay+13]. Another dimensionality reduction
technique that has been extended to manifolds is PCA, with the principal geodesic
analysis (PGA) [Fle+04]. It is a tangential approximation that consists in projecting
data points on the tangent space at the Fréchet mean using the logarithmic map,
and then computing a Euclidean PCA in that space.
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2.2.3 OT-flavored dictionary learning

The PGA approach has been well-studied for probability distributions in the Wasser-
stein space. In this setting, the principal components (which are vectors for Euclidean
PCA), are replaced by geodesics, and can be represented as optimal maps from the
Fréchet mean (barycenter) to a particular distribution. Wang et al. [Wan+13] first
introduce a method to compute PCA for images cast as histograms, which does
not rely on the PGA approach, but on an isometric linear embedding. Bigot et al.
[Big+17] implement the PGA method for probability distributions. Their approach
is limited to 1D distributions, because the logarithmic map has a closed-form in that
case. Boissard et al. [Boi+15] parametrize the optimal maps (principal geodesics)
by linear combinations of a family of maps. Seguy and Cuturi [SC15] use Sinkhorn
distances, and a relaxed version of geodesics based on vector fields on the dis-
tribution’s domain. Cazelles et al. [Caz+17] focuses on learning exact geodesic
PCA (directly on the manifold, as opposed to the tangential approximation of PGA)
for 1D distributions, and propose two efficient algorithms based on the proximal
Forward-Backward scheme.

OT has also been used in dimensionality reduction based on matrix decomposition.
Sandler and Lindenbaum [SL11] introduce the EMD-NMF, where they learn an NMF
for which the comparison of reconstructions with input data (the fitting loss) is done
with the earth mover’s distance. They present applications in texture classification
and face recognition. Ricci et al. [Ric+13] follow the same path, except that they
additionally learn the ground metric of the OT loss before hand from the input
data, and apply it for automatically extracting complex behaviors from crowded
scenes. The work of Zen et al. [Zen+14] is very close to that of Ricci et al., the
difference being that they simultaneously learn the ground metric and the matrix
decomposition, using alternated optimization. Rolet et al. [Rol+16] improve the
EMD-NMF by replacing the EMD with the Sinkhorn distance, which leads to faster
and more robust computations. Flamary et al. [Fla+16] follow the PLCA approach
[SR06] described earlier and replace the KL divergence by the Wasserstein distance,
to evaluate reconstructions. They develop their framework for audio processing, and
learn atoms that are representative of note spectra to perform music transcription.

Every method we mentionned in this paragraph is non-linear, because of the pres-
ence of OT as a loss, but they all rely on linear combinations between atoms and
codes. The WDL method we introduce in chapter 3 differs from them because it
replaces linear combinations by (non-linear) Wasserstein barycenters. As previously
mentionned, Simou and Frossard [SF18] adapted WDL to graph signals, and Xu et al.
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[Xu+18a] extended our work for NLP, by jointly learning topics (with Wasserstein
barycenters) and word embeddings (ground distance).

2.3 Metric learning

In this section, we bring the context for our second contribution, which is the OT
metric learning algorithm, presented in chapter 4. We first introduce the basic
concepts of metric learning, then study the previous work on learning the ground
metric of optimal transport.

2.3.1 Classical metric learning

In machine learning, metric learning is the task of inferring a metric on a domain
using side information, such as examplar points that should be close or far away
from each other. The assumption behind such methods is that metrics should be
chosen within parameterized families and tailored for a task and data at hand, rather
than selected among a few handpicked candidates. Metric learning algorithms are
supervised, often learning from similarity and dissimilarity constraints between pairs
of samples (xi should be close to xj), or triplets (xi is closer to xj than to xk). Metric
learning has applications in different tasks, such as classification, image retrieval, or
clustering. For instance, for classification purposes, the learned metric brings closer
samples of the same class and drives away samples of different classes [Xin+03].

Metric learning methods are either linear or non-linear, depending on the formu-
lation of the metric with respect to its inputs. We will briefly recall various metric
learning approaches, but refer the reader to recent surveys [Bel+15; Kul13] for
further reading.

A widely-used linear metric function is the squared distance derived from the scalar
product:

d2
M(x1, x2) = (x1 − x2)T M(x1 − x2), (2.28)

where x1, x2 ∈ R
d and M ∈ R

d×d. For d to be a distance in the mathematical sense,
M must be a positive semi-definite (p.s.d) matrix. In this case M can be decomposed
as M = LT L, and (2.28) becomes

d2
M(x1, x2) = ||Lx1 − Lx2||22 . (2.29)
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Thus, searching for such a metric is equivalent to searching for a global linear
transformation of the data. This formulation is very close to the Mahalanobis
distance, where the matrix M is chosen as the inverse covariance matrix of the data.
For that reason, metrics of the form (2.28) are often referred to as a “Mahalanobis
distances” in the metric learning literature. They are employed for example in
the popular Large Margin Nearest Neighbors algorithm (LMNN) [Wei+06] along
with a k-NN approach, to improve classification. Other linear methods [Che+09;
PB16] choose not to satisfy all distance axioms (unlike the Mahalanobis distance)
for more flexibility and because they are not essential for the distance to agree
with human perception of similarities [Bel+15]. Non-linear methods include the
prior embedding of the data (kernel trick) before performing a linear method [TL07;
Wan+11], or other non-linear metric functions [Cho+05; Ked+12]. Facing problems
where the data samples are histograms, researchers have developed metric learning
methods based on distances that are better suited for histograms such as χ2 [Ked+12;
Yan+15] or the Wasserstein distance, which we describe in more detail.

2.3.2 Ground metric learning

The Wasserstein distance is employed in machine learning to compare histograms
while accounting for the underlying geometry of their domain. This geometry is
defined by the ground metric, which is usually carefully selected depending on the
problem at hand, so that the Wasserstein distance is meaningful. It is often taken as
the Euclidean or squared Euclidean distance. Therefore, being able to circumvent the
selection of the ground metric by learning it is attractive from an applied perspective.
Moreover, in computer graphics and machine learning, the ground space is often
low-dimensional, e.g. age for population pyramids, R2 for bivariate distributions, or
RGB space for color histograms. Therefore, when dealing with such distributions,
instead of using a metric learning method in the high-dimensional distribution space
(as classically done in methods described in the previous paragraph), we can perform
it at lower cost in the low-dimensional ground space and use optimal transport to
leverage the learned ground metric into a new metric in the distribution space.

In this thesis, “ground metric learning” (GML) refers to the general problem of
learning the ground metric of optimal transport, rather than to the particular work
of Cuturi and Avis [CA14], who introduced that terminology. Their method consists
in learning a ground cost that is a true metric (definite, symmetric and satisfying
triangle inequalities) using supervised information from a set of histograms. This
method requires projecting matrices onto the cone of metric matrices, which is
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known to require a cubic effort in the size of these matrices [Bri+08]. GML algo-
rithms generally differ in the way they parameterize the metric, the input data they
use to learn it, or their domain of application. Wang and Guibas [WG12] follow the
approach of Cuturi and Avis [CA14] but drop the requirement that the learned cost
must be a metric, and add support for triplet constraints. Zen et al. [Zen+14] use
the approach of Cuturi and Avis [CA14] to enhance previous results on Non-negative
Matrix Decomposition with a Wasserstein loss (EMD-NMF) [SL11], by alternatively
learning the matrix decomposition and the ground metric. Dupuy et al. [Dup+16]
learn a similarity matrix from the observation of a fixed transport plan, and use it
to propose factors explaining weddings across groups in populations. Both use the
entropic regularization of Wasserstein distances.

More recently, Xu et al. [Xu+18b] combined several previous ideas to create a
new metric learning algorithm. It is a regularized Wasserstein distance-flavored
LMNN scheme, with a Mahalanobis distance as ground metric, but with multiple
local metrics [WS08] and a global one. Flamary et al. [Fla+18] adapt the classical
Linear Discriminant Analysis [Fis36] to the Wasserstein space, i.e. they learn a
linear embedding of the data in a lower-dimensional space, in which they optimize
regularized Wasserstein distances to bring closer point sets of the same class, and
push farther point sets of different classes. Su and Wu [SW19] learn a ground metric
that is a Mahalanobis distance between vectors, in order to define a meta-distance
between sequences of vectors, by alternatively updating the ground metric, and the
sequence alignments.

Another line of research on GML is once again from the NLP community. Huang
et al. [Hua+16] improve document classification with the Word Mover’s Distance
(introduced by Kusner et al. [Kus+15]), by learning a linear transformation of the
word2vec word embedding [Mik+13] as the ground metric, and a weight vector
which reflects the importance of words for distinguishing classes. As mentionned
previously, Xu et al. [Xu+18a] perform the joint learning of topics and word em-
beddings in a Wasserstein fashion, leading to an approach that combines dictionary
(topic) learning through Wasserstein barycenters, with ground metric (word embed-
ding) learning. It is similar to the work of Zen et al. [Zen+14], in the sense that they
both achieve an OT-driven dimensionality reduction by updating the ground metric
in an alternated way. However, Zen et al. perform linear combinations and use the
Wasserstein loss to compare reconstructions with training data, while Xu et al. use
the non-linear combinations presented in WDL (chapter 3) with an L2 loss. Finally,
Xu et al. [Xu+19] perform graph matching through the joint learning of the trans-
port between graphs and the node embeddings. They use the Gromov-Wasserstein
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distance which allows to compare distributions on different spaces when we have
access to intra-space distances, but not to inter-space ones.

Similarly to the above works, the framework we propose in chapter 4 is a GML
method, but it differs in the formulation of the ground metric. We search for metrics
that are geodesic distances on graphs, via a diffusion equation.

Our method also differs in the data we learn from since the observations that are
fed to our algorithm are snapshots of a density evolution, and not pair or triplet
constraints. We use displacement interpolations to reconstruct that movement, thus
our objective function contains multiple inverse problems involving OT distances, as
noted in section 2.1.7. This contrasts with simpler formulations where the objective
function or the constraints directly depend on OT distances [CA14; WG12; Hua+16;
Xu+18b]. Furthermore, the goal in these previous works is to perform supervised
classification, a goal we do not seek directly in our approach. Nevertheless, our
learning algorithm is supervised, since we provide the exact timestamps of each
sample in the sequence.

The difference between our method and that of Dupuy et al. [Dup+16] lies in the
available observations: they learn from a fixed matching (transport plan) whereas
we learn from a sequence of mass displacements from which we infer both the
metric and an optimal transport plan. Our method thus does not require identifying
information on traveling masses. The fact that this identification is not required
ranks among the most important and beneficial contributions of the OT geometry
to data sciences, notably biology [Sch+19]. Finally, our method differs in the
formulation of the ground metric. We use a non-linear approach based on the
diffusion equation, whereas Cuturi and Avis [CA14] and Zen et al. [Zen+14] learn
a full symmetrical matrix that can be constrained to satisfy triangle inequalities.
Dupuy et al. [Dup+16] use a bilinear form parameterized by an affinity matrix, and
[WS08; Hua+16; Xu+18b] employ Mahalanobis distances.

Our approach to metric learning corresponds to setting up an optimization problem
over the space of geodesic distances on graphs, which is closely related to the
continuous problem of optimizing Riemannian metrics. Optimizing metrics from
functionals involving geodesic distances has been considered in [Ben+10]. This
has recently been improved in [MD17] using automatic differentiation to compute
the gradient of the functional involved, which is also the approach we take in our
work. This type of metric optimization problem has also been studied within the OT
framework (see for instance [But+04]), but these works are only concerned with
convex problems (typically maximization of geodesic or OT distances), while our
metric learning problem is highly non-convex.
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2.4 Conclusion

Entropy regularization unveiled fast algorithms to approximate optimal transport
distances, which unlocked their use in various fields that usually deal with large-scale
data, such as computer graphics. The smoothness of this approximation also made
the regularized Wasserstein distance popular in machine learning, as a differentiable
loss function between densities that accounts for the geometry of the underlying
space. Yet, even with this regularization, inverse problems dealing with quantities
built upon Wasserstein distances (such as barycenters) are difficult to solve, because
they are non-linear, in general non-convex, and computationally expensive.

In this chapter, we presented the context of this thesis. We introduced the computa-
tional optimal transport literature with a focus on entropy-regularized problems, and
their applications to machine learning and computer graphics. We then introduced
the context and related works of the two projects presented in the next chapters:
dictionary learning with OT, and metric learning with OT.
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Dictionary Learning 3
In this chapter we present our first contribution, which is the development of a
dictionary learning algorithm based on the geometry of optimal transport. As
described in 2.2, dictionary learning is a type of representation learning method
as it consists in finding a new space for data points, in which a particular task
(classification, compression, etc.) can be achieved more easily. Dictionary learning is
an inverse problem in the sense that it aims to find the parameters of a model (the
atoms and weights) that best reconstruct a given set of data points. The model is
non-linear since the reconstructions are carried out with Wasserstein barycenters.

This project is a joint work with Morgan Schmitz, a PhD student from CEA1at Paris-
Saclay. The results of this collaboration have been published in the SIAM Journal on
Imaging Sciences [Sch+18], and partially in the proceedings of the SPIE conference
“Wavelets and Sparsity XVII” [Sch+17]. We also released the source code 2. For an
introduction to classical dictionary learning, we refer the reader to 2.2.

3.1 Overview

The framework we proposed is a non-linear unsupervised dictionary learning method
in the Wasserstein space. Given a set of discrete measures as input, our goal is to find
a small number of atoms that are representative of them. In other words, we want
to reconstruct each input as faithfully as possible (according to some loss function),
by combining atoms together. The non-linearity of our method stems from the fact
that we combine atoms using Wasserstein barycenters (2.1.4), instead of linear
combinations as usually done in linear dictionary learning (2.2.1). This particularity
allows our algorithm to account for the geometry of the domain, for example, by
detecting similarities in shifted patterns, as seen in Figure 3.1. In order to learn the
dictionary and the weights (codes) to recover each input, we minimize a non-convex
functional with a quasi-Newton solver, and compute gradients with respect to the
dictionary and weights using algorithmic (or automatic) differentiation [GW08].

1Comissariat à l’énergie atomique et aux énergies alternatives
2https://github.com/matthieuheitz/WassersteinDictionaryLearning
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Figure 3.1: This figure illustrates the motivation for a Wasserstein dictionary learning
method. Given 5 data points (first row), we find 2 atoms (next rows, first and
last column) with different dictionary learning methods: PCA, NMF and our
method, WDL. WDL is the only method that yields atoms that are probability
distributions, and recovers the data points accurately. PCA fails to do so as it
allows for negative values, and NMF, which is based on a positivity constraint,
fails to approximate data points as it does not allow for lateral movements on
the domain. The introduction of an entropic regularization is responsible for
the blurring effect in the reconstructions, however the learned atoms become
sharper than data points to counteract that effect (see the Diracs in the last
row).

We developed several extensions for our framework, such as a stabilization of the
Sinkhorn algorithm in log domain to obtain sharper results, a separable convolution
kernel in log domain, two schemes to accelerate Sinkhorn iterations (the warm
start strategy and the heavy ball method), and a generalization to the unbalanced
setting.

We applied our method to the modeling of point spread functions (PSF) under
different wavelengths, the detection of key moments in a sequence of cardiac images,
and the clustering of facial expressions (Wasserstein faces) as well as of literary
works.

Since this project is a shared work, I will only present in detail the parts of it that I
was involved in. Morgan Schmitz worked on the calculation of the gradients, the
development of the application for PSFs, the heavy ball acceleration scheme, and
the extension to the unbalanced setting. For my part, I worked on the development
of the cardiac imaging, the Wasserstein faces and literary work applications, on the
stabilization of the algorithm in log-domain, and the warm-start acceleration strategy.
My work focused on applications to large-scale histograms and the development of
efficient and scalable algorithms for them.
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3.2 Method

Let X ∈ R
N×M be the input data, that is, M histograms xi ∈ ΣN . Let us denote S

the number of atoms desired. In this chapter, we will only consider under-complete
dictionaries (S < N), as the applications we develop are oriented towards dimension-
ality reduction rather than sparse approximations (see 2.2.1). Yet, our framework
is general and would be suited to seek over-complete dictionaries, provided that a
sparsity constraint is added for the weights.

We propose learning a dictionary D def.= (d1, . . . , dS) ∈ (ΣN )S containing S atoms
that are histograms, and a set of barycentric weights Λ def.= (λ1, . . . , λM ) ∈ (ΣS)M

such that each barycenter p(D, λi) approximates input xi as faithfully as possible,
according to a loss function L (see Table 3.1). That is, the functional to minimize
is

min
D,Λ

E(D, Λ) def.=
M∑

i=1
L (pε(D, λi), xi) . (3.1)

As mentioned in the previous chapter (2.1.4), we use entropy-regularized Wasser-
stein barycenters because they are smooth and convex quantities. Throughout this
chapter, we use the squared Euclidean distance for the ground metric C, which is
why we omit it in the barycenter notation (see 2.1.4).

Differentiating this energy requires the computation of the Jacobians of the barycen-
ter with respect to the dictionary D and the weights Λ. As mentionned in 2.1.7, our
method follows the work of Bonneel et al. [Bon+16], which performs the regres-
sion of Wasserstein barycentric coordinates, using regularized barycenters. They
showed that computing the Jacobian of the Wasserstein barycenter with respect to
the weights requires solving a linear system of size N2, which is intractable when
dealing with large-scale histograms and also suffers from stability issues. Instead,
they minimize a functional that is based on the approximate regularized barycenter
p

(L)
ε computed after a fixed number L of iterations (see 2.1.4), and calculate an

algorithmic differentiation of the Jacobian. In other words, they compute the exact
gradient of the barycenter’s approximation rather than an approximation of the
exact barycenter’s gradient. We directly follow that approach, therefore the objective
function we minimize is

min
D,Λ

EL(D, Λ) def.=
M∑

i=1
L
(
p(L)

ε (D, λi), xi

)
. (3.2)
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Name L(a, b) ∇L
Total Variation L1 ‖a − b‖1 sign(a − b)

Quadratic L2 ‖a − b‖2
2 2(a − b)

Kullback-Leibler LKL KL(a|b) log(a/b) − 1
Wasserstein LW W ε

C
(L)(a, b) ε log(u(L))

Table 3.1: Examples of loss functions and their gradient with respect to a. For the Wasser-
stein case, the loss is computed iteratively with the Sinkhorn algorithm (1), and
u(L) is the first scaling vector, obtained after L iterations. Computing the gradi-
ent of the Wasserstein loss in this manner has been done in [CD14; Bon+16],
and relies on the envelope theorem [MS02]. The number of iterations L for
this loss must be set to a large enough value that ensures sufficient convergence
of the Sinkhorn algorithm. Some authors [Gen+17] rather advise to pursue
automatic differentiation through the loss.

This problem is in general not convex, neither jointly in D and Λ, nor independently
in either. Consequently, we seek a local minimum by computing the gradients and
following a descent optimization scheme. The problem in this form does not display
the additional constraints on the atoms and the weights, that are to lie in their
respective probability simplices ΣN , ΣS . We enforce these conditions through a
change of variable in order to carry out unconstrained optimization.

Because EL is a sum over all input datapoints, and for the sake of simplicity, we
focus on the derivation of the energy for a single datapoint x ∈ ΣN , which reduces
the codes matrix Λ to a single weight vector λi ∈ ΣS . Differentiating (3.2) gives

∇DEL(D, Λ) =
[
∂Dp(L)

ε (D, λi)
]T ∇L(p(L)

ε (D, λi), x) (3.3)

∇λi
EL(D, Λ) =

[
∂λi

p(L)
ε (D, λi)

]T ∇L(p(L)
ε (D, λi), x).

The gradient of the loss function ∇L is generally a closed-form formula that is
simple to compute. See Table 3.1 for examples of the loss functions we used in
our applications, and their gradient. The other terms are the Jacobians of the
approximate Wasserstein barycenter with respect to the dictionary and the weights,
which we compute through algorithmic differentiation, as performed by [Bon+16].
The algorithmic differentiation for these Jacobians consists in the recursive backward
differentiation of the Sinkhorn barycenter’s iterations (2.25). This can be calculated
manually, or by employing an automatic differentiation software (such as Theano
[Tea+16] or PyTorch [Pas+17]).

We present in Algorithm 3 the “manual” calculations of both Jacobians in (3.3) which
are for a single reconstruction and its gradient, as mentioned earlier. The proofs
for these formulas can be found in the publication and its supplemental material
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[Sch+18]. The “forward” loop is simply the Sinkhorn barycenter algorithm that
reconstructs an input x from the dictionary. Evaluating the gradients is then achieved
through two “backward” loops (one for the dictionary, one for the weights), which
require some intermediate results from the forward loop. These two intermediate
variables y

(l)
s and q

(l)
s are of size SNL and need to be fully stored between the loops.

Note that both backward loops have descending iterators, which stems from the fact
that in backward differentiation, the gradient is computed from the last variable to
the first.

Identically to the Sinkhorn and Sinkhorn barycenter algorithms, these schemes
only rely on element-wise operations and on the application of the kernel matrix
K and its transpose. The ground metric C being Euclidean, and the domain being
a square grid, the multiplication by K (which is intractable for large N) can be
performed with a separable Gaussian convolution, as in [Sol+15]. For this reason,
multiplications with K are denoted as a convolution operator K in Algorithm 3.
Applying the convolution kernel being the bottleneck operation, we can see that
both backward loops have the same complexity as the forward loop, since they both
require two kernel applications.

For our applications (see 3.4), we chose to enforce the positivity and unit mass
constraints on ds and λi through the following change of variable:

∀s, ds
def.= FN (αs) def.= exp(αs)∑N

j=1 exp([αs]j)
λi

def.= FS(βi)
def.= exp(βi)∑S

j=1 exp([βi]j)
. (3.4)

Therefore, we optimize the new variables A def.= (αs)S
s=1 and βi in place of D and λi.

The energy to minimize is then

GL(A, βi)
def.= EL(F (A), FS(βi)), (3.5)

where F (A) def.= (FN (α1), . . . , FN (αS)) = D.

Differentiating (3.5) yields

∇AGL(A, βi) = [∂F (A)]T ∇DEL (F (A), FS(βi)) = [∂F (A)]T ∇DEL (D, Λ) (3.6)

∇βi
GL(A, βi) = [∂FS(βi)]T ∇λi

EL (F (A), FS(βi)) = [∂FS(βi)]T ∇λi
EL (D, Λ) ,

where [∂FP (u)]T = ∂FP (u) =
(
IdP −FP (u)1T

P

)
diag(FP (u)), P being the size of

the vector u in question.
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Algorithm 3 SinkhornGrads: Computation of gradients w.r.t the dictionary and the
barycentric weights, for a single input histogram xi.

Inputs: Atoms d1, . . . , dS ∈ ΣN , histogram xi ∈ ΣN , weight vector λi ∈ ΣS

∀s, v
(0)
s = 1N

for l = 1 . . . L do � Forward loop - Sinkhorn barycenter
∀s, y

(l−1)
s = Kv

(l−1)
s

∀s, q
(l)
s = KT

(
ds

y
(l−1)
s

)

p(l) = ∏
s

(
q

(l)
s

)[λi]s

∀s, v
(l)
s = p(l)

q
(l)
s

end for
w = 0S

∀s, rs = 0N

g = ∇L(p(L), xi) � p(L)

for l = L . . . 1 do � Backward loop - weights
∀s, ws = ws+ < log q

(l)
s , g >

∀s, rs = −KT

(
K

(
[λi]sg−rs

q
(l)
s

)
� ds

(y(l−1)
s )2

)
� v

(l−1)
s

g = ∑
s rs

end for
∀s, ys = 0N

∀s, zs = 0N

n = ∇L(p(L), xi)
for l = L . . . 1 do � Backward loop - dictionary

∀s, cs = K(([λi]s n − zs) � v
(l)
s )

∀s, ys = ys + cs

y
(l−1)
s

∀s, zs = − 1N

q
(l−1)
s

� KT ds�cs

(y(l−1)
s )2

n = ∑
s zs

end for
Outputs: p

(L)
ε (D, λi)

def.= p(L), ∇DE(L) def.= [y1, . . . , yS ], ∇λi
E(L) def.= w
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Keep in mind that we differentiate the energy (3.2) for a single datapoint, and that
in order to differentiate it for M of them, one only needs to sum the energy over the
list of M weights vectors B def.= (βi)M

i=1:

GL(A, B) def.=
∑

i

GL(A, βi). (3.7)

The change of variable introduced in (3.4) allows us to use an unconstrained
optimization scheme, which makes our framework general enough to use any
suitable optimizer. For our applications, we chose the quasi-Newton solver L-BFGS
in order to find a local minimum of the non-convex energy function (3.5). An overall
algorithm describing the integration of our functional with that solver is given in the
publication [Sch+18, Algorithm 2].

Instead of conducting an alternated optimization scheme like most dictionary learn-
ing methods, we simultaneously optimize the transformed dictionary and weights A
and B by concatenating them into a single vector. That vector of size S × N + M × S

is then given to the solver as the variable to optimize. This construction is advanta-
geous in our setting, because the intermediate quantities that are computed during
the forward pass (loop) are necessary to compute both gradients. As a result, we
evaluate the objective function only once in order to update both variables. However,
this structure means that the dictionary and the weights are updated with the same
step size, which often leads to asymmetries in convergence, e.g. the algorithm will
stop in a local minimum with respect to the dictionary, but not to the weights. To
alleviate this issue, we introduce a hyperparameter ζ, which scales the gradient
with respect to the weights, and which should be adjusted to make sure that the
dictionary and the weights are being optimized to a comparable extent.

3.3 Extensions

3.3.1 Log-domain stabilization

For some applications (e.g. compression), one may want to recover original data
points from their representation very precisely. In our framework, reconstructing
the input data is impaired by the entropic regularization, since it introduces a blur
in the transport plan and the barycenters. This blur is controlled by the parameter ε:
lower values mean lower regularization, which yields sharper barycenters. However,
this parameter cannot be chosen too small because of numerical limitations. Some
entries in the kernel K = exp(−C/ε) might reach representation limits, and as
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seen in Figure 2.2, entries in the scaling vectors diverge as Sinkhorn iterations
accumulate (which leads to numerical errors). Therefore, the Sinkhorn algorithm
(1) and its barycenter version (2) cannot reconstruct input histograms to an arbitrary
precision. In order to avoid this issue, we follow the stabilization scheme introduced
by [Chi+16; Sch16] which conducts the Sinkhorn iterations in the log domain. The
iterative scheme then relies on the dual potentials (or dual scalings) f and g (see
(2.8) and (2.9)), defined as

f (l) def.= ε log
(
u(l)

)
g(l) def.= ε log

(
v(l)

)
. (3.8)

Since we are more interested in computing OT barycenters rather than distances,
we present the log-domain scheme for the Sinkhorn barycenter iterations, requiring
one pair of scalings for each input histogram. Taking the log of the scaling updates
in (2.25), one has

f (l)
s = ε

[
log (as) − log

(
K exp

(
g(l−1)

s /ε
))]

(3.9)

g(l)
s = ε

[
log

(
b(l)

)
− log

(
KT exp

(
f (l)

s /ε
))]

.

In order to only deal with stable quantities, we need to compute the terms
log

(
K exp

(
g

(l−1)
s /ε

))
and log

(
K exp

(
f (l)

s /ε
))

without explicitly taking the ex-

ponential of g
(l−1)
s /ε or f (l)

s /ε because it would cause overflows. We detail hereafter
two different ways to do so.

Stabilized kernel The first way is to introduce a stabilized kernel K̃(f , g) defined
as:

K̃(f , g) = exp
(

−C + f1T + 1gT

ε

)
. (3.10)

Indeed, the quantity Ci,j − f i − gj stays bounded, so the extreme values of f and g

cancel each other out. Note that this stabilized kernel is equal to the transport plan
P (see (2.5)), which means that K̃(f (l), g(l)) is the approximation of the transport
plan after l iterations P(l).

We obtain the following scheme and refer the reader to the publication [Sch+18,
§4.1.1] for details:

f (l)
s = ε

[
log (as) − log

(
K̃(f (l−1)

s , g(l−1)
s )1

)]
+ f (l−1)

s (3.11)

g(l)
s = ε

[
log

(
b(l)

)
− log

(
K̃(f (l)

s , g(l−1)
s )T1

)]
+ g(l−1)

s .
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However, such a scheme requires the computation of two stabilized kernels per
Sinkhorn iteration, which is very costly since they are of size N2, and not separable
because of the added terms in the exponential. Moreover, each of those kernels
would need to be stored or recomputed for the backward pass. Thus, this scheme is
not appropriate for our large scale setting.

Another variant of this scheme, called absorption iterations [Chi+16; Sch16] is a
midway computation where the scaling updates are carried out in the usual domain,
but the extreme values are absorbed in the stabilized kernel (3.10) from time to
time. This reduces the number of kernels to compute and store, however it does
not alleviate the quadratic size of the kernels, which is in general the memory and
computational bottleneck.

Separable log kernel The second way to compute the terms mentioned above is
more compatible with our large-scale setting. It consists in applying the kernel K
through separable convolutions, as presented in 2.1.2, but in the log domain with
a stabilization technique. In the log domain, an operator called the log-sum-exp
appears when applying the kernel:

[log(K exp(g/ε))]i = log

⎛
⎝∑

j

exp
(−Ci,j + gj

ε

)⎞⎠ def.= [KLSE(g)]i (3.12)

[log(KT exp(f/ε))]i = log

⎛
⎝∑

j

exp
(−CT

i,j + f j

ε

)⎞⎠ def.= [KT
LSE(f)]i . (3.13)

This operator acts as a soft maximum, and its computation can be stabilized by
shifting the input values by their maximum and adding it after the operator, to avoid
the exponentiation of large values:

log

⎛
⎝∑

j

exp (aj)

⎞
⎠ = log

⎛
⎝∑

j

exp
(

aj − max
j

aj

)⎞⎠+ max
j

aj . . (3.14)

In addition to a better time complexity, the separable convolution yields a better
space complexity because it avoids computing any matrix of size N2, which is crucial
in our setting. An example of the process in 2 dimensions is detailed in Algorithm 4.
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Algorithm 4 LogSepKernel KLSE: Application of a 2-D separable kernel in log-
domain

Input: Separable cost function C = Cx + Cy, 2-D function in log-domain g ∈ R
n×n

∀k, j, xl(k, j) = −Cx(j,l)
ε + g(k, l)

∀k, j, r1(k, j) = log (∑n
l exp(xl − maxl xl)) + maxl xl

∀i, j, yk(i, j) = −Cy(i,k)
ε + r1(k, j)

∀i, j, r2(i, j) = log (∑n
k exp(yk − maxk yk)) + maxk yk

Output: Convoluted function in log-domain KLSE(g) = r2

The forward iterations then become

f (l)
s = ε

[
log (as) − KLSE(g(l−1)

s )
]

(3.15)

g(l)
s = ε

[
log

(
b(l)

)
− KT

LSE(f (l)
s )
]

.

For the backward loops, intermediate values can be negative and real-valued log-
arithms are not suited. While complex valued logarithms solve this problem, they
come at a prohibitive computational cost. Instead, we store the sign of the input
values and compute logarithms of absolute values. When exponentiating, the stored
sign is used to recover the correct values.

To sum up, this scheme allows to perform efficient optimization algorithms based on
Wasserstein barycenters, which can deal with low levels of regularization. The price
to pay is an overhead cost due to supplementary logarithms and exponentials to
compute. It is important to note however, that for very small levels of regularization,
discretization artifacts will appear in the barycenters, as observed by Schmitzer
[Sch16].

3.3.2 Warm start

The warm start strategy, often used in optimization problems, consists in using the
solution of a previous optimization problem that is close to the current one, as
initialization point in order to speed up the convergence. Our method relies on
performing an iterative optimization process which, at each iteration, calls upon
another iterative scheme, namely the forward Sinkhorn loop that computes the
barycenters. We will denote the optimizer iterations as “steps” to differentiate them
from Sinkhorn iterations. As described in 2.1.4, the Sinkhorn algorithm is usually
initialized with constant scaling vectors. However, in our case, since each step
performs a new Sinkhorn loop, the last scaling vectors of the previous step can
be used to initialize the scaling vectors of the current one, thus “warm-starting”
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the barycenter computation. This technique therefore accumulates the Sinkhorn
iterations as we accumulate optimization steps. This has several consequences:
a gain in precision and time, a potential increase in the instability of the scaling
vectors, and the energy we minimize changing over time.

First, the last scaling vectors of the previous step are closer to those of the current one
than a vector of constant value. Therefore, the Sinkhorn algorithm converges more
rapidly, and the final barycenters computed at each step gain accuracy compared to
the classical version of the algorithm.

Second, as mentioned in 3.3.1, the scaling vectors may become unstable when
computing a large number of Sinkhorn iterations. When using a warm start strategy,
iterations accumulate, which may consequently degrade the stability of the scaling
vectors. For example, using 20 Sinkhorn iterations running through 50 steps, a
warm start would lead to barycenters computed with scaling vectors comparable to
those obtained after 1000 Sinkhorn iterations. When instabilities become an issue,
we couple the warm start approach with our log-domain stabilization. The reduced
speed of log-domain computations is largely compensated by the fact that our warm
start allows the computation of less Sinkhorn iterations for an equivalent or better
result.

Third, when differentiating (3.2), we consider the initial, warm-started (as opposed
to initializing v

(0)
s to 1N ) values given to the scaling vectors to be constant and

independent of weights and atoms. This amounts to considering a different energy
to minimize at each optimization step. While it is inconsequential for first order
optimizations such as gradient descent, the quasi-Newton solver we use (L-BFGS)
relies on previous iterations to estimate a Hessian, and is thus sensitive to such
perturbations. Primarily, it can cause L-BFGS to exit prematurely since the computed
gradients do not correspond to the energy that is minimized. To mitigate this issue,
we simply restart L-BFGS every fixed number of steps, with the dictionary, the
weights and the last scaling vectors of the previous run.

We demonstrate the benefits of the warm start in Figure 3.2. We plot the evolution
of the mean PSNR (Peak Signal-to-Noise Ratio) of the reconstructions throughout
the L-BFGS steps for different settings, for the two datasets used in 3.4.2. For these
examples, we used the KL loss (since it gave the best reconstructions overall), we
did not have to use the log-domain stabilization, and we restarted L-BFGS every 10
steps. At an equal number of Sinkhorn iterations L, enabling the warm start always
yields better reconstructions after a certain number of steps. It comes at a small
overhead cost in time (around 25%), because L-BFGS line search routine requires
more evaluations at start. For the example in Figure 3.2a, the computation times
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Figure 3.2: Evolution of the mean PSNR of the reconstructions against cumulated L-BFGS
steps, for 3 configurations, on two cases of the MUG datasets used in the Wasser-
stein faces application (see 3.4.2). The KL loss was used for this experiment.
We see that with the same number of Sinkhorn iterations (L = 2), enabling
warm start yields better reconstructions than disabling it, in roughly the same
time (red and green curves).

are 20 minutes for L = 2, 25 minutes for warm restart and L = 2, and 15 hours for
L = 100. In this particular case, enabling the warm start with 2 Sinkhorn iterations
yields even better results than having 100 Sinkhorn iterations without warm start,
and with a 36 gain factor in time. For the second dataset (Figure 3.2b), enabling the
warm start does not yield as good results as when running 100 Sinkhorn iterations.
However, it would require considerably more than 2 Sinkhorn iterations, hence a lot
more time, to achieve the same result without it. The computation times in all three
cases are similar to the previous example.

3.3.3 Sinkhorn heavy ball

An acceleration method often used for first order optimization methods, and some-
times referred to as the heavy ball method, consists in adding a momentum term to
the parameter update:

θ(l+1) = θ(l) − α∇f(θ(l)) + τ
(
θ(l) − θ(l−1)

)
, (3.16)

with θ the optimized variable, f the energy function, α the step size, and τ the
momentum coefficient. It dates back to [Pol64] and is closely related to Nesterov’s
Accelerelated Gradient [Nes83]. Peyré et al. [Pey+16] introduced a similar relax-
ation scheme in the Sinkhorn updates (for the particular case of tensor-valued OT),
in order to make the fixed-point scheme contractant. We apply this acceleration
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technique to our scalar-valued barycenter setting, which results in a supplementary
averaging step in the iterations:

ũ(l)
s = as

Kv
(l−1)
s

(3.17)

u(l)
s = (u(l−1)

s )τ (ũ(l)
s )1−τ

ṽ(l)
s = b(l)

KT u
(l)
s

v(l)
s = (v(l−1)

s )τ (ṽ(l)
s )1−τ .

This formulation comes from the addition of the momentum term τ
(
f (l−1)

s − f̃
(l)
s

)
in the log-domain, which explains the multiplicative updates in the normal domain.
Note that this scheme is similar but different from the heavy ball method, which
would yield the following momentum term: τ

(
f (l−1)

s − f (l−2)
s

)
. While setting τ = 0

gives the classical Sinkhorn barycenter iterations (2.25), choosing a negative value
for τ can accelerate the convergence significantly. The modification of this scheme
implies that the gradients with respect to the dictionary and the weights should
be recalculated, or one can also resort to an automatic differentiation library. The
corresponding algorithm can be found in the publication [Sch+18, Algorithm 5].

3.3.4 Unbalanced

Introduced by Benamou [Ben03], the idea of unbalanced optimal transport is to
solve OT between distributions of unequal masses, by allowing the creation and
destruction of mass. This implies the relaxation of mass conservation constraints on
the transport plan, i.e. it is not necessary that the marginals of the transport plan
reconstruct the input distributions exactly. In our publication [Sch+18, §4.4, §5.6],
we detail the modified forward scheme for the unbalanced setting as proposed by
Chizat et al. [Chi+16] and an example application to motivate its use. It is based on
the replacement of equality constraints between the coupling marginals and input
distributions with a minimization of the KL divergence between them. Regarding
the differentiation of such a scheme, we employed an automatic differentiation
library as for the heavy ball extension.
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3.4 Experiments

In this section, we present the different applications we developed for our framework.
In the publication [Sch+18, §5.1], we compared our method to the Wasserstein
principal geodesics [SC15], since a displacement interpolation between the 2 atoms
of a dictionary learned on a set of measures could potentially match the first principal
geodesic. We found that the two methods can produce very similar results, but they
do not correspond in all cases, for various reasons such as the non-convexity of our
functional or the different approximations employed in each.

An application that was primarily developed by our colleagues at CEA is the one for
point spread functions (PSF) [Sch+18, §5.2] and we will not discuss it in detail. In
summary, we managed to precisely model the variations of the Euclid telescope’s PSF
under different wavelengths of incoming light. We learned a dictionary of 2 atoms,
which corresponded to the PSFs for the two extreme wavelengths of the considered
spectrum, allowing to interpolate between them for any wavelength. This showed
that OT interpolations model PSFs variations across wavelengths well.

For the first two experiments, we chose to cast digital images as probability distri-
butions through normalization, i.e. divide each pixel value by the sum of all pixel
values, in order to get a total sum (density) of 1. Normalizing images so that they
sum up to 1 can have unintended effects, in particular when the densities are very
different across images. For example, if an image contains an object A, and the next
image contains A and another object B, then object A will not have the same mass
in both images when they are normalized. This will lead to potentially undesirable
mass transfers from B to A, to account for that mass imbalance. Using the unbal-
anced extension described above would help mitigate this problem. However, in the
datasets we use, images have relatively small differences in total density (max 1% in
the cardiac sequence, and max 5% in the Wasserstein faces), therefore the potential
artifacts of normalization are negligible.

As mentioned in 2.2, dictionary learning is one way of conducting representation
learning. We explain hereafter an example of the dimensionality reduction capa-
bilities of our method. By assigning each atom a point in R

d, one can also assign
to each input frame a point in that space, that is the Euclidean barycenter of the
atom’s points weighted by the coefficients learned by our algorithm. To ensure that
each position in this simplex is defined by a unique set of coordinates, one needs to
embed S atoms in R

S−1, because one of the weights can be deduced from the others
as they sum to 1. This barycentric space is a new representation of the input data
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Figure 3.3: Left: Comparison between 4 frames (out of 13) of the measures (lower row) and
the same reconstructed frames (upper row). Right: Plot of the reconstructed
frames (blue points) by their barycentric coordinates in the 4-atoms basis, with
each atom (red points) at the vertices of the tetrahedron. The green point is the
first frame.

based on the Wasserstein distance, in which one can perform different tasks such as
clustering or classification.

3.4.1 Cardiac sequences

An image sequence of a beating heart is a priori cyclic, and contains a significant
amount of redundant information. Being able to learn an efficient representation of
the sequence is interesting for compression purposes and anomaly detection. If we
search for key moments in the sequence, we might be able to reconstruct it entirely
by interpolating between those moments.

We tested our dictionary learning algorithm on a reconstructed MRI sequence of
one complete heartbeat cycle. We chose to learn S = 4 atoms from a sequence
of M = 13 frames of size N = 272 × 240, we chose a regularization ε = 2, and
a scaling factor between weights and atoms of ζ = N/(100 ∗ M). We initialized
the weights randomly, and atoms with constant values. We used a quadratic loss
because it provided the best results in terms of reconstruction and representation.
We found that L = 25 iterations for the Sinkhorn algorithm is a good trade-off
between computation time and precision.

In Figure 3.3, we display four initial frames out of 13, and their respective recon-
structions. We also plot the four learned atoms as the vertices of a tetrahedron,
which is a way to visualize the barycentric space mentioned earlier. We observe that
our algorithm identifies key moments of the sequence, between which frames can
be interpolated with optimal transport. The identified atoms do not correspond to
input frames because we do not impose sparsity constraints on the weights (which
would bring barycentric points closer to the edges of the simplex), but also because
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of the bias introduced by the entropic regularization. Since all frames can be re-
computed from their barycentric coordinates, the learned representation is indeed a
compressed version of the sequence.

Another use case would be anomaly detection: if we learn from a sequence of
multiple cycles of a beating heart, looking at the barycentric path would reveal
if there are significant swerves in the cyclic trajectory, which would indicate an
irregularity. Finally, the learned representation can also be used for super-resolution,
as we can linearly interpolate between the barycentric coordinates of the input
frames with arbitrary time resolution.

3.4.2 Wasserstein faces

It has been shown that images of faces, when properly aligned, span a low-dimensional
space that can be obtained via PCA. These principal components, called EigenFaces,
are widely used for face recognition [TP91]. We show that, with the right setting, our
dictionary learning algorithm can produce atoms that can be interpreted more easily
than their linear counterparts, and can be used to edit a human face’s appearance.

We illustrate this application on the MUG facial expression dataset [Aif+10]. From
the raw images of the MUG database, we isolated faces and converted the images
to grayscale. The resulting images are in Figure 3.4(a). We can optionally invert
the colors and apply a power factor γ similar to a gamma-correction. We used a
total of M = 20 images (N = 224 × 224) of a single person performing 5 facial
expressions, and learned dictionaries of S = 5 atoms using PCA, NMF, a K-SVD
implementation [Rub+08] and our proposed method. For the latter, we set the
number of Sinkhorn iterations to L = 100 and the maximum number of L-BFGS
steps to 450, which ensure acceptable levels of convergence for this application. The
weights were randomly initialized and the atoms were initialized as constant.

We performed a cross validation using two datasets, four loss functions, four values
for γ (1, 2.2, 3, 5), 3 values of ζ(25, 50, 100), and colors either inverted or not. We
found that none of the γ values we tested gave significantly better results, in terms
of reconstruction error. However, ζ = 100 yielded the best reconstructions overall,
and interestingly, inverting colors improved the result for our method in most cases.
We can conclude that when dealing with faces, it is better to transport the thin
and dark zones (eyebrows, mouth, creases) than the large and bright ones (cheeks,
forehead, chin).
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As illustrated by Figure 3.4, our method reaches similarly successful reconstructions
given the low number of atoms, with a slightly higher mean PSNR of 33.8 compared
to PSNRs of 33.6, 33.5 and 33.6 for PCA, NMF and K-SVD respectively. An example
with another dataset in shown in Figure 3.5.

We show in Figure 3.6 and Figure 3.7 the atoms obtained when using different loss
functions, for the two same datasets. This shows how sensible the learned atoms are
to the chosen fitting loss, which highlights the necessity for its careful selection if
atoms’ interpretability is important for the application at hand.

Lastly, we showcase an appealing feature of our method: the atoms that it computes
allow for facial editing. We demonstrate this application in Figure 3.8: starting from
the isobarycenter of the atoms, by interpolating weights towards a particular atom,
we add some of the corresponding emotion to the face.

3.4.3 Literature Learning

We use our algorithm to represent literary work. To this end, we use a bag-of-words
representation [SM86], where each book is represented by a histogram of its words.
In this particular application, the cost matrix C (distance between each word) is
computed exhaustively and stored. We use a semantic distance between words.
These distances were computed from the Euclidian embedding provided by the
GloVe database (Global Vectors for Word Representation) [Pen+14]. Our learning
algorithm is unsupervised and evaluates similarity between books based on their
word histogram, which is representative of their lexical field. Consequently we
expect the algorithm to sort books by either author, writing style, or genre.

To demonstrate our algorithm’s performance, we created a database of 20 books by
5 different authors. In order to keep the problem size reasonable we only considered
words that are between 7 and 8 letters long. In our case, it is better to deal with long
words, because they have a higher chance of holding discriminative information
than shorter ones.

The results can be seen in Figure 3.9. Our algorithm is able to group the novels by
author, recognizing the proximity of lexical fields across the different books. The
atom 0 seems to be representing Charlotte Brontë’s style, the atoms 1 and 4 Mark
Twain’s, the atom 2 Arthur Conan Doyle’s, and the atom 3 Jane Austen’s. Charles
Dickens books appear to share an extended amount of vocabulary with the other
authors without it differing enough to be represented by its own atom like others
are.
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Figure 3.4: We compare our method with Eigenfaces [TP91], Non-negative Matrix Fac-
torization (NMF) and K-SVD [Rub+08] as a tool to represent faces on a low
dimensional space. Given a dataset of 20 images of the same person from the
MUG dataset [Aif+10] performing 5 facial expressions 4 times (row (a) illus-
trates each expression), we project the dataset on the first 5 EigenFaces (row
(b)). The reconstructed faces corresponding to the highlighted input images
are shown in row (f). Row (c) and (d) respectively show atoms obtained using
NMF and K-SVD, and row (g) and (h) their respective reconstructions. Using
our method with a KL loss, we obtain 5 atoms shown in row (e) that produce
the reconstructions in row (i).
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Figure 3.5: Similarly to Figure 3.4, we compare our method (using a KL loss) to the
Eigenfaces approach, NMF and K-SVD as a tool to represent faces on a low
dimensional space.
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Figure 3.6: We compare the atoms (columns 1 to 5) obtained using different loss functions,
ordered by fidelity of the reconstructions to the input measures (using the mean
PSNR), from best to worst: the Kullback-Leibler divergence (a) PSNR = 32.03,
the quadratic loss (b) PSNR = 31.93, the total variation loss (c) PSNR =
31.41 and the Wasserstein loss (d) PSNR = 30.33. In the last column, we show
the reconstruction of the same input image for each loss. We notice that from
(a) to (d), the atoms’ visual appearance seems to increase even though the
reconstruction quality decreases.
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Figure 3.7: Similarly to Figure 3.6, we compare the atoms obtained using different loss
functions, ranking them by mean PSNR: (a) PSNR = 33.81, (b) PSNR =
33.72, (c) PSNR = 32.95 and (d) PSNR = 32.34
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Figure 3.8: Face editing : Using the atoms shown in row (a) of Figure 3.6, we interpolate
between the atoms isobarycenter (top image) and each one of the atoms (giving
it a relative contribution of 30%). This allows to emphasize each emotion
(bottom images) when starting from a neutral face.

This representation could be used together with the Wasserstein barycentric coordi-
nates method [Bon+16] for clustering applications. By projecting a new book (its
histogram of words) written by one of these authors onto the simplex composed
of the learned atoms, one would obtain coordinates that could describe by which
author the book is most likely written.
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Figure 3.9: Using our algorithm, we look at word histograms of novels, and learn 5 atoms
in a sample of 20 books by 5 authors. Each book is plotted according to its
barycentric coordinates with regard to the learned atoms as explained in 3.4.1.
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3.5 Conclusion

The choice of the number of atoms S to learn is not straightforward, and has to
be tailored to each application. As with K-SVD, it is a tradeoff between the time
necessary to compute the atoms, and the required accuracy of reconstruction.

We introduced a non-linear dictionary learning approach that uses the optimal
transport geometry by fitting data with Wasserstein barycenters of the learned
atoms. We presented an algorithm to compute this representation based on the
entropic regularization of optimal transport distances, as well as several variants
and extensions of our method. We finally illustrated the versatility of our framework
on various applications.

Future work. In order to decrease the computational time of the Sinkhorn algo-
rithm, various extensions have been proposed after the publication of our method,
such as low-rank approximations of the kernel [Alt+18], a multi-scale approach
[GM17] and an over-relaxation of the iterates [Thi+17] that is similar to the one
presented in 3.3.3. Implementing these extensions with an automatic differentiation
library would avoid calculating the gradients of the new functionals manually.

Moreover, a more robust alternative to our log-domain stabilization scheme for
computing sharp barycenters have been proposed by Xie et al. [Xie+18]. It is based
on inexact proximal point iterations that converge to the exact optimal solution. It
is however less scalable than our approach since it requires multiple computations
of the full kernel and transport plan. This method could be used in our framework,
but would only be appropriate for small-scale applications requiring high precision,
such as the one on point spread functions.
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Metric Learning 4
As discussed in the previous chapters, optimal transport (OT) is a powerful tool
to compare probability measures on geometric domains (such as Euclidean spaces,
surfaces or graphs). The interesting insight provided by OT lies in its ability to
leverage prior knowledge on how “close” and related the points of the domain are,
or, more generally, how close two observations are. This prior knowledge is usually
encoded as a “ground metric” [Rub+00], which defines the cost of moving mass
between points.

Because the Wasserstein distance is geodesic, OT can also be used to compute
displacement interpolations between probability measures, as seen in 2.1.3. When
two discrete probability distributions are supported on a Euclidean space, and the
ground metric is itself the Euclidean distance (the most widely used setting in
applications), theory tells us that the displacement interpolation between these two
measures only involves particles moving along straight lines, from a point in the
starting measure to another in the end measure. Imagine that, on the contrary, we
observe a time series of measures in which mass displacements do not seem to match
that assumption. We then cast the following inverse problem: under which ground
metric could this observed mass displacement be considered optimal? The goal
of our approach here is precisely to answer that question. We give an illustrative
example in Figure 4.1, where we show that we learn a ground metric that deforms
the space such that the sequence of mass displacements that is observed is close to a
Wasserstein geodesic with that ground metric.

First of all, it is possible that the mass displacement does not follow a transport that
is optimal for any kind of ground metric, for example when the start and end points
are the same (cyclic movements). In our study, we rule out these cases and only
consider instances where it is reasonable to assume that there exists such a metric,
i.e. under-constrained problems.

The main choice in our approach relies on looking at diffusion-based geodesic
distances [YC16] as the space of candidate ground metrics. We then minimize
the reconstruction error between measures that are observed at intermediary time
stamps and measures interpolated with that ground metric. The problem we tackle
is challenging in terms of time and memory complexity, due to repeated calls to
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Figure 4.1: Left: before metric learning, the sequence of observed measures (blue points)
lies in the Wasserstein space of probability distributions with a Euclidean ground
metric. The observed sequence does not match the Wasserstein geodesic (red
line) between the first and last element. Right: after modifying the ground
metric iteratively, the Wasserstein space is now deformed in such a way that
the geodesic between the first and last element in this new geodesic space (red
curve) is as close as possible to the sequence.

solve Wasserstein barycenter problems with a non-Euclidean metric, during the
non-linear optimization process. We address these issues using a sparse resolution of
a diffusion equation, yielding a tractable algorithm. The optimization is performed
using a quasi-Newton solver and automatic differentiation to compute the gradients
of the functional, through a direct differentiation of Sinkhorn iterations [Bon+16;
Gen+17]. However, such approaches can suffer from prohibitive memory footprint,
which we can avoid by providing closed-form gradient formulas for the diffusion
process. We validate the proposed algorithm on two-dimensional synthetic datasets,
and on the learning of color variations in image sequences.

4.1 Problem statement

In this chapter, we consider discrete probability measures on graphs, i.e. sums of
weighted Dirac distributions supported on a graph’s vertices. Similarly to histograms
defined on fixed grids, such measures are defined on a fixed graph, thus they can be
represented solely by their weight vector, which belongs to the probability simplex
ΣN . We refer to both these discrete measures and their weight vector simply as
“measures” for brevity.

We parameterize the metric by a positive weight wi,j associated to the edge connect-
ing vertices i and j. This should be understood as being inversely proportional to the
length of the edge, and conveys how easily mass can travel through it. Additionally,
we set wi,j = 0 when vertices i and j are not connected.
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We aim to carry out metric learning using OT where the ground cost is the square
of the geodesic distance associated to the weighted graph. Instead of optimizing
a full adjacency matrix W = (wi,j)i,j which has many zero entries that we do not
wish to optimize, we define the vector w as the concatenation of all non-zero metric
parameters wi,j > 0, that is, for which vertices i and j are connected. This imposes
a fixed connectivity on the graph, and we denote by N (i) the set of neighboring
vertices of vertex i.

In order to define an efficient and regular functional, we consider Varadhan’s formula
[Var67] as in Solomon et al. [Sol+15], which relates the solution of the heat equation
to geodesic distances. The transport cost is then defined as the log of the heat kernel,
and this kernel is itself approximated using S sub-steps of an implicit Euler scheme.
Our ground metric formulation is thus

Cw
def.= −ε log

(
(Id − ε

4S
Lw)−S

)
, (4.1)

where Lw is a Laplacian operator parameterized by the graph weights w. In practice,
we never explicitly compute Cw, but directly use the diffusion kernel

K def.= (Id − ε

4S
Lw)−S = exp (−Cw/ε) . (4.2)

Details concerning these computations can be found in section 4.2.2.

We now apply our metric formulation (4.1) to the case where the input data is a
dynamic evolution of density, which we model as a displacement interpolation. Let
(hti)P

i=1 ∈ ΣN be observations at P consecutive time steps ti of a movement of mass.
We aim to retrieve the metric weights w for which an OT displacement interpolation
approximates best this mass evolution. This corresponds to an OT regression scheme
parameterized by the metric, and leads to the following optimization problem:

min
w

P∑
i=1

L (γε
Cw

(ht1 , htP , ti) , hti

)
+ f(w), (4.3)

where γε
Cw

(ht1 , htP , ti) is the measure interpolated at time ti between ht1 and
htP (as defined in (2.22)), L is a loss function between measures, and f(w) is a
regularization term detailed in 4.2.3.

In the numerical examples, we consider 2-D and 3-D datasets discretized on uniform
square grids, so that the graph is simply the graph of 4 or 6 nearest neighbors on
this grid.
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4.2 Method

In this section, we detail the different components of the proposed algorithm.
The objective function (4.3) is non-convex, and we minimize it with an L-BFGS
quasi-Newton algorithm, to compute a local minimum of the energy. The L-BFGS
algorithm requires the evaluation of the energy function, as well as its gradient with
respect to the inputs. In this case, evaluating the energy function (4.3) requires
reconstructing the sequence of input measures using a displacement interpolation
(through Wasserstein barycenters) between the first and last measure, and assessing
the quality of the reconstructions. The gradient is calculated through automatic
differentiation, which provides high flexibility when adjusting the framework.

4.2.1 Alternative strategies to displacement interpolation

As mentioned in 2.1.3, we compute displacement interpolations using regularized
Wasserstein barycenters (see Algorithm 2), for which the main computational burden
is to apply the kernel matrix K on R

N vectors. We briefly describe an attempt to
compute displacement interpolations with a cheaper solution.

Solomon et al. [Sol+15] proposed the Wasserstein propagation algorithm, which
generalizes the Wasserstein barycenter algorithm, and allows to compute displace-
ment interpolations with around half the number of kernel calls. Unfortunately,
our experiments show that this algorithm accumulates the blur introduced by the
regularization, across the interpolation: as we get towards the middle of the in-
terpolation, measures get more diffuse at each step, with the middle interpolation
being the most affected. This method is only applicable if the diffusiveness of the
interpolations does not impede the effectiveness of the application, or if one can
achieve a very low blur at the end points resulting in a reasonable blur in the middle.
In our case, a varying blur in the interpolations prevents a good reconstruction of
the inputs, and we cannot achieve a very small blur since small values of ε yield
a poor approximation of the heat kernel (see Figure 4.9). Consequently, this algo-
rithm cannot be used in our setting. A comparison of a displacement interpolation
obtained with the Sinkhorn barycenter algorithm and the Wasserstein propagation
is presented in Figure 4.2.
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Figure 4.2: Comparison of a displacement interpolation between two densities (ε = 1.10−3),
with the Sinkhorn barycenter algorithm (top row), and the Wasserstein propa-
gation algorithm (bottom row). We observe an accumulation of the blurring
effect for the Wasserstein propagation algorithm.

4.2.2 Computing geodesic distances

When the domain is a grid and the metric is Euclidean, applying the kernel boils
down to a separable convolution with a Gaussian kernel, as discussed in 3.3.1.
However, for an arbitrary metric as in this case, computing the kernel K requires
all-pairs geodesic distances on the domain, and applying it during the Sinkhorn
iterations requires O(N2) operations per iteration (matrix-vector multiplication).
Having discretized the metric on the graph’s edges, computing the all-pairs squared
geodesic distances matrix Cw can be achieved using either a graph approach, or a
diffusion-based approach.

Graph approach

A classical method to compute shortest paths on a graph is Dijkstra’s algorithm.
Computing the geodesic distance between one point and all the others is achieved in
O(N log N) operations so all-pairs geodesic distances are obtained in O(N2 log N).
However, Dijkstra’s geodesic distances are non-smooth with respect to the graph
weights. Moreover, since efficient implementations of Dijkstra’s algorithm rely on
non differentiable operations (insertion and removal on priority queues), one would
need a differentiable implementation of it. Such an implementation would be too
costly and simpler methods exist.

Another method is the Floyd-Warshall algorithm (Algorithm 5) which directly com-
putes all-pairs geodesic distances in O(N3) operations. The computed distances
are still non-smooth, but the individual operations of the algorithm (additions and
minimums) can be differentiated algorithmically.

However, one remaining problem with these approaches is that they require the full
calculation and storage of the geodesic distance matrix (which is of size N2), in order
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Algorithm 5 Floyd-Warshall: Computation of all-pairs geodesic distances in a
graph

Inputs: A ∈ R
n×n: weighted adjacency matrix of the graph, with 0 < Ai,j < ∞

the length of the edge between vertices i and j, and Ai,j = ∞ if i and j are not
connected.
for i = 1 . . . n do

for j = 1 . . . n do
for k = 1 . . . n do

Ai,j = min(Ai,j , Ai,k + Ak,j)
end for

end for
end for
Outputs: A containing all-pairs geodesic distances

to build the kernel K for the Sinkhorn algorithm. This quickly becomes prohibitive
in time and memory as the number of points grows (≈ 12GB for measures with
N = 2002 points, and ≈ 30GB for measures with N = 403 points).

Diffusion-based approach

In sharp contrast, this section details our approach which leverages Varadhan’s
formula [Var67] to have faster evaluations of the kernel, and smooths the de-
pendency between the geodesic distance kernel and the metric, which makes it
differentiable.

We approximate the kernel K by the heat kernel associated to geodesic distances
on the domain, as done by Solomon et al. [Sol+15] for computing OT on discrete
surfaces. Indeed, it has been shown by Varadhan [Var67] that the solution to the
heat equation (with variable coefficients) can be used to obtain geodesic distances
on a Riemannian manifold. Let us consider the heat equation with a Dirac as initial
heat distribution:

⎧⎨
⎩

∂h(x,y,t)
∂t = Δgh(x, y, t)

h(x, y, 0+) = δy(x)
(4.4)

where Δg is the Laplace operator parametrized by the Riemannian metric tensor g,
and dg is the geodesic distance on the manifold. Varadhan’s second formula is

lim
t→0

[−4t log(h(x, y, t))] = d2
g(x, y). (4.5)
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This means that h(x, y, t) t→0∼ exp(−d2
g(x, y)/4t), i.e. h(x, y, t) approximates the heat

kernel on the manifold when t is small. The end goal is not to compute the full
kernel as this has a prohibitive cost in memory for a large number of points. For the
Sinkhorn algorithm, we only need to apply the kernel matrix to functions stored as
vectors. This can also be achieved by solving the heat equation with that function as
initial data, i.e. smoothing it through diffusion up to a small time τ . We then denote
the initial function u0(x) and solve

⎧⎨
⎩

∂u(x,t)
∂t = Δgu(x, t)

u(x, 0+) = u0(x).
(4.6)

We discretize this equation in time using an implicit Euler scheme and perform S

sub-steps so that the finite difference approximation stays accurate. It is crucial to
rely on an implicit stepping scheme to obtain approximated kernels supported on
the full domain, in order for Sinkhorn iterations to be well conditioned (as opposed
to using an explicit Euler scheme which would break Sinkhorn’s convergence). With
δt = τ/S, let ts = sδt, s ∈ [0, S], which yields t0 = 0 and tS = τ . From Equation 4.6,
we get

u(x, t + δt) − u(x, t)
δt

= Δgu(x, t + δt) (4.7)

⇒ (Id − δtΔg) u(x, t + δt) = u(x, t). (4.8)

We now discretize the equation in space. While Solomon et al. [Sol+15] discretize
Δg using a cotangent Laplacian because they deal with triangular meshes, we
prefer a weighted graph Laplacian parameterized by the metric weights w (detailed
hereafter), since the probability distributions we consider are defined on graphs.
The weighted adjacency matrix W is defined as Wi,j = Wj,i = wi,j where wi,j are
the edge weights parameterizing the metric. It is symmetric and usually sparse,
since wi,j is non-zero only for vertices that are connected, and 0 otherwise. The
diagonal weighted degree matrix sums for each vertex the weights of its adjacent
edges: Λ def.= diag(d), with di

def.= ∑N
j=1 wi,j = ∑

j∈N (i) wi,j . The negative semi-definite
weighted graph Laplacian matrix is then defined as Lw = W − Λ.

Writing us the approximation of u(x, ts) at the N vertices xi, Equation 4.8 gives

(
Id − τ

S
Lw

)
us+1 = us, (4.9)

which is a diffusion equation rather than a heat equation since it has variable
diffusion coefficients (enclosed in Lw). Starting with the initial function u0 = u0(x),
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one can iteratively obtain the final solution uS = u(x, τ), which approximates the
diffusion of u0(x) after a short time τ :

(
Id − τ

S
Lw

)S

uS = u0. (4.10)

In order to get a kernel of the form K = exp(−Cw/ε), Varadhan’s formula (4.5)
shows that the diffusion time should be chosen as τ = ε/4. Therefore, applying the
kernel K to a vector v is simply carried out by solving S sparse linear systems with
the matrix M def.= Id − ε

4S Lw:

u = Kv = M−Sv =
(

Id − ε

4S
Lw

)−S

v. (4.11)

As stated in section 4.1, this method can be seen as choosing a cost of the form

Cw = −ε log
(

(Id − ε

4S
Lw)−S

)
. (4.12)

The chief advantage of the formula (4.11) to approximate a kernel evaluation is
that the same matrix M is repeatedly used S times, which is itself repeated at
each iteration of the Sinkhorn barycenter algorithm (2). Following Solomon et al.
[Sol+15], a dramatic speed-up is thus obtained by pre-computing a sparse Cholesky
decomposition of M, which is sparse and positive definite. For instance, on a 2-D
domain, the number of non-zero elements of such a factorization is of the order of
N , so that each linear system resolution has linear complexity.

4.2.3 Inverse Problem Regularization

The metric learning problem is severely ill-posed and this difficulty is further in-
creased by the fact that the corresponding optimization problem (4.3) is non-convex.
These issues can be mitigated by introducing a regularization term f(w).

We introduce two different regularizations: f(w) def.= λcfc(w) + λsfs(w). The term
fc forces the metric weights (similar to diffusion coefficients) to be close to 1: this
controls how much the space becomes inhomogeneous and anisotropic, and impedes
the weights from diverging to infinity during the optimization process. The term fs

constrains the weights to be spatially smooth, which reduces the number of local
minima in the energy landscape. Since we carry out the numerical examples on
graphs that are 2-D and 3-D grids, we use a smoothing regularization fs that is
specific to that case. This term must be adapted when dealing with general graphs.
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N//(ev) N//(eh)

Figure 4.3: Smooth prior: for each vertical (ev) and horizontal (eh) edge, we minimize the
squared sum of weight differences with its respective neighbors of the same
orientation.

The first regularization is imposed by adding the following term to the energy
functional, multiplied by a control coefficient λc:

fc(w) def.= ||w − 1||22 . (4.13)

To enforce the second prior, we add the following term to the functional, multiplied
by a control coefficient λs:

fs(w) def.=
∑
e∈E

⎛
⎝ ∑

e′∈N//(e)
(we − we′)

⎞
⎠

2

, (4.14)

with E the set of edges, and N// the set of neighbor edges of the same orientation,
as illustrated in Figure 4.3 for the 2-D case.

We regularize separately horizontal and vertical edges to ensure that we recover an
anisotropic metric. This is important for various applications, for example when
dealing with color histograms, as MacAdam’s ellipses reveal [Mac42].

The selection of the regularization parameters (λc, λs) and their impact on the
recovered metric is discussed in section 4.4.
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4.2.4 Implementation

In order to ensure positivity of the metric weights, problem (4.3) is solved after a
log-domain change of variable w = ez, and the optimization on z is achieved using
the L-BGFS algorithm.

In order to evaluate the gradient, we use automatic differentiation (AD), which
allows to compute the gradient of a function without having to know its explicit
formula. It is based on the idea that any function evaluated on a computer is simply
a sequence of arithmetic operations. Knowing the derivative of each operation,
one can compute the derivative of the entire function by applying the chain rule
recursively, with a computational cost that is only a small constant factor times the
function evaluation itself [GW08]. Reverse accumulation (or reverse mode) AD
[Gri12] is a particular way of computing a function’s derivative, in which the gradient
is recursively accumulated from the output variable to the input variable. As a result,
the function needs to be completely evaluated (the forward pass), before computing
its gradient (the backward pass). AD has become popular for learning algorithms, in
particular for neural networks, where it is used for the back-propagation of errors
through the net [Bay+18].

We implemented our method in Python, using the PyTorch framework which supports
automatic differentiation [Pas+17] implemented as reverse mode. During the
backward pass, the gradient evaluation requires the computation of the adjoint of
the Jacobian of each elementary operation of the algorithm. The only non-trivial
operation that is necessary to implement is the Jacobian of the matrix inversion.

Differentiating the matrix inversion Since we use a reverse accumulation AD frame-
work, the gradient is computed from the end variable to the leaf variable (the
one with respect to which we require the gradient). If a pipeline is of the form
yi = fi(yi−1), with y0 = x the leaf variable and z = ym the end variable (which in
the case of optimization, is the value of the energy function), the gradient ∂z

∂x is
recursively computed with

∂z

∂yi
= ∂z

∂yi+1

∂yi+1
∂yi

. (4.15)
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In the multivariate case, this extends to matrix multiplication of the adjoints (trans-
pose for real matrices) of the Jacobians:

(
∂z

∂yi

)T

=
(

∂yi+1
∂yi

)T ( ∂z

∂yi+1

)T

(4.16)

=
(

∂yi+1
∂yi

)T (∂yi+2
∂yi+1

)T

· · ·
(

∂z

∂ym−1

)T

. (4.17)

It is not necessary to compute Jacobians ∂yi+1
∂yi

fully, it suffices to be able to apply
them on the input gradient ∂z

∂yi+1
to get the output gradient ∂z

∂yi
.

Let us denote z the final energy value of the function we minimize (4.3), and
ṽ = M−1v a vector v diffused after one step of the implicit Euler scheme presented
in (4.11). The automatic differentiator computes the gradient g = ∂z

∂ṽ , and since
both M and v can be metric-dependent, we need to compute ∂z

∂v and ∂z
∂M . From

dz =
〈

∂z
∂ṽ , dṽ

〉
, we have

dz =
〈
g, d

(
M−1v

)〉
=
〈
g, d(M−1)v + M−1dv

〉
=
〈
g, −M−1dMM−1v

〉
+
〈
g, M−1dv

〉
=
〈

−
(
M−1

)T
g
(
M−1v

)T
, dM

〉
+
〈(

M−1
)T

g, dv

〉

=
〈

−
(
M−1g

) (
M−1v

)T
, dM

〉
+
〈
M−1g, dv

〉
.

Consequently, the two gradients of interest are:

h
def.= ∂z

∂v
= M−1g

H def.= ∂z

∂M = −
(
M−1g

) (
M−1v

)T
= −hṽT .

The vector ṽ = M−1v has been computed in the forward pass and should be stored
for reuse in the backward pass. We then only need to compute h = M−1g.

Since the automatic differentiation library we used (PyTorch v1.0.0) does not differ-
entiate sparse tensors, we have to provide the gradient of the loss z with respect to
the weights w, which is the first variable that is not a sparse matrix when browsing
the computational graph backwards (from the end variable to the leaf).
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Recall that we built the matrix M from wi,j in the following manner:

Wi,j
def.= wi,j (4.18)

di
def.=

N∑
j=1

wi,j =
∑

j∈N (i)
wi,j (4.19)

Λ def.= diag(d) (4.20)

L def.= W − Λ (4.21)

M def.= Id − ε

4S
L. (4.22)

Next, we have:

∂z

∂wi,j
=
∑
k,l

∂z

∂Mk,l

∂Mk,l

∂wi,j
=
∑
k,l

Hk,l
∂Mk,l

∂wi,j
= − ε

4S

∑
k,l

Hk,l
∂Lk,l

∂wi,j
. (4.23)

We can rewrite (4.21) as

Lk,l = wk,l − δk,l

∑
m∈N (k)

wk,m, (4.24)

where δk,l is the Kronecker delta.
Thus, if k �= l,

∂Lk,l

∂wi,j
= ∂

∂wi,j
(wk,l) =

⎧⎨
⎩1 if (k, l) = (i, j) or (k, l) = (j, i)

0 otherwise
(4.25)

and, if k = l,

∂Lk,l

∂wi,j
= ∂

∂wi,j

⎛
⎝−

∑
m∈N (k)

wk,m

⎞
⎠ =

⎧⎨
⎩−1 if k = i or k = j

0 otherwise.
(4.26)

Consequently, keeping only the non-zero terms in the sum (4.23), we obtain:

∂z

∂wi,j
= − ε

4S
(Hi,j + Hj,i − Hi,i − Hj,j). (4.27)

= − ε

4S
(hiṽj + hj ṽi − hiṽi − hj ṽj) (4.28)

= ε

4S
(hi − hj) (ṽi − ṽj) (4.29)

Differentiating the conjugate gradient We experimented with another way of dif-
ferentiating the matrix inversion, which arises in the case where we solve the linear
system with an iterative method such as the conjugate gradient (CG) instead of the
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Cholesky factorization. In order to solve Mu = v, the CG algorithm only performs
multiplications of the matrix M with vectors. Therefore, we only need to provide the
gradient of the matrix multiplication, with respect to the metric weights w, and let
the automatic differentiator operate on the CG iterations. This technique is however
associated with a high memory footprint even for small datasets. Indeed, interme-
diate variables are stored for each CG iteration, and one evaluation of the energy
function performs L Sinkhorn iterations, each applying the kernel 4 times, each
application requiring S calls to the CG algorithm. There are of course checkpointing
techniques that keep a fraction of the results of the forward pass and recompute
the other ones from these “snapshots” during the backward pass. However, these
techniques trade memory for computation time, which can already be large for our
applications (see 4.1).

4.3 Experiments

We first show the influence of the metric in an example of the direct problem. We
then show a few synthetic examples in which the input sequence has been generated
as a Wasserstein geodesic using a ground metric known beforehand. This ground
truth metric is compared with the output of our algorithm. We then present an
application to a task of learning color variations in image sequences.

In the following, an “interpolation” refers to a displacement interpolation, unless
stated otherwise.

4.3.1 Direct problem

The direct problem in this setting is to obtain the displacement interpolation between
two measures, under a given metric. We solve it with the Sinkhorn barycenter
algorithm (2.1.4) using the metric-parameterized diffusion kernel (4.2). In order
to grasp the role of the metric in optimal transport, we show in Figure 4.4 the
results of an interpolation with a Euclidean metric, and with a simple non-Euclidean
metric. In the former case, the mass travels in a straight line since the diffusion is
homogeneous. In the latter case, the mass does not travel in a straight line, but
avoids the central region, where the diffusion coefficient is low, i.e where it is more
costly to travel.
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Horizontal Vertical

Figure 4.4: The direct problem: for a given metric (two leftmost columns: weights on
horizontal and vertical edges), compute the displacement interpolation between
two measures (other columns). This figure compares the interpolation between
two measures, using a Euclidean metric (top row), and a non-Euclidean metric
(bottom row). In the metric images, low values (in blue) indicate a low diffusion
coefficient, whereas high values (in red) indicate a high diffusion coefficient.

4.3.2 Synthetic experiments in 2-D

As mentioned in 4.1, the proposed algorithm solves an inverse problem: given a
sequence of measures representing a movement of mass, we aim at fitting a metric
for which that sequence can be sufficiently well approached by a displacement
interpolation between the first and last frame. We test the algorithm by applying it
on different sequences of measures that are themselves geodesics generated using
handcrafted metrics, and verify that the learned metric is close to the original one. In
general, it is impossible to recover with high precision the exact same metric, because
such an inverse problem is too ill-posed (many different metrics can generate the
same interpolation sequence) and the energy non-convex. Moreover, regularization
introduces a bias while helping to fight against this non-convexity. In view of this,
we attempt to find a metric that shares the same large scale features as the original
one.

We run three experiments with different handcrafted metrics, presented in Figure 4.5.
The domain’s graph we use here is a 2-D grid of size n × n. The parameters used
for these experiments are: a grid of size N = 502, L = 50 Sinkhorn iterations, an
entropic regularization factor ε = 1.2e − 2, S = 100 sub-steps for the diffusion
equation, 1000 L-BFGS iterations, and the metric regularization factor λc = 0. The
other regularization factor is λs = 0.03 for the first two experiments and λs = 1.0
for the third one. Finally, each of the three experiments is tested with three different
loss functions, and we display the result which is closest to the ground truth. The
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different loss functions are the L1 norm, the squared L2 norm and the Kullback-
Leibler divergence:

L1(p, q) def.= ||p − q||1 , (4.30)

L2(p, q) def.= ||p − q||22 , (4.31)

LKL(p, q) def.= 1T (p � log(p/q) − p + q), (4.32)

with � being the entry-wise multiplication. We will see that the best loss function
varies depending on the data.

The metric w is located along either vertical or horizontal edges. We thus display
two images each time, one for the horizontal and one for the vertical edges.

In the first experiment, we are able to reconstruct the input sequence, and retrieve
the main zones of low diffusion (in blue), that deviate the mass from a straight
trajectory. The loss L1 gives the best result.

In the second experiment, the original horizontal and vertical metric weights are
different and this experiment shows that we are able to recover the distinct features
of each metric i.e. the dark blue and dark red areas. The loss LKL gives the best
result.

In the third experiment, the original metric is composed of two obstacles, but
only one of them is in the mass’ trajectory. We observe that obstacles that are not
approached by any mass are not recovered, which is expected, because the algorithm
cannot find information in these areas. The loss L2 gives the best result.

4.3.3 Evaluation

Regularization. In order to evaluate the influence of the regularization, we compare
the same experiment (the second one conducted in Figure 4.5), with one of the
two regularizers (fc and fs). The first regularizer fc effectively stabilizes the values
around 1, but the recovered metric is noisy, with patterns that reflect over-fitting.
The second regularizer fs effectively produces a smooth metric, but we note that the
metric values have drawn away from their initial value of 1. After experimenting
with each one, we observed that while reconstruction errors are smaller with fc

(which is another sign of overfitting), the regularizer fs produces more interpretable
results, and allows the global metric scale to shift reasonably in order to adapt to the
input sequence. Moreover, combining both generally does not significantly change
the result compared to having only fs. We thus concluded that the smoothing term
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Horizontal Vertical

Figure 4.5: For each experiment (each pair of rows): The first row is the initial metric (two
leftmost images) and the sequence of measures generated with it. The second
row is the metric learned by our algorithm on the measure sequence above,
and the reconstructed sequence. In the first experiment, the algorithm is able
to recover the blue zones that are avoided by the mass, and red zones on the
path it is taking. In the second experiment, the algorithm recovers the high
(red) and low (blue) diffusion areas horizontally, as well as vertically. In the
third experiment, we show an example of a metric detail not being recovered
because mass is not traveling in that region.
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λc > 0
λs = 0

λc = 0
λs > 0

Figure 4.6: In this experiment, we show the effects of each regularizer (fc and fs) on the
metric, using the second experiment presented in Figure 4.5. fc constrains
the weights to be close to 1, while fs constrains them to be spatially smooth.
When λc = 0 and λs = 0, a few metric weights diverge to infinity, leading to
numerical errors. When λc > 0 and λs > 0, the result generally does not differ
significantly from the case when λc = 0.

fs also stabilizes the values and that we can set λc = 0 in most cases. Finally, tuning
the λs parameter allows the user to specify the desired smoothing scale (max spatial
frequency) in the final metric.

Initialization. Since the problem we are addressing is non-convex, the initialization
of the metric weights is expected to have non negligible effects on the final result.
In Figure 4.7, we present the end metric of the second experiment in Figure 4.5
with λs = 0.3, and for 3 different initializations: (1) constant initialization to 1, (2)
random initialization in [0.3,3] uniformly in log scale, and (3) random initialization
in [0.1,10] uniformly in log scale. We observe that the level of noise in (2) does not
change the result significantly, but the one in (3) does. In (2), the initial noise did not
impact the final result, because it has been smoothed out by the regularization. We
conclude that the algorithm allows for some noise in the initialization, but too much
noise can not be smoothed out by the regularizer, and impacts the reconstruction
and the final metric significantly.

4.3 Experiments 81



Horizontal Metric Vertical Metric

C
on

st
an

t
=

1
R

an
do

m
in

[0
.3

,3
]

R
an

do
m

in
[0

.1
,1

0]

Figure 4.7: We present the final metric of the second experiment in Figure 4.5 for 3 different
initializations: constant with weights equal to 1, random in log space in [0.3,3],
and random in log space in [0.1,10]. The algorithm is robust to a half order of
magnitude in the metric weights, but not to a full one.
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Figure 4.8: The loss function L influences the resulting metric. We present the metric
learned during three experiments using the same parameters, but three different
loss functions L2, L1 and LKL. The experiment is the second one described in
Figure 4.5. One must choose the loss function depending on the application.

Loss function. The choice of the loss function L is left to the user, depending on
what works best with their application. In Figure 4.8, we show three 2-D metrics
learned on the second synthetic experiment of Figure 4.5, using the different loss
functions (4.30),(4.31) and (4.32)

Diffusion equation The parameters ε and S need to be carefully set for solving the
diffusion equation. Indeed, depending on their value, the formula (4.11) yields a
kernel that is a better or worse approximation of the heat kernel, which directly
impacts the accuracy of the displacement interpolations computed with it. We
demonstrate these effects in 2-D, by interpolating between two Dirac masses across
a 502 image. We plot the middle slice of the 2-D image as a 1-D function, for easier
visualization. In Figure 4.9, we plot 10 steps of an interpolation in each subplot,
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Figure 4.9: Influence of parameters ε (diffusion time) and S (number of time discretization
sub-steps) on displacement interpolation, which are computed with 50 Sinkhorn
iterations (sufficient for convergence in this case). Each plotted line is the 1-D
middle slice of a 2-D image. We notice that there is a trade-off between the
smoothness of interpolation, and the spacing equality between interpolants. An
equal spacing translates a constant speed interpolation.

for different values of ε and S, with a Euclidean metric (all metric weights equal to
1).

The kernel we approximate is of the form exp(−dp(x, y)/ε). Ideally, we would like
to approximate a kernel that has p = 2. However, when the number of sub-steps
S is small, the obtained kernel approximates one with p = 1, which leads to a bad
interpolation where interpolants are not equally spaced (the interpolation is not of
constant speed). When increasing S, it seems that the power p goes from 1 to 2,
explaining the improvement of the interpolation.

The value of ε also impacts the kernel: the smaller it is, the worse the kernel approx-
imation becomes. We thus observe a trade-off between having sharp interpolations,
and having evenly spaced interpolants. It is important to note that memory footprint
grows almost linearly with S (see next paragraph), since every intermediate vector
in (4.11) is stored for the backward pass. In practice, we use either ε = 4.10−2

and S = 20, or ε = 1.2.10−3 and S = 50. With this level of smoothing, we set the
number of Sinkhorn iterations to 50, which is generally enough for the Sinkhorn
algorithm to converge.

Timing and memory In Table 4.1, we give the time and memory requirements of
the proposed algorithm, depending on the problem size N = nd and S the number
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d n N S t500(h) Mem.(GB) Threads

2 50 2500 20 1.6 1.3 1
2 50 2500 100 7 4.7 1
2 100 10000 20 13 4 1
2 100 10000 100 60 16 1
3 16 4096 20 9 1.7 1
3 16 4096 50 25 3.3 1
3 16 4096 100 46 6.2 1
3 32 32768 20 110 10.9 8

Table 4.1: Time and memory requirements of the metric learning algorithm, with respect
to problem size N = nd and S the number of sub-steps for solving the diffusion
equation. “t500” is the time taken to run 500 iterations of L-BFGS. “Mem.” is the
maximum resident memory (in GB) that the algorithm requires, and “Threads”
is the number of threads it runs on.

of sub-steps to solve the diffusion equation. The entropic regularization factor ε

(which is used here as a diffusion time) does not affect the runtime, if we keep the
number of Sinkhorn iterations constant. However, if one requires a fixed precision
in the computation of the transport, one needs to increase the number of Sinkhorn
iterations when decreasing ε, as described in 2.1.2. We give the timings for 500
L-BFGS iterations, which in our use cases, was generally sufficient for the algorithm
to converge.

This algorithm is difficult to parallelize because we need to solve a very large
number of medium-size linear systems, which individually do not benefit from
multi-threading. Giving more than one thread to the algorithm was only faster for
N = 323. If instead we parallelize over input images (we generally have around
10), the memory footprint grows 10 times, which would become prohibitive very
quickly.

4.3.4 Learning color evolutions

We now demonstrate an application of our algorithm that deals with color histograms
in the RGB color space. Such histograms can be represented as discrete measures
on a particular graph: a 3-D grid of size N = n × n × n with a 6-connectivity. An
important question in imaging and learning is which color space to use. The RGB
space is simple to use, but variations in that space do not reflect variations of color
perceived by the human eye. Other spaces, such as L*a*b* or L*u*v* have been
designed to counteract this, and match variations in perception and space. Learning a
ground color metric is a way to automatically fit the color space to the problem under
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consideration. Note that the problem of color metric learning in psychophysics has a
long history, starting with the idea of MacAdam’s ellipses [Mac42], which introduces
a Riemannian metric (corresponding to ellipses) to fit perceptual thresholds.

Given an input sequence of sunset images (Figure 4.10), we compute each input’s
color histogram, and use our algorithm to learn the metric for which the histogram
sequence resembles an optimal transport of mass. Figure 4.11 shows the reconstruc-
tion of the input histogram sequence, at the end of the metric learning process. The
final goal is to create a new sunset sequence from a pair of day/night images, by
interpolating between them using the learned metric, and transferring the interpo-
lated histograms onto the day image. Once a target histogram is known, transferring
colors can be done via regularized OT, and we refer to the method of Solomon et al.
[Sol+15].

All sequences presented hereafter contain around ten frames, but we only show five
of them for brevity. We first perform two validation checks. The first check consists
in interpolating between the first and last frames of the input sequence (the way it
is done during the learning procedure), but transferring the interpolated histograms
onto the first frame. See Figure 4.12. The second check consists in learning a metric
on one part of the image, interpolating with the learned metric on the other part,
and transferring the interpolated histograms onto the first frame of the other part,
see Figure 4.13.

We now create a new sunset sequence from a pair of new day/night images, as
described earlier. The image pair is extracted from the country1 dataset (Figure 4.14),
where we take the first and the last frame. We first learn a metric on the seldovia2
dataset (Figure 4.15), with histograms of size 163, the L2 loss, 50 Sinkhorn iterations,
500 L-BFGS iterations, an entropic regularization of ε = 0.004, S = 20 sub-steps,
and a metric regularizer parameter λs = 1. Next, we interpolate between the day
and night histograms, using the learned metric, which is upsampled to 313 in order
to decrease color quantization errors. Finally, we transfer each interpolated color
histogram on the day frame.

We show in rows two to four of Figure 4.17 that the colors obtained with that
interpolation are closer to the ground truth than with a linear interpolation or an
OT interpolation with a Euclidean metric. We also note in the resulting histogram
sequence (Figure 4.16) that the sunset colors are obtained because the mass does
not travel in straight lines, by virtue of the learned metric.

Finally, in row five of Figure 4.17, we compare our result with a direct transfer of
the seldovia2 dataset on the day image of the country1 dataset. A direct transfer
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Figure 4.10: The meteora2 dataset: images (first row) and color histograms (second row).
Video courtesy of Alex Paul.

Figure 4.11: Comparison of the meteora2 dataset (Figure 4.10) and its reconstruction using
the metric learned from it, after 500 iterations of our algorithm. We notice
that the reconstructions are more diffuse than the inputs, due to the entropic
regularization.

also gives a plausible sunset sequence, however, the original colors of the target
dataset (country1) are not preserved. Moreover, our method allows interpolating
with an arbitrary number of frames, whereas the direct transfer can only produce
the number of frames available in the source dataset.

4.4 Discussion

The problem we tackle is ill-posed since in general there is no way to find information
where mass does not travel. This means that there are potentially many local minima
in the energy landscape. Nevertheless, our regularization of the problem reduces
the number of local minima and reduces the non-convexity by imposing spatially
smooth metric weights, which also avoids over-fitting.
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Figure 4.12: Preliminary experiment: we learn a metric on the meteora2 dataset (top row),
then reinterpolate color histograms between the first and last frames, and
transfer each interpolation onto the first frame.
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Figure 4.13: Preliminary experiment: we learn a metric on the left part of the sequence
images (top row), then use that metric for interpolating between the first and
last frames of the right part (middle row), and finally transfer interpolated
histograms on the first frame of the right part. We recover (bottom row) colors
similar to the original ones.
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Figure 4.14: The country1 dataset: images (first row) and color histograms (second row).
Video courtesy of Quincy van den Boom

Figure 4.15: The seldovia2 dataset: images (first row) and color histograms (second row).
Video courtesy of Bretwood Higman
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Figure 4.16: Interpolation between day and night histograms of the country1 dataset (Fig-
ure 4.14) using: linear interpolation (1st row), OT with Euclidean metric (2nd
row) and OT with the metric learned on the seldovia2 (Figure 4.15) dataset
(3rd row). Color transfers using these histograms are presented in Figure 4.17.

The fidelity of the approximation of the heat kernel (exponential of a squared dis-
tance) affects the quality of the displacement interpolations, as seen in Figure 4.9.
This leads to a trade-off when choosing ε, between the smoothness of the interpola-
tions, the regularity with which they are spaced out spatially, and the computational
limits it involves (as S increases). Moreover, as pointed out in [Cra+13, Appendix
A], low values for the parameter ε yield a distance that is closer to the graph distance
(number of edges), than to the geodesic distance. This means that as ε decreases,
the edge weights have less and less influence.

Although we managed to develop a tractable framework, as compared, for instance,
to using a dense storage of the cost matrix, this algorithm remains computationally
expensive for histograms with more than 10 000 points (see Table 4.1).

Learning different metric tensors in different areas of the domains is known in the
literature as multi-metric learning, and in some way, our metric parameterization is
close to that concept. Indeed, the weights on the graph can be seen as simple local
metrics that make the space inhomogeneous. The difference between existing multi-
metric learning approaches [WS09; Zha+09; RB11; Hau+12; Wan+12; Shi+14]
and ours, is that they learn a few local metrics in the high-dimensional feature space,
whereas we learn many of them by covering the low-dimensional ground space, and
use OT to leverage them to the high-dimensional distribution space.

90 Chapter 4 Metric Learning



G
ro

un
d

tr
ut

h
Li

ne
ar

Eu
cl

id
.

O
T

O
ur

m
et

ho
d

D
ir

ec
t

tr
an

sf
er

Figure 4.17: 1st row: ground truth, the country1 dataset. Rows 2-4: color transfer of each
interpolated histograms in Figure 4.16. When comparing with the ground
truth, we see that our method recreates sunset-like colors, as opposed to the
two other methods. Row 5: direct transfer of each frame of the seldovia2
dataset on the first frame of the country1 dataset. Our method is able to
preserve the original colors of the day image, contrary to a direct transfer.
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4.5 Conclusion

We have proposed a new method to learn the ground metric of optimal transport,
as a geodesic distance on the graph supporting the data (pre-print [Hei+20]).
We learn from observations of a mass displacement and aim to reconstruct them
using displacement interpolations. We were able to turn a challenging task in
terms of time and memory complexity into a tractable framework, using diffusion-
based distance computations, regularized Wasserstein barycenters, and automatic
differentiation. We demonstrated our method on toy examples, as well as on a color
transfer application, where we learn the evolution of colors during a sunset, and
use it to create a new sunset sequence. We finally discussed the limitations of the
proposed method: our parametrization of the metric might be too simple, which
limits the precision of geodesic distance approximations, which in turn impacts
the interpolation, and adds a trade-off between having sharp and equally-spaced
interpolations, and the computational effort it requires.

Future work. Multi-resolution strategies can be integrated into our pipeline to
accelerate the linear system resolution and Sinkhorn algorithm (as in [GM17]).

For regular domains such as images and surfaces, it is possible to use a more precise
approximation of a Riemannian metric as a field of tensors in place of a graph, as
done for instance in [MD17], which in turn can be combined with triangulated
meshes.

As we have seen in subsection 4.3.3, the power p of the ground distance for the
cost function has a large influence on the displacement interpolation. It would be
interesting to study more theoretically the influence of the number of sub-steps S on
the quality of the heat kernel approximation, and its direct effect on displacement
interpolations computed with that kernel.

In this framework, we restricted ourselves to learning from a single input sequence,
but our method can be extended to take into account multiple sequences in order to
learn a more robust and versatile metric.

Unbalanced optimal transport [Chi+16] could also be valuable to account for mass
creation and elimination during the mass interpolation, which is important for some
applications in chemistry or biology, and might be beneficial for the application on
color variation.
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Conclusion 5
In this dissertation, we have presented two frameworks to solve inverse problems
involving OT. They are both machine learning problems applied to the Wasserstein
geometry. The methods we developed are based on the entropic regularization
of the transport, which offers fast iterative algorithms (Sinkhorn) to approximate
OT quantities such as distances, transport plans and barycenters. Moreover, these
approximated quantities are smooth with respect to their input parameters, and
we applied automatic differentiation to compute their Jacobians. We focused on
the development of efficient algorithms to tackle the time and memory complexity
issues associated with the sizes of the distributions we considered.

The first framework we proposed is a non-linear dictionary learning method that
makes full use of the Wasserstein geometry. It optimizes a dictionary and codes to
represent a set of input distributions in the most faithful way possible, according to
a certain fidelity criterion. The reconstruction of input distributions is carried out
with Wasserstein barycenters weighted by the optimized codes. We demonstrated
this method on applications such as the representation of a cardiac sequence by its
key moments, and the clustering of facial expressions, and of literature works by
their lexical fields.

The second framework consists in learning the ground metric of OT when it is
constrained to be a geodesic distance on a graph. The metric parameters are
diffusion weights on the edges of the graph, and we compute geodesic distances
with a diffusion equation. The data we learn from are time series of evolving density,
which we aim to model with displacement interpolations. In essence, we optimize
the ground metric so that the displacement interpolation computed with it, from the
first frame to the last, approximates as closely as possible the complete input series.
We applied this framework to the learning and transfer of color evolutions in sunset
sequences.

Inverse problems in optimal transport are generally non-linear, because of the
Riemannian structure of the Wasserstein space. Additionally, they are rarely convex,
which makes them difficult to solve. Regularizing the OT problem is an effective
way to obtain smooth quantities that we can differentiate. In particular, the entropic
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regularization yields fast algorithms that allow the resolution of medium and large-
scale problems in reasonable time. Some inverse problems are more ill-posed than
others and may require additional regularization to reduce the number of local
minima in the energy landscape. This was the case in our ground metric learning
algorithm.

5.1 Future Work

One project I worked on at the beginning of my thesis was the empirical study
of barycenters outside of the simplex defined by the data, i.e. barycenters with
negative weights. For example, displacement interpolations can be computed with
Wasserstein barycenters with weights [t, 1 − t], t ∈ [0, 1]. In a Eulerian setting, when
interpolating from one histogram to another, the mass moves in straight lines if the
metric is squared Euclidean, and when extrapolating outside of [0, 1], the mass seems
to continue along its previous trajectory. We observed that for weights in [−1, 2],
the computations were stable, but outside of that range, numerical instabilities
appear. A study of the theoretical soundness of such weight extrapolations would be
important. Being able to extrapolate a displacement interpolation could be beneficial
for modeling prediction problems, as done for example with Kalman filters, which
can recover posterior or anterior data such that it is coherent with the observed
model of evolution.

In the Wasserstein faces application presented in 3.4.2, we noticed that the atoms
recovered are generally sharper than the reconstructions, probably to counteract the
blur introduced when combining them using regularized Wasserstein barycenters.
This suggests a potential deconvolution ability of this algorithm. Atoms recovered
using the L1, L2, or LKL loss functions are visually distorted compared to the input
images, whereas those obtained with the Wasserstein loss are closer to realistic
images. Therefore, we could imagine a deconvolution problem using the regularized
Wasserstein distance as the fitting loss.

The sliced Wasserstein distance briefly introduced in 2.1.5 is also promising for
solving regression problems with OT, in particular for distributions with high-
dimensional support. Indeed, the gradient and Hessian of that distance with respect
to the mass positions are computable in closed form, and they have already been
used to compute barycenters in Bonneel et al. [Bon+15]. The authors compare
sliced barycenters (for Lagrangian distributions), Radon barycenters (for Eulerian
distributions) and real Wasserstein barycenters of 2-D shapes, and they show that
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the former two are not well suited for applications where a faithful reconstruction is
sought, as they present significant artifacts. However, they demonstrate that this
approach is still applicable for tasks such as texture mixing and color harmonization.
This can be explained by the fact that for those applications, the final result is not
the histogram itself but another quantity that is computed from it, therefore they
are more robust to noise in the histogram. We can therefore imagine that the sliced
paradigm would be appropriate for other such applications.

One drawback of the Eulerian discretization is that it does not scale well in higher
dimension, since it requires N = nd values per histogram. Moreover, with the
curse of dimensionality, high-dimensional densities are often sparse as objects get
further away from each other with increasing dimension. Therefore, a Lagrangian
discretization would be more suitable for solving inverse problems involving high
dimensional histograms.

OT is getting popular for natural language processing (NLP) applications, because
it allows for example to compare documents semantically through their histogram
of words. More complex constructions have recently been proposed, such as the
hierarchical framework of Yurochkin et al. [Yur+19] based on LDA (see 2.1.6),
which represents documents as histograms of topics and topics as histograms of
words. Both histogram distances and topic distances are modeled as Wasserstein
distances, with topic distances and word distances as respective ground metrics.
This kind of architecture greatly reduces the size of histograms, which opens the
door for new OT-based NLP applications on large datasets.

As the tools of optimal transport are improved and continue to spread, we are
confident they will help solve many more problems, direct and inverse.
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