
HAL Id: tel-03369169
https://theses.hal.science/tel-03369169

Submitted on 7 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unifying experimental heterogeneity in a geometrical
synaptic plasticity model

Yuri Elias Rodrigues

To cite this version:
Yuri Elias Rodrigues. Unifying experimental heterogeneity in a geometrical synaptic plasticity model.
Molecular biology. Université Côte d’Azur, 2021. English. �NNT : 2021COAZ6013�. �tel-03369169�

https://theses.hal.science/tel-03369169
https://hal.archives-ouvertes.fr


THÈSE DE DOCTORAT

Unifying experimental heterogeneity in a geometrical

synaptic plasticity model

Unification de l’hétérogénéité expérimentale par un
modèle géométrique de la plasticité synaptique

Yuri ELIAS RODRIGUES

Inria Sophia Antipolis-Méditerranée

Institut de Pharmacologie Moléculaire et Cellulaire (IPMC)

Présentée en vue de l’obtention
du grade de docteur en
Interactions moléculaires et cellulaires

d’Université Côte d’Azur

Dirigée par: Hélène MARIE

Co-dirigée par: Romain VELTZ

Soutenue le: 30 Juin 2021

Devant le jury, composé de:

Devant le jury, composé de:
Dr. Olivier FAUGERAS,

Directeur de Recherche, Inria
Dr. Suhita NADKARNI,

Maîtres de Conférence/Doyenne Associé, IISER
Dr. Nicolas BRUNEL,

Professeur, Duke University

Dr. Cian O’DONNELL,

Maîtres de Conférence, University of Bristol
Dr. Hélène MARIE,

Directeur de Recherche, CNRS/IPMC/UCA
Dr. Romain VELTZ

Chercheur, Inria





Unification de I’hétérogénéité expérimentale par unmodèle géomé-

trique de la plasticité synaptique

Jury :

Président

Dr. Olivier FAUGERAS, Directeur de Recherche, Inria

Rapporteurs

Dr. Suhita NADKARNI, Maîtres de Conférence/Doyenne Associé, IISER

Dr. Nicolas BRUNEL, Professeur, Duke University

Examinateur

Dr. Cian O’DONNEL, Maîtres de Conférence, University of Bristol

Directeurs de thèse

Dr. Hélène MARIE, Directeur de Recherche, CNRS/IPMC/UCA

Dr. Romain VELTZ, Chercheur, Inria

ii



Abstract

How learning occurs has been a long-standing question in neuroscience. Since

the first demonstration that the strength wiring up neurons can be persistent, the

study of neuronal connections, the synapses, became a path to understanding

memory formation. In the 70s, the first electrophysiology methods to modify the

synaptic strength were discovered, leading to the evidence of how synapses sub-

jected to stimulation are plastic. Such a form of synaptic plasticity was predicted

two decades before by a theoretical synaptic rule coined by the neuropsychologist

Donald Hebb. The possibility that a devised rule could explain memory motivated

the birth of theories providing new questions and mechanistic representations of

the brain’s functioning.

The diversification of techniques allowed researchers to investigate in depth

the nature of synaptic rules. However, the heterogeneity of experimental condi-

tions adopted by different laboratories implicated that the same stimulation pat-

tern could produce different synaptic modifications. The observed heterogeneity

in the methods and outcomes have hindered the formalization of a coherent view

on how synaptic plasticity works. To fill this gap, this thesis developed a stochas-

tic computational model of the rat CA3-CA1 glutamatergic synapse to explain and

gain insights into how experimental conditions affect plasticity outcomes. I un-

covered a new plasticity rule that accounts for methodological differences such

as developmental aspects, extracellular medium and temperature influences on

synaptic plasticity outcome. The model relies on an expanded version of the

previous methods to predict synaptic plasticity, modified to handle combined dy-

namics. That is achieved by introducing a geometrical readout to interpret the

dynamics of two calcium-binding enzymes controlling plasticity induction. In this

way, the model covers classical and recent stimulation paradigms (e.g. STDP,

FDP) using a single rule parameter set. Finally, the model’s robustness is tested

for in vivo-like spike time irregularity showing how different protocols converge
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to the same outcome when regularity is altered. This model allows one to obtain

testable predictions since it links the simulated variables to the specificity needed

to describe a plasticity protocol. Although the model is specific to a single CA3-

CA1 synapse, the study’s insights may be generalized to other types, enabling a

deeper understanding of the rules of synaptic plasticity and learning.

Keywords: computational neuroscience, synaptic plasticity, learning rules, mem-

ory, hippocampus, enzymes modelling, experimental conditions
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Résumé

La façon dont l’apprentissage se produit est une question de longue date à la-

quelle la recherche en neuroscience tente de répondre. Depuis la première dé-

monstration que la force de câblage des neurones peut être persistante, l’étude

des connexions neuronales, les synapses, est devenue une voie de compréhen-

sion pour la formation de la mémoire. Dans les années 70, les premières mé-

thodes d’électrophysiologie pour modifier la force synaptique a été découverte,

menant à la preuve que les synapses stimulées ont des propriétés plastiques. Une

telle forme de plasticité synaptique avait été prédite deux décennies auparavant

par une règle synaptique théorique inventée par le neuropsychologue Donald

Hebb. La possibilité qu’une règle élaborée puisse expliquer la mémoire a motivé

la naissance de théories apportant de nouvelles questions et des représentations

mécanistiques du fonctionnement du cerveau.

La diversification des techniques expérimentales a permis aux chercheurs d’en-

quêter en profondeur sur la nature des règles synaptiques. Cependant, l’hétéro-

généité des conditions expérimentales adoptées par différents laboratoires impli-

quait que le même schéma de stimulation pourrait produire différentes modifica-

tions synaptiques. L’hétérogénéité observée dans les méthodes et les résultats

ont entravé la formalisation d’une vision cohérente du fonctionnement de la plas-

ticité synaptique. Pour combler cette lacune, pendant cette thèse, j’ai développé

un modèle stochastique neurocomputationel de la synapse CA3-CA1 glutamater-

gique de rat pour expliquer et obtenir des informations sur la manière dont les

conditions expérimentales affectent les résultats de cette plasticité. J’ai découvert

une nouvelle règle de plasticité qui tient compte des différencesméthodologiques

telles que les aspects développementaux, l’influence du milieu extracellulaire et

de la température sur l’issue de la plasticité synaptique. Lemodèle repose sur une

version étendue des méthodes précédentes pour prédire la plasticité synaptique,

modifiée pour gérer la dynamique combinée. Cela est possible en introduisant
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une lecture géométrique afin d’interpréter la dynamique de deux enzymes de

liaison au calcium contrôlant l’induction de la plasticité. De cette façon, le mo-

dèle couvre les paradigmes de stimulation classiques et récents (par exemple

STDP, FDP, BTSP) en utilisant un seul jeu de paramètres. Enfin, la robustesse

du modèle est testée dans un contexte mimant l’irrégularité des décharges de

potentiels d’actions in vivo montrant comment différents protocoles convergent

vers la même issue de plasticité synaptique lorsque la régularité est altérée. Ce

modèle permet d’obtenir des prédictions testables de façon expérimentale car il

relie les variables simulées à la spécificité requise pour décrire un protocole de

plasticité. Bien que le modèle soit spécifique à la synapse CA3-CA1, les résultats

de cette étude peuvent être généralisés à d’autres types de synapses, permet-

tant une meilleure compréhension des règles de la plasticité synaptique et de

l’apprentissage.

Mots clés : neurosciences computationnelles, plasticité synaptique, règles d’ap-

prentissage, mémoire, hippocampe, modélisation des enzymes, conditions expé-

rimentales
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Chapter 1

Introduction

We live in a world of constant change, in which the environment forces organisms

to adapt. Such adaptability is achieved through learning and memory, which are

properties beyond simply sensing the environment. Learning is rooted to experi-

ence and can modify how information is processed, and therefore, how thoughts,

actions and behaviours occur. The learning property is so fundamental that it

is even observed in brainless fungi (Nakagaki et al. 2000), gifted to machines

(Friedman et al. 2001) and imprinted in materials (Tian et al. 2017). For brained

animals, neurons can learn through a process called plasticity, which is currently

understood as the induction of persistent changes in the neuronal function, con-

stitution, and interactions with other neurons. Such long-lasting changes (Abra-

ham 2003) are triggered by the activity of brain cells that can connect in various

ways. A perspective on this diversity is represented by the number of possible

connections among the neurons of a worm (c. elegans) which can host a large

number of configurations stemming from only 9 of its 302 neurons dedicated to

movement (Rakowski and Karbowski 2017). Furthermore, each neuron connec-

tion has a different strength which can change under sufficient stimulation. The

hotspot of these changes is called the synapse, the locus where neurons "touch"

each others (συναψιζ, syn συν, ensemble and haptein αψιζ, touching - Sherrington

1910). Owning to understand learning, neuroscientists have investigated the con-

ditions ruling synaptic efficacy. However, experiments have shown that the same

activity patterns do not always produce the same plasticity outcome. This thesis

presents a new plasticity rule to account for the critical conditions controlling how

neurons wire up together. The synaptic rule proposed in this thesis considers bio-

physical conditions to explain the diversity of plasticity outcomes. Also, it builds

over the original ideas of John Lisman and other names of neuroscience which

the historical contributions to plasticity are drafted next.
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2 CHAPTER 1. INTRODUCTION

1.1 From Cajal to Lisman

Historically, theoretical and experimental works have alternated for the primacy

of the progress of synaptic plasticity understanding as shown in Figure 1.1. A

mini-historical review can start by referring to Ramón y Cajal 1894 and his de-

scription of neuronal structures using the Golgi staining process. This unveiled

the tiny neuronal structures called dendritic spikes (espinas) sprouting from den-

drites with unprecedented details. At the beginning of the twentieth century, the

mathematical formalization of neuronal theories was in its infancy. For instance,

the McCulloch–Pitts model (McCulloch and Pitts 1943) laid the concepts still in

use in artificial neuronal networks nowadays. Soon after, the first plasticity rule

describing how a source neuron takes part in changing the excitability of its down-

stream neurons was stated in Hebb 1949. Hebb’s rule precedes the first electro-

physiology methods to induce plasticity in the hippocampus developed in the

70s (Bliss and Lømo 1973; Lynch et al. 1977). Simultaneously to the experimen-

tal confirmation of plasticity induction in 1966-77, Sejnowski 1977 anticipated

the "bidirectional learning rules" based on the precise spiking times of connected

neurons, currently known as spike time-dependent plasticity (STDP). Experimen-

tal evidence for this rule would be found years after by Markram and Sakmann

1995, and later by Bi and Poo 1998. The stages of the STDP rule understanding

can be seen from different levels of description and usage, 1) an abstract imple-

mentation level brought by Sejnowski 1977, without mechanistic understanding

2) an experimental confirmation by Markram and Sakmann 1995 and a more pop-

ular definition given by Bi and Poo 1998, and 3) a current widespread use of STDP

in neuromorphic computers and bio-inspired materials (Prezioso et al. 2018).

The different levels of implementation of the BCM (Bienenstock, Cooper, and

Munro) rule (Bienenstock et al. 1982) shared a similar path to the STDP rule. The

BCM rule is based on the spike frequency (instead of spike times) and applied

to visual cortex data (Wiesel and Hubel 1963), and such frequency-dependent

rule was initially uncovered by Dunwiddie and Lynch 1978. Nowadays, the BCM

and STDP rules are taken as canonical in bio-inspired applications without proper

consideration of their physiological relevance (Tigaret et al. 2016). The Bienen-

stock et al. 1982 rule uses a threshold to separate opposite types of plasticity.

The idea of threshold in biology can be traced back to the first neuronal model

McCulloch-Pitts model. This thesis will expand the threshold concept to predict

plasticity.

With the possibility of visualizing the calcium dynamics inside the neurons

thanks to the green fluorescent protein (GFP) discovery, more specifically cal-
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Ramon y Cajal
characterized the brain structures,
including dendritic spines
(thorns, espinas) stating its
importance for learning.

1906

Charles Scott Sherrington
described the synapse in muscular junctions 
as the functional gap between neurons.

1913 1949

Donald O. Hebb
stated the first synaptic rule hypothesizing on 
a [...]"growth process or metabolic change" 
taking part in modifying the synaptic efficacy.

1973

Timothy Bliss and  Terje Lømo, developed
first electrophysiology method to induce 
Hebb-like potentiation in the hippocampus.

1977

Garry Lynch and Thomas Duwiddie showed
how long-term potentiation and depression
can be induced in a frequency-dependent
way.

1982

Elie L. Bienenstock, Leon N Cooper and
Paul W. Munro, devised a learning rule 
based on previous plasticity experiments to 
explain the development of orientation
selectivity in the visual cortex. 
Anticipating the sliding threshold
demonstrated in different brain regions.

1977

Terrence Sejnowski developed the first spike 
time-dependent bidirectional model for the
cerebellum, antecipating the experimental 
evidence for the same phenomenon in 
other brain regions.

Pioneers of
brain structure
and function
Ivan Pavlov
Lorente de Nó
Warren McCulloch
Brenda Milner
(still working)

The expansion of 
ephys. repertoire
Bernard Katz
Martin Chalfie
Erwin Neher
Bert Sakmann
Alan Hodgkin
Andrew Huxley

Caricature
neuron models
McCulloch-Pitts model 

Dawn of the
computational era
Hogdin-Huxley model
Rosenblatt's Perceptron
Hopfield network

Visualizing the
neuronal chaos
Martin Chalfie
Rafael Yuste
Henry Markran
Zhuo-Hua Pan (潘卓华)

1989 1998

John E. Lisman proposes a model to illustrate
his calcium amplitude hypothesis, in which 
the plasticity bidirectionality is controlled 
by two-thresholds over either high or moderate 
calcium levels. His original work also suggests 
an enzymatic maintenance role for the kinase
and phosphatase interactions.

Bi Guo-Qiang (毕国强) and Mu-ming Poo (蒲慕明)
using cultured hippocampal neurons helped to
popularize the spike time-dependent plasticity
which currently is largely applied in bioinspired
applications.

Figure 1.1: A short roadmap of plasticity experiment and theory hallmarks. A short roadmap of plasticity experiment and the-

ory hallmarks through the 20th century. Note that the only woman cited was Brenda Milner, who has continuously contributed to the

understanding of memory (even now at 102 years old). Women’s contributions to neuroscience are not widely available or mentioned;

fortunately, a project to highlight these has been pushed forward in a timely and needed rescue of the scientific heritage.

cium indicators with a GFP domain, plasticity rules branched and diversified. For

instance, parallel to the synaptic rules based on neurons spiking times, Lisman

1989 proposed a newmodel hypothesizing how calcium-bindingmolecules induce

and maintain plasticity at the molecular level motivated by precursor studies on

protein phosphorylation pathways from Nestler and Greengard 1983. This thesis

will also expand such original idea.

Despite the advances brought by the plasticity models, the growing number

of plasticity experiments has caused few theories to expire since they were not

sufficiently general or had central assumptions proved false. As a benefit, these

improved the synergy between theory and experimental investigation, motivat-

ing new questions on how plasticity occurs. However, mostly overlooking experi-

mental heterogeneity. The problem addressed in this thesis is how to incorporate

http://wineurope.eu/


4 CHAPTER 1. INTRODUCTION

the experimental diversity in a unified theory capable of providing testable pre-

dictions.

1.2 Reductionist representations of synaptic mechanisms

Synaptic models aiming to elucidate plasticity induction have been built on sim-

plified representations of the biological entities and interactions in different gran-

ularities (Brette 2016; Marr 1982). Similarly, non-mechanistic approaches (e.g.

deep learning) can make accurate predictions. However, they do not attend a bi-

ological description level (e.g. components of the synaptic nano/microdomains,

calcium sources) to explain the plasticity mechanisms (Kievit et al. 2011). In this

thesis, representations of synaptic mechanisms, or reduction of real biological

entities Kievit et al. 2011), will be used to gain insights on the process of plas-

ticity induction. Unavoidably, the simulations of mechanisms activating neurons

are described only partially by models. For example, the equations describing

ion channels kinetics and their collective behaviour simplify the different states,

localizations and compositions of these units. An intermediate approach is to

model individual ion channel contributions to the neuron electrophysiology of us-

ing a stochastic approach. Here, synaptic mechanisms are implemented using a

partially deterministic Markov process (see Annexe 1). The postsynaptic mech-

anisms are modelled with more biophysical detail, including different stochastic

sources (Ribrault et al. 2011), and signals originated in the soma are modelled

phenomenologically.

1.3 Unified theories of plasticity

The growing experimental evidence solidified that precise temporal spike pat-

terns alone are insufficient to explain plasticity. The characterization of mecha-

nisms propelled the emergence of unified theories for synaptic plasticity. These

theories expanded the mechanistic understanding of synaptic plasticity, gaining

further insight into the induction process by encompassing multiple plasticity-

relatedmodifiers: spikes, calcium, neuronmorphology, calcium-bindingmolecules,

temperature, extracellular and extracellular ion concentration, astrocytes, etc.

Such a growing number of interactions poses an analysis challenge since the in-

terpretation of multiple dynamics did not advance simultaneously with the higher

number of mechanisms included. This thesis will address such methodological



1.4. RESEARCH PROBLEM 5

shortcomings by proposing a novel prediction strategy more suitable to multidi-

mensional simulations.

1.4 Research problem

It is hard tomimic nature. Laboratories tend to use their recipe variations (Tebaykin

et al. 2018) without justifications. For instance, several ex vivo studies in which

the brain slices are extracted and prepared for electrophysiology do not recreate

the neurons’ conditions. For example, non-physiological temperatures are used

since the first description of LTP induction (Bliss and Lømo 1973). The mentioned

problem is not only restricted to ex vivo experimentation. In vivo recordings are

also affected by the sampling process. Electrodes or optogenetic probes inserted

in living brains can cause inflammation or heat damage during stimulating (Misra

et al. 2013). These mixed experimental approaches can cause a reproducibility

problem, and as mentioned by Wittenberg et al. 2006, laboratory differences can

be a source of divergent plasticity outcomes even using a similar stimulation.

This thesis intends to provide a mechanistic explanation of how plas-
ticity outcomes, sometimes qualitatively conflicting and sampled from
different experimental conditions, are part of the same phenomenon.

The thesis is structured as follows: chapter 2 introduces plasticity-related terms;

chapter 3 discusses unified theories, their strategies and mechanisms; chapter 4

formalizes the gap in these unified theories and presents the conceptual approach

developed in the results; chapter 5 states the context in which this research was

done and how it led to the article containing the main results, methods and sup-

plemental results; chapter 6, adds additional results; and, chapter 7 discusses

the results and comments on future perspectives.
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Chapter 2

Synaptic plasticity and its
mechanisms

Synaptic plasticity regulates the transmission efficacy between pre and postsy-

naptic neurons. This process starts with a Ca2+ influx across the neuronal mem-

brane following the activation of postsynaptic contents such as receptors, ion

channels, enzymes, and vesicle-filled neurotransmitters. The activation of synap-

tic contents triggers structural changes, provoking the addition, removal or re-

modelling of structural proteins. Also, the synaptic content undergoes functional

changes, causing mechanisms to alter their biophysical properties, such as their

conductance (charge movement), permeability (ion flux) or molecular conforma-

tion. The combination of functional and structural changes may lead to a poten-

tiated or depressed synaptic efficacy. However, despite the accumulated knowl-

edge about synaptic plasticity, the phenomenon is not fully understood due to

the heterogeneity of electrophysiological approaches (Tebaykin et al. 2018) and

the lack of biophysical characterization of synaptic contents (Heil et al. 2018).

This chapter sums up plasticity forms, synaptic components, mechanisms, the

synaptic sensibility to extracellular ion concentrations and my main hypothesis

concerning plasticity induction.

2.1 The timescales of plasticity

Pre and postsynaptic mechanisms such as ion channels, receptors, enzymes are

regularly activated, adapt at different timescales according to their kinetics and

available resources. Thanks to the interaction of these mechanisms, neurons can

communicate and induce plasticity. Figure 2.1 exemplifies the short- and long-

term timescales of different plasticity forms discussed next.

8
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Figure 2.1: Short- and long-term plasticity timescales. A) AMPAr desensitization occurs when glutamate binds to the AMPAr, and the

pore does not open—depending on how deep is the desensitization, the full recovery of AMPA current can take from 100 to 300 ms given

the AMPAr subunits composition (Robert and Howe 2003). B) Short-term facilitation is thought to be caused by Ca
2+

influx through VGCCs

which accumulates in the presynaptic terminal, enhancing the probability of vesicle release (The Residual Ca
2+

Hypothesis) (Debanne et al.

1996). However, other mechanisms can cause facilitation, such as buffers saturation and spike broadening (Jackman and Regehr 2017). C)

Under constant firing the vesicle pools become empty causing short-term depression (Fernández-Alfonso and Ryan 2004; Rizzoli and Betz

2005). D) Long-term plasticity phases showing structural changes occurring in dendritic spines (Bosch et al. 2014).

2.1.1 Short-term plasticity

Short-term plasticity (STP) consists of adaptations at fast timescales producing

immediate changes in the excitability or resources availability (Deperrois and

Graupner 2020; Tsodyks and Markram 1997). In the literature (Zucker and Regehr

2002; Rizzoli and Betz 2005), STP refers to a phenomena, such as receptor de-

sensitization (∼1 to 25 ms) and ion-channels inactivation, facilitation of vesicle

release (∼50 to 200 ms), or depletion of neurotransmitter filled vesicles in the

presynaptic terminals (∼50 to 2000 ms). The listed STP examples adapt in mil-

liseconds to seconds, and their effect exceeds such range (Deperrois and Graup-

ner 2020). Also, STP can be characterized as an all-or-none process, such as the

vesicle release and its consequent short-term depression or facilitation evaluated

in multiple trials. Although short-term plasticity refers to millisecond range adap-

tations, faster processes (fraction of milliseconds) are also prone to adaptations

(Ribrault et al. 2011; Dobrunz et al. 1997).
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Figure 2.2: Long term plasticity. A) High Ca
2+

entry caused by high-frequency stimulation. B) Induction of LTP using 50 Hz (adapted from

(Dudek and Bear 1992)) showing the change in the excitatory postsynaptic potential (EPSP) slope (Byrne 2017). C) Receptor exocytosis

and synaptic button enlargement. D) Low Ca
2+

entry caused by low-frequency stimulation. E) Induction of LTD using 3 Hz (adapted from

(Dudek and Bear 1992)), same plasticity measure as in B. F) Receptor endocytosis and synaptic button shrinkage.

2.1.2 Long-term plasticity

Two forms of long-term plasticity, long-term potentiation (LTP) and long-term de-

pression (LTD), reflects the long-lasting effects on synaptic efficacy. LTP was first

characterized by Bliss and Lømo 1973 with local field potential in the CA3-CA1

pathway using a high-frequency stimulation (HFS). Years after, Lynch et al. 1977

would demonstrate LTD in the same pathway using a slow-frequency stimulation

(LFS). Both forms of plasticity and their importance for understanding memory

were debated in the context of hippocampal lesion studies (Douglas 1967). Fig-

ure 2.2 depicts Dudek and Bear 1992’s experiments inducing LTP and LTD, high-

lighting receptor endocytosis and exocytosis as the outcome for HFS and LFS

stimulations, respectively. Dudek and Bear 1992 also blocked NMDA receptor to

show how the long-term plasticity depends on it.

LTP or LTD have protein reorganization phases. In these phases, the dendritic

spines malleable body are reshaped minutes after or during the induction proto-

col (Bosch et al. 2014). Initially, LTP and LTD undergo structural reorganization

and stabilization (early long-term plasticity), consolidation, and later new protein

synthesis (late long-term plasticity), see Figure 2.1D. Fluorescence markers on
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multiple structural proteins identified the rhythms of LTP induction from the early

phase, occurring until ∼1 hour after the stimulation, to late potentiation phase,

occurring after ∼ 1 hour (Bosch et al. 2014). Usually, structural protein studies

investigate the different plasticity phases with a time resolution of minutes or

dozens of seconds to follow long term changes (Bosch et al. 2014; Thomazeau

et al. 2020). Few other studies have measured long-term plasticity phases at

shorter time scales (Frost et al. 2010). Also, Bosch et al. 2014 characterization of

early and late-LTP was performed at room temperature, in which enzyme activity

is expected to react (under equivalent stimulation protocol) slower than physio-

logical temperatures, potentially modifying the timescales of structural changes

(Thomazeau et al. 2020). Next, receptors and ion channels, the primary Ca2+

sources provoking structural and functional changes, will be discussed.

2.2 Receptors and ion-channels

2.2.1 NMDA receptor

N-methyl-D-aspartate receptors (NMDAr) are the primary source of synaptically

induced Ca2+ influx in dendritic spines (Yuste et al. 1999); they have a tetramer ar-

rangement composed of subunits GluN1, GluN2 (A-D) and GluN3 (Salussolia et al.

2011). The NMDAr’s subtype expression is age-dependent, producing receptors

with different kinetics and functions within the brain. Both glutamate and glycine

activate NMDArs leading to ionotropic (K+, Na+ and Ca2+), and metabotropic ac-

tivity depending on NMDAr composition. A concept to understand the role of

NMDAr is the coincidence detection in which the NMDAr-Mg2+ unblocking occurs

when dendritic spines are sufficiently depolarized (Collingridge et al. 1983). That

enhances NMDAr conductance since the NMDAr blocking is alleviated by the BaP

current reaching dendritic spines. Another form of NMDAr conductance modula-

tion occurs by changing extracellular Ca2+ as shown in Maki and Popescu 2014.

2.2.2 AMPA receptor

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptor (AMPAr) are tetrame-

ters composed of GluA1-A4 subunits. These glutamatergic receptors are majorly

expressed in the dendritic spines, and their central role is to relay excitatory neu-

ronal impulses (Lu et al. 2009). It is of particular interest for plasticity since the

inclusion and removal of AMPArs from the postsynaptic density (PSD) reflects the

plasticity outcomes illustrated in Figure 2.2. Due to this, AMPArs density in den-
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dritic spines correlates with PSD size. Unlike NMDAr, given the synapse type,

AMPArs have a specific distance-dependent expression to compensate EPSP at-

tenuation towards the soma (Nicholson et al. 2006). Note also that AMPAr current

can have its magnitude changed even without the inclusion of new units due to

the phosphorylation of its subunits (Incontro et al. 2018).

2.2.3 Voltage gated Ca2+ channels

An important Ca2+ source in plasticity induction is the voltage-gated Ca2+ chan-

nels (VGCCs) which are a class of ion channels permeable to Ca2+ ions, activated

by changes in the membrane potential. VGCCs (L, N, P/Q, R and T) have specific

distribution and variations within the brain and non-neuronal cells (Magee and

Johnston 1995). A classification for the VGCCs subtypes attributes their activation

to a particular membrane depolarization level. For instance, low-, intermediary-

and high-voltage activated channels, such as T-type VGCCs, activated at resting

membrane conditions and L-type VGCCs activated at high voltage (Magee and

Johnston 1995). Although VGCCs provides less Ca2+ (synaptic induced Yuste et al.

1999) compared to NMDAr in dendritic spines there are VGCC-dependent forms

plasticity (Adermark and Lovinger 2007). However, the VGCCs major contribu-

tion is the presynaptic vesicle release triggered by responding to a Ca2+ influx

caused by presynaptic action potentials (He et al. 2018). This effect is the ma-

jor stochastic component in the signal transduction since its ineffective opening

causes vesicle release failures (Yuste et al. 1999).

2.2.4 GABA receptors

So far, we have reviewed only excitatory mechanisms (VGCC, AMPAr and NM-

DAr). However, plasticity requires also the participation of inhibitory mecha-

nisms (Meredith et al. 2003). For instance, the gamma-aminobutyric acid receptor

(GABAr) (Rowlett et al. 2005) is activated by the presence of GABA neurotrans-

mitters which opens for the passage for Cl- and K+, leading to inhibitory currents

to cause cell polarization (Pelkey et al. 2017). GABAr controls neuronal excitabil-

ity and the EPSPs integration since inhibitory currents act in different parts of the

neuron, such as soma, dendrites and spines (Somogyi and Klausberger 2005). By

interacting with Ca2+ sources, GABAr can modify plasticity induction outcomes as

shown by blocking studies (Meredith et al. 2003; Buchanan and Mellor 2007).
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2.2.5 Small Potassium ion channel

A class of potassium channel is activated in a [Ca2+]i-dependent manner, hyper-

polarizing the membrane potential and reducing the NMDAr and VGCCs enhance-

ment caused bymembrane depolarization. For instance, the small potassium (SK)

channel which interacts with Ca2+ sources (Griffith et al. 2016) to reduce Ca2+ in-

flux, therefore affecting plasticity outcomes (Tigaret et al. 2016). This class of

channels limits the Ca2+ influx and the Ca2+-induced excitotoxicity (Trombetta-

Lima et al. 2020).

2.3 The Ca2+ dynamics

Plasticity of dendritic spines depends on intracellular Ca2+ elevations and it is

mainly controlled by Ca2+ sources such as (Yuste 2010): NMDAr, Ca2+ permeable

AMPAr, VGCCs, Kainate receptors, Ca2+ storages from endoplasmatic reticulum

(ER). However, Ca2+ dynamics impact other neuronal functions such as neuronal

transmission, plasticity, neurite growth, apoptosis, ATP production, protein ex-

pression, to cite a few (Knot et al. 2005). Due to the multiple functions of Ca2+,

its influx and extrusion are tightly controlled in dendritic spines. Therefore, den-

dritic spines actively compartmentalise Ca2+ with its high extrusion efficiency

(outside the cell), which is supposed to exceed Ca2+ diffusion through the spine

neck (Sabatini and Svoboda 2000). Such efficiency at extruding Ca2+ from the

tiny dendritic spine’s cytoplasm is granted by Ca2+ pumps (e.g. PMCA), mobile

buffers (e.g. Calmodulin) or also Ca2+ ER storages (e.g. SERCA pumps) which

can prevent depotentiation (Perez-Alvarez et al. 2020). Despite this tight con-

trol, internal Ca2+ fluctuates due to tonic T-type VGCCs flickering, keeping a basal

Ca2+ concentration of around 50 nM (Maravall et al. 2000). The main method to

indirectly probe the Ca2+ dynamics is through fluorescent Ca2+-binding proteins.

However, this form of indirect visualization has some drawbacks such as laser-

induced phototoxicity. The laser exciting the fluorescent proteins in the synaptic

domains can modify the receptors and ion channels’ kinetic parameters since

the temperature increases and it can cause photodamage (Podgorski and Ran-

ganathan 2016; Schmidt and Oheim 2018) given the laser parameters.

2.3.1 The Ca2+ hypothesis for plasticity

Ca2+ is the primary signalling ion in the brain (Knot et al. 2005) and since the

discovery that intracellular levels of Ca2+ are fundamental to induce both LTP and
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Figure 2.3: Variations of the Ca2+ hypothesis for plasticity. Left: Ca2+ amplitude hypothesis. Middle: Ca
2+

duration hypothesis. Right:

Ca
2+

location hypothesis.

LTD (Lynch et al. 1983; Mulkey and Malenka 1992) neuroscientists have searched

for a relationship between plasticity outcomes and Ca2+. Lisman 1989 coined a

hypothesis linking the Ca2+ amplitude to plasticity directionality at the same the-

oretical work that proposes a molecular mechanism for memory storage based on

enzyme activity. Lisman statement can be rewritten in the following way: high lev-

els of Ca2+ influx lead to potentiation, while moderate levels lead to depression.

Such a hypothesis, illustrated in Figure 2.3 (Left), finds support in a frequency-

dependent plasticity experiment done by Hansel et al. 1996 using Ca2+ fluores-

cence imaging. Despite that, direct observation of Ca2+ without fluorescent dye

prevents a proper evaluation of the amplitude hypothesis. Moreover, evidence

against the Ca2+ amplitude hypothesis is given by Tigaret et al. 2016, which shows

a high Ca2+ amplitude (measured with Ca2+ dye) induced not LTP, while a mod-

erate level induced LTP does. Also by Nevian and Sakmann 2006 that shows the

same Ca2+ amplitude can induce both LTP and LTD. The two last examples make

such a claim without measuring the whole Ca2+ plasticity protocols due to pho-

totoxicity issues. Another variation of it the Ca2+ hypothesis, the Ca2+ duration

hypothesis suggests the duration of Ca2+ intracellular elevations dictates plastic-

ity directionality (Mizuno et al. 2001). That can be stated as brief and high Ca2+

levels induce LTP, while sustained and moderate Ca2+ levels induce LTD, as de-

picted in Figure 2.3 (Middle). Despite such hypothesis has received favourable

support by Yang et al. 1999; Mizuno et al. 2001, precise control of Ca2+ is hard to

be achieved using only spikes (Yang et al. 1999). Therefore, part of the support

of the duration hypothesis comes from computational studies (Gamble and Koch

1987). Other ideas are proposed, such as the Ca2+ location hypothesis (Figure

2.3, Right) that states depending on the source of Ca2+ (e.g. NMDAr or VGCCs),

a different directionality would be selected. However, it falls in similar technical



2.3. THE CA2+ DYNAMICS 15

Figure 2.4: Ca2+-binding enzymes. The figure represents the CaMKII interaction with CaM, CaMKII phosphorylation of glutamatergic

receptors and its role inducing AMPAr insertion (O’Connor et al. 2005). Also, it shows CaN interaction with CaM, CaN dephosphorylation of

glutamatergic receptors and its role removing AMPAr (O’Connor et al. 2005).

limitations from the previous hypothesis when controlling Ca2+ entry (Evans and

Blackwell 2015). Given the shortcomings, it is interesting to point out a simple

enquiring by Malenka 1993, [...] It is well established that a rise in postsynaptic

Ca2+ is necessary for LTP induction. How can a rise in postsynaptic Ca2+ also be

responsible for LTD? [...]. Ca2+ is extruded very fast from the spines. Therefore it

has a relatively fast decay time (50 - 500 ms) when compared to enzymes. This

thesis will try to interpret the dynamics of "what comes after Ca2+" since new

measurements are available for the immediate Ca2+-cascade, and this can lead

to a new interpretation of Malenka’s observation and hopefully make it more clear

how different plasticity experiments, with different experimental conditions, are

part of the same phenomenon.

2.3.2 Calmodulin

Calmodulin (CaM) is a calcium-binding enzyme highly expressed in dendritic spines

interacting with LTP and LTD pathways (see Figure 2.4), and other calcium-related

regulatory mechanisms (e.g. pain Hasan et al. 2017, vesicle release Pang et al.

2010). It is a mobile buffer that efficiently detects the Ca2+ influx due to its high

affinity and fast binding (Faas et al. 2011). CaM dependent enzymes, such as

CaMKII and CaN, which inhibition and blocking can disrupt plasticity induction

(O’Connor et al. 2005) are discussed next.
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2.3.3 CaMKII

The Ca2+/Calmodulin-dependent kinase II, or CaMKII, has four isoforms (α, β, γ,

and δ, Gaertner et al. 2004) associated with the induction of long term plastic-

ity (LTP and LTD) (Coultrap and Bayer 2012). This enzyme is composed of 12

subunits, forming a holoenzyme that can phosphorylate (activate by adding a

phosphate group) its neighbouring units allowing the enzyme to be activated

longer in the absence of Ca2+. Such autophosphorylation property was hypoth-

esized to have a maintenance role in dendritic spines (Lisman 1989). When

CaMKII is activated, it would reach a stable state due to its autophosphorylation,

which would surpass protein turnover by having new included CaMKII becom-

ing self-phosphorylated at Ca2+ basal levels and saturation of dephosphorylation

pathways (Lisman 1985; Miller et al. 2005). Despite that, a maintenance role

through autophosphorylation was not confirmed in brain slices by Förster reso-

nance energy transfer (FRET)-sensor experiments recording CaMKII activity (Lee

et al. 2009). Instead, experiments have shown that CaMKII activity returns to

basal levels instead of staying in an activated (self-sustained) state (Chang et

al. 2017; Chang et al. 2019). Other evidence for the lack of maintenance role

was obtained by applying CaMKII inhibitors after an LTP protocol, producing no

changes in the LTP expression (Chen et al. 2001). Despite that, CaMKII was found

to modify the NMDAr function by biding on its GluN2B subunit and forming an

NMDAr-CaMKII complex necessary for LTP induction and possibly maintenance

(Incontro et al. 2018). The maintenance role of NMDAr-CaMKII was suggested by

test-tube essays (Urakubo et al. 2014). To date, a self-sustained CaMKII activ-

ity to justify a maintenance role has not been confirmed for LTP (Michalski 2014;

Coultrap and Bayer 2012). More studies are necessary to evaluate the NMDAr-

CaMKII complexmaintenance role in more physiological conditions (Urakubo et al.

2014). Rather than LTPmaintenance, the CaMKII induction role was demonstrated

by knocking-out CaMKIIα, the most abundant isoform in excitatory synapses to-

gether with CaMKIIβ, causing impairment of learning and memory capabilities

(Silva et al. 1992; Incontro et al. 2018). Still, CaMKII may have a maintenance

role for LTD (Coultrap and Bayer 2012). Another aspect of Lisman’s hypothesis

is that the phosphatase activity causes CaMKII to dephosphorylate. However, by

blocking a series of synaptic phosphatases, Otmakhov et al. 2015 found CaMKII

dephosphorylation unaltered.

CaMKII has structural and functional roles. The formation of the NMDAr-CaMKII

complex increases the Ca2+ influx and CaMKII phosphorylated AMPAr has increased

conductance. Because CaMKII can increase Ca2+ influx, CaMKII excitability path-
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ways have been highlighted as a drug target to prevent excitotoxicity (Coultrap

et al. 2011). Structurally, CaMKII isoforms differentially interact with dendritic

spines structural proteins (Okamoto et al. 2009), for instance, by bundling to-

gether with F-actin filaments that compose dendritic spine body and stimulating

neurite growth (Okamoto et al. 2009). The roles associated with this enzyme

have been the focus of theoretical studies owning to predict plasticity and better

understand memory. However, the complete CaMKII enzyme is a modelling chal-

lenge due to the staggering number of state combinations its 12 subunits can

form (Pharris et al. 2019).

2.3.4 Calcineurin

PP2, or Calcineurin (CaN) and its isoforms (α, β, γ), are a Calmodulin activated

phosphatases mainly associated with LTD (Creamer 2020; O’Connor et al. 2005).

It stands in Lisman’s hypothesis as a mediator of LTD and reversal pathway of LTP.

Indeed, CaN is relevant to LTD since inhibiting the phosphatase leads to lower

LTD amplitude. As CaMKIIβ, CaN has structural and functional plasticity roles

such as the dephosphorylation of AMPAr leading to LTD (Woolfrey and Dell’Acqua

2015) and NMDAr desensitization by interacting with the GluN2A subunit (Rycroft

and Gibb 2004). Structural plasticity effects include regulation microtubules-

stabilizing proteins such as tau (axons) and MAP2 (dendrites) (Hoffman et al.

2017). CaN-tau regulation is a relevant path to study tauopathies and other neu-

rodegenerative diseases such as Alzheimer’s. Excessive tau phosphorylationmay

lead to protein bundle accumulation with a cascade of deleterious effects from

slower synaptic transmission (L. Zhou et al. 2017) to neuronal death (Fath et al.

2002). Still, CaN apoptotic pathways can be triggered by excessive Ca2+ influx (F.

Shibasaki and McKeon 1995) and be explored in neuroprotective strategies (Erin

et al. 2003).

2.3.5 CaN and CaMKII joint activity

Fujii et al. 2013 suggested that CaN and CaMKII enzymatic activity could represent

a pulse number and frequency decoder in neuron somata. However, in dendritic

spines, CaMKII measurements (Chang et al. 2017) showed a faster saturation

profile given frequency (from 0.49 to 7.8 Hz) and pulse number (more than eight

pulses to saturation in room temperature). Given these contradictory evidences,

CaN-CaMKII as an enzymatic decoder needs to be investigated in dendritic spines

where these enzymes are primarily expressed instead of neuron somata. Another
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experiment on CaN-CaMKII dynamics reinforces that CaN and CaMKII respectively

induces LTD and LTP in a frequency-dependent manner (O’Connor et al. 2005).

In O’Connor et al. 2005 experiment, by inhibiting CaMKII, LTP is abolished, and

the same is valid for CaN and LTD. Despite this association, CaMKII and CaN are

not exclusively related to potentiation or depression (Woolfrey and Dell’Acqua

2015). Interestingly, one of the first transgenic animal models was a CaMKIIα

knockout designed to study the learning and memory dependence of this enzyme

(Silva et al. 1992). Note that both enzymes are related to plasticity and apoptotic

pathways, disrupted CaMKII-NMDA complex induced excitotoxicity (Coultrap and

Bayer 2012) and CaN-induced apoptosis (F. Shibasaki and McKeon 1995). Despite

that, the thresholds separating the healthy and pathological functions of these

enzymes are unknown.

2.4 Stimulation protocols

Experimentalists can artificially manipulate Ca2+ influx through dendritic spines

using spiking times (or the firing patterns) to investigate how neuronal activity in-

duces plasticity. The stimulation protocol may be induced by external electrodes

in brain slices exposing (or not) neuronal circuitry (Bliss and Lømo 1973); opto-

genetics which requires the expression of light-sensitive ion channels (e.g. chan-

nelrhodopsins) (Anisimova et al. 2019); glutamate uncaging (Ellis-Davies 2019)

which releases caged glutamate from a light-sensitive molecular matrix, allowing

the precise stimulation of individual spines; or also, delivering electrical current

using a patch through (or at) the neuronal membrane surface (Neher et al. 1978),

with various clamping variations such as current, voltage and dynamical (Berecki

et al. 2014). Also, plasticity can be induced chemically, without manipulating neu-

ronal spiking activity (Santschi et al. 1999). A general description of plasticity pro-

tocols highlights pre-and postsynaptic spiking times or their rate, duration, brain

region, aCSF temperature, preparation steps of the neural tissue, developmental

age, etc. Usually, stimulation protocols are heterogeneous like the electrophysi-

ology methods shown in Tebaykin et al. 2018. However, most plasticity protocols

use firing structures with highly correlated regular spikes (not observed in vivo
measurements (Cui et al. 2018)) and non-physiological experimental conditions

(Inglebert et al. 2020; Bi and Poo 1998).

The first electrophysiology measurements of LTP were recorded and induced

through local field potentials (LFP) (Bliss and Lømo 1973). It consists of estimat-

ing the slope of the electromagnetic field decay produced by themovement of the

charges in response to a neural pathway stimulation. This measure is preferred
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when recording in the extracellular medium since the signal amplitude depends

on the source distance from the electrode (e.g. metal or micropipette) (Buzsáki

et al. 2012). Other techniques such as patch-clamp variations and intracellular

recordings are invasive but allow one to measure the neuron’s current and volt-

age, with a precise estimation of the EPSP amplitude change (Covey and Carter

2015). Electrophysiological techniques have several intricacies. For instance, in

in vivo recording, the correct electrode placement has to be verified by surgery.

It is not unusual to have experiments discarded due to technical issues and arte-

facts (Ahnaou et al. 2020). Automatized electrophysiology is still not widely avail-

able and still limited to few types of experiments (Annecchino and Schultz 2018).

Other forms of measure of the plasticity outcomes are by imaging, targeting spe-

cific proteins linked to the plasticity expression (Bosch et al. 2014), or imaging

genetically encoded indicators (e.g. voltage and calcium) to evaluate the EPSP

or its effects before being filtered by the spine neck (Jackman and Regehr 2017;

Kwon et al. 2017).

2.4.1 FDP and STDP

The first stimulation protocol descends from the Bliss and Lomo (Bliss and Lømo

1973) which proposes a method to induce LTP using an external stimulation in a

rabbit CA3-CA1 pathway (Nicoll 2017). Their technique continued to be used due

to its practicality (Dudek and Bear 1992; Dudek and Bear 1993) even after new

methods allowing control over pre and postsynaptic spiking times (Neher et al.

1978) have been described. An example is the frequency-dependent stimulation

(FDP) paradigm presented by Dunwiddie and Lynch 1978 that uses regular spikes.

However, note that later experiments have used jittered spikes, such as the rate-

dependent in- duction of plasticity by Sjöström et al. 2001. In the 70s, when

LTP and LTD were experimentally confirmed in the hippocampus, simultaneously

the Bienstook Cooper Monro (BCM) theory formalized the experiments of visual

cortex directional selectivity using a nonlinear function of synaptic efficacy and

frequency (Lynch et al. 1977). The BCM popularized the idea that a threshold

marks a transition between LTD and LTP over the frequency. For instance, the

BCM-like rule found in the hippocampus (Wang and Wagner 1999; Holland and

Wagner 1998).

The experiment that established a canonical bidirectional plasticity rule was

popularized by Bi and Poo 1998 and made possible due to the patch-clamp tech-

niques (Markram et al. 2011). Bi and Poo 1998 discovered that precise timing

of pre and postsynaptic spikes and its causality can describe plasticity outcomes
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observed in cultured neurons, with the causal pairing inducing LTP, and the anti-

causal one inducing LTD. The bidirectionality of STDP, experimentally demon-

strated by Bi and Poo 1998, was a theoretical construct previously used by Se-

jnowski 1977. Currently, experiments have demonstrated that the synaptic rules

STDP havemultiple shapes influenced by: age (Meredith et al. 2003), temperature

Krelstein et al. 1990, frequency (Sjöström et al. 2001), distance from the soma

(Letzkus et al. 2006), aCSF composition (Inglebert et al. 2020), duration (Mizuno

et al. 2001). To date, there is no mechanistic justification for how the experimen-

tal conditions affect the STDP outcomes. For instance, as Wittenberg and Wang

2006 interestingly points out, a similar STDP causal stimulation protocol can in-

duce LTP (Nishiyama et al. 2000), LTD (Christie et al. 1996; Wittenberg and Wang

2006) and no change (Pike et al. 1999), without telling why such differences arise.

2.5 Sensitivity to experimental conditions

Synapses are sensitive, and experimental choices affect plasticity, as will be ex-

emplified further. Despite that, plasticity experiments have a wide range of non-

physiological settings selected due to technical limitations in mimicking the neu-

ron environment. Figure 2.5 shows histograms of the experimental parameters

used in hallmark plasticity experimental publications described in Table 3.3 and

3.1.

Figure 2.5: Histograms of experimental conditions in plasticity experiments using brain slices in the hippocampus and cortex.
The data was extracted from hallmark plasticity studies reproduced by theoretical models (Graupner and Brunel 2012, Ebner et al. 2019,

Jedrzejewska-Szmek et al. 2017, Inglebert et al. 2020). For articles which uses a interval, such as P14-21, the whole interval was counted.

This histogram is based on the ones described in Tebaykin et al. 2018.

2.5.1 Preparation of the neural tissue

Electrophysiological recordings are usually done in brain slices and cultured neu-

rons. Brain slicing preparations have variations, and the effects of these are not

completely understood. A basic protocol to brain slicing goes as follows (Papouin

and Haydon 2018): anaesthetized animals are sacrificed for brain extraction and
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further isolation of the region of interest while submerged in aCSF; the region of

interest is isolated under a specific aCSF slicing solution designed to cause min-

imal damage to neurons while having their connections severed, then slices are

left to recover under a specific aCSF solution until further use in a recording cham-

ber with recirculated aCSF (designed for recording). Each step of this process has

several variables that can modify the plasticity outcomes. However, the effects of

preparation methods are not widely discussed in the papers using them (Papouin

and Haydon 2018). For instance, high Mg2+ during slicing prevents epileptiform

activity in slices, and it is a stabilizing factor for further recording. However, a

variation of 0.3 mM in Mg2+ concentration can change whether or not LTP is in-

duced (Capron et al. 2006). Moreover, given the slicing temperature, dendrite

spines can significantly shrink when slicing is done in ice-cold temperatures (Q.

Zhou et al. 2004). An alternative to slices is cultured neurons in which the brain

is extracted during embryonic development and processed to differentiate and

form connections in vitro (Gordon et al. 2013).

Given the diversity of electrophysiology recording done in non-physiological

conditions, slicing preparation and the associated recipes usually do not recreate

the ideal neuronal environment. Tebaykin et al. 2018 highlighted that electro-

physiological choices between laboratories are variable, and aCSF recipes are

passed from supervisor to student in a conservative way. Given that synapses

are very sensitive to their environment, the lack of uniformity on how close the

experiments are to reproduce the extracellular environment does little to produce

replicate and comparable data. Despite the lack of uniformity in data, the cost

to re-investigate the hallmarks of plasticity neuroscience under uniform experi-

mental conditions is not negligible, and new hypothesis from theoretical plasticity

models may justify such effort.

2.5.2 Temperature

Previously, it was mentioned that synapses are sensitive to experimental con-

ditions. An important factor affecting biochemical reactions is the temperature

since it defines the average kinetic energy of molecules and ions, therefore recep-

tor activation and plasticity timescales (Roelandse and Matus 2004). Krelstein et

al. 1990 showed that changing temperature 3-5◦C can induce qualitative changes

in the plasticity induced in hibernator hamsters. Also, Wittenberg and Wang 2006

compare different temperature effects on STDP protocols for hippocampal slices

in rats without conclusive evidence. In terms of temperature- induced changes,

ionic channels such as VGCC can have a kinetic constant 50x different when the
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temperature passes from physiological to non-physiological range (Shibasaki et

al. 2007). Enzymes critical to plasticity induction also have their kinetics modi-

fied. For instance, the CaMKII saturation point decreases for higher temperatures

under the same stimuli (Chang et al. 2017). Therefore, it is unsafe to presume

that an accurate understanding of how plasticity works can be achieved using

non-physiological electrophysiology. Still, room temperature recordings are still

used since physiological temperatures may reduce neural tissue viability (Buskila

et al. 2014).

2.5.3 Extracellular Ca2+ and Mg2+

Ca2+, as previously mentioned, dictates the plasticity outcomes. Extracellular

Ca2+ affects Ca2+ dynamics and the Ca2+- influx through the modification of Ca2+-

reversal potential according to the diffusion laws formalized by the GHK (Goldman-

Hodgkin-Katz) equation. Receptors also are susceptible to such variations; for in-

stance, NMDAr conductance reduces in response to high extracellular Ca2+ (Maki

and Popescu 2014). Despite Ca2+ importance, plasticity studies use a variety of

Ca2+ concentrations in their recipes, which are often non-physiological (Inglebert

et al. 2020). Different concentrations can modify the release probability of presy-

naptic vesicles containing neurotransmitters which is sufficiently heterogeneous

even under controlled conditions, within the same brain region (King et al. 2001;

Dobrunz et al. 1997). Note that during a plasticity experiment, aCSF is recircu-

lated with a fixed concentration. However, in an intracellular environment, the

external Ca2+ is dynamically subjected to Ca2+ fluctuations caused by astrocytes,

which regulate various extracellular concentrations (Bazargani and Attwell 2016)

and it is modulated by the astrocyte network (Wang et al. 2012).

Mg2+ is also a largely available divalent ion (4th major ion in the brain Romani

2011) which interacts with Ca2+ sources controlling plasticity. It affects NMDAr

conductance (Jahr and Stevens 1990) and has its internal concentration tightly

regulated (Romani 2011). During brain slice preparations, Mg2+ is added to con-

trol spontaneous and epileptiform activity. Despite its importance, plasticity pro-

tocols have variable choices of Mg2+ concentrations (see Figure 2.5). Its effects

can cause experiments in free-Mg2+ to induce plasticity with only a single pulse

(Mizuno et al. 2001). Tebaykin et al. 2018 have mapped various ions from elec-

trophysiology experiments (not directly to plasticity) and noted that Mg2+ has the

greatest variability (1, 1.3 and 2 mM) among ions used in the aCSF recipes, mean-

while Ca2+ is well centered around 2 mM despite physiological external Ca2+ in

rats is usually inferior to 1.8 mM (Inglebert et al. 2020). The model developed in
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this thesis predicts the effects of Mg2+ variations for different plasticity protocols.

2.5.4 Development

The plasticity induction requirements are not constant during development since

structural and biochemical alterations occur within brain cells. For instance, dur-

ing puberty, there is a high density of dendritic spines and an up-regulated prun-

ing which decreases towards adulthood (Boivin et al. 2018). Such shift process

depends on inhibitory GABAr (>P9-21 in rats Rivera et al. 1999; Afroz et al. 2016)

tonic current, which the deletion of which can cause cognitive impairment. GABAr

also has its own shift passing from excitatory to inhibitory (Rinetti-Vargas et al.

2017) and can affect STDP induction (Meredith et al. 2003). Other synaptic re-

ceptors and ion channels are also subjected to composition modifications and

expression shifts. During development, the NMDAr exchange the preferential ex-

pression of GluN2B subunits to the GluN2A, producing NMDAr with a smaller coin-

cidence detection window (Iacobucci and Popescu 2018; Iacobucci and Popescu

2017). Furthermore, the second component of the coincidence detection, the

BaP, also has a dynamical shift caused by maturation and expression of ion chan-

nels (Buchanan and Mellor 2007). Plasticity components in the developmental

and adult brain are not the same, and in correlation, the plasticity induction can

differ in an age-dependent way (Dudek and Bear 1993; Cao and Harris 2012;

Meredith et al. 2003). Despite the various changes that occur in the animal mod-

els’ first days of life, it is usual to observe studies using a rat cohort with a wide

age gap (see Table 3.3 and 3.1). The model presented in this thesis analyses the

effect of age in different plasticity protocols.

Next, amini-reviewwill discuss how different plasticitymodels have contributed

to propose testable predictions.
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Chapter 3

Computational models of synaptic
plasticity

Computational science fields such as AI or computer vision generally have bench-

mark datasets to rank models’ performance. The same practice is uncommon in

computational neuroscience (Jolivet et al. 2008) since the specificity of experi-

ments imposes a less flexible approach when the mechanistic understanding is

the goal. The plasticity experimentation hallmarks such as STDP from Bi and Poo

1998 or the BCM-rule from Kirkwood et al. 1996 cover only a fraction of the stag-

gering heterogeneity seen in the plasticity experimentation literature. Therefore,

they cannot be used as the sole quantitative or qualitative ground truth to judge

if a plasticity model performs well. Since the plasticity phenomenon is still being

explored, an ideal model can support this exploration by reproducing a compre-

hensive set of experiments to provide testable predictions and sharper questions

(Karlin and Matessi 1983).

3.1 Unified theories for synaptic - modeling approaches

Due to the diversity of plasticity experiments, conceptual advances are neces-

sary to address a large body of experiments. Unified theories (Kievit et al. 2011)

have thus been proposed to tackle this issue. These unified theories, exemplified

by models, combine different concepts to describe a larger domain of evidence

related to synaptic plasticity. In this way, they open new questions. Although

the theory status could sound premature compared to long-standing theories in

physics (e.g. as stated in Rohrlich 1989 pg. 27), the term is justified by how

a model achieves a broader understanding by combining previously established

principles, concepts or evidence. For instance, in Costa et al. 2015 the descrip-
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tion of both pre-and postsynaptic long-term plasticity are unified to give a new

vision on how long-term plasticity is induced. Another example, Ebner et al. 2019

models the evidence that plasticity is deferentially induced given the neuron’s

morphologic characteristics together with the concept of the enzymatic control

of pre-and postsynaptic plasticity. Other examples of unified models approaches

are given by Mäki-Marttunen et al. 2020, Shouval et al. 2002, De Pittà and Brunel

2016 and Singh et al. 2021. Integrating mechanisms into a single model can

increase its complexity due to the resulting number of interactions but allows

one to incorporate the diverse mechanistic contributions to synaptic plasticity.

However, a unified theory is not necessarily built over complexity or the detailed

description of all known interactions. More abstract models (Graupner and Brunel

2012; Clopath and Gerstner 2010) can also unify different concepts. Note that a

complex model does not imply its quality when reproducing a phenomenon, as

shown by Brette 2015, neither, reproducing experiments should be the single

goal of modelling. Thus, we will identify how models unifying different concepts

contribute to pose testable hypotheses.

3.2 Complexity of mechanisms on plasticity models

To understand how mechanistic models differ and propose testable predictions,

we need to know how models are assembled and what are their limits. Testable

predictions can be quoted as what an experimentalist needs in order to test the

model predictions. For instance, an electrophysiology experiment has many de-

tails and steps, with few exceptions, overlooked by current models. However,

they can affect learning rules as shown in Figure 3.1. Therefore, it is important

to define the scope in which the hypothesis drawn from the model are testable.

Table 3.4 categorizes the level mechanistic details to specify model capabilities

as shown in Table 3.5. Such categorization is done not to undermine other models

efforts but to identify the gap in which different model could contribute. To this,

four attributes were considered: experimental conditions (temperature, devel-

opment, aCSF), firing structures (FDP, STDP, irregular firing), localization (presy-

naptic, morphology, glia, sampling methods), and fast/slow variables (membrane

potential, neurotransmitters, Ca2+ sources, molecular dynamics). With these four

attributes, five models are compared as shown in Table 3.5. Next, the four at-

tributes and their relevance for testable predictions are discussed.
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3.2.1 Experimental conditions

Modelling plasticity requires qualitative or quantitative data and the data type

(e.g. neuroimage, EEG, electrophysiology). Because sampling methods normally

vary between labs (Tebaykin et al. 2018) and methodological differences can

modify the experimental outcomes (as in Figure 3.1), knowing how the data used

in amodel is sampled can help to determine themodel’s scope. Electrophysiology

measurements are the most common type of data used in plasticity modelling.

Despite that, experimental conditions can vary as shown in the Tables 3.3, 3.1

and 3.2 which summarize ex vivo experiments which are reproduced by the five

models in the Table 3.5 (except Tigaret et al. 2016; Mizuno et al. 2001; Dudek

and Bear 1993). Sampling aspects known to affect plasticity outcomes are: sex

(Dachtler and Fox 2017), age (Dudek and Bear 1993; Kirkwood et al. 1995), tem-

perature (Alonso and Marder 2020; Krelstein et al. 1990), aCSF recipe (Inglebert

et al. 2020), slicing procedures and brain regions. However, this list of plastic-

ity modifiers is overlooked by most models which are unlikely to propose clear

instructions linking experimental conditions and their simulated variables. This

limitation of current models will be discussed in more detail later when we de-

scribe how models implement experimental conditions. Figure 3.2 depicts an ex-

ample of implementation of experimental conditions that is classified as complex

in Table 3.4.

Figure 3.1: Examples of plasticity rules modulated by experimental conditions. On the Left, plasticity outcomes from LFS and TBS

affected by age (see Dudek and Bear 1993). In the Middle, plasticity outcomes from STDP being affected by [Ca
2+
]o and [Mg

2+
]o (see

Inglebert et al. 2020). On the Right, plasticity outcomes from TBS affected by temperature (see Krelstein et al. 1990).

Temperature

Most temperatures used in plasticity experiments do not closely follow physiolog-

ical conditions due to neural tissue viability (Buskila et al. 2020) and other exper-
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imental constraints. Temperature fluctuations can occur during experimentation,

induced by the environment, or sampling techniques such as laser or electrode-

induced heating, both poorly controlled. By observing the categorized plasticity

models in Table 3.5, most of them overlook the temperature differences in the ex-

periments they reproduce (Tables 3.3 and 3.1). For instance, the three STDP ex-

periments reproduced by Jedrzejewska-Szmek et al. 2017’s model were recorded

at different temperatures. However, the implemented NDMAr and AMPAr are not

adapted to the temperature differences, although they are known to be affected

by it (Korinek et al. 2010; Postlethwaite et al. 2007). By stating which temperature

the model is designed for can help to define its validity. That could improve the

bottleneck on the data availability since synaptic or neuronal mechanisms are not

experimentally characterized in a sufficiently broad range to support modelling.

Unlike plasticity models, few other computational neurosciencemodels have tem-

perature adaptations, even when using heterogeneous data sources (Bartol et al.

2015; Alonso and Marder 2020). For instance, Bartol et al. 2015 reconstitutes

Ca2+ dynamics in physiological temperatures, adjusting their model to 34◦C with

the reference parameters for the model sampled at different temperatures. Also,

Alonso and Marder 2020 characterizes network dynamics using data from crabs

(Cancer Borealis) in different temperatures. They show that temperature can

modulate network rhythms (Tang et al. 2012), this modulation is expected to be

acute in hot-blooded animals, for which temperature range is narrow. Tempera-

ture oscillations occur during circadian cycles or pathological circumstances (e.g.

fever, hyper/hypothermia). Thus, the implementation of temperature is a relevant

factor impacting how we can model memory, learning and normal functioning of

the brain.

Developmental age of specimens

Animals undergo constant change during their lifetimes. The genetic variability

analysis of the developing synaptosome (Cizeron et al. 2020) pointed out that

the synaptic genetic diversity reaches its peak during adulthood, whereas old

and young individuals have it less differentiated. An example of developmental

impacts over plasticity is shown by Dudek and Bear 1993. They use local field

stimulation on the CA3-CA1 pathway to induce LTD at different developmental

ages, showing that LTD is more robust for younger than adult rats. Despite the

LTP and LTD requirements being not the same during development (Pinar et al.

2017; Dudek and Bear 1993), most models for plasticity overlook age despite rec-

ognizing its relevance Graupner and Brunel 2012. Usually, computational mod-
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els depict age as a class rather than a continuum. For instance, in McKiernan

and Marrone 2017 review, age is represented as age classes with different firing

properties. The range of animal ages used in plasticity experiments is also vari-

able, usually within few days of difference Nevian and Sakmann 2006 (13-15) or

a month as in Weber et al. 2016. Despite Ca2+ sources undergo fast expression

changes during development, such as the NMDAr developmental shift (Sinclair et

al. 2016), these aspects are not explicitly described in plasticity model (Shouval et

al. 2002; Philpot et al. 2001). Therefore, it is relevant for models to capture these

differences since they induce qualitative alteration in electrophysiology and Ca2+

dynamics within few days (Meredith et al. 2003; Dudek and Bear 1993; Buchanan

and Mellor 2007; Kirkwood et al. 1995). Table 3.5 shows that developmental as-

pects are the most overlooked among the compared models for plasticity.

Figure 3.2: Idealized experimental conditions implementation. On the Left, all implemented mechanisms have temperature con-

trol. In the Middle, All implemented ions have their reversal potential considering internal and external concentrations. On the Right, all

implemented mechanisms are effects by age.

aCSF composition

In ex vivo experiments, an artificial cerebrospinal fluid (aCSF) is used to support

the neural tissue viability. The aCSF composition influences neuronal electro-

physiology (Tebaykin et al. 2018) by changing the spontaneous neuronal activity

(Barreto and Cressman 2011; Barreto and Cressman 2011) or modifying receptor

kinetics (Maki and Popescu 2014). An experimental-theoretical work (Inglebert

et al. 2020) showed how the external Ca2+ concentration, [Ca2+]o, causes qual-

itative changes on the STDP curves obtained from hippocampal rat slices. They

modelled the collected data using a nonlinear version of Graupner and Brunel

2012 Ca2+-based rule since the linear version was not sufficient (see Table 3.5).

They managed to reproduce STDP with different delays, frequencies, and burst

modes. However, despite it is well known that extracellular ion concentrations

(e.g. [Ca2+]o, [Mg
2+]o) modulates various molecular mechanisms implicated in

synaptic plasticity, such as NMDAr conductance (Maki and Popescu 2014) and

VGCCs. Despite that the implementation of a biophysically detailed external ion
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influence has not been done for plasticity models (Higgins et al. 2014; Inglebert et

al. 2020). Note that some biophysical models in computational neuroscience use

GHK formalism to cover the diversity of extracellular ionic concentrations (Huang

et al. 2015) such as the astrocyte ion buffering properties (Serrano-Gotarredona

et al. 2013).

L5 or L2/3 cortex - brain slices

EXPERIMENT PAPER REP. FREQ (Hz) AGE (DAYS) TEMP. (◦C) Ca (mM) Mg (mM)

STDP + freq Sjöström et al. 2001 1 min 0.1 – 50 12 – 21 32 – 34 2.5 1

STDP + freq

sub. t. depolarization
Sjöström et al. 2001 1 min 0.1 – 50 12 – 21 32 – 34 2.5 1

1Pre1Post10 - 15x

L5-L5, L2/3-L5

soma distances

Sjöström and Häusser 2006* – 50 14 – 21 32 – 35 2 1

1Pre1Post10

L5-L5, L2/3-L5

soma distances

sub. t depolarization

Sjöström and Häusser 2006* – 50 14 – 21 32 – 35 2 1

STDP Froemke et al. 2006 60 – 100 0.2 10 – 35 room 2.5 1.5

STDP

bicuculine meth.
Froemke et al. 2006 60 – 100 0.2 10 – 35 room 4 4

5x 1Pre1Post10

(STDP, at a given freq.

repeated 30-40 at 0.2 Hz)

Froemke et al. 2006 30 – 40 0.2 10 – 35 room 4 4

nx 1Pre1Post10

(STDP, at a given freq.

repeated 30-40 at 0.2 Hz)

Froemke et al. 2006 30 – 40 0.2 10 – 35 room 4 4

xPre+yPost

(STDP, at a given freq.

repeated 30-40 at 0.2 Hz)

Froemke et al. 2006 30 – 40 0.2 10 – 35 room 4 4

STDP (burst)

(1Pre3Post ∆ t)

Post at 50 Hz

Nevian and Sakmann 2006 60 0.1 13 – 15 32 – 35 2 1

STDP (burst frequency)

(1Pre3Post10 and 1Pre3Post-10)

Post at X Hz

Nevian and Sakmann 2006 60 0.1 13 – 15 32 – 35 2 1

STDP (burst frequency)

(1PreXPost10 and 1PreXPost-10)

Post at 50 Hz

Nevian and Sakmann 2006 60 0.1 13 – 15 32 – 35 2 1

STDP (1Pre1Post)

L2/3-L5

soma distances

Letzkus et al. 2006 100 – 200 1 21 – 42 34 – 35 2 1

STDP (1Pre3Post)

L2/3-L5

soma distances

Letzkus et al. 2006 100 – 200 1 21 – 42 34 – 35 2 1

STDP

corticostriatal
Shen et al. 2008* 10–15 (x5) 0.1 19 – 26 room 2 1

STDP

corticostriatal
Pawlak and Kerr 2008 60 0.1 19 – 22 31 – 33 2.5 2.0

STDP

corticostriatal
Fino et al. 2010 100 1 15 – 21 34 2 1

Table 3.1: Plasticity experiments in the cortex (slices) reproduced by the models in Table 3.5.
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Hippocampus - cultured neurons

EXPERIMENT PAPER REP. FREQ (Hz) AGE (DAYS) TEMP. (◦C) Ca (mM) Mg (mM)

STDP, single, triplets

quadruplets (pre or post)
Wang et al. 2005 60 1

17 – 18 (E)

8 – 15 (IV)
room 3 2

STDP Bi and Poo 1998 60 1
18 – 20 (E)

8 – 15 (IV)
room 3 2

Table 3.2: Plasticity experiments in cultured hippocampal neurons reproduced by the models in Table 3.5.

Hippocampus - brain slices

EXPERIMENT PAPER REP. FREQ (Hz) AGE (DAYS) TEMP. (◦C) Ca (mM) Mg (mM)

STDP (warm)

1Pre1Post ∆ t
Wittenberg and Wang 2006 70 – 100 5 14 – 21 30 – 34 2 1

STDP (cold)

1Pre1Post ∆ t
Wittenberg and Wang 2006 70 – 100 5 14 – 21 24 – 30 2 1

STDP (cold)

1Pre2Post ∆ t
Wittenberg and Wang 2006 70 – 100 5 14 – 21 24 – 30 2 1

STDP (cold)

1Pre2Post ∆ t
Wittenberg and Wang 2006 20 – 30 5 14 – 21 24 – 30 2 1

STDP (burst)

1Pre1Post ∆ t

picrotoxin

Tigaret et al. 2016 300 5 50 –55 35 2.5 1.3

STDP (single)

1Pre2Post ∆ t

picrotoxin

Tigaret et al. 2016 300 5 50 –55 35 2.5 1.3

Doublets (duration)

2Pre50, 2Pre10

picrotoxin

Tigaret et al. 2016 300 and 900 5 and 3 50–55 35 2.5 1.3

STDP (single, Ca)

1Pre1Post ∆ t
Inglebert et al. 2020

100, > delays

150, < delays
0.3 14 – 20 30 1.3 – 3 Ca/1.5

STDP (single)+freq+Ca2+

1Pre1Post10, X Hz
Inglebert et al. 2020

100, > delays

150, < delays
0.3 – 10 14 – 20 30 1.3, 1.8 Ca/1.5

STDP (burst)

1PreXPost10, X=2..4
Inglebert et al. 2020 100 0.3 14 – 20 30 1.3, 1.8 Ca/1.5

STDP (single+age)

1Pre1Post ∆ t
Meredith et al. 2003 20 0.2 9 – 45 24 – 28 2 2

STDP (burst+age)

1Pre2Post ∆ t
Meredith et al. 2003 20 0.2 9 – 45 24 – 28 2 2

FDP Dudek and Bear 1992 900 1 – 50 ∼35 35 2.5 1.5

FDP+age Dudek and Bear 1993 900 1 7 – 35 35 2.5 1.5

TBS+age Dudek and Bear 1993 3 – 4 ( 5) epochs
4Pre at 100 Hz

(10x at 5Hz)
6, 14 and 17 35 2.5 1.5

LFS (duration) Mizuno et al. 2001 1 – 600 1 12 – 28 30 2.4 0

LFS (duration)

NMDA blocker
Mizuno et al. 2001 1 – 600 1 12 – 28 30 2.4 0

dendritic cooperativity

4 spines
Weber et al. 2016 50 3 49 – 77 32 – 35 1.25 1.3

dendritic cooperativity

4 spines

low-Mg

Weber et al. 2016 50 3 49 – 77 32 – 35 1.25 0.1

STDP

astrocyte activity

+picrotoxin

Bonansco et al. 2011 60 1 25 – 35 20 – 22 2.5 2

Table 3.3: Plasticity experiments in the hippocampus (slices) reproduced by the models in Table 3.5.

3.2.2 Firing patterns

Firing patterns are the plasticity experimentation aspect that received the most

attention from modellers despite not being the only cause for plasticity induction.
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Next, let’s describe which protocols are mostly targeted by plasticity models. Fig-

ure 3.3 show different experimental paradigms classified in Table 3.4.

Figure 3.3: Idealized experimental firing patterns which could be covered by a single model. On the left, illustrations depict

BCM related goals, data-driven comparisons, BCM-like modifications (sliding threshold and amplification), and BaP induced by EPSP. In the

middle, data-driven comparison and different STDP curves (as in Wittenberg and Wang 2006). On the right, it illustrates a replay experiment

in which spikes are recorded in CA3-CA1 in vivo and the firing patterns used as input in ex vivo.

Spike-timing-dependent plasticty

STDP protocols control the Ca2+ influx in dendritic spines through pre and postsy-

naptic stimulation. In the literature, STDP firing pattern variations include bursts,

various frequencies and pulse numbers, inducing different plasticity outcomes

shown by Wittenberg and Wang 2006; Tigaret et al. 2016. These variations are

also affected by experimental conditions (Inglebert et al. 2020), and by dendritic

location as implemented by Ebner et al. 2019. Despite neurocomputational stud-

ies have given hold important the canonical STDP curve estimated by Bi and Poo

1998, it was not found to be reproducible in low Ca2+ settings (Froemke and Dan

2002; Inglebert et al. 2020). Yet, it became a benchmark for some models (De

Pittà and Brunel 2016) and neuro-inspired technologies (Zhuravleva et al. 1997).

Table 3.5 shows how different plasticity models cover a wide range of STDP exper-

iments, while other models focus on the canonical STDP with little physiological

relevance.

Frequency dependent platicity (FDP)

Bliss and Lømo 1973 were the first to formalize a method to induce LTP. Further,

Lynch et al. 1977 did the same with LTD, leading to the experimental discovery

of the frequency-dependent plasticity. The BCM-like and the STDP curves are

milestones for plasticity models (Graupner and Brunel 2012; Izhikevich and De-

sai 2003). Despite the various FDP experiments, spiking times of EPSP-induced

APs are not recorded (Mayr and Partzsch 2010). For instance, in Dudek and

Bear 1992 that only mentions the presynaptic frequency and does not record
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postsynaptic spikes. Therefore, depending on the experimental conditions, su-

perthreshold summated EPSPs can produce AP, affecting the Ca2+ influx. From

the modelling perspective, one should be aware that an FDP experiments can

have EPSP-induced-AP, thus it is important to have a mechanism to generate

APs. Excluding EPSP-induced-AP can hinder the participation of NMDAr coinci-

dence detection (Jahr and Stevens 1990). The models in Table 3.5 do not include

short term depression, which is known to limit the high-frequency stimulation

due to the fast depletion of neurotransmitter resources (Fernández-Alfonso and

Ryan 2004). Other plasticity models (Deperrois and Graupner 2020; Costa et al.

2015) implement these presynaptic adaptations, which are relevant to grasp the

unreliable nature of neuronal transmission.

Another experimental example is the sliding threshold (Kirkwood et al. 1996)

implemented by Shouval et al. 2002 through the NMDAr decay times, however,

without explicitly modelling what grants the NMDAr slower or faster kinetics such

as the NMDAr shift (Philpot et al. 2001). Also, other models have suggested the

hyperpolarizing-activated currents as the factors controlling the sliding threshold

(Narayanan and Johnston 2010), however, without a direct data comparison.

Irregular Firing

The most used experimental data in plasticity models are the regular firing struc-

tures with correlated spiking times. However, neurons in vivo are subjected to

background noise and irregular spiking times incompatible with the usual experi-

mental approach. As previously noted, in vivo plasticity cannot be explained only

by delay times as in STDP (Froemke and Dan 2002), thus suggesting rules that

use a single frequency or a single delay time characterize plasticity is of limited

interest. Unified theories can be applied to natural firing patterns as shown in

previous plasticity models (Graupner et al. 2016; Cui et al. 2018; Bittner et al.

2017). Table 3.4 collects studies of irregular firing in plasticity protocols which

are found in various degrees in the models listed in Table 3.5.

3.2.3 Brain regions and structures (localization)

Synaptic plasticity induction can be different between brain region since neu-

rons exhibit various morphologies (e.g. Purkinje and CA1 pyramidal cell), input

patterns dependent on the incoming neurocircuitry, genetic expression profiles

(Cizeron et al. 2020) and are supported for different densities of non-neuronal

cells (e.g. non-uniform distribution astrocytes, Keller et al. 2018). A formulation

of the non-neurocentric plasticity has been approached by unified theories which
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aim to generalize concepts (De Pittà and Brunel 2016). Depending on which sam-

pling method is used, plasticity outcomes from ex vivo and in vivo can differ due

to the background activity and others aspects (Ahnaou et al. 2020). Table 3.4 de-

scribes key aspects regulating plasticity in different localization contexts which

are used to classify models in Table 3.5.

Presynaptic plasticity pathways

The presynaptic release is pointed out as the largest source of variability in the

postsynaptic calcium influx due to its all-or-none behaviour (Yuste et al. 1999).

Unified theories have included presynaptic plasticity pathways such as the en-

docannabinoid system Heifets and Castillo 2009 to predict pre and postsynaptic

plastic changes (Costa et al. 2015; Ebner et al. 2019; Deperrois and Graupner

2020; Costa et al. 2017; Cui et al. 2018). Also, different forms of vesicle release

are implemented by the models as shown in Table 3.5, most usually, a discrete re-

lease with or without short-term plasticity (STP) is used, or an averaged STP form

in which the effects are illustrated in Figure 6.4A. However, vesicle pool dynamics

are generally ignored by models (Jedrzejewska-Szmek et al. 2017). Instead, mod-

els (De Pittà and Brunel 2016; Ebner et al. 2019) have used an averaged-form

of vesicle release or no adaptation, i.e. does not mimic the depletion of vesicles

during sustained inputs. An example of discrete and averaged vesicle release

forms is given in this thesis’s additional results in Figure 6.4.

Morphology

Different implementations of spine (Bartol et al. 2015) and neuron morphologies

(Herz et al. 2006) are found in models to represent time and position of vari-

ables relevant to plasticity (Chindemi et al. 2020; Ebner et al. 2019; Jedrzejewska-

Szmek et al. 2017). The relevance of spatial characterization intersects with elec-

trophysiology and diffusion properties of enzymes (Yasuda 2017) which has been

approached by more detailed models (Blackwell et al. 2019). Furthermore, den-

dritic spikes contribution to plasticity prediction has been implemented by Ebner

et al. 2019. Another example, Chindemi et al. 2020 includes multiple simplified

Ca2+-dependent rules based on Graupner and Brunel 2012 to estimate plasticity

in cortical neurons for various synapses. Table 3.4 shows different levels of neu-

ron morphology implementations and how plasticity models adopt them (Table

3.5).
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Non-neuronal cells contribution

The tripartite synapse (pre, post and astrocyte, Tewari and Majumdar 2012; Nad-

karni and Jung 2007) or quadripartite (including microglia Schafer et al. 2013)

are non-neurocentric frameworks to understand plasticity through the synaptic

micro and macrodomains. These non-neuron cells regulate the extracellular en-

vironment, excitability, neuronal death and development (Singer et al. 2018). For

instance, astrocytes prevent glutamate spillover to nearby spines through gluta-

mate transporters (GLT-1) which recently has been receiving attention in models

González et al. 2020. Despite De Pittà and Berry 2019 initiatives to model the

participation glia cells on plasticity there is still a gap to be filled as suggested by

Table 3.5.

Sampling methods

The rules to induce plasticity differ between brain regions due to their specializa-

tion, specific morphology, expression, and connectivity rules. Therefore, models

need to be adaptable to capture aspect in different regions, such as done by

Graupner and Brunel 2012. Theoretically, a model can evaluate if the experi-

ment done for one region is valid for another one as shown by Ebner et al. 2019

which made a cortex model and applied it to reproduce cortical and hippocampal

data. The benefit of having a less abstract parameter space is that a model can

be repurposed using available biophysical measures rather than decode how a

given abstraction maps an experiment specificity. The meaning of abstraction

here is how a model represents physical units and biological entities. Table 3.5

shows how generic plasticity models are when including different brain regions

and sampling methods.

3.2.4 Fast/slow variables

Within the dendritic spines, ion channels can open and close in milliseconds, and

enzymes can stay activated for minutes. Such duality can bridge short and long

time scales Antunes et al. 2016a. For instance, the hippocampus’s sliding thresh-

old phenomena was observed using first a slow priming stimulation with a rest

period followed by the frequency-dependent protocol (Wang and Wagner 1999).

Another experiment requiring slow variables is the Bittner et al. 2017 behavioural

spiking time plasticity. They replayed a burst-like-STDP recorded in vivo with long

delay times (seconds), finding a bell shape curve that requires a slow variable

to bridge long timescales. To include these, models have used slow variables
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(e.g. based on enzymes) to integrate fast timescales, such as done by Graup-

ner and Brunel 2007 inspired by their CaMKII-CaN model (Graupner and Brunel

2007). A similar strategy is done by Clopath and Gerstner 2010, which integrates

fast membrane potential timescales using a low pass filter. Table 3.5 shows how

models integrate these different aspects.

Membrane potential

Membrane potential is usually a fast variable that is more accessible to measure

than Ca2+. Although some models have not included electrophysiological aspects

directly (Graupner and Brunel 2012; Inglebert et al. 2020), its characterization

was shown to be relevant to understand how NMDAr coincidence contributes to

plasticity. BaPs, which are the postsynaptic responses dendritic spines interact

with, attenuates under constant use, and it is subjected to the differential expres-

sion of ion channels (Ebner et al. 2019). The BaP attenuation controls the Ca2+

entry in neurons through NMDAr coincidence. The membrane potential is closely

related to neuron morphology since it defines the location of excitatory, inhibitory

and modulatory inputs (Gerstner et al. 2018), and the dendritic tree integration

properties.

Neurotransmitters & receptors

The plasticity phenomena have necessary conditions other than entry of Ca2+ in-

flux, for instance mGluR1 (Tigaret et al. 2016) and CaMKII activation (Chang et

al. 2017). Beyond the classically implemented receptor and ion channels, neu-

romodulators modify excitability and requirements to plasticity induction (He et

al. 2015). Models have included neuromodulators contribution (Blackwell et al.

2019). Alternatively, they have modelled regions that are markedly related to

neuromodulation, such as dopaminergic synapses in the striatum (Jedrzejewska-

Szmek et al. 2017). Also, this has been done in a more phenomenological fashion

Gerstner et al. 2018. As suggested by Magee and Grienberger 2020, neuromod-

ulators participate in vivo plasticity (Isaac et al. 2009; Bittner et al. 2017). There-
fore it would be valuable if they were more represented in models.
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Table 3.4: Table classifying different attributes of plasticity models.
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Table 3.5: Table classifying different attributes of plasticity models using the guide in the Table 3.5.
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Ca2+ sources

Models have introduced both detailed (Bartol et al. 2015; Blackwell et al. 2019)

and simplified (Shouval et al. 2002; Graupner and Brunel 2012) Ca2+ dynamics.

Usually these simulations where validated with dye fluorescence data which re-

flects the buffered Ca2+. There is a diversity of plasticity models focusing on the

Ca2+ sources, such as endoplasmatic reticulum (Singh et al. 2021), Ca2+ diffusion

(Jedrzejewska-Szmek et al. 2017), and NMDAr decay time (Shouval et al. 2002).

Due to the diversity of mechanisms, a Ca2+ linear model was shown to be in-

sufficient to reproduce STDP rules sampled at different [Ca2+]o (Inglebert et al.

2020).

Molecular dynamics

Molecular interactions are linked to different forms of plasticity. For instance,

Lisman 1989’s model provided testable predictions for two problems simultane-

ously, memory storage and plasticity induction. His hypothesis that CaMKII would

control memory maintenance was based on the dynamics of CaN and CaMKII. The

former surpassing protein turnover through its self-sustained activity (illustrated

by models Miller et al. 2005; Graupner and Brunel 2007) and could be reversed by

CaN. Instead of the maintenance role, Chang et al. 2017; Chang et al. 2019 sug-

gests CaMKII takes part only in the induction of plasticity. Later, Otmakhov with

Lisman and others showed experimental evidence suggesting that any known

phosphatase does not dephosphorylate CaMKII (Otmakhov et al. 2015). This em-

pirical evidence was previously predicted by Michalski 2013’s model. Regardless

of physiological relevance, the concepts developed still influence models seek-

ing different pathways to illustrate the memory storage hypothesis (Urakubo et

al. 2014). Several models explored the combined role of CaMKII and CaN (or

phosphatases and kinases) and their role in plasticity. For instance, Antunes et

al. 2016b models AMPAr exocytosis and endocytosis triggered the enzymatic dy-

namics of CaN and CaMKII. CaMKII implementations are seen with different levels

of detail, such as Pharris et al. 2019 which tries to model the combinatorial explo-

sion of CaMKII states recently unachievable. Also, Ebner et al. 2019 implements

a phenomenological version of the enzyme dynamics for pre and postsynaptic

long-term plasticity using Clopath and Gerstner 2010 low-pass strategy to pre-

dict plasticity.

The data output from molecular simulations tend to be larger than those fo-

cusing on only voltage or calcium, and it has complicated interpretation due to

the possible unknown interactions which could escape analysis. An example of
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multiple threshold systems is given by Ebner et al. 2019. Alternatively, as in

Blackwell et al. 2019, an average over key molecules during a fixed interval was

used to predict how alcohol disturbs plasticity. Simulation with various molecules

(Kotaleski and Blackwell 2010; Bhalla 2017), with redundant pathways, could indi-

cate the molecular compensations in the disruption pathways implicated in plas-

ticity (Mizusaki and O’Donnell 2021). Therefore, methodological advances are

necessary to analyse these systems.
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3.3 Determinism, stochasticity and averages

A competition in which neuron model had to reproduce the voltage traces as a re-

sult of a current injection raised questions on which kind of modelling (biophysical

or abstract) could better predict the spiking events of cortical neurons (Jolivet et

al. 2008). The collective behaviour of hundreds of stochastic ion channels shaping

a neuron’s membrane potential has been estimated by deterministic modelling

when parameters are optimized to this. However, when scaling down towards

smaller compartments, such as dendritic spines, an averaged approach does not

represent the dynamics of a few stochastic units (Ribrault et al. 2011). The num-

ber of receptors and ion channels falls sharply in dendritic spines (Nimchinsky

et al. 2004), such as ∼3 VGCCs to ∼15 NMDAr (Ribrault et al. 2011) demand-

ing a stochastic modelling approach to encompass the inherent stochasticity of

such small compartments (Blackwell et al. 2019). An alternative is to include an

external global noise, however without a defined source (Graupner and Brunel

2012). Another stochastic event relevant to understand plasticity is the all-or-

none release of neurotransmitter vesicles. Despite these events being discrete

and depending on the availability of vesicles, plasticity models usually character-

ize vesicle release using averages or unitary input without short-term plasticity.

That is, when using an averaged input a vesicle release failure may never oc-

cur, it is plausible that strategies without short-term plasticity introduce more

glutamate than expected (see Figure 6.4A). Stochastic contributions of individual

receptors and ion-channels are essential to characterize the highly miniaturized

dendritic spines due to its small number of components. Furthermore, action po-

tential backpropagation experienced by dendritic spines also can be stochastic,

with random invasion of distant dendrites (Short et al. 2017). The richness of

stochastic process in the neurons and how they contribute to learning still need

to be understood better since multiple descriptions of the stochastic phenomena

does not attribute a function to what is measured (Ribrault et al. 2011; Rusakov

et al. 2020).

3.4 Thresholds strategies

Mechanisms with short and long timescales affect how plasticity is expressed.

Thus implementing all known players (Meunier et al. 2017) would be out of reach

for a human to do without mistakes. Instead of having a cascade of events link-

ing stimulation to the inclusion of AMPAr in the PSD, one could map a variable

into the desired outcome without necessarily simulating the intermediary inter-
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actions, also known as the phenomenological model of cascade induction. For

instance, Graupner and Brunel 2012 thresholds Ca2+, showing that it is possi-

ble to generate various learning rules seen in the literature; to this, they use

a Heaviside function detecting when Ca2+ is over the LTD and/or LTP threshold.

When Ca2+ crosses the threshold, it modifies the synaptic efficacy with a given

LTD and LTP associated rate. Furthermore, Graupner and Brunel 2012 model was

modified to unify other plasticity mechanisms (Inglebert et al. 2020; Graupner

et al. 2016; De Pittà and Brunel 2016; Chindemi et al. 2020). However, since

Graupner and Brunel 2012 model extension is also abstract, they could not be

merged in a modular way and are restricted by the specificity of the experiment

they reproduce. Thresholds are usually applied to fast time scales (e.g. Ca2+ in

Graupner and Brunel 2012 and voltage in Clopath and Gerstner 2010), translated

to integrators, filters or indicator functions. A general limitation of the threshold

approach is the definition of an upper limit, meaning that a variable contributes

to induce plasticity regardless of how high it is above the threshold, disregarding

abnormally influxes. This lack of upper limit for excessively high Ca2+ influx ig-

nores that apoptotic pathways can be triggered for example. Another thresholds

issue is that variables contribute to plasticity from the first spike in a spike train,

which does not assume the possibility that some spikes are used to communicate

only instead of inducing plasticity. For instance, the dendritic spine structure is

unchanged for a single EPSP however, after eight EPSPs spine structure reorga-

nization occurs (Chang et al. 2017).

A threshold strategy following original Lisman 1989’s Ca2+ amplitude hypoth-

esis, also discussed in Shouval et al. 2002, uses two thresholds over Ca2+ to

describe synaptic weight change, using the expression below from Graupner and

Brunel 2012:

τ ρ̇ = −ρ(1− ρ)(ρ⋆ − ρ) + γp(1− ρ)Θ(c(t)− θp)− γdρΘ[c(t)− θd] +Noise(t).

Here, c(t) is the Ca2+ concentration, ρ is the synaptic weight, γp and γd are

respectively the rate of change for LTP and LTD. This expression represents plas-

ticity induction with a Heaviside function Θ using a LTP and LTD threshold over

calcium, respectively, θp and θd. Note that the noise is added externally, repre-

senting a global measure of noise, such strategy is refined by De Pittà and Brunel

2016 which specifies more precisely the noise sources before adding it externally.

Other strategies, instead, apply a similar two-threshold system in more than one

variable using a low-pass filter as in Ebner et al. 2019. In this thesis, a new

threshold system will proposed that instead of being applied individually to each
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variable as in previous works, is applied to combined dynamics of variables.
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Chapter 4

The gap in the computational
models of plasticity

Computational models of plasticity have the potential to provide testable hypoth-

esis to understand learning and memory better. As in the previous chapter, uni-

fying concepts enlarge the domain of questions one can ask. If an ideal model

can provide sharper questions, a complex model would grant broader coverage.

However, drawbacks from overlaying complexity may not ensure a precise repre-

sentation of the real phenomenon (Brette 2015). For instance, models using data

from heterogeneous conditions (Bartol et al. 2015) can fall on the Frankenstein

effect discussed by Brette 2016. That is, there is a risk of false modularity when

assembling mechanisms obtained from different sources such as repositories of

neuronal mechanisms. Also, there is an analytical challenge when simulating

many variables (Ebner et al. 2019; Blackwell et al. 2019). Therefore, a balanced

modelling approach encompassed with data validation is a more suitable goal.

As previously discussed in chapter three, most models overlook experimental
conditions of their datasets, limiting how one can compare experiment and sim-

ulation. More contributions are also required for in vivo-like firing, non-neural cells
plasticity modulation, how calcium sources and molecular dynamics are mod-

elled. One can attribute such arrested development to a data shortage. However,

similarly to the precursor plasticity models, they could predict experimental out-

comes for years to come, even with scarce evidence. Therefore, in this thesis,

with the available data, a biophysical model was developed to cover experimen-

tal conditions and how they interact with the key calcium sources and the im-

mediate calcium-binding enzymes. The model phenomenologically includes con-

tributions from the more established advances of synaptic plasticity (FDP, STDP,

membrane potential, morphology, vesicle release) to balance complexity. As pre-

viously discussed, there is an analytical bottleneck when interpreting molecular

57
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simulations; next, a new plasticity prediction strategy is defined that expands the

interpretability of established unidimensional thresholds and averages.

4.1 Limits of unidimensional thresholds

A challenge in modelling is to decide whether adding a mechanism is relevant

for a given task and how abstract or complex it should be. Owning to represent

synaptic mechanisms, models can assume that relevant factors are hidden (not

explicitly described), allowing them to predict plasticity without necessarily simu-

lating all cascade of events linked to plasticity outcomes. In the literature, strate-

gies to bridge cascade of events without describing intermediary steps are done

by thresholds (Graupner and Brunel 2012; Shouval et al. 2002), filters (Clopath

and Gerstner 2010; Gerstner et al. 2018) or averages over the simulated vari-

ables (Blackwell and Jedrzejewska-Szmek 2013). Variable-thresholding in neuron

models date back to McCulloch and Pitts 1943. Experimentally, W. Singer in 1977

(as refereed by Bear et al. 1987) suggests the existence of a thresholdmechanism

over calcium and voltage interactions to induce plasticity modifications. Although

it is long known that the interaction over two or more variables should be taken

into account in a combined way, current models still use unidimensional thresh-

olds, asmentioned in chapter 3. Therefore, new techniques to deal with combined

activity are required. In this thesis, we developed a polygonal threshold, named

here geometrical readout, which can be used to capture the dynamical patterns of

two or more variables simultaneously (Figure 4.2C), instead of individually (Figure

4.2A-B). Instead of relying on a unidimensional threshold (Graupner and Brunel

2012; Clopath and Gerstner 2010), one could define a geometrical shape or vol-

ume to readout dynamical pattern inducing plasticity. Combining variables into

orbits can potentially improve the separability of plasticity protocol since when

the number of dimensions increases, the distance between points also does for

a suitable metric (Friedman et al. 2001 pages 22-23). Conversely, this is an is-

sue for methods for data classification (Friedman et al. 2001) since more data is

required to fill up the sparsity associated with the increase of dimensions, also

known as the "curse of dimensionality". The advantage of using it in the dynam-

ical systems is that such extra space gained with more dimensions can separate

better plasticity protocols which can be too similar in lower dimensions. This is

illustrated by Guyon and Elisseeff 2003 which shows that even adding a second

dimension with noise can increase separability in scatter plots. We depict this

increase of separability with a toy model example in Figure 4.1.

Limits are important for biological systems. As mentioned in chapter 2, exces-
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Figure 4.1: Increase of orbit separability with different dimensionalities. A) 20 pulses of two variables with different rise and decay

constant representing different plasticity protocols. B) The same variables in panel B added combined with two other variables with different

decay and rise times. C) Same as A and B combined to other two variables. D) Distance between curves a and b in panel A. E) Distance

between curves a and b in panel B. F) Distance between curves a and b in panel C.

sive calcium activation triggers apoptotic pathways rather than plasticity (Zhivo-

tovsky and Orrenius 2011; Orrenius et al. 2003). Unidimensional thresholds usu-

ally do not consider upper limits, Figure 4.2D–I shows how the geometrical and

unidimensional thresholds are saturated by two slow variables with increasingly

higher increment size (var1 and var2). Using these two aspects, orbits and a

geometrical readout, we developed a model which can predict a wide range of

plasticity experiments. The following section proposes a model to cover the ex-

posed gaps. The main question it tries to answer is twofold, how a geometrical

threshold can decode the enzymatic activity to predict plasticity and how it can

be used to understand the heterogeneity of plasticity outcomes.
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Figure 4.2: Unidimensional and geometrical threshold. A) Variable with a slow decay (τ = 1.5s) integrating 30 pulses at 10 Hz with

threshold at 2 a.u.. The color gradient (white to green) depicts the increment size in variable at each pulse B) Variable with a faster decay

time (τ = 0.2s) integrating 30 pulses at 10 Hz with threshold at 2 a.u. . The color gradient (white to blue) depicts the increment size.

C) Combined dynamics of variables in panels A and B showing a geometrical threshold (defined by the points [7.5,1.],[7.5,2.],[2.,2.] and

[2.,1.]). D) Time above the threshold (t.a.t) for different increment sizes (white to green) for the variable in the panel A. E) Time above the

threshold (t.a.t) for different increment sizes (white to blue) for the variable in the panel B. F) Time inside the polygon (t.i.p) for different

increment sizes (white to red) for the variable in the panel B. G) Total time over the threshold for the variable in panel A changing the

increment size. H) Same as G for panel B. G) Total time inside the polygon for orbits in the panel C.



Chapter 5

A stochastic model of
hippocampal synaptic plasticity
with geometrical readout of
enzymes - Article

5.1 Research context

The overall goal of the trans-disciplinary collaboration between my thesis super-

visors Romain Veltz (INRIA) and Hélène Marie (IPMC) was to model a healthy CA3-

CA1 synapse to test later Alzheimer’s disease-related disruptions in the Ca2+ dy-

namics induced by the intracellular peptide residue from APP (Amyloid precursor

protein) cleavage, called AICD (APP intracellular domain, Pousinha et al. 2017;

Pousinha et al. 2019). This peptide up-regulates NMDAr-dependent postsynap-

tic Ca2+ contribution by regulating GluN2B subunit in excitatory synapses (Inno-

cent et al. 2012) and increases Ca2+-dependent hyperpolarisation (Pousinha et

al. 2019), decreasing cell excitability and neuron integration properties which are

believed to influence cognitive decay during the early stage of Alzheimer’s dis-

ease. The research goal related to the pathology modelling could not start as a

satisfactory synapse model was not readily available to cover the heterogeneity

of experimental conditions. The thesis project, therefore, focused on creating an

excitatory synapse model. In parallel, Romain Veltz and Cian O’Donnell (Univer-

sity of Bristol) had initiated a collaboration to build this type of model in healthy

conditions providing the backbone on which the thesis project started.

The project was funded through the ComputaBrain project granted by Univer-

sité Côte d’Azur, which intends to model and unify different brain scales to under-
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stand healthy and pathological aspects of memory processing. This PhD thesis

was funded to cover the synaptic scale of this project. The first challenge was

to explain the Tigaret et al. 2016’s STDP experiments claiming that the canon-

ical STDP rules were not reproducible in brain slices. Tigaret et al. 2016 also

used a broad range of stimulation patterns, including burst-STDP, different delays,

presynaptic stimulation with burst and frequencies. This article had an apparent

paradox caused by the Ca2+ dye, with similar fluorescence curves for plasticity

protocols yielding different outcomes (discussed in Figure 6.5).

Initially, we used Fujii et al. 2013’s discovery attributing to CaMKII and CaN

somatic amplitude and integral a filter property the ability to decode the firing

patterns (number of pulses and frequency). Our first readout predicted plasticity

using the simulated enzymatic integral and amplitude (Fujii et al. 2013). Later,

fast CaMKII measurements in dendritic spines done by Chang et al. 2017 were

considered, marking a change of research direction since this new data described

temperature effects on CaMKII (see article methods). Also, Chang et al. 2019 used

their faster sensor in dendritic spines that differed from Fujii et al. 2013 in terms

of CaMKII saturation. That raised the doubt whether the nonlinear filter found by

Fujii et al. 2013 is valid for dendritic spines. The comparison of our model based

on Chang et al. 2019 using Fujii et al. 2013 readout strategy is shown in Figure

6.1. The closest similarity between these papers was that dendritemeasurements

had a slower CaMKII saturation (Chang et al. 2017), which could explain Fujii et al.

2013 discrepancy.

Chang et al. 2017 (supp. files) measurements displayed a slow decay in Ca2+

fluorescence. This characteristic slow adaptation also affected CaMKII activation

during glutamate uncaging (see article methods Figure M11). It was important to

understand how the adaptation of CaMKII occur in Chang et al. 2017 since Tigaret

et al. 2016 (supp. files) also had a strong adaptation of Ca2+-sources (visualized

through Ca2+ dye) which caused the fluorescence to vanish in 20 s after the stim-

ulation (no Ca2+ influx). Due to this, the hypothesis lead to the investigation and

inclusion of sources of adaptation in the model, such as BaP attenuation (Gold-

ing et al. 2001), AMPA desensitisation (Robert and Howe 2003), the SK channels

(Griffith et al. 2016) and short-term depression and facilitation. From all possibili-

ties, the one which best matches Chang et al. 2017 attenuation was the transient

spine volume which slightly decreased Ca2+ concentration (Holst et al. 2021) and

CaMKII activation. However, no data was available to model the transient vol-

ume since structural proteins dynamics are usually imaged in a time resolution

of minutes or hours (Bosch et al. 2014).

After reproducing Tigaret et al. 2016, the challenge was to increase the range
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of experiments the model can cover. However, data with similar experimental

conditions were scarce. Given that the temperature could change CaMKII activa-

tion as shown in Chang et al. 2017, the focus was to find themost similar plasticity

experiments done at 35◦C. Dudek and Bear 1992 was the best candidate since it

had a BCM-like curve and increased the number of LTD experiments to validate

the model. After reproducing Dudek and Bear 1992’s data, the initial strategy of

averages and integrals was discarded since a long plasticity protocol (e.g. LTD)

would scaled up the integral value due to noise. That was the motivation to find

a readout in which the time would be relevant only when the enzymes reached a

specific activation level, like a Goldilocks zone for plasticity.

Parallel to adopting another prediction strategy, another experiment fromDudek

and Bear 1993 had the same temperature and aCSF, but for different ages, show-

ing that LTD and LTP had different requirements throughout developmental ages.

Initially, Dudek and Bear 1993 motivated the inclusion of age control in the model

by diversifying the NMDAr subtypes. To this, NMDAr shift was modelled using Sin-

clair et al. 2016’s NMDAr subtypes expression profiles. In this way, we innovate

on how to model age in plasticity models by adding a parameter controlling an

age continuum, different from other computational neuroscience models (based

on electrophysiology), which treated age as a class (e.g. young vs adult). Age-

related NMDAr changes were essential to calibrate the model since Tigaret et al.

2016 used older rats than Dudek and Bear 1992; Dudek and Bear 1993. Later,

the model included age-related BaP and GABA changes since, as mentioned by

Buchanan and Mellor 2007 and Meredith et al. 2003, these are relevant to un-

derstand age-related changes in STDP with BaP being more efficient for an adult

than younger rats, with implications for the NMDAr coincidence detection.

The aCSF conditions were slightly different between Dudek and Bear 1992 and

Tigaret et al. 2016. However, these differences were even greater considering

Meredith et al. 2003 and Wittenberg and Wang 2006, done at room temperature

(see Table 3.3). Wittenberg and Wang 2006 and Krelstein et al. 1990 suggested

how plasticity rules can be affected by temperature. Due to this, it was decided

to extend the temperature control initially over NMDAr using Korinek et al. 2010’s

NMDAr-dependent EPSP measurements. However, the temperature adjustments

from other receptors and ion channels were done later. During NeuroFrance 2019

conference, we discovered through Yanis Inglebert’s poster how external Ca2+

and Mg2+ modulated STDP. That was important to understand since experiments

used to validate the model had different aCSF recipes. After the inclusion of a

better Ca2+ control through GHK formalism, we found that Ca2+ also affected the

vesicle release probability (Hardingham et al. 2006; King et al. 2001) and the
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NMDAr conductance (Maki and Popescu 2014) which were phenomenologically

implemented.

5.2 Article preamble

Plasticity experiments are heterogeneous in their methods, and conditions are

thought to represent physiological learning and memory. Therefore, it is vital to

understand how plasticity is induced in such extreme cases (non-physiological

conditions) since they can also induce long-lasting changes in synaptic efficiency.

The article presented next describes a data-driven model to gain insight into the

relationship between plasticity outcomes in heterogeneous experimental condi-

tions. It shows a new synaptic rule which reproduces several plasticity exper-

iments using the concepts of geometrical readout and orbits mentioned previ-

ously. Also, it offers a hypothesis on how irregular firing from in vivo plasticity

occurs and new strategies to induce LTP and LTP based on plasticity protocols.

The model also formalises strategies to induce LTP or LTD when less favourable

experimental conditions are not met (e.g. LTD and adult rats). For instance, the

model predicts that presynaptic burst can rescue LTD induced by LFS in adult

rats to levels similar to rat pups using Dudek and Bear 1992; Dudek and Bear

1993’s experimental conditions. It also predicts several plasticity maps indexed

by the experimental conditions or firing structure variations (in vivo-like and reg-

ular spikes, single interspike stimulation interval). This theoretical result extends

the reproducibility factor of hallmarks experiments. And, it provides testable pre-

dictions using parameter modifications such as temperature, developmental age,

aCSF (Mg and Ca), and distance from the soma.

The synapse model which will presented next is formulated as a Piecewise de-

terministic Markov process, see Annexe 1 for details.



A stochastic model of hippocampal synaptic plasticity
with geometrical readout of enzyme dynamics
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Discovering the rules of synaptic plasticity is an important step for understanding brain learning. Existing plasticity models
are either 1) top-down and interpretable, but not flexible enough to account for experimental data, or 2) bottom-up and
biologically realistic, but too intricate to interpret and hard to fit to data. We fill the gap between these approaches by
uncovering a new plasticity rule based on a geometrical readout mechanism that flexibly maps synaptic enzyme dynamics
to plasticity outcomes. We apply this readout to a multi-timescale model of hippocampal synaptic plasticity induction that
includes electrical dynamics, calcium, CaMKII and calcineurin, and accurate representation of intrinsic noise sources. Using
a single set of model parameters, we demonstrate the robustness of this plasticity rule by reproducing nine published ex
vivo experiments covering various spike-timing and frequency-dependent plasticity induction protocols, animal ages, and
experimental conditions. The model also predicts that in vivo-like spike timing irregularity strongly shapes plasticity outcome.
This geometrical readout modelling approach can be readily applied to other excitatory or inhibitory synapses to discover
their synaptic plasticity rules.

To understand how brains learn, we need to identify the rules
governing how synapses change their strength in neural circuits.
What determines whether each synapse strengthens, weakens,
or stays the same? The dominant principle at the basis of cur-
rent models of synaptic plasticity is the Hebb postulate1 which
states that neurons with correlated electrical activity strengthen
their synaptic connections, while neurons active at different
times weaken their connections. In particular, spike-timing-
dependent plasticity (STDP) models2–4 were formulated based
on experimental observations that precise timing of pre- and post-
synaptic spiking determines whether synapses are strengthened or
weakened5–8. However, experiments also found that plasticity in-
duction depends on the rate and number of stimuli presented to the
synapse9,10, and the level of dendritic spine depolarisation11–15.
The lack of satisfactory plasticity models based solely on neural
spiking prompted researchers to consider more elaborate models
based on synapse biochemistry16. Following a proposed role for
postsynaptic calcium (Ca2+) signalling in synaptic plasticity17,
previous models assumed that the amplitude of postsynaptic cal-
cium controls long-term alterations in synaptic strength, with
moderate levels of calcium causing long-term depression (LTD)
and high calcium causing long-term potentiation (LTP)18,19. Re-
cent experimental data suggests that calcium dynamics is also
important20–24 . As a result, subsequent phenomenological mod-
els of plasticity incorporated slow variables that integrate the
fast synaptic input signals, loosely modelling calcium and its
downstream effectors25–32.

However, even these models do not account for data showing
that plasticity is highly sensitive to physiological conditions such
as the developmental age of the animal33–36, extracellular calcium

and magnesium concentrations37,38 and tissue temperature39–41.
The fundamental issue is that the components of these phe-
nomenological models do not directly map to biological compo-
nents of synapses, so they cannot automatically model alterations
due to physiological and experimental conditions. This absence
limits the predictive power of existing plasticity models.

To tackle this problem, we devised a new plasticity rule based
on a bottom-up, data-driven approach by building a biologically-
grounded model of plasticity induction at a single rat hippocam-
pal CA3–CA1 synapse. We focus on this synapse type because
of the abundant published experimental data that can be used
to quantitatively constrain the model parameters. Compared to
previous models in the literature, we aimed for an intermedi-
ate level of detail: enough biophysical components to capture
the key dynamical processes underlying plasticity induction, but
not the full molecular cascade underlying plasticity expression;
much of which is poorly quantified42. Our model centred on
dendritic spine electrical dynamics, calcium signalling and imme-
diate downstream molecules, which we then mapped to synaptic
strength change via an conceptually new dynamical, geometric
readout mechanism. Crucially, the model also captures intrinsic
noise based on the stochastic switching of synaptic receptors and
ion channels43,44. We found that the model can account for pub-
lished data from spike-timing and frequency-dependent plasticity
experiments, and variations in physiological parameters influenc-
ing plasticity outcomes. We also tested how the model responded
to in vivo-like spike timing jitter and spike failures, and found
that the plasticity rules were highly sensitive to these subtle input
alterations.
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Fig. 1. | The synapse model, its timescales and mechanisms. a, Model diagram with the synaptic components, the pre and postsynaptic com-
partments. Inhibitory receptor bottom left. b, Stochastic dynamics of the different receptors and channels. Plots show the total number of open
channels/receptors as a function of time. AMPArs and NMDArs are activated by glutamate, VGCC are activated by membrane potential, and GABArs
are activated by GABA. The timescale of variable response increases from top to bottom panels. c, Dendritic spine membrane potential (left) and
calcium concentration (right) as function of time for a single causal (1Pre1Post10) stimulus. d, Left: depletion of vesicle pools (reserve and docked)
induced by 30 pairing repetitions delivered at 5 Hz45 (Methods). The same vesicle depletion rule is applied to both glutamate and GABA. Right: BaP
efficiency as function of time. BaP efficiency controls the axial resistance between soma and dendrite in order to phenomenologically capture the
distance-dependent BaP attenuation46,47 (Methods). e, Activated enzyme concentration for CaM, CaN and CaMKII, as function of time for the
stimulus 1Pre1Post10, 30 pairing repetitions delivered at 5 Hz. Note that the vertical grey bar is the duration of the stimuli, 6 s.

Results

A multi-timescale model of synaptic plasticity induction. We
built a computational model of plasticity induction at a single
CA3-CA1 rat glutamatergic synapse (Fig. 1). Our goal was
to reproduce results on synaptic plasticity that explored the ef-
fects of several experimental parameters: fine timing differences
between pre and postsynaptic spiking (Fig. 2-3); stimulation
frequency (Fig. 4); animal age (Fig. 5); external calcium and
magnesium (Fig. 6); stochasticity in the firing structure (Fig. 7),
temperature and experimental conditions variations (Supplemen-
tal Information). Where possible, we set parameters to values
previously estimated from experiments, and tuned the remainder
within physiologically plausible ranges to reproduce our target
plasticity experiments (Methods).

The model components are schematized in Fig. 1a (full
details in Methods). For glutamate release, we used a two-
pool vesicle depletion and recycling system, which accounts
for short-term presynaptic depression and facilitation. When
glutamate is released from vesicles, it can bind to the postsynap-
tic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and
N-methyl-D-aspartate receptors (AMPArs and NMDArs, respec-
tively). When dendritic spine voltage depolarises, it activates
voltage-gated calcium channels (VGCCs) and removes magne-

sium (Mg2+) block from NMDArs. Backpropagating action
potentials (BaP) can also cause spine depolarisation. As an in-
hibitory component, we modelled a gamma-aminobutyric acid
receptor (GABAr) synapse on the dendrite shaft48. Calcium ions
influxing through VGCCs and NMDArs can activate hyperpo-
larising SK potassium channels49,50, bind to calmodulin (CaM)
or to a generic calcium buffer. Calcium-bound calmodulin acti-
vates two major signalling molecules immediately downstream of
Ca/CaM enzymes51: Ca2+/calmodulin-dependent protein kinase
II (CaMKII) or calcineurin (CaN) phosphatase, also known as
PP2B52. We included these two proteins because CaMKII acti-
vation is necessary for Schaffer-collateral LTP53,54, while CaN
activation is necessary for LTD55,56. Later, we show how we map
the joint activity of CaMKII and CaN to LTP and LTD.

Synaptic receptors and ion channels have an inherent ran-
dom behavior, stochastically switching between open and closed
states44. If the number of receptors or channels is large, then
the variability of the total population activity becomes negligible
relative to the mean57. However individual hippocampal synapses
contain only small numbers of receptors and ion channels, for
example ∼10 NMDA receptors and <15 VGCCs58–60, making
their total activation highly stochastic. Therefore, we modelled
AMPAr, NMDAr, VGCCs and GABAr as stochastic processes.
Presynaptic vesicle release events were also stochastic: glutamate

2/46

66CHAPTER 5. A STOCHASTICMODELOF HIPPOCAMPAL SYNAPTIC PLASTICITYWITHGEOMETRICAL READOUTOF ENZYMES - ARTICLE



Fig. 2. | The duration and amplitude of the joint CaN-CaMKII activity differentiates plasticity protocols. a, Activity of CaMKII (solid line)
and CaN (dashed line) (µM) for two protocols. Experimentally the 1Pre2Post10 produces LTP, and 1Pre1Post10 produces no change (NC). Both
are composed of 300 pairing repetitions delivered at 5 Hz. b, Joint enzymatic activity (CaN-CaMKII) for the protocols in panel a. The black dot
indicates the initial resting activity and the arrows the trajectory direction as function of time. The grey points mark the time position (x-axis in
panel a) for both protocols at 2, 10 and 60 s (when the stimulation stops). The black square is the zoomed region in panel c. c, The mean time
spent (colorbar) for each protocol in panel b (100 samples for each protocol for panelsc, f and i). d, Same as in panel a, but for the LTP protocol,
1Pre2Post50 and, the NC protocol, 2Post1Pre50. Both are composed of 300 pairing repetitions at 5 Hz. e, Same as in panel b for protocols in panel d.
f, The mean time spent (colorbar) for each protocol in panel e. g, Same as in panel a and d, but for two protocols with different frequencies and pulse
repetitions. The LTD protocol, 2Pre50 900 at 3 Hz and, the NC protocol 2Pre10 300 at 5 Hz. h, Same as in panel b and e for protocols in panel g. i,
The mean time spent (colorbar) for each protocol in panel h.

release was an all-or-nothing event, and the amplitude of each
glutamate pulse was drawn randomly, modelling heterogeneity in
vesicle size61. The inclusion of stochastic processes to account
for an intrinsic noise in synaptic activation62 contrasts with most
previous models in the literature, which either represent all vari-
ables as continuous and deterministic or add an external generic
noise source63–65.

The synapse model showed nonlinear dynamics across multi-
ple timescales. For illustration, we stimulated the synapse with
single simultaneous glutamate and GABA vesicle releases (Fig.
1b). AMPArs and VGCCs open rapidly but close again within
a few milliseconds. The dendritic GABAr closes more slowly,
on a timescale of ∼10 ms. NMDArs, the major calcium source,
closes on timescales of ∼50 ms and ∼250 ms for the GluN2A
and GluN2B subtypes, respectively.

To show the typical responses of the spine head voltage and
Ca2+, we stimulated the synapse with a single presynaptic pulse
(EPSP) paired 10 ms later with a single BaP (1Pre1Post10) (Fig.
1c, left). For this pairing, when BaP is triggered immediately

after an EPSP, it leads to a large Ca2+ transient aligned with the
BaP due to the NMDArs first being bound by glutamate then
unblocked by the BaP depolarisation (Fig. 1c, right).

Single pre or postsynaptic stimulation pulses did not cause de-
pletion of vesicle reserves or substantial activation of the enzymes.
To illustrate these slower-timescale processes, we stimulated the
synapse with a prolonged protocol: one presynaptic pulse fol-
lowed by one postsynaptic pulse 10 ms later, repeated 30 times at
5 Hz (Fig. 1d-e). The number of vesicles in both the docked and
reserve pools decreased substantially over the course of the stim-
ulation train (Fig. 1d left), which in turn causes decreased vesicle
release probability. Similarly, by the 30th pulse, the dendritic BaP
amplitude had attenuated to ∼85% (∼70% BaP efficiency; Fig.
1d right) of its initial amplitude, modelling the effects of slow den-
dritic sodium channel inactivation47,66. CaM concentration rose
rapidly in response to calcium transients but also decayed back
to baseline on a timescale of ∼500 ms (Fig. 1e top). In contrast,
the concentration of active CaMKII and CaN accumulated over a
timescale of seconds, reaching a sustained peak during the stimu-
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lation train, then decayed back to baseline on a timescale of ∼10
and ∼120 s respectively, in line with experimental data51,54,67

(Fig. 1e).
The effects of the stochastic variables can be seen in Fig.

1b–d. The synaptic receptors and ion channels open and close
randomly (Fig. 1b). Even though spine voltage, calcium, and
downstream molecules were modelled as continuous and deter-
ministic, they inherited some randomness from the upstream
stochastic variables. As a result, there was substantial trial-to-
trial variability in the voltage and calcium responses to identical
pre and postsynaptic spike trains (grey traces in Fig. 1d). This
variability was also passed on to the downstream enzymes CaM,
CaMKII and CaN, but was filtered and therefore attenuated by
the slow dynamics of CaMKII and CaN. In summary, the model
contained stochastic nonlinear variables acting over five different
orders of magnitude of timescale, from∼1 ms to∼1 min, making
it sensitive to both fast and slow components of input signals.

Distinguishing between stimulation protocols using the
CaMKII and CaN joint response. It has proven difficult for
simple models of synaptic plasticity to capture the underlying
rules and explain why some stimulation protocols induce plas-
ticity while others do not. We tested the model’s sensitivity by
simulating its response to a set of protocols used by24 in a recent
ex vivo experimental study on adult (P50-55) rat hippocampus
with blocked GABAr. We focused on three pairs of protocols
(three rows in Fig. 2). In each case in24’s experiments, one of the
pair induced LTP or LTD, while the other subtly different proto-
col caused no change (NC) in synaptic strength. We asked if the
model’s joint CaMKII-CaN activity could distinguish between
each pair of protocols.

The first pair of protocols differed in intensity. A protocol
which caused no plasticity consisted of 1 presynaptic spike fol-
lowed 10 ms later by one postsynaptic spike repeated at 5 Hz
for one minute (1Pre1Post10, 300 at 5Hz). The other protocol
induced LTP, but differed only in that it included a postsynaptic
doublet instead of a single spike (1Pre2Post10, 300 at 5Hz), im-
plying a slightly stronger BaP amplitude initially. For the plots in
Fig. 2a, it was not possible to set a single concentration threshold
on either CaMKII or CaN that would discriminate between the
protocols.

To achieve better separability, we combined the activity of
the two enzymes, plotting the joint CaMKII and CaN responses
against each other on a 2D plane (Fig. 2b). In this geometric
plot, the two protocol’s trajectories can be seen to overlap for the
initial part of the transient, but then diverge. To quantify trial
to trial variability, we also calculated contour maps showing the
mean fraction of time the trajectories spent in each part of the
plane during the stimulation (Fig. 2c). Importantly, both the
trajectories and contour maps were substantially non-overlapping
between the two protocols, implying that they can be separated
based on the joint CaN-CaMKII activity. We found that the
1Pre2Post10 protocol leads to a weaker response in both CaMKII
and CaN, corresponding to the lower blue traces Fig. 2b. The
decreased response to the doublet protocol was due to the en-
hanced attenuation of dendritic BaP amplitude over the course of
the simulation47, leading to less calcium influx through NMDArs
and VGCCs (data not shown).

The second pair of protocols we explored differed in sequenc-

ing. We stimulated the synapse model with one causal (EPSP-
BaP) protocol involving a single presynaptic spike followed 50
ms later by a doublet of postsynaptic spikes (1Pre2Post50, 300 at
5Hz), repeated at 5 Hz for one minute, which24 found caused LTP.
The other anticausal protocol involved the same total number
of pre and postsynaptic spikes, but with the pre-post order re-
versed (2Post1Pre50, 300 at 5Hz). Experimentally this anticausal
(BaP-EPSP) protocol did not induce plasticity. Notably, the only
difference was the sequencing of whether the pre or postsynaptic
neuron fired first, over a short time gap of 50 ms. Despite the
activations being apparently difficult to distinguish (Fig. 2d), we
found that the LTP-inducing protocol caused greater CaN activa-
tion than the protocol that did not trigger plasticity. Indeed, this
translated to a horizontal offset in both the trajectory and contour
map (Fig. 2e–f), demonstrating that another pair of protocols can
be separated in the joint CaN-CaMKII plane.

The third pair of protocols differed in both duration and in-
tensity. In line with previous studies,24 found that a train of
doublets of presynaptic spikes separated by 50 ms repeated at
a low frequency of 3 Hz for 5 minutes (2Pre50, 900 at 3Hz)
induced LTD, while a slightly more intense but shorter duration
protocol of presynaptic spike doublets separated by 10 ms re-
peated at 5 Hz for one minute (2Pre10, 300 at 5Hz) did not cause
plasticity. When we simulated both protocols in the model (Fig.
2g–i), both caused similar initial responses in CaMKII and CaN.
In the shorter protocol, this activation decayed to baseline within
100 s of the end of the stimulation. However the slower and
longer-duration 2Pre50 3Hz 900p protocol caused an additional
sustained, stochastically fluctuating, plateau of activation of both
enzymes (Fig. 2g). This resulted in the LTD-inducing protocol
having a downward and leftward-shifted CaN-CaMKII trajectory
and contour plot, relative to the other protocol (Fig. 2h-i). These
results again showed that the joint CaN-CaMKII activity may be
useful to predict plasticity changes.

A geometrical readout mapping joint enzymatic activity to
plasticity outcomes. We found that the simulated CaN-CaMKII
trajectories from the two LTP-inducing protocols (1Pre2Post10
and 1Pre2Post50, at Fig. 2a and D respectively) spent a large
fraction of time near ∼ 20 µM CaMKII and 7–10 µM CaN. In
contrast, protocols that failed to trigger LTP had either lower
(2Post1Pre50 and 2Pre10, Fig. 2d and 2g respectively), or higher
CaMKII and CaN activation (1Pre1Post10, Fig. 2a). The LTD-
inducing protocol, by comparison, spent a longer period in a
region of sustained but lower∼ 12µM CaMKII and∼ 2µM CaN
and activation. The plots in Fig. 2c,f and g, show contour maps
of histograms of the joint CaMKII-CaN activity, indicating where
in the plane the trajectories spent most time. Fig. c and f indicate
this measure can be used to predict plasticity, because the NC and
LTP protocol histograms are largely non-overlapping. In Fig. 2c,
the NC protocol response ‘overshoots’ the LTP protocol response,
whereas in Fig. 2f the NC protocol response ‘undershoots’ the
LTP protocol response. In contrast, when we compared the re-
sponse histograms for LTD and NC protocols, we found a greater
overlap (Fig. 2i). This suggested that in this case the histogram
alone was not sufficient to separate the protocols, and that proto-
col duration is also important. LTD induction (2Pre50) required
a more prolonged activation than NC (2Pre10).

To design a geometrical readout mechanism to map the

4/46

68CHAPTER 5. A STOCHASTICMODELOF HIPPOCAMPAL SYNAPTIC PLASTICITYWITHGEOMETRICAL READOUTOF ENZYMES - ARTICLE



Fig. 3. | Read-out strategy an Tigaret et al. 201624 experiment. a, Illustration of the joint CaMKII and CaN activities crossing the plasticity
regions. Arrows indicate the flow of time, starting at the black dot. Note that here time is hidden and one can only see the changes in enzyme
concentrations. b, Region indicator showing when CaN and CaMKII crosses the LTD or LTP regions in panel a. Leaving the region activates a
leaking mechanism that keeps track of the accumulated time inside the region. Such leaking mechanism drives the transition rates used to predict
plasticity (Methods). c, Plasticity Markov chain with three states: LTD, LTP and NC. There are only two transition rates which are functions of the
plasticity region indicator (Methods). The LTP transition is fast whereas the transition LTD is slow, meaning that LTD change requires longer time
inside the LTD region (panel a). The NC state starts with 100 processes. d, Joint CaMKII and CaN activity for all Tigaret protocols (labelled in F).
The stimulus ends when the trajectory becomes smooth. Corresponds to Fig. 2b,e and h, at 60 s. e, Region indicator for the protocols labelled in F.
The upper square bumps are caused by the protocol crossing the LTP region, the lower square bumps when the protocol crosses the LTD region (as in
panel d). f, Synaptic weight (%) as function of time for each protocol. The weight change is defined as the number (out of 100) of states in the LTP
state minus the number of states in the LTD state (panel c). The trajectories correspond to the median of the simulations in panel g. g, Synaptic
weight change (%) predicted by the model compared to data (EPSC amplitudes) from24 (100 samples for each protocol, also for panel h and i). The
data (grey dots) was provided by24 (note an 230% outlier as the red asterisk), red bands indicate data means. h, Predicted mean synaptic weight
change (%) as function of delay (ms) and number of pairing repetitions (pulses) for the protocol 1Pre2Post(delay), for delay between -100 and 100.
LTD is induced by 2Post1Pre50 after at least 500 pulses. The mean weight change along each dashed line is reported in the STDP curves in panel i. i,
Synaptic weight change (%) as function of pre-post delay. Each plot corresponds to a different pairing repetition number (legend). The solid line
shows the mean, and the ribbons are the 2nd and 4th quantiles. The red dots are the data means estimated in24, also shown in panel g.

enzyme activity to plasticity outcomes, we first drew non-
overlapping boxes of LTP and LTD “plasticity regions” in the
CaN-CaMKII plane (Fig. 3a). We positioned these regions over
the parts of the phase space where the enzyme activities corre-
sponding to the LTP- and LTD-inducing protocols were most
different, as shown by trajectories in Fig. 2. We then fixed these
regions for all subsequent parts of this study. When a trajectory
enters in one of these plasticity regions, it activates LTD or LTP
indicator variables (Methods) which encode the joint enzyme
activities (trajectories in the phase plots) transitions across the
LTP and LTD regions over time (Fig. 3b). These indicator vari-
able drove transition rates in a plasticity Markov chain used to
predict LTP or LTD (Fig. 3c), see Methods. The LTD transition
rates were slower than the LTP transition rates, to reflect studies
showing that LTD requires sustained synaptic stimulation20–22.
The parameters for this plasticity Markov chain (Methods) were

fit to the plasticity induction outcomes from different protocols
(Table M1). In the beginning of the simulation, the plasticity
Markov chain starts with 100 processes48 in the state NC, with
each variable representing 1% weight change, an abstract mea-
sure of synaptic strength that can be either EPSP, EPSC, or field
EPSP slope depending on the experiment. Each process can tran-
sit stochastically between NC, LTP and LTD states. At the end
of the protocol, the plasticity outcome is given by the difference
between the number of processes in the LTP and the LTD states
(Methods).

This readout mechanism acts as a parsimonious model of the
complex signalling cascade linking CaMKII and CaN activation
to expression of synaptic plasticity68. It can be considered as
a two-dimensional extension of previous computational studies
that applied analogous 1D threshold functions to dendritic spine
calcium concentration18,19,30,31. Our model is scalable, as it gives
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Fig. 4. | Frequency dependent plasticity, Dudek and Bear 19929 dataset. a, Example traces of joint CaMKII-CaN activity for each of9’s protocols.
b, Region indicator showing when the joint CaMKII-CaN activity crosses the LTD or LTP regions for each protocol in panel a. c, Synaptic weight
change (%) as function of time for each protocol, analogous to Fig. 3c. Trace colours correspond to panel a. The trajectories displayed were chosen to
match the medians in panel e. d, Mean (100 samples) time spent (s) for protocols 1Pre for 900 pairing repetitions at 3, 10 and 50 Hz. e, Comparison
between data from9 and our model (1Pre 900p, 300 samples per frequency, Table M1). Data are represented as normal distributions with the mean
and variance extracted from9. Note that data from Dudek and Bear are given in field EPSP slope change. f, Prediction for the mean weight change
(%) varying the stimulation frequency and pulse number (24x38x100 data points, respectively pulse x frequency x samples). The red dots show the9

protocol parameters, the corresponding results are shown in panel e.

the possibility for the readout to be extended to dynamics of n
different molecules, using n-dimensional closed regions.

In Fig. 3d, we plot the model’s responses to seven different
plasticity protocols used by24 by overlaying example CaMKII-
CaN trajectories for each protocol with the LTP and LTD regions.
The corresponding region occupancies are plotted as function of
time in E, and long-term alterations in the synaptic strength are
plotted as function of time in F. The three protocols that induced
LTP in the24 experiments spent substantial time in the LTP re-
gion, and so triggered potentiation. In contrast, the 1Pre1Post10
(yellow trace) overshoots both regions, crossing them only briefly
on its return to baseline, and so resulted in little weight change.
The protocol that induced LTD (2Pre50, purple trace) is five
times longer than other protocols, spending sufficient time in-
side the LTD region (Fig. 3f). In contrast, two other protocols
that spent time in the same LTD region of the CaN-CaMKII
plane (2Post1Pre50 and 2Pre10) were too brief to induce LTD.
These protocols were also not strong enough to reach the LTP
region, so resulted in no net plasticity, again consistent with24’s
experiments.

We observed run-to-run variability in the amplitude of the
predicted plasticity, due to the inherent stochasticity in the model.
In Fig. 3g, we plot the distribution of the predicted plasticity from
each protocol (colours) alongside the data from24’s study, finding
a good correspondence.

Experimentally, LTP can be induced by few pulses while LTD
usually requires longer-duration stimulation20–22. We incorpo-
rated this effect into the readout model by letting LTP have faster
transition rates than LTD (Fig. 3c).24 found that 300 repetitions of
anticausal post-before-pre pairings did not cause LTD, in contrast
to the canonical spike-timing-dependent plasticity curve7. We

hypothesized that LTD might indeed appear with the anticausal24

protocol (Table M1) if stimulation duration was increased. To
explore this possibility in the model, we systematically varied the
number of paired repetitions from 100 to 1200, and also co-varied
the pre-post delay from -100 to 100 ms. Fig. 3h shows a contour
plot of the predicted mean synaptic strength change across for the
1Pre2Post(delay) stimulation protocol for different numbers of
pairing repetitions. A LTD window appears after ∼500 pairing
repetitions for some anticausal pairings, in line with our hypothe-
sis. The magnitude of LTP also increases with pulse number, for
causal positive pairings. For either 100 or 300 pairing repetitions,
only LTP or NC is induced (Fig. 3i). The model also made other
plasticity predictions by varying24’s experimental conditions (Fig.
S1). In summary, our model readout reveals that the direction and
magnitude of the change in synaptic strength can be predicted
from the joint CaMKII-CaN activity in the LTP and LTD regions.

Frequency-dependent plasticity. The stimulation protocols
used by24 explored how subtle variations in pre and postsy-
naptic spike timing influenced the direction and magnitude of
plasticity (see Table M1 for experimental differences). In con-
trast, traditional synaptic plasticity protocols exploring the role
of presynaptic stimulation frequency did not measure the tim-
ing of co-occurring postsynaptic spikes9,69,70. These studies
found that long-duration low-frequency stimulation induces LTD,
whereas short-duration high-frequency stimulation induces LTP,
with a cross-over point of zero change at intermediate stimulation
frequencies. In addition to allowing us to explore frequency-
dependent plasticity (FDP), this stimulation paradigm also gives
us further constraints for LTD in the model since in24, only one
LTD case was available. For FDP, we focused on modelling the
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experiments from9, who stimulated Schaffer collateral projections
to pyramidal CA1 neurons with 900 pulses in frequencies rang-
ing from 1 Hz to 50 Hz. In addition to presynaptic stimulation
patterns, the experimental conditions differed from24 in two other
aspects: animal age and control of postsynaptic spiking activity
(see Table M1 legend). We incorporated both age-dependence
and EPSP-evoked-BaPs (Methods). Importantly, the read-out
mechanism mapping joint CaMKII-CaN activity to plasticity is
the same for all experiments in this work.

Fig. 4a shows the joint CaMKII-CaN activity when we stim-
ulated the model with 900 presynaptic spikes at 1, 3, 5, 10 and
50 Hz9. Higher stimulation frequencies drove stronger responses
in both CaN and CaMKII activities (Fig. 4a). Fig. 4b,c show the
corresponding plasticity region indicator for the LTP/LTD region
threshold crossings and the synaptic strength change. From this
set of five protocols, only the 50 Hz stimulation drove a response
strong enough to reach the LTP region of the plane (Fig. 4a a,d).
Although the remaining four protocols drove responses primarily
in the LTD region, only the 3 and 5 Hz stimulations resulted in
substantial LTD. The 1 Hz and 10 Hz stimulations resulted in
negligible LTD, but for two distinct reasons. Although the 10 Hz
protocol’s joint CaMKII-CaN activity passed through the LTD
region of the plane (Fig. 4a,d), it was too brief to activate the
slow LTD mechanism built into the readout (Methods). The 1 Hz
stimulation, on the other hand, was prolonged, but its response
was mostly too weak to reach the LTD region, crossing the thresh-
old only intermittently (Fig. 4b, bottom trace). Overall the model
matched well the mean plasticity response found by Dudek and
Bear (Fig. 4e), following a classic BCM-like curve as function of
stimulation frequency71,72.

We then used the model to explore the stimulation space in
more detail by varying the stimulation frequency from 0.5 Hz to
50 Hz, and varying the number of presynaptic pulses from 50 to
1200. Fig. 4f shows a contour map of the mean synaptic strength
change (%) in this 2D frequency–pulse number space. Under9’s
experimental conditions, we found that LTD induction required
at least ∼300 pulses, at frequencies between 1Hz and 3Hz. In
contrast, LTP could be induced using ∼50 pulses at ∼20Hz or
greater. The contour map also showed that increasing the number
of pulses (vertical axis in Fig. 4e) increases the magnitude of
both LTP and LTD. This was paralleled by a widening of the LTD
frequency range, whereas the LTP frequency threshold remained
around ∼20Hz, independent of pulse number. The pulse depen-
dence amplitude increase predicted in Fig. 4 is also valid for24

experiment shown in Fig. S1f.
Ex vivo experiments in9 were done at 35°C. However, lower

temperatures are more widely used ex vivo because they extend
brain slice viability. We performed further simulations testing
temperature modifications for9’s experiment, finding that it had a
strong effect on plasticity outcomes (Fig. S2d–f).

Variations in plasticity induction with developmental age.
The rules for induction of LTP and LTD change during
development33,35, so a given plasticity protocol can produce dif-
ferent outcomes when delivered to synapses from young animals
versus mature animals. For example, when33 tested the effects of
low-frequency stimulation (1 Hz) on CA3-CA1 synapses from
rats of different ages, they found that the magnitude of LTD
decreases steeply with age from P7 until becoming minimal in

mature animals >P35 (Fig. 5a, circles). Across the same age
range, they found that a theta-burst stimulation protocol induced
progressively greater LTP magnitude with developmental age
(Fig. 5b, circles). Paralleling this, multiple properties of neurons
change during development: the NMDAr switches its dominant
subunit expression from GluN2B to GluN2A73–75, the reversal
potential of the receptor (GABAr) switches from depolarising
to hyperpolarizing34,76,77, and the action potential backpropa-
gates more efficiently with age46. These mechanisms have been
proposed to underlie the developmental changes in synaptic plas-
ticity rules because they are key regulators of synaptic calcium
signalling34,46. However, their sufficiency and individual con-
tributions to the age-related plasticity changes are unclear. We
incorporated these mechanisms in the model (Methods) by param-
eterizing each of the three components to vary with the animal’s
postnatal age, to test if they could account for the age-dependent
plasticity data.

We found that elaborating the model with age-dependent
changes in NMDAr composition, GABAr reversal potential, and
BaP efficiency, while keeping the same plasticity readout param-
eters, was sufficient to account for the developmental changes in
LTD and LTP observed by33 (Fig. 5a,b). We then explored the
model’s response to protocols of various stimulation frequencies,
from 0.5 to 50 Hz, across ages from P5 to P80 (Fig. 5c,e). Fig. 5c
shows the synaptic strength change as function of stimulation fre-
quency for ages P15, P25, P35 and P45. The magnitude of LTD
decreases with age, while the magnitude of LTP increases with
age. Fig. 5e shows a contour plot of the same result, covering the
age-frequency space.

The 1Hz presynaptic stimulation protocol in33 did not induce
LTD in adult animals9. We found that the joint CaN-CaMKII
activity trajectories for this stimulation protocol underwent an
age-dependent leftward shift beyond the LTD region (Fig. 5f).
This implies that LTD is not induced in mature animals by this
conventional LFS protocol due to insufficient activation of en-
zymes. In contrast,24 and78 were able to induce LTD in adult
rat tissue by combining LFS with presynaptic spike pairs re-
peated 900 times at 3 Hz. Given these empirical findings and
our modelling results, we hypothesized that LTD induction in
adult animals requires that the stimulation protocol: 1) causes
CaMKII and CaN activity to stay more in the LTD region than
the LTP region, and 2) is sufficiently long to activate the LTD
readout mechanism. With experimental parameters used by33,
this may be as short as 300 pulses when multi-spike presynaptic
protocols are used since the joint CaMKII-CaN activity can reach
the LTD region more quickly than for single spike protocols. We
simulated two such potential protocols as predictions: doublet
and quadruplet spike groups delivered 300 times at 1 Hz, with 50
ms between each pair of spikes in the group (Fig. 5d). The model
predicted that both these protocols induce LTD in adults (green
and blue curves), whereas as shown above, the single pulse pro-
tocol did not cause LTD (yellow curve). These findings suggest
that the temporal requirements for inducing LTD may not be as
prolonged as previously assumed, since they can be reduced by
varying stimulation intensity. See Fig. S3 for frequency versus
age maps for presynaptic bursts.

33 also performed theta-burst stimulation (TBS, Table M1) at
different developmental ages, and found that LTP is not easily in-
duced in young rats (Fig. 5b), see also35. The model qualitatively
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matches this trend, and also predicts that TBS induces maximal
LTP around P21, before declining further during development
(Fig. 5b, green curve). Similarly, we found that high-frequency
stimulation induces LTP only for ages >P15, peaks at P35, then
gradually declines at older ages (Fig. 5e). Note that in Fig. 5b,
we used 6 epochs instead of 4 used by33 to increase LTP outcome
which is known to washout after one hour for young rats35.

Fig. 5. | Age-dependent plasticity, Dudek and Bear 199333 dataset
a, Synaptic weight change for 1Pre, 900 at 1 Hz as in33. The solid line
is the mean and the ribbons are the 2nd and 4th quantiles predicted by
our model (same for panel b, c and f). b, Synaptic weight change for
Theta Burst Stimulation (TBS - 4Pre at 100 Hz repeated 10 times at
5Hz given in 6 epochs at 0.1Hz (Table M1) and33. c, Synaptic weight
change as function of frequency for different ages. BCM-like curves
showing that, during adulthood, the same LTD protocol becomes less
efficient. It also shows that high-frequencies are inefficient at inducing
LTP before P15. d, Synaptic weight change as function of age. Proposed
protocol using presynaptic bursts to recover LTD at ≥ P35 with less
pulses, 300 instead of the original 900 from33. This effect is more pro-
nounced for young rats. Fig. S3 shows a 900 pulses comparison. e, Mean
synaptic strength change (%) as function of frequency and age for 1Pre
900 pulses (32x38x100, respectively, for frequency, age and samples).
The protocols in33 (panel a) are marked with the yellow vertical line.
The horizontal lines represent the experimental conditions of panel c.
Note the P35 was used for9 experiment in Fig. 4f. f, Mean time spent
for the 1Pre 1Hz 900 pulses protocol showing how the trajectories are
left-shifted as rat age increases.

In contrast to33’s findings, other studies have found that

LTP can be induced in hippocampus in young animals (<P15)
with STDP. For example,34 found that at room temperature,
1Pre1Post10 induces LTP in young rats, whereas 1Pre2Post10
induces NC. This relationship was inverted for adults, with
1Pre1Post inducing no plasticity and 1Pre2Post10 inducing LTP
(Fig. S5).

Together, these results suggest that not only do the require-
ments for LTP/LTD change with age, but also that these age-
dependencies are different for different stimulation patterns. Fi-
nally, we explore which mechanisms are responsible for plasticity
induction changes across development in the FDP protocol (Fig.
S3) by fixing each parameter to young or adult values for the
FDP paradigm. Our model analysis suggests that the NMDAr
switchiacobucci2017 is a dominant factor affecting LTD induction,
but the maturation of BaP46 is the dominant factor affecting LTP
induction, with GABAr shift having only a weak influence on
LTD induction for33’s FDP.

Plasticity requirements during development do not necessar-
ily follow the profile in33 as shown by34’s STDP experiment. Our
model shows that multiple developmental profiles are possible
when experimental conditions vary within the same stimulation
paradigm. This is illustrated in Fig. S5a–c by varying the age of
STDP experiments done in different conditions.

Effects of extracellular calcium and magnesium concentra-
tion on plasticity. The canonical STDP rule7 measured in cul-
tured neurons, high [Ca2+]o, and at room temperature, was re-
cently found not to be reproducible at physiological [Ca2+]o in
CA1 brain slices38. Instead, by varying the [Ca2+]o and [Mg2+]o
they found a spectrum of STDP rules with either no plasticity
or full-LTD for physiological [Ca2+]o conditions ([Ca2+]o < 1.8
mM) and a bidirectional rule for high [Ca2+]o ([Ca2+]o > 2.5
mM), shown in Fig. 6a–c (data).

We attempted to reproduce38’s findings by varying [Ca2+]o
and [Mg2+]o with the following consequences for the model
mechanisms (Methods). On the presynaptic side, [Ca2+]o modu-
lates vesicle release probability. On the postsynaptic side, high
[Ca2+]o reduces NMDAr conductance79, whereas [Mg2+]o affects
the NMDAr Mg2+ block80. Furthermore, spine [Ca2+]o influx
activates SK channels, which hyperpolarize the membrane and
indirectly modulate NMDAr activity50,81.

Fig. 6a–c compares our model to38’s STDP data at different
[Ca2+]o and [Mg2+]o. Note that38 used 150 (100) pairing repe-
titions for the anti-causal (causal) both delivered at 0.3 Hz. At
[Ca2+]o=1.3 mM, Fig. 6a shows the STDP rule induced weak
LTD for brief causal delays. At [Ca2+]o= 1.8 mM, in Fig. 6b, the
model predicted a full-LTD window. At [Ca2+]o= 3 mM, in Fig.
6c, it predicted a bidirectional rule with a second LTD window
for long pre-before-post pairings, previously theorized by26.

Fig. 6d illustrates the time spent by the joint CaN-CaMKII
activity for 1Pre1Post10 using38’s experimental conditions. Each
density plot corresponds to a different panel in Fig. 6 with the re-
spective Ca/Mg. The response under low [Ca2+]o spent most time
inside the LTD region, but high [Ca2+]o shifts the trajectory to
the LTP region. Fig. S4a presents density plots for the anticausal
post-before-pre protocols.

38 fixed the Ca/Mg ratio at 1.5, although aCSF formulations
in the literature differ (see Table M1). Fig. S4d shows that vary-
ing Ca/Mg ratio and [Ca2+]o for38’s experiments restrict LTP to

8/46

72CHAPTER 5. A STOCHASTICMODELOF HIPPOCAMPAL SYNAPTIC PLASTICITYWITHGEOMETRICAL READOUTOF ENZYMES - ARTICLE



Fig. 6. Effects of extracellular calcium and magnesium concentrations on plasticity a, Synaptic weight (%) for a STDP rule with
[Ca2+]o = 1.3 mM (fixed ratio, Ca/Mg=1.5). According to the data extracted from38, the number of pairing repetitions for positive (nega-
tive) delays is 100 (150), both delivered at 0.3 Hz38. The solid line is the mean, and the ribbons are the 2nd and 4th quantiles predicted by our model
(all panels use 100 samples). b, Same as A, but for [Ca2+]o= 1.8 mM (Ca/Mg ratio = 1.5). c, Same as A, but for [Ca2+]o= 3 mM (Ca/Mg ratio = 1.5).
d, Mean time spent for causal pairing, 1Pre1Post10, at different Ca/Mg concentrations. The contour plots are associated with the panels a, b and c. e,
STDP and extracellular Ca/Mg. Synaptic weight change (%) for causal (1Pre1Post10, 100 at 0.3 Hz) and anticausal (1Post1Pre10, 150 at 0.3 Hz)
pairings varying extracellular Ca from 1.0 to 3 mM (Ca/Mg ratio = 1.5). The dashed lines represent the experiments in the panel a, b and c. We used
21x22x100 data points, respectively calcium x delay x samples. f, Varying frequency and extracellular Ca/Mg for the causal pairing 1Pre1Post10,
100 at 0.3 Hz. Contour plot showing the mean synaptic weight (%) for a single causal pairing protocol (1Pre1Post10, 100 samples) varying frequency
from 0.1 to 10 Hz and [Ca2+]o from 1.0 to 3 mM (Ca/Mg ratio = 1.5). We used 21x18x100 data points, respectively calcium x frequency x samples.

Ca/Mg>1.5 and [Ca2+]o>1.8 mM.
Our model can also identify the transitions between LTD and

LTP depending on Ca/Mg. Fig. 6e shows a map of plasticity
as function of pre-post delay and Ca/Mg concentrations and the
parameters where LTP is induced for the 1Pre1Post10 protocol.
Since plasticity rises steeply at around [Ca2+]o= 2.2 mM, small
fluctuations in [Ca2+]o near this boundary could cause qualita-
tive transitions in plasticity outcomes. For anticausal pairings,
increasing [Ca2+]o increases the magnitude of LTD (Fig. S4b
illustrates this with38’s data).

38 also found that increasing the pairing frequency to 5 or 10
Hz results in a transition from LTD to LTP for 1Pre1Post10 at
[Ca2+]o= 1.8 mM (Fig. S4c), similar frequency-STDP behaviour
has been reported in cortex10. In Fig. 6f, we varied both the
pairing frequencies and [Ca2+]o and we observe similar transi-
tions to38. However, the model’s transition for [Ca2+]o= 1.8 mM
was centred around 0.5 Hz, which was untested by38. The model
predicted no plasticity at higher frequencies, unlike the data, that
shows scattered LTP and LTD (see Fig. S4c). Fig. S1d and
S4e shows that24’s burst-STDP and38’s STDP share a similar
transition structure, but not9’s FDP.

In contrast to38’s results, we found that setting low [Ca2+]o
for24’s burst-STDP abolishes LTP, and does not induce strong
LTD (Fig. S1d). For9’s experiment, Fig. S2a [Mg2+]o con-
trols a sliding threshold between LTD and LTP but not [Ca2+]o
(Fig. S2b). For another direct stimulation experiment, Fig. S4c
shows that in an Mg-free medium, LTP expression requires fewer

pulses21.
Despite exploring physiological [Ca2+]o and [Mg2+]o

38 use
a non-physiological temperature (30°C) which extends T-type
VGCC closing times and modifies the CaN-CaMKII baseline (Fig.
S5i). Fig. S5g,h shows comparable simulations for physiological
temperatures. Overall our model predicts that temperature can
change STDP rules in a similar fashion to [Ca2+]o (Fig. S4a,b).
In summary, plasticity is highly sensitive to variations in extra-
cellular calcium, magnesium, and temperature (Fig. S1a, Fig.
S5d-f;40).

In vivo-like spike variability affects plasticity. In the above
sections, we used highly regular and stereotypical stimulation
protocols to replicate typical ex vivo plasticity experiments. In
contrast, neural spiking in hippocampus in vivo is irregular and
variable78,82. It is unclear how natural firing variability affects
the rules of plasticity induction27,83–85. We explored this question
using model simulations by adding three distinct types of variabil-
ity: 1) spike time jitter, 2) failures induced by dropping spikes, 3)
independent pre and postsynaptic Poisson spike trains83.

We introduced spike timing jitter by adding zero-mean Gaus-
sian noise (s.d. σ ) to pre and postsynaptic spikes, changing spike
pairs inter-stimulus interval (ISI). In Fig. 7a, we plot the LTP
magnitude as function of jitter magnitude (controlled by σ ) for
protocols taken from24. With no jitter, σ = 0, these protocols
have different LTP magnitudes (corresponding to Fig. 3) and
become similar once σ increases. The three protocols with a
postsynaptic spike doublet gave identical plasticity for σ = 50
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ms.
To understand the effects of jittering, we plotted the trajec-

tories of CaN-CaMKII activity (Fig. 7c). 2Post1Pre50 which
"undershoots" the LTP region shifted into the LTP region for jitter
σ = 50 ms. In contrast, 1Pre1Post10 which "overshoots" the LTP
region shifted to the opposite direction towards the LTP region.

Why does jitter cause different spike timing protocols to yield
similar plasticity magnitudes? Increasing jitter causes a fraction
of pairings to invert causality. Therefore, the jittered protocols
became a mixture of causal and anticausal pairings (Fig. 7c).
This situation occurs for all paired protocols. So any protocol
with the same number spikes will become mixed if the jitter is
large enough. Note that despite noise the mean frequency was
conserved at 5 ± 13.5 Hz (see Fig. 7e).

Next, we studied the effect of spike removal. In the previous
sections, synaptic release probability was ∼60% (for [Ca2+]o=
2.5 mM) or lower, depending on the availability of docked vesi-
cles (Methods). However, baseline presynaptic vesicle release
probability is heterogeneous across CA3-CA1 synapses, ranging
from ∼ 10− 90%86,87 and likely lower on average in vivo88,89.
BaPs are also heterogeneous with random attenuation profiles47

and spike failures90. To test the effects of pre and postsynaptic
failures on plasticity induction, we performed simulations where
we randomly removed spikes, altering the previously regular
attenuation in24’s protocols.

In Fig. 7b we plot the plasticity magnitude as function of spar-
sity (percentage of removed spikes). The sparsity had different
specific effects for each protocol. 1Pre2Post10 and 1Pre2Post50
which originally produced substantial LTP were robust to spike
removal until ∼60% sparsity. In contrast, the plasticity mag-
nitude from both 1Pre1Post10 and 2Post1Pre50 showed a non-
monotonic dependence on sparsity, first increasing then decreas-
ing, with maximal LTP at ∼40% sparsity.

To understand how sparsity causes this non-monotonic effect
on plasticity magnitude, we plotted the histograms of time spent
in the CaN-CaMKII plane for 2Post1Pre50 for three levels of spar-
sity: 0%, 30% and 80% (Fig. 7d). For 0% sparsity, the activation
spent most time at the border between the LTP and LTD regions,
resulting in no plasticity. Increasing sparsity to 30% caused the
activation to shift rightward into the LTP region because there
was less attenuation of pre and postsynaptic resources. In con-
trast, at 80% sparsity, the activation moved into the LTD region
because there were not enough events to substantially activate
CaMKII and CaN. Since LTD is a slow process and the protocol
duration is short (60s), there was no net plasticity. Therefore
for this protocol, high and low sparsity caused no plasticity for
distinct reasons, whereas intermediate sparsity enabled LTP by
balancing resource depletion with enzyme activation.

Next we tested the interaction of jitter and spike removal. Fig.
7f shows a contour map of weight change as function of jitter and
sparsity for the 2Post1Pre50 protocol, which originally induced
no plasticity (Fig. 2). Increasing spike jitter enlarged the range of
sparsity inducing LTP. In summary, these simulations (Fig. 7a,b,f
and h) show that different STDP protocols have different degrees
of sensitivity to noise in the firing structure, suggesting that sim-
ple plasticity rules derived from regular ex vivo experiments may
not predict plasticity in vivo.

How does random spike timing affect rate-dependent plastic-
ity? We stimulated the model with pre and postsynaptic Poisson

Fig. 7. | Jitter and spike dropping effects on STDP; and Poisson
spike trains. a, Mean weight (%) for the jittered STDP protocols. The
solid line is the mean, and the ribbons are the 2nd and 4th quantiles pre-
dicted by our model estimated using 100 samples (same for all panels).
b, Mean weight (%) for the same24 protocols used at panel a subjected
to random spike removal (sparsity %). c, Mean time spent (s) varying
jittering. Contour plot shows 2Post1Pre50 and 1Pre1Post10 (300 at 5
Hz) with (grey contour plot) and with jittering (coloured contour plot).
The circles and squares correspond to the marks in panel a. d, Mean
time spent (s) varying sparsity. Contour plot in grey showing 0% sparsity
for 2Post1Pre50 300 at 5Hz (see Fig. 2f). The contour plots show the
protocol with spike removal sparsities at 0% (NC) 30% (LTP), and 80%
(NC). The triangles correspond to the same marks in panel a. e, Distri-
bution of the 50 ms jittering applied to the causal protocol 1Pre1Post10,
300 at 5 Hz in which nearly half of the pairs turned into anticausal.
The mean frequency is 5 ± 13.5 Hz. The protocol 2Post1Pre50 will
have nearly half of the pairings turning into causal, making them have
a similar firing structure and position inside the LTP region. f, Mean
weight change (%) combining both sparsity (panel b) and jittering (panel
a) for 2Post1Pre50, 300 at 5 Hz. g, Mean weight change (%) of pre and
postsynaptic Poisson spike train delivered simultaneously for 10 s. The
plot shows the plasticity outcome for different presynaptic firing rate
(1000/frequency) for a fixed postsynaptic baseline at 10Hz. The upper
raster plot depicts the released vesicles at 40 Hz and the postsynaptic
baseline at 10Hz (including the AP evoked by EPSP). h), Mean weight
change (%) varying the rate of pre and postsynaptic Poisson spike train
delivered simultaneously for 10 s. The dashed line depicts panel g.
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spike trains for 10s, under9’s experimental conditions. We sys-
tematically varied both the pre and postsynaptic rates (Fig. 7h).
The 10s stimulation protocols induced only LTP, since LTD re-
quires a prolonged stimulation21. LTP magnitude monotonically
increased with the presynaptic rate (Fig. 7g,h). In contrast, LTP
magnitude varied non-monotonically as function of postsynaptic
rate, initially increasing until a peak at 10 Hz, then decreasing
with higher stimulation frequencies. This non-monotonic depen-
dence on post-synaptic rate is inconsistent with classic rate-based
models of Hebbian plasticity. We also investigated how this plas-
ticity dependence on pre- and post-synaptic Poisson firing rates
varies with developmental age (Fig. S2g–i). We found that at P5
no plasticity is induced, at P15 a LTP region appears at around 1
Hz postsynaptic rate, and at P20 plasticity becomes similar to the
mature age, with a peak in LTP magnitude at 10 Hz postsynaptic
rate.

Discussion
We built a model of a rat CA3-CA1 hippocampal synapse, in-
cluding key electrical and biochemical components underlying
synaptic plasticity induction (Fig. 1). We used a novel geometric
readout of CaN-CaMKII dynamics (Fig. 2-4) to predict the out-
comes from a range plasticity experiments with heterogeneous
conditions: animal developmental age (Fig. 5), aCSF composi-
tion (Fig. 6), temperature (Supplemental files), and in vivo-like
firing variability (Fig. 7).

Our model included critical components for plasticity in-
duction at CA3-CA1 synapses: those affecting dendritic spine
voltage, calcium signalling, and enzymatic activation. We were
able to use model to make quantitative predictions, because its
variables and parameters corresponded to biological components.
This property allowed us to incorporate the model components’
dependence on developmental age, external Ca/Mg levels, and
temperature to replicate datasets across a range of experimental
conditions. The model is relatively fast to simulate, taking ∼1
minute of CPU time to run 1 minute of biological time. These
practical benefits should enable future studies to make experi-
mental predictions on dendritic integration of multiple synaptic
inputs42,91,92 and on the effects of synaptic molecular alterations
in pathological conditions. In contrast, abstract models based
on spike timing28,93,94 or simplified calcium dynamics18,30 must
rely on ad hoc adjustment of parameters with less biological
interpretability.

The model was built based the new concept that the full tem-
poral activity of CaN-CaMKII over the stimulus duration51, and
not their instantaneous activity levels18,19, is responsible for plas-
ticity changes. We instantiated this concept by analyzing the joint
CaN-CaMKII activity in the two-dimensional plane and design-
ing polygonal plasticity readout regions (Fig. 3a). In doing so,
we generalised previous work with plasticity induction based on
single threshold and a slow variable26,28,30,95. Here, we used a
two-dimensional readout, but anticipate a straightforward gener-
alisation to higher-dimensions for different cellular processes in
neuroscience but also in systems biology more broadly. The cen-
tral discovery is that these trajectories, despite being stochastic,
can be separated in the plane as function of the stimulus (Fig. 3).
This is the basis of our new synaptic plasticity rule.

Let us describe the intuition behind our model more concisely.

First, we abstracted away the sophisticated cascade of plasticity
expression. Second, the plasticity regions, crossed by the tra-
jectories, are described with a minimal set of parameters, their
tuning is quite straightforward and done once and for all, even
when the joint activity is stochastic. The tuning of the model is
possible thanks to the decoupling of the plasticity process from
the spine biophysics which acts as a feedforward input to the
plasticity Markov chain and from the distributions of the different
trajectories, which are well separated. It is expected that one can
find other model versions (parameters or conceptual) instantiating
our concept that also match the data well.

In our model, some CaMKII-CaN trajectories overshot the
plasticity regions (e.g. Fig. 3d). Although abnormally high and
prolonged calcium influx to cells can trigger cell death96, the ef-
fects of high calcium concentrations at single synapses are poorly
understood. Notably, a few studies have reported evidence con-
sistent with an overshoot, where strong synaptic calcium influx
does not induce LTP20,24,97.

Intrinsic noise is an essential component of the model. How
can the synapse reliably express plasticity but be noisy at the
same time43,44? Noise can be reduced either by redundancy or by
averaging across time, also called ergodicity98. However redun-
dancy requires manufacturing and maintaining more components,
and therefore costs energy. We propose that, instead, plasticity
induction is robust due to temporal averaging by slow-timescale
signalling and adaptation processes. These slow variables reduce
noise by averaging the faster timescale stochastic variables. This
may be a reason why CaMKII uses auto-phosphorylation to sus-
tain its activity and slow its decay time54,99. In summary, this
suggests that the temporal averaging by slow variables, combined
with the separability afforded by the multidimensional readout, al-
lows synapses to tolerate noise while remaining energy-efficient.

We identified some limitations of the model. First, we
modelled only a single postsynaptic spine attached to two-
compartment neuron for soma and dendrite. Second, the model
abstracted the complicated process of synaptic plasticity expres-
sion, and even if this replicated the “early” phase of LTP/LTD
expression in the first 30–60 minutes after induction, slower
protein-synthesis-dependent processes, maintenance processes,
and synaptic pruning proceed at later timescales100. Third, like
most biophysical models, ours contained many parameters (Meth-
ods). Although we set these to physiologically plausible values
and then tuned to match the plasticity data, other combinations
of parameters may fit the data equally well101,102 due to the ubiq-
uitous phenomenon of redundancy in biochemical and neural
systems103,104. Indeed synapses are quite heterogeneous in re-
ceptor and ion channel counts58–60,105, protein abundances106,107,
and spine morphologies65,108, even within the subpopulation of
CA1 pyramidal neuron synapses that we modelled here. It re-
mains to be discovered how neurons tune their synaptic properties
in this vast parameter space to achieve functional plasticity rules,
or implement meta-plasticity109–111.

Several predictions follow from our results. Since the
model respected the stochasticity of vesicle release112,113,
NMDAr60,74,75,114, and VGCC opening59,115,116, the magnitude
of plasticity varied from simulation trial to trial (Methods,
Fig. 3g,4e). This suggests that the rules of plasticity are in-
herently stochastic63,117 and that the variability observed in
experiments9,21,24,33,34,38,40 is not just due to heterogeneity in
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synapse properties. By running extensive simulations over the
space of protocols beyond those tested experimentally (Fig. 3h,i;
4f; 5c,e and f; 6e,f), we made testable predictions for plasticity
outcomes. For example,24 did not find LTD when using classic
post-before-pre stimulation protocols, but the model predicted
that LTD could be induced if the number of pairing repetitions
was extended (Fig. h,i). The model also predicts that the lack of
LTD induced by FDP in adults can be recovered using doublets
or quadruplet spike protocols (Fig. 5d). We tested the model’s
sensitivity to spike time jitter and spike failure in the stimulation
protocols (Fig. 7). Our simulations predicted that this firing
variability can alter the rules of plasticity, in the sense that it
is possible to add noise to cause LTP for protocols that did not
otherwise induce plasticity.

What do these results imply about the rules of plasticity
in vivo? First, we noticed that successful LTP or LTD induc-
tion required a balance between two types of slow variables:
those that attenuate, such as presynaptic vesicle pools and den-
dritic BaP, versus those that accumulate, such as slow enzymatic
integration62,118,119. This balance is reflected in the inverted-U
shaped magnitude of LTP seen as a function of post-synaptic
firing rate (Fig. 7h). Second, although spike timing on millisec-
ond timescales can in certain circumstances affect the direction
and magnitude of plasticity (Fig. 3), in order to drive sufficient
activity of synaptic enzymes, these patterns would need to be
repeated for several seconds. However, if these repetitions are
subject to jitter or failures, as observed in hippocampal spike
trains in vivo82,120, then the millisecond-timescale information
will be destroyed as it gets averaged out across repetitions by the
slow integration processes of CaMKII and CaN (Fig. 7a–d). The
net implication is that millisecond-timescale structure of individ-
ual spike pairs is unlikely to play an important role in determining
hippocampal synaptic plasticity in vivo83,88,121.

In summary, we presented a new type of biophysical model for
plasticity induction at the rat CA3-CA1 glutamatergic synapse.
Although the model itself is specific to this synapse type, the
study’s insights may generalise to other synapse types, enabling a
deeper understanding of the rules of synaptic plasticity and brain
learning.

Data and Software Availability
The code will be available on Github after peer-review process.
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Online Methods
Data and code availability
All simulations were performed in the Julia programming language (version 1.4.2). Simulating the synapse model is equivalent to
sampling a piecewise deterministic Markov process, and this relies on the Julia package PiecewiseDeterministicMarkovProcesses.jl.
These simulations are event-based, and no approximation is made beyond the ones required to integrate the ordinary differential
equations by the method LSODA (Livermore Solver for Ordinary Differential Equations). We run the parallel simulations in the Nef
cluster operated by Inria.

EXPERIMENT PAPER REPETITIONS FREQ (Hz) AGE (DAYS) TEMP. (°C) Ca (mM) Mg (mM)
STDP 1 300 5 56 35 2.5 1.3

STDP 2 100, positive delays
150, negative delays 0.3

14—20
(21 for LTP)

30
(30.45 for LTP) 1.3—3 Ca/1.5

STDP 3 20 0.2 9—45 24—28 2 2

STDP 4 70—100 5 14—21
24—30
(22.5-23) 2 1

pre-burst 1 300 and 900 3 and 5 56 35 2.5 1.3
FDP 5 900 1—50 35 35 2.5 1.5
FDP 6 900 1 7—35 35 2.5 1.5

TBS 6 3—4 (5) epochs
4Pre at 100 Hz
(10x at 5Hz) 6, 14 and 17 35 2.5 1.5

LFS 7 1—600 1 12—28
30
(26.5-31) 2.4 0

Table M1. Table with the parameters extracted from the respective publications. To fit the data associated to publications displaying a parameter
interval (e.g. 70 or 100) we used a value within the provided limits. Otherwise, we depict in red the value used to fit to the data. For complete
data structure on these publications and the ones used for method validation see github code. We allowed the AP to be evoked by EPSPs for these
protocols:5–7. Note that1 used GABA(A)r blocker modelled by turning GABAr conductance to zero. Also,7 LTD protocol used partial NMDA
blocker modelled by reducing NMDA conductance by 97 %.

Modelling procedures
Notations
We write 1A the indicator of a set A meaning that 1A(x) = 1 if x belongs to A and zero otherwise.

Vesicle release and recycling
Vesicle-filled neurotransmitters from the presynaptic terminals stimulate the postsynaptic side when successfully released. We derived
a vesicle release Markov chain model based on a deterministic approach described in8 on page 183. We denote by (t1, · · · , tn) the time
arrivals of the presynaptic spikes.

Vesicles can be in two states, either belonging to the docked pool (with cardinal D) with fast emptying, or to the reserve pool
(with cardinal R) which replenishes D9. The docked pool loses one vesicle each time a release10 occurs with transition D−→ D−1
(Fig. M1C). The reserve pool replenishes the docked one with transition (R,D)→ (R− 1,D+ 1). Finally, the reserve pool is
replenished with rate (R0−R)/τre f

D with the transition (R,D)−→ (R+1,D).

TRANSITION RATE INITIAL CONDITION
(R,D)→ (R−1,D+1) (D0−D) ·R/τD D(0) = D0
(R,D)→ (R+1,D−1) (R0−R) ·D/τR R(0) = R0

(R,D)−→ (R+1,D) (R0−R)/τre f
R

Table M2. Stochastic transitions used in the pool dynamics. Note that the rates depend on the pool’s cardinal11.

In addition to the stochastic dynamics in Table M2, each spike ti triggers a vesicle release D−→ D−1 with probability prel :

prel(Capre, [Ca2+]o,D) =
(Capre)

s

(Capre)
s +h([Ca2+]o)

s 1D>0, h([Ca2+]o) = 0.654+
1.349

1+ e4·([Ca2+]o−1.708 mM)

which is a function of presynaptic calcium Capre and extracellular calcium concentration [Ca2+]o through the threshold h([Ca2+]o).
To decide whether a vesicle is released for a presynaptic spike ti, we use a phenomenological model of Capre (see Fig. M1A) based on
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a resource-use function12:
{

Ċapre =−Capre
τpre

Capre(0) = 0

Ċa jump =
1−Ca jump

τrec
−δdecay ·Ca jump ·Capre Ca jump(0) = 1.

(1)

Upon arrival of the presynaptic spikes, t ∈ (t1, · · · , tn), we update Capre according to the deterministic jump:

Capre −→Capre +Ca jump.

Finally, after Capre has been updated, a vesicle is released with probability prel (Fig. M1B).
Parameters for the vesicle release model is given in Table M3. The experimental constraints to devise a release probability model

are given by13 and1. Because [Ca2+]o modifies the release probability dynamics14, we fixed an initial release probability of 68 %
for [Ca2+]o = 2.5 mM as reported by1 (initial value in Fig. M1B and D). Additionally,13 report a 38% reduction in the initial release
probability when changing [Ca2+]o from 2.5 mM to 1 mM. Taking these into account, the decreasing sigmoid function in the Fig. M1E
depicts our [Ca2+]o-dependent release probability model (prel).

Fig. M1E shows that our prel function is in good agreement with a previous analytical model14 suggesting that prel([Ca2+]o) ∝
([Ca2+]o)

2 mM−2. Our model also qualitatively reproduces the vanishing of calcium dye fluorescence levels after 20 s of theta trains
from1 (in their Supplementary Materials). We interpret their fluorescence measurements as an effect of short-term depression (see
Fig. M1B).

Despite our model agreeing with previous works, it is a simplified presynaptic model that does not encompass the vesicle release’s
highly heterogeneous nature. Vesicle release dynamics are known to be sensitivity to various experimental conditions such as
temperature15, the age for some brain regions10 or magnesium concentration13. Furthermore, since our model of vesicle dynamics is
simple, τrec in Equation (1) has two roles: to delay the prel recovery caused by Capre inactivation (enforced by δCa in Equation (1))
and to prevent vesicle release after HFS induced depression9,14. Later, we incorporate a higher number of experimental parameters
(age, temperature, [Ca2+]o, [Mg2+]o) with our NMDAr model, the main postsynaptic calcium source.

NAME VALUE REFERENCE
Vesicle release model (stochastic part)
initial number of vesicles at D D0 = 25 5 to 209,16

initial number of vesicles at R R0 = 30 17 to 20 vesicles16

time constant R→ D
(D recycling) τD = 5 s 1 s9

time constant D→ R
(R mixing) τR = 45 s

20 s (when depleted) to 5 min (hypertonic shock)
9,11

time constant 1→ R
(R recycling) τre f

R = 40 s 20 to 30 s9

release probability half-activation curve h adjusted to different [Ca2+]o
release probability sigmoid slope s = 2 adjusted to different [Ca2+]o

Vesicle release model (deterministic part)

Capre attenuation recovery τpre = 20 ms 50 - 500 ms for with dye17

therefore < 50 to 500 ms undyed (unbufered)
deterministic jump attenuation recovery τrec = 20 s ∼ 20 s9

deterministic jump attenuation fraction δca = .0004 inactivation of pre calcium18

Table M3. | Parameter values used in the presynaptic model. Our model does not implement a larger pool called "resting pool" containing
∼ 180 vesicles (CA3-CA1 hippocampus)16. Terminology note: In other works, the larger pool with ∼180 vesicles can be found with different
nomenclatures such as "reserve pool"19 or "resting pool"16. Furthemore, the nomenclature used in our model for the reserve pool, can also be found
as "recycling pool" in9,16.
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Fig. M1. | Presynaptic release. a, Presynaptic calcium in response to the protocol 1Pre, 300 at 5 Hz displaying adaptation. b, Release probability for
the same protocol as panel A but subjected to the docked vesicles availability. c, Number of vesicles in the docked and reserve pools under depletion
caused by the stimulation from panel A. d, Plot of the mean (300 samples) release probability (%) for different frequencies for the protocol 1Pre
300 pulses at [Ca2+]o = 2.5 mM. Note that most of the frequencies are dominated by short-term depression, and the model also displays short-term
facilitation (black curve, at 50 Hz). e, Release probability (%) for a single presynaptic spike given the [Ca2+]o. Note that14 model was multiplied by
the experimentally measured release probability at [Ca2+]o = 2 mM since their model has this calcium concentration as the baseline. Our model also
does not cover the abolishing of release probability at [Ca2+]o = 0.5 mM which can also be difficult to experimentally measure given the rarity of
events13.
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NAME VALUE REFERENCE
Passive cable
leak reversal potential Eleak =−70 mV 69mV from20

membrane leak conductance
(for spine and passive dendrite) gleak = 4 ·10−6 nS/µm2 * see table legend21

membrane leak conductance
(only soma) gsoma = 5.31 ·10−3 nS/µm2 3 ·10−4 to 1.3 ·10−3nS/µm222

47 to 2.1 ·103nS (NeuroElectro:CA1)

membrane capacitance Cm = 6 ·10−3 pF/µm2 1 ·10−2 pF/µm223

17 to 177 pF (NeuroElectro:CA1)
axial resistivity of cytoplasm Ra = 1 ·10−2 GΩµm 2 ·10−3 GΩµm24

Dendrite
dendrite diameter Ddend = 2 µm same as25

dendrite length Ldend = 1400 µm apical dendrites, 1200 to 1600 µm26

dendrite surface area Adend = 8.79 ·103 µm2 π ·Ddend ·Ldend
dendrite volume Voldend = 4.4 ·103µm3 π · (Ddend/2)2 ·Ldend
dendritic membrane capacitance Cdend = 52.77 pF Cm ·Adend
dendrite leak reversal potential gleakdend = 3.51 ·10−2 nS gleak ·Adend
dendrite axial conductance gdi f f = 50 nS Ra ·Adend

Soma
soma diameter Dsoma = 30 µm 21 µm27 page 3
soma area (sphere) Asoma = 2.82 ·103 µm2 (4π/3) · (Dsoma/2)3 ; 2.12 ·103 µm228

soma membrane capacitance Csoma = 16.96 pF Cm ·Asoma

soma leaking conductance gleaksoma = 15 nS gsoma ·Asoma
22

Dendritic spine
spine head volume Volsp = 0.03 µm3 same as29

spine head surface Asp = 4.66 ·10−1 µm2 4π · (3Volsp/4π)2/3

spine membrane capacitance Csp = 2.8 ·10−3 pF Cm ·Asp

spine head leak conductance gleaksp = 1.86 ·10−6 nS gleak ·Asp

Dendritic spine neck
spine neck diameter Dneck = 0.1 µm 0.05 to 0.6 µm30

neck length Lneck = 0.2 µm 0.7±0.6 µm31

neck cross sectional area CSneck = 7.85 ·10−3 µm2 π · (Dneck/2)2

neck resistance gneck = 3.92 nS≈ 255.1 MΩ CSneck/(Lneck ·Ra)
50 to 550 MΩ (275±27 MΩ)32

Table M4. Parameters for the neuron electrical properties. * The membrane leak conductance in the spine is small since the spine resistance is so
high that is considered infinite (> 106MΩ)21, therefore the current mostly leaks through the neck. Additionally, the dendrite leak conductance is
equally small in order to control the distance-dependent attenuation by the axial resistance term gadapt

BaP in Equations 3 and 4.
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Membrane potential and currents
Our model is built over three compartments, a spherical dendritic spine linked by the neck to a cylindrical dendrite connected to a
spherical soma. The membrane potential of these compartments satisfy the equations below (parameters in Table M4). The different
currents are described in the following sections.

Csp ·V̇sp = gneck · (Vdend−Vsp)+gsp
L · (Erev−Vsp)+ IT + IL + IR + INMDA + IAMPA + ISK (2)

Cdend ·V̇dend = gadapt
BaP · (Vsoma−Vdend)+gneck · (Vsp−Vdend)+gdend

L · (Erev−Vdend)+ IGABA (3)

Csoma ·V̇soma = gadapt
BaP · (Vdend−Vsoma)+gsoma

L · (Erev−Vsoma)+βage · (IBaP + INa)+ IK (4)

Action-potential backpropagation (BaP)
Postsynaptic currents
The postsynaptic currents are generated in the soma, backpropagated to the dendritic spine and filtered by a passive dendrite. The
soma generates BaPs using a version of the Na+ and K+ channel models developed by33. The related parameters are described in
Table M5 (the voltage unit is mV).

Sodium channel Potassium channel

αm(Vsoma) = 0.4 · Vsoma +30

1− e−
Vsoma+30

7.2
αn(Vsoma) = e−0.11·(Vsoma−13)

βm(Vsoma) = 0.124 · Vsoma +30

e
Vsoma+30

7.2 −1
βn(Vsoma) = e−0.08·(Vsoma−13)

minf(Vsoma) =
αm(Vsoma)

αm(Vsoma)+βm(Vsoma)
ninf(Vsoma) =

1
1+αn(Vsoma)

mτ(Vsoma) =
1

αm(Vsoma)+βm(Vsoma)
nτ(Vsoma) = max

(
50 · βn(Vsoma)

1+αn(Vsoma)
;2
)

αh(Vsoma) = 0.01 · Vsoma +45

e
Vsoma+45

1.5 −1
ṅ(Vsoma) =

ninf−n
nτ

βh(Vsoma) = 0.03 · Vsoma +45

1− e−
Vsoma+45

1.5
IK = γK ·n · (ErevK−Vsoma)

ḣ(Vsoma) = αh(Vsoma) · (1−h)−βh(Vsoma) ·h

ṁ(Vsoma) =
minf−m

mτ

INa = γNa ·m3 ·h · (ErevNa−Vsoma).

To trigger a BaP, an external current IBaP is injected in the soma at times t ∈ {t1, ..., tn} (postsynaptic input times) for a chosen
duration δin j with amplitude Iamp (nA):

IBaP =
n

∑
i=1

H(ti) · (1−H(ti +δin j)) · Iamp.

The current injected in the soma is filtered in a distance-dependent manner by the dendrite before it reaches the dendritic spine. The
distant-dependent BaP amplitude attenuation changes the axial resistance gadapt

BaP (see equations 3 and 4) between the dendrite and the
soma as follows (Fig. M2C top):

gadapt
BaP = β ·gdi f f ·βsoma, βsoma(dsoma) = 0.1+

1.4
1+ e0.02·(dsoma−230.3µm)

(5)

where dsoma is the distance of the spine to the soma and where the factor β is dynamically regulated based on a resource-use equation12

with a dampening factor βaux changing the size of the attenuation step δdecay:

β̇ =
1−β
τrec

−δdecay ·β−1
aux ·β · IBaP(t)

β̇aux =
1−βaux

τaux
rec

−δaux ·βaux · IBaP(t).
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Fig. M2. | AP Evoked by EPSP. a, Model and data comparison for the distance-dependent BaP amplitude attenuation measured in the dendrite
and varying the distance from the soma. The stimulation in panel A is set to reproduce the same stimulation as24. Golding measurements have
neurons that are strongly attenuated and weakly attenuated (dichotomy mark represented by the dashed line). However, in this work, we consider
only strongly attenuated neurons. b, Attenuation of somatic action potential from37 and model in response to five postsynaptic spikes delivered at
100 Hz. The value showed for the model is the spine voltage with distance from the soma set to zero (scale 25 ms, 20 mV).c, Top panel shows the
βsoma used in Equation (5) to modify the axial conductance between the soma and dendrite. Bottom panel shows the age-dependent changes in the
step of the resource-use equation, in Equation (6) that accelerates the BaP attenuation and decreases the sodium currents in the Equation (4). d,
Probability of evoking an AP multiplied by the successfully evoked AP (pAP(Vevoked) ·1(evoked) for the protocol 1Pre, 300 at 5 Hz (2.5 mM Ca). d,
Two-pool dynamics with the stimulation than panel D showing the vesicle release, the reserve and docked pools, and the evoked AP. e, Probability of
evoking an AP for the protocol 1Pre 300 pulses at different frequencies (3 and 5 Hz have the same probability).

The BaP attenuation model is based on24 data for strongly attenuating neurons. Therefore, the second type of attenuation (weakly
attenuating) in neurons is not considered (dichotomy in Fig. M2A). Fig. M2A compares Golding data to our model and illustrates the
effect of BaP attenuation in the upper panels of Fig. M2A and B.

Table M5 shows the BaP attenuation parameters. The plasticity outcomes as function of the dendritic spine distance from the soma
are shown in Fig. S2C and Fig. S1E.

Age-dependent BaP adaptation
Age-dependent BaP attenuation modifies the neuronal bursting properties through the maturation and expression of potassium and
sodium channels34, therefore changing the interaction of polarizing and depolarizing currents (see Fig. M2B)35,36. We reproduce37

somatic attenuation profiles (Fig. M2B) with our model by including an age-dependent BaP amplitude attenuation factor. We define
the attenuation factor βage (Fig. M2C bottom), as follows.

β̇age =
1− Iage

τage
rec

−δage ·βage · IBaP(t), δ age
rec =

1.391 ·10−4

1+ e0.135(age−16.482 days)
. (6)

In Equation (4), the age effects are introduced by multiplying the attenuation factor βage by the sodium INa and the external IBaP
currents.

AP evoked by EPSP
A presynaptic stimulation triggers a BaP if sufficient depolarization is caused by the EPSPs reaching the soma27 chapter 13. We
included an option to choose whether an EPSP can evoke an AP using an event generator resembling the previous release probability
model (prel). Like the prel , the BaPs evoked by EPSPs are estimated before the postsynaptic simulation. To this, we use a variable
Vevoke which is incremented by 1 at each presynaptic time t ∈ (t1, ..., tn) and has exponential decay:

{
V̇evoke =−Vevoke

τv
Vevoke(0) = 0

Vevoke −→Vevoke +1.
(7)
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NAME VALUE REFERENCE
Soma parameters for Na+ and K+ channel

sodium conductance γNa = 8 ·102 nS
0.32 nS/µm233

see legend commentary

potassium conductance γK = 40 nS
0.48 nS/µm233

see legend commentary
reversal potential sodium ErevNa = 50 mV 33

reversal potential potassium ErevK =−90 mV 33

BaP attenuation parameters

attenuation step factor (age) δage
see Equation (6) and Fig. M2B and C bottom

24,37

attenuation step factor δdecay = 1.727 ·10−5 adjusted to fit
24,37

auxiliary attenuation step factor δaux = 2.304 ·10−5 adjusted to fit
24,37

recovery time for the attenuation factor τrec = 2 s
adjusted to fit

24,37

recovery time for the auxiliary attenuation factor τaux
rec = 2 s

adjusted to fit
24,37

recovery time for the age attenuation factor τage
rec = 0.5 s

adjusted to fit
24,37

AP evoked by EPSP
decay time for Vevoke τV = 40 ms 23

delay AP evoked by EPSP δdelay−AP = 15 ms 41

Table M5. The Na+ and K+ conductances intentionally do not match the reference because models with passive dendrite need higher current input to
initiate action potentials42. Therefore we set it to achieve the desired amplitude on the dendrite and the dendritic spine according to the predictions
of24 and43.

Since the BaPs evoked by EPSP are triggered by the afferent synapses and are limited by their respective docked pools (D), we use
the previous prel to define the probability of an AP to occur. We test the ratio of successful releases from 25 synapses to decide if a
BaP is evoked by an EPSP, setting a test threshold of 80%. Therefore, we express the probability of evoking an AP, pAP(Vevoke), with
the following test:

∑25 1(rand < prel(Vevoked , [Ca2+]o,D))

25
> 80 %.

The EPSP summation dynamics on the soma and dendrites depend on the complex neuron morphology38,39 which was not
implemented by our model. Therefore, our "AP evoked by EPSP test" intends to give a simplified way to produce BaPs similar to an
integrate-and-fire model8.

Previous work suggests that BaPs can be evoked with a ∼5 % probability for low-frequencies40 in the Dudek and Bear 1992
experiment ([Ca2+]o = 2.5 mM). Our model covers this estimation, but the chance to elicit an AP increases with the frequency38. This
is captured by the Vevoke (in a integrate-and-fire fashion27) as shown in Fig. M2F. The Fig.s M2D and E show how a 5 Hz stimulation
evokes APs. The delay between the EPSP and the evoked AP is set to δdelay−AP = 15ms, similar to the EPSP-spike latency reported
for CA1 neurons41.

AMPAr
Markov chain
The AMPAr is modeled with the Markov chain (Fig. M3) described by44,45 and adapted to temperature changes according to46. Here,
we introduce the additional parameters ρAMPA

f ,ρAMPA
b to cover AMPAr temperature-sensitive kinetics46. The corresponding parameters

are given in Table M6.
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C0 C1 C2 C3 C4

D0 D1 D2 D3 D4

O2 O3 O4

D22 D23 D24

4k1 · [Glu] ·ρAMPA
f

k−1 ·ρAMPA
b

3k1 · [Glu] ·ρAMPA
f

2k−1 ·ρAMPA
b

2k1 · [Glu] ·ρAMPA
f

3k−1 ·ρAMPA
b

k1 · [Glu] ·ρAMPA
f

4k−1 ·ρAMPA
b

3k1 · [Glu] ·ρAMPA
f

k−2 ·ρAMPA
b

3k1 · [Glu] ·ρAMPA
f

k−1 ·ρAMPA
b

2k1 · [Glu] ·ρAMPA
f

2 · k−1 ·ρAMPA
b

k1 · [Glu] ·ρAMPA
f

3k−1 ·ρAMPA
b

2k1 · [Glu] ·ρAMPA
f

k−1 ·ρAMPA
b

k1 · [Glu] ·ρAMPA
f

2k−1 ·ρAMPA
b

4δ0γ0 δ1γ1 2δ1γ1 3δ1γ1 4δ1γ1

δ2γ2 2δ2γ2 3δ2γ2

α2β α3β α4β

Fig. M3. AMPAr Markov chain with three sub-conductance states and two desensitisation levels. It includes parameters ρAMPA
f , ρAMPA

b (binding and
unbinding of glutamate) which depend on temperature. Open states are O2, O3 and O4; closed states are C0, C1, C2, C3 and C4; desensitisation
states are D0, D1, D2, D3 and D4; deep desensitisation states are D22, D23 and D24.

The AMPAr current is the sum of the subcurrents associated to the occupancy of the three subconductance states O2, O3 and O4
of the Markov chain in the Fig. M3 and described as follows:

IAMPA = (ErevAMPA−Vsp) · (γA2 ·O2+ γA3 ·O3+ γA4 ·O4).

The adaptation of the Markov chain from44 is made by changing the forward ρAMPA
f and backward ρAMPA

b rates in a temperature-
dependent manner matching the decay time reported by46:

ρAMPA
f =

10.273
1+ e−0.473·(T−31.724°C)

, ρAMPA
b =

5.134
1+ e−0.367·(T−28.976°C)

.

The effects of temperature change on AMPAr dynamics are presented in Fig. M4, which also shows that the desensitisation is
unaltered between temperature changes (Fig. M4B and C). The recovery time from desensitisation is the same as at room temperature44.
Desensitisation measurements are required to account for a temperature-dependent change in the rates of the "vertical" transitions in
Fig. M3, see46. This can be relevant for presynaptic bursts.

Fig. M4. | Effect of temperature in the AMPAr. a, Probability of AMPAr opening ( O2+O3+O4
NAMPA

) and the decay time at different temperatures in
response to 1 mM glutamate during 1 ms (standard pulse).46 data (our model) suggests that AMPAr decay time at 35°C is ∼ 0.5 ms (∼ 0.6 ms) and at
25°C is ∼ 0.65 ms (∼ 0.95 ms), this shows a closer match towards more physiological temperatures. b, Desensitisation profile of AMPAr at 35°C
showing how many AMPAr are open in response to a glutamate saturating pulse (5 mM Glu during 20 ms) separated by an interval (x-axis). c, Same
as in panel B but for 25°C.
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NAME VALUE REFERENCE
Glutamate parameters
duration of glutamate in the cleft gluwidth = 1 ms 47

concentration of glutamate in the cleft gluamp = 1 mM 47

glutamate variability
(gamma distribution Γ) glucv = Γ(1/0.52,0.52) 48

glutamate signal Glu
glucv ·gluamp

for AMPAr, NMDAr and copied to GABA neurotransmitter
AMPAr parameters
number of AMPArs NAMPA = 120 29

reversal potential ErevAMPA = 0 mV 29

subconductance O2 γA2 = 15.5 pS 16.3 pS45

subconductance O3 γA3 = 26 pS 28.7 pS45

subconductance O4 γA4 = 36.5 pS 37.8 pS45

glu binding k1 = 1.6 ·107M−1s−1 44

glu unbinding 1 k−1 = 7400 s−1 44

glu unbinding 2 k−2 = 0.41 s−1 44

closing α = 2600 s−1 44

opening β = 9600 s−1 44

desensitisation 1 δ1 = 1500 s−1 44

desensitisation 2 δ2 = 170 s−1 44

desensitisation 3 δ0 = 0.003 s−1 44

re-desensitisation 1 γ1 = 9.1 s−1 44

re-desensitisation 2 γ2 = 42 s−1 44

re-desensitisation 3 γ0 = 0.83 s−1 44

Table M6. Parameter values for the AMPAr Markov chain and glutamate release affecting NMDAr, AMPAr. Properties of GABA release are the
same as those for glutamate.

Postsynaptic Ca2+ influx
The effects of experimental conditions in the calcium dynamics are due to receptors, ion channels and enzymes. A leaky term models
the calcium resting concentration in the Equation (8). The calcium fluxes from NMDAr and VGCCs (T, R, L types) are given in
Equation (9). The diffusion term through the spine neck is expressed in Equation (10). Finally, the buffer, the optional dye and the
enzymatic reactions are given in Equation (11) (parameter values given at the Table M7):

Ċa =
Ca∞−Ca

τCa
+ (8)

CaNMDA + IT + IR + IL

2 ·F ·Asp
+ (9)

max(Ca∞,Ca/3)−Ca
τCaDi f f

− (10)

˙Bu f fCa− ˙Dye+ enzymes. (11)

Despite the driving force to the resting concentration, Ca∞ = 50 nM, the tonic opening of T-type channels causes calcium to
fluctuate making its mean value dependent on temperature, extracellular calcium and voltage. The effects of this tonic opening in
various experimental conditions are shown in Fig. S4C. To avoid modelling dendritic calcium sources, we use a dampening term
as one-third of the calcium level since calcium imaging comparing dendrite and spine fluorescence have shown this trend49. The
Equation (10) implements the diffusion of calcium from the spine to the dendrite through the neck. The time constant for the diffusion
coefficient τCaDi f f , is estimated as described in50. The calcium buffer and the optional dye are described as a two states reaction
system51:

˙Bu f fCa = kBu f f
on · (Bu f fcon−Bu f fCa) ·Ca− kBu f f

o f f ·Bu f fCa

˙Dye = kFluo5
on · (Fluo5 fcon−Dye) ·Ca− kFluo5

o f f ·Dye.

We estimated the calcium reversal potential for the calcium fluxes using the Goldman–Hodgkin–Katz (GHK) flux equation
described in52. The calcium ion permeability, PCa, was used as a free parameter adjusting a single EPSP to produce a calcium
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amplitude of ∼ 3 µM as reported in53.

φ = zCa ·Vsp ·F/R · (T +273.15K)

ΦCa =−PCa · zCa ·F ·φ ·
[Ca]i− [Ca]o · e−φ

1− e−φ (12)

ΦCa is used to determine the calcium influx through NMDAr and VGCC in the Equations 13, 14, 15 and 16.

NAME VALUE REFERENCE
Buffer and dye

association buffer constant kBu f f
on = 0.247 µM−1ms−1 29

dissociation buffer constant kBu f f
o f f = 0.524 ms−1 29

buffer concentration Bu f fcon = 62 µM 76.7 µM29

Calcium dynamics
Calcium baseline concentration Ca∞ = 50 nM 37±5 to 54±5 nM17

Calcium decay time τCa = 10 ms
50 to 500 ms for with dye17

therefore < 50 to 500 ms undyed (unbufered)
Calcium diffusion DCa = 0.3338 µm2ms−1 0.22 to 0.4 µm2ms−129,50

Calcium diffusion time constant τCaDi f f =
Volsp

2DCa·Dneck
+ Lneck

2DCa
= 0.5 ms 8 ms for a Vsp = 0.7 µm350

GHK
temperature T = 35°C converted to Kelvin in the Equation (12) given the protocol
faraday constant F = 96.485 C mol−1 52

gas constant R = 8.314 J K−1 mol−1 52

Calcium permeability PCa = 0.045 µm ms−1 adjusted to produce 3 µM Calcium in response to a Glu release
supplementary files from53

Calcium ion valence zCa = 2 52

Table M7. Postsynaptic calcium dynamics parameters.

NMDAr - GluN2A and GluN2B
Markov chain
In the hippocampus, the NMDAr are principally heteromers composed of the obligatory subunit GluN1 and either the GluN2A or
GluN2B subunits. These N2 subunits guide the activation kinetics of these receptors with the GluN1/GLUN2B heteromers displaying
slow kinetics (∼ 250ms) and the GluN1/GluN2A heteromers displaying faster kinetics (∼ 50ms). We modeled both NMDA subtypes.
The NMDAr containing GluN2A is modeled with the following Markov chain54 where we introduce the additional parameters
ρNMDA

f ,ρNMDA
b :

A0 A1 A2 A3 A4 AO1 AO2

ka · [Glu] ·ρNMDA
f

k−a ·ρNMDA
b

kb · [Glu] ·ρNMDA
f

k−b ·ρNMDA
b

kc ·ρNMDA
f

k−c ·ρNMDA
b

kd ·ρNMDA
f

k−d ·ρNMDA
b

ke ·ρNMDA
f

k−e ·ρNMDA
b

k f ·ρNMDA
f

k− f ·ρNMDA
b

The NMDAr containing GluN2B is modeled with a Markov chain based on the above GluN2A scheme. We decreased the rates by
∼75% in order to match the GluN2B decay at 25°C as published in55.

B0 B1 B2 B3 B4 BO1 BO2

sa · [Glu] ·ρNMDA
f

s−a ·ρNMDA
b

sb · [Glu] ·ρNMDA
f

s−b ·ρNMDA
b

sc ·ρNMDA
f

s−c ·ρNMDA
b

sd ·ρNMDA
f

s−d ·ρNMDA
b

se ·ρNMDA
f

s−e ·ρNMDA
b

s f ·ρNMDA
f

s− f ·ρNMDA
b

The different rates are given in Table M8.

NMDAr and age switch
The age-dependent expression ratio of the subtypes GluN2A and GluN2B (rage) was obtained from hippocampal mice data56. We
added noise to this ratio causing ∼1 NMDAr subunit to flip towards GluN2A or GluN2B (see Fig. M5E). The population of 15
NMDAr is divided in the two subtypes according to the ratio plotted in Fig. M5B as function of age. The ratio to define the number
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Fig. M5. | NMDAr changes caused by age, temperature and extracellular and magnesium concentrations in the aCSF.A Decay time of
the NMDAr-mediated EPSP recorded from neocortical layer II/III pyramidal neurons (grey)57 compared to the decay time from the GluN2B
channel estimated by our model (yellow) and data from Iacobussi’s single receptor recording (purple)55. b, Comparison of our implementation of
GluN2B:GluN2A ratio and the GluN2B:GluN2A ratio from the mice’s CA1. c, Comparison of our implementation of NMDAr conductance change
in response to the extracellular against data58. d, Forward and backwards temperature factors implemented to approximate NMDAr subtypes decay
times at room temperature55 and temperature changes observed in57. e, NMDAr subtypes number on our model given age. We add noise to have
a smoother transition between different ages. f, Calcium concentration changes for causal and anticausal protocols in response to different aCSF
calcium and magnesium compositions with fixed Ca/Mg ratio (1.5). Scale 50 ms and 5 µM.

NMDAr subtypes as function of age reads:

rage = 0.507+
0.964

1+ e0.099·(age−25.102 days)
+N (0,0.05)

NGluN2B = round
(

NNMDA · rage

rage +1

)

NGluN2A = round
(

NNMDA

rage +1

)
.

The round term in the two previous equations ensures that we have an integer value for the NMDAr subtypes, making the stair
shaped curve seen in Fig. M5E.

NMDAr and temperature
We adjusted the GluN2A and GluN2B forward and backward rates to follow the temperature effects on NMDAr-mediated EPSP57

(see Fig. M5A and D). Because GluN2B dominates the NMDAr-mediated EPSP, we fit its decay time on the NMDAr-mediated EPSP
as function of temperature as reported by57 using a logistic functions ρNMDA

f and ρNMDA
b . The decay time comparison is shown in

Fig. M5A. Then, we applied the same temperature factor ρNMDA
f and ρNMDA

b for GluN2A. The decay times of GluN2A and GluN2B
are similar to the ones reported by Iacobucci55. The forward and backward factors are described as follows:

ρNMDA
f =−1230.680+

1239.067
1+ e−0.099·(T+37.631°C)

, ρNMDA
b = 3.036+

1621.616
1+ e−0.106·(T−98.999°C)

.
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NMDAr current and Ca2+-dependent conductance
NMDAr conductance is modulated by external calcium and is modelled according to the next equations using NMDAr subconductances
AO1 and AO2 (GluN2A), and BO1 and BO2 (GluN2B).

γNMDA = 33.949+
58.388

1+ e4·([Ca2+]o−2.701 mM)
pS

B(Vsp, [Mg]o) =
1

1+ [Mg]o
3.57 · e−0.062·Vsp

NMDA = (BO1 +BO2 +AO1 +AO2) ·B(Vsp, [Mg]o) · γNMDA

INMDA = (ErevNMDA−Vsp) ·NMDA

We now modify the conductance function γNMDA reported by58. The reported NMDAr conductance at [Ca2+]o = 1.8 mM is
53±5pS. Here, we used the higher conductance 91.3 pS for NMDAr (for both subtypes) at [Ca2+]o = 1.8 mM to compensate for the
small number of NMDArs reported by59. Hence, we cover58 data differently to account for this constraint: this caused a right-shift in
the NMDA-conductance curve (Fig. M5C). The calcium influx CaNMDA is modulated by the GHK factor, Equation (12), as function of
the internal and external calcium concentrations and the spine voltage:

CaNMDA = fCa ·ΦCa ·NMDA. (13)

The combined effect of Magnesium60 and extracellular Calcium concentration are displayed in Fig. M5F.

GABA(A) receptor
Markov chain
We used the GABA(A) receptor Markov chain (Fig. M6) presented in Bush and Sakmann 199063,64 and we estimated temperature
adaptations using Otis and Mody 199265 measurements.

C0 C1 C2

O1 O2

rb1 · [Gaba]

ru1

rb2 · [Gaba]

ru2

ro1rc1 ·ρGABA
b

ro1rc2 ·ρGABA
b

Fig. M6. | GABAr Markov chain model. Closed states (C0, C1 and C2) open in response to GABAr and can go either close again or open (O1 and
O2)

GABA(A)r and temperature
Because the amplitude of GABA(A) current is altered by the GABAr shift66 during development, we applied temperature changes only
to the closing rates using a logistic the function ρGABA

b estimated by fitting65 measurements (data comparison in the Fig. M7B and E).

ρGABA
b = 1.470− −1.279

1+ e0.191·(T−32.167) .

GABA(A)r current and age switch
The GABA(A)r-driven current changes during development3 passing from depolarizing (excitatory) to hyperpolarizing (inhibitory)67.
That is, the reversal potential of chloride ions permeating GABA(A)r shifts from above the membrane resting potential (inward driving
force - excitatory) to below the membrane resting potential (outward driving force - inhibitory)66. Such effect mediated by chloride
ions is associated with the KCC2 pump (K Cl co-transporter) which becomes efficient in extruding chloride ions during maturation66.
To cover the GABA(A)r shift, we fit the chloride reversal potential (ECl

rev) using the data published by66 (Fig. M7C):

ECl
rev =−92.649+

243.515
1+ e0.091·(age−0.691 days)

IGABA = (O1 +O2) · (ECl
rev−Vdend) · γGABA.

Table M9 presents the parameters to model the GABAr.
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NAME VALUE ENCE
NMDAr (GluN2A)
glutamate binding ka = 34 µM−1s−1 54

glutamate binding kb = 17 µM−1s−1 54

forward rate kc = 127 s−1 54

forward rate kd = 580 s−1 54

opening rate ke = 2508 s−1 54

opening rate k f = 3449 s−1 54

closing rate k− f = 662 s−1 54

closing rate k−e = 2167 s−1 54

backward rate k−d = 2610 s−1 54

backward rate k−c = 161 s−1 54

glutamate unbinding k−b = 120 s−1 54

glutamate unbinding k−a = 60 s−1 54

NMDAr (GluN2B)
glutamate binding sb = 0.25kb adapted from GluN2A54,55

glutamate binding sc = 0.25kc adapted from GluN2A54,55

forward rate sc = 0.25kc adapted from GluN2A54,55

forward rate sd = 0.25kd adapted from GluN2A54,55

opening rate se = 0.25ke adapted from GluN2A54,55

opening rate s f = 0.25k f adapted from GluN2A54,55

closing rate s− f = 0.23k− f adapted from GluN2A54,55

closing rate s−e = 0.23k−e adapted from GluN2A54,55

backward rate s−d = 0.23k−d adapted from GluN2A54,55

backward rate s−c = 0.23k−c adapted from GluN2A54,55

glutamate unbinding s−b = 0.23k−b adapted from GluN2A54,55

glutamate unbinding s−a = 0.23k−a adapted from GluN2A54,55

other parameters
total number of NMDAr NNMDA = 15 5-3029,47,59

distribution of GluN2A and GluN2B defined by rage
56

NMDAr conductance depending on calcium γNMDA
58

NMDAr reversal potential ErevNMDA = 0 mV 61

fraction of calcium carried by NMDAr fCa = 0.1 62

Table M8. NMDAr parameters.

NAME VALUE ENCE
GABA(A) receptor
number of GABA NGABA = 34 3068

chloride reversal potential see age-dependent equation 66

GABAr conductance γGABA = 36 pS 27 pS69

binding rb1 = 20 ·106M−1 s−1 same as63

unbinding ru1 = 4.6 ·103 s−1 same as63

binding rb2 = 10 ·106 M−1s−1 same as63

unbinding ru2 = 9.2 ·103 s−1 same as63

opening pore rro1 = 3.3 ·103 s−1 same as63

opening pore rro2 = 10.6 ·103 s−1 same as63

closing pore rc2 = 400 s−1 based on63,65

closing pore rc2 = 9.8 ·103 s−1 based on63,65

Table M9. GABAr parameters.
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Fig. M7. | GABA(A)r current, kinetics and chloride reversal potential. a, States of GABA(A)r Markov chain at 25°C in response to a presynaptic
stimulation. Opened = O1 +O2, closed = C0 +C1 +C2. b, Model and data comparison65 for GABA(A)r current at 25°C. Even though data were
recorded from P70 at 25°C and P15 at 35°C, we normalize the amplitude to invert the polarity and compare the decay time. This is done since the
noise around P15 can either make GABAr excitatory or inhibitory as shown by Ecl data in panel C. c, Chloride reversal potential (ECl

rev) fitted to66

data. Note we used both profiles from axon and dendrite age-depended ECl
rev changes since exclusive dendrite data is scarce. d, States of simulated

from GABA(A)r Markov chain at 35°C in response to a presynaptic stimulation. e, Model and data comparison65 for GABA(A)r current at 25°C
(same normalization as in panel B). f, Change in the polarization of GABA(A)r currents given the age driven by the ECl

rev.

VGCC - T, R and L type
Markov chain
A stochastic VGCC model was devised using the channel gating measurements from CA1 rat’s (2-8 weeks) pyramidal neurons by
Magee and Johnston 1995 at room temperature70. Our model has three different VGCC subtypes described by the Markov chains in
Fig. M8: the T-type (low-voltage), the R-type (medium-to-high-voltage) and the L-type (high-voltage).

C0 C1

C2 OR

αR
m(Vsp) ·ρV GCC

f

β R
m(Vsp) ·ρV GCC

b

αR
m(Vsp) ·ρV GCC

f

β R
m(Vsp) ·ρV GCC

b

αR
h (Vsp) ·ρV GCC

fβ R
h (Vsp) ·ρV GCC

b αR
h (Vsp) ·ρV GCC

fβ R
h (Vsp) ·ρV GCC

b

OL1 C0 OL2

β L
1 (Vsp) ·ρV GCC

b

αL(Vsp) ·ρV GCC
f

αL(Vsp) ·ρV GCC
f

β L
2 (Vsp) ·ρV GCC

b

C0 C1

C2 OT

αT
m (Vsp) ·ρV GCC

f

β T
m (Vsp) ·ρV GCC

b

αT
m (Vsp) ·ρV GCC

f

β T
m (Vsp) ·ρV GCC

b

αT
h (Vsp) ·ρV GCC

fβ T
h (Vsp) ·ρV GCC

b αT
h (Vsp) ·ρV GCC

fβ T
h (Vsp) ·ρV GCC

b

Fig. M8. From left to right, R-, L-, and T-type VGCCs Markov chain adapted from Magee and Johnston 199570. The R- (left scheme) and T- type
(right scheme) have a single open state (red colour), respectively, Or and OT . The L-type VGCC (middle) has two open states, OL1 and OL2.

The VGCC Markov chain derived from Magee and Johnston 199570 are composed of two gates (h,m) for T- (Fig. M9A and D)
and R-types (Fig. M9B and E) and a single gate for L-type (Fig. M9C), as described in the equations below.
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R-type h-gate rates

τR?
h = 100

hR?
in f (Vsp) =

1

1+ e
Vsp+39

9.2

αR
h (Vsp) =

hR
in f

τR
h

β R
h (Vsp) =

1−hR
in f

τR
h

R-type m-gate rates

β R?
m = 40

mR?
in f =

1

1+ e
3−10

8

αR?
m r = β R?

m ·
mR?

in f

1−mR?
in f

τR
m =

1
αR?

m +β R?
m

mR
in f =

1

1+ e
3−Vsp

8

αR
m(Vsp) =

mR
in f

τR
m

β R
m(Vsp) =

1−mR
in f

τR
m

T-type h-gate rates

τT?
h = 50

hT?
in f (Vsp) =

1

1+ e
Vsp+70

6.5

αT
h (Vsp) =

hT
in f

τT
h

β T
h (Vsp) =

1−hT
in f

τT
h

T-type m-gate rates

β T?
m = 1

mT?
in f =

1

1+ e
−32+20

7

αT?
m r = β T?

m ·
mT∗

in f

1−mT?
in f

τT
m =

1
αT?

m +β T?
m

mT
in f =

1

1+ e
−32−Vsp

7

αT
m(Vsp) =

mT
in f

τT
m

β T
m (Vsp) =

1−mT
in f

τT
m

L-type rates

αL(Vsp) =
0.83

1+ e
13.7−Vsp

6.1

β L
1 (Vsp) =

0.53

1+ e
Vsp−11.5

6.4

β L
2 (Vsp) =

1.86

1+ e
Vsp−18.8

6.17

VGCC and temperature
We used the same temperature factor for every VGCC subtype, respectively ρV GCC

f and ρV GCC
b (see Fig. M9F), as follows:

ρV GCC
f = 2.503− 0.304

1+ e1.048·(T−30.668)

ρV GCC
b = 0.729+

3.225
1+ e−0.330·(T−36.279) .

The VGCC subtypes are differently sensitive to temperature, with temperature factors for decay times ranging from 271 to 50-fold72.
It further complicates if T-type isoforms are considered. Indeed, they can have temperature factors that accelerate or slow down the
kinetics. For instance, when passing from room to physiological temperatures, the isoform Cav3.3 has a closing time ∼50 % faster71

and the isoform Cav3.1 becomes ∼15 % slower. To simplify, the same temperature factor is adopted to all VGCC subtypes.

VGCC currents
The VGCC currents are integrated to the dendritic spine and estimated using the GHK Equation (12), as follows:

IT = γT ·ΦCa ·OT (14)
IR = γR ·ΦCa ·OR (15)
IL = γL ·ΦCa · (OL1 +OL2) (16)
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Table M10 presents the parameters to model the VGCC channels.

NAME VALUE ENCE
VGCC
VGCC T-type conductance γCaT = 12 pS same as70

VGCC R-type conductance γCaR = 17 pS same as70

VGCC L-type conductance γCaL = 27 pS same as70

number of VGCCs 3 for each subtype 1 to 2073

Table M10. VGCC parameters

Fig. M9. | VGCC rates and temperature factors. a, Activation (αm(Vsp)) and deactivation rates (βm(Vsp)) for the T-type m-gate. b, Activation
(αm(Vsp)) and deactivation rates (βm) for the R-type m-gate. c, Activation (αm(Vsp)) and both deactivation rates (β L

2 (Vsp) and β 1
2 (Vsp)) for the L-type

VGCC. d, Activation (αh(Vsp)) and deactivation rates (βh(Vsp)) for the T-type h-gate. e, Activation (αh(Vsp)) and deactivation rates (βh(Vsp)) for the
R-type h-gate. f, Temperature factor applied to all the rates, forward change (ρV GCC

f ) for the α rates and backward change (ρV GCC
b ) for the β rates.

SK channel
The small potassium (SK) channel produces hyperpolarizing currents which are enhanced in the presence of intracellular calcium
elevations. The SK channel current was based on the description of62 as follows:

r(Ca) =
Caσ

Caσ +hσ
SK

ṁsk =
r(Ca) ·ρSK

f −ms

τSK ·ρSK
b

ISK = γSK · (ESK
rev −Vsp) ·msk ·NSK .

We chose a temperature factor to decrease the decay time of hyperpolarizing currents by a factor of two when passing from
physiological to room temperature. Despite that the ences for temperature effects on the SK channel are few, a report74 suggests a
left-ward shift in the SK half-activation when changing from 37°C (hSK = 0.38±0.02 µM) to 25°C (hSK = 0.23±0.01 µM) ; that is
a 65% decrease.

ρSK
b = 149.37− 147.61

1+ e0.093·(T−98.85C)
, ρSK

f = 0.005+
2.205

1+ e−0.334·(T+25.59C)

Table M11 presents the parameters to model the SK channel.
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NAME VALUE ENCE
SK channel
number of SK channels NSK = 15 10–20075

SK conductance γSK = 10 pS 76

SK reversal potential ESK
rev =−90 mV 62

SK half-activation hSK = 0.333 µM 62

SK half-activation slope σ = 6 4 in62

SK time constant τSK = 6.3 ms 62

Table M11. SK channel parameters.

Enzymes - CaM, CaN and CaMKII
Markov chain
To model the enzymes dynamics, we adapted a monomeric CaM-CaMKII Markov chain from77 which builds over78. Our adaptation
incorporates a simplified CaN reaction which only binds to fully saturated CaM. That is, CaM bound to four calcium ions on N
and C terminals (see Markov chain in the Fig. M10). A consequence of the Pepke coarse-grained model is that calcium binds and
unbinds simultaneously from the CaM terminals (N,C). We assumed no dephosphorylation reaction between CaMKII and CaN since79

experimentally suggested that no known phosphatase affects CaMKII decay time which is probably caused only by CaM untrapping79.
This was previously theorized by80’s model, and it is reflected in Chang data53,77. The structure of the corresponding Markov chain is
shown in Fig. M10.

Chang’s data77 provides a high-temporal resolution fluorescence measurements for CaMKII in the spines of rat’s CA1 pyramidal
neurons and advances the description of CaMKII self-phosphorylation (at room temperature). We modified Chang’s model of CaMKII
unbinding rates k2,k3,k4,k5 to fit CaMKII dynamics at room/physiological temperature as shown by53 supplemental files. Previous
modelling of CaMKII77,78 used a stereotyped waveform with no adaptation to model calcium. Our contribution to CaMKII modelling
was to use calcium dynamics sensitive to the experimental conditions to reproduce CaMKII data, therefore, allowing us to capture
physiological temperature measurements from53. Note that CaMKII dynamics has two time scales and we only capture the fastest one
(after stimulation ceases, 60 s) and the relative amplitude of CaMKII between the different temperatures. The slowest one occurs
at the end of the stimulus, close to the maximum (Fig. M11A); this can be caused by the transient volume increase in the spine as
measured by53.

Table M12 shows the concentration of the enzymes and Table M13 shows the parameters to model enzymes reactions in the Fig.
M10.

NAME VALUE REFERENCE
Enzyme concentrations
free CaM concentration CaMcon = 30 µM 81

free KCaM concentration mKCaMcon = 70 µM 82,83

free CaN concentration mCaNcon = 20 µM 5–20 µM84

Table M12. Concentration of each enzyme.

Temperature effects on enzymatic-activity
We then included temperature factors in the coarse-grained model using Chang data77, as shown in Fig. M11. For CaMKII, we fitted
the modified dissociation rates of the phosphorylation states k2, k3 and k5 to match the data on relative amplitude and decay time using
the following logistic function:

ρCaMKII
b = 162.171− 161.426

1+ e0.511(T−45.475°C)
.

For CaN, we fit the85’ data at 25°C as seen in Fig. M12A. However, since CaN-CaM dissociation rates at physiological temperatures
were not found, we set the temperature factor to CaN that fits the outcomes of the protocols we proposed to reproduce. A reference
value from the CaN-AKAP79 complex86 showed a Q10 = 4.46 = (2.19 s−1/9.78 s−1) which is nearly the temperature factor used in
our model for CaM. Therefore, both the association and dissociation rates are modified using the following logistic functions:

ρCaN
f = 2.503− 0.304

1+ e1.048(T−30.668°C)

ρCaN
b = 0.729+

3.225
1+ e−0.330(T−36.279°C)

.
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CaM0 CaM2N

CaM2C CaM4

KCaM0 KCaM2N

KCaM2C KCaM4

PCaM0 PCaM2N

PCaM2C PCaM4

P mKCaM

P2

CaNCaM4

CaM-Ca and CaM-CaN reactions

KCaM-Ca reactions

KCaM phosphorylation

autonomous activity

k2N
f

k2N
b

k2N
f

k2N
b

k2C
f

k2C
b

k2C
f

k2C
b

kK2N
f

kK2N
b

kK2N
f

kK2N
b

kK2C
f

kK2C
b

kK2C
f

kK2C
b

kCaM0
bkCaM0

f kCaM2N
bkCaM2N

f

kCaM2C
bkCaM2C

f kCaM4
bkCaM4

f

F · k1 F · k1

F · k1 F · k1

ρCaMKII
b · k5k4

ρCaMKII
b · k2 ρCaMKII

b · k2

ρCaMKII
b · k2ρCaMKII

b · k2

ρCaN
f · kCaN

f

ρCaN
b · kCaN

b

ρCaMKII
b · k3

Fig. M10. | Coarse-grained model of CaM, CaMKII and CaN adapted from77 and78 The reaction description matches with the color: Releases
2Ca, consumes 2Ca, consumes mKCaM, releases mKCaM, releases CaM2C, CaM2N, CaM0, CaM2N, releases mCaN, consumes mCaN, phoshorylate
K units to P units, phosphorylated states and dephosphorylation.
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Fig. M11. | CaMKII temperature changes in our model caused by 1Pre, 30 at 0.49 Hz with Glutamate uncaging (no failures allowed), 1Mm
Ca, 2mM Mg, P4-7 organotypic slices from mice hippocampus. a, CaMKII fluorescent probe lifetime change measured by53 for 25°(blue) and
35°C (red)53. The decay time (τ) was estimated by fitting the decay after the stimulation (30 pulses at 0.49Hz) using a single exponential decay,
y = a ·e−t·b ; τ = 1\b. b, Simulation of the CaMKII concentration change (with respect to the baseline) at 25°in response to same protocol applied in
the panel A. The simulations on the panels B, C, E and F show the mean of 20 samples. c, Same as in panel B but for 35°C. d, Estimated temperature
change factor for the dissociation rates k2, k3 and k5 in the Markov chain at the Fig. M10. e, Change in the concentration of the CaMKII states
(25°C) which are summed to compose CaMKII change in the panel B. f, Same as in panel E for 35°C with reference to the panel C.

Fig. M12. | CaN temperature changes in our model caused by 1Pre, 100 at 20 Hz with Glutamate uncaging (no failures allowed), 2Mm Ca,
Free Mg, 11-13 days in vitro. a, Simulated caN change (blue solid line) in response to the same stimuli of the CaN measurement from85 RY-CaN
fluorescent probe (green solid line). The decay time (τ) estimated from data (y = a · e−t·b) is 94.83 s (dashed purple line) and for our model (solid
purple line) is 82.66 s. b, Simulated CaN change for physiological temperature with decay time 54.44 s. Due to the lack of data, CaN kinetic change
was set to fit plasticity on the protocols use in this work. c, Temperature change, ρCaN

f and ρCaN
b , aplied to CaN association and dissociation rates.

Our dissociation rate becomes 0.006 s−1 for 22°C (same temperature as in87), 0.0012 s−1), at the same temperature the association rate becomes
9.45 ·106M−1s−1 (46 ·106M−1s−1 in87).
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REACTIONS VALUE REFERENCE
Coarse-grained model, CaM-Ca reactions
CaM0 + 2Ca⇒ CaM2C
CaM2N + 2Ca⇒ CaM4 k2C

f = adapt(k1C
on ,k

2C
on ,k

1C
o f f ,k

2C
on ,Ca) 78

CaM0 + 2Ca⇒ CaM2N
CaM2C + 2Ca⇒ CaM4 k2N

f = adapt(k1N
on ,k

2N
on ,k

1N
o f f ,k

2N
on ,Ca) 78

CaM2C⇒ CaM0 + 2Ca
CaM4⇒ CaM2N + 2Ca k2C

b = adapt(k1C
o f f ,k

2C
o f f ,k

1C
o f f ,k

2C
on ,Ca) 78

CaM2N⇒ CaM0 + 2Ca
CaM4⇒ CaM2C + 2Ca k2N

b = adapt(k1N
o f f ,k

2N
o f f ,k

1N
o f f ,k

2N
on ,Ca) 78

k1C
on = 5 ·106M−1s−1 1.2 to 9.6 ·106M−1s−178

k2C
on = 10 ·106M−1s−1 5 to 35 ·106M−1s−178

k1N
on = 100 ·106M−1s−1 25 to 260 ·106M−1s−178

k2N
on = 200 ·106M−1s−1 50 to 300 ·106M−1s−178

k1C
o f f = 50 s−1 10 to 70 s−178

k2C
o f f = 10 s−1 8.5 to 10 s−178

k1N
o f f = 2000 s−1 1 ·103 to 4 ·103 s−178

k2N
o f f = 500 s−1 0.5 ·103 to > 1 ·103 s−178

Coarse-grained model, KCaM-Ca reactions
KCaM0 + 2Ca⇒ KCaM2C
KCaM2N + 2Ca⇒ KCaM4 kK2C

f = adapt(kK1C
on ,kK2C

on ,kK1C
o f f ,k

K2C
on ,Ca) 78

KCaM0 + 2Ca⇒ KCaM2N
KCaM2C + 2Ca⇒ KCaM4 kK2N

f = adapt(kK1N
on ,kK2N

on ,kK1N
o f f ,k

K2N
on ,Ca) 78

KCaM2C⇒ KCaM0 + 2Ca
KCaM4⇒ KCaM2N + 2Ca kK2C

b = adapt(kK1C
o f f ,k

K2C
o f f ,k

K1C
o f f ,k

K2C
on ,Ca) 78

KCaM2N⇒ KCaM0 + 2Ca
KCaM4⇒ KCaM2C + 2Ca kK2N

b = adapt(kK1N
o f f ,k

K2N
o f f ,k

K1N
o f f ,k

K2N
on ,Ca) 78

kK1C
on = 44 ·106M−1s−1 78

kK2C
on = 44 ·106M−1s−1 78

kK1N
on = 76 ·106M−1s−1 78

kK2N
on = 76 ·106M−1s−1 78

kK1C
o f f = 33 s−1 78

kK2C
o f f = 0.8 s−1 0.49 to 4.9 s−178

kK1N
o f f = 300 s−1 78

kK2N
o f f = 20 s−1 6 to 60 s−178

Coarse-grained model, CaM-mKCaM reactions
CaM0 + mKCaM⇒ mKCaM0 kCaM0

f = 3.8 ·103M−1s−1 78

CaM2C + mKCaM⇒ mKCaM2C kCaM2C
f = 0.92 ·106M−1s−1 78

CaM2N + mKCaM⇒ mKCaM2N kCaM2N
f = 0.12 ·106M−1s−1 78

CaM4 + mKCaM⇒ mKCaM4 kCaM4
f = 30 ·106M−1s−1 14 to 60 ·106M−1s−178

mKCaM0⇒ CaM0 + mKCaM kCaM0
b = 5.5 s−1 78

mKCaM2C⇒ CaM2C + mKCaM kCaM2C
b = 6.8 s−1 78

mKCaM2N⇒ CaM2N + mKCaM kCaM2N
b = 1.7 s−1 78

mKCaM4⇒ CaM0 + mKCaM kCaM4
b = 1.5 s−1 1.1 to 2.3 s−178

Coarse-grained model, self-phosphorylation reactions
KCaM0⇒ PCaM0
KCaM2N⇒ PCaM2N
KCaM2C⇒ PCaM2C
KCaM4⇒ PCaM4

k1 = 12.6 s−1 77

Fraction of activated CaMKII F =CaMKII/mKCaMcon see Equation (17)77

PCaM0⇒ P+CaM0
PCaM2N⇒ P+CaM2N
PCaM2C⇒ P+CaM2C
PCaM4⇒ P+CaM4

k2 = 0.33−1 0.33 s−1 ; adapted from77

P⇒mKCaM k3 = 4 ·0.17s−1 0.17s−1 adapted from77

P⇒P2 k4 = 4 ·0.041s−1 0.041s−1 adapted from77

P2⇒P k5 = 8 ·0.017s−1 0.017s−1adapted from77

Calcineurin model, CaM-CaM4 reactions
CaM4+mCaN⇒mCaNCaM4 kCaN

f = 10.75 ·106M−1s−1 46 ·106M−1s−187

mCaNCaM4⇒CaM4+mCaN kCaN
b = 0.02 s−1 0.0012 s−187

see temperature factor

Table M13. Parameters for the coarse-grained model published in78 and adapted by77 and this work.78 rate adaptation for the coarse-grained model
adapt(a,b,c,d,Ca) = a·b

c+d·Ca .
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Readout
We describe the readout mechanism which provides the plasticity event which takes place in the synapse. First, we define the following
variables which are representative of "active CaMKII" and "active CaN":

Active CaN
CaN =CaN4

Active CaMKII
KCaM = KCaM0+KCaM2C+KCaM2N +KCaM4
PCaM = PCaM0+PCaM2C+PCaM2N +PCaM4

CaMKII = KCaM+PCaM+P+P2. (17)

It is known that the calcium entry initiates a cascade of events that ultimately leads to short and long term plasticity changes. Specific
concentrations of CaMKII and CaN trigger activation functions actD and actP when they belong to one of the two polygonal regions
(P and D), termed plasticity regions:

˙actD = aD ·1D−bD · (1−1D) ·actD
˙actP = aP ·1P−bP · (1−1P) ·actP.

To Specify the LTP/LTD rates, termed Drate and Prate, we use the activation functions, actD and actP, as follows:

Prate(actP) = t−1
P

acthP
P

acthP
P +KhP

P

Drate(actD) = t−1
D

acthD
D

acthD
D +KhD

D

.

The Markov plasticity chain (see Fig. M13) starts with initial conditions NC=100, LTD=0 and LTP=0. Fig. M14 shows how the
readout works to predict plasticity for a single orbit. Table M14 shows the parameters to define the polygons of the plasticity regions
(see Fig. M14)B.

LTD NC LTP
Prate(actP)

Drate(actD)

Prate(actP)

Drate(actD)

Fig. M13. | Plasticity Markov Chain.
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Fig. M14. | Plasticity readout for the protocol 1Pre2Post10, 300 at 5Hz, from1. a, CaMKII and CaN activity in response to protocol 1Pre2Post10.
b, Enzymatic joint activity in the 2D plane showing LTP and LTD’s plasticity regions. The black point marks the beginning of the stimulation, and
the white point shows the end of the stimulation after 60 s. c, Region indicator illustrating how the joint activity crosses the LTP and the LTD regions.
d, The leaky activation functions are used respectively as input to the LTP and LTD rates. The activation function has a constant rise when the
joint-activity is inside the region, and exponential decay when it is out. e, The LTD rate in response to the leaky activation function, actD, in panel D.
Note that this rate profile occurs after the stimulation is finished (60 s). The joint-activity is returning to the resting concentration in panel A. f, The
LTP rate in response to the leaky activation function, actP, in panel D. g, Outcome of the plasticity Markov chain in response to the LTD and LTP
rates. The EPSP change (%) is estimated by the difference between the number of processes in the states LTP and LTD, LT P−LT D. h, Normalized
LTP and LTD rates (multiplied to their respective time constant, tD, tP) sigmoids. The dashed line represents the half-activation curve for the LTP and
LTD rates. Note in panel D that the leaky activation function reaches the half-activation Kp = 1.3e4.

NAME VALUE REFERENCE
Leaking variable (a.u.)
rise constant inside the LTD region aD = 0.1 a.u. ·ms−1 fitted to cover all protocols in Table M1
rise constant inside the LTP region aP = 0.2 a.u. ·ms−1 fitted to cover all protocols in Table M1
decay constant outside the LTD region bD = 2 ·10−5 a.u. ·ms−1 fitted to cover all protocols in Table M1
decay constant outside the LTP region bP = 1 ·10−4 a.u. ·ms−1 fitted to cover all protocols in Table M1
Plasticity Markov chain
LTD rate time constant tD = 1.8 ·104 ms fitted to cover all protocols in Table M1
LTP rate time constant tP = 1.3 ·104 ms fitted to cover all protocols in Table M1
hill coefficient LTP hP = 2 fitted to cover all protocols in Table M1
hill coefficient LTD hD = 2 fitted to cover all protocols in Table M1
half occupation LTP KP = 1.3 ·104 a.u. fitted to cover all protocols in Table M1
half occupation LTD KD = 8 ·104 a.u. fitted to cover all protocols in Table M1
Plasticity region (edges of the polygons)
LTP region (CaMKII) - top border 29.5 fitted to cover all protocols in Table M1
LTP region (CaMKII) - bottom border 1.4 fitted to cover all protocols in Table M1
LTP region (CaN) - right border 10. fitted to cover all protocols in Table M1
LTP region (CaN) - left border 6.35 fitted to cover all protocols in Table M1
LTD region (CaMKII) - top border 29.5 fitted to cover all protocols in Table M1
LTD region (CaMKII) - bottom border 1.4 fitted to cover all protocols in Table M1
LTD region (CaN) - right border 1.85 fitted to cover all protocols in Table M1
LTD region (CaN) - left border 6.35 fitted to cover all protocols in Table M1
LTD region - upper diagonal (line equation in the 2D map) CaMKII =+1.64 ·CaN +20.20 fitted to cover all protocols in Table M1
LTD region - lower diagonal (line equation in the 2D map) CaMKII =−5.18 ·CaN +20.91 fitted to cover all protocols in Table M1

Table M14. Parameters to define the plasticity readout.
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Supplementary files
Supplemental files present some experiments and predictions extending the notion of parameter sensitivity. Also, they show the effect
of modifications in the experimental parameters in Table M1. For instance, Fig. S1 show variations on1’s experiment.

Fig. S1. | Varying1 experimental parameters. Related to Fig. . a, Mean synaptic weight change for 1Pre2Post(delay) varying the temperature,
original temperature is 35°C (dashed grey line). b, Mean synaptic weight change for 1Pre2Post(delay) varying the age, original age is P50-55 (dashed
grey line). c, Mean synaptic weight change for 1Pre2Post(delay) varying the frequency, original frequency is 5 Hz (dashed grey line). d, Mean
synaptic weight change for 1Pre2Post(delay) varying the [Ca2+]o, original [Ca2+]o= 2.5 mM (dashed grey line). e, Mean synaptic weight change for
1Pre2Post(delay) varying the distance from the soma, original distance is 200 µm (dashed grey line). A similar trend in distal spines was previously
found in2. f, Mean synaptic weight change of 1Pre2Post50 and 2Post1Pre50 when number of pulses increases or deacreses. Note the similarity with3

in Fig. S4C.
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Fig. S2 shows variations of4 parameters for [Ca2+]o, [Mg2+]o, temperature and dendritic spine distance from the soma. Also, it
shows the Poisson spike train protocol (as in Fig. G and H) for temperature and age parameters obtained from an estimation of the
body temperature regulation during development (or thermoregulation maturation, also called maturation of temperature homeostasis,
estimated in Fig. S5G).

Fig. S2. | Varying experimental parameters in4 and Poisson spike train during development. Related to Fig. and . a, Mean synaptic weight
change for the FDP experiment varying the [Mg2+]o, original [Mg2+]o= 1.5 mM (dashed grey line). b, Mean synaptic weight change for the FDP
experiment varying the [Ca2+]o, original [Ca2+]o= 2.5 mM (dashed grey line). c, Mean synaptic weight change for the FDP experiment varying
the distant from the soma, original 200 µm (dashed grey line). Changing the distance from the soma modifies how fast BaPs evoked by EPSP will
attenuate. Note that LTD is prevalent for a spine situated far from the soma. This could justify why spines distant from the soma are smaller in size
since distance correlates with synaptic weight. d, Mean synaptic weight change for the FDP experiment varying the temperature, original temperature
35°C (dashed grey line). e, Mean synaptic weight change for the FDP experiment varying the pairing repetitions at 33°C showing how LTD is
enhanced. f, Mean synaptic weight change for the FDP experiment varying the pairing repetitions at 37°C showing how LTD is abolished. g, Mean
synaptic weight change for pre and postsynaptic Poisson spike train during 30 s for P5 and 34°C. The panel shows that there is weak and diffused
LTP. h, Mean synaptic weight change for pre and postsynaptic Poisson spike train during 30 s for P15 and 35°C. The panel shows that there is a start
of LTP window forming for slow postsynaptic rates (<1 Hz). i, Mean synaptic weight change for pre and postsynaptic Poisson spike train during 30 s
for P20 and 35°C. The panel shows that a window forms around 10 Hz postsynaptic rate similar to what is shown by5 and in Fig. H.

Fig. S3 expands the presynaptic burst strategy hypothesized to recover the LTD in adult slices (Fig. C) for 900 pairing repetitions.
Also, Fig. S3 tries to isolate the contribution of each age-dependent mechanism (NMDAr, GABAr, BaP efficiency switches) for 3 and
5 Hz predictions in6 experiment. To this we fixed each of the three mechanisms coding for age in our model at P5 and P50, to observe
how they shape the plasticity. Note the experiment in Fig. S4D-I is only to theoretically show how each age mechanism contributes to
plasticity in Fig. . Also we compare predictions of between different STDP experiments across age.
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Fig. S3. | Duplets, triplets and quadruplets for FDP, perturbing developmental-mechanisms for LFS and HFS in6, and age-related changes
in STDP experiments1,7,8. Related to Fig. and . a, Mean synaptic weight change (%) for the duplet-FDP (2Pre50) experiment varying age. The
panel shows showing that not only LTD is enhanced but also LTP. b, Mean synaptic weight change (%) for the triplet-FDP (3Pre50) experiment
varying age. The panel shows that LTD magnitude further enhanced for adult rats and that a leftward shift of the LTD-LTP transition. c, Mean
synaptic weight change (%) for the quadruplet-FDP (4Pre50) experiment varying age. The panel shows a further leftward shift on the LTD-LTP
transition (compared to 3Pre50). d, Mean synaptic weight change (%) for the 1 Pre 900 at 30 and 3 Hz with6. The panel shows the fixed NMDAr at
P5 (more GluN2B) causing an increase of LTD magnitude and a slight increase of LTP magnitude for adult rats compared to baseline (grey solid
line). e, Same experiment as panel D but fixing BaP maturation at P5 (higher BaP attenuation). LTP is abolished, but LTD is not affected. This
is because AP induced by EPSP attenuate too fast for 30 Hz not able to produce enough depolarization to activate NMDAr Mg-unblock. f, Same
experiment as panel D but fixing GABAr maturation at P5 (excitatory GABAr) what causes only slightly enhances LTD (3 Hz) for adult rats. g, Same
experiment as panel D but fixing NMDAr at P50 (more GluN2A). LTD appears with decreased magnitude for young rats compared to baseline (grey
solid line). h, Same experiment as panel D but fixing BaP maturation at P50 (less BaP attenuation). LTP is enhanced for young rats because the BaP
pairing with the slow closing GluN2B produces more calcium influx. i, Same experiment as panel D but fixing GABAr maturation at P50 (inhibitory
GABAr) which does not affect the FDP experiment. j, Mean synaptic weight change (%) for8’s single versus burst-STDP experiment for different
ages. The data from Meredith (boxplots) were pooled by the age as shown in the x-axis. The solid line represents the mean, and the shaded ribbon
the 2nd and 4th quantiles simulated by the model (same for panels A-F). k, Mean synaptic weight change (%) for7’s STDP experiment in which the
number of postsynaptic spikes increases. The x-axis marker from 14-21 indicates that only this interval was published without further specification.
We use our model to estimate age related changes to7 protocols. Note that the model does not cover the 1Pre2Post10 properly (model predicts only
outcomes near the first data quantile). Notice that single and burst STDP leads to LTD, meanwhile8’s to LTP or NC. l, Mean synaptic weight change
(%) for1’s STDP experiment which compares single versus burst STDP. The x-axis marker from 50-55 indicates that only a interval was published
without further specification. We use our model to estimate age related changes to1 protocols. It is noticeable that each STDP experiment has a
different development.
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Fig. S4 presents modifications of7’s STDP experiment and the reproduction of3 data.

Fig. S4. | [Ca2+]o and [Mg2+]o related modifications for7’s experiment. Related to Fig. . a, Mean time spent for anticausal pairing, 1Post1Pre10,
at different Ca/Mg concentrations. The contour plots are associated with the Fig. A, B and C. b, STDP and extracellular Ca/Mg. Synaptic weight
change (%) for causal (1Pre1Post10, 100 at 0.3 Hz) and anticausal (1Post1Pre10, 150 at 0.3 Hz) pairings varying [Ca2+]o from 1.0 to 3 mM (Ca/Mg
ratio = 1.5). c, Varying frequency and extracellular Ca/Mg for the causal pairing 1Pre1Post10, 100 at 0.3 Hz. Synaptic weight change (%) for a single
causal pairing protocol varying frequency from 0.1 to 10 Hz. [Ca2+]o was fixed at 1.8 mM (Ca/Mg ratio = 1.5). d, Mean synaptic weight change (%)
for7’s STDP experiment showing how temperature qualitatively modifies plasticity. The dashed lines are ploted in panel B. e, Mean synaptic weight
change (%) showing effects 0.5°C from panel A. Black and grey solid lines represent the same color dashed lines in panel A (30 and 30.5°C). The
bidirectional curves, black and grey lines in panel A (dashed) and panel B (solid), becoming full-LTD when temperature increases to 34.5 and 35°C,
respectively yellow and purple lines in panel A (dashed) and panel B (solid). Further increase abolishes plasticity. f, Mean synaptic weight change
(%) for3’s experiment in Free-Mg ([Mg2+]o= 10−3mM for best fit) showing the different time requirements to induce LTP and LTD. For LTD, to
simulate the NMDAr antagonist D-AP5 which causes a NMDAr partial blocking we reduced the NMDAr conductance by 97%. Note the similarity
with Fig. S1F. g, Mean synaptic weight change (%) of7’s STDP experiment changing [Ca2+]o and Ca/Mg ratio. h, Mean synaptic weight change (%)
of7’s STDP experiment changing pre-post delay time and frequency. Note the similarity with Fig. S1C. i, Mean synaptic weight change (%) of7’s
STDP experiment changing pre-post delay time and age. Age has a weak effect on this experiment done at [Ca2+]o= 2.5 mM.
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Fig.S5 shows multiple aspects related to temperature in STDP experiments and the temperature and age choices for the publications
described in Table M1 compared to physiological conditions. We estimate how the rat’s body temperature physiologically evolves in
function of age using9 and10’s data.

Fig. S5. | Age and temperature effects. Related to Fig. and . a, Mean synaptic weight change (%) for11’s STDP experiment for 1Pre1Post10,
70-100 at 5 Hz (see Table M1) showing a full LTD window. Our model also reproduces the fact that increasing temperature to 32-34°C the LTD is
abolished (data not shown). b, Mean synaptic weight change (%) for11’s STDP experiment for 1Pre2Post10, 70-100 at 5 Hz (see Table M1) showing
a bidirectional window. c, Mean synaptic weight change (%) for11’s STDP experiment for 1Pre2Post10, 20-30 at 5 Hz (see Table M1) showing a
bidirectional window. We report that for11 experiment done in room temperature the temperature sensitivity was higher than other experiments. d,
Core temperature varying with age representing the thermoregulation maturation. This function (not shown) was fitted using rat10 and mouse data9

added by 1°C to compensate species differences10. The blue and white bars represent the circadian rhythm as shown in9. However, the "rest rhythm"
for young rats (P5-14) may vary. e, Plot showing how far from being physiological are plasticity experiments done in physiological temperatures.
Suggesting, there is scarcity of physiologically relevant data to model and understand plasticity. The dashed grey line is an approximation of the
mean value from panel G. f, Initial conditions for CaN-CaMKII resting concentration for different [Ca2+]o and temperature values. When [Ca2+]o is
changed temperature is fixed at 35°C, while temperature is changed [Ca2+]o is fixed at 2 mM.
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Chapter 6

Additional results and discussion

As shown in the article, the model can reproduce and predicts plasticity outcomes

for experiments in different experimental conditions. Here, I will summarize other

experiments that were not inserted in the main text thereby expanding the article

scope and providing other preliminary results, such as: a synaptic version of CaN-

CaMKII nonlinear filter by Fujii et al. 2013, the role of the temperature range in

the frequency-dependent plasticity by O’Connor et al. 2005, the limits of non-

dynamical measures to predict plasticity as in Blackwell et al. 2019, a comparison

between different types of presynaptic release and a deterministic version of the

model, the possible interactions between laser-tissue warming and Ca2+ dye, and

two examples of in vivo-like plasticity.

6.1 CaN and CaMKII related experiments

Our model was based on the combined CaN and CaMKII activity in which the

memory role was hypothesized and modelled by Lisman 1985; Lisman 1989. Lis-

man’s core idea was that CaMKII would stay permanently activated through its

self-phosphorylated activity and deactivated by CaN in a switch-like fashion. Also,

the CaMKII activated states would surpass protein turnover by phosphorylating

other CaMKII. Despite the innovation of such ideas (Bear et al. 2018), the memory

maintenance role through self-phosphorylation (Chang et al. 2017; P. Michalski

2013) and phosphatase influence over CaMKII dephosphorylation (Otmakhov et

al. 2015; Fujii et al. 2013) were not confirmed in ex vivo/in vivo experiments. How-

ever, a possible role of CaMKII in sustaining a transient "molecular memory" can

be achieved by the CaMKII-GluN2B complex, which still needs to be investigated

in vivo/ex vivo (Urakubo et al. 2014; Paul J Michalski 2014). Furthermore, fluo-

rescence experiments by Fujii et al. 2013; Chang et al. 2017; Chang et al. 2019
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show that CaMKII self-phosphorylation does not make it permanently activated

as hypothesized by P. Michalski 2013 model.

6.1.1 A synaptic version of the CaN and CaMKII nonlinear filter

Fujii et al. 2013 claims that these enzymes behave as a nonlinear decoder of

frequency and pulse number (Figure 6.1D–F). They show that somatic CaMKII is

sensitive to frequency, pulse number, and CaN only to the pulse by measuring

enzymatic integral and amplitude. Using the model, we can test if such nonlinear

filter observed in the soma of cultured neurons by Fujii et al. 2013 could be found

in dendritic spines. For this, the same experimental conditions and stimulation

protocol mentioned in the paper were used: glutamate uncaging (no failures),

25◦C, 2mM [Ca2+]o free-Mg
2+, P13 chosen arbitrarily since Fujii et al. 2013 uses

cultured neurons, 200 µm from the soma, allowing BaP elicited by EPSPs. Fig-

ure 6.1A–C shows that the dendritic spine version of the nonlinear filter does not

follow Fujii et al. 2013 findings. That is possibly due to the difference in the satu-

ration profile of these enzymes in dendritic spines (model) and the soma (exper-

iment). For instance, in Figure 6.1D, somatic CaMKII can accumulate activation

for high frequency and pulses; in contrast, Figure 6.1A, the model shows that

activity was slightly higher around 1 Hz, with a 20% difference between other fre-

quencies. Such lack of frequency-dependence was noticed in Chang et al. 2017

CaMKII measurements. Thus, the synaptic version of the nonlinear in Figure 6.1C

filter had an inverted outcome to what was measured by Fujii et al. 2013 in Figure

6.1F, with CaMKII less active for high frequency and pulse number than CaN for

the synaptic version. The model suggests that the amplitude is a poor predictor

for enzymatic activity since it can vary depending on where it is measured; CaN

and CaMKII are more expressed in dendritic spines than the soma. Note that the

model cannot evaluate the enzymatic dynamics in the soma measured by Fujii

et al. 2013 since it is built just for dendritic spines.

6.1.2 The effects of the temperature range in the FDP

Focusing on CaN and CaMKII contributions to plasticity, O’Connor et al. 2005 drug-

inhibited CaMKII and CaN. They show that inhibiting CaMKII abolishes LTP, and

inhibiting CaN abolishes LTD (Figure 6.2C). However, these molecules are not ex-

clusively controlling LTP and LTD as mentioned by Coultrap and Bayer 2012; Kipa-

nyula et al. 2016. Here, we would like to test how the wide temperature range

affects qualitative changes in O’Connor et al. 2005 FDP ex vivo experiment. Since
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Figure 6.1: Synaptic version CaMKII and CaN nonlinear filter using the same experimental conditions estimated by the model (panels A–C)

and Fujii et al. 2013 measurements (panels D–F). A) CaMKII maximal amplitude (normalized concentration) using different frequencies and

pulse numbers. Low frequencies had maximal activation when compared to the data measures in the soma (panel D). B) CaN maximal

amplitude (normalized values) using different frequencies and pulse numbers. The CaN profile was similar to what was measured in the

soma (panel E). C) Difference between normalized CaN and CaMKII showing an inverted dominance to what was observed in the soma

(panel F). D) Fujii et al. 2013 CaMKII amplitude measurement using the fluorescence change obtained in a FRET probe (also D–E). E) Fujii

et al. 2013 CaN amplitude measurement using a fluorescent probe. F) Nonlinear filter found by Fujii et al. 2013 in the soma in which CaMKII

is more active for high frequencies and pulses, and CaN for low frequencies.

O’Connor et al. 2005 uses the range 27.5-32 ◦C (Figure 6.2A red lines), we eval-

uate how the model reproduces this data by fixing the same experimental condi-

tions: 100 pulses at different frequencies in 3 epochs separated by 5 minutes, 2.0

mM [Ca2+]o (used 2.2 mM for the model 1), 1mM [Mg2+]o, P14-21 (used for P21

the model), BaP induced by EPSPs allowed. The temperature was set to exceed

2 ◦C under and above the described temperature thus falling the range 27.5-32

◦C. The model simulated different frequencies and temperatures to explore the

qualitative changes as shown in Figure 6.2A. By finding the best match from the

mean weight change in Figure 6.2A (green dots) and O’Connor et al. 2005’s data

in Figure 6.2B (pink dots), the model suggests that fixing a single temperature

would not produce the curve observed. That is, for warmer temperatures, LTD

was prevalent (Figure 6.2A over the top red line), and for colder temperatures,

1The 0.2 mM difference makes the plasticity outcomes at high frequency closer to the data. The model has a strong

attenuation to high frequencies due to fast vesicle depletion. The 0.2 mM difference increases Ca2+ influx and release

probability slightly. Other aspects in the age range were not investigated and could account for high frequency outcomes.

Another possibility is that the high frequency outcomes LTP are washed out after fewminutes given the in a age-dependent

manner shown in Cao and Harris 2012.
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Figure 6.2: O’Connor et al. 2005 experiment dissecting the CaMKII and CaN roles. A) Mean plasticity weight induced by 3x100

presynaptic pulses separated by 5 minutes using O’Connor et al. 2005’s experimental conditions with age fixed at P21. B) Best fit from

model to data. C) O’Connor et al. 2005 data showing the effect of inhibiting CaN or CaMKII.

LTP was prevalent (Figure 6.2A under the red bottom line). Given the possible

qualitative changes in the temperature range, precise temperature control would

be more useful to identify frequency-dependent changes.

O’Connor et al. 2005 argument was that CaMKII controls LTP and CaN LTD. In

Figure 6.2C, their data on inhibiting these enzymes showed how the FDP would

be modified. However, given the qualitative temperature changes range that the

model has identified, such experiments need to be better constrained. Our model

does not reproduce data in Figure 6.2C since the CaMKII, or CaN inhibition effects

could not be determined.

6.2 The limits of non-dynamical measures to predict plas-
ticity (failed attempt)

Before developing the geometrical readout in the main publication, a strategy

similar to the one in Blackwell et al. 2019 to predict plasticity was attempted. The

simulated dynamics are collapsed into a single value (e.g. mean or median), and

the prediction part would be based on the separability between outcome classes

(LTP, LTD and no change) as shown in Figure 6.3. We tested the separability of

different measures such as integral, max value, mean, median using Tigaret et al.

2016 protocols. We noticed that certain protocols were too overlapped (gray re-

gion) to be suitable for multiclass classifiers. In Blackwell et al. 2019 the plasticity

prediction between pathological and healthy were done by averaging a protein in

a given time interval, the shortcomings of this approach could be addressed by

our geometrical threshold which also can be used to detect dynamical differences

in protein dynamics without having the information collapsed in a single value.
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Figure 6.3: Comparison between measures derived from the simulated dynamics for the Tigaret et al. 2016 data. The grey

region indicates an overlap in between different classes of plasticity outcomes (LTP, LTD and NC). A) Scatter plot between CaN and CaMKII

integral. The axis was divided by 1e6 only to see axis ticks better (also in panel C). B) Scatter plot between CaMKII and CaN amplitude. C)

Scatter plot between CaM amplitude and Ca integral.

6.3 How stochasticity affects the model

6.3.1 Averaged and discrete vesicle release

Part of the computational neuroscience models uses averages as input (Tsodyks

et al. 1998). However, the vesicle release in nature has an all-or-none behaviour

(or discrete multivesicular release). Here we will test the differences between a

discrete presynaptic release used in the article and an averaged presynaptic re-

lease. The left panel in Figure 6.4A shows the glutamate concentration between

the discrete release that mimics a single vesicle and the average input estimated

from our presynaptic model. Figure 6.4A illustrates the difference of the activa-

tion on these two approaches in the model, only changing the presynaptic input.

Note in Figure 6.4A (Left) that since glutamate concentration is never zero for

the averaged release, the enzymes elicited with the 1Pre1Post10 protocol from

Tigaret et al. 2016 will be more activated as shown in Figure 6.4B (Right). Using

an averaged stimulation as input may cause overstimulation since failures never

occur. Also, the zero glutamate concentration is not reached, as shown in Figure

6.4A (Left). Thus, this experiment suggests that averaged inputs used in neuron

networks may be outside the glutamate concentration a synapse usually experi-

ences. The assumption that the neuron experiences an averaged concentration

of glutamate may not be equivalent to stimulating a synapse with an averaged

input.

6.3.2 Comparison with a deterministic version of the model

To show the relevance of stochasticity and to evaluate if it is possible to have a

faster simulation, a deterministic version of the model was made and tested using
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Figure 6.4: Comparison of stochastic and deterministic versions of the model. And a comparison between discrete and
averaged release.. A) Left, discrete release (green) and averaged release. Right, enzymes activation using the different approaches. B)

Comparison between a fully stochastic model (with discrete release), a deterministic version (with discrete release), and a deterministic

version (with averaged release). C) Enzymatic baseline differences between stochastic and deterministic model versions given the external

Ca
2+
.

the 1Pre1Post10 protocol from Tigaret et al. 2016. All Markov chains described

in the methods 5.4 were implemented as a first-order chemical reaction. Figure

6.4B shows a comparison between the deterministic (purple lines) and stochastic

version (yellow lines) using both discrete release and also a deterministic version

using averaged release (green). Note that the deterministic and stochastic simu-

lations using discrete release are slightly similar. It was identified that the source

of this difference comes from the T-type flickering, which is continuously acti-

vated due to its low-voltage threshold (Magee and Johnston 1995). Meanwhile,

other VGCCs, NMDAr and AMPAr, had little impact since their contribution are

only at discrete times (pre and post spikes). Since we identified the T-type chan-

nel as the most relevant stochasticity source, we tested how the experimental

conditions affect the versions of the model. Figure 6.4C shows how the CaN and

CaMKII average baseline activity diverge for the model versions. When [Ca2+]o

increases, it amplifies the T-type long-term fluctuations on Ca2+ and affects the

Ca2+-binding enzymes resting concentrations.

6.4 Possible interactions between laser-tissuewarming and
Ca2+ dye

Fluorescent dyes revolutionized how we study neuronal functions (Knot et al.

2005); it allowed one to visualize Ca2+ and proteins by exciting these dyes, for

instance, with a laser. However, as with any other method that perturbs what is

being observed, this method comes with drawbacks. Since the fluorescent dye

binds to Ca2+, it modifies its diffusion properties (Maravall et al. 2000) and interac-

tions with Ca2+-dependent pathways (Zhang et al. 2018). For instance, as noted

by Zhang et al. 2018 Ca2+ dye disrupts interaction with the SK channel, which has
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Figure 6.5: Dye implementation comparison. A) Tigaret Ca2+ measurements of according to the protocols on top th row. B) Ca
2+

with

dye, temperature increased and SK conductance set to zero. C) Ca
2+

without the dye.

a Ca2+ and voltage-dependent activation. Also, plasticity protocols with and with-

out the dye can display qualitative differences as shown by Mulkey and Malenka

1992. This experiment suggests that calcium dynamics observed with dye should

carefully be considered (Maravall et al. 2000). For instance, in the Figure 6.5A-B,

the protocols 1Pre2Post50 and 2Post1Pre50 from Tigaret et al. 2016 have similar

Ca2+ dye curves and produce different plasticity outcomes (without the dye). Our

model better reproduces the dye curves when the temperature is increased and

the SK channel contribution is set to zero (Zhang et al. 2018). Also, in Figure 6.5C,

the simulations predict that Tigaret et al. 2016 protocols have different shapes

without the dye.

Furthermore, a concerning aspect of fluorescent dyes is the photobleaching

or ablation caused by laser stimulation. Given the frequency, laser wavelength

and duration, one can rapidly increase the temperature in neural tissue (Picot

et al. 2018) and modify the kinetics and Ca2+ source dynamics being observed

(Podgorski and Ranganathan 2016; Ebbesen and Bruus 2012; Oliver et al. 2000).

Strategies to measure Ca2+ fluorescence with high temporal resolution and man-

age heat transfer effects still need to be developed (Schmidt and Oheim 2018).

6.5 In vivo-like modelling

Since the experimental discovery of STDP (Markram et al. 2011) it has been hy-

pothesized whether it is a relevant framework to understand in vivo spiking pat-
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terns. For instance, Froemke and Dan 2002 suggested that in vivo plasticity can-

not be explained by only the delay time between pre and postsynaptic spikes

since it disregards the history of previous spikes. Despite the possible lack of

relevance for physiological learning, the STDP framework is widely used in neuro-

morphic computing sided by BCM. Graupner et al. 2016, using an irregular STDP

with Poisson spikes simulated an in vivo-like firing, concluded that the plasticity-

dependence over the delay time is reduced. Another study using in vivo-like
firing perturbed the delay time of the spike pairs (Cui et al. 2018). They show

that perturbing the delay times reduces the LTP magnitude. Our model observed

that depending on which perturbation is applied to the STDP firing structure, LTP

could be either enhanced or abolished (see article Figure 7). Therefore, observing

plasticity through one variable, such as the delay time, could be insufficient to

explain in vivo firing. Also, the perturbing regular firing patterns to approximate

in vivo-like firing is a limited approach enforced by data scarcity. However, new

in vivo plasticity datasets (Ahnaou et al. 2020) offer a singular opportunity to

test the robustness of current models for plasticity. For instance, "replay exper-

iments" (Isaac et al. 2009; Bittner et al. 2017) or those only recorded with local

field potential (Ahnaou et al. 2020). New sampling methods such as optogenet-

ics STDP would allow the expansion of in vivo plasticity experiments (Anisimova

et al. 2019).

6.5.1 Sleep stimulation patterns

Sleep is required for memory consolidation (Whalley 2019) and the induction

of long-term plasticity forms. However, the participation of characteristic neu-

ronal oscillations is not fully understood. During sleep, the neural environment

changes, as the Ca2+ sources and its modulators (McCauley et al. 2020; Gordon

2004). For instance, the astrocytes retract from the tripartite synapse modifying

how glutamate is recycled during the sleep (Haydon 2017). Also, brain tempera-

ture oscillates, causing kinetic changes in the Ca2+ sources (Sela et al. 2021). A

characteristic sleep oscillation, for instance, the non-rapid eyes movement phase

(non-REM), displays activity spindles (or sharp-wave ripples, Sadowski et al. 2016)

which induces LTP, as demonstrated by replay experiments in slices and in vivo
(Rosanova and Ulrich 2005). It is hypothesised that sleep’s primary function is

to renormalise strengthened synapses by weakening (LTD) synaptic efficiencies

that were strengthened during wakefulness (Marcos Gabriel Frank 2012; Vivo et

al. 2019). Conversely, sleep deprivation shows reduced neuronal excitability, op-

posite to the strengthening hypothesis (Borbély et al. 2018). Our model could
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potentially be used to study replayed firing patterns related to sleep, possibly by

including neuromodulators related to sleep. It can also be expanded by adding

diffusion of enzymes, which could contribute to understand the interplay between

neighbouring spines and investigate homeostatic plasticity (Seibt and Marcos G

Frank 2019). Since sleep has a homeostatic role, the activation of a dendritic

spine cluster during sleep can cause enzymes to diffuse out from the spine neck.

For instance, Calcineurin can reach the dendritic shaft, but CaMKII has a shorter

diffusion range, limiting the interaction with neighbouring spines (Fujii et al. 2013;

Yasuda 2017). Yet, since sleep is differently important during development (Vivo

et al. 2019), coding for age should be a desirable model property when investi-

gating plasticity related to sleep.

Figure 6.6: Model hypothesis for sleep under different age and temperature conditions. A) Stimulation pattern representing delta

waves during sleep. B) Approximation of temperature oscillation during development based on Wood et al. 2016; McCauley et al. 2020. C)

Mean weight change using the pattern in panel for different ages and temperatures.

An ideal way to study sleep patterns using the model would be with CA3-CA1

spikes recorded during behaviour, such as the data collected by Sadowski et

al. 2016. Here, an empirical sleep-wave pattern was build based on the low-

frequency delta (1-4 Hz) (Siapas and Wilson 1998). Basically, a 100 pulses burst

at 20 Hz presynaptic bursts separated by 1 Hz in 12 epochs as in Figure 6.6A. The

experimental conditions used were physiologically plausible with 1.5 mM [Ca2+]o

and 1.2 mM [Mg2+]o (Inglebert et al. 2020). To evaluate how physiological con-

ditions constrain plasticity, age-dependent temperature regulation (Wood et al.

2016) was empirically estimated (Figure 6.6B). Figure 6.6C shows that a sleep-

wave pattern induces LTD during the first weeks of life, and later the same slow-

wave pattern induces less LTD (Figure 6.6C). The experiment in Figure 6.6C may

reflect the synaptic pruning phase (Semple et al. 2013) in the rat development in

which the synaptogenesis is up-regulated, and it is counterbalanced by synaptic

elimination completed after P21-28 in rats (Semple et al. 2013). Note that further

investigation, diversifying the firing patterns is necessary to tackle the develop-

ment of sleep in rats since the oscillations (e.g. NREM, REM) are not the same
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Figure 6.7: Behavioral time scale synaptic plasticity (BTSP). Plasticity states was changed set to 300. Bittner’s parameters used to

tune the model were 35
◦
C, 2 mM [Ca

2+
]o, 1 mM [Mg

2+
]o (0.7 mM gave better fit), P50, 200 µm from the soma. A) The geometrical threshold

using the protocol from Bittner et al. 2017. B) A comparison between the model and data from the BTSP curve discovered by Bittner et al.

2017.

through the first weeks of life (Marcos G Frank et al. 2017).

6.5.2 Behavioral time scale synaptic plasticity (BTSP)

During behaviour, the hippocampus continuously maps the space. However, the

plasticity rules forming spatial representation are not fully understood. An answer

was proposed by Bittner et al. 2017. They discovered a synaptic rule for place field

(Hartley et al. 2000) formation, which does not require immediate coincidence

between pre and post-firing patterns, exceeding the canonical STDP delay time

(Bi and Poo 1998) (see Figure 6.7). Since our model has integrative properties

granted by slow decaying enzymes, we would like to test if it can reproduce the

Bittner et al. 2017 replay experiment. Although our model has not been designed

for mice experiments, it can still reproduce Bittner et al. 2017 BTSP curve. This

preliminary result suggests that the same phenomenon may occur in rats. This

result can motivate other behavioural time scale rules to be discovered. Bittner

et al. 2017 mentions the possible signalling pathways evolved, and our model

offers a dynamical explanation using CaN and CaMKII combined activity as shown

in Figure 6.7A.
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Chapter 7

Discussion and conclusion

The following discussion extends the one in the article and presents other argu-

ments, limitations and questions the model could address.

Synaptic models can propose new questions and testable predictions, and in

some cases, anticipate experimental advances on how learning and memory oc-

cur (Sejnowski 1999). Given the model scope, it is possible to accommodate the

diversity of plasticity experimental outcomes or hypothesize over synaptic mech-

anisms interaction. In this thesis, a new model of synapse was proposed to unify

usually neglected aspects affecting plasticity outcomes (as reviewed in chapter

3). Thus, a new synaptic rule is provided to link simulation and experiments using

the combined activity of CaN and CaMKII interpreted with a geometrical readout.

It is not feasible for a model to include all differences between plasticity experi-

ments since electrophysiology methods are highly heterogeneous (Tebaykin et al.

2018). However, an effort is necessary to model the differences which can con-

tribute to understanding plasticity. For instance Letzkus et al. 2006 and Sjöström

et al. 2001 differ by 0.5 mM [Ca2+]o and are reproduced in Ebner et al. 2019’s

cortical model without any model adjustment for that. [Ca2+]o is critical since it

modifies the release probability and Ca2+ influx, and a 0.5 mM [Ca2+]o difference

can cause qualitative changes in the hippocampus (Inglebert et al. 2020). With a

model dedicated to identifying key experimental conditions, one can avoid pos-

sible contradictions and extend the number of covered experiments by the same

model. The model in this thesis predicts that some stimulation protocols have

sharper transitions (see plasticity maps in the article) depending on the experi-

mental conditions (e.g. [Ca2+]o inferior to 0.5 mM), thus, pointing out which pa-

rameters are more sensitive for ex vivo experiments and potentially improving

the experimental design.

ex vivo experiments can be considered as extreme cases since the brain ex-

tracellular environment needs to be recreated. Usually, the firing patterns are
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different from in vivo and are highly correlated (i.e. regular). The model devel-

oped here can predict in vivo-like learning (e.g. Bittner et al. 2017) since it can be
directly adjusted to follow physiological conditions. For instance, using Poisson

spikes, i.e. simplified representation of in vivo firing ignoring bursts, the model

found that an LTP window is maximal when the postsynaptic neuron fires at 10Hz

for any presynaptic frequency (between θ and α rhythms) (Graupner et al. 2016).

Since the model codes for development aspects, it is possible to predict that such

LTP window around the alpha-theta band emerges between the second and third

week of life. This coincides with the beginning of rats’ exploratory behaviour in

which theta oscillations on EEG (4-10 Hz) are observed (Vanderwolf 1969; Thiels

et al. 1990). The model also predicts that two STDP protocols with firing patterns

producing too weak or strong enzyme activation to generate LTP (Tigaret et al.

2016) can converge to the LTP region once they are jittered, suggesting that un-

der irregular firing (with similar frequency), the specificity of spiking times or the

delay are less relevant for in vivo-like plasticity.

7.1 Geometrical readout

The new synaptic rule presented in this thesis borrows the concept of orbits from

dynamical systems to demonstrate the possibility of differentiating plasticity pro-

tocols using a stochastic model of postsynaptic Ca2+-cascade. Such synaptic in-

duction rule states that the plasticity outcomes depends on the time spent by the

joint CaMKII and CaN activity inside the plasticity regions and activate the LTP or

LTD rates. This can be interpreted as an enzymatic version of the Ca2+ duration

hypothesis (Evans and Blackwell 2015) which claims that high and brief Ca2+ tran-

sients induce plasticity. Meanwhile, long and moderate levels induce depression.

A Goldilocks hypothesis for plasticity (analogy with the Goldilocks principle) can

be formulated from the geometrical threshold and can be tested through FRET

probes: the enzymatic activity should not be excessively high or too low to in-
duce plasticity, instead, it should reach and spend the right time inside the LTD
or LTP plasticity region.

7.2 The role of stochasticity, is it a bug or a feature?

Neurons produce spikes that are not transmitted, resulting in synaptic failures

(Rusakov et al. 2020). Hypothesis on the role of these failures are many: the failed

spikes activate post to pre signalling, e.g. nitric oxide or retrograde endocannabi-

https://en.wikipedia.org/wiki/Goldilocks_principle
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noid pathways (Castillo et al. 2012); failed spikes form a self-communication

within neuron’s distant structures (dendrites, axon) (Short et al. 2017); that the

absence of spikes is also part of the information between neurons. Examples of

how failures are relevant or not is dubious, for instance, the hydra vulgaris thrive
with low synaptic failure rates (Dupre and Yuste 2017). Meanwhile, studies in rats

suggest that spikes are the exception (Borst 2010) due to high synaptic failure

rate in vivo. However, brain regions have different synaptic failure rate given

their function (Joris and Trussell 2018), and present redundancy with multivesic-

ular release (Molnar et al. 2016; Rudolph et al. 2015). Also, various behaviours

are altered when failures increase (Prosser and Nelson 1981). The open question

on why neurons produce spikes that will not result in a vesicle release requires

more investigation. The model present here can capture the specificity of ex-

perimental conditions and firing adaptations (e.g. STD) in a stochastic manner

and may be useful in raising new questions on the role of stochasticity. For in-

stance, a hypothesis raised by the model, not discussed in the paper, is whether

CaMKII autophosphorylation acts as a spike history reservoir against transmis-

sion failures. Once the failures start to be prevalent, the self-sustained activity

prevents a total forgetting of the previously integrated spikes by the enzyme ac-

tivation, allowing better integration of sparse spikes. A contrast with the mutant

CaMKII without the autophosphorylation domain shows a CaMKII which decays

faster and impairs learning. This hypothetical feature would allow that stimuli to

be integrated even after the short-term depression predominate (more failures).

Also, it could be useful during bursts in which vesicles needs time to be refiled

every high-frequency event-cycle, for instance, as in the behavioural time scale

plasticity or sleep-wave patterns (Bittner et al. 2017) shown in Figure 6.7.

7.3 Limitations

Considering the models in the mini-review of chapter 3, the model developed

covers firing patterns structures, with extensive validation, and innovates in the

experimental conditions. However, it falls short in the localization aspects, mainly

for morphology, non-neuronal cells (e.g. microglia and astrocytes), presynaptic

long-term plasticity and neuromodulators. The model is limited to only CA3-CA1

synapses from ex vivo studies. Meanwhile, abstract models, less constrained by

data, can be more easily adapted to other brain regions.

The model uses a single set of parameters to predict plasticity. However, this

may not be a valid assumption since plasticity dependent pathways are likely to

be affected by experimental conditions. That was done for the sake of simplicity
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and readability. A contrasting example is shown by Chindemi et al. 2020 which

attributes to each synapse in a cortical neuron its own threshold system. Using

our framework, one could investigate,using glutamate uncaging and CaN-CaMKII

FRET probes, if the same synaptic rule is different or different synapses.

Another assumption is that enzymatic concentration is the same throughout

the lifespan. However, it is suggested that for pup rats, the CaMKII concentra-

tion is reduced. An unchanging concentration is assumed in our model due to

the lack of precise measurements. Also, despite the model robustness to experi-

mental heterogeneities, a sensitivity analysis was not carried out to observe how

robust the model is for parameter perturbations, such as variations in the num-

bers of receptors and ion channel (Marder and Taylor 2011). This is an important

aspect to consider since stochastic effects on plasticity outcomes can have mul-

tiple sources: from the inherent flickering of receptors, vesicle release failures,

different neurons, oscillations in the recording temperature.

Similarly to the fact that different parameters could equally fit neural data

(Marder and Taylor 2011), another modelling approach suggests that the num-

ber of different subtypes of ion channels allows a richer repertoire of neuron

dynamics (Schneider et al. 2021). The variability of ion channels in the model

developed is reduced with phenomenological modelling of BaP generation, and

only three types VGCCs subtypes (see Jedrzejewska-Szmek et al. 2017). Also,

such variability of expression is not fixed during the lifetime, Cizeron et al. 2020

and it was evaluated to be little differentiated during the infant and elder rats

and more diversified during adulthood. Also, the model lacks validation material

for older adult rats, which present different plasticity patterns from adults (Pinar

et al. 2017).

7.4 Future directions

The model developed in this thesis can unfold different projects. However, a

challenge of complex models is that they are difficult to replicate and scale-up.

A deterministic version of the model was in order to gain performance and to

evaluate the necessity of stochasticity, which showed to be most relevant for

the presynaptic release and the resting concentrations of enzymes (see Figure

6.3). It is important to reduce the model complexity, without losing its capabili-

ties, to make it more accessible. Another ongoing strategy is to make the model

available online by a web tool in which experimentalist could use it to plan their

experiments.

Another possibility is the application of the model to neuropathologies through



130 CHAPTER 7. DISCUSSION AND CONCLUSION

Ca2+ sources abnormalities. For instance, tau protein binds to the neurotrans-

mitter vesicles and decrease release probability at high frequencies (Zhou et al.

2017). Also, the model can study APP intracellular interactions to evaluate the

plasticity effects with an upregulated Ca2+ influx. The study of disruption of a

healthy synapse would make more sense if done with associated behaviours or

in vivo-like firing patterns, such as those related to sleep, exploration and other

behaviours. Also, a future direction for the model could be to include patholo-

gies by having the contribution of different neuromodulators (e.g. acetylcholine

Isaac et al. 2009) and glia cells (Nadkarni and Jung 2007). Also, having astrocyte

contribution would be useful to understand how Ca2+-based communication in

astrocytes modulates synaptic rules in neurons (Verveyko et al. 2021). The limits

between a pathological and healthy Ca2+ influx should more precisely defined.

Finally, a future direction is to formalize an algorithm to detect dynamical pat-

terns. This could be relevant to explore multiple dynamical biophysical interac-

tions automatically. This could be achieved by using the concept of time spent

in a region (or volume) to understand how orbits produce different outcomes in

a similar way to the supervised learning algorithms (Friedman et al. 2001). Also,

an unsupervised learning algorithm could be potentially implemented using a ge-

ometrical threshold by attributing a criterion for class formation given the orbits

distance or how they share the same space.
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Annexe 1

Simulation of jump processes

This annexe provides information on the stochastic processes used in this thesis.

The model has both stochastic and deterministic parts. That is, the model is

deterministic in between stochastic transitions (e.g. opening of AMPAr) satisfying

the following flow:

dxc
dt

= F (xc, xd, µ), (1.1)

in which xc are the continuous variables evolving deterministically in between

discrete events and µ is a set of parameters. For example, continuous variables

are xc = (Vsp, Vdend, Vsoma, Ca, · · · ) ∈ Rc. At discrete times, transitions occurs with to-

tal rate Rtot(xc, xd, µ) between states of the Markov chains described in the article

methods 5.4. All the state variables are collected in xd, termed the discrete vari-

ables. For example, the states associated to the receptors and plasticity Markov

chain xd = (AMPA,NMDA, V GCC,LTP, LTD · · · ) ∈ Rd. This type of Markov process

belongs to the class of Piecewise deterministic Markov processes (PDMP) and are

extensively described in Davis 2018.

To simulate the synapse model as a stochastic process X, it is relevant to de-

scribe when the next jump will occur. The simulation of such process seems tricky

at first due to the interdependence between the variables, that is, the xd affects

the deterministic part, F (xc, xd, µ), and xc affects the total rate Rtot(xc, xd, µ). For

one to know when the process X jumps, the flow 1 must be determined. How-

ever, to know the flow 1, it is necessary to know when the process jumps, which

is equivalent to determine the length of the continuous domain. Fortunately, the

simulations of PDMP is well-reviewed, for example, in Graham and Talay 2013.

There are two classes of simulation methods. The first one is the most precise

and is called the rejection method. However, to work well, one needs to have
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a tight bound λ on the total rate: ∀xd, xc, Rtot(xc, xd, µ) ≤ λ. Given the intricacies

of your model, we have not been able to find a good bound λ, meaning that we

would have to reject a lot of "simulations", which increases the simulation time.

The other alternative for simulation is the true jump method which takes an inte-

gral equation to find the jump time.

Hence, for the simulation of our model, we appeal to the tricky twist Veltz 2015

to the "true jump method", which circumvents the need to solve the integral

equation by solving an ODE related to the flow 1 but of dimension c+1. Using this

new formulation to find the true jump opens the possibility to test different ODE

solvers from package DiffferentialEquations.jl to chose the best one, which was

in our case LSODA, that can handle both stiff and non-stiff equations (Hindmarsh

and Petzold 2005).

The simulation method is thus the following. Given a jump time Tn−1, solve the

following ODE,





ẏ(s) =
F (y(s),xd(T

+
n−1),µ)

Rtot (y(s))

τ̇(s) = 1
Rtot(y(s))

y(0) = xc
(
T+
n−1

)
, τ(0) = Tn−1

on the time interval (0, Sn)where Sn ∼ E(1). Then the next jump time is Tn = τ(Sn)

and xc(T
−
n ) = y(Sn). Now, knowing the jump time Tn, one can make the jump on xd

and iterate.
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