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m(k) Mean Coefficient Error Vector in a Rotated Coordinate System

n(k) Complex Additive White Gaussian Noise Vector Signal

O Unitary Matrix of Eigenvectors Rows

p(τ) Adaptive Filters Input and Desired Signals Cross Correlation Vector

pt FFT Rotation, Twiddle, Factor Exponent Input Vector

Q(τ) RLS Input Signals Auto-Correlation Matrix

Qr(τ) RC-pLMS Input Signals Cross-Correlation Matrix

R(τ) Adaptive Filters Input Signals Auto-Correlation Matrix

Ri+n(τ) Interference Plus Noise Correlation Matrix

Sb Unknown Data Signal

u(k) RC-pLMS Total Input Vector

uq(k) RC-pLMS Total Input Vector Subject to Quantization Error

w(k) Adaptive Filters Weight Vector

w1..4(k) Adaptive Filters Weight Vector With Respect to First Four Input Samples

w1(k) First Stage Adaptive Filters Weight Vector

w2(k) Second Stage Adaptive Filters Weight Vector

w5..8(k) Adaptive Filters Weight Vector With Respect to Last Four Input Samples

wi(k) ith Stage Adaptive Filters Weight Vector

wMVDR MVDR Adaptive Beamformers Optimal Weight Vector
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woplms LMS Adaptive Beamformers Optimal Weight Vector

wopr RC-pLMS Adaptive Beamformers Optimal Weight Vector

wop pLMS Adaptive Beamformers Optimal Weight Vector

wq RC-pLMS Weight Vector Subject to Quantization Error

x(k) Adaptive Filters Input Signal Vector

x1..4(k) First Four Samples of the Adaptive Filters Input Signal Vector

x1(k) First Stage Adaptive Filters Input Signal Vector

x2(k) Second Stage Adaptive Filters Input Signal Vector

x5..8(k) Last Four Samples of the Adaptive Filters Input Signal Vector

Xb Input Signals Matrix

xd Discrete Time FFT Input Signal Vector

xf Adaptive Filters Input Signal Vector Subject to Fractional Delay

z(τ) RLS Input and Desired Signals Cross Correlation Vector

zr(τ) RC-pLMS Input and Desired Signals Cross Correlation Vector at Different
τ

µ RC-pLMS Optimization Step Size

µ1 First LMS Stage Optimization Step Size

µ2 Second LMS Stage Optimization Step Size

µLMS LMS Optimization Step Size

µpLMS pLMS Optimization Step Size

∇LMS LMS Cost Functions Gradient

∇pLMS pLMS Cost Functions Gradient

∇RC−pLMS RC-pLMS Cost Functions Gradient
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φ Antenna Arrays Azimuth Angle of Arrival

ψ Phase Shift

Ψ(ε) Set of Erroneous Steering Vectors With Respect to ε

ψx Phase Shift for Elements Placed in the x Plane

ψy Phase Shift for Elements Placed in the y Plane

σ2
a Variance of the Constant a

σ2
d Desired Signals Variance

σ2
p In Phase Message Signals Variance

σ2
q Out Of Phase Message Signals Variance

τ Signal Lag in a Wide Sense Stationary Process

τd Time Delay Between Two Consecutive Antenna Elements

θ Antenna Arrays Elevation Angle of Arrival

ε Maximum Mismatch Error

Λ Diagonal Matrix of Eigenvalues λi

ϑ Very Small User Introduced Constant

ξLMS LMS Cost Function

ξpLMS LMS Cost Function

ξRC−pLMS RC-pLMS Cost Function

ξRLS RLS Cost Function

AF (θ) Array Factor With Respect to Angle of Arrival θ

BW3dB 3 dB Beamwidth

c Celerity of Electromagnetic Waves

C(k) Chebyshev Polynomial Coefficients
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cg(k) Chebyshev Polynomial General Expanded Form Coefficients

cm Erroneous Steering Vector

d(k) Desired Signal Instantaneous Sample

D(z) z Transform Sequence of the Desired Signal d(k)

D1 Delay in the Adaptive Filters Instantaneous Error Signal

D2 Delay in the Adaptive Filters Weight Update

D3 Sum Relaxation Delay in the Adaptive Filters Weight Update

Dax Distance Between Two Consecutive Array Elements in the x Plane

Day Distance Between Two Consecutive Array Elements in the y Plane

Da Distance Between Two Consecutive Array Elements

e(k) Adaptive Filters Instantaneous Error Signal

e1(k) First Stage Adaptive Filters Instantaneous Error Signal

e2(k) Second Stage Adaptive Filters Instantaneous Error Signal

eDLMS(k) Delay LMS Instantaneous Error Signal

ei(k) ith Stage Adaptive Filters Instantaneous Error Signal

eLLMS(k) LLMS Instantaneous Error Signal

eLMS(k) LMS Instantaneous Error Signal

em Mismatch Error in the Desired Signals Steering Vector

epLMS(k) pLMS Instantaneous Error Signal

eq(k) Adaptive Filters Instantaneous Error Signal Subject to QuantizationError

eRC−pLMS(k) RC-pLMS Instantaneous Error Signal

eRLMSp(k) RLMSp Instantaneous Error Signal

eRLMS(k) RLMS Instantaneous Error Signal
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eRLS(k) RLS Instantaneous Error Signal

et(k) Multi-Stage Adaptive Filters Total Instantaneous Error Signal

fc Carriers Signals Frequency

g Antenna Directivity Gain

H(z) LMS z Transfer Function

HpLMS(z) pLMS z Transfer Function

HRC−pLMS(z) RC-pLMS z Transfer Function

j Imaginary Complex Number

J(z) z Transform Sequence of the Instantaneous Error Signal e(k)

N Number of Antenna Elements

Nc FFT Sequence Length

Nx Number of Antenna Elements in the x Plane

Ny Number of Antenna Elements in the y Plane

nu Step Size Exponent

P Power Radiated by the Antenna

Pc Projection to the x− y Plane

pt FFT Rotation, Twiddle, Factor Exponent

q Taylor Series Polynomial Expansion Point

r Base Radix - r Number Representation

R(z) z Transform Sequence of the Input Signals Auto-Correlation Matrix R(τ)

Rc Circular Antenna Arrays Radius

rk−i Fractional Delay Filters Input Signal Auto-Correlation Estimate Time Av-
erage
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rki Fractional Delay Filters Input Signal Auto-Correlation Estimate

RD Antenna Radiation Directivity

S(k) RC-pLMS Total Desired Signal

s(k) Message Signal

Sq(k) RC-pLMS Total Desired Signal Subject to Quantization Error

SRLMSp(k) RLMSp Total Desired Signal

SRLMS(k) RLMS Total Desired Signal

Tk(uc) Chebyshev Polynomial Representation With Respect to uc

U Antenna Radiation Sensitivity (Practical)

U0 Antenna Radiation Sensitivity (Theoretical)

uc Chebyshev Polynomials Change of Variable

Umax Maximum Antenna Radiation Sensitivity

v1 Random Gaussian Real Sequence

v2 Random Gaussian Real Sequence

vm Random Complex Gaussian Sequence

w1,m mth Element, First Stage, Instantaneous Weight

W kn
Nc
2

knth Rotation, Twiddle, Factor for an FFT Sequence of Length Nc
2

W k
Nc kth Rotation, Twiddle, Factor for an FFT Sequence of Length Nc

X[k] FFT Sequence

x1,m mth Element, First Stage, Instantaneous Input Signal

x2,m mth Element, Second Stage, Instantaneous Input Signal

xc(t) Analog Input Signal

xd[k] Discrete Time Input Signals Sample
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y(k) Adaptive Filters Output Signal

y1(k) First N
2 Elements Adaptive Filters Output Signal

y2(k) Second N
2 Elements Adaptive Filters Output Signal

yd(k) Adaptive Filters Message Signal Subject to Fractional Delay

yi,j(k) Adaptive Filters jth Interference Signal Subject to Fractional Delay

yLMS1(k) First LMS Stage Output Signal

yLMS2(k) Second LMS Stage Output Signal

yq(k) RC-pLMS Output Signal Subject to Quantization Error

yRLS1(k) First RLS Stage Output Signal
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Chapter 1

ADAPTIVE BEAMFORMING: A HISTORY

Since the dawn of digital signal processing, researchers have thrived to develop real-
time adaptive systems that can independently self-adjust to estimate/filter the desired
data from an incoming noisy signal. The ability of an adaptive system/filter to au-
tonomously operate in an unknown noisy environment, makes it an inevitable feature in
numerous applications, such as: wireless communication, digital communication, biomedi-
cal engineering, control systems, geology and so on. While these adaptive filters still share
a common mode of operation, the manner in which they extract the signal of interest
changes for each class of applications [1, 2, 3]. Thus, the operation of a linear adaptive
filter at a discrete time instance k can be summarized as follows: for an input vector signal
x(k), a desired reference signal d(k) and an output signal y(k), the adaptive algorithm
computes the error signal e(k) = d(k)− y(k) to estimate the variable filter weight vector
w(k + 1) [2].

Figure 1.1 – Classical Adaptive Filter
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As shown in Figure 1.1, the initial building blocks of an adaptive system are the linear
filter and the adaptive algorithm. Moreover, the linear filter block can be modeled with a
finite impulse response (FIR) or an infinite impulse response (IIR) for a one dimensional
input vector (one sensor) or a spatial filter, i.e. linear combiner (LC) for a N dimensional
input (sensor array). For spatial filters, the filtered output signal, y(k), is obtained as
a linear combination of the input signal x(k) = [x1(k), x2(k), ..., xN(k)]T and the filter
weights w(k) = [w1(k), w2(k), ..., wN(k)]T and is given as y(k) = wH(k)x(k), where the
superscripts T and H denote respectively the vector transpose and the Hermitian operator,
i.e. the conjugate transpose. Furthermore, the adaptive algorithm block is used to estimate
the variable filter weights based on certain optimization algorithms. Two classical methods
exist, in wide sense stationary (WSS) environments, for deriving recursive algorithms [2]:

1. Stochastic gradient descent (SGD): In SGD, the cost function is defined as the mean
squared value of the error, and it is represented by a 2nd order function of the filter
weights. For recursive applications, the instantaneous squared error is supplied to
update the variable weights. As such, the SGD technique refers to the least mean
square (LMS) algorithm [2].

2. Least squares (LS): In this method, the cost function is defined as the sum of
weighted error squares. In contrast to the SGD technique, LS utilizes matrix opera-
tions to compute the gain matrix and updates the variable weights. Such technique
is referred to as the recursive least squares (RLS) [2].

With the recent, exponential, spread of wireless connected devices and their requirements
in data rate and accuracy, the complexity of array processing algorithms have drastically
increased [3, 4]. Such unprecedented growth resulted in a highly congested frequency spec-
trum [5]. Therefore, many researchers have coupled adaptive signal processing algorithms
with antenna arrays to implement adaptive beamforming methods and further increase the
spectral efficiency while simultaneously providing a high quality of service (QoS), higher
data rates and a wider coverage at a reduced cost. However, the introduction of complex
adaptive algorithms, in wireless communication, enforced new limitations on their hard-
ware architecture, such as the need of reduced arithmetic complexity and that of pipeline
and parallelism while preserving accelerated convergence and a low residual error in finite
precision considerations [4]. Thus, in this chapter, we introduce the recent challenges in
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signal processing for wireless applications and one of the most adopted array processing
technique, i.e. adaptive beamforming. Additionally, we present our research objectives and
motivation towards the imposed challenges.

1.1 Signal Processing in Wireless Communication

In practice, the majority of wireless communication applications, i.e. mobile com-
munication, radar or sonar, involves spatial filtering techniques [1]. Such techniques are
achieved by employing a sensor array architecture, generally, with equally spaced homo-
geneous elements, as shown in Figure 1.2 [4]. With the first antenna element acting as

Figure 1.2 – Simple Antenna Array

a reference, θ is the angle of arrival (AOA), Da is the distance between two consecutive
antenna elements and x(k) is the input signal. In effect, the acquired signal is sampled in
space to exploit the spatial properties of signals and noise through array processing (AP)
methods, i.e. beamforming [1].
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1.1.1 Adaptive Beamforming

Adaptive beamforming is a spatial multiplexing technique, for antenna arrays, used in
performing directional signal reception and transmission. Its is achieved by generating a
main, pencil, beam in the direction of the desired signal component, while steering nulls
in the direction of interferences [6]. As shown in Figure 1.3 [4] a linear antenna with N
sensors points its highest gain beam, main beam, towards the desired user while directing
nulls to unwanted inputs.

Figure 1.3 – Adaptive Beamforming System

The first beamforming system, i.e. the intermediate frequency (IF) side-lobe canceler
was introduced by Howells in 1957 [2, 7]. Howells demonstrated the use of one degree of
freedom, two sensor antenna array in amplifying a desired signal while attenuating inter-
ference. In his antenna architecture, Howells implemented a high gain antenna element
with respect to a low gain, reference, omnidirectional, antenna forming a configurable
array with a steerable main beam and null [2, 7]. Subsequently, in 1966, Applebaum
derived the control law implementing a control loop for each antenna element [8, 9]. Ap-
plebaum’s technique resulted in a generalization of Howells side lobe canceler and was
based on maximizing the signal to noise ratio (SNR) of the antenna arrays output for
random noise environments [2, 8, 9]. Another classical, fully adaptive beamformer, was
developed by Widrow et al in 1967 [10]. In [10], the authors demonstrated the effective
use of the LMS algorithm in providing a low complexity adaptive beamformer based on
the steepest descent optimization technique and the use of the stochastic gradient [2].
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The LMS algorithm, presented by Widrow et al, iteratively computes the filter weights by
minimizing a pre-defined cost function based on the auto-correlation of the input signal
and the cross-correlation of the input and the reference signal [10]. Moreover, a minimum
variance distortionless response (MVDR) [11, 12] adaptive beamformer was later intro-
duced by Capon in 1969 [2]. In this algorithm, Capon proposed minimizing the output
average power (variance) subject to a pre-set constraint maximizing that of the desired
signal [2]. Unlike the LMS, Capcon’s MVDR requires previous knowledge on the incoming
signals direction, i.e. the AOA [13]. Numerous modifications and algorithms were later on
derived based on the classical approaches to accurately achieve optimal behavior, through
the use of multi stage beamformers, in recovering the signal of interest and attenuating in-
terference and noise [4, 5, 6, 13, 14, 15]. Some multi stage beamformers are the least mean
square - least mean square (LLMS) algorithm [5], the recursive least mean square (RLMS)
algorithm [15], the reduced complexity parallel RLMS (RLMSp) [6] and the parallel LMS
(pLMS) [14].

1.2 Our Research Project

While the currently employed adaptive algorithms demonstrate satisfactory behavior
and convergence in infinite precision mode, in practical applications, i.e within a finite
precision mode, their performance is known to degrade. Such degradation is governed by
the resource limitations and analog to digital converters of the hosting processor leading
to the accumulation of round off and quantization errors [4, 16, 17, 18]. Additionally,
the increase in complex computations, i.e. matrix operations, divisions and matrix in-
versions, due to the nature of the operations, severely degrades the speed of operations
which in turn affects the beamformers reliability. Several variants of the classical beam-
formers have been proposed to present a parallel and easy to pipeline architecture while
preserving convergence and acceptable performance. Such techniques are and not limited
to: the Gauss-Seidel Fast Affine Projection (GS-FAP) algorithm [19], the a Priori Error-
Feedback LSL (EF-LSL) algorithm using a logarithmic arithmetic [20], the relaxed look
ahead pipelined LMS [21], the time sharedlook up table (LUT)-less LMS architecture [22]
and the division free and variable regularized LMS [23], and the relaxed look ahead par-
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allel LMS [24]. The GS-FAP demonstrates better performance over the LMS and some of
its variants; However, at the cost of an increase in complexity and processing stages [19].
The EF-LSL structure presents a considerable reduction in the processing time and look
up table usage; However, it is based on the least square algorithm, of O(N2) complexity,
and requires the use of a logarithmic number system with a dedicated arithmetic unit
[20]. The LLMS [5] and RLMS [15] are multi-stage LMS/LMS and RLS/LMS seperated
by an estimate of the steering vector and connected by a delayed error feedback. These
techniques show upper level performance over other LMS and RLS variants at the cost of
doubling the computational requirements. Nevertheless, presenting a pipeline hardware
architecture for the multi stage algorithms is difficult given the design error feedback
path and its computational complexity. The previous cascade RLMS algorithm is thus
simplified to present a parallel input structure as shown in [6] by eliminating the need
for a cascading stage. However, the suggested improvement does not reduce the O(N2)
complexity and does not provide an easy to pipeline architecture. On the other hand, the
relaxed look-ahead pipeline LMS, and the time shared LUT-less LMS discussed in [21, 22],
present a pipeline architecture for the classical LMS with no noticeable enhancement in
the convergence speed nor in the error floor. Furthermore, the pipeline division free vari-
able regularized LMS architecture presented in [23] still presents considerable complexity
and requires an on-the-fly computation of its step size compared to the classical LMS.
Therefore, it is of utmost importance to achieve a parallel, reduced complexity and easy
to pipeline beamformer with improved convergence and low residual error.

1.2.1 Motivation

In this context, the main motivation of our research is to eliminate the trade off between
the computational complexity and the performance of the multi-stage algorithms while
presenting a suitable hardware architecture for limited resource devices. Through the
use of the delay feedback technique [5, 6, 14, 15], we propose a two stages, parallel input
LMS algorithm with an accelerated convergence and a minimal residual error for adaptive
beamforming (pLMS). pLMS is formed of two LMS stages operating in parallel, where the
final error signal is derived as a combination of individual stage errors. The error signal
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of the second LMS stage (LMS2) is multiplied by the imaginary number j =
√
−1 to

combine with that of the first LMS stage (LMS1). Additionally, we further simplify the
pLMS to achieve a reduced complexity parallel LMS design (RC-pLMS). The RC-pLMS
is obtained by adding a phased sample delayed version of the inputs to the LMS1 to
eliminate the need for a second independent set of weights. In order to present a pipeline,
parallel, hardware architecture for the RC-pLMS, we propose the application of the delay
and sum relaxed look-ahead technique (DRC-pLMS). Convergence and stability analysis
are performed to determine the upper bound of the step size. The quantization effect
analysis is conducted to assess the system performance within finite precision arithmetic.
Finally, a hardware implementation of the DRC-pLMS design is done in order to study
its resource consumption and behavior in finite precision arithmetic. The architecture is
implemented using Q2.15 1 format [4, 25].

1.2.2 Outlines

In chapter 1, we first present an overview on the concept of adaptive filtering and the
advantages it provides for different digital signal processing (DSP) applications. Second,
we discuss the benefits of applying adaptive filtering techniques in wireless communication
in order to ease spectral congestion and improve overall performance through beamform-
ing. Finally, we perform a comparative study on different, previous and recent, adaptive
beamforming algorithms and hardware implementation while commenting on their ad-
vantages and disadvantages.

In chapter 2, we detail the basics of antenna arrays, the popular architectures currently
adopted and their essential role in exploiting the spatial domain through beamforming.
Concurrently, we explain the basic concepts in spatial filtering and beamforming such as:
beam steering, null placement and array ambiguity.

In chapter 3, we highlight the different types and sub-types of adaptive beamforming
techniques, i.e. blind, semi-blind, non-blind, temporal based and spatial based. Addition-
ally, we provide an extensive mathematical overview for different, popular, temporal and
spatial referenced adaptive beamforming algorithms and their variants. We then present

1. One signed bit, two integer bits and fifteen precision bits
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a comparative study on the performance of each, with respect to the convergence profile,
through the use of the mean square error (MSE) criteria. Additionally, we list some of
the multi stage, cascade, adaptive beamforming algorithms, i.e. LLMS and RLMS, and
we propose a reduced complexity parallel input RLMS structure.

Our contributions are detailed in chapters 4, 5 and 6 and are summarized as follows:
— A comparative experimental study is conducted in order to assess the performance of

different processors and tools in implementing DSP related routines. The fast Fourier
transform (FFT) is the core of numerous DSP applications and is implemented, in
parallel and sequential forms, on different field programmable gate array (FPGA)
and system on chip (SoC) families. Moreover, the FFT architecture is modeled
through the use of various development techniques and tools such as: traditional
hardware description language (HDL), high level language (HLL) and high level
synthesis (HLS) tools. Synthesis results have shown that an HDL like, high speed
design, can be obtained through the effective use of HLL design techniques and
proper HLS compiler directives. Moreover, HLL and HLS tools provides a simple
and easy method to target multi processor architectures and heterogeneous systems
with a shorter design and testing time. However, the concluded disadvantage of
using HLS tools is that optimization related tasks is offloaded to the compiler and
is dependent on the proper use of compiler directives.

— A high accuracy, low complexity dynamic twiddle function generator using Cheby-
shev polynomial approximation. While the FFT contributes in accelerating numer-
ous DSP applications, when implemented in finite precision, on limited resource de-
vices, its performance tend to degrade due to the resulting loss of accuracy. As such,
we propose a low complexity, high accuracy, dynamic twiddle factor computation
method based on Chebyshev polynomial approximation. Moreover, we present its
low complexity, low latency, high throughput architecture in finite precision mode.
Simulation and synthesis results highlight the superior performance of the adopted
approximation method compared to the classical Taylor approximation. In contrast,
to the Taylor approximation method, the Chebyshev approximation achieved an ac-
curacy of three decimal digits and smaller resource usage for a fifth order polynomial.

— A two stages parallel LMS (pLMS), its transfer function approximation and pipeline
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hardware implementation for adaptive beamforming. In order to eliminate the LMS
convergence speed and error floor trade off, while preserving a parallel and low la-
tency architecture, we propose a multi stage parallel LMS architecture connected
by error feedback. Where the pLMS overall error is formed as a combination of
individual stage errors. In order to numerically compute the maximum step size,
the pLMS transfer function approximation derived by modeling the input antenna
as a finite input response (FIR) fractional delay filter using Lagrange interpolation.
While the proposed pLMS structure is formed of two LMS stages in parallel, pre-
senting a pipeline design is not straight forward given the dependency on the error
feedback paths. As such, we propose the application of the delay and sum relaxed
look ahead technique, independently, for each of the LMS stages. Thus, the result-
ing delay pLMS (DpLMS) is obtained and implemented in high throughput, low
latency, parallel and pipeline architecture with finite precision. Software simulation
results, reflected by the MSE and output beam pattern validated the superior per-
formance of the pLMS with respect to other variants in different signal to noise
ratio (SNR) environments. Moreover, with respect to the output beam pattern, the
DpLMS implemented in finite precision, showed similar accuracy to that of the in-
finite precision one. Finally, synthesis results shows that the DpLMS achieved a
maximum operating frequency of 208.33 MHz in a low complexity, high throughput
architecture.

— A reduced complexity parallel LMS (RC-pLMS), its transfer function approxima-
tion and pipeline hardware implementation for adaptive beamforming. While the
pLMS eliminated the LMS trade off while maintaining a parallel easy to pipeline
design, it is formed of two LMS stages and requires twice the LMS resources. As
such, in order to maintain an LMS like complexity while preserving pLMS conver-
gence profile, we propose a single stage RC-pLMS design. RC-pLMS is obtained
by modeling the pLMS as a single stage LMS with additional modified inputs, i.e.
original input and desired signal subject to a one sample delay. Thus eliminating
the need for a second LMS filter and reducing the complexity by half. Similarly,
the RC-pLMS transfer function approximation is derived to numerically determine
the maximum step size by modeling the input linear combiner as a FIR fractional
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delay filter. The RC-pLMS pipeline hardware architecture is obtained through the
application of the delay and sum relaxed look ahead techniques (DRC-pLMS) and
implemented in finite precision mode. Simulation results, reflected by the MSE and
output beam pattern highlight the superior performance of the RC-pLMS, compared
to the pLMS and other variants in different SNR environments. Regardless of the
adopted approximation, the RC-pLMS presented accelerated convergence, i.e. first
3 iterations, and low steady error while maintaining a low complexity LMS like de-
sign. Additionally, hardware simulation show that the finite precision DRC-pLMS
achieved similar beam pointing accuracy to the, theoretical, infinite precision. In
contrast to the pLMS, synthesis results shows that the DRC-pLMS is obtained at
the cost of a marginal, negligible, increase in resource utilization compared to the
classical LMS.
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Chapter 2

FUNDAMENTALS OF ANTENNA ARRAY

BEAMFORMING

2.1 Introduction

In order to better illustrate the advantages of antenna arrays, their geometry and
radiation pattern, it is important to first present an overview of the basic concepts of a
simple antenna element, i.e. an Hertzian Dipole [26]. The Hertzian Dipole or short dipole,
first introduced by Heinrich Hertz in 1886, and is formed of two conductor wires of equal
length oriented end-to-end with a center-feeding source for transmitting or receiving RF
energy [27, 28]. In order to achieve a greater communication range, in 1895 Macroni
introduced a special case of the dipole structure, the vertical antenna, by grounding one
end of the conductor wires, hence mono-pole, i.e. half dipole [27]. In theory, simple antenna
elements are assumed isotropic radiators, i.e. an element which dissipates equal amount of
power P in all directions with a radiation intensity U0 = P

4π [26]. As such, for an antenna
radiating the same amount of power P , the directive gain can be defined as:

g = U

U0
= 4πU

P
(2.1)

where U is the practical antenna radiation intensity. From (2.1) we can define the radiation
directivity (RD) as a function of the maximum radiation intensity Umax [26], such as:

RD = Umax
U0

= 4πUmax
P

(2.2)
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However, for the Hertzian Dipole [26], we have:

RD = 1.5 (2.3)

It is clear from (2.3) that the radiation directivity for a Hertzian Dipole is a constant and
thus uncontrollable. However, to exploit the spatial domain and infer frequency reuse, it
is mandatory to have an antenna architecture with a configurable and a controllable beam
radiation pattern. Given their proven benefit in providing an electronically steerable beam
radiation pattern through the application of adaptive beamforming techniques, antenna
arrays can be reliably employed to perform spatial multiplexing and frequency reuse.
Thus, in this chapter, we present the popular antenna array geometries as well as the
basic concepts of the spatial filtering and beamforming.

2.2 Antenna Array Architecture

Antenna arrays were introduced to perform beamforming techniques for directional
signal transmission and reception. Therefore, a beamforming is achieved by forming a
main beam towards the direction of a signal of interest and nulls in the direction of
interfering signals [5]. Moreover, the desired radiation pattern is achieved automatically
by computing the convenient feeding currents phase and amplitude for each antenna
element through the use of an adaptive algorithm. From Figure 2.1, the antenna arrays
radiation pattern can be defined as follows [26]:

— Main beam: The main lobe which holds the highest power, i.e. the strongest radiation
intensity Umax.

— Side lobes: The side beams acting as a local maxima with a radiation intensity
U < Umax.

— Nulls: The angle at which no power or radio waves is radiated.

— Half Power Beam Width (HPBW): The HPBW characterizes the ability of an an-
tenna to direct a beam and represented the 3 dB beamwidth, i.e.BW3dB. The HPBW
angle occupies the intensity region satisfying the condition Umax

2 ≤ U ≤ Umax.
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— First Null Beam width (FNBW): The FNBW describes the ability of the antenna
to attenuate and reject interfering signals. The FNBW angle is formed by the main
lobe.

— Side Lobe Level (SLL): The radiation intensity of the highest side lobe with respect
to the peak of the main beam.

Figure 2.1 – Antenna Array Radiation Pattern (Cartesian Plot)

For focused transmission, with minimal power loss, it is desirable to decrease the HPBW,
i.e. 5◦ for space communication [26]. With dipole antennas, the decrease in HPBW can
only be achieved by increasing the length of the antenna; However, that may generate
additional multi-lobes [26]. Consequently, the generated multi-lobes severally degrade the
performance for long distance transmission by diminishing the power radiating in the di-
rection of interest [26]. In contrast to dipole antennas, antenna arrays can be electronically
configured to construct radiation patterns with specific beamwidth and orientation [26].
As such, different antenna array geometries and structures, i.e. linear, planar and circular,
can be built in order to achieve the desired radiation properties [26].

2.2.1 Linear Array

The simplest and most popular type of antenna arrays is the linear array. The linear
array consists of a number of antenna elements mounted on a straight line and separated
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by a spatial distance. For an equally spaced element configuration, the linear array is said
to be uniformly spaced and thus the notation uniform linear antenna (ULA). Figure 2.2
presents a ULA of N equally spaced antenna elements [29].

Figure 2.2 – Uniform Linear Antenna Array Structure

For narrow-band complex signals incoming from the far field [30] and with the first
antenna element acting as a reference, θ is the angle of arrival, Da and τd are the distance
and time delay between consecutive antenna elements, respectively. The time delay τd is
given by:

τd = Da sin(θ)
c

(2.4)

where c is the celerity of electromagnetic waves.
Let the input vector, x(k) = [x1(k), x2(k), ......, xN(k)]T , where N is the number

of antenna elements, at the discrete time instant, k, to the narrow-band beamformer be
defined by:

x(k) = adsd(k) +
N−1∑
l=0

ai,lil(k) + n(k) (2.5)

with [.]T denotes the matrix transpose, sd(k) and il(k) are, respectively, the desired and
interfering signals with l < N , ad and ai,l are the N × 1 complex array steering vector for
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the desired signal and for lth interference, respectively, and n(k) stands for the complex
additive white Gaussian noise (CAWGN) vector. A general form of ad and ai,l is given by:

a = [1, e−jψ, e−j2ψ, ........e−j(N−1)ψ]T (2.6)

where the imaginary number j =
√
−1 and ψ is the phase shift of the received signal

corresponding to the time delay τd such as:

ψ = 2πfcτd = 2πcτd
λ

= 2πDa sin(θ)
λ

(2.7)

where λ is the carrier signal wavelength, of frequency fc defined as:

λ = c

fc
(2.8)

Assuming the antenna array is of unity amplitude and zero phase weighting, from (2.6),
the array sensitivity response, i.e. array factor (AF ), for an angle of arrival (AOA), θ, to
the acquired signal and its normalized form at unity, (AF (θ))n, can be represented as:

AF (θ) =
N∑
i=1

e−j(i−1)ψ = e−jNψ − 1
e−jψ − 1 =

sin(Nψ2 )
sin(ψ2 )

e− j(N−1)ψ
2 (2.9)

(AF (θ))n =
sin(Nψ2 )
N sin(ψ2 )

e− j(N−1)ψ
2 (2.10)

From (2.10) and [26, 31] the 3 dB beamwidth, can be expressed as:

BW3dB = 0.866 λ

NDa

(2.11)

it is clear from (2.11) that the main beams 3 dB beamwidth, i.e. HPBW, is inversely
proportional to the number of antenna elements [26]. As shown in Figure 2.3 for N = 8,
N = 32 and N = 64 antenna elements, a more accurate and precise pointing beam can be
achieved by increasing the number of antenna elements [26]. While (2.11) demonstrated
the effect of array elements on the HPBW, its denominator exhibits additional variations
dependent on the inter element spacing Da.
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Figure 2.3 – Beam Radiation Pattern Vs Number of Antenna Elements with an Angle of
Arrival of 0◦ and an Inter Element Spacing of Da = λ

2

For arrays following custom configuration or design constraints, a maladjustment in
inter element spacing can make rise to grating lobes, i.e. array ambiguity and aliasing
issues [26]. An example of a grating lobe is shown in Figure 2.4 for a ULA array of
N = 8 elements with inter element spacing of Da = λ

2 . From figure 2.4, it is clear that the
main beam is directed towards the pre-set AOA of 0◦; Moreover, the radiation pattern plot
shows additional peaks at ±180◦, respectively. The additional peaks presented are referred
to grating lobes and results in array ambiguity and uncertainty towards the true direction
of interest [26]. To mathematically illustrate the grating lobes effect, the modulus, |.|, of
the normalized array factor is obtained from (2.10) as:

|(AF (θ))n| = 1
N

| sin(πDaN sin(θ)
λ

)|
| sin(πDaN sin(θ)

λ
)|

(2.12)

thus, for the 90◦, Cartesian coordinate, plane, the position of the grating lobes is obtained
at max(|(AF (θ))n|), i.e. when θ = arcsin(niλ

Da
) where ni ∈ {1, 2, ...., N} [26].
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Figure 2.4 – ULA array Beam Radiation Pattern for Angle of Arrival 0◦ and an Inter
Element spacing of Da = λ

2

An example of grating lobes for different inter element spacing is shown in Figure 2.5.

Figure 2.5 – Grating Lobes for Different Inter Element Spacing Da
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From the radiation obtained in Figure 2.5, it is clear that the main beam HPBW
becomes narrower as the element spacing becomes wider, however for an element spacing
Da > 0.5λ additional lobes appear with and incremental energy as Da becomes larger
[26].

2.2.2 Circular Array

In a circular antenna array, the elements are arranged in a circular shape with a radius
Rc. The circular array does not suffer from array ambiguity, produces wider beams and
provides full coverage on the azimuth plane [26, 29, 32]. An N elements circular antenna
array with radius Rc is shown in Figure 2.6.

Figure 2.6 – Uniform Circular Array [33]

where φ is the azimuth angle and θ is the elevation angle and Pc is a projection point.
As such, the new array factor for a circular geometry becomes:

AF (θ, φ) =
Nx∑
i=1

e−j2π r
λ
sin(θ)cos(φ− 2iπ

N
) (2.13)

Given its previously stated advantages the circular array is a popular antenna geometry
employed in application where the signal of interests is known to arrive from an azimuth
angle. However, this configuration is at the cost of higher side lobe levels [29, 32].

44



2.2. Antenna Array Architecture

2.2.3 Planar Array

A planar array is a 2D extension of the linear array, i.e. array elements arranged in
the x, y plane. A popular planar array configuration is the rectangular array as shown in
Figure 2.7.

Figure 2.7 – Uniform Rectangular Array [33]

As shown in Figure 2.7, the planar array is a uniform rectangular array with inter
elements spacing of Dax and Day, respectively. The rectangular array is formed of a total
of Nx×Ny elements, where Nx is the number of antennas along the x-plane and Ny is the
number of antennas along the y-plane, respectively. In this example, the total number of
elements is 24 with Nx = 4 and Ny = 6. Thus, the overall array factor becomes [26]:

AF (θ, φ) =
Nx∑
i=1

Ny∑
k=1

e−j(i−1)ψxe−j(k−1)ψy (2.14)

ψx = 2πDax sin(θ) cos(φ)
λ

(2.15)

ψy = 2πDay sin(θ) cos(φ)
λ

(2.16)

In contrast to the ULA and the circular array, the planar array allows the production of
pencil beams by steering the main beam in the elevation plane as well [26].
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2.3 Spatial Filtering and Beamforming

Spatial filtering is an inevitable feature of modern wireless communication systems
and is used for inferring frequency reuse, limiting interference and providing higher data
rates and signal to noise ratio (SNR). An antenna array geometry allows the creation of
electronically steerable beams and nulls by specific current feeding and element config-
uration, i.e. beamforming [26]. The use of a beamforming technique steers the antennas
main beam, with constructive amplitude, towards a signal coming from a desired location
while directing nulls towards interference, i.e. spatial filtering [2, 26, 30].

2.3.1 Beam Steering

An efficient form of adaptive beamforming is achieved by connecting the antenna
array to a beamformer processor through the use of a signal conditioning circuit and high
speed analog to digital (AD) converters [2, 26, 34, 35]. The received signals are spatially
sampled and collected by each antenna element, converted to their digital form and fed
to the beamformer. Through the use of an adaptive algorithm, with respect to a desired
reference signal, the beamformer appropriately weights the input samples to automatically
steer the main beam towards the direction of the desired AOA while placing nulls in the
direction of interference [2, 4, 26]. The adaptive weighting correctly filters the interfering
signals irrespective of their characteristics and AOA [26].

Adaptive arrays controls the main beams and null steering towards specific direction
with respect to a reference signal. Beam steering is achieved through appropriate complex
weighting, i.e. appropriate setting of the complex amplitude and phase of the feeding
currents [26]. The complex weights, for steering control, are of the form wn = ρne

jωn where
wn is the complex weight of the nth antenna element, ρn and ωn are the corresponding
amplitude and phase, controlling the main beam and nulls angles, their beamwidth and
their side lobe levels, respectively [13, 26].

The main beam steering equation, assuming no noise nor interference, can be written
as [26]:

w = 1
N

ad(θ) (2.17)

46



2.3. Spatial Filtering and Beamforming

where w is the linear combiner filter weights, the added factor 1
N

is a normalization factor
to obtain a unity response in the direction of interest. Thus, for a 4 element ULA array, i.e.
N = 4 with inter element spacing of Da = λ

2 the required weights to steer the main beam
towards a desired AOA of θ = 30◦ can be computed from (2.9) and (2.17), as follows:

w = 1
4[1, e−j1.5708, e−j3.1416, e−j4.9348] (2.18)

While the application of (2.17) successfully steers the main beam towards the desired
AOA, it does not null any interfering signals.

In order to allow automatic null steering and attenuate unwanted signals additional
constraints are required on the weight steering equation. In case of interference, directing
a main towards the desired direction only results in a 3 dB rejection [26], which is a
relatively small improvement compared to the cost and complexity of the beamformer.
However, given the nature of the array configuration, it is possible to steer nulls in the
direction of interference by computing the complex weights following a set constraint [26].

Let ad(θ0) be the array steering vector for the desired signal and ai,1(θ1), ....., ai,k(θk)
are the k, N × 1 nulls steering vectors. The overall weight can be obtained as a solution
to the following equations:

wHad(θ0) =1 (2.19)

wHad(θk) =0 ∀k ∈ [1, ..., L] (2.20)

where the superscript H is the Hermitian transpose, L = N − 1. Let Ai be a N × N
square matrix whose columns are formed by the k + 1 steering vectors and c is a N × 1
constraint vector of the form:

ci =[1, 0, 0, ..., 0]T (2.21)

assuming all steering vectors are linearly independent, i.e. Ai is non singular, the weight
vector can be computed as [26]:

wH =cTi A−1
i (2.22)
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where A−1
i represents the inverse matrix of Ai. Thus, for a 2 element ULA array, i.e.

N = 2 with inter element spacing of Da = λ
2 , the required weights to steer the main beam

towards a desired AOA of θ0 = 50◦ while steering a null toward an interference signal at
θ1 = −15◦ can be obtained as follows:

ad(θ0) =[1, e−j2.4066] (2.23)

ai,1(θ1) =[1, ej0.8131] (2.24)

using (2.22) with:

Ai =[ad(θ0), ai,1(θ1)] (2.25)

ci =[1, 0]T (2.26)

we can compute w to obtain:

w = [0.5 + j0.0195,−0.35708 + j0.3498]T (2.27)

Figure 2.8 – Main Beam and Null Steering to θ0 = 50◦ and θ1 = −15◦ Respectively
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From Figure 2.8, it is clear that the beamformer was able to steer a null toward the
direction of the interfering signal θ1 = −15◦, while keeping its main beam directed at the
desired AOA θ0 = 50◦.

2.4 Conclusion

In this chapter, we presented the benefits of using antenna arrays with a summary of
the popular array geometries employed in communication systems, i.e. Linear, planar and
circular arrays. Moreover, through the use of antenna arrays, we presented the concept
of spatial filtering through the application of beamforming. While the provided beam
and steering technique is effective in attenuating interfering signals, however it does not
filter uncorrelated signal noise. Additionally, due to their narrow width, it is difficult to
accurately place nulls in the desired direction. Thus, it is of a main interest to design a
high performance beamformer with accurate beam and null pointing while maintaining a
low complexity architecture.
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Chapter 3

OVERVIEW OF ADAPTIVE BEAMFORMING

ALGORITHMS

3.1 Introduction

While an antenna array configuration is capable of performing spatial filtering through
beamforming, it is only a physical arrangement of independent antenna elements and
cannot perform any processing task. Thus, a dedicated beamforming processor, i.e. beam-
former, is required to collect incoming signal samples and electronically steer the main
beam and nulls towards the desired directions [4, 5, 13, 26]. To obtain an automatically
controllable beam, the beamformer implements an adaptive system that continuously ad-
justs the array parameters with respect to an adaptive algorithm. As such, the choice of
the beamforming algorithm is generally governed by the imposed application constraints,
i.e. robustness, accuracy and accelerated convergence, and the limitations of the hosting
processor, i.e. limited resources and finite precision [4, 25, 36].

3.2 Adaptive Beamforming

Most adaptive algorithms are classified into three main categories: non-blind, semi-
blind or blind [26], as shown in Figure 3.1. In non-blind beamforming the system relies on
the temporal or spatial characteristics, i.e. the direction of arrival (DOA), of a reference
signal to iteratively compute the array weights with respect to a set cost function or
constraints [3, 26]. Thus, in non-blind beamforming, a clean copy of the reference signal
is needed to achieve satisfactory behavior [2]. In contrast, the blind beamforming system

51



Partie , Chapter 3 – Overview of Adaptive Beamforming Algorithms

extracts some unknown characteristics of the incoming signal, related to the channel
impulse response, the spectrum, the modulus or the envelop deviation, without any prior
knowledge of the array geometry in order to correctly steer the main beam and nulls
[2, 26].

Figure 3.1 – Beamforming Algorithms

While most of the blind algorithms requires complex mathematical routines to achieve
their goals, the inclusion of a training sequence is shown greatly accelerate the computa-
tion, hence the name semi-blind or hybrid [26].

3.2.1 Non-Blind based Beamforming

In non-blind beamforming, algorithms rely on a pre-set reference signal or parameters
in order to effectively steer the main beam and nulls towards a desired look direction
[2, 3]. The adaptive algorithm is said to be temporal referenced if it relies on a training
sequence to form its reference signal and compute the array weights, or spatial referenced
if it relies on the array characteristics and DOA [26].
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For temporal referenced beamforming, all adaptive algorithms continuously update
the filter weights with respect to a pre-set cost function, such as:

— Minimum mean square error (MMSE) [26]

— Maximum signal to interference plus noise ratio (MSINR) [26]

— Minimum variance distortionless response (MVDR) [26]

Identically, at convergence, all the listed algorithms compute the optimal weight given by
the Weiner-Hopf equation [2, 10, 26] and defined as [4]:

wo = R−1p (3.1)

where R = R(0) and R−1 are the input signal auto-correlation matrix and its inverse,
respectively, and p = p(0) is the cross correlation vector of the input x(k) and desired
signal d(k). R(0) and p(0) are defined at lag τ = 0 as:

R(τ) = E[x(k − τ)xH(k)] (3.2)

p(τ) = E[d∗(k − τ)x(k)] (3.3)

with E[.] being the expectation operator, the superscripts ∗ and H denotes the complex
conjugation and the Hermitian transpose, and the lag τ = k1 − k2. Where, k1 and k2

are different time instances from which an observation of the random process is taken.
The performance of temporal adaptive algorithms depends on the selected algorithm and
the availability of a noise free copy of the reference signal [26]. Some of the popular non-
blind temporal referenced adaptive beamforming algorithms are the recursive least square
(RLS), a simpler form of the Kalman filter, and the least mean square (LMS) [13].

Spatial referenced beamformers make use of the DOA of the incoming signal in order to
correctly direct its main beam and nulls, as to amplify the desired signal while suppressing
co-channel interferences [2, 26]. The performance of the spatial reference DOA based
methods is mainly correlated with the performance of the DOA algorithm itself and its
robustness against array calibration and inter element spacing errors [26]. Some of the
popular direction finding techniques are spectral based, i.e. the Fourier method (FM) and
the multiple signal classification (MUSIC) algorithm, and parametric based such as: the
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maximum likelihood (ML) and the estimation of signal parameter via rotational invariance
techniques (ESPRIT).

Althought fast adaptive algorithms exists, such as: the Fast adaptive ESPRIT algo-
rithm [37, 38], the major disadvantage experienced is their high computational complexity
[26]. The increase in complexity results in an intolerable delay, as the system scales in
size, making these algorithms undesirable when targeting a hardware implementation on
limited resource processors. In contrast, temporal referenced beamformers, benefits from
self-correction against array calibration and pointing errors giving their dependency on a
per-determined training sequence. For an array of N elements the beamformer makes use
of N degrees of freedom (DoF), as such with one element directed to the desired source
N − 1 remains for nulling up to N − 1 interferences. However, an attractive feature of
temporal referenced algorithms is their ability to maximize the systems output signal to
interference plus noise ratio (SINR) for a number of sources exceeding the number of an-
tenna elements, i.e greater than N [2, 26]. Additionally, some of the temporal referenced
beamformers, i.e. LMS, implements a low complexity architecture making it the most
desirable for hardware implementations [4, 21, 22, 23, 24, 34].

3.2.2 Blind Based Beamforming

Since non-blind algorithms rely on a training sequence, during the initialization phase
no data can be transmitted over the communication channel thus reducing link efficiency
[26]. However, blind adaptive algorithms exploit the statistical and structural properties of
the incoming signal without any knowledge on the arrays geometry or signal characteristics
[26]. As such, blind adaptive algorithms do not need a training sequence, thus, implicitly
upgrading the performance of the system and its spectral efficiency [2, 26].

In the case of blind beamforming, the algorithm samples the input signals in time
domain forming the input signals matrix Xb to extract the data signal Sb and the sys-
tems transfer function Hb satisfying Xb = HbSb [26]. Most blind algorithms rely on the
statistical knowledge of some parameters, i.e. envelop deviation, spectral self-coherence,
cyclo-stationary and finite alphabet of symbols, in order to estimate of Sb or Hb through
matrix decomposition. Some of the popular blind algorithms are: the constant modulus
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(CM) algorithm and the higher order cumulant algorithm (HoCA) [2, 3, 5, 26]. However,
while fast adaptive algorithms exists [39, 40, 41], they are of high complexity, such issue
pressures blind algorithms and limits their performance when implemented on dedicated,
limited resources, hardware, such as field programmable gate array (FPGA) [25].

3.2.3 Semi-Blind based Beamforming

The inclusion of a prior knowledge, i.e. a training sequence, in blind algorithms signif-
icantly improves their computational performance and real-time adaptation profile. The
use of a training sequence introduces a new class of algorithms identified as hybrid or
semi-blind. An example of a semi-blind algorithm with real time beamforming capabili-
ties is the decoupled iterative least squares finite alphabet space-time (DILFAST) [26, 42].
The DILFAST algorithm uses a ’bit field’ training sequence [26, 42] at its initialization
phase and performs detection and estimation techniques based on the structural proper-
ties of the input signal. The algorithm makes use of the finite alphabet (FA) constellation
to map the input samples without any need of subspace estimation [42]. While the DIL-
FAST algorithm can be implemented in real-time it relies on the use of FA and is not
robust against any change of the FA as a consequence of some operating conditions [26].

3.3 Adaptive Algorithms

Non-blind adaptive algorithms provide an attractive set of features making them suit-
able candidates for hardware implementation [4]. Moreover, an overview on different multi
stage adaptive beamformer is presented. The multi stage beamformer is formed by two
adaptive algorithms, either in cascade or in parallel, sharing a similar training sequence,
in which the error signal, e2(k), of the second stage is delayed and fed back to combine
with that of the first stage, e1(k), to form the total system error et(k) [4, 13] as follows:

e1(k) = d(k)−wH
1 (k)x1(k)

e2(k) = d(k)−wH
2 (k)x2(k)

et(k) = e1(k)− e2(k − 1) (3.4)
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where w1(k), x1(k) and w2(k), x2(k) are the first and second stage filter weight and input
vector, respectively. As such, in this section, we select some of the popular algorithms
and provide an overview of their mathematical structure, their performance and their
computational complexity while listing their advantages and drawbacks.

3.3.1 MVDR Algorithm for Beamforming

The minimum variance distortionless response (MVDR) beamformer maximizes the
output SINR by minimizing the interference and noise power (variance), while preserving
a distortionless response in the direction of the signal of interest [11, 13]. The output
SINR is given by:

SINR = E[|wHs(k)|2]
E[|wH(i(k) + n(k))|2] = σ2

d|wHa(θ)|2
wHRi+nw

(3.5)

where |.| is the complex modulus, a(θ) is the array steering vector in function a known
reference angle of arrival (AOA), σ2

d is the desired signal variance and Ri+n is the N ×N
interference plus noise co-variance matrix defined as Ri+n = E[(i(k)+n(k))(i(k)+n(k))H]
[11, 13, 43]. Thus, the MVDR problem can be formulated, with respect to (3.5), as:

min
w

wHRi+nw st wHa(θ) = 1 (3.6)

From (3.6), the optimal weight vector wMVDR can be computed as:

wMVDR = R−1
i+na(θ)

aH(θ)R−1
i+na(θ)

(3.7)

From (3.7), it is clear that the MVDR beamformer steers its main beam and nulls with
respect to a known reference AOA, i.e. spatial referencing. Additionally, the unknown
interference plus noise co-variance matrix Ri+n can be replaced by its estimate R̂i+n.
However, the accuracy of the estimation depends on the length of the training sequence
available [11, 12, 43]; Therefore, the data sample co-variance matrix estimate is computed
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using the following equation:

R̂i+n = 1
K

K∑
k=1

x(k)xH(k) (3.8)

where K is the number of training data samples. However, the MVDR does not provide
any robustness against array calibration errors or look direction mismatch [2, 11, 13, 26].
Moreover, the resulting estimate, R̂i+n, also includes the desired signal component and
presents additional ambiguity [2, 4, 13]. In order to provide additional robustness against
random mismatch errors, a robust MVDR beamformer is proposed in [11, 43]. The robust
MVDR algorithm update the minimization problem described by (3.6) in order to include
additional constraints not only for the preset steering vector and look direction but for
all other vectors belonging to the set of Ψ(ε) = {cm|cm = a + em, ||em|| ≤ ε} to become
[43]:

min
w

wHR̂i+nw s.t. |wHcm|≥ 1 ∀cm ∈ Ψ(ε) (3.9)

where ||.|| denotes the vector Frobenius norm, em is the mismatch error in the steering
vector and cm is the erroneous steering vector. However, the optimization problem in (3.9)
describes an infinite number of non convex constraints [43] and is reformulated to a single
constraint corresponding to the worst case mismatch as a second order cone programming
(SOCP) problem [43], such as:

min
w

wHR̂i+nw st wHa ≥ ε||w||+ 1 (3.10)

The SOCP based robust MVDR described in (3.10) is computationally intensive and of
order O(N3) [43].

3.3.2 Least-Mean Square (LMS) Algorithm

The least mean square (LMS) algorithm, was first introduced by Widrow and Hoff
in [10] and is the realization of the steepest descent optimization method by means of a
stochastic gradient [2, 3, 4]. the LMS minimizes the mean square error (MSE) as a cost
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function [10, 44, 45], to estimate the optimal filter weight, i.e. the Wiener solution. The
MSE cost function, ξLMS, is defined by:

ξLMS(k) = E[|eLMS(k)|2] = E[eLMS(k)e∗
LMS(k)] (3.11)

where eLMS(k) is the error signal and d(k) is the reference signal. Moreover, equation
(3.11) can be expanded as:

E[|eLMS(k)|2] = E[|d(k)|2]− pHw(k)−wH(k)p + wH(k)Rw(k) (3.12)

Equation (3.12) is a quadratic equation in function of the array weight vector w(k),
the input signal auto correlation matrix R and the input signal and desired signal cross
correlation vector p. Therefore, the optimal weight vector, woplms, of w(k), assuming
a wide sense stationary (WSS) process, can be obtained by differentiating (3.12) with
respect to wH(k) [5, 15, 46], and setting the resulting LMS gradient, ∇LMS, to zero, such
as:

∇LMS = ∂ξLMS(k)
∂wH(k) = −p + Rw(k) (3.13)

Hence woplms becomes:

wop = R−1p (3.14)

The LMS error and weight update equations are obtained as follows:

eLMS(k) = d(k)−y(k) (3.15)

w(k + 1) = w(k) + µLMSe
∗
LMS(k)x(k) (3.16)

where µLMS stands for the gradient descent step or the step size [4, 14, 44, 45]. To ensure
stable performance and convergence, the upper bound of the step size, µLMS, is given
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with respect to the stability analysis conducted in [2] as:

µLMS <
1

λR,max
(3.17)

where λR,max is the maximum eigenvalue of R. Thus, to ensure the convergence and the
stability of LMS the step size µLMS must satisfy (3.17). While LMS offers minimal com-
putational complexity, of order O(N), it suffers from a trade off between its convergence
speed and its error floor [4].

Several variants of the classical LMS have been proposed to improve its performance
by eliminating the trade off between its convergence speed and steady state error [4]. This
includes, and is not limited to, the normalized LMS (NLMS) [47, 48], variable step size
LMS (VSSLMS) [49, 50, 51, 52, 53], the modified robust variable step size LMS (MRVSS)
algorithm [54] and the least mean square - least mean square algorithm (LLMS) [5]. In
NLMS, the authors in [47, 48] proposed adjusting the step size, µ, in accordance with the
input signal power through auto-correlation, thus allowing faster convergence. However,
NLMS, suffers degraded performance in low SINR environments due to the reduction
in the step size [5], additionally, the systems performance is highly dependent on the
choice of its initial parameters. In contrast, the VSSLMS variant described in [50] begins
the adaptation process with respect to a large step size decremented as the algorithm
approaches its steady state. Such technique allows accelerated convergence and a lower
steady state error, however at the cost of a high increase in computational complexity
[55]. Despite the suggested modifications, the NLMS and VSSLMS algorithms still suffer
from degraded performance in low SINR conditions [55]. Thus, to further increase their
robustness, the authors in [54] proposed the MRVSS LMS algorithm. In comparison, the
MRVSS has shown satisfactory robustness against added noisy and when operated in
non stationary environments. However, the MVRSS technique results in a considerable
increase in the computational complexity and its performance also depends on particular
system environments [5].

In LLMS a multi stage structure is proposed for improving the convergence rate while
simultaneously reducing the residual error of a classical LMS [5]. LLMS is achieved by
cascading two LMS stages by the use of an estimate of the adaptive array vector and error

59



Partie , Chapter 3 – Overview of Adaptive Beamforming Algorithms

feedback. This technique shows superior performance over previously discussed LMS vari-
ants, however at the cost of doubling the computational complexity and the introduction
of a division operation with respect to the classical LMS [4, 5].

3.3.3 Recursive Least-Square (RLS) Algorithm

The RLS algorithm updates the arrays weight vector based on the minimization of a
cost function, i.e. the sum of squared errors, ξRLS, for a known sampling window [6, 13, 15]
and is given by:

ξRLS =
k∑
i=1

αk−1|eRLS(k − 1)|2 (3.18)

where the error signal, eRLS(k), is defined as eRLS(k) = d(k) − y(k) and α ∈ [0, 1] is
the exponentially weighted forgetting factor [6]. Hence, the weight vector update formula
becomes:

eRLS(k) = d(k)−wH(k)x(k) (3.19)

L(k) = α−1Q−1(k − 1)
1 + α−1xH(k)Q−1(k − 1)x(k) (3.20)

w(k) = w(k − 1) + L(k)x(k)e∗
RLS(k) (3.21)

where L(k) is the gain matrix. The inverse signal auto-correlation matrix Q−1(k) and the
weight vector w(k − 1) are defined as follows [15]:

Q−1(k) = α−1Q−1(k − 1)− α−2Q−1(k − 1)x(k)xH(k)Q−1(k − 1)
1 + α−1xH(k)Q−1(k − 1)x(k) (3.22)

z(k) =
k∑
i=1

αk−ip(k) (3.23)

Q(k) =
k∑
i=1

αk−iR(k) (3.24)

While the RLS provides greater convergence, compared to the LMS it suffers from an
increased computational complexity, of O(N2), lacks robustness against fixed point arith-
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metic, i.e. underflow and divide by zero and does not provide user tracking capabilities
[2, 6, 13, 15, 25]. Several variants have been proposed for maintaining an accelerated
convergence profile and providing a tracking ability in time varying environments for the
classical RLS [15]. These techniques include, and are not limited to, the adaptive forget-
ting factor RLS algorithm (AFF-RLS) [56], the variable forgetting factor RLS (VFFRLS),
the extended recursive least square (EX-KRLS) algorithm [5], the recursive least mean
square (RLMS) [15] and the parallel RLMS [6]. However, the improvement in the tracking
ability of the RLS when implementing the AFF-RLS, the VFFRLS and the EX-KRLS
algorithms is achieved at the cost of a considerably large increase in computational com-
plexity [6, 15]. In contrast, the RLMS structure achieves an accelerated convergence with
superior tracking capabilities compared to other modifications, by means of a multi-stage
algorithm [13]. RLMS employs a RLS stage followed by a LMS stage separated by an
estimate of the array image vector and connected by an error feedback. This technique
shows superior performance over previously discussed LMS and RLS variants however at
the cost of an increase in the computational complexity.

Figure 3.2 – Cascaded RLMS

3.3.4 RLMS Adaptive Beamformer

The Recursive-Least mean square (RLMS) algorithm is formed of a RLS stage followed
by a LMS stage separated by an estimate of the array image vector. The two stages
algorithms are connected by a delayed error feedback [15] as shown in Figure 3.2 where
the block z−1 represents a one sample delay. In RLMS, the output of the first stage RLS1,
yRLS1(k), is multiplied by the estimate of the desired signal steering vector âd(k), forming
the input, x2(k), to the second LMS2 stage. Moreover, âd(k), is given by its stochastic
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approximation near convergence in its instantaneous form, detailed in Appendix A, [13, 15]
as:

âd,m ' w1,m(k)x1,m(k)
w1,m(k)yRLS1 + ϑ

(3.25)

where âd,m is the mth elements of the complex steering vector approximate âd(k) and ϑ
is a small constant introduced to mitigate a division by zero [5, 13] such that:

0 < ϑ� |yRLS1|
N

N∑
m=1
|w1,m| (3.26)

where w1,m(k), x1,m(k) and âd,m are the RLS1 tap weights, input signal and the estimate
of the mth antenna element of the complex steering vector ãd at the time instant k with
m ∈ {1, 2, 3.......N}. Hence, the input to the mth antenna element for the LMS2 stage,
x2 ,m(k), is derived in [5, 15] as:

x2,m(k) = w1,m(k)x1,m(k)
w1,m(k)yRLS1(k) + ϑ

yRLS1(k) (3.27)

Moreover, a delayed version of the error signal e2(k) of the LMS2 stage is fed-back to
combine with that of the RLS1 to form the overall error signal eRLMS(k) used to update
the main tap weights of the RLS1 stage. The overall error signal and the RLMS weight
update equation, with respect to (3.21), becomes [15]:

eRLMS(k) = e1(k)− e2(k − 1) (3.28)

w1(k) = w1(k − 1) + L(k)x1(k)e∗
RLMS(k) (3.29)

While the RLMS presents an accelerated convergence and superior tracking abilities, its
cascaded form introduces high latency when targeting a hardware implementation with
a division operation such as in (3.25). Furthermore, the system complexity is of order
O(N2) and is increased by that of the LMS stage and an additional 20N multiplications,
6N additions and 2N divisions for the steering vector estimate in (3.25). Consequently, the
cascading nature of the RLMS introduces high latency, given the second stage dependency
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on the steering vector estimate block, making it difficult to be implemented in a parallel
and pipeline architecture [4, 21, 24].

3.3.5 Parallel RLMS Adaptive Beamformer

In order to present a low latency, division free architecture, suitable for a parallel
implementation, we propose in [6] a two-stage parallel input RLMS (RLMSp) structure,
as shown in Figure 3.3, where jz−1 denotes a multiplication by the imaginary number j
with respect to a one sample delay.

Figure 3.3 – Parallel Input RLMS (RLMSp)

From Figure 3.3, it is clear that the LMS2 input is the signal samples and no longer
a reconstructed input dependent on the array steering vector estimation. Moreover, the
LMS2 error signal e2(k) is now multiplied by the complex number j to protect against
nulls and recurring samples [4]. The overall RLMSp error signal, eRLMSp(k), and weight
update equations are [15]:

eRLMSp(k) = e1(k)− je2(k − 1) (3.30)

w1(k) = w1(k − 1) + L(k)x(k)e∗
RLMSp(k) (3.31)

Recurring samples in the input and/or desired signals are usually formed as a consequence
of repeated samples in the original message signal, analog to digital converter (ADC) im-
purities [57], quantization errors [34, 35, 36], low resolution resulting in receivers saturation
[4, 17] and of symbol detection errors originated from the digital receivers in low signal to
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noise ratio (SNR) environments [4, 58]. As such, in the adopted delay feedback method
described by (3.28), recurring samples can result in error nulls and severely degrade the
convergence performance of the RLMSp [4, 6, 14, 24]. As an example, we consider a sample
of the desired signal vector, d, taken at instances k and k−1, respectively and represented
in its complex form such as:

d(k) = a1 + jb1 (3.32)

d(k − 1) = a2 + jb2 (3.33)

Moreover, the modified RLMS and RLMSp desired signals, SRLMS(k) and SRLMSp(k),
with respect to (3.28) and (3.30), are:

SRLMS(k) = d(k)− d(k − 1) (3.34)

SRLMSp(k) = d(k)− jd(k − 1) (3.35)

For recurring samples, i.e. d(k) ≈ d(k − 1) we get a1 ≈ a2 and b1 ≈ b2, thus SRLMS ≈ 0.
However, the RLMSp overall reference signal, SRLMSp(k), becomes:

SRLMSp(k) = a1 + jb1 − ja2 + b2 6= 0 (3.36)

Therefore, from (3.36), the multiplication by the imaginary number j improves the sys-
tems robustness against repeated samples [4]. By eliminating the need for a steering vector
estimate stage, the RLMSp complexity, compared to the RLMS, is reduced by 20N multi-
plications, 6N additions and 2N divisions. However, the RLMSp computational complex-
ity is still of order O(N2) and its pipeline remains difficult due to the presence of error
feedback paths [4, 21, 24].

3.3.6 LLMS Adaptive Beamformer

The least mean square-least mean square (LLMS) algorithm is a multi-stage LMS
separated by an estimate of the array steering vector [5, 55] as shown in Figure 3.4. In
LLMS, the output of the first stage LMS1, yLMS1(k), is multiplied by the estimate of the

64



3.3. Adaptive Algorithms

desired signals steering vector âd(k), forming the input, x2(k), to the LMS2 stage similar
to (3.25) and (3.27).

Figure 3.4 – Cascaded LLMS

Thus, the input to the LMS2 with respect to yLMS1(k) becomes:

x2,m(k) = w1,m(k)x1,m(k)
w1,m(k)yLMS1(k) + ϑ

yLMS1(k) (3.37)

Moreover, a delayed version of the error signal e2(k) of the LMS2 stage is fed-back
to combine with that of the LMS1 and form the overall error signal eLLMS(k) used to
update the main tap weights of the LMS1 stage. As such, the LLMS overall error and
weight update equations are presented as [5, 55]:

eLLMS(k) = e1(k)− e2(k − 1) (3.38)

w1(k + 1) = w1(k) + µ1e
∗
LLMS(k)x1(k) (3.39)

The input and desired signals are assumed independent and identically distributed (i.i.d)
with zero mean. The process is assumed WSS with no temporal correlation between
samples [5].

While the LLMS presents an accelerated convergence with a low steady state error, it
does not ensure the same convergence properties against recurring/repeated samples, i.e.
x(k) ≈ x(k − 1) and d(k) ≈ d(k − 1). Recurring samples are formed as a consequence of
a high sampling frequency or re-transmission for robustness. Also, its cascading structure
introduces a large increase in computational complexity and latency [4]. Furthermore,
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the system complexity is increased by an additional 20N real multiplications, 6N real
additions and 2N real divisions for the steering vector estimate in (3.25). Consequently, the
division operator affects the systems stability when targeting a hardware implementation
[59], i.e. possibility of division by zero in finite precision arithmetic. Similar to the RLMS,
the cascading nature of the LLMS introduces a high latency, given the dependency on
two error feedback paths, making it difficult to be implemented in a pipeline architecture
[4, 21, 24].

Algorithm Initial Parameters
LMS µLMS = 0.04
RLS α = 0.98, L(0) = 0.5I, Q(0) = 0.025I

VFFRLS
λmax = 1, γV FF = 1.5, kα = kβ = 6

εV FF = 1, δ = 1

MRVSS

ẽmax = 1, ẽmin = 0, ν = 5× 10−4

µmax = 0.2 , µmin = 10−4

Initially: µMRV SS = µmax, α = η = 0.97
γ = 4.8× 10−4

RLMS
α = 0.98, L(0) = 0.5I, Q(0) = 0.025I

µLMS2 = 0.2, ϑ = 0.0004
LLMS µLMS1 = 0.04, µLMS2 = 0.04, ϑ = 0.0004

RLMSp
α = 0.98, L(0) = 0.5I, Q(0) = 0.025I

µLMS2 = 0.2

Table 3.1 – Simulation Initial Parameters

3.3.7 Comparison and Discussion

The simulation setups for evaluating the performance of the previously listed algo-
rithms are as follows:

— ULA array with N = 8 antenna elements.

— A message signal and two interferes arriving at AOA of 30◦, 45◦ and 80◦, respectively.
The inputs are generated as independent random complex Gaussian sequences [4, 60]
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of the form vm = v1 + jv2 , where v1 and v2 are taken from a normal (Gaussian)
distribution with zero mean and variance σ2 of the form N (0, σ2

p) and N (0, σ2
q ),

respectively, where, σp = 0.1 and σq = 0.2. The subscripts p and q denote in-phase
and quadrature, out of phase, respectively [4].

— With respect to the simulation criteria in [5], and since the pilot, training, signal
is known, the desired signal d(k), is considered as a copy of the message signal
corrupted by CAWGN noise with a signal to noise ratio of SNR = 5 dB and SNR
= 10 dB, respectively.

The initial parameters were chosen similar to that selected in [5, 33] and are presented in
Table 3.1 where I is a N ×N identity matrix.

The simulation is conducted following a Monte Carlo approach [4] with 150 realizations
of 150 samples each and the performance of the adaptive algorithms is evaluated with
respect to the resulting MSE.

Figure 3.5 – MSE Convergence Behavior For The LMS and RLS Adaptive Beamformers
and Their Variants For SNR = 10 dB
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From Figure 3.5, all algorithms achieved convergence for a SNR = 10 dB. In contrast
to the other variants, it can be seen, that only the LLMS and RLMS achieved their
convergence from the 2nd iteration with a minimal steady state error, i.e. MSE < 0.01.

To better assess their behavior in noisy environments, the simulations were repeated
for a SNR = 5 dB.

Figure 3.6 – MSE Convergence Behavior For The LMS and RLS Adaptive Beamformers
and Their Variants For SNR = 5 dB

As shown in Figure 3.6, only the LLMS preserved an accelerated convergence and low
steady state error profile in low SNR environments. In contrast to the RLMS, the RLMSp
achieved a lower steady state error however with a slightly delayed convergence.

Table 3.2, presents a comparison of resource complexity where cMultiply, cAdd, cDi-
vide define as complex multiplication, addition or division, respectively. From Table 3.2,
it is clear that the RLMS, RLMSp and RLS require an undesirable complexity of order
O(N2) and the need of a division operation. On the other hand, only the LLMS achieved
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accelerated convergence and low steady error in low SNR comparison with a complexity of
order O(N). However, compared to the LMS, the LLMS doubles its resource requirements
in addition to N complex divisions [4].

Algorithm cMultiply cAdd cDivide
RLMS[15] 3N2 + 11N + 2 2N2 + 9N + 6 N + 1
RLMSp[6] 3N2 + 7N + 1 2N2 + 6N + 3 1
RLS 3N2 + 5N 2N2 + 4N + 2 1
LLMS[5] 6N + 2 5N + 4 N

LMS 2N + 1 2N + 1 0

Table 3.2 – Theoretical Complexity and Resource Usage

3.4 Conclusion

In this chapter, we introduced the different classes of beamforming algorithms, i.e. non-
blind, semi-blind and blind. Additionally, we presented an overview of the most popular
non-blind temporal and spatial referenced adaptive algorithms and some of their vari-
ants, while listing the advantages and disadvantages of each. To further illustrate their
behavior and convergence properties, many simulations were conducted with respect to
random complex Gaussian input sequences. The output MSE plot was used to validate
and compare the algorithms performance, in terms of convergence speed and steady state
error, for different SNR environments. Thus, in contrast to the LMS, RLS and their vari-
ants, only the LLMS achieved superior performance through an accelerated convergence
and low steady state error profile. However, while the LLMS preserved an order O(N)
complexity, it still requires N complex divisions for the steering vector estimate. Addi-
tionally, the cascading nature of the LLMS and the error feedback paths makes it difficult
to be implemented in a parallel and pipeline architecture. As such, our main motivation
is to present a reduced complexity multi stage LMS variant suitable for a parallel pipeline
hardware implementation while maintaining accelerated convergence, low steady state er-
ror and robustness against low SNR environments. The work conducted for the RLMSp
has been published in the European Signal Processing Conference (EUSIPCO).
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Chapter 4

OVERVIEW OF DIGITAL SIGNAL

PROCESSING IMPLEMENTATION

TECHNIQUES ON EMBEDDED SYSTEMS

4.1 Introduction

Signal processing is a multidisciplinary field of study and have become a vital technol-
ogy in many modern applications [25, 61]. Applications embodying signal processing tasks
and routines are endless, and rely on both analog and digital processes, however by the
end of the 20th century this discipline have become increasingly dominated by the digital
field [61, 62]. Some examples of common digital signal processing (DSP) dependent areas
are but not limited to: communication [4], machine learning [63], biomedical and health-
care [64], radar or sonar imaging [65, 66], instrumentation [57], information technology
[67, 68, 69, 70] and seismology [2].

Historically, electronic signals and radio waves were processed and exchanged in their
analog form, with the use of analog chips, filters and amplifiers, and with minimal control
over information quality and reliability [61, 62]. However, the emergence of new tech-
nologies in the 1960s and 1970s, i.e. satellite transmission, pushed the adopted analog
signal processing design methodology and its components to their limits [61]. An example
of a satellite transmission system is the broadcasting station: Pleumeur-Bodou Ground
Station in north-west France.
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Figure 4.1 – Pleumeur-Bodou Ground Station For Satellite Broadcasting [71]

As shown in Figure 4.1 [71, 72], the ground station and its antenna occupied a tremen-
dous amount of space and resources to build [72]. Moreover, in order to detect and estimate
the signal of interest with respect to the incoming sub-GHz high frequency noisy signal, a
data acquisition system was implemented by means of multi-stage analog signal amplifiers
and filters with a dedicated cooling unit [72].

As such, the rapid advancements in signal processing [61, 62] exhausted the use of
analog circuitry designs by imposing tighter constraints reflected by the need of a low
cost, real-time processing system [62]. In compliance with these advancements, and with
the introduction of the programmable, finite precision, DSP processor (PDSP), the field
of DSP have emerged to become the newly adopted signal processing design methodology
[25, 62].

In this chapter, we present an overview of the popular hardware used for implementing
signal processing routines, i.e. PDSP, field programmable gate array (FPGA) and system
on a chip (SoC). Additionally, we discuss the different DSP implementation techniques
and tools used, i.e. hardware description language (HDL), high level synthesis tools (HLS)
and open computing language (openCL). Furthermore, we propose a high precision, low
complexity, pipeline, dynamic fast Fourier transform (FFT) twiddle factor generation
architecture using Chebyshev polynomials [59]. Finally, we compare the performance of the
different design techniques and utilized hardware through the implementation of popular
signal processing routines, i.e. the FFT and the least mean square (LMS) algorithm.
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4.2 Embedded Systems for Digital Signal Processing
(DSP) Applications

One of the most trivial signal processing tasks is filtering. Filters are used to mathe-
matically modify the content of a signal, through the use of multiplication and addition,
in order to either extract or dispose of information or noise [25]. A major contributor to
the acceleration of DSP development in the 1970s was the introduction of the PDSP ca-
pable of performing a single, fixed point, multiply accumulate (MAC) routine in one clock
cycle [25]. As a result, a broad range of dedicated signal processing hardware and design
tools have been put forth to pave the way for the development of atomic, fine grained
[62, 73], signal processing routines and hardware architectures [25, 62, 73]. A general DSP
architecture is presented in Figure 4.2.

Figure 4.2 – General DSP System Structure

As shown in Figure 4.2, the DSP system is generally formed of an input analog filter
usually acting as an anti-aliasing filter with respect to the sampling frequency fs and
the Nyquist theorem [25]. The anti aliasing filter removes unwanted mirror frequencies to
avoid data ambiguity. The resulting signal is then fed to an analog to digital converter
(ADC) which in turn samples and converts the continuous analog signal, xc(t), where t
is a time instance, into its equivalent discrete digital form [17, 25, 35, 36]. The resulting
digital output vector xd[k], where k is a discrete sample time index, is then collected by the
DSP processor, i.e. PDSP, FPGA, SoC..., to perform the desired steps and mathematical
procedures that would have been previously handled by an analog circuit [25]. The final
stage of the data flow is the processed signals output, hence as shown, the desired output
can be obtained in its digital form for later storage and processing or converted to its
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original analog form through the use of a digital to analog converter (DAC), i.e. audio
output [25].

Parallel to these developments, programmable processors and VLSI technology are
quickly evolving towards the design of heterogeneous systems with high performance, ap-
plication specific multi core architecture [73]. Thus, in this section, we present a summary
of the popular and currently adopted processors, i.e. PDSP, FPGA and SoC.

4.2.1 Programmable DSP Processors (PDSP)

In the start of the 1980s, Texas Instruments introduced the first reduced instruction
set computer (RISC) PDSP microprocessor that revolutionized the era of DSP [25, 62].
In contrast to the first generation PDSP, based on the Von Neumann architecture, the
second generation PDSP, based on the Harvard architecture, effectively separated the
data memory from the program memory. Consequently, the RISC architecture allows
independent and uninterrupted data communication between the processor pipeline and
data memory bus [25, 62]. Additionally, in contrast to general purpose processors, the
PDSP are application specific and can operate in real time with a set of optimized DSP
instruction set, i.e. fixed point computation, saturation and overflow control, overlapped
data fetch and advanced addressing modes [62, 73]. As such, the PDSP was capable of
performing a fixed point MAC operation in a single clock cycle with a minimal overhead,
considered the basis of digital filters and most DSP operations [25].

Over the past three decades, DSP applications and requirements changed drastically
and imposed challenging constraints on the limited resources PDSP [62]. These constraints
mainly focused on the need of providing a high speed parallel implementation given the
parallel nature of the DSP algorithms. However, since PDSP are single core application
specific processors with a pre determined instruction set and limited arithmetic units,
it is impossible to reprogram their structure and redistribute resource usage. Moreover,
a parallel implementation would require the use of many PDSP modules resulting in
a dramatic increase in complexity and latency [62, 73]. Thus, it has become of utmost
importance to migrate for field programmable semiconductor chips, i.e. FPGA, that offer
resource manipulation for implementing a parallel architecture [62, 73].
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4.2.2 Field Programmable Gate Arrays (FPGA) Processors

Field Programmable Gate Array or FPGA is a re-programmable semiconductor device
formed of a 2D array of repeated digital configurable logic circuit blocks (CLB) connected
by means of an interconnect fabric. Each CLB consists of four logic slices each containing a
small number of look up tables, registers and a programmable switch box (SW) connecting
the CLB to the internal fabric [25, 73].

Figure 4.3 – Xilinx Spartan 3 Simplified FPGA CLB Fabric

As shown in Figure 4.3, in Xilinx Spartan 3 FPGAs, one CLB is formed of four
interconnected slices of two logic cells each [74]. Moreover, a Xilinx Spartan 3 FPGA
logic cell is formed of a four input look up table, a register element, a carry circuit for
arithmetic operations and a multiplexing circuit [74].

The re-configurable nature of the FPGA logic cells allows implementing generic arbi-
trary and parallel, application specific architectures. A FPGA logic design is defined as
a soft IP-core and can be modeled using a wide range of hardware and software design
techniques [73]. These techniques are and not limited to: circuit schematics, hardware de-
scription languages, i.e. VHDL, Verilog, SystemVerilog and traditional software languages,
i.e. C, synthesized with the use of high level synthesis (HLS) tools, such as the Xilinx Vi-
vado HLS compiler, Intel HLS tools and Matlab HDL toolbox [62, 75]. In addition to
the traditional logic blocks, some FPGA families include a wide range of hard-IP, macro,
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blocks for frequently used components and functionalities [73, 74]. Some of the included
hard-IP blocks are and not limited to: fast storage block random access memory (BRAM),
input/output blocks (IOB), high speed dedicated multipliers, phase locked loop (PLL)
blocks, embedded microprocessor, ADC and recently DSP specific blocks [25, 62, 73]. As
such, an important FPGA benchmark parameter is the repetition rate and represents the
number of realization of the same block in a device [25].

In modern FPGAs, manufacturers provide specific FPGA families and architectures
for DSP related operation through the inclusion of a number of dedicated, transistor level,
re-configurable DSP blocks [25, 62, 73]. An example of a DSP block is shown in Figure
4.4 from [76], for the Altera Stratix V FPGA family.

Figure 4.4 – Altera Stratix V Variable Precision DSP Block in Standard Precision Mode
[76]

As shown in Figure 4.4, the Stratix V DSP block is configured in standard, 18 bits,
precision mode while providing dedicated, high speed, arithmetic hardware and storage
elements for computing popular DSP operations, i.e. MAC, pre-addition and complex
multiplication [62, 73, 76]. The Stratix V, standard mode, DSP block allows the following
multiplier configurations:
— 9× 9 three independent multipliers.
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— Two 18× 18 independent multipliers in sum mode.

— Two 16× 16 independent multipliers in sum mode.

— One 18× 36 independent multiplier.

In addition to the presented, the Stratix V DSP block can be configured in high precision
mode.

Figure 4.5 – Altera Stratix V Variable Precision DSP Block in High Precision Mode [76]

As shown in Figure 4.5, the high precision mode configuration implements one 27×27
independent multiplier. As such, the use of re-configurable devices in the deployment of
DSP algorithms promises immeasurable aid in the advancement of the applications they
embody [61, 62]. Thus, the main benefits adopting re-configurable computing techniques
and devices for DSP can be summarized as:

— Implementing a dedicated and specialized architecture.

— Allowing low cost on field full or partial re-configuration.

— Implementing fine-grained [25] parallel pipeline architecture.

However, recent trends in DSP applications require the use of complex algorithms, i.e.
adaptive, statistical, in parallel with real time data acquisition, processing and decision
making routines. As such, modern FPGA families are coupled with a high performance
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multi-core hard intellectual property (IP) microprocessor, i.e. ARM Cortex A9, with a
ready to use real time operating system. The FPGA and hard embedded processor ar-
chitecture is referred to as SoC or system on a chip, and is used to off load certain, non
critical and data processing tasks, from the FPGA for efficient resource usage.

4.2.3 System on Chip (SoC) Processors

Resource abundant FPGA families allow an efficient implementation of a soft-IP mi-
croprocessor in order to off load non critical data handling tasks from the FPGA pipeline
[25]. However, implementing a soft-IP microprocessor infer severe performance limitations
on the host FPGA mainly by restricting its maximum operating frequency. Additionally,
implementing a full pipeline microprocessor would require a larger FPGA thus greatly
increasing the cost for a marginal increase in performance [25, 62, 73]. As such, and
with the exponential growth in demand on a small, general purpose, low power and high
performing embedded system, computer architectures are rapidly evolving toward hetero-
geneous multi-core systems, i.e SoC [25, 62, 73, 76]. While it is required to have a general
purpose embedded system without a loss of performance, SoC models are equipped with
many-cores and macro blocks each tailored for a specific application [25]. A popular, low
to mid end, SoC model is the Altera Cyclone V SoC and incorporates a dual core, gen-
eral purpose ARM cortex A9 microprocessor, a Cyclone V FPGA with multiple variable
precision, programmable DSP cores. The ARM cortex A9 architecture is shown in Figure
4.6.

Figure 4.6 – ARM Cortex A9 Architecture [25]

78



4.3. Heterogeneous Systems Design Techniques

Unlike a soft-IP microprocessor, the advanced RISC machines (ARM) cortex A9 is
equipped with two 32bits. 800 MHz, hard processors each with a dedicated floating point
unit (FPU) [25]. Moreover, the processor system provides a direct memory access (DMA)
block, multiple timers and supports a variety of communication protocols with ready
to use hardware, i.e. universal serial bus (USB), universal asynchronous receiver trans-
mitter (UART), inter-integrated circuit (I2C), controller area network (CAN) and serial
peripheral interface (SPI), with high speed memory units. Hence, the use of a dedicated
microprocessor with programmable resources, frees critical FPGA resources, contributes
to implementing a parallel, uninterrupted pipeline, architecture and accelerates the over-
all systems performance. However, programming a SoC is a multidisciplinary task and
requires excessive software and hardware engineering skills [25, 75]. A comparative study
based on various cost metrics is performed on the PDSP, the FPGA, the SoC and the
general purpose processor (GPP).

Performance Flexibility Power Cost Design Effort
PDSP Medium Medium Medium Medium Medium
FPGA Medium High High Medium Medium
SoC High High Medium Medium High
GPP Low High Medium Low Low

Table 4.1 – Implementation Comparison for DSP Applications [62]

As shown in Table 4.1, eventhought the SoC platform is the highest performing, it
requires an extensive design effort and a variety of skills in order to present an optimized
and efficient design. As SoC development requires the use of a set of unified program-
ming tools and languages, i.e. HLS, to efficiently target heterogeneous systems for both
hardware and software design and off load performance optimization to the compiler [75].

4.3 Heterogeneous Systems Design Techniques

While specialized hardware and application specific circuits provide considerable per-
formance boost, the main drawback resides in their design and the limitations of their
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synthesize tools [75]. For over a decade, researchers and engineers unified their efforts in
optimizing embedded system design techniques and compilers for heterogeneous systems
with multi core processors. A popular and currently adopted solution for the processor
diversity problem is the use of higher levels of abstraction with the help of an optimized
software compiler to describe hardware functionality [75].

Traditional HDL, i.e. VHDL and Verilog, allows the designer to define a cycle by cycle
behavioral and structural description of a custom digital circuit. The resulting design is
then synthesized to obtain its register transfer level (RTL) description with the use of a
logic synthesis tool [75]. However, the use of HDL mandates the user to specify circuits
functionality in a low level of abstraction which requires advanced hardware development
expertise [75]. As such, hardware developers are migrating from the use of classical HDL
design techniques to higher level, object oriented, languages, i.e. SystemVerilog, and syn-
thesis tools, i.e. VivadoHLS [75]. In this section, we provide a simple overview on the most
popular adopted HLS design techniques for DSP.

4.3.1 High Level Synthesis (HLS) Design

The increased dependency on heterogeneous systems, its multidisciplinary nature and
the need of unified programming techniques paved the way towards accelerating HLS
design tools and compilers with the aim of achieving a high performance, energy efficient
design [75]. HLS tools implement hardware circuits by automatically converting a software
programmable high level language (HLL), i.e. C, python, C++, SystemC, to an equivalent
HDL format [75]. HLS design techniques benefit both software and hardware engineers by
off loading the problem of optimization to the compiler through the use of compiler specific
directives [75, 77]. Thus, allowing them to effectively design complex multi core systems
at a high level of abstraction [75]. Some of the popular HLS tools are the VivadoHLS from
Xilinx, Matlab HDL coder toolbox from Mathworks and the Intel Quartus Prime suite
[73, 75, 77]. An example of some of the frequently used VivadoHLS compiler directives
are [77]:

— Unroll: Used in order to infer a parallel architecture for iterative procedures while
optimizing execution time and resource usage.
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— Pipeline: Used to infer a pipeline architecture for a component or architecture,
through the use of additional registers, to increase the maximum operating frequency
while decreasing latency and input delay.

— Partition: Used to partition large memory blocks for parallel access.

— Map: Allows the compiler to optimize usage and resource allocation for memory
elements.

While the use of HLS tools allows an automatic HDL generation, it will always be depen-
dent on the users experience in adapting the HLL to a specific application structure [75].
As such, the software programmer is required to understand the basics of digital HDL
design and properly adapt his code to reflect his circuit structure [75], which is considered
as a time-consuming and error prone process. Therefore, recent HLS tools offers complete
flexibility and support for the HLL with complete freedom for the developer [75].

4.4 FFT and The Dynamic Twiddle Factor Genera-
tor

The Fast Fourier Transform or FFT, initially introduced by Cooley and Tukey (1965),
is an efficient implementation of the discrete Fourier transform (DFT) one of the most
widely used transforms in DSP. The DFT computes a signals frequency spectrum by
converting its finite length time domain sequence of equally spaced samples to its equiva-
lent frequency domain representation with respect to its amplitude, frequency and phase
[25, 59]. The DFT equation is given as follows:

X[k] =
Nc−1∑
n=0

xd[n]e−j2πnk/Nc (4.1)

where xd[n] is a sample of the input signal xd at time index n and X[k] is its Fourier
transform at index k. The popular Cooley Tukey FFT algorithms are those with a sequence
of length Nc, where Nc is a power of a basis or a radix r, i.e. Nc = rv with v representing
the number of stages [25, 77]. The FFT algorithm iteratively divides the input sequence
into groups of odd and even samples [25, 77] by the use of decimation in time (DIT) and
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decimation in frequency (DIF) techniques. Thus, with respect to (4.1), the Nc points FFT
achieved through DIF can be computed as follows:

X[2k] =
Nc
2 −1∑
n=0

{
xd [n] + xd

[
n+ Nc

2

]}
W kn
Nc/2

X[2k + 1] =
Nc
2 −1∑
n=0

WK
Nc

{
xd [n]− xd

[
n+ Nc

2

]}
W−kn
Nc/2 (4.2)

where WK
Nc is the rotation or twiddle factor [59, 77] given as:

W k
Nc = e−j2πk/Nc = cos

(
2πk
Nc

)
− j sin

(
2πk
Nc

)
(4.3)

Through successive decomposition for (4.2), i.e. divide and conquer, it is shown in [25],
that the FFT technique reduces the DFT complexity from O(N2

c ) to O(Nc log(Nc)). A
widely used and yet simple example is the FFT radix-2 DIF algorithm for a length Nc = 8
samples.

Figure 4.7 – FFT Radix-2 DIF For an Input Sequence of Length N = 8 [25]
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As shown in Figure 4.7, through continuous decomposition of (4.2), it is clear that
the heart of the FFT operation and its building block is the butterfly processor [25]. The
butterfly processor is presented in details in Figure 4.8 and performs complex addition,
complex multiplication and complex subtraction operations.

Figure 4.8 – FFT Radix-2 Butterfly Processor

From Figure 4.8, the butterfly processor is a two input two output architecture whose
output is computed by mean of a twiddle factor multiplication [25, 59, 77].

4.4.1 Twiddle Factor Generator Using Chebyshev Polynomials

When implemented on hardware, in application specific architectures, the FFT butter-
fly processor rely on pre-computed twiddle factors initially stored in block memory [25, 59].
However, the use of internal memory imposes strict and unavoidable timing and precision
constraints on the DSP design, where an increase in precision results in an increase in the
memory usage [59]. Additionally, in some DSP applications, generic length FFT is often
required and it is of crucial importance to dynamically generate high precision twiddle
factors with respect to a low latency and low resource requirements architecture [59].

Popular, dynamic, twiddle factor generators rely on the use of the coordinate rotation
digital computer (CORDIC) algorithm [25, 59] or Taylor function approximation [25, 59]
to compute the cos and sin trigonometric functions as in (4.3). However, CORDIC ap-
proximation requires a large number of iterations in order to achieve higher precision,
consequently resulting in a considerably large latency and a non optimal pipeline archi-
tecture [59]. In contrast, Taylor polynomial approximation allows the design of a fully
pipeline low latency architecture; However, at the cost of a reduced precision the farther
the input is from the Taylor expansion point [59].

Several variants and improvements were suggested for the CORDIC and Taylor ap-
proximation in order to present a high precision low complexity, easy to pipeline, design
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[59, 78, 79, 80, 81, 82, 83]. However, the adopted design techniques and improvements still
heavily rely on the use of internal memory elements and could not eliminate the depen-
dency between CORDIC precision and required number of iterations [59]. As such, and
since twiddle factors precision greatly affects the overall resolution of the FFT processor,
we propose a high speed, high precision, low latency and low complexity architecture
using Chebyshev polynomial. Chebyshev polynomials are orthogonal polynomials defined
over the interval [−1, 1] and can be calculated in a recursive form [59], such as:

T0(uc) = 1

T1(uc) = uc

Tn+1(uc) = 2ucTn(uc)− Tn−1(uc) (4.4)

where uc is the change of variable mapping an input parameter, pt, from the interval
[ac, bc] to [−1, 1] defined as [59]:

uc = 2pt − bc − ac
bc − ac

(4.5)

As such, a desired function can be approximated in polynomial form using Chebychev
coefficients by expanding (4.4) [59], such as:

f(uc) ∼=
L−1∑
k=0

cg(k)ukc (4.6)

where cg(k) is the kth order Chebyshev polynomial coefficient. Using (4.3), (4.4) and (4.6)
the twiddle factors trigonometric terms are approximated, as follows:

Re{f(uc)} = cos(πuc)

Im{f(uc)} = sin(−πuc)

f(uc) = cos(πuc) + j sin(−πuc) (4.7)

Let the twiddle factor exponent be pt = 2k
Nc

, thus for ac = 0 and bc = 1 the change of
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variable uc defined by (4.5) becomes:

uc = 2pt − 1 (4.8)

Moreover, for a power of two length FFT input sequence (4.8) can be written as:

uc = 22k

2v − 1 = k22−v − 1 (4.9)

thus eliminating the requirements for a multiply-divide procedure by inferring a right shift
operation. The Chebyshev coefficients are computed for a 5th order polynomial approxi-
mation are given in Table 4.2.

f(uc)
5th order Chebyshev Polynomial Coefficients

cg(0) cg(1) cg(2) cg(3) cg(4) cg(5)
sin -0.9994 0 1.2227 0 -0.2239 0
cos 0 -1.5707 0 0.6435 0 -0.0729

Table 4.2 – 5th order Chebyshev Polynomial Coefficients For sine and cosine Approxima-
tions

4.4.2 Computer Simulations

Computer simulations were conducted to study the accuracy of the Chebyshev ap-
proximation compared to the traditional Taylor approximation for an input vector, such
as pt = [0, 0.125, 0.1667, 0.25, 0.5, 1] [59]. For comparison purposes a direct computation
of the twiddle factor is performed, in infinite precision without considering any approxi-
mation and presented in Table 4.3.

f(pt)
Twiddle Factor Direct Computation

pt(0) pt(1) pt(2) pt(3) pt(4) pt(5)
sin 0 -0.3827 -0.5000 -0.7071 -1 0
cos 1 0.9239 0.8660 0.7071 0 -1

Table 4.3 – Twiddle Factor Direct Computation
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The input vector pc was re-evaluated for a 5th order Taylor approximation, over an
expansion point q = 0, and a 5th order Chebyshev approximation and the simulation
result is presented in Tables 4.4 and 4.5, respectively.

f(pt)
Twiddle Factor Computation Using Taylor Approximation
pt(0) pt(1) pt(2) pt(3) pt(4) pt(5)

sin 0 -0.3827 -0.5000 -0.7071 -1.0045 -0.5240
cos 1 0.9239 0.8661 0.7074 0.2000 0.1239

Table 4.4 – Twiddle Factor Computation Using 5th Order Taylor Approximation

From Table 4.4, it is clear that, compared to the direct computation, the Taylor
approximation presents satisfactory results for the first three input terms, i.e. pt(0), pt(1),
pt(2). However, as the input deviates further from the expansion point, i.e. q = 0, the
approximation is no longer credible [59].

f(uc)
Twiddle Factor Computation Using Chebyshev Approximation
uc(0) uc(1) uc(2) uc(3) uc(4) uc(5)

sin 0 -0.3825 -0.5002 -0.70717 -0.9994 0
cos 1.0001 0.9238 0.8661 0.7072 0 -1.0001

Table 4.5 – Twiddle Factor Computation Using 5th Order Chebyshev Approximation

In contrast to the Taylor approximation in Table 4.4, the Chebyshev approximation,
presented in Table 4.5, guarantees a 3 decimal digit accuracy for all input values p. To
further validate the Chebyshev approximations performance, the MSE is computed with
reference to the result of Table 4.3 and is presented in Table 4.6.

f
Taylor and Chebyshev Infinite Precision Approximation MSE
Taylor MSE Chebyshev MSE

sin 0.0458 8.33× 10−9

cos 0.2172 7.415× 10−8

Table 4.6 – Taylor and Chebyshev Infinite Precision Approximation MSE
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As shown in Table 4.6, the Taylor approximation MSE for both the sine and cosine
functions is much greater than that of the Chebyshev, with respect to the direct compu-
tation results. Thus, validating the superior accuracy of the Chebyshev approximation.

4.5 Hardware Implementation and Comparison

Given its inherent parallelism and popularity in the majority of the DSP operations, in
this section, we implement the FFT radix-2 processor for a length Nc = 8 input sequence
[77]. The FFT implementation is conducted using HDL and HLS design techniques and
for different processors, i.e. FPGA and SoC [77]. Additionally, we present a hardware
implementation for the low complexity, high accuracy dynamic twiddle factor generator
using Chebyshev polynomials [59]. Finally, we implement a pipeline LMS adaptive beam-
former using the relaxed look ahead technique as presented in [21] and we evaluate its
performance under a finite precision arithmetic.

4.5.1 Fast Fourier Transform (FFT) Design Using HDL

The FFT radix-2 is first implemented in VHDL for a sequence of length Nc = 8 using
DIF and under finite precision wordlength, i.e. 16 bits signed representation [77]. The
implementation is conducted for different architectures, i.e. sequential and fully parallel,
and for different processors, such as: FPGA and SoC. The adopted processors are the
“Xilinx ZynQ 7Z020CLG484” SoC and the “Intel/Altera Cyclone IV EP4CE115F29C7”
FPGA.

Name Type Logic Units DSP Multipliers Registers

ZynQ SoC 85000
220

From DSP 106400
18× 25 bits

Cyclone IV FPGA 114480 -
532

NA
9× 9 bits

Table 4.7 – ZynQ and Cyclone IV Resource Comparison

As shown in Table 4.7, the “Cyclone IV” FPGA includes 532, 9× 9 bits, ready to use,
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high speed, transistor level multipliers. On the contrast, the “ZynQ” includes 220 DSP
blocks expanding the processors capabilities to perform vital DSP operations, i.e. MAC,
complex operations and pre-additions, in high speed, dedicated, transistor level circuitry
[77]. The experiment was first conducted on the “ZynQ” SoC processor and synthesis
results are presented in Table 4.8.

The implementation is studied for two different architectures, i.e. parallel and sequen-
tial. The “parallel” architecture is a full parallel, pipeline, implementation of a length
Nc = 8 radix-2 DIF FFT [77]. The architecture is formed of v = 3 stages and a total of
five butterfly processors [59, 77]. The parallel architecture achieved a maximum operating
frequency of 196.539 MHz while using 20 DSP blocks, 3504 registers and 1680 logic units.
DSP block allocation adheres with the presented structure in Figure 4.7 and the adopted
wordlength since a full three stages radix-2 FFT requires five complex multipliers of four
real multipliers each [77].

Architecture
ZynQ Synthesis Results

DSP Registers Logic Units Clock (MHz)
Parallel 20 3504 1680 196.539

Sequential 16 1264 560 198.087

Table 4.8 – FFT Radix-2 DIF ZynQ Implementation and Synthesis Results

In contrast to the parallel architecture, a sequential structure was considered and
implemented with similar simulation conditions [77]. The sequential architecture is formed
only of one processing stage with four pipelined butterflies each [77]. As shown in Table
4.8, the sequential architecture operates at a maximum frequency of 198.087 MHz while
using 16 DSP blocks, 1264 registers and 560 logic elements. Compared to the parallel
implementation, the sequential design minimizes resource utilization, however at the cost
of an increase in the latency and the input delay [77]. The implementation was then
repeated for the “Cyclone IV” FPGA, synthesis results are displayed in Table 4.9.

The “Cyclone IV” allocates 40 and 32 multipliers for a parallel and sequential archi-
tecture, respectively. Compared to the “ZynQ”, the “Cyclone IV” doubles the required
multipliers due to the fact that the embedded multipliers support 9×9 bits multiplications
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while the “ZynQ” DSP blocks are of 18× 25 bits, as shown in Table 4.7.

Architecture
Cyclone IV Synthesis Results

Multipliers Registers Logic Units Clock (MHz)
Parallel 40 1296 2113 251.760

Sequential 32 432 705 286.53

Table 4.9 – FFT Radix-2 DIF Cyclone IV Implementation and Synthesis Results

Moreover, the difference in the maximum operating frequency is caused by the proces-
sor pre-set timing constraints, compiler efficiency and transistor switching time [25, 77].

4.5.2 Fast Fourier Transform (FFT) Design Using HLS

The VHDL FFT implementation experiment was repeated, using HLS, with respect
to the same design parameters and for the ZynQ SoC processor. The HLS design is
conducted using a hardware optimized C programming language and different compiler
directives [77]. The adopted pre-processing directives are: pipeline and unroll and are
used to instruct the compiler to generate specific architectures, i.e. parallel, sequential
and pipeline [77]. The FFT radix-2 DIF was first implemented without the use of “For
loops” and evaluated for two different cases: without any directive and with the pipeline
directive. Implementation and synthesis results are presented in Table 4.10.

Directives
FFT HLS Synthesis Results on ZynQ (Without For)
DSP Registers Logic Units Latency Input Delay

NA 16 1407 578 32 33
Pipeline 12 1283 453 18 4

Table 4.10 – ZynQ FFT Radix-2 DIF Implementation Using HLS (Without For Loop)

The design utilizes 16 DSP blocks and 12 DSP for a standard and pipeline architecture,
respectively. Moreover, in contrast to the standard implementation with no directives, the
pipeline directive optimize resource utilization while inferring a reduction in latency and
input delay [77]. As such, HLS designs are highly correlated with the compilers efficiency
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and with the use of the proper directives [77]. To further illustrate the effects of the
compiler directives and their crucial role in HLS design, the FFT DIF radix-2 design is
re-evaluated using “For loops” and with the pipeline and unroll directives [77]. Synthesis
and implementation results are presented in Table 4.11.

Directives
FFT HLS Synthesis Results on ZynQ (With For)

DSP Registers Logic Units Latency Input Delay
NA 4 382 541 45 46

Pipeline FFT 12 1283 453 18 4
Pipeline For 4 404 471 23 24
Unroll For 16 1407 578 23 33
Unroll FFT 4 382 541 45 46

Table 4.11 – ZynQ FFT Radix-2 DIF Implementation Using HLS (With For Loop)

The “For loop” implementation without the use of compiler directives and the unroll
FFT both results in a fully sequential scheme with only 1 butterfly, i.e. 4 DSP blocks.
The sequential architecture is further validated by the large latency and input delay of 45
and 46, respectively. The resulting sequential architecture is a consequence of the use of
a non optimized “For loop” implementation [77]. In contrast, it can be seen that the use
of the unroll directive for the for loop design reduces the input delay, from 46 to 33 clock
cycles and increases the DSP block usage to 16. As such, it can be concluded the unroll
directed the HLS compiler to implement the for loop in parallel [77]. Therefore, it can be
concluded that the HLS design technique is severely affected by the users experience and
the proper choice of directive to obtain an efficient architecture [77].

4.5.3 Twiddle Factor Generation Using Chebyshev Polynomials
in HDL

To further assess the performance of the twiddle factor generator using Chebyshev
polynomials, a low complexity, pipeline, hardware architecture is presented. The 5th order
Chebyshev approximation is implemented using 18 bits signed wordlength and its finite
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precision output is compared to that obtained by the direct and the Taylor schemes [59].
The implementation is performed for the “Xilinx ZynQ” and “Intel/Altera Cyclone V
5CSEMA5F31C6” SoC. Where, the “Cyclone V” SoC equips 85000 logic units, 128300
registers and 87 variable precision DSP blocks [59]. Using (4.6) and (4.7), we can write:

cos(πuc) ∼= uc(cg(0) + u2
c(cg(3) + cg(5)u2

c))

sin(−πuc) ∼= cg(0) + u2
c(cg(2) + cg(4)u2

c) (4.10)

Thus, with respect to (4.10), the resulting hardware architecture is shown in Figure 4.9,
where � denotes a shift right operation.

Figure 4.9 – 5th Order Polynomial Hardware Architecture
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As shown in Figure 4.9, the polynomial approximation is implemented in a pipeline
parallel structure and can be used for Taylor and Chebyshev polynomials alike. Addition-
ally, sin(−πuc) is computed instead of − sin(πuc), thus, eliminating the need for a two’s
complement adder at the output. The architecture is formed of five pipeline stages, i.e.
the first output is obtained after 5 clock cycles [59], synthesis and implementation results
are given in Table 4.12. The suggested implementation is resource friendly and only re-
quires 2.72% and 6.89% DSP blocks for the “ZynQ” and “Cyclone V” SoC, respectively.
Moreover, the maximum clock frequency is 174 MHz, as such the presented architecture
is a high speed and low complexity structure [59].

SoC
Polynomial Approximation Parallel Pipeline Architecture
DSP Registers Logic Units Frequency (MHz)

ZynQ 2.72% 246 0.076% 174.917
Cyclone V 6.89% 138 0.143% 174.64

Table 4.12 – 5th Order Polynomial SoC Implementation

The finite precision simulation is conducted for an input vector the same input vector
pt = [0, 0.125, 0.1667, 0.25, 0.5, 1] in a 18 bits signed format. In contrast to the Chebyshev
coefficients with a Q2.15 format 1, the Taylor coefficients required the use of a Q3.14 2,
resulting in a further decrease in precision [59]. The Taylor and Chebyshev output is
presented in Tables 4.13 and 4.14, respectively.

f(pt)
Finite Precision Taylor Approximation

pt(0) pt(1) pt(2) pt(3) pt(4) pt(5)
sin 0 -0.3826 -0.5000 -0.7048 -0.9447 -0.5240
cos 1 0.9238 0.8661 0.7073 0.0198 0.1218

Table 4.13 – 5th Order Taylor Approximation In Q3.14 Finite Precision Format

In contrast to the Taylor approximation in Table 4.13, the Chebyshev approximation,
presented in Table 4.14, guarantees a 3 decimal digit accuracy for all input values p.

1. One sign bit, two integer bits and fifteen decimal bits
2. One sign bit, three integer bits and fourteen decimal bits
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f(uc)
Finite Precision Chebyshev Approximation

uc(0) uc(1) uc(2) uc(3) uc(4) uc(5)
sin 0 -0.3825 -0.5001 -0.7077 -0.9993 -0.0006
cos 1 0.9231 0.8610 0.7060 0 -1.0002

Table 4.14 – 5th Order Chebyshev Approximation In Q2.15 Finite Precision Format

To further validate the Chebyshev approximation performance, the finite precision
approximation MSE is computed with reference to the infinite precision result of Table
4.3 and is presented in Table 4.15.

f
Taylor and Chebyshev Finite Precision Approximation MSE
Taylor MSE Chebyshev MSE

sin 0.0463 4.4817× 10−6

cos 0.2098 2.1× 10−7

Table 4.15 – Taylor and Chebyshev Finite Precision Approximation MSE

As shown in Table 4.15, the Taylor approximation MSE for both the sine and cosine
functions is much greater than that of the Chebyshev, with respect to the direct computa-
tion results. Thus, similar to the computer simulations, the hardware simulations result,
validates the superior accuracy of the Chebyshev approximation in finite precision for a
smaller order polynomial. Where smaller order polynomials requires less DSP resources,
i.e. complex multipliers and adders.

4.5.4 Delay Relaxed Look-Ahead LMS

Presenting a pipe-lined architecture for a high throughput parallel implementation is
difficult. Such difficulty is caused by the dependency of the coefficient update loop on
the feedback error and filter output [21, 22, 23] since we cannot predict what will be the
next error in order to determine the weights. Additionally, computing the error in only one
clock cycle severely degrades the maximum operating frequency. To overcome the previous
problem a delay and sum relaxed look-ahead approximation technique is presented in
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[21] for slowly varying signals, i.e. assuming a wide sense stationary (WSS) process, and
tested for a tapped delay line filter. Such technique is achieved by applying a delay of
D2 samples for the input and coefficient terms and an additional delay relaxation of D1

samples for the error path, with D1 ≤ N , where N is the number of antenna elements.
However, for larger filters the resulting hardware overhead becomes unacceptable, thus
a sum relaxation is employed. The applied sum relaxation involves averaging only D3

terms where 1 ≤ D3 ≤ D2 [21]. Hence, the delay relaxed look ahead LMS weight update
equation and error term can be expressed as follows:

w(k + 1) = w(k −D2) + µ
D3−1∑
i=0

e∗
DLMS(k −D1 − i)x(k −D1 − i) (4.11)

eDLMS(k) = d(k)−wH(k −D2)x(k) (4.12)

Thus, using (4.11) and (4.12) a pipeline parallel implementation is presented for the delay
relaxed look ahead LMS, subject to a linear combiner, in Figure 4.10 using finite precision
Q2.15 format.

Figure 4.10 – Delay Relaxed Look Ahead LMS Hardware Architecture
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Where x1..4(k), x5..8(k), w1..4(k) and w5..8(k) are the LMS input and weight vectors
formed of first and last 4 elements, respectively. z−1, z−D1 represent the digital delay, i.e.
registers of 1 and D1 samples, respectively. The Conj block denotes complex conjugation.
In addition, y1 and y2 form the intermediate outputs and they are defined as follows:

y1(k) = wH
1..4(k)x1..4(k) (4.13)

y2(k) = wH
5..8(k)x5..8(k) (4.14)

From Figure 4.10, a 8 input adaptive beamformer is formed by two 4 input linear combiner
blocks and two 4 input weight update blocks. The system default external inputs are the
input and desired signals x(k) and d(k), respectively. The resulting stage outputs, y1 and
y2, of each linear combiner are then combined to form the final output y and the total
error eDLMS. The resulting error and the external input signals x1..4(k) and x5..8(k) are
then used to update the previous filter coefficients.

Figure 4.11 – Delay Relaxed Look Ahead LMS 4-Input Linear Combiner Architecture

Figure 4.11 shows that the multiplication and addition stages requires only one clock
cycle, each, for all parallel inputs. Each complex multiplier is formed of four real multipliers

95



Partie , Chapter 4 – Overview of Digital Signal Processing Implementation Techniques on
Embedded Systems

and one complex adder, i.e. it is equivalent two real adders. Moreover, from Figure 4.12,
the update term is obtained by a right shift of 6 bits i.e. µ = 2−6 = 0.0156 hence, omitting
the need for an additional multiplier. All pipeline stages perform parallel operations and
have a computational complexity of order O(1).

Figure 4.12 – Delay Relaxed Look Ahead LMS 4-Input Weight Update Architecture

Synthesis and implementation results are shown in Table 4.16 for the Intel “Stratix V
5SGXMABN3F45I4” model.

Design DSP Registers Logic Units Frequency(MHz)
DLMS 32 1746 773 208.33

Table 4.16 – 8-Input Delay Relaxed Look Ahead LMS Synthesis Results

From Table 4.16 the presented design achieves a maximum operating frequency of
208.33 MHz, while only using 32 DSP blocks, 1746 registers and 773 logic units. Hardware
simulation is performed for the delay relaxed look ahead LMS in infinite precision (DLMS)
and Q2.15 finite precision mode and is presented with the use of the beam radiation
pattern. The simulation parameters are similar to that adopted, i.e. angle of arrival (AOA)
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of 30◦, first interference at 45◦ and second interference at 80◦, the resulting beam radiation
pattern is shown in Figure 4.13.

Figure 4.13 – Infinite and Finite Precision DLMS Beam Radiation Pattern

As shown in Figure 4.13, for a signal to noise ratio (SNR) of 10 dB both systems
converged with near similar beam radiation pattern. As such, the delay relaxed look
ahead LMS in Q2.15 precision shows equivalent infinite, theoretical, performance. While
the suggested modification realizes a full pipeline architecture, but it doesn’t eliminate
the convergence speed and error floor trade off, it may deteriorate it in some cases [4, 21].
Additionally, the reduction in the averaging terms might introduce convergence issues
[21].
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4.6 Conclusion

In this chapter, we discussed some issues related to the hardware implementation of
digital signal processing along with its advantages towards optimizing the performance and
the cost of its host application. Moreover, we presented a comparative overview on several
DSP optimized embedded processors, i.e. PDSP, FPGA and SoC, and different hardware
design techniques, i.e. HDL and HLS. While general purpose processors presented de-
graded computational performance, when targeting application specific algorithms, it has
been shown that this can be mitigated through the use of heterogeneous systems, i.e. SoC.
However, the use of multi core SoC is a multidisciplinary problem and requires the use of
HLL programming and HLS design tools. As such, we further proceeded by implementing
an FFT radix-2 DIF processor using HDL, i.e. VHDL, and HLS, C on VivadoHLS, for dif-
ferent processor architecture. It has been shown that eventhought HLS design techniques
accelerates development by automatically generating RTL equivalent code, it does require
a proper use of compiler directives and coding standards. As most DSP routines implement
a FFT processor, we proposed a high precision, low complexity, dynamic FFT twiddle
factor generator using a 5th order Chebyshev polynomial approximation and its pipeline
hardware architecture. Through hardware and software simulations, we demonstrated the
superior accuracy and performance of the proposed approximation scheme with respect to
the traditional Taylor approximation. In contrast to the Taylor approximation, the pro-
posed Chebyshev approximation method secured a precision up to three decimal digits for
all input test elements in both finite and infinite precision modes. Finally, in this chapter
we propose a pipeline implementation for the LMS adaptive beamformer based on the
delay and sum relaxed look ahead technique. Hardware simulation is performed in finite,
18 bits, precision mode and demonstrated equivalent performance and accuracy compared
to that of infinite precision. The work conducted has been published in the IEEE Inter-
national Multidisciplinary Conference on Engineering Technology (IMCET) and in the
Applications in Electronics Pervading Industry, Environment and Society (APPLEPIES)
conference.
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Chapter 5

THE PARALLEL LMS AND IT’S PIPELINE

HARDWARE IMPLEMENTATION

5.1 Introduction

As previously stated, compared to the LMS, the RLS algorithm offers faster con-
vergence and improved robustness against the input signals eigenvalue spread variation
[6]. However, the RLS algorithm does not offer reliable tracking capabilities and requires
extensive computations, i.e. computational complexity of order O(N2) [4], where N is
the number of antenna elements. Several variants of the LMS algorithm have been put
to light with the aim of eliminating the trade off between convergence speed and the
achievable steady state error for a given adaptation step size [4, 14]. Some of the modi-
fied LMS algorithms include the normalized LMS (NLMS) [48], the constrained stability
LMS (CSLMS) [49], the variable step size LMS (VSSLMS) [51, 52], the modified robust
variable step size LMS (MRVSSLMS) [50] and the LLMS [5]. These algorithms use an
additional computation stage to dynamically control the step size, i.e NLMS, CSLMS,
VSSLMS and MRVSSLMS, or accurately tune the weights with respect to a multi stage,
error averaging, structure, i.e. LLMS [5]. The LLMS adaptive algorithm is formed by two
LMS stages connected by an estimate of the steering vector, where the overall total error
is formed as a linear combination of each individual stages [4, 14]. Thus, for a uniform
linear antenna (ULA) array of N elements, the LLMS doubles the computational require-
ments of a classical LMS and requires the use of a division operator for the cascading
stage [24]. Therefore, the implementation of the LLMS requires a total of 6N +2 complex
multiplications, 5N + 4 complex additions and N complex divisions [4]. Given the cas-
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cading nature of the LLMS, presenting a pipeline hardware implementation is extremely
difficult [24]. Additionally, the introduction of a division operator exposes the system to
underflow and to divide by zero errors in finite precision mode [4].

Thus, inspired by the multi stage error feedback technique [5, 6, 15], we propose a
two-stage parallel, least mean square structure (pLMS) for adaptive beamforming and
its pipeline hardware implementation. In contrast to LLMS, the pLMS is formed of two
parallel LMS connected by error feedback, where the overall error signal is derived as a
linear combination of individual stage errors, omitting the need for a cascading stage [4].

Figure 5.1 – pLMS Architecture

5.2 Multi Stage Parallel LMS (pLMS) Algorithm

By definition the pLMS beamformer is a multi stage LMS connected by an error
feedback. As such, the error signal of the second LMS stage (LMS2), e2(k), is delayed by
one sample, multiplied by the imaginary number j =

√
−1, i.e. phase shift, and combined

with the error of the first LMS stage (LMS1), e1(k), to form the overall pLMS error
epLMS. We should recall that the multiplication by j, as presented in section 3.3.5 and
in (3.36), is introduced as an added robustness against recurring samples [24]. Recurring
samples are formed as a consequence of consecutive data repetition in the original message
signal, analog to digital converters (ADC) impurities [4, 17, 57], quantization errors, low
resolution [4, 17, 34, 35, 36] and symbol detection errors originated from the digital
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receivers in low SNR environments [4, 58]. As such, a multiplication by j is proposed
for robustness against resulting error nulls [4, 24]. The pLMS structure is shown in Figure
5.1, where the block jz−1 represents one sample delay and a multiplication by j [4, 14].
As shown in Figure 5.1, the LMS2 filter is no longer dependent on the steering vector
estimate’s output and operates in parallel with the LMS1. Moreover, the total pLMS is
formed as a linear combination of independent stage errors, such that:

epLMS(k) = e1(k)− je2(k − 1)

= d(k)− jd(k − 1)−wH
1 (k)x(k) + jwH

2 (k − 1)x(k − 1) (5.1)

where the superscript H is the Hermitian transpose, x(k) is the input signal at the discrete
time instance k, ei(k) = d(k) − wH

i (k)x(k), i = 1, 2 represents the stage identifier,
yLMS1(k) = wH

1 (k)x(k) and yLMS2(k) = wH
2 (k)x(k) are the first and second stage outputs,

and w1(k), w2(k − 1) are the current and delayed weight vectors of LMS1 and LMS2,
respectively. Thus, from (5.1), the pLMS MSE cost function, ξpLMS(k), can be computed
as follows [4]:

ξpLMS(k) = E[|epLMS(k)|2]

= E[e1(k)e∗
1(k) + je1(k)e∗

2(k − 1)

−je∗
1(k)e2(k − 1) + e2(k − 1)e∗

2(k − 1)] (5.2)

where E[.] is the expectation operation, |.| signifies the complex modulus and the super-
script ∗ denotes complex conjugation. Moreover, (5.2) can be expanded to obtain (5.3),
further details can be found in Appendix B [4]:

ξpLMS(k) = E[|d(k)|2]− pHw1(k)−wH
1 (k)p + wH

1 (k)Rw1(k) + E[|d(k − 1)|2]

−E[d(k)xH(k − 1)]w2(k − 1)−wH
2 (k − 1)E[d∗(k)x(k − 1)] + jE[d∗(k)d(k − 1)]

+wH
2 (k − 1)E[x(k)x(k − 1)]w2(k − 1) + jE[d(k)d∗(k − 1)]

−jwH
1 (k)E[d∗(k − 1)x(k)] + jwH

1 (k)E[x(k)xH(k − 1)]w2(k − 1)

+jE[d(k)xH(k − 1)]w1(k) + jwH
2 (k − 1)E[d(k)x(k − 1)]

+jE[xH(k)w1(k)wH
2 (k − 1)x(k − 1)]− jE[d(k)xH(k − 1)]w2(k − 1) (5.3)
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where R = R(0) is the input signal auto-correlation matrix and p = p(0) is the cross
correlation vector of the input x(k) and desired signal d(k). R(0) and p(0) are defined at
lag τ = 0 as:

R(τ) = E[x(k − τ)xH(k)] (5.4)

p(τ) = E[d∗(k − τ)x(k)] (5.5)

Where, assuming a wide sense stationary (WSS) process, the lag τ = k1 − k2 and k1 and
k2 are different time instances from which an observation of the random process is taken.
With w1(k) being the tap weights of interest [4, 5, 6, 13, 15]. The optimal weight vector,
wop, of w1(k) can be obtained by differentiating (5.3) with respect to wH

1(k) [5, 15, 46],
and setting the resulting pLMS gradient, ∇pLMS = 0, to obtain [4]:

∇pLMS = ∂ξpLMS(k)
∂wH1(k)

= −p + Rw1(k)− jE[d∗(k − 1)x(k)] + jE[x(k)xH(k − 1)]w2(k − 1) (5.6)

The optimal weight vector, wop, becomes [4]:

wop = R−1p + jR−1E[d∗(k − 1)x(k)]− jR−1E[x(k)xH(k − 1)]w2(k − 1) (5.7)

where R−1 is the input signals auto-correlation matrix inverse, assuming R is invertible
[4]. The resulting gradient can be validated from (5.6) such as [4]:

w1 (k + 1) = w1 (k)− µ1∇pLMS

= w1 (k)− µ1[−p + Rw1(k)− jE[d∗(k − 1)x(k)

+jE[x(k)xH(k − 1)]w2(k − 1)]

= w1 (k) + µ1x(k)[d∗(k)− xH(k)w1(k) + jd∗(k − 1)

−jxH(k − 1)w2(k − 1)] (5.8)
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Thus, the pLMS adaptive algorithm is presented in (5.9) [4] as follow:

LMS1 :

yLMS1(k) = wH
1 (k)x(k)

e1(k) = d(k)−yLMS1(k)

epLMS(k) = e1(k)− je2(k − 1)

w1(k + 1) = w1(k) + µ1e
∗
pLMS(k)x(k)

LMS2 :

yLMS2(k) = wH
2 (k)x(k)

e2(k) = d(k)−yLMS2(k)

w2(k + 1) = w2(k) + µ2e
∗
2(k)x(k) (5.9)

where µ1 and µ2 are the LMS1 and LMS2 step sizes, respectively.

5.2.1 Theoretical Stability Analysis

In order to determine under which conditions the pLMS is stable and converges to the
optimal weight, a first order convergence and stability analysis is performed for LMS1

and LMS2.

5.2.2 First LMS Stage

Let the mean coefficient error vector, v(k) [2] be defined as:

v(k) = w(k)−wop (5.10)

where w(k) is the mean weight vector. At steady-state and assuming both stages conver-
gence, i.e. as k →∞, and d(k − 1) ≈ yLMS1(k − 1) ≈ yLMS2(k − 1), (5.7) becomes:

wop ≈ woplms + jR−1E[x(k)xH(k − 1)]w2(k − 1)− jR−1E[x(k)xH(k − 1)]w2(k − 1)

≈ woplms (5.11)
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Using the equality woplms = R−1p in (5.11), we assume wop ≈ woplms. Thus, (5.11)
becomes:

wop = A−1 (p + jp(−1)) (5.12)

Where, A is the final correlation matrix formed as a linear combination of the auto-
correlation and cross-correlation matrices at lag 0 and 1, respectively; A is assumed
invertible as a result of the random input noise [2] and is defined as:

A = R + jR(1) (5.13)

Thus, from (5.11), we can proceed as follows:

w(k + 1)−wop = w(k)−wop + µ1p + jµ1R(1)wop − µ1Rw(k)− µ1Rwop

+µ1Rwop + jµ1p(−1)− jµ1R(1)wop + µ1R(1)w(k) (5.14)

Using the mean coefficient error vector notation and (6.17), we can write:

v(k + 1) = (I− µ1R − jµR(1))v(k) + µ1p− µ1(R + jR(1))A−1p

+jµ1p(−1)− µ1(jR −R(1))A−1p(−1) (5.15)

The above equation can be simplified as follows:

v(k + 1) = (I− µ1R − jµ1R(1))v(k)

= (I− µ1A)v(k) (5.16)

Using the eigenvalue decomposition (EVD), where Λ is a diagonal matrix with diagonal
entries (λi) equal to the eigenvalues of A, and O is a unitary matrix whose rows represent
the eigenvectors of A. We can now write A = O−1ΛO [2]. We can rewrite (6.20) as:

v(k + 1) = (I− µ1O−1ΛO)v(k) (5.17)
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Multiplying both sides of (6.21) by O, we get:

Ov(k + 1) = (I− µ1Λ)Ov(k) (5.18)

Let m(k) = Ov(k), where m(k) is v(k) in a rotated coordinate, defined by the eigenvectors
in O, thus a convergence in m(k) means a convergence in v(k) [2], then:

m(k + 1) = (I− µ1Λ)m(k) (5.19)

Since (I−µ1Λ) is a diagonal matrix, the stability and convergence is achieved with respect
to the convergence of different first order difference equations formed by all N eigenvalues
λi, ∀i, i ∈ {1, 2, .., N} [2]. Thus, we define a set of N difference equations as follows:

mi(k + 1) = (1− µ1λi)ui(k) (5.20)

The convergence of the set of N difference equations is achieved if |1 − µ1λi| < 1, [2].
Thus for the convergence in the mean sense, we require:

µ1 <
1

|λA,max|
(5.21)

where the norm, |λA,max|, is the maximum eigenvalue in A and |.| is the complex modulus,
i.e.

√
Re{λ}2 + Im{λ}2. Thus, to ensure the convergence and the stability for LMS1 the

step size µ1 must satisfy (6.25).

As the pLMS total error is formed with respect to LMS2, the stability and conver-
gence of LMS2 is crucial. Since LMS2 is the classical LMS algorithm with no additional
modifications, the upper bound of the step size, µ2, is given with respect to [2] as

µ2 <
1

λR,max
(5.22)

where λR,max is the maximum eigenvalue in R. Thus, to ensure the convergence and the
stability for LMS2 the step size µ2 must satisfy (5.22).
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5.2.3 Transfer Function Approximation

A simple approximation to the behavior of the LMS adaptive algorithm, for temporal
sampled signals, has been developed in [60]. The proposed approximation, models the
system in terms of a discrete linear transfer function applicable for both deterministic
and random inputs and is given by (5.23), such as:

H(z) = E[J(z)]
E[D(z)] = 1

1 + µLMSLR(z) (5.23)

µLMS is the LMS step size, L is the filter length, J(z), D(z) and R(z), are the z transform
polynomial whose coefficients are the instantaneous error signal e(k), desired signal d(k)
and the input signals, x(k), auto-correlation estimates respectively [60, 84]. As such, In
order to numerically assess the stability and performance of the proposed system, this
section presents a discrete time transfer function approximation of the pLMS. Moreover,
the input system described by the N equally spaced, identical antenna elements is mod-
eled as a N th order fractional delay filter employing a Farrow structure and a Lagrange
interpolation [85]. Hence, the new pLMS input signal xf (k) can now be defined as:

xf (k) = yd(k) +
N−1∑
j=0

yi,j(k) + n(k) (5.24)

where yd(k), yi,j(k) are the message and interfering signals subject to a fractional delay
filter and n(k) is a complex additive white Gaussian noise (CAWGN). The pLMS transfer
function approximation can now be derived from (5.1) such that:

epLMS(k) = d(k)− jd(k − 1)− y1(k) + jy2(k − 1) (5.25)

Assuming a WSS process and through the application of the Z transform for both sides
of (5.25), the pLMS transfer function approximate HpLMS(z), as derived in Appendix D,
becomes:

HpLMS(z) = 1 + µ2NR(z)− jz−1

(1 + µ1NR(z))(1 + µ2NR(z)) (5.26)
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Thus, for identical step sizes i.e. µpLMS = µ1 = µ2 we obtain:

HpLMS(z) = 1 + µpLMSNR(z)− jz−1

(1 + µpLMSNR(z))2 (5.27)

The presented relationship in (5.26), starting at k = 0, includes both convergence and
steady-state results [14, 60, 84]. While (5.26) and (5.27) present a simple approximation
for the behavior of the pLMS adaptive beamformer; This approximation doesn’t represent
the optimal least-square solutions for the steady-state behavior [14].

5.3 pLMS Pipeline Hardware Implementation

While the pLMS offers an implicitly parallel structure most suitable for hardware
implementation [24]. However, presenting a pipeline architecture is deemed difficult due
to the presence of an error feedback loop in the LMS weight update algorithm [21, 22,
23, 24, 25]. As such, we propose the application of the delay and sum relaxed look ahead
technique to present a parallel, pipeline pLMS hardware architecture (DpLMS) [21, 24].

5.3.1 Delay and Sum Relaxed Look Ahead pLMS

The delay and sum relaxation technique is applied for each of the LMS stages i.e.,
LMS1 and LMS2 separately [4, 21, 24]. As such, with respect to the weight update
equation from (5.9), we start with a D2 averaging look ahead step [21, 24] in the weight
update path and a delay relaxation of D1 samples in the error path. Hence, we obtain:

w(k + 1) = w(k −D2) + µ
D2−1∑
i=0

e∗(k −D1 − i)x(k −D1 − i) (5.28)

The modification presented in (5.28) is possible assuming the process is WSS and the
gradient estimate undergoes only marginal changes overD1 samples [21, 24]. In contrast to
its set advantages in presenting an easy to pipeline form, the hardware overhead imposed
by (5.28) is of N(D2 − 1) adders and becomes unacceptable for larger values of N and
D2 [21, 24]. Thus, to minimize the resulting overhead complications, an additional sum
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relaxation of D3 terms is applied, such that: 1 ≤ D3 ≤ D2. Therefore, (5.28) is modified
to become [24]:

w(k + 1) = w(k −D2) + µ
D3−1∑
i=0

e∗(k −D1 − i)x(k −D1 − i) (5.29)

Moreover, assuming µ is small enough [2], and w(k − D2 − 1) can be approximated by
w(k −D2); In this case, the error update equation, with respect to D2, becomes [24]:

e(k) = d(k)−wH(k −D2)x(k) (5.30)

Hence, a delayed pLMS (DpLMS) structure is now obtained by applying (5.29) and
(6.35) to LMS1 and LMS2 [24].

Figure 5.2 – 8-Elements DpLMS Hardware Architecture [24]
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5.3.2 DpLMS Hardware Architecture

The DpLMS is implemented in finite precision mode with respect to the pLMS top
level architecture presented in Figure 5.1 for an input source of N = 8 ULA arrays
structure [24]. The adopted finite precision numbering format is the Q2.15 1 format. The
delay relaxation parameters are initialized, such as: D1 = 4, D2 = 2 and D3 = 1 resulting
in a total of six pipeline stages [24]. The proposed DpLMS top level architecture is shown
in Figure 5.2, where x1..4(k), x5..8(k), w1..4(k) and w5..8(k) are the DpLMS input and
weight vectors formed of the first and last 4 elements of x(k) and w(k), respectively [24].
The delay z−1, z−D1−1 the ∗j and the “Conj” blocks denotes a digital delay, i.e. registers
of one and D1 − 1 samples, multiplication by j and complex conjugation, respectively.

The linear combiner and weight update blocks are defined in Figures 5.3 and 5.4,
respectively.

Figure 5.3 – 4-Input Linear Combiner Block

From Figure 5.3, it is clear that all multiplication and addition operation are performed
in separate pipeline stages and requires one clock cycle each [24]. Thus, with an all parallel
input architecture, the computational complexity of each stage is of order O(1) [24]. The

1. 1 signed bit, 2 integer bits and 15 precision bits
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inferred multiplier is a complex multiplier and is formed of four real multipliers and one
complex adders, i.e. two real adders.

Figure 5.4 – 4-Input Weight Update Block

Moreover, the update term as shown in Figure 5.4, is obtained by an arithmetic shift
right operation of nu bits, i.e. µ = 2−nu. The shift right operation is performed at wire
speed hence omitting the requirement of an additional multiplier.

Design DSP Registers Logic Elements Frequency (MHz)
DLMS 32 1746 773 208.33
pLMS 64 3488 1546 208.33
DpLMS 64 3636 1567 208.33

Table 5.1 – DpLMS Beamformer Synthesis Results

5.3.3 Implementation and Synthesis Results

Synthesis and implementation results for the delayed LMS (DLMS), pLMS and DpLMS
are obtained for the Intel “Stratix V 5SGXMABN3F45I4” model are presented in Table
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5.1 [76]. In contrast to the pLMS, the DpLMS presents a pipeline high throughput struc-
ture at the cost of a negligible increase in the resource usage, i.e. logic elements and
registers. Furthermore, in contrast to the original pLMS that can process one sample each
(D1 + D3) × 4.8 ns, i.e. input latency of 28.8 ns, the proposed DpLMS architecture can
process one sample each 4.8 ns with an initial, setup, input latency of 6 cycles, i.e. 6
pipeline stages [24].

Algorithm Initial Parameters
LMS µLMS = 0.03125
RLS α = 0.98, L(0) = 0.5I, Q(0) = 0.025I

LLMS
µ1 = 0.03125

µ2 = 0.03125, ϑ = 0.0004
pLMS µ1 = 0.03125, µ2 = 0.03125
DpLMS µ1 = 0.03125, µ2 = 0.03125, nu = 5

Table 5.2 – Simulation Initial Parameters

5.4 Hardware and Software Simulations

A Monte Carlo type simulation is conducted to assess the behavior of the pLMS,
the pLMS transfer function subject to fractional delay (pLMS-FD) and the DpLMS with
respect to the LLMS, LMS and RLS adaptive algorithms. The simulation is performed for
500 realizations of 500 samples each where the input source is modeled as a ULA array with
N = 8 elements. The input signal is formed by a combination of a message signal and two
interferes impinging the array from broadside at an angle of 20◦, 5◦ and 65◦, respectively.
The inputs are generated as independent random complex Gaussian sequences of the
form vm = N (0 , σ2

p ) + jN (0 , σ2
q ) where, N denotes normal, zero mean, (Gaussian)

distribution. σ2
p and σ2

q are the real and complex sequence variances, respectively. The
final input signal is corrupted by CAWGN for a signal to noise ratio (SNR) of 10 dB. The
parameters and initial conditions at k = 0 are initialized for the LMS and its variants
with respect to Table 5.2, where I is the identity matrix.
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5.4.1 Mean Square Error Convergence Analysis

The MSE simulation is used to study the convergence behavior of the LLMS, the
pLMS, the DpLMS, the RLS and the classical LMS, and is presented in Figure 5.5. As
shown in that Figure, the pLMS and the DpLMS convergence profile reflects that of the
LLMS however with a lower steady state error, i.e. a better accuracy. The increase in
accuracy is a result of eliminating the requirements for a steering vector estimation stage
and the division operation. Additionally, it is clear that the DpLMS experienced a small
delay in convergence with respect to the pLMs. The resulting delay is a consequence
of the adopted delay and averaging scheme. Moreover, while the RLS achieved the best
convergence profile, it requires an undesirable computational complexity of order O(N2)
and lack tracking ability. In contrast, the pLMS and DpLMS achieved identical accelerated
and accurate behavior while maintaining a linear computational complexity of order O(N)
[14, 24].

Figure 5.5 – pLMS MSE Convergence Behavior

As shown in Figure 5.6, the pLMS and pLMS-FD converged at the same iteration,
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however the latter experienced a higher residual steady state error. The pLMS-FD steady
state error profile is a consequence of the fractional delay filter approximation adopted
previously [14, 24]. In order to validate the accuracy of the transfer function approxima-
tion with respect to the fractional delay filter, the pLMS MSE convergence behavior is
evaluated against that of the pLMS-FD.

Figure 5.6 – pLMS and pLMS-FD MSE Convergence Behavior For Fractional Delay Filter

The pLMS was further compared against the LLMS for a sequence with repeated
samples, the MSE convergence plot is shown in Figure 5.7. For a sequence with repeated
samples, the LLMS failed to preserve its accelerated convergence profile. In contrast,
the pLMS provided visible robustness in maintaining its accelerated convergence and
low residual error characteristics and a result of the introduced error phase shift, i.e.
multiplication by j [4, 14, 24].

Finally, the pLMS and DpLMS convergence behavior is analyzed for different SNR
environments, i.e. from −5 dB to 7 dB with a step of 6 dB, the MSE output is presented
in Figures 5.8 and 5.9.
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Figure 5.7 – LLMS and pLMS MSE Convergence Behavior for Recurring Samples

Figure 5.8 – pLMS MSE Convergence Behavior for Different SNR Environments
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From Figure 5.8, the pLMS secured a stable convergence for an SNR as low as −5 dB
for a small step size µ = 0.01 and an average MSE of 0.02.

Figure 5.9 – DpLMS MSE Convergence Behavior for Different SNR Environments

In contrast, as shown in Figure 5.9, the DpLMS achieved an acceptable MSE con-
vergence profile for only up to 1 dB. The degraded DpLMS behavior is a consequence
of the adopting delay and averaging technique adopted in (5.29), i.e. the use of D3 such
that 1 ≤ D3 ≤ D2 [14, 24]. Additional simulations cases, i.e. MSE beam localization, are
shown in Appendix C.

5.4.2 Beam Radiation Pattern

Similar to the MSE convergence plot the beam radiation pattern is also evaluated in
order to better assess the resulting beam pointing accuracy and the effect of the sum
relaxation. The beam radiation pattern for the pLMS, the infinite precision DpLMS and
the finite precision DpLMS is shown in Figure 5.10. The 18 bits finite precision DpLMS,
simulated on the “Intel Stratix V FPGA”, presented similar beam pattern and pointing
accuracy compared to the infinite precision pLMS and DpLMS for an SNR of 10 dB [14].
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Figure 5.10 – DpLMS Finite and Infinite Precision Beam Radiation Pattern

Moreover, The beam pattern is further simulated for the pLMS and the finite precision
DpLMS for an SNR environment ranging from −5 dB to 7 dB with a step of 6 dB and is
shown in Figures 5.11 and 5.12, respectively.

Figure 5.11 – pLMS Beam Pattern for Different SNR
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The pLMS beam pattern shown in Figure 5.11 shows that the pLMS performance
severely degraded in a −5 dB SNR environment. While the pLMS MSE successfully
converged, the residual average error is increased.

Figure 5.12 – Finite Precision DpLMS Beam Pattern for Different SNR

Similarly, from Figure 5.12 the DpLMS achieves a satisfactory behavior for SNR en-
vironments up to only 1 dB, however with a weaker main beam compared to that of
the pLMS [14]. Such degradation validates the previously stated and can be omitted for
large values of D3, i.e. a high order moving average filter. However, as D3 increases the
hardware overhead increases [24].

5.4.3 Pole Zero Map Stability Plot

In order to numerically determine the maximum step size allowed for the pLMS a
pole zero plot is performed for the transfer function approximation in (5.27). The pLMS
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stability analysis is studied for different µ values and the pole zero plot is shown in Figure
5.13 [14]. As the step size µpLMS increases the resulting poles and zeros move further
towards the outside of the unit circle. Thus, it can be concluded from the conducted
study that the maximum step size to ensure convergence and stability falls in the range
of 0.03 < µpLMS < 0.04 [14].

Figure 5.13 – pLMS Pole Zero Map for Different µ [14]

5.4.4 Computational Complexity Comparison

A resource complexity comparison for the pLMS against different adaptive algorithms
recalled during this study is presented in Table 5.3 [14]. It is clear that the RLS adap-
tive algorithm and its variants require an undesirable complexity of order O(N2) [6, 14].
Furthermore, the RLMS, the LLMS and the RLMSp require N + 1, N and 1 complex
divisions, respectively [14]. In contrast, the proposed pLMS structure presents superior
convergence speed, low residual error and a parallel easy to pipeline architecture while
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maintaining a computational complexity of order O(N). Additionally, the pLMS omits
the need of a division operator and provides a considerable reduction in resource usage,
i.e. 2N complex multiplications, N complex additions and N complex divisions [4, 14].
However, compared to the LMS, the pLMS achieves its superior performance at the cost of
a considerably large increase in resource requirements, i.e. double. As such, it is of crucial
importance to present a reduced complexity structure of the pLMS while maintaining its
accelerated convergence profile [4].

Algorithm cMultiply cAdd cDivide
RLMS[15] 3N2 + 11N + 2 2N2 + 9N + 6 N + 1
RLMSp[6] 3N2 + 7N + 1 2N2 + 6N + 3 1
RLS 3N2 + 5N 2N2 + 4N + 2 1
LLMS[5] 6N + 2 5N + 4 N

pLMS 4N + 2 4N + 4 0
LMS 2N + 1 2N + 1 0

Table 5.3 – Theoretical Complexity and Resource Usage [14]

5.5 Conclusion

In this chapter, we proposed a multi stage parallel LMS structure (pLMS) for adap-
tive beamforming, we evaluated its transfer function approximation and we introduced
its pipeline hardware implementation. pLMS is formed of two LMS stages operating in
parallel and connected by an error feedback. The pLMS transfer function approximation
is obtained by modeling the input spatial linear combiner as a fractional delay temporal
filter with a Lagrange interpolation. Moreover, we propose a pipeline hardware imple-
mentation through the application of the delay and sum relaxed look ahead technique
(DpLMS). Stability analysis is performed to determine the theoretical upper bound of
the step size required to ensure convergence. The maximum allowable step size is deter-
mined numerically with respect to the transfer function approximation and the pole zero
plot study. Simulation results demonstrated the superior performance of the pLMS and
DpLMS in providing accelerated convergence and maintaining a low steady state error
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while preserving a complexity of order O(N). Both algorithms presented a satisfactory
convergence profile and beam pattern for SNR up to 1 dB. Through pole zero plot anal-
ysis the maximum step size, allowed to maintain a proper pLMS convergence, is in the
range of 0.03 < µ < 0.04. Synthesis and implementation results show that, in contrast to
other RLS and LMS variants, the DpLMS provides a parallel, pipeline, low complexity
and resource friendly architecture suitable for low end processors. Finally, the fixed point
DpLMS beam radiation pattern validated the DpLMS accuracy in finite precision mode
by providing a similar infinite precision beam directivity. The work conducted for the
pLMS derivation and its hardware implementation has been separately published in the
European Signal Processing Conference (EUSIPCO).

120



Chapter 6

THE REDUCED COMPLEXITY PARALLEL

LMS AND ITS PIPELINED HARDWARE

IMPLEMENTATION

6.1 Introduction

While the parallel LMS (pLMS) presented a parallel, easy to pipeline structure with
accelerated convergence and low residual error, it still requires to instantiate two least
mean square (LMS) stages, thus doubling the complexity of that of the classical LMS
[4, 14]. In this chapter, we propose a reduced complexity pLMS structure for adaptive
beamforming (RC-pLMS), its transfer function approximation and its pipeline hardware
implementation [4].

Figure 6.1 – Reduced Complexity pLMS (RC-pLMS)
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RC-pLMS is formed from a single LMS stage with additional inputs, obtained by
the applying a sample delay to the input and desired signal, as shown in Figure 6.1 [4].
Where, ULA is a uniform linear antenna, eRC−pLMS(k) is the RC-pLMS overall error,
u(k) and S(k) are the new system input and reference signals, respectively [4], the block
jz−1 denotes multiplication by j with a one sample delay [4]. The new system inputs are
defined, such as:

S(k) = d(k)− jd(k − 1)

u(k) = x(k)− jx(k − 1) (6.1)

where j =
√
−1 is the imaginary number, d(k) is the desired signal at the discrete time

instance k and x(k) is the input signal. Moreover, The RC-pLMS transfer function approx-
imation is obtained by modeling the input linear combiner filter by a temporal fractional
delay finite impulse response (FIR) filter with a Lagrange interpolation [14]. Similarly,
a parallel pipeline hardware implementation is presented through the application of the
delay and sum relaxed look ahead technique (DRC-pLMS) [4]. Stability and quantization
effect analyses are performed to determine the upper bound of the step size and assess
the behavior of the system in a finite precision mode [4].

6.2 Reduced Complexity Multi Stage Parallel LMS
(RC-pLMS) Algorithm

As previously stated, the pLMS is a multi stage LMS structure connected by an error
feedback and its total error, epLMS(k), is formed as a linear combination of individual
stage errors, given as:

epLMS(k) = e1(k)− je2(k − 1)

= d(k)− jd(k − 1)−wH
1 (k)x(k) + jwH

2 (k − 1)x(k − 1) (6.2)

where the superscript H is the Hermitian transpose, ei(k) = d(k) −wH
i (k)x(k), i = 1, 2

represents the stage identifier are the first and second stage outputs, and w1(k), w2(k−1)
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are the current and delayed weight vectors of the first and second LMS stages, LMS1 and
LMS2, respectively. and its weight vector update equation is as follows:

w1(k + 1) = w1(k) + µpLMSx(k)[d∗(k)− xH(k)w1(k)

+jd∗(k − 1)− jxH(k − 1)w2(k)] (6.3)

where µpLMS is the pLMS step size, the superscript ∗ represents complex conjugation.
Moreover, the pLMS mean square error (MSE) cost function, ξpLMS, is thus defined from
(6.2):

ξpLMS(k) = E[|d(k)|2]− pHw1(k)−wH
1 (k)p + wH

1 (k)Rw1(k) + E[|d(k − 1)|2]

−E[d(k)xH(k − 1)]w2(k − 1)−wH
2 (k − 1)E[d∗(k)x(k − 1)]

+wH
2 (k − 1)E[x(k)x(k − 1)]w2(k − 1) + jE[d(k)d∗(k − 1)]

+jE[d∗(k)d(k − 1)]− jE[d(k)xH(k − 1)]w2(k − 1)

−jwH
1 (k)E[d∗(k − 1)x(k)] + jwH

1 (k)E[x(k)xH(k − 1)]w2(k − 1)

+jE[d(k)xH(k − 1)]w1(k) + jwH
2 (k − 1)E[d(k)x(k − 1)]

+jE[xH(k)w1(k)wH
2 (k − 1)x(k − 1)] (6.4)

where E[.] is the expectation operation, |.| signifies the complex modulus, R = R(0) is
the input signal auto-correlation matrix and p = p(0) is the cross correlation vector of
the input x(k) and desired signal d(k). R(0) and p(0) are defined at lag τ = 0 as:

R(τ) = E[x(k − τ)xH(k)] (6.5)

p(τ) = E[d∗(k − τ)x(k)] (6.6)

Where, assuming a wide sense stationary (WSS) process, the lag τ = k1 − k2 and k1 and
k2 are different time instances from which an observation of the random process is taken.
With respect to (6.4), the pLMS optimal weight vector, wop, is derived as follows:

wop = R−1p + jR−1E[d∗(k − 1)x(k)]− jR−1E[x(k)xH(k − 1)]w2(k − 1) (6.7)
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where R−1 is the input signals auto-correlation matrix inverse, assuming R is invertible
[4]. Assuming both system converges to their respective optimal weight, thus, as k →∞,
we can approximate that w1(k) ≈ w1(k− 1) ≈ wop and that w2(k) ≈ w2(k− 1) ≈ woplms

[4, 5]. Therefore, the first and second LMS stages outputs yLMS1 and yLMS2, having both
interference and noise signals being suppressed, tend to approach the desired signal d(k)
[4, 5, 15]. As such, we assume that the filter output and the desired signal can satisfy the
approximation d(k − 1) ≈ yLMS1(k − 1) ≈ yLMS2(k − 1) [4, 5, 15]. Thus, from (6.7) we
can write:

wop = woplms + jR−1E[d∗(k − 1)x(k)]− jR−1E[x(k)xH(k − 1)]w2(k − 1)

≈ woplms + jR−1E[y∗
LMS2(k − 1)x(k)]− jR−1E[x(k)xH(k − 1)]w2(k − 1)

≈ woplms + jR−1E[x(k)xH(k − 1)]w2(k − 1)− jR−1E[x(k)xH(k − 1)]w2(k − 1)

≈ woplms (6.8)

where woplms = R−1p is the LMS optimal weight vector. As such, by simplifying (6.8), we
reach the following approximation wop ≈ woplms and hence we can assume that w1(k) ≈
w2(k − 1), i.e. the use of a single set of weights, w(k) [4]. We now simplify the pLMS
weight update equation given in (6.3) and remove any requirement for computing an
independent set of filter coefficients, i.e. additional filter [4]. As such, (6.3) becomes:

w(k + 1) = w(k) + µx(k)[d∗(k)− xH(k)w(k) + jd∗(k − 1)− jxH(k − 1)w(k)] (6.9)

where µ is the RC-pLMS step size, w(k) is the RC-pLMS filter weight vector. Thus, the
RC-pLMS is presented as follows :

S(k) = d(k)− jd(k − 1)

u(k) = x(k)− jx(k − 1)

eRC−pLMS(k) = S(k)−wH(k)u(k)

w(k + 1) = w(k) + µx(k)e∗
RC−pLMS(k) (6.10)
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The RC-pLMS adaptive beamformer is formed of only one LMS filter with respect to
two input adjustment blocks. Therefore, omitting the need for a second independent
filter and reducing the original pLMS complexity by 2N + 1 complex multiplications and
N + 2 complex additions [4]. The RC-pLMS MSE cost function, defined as ξRCpLMS(k) =
E[|eRCpLMS(k)|2], is re-evaluated to obtain [4]:

∇RCpLMS = ∂ξRCpLMS(k)
∂wH(k)

= −p + Rw(k)− E[jd∗(k − 1)x(k)] + E[jx(k)xH(k − 1)]w(k)

+E[jd∗(k)x(k − 1)]− E[jx(k − 1)xH(k)]w(k)

−E[d∗(k − 1)x(k − 1)] + E[x(k − 1)xH(k − 1)]w(k) (6.11)

where, ∇RCpLMS is the RC-pLMS gradient. Assuming a WSS process, and using the
equality Qr(τ) = Q∗

r (−τ) and zr(τ) = z∗
r (−τ), the RC-pLMS gradient defined in (6.11)

can be re-written as [4]:

∇RCpLMS = −p + Rw(k)− z∗
r (−1) + Qr(1)w(k)

+zr(1)−Q∗
r (−1)w(k)− p + Rw(k)

= −2p + 2Rw(k)− 2zr(−1) + 2Qrw(k) (6.12)

where the auto-correlation matrix and the cross-correlation vector are defined such as:
Qr(1) = jR(1) and zr(−1) = jp(−1), respectively and represent an observation with a lag
τ = 1. Thus, by equating (6.12) to zero the RC-pLMS optimal weight, wopr, is obtained
as [4, 46]:

wopr = A−1 (p + jp(−1)) (6.13)

where A is the RC-pLMS overall correlation matrix and it is formed as a linear combina-
tion of the auto-correlation matrices at lags 0 and 1 and is defined as:

A = R + jR(1) (6.14)
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Assuming A is a full rank matrix; Thus its inverse A−1 exists as a consequence of the
random added noise [2, 4].

6.2.1 Stability Analysis

In order to determine the upper bound of the step size and the conditions where the
RC-pLMS converges to its optimal weight, we perform a first order stability analysis.
The analysis studied with respect to the RC-pLMS learning rate, i.e. µ and the mean
coefficient error vector, v(k) [4, 10, 86] which is given by:

v(k) = w(k)−wopr (6.15)

where w(k) is the mean weight vector. From (6.9), we can proceed as follows [4]:

w(k + 1) = w1(k) + µp− µRw(k) + jµp(−1)− jµR(1)w(k) (6.16)

At steady state and assuming convergence, we can approximate w(k + 1) ≈ w(k) and
w(k − 1) ≈ w(k). As such, (6.16) becomes [4]:

w(k + 1)−wopr = w(k)−wopr + µp + jµR(1)wopr − µRw(k)− µRwopr

+µRwopr + jµp(−1)− jµR(1)wopr + µR(1)w(k) (6.17)

where wopr is the RC-pLMS optimal weight vector. Using the mean coefficient error vector
notation and equations (6.13), (6.17), we can write [4]:

v(k + 1) = (I− µR − jµR(1))v(k)− µRA−1p− jµRA−1p(−1)

+µp + jµp(−1)−µR(1)A−1p + µR(1)A−1p(−1) (6.18)

Hence, (6.18) can be simplified to obtain [4]:

v(k + 1) = (I− µR − jµR(1))v(k) + µp− µ(R + jR(1))A−1p

+jµp(−1)− µ(jR −R(1))A−1p(−1) (6.19)
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(6.19) can be simplified as follows [4]:

v(k + 1) = (I− µR − jµR(1))v(k) = (I− µA)v(k) (6.20)

Applying the eigenvalue decomposition (EVD), with Λ being a diagonal matrix whose
diagonal entries (λi) represent to the eigenvalues of A, and O is a unitary matrix whose
rows represent the eigenvectors of A, it is possible to write A = O−1ΛO [2, 4]. Therefore,
we can rewrite (6.20) as follows:

v(k + 1) = (I− µO−1ΛO)v(k) (6.21)

by multiplying both sides of (6.21) by the unitary matrix O, we get [4]:

Ov(k + 1) = (I− µΛ)Ov(k) (6.22)

Let m(k) = Ov(k), which represents v(k) in a rotated coordinate system and it is defined
by the eigenvectors in O. Therefore, a convergence in m(k) implies a convergence in v(k)
[2, 4, 10], and we obtain:

m(k + 1) = (I− µΛ)m(k) (6.23)

Since all elements in (I − µΛ) are diagonal, the stability is achieved with respect to
the convergence of the first order difference equation formed by all N eigenvalues λi,
∀i, i ∈ {1, 2, .., N} [2, 4]. Thus, with respect to (6.23), we can define a set of N difference
equations as follows:

mi(k + 1) = (1− µλi)mi(k) (6.24)

The convergence of (6.24) is obtained by satisfying the condition |1− µλi| < 1 [2, 4, 86].
Moreover, for the convergence in the mean sense the step size should satisfy the following
condition:

µ <
1

|λA,max|
(6.25)
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where the norm, |λA,max|, is the maximum eigenvalue in A and |.| is the complex modulus
i.e.

√
Re{λ}2 + Im{λ}2 [4].

6.2.2 Transfer Function Approximation

Similar to the pLMS, the RC-pLMS transfer function approximation is obtained by
modeling the input source as a temporal fractional delay FIR filter with a Lagrange
interpolation [4]. As such, with respect to Appendix D, the pLMS transfer function is
modified to reflect (6.10) and thus the RC-pLMS transfer function becomes as follows:

HRC−pLMS(z) = 1− jz−1

1 + µN(1− jz−1)R(z) (6.26)

The RC-pLMS transfer function approximation, given in (6.26), modifies that of the LMS
to include the additional delay and phase shift term 1− jz−1.

6.2.3 Quantization Effect Analysis

Adaptive algorithms, when implemented in finite precision and fixed point format
can suffer a sever degradation in performance and diverge from their theoretical values
[2, 4, 16, 25, 87]. Such performance decay is a result of quantization and round off errors
due to the limitations imposed by the finite precision wordlength. Therefore, such errors,
if not accounted in the design process, can cause catastrophic outcomes [2, 4, 16, 25, 87].
Thus, the analysis of the effects of quantization and round off errors becomes mandatory
when targeting digital systems with a finite precision [2, 4, 16, 18].

For simplicity, we assume that the input and reference signals are Gaussian, zero-mean,
uncorrelated and generated from an independent identically distributed (i.i.d) sequences.
Additionally, the RC-pLMS analysis parameters uq(k), wq(k), Sq(k), eq(k) and yq(k),
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where the subscript q denotes the quantization process, are defined such as [4]:

uq(k) = u(k) + ηu(k)

wq(k) = w(k) + ηw(k)

Sq(k) = S(k) + ηS(k)

yq(k) = y(k) + ηy(k)

eq(k) = Sq(k)− yq(k) (6.27)

where ηu(k), ηw(k), ηS(k) and ηy(k) are the input signal, weight vector, reference signal
and output quantization error respectively [4]. The quantization errors, ηu(k) and ηw(k),
are assumed to be zero mean white sequences with variance σ2

d, mutually independent
and are also independent of u(k) and w(k), respectively. Hence, from (6.27) and the error
update term in (6.10) we can write [4]:

eq(k) = Sq(k)− yq(k)

= S(k) + ηS(k)−wH
q(k)uq(k)− ηy(k)

= S(k) + ηS(k)−wH(k)u(k)−wH(k)ηu(k)

−ηw(k)u(k)−η∗
w(k)ηu(k)− ηy(k) (6.28)

By eliminating higher order quantization error terms, i.e. η∗
w(k)ηu(k) = 0, (6.28) simplifies

to [4]:

eq(k) = eRCpLMS(k) + ηSy(k)−wH(k)ηu(k)− ηw(k)u(k) (6.29)

with ηSy(k) = ηS(k) − ηy(k). The RC-pLMS MSE subject to a quantization error, RC-
pLMSq, can now be defined as ξRCpLMSq(k) = [|eq(k)|2] and evaluated to obtain [4]:

ξRCpLMSq(k) = E[|eq(k)|2]

= ξRCpLMS(k) + E[eRCpLMS(k)η∗
Sy(k) + e∗

RCpLMS(k)ηSy(k)

−eRCpLMS(k)w(k)η∗
u(k)− eRCpLMS(k)uH(k)η∗

w(k)

−e∗
RCpLMS(k)wH(k)ηu(k)− e∗

RCpLMS(k)u(k)ηu(k)] (6.30)
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Assuming the step size µ is small enough, the quantization error terms ηw(k)u(k) and
w(k)ηu(k) becomes uncorrelated with each other and with the RC-pLMS error eRCpLMS(k)
[2, 4]. Therefore, from [2, 4], (6.30) is simplified to become:

ξRCpLMSq(k) = E[|eq(k)|2]

= Jmin(1 + ρ) + ξ1(σ2
w, µ) + ξ2(σ2

d) (6.31)

where Jmin(1 + ρ) is the MSE of the infinite precision algorithm, ρ is the misadjustment,
ξ1(σ2

w, µ) is the quantization error resulting from ηw(k) and ξ2(σ2
d) is the quantization

error resulting from ηu(k) and ηy(k) [2, 4]. With respect to [4, 18], (6.31) can now be
written, at convergence, as follows:

ξRCpLMSq(k) = E[|eq(k)|2]

= ξmin + 1
2µξmintr(A) + Nσ2

a

2ηu(k)µ + 1
η2
u(k)(|wop|2 + a)σ2

d (6.32)

where ξmin is the infinite precision LMS minimum MSE, tr(A) is the trace of the cor-
relation matrix A, i.e. sum of diagonal elements, a is a random variable dependent on
the inner product of wH

q(k) and uq(k) and σ2
a is the variance of a [4, 18]. From (6.31)

and (6.32), it is clear that the step size directly contributes to the performance of the
systems. Where, a decrease in the step size µ leads to a decrease in the misadjustment
ρ and thus an improved performance [2, 4]. Moreover, by evaluating the third term in
(6.32), a decrease in the step size µ increases the quantization error effect and causes the
system to deviate from the infinite precision, theoretical, performance. Finally, the final
term in (6.32) is only a function of the quantization errors ηu(k) and ηy(k) [2, 4, 18].
Therefore, it can be concluded that, in finite precision mode, the correct selection of the
step size µ directly contributes to the stability and convergence of the systems. As such,
µ may be decreased to a certain level, where the degradation effects of the quantization
error become significant [2, 4].
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6.3 DRC-pLMS Pipelined Hardware Implementation

Similar to the delayed LMS (DLMS) and the delayed parallel LMS (DpLMS) the RC-
pLMS pipeline architecture is obtained through the application of the delay and sum
relaxed look ahead technique (DRC-pLMS) [4, 21, 24]. As such, assuming a WSS process,
(6.9) is modified by adding a delay relaxation of D1 samples in the error path and D2

delay in the weight update path, as follows [4]:

w(k + 1) = w(k −D2) + µ
D2−1∑
i=0

e∗
RCpLMS(k −D1 − i)x(k −D1 − i) (6.33)

From (6.33), it is clear that the hardware overhead is extensive, i.e. N(D2− 1). Addition-
ally, for larger values of N and D2, the hardware overhead becomes unacceptably high
resulting in a complex, undesirable structure [4, 21]. To reduce the occurring overhead,
(6.33) is modified by applying a sum relaxation of D3 samples with 1 ≤ D3 ≤ D2. As
such, (6.33) becomes [4]:

w(k + 1) = w(k −D2) + µ
D3−1∑
i=0

e∗
RCpLMS(k −D1 − i)x(k −D1 − i) (6.34)

Assuming µ is small enough, the DRC-pLMS error is computed as:

eRCpLMS(k) = S(k)−wH(k −D2)u(k) (6.35)

In contrast to the traditional look ahead technique, the delay and sum relaxed look-ahead
technique does not result in a unique architecture. However, it may be considered as a
transformation in the stochastic sense since the average output profile is conserved [4, 21].

6.3.1 DRC-pLMS Hardware Architecture

DRC-pLMS is implemented in a finite precision mode for a Q2.15 1 format. The delay
relaxation is initialized such as D1 = 4, D2 = 2 and D3 = 1, i.e. six pipeline stages.
The DRC-pLMS architecture is shown in Figure 6.2, where u1..4(k), u5..8(k), w1..4(k)

1. 1 signed bit, 2 integer bits and 15 precision bits
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and w5..8(k) are the DRC-pLMS input and weight vectors formed by the first and last 4
elements, respectively. z−1, z−D1 and z−D1−1 represent a digital delay element, i.e. register,
of 1, D1, and D1 − 1 samples, respectively and the Conj block denotes the complex
conjugation [4].

Figure 6.2 – 8-Input DRC-pLMS Beamformer Architecture [4]

In addition, y1 and y2 form the intermediate output and they are defined such as:

y1(k) = wH
1..4(k)u1..4(k) (6.36)

y2(k) = wH
5..8(k)u5..8(k) (6.37)
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The 8 input adaptive beamformer is formed by a grouping of two 4 input linear combiner
blocks and two 4 input weight update blocks, as shown in Figure 6.3. The LMS default
input signals x(k) and d(k) remain unchanged, however they are internally modified to
form the new DRC-pLMS input signals u(k) and S(k) [4]. The final output y is then
obtained as a combination of the individual linear combiner outputs, y1 and y2 and is
used to compute the total error eRCpLMS. Finally, the total error, eRCpLMS, is used to
compute the new filter weights with respect to the input signals x1..4(k) and x5..8(k). It
should be highlighted, with respect to Figure 6.2, that the DLMS architecture can be
obtained by eliminating the input modification blocks forming u(k) and S(k) [4].

Figure 6.3 – DRC-pLMS 4-Input Linear Combiner Architecture [4]

The 4-input linear combiner and weight update blocks are presented in Figures 6.3
and 6.4, respectively. From Figure 6.3, we observe that the pipeline stages are formed
of independent parallel multiplication and addition operations and thus requires a com-
putational complexity of O(1) [4]. Where each complex multiplier is formed of four real
multipliers and one complex adder, i.e. two real adders [4]. In addition, the update term
shown in Figure 6.4, is computed with respect to an arithmetic shift right of nu bits.
The shifting operation is performed at the wire speed and thus eliminates the need of an
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additional multiplier [4].

Figure 6.4 – DRC-pLMS 4-Input Weight Update Architecture

6.3.2 Implementation and Synthesis Results

The DRC-pLMS is implemented on the “Intel Stratix V 5SGXMABN3F45I4” model
and compared to the VR-SNC-TDNLMS [23] and the LUT-Less Pipelined LMS [22] as
shown in Table 6.1 [4]. Since the VR-SNC-TDNLMS [4, 23] and the LUT-Less Pipelined
LMS [4, 22] implementation is conducted for different antenna count, different processors
and different finite precision configuration, only the maximum operating frequency is
compared.

As shown in Table 6.1, compared to the VR-SNC-TDNLMS [4, 23] and the LUT-Less
Pipelined LMS [4, 22] variants, the DRC-pLMS achieved a pipeline structure operating
at a maximum frequency of 208.33 MHz. Moreover, in contrast to the DpLMS, the DRC-
pLMS only requires the use of 32 DSP blocks, i.e single LMS stage. However, compared
to the LMS and DLMS [21], the proposed RC-DpLMS provides a superior convergence
behavior and a lower steady state error at the cost of a negligible increase in resource
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utilization, i.e. logic elements and registers [4].

Design DSP Registers Logic Elements Frequency (MHz)
DRC-pLMS 32 2065 905 208.33
DpLMS 64 3636 1567 208.33
DLMS 32 1746 773 208.33
VR-SNC

276 10616 19374 124.144TDNLMS
[23]
LUT-Less

- 1623 5811 84.24Pipelined
LMS [22]

Table 6.1 – 8-Input RC-pLMS Beamformer Synthesis Results

6.4 Hardware and Software Simulations

A Monte Carlo type simulation is conducted to assess the behavior of the RC-pLMS,
the RC-pLMS transfer function subject to fractional delay (RC-pLMS-FD) and the DRC-
pLMS with respect to the LLMS, pLMS and RLS adaptive algorithms.

Algorithm Initial Parameters
LMS µLMS = 0.5
RLS α = 0.98, L(0) = 0.5I, Q(0) = 0.025I

LLMS
µLMS1 = 0.0156

µLMS2 = 0.0156,ϑ = 0.0004
pLMS µLMS1 = 0.0156, µLMS2 = 0.0156

RC-pLMS
µ = 0.0156, nu = 6

DRC-pLMS

Table 6.2 – Simulation Initial Parameters

The simulation is performed for 500 realizations of 500 samples each where the input
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source is modeled as a ULA array with N = 8 elements. The input signal is formed by
a combination of a message signal and two interferes impinging the array from broadside
at different angles of arrival (AOA) of 30◦, 45◦ and 80◦, respectively [4]. The inputs
are generated as independent random complex Gaussian sequences of the form vm =
N (0 , σ2

p ) + jN (0 , σ2
q ) where, N denotes normal, zero mean, (Gaussian) distribution.

σ2
p and σ2

q are the real and complex sequence variances, respectively. The final input
signal is corrupted by CAWGN for a signal to noise ratio (SNR) of 10 dB and σ2

p = 0.01
and σ2

q = 0.04. The parameters and initial conditions at k = 0 are initialized for the LMS
and its variants with respect to Table 6.2, where I is the identity matrix.

Figure 6.5 – RC-pLMS MSE Convergence Comparison [4]

6.4.1 Mean Square Error Analysis

The MSE simulation is used to study the convergence behavior of the least mean
square - least mean square (LLMS), the pLMS, the RC-pLMS, the LMS and the recursive
least square (RLS) [4]. From Figure 6.5, the RC-pLMS presented identical pLMS and
LLMS convergence behavior. Moreover, for an SNR of 10 dB and in contrast to the LMS
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with a step size of 0.5, i.e. maximum suggested step size [2, 4], the RC-pLMS preserved
a superior convergence profile with the use of a much smaller step size µRCpLMS = 0.0156
[4]. Additionally, RC-pLMS achieved its convergence in 3 iterations, and a low steady
state error < 0.005 [4]. The use of a small step size allows the RC-pLMS to maintain
its convergence in low SNR environments [4, 14]. However, compared to the RLS with
a computational complexity of order O(N2), the suggested RC-pLMS presented faster
convergence while maintaining a LMS like computational complexity of order O(N) [4].
Moreover, the MSE behavior describes the systems convergence behavior with respect to
the transient (pLMS) and the steady-state (RC-pLMS) approximation, thus validating
the use of single set of weights as presented in (6.9).

Figure 6.6 – RC-pLMS Convergence Behavior [4]

To further assess the performance and the stability of the RC-pLMS and the DRC-
pLMS for different SNR environments, the MSE simulation was re-evaluated for multiple
SNR, i.e. −5 dB to 7 dB with a step of 6 dB [4]. From Figure 6.6, it is clear that the RC-
pLMS maintained its accelerated convergence and low residual error profile for a SNR = 1
dB. In contrast, for an SNR = -5 dB, RC-pLMS only maintain an accelerated convergence
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however with a larger residual error [4].

Figure 6.7 – DRC-pLMS Convergence Behavior [4]

In contrast, as shown in Figure 6.7, the DRC-pLMS was able to maintain accelerated
convergence at SNR = 1 dB, however with a larger residual error. Such degradation is a
consequence of the sum relaxation adopted in (6.34) [4].

6.4.2 Beam Radiation Pattern

The beam radiation pattern simulation output is presented, in Figure 6.8, to illustrate
and compare the beam directivity of the RC-pLMS, the DRC-pLMS and the finite pre-
cision DRC-pLMS to that of the finite precision DLMS. From Figure 6.8, and for a SNR
environment of 10 dB, similar to the DLMS, the proposed finite precision DRC-pLMS is
able to accurately steer the output main beam towards the desired AOA, i.e. 30◦ while
nulling interfering signals at 45◦ and 80◦ [4]. Moreover, the finite precision, DRC-pLMS
shows near identical results to the theoretical models denoted by RC-pLMS and DRC-
pLMS [4]. The RC-pLMS and DRC-pLMS beam radiation pattern is re-evaluated for
different SNR environments, i.e.−5 dB to 7 dB with a step of 6 dB [4].
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Figure 6.8 – Infinite and Finite Precision Beam Radiation Pattern for an Angle of Arrival
30◦ [4]

Figure 6.9 – RC-pLMS Beam Radiation Pattern for an Angle of Arrival 30◦ [4]
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From Figure 6.9, the RC-pLMS successfully steered its main beam and nulls towards
the AOA of interest, with an acceptable accuracy, for a SNR environment as low as 1
dB [4]. In contrast, as shown in Figure 6.10, the DRC-pLMS has managed to only steer
its main beam towards the AOA of the desired signal for an SNR environment of up to
1 dB. The resulting degradation in beam accuracy perfectly align with the MSE results
presented in Figures 6.6 and 6.7 where the average MSE becomes unacceptable for SNR <
1 dB [4]. Additionally, the difference in accuracy between the RC–pLMS and DRC-pLMS
is caused by the sum approximation implied in (6.34) [4]. Such difference can be omitted
for increased accuracy by setting D3 = D2, however at the cost of a considerable increase
in resource usage [4].

Figure 6.10 – DRC-pLMS Beam Radiation Pattern for an Angle of Arrival 30◦ [4]

6.4.3 Pole Zero Map Stability Plot

In order to numerically determine the maximum step size allowed for the RC-pLMS
a pole zero plot is performed for the transfer function approximation in (6.26). The RC-
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pLMS stability analysis is studied for different µ values and the pole zero plot is shown
in Figure 6.11. As the step size µ increases the resulting poles and zeros move further
towards the outside of the unit circle.

Figure 6.11 – RC-pLMS Pole Zero Map for Different µ

Thus, it can be concluded from the conducted study that the maximum step size to
ensure convergence and stability falls in the range of 0.03 < µ < 0.04.

6.4.4 Computational Complexity Comparison

A resource complexity comparison for the RC-pLMS, the RLS, the LMS and their
variants is presented in Table 6.3, where cMultiply, cAdd, cDivide and RLMSp denote
the complex multiplication, the complex addition, the complex division and the parallel
RLMS, respectively [4].
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Algorithm cMultiply cAdd cDivide
RLMS[15] 3N2 + 11N + 2 2N2 + 9N + 6 N + 1
RLMSp[6] 3N2 + 7N + 1 2N2 + 6N + 3 1
RLS 3N2 + 5N 2N2 + 4N + 2 1
LLMS[5] 6N + 2 5N + 4 N

pLMS 4N + 2 4N + 4 0
RC-pLMS [4] 2N + 1 3N + 2 0
LMS 2N + 1 2N + 1 0

Table 6.3 – Theoretical Complexity and Resource Usage [4]

From Table 6.3, the RLS algorithm and its variants require an higher computational
complexity of order O(N2). Moreover, both the RLMS and the RLMSp mandate the use
of N + 1 and 1 complex dividers, respectively [4]. In contrast, compared to the LLMS
and the pLMS, the RC-pLMS provides near identical LMS resource usage and linear
computational complexity of order O(N) while providing a superior convergence profile
and a lower residual error floor [4]. Thus, with respect to a marginal increase in resource
requirements, i.e. additional adders and subtractors, the RC-pLMS eliminated the LMS
convergence speed and error floor trade off, while preserving a LMS like low complexity
structure.

6.5 Conclusion

In this chapter, we proposed a reduced complexity parallel LMS structure (RC-pLMS)
for adaptive beamforming, we evaluated its transfer function approximation and we im-
plemented its pipeline hardware implementation. RC-pLMS is formed of a simple LMS
stage with additional modified inputs. The modified inputs are formed by applying a sam-
ple delay to the input and desired signals and multiplied by a phase shift, i.e. imaginary
number j. The RC-pLMS transfer function approximation is obtained by modeling the
input spatial linear combiner as a finite impulse response (FIR) fractional delay temporal
filter with a Lagrange interpolation. Moreover, we propose a pipeline hardware imple-
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mentation through the application of the delay and sum relaxed look ahead technique
(DRC-pLMS). Stability and quantization effect analysis are performed to determine the
upper bound of the step size required to ensure convergence, as well as the behavior of the
system with finite precisions. The maximum allowable step size is determined numerically
with respect to the transfer function approximation and the pole zero plot study. Simu-
lation results demonstrate the superior performance of the RC-pLMS and DRC-pLMS in
providing accelerated convergence and maintaining a low steady state error while preserv-
ing a complexity of order O(N). The RC-pLMS beam pointing accuracy was evaluated
to better highlight its precision and was represented with the beam radiation pattern.
Compared to the LLMS and pLMS the RC-pLMS presented a high accuracy beam pat-
tern by accurately steering its main beam towards the desired signal better nulls towards
the two interreferences. Furthermore, the RC-pLMS superior performance was achieved
by a marginal increase in resource usage, compared to the LMS. Also, compared to the
Recursive Least Square (RLS) with quadratic complexity, the RC-pLMS presented near
identical behaivor in a linear complexity form. With respect to the pLMS, the RC-pLMS
presented similar behavior at half the resource requirements. RC-pLMS and DRC-pLMS
algorithms presented a satisfactory convergence profile and beam patterns for a SNR envi-
ronment as low as 1 dB. Through a pole zero plot analysis the maximum step size allowed
to maintain proper RC-pLMS convergence is found to be in the range of 0.03 < µ < 0.04.
Synthesis and implementation results show that, in contrast to other RLS and LMS vari-
ants, the RC-pLMS provides a parallel, pipeline, low complexity and resource friendly
architecture suitable for low end processors. Finally, the fixed point DRC-pLMS beam
radiation pattern validated the DRC-pLMS accuracy in a finite precision mode by pro-
viding similar infinite precision beam steering. The resulting work has been published in
the IEEE Transaction of Circuits and Systems.
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Conclusion

Adaptive beamforming has become an inevitable feature in smart antenna systems
to infer frequency reuse and ease spectral congestion by directional signal reception and
transmission. However, the recent, exponential, growth of internet connected devices has
exhausted spectral resources and imposed challenging constraints on adaptive algorithms
when implemented on dedicated, limited resource, devices, i.e. field programmable gate
array (FPGA). Such constraints are reflected by the requirements of the system to deliver
accelerated convergence and high accuracy while maintaining a low complexity and a high
throughput architecture.

The least mean square (LMS) is a popular and widely used adaptive algorithm in
beamforming given its attractive, low complexity, O(N) structure, where N is the number
of antenna elements, most suitable for a hardware implementation. However, in contrast to
its desirable features, the LMS still suffers from a trade off between its convergence speed
and steady state error, i.e. accuracy. Moreover, presenting a pipeline LMS architecture is
difficult due to the presence of the error feedback path in the weight update equation.

Several variants of the popular least mean square (LMS) have been proposed to present
an improved convergence profile with minimal residual error. Similarly, several work has
been conducted to implement high throughput, low complexity, pipeline parallel LMS
architecture on FPGA. Such modifications are, and not limited to, the use of either of the
following:
— The use of a normalized or variable step size to eliminate the LMS error floor and

convergence speed trade off, such as: the normalized LMS (NLMS) [48], the variable
step size LMS (VSSLMS) [49, 52] and the modified robust VSSLMS (MRVSSLMS)
[50].

— The use of a multi stage adaptive algorithm to accelerate LMS convergence while
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maintaining minimal steady state error, such as: the least mean square - least mean
square (LLMS) [5], the recursive least mean square (RLMS) [15], the Kalman-LMS
and Kalman-RLS [13], the parallel RLMS (RLMSp) [6] and the parallel LMS (pLMS)
[14].

— The use of different delay and approximation techniques to present a pipeline LMS
architecture, such as: the delay and sum relaxed look-ahead technique [21, 24], the
time shared look up table (LUT)-less LMS [22] and the division free and variable
regularized LMS [23].

Despite the listed modifications, the resulting LMS variants either presented an improved
convergence profile, at the cost of an increase of complexity or presented a pipeline hard-
ware architecture without any significant improvement on the theoretical performance,
i.e. convergence speed and accuracy.

To present a high accuracy and fast converging adaptive beamforming structure, while
maintaining an easy to pipeline low complexity LMS like design, we proposed the re-
duced complexity parallel LMS (RC-pLMS) algorithm. The RC-pLMS is formed of a
single LMS stage with additional modified inputs and a linear computational complexity
of order O(N). Moreover, we implemented the RC-pLMS design in a parallel pipeline
high throughput architecture through the application of the delay and sum relaxed look
ahead technique (DRC-pLMS). The superior performance of the RC-pLMS and the finite
precision DRC-pLMS has been demonstrated through extensive software and hardware
simulations. Our contributions throughout this thesis are detailed as follows:
— We performed an experimental study in order to evaluate the behavior of popular

signal processing algorithms, i.e. fast Fourier transform (FFT), used in frequency
domain beamforming when implemented on limited resource devices. The FFT was
implemented considering different architectures, i.e. sequential or parallel, different
processors, i.e. FPGA and system on chip (SoC) and different design tools, tradi-
tional hardware description language (HDL), high level language (HLL) and high
level synthesis (HLS) tools. Through simulation and synthesis results, we demon-
strated the efficiency of using HLL and HLS design tools in targeting heterogeneous
multi core architectures with embedded digital signal processing (DSP) processors.
Additionally, the use of HLS tools resulted in improved design optimization, com-
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pared to the classical HDL tools, through the use of specific compiler directives, thus
reducing design and testing time by two thirds. However, since the HLL optimiza-
tion efficiency is highly correlated with the HLS compiler, it becomes mandatory
to use simple and atomic design techniques. We published this contribution in the
IEEE International Multidisciplinary Conference on Engineering Technology (IM-
CET) [77].

— While the FFT processor is one of the core arithmetic operations in frequency do-
main beamforming, its performance significantly contributes towards the algorithms
convergence speed and beam pointing accuracy. Thus, in this thesis, we proposed
a low complexity, high accuracy, dynamic twiddle factor generator based on the
Chebyshev polynomial approximation for the sine and cosine functions. Addition-
ally, we proposed its finite precision and high throughput parallel pipeline, hard-
ware implementation. Simulation and synthesis results illustrated the upper level
accuracy of the proposed Chebyshev polynomial approximation compared to the
traditional Taylor and coordinate rotation digital computer (CORDIC) techniques.
We should highlight that only the Chebyshev polynomial approximation achieved
a high precision, three decimal digits, low complexity high throughput design. This
work has been published in the Applications in Electronics Pervading Industry, En-
vironment and Society (APPLEPIES) conference [59].

— Inspired by the enhanced performance of the multi stage adaptive beamforming al-
gorithms, i.e. LLMS and RLMS. We conducted an experimental study for different
multi stage designs and studied the effect of the steering vector estimation, i.e the
cascading stage, on the behavior of the system. Experimental results concluded that
the use of the steering vector cascading stage can severally degrade the accuracy
of the system and might cause it to diverge from its theoretical value as a conse-
quence of the division operation, i.e. underflow. Moreover, the estimate cascading
stage introduces additional computational complexity and thus a larger hardware
overhead when implemented on FPGA. Additionally, the cascading nature of the
system makes it extremely difficult to present a pipeline and parallel hardware archi-
tecture. This contribution has been published in the KES International Conference
on Intelligent Decision Technologies (KES-IDT) [13].
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— In order to eliminate the requirements of using a steering vector estimate block, we
proposed the RLMSp multi stage adaptive beamformer design with parallel inputs.
Additionally, the second stage, LMS feedback error was multiplied by a phase shift,
i.e. the imaginary number j, for robustness against repeated samples. Simulation
results demonstrated the superior performance of the proposed RLMSp with respect
to the cascade multi stage structures, i.e. LLMS and RLMS. It has been shown that
the proposed RLMSp maintained an accelerated convergence and high accuracy pro-
file under different SNR environments, however with a reduced complexity and a
parallel ready architecture. Moreover, by omitting the use of the steering vector es-
timate block the complexity of the system was reduced by 20N real multiplications,
6N real additions and 2N real divisions. We published this part of our work in the
European Signal Processing Conference (EUSIPCO) [6].

— As, the RLMSp still exhibits 2N real divisions and an undesirable computational
complexity of order O(N2) making it a unfavorable choice for a pipeline hardware
implementation. Thus, we proposed a two stages parallel input LMS structure, i.e.
pLMS, for adaptive beamforming and its transfer function approximation. Addi-
tionally, in order to present a high throughput pipeline architecture we propose the
application of the delay and sum relaxed look ahead technique (DpLMS) for each of
the LMS stages. Simulation results demonstrated the superior performance of the
pLMS in maintaining an accelerated convergence and a low steady state error pro-
file in an SNR environment as low as 1 dB, compared to other variants. In contrast
to the RLMSp, the pLMS exhibits an attractive, linear, computational complexity
of order O(N) and does not necessitate the use of extensive division routines. The
theoretical stability analysis is conducted to determine the upper bound of the step
size. Additionally, the maximum pLMS step size was numerically determined with
respect to the transfer function approximation. Moreover, the pipeline DpLMS de-
sign was implemented on FPGA and showed identical, theoretical, beam pointing
accuracy, thus further validating its efficiency in finite precision. Synthesis results
showed that the pLMS achieved a maximum operating frequency of 208.33 MHz in
a low complexity, low latency high throughput design. The work conducted for the
pLMS derivation and its hardware implementation has been separately published
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in the European Signal Processing Conference (EUSIPCO) [14, 24].

— While the pLMS presented highest performing and the easiest to pipeline struc-
ture, it still doubles the complexity of the classical LMS and requires the use of
two independent LMS filters. As such, we proposed The RC-pLMS makes use of
a single LMS stage in a similar low complexity design. Similar to the pLMS, in
order to implement the RC-pLMS in a low latency, high throughput architecture on
FPGA, we proposed the application of the delay and sum relaxed look ahead tech-
nique (DRC-pLMS). Simulation results demonstrated the outstanding performance
of the proposed RC-pLMS compared to different adaptive beamforming algorithms.
In contrast to the LLMS and pLMS variants, the RC-pLMS reduced the systems
resource requirements by half, i.e single LMS stage, while maintaining accelerated
convergence, high accuracy and robustness against repeated samples for a signal to
noise ratio (SNR) environment as low as 1 dB. Stability analysis and quantization
effect have been performed to study the behavior of the system and its robustness.
Additionally, the maximum RC-pLMS step size was numerically determined with
respect to the transfer function approximation. To further assess the behavior of
the system, and compare it to that of the infinite precision theoretical value, we im-
plemented the DRC-pLMS in finite precision mode on FPGA. Hardware simulation
results, for the finite precision DRC-pLMS, showed similar infinite precision the-
oretical convergence behavior and beam pointing accuracy. Synthesis results show
that the DRC-pLMS reached a greater operating frequency and low resource usage
compared to other LMS implementations. Moreover, compared to the classical LMS
pipeline implementation, the DRC-pLMS is achieved at the cost of a marginal and
negligible increase in resource usage, i.e. two adders. The resulting work has been
published in the IEEE Transaction of Circuits and Systems [4].

Finally, we can state that the RC-pLMS and the finite precision DRC-pLMS satisfied
the set constraints by presenting a high performance, high accuracy adaptive beamform-
ing algorithm while maintaining a low complexity high throughput LMS like hardware
architecture.
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Future Work

Adaptive beamforming is still an attractive area of research and with the recent
achievement in communications and processor architectures, the benefits become count-
less.
I - In the short to medium term, we should try to enhance the results obtained through

this thesis. Indeed, the RC-pLMS developed in chapter 6 of this thesis, is designed
for a single linear antenna system and narrow band signals. To further explore its
potential, we are planning to extend the actual version by investigating the following
improvements:
a) In the proposed design, the RC-pLMS implements at its core a classical LMS

algorithm, as such it would be worthwhile to study the performance of the
system with respect to other variants, i.e. genetic LMS algorithm.

b) 3G, 4G, 5G and further generations dedicated to multimedia and fast internet
access should consider wide band signals. Therefore, the RC-pLMS algorithm
should be evolved to deal with such signals.

c) To conduct real world experiments and assess the systems behavior with respect
to the fading and scattering effects.

d) With respect to the unprecedented popularity of the nanosatellite "CubeSat"
communication systems and the spacing constraints they propose, it becomes
interesting to investigate the RC-pLMS adaptive algorithms behavior and re-
sources utilization for different antenna array structures, i.e. rectangular and
circular, and study its robustness. Due to the strict CubeSat geometry con-
straints imposed, the proposed algorithm should be evaluated for robustness
against the presence of element gain and different inter-element spacing.

II - Light fidelity (Li-Fi) communication systems [88] have gained popularity in indoor
usage for communication and localization given their high speed transmission rate
and free license. Thus, it would be challenging to implement a high accuracy beam-
former system with a low complexity hardware architecture.

III - 5G+ and 6G networks are key enablers of the future intelligent, communication,
networks and machines and are expected to provide multi-user multi-terabyte per
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second (Tb/s) data rates [89]. 5G+ and 6G networks will probably use dedicated
artificial intelligence processors and will require real time inference. As such, it will
be extremely challenging to develop adaptive beamforming algorithms, for intelligent
networks, through the use of deep learning systems and dedicated artificial intelligent
processors that meets the networks requirements. We are willing to extend our
research axes to include these new challenges.
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APPENDIX A

Steering Vector Estimate

The output of the individual taps of the beamformer are given by:

x
′

m(k) = w1,mx1,m(k) (6.38)

When the first stage, RLS, adaptive algorithm converges the output yRLS tends to ap-
proach the desired signal sd(k) by suppressing the interference and noise signals. Therefore,
let the beamformer output be defined by:

yRLS(k) ' sd(k) (6.39)

At convergence and by applying the expectation operator to both sides of equation (2.5),
we get:

E[x1,m(k)] ' âd,mE[sd(k)] ' âd,mE[yRLS(k)] (6.40)

Assuming that after convergence, we can approximate:

E[yRLS(k)] ' yRLS(k) (6.41)

thus equation (6.40) can be rewritten as:

E[x1,m(k)] ' âd,myRLS(k) (6.42)
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assuming that the input signal and the available tap weights are uncorrelated the expec-
tation of equation (6.38) can be written as:

E[x′1,m(k)] ' E[w1,m]E[x1,m(k)] (6.43)

therefore, from equations (6.42) and (6.43), we can estimate the array steering vector in
expectation and instantaneous form as:

âd,m(k) '
E[x′1,m(k)]

E[w1,m]yRLS(k) + ϑ
'

x
′
1,m(k)

w1,m(k)yRLS(k) + ϑ
(6.44)
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APPENDIX B

pLMS Mean Square Error

The parallel LMS (pLMS) mean square error (MSE) ξpLMS is defined as:

ξpLMS(k) = E[|epLMS(k)|2]

= E[e1(k)e∗
1(k) + je1(k)e∗

2(k − 1)

−je∗
1(k)e2(k − 1) + e2(k − 1)e∗

2(k − 1)] (6.45)

with |.| signifies the complex modulus. Moreover, the first term of (6.45) can be expressed
as:

E[|e1(k)|2] = E[|d(k)|2]− pHw1(k)−wH
1 (k)p + wH

1 (k)Rw1(k) (6.46)

the last term of (6.45) can be developed as follow:

E[|e2(k − 1)|2] = −E[d1(k)xH
1 (k − 1)]w2(k − 1)−wH

2 (k − 1)E[d∗
1 (k)x(k − 1 )]

+E[|d(k − 1)|2] + wH
2 (k − 1)E[x1(k)xH(k − 1)]w2(k − 1) (6.47)

In addition, the second term of (6.45) can be detailed as:

E[e1(k)e∗
2(k − 1)] = E[−d(k)xH(k − 1)w2(k − 1)− d∗(k − 1)wH

1 (k)x(k)

+d(k)d∗(k − 1) + wH
1 (k)x(k)xH(k − 1 )w2(k − 1)] (6.48)
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and the third term of (6.45) becomes:

E[e∗
1(k)e2(k − 1)] = E[−d∗(k)wH

2 (k − 1)x(k − 1)− d(k − 1)xH(k)w1(k)

+d∗(k)d(k − 1) + xH(k)w1(k)wH
2 (k − 1)x(k − 1)] (6.49)

substituting (6.46), (6.47), (6.48) and (6.49), in (6.45) the MSE ξpLMS becomes:

ξpLMS(k) = E[|d(k)|2]− pHw1(k)−wH
1 (k)p + wH

1 (k)Rw1(k) + E[|d(k − 1)|2]

−E[d(k)xH(k − 1)]w2(k − 1)−wH
2 (k − 1)E[d∗(k)x(k − 1)] + jE[d∗(k)d(k − 1)]

+wH
2 (k − 1)E[x(k)x(k − 1)]w2(k − 1) + jE[d(k)d∗(k − 1)]

−jwH
1 (k)E[d∗(k − 1)x(k)] + jwH

1 (k)E[x(k)xH(k − 1)]w2(k − 1)

+jE[d(k)xH(k − 1)]w1(k) + jwH
2 (k − 1)E[d(k)x(k − 1)]

+jE[xH(k)w1(k)wH
2 (k − 1)x(k − 1)]− jE[d(k)xH(k − 1)]w2(k − 1) (6.50)

where w1(k) is the tap weight of interest.

RC-pLMS Mean Square Error

The RC-pLMS MSE, ξRC−pLMS, can be obtained from (6.50) by setting w(k) = w1(k) =
w2(k). As such, we obtain:

ξRC−pLMS(k) = E[|d(k)|2]− pHw(k)−wH(k)p + wH(k)Rw(k) + E[|d(k − 1)|2]

−E[d(k)xH(k − 1)]w(k − 1)−wH(k − 1)E[d∗(k)x(k − 1)] + jE[d∗(k)d(k − 1)]

+wH(k − 1)E[x(k)x(k − 1)]w(k − 1) + jE[d(k)d∗(k − 1)]

−jwH(k)E[d∗(k − 1)x(k)] + jwH(k)E[x(k)xH(k − 1)]w(k − 1)

+jE[d(k)xH(k − 1)]w1(k) + jwH(k − 1)E[d(k)x(k − 1)]

+jE[xH(k)w(k)wH(k − 1)x(k − 1)]− jE[d(k)xH(k − 1)]w(k − 1) (6.51)

where w(k) is the tap weight of interest.
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APPENDIX C

RC-pLMS Performance Evaluation With Modulated
Signals

In non-blind, temporal based, adaptive beamforming algorithms, the system undergoes
a training phase before transmission in order to receive the training signal, compute its
weights and steer its beam pattern accordingly. During the training phase no data is
transmitted from the user to the station, and the reference signal is simple and well known.
As such, in this section, we evaluate the performance of the RC-pLMS with respect to
a simple binary message signal with 2 Phase Shift Keying (PSK) modulation and an
amplitude of 0.2. Additionally, we include two interfering signals modulated in 4-PSK
and 8 Qadrature Amplitude Modulation (QAM), with an amplitude of 0.1, respectively.
The MSE convergence behavior is shown in Figure 6.12.

Figure 6.12 – RC-pLMS MSE Convergence Behavior for a Simple 2-PSK Message Signal
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As shown in Figure 6.12, compared to the RLS with a quadratic complexity, the linear
complexity RC-pLMS presented a fast and smooth convergence behavior where it achieved
its convergence in the first 5 iterations.

The RC-pLMS is now re-evaluated, with respect to its beam pattern plot, for different
SNR environments. The desired message is incoming at an angle of arrival of 30◦ and
corrupted by two interfering signals incoming at 45◦ and 80◦, respectively.

Figure 6.13 – RC-pLMS Beam Radiation Pattern for a Simple 2-PSK Message Signal and
Different SNR

As shown from Figure 6.13, the RC-pLMS, for simple signals, maintained an accurate
beam pattern for an SNR as low as -5 dB, where it successfully steered its main beam
towards the direction of the desired user at 30◦ and its nulls towards the interfering signals
at 45◦ and 80◦, respectively.

In order to further evaluate the performance of the RC-pLMS we plot its MSE beam
localization behavior with respect to the angle of arrival.
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Figure 6.14 – RC-pLMS Beam MSE Localization With Respect to the Angle of Arrival

As shown in Figure 6.14, compared to the RLS with a quadratic computational com-
plexity the linear pLMS presented similar accelerated convergence behavior where it
achieved beam convergence in the first few iterations. Also, compared to the pLMS the
RC-pLMS presented near identical convergence behavior and accuracy with only half of
the resource requirements, thus futrher validating its reliability.
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APPENDIX D

pLMS Transfer Function Approximation

The input system described by the N equally spaced, identical antenna elements is
modeled as a N th order fractional delay filter employing a Farrow structure and Lagrange
interpolation. The new pLMS input signal xf (k) can now be defined as:

xf (k) = yd(k) +
N−1∑
j=0

yi,j(k) + n(k) (6.52)

where yd(k), yi,j(k) are the message and interfering signals subject to a fractional delay
filter and n(k) is a complex additive white Gaussian noise (CAWGN). The pLMS transfer
function approximation can now be derived such that:

epLMS(k) = d(k)− jd(k − 1)− y1(k) + jy2(k − 1) (6.53)

Applying the z transform for both sides of (6.53), we obtain:

E[D(z)]− jz−1E[D(z)] = E[JpLMS(z)] + E[Y1(z)]− jz−1E[Y2(z)] (6.54)

with

E[JpLMS(z)] = E[epLMS(0)] + E[epLMS(1)]z−1 + E[epLMS(2)]z−2 + ... (6.55)

E[D(z)] = E[d(0)] + E[d(1)]z−1 + E[d(2)]z−2 + ... (6.56)

and

yi(k) = wH
i (k)xf (k) (6.57)
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putting w1(0) = w2(0) = 0, we obtain:

y1(k) = µ1

k−1∑
i=0

βi(k)epLMS(i) (6.58)

y2(k) = µ2

k−1∑
i=0

βi(k)e2(i) (6.59)

where βi(k) = xH
f (i)xf (k). Moreover, since βi(k) is time varying, it is difficult to achieve

a solvable difference equation. However, we know that:

βi(k) =
N−1∑
j=0

xf(i−j)xf(k−j) = Nrki (6.60)

rki = 1
N

N−1∑
j=0

xf(i−j)xf(k−j) (6.61)

and rki is the input signals auto-correlation estimate. Considering the input signal is WSS
and its properties can be estimated by a time average to obtain rki ≈ rk−i. Hence, (6.58)
and (6.59) can be approximated as having constant coefficients:

y1(k) = Nµ1

k−1∑
i=0

rk−iepLMS(i) (6.62)

y2(k) = Nµ2

k−1∑
i=0

rk−ie2(i) (6.63)

Furthermore, applying the Z transform to both sides of (6.62) and (6.63), we get:

E[Y1(z)] = µ1NE[JpLMS(z)]R(z) (6.64)

E[Y2(z)] = µ2NE[J2(z)]R(z) (6.65)

where

E[J2(z)] = E[e2(0)] + E[e2(1)]z−1 + E[e2(2)]z−2 + ... (6.66)
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Additionally, by taking the expectation, it is assumed that rk−i is the auto-correlation
coefficient instead of its estimate and R(z) = r1z

−1 + r2z
−2 + .... is a polynomial in the Z

field. Furthermore, from (6.54), (6.64) and (6.65), we get:

E[D(z)]− jz−1E[D(z)] = E[JpLMS(z)] + µ1NE[JpLMS(z)]R(z)

−jz−1µ2NE[J2(z)]R(z) (6.67)

Using (6.67), and the LMS transfer function approximation given as:

H(z) = E[J(z)]
E[D(z)] = 1

1 + µLR(z) (6.68)

we can write

E[J2(z)] = E[D(z)]
1 + µ2NR(z) (6.69)

The pLMS transfer function approximate becomes:

HpLMS(z) = 1 + µ2NR(z)− jz−1

(1 + µ1NR(z))(1 + µ2NR(z)) (6.70)

RC-pLMS Transfer Function Approximation

The RC-pLMS is computed following the same procedure of the pLMS and with
respect to the LMS transfer function approximation in (6.68). Thus, the RC-pLMS transfer
function approximation becomes as follows:

HRC−pLMS(z) = 1− jz−1

1 + µN(1− jz−1)R(z) (6.71)
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APPENDIX E

Arithmetic Complexity

In order to better highlight the performance of each algorithm, in this section we
present the MSE convergence behavior with respect to time. This simulation is run on a
machine with an Intel Core i5-6500HQ processor, 8 gigabytes (GB) of memory, Windows
10, 64-bits operating system and Matlab version 2017. The MSE convergence plot is shown
in Figures 6.15, 6.16 and 6.17.

Figure 6.15 – LMS, RLS and Other Variants MSE Convergence vs Time Plot
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Figure 6.16 – pLMS MSE Convergence Behavior MSE vs Time Plot

Figure 6.17 – RC-pLMS MSE Convergence Behavior vs Time Plot
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Résumé : Pour améliorer l’efficacité du spec-
tre, la formation adaptative de faisceaux de-
vient une caractéristique inévitable pour les
antennes intelligentes. Les systèmes embar-
qués de communication sans fil imposent des
contraintes difficiles liées à l’implémentation
en parallèle et en pipeline avec des ressources
limitées. Certaines variantes des algorithmes
accélérent la convergence tout en maintenant
une faible erreur résiduelle. D’autres présen-
tent des architectures de pipeline parallèle.
Donc, les algorithmes actuels profitent d’une
convergence améliorée, au prix d’une aug-
mentation de la complexité, ou bien une ar-
chitecture matérielle de pipeline sans aucune
amélioration significative. Pour présenter une

solution unifiée, nous proposons un algo-
rithme en deux étapes, appelée structure par-
allèle des moindres carrés moyens (pLMS).
Une conception de pLMS à complexité ré-
duite (RCpLMS) a été aussi développée. Afin
de concevoir une architecture matérielle en
pipeline, nous avons appliqué la technique
de relaxation de de somme en retard (DRC-
pLMS). Une étudedes performances sur dif-
férents plateformes et architectures a été
menée. Les simulations démontrent les perfor-
mances exceptionnelles du RC-pLMS. DRC-
pLMS fonctionne à une fréquence maximale
de 208,33 MHz avec une légère augmentation
des ressources par rapport à LMS.

Keywords: LMS, Adaptive Beamforming, FPGA, Sensor Array, RC-pLMS.

Abstract: Ever since its inception, adaptive
beamforming has become an inevitable fea-
ture in smart antenna array to improve the
spectrum efficiency. However, modern embed-
ded wireless communication systems have
imposed challenging constraints on adap-
tive algorithms when targeting a parallel and
pipelined implementation on limited resource
devices, like Field Programmable Gate Ar-
ray (FPGA). Such constraints include reduced
complexity, parallelism, accelerated conver-
gence and low residual error. Several vari-
ants of classical adaptive beamformers were
proposed to accelerate the convergence while
maintaining a low error floor. Other sugges-
tions focused on a parallel, pipeline architec-
ture. The resulting beamforming algorithms ei-
ther presented an improved convergence pro-
file, at the cost of an increase of complex-

ity or presented a pipeline hardware architec-
ture without any significant improvement. To
present a unified solution with superior conver-
gence profile while maintaining a low complex-
ity parallel pipeline architecture, we propose
a two-stages algorithm, called parallel least
mean square structure (pLMS). pLMS is fur-
ther simplified to obtain the reduced complex-
ity pLMS design (RC-pLMS). In order to design
a pipelined hardware architecture, we applied
the delay and sum relaxation technique (DRC-
pLMS). A study on the behavior and the perfor-
mance of different hardware design tools and
processor architectures is conducted. Com-
puter simulations demonstrated the outstand-
ing performance of RC-pLMS. The DRC-pLMS
can operate at a maximum frequency of 208.33
MHz with a minor increase in resource usage
compared to LMS.
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