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A

. In the rst part of this dissertation, we give a de nition of "dependently typed/sorted algebraic theory", generalising the ordinary multisorted algebraic theories of Lawvere-Bénabou. Dependently sorted algebraic theories in our sense form a strict subclass of the "generalised algebraic theories" of Cartmell. We prove a classi cation theorem for dependently sorted algebraic theories, and use this theorem to prove the existence of dependently sorted algebraic theories for a number of varieties of algebraic structures, such as small categories, n-categories, strict and weak omega-categories, planar coloured operads and opetopic sets. We also prove a Morita equivalence between dependently sorted algebraic theories and essentially algebraic theories, showing that every locally nitely presentable category is the category of models of some dependently sorted algebraic theory. We give a de nition of strict and weak homotopical models of a dependently sorted algebraic theory, and prove a rigidi cation theorem in a particular case. We also study the opetopic case in detail, and prove that a number of varieties of algebraic structures such as small categories and coloured planar operads can be "typed" by the category of opetopes.

The second part of this dissertation concerns accessible re ective localisations of locally presentable in nity-categories. We give a de nition of "premodulator", and prove a canonical correspondence between pre-modulators and accessible orthogonal factorisation systems on a locally presentable in nitycategory. Moreover, we show that every such factorisation system can be generated from a pre-modulator by a trans nite iteration of a "plus-construction". We give de nitions of "modulator" and "left exact modulator", and prove that they correspond to those factorisation systems that are modalities and left-exact modalities respectively. Finally we obtain a correspondence between left-exact localisations of in nity-topoi and left-exact modulators.

Introduction

This dissertation is intended as a contribution to the universal algebra and homotopy theory of "dependently typed theories".

Motivation and context

This dissertation is an attempt to substantiate two theses. T 1. Type dependency in logic corresponds to the cellularity inherent in higher-dimensional algebraic structures.

T 2. The correspondence between type dependency and cellularity is particularly well-suited to the description of homotopy-coherent higher-dimensional algebraic structures in spaces (higher algebraic structures).

Dependently typed theories and cellularity. Thesis 1 is best illustrated by way of an example. Small categories are algebraic structures on (directed multi)graphs-namely, there is a forgetful monadic functor Cat → G 1 from the category of small categories to the presheaf category G 1 def = G op 1 , Set of graphs. Graphs have a cellular structure that is easy to visualise-their vertices are cells of dimension 0, their edges, cells of dimension 1, and there are no cells of higher dimension. Then the algebraic structure of a category (such as the operation of composition of morphisms) can be de ned using the cellular structure of its underlying graph.

Let us describe this syntactically, step by step using dependent types, in such a way that the graph-cellularity inherent in the type dependency is clear. The monadic functor Cat → G 1 underlies the fact that the theory of categories is an extension of the theory of graphs. A graph is a diagram , : ⇒ of sets, where is the set of edges of and is the set of vertices. This can be represented syntactically by the dependent type signature

S G 1 def = {∅
type , : , : ( , ) type} which displays the type of edges as dependent on the context ( : , : ) (we write ( , : ) for short) of a pair of variables of the type of vertices. A model of S G 1 (in Set) is the data of a set and for every pair ( , ) ∈ × , a set ( , ).

Clearly, models of S G 1 are exactly graphs → × . In other words, S G 1 is the dependently typed theory of graphs.

The signature S G 1 corresponds to the category

G 1 def = 0 1
by associating the type to 0 and the type family to 1 . The category G 1 is a direct category-each representable in G 1 has a canonical boundary, and every 1 INTRODUCTION graph is a cell complex constructed by "gluing" representables along boundaries. For instance, via the correspondence S G 1 ∼ G 1 , the context ( , : ) can be understood as the graph with two vertices and no edges, that is the boundary 1 of the representable 1 ∈ G 1 . The boundary of the representable 0 is the empty graph, which corresponds to the empty context ∅. Then the graph

Γ = { - → - → }
with three vertices and two "composable" edges can be seen as the cell complex 1

{ - → } = (Γ) 1 Γ ( , )
obtained by gluing the representable 1 to the graph (Γ) along the map 1 → (Γ) that takes the "source" and "target" vertices of 1 to and respectively. Via the correspondence S G 1 ∼ G 1 , Γ can be seen syntactically as the extension Γ = ( , , : , : ( , ), : ( , )) -→ ( , , : , : ( , )) = (Γ) of the context (Γ) with the variable : ( , ).

The dependently typed theory of small categories introduces a term signature with two operations over the term signature F Cat . Then a model of the theory T Cat def = (F Cat , E Cat ) over the signature S G 1 is a graph with the functions of sets encoded by the operations of F Cat , satisfying the equations in E Cat . It is easy to see that the models of T Cat are exactly small categories.

Similarly to small categories, a number of other familiar algebraic structures can be classi ed by dependently typed algebraic theories, each with its own notion of cellularity. For instance, -categories (respectively, -categories) are de ned by a theory over the dependent type signature of globes (respectively, globes of dimension ≤ ). Another example are coloured planar operads, which are de ned by a theory over the dependent type signature of corollas or elementary trees.

This idea of associating type dependency to cellularity is not new-for instance, it is clearly present in the theory of FOLDS of [START_REF] Makkai | First Order Logic with Dependent Sorts, with Applications to Category Theory[END_REF], and in the groupoidal and globular -groupoidal structure of identity types of [START_REF] Hofmann | The groupoid interpretation of type theory. Twenty-ve years of constructive type theory[END_REF] and [START_REF] Lefanu | Weak -categories from intensional type theory[END_REF][START_REF] Van Den | Types are weak -groupoids[END_REF]. More recently, [Bru16, App. A] gives a dependently typed theory of weak -groupoids, and [START_REF] Finster | A type-theoretical de nition of weak -categories[END_REF][START_REF] Benjamin | A type theoretic approach to weak -categories and related higher structures[END_REF] describe a dependently typed algebraic theory of weak -categories. Nevertheless, a robust de nition and classi cation of dependently typed algebraic theories and the corresponding algebraic structures de ned by them has not yet been laid down, and this is one of the primary goals of this dissertation.

In this dissertation, we give a number of de nitions of what we mean by dependently typed algebraic theory, using the correspondence between type dependency and cellularity. We prove a classi cation theorem (Theorem 1.4.26) showing that all these de nitions are equivalent. Syntactically, dependently typed algebraic theories correspond to a strict subclass of the generalised algebraic theories of [START_REF] Cartmell | Generalised algebraic theories and contextual categories[END_REF].

We use the classi cation theorem to recognise many dependently typed algebraic theories. In fact, it turns out that every locally nitely presentable category is the category of models in Set of some dependently typed algebraic theory (Theorem 2.1.13), therefore dependently typed algebraic theories are just as expressive (with respect to their models in Set) as essentially algebraic or nite limit theories (Corollary 2.1.14).

Cellular multicategories. Continuing with the example of the theory T Cat of small categories, remark that the contexts in every declaration of F Cat and E Cat (to the left of the turnstile symbol " ") are all graphs (they correspond to cell complexes in G 1 ). We can therefore see the declarations in F Cat as operations or multimorphisms of a "cellular multicategory" that take as input a ( nite) graph, and whose output "cell" is a representable. For example, the operations (-, -) and (-) can be visualised as follows.

( , ) ( ,

)
The term ( , ( )) can be visualised as the tree of operations below.

( , )

This "cellular cartesian multicategory" approach to dependently typed algebraic theories strictly generalises the point of view of multisorted algebraic theories as cartesian multicategories (equivalently, categories with nite products) due to Lawvere [START_REF] Lawvere | Functorial semantics of algebraic theories[END_REF] and Bénabou [START_REF] Bénabou | Structures algébriques dans les catégories[END_REF]. In this framework, multisorted algebraic theories are cellular cartesian multicategories whose cells are all of dimension 0 (they are "points", namely they have no dependencies). The point of view of dependently sorted/typed algebraic theories as cellular cartesian multicategories appears in [Fio08, Sec. II] (somewhat implicitly), where they are called Σ 0 -models with substitution. More generally, the theory of monads with arities and theories with arities of [START_REF] Weber | Familial 2-functors and parametric right adjoints[END_REF][START_REF] Melliès | Segal condition meets computational e ects[END_REF][START_REF] Berger | Monads with arities and their associated theories[END_REF] can be seen as an abstract theory of "multicategories" with general arities. However, a general INTRODUCTION concrete theory of cellular "species" and multicategories corresponding to dependently typed algebraic theories is (to the best of my knowledge) far from being established.

In this dissertation, we outline the point of view of dependently sorted/typed algebraic theories as cellular cartesian multicategories (Section 1.3) but we do not set up a general theory of cellular multicategories. 1Higher algebraic structures and theories. Thesis 2 has to do with algebraic structures up to homotopy. Higher algebraic structures are the "right" notion of algebraic structures up to homotopy in spaces. A general blueprint describing a kind of higher algebraic structure (such as (∞, 1)-categories, ∞-operads, stacks, spectra, ∞ -spaces) is as a diagram of spaces, along with operations that are subject to "equations". These equations are quotients of spaces, which are in nite towers of homotopy-coherent data, and this renders the de nition of higher algebraic structures much more subtle than their Set-valued ("discrete" or "0-truncated") versions.

For instance, composition of morphisms in (∞, 1)-categories ("∞-categories" for short), is homotopy-coherently associative. This is usually described in different ways, through di erent model categories, such as the model structure for quasicategories on simplicial sets and the model structure for complete Segal spaces on bisimplicial sets. Indeed, most of the theory of ∞-categories has been formally developed only in quasicategories. Nevertheless, quasicategories are not in any well-understood way a canonical model for ∞-categories. The question of providing a good syntactic theory of ∞-categories is still an open problem (and under active research, see [START_REF] Riehl | A type theory for synthetic ∞-categories[END_REF][START_REF] Finster | Towards higher universal algebra in type theory[END_REF][START_REF] Allioux | Types are internal ∞-groupoids[END_REF]).

A syntactic counterpart (to the predicate of equality for quotients of sets) for quotients of spaces are the Martin-Löf identity types of Homotopy Type Theory (HoTT). This is substantiated by the fact that HoTT can be interpreted in the ∞-topos of spaces [START_REF] Kapulkin | The Simplicial Model of Univalent Foundations (after Voevodsky)[END_REF], and indeed in any ∞-topos [START_REF] Shulman | All (∞, 1)-toposes have strict univalent universes[END_REF], in such a way that identity types correspond to the "predicates of equality" (iterated diagonals). Therefore, we might expect that some higher algebraic counterpart, that uses identity types, of the dependently typed algebraic theory T Cat of categories is such a syntactic candidate of the theory of ∞-categories. In general, we might expect a dependently typed higher algebraic theory to be an extension of HoTT with types, terms, and identity paths instead of equations in more or less the same way as the dependently typed algebraic theories of Thesis 1.

Homotopical models of algebraic theories. In this dissertation, we do not attempt to give a general theory of dependently typed higher algebraic theories, which is a problem that requires a lot more groundwork in order to be tackled.

We restrict ourselves to describing a theory of homotopy models of the dependently typed algebraic theories of Thesis 1, that generalises certain aspects of the theory of homotopy models of multisorted algebraic theories due to [START_REF] Schwede | Stable homotopy of algebraic theories[END_REF][START_REF] Badzioch | Algebraic theories in homotopy theory[END_REF][START_REF] Rezk | Every homotopy theory of simplicial algebras admits a proper model[END_REF][START_REF] Bergner | Rigidi cation of algebras over multi-sorted theories[END_REF]. Even in this case, we are not able to show that all of the rigidi cation theory of op. cit. generalises (although we conjecture that it does, see Section 2.6). Nevertheless, we posit this generalisation as suggestive of the existence of a general theory of dependently typed higher algebraic theories.

Idempotent opetopic theories. Dependent types are su ciently expressive to allow for the "shapes" of operations (and equations) of an algebraic structure to be abstracted into the type signature. For example, consider the operation (of composition of morphisms in small categories) , , : , : ( , ), : ( , ) ( , ) : ( , )

in the term signature F Cat . We can extend the type signature S G 1 with the type declaration , , : , : ( , ), : ( , ), ℎ: ( , ) ( , , , , , ℎ) type which corresponds to the shape of the operation of composition (-, -). The shape of the dependent type can be visualised as follows.

ℎ

⇓

If we write S G 1 for the extension of S G 1 with the previous type declaration, then S G 1 corresponds to the category

G 1 def = 0 1
and the category Cat has a monadic functor Cat → G 1 sending a small category to a presheaf whose bre over is the set of commutative triangles in . Thus the operation of composition in a category can be "opetopi ed" into a representable cell of the type signature. In fact, the theory T Cat of categories can be "totally opetopi ed"-all its operations and equations can be integrated into a type signature S O ≤3 that is an extension of the signature S G 1 . The signature S O ≤3 corresponds to a direct category O ≤3 (the category of opetopes of dimension ≤ 3), such that G 1 ↩→ O ≤3 is a full subcategory. Moreover, there is a monadic functor Cat → O ≤3 that is fully faithful-we have therefore transformed all the "structure" of a small category into "properties" of a presheaf on O ≤3 . Finally, Cat is the category of models of a nite limit sketch on the category O op ≤3 . This new dependently typed algebraic theory of small categories over the signature S O ≤3 is an example of an idempotent opetopic theory.

The process of opetopi cation was originally de ned for coloured symmetric operads in [START_REF] Baez | Higher-dimensional algebra. III. -categories and the algebra of opetopes[END_REF]. A similar process is fundamental to the L-structures of [START_REF] Makkai | First Order Logic with Dependent Sorts, with Applications to Category Theory[END_REF].

In this dissertation, we study a class of idempotent opetopic theories obtained from the category O of opetopes. We show that we can associate a good notion of homotopy-coherent model to each of these theories.

INTRODUCTION theories correspond to locally nitely presentable 1-categories, so do the conjectural dependently typed higher algebraic theories give rise to 2 locally nitely presentable ∞-categories . As a starting point, it is clear from the de nitions that the homotopy models of a dependently typed algebraic theory form a locallynitely presentable ∞-category. The conjecture is also supported by [START_REF] Kapulkin | Internal languages of nitely complete (∞, 1)categories[END_REF], where it is shown that nitely complete ∞-categories correspond to tribes, which are an abstraction of type theories with Martin-Löf identity types.

In a separate but related part of this dissertation (Part 2), we study locally presentable ∞-categories, and develop a theory of (pre-)modulators, which shows that every accessible factorisation system on a locally presentable ∞-category can be obtained by iterating a plus-construction.

Organisation

This dissertation is divided into two parts.

Part 1 contains the main content of this dissertation, and is concerned with Theses 1 and 2.

Chapter 1 develops the theory of dependently typed/sorted algebraic theories. We begin by describing the correspondence between cellularity and type dependency. The key de nition is that of locally nite direct category, which is an equivalent reformulation of the de nition of "simple category" from [START_REF] Makkai | First Order Logic with Dependent Sorts, with Applications to Category Theory[END_REF]. We use this reformulation to give multiple de nitions of the dependently typed algebraic theories that we are interested in. The approach we take is via the formalism of C-contextual categories (De nition 1.4.21), which allows us to avoid explicitly working with syntax. We prove a classi cation theorem (Theorem 1.4.26) showing that these de nitions are equivalent, and which strictly generalises Lawvere's classi cation theorem for (multisorted) algebraic theories. We immediately use this result to detect several dependently typed algebraic theories. Finally, we describe the syntactic characterisation of dependently typed algebraic theories explicitly, and show that they are a strict subclass of Cartmell's generalised algebraic theories [START_REF] Cartmell | Generalised algebraic theories and contextual categories[END_REF][START_REF] Cartmell | Generalised algebraic theories and contextual categories[END_REF]. Other results of interest in this chapter are the initiality of the free contextual category on a type signature (Proposition 1.4.14) and the various properties that it possesses (Propositions 1.4.5 to 1.4.8).

Chapter 2 develops the theory of homotopy models in spaces of dependently typed algebraic theories. We begin by classifying the categories of Set-models of dependently typed algebraic theories as exactly the locally nitely presentable categories, allowing us to conclude that the classes of dependently typed algebraic theories, essentially algebraic theories, and generalised algebraic theories are all Morita-equivalent (Theorem 2.1.13 and Corollary 2.1.14). After recalling some elements of the theory of simplicial model categories, we show a rigidi cation theorem (Theorem 2.5.28) for homotopy models in spaces of the initial dependently typed algebraic theory on a locally nite direct category C. Finally, we prove the existence of a model structure for homotopy models in spaces of any dependently typed algebraic theory (Theorem 2.6.7), and conjecture a general rigidi cation theorem. Other results of interest in this chapter are the construction of a asque 2 There is a subtlety here, in that dependently typed higher algebraic theories likely correspond to nitely complete (="lex") ∞-categories, and locally nitely presentable ∞-categories correspond to idempotent-complete lex ∞-categories.

intermediate global model structure on simplicial presheaves on the initial C-contextual category (Theorem 2.5.9) and the description of C-spaces as sheaves of ∞-groupoids on the initial C-contextual category (Proposition 2.3.6).

Chapter 3 studies a class of idempotent theories over the locally nite direct category O of opetopes. We begin by recalling the construction of the category O from [START_REF] Kock | Polynomial functors and opetopes[END_REF][START_REF] Ho | The equivalence between many-to-one polygraphs and opetopic sets[END_REF]. We de ne a family of parametric right adjoint monads ℨ whose algebras are the opetopic algebras (De nition 3.3.23). We show that every category OAlg of opetopic algebras admits a fully faithful, accessible monadic opetopic nerve functor OAlg ↩→ O to the category of opetopic sets, and that OAlg is the category of models of a nite projective sketch on O op (Theorem 3.4.29), which implies that OAlg is the category of models of an idempotent opetopic theory (Theorem 3.4.30). We show that particular cases of OAlg are the categories Cat, Opd, Cmbd of small categories, coloured planar operads, and coloured combinads of [START_REF] Loday | Algebras, operads, combinads. irma-web1[END_REF], thus each of these is the category of models of an idempotent opetopic theory. Finally, we show that a technique due to [START_REF] Roy | A model structure on internal categories in simplicial sets[END_REF] allows us to de ne a model structure for homotopy-coherent opetopic algebras and prove it Quillen equivalent to a model structure on simplicial opetopic algebras (Theorem 3.5.15). In the particular case of Cat and Opd, we obtain Rezk's model structure for Segal spaces and the planar version of Cisinski-Moerdijk's model structure for Segal dendroidal spaces.

Introduction (français)

Cette dissertation se veut une contribution à l'algèbre universelle et à la théorie de l'homotopie des théories à types dépendants.

Contexte

Cette dissertation cherche à justi er deux thèses.

T 1. La dépendance de types (ou sortes) en logique correspond à une « cellularité » intrinsèque aux structures algébriques de dimension supérieure.

T 2. La correspondance entre les types dépendants et la cellularité est particulièrement bien adaptée à la description des structures algébriques de dimension supérieure, à homotopie cohérente près, dans les espaces (les types d'homotopie).

Théories à types dépendants et cellularité. Illustrons la thèse 1 par un exemple. Une petite catégorie est une structure algébrique avec un graphe sousjacent. (Nota bene : pour nous, « graphe » = « graphe dirigé ».) Plus précisément, il existe un foncteur monadique d'oubli de la catégorie Cat des petites catégories vers la catégorie G 1 def = G op 1 , Set des graphes. Un graphe admet une structure cellulaire évidente -ses cellules de dimension 0 sont ses noeuds, celles de dimension 1 sont ses arêtes, et aucun graphe n'a de cellule de dimension > 1. De là, la structure algébrique d'une petite catégorie (telle que son opération de composition d'arêtes) s'exprime en utilisant cette structure cellulaire de son graphe sous-jacent.

Décrivons cela de manière syntaxique, en utilisant les types dépendants, de façon à mettre en évidence la cellularité des graphes inhérente à l'axiomatisation. L'existence du foncteur monadique Cat → G 1 correspond au fait que la théorie des petites catégories est une extension de la théorie des graphes. Un en associant le type à l'objet 0 , et la famille de types à l'objet 1 . La catégorie G 1 est directe -chaque représentable dans G 1 admet un bord, et chaque graphe est un complexe cellulaire construit en recollant des préfaisceaux représentables le long de leurs bords. Par exemple, via la correspondance S G 1 ∼ G 1 , le contexte ( , : ) correspond au graphe avec deux noeuds et sans arêtes, à savoir le bord 1 du préfaisceau représentable 1 ∈ G 1 . Le bord du représentable 0 est le graphe vide, qui correspond au contexte vide ∅. Un autre exemple est le graphe

Γ = { - → - → }
avec trois noeuds et deux arêtes composables, qui peut être vu comme le complexe cellulaire 1

{ - → } = (Γ) 1 Γ ( , )
obtenu en recollant le représentable 1 au graphe (Γ), le long de l'application 1 → (Γ) envoyant la source et le but de 1 sur les noeuds et respectivement. En utilisant la correspondance S G 1 ∼ G 1 , Γ se voit de manière syntaxique comme l'extension Γ = ( , , : , : ( , ), : ( , )) -→ ( , , : , : ( , )) = (Γ) du contexte (Γ) avec la variable : ( , ).

La théorie algébrique à types dépendants des petites catégories introduit d'abord une signature de termes F Cat sur la signature de types S G 1 , avec deux opérations sur la signature de termes F Cat . Un modèle de la théorie T Cat def = (F Cat , E Cat ) sur la signature S G 1 est un graphe (un modèle de S G 1 ) muni de fonctions d'ensembles encodées par les opérations de F Cat , qui satisfont aux équations dans E Cat . Il n'est pas di cile de voir que les modèles de T Cat sont exactement les petites catégories.

Tout comme les petites catégories, de nombreuses autres familles de structures algébriques bien connues peuvent être classi ées par des théories algébriques à types dépendants. Par exemple, les -catégories (respectivement, les -catégories) sont classi ées par une théorie sur la signature de types dépendants des globes (respectivement, des globes de dimension ≤ ). Un autre exemple est la famille des opérades planaires colorées, classi ée par une théorie sur la signature de types dépendants des corolles ou arbres élémentaires planaires.

Cette idée d'associer la dépendance entre types à la cellularité intrinsèque aux structures algébriques n'est pas nouvelle -elle est clairement présente dans la théorie de « FOLDS » de [START_REF] Makkai | First Order Logic with Dependent Sorts, with Applications to Category Theory[END_REF], ainsi que dans la structure groupoïdale et -groupoïdale des types d'identité dans [START_REF] Hofmann | The groupoid interpretation of type theory. Twenty-ve years of constructive type theory[END_REF] et [START_REF] Lefanu | Weak -categories from intensional type theory[END_REF][START_REF] Van Den | Types are weak -groupoids[END_REF]. Plus récemment, [Bru16, App. A] propose une théorie à types dépendants classi ant les -groupoïdes faibles, et [START_REF] Finster | A type-theoretical de nition of weak -categories[END_REF][START_REF] Benjamin | A type theoretic approach to weak -categories and related higher structures[END_REF] travaillent avec une théorie algébrique à types dépendants classi ant les -catégories faibles. Néanmoins, il reste à établir une dé nition générale, avec une algèbre universelle associée, des théories algébriques à types dépendants et les structures algébriques qu'elles classi ent, et cela constitue le premier but de cette dissertation. Dans le chapitre 1 de cette dissertation, nous proposons plusieurs dé nitions de ce que nous entendons par une théorie algébrique à types dépendants, en utilisant la correspondance entre les types dépendants et la cellularité, et dans le théorème 1.4.26 de classi cation, nous prouvons que ces dé nitions sont équivalentes. Nous donnons dans la section 1.6 une description syntaxique des théories algébriques à types dépendants, qui forment une sous-classe stricte des « théories algébriques généralisées » de Cartmell [START_REF] Cartmell | Generalised algebraic theories and contextual categories[END_REF].

À l'aide du théorème de classi cation, nous reconnaissons immédiatement (section 1.5), plusieurs théories algébriques à types dépendants. Plus loin (théorème 2.1.13), nous montrons que toute catégorie localement niment présentable est la catégorie des modèles (dans les ensembles) d'une théorie algébrique à types dépendants. Nous concluons que les théories algébriques à types dépendants ont la même puissance expressive (quant à leurs modèles dans les ensembles) que les théories essentiellement algébriques ou les esquisses projectives (corollaire 2.1.14).

Multicatégories cellulaires. Conservons l'exemple de la théorie T Cat des petites catégories, et observons que les contextes (qui se trouvent à gauche du symbole "turnstile" ) dans chaque déclaration de F Cat et de E Cat sont tous des graphes (via la correspondance S G 1 ∼ G 1 ), à savoir des complexes cellulaires dans G 1 . Cela permet de voir chaque déclaration dans F Cat comme une opération ou un multimorphisme d'une « multicatégorie cellulaire », prenant en entrée un graphe ( ni) et dont la « cellule » de sortie est un représentable. Par exemple, les opérations (-, -) et (-) peuvent être visualisées comme suit

( , ) ( , ) 
et le terme ( , ( )) correspond à l'arbre d'opérations suivant.

(

) , 
Ce point de vue des théories algébriques à types dépendants comme « multicatégories cellulaires cartésiennes » est une généralisation stricte de la description, due à Lawvere [START_REF] Lawvere | Functorial semantics of algebraic theories[END_REF] et à Bénabou [START_REF] Bénabou | Structures algébriques dans les catégories[END_REF], des théories algébriques « ordinaires » comme multicatégories cartésiennes (= catégories avec produits nis). Dans cette généralisation, les théories algébriques ordinaires sont exactement les multicatégories cellulaires cartésiennes dont toute cellule est de dimension 0 (elles sont « ponctuelles », autrement elles n'ont aucune dépendance). Ce point de vue des théories algébriques à types dépendants comme multicatégories cellulaires apparaît (implicitement) dans [Fio08, Sec. II], sous l'appellation Σ 0 -models with substitution. Plus généralement, la théorie des monades à arités et des théories à arités de [Web07, Mel10, BMW12] peut se voir comme une théorie abstraite des multicatégories avec arités quelconques. Cependant, une théorie générale d'« espèces cellulaires » et des multicatégories correspondant aux théories algébriques à types dépendants est (à ma connaissance) loin d'être établie.

Dans cette dissertation, nous soulignons (section 1.3) le point de vue des théories algébriques à types dépendants comme multicatégories cellulaires cartésiennes mais nous n'établissons pas une théorie générale des multicatégories cellulaires. 3Structures algébriques supérieures et leurs théories. La thèse 2 porte sur les structures algébriques à homotopie près. Les structures algébriques supérieures ("higher algebraic structures" en anglais) sont la « bonne » notion de structures algébriques dans les espaces. Une recette générale pour décrire une structure algébrique supérieure (telle que les (∞, 1)-catégories, les ∞-opérades, les champs, les spectres, les ∞ -et ∞ -espaces) consiste à donner un diagramme dans l'∞-catégorie des espaces, ainsi que des opérations satisfaisant des axiomes. Or, ces axiomes sont encodés par des quotients d'espaces, qui sont des tours in nies de cohérences homotopiques, ce qui rend la dé nition de structures algébriques supérieures beaucoup plus subtile que leurs versions à valeurs dans Set (les structures « discrètes » ou « 0-tronquées »).

Par exemple, la composition de morphismes dans une (∞, 1)-catégorie (une ∞-catégorie), est associative à homotopie cohérente près. Cela se décrit habituellement en utilisant des catégories de modèles, tel qu'avec la structure de modèles des quasicatégories sur la catégorie des ensembles simpliciaux, ou la structure de modèles des espaces de Segal complets sur les ensembles bisimpliciaux. En e et, la vaste majorité de la théorie des ∞-catégories n'existe formellement que dans la structure de modèles des quasicatégories -cependant, les quasicatégories ne sont pas des modèles canoniques des ∞-categories. Le problème de donner une théorie syntaxique des ∞-catégories est toujours ouvert (voir [RS17, Fin18, AFS21]).

Les types d'identité de Martin-Löf dans la théorie des types homotopiques (HoTT ) sont des généralisations syntaxiques, aux quotients d'espaces, du prédicat d'égalité pour les quotients d'ensembles. Ceci se justi e par le fait que HoTT s'interprète dans l'∞-topos des espaces [START_REF] Kapulkin | The Simplicial Model of Univalent Foundations (after Voevodsky)[END_REF] (et même dans tout ∞-topos [START_REF] Shulman | All (∞, 1)-toposes have strict univalent universes[END_REF]), de manière à ce que les types d'identité soient interprétés comme les prédicats d'égalité (c'est-à-dire les diagonales itérées) dans l'∞-topos. Nous pourrions donc imaginer qu'une version homotopique, utilisant les types d'identité, de la théorie algébrique à types dépendants T Cat soit un candidat pour une théorie syntaxique des ∞-catégories. Plus généralement, une théorie algébrique supérieure à types dépendants serait une extension de HoTT avec des types, termes, et preuves d'identité, plus ou moins de la même façon que les théories algébriques à types dépendants de la thèse 1.

Modèles homotopiques des théories algébriques. Dans cette dissertation, nous n'essayons pas de donner une théorie générale des théories algébriques supérieures à types dépendants, ce qui nécessiterait plus de travail en amont.

Nous nous restreignons à la description d'une théorie des modèles homotopiques des théories algébriques à types dépendants, généralisant certains aspects de la théorie des modèles homotopiques des théories algébriques ordinaires due à [START_REF] Schwede | Stable homotopy of algebraic theories[END_REF][START_REF] Badzioch | Algebraic theories in homotopy theory[END_REF][START_REF] Rezk | Every homotopy theory of simplicial algebras admits a proper model[END_REF][START_REF] Bergner | Rigidi cation of algebras over multi-sorted theories[END_REF]. Même dans ce cas, nous ne parvenons pas à montrer que toute la théorie de rigidi cation des op. cit. se généralise à notre cadre (nous le conjecturons tout de même, voir la section 2.6). Néanmoins, nous posons cette généralisation partielle comme évocatrice de l'existence d'une théorie générale des théories algébriques supérieures à types dépendants. Le processus d'« opétopi cation » a été introduit pour les opérades symétriques colorées dans [START_REF] Baez | Higher-dimensional algebra. III. -categories and the algebra of opetopes[END_REF]. Un processus similaire est fondamental dans la description des L-structures de [START_REF] Makkai | First Order Logic with Dependent Sorts, with Applications to Category Theory[END_REF].

Dans cette dissertation, nous étudions une classe de théories opétopiques idempotentes obtenues à partir de la catégorie O des opétopes. Nous montrons l'existence d'une bonne notion de modèle à homotopie cohérente près pour chacune de ces théories.

∞-catégories localement présentables. La collection de toutes les structures algébriques supérieures d'une même famille, et les morphismes entre elles, forment une ∞-catégorie localement présentable. La théorie des ∞-catégories localement présentables généralise parfaitement celle des 1-catégories localement présentables, et nous conjecturons que tout comme les théories algébriques à types dépendants correspondent aux 1-catégories localement présentables, une bonne notion de théorie algébrique supérieure à types dépendants donnera lieu aux ∞-catégories localement présentables. Il découle directement des dé nitions que les modèles homotopiques d'une théorie algébrique à types dépendants forment une ∞-catégorie localement présentable, ce qui peut servir de point de départ. Cette conjecture est aussi soutenue par les résultats de [START_REF] Kapulkin | Internal languages of nitely complete (∞, 1)categories[END_REF], où l'on montre que les ∞-catégories avec limites nies correspondent aux tribus, qui sont une abstraction des théories à types dépendants avec types d'identité.

Dans la partie 2 de cette dissertation, nous étudions les ∞-catégories localement présentables, et nous développons une théorie des pré-modulateurs permettant de construire tout système de factorisation accessible sur une ∞-catégorie localement présentable par l'itération une « construction-plus ».

Organisation

Cette dissertation s'organise en deux parties.

La partie 1 concerne les thèses 1 et 2, et forme le contenu principal de cette dissertation.

Le chapitre 1 développe la théorie des théories algébriques à types/sortes dépendants, et commence avec une description détaillée de la correspondance entre les types dépendants et une notion abstraite de « cellularité ». La de nition clef est celle de catégorie directe localement nie, qui est une reformulation équivalente de la dé nition de catégorie simple de [START_REF] Makkai | First Order Logic with Dependent Sorts, with Applications to Category Theory[END_REF]. Nous utilisons cette reformulation pour donner plusieurs dé nitions des théories à types dépendants qui nous intéressent. Notre approche consiste à introduire la notion de C-catégorie contextuelle (dé nition 1.4.21), outil algébrique nous permettant d'éviter des raisonnements syntaxiques. Nous démontrons le théorème 1.4.26 de classi cation qui généralise strictement celle de Lawvere pour les théories algébriques ordinaires. Ce résultat est alors utilisé dans la section 1.5 pour reconnaître plusieurs théories algébriques à types dépendants. En n, nous donnons une caractérisation syntaxique des théories algébriques à types dépendants, et nous montrons qu'elles forment une sous-classe stricte des théories algébriques généralisées de Cartmell [START_REF] Cartmell | Generalised algebraic theories and contextual categories[END_REF][START_REF] Cartmell | Generalised algebraic theories and contextual categories[END_REF]. Un autre résultat important de ce chapitre est la proposition 1.4.14, qui démontre l'initialité de la catégorie contextuelle libre sur une signature de types, en se basant sur les propositions 1.4.5 à 1.4.8.

Le chapitre 2 développe la théorie des modèles homotopiques, dans les espaces, des théories algébriques à types dépendants. Nous commençons par une classication des catégories des modèles dans les ensembles (les espaces 0-tronqués) des théories algébriques à types dépendants comme étant exactement les catégories localement niment présentable. On en déduit que les classes des théories algébriques à types dépendants, des théories essentiellement algébriques, et des théories algébriques généralisées sont toutes Morita-équivalentes (théorème 2.1.13 et corollaire 2.1.14). Après des rappels sur les catégories de modèles simpliciales, nous démontrons le théorème 2.5.28 de rigidi cation pour les modèles homotopiques dans les espaces de la théorie algébrique à types dépendants initiale sur une catégorie directe localement nie C. En n, nous montrons l'existence d'une structure de modèles pour les modèles homotopiques dans les espaces de toute théories algébrique à types dépendants (théorème 2.6.7), et nous conjecturons l'existence d'un théorème de rigidi cation général. Dans ce chapitre nous obtenons aussi d'autres résultats : la construction d'une structure de modèles asque intermédiaire sur la catégorie des préfaisceaux simpliciaux sur la C-catégorie contextuelle initiale (théorème 2.5.9) et la description des C-espaces comme faisceaux d'∞-groupoïdes sur la C-catégorie contextuelle initiale (théorème 2.3.6).

Le chapitre 3 étudie une classe de théories idempotentes sur la catégorie directe localement nie O des opétopes. Nous commençons en rappelant la construction de la catégorie O due à [START_REF] Kock | Polynomial functors and opetopes[END_REF][START_REF] Ho | The equivalence between many-to-one polygraphs and opetopic sets[END_REF]. Nous dé nissons une famille de monades adjointes à droite paramétriques ℨ dont les algèbres sont les algèbres opétopiques (dé nition 3.3.23). Nous montrons que chaque catégorie OAlg d'algèbres opétopiques admet un foncteur OAlg ↩→ O vers la catégorie O des ensembles opétopiques, appelé le foncteur du nerf opétopique, qui est monadique, pleinement dèle, et accessible. De plus, OAlg est la catégorie des modèles d'une esquisse projective nie sur la catégorie O op (théorème 3.4.29), ce qui implique qu'elle est la catégorie des modèles d'une théorie opétopique idempotente (théorème 3.4.30). En particulier, la catégorie des petites catégories, la catégorie des opérades colorées planaires, et la catégorie des combinades colorées de Loday [START_REF] Loday | Algebras, operads, combinads. irma-web1[END_REF] sont des catégories d'algèbres opétopiques -elles sont donc chacune classi ée par une théorie opétopique idempotente. En n, nous montrons qu'une technique due à Horel [START_REF] Roy | A model structure on internal categories in simplicial sets[END_REF] s'applique aux algèbres opétopiques, nous permettant de donner une dé nition d'une structure de modèles pour les algèbres opétopiques à homotopie cohérente près, et de montrer qu'elle est équivalente au sens de Quillen à une structure de modèles sur les algèbres opétopiques simpliciales (théorème 3.5.15). Dans les cas particuliers de Cat et de Opd, nous récupérons la structure de modèles de Rezk pour les espaces de Segal et la version planaire de la structure de modèles de Cisinski-Moerdijk pour les espaces de Segal dendroïdaux.

La partie 2 de cette dissertation étudie les localisations accessibles et les systèmes de factorisation accessibles dans les ∞-catégories localement présentables.

Le chapitre 4 décrit la théorie des systèmes de factorisation (orthogonale) dans les ∞-catégories en utilisant le tenseur et l'enrichissement fournis par les constructions de « pushout-product » et de « pullback-hom » dans les ∞-catégories de èches. Nous utilisons ce formalisme pour récupérer plusieurs résultats sur les modalités et les modalités exactes à gauche ou « lex » (propositions 4.3.5, 4.4.2, 4.4.5, et 4.4.7).

INTRODUCTION (FRANÇAIS)

Le chapitre 5 développe la théorie des pré-modulateurs, commençant par une modi cation légère (utilisant le pushout-product et le pullback-hom) de l'argument du petit objet de Kelly pour les 1-catégories localement présentables, nous permettant de l'adapter à la construction de systèmes de factorisation accessibles dans les ∞-catégories localement présentables (théorème 5.1.6). Nous montrons que dans le cas particulier de la faisceautisation associée à une topologie de Grothendieck, la construction de Kelly se simpli e en une construction-plus sur les préfaisceaux (lemme 5.2.4), et qu'il en est de même pour tout système de factorisation accessible engendré par un pré-modulateur sur une ∞-catégorie localement présentable (théorème 5.2.11). De plus, tout système de factorisation accessible sur une ∞-catégorie localement présentable est engendré par un pré-modulateur (proposition 5.2.14). Nous utilisons la théorie des pré-modulateurs pour dé nir les modulateurs et les modulateurs lex, dont les constructions plus respectives engendrent les modalités et les modalités exactes à gauche (théorèmes 5.3.6 et 5.4.2). Nous montrons que chaque localisation exacte à gauche et accessible d'un ∞-topos est engendrée par un modulateur lex (proposition 5.4.4), ainsi les modulateurs lex sont une bonne généralisation des topologies de Grothendieck aux ∞-topoï. En n, nous montrons que la construction-plus associée à un modulateur lex sur un ∞-topos converge en ( + 2) itérations sur chaque objet -tronqué de l'∞-topos (proposition 5.4.11).

Part 1

Dependently sorted algebraic theories CHAPTER 1

Contextual categories as monoids in collections

In this chapter, we substantiate Thesis 1 of this dissertation, by showing that type dependency in theories corresponds to a notion of cellularity inherent in the corresponding algebraic structures. We do so by describing a theory of dependently sorted/typed algebraic theories, that strictly generalise the (multisorted) algebraic theories of [START_REF] Lawvere | Functorial semantics of algebraic theories[END_REF] and [START_REF] Bénabou | Structures algébriques dans les catégories[END_REF]. We give a classi cation theorem for dependently sorted algebraic theories (Theorem 1.4.26), and use it to detect many examples. In Section 1.6 we describe the class of dependently typed syntactic theories à la Martin-Löf that correspond to our notion of dependently typed algebraic theory.

Locally nite direct categories

1.1.1. A small category is nite if its set ob( → ) of morphisms is a nite set. We say that is locally nite if for all in , the slice category / is nite. Namely, in every cartesian square in Cat of the following form, where 1 is the terminal category and t : → → is the codomain functor, the category is nite.

→ 1 t
Every locally nite category has nite hom-sets-that is, it is enriched over the category Fin of nite sets-but the converse is not necessarily true. A locally nite category is nite if and only if its set of objects is a nite set.

Let be locally nite. For every presheaf in def = [ op , Set], the category of elements / is locally nite, since a morphism : → in Cat is a discrete bration if and only if the following square in Cat is cartesian.

→ → → t t
Let ∈ Cat and ∈ . We de ne a saturated cover of to be a (not necessarily full) subcategory of / such that every non-identity morphism → in factors through some → in .

Example 1.1.2. For any ∈ Cat and ∈ , the full subcategory - / ⊂ / obtained by removing the identity morphism 1 : → (the terminal object of / ), as well as the the full subcategory {1 } ⊂ / consisting of only the identity morphism, are both saturated covers of .

Remark 1.1.3. Let ∈ Cat and ∈ . A subcategory of / is a saturated cover if and only if the functor → ∈ / → / is surjective on objects and morphisms of - / .

De nition 1.1.4. A small category is direct if the binary relation on ob( ) < ⇔ there exists a non-identity morphism → is well-founded, namely there are no in nite sequences . . . < 2 < 1 < 0 in .

Proposition 1.1.5. If is a direct category and : → is a functor that re ects identity morphisms, then is a direct category.

P

. A functor re ects identities if and only if it preserves non-identity morphisms. Hence for . . . < 1 < 0 in , we have . . . < 1 < 0 in .

Corollary 1.1.6. If is direct and ∈ is a presheaf on , then its category of elements / is direct.

P

. Any discrete bration in Cat re ects identity morphisms.

Notation 1.1.7. We write Dir for the full subcategory of Cat consisting of all small direct categories, and Dir for the same full sub-2-category of Cat. We write Dir lf ⊂ Dir and Dir lf ⊂ Dir for the locally nite direct categories.

Remark 1.1.8. A direct category has no non-identity endomorphisms.

Remark 1.1.9. If is a direct category, then for every in the inclusion - / ⊂ / exhibits the slice category / as the free - / -cocone. In other words, / is obtained from - / by freely adding a terminal object, namely / = - / ★ 1 (where -★is the join of categories [Joy08, §3.1]).

Lemma 1.1.10. Let ∈ Dir and ∈ . If is a nite saturated cover of , and if for every → in , / is nite, then / is nite.

P

. By Remark 1.1.3, → ∈ / → / is surjective on objects and morphisms of - / , thus - / is nite. Hence / = - / ★ 1 is nite. Remark 1.1.11. A small category is "simple" (one-way, skeletal, nitely branching) in the sense of Makkai's FOLDS [START_REF] Makkai | First Order Logic with Dependent Sorts, with Applications to Category Theory[END_REF] if and only if op is a locally nite direct category.

Proposition 1.1.12. Let ∈ Dir. Then is locally nite if and only if every in has a nite saturated cover consisting of non-identity morphisms → .

P

. The "only if" direction is obvious, since for all ∈ , if / is nite then - / is such a nite saturated cover. Conversely, as is direct, we proceed by induction on ∈ ob( ), using the well-founded relation <. In the base case, there are no non-identity morphisms → , and / = 1 (the terminal category). In the induction step, consider a nite saturated cover of consisting of non-identity morphisms. By the induction hypothesis, for each : → in , / is nite, and we may use Lemma 1.1.10 to conclude.

Example 1.1.13. Many categories of nite-dimensional, nite cellular "shapes" are locally nite direct, or have wide locally nite direct subcategories that determine the shapes represented by the objects of such categories. We list a few examples (that they are so follows in each case from Proposition 1.1.12).

(1) Any set (seen as a discrete category).

(2) The ordinal (seen as a totally ordered poset).

(3) The category G 1 = {0 ⇒ 1} with two objects and two parallel non-identity arrows.

(4) The category of globes G [Lei04, Def. 1.4.5].

(5) The category elTr of planar elementary trees [Koc11, 2.4.4] or planar corollas.

(6) The category O of opetopes (De nition 3.2.8).

(7) Every Reedy category has a wide subcategory that is direct. In many (if not most) well-known examples, is also locally nite, such as: (a) = , the simplex category ( is called the semi-simplex category), (b) = , the planar dendroidal category [MT10, Def. 2.2.1], ( is called the category of planar semi-dendrices), (c) = , Joyal's cell category [START_REF] Joyal | Disks, duality and Θ-categories[END_REF], where in each case is the wide subcategory of monomorphisms.

De nition 1.1.14. Let be a locally nite direct category. The dimension d( ) ∈ N of each in is the length of the longest chain < . . .

< 1 < 0 = . The dimension of is d( ) def = min{ ≤ | ∀ ∈ , > d( )}. The dimension d( ) of a presheaf ∈ is the dimension of its category of elements / .
Remark 1.1.15. The empty category ∅ is the only locally nite direct category of dimension 0. There are of course locally nite direct categories of dimension , such as G, , (and itself, seen as a poset).

Remark 1.1.16. In [START_REF] Makkai | First Order Logic with Dependent Sorts, with Applications to Category Theory[END_REF], dimension is called height. Our terminology uses the idea that objects of a locally nite direct category represent nite-dimensional cells, morphisms represent inclusions of cells of lower dimension as sub-cells of higher dimension, and every cell only has nitely many sub-cells.

Lemma 1.1.17. Every in Dir lf admits a grading ∅ = 0 ⊂ 1 . . . by its full locally nite direct subcategories of nite dimension, such that = .

Lemma 1.1.18. The full subcategory Dir lf ⊂ Cat is closed under nite products and coproducts.

Remark 1.1.19. The cardinal ℵ 0 (which we will write as ) can be replaced by any regular cardinal , giving de nitions of locally -small and of locally -small direct categories. Since every small category is locally -small for some regular , every ∈ Dir is locally -small direct for some regular .

We x a locally nite direct category C for the rest of this chapter. is a bijection. Begin with 0 = and 0 = . At stage → . . . → , note that (trivially when = 0 and by the induction hypotheses when > 0) for all such that d( ) = , there is a bijection between the set and the set of commutative squares C → ( , ). We de ne to be the pushout +1 where the coproduct is indexed over all such that d( ) = and all elements of def = ( -( )). We de ne +1 to be the canonical morphism +1 → . Next, since pushouts are calculated pointwise, for d( ) = , we have ( +1 ) : ( +1 ) = , and for d( ) > we have ( ) Example 1.2.5. It is useful to consider a simple example to x ideas. Let G 1 def = { , : 0 ⇒1 } be the category from Example 1.1.13(3), so G 1 is the category of (directed multi)graphs. Then consider the nite graph ∈ Fin G 1 below.

: ( +1 ) = ∅ .
There are four distinct isomorphic objects of Cell G 1 that represent via the equivalence Cell G 1 Fin G 1 (even though there is only one nontrivial automorphism of ). This is because when building as a cell-complex, we could add before or vice versa. This is best seen syntactically, by considering the type signature associated to G 1 (that we will encounter in Section 1.6), which is given below. 0 : 0 , : 0 1 ( , )

CONTEXTUAL CATEGORIES AS MONOIDS IN COLLECTIONS

Then any object of Cell G 1 is a context over this type signature. For instance, two distinct objects of Cell G 1 that both represent the previous graph are:2 : 0 , : 0 , : 1 ( , ), : 1 ( , ) : 0 , : 0 , : 1 ( , ), : 1 ( , ).

In each case, the cell complex has the form

∅ → 0 → 0 0 → 1 → 1 0 0
1 except that in one case, the "source" of the two "arrows" is added to the complex before the "target" (and vice versa in the other case).

Remark 1.2.6. The construction of Proposition 1.1.26, with a choice of ordering of coproducts at each step, lets us de nes a fully faithful functor Fin C ↩→ Cell C exhibiting the equivalence of categories. Likewise, we can de ne a choice of inclusion C ↩→ Cell C . We will assume these choices of inclusion from now on.

Remark 1.2.7. The principal reasons for replacing Fin C with Cell C are (i) the latter is a small category (while the former is only essentially small, see Proposition 1.4.2), and (ii) the latter has a canonical structure of a co-contextual category (while the former does not, see Remark 1.4.4).

Remark 1.2.8. Several of our constructions are an abstraction-into the language of cell complexes-of syntactic constructions that can be found in [START_REF] Makkai | First Order Logic with Dependent Sorts, with Applications to Category Theory[END_REF]§4]. In particular, Makkai de nes Con[K] to be the opposite of the syntactic category on a simple category K, and this is nothing but our Cell K op (as we will show in the sequel). Moreover, Makkai shows the equivalence Con[K] Fin K op by hand.

Remark 1.2.9. If is a locally -small direct category (Remark 1.1.19), and if we replace " nite" with " -small" in the de nition of Cell , and take colimits at limit ordinals, then Cell is equivalent to the category of -presentable objects of . This point of view appears in [START_REF] Fiore | Second-order and dependently-sorted abstract syntax[END_REF], where it is exploited to de ne higher order signatures. Our "C-sorted theories" are equivalent to the Σ 0 -models with substitution in [START_REF] Fiore | Second-order and dependently-sorted abstract syntax[END_REF]II.3].

We will make the correspondence with syntax precise in Section 1.6. 

P

. The identity functor is nitary, and the composite of two nitary functors is nitary. 3 And since a colimit indexed by a colimit of a diagram → Cat is the colimit of colimits. The reader is also invited to calculate the particular kind of colimit in Cat that we use-namely a pushout of an inclusion ↩→ ★ 1-which is a particularly easy case of the calculation in [FL79, Prop. 5.2].

Corollary 1.3.5. The category Mon(Coll C ) of monoids in Coll C and monoid morphisms is equivalent to the category of nitary monads (those whose endofunctor preserves ltered colimits) on C and monad morphisms.

Remark 1.3.6 ([Fio08, II.3]). This substitution monoidal product -•on Coll C can be explicitly calculated by the coend formula for left Kan extension along Cell C ↩→ C. For every , in Coll C , we have

• ( , ) = ∫ ∈Cell C ( , ) × C( , ( , -)).
Remark 1.3.7. If is a locally -small direct category (Remark 1.1.19), and if we replace " nite" with " -small" in the de nitions of Cell and Coll , then Mon(Coll ) is equivalent to the category of -accessible monads on .

Remark 1.3.8. Following Remark 1.3.2, we can see monoids in Coll C as theories over signatures. We will detail this in Section 1.6.

1.3.9 (Cellular arities). Recall that a functor : A → B is dense if the identity functor 1 B is a (pointwise) left Kan extension of along . That is, for every X in B, the canonical cocone from ( / → B) to is a colimit-cocone. Let be a small category. Let : ↩→ C be a fully faithful and dense functor to a category C. The density of is equivalent to its nerve functor, namely the functor : C → that takes to C( -, ), being fully faithful.

A monad with as arities [BMW12, Def. 1.8] is a monad : C → C such that for every ∈ C, the composite functor takes the canonical colimit-cocone in C from ( / → C) to (given by the density of ) to a colimit cocone in . In other words, this condition states that is a pointwise left Kan extension of along . Note that re ects colimits since it is fully faithful; hence if has arities then preserves the canonical colimit cocones. In other words, if has arities then is a pointwise left Kan extension of along (but the converse is not necessarily true). We write Mnd (C) for the category of monads with as arities, whose objects are the monads on C with as arities and whose morphisms are the morphisms of monads.

A theory with as arities [BMW12, Def. 3.1] is a pair (Θ, ) of a category Θ and an identity-on-objects functor : → Θ such that the monad 4 * ! : → preserves the essential image of : C ↩→ . A morphism of theories (Θ 1 , 1 ) → (Θ 2 , 2 ) is a functor : Θ 1 → Θ 2 such that 1 = 2 . We write Law (C) for the category of theories with as arities.

Every in Mnd (C) gives a theory with as arities, by the (identity-onobjects, fully faithful) factorisation of the composite : → C, and conversely, every (Θ, ) in Law (C) gives a monad with arities by restriction of the monad * ! to C. Remark 1.3.10. Monads with arities were studied in [START_REF] Weber | Familial 2-functors and parametric right adjoints[END_REF] and ("Lawvere") theories with arities in [START_REF] Melliès | Segal condition meets computational e ects[END_REF]. We refer to the detailed review in [START_REF] Berger | Monads with arities and their associated theories[END_REF].

Example 1.3.11. The presheaf category G 1 (Example 1.1.13(3)) is the category of directed graphs. If 0 is the full subcategory of all the non-empty nite liform 4 For any functor : → between small categories, ! * * denote the left and right adjoints to the precomposition functor * : → . graphs (graphs of the form 0 → 1 → . . . → ), then the free-category monad (associated to the monadic forgetful functor Cat → G 1 ) is a monad with 0 as arities. Its theory with arities is just the identity-on-objects free-category functor 0 → to the simplex category. Proposition 1.3.12 ([BMW12, Thm 3.4]). Let ∈ Cat and let : ↩→ C be a fully faithful dense functor. The mutually inverse constructions in 1.3.9 de ne an equivalence of categories Mnd (C) Law (C). 

P

. Since Θ C ↩→ C re ects colimits and preserves C -cell complexes, C preserves C -cell complexes.

1.3.20 (Cellular nerves of algebras). We summarise some results from [START_REF] Berger | Monads with arities and their associated theories[END_REF]. Let : ↩→ C be a fully faithful dense functor, and let : C → C be a monad with as arities. Then if : → Θ is its associated theory with as arities, the full inclusion : Θ ↩→ -Alg is dense, and any ∈ Θ is in the essential image of : -Alg ↩→ Θ if and only if * is in the essential image of . [BMW12, Thm 1.10] (this is the nerve theorem).

De nition 1.3.21. Let : Cell C → Θ be a C-sorted theory. Its category (Θ, )-Mod of models is the full, wide subcategory of Θ that is the essential image of the nerve functor -Alg ↩→ Θ from the category of algebras of its associated nitary monad : C → C. Lemma 1.3.22. Let : Cell C → Θ be a C-sorted theory. Then (Θ, )-Mod is the full subcategory of Θ consisting of all such that * : Cell op C → Set takes ∅ ∈ Cell C to 1 ∈ Set and pushouts of maps in C to pullbacks in Set.

Remark 1.3.23. Most of Section 1.3 holds when C is a just a small category (and not necessarily locally nite direct as well), by replacing Cell C with the category Fin C (and " nite C -cell complexes" with " nite colimits"). However, our goal is the classi cation of dependently sorted algebraic theories and Proposition 1.3.18 and Corollary 1.3.14 will play important rôles.

An equivalence between C-sorted theories and C-contextual categories

We come at last to the goal of this chapter, namely the classi cation of (certain) dependently sorted algebraic theories. To do so, we will incarnate these theories as algebraic objects called C-contextual categories. Contextual categories were introduced in [START_REF] Cartmell | Generalised algebraic theories and contextual categories[END_REF], where Cartmell also gives an equivalence [START_REF] Cartmell | Generalised algebraic theories and contextual categories[END_REF]§2.4] between the category of contextual categories and the category of generalised algebraic theories (GATs). Hence, our dependently sorted algebraic theories will be examples of GATs, but they will be a strict subclass of all GATs. In other words, C-contextual categories will be a strict subclass of all contextual categories.

De nition 1.4.1 ([Car78, §2.2], [Str91, Def. 1.2], [KL12, Def. 1.2.1]). A contex-
tual category is a small category D along with the data of:

(1) a grading of its objects as ob(D) = ∈N D , (2) an object 1 ∈ D 0 , (3) "parent" functions (-) : D +1 → D (we will usually suppress the subscript), (4) for each Γ ∈ D +1 , a distinguished map p Γ : Γ → (Γ), (8) for each Γ ∈ D +1 , and : Γ → (Γ), we have ( * Γ) = Γ , and the square * Γ Γ Γ (Γ)

.Γ

p * Γ p Γ
commutes and is cartesian (called the canonical pullback of Γ along ); and (9) canonical pullbacks are strictly functorial; that is, for Γ ∈ D +1 , we have 1 * (Γ) Γ = Γ and 1 (Γ) .Γ = 1 Γ ; and for Γ ∈ D +1 , : Γ → (Γ) and : Γ → Γ , we have ( ) * Γ = * * Γ and .Γ = ( .Γ) ( . * Γ). A morphism of contextual categories is a functor D 1 → D 2 preserving the data of axioms (1) to (5). The category of contextual categories is written CxlCat. (1) Any morphism : Cx(C) → D in CxlCat preserves grading, thus its restriction along C op ↩→ Cx(C) satis es De nition 1.4.12(1). Now also preserves canonical pullbacks, so op preserves C -cell complexes and hence nite colimits (Corollary 1.2.13). Thus is a right Kan extension of its restriction, and so its restriction necessarily satis es De nition 1.4.12(2).

(2) Let be a contextual functor. De ne the functor ˜ : Cx(C) → D as follows: let ˜ (∅) def = 1 D and inductively (on the grading of Cx(C)), let the chosen pushout squares in Cell C be taken to the corresponding canonical pullbacks in D. By Corollary 1.2.13, this de nes a right Kan extension of along C op ↩→ Cx(C). Further, the de nition ensures that ˜ preserves the grading, parent maps and canonical pullbacks, thus is a morphism in CxlCat. 

P

. Follows from Corollary 1.3.19 and the previous proposition.

Remark 1.4.16. The category CxlCat is not (in any good way) a 2-category, which is why Proposition 1.4.14 is not stated as an equivalence of functor categories. However CxlCat embeds via a left adjoint into various 2-categories of models of dependent type theory (such as that of categories with attributes). Since Kan extension along a fully faithful functor is a fully faithful functor between functor categories, an equivalence of (full) hom-categories in such a 2-category follows from essential surjectivity, which is just the content of Proposition 1.4.14.

Remark 1.4.17 Remark 1.4.23. An obvious question is whether every contextual category is a C-contextual category for some locally nite direct category C. I do not know the answer to this question. Nevertheless, in Chapter 2, we will see that every contextual category is Morita equivalent to some C-contextual category, namely both have equivalent categories of Set-models.

Lemma 1.4.24. The association ↦ → ( : Cell C → Θ ) de nes a fully faithful functor CxlCat C → Law Cell C ( C).

P

. Given a morphism ℎ in CxlCat C as on the left below, the induced morphism h between (identity-on-objects, fully faithful) factorisations is in Law Cell C ( C). We defer the proof of Proposition 1.4.25 for the moment. We are now able to state and prove the main theorem of Chapter 1. T 1.4.26 (Classi cation of dependently sorted algebraic theories). Let C be a locally nite direct category. The categories

Conversely, given a morphism in Law Cell

(1) Mon(Coll C ) of monoids in cartesian C-collections, (2) Mnd Cell C ( C) of nitary monads on C, (3) Law Cell C ( C) of C-sorted theories, (4) and CxlCat C of C-contextual categories, are equivalent. P . The equivalences (1) (2) 
(3) are from Corollary 1.3.14. The functor (3) → ( 4) is fully faithful by Lemma 1.4.24 and essentially surjective by Proposition 1.4.25.

The rest of Section 1.4 is devoted to proving Proposition 1.4.25. We x a C-sorted theory : Cell C → Θ throughout.

De nition 1.4.27. We have xed an inclusion C ↩→ Cell C . So for every in C, we have maps : → in Θ (and so in (Θ, )-Mod). Let C be the set of these maps (between representables) in (Θ, )-Mod. We de ne the opposite category D op of the contextual completion D of (Θ, ) as a category of nite C -cell complexes in (Θ, )-Mod, proceeding as in De nition 1.2.1. To begin, we set (D )

0 def = { ∅}. For any ∅ → 1 → . . . in (D )
, and any span ← → in (Θ, )-Mod, we make a choice of pushout in (Θ, )-Mod, giving ∅ → 1 → . . . → +1 in (D ) +1 . Finally, we de ne the hom-sets as

D op ( ∅ → . . . , ∅ → . . . ) def = (Θ, )-Mod( , ).
Proposition 1.4.28. D is a contextual category, and there is a full inclusion Θ op ↩→ D such that Cx(C) → Θ op ↩→ D is a morphism of contextual categories.

P

. It is readily veri ed that D is a contextual category (just as in the proof of Proposition 1.4.2). Since both and the composite Cx(C) → Θ ↩→ (Θ, )-Mod preserve C -cell complexes, there is a grading-preserving full embedding Θ op ↩→ D , which su ces for Cx(C) → Θ op ↩→ D to be a morphism in CxlCat.

Proposition 1.4.29. The forgetful functor D -Mod → (Θ, )-Mod (see 1.4.20) is an equivalence of categories.

P

. By de nition of D , the nerve functor associated to the inclusion D op ↩→ (Θ, )-Mod factors through D -Mod, and provides the required inverse.

1.4.30. The objects of Θ are images of C -cell contexts. Hence, since both and the composite Cell C → Θ ↩→ (Θ, )-Mod preserve C -cell complexes, they are C -cell complexes in (Θ, )-Mod. However, Θ does not have pushouts of for all morphisms of models/algebras → in Θ (but only for those 9 in the image of ). An object in the contextual completion D is therefore not in general a free algebra/model-namely, it is not necessarily in the image of ! : C → (Θ, )-Mod.

Example 1.4.31. Consider the category Cat * of pointed categories (the coslice category Cat 1/ under the terminal category 1). Then Cat * is the category of models of a G 1 -sorted theory Cat * : Cell G 1 → Θ Cat * , since it is the category of algebras of a nitary monad on G 1 . It is easy to see that the pointed category { : * → }, whose chosen object is * , is not free on any graph. But it is in the contextual completion D Cat * using the pushout below in Cat * , where the span is in

Θ Cat * . Cat * { , } Cat * { } Cat * { : → } { : * → } ( * , )
Remark 1.4.32. When C is a set, then every object in D op is a coproduct of objects of the form , ∈ C and is thus a free algebra/model. Hence in this case (multisorted algebraic theories), Θ and D op coincide.

De nition 1.4.33. For every in C, we say that a morphism :

→ in the image of D op ↩→ (Θ, )-Mod is active if there is no ∅ → 1 → . . . = in D op
such that factors through → → +1 → . . . for some < . Hence any → ∅ is active, and for any → , there is some ∅ → 1 → . . . = in D op and some ≤ such that → is active.

A morphism in Θ is free if it is in the image of .

De nition 1.4.34. Let ∅ → . . . be in D . A free replacement of is a map ¯ → from some object ¯ in Θ, such that every map Γ → in (Θ, )-Mod from any Γ in Θ factors as Γ → ¯ → .

To understand the idea of the following construction-proposition, the reader may skip to Example 1.4.36 and Remark 1.4.37 to get a feel for what's going on.

Proposition 1.4.35. Every object in D has a free replacement.

P

. For any ∅ → . . . in (D ) , we will de ne a sequence of maps ¯ → , 0 ≤ ≤ from objects ¯ ∈ Θ, along with free morphisms ¯ → ¯ +1 making the following diagram commute.

∅ ¯ 1 . . . ¯ ∅ 1 . . .
Every free morphism ¯ → ¯ +1 will be the image by of a nite relative C -cell complex in Cell C . For every , ¯ → will be a free replacement. We proceed by induction on ∅ → . . . .

(1) In the base case, we set ¯ ∅ def = ∅ along with the identity morphism 1 ∅ . 9 These will be called free morphisms.

(2) In the induction step, we assume that we have reached ¯ → . Now, → +1 is a pushout of the form below. By induction hypothesis, factors as some morphism ¯ : → ¯ in Θ followed by the free replacement ¯ → .

( )

¯ +1 ¯ Now ¯ : ( ) → ¯ is a morphism in Θ, but it is not necessarily free. First, we write ∅ = ( ) 0 → ( ) 1 → . . . ( ) =
as an object of Cell C . We will de ne a sequence ¯ = ¯ 0 → ¯ 1 → . . . ¯ that is the image by of a nite relative C -cell complex, and such that for each ≤ , ¯ → ¯ has a retraction in Θ. We will also de ne a free morphism ¯ : ( ) → ¯ making the square below commute, where ¯ → ¯ is the retraction. 

( ) ¯ ( ) +1 ¯ +1 ¯ ¯ +1
Since we have a retraction ¯ → ¯ and a map ( ) +1 → ¯ , we obtain the retraction ¯ +1 → ¯ . We end our case analysis. Our inner induction is done. To continue with our outer induction, we consider the commutative diagram below in (Θ, )-Mod, using the free morphism ¯ : ( ) → ¯ and the retraction ¯ → ¯ that we have just built.

¯ ( ) ¯ ¯ +1 +1 ¯ ¯ (★)
We de ne ¯ +1 via the cocartesian back face, which is thus a cocartesian square of free morphisms. By de nition of ¯ , we have ¯ = ¯ , so we obtain the dotted arrow. Since the front left square is cocartesian by de nition of +1 , so is the intermediate (front right) square. It remains to be shown that ¯ +1 → +1 is a free replacement. We write : Θ → ←↪ (Θ, )-Mod : for the re ective localisation associated to the fully faithful nerve functor of Θ ↩→ (Θ, )-Mod. Consider the diagram below in Θ (where is the unit of the re ection).

¯ ¯ ¯ +1 ˜ +1 +1 (★★)
Let Γ be any representable in Θ. By induction hypothesis, any map Γ → factors as Γ → ¯ → , and therefore as Γ → ¯ → . Since Γ is representable, and therefore tiny, this implies that any map Γ → ˜ +1 factors as Γ → ¯ +1 → ˜ +1 . Therefore, the map ¯ +1 → ˜ +1 is an epimorphism. We can conclude if we show that in the previous diagram, the unit is an isomorphism, namely that ˜ +1 is in the essential image of .

Recall that this is the case if and only if the presheaf * ˜ +1 ∈ Cell C preserves C -cell complexes. We proceed by induction on Γ ∈ Cell C . In the base case, since ¯ +1 → ˜ +1 is an epimorphism, we have ( * ˜ +1 ) ∅ = 1. In the induction step, let Γ be de ned by the pushout in C on the left below.

(Γ) Γ (Γ) ˜ +1
Consider a commutative square in Θ as on the right above. We need to show that it factors through a unique morphism Γ → ˜ +1 . For existence, we show that it factors as a commutative square that is a cocone from the cospan of free maps ← → (Γ) to ¯ +1 , followed by the map ¯ +1 → ˜ +1 . We factor each morphism to ˜ +1 in the right hand square above, as follows. Using Eq. (★) and the de nition of ¯ , if the map (Γ) → ˜ +1 factors through , we may choose a map (Γ) → ¯ such that for every → (Γ) in Cell C , there is a square below

(Γ) ¯
where → is a free map. Doing the same for the map → ˜ +1 , then the square below commutes (since the map → (Γ) is free).

(Γ)

¯ +1
Since ¯ +1 is in the image of , we obtain the desired map Γ → ¯ +1 → ˜ +1 . Uniqueness follows from the pushout in Eq. (★★). Our induction is nished.

Example 1.4.36. The construction in the proof of Proposition 1.4.35 is best understood by looking at an example. We return to Example 1.4.31, namely the G 1 -sorted theory of pointed categories. The pointed category { : * → } is not free, and its free replacement provided by our construction is Cat * { : → }. Similarly, the free replacement of

{ : * → * } is Cat * { : → }.
Remark 1.4.37. In general, the free replacement of Proposition 1.4.35 consists in replacing all dependencies in any context ∅ → . . . in D with variables, in a minimal way. 10We can now prove our stated goal. P . (Of Proposition 1.4.25.) We show that the contextual completion D is a C-contextual category. Consider a diagram of solid arrows, where is a morphism in CxlCat.

Cx(C) Θ op D D op ℎ h
We will construct the morphism h in CxlCat. Since Θ ↩→ D op is dense, it su ces to de ne h on objects and on all maps → in D such that is in Θ op . First for any : → in Θ, we let h def = ℎ . Then we proceed by induction. For every ∅ → . . . in D , we use Proposition 1.4.35 to obtain a free replacement ¯ → . Then, we use Eq. (★) and the induction hypothesis to de ne h → h ¯ via the corresponding canonical pullback in D . Since ¯ → is a free replacement, this su ces to de ne the image under h of every map → in D , where is in Θ op . The uniqueness of h follows from the de nition of D .

Examples of C-contextual categories

We will immediately put Theorem 1.4.26 to good use, by using it to recognise several dependently sorted algebraic theories. For any C-contextual category D, its category of Set-models D-Mod is obviously locally nitely presentable. We will say that a locally nitely presentable category C is classi ed by D if it is equivalent to D-Mod.

Example 1.5.1 (Semi-simplicial, globular, opetopic sets). The identity monad on any locally nite direct category C is obviously nitary. Using Example 1.1.13, we therefore deduce the following C-contextual categories.

(1) the G-contextual category Cx(G) classifying globular sets, (2) the O-contextual category Cx(O) classifying opetopic sets, (3) the -contextual category Cx( ) classifying semi-simplicial sets.

Example 1.5.2 (Simplicial, dendroidal sets). Let be a Reedy category such that its wide direct subcategory is locally nite, and let : → be the wide inclusion. Then * : → is monadic and -accessible, and so we deduce the -contextual category classifying . Combined with Example 1.1.13(7), this gives the dependently sorted algebraic theories classifying simplicial sets, dendroidal sets and Θ-sets.

Example 1.5.3 (Strict -categories). Recall that we write G for the category of globes. Let 0 be the full subcategory of G called the globular site [Ber02, Def. 1.5]. The Grothendieck topology on Θ 0 is generated by the full inclusion : G ↩→ Θ 0 of representables (thus * : G ↩→ Θ 0 is the inclusion of sheaves into presheaves). Then the strict -category monad on G (the terminal globular operad) has 0 as arities [START_REF] Weber | Familial 2-functors and parametric right adjoints[END_REF]Example 4.18]. Moreover, every globular set in 0 is nite. This implies that is nitary, thus the category -Alg of strict -categories is classi ed by a G-contextual category.

Example 1.5.4 (Globular operads, weak -categories). Let E be a locally presentable, locally cartesian closed category. Let , : D → E be functors from any category D, and let : → be a cartesian natural transformation. Then preserves any colimit that does. In e ect, let ℎ : → D be a diagram with a colimit in D that is preserved by , namely colim ℎ . We have a cartesian transformation ℎ :

ℎ → ℎ. ℎ ℎ = colim ℎ
By universality of colimits in E, the map : → is the colimit of the maps ℎ : ℎ → ℎ , namely colim ℎ . A globular operad is a cartesian monad on G equipped with a cartesian monad morphism → to the strict -category monad [Lei04, Chs 4, 6]. Thus, since is nitary, so is . Hence every globular operad has an associated G-contextual category, whose models are the algebras over the globular operad.

Recall that a Batanin weak -category is an algebra over a contractible globular operad [START_REF] Berger | A cellular nerve for higher categories[END_REF]Def. 1.20]. A fortiori, each contractible globular operad has an associated G-contextual category.

The most important Grothendieck-Maltsiniotis coherators for weak -categories are all homogeneous globular theories. Moreover, each corresponds to a contractible globular operad (this follows from [Ara10, Secs 6.6, 6.7], subject to a conjecture proven in [START_REF] Bourke | Iterated algebraic injectivity and the faithfulness conjecture[END_REF]). Therefore, each has a corresponding G-contextual category.

Similarly, -categories (with all varying degrees of strictness) are all classi ed by G ≤ -contextual categories.

Remark 1.5.5. An explicit syntactic presentation of a dependently typed algebraic theory for a particular Grothendieck-Maltsiniotis coherator is de ned in [START_REF] Finster | A type-theoretical de nition of weak -categories[END_REF] and studied in [START_REF] Benjamin | A type theoretic approach to weak -categories and related higher structures[END_REF]. Their syntactic presentation can be shown to be a syntactic presentation of a G-contextual category in the sense of De nition 1.6.25.

Example 1.5.6 ( -groupoids). Grothendieck -groupoids are de ned by coherators for -groupoids, which are certain identity-on-objects functors Θ 0 → from the globular site [Mal10, 1.5]. The category of -groupoids of type is the full subcategory of on all op → Set such that the composite Θ op 0 → op → Set is a sheaf (namely, is in the image of G ↩→ Θ 0 ). Each coherator gives a monad on G, such that -Alg is the category of -groupoids of type . The monad is not a monad with Θ 0 as arities, but it satis es a nerve theorem (it is a nervous monad in the terminology of [START_REF] Bourke | Monads and theories[END_REF]) and is easily seen to be nitary. We therefore deduce a G-contextual category for each coherator for -groupoids.

Remark 1.5.7. An explicit syntactic presentation of a particular coherator for -groupoids is given in [Bru16, App. A]. It is not clear whether their de nition can be shown to be a syntactic presentation of a G-contextual category in the sense of De nition 1.6.25.

Example 1.5.8 (Planar coloured operads). The category Opd pl of planar coloured operads in Set is the category of algebras of a nitary monad on elTr pl ( Example 1.1.13(5)). We deduce the elTr pl -contextual category classifying Opd pl .

Remark 1.5.9. Coloured symmetric Set-operads are monadic over presheaves on the category elTr of (non-planar) corollas/elementary trees, which is a generalised locally nite direct category, namely elTr has non-trivial automorphisms. Syntactically, this corresponds to types of the signature associated to elTr having non-trivial auto-equivalences (loops in the universe). Since Homotopy Type Theory (HoTT) has identity types and a univalent universe, we conjecture that the elTr-sorted theory of symmetric operads is an (elementary) example of a dependently typed higher algebraic theory (assuming any such gadget to be an extension of HoTT).

Note that the category of symmetric Set-operads is a locally nitely presentable category, therefore by Theorem 2.1.13 it is classi ed by a C-contextual category over some locally nite direct category C.

Syntactic presentations of C-contextual categories

Thus far, we have only worked with algebraic structures that we claim correspond to syntactic objects. By [Car78, §2.4] and Theorem 1.4.26, dependently sorted algebraic theories in our sense correspond to certain (but not all) generalised algebraic theories (GATs), which are syntactic objects. So we could start from the de nition of GATs, and carve out the precise subclass corresponding to C-contextual categories using syntactic constraints. However, this would mean casting aside much of the fruit of our previous labours, since Cell C and C-contextual categories are just syntax done up as an algebraic gadget, and working with them is tantamount to working with syntax. Therefore, we will de ne syntactic presentations of C-contextual categories from the ground up, and observe that they form a strict subclass of GATs.

1.6.1 (Structural MLTT). The basic structure common to all our dependently sorted theories is structural (Martin-Löf) dependent type theory (MLTT), which consists of the forms of judgment and "structural rules" of Martin-Löf Type Theory (introduced in [START_REF] Martin-Löf | An intuitionistic theory of types: Predicative part[END_REF]). It can be found in [Hof97, Sec. 2] and [KL12, App. A.1]; we will recall it brie y (following [START_REF] Kapulkin | The Simplicial Model of Univalent Foundations (after Voevodsky)[END_REF]).

To begin with, there are three classes of raw syntax: contexts, types and terms, 11 the latter containing an in nite set of (term) variables; an element of each of these classes is a tree of symbols. This raw syntax is quotiented by alpha-equivalence and the operation of (capture-free) substitution is de ned on it.12 Next, the four judgment forms are introduced.

Γ Γ = Γ : Γ = :
The rst says that is a type in the context Γ, the third that is a term of type in the context Γ, and the second and fourth judge types and terms to be de nitionally equal. As in [KL12, App. A], we take the judgment form for contexts to be derived from those of the previous forms. Namely, for in N, a list Γ = ( : ) < is said to be a context (written Γ ctx) as an abbreviation of ∀ < , ( : ) < . We de ne the judgments to be statements of the previous forms that can be derived (as conclusions of proof-trees) using the following inference rules 1 : 1 , . . . , : ctx Vble 1 : 1 , . . . , : :

Γ : Γ, : , Δ J Subst Γ, Δ[ / ] J[ / ] Γ Γ, Δ J Wkg Γ, : , Δ J (where [ / ]
is the substitution of with ) as well as the following rules for de nitional equality.

Γ Γ = Γ = Γ = Γ = Γ = Γ = Γ : Γ = : Γ = : Γ = : Γ = : Γ = : Γ = : Γ : Γ = Γ : Γ = : Γ = Γ = :
The rules Wkg and Subst of MLTT are admissible [Hof97, E2.7], meaning that every proof-tree that uses them can be replaced by one that does not. All the dependently sorted theories that we consider will be extensions of MLTT in which Wkg will remain admissible, but not necessarily Subst.

Finally, we brie y recall the technique of structural induction: when proving a statement about all judgments of a given form, we will use the well-founded 11 These are sometimes [Hof97, Sec. 2.3] called pre-contexts, -types, and -terms to emphasise that they have not been judged to be so. partial order on proof-trees to reason by induction-treating each inference rule whose conclusion is of the desired form as a separate case. We will generally skip the cases of the rules for de nitional equality, since these will be trivial.

De nition 1.6.2. The following de nitions make sense in any extension T of structural MLTT that we will consider.

For any two contexts Γ ctx and ( :

) < ctx of T, a context morphism : Γ → ( : ) < is a list = ( ) < of term judgments Γ : [ / ] < in T.
The syntactic category of T has as its objects equivalence classes of context judgments (up to renaming of variables and de nitional equality in T), and as its morphisms, equivalence classes of context morphisms (up to renaming of variables and de nitional equality in T). The syntactic category of T is always a contextual category.

1.6.3. A dependent type signature will be a generalisation of the set of sorts of a multisorted algebraic theory. It will allow for sorts (called types) that, in order to be well-de ned, require a nite context of typed variables whose types are recursively well-de ned. For instance, the sequence of statements : , : : , : , : ( , ) : , : ( , ), : ( , , ) is a type signature that de nes to be a type with respect to the empty context, a type with respect to the context : , : , and so on. This is captured by the following mutually inductive de nitions.

De nition 1.6.4. A (dependent) type signature is a graded set = ∈N such that each is a set of pairwise free type declarations over the type signature

< def = < .
De nition 1.6.5. A type declaration over a type signature is an inference rule of the form below, where Γ is a context of and the type symbol is fresh, i.e. it does not appear in . Γ Two type declarations , over are free if is a type declaration over the signature { } (hence, vice versa).

De nition 1.6.6. The type theory T associated to a type signature is the type theory obtained by extending structural MLTT with the type symbols and inference rules in in the obvious well-de ned manner.

A context of a type signature is a context of the type theory T .

Remark 1.6.7. (Type declarations are minimally graded.) Without loss of generality, we may assume that the grading of a type signature = satis es the property that for every type declaration Γ in , Γ is not a context of any of the type signatures < for < .

Remark 1.6.8. (Increasing contexts.) Without loss of generality, we may assume that for every type declaration Γ in , if we have Γ = 1 : 1 , . . . , : where each type is obtained from a type declaration in , then for every 1 ≤ ≤ ≤ , we have ≤ .

1.6.9. The type theory T associated to a signature satis es a crucial property, which says that all of its terms are variables.

Lemma 1.6.10. Let be a type signature. Any term judgment of T is necessarily of the form Γ : , where : is in Γ.

P

. First, a straightforward structural induction proves that Wkg and Subst remain admissible in T . Then the result follows by structural induction, since there is only one inference rule that concludes with a term judgment.

1 : 1 , . . . , : ctx Vble 1 : 1 , . . . , : :

Corollary 1.6.11. Any context morphism : Γ → Γ = 1 : 1 , . . . , : in T is of the form = ( 1 , . . . , ), where : ( 1 , . . . , -1 ) ∈ Γ for every 1 ≤ ≤ .

De nition 1.6.12. Let be a type signature. The category C associated to is de ned as follows.

(1) For each type declaration Γ in , (Γ, ) is an object of C . (2) Morphisms (Γ, ) → (Γ , ) are context morphisms (Γ , : ) → (Γ, : ), and composition is that of context morphisms.

In other words, C op is the full subcategory of the syntactic category of T consisting of the contexts Γ, : for each Γ in .

Lemma 1.6.13. For every type signature , the category C is direct.

P

. It su ces that for Γ in and Γ in , if there exists a non-identity morphism (Γ , ) → (Γ, ), then > . By induction on :

(1) ( = 0) By Corollary 1.6.11, given a morphism : → Γ , : , we necessarily have ≡ is : : . Hence there are no non-identity context morphisms from : to Γ , : . (2) ( = + 1) By Lemma 1.6.10, Γ , : is a context over < {Γ }. Hence ≤ + 1. If = + 1, then pairwise freeness implies that Γ = Γ and Lemma 1.6.10 implies that the only term judgment Γ, :

: is Γ, : : , hence the morphism Γ, : → Γ : is the identity. Proposition 1.6.14. For every type signature , the category C is a locally nite direct category.

P

. We will use Lemma 1.6.13 and Proposition 1.1.12. For every (Γ, ) in C , let (Γ, ) be the set of all non-identity morphisms (Δ, ) → (Γ, ) in C that have no non-trivial factorisation (Δ, ) → (Γ , ) → (Γ, ). It is easy to see that (Γ, ) is a saturated cover of (Γ, ). We will show that (Γ, ) is nite. Now, Γ is nite, and by Corollary 1.6.11, every ∈ (Γ, ) is a nite list of variables of Γ. If (Γ, ) is in nite, there must exist distinct elements = ( 1 , . . . , ) : Γ, : → Γ , : and = ( 1 , . . . , ) : Γ, : → Δ, : of (Γ, ) such that every element of appears in , i.e. we have = for all 1 ≤ ≤ . But then the tuple ( 1 , . . . ,

) is a non-identity context morphism Γ , : → Δ, : that factors non-trivially, which contradicts the de nition of (Γ, ) .

Proposition 1.6.15. Let be a type signature. Then the syntactic category of T is isomorphic to the contextual category Cx(C ).

P

. A straightforward induction, sending every context to the corresponding nite C -cell context. Proposition 1.6.16. Let C be a locally nite direct category. Then there exists a type signature such that C C.

P

. We de ne to be the set of objects of C of dimension . It su ces to prove that for every , < is a type signature. We proceed by induction, recalling the grading C = C by dimension from Lemma 1.1.17. In the base case, ∅ is clearly a type signature. In the inductive step, for every ∈ , Proposition 1.6.15 associates a context Δ of < to the cell context in Cx(C ), and Δ is the required type declaration.

Remark 1.6.17. The previous results establish a correspondence between dependent type signatures and locally nite direct categories. They are simply the reworking in our setup of cell complexes of the same results from [START_REF] Makkai | First Order Logic with Dependent Sorts, with Applications to Category Theory[END_REF].

1.6.18 (Term signatures). A (dependently typed) term signature over a type signature will be a generalisation of the set of function symbols of a multisorted algebraic theory. A dependently typed term signature will be a graded set of generating function symbols, that are dependently sorted by the function symbols of lower grading. This is best seen with an example, before stating the general de nition. Consider the type signature corresponding to the locally nite direct category G 1 . 0 : 0 , : 0 1 Then an example of a term signature over G 1 is the following list of judgments. ★ : 0 : 0 ( ) : 1 ( , ★)

: 0 ( ) : 1 ( , ) 1 , 2 , 3 : 0 , : 1 ( 1 , 2 ), : 1 ( 2 , 3 ) ( , ) : 1 ( 1 , 3 )
Remark the following properties of every judgment in the previous list.

(1) The context to the left of the turnstile (the symbol " ") is a context of the type signature G 1 -namely, it is well-de ned independently of the term signature.

(2) The output type to the right of the turnstile is well-de ned assuming the preceding sublist of term judgments (but is not independent of the term signature). The second property is a standard one satis ed by all generalised algebraic theories. However, the rst property imposes a strong restriction on the expressive power of GATs. Nevertheless, we will require it of each of our term signatures.

De nition 1.6.19. Let be a dependent type signature. An ( -typed) term signature is a graded set

def =
where is a set of term declarations of output dimension over the term signature

< def = < .
De nition 1.6.20. A term declaration over an -typed term signature is an inference rule of the form Δ : [ ] where Δ is a context of , (Γ ) a type declaration in , : Δ → Γ a context morphism of the type theory T associated to , and where is a fresh term symbol (namely, it does not appear in ). The output dimension of the term declaration Δ : [ ] is the dimension of (Γ, ) in C .

De nition 1.6.21. The type theory T , associated to an -typed term signature is the type theory obtained by extending T with the term symbols and inference rules in in the obvious well-de ned manner.

1.6.22 (Term signatures and collections). Let be an -typed term signature. We will write C for the syntactic category of T , . There is an evident functor : Cx(C ) → C exhibiting C as a C -contextual category. Recall that we have an inclusion :

C op ↩→ Cx(C ). Then the functor C ( -, -) : Cx(C ) op × C op -→ Set is a C -collection (De nition 1.3.1).
Conversely, given a C -collection ∈ Coll C , we obtain an -typed term signature by de ning def = (Δ, (Γ, )), where the coproduct is over all Δ ∈ Cx(C ) and all (Γ ) in .

Remark 1.6.23. The C -collection C ( -, -) constructed from the term signature is a monoid in Coll C (since it is obtained from the C -contextual category C ). It is not in general free on some underlying collection (equivalently, a free monad on a nitary endofunctor). This is because in the term signature , the output type of a term declaration of dimension may contain terms (and not just term declarations) in its dependencies. Nevertheless, the monoid C ( -, -) in Coll C satis es a kind of "polygraphic freeness", since it is constructed by generators in every dimension. Therefore, the constructions in 1.6.22 are not mutually inverse-they do not establish a correspondence between term signatures and collections. However, the term signatures arising from collections are such that the output types of their term declarations (generators) contain only term declarations (generators of lower dimension). This is analogous to the characterisation of strict -categories free on globular sets as those polygraphs such that the sources and targets of generators are themselves generators of lower dimension.

1.6.24 (Theories). A (dependently typed) theory over an -typed term signature will be the generalisation of the set of equations of a multisorted algebraic theory.

Continuing the example of the G 1 -typed term signature in 1.6.18, consider the following equations.

, : 0 , : 1 ( , ) ( ( ), ) = ( ) : 1 ( , ★) , : 0 , : 1 ( , ) ( ( ), ) = : 1 ( , ) , : 0 , : 1 ( , ) ( , ( )) = : 1 ( , ) 1 , 2 , 3 , 4 : 0 , : 1 ( 1 , 2 ), : 1 ( 2 , 3 ), ℎ: 1 ( 3 , 4 ) (ℎ, ( , )) = ( (ℎ, ), ) : 1 ( 1 , 4 )
It is quite clear that this equational theory corresponds to the nitary monad on G 1 whose algebras are categories with a chosen terminal object. Remark that the previous equations all satisfy the same property from 1.6.18, namely:

(1) The context to the left of the turnstile is a context of the type signature G 1namely, it is well-de ned independently of the term signature and the other equations.

The previous presentation of the theory of categories with a chosen terminal object is not necessarily the most obvious one-we might be tempted to replace the rst equation with : 0 , : 0 ( , ★) ( ) = : 1 ( , ★). However, this equation no longer satis es the property (1), which we will require of all our theories.

De nition 1.6.25. Let be an -typed signature. A (dependently typed) theory over is a graded set def =

, such that each is a set of identi cations of output dimension in the theory

< def = < over .
De nition 1.6.26. An identi cation in a theory over is an inference rule

Δ = : [ ]
where Δ is a context of , (Γ ) is a type declaration in , and where : Δ → Γ is a context morphism and (Δ : [ ]), (Δ : [ ]) are term judgments of the type theory associated to . Its output dimension is the dimension of the object (Γ, ) in C .

De nition 1.6.27. The type theory T , , associated to a theory over is the type theory obtained by extending T , with the inference rules in in the obvious well-de ned manner.

1.6.28 (Theories to monoids in Coll C ). The canonical functor Cx(C ) → C exhibits the syntactic category C of T , , as a C -contextual category. Then, by Theorem 1.4.26, it is associated to a nitary monad , , on C whose algebras are the models in Set of the theory .

1.6.29 (Free monoids in Coll C to theories). Let ∈ Coll C be a C -collection, and let be the -typed term signature obtained using the construction from 1.6.22. We de ne a dependently typed theory over whose associated C -contextual category C corresponds to the free monad ∞ on the nitary endofunctor : C → C . We proceed by induction on ∈ N. For every (Γ, ) ∈ C of dimension , every : Δ → Δ in Cx(C ) and every ∈ (Δ, (Γ, )) (a term declaration of ), then Δ [ ] : [ ] is a term judgment in the type theory T , (where : Δ → Γ is the context morphism of T , associated to ). Since is a C -collection, we have an element ( ) ∈ (Δ , (Γ, )). We introduce the identi cation Δ [ ] = ( ) : [ ] in the theory ( ) < (where the composite context morphism in the type theory T , ,( ) < is well de ned by induction hypothesis on ).

Let be the set of all identi cations Δ [ ] = ( ) : [ ], graded by output dimension. Then for any context Δ of and (Γ, ) ∈ C , a context morphism Δ → (Γ, : ) in the type theory T , , is precisely an element in ∞ (Δ, (Γ, )) of the free monoid ∞ ∈ Coll C , and the C -contextual category C corresponds to the free monoid ∞ . 1.6.30 (Monoids in Coll C to theories). A nitary monad on C is a monoid in Coll C . Hence it is an algebra of the free-monoid monad on Coll C . Its algebra map is a natural transformation : ∞ → . Let be the -typed term signature associated to the collection via the construction in 1.6.22, and let be the theory of the free monad ∞ constructed in 1.6.29. We will add identi cations to to obtain a theory over corresponding to the monad .

Let (Γ, ) ∈ C of dimension and Δ in Cx(C ). A context morphism : Δ → Γ) and a term judgment Δ

: [ ] in the type theory T , , are precisely the data of an element ∈ ∞ (Δ, (Γ, )). Then ( ) is an element of (Δ, (Γ, )), namely we have a term judgment Δ ( ) : [ ( )] where ( ) is the substitution obtained by applying to the terms of . Then, by induction hypothesis on , we have that = ( ) as context morphisms of the type theory T , , < . We introduce the identi cation Δ = ( ) : [ ] in the theory < . Let be theory over that is the extension of with all these identi cations, graded by dimension. The canonical morphism C → C of syntactic categories corresponds to the morphism ∞ → of monoids in Coll C .

Along with 1.6.28, this establishes a correspondence between theories over -typed term signatures and monoids in Coll C .

Remark 1.6.31. We have given a syntactic description (De nition 1.6.25) of the dependently sorted algebraic theories that correspond to the algebraic classi cation of Theorem 1.4.26. These are a strict subclass of Cartmell's generalised algebraic theories (GATs)-notably, they are subject to the restriction (1).

Remark 1.6.32. An obvious question is whether the class of all GATs is strictly more expressive than the subclass of dependently sorted algebraic theories in our sense. We will partially answer this in the negative in Section 2.1.

CHAPTER 2

Models of C-contextual categories

In this chapter, we will develop the notion of a model in spaces of the dependently sorted algebraic theories classi ed by Theorem 1.4.26. We will see that certain techniques from the theory of homotopy models of multisorted algebraic theories from [Sch01, Bad02, Ber06, Rez02] make sense for models in spaces of dependently sorted algebraic theories.

In Section 2.1, we classify the 1-categories that arise as categories of models in discrete spaces (sets) of dependently sorted algebraic theories. We will see that these are exactly the locally nitely presentable 1-categories (Theorem 2.1.13).

Morita equivalence with essentially algebraic theories

Our goal in this section is to give a partial answer to the questions raised in Remarks 1.4.23 and 1.6.32. We will show that our dependently sorted algebraic theories are Morita equivalent to the ( nitary) essentially algebraic theories of Freyd ([Fre72, §1], [AR94, 3.D]).

We begin with a short review of the theory of accessible cocontinuous localisations of locally presentable categories from [START_REF] Gabriel | Lokal präsentierbare Kategorien[END_REF]. The content of this review is well-known and is entirely subsumed by Part 2. We have included it for convenience and to x terminology.

(Orthogonality).

Let C be a category, and , ∈ C → be morphisms of C. We say that is left orthogonal to (equivalently, is right orthogonal to ), written ⊥ , if for any solid commutative square as follows, there exists a unique dashed arrow making the two triangles commute (the relation ⊥ is also known as the unique lifting property).

• •

• •

If C has a terminal object 1, then for all ∈ C, we write ⊥ if is left orthogonal to the unique map → 1. Let L and R be two classes of morphisms of C. We write L ⊥ R if for all ∈ L and ∈ R we have ⊥ . The class of all morphisms such that L ⊥ (respectively, ⊥ R) is denoted L ⊥ (respectively, ⊥ R).

(Cocontinous localisations)

. Let be a class of morphisms of a cocomplete category C. Recall that the cocontinuous localisation of C at is a cocontinuous functor : C → -1 C such that is an isomorphism for every ∈ , and such that is initial (in the 2-category of cocontinuous functors with domain C) for this property. We say that has the "2 out of 3" property when for every composite of a pair of composable morphisms , in C, if any two of , and are in , then so is the third.

(Locally presentable categories)

. Assume now that is a small category, and that is a set (rather than a proper class) of morphisms of , and consider the full subcategory ↩→ of all those presheaves ∈ such that ⊥ . A category is locally presentable if and only if it is equivalent to one of the form . The pair ( ⊥ ( ⊥ ), ⊥ ) forms an orthogonal factorisation system, meaning that any morphism in can be factored as = , where ∈ ⊥ and ∈ ⊥ ( ⊥ ). Applied to the map → 1 to the terminal presheaf, this factorisation provides a left adjoint (i.e. a re ection) : → to the full inclusion ↩→ . Then is the cocontinuous localisation of at . Moreover, the full inclusion ↩→ preserves -ltered colimits for any regular cardinal such that every map in is -presentable. Namely, the localisation is accessible.

2.1.4. All of the previous paragraph still holds when is replaced by a locally presentable category E and is a set of morphisms of E. We call these cocontinuous accessible localisations E → ←↪ E of locally presentable categories Gabriel-Ulmer localisations.

(Local isomorphisms)

. With E and as in the previous paragraph, the class of -local isomorphisms is the class of all morphisms ∈ E → such that for all ∈ E , ⊥ , that is, = ⊥ E . In general, ⊥ ( ⊥ ) ⊂ is a strict inclusion (see 4.4.4). The class is the smallest class containing that satis es the "2 out of 3" property and that is closed under colimits in E → [GU71, Satz 8.5]. Thus the Gabriel-Ulmer localisation is also the ordinary localisation of E at .

2.1.6.

A presentation of a locally -presentable category C is a small category and a -accessible fully faithful right adjoint C ↩→ . Equivalently, C is the category of algebras of an idempotent -accessible monad on . The left adjoint is a Gabriel-Ulmer localisation of at a set of -presentable maps.

We are now ready to tackle the main goal of this section.

2.1.7 (Morita equivalence). We will say that two classes of theories are Morita equivalent if for every theory of each class, there exists a theory of the other class with the same category of Set-models. It is well-known [AR94, Thm 3.36] that a category C is locally nitely presentable if and only if it is the category of Set-models of an essentially algebraic theory (EAT). Since Morita equivalence is a semantic notion, any class of theories T is Morita equivalent to EATs if and only if every category of Set-models of a theory in the class T is locally nitely presentable, and every locally nitely presentable category is the category of Set-models of a theory in the class T. For instance, [Car78, §1.4][Car86, Sec. 6] outlines a syntactic technique that transforms any EAT into a GAT with the same category of Set-models. The category of Set-models of any GAT is the category of Set-models of its syntactic contextual category (De nition 1.4.18), and so is clearly locally nitely presentable (since it is the category of Set-models of a nite-limit sketch). Thus the classes of EATs and GATs are Morita equivalent. Applying Cartmell's syntactic technique to an EAT does not necessarily produce a GAT that is a dependently sorted algebraic theory (in our sense). Indeed, the syntactic transformation generally produces a GAT that does not respect the constraint (1). In the rest of this section, we will use a di erent technique to show that every locally nitely presentable category is classi ed by a dependently sorted algebraic theory. A fortiori, this implies that the classes of EATs, GATs and dependently sorted algebraic theories are all Morita equivalent. Remark 2.1.8. The technique that we will use is remarkable in its simplicity-it is the quickest proof that I know of the Morita equivalence of EATs and GATs. Moreover, it seems likely to be exportable to homotopical models of dependently sorted algebraic theories.

2.1.9. Let denote the category of semi-simplices, namely the non-full subcategory of Cat on the nite non-empty ordinals and monomorphisms. Recall from Example 1.1.13 that is locally nite and direct. The semi-simplicial nerve of a small category is the image of under the nerve functor Cat → of the non-full inclusion → Cat. For any in Cat, the comma category / is the category of elements of the presheaf on that is the semi-simplicial nerve of . There is also a functor : / → , natural in , that sends :

[ ] → to ( ), and [ ] -→ [ ] - → to ( ( ) ≤ ).
Lemma 2.1.10. For any in Cat, / is locally nite and direct.

P

. By the previous discussion, / → is a discrete bration. Then the result follows from Corollary 1.1.6 and 1.1.1.

Proposition 2.1.11. For any in Cat, the functor * : → / is fully faithful.

P

. This is [Cis03, Prop. 6.9], applied to the model structure on Set with co brations and brations all maps, and weak equivalences the isomorphisms.

Proposition 2.1.12. Every locally -presentable category C has a presentation C ↩→ where is locally nite and direct.

P

. C has a presentation C ↩→ for some in Cat. Since * is both a left and a right adjoint, and is fully faithful, the composite C ↩→ ↩→ / is a -accessible fully faithful right adjoint. We conclude using Lemma 2.1.10. T 2.1.13. Every locally nitely presentable category is the category of models of a C-contextual category for some locally nite direct category C.

P

. By Proposition 2.1.12, C is the category of algebras of an idempotent nitary monad on / . Thus C is the category of models of an idempotent / -sorted theory (see De nition 1.3.15 and Remark 1.3.17).

Corollary 2.1.14. The classes of (1) essentially algebraic theories, (2) generalised algebraic theories, (3) and dependently sorted algebraic theories are Morita equivalent.

Remark 2.1.15. [Cis03, Prop. 6.9] holds for derivators of all co/complete model categories M and not just Set. Thus we can expect homotopical versions of the previous results for locally presentable ∞-categories.

Background on simplicial model categories

We assume familiarity with the essentials of the theory of model categories. We will write (M, W, C, F) for a model category M along with its classes of weak equivalences, co brations, and brations respectively. A trivial co bration (respectively, trivial bration) is a map in W ∩ C (respectively, in W ∩ F). When the model structure is clear from context, we will simply write M. A model category M is combinatorial if its underlying category is locally presentable and its model structure co brantly generated. We will give a quick run-through of the (small fragment of a vast) theory of combinatorial simplicial model categories that is germane to our situation.

We will call the presheaf category sSet def = of simplicial sets, equipped with the usual co brantly generated Kan-Quillen model structure, the model category of spaces. We will write Δ ∈ sSet for the representable -simplex. We use the conventional sets of generating co brations and trivial co brations called the boundary and horn inclusions, and denoted and respectively.

def = { : Δ Δ | [ ] ∈ } def = {ℎ : Λ Δ | [ ] ∈ , 0 ≤ ≤ } Since [0] is a terminal object in , the re ective adjunction Δ : → ←↪ 1 : [0]
in Cat gives a re ective adjunction ( Δ ) ! : sSet → ←↪ Set : * Δ of presheaf categories. We call the fully faithful right adjoint * Δ : Set ↩→ sSet (that takes a set to a constant presheaf) the inclusion of discrete spaces into spaces. Since * Δ is also a left adjoint, it preserves all limits and colimits.

(Joyal-Tierney calculus).

Let C be a sSet-enriched category. If : → and : → are maps in C, their pullback-hom , is de ned to be the following cartesian gap map in sSet (where Map( , ) is just the hom-simplicial-set of the arrow category C → ).

Map( , )

Map( , ) Map( , ) Map( , ) Map( , ) Map( , ) Map( , ) , Map( , ) Map( , )
If : → is a map of simplicial sets, and : → is a map in C, the pushoutproduct is de ned to be the following cocartesian gap map in C (should the various tensors and the pushout exist in C).

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
The presheaf category sSet is complete and cocomplete as an sSet-enriched categorythen it is readily seen that the pushout-product and pullback-hom on maps in sSet make (sSet → , , -, -, ∅ → Δ 0 ) a closed symmetric monoidal sSet-enriched category.

Then for an arbitrary sSet-enriched category C, the pullback-hom functor -, -: (C → ) op × C → → sSet → de nes an enrichment of C → over sSet → , and if C has enough (weighted)1 colimits, then the sSet → -enriched category C → is tensored over sSet → via the pushout-product : sSet → ×C → → C → . If C has enough limits, then C → is cotensored over sSet → ; with slight abuse, we will write the cotensor as -, -: (sSet → ) op × C → → C → . For : → in sSet and : → in C we readily calculate the cotensor , as the cartesian gap map below in C. × , Remark 2.2.2. The important fact to retain is that for any in sSet → and , ℎ in C → , we have a natural isomorphism , ℎ , , ℎ of morphisms of simplicial sets. The compatibility with the sSet-enrichment says that we also have a natural isomorphism Map( , ℎ) Map( , , ℎ ) of hom-simplicial sets. We will see the construction again in the context of ∞-categories in Chapter 4.

Remark 2.2.3. Let C be any sSet-enriched category. Then for any two maps , in its underlying (Set-enriched) category C 0 , has the left lifting property against (denoted " ") if and only if the morphism , of simplicial sets is surjective on 0-simplices.

Let C be a complete and cocomplete sSet-enriched category, with a model structure on its underlying category. Then C is a simplicial model category if any of the following equivalent conditions holds, for every co bration : → in sSet, co bration : → in C and bration ℎ : → in C.

(1) is a co bration in C that is trivial if either or is so. (2) , ℎ is a bration in C that is trivial if either or ℎ is so.

(3) , ℎ is a bration in sSet that is trivial if either or ℎ is so. The model category sSet is the archetypical simplicial model category.

Remark 2.2.4. The preceding yoga can be exported mutatis mutandis to V-enriched model categories for suitable closed monoidal model categories V.

(Simplicial presheaves)

. For any small category , we write Sp for the functor category [ op , sSet] which, as a category of diagrams in a topos, is enriched, tensored and cotensored over sSet. For , ∈ Sp and ∈ sSet, we will write Map( , ) ∈ sSet for the hom-space (given by the enrichment), and ⊗ , ∈ Sp for the tensor and cotensor respectively. We recall the formulas (where is the internal hom in sSet)

Map( , ) = ∫ ∈ , ( ⊗ ) = × , ( ) = .
The inclusion of discrete spaces into spaces gives a re ective adjunction Sp → ←↪ . The right adjoint ↩→ Sp is also a left adjoint, hence it preserves all limits and colimits. We write : ⊂ ↩→ Sp for the composite with the Yoneda embedding of (thus preserves limits). The Yoneda embedding × ⊂ Sp is just the functor ( , [ ]) ↦ → ⊗ Δ .

We will call a map : → in Sp an objectwise or global weak equivalence if for every ∈ , :

→ is a weak equivalence in sSet. We will call any model structure on Sp whose weak equivalences are the objectwise weak equivalences a global model structure. There are always two canonical global model structures on Sp :

(1) the projective model structure, in which a map : → is a bration if and only if for each in , :

→ is a bration (equivalently, ∅ → , is a bration) in sSet , (2) and the injective model structure, in which a map : → is a co bration if and only if for each in , :

→ is a co bration in sSet (equivalently, is a monomorphism in Sp ).

We write these model categories as (Sp proj , W, C proj , F proj ) and (Sp inj , W, C inj , F inj ) respectively. Both are combinatorial simplicial model categories for the sSetenrichment and co-/tensor on Sp [Lur09, A.3.3.2, A.3.3.4], and the identity adjunction 1 Sp : Sp proj Sp inj : 1 Sp is a Quillen equivalence. For any functor : → between small categories, the adjunction ! * (respectively, * * ) between Sp and Sp is Quillen for the projective (respectively, injective) model structure.

The advantage of the projective model structure is that its brations and trivial brations are objectwise. Moreover, there exist easy-to-describe sets of generating co brations and trivial co brations-for instance the sets proj and proj below.

proj def = { (∅ → ) | ∈ , [ ] ∈ } proj def = {ℎ (∅ → ) | ∈ , [ ] ∈ , 0 ≤ ≤ }
The inconvenience of the projective model structure is that, in many situations, it has too few co brations-all its co brations are of course monomorphisms, but few monomorphisms are projective co brations. Dually, the co brations of the injective model structure are just the monomorphisms, but the injective brations and trivial brations become di cult to detect. There exist a host [START_REF] Daniel C Isaksen | Flasque model structures for simplicial presheaves[END_REF][START_REF] Jardine | Intermediate model structures for simplicial presheaves[END_REF] of intermediate global model structures on Sp whose co brations contain the projective co brations but are still monomorphisms, namely the identity adjunction forms a sequence of Quillen equivalences Sp proj Sp int Sp inj (where Sp int denotes the intermediate model structure). With additional structure on the category (such as being a Reedy category), some intermediate model structures still allow for a simple characterisation of (trivial) brations.

(Left Bous eld localisation

). The machinery of left Bous eld localisation of combinatorial model categories is the model-category-theoretic approach to the theory of Gabriel-Ulmer (=accessible cocontinuous) localisations of locally presentable ∞-categories, which constitute the objet d'étude of our Part 2.

Let M be a simplicial model category. Recall that for every , ∈ M we can de ne a Kan brant, functorial homotopy function complex map( , ) ∈ sSet such that if is co brant and is brant, we have map( , ) Map( , ).

Moreover, map(-, -) preserves weak equivalences and any : → in M is a weak equivalence if and only if map( , -) → map( , -) is an objectwise weak equivalence. Up to weak equivalence in sSet, homotopy function complexes only depend on the class of weak equivalences of M.

Let be a class of maps in M. 

(Transferred model structures). Let : M

C : be an adjunction, where (M, W, C, F) is a model category. We say that a model structure (C, W , C , F ) is the right-transferred model structure on C along if we have W = -1 W and F = -1 F (namely, preserves and re ects weak equivalences and brations). If the right-transferred model structure exists, then is a Quillen adjunction. We recall two useful statements that provide the existence of a right-transferred model structure and detect if the adjunction is a Quillen equivalence.

Proposition 2.2.8. Let : M C : be an adjunction between locally presentable categories, where M is a combinatorial model category with sets of generating co brations and of generating trivial co brations. Suppose that:

(1) preserves -ltered colimits (for some regular cardinal ≥ ), (2) sends pushouts of maps in to weak equivalences. Then the right-transferred model structure on C along exists and is co brantly generated, with and as sets of generating co brations and trivial co brations respectively.

P

. We choose a regular cardinal ≥ such that every generating co bration and trivial co bration in M has a -small domain. Then preserves -small objects and preserves -ltered colimits, and we use [Hir09, Prop. 11.3.2].

Proposition 2.2.9. Let : M C : be a Quillen adjunction of model categories such that preserves and re ects weak equivalences. Then is a Quillen equivalence if and only if for every co brant in M, the unit : → is a weak equivalence.

P

. See for instance [Eİ19, Lem. 3.3].

2.2.10 (Simplicial algebras and sheaves). For any category C, we write sC for the category [ op , C] of simplicial objects in C. Let be a small category, and consider a Gabriel-Ulmer localisation : → ←↪ C : of the presheaf category at a set of maps in . Then C is a locally -presentable category, and the fully faithful right adjoint : C ↩→ preserves -ltered colimits (for some large enough ). Taking simplicial objects, and since colimits in functor categories are calculated pointwise, we get a re ective adjunction ˜ : Sp → ←↪ sC : ˜ where ˜ preserves -ltered colimits. Moreover, Sp → ←↪ sC is the Gabriel-Ulmer localisation generated by the set of maps

Δ def = {Δ ⊗ | ∈ } in Sp ,
where is identi ed with its image under ↩→ Sp . Then sC is locally -presentable as a sSet-enriched category, in particular it is enriched, tensored and cotensored over sSet. The re ective adjunction is also simplicial, thus ˜ preserves tensors and ˜ preserves cotensors.

Let ( , ) be a site, namely a pair of a small category and a Grothendieck topology on . Then the full subcategory Sh ↩→ of sheaves of sets on is the Gabriel-Ulmer localisation of at the set Remark 2.2.11 ([Lur09, 6.2.2.6, 6.5.4]). The Čech model structures on Sp present the ∞-topos of sheaves of ∞-groupoids on ( , ), namely the topological left-exact localisation of the ∞-category P( ) (of presheaves of ∞-groupoids) generated by the set (the (-1)-truncated maps that are the covering sieves of the topology).

Proposition 2.2.12. Let ( , ) be a site. Then the right-transferred model structure along : sSh ↩→ Sp č inj exists and the adjunction is a Quillen equivalence.

P

. By [DHI04, Prop. A.2], for every ∈ Sp , the unit : → is a weak equivalence in Sp č inj . Hence, by Proposition 2.2.9, it su ces to show that the right-transferred model structure exists. We will use Proposition 2.2.8. Let : be a generating trivial co bration in Sp č inj and let : → be a map in sSh . Consider the diagram below in Sp .

∼ ∼ ∼ ∼
Since shea cation is left-exact, the monad preserves monomorphisms, namely maps in C inj . Hence is in C inj ; by "2 out of 3", it is a trivial co bration in Sp č inj , and so the pushout → is as well. Thus the composite → is a weak equivalence, and it is the image by of the pushout of along .

Remark 2.2.13. Let : ↩→ be a fully faithful functor between small categories. Then Sh is the category of sheaves of sets on for the topology generated by the cocones in under . By Proposition 2.2.12, the right-transferred model structure along * : Sp sSh ↩→ Sp č inj exists and * * is a Quillen equivalence. We will write Sp č for this model category.

The right-transferred model structure Sp č is not in general a global model structure on Sp . This is because Sp č presents a topological left-exact localisation of the presheaf ∞-topos P( ), and such a localisation need not in general give a hypercomplete ∞-topos. On the other hand, a global model structure on Sp presents the presheaf ∞-topos P( ), which is always hypercomplete-indeed, it is the hypercompletion of the ∞-topos presented by Sp č. 3

C-sorted spaces

We x a locally nite direct category C for the rest of this chapter. Recall from Remark 1.2.6 that we have a canonical inclusion : C ↩→ Cell C . Thus we can see the category C of presheaves of sets as a category of sheaves of sets on Cell C , via the left-exact localisation * : Cell C → ←↪ C : * . Due to Remark 2.2.13, we may legitimately question whether this continues to be true for presheaves of spaces on C-that is, whether the ∞-topos of sheaves of ∞-groupoids on Cell C models the hypercomplete presheaf ∞-topos P(C). This turns out to be the case, as we will show in this section.

De nition 2.3.1. The simplicial model category of C-sorted spaces is the simplicial presheaf category SpC equipped with the injective global model structure.

Remark 2.3.2. When C is a set (Example 1.1.13(1)), the projective and injective model structures on SpC coincide.

2.3.3.

Since C is direct, C op is an inverse category, 4 and as such, has the structure of a Reedy category (we refer the reader to [START_REF] Riehl | The theory and practice of Reedy categories[END_REF] for a survey). The general theory of Reedy model structures then ensures that the injective global model structure on SpC coincides with the Reedy global model structure. 5 The payo is that the injective brations and trivial brations in SpC are easy to describe, and we have the simple generating sets of co brations and trivial co brations below (where :

↩→ are the boundary inclusions of 1.1.20). Remark 2.3.8. The previous result seems related to the fact that, by general considerations in [Ane], any direct category is "good", namely the enveloping ∞-topos of the 1-topos is the presheaf ∞-topos P( ).

C def = { | ∈ C, [ ] ∈ } C def = {ℎ | ∈ C, [ ] ∈ , 0 ≤ ≤ }
Remark 2.3.9. In the case of discrete spaces (sets), we have that C Ind(Cell C ) is the ind-completion of the nite cocompletion Cell C Fin C of C (for colimits of sets). In the case of spaces, Cell C is of course not a nite cocompletion (for colimits of spaces).

Homotopical models of algebraic theories and rigidi cation

In this section, we recall some elements of the theory of models in spaces of ordinary multisorted algebraic theories from [Sch01, Bad02, Ber06, Rez02] that we would like to generalise to dependently sorted algebraic theories.

We x a set of sorts throughout this section.

2.4.1 ( -sorted spaces). Let : ↩→ Cell be the fully faithful inclusion. Remark that the global projective and injective model structures on the category Sp sSet coincide, namely, they are both the model structure on Sp for -sorted spaces (De nition 2.3.1). Then this implies that (1) ! : Sp Sp(Cell ) proj : * is a Quillen adjunction, (2) and * : Sp(Cell ) proj Sp : * is a Quillen adjunction.

(Simplicial T-algebras

). An -sorted algebraic theory is an identity-on-objects, nite-product preserving functor Cx( ) → T (equivalently, T is an -contextual category). The category sT-Mod of strict models of T in sSet is the category of nite-product-preserving functors T → sSet. Equivalently, it is the category of simplicial objects in the category T-Mod of Set-models of T.

A 

(Homotopy T-algebras).

A simplicial T-algebra is a nite-product preserving functor : T → sSet. In other words, for every Γ = 1 × . . . × in T, we have Γ 1 × . . . × . An obvious way to de ne models of T in the ∞-category of spaces is as functors : T → sSet that take nite products to homotopy limits. Since nite products in simplicial sets are already homotopy limits (weak equivalences of sSet are stable under product), we can de ne a homotopy T-algebra to be a functor T → sSet such that for every Γ ∈ T, the canonical map Γ → 1 × . . . × is a weak equivalence in sSet.

The maps Γ → 1 × . . . × , natural in , are co-represented by maps "Γ" → Γ in Set T , where Γ is the representable presheaf on Γ ∈ T op , and "Γ" is the corresponding coproduct of 1 , . . . , calculated in the presheaf category Set T . Let def = {"Γ" → Γ | Γ ∈ T}. We write Sp(T op ) proj for the left Bous eld localisation of the projective model structure at the set of maps , and call this the model category of homotopy T-algebras.

(Rigidi cation).

For every Γ ∈ T, "Γ" is a co brant object of Sp(T op ) proj (since it is a coproduct of representables). Since ℎ : Sp(T op ) → sT-Mod sends every morphism in to an isomorphism, the adjunction ℎ : Sp(T op ) proj sT-Mod : is thus Quillen (see 2.2.6).

The following result is due to Badzioch.

T 2.4.5 (Rigidi cation of homotopy T-algebras). The Quillen adjunction ℎ : Sp(T op ) proj sT-Mod : is a Quillen equivalence.

P

. The single-sorted case is [Bad02, Thm 6.4], and the multisorted case (treated in [START_REF] Bergner | Rigidi cation of algebras over multi-sorted theories[END_REF]) is exactly similar. We can therefore ask the question: what is an sSet-model up to homotopy of a C-sorted theory? In fact, since we have a candidate (namely presheaves of spaces on C) for the models up to homotopy of the initial C-sorted theory, we could start by restricting to this degenerate case. A rst answer could be to de ne such a homotopy model to be a simplicial presheaf : Cell op C → sSet such that for every canonical pushout of a boundary inclusion in Cell C as below,

+1 +1 . the map ( +1 ) → ( ) × ( )
is a weak equivalence. But this does not de ne a model of Cx(C) in the ∞-category of spaces, because such a model should take canonical pushouts to homotopy pullbacks (pullbacks in the ∞-category of spaces), and pullbacks in sSet are not necessarily homotopy pullbacks.

When C is a set, we are precisely in the case of multisorted algebraic theories, all the canonical pullbacks involved are products, and products of arbitrary simplicial sets are homotopy limits. This is what motivates the considerations in [START_REF] Rezk | Every homotopy theory of simplicial algebras admits a proper model[END_REF][START_REF] Badzioch | Algebraic theories in homotopy theory[END_REF][START_REF] Bergner | Rigidi cation of algebras over multi-sorted theories[END_REF] for simplicial sets, and in [START_REF] Schwede | Stable homotopy of algebraic theories[END_REF] for pointed simplicial sets. 6Thus in the general case, the natural condition that emerges for the simplicial presheaf to satisfy is for ( +1 ) to be a homotopy pullback ( ) × ℎ ( )

. In this section, we will rst set up some machinery to de ne homotopical models of Cx(C) as brant objects of a model category, and then substantiate the previous point of view via a rigidi cation theorem with respect to C-sorted spaces.

De nition 2.5.1. A homotopical C-sorted space is an in Sp(Cell C ) such that ∅ → 1 is a weak equivalence in sSet, and for every canonical pushout in Cell C of the form Γ Γ +1

+1

.

we have

Γ +1 Γ × ℎ in sSet. A homotopical model of a C-contextual category Cx(C) → D is a simplicial presheaf D → sSet such that its restriction to Sp(Cell C ) is a homotopical C-sorted space.
2.5.2 (Flasque boundaries). Since we have a full inclusion : C ↩→ Cell C , every in C can be seen as an object of Cell C . We can therefore calculate the colimit of C - / → C ↩→ Cell C ↩→ Cell C as the "boundary" inclusion " " : " " ↩→ of the representable presheaf (we will not explicitly write the inclusion from now on, and write instead of , since the presence of quotes "" necessarily means that we are in Cell C or Sp(Cell C )). Now, the presheaf ∈ C is representable in Cell C , but is not the same as " " in Cell C -indeed, we have an inclusion " " ↩→ that is just the counit on of the idempotent comonad ! * on Cell C . Using the subrepresentables " " : " " ↩→ , we will de ne an intermediate global model structure, called the -asque model structure7 , on Sp(Cell C ). We will set up our co brant generation in precisely the same way as in [START_REF] Daniel C Isaksen | Flasque model structures for simplicial presheaves[END_REF], except that in our case, the crux of the construction ([Isa04, Lem. 3.9]) admits a much simpler proof-it follows automatically from the injective Reedy structure on SpC. We begin by xing sets of putative generating co brations and trivial co brations.

def = proj ∪ { " " | ∈ C, [ ] ∈ } def = proj ∪ {ℎ " " | ∈ C, [ ] ∈ , 0 ≤ ≤ } Remark 2.5.3. When C is a set, = proj and = proj . De nition 2.5.4 ([Isa04, Defs 3.3, 3.6]). A map in Sp(Cell C ) is (1) a -asque bration if it is a -injective 8 ,
(2) a -asque co bration if it has the left lifting property against all objectwise acyclic -asque brations, and in either case, is objectwise acyclic if it is also a global weak equivalence.

Lemma 2.5.5 ([Isa04, Lem. 3.8]). (1) A projective co bration is a -asque co bration, and a -asque bration is a projective bration. (2) An injective bration is a -asque bration, and a -asque co bration is an injective co bration (a monomorphism).

P

.

(1) Since proj ⊂ , it follows that (objectwise acyclic) -asque brations are projective (trivial) brations. So projective co brations are -asque co brations.

(2) By pushout-product yoga, every map in is an injective trivial co bration. So every injective (trivial) bration is an (objectwise acyclic) -asque bration, so every -asque co bration is an injective co bration.

Lemma 2.5.6 ([Isa04, Lem. 3.11]). If a map is a -co bration 9 , then it is an objectwise acyclic -asque co bration.

P

. Since has the left lifting property against all -asque brations, it is a -asque co bration. Since every map in is an injective trivial co bration, so is every -co bration, thus is an objectwise weak equivalence.

Lemma 2.5.7. If : → is a -asque bration, then * is a bration in SpC inj (a Reedy bration).

P

. By adjointness, " ", , * .

Lemma 2.5.8 ([Isa04, Lem. 3.9]). A map : → in Sp(Cell C ) is an objectwise acyclic -asque bration if and only if it is an -injective ( is a projective trivial bration and for every ∈ C the map " ", is a trivial bration in sSet).

P

. The "if" direction is clear. For the "only if", let be an objectwise acyclic -asque bration. By Lemma 2.5.5, it is a projective trivial bration. So we need to show that for every ∈ C, " ", is a trivial bration. But * preserves global weak equivalences and by the previous lemma, * is a Reedy bration. So * is a Reedy trivial bration and by adjointness we are done.

T 2.5.9. There is a co brantly generated, intermediate, global model structure on Sp(Cell C ) whose:

(1) weak equivalences are the global weak equivalences, (2) co brations are the -asque co brations, (3) and whose brations are the -asque brations.

P

. We use the standard Kan recognition theorem [Hir09, Thm 11.3.1], using Lemmas 2.5.6 and 2.5.8 and since and clearly permit the small object argument. Then by Lemma 2.5.5, the model structure is intermediate.

De nition 2.5.10. The -asque model structure on Sp(Cell C )is the global model structure de ned in Theorem 2.5.9. We write it as (Sp(Cell C ) , W, C , F ).

Proposition 2.5.11. Sp(Cell C ) is a proper simplicial model category.

P

. Any intermediate global model structure is proper. If is a co bration in sSet and ℎ a -asque bration, then we have an isomorphism " ", , ℎ , " ", ℎ in sSet → , and since sSet is a simplicial model category, the map , " ", ℎ is a bration which is trivial if either or ℎ is so.

We nally come to the rst reason for introducing this model structure, namely that we recover a strict generalisation of the properties from 2.4.1. T 2.5.12. Let : C ↩→ Cell C denote the canonical inclusion. Then,

(1) ! : SpC inj Sp(Cell C ) : * is a Quillen adjunction, (2) and * : Sp(Cell C ) SpC inj : * is a Quillen adjunction.

P

. Since * preserves global weak equivalences and monomorphisms, and sends -asque brations to brations in SpC inj (Lemma 2.5.7), it is both left and right Quillen.

Proposition 2.5.13. Let be brant in SpC inj . Then * is a homotopical C-sorted space.

P

. It is easy to see that * : Cell op C → sSet takes canonical pushouts of every ↩→ to strict pullbacks. Since is Reedy brant, → ( * ) is a bration, so these pullbacks are homotopy pullbacks.

Remark 2.5.14. What the proof of Proposition 2.5.13 really says is that Reedy brant objects in SpC, qua homotopical models in sSet of the initial C-contextual category are eminently type-theoretic in nature, since not only do they take canonical pullbacks to homotopy pullbacks (as functors Cx(C) → sSet), but they also take dependent projections to Kan brations.

2.5.15.

Recall that every object of Cell C is a nite C -cell complex ∅ → . . . Γ . For each such cell complex (that we write Γ with slight abuse), we will de ne a subrepresentable presheaf "Γ " ↩→ Γ in Cell C . Proceeding by induction on the dimension and length of Γ (as in the proof of Proposition 1.2.12), in the base case, the subrepresentable presheaf of the initial object ∅ ∈ Cell C is de ned to be the empty presheaf (the initial object of Cell C ) "∅" ↩→ ∅. Let Γ +1 be an object in Cell C of the form given by the following left-hand square in Cell C . We de ne the subrepresentable "Γ +1 " ↩→ Γ +1 by the cocartesian back face in the following right-hand cube in Cell C (the front face is only cartesian but not cocartesian since Cell C ↩→ Cell C preserves limits but not colimits).

Γ Γ +1

" " "Γ "

Γ "Γ +1 " Γ +1
Remark 2.5.16. For any ∈ C, we have " " = , and the previous de nition of " " coincides with the one in 2.5.2. In fact, we could just as easily have de ned "Γ" ↩→ Γ as simply being the counit ! * Γ ↩→ Γ, but inductively de ning them as above "automatises" many of the following proofs.

Proposition 2.5.17. For every Γ ∈ Cell C , "Γ" is co brant in Sp(Cell C ) .

P

. They are all -cell complexes, since "∅" is the initial object and since " " ↩→ are generating -asque co brations.

Remark 2.5.18. It is important to note that the "Γ" are not projective co brant in Sp(Cell C )-unless C is a set, which is just the case of multisorted Lawvere theories, in which case Sp(Cell C ) = Sp(Cell C ) proj and the "Γ" are all coproducts of objects in C ↩→ Cell C ↩→ Cell C (and thus coproducts of representables). 10Proposition 2.5.19. Let be a brant object in Sp(Cell C ) , such that for every Γ in Cell C , the map Γ → Map("Γ", ) is a weak equivalence in sSet. Then is a homotopical C-sorted space.

P

. First, "∅" is initial so by hypothesis ∅ → 1 is an equivalence in sSet. Next, we have the cube below in sSet, whose front face is cartesian.

Γ +1 Map("Γ +1 ", ) Γ Map("Γ ", ) Map(" ", )
Since is -asque brant, → Map(" ", ) is a bration, so the front face is a homotopy pullback. By hypothesis, the intervening arrows are all weak equivalences, so the back face is a homotopy pullback ([Hir09, Prop. 13.3.13]).

Proposition 2.5.20. Any ∈ Sp(Cell C ) is in the essential image of * : SpC ↩→ Sp(Cell C ) if and only if for every Γ in Cell C , Γ → Map("Γ", ) is an isomorphism in sSet.

P

. is in the essential image of * if and only if Γ → Map( ! * Γ, ) is an isomorphism. By Remark 2.5.16, this is what is desired.

2.5.21. Propositions 2.5.19 and 2.5.20 tell us that the brant objects in Sp(Cell C ) that see the maps "Γ" ↩→ Γ as weak equivalences are good candidates for the brant objects of a model structure for homotopical C-sorted spaces. Proposition 2.5.17 tells us that we are particularly well-placed to perform a left Bous eld localisation at just this set of maps, since their domains and codomains are -asque co brant objects. So let us x a name for this set of maps.

def = { Γ : "Γ" ↩→ Γ | Γ ∈ Cell C }
De nition 2.5.22. A homotopy C-sorted space is an -local object, namely a -asque brant object such that for every "Γ" ↩→ Γ in , the induced morphism map(Γ, ) → map("Γ", ) of homotopy function complexes is a weak equivalence in sSet.

De nition 2.5.23. The model structure for homotopy C-sorted spaces is the left Bous eld localisation of Sp(Cell C ) at the set . We write the model structure as (Sp(Cell C ) , W , C , F ).

Proposition 2.5.24. Every homotopy C-sorted space is a homotopical C-sorted space.

P

. By [Hir09, Prop. 3.4.1], -local objects and brant objects of Sp(Cell C ) coincide. Since every map in is between -asque co brant objects, a -asque brant object is -local if and only if Γ → Map("Γ", ) is a weak equivalence for all Γ in Cell C . We conclude by Proposition 2.5.19.

Proposition 2.5.25. The adjunction * : Sp(Cell C ) → ←↪ SpC inj : * is Quillen.

P

. The maps in are between -asque co brant objects and are sent to isomorphisms by * , so this follows from Theorem 2.5.12(2) and [Hir09, Thm 3.3.20].

We would now like to show that it is a Quillen equivalence. It would be nice to be able to generalise the technique from [START_REF] Badzioch | Algebraic theories in homotopy theory[END_REF] for the rigidi cation of ordinary algebraic theories. Unfortunately, this technique relies fundamentally on the following statement, that I am unable to prove. In fact, if we can, then the proof from op. cit. works word-for-word.

Conjecture 2.5.26. Let be a global weak equivalence in SpC. Then * is an -local equivalence.

Remark 2.5.27. When C is a set, the previous claim trivialises, since * sends global weak equivalences to global weak equivalences (and this is once again because weak equivalences are stable under products in sSet). This is false for an arbitrary locally nite direct category C, and it is easy to nd a simple counterexample. Let C = {0 → 1} be the "walking arrow" category. Recall that this corresponds to the type signature below. Then consider the object Γ of Cell C that corresponds to the cell complex below, namely the context ( : 0 , : 1 ( ), : 1 ( )).

0 1 1 Γ Therefore, for any ∈ SpC = sSet → , we have ( * ) Γ = 1 × 0 1 . Consider a (trivial co bration, bration) factorisation in sSet 

Δ 0 Δ 2 ∼ of

P

. We have the commuting triangle of adjunctions below.

SpC inj Sp(Cell C ) Sp(Cell C ) č inj ⊥
By "2 out of 3" for Quillen equivalences, it su ces to show that the identity adjunction is Quillen. The identity functor takes -asque co brations to injective co brations and injective brant objects to -asque brant objects. Every subrepresentable "Γ" ! * Γ ↩→ Γ is a covering sieve in the topology induced by : C ↩→ Cell C , so every injective Čech brant object is an -local object, so every -local equivalence is a weak equivalence of Sp(Cell C ) č inj . Thus the identity functor Sp(Cell C ) → Sp(Cell C ) č inj is left Quillen. 12

Homotopical models of C-contextual categories

In Sections 2.3 and 2.5, we have seen two ways of describing homotopical models of the initial C-contextual category, as sheaves of spaces on Cell C (Proposition 2.3.6 and Corollary 2.3.7) and as homotopy-coherent models of the C-contextual category Cx(C) (Theorem 2.5.28). We have also seen that the two descriptions are equivalent (Theorem 2.5.29). These results (especially Theorem 2.5.28) can be seen as rigidi cation theorems for the initial C-sorted theory.

We would like to be able to extend these results to other C-sorted theories, such as the theories of small categories, -categories (strict and weak) and planar coloured operads. In particular, for a suitable (perhaps for every?) C-contextual category Cx(C) → D, we would like to obtain a rigidi cation theorem in the form of a Quillen equivalence generalising that of Theorem 2.4.5, between a suitable local model structure for homotopy D-algebras and a model structure on simplicial D-algebras (equivalently, models of D in sSet). In this section, we will outline a tentative approach to solving this problem. We conjecture that this approach allows for a solution, but there is an obstruction that we are not yet able to surmount.

We x a C-contextual category Cx(C) → D throughout this section. We write the associated C-sorted theory as : Cell C → Θ, and the associated nitary monad on C as . We begin by showing that a -asque model structure on the category SpΘ exists and is right-transferred along the functor * : SpΘ → Sp(Cell C ) .

Proposition 2.6.1. The right-transferred model structure on SpΘ along the functor * : SpΘ → Sp(Cell C ) exists, where Sp(Cell C ) is the -asque model structure of Theorem 2.5.9.

P

. Since the functor is identity-on-objects, the image under ! of the sets proj and proj of generating projective (trivial) co brations of Sp(Cell C ) are the sets proj and proj of generating projective (trivial) co brations of SpΘ.

For in C, recall the de nition of " " and : " " ↩→ in Cell C from 2.5.2. Then the map ! : ! " " ↩→ in Θ is the sub-representable of ∈ Θ consisting of all maps Γ → in Θ that factor through the image by of some map → in C. Consider the set ! = proj ∪ {ℎ ! " " | ∈ C, [ ] ∈ , 0 ≤ ≤ }, that is the image under ! of the set of generating -asque trivial co brations (2.5.2). By Proposition 2.2.8, it su ces to show that any pushout of a map in ! is taken by * to a global weak equivalence in Sp(Cell C ). But since * preserves colimits and monomorphisms, * ! " " is an injective co bration and ℎ * ! " " is an injective trivial co bration.

De nition 2.6.2. We call the model structure of Proposition 2.6.1 the -asque model structure on SpΘ, and write this model category as SpΘ .

Remark 2.6.3. Let be in the essential image of sD-Mod ↩→ SpΘ. Then * is in the essential image of SpC ↩→ Sp(Cell C ). Then is brant in SpΘ if and only if * is Reedy brant in SpC.

2.6.4. For every Γ in Cell C , recall the de nition of "Γ" and the set = {"Γ" ↩→ Γ | Γ ∈ Cell C } from 2.5.15 and 2.5.21. Since ! is left Quillen and since is a set of maps between -asque co brant objects, the image ! is also a set of maps between co brant objects of SpΘ .

De nition 2.6.5. The model category of homotopy D-algebras is the left Bous eld localisation of the model category SpΘ at the set of maps ! . We write it as SpΘ .

Remark 2.6.6. Any in SpΘ is brant in SpΘ if and only if * is brant in Sp(Cell C ). If is in the essential image of sD-Mod then it is brant in SpΘ if and only if it is brant in SpΘ . T 2.6.7. In the exact adjoint square associated to the C-sorted theory

SpC inj sD-Mod Sp(Cell C ) SpΘ ! * * ! * * ℎ (★)
the lower horizontal adjunction is a Quillen adjunction and the left vertical adjunction is a Quillen equivalence.

P

. This follows from Theorem 2.5.28 and from the de nition of SpΘ .

2.6.8 (Rigidi cation of homotopy D-algebras). Theorem 2.6.7 is a partial generalisation of Remark 2.4.6. In order to obtain a full rigidi cation theory for C-contextual categories, we would like to transfer the model structure SpC inj for C-sorted spaces along the right adjoint sD-Mod → SpC.

When C is a set, then SpC inj = SpC proj and this is just the technique from [Qui67, II.4] (reprised in [Sch01, Thm 3.1], [Rez02, Sec. 7]) of constructing a model structure on the category of simplicial objects in models of a multisorted algebraic theory. Quillen's technique relies on the existence of a brant replacement functor that passes from SpC inj to sD-Mod. When SpC inj = SpC proj , we can choose any nite-limit-preserving ( nite products su ce) brant replacement functor on objects of sSet, such as Kan's Ex ∞ .

However, in the general case where C is any locally nite direct category, we need a Reedy brant replacement functor on SpC inj that passes to sD-Mod. This seems to be a little di cult, and I have not yet found a way out of this impasse.

CHAPTER 3

Opetopic theories

In this chapter, we will describe certain familiar algebraic structures (small categories and coloured planar operads among them) as Set-models of idempotent O-sorted theories, where O is the locally nite direct category of opetopes. We thus transform what is ostensibly part of the "structure" of a category or operad (like its operation of composition) into "properties" on some O-sorted set (an opetopic set).

Opetopes (operation polytopes) are certain cellular shapes that are "tree-like" in every dimension-namely, every opetope can be seen both as an operation (an elementary planar tree or corolla) in its dimension, and as a planar tree of opetopes of lower dimension. For instance, here is an opetope of dimension 2. ℎ ⇓ ℎ It can be seen as a liform tree → → → → of opetopes of dimension 1, as well as a planar corolla (a rooted tree with one node). It encodes the shape of an operation of composition of morphisms in a category, that takes as input a liform tree and returns as output a liform tree of length 1. Hence, can be seen as the compositor of , , ℎ, and , and outputs the actual composition .

A second example, one dimension higher, is that of a planar coloured Setoperad P (a.k.a. a nonsymmetric multicategory), whose compositors have planar trees of composable multimorphisms of P as arities. Here, is the compositor of the pasting of , , , and as on the left, and points towards the actual composition ( , ( )).

Heuristically extending this pattern, one infers that such an algebraic structure one dimension above that of planar coloured operads should have an operation of composition whose arities are suitably "planar" trees of "operations" whose inputs are planar trees. Indeed, such algebraic structures are precisely the (coloured)

-combinads in Set (combinads over the combinatorial pattern of planar trees) of Loday [START_REF] Loday | Algebras, operads, combinads. irma-web1[END_REF].

The goal of this chapter is to give a precise de nition of this hierarchy of algebraic structures (that we will call opetopic algebras), and to show that they are naturally encoded by idempotent dependently sorted algebraic theories in the sense of Chapter 1. We end by giving a partial answer to the conjecture of 2.6.8. Namely, we show that there exists a model structure on the category of simplicial opetopic algebras, that has an associated rigidi cation theorem. Notation 3.0.1 (Change of notation). We will no longer use to denote the rst in nite ordinal/cardinal, since we will require it in our notation for opetopes. Therefore, for this chapter only, we use ∞ to denote the rst in nite ordinal.

Polynomial endofunctors and monads

In this section, we recall some of the theory of polynomial endofunctors and monads in Set that we will require to de ne the category of opetopes.

A polynomial (endo)functor is a diagram of the form below in Set.

We use the following terminology for . The elements of are its nodes or operations, the elements of are its colours or sorts, and for every node , the elements of the bre def = -1 ( ) are the inputs of . For every input of a node , we denote its colour by ( ) def = ( ). 

( ) = ∈ ∈ ( ) , ∈ (3.1.1)
where def = -1 ( ). Visually, elements of ( ) are nodes ∈ such that = , and whose inputs are decorated by elements of ( | ∈ ) in a manner compatible with their colours. Graphically, an element of ( ) can be represented as (3) is injective, and the complement 0im( ) has a single element, the root of ; (4) let 0 = 2 + { }, with the root, and de ne the walk-to-root function by ( ) = , and otherwise ( ) = ( ); then we ask that for all ∈ 0 , there exists ∈ N such that ( ) = . We call the colours of a tree its edges and the inputs of a node the input edges of that node. Let Tree (denoted TEmb in [START_REF] Kock | Polynomial functors and trees[END_REF]) be the full subcategory of PolyEnd whose objects are trees. An elementary tree is a tree with at most one node. Let elTr be the full subcategory of Tree spanned by elementary trees.

Remark 3.1.5. Tree is the category of symmetric or non-planar trees (the automorphism group of a tree is in general non-trivial) and its morphisms correspond to inclusions of non-planar subtrees. The category Ω of dendrices is the image of Tree under the "free coloured symmetric operad" functor [Koc11, 1.3].

De nition 3.1.6 ( -tree). For in PolyEnd, the over-category Tree/ is the category tr of -trees. The fundamental di erence between Tree and any tr is that the latter is always rigid i.e. it has no non-trivial automorphisms [Koc11, Prop. 1.2.3]. In particular, this implies that PolyEnd does not have a terminal object.

Notation 3.1.7. Every -tree ∈ tr corresponds to a morphism from a tree (which we denote by ) to , so that : → . We point out that 1 is the set of nodes of , while 1 : 1 → 1 is a decoration of the nodes of by nodes of , and likewise for edges.

De nition 3.1.8 ([Koc11, 2.1.1]). For ∈ PolyEnd, its category of elements 2 elt is the over-category elTr/ . For as in 3.1.1, the set of objects of elt is + , and for each ∈ , there is a morphism t : ( ) → , and a morphism s : ( ) → for each ∈ .

Lemma 3.1.9. For every ∈ PolyEnd, elt is a locally nite direct category.

P

. Immediate, since there is no non-trivial composition of arrows.

Proposition 3.1.10 ([Koc11, Prop. 2.

1.3]).

There is an equivalence of categories between the presheaf category elt and the slice category PolyEnd / .

Notation 3.1.11 (Addresses). Let ∈ Tree with its walk-to-root function (De nition 3.1.4). We de ne the address function & on edges inductively as follows:

(

1) if is the root edge, let & def = [], (2) if ∈ 0 -{ } and if & ( ) = [ ], de ne & def = [ ].
The address of a node ∈ 1 is de ned as & def = & ( ), namely that of its target. Note that this function is injective since is. Let • denote its image, the set of node addresses of , and let | be the set of addresses of leaf edges, i.e. those not in the image of .

Assume now that :

→ is a -tree. If ∈ 1 has address & = [ ], write s [ ] def = 1 ( ). For convenience, we let • def = • , and | def = | .
Remark 3.1.12. The formalism of addresses is purely bookkeeping syntax for the operations of grafting and substitution on trees. The syntax of addresses will extend to the category O of opetopes and will allow us to give a precise description of the composition of arrows in O (see De nition 3.2.8) as well as certain constructions in O.

Notation 3.1.13. We denote by tr | the set of -trees with a marked leaf, namely a tree along with the address of one of its leaves. Similarly, we denote by tr • the set of -trees with a marked node.

3.1.14 (Grafting). Let be as in 3.1.1. For ∈ , de ne I ∈ tr as having underlying tree { } ← ∅ → ∅ → { }, along with the obvious morphism to picking out ∈ . Then I is the -tree with no nodes and a unique edge decorated by . De ne Y ∈ tr , the corolla at , as having underlying tree

( ) + { * } { } ( ) + { * },
where the rightmost map sends to * , and where the morphism Y → is the identity on ( ) ⊆ , maps * to ( ) ∈ , is the identity on ⊆ , and maps to 2 Not to be confused with the category of elements of a presheaf.

∈ . Then Y is the -tree with a single node (a corolla) decorated by . Observe that for ∈ tr , giving a morphism I → is equivalent to specifying the address [ ] of an edge of decorated by . Likewise, morphisms of the form Y → are in bijection with addresses of nodes of decorated by . 

= (• • • ( • [ 1 ] 1 ) • [ 2 ] 2 • • • ) • [ ] . (3.1.2)
Clearly, the result does not depend on the order in which graftings are performed.

3.1.17 (Substitution). Let [ ] ∈ • and = s [ ] . Then can be decomposed as

= • [ ] Y [ ]

,

(3.1.3) where = { 1 , . . . , }, and , 1 , . . . , ∈ tr and the corolla Y at the node at address [ ] is grafted onto a leaf of . For a -tree with a bijection ℘ : | → over , we de ne the substitution

[ ] as [ ] def = • [ ] ℘ -1 . (3.1.4)
In other words, the node at address [ ] in has been replaced by , and the map ℘ provides "rewiring instructions" to connect the leaves of to the rest of .

(Polynomial monads).

A polynomial monad over is a monoid in PolyEnd( ) (thus necessarily a cartesian monad on Set/ ). 3 We denote PolyMnd( ) the category of monoids in PolyEnd( ).

If is in PolyMnd( ) and is in PolyMnd( ) then a morphism of polynomial monads → is a morphism of polynomial functors that respects the monoid structure. The category of all polynomial monads is denoted PolyMnd.

De nition 3.1.19 ([Koc11, 1.2.7]). Given a polynomial endofunctor , we de ne the free monad on , denoted ★ , as tr | tr where maps a -tree with a marked leaf to the decoration of that leaf, forgets the marking, and maps a tree to the decoration of its root. Remark that for ∈ tr we have -1 = | .

Proposition 3.1.20 ([Koc11, Prop. 1.2.8]). The forgetful functor from PolyMnd( ) to PolyEnd( ) is a monadic right adjoint, and its left adjoint is given by (-) ★ .

3.1.21 (Readdressing). Let be a polynomial monad as on the left below. By Proposition 3.1.20, is an algebra for the free-monoid monad (-) ★ , and we will write its structure map ★ → as on the right.

, tr | tr ℘ t
We call ℘ : | t the readdressing function of , and t ∈ is called the target of . If we think of any ∈ as the corolla Y , then the target map t "contracts" a tree to a corolla, and since the middle square is a pullback, the number of leaves is preserved. The map ℘ establishes a coherent correspondence between the set | of leaf addresses of a tree and the set t of inputs of t .

De nition 3.1.22. For a polynomial monad , we de ne its Baez-Dolan (-) + construction + to be tr

• tr , s t
where s maps an -tree with a marked node to the label of that node, forgets the marking, and t is the target map. If ∈ tr , remark that -1 = • is the set of node addresses of .

If [ ] ∈ • , then s( [ ]) def = s [ ] .
Proposition 3.1.23 ([KJBM10, 3.2]). The polynomial functor + has a canonical structure of a polynomial monad.

Remark 3.1.24. The (-) + construction is an endofunctor on PolyMnd. If we begin with a polynomial monad , then the colours of + are the operations of . The operations of + , along with their output colour, are given by the monad multiplication of : they are the relations of , i.e. the reductions of -trees to operations of . The monad multiplication on + is given as follows: the reduction of a tree of + to an operation of + (which is an -tree) is obtained by substituting -trees into nodes of -trees.

Proposition 3.1.25. For a polynomial monad, there is an equivalence of categories between the category of + -algebras and the slice category PolyMnd( ) / .

P

. For an + -algebra + -→ in Set/ , let Φ in PolyEnd( ) / be . There is an evident bijection tr Φ + in Set/ , and the structure map extends by pullback along → to a map (Φ ) ★ → Φ in PolyEnd( ). It is easy to verify that this determines a (-) ★ -algebra structure on Φ , and that the map Φ → in PolyEnd( ) is a morphism of (-) ★ -algebras. Conversely, given an ∈ PolyMnd( ) / whose underlying polynomial functor is ← → → , then the bijection tr + in Set/ and the (-) ★ -algebra map ★ → provide a map + Ψ ---→ in Set/ . It is easy to verify that Ψ is the structure map of a + -algebra and that the constructions Φ and Ψ are functorial and mutually inverse.

The category O of opetopes

In this section, we will use the formalism of polynomial functors and polynomial monads of Section 3.1 to de ne the locally nite direct category O of opetopes. As we will see, the category O is a locally nite direct category. Our construction of opetopes is precisely that of [START_REF] Kock | Polynomial functors and opetopes[END_REF], and by [KJBM10, Thm 3.16], also that of [START_REF] Leinster | Higher Operads, Higher Categories[END_REF], and by [Che04, Cor. 2.6], also that of [START_REF] Cheng | The category of opetopes and the category of opetopic sets[END_REF]. The de nition of the category of opetopes that we use rst appears in [START_REF] Ho | The equivalence between many-to-one polygraphs and opetopic sets[END_REF], and this section is largely drawn from [START_REF] Ho | Opetopic algebras I: Algebraic structures on opetopic sets[END_REF].

(De ning opetopes)

. Let ℨ 0 be the identity polynomial monad, as on the left below, and let ℨ +1 def = (ℨ ) + for all ∈ N. Write ℨ as on the right below.

{ * } { * } { * } { * }, O +1 O +1 O . s t
The set of -dimensional opetopes (or simply -opetopes) is O . Thus for ≥ 0, an ( + 2)-opetope is a ℨ -tree. It is called degenerate if it is a ℨ -tree with no nodes (thus = I for some ∈ O ); it is non degenerate otherwise. The readdressing function (see 3.1.21) gives a bijection ℘ : | → (t ) • between the leaves of and the nodes of t , preserving the decoration by -opetopes.

Example 3.2.2. (1) The unique 0-opetope is denoted and called the point.

(2) The unique 1-opetope is denoted and called the arrow. We will also denote it by Y (strictly speaking, it is not a tree, but it is the unary operation of ℨ 0 and so can be seen as a corolla with a single input). (3) Any ∈ O +2 is a ℨ -tree, namely a tree whose nodes are labeled with ( + 1)opetopes, and edges are labeled with -opetopes. In particular, 2-opetopes are ℨ 0 -trees, which are the liform or linear trees, and thus in bijection with N.

We will refer to them as opetopic integers, and write n for the 2-opetope having exactly nodes.

(Higher dimensional addresses). By de nition, an opetope of dimension

≥ 2 is a ℨ -2 -tree, thus the formalism of tree addresses (Notation 3.1.11) can be applied to designate nodes of . We will iterate this to give higher dimensional addresses, which are an e cient syntax for the morphisms of the category of opetopes. Start by de ning the sets A of -addresses as follows:

A 0 def = { * } , A +1 def = lists(A ),
where lists( ) is the set of nite lists (or words) on the alphabet . Explicitly, the unique 0-address is * (also written [] by convention), while an ( + 1)-address is a sequence of -addresses. Such sequences are enclosed by brackets. The address [], namely the empty word, is in A for all ≥ 0. Here are examples:

[] ∈ A 1 , [ * * * * ] ∈ A 1 , [[] [ * ] []] ∈ A 2 , [[[[ * ]]]] ∈ A 4 .
For any opetope , its nodes can be speci ed uniquely using higher addresses. We will say that the 0-opetope has no nodes, and that the address of the unique node 4 of the 1-opetope is * ∈ A 0 . Let ≥ 2, and assume by induction that that for all 0 < < and anyopetope , the nodes of are assigned ( -1)-addresses, namely that we have an injective map & : • → A -1 . Now, an -opetope is a ℨ -2 -tree :

→ ℨ -2 . Write its underlying tree as ← → → . A node ∈ has an address & , which is a list of edges of describing the path from the root to . Write this address as [ 1 • • • ], where 1 , . . . , ∈ . The edge 1 is an input edge of the root node 1 of , and so it corresponds to a node 1 of the ( -1)-opetope 1 decorating 1 . By induction, 1 has a higher address [ 1 ] ∈ A -2 . Likewise, 2 is an input edge of a node 2 whose target is 1 . If 2 is the ( -1)-opetope decorating 2 , then 2 corresponds to a node 2 of 2 , that has an ( -2)-address

[ 2 ] def = & 2 ∈ A -2 . Repeating the argument, each in the list [ 1 • • • ]
gives rise to an ( -2)-address [ ], and so we assign the higher address

[[ 1 ] • • • [ ]] to .
The crux of the construction is that it allows us to specify, explicitly, every sub-opetope of an opetope (of strictly higher dimension) via its (the sub-opetope's) address. Henceforth, we use • to denote the set of higher addresses of the nodes of , and likewise for | . Moreover, if [ ] ∈ • is a node higher address of , then s [ ] will now denote the ( -1)-opetope that is the decoration of the node at

[ ]. Let [ ] = [ [ ]] ∈ A -1 be an address such that [ ] ∈ • and [ ] ∈ (s [ ] ) • .
Then as a shorthand, we write the corresponding edge address of as

e [ ] def = s [ ] s [ ] .
(3. Its underlying pasting diagram consists of 3 arrows grafted linearly. Since the only node address of is * ∈ A 0 , the underlying tree of 3 can be depicted as on the right. On the left of this tree are the decorations: nodes are decorated with ∈ O 1 , while the edges are decorated with ∈ O 0 . For each node in the tree, the set of input edges of that node is in bijective correspondence with the node addresses of the decorating opetope, and this address is written on the right of each edge. In this low dimensional example, these addresses can only be * . Finally, on the right of each node of the tree is its 1-address, which is just a sequence of 0-addresses giving "walking instructions" to get from the root to that node.

The 2-opetope 3 can then be seen as a corolla in some 3-opetope as follows:

3 [ ] [ * ] [ * * ] []
As previously mentioned, the set of input edges is in bijective correspondence with the set of node addresses of 3. Here is now an example of a 3-opetope, with its annotated underlying tree on the right (the 2-opetopes 1 and 2 are analogous to 3):

. . . . . ⇓ ⇓ ⇓ . . . . . ⇓ 3 1 2 [] [[ * * ]] [[ * ]] [ * * ] [ * ] [ ] [] [ ] [ * ]
Remark 3.2.5. Let ∈ O with ≥ 2. We describe its target t ∈ O -1 and readdressing function ℘ : | → (t ) • in terms of higher addresses.

(1) If is degenerate, namely = I for some ∈ O -2 , then t = Y and .

℘ : | = {[]} → Y • = {[]}
The readdressing function

℘ : | → (t ) • is given as follows. Let [ ] ∈ | . (a) If [ ] [ ] ([ ] is a pre x of ), then [ ] = [ [ ]] for some [ ] ∈ • , and ℘ [ [ ]] = (℘ [ ]) • [ ] (where • is concatenation). (b) If [ ] [ ], then [ ] ∈ | . Assume ℘ [ ] ℘ [ ]. Then ℘ [ ] = (℘ [ ]) • [[ ]] • [ ], for some [ ] ∈ (s ℘ [ ] t ) • = (t ) • , and let ℘ [ ] = (℘ [ ]) • (℘ -1 [ ]) • [ ]. (c) If ℘ [ ] ℘ [ ], then ℘ [ ] = ℘ [ ].
3.2.6 (The category of opetopes). We are now equipped to give a de nition of the category O of opetopes in terms of generators and relations. While the category of opetopes was rst introduced in [Che03], the de nition we use is due to [START_REF] Ho | The equivalence between many-to-one polygraphs and opetopic sets[END_REF] 

s [ ] s [ ] s [ ] s [ [ ] ] s [ ] t s [ ] s [ [ ] ]
(b) (Glob1) for every that is non-degenerate: By "2 out of 3" for [ ] be the node addresses of , sorted in reverse lexicographical order. By induction, assume that ( -1) is a subpresheaf of [ ] containing the ( + 1)-cells

t t t s [] . t t t s [] (c) (Glob2) if is non-degenerate, then for [ [ ]] ∈ | : s ℘ [ [ ] ] t t s [ ] . s ℘ [ [ ] ] s [ ] t s [ ] (d) (Degen) if
s [ 1 ] , . . . , s [ -1 ] ∈ [ ].
Clearly, this holds when = 1, as [t ] does not contain any ( + 1)-cell.

Take [ ] ∈ (s [ ] ) • . By induction, and since

[ [ ]] [ ], the ( + 1)- cell s [ [ ] ] is in ( -1) . Further, the -cell s [ ] s [ ] is present in ( -1) , since by (Inner), s [ ] s [ ] = t s [ [ ] ]
. Therefore, we have an inclusion :

[s [ ] ] → ( -1) mapping s [ ] s [ ] to s [ ] s [ ] ,
and let ( ) be the pushout

[s [ ] ] ( -1) [s [ ] ] ( ) s [ ]
Clearly, ( ) is a subpresheaf of [ ] containing the ( +1)-cell s [ ] for 1 ≤ ≤ , and the induction hypothesis is satis ed.

Finally, ( ) ⊆ [ ] contains all the ( + 1)-cells of [ ], whence

( ) = [ ]. By construction, the chain of inclusions [t ] = (0) ↩→ (1) ↩→ • • • ↩→ ( ) =
[ ] is a relative S +1 -cell complex. 

≤ ! = colim [ ] , → [ ].
On the other hand, ≤ * is the "terminal extension" of in that ( ≤ * ) , = , and ( ≤ * ) is a singleton, for all ∈ O < . For < ∞, we write (-) ≤ for (-) 0, : 

O ≥0 = O → O 0, = O ≤ , and let (-) < = (-) ≤ -1 if ≥ 0. Similarly, we note (-) ,∞ : O ≤∞ = O → O ,∞ = O ≥ by (-) ≥ ,
(2) A presheaf ∈ O ≥ is in the essential image of ≥ ! if and only if > = ∅. (3) A presheaf ∈ O ≥ is in the essential image of ≥ * if and only if for all ∈ O > we have ( ) ≥ ⊥ . (4) A presheaf ∈ O ≤ is in the essential image of ≤ * if and only if for all ∈ O < we have (o ) ≤ ⊥ , i.e.
is a singleton.

P

. The rst point follows from the fact that ≥ and ≤ are fully faithful. The rest are straightforward veri cations. Notation 3.2.27. To ease notations, we sometimes leave truncations implicit, e.g. point (3) of the previous proposition can be reworded as: a presheaf ∈ O ≥ is in the essential image of ≥ * if and only if B > ⊥ .

Opetopic algebras

Let ≤ ∈ N, and recall that O -, ↩→ O is the full subcategory of those opetopes such that -≤ dim ≤ . A -coloured, -dimensional opetopic algebra, or ( , )-opetopic algebra, will be an algebraic structure on a presheaf over O -, , whose cells of dimension are "operations" that can be "composed" in ways encoded by ( + 1)-cells6 . As we will see in the next Section 3.4, the fact that the operations and relations of a ( , )-opetopic algebra are encoded by opetopes of dimension ≥ results in the category OAlg , of ( , )-opetopic algebras always having a canonical fully faithful nerve functor to the category O of opetopic sets (Theorem 3.4.29).

We begin this section by surveying elements of the theory of parametric right adjoint (p.r.a.) monads. This will be essential to the de nition of the coloured ℨ monad, which is a generalisation of the polynomial monad ℨ : Set /O → Set /O to the presheaf category O -, . The category OAlg , algebras of this new monad is the category of ( , )-opetopic algebras. Then, we introduce the category Λ of opetopic shapes. We obtain a re ective adjunction to the category OAlg , def = ℨ -Alg : Λ → ←↪ OAlg , : , where the left adjoint is called the algebraic realisation, and where the right adjoint is the algebraic nerve functor. Finally, we describe the previous adjunctions as a Gabriel-Ulmer localisation at spine inclusions (Theorem 3.3.35).

Each of the monads ℨ on O -, will be nitary. We can therefore conclude that each category OAlg , is the category of algebras of an O -, -sorted theory (De nition 1.3.15). The cases of interest (and in fact, the only real cases of interest) are OAlg 1,1 , OAlg 1,2 and OAlg 1,3 , which are the categories Cat, Opd pl and Cmbd col of small categories, planar coloured operads and a coloured version of Loday's combinads over planar trees [START_REF] Loday | Algebras, operads, combinads. irma-web1[END_REF] respectively.

(Parametric right adjoint monads)

. We survey elements of the theory of parametric right adjoint (p.r.a.) monads on presheaf categories, which will be essential to the de nition and description of ( , )-opetopic algebras. A comprehensive treatment of this theory can be found in [START_REF] Weber | Familial 2-functors and parametric right adjoints[END_REF].

De nition 3.3.2. If : C → D is a functor, and C has a terminal object 1, then factors as

C C /1 D / 1 D, 1 (3.3.1)
where the second functor is the induced functor between slice categories, and the third is the domain functor. We say that is a parametric right adjoint (abbreviated p.r.a.) if 1 has a left adjoint .

3.3.3. We will immediately restrict De nition 3.3.2 to the case where C = D = for a small category . If / 1 is the category of elements of 1 ∈ , and using the equivalence / 1 / 1 , the factorisation of (3.3.1) becomes / 1 .

1 Let be the left adjoint of 1 . Then 1 is the nerve of the restriction : / 1 → of to the representable presheaves, and the usual nerve formula gives

( 1 ) = ( , ),
where ∈ and ∈ / 1. Therefore, for ∈ , we have

( ) = ∈ ( 1) ( , ). 
Whence it is clear that the data of the object 1 ∈ and of the functor : / 1 → determine the functor up to isomorphism. Let Θ 0 (leaving implicit) be the full subcategory of that is the image of : / 1 → . Objects of Θ 0 are called -cardinals.

De nition 3.3.4. A p.r.a. monad is a monad whose endofunctor is a p.r.a. and whose unit id → and multiplication → are cartesian natural transformations.

Remark 3.3.5. Any p.r.a. monad on a presheaf category is a monad with Θ 0 as arities (that we have seen in 1.3.9) and so we can deduce a lot of information about the free-forgetful adjunction -Alg and about the category of algebras -Alg. Notation 3.3.6. With slight abuse, let :

→ -Alg be the free -algebra functor. The (identity-on-objects, fully faithful) factorisation of the composite Θ 0 ↩→ -→ -Alg will be denoted by

Θ 0 Θ -Alg. (3.3.2)
In other words, Θ is the full subcategory of -Alg spanned by free algebras over -cardinals.

Proposition 3.3.7 ([Web07, Prop. 4.20]). Let : → be a p.r.a. monad, with Θ 0 the category of -cardinals. Then the Yoneda embedding ↩→ factors through Θ 0 ↩→ . (In other words, representable presheaves are -cardinals.)

Proposition 3.3.8. Let be a p.r.a. monad on . Then has arities Θ 0 . Thus:

(1) The functors 0 : Θ 0 → and : Θ → -Alg are dense. Equivalently, their nerve functors 0 : → Θ 0 and : -Alg → Θ are fully faithful.

(2) The following diagram is an exact adjoint square 7 .

-Alg

Θ 0 Θ 0 ⊥ ! * ⊥
In particular, both squares commute up to natural isomorphism. Corollary 3.3.9. Let

(3) (Segal condition) A presheaf ∈ Θ is
J def = ! J = { ! : ! ! * → ! | ∈ Θ 0 -im( )} ,
where is the counit of the adjunction ! * . Then a presheaf ∈ Θ is in the essential image of if and only if J ⊥ . As a consequence, the left adjoint Θ → -Alg of (namely the left Kan extension of along the Yoneda embedding) is a Gabriel-Ulmer localisation Θ → ←↪ -Alg J -1 Θ 3.3.10. Recall the de nition of the polynomial monad

ℨ from 3.2.1. If = ( | ∈ O ) is in Set/O , and if ∈ O , then (ℨ ) = ∈O +1 t = [ ] ∈ • s [ ] .
Under the equivalence Set/O O , this formula can be rewritten as

(ℨ ) = ∈O +1 t = O ( [ ], ),
where [ ] is the truncated spine of . We will extend the polynomial monad ℨ on Set/O = O to a p.r.a. monad on O -, , where ≤ . This new setup will encompass more known examples than the uncoloured case (see Proposition 3.3.26). For instance, recall that the polynomial monad ℨ 2 on Set/O 2 Set/N is exactly the monad of planar operads. The extension of ℨ 2 to O 1,2 will retrieve coloured planar operads as algebras. Similarly, the polynomial monad ℨ 1 on Set is the free-monoid monad, which we would like to vary to obtain "coloured monoids", namely small categories. 7 There exists a natural isomorphism 0 * whose mate ! 0 → is invertible (satis es the Beck-Chevalley condition).

The rst step of this construction is to de ne ℨ as a p.r.a. functor, namely an endofunctor ℨ on O -, such that in the sequence below, ℨ 1 is a right adjoint:

O -, O -, /ℨ 1 O -, .
ℨ 1 Following 3.3.3, it su ces to de ne its value ℨ 1 on the terminal presheaf, and to specify a functor :

O -, /ℨ 1 → O -, .
De nition 3.3.11. De ne ℨ 1 ∈ O -, as

(ℨ 1) def = { * }, (ℨ 1) def = { ∈ O +1 | t = } ,
where ∈ O -, -1 and ∈ O , along with the obvious restriction maps. We now de ne a functor : O -, /ℨ 1 → O -, . On objects, for * ∈ (ℨ 1) and

∈ (ℨ 1) , let 8 ( * ) def = [ ], ( ) def = [ ]. (3.3.3)
On morphisms, takes face maps to the canonical inclusions. Thus we can de ne the functor ℨ 1 : O -, → O -, /ℨ 1 as the nerve functor of , namely ℨ 1 = . We now recover the endofunctor ℨ explicitly (as in 3.3.3): for ∈ O -, -1 we have (ℨ )

, and for ∈ O , we recover a formula similar to the uncoloured case (3.3.10)

(ℨ ) ∈O +1 t = O -, ( [ ], ).
Example 3.3.12. Let us unfold De nition 3.3.11 in the case = 1 and = 1. Here, O 0,1 = G 1 is the category of directed graphs, whose terminal object 1 is the graph with one vertex and a loop. The graph ℨ 1 1 also has one vertex, but this time, it has an many loops as there are 2-opetopes, namely one loop per element in N. The category of elements O 0,1 /ℨ 1 1 looks like this: *

0 1 2 • • • • • • 0 , 0 1 , 1 2 , 2 ,
where * corresponds to the vertex of ℨ 1 1, the numbers on the second row correspond to its vertices, and the morphisms are the inclusions of * as the source or target of these vertices. The functor : O 0,1 /ℨ 1 1 → O 0,1 maps * to the graph with one vertex and no edges, and maps to the linear graph with consecutive edges:

( * ) = (•) , ( ) = (• → • → • → • • • → •) .
On morphisms, ( ) (resp. ( )) is the inclusion of • as the rst (resp. as the last) vertex of ( ). Then, for ∈ O 0,1 , the graph ℨ 1 has the same vertices as , but its edges are paths in . In other words, ℨ 1 : O 0,1 → O 0,1 is the free category monad.

3.3.13. Recall from De nition 3.3.4 that a p.r.a. monad is a monad whose unit id → and multiplication → are cartesian, and such that its underlying functor is a p.r.a. We now endow ℨ with the structure of a p.r.a. monad over O -, . We rst specify the unit and multiplication 1 : 1 → ℨ 1 and 1 : ℨ ℨ 1 → ℨ 1 on the terminal object 1, and extend them to cartesian natural transformations (Lemma 3.3.18). Next, we check that the required monad identities hold for 1 (Lemma 3.3.19), which automatically gives us the desired monad structure on ℨ .

De nition 3.3.14. Let O (2)
+2 be the set of ( + 2)-opetopes of uniform height 2, namely of the form Y

[ [ ] ] Y [ ] ,
with

, [ ] ∈ O +1 and [ ] ranging over • . Proposition 3.3.15. If ∈ O -, , then (ℨ ℨ ) < = < , and if ∈ O , then (ℨ ℨ ) ∈O (2) +2 t t = O -, ( [t ],
). Y , and note that t t = t s [] = t = by (Glob1). We now de ne a map Φ( ) :

[t ] → . Note that leaf addresses of are of the form

[[ ] [ ]],
where [ ] ∈ | , thus node addresses of t are of the form ℘

[[ ] [ ]]. Let Φ( ) ℘ [[ ] [ ]] def = ℘ [ ] .
The construction of Φ( ) provides a map

Φ : (ℨ ℨ ) → ∈O (2) +2 t t = O -, ( [t ],
)

whose inverse we now construct. Let ∈ O (2) +2 , say = Y [ [ ] ] Y [ ] ,
be such that t t = , and take : 

(ℨ ℨ 1) = ∈ O (2) +2 | t t = . (3.3.4)
Now, let ( 1 ) map the unique element of 1 to Y ∈ (ℨ 1) , and let ( 1 ) map ∈ (ℨ ℨ 1) to t ∈ (ℨ 1) .

Remark 3.3.17. Let ∈ O -, , and consider the terminal map ! : → 1. The map ℨ ! : (ℨ ) → (ℨ 1) simply maps a pasting diagram : [ ] → (where t = ) to its shape .

Lemma 3.3.18. Let ∈ O -, , and consider the terminal map ! : → 1. To alleviate notations, write def = ℨ ! : ℨ → ℨ 1. There exist maps : → ℨ and : ℨ ℨ → ℨ such that the following squares are cartesian:

ℨ 1 ℨ 1, ! 1 ℨ ℨ ℨ ℨ ℨ 1 ℨ 1. ℨ 1 (3.3.5)
In particular, the maps and assemble into cartesian natural transformations : id → ℨ and : ℨ ℨ → ℨ .

P

. All morphisms are identities in dimension < , so it su ces to check that both squares are cartesian in dimension .

(1) If is the pullback +2 is such that t t = , : [ ] → is such that t = , and subject to the constraint that t = . By Proposition 3.3.15, it is clear that (ℨ ℨ ) .

ℨ 1 ℨ 1, ! 1 then for ∈ O we have = { ∈ ℨ | ( ) = Y } = O -, ( [Y ], ) = , as [Y ] = [ ]. (2) Let be the bullback ℨ ℨ ℨ 1 ℨ 1,
Lemma 3.3.19. The following diagrams commute:

ℨ 1 ℨ ℨ 1 ℨ 1 ℨ 1, ℨ 1 1 ℨ 1 ℨ ℨ ℨ 1 ℨ ℨ 1 ℨ ℨ 1 ℨ 1. ℨ 1 ℨ 1 1 1 P .
Recall from De nition 3.3.11 that for ∈ O -, , (ℨ ) < = < . Thus all diagrams commute trivially in dimension < .

(1) Let ∈ O and ∈ ℨ 1 , namely ∈ O +1 such that t = . Then

1 ℨ 1 ( ) = 1 Y Y t • [ [] ] Y see De nition 3.3.16 = t Y Y t • [ [] ]
Y see De nition 3.3.16

= Y t [] by Remark 3.2.5 = ,
and similarly, if

{[ 1 ], . . .} = • , 1 (ℨ 1 ) ( ) = 1 Y [ [ ] ] Y Y s [ ] ♠ = t Y [ [ ] ] Y Y s [ ] ♠ = [ 1 ] Y s [ 1 ] [ 2 ] Y s [ 2 ] • • • by Remark 3.2.5 = ,
where ♠ follows from De nition 3.3.16. (2) Akin to Proposition 3.3.15, one can show that elements of ℨ ℨ ℨ 1 are ( + 2)-opetopes of uniform height 3 such that t t = . Let be such an opetope, and write it as

= Y [ [ ] ] Y [ [ , ] ] Y , def = = Y [ [ ] ] Y def = [ [ ] [ , ] ] Y , where , , , ∈ O , [ ] ranges over • and [ , ] over • . Then 1 (ℨ 1 ) ( ) = 1 (ℨ 1 ) Y [ [ ] ] = 1 Y [ [ ] ] Y t = t Y [ [ ] ] Y t = t Y [ [ ] ]
by Remark 3.2.5 We come to the essential de nition of this chapter.

= t [ [ ] [ , ] ] Y , by de nition = t Y t [℘ [ [ ] [ , ] ] ] Y , by Remark 3.2.5 = 1 ℨ 1 ( ).
De nition 3.3.23. A -coloured, -dimensional opetopic algebra is an algebra of the p.r.a. monad ℨ on O -, . We write OAlg , for the Eilenberg-Moore category ℨ -Alg.

Proposition 3.3.24. The monad ℨ on O -, is nitary. The category OAlg , is therefore locally nitely presentable.

P

. Every ℨ -cardinal is a nite colimit of representables, thus is nitely presentable. This, together with Proposition 3.3.8, implies that ℨ has Fin O -, as arities.

Corollary 3.3.25. OAlg , is the category of Set-models of an O -, -sorted theory.

P

. From Proposition 3.2.10, Theorem 1.4.26 and Proposition 3.3.24.

Proposition 3.3.26. Up to equivalence, and for small values of and with ≤ , the category OAlg , is given by the following table 9 :

\ 0 1 2 3 0 Set Mon Opd 1 pl Cmbd 1 Cat Opd pl Cmbd col 2
OAlg 2,2 OAlg 2,3 3

OAlg 3,3 where Mon is the category of monoids, Opd 1 pl of uncoloured planar (Set-)operads, Opd pl of coloured planar operads, and Cmbd (respectively, Cmbd col ) of combinads (respectively, coloured combinads) over the combinatorial pattern of planar trees [START_REF] Loday | Algebras, operads, combinads. irma-web1[END_REF].

P (

). Let us rst treat the case where = 0. (1) If = 0, then ℨ 0 is by de nition the identity functor on Set/O 0 = Set, thus ℨ 0 -algebras bear no structure, and are simply sets.

(2) The polynomial monad

ℨ 1 = (ℨ 0 ) + is isomorphic to { } N < N { } s t
where for ∈ N, N < ( ) def = {0, 1, . . . , -1}. The result follows by [GK13, Example 1.9].

(3) The functor ℨ 2 : Set/N → Set/N maps a signature = ( | ∈ N) ∈ Set/N to the set of trees whose nodes are adequately decorated by elements of , namely it is the free planar operad monad. (4) A ℨ 4 -algebra is a set of "planar trees" (namely an element of Set/O 3 ) with an suitable notion of substitution, which is structure encapsulated in the notion of -combinad. Let us now consider higher values of .

(1) Assume = = 1. Then O 0,1 is the category of graphs, and a ℨ 1 maps a graph to its graph of paths. A ℨ 1 -algebra is just a graph with an adequate notion of composition of paths, namely a category. (2) Similarly, in the case = 1 and = 2, the category O 1,2 is the category of signatures whose inputs and output of functions are typed. Extending the reasoning of the case = 0, it is easy to see that a ℨ 2 -algebra is a coloured planar operad.

3.3.27. We now describe how the "ordinary" nerve theorem (Proposition 3.3.8) for the p.r.a. monad ℨ (for every ( , )) implies that OAlg , is a Gabriel-Ulmer localisation of Λ , at a set of algebraic spine inclusions, where Λ , 

Θ 0 ℎ - → Λ , ↩→ OAlg , .
Notation 3.3.29. Throughout the rest of this section, we will frequently x parameters ≤ ∈ N implicitly, and suppress them in notation whenever it is unambiguous. For example, we write Λ instead of Λ , , ℨ instead of ℨ , OAlg instead of OAlg , , etc.

3.3.30. Recall from Proposition 3.3.24 that OAlg is cocomplete. From the ordinary nerve theorem (Proposition 3.3.8), the inclusion Λ ↩→ OAlg is dense. We thus have a re ective adjunction : Λ → ←↪ OAlg : .

The left adjoint is called the algebraic realisation, and the right adjoint (the nerve functor) is called the (algebraic) nerve.

Example 3.3.31.

(1) Take = = 1. By Proposition 3.3.26, OAlg 1,1 = Cat, and Λ 1,1 is the full subcategory of Cat spanned by [ ] = ℨ 1 [m], where ∈ N. Therefore, Λ 1,1 = , the simplex category. The algebraic realisation 1,1 : → Cat is just the realisation of a simplicial set into a category, and its right adjoint 1,1 is the usual simplicial nerve functor. (2) Likewise, Λ 1,2 is the category of coloured operads generated by trees, thus it is the planar version pl of Moerdijk and Weiss's category of dendrices .

The functor 1,2 is the dendroidal nerve of [MW07, Sec. 4], and 1,2 is its left adjoint (in op. cit., they are written and respectively).

(Algebraic spines

). We will export the notion of spine from O to the category Λ. As we shall see, we will be able to characterise OAlg as the Gabriel-Ulmer localisation of Λ at the set Σ of algebraic spine inclusions.

De nition 3.3.33. For ∈ O +1 , write = ℨ [ ], and let [ ], the (algebraic) spine of the opetopic shape , be the colimit

[ ] def = ℎ ! [ ] = colim O -, / [ ] → O -, ℎ - → Λ y ↩-→ Λ .
Let S : [ ] ↩→ be the (algebraic) spine inclusion of , and let Σ be the set of spine inclusions in Λ:

Σ def = {S : [ ] ↩→ | ∈ O +1 } .
Example 3.3.34. If = = 1, then Λ 1,1 = , and the ( + 1)-opetopes are the opetopic integers. For ∈ N,

the diagram O 0,1 / [m] → O 0,1 is • • • s * s * t s * t s * t t
where there are instances of . By de nition, ℨ = [0] and

ℨ = [1]. Further, ℨ s * = 1 and ℨ t = 0 . Thus, if def = ℨ [m], then [ ] is the colimit of the following diagram in : [1] [1] • • • [1] [1] [0] [0] [0] [0] 1 1 0 1 0 0 Therefore, [ ] is the simplicial spine [ ].
T 3.3.35 (Nerve theorem for Λ).

(1) The functor : Λ → OAlg is dense, or equivalently, the nerve : OAlg → Λ is fully faithful.

(2) A presheaf ∈ Λ is in the essential image of if and only if Σ ⊥ .

(3) (Segal condition) The re ective adjunction : Λ OAlg : exhibits OAlg as the Gabriel-Ulmer localisation of Λ at the spine inclusions: OAlg Σ -1 Λ.

P

.

(1) This is Proposition 3.3.8. (2) Recall that Θ 0 denotes the category of ℨ -cardinals (3.3.3 and De nition 3.3.28).

Consider the composite

O -, ↩-→ Θ 0 ℎ - → Λ.
The category Θ 0im( ) is composed of exactly the (opetopic) spines [ ], for ∈ O +1 . By Corollary 3.3.9, any ∈ Λ is in the essential image of the nerve if and only if for every , we have ℎ ! [ ] ⊥ . But these are exactly the algebraic spines (De nition 3.3.33).

(3) Follows from (2).

Remark 3.3.36. Theorem 3.3.35 is a general form of the well-known results that Cat (the case = = 1) and Opd pl (the case = 1, = 2) have fully faithful nerve functors to and pl [MW07, Example 4.2] respectively, exhibiting them as Gabriel-Ulmer localisations of the respective presheaf categories at a set of spine inclusions, also called Grothendieck-Segal colimits. I do not think that the corresponding result for Cmbd col (the case = 1, = 3) exists in the literature.

Opetopic nerve functors for opetopic algebras

In Section 3.3, we saw that OAlg , was the category of models in Set of an O -, -sorted theory. We will now show that we can construct all opetopic algebras directly from opetopic sets, by means of an opetopic realisation functor ℎ , : O → OAlg , . Every opetopic realisation (for all ( , )) will have a fully faithful accessible right adjoint called the opetopic nerve functor. That is to say, every OAlg , is the category of models of an idempotent O-sorted theory.

This construction is based on the following heuristic: given ∈ O, we shall interpret its cells of dimension ≤ as "generators" for some object in OAlg , , and its ( + 1)-cells as "relations", while its ( + 2)-cells will be composites of relations or "coherences". This will together give an "opetopic presentation" of an object of OAlg , , and every object in OAlg , admits a unique presentation.

The rst step to implement this is to extend the free functor ℨ : O -, → Λ to a functor from O -, +2 . Informally, the image of an ( + 1)-opetope represents an algebra with essentially one relation, and the image of an ( + 2)-opetope is an algebra, also with essentially a single relation, but which is presented with many smaller composable relations (see Example 3.4.2 for an illustration). Thus, realisations of ( + 1)-opetopes are the relations enforcing "unique composites" in opetopic algebras, while realisations of ( + 2)-opetopes enforce the coherences "associativity of composition".

Then, in De nition 3.4.4, the realisation ℎ , for opetopes is de ned as a composite of left adjoints

O (-) -, +2 → ←↪ O -, +2 Λ , , → ←↪ OAlg , .
Finally, we will show that each of the previous adjunctions is a Gabriel-Ulmer localisation, and so is the composite. To avoid clutter, we follow Notation 3.3.29, omitting and when possible, thus Λ = Λ , , OAlg = OAlg , , ℨ = ℨ , etc.

De nition 3.4.1. There is a canonical functor O -, → Λ, mapping an opetope to ℨ [ ]. We now extend it to a functor ℎ : O -, +2 → Λ. On objects, it is given by

ℎ : O -, +2 → Λ ↦ -→          ℨ [ ] if dim ≤ , ℨ [ ] if dim = + 1, ℨ [t ] if dim = + 2.
We now specify ℎ on morphisms. Since it extends the natural functor O -, → Λ, it is enough to consider morphisms in O , +2 , so take ∈ O +1 and ∈ O +2 .

(

1) For [ ] ∈ • , let ℎ s [ ] s [ ] ---→ def = ℨ [s [ ] ] s [ ] ---→ [ ] .
(2) In order to de ne ℎ t

t - → = ℨ [t ] ℎ t --→ ℨ [ ] , it is enough to provide a morphism [t ] → ℨ [ ], namely a cell in ℨ [ ] t . Let it be [ ] id -→ [ ] ∈ ℨ [ ] t . (3) Let ℎ t t - → = ℨ [t ] ℎ t --→ ℨ [t ]
be the identity map.

(4) Let [ ] ∈ • . In order to de ne a morphism of ℨ-algebras

ℎ s [ ] s [ ] ---→ = ℨ [s [ ] ] ℎ s [ ] ----→ ℨ [t ] , it is enough to provide a morphism ℎ s [ ] : [s [ ] ] → ℨ [t ] in O -, ,
which we now construct.

(a) Using Eq. (3.1.3), decomposes as

= • [ ] Y s [ ] [ [ ] ]
,

for some , ∈ O +2 , and where [ ] ranges over (s [ ] ) • . The leaves of any are therefore a subset of the leaves of . More precisely, a leaf address [ ] ∈ | corresponds to the leaf [ [ ] ] of . This de nes an inclusion : 

[t ] → [t ] that maps the node ℘ [ ] ∈ (t ) • to ℘ [ [ ] ] ∈ (t ) • . (b) Note that by de nition, the map is an element of O -, ( [t ], [t ]) ⊆ ℨ [t ] t t ,
] : [s [ ] ] → ℨ [t ], that maps the node [ ] ∈ (s [ ] ) • to . So in conclusion, we have ℎ s [ ] : [s [ ] ] → ℨ [t ] (ℎ s [ ] ) [ ] : [t ] → [t ] ℘ [ ] ↦ -→ ℘ [ [ ] ],
for [ ] ∈ (s [ ] ) • and [ ] ∈ | . This de nes ℎ on object and morphisms, and functoriality is straightforward.

Example 3.4.2. Consider the case = = 1, so that ℎ = ℎ 1,1 is a functor O 0,3 → Λ 1,1
. In low dimensions, we have ℎ

= [0], ℎ = [1], and ℎm = [ ] with ∈ N, since ℎ is ℨ in this case. For instance, ℎ3 = ℎ 0 1 3 4 ⇓ = [3]
is the category with 3 generating morphisms, and the 2-cell of 3 just witnesses their composition. Consider the following 3-opetope :

= Y 3 • [ [ * ] ] Y 2 • [ [ * * ] ] Y 1 = 0 1 3 4 2 ⇓ ⇓ ⇓ 0 1 3 4 2 ⇓ Then ℎ = ℨ [t ] = ℨ [4] = [4]
. This result should be understood as the poset of points of (represented as dots in the pasting diagram above) ordered by the topmost arrows. The 2-dimensional faces of provide several relations among the generating arrows, and the 3-cell is a witness of the composition of those relations. Take the face map s [] : 3 → , corresponding to the trapezoid at the base of the pasting diagram. Then ℎ s [] maps points 0, 1, 2, 3 of ℎ3 = [3] to points 0, 1, 3, 4 of ℎ , respectively. In other words, it "skips" point 2, which is exactly what the pasting diagram above depicts: the []-source of does not touch point 2 (the topmost one). Likewise, the map ℎ s [ [ * * ] ] : [1] = ℎ1 → ℎ maps 0, 1 to 0, 1, respectively.

Consider now the target map t : 4 → . Since the target face touches all the points of (this can be checked graphically, but more generally follows from (Glob2)), ℎ t should be the identity map on [4], which is precisely what the de nition gives. 

[ ] : s [ ] → to a generic-free composite ℨ • ℎ s [] : ℨ [s [ ] ] → ℨ [t ] → ℨ [t ] where = Y s [ ] [ [ ] ]
is the maximal subtree of that "begins" at the node [ ], and where : 

O (-) -, +2 → ←↪ O -, +2 ℎ ! Λ → ←↪ OAlg.
The left adjoint ℎ is the opetopic realisation functor, and the right adjoint is the opetopic nerve functor.

Remark 3.4.5. The rst adjunction of the composite is just a truncation, and does not carry any information; the part between O -, +2 and OAlg is actually what implements the -cells of a presheaf as operations, and ( + 1)-cells as relations. The ( + 2)-cells represent coherences among relations (e.g. associativity of composition in categories) and cannot be discarded, namely one cannot obtain a re ective adjunction of the form O -, +1 OAlg.

Remark 3.4.6. We now have a commutative triangle of adjunctions:

OAlg O Λ, ⊥ ⊥ ℎ ⊥ (3.4.1)
The notation ℎ might seem a bit overloaded, but its meaning is quite simple: it always takes an opetopic set and produces an algebra. If that opetopic set is a representable opetope in O -, +2 , then it falls within the scope of De nition 3.4.1, and the output algebra is in fact an opetopic shape, namely in Λ.

3.4.7 (Diagrammatic morphisms). We will now prove various (technical) facts about the functor ℎ : O -, +2 → Λ of De nition 3.4.1, eventually leading to Lemma 3.4.12, stating that all morphisms in Λ admit a good "geometric decomposition" (see De nition 3.4.8 and Example 3.4.9). This result will be crucial for the nerve theorem for O (Theorem 3.4.29).

De nition 3.4.8. Let 1 , 2 ∈ O +1 . A morphism : ℎ 1 → ℎ 2 in Λ is diagram- matic if there exists an opetope ∈ O +2 and a node address [ ] ∈ • such that s [ ] = 1 , t = 2 , and = (ℎ t) -1 (ℎ s [ ] )
. This situation is summarized by the following diagram, called a diagram of :

1 2 s [ ] t ℎ 1 ℎ 2 .
Example 3.4.9. Consider the case = = 1 again, and recall from Example 3.3.31 that in this case, Λ = . Consider the map : [2] → [3] in , where (0) = 0,

(1) = 1, and (2) = 2. In other words, = 3 is the 3 rd coface map. Taking as on the left, we obtain a diagram of on the right:

= Y 2 • [ [ * ] ] Y 2 = . . . . ⇓ ⇓ . . . . ⇓ , 2 3 s [ [ * ] ] t [2] [3]
Consider now a non injective map : [2] → [1] where (0) = (1) = 0 and

(2) = 1. In other words, = 0 is the 0 th codegeneracy map. Taking as on the left, we obtain a diagram of on the right:

= Y 2 • [ [ * ] ] Y 0 = . . ⇓ ⇓ . . ⇓ , 2 1 s [ ] t [2] [1]
Lemma 3.4.10 below states that diagrammatic morphisms are stable under composition, and these two examples seem to indicate that all simplicial cofaces and codegeneracies are diagrammatic. One might thus expect all morphisms of to be in the essential image of ℎ 1,1 : O 0,3 → . This is indeed true, not just for , but also for every O -, +2 → Λ (Proposition 3.4.14).

Lemma 3.4.10. If 1 and 2 are diagrammatic as on the left, the diagram on the right is well-de ned, and is a diagram of 2 1 .

1 2 1 2 3

s [ 1 ] t s [ 2 ] t ℎ 1 ℎ 2 ℎ 3 , 1 2 2 [ 2 ] 1 1 3 s [ 2 1 ] t ℎ 1 ℎ 3 2 1 P .
It is a simple but lengthy matter of unfolding the de nition of ℎ. First, note that

t( 2 [ 2 ] 1 ) = t t(Y 2 • [ [ 2 ] ] Y 1 )
by Remark 3.2.5

= t s [] (Y 2 • [ [ 2 ] ] Y 1 ) by (Glob2) = t 2 = 3 .
Using Eq. (3.1.3), we decompose 1 as

1 = 1 • [ 1 ] Y 1 [ [ ] ] , (3.4.2)
where [ ] ranges over

• 1 . If | = [ , ] | , then | 1 = [ 1 [ ] ,
] | , , and so we have

• 2 = (t 1 ) • = ℘ 1 [ 1 [ ] , ] | , . Using Eq. (3.1.3) again, we decompose 2 as 2 = 2 • [ 2 ] Y 2 [℘ 1 [ 1 [ ] , ] ] ,
(3.4.3) and write

2 [ 2 ] 1 = 2 • [ 2 ] Y 2 [℘ 1 [ 1 [ ] , ] ] , [ 2 ] 1 see (3.4.2) = 2 • [ 2 ] 1 [ 1 [ ] , ]
, see 3.1.17

= 2 • [ 2 ] 1 • [ 1 ] Y 1 [ [ ] ] [ [ ] , ] , see (3.4.3) = 2 • [ 2 ] 1 • [ 2 1 ] Y 1 [ [ ] ] [ , ]
,

rearranging terms.

Applying the de nition of ℎ we have, for

[ ] ∈ • 1 , [ , ] ∈ | , and [ ] ∈ | , , ℎ s [ 2 1 ] : [ 1 ] → ℨ [ 3 ] (ℎ s [ 2 1 ] ) [ ] : [t ] → [ 3 ] ℘ [ , ] ↦ -→ ℘ [ 2 1 [ ] , ];
(3.4.4)

ℎ s [ 1 ] : [ 1 ] → ℨ [ 2 ] (ℎ s [ 1 ] ) [ ] : [t ] → [ 2 ] ℘ [ , ] ↦ -→ ℘ 1 [ 1 [ ] , ];
(3.4.5)

ℎ s [ 2 ] : [ 2 ] → ℨ [ 3 ] (ℎ s [ 2 ] ) (℘ 1 [ 1 [ ] , ]) : [t , ] → [ 3 ] ℘ , [ ] ↦ -→ ℘ 2 [ 2 ℘ 1 [ 1 [ ] , ] ]. (3.4.6)
Thus,

(ℎ s [ 2 1 ] ) ( [ ]) (℘ [ , ]) = ℘ [ 2 1 [ ] , ] by (3.4.4) = ℘ 2 [ 2 ℘ 1 [ 1 [ ] , ] ] ♠ = (ℎ s [ 2 ] ) (℘ 1 [ 1 [ ] , ]) (℘ , [ ]) by (3.4.6) = (ℎ s [ 2 ] ) (ℎ s [ 1 ] ) ( [ ]) (℘ [ , ]) (℘ , [ ]) by (3.4.5) = ℎ s [ 2 ] • ℎ s [ 1 ] ( [ ]) (℘ [ , ]), ♦
where equality ♠ comes from the monad structure on ℨ, and ♦ from the de nition of the composition in Λ when considered as the Kleisli category of ℨ. Lemma 3.4.12 (Diagrammatic lemma). Let , ∈ O +1 with non degenerate, and : ℎ → ℎ be a morphism in Λ. Then is diagrammatic.

P

. Let us rst sketch the proof. The idea is to proceed by induction on . The case = Y for some ∈ O is fairly simple. In the inductive case, we essentially show that exhibits an inclusion ↩→ of ℨ -1 -trees by constructing an ( + 1)-opetope ¯ such that = ¯ [ ] . Thus by Lemma 3.4.11, the following is a diagram of ℎ :

s [ [ 1 ] ] t ℎ ℎ , where def = Y ¯ • [ [ 1 ] ] Y .
Let us now dive into the details. As advertised, the proof proceeds by induction on , which by assumption is not degenerate.

(1) Assume = Y for some ∈ O . Then

Λ(ℎY , ℎ ) = Λ(ℨ [Y ], ℨ [ ]) (ℨ [ ]) .

Thus corresponds to a unique morphism ˜ : [ ] → [ ], for some

∈ O +1 such that t = , and is the composite

ℎY = ℎ ℎ t --→ ℎ ℨ ˜ --→ ℎ .
Those two arrows are diagrammatic by Lemma 3.4.11, and by Lemma 3.4.10, so is .

(2) By induction, write In the case = 2, note that 2 = ¯ 2

= 1 • [ ] Y 2 for some 1 ∈ O +1 , [ ] ∈ | 1 ,
[ 2 ] 2 = ¯ 2 [ 2 ] Y 2 = ¯ 2 .
On the one hand we have 

Y 2 = 1 ¯ 1 (e [ ] 1 ) since 1 = 1 ¯ 1 = 1 (e [ 1 ] 1 ) since 1 = ¯ 1 [ 1 ] 1 = e [ 1 ]
,

showing [ ] = [ 1 ], and thus that ¯ 1 is of the form

¯ 1 = 1 • [ 1 ] Y 1 [ [ 1, ] ] 1, , (3.4.7) 
where [ 1, ] ranges over 

= 2 (e [] 2 ) since = 1 • [ ] Y 2 = 2 ¯ 2 (e [] 2 ) since 1 = 2 ¯ 2 = 2 (e [ 2 ] 2 ) since 2 = ¯ 2 [ 2 ] 2 = e [ ] ,
showing [ 2 ] = [], and so s [] 2 = s [] ¯ 2 = 2 , and we can write 2 as

2 = Y 2 [ [ 2, ] ] 2, , (3.4.8) 
where [ 2, ] ranges over • 2 , and 2, ∈ O +1 . Finally, we have

= 1 • [ ] 2 = ( ¯ 1 [ 1 ] 1 ) • [ ] 2 = 1 • [ 1 ] 1 ℘ -1 1 [ 1, ] 1, • [ ] Y 2 [ [ 2, ] ]
2, by (3.4.7) and (3.4.8)

= 1 • [ 1 ] 1 • [ ] Y 2 = [ 1 ] •℘ -1 1 [ 1, ] 1, [ [ 2, ] ] 2, rearranging terms = ¯ [ 1 ]
,

for some ¯ ∈ O +1 . Finally, by Lemma 3.4.11, we have a diagram of ℎ , where

def = Y ¯ • [ [ 1 ] ] Y : s [ [ 1 ] ] t ℎ ℎ .
Lemma 3.4.13. (1) If ∈ O -1 , then ℎ maps t t : → I to an identity.

(2) If ∈ O , then ℎ maps s [] : → Y to an identity.

(3) If ∈ O +2 , then ℎ maps t : t → to an identity.

P

. By inspection of De nition 3.4.1.

We will show that every morphism in Λ is in the image of ℎ.

Proposition 3.4.14. The functor ℎ : O -, +2 → Λ is surjective on morphisms.

P . Let , ∈ O -, +2 .
(1) If dim , dim < -1, then by De nition 3.4.1, ℎ = and ℎ = as presheaves over O -, +2 , and thus

Λ(ℎ , ℎ ) = O -, +2 ( , ) = O( , ).
(2) Assume that dim < -1 and dim ≥ -1. We rst show that [ ] < -1 = (ℎ ) < -1 by inspection of De nition 3.4.1. If dim ≤ , then the claim trivially holds. If dim = + 1, then ℎ = ℨ [ ], and

(ℎ ) < -1 = (ℨ [ ]) < -1 = [ ] < -1 see De nition 3.3.11 = [ ] < -1 .
The case where dim = + 2 is proved similarly. Thus, [ ] < -1 = (ℎ ) < -1 , and in particular, [ ] = (ℎ ) . Finally,

Λ(ℎ , ℎ ) O -, +2 ( , ℎ ) = O -, +2 ( , ) ♠ = O( , ),
where ♠ results from the observation above. 3.4.16 (Opetopic nerve theorem). Recall from Corollary 3.3.9 that we have a re ective adjunction : Λ → ←↪ OAlg : that exhibits OAlg as the Gabriel-Ulmer localisation of Λ at the set Σ of spine inclusions. This is the "ordinary" nerve theorem for Λ.

We now have enough tools to prove a similar result for O. The strategy is to study the adjunction ℎ ! : O -, +2 Λ : ℎ * , and to show that it preserves orthogonality classes of spine inclusions. It follows that it lifts to an adjunction S -1 +1, +2 O -, +2 Σ -1 Λ OAlg, that we then prove is an adjoint equivalence.

Lemma 3.4.17. Let : A B : be an adjunction, with unit : 1 A → and counit :

→ 1 B . Let A and B be full subcategories of A and B respectively. Suppose that:

(1) A ⊆ B and B ⊆ A , (2) for all ∈ A , is an isomorphism, and for all ∈ B , is an isomorphism. Then the adjunction lifts to an adjoint equivalence : A B : . In particular, if A (resp. B ) is a Gabriel-Ulmer localisation at a class of morphisms K (resp. K ), then condition (1) above can be replaced with:

(1') for all ∈ A, if K ⊥ , then K ⊥ , and for all ∈ B, if K ⊥ , then K ⊥ . 

ℎ ! [ ] = ℎ ! colim ∈O -, / [ ] [ ] colim ∈O -, / [ ] ℎ ! [ ] = colim ∈O -, / [ ] y Λ (ℎ ) = [ℎ ]
see De nition 3.3.33.

(2) For ∈ O +2 , the inclusion [t ] → [ ] is a relative S +1 -cell complex by Proposition 3.2.21. Since ℎ ! preserves colimits, and since ℎ ! S +1 = Σ, we have that ℎ ! ( [t ] → [ ]) is a relative Σ-cell complex, and thus an Σ-local isomorphism. In the square below

ℎ ! [t ] ℎ ! [ ] ℎ ! [t ] ℎ ! [ ] ℎ ! t ℎ ! ℎ ! t
the top arrow is an Σ-local isomorphism, the right arrow is in Σ by the previous point, and the bottom arrow is an isomorphism by de nition. By 3-for-2, we conclude that ℎ ! is an Σ-local isomorphism.

Lemma 3.4.19. Let ∈ O -, +2 be such that S +1, +2 ⊥ , and take ∈ O -, +2 . The following are spans of isomorphisms: 

(1) for ∈ O -1 , Λ(ℎ , ℎ ) × id×t t ← ----Λ(ℎ , ℎ ) × I Λ(ℎ ,ℎ t t)×id ----------→ Λ(ℎ , ℎI ) × I ; (2) for ∈ O , Λ(ℎ , ℎ ) × id×s [] ← ----Λ(ℎ , ℎ ) × Y Λ(ℎ ,ℎ s [] )×id -----------→ Λ(ℎ , ℎY ) × Y ; (3) for ∈ O +2 , Λ(ℎ , ℎ t ) × t id×t ← ---Λ(ℎ , ℎ t ) × Λ(ℎ ,ℎ t)×id ---------→ Λ(ℎ , ℎ ) × .

P

. It su ces to show that for each ∈ O -, +2 , the following map is a bijection:

--→ ℎ * ℎ ! = ∫ ∈O -, +2 Λ(ℎ , ℎ ) × . If ∈ O -, -1 , then ℎ = [ ],
and Λ(ℎ , ℎ-) O -, +2 ( , -). Thus,

ℎ * ℎ ! = ∫ ∈O -, +2 Λ(ℎ , ℎ ) × by de nition ∫ ∈O -, +2 O -, +2 ( , ) × since dim ≤ -1
by the density formula.

Assume how that dim ≥ . We construct an inverse of via a cowedge Λ(ℎ , ℎ-) × - 

Λ(ℎ , ℎ ) × -→ ( ∈O +1 t = C( [ ], [ ])) × C( [ ], ) ♠ comp.
----→

∈O +1 t = C( [ ], ) -→ ∈O +1 t = ♠ t - → ,
where ♠ follow from the assumption that S +1 ⊥ . It is straightforward to verify that this de nes a cowedge whose induced map is the required inverse. . By Corollary 3.2.22, the target fully faithful t : → is an S +1, +2local isomorphism, and by assumption, S +1, +2 ⊥ . Therefore, we have an isomorphism t :

→ , which gives rise to a map

Λ(ℎ , ℎ ) × → ( , ) ↦ -→ s [ ] t -1 .
It is straightforward to verify that this assignment de nes a cowedge, whose associated map is the required inverse. (3) Assume ∈ O +2 . Then by de nition of ℎ, Λ(ℎ , ℎ-) Λ(ℎ t , ℎ-), and this is the case we have just treated. 

Λ(ℎ ! [ ], ℎ ! ) since ℎ ! ℎ *
and by construction, this isomorphism is the precomposition by ℎ ! . Therefore, ℎ ! ⊥ ℎ ! .

Notation 3.4.24. Let be a small category, : op → Set, and : → Set.

Recall the description of the coend ∫ × as a quotient in Set:

∫ ∈ × = ∈ × ∼
where for : → , ∈ , ∈ , we have an identi cation ( , ( )) ∼ ( ( ), ) .

We will write ⊗ for the equivalence class of a pair ( , ) ∈ × will be denoted by. With slight abuse of notations, we will write the equivalence relation ∼ above as an identity ⊗ ( ) = ( ) ⊗ . 

P

. We have to prove that for each ∈ Λ, the map

ℎ ! = ∫ ∈O -, +2 Λ( , ℎ ) × ℎ ( ) ----→ (3.4.9) is a bijection. Consider the map : → ∫ ∈O -, +2 Λ( , ℎ ) × ℎ
mapping ∈ to id ⊗ (see Notation 3.4.24). It is well-de ned, as ℎ is surjective on objects, and it is easy to verify that ( ) it is independent of the choice of an antecedent ℎ = . Note that is a section of ( ) , and we proceed to prove that is surjective. In other words, we show that that every element ⊗ , with ∈ Λ( , ℎ ) for some ∈ O -, +2 and ∈ , is equal to an element of the form id ⊗ , for some ∈ . 3.4.26. We write the Gabriel-Ulmer localisation of O -, +2 at the set of spine inclusions S +1, +2 as : O -, +2 → ←↪ S -1 +1, +2 O -, +2 : . Recall from Theorem 3.3.35 that we have an adjunction that exhibits OAlg as the Gabriel-Ulmer localisation Σ -1 Λ. We are now well-equipped to prove that OAlg is equivalent to the localized category S -1 +1, +2 O -, +2 .

Proposition 3.4.27. The adjunction ℎ ! : O -, +2 Λ : ℎ * restricts to an adjoint equivalence ˜ ! ˜ * , as shown below.

S -1 +1, +2 O -, +2 Σ -1 Λ OAlg O -, +2 Λ. ˜ ! ˜ * ⊥ ℎ ! ℎ * ⊥ P .
We check the conditions of Lemma 3.4.17.

(1) By Proposition 3.4.18, for all ∈ OAlg Σ -1 Λ, we have that ℎ ! S +1, +2 ⊥ , or equivalently, that S +1, +2 ⊥ ℎ 

P

. Recall from De nition 3.4.4 that ℎ is the composite

O (-) -, +2 --------→ O -, +2 ℎ ! -→ Λ - → OAlg,
and by Proposition 3.4.27, it is isomorphic to the composite

O (-) -, +2 --------→ O -, +2 - → S -1 +1, +2 O -, +2 -→ OAlg.
The truncation (-) -, +2 is the Gabriel-Ulmer localisation at O < -∪ B > +2 . By de nition, is the Gabriel-Ulmer localisation at S +1, +2 . Therefore, ℎ is the localisation at O < -∪ S +1, +2 ∪ B > +2 , which by Proposition 3.2.19 is the Gabriel-Ulmer localisation at A. T 3.4.30. For every ≤ , the category OAlg , of -coloured, -dimensional opetopic algebras is the category of Set-models of an idempotent O-sorted theory.

P

. Since every map in A has nite domain and codomain, the fully faithful right adjoint : OAlg , ↩→ O preserves ltered colimits. Thus the idempotent monad ℎ is nitary, and we conclude by Theorem 1.4.26.

Corollary 3.4.31. The categories Cat, Opd pl , Cmbd of small categories, planar coloured operads, and Loday's -combinads are all categories of Set-models of idempotent O-sorted theories.

Homotopy-coherent opetopic algebras

We have seen that every category OAlg , of opetopic algebras (such as the categories Cat, Opd pl and Cmbd of small categories, coloured planar operads and -combinads) can each be described as the category of models in Set of an idempotent O-sorted theory. Moreover, we have characterised their fully faithful nerve functors to O by means of projective sketches on the the category O of opetopes.

In this section, we will show that the nature of these sketches allows us to use a general construction due to Horel ( [START_REF] Roy | A model structure on internal categories in simplicial sets[END_REF], generalised in [START_REF] Caviglia | Rigidi cation of higher categorical structures[END_REF]) to obtain model structures on sOAlg , (simplicial opetopic algebras) as well as on SpΛ , (simplicial presheaves on Λ , ) that model what we will call homotopy-coherent opetopic algebras.

We thus show that, at least for the categories OAlg , , there exist model structures on their categories of simplicial objects that (ostensibly) model the same structures up to homotopy. This can be seen as a very partial answer to the general conjecture in Section 2.6 (see 2.6.8).

We begin by summarising Horel's construction (following [START_REF] Caviglia | Rigidi cation of higher categorical structures[END_REF]) in the case of simplicial presheaves (this is purely for the convenience of the reader, as the technique is relatively new). The reader familiar with it is encouraged to skip ahead to 3.5.9.

3.5.1 (Finite connected sketches). We will call a pair ( , ) of a small category and a set of cocones in a (projective) sketch. 10 A model of ( , ) in any category C is a functor op → C taking every cocone in to a limit cone in C, and a morphism of models in C is just a natural transformation. We write for the category of models of ( , ) in Set. The full inclusion ↩→ is a right adjoint. Every cocone ∈ is a pair ( : → , → Δ ) of a diagram in and a natural transformation to the constant diagram on an object ∈ . Every ∈ thus gives a map : "colim" → (-, ) of presheaves from the formal colimit in of the diagram to the representable on . If we write def = { | ∈ } for the set of these maps, then the Gabriel-Ulmer localisation of at is precisely the re ective adjunction → ←↪ . The full inclusion ↩→ is therefore exactly the nerve functor associated to the composite ↩→ → of the left adjoint with the Yoneda embedding of .

We will say that a sketch ( , ) is nite (respectively, connected) if each diagram in is indexed by a nite (respectively, connected) category. If ( , ) is a nite (respectively, connected) sketch, then the image of the dense functor → consists of -small (respectively, connected) objects-equivalently, its nerve functor ↩→ preserves -ltered colimits (respectively, arbitrary coproducts).

Remark 3.5.2. The cocones in of a sketch ( , ) are already colimit-cocones in if and only if the functor → is fully faithful. As in [Hor15, CH16], we will require this condition throughout, and so we assume it holds for every sketch we consider. We x a nite connected ("fully faithful") sketch ( , ).

3.5.3. Consider the re ective adjunction : → ←↪ s : . By taking simplicial objects as in 2.2.10, we obtain a re ective simplicial adjunction ˜ : Sp → ←↪ s : ˜ between simplicial presheaves on and models of ( , ) in sSet (equivalently, simplicial objects in ). Since the right adjoint preserves ltered colimits and arbitrary coproducts, and since colimits of simplicial objects are calculated levelwise, the simplicially enriched right adjoint ˜ preserves ltered colimits and tensors with arbitrary simplicial sets. ↩→ preserves coproducts, we can apply it to obtain a square in as on the right below. Then, it su ces to show that this square is cocartesian.

If we write def

=

-, then in the square on the left above we have an isomorphism ( ). Since preserves coproducts, we have ( ). But this is just the pushout

( ).
Part 2

Localisations of locally presentable ∞-categories

Preliminaries

Throughout Part 2, our goal will be to prove theorems in ∞-category ((∞, 1)-category) theory. Despite the "model-independent" theory of ∞-categories still being nascent, I have made the choice to work entirely within it. The payo is twofold:

(1) The theory of locally presentable ∞-categories perfectly subsumes the theory of locally presentable 1-categories. Thus the reader unfamiliar with ∞-categories has only to take "category" to mean "1-category" throughout, and to consider that every space is a set, in order to recover precise results11 for locally presentable 1-categories, especially those results that are (implicitly or explicitly) used in Part 1.

(2) The motivated reader familiar with quasicategories as models for ∞-categories should in principle be able to reconstruct for themselves all the arguments in Part 2 within quasicategories. I have included some remarks that refer to material from [START_REF] Lurie | Higher Topos Theory[END_REF][START_REF] Lurie | Higher Algebra[END_REF] and other sources where necessary. On the other hand, the reader not of quasicategorical persuasion should still be able to interpret at least the statements of the main theorems in the model of their predilection.

Change of vocabulary

This shift in point of view permits (demands) a change in vocabulary. We will say category instead of ∞-category and space instead of ∞-groupoid. In particular, we will say topos for what is called an ∞-topos in [START_REF] Lurie | Higher Topos Theory[END_REF]. If necessary, we will explicitly use the terms "1-category" and "1-topos". An -topos is the full subcategory of -truncated objects of a topos.

We write S for the category of spaces and CAT for the category of categories. We denote the space of morphisms between two objects and of a category C by [ , ], or by [ , ] C if the category C needs to be recalled. We will say that a map in a category is invertible or an equivalence if it admits both a left and a right inverse, and is a monomorphism if it is (-1)-truncated (its diagonal is invertible). For any functor : A → B and any object in B, we write A ↓ and ↓ A for the over and under categories. For a functor : C → B, we write ↓ (or sometimes A↓C) for the comma category.

We write P( ) def = S op for the category of presheaves of spaces on a category . We say locally presentable or presentable category for the notion of presentable ∞-category of [START_REF] Lurie | Higher Topos Theory[END_REF].

We say (op) bration for the notion of (co)Cartesian bration of [START_REF] Lurie | Higher Topos Theory[END_REF]. We say bration (respectively, op bration) in groupoids for the notion of right (respectively, left) bration from [START_REF] Lurie | Higher Topos Theory[END_REF]. 

C → [ × ℎ, ] C → for every , , ℎ ∈ C → . , × , × , × , × , × {{ , }}×
Hence if C has nite limits, then (C → , ×, 1 1 , {{-, -}}) is cartesian closed, and {{-, -}} is an enrichment of (C → , ×, 1 1 ) over itself. Namely, for every , , ℎ ∈ C → , we have an equivalence {{ × ℎ, }} {{ℎ, {{ , }}}} in C → . In particular, the arrow category S → of the category of spaces is cartesian closed. We write its internal hom as {-, -}.

For any category C and maps : 4.1.3 (Pushout-product in spaces). The arrow has a symmetric monoidal structure ( , ⊗, 1) given by 0 ⊗ 0 = 0 ⊗ 1 = 1 ⊗ 0 = 0 and 1 ⊗ 1 = 1. By Day convolution, there is a symmetric monoidal structure on the arrow category S → of the cartesian symmetric monoidal category (S, ×, 1). The monoidal product -is called the pushout-product, and its unit is ∅ → 1. By the formula for Day convolution, the pushout-product of two maps : → and : → is the cocartesian gap map of the outer (cartesian) square in S below.

→ , : → in C, their external hom { , } : [ , ] C → → [ , ] C is the left vertical map in the canonical cartesian square below in S. [ , ] C → [ , ] C [ , ] C [ , ] C { , } Remark 
× × × × × × ×
The category (S, ×, 1) is cartesian closed; since S is locally presentable, this is equivalent to the product functor -×preserving colimits (in S) in each variable. Hence, since -is a Day convolution, it too preserves colimits (in S → ) in each variable. Since S → is also locally presentable, this implies that the symmetric monoidal category (S → , , ∅ → 1) is closed, and its internal hom -,is called the pullback-hom. The pullback-hom of : → and : → is the cartesian gap map of the outer square in S below.

[ , ]

[ , ] [ , ] [ , ] [ , ] [ , ] [ , ] , { , } [ , ] [ , ]
The pullback-hom gives (S → , , ∅ → 1) an enrichment over itself, namely, we have an equivalence , ℎ , , ℎ for every , , ℎ ∈ S → .

4.1.4 (Internal pushout-product). When (C, ⊗, 1, -, -) is a locally presentable, symmetric monoidal closed category, then the same constructions as in 4.1.3 de ne a symmetric monoidal closed structure (C → , , 0 → 1, ⟪-, -⟫) on the arrow category of C. We will call this the internal pushout-product and internal pullback-hom in C → .

4.1.5 (Tensor, enrichment, cotensor). Let C be a locally presentable category.

Recall that this implies that C → is also locally presentable. As C is cocomplete, it is canonically tensored over S, and we write × : S × C → C for the functor that is cocontinuous in each variable. For any space and any ∈ C, × = is the colimit in C of the constant diagram on indexed by the space . The tensor × is compatible with the enrichment of C over S, namely, we have an equivalence of spaces [ × , ] C [ , [ , ] C ] S for every space and every , in C. Moreover, for every space , the functor × -: C → C preserves colimits and (since C is locally presentable) thus has a right adjoint; hence C is also cotensored over S.

Next, C → is locally presentable and is canonically tensored over (S → , ×, 1 1 ) via

× : S → × C → → C → ( : → , : → ) ↦ → × : × → × .
This functor is also cocontinuous in each variable. Since S → is locally presentable, for every ∈ C → , the functor -× : S → → C → has a right adjoint, and it is easily veri ed that this is given by the external hom { , -} (see 4.1.1). This de nes an enrichment of C → over (S → , ×, 1 1 , {-, -}), and we have an equivalence { × , ℎ} { , { , ℎ}} in S → for every ∈ S → and , ℎ ∈ C → . Moreover C → is also cotensored over (S → , ×, 1 1 ), since for every : → in S → , the functor × -: C → → C → has a right adjoint (as C → is also locally presentable). Finally, C → is also canonically tensored over the symmetric monoidal category (S → , , ∅ → 1), via the external pushout-product :

S → × C → → C → that takes : → in S and : → in C to the cocartesian gap map in C below. × × × × × × ×
Since S → is locally presentable, C → is enriched over (S, , ∅ → 1, -, -) via the external pullback-hom, which takes : → and : → in C to the cartesian gap map , below in S.

[

, ] C [ , ] C → [ , ] C [ , ] C [ , ] C , { , }
We thus have an equivalence , ℎ , , ℎ for every ∈ S → and , ℎ ∈ C → . Moreover, since C → is locally presentable, C → is also cotensored over (S, , ∅ → 1). Lemma 4.1.6 (Absorption properties of invertible maps). Let and be two maps in C and let be a map in S.

(1) If or is invertible then so is .

(2) If or is invertible then so is , .

P

. Easy veri cation using the previous diagrams. Hence every presentable category is canonically tensored (i.e. is a module) over (the commutative monoid in CAT pr ) (S, ×, 1). Next, (S → , ×, 1 1 ) and (S → , , ∅ → 1) are commutative monoids in CAT pr . The cocontinuous functor S → S → that takes a space to its identity map 1 (and that is uniquely determined by the unit 1 1 of (S → , ×, 1 1 )) is a symmetric monoidal functor from (S, ×, 1) to (S → , ×, 1 1 ).

Similarly, the cocontinuous functor S → S → taking to ∅ → , and uniquely determined by the unit ∅ → 1 of (S → , , ∅ → 1), is symmetric monoidal. Thus the tensor product S → ⊗ C C → of presentable categories has the structure of a free (S → , ×, 1 1 )-module as well as a free (S → , , ∅ → 1)-module [ Remark 4.1.9. Recall that the the category CAT pr is a full symmetric monoidal subcategory of the symmetric monoidal category CAT cc of cocomplete categories and cocontinuous functors. We note that when C is a cocomplete (but not necessarily presentable) category, we still have the equivalence S → ⊗ C C op C → , and all of 4.1.5 holds for C → , except for the existence of cotensor structures.

Remark 4.1.10. For any commutative monoid V in CAT pr (namely, a closed symmetric monoidal presentable category), the category of V-enriched, V-cocomplete (i.e. closed under all weighted colimits) categories is equivalent to the category V-Mod(CAT cc ) of V-modules in CAT cc . Moreover, the category of presentable V-enriched categories is equivalent to V-Mod(CAT pr ) (a proof of this is [MGS21, A.3.8], and the proof for V-Mod(CAT cc ) is the same). Hence we could start with any commutative monoid (C, ⊗, 1, -, -) in CAT pr and describe the pushoutproduct and pullback-hom structures for arrow C-enriched categories in exactly the same way, using the internal pushout-product and pullback-hom of C → . 4.1.11 (Pullback-hom for arbitrary arrow categories). For any small category C, post-composing with the Yoneda embedding C ↩→ P(C) gives a full inclusion of arrow categories C → ↩→ P(C) → . As P(C) is locally presentable, it has an external pullback-hom (4.1.3), namely it is enriched over (S → , , ∅ → 1, -, -). Hence so is C → , as it is a full subcategory ([Lur17, 4.2.1.34]). Further, it is easily seen that , is the cartesian gap map

[ , ] C → [ , ] C → for every : → , : → in C → .
Remark 4.1.12. For any (not necessarily small) category C, we have a full inclusion C ↩→ C (that may even be supposed colimit-preserving) of C into a cocomplete category C (see [Lur09, 5.3.6.2]). By Remark 4.1.9, C→ is enriched over (S → , , ∅ → 1, -, -) via the external pullback hom -, -: ( C→ ) op × C→ → S → . Hence, by restriction, so is C → . Remark 4.1.13. For any category C, the formula , : [t , s ] C → [ , ] C → and the fact that t, s : C → → C preserve all limits and colimits, together tell us that the enrichment functor -, -: (C → ) op × C → → S → preserves limits in each variable. In other words, conical limits and colimits in C → for the enrichment -,coincide with ordinary limits and colimits in C → .

4.1.14 (Diagonal, codiagonal). The diagonal of a map : → in a category C is the map Δ : → × (should the pullback of along itself exist). When they exist, the iterated diagonals of are de ned as Δ 0 def = and Δ +1 def = Δ(Δ ). Dually, its iterated codiagonals ∇ are the iterated diagonals in C op . 1For ≥ -1, let denote the object of S that is the -dimensional sphere, with -1 = ∅, and let :

→ 1 denote the canonical map to the point. An easy calculation (as unreduced suspensions, see [ABFJ17, Example 3.2.1]) shows that = + +1 . A further easy calculation then shows that for any map ∈ C → , the codiagonal ∇ is the tensor -1

, and dually, the diagonal Δ is the cotensor A pair (L, R) of full subcategories of C → is an orthogonal system on C if we have L = ⊥ R and R = L ⊥ . For any diagram → C → , the pair (L , R ) := ( ⊥ ( ⊥ ), ⊥ ) is an orthogonal system, said to be generated by . The pair (L , R ) depends only on the essential image of the functor → C → . Lemma 4.2.3. Let (L, R) be an orthogonal system.

(1) L is absorbing for : for ∈ S → and ∈ L, the tensor is in L.

(2) R is absorbing for -, -: for ∈ S → and ∈ R, the cotensor , is in R.

(3) L is stable by colimits in C

→ . (4) R is stable by limits in C → . (5) L is stable under right-cancellation (if , ∈ L, then ∈ L). (6) R is stable under left-cancellation (if , ∈ R, then ∈ R).
The following lemma relates weak orthogonality to orthogonality in a category C in which all maps have diagonals and codiagonals. Lemma 4.2.9. A pair (L, R) is an orthogonal system if and only if it is a weak orthogonal system whose left class is stable by codiagonal.

P

. Let (L, R) be an orthogonal system. By 4.1.14 and Lemma 4.2.3, L is stable by codiagonal, and dually, R is stable by diagonal. We need to prove that (L, R) is a weak orthogonal system, namely that L = R and L = R. Clearly, R ⊂ L and L ⊂ R. Let be a map in L , then for any ∈ L, the map , is a cover in S. Since L is stable by codiagonal, all maps ∇ , Δ , are covers and by Lemma 4.1.16 the map , is invertible, thus L = R. A dual argument proves = L. Conversely, let (L, R) be a weak orthogonal system with L stable by codiagonal. We have that Δ , ∇ , , Δ is a cover for any in R and in L. Hence R ⊂ L ⊥ and obviously

L ⊥ ⊂ L = R, thus R = L ⊥ . A dual argument proves L = ⊥ R.
De nition 4.2.10 (Accessibility). Let be a regular cardinal. A (weak) orthogonal system is -accessible if it is generated by → C → where is a -small category and each ∈ im( ) is a -small object of C → . A (weak) orthogonal system is accessible if it is -accessible for some .

Factorisation systems

De nition 4.3.1. A factorisation system on a category C is the data of an orthogonal system (L, R) such that, for every map in C, there exists a factorisation of as ( ) ( ), namely a commutative triangle as below, with ( ) ∈ L and ( ) ∈ R.

( ) ( )

The factorisation is only assumed to exist and is a property of the orthogonal system. However, the factorisation can be proven to be unique (precisely, the category of such factorisations of any is a contractible groupoid). This de nes functors ↦ → ( ) and ↦ → ( ) that are, respectively, right and left adjoints to the inclusions L ⊂ C → ⊃ R. In particular, R is a re ective subcategory of C → . A factorisation system is accessible if its underlying orthogonal system is accessible.

Remark 4.3.2. Factorisation systems are treated in [Lur09, 5.2.8]. The condition of stability under retracts in [Lur09, 5.2.8.8] is super uous; it follows from Lemma 4.2.3 since a retract is both a limit and a colimit in C → . De nition 4.3.3. A weak factorisation system on a category C is the data of a weak orthogonal system (A, B) such that, for every map in C, there exists a factorisation of as , with ∈ A and ∈ B.

The factorisation is once again only assumed to exist, and is a property of the weak orthogonal system. However in this case, the factorisation is not unique and not functorial in general. 

⇔ ∀ ∈ C, ( ⊗ ) ⊥ ⇔ ∀ ∈ C, ⊥ , .
An enriched orthogonal system is a pair (L, R) of full subcategories of C → such that R = L and L = R. An (external) orthogonal system (L, R) on C is enriched if and only if L is stable under ⊗for any in C, if and only if R is stable by ,for any in C. Every enriched orthogonal system is an orthogonal system. An enriched orthogonal system is accessible if it is of the form (

), for → C → a small diagram of internally small objects in C → . An enriched factorisation system is an enriched orthogonal system (L, R) such that, for every map in C, there exists a factorisation = ( ) ( ) where ( ) ∈ L and ( ) ∈ R. Every enriched factorisation system is a factorisation system. An enriched factorisation system is accessible if its underlying enriched orthogonal system is accessible.

When (C, ×, 1, -, -) is a locally presentable cartesian closed category, the enriched orthogonality relation also satis es ⇒ ∀ ∈ C, ⊥ × , since × is the base change of : → along × → . Thus for any enriched factorisation system (L, R) on C, the factorisation of : → is always stable by base change along projections × → (weaker than modalities, see Table 1).

Factorisation systems and localisations

4.4.1 (Localisations). Let C have a terminal object 1. If (L, R) is an orthogonal system on C, we write R 1 for the full subcategory of C on objects such that → 1 is in R.

When (L, R) is a factorisation system, then for any in C, the factorisation of the map → 1 produces a re ection of C into R 1 . Since R is stable under leftcancellation, we have full inclusions R → 1 ⊂ R ⊂ C → . We de ne L 3/2 def = ⊥ (R → 1 ), and R 2/3 def = (L 3/2 ) ⊥ . Thus (L 3/2 , R 2/3 ) is an orthogonal system on C. In particular, L 3/2 is closed under colimits in C → .

C is any category

External For every ∈ C → , ∈ R → 1 , the re ection : C → ←↪ R 1 : provides an equivalence , , in C → . Hence L 3/2 ⊂ C → is exactly the class of maps that are inverted by : C → R 1 , and as such, satis es the "2 out of 3" condition. Thus the re ection : C → R 1 is the localisation of C at L 3/2 . Namely, for any category D, pre-composition with is a full inclusion of functor categories

[R 1 , D] ⊂ [C, D] with image those functors C → D that invert every map in L 3/2 .
Moreover, since L ⊂ L 3/2 and since for any map : → in C, the top and bottom maps in the following square in C are in L, we conclude that L 3/2 is the saturation of L (the closure of L under the "2 out of 3" condition). ∈L ∈L Proposition 4.4.2. Let C be locally cartesian closed, and let (L, R) be a modality on C. Then for every : → in R and every ℎ : → , the map Π ℎ ∈ C↓ is in R (where Π ℎ is right adjoint to base change ℎ * : C↓ → C↓ ).

P

. For any ∈ L, the map , Π ℎ in S is invertible if and only if each of its bres over 1 ∈ S is invertible (or contractible). But every such bre is also a bre of , where is a base change of . We conclude since L is stable under base change. 

P

. For all : → , : → , the following square is cartesian in C → . Hence if L is stable under nite limits, it is stable by left-cancellation. 1 Conversely, if L = L 3/2 , then for any cartesian square in C as on the left below, in the diagram on the right, the back face is cartesian (since (L, R) is a modality) and side faces are cartesian (since (L, R) is re ective). Thus the front face is cartesian, so preserves nite limits.

Hence if ℎ : → is a nite diagram in C → and ℎ = lim ℎ : → , then it is easy to see that (ℎ) = lim (ℎ ) since it is the base change of (ℎ) = lim (ℎ ). We conclude by Proposition 4.3.5(2). CHAPTER 5

Kelly's small object argument and the plus-construction for sheaves

The original small object argument ([Qui67, §3.L3]) is a construction that, under suitable "smallness" conditions, allows an accessible weak orthogonal system on a 1-category to be enhanced into a weak factorisation system. Variants of this construction, as in Gabriel-Ulmer [GU71, Satz 8.5] and Kelly [Kel80, Thms 10.1 and 11.3] allow an accessible orthogonal system on a locally presentable 1-category to be enhanced into a factorisation system. From now on, we will use the sobriquet small object argument (abbreviated SOA) to refer to the generalisation of these constructions to ∞-categories.

For a topological space, and more generally for a Grothendieck topology on a 1-category , the shea cation of a presheaf ∈ is a particular case of the previous situation-since (following Section 4.4) it is exactly the factorisation of → 1 in the left-exact modality ( ⊥ ( ⊥ ), ⊥ ) on . In this case, there is a construction on ([SGA72, Exp. II, 3.0.5]) that we will call the "plus-construction", that can be iterated to factor → 1.

In this chapter, we will show that Kelly's SOA admits a generalisation to locally presentable ∞-categories. Moreover, we will show that under mild conditions, that can be satis ed without loss of generality, Kelly's SOA simpli es to a construction that is exactly the plus-construction in the particular case of a lex modality generated by a Grothendieck topology. We use this simpli cation (the theory of pre-modulators) to de ne modulators and lex modulators, which are a good generalisation of Grothendieck topologies to ∞-categories (since they capture all accessible semi-left-exact and left-exact localisations).

Notation 5.0.1. For a map in C, we recall the notation s and t to refer to the source and the target of , that is, we write : s → t . We will use the terms "source" and "domain" (respectively, "target" and "codomain") interchangeably.

For a diagram → C → , we will say (with slight abuse) that a map in C is "in " if it is in the image of → C → . For any ∈ C → , we write ↓ and ↓ for the over and under comma categories. For any ∈ C, we write ↓ and ↓ for ↓1 and 1 ↓ . Remark that these are just ↓ t and ↓ s for the source and target functors s, t : → C.

Remark 5.0.2. The results of Sections 5.3 and 5.4 are largely due to M. Anel. They appear in [AL20, Sec. 3] in more detail than here. I have slightly changed and abridged their presentation from op. cit. and have corrected a few errors. I have included them here to show the usefulness of pre-modulators (De nition 5.2.9) and the general plus-construction (Theorem 5.2.11).

Orthogonal factorisation after Kelly

We use the pushout-product and pullback-hom to describe a version of the SOA that constructs the accessible factorisation system (L , R ) generated by a set of maps of a locally presentable category. This argument is a slight modi cation of the one in [START_REF] Kelly | A uni ed treatment of trans nite constructions for free algebras, free monoids, colimits, associated sheaves, and so on[END_REF]§10,11].

5.1.1. It is useful to study the case of the orthogonal system ( ⊥ ( ⊥ ), ⊥ ) generated by a single map of a category C. Let be any map in C. In the original argument of Quillen, when constructing an approximation ( ) to a weak factorisation, lifts against are added freely to , independently of any existing lifts. Moreover, if several lifts exist, they are not identi ed. These observations suggest that in order to obtain unique lifts, we replace the lifting problem ] ×s . The two constructions turn out to be equivalent in the context of 1-categories, but the correct formula for ∞-categories does need the pushout. The di erence concerns the uniqueness of the lifts.

Remark 5.1.3. Quillen's SOA uses a generating set of maps, but the variant for orthogonal factorisation allows for any small diagram of maps → C → . For such a diagram, we will consider the single map that is the coend1 ( )

def = ∫ ∈ , .
This is nothing but the domain of the density comonad of the functor → C → for the enrichment -, -. 

∫ [t , s ] × t [t ,s ]×s [ , ] × s s ∫ [ , ] × t t . ( ) (! ) 
The construction then proceeds as in [START_REF] Kelly | A uni ed treatment of trans nite constructions for free algebras, free monoids, colimits, associated sheaves, and so on[END_REF]. The map ( ) : ( ) → t is de ned as the cogap map of the square (! ) The map ( ) can then be understood as the best approximation of on the right that admits a lift from the map ∫ , . We have a factorisation of as ( ) ( ) : s → ( ) → t . Because L is absorbing for and stable by colimits in C → (Lemma 4.2.3), the map ∫ [ , ] is in L and so is its cobase change ( ) : → ( ). The map ( ) : ( ) → t need not be in R but we now show that it will be after a trans nite iteration. T 5.1.6 (Kelly's SOA [Kel80, Thm 11.5]). Let C be a cocomplete category and → C → be a small diagram of arrows with small domains and codomains, and let be a map in C. Then, the trans nite iteration of ( -constr) on converges to a factorisation of for the orthogonal system (L , R ) generated by . Thus (L , R ) is an orthogonal factorisation system.

∫ [t

P

. The natural transformation : → ( ) de nes a trans nite sequence -------→ . . . We will show that this sequence converges. By hypothesis, all maps ∈ are small (namely, their sources and targets are small) and is a small category. Thus, we can x a regular cardinal majoring the size of all . The map ( ) is in L because L is stable by trans nite compositions. If the map ( ) is in R = ⊥ , then ( ) +1 ( ). We will show that it is. We de ne ( ) Since is -small and is -ltered, we have

, ( ) = colim < , ( ) .
Also, for a xed , the map ℓ of the square ( -lift) provides a diagonal lift for the square , → ( ). By adjunction, it also provides a diagonal lift ℓ ( ) for the square , → , ( ) . 

P

. If is in ⊥ , the maps , are invertible and so is the map ( ) = ∫ , . Thus ( ). Reciprocally, if ( ), then by Lemma 5.1.4(d) and -lift, is in ⊥ .

Pre-modulators and the plus construction

The purpose of this section is to connect the -construction of Theorem 5.1.6 to the plus-construction involved in shea cation [SGA72, Exp. II, 3.0.5]. Recall the enrichment of C → over the cartesian closed category (S → , ×) (see 4.1.1).

{ , } : [ , ] → [t , t ] De nition 5.2.1 (The plus-construction). Let be a map in C and → C → a diagram of maps. We de ne the plus-construction of the map as the map

+ def = ∫ { , } × t = ∫ [ , ] × t → ∫ [t , t ] × t = colim ↓ t → colim ↓ t t t
where ↓ t is the comma category of t : → C over the object t . We write + ( ) for the domain of + . The second iteration of the plus-construction will be written ++ and ++ ( ).

Remark 5.2.2. Remark that + (-) is the left Kan extension of t :

→ C → → C along → C → , and that t(-) + is the left Kan extension of t :

→ C → → C along itself. The map (-) + is the transformation associated to the left Kan extension of + (-) along t : C → → C.

(Grothendieck topologies

). We recall the usual "plus-construction" in the context of shea cation of presheaves. Let be a small category, let C = P( ), and let ⊂ C → be the full subcategory of covering sieves → of some Grothendieck topology on . For in , we let ( ) be the category of covering sieves of (i.e. the ber of the target functor t : → at ). Recall that for a presheaf , the presheaf + is de ned by op -→ S ↦ -→ + ( ) = colim → ∈ ( ) op [ , ] . Let us show that this de nition coincides with De nition 5.2.1 in the particular case of a Grothendieck topology. Lemma 5.2.4. Let , C, , be as in 5.2.3. Then the presheaf + is equivalent to the domain + ( → 1) of the plus-construction ( → 1) + for the diagram ⊂ C → .

P

. The domain of ( → 1) + is the presheaf : ↦ → , colim

↓ s t = colim ↓ s [ , t ] ,
where ↓ s is the comma category of s : → C over . We need to construct an equivalence + . We consider the category ( , ) that is the category of elements of the functor Remark 5.2.5. The proof of Lemma 5.2.4 relies implicitly on the stability under base change of covering sieves (in order to construct the right adjoint ) and on the fact that contains the identity of generators, that is, representable functors (to have the natural map → + ). The facts that the covering sieves are monomorphisms and local is irrelevant. Lemma 5.2.4 holds for any small full subcategory → P( ) → such that the codomain functor t : → P( ) → → P( ) has values in , contains all the identity maps of , and is stable by base change along maps of (namely, t :

→ is a bration). This motivates the subsequent de nitions of a pre-modulator (De nition 5.2.9) and a modulator (De nition 5.3.2).

Remark 5.2.6. Given any diagram → P( ) → whose codomains are in and a map in P( ), let ↓ + ( ) be the category of elements of the presheaf + ( ) = s( + ). The associated bration in groupoids ↓ + ( ) → is the right part of the (co nal, bration in groupoids) factorisation of the functor t : ↓ → sending a map → to t . The value of the presheaf + ( ) at some in is the external groupoid of the category ( , ) ( ↓ t ) ↓ whose objects are diagrams s s t t .

When is stable by base change, exactly the same proof as in Lemma 5.2.4 gives

+ ( ) ( ) colim ( ) op [ , ] .
5.2.7. We require some more notation. We set -def = ∫ ∈ , to be the cocartesian gap map of the square below, and we de ne ( ), ( ), ( ) as below.

∫ [t , s ] × s ∫ [ , ] × s ∫ [t , s ] × t ∫ [ , ] × t ( ) def = ∫ , × ( ) def = ∫ [ , ]× ( ) def = ∫ , ×t
This square can also be written using colimits (recall ↓ from Notation 5.0.1).

colim ↓s s colim ↓ s colim ↓s t colim ↓ t 5.2.8 (A coincidence condition for (-) + and (-)). Inspired by the particular case of Lemma 5.2.4 and Remark 5.2.5, we will give conditions for the construction ( ) of Theorem 5.1.6 to coincide with + . We shall do so by proving that, under suitable conditions on the diagram → C, all the Greek-lettered maps of Figure 1 are invertible.

So far the only condition on C has been that it is a cocomplete category. We have also assumed the maps in to be small. The proof of the coincidence of the -and plus-constructions will require the stronger assumption that C is locally presentable. Since any object is small in a locally presentable category, this will remove the smallness assumption on the maps in → C → when applying Theorem 5.1.6, as long as is still a small indexing category.

De nition 5.2.9 (Pre-modulator). Let C be a locally presentable category with a xed generating small subcategory ⊂ C. A pre-modulator is a diagram → C → such that: (1) is a small category, (2) → C → is fully faithful, (3) the codomains of the maps in are all in , (4) the inclusion ↩→ C → sending a generator to its identity map factors through ↩→ C → . We often leave implicit the choice of the generating category when considering pre-modulators, since axioms (3) and (4) imply that is just the image of t : → C.

Remark 5.2.10. Consider the comma category C ↓ . The functor t : C ↓ → admits a fully faithful right adjoint 1 : ↩→ C ↓ sending a generator to its identity map. The adjunction t : C↓ → ←↪ : 1 is then a re ective localisation. A pre-modulator can equivalently be de ned as a small full subcategory ⊂ C↓ such that the previous localisation restricts to a localisation t : → ←↪ : . T 5.2.11 (The plus-construction). Let C be a locally presentable category, and let → C → be a pre-modulator. Then in Figure 1, we have the simpli cations ( ) = ( ) = ( ) = ( ) = - and ( ) = + .

In particular, the factorisation of for the orthogonal system (L , R ) can be obtained by a trans nite iteration of the plus-construction. Moreover, a map is in R if and only if + .

P

. We prove that all the Greek-lettered maps in Figure 1 are invertible. First, consider the generating small category ⊂ C relative to which is a pre-modulator. Let be any object in C. By hypotheses (2) and (4) we get a fully faithful functor ↓ -→ ↓ → ↦ -→ (1 , → ).

Then, using hypothesis (3) and Remark 5.2.10, this functor has a left adjoint sending ( , t → ) to t → . Recall that a right adjoint functor is always co nal. Since is a generating subcategory, we have proving that is invertible. Hence, since = 1 s , thus is invertible. Then, by pushout, so are and . Then is invertible since and are. By pushout, so is . Thus all the Greek-lettered maps are invertible, giving the identities of the theorem. The last assertion follows from ( ) = + and Corollary 5.1.8. Remark 5.2.12. There is a concrete payo to the -construction simplifying to the plus-construction in the case of a pre-modulator. The colimit formula de ning the plus-construction is better suited to check exactness conditions such as stability by base change and left-exactness (see Theorem 5.3.6 and Theorem 5.4.2). Moreover, any diagram → C → may be replaced with a pre-modulator in an essentially harmless way (Proposition 5.2.14).

P

. For any ∈ , recall that the bre ( ) of over and the over category ↓ are de ned by the pullbacks

( ) ↓ { } ↓
Since is an op-bration, the functor : ( ) → ↓ has a left adjoint. Hence is co nal, and the result follows.

Lemma 5.3.5. Let → C → be a modulator and : → a cartesian map in C → . Then, for any ordinal , the two following squares are cartesian. . By cancellation for cartesian squares, it is enough to prove that the square (2) is cartesian. We proceed by induction on . (Base.) When = 1, we need to show that the canonical map s + → s + × t t is invertible, where s + = colim ↓ t and where

s + × t t = colim ↓ t × t t = colim ↓ t × t t = colim ↓ t( × ).
Given → in ↓ , we have a square and a map → × in ↓ (by Lemma 5.3.3 and since is a modulator). The induced transformation

↓ ↓ C → ⇒ -×
is just the unit of the adjunction ! : C → ↓ C → ↓ : * , restricted to ↓ and ↓ . The corresponding map between colimits is : colim

↓ -→ colim ↓ × ,
and the domain of is the map s + → s + × t t . The result follows if we show that is invertible in C → . We do so by introducing an auxiliary diagram → C → and two morphisms of diagrams

↓ ↓ C → = ⇒ -×
that will induce equivalences between the colimits. The category is de ned as the full subcategory of (C → ) → ↓ consisting of squares where and are in and is cartesian. The diagram → C → is given by forgetting to . The obvious functor → ↓ has a left adjoint given by → ↦ -→ .

Hence it is co nal and colim colim ↓ . There is also an obvious functor : → ↓ and a morphism of diagrams given by the maps → × (this is the unit of (C → ) → ↓ C → ↓ ). The composition of the induced map colim → colim ↓ × with the previous identi cation colim ↓ colim gives back the map . We show that : → ↓ is an op bration. Let → → be a map in ↓ and : → in the bre ( → ) of at → . Since C has nite limits, the composite map → → in C → factors uniquely as → → where t = t and : → is cartesian.

We claim that is in the bre ( → ). Since t = t , is a base change of , and since is a modulator, is in . Since t = t and : → is cartesian, the maps → and → → together give a square below.

The claim follows since is cartesian, and implies that is an op bration. Now, the bre ( → ) is just the full subcategory of ↓ ( × ) consisting of cartesian maps → × . Since is an op bration, we use → ↓ → 1, decomposition of left Kan extensions, and Lemma 5. But by universality of colimits, the map × is the colimit of the maps , thus colim → × = × . We conclude that : colim

↓ colim → colim ↓ × .
is invertible. (Induction.) If is not a limit ordinal, then the result is a consequence of the previous computation applied to + -1 → + -1 . If is a limit ordinal, we have s + = colim < s + . By induction hypothesis, we have s + = s + × t t for all < . We conclude by universality of colimits.

T 5.3.6 (Stable plus-construction). Let C be a locally presentable locally cartesian closed category with a xed small category of generators ⊂ C. If → C → is a modulator, then

(1) the plus-construction ↦ → + preserves cartesian maps in C → , (2) the factorisation system generated by is a modality, and (3) a map is modal (i.e. in R) if and only if = + .

P

.

(1) follows from Lemma 5.3.5.

(2) By Theorem 5.2.11, the re ection into the right class is given by ( ) = + for some . The result follows from Lemma 5.3.5 and Proposition 4.3.5.

(3) This is the nal claim of Theorem 5.2.11.

Remark 5.3.7. The fact that the plus-construction respects cartesian maps says, intuitively, that it is a brewise process on the map . In particular, it can be de ned as an endomorphism + : U → U of the universe (the bration t : C → → C) of the category C.

De nition 5.3.8. Let ⊂ C be a generating small category. For any small diagram → C → , we de ne the modulator envelope mod of (relative to ) as the full subcategory of C → consisting of the identity maps on objects of and all pullbacks of the maps in over the objects of . The diagram mod ↩→ C → is always a modulator.

Corollary 5.3.9 (Generation of modalities). If C is a locally presentable locally cartesian closed category with a xed small category of generators ⊂ C, the modality generated by an arbitrary family → C → can be constructed by applying Theorem 5.1.6 to the modulator envelope mod .

P

. By Theorem 5.3.6, the factorisation system (L, R) generated by mod is a modality. We need to prove that it is the smallest modality (with respect to the order given by inclusion of left classes) such that ⊂ L. We rst prove that ⊂ L. Let be a map in . For any in we de ne the diagram (-) : ↓t -→ C → ( : → t ) ↦ -→ ( ) : × t s → .

By universality of colimits, we have colim ( ) = . By construction, all maps ( ) are in mod ⊂ L. Hence ∈ L by stability under colimits (Lemma 4.2.3(3)). Finally, let (L , R ) be another modality such that ⊂ L . Then mod ⊂ L , so R ⊂ ( mod ) ⊥ and since R = ( mod ) ⊥ , thus L ⊂ L . are universal in C, is the colimit of the . By construction of + , we have lifts s s s + t t t + These lifts are unique since + is a mono. Passing to the colimit, they de ne a lift s s + t t .

+

For the second statement, recall that is -truncated if and only if Δ +2 invertible, if and only if Δ +1 is a monomorphism. Left-exactness of (-) + and the previous statement imply that Δ +1 ( + ) = (Δ +1 )

+ is invertible, hence + is ( -1)-truncated.

5.4.8. We need another lemma. Any two maps : → and : → in a category C de ne a commutative cube where both top and bottom faces are cartesian and cocartesian. This gives the following result.

Lemma 5.4.9. Viewed from above, the previous cube de nes a square in C → which is both cartesian and cocartesian.

1

Lemma 5.4.10. Let E be an -topos ( ≤ ∞) and ↩→ E → a mono-saturated lex modulator. Let : → be a map in E and ( ) ( ) : → → its factorisation for the left-exact modality generated by . Then, we have ( + ) = ( ) and ( + ) = ( ) + .

P

. Using Lemma 5.4.9 for = ( ) ( ) and the left-exactness of the plus-construction, we get a cartesian square We have ( ) + = ( ) since (-) + xes the class R. This implies that is also the middle object of the factorisation of + . Using (1 ) + = 1 and Lemma 5.4.9 for + = ( + ) ( + ), we get ( + ) = ( ) + .
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  Cat def = { : ( ) : ( , ) , , , : , : ( , ), : ( , ) ( , ) : ( , )} over the signature S G 1 , as well as a set E Cat of three equations , : , : ( , ) ( ( ), ) = : ( , ) , : , : ( , ) ( , ( )) = : ( , ) , , , : , : ( , ), : ( , ), ℎ: ( , ) (ℎ, ( , )) = ( (ℎ, ), ) : ( , )

F

  Cat def = { : ( ) : ( , ) , , , : , : ( , ), : ( , ) ( , ) : ( , )} , puis un ensemble E Cat de trois équations , : , : ( , ) ( ( ), ) = : ( , ) , : , : ( , ) ( , ( )) = : ( , ) , , , : , : ( , ), : ( , ), ℎ: ( , ) (ℎ, ( , )) = ( (ℎ, ), ) : ( , )

  Proposition 1.3.3. The category of C-collections is equivalent to the full subcategory of [ C, C] consisting of the nitary endofunctors (those that preserve nitely ltered colimits). P . This is just left Kan extension along Cell C ↩→ C due to the isomorphism Coll C [Cell C , C] and since C Ind(Cell C ) is an ind-completion of Cell C (Corollary 1.2.4). Corollary 1.3.4. The full inclusion Coll C ↩→ [ C, C] is monoidal and exhibits Coll C as a monoidal subcategory of [ C, C] (for the composition of endofunctors).

  → D a contextual functor. Then has a pointwise right Kan extension along C op ↩→ Cx(C).

P

  . Since D is a contextual category, D op has an initial object and pushouts of p op : ( ) → for every ∈ C. It thus has nite op ( C )-cell complexes, where op ( C ) = {p op | ∈ C}. But then op has a pointwise left Kan extension along C ↩→ Cell C , which is just the functor taking every C -cell complex to the corresponding op ( C )-cell complex. Proposition 1.4.14 (Initiality of C op ↩→ Cx(C)). Let D be a contextual category. (1) Every morphism Cx(C) → D in CxlCat is the right Kan extension of some (essentially unique) contextual functor C op → D. (2) Every contextual functor : C op → D has a right Kan extension along C op ↩→ Cx(C) that is a morphism of contextual categories. P .

  Corollary 1.4.15. Let Cx(C) op --→ Θ op ↩→ D be the (identity-on-objects, fully faithful) factorisation of the underlying functor of a morphism : Cx(C) → D of contextual categories. Then : Cell C → Θ is a C-sorted theory.

  (Semi-simplicial, globular, opetopic types). De nition 1.4.12 gives a very concrete description of what type-theoretic C-objects in any contextual category D are. Hence, for example, a semi-simplicial type in any dependent type theory T à la Martin-Löf is exactly a contextual functor op → D T to the syntactic contextual category D T of T. A semi-simplicial type in a context Γ is a contextual functor to the slice contextual category D T/Γ . De nition 1.4.18. For D a contextual category and C a category, a D-model in C is a functor D → C preserving the terminal object and taking canonical pullbacks (of axiom (8) of De nition 1.4.1) to cartesian squares. The category D-Mod C of D-models in C is the full subcategory of [D, C] consisting of the D-models in C. We simply write D-Mod for the category of D-models in Set. Proposition 1.4.19. We have canonical equivalences [Cell C , C] C Cx(C)-Mod C and C Cx(C)-Mod. P . Immediate from Corollary 1.2.13. 1.4.20. Corollary 1.4.15 allows us to associate a C-sorted theory to every morphism Cx(C) → D in CxlCat. However, it is entirely possible for two distinct morphisms Cx(C) → D 1 and Cx(C) → D 2 to give the same C-sorted theory. Moreover, if : Cx(C) → D in CxlCat Cell C / is any contextual category under Cx(C), and if : Cell C → Θ is its associated C-sorted theory, then every ∈ D-Mod gives, by restriction along Θ op ↩→ D, a model of the C-sorted theory . We thus have a forgetful functor D-Mod → (Θ , )-Mod, which is not in general an equivalence of categories. De nition 1.4.21. Let : Cx(C) → D be a morphism in CxlCat, and let Cx(C) Θ op D op be the (identity-on-objects, fully faithful) factorisation of its underlying functor. Then is a C-contextual category if for every morphism : Cx(C) → D in CxlCat and every triangle ℎ op = (in Cat), there exists a unique morphism h : D → D in CxlCat making the following diagram commute. The category CxlCat C of C-contextual categories is the full subcategory of the coslice category CxlCat Cx(C)/ consisting of the C-contextual categories. Remark 1.4.22. The identity functor 1 Cx(C) is the initial object of CxlCat C (see De nition 1.4.3 and Proposition 1.4.14).

˜

  C as on the right below, there exists a unique morphism ˜ in CxlCat C . It is readily veri ed that the two constructions are mutually inverse. Proposition 1.4.25. The fully faithful functor CxlCat C → Law Cell C ( C) is essentially surjective.

  induction. (a) In the base case, we set ¯ 0 def = ¯ and we set ¯ 0 : ∅ → ¯ 0 which is clearly a free morphism. (b) In the induction step, we assume we have reached the stage . By induction hypothesis, ¯ : ( ) → ¯ is a free map. We begin a case analysis. (i) If there exists a free morphism ˜ : ( ) +1 → ¯ making the triangles below commute, and we set ¯ +1 def = ˜ . (ii) Else, we de ne ¯ +1 and ¯ +1 via the pushout of free maps below.

  def = {( ) ∈ → | ∈ , ∈ } of subrepresentables that are covering sieves of the topology. From the previous paragraph, we have a re ective simplicial adjunction : Sp → ←↪ sSh : between simplicial presheaves on and simplicial sheaves on . Following [DHI04, App. A], we call the left Bous eld localisation of Sp inj at the set of covering sieves the injective Čech model structure on Sp and write it as (Sp č inj , W č, C inj , F č inj ). The projective Čech model structure is the left Bous eld localisation of Sp proj at the same set . The identity adjunction remains a Quillen equivalence.

  Corollary 2.3.7. The projective and injective Čech model structures on Sp(Cell C ), associated to the inclusion C ↩→ Cell C , both present the hypercomplete ∞-topos P(C). (In the language of [DHI04], any in Sp(Cell C ) that has Čech descent, has descent for hypercovers.)

  technique due to Quillen [Qui67, II.4] proves that the transferred model structure along the monadic functor : sT-Mod → Sp exists. We call sT-Mod with the transferred model structure the model category of simplicial T-algebras. Recall the simplicial adjunction : Sp(T op ) → ←↪ sT-Mod : ℎ from 2.2.10. Then the model structure for simplicial T-algebras is also the transferred model structure along the right adjoint [Bad02, Thm 5.1]. The identity-on-objects functor : Cx( ) → T and the theory of monads with arities gives a diagram of adjunctions below such that ! * ! is an exact adjoint square. diagram, ! : Sp sT-Mod : * is both the restriction of ! * along the nerve functors * and as well as the monadic adjunction of the monad T on Sp . It is readily veri ed that all the adjunctions are Quillen for the projective global model structures on Sp(Cell ) and Sp(T op ). Moreover, since is identityon-objects, * : Sp(T op ) → Sp(Cell ) preserves and re ects projective brations and global weak equivalences. Thus every model structure on the right in each of the Quillen pairs in (★) is the transferred model structure along the right adjoint.

  Remark 2.4.6. By Bous eld localisation and Theorem 2.4.5, the exact adjoint square (★) gives an exact adjoint square Sp sT-ModSp(Cell ) proj Sp(T op ) proj ! * * ! * * ℎwhere the vertical adjunctions are Quillen equivalences (the left vertical adjunction is the particular case of Theorem 2.4.5 for the initial -sorted theory).2.5. A flasque model structure for homotopy C-sorted spacesIn Section 2.3, we saw that C-sorted spaces can be seen as sheaves of spaces over Cell C , generalising the equivalence C Sh(Cell C ). However, C is also the category of models in Set of the initial C-sorted theory/C-contextual category Cx(C) = Cell op C . From this point of view, C is the category of functors Cx(C) → Set that preserve canonical pullbacks (De nition 1.4.18), or in other words, that take canonical pushouts of boundary inclusions ↩→ in Cell C to pullbacks in Set. Now the sheaf condition is also a limit-preservation condition, but the two are not the same. They coincide for the initial C-contextual category, but the Set-models of an arbitrary C-contextual category Cx(C) → D, despite being characterised by preserving canonical pullbacks, are not a category of sheaves on D.

  For , ∈ tr , [ ] ∈ | such that the leaf of at [ ] and the root edge of are decorated by the same ∈ , de ne the grafting • [ ] of and on [ ] by the following pushout in tr ([Koc11, Prop. 1.1.19]). . ) is a trivial tree, then • [ ] = (resp. ). We assume, by convention, that the grafting operator • associates to the right. Proposition 3.1.15 ([Koc11, Prop. 1.1.21]). Every -tree is either of the form I , for some ∈ , or obtained by iterated graftings of corollas (i.e. -trees of the form Y for ∈ ). Notation 3.1.16 (Total grafting). Let , 1 , . . . , ∈ tr , where | = {[ 1 ], . . . , [ ]}, and assume the grafting • [ ] is de ned for all . Then the total grafting of 1 , . . . , onto the leaves of will be denoted concisely by [ ]

2. 1 )

 1 Example 3.2.4. Consider the 2-opetope on the left, called 3:

  obviously maps the unique edge [] to the unique node []. (2) If = Y (a corolla) for some ∈ O -1 , then t = . Further, | = {[[ ]] | [ ] ∈ • }, and ℘ maps [[ ]] to [ ]. (3) Otherwise, decomposes as the grafting = • [ ] Y of a corolla onto a tree, for some ∈ O , ∈ O -1 , and [ ] ∈ | , and its target is the substitution t = (t ) ℘ [ ]

P.

  Exactly similar to the previous lemma. Notation 3.2.18. Let : O → ob(C → ) be a function that maps opetopes to morphisms in some category C, and M the set of maps de ned by M def = { ( ) | ∈ O}. Then for ∈ N, we de ne M ≥ def = { ( ) | ∈ O ≥ }, and similarly for M > , M ≤ , M < , and M = . For convenience, the latter is abbreviated M . If ≤ , we also let M , def = M ≥ ∩ M ≤ . By convention, M ≤ = ∅ if < 0. For example, S ≥2 = { | ∈ O ≥2 }, and S , +1 = S ∪ S +1 . Proposition 3.2.19. Let ∈ O be an opetopic set. (1) If S , +1 ⊥ , then B +1 ⊥ . Equivalently, B +1 is a subset of the S , +1 -local isomorphisms (B +1 ⊂ ( ⊥ (S ⊥ , +1 )) 3/2 in the notation of Section 4.4). Thus every morphism in B ≥ +1 is an S ≥ -local isomorphism. (2) If S , +1 ⊥ and B +2 ⊥ , then S +2 ⊥ . Thus if S , +1 ⊥ and B ≥ +2 ⊥ , then S ≥ ⊥ . P . (1) Let ∈ O +1 . Note that the following triangle commutes.

P . ( 1 )

 1 The map t t = s [] t : → I is precisely the spine inclusion I of the degenerate ( + 2)-opetope I . (2) The source map s [] : → Y is precisely the spine inclusion Y of the ( + 1)opetope Y . The target map t : → Y is the morphism t : t t I → t I and is the vertical arrow in the diagram below. The horizontal arrow is an S +1, +2 -local isomorphism by Corollary 3.2.22 and the diagonal arrow is in S +2 by point (1). The result follows by "2 out of 3". Notation 3.2.24. Let ∈ N and ∈ N ∪ {∞} be such that ≤ , and let O , be the full subcategory of O consisting of opetopes of dimension ≤ d( ) ≤ . Note that O ,∞ = O ≥ . De nition 3.2.25. The restriction functor (-) , def = ( ≥ ) * : O ≥ → O , associated to the inclusion ≥ : O , → O ≥ is called truncation. We write the left adjoint as ≥ ! and the right adjoint as ≥ * . Note that for ∈ O , , the presheaf ≥ ! is the "extension by 0", i.e. ( ≥ ! ) , = , and ( ≥ ! ) = ∅ for all ∈ O > . On the other hand, ≥ * is the "canonical extension" of into a presheaf over O ≥ : we have ( ≥ * ) , = , and B > ⊥ ≥ * , which uniquely determines ≥ * . Likewise, the inclusion ≤ : O , → O ≤ induces a restriction functor O ≤ → O , , also denoted by (-) , and again called truncation, that has both a left adjoint ≤ ! and a right adjoint ≤ * . Explicitly, for ∈ O , , the presheaf ≤ ! is the "canonical extension" of into a presheaf over O ≤ :

  and let (-) > = (-) ≥ +1 . Proposition 3.2.26. (1) The functors ≥ ! , ≥ * , ≤ ! , and ≤ * are fully faithful.

P

  . Take ∈ O , and ∈ (ℨ ℨ ) , say : [ ] → ℨ , where t = . For [ ] ∈ • , write def = [ ] : [ ] → , where t = s [ ] . Informally, is a "pasting diagram of pasting diagrams" of , namely a pasting diagram of the 's, which are themselves pasting diagrams in . The goal is to assemble the 's in a single pasting diagram Φ( ). Letdef

  [t ] → . Write def = t . As noted in De nition 3.3.14, exhibits a partition of into subtrees, and let Ψ( ) : [ ] → ℨ map [ ] to the restriction of to the subtree [ ] of . It is routine veri cation to check that Φ and Ψ are mutually inverse. De nition 3.3.16. We now de ne 1 : 1 → ℨ 1 and 1 : ℨ ℨ 1 → ℨ 1, the monads laws of ℨ , on the terminal presheaf 1 ∈ O -, . In dimension < , they are the identity. Let ∈ O . Recall from De nition 3.3.11 that (ℨ 1) = { ∈ O +1 | t = }, and by Proposition 3.3.15,

1

  and let ∈ O . By de nition, and with Eq. (3.3.4), is the set of all pairs ( , ), where ∈ O(2) 

  Proposition 3.3.20. The cartesian natural transformations and (whose components are de ned in De nition 3.3.16 and Lemma 3.3.18) give ℨ a structure of p.r.a. monad on O -, . P . This is a direct consequence of Lemmas 3.3.18 and 3.3.19. Remark 3.3.21. Clearly, when = 0, we recover the polynomial monad ℨ on Set/O . Remark 3.3.22. Note from De nition 3.3.11 that the ℨ -cardinals are precisely the representable opetopes in O -, and the spines [ ] for all ∈ O +1 .

def=

  Θ ℨ (see Notation 3.3.6). De nition 3.3.28. By De nitions 3.3.4 and 3.3.11, the category Θ 0 of ℨ -cardinals is the full subcategory of O -, spanned by the representables [ ], where ∈ O -, , and the spines [ ], where ∈ O +1 (Remark 3.3.22). The category of opetopic shapes Λ , is the full subcategory Θ ℨ of OAlg , obtained from the identity-on-objects, fully faithful factorisation (see Notation 3.3.6)

  and since t t = t s [] = e [ [ ] ] (by (Glob1) and (Inner)), we have ∈ ℨ [t ] e [ [ ] ] . (c) Together, the assemble into the required morphism ℎ s [

  Remark 3.4.3. Recall that, as a p.r.a. monad on a presheaf category, ℨ has an associated "generic-free" factorisation system on the category Λ [Web07, Example 4.21]. We note that in De nition 3.4.1, the functor ℎ : O -, +2 → Λ takes a source map s [] : s [] → (where ∈ O +2 ) to a generic morphism ℨ [s [] ] → ℨ [t ]. This motivates part (4) of De nition 3.4.1. Namely, ℎ sends a morphism

  s

  [t ] → [t ] is the inclusion of the leaves of the subtree into the leaves of . De nition 3.4.4. With slight abuse of notation, let ℎ : O OAlg : be the composite adjunction

  Lemma 3.4.11. (1) Let ∈ O +1 , def = t , and def = Y Y • [ [] ] Y . Note that = t . The following is a diagram of ℎ t : ℎ → ℎ : Let , ∈ O +1 = tr ℨ -1 , and : [ ] → [ ] a morphism of presheaves. Then corresponds to an inclusion ↩→ of ℨ -1 trees, mapping the node at address [ ] to [ ], where [ ] def = ( []) ∈ • is the address of the image of the root node. Write = ¯ [ ] , for an adequate ¯ ∈ O +1 , and let def = Y ¯ • [ [ ] ] Y . Note that = t by Remark 3.2.5. The following is a diagram of ℎ : straightforward matter of unfolding De nition 3.4.1.

  and 2 ∈ O . Write 1 def = t 1 , and 2 def = Y 2 . Then restricts as , = 1, 2, given by the composite ℎ → ℎ -→ ℎ . Let [ ] be the edge address of (or equivalently, the ( -1)-cell of [ ] ⊆ ℎ ) such that e [ ] = (e [ ] ). Then decomposes as = 1 • [ ] 2 , for some 1 , 2 ∈ O +1 (in particular, 1 and 2 are sub ℨ -1 -trees of ), and 1 the subtree inclusion ↩→ . By induction, ¯ is diagrammatic, say with the following diagram: be written as = ¯ [ ] , for some ¯ ∈ O +1 and [ ] ∈ ¯ • .

e

  [ ] = (e [ ] ) by de nition of [ ] = 1 (e [ ] 1 ) since = 1 • [ ]

  (3) If dim ≥ -1 and dim < -1, then Λ(ℎ , ℎ ) = ∅. (4) Lastly, assume dim , dim ≥ -1. By Lemma 3.4.13, we may assume that dim= dim = + 1.If is non degenerate, then by Lemma 3.4.12, every morphism in Λ(ℎ , ℎ ) is diagrammatic, thus in the essential image of ℎ. Assume that is degenerate, say = I for some ∈ O -1 . Akin to point (2), by inspection of De nition 3.4.1, one can prove that [ ] = (ℎ ) . Finally, Λ(ℎ , ℎ ) Λ(ℎ , ℎ ) by Corollary 3.2.23 O( , ) ♠,where ♠ results from the observation above. Remark 3.4.15. It is worthwhile to note that ℎ : O -, +2 → Λ is not full. Take for example = = 1, so that ℎ is a functor O 0,3 → . Let , ∈ N, ≠ , and consider the corresponding opetopic integers a, b ∈ O 2 . Since they are di erent but have the same dimension, O(a, b) = ∅, but of course, (ℎa, ℎb) = ( [ ], [ ]) is not empty. The diagrammatic lemma says that if ≠ 0, then a morphism in ( [ ], [ ]) can be recovered as the image of a face map of a in some 3-opetope whose target is b.

  Proposition 3.4.18. The functor ℎ ! : O -, +2 → Λ (see De nition 3.4.4) takes the set S +1 of spine inclusions of + 1-opetopes in O -, +2 to the set Σ of morphisms in ⊆ Λ (the algebraic spine inclusions, De nition 3.3.33), and takes morphisms in S +2 to Σ-local isomorphisms. P . (1) Let ∈ O +1 , and recall from De nition 3.3.33 that O -, / [ ] is the category of elements of [ ]. We have

P.

  Follows from Lemma 3.4.13.Lemma 3.4.20. Let ∈ O -, +2 . If ∈ O -, -1 , then Λ(ℎ , ℎ ) O -, +2 ( , ).P. Easy veri cation.Remark 3.4.21. In the case = = 1, the previous lemma just says that the morphisms ( [0], [ ]) are the same as graph morphisms.Proposition 3.4.22. Let ∈ O -, +2 . If S +1, +2 ⊥ , then the unit : → ℎ * ℎ ! is an isomorphism.

  (2) Assume ∈ O +1 . If is degenerate, say = I for some ∈ O -1 , then Λ(ℎ , ℎ-) Λ(ℎ , ℎ-) and we are in a case we have treated before. So let be non-degenerate. By Lemmas 3.4.19 and 3.4.20, we may suppose ∈ O , +1 . Recall that for every ∈ Λ(ℎ , ℎ ), the diagrammatic Lemma 3.4.12 computes a ∈ O +2 and [ ] ∈ • such that s [ ] = , t = and ℎ s [ ]

  Corollary 3.4.23. Let ∈ O -, +2 . If S +1, +2 ⊥ , then Σ ⊥ ℎ ! . P . Recall from Proposition 3.4.18 that Σ = ℎ ! S +1 . Let ∈ O +1 . To unclutter notations, write C def = O -, +2 . We haveΛ(ℎ ! , ℎ ! ) C( , ℎ * ℎ ! ) since ℎ ! ℎ * C( , ) by Proposition 3.4.22 C( [ ], ) since ⊥ C( [ ], ℎ * ℎ ! )by Proposition 3.4.22,

  Proposition 3.4.22 provides one half of the equivalence between OAlg and the Gabriel-Ulmer localisation S -1 +1, +2 O -, +2 . The following proposition will provide the other. Proposition 3.4.25. Let ∈ Λ. If Σ ⊥ , then the counit map : ℎ ! ℎ * → is an isomorphism.

  (1) Assume = ℎ for some ∈ O -, -1 . Then Λ( , ℎ ) = O -, +2 ( , ), and ⊗ = id ⊗ ( ) has the required form. (2) Assume = ℎ = ℎ [ ] for some ∈ O +1 . If is degenerate, say = I , then by Lemma 3.4.13, ℎ = ℎ , so we fall into the previous case. Thus, we may assume that is not degenerate. Further, by Lemmas 3.4.19 and 3.4.20, we may consider only the case where ∈ O +1 . By Lemma 3.4.12, admits a diagram, say ℎ s [ ] . We then have ⊗ = id Y ⊗ (ℎ s [ ] ) ( ). (3) Assume = ℎ for some ∈ O . By Lemma 3.4.13, ℎ = ℎY , and we fall into the previous case.

  * . Thus ℎ * factors through the Gabriel-Ulmer localisation S -1 +1, +2 O -, +2 . Next, by Corollary 3.4.23, ℎ ! factors through OAlg. (2) By Proposition 3.4.22, if ∈ S -1 +1, +2 O -, +2 , then the unit map : → ℎ * ℎ ! is an isomorphism, and dually, by Proposition 3.4.25, if ∈ Σ -1 Λ, then the counit map is an isomorphism. De nition 3.4.28. Recall the de nition of O from Notation 3.2.15, and let A = A , def = O < -∪ S ≥ +1 . T 3.4.29 (Opetopic nerve theorem). The adjunction ℎ : O OAlg : is re ective, and exhibits OAlg as the Gabriel-Ulmer localisation A -1 O of the category O of opetopic sets at the set of morphisms A.

  Lemma 3.5.4 ([Hor15, Lem. 4.1], [CH16, Lem. 5.1]). Let be in ↩→ s (thus is a constant simplicial object) and let : be a monomorphism in sSet. Then ˜ takes every cocartesian square in s of the form below to a cocartesian square in Sp . ⊗ ⊗ ⊗1 P . Since colimits in s are calculated levelwise, for every [ ] ∈ Δ, we have a cocartesian square in as on the left below. Since the nerve functor :

  The arrow is the 1-category = {0 < 1}, and the arrow category of C is the functor category C → def = C . We write the domain (source) and codomain (target) functors as s, t : C → → C respectively. 4.1.1 (Cartesian closure). Let (C, ×, 1, -, -) be a cartesian closed category. For morphisms : → , : → in C, their product in the arrow category C → is the map × : × → × below. exists in C, then {{ , }}, along with the map {{ , }} × → below, is the internal hom of and in C → . We have an equivalence of spaces [ℎ, {{ , }}]

  following square is cartesian in C → . 1 1Since the re ection : C → → R is left-exact and codomain-preserving, the image under of this square is cartesian in C → and of the same type. Thus a lex modality is a modality. 4.3.6 (Enriched factorisation systems). When (C, ⊗, 1, -, -) is a locally presentable, symmetric monoidal closed category, the internal pushout-product and pullback-hom de ne a symmetric closed monoidal structure (C → , , 0 → 1, ⟪-, -⟫) (see 4.1.4). We de ne the enriched orthogonality relation by the condition that the internal pullback-hom ⟪ , ⟫ be an invertible map in C. The enriched and external orthogonality are related by

  Corollary 4.4.3. Under the hypotheses of Proposition 4.4.2, if in addition C has a terminal object, then the re ective subcategory R 1 ⊂ C is locally cartesian closed.4.4.4 (Re ective factorisation systems). If C has a terminal object 1, we shall say that a factorisation system (L, R) is re ective (following [CHK85]) if the class L satis es the "2 out of 3" condition (namely, L = L 3/2 ). Since left classes of orthogonal systems are always stable by composition and right cancellation (Lemma 4.2.3), this condition is equivalent to L having the left cancellation condition. and a cartesian transformation : • → • , as below. . ( ) Since colimits are universal in C, we have = colim in C. Finally we have by Proposition 4.4.5. Proposition 4.4.7 (cf. [RSS20, Thm 3.1]). Let C have nite limits and let (L, R) be a modality on C. Then (L, R) is a re ective factorisation system if and only if it is a lex modality.

  Lemma 5.1.4 (Functorial lifting). Let → C → be a diagram of arrows in C. The following conditions are equivalent:(a) For all in , the map , is invertible.(b) For all in , the identity map of , has a diagonal lift.[t , s ] [t , s ] [ , ] [ , ] .(c) For all in , the map , → has a diagonal lift. (d) The single map : ∫ ∈ , → has a diagonal lift. P . The equivalence (a) ⇔ (b) is straightforward. The equivalence (b) ⇔ (c) is direct by adjunction. Notice that the lift in (b) is not asked to be unique (but by uniqueness of inverses, it will be automatically) and that we use this fact in the equivalence (b) ⇔ (c). If all maps , are invertible, then by Lemma 4.1.6 so are the maps , and the coend ∫ , . This proves (a) ⇒ (d). Reciprocally, we simply use the canonical maps , → ∫ , to show that (d) ⇒ (c). 5.1.5 (Kelly's construction). The commutative square of Lemma 5.1.4(d) is

  def = s ( ). For any in , , ( ) is invertible if and only if the identity map of , ( ) has a lift t , ( ) t , ( ) [ , ( )] [ , ( )] .

[

  

⊥

  where the maps ℓ def = ℓ ( ( )) provide the desired lift ℓ at the limit.Remark 5.1.7. Because of its focus on re ective subcategories, [Kel80, §10] only considers the adjunction s(-) : S → C : , -where C is identi ed with the full subcategory of C → on maps → 1. However, the construction in 5.1.5 relies on the adjunction-: S → C → : , -.More precisely, the relevant adjunction for a diagram → C → of arrows is the enriched realisation-nerve adjunction[ op , S → ]built from the diagram → C → using the enrichment -,of C → over (S → , ).The comonad : ↦ → ∫ , is then the enriched density comonad of the diagram → C → .Corollary 5.1.8. Under the hypotheses of Theorem 5.1.6, a map is in ⊥ if and only if the canonical map → ( ) is invertible.

↓

  s -→ S ( → ) ↦ -→ [ , t ] .Its objects are diagrams 1 where : → is a covering sieve. Its morphisms are the natural transformations that are the identity on and . Remark that ( , ) ( ↓ t ) ↓ s . Recall that the external groupoid of a category (obtained by localising at all maps in ) is the colimit| | def = colim 1 in S. Then, we have that ( ) = colim ↓ s [ , t ] = | ( , )|.Let ( )/ be the category of elements of the functor( ) op -→ S → ↦ -→ [ , ] .We have that+ ( ) = | ( )/ |. Remark that ( )/ ( ) ↓ s .There is an adjunction : by the colocalisation ( ) ( ↓ t ) (which is due to t : → being a bration). So we obtain an equivalence of external groupoids | ( )/ | | ( , )| which is natural in and in .

Finally,

  Figure1is going to be central to Theorem 5.2.11. of (-) + and (-).

  we obtain = 1 s . The same argument withdef = t gives colim ↓t t = t ,proving that is invertible, and with def = s , gives = 1 s . Next, we prove that is also the identity map of the object s . Consider the category ↓ ↓ whose objects are triples ( , , 1 → → ) where is in , in , 1 → in and → in C → , and whose morphisms ( , , 1 → → ) → ( , , 1 → → ) are pairs ( → , → ) such that the obvious diagram commutes. Remark that ↓ = ↓ and that the functor → ↓ sending to 1 1 : 1 → 1 induces a functor ↓ → ↓ ↓ . This has a right adjoint ℎ : ↓ ↓ → ↓ s sending 1 → → to → s (using hypotheses (2) and (4)). In particular, ℎ is co nal. Then we have colim ↓

.

  We nally show that colim→ × = × . The object = t( × )is the colimit of the canonical diagram ↓ → C. For any : → in ↓ , let : → be the left-hand pullback s( × ) s t( × ) t . × Since is a modulator, by pasting of pullbacks, is in . Thus the diagram of the is exactly the diagram of cartesian maps → × where is in .

  de deux variables du type des noeuds. Un modèle de S G 1 (dans la catégorie des ensembles) est la donnée d'un ensemble , et pour chaque paire d'élements ( , ) ∈ × , d'un ensemble ( , ). Il est clair que les modèles de S G 1 sont exactement les graphes ; autrement dit, S G 1 est la théorie à types dépendants des graphes.La signature S G 1 correspond à la catégorie avec deux objets et deux morphismes parallèles

					graphe est
	un diagramme , :	⇒	d'ensembles, où	est l'ensemble des arêtes de ,
	et	son ensemble de noeuds. De manière syntaxique, la théorie des graphes est
	représentée par une signature de types dépendants
		S G 1	def = {∅	type ,	: , :

( , ) type} exhibant le type des arêtes comme dépendant du contexte ( : , : ) (que l'on raccourcit en ( , : ))

INTRODUCTION (FRANÇAIS)

  Théories opétopiques idempotentes. Les types dépendants sont su samment expressifs pour abstraire les « formes » des opérations (et des équations) d'une structure algébrique dans la signature des types. Par exemple, considérons l'opération de composition de morphismes Cat peut être complètement opétopi ée en intégrant toutes ses opérations et ses équations dans une signature de types S O ≤3 qui est une extension de la signature S G 1 . La signature S O ≤3 correspond à une catégorie directe O ≤3 (la catégorie des opétopes de dimension ≤ 3), telle que G 1 ↩→ O ≤3 en est une sous-catégorie pleine. Par ailleurs, il existe un foncteur monadique Cat → O ≤3 qui est pleinement dèle ; ainsi, tout ce qui est ostensiblement de la « structure » d'une petite catégorie s'exprime par des « propriétés » d'un préfaisceau sur O ≤3 . En n, Cat est la catégorie des modèles d'une esquisse projective nie sur la catégorie O

, , : , : ( , ), : ( , ) ( , ) : ( ,

)

dans la signature de termes F Cat de la théorie T Cat des petites catégories. Nous pouvons étendre la signature de types S G 1 avec une déclaration de type , , : , : ( , ), : ( , ), ℎ: ( , ) ( , , , , , ℎ) type correspondant à la forme de l'opération de composition (-, -). La forme du type dépendant peut être vue comme la cellule suivante.

ℎ ⇓ Si l'on écrit S G 1 l'extension de S G 1 avec la déclaration de type précédente, alors la signature de types S G 1 correspond à la catégorie

G 1 def = 0 1

, et la catégorie Cat admet un foncteur monadique Cat → G 1 qui envoie une petite catégorie sur un préfaisceau dont la bre au-dessus de l'objet est l'ensemble des triangles commutatifs dans la catégorie . L'opération de composition des petites catégories peut ainsi être « opétopi ée » en une cellule représentable de la signature de types. De plus, la théorie T op ≤3 . Cette nouvelle théorie algébrique à types dépendants sur la signature S O ≤3 (dont la catégorie des modèles est toujours Cat) est un exemple d'une théorie opétopique idempotente.

  The category Fin C of nitely presentable objects of C has pullbacks and non-empty nite products. It has nite limits if and only if C is nite. Let C be a category with an initial object ∅, and let be a class of morphisms of C. A relative -cell complex is the (trans nite) composite of a sequence : → C (for some ordinal seen as a totally ordered poset) such that each morphism → +1 is a pushout of some morphism in . It is an -cell complex if 0 = ∅, and it is nite if is nite.

	that	∈ C / is nite (since is nite and C is locally nite). Then, suppose that
	is not in the image of	∈ C / → C. Since C is direct, C( , ) = ∅ for all in
	, and so	= ∅.	
	Proposition 1.1.22. For all in C, is nitely presentable if and only if its category
	of elements C/ is nite.	
		P	. The "if" direction is obvious. Conversely, let be nitely presentable.
	Every nitely presentable presheaf can be written as a nite colimit of represent-
	ables, hence by Lemma 1.1.21, ob(C/ ) =	∈C	is a nite set. This implies that
	C/ is nite (see 1.1.1).	
	Corollary 1.1.23. Any nitely presentable object in C is of nite dimension.
	Corollary 1.1.24. De nition 1.1.25. Proposition 1.1.26. Let :	be a monomorphism in C. Then is the
	trans nite composite of an -long sequence (-) : → C where each morphism
	→ +1 is a pushout of	∈ ( ↩→ ) for some family of objects of C. Moreover,
	if	∈C ( -( )) is nite, then is a nite relative C -cell complex.
		P	. ([GZ67, II.3.8]). By induction, starting with = 0 , we construct a
	sequence of inclusions 0	0 -→ . . .	-→ . . ., along with canonical maps :	→
	, such that	
	(1)	= +1 ,	
	(2) if d( ) > then ( ) : ( )	( +1 ) is a bijection,
	(3) and if d( ) < , then ( ) : ( )
	1.1.20. The boundary of an object in C, denoted ∈ C, is the sub-representable
	presheaf ↩→ that is the colimit of the diagram C -/ ⊂ C / → C ↩→ C obtained by composing the domain functor C -/ → C (see Example 1.1.2) with the Yoneda
	embedding. We de ne the set of boundary inclusions of C to be the following
	set of maps in C.	
				C	def = { :	↩→ | ∈ C}
	As C is locally nite, is a nite colimit of representables for every in C, and is
	therefore a nitely presentable object of C.
	Lemma 1.1.21. Let ∈ Cat be a nite category, let : → C be a functor, and let
	be the colimit of ( -→ C ↩→ C). Then, for every in C, is a nite set. Moreover,
	there are only nitely many ∈ C such that	≠ ∅.
		P	. For any in C,	= colim ∈ C( , ). Hence the rst claim follows
	since is nite and since C has nite hom-sets (1.1.1). For the second claim, remark

  The morphisms of Cell C are de ned by Cell C (∅ → . . . , ∅ → . . . ) The forgetful functor Cell C → C is fully faithful, and its essential image is the full subcategory Fin C of nitely presentable presheaves on C.

	P	. One direction follows from Proposition 1.1.26 and Lemma 1.1.21, and
	the other follows since every is nitely presentable.
			1.2. Cell complexes and cell contexts
	We come to one of the principal de nitions of Chapters 1 and 2.
	De nition 1.2.1. The category Cell C of nite C-sorted cell contexts has as its set of objects a graded set ob(Cell C ) def = ∈N (Cell C ) of nite C -cell complexes
	∅ → . . .	inductively de ned as:
	• (Cell C ) 0 consists only of the empty presheaf ∅,
	• for every ∅ → . . .	in (Cell C ) , ∈ and every span ← -↪ -→	in
		C, we make a choice of pushout square
					+1
					.
					+1
		giving ∅ → . . . →	+1 ---→ +1 in (Cell C ) +1 .
	Remark 1.2.2. A similar construction (though not of the category Cell C ) can be
	found in H. Gylterud's PhD thesis [Gyl17, E:31-34]. It seems clear that their point
	of view is very close to the idea of dependently typed syntax as operations with
	cellular arities presented here. 1
	Proposition 1.2.3. P . Immediate from Proposition 1.1.27.
	Corollary 1.2.4. Cell C is a completion of C under nite colimits.
					Clearly,
	: colim <	→ is an isomorphism. If	∈C	is nite, then each is nite
	and if = max{ ( ) |	≠ ∅}, then +1 is an isomorphism.
	Proposition 1.1.27. For all in C, is nitely presentable if and only if there
	exists a nite C -cell complex ∅ → 1 → . . . → .

def = C( , ).

  Let C be a category with an initial object. We write [Fin C , C] C for the category of functors Fin C → C that preserve the initial object and pushouts of all boundary inclusions, namely that preserve ( nite) C -cell complexes. We de ne [Cell C , C] C using the equivalence Cell C Fin C . For C with an initial object, we have[Cell C , C] C [Cell C , C] rex .In other words, a functor Cell C → C preserves nite colimits if and only if it preserves nite C -cell complexes. We call the presheaf category [Cell C × C op , Set] the category of (cartesian) C-collections. We write it as Coll C .

	Let ∅ → . . .	be in Cell C . We proceed by induction on the pair (d( ), ) of
	the dimension of	and . In the base case, ˜ ∅ is an initial object of C since ˜
	preserves C -cell complexes. In the induction step for ∅ → . . . +1 , we know that
	for some in C,
			C/ +1 = C / C -/ C/ .
	Therefore d( ) < d( +1 ), d( ) ≤ d( +1 ), and of course < + 1. Hence by
	the induction hypothesis, ˜ (∅ → . . . ) is a colimit of C/ → C -→ C and ˜ is
	a colimit of C -/ → C -→ C. Combining the two, 3 the colimit of C/ +1 → C -→ C
	is	
			( ) ˜ ˜ (∅ → . . . ).
	But this is ˜ (∅ → . . . +1 ) since ˜ preserves C -cell complexes.
	Corollary 1.2.13. 1.3. C-collections and C-sorted theories
	De nition 1.3.1. Remark 1.3.2. We see the objects of Coll C as C-sorted signatures of function
	symbols. If ∈ Coll C , then for a context Γ ∈ Cell C and a sort ∈ C, we see any
	∈ (Γ, ) as a "function symbol" with input sort Γ and output sort "of shape ",
	that we may write Γ	: . Functoriality in Γ is change of input variables for a
	function symbol. Functoriality in describes the dependencies (which are therefore 1.2.10. Corollary 1.2.4 tells us that if C is any nitely cocomplete category, precom-position and pointwise left Kan extension along the inclusion C ↩→ Cell C together themselves function symbols) in the output sort of a function symbol.
	de ne an equivalence of categories [C, C] [Cell C , C] rex (where [Cell C , C] rex is
	the category of nitely cocontinuous functors).
	However, the "cellular" de nition of Cell C allows for a more general equival-
	ence of functor categories.
	De nition 1.2.11. Proposition 1.2.12. Let C be a category with an initial object. Then every ˜ ∈
	[Cell C , C] C is a pointwise left Kan extension along C ↩→ Cell C of its restriction
	: C → C.
	P	. Let ˜ : Cell C → C preserve nite C -cell complexes. Then it is a
	pointwise left Kan extension along C ↩→ Cell C if and only if for every = ∅ →
	. . .	in Cell C , ˜ is a colimit in C of the composite
			C/ → C -→ C.

  Proposition 1.3.13 ([BMW12, 1.12]). Consider the fully faithful functor : Cell C ↩→ C. Then is dense and the category Mnd Cell C ( C) of monads with Cell C as arities is precisely the category of nitary monads on C and monad morphisms. C → C is nitary if and only if it is the left Kan extension of along . Finally, the nerve functor : C ↩→ Cell C preserves ltered colimits (since is an ind-completion), and for each ∈ C, the category / is ltered. So if : C → C is nitary, then the composite preserves the required ltered colimit-cocones, hence has arities Cell C . Mnd Cell C ( C) Law Cell C ( C). nition 1.3.15. A C-sorted theory is a theory with Cell C as arities. The category of C-sorted theories is Law Cell C ( C). A C-sorted theory is idempotent if its associated nitary monad on C is an idempotent monad. ↩→ Cell C associated to the full inclusion : C ↩→ Cell C . The functor preserves ltered colimits, and for each ∈ C, the category / is ltered. Thus since * ! preserves colimits, is a theory with Cell C as arities if and only if the nerve functor : Θ → Cell C factors through C ↩→ Cell C . But this is equivalent to preserving nite colimits, since Cell C Fin C (and so a presheaf is in the subtopos C ↩→ Cell C -namely, is a sheaf-if and only if it preserves nite limits). We conclude by Corollary 1.2.13.

	P	. Density of follows from Proposition 1.2.3, since Fin C is dense in C.
	Next, : Corollary 1.3.14. We have equivalences of categories
	Mon(Coll C ) De Remark 1.3.16. When C is a set (Example 1.1.13(1)), we recover the well-known
	equivalence between nitary monads on C Set/C and C-sorted Lawvere theories.
	Remark 1.3.17. Idempotent C-sorted theories correspond exactly to ( -)access-
	ible re ective localisations C → ←↪ C in the sense of Section 4.4. 5
	Proposition 1.3.18 ([BMW12, 3.5]). An identity-on-objects functor : Cell C → Θ
	is a C-sorted theory if and only if it preserves nite C -cell complexes.
	P Corollary 1.3.19. Let Cell C . The nerve functor is just the subtopos inclusion 6 C --→ Θ C ↩→ C be the (identity-on-objects, fully faithful)
	factorisation of a functor : Cell C → C preserving nite C -cell complexes. Then C
	is a theory with Cell C as arities .

* : C

  Proposition 1.4.2. Let C be a locally nite direct category. Then Cell For every = ∅ → . . . +1 in (Cell C ) +1 , we de ne ( )

		1. CONTEXTUAL CATEGORIES AS MONOIDS IN COLLECTIONS
	Proposition 1.4.5. Cx(C) has nite limits. P . Cell C Fin C is nitely cocomplete. (2) ( ) is a limit of (C -→ D, and p : / ) op → C op -morphism of limits given by C -/ ⊂ C / .	→ ( ) is the canonical
	Proposition 1.4.6. Cx(C) has pushouts and nite non-empty coproducts, and has Proposition 1.4.13. Let D be a contextual category and : C op
	nite colimits if and only if C is nite.
	P	. Follows from Corollary 1.1.24.
	Proposition 1.4.7. Every map p Γ in Cx(C) as in axiom (4) of De nition 1.4.1 is an
	epimorphism.	
	P	. Since it is a monomorphism in Cell C .
	Proposition 1.4.8. Every canonical pullback square in Cx(C) as in axiom (8) of
	op C admits a (2) and in any commuting cube below, where the canonical pullback is the top face De nition 1.4.1 has codescent, namely: (1) it is also cocartesian, canonical structure of a contextual category. P . From Remark 1.2.7, Cell op C is small. Then, (1) We have the same grading ob(Cell op C ) def = (Cell C ) (see De nition 1.2.1). +1 * +1 .
	(2) ∅ is (6) the unique element of (Cell C ) 0 and (7) is a terminal object of Cell (3) def = ∅ → . . . , and op C . (4) p in Cell op C ( , ( )) as the chosen morphism → +1 in Cell C ( ( ), ). (5) For = ∅ → . . . +1 in (Cell C ) +1 , the map → +1 comes with a unique Ξ 1 Ξ 2
	choice of pushout square (De nition 1.2.1) as in the left square in the following diagram. Let = ∅ → . . . → be in Ξ 3 Ξ 4 be in (Cell C ) , and let : if the front and right hand faces are cocartesian, then the bottom face is cartesian Cell C ( ( ), ). if and only if the back and left faces are cocartesian.
	P	. Pushouts of monomorphisms in C are e ective (or "van Kampen")
	* colimits. Hence the pushouts of boundary inclusions in Cell C satisfy descent (since . . +1 by Corollary 1.1.24, Cell C has pullbacks).
			.
	We de ne ∅ → . . . Corollary 1.4.9. For every canonical pullback square in Cx(C) as in Proposi-→ * in (Cell C ) +1 by choosing the outer pushout square in the previous diagram, and we de ne the morphism . in Cell C ( , * ) tion 1.4.8, the pullback and pushout operations de ne an equivalence of categories
	as the unique dotted arrow. Cx(C) * +1 / Cx(C) +1 / × Cx(C) / Cx(C) /
	(8) In the previous diagram, the outer and left-hand squares are cocartesian, thus the square on the right is cocartesian in C and cartesian in Cell between the coslice category Cx(C) * +1 / and the category of cocartesian natural op C . (9) Given = ∅ → . . . +1 in (Cell C ) +1 as above, = ∅ → . . . in (Cell C ) , transformations under the cospan -→ ← +1 .
	and = ∅ → . . . in (Cell C ) , as well as maps : Remark 1.4.10. Propositions 1.4.5 to 1.4.8 can be seen as consequences of the → and : →
	in C, then functoriality follows since ( ) . = ( ). . fact that the morphisms of the initial C-contextual category are all made up of
	De nition 1.4.3. The initial C-contextual category is de ned to be Cell only variables, since Cx(C) has no term-constructors (see Proposition 1.6.15). op C (qua contextual category). We write it as Cx(C). 1.4.11. Remark 1.2.6 gives us a full inclusion C ↩→ Cell C taking every in C to
	a cell context ∅ → . . . → ( ) → in (Cell C ) , where = Remark 1.4.4. The structure of a contextual category cannot be transferred across ∈C |C( , )| is the op cardinality of the set of objects of C / . Moreover, ( ) → is the canonical morph-an equivalence of categories. Hence, while Cx(C) is a contextual category, Fin C ism of colimits given by the inclusion C -/ ⊂ C / . We will show that the inclusion is not necessarily one 7 . So contextual categories are category-theoretically "evil", but this is simply because they are the algebraic counterparts of syntactic objects. 8 C op ↩→ Cx(C) is universal among contextual categories for these properties.
	De nition 1.4.12. Let D be any contextual category. Then a functor : C op → D
	is a contextual functor (under C) if for all ∈ C,
	(1)	is in D , where =	∈C |C( , )| = |ob(C / )|,

  Any object ∈ M is -local if it is brant in M and if for every → in , map( , ) → map( , ) is a weak equivalence in sSet. A morphism → in M is an -local equivalence if for every -local , map( , ) → map( , ) is a weak equivalence in sSet. The left Bous eld localisation of M at (should it exist) is de ned to be the model structure 2 on M whose weak equivalences are the -local equivalences and whose co brations are the co brations of M. We denote the model category of the left Bous eld localisation of M at by M (or M if is clear from context). The fundamental theorem of left Bous eld localisations states that if M is combinatorial, left proper and cellular and if is a set (rather than a proper class) of maps of M, then the left Bous eld localisation M exists, and is a combinatorial left proper, cellular, simplicial model category [Hir09, Thm 4.1.1]. Let : M N : be a Quillen adjunction (respectively, a Quillen equivalence). Let L be the class of all maps L → L in N, where → is in and L is the left derived functor of . If the left Bous eld localisations of M at and of N at L exist, then : M N : is a Quillen adjunction (respectively, a Quillen equivalence) [Hir09, Thm 3.3.20].

  By a little pushout-product yoga, we see that any ∈ SpC is injective (trivial) brant if and only if for every in C, the map , → 1 : Map( , ) is a (trivial) bration in sSet. Likewise, a map : → is an injective (trivial) bration if and only if the map , : → × is a (trivial) bration in sSet for every in C. To be an inverse category can be de ned-indirectly-as being the opposite of a direct category.5 This phenomenon is more generally explained by the fact that C, as a direct category, is an elegant Reedy category[START_REF] Bergner | Reedy categories and the Θ-construction[END_REF] Sec. 3]. to model diagrams in ∞-topoi. The Reedy brancy condition exactly models what it means for a context/object to have a canonical projection to its parent/matching object, re ected in how smoothly the construction ([ §11, op. cit.]) goes through. 2.3.5. We now show that we are able to give an easy proof of our claim, namely that P(C) ∞Sh(Cell C ). This is partly thanks to the Reedy model structure, but also because the presheaves ∈ C are in the image of the nerve functor Cell C ↩→ C associated to : C ↩→ Cell C . Proposition 2.3.6. Let : C ↩→ Cell C denote the canonical inclusion. The righttransferred model structure SpC č along * : SpC ↩→ Sp(Cell C ) č inj (from Remark 2.2.13) is the same as the model structure for C-sorted spaces (the injective global model structure SpC inj ). P . Any model structure is determined by its co brations and brant objects, or equivalently, by its trivial brations and brant objects [Joy08, E.1.10]. For every ∈ SpC, * is a simplicial sheaf, thus it is brant in Sp(Cell C ) č inj -namely injective Čech brant-if and only if it is injective brant. Next, * : SpC inj → Sp(Cell C ) inj is right Quillen, so it preserves injective trivial brations, and as a left Bous eld localisation, Sp(Cell C ) č inj and Sp(Cell C ) inj have the same trivial brations. So it su ces to show that for every object and map in SpC, (1) if * is injective brant, then is Reedy brant, (2) and if * is an injective trivial bration, then is a Reedy trivial bration. But each lifting property follows by adjointness, since for every in C, the maps : ↩→ are in the image of Cell C ↩→ C, and so the maps in SpC are images of monomorphisms under

		→	from
	to its matching object	
	Remark 2.3.4 (Inverse Reedy categories and type theory). Categories of inverse
	diagrams valued in a homotopy-theoretic model of univalent type theory, seen as
	Reedy diagram categories, were one of the rst [Shu15] examples extending Voe-
	vodsky's model of univalent type theory in spaces to diagram categories intended
	3 In summary, the equivalence Sh	of 1-categories does not translate to an equivalence,
	but a cotopological localisation ∞Sh	

def = → ←↪ P( ) of ∞-topoi. 4 * : Sp(Cell C ) → SpC.

  an inclusion of a 0-simplex into the boundary of the 2-simplex. Then → is an objectwise weak equivalence in sSet → . But Γ and Γ are not equivalent. Joy08, E.2.17, E.2.24]. Let be a brant-co brant object in Sp(Cell C ) , then by Lemma 2.5.7, * is Reedy brant, and by Proposition 2.5.13, * *

	-local. So	→ *	*	is an -local equivalence if and only if it is a global
	weak equivalence. We conclude since ( *	* ) Γ = Map("Γ", ), and since is
	-local. Hence the Quillen adjunction is a homotopy core ection. To show it is a
	homotopy re ection, let be Reedy brant. Let	→ * be a -asque co brant
	replacement. Since * preserves global weak equivalences, * → * *	is a
	weak equivalence. 11		
	T	2.5.29. The identity adjunction Sp(Cell C )	Sp(Cell C ) č inj is a Quillen
	equivalence between the local asque model structure and the injective Čech model
	structure.			
	Luckily, we can make do without Conjecture 2.5.26.
	T	2.5.28 (Rigidi cation for C-sorted spaces). The Quillen adjunction
				is

* : Sp(Cell C ) → ←↪ SpC inj : * is a Quillen equivalence between the model category Sp(Cell C ) for homotopy C-sorted spaces and the model category SpC inj for C-sorted spaces.

P

. We will show that it is a homotopy re ection and core ection in the sense of [

  If and have the same set of colours, then a morphism from to over is a commutative diagram as above, but where 0 is the identity function. Let PolyEnd denote the category of polynomial functors, and PolyEnd( ) the category of polynomial functors over .

		1	• • •	
			1	
			( )	
	is nitary if the bres of : → are nite sets. All polynomial functors we
	consider will be nitary. A morphism → of polynomial functors is a diagram
	0	2	1	0
	where the middle square is cartesian (a pullback square). Remark 3.1.2. Every in PolyEnd has an associated composite endofunctor
	: Set/	Set/	Set/	Set/
	Explicitly, for = ( | ∈ ) ∈ Set/ , we calculate ( ) as the "polynomial"

  and * preserve all limits (as right adjoints), and ! preserves and re ects connected limits. It is nitary (preserves ltered colimits) if and only if the polynomial functor is nitary (3.1.1).This gives a fully faithful functor PolyEnd( ) → [Set/ , Set/ ] cart , the latter being the category of endofunctors of Set/ and cartesian natural transformations 1 . In fact, the image of this full embedding consists precisely of those endofunctors that preserve connected limits [GK13, 1.18]. The composition of endofunctors gives [Set/ , Set/ ] cart the structure of a monoidal category, and PolyEnd( ) is stable under this monoidal product [GK13, 1.12]. The identity polynomial functor ← → → is associated to the identity endofunctor; thus PolyEnd( ) is a monoidal subcategory of [Set/ , Set/ ] cart . We refer the reader to[START_REF] Kock | Polynomial functors and trees[END_REF][START_REF] Gambino | Polynomial functors and polynomial monads[END_REF] for a detailed account of the theory of polynomial functors.

		1	1	• • •
				( )
	with ( ) = and ∈	for 1 ≤ ≤ . Moreover, the endofunctor : Set/ →
	Set/ preserves connected limits: Remark 3.1.3. De nition 3.1.4 ([Koc11, 1.0.3]). A polynomial functor given by
		0	2	1	0
	is a (polynomial) tree if			
	(1) the sets 0 , 1 and 2 are nite (in particular, each node has nitely many
	inputs);			
	(2) is injective;			

* 

  . 3) (Globularity 2) If is non-degenerate, and [ [ ]] ∈ | , we have s [ ] s [ ] = s ℘ [ [ ] ] t . (4) (Degeneracy) If is degenerate, we have s [] t = t t . , called the target map. If [ ] ∈ • , we de ne a morphism s [ ] : s [ ] → , called a source map. A face map is either a source or the target map. (3) (Relations) We impose that the following squares, that are well de ned thanks to Proposition 3.2.7, commute. Let ∈ O with ≥ 2.

	De nition 3.2.8 ([HT18, 4.2], [HL19, Def. 3.3.2]). With these identities at hand,
	we de ne the category O of opetopes by generators and relations as follows.
	(1) (Objects) We set ob(O) =	∈N O .
	(2) (Generating morphisms) Let	∈ O with ≥ 1. We de ne a morphism
	t : t →	
	Proposition 3.2.7 (Opetopic identities, [HT18, Thm 4.1]). Let ∈ O with ≥ 2.

(1) (Inner edge) For [ [ ]] ∈ • (forcing to be non-degenerate), we have t s

[ [ ] ] = s [ ] s [ ] .

(2) (Globularity 1) If is non-degenerate, we have t s [] = t t . ((a) (Inner) for [ [ ]] ∈ • (forcing to be non-degenerate):

  is degenerate: Proposition 3.2.10. O is a locally nite direct category.P. O is direct since every generating morphism strictly increases dimension. By Proposition 1.1.12, it is locally nite since for every ∈ O, the source maps and target map of form a nite saturated cover of non-identity morphisms. We have ∈ O if and only if d( ) = (see De nition 1.1.14). For ∈ N, let O ≤ be the full subcategory of O of opetopes of dimension ≤ . The full subcategories O < , O ≥ , O > are de ned similarly. 3.2.13 (Opetopic sets). The category of opetopic sets is the presheaf category O. Following Section 1.1, for ∈ O and ∈ O, we will refer to the elements of the set as the cells of of shape . The representable presheaf on ∈ O is denoted [ ]. De nition 3.2.14. As in 1.1.20, the boundary [ ] of is the subpresheaf of [ ] not containing the identity morphism, we write : [ ] ↩→ [ ] for the boundary inclusion, and the set of all boundary inclusions is denoted B. The spine [ ] of is the maximal subpresheaf of [ ] not containing the cell t : t → , and we write : [ ] ↩→ [ ] for the spine inclusion of . The set of spine inclusions is denoted S. Notation 3.2.15. For every ∈ O we note o : ∅ → [ ] and O Lemma 3.2.16. For in O with d( ) ≥ 1, the following square in O is cartesian and cocartesian 5 , where all arrows are canonical inclusions. is precisely [t ] (namely, the inclusions of the leaves and the root edge of ). The union of [ ] and [t ] is [ ] (by de nition of [ ]). Lemma 3.2.17. Let ≥ 1, ∈ O , [ ] ∈ | , and ∈ O -1 be such that e [ ] = t , so that the grafting • [ ] Y is in O . Then the following square of inclusions is cocartesian and cartesian in O.

	t t t s [] Remark 3.2.9. [HT18, 4.2] has pictorial examples of these relations. t . t t t [ ] [t ] [ ] [e [ ] ] [ ] [ ] [ • [ ] Y ] t Remark 3.2.11. Notation 3.2.12. [t ] s [ ] s [ ]

def = {o | ∈ O}. t P . Seen as subpresheaves of [ ], the intersection of [ ] and [t ]

  S , +1 -local isomorphisms, it is enough to show that is one. Suppose that S , +1 ⊥ . Take a morphism : [ ] → . The existence of a lift [ ] → follows from the existence of a lift [ ] → , since ⊥ . For uniqueness, consider two lifts , ℎ : [ ] → of . By Lemma 3.2.16, in order to show that they are equal, it su ces to show that they coincide on [t ], since they coincide on [ ] (as they extend ). But since they coincide on [ ], they must coincide on the subpresheaf [t ] ⊆ [ ]. Since S ⊥ , and ℎ coincide on [t ], and are thus equal. (2) Let ∈ O +2 and : [ ] → . By assumption, the restriction | [t ] of to [t ] extends to a unique : [t ] → . We now show that the following square commutes: By Lemma 3.2.16, it su ces to show that and coincide on [t ] and on [t t ]. The former is tautological, and the latter follows from the hypothesis that t t ⊥ and that and coincide on [t t ] ⊆ [t ]. Therefore, the square above commutes, and by Lemma 3.2.16 again, and extend to a morphism ℎ : [ ] → , which in turn extends to a morphism : [ ] → , since by assumption B +2 ⊥ . For uniqueness, consider two lifts , : [ ] → of . By Lemma 3.2.16, they are equal if and only if their restriction , : [t ] → are equal. Since | [t ] = | [t ] = | [t ] , and since by assumption S +1 ⊥ , we have = , and thus = .

	[t ]	[ ]
	[t ]	.

Corollary 3.2.20. Let be an opetopic set such that S , +1 ⊥ . Then S ≥ ⊥ if and only if B ≥ +2 ⊥ . Proposition 3.2.21. Let ∈ N, and ∈ O +2 . Then the inclusion [t ] ↩→ [ ] is a relative S +1 -cell complex. P . We show that the morphism [t ] ↩→ [ ] is a composite of pushouts of elements of S +1 . If is degenerate, say = I for some ∈ O , then [t ] = [Y ] = [ ] = [ ], so the result trivially holds. Assume that is not degenerate, let (0) def = [t ], and [ 1 ] • • •

  Corollary 3.2.22. Let ∈ N, and ∈ O +2 . Then the target map t → of is an S +1, +2 -local isomorphism.

	P	. In the square below
		[t ]	[t ]
		[ ]	[ ]

t t the map is an S +1 -local isomorphism by Proposition 3.2.21, and the horizontal maps are in S +1, +2 . The result follows by "2 out of 3". Corollary 3.2.23. Let ∈ O . (1) t t = s [] t : → I is in S +2 . (2) The morphisms s [] , t : → Y are S +1, +2 -local isomorphisms.

  in the essential image of if and only if * is in the essential image of 0 .

	P	. This is essentially [Web07, Prop. 4.22]. Point (2) is [BMW12, Prop.
	1.9], and the Segal condition is [Web07, theorem 4.10 (2)].

  • 1 -{℘ 1 [ ]}, and 1 , 1, ∈ O +1 . On the other hand, e [ ] = (e [ ] ) by de nition of [ ]

  4.1.2. Recall that a category C is cartesian closed if it has nite products and if (C, ×, 1) is a closed (symmetric) monoidal category [Lur17, 4.1.1.15]. Following [Lur17, 4.1.1.16], the universal property of {{ , }} × → can be checked at the level of homotopy categories. Following [Lur17, 4.2.1.32], (C, ×, 1) is enriched over itself if and only if it is cartesian closed.

  . Recall that for -2 ≤ ≤ ∞ a map in S is -connected if and only if all maps Δ are covers for ≤ + 1 [Lur09, 6.5.1.18]. The result follows from the fact that ∞-connected maps in S are invertible by Whitehead's theorem. Two arrows : → and : → of a category C are said to be orthogonal if the map , in S is invertible. We write this relation as ⊥ . Note that the generating data → C → can be an arbitrary diagram, indexed by a space or any category.

					-1 , .
	We thus have equivalences Δ	,		, Δ	∇ , in S → .
	De nition 4.1.15. Recall that a map : → in S is a cover (or an e ective
	epimorphism) if it induces a surjection 0 ( ) → 0 ( ) on connected compon-
	ents.			
	Lemma 4.1.16 (Whitehead completion). A map in S is invertible if and only if
	all its iterated diagonals Δ =	-1 ,	are covers.
	4.2. Orthogonality
	De nition 4.2.1. It says that for any commutative square : → as below, there exists a
	unique diagonal lift t → s making the triangles commute.
		s	s	s
		∃!		
		t	t	t
	4.2.2 (Orthogonal systems). Given a diagram subcategories of C → as follows: ⊥ def = { | ∀ ∈ im( ), ⊥ } and ⊥ def → C → we de ne (replete) full =
	{ | ∀ ∈ im( ), ⊥ }.			

P

  orthogonality ⊥

					Factorisation systems
		C is a cartesian	Enriched orthogonality	Enriched FS
		closed category	⇔ ∀ , ( × ) ⊥	(stable by product)
		C is a locally	Fiberwise orthogonality	Modality
		cartesian closed		⇔	⊥	(FS stable by
		category with 1	∀ base change	→	base change)
		C is a topos	Lex orthogonality	Lex modality/
			for	⊂ C → ,	lex localisation
			⊥ lex ⇔ lim	⊥	(FS stable by nite
			∀ nite diagram →	limits)
	T	1. Strength of orthogonality relations and of factorisation systems

  The space[ , ] is that of all squares between and , with or without lifts, while [t , s ] parametrises all squares with lifts. Altogether, this new lifting problem contains the old one (the right component of the pushout), but enforces existing lifts (left component) to be identi ed with the corresponding free lift (middle component). The primary observation is that this new square is nothing but the counit square Then, by adjointness, we see that the previous square has a (not necessarily unique) lift if and only if the identity square below has a lift, which is exactly ⊥ . Remark 5.1.2. In [Kel80, §10,11], Kelly uses the sum [t , s ] × t [ , ] × s instead of the pushout [t , s ] ×t [t ,s ]×s [ ,

	[ , ] × s	s
	[ , ] × t	t
	with the lifting problem	
	,	→ .
	,	,

[t , s ] × t [t ,s ]×s [ , ] × s s [ , ] × t t .

I think that such a general theory should exist, and should subsume globular operads as particular cases.

Je pense qu'une telle théorie générale devrait exister, récupérant les opérades globulaires comme cas particuliers.

CONTEXTUAL CATEGORIES AS MONOIDS IN COLLECTIONS

I would like to thank H. Gylterud for pointing this out to me recently.

The reader familiar with type theory will recognise that these two contexts are not the same up to renaming of variables.

Since locally presentable 1-categories are a particular case of locally presentable ∞-categories.

Recall that for any functor : → between small categories, * : → is the nerve functor of the nerve functor of [SGA72, Exp. I, Prop. 5.4(2)], and that any one of , ! , * being fully faithful implies the other two being so as well ([SGA72, Exp. I, Prop. 5.6]).

(5) for each Γ ∈ D +1 and : Γ → (Γ), an object * Γ together with a "connecting map" .Γ : * Γ → Γ; such that: (6) 1 is the unique object in D 0 (D 0 = {1}); (7) 1 is a terminal object of D; 1.4. AN EQUIVALENCE BETWEEN C-SORTED THEORIES AND C-CONTEXTUAL CATEGORIES 29

It is clearly not one (except when C = ∅) if our category Fin of nite sets is only essentially small. But this is not the only problem-a presheaf in Fin C has no "canonical parent".

Though we could reasonably object to the use of the word "category" in the name.

I thank N. Jeannerod for a lively discussion on the syntactic version of the proof of Proposition 1.4.35.

These involve the replacement of bound variables; they will not be very important for us.

In an enriched setting, "(co)limit(s)" will always mean weighted (co)limit(s), and if ever we confound conical (co)limits with the underlying ordinary (co)limits, it is because they coincide.

A model structure is uniquely determined by two of the three classes W, C, F.

MODELS OF C-CONTEXTUAL CATEGORIES

There are model categories that model the ∞-topos of spaces where weak equivalences are not stable under products ([Mal09, Sec. 5] contains a very nice combinatorial example), where this approach would not work.

We use the word asque in analogy with " abby sheaves" (as in[START_REF] Daniel C Isaksen | Flasque model structures for simplicial presheaves[END_REF]).

Has the right lifting property against every map in .

This co brancy plays a rôle in the rigidi cation of[START_REF] Badzioch | Algebraic theories in homotopy theory[END_REF] (and the multisorted case in[START_REF] Bergner | Rigidi cation of algebras over multi-sorted theories[END_REF]), and this was one of the motivations for de ning the -asque model structure.

I thank P. LeFanu Lumsdaine for pointing out that the direct proof works.

A natural transformation is cartesian if all its naturality squares are cartesian.

A monad on is cartesian if it is a monoid in [ , ] cart .

Recall that this follows from van-Kampen-ness of pushouts of monomorphisms in a topos.

Recall that an ( + 1)-opetope is precisely a pasting diagram of -opetopes.

Note that in Eq. (3.3.3), the presheaves [ ] and [ ] are considered in O -, , but the truncations are left implicit.

OPETOPIC THEORIES

If > , then OAlg , = OAlg , .

We will diverge from usual terminology by considering cocones instead of cones, and contravariant presheaves instead of covariant presheaves.

Even when restricted to the particular case of locally presentable 1-categories, the de nition of pre-modulator and the results of Chapter 5 seem (to the best of my knowledge) to be new.

In a 1-category, all iterated diagonals Δ and codiagonals ∇ are isomorphisms for ≥

See [AL18, §3],[START_REF] Haugseng | On (co)ends in ∞-categories[END_REF] for a treatment of coends.

Recall the projective global model structure on Sp from 2.2.5. Proposition 3.5.5 [START_REF] Roy | A model structure on internal categories in simplicial sets[END_REF]Cor. 4.2], [CH16, Prop. 5.2]). Let ˜ proj and ˜ proj be the images under ˜ of the sets of generating projective co brations and trivial co brations. Then ˜ sends pushouts of maps in ˜ proj (respectively, ˜ proj ) to projective co brations (respectively, trivial co brations).

P

. This follows from Lemma 3.5.4, since both ˜ and ˜ preserve tensors, since the maps in proj and proj are exactly of the form ⊗ ⊗ for ∈ , and since the sketch is "fully faithful". Proposition 3.5.6 ([Hor15, Thm 5.1][CH16, Prop. 5.3]). The right-transferred model structure along ˜ : s ↩→ Sp proj exists and is combinatorial. Moreover, the right adjoint ˜ preserves co brations.

P

. The rst claim follows from Propositions 2.2.8 and 3.5.5. For the second, note that ˜ preserves ltered colimits and sends pushouts of generating co brations to co brations, thus it preserves relative ˜ proj -cell complexes. Since any functor preserves retracts, ˜ preserves all co brations. Proposition 3.5.7 ([CH16, Prop. 5.5]). Let → be a co bration in Sp proj . If the unit → ˜ ˜ is an isomorphism, then so is the unit → ˜ ˜ .

P

. Since isomorphisms are closed under retracts and colimits (in the arrow category), it su ces to prove the case when → is a pushout of a generating projective co bration, which is of the form below.

⊗

˜ ˜ ⊗ ˜ ˜ By Lemma 3.5.4, the outer square is cocartesian, thus so is the right square.

Proposition 3.5.8 ([CH16, Prop. 5.7]). Let ( , ) be a nite connected "fully faithful" projective sketch. Then the adjunction ˜ : s Sp proj : ˜ is a Quillen equivalence.

P

. By Proposition 2.2.9, it is necessary and su cient that for every co brant in Sp proj , the unit → ˜ ˜ be a global weak equivalence. But ˜ and ˜ preserve tensors, hence by Proposition 3.5.7, → ˜ ˜ is an isomorphism. 

(Λ-spaces). Recall from

P

. We treat the cases = 1 and > 1 separately. When = 1, then = and [ ] = [ ], which is representable. When > 1, is a tree of ( -1)-opetopes. We proceed by induction. In the base case, = I for some ( -2)-opetope , and [ ] = [ ], which is representable. In the induction step, we use Lemma 3.2.17 and the fact that a pushout (or any connected colimit) of connected categories is a connected category. 

P

. By 3.5.9 and Lemma 3.5.10, OAlg is the category of models of a nite connected "fully faithful" projective sketch on Λ. Applying Proposition 3.5.8, the right-transferred model structure on sOAlg along ˜ exists, and ˜ ˜ is a Quillen equivalence. Since ℎ ! ℎ * is a Quillen adjunction between projective model structures, the diagram is a triangle of Quillen adjunctions. Finally, since ℎ : O → Λ is surjective on objects (Proposition 3.4.14), ℎ * preserves and re ects projective brations and global weak equivalences, so the model structure on OAlg is also right-transferred along ˜ .

Remark 3.5.12. The adjunction h ˜ is not a Quillen equivalence. Were it so, then by Proposition 2.2.9, the unit on every representable O ↩→ SpO would be a global weak equivalence, but it is relatively easy to show that this is not the case.

De nition 3.5.13. The model structure for homotopy-coherent ( , )-opetopic algebras is the left Bous eld localisation of the projective model structure SpΛ proj at the set Σ of algebraic spine inclusions (De nition 3.3.33). We write it as SpΛ proj .

De nition 3.5.14. The local model structure on sOAlg is the left Bous eld localisation of the right-transferred model structure of Proposition 3.5.11 at the set L ˜ (Σ) that is the image of Σ under the left derived functor of ˜ : SpΛ proj → sOAlg. We write it as sOAlg . T 3.5.15 (Rigidi cation of homotopy-coherent opetopic algebras). The adjunction ˜ : SpΛ proj → ←↪ sOAlg : ˜ is a Quillen equivalence.

P

. This follows from the Quillen equivalence of Proposition 3.5.11 and a general fact about left Bous eld localisations (2.2.6). 

P

. By duality, it is enough to prove the statements for the left class L.

(1) For any , we have , = , , . By the absorption properties of Lemma 4.1.6, this map is invertible when , is so. Since L = ⊥ R, this proves the rst assertion.

(3) Let be a diagram in L. We have colim , = lim , (see 4.1.13). For any ∈ R, each , is invertible, and so is their limit. Thus colim is in L.

(5) For any composable maps : → and : → in C, the obvious left-hand square below in C → is cocartesian (and cartesian). For any ℎ ∈ C → , the right-hand square is thus cartesian in S → . If , ∈ L and ℎ ∈ R, then , ℎ is a limit of equivalences, thus is an equivalence.

De nition 4.2.4. Two arrows : → and : → of a category C are said to be weakly orthogonal if the map , in S is a cover. We write this relation as .

It says that for any commutative square : → as below, there exists a (non-unique) diagonal lift t → s making the triangles commute. Lemma 4.2.7. Let (A, B) be a weak orthogonal system. Then A is stable by discrete sums (coproducts indexed by a set), cobase change (pushout along an arbitrary map) and trans nite composition.

P

. Stability under discrete sums and cobase change follows since covers in S are stable under discrete products and base change. Trans nite composition follows from an argument similar to that of [Lur11, Prop. 1.2.9]. Remark 4.2.8. The previous statement about discrete sums cannot, a priori, be extended to more general sums, namely colimits indexed by a space. Let (A, B) be a weak orthogonal system, be a map in B, and : → A a family of maps in A indexed by a space . Although each map , is a cover, the product ∈ , is generally not a cover, unless is a set. As a counter-example, consider the weak orthogonal system on S generated by the map ∅ → 1. A map is in the right class if and only if it is a cover. The sum (∅ → 1) indexed by any space is the map ∅ → , however not all covers are weakly right orthogonal to ∅ → 1 . A weak factorisation system is accessible if its underlying weak orthogonal system is accessible. 4.3.4 (Modalities and lex modalities). A factorisation system (L, R) is called stable, or a modality, if the factorisation is stable under base change (pullback along arbitrary maps) [START_REF] Anel | A generalized Blakers-Massey theorem[END_REF][START_REF] Rijke | Modalities in homotopy type theory[END_REF]. It is easily seen that this is equivalent to asking that both classes L and R be stable under base change. Since the right class R is always stable under base change, the condition is in fact only on L.

A modality (L, R) is left-exact (lex for short) if the factorisation is stable under nite limits in C → . Once again, since the right class R is always stable under limits, the condition is in fact only on the class L.

A number of characterizations of lex modalities is given in [RSS20, Thm 3.1], but not the one we have just used as a de nition. We will show that our de nition is equivalent to [RSS20, Thm 3.1(x)]. Recall that a morphism : → in C → is a cartesian map if the corresponding square in C is cartesian.

Proposition 4.3.5. Let (L, R) be a factorisation system on C.

(1) (L, R) is a modality if and only if the re ection : C → → R preserves cartesian maps.

(2) (L, R) is a lex modality if and only if the re ection : C → → R is left-exact. In particular, a lex modality is a modality.

P

.

(1) Let : → and : → be two maps in C and let : → be a cartesian map between them. The factorisation of and induces a diagram

Then, the factorisation system is a modality if and only if for every such : → , both ( ) and ( ) are cartesian squares in C. But by the cancellation property of cartesian squares, this is equivalent to ( ) being cartesian only.

(2) Let :

→ be a nite diagram in C → and = lim : → . We have the canonical diagram below. lim lim lim

The factorisation system is left-exact if and only the canonical map → lim is an equivalence. But this is the same as (lim ) lim ( ).

For the last statement, let : → and : → be two maps in C and :

→ be a morphism in C → . Remark that is cartesian if and only if the When C has nite limits and (L, R) is a modality, then the orthogonal system (L 3/2 , R 2/3 ) from 4.4.1 is a re ective factorisation system. In e ect, the (L 3/2 , R 2/3 )factorisation → → of a map → is given by the diagram

The maps → and → are in L by de nition of . The map → is in L because L is stable by base change. Hence, the map → is in L 3/2 . The map → is in R 2/3 since it is a base change of the map → in R 1 . The existence of this factorisation also implies that for any , we have ∈ R 2/3 if and only if is a base change of some ∈ R → 1 . Recall that a re ective localisation : C → ←↪ D is semi-left-exact in the sense of [CHK85, Thm 4.3] or locally cartesian in the sense of [START_REF] Gepner | Univalence in locally cartesian closed ∞-categories[END_REF] if preserves base change along maps in D (viewed as maps in C). The following result also appears as [CR20, Prop. 5.1] in the internal homotopy type theory of a topos, however it holds more generally. .

Both squares are cartesian by Proposition 4.3.5(1). Since the maps → 1 and → 1 are in R by de nition of , the objects and are equivalent to and respectively. Since is idempotent, the square (★) is the image of the square (★) under . Hence preserves such cartesian squares.

Corollary 4.4.6 (cf. [GK17, Prop. 1.4], [Lur09, 6.1.3.15]). Under the hypotheses of Proposition 4.4.5, if in addition C is cocomplete, nitely complete, and has universal colimits, then the same is true of R 1 .

P

. Colimits in R 1 are calculated by applying to the colimit calculated in C (of the same diagram). Finite limits in R 1 are simply those calculated in C.

For universality of colimits, let • : → R 1 be a diagram, let be its colimit in C, and let → be a map in R 1 . By pullback, we obtain a diagram • : → R 1 Remark 5.2.13. A careful reading of the proof of Theorem 5.2.11 shows that it depends on less than the hypothesis that → C → be fully faithful. The proof that ↓ → ↓ is co nal needs only that, for any in , the canonical map → 1 t is in . The proof that ℎ : ↓ ↓ → ↓s is co nal needs only that

Proposition 5.2.14 (Pre-modulator envelope). Any diagram → C → can be completed into a pre-modulator generating the same factorisation.

P

. Let → C → be a small diagram. Because is small, we can nd a small category of generators of C containing the codomains of all maps in . We consider the full subcategory ⊂ C → generated by the image of and the identity maps of . Then is a pre-modulator. We need to show that ⊥ = ( ) ⊥ . The de nition of ( ) ⊥ depends only on the objects in the image of and not the morphisms between them. The objects of are those in the image of and the identity maps of . We deduce that ( ) ⊥ = ⊥ ∩ ⊥ , and we conclude since ⊥ is the whole of C → . Remark 5.2.15. The -constructions associated to and are a priori di erent, but they converge to the same endofunctor.

Modulators and modalities

In this section, we use Theorem 5.2.11 to give su cient conditions on for the factorisation system (L , R ) to be a modality. Throughout this section, we

x a locally presentable category C with universal colimits (equivalently, locally presentable and locally cartesian closed).

Notation 5.3.1. Recall that for any , ∈ C → , a map → is cartesian if it is a cartesian square in C (it is a cartesian arrow of the bration t : C → → C).

De nition 5.3.2 (Modulator). Let be generators for C. We say that a premodulator → C → is a modulator if (5) the codomain functor t :

→ is a bration. Namely, for any in , any in and any map → t , the base change : s × t → is in the (essential) image of .

Lemma 5.3.3. Given a cartesian square in C → such that the map → is cartesian, then the map → is also cartesian.

P

. By the cancellation property of cartesian squares.

Lemma 5.3.4. Let and be small categories, : → an op bration, and : → C a functor with values in a cocomplete category. The left Kan extension of along is given pointwise by the colimits

where ( ) is the bre of over .

Lex modulators and lex modalities

We now turn to the problem of generating left-exact localisations, namely lex modalities (see Proposition 4.4.7). We stay in the context of a locally presentable category C with universal colimits.

De nition 5.4.1 (Lex modulator). Let ⊂ C be a generating small category. We say that a modulator → C → is left-exact, or lex, if (6) for all in , the bre ( ) of t :

→ is a co-ltered category.

We say that a pre-modulator → C → is stable under nite limits if (6 + ) the image of → C → is stable under nite limits in C → . Condition (6 + ) implies that the generating category must have nite limits. A pre-modulator stable under nite limits is a lex modulator. That is, together with (3) and ( 4), (6 + ) implies both conditions (5) and (6).

T 5.4.2 (Lex plus-construction). Let E be an -topos ( ≤ ∞) and let → E → be a lex modulator. Then:

(1) the functor ↦ → + is left-exact as an endofunctor of E → , (2) the factorisation system generated by is a lex modality, and (3) A map is a relative sheaf (namely, in R) if and only if + .

P

. We rst prove the theorem for topoi (∞-topoi). (1) We rst consider the case E = P( ) of a presheaf topos. Let be a map in E, then for each object of , we have a map ( ) in S. The plus-construction is left-exact if and only if all functors ↦ → + ( ) are left-exact. Since t + = t and the functor t : E → → E is always left exact, the condition reduces to proving that all functors ↦ → + ( ) ( ) are left-exact. Let ( ) be the bre at of the target functor t : → . By Lemma 5.2.4 and Remark 5.2.5, we have

. By assumption, ( ) op is ltered, thus the functor ↦ → + ( ) ( ) is left-exact.

Any topos E is a left-exact localisation : P( ) → ←↪ E : , for some small subcategory ⊂ E of generators. Both functors and are left-exact. For a map in E, the plus-construction is de ned by a colimit indexed by ↓ . The fully faithful functor : E ↩→ P( ) induces a fully faithful functor : E → ↩→ P( ) → and the category ↓ computed in E → or P( ) → is the same. Hence, the plus-construction of E is related to that of P( ) by the formula + = ( ) + .

Since the three functors , and the plus-construction of P( ) are left-exact (since is also a lex modulator in P( )), so is the plus-construction in E.

(2) Since ltered colimits of left-exact functors are still left-exact, the trans nite iterations (-) + are also left-exact. We deduce that the re ector is left-exact. Then the result follows from Proposition 4.3.5.

(3) This is the nal claim of Theorem 5.2.11.

This nishes the proof for ∞-topoi. The strategy is similar for -topoi. The presheaf category P( ) = [ op , S] needs only to be replaced by the category P ( ) = op , S ≤ -1 , where S ≤ -1 is the category of ( -1)-groupoids.

Lemma 5.4.3. Given a cartesian map → in C → , the obvious square 1 t 1 t is cartesian.

P

. A straightforward computation.

Proposition 5.4.4. Let * : E → be an accessible left-exact localisation of a topos E. Then there exists a lex modulator presenting * .

P .

Let ⊂ E → be the subcategory of arrows inverted by * . Since * is a left-exact localisation, is stable by nite limits in E → . By assumption, there exists a regular cardinal such that ↩→ E → is an accessible subcategory. Let ( ) ⊂ be subcategory of -compact objects, choosing such that is -accessible, ( ) is stable by nite limits and such that any object of is -compact. For such a , we set def = ( ) ∩ P( ) ↓ . Let us show that it is a lex modulator with respect to the generators . First, contains all equivalences between objects of . Thus the stability by nite limits of and Lemma 5.4.3 implies that is a modulator. Then, for any in , we need to prove that ( ) is co-ltered. Let : → ( ) be a nite diagram. Its limit in has codomain lim = | | (where | | = colim 1), which need not be an object of , since we have not assumed to be stable by nite limits. But the base change of this limit along the diagonal → | | is an element in ( ), giving a cone over .

5.4.5 (Lex localisation of truncated objects). We give a condition under which the plus-construction associated to a lex modulator converges in ( + 2) steps on -truncated objects.

De nition 5.4.6 (Mono-saturation). Let E be an -topos ( ≤ ∞) and ⊂ E a generating category. Let ↩→ E → be a lex modulator and let (L, R) be the corresponding factorisation system. We say that is mono-saturated if (7) any monomorphism in L with codomain in is in . For example, any Grothendieck topology on P( ) is mono-saturated. Any -topos is well-powered, so a lex modulator can always be completed to a mono-saturated lex modulator with the same lex modality.

The following lemma is the primary reason for Proposition 5.4.11.

Lemma 5.4.7. Let E be an -topos ( ≤ ∞) and ↩→ E → a mono-saturated lex modulator. Let (L, R) be the factorisation system generated by . Then, for any monomorphism in L, + is invertible. More generally, if is in L and is -truncated, then + is ( -1)-truncated.

P

. Recall that a map : → in C is a monomorphism if and only if × 1 in C → . Because the plus-construction preserves codomains and is left-exact, it preserves monomorphisms. Hence, in order to prove that + is invertible it is enough to prove that it has a section.

Let be the generating category for C and let be in . Since is monosaturated, any base change of along : → t is in . Because colimits Proposition 5.4.11 (Shea cation of truncated objects). Let E be an -topos ( ≤ ∞) and ↩→ E → a mono-saturated lex modulator. Then, if is an -truncated map ( ≤ ), we have + +2 = ( ).

P

. By Lemma 5.4.10, + +2 = ( + +2 ) ( + +2 ) = ( ) ( ) + +2 . Then, by Lemma 5.4.7, ( ) + +2 is an equivalence and + +2 = ( ).

Remark 5.4.12. Notice that we do not need → C → to consist only of monomorphisms (although it needs to be mono-saturated). Proposition 5.4.11 works for all accessible left-exact localisations, topological or not. However, the fact that the modulator is lex is crucial.

T 1. Summary of the conditions for the plus-construction → C↓ Condition Property

Premodulator

(1)-(4) t :

: is a re ective localisation

The plus-and -constructions coincide (Theorem 5.2.11).

Modulator

(1)-( 5)

The plus-construction generates modalities (Theorem 5.3.6).

Lex modulator (1)-(6)

↩→ C↓ is a sub-bration and bres of t :

→ are co-ltered

The plus-construction is left-exact (Theorem 5.4.2).

Monosaturated lex modulator

(1)-( 7) contains all the monos in L whose codomain is in The plus-construction converges in ( + 2) steps on -truncated objects (Proposition 5.4.11).