
HAL Id: tel-03369906
https://theses.hal.science/tel-03369906v1

Submitted on 7 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An operational semantics of interactions for verifying
partially observed executions of distributed systems

Erwan Mahe

To cite this version:
Erwan Mahe. An operational semantics of interactions for verifying partially observed executions of
distributed systems. Formal Languages and Automata Theory [cs.FL]. Université Paris-Saclay, 2021.
English. �NNT : 2021UPAST062�. �tel-03369906�

https://theses.hal.science/tel-03369906v1
https://hal.archives-ouvertes.fr

Th
ès

e
de

 d
oc

to
ra

t
N

N
T:

2
0

2
1

U
PA

S
T
0

6
2

Sémantique opérationnelle des interactions
pour la vérification d’exécutions partiellement

observées de systèmes distribués
An operational semantics of interactions for verifying
partially observed executions of distributed systems

Thèse de doctorat de l’Université Paris-Saclay

École doctorale n◦ 573, Interfaces: matériaux, systèmes, usages

Spécialité de doctorat: Informatique

Unité de recherche: Université Paris-Saclay, CentraleSupélec,

Mathématiques et Informatique pour la Complexité et les Systèmes,

91190, Gif sur Yvette, France

Référent: CentraleSupélec

Thèse présentée et soutenue à Gif sur Yvette, le 15 Juillet 2021, par

Erwan MAHE

Composition du Jury
Stefan HAAR Président

Directeur de recherche, INRIA

Gwen SALAUN Rapporteur & Examinateur

Professeur, Université Grenoble Alpes

Xavier URBAIN Rapporteur & Examinateur

Professeur, Université Claude Bernard Lyon 1

Bernhard AICHERNIG Examinateur

Maître de Conférence, Université de Graz

Delphine LONGUET Examinateur

Maître de Conférence, Université Paris-Saclay

Ylies FALCONE Examinateur

Maître de Conférence, Université Grenoble Alpes

Direction de la thèse
Pascale LE GALL Directeur de thèse

Professeur, CentraleSupélec

Christophe GASTON Coencadrant

Ingénieur-chercheur, CEA List

Remerciements

Je tiens tout d’abord à remercier ma directrice de thèse Pascale Le Gall pour m’avoir encadré tout au long

de cette thèse avec beaucoup de bienveillance et de bonne volonté. Elle a toujours été de très bon conseil et

aussi très généreuse tant au niveau de son temps que de ses efforts. Je tiens également à remercier Christophe

Gaston, mon coencadrant, pour son amitié, ses conseils et aussi pour m’avoir fait me diriger vers ce projet

de thèse après ma formation d’ingénieur.

Merci également à Arnault Lapitre et Boutheina Bannour du CEA, avec qui j’ai pu travailler sur différents

sujets liés à cette thèse. Arnault m’a donné beaucoup de bonnes idées afin d’améliorer mes implémentations et

Boutheina a su apporter son aide, notamment au niveau de l’état de l’art. Je voudrais également mentionner

Mathilde Arnaud, Xavier Zeitoun et plus particulièrement Stéphane Salmons qui m’a encadré pendant mon

apprentissage au CEA avant la thèse et m’a permis de faire mes premiers pas dans ce milieu.

Je voudrais aussi remercier l’ensemble des participants au projet DisTA et en particulier Delphine Longuet

- qui a intégré mon jury de thèse - et Thomas Vergnaud avec qui j’ai travaillé sur le use case Thalès.

Merci à tous les membres de mon jury pour avoir accepté d’évaluer mes travaux; Stefan Haar, qui a

accepté de présider ma soutenance, Bernhard Aichernig, Ylies Falcone, Delphine Longuet ainsi que mes

rapporteurs Gwen Salaün et Xavier Urbain que je tiens tout particulièrement à remercier pour avoir pris la

peine de lire mon manuscrit et pour m’avoir fait part de leurs retours.

Merci à mes collègues et voisins de bureau au laboratoire MICS: Alexandre Goy que je connais depuis

maintenant déjà près de 7 ans et qui est un très bon ami, merci pour les memes, la natation, les randonnées

et tout le reste. Une pensée aussi pour Romain Pascual, Salim Nibouche, Adrien Dekkers, Yassine Ouali

et les autres membres de l’open space. De l’autre côté du laboratoire je tiens à saluer Brice Hannebique,

Mahmoud Bentriou, Antonin Della Noce et tous les autres aussi.

Merci également à Marc Aiguier, Safouan Taha et Jean-Philippe Poli avec qui j’ai participé à diverses

missions d’enseignement, ainsi qu’aux autres membres des équipes pédagogiques du MICS. Merci aussi au

personnel administratif; Suzanne Thuron qui a été d’une grande aide pour les ré-inscriptions et l’organisation

de la soutenance, Sylvie Dervin, Fabienne Brosse et Dany Kouoh Etamè.

Je remercie enfin ma mère, qui m’a élevé avec beaucoup d’abnégation, mon frère, et mes amis de la prépa,

Issac, Jennifer, Julia et Tom pour les escape games et autres sorties que j’ai beaucoup apprécié.

i

ii

Résumé

Les langages d’interactions permettent de modéliser le comportement de systèmes distribués via la spécifica-

tion des échanges asynchrones de messages qui peuvent se produire entre leurs différents sous-systèmes. Ce

type de langage est associé à un formalisme graphique intuitif qui permet une compréhension et une prise

en main facile. Dans cette thèse nous formalisons ce type de modèles avec un Langage d’Interactions (LI)

défini sous la forme d’une algèbre de termes. Ces termes sont construits à partir d’interactions atomiques

qui peuvent correspondre à un comportement vide ou l’expression d’évènements de communication atom-

iques i.e. émissions ou réceptions de messages. Des opérateurs, incluant le séquencement strict et faible, la

composition alternative et parallèle ainsi que quatre boucles distinctes, permettent ensuite la spécification

de comportements plus complexes et nuancés par composition.

Nous définissons ensuite une sémantique de trace, associant à chaque terme d’interaction un ensemble de

séquences d’évènements qui représentent les comportements pouvant être exprimés par le système distribué

qui est modélisé. Cette sémantique est formulée dans un premier temps de manière dénotationnelle. La

sémantique d’interactions complexes est définie par composition à partir de celles de ses sous-termes, com-

posées à l’aide d’opérateurs algébriques sur les ensembles de traces. Cette formulation prenant la forme d’un

morphisme d’algèbre nous pouvons ensuite utiliser les propriétés algébriques des opérateurs sur les ensembles

de traces (associativité, commutativité, etc.) pour obtenir des équations reliant des termes d’interactions

ayant la même sémantique. Grâce aux techniques de réécriture nous pouvons ensuite définir des formes

normales de terme d’interaction. Dans un deuxième temps, nous proposons une formulation opérationnelle

de la sémantique de trace, qui permet de rendre les modèles d’interaction exécutables et ouvre la voie à des

applications plus poussées en vérification. Ces deux formulations sont prouvées équivalentes.

Les exécutions d’un système distribué peuvent être observées au travers de logs des évènements de

communication collectés localement. Sans horloge globale il n’est pas possible de réordonner ces évènements

globalement. Analyser une exécution revient donc à analyser un ensemble de traces qu’on appelle une multi-

trace. De plus, sur chaque composante locale, il se peut que l’observation ait commencé trop tard ou ait

cessé trop tôt. Ainsi, une multi-trace peut correspondre à une observation partielle d’une exécution. Tirant

parti de la formulation opérationnelle ainsi que de propriétés et transformations prouvées par rapport à la

formulation dénotationnelle nous proposons des algorithmes d’analyse permettant d’identifier une multi-trace

comme étant une observation d’un comportement spécifié par une interaction.

Notre approche a été implémentée au sein d’un outil appelé HIBOU qui permet de spécifier et dessiner

des interactions, d’explorer leur sémantiques, de calculer des formes normales ou d’analyser des multi-traces.

Nous avons étendu notre LI pour inclure des données sous la forme de variables définies localement. Des

gardes, expressions booléennes sur les variables, peuvent conditionner l’exécution d’actions et les messages

peuvent porter des données exprimées à l’aide des variables. L’extension aux données a été implémentée en

utilisant les techniques d’exécution symbolique. Cet outil étendu a été utilisé pour un cas d’usage industriel

dans le cadre du projet FUI DisTA.

iii

iv

Abstract

Interaction languages model the behavior of distributed systems via the specification of the asynchronous

passing of messages that can occur between their various sub-systems. This type of language is associated

to an intuitive graphical formalism which is easy to understand and manipulate. In this thesis, we define

such an Interaction Language (IL), which takes the form of an algebra of terms. Those terms are build from

atomic interactions which may consists in the empty behavior or the expression of an atomic communication

event (emission or reception of messages). Operators, which include strict and weak sequencing, alternative

and parallel composition and four semantically distinct loops allow for the specification of more complex

and nuanced behaviors via composition.

We then define a trace semantics, which associates to each interaction term a set of sequences of events

which represent the behaviors that can be expressed by the distributed system that is modelled. Firstly,

this semantics is formulated in a denotational style. This means the semantics of a complex term is defined

by composition from those of its subterms using algebraic operators on sets of traces. This formulation

taking the form of a morphism between algebras, we can then use algebraic properties of the operators on

sets of traces (associativity, commutativity, etc.) so as to obtain equations linking semantically equivalent

interaction terms. Thanks to term rewriting techniques we can then define normal forms of interaction terms.

A second formulation of the trace semantics, in operational style, allows for further applications in formal

verification thanks to making interaction models executable. Those two formulations are proven equivalent.

During the execution of a distributed system, communication logs might be collected locally. Without a

global clock, events cannot be reordered globally. Hence analyzing an execution comes back to analyzing a

set of local traces that we call a multi-trace. In addition one might start the observation too late or end it too

early on any local component. As a result, a multi-trace might correspond to a partially observed execution.

Taking advantage of the operational formulation and of some properties proven using the denotational

formulation, we define algorithms for identifying multi-traces as being observations of behaviors specified by

an interaction model.

We have implemented our approach in a formal verification tool: HIBOU, which allows the specification

and drawing of interactions, the exploration of their semantics, the computation of normal forms or the

analysis of multi-traces. The IL can be extended to include data in the form of locally defined variables.

Guards, formulated as Boolean expressions on variables can condition the execution of individual actions,

while messages can carry data. This extension has also been implemented and we use symbolic execution to

animate models and perform the analyses. An industrial case study has been carried out in the context of

the DisTA FUI project.

v

vi

Contents

1 Introduction 1

1.1 Verification & Validation and Formal Verification . 3

1.2 Modeling Distributed Systems . 4

1.3 Research questions & position of the thesis . 6

1.4 Outline . 8

2 Context 13

2.1 Formal Languages and Formal Semantics . 14

2.2 Equational logic & rewriting . 17

2.3 Modeling Distributed Systems with Interaction Languages . 33

2.4 Process Algebras . 40

2.5 The Coq proof assistant . 43

3 On the semantics of Interaction Languages 53

3.1 A discussion on a selection of papers . 54

3.2 A broader and shallower survey . 62

3.3 Conclusion and position of the thesis . 67

I The Interaction Language 69

4 Syntax & Denotation 71

4.1 Semantic domain . 72

4.2 Syntax & Denotational Semantics . 94

4.3 Normal forms of interactions . 106

5 A small-step operational semantics 123

5.1 Definition of the Operational Semantics . 124

5.2 Proof of equivalence between σo and σd . 148

vii

6 Some execution semantics 163

6.1 Definition of the execution semantics . 164

6.2 Proof of equivalence between σe and σo . 177

6.3 Execution semantics with simplifications . 182

7 Multi-trace semantics 193

7.1 Multi-traces up to a partition . 194

7.2 Projecting traces . 203

7.3 Semantics of accepted multi-traces . 206

7.4 Prefixes and slices of multi-traces . 210

II Multi-trace analysis 217

8 On observing and analyzing executions of distributed systems 219

8.1 Recognizing accepted multi-traces . 221

8.2 Recognizing projections of prefixes of accepted traces . 222

8.3 Recognizing prefixes of accepted multi-traces . 223

8.4 Recognizing slices of accepted multi-traces . 225

9 Algorithm for recognizing accepted multi-traces 229

9.1 Definition of the algorithm . 230

9.2 Proof of correctness of the multi-trace analysis algorithm . 238

9.3 Complexity class of the multi-trace analysis problem . 240

10 The hiding of interaction terms & applications 249

10.1 Hiding and elimination . 250

10.2 A multi-trace analysis algorithm using hiding steps . 256

10.3 Local frontiers . 264

III Extensions & tools 271

11 Immediate extensions 273

11.1 Algorithms with simulation steps . 274

11.2 Co-regions . 282

11.3 Towards an implementation . 284

12 The HIBOU tool 287

12.1 Overview . 288

12.2 Entry language for interaction terms & multi-traces . 289

viii

12.3 Semantic exploration and heuristics . 291

12.4 Multi-trace analysis . 297

13 Extension to data 301

13.1 An issue with abstracting exchanged information as messages 302

13.2 Introducing data . 308

13.3 A discussion on formalizing interactions with data . 309

13.4 Exploration and analysis . 314

14 The HIBOUX tool 319

14.1 Overview . 320

14.2 Entry language . 321

14.3 Proof of concept use case . 324

15 Conclusion 329

15.1 Summary . 329

15.2 Perspectives . 330

Appendices 335

A Synthèse en français 335

Notations 339

ix

x

List of Figures

2.1 The structure of a language . 16

2.2 A representation of confluence . 28

2.3 A sequence of transformations making use of associativity and commutativity 29

2.4 Reduction of associative and commutative expressions using an ORS 31

2.5 Solution of the problem of Fig.2.3 using ordered rewriting and rewriting modulo theories . . . 32

2.6 Examples of Basic Message Sequence Charts . 34

2.7 Two cases of forbidden constructions in BMSCs . 35

2.8 Example of High-Level-MSC . 36

2.9 Example of High-Level-MSC with repetitions and connector nodes 37

2.10 Example showcasing the expressivity of the MSC standard . 38

2.11 Example UML-SD . 39

2.12 Inference rules for our toy process algebra . 42

2.13 Definitions of the data types for the syntax and semantics of our toy process algebra in Gallina 44

2.14 The ↓ (terminates) and → (is_next_of) predicates of the toy process algebra in Gallina . . . 46

2.15 Formalization of the semantics proposed for the toy process algebra in Gallina 47

2.16 Plan of the proof for the equivalence of the semantics of the toy PA 48

2.17 Proof of ∀ p ∈ P (E), p ↓⇒ ε ∈ σd(p) with Coq . 50

4.1 Basic building blocks of interactions . 95

4.2 Scheduling constructors . 97

4.3 Message passing & broadcast . 98

4.4 Alternative constructor . 99

4.5 Comparing the loopS , loopW & loopP repetition constructors 101

4.6 Illustrating the difference between the loopW & loopH constructors 102

4.7 Describing interactions as trees . 104

4.8 Illustrating sub-interactions within an interaction . 105

4.9 The denotational semantics as a homomorphism . 106

4.10 Simplification of an example interaction which uses distributivity in both directions 111

4.11 Simplification using distributivity in a particular case that is not covered by a single equation 113

xi

4.12 Phase 1/2 for normalizing interactions . 115

4.13 Phase 2/2 for normalizing interactions . 116

4.14 Applying our process to normalize interactions on some examples (1/2) 119

4.15 Normalizing example interactions (2/2) and displaying all transformation sequences 120

5.1 Principles of small-step operational semantics applied to interactions 124

5.2 Formulation of the operational semantics "à la" process algebra 125

5.3 Examples for the execution of atomic actions . 126

5.4 Example for executing an action on the left of a strict constructors 127

5.5 Example for executing an action on the left of a seq constructors 127

5.6 Example for executing an action on the right of a par constructor 128

5.7 Example for executing an action on the right of a alt constructor 129

5.8 Illustration of the termination predicate . 132

5.9 Two examples for executing an action on the right of a strict constructor 133

5.10 Illustration of the evasion predicate (here w.r.t. lifeline l2) . 136

5.11 Illustration of pruning in the case where a branch of alternative is cut-out 139

5.12 Illustration of pruning in the case where the repetition of a loop is forbidden 140

5.13 Example for executing an action on the right of a seq constructor without pruning 141

5.14 Example for executing an action on the right of a seq constructor with pruning 142

5.15 Example for executing an action underneath a loopS constructor 143

5.16 Example for executing an action underneath a loopP constructor 144

5.17 Showcasing several consecutive instantiations of the loopP from the example of Fig.5.16 . . . 144

5.18 Example for executing an action underneath a loopH constructor 145

5.19 Showcasing several consecutive instantiations of the loopH from the example of Fig.5.18 . . . 145

5.20 Executing at first an action from the second instance of a behavior 146

5.21 Illustrating the restriction associated to the loopH "Head-First" loop 146

5.22 Reproducing trace t using the loopW constructor . 147

6.1 Description of the principles of the execution semantics . 168

6.2 Frontier actions highlighted on an example interaction . 170

6.3 Illustration of the execution of an action at a specific position 171

6.4 Description of the process for the execution semantics . 176

6.5 Example of a succession of small-step executions without (left) and with (right) simplifications 183

6.6 Illustration of the execution of an action at a specific position with simplifications 186

7.1 Explicitation of various notions of traces and multi-traces . 195

7.2 Counter example demonstrating that projection do not preserve weak sequencing 206

7.3 Extreme cases where projC is a homomorphism . 207

xii

7.4 Algebraic multi-trace semantics . 207

7.5 Algebraic and projective multi-trace semantics: the diagram commutes if C = {L} or C = Ľ 210

7.6 Recording multi-traces in different conditions of observability 211

8.1 Analysing an observation of a DS execution against an interaction 220

8.2 Analysing a multi-trace obtained from a full observation of an accepted behavior 222

8.3 Analysis when the observation of an accepted behavior has ceased too early globally 223

8.4 Analysis when the observation of an accepted behavior has ceased too early locally 224

8.5 Analysis when observation has both started too late and ceased too early 226

9.1 Principle of multi-trace analysis . 231

9.2 Example of application for rule R3 . 233

9.3 Example of application for rule R4 . 235

9.4 Example of application for rules R1 and R2 . 235

9.5 Multi-trace analysis on two examples respectively yielding a global Pass and a global Fail . 237

9.6 Reduction of a particular instance of 1-in-3-SAT into a multi-trace analysis problem 244

9.7 Principle of reducing 1-in-3-SAT instances into multi-trace analysis problems 246

10.1 Hiding a single lifeline on an example . 251

10.2 Hiding a co-localization on an example . 252

10.3 Duality of hiding & elimination and relation w.r.t. the algebraic multi-trace semantics 256

10.4 Illustrating the use of the multi-prefix analysis algorithm with hiding 263

10.5 Analysis without checking local frontiers . 265

10.6 Example showcasing the local frontier on c = {l2, l3} . 266

10.7 Example where checking the local frontiers does not replace checking the frontier 268

10.8 Analysis with the checking of local frontiers . 269

11.1 Example using a co-region constructor . 283

11.2 Principle of a configurable implementation of an analysis algorithms like that of Chap.9 . . . 285

12.1 Example of an interaction encoded in HIBOU . 290

12.2 Example of a multi-trace encoded in HIBOU . 291

12.3 ".hsf" of the interaction which semantics is explored on Fig.12.4 292

12.4 An exploration of the execution tree of the interaction specified in Fig.12.3 by HIBOU 293

12.5 Example exploration without setting frontier priorities (default) 295

12.6 Example exploration with setting a −1 priority to frontier actions underneath loops 296

12.7 Showcasing the algorithm with simulation steps as preamble and postamble 299

13.1 Example interaction with a loopP . 302

13.2 Example analysis against the example from Fig.13.1 . 303

xiii

13.3 Abstract model of the MQTT protocol (v.3.1.1) and analysis time on particular edge cases . 304

13.4 Model of MQTT with value passing for message identifiers and analysis time on edge cases . 306

13.5 Analysis with added information of unique message identifiers 307

13.6 Refinement of a labelled interaction into a symbolic interaction with data 308

13.7 Symbolic execution of the program language . 311

13.8 Illustrating the notions of assignment, symbol creation and guard 312

13.9 A symbolic action . 313

13.10Example of an unsatisfiable path in a symbolic execution tree 314

13.11Example of message passing during execution . 315

13.12Symbolic interaction & various conform & non-conform behaviors 316

13.13Analysis of the three multi-traces from Fig.13.12 . 317

14.1 Example header declaration in a ".hxsf" file . 321

14.2 Encoding of a symbolic interaction (continuation of Fig.14.1) 322

14.3 Symbolic interaction specified by the ".hxsf" file from Fig.14.1 and Fig.14.2 323

14.4 Multi-trace with concrete data in a ".hxtf" file . 324

14.5 The DisTA project . 324

14.6 Parsing log files collected from the Thales prototype into multi-traces with data 325

14.7 Symbolic interaction model for the Thales prototype use case 326

xiv

Chapter 1

Introduction

A Distributed System (DS) is of a collection of independent and concurrently running sub-systems, each of

which being a locally determined software system or cyber-physical system. Those sub-systems can com-

municate with each-other and with the outside of the DS via their communication interfaces, on which they

can send and receive messages. The transmission of those messages can be ensured by various mechanisms,

which we may abstract as a support network. The transmission of those messages can either be synchronous

(the emission and reception events are considered simultaneous) or asynchronous (a delay exists, w.r.t. an

abstract global clock, between the emission and the reception events) [77].

The nature of DSs implies a number of issues that are not encountered in classical centralized systems.

Among those we can note:

• The reliance upon a support network can cause issues, with messages not being delivered (packet loss),

or being delivered in an order that is different (w.r.t. a global ordering of events) to the one in which

they were originally emitted (out-of-order delivery). This non-determinism motivated, among other

things, the conception of modern communication protocols, which can ensure the correct transmissions

of data through a complexification of the exchanges (or not, if the data is deemed not important enough

to bother, see UDP vs TCP [40]).

• Moreover, due to their support network, DSs are especially vulnerable ("vulnerable by construction"

[108]) to malicious acts (more so than centralized systems). Indeed, the use of third-party networks,

public networks (e.g. the internet) or certain technologies (wireless communications) may allow the

interception and / or the modification (man-in-the-middle attack [45]) of data that is exchanged be-

tween the sub-systems of the DS. As for the previous point, handling those security issues can be done

at the price of an increase in the complexity of the exchanges that occur within the DS (handshake

protocols, etc.).

• The fact that each sub-system runs concurrently w.r.t. all others inherently creates additional non-

determinism and possible interleavings between the events that are expected to occur during the

1

2 CHAPTER 1. INTRODUCTION

execution of the DS. Moreover, given that most microprocessors nowadays allow multi-threading, sev-

eral concurrent behaviors involving multiple sub-systems can be executed simultaneously in the DS

(for instance, one can have several instances of different behaviors being executed between a client and

a server at the same time). This can be the cause of non-deterministic concurrency bugs, which are

often referred to as "Distributed Concurrency (DC) bugs" [80]. Those bugs are notably studied in the

context of datacenter distributed systems.

• Finally, the absence of a global clock, shared by all sub-systems of the DS renders impossible, at least

without dedicated mechanisms handling clock synchronization (countering clock drift), the synchro-

nization of behaviors between sub-systems. In the perspective of analyzing log files, this is particularly

problematic given that it impacts the ability to reorder events [77].

Those particularities makes so that DSs are especially difficult to design, model and verify. On the one

hand, one-to-one exchanges between any two sub-systems are increasingly complexified by multi-threading

and concerns about reliability and security. On the other hand, DSs may contain very high (and which

can vary during the execution) numbers of sub-systems. Those intricacies make so that relying on human

intuition alone is unreasonable. Methods for ensuring the quality of DSs should be supported by strong

mathematical foundations so as to ensure that they behave as intended and should be fully or at least partly

automatizable given the potential scale of such systems which incurs increasingly important costs in terms

of human effort.

As a result, the development of sound and automatized processes for improving the design of DSs and

for formalizing and mechanizing their verification is relevant, both from an academic perspective given the

complexity and relative novelty of the subject and from an industrial perspective given the many various

applications in which DSs are found.

Indeed, with the rise of such practices and applications as the Internet of Things (IoT) in which hundreds,

thousands or hundreds of thousands of devices may communicate so as to perform various tasks, the con-

crete and practical applications of DSs in the industry grow ever larger. This shift in the industry towards

distributed and decentralized systems is (1) motivated by gains in terms of which services can be rendered

and in terms of performances and (2) is fueled by advances in the miniaturization of microchips and the

reduction of their costs. In particular, the IoT revolution is enabled by the apparition of affordable and easy

to use single-board computers [6, 8] and assimilated hardware. The integration of such connected devices in

appliances for the large scale collection of data can be used to implement cost-effective preventive mainte-

nance for company assets. In agriculture, sensor data can be used to predict yields and optimize irrigation

and the use of fertilizer and pesticides. In supply-chain and logistics, smart tags can facilitate inventory,

help avoid shortages and ensure the smooth operation of a supply chain. Moreover, additional sensors can be

used to assess the condition of shipped products (e.g. verifying the cold chain for perishables commodities).

Smart objects can also replace everyday household appliances so as to provide ease of life functionalities

in domestic use (smart homes etc.) [107]. Groups or swarms of autonomous or semi-autonomous commu-

1.1. VERIFICATION & VALIDATION AND FORMAL VERIFICATION 3

nicating robots (drones) can perform various tasks with for instance applications in search and rescue in

hazardous environments [32]. Another interesting prospect is that of smart grids [108] and smart cities in

which city or country wide infrastructures are erected so as to rationalize and streamline the production and

consumption of electric energy or vehicular traffic.

1.1 Verification & Validation and Formal Verification

Distributed Systems may contain large numbers of devices; on each such device, various programs can be

run at any time; and the network through which those devices communicate may be subject to variations

in its reliability. As a result, in a DS, there can be various sources of potential bugs i.e. errors, meaning

unwanted behaviors that are executed or the unwanted absence of a behavior.

Ensuring the correct functioning of DSs is all the more important in the case of critical applications

(healthcare, the aerospace industry or nuclear energy, etc.) or for applications which impact concerns large

numbers of people or large amounts of money (e-commerce, social media, etc.). Bugs found within such

systems can have tremendous human or financial consequences. Famous examples include the failure of the

Ariane V launcher in flight 501 [82] or the crash of NASA’s Mars Climate Orbiter [117].

In order to ensure proper functioning, or at least to guarantee a certain level of quality when it comes

to the smooth running of DSs, one can (1) improve their design process through some project management

methodologies [117] or (2), from a more technical perspective, one can use techniques to verify and validate

the system a posteriori. Some of the contributions of this thesis concerns the latter.

Hence, the detection (and correction) of errors in systems is an important part of the process of developing

and maintaining those systems. In the industry, such processes are often described under the umbrella term of

Verification and Validation (V&V) [106]. This consists in ensuring that products meet specific requirements

i.e. properties, functionalities or behaviors. A set of such functional requirements is called a specification

(technical standard of a product). However, V&V is not necessarily a certified process and may rely on

human intuition. In order to exclude potential human errors, one has to rely on mathematically sound

specifications and methods used to verify those. Merging V&V and formal methods is the object of Formal

Verification (FV) [28].

Formal Verification includes a variety of techniques that can programmatically manipulate mathemati-

cally sound representations of objects (words in a formal language). In software development, FV methods

can be used directly on the application’s code, given that programming languages are formal languages.

However, it is not always possible to do so (third party, closed-source applications, etc.) or, it may not be

desirable to do so, as we may want to use FV on another level of abstraction. Fortunately, FV methods can

also be used on models i.e abstract representations of the behavior of a system, as long as those models are

written using a formal language (formal models).

Specifications of DSs can be formulated using models instead of natural language. Moreover, if those

models are formal models, they can be used programmatically in FV. Uses may notably include the verifi-

4 CHAPTER 1. INTRODUCTION

cation of past executions of the system. This may consist in verifying that a given execution of a system,

abstracted and formalized as an object that may be obtained from parsing and translating log files, belongs

to the semantics of a formal model of that system. The distributed nature of DSs makes so that a given

execution might produce several distinct log files and, as we have mentioned, a lack of synchronization might

prevent merging them. Moreover, it might be so that some log files are incomplete. For instance the logging

may have started too late or ended too early. As a result the objects resulting from observing executions

and that should be analyzed may correspond to "partial" observations in two aspects: (1) that of lacking

means to reorder events globally and (2) that of having missing events.

1.2 Modeling Distributed Systems

In order to apply FV techniques to DSs, we need a formal modelling language for DSs. In the context of

this thesis, we focus on behavioral models i.e. models which specify the intended behaviors of the system

they represent. With that in mind, one can model DSs in essentially two manners. We can either model

each individual sub-systems with a local model and then the global model is some form of a composition of

those local models. Or we can directly design a global model, which will not detail the inner workings of

local sub-systems but rather focus on the exchanges between those sub-systems. In the domain of service

oriented computing, the distinction between those two kinds of approaches is well identified [78], with

choreography languages being either "interaction-oriented" such as WS-CDL (Web Service Choreography

Description Language) [20] or "process-oriented" such as WS-BPL (Web Service Business Process Execution

Language) [19].

Another manner to perceive this distinction is to understand the modelling process as either a "top-down"

or "bottom-up" process: "process-oriented" approaches are "bottom-up" given that we start from the local

components and then the global behavior is emergent while "interaction-oriented" approaches are "top-down"

given that the global behavior is directly modelled. This terminology can be notably found in [46] in the

domain of multi-agent systems.

1.2.1 Bottom-up approaches

In bottom-up approaches, each component of the DS is modeled locally. Then, inputs and outputs of local

models are connected to the other sub-models (or the environment) with which they communicate through a

certain communication medium [28, 53, 35] and a global model is thus constructed "from the bottom to the

top" (or one can also describe it as "from the local to the global"). The global behaviors that are specified

in this manner emerge from the executions of local models.

The communication medium [28, 53, 35] orchestrates the exchange of messages between local models by

associating outputs to corresponding inputs. This association can take the form of one or several buffers

with different policies (FIFO, random access, etc.) as explained in [35].

Formalisms used in bottom-up approaches include state-transitions modeling languages such as Finite

1.2. MODELING DISTRIBUTED SYSTEMS 5

State Machine (FSM) [41, 35], Labelled Transition System (LTS) [123] or more complex formalisms with

data such as Input Output Symbolic Transition System (IOSTS) [34] and so on. In the Universal Modeling

Language (UML) [24] a particular type of diagrams called State Diagrams [102] also corresponds to this type

of models.

1.2.2 Top-down approaches

In a top-down approach, the exchanges between the sub-systems of the DS are directly modelled. As in

the bottom-up case, those exchanges can be modelled by atomic observable events that consist in either the

emission or the reception of a given message on a specific sub-system. However, instead of focusing on the

local ordering of events on specific sub-systems, those events are scheduled (ordered with an order relation

that may be partial) globally. This global scheduling is to be found in the structure of the model itself

instead of being a result of the execution of local models orchestrated by a communication medium.

Formalisms that can be described as top-down include Petri nets and its derivatives such as Coloured

Petri Net (CPN) [69] and formalisms derived from Message Sequence Chart (MSC) [22] such as Live Sequence

Chart (LSC) [48], which may be referred to as Interaction Languages (ILs). In Universal Modeling Language

(UML) [24], Sequence Diagrams are included as an adaptation of MSC into UML.

1.2.3 On the choice of a modeling language

Aspects to consider for the choice of a modeling language may include its expressivity (ability to express

detailed behavior), its ease of use (linked to the human effort of the modeling process), ease of understanding

(when used as documentation) and ability to be used as input for Formal Verification techniques.

Expressive languages of both types can be found. In terms of usability in FV, "process-oriented" ap-

proaches are generally more established and benefit from various ready to use tools with for instance SPIN

[16], Estelle [11] or LOTOS [13] for Extended Communicating Finite State Machine (ECFSM), PragmaDev

Studio [15], JADE [12], Cinderella [9] or OpenGeode [14] for the SDL language, UPPAAL[17] for networks

of timed automata with data or Diversity [10] for sets of communicating Input Output Symbolic Transition

System (IOSTS). By contrast, tools for FV based on "interaction-oriented" languages are rarer and they

mostly involve Petri nets or rely on translations towards "process-oriented" formalisms (cf. Chap.3).

In terms of ease of use and understanding however, "interaction-oriented" approaches have some advan-

tages. According to [29], the boundary between modeling and implementing is quite blurry; both activities

being only differentiated by the level of abstraction and the completeness of the objects they produce. We

could argue that with "process-oriented" approaches, more effort is overall required, given that each sub-

system must be modeled, and that this effort often overlaps that of implementation given that most systems

are implemented in a bottom-up development style. In [78], the authors also argue that "interaction-oriented"

approaches support a more abstract (global) vision.

In the context of this thesis we have chosen to focus on Interaction Languages (languages of the family

6 CHAPTER 1. INTRODUCTION

of MSC) for modelling DSs with asynchronous communication. Those languages represent the behavior of

distributed systems in an intuitive graphical format while allowing nuanced and detailed specifications.

1.3 Research questions & position of the thesis

1.3.1 Formalisation of Interaction Languages

On the one hand, the particularities of Distributed Systems are such that classical approaches, originally

formulated for the design and verification of centralized systems, even though they are well detailed and

come a wide array of tools, cannot be transposed for the design and verification of DSs [83]. The formal

specification and verification of DSs requires dedicated formalisms and methods.

On the other hand, Interaction Languages are popular and intuitive languages for the (mostly infor-

mal) specification of the behaviors of DSs. Interaction models, represented graphically in the fashion of

UML Sequence Diagrams are indeed often found in the documentation of software projects. They allow to

synthesize in an intuitive manner the explication of communication schemes between entities that would

otherwise require the writing of long documents in natural language. Even though human generally find the

understanding of such models relatively easy, it is not the case for computers. This is made evident by (1)

the lack of support for model-based design and testing approaches that rely on interaction models and (2)

more generally by their scarce use in FV. The few existing approaches to the formalisation and use of ILs in

FV (notably tooled approaches) mostly rely on complicated translations towards other formalisms which are

often constrained and incomplete. One of the key factors to the difficulty of formalizing and tooling interac-

tion models lies in weak sequencing. Weak sequencing correspond to the top to bottom direction in which

one reads an interaction diagram and that represents the elapse of time during execution. Weak sequencing,

which is a form of locally defined sequentiality, induces specific partial orders between the occurrences of

events that cannot be otherwise specified using classical strict sequentiality and interleaving.

As a result of this, the question of providing a formalisation of an expressive IL that can be used in FV

naturally comes in mind. We propose to discuss this issue in the light of the domains of formal languages,

term rewriting and process calculus.

1.3.2 Methods for analysing executions of Distributed Systems

Innovative uses of IoT systems in critical infrastructure such as smart grids or in healthcare require a high

level of confidence and security which in turn requires the use of formally verified approaches for design and

test. The scale and potential complexity of such systems also requires methodologies which are extensible

and that support automation so as to afford reasonable costs in terms of human effort.

In particular, one might be interested in offline (i.e. a posteriori) analysis of the executions of such

systems, that may be observed via the collection of log files. Whether it be for making sure of the smooth

operation of a Distributed System that is already deployed or for testing an implementation during the

1.3. RESEARCH QUESTIONS & POSITION OF THE THESIS 7

process of designing a DS, this kind of analysis can be used to increase the confidence in the conformance

of a DS with regards to its specification [58]. In the existing literature, offline analysis is most often limited

to verifying local conformance on each sub-system (as in [83] using automata) which can also be completed

by methods for checking that each instance of a received message has previously been sent (as in [37], which

additionally verifies temporal constraints).

In this thesis, we also propose to address the issue of offline analysis by defining algorithms for analyzing

observations of some executions of a DS against a formal specification of that DS written as an interaction

model. The nature of the approach that we enquire, based on the automated use of models, falls within

the issue of defining automatized, reusable and extensible methods for FV based on Interaction Languages.

However, in contrast to the state of the art, we aim at defining an approach that is global by construction

and cannot be brought back to a conjunction of local verifications.

1.3.3 Partial observations of distributed executions

In relation to the issue of offline analysis, the observations of DS executions that ought to be analyzed may

not be complete. This incompleteness Indeed, without mechanisms to synchronize distant loggers (local

testers), it is impossible to ensure that each logger starts and ends logging at the right times. This can

result in communication events being missed (i.e. not logged) either at the beginning or the end of any

locally defined log file. From a more abstract perspective, this corresponds to having an observation of the

execution which is only partial.

The current state of the art regarding the analysis of logs against specifications of DSs mainly revolves

around the use of Petri Nets or sets of automata. Moreover those analyses are often constrained by hypotheses

on the existence of synchronisation points and partial observation is scantily treated. We propose to address

this question through the definition of analysis algorithms that may use either (1) simulation steps so as

to "fill-in" the unobserved events by simulating the behavior of sub-systems that were not observed (in a

specific span of time) or (2) hiding steps which consists in erasing parts of the formal model against which

the analysis is performed once, during the analysis, the sub-systems that are modelled by those parts are

not observed anymore.

1.3.4 Position of the thesis

Therefore, an avenue of research exists when it comes to the development of Formal Verification techniques

based on formal Interaction Languages. In this thesis we aim at the development of such formal methods. In

particular, we are interested in verifying partially observed executions of Distributed Systems with regards

to formal specifications written as interaction models. In addition to those theoretical concerns on the

formalization of such approaches, the thesis also aims at providing practical and concrete tooled solutions.

Indeed, as the thesis has been carried out as part of the DisTA (Distributed Test Automation) FUI project

financed by the French ministry of Economy and Finance, we have met with practical challenges that comes

8 CHAPTER 1. INTRODUCTION

with the realization of use cases and proofs of concepts with industrial partners.

1.4 Outline

This thesis is composed of four parts.

The zeroth part, which includes this introduction, contains introductory material:

• Chap.2 presents contextual information on several domains which relate to the works of this thesis

• Chap.3 gives a quick state of the art on the formal semantics associated to Interaction Languages

The first part is dedicated to the definition of our take on an Interaction Language (IL) and of various

trace and multi-trace semantics that can be associated to it:

• in Chap.4 we define the syntax of an IL which is particularly expressive when it comes to the scheduling

and repetitions of events. Indeed, this IL contains operators for strict and weak sequencing, interleav-

ing, alternatives, and four semantically distinct loop operators for expressing nuances in the repetition

of behaviors. We then associate this formal language with a trace semantics, associating each inter-

action to a set of traces, which are globally defined sequences of observed events. A first formulation

of that semantics is given in denotational style: we use algebraic operators on sets of traces so as to

construct the semantics of complex terms by composition of those of simpler sub-terms. This then

allows us to define a process to compute normal forms (within a class of semantically equivalent terms)

of interactions using ordered and class rewriting.

• in Chap.5 we define a structural operational semantics for our IL. This small-step semantics relies on

making interaction models executable, with each step of execution consisting in the expression of a

communication action and transforming the interaction into a "follow-up" which specifies what "remains

to be executed". This formulation of a trace semantics is inspired by process calculus. We then prove

the equivalence of this second semantics with regards to the denotational semantics which serves as a

mathematical foundation (Coq proof in [88]). The contribution of this operational semantics and its

proof of correctness w.r.t. the denotational is the object of [95] (submitted in April 2021).

• in Chap.6 we redefine the operational semantics in the style of functional programming languages with

a twist. That twist consists in separating concerns between the determination of which actions are

immediately executable and the actual computation of the "follow-up" interaction to their execution.

The first concern is translated into the formulation of a "frontier of execution" while the second is

transposed as an "execution function". This "algorithmization" of the operational semantics ("execution

semantics") is then declined into variants in which intermediate interactions are simplified on the fly

to ensure working with compact terms. One of those variants notably uses the normalization of

intermediate interaction terms. We then prove the equivalence of the execution semantics and its

1.4. OUTLINE 9

variants w.r.t. the first two semantic (Coq proof in [88]). This verified functional-style semantics

serves as a basis for the later tool implementations.

• in Chap.7 we extend the notion of the semantics of interactions from trace semantics to various "multi-

trace" semantics, which take into account the distributed nature of observed behaviors and the poten-

tiality for a partial observation of those behaviors.

– We define an algebraic multi-trace semantics in denotational style using algebraic operators on

sets of multi-traces and compare it to a projected multi-trace semantics obtained by projection

of the trace semantics. Due to weak sequencing, those two semantics do not generally coincide

except in two particular cases. The semantics that is "correct" in intention is the projected multi-

trace semantics. However, the algebraic multi-trace semantics benefits from interesting properties

due to its definition. We may notably take advantage of this in the cases in which both semantics

coincide.

– Given the nature of multi-traces as sets of sequences the usual notions of prefixes and substrings

have to be extended so as to capture the fact that events might be missing at the beginning

or end of each local trace component. Accordingly, we define prefixes and slices in the sense of

multi-traces and then defined three variants of the projected multi-trace semantics: (1) that of

the projections of prefixes of accepted traces, (2) that of prefixes (in the sense of multi-traces)

of accepted multi-traces (prefix closure) and (3) that of slices (in the sense of multi-traces) of

accepted multi-traces (slice closure). Those semantics cover cases of "partial observation" when

collecting multi-traces from observing executions of DSs.

The second part is devoted to the definition of various algorithms for analyzing multi-traces against

interaction models, including in case of partial observation:

• in Chap.8 we discuss the problem of analysing multi-traces. This chapter constitutes an introduction

to the second part of the thesis.

• in Chap.9 we define a first algorithm for recognizing accepted multi-traces.

– This algorithm constitutes a solution for the membership problem of the projected multi-trace

semantics i.e. determining whether or not a given multi-trace belongs to that semantics w.r.t a

given interaction. The underlying problem incidentally corresponds to an instance of the problem

of offline analysis i.e. the verification of executions of DSs against formal specifications expressed

as interactions. In order to define this algorithm, we take advantage of the operational formulation

of the trace semantics of interactions which makes available an "execution relation" which may

be used to simultaneously execute an action in an interaction and consume it from the head of a

given multi-trace component.

– We then prove the correctness of this algorithm i.e. that is is indeed a solution to the aforemen-

tioned membership problem (Coq proof in [87]).

10 CHAPTER 1. INTRODUCTION

– In addition, we take an interest in the complexity class of the membership problem and prove

that it is NP-hard.

Our initial approach to defining such an algorithm, for the analysis of accepted global traces and their

prefixes, is described in [93] (published in ETAPS-FASE-2020). In [94] (published in SAC-SVT-2021)

we extend this initial algorithm to cover the analysis of accepted multi-traces. In Chap.9 we synthesize

and extend both previous approaches.

• in Chap.10 we define the notion of hiding interactions and propose two applications:

– one for defining a second algorithm which can recognize prefixes (in the sense of multi-traces)

of accepted multi-traces. This algorithm uses hiding steps to do so. Hiding steps correspond

to erasing parts of the model during the analysis once the sub-systems which those erased parts

model are no longer observed. We then prove the correctness of this algorithm.

– another for improving the efficiency of analysis algorithms via a reduction in their search space.

We reduce this search space by cutting some branches which are guaranteed to yield a Fail

verdict (i.e. the multi-trace cannot be recognized as accepted when exploring those branches).

The determination of those branches to cut is made using a notion of local frontier which is that

of which actions can be executed next on a specific sub-system.

In the wake of those theoretical results, we present extensions of the formalisms and the implementation

of tools in the third part of the thesis:

• in Chap.11 we present immediate extensions which include:

– the definition of additional (unproven) algorithms which make use of simulation steps to recog-

nize prefixes and slices of accepted multi-traces. Simulation steps correspond to simulating the

behavior of sub-systems which are not observed (not yet observed or not observed anymore) by

executing relevant parts of the model.

– the addition of a co-region construct to facilitate the design of interaction specifications

– a discussion on the ease of implementation of the results of this thesis and the presentation of a

process by which to implement the analysis algorithms which we have presented in an efficient

and configurable manner

• in Chap.12 we present the first tool HIBOU (for Holistic Interaction Behavioral Oracle Utility) which

is a direct implementation of most theoretical results from the first two parts of the thesis. In addition,

HIBOU proposes:

– a user friendly interface (Command Line Interface and entry language)

– features for graphically representing interactions, the computation of their normal forms, their

semantics and graphs relating to analyses of multi-traces

1.4. OUTLINE 11

– various heuristics dedicated to the smooth exploration of execution trees (for computing seman-

tics) and analysis graphs (for analysing multi-traces)

• in Chap.13 we motivate and introduce an extension of our IL and FV framework to treat interaction

models enriched with data. This takes the form of (1) having lifelines being associated to typed

variables which can be created and modified at runtime, (2) having the execution of communication

actions being preceded or followed by the execution of statements consisting in variable assignment

and guards which constrain the current values of variables and condition the execution of said actions

and (3) having messages being a more precise abstraction of exchanged information with the addition

of typed message parameters. We also discuss extending multi-trace analysis to multi-traces with

concrete data as parameters of messages.

• finally, in Chap.14 we present the second tool HIBOUX (for HIBOU with symbolic eXecution) which

implements that which we have discussed in the previous chapter. HIBOUX extends the functionalities

of HIBOU to treat interaction models enriched with data and uses symbolic execution to execute and

animate those enriched models and to analyse multi-traces with typed message parameters. We then

present an industrial use-case, provided by Thales, on which HIBOUX was used as part of the DisTA

FUI project.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Context

Contents
2.1 Formal Languages and Formal Semantics . 14

2.1.1 Formal languages . 14

2.1.2 The semantics of formal languages . 15

2.2 Equational logic & rewriting . 17

2.2.1 Term algebras . 17

2.2.2 F-algebras . 19

2.2.3 Preliminaries on binary relations . 20

2.2.4 Equational logic . 23

2.2.5 Equational bases . 24

2.2.6 Basics of term rewriting . 26

2.2.7 Ordered rewriting & rewriting modulo theories . 29

2.3 Modeling Distributed Systems with Interaction Languages 33

2.3.1 Basic Message Sequence Charts . 33

2.3.2 High Level Message Sequence Charts . 36

2.3.3 Message Sequence Charts . 37

2.3.4 UML Sequence Diagrams . 38

2.4 Process Algebras . 40

2.4.1 Presentation of the toy process algebra . 40

2.4.2 Semantic domain . 41

2.4.3 Denotational-style semantics . 42

2.4.4 Operational-style semantics . 42

2.5 The Coq proof assistant . 43

2.5.1 Encoding the toy process algebra in Coq . 44

2.5.2 The semantics of the toy process algebra in Coq 47

2.5.3 Proving the equivalence of both semantics with Coq 47

13

14 CHAPTER 2. CONTEXT

In this chapter, we provide elements of context for some fields of study which relate to the contributions

of this thesis:

• in Sec.2.1 we provide a quick and shallow definition of formal languages and their semantics. Indeed,

in the context of this thesis, we aim at the formalisation of some specific modelling language.

• in Sec.2.2 we introduce notions related to term algebras, equational logic and term rewriting which

prove helpful for the definition of formal languages and their semantics.

• in Sec.2.3 we give a quick overview of Interaction Languages

• in Sec.2.4 we present the basics of process calculi, which is the study of the behaviour of parallel or

distributed systems by algebraic means.

• in Sec.2.5 we introduce Coq, a software tool for machine-checked theorem proving and we illustrate its

use on the example process algebra from Sec.2.4.

2.1 Formal Languages and Formal Semantics

Languages are used to communicate information. Different languages may share many similarities that may

be abstracted so as to define the nature of a language. This need of abstraction and formalization leads,

with contributions and exchanges with the fields of linguistics, mathematics and then computer science, to

the definition and hierarchisation of "formal languages" ([116] p.1-9).

2.1.1 Formal languages

In all generality, a formal language L is a subset of the words that can be formed from a given alphabet

Σ (not necessarily finite). A word is a finite sequence of symbols or "letters" taken from the alphabet Σ

that can be characterized as the concatenation of its constituent letters. The set of all possible words that

can be obtained in this manner is noted Σ∗ and called the "free monoid". The use of the the "∗" symbol is

associated with the "Kleene Star" operator, which roughly means zero or more repetitions, but finitely many

([116] p.10-12).

2.1. FORMAL LANGUAGES AND FORMAL SEMANTICS 15

Definition 2.1: Free Monoids and words

For any set (alphabet) Σ the free monoid Σ∗ generated by Σ contains words on Σ and is defined by:

• ε ∈ Σ∗ is the empty word

• Σ ⊂ Σ∗ i.e. each individual letter as a word

• for any words u and v in Σ∗, the word denoted by u.v or more simply uv is also in Σ∗

The "." concatenation operator that is thus induced is such that:

• it admits ε as a neutral element

• it is associative

For any words u and v in Σ∗ we say that:

• u is a prefix of v and we denote it by u ≤ v iff there exists w ∈ Σ∗ such that v = u.w

• u is a subword of v iff there exists w and w′ such that v = w.u.w′

For any set V of words, we say that V is closed by prefixes if it contains all the prefixes of all its

elements.

Not all those words are necessarily "well-formed" w.r.t. the formal language. In the definition of a formal

language, the manner in which those words are selected is not given. Rules for the systematic generation

(e.g. by a computer) of all well-formed words from an alphabet are usually given by a "formal grammar"

[116] which consists of sets of symbols and production rules which can be used to create increasingly complex

words.

Formal grammars can be categorized using the Chomsky hierarchy [116] according to their expressivity.

Type-3 grammars, which can generate regular languages are the simplest while type-0 grammars can generate

the more complex recursively enumerable languages. In the context of this thesis, we will be only interested

in type-2 "context-free" grammars.

2.1.2 The semantics of formal languages

The grammars of formal languages describe the syntax of words i.e. which words are or are not well-formed.

By contrast, the study of the meaning of words and languages relates to their semantics. This is particularly

relevant in the context of programming languages and modelling languages, which are particular kinds of

formal languages.

Programs that can be written in a programming language are well-formed words of that language. How-

ever the outputs that can be produced by the program once compiled and executed on a computer are

intractably complex and cannot generally be inferred from its code. We can define the formal semantics of

16 CHAPTER 2. CONTEXT

a programming language so as to understand, describe and explain the complex relationships that can exist

between its code, its inputs and its outputs [125, 72, 64].

As illustrated on Fig.2.1, a semantics of a language can be defined by mapping objects of the syntactic

domain (the syntax) into objects of a semantic domain. The definition of what constitutes a semantic

domain may vary. For instance, in the case of programming languages (the syntactic domain being that of

well-formed programs) it may consist in sequences of strings observed of the standard output of a program.

language

syntax
=

notation
semantics

semantic
domain

semantic
mapping

Figure 2.1: The structure of a language

There is a variety of different manners to define formal semantics. [72] proposes the following categories:

• "translational semantics" ([72] p.187-222), which consist in providing a semantics for a high-level lan-

guage via a translation towards a lower level language which is already equipped with a semantics.

• "operational semantics" ([72] p.223-270), which rely on defining a manner to execute the words of

the language. In particular, "small-step operational semantics" also called "structural operational

semantics" ([72] p.238-261) explicit atomic computation steps that constitute the execution of a word.

• "denotational semantics" ([72] p.271-340), which map concepts of the language into some mathematical

objects (numbers, sets, tuples, functions, etc.). The resulting mathematical object is called a "deno-

tation". Denotational semantics are compositional. They infer the meaning of a word by building

denotations recursively based on the structure of the language’s words. By that is meant that the

denotation of a word is constructed out of the denotation of its "sub-words".

• various other types of semantics can be described such as "fixed-point semantics" ([72] p.341-394) or

"axiomatic semantics" ([72] p.395-442) but those are outside the scope of this thesis.

When it comes to modelling languages, the question of what constitute their semantics do not have an

obvious answer, as explained in [64]. Indeed, there is a wide variety of modelling languages that can be used

to express many different concepts; for instance a structural model has a purpose which is entirely different

from that of a behavioral model. Nevertheless, we can roughly use the same categorisation of semantics

when it comes to describing modelling languages and their semantics. In particular, in the context of this

thesis (1) we only consider behavioral models i.e. models which specify the intended behaviors of the system

they represent and (2) we are mainly interested in denotational and operational semantics while various

translational semantics are found in the related state of the art.

2.2. EQUATIONAL LOGIC & REWRITING 17

2.2 Equational logic & rewriting

Words of a formal language, and more particularly in the case of context-free languages, can be understood

as terms built by composition from basic building blocks and using operators. This compositionality in

the structure of terms may then allow the definition of denotational semantics as morphisms between the

syntactic domain of terms and a given semantic domain. Considering terms which have the same semantics

and reasoning on syntactic transformations that preserve said semantics can then lead to the definition of

classes of equivalence and normal forms of terms.

In this section we present term algebras, equational logic and term rewriting which will enable us to

produce such results for our Interaction Language (IL).

2.2.1 Term algebras

In this section we present term algebras as a means to formalize this understanding of words of a language

as terms.

In Def.2.2 we define the notion of operation symbols and how they can constitute "signatures" of term

algebras which we then define in Def.2.3.

Definition 2.2: Signature

A signature F is a set of operation symbols: F =
⋃
j≥0 Fj such that for any integer j ≥ 0, the set Fj

is that of symbols of arity j. For any such symbol f , we denote by |f | its arity. Symbols of arity 0 are

called constants.

An operation symbol may correspond to an operator in a mathematical formula. For instance the addition

"+" operator or the conjunction "∧" operator could be defined as operation symbols of arity 2.

Operation symbols of arity 0 correspond to the basic building blocks which we mentioned earlier. Con-

tinuing on the example of mathematical formulae, the constant integer 1 or the constant truth value > could

be defined as operation symbols of arity 0.

Definition 2.3: Term Algebras

Given a signature F and a set X of variables that is disjoint from F , the term algebra TF (X) is the

smallest subset of ({(,)} ∪ F ∪ X)∗ such that:

• X ∪ F0 ⊂ TF (X)

• for any symbol f ∈ F of arity n > 0 and for any terms t1, · · · , tn from TF (X),

we have that f(t1, · · · , tn) ∈ TF (X)

The ground term algebra TF can be defined as TF (∅) and contains all terms without variables.

18 CHAPTER 2. CONTEXT

This manner of constructing elements of a term algebra, called first-order terms [71], can be described

as a definition by closure. Indeed, variables and constants form basic building-blocks and symbols of higher

arity can be used as construction rules for the formulation of more complex elements.

This inductive construction also allows us to define functions and to make proofs using structural in-

duction [25]. The principle of a proof by structural induction is that once a property is proven for all base

elements and, if this property is conserved by the application of the construction rules corresponding to

symbols of arity n > 0, then it is proven for all terms.

Variables (via the set X of variables) can be used in the construction of a term so as to abstract some

non-determined sub-term. We can draw a distinction between terms without variables, which are called

ground terms, and terms in which there are variables. We may use the notation var(t) to designate the set

of variables that occur on a given term t, as defined in Def.2.4.

Definition 2.4: Variables of a term

For any term t ∈ TF (X), we denote by var(t) ∈ P(X) its set of variables defined by:

• if t ∈ X then var(t) = {t}

• if t ∈ F0 then var(t) = ∅

• if t = f(t1, · · · , tn) with n > 0 and f ∈ Fn then var(t) =
⋃
j∈[1,n] var(tj)

Another result stemming from the domain of term algebras is that of describing terms as trees. This

understanding of terms as trees, which nodes are uniquely associated to positions [71, 51], allows the de-

scription of operations on those terms. In Def.2.5 we define the notion of tree (as understood in the context

of term algebras [71]) and positions.

In Def.2.5, we define, for any term t ∈ TF (X), the set pos(t) as the set of its positions. As in [51, 71],

we denote by t(p) the node at position p and by t|p the sub-term at position p. The definition of positions

as words on integers is sometimes referred to as the Dewey Decimal Notation [51, 43].

Definition 2.5: Trees and positions

Given a signature F and a set X of variables, a tree on F ∪X is a partial application t : N∗+ → F ∪X

defined over a finite domain pos(t) of N∗+ such that:

• pos(t) is closed by prefixes

• for any p ∈ pos(t) and for any j ∈ N+, we have p.j ∈ pos(t) iff t(p) = f ∈ F and 1 ≤ j ≤ |f |

Let us remark that, in a ground term t (i.e. without variables), nodes t(p) at leaf positions hosts constants

(elements of F0) while inner nodes hosts operation symbols of higher arity [51]. In all generality one could

define infinite trees. However, in Def.2.5 we have required that they be defined on a finite domain of positions

2.2. EQUATIONAL LOGIC & REWRITING 19

and hence are finite trees. The set of finite trees on F ∪ X is isomorph w.r.t. the set of terms TF (X). As a

result we may describe freely elements of a term algebra as either terms or trees.

In Def.2.6 we define the notion of term replacement, with the notation t[s]p being used to indicate the

term that results from replacing the sub-term t|p at position p within t by s.

Definition 2.6: Term replacement

For any (t, s) ∈ TF (X)2, for any p ∈ pos(t), the term t[s]p is defined inductively by:

• t[s]ε = s

• f(t|1, · · · , t|n)[s]j.p = f(t|1, · · · , t|j [s]p, · · · , t|n) for any n > 0, j ∈ [1, n] and f ∈ Fn

2.2.2 F-algebras

In the same manner as a term algebra TF (X) can be used to describe the syntactic domain of a language, we

can define an algebra to represent the semantic domain of said language. In this section we define F-algebras

for that purpose.

As explained in [51, 25], given a signature F of operation symbols, a F-algebra consists of (1) a non-

empty set A which is a "domain of values" that we may call the "carrier" of the algebra, and (2) a family

FA (indexed by F) of operations on A. We formalize this definition in Def.2.7.

Definition 2.7: F-algebras

An F-algebra is a structure A = (A,FA) where:

• A is a non-empty set called the carrier of the algebra

• FA = {fA | f ∈ F} such that for each operation symbol f ∈ F :

– if |f | = 0 then fA is an element of A

– if |f | = n > 0 then fA is a total function fA : An → A

A purpose of F-algebras, as explained in [51], is to attach meaning to terms of TF (X). This can be done

through the definition of "environments" [25] which map terms t ∈ TF (X) to values in the domain of values

A (carrier of the F-algebra) thanks to the operations from FA. We formally define environments in Def.2.8.

Definition 2.8: Environments

Given a mapping ρ : X → A, we denote by ρ : TF (X) → A and we call an "environment" the unique

homomorphism that extends ρ such that:

∀ f ∈ F , of arity n, ρ(f(t1, · · · , tn)) = fA(ρ(t1), · · · , ρ(tn))

20 CHAPTER 2. CONTEXT

The semantic mapping evoked in Sec.2.1 that relates words to their meaning can then be defined as

an "environment" as defined in Def.2.8. More particularly, in the case of ground terms, we can define the

semantics of elements of a ground term algebra TF as the unique such "environment" between TF and A.

This unique homomorphism is sometimes described as the initial homormorphism or the homomorphism

between the initial algebra and the free algebra [74] associated to F .

2.2.3 Preliminaries on binary relations

Binary relations relate terms of a term algebra. For instance we might be interested in defining a relation

on terms that are not necessarily syntactically equal but that have the same semantics. In any case, the

purpose of this section is to introduce binary relations and their properties.

Definition 2.9: Binary relations

A binary relation R on a set A is a subset of A × A. We may use the infix notation xRy to denote

elements (x, y) ∈ R.

For any two binary relations R1 and R2 on the same set A, we may denote by R1 ◦ R2 the composition

of both relations such that R1 ◦ R2 = {(x, z) ∈ A×A | ∃ y ∈ A, xR1y ∧ yR2z}.

Also, given that binary relations are defined as sets, we may say that a relation is included in another

and use classical set theoretic notations ⊂, ⊆, (and 6⊆ to describe relations between binary relations.

In Def.2.10 we summarize basic properties that may describe specific binary relations.

Definition 2.10: Basic properties of binary relations

A binary relation R on a set A is said to be:

• symmetric if for any (x, y) ∈ A2 we have that xRy implies yRx

• antisymmetric if for any (x, y) ∈ A2 if we have both xRy and yRx then this implies that x = y

• reflexive if for any x ∈ A we have xRx

• antireflexive if for any x ∈ A we do not have xRx

• transitive if for any (x, y, z) ∈ A3 if we have both xRy and yRz then this implies that xRz

Binary relations that satisfy specific combinations of the properties from Def.2.10 may be described by

specific terms, some of which are given in Def.2.11.

2.2. EQUATIONAL LOGIC & REWRITING 21

Definition 2.11: Specific kinds of binary relations

A binary relation R on a set A is said to be:

• a quasiorder if it is reflexive and transitive

• an order if it is reflexive, transitive and antisymmetric

• a strict order if it is antireflexive, transitive and antisymmetric

• an equivalence relation if it is reflexive, symmetric and transitive

As implied by Def.2.11 the notion of orders can be described by binary relations. We may use the notation

≥ to describe a quasiorder. For any such quasiorder ≥ on a set A, and for any two elements x and y of A we

may equally denote by y ≤ x the fact that x ≥ y. Likewise we may use the notations > and < to describe a

strict order.

In addition, quasiorders, orders and strict orders can be described as being either total or partial. For

any order > on a set A, > is said to be total if, for any two distinct elements x and y of A we have either

x > y or x < y. An order is partial if it is not total. For a partial order > on a set A, we may denote by

x 6< y the fact that we do not have x < y, which, given that the order is partial do not necessarily equates

having x > y.

A strict order > on a set A is said to be well-founded or noetherian if there exists no infinite descending

chain x1 > x2 > · · · of elements of A. In other words this equates to having the existence (but not necessarily

the unicity) of a minimal element for any non-empty subset B of A i.e. ∀ B ⊆ A, (B 6= ∅)⇒ (∃m ∈ B, ∀ x ∈

B, x 6< m).

We may use the notation ∼ to designate an equivalence relation. An equivalence relation ∼ on a set A

defines a partition of A into disjoint equivalences classes. For any x ∈ A, x belongs to a certain class which

may be denoted by [x]∼ and defined as {y ∈ A | x ∼ y}. The set of all equivalence classes thus defined is

called the quotient set of A by ∼ which we may denote by A/ ∼= {[x]∼ | x ∈ A}.

Definition 2.12: Equivalence classes

Given ∼ an equivalence relation on A we denote by:

• [x]∼ = {y ∈ A | x ∼ y} the equivalence class of an element x ∈ A

• A/ ∼= {[x]∼ | x ∈ A} the set of equivalence classes thus defined

Binary relations can be canonically extended into larger relations which may satisfy the properties from

Def.2.10. We define those larger relations, called closures, in Def.2.13.

22 CHAPTER 2. CONTEXT

Definition 2.13: Closures of binary relations

Let us consider a binary relation → on a set A. We may then denote by:

• ← its inverse relation i.e. ←= {(y, x) | (x, y) ∈→}

• ↔ its symmetric closure i.e. the smallest symmetric relation s.t. →⊆↔

which exactly is → ∪ ←

• 0→ the identity relation on A and 1→=→ and, for any n > 0, n+1→ = n→ ◦ →

• +→ its transitive closure i.e. the smallest transitive relation s.t. →⊆ +→

which exactly is
⋃∞
n=1

n→

• ∗→ its reflexive and transitive closure i.e. the smallest reflexive and transitive relation s.t. →⊆ ∗→

which exactly is
⋃∞
n=0

n→

• ∗↔ its symmetric, reflexive and transitive closure (which always is an equivalence relation)

Binary relations can be defined on term algebras. For a term algebra TF (X) defined w.r.t. a signature

F , we say that a binary relation R on TF (X) is F-compatible if it satisfies the definition from Def.2.14. A

F-compatible binary relation is compatible with the algebraic structure of the term algebra TF (X).

Definition 2.14: F-compatible binary relation

A binary relation R on TF (X) is F-compatible if for any operation symbol f ∈ Fn of arity n > 0 and

for any terms x1, · · · , xn and y1, · · · , yn we have:

(∀ j ∈ [1, n], xjRyj)⇒ (f(x1, · · · , xn)Rf(y1, · · · , yn))

In the more general context of abstract algebra, an equivalence relation that is defined on and compatible

with an algebraic structure is said to be a congruence relation. In the particular case of F-algebras, a F-

compatible equivalence relation on TF (X) is said to be a congruence relation on TF (X).

As per [25, 51], a substitution is a mapping from variables (i.e. X) to terms (i.e. TF (X)) that is extended

to terms i.e. as an endomorphism of TF (X). In practice, a substitution operates the systematic replacement

of specific variables (all occurrences of those variables) within a term.

2.2. EQUATIONAL LOGIC & REWRITING 23

Definition 2.15: Substitutions

A mapping φ : X → TF (X) is extended to terms as a substitution φ† s.t. for any term t:

• if t ∈ X then φ†(t) = φ(t)

• if t ∈ F0 then φ†(t) = t

• if t = f(t1, · · · , tn) with f ∈ Fn given n > 0 then φ†(t) = f(φ†(t1), · · · , φ†(tn))

We may abusively denote by φ either the initial mapping φ or the substitution φ†.

We denote by Sub(TF (X)) the set of all substitutions on TF (X).

We call the domain of a substitution φ the set Dom(φ) = {x ∈ X | φ(x) 6= x} which includes variables

that are effectively substituted when applying the substitution. A substitution might not replace all or any

variables at all; for instance the identity can be described as the substitution on the empty domain. We can

also remark that substitutions replace all occurrences of all variables of their domain at once. As a result we

may denote a substitution using its domain: for instance, given φ such that Dom(φ) = {x1, x2}, φ(x1) = t1

and φ(x2) = t2, we might denote φ by 〈x1 7→ t1, x2 7→ t2〉.

Also, substitutions do not generally commute. For instance 〈x1 7→ t1, · · · , xn 7→ tn〉 is not necessarily

equivalent to the composition of all 〈xj 7→ tj〉. This is due to the fact that all variables are replaced at once

and the fact that applying a substitution 〈xj 7→ tj〉 might introduce new instances of variables xj′ (j′ 6= j).

Binary relations on terms can also be said to be stable under substitution, as defined on Def.2.16.

Definition 2.16: Binary relations on terms that are stable under substitution

A binary relation R on TF (X) is stable under substitution if for any substitution φ ∈ Sub(TF (X)) and

for any terms x, y ∈ TF (X) we have:

xRy ⇒ φ(x)Rφ(y)

In Def.2.13 we have seen that basic properties of binary relations (Def.2.10) can be used to define larger

relations by closure. This can also be applied for the properties of being F-compatible and stable under

substitution. For any binary relation R on terms of TF (X):

• the closure under substitution of R is the smallest relation that is stable under substitution and which

includes R

• the congruence closure of R is the smallest congruence relation which includes R

2.2.4 Equational logic

In this section we present how we can relate syntactically distinct terms of a term algebra. In particular we

can apply those results so as to define equivalence classes of syntactically distinct interaction terms which

24 CHAPTER 2. CONTEXT

all have the same semantics (as per the association to a given F-algebra).

For any two terms l and r from TF (X), we denote by l ≈ r an "equation" or "equational axiom" in which

l might be called the "left-hand side" and r may be called the "right-hand side". The l ≈ r equation is a

predicate that we may suppose in a certain context and is not equivalent to the syntaxic equality "l = r".

Definition 2.17: Axiom systems

Given a signature F and a term algebra TF (X), an equation is a pair (l, r) ∈ TF (X)× TF (X) that we

may denote by l ≈ r.

A set of equations E ⊂ TF (X)× TF (X) is an "axiom system".

Given an axiom system E (defined in Def.2.17), an equation x ≈ y is deducible from E, which we denote

by E ` x ≈ y iff x ≈ y can be obtained from successive transformations of equations from E using the six

deduction rules that constitute equational logic [68] and that are given in Def.2.18.

Definition 2.18: Equational Logic

Considering an axiom system E ⊂ TF (X) × TF (X), we define the relation E ` of deducibility or

provability modulo E as follows:

∀ (x ≈ y) ∈ E, E ` (x ≈ y)

∀ x ∈ TF (X), E ` (x ≈ x)

∀ (x, y) ∈ TF (X)2, E ` x ≈ y
E ` y ≈ x

∀ (x, y, z) ∈ TF (X)3, E ` x ≈ y E ` y ≈ z
E ` x ≈ z

∀ (x, y) ∈ TF (X)2, ∀ φ ∈ Sub(TF (X)), E ` x ≈ y
E ` φ(x) ≈ φ(y)

∀ f ∈ Fj , ∀ (xk, yk)k∈[1,j] ∈ TF (X)2j , E ` x1 ≈ y1 · · · E ` xj ≈ yj
E ` f(x1, · · · , xj) ≈ f(y1, · · · , yj)

For any axiom system E, we may denote by ≈E the relation such that for any terms x and y, we

have E ` x ≈E y i.e. such that x and y are provably equal in the theory specified by E [68] (using the

aforementioned rules of equational logic). The reader may have remarked that this means that ≈E is the

reflexive, symmetric, transitive, F-compatible and stable by substitution closure of the relation E. Indeed,

in the rules from Def.2.18 the 2nd corresponds to reflexivity, the 3rd to symmetry, the 4th to transitivity,

the 5th to being stable by substitution and the 6th to being F-compatible.

2.2.5 Equational bases

As we have seen in Sec.2.2.2, F-algebras can be defined so as to attach meaning [51] to terms of a term algebra

TF (X). As a result, we have, on the one hand a description of the meaning of terms through F-algebras

(semantic domain) and, on the other hand a description of relations between terms (syntax) with equational

2.2. EQUATIONAL LOGIC & REWRITING 25

logic. In this section we present how we can bridge the gap between those two kinds of descriptions with the

study of equational bases [25].

The interpretation of terms from a term algebra TF (X) by a F-algebra A induces a congruence relation

denoted by =A [25] on TF (X), which we define in Def.2.19. Indeed, we may say that x =A y whenever A

attaches the same meaning to both x and y. x and y can then be said to be semantically equal [68] which

means that we have ρ(x) = ρ(y) for every environment ρ (i.e. whichever values are given to the variables

from X).

Definition 2.19: Congruence relation induced by a F-algebra

Let us consider a signature F , a term algebra TF (X) and a F-algebra A = (A,FA).

The relation =A⊆ TF (X)× TF (X) is defined by:

∀ (x, y) ∈ TF (X)2, (x =A y) ⇔ (∀ ρ ∈ AX , ρ(x) = ρ(y))

Let us remark that in the case of ground algebras TF the definition of =A is straightforward given that

there exists a single homomorphism between TF and A.

As explained in [25], it is sometimes (but not necessarily) possible to offer a syntactic characterization

of a relation =A via the definition of an axiom system E which may serve as an equational base of =A

i.e. such that ≈E is equal to =A. In Def.2.19 we explain how a relation defined on the syntax ≈E can be

characterized w.r.t. a relation defined on the semantics =A.

If an equational base E of a relation =A is found then, issues related to semantic equality can be entirely

brought back to reasoning on the syntax. Indeed, as explained in [68], the validity problem x =A y i.e.

whether or not two terms have the same semantics, can be brought back to the question of whether or not

x ≈E y holds, which can be determined via the application of equational logic (and more particularly term

rewriting [51], as we will see in the following).

Definition 2.20: Sound & complete axiom systems

Let us consider a signature F , a term algebra TF (X) and a F-algebra A = (A,FA).

An axiom system E ⊆ TF (X)× TF (X) is said to be:

• sound w.r.t. A iff ≈E⊆=A

• complete w.r.t. A iff =A⊆≈E

• an equational base of A iff ≈E==A

Determining whether or not an axiom system E is an equational base for a F-algebra A i.e. for the

relation =A can be separated into two problems as per Def.2.20:

1. determining whether or not E is sound w.r.t. A.

26 CHAPTER 2. CONTEXT

2. determining whether or not E is complete w.r.t. A.

The problem of proving that an axiom system is sound w.r.t. a F-algebra A is most often simple.

However, proving that it is complete is more problematic. Results and open questions relating to this

problem are notably discussed in [25]. In the context of this thesis however, we will simply be interested the

first problem.

2.2.6 Basics of term rewriting

Equational logic allows us to navigate within the congruence classes []≈E of a term algebra via the succession

of atomic transformations in which a certain equation from E may be applied in a certain direction, at a

certain position, and modulo a certain substitution.

This can be quite useful, as it allows for instance to determine whether or not two terms (tα, tβ) ∈ TF (X)2

are related by a congruence relation ≈E . Indeed this then equates to finding a path tα ≈E t1 ≈E t2 ≈E

· · · ≈E tn ≈E tβ in which each step consists of an atomic transformation derived from E as described above.

However, finding such a path requires knowing which transformations should be applied at which positions

and in which order. A brute force exploration of all sequences of transformations is out of the question due

to the exponential complexity costs. On specific example, the use of human intuition is possible, however

automation is possible with term rewriting, which is the object of this section.

One of the main purposes of term rewriting is to automatize the process of finding paths t1 ≈ · · · ≈

tn between related terms, and the means by which this automatization is enabled relies on orienting the

equations i.e. imposing a direction for the application of syntactic transformations derived from equations.

In the last section we have seen that the base building blocks of equational logic are (unordered) equations.

Similarly, term rewriting is based on a particular kind of oriented equations that are called rewrite rules [51]

or reduction rules [68].

Definition 2.21: Rewrite Rules

For any two terms (l, r) ∈ TF (X)2, the ordered pair (l, r) is said to be a rewrite rule if:

• l 6∈ X

• var(r) ⊆ var(l)

We may then denote any such reduction rule (l, r) by l ; r.

Applying a rewrite rule l ; r on a term x ∈ TF (X) requires that a sub-term of x "matches" the left-hand

side l of the rule. This means that there exists a position p ∈ pos(x) and a substitution φ ∈ Sub(TF (X))

such that x|p = φ(l). We may then say that x|p is an instance of the left-hand side. Then, the application of

the rule yields x[φ(r)]p i.e. we replace the sub-term at position p by φ(r). We may also say that we replace

the instance φ(l) of the left-hand side by the corresponding instance φ(r) of the right-hand side [51].

2.2. EQUATIONAL LOGIC & REWRITING 27

We can remark that unlike equations, which are unordered, rewrite rules, which are ordered, only allow

to replace instances of the left-hand side l by corresponding instances of the right-hand side r and not the

other way around.

A Term Rewriting System (TRS) is then defined as a finite set of rewrite rules (we may define TRSs with

infinitely many rules [51] but this is outside the scope of this thesis).

A TRS R is associated to a rewrite relation →R which specifies atomic transformations corresponding

to the application of a rewrite rule. As explained in [70], the closure ∗→R may be called the derivation of

→R because it includes all sequences of transformations that may be derived from →R. Also, ∗↔R, which

we may also denote by ≈R may be called the equational theory generated by R when considered as a set of

equations (i.e. we remove the constraint on the orientation of rules) [70].

A rewrite relation →R may relate infinitely many terms. As a result it may be impossible to represent it

in-extenso. The TRS R can then be described as a finite representation of →R.

Definition 2.22: Term Rewriting Systems & rewrite relations

A Term Rewriting System (TRS) is a set R of rewrite rules.

Any such TRS R specifies a one-step rewrite relation →R∈ TF (X)2 such that for any two terms x and

y in TF (X) we have x→R y iff there exists a rule l ; r ∈ R, a position p ∈ pos(x) and a substitution

φ ∈ Sub(TF (X)) such that x|p = φ(l) and y = x[φ(r)]p.

Whenever we have x →R y with x|p = φ(l) and y = x[φ(r)]p we may say that x|p is a redex and that x

is reducible by →R. If, considering all rules l ; r ∈ R, there are no redexes in x, then there exists no y s.t.

x →R y which we may denote by x 6→R and we may say that x is irreducible modulo R. For any term x,

if we have another term y such that x ∗→R y then we may say that y is a descendent of x and that x is an

ancestor of y. If, in addition, y is irreducible, then y is said to be a normal form of x [51].

For any term x and any TRS R, it is not guaranteed that a normal form of x exists. We may indeed

never reach an irreducible term. If this is the case then there must exist an infinite chain x→R · · · starting

from x. Therefore, we can reciprocally conclude that a normal form must exist if there are no infinite chains

x→R · · · starting from x. As the reader may have noticed, this correspond to having→R being a noetherian

binary relation, which we have defined in Sec.2.2.3. In the context of term rewriting, we may rather say that

the TRS R is terminating (Def.2.23).

As a result, if R is terminating then this guarantees the existence of a normal form for any term x. In

fact, termination is also called strong normalization because "normalization" states that there exists at least

one finite sequence of applications of→R leading towards a normal form. Termination is a stronger property

because it states that that all sequences of applications of →R eventually lead to a normal form.

28 CHAPTER 2. CONTEXT

∗ ∗

∗ ∗

confluence

Figure 2.2: A representation of confluence

Definition 2.23: Termination of a TRS

Given R, a reduction system, →R is "terminating" (also called "strongly normalizing" or "noetherian")

if there exist no infinite series (tj)j≥1 of terms such that for any j ∈ N, tj →R tj+1. This means that

any reduction sequence must eventually terminate.

Given that there can exist many possible applications of rules derived from R, there can exist many paths

x
∗→R · · · starting from x. As a result, even if R is terminating, the uniqueness of the normal form is not

guaranteed.

We have seen that the existence of normal forms is linked to the property of termination (which is even

stronger than that as we have seen). Similarly, the uniqueness of a normal form can be linked to a property

of "confluence". Confluence refers to the ability to find the same resulting terms when taking different paths

resulting from the application of →R.

Confluence, that we define in Def.2.24 can be described with the diagram from Fig.2.2. In this diagram,

plain arrows correspond to the hypothesis while dashed arrows correspond to conclusions. A relation is

confluent if for any three terms x, y and z such that we have x ∗→R y and x ∗→R z i.e. such that y and z

have a common ancestor x then it implies that y and z have a common descendant x′ such that y ∗→R x′

and z ∗→R x
′.

Definition 2.24: Confluence of a TRS

A TRS R is confluent if ∗←R ◦
∗→R⊆

∗→R ◦
∗←R

When a TRS R is both terminating and confluent, then it is said to be a convergent. In this case, for

any term t, we have both the existence and the unicity of a normal form that we may denote1 by R(t).

Let us now go back to our initial problem, which is that of determining whether or not two terms tα

and tβ are related by a congruence ≈E of base E. We have seen that it suffices to find a path tα ≈E

t1 ≈E · · · ≈E tn ≈E tβ . Let us then consider a TRS R such that each rule l ; r ∈ R verifies that either

l ≈ r ∈ E or r ≈ l ∈ E i.e. such that each rule correspond to a specific orientation of an equation taken

from E. As a result, we have that →R⊂≈E and therefore ∗↔R⊆≈E because ≈E is a congruence. Let us

now suppose that R is convergent. As a result the normal forms R(tα) and R(tβ) are uniquely defined, and,
1we use the notation R(t) from [51] so as not to overlap with the ↓ notation from process calculus that we use in Chap.5

2.2. EQUATIONAL LOGIC & REWRITING 29

if R(tα) = R(tβ) then we have tα
∗→R R(tα) = R(tβ) ∗←R tβ and therefore tα ≈E tβ . This means that

R(tα) = R(tβ)⇒ tα ≈E tβ but the reciprocate may not be necessarily true. For it to be true we would need

that ∗↔R=≈E . This can be ascertained when every equation of E is found in R in a certain orientation.

2.2.7 Ordered rewriting & rewriting modulo theories

Let us consider the example from Fig.2.3. In this example, we consider a term algebra of Boolean expressions

with the "∨" disjunction operator. Given t1, t2 and t3 three terms, we describe the transformation of

(t1 ∨ t2) ∨ (t3 ∨ t1) into t1 ∨ (t2 ∨ t3). This transformation is possible with the following TRS:

R =

 (x ∨ y) ∨ z ; x ∨ (y ∨ z) (1)

x ∨ (y ∨ z) ; (x ∨ y) ∨ z (3)

x ∨ y ; y ∨ x (2)

x ∨ x; x (4)

Indeed, the sequence of transformations described on Fig.2.3 consists in the application of applying rule (1)

at p = ε then rule (2) at p = 22, then rule (3) at p = 2, then rule (2) at p = 21, then rule (1) at p = 2, then

rule (3) at p = ε, then rule (4) at p = 1.

∨

∨

t1 t2

∨

t3 t1

→R

∨

t1 ∨

t2 ∨

t3 t1

→R

∨

t1 ∨

t2 ∨

t1 t3

→R

∨

t1 ∨

∨

t2 t1

t3
→R

∨

t1 ∨

∨

t1 t2

t3
→R

∨

t1 ∨

t1 ∨

t2 t3

→R

∨

∨

t1 t1

∨

t2 t3

→R

∨

t1 ∨

t2 t3

Figure 2.3: A sequence of transformations making use of associativity and commutativity

We can see that we have managed to "simplify" the initial term through some applications of →R.

However the TRS R is not terminating. Indeed, given variables x, y and z, we have the existence of the

infinite chain x ∨ y →R y ∨ x →R x ∨ y →R · · · , where we repeat indefinitely the application of rule (2) at

p = ε. Another example of an infinite chain would be x ∨ (y ∨ z) →R (x ∨ y) ∨ z →R x ∨ (y ∨ z) →R · · · ,

where we indefinitely repeat applying rule (3) and then rule (1) at p = ε.

The TRS not being terminating, we cannot guarantee that the process may yield any normal form. And,

as a result, we cannot automatize the process described in Fig.2.3, which aims at "simplifying" such terms.

As explained in [109], properties of operation symbols such as commutativity and associativity are chal-

lenging when it comes to the definition of terminating rewrite systems. In this section we explain how we

can use ordered rewriting and rewriting modulo theories as a two part solution to tackle those issues. In

particular, we show that the human-guided process described on Fig.2.3 can be automatized.

Ordered rewriting

An Ordered Rewriting System (ORS) [51] is a pair (E,>) denoted as E > where E is an axiom system (i.e.

a set of unordered equations) and > is a rewrite ordering (i.e. an antireflexive, transitive, antisymmetric,

30 CHAPTER 2. CONTEXT

F-compatible binary relation that is stable under substitution).

In ordered rewriting we apply equations from E in either order i.e. either from left to right or from right

to left. However their application is only enabled under specific conditions [51]. As in the case of TRSs, the

application of a rewrite rule l ; r consists in having a transformation x→ y so that there exists a position

p ∈ pos(x) and a substitution φ ∈ Sub(TF (X)) such that x|p = φ(l) and y = x[φ(r)]p. However, with ordered

rewriting the application of such a transformation is conditioned by having φ(l) > φ(r).

As a result, equations from E can be applied in whichever direction agrees with the ordering > on terms.

Let us for instance suppose that we have an equation f(x, y) ≈ f(y, x) ∈ E, which corresponds to the

commutativity of symbol f . Then, if f(x, y) > f(y, x), we may apply f(x, y)→ f(y, x). Also, given that >

is a rewrite ordering we have that f(x, y) > f(y, x) implies that f(y, x) 6> f(x, y) and hence f(x, y) 6→ f(y, x)

i.e. we cannot apply the rule in the other direction.

Definition 2.25: Ordered Rewriting System

An Ordered Rewriting System (ORS) is a pair (E,>) denoted as E > where E is an axiom system

and > is a rewrite ordering. An ORS E > specifies a one-step rewrite relation →E>∈ TF (X)2 s.t.

∀ (x, z) ∈ TF (X)2:

(x→E> y)⇔

∃ (l ; r) s.t. ((l ≈ r) ∈ E) ∨ ((r ≈ l) ∈ E),

∃ p ∈ pos(x),

∃ φ ∈ Sub(TF (X))

∣∣∣∣∣∣∣∣∣∣
(x|p = φ(l))

∧ (y = x[φ(r)]p)

∧ (φ(l) > φ(r))

We formally define ORSs in Def.2.25. As for TRSs, ORSs are associated to rewrite relations. We denote

by →E> the rewrite relation associated to the ORS E >. Resulting from that definition, we have that,

whenever x →E> y, we must have x > y because the transformation x →E> y decreases the rank of a

sub-term xp at a certain position p (without modifying the remainder of the term i.e. its context), and

because > is F-compatible.

Also, as explained in [51], the ordered-rewriting relation →E> verifies →E>⊆ (≈E ∩ >). The fact that

it is contained in ≈E ∩ > (as sets of related terms) is explained by the fact that a transformation specified

by →E> can only occur if (1) it corresponds to an equation from E and (2) if it decreases the order of the

involved terms.

In particular, if > is a total order, then ∗→E>= (≈E ∩ ≥) (with ≥= (> ∪ =)) and hence ∗↔E>=≈E

because ≈E is a congruence and, > being total, (> ∪ = ∪ <) relates all terms.

Also, given that→E>⊆>, in order to have a terminating rewrite system, it suffices that > be a noetherian

order (defined in Sec.2.2.3).

Let us now go back to our example from Fig.2.3. Let us consider a rewrite ordering > such that:

• t1 < t2 < t3

• and for any variables x, y and z:

2.2. EQUATIONAL LOGIC & REWRITING 31

∨

∨

t1 t2

∨

t3 t1

→E>

∨

t1 ∨

t2 ∨

t3 t1

→E>

∨

t1 ∨

t2 ∨

t1 t3

→E>

∨

t1 ∨

∨

t2 t1

t3
→E>

∨

t1 ∨

∨

t1 t2

t3
→E>

∨

t1 ∨

t1 ∨

t2 t3

∨

∨

t1 t1

∨

t2 t3

→E>

∨

t1 ∨

t1 ∨

t2 t3

Figure 2.4: Reduction of associative and commutative expressions using an ORS

– if x < y then (x ∨ y) ∨ z > x ∨ (y ∨ z)

– if x > y then (x ∨ y) ∨ z < x ∨ (y ∨ z)

– if x < y then y ∨ x > x ∨ y

Then, given E = {x ∨ (y ∨ z) ≈ (x ∨ y) ∨ z, x ∨ y ≈ y ∨ x}, the two sequences of transformations by →E>

represented on the two rows of Fig.2.4 hold. Furthermore, supposing that t1, t2 and t3 are irreducible, the

last term that is reached (at the right-most of each row) is irreducible.

In particular, Fig.2.4 also demonstrates that the first terms of each row are related by E. Indeed, given

that →E>⊆ (≈E ∩ >) we have that ∗↔E>⊆≈E and hence the terms are related by E because we have:

(t1 ∨ t2) ∨ (t3 ∨ t1) ∗→E> t1 ∨ (t2 ∨ t3) ∗←E> (t1 ∨ t1) ∨ (t2 ∨ t3)

Class rewriting

Let us consider an axiom system T , which in this context is called an equational theory and a TRS R. Let

us recall that T contains a (finite) number of unordered equations while R contains a (finite) number of

ordered rewrite rules. We can generalize the notion of term rewriting as follows [51]: for any two terms x

and z, we may say that x rewrites by R into z modulo T which we denote by x →R/T z, if there exists a

substitution φ ∈ Sub(TF (X)), a term y ∈ TF (X), a position p ∈ pos(y) and a rule l ; r ∈ R such that

x ≈T y[φ(l)]p and y[φ(r)]p ≈T z.

In effect, what is done here is that the TRS R is applied, not on the set of terms TF (X), but instead on

the quotient set TF (X)/T of the congruence classes []≈T .

This type of rewriting may be called rewriting modulo theories [96] (because, on this example, the

rewriting by R is done modulo T) or class rewriting (or congruence class rewriting) [51] because of the

previous remark. We formally define Class Rewriting Systems (CRSs) in Def.2.26.

32 CHAPTER 2. CONTEXT

Definition 2.26: Class Rewriting System

A Class Rewriting System (CRS) is a pair (R, T) denoted as R/T where R is a TRS and T is an axiom

system. A CRS R/T specifies a one-step rewrite relation →R/T∈ TF (X)2 s.t. ∀ (x, z) ∈ TF (X)2:

(x→R/T z)⇔

 ∃ (l ; r) ∈ R, ∃ φ ∈ Sub(TF (X)),

∃ y ∈ TF (X), ∃ p ∈ pos(y)

∣∣∣∣∣∣∣
(x ≈T y[φ(l)]p)

∧ (y[φ(r)]p ≈T z)

Let us now go back to our example from Fig.2.3. Let us then consider the equational theory T =

{x ∨ (y ∨ z) ≈ (x ∨ y) ∨ z, x ∨ y ≈ y ∨ x} and the TRS R = {x ∨ x; x}. The application of the CRS R/T

on the initial term (on the top left of Fig.2.3) of the example then yields the final term (on bottom right of

Fig.2.3).

This is illustrated on Fig.2.5. Indeed, we have seen previously that using ordered rewriting, we can

ascertain that the two terms tα and tβ on the top left of Fig.2.5 are related by ≈T . Then, we immediately

have that the rule x ∨ x ; x can be applied on tβ s.t. we have tβ →R tγ , as illustrated on the top right of

Fig.2.5. From those two hypotheses, using the definition of rewriting modulo theories, we can conclude that

tα →R/T tγ , as illustrated on the bottom of Fig.2.5.

∨

∨

t1 t2

∨

t3 t1

≈T

∨

∨

t1 t1

∨

t2 t3

tα ≈T tβ

∨

∨

t1 t1

∨

t2 t3

→R

∨

t1 ∨

t2 t3

tβ →R tγ

∨

∨

t1 t2

∨

t3 t1

→R/T

∨

t1 ∨

t2 t3

tα →R/T tγ

Figure 2.5: Solution of the problem of Fig.2.3 using ordered rewriting and rewriting modulo theories

As a result, with →R/T , we have managed to obtain the same result as the human-guided sequence of

transformations presented on Fig.2.3. This constitutes an automation of this process because the resulting

term (at the bottom right of Fig.2.5) is irreducible w.r.t. →R/T and is therefore a normal form.

Let us now make an important remark which is that, whenever the equations that constitute the equa-

tional theory T correspond to properties of associativity and commutativity of the operation symbols (which

was the case in our example), we may use the term Associative-Commutative Rewriting (AC-R) [70, 96] to

describe →R/T .

AC-R is an interesting subject of study because of its use for defining rewrite systems that terminate on

term algebras with associative and commutative operators but also because whenever an equational theory

2.3. MODELING DISTRIBUTED SYSTEMS WITH INTERACTION LANGUAGES 33

T only contains equations corresponding to those properties then it enjoys additional properties (w.r.t. other

equational theories). For instance, as mentioned in [70], if T only contains equations of AC then ≈T is always

decidable i.e. for any two terms x and y we can always determine whether or not x ≈T y. This is because

the AC-congruence classes of finite terms are finite. Using any total rewrite ordering on the terms, we can

then always unify AC-equivalent terms.

2.3 Modeling Distributed Systems with Interaction Languages

We have evoked in the Introduction (Chap.1) various manners to model DSs. In the context of this thesis

however, we have chosen to focus on Interaction Languages (ILs) which propose models that (1) specify the

behavior of DSs in terms of their internal and external communications and (2) can be drawn in a graphical

and intuitive manner. In this section, by introducing specific ILs we intend to explain the general principles

of interactions and to give a quick overview of existing languages.

We present at first the family of Message Sequence Chart (MSC) and its sub-languages with, in Sec.2.3.1

Basic Message Sequence Chart (BMSC), in Sec.2.3.2 High-Level Message Sequence Chart (HMSC) and in

Sec.2.3.3 MSCs with inline expressions which are generally simply called MSCs. Then, in Sec.2.3.4 we present

Sequence Diagrams from the Universal Modeling Language (UML).

2.3.1 Basic Message Sequence Charts

Basic Message Sequence Chart (BMSC) [97], include the most basic constructs from the Message Sequence

Chart (MSC) standard [22]. BMSCs describe some asynchronous communications that can happen within

and without a DS in terms of the exchange of messages, which are abstracted as simple labels. Those

exchanges consist of observable atomic events corresponding to the emission and / or reception of said

messages. A BMSC specifies possible successions of those atomic events, no two distinct events being able

to occur simultaneously. Those events occur on the interface of specific sub-systems of the DS. Given that

BMSCs do not have to be complete specifications, we can abstract a group of sub-systems as a single actor

within the communication scheme that is described. Those abstractions correspond to loci from which we

can observe parts of the exchanges that occur within (i.e. with other such loci) or without (i.e. with "the

environment") the DS. In BMSC, those abstractions are named instances [97, 59, 98].

Now that we have introduced what BMSCs aim to model, let us explain how it is done. BMSCs are

represented graphically. In those diagrams, each instance is denoted by a vertical line. Those vertical lines

are aligned and spaced horizontally. They all start at the top of the diagram and end at its bottom. On the

top of each instance, its name can be written so as to distinguish it from the others. On the vertical axis

representing a given instance are represented the atomic communication actions (emissions and receptions)

that are expected to occur on the corresponding locus. In BMSCs, there exists a total order (locally w.r.t.

a instance) which defines the order in which those events are supposed to occur. This order is represented

graphically by the top to bottom direction. An event represented below another must occur after it.

34 CHAPTER 2. CONTEXT

Figure 2.6: Examples of Basic Message Sequence Charts

On Fig.2.6 we have drawn some example BMSCs. In the one on the top-left of Fig.2.6, we have two

instances named "instance 1" and "instance 2". On "instance 1", a message named "message 1" is received

from the environment and then another message named "message 2" is send towards the environment".

Likewise, two other atomic communication events : the emission of "message 3", and then that of "message

2" are represented on the "instance 2" instance on the right.

Also, there is a-priori no correlation between the execution of events occurring on different loci. On the

example in the top-left of Fig.2.6, the emission of "message 2" by "instance 2" can occur indifferently before

or after the reception of "message 1" by "instance 1". Indeed, the top to bottom order only applies for actions

that occur on a same instance. As such, let us remark that the vertical positioning of the actions under

"instance 1" w.r.t. those under "instance 2" does not matter. In this example, we could have drawn the two

actions on the right above the two on the left, on the same lines, interleaved, or under them.

An order between events occurring on different instances (which are independent) can only exist (be

enforced) by a causal relation such as the one linking the emission of a message to its reception (of the

same message). In the drawing of BMSCs, we use plain arrows that may link an emission action on a

certain instance, to a corresponding reception action on another instance. Those plain arrows represent

the concept of the passing of a message, with the logical implication that the reception action must occur

after the emission action (given that we model asynchronous communications). We illustrate this in the

example in the top-right of Fig.2.6. Here, for instance, the message "m1" is send from instance "i1" towards

"i2". In the global ordering of atomic actions, the reception event occurs after the emission event. Also, by

construction, given that the emission of "m2" must occur after the reception of "m1" on "i2", the passing of

"m1" must occur entirely before the passing of "m2" can start. Likewise, the passing of "m3" from "i3" to

2.3. MODELING DISTRIBUTED SYSTEMS WITH INTERACTION LANGUAGES 35

"i1" can only start once "m2" has been received by "i3". Those chained / interlinked precedence relations

makes so that only some successions of events globally correspond to what is specified by the BMSC. In

the example on the top-right of Fig.2.6, even though instances "i1", "i2" and "i3" represent independent and

concurrently running processes, there is a single possible succession of events due to the interlinked causal

relations between receptions and subsequent emissions of messages. That succession is the passing of "m1"

(emission then reception) then that of "m2" and then that of "m3".

Let us keep in mind however, that in most cases, many different successions of events can be specified by

a single BMSC. It is the case in the example on the top-left of Fig.2.6, where we have 6 different possible

successions of events.

Usually, plain arrows, representing the passing of messages, are drawn horizontally between two instances.

However, exceptions are allowed in some formalisations of BMSCs, to represent the overtaking of a message

passing w.r.t. another. This is illustrated on the bottom-left of Fig.2.6, where message "m1" and "m2" are

both send by instance "i1" to instance "i2". However, although the emission of "m1" occurs before that of

"m2", here, the reception of "m1" must occur after that of "m2". Another exception concerns messages that

an instance may send to itself. In this case, we may draw an arrow that exits the instance (towards the left

or the right) and then bends back towards the origin instance to land below the original emission action,

as is illustrated on the example in the middle of the bottom row of Fig.2.6. Also, in some formalisations

of BMSCs, the definition of some other local actions, which are neither emission nor reception events are

possible, as illustrated on the bottom-right of Fig.2.6.

Figure 2.7: Two cases of forbidden constructions in BMSCs

Let us also note that some constructions are explicitly forbidden in BMSCs (although it may be possible

to draw them and it may be possible to construct them syntactically in some formalisations of BMSCs).

Those constructions violate a principle which states that an emission action may not be causally dependent

(directly or though other actions) w.r.t. the reception action it enables. Fig.2.7 illustrates constructions

that violate this principle. On the example on the left, the emission of message "m1" is drawn below the

reception of that same message "m1"; here the violation is direct. On the example on the right, the emission

of "m1" must come after the reception of "m2"; however, the emission of "m2" must come after the reception

of "m1".

36 CHAPTER 2. CONTEXT

Figure 2.8: Example of High-Level-MSC

2.3.2 High Level Message Sequence Charts

High-Level Message Sequence Chart (HMSC) [98] allows the description of more complex scenarios via the

composition of BMSCs within graph-like structures.

A HMSC presents itself (i.e. can be drawn) as a graph in which individual nodes can be: start nodes

(denoted by
`
), end nodes (denoted by

a
), connector nodes (denoted by ©) or reference nodes, containing

a reference to a BMSC.

HMSCs constitute directed graphs. Nodes are linked by arrows which represent the expected order of

execution of the behaviors specified by individual BMSC nodes. An arrow originating from a reference to

BMSC "A", and targeting a reference to BMSC "B" signifies that we expect the behavior specified by BMSC

"A", followed by the one specified by BMSC "B". When there are several outgoing arrows from a single node

(and/or can be represented as an arrow that splits), this means that there is a alternative in the choice of

the following behavior, which can be specified by either one of the targeted BMSCs. Also, given that the

graph structure of HMSCs allows cycles, one can specify the repetition of behaviors and hence it is possible

to represent arbitrarily long behaviors.

An HMSC graph can be divided into (one or several) connected subgraphs (called "components"), each

of which having exactly one start node (denoted by
`
). Components represent processes that are executed

in parallel w.r.t. one another.

Let us consider the example from Fig.2.8. In this HMSC we have 2 components. The component drawn

in the left specifies the execution of a single BMSC which is "D". The expected behavior is therefore the

emission of "m4" by "i3" and followed by its reception by "i1". The component drawn in the right involves

three BMSCs "A", "B" and "C". In a first time, "A" is expected to occur (i.e. the emission of "m1" by

"i1" followed by its reception by "i2". Then, because of the split arrow, we have either "B" or "C" i.e. the

transmission of either "m2" or "m3" from "i2" to "i3". Given that the two components are expected to be

executed in parallel, various interleavings are allowed.

In the example from Fig.2.9, we modified our previous example so as to express that the behaviors

specified by individual components can be repeated (here it is once or more). We can use connector nodes

2.3. MODELING DISTRIBUTED SYSTEMS WITH INTERACTION LANGUAGES 37

Figure 2.9: Example of High-Level-MSC with repetitions and connector nodes

(denoted by ©) as a syntactic sugar to draw more easily readable diagrams. In facts a connector node

synthesize any combination between an incoming arrow and an outgoing arrow. For example here, without

the connector node below nodes "B" and "C", we would have had to draw 4 arrows: from "B" to the end

node, from "C" to the end node, from "B" to "A" and from "C" to "A", making the drawing more cluttered.

2.3.3 Message Sequence Charts

Message Sequence Chart (MSC) is a trace language for the description of the communication behavior of

system components and their environment. It has been developed since 1993 (for its first version) by the

International Telecommunications Union (ITU). The official documentation of the standard [22], the latest

version of which dates from 2011, presents MSCs via a proposed textual (syntax) and graphical denotation.

The description of an informal semantics is also provided in [22]. The MSC standard authorizes more

complex structural models in the form of "MSC Documents". As a result, within the MSC standard we can

discriminate between several sub-languages among which Basic Message Sequence Chart (BMSC) and High-

Level Message Sequence Chart (HMSC) which we have already presented. In addition, the MSC standard

allows the definition of sequence charts containing more complex features than those of BMSCs, such as the

use of inline operators, references or conditions. There is no specific name given for this extension of BMSC,

and we may refer to it simply as MSC. Some of the extended features of MSC are illustrated on the example

from Fig.2.10:

• "inline-expression" are operators that can be used to "relate" several parts of an MSC. The "relation"

that is defined by an "inline-expression" can correspond to various notions. We have for instance the

alternative ("alt") for specifying a choice, the parallel composition ("par") for specifying concurrent

execution, or an operator for describing optional behavior ("opt") etc.

• references, which allow the nesting of MSCs by including a reference to another MSC within some part

of a parent MSC. In that case, the instances of the parent MSC must match those of the nested MSC

(or there must be some correspondence via some renaming mechanism). In addition we can make use

of gates so as to link (1) inputs from the environment defined in the nested MSC to outputs produced

38 CHAPTER 2. CONTEXT

Figure 2.10: Example showcasing the expressivity of the MSC standard

by an instance defined in the parent MSC and (2) outputs towards the environment defined in the

nested MSC to inputs received by a given instance defined in the parent MSC

• the evaluation of conditions in some parts of the MSC

• the definition of explicit causal orderings between a-priori independent events (for instance the emission

of m10 by i2 on the example from Fig.2.10 explicitly implies the action act on i3)

• etc.

Let us remark however that the MSC language being quite expressive, most formal approaches only deal

with some aspects of it.

2.3.4 UML Sequence Diagrams

Universal Modeling Language (UML) is a general-purpose modelling language which aims to standardize

and gather, in a coherent ecosystem, various notations that are used for the modelling and design of (pre-

dominantly) software systems. UML was adopted in 1997 by the Object Management Group (OMG) and

later approved as a standard in 2005 by the International Organization for Standardization (ISO). UML

includes in a single ecosystem different types of models which can contain references to one another. Since

its 1.1 version was released in 1997, the UML standard has considerably evolved, notably in 2005 with the

2.0 major revision. Given the scope and depth of the UML, there is no formal semantics that is associated

2.3. MODELING DISTRIBUTED SYSTEMS WITH INTERACTION LANGUAGES 39

Figure 2.11: Example UML-SD

to it. The official documentation (of the current 2.5.1 version) [24] only describes the intended meaning of

models in natural language.

In any case, the scope of UML is far greater than that of more specialized formalisms such as MSC. In

the context of this overview, we only focus on a specific type of diagram within UML: "Sequence Diagrams"

(abbr. UML-SD), which corresponds to the inclusion of a form of MSC into UML (which dates back from

version 2.0).

UML-SDs and MSCs are almost identical when it comes to their visual representation (apart from purely

aesthetic considerations). They take the form of a set of vertical lines, each representing a sub-system of

the modelled system. Horizontal or diagonal arrows drawn between those vertical lines may represent the

exchange of messages between sub-systems. The default interpretation of the vertical axis is that of the

passage of time, from top to bottom. As in the case of MSCs with inline-operators, some operators may

be used to change this default interpretation. On Fig.2.11 we provide an example UML-SD (drawn using

PlantUML [5] / PlantText [4]). In the context of this thesis, we use some vocabulary taken from UML-SDs

with, in particular, the word "lifeline" to refer to the vertical lines that may abstract sub-systems of the

modelled DS.

Although it is widely used in the industry thanks to its graphical nature and the existence of numerous

tools such as Papyrus [3] or Visual Paradigm [18] which allows the creation and drawing of UML models,

UML is often criticized in academia for using an overly complex metamodel [120, 56] that even contains

some unspecified parts ("semantic variation points"). In practice, it is always some formed of restricted

and modified version of UML-SDs that are used in formal approaches, with for instance the extraction

of a simplified metamodel [100, 114]. Moreover, some specific operators of UML-SDs such as "assert" or

"neg” are particularly controversial, given that their semantics, as informally described by the norm [24]

40 CHAPTER 2. CONTEXT

can be interpreted in different manners, as explained in [100, 63]. The authors of [111] describe those "new

constructs" as opening-up "a veritable pandora’s box of expressions whose meaning is obscure". As a result,

most if not all formal approaches to the understanding of UML-SDs use a heavily restricted subset of the

language, as in [122, 75, 34, 52, 47, 114] (among others).

2.4 Process Algebras

Process algebras are mathematical constructs used to represent the behavior of a system (in the word

"process") and which allow the study of parallel or distributed systems via algebraic means [30, 115] (hence

the word "algebra").

Process algebras represent behaviors via what can be observed of them i.e. sequences of observable

events. Some process algebras can be used to treat continuous phenomena [115]. However, in the context of

this thesis, we only consider discrete events i.e. their occurrences correspond to unique instantaneous points

in time. In that case, the authors of [30] describe processes as "discrete event systems".

The treatment of behavior with process algebra is said to be algebraic because a process algebra forms an

algebra in which we can perform calculations [38, 30] on objects representing current states of the system via

some basic operators. The result of the application of operators can be inferred recursively on the structure

of algebraic terms, starting from the application of base axioms.

The study of process algebra has led to the development of use of specific process algebras. Among those

formalisms (which constitute formal languages), the most influential or fundamental include Communicating

Sequential Process (CSP) [66] for describing concurrent systems, Calculus of Communicating Systems (CCS)

[101] for describing in depth communications between 2 participants or Algebra of Communicating Processes

(ACP) [38].

In the following we concretize this notion of process algebra by providing a minimalist example of a

process algebra. This toy language is in facts the "Basic Process Algebra" from [38]. This toy example will

also be used to demonstrate:

• how one can define a denotational-style semantics (inspired from [75])

• how one can define an operational-style semantics (as is classically done since [112])

• how one can use the Coq theorem prover to formally prove the equivalence of those two semantics (in

the following section)

2.4.1 Presentation of the toy process algebra

Let us consider a system in which one can observe a variety of events, that we model by a finite set E of

events. If the system is intended to express a single event e ∈ E once, it is represented by the term e of

the process algebra. The occurrence of this event then corresponds to the following transformation: e e→ ε,

where ε denotes the empty process i.e. the process that corresponds to a behavior in which no event is

2.4. PROCESS ALGEBRAS 41

observed. Terms from E and ε constitute the constants of the algebra. In this context, E can be called the

"signature" of the process algebra.

In addition to constants, our example process algebra may include more complex terms via the use of

binary operators. Let us for instance introduce a "." operator for (strict) sequential composition and a "+"

operator for alternative composition (here a non-deterministic choice). Given two distinct events e1 and e2

from E:

• the term e1.e2 denotes a system in which e1 is expected to occur at first, and then e2. As a result we

expect the following sequence of transformations:

e1.e2
e1→ e2

e2→ ε

• the term e1 + e2 denotes a system in which either e1 or e2 is expected to occur (once). As such we

may have two possible transformations:

either e1 + e2
e1→ ε or e1 + e2

e2→ ε

From the constants E ∪ {ε} and the operators . and +, one can build words of any arbitrary size (in

number of events). Terms of this process algebra can then be defined by the following grammar (using

notation in the style of Backus–Naur Form (BNF) as in [75]) and we denote by P (E) the set of all such

process algebraic terms:

P : := ε | e | P1.P2 | P1 + P2

2.4.2 Semantic domain

Process algebras are by nature well suited for the definition of operational-style semantics. However we

can also define semantics in denotational style for this kind of language. We will do both in the following.

However, so as to compare them easily, we use a common semantics domain.

For this toy process algebra, a given execution of the system simply corresponds to a sequence of events

from E. We can therefore use E∗ as a semantic domain. The semantics of a process p ∈ P (E) can be defined

as a subset of E∗.

Let us note that in the free-monoid (E∗, .):

• we denote the empty word (sequence of length 0) by ε, which is not the empty process ε

• "." refers to the concatenation operator such that for any two sequences of events t1 and t2 in E∗,

t1.t2 ∈ E∗. It is not the same "." as the sequential composition of P (E).

Additionally, we trivially extend the concatenation "." to sets of sequences of events so that for any T1

and T2 in P(E∗), we have T1.T2 = {t1.t2 | t1 ∈ T1, t2 ∈ T2}.

42 CHAPTER 2. CONTEXT

2.4.3 Denotational-style semantics

For the denotational approach, we can determine which are the accepted sequences of events by using the

structure of the process algebraic terms (which is simple given the minimalist nature of this toy example).

The following definition highlights the compositional nature of denotational semantics. Let us define σd :

P (E)→ E∗ such that:

σd(ε) = ε

σd(e) = e

σd(p1.p2) = σo(p1).σo(p2) with "." the extension to sets

σd(p1 + p2) = σd(p1) ∪ σd(p2)

2.4.4 Operational-style semantics

We now define an operational-style semantics for the same syntax of terms P (E), and the same semantic

domain E∗. The operational semantics rely on the definition of transformation rules p e→ p′ where p and p′

are terms from P (E) and e is an event in E. We have already seen the axiomatic rules of the form e
e→ ε

that characterize the execution of a process that is reduced to a single event. Transformation rules for more

complex terms can be inferred inductively. To formalize this, a presentation in the style of Plotkin [112] of

structural operational semantics is usually proposed. This kind of semantics consists in inference rules of

the form:

p1 , · · · , pn
fc

In those rules, the goal is to assess (in the same manner as a mathematical proof) the conclusion c, which

corresponds to a certain transformation on a complex term. The goal transformation c can be proved if some

conditions on the sub-terms of the complex term are met. Those conditions are represented by p1, · · · , pn,

which are called "premises". Most oftentimes they correspond to transformations that are already proven on

the subterms. f (for "formula") may correspond to additional conditions on the complex term. In the case

where there are no premises (n = 0) and no additional conditions (f = >), then the conclusion c is always

accepted (tautology) and can be considered to be an axiom of the algebra.

For any e ∈ E and any processes x, x′, y and y′:

ε ↓
x ↓

x+ y ↓
y ↓

x+ y ↓
x ↓ y ↓

x.y ↓

e
e→ ε

x
e→ x′

x+ y
e→ x′

y
e→ y′

x+ y
e→ y′

x
e→ x′

x.y
e→ x′.y

x ↓ y
e→ y′

x.y
e→ y′

Figure 2.12: Inference rules for our toy process algebra

On Fig.2.12 are given the inference rules for our toy process algebra. Here the predicates x ↓ signify that

the process may immediately terminate successfully. The only constant that may terminate immediately

2.5. THE COQ PROOF ASSISTANT 43

is the empty process (successful termination) ε. However, more complex terms such as ε + x (for any

process x) may also immediately terminate successfully. The x e→ x′ predicates are generalisations of the

transformations we previously described informally. This corresponds to the fact that an event e can occur

within a process x and, after the execution of this event, what remains to be executed corresponds to the

process x′.

Taking advantage of the definition of the p e→ p′ transformations, we can formalize a small-step opera-

tional semantics as a function σo : P (E)→ E∗ such that:

σo(p) =

e.s
∣∣∣∣∣∣∣

∃ p′ ∈ P (E) s.t.

(p e→ p′) ∧ (s ∈ σo(p′))

 ∪
 {ε} if p ↓

∅ if ¬(p ↓)

We can immediately see that the two approaches are quite different. The denotational approach, which

is compositional is often more practical to prove formal properties on the semantics. By contrast, the

operational approach is often more easily implementable in functional programming languages for various

uses in software programs and FV tools.

2.5 The Coq proof assistant

Coq [39, 1] is a software tool and development environment in which one can: (1) write mathematical

definitions, lemmas and theorems, (2) write machine-checked formal proofs of said lemmas and theorems,

(3) write executable algorithms, machine-check their correctness against formal properties and theorems and

(4) extract from those algorithms certified programs to various programming languages. As a result Coq is

often described as a "formal proof management system", a "proof assistant", a "proof development system",

an "interactive theorem prover", etc.

Coq has been used with success in both:

• the academic world, to prove important theoretical results such as the four-color theorem [62] or the

Gödel-Rosser incompleteness theorem [105]

• and in the context of the software and hardware industry, for instance with the CompCert [81] compiler,

which is a formally verified compiler used for programming embedded systems requiring reliability with

a variant of the C programming language

Let us now adopt the perspective of a user of Coq. The main features of Coq can be used by writing and

compiling ".v" files in which the user can encode the formal definitions of mathematical objects, theorems and

programs, as well as proofs of theorems. Within those same files, code can be written using 2 syntactically

distinct languages:

• "Gallina", which is used to define objects, declare their properties, state theorems and write algorithms

44 CHAPTER 2. CONTEXT

• another language (unnamed) which can be used in specific sections of the file so as to "machine-proof"

theorems and properties that are either stated explicitly in Gallina or derived from programs written

in Gallina (the "obligations"). Proving a theorem consists in obtaining a certain "goal" from a list of

starting "hypotheses". Goals and hypotheses are logical formulae in intuitionistic propositional logic.

Hypotheses and goals can be transformed step by step so as to obtain either a contradiction (in the

hypotheses), or a tautology (the goal is also an hypothesis), in which case the proof is complete. To do

so, Coq provides a number of "tactics" (instructions), which use is the object of this second unnamed

language.

Even though both languages appear distinct from the point of view of the user, there is in facts only

one single language that is processed by Coq : Gallina. The use of tactics in the "second language" are in

facts instructions to build progressively a Gallina term. Those instructions are simply provided as a more

user friendly manner to do so. The Gallina term that is thus obtained is a proof of the theorem to prove.

Coq relies on the Curry Howard correspondence which states that a proof is a program, and the formula it

proves is the type for the program. As a result, checking that a Gallina term is a proof of a theorem equates

to checking its type.

2.5.1 Encoding the toy process algebra in Coq

In the following we use Coq so as to formally proof (in a machine-checked manner) the equivalence of the

denotational and operational semantics that we proposed for the toy process algebra from Sec.2.4. Let us

start by encoding the definition of the process algebra terms (the syntax) and of sequences of events (the

data type of the semantic domain). The corresponding Gallina code is given on Fig.2.13.

Parameter E : Set.

Definition Sequence : Type := list E.

Inductive PATerm : Set :=
empty_pa : PATerm
| event_pa : E → PATerm
| seq_pa:PATerm→ PATerm→ PATerm
| alt_pa:PATerm→ PATerm→ PATerm.

Figure 2.13: Definitions of the data types for the syntax and semantics of our toy process algebra in Gallina

At first we declare the set E of events, which constitutes the signature of the process algebra language.

To do so, we declare it as a Parameter of type Set. The declaration of any object in Coq starts with a

keyword (here Parameter) and ends with a dot (". ").

Then we define a data type for sequences of such events with the keyword Definition. Let us call it

Sequence. We declare it to be of type Type and equal to a list of elements of E i.e. list E (with a dedicated

library imported using Require Import List).

We then define a data type for the terms of our process algebra. Let us call this type PATerm. Given the

inductive nature of the process algebra language, we declare it in Coq using the Inductive keyword, and,

2.5. THE COQ PROOF ASSISTANT 45

given that we want to define a set of inductively constructed terms, we declare the type of PATerm to be Set.

Then we must specify under which rules can those inductive terms be constructed. There are 4 rules, which

correspond to 4 constructors:

• empty_pa, which corresponds to the empty process ε

• event_pa, which corresponds to processes reduced to a single event e ∈ E. The corresponding con-

structor is event_pa : E → PATerm, meaning that its type is a function which takes an E and returns a

PATerm

• In Coq, all functions can be curried i.e. instead of having a function f(x, y), applied to arguments

x and y, we have f(x)(y) i.e. a function f applied to x, which turns into a function f(x) which is

then applied to y. In particular, constructors with multiple arguments are declared in this fashion.

This is the case for the third constructor: seq_pa:PATerm→ PATerm→ PATerm, which corresponds to the

"." operator of our process algebra, which forms terms of the form "x.y", where "x" and "y" are two

arguments of type PATerm. We named it seq_pa to express the fact that it corresponds to a sequential

composition.

• likewise, we declare the constructor corresponding to the "+" operator of the process algebra with:

alt_pa:PATerm→ PATerm→ PATerm, its named referring to the alternative choice it models.

The next step is to encode the predicates ↓ and → of the process algebra. We provide the corresponding

Gallina code on Fig.2.14.

The ↓ predicate can be understood as a recursive function that takes as argument a PATerm and returns a

Prop i.e. a proposition in intuitionistic propositional logic (this proposition corresponding to whether or not

the given process algebraic term terminates or not). In Gallina, we use the Fixpoint keyword to declare the

terminates function which takes an argument p or type PATerm. We then use a pattern-matching notation

(similar to that of many functional programming language e.g. ML, OCaml, Rust, Haskell, etc.) so as to

define the cases of the induction on the term structure of the argument p. Here, each case of the induction

is introduced by the | symbol, followed by the structure of p in that case. Then the symbol ⇒ indicates the

value the recursive function is supposed to return in that case. Given that the return type of terminates is

Prop, we return:

• True for the empty process ε i.e. empty_pa

• False for any process that corresponds to a single event e i.e. (event_pa e)

• (terminates p1) ∧ (terminates p2) for any process that corresponds to a sequence of sub-processes p1.p2

i.e. (seq_pa p1 p2)

• (terminates p1) ∨ (terminates p2) for any process that corresponds to an alternative between sub-

processes p1 + p2 i.e. (alt_pa p1 p2)

46 CHAPTER 2. CONTEXT

Let us note that, in Coq, any recursive function must be able to terminate. This requirement is here to

ensure the consistency of the logical proof system provided by Coq (otherwise "false statements" could be

proven). Behind the scenes, Coq tries to find a measure on the arguments that is strictly decreasing at each

recursive call. If no such measure is found, the code does not compile.

Fixpoint terminates (p : PATerm) : Prop :=
match p with
| empty_pa ⇒ True
| (event_pa e) ⇒ False
| (seq_pa p1 p2) ⇒ (terminates p1) ∧ (terminates p2)
| (alt_pa p1 p2) ⇒ (terminates p1) ∨ (terminates p2)

end.

Inductive is_next_of : PATerm → E → PATerm → Prop :=
| next_event : forall (e:E),

(is_next_of (event_pa e) e empty_pa)
| next_seq_left : forall (e:E) (p1 p2 p1’ : PATerm),

(is_next_of p1 e p1’)
→ (is_next_of (seq_pa p1 p2) e (seq_pa p1’ p2))

| next_seq_right : forall (e:E) (p1 p2 p2’ : PATerm),
((is_next_of p2 e p2’) ∧ (terminates p1))
→ (is_next_of (seq_pa p1 p2) e p2’)

| next_alt_left : forall (e:E) (p1 p2 p1’ : PATerm),
(is_next_of p1 e p1’)
→ (is_next_of (alt_pa p1 p2) e p1’)

| next_alt_right : forall (e:E) (p1 p2 p2’ : PATerm),
(is_next_of p2 e p2’)
→ (is_next_of (alt_pa p1 p2) e p2’).

Figure 2.14: The ↓ (terminates) and → (is_next_of) predicates of the toy process algebra in Gallina

The→ predicate of the process algebra can be understood as an inductive predicate i.a. a predicate that

can be inferred inductively. A certain x e→ y is a proposition that can be obtained from an object of type

PATerm → E → PATerm → Prop. As a result, the Gallina definition that we propose uses the Inductive keyword

to define a predicate is_next_of of type PATerm → E → PATerm → Prop.

This definition relies on a number of rules which can be used to infer a certain (is_next_of x e y).

Those rules correspond to those of the process algebra and their definitions are the exact translation of the

mathematical definitions from Sec.2.4:

• next_event, i.e. the rule e e→ ε for any e ∈ E. This is encoded in Gallina as a proposition

forall (e:E), (is_next_of (event_pa e) e empty_pa)

• next_seq_left i.e. the rule (x e→ x′)⇒ (x.y e→ x′.y). This corresponds (in Gallina on Fig.2.14) to

forall (e:E) (p1 p2 p1’ : PATerm), (is_next_of p1 e p1’) → (is_next_of (seq_pa p1 p2) e (seq_pa p1’ p2))

Let us note here that, in Gallina, the → symbol can both be used to denote a type (of a function) and

to denote an implication (as is the case here). This is in line with the Curry-Howard correspondence,

which states that an implication P → Q is in facts the type of functions that can transform proofs of

P into proofs of Q. Given that remark, and the previous on currying, implications can also be curried

e.g. with P → Q→ R instead of (P ∧Q)→ R.

2.5. THE COQ PROOF ASSISTANT 47

• likewise, we have the same kind of encoding for the 3 other rules

2.5.2 The semantics of the toy process algebra in Coq

The operational and denotational semantics proposed in Sec.2.4 can then be formalized in Coq as illustrated

on Fig.2.15:

• the operational semantics, by an inductive predicate sem_op : PATerm → Sequence → Prop, with two rules

sem_op_empty and sem_op_event corresponding to the base case (whether or not the empty sequence is

in the semantics, via the ↓ predicate) and the small-step of the semantics i.e. the execution of events

(via the → predicate)

• the denotational semantics, by a recursive function which returns a set of sequences:

sem_de (p : PATerm) : (Sequence → Prop). The return type corresponds to checking whether or not a

given Sequence belongs to the set or not (the membership is a proposition). The function is defined

inductively w.r.t. the structure of the p process in argument. We use pattern-matching to explicit the

cases.

Inductive sem_op : PATerm → Sequence → Prop :=
| sem_op_empty : forall (p :PATerm),

(terminates p)
→ (sem_op p nil)

| sem_op_event : forall (p p’:PATerm) (e:E) (s:Sequence),
(is_next_of p e p’)∧ (sem_op p’ s)
→ (sem_op p (cons e s)).

Fixpoint sem_de (p : PATerm) : (Sequence → Prop) :=
match p with

| empty_pa ⇒ fun s:Sequence ⇒ s = nil
| (event_pa e) ⇒ fun s:Sequence ⇒ s = e :: nil
| (seq_pa p1 p2) ⇒ fun s:Sequence ⇒ exists (s1 s2 : Sequence),

(sem_de p1 s1) ∧ (sem_de p2 s2) ∧ (s = s1 ++s2)
| (alt_pa p1 p2) ⇒ fun s:Sequence ⇒ (sem_de p1 s) ∨ (sem_de p2 s)

end.

Figure 2.15: Formalization of the semantics proposed for the toy process algebra in Gallina

2.5.3 Proving the equivalence of both semantics with Coq

Now that we have formalized in Coq both our semantics, let us prove their equivalence. The plan of the

proof is represented on Fig.2.16. The theorem that we want to prove corresponds to the blue node on the

top. Its formulation is ∀ p ∈ P (E), ∀ s ∈ E, s ∈ σo(p) ⇔ s ∈ σd(p). It is immediately implied by the two

sub-theorems (blue nodes underneath) which correspond to the two directions of the inclusion.

Let us consider the inclusion of σo in σd, which corresponds to the part of the proof that is on the left on

Fig.2.16. This theorem can be proven thanks to 2 intermediate lemmas given in the teal nodes underneath

it and which correspond to:

48 CHAPTER 2. CONTEXT

∀ p ∈ P (E), ∀ s ∈ E∗,
s ∈ σo(p)⇔ s ∈ σd(p)

∀ p ∈ P (E), ∀ s ∈ E∗,
s ∈ σd(p)⇒ s ∈ σo(p)

∀ p ∈ P (E),
ε ∈ σd(p)⇒ p ↓

∀ p ∈ P (E), ∀ e ∈ E, ∀ s ∈ E∗,
e.s ∈ σd(p)⇒ ∃ p′ ∈ P (E), (p e→ p′) ∧ (s ∈ σd(p′))

∀ p ∈ P (E), ∀ s ∈ E∗,
s ∈ σo(p)⇒ s ∈ σd(p)

∀ p ∈ P (E),
p ↓⇒ ε ∈ σd(p)

∀ (p, p′) ∈ P (E), ∀ e ∈ E, ∀ s ∈ E∗,
(p e→ p′) ∧ (s ∈ σd(p′))⇒ e.s ∈ σd(p)

Figure 2.16: Plan of the proof for the equivalence of the semantics of the toy PA

• the fact that if a process p can immediately terminate (the predicate p ↓) then σd(p) includes the

empty trace ε

• the fact that if a process p can execute event e, which turns it into process p′, and, that there is a

certain trace s ∈ σd(p′) then e.s ∈ σd(p)

Let us remark that those two lemmas correspond to the inductive definition of the operational semantics

σo. In the following, we detail the proof of the first lemma, which is given as Lem.2.1.

Lemma 2.1: p directly terminates implies σd(p) accepts ε

For any process p ∈ P (E):

p ↓⇒ ε ∈ σd(p)

Proof. Let us reason by induction on the term structure of p.

• if p = ε then by definition p ↓ and ε ∈ σd(p)

• if p = e for a certain e ∈ E then we cannot have p ↓

• if p = p1.p2 for given (p1, p2) ∈ P (E) then p ↓ iff p1 ↓ and p2 ↓ and by the induction hypothesis we

have ε ∈ σd(p1) and ε ∈ σd(p2). Then, given that σd(p) = {s1.s2 | s1 ∈ σd(p1), s2 ∈ σd(p2)}, we have

ε ∈ σd(p)

• if p = p1 + p2 for given (p1, p2) ∈ P (E) then p ↓ iff p1 ↓ or p2 ↓:

– in the first case, the induction hypothesis gives ε ∈ σd(p1), and given that σd(p1) ⊂ σd(p1 + p2),

we have ε ∈ σd(p)

– likewise, in the second case the induction hypothesis gives ε ∈ σd(p2), and given that σd(p2) ⊂

σd(p1 + p2), we have ε ∈ σd(p)

2.5. THE COQ PROOF ASSISTANT 49

The transcription of this lemma and of its proof in Coq is given on Fig.2.17. The definition of the

Lemma contains the predicate (terminates p) → (sem_de p nil) which is the exact translation of the Lemma’s

mathematical definition, with the curried expression (sem_de p nil) representing the inclusion of the empty

sequence nil into the semantics applied to process p. The proof is introduced by the keyword Proof. Then,

we use a number of tactics to transform the goals and hypotheses and resolve the intermediate sub-goals

until the completion of the proof. The first tactic intros introduces the left part of the goal formulation as an

hypothesis named H. The application of this tactic results in the declaration of a hypothesis H : terminates p.

The second tactic induction performs an induction on the term structure of p. This changes the proof into

4 sub-proofs, which can be individually solved. The proof of each sub-proof is introduced by a dash.

• in the first sub-proof, we have the hypothesis H : terminates empty_pa and the goal sem_de empty_pa nil.

The tactic simpl simplifies the goal (as per the definition of sem_de) into nil = nil, which can be

immediately proved with the tactic reflexivity

• in the second sub-proof, we have the hypothesis H : terminates (event_pa e), with a certain e : E

and the goal sem_de (event_pa e) nil. The tactic simpl is here used on the hypothesis H to reveal a

contradiction (it transforms the hypothesis into H : False). Then we use the tactic contradiction to

resolve the sub-proof

• in the third sub-proof, we have several hypotheses:

– H : terminates (seq_pa p1 p2), which is the hypothesis on the overall term p

– IHp1 : terminates p1 → sem_de p1 nil, which is the induction hypothesis on the left sub-term p1

– IHp2 : terminates p2 → sem_de p2 nil, which is the induction hypothesis on the right sub-term p2

The goal is sem_de (seq_pa p1 p2) nil, which we can simplify with the simpl tactic to obtain

exists s1 s2 : Sequence, sem_de p1 s1 ∧ sem_de p2 s2 ∧ nil = s1 ++s2

Given that we know (from human experience), which are the expected values for the sequences

s1 and s2, we can use the exists tactic to declare them (both are nil), which result in the goal

sem_de p1 nil ∧ sem_de p2 nil ∧ nil = nil ++nil. We can transform our hypothesis to obtain the 2

clauses on the left. To do so we use simpl in H, which turns H into terminates p1 ∧ terminates p2 which

we can separate into two hypotheses H1 and H2 with the destruct tactic. We then use the apply tactic

to apply the induction hypotheses IHp1 and IHp2 on respectively H1 and H2. The third clause of the

goal is a tautologic equality, which can be resolved with the reflexivity tactic. Therefore, we have all

the ingredients to verify our goal. We only need to divide and destroy it. To do so, we use the split

tactic, and treat each case as a sub-goal. The assumption tactic is used to prove a goal that is already

given as an hypothesis.

• in the fourth sub-proof, we have the hypotheses:

– H : terminates (alt_pa p1 p2), which is the hypothesis on the overall term p

50 CHAPTER 2. CONTEXT

– IHp1 : terminates p1 → sem_de p1 nil, which is the induction hypothesis on the left sub-term p1

– IHp2 : terminates p2 → sem_de p2 nil, which is the induction hypothesis on the right sub-term p2

The goal is sem_de (alt_pa p1 p2) nil, which we can simplify with the simpl tactic to obtain

sem_de p1 nil ∨ sem_de p2 nil

Likewise, we can simplify the H hypothesis to obtain terminates p1 ∨ terminates p2. We have here a

disjunction as an hypothesis. We can use the destruct tactic on H so as to treat the two cases (either

terminates p1 or terminate p2) as two sub-proofs (with different sets of hypotheses but the same goal).

– in the first one, we have H : terminates p1. We use our human intuition to select the clause of

the goal (a disjunction) that we want to prove. It is the left clause and we can use the left tactic

to select it. By applying the induction hypothesis IHp1 the result is trivial.

– the other case is similar, except we choose the right clause and apply IHp2

Lemma terminates_implies_de_accept_empty (p : PATerm) :
(terminates p) → (sem_de p nil).

Proof.
intros H.
induction p.
− simpl. reflexivity.
− simpl in H. contradiction.
− simpl. exists nil. exists nil.

simpl in H. destruct H as (H1,H2).
apply IHp1 in H1. apply IHp2 in H2.
split.
+ assumption.
+ split.

∗ assumption.
∗ simpl. reflexivity.

− simpl. simpl in H. destruct H.
+ left. apply IHp1. assumption.
+ right. apply IHp2. assumption.

Qed.

Figure 2.17: Proof of ∀ p ∈ P (E), p ↓⇒ ε ∈ σd(p) with Coq

Now that we have proved all our goals (Coq notices the user of that with No more subgoals.), we can

close the Proof with the Qed keyword. The proof is correct by construction, given that, behind the scenes,

Coq uses the tactics to construct a functional program in Gallina, which constitutes a proof of the propo-

sition, as per the Curry-Howard correspondence. The terminates_implies_de_accept_empty lemma is now

an established fact in the remainder of the ".v" Coq file, and we will be able to use it (for instance with

apply terminates_implies_de_accept_empty in other proofs).

The whole proof for the equivalence of σo and σd on this toy process algebra is available in [89]. In it,

we use additional tactics, including:

• dependent induction, which is an extension of the induction tactic which makes possible to generalize

some variables of which the induction hypothesis found in the resulting sub-goals depend. With the

2.5. THE COQ PROOF ASSISTANT 51

generalizing keyword, we can specify which variables we want to generalize (although it is not always

possible to generalize a variable)

• inversion, which, applied to an inductive predicate derives all the possible conditions (may transforms

the initial set of hypothesis into several others, each corresponding to a new sub-proof) for it to be

true according to its constructors.

An overview / a documentation of the tactics available in Coq’s standard library is available in [2].

By detailing a Coq proof for this toy process algebra, we have only scratched the surface of can be done

with Coq. However it is an introduction that should suffice to understand the more complex proofs proposed

in the thesis and which were encoded in Coq. In particular this proof of semantic equivalence for the toy

process algebra [89] is a miniature version of the proof available on github in [88] in which we prove the

equivalence of three semantics (that from Chap.4, Chap.5 and Chap.6) defined over the Interaction Language

which we define in Chap.4 of this thesis. Another proof, pertaining to the correctness of the multi-trace

analysis algorithm from Chap.9 is available on github in [87].

Conclusion

In this chapter we have presented some elements of context for the works of this thesis. In particular:

• Sec.2.1 and Sec.2.2 pertaining to formal languages and term algebras will be particularly useful in

Chap.4 in which we define our IL, its denotational-style trace semantics and a process to normalize

interaction terms and in Chap.7 where we extend the notion of the semantics of interactions to multi-

traces with various multi-trace semantics.

• Sec.2.3 serves as an introduction to Interaction Languages which is one of the main focus of the entire

thesis

• Sec.2.4, by introducing process calculus is a prelude to Chap.5 where we define a structural operational

semantics for our IL

• finally, with the presentation of Coq and of a miniature proof for semantic equivalence in Sec.2.5 we

foreshadow the proof from Sec.5.2 as well as various other proofs presented in this thesis (Sec.6.2,

Sec.9.2) which are encoded in Coq ([88, 87])

In the following chapter, so as to anchor the present thesis in the state of the art, we present a quick

survey of formal semantics for ILs that are found in the literature.

52 CHAPTER 2. CONTEXT

Chapter 3

On the semantics of Interaction

Languages

Contents
3.1 A discussion on a selection of papers . 54

3.1.1 An algebraic semantics of BMSCs . 54

3.1.2 High-level message sequence charts . 55

3.1.3 Operational Semantics for MSC . 57

3.1.4 UML Interactions Meet State Machines – An Institutional Approach 59

3.1.5 Global and Local Testing from Message Sequence Charts 60

3.2 A broader and shallower survey . 62

3.2.1 Translational approaches . 63

3.2.2 Denotational approaches . 65

3.2.3 Operational approaches . 65

3.2.4 On the analysis of logs . 65

3.3 Conclusion and position of the thesis . 67

53

54 CHAPTER 3. ON THE SEMANTICS OF INTERACTION LANGUAGES

In this chapter we discuss the state of the art on the definition of formal semantics for Interaction

Languages.

The plan of this chapter is as follows:

• in Sec.3.1 we review a short selection of papers and we discuss how they relate to our work,

• in Sec.3.2 we give a broader and shallower survey on the formal semantics of ILs,

• finally, in Sec.3.3 we give some concluding remark and position the works of this thesis with regards

to the state of the art.

3.1 A discussion on a selection of papers

In this section we discuss a selection of papers from the literature pertaining to the formalisation of the

semantics of some ILs. We have chosen those papers to represent a wide variety of formalisms and different

approaches to the definition of their corresponding semantics.

3.1.1 An algebraic semantics of BMSCs

In [97] an algebraic semantics of BMSCs is proposed. It relies on corresponding the syntax of BMSCs to

process algebraic terms and then simplifying those terms, using a dedicated "state operator" [31] λM to

ensure the respect of the emission-reception causality. In [97] the semantics of BMSC is a "free merger"

(i.e. an interleaving) of that of its constituant instances (lifelines). Some transformations, constrained by

λM can be applied so as to progressively transform those interleavings into sequences and alternatives. The

end result is a process algebraic term which only consists of alternatives and sequences and can therefore be

directly mapped to a set of accepted sequences.

The syntax of BMSCs in [97] is quite different from that of our own IL given that each instance is described

independently as a list of atomic events and it is then the state operator λM which (by remembering which

messages have been send and not yet received) links reception events to corresponding emission events. The

manner in which this λM operator is used causes some limitations to the formalism. In particular, it is not

allowed that two distinct outputs or inputs have the same message name and message instance name. By

contrast, our approach handles the issue of the emission-reception causality via the use of a strict-sequencing

operator which can schedule the executions of two sub-interactions so that the first occurs strictly before

the second. By applying this operator to an atomic emission (on the left) and an atomic reception of the

same message (on the right), we can in effect implement message passing, with no restrictions on the number

of occurrences of said message. This remark is also linked to the fact that atomic emissions in [97] must

specify which is the target instance, and atomic receptions must specify which is the source instance. By

contrast, in our formalism, this information do not appear in individual events (as should be the case in

all generality, when we consider communications in a distributed context). When a message is observed i.e.

logged somewhere in the network, the only information that is available is the data it carries (and the local

3.1. A DISCUSSION ON A SELECTION OF PAPERS 55

time of the reception event). It is not a given that it carries information pertaining to its original sender,

and, even if it is the case, it could be false (e.g. man-in-the-middle attack).

[97] also details a proposed semantics for a "create" and "stop" atomic events, which correspond to the

creation and deletion of temporary instances. This is handled similarly to the passing of messages, with a

dedicated λL operator. λL keeps track of which instances have been created (and later deleted) and does

not allow the execution of events that concern an instance that does not exist. The semantics is likewise

extended to include timers. By contrast, in our formalism we only consider a core language and we mainly

focus on the different scheduling operators that can be defined to specify exchanges of labelled message

within a statically defined distributed system (no creation or deletion of sub-systems). Our aim is to use this

core language as a platform to experiment on the definition of different semantics. Those semantics can then

be compared and their equivalences proven. Moreover, the addition of new primitives (creation/deletion,

timers, etc.) could be the object of further works.

The approach proposed in [97] could easily be implemented into a FV tool given the nature of its models,

which are finite terms and describe a finite set of finite executions (no repetitions). To obtain the semantics

as a set of sequences, it suffices to process the simplified process algebraic terms and eliminate the alternative

operators. To go further, the difficulty lies in having models which allow behaviors to be repeated, which

may result in arbitrarily long behaviors. In this thesis, we tackle this with dedicated loop operators.

3.1.2 High-level message sequence charts

In [98], a formal syntax and semantics is proposed for HMSC. This approach is an extension of [97] which

includes additional operators for "weak sequencing" and "delayed choice" so as to include the increased

expressivity of HMSC w.r.t. BMSC.

The weak sequencing of two BMSCs "A" and "B" specifies a partially parallel executions of the behaviors

specified by each. In any such execution any event e from "B" can only occur if it is permitted by "A" by a

"permission relation". This permission relation refers to the ability of "A" of not expressing actions on the

same instance (lifeline) on which e occurs. As a result, weak sequencing allows to compose BMSCs with

more flexibility than the classical (strict) sequencing operator. As in [97], in [98] HMSCs are associated to

process algebraic terms. In particular, the definition of the permission relation is done inductively on those

terms. The delayed choice operator is quite similar to the classical alternative operator, except that the

choice of the alternative is delayed as long as possible. This means that whenever the same event can occur

in both branches of an alternative then it is executed in both and the choice of which alternative has been

taken is delayed.

The semantics of HMSC in [98] is defined in two parts. At first a semantics is defined for finite paths

within the graph-like structures that a HMSC constitutes. This semantics is defined similarly as that of [97]

with the inclusion of weak sequencing and delayed choice.

The semantics of a HMSC, as proposed in [98], is then defined as follows:

56 CHAPTER 3. ON THE SEMANTICS OF INTERACTION LANGUAGES

• if the HMSC is reduced to a single BMSC then its semantics is defined like that of [97]. Let us

note that, in an individual BMSC, the emission-reception causality is enforced by a dedicated state-

operator (as per [97]). As a result, within a HMSC, a reception in a given node cannot be interpreted

as corresponding to an emission from another node.

• else it is given as a denotation consisting of a set of equations in which variables correspond to the

semantics of individual nodes and symbols correspond to interleaving (between child nodes in a fork of

the graph), weak sequencing (between two successive nodes in the graph) or delayed choice (between

child nodes in a split of the graph).

Discussion w.r.t. the thesis

The structure of the HMSC models studied in [98] is quite different from that of our models. HMSCs are

graph structures whereas our IL is an inductive language which terms can be understood as finite binary

trees.

Moreover, the semantics proposed in [98] consists in translating a HMSC into a set of equations on process

algebra terms. The semantics is then obtained from those terms. By contrast, in our operational semantics,

the small-steps operate directly on the syntactic terms that constitute our models (as a by-product, this

enables the dynamic animation of models during execution).

In [98], process algebra terms can contain references. Those references incidentally serve as a means to

represent repeatable behaviors. In other words repetition is handled by process algebraic terms referencing

themselves directly or indirectly. By contrast, in our IL, repetition is handled by dedicated loop operators.

As a result, the syntactic structure of a term which defines repeatable behaviors in our language remains a

finite and self-contained (no references) binary tree.

Although both formalisms are quite different, we can find many correspondences between the notions

found in [98] and those found in our thesis. The basic sequence-diagram-like terms are:

• the "empty process" ε from [98] corresponds to our empty interaction ∅

• however, we do not have anything similar to the "deadlock" δ from [98]. In our approach, when

analyzing the conformity of a trace against an interaction model, we can "be deadlocked" when the

next event to analyze cannot be executed by the model (is not found within the model’s "frontier of

execution").

• atomic models which correspond to atomic events are emissions and receptions of messages in both

formalisms. However, [98] specifies which is the target instance in emission events, and which is the

source instance in reception events. By contrast, in our formalism, this information do not appear in

individual events. In all generality, when we consider communications in a distributed context it is the

case, otherwise

3.1. A DISCUSSION ON A SELECTION OF PAPERS 57

• the "permission relation" defined in [98] fulfills the same purpose as our evasion predicate (for deter-

mining whether or not an event is executable) and our pruning relation (for constructing a remaining

"follow-up" term), which are defined as part of our operational semantics in Chap.5

In the small-step operational semantics that we propose in this thesis, we take advantage of having

models as finite binary trees so as to be able to compute, each time an event is observed, what is the "next"

model, which specifies "what remains to be executed" (which is another, rewritten finite binary tree). This

small-step approach in turns allowed us to implement a tool for the animation of interaction models. In

the approach proposed by [98], HMSCs are translated into systems of equations between process algebraic

terms. However, no method is detailed as how to process those equations.

3.1.3 Operational Semantics for MSC

In [99], an operational semantics is defined for a subset of MSC. This subset of MSC includes the exchange

of messages, actions on individual lifelines, the inline-expressions for parallel and alternative composition,

co-regions and explicit causal ordering. It does not however include references (and gates), conditions, the

"optional" and "exception" expressions and any loop operator.

In [99], although no formal syntax is provided for encoding MSCs, two manners of doing so are described:

• an "instance-oriented" textual representation, which is similar to that of [97] and which consists in

describing one-by-one the instances of the MSC (which is quite different from the syntax of our IL).

• an "event-oriented" textual representation, which lists all the building blocks (events, inline-expressions)

that constitute the MSC in an order which is that of the top to bottom order of the corresponding

diagram (which is somewhat more similar to the syntax of our IL).

The first step in the approach from [99] consists in transforming an MSC described via an "event-oriented"

textual representation into a process algebra term. This process is not described in [99]. Instead, the process

algebra is directly described and its operational semantics given. Let us note that [99] is written by the same

authors as [97] and [98] and that the process algebra that is provided is based on that of [98].

Instead of relying on a state operator as in [97] to enforce an order between the occurrences of events,

[99] proposes a more generalizable approach. It consists in the attribution of some ordering requirements to

the operators themselves. Those requirements concern the subterms on which the operators are applied. In

more practical terms, this consists in attaching mappings to operators which keep track of constraints that

must be enforced in relation to the precedence of events. Those mappings may then be checked whenever one

needs to verify whether or not an event is executable and may be updated during execution. Indeed, during

execution an event that is executed disappears from the term and must be removed from the mappings in

which it appears as a precondition to the execution of some other events.

58 CHAPTER 3. ON THE SEMANTICS OF INTERACTION LANGUAGES

Discussion w.r.t. the thesis

The operational semantics which we define in Chap.5 for our IL shares some similarities with that of [99]

which include:

• the general principle of the language with basic building blocks being emission and reception events

and constructors being used to express sequencing, interleaving and choice

• the use of a pruning relation which, in [99] is called a permission relation

However we have some major distinctions concerning:

(i) which constructors are defined: we propose the addition of the four loop constructors while

there were no loops in [99] and, in addition, there is no strict constructor in [99] (this also

relates to point (iii))

(ii) how the alternative and the parallel composition are handled: in [99] they use a delayed choice

constructor which allows to delay the choice between two alternative branches whenever an

action can be executed in both branches. In that case, the follow-up term is the alternative

composition of the follow-ups of the two sub-interactions. This also effects parallel composition

given that whenever an action can be executed in both parallel branches we can define the

follow-up interaction as a choice between interpreting the action as having been executed in

either the left or the right branch of the parallel. In our IL and our semantics however we have

not proposed this mechanism for three reasons:

• in Chap.6 we will see how we have "algorithmicized" this operational semantics for it to be

easily and efficiently implemented and further used in Formal Verification (FV) techniques.

This algorithmization relies on separating concerns between the determination of which

actions are executable and the execution of said actions. Immediately executable actions

are uniquely identified by their positions in the term structure. The execution function

then corresponds to the execution of a specific action at a specific position. If we used

delayed choice we would need to determine which identical actions at which positions can

safely be executed simultaneously and propose an execution function to execute several

actions at the same time in the model.

• in Chap.14, we will see how we have, in our tool implementation HIBOUX, added data

in interaction models and how we complemented the operational semantics to include

symbolic execution in order to treat the modification and exchange of typed data. Without

delayed choice, the execution of an action is uniquely defined and uniquely modifies the

symbolic interpretation of variables and the symbolic path condition of the system. Each

intermediate interaction i is associated to a unique interpretation η and a unique path

condition π to form a state (i, η, π) of the system. Given that several instances of a same

3.1. A DISCUSSION ON A SELECTION OF PAPERS 59

action within the model can be associated to different statements (e.g. assignment of

variables), simultaneously executing them in the model would yield the same interaction

term i but different symbolic states (η1, π1), · · · , (ηn, πn). As a result, if we had added

delayed choice this would have required to treat more complex states.

• delayed choice can be used to minimize the exploration of different paths of executions

in the model. Indeed, roughly speaking, instead of exploring alt(a1, seq(a1, a2)) a1−→ ∅ and

alt(a1, seq(a1, a2)) a1−→ a2, we simply explore alt(a1, seq(a1, a2)) a1−→ alt(∅, a2). This could

be useful in FV techniques to diminish overhead when exploring the semantics of models.

However we will see in Chap.10 that, with "local frontiers", we can provide mechanisms

that offset this disadvantage of not using delayed choice.

(iii) how strict sequencing and the emission-reception causality is handled. Indeed, we use a dedi-

cated strict constructor to generalize causality between actions occurring on different lifelines

while [99] use mappings between causally-related events that are updated at each step of exe-

cution.

(iv) how the weak sequencing is handled: indeed, due to the differences in how causation is handled

(with maps that are updated) and because of the use of delayed choice the operational rules

corresponding to weak sequencing that are proposed in [99] are quite different from our own.

3.1.4 UML Interactions Meet State Machines – An Institutional Approach

In [75], a simplified version of UML-SDs (interactions) is formalised as an institution. In this institution,

the signature of an interaction is defined by a set of lifelines and a set of messages. Interactions defined

over this signature are then sentences build by composition from basic building blocks which may consist of

the empty interaction or communication events (4 kinds: emissions with and without explicit targets and

receptions with and without explicit sources) using some operators which are strict and weal sequencing,

interleaving and alternative composition.

The semantics of such interactions is then formulated in denotational style in the form of sets of event

traces i.e. sequences of events. The semantics of a complex interaction is build by composition from those

of its subterms using some algebraic operators on sets of event traces. In particular, the operator for weak

sequencing uses a notion of conflict so as to determine which interleavings are allowed and which are not.

Discussion w.r.t. the thesis

The syntax of our IL and the denotational formulation of its corresponding trace semantics in Chap.4 is

inspired by and extends that of [75] with the addition of loops.

60 CHAPTER 3. ON THE SEMANTICS OF INTERACTION LANGUAGES

3.1.5 Global and Local Testing from Message Sequence Charts

In [83], a semantics for a subclass of HMSC is proposed. This subclass of HMSC is Message Sequence Graph

(MSG). It consists in HMSC models where every node must contain a BMSC (i.e. it cannot contain another

nested HMSC). Moreover only closed systems are considered, i.e. messages cannot be sent to or received

from the environment; all exchanges have to occur between the sub-systems of the distributed system.

[83] proposes a denotational semantics for MSG. Its general principle is to correspond individual BMSCs

to partial orders sets (posets) which synthesize precedence relations between events. Every sequence of

events that the BMSC specifies in intention can be obtained via a linearization of a partial order from the

BMSC’s corresponding poset. By linearization we mean to consider sequences of events such that each

appears exactly once in the partial order and such that their relative order of occurrence, as specified by

the partial order is respected. The semantics of a BMSC can then be understood as the set of all such

linearizations. Then, in order to define the semantics of MSGs, it suffices to consider all finite paths within

the graph, all of which being associated to a BMSC which is the "concatenation" (using weak sequencing)

of all the BMSC nodes encountered in the path.

In addition to providing a denotational-style semantics for MSGs, [83] also discusses testing. This paper

proposes a notion of global conformance between a system and its MSG specification. A system is conform

to a MSG iff all the traces (sequences of events) it can express correspond to a prefix of a linearization of the

MSG (i.e. the "semantics" we referred to). [83] then proposes a method for testing specific words (traces) via

the definition of an automaton which execution is concomitant to the execution of the test and terminates in

either a "pass", "fail" or "inc" (inconclusive) state. Those automata can be used to test well-founded words

i.e. words in which each reception event is preceded by a corresponding emission event (it is not sufficient

to be well-founded, words must be well-founded and conform to the MSG specification).

A test set, which includes tests for all words diverging from prefixes of linearizations of the MSG is then

proposed and proven to suffice to imply the conformance relation. Finally, a technique to factorize such tests

is informally described. This technique allows the obtention of a single automaton to test the system. This

automaton has a tree-like structure and allows the off-line analysis of execution traces. Elements from the

trace can be analyzed via the execution of this automata, each transition corresponding to the consumption

of an event in the trace.

In [83], no formal methodology is given for the realisation of those automata. Moreover, the provided

example only concerns a single BMSC and not a MSG. Among other things, this raises the question of what

happens to the automaton when dealing with a cyclic MSG. Given that some behaviors can be repeated any

number of times within a cyclic MSG, this would result in an automaton with infinitely many states.

[83] also discusses some considerations about local testing i.e. testing the system from the point of view of

every local process. This discussion relies on two important notions, which are defined on MSG specifications:

• "local-synchronicity", which roughly means that there cannot be arbitrarily long one-sided exchanges

between two processes (for instance in a MSG which loops back around a BMSC consisting of a message

3.1. A DISCUSSION ON A SELECTION OF PAPERS 61

passing, there can be infinitely many emissions of the message before any corresponding reception, so

the MSG is not locally-synchronised).

• "k-testability", which is defined for any k ∈ [1, n] with n the number of processes in the modelled DS.

A MSG model is 1-testable if it is not possible to reconstruct wrong BMSCs from independent local

observations of correct BMSCs obtained from paths within the graph. The notion of "k-testability" is

an extension of "1-testability" where, instead of projecting the model on single processes, we project

them on subsets of processes of size k.

Different notions of local testing are proposed:

• "Local testing with Local Observations", in which each sub-system produces its own local trace which is

then analyzed locally w.r.t. a projection of the specification (this local test translates into an automaton

as in the global test seen earlier). Information is not shared between local testers so this conformance

relation only denotes a conjunction of local tests (all must pass), but this does not guarantees that

local traces can be gathered are reordered globally into a trace that satisfies the global conformance.

Such a guarantee can only be ensured when the specification respects a "closure condition", which is

very restricting. This condition is that the MSG specification is locally-synchronised and "1-testable".

• "Local Testing with Gathered Observations", in which the local traces produced by several sub-systems

are gathered and analyzed together w.r.t. the specification. According to the number k ∈ [1, n] of

such local traces that are gathered, the paper defines a notion of "k-local conformance". [83] then

generalizes results obtained for "1-local conformance" to "k-local conformance" and concludes that "k-

local conformance" is equivalent to the global conformance iff the MSG is locally synchronized and

"k-testable".

Local conformance is most generally a weaker property than global conformance. However, this last result

of [83] implies that for k = n (with n the number of processes), and for locally-synchronized distributed

systems, local testing with gathered observations is equivalent to global testing. Indeed, n-testability is

always true for an MSG.

Discussion w.r.t. the thesis

In the second part of the thesis, we define various multi-trace analysis algorithms. Those in fact perform a

form of off-line testing which can be related to that found in [83]. In [83], the analysis of a trace corresponds

to having it being recognized by a test automaton generated from the MSG specification. This is somewhat

similar to the analysis graphs that are central to the definition of our multi-trace analysis algorithms. The

main differences between those two approaches being that:

• [83] presupposes that the trace to analyze is well-founded (every reception is preceded by a correspond-

ing emission) and that events are uniquely defined (no degeneracy), while our approach requires no

such hypothesis on the nature of the trace (it can be any sequence of events).

62 CHAPTER 3. ON THE SEMANTICS OF INTERACTION LANGUAGES

• the nature of our analysis graph is quite different, with each vertex containing an intermediate multi-

trace which is the multi-trace which "remains to be analyzed" at that point in the analysis and an

intermediate interaction model which is the continuation of the executable interaction specification

• our analysis graphs can be computed on-the-fly given that, from any given vertex, the information

to compute neighboring vertices is entirely self-contained (the current interaction model and what

remains of the multi-trace to analyze). This allows in our approach to analyse arbitrarily long multi-

traces against models which allows repeatable behaviors (with loops).

In [83], there are 3 different verdicts: "pass", which is returned when the trace is recognized to be a prefix

of a trace specified by the MSG, "fail", which is returned when there is a deviation from said specification,

and "inc" otherwise. With the various algorithms defined in this thesis in Chap.9, Chap.10 and Chap.11, we

allow the identification and discrimination between multi-traces which might correspond to exactly accepted

multi-traces, projections of prefixes of accepted traces, prefixes (in the sense of multi-traces) of accepted

multi-traces or slices (i.e. "sub-words" in the sense of multi-traces) of accepted multi-traces.

The analysis algorithms defined in this thesis may take as input generalized multi-traces i.e. sets of

sequences of events, each occurring on a subset of lifelines called a co-localization. This positions our

algorithms in the case of "Local Testing with Gathered Observations" described in [83] with k = n, given that

in our concept of "multi-trace", all the sub-systems are represented by a trace "component" of the multi-trace.

Another remark is that our notion of "multi-trace" is more general than the notion of "k-observation from

[83] given that we allow trace components of the multi-trace to represent several sub-systems (components

may represent co-localizations non reduced to singletons i.e. a set of several sub-systems).

3.2 A broader and shallower survey

In this section, we propose a broad and shallow survey on the formal semantics of Interaction Languages

that can be found in the literature and of their potential uses in Formal Verification (FV).

From studying the state of the art, we have found that most approaches to the definition of formal

semantics for ILs can be categorized into three groups depending on the type of formulation of the semantics

that is proposed. Those correspond to translational semantics, denotational semantics and operational

semantics. We have remarked however that the first two groups are dominant, with translational semantics

being quasi-exclusively used for applications in FV. By contrast, fewer direct operational semantics (that do

not rely on translations) of ILs are found in the literature.

In any case the reader can refer to the surveys [100] and [85] for a different perspective on the state of

the art.

3.2. A BROADER AND SHALLOWER SURVEY 63

3.2.1 Translational approaches

Many formal approaches to the semantics of ILs rely on translations that map concepts of the given IL into a

target formal framework, most often based on automata [55, 34, 124, 83] or Petri nets [52, 47, 54]. Depending

on which is the target formal framework, those translations may have the advantage of allowing the use of

Formal Verification tools designed for the target framework. As indicated in this survey [28] (among others),

there exist a wide array of tools for applying formal methods to the verification of communicating processes.

Those tools however mostly rely on input models in the form of communicating automata or Petri nets

(UPPAAL [79], DIVERSITY [67], CPNTools [69] etc.).

However, relying on translations to capture semantics leads to reasoning on foreign concepts and it often

leads to having some limitations:

• many translations are incomplete (not all concepts of ILs are mapped), for instance in [55], the UML-

SDs that are used can only contain synchronous complete (i.e. end-to-end) message exchanges and

only a form of strict sequencing (which can be repeated using a loop operator) is handled.

• in some approaches, restrictions are imposed on how the original IL can be used and interpreted. For

instance:

– in [124], there is a need to synchronize at specific points in the interaction; here when entering

or exiting some operators. This implies that some interleavings of actions (some actions that are

inside the operator w.r.t. others that are not in it) may not be taken into consideration.

– in [47], the rule for translating loops (Loop Combined Fragment of UML) states that there must

be a unique "Deciding Lifeline" that "decides the number of iterations to be used by all other

lifelines" and that "Deciding Lifeline" is the one which executes the "first event" of the loop.

However nothing in UML-SDs says that such a lifeline should or must exist.

In this section we give a broad overview of translational approaches.

Translations into automata-like formalisms

In [55], UML-SD are translated into timed automata, which are then verified with the UPPAAL tool [79]

(this process is applied to a case study concerning a communication protocol of audio/video components).

The translation mechanisms that are proposed only concern models with synchronous communications and

are only partially automated; many design choices for the UPPAAL model being left to the designer. An

"observer automaton" has to be designed so as to intercept communications between automata, make them

observable, and enter an error state if other events are observed. The notion of "visual order" of the diagram

is similar to our notion of "ordering". However, the process to build the observer automaton from the "visual

order" is only detailed in the case where this order is total (i.e. no "par" or "alt"...). This approach still

has the advantage of benefiting from UPPAAL’s temporal logic model checker, allowing the verification of

64 CHAPTER 3. ON THE SEMANTICS OF INTERACTION LANGUAGES

predicates such as ∀�P (in all reachable states predicate P holds) or ∃ �P (a state satisfying predicate P is

reachable).

In [34], each lifeline is translated into an associated Timed Input Output Symbolic Transition System

(TIOSTS) and message passing relies on some synchronous product. In order to cope with the high level

of asynchronism between executions associated to different lifelines, FIFO based communication schema

have been introduced to ensure the consistency of executions on different lifelines. Also, given that distinct

automata may take different paths when reaching brancing choices specified by alt or loop operators, so as to

maintain consistency, the authors of [34] introduced dedicated variables to keep track of those choices. This

approach allows translating UML-SD specifications written with the Papyrus visual modelling tool [61] into

automata-like models (TIOSTS), complete with symbolic variables, guards and operations, that can then be

formally analyzed via the DIVERSITY tool [67].

In [124], a symbolic automaton is built from UML-SD specifications. [124] is interested in the problem of

"trace analysis". Here, test traces can be checked against the automaton and provided a verdict (valid, invalid

or inconclusive). The proposed TERMOS framework has limitations e.g. entering and exiting combined

fragments are considered to be synchronization points between all lifelines; however it allows lifeline mobility,

different nodes being able to appear, disappear and get in or out of range of one another.

Translations into Petri nets

In [52], UML-SD specifications are translated into multivalued nets (M-nets). The translation is compo-

sitional, entry and exit places of the M-nets corresponding to subinteractions being connected differently

according to the parent combined fragment. However this process is complicated by the tracking of actions

that are completely unordered w.r.t. one another. Indeed, so as not to overspecify the translation, "maxi-

mal independent sets" are computed and glued together when reconstructing the M-net. As is the case for

our approach, goes with the assumption that all behaviour is explicitly specified in the diagrams. There is

therefore no use for neg, assert, consider or ignore combined fragments. However, like [124], [52] imposes

synchronization points (each combined fragment is prefixed and postfixed sequentially). [52] treats data in

the form of variables, message parameters and guards but does not deal with time.

In [47], the authors propose an approach to automatically translate UML-SDs designed with the Papyrus

tool [61] to Coloured Petri Nets (CPNs) in a format compatible with CPNTools [69] for execution / simulation

/ testing. CPNs come with an execution semantics that is particularly adapted for the description and

analysis of distributed and concurrent systems. A CPN is indeed a network of "places" owning "tokens" and

being connected by "arcs". Each such place can behave independently and fire an outgoing transition ("arc")

if it fulfills certain requirements (owning specific tokens, etc.). When an "arc" is fired, corresponding tokens

are passed between the origin and target "places", signifying the progression of the executed behavior. In [47],

the translation revolves around a list of 11 rules with different priorities and which apply to translate different

concepts (lifelines, message occurences, combined fragments, etc.) while iterating sequentially through the

UML-SD’s elements (model-to-model transformation enabled by EMF).

3.2. A BROADER AND SHALLOWER SURVEY 65

In [54] a set of UML-SDs specifying partial behaviors of a SUT are translated into Extended Petri Nets.

Input execution traces can then be checked against the EPNs. The advantage provided by EPNs is that

they combine the token of Colored Petri Nets allowing the handling of data values, and the port event places

of Event Driven Petri Nets so as to treat exchanges with the environment. This toolset can be applied (for

SUTs that are Java programs) to automatically generate and run JUnit testcases.

3.2.2 Denotational approaches

In [122], the author proposes a denotational semantics based on partial order sets (as in [83] which we

reviewed in Sec.3.1.5) defined on the set of UML event occurrences. [122] also evokes the issues caused by

the assert and negate operators being taken as operators and not as modalities.

[65] proposes a semantics that is a detailed version of the one from [122]. [65] evacuate the modality

issue by only considering the negate operator and by having it characterize traces absolutely (as opposed to

relatively).

In [42], an institutional approach, likened to that of [75] (which we reviewed in Sec.3.1.4) is proposed.

However it includes a loops operator (which corresponds to our loopW) and deals with modality by including

the neg and assert operators and separating the semantics in sets of accepted and refused traces.

3.2.3 Operational approaches

In addition to [99], which we have reviewed in Sec.3.1.3, the literature contains few attempts at defining

operational semantics for ILs.

The contribution in [84] presents an operational semantics that is somewhat similar to our own in the

sense that it builds traces from transformations of the form i
act−−→ i′. However, in addition to the interaction

syntax, it relies on a so-called communication medium to define its semantics as the output of a combination

of two transitions systems: an execution system which keeps track of the state of the communication medium,

and a projection system which selects the next action to execute and provide the interaction resulting from

the execution. Communication models, as explained in [53], are tasked with keeping track of which messages

have been sent and which are pending receptions. They often take the form of a set of dedicated buffers

(e.g. FIFO). Our approach has the advantage of making such communication models implicit as they are

implied by the mechanism that construct continuation interactions.

3.2.4 On the analysis of logs

We have seen with [83], which we reviewed in Sec.3.1.5, that it is possible to test MSGs (and more generally

ILs) both when the system can be observed globally and when it cannot (local observability). In this section,

we discuss some more on the state of the art related to the question of trace analysis w.r.t. interaction models.

Part of our work is indeed related to the general problem of the automatic analysis and debugging of

DSs based on local logging of traces [103, 37, 104, 86, 27]. We are positioned at the intersection of two main

66 CHAPTER 3. ON THE SEMANTICS OF INTERACTION LANGUAGES

issues: (1) that of tracking the causality of actions in traces [103, 86] based on the happened-before relation

of Lamport [77] and (2) that of checking multi-traces against formal properties [27] or models [104, 37].

Interactions have been extensively used to validate DSs using Test Case generation [49, 34, 83]. Much

effort is spent on the generation of local test cases to mitigate the following problems: (1) "observability", i.e.

the difficulty in inferring global executions from partial visions of message exchanges and (2) "controllability",

i.e. the difficulty in determining when to apply stimuli in order to realize a targeted global execution. In

this present thesis we do not address Test Case generation. However, our work confronts the issue of

"observability". With the multi-trace analysis algorithms presented in Chap.9, Chap.10 and Chap.11 we

provide methods so as to reconstruct global executions from partial observations (which are partial both in

terms of a lack of global reordering and in terms of having missing events) of distibuted executions.

With multi-trace analysis, our work rather falls within the domain of Passive Testing [27, 104] (in which

testers are only observers). This notably relates to the Test Oracle Problem [50] which is that of determining

expected outputs w.r.t. given stimuli. Such a problem also falls into the domain of offline approaches to

Runtime Verification [119, 36]. In [27] and [104], authors have proposed approaches to check a set of local

logs recorded in Service Oriented Systems. Authors of [27] propose a methodology to verify the conservation

of invariants during the execution of the system. Both local and global invariants can be checked, although

the latter is more costly in terms of computations. Our approach is different in that the reference for the

analysis is not a correctness property but a model of interaction as in [104, 50].

Logics such as Linear Temporal Logic (LTL), are widely used in runtime verification to specify and verify

requirements as logical properties. For DSs, either local properties are considered for synthesizing verifiers

(as in the centralized case) in which case verification at a global level is difficult to reason about, or a global

property is considered. In the latter case, either the property is transformed into decentralized verifiers and

can lose meaning in the process, or all verifiers use the same global property, but they must be informed

of other’s local states [119]. There remains the possibility of coming back to the centralized case, but the

accuracy of the global ordering of events using timestamping requires keeping the remote clocks synchronised

[36]. In this perspective, models of interactions are well-suited to be used as a reference for correctness when

analyzing DS executions. This is all the more relevant in cases where the temporal ordering of remote events

is not feasible.

[104] discusses passive testing against models of interactions expressed in the Chor [113] language. It

differs from our approach in so far as: (1) Chor is less expressive than the IL we propose (particularly w.r.t.

the absence of weak sequencing and the nature of loops), (2) [104] only handles synchronous communication

between services, which cannot always describe accurately concrete implementations and (3) the local logs

are not directly checked against the model but first pass through a synthesis step in which a global log is

reconstituted based on timestamp information, and then this global log is checked. In [104], putting logs

together is facilitated by assuming synchronized clocks, which is not a prerequisite to applying our analysis

approach.

Authors in [50] investigate the computational cost of log analysis w.r.t. graphs of MSCs. This cost is

3.3. CONCLUSION AND POSITION OF THE THESIS 67

compared in different cases according to the quality of observations (local or tester observability i.e. whether

one has a set of independent local logs or a globally ordered log) and the expressivity of the MSC graphs

(presence of choice, loop or parallelism). The work echoes results for "MSC Membership" [26, 60] which

state that this problem is NP-complete. The main factor of the cost blow-up lies in the fact that distributed

actions can be equally re-ordered in multiple ways. In this thesis, we address this issue of the complexity of

multi-trace analysis in Chap.9.

3.3 Conclusion and position of the thesis

ILs include a variety of specific formalisms, some being particularly expressive in terms of the intended

meanings (informal semantics) of the models they can define. However, most formal approaches are restricted

to specific sub-languages and, in the case of applications to FV, mostly rely on translations towards other

formalisms.

With our thesis, we propose an expressive Interaction Language (IL) and a framework for FV based on

a structural operational semantics which directly manipulates interaction terms (guaranteeing traceability

and allowing the graphical animation of the execution of interaction models) and which is backed-up by

(i.e. proven equivalent to) a denotational semantics which serves as a mathematical foundation. We use this

framework to implement multi-trace analysis algorithms that provide solutions to the membership problems

associated to various multi-trace semantics (that of accepted multi-traces and various notions of prefixes,

reflecting partially observed behavior).

68 CHAPTER 3. ON THE SEMANTICS OF INTERACTION LANGUAGES

Part I

The Interaction Language

69

Chapter 4

Syntax & Denotation

Contents
4.1 Semantic domain . 72

4.1.1 Traces . 72

4.1.2 Interleaving operator . 74

4.1.3 Strict sequencing operator . 77

4.1.4 Weak sequencing operator . 80

4.1.5 Comparing the scheduling operators . 84

4.1.6 Kleene closures . 85

4.1.7 Operational-style characterizations of Kleene closures 88

4.2 Syntax & Denotational Semantics . 94

4.2.1 Informal description of the syntax . 94

4.2.2 Formal syntax . 103

4.2.3 Denotational semantics . 105

4.3 Normal forms of interactions . 106

4.3.1 A sound axiom system for interactions . 107

4.3.2 A process to normalize interaction terms . 110

4.3.3 Automated proofs of convergence . 114

4.3.4 A total rewrite ordering on interactions . 117

4.3.5 Implementation & examples . 118

71

72 CHAPTER 4. SYNTAX & DENOTATION

In the previous chapters, we have introduced the context in which this thesis falls (Chap.2) and a state

of the art on the semantics of Interaction Languages (Chap.3) that is formal languages for specifying the

behaviors of distributed systems in sequence-diagram-like models.

In this chapter, we present our own take on a formal Interaction Language (IL). Our interactions are

terms of a term algebra. Those terms are then associated to a semantics, which represents the behaviors

that are specified by the model. The semantics of an interaction takes the form of a set of traces. Each trace

- a sequence of atomic events (emission or reception of a message) - represents a behavior that the modelled

system can express. The trace semantics that we propose in this section is a denotational-style semantics

that uses some operators on sets of traces (the semantic domain) to construct the semantics of interactions

by composition.

As a result, the layout of this chapter is the following:

• in Sec.4.1 we formally define the semantic domain and some algebraic operators on this domain,

• in Sec.4.2 we introduce the IL and its associated denotational-style semantics,

• in Sec.4.3 we discuss equivalent interaction terms and define a process to compute normal forms of

interaction terms.

The formalization and all the results presented in Sec.4.1 and Sec.4.2 of this chapter have been encoded

and proven using the Coq proof assistant in [88].

4.1 Semantic domain

In this section, we will define the semantic domain of our IL. This domain is that of sets of traces. Traces are

sequences of observable events that characterize specific executions of Distributed System (DS)s. Given that

a system may express several distinct behaviors, their models (interactions) can be associated to semantics

in the form of sets of traces.

4.1.1 Traces

As in [75], that we reviewed in Chap.3, interactions and the behaviors they can express are defined up to a

given signature Ω = (L,M) where:

• L is a set of lifelines. Lifelines are abstractions which can be used to represent sub-systems, or groups

of sub-systems of a DS.

• M is a set of messages. Messages are abstractions which can be used to represent what is exchanged

between several sub-systems of the DS, or between a sub-system and the external environment of the

DS.

4.1. SEMANTIC DOMAIN 73

The atomic events that can be defined to represent the exchange of messages, which characterize the

execution of the DS are communications actions. Indeed, the principle of interactions is to represent DSs

through the perspective of their internal and external communications. A communication action is:

• either the emission of a message m ∈M from a lifeline l ∈ L, noted l!m

• or the reception of a message m ∈M by a lifeline l ∈ L, noted l?m

We note AΩ the set of such actions, defined up to the signature Ω. For any such action a, the notation θ(a)

denotes the lifeline on which a occurs.

Definition 4.1: Communication Action

For any signature Ω = (L,M), we define the set of communication actions:

AΩ = {l∆m | (l ∈ L) ∧ (∆ ∈ {!, ?}) ∧ (m ∈M)}

For any action a ∈ AΩ of the form l∆m, θ(a) denotes the lifeline l.

As in [75], an execution of a DS defined over a signature Ω = (L,M) can be characterized by a sequence

of actions from AΩ that occurred globally. Such a sequence is called a trace and describes an execution from

a global perspective. There is a total order between actions disregarding the lifelines on which they occur.

We define traces over Ω as words in A∗Ω, with "." as concatenation law and ε the empty trace. The set of

traces is denoted by TΩ.

Definition 4.2: Traces of Execution

For any signature Ω = (L,M), we define the set of traces of execution:

TΩ = A∗Ω

For any t ∈ TΩ, we denote by |t| the length of t i.e. the number of actions in the sequence, which is

defined by:

• |ε| = 0

• |a.t| = 1 + |t| for any action a ∈ AΩ and trace t ∈ TΩ

For example, t = l1!m1.l2?m1.l2!m2 is a trace on the signature Ω = (L,M) with L = {l1, l2} and

M = {m1,m2} and we have |t| = 3.

In the following, we will introduce some operators which can be applied to elements of TΩ, and state

some of their properties, as preliminaries to later definitions and proofs. Those operators are then extended

to sets of traces as in [75].

74 CHAPTER 4. SYNTAX & DENOTATION

4.1.2 Interleaving operator

The interleaving operator, denoted by || corresponds to the shuffling of elements from two traces t1 and

t2 such that the local orders of elements within t1 and t2 are respected, but there is no such order that is

enforced when it comes to ordering elements from t1 w.r.t. those of t2.

Interleaving operator on traces

Let us at first define the || operator on traces in Def.4.3.

Definition 4.3: Interleaving on traces

For any signature Ω, we define || : TΩ×TΩ → P(TΩ) the function s.t. for any t1 and t2 in TΩ and any

a1 and a2 in AΩ:

ε||t2 = {t2}

t1||ε = {t1}

(a1.t1)||(a2.t2) = {a1.t | t ∈ t1||(a2.t2)} ∪ {a2.t | t ∈ (a1.t1)||t2}

For example, we have:

a1.a2 || a4 =

a4.a1.a2,

a1.a4.a2,

a1.a2.a4

In the following, we will state and prove some properties w.r.t. the interleaving operator.

Lem.4.1 states that for any two traces t1 and t2, the set of their interleavings (t1||t2) contains at least

one trace.

Lemma 4.1: Existence of at least one interleaving

For any t1 and t2 in TΩ, we have:

(t1||t2) 6= ∅

Proof. Let us reason by induction on trace t1.

• If t1 = ε then ε||t2 = {t2} 6= ∅

• Let us suppose that t1||t2 6= ∅. Then, given that {a.t | t ∈ (t1||t2)} ⊂ (a.t1||t2), it immediately follows

that (a.t1||t2) 6= ∅

Lem.4.2 is another property related to the existence of a certain decomposition given that a non-empty

trace of the form a.t is an interleaving of two traces t1 and t2.

4.1. SEMANTIC DOMAIN 75

Lemma 4.2: Implications of having a non-empty interleaving

For any t1, t2 and t in TΩ and for any a ∈ AΩ we have:

(a.t ∈ (t1||t2))⇒

∃ t3 ∈ TΩ,

(

(t1 = a.t3) ∧ (t ∈ (t3||t2))
)

∨
(

(t2 = a.t3) ∧ (t ∈ (t1||t3))
)

Proof. This property is an immediate consequence of the definition of the || operator.

In Lem.4.3 we consider some properties of the interleaving operator w.r.t. the empty trace ε.

Lemma 4.3: Some properties of the interleaving operator w.r.t. ε

For any t1, t2 and t in TΩ, we have:

(i) (∃ t ∈ (t1||t2), t 6= ε)⇔ ((t1 6= ε) ∨ (t2 6= ε))

(ii) (ε ∈ (t1||t2))⇔ ((t1 = ε) ∧ (t2 = ε))

(iii) (t ∈ (ε||t2))⇒ (t = t2)

(iv) (t ∈ (t1||ε))⇒ (t = t1)

Proof. © Let us prove the first property (i):

⇒ We suppose the existence of t. The fact that t 6= ε implies the existence of action a and trace t′ such

that t = a.t′. Then, as per Lem.4.2, a.t′ ∈ (t1||t2) implies that either t1 = a.t′1 and t′ ∈ (t′1||t2) or

t2 = a.t′2 and t′ ∈ (t1||t′2). In any case this implies that at least one of either t1 or t2 is non-empty.

⇐ Let us suppose that t1 6= ε (the other case is similar). Then there exist action a and trace t′1 such that

t1 = a.t′1. Let us also remark that (t′1||t2) 6= ∅ as per Lem.4.1. Let us then consider t0 ∈ (t′1||t2). By

definition we therefore have a.t0 ∈ (a.t′1||t2) = (t1|t2) and a.t0 6= ε.

© The other points are immediate given the definition of the || operator.

Finally, in Lem.4.4, we consider some algebraic properties of the || operator on traces. We can remark

that this operator is symmetric and associative.

Lemma 4.4: Algebraic properties of the interleaving operator on traces

For any t1, t2, t3 and t in TΩ, we have:

symmetry (t ∈ (t1||t2))⇔ (t ∈ (t2||t1))

associativity t ∈ ((t1||t2)||t3)⇔ t ∈ (t1||(t2||t3))

76 CHAPTER 4. SYNTAX & DENOTATION

Proof. © Let us start by the symmetry. Let us suppose the existence of t ∈ (t1||t2) and prove that t ∈ (t2||t1)

(the other direction is the same). Let us reason by induction on (the size of) t.

• If t = ε, then, as per Lem.4.3, we have t1 = t2 = ε so ε ∈ (ε||ε) all the same.

• If t = a.t′, then, as per Lem.4.2, we have:

– either t1 = a.t′1 and t′ ∈ (t′1||t2). In that case, t′ being smaller that t, we can apply the induction

hypothesis, which implies that t′ ∈ (t2||t′1) and then by definition of the || operator, t = a.t′ ∈

(t2||a.t′1) = (t2||t1).

– or t2 = a.t′2 and t′ ∈ (t1||t′2). In that case, t′ being smaller that t, we can apply the induction

hypothesis, which implies that t′ ∈ (t′2||t1) and then by definition of the || operator, t = a.t′ ∈

(a.t′2||t1) = (t2||t1).

© Let us now consider the associativity.

⇒ Let us consider t ∈ ((t1||t2)||t3). This means that there exists a certain t12 s.t. t12 ∈ (t1||t2) and

t ∈ (t12||t3). Let us then reason by induction on t.

– If t = ε then, as per Lem.4.3, this implies that t12 = t3 = ε, and the fact that t12 ∈ (t1||t2) implies

that t1 = t2 = ε. Then ε ∈ (ε||(ε||ε)) is given.

– If t = a.t′, then, as per Lem.4.2, we have:

∗ either t12 = a.t′12 and t′ ∈ (t′12||t3). Then, given that a.t′12 ∈ (t1||t2) by applying Lem.4.2

again we have:

· either t1 = a.t′1 and t′12 ∈ (t′1||t2). In that case we have t′ ∈ ((t′1||t2)||t3). Then, we can

apply the induction hypothesis on t′, which implies that t′ ∈ (t′1||(t2||t3)). By definition

of the || operator, t = a.t′ ∈ (a.t′1||(t2||t3)) = (t1||(t2||t3))

· or t2 = a.t′2 and t′12 ∈ (t1||t′2). In that case we have t′ ∈ ((t1||t′2)||t3). Let us then consider

t′23 ∈ (t′2||t3) s.t. t′ ∈ (t1||t′23). By definition of the || operator, t = a.t′ ∈ (t1||a.t′23) and

a.t′23 ∈ (a.t′2||t3) = (t2||t3). Therefore t ∈ (t1||(t2||t3))

∗ or t3 = a.t′3 and t′ ∈ (t12||t′3) ⊂ ((t1||t2)||t′3). Then, we can apply the induction hypothesis on

t′, which implies that t′ ∈ (t1||(t2||t′3)). Let us then consider t′23 ∈ (t2||t′3) s.t. t′ ∈ (t1||t′23).

By definition of the || operator, t = a.t′ ∈ (t1||a.t′23) and a.t′23 ∈ (t2||a.t′3) = (t2||t3). Therefore

t ∈ (t1||(t2||t3))

⇐ The other direction can be proven in a similar fashion.

4.1. SEMANTIC DOMAIN 77

Interleaving operator on sets of traces

We then extend the definition of the interleaving operator to sets of trace in Def.4.4. We will use the

same overloaded notation || which is not problematic given that for any two traces t1 and t2 we have

t1||t2 = {t1}||{t2}.

Definition 4.4: Interleaving on sets of traces

We extend || to sets of traces with || : P(TΩ)× P(TΩ)→ P(TΩ) s.t. for any sets of traces T1 and T2:

T1||T2 =
⋃
t1∈T1
t2∈T2

(t1||t2)

For example, we have:

 a1.a2,

a3

 ||
{
a4

}
=

a4.a1.a2,

a1.a4.a2,

a1.a2.a4,

a4.a3,

a3.a4

In Lem.4.5 we state some algebraic properties of this extended operator.

Lemma 4.5: Algebraic properties of the interleaving operator on sets of traces

For any sets T , T1, T2 and T3 in P(TΩ):

neutral element T ||{ε} = T = {ε}||T

commutativity T1||T2 = T2||T1

associativity (T1||T2)||T3 = T1||(T2||T3)

left-distributivity T1||(T2 ∪ T3) = (T1||T2) ∪ (T1||T3)

right-distributivity (T1 ∪ T2)||T3 = (T1||T3) ∪ (T2||T3)

Proof. The fact that {ε} is a neutral element is implied by definition and by Lem.4.3. The commutativity

and associativity are implied by the respective properties from Lem.4.4. The distributivity is immediate.

4.1.3 Strict sequencing operator

Strict sequencing operator on traces

The strict sequencing operator, denoted by ";" corresponds to the concatenation of traces.

78 CHAPTER 4. SYNTAX & DENOTATION

Definition 4.5: Strict Sequencing on traces

For any signature Ω, we define ; : TΩ × TΩ → P(TΩ) the function s.t. for any t1 and t2 in TΩ and any

a in AΩ:

ε; t2 = {t2} and (a.t1); t2 = {a.t | t ∈ t1; t2}

In fact, the strict sequencing of two traces t1 and t2, denoted by t1; t2 is the singleton containing the

concatenation t1.t2 of both traces. This formulation in terms of a set of trace can be explained by a will to

have the same formulation as that of the other operators. This notation has notably been used in [75].

For example, we have:

a1.a2 ; a4.a5 =
{
a1.a2.a4.a5

}

As what we did for the interleaving operator, let us consider analogous properties for the strict sequencing

operator concerning the existence of strict sequences. In Lem.4.6 we state the existence and the unicity of

the strict sequencing of two traces t1 and t2.

Lemma 4.6: Existence of exactly one strict sequence

For any t1 and t2 in TΩ, we have:

(t1; t2) = {t1.t2}

Proof. Immediate.

Lem.4.7 is analogous to Lem.4.2. It states the the existence of a certain decomposition given that a non

empty trace of the form a.t is a strict sequence of two traces t1 and t2.

Lemma 4.7: Implications of having a non-empty strict sequence

For any t1, t2 and t in TΩ and for any a ∈ AΩ we have:

(a.t ∈ (t1; t2))⇒

∃ t3 ∈ TΩ,

(

(t1 = a.t3) ∧ (t ∈ (t3; t2))
)

∨
(

(t1 = ε) ∧ (t2 = a.t)
)

Proof. Immediate.

In Lem.4.8, we consider some properties of the strict sequencing operator w.r.t. the empty trace ε.

4.1. SEMANTIC DOMAIN 79

Lemma 4.8: Some properties of the strict sequencing operator w.r.t. ε

For any t1, t2, t3 and t in TΩ, for any l ∈ L, and any a ∈ AΩ we have:

(i) (∃ t ∈ (t1; t2), t 6= ε)⇔ ((t1 6= ε) ∨ (t2 6= ε))

(ii) (ε ∈ (t1; t2))⇔ ((t1 = ε) ∧ (t2 = ε))

(iii) (t ∈ (ε; t2))⇒ (t = t2)

(iv) (t ∈ (t1; ε))⇒ (t = t1)

Proof. Immediate.

Finally, in Lem.4.9, we consider some algebraic properties of the ; operator. We can remark that this

operator is associative.

Lemma 4.9: Algebraic properties of the strict sequencing operator on traces

For any t1, t2 and t3 in TΩ we have:

associativity t ∈ ((t1; t2); t3)⇔ t ∈ (t1; (t2; t3))

Proof. Immediate.

Strict sequencing operator on sets of traces

Similarly to what we did for the interleaving operator, we extend, in Def.4.6 the strict sequencing operator

to sets of traces. We will likewise use the same overloaded notation ; which is not problematic given that

for any two traces t1 and t2 we have t1; t2 = {t1}; {t2}.

Definition 4.6: Strict Sequencing on sets of traces

We extend ; to sets of traces with ; : P(TΩ)× P(TΩ)→ P(TΩ) s.t. for any sets of traces T1 and T2:

T1;T2 =
⋃
t1∈T1
t2∈T2

(t1; t2)

For example, we have: a1.a2,

a3

 ;
{
a4.a5

}
=

 a1.a2.a4.a5,

a3.a4.a5

In Lem.4.10 we state some algebraic properties of this extended operator.

80 CHAPTER 4. SYNTAX & DENOTATION

Lemma 4.10: Algebraic properties of the strict sequencing operator on sets of traces

For any sets T , T1, T2 and T3 in P(TΩ):

neutral element T ; {ε} = T = {ε};T

associativity (T1;T2);T3 = T1; (T2;T3)

left-distributivity T1; (T2 ∪ T3) = (T1;T2) ∪ (T1;T3)

right-distributivity (T1 ∪ T2);T3 = (T1;T3) ∪ (T2;T3)

Proof. The fact that {ε} is a neutral element is implied by definition and by Lem.4.8. The associativity is

implied by the respective property from Lem.4.9. The distributivity is immediate.

4.1.4 Weak sequencing operator

The weak sequencing operator, denoted by ;×× corresponds to the reordering of events from traces such that

events from the right-hand side trace can only be placed when all the events occurring on the same lifeline

from the left-hand side trace have already been placed.

Conflict

The definition of this operator relies on a notion of conflict, denoted by the ×× function, which is formally

defined in Def.4.7. For any lifeline l and any trace t, t××l denotes the occurrence of a conflict between l and

t, i.e. that there is at least one action in t that occurs on lifeline l.

Definition 4.7: Conflict

For any signature Ω, we define ×× : TΩ × L→ {>,⊥} s.t. for any lifeline l and any trace t:

ε××l = ⊥

(a.t)××l = (θ(a) = l) ∨ (t××l)

We can extend ×× to sets of traces as ×× : P(TΩ)× L→ {>,⊥} s.t. for any T ∈ P(TΩ) and l ∈ L:

T××l⇔ (∃ t ∈ T s.t. t××l)

Weak sequencing operator on traces

Weak sequencing then functions in a similar fashion as interleaving but with the added constraint that events

occurring on the right-hand side trace are only added if they have no conflict w.r.t. what remains to be

added in the left-hand side trace. Its formal definition is given in Def.4.8.

4.1. SEMANTIC DOMAIN 81

Definition 4.8: Weak Sequencing on traces

For any signature Ω, we define ;×× : TΩ×TΩ → P(TΩ) the function s.t. for any t1 and t2 in TΩ and any

a1 and a2 in AΩ:

ε;×× t2 = {t2}

t1;×× ε = {t1}

(a1.t1);×× (a2.t2) = {a1.t | t ∈ t1;×× (a2.t2)} ∪

a2.t

∣∣∣∣∣∣∣
(t ∈ (a1.t1);×× t2)

∧(¬(a1.t1×
×θ(a2)))

Let us remark that, although it may be due to a typographical error or an oversight in [75], we provide a

different definition than that of [75]. Indeed, in [75] it suffices that the first element a1 of the left-hand side

a1.t1 do not enter into conflict with the first element a2 of the right-hand side a2.t2 for a2 to be added at

the beginning of the reconstructed trace (it is the condition ¬(a1×
×a2) in [75], with the definition of ×× being

that of a conflict between two actions).

For example, we have:

l1!m1.l2!m2 ;×× l1!m3 =

 l1!m1.l1!m3.l2!m2,

l1!m1.l2!m2.l1!m3

In the following, we will state some properties of the weak sequencing operator as we have done for the

two previous operators.

In Lem.4.11, we state that for any two traces t1 and t2, the set of their weak sequences (t1;×× t2) contains

at least one trace.

Lemma 4.11: Existence of at least one weak sequence

For any t1 and t2 in TΩ, we have:

(t1;×× t2) 6= ∅

Proof. Analogous too that of Lem.4.1.

Lem.4.12 is another property related to the existence of a certain decomposition given that a non empty

trace of the form a.t is a weak sequence of two traces t1 and t2.

82 CHAPTER 4. SYNTAX & DENOTATION

Lemma 4.12: Implications of having a non-empty weak sequence

For any t1, t2 and t in TΩ and for any a ∈ AΩ we have:

(a.t ∈ (t1;×× t2))⇒

∃ t3 ∈ TΩ,

(

(t1 = a.t3) ∧ (t ∈ (t3;×× t2))
)

∨
(

(¬(t1××θ(a))) ∧ (t2 = a.t3) ∧ (t ∈ (t1;×× t3))
)

Proof. Analogous too that of Lem.4.2, except for the added condition ¬(t1××θ(a)) in the case where the action

a is found in the right trace t2, and which stems from the fact that it wouldn’t be otherwise possible, if there

were some conflicts between θ(a) and t1.

In Lem.4.13, we consider some properties of the weak sequencing operator w.r.t. the empty trace ε.

Lemma 4.13: Some properties of the weak sequencing operator w.r.t. ε

For any t1, t2 and t in TΩ, we have:

(i) (∃ t ∈ (t1;×× t2), t 6= ε)⇔ ((t1 6= ε) ∨ (t2 6= ε))

(ii) (ε ∈ (t1;×× t2))⇔ ((t1 = ε) ∧ (t2 = ε))

(iii) (t ∈ (ε;×× t2))⇒ (t = t2)

(iv) (t ∈ (t1;×× ε))⇒ (t = t1)

Proof. Analogous too that of Lem.4.3.

Before introducing the algebraic properties of the weak sequencing operator (its associativity), let us

quickly digress on the relationships of the ×× "conflict" function w.r.t. the three previously defined operators

(strict and weak sequencing and interleaving). We remark some distributive properties of ×× w.r.t. the three

operators. This property of distributivity will be required to prove the associativity of ;××.

Lemma 4.14: Distributive properties of ××

Let us consider � ∈ {; , ;×× , ||}. Then, for any traces t1 and t2 and any lifeline l we have:

(∃ t ∈ (t1 � t2), ¬(t××l)) ⇔ ((¬(t1××l)) ∧ (¬(t2××l))) ⇔ (∀ t ∈ (t1 � t2), ¬(t××l))

And for any non-empty sets of traces T1 and T2 we have:

(T1 � T2)××l ⇔ (T1×
×l) ∨ (T2×

×l)

(T1 ∪ T2)××l ⇔ (T1×
×l) ∨ (T2×

×l)

4.1. SEMANTIC DOMAIN 83

Proof. Let us discuss both properties:

© For the first property, the sketch of the proof is that the absence of conflict for any recomposed trace

t w.r.t. a lifeline l means that all of its actions do not occur on l. Given that the set of the actions that

occur within this recomposed trace is exactly the union of those that occur in either t1 and/or t2, then this

absence of conflict is equivalent to having an absence of conflict for both t1 and t2 w.r.t. l.

© For the second property, the sketch of the proof is that the presence of a conflict w.r.t lifeline l for a

certain recomposed trace t ∈ (T1 � T2) means that it contains an action occurring on l. Then this action

must either come from a trace from T1 or from a trace from T2. Reciprocally any action occurring on l found

in a trace from either T1 or T2 will also be found on a least one trace from T (given non-emptiness).

Let us finally consider the algebraic properties of the ;×× operator. We can remark that this operator is

associative, as stated by Lem.4.15.

Lemma 4.15: Algebraic properties of the weak sequencing operator

For any t1, t2, t3 and t in TΩ, we have:

associativity t ∈ ((t1;×× t2);×× t3)⇔ t ∈ (t1;×× (t2;×× t3))

Proof. The proof is analogous to that of the associativity of || from Lem.4.4. The main difference occurs in

the induction, when considering a trace of the form t = a.t′. If the action a is to be found in t2 then there

must be no conflict between t1 and θ(a). If a is found in t3 then there must be no conflict between t1 and

θ(a) and no conflict either between t2 and θ(a). When recomposing the traces t23 this must also be taken

into account. To do that we need the distributivity of ×× over ;××, which was introduced in Lem.4.14 (hence

the digression).

Weak sequencing operator on sets of traces

Similarly to what we did for the two previous operators, we extend, in Def.4.9 the weak sequencing operator

to sets of traces. We will likewise use the same overloaded notation ;×× which is not problematic given that

for any two traces t1 and t2 we have t1;×× t2 = {t1};×× {t2}.

Definition 4.9: Weak Sequencing on sets of traces

We extend ;×× to sets of traces with ;×× : P(TΩ)× P(TΩ)→ P(TΩ) s.t. for any sets of traces T1 and T2:

T1;×× T2 =
⋃
t1∈T1
t2∈T2

(t1;×× t2)

84 CHAPTER 4. SYNTAX & DENOTATION

For example, we have:

 l1!m1.l2!m2,

l2?m1

 ;××
{
l1!m3

}
=

l1!m1.l1!m3.l2!m2,

l1!m1.l2!m2.l1!m3,

l1!m3.l2?m1,

l2?m1.l1!m3

In Lem.4.16 we state some algebraic properties of this extended operator.

Lemma 4.16: Algebraic properties of the weak sequencing operator on sets of traces

For any sets T , T1, T2 and T3 in P(TΩ):

neutral element T ;×× {ε} = T = {ε};×× T

associativity (T1;×× T2);×× T3 = T1;×× (T2;×× T3)

left-distributivity T1;×× (T2 ∪ T3) = (T1;×× T2) ∪ (T1;×× T3)

right-distributivity (T1 ∪ T2);×× T3 = (T1;×× T3) ∪ (T2;×× T3)

Proof. The fact that {ε} is a neutral element is implied by definition and by Lem.4.13. The associativity is

implied by the respective property from Lem.4.15. The distributivity is immediate.

4.1.5 Comparing the scheduling operators

We can remark that compositions enabled by the strict sequencing operator are also enabled by the weak

sequencing operator, and, in turn, compositions enabled by the weak sequencing operator are also enabled

by the interleaving operator. As a result, we can order the operators as follows: (1) the interleaving operator

is the weakest of the three, given that it is less strict w.r.t. which compositions it allows, and (2) the strict

sequencing operator is the strongest.

Lemma 4.17: Comparing scheduling operators on traces

For any traces t1 and t2 we have:

(t1; t2) ⊂ (t1;×× t2) and (t1;×× t2) ⊂ (t1||t2)

Proof. © For the first predicate, let us proceed by induction on t1.

• If t1 = ε then (ε; t2) = {t2} and (ε;×× t2) = {t2} so the property holds.

• If t1 = a.t′1 then (a.t′1; t2) = {a.t | t ∈ t′1; t2} and given that, by the induction hypothesis (t′1; t2) ⊂

(t′1;×× t2), this is included in (a.t′1;×× t2).

© We can proceed in a similar fashion for the second predicate i.e. the inclusion of (t1;×× t2) into (t1||t2)

4.1. SEMANTIC DOMAIN 85

This property can be immediately extended to sets of traces as is done in Lem.4.18.

Lemma 4.18: Comparing scheduling operators

For any sets of traces T1 and T2 we have:

(T1;T2) ⊂ (T1;×× T2) and (T1;×× T2) ⊂ (T1||T2)

Proof. Immediately implied by Lem.4.17.

4.1.6 Kleene closures

Definition & basic properties

We have seen in the lemmas Lem.4.5, Lem.4.10 and Lem.4.16, that all three scheduling operators are asso-

ciative. This allows us to define the Kleene closures of those operators in Def.4.10.

Definition 4.10: Kleene closures

For any scheduling operator � ∈ {; , ;×× , ||}, we define, for any set of traces T ∈ P(TΩ):

T �0 = {ε}

T �j = T � T �(j−1) for j > 0

T �∗ =
⋃
j∈N T

�j

The three Kleene closures defined in Def.4.10 may be called as follows:

• ;∗ is the strict Kleene closure,

• ;××∗ is the weak Kleene closure,

• ||∗ is the interleaving Kleene closure.

Within the Kleene closure T �∗ we can find traces obtained from the repetition (using the specific schedul-

ing operator �) of any number of traces of T .

Let us consider the following example. In this example we have a set T of traces in which there are two

traces l1!m1.l2!m2 in orange and l2?m1 in red. We consider here the weak Kleene closure of T i.e. T ;××∗. We

display a subset of T ;××∗ (the rest being indicated by the · · ·) which consists of T ;××0 ∪ T ;××1 ∪ T ;××2 i.e. the first

3 powersets of T .

86 CHAPTER 4. SYNTAX & DENOTATION

 l1!m1.l2!m2,

l2?m1

;××∗

=

ε,

l1!m1.l2!m2,

l2?m1,

l1!m1.l2!m2.l1!m1.l2!m2,

l1!m1.l1!m1.l2!m2.l2!m2,

l1!m1.l2!m2.l2?m1,

l2?m1.l2?m1,

l2?m1.l1!m1.l2!m2,

l1!m1.l2?m1.l2!m2,

· · ·

In the following we state some properties of the Kleene closures.

Following what has already been done for the three scheduling operators, we remark in Lem.4.19 the

distributivity of ×× w.r.t. the Kleene closures.

Lemma 4.19: Distributivity of ×× over the Kleene closures

For any � ∈ {; , ;×× , ||}, for any set of traces T ∈ P(TΩ) and any lifeline l ∈ L, we have:

(
∃ t ∈ (T �∗ \ {ε}), ¬(t××l)

)
⇔
(
∃ t ∈ (T \ {ε}), ¬(t××l)

)
(T �∗××l)⇔ (T××l)

Proof. As for Lem.4.14 the sketch of the proof relies on discussing the implications of the presence or absence

of conflicts.

© In the first case there exists a non empty recomposed trace in T �∗ with no conflicts w.r.t. l. This trace

has been recomposed from at least one non empty trace from T in which there are no conflicts w.r.t. l.

© In the second case we simply remark that the presence of an action occurring on l in T implies its presence

in T �∗, and, reciprocally, if it is found in T �∗ then it must be found in T .

In Lem.4.20 we state that the set {ε} containing only the empty trace is a fixed-point w.r.t. any of the

three Kleene closures.

Lemma 4.20: A fixed-point for the Kleene closures

For any � ∈ {; , ;×× , ||}, we have:

{ε}�∗ = {ε}

Proof. Trivial.

Comparing closures & idempotence properties

In Lem.4.18 from before, we have seen that the three scheduling operators can be characterized w.r.t. each

other by inclusion. Given that the three Kleene closures are based on those operators, those properties of

inclusions can be extended. We formalize this observation in Lem.4.21.

4.1. SEMANTIC DOMAIN 87

Lemma 4.21: Comparing the three Kleene closures

For any set of traces T , we have:

T ;∗ ⊂ T ;××∗ and T ;××∗ ⊂ T ||∗

Proof. The Kleene closures are obtained from unions of the powersets of T . It then suffices to prove that,

for any index j ∈ N we have:

T ;j ⊂ T ;××j and T ;××j ⊂ T ||j

Let us therefore reason by induction on j:

• we have T ;0 = T ;××0 = T ||0 = {ε} therefore the property holds for j = 0

• we have T ;0 = T ;××0 = T ||0 = T therefore the property holds for j = 1

• let us suppose that T ;j ⊂ T ;××j ⊂ T ||j we then have:

T ;(j+1) = T ;T ;j by definition

⊂ T ;T ;××j by induction hypothesis

⊂ T ;×× T ;××j by Lem.4.18

⊂ T ;××(j+1) by definition

In the same manner, we have:

T ;××(j+1) = T ;×× T ;××j by definition

⊂ T ;×× T ||j by induction hypothesis

⊂ T ||T ||j by Lem.4.18

⊂ T ||(j+1) by definition

Hence the property holds.

A consequence of those properties of inclusions is given in Lem.4.22. It pertains to the composition of

several Kleene closures. Those properties are akin to properties of idempotence.

Lemma 4.22: Idempotence properties of the Kleene closures

For any set of traces T , we have:
(i) (T ;∗);∗ = T ;∗ (iv) (T ;××∗);∗ = T ;××∗ (vii) (T ||∗);∗ = T ||∗

(ii) (T ;∗);××∗ = T ;××∗ (v) (T ;××∗);××∗ = T ;××∗ (viii) (T ||∗);××∗ = T ||∗

(iii) (T ;∗)||∗ = T ||∗ (vi) (T ;××∗)||∗ = T ||∗ (ix) (T ||∗)||∗ = T ||∗

88 CHAPTER 4. SYNTAX & DENOTATION

Proof. Let us prove each predicate one by one.

(i) Let us prove both inclusions of the equality:

⊂ Let us consider t ∈ (T ;∗);∗. This implies the existence of j1 ≥ 0 s.t. t ∈ (T ;∗);j1 . This trace t

is obtained from recomposing a finite number j1 of traces from T ;∗. As a result there exists an

index j2 such that all of those trace are included in T ;j2 . Therefore we have t ∈ (T ;j2);j1 and as

a result, given that ; is associative as per Lem.4.10, we have t ∈ T ;(j1+j2) and therefore t ∈ T ;∗

⊃ Let us consider t ∈ T ;∗. We immediately have that t ∈ (T ;∗);1 and therefore t ∈ (T ;∗);∗

(ii) Let us prove both inclusions of the equality:

⊂ Let us consider t ∈ (T ;∗);××∗. This implies the existence of j1 ≥ 0 s.t. t ∈ (T ;∗);××j1 . This trace t

is obtained from recomposing a finite number j1 of traces from T ;∗. As a result there exists an

index j2 such that all of those trace are included in T ;j2 . Then, as per Lem.4.21, this implies that

those traces are also included in T ;××j2 . Therefore we have t ∈ (T ;××j2);××j1 . As a result, given that

;×× is associative as per Lem.4.16, we have t ∈ T ;××(j1+j2) and therefore t ∈ T ;××∗

⊃ Let us consider t ∈ T ;××∗. We immediately have that t ∈ (T ;1);××∗ and therefore t ∈ (T ;∗);××∗

(*) all the other points can be proven similarly

4.1.7 Operational-style characterizations of Kleene closures

In this section we will provide an operational-style characterization for the strict Kleene closure ;∗ and the

interleaving Kleene closure ||∗. We will then show, using a counter-example that this characterization does

not hold for the weak Kleene closure ;××∗.

Head-First closure

For any scheduling operator � ∈ {; , ;×× , ||} whenever a.t ∈ T1 � T2 (with a and t any action and trace and

T1 and T2 any sets of traces), we may "take" the action a either from a trace of T1 or from a trace of T2.

The restricted scheduling �� that we define in Def.4.11 correspond to a narrower definition of the cor-

responding scheduling operators, that do not allow the recomposition of traces which start with an action

taken from a right-hand side set.

4.1. SEMANTIC DOMAIN 89

Definition 4.11: Restricted scheduling operators

For any � ∈ {; , ;×× , ||}, we define �� : P(TΩ)×P(TΩ)→ P(TΩ) such that for any sets of traces T1 and

T2 we have:

T1 �� T2 =

t ∈ T1 � T2

∣∣∣∣∣∣∣ (t = a.t′)⇒

∃ t1 ∈ TΩ, s.t.
(a.t1 ∈ T1)

∧ (t′ ∈ {t1} � T2)

Let us consider the following example:

T1;×× T2 with T1 =

 l1!m1,

l2!m3

 and T2 =

 l1!m1,

l1!m2

Let us remark that T1;×× T2 6= T2;×× T1. Indeed, we have for example that l1!m1.l1!m2 ∈ T1;×× T2 but it is

not in T2;×× T1. Likewise, we have that l1!m2.l1!m1 ∈ T2;×× T1 but it is not in T1;×× T2.

By composition, we can compute the resulting set of traces as follows:

T1;×× T2 =

(l1!m1;×× l1!m1)

∪(l1!m1;×× l1!m2)

∪(l2!m3;×× l1!m1)

∪(l2!m3;×× l1!m2)

=

{
l1!m1.l1!m1

}
∪
{
l1!m1.l1!m2

}

∪

 l2!m3.l1!m1,

l1!m1.l2!m3

∪

 l2!m3.l1!m2,

l1!m2.l2!m3

=

l1!m1.l1!m1,

l1!m1.l1!m2,

l2!m3.l1!m1,

l1!m1.l2!m3,

l2!m3.l1!m2,

l1!m2.l2!m3

However, if we use ;�×× instead of ;×× we obtain the following:

T1;�×× T2 =

{
l1!m1.l1!m1

}
∪
{
l1!m1.l1!m2

}
∪
{
l2!m3.l1!m1

}
∪
{
l2!m3.l1!m2

}

=

l1!m1.l1!m1,

l1!m1.l1!m2,

l2!m3.l1!m1,

l2!m3.l1!m2

We can then define head-first closures of scheduling operators using the notion of restricted scheduling

and of Kleene closure as is done in Def.4.12.

Definition 4.12: Head-first closures

For any � ∈ {; , ;×× , ||}, we define the Head-First closure of � as ��∗ i.e. the Kleene closure of the

restricted �� operator.

90 CHAPTER 4. SYNTAX & DENOTATION

The restricted operators that we have just defined can trivially be characterized w.r.t. their unrestricted

counterparts (Lem.4.23).

Lemma 4.23: Relating the restricted operators to their unrestricted counterparts

For any � ∈ {; , ;×× , ||}, for any sets of traces T1, T2 and T we have:

(T1 �� T2) ⊂ (T1 � T2) and T �
�∗ ⊂ T �∗

Proof. The first point is immediate. The second is implied by the first.

In a similar fashion to what we did in Lem.4.18 and Lem.4.21, we compare, in Lem.4.24, the different

restricted operator we have just defined.

Lemma 4.24: Comparing the restricted operators

For any sets of traces T1, T2 and T we have:

(T1;� T2) ⊂ (T1;�×× T2) and (T1;�×× T2) ⊂ (T1||�T2)

and T ;�∗ ⊂ T ;�××∗ and T ;�××∗ ⊂ T ||
�∗

Proof. The two first points are immediately implied by Lem.4.18 and by the definition of the restriction of

scheduling operators (Def.4.11). The two last points are implied by the first two points, by the definition of

the Head-First closures (Def.4.12) and by Lem.4.21.

This notion of Head-First closure constitutes an operational-style counterpart to the notion of Kleene

closure. Indeed, it provides a means to ensure that the occurrence of the first action in a trace a.t comes

from the expression of a behavior that is found in the first instance of the repeatable specification T .

In the following we will show that this notion of Head-First closure is equivalent to that of the Kleene

closure for the strict sequencing ; and the interleaving || operators. However, as we will later see, those two

notions are not equivalent whenever � =;×× i.e. for the weak sequencing operator.

Characterizations for the strict and interleaving Kleene closures

In Lem.4.25 we show that, whenever � ∈ {; , ||}, we can characterize the presence of a non empty trace a.t

in T �∗ as the existence of a trace t′ such that a.t′ ∈ T and t ∈ {t′} � T �∗.

4.1. SEMANTIC DOMAIN 91

Lemma 4.25: Operational characterization of ;∗ and ||∗ on traces

For any � ∈ {; , ||}, for any set of traces T ∈ P(TΩ), for any trace t in TΩ and for any action a ∈ AΩ

we have:

(a.t ∈ T �∗)⇒

∃ t′ ∈ TΩ s.t.

 (a.t′ ∈ T)

∧ (t ∈ ({t′} � T �∗))

Proof. By definition of the Kleene closure, a.t ∈ T �∗ implies the existence of j ≥ 0 s.t. a.t ∈ T �j . We can

then reason by induction on the power j:

• we cannot have j = 0 because T �0 = {ε}

• if j = 1 then a.t ∈ T �1 = T and t ∈ {t} � {ε} ⊂ {t} � T �∗ therefore the property holds

• if j > 1 the fact that a.t ∈ T �j = T � T �(j−1) implies the existence of t′′ ∈ T s.t. a.t ∈ {t′′} � T �(j−1)

then:

– if � =; we have, as per Lem.4.7 that:

∗ either t′′ is of the form a.t′ and t ∈ {t′};T ;(j−1) and therefore t ∈ {t′};T ;∗ and hence the

property holds

∗ or t′′ = ε and a.t ∈ T ;(j−1) In this case we can use the induction hypothesis so that the

property holds

– if � = || we have, as per Lem.4.2 that:

∗ either t′′ is of the form a.t′ and t ∈ {t′}||T ||(j−1) and therefore t ∈ {t′}||T ||∗ and hence the

property holds

∗ or there exists a certain t′′′ s.t. we have a.t′′′ ∈ T ||(j−1) and t ∈ {t′′}||{t′′′}. Let us then

remark that given that we have a.t′′′ ∈ T ||(j−1) we can apply the induction hypothesis to

reveal t′ such that a.t′ ∈ T and t′′′ ∈ {t′}||T ||∗. We can then use the associativity and

commutativity of || as follows:

t ∈ {t′′}||({t′}||T ||∗) ⇒ t ∈ {t′′}||(T ||∗||{t′}) commutativity

⇒ t ∈ ({t′′}||T ||∗)||{t′} associativity

⇒ t ∈ T ||∗||{t′} property of Kleene closure

⇒ t ∈ {t′}||T ||∗ commutativity

As a result, we have found t′ such that the property holds.

From Lem.4.25 we can then immediately conclude that:

92 CHAPTER 4. SYNTAX & DENOTATION

• the head-first closure ;�∗ and the Kleene closure ;∗ of the strict sequencing ; are equivalent

• the head-first closure ||�∗ and the Kleene closure ||∗ of the interleaving sequencing || are equivalent

Lemma 4.26: Equivalence of HF & K closures for strict sequencing & interleaving

For any set of traces T we have:

T ;�∗ = T ;∗ and T ||
�∗ = T ||∗

Proof. As per Lem.4.23, we already have T ;�∗ ⊂ T ;∗ and T ||
�∗ ⊂ T ||∗. There remains to prove the other

inclusion. Let us then consider � ∈ {; , ||} and reason by induction on a member trace:

• for t = ε we have, by definition ε ∈ T ��∗ and ε ∈ T �∗ therefore both properties holds for an empty

trace

• if the trace is of the form a.t then if a.t ∈ T �∗, then, as per Lem.4.25 there exists a trace t′ such that

a.t′ ∈ T and t ∈ {t′} � T �∗. This in turn implies that:

– given that action a is taken from a.t′, we have a.t ∈ {a.t′} �� T �∗

– and there exists t′′ ∈ T �∗ such that t ∈ {t′} � {t′′}. Given that t′′ is strictly smaller than a.t, we

can apply the induction hypothesis to obtain that t′′ ∈ T ��∗.

Therefore we have that a.t ∈ {a.t′} �� T ��∗, and hence a.t ∈ T ��∗

Counter-example for the weak Kleene closure

In the following we will show, using a counter example that the weak Kleene closure ;××∗ and the weak

Head-First closure ;�××∗ are not equivalent.

Let us consider the following example set of traces T :

T =

 l1!m1.l2?m1,

l2!m2

We will then show that T ;××∗ 6∈ T ;�××∗. To do that let us consider the powerset T ;××2 of T :

4.1. SEMANTIC DOMAIN 93

T ;××2 =

 l1!m1.l2?m1,

l2!m2

 ;××

 l1!m1.l2?m1,

l2!m2

 =

(l1!m1.l2?m1;×× l1!m1.l2?m1)

∪(l1!m1.l2?m1;×× l2!m2)

∪(l2!m2;×× l1!m1.l2?m1)

∪(l2!m2;×× l2!m2)

=

 l1!m1.l2?m1.l1!m1.l2?m1,

l1!m1.l1!m1.l2?m1.l2?m1

∪
{
l1!m1.l2?m1.l2!m2

}

∪

 l2!m2.l1!m1.l2?m1,

l1!m1.l2!m2.l2?m1

∪
{
l2!m2.l2!m2

}

=

l1!m1.l2?m1.l1!m1.l2?m1,

l1!m1.l1!m1.l2?m1.l2?m1,

l1!m1.l2?m1.l2!m2,

l2!m2.l1!m1.l2?m1,

l1!m1.l2!m2.l2?m1,

l2!m2.l2!m2

We have underlined the fact that l1!m1.l2!m2.l2?m1 ∈ T ;××2 and therefore this trace is in T ;××∗. Moreover,

given that it contains one instance of each of the actions l1!m1, l2!m2 and l2?m1, and given that ε 6∈ T , this

means that this trace is obtained from repeating exactly two instances of T .

As a result, if this trace was in T ;�××∗, it would be in T ;�×× T . However, we have:

T ;�×× T =

 l1!m1.l2?m1.l1!m1.l2?m1,

l1!m1.l1!m1.l2?m1.l2?m1

∪
{
l1!m1.l2?m1.l2!m2

}
∪
{
l2!m2.l1!m1.l2?m1

}
∪
{
l2!m2.l2!m2

}

=

l1!m1.l2?m1.l1!m1.l2?m1,

l1!m1.l1!m1.l2?m1.l2?m1,

l1!m1.l2?m1.l2!m2,

l2!m2.l1!m1.l2?m1,

l2!m2.l2!m2

Therefore, we have shown that T ;××∗ 6∈ T ;�××∗. For a more detailed discussion on this topic, we can study

the properties of the objects that correspond to the notions of weak Kleene closure and weak Head-First

closure in the world of interaction terms. This will notably be addressed in Chap.5 in the context of the

operational-style formulation of the trace semantics (more particularly one can refer to Sec.5.1.13 for details

on the same counter-example).

Inclusions and properties of closures

Given that we have shown that ;�××∗ and ;××∗ are different operators, we can take an interest in how they

relate to each-other, and, how ;�××∗ relates to ;∗ and ||∗.

In Lem.4.27, we precise the results from Lem.4.21 on the inclusions of the different closures.

94 CHAPTER 4. SYNTAX & DENOTATION

Lemma 4.27: Comparing the four closures

For any set of traces T , we have:

T ;∗ ⊂ T ;�××∗ ⊂ T ;××∗ ⊂ T ||∗

Proof. Given the results from Lem.4.23 and Lem.4.21 there only remains to prove that T ;∗ ⊂ T ;�××∗.

© Let us consider t ∈ T ;∗. As per Lem.4.26, t ∈ T ;∗ is equivalent to having t ∈ T ;�∗. Then, as per Lem.4.24,

this implies that t ∈ T ;�××∗

As an extension to the properties listed in Lem.4.22 we propose some additional idempotence properties

related to the ;�∗ operator in Lem.4.28

Lemma 4.28: Idempotence properties of the weak Head-First closure

For any set of traces T , we have:
(i) (T ;�××∗);�××∗ = T ;�××∗ (ii) (T ;∗);�××∗ = T ;�××∗ (v) (T ;�××∗);∗ = T ;�××∗

(iii) (T ;××∗);�××∗ = T ;××∗ (vi) (T ;�××∗);�××∗ = T ;××∗

(iv) (T ||∗);�××∗ = T ||∗ (vii) (T ;�××∗)||∗ = T ||∗

Proof. Similar proof to that of Lem.4.22.

4.2 Syntax & Denotational Semantics

In the previous section, we have introduced the semantic domain P(TΩ) (defined up to a signature Ω), its

main operators and their algebraic properties. In this section, we introduce the syntax of our Interaction

Language (IL) and its associated trace semantics:

• in Sec.4.2.1 we progressively introduce the different elements that constitute the IL, from its basic

building blocs to the constructors that allow the definition of more complex interactions.

• in Sec.4.2.2 we formalize the syntax of the IL as a term algebra

• in Sec.4.2.3, we define a denotational-style trace semantics for the IL.

The syntax and denotational-style semantics presented in this section is partly inspired from [75].

4.2.1 Informal description of the syntax

Interactions are defined up to a given signature Ω = (L,M). Interaction terms are built by composition

from a set of basic building blocks and using some constructors to define more complex terms. We use here

the word "constructor" (in the domain of the syntax) so as not to confuse the reader with the usage of the

word "operator" in the semantic domain.

4.2. SYNTAX & DENOTATIONAL SEMANTICS 95

Any interaction i constitutes a specification for a certain set of behaviors that it may express. During

the execution of an interaction it must express a behavior that is found in that set, but it may express any

one of those (non-deterministically).

Given that behaviors are modelled by traces from the semantic domain TΩ, the set of behaviors, or

"semantics", that is associated to an interaction i is a non-empty subset of TΩ. This means, that the

semantic domain of that language is P(TΩ), which we have described in the previous section.

Basic building blocks

Communication actions (from AΩ) constitute basic building blocks for both the traces of execution (i.e. TΩ)

and the interaction terms (which constitute the syntax), with the addition of a special empty interaction ∅.

empty emission reception

di
ag
ra
m

sy
nt
ax

∅ l!m l?m

tr
ac
es

{ε} {l!m} {l?m}

Figure 4.1: Basic building blocks of interactions

As illustrated on Fig.4.1, we consider 3 possible kinds of atomic interactions:

• the empty interaction, noted ∅, and represented by an empty sequence diagram, models the empty

behavior i.e. the behavior in which no observable event occurs. As a result, its semantic, i.e. the set

of traces that it may express is the singleton {ε}, where ε is the empty trace.

• the other building blocks are all the possible atomic reception and emission actions (defined up to the

signature Ω). The semantics of an atomic action a ∈ AΩ (when considered as an atomic interaction) is

the singleton {a}, i.e. it contains a single trace representing the occurrence of action a once globally.

When it comes to drawing such atomic interactions, we distinguish between:

– atomic emissions of the form l!m. Those can be drawn in a sequence diagram as an horizontal

arrow exiting lifeline l and carrying message m, with the arrowhead being drawn in an empty

space, meaning the message is send to the external environment of the distributed system.

– atomic receptions of the form l?m. Those can be drawn in a sequence diagram as an horizontal

arrow entering lifeline l and carrying message m, with the tail of the arrow being in empty space

- meaning the message comes from the external environment of the distributed system - and the

arrowhead touching lifeline l.

In the following, we introduce the different constructors that can be defined so as to build more complex

interactions.

96 CHAPTER 4. SYNTAX & DENOTATION

Scheduling constructors

Scheduling constructors are binary constructors, and as such, specify interactions of the form f(i1, i2) where

f is the given scheduling constructors, i1 is an interaction called the left sub-interaction, and i2 is another

interaction called the right sub-interaction. A behavior expressed by such a f(i1, i2) interaction, is a certain

composition of a behavior expressed by i1 and of another behavior expressed by i2. Given that those

behaviors are traces, one can define three scheduling constructors corresponding to the three scheduling

operators ";", ";××" and "||" from the previous section.

Given that the semantic domain is P(TΩ) all the behaviors specified by i1 and i2 correspond to two sets

of traces T1 and T2. The semantics of f(i1, i2) can simply be obtained by composition as T1 �T2 for a certain

scheduling operator �.

In more details, we distinguish between the three scheduling constructors:

• strict for "strict sequencing" such that the semantics of strict(i1, i2) is T1;T2 whenever T1 and T2

respectively are the semantics of i1 and i2

• seq for "weak sequencing" such that the semantics of seq(i1, i2) is T1;×× T2 whenever T1 and T2 respec-

tively are the semantics of i1 and i2

• par for "parallelization" such that the semantics of par(i1, i2) is T1||T2 whenever T1 and T2 respectively

are the semantics of i1 and i2

Fig.4.2 illustrates the use of those constructors on some examples:

• in strict(i1, i2), for any trace expressed by sub-interaction i1, all the actions from this trace must occur

before any action from any trace expressed by i2 may occur. In other terms, sub-interaction i1 must

be entirely executed before sub-interaction i2 may start to be executed. In the column on the left, two

examples are provided for the use of strict:

– in strict(l!m1, l!m2) (the example at the top of the left column), action l!m1 must occur before

action l!m2. This results, in the semantics {l!m1.l!m2}, which only contains one trace, for the

example interaction.

– in strict(l1!m1, l2!m2 (the example at the bottom of the left column) we have likewise a single

trace that is specified i.e. l1!m1.l2!m2.

In both examples, there is a single possible total order between the actions that is authorized, resulting

in a single accepted trace. As illustrated on Fig.4.2, the representation of a strict constructor in the

drawn sequence diagram is that of a square with two subsections divided horizontally by a line. In the

top one is drawn the left sub-interaction, and on the bottom one is drawn the right sub-interaction of

the interaction term. We draw a strict label on the top left corner of the square to indicate the use

of the strict constructor, so as not to confuse the drawing with that of other constructors, which also

use the square representation.

4.2. SYNTAX & DENOTATIONAL SEMANTICS 97

strict sequencing weak sequencing parallelization

di
ag
ra
m

sy
nt
ax

strict(l!m1, l!m2) seq(l!m1, l!m2) par(l!m1, l!m2)

tr
ac
es

{l!m1.l!m2} {l!m1.l!m2} {l!m1.l!m2 , l!m2.l!m1}

di
ag
ra
m

sy
nt
ax

strict(l1!m1, l2!m2) seq(l1!m1, l2!m2) par(l1!m1, l2!m2)

tr
ac
es

{l1!m1.l2!m2} {l1!m1.l2!m2 , l2!m2.l1!m1} {l1!m1.l2!m2 , l2!m2.l1!m1}

Figure 4.2: Scheduling constructors

• in seq(i1, i2) sequentiality is only enforced between actions that occur on the same lifeline. This

"weak" sequentiality is particularly apt at representing globally the behaviors of the locally defined

sub-systems of a distributed system. Indeed, given that they are independent and run concurrently

w.r.t. one another, there is a priori no reason why there should exist a strict order between events

occurring on different sub-systems. The execution of actions on each lifeline can occur (from top to

bottom in the drawn sequence diagram representations) independently. In the column on the middle

of Fig.4.2, two examples are provided for the use of seq:

– in seq(l!m1, l!m2) (the example at the top of the middle column), action l!m1 must occur before

action l!m2. Here, using seq equates to using strict i.e. we obtain the same semantics {l!m1.l!m2}.

This is because both actions occur on the same lifeline l.

– however, in seq(l1!m1, l2!m2), actions l1!m1 and l2!m2 occur on distinct lifelines l1 and l2. As

a result they may occur in any order w.r.t. one another. Consequently, the semantics of that

interaction contains two traces: {l1!m1.l2!m2, l2!m2.l1!m1}.

As illustrated on Fig.4.2, in contrast with strict, the representation of a seq constructor in the drawn

sequence diagram does not include the square that surrounds the sub-interactions. The left sub-

interaction is simply drawn on top of the right one. This coincides with the fact that, in the graphical

format of sequence diagrams, the top to bottom direction is usually associated with the passing of time.

98 CHAPTER 4. SYNTAX & DENOTATION

The implicit sequencing of the top to bottom direction (i.e. what is drawn higher occurs "before", and

what is drawn underneath occurs "after"), that is often only described in natural language, exactly

corresponds to the seq weak sequencing constructor.

• in par(i1, i2), any interleaving between the executions of i1 and i2 is allowed. In the column on the

right of Fig.4.2, two examples are provided for the use of par:

– in par(l!m1, l!m2) (the example at the top of the right column), actions l!m1 and l!m2 can occur

in any order. We therefore obtain the semantics {l!m1.l!m2, l!m2.l!m1}.

– in par(l1!m1, l2!m2), we have likewise that actions l1!m1 and l2!m2 can occur in any order. We

then have the semantics {l1!m1.l2!m2, l2!m2.l1!m1}, which is the same as what we would have

obtained if we used the seq constructor here, because both actions occur on different lifelines.

With the examples from Fig.4.2, we can see that for both examples, we can have either the left action

being executed at first and then the right action being executed afterwards, or the opposite. The par

constructors represents, in facts, the parallel execution of two distinct and independent sub-interactions.

As for strict, the par constructor is represented graphically by using the square notation, with a par

label on the top left corner.

Within the scheduling constructors, seq can be considered to be a hybrid, at the crossroads between strict

and par. Indeed, it behaves like strict when we consider local behaviors (i.e. the orders of execution that

are enforced between the actions occurring on a same localization) but when we consider global behaviors,

it is more akin to par.

Message passing and broadcasts

We can use scheduling constructors to model specific patterns that are characteristic of the exchange of

messages within a distributed system. Two of those are illustrated on Fig.4.3.

message passing broadcast

di
ag
ra
m

sy
nt
ax

strict(l1!m, l2?m) strict(l1!m, seq(l2?m, l3?m))

tr
ac
es

{l1!m.l2?m} {l1!m.l2?m.l3?m , l1!m.l3?m.l2?m}

Figure 4.3: Message passing & broadcast

In Fig.4.3 we have:

• on the example on the left, the illustration of the passing of a message from an origin lifeline (emitter)

to a target lifeline (receiver). This passing of message can be modelled by the pattern strict(l1!m, l2?m)

4.2. SYNTAX & DENOTATIONAL SEMANTICS 99

i.e. we use the strict operator to schedule the reception of message m on the receiver lifeline l2 w.r.t.

its previous emission from the emitter lifeline l1.

• on the example on the right, the illustration of the broadcast of a message from an origin lifeline

(emitter) to a set of target lifelines (receivers).

Let us note that, of course, given the nature of this IL, there can be several distinct manners to model

a broadcast, in addition to the one presented in Fig.4.3. We could have used a par constructor instead of

the seq (i.e. strict(l1!m, par(l2?m, l3?m)) or we could have inverted the order of l2?m and l3?m in the term

(i.e. strict(l1!m, seq(l3?m, l2?m)). Those changes would not have made any differences as for the semantics

(sets of accepted traces).

If recognized within an interaction term, those specific patterns can be drawn in a dedicated manner.

For the passing of a message m from lifeline l1 to lifeline l2, as in Fig.4.3, we can draw an horizontal arrow

carrying m from the representation of lifeline l1 to that of lifeline l2. For broadcasts, we can draw, as in

Fig.4.3, on the same alignment horizontally, a number of small arrows with recognizable heads, one for

each of the involved lifelines. The emitter lifeline has an arrow which head goes outwards (i.e. towards the

environment) while all receiver lifelines have their arrowheads going inwards (i.e. towards the lifeline).

Choice constructors

di
ag
ra
m

sy
nt
ax

alt(l!m1, l!m2) alt(l!m,∅)

tr
ac
es

{l!m1 , l!m2} {l!m , ε}

Figure 4.4: Alternative constructor

In addition to the scheduling constructors, one can also define choice constructors, which, instead of

scheduling the behaviors expressed by sub-interactions, select them. In our IL we propose a single choice

constructor which is the non-deterministic alternative "alt" constructor.

alt is a binary constructor which specifies an exclusive alternative between 2 sub-interactions. In

alt(i1, i2), any behavior specified by either the left sub-interaction i1 or by the right sub-interaction i2

is acceptable. In Fig.4.4, the use of the alt constructor is illustrated on 2 examples:

• in alt(l!m1, l!m2) (the example on the left), if l!m1 occurs then l!m2 does not occur and vice-versa.

This leads to a semantics containing two traces: {l!m1, l!m2}.

100 CHAPTER 4. SYNTAX & DENOTATION

• in alt(l!m,∅) (the example on the right), action l!m may occur, or may not occur, because the empty

interaction is selected. This likewise lead to the acceptance of two traces: {l!m, ε}.

In effect, the semantics of an interaction of the form alt(i1, i2) is an union of that of i1 and i2 i.e. it is

T1 ∪ T2 whenever T1 and T2 respectively are the semantics of i1 and i2.

Similarly to strict and par, the alt constructor is represented graphically by using the square notation,

with a alt label on the top left corner.

Repetition constructors

Repetition constructors, also called loops, specify the possible repetition (any number of times) of a given

sub-interaction. As such, an interaction loopk(i) (with k being the "kind" of the loop of which we define four)

synthesizes into a finite interaction term the specification of any arbitrary repetitions of behaviors specified

by the sub-interaction i.

As the reader may expect, those loop constructors are associated to the three Kleene closures ;∗, ;××∗

and ||∗ and the weak Head-First closure ;�××∗ operators from the previous section. Therefore we define four

loop constructors such that, whenever T is the semantics of an interaction i then the semantics of:

• loopS(i) is T ;∗ and we may call loopS the strict loop constructor

• loopW (i) is T ;××∗ and we may call loopW the weak loop constructor

• loopP (i) is T ||∗ and we may call loopP the parallel or interleaving loop constructor

• loopH(i) is T ;�××∗ and we may call loopH the head loop constructor

We can describe those operators as loops or repetition operators because they enable the repetition, any

number of times, and according to a certain scheduling operator, of behaviors:

• loopS uses strict sequencing as a scheduler

• loopP uses interleaving as a scheduler

• both loopW and loopH use weak sequencing as a scheduler. However, loopH restrict accepted traces

to those in which one take the first action (the head) in the first instance of the sub-behavior while

loopW has no such restriction.

• As a side note, let us remark that there is no use in defining a "loopalt" constructor i.e. using the alt

constructor as a scheduler for the repetition of the behavior. Indeed, if we consider loopalt(i), such a

loop is simply equivalent to alt(i,∅). If we choose to repeat 0 times the sub-interaction i then we have

the ∅ alternative. If we choose to repeat it once, we get i and if twice, we get alt(i, i) which equates

having i.

The pertinence of defining four loops can be intuitively understood given that the three scheduling

operators indeed have different semantics and, as a result, repeating their use should also result in different

4.2. SYNTAX & DENOTATIONAL SEMANTICS 101

semantics. As for the loopH constructor, we can link it to the unique ;�××∗ operator which we have shown to

be distinct from ;××∗. In the following we illustrate the distinctness (and hence pertinence) of the four loops

on simple examples.

loopS loopW loopP

di
ag
ra
m

te
rm loopS(iA) loopW (iA) loopP (iA)

tr
ac
es

{ 0 : ε,
1 : l1!m.l2?m,
2 : l1!m.l2?m.l1!m.l2?m,
...

}
0 : ε,
1 : l1!m.l2?m,

2 :
(

l1!m.l2?m.l1!m.l2?m,
l1!m.l1!m.l2?m.l2?m,

...

0 : ε,
1 : l1!m.l2?m,

2 :
(

l1!m.l2?m.l1!m.l2?m,
l1!m.l1!m.l2?m.l2?m,

...

with iA = strict(l1!m, l2?m)

di
ag
ra
m

te
rm loopS(iB) loopW (iB) loopP (iB)

tr
ac
es

{ 0 : ε,
1 : l!m1.l!m2,
2 : l!m1.l!m2.l!m1.l!m2,
...

} { 0 : ε,
1 : l!m1.l!m2,
2 : l!m1.l!m2.l!m1.l!m2,
...

}
0 : ε,
1 : l!m1.l!m2,

2 :
(

l!m1.l!m2.l!m1.l!m2,
l!m1.l!m1.l!m2.l!m2,

...

with iB = seq(l!m1, l!m2)

Figure 4.5: Comparing the loopS , loopW & loopP repetition constructors

On Fig.4.5, we use loopS , loopW and loopP to repeat two example interactions which are iA = strict(l1!m, l2?m)

and iB = seq(l!m1, l!m2). In each of the six cells of the table from Fig.4.5, we have on top the diagram

representation of an interaction, in the middle the corresponding term and on the bottom a partial repre-

sentation of its associated semantics. The three top cells correspond to loopS(iA), loopW (iA) and loopP (iA)

while the three bottom cells correspond to loopS(iB), loopW (iB) and loopP (iB).

We can remark that the graphical representation of a loop is that of a square, containing the representation

of the nested sub-interaction and decorated with a label on the top left corner, which is either loopS, loopH,

loopW or loopP depending on the type of loop.

For each example interaction of Fig.4.5, its semantics is, as mentioned before, partially represented i.e.

a subset of the semantics is detailed:

• in all six cases the empty trace ε belongs to the semantics. It indeed corresponds to the repetition zero

times of the sub-interaction (either iA or iB)

• when the sub-interaction is repeated once, we get, for the three cases from the top line (i.e. correspond-

ing to iA) the subset {l1!m.l2?m}, and, for the three cases from the bottom line (i.e. corresponding to

iB) the subset {l!m1.l!m2}

102 CHAPTER 4. SYNTAX & DENOTATION

• when the sub-interaction is repeated twice we can observe that:

– in the case where the sub-interaction that is repeated is iA (top row), the semantics of loopW (iA)

and loopP (iA) remain the same, but the semantics of loopS(iA) is different from the others, only

allowing strictly less traces

– in the case where the sub-interaction that is repeated is iB (bottom row), the semantics of

loopS(iB) and loopW (iB) remain the same, but the semantics of loopP (iB) is different from the

others, allowing more traces

As for the head loop operator loopH it mostly behaves as loopW except on certain cases due to the

restriction imposed on the first action that is taken. loopH is indeed associated to the weak Head-First

closure operator ;�××∗.

⊃ 6⊂

Figure 4.6: Illustrating the difference between the loopW & loopH constructors

On page 92, we have introduced an example in the semantic domain P(TΩ) demonstrating the distinctness

of ;�××∗ and ;××∗. On Fig.4.6 is illustrated its counterpart in the world of interaction terms. On the left, we

have an interaction iA = loopW (i1) where i1 = alt(strict(l1!m1, l2?m1), l2!m2), in the middle we have an

interaction iB = seq(i1, i1) and on the right we have iC = loopH(i1). We can remark that the trace

l1!m1.l2!m2.l2?m1 belongs to the semantics of iB given that we can choose to execute at first the occurrence

of l1!m1 from the second instance of i1 i.e. the one underneath. By definition, this trace also belongs to the

semantics of iA. However it does not belong to that of iC because it corresponds to the case of taking the

first action l1!m from the second instance of behavior i1.

Even though the loopH is not associated to a Kleene closure contrary to the three other loops, we have

decided to include it for two reasons:

• because it is indeed a unique artifact, distinct from the three other loops. Indeed, as we have seen in

Sec.4.1.7 while the HF-closures for the strict sequencing and the interleaving operators are equivalent

to the K-closures of the same operators (Lem.4.26) this is not the case for weak sequencing.

• and also because it corresponds to a notion of "loop" which may appear more intuitive

4.2. SYNTAX & DENOTATIONAL SEMANTICS 103

As a result of those observations, one can conclude that the four constructors loopS , loopH , loopW and

loopP are indeed different. From a system designer perspective, using either loop is motivated by different

goals:

• With loopS(i), each existing instance of a repeatable behavior (specified by i) must be executed entirely

before any other can start. This implies that, at any given moment there can only exists zero or a

single instance. loopS can therefore be used to specify some critical repeatable behavior of which there

can only exist one instance at a time.

• With loopP (i), all existing instances can be executed concurrently w.r.t. one another, and, at any

given moment, new instances can be created. loopP can therefore be used to specify protocols in which

any number of new sessions can be created and run in parallel.

• With loopW (i), new instances can be created whenever the action triggering the instantiation occurs

on a lifeline which is not occulted by previous instances. This can be roughly explained as follows: (1)

on each individual lifeline only one instance can be active and (2) given that, for any such instance,

a lifeline might "have finished" before the others then it is allowed to start another instance. loopW

can therefore be used to specify repeatable behaviors that are sequential but that have no enforced

synchronization mechanisms.

• The head loop loopH is associated to the weak HF-closure operator ;�××∗ which is an ad-hoc algebraic

artifact which might correspond to a more intuitive understanding of sequential loops than loopW .

4.2.2 Formal syntax

Now that we have informally introduced all the building blocks and constructors that constitute the syntax

of our Interaction Language (IL), let us provide a full formalization.

Definition 4.13: Interaction Language

The set IΩ of interactions defined over the signature Ω = (L,M) is the set of ground terms TF associated

to the term algebra of signature F such that:

F0 = AΩ ∪ {∅} F2 = {strict, seq, par, alt}

F1 = {loopS , loopH , loopW , loopP } Fj = ∅ for any j > 2

In Def.4.13 we define our IL as that of the ground terms of a term algebra. This allows us to use notations

and benefit from results from the fields of equational logic and term rewriting which we introduced in Sec.2.2.

A first benefit of this presentation is that of structural induction. In order to prove a given property ψ on

all interactions terms, it suffices to prove it for the empty interaction ∅ and for any action a ∈ AΩ and then

to prove that for any interaction of the form i = f(i1, i2) and i = loopk(i1) (given f ∈ {strict, seq, par, alt}

and k ∈ {X,H, S, P}) if i1 and i2 satisfy ψ then i satisfies ψ.

104 CHAPTER 4. SYNTAX & DENOTATION

A second benefit is the ability to represent interactions as trees. Given that, in IΩ, the arity of the

operation symbols is at most 2, words describing positions within interaction terms are in {1, 2}∗. Using

notations from Sec.2.2, we may denote by pos(i) the set of positions associated to an interaction term i.

diagram syntax positions

seq

loopH

seq

strict

l1!m1 l2?m1

seq

alt

strict

l2!m2 l3?m2

∅

l2!m3

par

l1!m1 strict

l3!m4 l1?m4

ε

1

11

111

1111 1112

112

1121

11211

112111 112112

11212

1122

2

21 22

221 222

Figure 4.7: Describing interactions as trees

Fig.4.7 illustrates the principle of describing interactions as trees on an example. On the left is drawn a

sequence diagram. In the middle is a syntactic term in our interaction language which corresponds to this

diagram and which is represented as a tree. On the right is represented a tree structure corresponding to

that of the syntactic term, with each node being replaced by its position within the tree:

• the empty position ε is that of the root node of the interaction term / tree

• whenever a node at position p ∈ {1, 2}∗ has a left child or a unique child (in the case of loop construc-

tors), then this child is at position p.1

• whenever a node at position p ∈ {1, 2}∗ has a right child, then this child is at position p.2

As a result, and roughly speaking, starting from the empty position ε, adding "ones" at the end corresponds

to going to the left and adding "twos" at the end corresponds to going to the right. In the example from

Fig.4.7, the root node of the interaction hosts a seq constructor and is at position ε. The node at its left

hosts a loopH constructor and is at position 1 while the node at its right hosts a par constructor and is at

position 2.

Those positions allow the unambiguous designation of any sub-tree in the tree structure and therefore,

we can pinpoint any sub-terms of an interaction. Considering the inductive nature of the language, any such

sub-term is in itself a fully-fledged interaction, which we may call a "sub-interaction".

Using the notations from Sec.2.2, for any interaction i and any position p ∈ pos(i), i|p refer to the

sub-interaction of i which root node is at position p within i. Fig.4.8 illustrates the use of the i|p notation

by highlighting three different sub-interactions both in the syntactic term on the right and on the diagram

representation on the left. Those three sub-interactions are:

4.2. SYNTAX & DENOTATIONAL SEMANTICS 105

in diagram in term legend
seq

loopH

seq

strict

l1!m1 l2?m1

seq

alt

strict

l2!m2 l3?m2

∅

l2!m3

par

l1!m1 strict

l3!m4 l1?m4
• i|111
• i|1121
• i|21

Figure 4.8: Illustrating sub-interactions within an interaction

• i|111 which root node (a strict) is at position p = 111 w.r.t. the overall interaction i

• i|1121 which root node (an alt) is at position p = 1121 w.r.t. i

• i|21 which root node (an atomic action) is at position p = 21 w.r.t. i

4.2.3 Denotational semantics

As the reader may expect, we can define a denotational semantics of interactions as a homomorphism between

the semantic domain P(TΩ), which admits the structure of a F-algebra and the term algebra IΩ of interaction

terms.

Let us indeed consider the carrier A = P(TΩ) i.e. the set of sets of traces. On this carrier A = P(TΩ)

we have the following operators:

the union ∪ the strict K-closure ;∗

the strict sequencing ; the weak HF-closure ;�××∗

the weak sequencing ;×× the weak K-closure ;××∗

the interleaving || the interleaving K-closure ||∗

We can see that those operators can be described as interpretations of the constructors from F the

signature of the term algebra TF = IΩ of interaction terms.

In addition, for the basic building blocks ∅ (the empty interaction) and actions a ∈ AΩ, which are

constants of F0, we can match them respectively with {ε}, meaning that the semantics of ∅ only contains a

single trace which is the empty trace (observation of no action) and with {a}, meaning that the semantics

of a (interaction reduced to a single action) only contains a single trace which is a (observation of a single

action).

In Def.4.14 we formalize in this manner the F-algebra of sets of traces.

106 CHAPTER 4. SYNTAX & DENOTATION

Definition 4.14: Semantic domain P(TΩ) as a F-algebra

A = (P(TΩ), FA) (with FA = {fA | f ∈ F}) is the F-algebra defined by its carrier P(TΩ) and the

following interpretations of the operation symbols in F :

∅A = {ε}

aA = {a}

strictA = ;

seqA = ;××

parA = ||

altA = ∪

loopAS = ;∗

loopAH = ;�××∗

loopAW = ;××∗

loopAP = ||∗

We then define in Def.4.15 a denotational-style semantics σd of interactions as the unique homomorphism

between TF = IΩ and A = (P(TΩ), FA). Fig.4.9 illustrates this definition by representing σd as a morphism

which preserves algebraic structures.

Definition 4.15: Denotational semantics of interactions

The denotational semantics σd of IΩ is the unique F-homomorphism σd : IΩ → P(TΩ) between TF = IΩ

and A = (P(TΩ), FA)

This denotational-style semantics constitutes the mathematical foundation for some other contributions

of this present thesis, notably:

• we use it as a reference to justify the correctness of another semantics, defined in operational-style, that

will be introduced in Chap.5. A proof for the equivalence of both semantics is presented in Sec.5.2.

• it serves as the basis to characterize an equivalence relation between interaction terms and to compute

normal forms via rewriting. This will be covered in the next section.

IΩ,

 ∅, a ∈ AΩ,
alt, strict, seq, par
loopS , loopH , loopW , loopP

P(TΩ),

{ε}, {a},
∪, ; , ;×× , ||,
;∗, ;�××∗, ;××∗, ||∗

homomorphism σd (denotational semantics)

Figure 4.9: The denotational semantics as a homomorphism

4.3 Normal forms of interactions

In this section we use results from the domain of (1) equational theory [25, 71] so as to define classes of

interactions which have the same semantics, and (2) term rewriting [51, 68] so as to define normal forms of

4.3. NORMAL FORMS OF INTERACTIONS 107

interactions.

Those two points are related in so far as whenever two interactions have the same normal form (defined

up to a certain rewrite system) then they are equivalent (up to a certain equational theory).

Working with normal forms instead of general interactions can be useful in various ways. It can notably

help reduce the complexity of some problems in which one can explore the space of normal forms instead of

exploring the larger space of all interaction terms.

This section is organised as follows:

• in Sec.4.3.1 we define an axiom system on IΩ that is sound w.r.t. A,

• in Sec.4.3.2 we define a process to normalize interactions modulo Associativity-Commutativity,

• in Sec.4.3.3 we present automated proofs for the convergence of this process i.e. that it yields unique

AC classes for any interaction,

• in Sec.4.3.4 we present a total rewrite order on interactions that can be used to select unique repre-

sentatives of AC classes,

• finally, in Sec.4.3.5 we present an implementation of the whole process and demonstrate its use on

some examples.

4.3.1 A sound axiom system for interactions

As explained in Sec.2.2, a F-algebra A induces a congruence relation =A on a corresponding term algebra

TF (X). This also holds in the case of interactions and their semantics, and, in that case, =A refers to

semantic equality i.e. for any two interactions i1 and i2 we have (i1 =A i2)⇔ (σd(i1) = σd(i2)).

Finding an equational base that can generate =A is outside the scope of this thesis. However, using

algebraic properties of the operators on sets of traces defined in Sec.4.1, we define in this section a sound

axiom system w.r.t. =A.

Let us consider the axiom system EI defined in Def.4.16 on the set of interaction terms with variables.

Those 39 equations can be informally summarized as follows, given variables x, y and z:

∀ f ∈ {strict, seq, par}, f(∅, y) ≈ y (Simpl-Left)

∀ f ∈ {strict, seq, par}, f(x,∅) ≈ x (Simpl-Right)

∀ f ∈ {strict, seq, par, alt}, f(f(x, y), z) ≈ f(x, f(f, z)) (Flush)

∀ f ∈ {par, alt}, f(x, y) ≈ f(y, x) (Invert)

alt(x, x) ≈ x (Duplicate)

∀ f ∈ {strict, seq, par}, f(x, alt(y, z)) ≈ alt(f(x, y), f(x, z)) (Factorize-Left)

∀ f ∈ {strict, seq, par}, f(alt(x, y), z) ≈ alt(f(x, z), f(y, z)) (Factorize-Right)

∀ k ∈ {S,H,W,P}, loopk(∅) ≈ ∅ (Loop-Simpl)

∀ (k1, k2) ∈ {S,H,W,P}2, loopk1(loopk2(x)) ≈ loopmin(k1,k2)(x) (Loop-Unnest)

108 CHAPTER 4. SYNTAX & DENOTATION

We have here gathered the 39 equations from Def.4.16 under 9 named transformations. Those names

informally describe the intended effect of the transformation they describe. It is then trivial to show that

this axiom system EI is sound w.r.t. the F-algebra A = (P(TΩ),FA) which is the semantic domain of sets

of traces. Indeed, all those equations correspond to algebraic properties of the operators on P(TΩ) which

are the counterparts fA of the operation symbols f ∈ F that are involved.

Indeed, we have that:

• "Simpl-Left" and "Simpl-Right" respectively describes the simplification by removal of an empty inter-

action ∅ on the left and on the right of a scheduling constructor. The 6 equations related to those

transformations are sound because {ε} is a neutral element for ;, ;×× and || as per Lem.4.10, Lem.4.16

and Lem.4.5 and because ∅A = {ε}

• "Flush" describes transformations related the associativity of the ; (Lem.4.10), ;×× (Lem.4.16), || (Lem.4.5),

and ∪ operators. The 4 equations related to "Flush" are therefore sound.

• "Invert" describes the inversion of the left and right sub-interactions underneath a par or alt constructor.

The 2 equations related to this transformation are sound because they correspond to the commutativity

of the || (Lem.4.5) and ∪ operators.

• "Duplicate" describes the duplication or simplification of an alt whenever its two branches are identical.

The equation related to this transformation is sound because it corresponds to the idempotence of the

union ∪ operator.

• "Factorize-Left" and "Factorize-Right" respectively describes the factorization of a prefix/suffix x when-

ever two branches of an alternative "start/end" (given a scheduling constructor) with x. The 6 equations

related to those transformation are sound because they correspond to the left and right distributivity

of the ; (Lem.4.10), ;×× (Lem.4.16) and || (Lem.4.5) operators w.r.t. ∪.

• "Loop-Simpl" describe the simplification of a loop constructor that specify the repetition of the empty

behavior ∅. The 4 equations related to this transformation are sound because {ε} is a neutral element

for ;∗, ;�××∗, ;××∗ and ||∗ as per Lem.4.20.

• "Loop-Unnest" describe the simplification of nested loops whenever they specify the repetition of a

repetition, which can be brought back to a simple repetition. Here,min : {S,H,W,P}2 → {S,H,W,P}

is the minimum according to the total order P < W < H < S. The 16 equations related to this

transformation are sound because they correspond to the idempotency properties of the Kleene closures

and Head-First closures that we have described in Lem.4.22 and Lem.4.28.

4.3. NORMAL FORMS OF INTERACTIONS 109

Definition 4.16: An axiom system on interaction terms

Given the signature F = {ε} ∪ AΩ ∪ {strict,seq,par,alt,loopS ,loopH ,loopW ,loopP} and a set of variables X

which includes {x, y, z}, let us consider the following axiom system EI on the set TF (X) of interaction

terms with variables, which contains the following equations:

strict(x,∅) ≈ x seq(x,∅) ≈ x par(x,∅) ≈ x

strict(∅, x) ≈ x seq(∅, x) ≈ x par(∅, x) ≈ x

strict(strict(x, y), z) ≈ strict(x, strict(y, z)) seq(seq(x, y), z) ≈ seq(x, seq(y, z))

par(par(x, y), z) ≈ par(x, par(y, z)) alt(alt(x, y), z) ≈ alt(x, alt(y, z))

par(x, y) ≈ par(y, x) alt(x, y) ≈ alt(y, x) alt(x, x) ≈ x

strict(x, alt(y, z)) ≈ alt(strict(x, y), strict(x, z)) seq(x, alt(y, z)) ≈ alt(seq(x, y), seq(x, z))

par(x, alt(y, z)) ≈ alt(par(x, y), par(x, z)) strict(alt(x, y), z) ≈ alt(strict(x, z), strict(y, z))

seq(alt(x, y), z) ≈ alt(seq(x, z), seq(y, z)) par(alt(x, y), z) ≈ alt(par(x, z), par(y, z))

loopS(∅) ≈ ∅ loopH(∅) ≈ ∅ loopW (∅) ≈ ∅ loopP (∅) ≈ ∅

loopS(loopS(x)) ≈ loopS(x) loopS(loopH(x)) ≈ loopH(x)

loopS(loopW (x)) ≈ loopW (x) loopS(loopP (x)) ≈ loopP (x)

loopH(loopS(x)) ≈ loopH(x) loopH(loopH(x)) ≈ loopH(x)

loopH(loopW (x)) ≈ loopW (x) loopH(loopP (x)) ≈ loopP (x)

loopW (loopS(x)) ≈ loopW (x) loopW (loopH(x)) ≈ loopW (x)

loopW (loopW (x)) ≈ loopW (x) loopW (loopP (x)) ≈ loopP (x)

loopP (loopS(x)) ≈ loopP (x) loopP (loopH(x)) ≈ loopP (x)

loopP (loopW (x)) ≈ loopP (x) loopP (loopP (x)) ≈ loopP (x)

Lemma 4.29: Soundness of EI

EI is sound w.r.t. the F-algebra A = (P(TΩ),FA)

Proof. Trivial.

EI is a sound axiom system w.r.t. A but we can however remark that it is not complete. Indeed, we

have for instance that seq(l!m1, l!m2) and strict(l!m1, l!m2) have the same image through any environment

ρ even though they cannot be related via ≈EI i.e. we have seq(l!m1, l!m2) =A strict(l!m1, l!m2) but we also

have that seq(l!m1, l!m2) 6≈EI strict(l!m1, l!m2) and therefore =A 6⊆≈EI .

Given that the denotational semantics σd of interactions is defined as the initial homomorphism between

the ground term algebra IΩ and P(TΩ) we have in particular that, for any two interactions i and i′, if i ≈EI i
′

then we have that σd(i) = σd(i′).

110 CHAPTER 4. SYNTAX & DENOTATION

Lemma 4.30: ≈EI preserves σd

For any two interactions i and i′ we have that:

(i ≈EI i
′)⇒ (σd(i) = σd(i′))

Proof. Implied by Lem.4.29.

We have therefore identified a syntactic relation on interaction terms that relate (some but not all)

semantically equivalent interactions. This relation ≈EI naturally partitions the set of interaction terms into

classes []≈EI
of semantically equivalent terms.

4.3.2 A process to normalize interaction terms

In Sec.2.2, we have seen that Associative-Commutative Rewriting (AC-R) can be used to define terminating

rewrite systems on languages in which some operators may be associative or commutative. Given that this

is the case for our IL, we use AC-R in this section so as define a process to normalize interaction terms.

Let us consider the following equational theory TI, which gathers all equations from EI related to the

associativity and commutativity of constructors:

TI =

strict(strict(x, y), z) ≈ strict(x, strict(y, z)) seq(seq(x, y), z) ≈ seq(x, seq(y, z))

par(par(x, y), z) ≈ par(x, par(y, z)) alt(alt(x, y), z) ≈ alt(x, alt(y, z))

par(x, y) ≈ par(y, x) alt(x, y) ≈ alt(y, x)

TI contains exactly the equations from EI (defined in Sec.4.3.1) which correspond to the properties of

associativity and commutativity of the symbols of the Interaction Language (IL). Indeed we have that strict,

seq, par and alt are associative and alt and par are commutative.

By putting those equations from EI in TI, we remove concerns of non-terminations related to those

equations. However, there are still some equations in EI that are problematic w.r.t. non-termination.

The distributivity of scheduling constructors w.r.t. alt

Indeed, in EI, there are 6 equations relating to the distributivity of the scheduling constructors (strict, seq

and par) w.r.t. to the alt constructor. When simplifying an interaction term, we might need to use those

equations in both directions. This is exemplified in Fig.4.10, where, in order to simplify the interaction

at the top left into the one at the bottom right, we make use of both directions of the "Factorize-Right"

transformation. Indeed we have that:

• the first transformation consists in applying "Factorize-Right" at position 2, in the direction that

complexifies the term. Doing so reveals that the sub-interactions at positions 1 and 22 are identical

(syntaxically).

4.3. NORMAL FORMS OF INTERACTIONS 111

alt

strict

l1!m l3?m

strict

alt

l2!m l1!m

l3?m
≈EI

alt

strict

l1!m l3?m

alt

strict

l2!m l3?m

strict

l1!m l3?m

≈EI

alt

strict

l1!m l3?m

alt

strict

l1!m l3?m

strict

l2!m l3?m

≈EI

alt

alt

strict

l1!m l3?m

strict

l1!m l3?m

strict

l2!m l3?m
≈EI

alt

strict

l1!m l3?m

strict

l2!m l3?m

≈EI

strict

alt

l1!m l2!m

l3?m

Figure 4.10: Simplification of an example interaction which uses distributivity in both directions

• then, we apply "Invert" at position 2 and then "Flush" at the root position ε. Those two successive

transformations allow to place the two identical sub-interactions as siblings under an alt node.

• this then allows the use of "Duplicate" so as to eliminate a duplicate branch.

• finally, we apply "Factorize-Right" again but this time in the other direction, at the root position ε

In the example from Fig.4.10 we therefore use the distributivity of strict w.r.t. alt in both direction. A

first time as strict(alt(x, y), z) ; alt(strict(x, z), strict(y, z)) in order to reveal that there exists two identical

branches of the alternative modulo AC. And then, once this duplicated branch has been removed, we use

alt(strict(x, z), strict(y, z)) ; strict(alt(x, y), z). As a result, if one were to use a single rewrite system to

normalize interactions in this fashion, we would have both directions of this equation and the rewrite system

would be non-terminating.

This remark can be likewise made for all equations of EI pertaining to the left and right distributivity of

all three scheduling operators w.r.t. the alternative operator.

In order to solve this problem we simply define two distinct rewrite systems, which we then apply one

after the other so as to normalize interactions. The first one uses distributivity in the direction that expands

the terms and, at the same time, eliminates duplicated branches underneath alternatives. Then, the second

rewrite system uses the distributivity in the direction that contracts the terms. In the following we may

say that our process to normalize interactions is a two phases process, in which phases 1 and 2 respectively

correspond to the application of the first and second rewrite system.

112 CHAPTER 4. SYNTAX & DENOTATION

First phase of the process

Let us at first consider the set R0
I of rewrite rules defined by:

R0
I =

strict(x,∅) ; x seq(x,∅) ; x par(x,∅) ; x

strict(∅, x) ; x seq(∅, x) ; x par(∅, x) ; x

loopS(∅) ; ∅ loopH(∅) ; ∅ loopW (∅) ; ∅ loopP (∅) ; ∅

loopS(loopS(x)) ; loopS(x) loopS(loopH(x)) ; loopH(x)

loopS(loopW (x)) ; loopW (x) loopS(loopP (x)) ; loopP (x)

loopH(loopS(x)) ; loopH(x) loopH(loopH(x)) ; loopH(x)

loopH(loopW (x)) ; loopW (x) loopH(loopP (x)) ; loopP (x)

loopW (loopS(x)) ; loopW (x) loopW (loopH(x)) ; loopW (x)

loopW (loopW (x)) ; loopW (x) loopW (loopP (x)) ; loopP (x)

loopP (loopS(x)) ; loopP (x) loopP (loopH(x)) ; loopP (x)

loopP (loopW (x)) ; loopP (x) loopP (loopP (x)) ; loopP (x)

This set R0

I contains all the rules that are straightforward and do not pose any problem regarding non-

termination. R0
I will serve as a baseline rule set to define both rewrite systems.

We then define the set R1
I of rewrite rules as follows:

R1
I = R0

I ∪

alt(x, x) ; x

strict(x, alt(y, z)) ; alt(strict(x, y), strict(x, z))

strict(alt(x, y), z) ; alt(strict(x, z), strict(y, z))

seq(x, alt(y, z)) ; alt(seq(x, y), seq(x, z))

seq(alt(x, y), z) ; alt(seq(x, z), seq(y, z))

par(x, alt(y, z)) ; alt(par(x, y), par(x, z))

par(alt(x, y), z) ; alt(par(x, z), par(y, z))

The set R1

I contains additional rules which are exclusive to the first phase of the process. Those rules

contains:

• the elimination of duplicated branches underneath alternatives with alt(x, x) ; x. Given that we

use rewriting modulo AC, and given that the alt operator is AC, we only need a single rule to do so.

Indeed, we have that for instance alt(x, alt(y, x)) or alt(alt(x, y), x) and so on can all be simplified into

alt(x, y) modulo AC.

• and the use of the distributive properties of strict, seq and par w.r.t. alt in the direction that expands

the terms with f(x, alt(y, z)) ; alt(f(x, y), f(x, z)) for the left distributivity and f(alt(x, y), z) ;

alt(f(x, z), f(y, z)) for the right distributivity of any f ∈ {strict, seq, par}

We can then define phase 1 as the normalisation associated with rewrite relation →R1
I /TI , which we prove to

4.3. NORMAL FORMS OF INTERACTIONS 113

be convergent in Sec.4.3.3.

Second phase of the process

Likewise, we can define the second phase of the process in a similar fashion. We complement the set R0
I

of baseline rules into a set R2
I which includes additional rules which exploit the distributivity of scheduling

operators w.r.t. alt in the direction that contracts terms. However, as illustrated by the example from

Fig.4.11 it does not suffice to include the rule alt(strict(x, y), strict(x, z)) ; strict(x, alt(y, z)). Indeed with

only that rule we cannot simplify the example from from Fig.4.11 without relying on using x; strict(x,∅).

Indeed, on Fig.4.11 we use at first x; strict(x,∅) ("Simpl-Right") at position 1 before being able to use

the distributivity ("Factorize-Left") of strict. However, adding the rule x ; strict(x,∅) is not compatible

with having a terminating rewrite system.

To be able to operate the simplification from Fig.4.11 we need the additional rule alt(x, strict(x, y)) ;

strict(x, alt(∅, y)). Then given that we operate rewriting modulo AC we do not need any additional rules.

For instance it is no use looking for x at a deeper level that strict(x, y) on the left-hand side because, if we

have strict(strict(x, y), z) we can always equate it to strict(x, strict(y, z)) thanks to the equational theory

T (i.e. using AC-R).

alt

l1!m strict

l1!m l2?m

≈EI

alt

strict

l1!m ∅

strict

l1!m l2?m

≈EI

strict

l1!m alt

∅ l2?m

Figure 4.11: Simplification using distributivity in a particular case that is not covered by a single equation

This reasoning can be applied to all three scheduling operator and also to their properties of right-

distributivity. As a result, we may define the set R2
I of rewrite rules as follows:

R2
I = R0

I ∪

alt(x, strict(x, y)) ; strict(x, alt(∅, y))

alt(strict(x, y), strict(x, z)) ; strict(x, alt(y, z))

alt(strict(x, y), y) ; strict(alt(x,∅), y)

alt(strict(x, z), strict(y, z)) ; strict(alt(x, y), z)

alt(x, seq(x, y)) ; seq(x, alt(∅, y))

alt(seq(x, y), seq(x, z)) ; seq(x, alt(y, z))

alt(seq(x, y), y) ; seq(alt(x,∅), y)

alt(seq(x, z), seq(y, z)) ; seq(alt(x, y), z)

alt(x, par(x, y)) ; par(x, alt(∅, y))

alt(par(x, y), par(x, z)) ; par(x, alt(y, z))

alt(par(x, y), y) ; par(alt(x,∅), y)

alt(par(x, z), par(y, z)) ; par(alt(x, y), z)

114 CHAPTER 4. SYNTAX & DENOTATION

With the definition of R2
I we can then define phase 2 as the process of normalisation associated to the→R2

I /TI

rewrite relation.

We then define our process to normalize interactions as the successive application of the two rewrite

systems which are R1
I /TI and then R2

I /TI. In Sec.4.3.3 we provide automated proofs for the convergence (i.e.

termination and confluence) of both rewrite systems. Given that those rewrite systems are convergent they

define unique normal forms. For any interaction i let us denote by R1(i), and R2(i) the normal forms which

are respectively associated to the application of R1
I /TI and R2

I /TI. We then consider, for any interaction

i, the normal form R2(R1(i)) which is uniquely defined (by composition). However, given that we are

here considering rewriting modulo theories, and in particular modulo AC, R2(R1(i)) does not designates an

interaction term but a class of equivalent interaction terms modulo AC.

Indeed, the process which we have formalized is a process modulo AC. As a result it yields classes of

equivalence modulo AC and not normal forms of interactions. To actually implement an algorithm for

computing a normal form, we need to impose a total rewrite ordering on terms. We define such an ordering

in Sec.4.3.4.

Before introducing the rewrite ordering, let us, in the next section, prove the convergence of R1
I /TI and

R2
I /TI. As previously mentioned, those proofs consist in automated proofs of termination and confluence

obtained from the use of dedicated software.

4.3.3 Automated proofs of convergence

There exist many software tools for automating proofs of termination or confluence for rewriting systems.

We can for instance cite CiME3 [44] (termination and confluence), TTT2 [76] (termination), NaTT [126]

(termination), CSI [127] (confluence), CoLL [121] (confluence) etc. Those tools may use various methods,

which we will not address, to prove those results.

A standard format called the WST format (format for the international WorkShop on Termination 1)

enables the encoding of Class Rewriting Systems for use in various tools such as the ones that we have

mentioned.

On Fig.4.12 we encode in WST format the first phase of our process i.e. the CRS R1
I /TI. Likewise, on

Fig.4.13 we encode R2
I /TI.

Then, using TTT2 (version 1.20) and CSI (version 1.2.4) we respectively proved the termination and the

confluence of both CRSs.

1http://termination-portal.org/wiki/WST

http://termination-portal.org/wiki/WST

4.3. NORMAL FORMS OF INTERACTIONS 115

(VAR x y z)
(THEORY (AC alt) (AC par) (A strict) (A seq))
(RULES

strict (x,o) → x
seq(x,o) → x
par(x,o) → x

strict (o,x) → x
seq(o,x) → x
par(o,x) → x

loopS(o) → o
loopH(o) → o
loopW(o) → o
loopP(o) → o

loopS(loopS(x)) → loopS(x)
loopS(loopH(x)) → loopH(x)
loopS(loopW(x)) → loopW(x)
loopS(loopP(x)) → loopP(x)

loopH(loopS(x)) → loopH(x)
loopH(loopH(x)) → loopH(x)
loopH(loopW(x)) → loopW(x)
loopH(loopP(x)) → loopP(x)

loopW(loopS(x)) → loopW(x)
loopW(loopH(x)) → loopW(x)
loopW(loopW(x)) → loopW(x)
loopW(loopP(x)) → loopP(x)

loopP(loopS(x)) → loopP(x)
loopP(loopH(x)) → loopP(x)
loopP(loopW(x)) → loopP(x)
loopP(loopP(x)) → loopP(x)

alt(x,x) → x

strict (x,alt(y,z)) → alt(strict (x,y), strict (x,z))
seq(x,alt(y,z)) → alt(seq(x,y),seq(x,z))
par(x,alt(y,z)) → alt(par(x,y),par(x,z))

strict (alt(x,y),z) → alt(strict (x,z), strict (y,z))
seq(alt(x,y),z) → alt(seq(x,z),seq(y,z))
par(alt(x,y),z) → alt(par(x,z),par(y,z))

)

Figure 4.12: Phase 1/2 for normalizing interactions

116 CHAPTER 4. SYNTAX & DENOTATION

(VAR x y z)
(THEORY (AC alt) (AC par) (A strict) (A seq))
(RULES

strict (x,o) → x
seq(x,o) → x
par(x,o) → x

strict (o,x) → x
seq(o,x) → x
par(o,x) → x

loopS(o) → o
loopH(o) → o
loopW(o) → o
loopP(o) → o

loopS(loopS(x)) → loopS(x)
loopS(loopH(x)) → loopH(x)
loopS(loopW(x)) → loopW(x)
loopS(loopP(x)) → loopP(x)

loopH(loopS(x)) → loopH(x)
loopH(loopH(x)) → loopH(x)
loopH(loopW(x)) → loopW(x)
loopH(loopP(x)) → loopP(x)

loopW(loopS(x)) → loopW(x)
loopW(loopH(x)) → loopW(x)
loopW(loopW(x)) → loopW(x)
loopW(loopP(x)) → loopP(x)

loopP(loopS(x)) → loopP(x)
loopP(loopH(x)) → loopP(x)
loopP(loopW(x)) → loopP(x)
loopP(loopP(x)) → loopP(x)

alt(x, strict (x,y)) → strict (x,alt(o,y))
alt(strict (x,y), strict (x,z)) → strict (x,alt(y,z))
alt(strict (x,y),y) → strict (alt(x,o),y)
alt(strict (x,z), strict (y,z)) → strict (alt(x,y),z)

alt(x,seq(x,y)) → seq(x,alt(o,y))
alt(seq(x,y),seq(x,z)) → seq(x,alt(y,z))
alt(seq(x,y),y) → seq(alt(x,o),y)
alt(seq(x,z),seq(y,z)) → seq(alt(x,y),z)

alt(x,par(x,y)) → par(x,alt(o,y))
alt(par(x,y),par(x,z)) → par(x,alt(y,z))
alt(par(x,y),y) → par(alt(x,o),y)
alt(par(x,z),par(y,z)) → par(alt(x,y),z)

)

Figure 4.13: Phase 2/2 for normalizing interactions

4.3. NORMAL FORMS OF INTERACTIONS 117

4.3.4 A total rewrite ordering on interactions

As mentioned previously, in order to be able to compute normal forms of interactions (as uniquely defined

terms), we need to specify a total rewrite ordering on ground interaction terms. The purpose of this section

is to define this order.

To do so, let us at first define a total order on the set of atomic actions AΩ. We define such an order ≺A

in Def.4.17.

Definition 4.17: A total order on actions

Given a signature Ω = (L,M), let us consider the total orders ≺L and ≺M on the (finite) sets of

lifelines L and messages M . Let us also denote by ≺∆ the total order on {!, ?} such that ! ≺∆?.

We can then define a total order ≺A on the set of actions AΩ such that for any two actions a1 = l1∆1m1

and a2 = l2∆2m2 with l1, l2 ∈ L, ∆1,∆2 ∈ {!, ?} and m1,m2 ∈M we have a1 ≺A a2 iff:

• either l1 ≺L l2

• or l1 = l2 and ∆1 ≺∆ ∆2

• or l1 = l2 and ∆1 = ∆2 and m1 ≺M m2

We then define in Def.4.18 the total orders ≺F0 , ≺F1 and ≺F2 on the symbols of our Interaction Language.

Definition 4.18: Total orders on operation symbols

Given F0 = {∅} ∪ AΩ, we define the total order ≺F0 such that:

≺F0=≺A ∪{(∅, a) | a ∈ AΩ}

Given F1 = {strict, seq, par, alt}, we define the total order ≺F1 such that:

par ≺F1 seq ≺F1 strict ≺F1 alt

Given F2 = {loopS , loopH , loopW , loopP }, we define the total order ≺F2 such that:

loopP ≺F2 loopW ≺F2 loopH ≺F2 loopS

This finally allow us to define the total order ≺I on interaction terms in Def.4.19.

118 CHAPTER 4. SYNTAX & DENOTATION

Definition 4.19: A total order on ground interaction terms

We can then define a total order ≺I on IΩ s.t. for any two interactions iα and iβ we have iα ≺I iβ iff:

• iα(ε) ∈ Fkα and iβ(ε) ∈ Fkβ with kα < kβ i.e. at the root node we have operation symbols fα

and fβ s.t. the arity of fα is smaller than that of fβ

• or the root nodes are symbols of the same arity k and then iα ≺I iβ iff:

– either iα ≺Fk iβ

– or fα and fβ are the same symbol f of arity n and, given iα = f(iα|1, · · · , iα|n) and iβ =

f(iβ|1, · · · , iβ|n), we have that ∃j ∈ [1, n] s.t. ∀j′ < j, iα|j′ = iβ|j′ and iα|j ≺I iβ|j

The total order on interaction terms defined in Def.4.19 is a rewrite ordering as per Lem.4.31.

Lemma 4.31: ≺I is a total rewrite ordering on IΩ

We have that ≺I is a total rewrite ordering on IΩ

Proof. ≺I is antireflexive, transitive, antisymmetric, F-compatible and stable under substitution.

We can then define the normal form of any interaction term i as the unique interaction R(i) which is

irreducible by the Ordered Rewriting System (ORS) →T�I and such that for any i′ ∈ R2(R1(i)) we have

i′
∗→T�I R(i) i.e. R≺(i′) = i. We may then abusively use the notation R(i) = R≺(R2(R1(i))).

4.3.5 Implementation & examples

We have implemented the process to normalize interaction terms using the previously defined mechanisms

of ordered rewriting and class rewriting. In this section we illustrate the application of this process on

some examples. In particular, we demonstrate the successful automation of the initially human-guided

simplification of interaction terms which we have presented on Fig.4.10 and Fig.4.11.

On Fig.4.14 we illustrate the application of the normalisation process on two examples. We can note

that the example on the left corresponds to that of Fig.4.11.

The initial interaction term i is represented at the top in each case. Then, successive applications of

some atomic transformations, indicated by arrows, transform this initial term from top to bottom. The first

phase of the process is illustrated in the area that is colored in blue. The term at the bottom of the area in

blue (in each case) is the normal form R≺(R1(i)) of the initial interaction i. This term is then passed on to

the second phase, which application is represented in the area in green. Finally, the term at the bottom is

the normal form R(i) = R≺(R2(R1(i))).

On Fig.4.15 we provide two more examples. We can remark that the one on the left is that from

Fig.4.10. Let us also remark that, on Fig.4.15, we have displayed all transformation sequences found by the

implementation to transform the initial interaction into its normal form.

4.3. NORMAL FORMS OF INTERACTIONS 119

Figure 4.14: Applying our process to normalize interactions on some examples (1/2)

120 CHAPTER 4. SYNTAX & DENOTATION

Figure 4.15: Normalizing example interactions (2/2) and displaying all transformation sequences

4.3. NORMAL FORMS OF INTERACTIONS 121

The process displayed on Fig.4.14 and Fig.4.15 is implemented in the HIBOU tool (those images are

generated by HIBOU) which we present in Chap.12. It is possible to explore all paths from the initial

interaction to its normal form (as on Fig.4.15) or only one (as on Fig.4.14). Given that the finite rewrite

systems have been proven convergent, there is a finite number of such paths and all paths are finite and lead

to the same end result.

Conclusion

In this chapter we have defined our Interaction Language (IL). This language takes the form of an algebra

of terms that are build inductively from atomic actions which specify the occurrence of communication

events and constructors which organize and schedule the occurrences of those events w.r.t. one another.

Constructors of our IL allow the specification of strict sequencing so as to strictly order the occurrence

of events, weak sequencing so as to order events occurring on the same sub-systems, interleaving so as

to allow events to occur in any order, choice between the occurrence of events as well as four different

kinds of repetitions. This algebra of terms can be associated to an algebra of sets of traces. A set of

traces corresponds to a set of behaviors that may be expressed. Each interaction term can be associated

to a correspond (possibly infinite) set of traces which constitutes its semantics. We can then characterize

interaction terms which are syntaxically distinct but have the same semantics as members of a common class

of equivalence. A specific and unique member of each such class, called the normal form can then be defined

and computed using term rewriting.

In the next chapter we define another semantics of interactions in the style of operational semantics that

can be found in the field of process calculus.

122 CHAPTER 4. SYNTAX & DENOTATION

Chapter 5

A small-step operational semantics

Contents
5.1 Definition of the Operational Semantics . 124

5.1.1 Executing atomic actions . 126

5.1.2 Executing actions on the left of strict and seq constructors 126

5.1.3 Executing actions on either side of a par constructor 128

5.1.4 Executing actions on either side of a alt constructor 129

5.1.5 Termination predicate . 130

5.1.6 Executing actions on the right of strict operators 132

5.1.7 Evasion & Collision predicates . 134

5.1.8 The pruning of interactions . 137

5.1.9 Executing actions on the right of seq constructors 140

5.1.10 Executing actions underneath a loopS constructor 142

5.1.11 Executing actions underneath a loopP constructor 143

5.1.12 Executing actions underneath a loopH constructor 145

5.1.13 Executing actions underneath a loopW constructor 146

5.1.14 Formalisation of the set of rules . 148

5.2 Proof of equivalence between σo and σd . 148

5.2.1 Properties of σd w.r.t. the termination and evasion predicates 149

5.2.2 Properties of σd w.r.t. pruning . 151

5.2.3 Left inclusion . 153

5.2.4 Right inclusion . 157

123

124 CHAPTER 5. A SMALL-STEP OPERATIONAL SEMANTICS

In this chapter we define another semantics for our Interaction Language (IL). This new semantics,

that we denote by σo is a small-step operational-style in contrast to σd which can be described as being

denotational-style. This new semantics is presented in the fashion of structural operational semantics that

can be found in the field of process calculus.

The plan of this chapter is as follows:

• in Sec.5.1, we introduce our small-step operational semantics σo,

• in Sec.5.2 we prove (with the support of a Coq proof in [88]) that both semantics are equivalent i.e

that for any interaction i, the sets of traces σd(i) and σo(i) obtained using both methods are equal.

Let us remark that the content of this chapter, formalization and proof have been encoded in Coq in [88].

Results related to this chapter can be found in [95].

5.1 Definition of the Operational Semantics

The small-step operational semantics σo consists in reconstructing accepted traces of an original interaction

i0 via the dynamic execution of i0. Fig.5.1 illustrates this principle. It describes the construction of a trace

t = a1. · · · .an that belongs to the semantics σo(i0) of the interaction i0. This trace can be obtained (as all

traces of the semantics) by the concatenation of individual actions ak that can succeed each-other during

the execution of the initial interaction term i0.

Sy
nt
ax

Sem
antics

IΩ TΩi0

i1

in

σ
o (i0)

a1

an

Figure 5.1: Principles of small-step operational semantics applied to interactions

The process described on Fig.5.1 to reconstruct this trace can be explained as follows:

• At first, action a1 can be immediately executed in i0. Doing so leads to a "follow-up" interaction i1

which semantics is that of all traces of σo(i0) which start with the specific action a1 (that exists at a

given position within the term structure of interaction i0). We note this i0
a1−→ i1.

• In the same manner, there is a certain action a2 that can be executed in i1, which leads to another

interaction i2 (noted i1
a2−→ i2) and so on.

5.1. DEFINITION OF THE OPERATIONAL SEMANTICS 125

• As a result, we obtain a path i0
a1−→ · · · an−−→ in such that in can express the empty trace ε (which can

be asserted statically).

• Since in expresses the empty trace ε, this guarantees that the trace t = a1. · · · .an (in dark red on

Fig.5.1) obtained by concatenation is an accepted trace of the initial interaction i0. Of course there

may exist many such paths, each corresponding to an accepted trace. The overall semantics of the

original interaction i0 is then the set regrouping all of those traces (the area in light red in Fig.5.1).

With the operational semantics, instead of considering all the traces that an interaction may express as

a set, we rewrite the interaction on demand, so as to express certain actions. In particular, we may unfold a

given loop on demand, when executing an action that is found within its sub-interaction. This formulation

of the semantics is much more practical for later use in multi-trace analysis, as we will see in the second part

of the thesis, beginning with Chap.8.

notation

i a−→ i′from

if

then

action being
executed

original
interaction

a possible
follow-up
interaction

base case

a a−→ ∅

noconditionpredicate

accepted
predicate

inductive case

i a−→ i′

c(i) a−→ c′(i′)
φ

conditionpredicate

implied
predicate

additionalstaticcondition

old and new syntaxic contexts

Figure 5.2: Formulation of the operational semantics "à la" process algebra

So as to formally define (i.e. identify as valid) transitions of the form i
a−→ i′, we define a set of rules

in the manner of a process algebra (that we have introduced in Chap.2). The principle of this rule-based

approach is described on Fig.5.2:

• Some basic transitions are simply admitted to be true (like axioms in a theory). Those basic transitions

corresponds to the executions of interactions that simply consists in individual actions a ∈ AΩ. The

single action that forms the interaction can of course be immediately executed; and only the empty

interaction ∅ "remains" to be executed i.e. we have a a−→ ∅. This base case is represented in the top

right cell of Fig.5.2.

• Any other (more complex) transition i a−→ i′ must be proved to be true using this base case and a set

of rules that deals with constructors (strict, seq, par, alt, etc.) in an inductive manner. Those rules

take the general form that is represented in the bottom right cell of Fig.5.2. If a certain transition

126 CHAPTER 5. A SMALL-STEP OPERATIONAL SEMANTICS

i
a−→ i′ is valid (as well as some optional additional conditions on expressed by "φ" on Fig.5.2), then a

more complex transition c(i) a−→ c′(i′) is valid; where c is a syntactic context in which we find i (for

instance within strict(i, i2), c = strict(_, i2) is the syntactic context that applies on i) and c′ is the

new syntactic context in which we include i′ so as to form the follow-up interaction c′(i′) after the

execution of a in c(i).

5.1.1 Executing atomic actions

As we have seen earlier, the execution of atomic actions constitutes the base case for the operational seman-

tics. The corresponding rule is the following:

For any action a ∈ AΩ:
a
a−→ ∅

Fig.5.3 illustrates the base rule (which enables the execution of interactions that consists in single actions)

and its application on an emission (example 1, on the left) and a reception (example 2, on the right).

Example 1 Example 2

on
te
rm

l1!m
l1!m−−→ ∅ l2?m

l2?m−−→ ∅

on
di
ag
ra
m

l1!m−−→ l2?m−−→

Figure 5.3: Examples for the execution of atomic actions

5.1.2 Executing actions on the left of strict and seq constructors

In the graphical representation of sequence diagrams, the top to bottom direction corresponds, by default,

to the passing of time. Actions that are drawn below some other actions occur after them. In the term

structure of a corresponding interaction, this top-to-bottom direction corresponds to a left-to-right relation-

ship. Indeed, within the tree-structure of an interaction, actions are found on leaf nodes, and an action a1

that is drawn above some other action a2 in the sequence diagram correspond to a leaf node that is on the

left of that of a2. By "the left" it is meant that a1 is a left cousin of a2 w.r.t. some common ancestor which

is a binary constructor.

This remark is meant for the default interpretation of the top-to-bottom direction i.e. w.r.t. the weak

sequencing "seq" constructor. However it also holds for the strict sequencing "strict" constructor. Actions

found on the left of a strict must occur before those found on its right.

Also, whenever an action a is executable within the left sub-interaction i1 of an interaction i = f(i1, i2)

with f ∈ {strict, seq}, then it is also executable within i. As a result, we have the following two rules:

5.1. DEFINITION OF THE OPERATIONAL SEMANTICS 127

For any action a ∈ AΩ: i1
a−→ i′1

strict(i1, i2) a−→ strict(i′1, i2)
and i1

a−→ i′1

seq(i1, i2) a−→ seq(i′1, i2)

Fig.5.4 illustrates this in the case of the strict operator. As explained earlier, the strict operator can be

used to express the passing of a message m from a lifeline l1 to another lifeline l2, via strict(l1!m, l2?m),

which is the example used in Fig.5.4. Given that the execution of the emission l1!m, when considered to be

an interaction in its own right, is possible, that of l1!m within strict(l1!m, l2?m) is authorized (by induction).

In this context, the execution of l1!m leads to strict(∅, l2?m), as illustrated on Fig.5.4.

on
te
rm

l1!m
l1!m−−→ ∅

strict

l1!m l2?m
l1!m−−→

strict

∅ l2?m

on
di
ag
ra
m l1!m−−→

l1!m−−→

Figure 5.4: Example for executing an action on the left of a strict constructors

We illustrate the second rule, that for executing actions on the left of seq constructors on Fig.5.5. The

example highlights the inductive nature of our rule-based operational semantics. Indeed, here the condition

predicate is not an application of the base rule, but of the rule which we obtained in the last example from

Fig.5.4.

on
te
rm

strict

l1!m l2?m
l1!m−−→

strict

∅ l2?m
seq

strict

l1!m l2?m

strict

l2!m l3?m

l1!m−−→
seq

strict

∅ l2?m

strict

l2!m l3?m

on
di
ag
ra
m

l1!m−−→

l1!m−−→

Figure 5.5: Example for executing an action on the left of a seq constructors

128 CHAPTER 5. A SMALL-STEP OPERATIONAL SEMANTICS

5.1.3 Executing actions on either side of a par constructor

The par constructor specifies a concurrent execution of two distinct behaviors, each modelled by a sub-

interaction. Those executions being done in parallel, there is no difference in how they should be treated.

As a result, there is a symmetry between the rule that specifies the execution of actions on the left of a par

operator, and the rule that specifies the execution of actions on its right.

Given an interaction i = par(i1, i2), if an action a is executable in any of the two sub-interactions, then

it is executable in i. As a result, we have the following two rules:

For any action a ∈ AΩ: i1
a−→ i′1

par(i1, i2) a−→ par(i′1, i2)
and i2

a−→ i′2

par(i1, i2) a−→ par(i1, i′2)

Fig.5.6 illustrates the application of the second rule, which is that of executing an action on the right of

a par constructor, using a simple example.

on
te
rm

strict

l1!m2 l2?m2

l1!m2−−−→
strict

∅ l2?m2

par

strict

l1!m1 l2?m1

strict

l1!m2 l2?m2

l1!m2−−−→
par

strict

l1!m1 l2?m1

strict

∅ l2?m2

on
di
ag
ra
m

l1!m2−−−→

l1!m2−−−→

Figure 5.6: Example for executing an action on the right of a par constructor

In the example from Fig.5.6, the interaction models a parallel composition of two behaviors:

• a behavior describing the passing of a message m1 from lifeline l1 to lifeline l2

• and another which describes the passing of another message m2 from lifeline l1 to lifeline l2

In the second behavior (at the right in the term and on the bottom in the diagram), which execution

is illustrated on Fig.5.6, m2 can be emitted by l1 so that only its reception l2?m2 by l2 remains to be

executed. The "right" rule for the par constructor can therefore be applied (which is shown on Fig.5.6). It

implies that l1!m2 can be executed and that what remains to be executed is the parallelization of the original

left sub-interaction on the left, and of l2?m2 on the right (which remains to be executed w.r.t. the right

sub-behavior).

In the first behavior (at the left in the term and at the top in the diagram), m1 can be emitted by l1 so

that only its reception l2?m1 by l2 remains to be executed. Here, the "left" rule for the par operator could

5.1. DEFINITION OF THE OPERATIONAL SEMANTICS 129

be applied, which would likewise imply that l1!m1 can be executed and that what remains to be executed

would be the parallelization of the original right sub-interaction on the right, and of l2?m1 on the left.

5.1.4 Executing actions on either side of a alt constructor

The alt constructor specifies an exclusive non-deterministic alternative between two sub-behaviors, each

modelled by a sub-interaction. Similarly to the par constructor, the alt treats both its sub-interactions in

the same "symmetric" manner. Given an interaction i = alt(i1, i2), if an action a is executable in any of the

sub-interactions, then it is executable in i.

Executing an action from one of the two sub-interaction means that it has been selected, at the expense

of the other. The other sub-interaction can therefore be eliminated, and the choice to take it removed from

the interaction term. This means that whenever an action is executed underneath an alt constructor, this

alt constructor is eliminated in the follow-up interaction.

Concretely, executing actions underneath a alt constructor is formalized by the following two rules:

For any action a ∈ AΩ: i1
a−→ i′1

alt(i1, i2) a−→ i′1

and i2
a−→ i′2

alt(i1, i2) a−→ i′2

Fig.5.7 illustrates the application of the second rule, which is that of executing an action on the right of

a alt constructor, using a simple example. We do not provide another example for the left side given that it

is similar.

on
te
rm

strict

l1!m2 l2?m2

l1!m2−−−→
strict

∅ l2?m2

alt

strict

l1!m1 l2?m1

strict

l1!m2 l2?m2

l1!m2−−−→ strict

∅ l2?m2

on
di
ag
ra
m

l1!m2−−−→

l1!m2−−−→

Figure 5.7: Example for executing an action on the right of a alt constructor

In the example from Fig.5.7, the interaction models a choice between of two behaviors:

• a behavior describing the passing of a message m1 from lifeline l1 to lifeline l2

• and another which describes the passing of another message m2 from lifeline l1 to lifeline l2

In the second behavior (at the right in the term and on the bottom in the diagram), which execution is

illustrated on Fig.5.7, m2 can be emitted by l1 so that only its reception l2?m2 by l2 remains to be executed.

130 CHAPTER 5. A SMALL-STEP OPERATIONAL SEMANTICS

The "right" rule for the alt constructor can therefore be applied (which is shown on Fig.5.7). It implies that

l1!m2 can be executed and that what remains to be executed is simply l2?m2 (which remains to be executed

w.r.t. the right sub-behavior, that has been selected at the expense of the other).

In the first behavior (at the left in the term and at the top in the diagram), m1 can be emitted by l1 so

that only its reception l2?m1 by l2 remains to be executed. Here, the "left" rule for the alt operator could

be applied, which would likewise imply that l1!m1 can be executed and that what remains to be executed

would be l2?m1.

5.1.5 Termination predicate

The next rule that we are going to introduce is that for executing actions on the right of strict constructors.

However before doing so, we need to introduce an intermediary notion which is that of the termination of

an interaction.

Termination

If an interaction can express the empty trace ε then it means that it can immediately terminate i.e. that it

is able to not express anything anymore. The problem of whether or not an interaction i can immediately

terminate can be answered systematically via the analysis of the term structure of i.

We provide a solution in the form of the termination predicate "↓" given on Def.5.1. The formulation

of that predicate is inspired from process algebras as in [98, 99], which we reviewed in Chap.2. For any

interaction i, i ↓ signifies that i can terminate immediately.

Let us remark that the fact that the termination predicate indeed characterizes the ability to express

the empty trace i.e. that for any interaction i we have (i ↓) ⇔ (ε ∈ σd(i)) will be proven in Lem.5.4 of the

following section (Sec.5.2).

Let us also remark that, in our previous publication [93] we have used a expε function instead of the ↓

predicate. For any interaction i, expε(i) returns whether or not i can express the empty trace ε. We used

the verb "express" in the name expε so as not to risk confusion between this simple static function and a

fully-fledged semantics, for which we rather use the verb "accept". With the ↓ notation, the concept that

is evoked is that of an immediate termination of the process. For any interaction i, i ↓ means that i may

terminate immediately without the observation of any further actions. Those two concepts are therefore

equivalent.

In any case, the ↓ predicate can be inferred inductively from the term structure of interactions:

• naturally the empty interaction ∅ only accepts ε, and can only terminate. As a result, we have ∅ ↓

• any loop accepts ε because it is possible to repeat zero times its content. Therefore, for any i ∈ IΩ,

and any k ∈ {S,H,W,P} we have loopk(i) ↓

• for interactions of the form alt(i1, i2), if either i1 or i2 terminates then alt(i1, i2) terminates

5.1. DEFINITION OF THE OPERATIONAL SEMANTICS 131

• for interactions of the form f(i1, i2) with f being a scheduling constructor (strict, seq, par) it is required

that both i1 and i2 terminate for f(i1, i2) to terminate

Definition 5.1: Termination "↓" predicate

We define inductively the predicate ↓⊂ IΩ such that for any two interactions i1 and i2 from IΩ, for any

f ∈ {strict, seq, par} and for any k ∈ {S,H,W,P} we have:

∅ ↓
i1 ↓

alt(i1, i2) ↓
i2 ↓

alt(i1, i2) ↓
i1 ↓ i2 ↓
f(i1, i2) ↓ loopk(i1) ↓

Non-Termination

Similarly, we can define (Def.5.2) a "non-termination" predicate 6↓ from a static analysis of the structure of

interactions:

• an interaction that consists of a single action a ∈ AΩ do not express ε (a must be executed) and cannot

terminate. As a result we have a 6↓

• for interactions of the form alt(i1, i2), if both i1 6↓ and i2 6↓ then we have alt(i1, i2) 6↓

• for interactions of the form f(i1, i2) with f ∈ {strict, seq, par} (scheduling constructors), it suffices

that either i1 6↓ or i2 6↓ in order to have f(i1, i2) 6↓

Definition 5.2: Non-Termination "6↓" predicate

We define inductively the predicate 6↓⊂ IΩ such that for any action a ∈ AΩ, for any two interactions i1

and i2 from IΩ and for any f ∈ {strict, seq, par} we have:

a 6↓
i1 6↓ i2 6↓
alt(i1, i2) 6↓

i1 6↓
f(i1, i2) 6↓

i2 6↓
f(i1, i2) 6↓

The termination and non-termination predicates are negations of one another, and, for any interaction

term i, one can always decide whether i ↓ or i 6↓.

Lemma 5.1: Termination & non-termination

We have that for any interaction i ∈ IΩ:

(i ↓) ∨ (i 6↓) and (i ↓)⇔ ¬(i 6↓)

Proof. Immediate by induction on the term structure of interactions.

Illustrating example

Let us consider the example from Fig.5.8. On the right of Fig.5.8 is represented the syntaxic structure of an

interaction i, and, on the left of Fig.5.8 the corresponding drawing as a sequence diagram.

132 CHAPTER 5. A SMALL-STEP OPERATIONAL SEMANTICS

Í

ë

Í

Í

ë

seqÍ

altÍ

strictë

l1!m1ël2?m1ë

∅Í

loopPÍ

seqë

strictë

l1!m2ël2?m2ë

strictë

l2!m3ël1?m3ë

Figure 5.8: Illustration of the termination predicate

In this illustration, we represent the application of the termination predicate ↓ on the syntaxic structure

of the term using two symbols: Í and ë. For any node at position p in the tree structure, if it is decorated

with Í then it means that i|p ↓ and if it is decorated with ë then it means that i|p 6↓. In order to decorate

all the nodes of the tree we can proceed as follows:

• as a first step, we can immediately decorate the leaf nodes:

– if a leaf node contains the empty interaction ∅ then we decorate it with Í

– if a leaf node contains an action a ∈ IΩ then we decorate it with ë

• then, the decoration of parent nodes is inferred by their natures (the operation symbol they carry) and

by the decoration of child nodes:

– for nodes containing strict, seq or par, we decorate them with Í if both children are decorated

with Í and, otherwise, we decorate them with ë

– for nodes containing alt, we decorate them with Í if any one child is decorated with Í and,

otherwise, we decorate them with ë

– we always decorate loop nodes with Í

On the example from Fig.5.8, given that the root node is decorated by Í we can conclude that the

interaction terminates. Indeed, we can choose the right branch of the alternative and choose not to instantiate

the loop which results in expressing the empty trace.

On the left of Fig.5.8 we have roughly illustrated the counterpart of this process on the sequence diagram

representation.

5.1.6 Executing actions on the right of strict operators

We have seen earlier how actions on the left of a strict operator might be executed. Given the nature of

the strict operator we might at first glance imagine that it is not possible to execute actions on the right of

5.1. DEFINITION OF THE OPERATIONAL SEMANTICS 133

strict but there are situations in which it is actually possible. For instance, we have the trivial strict(∅, a),

with a ∈ AΩ a certain action that is immediately executable so that strict(∅, a) a−→ ∅.

In fact, an action on the right of a strict in a certain strict(i1, i2) and such that i2 a−→ i′2 can be executed if

the sub-interaction i1 (that on the left) can express the empty trace ε. Indeed, if it is the case, then nothing

prevents action a to be at the first position in a trace expressed by strict(i1, i2). We can see that this notion

of "expressing the empty trace" corresponds to the termination predicate ↓ that we have previously defined.

Given i = strict(i1, i2), if a can be executed in i2 and if i1 ↓, then a can be executed in i and the follow-up

interaction is i′2, which is the follow-up from the execution of a within i2. Indeed, the execution of a within

i in that configuration forces the choice, for i1 to express the empty trace. As a result, in the next step of

the execution, nothing remains to be executed in i1 and therefore i1 can be eliminated. Given that i1 can

express the empty trace, this elimination of i1 does not violate its semantics.

As a result, the definition of the termination predicate ↓ allows us to define the rule for executing actions

on the right of strict constructors. This rule is formalized as follows:

For any action a ∈ AΩ: i2
a−→ i′2 i1 ↓

strict(i1, i2) a−→ i′2

Fig.5.9 illustrates, using two examples, both the application of the ↓ predicate and that of the rule for

the execution of actions on the right of strict constructors. To illustrate the application of ↓, we use the

same ë and Í notations as we did in the previous section.

Example 1 Example 2

on
te
rm

strict

l1!m2 l2?m2

l1!m2−−−→
strict

∅ l2?m2

strict

altÍ

strictë

l1!m1ël2?m1ë

∅Í

strict

l1!m2 l2?m2

l1!m2−−−→ strict

∅ l2?m2

strict

l1!m2 l2?m2

l1!m2−−−→
strict

∅ l2?m2

strict

loopHÍ

strictë

l1!m1ël2?m1ë

strict

l1!m2 l2?m2

l1!m2−−−→ strict

∅ l2?m2

on
di
ag
ra
m

l1!m2−−−→

l1!m2−−−→
ë
Í

Í

l1!m2−−−→

l1!m2−−−→
ë

Í

Figure 5.9: Two examples for executing an action on the right of a strict constructor

Let us consider "Example 1", on the left of Fig.5.9. We have on the left of the strict an alternative,

where one branch holds the empty interaction ∅. As a result, this left sub-interaction terminates. Given

that the left sub-interaction i1 verifies i1 ↓ and that an action (here l1!m2) can be executed on the right

sub-interaction i2, then, as per the previous rule, this action can be executed in strict(i1, i2), as shown on

134 CHAPTER 5. A SMALL-STEP OPERATIONAL SEMANTICS

Fig.5.9. The application of the rule leads to the elimination of i1 and only remains i′2 which results from the

execution of the action in the right sub-interaction i2. In "Example 1" from Fig.5.9, this yields l2?m2.

The second example from Fig.5.9 can be understood similarly, except that here, the sub-interaction on

the left of the strict, which is loopH(strict(l1!m1, l2?m1)) is a loopH instead of an alt. Likewise, it can

express the empty trace, but the choice that allows it to do so is not a choice of an alternative branch, but

that of not instantiating the loopH .

5.1.7 Evasion & Collision predicates

Let us now introduce the three following notions:

• that, for an interaction, to "evade" a lifeline,

• that, for an interaction, to "collide" with a lifeline

• and that, for an interaction, to be pruned w.r.t. a lifeline (which we will address in Sec.5.1.8)

Evasion

For any interaction i ∈ IΩ, its termination i ↓ states that it is able to express the empty trace. "Evasion" is

a similar, although weaker, notion than "Termination" that can be described as a form of local termination.

For any interaction i, and for any lifeline l, we say that i evades l, which is denoted by the predicate

i ↓×× l, if i is able to express at least one trace that does not contain any action occurring on lifeline l. In

other words, i ↓×× l iff there exists a trace t expressed by i such that ¬(t××l) (with the notation from Sec.4.1)

i.e. such that t does not have any conflict w.r.t. l (this is proven in Lem.5.5 of Sec.5.2).

Like "termination", "evasion" i.e. the fact that an interaction can (or cannot) express traces that do not

involve a specific lifeline can be inferred statically (similarly to ↓) from the term structure of interactions.

We indeed define "↓××" in Def.5.3 as an inductive predicate s.t.:

• the empty interaction ∅ "evades" every lifeline i.e.∀ l ∈ L we have ∅ ↓×× l

• for an interaction that is reduced to a single action a ∈ AΩ, a evades a lifeline l iff it occurs on a

different lifeline i.e. we have θ(a) 6= l

• similarly to termination, any loop may evade any lifeline because it is always possible to express the

empty trace, which does not have conflicts w.r.t. l

• for binary constructors the definition of ↓×× is similar to that of ↓. For alt is it sufficient that one of the

two direct sub-interactions evades a lifeline for the parent to evade it. For the scheduling constructors

(seq, strict, par), both have to evade the lifeline.

5.1. DEFINITION OF THE OPERATIONAL SEMANTICS 135

Definition 5.3: Evasion "↓××" predicate

We define the predicate ↓××⊂ IΩ ×L such that for any lifeline l ∈ L, for any action a ∈ AΩ, for any two

interactions i1 and i2 from IΩ, for any f ∈ {strict, seq, par} and for any k ∈ {S,H,W,P} we have:

∅ ↓×× l
θ(a) 6= l

a ↓×× l

i1 ↓×
×
l

alt(i1, i2) ↓×× l
i2 ↓×

×
l

alt(i1, i2) ↓×× l
i1 ↓×

×
l i2 ↓×

×
l

f(i1, i2) ↓×× l loopk(i1) ↓×× l

As a side note, about the proximity of ↓ and ↓××, let us remark that:

• on the one hand, for any interaction i ∈ IΩ, if we have i ↓ then this implies that ∀ l ∈ L, we have

i ↓×× l. Indeed, if an interaction can express the empty trace ε then it is able to express a trace with no

conflict w.r.t. every lifeline.

• on the other hand, the opposite implication is false: if we suppose that for ∀ l ∈ L we have i ↓×× l,

we do not necessarily have i ↓. It suffices to consider the following example: i = alt(l1!m, l2!m) with

L = {l1, l2}. Here we have i ↓×× l1 because we can take the right branch of the alt, and ↓×× l2 because

we can take the left branch of the alt. However we do not have i ↓ because i must express either l1!m

or l2!m.

Collision

For any interaction i, and for any lifeline l, we say that i collides with l, which is denoted by the predicate

i 6 ↓××l, if all the traces expressed by i have conflicts w.r.t. l i.e. contain actions occurring on lifeline l.

Like "termination" and "evasion", "collision" can be inferred statically from the term structure of interac-

tions. We indeed define " 6 ↓××" in Def.5.4 as an inductive predicate:

• for interactions that consist in a single action a ∈ AΩ, a collides with a lifeline l iff it occurs on l i.e.

we have θ(a) = l

• for interactions of the form alt(i1, i2) if both i1 and i2 collide with l then i also collides with l

• for interactions of the form f(i1, i2) with f ∈ {strict, seq, par} (scheduling constructor), it suffices that

either i1 or i2 collides with l for i to collide with l

Definition 5.4: Collision "6 ↓××" predicate

We define the predicate 6 ↓×× ⊂ IΩ × L such that for any lifeline l ∈ L, for any action a ∈ AΩ, for any

two interactions i1 and i2 from IΩ and for any f ∈ {strict, seq, par} we have:
θ(a) = l

a 6 ↓××l
i1 6 ↓×

×
l i2 6 ↓×

×
l

alt(i1, i2) 6 ↓××l
i1 6 ↓×

×
l

f(i1, i2) 6 ↓××l
i2 6 ↓×

×
l

f(i1, i2) 6 ↓××l

136 CHAPTER 5. A SMALL-STEP OPERATIONAL SEMANTICS

ë

ë

Í

altÍ

strictë

l1!m1Íl2?m1ë

seqÍ

strictÍ

l3!m2Íl1?m2Í

loopSÍ

strictë

l1!m3Íl2?m3ë

Figure 5.10: Illustration of the evasion predicate (here w.r.t. lifeline l2)

The evasion and collision predicates are negations of one another (bivalence), and, for any interaction

term i and lifeline l, one can always decide whether i evades or collides with l (decidability). Those properties

are stated in Lem.5.2.

Lemma 5.2: Decidability & bivalence of the evasion & collision predicates

We have that for any interaction i ∈ IΩ and any lifeline l ∈ L:

(i ↓×× l) ∨ (i 6 ↓××l) and (i ↓×× l)⇔ ¬(i 6 ↓××l)

Proof. Immediate by induction on the term structure of interactions.

Illustrating example

Let us consider the example from Fig.5.10. On the right of Fig.5.10 is represented the syntaxic structure of

an interaction i, and, on the left of Fig.5.10 the corresponding drawing as a sequence diagram. In a similar

fashion as what we did on the illustrating example for the termination predicate (Fig.5.8), we have here

illustrated the application of the evasion predicate (w.r.t. lifeline l2) on the term structure via the use of Í

and ë symbols. Let us recall that, for any node at position p in the tree structure, if it is decorated with Í

then it means that i|p ↓
××
l and if it is decorated with ë then it means that i|p 6 ↓

××
l. In order to decorate all

the nodes of the tree we can proceed as follows:

• as a first step, we can immediately decorate the leaf nodes (which are either actions or ∅) with the Í

and ë symbols

• then, the decoration of parent nodes is inferred by their natures (the operation symbol they carry) and

by the decoration of child nodes

On the left of Fig.5.10 we can illustrate the application of the evasion predicate by drawing a line over

that of the lifeline of interest, which is l2 in this example. This line can be decomposed into several segments

5.1. DEFINITION OF THE OPERATIONAL SEMANTICS 137

that correspond to specific areas of the diagram (operands) and that are colored either in green or in red.

The coloration of the segment depends on whether or not the sub-interaction corresponding to the operand

evades or collides with the lifeline of interest. If the first and last segments are colored in green then it means

that the diagram evades the lifeline of interest.

In the particular example represented on Fig.5.10, we can see that by taking the right branch of the

alternative and by choosing not to instantiate the loop, we can express traces that have no conflict w.r.t.

lifeline l2. As a result the interaction i verifies i ↓×× l2.

5.1.8 The pruning of interactions

Pruning is a process by which an interaction i that can evade a lifeline l (i.e. such that i ↓×× l) is rewritten into

a new interaction which characterizes exactly all the executions of i that do not involve lifeline l. In other

words, the pruning process removes from the input interaction i all the behaviors (and only those behaviors)

that may enter into conflict with the input lifeline l. We denote by i××l−→ i′ the fact that the pruning process

applied to interaction i w.r.t. lifeline l returns interaction i′.

Definition

To formalize the notion of pruning we define i××l−→ i′ as an inductive relation in Def.5.5. Then, in Lem.5.3,

we prove, for any interaction i such that i ↓×× l, the existence and unicity of the "pruned" interaction i′ such

that i××l−→ i′.

Let us remark that the fact that the pruning process applied to i and l indeed returns an interaction i′

which characterizes exactly all the executions of i that do not involve lifeline l i.e. that we have σd(i′) =

{t ∈ σd(i) | ¬(t××l)} will be proven in Lem.5.6 of the following section (Sec.5.2).

Definition 5.5: Pruning relation "××−→"

We define the pruning relation ××−→⊂ IΩ × L × IΩ such that for any lifeline l ∈ L, for any f ∈

{strict, seq, par} and for any k ∈ {S,H,W,P}:

∅××l−→ ∅

θ(a) 6= l

a××
l−→ a

i1××
l−→ i′1 i2××

l−→ i′2

f(i1, i2)××l−→ f(i′1, i′2)

i1××
l−→ i′1 i2××

l−→ i′2

alt(i1, i2)××l−→ alt(i′1, i′2)

i1××
l−→ i′1

i2 6 ↓×
×
l

alt(i1, i2)××l−→ i′1

i2××
l−→ i′2

i1 6 ↓×
×
l

alt(i1, i2)××l−→ i′2

i1××
l−→ i′1

loopk(i1)××l−→ loopk(i′1)
i1 6 ↓×

×
l

loopk(i1)××l−→ ∅

Properties

In the following we will state some properties of the inductive relation of Def.5.5. The pruning relation and

the evasion predicate can be used to describe similar characteristics of interactions terms. Whenever an

138 CHAPTER 5. A SMALL-STEP OPERATIONAL SEMANTICS

interaction evades a lifeline then it means that is can be pruned w.r.t. that lifeline. Reciprocally, whenever

an interaction can be pruned w.r.t. a lifeline then it means that it evades that lifeline. Those observations

as well as the unicity of pruning are given in Lem.5.3

Lemma 5.3: Conditional existence & unicity of pruned interaction

For any interaction i ∈ IΩ and for any lifeline l ∈ L we have:

(∃ i′ ∈ IΩ s.t. i××l−→ i′)⇒ (i ↓×× l) and (i ↓×× l)⇒ (∃! i′ ∈ IΩ s.t. i××l−→ i′)

Proof. We can reason by induction on the term structure of interactions.

Description & illustrative examples

The pruning relation i××l−→ i′ eliminates from a given interaction i (s.t. the precondition i ↓×× l is satisfied) all

actions occurring on lifeline l while preserving "a maxima" the original semantics of i i.e. so that σd(i′) ⊆ σd(i)

and σd(i′) is the maximum subset of σd(i) that contains no trace in which there are actions occurring on l.

So as to preserve the semantics, the interaction term i can only be modified in two manners with the

aim to eliminate actions:

1. by forcing the choice of a given sub-interaction in alt nodes (illustrated on Fig.5.11)

2. by choosing to forbid the repetition of a sub-interaction in loop nodes (illustrated on Fig.5.12)

Those two kinds of modifications strictly correspond to the elimination of some possible executions of i while

preserving all others.

We describe in the following the mechanism of pruning formalised in Def.5.5. Let us consider a lifeline l.

We then have:

• ∅××l−→ ∅ because there is nothing to eliminate

• for any action a ∈ AΩ, a is prunable iff a ↓×× l. Therefore, a is not an action that needs to be eliminated

and a××l−→ a

• for i = alt(i1, i2), in order for the precondition i ↓×× l to be satisfied, we have either or both of i1 ↓×
×
l or

i2 ↓×
×
l. If both branches evade l they can be pruned and kept in the interaction term. If only a single

one does, we only keep the pruned version of this single branch

• for any scheduling constructor f , if i = f(i1, i2), in order to have i ↓×× l we must have both i1 ↓×
×
l and

i2 ↓×
×
l. In that case the unique interaction i′ such that i××l−→ i′ is simply defined as the scheduling, using

f , of the pruned versions of i1 and i2

• finally, for loops, i.e. with i of the form loopk(i1) with k ∈ {S,H,W,P}, we distinguish two cases:

5.1. DEFINITION OF THE OPERATIONAL SEMANTICS 139

– if i1 6↓×
×
l then any execution of i1 will yield a trace containing actions occurring on l. Therefore

it is necessary to forbid the repetition of the loop. This is done by specifying that loopk(i1)××l−→ ∅

– if i1 ↓×
×
l then it is not necessary to forbid the repetition of the loop, given that sub-interaction

i1 can be pruned and therefore may not yield traces with actions occurring on l. This being the

modification which preserves a maximum amount of traces of the semantics, we have, if i1××
l−→ i′1

then loopk(i1)××l−→ loopk(i′1)

The recursive nature of the prune relation then guarantees that only the minimally required modifications

are done on the interaction term so as to eliminate from it undesired actions.

loopW

seq

strict

l1!m1 l2?m1

seq

alt

strict

l2!m2 l3?m2

∅

l2!m3

interaction before pruning pruning w.r.t l3 interaction after pruning

Figure 5.11: Illustration of pruning in the case where a branch of alternative is cut-out

Fig.5.11 illustrates a specific application of the pruning process. We consider an interaction i, drawn on

the left part of Fig.5.11 and which term is given in the middle part of Fig.5.11. i is defined over the set

L = {l1, l2, l3} of lifelines. We then apply pruning w.r.t. lifeline l3 on i to obtain the interaction drawn on

the right part of Fig.5.11. The blue lines represent the rewriting orchestrated by the pruning process. The

only action occurring on l3 in i is l3?m2. It must be eliminated. As its parent is a scheduling constructor

(strict), it must also be eliminated. The grand-parent node is an alt operator. The right cousin underneath

this alt is ∅, which evades l3. Therefore, we can force the choice of the right branch of this alt to solve

the pruning. The remaining interaction then does not contain any action occurring on l3. As explained

earlier, the pruning made the minimal modifications to i so as to eliminate l3?m2. For instance, we could

have simply (and naively) forbidden the repetition of the loop at the root position; but this would also have

eliminated from the semantics of the remaining interaction a number of traces which we do not want to be

eliminated.

Fig.5.12 illustrates another specific application of the pruning process. We consider the same interaction

i as in Fig.5.11, However we consider the pruning w.r.t. lifeline l1 instead of l3. The only action occurring

on l1 in i is l1!m1. It must be eliminated. Its parent and grand-parent being respectively a strict and a seq

constructor, they must both be eliminated. Finally, a loop node is reached. At this point, the only choice

is to forbid the repetition of this loop. We therefore replace it by the empty interaction ∅ (as indicated in

blue) to obtain the interaction on the right.

140 CHAPTER 5. A SMALL-STEP OPERATIONAL SEMANTICS

loopW

seq

strict

l1!m1 l2?m1

seq

alt

strict

l2!m2 l3?m2

∅

l2!m3

∅

∅

interaction before pruning pruning w.r.t. l1 interaction after pruning

Figure 5.12: Illustration of pruning in the case where the repetition of a loop is forbidden

5.1.9 Executing actions on the right of seq constructors

seq being less constraining than strict, it is also possible to execute actions that are on the right of a seq

operator. Given an interaction seq(i1, i2), if i2 a−→ i′2 then it is possible to execute a from seq(i1, i2) if a

certain condition is met on i1. However this condition is not as strong as what would be the case for a strict

operator (i.e. we would require i1 ↓).

Here we only need i1 to be able to express a trace that do not contain any action occurring on lifeline

θ(a) i.e. on the lifeline on which a occurs. Indeed, if this is the case then it means that it is possible to

observe no action at all on lifeline θ(a) during an execution of i1. This therefore implies that it is possible,

during an execution of seq(i1, i2) that the first action that is observed on lifeline θ(a) comes from i2. The

reader may have recognized that this condition is in fact i1 ↓×
×
θ(a), with the evasion predicate that we have

defined in Sec.5.1.7.

In the case of strict, when executing an action on the right, we simply eliminate entirely the sub-

interaction on the left i.e. in strict(i1, i2) a−→ i′2 we only keep i′2 and discard i1. However, for seq, we might

need to keep i1 or at least some reconstruction of i1 on the left. This reconstruction of i1 that is kept is,

in fact, the result i′1 of the pruning process i1××
θ(a)−−→ i′1 which we introduced in Sec.5.1.8. Keeping i′1 on the

left ensures that the first action occurring on lifeline θ(a) can be a and that we will not contradict the order

specified by the seq by having some other actions occurring on θ(a) being later executed from within the left

sub-term. Indeed, i′1 do not contain any action occurring on θ(a). Moreover, keeping i′1 instead of simply

getting rid of the left sub-term ensures that we preserve the expressive power of the model i.e. that we do

not get an under-approximated model as a follow-up interaction.

As a result, the execution of actions on the right of seq constructors is formalized by the following rule:

For any action a ∈ AΩ: i1××
θ(a)−−→ i′1 i2

a−→ i′2

seq(i1, i2) a−→ seq(i′1, i′2)

Let us now consider the example from Fig.5.13. Here, lifeline l1 sends message m to lifeline l3 and

then (with weak sequentially seq) lifeline l2 sends another message m to lifeline l3. Even though the

emission of m by l2 is within the right sub-interaction, it can happen immediately because the left sub-

interaction strict(l1!m, l3?m) do not involve in any way lifeline l2, which can be determined via the predicate

5.1. DEFINITION OF THE OPERATIONAL SEMANTICS 141

strict(l1!m, l3?m) ↓×× l2. On Fig.5.13, we illustrated the use of the ↓×× predicate in the same manner as we

did in Sec.5.1.7. We can see, on the bottom row, in the overall interaction term, that the left sub-interaction

evades the lifeline l2 which hosts the action to execute l2!m. We can interpreted that as having no inter-

ruption between the top of the lifeline and the location on this lifeline of said action. Here we represented

this with a bold green line. Indeed, we have no intermediate action that can interrupt the bold green line

between the top of lifeline l2 and l2!m. In this particular example, we did not need to rewrite the left

sub-interaction strict(l1!m, l3?m), and we used it unaltered so as to reconstruct the follow-up interaction

seq(strict(l1!m, l3?m), l3?m). This corresponds to the fact that strict(l1!m, l3?m)×× l2−→ strict(l1!m, l3?m).

However, as we will see in another example, there are cases where we need to do some actual rewriting of

the left sub-interaction using the pruning process.

on
te
rm

strict

l2!m l3?m
l2!m−−→

strict

∅ l3?m
seq

strictÍ

l1!mÍ l3?mÍ

strict

l2!m l3?m

l2!m−−→
seq

strict

l1!m l3?m

strict

∅ l3?m

on
di
ag
ra
m

l2!m−−→

l2!m−−→
Í

Figure 5.13: Example for executing an action on the right of a seq constructor without pruning

Let us now consider the example from Fig.5.14. On the right of the seq, we want to execute the action

l2!m. Here, the sub-interaction on the left of the seq is an alternative alt(strict(l1!m, l2?m), l1?m). It

avoids lifeline l2 because we can choose to take the right branch of the alternative (as illustrated by the Í

symbols and the bold green line in the diagram representation. However, when reconstructing the follow-up

interaction, we need to rewrite the left sub-interaction alt(strict(l1!m, l2?m), l1?m) so as to enforce the choice

of the alternative that allows lifeline l2 to be avoided. This is done by the pruning process, which effect on

the interaction term is illustrated on Fig.5.14 in blue. The problematic action in the term is l2?m. If we were

to let it be in the reconstructed interaction, we risk a contradiction in the semantics, with l2?m being able to

occur after l2!m (violating the intended semantics of the seq constructor). As a result, we need to eliminate

l2?m, which we illustrate with a blue cross on the node. Given that its parent is a strict constructor, it

must also be eliminated (no choice can be made here), which we illustrate with another blue cross. In the

grand-parent node, an alt constructor, a choice can be made to solve the contradiction / conflict caused by

the action l2?m. Here we can enforce the choice of the right branch of the alt by replacing the alt node

by its right child, which is represented by the blue arrow. At this point we have finished rewriting the left

142 CHAPTER 5. A SMALL-STEP OPERATIONAL SEMANTICS

sub-interaction under the root seq constructor. Finally we obtain the follow-up interaction seq(l1?m, l3?m).

on
te
rm

strict

l2!m l3?m
l2!m−−→

strict

∅ l3?m
seq

altÍ

strictë

l1!mÍ l2?më

l1?mÍ

strict

l2!m l3?m

l2!m−−→
seq

alt

strict

l1!m l2?m

l1?m

strict

∅ l3?m

pruning

=
seq

l1?m strict

∅ l3?m

on
di
ag
ra
m

l2!m−−→

l2!m−−→
ë

Í

Figure 5.14: Example for executing an action on the right of a seq constructor with pruning

5.1.10 Executing actions underneath a loopS constructor

Repetition constructors (or loops) specify the repetition, according to a certain scheduling policy, of a given

behavior. They have a single sub-interaction that is the model of this repeatable behavior. Let us start with

the strict loop loopS .

Let us consider i = loopS(i1), with i1 an interaction. Let us suppose the existence of an action a that

can be executed in sub-interaction i1 and let us suppose that its execution in i1 yields i′1 as a follow-up

interaction, Given that i models the repetition of i1, if a can be executed in i1 then it can be executed in i

too. However, once it is executed, this means that a full repetition of i1, which starts by a has to be executed.

This full repetition to complete corresponds to the execution of i′1 which remains to be done. As a result,

the follow-up interaction to i is strict(i′1, i). Indeed, we use strict to schedule this first repetition w.r.t. some

other repetitions that may occur later-on. The initial interaction i = loopS(i1) remains unaltered because it

is the model for further repetitions.

Similarly to the case of the alt constructor, the execution of an action comes with forcing a choice, which

is here that of repeating once (at least) the repeatable behavior. This choice can be understood as that of

"instantiating" the loop i.e. creating an instance of the sub-behavior that is repeated. It is then the execution

of this instance (here i′1) that corresponds to the occurrence of the repeated behavior. And it is this instance

that is scheduled w.r.t. the original loop (which can be later repeated and therefore must not be altered)

using (in this case) the strict scheduling constructor.

The execution of actions underneath loopS constructors therefore correspond to the following rule:

5.1. DEFINITION OF THE OPERATIONAL SEMANTICS 143

For any action a ∈ AΩ: i1
a−→ i′1

loopS(i1) a−→ strict(i′1, loopS(i1))

Let us remark that executing actions within loops, and therefore instanciating those loops, generally

complexifies the interaction term. Indeed, instantiating a loop might add new nodes and new actions to

the interaction term. This offers a contrast with the execution of actions in any other case, which rather

simplifies the interaction term by removing actions.

on
te
rm

strict

l1!m l2?m
l1!m−−→

strict

∅ l2?m

loopS

strict

l1!m l2?m

l1!m−−→
strict

strict

∅ l2?m

loopS

strict

l1!m l2?m

on
di
ag
ra
m

l1!m−−→

l1!m−−→

Figure 5.15: Example for executing an action underneath a loopS constructor

Fig.5.15 illustrates, on a simple example, the application of the rule. In this example, the interaction

i = loopS(i1) models the repetition, according to strict sequencing, of a behavior describing the passing of a

message m from lifeline l1 to lifeline l2, which is modelled by interaction i1 = strict(l1!m, l2?m)

In this behavior, m can be emitted by l1 so that only its reception l2?m by l2 remains to be executed.

The rule for the loopS constructor can therefore be applied (which is shown on Fig.5.15). It implies that

l1!m can be executed and that what remains to be executed is the strict sequencing of l2?m, which is what

remains to be executed of the instantiated behavior and the original interaction i.

5.1.11 Executing actions underneath a loopP constructor

Executing actions underneath loopP constructors works in a similar fashion except that instead of scheduling

the remaining behavior w.r.t. the loop using strict, we rather use par. This therefore correspond to the

following rule:

For any action a ∈ AΩ: i1
a−→ i′1

loopP (i1) a−→ par(i′1, loopP (i1))

Fig.5.16 illustrates, on a simple example, the application of the rule. We have here the sub-behavior

i1 = strict(l1!m, l2?m) that is repeated, similarly to the previous example from Fig.5.15 but, instead of

144 CHAPTER 5. A SMALL-STEP OPERATIONAL SEMANTICS

on
te
rm

strict

l1!m l2?m
l1!m−−→

strict

∅ l2?m

loopP

strict

l1!m l2?m

l1!m−−→
par

strict

∅ l2?m

loopP

strict

l1!m l2?m

on
di
ag
ra
m

l1!m−−→

l1!m−−→

Figure 5.16: Example for executing an action underneath a loopP constructor

using the loopS constructor, we use here the loopP constructor.

Action l1!m can be immediately executed and there remains to be executed par(l2?m, loopP (strict(l1!m, l2?m))).

In the previous example, in which there remained strict(l2?m, loopP (strict(l1!m, l2?m))) to be executed we

could not once again immediately execute l1!m. With this kind of loop however, thanks to the use of the

par constructor, we can do so. The action l1!m underneath the loop can once again be directly executed

and this results in a second instanciation of the behavior. This is illustrated on Fig.5.17.

l1!m−−→ l1!m−−→

Figure 5.17: Showcasing several consecutive instantiations of the loopP from the example of Fig.5.16

Fig.5.17 illustrates two points:

• the iterative nature of the execution of actions within interaction terms. This allows the construction

of paths of executions which are fundamental for the definition of the operational semantics. In Fig.5.17,

we can see that l1!m.l1!m is a prefix of traces accepted by the initial interaction loopP (strict(l1!m, l2?m))

• the fact that it is not necessary for previous instances of a sub-behavior to be entirely executed before

that another instance can be created. Here a second instance of the behavior is created (the second

pending reception l2?m) even though the first one has not been executed entirely. This of course

depends depends on the nature of the loop constructor that is used, as explained in Sec.4.2.1.

5.1. DEFINITION OF THE OPERATIONAL SEMANTICS 145

5.1.12 Executing actions underneath a loopH constructor

Executing actions underneath loopH constructors also works similarly. Here, instead of scheduling the

remaining behavior w.r.t. the loop using strict or par, we use seq. This therefore correspond to the

following rule:

For any action a ∈ AΩ: i1
a−→ i′1

loopH(i1) a−→ seq(i′1, loopH(i1))

on
te
rm

strict

l1!m l2?m
l1!m−−→

strict

∅ l2?m

loopH

strict

l1!m l2?m

l1!m−−→
seq

strict

∅ l2?m

loopH

strict

l1!m l2?m

on
di
ag
ra
m

l1!m−−→

l1!m−−→

Figure 5.18: Example for executing an action underneath a loopH constructor

Fig.5.18 illustrates, on a simple example, the application of the rule. As in the two previous exam-

ples, we repeat the sub-behavior i1 = strict(l1!m, l2?m). We can see that the follow-up interaction is

seq(l2?m, loopH(strict(l1!m, l2?m))). As was the case for the loopP constructor, we can also here immedi-

ately execute l1!m once again, resulting in the creation of a second instance of the repeatable behavior. We

illustrate this on Fig.5.19.

l1!m−−→ l1!m−−→

Figure 5.19: Showcasing several consecutive instantiations of the loopH from the example of Fig.5.18

In the following we will introduce the last repetition constructor which is loopW . loopW also uses weak

sequencing as a scheduler. However we will see that it is not the same constructor as loopH . This will be

made clear using an illustrative example.

146 CHAPTER 5. A SMALL-STEP OPERATIONAL SEMANTICS

5.1.13 Executing actions underneath a loopW constructor

Whenever we execute an action underneath a loopW constructor we cannot know in advance if this action

comes from the first instance of the repeated behavior or if it comes from later instances. Indeed, it is

possible to execute at first an action that comes from another instance than the first. This is illustrated on

Fig.5.20 on an example, which is the same example that we have used:

• on page 92 to showcase the difference between the weak Kleene closure ;××∗ and the weak Head-First

closure ;�××∗ operators on sets of traces

• and on page 102 (Fig.4.6) to showcase the difference between the loopH and loopW constructors from

the point of view of the denotational semantics

l1!m1−−−→ l2!m2−−−→ l2?m1−−−→

Figure 5.20: Executing at first an action from the second instance of a behavior

Here, we have two instances of the repeatable behavior that is i1 = alt(strict(l1!m1, l2?m1), l2!m2) and

those two instances are repeated using the weak sequencing constructor seq so that the overall interaction

is seq(i1, i1). As can be seen on Fig.5.20 both instances of action l1!m1 are immediately executable. The

second one (at the bottom) is indeed immediately executable because, thanks to pruning, we can force the

choice of the right branch of the first alternative which evades lifeline l1. Using the aforementioned rules for

executing actions on the right of seq constructors, we therefore reach the interaction displayed on Fig.5.20

(second from the left). From that point on the execution of the remainder is straightforward, and, in total,

we can conclude that the trace t = l1!m1.l2!m2.l2?m1 is expressed by the interaction.

l1!m1−−−→

Figure 5.21: Illustrating the restriction associated to the loopH "Head-First" loop

Now, if we were to try to reproduce this behavior (i.e. the trace t = l1!m1.l2!m2.l2?m1) using a loopH

constructor i.e. with loopH(i1), we would get what is illustrated on Fig.5.21. We can manage to execute the

5.1. DEFINITION OF THE OPERATIONAL SEMANTICS 147

first action l1!m1 and then there remains to be executed the interaction represented on the right of Fig.5.21.

We can see that the second action of t which is l2!m2 is not immediately executable in this interaction.

Indeed, the presence of l2?m1 at the top of the diagram prevents it to be executed.

As we have indicated multiple times earlier (and by definition) the loopH constructor is associated to the

weak HF-closure ;�××∗ and not to the K-closure ;××∗. It is therefore expected that t could not be recognized

by loopH(i1) in this example.

We will now see how we can define an operational rule for loopW so that loopW (i1) is able to recognize

t. This rule is as follows:

For any action a ∈ AΩ: i1
a−→ i′1 loopW (i1)××θ(a)−−→ i′

loopW (i1) a−→ seq(i′, seq(i′1, loopW (i1)))

l1!m1−−−→ l2!m2−−−→ l2?m1−−−→

Figure 5.22: Reproducing trace t using the loopW constructor

On Fig.5.22 we then use this rule to execute the interaction loopW (i1) so as to show that it can indeed

recognize the trace t (with i1 = alt(strict(l1!m1, l2?m1), l2!m2) and t = l1!m1.l2!m2.l2?m1 from the previous

examples). Starting from the left of Fig.5.22 we can, as in the previous case, execute l1!m1. However, by

contrast to the previous case, the follow-up interaction (second from the left) contains loopW (l2!m2) at the

top of the diagram (resulting from the pruning of the original loopW). This then allows the execution of

l2!m2, leading to the third interaction. From that third interaction, l2?m1 can then be executed given that

we can choose not to instantiate the above loop. Hence we have recognized t.

With this special rule for loopW we can recognize traces obtained using the weak Kleene closure ;××∗ (this

will be formally proven in Sec.5.2). Let us remark that this can be described as delaying the determination

of as part of which instance of the loop the initial action l1!m1 was executed. If we have then immediately

executed l2?m1 then this would mean that l1!m1 was executed as part of the first instance. However, given

that we have executed l2?m2 once, this means that l1!m1 was executed as part of the second instance.

Let us recall that in Lem.4.26 from Chap.4 we have proven that for the strict sequencing and interleaving

operators, their respective HF and K closures were equivalent. As a result the constructors loopS and loopP

are sufficient to recognize traces obtained from the strict Kleene closure and the interleaving Kleene closure.

However, given that the weak HF closure and the weak Kleene closure are different operators, we have

defined loopH and loopW as distinct counterparts in the world of interaction terms.

148 CHAPTER 5. A SMALL-STEP OPERATIONAL SEMANTICS

5.1.14 Formalisation of the set of rules

Now that we have introduced and illustrated the different manners in which actions can be executed in

interactions, we formalize this process as an execution relation in Def.5.6.

Definition 5.6: Execution relation for labelled interactions

We define the execution relation →⊂ IΩ × AΩ × IΩ such that for any action a ∈ AΩ:

a
a−→ ∅

i1
a−→ i′1

alt(i1, i2) a−→ i′1

i2
a−→ i′2

alt(i1, i2) a−→ i′2

i1
a−→ i′1

par(i1, i2) a−→ par(i′1, i2)
i2

a−→ i′2

par(i1, i2) a−→ par(i1, i′2)

i1
a−→ i′1

strict(i1, i2) a−→ strict(i′1, i2)
i2

a−→ i′2 i1 ↓
strict(i1, i2) a−→ i′2

i1
a−→ i′1

seq(i1, i2) a−→ seq(i′1, i2)
i1××

θ(a)−−→ i′1 i2
a−→ i′2

seq(i1, i2) a−→ seq(i′1, i′2)

i1
a−→ i′1

loopS(i1) a−→ strict(i′1, loopS(i1))
i1

a−→ i′1

loopH(i1) a−→ seq(i′1, loopH(i1))

i1
a−→ i′1 loopW (i1)××θ(a)−−→ i′

loopW (i1) a−→ seq(i′, seq(i′1, loopW (i1)))

i1
a−→ i′1

loopP (i1) a−→ par(i′1, loopP (i1))

This execution relation defines, for any interaction, which of its actions can be executed, and, if so, which

interactions may result from those executions. This constitutes the "small-step" of the small-step operational

semantics σo which we define in Def.5.7.

Definition 5.7: Operational semantics for labelled interactions

For any signature Ω = (L,M), we define σo : IΩ → P(TΩ) by:
i ↓

ε ∈ σo(i)
t ∈ σo(i′) i

a−→ i′

a.t ∈ σo(i)

In the following section, we ensure the correctness of the operational-style semantics σo we have just de-

fined with regards to the fundational denotational-style semantics σd from Chap.4. This proof of equivalence

amounts to proving that, for any interaction i, the sets σo(i) and σd(i) are equal.

5.2 Proof of equivalence between σo and σd

In this section, a proof for the equivalence between the denotational semantics σd from Sec.4 and the

operational semantics σo from Sec.5.1 will be presented.

5.2. PROOF OF EQUIVALENCE BETWEEN σO AND σD 149

Given that we want to characterize σo w.r.t. σd, a first step is to characterize the intermediate notions

that enter into the definition of σo w.r.t. σd:

• in Sec.5.2.1 we characterize the notions of termination and evasion w.r.t. σd,

• in Sec.5.2.2 we characterize the notion of pruning w.r.t. σd.

Once this is done, the proof can be written in two steps:

• in Sec.5.2.3 we prove that for any interaction i we have σo(i) ⊂ σd(i),

• in Sec.5.2.4 we prove that for any interaction i we have σo(i) ⊃ σd(i).

5.2.1 Properties of σd w.r.t. the termination and evasion predicates

The termination predicate ↓ characterizes the fact that an interaction can express the empty trace ε and

therefore that it is in its semantics. As a result we formulate and prove this in Lem.5.4.

Lemma 5.4: Characterization of termination w.r.t. σd

For any i ∈ IΩ:

(i ↓)⇔ (ε ∈ σd(i))

Proof. Let us prove the equivalence of both predicate by induction on the term structure of i.

• If i = ∅ the empty interaction, then we have both ∅ ↓ and ε ∈ σd(∅).

• If i ∈ AΩ, we have neither i ↓ nor ε ∈ σd(i).

• Let us now suppose that i is of the form strict(i1, i2), with i1 and i2 two sub-interactions that satisfy

the induction hypotheses (i1 ↓)⇔ (ε ∈ σd(i1)) and (i2 ↓)⇔ (ε ∈ σd(i2)).

⇐ Let us suppose that ε ∈ σd(i). By definition of σd for the strict constructor, this implies the

existence of t1 ∈ σd(i1) and t2 ∈ σd(i2) such that ε ∈ (t1; t2). Then, as per Lem.4.8, this implies

that t1 = ε and t2 = ε. We can therefore apply the induction hypotheses, to obtain that i1 ↓ and

i2 ↓. This in turn means that strict(i1, i2) ↓ by definition of the termination predicate.

⇒ Reciprocally, if strict(i1, i2) ↓, this means that both i1 ↓ and i2 ↓. As per the induction hypotheses,

this means that ε ∈ σd(i1) and ε ∈ σd(i2). Therefore ε ∈ σd(i).

• For interactions of the form par(i1, i2) and seq(i1, i2), the reasoning is the same as for the previous

case except that we use properties on (respectively) the operators || (Lem.4.3) and ;×× (Lem.4.13).

• Let us now suppose that i is of the form alt(i1, i2), with i1 and i2 two sub-interactions that satisfy the

induction hypotheses (i1 ↓)⇔ (ε ∈ σd(i1)) and (i2 ↓)⇔ (ε ∈ σd(i2)).

150 CHAPTER 5. A SMALL-STEP OPERATIONAL SEMANTICS

⇐ Let us suppose that ε ∈ σd(i). By definition of σd, this means that either ε ∈ σd(i1) or ε ∈ σd(i2)

or both. Let us suppose that it is in σd(i1) (the other cases can be treated similarly). As per the

induction hypothesis, we therefore have i1 ↓. Then, by definition of the termination predicate,

this implies that given that alt(i1, i2) ↓.

⇒ Reciprocally, if alt(i1, i2) ↓, this means that either i1 ↓ or i2 ↓ (or both). Let us suppose we have

i1 ↓. As per the induction hypothesis, this means that ε ∈ σd(i1). Therefore ε ∈ σd(i).

• Let us finally consider the case where i is of the form loopk(i1), with k ∈ {S,H,W,P}. By definition,

we always have i ↓ and ε ∈ σd(i).

As explained in Sec.5.1.7, the evasion predicate ↓××, applied to an interaction i and a lifeline l, characterizes

the fact for i to be able to express traces that have no conflict w.r.t. lifeline l i.e. that "evades" l. This

characterization, is formulated w.r.t. the semantics σd and proven in Lem.5.5.

Lemma 5.5: Characterization of ↓×× w.r.t. σd

For any lifeline l ∈ L and any interaction i ∈ IΩ:

(i ↓×
×
l)⇔ (∃ t ∈ σd(i),¬(t××l))

In other words, i evades l iff it can express a trace t that do not have any conflict w.r.t. l.

Proof. Let us consider a certain lifeline l ∈ L, and let us reason by induction on the term structure of i.

• If i = ∅ the empty interaction, then we have of course ∅ ↓×× l and ε ∈ σd(∅) satisfies ¬(ε××l).

• If i = a ∈ AΩ, we have:

– a ↓×× l iff θ(a) 6= l

– and, given that σd(i) = {a}, a single trace made of that single action, we have that trace a verifies

¬(a××l) iff θ(a) 6= l

Those two conditions are therefore equivalent.

• Let us now suppose that i is of the form strict(i1, i2), with i1 and i2 two sub-interactions that satisfy

the induction hypotheses.

⇒ Let us suppose that i ↓×× l. By definition, this implies that both i1 ↓×
×
l and i2 ↓×

×
l. We

can therefore apply the induction hypotheses, which lets us consider two traces t1 ∈ σd(i1) and

t2 ∈ σd(i2) such that ¬(t1××l) and ¬(t2××l). By definition of σd, we have (t1; t2) ⊂ σd(i). Then, by

Lem.4.14, we have that ∃ t ∈ (t1; t2) s.t. ¬(t××l) and this trace is in σd(i).

5.2. PROOF OF EQUIVALENCE BETWEEN σO AND σD 151

⇐ Reciprocally, if ∃ t ∈ σd(strict(i1, i2)) s.t. ¬(t××l), then, by definition of σd, this means that there

exist two traces t1 ∈ σd(i1) and t2 ∈ σd(i2) s.t. t ∈ (t1; t2). Then, per Lem.4.14, we have ¬(t1××l)

and ¬(t2××l). We can therefore apply the induction hypothesis which implies that i1 ↓×
×
l and

i2 ↓×
×
l, which, per the definition of ↓××, implies that i ↓×× l.

• For interactions of the form par(i1, i2) and seq(i1, i2), the reasoning is the same as for the previous

case except that we reason on (respectively) the operators || and ;×× over both of which the conflict ××

is also distributive according to Lem.4.14.

• Let us now suppose that i is of the form alt(i1, i2), with i1 and i2 two sub-interactions that satisfy the

induction hypotheses.

⇒ Let us suppose that i ↓×× l. By definition of ↓××, we have either or both i1 ↓×
×
l and i2 ↓×

×
l. Let

us suppose we have i1 ↓×
×
l (the other cases are similar). By the induction hypothesis, we have

∃ t1 ∈ σd(i1) s.t. ¬(t1××l). We then simply observe that σd(i1) ⊂ σd(i).

⇐ Reciprocally, if ∃ t ∈ σd(alt(i1, i2)) s.t. ¬(t××l), then, by definition of σd, this means that this trace

t must be found in either σd(i1) or σd(i2). Let us suppose the first case (the other is similar). We

can therefore apply the induction hypothesis which implies that i1 ↓×
×
l. Then, by the definition

of ↓××, this implies that i ↓×× l.

• Let us finally consider the case where i is of the form loopk(i1), with k ∈ {S,H,W,P}. By definition,

we always have i ↓×× l and the empty trace ε ∈ σd(i) verifies ¬(ε××l).

5.2.2 Properties of σd w.r.t. pruning

As explained in Sec.5.1.8, for any lifeline l ∈ L, pruning can be applied to an interaction i that satisfies i ↓×× l

to obtain a unique (Lem.5.3) rewritten interaction which exactly expresses the traces that can be expressed

by i and that do not involve lifeline l. This characterization of pruning w.r.t. the σd semantics is formulated

and proven in Lem.5.6.

Lemma 5.6: Characterization of pruning w.r.t. σd

For any lifeline l ∈ L and for any two interactions i and i′ from IΩ:

(i××l−→ i′)⇒ (σd(i′) = {t ∈ σd(i) | ¬(t××l)})

Proof. Let us consider a certain lifeline l ∈ L, and let us reason by induction on the term structure of i.

• If i = ∅ the empty interaction, we have ∅××l−→ ∅ and σd(∅) = {ε}. Given that the empty trace ε has

no conflict with any lifeline, the property is satisfied.

152 CHAPTER 5. A SMALL-STEP OPERATIONAL SEMANTICS

• If i = a ∈ AΩ, the precondition a ↓×× l implies that θ(i) 6= l. Also, we have a××l−→ a and σd(a) = {a} has

a single trace with no conflict w.r.t. lifeline l. The property therefore holds.

• Let us now suppose that i is of the form strict(i1, i2), with i1 and i2 two sub-interactions that satisfy

induction hypotheses i.e. such that, given i1××
l−→ i′1 and i2××

l−→ i′2 we have σd(i′1) = {t1 ∈ σd(i1) | ¬(t1××l)}

and σd(i′2) = {t2 ∈ σd(i2) | ¬(t2××l)}. Also, by definition of pruning, we have i××l−→ strict(i′1, i′2) and let

us denote it by i′ = strict(i′1, i′2) for short.

⊂ Let us then consider t ∈ σd(i′). By definition there exist t1 ∈ σd(i′1) and t2 ∈ σd(i′2) such that

t ∈ (t1; t2). By the induction hypothesis, we have t1 ∈ σd(i1) and ¬(t1××)l and t2 ∈ σd(i2) and

¬(t2××)l. Therefore we have t ∈ σd(i1);σd(i2) = σd(i), and, as per Lem.4.14, ¬(t××l).

⊃ Let us consider t ∈ σd(i) such that ¬(t××l). By definition of σd on the strict constructor this

implies the existence of t1 ∈ σd(i1) and t2 ∈ σd(i2) s.t. t ∈ (t1; t2). Then, as per Lem.4.14, the

fact that ¬(t××l) implies that both ¬(t1××l) and ¬(t2××l). According to the induction hypothesis,

this means that t1 ∈ σd(i′1) and t2 ∈ σd(i′2). Therefore (t1; t2) ⊂ σd(i′) and hence t ∈ σd(i′).

• For interactions of the form par(i1, i2) and seq(i1, i2), the reasoning is the same as for the previous

case except that we reason on (respectively) the operators || and ;×× over both of which the conflict ××

is also distributive according to Lem.4.14.

• Let us now suppose that i is of the form loopk(i1) with k ∈ {S,H,W,P} and let us note � the

corresponding operator on sets of traces, i.e. � =; if k = S, � =;�×× if k = H, � =;×× if k = W and � = ||

if k = P . We then have:

– if i1 6 ↓×
×
l, then loopk(i1)×× l−→ ∅. As per the reciprocate of Lem.5.5, if i1 does not avoid l, this

means that all the traces from σd(i1) have conflicts with l. As per Lem.4.19 this means that all

the traces obtained from merging traces from i1 have conflicts with l. Therefore the empty trace

ε is the only trace from σd(loopk(i1)) which has no conflict with l. Given that σd(∅) = {ε}, the

property holds.

– if i1 ↓×
×
l, then there exists a unique i′1 such that i1××

l−→ i′1 and we suppose the induction hypothesis

σd(i′1) = {t1 ∈ σd(i1) | ¬(t1××l)}. Then, using Lem.4.19 we have:

σd(loopk(i′1)) = σd(i′1)�∗

= {t ∈ σd(i1) | ¬(t××l)}�∗

= {t ∈ σd(i1)�∗ | ¬(t××l)}

= {t ∈ σd(loopk(i1))) | ¬(t××l)}

Indeed, as per Lem.4.19, any trace obtained from merging traces from i1 has no conflict w.r.t. l iff

it is obtained from merging traces from i1 that all have no conflict with l. Therefore, traces that

have no conflict w.r.t. l are exactly those that are obtained from merging traces with no conflicts

5.2. PROOF OF EQUIVALENCE BETWEEN σO AND σD 153

w.r.t. l. Those traces are those from loopk(i′1) as per the induction hypothesis. Therefore the

property holds.

5.2.3 Left inclusion

In this section, we prove that, for any interaction i ∈ IΩ, we have σo(i) ⊂ σd(i). A first Lemma (Lem.5.7)

proposes a characterization of the execution relation "→" w.r.t. σd.

Lemma 5.7: Characterization (left side) of → w.r.t. σd

For any action a ∈ AΩ, for any trace t ∈ TΩ and for any interactions i and i′ from IΩ:

(
(i a−→ i′) ∧ (t ∈ σd(i′))

)
⇒ (a.t ∈ σd(i))

Proof. Let us consider i and i′ in IΩ and a in AΩ and t ∈ TΩ. Let us then suppose that i a−→ i′ and that

t ∈ σd(i′). Let us then reason by induction on the cases that makes the hypothesis i a−→ i′ possible. There

are 13 such cases, as per the 13 rules from Def.5.6:

1. when executing an atomic action, we have i ∈ AΩ and i′ = ∅. Then σd(i) = {i} and σd(∅) = {ε}.

The property i.ε = i ∈ σd(i) holds.

2. when executing an action on the left of an alternative, we have i of the form alt(i1, i2), and i′ = i′1

such that i1
a−→ i′1. By construction of σd, we have that t ∈ σd(i′1). By the induction hypothesis on the

sub-interaction i1, we have that a.t ∈ σd(i1). Given that σd(i1) ⊂ σd(i), the property holds.

3. when executing an action on the right of an alternative, we have i of the form alt(i1, i2), and i′ = i′2

such that i2
a−→ i′2. By construction of σd, we have that t ∈ σd(i′2). By the induction hypothesis on the

sub-interaction i2, we have that a.t ∈ σd(i2). Given that σd(i2) ⊂ σd(i), the property holds.

4. when executing an action on the left of a par, we have i of the form par(i1, i2), and i′ = par(i′1, i2)

such that i1
a−→ i′1. We have that t ∈ σd(par(i′1, i2)). By definition of σd, we have that there exist

(t′1, t2) ∈ σd(i′1) × σd(i2) s.t. t ∈ (t′1||t2). Therefore we have i1
a−→ i′1 and t′1 ∈ σd(i′1). Hence we

can apply the induction hypothesis on sub-interaction i1, which implies that a.t′1 ∈ σd(i1). Given

that σd(par(i1, i2)) is the union of all the (tα||tβ) with tα and tβ traces from i1 and i2, we have that

(a.t′1||t2) ⊂ σd(i). In particular, we know that t ∈ (t′1||t2), so, by definition of the || operator, we have

that a.t ∈ (a.t′1||t2). Therefore the property holds.

5. when executing an action on the left of a par, we have i of the form par(i1, i2), and i′ = par(i1, i′2)

such that i2
a−→ i′2. We have that t ∈ σd(par(i1, i′2)). By definition of σd, we have that there exist

(t1, t′2) ∈ σd(i1) × σd(i′2) s.t. t ∈ (t1||t′2). Therefore we have i2
a−→ i′2 and t′2 ∈ σd(i′2). Hence we

154 CHAPTER 5. A SMALL-STEP OPERATIONAL SEMANTICS

can apply the induction hypothesis on sub-interaction i2, which implies that a.t′2 ∈ σd(i2). Given

that σd(par(i1, i2)) is the union of all the (tα||tβ) with tα and tβ traces from i1 and i2, we have that

(t1||a.t′2) ⊂ σd(i). In particular, we know that t ∈ (t1||a.t′2), so, by definition of the || operator, we

have that a.t ∈ (t1||a.t′2). Therefore the property holds.

6. when executing an action on the left of a strict, we have i of the form strict(i1, i2), and i′ = strict(i′1, i2)

such that i1
a−→ i′1. We have that t ∈ σd(strict(i′1, i2)). By definition of σd, we have that there exist

(t′1, t2) ∈ σd(i′1) × σd(i2) s.t. t ∈ (t′1; t2). Therefore we have i1
a−→ i′1 and t′1 ∈ σd(i′1). Hence we can

apply the induction hypothesis on sub-interaction i1, which implies that a.t′1 ∈ σd(i1). Given that

σd(strict(i1, i2)) is the union of all the (tα; tβ) with tα and tβ traces from i1 and i2, we have that

(a.t′1; t2) ⊂ σd(i). In particular, we know that t ∈ (t′1; t2), so, by definition of the ; operator, we have

that a.t ∈ (a.t′1; t2). Therefore the property holds.

7. when executing an action on the right of a strict, we have i of the form strict(i1, i2), and i′ = i′2 such

that i2
a−→ i′2 with the added hypothesis that i1 ↓. We have that t ∈ σd(i′2). Therefore we have i2

a−→ i′2

and t ∈ σd(i′2). Hence we can apply the induction hypothesis on sub-interaction i2, which implies that

a.t ∈ σd(i2). Given that σd(strict(i1, i2)) includes σd(i2) when i1 ↓, and given that we know i1 ↓ to be

true, the property holds.

8. when executing an action on the left of a seq, we have i of the form seq(i1, i2), and i′ = seq(i′1, i2)

such that i1
a−→ i′1. We have that t ∈ σd(seq(i′1, i2)). By definition of σd, we have that there exist

(t′1, t2) ∈ σd(i′1) × σd(i2) s.t. t ∈ (t′1;×× t2). Therefore we have i1
a−→ i′1 and t′1 ∈ σd(i′1). Hence we

can apply the induction hypothesis on sub-interaction i1, which implies that a.t′1 ∈ σd(i1). Given

that σd(seq(i1, i2)) is the union of all the (tα;×× tβ) with tα and tβ traces from i1 and i2, we have that

(a.t′1;×× t2) ⊂ σd(i). In particular, we know that t ∈ (t′1;×× t2), so, by definition of the ;×× operator, we

have that a.t ∈ (a.t′1;×× t2). Therefore the property holds.

9. when executing an action on the right of a seq, we have i of the form seq(i1, i2), and i′ = seq(i′1, i′2)

such that i1××
θ(a)−−→ i′1 and i2

a−→ i′2 with the added hypothesis that i1 ↓×
×
θ(a) implied by the fact that i1

prunes into i′1. We have that t ∈ σd(i′). Hence there exists t1 ∈ σd(i′1) and t2 ∈ σd(i′2) s.t. t ∈ (t1;×× t2).

• We have i2
a−→ i′2 and t2 ∈ σd(i′2). Hence we can apply the induction hypothesis on sub-interaction

i2, which implies that a.t2 ∈ σd(i2).

• the fact that t1 ∈ σd(i′1) implies, as per Lem.5.6 that ¬(t1××θ(a)). As a result, by definition of the

weak sequencing operator, (t1;×× a.t2) includes a; (t1;×× t2) and therefore a.t.

• Given that σd(i) includes all (tα;×× tβ) s.t. tα ∈ σd(i1) and tβ ∈ σd(i2), we have, in particular

(t1;×× a.t2) ⊂ σd(i). Hence the property holds.

10. when executing an action underneath a loopS , we have i of the form loopS(i1) and i′ = strict(i′1, loopS(i1))

such that i1
a−→ i′1. We have that t ∈ σd(i′). Therefore there exists t1 ∈ σd(i′1) and t2 ∈ σd(i) s.t.

t ∈ (t1; t2).

5.2. PROOF OF EQUIVALENCE BETWEEN σO AND σD 155

• We have i1
a−→ i′1 and t1 ∈ σd(i′1). Hence we can apply the induction hypothesis on sub-interaction

i1, which implies that a.t1 ∈ σd(i1).

• As a result, given that t2 ∈ σd(loopS(i1)) = σd(i1);∗, and a.t1 ∈ σd(i1), we have, (a.t1; t2) ⊂

σd(i1);∗ i.e. (a.t1; t2) ⊂ σd(i)

• Also, given that t ∈ (t1; t2), we have immediately that a.t ∈ (a.t1; t2) because it is always possible

to add actions from the left.

• Therefore a.t ∈ σd(i), so the property holds.

11. when executing an action underneath a loopH , we have i of the form loopH(i1) and i′ = seq(i′1, loopH(i1))

such that i1
a−→ i′1. We have that t ∈ σd(i′). Therefore there exists t1 ∈ σd(i′1) and t2 ∈ σd(i) s.t.

t ∈ (t1;×× t2).

• We have i1
a−→ i′1 and t1 ∈ σd(i′1). Hence we can apply the induction hypothesis on sub-interaction

i1, which implies that a.t1 ∈ σd(i1).

• As a result, given that t2 ∈ σd(loopH(i1)) = σd(i1);�××∗, and a.t1 ∈ σd(i1), we have, (a.t1;�×× t2) ⊂

σd(i1);�∗ i.e. (a.t1;�×× t2) ⊂ σd(i)

• Also, given that t ∈ (t1;×× t2), we have immediately that a.t ∈ (a.t1;�×× t2) because it is always

possible to add actions from the left and here we select a on the left.

• Therefore a.t ∈ σd(i), so the property holds.

12. when executing an action underneath a loopW , we have i of the form loopW (i1) and i′ = seq(i′0, seq(i′1, loopW (i1)))

such that i1
a−→ i′1 and i××θ(a)−−→ i′0. We have that t ∈ σd(i′). Therefore there exists t0 ∈ σd(i′0), t1 ∈ σd(i′1)

and t2 ∈ σd(i) s.t. t ∈ (t0;×× t1;×× t2).

• Given that i××θ(a)−−→ i′0 we have that:

– σd(i′0) ⊂ σd(i) and, given that σd(i) = σd(i1);××∗, is a weak Kleene closure we have that

σd(i);×× σd(i) ⊂ σd(i) and therefore σd(i′0);×× σd(i) ⊂ σd(i)

– and, given that t0 ∈ σd(i′0), we have as per Lem.5.6 that ¬(t0××θ(a)). Therefore, for any tβ

and any tα ∈ (t0;×× tβ) we have a.tα ∈ (t0;×× a.tβ) given that we can take action a, which have

no conflict w.r.t t0, on the right side

• We have i1
a−→ i′1 and t1 ∈ σd(i′1). Hence we can apply the induction hypothesis on sub-interaction

i1, which implies that a.t1 ∈ σd(i1)

• Given that t2 ∈ σd(loopW (i1)) = σd(i1);××∗, and a.t1 ∈ σd(i1), we have, (a.t1;×× t2) ⊂ σd(i1);××∗ i.e.

(a.t1;×× t2) ⊂ σd(i)

• Hence we have (t0;×× a.t1;×× t2) ⊂ (σd(i′0);×× σd(i)) ⊂ σd(i)

• Finally, given that a.t ∈ (t0;×× a.t1;×× t2), the property holds.

156 CHAPTER 5. A SMALL-STEP OPERATIONAL SEMANTICS

13. when executing an action underneath a loopP , we have i of the form loopP (i1) and i′ = par(i′1, loopP (i1))

such that i1
a−→ i′1. We have that t ∈ σd(i′). Therefore there exists t1 ∈ σd(i′1) and t2 ∈ σd(i) s.t.

t ∈ (t1||t2).

• We have i1
a−→ i′1 and t1 ∈ σd(i′1). Hence we can apply the induction hypothesis on sub-interaction

i1, which implies that a.t1 ∈ σd(i1).

• As a result, given that t2 ∈ σd(loopP (i1)) = σd(i1)||∗, and a.t1 ∈ σd(i1), we have, (a.t1||t2) ⊂

σd(i1)||∗ i.e. (a.t1||t2) ⊂ σd(i)

• Also, given that t ∈ (t1||t2), we have immediately that a.t ∈ (a.t1||t2) because it is always possible

to add actions from the left.

• Therefore a.t ∈ σd(i), so the property holds.

Thanks to the previous Lemma (Lem.5.7) as well as the characterization from Lem.5.4 we can conclude

on the inclusion of the σo semantics into the σd semantics. Indeed, those two Lemmas state that the σd

semantics accepts the same two construction rules (that for the empty trace ε and that for non empty traces

of the form a.t) as those that define σo inductively. As a result any trace that might be accepted according

to σo must also be accepted according to σd. However it does not imply the reciprocate (i.e. whether or

not σd is included in σo). Indeed, it may be so that, if it were formulated using construction rules, σd

would also verify some other construction rules in addition to the aforementioned two, which would allow

the acceptation of some more traces.

Theorem 5.1: Inclusion of σo in σd

For any interaction i ∈ IΩ:

σo(i) ⊂ σd(i)

Proof. Let us consider i ∈ IΩ and t ∈ σo(i) and let us reason by induction on the trace t.

• If t = ε, then, as per the definition of σo, this means that i ↓. Then as per Lem.5.4, this means that

ε ∈ σd(i).

• If t = a.t′ then, by definition of σo, a.t′ ∈ σo(i) iff ∃ i′ ∈ IΩ s.t. i a−→ i′ and t′ ∈ σo(i′). Let us therefore

consider such an interaction i′. By the induction hypothesis on trace t′, we have (t′ ∈ σo(i′)) ⇒ (t′ ∈

σd(i′)). As a result we have i a−→ i′ and t′ ∈ σd(i′). We can therefore apply Lem.5.7 to conclude that

a.t′ ∈ σd(i). Hence the property holds.

In the next section we tackle the other inclusion that we have to prove i.e. that of σd into σo.

5.2. PROOF OF EQUIVALENCE BETWEEN σO AND σD 157

5.2.4 Right inclusion

In this section, we prove that, for any interaction i ∈ IΩ, we have σd(i) ⊂ σo(i). An intermediate Lemma,

Lem.5.8, which is, in a certain manner, the reciprocate of Lem.5.7, is required at first.

Lemma 5.8: Characterization (right side) of → w.r.t. σd

For any action a ∈ AΩ, for any trace t ∈ TΩ and for any interaction i ∈ IΩ:

(a.t ∈ σd(i))⇒
(
∃ i′ ∈ IΩ, (i a−→ i′) ∧ (t ∈ σd(i′))

)

Proof. Let us consider i ∈ IΩ, a ∈ AΩ and t ∈ TΩ. Let us suppose that a.t ∈ σd(i) and let us reason by

induction on the term structure of i.

• we cannot have i = ∅ because it contradicts a.t ∈ σd(i)

• if i ∈ AΩ then a.t ∈ σd(i) implies that i = a and t = ε. We then have the existence of i′ = ∅ which

indeed satisfies that a a−→ ∅ and ε ∈ σd(∅)

• if i is of the form alt(i1, i2) then a.t ∈ σd(i) implies either a.t ∈ σd(i1) or a.t ∈ σd(i2). Let us suppose

it is the first case (the second is identical). Then, we can apply the induction hypothesis on sub-

interaction i1, which reveals the existence of i′1 such that i1
a−→ i′1 and t ∈ σd(i′1). By definition of the

execution relation "→", this implies that alt(i1, i2) a−→ i′1. As a result, we have identified i′ = i′1 which

satisfies the property.

• if i is of the form par(i1, i2) then a.t ∈ σd(i) implies the existence of traces t1 and t2 such that

t1 ∈ σd(i1) and t2 ∈ σd(i2) and a.t ∈ (t1||t2). Then, as per Lem.4.2, this implies:

– either that t1 is of the form a.t′1 and t ∈ (t′1||t2)

– or t2 is of the form a.t′2 and t ∈ (t1||t′2)

As both case can be treated identically, let us suppose it is the first case. Given that we have a.t′1 ∈

σd(i1), we can apply the induction hypothesis on sub-interaction i1, which reveals the existence of

i′1 such that i1
a−→ i′1 and t′1 ∈ σd(i′1). By definition of the execution relation "→", this implies

that par(i1, i2) a−→ par(i′1, i2). By definition of σd, given that t′1 ∈ σd(i′1) and t2 ∈ σd(i2), we have

(t′1||t2) ⊂ σd(par(i′1, i2)). Then, given that t ∈ (t′1||t2), this implies that t ∈ σd(par(i′1, i2)). We

therefore have identified i′ = par(i′1, i2) which satisfies the property.

• if i is of the form strict(i1, i2) then a.t ∈ σd(i) implies the existence of traces t1 and t2 such that

t1 ∈ σd(i1) and t2 ∈ σd(i2) and a.t ∈ (t1; t2). Then, as per Lem.4.7, this implies:

– either that t1 is of the form a.t′1 and t ∈ (t′1; t2). In that case we can apply the induction hypothesis

on sub-interaction i1, which reveals the existence of i′1 s.t. i1
a−→ i′1 and t′1 ∈ σd(i′1). By definition

158 CHAPTER 5. A SMALL-STEP OPERATIONAL SEMANTICS

of the execution relation "→", this implies that strict(i1, i2) a−→ strict(i′1, i2). By definition of σd,

given that t′1 ∈ σd(i′1) and t2 ∈ σd(i2), we have (t′1; t2) ⊂ σd(strict(i′1, i2)). Then, given that

t ∈ (t′1; t2) this implies that t ∈ σd(strict(i′1, i2)). We therefore have identified i′ = strict(i′1, i2)

which satisfies the property.

– or that t1 = ε and t2 = a.t. On the one hand, the fact that t1 = ε ∈ σd(i1) implies, as per Lem.5.4,

that i1 ↓. On the other hand, with t2 = a.t ∈ σd(i2), we can apply the induction hypothesis on

sub-interaction i2, which reveals the existence of i′2 s.t. i2
a−→ i′2 and t ∈ σd(i′2). By definition

of the execution relation "→", and because the precondition i1 ↓ is verified, this implies that

strict(i1, i2) a−→ i′2. As a result, we have identified i′ = i′2 which satisfies the property.

• if i is of the form seq(i1, i2) then a.t ∈ σd(i) implies the existence of traces t1 and t2 such that t1 ∈ σd(i1)

and t2 ∈ σd(i2) and a.t ∈ (t1;×× t2). Then, as per Lem.4.12, this implies:

– either that t1 = a.t′1 and t ∈ (t′1;×× t2). In that case we can apply the induction hypothesis on

sub-interaction i1, which reveals the existence of i′1 s.t. i1
a−→ i′1 and t′1 ∈ σd(i′1). By definition of

the execution relation "→", this implies that seq(i1, i2) a−→ seq(i′1, i2). By definition of σd, given

that t′1 ∈ σd(i′1) and t2 ∈ σd(i2), we have (t′1;×× t2) ⊂ σd(seq(i′1, i2)). Then, given that t ∈ (t′1;×× t2),

this implies that t ∈ σd(seq(i′1, i2)). We therefore have identified i′ = seq(i′1, i2) which satisfies

the property.

– or that ¬(t1××θ(a)) and that t2 is of the form a.t′2 with t ∈ (t1;×× t′2). On the one hand, the fact

that t1 ∈ σd(i1) is such that ¬(t1××θ(a)), ensures, as per Lem.5.5, that i1 ↓×
×
θ(a) and therefore,

as per Lem.5.3, that there exists a unique i′1 such that i1××
θ(a)−−→ i′1. On the other hand, with

t2 = a.t′2 ∈ σd(i2), we can apply the induction hypothesis on sub-interaction i2, which reveals the

existence of i′2 s.t. i2
a−→ i′2 and t′2 ∈ σd(i′2). By definition of the execution relation "→", this implies

that seq(i1, i2) a−→ seq(i′1, i′2). Given that t1 ∈ σd(i1) is such that ¬(t1××θ(a)), as per Lem.5.6, this

implies that t1 ∈ σd(i′1). By definition of σd, given that t1 ∈ σd(i′1) and t′2 ∈ σd(i′2), we have

(t1;×× t′2) ⊂ σd(seq(i′1, i′2)). Then, given that t ∈ (t1;×× t′2), this implies that t ∈ σd(seq(i′1, i′2)). We

therefore have identified i′ = seq(i′1, i′2) which satisfies the property.

• if i is of the form loopS(i1) then a.t ∈ σd(i) means that a.t ∈ σd(i1);∗ and hence, as per Lem.4.25, this

implies the existence of a trace t′ such that a.t′ ∈ σd(i1) and t ∈ {t′};σd(i1);∗. Then, the fact that

a.t′ ∈ σd(i1) allows us to apply the induction hypothesis on sub-interaction i1 to reveal the existence

of i′1 such that i1
a−→ i′1 and t′ ∈ σd(i′1). By definition of the execution relation "→", this implies that

loopS(i1) a−→ strict(i′1, loopS(i1)). By definition of σd, given that t′ ∈ σd(i′1) and that t ∈ {t′};σd(i1);∗,

we have that t ∈ σd(strict(i′1, loopS(i1))). We therefore have identified i′ = strict(i′1, loopS(i1)) which

satisfies the property.

• if i is of the form loopH(i1) then a.t ∈ σd(i) means that a.t ∈ σd(i1);�××∗. By definition this means that

there exists a j > 0 such that a.t ∈ σd(i1);�×× j = σd(i1);�×× σd(i1);�×× (j−1), and, given that σd(i1);�×× (j−1) ⊂

5.2. PROOF OF EQUIVALENCE BETWEEN σO AND σD 159

σd(i1);�××∗ we can identify a trace t′′ ∈ σd(i1) such that a.t ∈ {t′′};�×× σd(i1);�××∗. Because the restricted

operator ;�×× only allows to take the first action of recomposed traces from the left hand side, the fact that

a.t ∈ {t′′};�×× σd(i1);�××∗ implies that action a is taken from {t′′} and therefore t′′ is of the form a.t′ and t ∈

{t′};�×× σd(i1);�××∗ ⊂ {t′};×× σd(i1);�××∗. Then, the fact that t′′ = a.t′ ∈ σd(i1) allows us to apply the induction

hypothesis on sub-interaction i1 to reveal the existence of i′1 such that i1
a−→ i′1 and t′ ∈ σd(i′1). By

definition of the execution relation "→", this implies that loopH(i1) a−→ seq(i′1, loopH(i1)). By definition

of σd, given that t′ ∈ σd(i′1) and that t ∈ {t′};×× σd(i1);�××∗, we have that t ∈ σd(seq(i′1, loopH(i1))). We

therefore have identified i′ = seq(i′1, loopH(i1)) which satisfies the property.

• if i is of the form loopW (i1) then a.t ∈ σd(i) means that a.t ∈ σd(i1);××∗. By definition this means that

there exists a n > 0 such that a.t ∈ σd(i1);××n = σd(i1);×× · · · ;×× σd(i1) (n times). As a result, we can

identify traces t1 through tn such that for any j ∈ [1, n], tj ∈ σd(i1) and a.t ∈ {t1};×× · · · ;×× {tn}. Then,

by definition of the weak sequencing operator, action a is taken from a certain tj with j ∈ [1, n] which

is therefore of the form tj = a.t′j and we have, for any k < j, ¬(tk××θ(a)) (otherwise we could not take

a from tj and t ∈ {t1};×× · · · ;×× {tj−1};×× {t′j};×× {tj+1};×× · · · ;×× {tn}. We can then remark the following:

– considering i′0 such that loopW (i1)××θ(a)−−→ i′0 (which existence is guaranteed by Lem.5.3 given that a

loop always evades any lifeline), because, for any k < j, we have ¬(tk××θ(a)) then, as per Lem.5.6,

for all k < j, we have tk ∈ σd(i′0). Then:

∗ If all the tk are the empty trace then {t1};×× · · · ;×× {tj−1} = {ε} ⊂ σd(i′0) (σd(i′0) contains at

least ε because loopW (i1) does)

∗ If at least one tk is not the empty trace then i′0 is a non empty loopW , and, because it is a

loopW , given that for all k < j, we have tk ∈ σd(i′0) then {t1};×× · · · ;×× {tj−1} ⊂ σd(i′0) (because

a loopW is closed under repetition by ;××)

In any case we have {t1};×× · · · ;×× {tj−1} ⊂ σd(i′0) and therefore

t ∈ {t1};×× · · · ;×× {tj−1};×× {t′j};×× {tj+1};×× · · · ;×× {tn} ⊂ σd(i′0);×× {t′j};×× {tj+1};×× · · · ;×× {tn}

– given that, for any k > j we have that tk ∈ σd(i) and because i is a loop (i = loopW (i1)), then

{tj+1};×× · · · ;×× {tn} ⊂ σd(i) and therefore t ∈ σd(i′0);×× {t′j};×× {tj+1};×× · · · ;×× {tn} ⊂ σd(i′0);×× {t′j};×× σd(i)

– given that tj = a.t′j ∈ σd(i1) we can apply the induction hypothesis on sub-interaction i1 to reveal

the existence of i′1 such that i1
a−→ i′1 and t′j ∈ σd(i′1). By definition of the execution relation "→",

this implies that loopW (i1) a−→ seq(i′0, seq(i′1, loopW (i1)))

– finally, given that we have shown that t ∈ σd(i′0);×× {t′j};×× σd(i) and because t′j ∈ σd(i′1), by

definition of σd we can conclude that t ∈ σd(seq(i′0, seq(i′1, loopW (i1)))). Therefore we have

identified i′ = seq(i′0, seq(i′1, loopW (i1))) which satisfies the property.

Thanks to the Lem.5.8 as well as the characterization from Lem.5.4 we can conclude on the inclusion of

the σd semantics into the σo semantics.

160 CHAPTER 5. A SMALL-STEP OPERATIONAL SEMANTICS

Theorem 5.2: Inclusion of σd in σo

For any interaction i ∈ IΩ:

σo(i) ⊃ σd(i)

Proof. Let us consider i ∈ IΩ and t ∈ σd(i) and let us reason by induction on the trace t.

• If t = ε, the fact that t = ε ∈ σd(i) implies, as per Lem.5.4, that i ↓. Then, by definition of σo, this

means that ε ∈ σo(i).

• If t = a.t′ then, the fact that a.t′ ∈ σd(i) implies, as per Lem.5.8, that there exists an interaction i′

such that i a−→ i′ and t′ ∈ σd(i′). Let us therefore consider such an interaction i′. By the induction

hypothesis on trace t′, we have (t′ ∈ σd(i′))⇒ (t′ ∈ σo(i′)). As a result we have i a−→ i′ and t′ ∈ σo(i′).

By definition of the operational semantics, this implies that a.t′ ∈ σo(i). Hence the property holds.

We have finally proven both inclusion and we conclude with Th.5.3 that the operational semantics σo

that we have defined in Sec.5.1 is indeed equivalent to the fundational denotational-style semantics σd from

Chap.4.

Theorem 5.3: Equivalence of the σd and σo semantics

For any interaction i ∈ IΩ:

σo(i) = σd(i)

Proof. Immediately implies by Th.5.1 and Th.5.2.

Hence we have proven the correctness of our operational semantics w.r.t. the denotational-style semantics

(which acts as a mathematical foundation).

Conclusion

In this chapter we have defined a structural operational semantics for our Interaction Language (IL). This

semantics is a small-step operational semantics in so far as it defines accepted traces t ∈ σo(i1) by unveiling

sequences of small-steps i1
a1−→ i2

a2−→ i3 · · · corresponding to the occurences of atomic communication events

and such that the accepted trace t is a concatenation of the actions aj that are successively expressed. The

semantics is also structural given that its definition, in the form of a set of rules, is inductive on the structure

of interaction terms. We have then proven the equivalence of this operational semantics with regards to the

denotational semantics from Chap.4 which acts as a reference and mathematical foundation. By equivalence,

we mean that for any interaction, its set of accepted traces is the same according to both semantics.

5.2. PROOF OF EQUIVALENCE BETWEEN σO AND σD 161

In the next chapter, we propose an algorithmization of this operational semantics to facilitate its imple-

mentation and use in Formal Verification (FV).

162 CHAPTER 5. A SMALL-STEP OPERATIONAL SEMANTICS

Chapter 6

Some execution semantics

Contents
6.1 Definition of the execution semantics . 164

6.1.1 Termination, evasion & pruning in functional style 164

6.1.2 An argument for separating concerns when determining follow-ups 166

6.1.3 Frontier of execution . 168

6.1.4 Execution function . 171

6.1.5 Execution semantics . 174

6.2 Proof of equivalence between σe and σo . 177

6.2.1 Characterization of the execution function w.r.t. the execution relation 177

6.2.2 Conclusion . 181

6.3 Execution semantics with simplifications . 182

6.3.1 Normalizing intermediate interaction terms . 184

6.3.2 Simplifying while computing the intermediate interaction terms 185

163

164 CHAPTER 6. SOME EXECUTION SEMANTICS

The purpose of this chapter is to define an "algorithmicized" version of the operational semantics from the

previous chapter that is expressed in functional style i.e. in the style of functional programming languages.

We name "execution semantics" this "algorithmicized" operational semantics. Additionally, we define variants

of this execution semantics which incorporate simplifications, as allowed by the ≈EI relation from Chap.4.

The plan of this chapter is as follows:

• in Sec.6.1, we present the initial execution semantics σe,

• in Sec.6.2, we prove that this new semantics σe is in facts equivalent to σo i.e. that for any interaction

i, we have σe(i) = σo(i),

• in Sec.6.3, we use results from equational theory and term rewriting seen in Chap.4 to define variants

of σe which include term simplification.

Let us remark that the contents of Sec.6.1 and Sec.6.2 i.e. the formalization of the execution semantics

and the proof of its equivalence w.r.t. the previous semantics have been encoded in Coq in [88].

6.1 Definition of the execution semantics

In this section we redefine, in functional style, the operational semantics σo. However we add a twist in

that re-definition by separating concerns between, on the one side, the determination of which actions are

immediately executable, and, on the other side, the determination or computation of follow-up interactions.

This section is organized as follows:

• in Sec.6.1.1 we redefine the predicates of termination, evasion and the pruning relation in functional

style.

• in Sec.6.1.2 we present a first algorithmization of the execution relation and explain its limitations which

leads to proposing a second algorithmization which relies on a separation of concerns as previously

mentioned.

• in Sec.6.1.3 we define the frontier of execution, which computes the positions of all immediately exe-

cutable actions.

• in Sec.6.1.4 we define the execution function, which computes the unique follow-up of the execution of

an action at a specific position.

• finally, in Sec.6.1.5, we define the execution semantics.

6.1.1 Termination, evasion & pruning in functional style

In this section we redefine ↓, ↓×× and ××−→ in functional style. We use a style of pseudo-code with Pattern-

Matching inspired from Pattern-Matching notations found in functional programming languages such as ML

6.1. DEFINITION OF THE EXECUTION SEMANTICS 165

(OCaml, etc.), Rust or Haskell. The use of this style underlines the ease of implementation of the various

definitions proposed in this chapter.

Definition 6.1: Termination in functional style

trm : IΩ → bool is the function s.t. for any i ∈ IΩ:

• trm(i) match i with

| ∅ → >

| a ∈ AΩ → ⊥

| f(i1, i2) → trm(i1) ∧ trm(i2) for f ∈ {strict, seq, par}

| alt(i1, i2) → trm(i1) ∨ trm(i2)

| loopk(i1) → > for k ∈ {S,H,W,P}

Lemma 6.1: Correctness of "trm" w.r.t. "↓"

For any i ∈ IΩ, (trm(i) = >)⇔ (i ↓)

Proof. By induction on the term structure of interactions.

Definition 6.2: Evasion in functional style

vad : IΩ × L→ bool is the function s.t. for any (i, l) ∈ IΩ × L:

• vad(i, l) = match i with

| ∅ → >

| a ∈ AΩ → (θ(a) 6= l)

| f(i1, i2) → vad(i1, l) ∧ vad(i2, l) for f ∈ {strict, seq, par}

| alt(i1, i2) → vad(i1, l) ∨ vad(i2, l)

| loopk(i1) → > for k ∈ {S,H,W,P}

Lemma 6.2: Correctness of "vad" w.r.t. "↓××"

For any i ∈ IΩ and any l ∈ L, (vad(i, l) = >)⇔ (i ↓×× l)

Proof. By induction on the term structure of interactions.

166 CHAPTER 6. SOME EXECUTION SEMANTICS

Definition 6.3: Pruning in functional style

prn : IΩ × L→ IΩ is s.t. for any (i, l) ∈ IΩ × L verifying ↓×× (i, l):

• provided vad(i, l) = > then prn(i, l) = match i with

| ∅ → ∅

| a ∈ AΩ → a

| alt(i1, i2) →

prn(i2, l) if (vad(i1, l) = ⊥) ∧ (vad(i2, l) = >)

prn(i1, l) if (vad(i1, l) = >) ∧ ¬(vad(i2, l) = ⊥)

alt(prn(i1, l), prn(i2, l)) if (vad(i1, l) = ⊥) ∧ (vad(i2, l) = >)

| f(i1, i2) → f(prn(i1, l), prn(i2, l)) for f ∈ {strict, seq, par}

| loopk(i1) →

 loopk(prn(i1, l)) if (vad(i1, l) = ⊥)

∅ else

∣∣∣∣∣∣∣ for k ∈ {S,H,W,P}

Lemma 6.3: Correctness of "prn" w.r.t. "××−→"

For any i ∈ IΩ and any l ∈ L:

(∃ i′ ∈ IΩ, s.t. i××
l−→ i′)⇒ (prn(i, l) = i′) and (i ↓×× l)⇒ (i××l−→ prn(i, l))

Proof. By induction on the term structure of interactions and using Lem.6.2 and Lem.5.3.

Given Lem.6.1 and Lem.6.2 we will, in the remainder of this chapter, use the notations ↓ and ↓×× instead

of that of their functional style equivalent.

6.1.2 An argument for separating concerns when determining follow-ups

With the operational-style semantics from Chap.5, the determination of which are the actions that can

be executed within an interaction term, and the computation of the new interactions that remain after

the executions of those actions are intertwined. Indeed, any predicate i a−→ i′ must be inferred inductively

without prior knowledge of which actions a can be executed. As a result, so as to know which are the possible

follow-ups to a given interaction i, one has to infer all the possible predicates of the form i
a−→ i′.

This can be done for instance with the algorithm given in pseudo-code on Def.6.4. This "nxt" func-

tion exploits the small-step operational semantics to infer, given an interaction i, which are the follow-up

interactions resulting from the execution of actions in i.

6.1. DEFINITION OF THE EXECUTION SEMANTICS 167

Definition 6.4: Computing all follow-ups with "nxt"

nxt : IΩ → (AΩ × IΩ)∗ is s.t. for any i ∈ IΩ:

• nxt(i) = match i with

| ∅ → []

| a ∈ AΩ → [(a,∅)]

| strict(i1, i2) →

 [(a, strict(i′1, i2)) for (a, i′1) ∈ nxt(i1)] if (vad(i1, l) = ⊥)

[(a, strict(i′1, i2)) for (a, i′1) ∈ nxt(i1)] + nxt(i2) if (vad(i1, l) = >)

| seq(i1, i2) →

 [(a, seq(i′1, i2)) for (a, i′1) ∈ nxt(i1)]

+[(a, seq(prn(i1, θ(a)), i′2)) for (a, i′2) ∈ nxt(i2) if (vad(i1, θ(a)) = >)]

| par(i1, i2) →

 [(a, par(i′1, i2)) for (a, i′1) ∈ nxt(i1)]

+[(a, par(i1, i′2)) for (a, i′2) ∈ nxt(i2)]

| alt(i1, i2) → nxt(i1) + nxt(i2)

| loopS(i1) → [(a, strict(i′1, i)) for (a, i′1) ∈ nxt(i1)]

| loopH(i1) → [(a, seq(i′1, i)) for (a, i′1) ∈ nxt(i1)]

| loopW (i1) → [(a, seq(prn(i, θ(a)), seq(i′1, i))) for (a, i′1) ∈ nxt(i1)]

| loopP (i1) → [(a, par(i′1, i)) for (a, i′1) ∈ nxt(i1)]

With the "nxt" algorithm from Def.6.4, we exploit the tree-like structure of interaction terms and the

inductive definition of the semantics to return, for a given interaction i, all its follow-ups as a list of tuples

(a, i′) such that the predicate i a−→ i′ holds true. The algorithm takes the form of a recursive function nxt

which:

• if applied to a base case interaction, immediately returns all its follow-ups. In details this means that:

– for the empty interaction ∅, given that there are no follow-ups, nxt(∅) returns an empty list

– for atomic actions a ∈ AΩ, given that there is a single possible follow-up, nxt(a) returns a list

[(a,∅)] with a single element such that a a−→ ∅

• if applied to a more complex interaction, nxt is called recursively on the children of the interaction

term (i.e. its immediate sub-interactions). Then, follow-up interactions are reconstructed, as specified

by the rules of the operational semantics from Def.5.6, from the follow-ups of the sub-interactions that

have been computed.

However, we argue that this manner of algorithmizing the operational semantics is not ideal, especially

when one consider applications for some Formal Verification (FV) techniques. Indeed we do not necessarily

need to systematically compute all follow-up interactions. To avoid those unnecessary computations, we

propose to separate the process into two parts:

168 CHAPTER 6. SOME EXECUTION SEMANTICS

• the computation of a "frontier of execution", which enumerates all the actions that are immediately

executable

• the computation of specific follow-up interactions, obtained after the execution of a specific action from

the frontier of execution

With this method, we can specifically choose to execute a precise action so as to obtain a specific follow-

up interaction. In the operational semantics, the small-steps are of the form i
a−→ i′. However, given that

there can be several occurrences of the same action a within the interaction i, there can exist several such

executions. For instance we can have two distinct interactions i′A and i′B such that i a−→ i′A and i
a−→ i′B .

Given that the execution semantics aims at allowing the execution of specific actions, we need a manner to

unambiguously identify those actions within an interaction. This manner of doing so is positions, which we

have introduced in Chap.4.

As explained earlier, the execution semantics is an approach that is equivalent to that of the operational

semantics but in which we decorrelate the identification of the actions that are immediately executable from

the computation of the corresponding follow-up interactions. This approach is described schematically on

Fig.6.1. It consists:

• at first in identifying all the positions of the actions found within the interaction term i that can be

immediately executed. The set of those positions is the frontier of interaction i.

• then, for any one of those actions a that is found at a specific position p ∈ pos(i) i.e. such that a = i|p,

we can execute it within i and compute a uniquely defined follow-up interaction i′

i ∈ IΩ

execution
frontier

i′ ∈ IΩ

a = i|p

Figure 6.1: Description of the principles of the execution semantics

6.1.3 Frontier of execution

Among all the actions that can be found at the leaf nodes of an interaction term, only some of them are

immediately executable. We name this subset of leaf nodes the frontier of execution of the interaction. Given

an interaction i ∈ IΩ, we note frt(i) its frontier of execution. Each node being uniquely identified by its

6.1. DEFINITION OF THE EXECUTION SEMANTICS 169

position within i, we use those positions when defining "frt" so that frt(i) ⊆ pos(i) (with pos(i) the set of

positions in the term i). Let us indeed recall that there can be several instances of a same action at different

positions, and several of those can be present in a frontier of execution at the same time. Actions a = i|p

corresponding to frontier positions p ∈ frt(i) are called frontier actions. The "frt" function is formally

defined in Def.6.5.

Definition 6.5: Frontier of execution

frt : IΩ → P({1, 2}∗) is the function s.t. for any i ∈ IΩ:

• frt(i) = match i with

| ∅ → ∅

| a ∈ AΩ → {ε}

| strict(i1, i2) →

 1.frt(i1) ∪ 2.frt(i2) if i1 ↓

1.frt(i1) else

| seq(i1, i2) → 1.frt(i1) ∪ {p | p ∈ 2.frt(i2) , i1 ↓×
×
θ(i|p)}

| f(i1, i2) → 1.frt(i1) ∪ 2.frt(i2) for f ∈ {alt, par}

| loopk(i1) → 1.frt(i1) for k ∈ {S,H,W,P}

The frontier of an interaction can be statically inferred from its term structure. The "frt" function is

defined inductively such that:

• the empty interaction has an empty frontier: frt(∅) = ∅

• for any interaction that consists in a single atomic action a ∈ AΩ, frt(a) = {ε}, because the position

ε, which designates the root node of the interaction then designates the action leaf node itself (ε is the

position of a which is immediately executable)

• for any interaction i of the form f(i1, i2), with f any of the four binary constructors, frt(i) is inferred

from frt(i1) and frt(i2).

– In all cases, actions that are immediately executable within the left sub-interaction i1 are also

immediately executable in i. Indeed, the term being read from left to right, all constructors, if

they introduce ordering constraints, will only do so on the right sub-interaction i2. Thus 1.frt(i1)

is included in frt(i).

– As for the actions that are immediately executable within the right sub-interaction i2, whether

or not they are also immediately executable in i depends on the nature of the constructor f and

that of the left sibling interaction i1.

∗ If f = alt or f = par, 2.frt(i2) is also included in frt(i) because no constraint may prevent

the execution of actions from i2.

170 CHAPTER 6. SOME EXECUTION SEMANTICS

∗ If f = strict, any action from i2 can only be executed in i if no action from i1 is executed in

the same execution (otherwise it would violate the strict sequencing). Therefore 2.frt(i2) is

included in frt(i) iff i1 accepts the empty trace i.e. iff i1 ↓.

∗ If f = seq, elements p from 2.frt(i2) are included in frt(i) iff i1 accepts an execution that

does not involve the lifeline on which the action i|p occurs i.e. iff i1 ↓×
×
θ(i|p).

• for any interaction i of the form loopk(i1), with k ∈ {S,H,W,P}, we have frt(i) = 1.frt(i1) because

the loop can be instantiated through the execution of any one of the immediately executable actions

from its sub-interaction, which specifies the behaviors that can be repeated.

seq

loopH

seq

strict

l1!m1 l2?m1

seq

alt

strict

l2!m2 l3?m2

∅

l2!m3

par

l1!m1 strict

l3!m4 l1?m4

Figure 6.2: Frontier actions highlighted on an example interaction

Fig.6.2 illustrates the definition of "frt" on an example interaction. In this interaction, we have 8

different actions on leaves therefore frt(i) ⊆ {1111, 1112, 112111, 112112, 1122, 21, 221, 222}. Let us now

proceed by elimination to determine which ones are in frt(i). Actions on the right of every strict operators

are prevented from being executed by those on their left and as such are not in the frontier. This eliminates

{1112, 112112, 222}. l2!m2 and l2!m3 are prevented from being executed by l2?m1 which is a cousin on their

left w.r.t the seq operator at position 11. This eliminates {1112, 1122}. Then, by elimination, frt(i) =

{1111, 21, 221}.

Another manner to describe the frontier of the example interaction from Fig.6.2 is to say that it is

composed of three distinct observable actions and we can explain why they are immediately executable as

follows:

• both of the instances of the emission of message m1 by lifeline l1 can immediately occur.

– The one within the loop, at position 1111, is at the top of the diagram and therefore nothing

prevents it from being executed.

– The other one, at position 21 can be immediately executed because we can choose not to instantiate

the loop. If the loop is repeated zero times, then nothing prevents the emission of that message.

6.1. DEFINITION OF THE EXECUTION SEMANTICS 171

• the emission of message m4 by lifeline l3, at position 221 can immediately occur. Indeed, we can, for

instance, choose not to instantiate the loop. Then, nothing prevents the emission of that message.

6.1.4 Execution function

With "frt", we have isolated the responsibility of determining which actions are executable, and proposed

an implementation of it. Now remains the ability to reconstruct efficiently "follow-up" interactions issued

from the execution of said actions. As explained earlier and in Chap.5, the follow-up interaction specifies

all the continuations of the executions of the original interaction that start with the execution of a specific

action.

↓ l3!m4@221

seq

loopH

seq

strict

l1!m1 l2?m1

seq

alt

strict

l2!m2 l3?m2

∅

l2!m3

par

l1!m1 strict

l3!m4 l1?m4

∅
↑

� pruning

� execution

=

seq

loopH

seq

strict

l1!m1 l2?m1

seq

∅ l2!m3

par

l1!m1 strict

∅ l1?m4

Figure 6.3: Illustration of the execution of an action at a specific position

Let us start by an example. On Fig.6.3 is reproduced the example from Fig.6.2. Let us remember

that this example interaction has three frontier actions (as shown on Fig.6.2). Notably, the action l3!m4

at position 221 is in the frontier. Let us then execute that specific action, at position 221. The follow-up

interaction can be computed by rewriting the original interaction via a process that is described graphically

on the right of Fig.6.3:

• In this example, executing action l3!m4 at position 221 simply consists in deleting the corresponding

node from the interaction so that it may not be executed again. This is represented on Fig.6.3 by

crossing-out in red the node at position 221. In practice, this consists in replacing l3!m4 at position

221 by the empty interaction ∅.

• However this replacement of the node at position 221 is not sufficient to obtain the follow-up interaction.

As we have seen in Chap.5, we may need to clean-up the interaction term via the process of pruning.

Pruning is applied to all the left cousins of the node at position 221 (the executed action) if their

172 CHAPTER 6. SOME EXECUTION SEMANTICS

common ancestor is a seq constructor. Here, the root node is a seq. Therefore we must replace i|1 by

prn(i|1, θ(i|p)). As explained in Chap.5, the process of pruning removes from the interaction model any

contradiction that could occur. In this example, if l3 emits m4 then it forfeits its ability to receive m2

because otherwise, this would contradict the top to bottom order of the diagram which corresponds to

a weak sequencing between the reception of m2 and the emission of m4 on l3. If it were to occur, the

reception of m2 should precede the emission of m4. As a result it cannot occur at all if m4 is emitted

at first. Let us recall that the pruning cleans up the interaction term so as to minimally remove those

contradictions. A naive clean-up would be to simply remove the loop. However it is not necessary to do

so because the reception of m2 is contained within an alternative, and, in that alternative, the empty

branch can be chosen to solve the contradiction. Operating this minimal pruning, which corresponds

to forcing the choice of the alternative still allows the repetition of the emission of m1 by l1 and so

on. If we were to choose the native pruning, by removing the loop in its entirety we would obtain an

under-approximated follow-up interaction because it would be an interaction that do not specifies all

but only some of the continuations of the executions starting by the emission of m4 at position 221.

The process we have described allows one to rewrite the original interaction term into the specific follow-

up interaction that corresponds to the execution of an action at a specific position. The transformation that

is illustrated on Fig.6.3 may be denoted by i l3!m4@221−−−−−−−→ i′, which signifies that the execution of action l3!m4

at position 221 within the interaction i results in i′ as a follow-up interaction.

We can generalize this notation such that for any interaction i, the fact that an action a at position p

can be executed which yields to the follow-up interaction i′ can be denoted by i a@p−−→ i′.

The formalisation of this process (for the computation of the follow-up interaction) takes the form of

an inductive function exe that we define in Def.6.6. This function takes as arguments an interaction i and

one of its frontier position p ∈ front(i) and returns an i′ that characterizes all the continuations of the

executions of i that begin with the execution of the action i|p that is at the specific position p within i. exe

in effects isolates and implements the "small-step" from our operational semantics.

6.1. DEFINITION OF THE EXECUTION SEMANTICS 173

Definition 6.6: Interaction Execution

exe : IΩ × {1, 2}∗ → IΩ is the function s.t. for any i ∈ IΩ and p ∈ frt(i):

• exe(i, p) = match (i, p) with
| (act, ε) → ∅

| (alt(i1, i2), 1.p1) → exe(i1, p1)

| (alt(i1, i2), 2.p2) → exe(i2, p2)

| (strict(i1, i2), 1.p1) → strict(exe(i1, p1), i2)

| (strict(i1, i2), 2.p2) → exe(i2, p2)

| (seq(i1, i2), 1.p1) → seq(exe(i1, p1), i2)

| (seq(i1, i2), 2.p2) → seq(prn(i1, θ(i2|p2)), exe(i2, p2))

| (par(i1, i2), 1.p1) → par(exe(i1, p1), i2)

| (par(i1, i2), 2.p2) → par(i1, exe(i2, p2))

| (loopS(i1), 1.p1) → strict(exe(i1, p1), i)

| (loopH(i1), 1.p1) → seq(exe(i1, p1), i)

| (loopW (i1), 1.p1) → seq(prn(i, θ(i1|p1)), seq(exe(i1, p1), i))

| (loopP (i1), 1.p1) → par(exe(i1, p1), i)

exe is defined inductively on both the structure of the interaction i and the position p = d1...dn ∈ {1, 2}n.

The execution of exe(i, p) traverses recursively the syntactic structure of i guided by the path defined by

the position p, that is, from exe(i|ε, d1...dn) (root node), ..., up to exe(i|p, ε) (target action leaf to execute).

• exe(i|p, ε) = ∅ constitutes the stopping criterion and i′ is then constructed when the algorithm goes

back up through the syntactic structure of i. Assigning ∅ to exe(i|p, ε) ensures that the action i|p is

removed in the construction of i′.

• When a par node is encountered during the upward traversal, i.e. for j ∈ [1, n], i|d1...dj = par(i|d1...dj .1, i|d1...dj .2)

then exe(i|d1...dj , dj+1...dn) is simply:

– either par(exe(i|d1...dj .1, dj+2...dn), i|d1...dj .2) if dj+1 = 1

– or par(i|d1...dj .1, exe(i|d1...dj .2, dj+2...dn)) if dj+1 = 2

Indeed, as par specifies parallel executions, there is no need for pruning.

• When an alt node is reached, using the same notations, we would have:

– exe(i|d1...dj , dj+1...dn) = exe(i|d1...dj+1 , dj+2...dn)

Indeed, we can ’skip’ the alt node itself and replace it directly with the interaction resulting from the

execution of the chosen branch.

• When a loop is reached, i.e. i|d1...dj = loopf (i|d1...dj .1) (with a mandatory dj+1 = 1), we have:

174 CHAPTER 6. SOME EXECUTION SEMANTICS

– exe(i|d1...dj , dj+1...dn) = f(exe(i|d1...dj+1 , dj+2...dn), i|d1...dj)

Indeed, the execution is done on a copy of the loop content that precedes (with f operator) the loop

i|d1...dj itself, that is, on an unfolding of the loop.

• When a strict is reached exe(i|d1...dj , dj+1...dn) is:

– either strict(exe(i|d1...dj .1, dj+2...dn), i|d1...dj .2) if dj+1 = 1

– or exe(i|d1...dj .2, dj+2...dn)) if dj+1 = 2

Indeed, the strict operator won’t allow any action from the left branch to occur after an action on the

right has occurred. As a result, when executing an action on its right (i.e. dj+1 = 2) we can simply

ignore the whole left branch i|d1...dj .1

• When a seq is reached exe(i|d1...dj , dj+1...dn) is:

– either seq(exe(i|d1...dj .1, dj+2...dn), i|d1...dj .2) if dj+1 = 1

– or seq(prn(i|d1...dj .1, θ(i|p)), exe(i|d1...dj .2, dj+2...dn)) if dj+1 = 2

Indeed, when executing an action on the right of a seq (i.e. when dj+1 = 2), we must prune the left

cousin i|d1...dj .1 w.r.t. the lifeline on which the action that is executed occurs.

Let us remark that the domain of definition of exe is defined by the precondition p ∈ front(i). Its

inductive definition, on the cases authorized by its precondition, guarantees that it is well-defined:

• If i ∈ AΩ, p can only be ε (and vice-versa). In this case exe(i, ε) = (∅, i) because the action i is

executed and nothing remains to be executed.

• In any other case, p is either of the form 1.p1 or 2.p2.

– If p = 1.p1 then the action to be executed is in the left sub-interaction i|1. Then the result of

exe(i, p) is a reconstruction of an interaction term using exe(i1, p1) and i2.

– If p = 2.p2 then the action to be executed is in the right sub-interaction i|2. Then the result of

exe(i, p) is a reconstruction of an interaction term using i1 and exe(i2, p2).

• The most subtle case occurs when p = 2.p2 and i = seq(i|1, i|2). The precondition p ∈ front(i) implies

that i|p ∈ AΩ and that the left child i|1 avoids θ(i|p). In this case, to construct exe(i, 2.p2), exe does

not use i|1 but rather its pruned version prn(i|1, θ(i|p)) which eliminates all traces involving θ(i|p) while

preserving all others.

6.1.5 Execution semantics

This process of identification and execution of frontier actions can be repeated on the follow-up interactions

and their own follow-up interactions so as to identify all the executions that are specified by the original

6.1. DEFINITION OF THE EXECUTION SEMANTICS 175

interaction term. For each of those follow-up interactions, one can identify a new frontier and execute those

actions and so on. This results in the construction of a tree which we call the "execution tree" and in which

each path corresponds to parts of an execution of the original interaction.

On the diagram from Fig.6.4 such an execution tree is (partially) illustrated. This execution tree is

that of the interaction from our previous examples (that from Fig.6.2 and Fig.6.3). Let us note that the

transformation i l3!m4@221−−−−−−−→ i′ in which the interaction on the top part becomes the one underneath on its right

(after transition l3!m4@221), corresponds to the execution illustrated on Fig.6.3. The three child interactions

underneath the top one correspond to the executions of the 3 frontier actions of i (detailed in Fig.6.2).

Let us consider the path represented in the middle on Fig.6.4. We can see that it corresponds to the

successive execution of three actions l1!m1, l3!m4 and l1?m4; the first in the original interaction, and the

following in intermediate follow-up interactions. Let us then consider the interaction that remains after

those three executions. We can see that is is the empty interaction ∅ drawn as a white square (�). The

empty interaction can express the empty behavior i.e. we have ∅ ↓. As a result, we can conclude that the

sequence of events constituted of the concatenation of those three events i.e. the trace l1!m1.l3!m4.l1?m4

constitutes a full execution of the system as specified by the original interaction and is therefore part of its

trace semantics.

This observation can be generalized. Each path within the execution tree of an interaction that terminates

in a node hosting an interaction that can express the empty behavior corresponds to an "accepted" trace of

the original interaction. As a result, the execution tree represents the semantics of the original interaction.

The principle of the execution semantics is in fact the same as that of the operational semantics from Chap.5,

except that we explicit the positions of the actions that are executed.

For any interaction i, if it can express the empty behavior (which can be statically inferred from its

structure via the "↓" predicate) then the empty trace ε belongs to its semantics. If an action a at position p

can be executed which yields to the follow-up interaction i′, then any trace of the form a.t where t is a trace

accepted by i′, is accepted by i.

In other words, starting from an initial interaction i0, we may have a succession of transformations i0
a1@p1−−−−→ i1

a2@p2−−−−→ · · · an@pn−−−−→ in such that in ↓. We can then reconstitute a sequence a1. · · · .an which is an

accepted trace. By grouping all such paths together, we obtain a tree, called the execution tree, whose nodes

are interactions and arcs can be labelled by couples (p, a) (where a is the action that is executed and p its

position within the given interaction term) noted a@p. For a node i, child nodes are interactions i′ obtained

via the execution of any frontier action a = i|p with p ∈ front(i). Any such child node i′ corresponds to an

interaction that accepts traces that are suffixes of traces accepted by i and which start with a (corresponding

to a specific instance of a at a specific position p).

Let us also note that, given the existence of loops, execution trees can be infinite, and traces can be

arbitrarily long. For instance, on Fig.6.4 the execution tree is only partially drawn (as indicated by the

• • •) given that, in any case, the original interaction having a non-empty loop node, this tree is infinite.

176 CHAPTER 6. SOME EXECUTION SEMANTICS

l1!m1@1111 l1!m1@21 l3!m4@221

l3!m4@221

l1?m4@222

initial
interaction

frontier

executed
action

new
interaction

new
frontier

• • •

• • •

Figure 6.4: Description of the process for the execution semantics

Definition 6.7: Execution semantics

We define σe : IΩ → P(TΩ) as:

σe(i) = empty(i) ∪
⋃

p∈frt(i)

i|p.σe(exe(i, p))

with:

empty(i) =

 {ε} if i ↓

∅ if i 6↓

In Def.6.7, we formally define our execution semantics σe, which can be obtained from the exploration

of execution trees.

6.2. PROOF OF EQUIVALENCE BETWEEN σE AND σO 177

We have therefore formally defined our "execution semantics" σe which serves as an algorithmization

of the operational semantics σo for the purposes of facilitating its application to Formal Verification (FV)

techniques in the context of a tool implementation. So as to ensure its correctness, we will prove in the

next section (Sec.6.2) that it is equivalent to the operational semantics i.e. that we have, for any interaction

i ∈ IΩ, σe(i) = σo(i). Given that we have also proven, in Chap.5, that σo is equivalent to the foundational

denotational-style semantics σd, we will then have proven that σe is equivalent to σd.

6.2 Proof of equivalence between σe and σo

The operational-style semantics σo and the execution semantics σe are very similar. Their main point of

divergence concerns the use of the frontier and execution functions in σe, which substitute the execution

relation → used in σo.

As a result, the crux of the proof will be to characterize "exe" and "frt" with regards to the execution

relation→. This is what we do in the next section (Sec.6.2.1). Then, in Sec.6.2.2 we use this characterization

to prove the equivalence of both semantics.

Let us remark that this proof is machine-checked using the Coq proof assistant in [88].

6.2.1 Characterization of the execution function w.r.t. the execution relation

In Lem.6.4, we explain that for any predicate i a−→ i′, the execution of a in i to obtain i′ in facts corresponds

to the execution of a specific action a at a specific position p in the frontier of i. This corresponds to the

fact that i a−→ i′ implies the existence of a position p ∈ frt(i) such that:

• i|p = a meaning that within interaction i, the node at position p is a leaf node hosting an instance of

action a (there can be several such instances)

• and exe(i, p) = i′ meaning that the follow-up interaction i′ can be computed using "exe" and results

from the execution of the specific instance of a at the specific position p

Lemma 6.4: Characterization (left side) of exe w.r.t. →

For any interactions i and i′ in I, for any action a ∈ AΩ, we have:

(
i
a−→ i′

)
⇒
(
∃ p ∈ {1, 2}∗, (p ∈ frt(i)) ∧ (i|p = a) ∧ (i′ = exe(i, p))

)

Proof. Let us suppose that i a−→ i′ and let us reason by induction on the structure of i.

• If i = ∅ then it is not possible to have an i′ such that i a−→ i′

• If i = a ∈ AΩ then:

– On the one hand, the only possible i′ such that i a−→ i′ is ∅ i.e. we have a a−→ ∅.

178 CHAPTER 6. SOME EXECUTION SEMANTICS

– On the other hand, we have ε ∈ frt(a) and a|ε = a and exe(a, ε) = ∅. Therefore the property

holds.

• If i = strict(i1, i2) then i a−→ i′ implies:

– either that there exists i′1 such that i1
a−→ i′1 and i′ = strict(i′1, i2). We can then apply the

induction hypothesis on sub-interaction i1 to obtain the existence of a position p1 ∈ frt(i1) such

that i1|p1 = a and i′1 = exe(i1, p1). Then, by construction 1.p1 ∈ frt(i) and i|1.p1 = i1|p1 = a and

exe(i, 1.p1) = strict(exe(i1, p1), i2) = strict(i′1, i2) = i′. Therefore the property holds.

– or that we have i1 ↓ and that there exists i′2 such that i2
a−→ i′2 and i′ = i′2. We can then apply

the induction hypothesis on sub-interaction i2 to obtain the existence of a position p2 ∈ frt(i2)

such that i2|p2 = a and i′2 = exe(i2, p2). Then, given that i1 ↓, we have by construction that

2.p2 ∈ frt(i) and i|2.p2 = i2|p2 = a and exe(i, 2.p2) = exe(i2, p2) = i′2 = i′. Therefore the

property holds.

• If i = seq(i1, i2) then i a−→ i′ implies:

– either that there exists i′1 such that i1
a−→ i′1 and i′ = seq(i′1, i2). We can then apply the induction

hypothesis on sub-interaction i1 to obtain the existence of a position p1 ∈ frt(i1) such that

i1|p1 = a and i′1 = exe(i1, p1). Then, by construction 1.p1 ∈ frt(i) and i|1.p1 = i1|p1 = a and

exe(i, 1.p1) = seq(exe(i1, p1), i2) = seq(i′1, i2) = i′. Therefore the property holds.

– or that we have i1 ↓×
×
θ(a) and that there exists i′2 such that i2

a−→ i′2 and i′ = seq(prn(i1, θ(a)), i′2).

We can then apply the induction hypothesis on sub-interaction i2 to obtain the existence of a

position p2 ∈ frt(i2) such that i2|p2 = a and i′2 = exe(i2, p2) and i|2.p2 = i2|p2 = a. Then,

given that i1 ↓×
×
θ(i|2.p2), we have by construction that 2.p2 ∈ frt(i) and i|2.p2 = i2|p2 = a

and exe(i, 2.p2) = seq(prn(i1, θ(i2|p2)), exe(i2, p2)) = seq(prn(i1, θ(a)), i′2) = i′. Therefore the

property holds.

• If i = par(i1, i2) then i a−→ i′ implies:

– either that there exists i′1 such that i1
a−→ i′1 and i′ = par(i′1, i2). We can then apply the induction

hypothesis on sub-interaction i1 to obtain the existence of a position p1 ∈ frt(i1) such that

i1|p1 = a and i′1 = exe(i1, p1). Then, by construction 1.p1 ∈ frt(i) and i|1.p1 = i1|p1 = a and

exe(i, 1.p1) = par(exe(i1, p1), i2) = par(i′1, i2) = i′. Therefore the property holds.

– either that there exists i′2 such that i2
a−→ i′2 and i′ = par(i1, i′2). We can then apply the induction

hypothesis on sub-interaction i2 to obtain the existence of a position p2 ∈ frt(i2) such that

i2|p2 = a and i′2 = exe(i2, p2). Then, by construction 2.p2 ∈ frt(i) and i|2.p2 = i2|p2 = a and

exe(i, 2.p2) = par(i1, exe(i2, p2)) = par(i1, i′2) = i′. Therefore the property holds.

• If i = alt(i1, i2) then i a−→ i′ implies:

6.2. PROOF OF EQUIVALENCE BETWEEN σE AND σO 179

– either that there exists i′1 such that i1
a−→ i′1 and i′ = i′1. We can then apply the induction

hypothesis on sub-interaction i1 to obtain the existence of a position p1 ∈ frt(i1) such that

i1|p1 = a and i′1 = exe(i1, p1). Then, by construction 1.p1 ∈ frt(i) and i|1.p1 = i1|p1 = a and

exe(i, 1.p1) = exe(i1, p1) = i′1 = i′. Therefore the property holds.

– either that there exists i′2 such that i2
a−→ i′2 and i′ = i′2. We can then apply the induction

hypothesis on sub-interaction i2 to obtain the existence of a position p2 ∈ frt(i2) such that

i2|p2 = a and i′2 = exe(i2, p2). Then, by construction 2.p2 ∈ frt(i) and i|2.p2 = i2|p2 = a and

exe(i, 2.p2) = exe(i2, p2) = i′2 = i′. Therefore the property holds.

• If i = loopk(i1) with k ∈ {S,H,W,P}, then i
a−→ i′ implies that there exists i′1 such that i1

a−→ i′1

and i′ is either strict(i′1, i) or seq(i′1, i) or seq(prn(i, θ(a)), seq(i′1, i)) (as per Lem.6.3) or par(i′1, i). In

any case, we can apply the induction hypothesis on sub-interaction i1 to obtain the existence of a

position p1 ∈ frt(i1) such that i1|p1 = a and i′1 = exe(i1, p1). Then, by construction 1.p1 ∈ frt(i) and

i|1.p1 = i1|p1 = a and exe(i, 1.p1) = i′. Therefore the property holds.

In Lem.6.5, we explain that for any frontier position p and corresponding action a within the frontier of

an interaction i (i.e. p ∈ frt(i) and a = i|p), then exe(i, p) indeed corresponds to a follow-up interaction of i

after the execution of a according to the transition relation →. This equates to implying that i a−→ exe(i, p).

Lemma 6.5: Characterization (right side) of exe w.r.t. →

For any interaction i ∈ I, for any position p ∈ {1, 2}∗ and for any action a ∈ AΩ, we have:

(
(p ∈ frt(i)) ∧ (i|p = a)

)
⇒
(
i
a−→ exe(i, p)

)

Proof. Let us suppose that p ∈ frt(i) and that i|p = a. Let us then reason by induction on the structure of

i:

• If i = ∅ then we have frt(∅) = ∅ so it is not possible to have a p ∈ frt(i).

• If i = a ∈ AΩ then we have frt(a) = {ε} and p must be ε, which satisfies a|ε = a. Then:

– On the one hand, we have a a−→ ∅.

– On the other hand, exe(a, ε) = ∅. Therefore the property holds.

• If i = strict(i1, i2) then p ∈ frt(i) implies:

– either that p is of the form 1.p1 and p1 ∈ frt(i1). Also we have i1|p1 = i|1.p1 = a. We can then

apply the induction hypothesis on sub-interaction i1 to get that we have i1
a−→ exe(i1, p1). This

implies, as per the definition of the execution relation, that strict(i1, i2) a−→ strict(exe(i1, p1), i2).

180 CHAPTER 6. SOME EXECUTION SEMANTICS

Then, given that exe(i, 1.p1) = strict(exe(i1, p1), i2) this equates to i a−→ exe(i, p). Therefore the

property holds.

– or that we have i1 ↓, that p is of the form 2.p2 and that p2 ∈ frt(i2). Also we have i2|p2 =

i|2.p2 = a. We can then apply the induction hypothesis on sub-interaction i2 to get that we have

i2
a−→ exe(i2, p2). Given that we have i1 ↓, this implies, as per the definition of the execution

relation, that strict(i1, i2) a−→ exe(i2, p2). Then, given that exe(i, 2.p2) = exe(i2, p2) this equates

to i a−→ exe(i, p). Therefore the property holds.

• If i = seq(i1, i2) then p ∈ frt(i) implies:

– either that p is of the form 1.p1 and p1 ∈ frt(i1). Also we have i1|p1 = i|1.p1 = a. We can

then apply the induction hypothesis on sub-interaction i1 to get that we have i1
a−→ exe(i1, p1).

This implies, as per the definition of the execution relation, that seq(i1, i2) a−→ seq(exe(i1, p1), i2).

Then, given that exe(i, 1.p1) = seq(exe(i1, p1), i2) this equates to i a−→ exe(i, p). Therefore the

property holds.

– or that we have i1 ↓×
×
θ(i|p), that p is of the form 2.p2 and that p2 ∈ frt(i2). Also we have

i2|p2 = i|2.p2 = a. We can then apply the induction hypothesis on sub-interaction i2 to get

that we have i2
a−→ exe(i2, p2). Given that we have i1 ↓ θ(a), this implies, as per the defi-

nition of the execution relation, that seq(i1, i2) a−→ seq(prn(i1, θ(a)), exe(i2, p2)). Then, given

that exe(i, 2.p2) = seq(prn(i1, θ(i2|p2)), exe(i2, p2)) this equates to i a−→ exe(i, p). Therefore the

property holds.

• If i = par(i1, i2) then p ∈ frt(i) implies:

– either that p is of the form 1.p1 and p1 ∈ frt(i1). Also we have i1|p1 = i|1.p1 = a. We can

then apply the induction hypothesis on sub-interaction i1 to get that we have i1
a−→ exe(i1, p1).

This implies, as per the definition of the execution relation, that par(i1, i2) a−→ par(exe(i1, p1), i2).

Then, given that exe(i, 1.p1) = par(exe(i1, p1), i2) this equates to i a−→ exe(i, p). Therefore the

property holds.

– either that p is of the form 2.p2 and p2 ∈ frt(i2). Also we have i2|p2 = i|2.p2 = a. We can

then apply the induction hypothesis on sub-interaction i2 to get that we have i2
a−→ exe(i2, p2).

This implies, as per the definition of the execution relation, that par(i1, i2) a−→ par(i1, exe(i2, p2)).

Then, given that exe(i, 2.p2) = par(i1, exe(i2, p2)) this equates to i a−→ exe(i, p). Therefore the

property holds.

• If i = alt(i1, i2) then p ∈ frt(i) implies:

– either that p is of the form 1.p1 and p1 ∈ frt(i1). Also we have i1|p1 = i|1.p1 = a. We can then

apply the induction hypothesis on sub-interaction i1 to get that we have i1
a−→ exe(i1, p1). This

6.2. PROOF OF EQUIVALENCE BETWEEN σE AND σO 181

implies, as per the definition of the execution relation, that alt(i1, i2) a−→ exe(i1, p1). Then, given

that exe(i, 1.p1) = exe(i1, p1) this equates to i a−→ exe(i, p). Therefore the property holds.

– or that p is of the form 2.p2 and p2 ∈ frt(i2). Also we have i2|p2 = i|2.p2 = a. We can then

apply the induction hypothesis on sub-interaction i2 to get that we have i2
a−→ exe(i2, p2). This

implies, as per the definition of the execution relation, that alt(i1, i2) a−→ exe(i2, p2). Then, given

that exe(i, 2.p2) = exe(i2, p2) this equates to i a−→ exe(i, p). Therefore the property holds.

• If i = loopk(i1) with k ∈ {S,H,W,P} then p ∈ frt(i) implies that p is of the form 1.p1 and p1 ∈ frt(i1).

Also we have i1|p1 = i|1.p1 = a. We can apply the induction hypothesis on sub-interaction i1 to get

that we have i1
a−→ exe(i1, p1). Let us then denote by i′1 the interaction exe(i1, p1). This then implies,

as per the definition of the execution relation, that loopk(i1) a−→ i′ with i′ being either strict(i′1, i) or

seq(i′1, i) or seq(prn(i, θ(a)), seq(i′1, i)) (as per Lem.6.3) or par(i′1, i) Then, given that exe(i, 1.p1) is

exactly defined as i′1, this equates to i
a−→ exe(i, p). Therefore the property holds.

6.2.2 Conclusion

Thanks to the previous characterization of front and χ w.r.t. →, the actual proof is quite short. In this

section, we will:

• in Th.6.1 prove the inclusion of σe in σo

• in Th.6.2 prove the inclusion of σo in σe

• conclude on the equivalence of the semantics with Th.6.3

Theorem 6.1: Inclusion of σe in σo

For any interaction i ∈ IΩ:

σe(i) ⊃ σo(i)

Proof. Let us consider i ∈ IΩ and t ∈ σd(i) and let us reason by induction on the trace t.

• If t = ε, the fact that t = ε ∈ σe(i) implies that empty(i) = {ε} and therefore that i ↓. Then, by

definition of σo, this means that ε ∈ σo(i).

• If t = a.t′ then, the fact that a.t′ ∈ σe(i) implies the existence of a frontier position p ∈ frt(i) such

that i|p = a and t ∈ σe(exe(i, p)).

– On the one hand, given that trace t′ is strictly smaller than t, we can apply the induction

hypothesis which implies that t′ ∈ σo(exe(i, p))

– On the other hand, we can apply Lem.6.5 to get that i a−→ exe(i, p)

182 CHAPTER 6. SOME EXECUTION SEMANTICS

– Those two facts combined imply that t = a.t′ ∈ σo(i)

Theorem 6.2: Inclusion of σo in σe

For any interaction i ∈ IΩ:

σo(i) ⊃ σe(i)

Proof. Let us consider i ∈ IΩ and t ∈ σd(i) and let us reason by induction on the (size of the) trace t.

• If t = ε, the fact that t = ε ∈ σo(i) implies that i ↓. Then, this implies that empty(i) = {ε} and

therefore that ε ∈ σe(i).

• If t = a.t′ then, the fact that a.t′ ∈ σo(i) implies the existence of an action a and an interaction i′ such

that i a−→ i′ and t′ ∈ σo(i′).

– On the one hand, we can apply the induction hypothesis on t′, which implies that t′ ∈ σe(i′)

– On the other hand, we can apply Lem.6.4 to reveal the existence of a position p ∈ frt(i) such

that i|p = a and i′ = exe(i, p)

– As a result we have p ∈ frt(i) and t′ ∈ σe(exe(i, p)). Therefore, by definition of σe we have

t = a.t′ = i|p.t
′ ∈ σe(i)

We conclude with Th.6.3 that the three semantics that we have defined on our IL, namely σd, σo and σe

are all equivalent.

Theorem 6.3: Equivalence of all three semantics

For any interaction i ∈ IΩ:

σd(i) = σo(i) = σe(i)

Proof. Immediately implies by Th.5.3, Th.6.1 and Th.6.2.

6.3 Execution semantics with simplifications

The operational semantics σo and its algorithmization σe are defined in such a manner that the nodes within

an interaction term that host the actions that are executed are progressively (at each small-step) replaced

by the empty interaction ∅. Also, when executing actions that are found within loops, the interaction

term is complexified with the addition of new nodes that correspond to a duplication of the sub-interaction

underneath the loop that is instanciated. This results in an accumulation of useless nodes which increases

6.3. EXECUTION SEMANTICS WITH SIMPLIFICATIONS 183

seq

loopH

seq

strict

l1!m1 l2?m1

seq

alt

strict

l2!m2 l3?m2

∅

l2!m3

par

l1!m1 strict

l3!m4 l1?m4

↓ l3!m4@221

seq

loopH

seq

strict

l1!m1 l2?m1

seq

∅ l2!m3

par

l1!m1 strict

∅ l1?m4

↓ l1!m1@1111

seq

seq

seq

strict

∅ l2?m1

seq

∅ l2!m3

loopH

seq

strict

l1!m1 l2?m1

seq

∅ l2!m3

par

l1!m1 strict

∅ l1?m4

↓ l1!m1@21

seq

seq

seq

strict

∅ l2?m1

seq

∅ l2!m3

∅

par

∅ strict

∅ l1?m4

seq

loopH

seq

strict

l1!m1 l2?m1

seq

alt

strict

l2!m2 l3?m2

∅

l2!m3

par

l1!m1 strict

l3!m4 l1?m4

↓ l3!m4@221

seq

loopH

seq

strict

l1!m1 l2?m1

l2!m3

par

l1!m1 l1?m4

↓ l1!m1@1111

seq

seq

seq

l2?m1 l2!m3

loopH

seq

strict

l1!m1 l2?m1

l2!m3

par

l1!m1 l1?m4

↓ l1!m1@21

seq

seq

l2?m1 l2!m3

l1?m4

Figure 6.5: Example of a succession of small-step executions without (left) and with (right) simplifications

with each application of a small-step. In other words, and informally, interactions may become less and less

"canonic" during their executions, especially when they contain loops.

Let us indeed consider the illustration from Fig.6.5, which details two possible successions of transforma-

tions starting from the same initial interaction which is the example of Fig.6.3.

The example on the left of Fig.6.5 consists in the exploration using σe of a path in the execution tree of

the initial interaction, which reveals that l3!m4.l1!m1.l1!m1 is a prefix of an (at least one) accepted trace. We

can see however that at each execution of a small-step, redundant ∅ nodes are added, and, in the interaction

term that is reached at the end of the path, many such occurrences of redundant ∅ nodes are present.

Removing those redundant ∅ (among other potential simplifications) would allow an implementation of

the semantics to work with simplified, more compact interaction terms. Working with simpler terms would

in turn improve overall performances given that it both reduces the memory footprint and the length of the

traversals for computing inductive predicates on the terms.

On the example on the right of Fig.6.5 is represented the execution of the same (prefix of) trace from

184 CHAPTER 6. SOME EXECUTION SEMANTICS

the same initial interaction. However, in this case, we have used some simplifications when defining each

intermediate interaction term. The resulting term at the end of the path is here simpler and more compact

than the one reached in the example on the left.

In the following we define two manners of defining a (proven correct) execution semantics which incorpo-

rate such simplifications. Doing so involves results from equational logic and term rewriting which we have

covered in Chap.4.

6.3.1 Normalizing intermediate interaction terms

In Chap.4 we have defined a process to normalize interaction terms. Let us recall that, for any interaction

i we may denote by R≺(i) its unique normal form through the rewriting process (given the three phases

R1
I , R2

I and R3
I for simplifications and the total rewrite order ≺I for selecting a unique represent in the

AC-equivalence class).

A first obvious method for incorporating simplifications into the execution semantics is to normalize

each intermediate interaction term. Doing so leads to defining the semantics which we denote by σn (for

"normalizing") from Def.6.8

Definition 6.8: Normalizing execution semantics

We define σn : IΩ → P(TΩ) and (the tool function) sem : IΩ → P(TΩ) as:

σn : i 7→ sem(R(i)) and sem : i 7→ empty(i) ∪
⋃
p∈frt(i) i|p.σn(exe(i, p))

with empty from Def.6.7 and R from Chap.4

The "normalizing" execution semantics that is thus defined is correct w.r.t. the previous semantics, which

we state in Th.6.4.

Theorem 6.4: Correctness of the normalizing execution semantics

For any interaction i ∈ IΩ:

σn(i) = σe(i)

Proof. Let us proceed by induction on a member trace t:

• if t = ε then ε ∈ σn(i) and ε ∈ σe(i) respectively equate R≺(i) ↓ and i ↓. By Lem.5.4 those predicates

then respectively equate that ε ∈ σd(R≺(i)) and ε ∈ σd(i). Then, given that i and R≺(i) are in the

same equivalence class, we have that σd(R≺(i)) = σd(i). Hence both predicates are equivalent.

• if t = a.t′ then:

⊂ if a.t′ ∈ σn(i) there exists i′ s.t. R≺(i) a−→ i′ and t′ ∈ σn(i′) then:

6.3. EXECUTION SEMANTICS WITH SIMPLIFICATIONS 185

∗ at first we can apply the induction hypothesis so that t′ ∈ σe(i′)

∗ then, given that R≺(i) a−→ i′ and t′ ∈ σe(i′) we have by definition that a.t′ ∈ σe(R≺(i))

∗ finally, as per Th.6.3 and because R≺(i) ≈EI i this means that a.t′ ∈ σe(i)

⊃ if a.t′ ∈ σe(i) there exists i′ s.t. i a−→ i′ and t′ ∈ σe(i′) then:

∗ at first we can apply the induction hypothesis so that t′ ∈ σn(i′)

∗ the fact that i a−→ i′ imply that R≺(i) a−→ R≺(i′) and the fact that t′ ∈ σn(i′) = σn(R≺(i′))

imply that a.t′ ∈ σn(R≺(i)) = σn(i)

However, we might argue that this algorithmicized semantics may have high overhead costs due to the

fact that, in between each step of execution, we normalize the follow-up interaction which involves trying to

find redexes and which can be costly.

As a result, in the next section, we propose another execution semantics with simplifications, which,

instead of simplifying a-posteriori the i′ such that i a−→ i′ merges the simplification with the process of

reconstructing i′ itself. As we will see this can be very simply done by introducing modifications in the

inductive definitions of the pruning and execution functions.

6.3.2 Simplifying while computing the intermediate interaction terms

As mentioned previously, we can define variants of the prune and execution functions which introduce term

simplification in their inductive definitions.

Let us consider the example from Fig.6.6 and compare what is represented here with what we have seen on

Fig.6.3. Both figures represent the execution of the same action at the same position in the same interaction

term. However, while Fig.6.3 illustrates the process without term simplification, Fig.6.6 illustrates a version

with term simplification. We can see that the simplification steps illustrated on Fig.6.6 yield a simpler and

more compact interaction term.

As mentioned previously, we formalize this process by defining a prn≈ and a exe≈ function.

186 CHAPTER 6. SOME EXECUTION SEMANTICS

↓ l3!m4

seq

loopH

seq

strict

l1!m1 l2?m1

seq

alt

strict

l2!m2 l3?m2

∅

l2!m3

par

l1!m1 strict

l3!m4 l1?m4

∅
↑

� pruning

� execution

� simplification

=

seq

loopH

seq

strict

l1!m1 l2?m1

l2!m3

par

l1!m1 l1?m4

Figure 6.6: Illustration of the execution of an action at a specific position with simplifications

Definition 6.9: Pruning with simplifications

prn≈ : IΩ × L→ IΩ is s.t. for any (i, l) ∈ IΩ × L verifying ↓×× (i, l):

• provided ↓×× (i, l) then prn≈(i, l) = match i with

| ∅ → ∅

| a ∈ AΩ → a

| alt(i1, i2) →

prn≈(i2, l) if ↓×× (i2, l) ∧ ¬ ↓×

× (i1, l)

prn≈(i1, l) if ↓×× (i1, l) ∧ ¬ ↓×
× (i2, l)

alt(prn≈(i1, l), prn≈(i2, l)) if ↓×× (i1, l) ∧ ↓×
× (i2, l)

| f(i1, i2) →

prn≈(i2, l) if prn≈(i1, l) = ∅

prn≈(i1, l) if prn≈(i2, l) = ∅

f(prn≈(i1, l), prn≈(i2, l)) else

∣∣∣∣∣∣∣∣∣∣
for f ∈ {strict, seq, par}

| loopk(i1) →

 loopk(prn≈(i1, l)) if ↓×× (i1, l) and prn≈(i1, l) 6= ∅

∅ else

∣∣∣∣∣∣∣ for k ∈ {S,H,W,P}

The new prn≈ function from Def.6.9 operates the pruning process with simplifications. We characterize

this new prn≈ function w.r.t. prn in Lem.6.6. An interaction term prn≈(i, l) resulting from the application

of this new pruning process being equivalent according to ≈EI to prn(i, l).

6.3. EXECUTION SEMANTICS WITH SIMPLIFICATIONS 187

Lemma 6.6: Characterization of pruning with simplifications

For any interaction i ∈ IΩ and any l ∈ L such that i ↓×× l we have:

prn(i, l) ≈EI prn≈(i, l)

Proof. Let us reason by induction on the term structure of i

• if i = ∅ then prn(i, l) = ∅ and prn≈(i, l) = ∅ then ≈EI being reflexive, the property holds

• if i = a ∈ AΩ which implies that θ(a) 6= l then prn(i, l) = a and prn≈(i, l) = a and then ≈EI being

reflexive, the property holds

• if i = alt(i1, i2) then:

– if ↓×× (i2, l) ∧ ¬ ↓×
× (i1, l) then prn(i, l) = prn(i2, l) and prn≈(i, l) = prn≈(i2, l). We can then

apply the induction hypothesis on i2 which implies that prn(i2, l) ≈EI prn≈(i2, l) and therefore

the property holds

– if ↓×× (i1, l) ∧ ¬ ↓×
× (i2, l) then prn(i, l) = prn(i1, l) and prn≈(i, l) = prn≈(i1, l). We can then

apply the induction hypothesis on i1 which implies that prn(i1, l) ≈EI prn≈(i1, l) and therefore

the property holds

– if ↓×× (i1, l) ∧ ↓×
× (i2, l) then prn(i, l) = alt(prn(i1, l), prn(i2, l)) and prn≈(i, l) = alt(prn≈(i1, l), prn≈(i2, l)).

We can then apply the induction hypothesis on both i1 and i2, and, given that ≈EI is F-compatible

(congruence), the property holds

• if i = f(i1, i2) with f ∈ {strict, seq, par} then we have prn(i, l) = f(prn(i1, l), prn(i2, l)) and, as per the

induction hypothesis on i1 and i2 we have both prn(i1, l) ≈EI prn≈(i1, l) and prn(i2, l) ≈EI prn≈(i2, l)

and then:

– if prn≈(i1, l) = ∅ then:

prn≈(i, l) = prn≈(i2, l)

≈EI f(∅, prn≈(i2, l)) (as per Simpl-Left)

≈EI f(prn(i1, l), prn(i2, l))

≈EI prn(i, l)

hence the property holds

188 CHAPTER 6. SOME EXECUTION SEMANTICS

– if prn≈(i2, l) = ∅ then:

prn≈(i, l) = prn≈(i1, l)

≈EI f(prn≈(i1, l),∅) (as per Simpl-Right)

≈EI f(prn(i1, l), prn(i2, l))

≈EI prn(i, l)

hence the property holds

– else the property is implied by the fact that ≈EI is F-compatible (congruence)

• if i = loopk(i1) with k ∈ {S,H,W,P}, we have, as per the induction hypothesis that prn(i1, l) ≈EI

prn≈(i1, l) and then:

– if ↓×× (i1, l) then prn(i, l) = loopk(prn(i1, l)) and:

∗ if prn≈(i1, l) 6= ∅ then prn≈(i) = loopk(prn≈(i1, l)) and the property holds because ≈EI is a

congruence

∗ if prn≈(i1, l) = ∅ then:

prn≈(i, l) = ∅

≈EI loopk(∅) (as per Loop-Simpl)

≈EI loopk(prn(i1, l))

≈EI prn(i, l)

– else then prn(i, l) = ∅ = prn≈(i, l)

As a result, pruning with simplification that we defined in Def.6.9 is equivalent (in the sens of ≈EI) to

the original pruning.

In the same spirit, we define in Def.6.10 a variant of the execution function exe≈ that incorporates

simplification steps. We then prove with Lem.6.7 that this new execution with simplifications is equivalent

(in the sens of ≈EI) to the original.

6.3. EXECUTION SEMANTICS WITH SIMPLIFICATIONS 189

Definition 6.10: Execution with simplifications

exe≈ : IΩ × {1, 2}∗ → IΩ is the function s.t. for any i ∈ IΩ and p ∈ frt(i):

• exe≈(i, p) = match (i, p) with
| (act, ε) → ∅

| (alt(i1, i2), 1.p1) → exe≈(i1, p1)

| (alt(i1, i2), 2.p2) → exe≈(i2, p2)

| (strict(i1, i2), 1.p1) →

 strict(exe≈(i1, p1), i2) if exe≈(i1, p1) 6= ∅

i2 else

| (strict(i1, i2), 2.p2) → exe≈(i2, p2)

| (seq(i1, i2), 1.p1) →

 seq(exe≈(i1, p1), i2) if exe≈(i1, p1) 6= ∅

i2 else

| (seq(i1, i2), 2.p2) →

exe≈(i2, p2) if prn(i1, θ(i2|p2)) = ∅

prn(i1, θ(i2|p2)) if exe≈(i2, p2) = ∅

seq(prn(i1, θ(i2|p2)), exe≈(i2, p2)) if both are not ∅

| (par(i1, i2), 1.p1) →

 par(exe≈(i1, p1), i2) if exe≈(i1, p1) 6= ∅

i2 else

| (par(i1, i2), 2.p2) →

 par(i1, exe≈(i2, p2)) if exe≈(i2, p2) 6= ∅

i1 else

| (loopS(i1), 1.p1) →

 strict(exe≈(i1, p1), i) if exe≈(i1, p1) 6= ∅

i else

| (loopH(i1), 1.p1) →

 seq(exe≈(i1, p1), i) if exe≈(i1, p1) 6= ∅

i else

| (loopW (i1), 1.p1) →

seq(prn(i, θ(i1|p1)), seq(exe≈(i1, p1), i)) if exe≈(i1,p1)6=∅ and prn(i,θ(i1|p1
))6=∅

seq(exe≈(i1, p1), i) if exe≈(i1,p1)6=∅ and prn(i,θ(i1|p1
))=∅

seq(prn(i, θ(i1|p1)), i) if exe≈(i1,p1)=∅ and prn(i,θ(i1|p1
))6=∅

i if exe≈(i1,p1)=prn(i,θ(i1|p1
))=∅

| (loopP (i1), 1.p1) →

 par(exe≈(i1, p1), i) if exe≈(i1, p1) 6= ∅

i else

Lemma 6.7: Characterization of execution with simplifications

For any interaction i ∈ IΩ and any frontier position p ∈ front(i) we have:

exe(i, p) ≈EI exe≈(i, p)

Proof. As for the proof of Lem.6.6 we can proceed by induction. For the case where i = seq(i1, i2) and

190 CHAPTER 6. SOME EXECUTION SEMANTICS

p = 2.p2 and for the case i = loopW (i1) and p = 1.p1 we apply Lem.6.6 related to pruning.

Finally, we define the execution semantics with simplifications in Def.6.11. This new semantics makes

use of the prn≈ and exe≈ functions to incorporate simplification during the computation of intermediate

interactions. We then prove in Th.6.5 that this new variant of the execution semantics, which we denote by

σ≈
e
is equivalent to σe and therefore to all the previously defined semantics.

Definition 6.11: Execution semantics with simplifications

We define σ≈
e

: IΩ → P(TΩ) as:

σ≈
e
(i) = empty(i) ∪

⋃
p∈front(i)

i|p.σ≈e
(exe≈(i, p))

with empty from Def.6.7

Theorem 6.5: Correctness of the simplifying execution semantics

For any interaction i ∈ IΩ:

σe(i) = σ≈
e
(i)

Proof. Let us prove both inclusions:

⊆ Let us consider t ∈ σe(i) and let us reason by induction on the trace t:

– if t = ε then t ∈ σe(i) implies that i ↓, which implies that t = ε ∈ σ≈
e
(i)

– if t = a.t′ then t ∈ σe(i) implies the existence of p ∈ front(i) such that i|p = a and t′ ∈

σe(exe(i, p)). Then, we have:

∗ as per Th.6.3, t′ ∈ σd(exe(i, p))

∗ as per Lem.6.7, exe(i, p) ≈EI exe≈(i, p)

∗ as per Lem.4.30, σd(exe(i, p)) = σd(exe≈(i, p))

∗ as per Th.6.3, t′ ∈ σe(exe≈(i, p))

We can apply the induction hypothesis on t′, which implies that t′ ∈ σ≈
e
(exe≈(i, p)) and therefore

t = a.t′ ∈ σ≈
e
(i)

⊇ Let us consider t ∈ σ≈
e
(i) and let us reason by induction on the trace t:

– if t = ε then t ∈ σ≈
e
(i) implies that i ↓, which implies that t = ε ∈ σe(i)

– if t = a.t′ then t ∈ σ≈
e
(i) implies the existence of p ∈ front(i) such that i|p = a and t′ ∈

σ≈
e
(exe≈(i, p)). We can apply the induction hypothesis on t′ which implies that t′ ∈ σe(exe≈(i, p))

Then, we have:

6.3. EXECUTION SEMANTICS WITH SIMPLIFICATIONS 191

∗ as per Th.6.3, t′ ∈ σd(exe≈(i, p))

∗ as per Lem.6.7, exe≈(i, p) ≈EI exe(i, p)

∗ as per Lem.4.30, σd(exe≈(i, p)) = σd(exe(i, p))

∗ as per Th.6.3, t′ ∈ σe(exe(i, p))

Therefore t = a.t′ ∈ σe(i)

We have therefore defined a "simplifying" execution semantics which guarantees that we won’t have

useless ∅ nodes that accumulate during execution. This σ≈
e
semantics makes use of simplifications that are

incorporated in the inductive definitions of the prune and execution functions. We argue that this semantics

might have less overhead costs than the "normalizing" execution semantics σn from the previous section.

However, unlike σn, which guarantees that each intermediate term is a normal form, σ≈
e
offers no such

guarantee.

Conclusion

In this chapter we have redefined the operational semantics from Chap.5 in the style of functional program-

ming languages and with the added benefit of being able to separate concerns between the evaluation of

which actions are immediately executable (the frontier of execution) and the computation the the follow-up

interaction issued from the execution of a specific action at a specific position (the execution function).

Separating those concerns allows to reduce overhead whenever we do not need to compute all follow-up

interactions. For instance we may only want to compute follow-ups resulting from executions of frontier

actions that match a certain action (there can be several occurrences at distinct positions). We have proven

this algorithmicized "execution semantics" to be equivalent to the previously defined trace semantics. In

addition, to further reduce potential overheads, we defined two variants of the execution semantics: a "nor-

malizing execution semantics" and a "simplifying execution semantics" which respectively use results from

equational logic and term rewriting from Chap.4 in order to guarantee working with intermediate interaction

terms (that are computed during the exploration of the execution tree) that are kept simple and compact.

Given that all the previously defined trace semantics (σd from Chap.4, σo from Chap.5 and σe, σn and

σe≈ from this chapter) have been proven to be equivalent, in the remainder of this manuscript, we will

simply use the notation σ to refer to the trace semantics of interactions.

Let us remark that the semantics that is implemented in the HIBOU tool presented in Chap.12 is σ≈
e
.

However, in the remainder of this manuscript, we will rather use notations related to σo (and sometimes σd)

when presenting the formal verification algorithms that we have build on top of the semantics of interactions.

In the next chapter we extend the notion of the semantics of interactions to objects that are not traces

but "multi-traces".

192 CHAPTER 6. SOME EXECUTION SEMANTICS

Chapter 7

Multi-trace semantics

Contents
7.1 Multi-traces up to a partition . 194

7.1.1 Defining multi-traces . 194

7.1.2 The F-algebra of multi-traces up to a partition . 196

7.2 Projecting traces . 203

7.2.1 The projection function . 203

7.2.2 Preservation of algebraic structures . 204

7.3 Semantics of accepted multi-traces . 206

7.3.1 Algebraic multi-trace semantics . 207

7.3.2 Multi-trace semantics by projection . 207

7.3.3 Relating the algebraic and projected multi-trace semantics 208

7.4 Prefixes and slices of multi-traces . 210

7.4.1 Prefixes of global traces . 212

7.4.2 Prefixes and slices of multi-traces . 212

7.4.3 Semantics of prefixes and slices of accepted multi-traces 213

193

194 CHAPTER 7. MULTI-TRACE SEMANTICS

In this chapter we define multi-traces, which are sets of local traces, each defined on a subset of lifelines.

We then explain how one can extend the semantics of interactions to those objects.

The plan of this chapter is as follows:

• in Sec.7.1 we define multi-traces and algebraic operators on multi-traces,

• in Sec.7.2 we explain how we can relate traces to multi-traces via projection,

• in Sec.7.3 we define several semantics of "accepted" multi-traces,

• in Sec.7.4 we define various notions of prefixes of multi-traces and extend the multi-trace semantics to

those notions of prefixes.

7.1 Multi-traces up to a partition

7.1.1 Defining multi-traces

Preliminaries

For any set X, we will note Part(X) the set of its partitions. A partition C ∈ Part(X) is defined as a

collection C = (ck)k∈[1,n] of cardinal n ∈ N+ such that:

• we have
⋃
k∈[1,n] ck = X

• and for any k and j in [1, n] with k 6= j, we have ck ∩ cj = ∅

We may denote by X̌ the discrete partition X̌ = ({x})x∈X .

In the following, let us consider a given signature Ω = (L,M). In Sec.4.1, we have defined TΩ as the set

of "traces" which are as sequences of actions from AΩ. Those traces are therefore global traces [93], which

order events occurring on every lifeline globally.

Generalized multi-traces

For the sake of practicity, in the following, for any subset of lifelines c ∈ P(L), we will denote by AΩ|c the

set of actions occurring on c i.e. we have AΩ|c = {a ∈ AΩ | θ(a) ∈ c}. We can then denote by TΩ|c the set

A∗Ω|c of sequences of such actions.

We can then define multi-traces up to a partition C for any partition C ∈ Part(L), as collections of

component traces (tc)c∈C such that for any c ∈ C, we have tc ∈ TΩ|c. Such a multi-trace can be understood

as a set of component traces, each defined on a "co-localization" of several lifelines. Within each such co-

localization, events can be reordered even though they may occur on different lifelines. We can hence assume,

for instance, that sub-systems within the same co-localization share a common clock.

7.1. MULTI-TRACES UP TO A PARTITION 195

global trace
up to the trivial partition
C = (L) = ({l1, l2, l3})

(classical) multi-trace
up to the discrete partition
C = ({l})l∈L = ({l1}, {l2}, {l3})

(generalized) multi-trace
up to a specific partition
C = ({l1}, {l2, l3})

Figure 7.1: Explicitation of various notions of traces and multi-traces

Definition 7.1: Multi-traces up to a partition

For any signature Ω = (L,M) and for any partition C ∈ Part(L), we define:

TΩ|C =
∏
c∈C

TΩ|c

With, for any c ⊂ L:

TΩ|c = A∗Ω|c and AΩ|c = {a ∈ AΩ | θ(a) ∈ c}

Inclusion of global traces & classical multi-traces in the new definition

The definition of generalized multi-traces in Def.7.1 encompasses that of both global traces (from Chap.4)

and "classical" multi-traces, defined such that each lifeline has its own component in the multi-trace as in

[94].

If we consider the trivial partition C = (L) of L, then we have TΩ|(L) = TΩ and we recognise the definition

of global traces. Indeed, a global trace is a generalized multi-trace in which there is a single co-localization

which includes all the lifelines.

If we consider the discrete partition Ľ = ({l})l∈L of L, then we recognize in TΩ|Ľ the definition of

classical multi-traces (as per [94]). Indeed, every co-localization is reduced to a singleton, and reciprocally,

every lifeline is associated with its own trace component.

In Fig.7.1 are represented three multi-traces that are defined up to different partitions. All three multi-

traces describe the same execution of a given distributed system. However the level of detail regarding that

description may vary in so far as the information regarding the ordering between events is of unequal quality:

• The multi-trace which has the most information is the one on the left, which corresponds to a global

trace. Indeed, in that case, all lifelines are co-localized and as a result, the information regarding the

order in which all events occurred globally is present. This multi-trace corresponds to the case in which

the partition according to which it is defined is the trivial partition.

• The multi-trace which has the least amount of information about the execution of the distributed

system is the one in the middle. This case corresponds to the one of classical multi-traces in which there

196 CHAPTER 7. MULTI-TRACE SEMANTICS

is no information regarding the relative order in which events occurring on different lifelines occurred

during the execution. This multi-trace corresponds to the case in which the partition according to

which it is defined is the discrete partition.

• The multi-trace on the right is an intermediate case in which some information is gathered and some

is lost. It corresponds to a case in which the partition is neither the trivial partition nor the discrete

partition.

Notations

For any partition C of L, we will use the greek letter µ to designate a multi-trace from TΩ|C . And for any

c ∈ C, we will denote by µ|c the trace component of µ corresponding to the co-localization c. We will also

use a substitution notation µ[t]c to designate the multi-trace µ in which the component for co-localization c

has been replaced by t ∈ TΩ|c. Additionally, we may denote by εC the empty multi-trace (ε)c∈C ∈ TΩ|C .

Given a lifeline l ∈ L, there exists a unique co-localization c ∈ C such that l ∈ c. We denote by θC(l)

this unique co-localization. We extend this notation to any action a so that θC(a) = θC(θ(a)) to designate

the unique co-localization in which action a occurs.

7.1.2 The F-algebra of multi-traces up to a partition

In Chap.4, we have seen that the set of sets of traces P(TΩ), when fitted with the following set of operation

symbols AΩ ∪ {{ε},∪, ; , ;×× , ||, ;∗, ;�××∗, ;××∗, ||∗} has the structure of a F-algebra w.r.t. the term algebra IΩ of

interactions. By analogy, we can define similar operations on the set of sets of multi-traces up to a partition

P(TΩ|C).

In the following, given a partition C ∈ Part(L) we introduce algebraic operators on P(TΩ|C) so as to

define the F-algebra of multi-traces.

Concatenation of multi-traces

At first, we need to define some finer notion of concatenation (compared to the classical ".") that acts on

multi-traces. We do so in Def.7.2.

Definition 7.2: Appending actions on multi-traces

We define the:

• left concatenation law →
�C : AΩ × TΩ|C → TΩ|C

• and the right concatenation law ←
�C : TΩ|C × AΩ → TΩ|C

such that for any action a ∈ A and any µ ∈ TΩ|C we have:

a
→
�C µ = µ[a.µ|θC(a)]θC(a) and µ

←
�C a = µ[µ|θC(a).a]θC(a)

7.1. MULTI-TRACES UP TO A PARTITION 197

Those concatenation laws respectively correspond to appending action a either to the left or to the right

of the trace component µ|θC(a) corresponding to the co-localization on which a occurs. Let us remark that

we then have |µ ←
�C a| = |a →

�C µ| = |µ|+ 1. Also, →�C and ←
�C display some interesting properties which are

similar (although weaker) than the ones of the classical "." concatenation.

We may extend
→
�C and

←
�C to sets of multi-traces such that for any action a ∈ AΩ and any set T of

multi-traces in P(TΩ|C) we have:

a
→
�C T = {a

→
�C µ | µ ∈ T} and T

←
�C a = {µ

←
�C a | µ ∈ T}

Using the left and right concatenation laws, we define inductively the concatenation of two multi-traces.

Definition 7.3: Concatenation of multi-traces

We define �C : TΩ|C × TΩ|C → TΩ|C so that for any two multi-traces µ1 and µ2:

• if µ2 = εC then µ1 �C µ2 = µ1

• if µ2 = a
→
�C µ′2 then µ1 �C µ2 = (µ1

←
�C a)�C µ′2

We then extend it to sets of multi-traces with �C : P(TΩ|C)×P(TΩ|C)→ P(TΩ|C) so that for any two

sets of multi-traces T1 and T2:

T1 �C T2 =
⋃

µ1∈T1
µ2∈T2

{µ1 �C µ2}

The �C operator is trivially associative so that for any three multi-traces µ1, µ2 and µ3, we have

µ1 �C (µ2 �C µ3) = (µ1 �C µ2)�C µ3, which we may simply denote by µ1 �C µ2 �C µ3.

Strict sequencing for multi-traces

In Def.7.4, we define a strict sequencing operator ;©C on multi-trace via the application of the strict se-

quencing operator ; on each local trace component.

Definition 7.4: Strict sequencing for multi-traces

We define ;©C : TΩ|C × TΩ|C → P(TΩ|C) so that for any two of multi-traces µ1 and µ2:

µ1 ;© Cµ2 = {µ ∈ TΩ|C | ∀ c ∈ C, µ|c ∈ (µ1|c ; µ2|c)}

We then extend it to sets of multi-traces with ;©C : P(TΩ|C)×P(TΩ|C)→ P(TΩ|C) such that for any

two sets of multi-traces T1 and T2:

T1 ;© CT2 =
⋃

µ1∈T1
µ2∈T2

(µ1 ;© Cµ2)

198 CHAPTER 7. MULTI-TRACE SEMANTICS

We can then show that the operator that is thus defined describes the same notion of concatenation

than the �C operator. However, while �C is defined inductively in the world of multi-traces via the

successive appending and removing of actions using
→
�C and

←
�C , the ;©C operator is defined by reconstructing

individually every local component of the multi-trace using ";".

Lemma 7.1: Strict sequencing on multi-traces is multi-trace concatenation

For any two multi-traces µ1 and µ2:

µ1 ;© Cµ2 = {µ1 �C µ2} i.e. (µ1|c ; µ2|c)c∈C = µ1 �C µ2

Proof. Let us reason by induction on µ2:

• for µ2 = εC we have:
(µ1|c ; εC|c)c∈C = (µ1|c ; ε)c∈C

= (µ1|c)c∈C

= µ1

= µ1 �C εC

• for µ2 = a
→
�C µ′2 = a

→
�C (εC �C µ′2) = (a

→
�C εC)�C µ′2 = εC [a]θC(a) �C µ′2 we have:

(µ1|c ; (εC [a]θC(a) �C µ′2)|c)c∈C = ((µ1|c ; (εC [a]θC(a))|c) ; µ′2|c)c∈C

= (µ1|c ; (εC [a]θC(a))|c)c∈C �C (µ′2|c)c∈C

= ((µ1[µ1|θC(a).a]θC(a))|c)c∈C �C µ′2
= µ1[µ1|θC(a).a]θC(a) �C µ′2

= (µ1
←
�C a)�C µ′2

= µ1 �C (a
→
�C µ′2)

As a result, even though they are not defined in the same manner, both the �C and ;©C operators describe

the same notion of concatenating multi-traces. In the following we may therefore use them interchangeably.

The notation ;©C can be used to keep in line with the notations from Chap.4 which are inspired from [75]

and to clearly relate this symbol to the notion of strict sequencing. The notation �C can be used more

trivially to manipulate multi-traces in a more general context.

However, having at disposal both definitions i.e. both manners of understanding multi-trace concatena-

tion (from a global or a local point of view) can have some practical uses:

• We may notably use the inductive definition of �C in proofs or to define prefixes of multi-traces.

• The definition of ;©C , which makes use of ; can be used to relate both operators.

7.1. MULTI-TRACES UP TO A PARTITION 199

Interleaving on multi-traces

We also extend interleaving to multi-traces with ©C corresponding to the application of the interleaving ||

on each local component.

Definition 7.5: Interleaving for multi-traces

We define ©C : TΩ|C × TΩ|C → TΩ|C so that for any two of multi-traces µ1 and µ2:

µ1© Cµ2 = {µ ∈ TΩ|C | ∀ c ∈ C, µ|c ∈ (µ1|c || µ2|c)}

We then extend it to sets of multi-traces with ©C : P(TΩ|C)×P(TΩ|C)→ P(TΩ|C) such that for any

two sets of multi-traces T1 and T2:

T1© CT2 =
⋃

µ1∈T1
µ2∈T2

(µ1© Cµ2)

It is notable that we can characterize ©C as is done in Lem.7.2.

Lemma 7.2: Characterization of interleaving on multi-traces

For any µ1 and µ2 in TΩ|C and any a1 and a2 in AΩ:

εC © Cµ2 = {µ2}

µ1© CεC = {µ1}

(a1
→
�C µ1)© C(a2

→
�C µ2) =

 {a1
→
�C µ | µ ∈ µ1© C(a2

→
�C µ2)}

∪ {a2
→
�C µ | µ ∈ (a1

→
�C µ1)© Cµ2}

Proof. Let us prove each point:

• we have that:
εC © Cµ2 = {µ ∈ TΩ|C | ∀ c ∈ C, µ|c ∈ ((εC)|c || µ2|c)}

= {µ ∈ TΩ|C | ∀ c ∈ C, µ|c ∈ (ε || µ2|c)}

= {µ ∈ TΩ|C | ∀ c ∈ C, µ|c = µ2|c}

= {µ ∈ TΩ|C | µ = µ2} = {µ2}

• likewise µ1© CεC = {µ1}

• we have:

(a1
→
�C µ1)© C(a2

→
�C µ2) = {µ ∈ TΩ|C | ∀ c ∈ C, µ|c ∈ ((a1

→
�C µ1)|c || (a2

→
�C µ2)|c)}

then:

200 CHAPTER 7. MULTI-TRACE SEMANTICS

– if θC(a1) = θC(a2) = ca:

T = (a1
→
�C µ1)© C(a2

→
�C µ2)

=

µ ∈ TΩ|C

∣∣∣∣∣∣∣
∀ c ∈ C \ {ca}, µ|c ∈ µ1|c || µ2|c

µ|ca ∈ a1.µ1|ca || a2.µ2|ca

=

µ ∈ TΩ|C

∣∣∣∣∣∣∣∣∣∣
∀ c ∈ C \ {ca}, µ|c ∈ µ1|c || µ2|c

µ|ca ∈

 {a1.t | t ∈ µ1|ca || a2.µ2|ca}

∪ {a2.t | t ∈ a1.µ1|ca || µ2|ca}

=

µ ∈ TΩ|C

∣∣∣∣∣∣∣ ∀ c ∈ C, µ|c ∈
 {(a1

→
�C µ)c | µ ∈ µ1 © a2

→
�C µ2}

∪ {(a2
→
�C µ)c | µ ∈ a1

→
�C µ1 © µ2}

=

 {a1
→
�C µ | µ ∈ µ1© C(a2

→
�C µ2)}

∪ {a2
→
�C µ | µ ∈ (a1

→
�C µ1)© Cµ2}

– the case for θC(a1) 6= θC(a2) can be proven similarly

Weak sequencing on multi-traces

We also define weak sequencing ××©C on multi-traces via the application of the weak sequencing ;×× on each

local trace component.

Definition 7.6: Weak sequencing for multi-traces

We define ××©C : TΩ|C × TΩ|C → P(TΩ|C) so that for any two of multi-traces µ1 and µ2:

µ1 ××© Cµ2 = {µ ∈ TΩ|C | ∀ c ∈ C, µ|c ∈ (µ1|c ;×× µ2|c)}

We then extend it to sets of multi-traces with ××©C : P(TΩ|C)×P(TΩ|C)→ P(TΩ|C) such that for any

two sets of multi-traces T1 and T2:

T1 ××© CT2 =
⋃

µ1∈T1
µ2∈T2

(µ1 ××© Cµ2)

However we do not provide any characterization for this operator.

Closures of scheduling operators on multi-traces

By analogy to the results from Chap.4, let us also define the three Kleene closures for the ;©C , ××©C and ©C

operators.

7.1. MULTI-TRACES UP TO A PARTITION 201

Definition 7.7: Kleene closures for multi-traces

For any scheduling operator �© ∈ { ;©C , ××©C , ©C}, we define, for any set of multi-traces T ∈ P(TΩ|C):

T �©0 = {εC}

T �©j = T �© T �©(j−1) for j > 0

T �©∗ =
⋃
j∈N T

�©j

We have seen in Chap.4 that the Head-First closure of weak sequencing is uniquely defined. As a result,

let us also define an analogue of this operator on multi-traces.

Definition 7.8: Weak HF-closure for multi-traces

We define ××©�
C : P(TΩ|C)× P(TΩ|C)→ P(TΩ|C) s.t. for any two sets of multi-traces T1 and T2:

T1 ××© �
CT2 =

µ ∈ T1 ××© CT2

∣∣∣∣∣∣∣ (µ = a
→
�C µ′)⇒

∃ µ1 ∈ TΩ|C s.t.
(a
→
�C µ1 ∈ T1)

∧ (µ′ ∈ {µ1} ××© CT2)

We then define ××©�
C∗ as the K-closure of ××©�

C .

Algebraic considerations

Similarly to the operators on traces from Chap.4, it follows that the previously defined operators on multi-

traces present some interesting algebraic properties. For instance, those properties include, among others,

that: ;©C and ××©C are associative or that ©C is associative commutative.

We will not enter into the details here but, in fact, all of the properties defined in Chap.4 for operators

on traces also apply to their respective counterparts on multi-traces.

The set of sets of multi-traces P(TΩ|C) then admits the structure of a F-algebra as defined in Def.7.9.

Definition 7.9: Semantic domain P(TΩ|C) as a F-algebra

AC = (P(TΩ|C), FAC (with FAC = {fAC | f ∈ F}) is the F-algebra of carrier P(TΩ|C) and the

following interpretations of the operation symbols in F :

∅AC = {εC}

aAC = {a
→
�C εC}

strictAC = ;©C

seqAC = ××©C

parAC = ©C

altAC = ∪

loopACS = ;©C∗

loopACH = ××©�
C∗

loopACW = ××©C∗

loopACP = ©C∗

202 CHAPTER 7. MULTI-TRACE SEMANTICS

The case of the trivial partition

In the case of the trivial partition C = {L} i.e. when we have a single co-localization which gathers all

lifelines then AC is isomorph w.r.t. A i.e. we have a bijective homomorphism between the two F-algebras.

For all intents and purposes manipulating multi-traces defined on the trivial partition is then equivalent to

manipulating global traces.

The case of the discrete partition

In the case of the discrete partition Ľ of lifelines, the ××©Ľ and ;©Ľ operators behave identically as stated in

Lem.7.3.

Lemma 7.3: Equivalence of multi-trace weak and strict sequencing on the discrete partition

For any signature Ω = (L,M), for any µ1 and µ2 in TΩ|Ľ we have:

µ1 ××© Ľµ2 = µ1 ;© Ľµ2

Proof. Indeed:

• in any given co-localization c = {l} ∈ Ľ, for any t1 and t2 from TΩ|{l} we have t1;×× t2 = t1; t2 given

that it is not possible to interleave any actions using weak sequence because they all occur on the same

lifeline.

• which implies that:

µ1 ××© µ2 = {µ ∈ TΩ|Ľ | ∀ l ∈ L, µ|{l} ∈ (µ1|{l} ;×× µ2|{l})}

= {µ ∈ TΩ|Ľ | ∀ l ∈ L, µ|{l} ∈ (µ1|{l} ; µ2|{l})}

= µ1 ;© µ2

This last result can be extended to conclude that the strict and weak K-closures and the weak HF-closure

also behave identically on the discrete partition (Lem.7.4).

Lemma 7.4: Equivalent repetition operators on the discrete partition

For any signature Ω = (L,M), for any set of multi-traces T ∈ TΩ|Ľ up to the discrete partition:

T ;©Ľ∗ = T
××©�
Ľ
∗ = T ×

×©Ľ∗

Proof. Implied by Lem.7.3.

This means that weak and strict sequencing are indistinguishable when observing multi-traces defined

up to the discrete partition.

7.2. PROJECTING TRACES 203

7.2 Projecting traces

The F-algebras A of sets of traces and the F-algebras AC of sets of multi-traces up to a partition C ∈ Part(L)

have similar algebraic structures.

In this section we discuss the possibility of relating those two F-algebras via a projection operator which

projects traces into multi-traces. We will see that depending on which is the partition C, this projection

may or may not preserve algebraic structures.

7.2.1 The projection function

In Def.7.10 we define a projC function for projecting global traces into multi-traces defined up to a partition

C.

Definition 7.10: Trace Projection

For any signature Ω = (L,M) and any partition C ∈ Part(L), we define projC : TΩ → TΩ|C such that:

• projC(ε) = εC the empty multi-trace εC = (ε)c∈C

• for any t ∈ TΩ and any a ∈ AΩ, if projC(t) = µ then projC(a.t) = a
→
� µ

i.e. given c = θC(a) the unique element of C such that θ(a) ∈ c, we have projC(a.t) = µ[a.µ|c]c

Let us consider the examples from Fig.7.1. For instance, let us consider the global trace on the

left of Fig.7.1. In this example, we have L = {l1, l2, l3}. If we project it on the discrete partition

C = ({l1}, {l2}, {l3}), we obtain the multi-trace in the middle of Fig.7.1. If we project it on the parti-

tion C = ({l1}, {l2, l3}), we obtain the multi-trace in the right of Fig.7.1.

For any partition C ∈ Par(L), the projection function projC is always surjective but not necessarily

injective. Indeed, several global traces can be projected into the same multi-trace. Let us for instance

consider, given L = {l1, l2} and C = ({l1}, {l2}), the global traces tα = l1!m.l2!m and tβ = l2!m.l1!m. We

then have projC(tα) = projC(tβ) = (l1!m, l2!m). Given that multi-traces do not specify any order between

events occurring on different co-localizations, the global order l1!m < l2!m specified in tα and the global

order l2!m < l1!m specified in tβ is not preserved after the projection as a multi-trace of TΩ|C .

We extend the projection function to sets of traces in Def.7.11.

Definition 7.11: Extensions of trace projection

We extend projC to sets of traces as projC : P(TΩ)→ P(TΩ|C) such that for any set T of traces:

projC(T) = {projC(t) | t ∈ T}

204 CHAPTER 7. MULTI-TRACE SEMANTICS

7.2.2 Preservation of algebraic structures

As we hinted earlier, the projection function projC preserves some (but not all) algebraic structure of A

into AC . In the following we explain which structures are preserved and which are not.

As stated in Lem.7.5, strict sequencing and interleaving are preserved by projection.

Lemma 7.5: Projection preserves strict sequencing & interleaving

For any traces t1 and t2:

projC(t1; t2) = projC(t1) ;© projC(t2) projC(t1||t2) = projC(t1)© projC(t2)

And hence, for any sets of traces T1 and T2:

projC(T1;T2) = projC(T1) ;© projC(T2) projC(T1||T2) = projC(T1)© projC(T2)

Proof. Let us consider traces t1 and t2.

© Let us start by the strict sequencing. We reason by induction on the trace t1:

• when t1 = ε we have:
projC(ε; t2) = projC(t2)

= εC ;© projC(t2)

= projC(ε) ;© projC(t2)

• when t1 = a.t′1 we have:

projC((a.t′1); t2) = projC({a.t | t ∈ t′1; t2})

= {projC(a.t) | t ∈ t′1; t2}

= {a
→
� projC(t) | t ∈ t′1; t2}

= a
→
� projC(t′1; t2)

= a
→
� (projC(t′1) ;© projC(t2)) induction hypothesis

= (a
→
� projC(t′1)) ;© projC(t2)

= projC(a.t′1) ;© projC(t2)

© Let us now consider the interleaving and let us reason by induction on both t1 and t2:

• when t1 = ε we have:
projC(ε||t2) = projC(t2)

= εC © projC(t2)

= projC(ε)© projC(t2)

7.2. PROJECTING TRACES 205

• when t2 = ε we have:
projC(t1||ε) = projC(t1)

= projC(t1)© εC

= projC(t1)© projC(ε)

• when t1 = a1.t
′
1 and t2 = a2.t

′
2 we have:

projC((a1.t
′
1)||(a2.t

′
2)) = projC({a1.t | t ∈ t′1||(a2.t

′
2)} ∪ {a2.t | t ∈ (a1.t

′
1)||t′2})

= a1
→
�C projC(t′1||(a2.t

′
2)) ∪ a2

→
�C projC((a1.t

′
1)||t′2)

(induction) = a1
→
�C (projC(t′1)© projC(a2.t

′
2)) ∪ a2

→
�C (projC(a1.t

′
1)© projC(t′2))

=

 a1
→
�C (projC(t′1)© (a2

→
�C projC(t′2)))

∪ a2
→
�C ((a1

→
�C projC(t′1))© projC(t′2))

(Lem.7.2) = (a1

→
�C projC(t′1))© (a2

→
�C projC(t′2))

= projC(a1.t
′
1)© projC(a2.t

′
2)

Given that the algebraic structures of strict sequencing and interleaving are preserved by projection, it

comes that repetitions of those structures with their Kleene closures are also preserved by projection. We

state this in Lem.7.6.

Lemma 7.6: Projection preserves strict and interleaving K-closures

For any set of traces T :

projC(T ;∗) = projC(T) ;©∗ projC(T ||∗) = projC(T)©∗

Proof. Implied by Lem.7.5

However, weak sequencing is not preserved. It suffices to consider the following example, with L =

{l1, l2, l3} and the partition C = ({l1, l2}, {l3}). Here we have:

projC({l1!m1.l3?m1};×× {l3!m2.l2?m2}) = projC({l1!m1.l3?m1.l3!m2.l2?m2})

=

 l1!m1.l2?m2,

l3?m1.l3!m2

However:

projC({l1!m1.l3?m1}) ××© CprojC({l3!m2.l2?m2}) =

 l1!m1,

l3?m1

 ××© C

 l2?m2,

l3!m2

=

 l1!m1.l2?m2,

l3?m1.l3!m2

 ,

 l2?m2.l1!m1,

l3?m1.l3!m2

206 CHAPTER 7. MULTI-TRACE SEMANTICS

In the world of interactions, this example corresponds to the diagram given on Fig.7.2. We have indeed

that the semantics of this interaction is the weak sequencing of l1!m1.l3?m1 which is the passing of message

m1 followed by l3!m2.l2?m2 which is the passing of message m2. On co-localization {l1, l2} we are therefore

supposed to observe at first l1!m1 and then l2?m2. Observing the reception of m2 i.e. l2?m2 at first is

impossible because its emission must occur after the reception of m1. However, when projecting onto multi-

traces, the information pertaining to this chain of causality is lost, which is why in the second computation,

using ××©C , the interleaving between l1!m1 and l2?m2 is authorized.

Figure 7.2: Counter example demonstrating that projection do not preserve weak sequencing

We generalize those remarks on the inclusion of projected weak sequences in Lem.7.7.

Lemma 7.7: Inclusion of projected weak sequences

For any traces t1 and t2, any sets of traces T1, T2 and T :

projC(t1;×× t2) ⊂ projC(t1) ××© projC(t2) projC(T1;×× T2) ⊂ projC(T1) ××© projC(T2)

projC(T ;××∗) ⊂ projC(T)××©∗ projC(T ;�××∗) = projC(T)××©�∗

Proof. We can reason in terms of which interleavings are allowed or not allowed. More formally, we can

proceed by induction on traces t1 and t2 similarly as what we did for Lem.7.5.

We can conclude that, in the general case of any partition C ∈ Part(L), the projection function projC

is not a homomorphism between A and AC because weak sequencing (and therefore its K-closure and HF-

closure) is not preserved.

However, as we have seen with Lem.7.3 and Lem.7.4, in the case of the discrete partition, all the prob-

lematic operators related to weak sequencing behave like their strict counterpart. As a result, and in that

case, projĽ on the discrete partition is a homomorphism between A and AĽ. Also, and more trivially, in the

case of the trivial partition {L}, proj{L} is also a homomorphism between A and A{L}. Those two remarks

are illustrated on Fig.7.3.

7.3 Semantics of accepted multi-traces

In this section we define two different semantics of "accepted" multi-traces: an algebraic multi-trace semantics

defined as a homomorphism between IΩ and P(TΩ|C) and a projected multi-trace semantics defined as the

composition of projC and σ. We then explain how those two semantics can be related.

7.3. SEMANTICS OF ACCEPTED MULTI-TRACES 207

P(TΩ),

{ε}, {a},
∪, ; , ;×× , ||,
;∗, ;�××∗, ;××∗, ||∗

P(TΩ|{L}),

{ε{L}}, {a

→
�{L} ε{L}},

∪, ;©{L}, ××©{L}, ©{L},
;©{L}∗,

××©�
{L}∗, ××©{L}∗, ©{L}∗

proj{L}

P(TΩ),

{ε}, {a},
∪, ; , ;×× , ||,
;∗, ;�××∗, ;××∗, ||∗

P(TΩ|Ľ),

{εĽ}, {a

→
�Ľ εĽ},

∪, ;©Ľ, ×
×©Ľ, ©Ľ,

;©Ľ∗,
××©�
Ľ
∗, ××©Ľ∗, ©Ľ∗

projĽ

Figure 7.3: Extreme cases where projC is a homomorphism

7.3.1 Algebraic multi-trace semantics

In Chap.4 we defined the trace semantics σ in denotational-style semantics as a homomorphism between the

term algebra IΩ and the F-algebra A of sets of traces. In the same manner, we can define a multi-trace

semantics σ©C in denotational-style as a homomorphism between the term algebra IΩ and the F-algebra AC

of sets of multi-traces.

Definition 7.12: Algebraic multi-trace semantics

σ©C : IΩ → P(TΩ|C) is defined as the unique F-homomorphism between TF = IΩ and AC =

(P(TΩ|C), FAC)

In the same manner as σ is the initial homomorphism between IΩ and A, σ©C is the initial homomorphism

between IΩ and AC , as illustrated on Fig.7.4.IΩ,

 ∅, a ∈ AΩ,
alt, strict, seq, par
loopS , loopH , loopW , loopP

P(TΩ|C),

{εC}, {a

→
�C εC},

∪, ;©C , ××©C , ©C ,
;©C∗, ××©�

C∗, ××©C∗, ©C∗

homomorphism σ©C (denotational semantics)

Figure 7.4: Algebraic multi-trace semantics

7.3.2 Multi-trace semantics by projection

By contrast, we can define another semantics of multi-traces, as the projection of the trace semantics. We

define this semantics by projection in Def.7.13.

Definition 7.13: Projected multi-trace semantics

σ|C : IΩ → P(TΩ|C) is such that for any i ∈ IΩ:

σ|C(i) = projC(σ(i))

208 CHAPTER 7. MULTI-TRACE SEMANTICS

This "projected" multi-trace semantics benefits from results that we have proven for the trace semantics.

We notably have the property stated in Lem.7.8.

Lemma 7.8: A characterization of projected multi-trace semantics

For any interaction i ∈ IΩ we have that:

∀ (a, µ′, i′),

 (µ′ ∈ σ|C(i′))

∧ (i a−→ i′)

⇒ (a
→
�C µ′ ∈ σ|C(i))

And:

∀ (µ),

 (µ ∈ σ|C(i))

∧ (µ 6= εC)

⇒
∃ (a, µ′, i′),

(µ = a
→
�C µ′)

∧ (i a−→ i′)

∧ (µ′ ∈ σ|C(i′))

Proof. Let us prove both properties:

• The fact that µ′ ∈ σ|C(i′) implies the existence of a trace t′ ∈ σ(i′) such that projC(t′) = µ′. Then it

comes that i a−→ i′ and t′ ∈ σ(i′) implies a.t′ ∈ σ(i). Hence projC(a.t′) = a
→
�C µ′ ∈ σ|C(i)

• The fact that µ ∈ σ|C(i) implies the existence of a trace t ∈ σ(i) such that projC(t) = µ. Then,

given that µ 6= εC we have t 6= ε and hence there exists a and t′ such that t = a.t′ ∈ σ(i). Therefore

there exists i′ such that i a−→ i′ and t′ ∈ σ(i′). Then, let us denote by µ′ the projection of t′ i.e.

µ′ = projC(t′). We then have projC(t) = µ = projC(a.t′) = a
→
�C µ′ and projC(t′) = µ′ ∈ σ|C(i′)

7.3.3 Relating the algebraic and projected multi-trace semantics

We have seen in Sec.7.2.2 that the projection operator do not preserve the algebraic structure related to

weak sequencing. In practice, we have that σ©C allows interleavings between actions that would otherwise

be forbidden in σ|C , as can be inferred from the counter-example given in Sec.7.2.2.

We therefore characterize, in the general case of any partition C, the relationship between σ|C and σ©C as

an inclusion. We do so in Lem.7.9. The counter-example from Sec.7.2.2 proves that the reciprocate inclusion

does not hold.

Lemma 7.9: Inclusion of the projected multi-trace semantics into the algebraic one

For any i ∈ IΩ we have:

σ|C(i) ⊂ σ©C(i)

Proof. We can simply use Lem.7.5, Lem.7.7 and Lem.7.6. Let us however detail the proof to illustrate the

difference between the weak sequence and the other operators.

Let us use the denotational formulation of σ and reason by induction on the structure of interactions:

7.3. SEMANTICS OF ACCEPTED MULTI-TRACES 209

• for the empty interaction: σ|C(∅) = projC({ε}) = {εC} = σ©C(∅)

• for any action a: σ|C(a) = projC({a}) = {a
→
�C εC} = σ©C(a)

• for any (f, �, �©) ∈ {(strict, ; , ;©), (par, ||,©), (alt,∪,∪)} we have:

σ|C(f(i1, i2)) = projC(σ(f(i1, i2)))

= projC(σ(i1) � σ(i2))

= projC(σ(i1)) �© projC(σ(i2)) as per Lem.7.5

= σ|C(i1) �© σ|C(i2)

= σ©C(i1) �© σ©C(i2) induction hypothesis

= σ©C(f(i1, i2))

• for the weak sequencing we have:

σ|C(seq(i1, i2)) = projC(σ(seq(i1, i2)))

= projC(σ(i1);×× σ(i2))

⊂ projC(σ(i1)) ××© projC(σ(i2)) as per Lem.7.7

⊂ σ|C(i1) ××© σ|C(i2)

⊂ σ©C(i1) ××© σ©C(i2) induction hypothesis

⊂ σ©C(seq(i1, i2))

• for the repetition operators and constructors we can proceed similarly, using Lem.7.6 for the strict and

interleaving K-closures and using Lem.7.7 for the weak K-closure and weak HF-closure

Pragmatically, the semantics that is "correct" is σ|C . However, given that σ©C is a homomorphism while

σ|C is not, it is easier to manipulate and find interesting results related to σ©C . In particular, we might be

interested in the two extreme cases of the trivial and discrete partitions, where, as we state in Th.7.1 both

semantics coincide.

Theorem 7.1: When 2 multi-trace semantics coincide

We have that:

σ|{L} = σ©{L} and σ|Ľ = σ©Ľ

Proof. Using Lem.7.3 and Lem.7.4 to eliminate the operators related to weak sequencing. And then using

Lem.7.5 and Lem.7.6.

On Fig.7.5, we illustrate the relationships between the trace semantics σ, the projection function projC

and the two multi-trace semantics σ|C and σ©C . Let us recall that σ and σ©C are both homomorphisms i.e.

210 CHAPTER 7. MULTI-TRACE SEMANTICS

IΩ,

 ∅, a ∈ AΩ,
alt, strict, seq, par
loopS , loopH , loopW , loopP

P(TΩ),

{ε}, {a},
∪, ; , ;×× , ||,
;∗, ;�××∗, ;××∗, ||∗

P(TΩ|C),

{εC}, {a

→
�C εC},

∪, ;©C , ××©C , ©C ,
;©C∗, ××©�

C∗, ××©C∗, ©C∗

σ
σ|C = projC ◦ σ

projC

σ©C

Figure 7.5: Algebraic and projective multi-trace semantics: the diagram commutes if C = {L} or C = Ľ

they preserve algebraic structures. However, projC and hence σ|C do not in the general case of any partition

C. In the particular case of the trivial partition C = {L} and the discrete partition C = Ľ however, projC
is homomorphic, allowing us to have σ|C = σ©C (as per Th.7.1) which translates into having the diagram

from Fig.7.5 being commutative.

7.4 Prefixes and slices of multi-traces

During the process of recording the multi-trace, the observation of what occurs on each co-localization starts

at a given time, which may not be exactly the same for each co-localization, and ends at a given time, which

may also differ according to the co-localization. As a result, it may be so, that on different co-localizations,

the observation starts and ends at different times. Moreover the span of time during which the observation

occurs may not necessarily include the span of time during which observable events occur on a given co-

localization. In practice those issues may arise due to the lack of a strict synchronization mechanism between

local testers.

In any case, the occurrence of some events may not be recorded as a result. Indeed:

• if the observation starts too late on a given co-localization, some events occurring at the beginning of

the execution on the corresponding sub-systems may not have been recorded

• if the observation ends too early on a given co-localization, some events occurring at the end of the

execution on the corresponding sub-systems may not have been recorded

This notion of "partial" or "degraded" observation is illustrated on Fig.7.6 which represents different

possible recordings of the same execution of a certain distributed system. In the context of this example, we

have Ω = (L,M) with L = {l1, l2, l3} and M = {m1,m2,m3,m4}. We consider an execution of a distributed

system constituted of the three sub-systems represented by lifelines l1, l2 and l3. Lifelines l2 and l3 are

grouped in the same co-localization and therefore events occurring on them can be reordered. As a result,

the recorded multi-traces are expressed as elements of TΩ|C with C = ({l1}, {l2, l3}).

In the right of Fig.7.6, four different recordings (as multi-traces) of the same execution of the example

distributed system are illustrated. Those four examples are as follows:

7.4. PREFIXES AND SLICES OF MULTI-TRACES 211

Figure 7.6: Recording multi-traces in different conditions of observability

• In ideal conditions, the full execution of the system is recorded, with no events missing. This is

represented by the multi-trace at the top of Fig.7.6. On each of the two co-localization, three events

were recorded.

• As explained earlier, it may be so that the observation or the recording of events may cease too early

on any given co-localization. An example of such a case is given on the second multi-trace from the

top in the right of Fig.7.6. We can see that the same execution of the distributed system have been

observed but that two events have been missed at the end of the component trace corresponding to the

co-localization {l2, l3}. The omission of those two events correspond to an early cessation of observation

on the corresponding component.

• The third example from the top, in the right of Fig.7.6 corresponds to a case in which the same

execution has been observed but the observation has begun too late on the component corresponding

to lifeline l1. Here, one event, at the beginning of the l1 component has been missed.

• The bottom example of a multi-trace in the right of Fig.7.6 corresponds to a case in which we had both

an early cessation of observation on component {l2, l3} and a late start of observation on component

{l1}.

We can characterize the multi-traces obtained from recordings under degraded observability with regards

to the multi-trace recorded under a full observability. This characterization consists in describing partially

observed multi-traces as prefixes (in the sens of multi-traces) or slices of the fully observed multi-trace.

Let us at first introduce some preliminaries on the notion of prefixes, applied to globally defined traces.

212 CHAPTER 7. MULTI-TRACE SEMANTICS

7.4.1 Prefixes of global traces

The notion of prefix is tied to the existence of a concatenation law. In the case of global traces, the

concatenation law is "." and we define prefixes as is classically done in Def.7.14.

Definition 7.14: Prefixes of traces

For any traces t, t1 and t2 from TΩ such that t = t1.t2 we may say that:

• t1 is a prefix of µ

• t2 is a suffix of µ

Given a set T ⊆ TΩ of traces, we may denote by T the prefix-closure of T i.e. the set:

T = {t1 ∈ TΩ | ∃ t2 ∈ TΩ, s.t. t1.t2 ∈ T}

We can remark that for any trace t both ε and t are simultaneously prefixes and suffixes of t. Also, for

any set T of traces, we may say that T is prefix-closed if T = T

7.4.2 Prefixes and slices of multi-traces

In the same manner we can define prefixes in the case of multi-traces given that we have defined a concate-

nation law �C on multi-traces of TΩ|C defined up to a certain partition C of lifelines.

By analogy with Def.7.14, we define in Def.7.15 the notions of prefixes and slices of multi-traces.

Definition 7.15: Prefixes and slices of multi-traces

For any multi-traces µ, µ1, µ2 and µ3 such that µ = µ1 � µ2 � µ3 we may say that:

• µ1 is a prefix of µ

• µ2 is a slice of µ

• µ3 is a suffix of µ

We can remark that, for any multi-trace µ:

• εC is simultaneously a prefix, a slice and a suffix of µ

• µ is simultaneously a prefix, a slice and a suffix of µ

We then define in Def.7.16 the notions of the prefix-closure and slice-closure of sets of multi-traces. For

any set T of multi-traces, the prefix-closure of T , denoted by T is the minimal set of multi-traces that

contains all the prefixes of all the multi-traces from T . Likewise, the slice-closure of T , denoted by T is the

minimal set of multi-traces that contains all the slices of all the multi-traces from T .

7.4. PREFIXES AND SLICES OF MULTI-TRACES 213

Definition 7.16: Prefix and slice closure

Given a set T ⊂ TΩ|C of multi-traces, we may denote by:

• T the prefix-closure of T i.e. the set

T = {µ1 ∈ TΩ|C | ∃ µ2 ∈ TΩ|C , st µ1 � µ2 ∈ T}

• T the slice-closure of T i.e. the set

T = {µ2 ∈ TΩ|C | ∃ µ1, µ3 ∈ TΩ|C , st µ1 � µ2 � µ3 ∈ T}

For any set T of multi-traces, we may then say that:

• T is prefix-closed if T = T

• T is slice-closed if T = T

Some interesting properties of the previously defined notions of prefix-closure and slice-closure are given

in Lem.7.10. Those properties are the idempotency of both closures, the fact that prefix-closure, when

applied on a slice-closed set, is the identity, and, the fact that for any set of trace T , T is included in its

prefix-closure which is itself a subset of its slice-closure.

Lemma 7.10: Properties of prefix-closure and slice-closure

For any T ⊂ TΩ|C :

T = T idempotency of prefix-closure

T = T idempotency of slice-closure

if T ′ = T then T ′ = T ′ slice-closed sets are prefix-closed

if T ′ = T then T ′ = T slice-closure of prefix-closure is slice-closure

T ⊆ T ⊆ T

Proof. Trivial.

7.4.3 Semantics of prefixes and slices of accepted multi-traces

Now that we have defined prefixes and slices of multi-traces, we can expand the semantics of interaction

terms to include prefixes and/or slices of accepted multi-traces. We will also define an intermediate semantics

which is that of the projections of prefixes of accepted global traces.

214 CHAPTER 7. MULTI-TRACE SEMANTICS

Definition 7.17: Semantics of interaction with degraded observability

For any interaction i ∈ IΩ:

• σ†|C : IΩ → P(TΩ|C) is s.t. σ†|C(i) = {projC(t) | t ∈ σ(i)}

• σ|C : IΩ → P(TΩ|C) is s.t. σ|C(i) = σ|C(i)

• σ©C : IΩ → P(TΩ|C) is s.t. σ©C(i) = σ©C(i)

• and σ|C : IΩ → P(TΩ|C) is s.t. σ|C(i) = σ|C(i)

While σ|C is a semantics of fully observed multi-traces, σ†|C , σ|C and σ|C describe varying degrees of

partial observations. With σ†|C , events that are expected to occur, globally, at the end of accepted behaviors

might be missing. With σ|C , missing events might be those at the end of some local behaviors even though

they may not be at the end of the behavior globally. Finally, σ|C describe a more general case of partial

observation in which events might be missing either at the beginning or the end of any local behavior.

We of course have that, for any interaction i ∈ IΩ:

σ|C(i) ⊆ σ†|C(i) ⊆ σ|C(i) ⊆ σ|C(i)

In the second part of the thesis, we will detail analysis methods that allow one to identify and discriminate

between elements of those new semantics.

Conclusion

In this chapter we have defined the notion of multi-traces. A multi-trace can be described as a distributed

observation of a global trace, in which events occurring on different localization are not ordered. Concretely,

a multi-trace takes the form of a finite set of locally defined traces, each of which corresponding to a local

behavior. As a result, a multi-trace describes a global behavior as a set of locally observed behaviors. The

set of sets of multi-traces can be fitted with algebraic operators so as to constitute a F-algebra similarly as

the set of sets of traces was in Chap.4. Multi-traces can also be obtained by projecting global traces. The

projection operator displays some interesting properties, which we have described and proved. It is notable

that it preserves some algebraic structures but not all. Then, we described various notions of prefixes of

multi-traces which in fact correspond to partial observations, as we will see in the following chapter.

In this chapter, we also extended the notion of what is the semantics of interactions by defining various

semantics in terms of accepted multi-traces and various prefixes of accepted multi-traces.

With this chapter we end the first part of the thesis which consisted in the definition of the Interaction

Language (IL), from syntax to semantics.

In the second part of the thesis we will be interested in defining various algorithms to solve the membership

7.4. PREFIXES AND SLICES OF MULTI-TRACES 215

problem i.e. determining whether or not a multi-trace belongs to a certain semantics. Because those

algorithms consist in analyzing multi-traces against interaction models we may call them multi-trace analysis

algorithms.

216 CHAPTER 7. MULTI-TRACE SEMANTICS

Part II

Multi-trace analysis

217

Chapter 8

On observing and analyzing

executions of distributed systems

During the execution of a Distributed System (DS), information may enter or exit any given sub-system

when it communicates either with some other sub-systems or with an external actor. We may assume that

we can observe this exchange of information on the interfaces of sub-systems. We may also assume that

this exchange of information, on each such interface, takes the form of a sequence of discrete communication

events. Any sub-system then yields a sequence of such events that were successively observed during the

execution of the system. As a result, each sub-system yields a locally defined sequence of events, and, after

having collected those:

• if it is possible to reorder events globally, for instance, if a global clock is shared within the DS, then

all the observed events can be recomposed as a global sequence in which events appear in the order in

which they occurred globally during the execution.

• in the case where no two sub-system share a common clock, we cannot reorder events at all.

• a third possibility is that some (at least two) of the sub-systems of the DS share a common clock. In

that case those sub-systems form a co-localization and we can partially reorder events.

Let us then assume that we may transpose those communications events into actions, as defined in

Chap.4. This entails abstracting sub-systems into lifelines and abstracting exchanged information into

messages. Then, in all three of the cases described above, we can synthesize the observation of the execution

of the DS as a multi-trace that is defined up to a certain partition of lifelines. In the first case, it is the

trivial partition, in the second, the discrete partition, and in the third, any other partition.

As we have seen in the first part of the thesis, interaction models can be used to specify the behaviors of

DSs in terms of which scenarios of communications may be expressed during an execution. More precisely,

any such individual behavior corresponds to a multi-trace in the projected multi-trace semantics of the

interaction model.

219

220CHAPTER 8. ON OBSERVING AND ANALYZING EXECUTIONS OF DISTRIBUTED SYSTEMS

As a result, we can relate multi-traces collected from observations of concrete executions of a DS to

multi-traces specified by interaction models. In particular we might be interested in checking whether or not

a multi-trace observed on a DS belongs to a certain semantics of an interaction which is intended to specify

the behavior of that same DS.

We illustrate this process of "checking", which we may call multi-trace analysis on Fig.8.1. On the top

right is represented a concrete implementation of a DS (here with three sub-systems, each represented by a

lifeline). An execution of that DS yields (through observation, collection, and transposition) the multi-trace

represented underneath it. We then analyze this multi-trace against a specification of the DS written in

the form of an interaction model. The analysis may yield a certain verdict, which may not necessarily be a

binary verdict.

Figure 8.1: Analysing an observation of a DS execution against an interaction

We have seen that, in intention, behaviors specified by interaction models correspond to the projected

multi-trace semantics σ|C . Therefore, a first try at defining such an analysis process would be to check the

membership of the multi-trace to the semantics σ|C of the specifying interaction model.

However, it might be so that the execution of the DS from which the multi-trace is collected is only

partially observed. This results in having some missing events in the multi-trace. On each co-localization,

the observation can either start too late or end too early or both. As a result, the multi-trace resulting from

this partial observation of the execution can be a prefix or a slice of an accepted multi-trace.

If we assume full observation then we should check the inclusion into σ|C . In cases where we may suppose

a degraded observation then the execution might still be that of a specified behavior even though the multi-

trace that was collected is not in the σ|C semantics. In that case we may rather consider the σ†|C , σ|C or

σ|C semantics depending on what it is that we want to check and what are our hypotheses concerning the

8.1. RECOGNIZING ACCEPTED MULTI-TRACES 221

observation.

This problem of "belonging to a semantics" may be called the "membership problem". What we have

described above is an application of that problem for a very particular case of testing the conformance of an

implementation against a formal specification.

In this second part of the thesis we address the general problem of solving the membership problem for

the various multi-trace semantics which we have defined in Chap.7. Let us remark that the membership

problem for global traces is included in the latter given that we can equate global traces to multi-traces

defined on a trivial partition of lifelines.

In this chapter we informally discuss how we can use the operational formulation of the trace semantics

of interaction to recognize accepted multi-traces under various condition of full or partial observation. At

the same time it may help in the understanding of partial observation and of the various notions of prefixes

(and their distinctness) which we have defined.

The plan of this chapter is as follows:

• in Sec.8.1 we explain how the operational semantics defined in Chap.5 can be used to recognize accepted

multi-traces,

• in Sec.8.2 we explain how we can characterize projections of prefixes of accepted global traces opera-

tionally,

• in Sec.8.3 we characterize prefixes in the sense of multi-traces and illustrate how they are not included

in the previous notion of projections of prefixes,

• finally, in Sec.8.4 we provide an operational characterization of slices of multi-traces.

8.1 Recognizing accepted multi-traces

Let us consider the example from Fig.8.2. On the top left we have a globally defined trace ς which exactly

corresponds to a given execution of a certain Distributed System (DS). With ς = l1!m1.l2?m1.l2!m2.l1?m2,

it describe the successive occurrence (globally ordered) of four events. On the top of Fig.8.2, we have an

interaction model i = seq(loopH(· · ·), · · ·) which serves as a formal specification of that DS. Then, on the

top right of Fig.8.2, we have a multi-trace µ which corresponds to a certain observation of the execution

characterized by ς.

We then analyze this observed multi-trace µ w.r.t. the model i. This multi-trace is defined up to a

partition C = ({l1}, {l2}) in this example (although it could be any partition). In the example on Fig.8.2

the multi-trace corresponds to a full observation of the behavior.

The key principle behind the analysis is to reconstruct a globally defined traces accepted by i that project

onto µ by projC . Constructing such a trace is made possible by taking elementary steps (i, µ) ; (i′, µ′)

such that there exists an action a such that:

222CHAPTER 8. ON OBSERVING AND ANALYZING EXECUTIONS OF DISTRIBUTED SYSTEMS

executed behavior
as a global trace

l1!m1

l2?m1

l2!m2

l1?m2

fully observed multi-trace
µ ∈ σ|C(i)

interaction model

Figure 8.2: Analysing a multi-trace obtained from a full observation of an accepted behavior

• i
a−→ i′ i.e. the execution of an action a allows one to transition from interaction i to interaction i′

• µ = a
→
�C µ′ i.e. a is found at the head of a component θC(a) of µ and µ′ is defined by removing this

action from µ

This means that in any such step (i, µ) ; (i′, µ′) we simultaneously consume an action at the beginning of

a component of the multi-trace µ and execute an instance of that action that is found in the interaction i.

As a result, the analysis may uncover a path in the execution tree of the interaction which allows the

consumption of multi-trace µ. If, at the end of this path, we reach a (ij , εC) in which the remaining interaction

ij can express the empty trace (which can be verified by the termination predicate from Chap.5), then this

guarantees that µ ∈ σ|C(i).

On the bottom part of Fig.8.2, we have represented such a path, which allows the consumption of the

multi-trace µ. Here, the final pair that is reached contains the empty interaction which of course verifies

that ∅ ↓. Therefore we decorate this path with a local verdict Cov (in blue on Fig.8.2) which signifies that

the multi-trace is an accepted multi-trace.

8.2 Recognizing projections of prefixes of accepted traces

Let us now consider the example analysis illustrated on Fig.8.3, which is a variation of the previous example.

We observe here the same behavior of the same distributed system, which is also modelled by the same

interaction term. However, in this example, the observation is degraded. We have indeed missed the

8.3. RECOGNIZING PREFIXES OF ACCEPTED MULTI-TRACES 223

observation of the event which occurred last globally (as illustrated on the top left corner of Fig.8.3).

executed behavior
as a global trace

l1!m1

l2?m1

l2!m2

l1?m2

unobserved

partially observed multi-trace
µ ∈ σ†|C(i) \ σ|C(i)

interaction model

Figure 8.3: Analysis when the observation of an accepted behavior has ceased too early globally

As a result, the multi-trace that we analyze is partially observed. In this precise example, this multi-trace

µ is in σ†|C(i) \ σ|C(i) meaning that it is the projection (as a multi-trace) of a strict prefix of an accepted

(global) trace but it is not itself an accepted multi-trace.

Elements of this set σ†|C(i) \ σ|C(i) can be identified as illustrated on the bottom part of Fig.8.3. It

suffices to find a path in the execution tree of the interaction which allows the consumption µ while reaching

a (ij , εC) in which the remaining interaction cannot express the empty trace i.e. that we have ij 6↓. On

Fig.8.3 we decorated this path with a local verdict Short in cyan.

Finding such a path guarantees that µ ∈ σ†|C(i) although it does not guarantees that µ 6∈ σ|C(i) because

there may be some other paths that consume µ while reaching an interaction that terminates (i.e. we may

also be able to reach a Cov local verdict).

So as to guarantee that µ ∈ σ†|C(i) \ σ|C(i) one would have to ascertain that at least one path leads to

Short and that no path leads to Cov.

8.3 Recognizing prefixes of accepted multi-traces

Let us now consider the example analysis illustrated on Fig.8.4, which, in the same manner, is also a

variation of our example. Here, we also have a degraded observation but this degradation is somewhat

different. Indeed, as illustrated on the top left corner of Fig.8.4 it is the l2!m2 event which observation has

been missed. This event is not the last to have occurred globally but it is the last to have occurred on the

224CHAPTER 8. ON OBSERVING AND ANALYZING EXECUTIONS OF DISTRIBUTED SYSTEMS

co-localization {l2}. This may for instance be due to the local tester on co-localization {l2} having ceased

its observation too early.

The multi-trace µ that we analyze is therefore partially observed but in this case, µ is in σ|C(i) \ σ†|C(i).

Indeed, it is a prefix (in the sense of multi-traces) of an accepted multi-trace but it is not the projection of

a prefix (in the sense of traces) of an accepted trace.

Elements of this set σ|C(i) \ σ†|C(i) can be identified as illustrated on the bottom part of Fig.8.4. This

process of identification is similar to the ones we have described previously i.e. it relies on the simultaneous

consumption of events from the multi-trace and their execution in the interaction model. However, once a

component trace of the multi-trace has been entirely consumed, we allow the execution of some events on the

corresponding co-localization so as to simulate the behavior of the unobserved lifelines. Those simulation

steps can be used to fill-in the place left by events missing (because not observed) from the multi-trace

during the exploration of the tree.

executed behavior
as a global trace

l1!m1

l2?m1

l2!m2

l1?m2

unobserved

partially observed multi-trace
µ ∈ σ|C(i) \ σ†|C(i)

interaction model

Figure 8.4: Analysis when the observation of an accepted behavior has ceased too early locally

Let us use the following notations to describe the example from Fig.8.4. We denote by (i0, µ0) the first

vertex at the top left of the bottom part of Fig.8.4. We then have:

(i0, µ0) ; (i1, µ1) ; (i2, µ2) ; (i3, µ3) ; (∅, εC) ;MultiPref

In this precise example, we can see that we manage to reach the (i2, µ2) vertex in which we have a

multi-trace in which only l1?m2 remains. From this vertex we can see that it is not possible to consume

the remaining event. However, the component trace on co-localization {l2} has been entirely emptied. This

8.4. RECOGNIZING SLICES OF ACCEPTED MULTI-TRACES 225

means that observation have ceased on l2, and, as a result, we may simulate its behavior. This allows us

to execute action l2!m2 at position 2 which is the action that has not been observed (see top left corner of

Fig.8.4).

Executing this action via simulation allows us to resume the consumption of the multi-trace. We then

manage to reach the (∅, εC) vertex in which the multi-trace is empty and the remaining interaction can

express the empty trace. Given that we memorized that we needed some simulation steps to explore this

path, we decorate this path not with a Cov local verdict, but with a dedicated MultiPref local verdict.

Finding such a path guarantees that µ ∈ σ|C(i) although it does not guarantees that µ 6∈ σ†|C(i) because

there may be some other paths that may reach some other local verdicts (Cov or Short).

So as to guarantee that µ ∈ σ|C(i) \ σ†|C(i) one would have to ascertain that at least one path leads to

MultiPref and that no path leads to either Cov or Short.

8.4 Recognizing slices of accepted multi-traces

Let us now consider our final example analysis illustrated on Fig.8.5. This time, events have been missed

both at the end and at the beginning of some trace component of the multi-trace. Indeed, as illustrated on

the top left corner of Fig.8.5 two events are missing:

• l1!m1 at the beginning of component µ|{l1}

• l2!m2 at the end of component µ|{l2}

In that case, we have both a local tester which ceased its observation too early (the one on co-localization

{l2}) and another local tester which started its observation too late (the one on co-localization {l1}).

The multi-trace µ that we analyze is therefore partially observed with µ ∈ σ|C(i) \ σ|C(i). Indeed, it

is a slice (in the sense of multi-traces) of an accepted multi-trace but it is not a prefix (in the sense of

multi-traces) of an accepted multi-trace.

Elements of this set σ|C(i) \ σ|C(i) can be identified as illustrated on the bottom part of Fig.8.5. This

process of identification allows simulation steps both:

• after the entire consumption of any given trace component (as in the previous case)

• and before one has started consuming any event from a certain trace component

As in the previous case, those simulation steps can be used to fill-in the place left by events missing

(unobserved) from the multi-trace during the exploration of the tree.

Let us use the same notations as before for describing the path described in Fig.8.5 i.e. we denote by

(i0, µ0) the first vertex at the top left and we have (i0, µ0) ; (i1, µ1) ; (i2, µ2) ; (i3, µ3) ; (∅, εC) ; Slice

At the start of the analysis, from the (i0, µ0) vertex, we can see that we cannot consume any event.

Indeed frontier actions consists in l1!m1 and l2!m2 which are neither of the head actions of the multi-trace.

226CHAPTER 8. ON OBSERVING AND ANALYZING EXECUTIONS OF DISTRIBUTED SYSTEMS

executed behavior
as a global trace

l1!m1

l2?m1

l2!m2

l1?m2

unobserved

partially observed multi-trace
µ ∈ σ|C(i) \ σ|C(i)

interaction model

Figure 8.5: Analysis when observation has both started too late and ceased too early

However, given that we have not started the consumption on any of the two components, we allow simulation

steps to be taken. Those simulation steps will act as a preliminary for the consumption of the multi-trace.

In the path described on Fig.8.5 we have chosen to simulate the execution of action l1!m1 at position

11. We can then see that this unlocked the further consumption of the multi-trace by allowing l2?m1 to be

consumed.

Then, another simulation step is taken, this time as a postamble to the consumption of the component

on {l2}. This use of simulation step is the same as in the previous example.

Finally, we then manage to reach the (∅, εC) vertex in which the multi-trace is empty and the remaining

interaction can express the empty trace. Given that we memorized that we needed some simulation steps

both before and after the consumption of some trace components, we decorate this path with a dedicated

Slice local verdict.

Finding such a path guarantees that µ ∈ σ|C(i) although it does not guarantees that µ 6∈ σ|C(i) because

there may be some other paths that may reach some other local verdicts (Cov or Short or MultiPref).

So as to guarantee that µ ∈ σ|C(i) \ σ|C(i) one would have to ascertain that at least one path leads to

Slice and that no path leads to either Cov or Short or MultiPref .

Conclusion

In this chapter we have introduced the problematic of analyzing multi-traces against interaction models and

proposed a solution in the form of analysis algorithms which key principle is to successively consume actions

8.4. RECOGNIZING SLICES OF ACCEPTED MULTI-TRACES 227

from the multi-trace while executing them on the interaction model. We have also indirectly characterized

the various notions of prefixes which we defined in Chap.7. While in Chap.7 we have define those notions

of prefixes from an algebraic perspective i.e. as closures of sets, we provided in this chapter, an operational

characterization of their nature, with some events (corresponding to atomic small-steps) not being observed

during the execution. We have also provided a first sketch of a solution to recognize multi-traces that were

observed under conditions of degraded observability. This sketch of solution relies on replacing missing events

by simulation steps in which we explore what could have been expressed by the sub-systems that were not

observed.

In this second part of the thesis we will define various algorithms so as to solve the membership problem

for the various semantics which we have defined in Chap.7.

228CHAPTER 8. ON OBSERVING AND ANALYZING EXECUTIONS OF DISTRIBUTED SYSTEMS

Chapter 9

Algorithm for recognizing accepted

multi-traces

Contents
9.1 Definition of the algorithm . 230

9.1.1 Presentation of the rules for exploring the analysis graph 232

9.1.2 Formal Definition of the analysis process . 236

9.2 Proof of correctness of the multi-trace analysis algorithm 238

9.3 Complexity class of the multi-trace analysis problem 240

9.3.1 The 1-in-3-SAT problem . 241

9.3.2 Reduction on a particular instance of the 1-in-3-SAT problem 242

9.3.3 Generalization for any 1-in-3-SAT problem . 245

229

230 CHAPTER 9. ALGORITHM FOR RECOGNIZING ACCEPTED MULTI-TRACES

In this chapter we are interested in solving the membership problem for the σ|C semantics of accepted

multi-traces. We define an algorithm which includes and extends those that we have proposed in our

published papers [93, 94].

In [93] and [94], we respectively addressed global trace analysis and multi-trace analysis on the discrete

partition.

In this chapter, we generalize the solutions from [93, 94] by providing an algorithm for recognizing

accepted multi-traces defined up to any partition C ∈ Part(L). For any multi-trace µ ∈ TΩ|C and for any

interaction i ∈ IΩ, this algorithm is able to determine (in NP time at worst) whether or not µ ∈ σ|C(i).

The plan of this chapter is as follows:

• in Sec.9.1 we define the algorithm,

• in Sec.9.2 we prove the correctness of the algorithm i.e. that it solves the membership problem for the

σ|C semantics,

• in Sec.9.3 we discuss the complexity class of the underlying problem.

9.1 Definition of the algorithm

We define a process able to decide whether or not a multi-trace µ (defined up to a partition C) is accepted by

an interaction i. We have seen in Chap.8 that such a process can be defined through the use of transitions

(i, µ) ; (i′, µ′) which correspond to consuming an action at the head of a component of the multi-trace

while executing it in the interaction model.

Starting from an initial vertex (i0, µ0), this allows us to navigate in a graph that is quite similar to the

execution tree of i0 (as seen in Chap.6) but, instead of having nodes that host interaction terms, the vertices

of this graph host tuples that are composed of both an interaction term and a multi-trace i.e. objects of

the form (i, µ). This graph is called the analysis graph. We propose an abstract illustration of such a graph

Fig.9.1. An analysis graph that contains a vertex (i0, µ0) then contains a refinement of the execution tree of

i0. Indeed, we only allow a subset of the transitions i a−→ i′ enabled by the execution relation → which are

those in which the executed action a matches a certain head of a certain component of the multi-trace µ.

Via the exploration of this analysis graph, we will uncover paths that lead towards one of two local

verdicts which are Cov (for "covered") and UnCov (for "uncovered"), as illustrated on Fig.9.1. The existence

of a path towards Cov means that the multi-trace to analyze is accepted and as a result we may return a

Pass global verdict. The absence of any path towards Cov means that the multi-trace to analyze is not

accepted and as a result we may return a Fail global verdict.

Local verdicts are eventually reached by repeating steps of the form (i, µ) ; (i′, µ′) which we have

described. Indeed, by doing so, we will eventually:

• either empty-out the multi-trace µ, by having removed all of its events one by one. In this case we will

have identified a path of execution within the execution tree of the original interaction which allows

9.1. DEFINITION OF THE ALGORITHM 231

i0 µ0

i1 µ1

i11 µ11

i2 µ2

UnCov

Cov

ij µj

j matches

· · ·

i1cov µ
1
cov

· · · · · ·
i2cov µ

2
cov

· · ·
· · · · · ·

ircov µ
r
cov

r = |µ0|

� rule R1

� rule R2 or R4

� rule R3

Figure 9.1: Principle of multi-trace analysis

the consumption of the multi-trace. Then:

– if the remaining interaction can express the empty trace, we can conclude that the multi-trace

is accepted via the formulation of a Cov local verdict, which decorates the path leading to that

vertex (as illustrated in the bottom of Fig.9.1)

– if the remaining interaction cannot express the empty trace, then it means that the multi-trace

cannot be consumed in the manner described by the path leading to that vertex. From the point

of view of that last vertex, the empty behavior cannot be expressed so the empty multi-trace is

not an accepted multi-trace. As a result, we decorate this path with an UnCov local verdict (as

illustrated on the right of Fig.9.1)

• or be in a situation in which we cannot match any executable action in i with any head action from

components of µ. In that case, we assign a local verdict UnCov to the path leading to the vertex in

which no matches have been found. As for the previous case, this UnCov local verdict signifies that

the multi-trace cannot be consumed in this manner. From the point of view of the last vertex in the

path, the remaining multi-trace does not characterize any behavior that is accepted by the remaining

interaction.

Given that a multi-trace has a finite number of actions, and that there may be only a finite number

of matches between frontier actions of an interaction and a head action of a multi-trace, an analysis graph

constructed in this manner is a finite graph.

As a result of the two last points, for any vertex (i, µ) there exists a finite number of outgoing paths,

all of them are finite, and all such paths can be prolonged so as to eventually reach a local verdict Cov or

UnCov. Hence, there exists at least one path between any (i, µ) and either Cov or UnCov, and, reciprocally,

either Cov or UnCov are reachable from any vertex (i, µ).

As explained previously, this allows us to define a global verdict for the analysis of the initial multi-trace

µ0 w.r.t. the initial interaction i0. If there exists a path leading to Cov, the global verdict is Pass given that

232 CHAPTER 9. ALGORITHM FOR RECOGNIZING ACCEPTED MULTI-TRACES

there exists a manner to reorder all the events from multi-trace µ0 into a global trace t0 ∈ σ(i0) accepted

by i0 and therefore µ0 = projC(t0) ∈ σ|C(i0). If no such path exists then the global verdict is Fail.

Detailed description of Fig.9.1

Let us consider the illustration on Fig.9.1. Starting from vertex (i0, µ0), a number of paths can be explored.

From (i0, µ0), there exists j outgoing transitions to other vertices, j being the number of matches between

immediately executable actions (frontier actions) of i0 and actions at the heads of components from µ.

Exploration steps (which are not represented but implicitly designated by · · · in Fig.9.1) are then repeated

for every one of those children. Ultimately, every path that is thus created leads back to one of the two local

verdicts UnCov or Cov (given the decreasing size of the multi-trace).

Paths starting from (i0, µ0) may have different lengths and different outcomes. This is explained by the

fact that the graph explores how some executions of i0 might (or might not) cover the behavior expressed

by the multi-trace µ0. It may be so that there exists several executions of i0 that match µ0. At the same

time there might exists some that do not, and the fact that they do not match µ0 can be made clear after

an arbitrary number (bounded by the length of µ0) of small-steps.

With regard to Cov, the fact that several paths might lead to it may be explained by the fact that several

global traces can be projected into the same multi-trace (as explained in Chap.7). Therefore, when trying

to reorder µ0 into a global trace that satisfies i0, we can find several of those.

In the example illustrated in Fig.9.1, there exists (at least one) such path (i0, µ0) ; (i1cov, µ1
cov) ; · · ·;

(ircov, µrcov) that leads to Cov. Given that obtaining Cov requires to empty the initial multi-trace µ0 we have

that:

• the final remaining multi-trace is the empty multi-trace i.e. µrcov = εC

• the length of the path (within the analysis graph) r is equal to that of the multi-trace |µ0| (in number

of actions)

The existence of this path then implies that the global verdict Pass will be returned.

Let us also remark that all paths leading to Cov are of the same length (that of the initial multi-trace:

|µ0|). However paths leading to UnCov are of any length smaller or equal to |µ0|.

The process which allows the exploration of the analysis graph and the discovery of paths leading to local

verdicts can be described by a set of four rules denoted by R1 through R4. On Fig.9.1, we have illustrated

the application of those rules via differently colored arrows between the vertices of the graph (see the legend

on the bottom-left corner). In the following section we define those four rules and detail their applications

on some examples.

9.1.1 Presentation of the rules for exploring the analysis graph

In the previous section we have briefly explained the principle behind the multi-trace analysis algorithm.

We will now detail each rule on which it is based.

9.1. DEFINITION OF THE ALGORITHM 233

Rule R3 for the consumption of events from the multi-trace

Let us start by describing rule R3 on an example. The application of the rule on that example is illustrated on

Fig.9.2. For this example, we consider a signature Ω = (L,M) with L = {l1, l2, l3}, M = {m1,m2,m3,m4}

and the discrete partition Ľ = ({l})l∈L.

We start the analysis on a vertex (the left-most vertex) that contains both an initial interaction i0 =

seq(loopH(· · ·), par(· · ·)) and an initial multi-trace µ0 such that µ|{l1} = l1!m1, µ|{l2} = l2?m1.l2!m2 and

µ|{l3} = l3?m2. The analysis is then that of µ0 (the multi-trace to analyze) with regards to i0 (the interaction

which serves as a specification).

The first step in the analysis is to determine the frontier of the interaction i0. In that case, we have three

frontier actions:

• two instances of l1!m1 at positions 111 and 21

• and one instance of l3!m4 at position 221

Then, for each frontier action, we look for matching actions on the heads of the components of the multi-

trace. Here, both instances of l1!m1 match the first action of component µ|{l1} of the multi-trace. However,

l3!m4 has no match in the multi-trace.

Applying rule R3 then consists in consuming in the multi-trace an event that is at the head of a component

while executing an instance of that action in the interaction. Here we have two matches and hence we have

two possible applications of rule R3, which opens-up two branches in the analysis graph. In the newly created

vertices, we have a follow-up interaction resulting from the execution of a specific action and a multi-trace

in which this action has been removed.

frontier

applying R3 simultaneous consumption
and execution

of matching events

matching
head events
removed from
multi-trace

match

Figure 9.2: Example of application for rule R3

234 CHAPTER 9. ALGORITHM FOR RECOGNIZING ACCEPTED MULTI-TRACES

Rule R3 can be formalized as follows; for any interaction i and any multi-trace µ over a partition C of L:

i a
→
�C µ(R3) i

a−→ i′i′ µ

Every application of rule R3 reduces the size of the multi-trace by 1. As a result, repeating the application

of rule R3 can eventually yield to either emptying the multi-trace or being in the impossibility to apply R3

anymore.

• What happens in the first case is then specified by either rule R1 or rule R2 that we will introduce in

the following.

• The second case corresponds to the case in which the multi-trace µ is not empty but we cannot find

any matches between frontier actions and the heads of trace components of µ. What happens then is

dictated by rule R4.

Rule R4 when it is impossible to consume any event

As explained before, rule R4 specifies what happens during the analysis when the multi-trace is not empty

and it is not possible to consume any event from it. Let us continue on the previous example by selecting one

of the explored branches. We have represented this branch of the analysis graph on Fig.9.3. As the reader

may have noticed, a previous application of rule R3 yielded a vertex (i, µ) in which we have the interaction

i = strict(l3!m4, l1?m4) and a multi-trace µ defined over the discrete partition of L = {l1, l2, l3}.

The frontier of i contains a single instance of l3!m4 at position 1. However, on the component µ|{l3}

of the multi-trace we have µ|{l3} = l3?m2. As a result, in the remaining multi-trace to analyse there is no

match for this action.

Given that there is no match at all, we can apply rule R4, which allows the transition (i, µ) ; UnCov,

where UnCov is a local verdict (signifying that the multi-trace cannot be consumed in this manner). From

the point of view of the (i, µ) vertex, the remaining multi-trace does not characterize any behavior that is

accepted by the remaining interaction.

Rule R4 can be formalized as follows; for any interaction i and any multi-trace µ over a partition C of L:

i µ(R4)

 (µ 6= εC)

∧(6 ∃ i a−→ i′ s.t. µ = a
→
�C µ′)UnCov

Rules R1 & R2 when the multi-trace has been emptied

Finally, the two last rules, rules R1 and R2 dictate what happens once the multi-trace has been emptied. Let

us consider the example on Fig.9.4 in which a previous application of rule R3 has yielded two new vertices

in which the multi-trace has been emptied.

In this example, we have L = {l1, l2} and C is the discrete partition of L. As can be seen on Fig.9.4, in

both vertices on the right, the multi-trace, defined over two components {l1} and {l2}, is empty.

9.1. DEFINITION OF THE ALGORITHM 235

frontier

applying R4

no match

Figure 9.3: Example of application for rule R4

In the top-right vertex, the remaining interaction i can express the empty behavior. This can be statically

inferred from its term structure using the termination predicate i ↓ from Chap.5. Here we have a loop which

can be repeated zero times, and an alternative in which one branch is the empty interaction. Given that this

interaction can express the empty trace, we can apply rule R1, which links local verdict Cov to this path

(signifying that the multi-trace characterizes an accepted behavior).

In the bottom-right vertex, the remaining interaction i cannot express the empty behavior i.e. we have

i 6↓. As a result, the empty multi-trace is not accepted at this point. The application of rule R2 links the

UnCov local verdict to the path. The UnCov verdict here has the same meaning as in the case of the

application of rule R4. It signifies that, at this point, the remaining multi-trace is not accepted by the

remaining interaction.

Rules R1 and R2 can be formalized as follows; for any interaction i and any partition C of L:

i εC(R1) i ↓
Cov

i εC(R2) i 6↓
UnCov

i ↓

i 6↓

µ is empty

applying R1

applying R2

Figure 9.4: Example of application for rules R1 and R2

236 CHAPTER 9. ALGORITHM FOR RECOGNIZING ACCEPTED MULTI-TRACES

9.1.2 Formal Definition of the analysis process

As we have seen, the analysis of multi-trace analysis relies on four rules, denoted by R1, R2, R3 and R4.

Those rules define a directed graph G in which vertices are either a tuple (i, µ) ∈ IΩ × TΩ|C or a local

verdict v ∈ {Cov, UnCov}. We note V = {Cov, UnCov} ∪ (IΩ × TΩ|C) the set of all such vertices. For x in

{1, 2, 3, 4}, the rule (Rx) vv′ cond, with v ∈ IΩ × TΩ|C and v′ ∈ V specifies edges of the form v ; v′ of that

graph, provided that v satisfies condition cond.

The formal definition of the graph G and how to construct it is given on Def.9.1.

Definition 9.1: Rules of Multi-Trace Analysis

The analysis relation ;⊆ V× V is defined as:

i εC(R1) i ↓
Cov

i εC(R2) i 6↓
UnCov

i a
→
�C µ(R3) i

a−→ i′i′ µ

i µ(R4)

 (µ 6= εC)

∧(6 ∃ i a−→ i′ s.t. µ = a
→
�C µ′)UnCov

We can remark that vertices of the form (i, µ) are not sinks. Indeed:

• if µ is the empty multi-trace εC , given that we must either have i ↓ or i 6↓, either R1 or R2 applies and

therefore there exists an outgoing edge from any (i, εC)

• if µ 6= εC , one can either have or not have matches between frontier actions and multi-trace component

heads. Hence, an outgoing edge exists according to either rule R3 or rule R4.

As a result, local verdicts {Cov, UnCov} are the only two sinks of graph G.

Rules R1, R2 and R4 specify edges from vertices of the form (i, µ) to local verdicts.

The rule R3 specifies edges (i, µ) ; (i′, µ′) such that there exists an action a that is both:

• immediately executable in i i.e. such that there exists a follow-up interaction i′ s.t. i a−→ i′

• at the head of a component of µ i.e. such that the component on the co-localization θC(a) starts by a

(meaning we have µ|θC(a) = a.t), which also translates into having µ of the form a
→
�C µ′

Then, the vertex that is reached after applying R3 is (i′, µ′) as specified above i.e. such that i′ is a follow-up

in i a−→ i′ and µ′ is such that a
→
�C µ′.

For applying R3, we must consider an action that is immediately executable in i. We have seen in Chap.6

that there is a finite number of such actions and that we can compute them as a "frontier of execution" frt(i).

As a result, for a vertex (i, µ), there are at most |frt(i)| possible applications of the rule R3 with |frt(i)|

bounded by the number of occurrences of actions in i.

Let us then consider |µ| the number of actions occurring in a multi-trace µ, i.e. the sum of lengths of

its component traces. Let us extend this notation to vertices, that is, |(i, µ)| defined as |µ|, and |Cov| and

9.1. DEFINITION OF THE ALGORITHM 237

|UnCov| defined as −1. For any edge v ; v′ of G, we have |v′| < |v| with |v′| ≥ −1. Consequently, the

successive application of the rules strictly decrements the size of vertices and from any vertex (i, µ), any

maximal outgoing path is finite, and terminates in a local verdict in {Cov, UnCov} (since (i, µ) are not sinks

of G). Thus, G is an acyclic graph. With the notation v ∗; v′ to indicate that there is a path from v to v′

in G, we define multi-trace analysis in Def.9.2.

Definition 9.2: Multi-Trace Analysis

For any signature Ω = (L,M) and any partition C ∈ Part(L) of lifelines, we define ωC : IΩ × TΩ|C →

{Pass, Fail} such that for any i ∈ IΩ and µ ∈ TΩ|C we have:

• ωC(i, µ) = Pass iff there exists a path (i, µ) ∗; Cov

• ωC(i, µ) = Fail otherwise;

i.e. for all path (i, µ) ∗; v with v ∈ {Cov, UnCov}, then v = UnCov

The function ωC is well-defined. Indeed, we established that any maximal path from a vertex (i0, µ0) has

a maximum length of |µ|+ 1 and end on a local verdict (Cov or UnCov). Besides, each intermediate vertex

(i, µ) between (i0, µ0) and a local verdict has a number of children bounded by the number of actions of i.

Therefore, the number of vertices reachable from (i0, µ0) is finite

Application on an example

ωC(i, µ) = Pass ωC(i, µ) = Fail

Figure 9.5: Multi-trace analysis on two examples respectively yielding a global Pass and a global Fail

On Fig.9.5 are illustrated two examples of the analysis of a multi-trace. In both examples, we have

a signature Ω = (L,M) with M that includes a certain message m and L = {l1, l2, l3} and we consider

238 CHAPTER 9. ALGORITHM FOR RECOGNIZING ACCEPTED MULTI-TRACES

the discrete partition C of L for the definition of multi-traces (i.e. they have three components on re-

spectively {l1}, {l2} and {l3}. Also, in both examples, the multi-trace is analysed against the interaction

i = alt(strict(l1!m, l2?m), strict(l1!m, l3?m)) i.e. an alternative between the passing of message m either

between lifelines l1 and l2 or between l1 and l3. Then:

• in the first example, on the left of Fig.9.5, the multi-trace µ to analyse is such that µ|{l1} = l1!m,

µ|{l2} = ε and µ|{l1} = l3?m. As a result, we can intuitively guess that it is an accepted multi-trace

which corresponds to the case in which the message m is passed from l1 to l3. The analysis graph

starting from (i, µ) is drawn on the left part of Fig.9.5. As the reader can remark one of the paths

leads to UnCov and the other to Cov. As a result, the analysis yields the Pass global verdict.

• in the second example, on the right of Fig.9.5, the multi-trace µ to analyse is such that µ|{l1} = l1!m,

µ|{l2} = l2?m2 and µ|{l1} = ε. As the reader may have noticed, in the multi-trace, l1 emits m but it

is an unexpected message m2 that is received on l2. The analysis graph starting from (i, µ) is drawn

on the right part of Fig.9.5. In this case, all the paths starting from (i, µ) lead to the UnCov local

verdict. As a result, the analysis yields the Fail global verdict.

Now that we have formally defined our process to analyze multi-trace, we will, in the next section, prove

its correctness with regards to the semantics of interactions.

9.2 Proof of correctness of the multi-trace analysis algorithm

Let us consider a given signature Ω = (L,M) and a given partition C ∈ Part(L) of lifelines.

In the following, we prove that the function ωC in charge of analysing multi-traces defined over C w.r.t.

interactions exactly captures the semantics of interactions. More precisely, we will prove that for any (i, µ)

in IΩ × TΩ|C we have that:

• ωC(i, µ) = Pass iff µ ∈ σ|C(i)

• and by extension, ωC(i, µ) = Fail iff µ 6∈ σ|C(i)

Let us remark that this proof has been machine-checked using the Coq proof assistant in [87] in the case

of the discrete partition as in [94].

Given that σ|C(i) is the set of multi-traces obtained by projecting (with projC) accepted global traces

from σ(i), it then suffices to prove that for any trace ς ∈ TΩ we have ωC(i,projC(ς)) = Pass iff ς ∈ σ(i).

This can be done in two steps. The first step is given by Th.9.1 and states that whenever a global trace

ς is accepted by an interaction i then this means that its projection as a multi-trace must yield Pass when

analysed w.r.t. i.

9.2. PROOF OF CORRECTNESS OF THE MULTI-TRACE ANALYSIS ALGORITHM 239

Theorem 9.1: Accepted implies Pass

For any interaction i ∈ IΩ and any global trace ς ∈ TΩ:

(
ς ∈ σ(i)

)
⇒
(
ωC(i,projC(ς)) = Pass

)

Proof. Let us reason by induction on (the size of) the global trace ς.

• If ς = ε we have an interaction i such that ε ∈ σ(i). As per Lem.5.4, this implies that i ↓. As a result,

if we start an analysis with (i, εC) we can immediately apply rule R1 and we obtain ωC(i, εC) = Pass.

Then, given that projC(ε) = εC the property holds.

• Let us then consider ς of the form a.ς ′. We then denote by µ = projC(ς) and µ′ = projC(ς ′) the

projections and we have, by definition that µ = a
→
�C µ′. The hypothesis is that we have an interaction

i such that a.ς ′ ∈ σ(i). Then:

– As per the operational formulation of the semantics of interactions, this implies the existence of a

follow-up interaction i′ ∈ IΩ such that i a−→ i′ and ς ′ ∈ σ(i′). Also, given that we have µ = a
→
�C µ′,

we can apply rule R3 from the node (i, µ) so that we have (i, µ) ; (i′, µ′).

– Given that |ς ′| < |ς|, we can apply the induction hypothesis (on a strictly smaller global trace)

such that we obtain ωC(i′, µ′) = Pass. This implies the existence of a path (i′, µ′) ∗; Cov in the

analysis graph.

We then observe that (i, µ) ; (i′, µ′) ∗; Cov and hence (i, µ) ∗; Cov and therefore ωC(i, µ) = Pass

The second step is given by Th.9.2 and states that whenever a multi-trace µ yields Pass when analyzed

w.r.t. an interaction i, then this means that it is in fact the projection of a global trace accepted by i.

Theorem 9.2: Pass implies Accepted

For any interaction i ∈ IΩ and any multi-trace µ ∈ TΩ|C :

(
ωC(i, µ) = Pass

)
⇒

∃ ς ∈ TΩ s.t.

 (projC(ς) = µ)

∧ (ς ∈ σ(i))

Proof. Let us reason by induction on the size of multi-trace µ, i.e. on |µ|.

• If |µ| = 0 then µ is the empty multi-trace εC . Let us then consider an interaction i such that ωC(i, εC) =

Pass. Since ωC(i, εC) = Pass given that is is not possible to apply rule R3, the only possible option

to obtain Pass is that rule R1 can apply. This then implies that i ↓. Then, as per Lem.5.4 this implies

that ε ∈ σ(i), and given that projC(ε) = εC , the property holds.

240 CHAPTER 9. ALGORITHM FOR RECOGNIZING ACCEPTED MULTI-TRACES

• Let us then consider µ of size z + 1 i.e. |µ| = z + 1 with z ≥ 0 and let us suppose that the property

holds for any multi-trace of size z.

Let us then consider an interaction i such that ωC(i, µ) = Pass. Since ωC(i, µ) = Pass, there exists

a path (i, µ) ∗; Cov. Also, given that |µ| > 0 we have µ 6= εC therefore rule R1 cannot immediately

apply. The only possibility to have a path towards Cov is that rule R3 applies. This consists in the

existence of an action a, a multi-trace µ′ and an interaction i′ such that i a−→ i′ and µ = a
→
�C µ′ so

that we have a transition (i, µ) ; (i′, µ′) and then (i′, µ′) ∗; Cov.

Given that applying rule R3 involves the consumption of action a in µ, we have |µ′| = |µ| − 1 = z.

Therefore we can apply the induction hypothesis which implies the existence of a global trace ς ′ ∈ TΩ

such that projC(ς ′) = µ′ and ς ′ ∈ σ(i′).

Then, given that we have both i a−→ i′ and ς ′ ∈ σ(i′), by definition, a.ς ′ ∈ σ(i).

Let us then denote ς = a.ς ′.

Then, by definition, we have projC(ς) = projC(a.ς ′) = a
→
�C µ′ = µ.

We have therefore found ς ∈ TΩ such that projC(ς) = µ and ς ∈ σ(i).

The two theorems Th.9.1 and Th.9.2 demonstrate that ωC(i, µ) = Pass characterizes the membership of

a multi-trace µ to σ|C(i).

The computational cost of ωC varies greatly depending on the initial (i, µ) couple. It can be reduced

substantially in certain cases via the use of some heuristics to guide the exploration of the analysis graph

and by stopping the analysis once a Cov local verdict is reached. Another technique which drastically reduce

this cost will be detailed in Chap.10.

However, in the worst cases (and without the technique from Chap.10), the complexity costs remain high.

In the following section we will discuss the complexity class of the underlying problem which is that of the

membership of a multi-trace. We will demonstrate the NP-hardness of this membership problem through a

reduction of the 1-in-3-SAT problem [118]. This discussion is inspired by [26, 60, 50].

9.3 Complexity class of the multi-trace analysis problem

In this section we will prove the NP-hardness of the problem of analysing multi-traces w.r.t. interactions

in the worst case, that is when the partition upon which multi-traces are defined is the discrete partition

C = ({l})l∈L. To do so we will explain a process to reduce instances of a certain Boolean satisfiability

problem, which is known to be NP-complete, into instances of the analysis of a multi-trace against an

interaction.

• in Sec.9.3.1 we present this Boolean satisfiability problem which is called 1-in-3-SAT,

• in Sec.9.3.2 we present the reduction of a particular instance of 1-in-3-SAT into a particular instance

of multi-trace analysis,

9.3. COMPLEXITY CLASS OF THE MULTI-TRACE ANALYSIS PROBLEM 241

• in Sec.9.3.3 we generalize this process for any instance of 1-in-3-SAT and we conclude.

9.3.1 The 1-in-3-SAT problem

Boolean variables and formulae

A Boolean variable is a symbol or placeholder for a Boolean truth value i.e. either true, which we denote by

> or false, which we denote by ⊥. A Boolean expression also called a propositional logic formula or more

simply a formula is an expression that is build inductively:

• from some Boolean variables from a set V of Boolean variables

• and using the following three truth-functional connectives:

– the conjunction AND, denoted by ∧ such that for any formulae φ1 and φ2, φ1∧φ2 is also a formula

– the disjunction OR, denoted by ∨ such that for any formulae φ1 and φ2, φ1 ∨φ2 is also a formula

– the negation NOT, denoted by ¬ such that for any formula φ, ¬φ is also a formula. For any given

variable v ∈ V we may denote by v the negation ¬v of v.

We may call a literal a formula that is reduced to a single variable v ∈ V or its negation v. In the first

case a literal v may be called a positive literal and in the case, a literal v may be called a negative literal.

As a result, the set of variables V is also the set of all positive literals. We may then denote by V the set

{v | v ∈ V } of all negative literals.

Satisfying a Boolean formula

An interpretation of a set of Boolean variables V is a mapping ρ : V → {>,⊥} that assigns a truth value

to each variable. A Boolean satisfiability problem is a problem which consists in finding an interpretation

of some Boolean variables that satisfies some conditions.

For instance, given a set V = {v1, v2} containing two Boolean variables, and given a formula φ = v1 ∧ v2,

finding an interpretation ρ : V → {>,⊥} of the variables, that satisfies φ, which we denote by ρ |= φ consists

in finding values for v1 and v2 such that v1∧v2 equates >. The problem of finding ρ is a Boolean satisfiability

problem. In this example, ρ0 = [v1 → >, v2 → >] is a solution such that ρ |= φ. Given the existence of

ρ0, we say that φ is satisfiable. If such an interpretation (assignement of variables) do not exist, we can say

that φ is unsatisfiable.

The 1-in-3-SAT problem

The 1-in-3-SAT problem [118] is a particular Boolean satisfiability problem in which the formula φ to satisfy

has a particular form and in which the solution interpretation ρ must satisfy some additional properties.

Let us start by introducing some intermediate notions:

242 CHAPTER 9. ALGORITHM FOR RECOGNIZING ACCEPTED MULTI-TRACES

• we call a clause a formula ψ that is a disjunction of literals (or a single literal). This means that a

clause is a formula ψ of the form x1 ∨ · · · ∨ xn with n ∈ N+ and (xj)j∈[1,n] a collection of literals from

V ∪ V

• we say that a formula φ is in Conjunctive Normal Form (or that φ is a CNF formula) if it is a

conjunction of clauses (or a single clause). This means that there exists a family (ψj)j∈[1,n] of n ∈ N+

clauses such that φ = ψ1 ∧ · · · ∧ ψn

• for any integer k ∈ N+, we say that a formula is k-CNF if it is a CNF formula in which each clause

has exactly k literals

The 1-in-3 SAT problem then corresponds to finding an interpretation ρ of V that satisfy a 3-CNF

formula φ and such that for any clause of φ, only one in the three literal is set to > by ρ.

In the following we will use the following notations:

• V = {v1, · · · , vp} meaning we consider p ∈ N+ to be the cardinal of the set V of variables and we index

those variables with [1, p]

• φ = ψ1 ∧ · · · ∧ ψq denotes the 3-CNF formula of the 1-in-3-SAT problem meaning that we consider

q ∈ N+ to be the number of clauses in φ and we index those clauses with [1, q] with, for any j ∈ [1, q]:

– the clause ψj being of the form αj ∨ βj ∨ γj with all three literals in V ∪ V

– and for any given solution ρ of the problem, only one of either ρ(αj), ρ(βj) or ρ(γj) is set to >

Then:

• in Sec.9.3.2 we will detail a reduction of a particular instance of 1-in-3-SAT with p = 4 and q = 2 to

the problem of analysing a particular multi-trace against a particular interaction

• in Sec.9.3.3 we generalize the reduction for any 1-in-3-SAT problem with p ∈ N+ and q ∈ N+

9.3.2 Reduction on a particular instance of the 1-in-3-SAT problem

Let us consider a 1-in-3-SAT problem in the case where p = 4 and q = 2.

From formula φ = ψ1 ∧ ψ2, we define a certain interaction i. Given that q = 2, this interaction will be

defined up to the signature Ω = (L,M) with L = {l1, l2}, with one lifeline per clause, and M = {m}.

This interaction i is then of the form exemplified on Fig.9.6 which is that of a parallelisation of 4

alternatives alt(iv, iv) for any of the p = 4 variables v1, v2, v3 and v4 from V . Those 8 sub-interactions ix

for any of the 8 literals x from V ∪ V are then defined as follows:

• if x occurs in ψ1 and ψ2 then ix = seq(l1!m, l2!m)

• if x occurs in ψ1 but not in ψ2 then ix = l1!m

• if x occurs in ψ2 but not in ψ1 then ix = l2!m

9.3. COMPLEXITY CLASS OF THE MULTI-TRACE ANALYSIS PROBLEM 243

• if x occurs neither in ψ1 nor in ψ2 then ix = ∅

Then, the 1-in-3-SAT problem defined by φ is equivalent to knowing whether or not the multi-trace

µ = (l1!m, l2!m) defined over the discrete partition C = {{l1}, {l2}} of L belongs to the semantics σ|C(i).

Indeed, we can remark the following:

• for each variable vk the choice of ρ(vk) = > or ρ(vk) = ⊥ corresponds to the choice of which alternative

branch to execute in the sub-interactions ik = alt(ivk , ivk), with ivk being chosen if ρ(vk) = > and

ivk being chosen if ρ(vk) = ⊥. The nature of the exclusive alternative constructor alt guarantees that

exactly one branch is chosen in any execution of the interaction. The overall structure of interaction

i then guarantees that all the 4 choices between the ivk or ivk are made in any given full execution of

the interaction.

• for each clause ψj , the component µ|{lj} = lj !m of the multi-trace µ is expressed exactly once in any

given execution of the interaction i iff exactly one of the sub-interactions iαj , iβj or iγj is "chosen"

during the execution of i. Indeed, if none are chosen then nothing is expressed on lifeline lj and if more

than one are chosen then several instances of lj !m are expressed on lj . As a result, the expression of

component µ|{lj} on lifeline lj is equivalent to the satisfaction of clause ψj .

In other words, during the execution of i, given the use of exclusive alternative constructors in alt(iv, iv)

sub-terms, the choice of either one of the alt branch constitutes an assignment of Boolean variable v. The

overall parallel composition then simulates all possible variable assignments (i.e. the search space for ρ).

Then, the satisfaction of φ as the conjunction of clauses ψ1 and ψ2 in 1-in-3-SAT is equivalent to that of

µ = (l1!m, l2!m) ∈ σ|C(i). Indeed, the same ρ must be used to solve both ψ1 and ψ2 and the same global

execution of i must be used to consume both µ|{l1} and µ|{l2} exactly.

On a particular formula

Let us consider the example illustrated on the left of Fig.9.6 which corresponds to an interaction constructed

to reflect a specific formula which is:

φ = ψ1 ∧ ψ2 = (v1 ∨ v2 ∨ v4) ∧ (v1 ∨ v3 ∨ v4)

In the example, with ψ1 = (v1∨v2∨v4), the fact that ρ |= ψ1 with ρ : [v1 → ⊥, v2 → >, v3 → >, v4 → >]

is equivalent to the fact that l1!m is expressed exactly once during the execution of i when iv1 is chosen over

iv1 , iv2 over iv2 , iv3 over iv3 , and iv4 over iv4 .

In the example, φ = (v1 ∨ v2 ∨ v4)∧ (v1 ∨ v3 ∨ v4) is solvable in 1-in-3-SAT by ρ : [v1 → ⊥, v2 → >, v3 →

>, v4 → >]. This is equivalent to the fact that µ = (l1!m, l2!m) is consumed exactly by the execution of i

from Fig.9.6 when iv1 is chosen over iv1 , iv2 over iv2 , iv3 over iv3 , and iv4 over iv4 .

For any such 3-CNF formula φ = ψ1 ∧ ψ2 defined over V = {v1, v2, v3, v4}, the 1-in-3-SAT problem can

therefore be reduced to that of the acceptance of µ = (l1!m, l2!m) w.r.t. a specific interaction i that can be

244 CHAPTER 9. ALGORITHM FOR RECOGNIZING ACCEPTED MULTI-TRACES

iv1

iv1

iv2

iv2

iv3

iv3

iv4

iv4

∅

∅

∅

Instance of the 1-in-3-SAT problem:
I a set V = {v1, v2, v3, v4} of Boolean variables
I two 3-CNF clauses build on V ∪ V :
� C1 = v1 ∨ v2 ∨ v4
� and C2 = v1 ∨ v3 ∨ v4
I one formula φ = C1 ∧ C2
I finding an interpretation ρ : V → {>,⊥} such that:
� ρ |= φ
� only one literal of C1 is >
� only one literal of C2 is >

Polynomial reduction towards multi-trace analysis:
I signature Ω = (L,M) with:
� L = {l1, l2} one lifeline for each clause
� M = {m}
I discrete partition C = {{l1}, {l2}} of L
I multi-trace µ s.t. µ|{l1} = l1!m and µ|{l2} = l2!m
I interaction i = par(i1, par(i2, par(i3, i4))) with:
� 4 sub-interactions ik for each variable vk
� for any k ∈ [1, 4], ik = alt(ivk

, ivk
)

� for any x ∈ V ∪ V :
• ix = seq(l1!m, l2!m) if x appears in both clauses
• ix = l1!m if x only appears in C1
• ix = l2!m if x only appears in C2
• ix = ∅ otherwise

Then ωC(i, µ) = Pass iff there is a solution ρ to the 1-in-3-SAT problem.

Figure 9.6: Reduction of a particular instance of 1-in-3-SAT into a multi-trace analysis problem

9.3. COMPLEXITY CLASS OF THE MULTI-TRACE ANALYSIS PROBLEM 245

inferred in polynomial time from the structure of formula φ.

As explained earlier, this sketch of proof can be extended to include any numbers p and q of resp. variables

and clauses. This will be the object of the following section.

9.3.3 Generalization for any 1-in-3-SAT problem

For practicity, we will use n − ary notations for binary operators f ∈ {strict, seq, par, alt}, with i =

f(i1, · · · , in) designating the folding of f s.t. i = f(i1, f(· · · , f(in−1, in) · · ·)). We now reduce the 1-in-

3-SAT Boolean satisfiability problem to multitrace membership so as to prove the NP-hardness of the latter.

Let us consider a 3-CNF formula φ = ψ1 ∧ · · · ∧ ψq defined over a set V = {v1, · · · , vp} of Boolean

variables. φ being a 3-CNF formula, for any j ∈ [1, q], ψj is a disjunction of 3 literals αj ∨ βj ∨ γj from

V ∪ V .

The 1-in-3 SAT problem consists in finding an interpretation ρ : V → {>,⊥} s.t. for every clause ψj

only one of either αj , βj or γj is set to >.

We will in the following reduce this 1-in-3-SAT problem into a multi-trace analysis problem. This problem

will be defined over a signature Ω = (L,M) with:

• M = {m}

• L = {l1, · · · , lq} with q lifelines, one for each clause

• C = {{l} | l ∈ L} the discrete partition of L

The multi-trace we will consider is µ ∈ TΩ|C such that for any l ∈ L, µ|{l} = l!m.

For any k ∈ [1, p] let us define ik = alt(ivk , ivk) with:

• ivk = seq(i1vk , · · · , i
q
vk

)

• and ivk = seq(i1vk , · · · , i
q
vk

)

• such that for any j ∈ [1, q]:

– if vk occurs in Cj then ijvk = lj !m and else ijvk = ∅

– if vk occurs in Cj then ijvk = lj !m and else ijvk = ∅

Let us then consider i = par(i1, · · · , ip) as illustrated on Fig.9.7. For instance, given ψ1 = v1 ∨ v2 ∨ vp

we have i1v1
= l1!m, i1v1

= ∅, i1v2
= l1!m, i1v2

= ∅, i1vp = l1!m and i1vp = ∅. Likewise, the other emissions of

m drawn in Fig.9.7 correspond to ψ2 = v1 ∨ v2 ∨ vp and ψq = v1 ∨ v2 ∨ vp.

The 1-in-3-SAT problem defined by φ is then equivalent to knowing whether or not µ ∈ σ|C(i).

Indeed, for any component µ|{lj} = lj !m of µ, µ|{lj} is expressed exactly once iff exactly one of the

sub-interactions iαj , iβj or iγj is chosen during the execution of i (choice w.r.t. their respective parent alt

operator). The satisfaction of component µ|{lj} is therefore equivalent to that of clause ψj .

246 CHAPTER 9. ALGORITHM FOR RECOGNIZING ACCEPTED MULTI-TRACES

iv1

iv1

iv2

iv2

••
•

ivp

ivp

•••

Figure 9.7: Principle of reducing 1-in-3-SAT instances into multi-trace analysis problems

For instance, on the example from Fig.9.7, µ|{l1} = l1!m is satisfied iff only one of iv1 , iv2 or ivp is chosen

on their respective alternative branches, which exactly corresponds to the satisfaction of ψ1 = v1 ∨ v2 ∨ vp

in 1-in-3-SAT,

In other words, during the execution of i, given the use of exclusive alternative operators in alt(iv, iv)

sub-terms, the choice of either one of the alt branch constitutes an assignment of Boolean variable v. The

overall parallel composition then simulates all possible variable assignment (i.e. the search space for ρ).

Then, the satisfaction of φ as the conjunction of clauses ψj in 1-in-3-SAT is equivalent to that of µ ∈

σ|C(i), given that the same execution of the model i must satisfy conjointly every component σj .

Given that we have identified a case of multi-trace membership equivalent to a NP-complete problem,

by reduction, multi-trace membership is NP-hard.

Conclusion

In this chapter, we have defined an algorithm for analysing multi-traces (defined up to any partition of the

lifelines into co-localizations) against interaction models. We have proven that this ωC algorithm solves the

membership problem for the semantics of accepted multi-traces σ|C (by projection) of interactions that we

have defined in Chap.7.

We have presented ωC through the use of the operational formulation of the semantics with the execution

relation →. However, results from Chap.6 show that we can use the algorithmicized execution semantics for

the same results. All definitions related to the execution semantics from Chap.6 are structured by induction

on terms and positions, and as such, allow a direct implementation. Similarly, one can implement the ωC

9.3. COMPLEXITY CLASS OF THE MULTI-TRACE ANALYSIS PROBLEM 247

function by building on-the-fly the sub-graph originating from (i, µ) thanks to queues and usual search

heuristics. Moreover, in practice, graph traversals can be interrupted as soon as a Cov verdict is reached.

This resulted in the implementation of ωC (among other features) in the HIBOU tool which we describe in

Chap.12.

In this chapter, we have also proven that the problem of analysing multi-traces (for the discrete partition)

is NP-Hard. However this level of complexity only concerns some worst case scenarios and is not prohibitive

in most cases all the more so that various techniques can be implemented so as to make the process of

analysing multi-traces more efficient. Those techniques include (1) the implementation of some heuristics to

guide the exploration of the analysis tree, (2) the introduction of stopping criteria on the exploration (once

a certain local verdict is reached), (3) the computation of local frontiers to assess whether or not a certain

branch of the analysis tree is worth exploring (and if not then it is not explored), etc. Point (3) will be

addressed in Chap.10 and implementation details will be described in Chap.12.

In the next chapter we introduce the concept of hiding interaction models and some applications of this

hiding operator for the analysis of multi-traces.

248 CHAPTER 9. ALGORITHM FOR RECOGNIZING ACCEPTED MULTI-TRACES

Chapter 10

The hiding of interaction terms &

applications

Contents
10.1 Hiding and elimination . 250

10.1.1 Hiding operator on interactions . 250

10.1.2 Elimination operator on multi-traces . 253

10.1.3 Duality of hiding and elimination . 255

10.2 A multi-trace analysis algorithm using hiding steps 256

10.2.1 Definition of the algorithm . 257

10.2.2 Proof of correctness . 259

10.2.3 Illustrative example . 262

10.3 Local frontiers . 264

10.3.1 Definition . 266

10.3.2 Characterization w.r.t. the multi-trace semantics 267

10.3.3 Application to improve multi-trace analysis . 268

249

250 CHAPTER 10. THE HIDING OF INTERACTION TERMS & APPLICATIONS

In Chap.9, we have described an algorithm for recognizing (exactly) accepted multi-traces and in Chap.8,

we have discussed analyzing multi-traces that were collected from partial observations of executions and

might therefore be prefixes of accepted multi-traces. We concluded that simulation steps could be used to

replace missing events (i.e. events which were not observed) when analyzing multi-traces obtained from

partial observations of executions.

However, in some more extreme cases, large parts of the distributed system may not be observed at all or

some sub-systems may remain unobserved for large periods of time resulting in many events being missed.

In those situations, it is likely that using simulation steps comes with high overhead costs. It is all the more

true when analyzing against interaction models that allow many interleavings or when analyzing incorrect

behavior in which case it does not suffice to find one correct path in the graph G (to ascertain that a behavior

is not accepted we have to make sure no path leads to a positive verdict).

A solution to that problem is to restrict the analysis of the multi-trace to a smaller interaction model.

Instead of using the whole interaction specification, we use a sub-specification that only concerns the sub-

systems that are still observed. This notion of restricting the model to a group of observed sub-systems

corresponds to the definition of a "hiding" operator, which is the object of this chapter.

The structure of this chapter is as follows:

• in Sec.10.1 we define the hiding operator and its counterpart in the world of multi-traces.

• in Sec.10.2 we define an algorithm which solves the membership problem for the σ©
Ľ
semantics which

is the prefix closure of the algebraic multi-trace semantics σ©Ľ (which we have defined in Chap.7). Let

us also recall that, on the discrete partition of lifelines Ľ, this semantics is equivalent to σ|Ľ. As a

result, this algorithm equally recognizes σ|Ľ. The algorithm makes use of hiding steps to erase parts of

the interaction model once observation have ceased on those parts. The correctness of this algorithm

is formally proven i.e. that it indeed recognizes σ©
Ľ

= σ|Ľ.

• finally, in Sec.10.3, going back to the general case of any partition C, we define the concept of local

frontiers and describe how they can be used to improve the previously defined analysis algorithms by

allowing the elimination of some branches of the analysis tree.

10.1 Hiding and elimination

10.1.1 Hiding operator on interactions

Hiding an interaction simply consists in willfully ignoring the existence of some lifelines. Let us at first

consider the example from Fig.10.1. On the left is described a certain interaction i defined up to the

signature Ω = (L,M) where L = {l1, l2, l3} and M = {m1,m2,m3,m4}. On that left column we have, at

the top the diagram representation of interaction i and on the bottom its corresponding syntax tree. In the

middle is represented the hiding of lifeline l2 from interaction i. On the diagram representation it simply

10.1. HIDING AND ELIMINATION 251

consists in masking the area of the diagram describing lifeline l2 and in the syntax, it consists in removing

(i.e. replacing by the empty interaction ∅) all leaf actions occurring on l2 (as represented by the red crosses).

What remains after the application of hiding, is an interaction in which no action occur on the hidden lifeline

(here l2). On the right side of Fig.10.1 is represented the diagram representation of that interaction and a

term which is a simplified version (same class of equivalence as per ≈E from Chap.4) obtained using hiding

with simplification steps (by analogy to the results from Chap.6).

Given Ω = (L,M) , L = {l1, l2, l3), M = {m1, · · · ,m4), hiding lifeline l2

original interaction lifeline to hide is l2 hidden interaction
seq

strict

l3!m1 l1?m1

loopH

seq

strict

l1!m2 l2?m2

alt

strict

l2!m3 l3?m3

strict

l2!m4 l3?m4

seq

strict

l3!m1 l1?m1

loopH

seq

strict

l1!m2 l2?m2

alt

strict

l2!m3 l3?m3

strict

l2!m4 l3?m4

seq

strict

l3!m1 l1?m1

loopH

seq

l1!m2 alt

l3?m3 l3?m4

Figure 10.1: Hiding a single lifeline on an example

We can then extend the notion of hiding in the general case of co-localizations. Indeed, for any given

interaction i and co-localization c we can hide all lifelines in c from i. This process is described on an example

on Fig.10.2. Here, the interaction is defined up to the signature Ω = (L,M) where L = {l1, l2, l3, l4, l5} and

M = {m1,m2,m3,m4,m5,m6}. We then consider that the set of lifelines is partitioned into three co-

localizations c1 = {l1, l2}, c2 = {l3, l4} and c3 = {l5} such that C = {c1, c2, c3} ∈ Part(L). On the left part

of Fig.10.2 is given the initial interaction i and the process of hiding the co-localization c2 = {l3, l4}. On the

right part of Fig.10.2 is given the resulting interaction term after hiding and simplification.

The principle of hiding a co-localization is the same as that of hiding a lifeline. Instead of removing

actions whenever they occur on a given lifeline, we remove them whenever they occur on a lifeline that is

included in a given co-localization.

The process of hiding a lifeline from an interaction enjoys interesting properties. For instance, hiding

commutes i.e. it is the same to hide at first a lifeline l1 and then l2 than the other way around. We will also

see that the semantics of hidden interactions can be characterized. In the following we formalize hiding as

a signature projection.

The reader may have noticed that, whenever we hide a lifeline, the resulting interaction does not contain

any action occurring on that lifeline. As a result, if i ∈ IΩ, with Ω = (L,M), then, given l ∈ L, the

252 CHAPTER 10. THE HIDING OF INTERACTION TERMS & APPLICATIONS

Given Ω = (L,M) , L = {l1, · · · , l5), M = {m1, · · · ,m6), hiding {l3, l4}

co-localization to hide is {l3, l4} hidden interaction
seq

strict

l1!m1 l2?m1

seq

strict

l2!m2 l5?m2

loopH

seq

strict

l1!m3 l3?m3

alt

seq

strict

l3!m4 l4?m4

alt

strict

l4!m5 l5?m5

strict

l4!m6 l5?m6

∅

seq

strict

l1!m1 l2?m1

seq

strict

l2!m2 l5?m2

loopH

seq

l1!m3 alt

l5?m5 alt

l5?m6 ∅

Figure 10.2: Hiding a co-localization on an example

interaction resulting from the hiding of l from i is in IΩ′ with Ω′ = (L′,M) and L′ = L \ {l}.

Therefore, hiding can be described as a projection between IΩ and IΩ′ . For the sake of practicity, in the

following we will fix the set M of messages and we will simply denote by IL interactions defined on (L,M).

Likewise, we extend those notations to actions, traces, and multi-traces.

In Def.10.1 we define hiding as a projection operator.

Definition 10.1: Hiding as a projection operator

For any set L and any h ∈ P(L) we define: hideh : IL → IL\h the function s.t. for any i ∈ IL:

• hideh(i) = match i with

| ∅ → ∅

| a ∈ AΩ →

 a if θ(a) 6∈ h

∅ if θ(a) ∈ h

| f(i1, i2) → f(hideh(i1),hideh(i2)) for f ∈ {strict, seq, alt, par}

| loopk(i1) → loopk(hideh(i1)) for k ∈ {S,H,W,P}

10.1. HIDING AND ELIMINATION 253

10.1.2 Elimination operator on multi-traces

We can remark that the hiding operator in the algebra of interaction terms is the dual of a certain operator

in the algebra of sets of multi-traces. This operator consists of the elimination of a trace component. We

define it in Def.10.2.

Definition 10.2: Elimination as a projection operator

For any set L, any partition C ∈ Part(L) and any h ∈ C we define: elimh : TL|C → IL\h|C\{h} the

function s.t. for any µ ∈ IL|C :

elimh(µ) = (µ|c)c∈C\{h}

We extend it to sets of multi-traces elimh : P(TL|C)→ P(IL\h|C\{h}) s.t. for any T ∈ P(IL|C):

elimh(T) = {elimh(µ) | µ ∈ T}

The function elimh is well defined given that C \ {h} is indeed a partition of L \ h.

In fact, the elimination operator elimh erases the trace component µ|h from µ. In order to simplify the

notations from that point onwards, for any h ∈ C, we will simply denote by L′ the set L \ h and by C ′ the

set C \ {h} so that the signature of elimh is elimh : P(TL|C)→ P(TL′|C′).

elimh preserves the algebraic structures between the F-algebras AC and AC′ . In the following, in the

same manner as what we did in Chap.7 for the projection operator projC , we will explain how algebraic

structures are preserved.

Lemma 10.1: Elimination preserves sequencing & interleaving

For any multi-traces µ1 and µ2 from TL|C :

elimh(µ1 ;© Cµ2) = elimh(µ1) ;© C′elimh(µ2)

elimh(µ1 ××© Cµ2) = elimh(µ1) ××© C′elimh(µ2)

elimh(µ1© Cµ2) = elimh(µ1)© C′elimh(µ2)

And hence, for any sets of multi-traces T1 and T2 from P(TL|C):

elimh(T1 ;© CT2) = elimh(T1) ;© C′elimh(T2)

elimh(T1 ××© CT2) = elimh(T1) ××© C′elimh(T2)

elimh(T1© CT2) = elimh(T1)© C′elimh(T2)

Proof. Let us consider multi-traces µ1 and µ2. We then have:

254 CHAPTER 10. THE HIDING OF INTERACTION TERMS & APPLICATIONS

elimh(µ1 ;© Cµ2) = elimh((µ1|c;µ2|c)c∈C)

= (µ1|c;µ2|c)c∈C′

= elimh(µ1) ;© C′elimh(µ2)

elimh(µ1 ××© Cµ2) = elimh((µ1|c;×× µ2|c)c∈C)

= (µ1|c;×× µ2|c)c∈C′

= elimh(µ1) ××© C′elimh(µ2)

elimh(µ1© Cµ2) = elimh((µ1|c||µ2|c)c∈C)

= (µ1|c||µ2|c)c∈C′

= elimh(µ1)© C′elimh(µ2)

Given that the algebraic structures of strict and weak sequencing and interleaving are preserved by the

elimination operator, it comes that repetitions of those structures with their Kleene and Head-First closures

are also preserved by the elimination operator. We state this in Lem.10.2.

Lemma 10.2: Elimination preserves K-closures and weak HF-closure

For any set of multi-traces T from P(TL|C):

elimh(T ;©C∗) = elimh(T) ;©C′∗ elimh(T ××©�
C∗) = elimh(T)××©�

C′∗

elimh(T ××©C∗) = elimh(T)××©C′∗ elimh(T©C∗) = elimh(T)©C′∗

Proof. Implied by Lem.10.1

As a result, the elimination operator preserves all the algebraic structures that are defined in the F-

algebra AC of sets of multi-traces up to partition C.

A last interesting property on elim is its relationship w.r.t. the multi-trace prefix closure. We state this

property in Lem.10.3.

Lemma 10.3: Elimination and prefix closure

For any multi-trace µ ∈ TΩ|C , any set of multi-traces T ∈ P(TΩ|C) and any co-localization h ∈ C:

 (elimh(µ) ∈ elimh(T))

∧ (µ|h = ε)

⇒ (µ ∈ T)

Proof. If elimh(µ) ∈ elimh(T) this means that (µc)c∈C\{h} ∈ elimh(T). Then, there must exist a trace

component t ∈ TΩ|h such that a multi-trace µ0 ∈ T verifies ∀ c ∈ C \ {h}, µ0|c = µ|c and µ0|h = t.

Let us then consider the multi-trace µ1 such that ∀ c ∈ C \ {h}, µ1|c = ε and µ1|h = t. We then have,

10.1. HIDING AND ELIMINATION 255

because µ|h = ε, that µ0 = µ �C µ1 and hence µ is a prefix (in the sense of multi-traces) of µ0 ∈ T .

Therefore µ ∈ T .

10.1.3 Duality of hiding and elimination

In Chap.7, we have seen that σ©C is a homomorphism between the algebra of interaction terms (IL,F) and

the algebra of sets of multi-traces AC = (P(TL|C),FAC). This holds for any L and C and therefore it also

holds for L′ and C ′ with the notations from this chapter.

In this chapter, we have introduced the elimh operator. We have seen that elimh preserves the algebraic

structures of the algebra of sets of multi-traces AC into AC′ . Therefore it is a homomorphism between AC

and AC′ .

We have also introduced the hideh operator. This operator trivially preserves the algebraic structures

of (IL,F) into (IL′ ,F). It suffices to consider its inductive definition in which the operation symbols from

F of arity n > 0 are always left untouched. As a result, it is a homomorphism between (IL,F) and (IL′ ,F).

Theorem 10.1: Characterizing the multi-trace semantics of hidden interactions

For any interaction i ∈ IL and any h ∈ C:

σ©C′(hideh(i)) = elimh(σ©C(i))

Proof. Let us reason by induction on the structure of interaction terms:

• σ©C′(hideh(∅)) = σ©C′(∅) = {εC′} = elimh({εC}) = elimh(σ©C(∅))

• for any a ∈ AL we have:

– if θ(a) ∈ h:
σ©C′(hideh(a)) = σ©C′(∅)

= {εC′}

= elimh({εC})

= elimh({a
→
�C εC})

= elimh(σ©C(a))

– if θ(a) 6∈ h:
σ©C′(hideh(a)) = σ©C′(a)

= {a
→
�C′ εC′}

= elimh({a
→
�C εC})

= elimh(σ©C(a))

256 CHAPTER 10. THE HIDING OF INTERACTION TERMS & APPLICATIONS

• for any interactions i1 and i2 and any (f, �©) ∈ {(strict, ;©), (seq, ××©), (par,©), (alt,∪)}:

σ©C′(hideh(f(i1, i2))) = σ©C′(f(hideh(i1),hideh(i2)))

= σ©C′(hideh(i1)) �© C′ σ© C′(hideh(i2))

= elimh(σ©C(i1)) �© C′elimh(σ©C(i2)) per induction hypothesis

= elimh(σ©C(i1) �© C σ© C(i2))

= elimh(σ©C(f(i1, i2)))

• for any interaction i and any (k, �©) ∈ {(S, ;©), (H, ××©�), (W, ××©), (P,©)}:

σ©C′(hideh(loopk(i))) = σ©C′(loopk(hideh(i)))

= σ©C′(hideh(i)) �©C′∗

= elimh(σ©C(i)) �©C′∗ per induction hypothesis

= elimh(σ©C(i) �©C∗)

= elimh(σ©C(loopk(i)))

IL,

 ∅, a ∈ AL,
alt, strict, seq, par
loopS , loopH , loopW , loopP

 IL′ ,

 ∅, a if θ(a)∈h else ∅,
alt, strict, seq, par
loopS , loopH , loopW , loopP

P(TL|C),

{εC}, {a

→
�C εC},

∪, ;©C , ××©C , ©C ,
;©C∗, ××©�

C∗, ××©C∗, ©C∗

P(TL′|C′),

{εC′}, {a

→
�C′ εC′ if θ(a)∈h else εC′},

∪, ;©C′ , ××©C′ , ©C′ ,
;©C′∗, ××©�

C′∗, ××©C′∗, ©C′∗

σ©C σ©C′

hideh

elimh

All four arrows are homomorphisms (preserve algebraic structures) and the diagram commutes.

Figure 10.3: Duality of hiding & elimination and relation w.r.t. the algebraic multi-trace semantics

We illustrate the relationships between the four homomorphisms elimh, σ©C , hideh and σ©C′ on Fig.10.3.

The result from Th.10.1 implies that the diagram drawn on Fig.10.3 commutes.

10.2 A multi-trace analysis algorithm using hiding steps

In this section we define a multi-trace analysis algorithm so as to recognize elements of σ|Ľ(i) for any

interaction term i. The presentation of this algorithm is similar to the simpler algorithm which we have

detailed in Chap.9.

10.2. A MULTI-TRACE ANALYSIS ALGORITHM USING HIDING STEPS 257

10.2.1 Definition of the algorithm

In the following we will denote by L the infinite universe of lifelines such that for any set of lifelines L, we

have L ⊂ L. We then denote by IL the universe of interaction terms and by T|Ľ =
⋃
L⊂L TL|Ľ the universe

of multi-traces defined up to the discrete partition of any set L of lifelines.

The new algorithm also relies on four rules, denoted by Rp (for "pass"), Rh (for "hide"), Re (for "execute")

and Rf (for "fail"). Those rules define a directed graph G in which vertices are either a tuple (i, µ) ∈ IL×T|Ľ

or an local verdict v ∈ {Obs,Out}. We note V = {Obs,Out} ∪ (IL × T|Ľ) the set of all such vertices.

The formal definition of the graph G and how to construct it is given on Def.10.3.

Definition 10.3: Rules of Multi-Prefix Analysis

The analysis relation ;⊆ V× V is defined as:

i εĽ(Rp)
Obs

i µ(Rh) (µ|{l} = ε) ∧ (|Ľ| > 1)hide{l}(i) elim{l}(µ)

i a
→
�Ľ µ(Re) i

a−→ i′i′ µ

i µ(Rf)

 (6 ∃ l ∈ L s.t. µ|{l} = ε)

∧(6 ∃ i a−→ i′ s.t. µ = a
→
�Ľ µ′)

Out

We can remark that vertices of the form (i, µ) are not sinks. Indeed:

• if µ is the empty multi-trace εĽ then Rp can apply and there exists an outgoing edge from (i, εĽ)

• if µ 6= εĽ:

– if a component µ|{l} of µ is empty then rule Rh can apply and there exists an outgoing edge from

(i, µ)

– if there is a match between a frontier action and the head of a component of the multi-trace then

rule Re can apply and there exists an outgoing edge from (i, µ)

– if neither condition holds then rule Rf can apply and there exists an outgoing edge from (i, µ)

As a result, local verdicts {Obs,Out} are the only two sinks of graph G.

Rules Ro and Rf specify edges from vertices of the form (i, µ) to local verdicts.

The rule Re behaves identically as the rule R3 of the algorithm from Chap.9.

The rule Rh specifies edges (i, µ) ; (i′, µ′) such that, given the existence of a lifeline l ∈ L on which µ

is empty i.e. such that µ|{l} = ε, we have i′ = hide{l}(i) and µ′ = elim{l}(µ).

258 CHAPTER 10. THE HIDING OF INTERACTION TERMS & APPLICATIONS

Definition 10.4: A measure for the vertices of the graph

For any vertex v ∈ G we define its measure |v| as a tuple of integers such that:

• if v ∈ {Obs,Out} then |v| = (−1,−1)

• if v = (i, µ) then, given the smallest L such that i ∈ IL and µ ∈ TL|Ľ, we have |v| = (|µ|, |L|)

with |µ| being the length (in number of actions) of the multi-trace µ (as in Chap.9) and |L| being

the cardinal of L

For any transition (i, µ) ; (i′, µ′) in the graph G, we have that |(i′, µ′)| < |(i, µ)| (in lexicographic order).

Indeed, given |(i, µ)| = (x, y) we have:

• either |(i′, µ′)| = (x− 1, y) if Re applies for the transition (i, µ) ; (i′, µ′)

• or |(i′, µ′)| = (x, y − 1) if Rh applies for the transition (i, µ) ; (i′, µ′)

Using those notations, each application of Re decreases x by 1. If x reaches 0, there are no more actions in

the multi-trace and hence µ = εĽ and rule Rp applies. Likewise, each application of Rh decreases y by 1. y

cannot reach 0 because once it reaches 1 rule Rh cannot be applied anymore (by definition).

As a result, any outgoing path from a node (i, µ) is finite because there can only be a finite number of

applications of Re and Rh before ultimately reaching either of Obs or Out, both of which are sinks.

Moreover, for any vertex (i, µ) there exists a finite number of outgoing transitions that is bound by

|frt(i)|+ |L| given that:

• there cannot be more than |frt(i)| different applications of Re because there cannot be more matches

than the cardinal of the frontier of execution frt(i)

• there cannot be more than |L| different applications of Rh because there cannot be more than |L|

empty trace components on µ

From the two last points, we can conclude that, from any given vertex (i, µ) there is only a finite sub-

graph of G that is reachable. Also, as in Chap.9, G is an acyclic graph. Then, similarly as in Chap.9 we

define the verdict of multi-trace analysis in Def.10.5.

Definition 10.5: Multi-Prefix Analysis

For any L ⊂ L, we define ω©L : IL × TL|Ľ → {Pass, Fail} such that for any i ∈ IL and µ ∈ TL|Ľ we

have:

• ω©L(i, µ) = Pass iff there exists a path (i, µ) ∗; Obs

• ω©L(i, µ) = Fail otherwise;

i.e. for all path (i, µ) ∗; v with v ∈ {Obs,Out}, then v = Out

10.2. A MULTI-TRACE ANALYSIS ALGORITHM USING HIDING STEPS 259

In the following section, we prove the correctness of this algorithm, i.e. that it exactly recognize all the

elements of σĽ(i). In other words that we have, for any i ∈ IL and µ ∈ TL|Ľ:

(ω©L(i, µ) = Pass)⇔ (µ ∈ σ|Ľ(i))

10.2.2 Proof of correctness

At first, we need to prove a property of confluence of the graph G that is explored during the analysis. This

property, given in Lem.10.4 states that if, from a given node (i, µ), we can reach Obs by any given means,

then, if we can also apply rule Rh so that (i, µ) ; (hide{l}(i), elim{l}(µ)) for any lifeline l, then we can also

reach Obs from (hide{l}(i), elim{l}(µ)). This is indeed a property of confluence given that it states that we

may take another path, in which we might as well hide lifeline l, so as to reach Obs.

Lemma 10.4: A confluence property for the analysis graph

For any interaction i ∈ IL, any action a ∈ AL, any multi-trace µ ∈ TL|Ľ and any lifeline l we have that:

(i, µ) ∗; Obs (i, µ) ; (hide{l}(i), elim{l}(µ))

(hide{l}(i), elim{l}(µ)) ∗; Obs

Proof. Let us reason by induction on the measure |(i, µ)| = (x, y):

• If x = 0 then µ = εĽ and:

– if y = 1 the premise do not hold because we cannot apply Rh

– if y > 1 we have that (i, εĽ) ; (hide{l}(i), εĽ′) and we can immediately apply rule Rp so that

the conclusion holds

• If y = 1 the premise do not hold

• If y = 2, let us note L = {l, l′}. Then, if (i, µ) ∗; Obs, we may have as a first transition in the path:

– either an application of Re and in that case there exists a, i′ and µ′ s.t. µ = a
→
�Ľ µ′ and i

a−→ i′

and we have (i, µ) ; (i′, µ′) ∗; Obs. Then:

∗ on the one hand we can apply the induction hypothesis on (i′, µ′) because we have that

(i′, µ′) ; (hide{l}(i′), elim{l}(µ′)) trivially still holds. Then we can conclude that we have

(hide{l}(i′), elim{l}(µ′))
∗; Obs

∗ on the other hand, given µ = a
→
�Ľ µ′, we must have l 6= θ(a) for the hypothesis (i, µ) ;

(hide{l}(i), elim{l}(µ)) to hold. Therefore if a is executable in i then it is also executable

in hide{l}(i) and we have hide{l}(i)
a−→ hide{l}(i′) because hide{l} is a homomorphism and

hence preserves the algebraic structures of the Interaction Language. Also, we have that

elim{l}(µ) = elim{l}(a
→
�Ľ µ′) = a

→
�Ľ′ elim{l}(µ′). This then implies that we can apply Re

from (hide{l}(i), elim{l}(µ)) so that (hide{l}(i), elim{l}(µ)) ; (hide{l}(i′), elim{l}(µ′))

260 CHAPTER 10. THE HIDING OF INTERACTION TERMS & APPLICATIONS

The two points above allow to conclude that (hide{l}(i), elim{l}(µ)) ∗; Obs

– or an application of Rh. Given that there are only two lifelines l and l′ we have either that:

∗ it is l that is hidden and hence we have (i, µ) ; (hide{l}(i), elim{l}(µ)) ∗; Obs and we can

immediately conclude

∗ or it is l′ that is hidden. Then we can remark that the fact that we have both (i, µ) ;

(hide{l′}(i), elim{l′}(µ)) and (i, µ) ; (hide{l}(i), elim{l}(µ)) imply that µ = εĽ and hence

we can apply Rp from (hide{l}(i), elim{l}(µ)) so that the conclusion holds

• If x > 1 and y > 2 and we have (i, µ) ∗; Obs then we may have as a first transition in the path:

– either an application of Re and in that case we can reason in the same way as previously

– or an application of Rh and in that case there exists a lifeline l′ ∈ L such that we have (i, µ) ;

(hide{l′}(i), elim{l′}(µ)) ∗; Obs and then:

∗ if l′ = l we can immediately conclude

∗ if l′ 6= l then we can remark that:

· firstly (hide{l′}(i), elim{l′}(µ)) ; (hide{l}(hide{l′}(i)), elim{l}(elim{l′}(µ))) and, given

that we have decremented the measure by applying a first time Rh, we can apply the

induction hypothesis so that (hide{l}(hide{l′}(i)), elim{l}(elim{l′}(µ))) ∗; Obs

· secondly we can remark that

hide{l}(hide{l′}(i)) = hide{l′}(hide{l}(i))

and elim{l}(elim{l′}(µ)) = elim{l′}(elim{l}(µ))

· finally we have:

(hide{l}(i), elim{l}(µ)) ; (hide{l′}(hide{l}(i)), elim{l′}(elim{l}(µ)))

= (hide{l}(hide{l′}(i)), elim{l}(elim{l′}(µ)))
∗; Obs

and hence the property holds

Theorem 10.2: Correctness of multi-prefix analysis via hiding

For any interaction i ∈ IL and any multi-trace µ ∈ TL|Ľ:

(
µ ∈ σ|Ľ(i)

)
⇔
(

ω©L(i, µ) = Pass

)

Proof. Let us reason by induction on the measure |(i, µ)| = (x, y).

10.2. A MULTI-TRACE ANALYSIS ALGORITHM USING HIDING STEPS 261

• If x = 0 then µ = εĽ and hence we have both ω©L(i, µ) = Pass because rule Rp immediately applies

and µ ∈ σ|Ľ(i) because the empty multi-trace εĽ is in the prefix closure of any non-empty set of

multi-traces.

• If y = 1 then there is a single co-localization i.e. a single lifeline that is still observed. Then:

– either µ = εĽ and we are in the same case as the one above

– or µ 6= εĽ. Let us then use notations from Chap.5 and use t instead of µ. t 6= ε implies that there

exists an action a s.t. t = a.t′. Then:

⇒ if a.t′ ∈ σ(i) it is a prefix of an accepted trace. Let us then consider t+ such that a.t′.t+ ∈ σ(i).

This implies that there exists i′ s.t. i a−→ i′ and t′.t+ ∈ σ(i′) and hence t′ ∈ σ(i′) by prefix-

closure. Given that |(i′, t′)| < |(i, t)| we can apply the induction hypothesis. We then obtain

that (i′, t′) ∗; Obs which implies (i, t) ; (i′, t′) ∗; Obs and therefore ω©L(i, µ) = Pass

⇐ if ω©L(i, µ) = Pass then there exists a path (i, a.t′) ∗; Obs. Given that we cannot apply

Rh because there is only a single co-localization, we must be able to apply Re. Hence there

exists i′ s.t. i a−→ i′ and (i, a.t′) ; (i′, t′) ∗; Obs. Then, given that |(i′, t′)| < |(i, t)| we can

apply the induction hypothesis. We then obtain that t′ ∈ σ(i′). This implies the existence

of t+ s.t. t′.t+ ∈ σ(i′), then, given that i a−→ i′ this implies that a.t′.t+ ∈ σ(i) and hence, by

prefix-closure that a.t′ ∈ σ(i)

• Let us then consider x > 0 and y > 1. Then:

– If there exists a lifeline l s.t. µ|{l} = ε then we can apply rule Rh and we have (i, µ) ;

(hide{l}(i), elim{l}(µ)) and then:

⇒ if µ ∈ σ|L(i) = σ©L(i) then, as per Fig.10.3 we have elim{l}(µ) ∈ σ|L′(hide{l}(i)) (with L′ =

L\{l}). Given that we have decremented the measure, we can apply the induction hypothesis

which implies that (hide{l}(i), elim{l}(µ)) ∗; Obs. Then, by transitivity (i, µ) ∗; Obs and

hence ω©L(i, µ) = Pass

⇐ if ω©C(i, µ) = Pass we have a path (i, µ) ∗; Obs then we can apply Lem.10.4 to obtain

that (hide{l}(i), elim{l}(µ)) ∗; Obs and we can then apply the induction hypothesis so

that elim{l}(µ) ∈ σ|L′(hide{l}(i)) = σ©L′(hide{l}(i)) = elim{l}(σ©L(i)). Then, given that

µ|{l} = ε, we can apply Lem.10.3 to conclude that µ ∈ σ©L(i) = σ©L(i) = σ|L(i)

– If there are no lifeline l s.t. µ|{l} = ε then:

⇒ if µ ∈ σ|L(i), then there exists µ+ s.t. µ�Ľ µ+ ∈ σ|Ľ(i). Then, because µ�Ľ µ+ 6= εĽ, as per

Lem.7.8 there exists a, i′ and µ′ s.t. µ�Ľ µ+ = a
→
�Ľ µ′∗ and i

a−→ i′ and µ′∗ ∈ σ|Ľ(i′). Then,

because, there is no empty trace component on µ action a must be taken from µ and not

from µ+. Therefore there exists µ′ and µ′+ such that µ = a
→
�Ľ µ′ and µ�Ľ µ+ = a

→
�Ľ µ′∗ =

(a
→
�Ľ µ′)�Ľ µ′+ and therefore µ′ �Ľ µ′+ = µ′∗ ∈ σ|Ľ(i′). Hence µ′ ∈ σ|Ľ(i′) = σ|L(i′). Then:

262 CHAPTER 10. THE HIDING OF INTERACTION TERMS & APPLICATIONS

· on the one hand we can apply the induction hypothesis on i′ and µ′ so that we have

(i′, µ′) ∗; Obs

· on the other hand, the fact that i a−→ i′ and µ = a
→
�Ľ µ′ allows us to apply rule Re so

that we have (i, µ) ; (i′, µ′)

From the two last points we conclude by transitivity that (i, µ) ∗; Obs and hence the property

holds.

⇐ if ω©L(i, µ) = Pass we have a path (i, µ) ∗; Obs given that we cannot apply rule Rh, the

only possible first transition in this path is an application of rule Re i.e. there must exists a,

i′ and µ′ s.t. i a−→ i′ and µ = a
→
�Ľ µ′ and (i, µ) ; (i′, µ′) ∗; Obs. Then:

· on the one hand we can apply the induction hypothesis on i′ and µ′ so that we have

µ′ ∈ σ|Ľ(i′) which implies the existence of µ′+ such that µ′ �Ľ µ′+ ∈ σ|Ľ(i′)

· on the other hand the fact that i a−→ i′ and µ′�Ľ µ′+ ∈ σ|Ľ(i′), as per Lem.7.8 this implies

that a
→
�Ľ (µ′ �Ľ µ′+) ∈ σ|C(i). In particular, this implies that µ = a

→
�Ľ µ′ ∈ σ|Ľ(i)

We have therefore defined an algorithm which solves the membership problem for σ|Ľ.

10.2.3 Illustrative example

Let us consider the example given on Fig.10.4. In this example, we consider Ω = (L,M) with L = {l1, l2, l3}

and M = {m1,m2,m3} and we analyze a multi-trace µ such that µ|{l1} = l1!m1.l1?m3, µ|{l2} = ε and

µ|{l3} = l3?m2 against an interaction i = seq(loopH(· · ·), · · ·).

In fact, this multi-trace µ is such that µ �Ľ µ+ ∈ σ©Ľ(i) with µ+ such that µ+|{l1} = ε, µ+|{l2} =

l2?m1.l2!m2.l2!m3 and µ+|{l3} = ε. And, as a result, µ ∈ σ|Ľ(i).

In other words, the execution which observation corresponds to µ corresponds to a behavior that is indeed

specified by the interaction, with one instanciation of the loopH . However, the observation of that execution

has only been partial, given that nothing was observed on lifeline l2. As a result, the collected multi-trace is

a prefix (in the sense of multi-traces) of an accepted multi-trace. It is not however the projection of a prefix

of an accepted trace given that the events that are missing do not occur at the end of the globally reordered

behavior.

In Fig.10.4 we represent the use of two algorithms to recognize that µ ∈ σ|Ľ(i). On the left, an algorithm

with simulation steps, which we have informally described in Chap.8. And, on the right, the ω©L algorithm

with hiding steps which we have formally defined.

The algorithm based on simulation steps, which application is represented on the left of Fig.10.4, recon-

stitutes the entire global trace which projects onto µ�Ľ µ+. When events of this trace are in µ, this is done

via steps in which the action is consumed from µ. And, when this is not the case, simulation steps fill-in the

gaps.

10.2. A MULTI-TRACE ANALYSIS ALGORITHM USING HIDING STEPS 263

Figure 10.4: Illustrating the use of the multi-prefix analysis algorithm with hiding

264 CHAPTER 10. THE HIDING OF INTERACTION TERMS & APPLICATIONS

Let us then consider the algorithm based on hiding steps, which application is represented on the right

of Fig.10.4. We can see that similarly to the first, we can, as a first step, consume action l1!m1 with a

normal execution step. From that second vertex we have no match between head actions of the multi-trace

and frontier actions and hence, no action can be consumed. However, we have that the component trace on

lifeline l2 is empty. As a result, we can hide this lifeline on the model. This allows the further consumption

of the multi-trace until the same verdict (as the one from the algorithm with simulation steps) is reached.

By contrast to the algorithm with simulation, the algorithm with hiding takes less steps. In this particular

example it took only 4 steps instead of 6. However, in more complex cases, we argue that the algorithm

with hiding is increasingly more efficient that the one with simulation.

10.3 Local frontiers

Let us now consider the example from Fig.10.5. In this example, the behavior that is analyzed corresponds

to a multi-trace µ that is in the semantics σ†|Ľ(i) of the specifying interaction i. Also, we use an algorithm

which makes use of hiding steps. From the starting vertex at the top of Fig.10.5 we can see that we have two

matches between head actions and frontier actions. Indeed, in the interaction term we have two occurrences

of action l1!m1. As a result, both branches are explored. However, the branch on the left yields Out which

means that it cannot consume the multi-trace. The branch on the right however yields TooShort which

signifies (as we have seen on Chap.8) that the algorithm recognized that µ ∈ σ†|Ľ(i).

In the example analysis represented on Fig.10.5, when there are several matches, the algorithm explores

the paths opened-up by matching frontier actions in the lexicographic order of their respective positions in

i. Also, we use a Depth-First-Search heuristic to explore the graph G. As a result, the branch on the left

of Fig.10.5 is entirely explored before the right branch is. Once we have found TooShort we then decide to

stop the analysis even though there may remain some other branches to explore (in this precise example we

can identify 5 distinct paths to local verdicts).

More generally, depending on heuristics that might be used to explore the graph G and depending on

whether or not we stop the analysis when reaching a certain local verdict, the number of vertices that are

explored during a given analysis may widely vary. Reducing the span of the sub-graph of G that is explored

before concluding the analysis is important because it mechanically reduces the time and memory complexity

of the analysis1.

In the following we propose one such mechanism. It relies on the definition of "local frontiers" which, for

any given co-localization c ∈ C, gathers the actions which may be executed on c the next time an action

is executed on that co-localization c. In other words, by contrast to the frontier of execution which gathers

actions which are immediately executable globally, a local frontier gathers actions which may be executed

next locally.

1of course mechanisms put in place to reduce this span may also incur some costs w.r.t. time and memory

10.3. LOCAL FRONTIERS 265

Figure 10.5: Analysis without checking local frontiers

266 CHAPTER 10. THE HIDING OF INTERACTION TERMS & APPLICATIONS

10.3.1 Definition

For any co-localization c, the local frontier of an interaction i up to c is the frontier of hideL\c(i) where we

have hidden all lifelines not in c. We thus define the "locfrt" function in Def.10.6.

Definition 10.6: Local frontiers

locfrt : IΩ × P(L)→ P({1, 2}∗) is the function s.t. for any i ∈ IΩ and c ∈ P(L):

• locfrt(i, c) = frt(hideL\c(i))

Let us then consider the example on Fig.10.6. On the left of Fig.10.6 is represented an interaction i

defined over 4 lifelines. Let us suppose that c = {l2, l3} constitutes a co-localization. On the right of Fig.10.6

is then represented hideL\c(i) i.e. the interaction i from which we have hidden l1 and l4 which are not in

the co-localization c. We can then compute the frontier of hideL\c(i) in which there are two actions l3?m1

and l3?m2. The local frontier of i w.r.t. co-localization c is therefore composed of those two actions, which

we have also illustrated on the left of Fig.10.6.

frontier frt(i)

local frontier locfrt(i, c)

Figure 10.6: Example showcasing the local frontier on c = {l2, l3}

We can therefore see that local-frontier and frontier are two distinct notions. In the example from Fig.10.6

we can indeed see that frt(i) and locfrt(i, c) do not even intersect. Indeed, aside from its definition, locfrt

is not necessarily related to frt. A characterization which holds however, is that given in Lem.10.5.

Lemma 10.5: A characterization of local frontiers

For any i ∈ IΩ and any c ∈ P(L):

{p ∈ frt(i) | θ(i|p) ∈ c} ⊂ locfrt(i, c)

Proof. It suffices to reason by induction on the structure of interaction terms and use the facts that

locfrt(i, c) = frt(hideL\c(i)) and that hideL\c preserves the structure of terms.

10.3. LOCAL FRONTIERS 267

10.3.2 Characterization w.r.t. the multi-trace semantics

As mentioned earlier, and as illustrated in Fig.10.6, a local frontier gathers actions which can be executed

at the soonest on a certain co-localization. In the example from Fig.10.6 it is indeed not possible to have

any other action than either l3?m1 or l3?m2 being the first action to be executed on c = {l2, l3}.

We can formalize this property of local frontiers in terms of accepted multi-traces. Whenever a multi-

trace µ is accepted by an interaction i, then all its head actions i.e. all the actions a such that µ = a
→
�C µ′,

must be the first action which is executed on the co-localization θC(a) on which it occurs. As a result, we

must have the existence of p ∈ locfrt(i, θC(a)) such that a = i|p. In Lem.10.6, we state this property for

multi-traces that belong to σ©C(i), but, because σ|C(i) ⊂ σ©C(i) as per Lem.7.9, this also holds true for

µ ∈ σ|C(i).

Lemma 10.6: Local frontiers and multi-trace semantics

For any C ∈ Part(L), any i ∈ IΩ, any a ∈ AΩ and any µ′ ∈ TΩ|C :

(a
→
�C µ′ ∈ σ©C(i))⇒ (∃p ∈ locfrt(i, θC(a)), s.t. i|p = a)

Proof. Let us then reason by induction on |C|:

• If |C| = 1 then we are on the trivial partition. Let us then use notations and results pertaining to the

global trace semantics σ. We have a.t′ ∈ σ(i), which implies that there must exist i′ s.t. i a−→ i′ and

hence as per the equivalence of the execution and operational semantics, there must exist p ∈ frt(i)

such that i|p = a (and exe(i, p) = i′). Then, we can conclude using Lem.10.5.

• If |C| > 1, then we have at least two co-localizations. Let us then consider c = θC(a) the co-localization

on which a occurrs and h ∈ C \ {c}. The fact that a
→
�C µ′ ∈ σ©C(i) and θ(a) 6∈ h then implies (as per

Fig.10.3) that a
→
�′C elimh(µ′) ∈ σ©C′(hideh(i)) with C ′ = C \ {h}. Given |C ′| < |C| we can apply the

induction hypothesis so that we obtain p ∈ locfrt(hideh(i), θC(a)) such that (hideh(i))|p = a. This

then implies that p ∈ locfrt(i, θC(a)) with i|p = a because h 6= θC(a) and hence we can conclude

As a direct consequence of Lem.10.6, whenever a multi-trace starts with an action a, if this action is not

in the local frontier of i w.r.t. co-localization θC(a), then it cannot be an accepted multi-trace. This theorem

Th.10.3 motivates the checking of local frontiers whenever we analyze multi-traces.

Theorem 10.3: Checking locfrt as a sufficient condition to stop analyses

For any C ∈ Part(L), any i ∈ IΩ, any a ∈ AΩ and any µ′ ∈ TΩ|C :

(6 ∃p ∈ locfrt(i, θC(a)), s.t. i|p = a)⇒ (a
→
�C µ′ 6∈ σ|C(i))

268 CHAPTER 10. THE HIDING OF INTERACTION TERMS & APPLICATIONS

Proof. This in fact the contraposition of Lem.10.6 when applied to a multi-trace from σ|C(i).

It suffices to remark, as per Lem.7.9 that σ|C(i) ⊂ σ©C(i).

We then define a predicate for "checking local frontiers" in Def.10.7. This predicate can then be used in

the formulation of multi-trace analysis algorithms.

Definition 10.7: Checking of local frontiers

For any C ∈ Part(L), checklocC : IΩ × TΩ|C → {>,⊥} is s.t. for any i ∈ IΩ and µ ∈ TΩ|C :

checklocC(i, µ)⇔ (∀ c ∈ C, µ|c = a.t⇒ ∃ p ∈ locfrt(i, c), i|p = a)

Checking the local frontiers is not however a replacement for checking the frontier. Indeed, we must

still have a rule in the algorithm for indicating failure to consume the multi-trace even in the case where

checklocC(i, µ) = >. This can be illustrated by the example from Fig.10.7 in which we have checklocC(i, µ) =

> because we indeed have that l1?m2 is in the local frontier w.r.t. l1 and l2?m1 is in the local frontier w.r.t.

l2. However, from that vertex (i, µ), it is not possible to consume any action. And the multi-trace is indeed

not accepted and not even a prefix of an accepted multi-trace.

Figure 10.7: Example where checking the local frontiers does not replace checking the frontier

10.3.3 Application to improve multi-trace analysis

Following on the last example analysis from Fig.10.5, we introduce in Fig.10.8 the same analysis but with

an algorithm which includes the checking of local frontiers. We can see that, by contrast to the algorithm

from Fig.10.5 which explored the branch on the left until the Out verdict, the new algorithm, which checks

local frontier, stops as soon as the first vertex of the left branch.

Indeed, in that vertex we have that µ|{l2} = l2!m2 which would imply, if the multi-trace was acceptable,

that l2!m2 would be in the local frontier w.r.t. {l2}. However, we only have l2?m1 in that local frontier.

Therefore the vertex does not satisfies the condition related to Th.10.3. Consequently, we can stop the

analysis of that branch at this point because we know that is cannot yield to a positive result. Hence we

decorate this path with a Dead local verdict on Fig.10.8.

10.3. LOCAL FRONTIERS 269

Figure 10.8: Analysis with the checking of local frontiers

The checking of local frontiers can be used to improve the efficiency of any multi-trace analysis algorithm

of the type which we have described. We can for instance use it to improve ωC from Chap.9 or ω©L from

Sec.10.2. In Chap.8 we have discussed algorithms based on simulation steps. In particular, one can use

simulation steps as a preamble to the consumption of actions from a certain co-localization. The checking

of local frontiers can be adapted to be compatible with those algorithms as well, as we will see in the next

chapter.

Conclusion

In this chapter we have presented the notions of hiding interactions and eliminating co-localizations from

multi-traces. We have shown the duality of those two notions with regards to the algebraic multi-trace

270 CHAPTER 10. THE HIDING OF INTERACTION TERMS & APPLICATIONS

semantics. We then defined two practical uses of those operators. The first one is an algorithm which makes

use of hiding steps to recognize prefixes (in the senses of multi-traces) of accepted multi-traces defined up

to the discrete partition. The second one is a technique to improve the efficiency of any analysis algorithm.

This technique allows one to avoid exploring some paths of the analysis graph that cannot yield a positive

result.

Part III

Extensions & tools

271

Chapter 11

Immediate extensions

Contents
11.1 Algorithms with simulation steps . 274

11.1.1 The issue of termination & loops . 275

11.1.2 Identifying prefixes of accepted multi-traces with simulation 276

11.1.3 Algorithm to discriminate elements of different semantics 279

11.2 Co-regions . 282

11.3 Towards an implementation . 284

273

274 CHAPTER 11. IMMEDIATE EXTENSIONS

In this third and final part of the thesis, we discuss extending and implementing the proven theoretical

results presented in the first two parts. We notably introduce two Formal Verification tools that were

implemented as part of this thesis.

In this chapter we present some additional unproven (by contrast to all that was defined beforehand)

theoretical results and discuss the ease of implementation of tools derived from the results of this thesis.

The plan of this chapter is as follows:

• in Sec.11.1 we present multi-trace analysis algorithms based on the use of simulation steps,

• in Sec.11.2 we present an additional scheduling operator, which, although it can be considered to be

some form of syntactic sugar, is often found in informal Interaction Languages and proves quite useful

in practice,

• finally, in Sec.11.3, we discuss the implementation of theoretical results.

11.1 Algorithms with simulation steps

In Chap.9 we defined an algorithm for recognizing accepted multi-traces and in Chap.10 another for iden-

tifying prefixes (in the sense of multi-traces) of accepted multi-traces defined up to the discrete partition.

However, in Chap.7, we have defined a wide variety of different semantics and we have not yet presented

algorithms to recognize all of those. In Chap.8 we have informally discussed the use of simulation steps

as a useful mechanism to define such algorithms. In the beginning of Chap.10, we have dismissed those

algorithms based on simulation steps due to their potential high overhead costs. However, with techniques

such as the checking of local frontiers (introduced at the end of Chap.10) and some heuristics, simulating

unobserved behavior seems once again practicable.

In this section we expand upon the results from the previous chapters by adapting the multi-trace

analysis algorithm from Chap.9 for the analysis of multi-traces that are collected under contexts of degraded

observability. In particular we define algorithms which use simulation steps so as to recognize prefixes and

slices of accepted multi-traces defined up to any partition of lifelines.

The plan of this section is as follows:

• in Sec.11.1.1 we discuss the issue of the termination of analysis algorithms that rely on simulation

steps,

• in Sec.11.1.2 we define an analysis algorithm which may use simulation steps for identifying prefixes

of accepted multi-traces i.e. elements of σ|C defined up to any partition C,

• in Sec.11.1.3 we present a generalized algorithm that allows one to identify and discriminate between

exactly accepted multi-traces and the three different kinds of partially observed multi-traces which we

have described in Chap.7.

11.1. ALGORITHMS WITH SIMULATION STEPS 275

11.1.1 The issue of termination & loops

In Chap.8, we explained that simulation steps could be used to fill-in gaps in a partially observed multi-traces

in which events that have not been observed are missing. However, let us then consider this very trivial

example: given L = {l} and M = {m1,m2}, let us suppose that we have i = loopS(l!m1) and we want to

analyze µ = (l!m2). Then, a very naive algorithm with simulation steps might hope that by simulating the

execution of l!m1 so that i l!m1−−−→ i it might somehow unlock the further consumption of l!m2. Moreover, if

there are no mechanisms to limit simulation steps, this algorithm might even never terminate.

This issue of termination ultimately relates to the presence of loops in the interaction term. Indeed, if

there are no loops, then there can only be a finite number of simulation steps, until all the actions that are

present in the initial term have been executed either via the usual execution and consumption of the action

from the multi-trace or via some simulation step.

Hence, so as to ensure termination of the process, one must fix a limit to the number of times loops may

be instantiated. However, this limit might not be global i.e. the same during the whole of the analysis.

Indeed, a global behavior to which a multi-trace projects might be interspersed with missing events (i.e.

gaps in observation). As a result, we might need to alternate between steps of consumption and steps of

simulation. We argue for resetting this limit each time the normal consumption of the multi-trace is resumed.

Consequently, the limit on the instanciation of loops corresponds to the number of times loops may be

instantiated during any given sub-path of G consisting of consecutive applications of simulation steps. We

can fix the limit as an initial value to a certain index. Then, each time a loop is instantiated in a simulation

step, this index is decremented of a certain value. Once the simulation has unlocked the further consumption

of the multi-trace, and once an event has effectively been consumed from the multi-trace, this index can be

reset. Details on this will be presented in Sec.11.1.2 and Sec.11.1.3 in which we concretely define algorithms

which make use of simulation steps. In any case, this method allows to ensure the termination of the process.

Indeed there can only be a finite number of "reset" and hence only a finite number of instanciations of loops

and hence only a finite number of actions that can be executed either via consumption or simulation.

The limit that we fix i.e. the initial value of the index is set at the maximum loop depth of the current

interaction term. We formalize this notion of "loop depth" β� and "maximum loop depth" β̂� in Def.11.1.

This limit β̂�(i) corresponds to the maximum depth of nested loops that can be found in the interaction

term i.

276 CHAPTER 11. IMMEDIATE EXTENSIONS

Definition 11.1: Loop depth and maximum loop depth

We define β� : IΩ × {1, 2}∗ → N such that for any interaction i ∈ IΩ and any position p ∈ pos(i):

• if p = ε then β�(i, ε) = 0

• if p = 1.p1 then:

– if i = loopf (i1) then β�(i, p) = 1 + β�(i1, p1)

– else then i = f(i1, i2) and β�(i, p) = β�(i1, p1)

• if p = 2.p2 then i = f(i1, i2) and β�(i, p) = β�(i2, p2)

We can then define β̂� : IΩ → N such that for any interaction i:

β̂�(i) = maxp∈pos(i) β�(i, p)

This notion of maximum loop depth can be explained on some examples. For instance:

β̂�(l1!m1) = 0

β̂�(alt(l1!m1, l1!m2)) = 0

β̂�(loopS(l1!m1)) = 1

β̂�(loopS(seq(l1!m1, loopH(l1!m2)))) = 2

11.1.2 Identifying prefixes of accepted multi-traces with simulation

In Chap.9, we have presented an analysis algorithm which allows for the identification of accepted multi-

traces. This algorithm can, for any given interaction i ∈ IΩ, and any multi-trace µ ∈ TΩ|C determine whether

or not µ ∈ σ|C(i).

In this section, we present a modified version of that previous algorithm, that instead allows one to

determine whether or not µ ∈ σ|C(i). This means that this algorithm allows one to identify prefixes (in the

sens of multi-traces) of accepted multi-traces. At the same time we will introduce the use of the checking of

local frontier from Chap.10.

By analogy with the results from Chap.9, we introduce the analysis algorithm via the definition of a

directed graph G in which vertices are either a tuple (i, µ, j) ∈ IΩ×TΩ|C×N or a local verdict v ∈ {Obs,Out}.

We then note V = {Obs,Out} ∪ (IΩ × TΩ|C × N) the set of all vertices.

The algorithm then relies on the exploration of some paths within G that start from a specific node and

in which edges are characterized by the relation ; defined in Def.11.2 via the formulation of four rules.

For analysing a multi-trace µ0 against an interaction i0, the analysis starts from the node (i0, µ0, β̂�(i0)).

Here β̂�(i0) acts as the maximum number of loops that can be instantiated in a consecutive succession of

simulation steps.

11.1. ALGORITHMS WITH SIMULATION STEPS 277

From any node of the form (i, µ, j), we can apply one of the five rules (and as a result, (i, µ, j) nodes are

not sinks):

• if µ = εC i.e. if it is empty, then we can apply Rp and reach the Obs local verdict

• if µ is not empty then:

– if the checking of local frontiers fails then we can apply Rd and reach the Out local verdict

– if not (i.e. if checklocC(i, µ) = >) then:

∗ if there is a match between an immediately executable action from the interaction i and the

head of a component of µ then we can apply Re. With this rule, we simultaneously execute

the matching action in the interaction term and consume it in the multi-trace. Also, as

explained before, we reset the value of the index j to the maximum loop depth of the new

follow-up interaction.

∗ if there exists an empty trace component, let us then consider c ∈ C such that µ|c = ε.

Then we may allow the simulation of the behavior of lifelines l ∈ c. This means that we

may allow the execution of frontier actions i|p with p ∈ frt(i) if θC(i|p) = c. However, as

explained before, we restrict which actions can be executed depending on whether or not their

execution involves the instantiation of loops. This constraint corresponds to the j ≥ β�(i, p)

condition, and allows the process to terminate. Those simulation steps therefore correspond

to the application of rule Rs. Given the execution of a frontier action i a@p−−→ i′, if the previous

constraints are satisfied then Rs yields the node (i′, µ, (j − β�(i, p)), with the index j being

decremented by the loop-depth of the executed action.

∗ if no action can be executed either via consumption or simulation then we can apply rule Rf

and reach the Out local verdict.

As in case of the previous algorithms, the only two sinks of the graph G are the local verdicts Obs and

Out. We define the analysis relation, which defines edges of graph G in Def.11.2.

278 CHAPTER 11. IMMEDIATE EXTENSIONS

Definition 11.2: Rules for Multi-Prefix Analysis with simulation

The analysis relation ;⊆ V× V is defined as:

i εC j(Rp)
Obs

i µ j(Rd) checklocC(i, µ) = ⊥
Out

i a
→
� µ j(Re)

 (checklocC(i, a
→
� µ) = >)

∧ (i a−→ i′)i′ µ β̂�(i′)

i µ j(Rs)

(checklocC(i, µ) = >)

∧ (i a@p−−→ i′) ∧ (j ≥ β�(i, p))

∧ (µ 6= εC) ∧ (µ|θC(a) = ε)
i′ µ (j − β�(i, p))

i µ j(Rf)

(checklocC(i, µ) = >) ∧ (µ 6= εC)

∧

6 ∃i a@p−−→ i′ s.t.

 (µ = a
→
�C µ′)

∨
(
(µθC(a) = ε) ∧ (j ≥ β�(i, p))

)

Out

Similarly as what we did in Chap.9, we can then remark that the sub-graph of G (the analysis graph)

that is thus defined (starting from (i0, µ0, β̂�(i0))) is finite and:

• there exists at least one path from (i0, µ0, β̂�(i0)) to either Obs or Out

• either Obs or Out are reachable from any node of the form (i, µ, j)

As a consequence, we can define a function ωC : IΩ × TΩ|C → {Pass, Fail} which returns the global

verdict resulting from the analysis of a multi-trace µ0 against an interaction i0. The definition of this ωC is

reminiscent of that of ωC from Chap.9 and is given in Def.11.3.

Definition 11.3: Multi-Trace Prefix Analysis with simulation

ωC : IΩ × TΩ|C → {Pass, Fail} is s.t. for any i ∈ IΩ and µ ∈ TΩ|C we have:

• ωC(i, µ) = Pass iff there exists a path (i, µ, β̂�(i)) ∗; Obs

• ωC(i, µ) = Fail otherwise;

i.e. for all path (i, µ, β̂�(i)) ∗; v with v ∈ {Obs,Out}, then v = Out

The correctness of algorithm ωC from Chap.9 has been proven in Th.9.1 and Th.9.2 and equates having,

for any interaction i and any multi-trace µ:

(
ωC(i, µ) = Pass

)
⇔
(
µ ∈ σ|C(i)

)

By analogy the correctness of this new algorithm ωC equates to having, for any interaction i and any

11.1. ALGORITHMS WITH SIMULATION STEPS 279

multi-trace µ: (
ωC(i, µ) = Pass

)
⇔
(
µ ∈ σ|C(i)

)
Writing a formal proof of this predicate would require the formulation of a property stating that fixing

the maximum number of loop instantiation at β̂�(i) is sufficient to explore all paths that would allow the

further consumption of µ. We have not written such a proof. However, extensive use of this algorithm

via the HIBOU tool implementation (that we will present in Chap.12) seems to confirm that this predicate

holds. Moreover, we have defined in Chap.10 the ω©L algorithm which is proven correct. Given that both

ω©L and ωĽ are implemented in HIBOU, we can compare their outputs.

11.1.3 Algorithm to discriminate elements of different semantics

In this chapter we present an algorithm that allows to discriminate between multi-traces belonging to any

or none of the four semantics σ|C , σ†|C , σ|C and σ|C .

This algorithm is defined in the same manner as the previous. It relies on defining and exploring a

directed graph G in which vertices are:

• either a tuple (i, µ, j, s, O) where:

– i ∈ IΩ is the specifying interaction

– µ ∈ TΩ|C is the multi-trace to analyse

– j is an index to count the number of loops that one is still allowed to instantiate in successive

simulation steps (as in the previous algorithm)

– s ∈ P({spre, spost}) is a set that keeps track of whether or not we have already done some

simulation steps, either as a preambule or as a postambule to the consumption of any given trace

component

– O ∈ P(C) is a set that keeps track of the co-localization of which the corresponding trace com-

ponent we have already started to consume during the analysis

• or a local verdict v ∈ {Cov, Short,MultiPref, Slice,Out}

As was previously done, we can denote by V the set of such vertices and we then define the algorithm

via a relation ; on V.

The analysis of the multi-trace µ0 against the interaction i0 then corresponds to the exploration of a

sub-graph of G that starts from the node (i0, µ0, β̂�(i0), ∅, ∅).

We adapt the checking of local frontiers to the fact that we may allow simulation steps to be taken as a

preamble to the consumption of actions. It is the set O ∈ P(C) which keeps track of which trace components

have been consumed. As a result, we may check the local frontiers of the components that are in O but not

of the components that are in C \O.

280 CHAPTER 11. IMMEDIATE EXTENSIONS

Definition 11.4: Adapted checking of local frontiers

checklocC : IΩ × P(C)× TΩ|C → {>,⊥} is s.t. for any i ∈ IΩ, any O ∈ P(C) and any µ ∈ TΩ|C :

checklocC(i, O, µ)⇔ (∀ c ∈ O,µ|c = a.t⇒ ∃ p ∈ locfrt(i, c), i|p = a)

From any node of the form (i, µ, j, s, O) we can apply one of nine rules:

• if µ = εC then:

– if we have not made any simulation steps (i.e. if s = ∅) then:

∗ if i can express the empty trace i.e. if i ↓ then we can apply Rp1 and reach the Cov local

verdict

∗ if i cannot express the empty trace i.e. if i 6↓ then we apply Rp2 and reach the Short local

verdict

– if we have made some simulation steps only as postambles to the consumption of some trace

components i.e. if s = {spost} then we apply Rp3 and reach the MultiPref local verdict

– if we have made some simulation steps including some as preambles to the consumption of some

trace components i.e. if spre ∈ s then we apply Rp4 and reach the Slice local verdict

• if µ is not empty then:

– if checklocC(i, O, µ) = ⊥ then we can apply Rd and reach the Out local verdict

– if checklocC(i, O, µ) = > then:

∗ if there is a match between a frontier action and the head of a trace component then we can

apply the Re rule. This rule, as in the previous algorithm, consists in removing the head

action from the multi-trace, executing its match in the interaction, and resetting the counter

j. However, we additionally keep track of the co-localization on which we have consumed

the action by adding it to the set O. Adding θC(a) into O will then prevent any further

simulation steps as preambule to the analysis of the behavior of co-localization θC(a).

∗ if there is no match then we may proceed to two kinds of simulation steps to try to unlock

the further consumption of the multi-trace. For any frontier action p:

· if the trace component µ|θC(i|p) = ε i.e. if there is nothing left to observe on the co-

localization on which i|p occurs, then, as in the previous algorithm, we may simulate

the behavior of that co-localization as a postamble. As previously, we need to respect

the constraint j ≥ β�(i, p) to do so. Additionally, when applying R+
s , we update s as

s ∪ {spost} to keep track of the application of the simulation step.

· if µ|θC(i|p) 6= ε and if the consumption of events has not yet started on the co-localization

on which i|p occurs i.e. if θC(i|p 6∈ O then we may execute i|p as a preamble simulation step

11.1. ALGORITHMS WITH SIMULATION STEPS 281

if j ≥ β�(i, p). Doing so may serve as replacing an event which has not been observed due

to a late start of the observation on θC(i|p). In the new node, following the application of

rule R−s , we then update s with s∪{spre} given that we have made a preamble simulation

step.

∗ if no action can be executed either via consumption or simulation then we can apply rule Rf

and reach the Out local verdict

Definition 11.5: Rules for discriminating multi-traces from the various semantics

The analysis relation ;⊆ V× V is defined as:

i εC j s O(Rp1) (i ↓) ∧ (s = ∅)
Cov

i εC j s O(Rp2) (i 6↓) ∧ (s = ∅)
Short

i εC j s O(Rp3) (spost ∈ s) ∧ (spre 6∈ s)
MultiPref

i εC j s O(Rp4) (spre ∈ s)
Slice

i µ j s O(Rd) checklocC(i, O, µ) = ⊥
Out

i a
→
� µ j s O(Re)

 (checklocC(i, O, µ) = >)

∧ (i a−→ i′)i′ µ β̂�(i′) s (O ∪ {θC(a)})

i µ j s O(R−s)

(checklocC(i, O, µ) = >)

(i a@p−−→ i′) ∧ (j ≥ β�(i, p))

∧ (µ 6= εC) ∧ (µ|θC(a) 6= ε)

∧ (θC(a) 6∈ O)

i′ µ (j − β�(i, p)) (s ∪ {spre}) O

i µ j s O(R+
s)

(checklocC(i, O, µ) = >)

(i a@p−−→ i′) ∧ (j ≥ β�(i, p))

∧ (µ 6= εC) ∧ (µ|θC(a) = ε)
i′ µ (j − β�(i, p)) (s ∪ {spost}) c

i µ j s O(Rf)

(checklocC(i, µ) = >) ∧ (µ 6= εC)

∧

6 ∃i a@p−−→ i′,

(µ = a

→
�C µ′)

∨

(j ≥ β�(i, p)) ∧

 (µθC(a) = ε)

∨ (θC(a) 6∈ O)

Out

Similarly to the previous algorithms, the analysis explores a sub-graph of G that starts from a node

(i0, µ0, β̂�(i0), ∅, ∅). This sub-graph is finite and:

282 CHAPTER 11. IMMEDIATE EXTENSIONS

• there exists at least one path from (i0, µ0, β̂�(i0), ∅, ∅) to one of either local verdicts

• a local verdict is reachable from any node of the form (i, µ, j, s, O)

As a consequence, we can define a function ω∗C : IΩ ×TΩ|C → {Pass,WPshort,WPmuprf ,WPslice, Fail}

which returns the global verdict resulting from the analysis of a multi-trace µ0 against an interaction i0.

Definition 11.6: Multi-trace analysis with discrimination

For any signature Ω = (L,M) and any partition C ∈ Part(L) of lifelines, we define ω∗C : IΩ × TΩ|C →

{Pass,WPshort,WPmuprf ,WPslice, Fail} such that for any i ∈ IΩ and µ ∈ TΩ|C we have:

• ω∗C(i, µ) = Pass iff there exists a path (i, µ, β̂�(i), ∅, ∅) ∗; Cov

• ω∗C(i, µ) = WPshort iff there exists a path (i, µ, β̂�(i), ∅, ∅) ∗; Short

and there are no paths (i, µ, β̂�(i), ∅, ∅) ∗; Cov

• ω∗C(i, µ) = WPmuprf iff there exists a path (i, µ, β̂�(i), ∅, ∅) ∗;MultiPref

and there are no paths (i, µ, β̂�(i), ∅, ∅) ∗; v for any v ∈ {Cov, Short}

• ω∗C(i, µ) = WPslice iff there exists a path (i, µ, β̂�(i), ∅, ∅) ∗; Slice

and there are no paths (i, µ, β̂�(i), ∅, ∅) ∗; v for any v ∈ {Cov, Short,MultiPref}

• ω∗C(i, µ) = Fail otherwise;

i.e. for all path (i, µ, β̂�(i), ∅, ∅) ∗; v,

if v ∈ {Cov, Short,MultiPref, Slice,Out}, then v = Out

In intention, this new algorithm characterizes the semantics of interactions and the various notions of

prefixes as follows: (
ω∗C(i, µ) = Pass

)
⇔
(
µ ∈ σ|C(i)

)
(
ω∗C(i, µ) = WPshort

)
⇔
(
µ ∈ σ†|C(i) \ σ|C(i)

)
(
ω∗C(i, µ) = WPmuprf

)
⇔
(
µ ∈ σ|C(i) \ σ†|C(i)

)
(
ω∗C(i, µ) = WPslice

)
⇔
(
µ ∈ σ|C(i) \ σ|C(i)

)
This algorithm is implemented in the HIBOU tool, which we describe in Chap.12.

11.2 Co-regions

In addition to the three scheduling constructors strict, seq and par, we can consider a family of scheduling

constructors called co-regions.Those constructors behave like par when considering some lifelines, and like

seq when considering all others. As a result, only minor adaptations are needed so as to use the various

results presented in this thesis on those constructors. A co-region must be configured by a subset of lifelines

and there exists as many co-region operators as there exists subsets of the set of lifelines (i.e. P(L)). We

11.2. CO-REGIONS 283

use co-regions to schedule behaviors that must occur sequentially on some sub-systems but that can occur

concurrently on some other sub-systems.

diagram syntax traces

coreg({l2})

strict

l1!m1 l2?m1

strict

l1!m2 l2?m2

{
l1!m1.l2?m1.l1!m2.l2?m2,
l1!m1.l1!m2.l2?m1.l2?m2,
l1!m1.l1!m2.l2?m2.l2?m1

}

equivalent representation
in the core IL

Figure 11.1: Example using a co-region constructor

The use of co-regions is illustrated on Fig.11.1. Here, the two sub-interactions strict(l1!m1, l2?m1) and

strict(l1!m2, l2?m2) are scheduled using coreg({l2}), meaning that they are scheduled sequentially w.r.t.

lifeline l1 and concurrently w.r.t. lifeline l2. As a result, the semantics of this interaction contains 3 accepted

traces. Either the first message passing is completed before the second starts (first trace), or the message

passings are interleaved (second and third traces). Given that the behaviors are scheduled sequentially w.r.t.

lifeline l1, this interleaving cannot concern the l1!m1 and l1!m2 actions, which keep the same relative ordering

(i.e. l1!m1 before l1!m2). However, we can switch the order of l2?m1 and l2?m2.

The use of co-regions constitute a syntactic sugar. Indeed, as exemplified on Fig.11.1 it is always possible

to express, using the core IL, an interaction that is semantically equivalent to an interaction that uses

co-regions. However doing so is often impractical and inelegant.

Moreover, for modelling real-life DSs, the co-region constructs are particularly useful. Indeed, the non-

determinism of the support networks through which messages transit makes so that messages send in a

certain order (that is enforced on the emitter sub-system / lifeline) may not be received in the same order

(order not enforced on the receiver sub-systems / lifelines).

Let us remark that for a co-region coreg(x), with x ∈ P(L), if x = ∅ then coreg(x) behaves for all intent

and purposes, exactly like the seq operator; and if x = L then coreg(x) behaves for all intent and purposes,

exactly like the par operator.

284 CHAPTER 11. IMMEDIATE EXTENSIONS

11.3 Towards an implementation

The manner in which we have defined all the theoretical tools from Chap.6, Chap.9, Chap.10 and Sec.11.1

related to the analysis of multi-traces allows for an immediate transcription into code.

We have indeed defined in Chap.6 the simplifying execution semantics σ≈
e
which relies on (1) the frontier

function frt to compute, for an input interaction i, all the positions of actions in i that are immediately

executable, and (2) an execution function exe≈ which, for any interaction i and frontier position p ∈ frt(i)

computes a follow-up interaction which exactly specifies what remains to be executed after the execution of

the action a = i|p at position p. This simplifying execution function offers the additional guarantee that the

follow-up term is simplified so that we keep intermediate terms compact and simple.

We have also mentioned in Chap.6 that all those functions and all the predicates and functions on which

they depend i.e. the termination "↓" predicate, the evasion "↓××" predicate, and the pruning function with

simplifications prn≈ can be express in the style of functional programming languages.

Additionally, the types on which our theory is based i.e. that of interactions, positions and multi-traces

can all be encoded using classic data types of functional programming languages. With for instance, actions

being tuples of integers (with a 1-to-1 mapping to a set of lifeline names, message names, etc.) interactions

being inductive types, positions being lists of integers and multi-trace lists of actions.

We can therefore easily implement the basis for animating i.e. executing and displaying interaction

models. From this basis we can then implement features to (1) explore the semantics of interactions i.e.

perform traversals of their execution trees and (2) analyze multi-traces against interactions i.e. perform

traversals of a corresponding analysis graph (which nature depends on the kind of algorithm we choose to

use among those defined in Chap.9, Chap.10 and Sec.11.1).

As is the case whenever traversals of trees or graphs are involved, we can use a queue and heuristics

to guide the process of exploration. On Fig.11.2 we illustrate the use of such a configurable process for

performing the analysis of a multi-trace µ against an interaction i using an algorithm similar to that of

Chap.9. This tooled and configurable algorithm returns Pass whenever µ ∈ σ|C(i), WP (for "WeakPass")

whenever µ ∈ σ†|C(i) (without guaranteeing that µ 6∈ σ|C(i)) and Fail otherwise. The two • correspond to

the initialization, with the queue q being initialized as an empty queue, and the information of the initial

vertex (i, µ) being provided as entry data.

Then, starting from (i, µ):

• we check if µ is the empty multi-trace (as indicated by (µ = εC)? on Fig.11.2) and:

– if it is the case then we check if i terminates (as indicated by (i ↓)? on Fig.11.2) and:

∗ if it is the case then the algorithm stops and returns the global verdict Pass. We can see

that, by contrast to the more theoretical algorithms presented before, this consists in defining

a stopping criterion on the exploration of the analysis graph. Indeed, we stop exploring the

graph as soon as we find a path in which µ can be entirely consumed. In this case, the fact

11.3. TOWARDS AN IMPLEMENTATION 285

that we have uncovered a path in the analysis graph in which we have consumed µ entirely

and in which there remain i s.t. i ↓ constitutes a formal proof that µ ∈ σ|C(i) and we do not

need to explore the graph any further.

∗ in the other case, WP is returned, indicating that we have proven (by discovering a certain

path in the analysis graph) that µ ∈ σ†|C(i)

– if it is not the case, then we try to simultaneously consume an action at the head of multi-trace

and execute a matching frontier action of the interaction model, as in rule R3 of the algorithm

from Chap.9. In this "tooled" analysis algorithm, we compute a set of matches of the form (i, p, µ′)

such that p is a frontier action and µ = i|p
→
�C µ′. We then insert all those matches in our queue q,

with heuristics being able to modulate how those matches are inserted. Given that initially, the

queue was empty, in the first pass of the algorithm, this inserts into the queue all of the matches

found from the initial vertex (i, µ) of the analysis graph.

As a result, this first pass of the algorithm either yields a global verdict or results in the insertion of some

matches in the queue. Let us then describe what happens in the latter case.

(i, µ)

(µ = εC)?

(i ↓)?

>

Pass

>

WP

⊥

(i, µ)

i

⊥

frt

frt(i)

match
{

(i, p, µ′)
∣∣∣∣∣ (p ∈ frt(i))
∧ (µ = i|p

→
�C µ′)

}
enqueue

q (queue) 〈〉

(q = 〈〉)? Fail
>dequeue ⊥

(i, p)

µ′

prn≈

exe≈

i′

(i′, µ′)

heuristics

Figure 11.2: Principle of a configurable implementation of an analysis algorithms like that of Chap.9

We start by checking if the queue indeed has some elements in it because it could be so that no matches

were found during the first pass. On Fig.11.2, this is indicated by (q = 〈〉)?. Then:

• if the queue is empty then the algorithm immediately stops and returns a global verdict Fail. In the

case of the first pass of the algorithm, this is explained by the fact that we have found no matches

allowing transitioning out of the initial vertex (i, µ). In the case of later passes of the algorithm, this

means that no further exploitation of matches found globally can be performed. We have explored

every reachable vertex of the form (i, µ) without being able to consume µ and hence the global verdict

Fail is justified.

286 CHAPTER 11. IMMEDIATE EXTENSIONS

• if the queue is not empty, then this means that there are some possible applications of rule R3 that

would allow to reach some further vertices of the analysis graph that have not yet been visited. The

decision of which element of the queue i.e. which match should be exploited first can be taken according

to some heuristics. In any case, an element (i, p, µ′) of the queue is dequeued. Then, we execute action

i|p at position p in i i.e. we compute i′ = exe≈(i, p). At this point we have therefore visited a new

vertex (i′, µ′) of the analysis graph and the process can be repeated.

With the example presented in this section, we have illustrated the ease of implementation permitted

by the formulation of the theoretical results of the thesis. The definition of this type of process that is

configurable via the use of heuristics can be applied to all previously defined multi-trace analysis algorithms.

Conclusion

In this chapter we have presented immediate extensions to the results of Part.I and Part.II. We have notably

defined algorithms that make use of simulation steps so as to solve the membership problem for various

multi-trace semantics. With those additional algorithms, we can now identify and discriminate between

elements of all the projected multi-trace semantics which we have defined in Chap.7. The termination

of those algorithms is guaranteed by a criterion on the number of loop instantiations during consecutive

successions of simulation steps. We argue that a formal proof for the correctness of those algorithms is

possible. It would rely on demonstrating that instantiating once each loop is sufficient so as to reveal all

potential manners to further consume the multi-trace.

In this chapter we have also presented a small but practical extension to the language in the form of the

coreg constructor which mixes weak sequencing and interleaving.

Finally, we have demonstrated, on an example analysis algorithm, the ease with which one can implement

the various algorithms which we have previously defined. Such implementations can additionally be made

configurable through the use of search heuristics for the traversal of analysis graphs. By setting a stopping

criterion, the whole of the graph may not need to be visited.

In the next chapter we present the actual tool implementation HIBOU which implements almost every-

thing that was presented in the previous chapters and including this one.

Chapter 12

The HIBOU tool

Contents
12.1 Overview . 288

12.2 Entry language for interaction terms & multi-traces 289

12.2.1 Encoding interaction terms . 289

12.2.2 Encoding multi-traces . 291

12.3 Semantic exploration and heuristics . 291

12.3.1 Search strategies and filters . 292

12.3.2 Frontier priorities . 294

12.4 Multi-trace analysis . 297

287

288 CHAPTER 12. THE HIBOU TOOL

In this chapter we present the HIBOU tool which implements most of the theoretical results that were

previously presented.

The plan of this chapter is the following:

• in Sec.12.1 we quickly present the software and relevant parts of its user interface,

• in Sec.12.2 we present the entry language for encoding interaction terms and multi-traces,

• in Sec.12.3 we present the feature for exploring the semantics (i.e. execution trees) of interactions and

introduce possible configurations of heuristics for the traversal of execution trees and analysis graphs,

• in Sec.12.4 we present the feature for analysing multi-traces, which allows the use of any of the previ-

ously defined analysis algorithms.

12.1 Overview

HIBOU (for Holistic Interaction Behavioral Oracle Utility) provides utilities for drawing and manipulating

interaction models, computing their normal forms, exploring their semantics and analysing executions of DSs

(collected and transposed in the form of traces or multi-traces) with regards to formal specifications written

as interaction models. This enables, among other things, the incremental design of precise and complex

behavioral models of DSs.

We have implemented HIBOU using the Rust programming language [7]. The use of this language

which is reliable, fast and memory efficient and in which it is difficult to make runtime errors allowed us to

concentrate on the faithful implementation of the theoretical results presented in the first two parts of the

thesis. The full code of HIBOU is hosted on github and available in [91]. It contains (for version 0.5.6) 11526

lines in 96 files among which 8373 lines of code. The version of HIBOU which we describe in this chapter is

version 0.5.6.

HIBOU takes the form of an executable which offers a user Command Line Interface (CLI). Precompiled

binaries are available for Windows and Linux in [91].

The use of HIBOU is associated to two kinds of input files:

• "hibou specification files", in which interaction models are encoded and which correspond to the ".hsf"

filename extension

• "hibou trace file", in which traces or multi-traces are encoded and which correspond to the ".htf"

filename extension

Then, the hibou executable provides a CLI which includes (among others) the following commands:

• "hibou draw <.hsf file>" draws an interaction in the manner which we have seen throughout the

thesis

12.2. ENTRY LANGUAGE FOR INTERACTION TERMS & MULTI-TRACES 289

• "hibou canonize [-s] <.hsf file>" computes and displays the computation of the unique normal

form (as per the results from Chap.4) of an interaction. By default, only one sequence of transforma-

tions is computed to reach the normal form. However, with the "-s" optional flag we can choose to

compute and display all possible sequences of transformations (for example so as to make sure of the

confluence of the implemented rewrite system).

• "hibou explore <.hsf file>" explores the semantics of an interaction i.e. it computes and may display

parts of the execution tree of that interaction.

• "hibou analyze <.hsf file> <.htf file>" analyzes a multi-trace against an interaction i.e. it computes

and may display parts of an analysis graph related to that analysis and returns a global verdict.

12.2 Entry language for interaction terms & multi-traces

In order to encode interaction terms and multi-traces (as well as other things such as the configuration

of analysis algorithms, etc.), we have used a Parsing Expression Grammar [57]. Instead of detailing the

inner workings of the parser, let us simply introduce the input language via some examples. As mentioned

previously, HIBOU accepts two kinds of input files: ".hsf" and ".htf" which we quickly cover respectively in

Sec.12.2.1 and Sec.12.2.2.

12.2.1 Encoding interaction terms

In the example on Fig.12.1, we have on the left the encoding of an interaction term in a ".hsf" file. On the

right we have a drawing of that interaction made by HIBOU.

We can see that we have some headers at the top of the ".hsf" file. In those headers, we declare the names

of the lifelines and messages that will be used:

• in @lifeline we declare lifelines separated by ;

• in @message we declare messages separated by ;

Then, the interaction term is written in a similar fashion as it would be done using the previous mathe-

matical notations. We have the strict, seq, par, alt, loopS , loopH , loopW , loopP and coreg constructors and

we use parenthesis to enclose sub-interactions. Notable differences with mathematical notations are that:

• for any associative operator, we allow n-ary notations. For instance, seq(i1, i2, i3) will then be inter-

preted as seq(i1, seq(i2, i3))

• for ease of use, we use a dedicated notation for the empty interaction, with "o" (lowercase letter o)

instead of ∅

• and we also use notations inspired by WebSequenceDiagrams [21] / PlantUML [5] for communication

actions:

290 CHAPTER 12. THE HIBOU TOOL

@message {
m1;m2;m3;m4;m5;m6;m7;m8;m9

}
@lifeline {

l1;l2;l3;l4
}
seq(

alt(
seq(

alt(
m1 -> l4,
o

),
l4 -- m1 -> l1,
coreg (l2)(

l1 -- m2 -> (l2,l3),
loopX(

l3 -- m3 -> l2
)

)
),
seq(

l1 -- m4 -> l2,
l2 -- m4 -> l3

)
),
par(

l2 -- m5 -> l3,
loopP (

seq(
l2 -- m6 -> l3,
l3 -- m7 -> l4,
l4 -- m8 ->|,
l4 -- m9 -> l2

)
)

)
)

Figure 12.1: Example of an interaction encoded in HIBOU

– instead of ∅ we may write "o" (lowercase letter o)

– instead of l1!m we may write "l1 -- m ->|"

– instead of l2?m we may write "m -> l2"

– instead of strict(l1!m, l2?m) we may write "l1 -- m -> l2"

– instead of strict(l1!m, seq(l2?m, l3?m)) we may write "l1 -- m -> (l2,l3)"

Let us remark that we can also configure explorations and multi-trace analysis in the header of ".hsf"

files. However, this will be covered in Sec.12.3 and Sec.12.4.

12.3. SEMANTIC EXPLORATION AND HEURISTICS 291

12.2.2 Encoding multi-traces

In the example on Fig.12.2, we have on the left the encoding of a multi-trace term in a ".htf" file. On the

right we have a drawing of that multi-trace made by HIBOU (as part of an analysis). For the analysis of a

multi-trace, the declaration of the sets M of messages and L of lifelines is made in the ".hsf" file specifying

the interaction model. As a result, when parsing a ".htf" we presuppose the existence of L and M .

The encoding of multi-traces is quite straightforward. Each line correspond to a trace component and

lines are separated by ";". On each line, we have on the left the definition of the co-localization corresponding

to the trace component. This takes the form of a lists of lifelines from L separated by commas and in between

square brackets. The same lifeline cannot be in several distinct co-localizations. Then we have the trace

component as a sequence of atomic actions separated by ".". Each action is denoted with the notations l!m

or l?m with l being a member of the co-localization and m in M .

{
[l1 ,l2] l1!m1.l1!m3.l2?m1.l2!m2;
[l3 ,l4] l3?m3.l3!m4.l4?m4;
[l5] l5?m2

}

Figure 12.2: Example of a multi-trace encoded in HIBOU

We may use some additional keywords for ease of use:

• [#all] l1!m1.l3!m4 for instance signifies that all lifelines are in this co-localization and therefore we

have a global trace. For instance if L = {l1, l2, l3, l4} then all of them are considered.

• by contrast, [#any] l1!m1.l3!m4 signifies that the lifelines appearing on the definition of the trace

component are taken into account to define the co-localization. For instance here, if L = {l1, l2, l3, l4},

then the co-localization is {l1, l3} because only those two appear.

• if a lifeline from L is left without any co-localization that contains it, then an empty trace component

is created for it

12.3 Semantic exploration and heuristics

We have mentioned in Chap.6 that the semantics that is implemented in HIBOU is the simplifying execution

semantics σ≈
e
. This enables us to compute and display the execution tree of any interaction term. We provide

this option as a feature of HIBOU with the "hibou explore" command.

On Fig.12.4 is represented an exploration of the execution tree of the interaction specified on Fig.12.3.

The graphical representation associated to this exploration and that is presented on Fig.12.4 is generated by

HIBOU.

On the top of Fig.12.3, we can see that the exploration that is performed is configured in a certain

manner which corresponds to that specified in the ".hsf" file from Fig.12.3 via the @explore_option section.

292 CHAPTER 12. THE HIBOU TOOL

Notably, the generation of the image from Fig.12.4 is enabled by the loggers = [graphic[svg,vertical]]

line. This line signifies that a graphical logger is created and listens to what happens during the exploration.

This logger being a graphical logger, it draws the exploration. We can configure its output format (svg

or png) and we can decide whether the drawing is drawn from top to bottom (vertical) or left to right

(horizontal).

@explore_option {
loggers = [graphic [svg , vertical]];
strategy = DepthFS ;
filters = [max_depth = 2,

max_loop_depth = 1,
max_node_number = 7]

}
@message {

m1;m2;m3;m4
}
@lifeline {

l1;l2;l3
}
seq(

loopS (
alt(

l1 -- m1 -> l2,
l2 -- m2 -> l3

)
),
par(

l1 -- m3 -> l2,
l3 -- m4 -> l2

)
)

Figure 12.3: ".hsf" of the interaction which semantics is explored on Fig.12.4

12.3.1 Search strategies and filters

Continuing on our example, given that the interaction contains a loop, an exploration without constraints

would not terminate. With HIBOU, via the @explore_option section, we can set some limits on the

exploration. We can see here, with the "filters" that we have set the maximum depth of the explored tree

at 2 (depth 0 being that of the root), that we only authorize loops to be instantiated once in each path, and

that we authorize the final tree to contain a maximum of 7 nodes.

Moreover, we specified that the strategy for the exploration of the tree corresponds to a Depth First

Search. From any interaction i, its frontier frt(i) contains a set of position which we may order lexicograph-

ically. Then, the sub-trees starting from the execution of any such frontier action can be explored in that

order. With a Depth First Search, given frt(i) = [p1, p2], the sub-tree starting from i′1 s.t. i a@p1−−−→ i′1 is

entirely explored before starting the exploration of the other one. As a result, we can see on Fig.12.4, that

some frontier actions of the initial interaction (at the top) have not been executed at all. Indeed, the nodes

in brown on Fig.12.4 correspond to frontier actions that have not been exploited due to constraints on the

12.3. SEMANTIC EXPLORATION AND HEURISTICS 293

Figure 12.4: An exploration of the execution tree of the interaction specified in Fig.12.3 by HIBOU

size of the explored tree. In that example, we can see brown nodes caused by the three distinct constraints:

• "MaxLoop" correspond to frontier actions which were not executed due to having reached (in the path

leading to that node) the limit concerning the number of loops that may be instantiated. On the

example from Fig.12.4 we can see that the first execution of l1!m1 (first transition on the left of the

topmost node) created a new instance of a loop. Given that our limit was fixed at 1, withtin that

sub-tree, no loops can be instantiated anymore. Hence, on the left node in the second row, we cannot

execute l2!m2 which is the first frontier position in lexicographical order. As a result, we have a brown

"MaxLoop" node on the leftmost of the second row.

• "MaxDepth" correspond to frontier actions which cannot be executed due to having reached the limit

concerning the maximum depth of the explored part of the execution tree. We can see here that all

294 CHAPTER 12. THE HIBOU TOOL

frontier actions belonging to interactions from the third row cannot be executed and yield a brown

"MaxDepth" node.

• "MaxNum" correspond to cases in which we have reached the maximum number of nodes in the overall

tree. On Fig.12.4 we can indeed see that we have exactly 7 nodes containing interactions. This limit

is reached when the node on the bottom right is created (as expected due to having a Depth First

Search strategy). Then, if we look at the node on the right of the second row, we can see that we have

4 frontier actions, which, by lexicographic order of their respective positions are:

– l3?m2 which is executed and yield the node underneath

– l1!m1 which is not executed due to it being underneath a loop and the exploration having reached

the maximum loop depth

– l2!m2 which is not executed for the same reasons

– and l1!m3 which is not executed because at this point in the exploration, we have already created

7 nodes and no new nodes are allowed to be created

In addition to the Depth First Search strategy, which we may select using "strategy = DepthFS;",

HIBOU also implements Breadth First Search which can be selected with strategy = BreadthFS;".

12.3.2 Frontier priorities

We have seen that, with HIBOU, the order in which frontier actions are evaluated to compute child nodes is,

by default, the lexicographic order of their respective positions. Hence, actions "at the top" of the sequence

diagram representation will be evaluated before those "at the bottom". We have seen that this is the case

for "exploration", which computes parts of execution trees but this also holds for "analysis" which computes

parts of analysis graphs. This can be problematic in certain cases. In particular, let us consider the example

from Fig.12.5. We can see that in this exploration, we have set a maximum depth of 3 and a maximum

number of nodes at 5. We then use a Depth First Search strategy to explore the execution tree of the

interaction. At the first transition, we execute action l2!m1 underneath the loopW . Given that in the follow-

up interaction, we have the loopW (l3!m3) that was put in front, due to the pruning of the initial loop, it is

then action l1!m3 that is at the first position in the lexicographic order of positions. Then, given that we

have loopW (l3!m3) l3!m3−−−→ loopW (l3!m3) we can indefinitely execute l3!m3 which may not necessarily be an

interesting exploration.

The concept of frontier priorities is to change the order in which frontier actions are evaluated. In HIBOU,

we can set integer priority levels that may change the order of actions depending on:

• whether they are emissions of receptions

• whether or not they are underneath loops and at which depth

12.3. SEMANTIC EXPLORATION AND HEURISTICS 295

@explore_option {
loggers =[graphic [svg]];
strategy = DepthFS ;
filters =[max_depth =3,

max_node_number =5]
}
@message {

m1;m2;m3
}
@lifeline {

l1;l2
}
loopW(

alt(
seq(

l2 -- m1 -> l1,
l1 -- m2 -> l2

),
l1 -- m3 ->|

)
)

Figure 12.5: Example exploration without setting frontier priorities (default)

296 CHAPTER 12. THE HIBOU TOOL

@explore_option {
loggers =[graphic [svg]];
strategy = DepthFS ;
filters =[max_depth =3,

max_node_number =5];
frontier_priorities =[loop =-1]

}
@message {

m1;m2;m3
}
@lifeline {

l1;l2
}
loopW(

alt(
seq(

l2 -- m1 -> l1,
l1 -- m2 -> l2

),
l1 -- m3 ->|

)
)

Figure 12.6: Example exploration with setting a −1 priority to frontier actions underneath loops

12.4. MULTI-TRACE ANALYSIS 297

On Fig.12.6 we showcase the use of frontier priorities by performing the same exploration as in Fig.12.5

(i.e. same search strategy and same filters) but with having set a priority of −1 to actions underneath

loops. We can then observe that the action that is at the first position in the second node from the top is

now l1?m1 instead of l1!m3 (which was the case in Fig.12.5). This is explained by the fact that l1!m3 is

underneath a loop while l1?m1 is not. In more details, l1?m1 is at loop level 0 while l1?m1 is at loop level 1.

Then their relative priorities are respectively 0 ∗ (−1) = 0 and 1 ∗ (−1) = −1 and hence l1?m1 is of higher

priority for evaluation. We can then see that we manage to execute almost entirely the sub-behavior that

was instantiated (not entirely due to the depth limit).

With this example, we have showcased the use of frontier priorities in the case of exploration i.e. the

computation of parts of some execution trees. However, frontier priorities may be more particularly useful

in context of multi-trace analysis.

12.4 Multi-trace analysis

In Chap.9, Chap.10 and Chap.11 we have defined various multi-trace analysis algorithms. All of those

algorithms are implemented in a configurable manner in HIBOU.

We have seen in Sec.12.3 that the exploration of an execution tree could be configured via the declaration

of options within a @explore_option section of the input ".hsf" file. Similarly, the analysis of a multi-trace

against an interaction can be configured via a @analyze_option section. Those options includes those

already available to @explore_option i.e.:

• we can use for instance loggers = [graphic[png,horizontal]]; to create a logger that will draw

the process from left to right in a png file. This can notably be helpful for debugging e.g. understanding

why a certain multi-trace is non-conform. However generating a "svg" image is most often a better

choice. Also it is not recommended to use a graphical logger if the time required for the analysis is a

limiting factor given that it reduces the overall performance of HIBOU.

• we can set a search strategy with for instance strategy = DepthFS;. Using a Depth First Search is

most often recommended for multi-trace analysis given that it favors going deeper in some paths in

which many actions from the multi-trace can be consumed instead of exploring bits of many different

paths.

• we can impose limits on the exploration of the analysis graph, with for instance

filters = [max_depth = 3]; However imposing such limitations in the case of multi-trace analysis

is not recommended given that it removes the guarantees on the correctness of the returned verdict

given by the formal proof. Indeed imposing such limits artificially restricts which parts of the analysis

graphs can be reached and hence some local verdicts may be missed.

• we can set frontier priorities for the evaluation of frontier actions, with for instance

frontier_priorities = [reception=1];

298 CHAPTER 12. THE HIBOU TOOL

In addition, some other options are available for the @analyze_option section. Those are specifically

related to the analysis process and include:

• the "use_locfront" option which specifies whether or not the checking of local frontiers (as defined in

Chap.10) should be used with:

– "use_locfront = false" specifying that local frontiers should not be checked

– "use_locfront = true" specifying that local frontiers should be checked, and in case of failure,

a local verdict Dead is reached rather than pursuing the analysis

• the "goal" option which specifies a criterion for stopping the analysis before the whole of the reachable

parts of the analysis graph is explored:

– with "goal = None" the analysis explore the whole of the graph

– with "goal = Pass" the analysis stops and returns Pass once a Cov local verdict is reached

– with "goal = WeakPass" the analysis stops and returns Pass once a Cov local verdict is reached

and also stops and returns WeakPass once (depending on which algorithm is selected using

"analysis_kind") either of a TooShort, MultiPref or Slice local verdict is reached

• the "analysis_kind" option which can be set to specify which analysis algorithm should be used:

– "analysis_kind = accept" specifies that the algorithm from Chap.9, for identifying exactly ac-

cepted multi-traces should be used. This algorithm returns Pass if µ ∈ σ|C(i) and Fail otherwise

– "analysis_kind = prefix" specifies that a variant of that algorithm, which may discriminate

between σ|C and σ†|C should be used. This algorithm returns Pass if µ ∈ σ|C(i), WeakPass

if µ ∈ σ†|C(i) and either Inconc or Fail otherwise. The use of Inconc here is related to the

uncertainty of whether or not a multi-trace µ is in σ|C(i). This uncertainty cannot be solved

without using either hiding or simulation.

– "analysis_kind = hide" specifies that a generalized version of the algorithm with hiding steps

from Chap.10 should be used. This algorithm behaves exactly the same as the one from Chap.10

whenever the multi-trace is defined up to the discrete partition. However, if the partition is not

discrete, then a local verdict Inconc might be produced rather than a MultiPref .

– "analysis_kind = simulate[multi-prefix]" corresponds to the algorithm with simulation steps

only as a postamble to the consumption of trace components (as in Sec.11.1.2)

– "analysis_kind = simulate[multi-slice]" corresponds to the algorithm with simulation steps

both as a preamble and as a postamble to the consumption of trace components (as in Sec.11.1.3)

On Fig.12.7 we illustrate the analysis of a multi-trace defined on a partition C = {{l1, l2}, {l3}} of lifelines.

This multi-trace is a slice of a multi-trace that is accepted by the interaction i = coreg({l2})(seq(· · ·), loopW (· · ·)).

Indeed, the actions that are missing i.e. have not been observed are:

12.4. MULTI-TRACE ANALYSIS 299

Figure 12.7: Showcasing the algorithm with simulation steps as preamble and postamble

300 CHAPTER 12. THE HIBOU TOOL

• occurences of l2?m1 and l2?m3 (in any order) at the end of component {l1, l2}

• an occurence of l3?m2 at the beginning of component {l3}

The analysis that is illustrated on Fig.12.7 make use of the algorithm from Sec.11.1.3, with allows

simulation steps both as a preamble and as a postamble to the consumption of actions. We can see that

with a Depth First Search, the local verdict "Slice" is found quickly. And, given that we have set the goal to

"WeakPass", the algorithm immediately returns.

Conclusion

In this chapter we quickly presented the HIBOU tool which implements most results from the first two

parts of the thesis. We have seen that this tool allows for the configurable analysis of multi-traces against

interaction models, which was one of our initial objectives.

Chapter 13

Extension to data

Contents
13.1 An issue with abstracting exchanged information as messages 302

13.1.1 A limitation on examples with loopP . 302

13.1.2 Mitigating the problem with value passing . 305

13.2 Introducing data . 308

13.3 A discussion on formalizing interactions with data 309

13.3.1 Data signature and syntax of programs . 309

13.3.2 Symbolic state & execution of programs . 310

13.3.3 Informal illustrative examples . 311

13.3.4 Symbolic actions and symbolic interactions . 313

13.4 Exploration and analysis . 314

13.4.1 Unsatisfiable paths . 314

13.4.2 Message passing . 315

13.4.3 Multi-trace analysis . 316

301

302 CHAPTER 13. EXTENSION TO DATA

In this chapter we discuss extending our Interaction Language to include interactions enriched with data,

and extending multi-trace analysis to include multi-traces enriched with concrete message parameters.

The plan of this chapter is as follows:

• in Sec.13.1 we discuss a specific limitation caused by abstracting information that is exchanged within

a DS with simple labelled messages. We then explain that taking into account the passing of concrete

data (value passing) can be a solution to this limitation.

• in Sec.13.2 we discuss the manner in which data can be introduced into interaction models.

• in Sec.13.3 we discuss the formalisation of interactions enriched with data.

• and, in Sec.13.4 we provide some more details on the use of symbolic execution to explore the semantics

of symbolic interactions and analyse multi-traces enriched with data.

13.1 An issue with abstracting exchanged information as messages

A working hypothesis that comes with using our IL and the framework for multi-trace analysis provided by

HIBOU is that the information that transit at the interfaces of the DS’s sub-systems can be abstracted as

simple labelled messages m ∈M from a set of messagesM . Moreover, given that interaction terms are finite

trees, within any i ∈ IΩ, there can be only a finite number of distinct messages that appear. As a result,

within the context of the analysis of a multi-trace against an interaction, we might as well consider M to be

a finite set.

Abstracting away typed data with an arbitrarily wide space of possible values into a finite set of labels

obviously comes with its own set of limitations. In this section we present one such limitation (among many)

and explain how value passing, and by extension, the consideration of interaction models enriched with data,

can help mitigate this limitation.

13.1.1 A limitation on examples with loopP

Let us consider the example from Fig.13.1. In this example, we have a simple loopP which specifies the

parallel repetition of instances of the passing of message m1 from lifeline l1 to lifeline l2.

Figure 13.1: Example interaction with a loopP

Let us then suppose that several instances of message m1 are emitted consecutively. Then, there are no

13.1. AN ISSUE WITH ABSTRACTING EXCHANGED INFORMATION AS MESSAGES 303

means to distinguish between the receptions events l2?m1 that might correspond to the various instances of

the emission events l1!m1.

On Fig.13.2 we illustrate the analysis of the global trace t = l1!m1.l1!m1.l1!m1.l2?m1.l2?m1.l2?m1.l2!m1

against the interaction from Fig.13.1.

Figure 13.2: Example analysis against the example from Fig.13.1

We can see that this trace is not an accepted trace (nor a prefix of one). However, as illustrated on

Fig.13.2, proving that this is the case is relatively costly given that we need to explore all paths in the

analysis graph. Here, even an extended version of the checking of local frontiers (which would project the

remaining trace components on the discrete partition) would not help at all given that all that remains to

analyze occurs on the same lifeline which is l2. The reason why there are so many paths that open-up in

this analysis is the use of the loopP constructor and the inability to distinguish between the 3 instances of

the passing of m1. Indeed, starting from the vertex in the middle of Fig.13.2 (before the split), the three

304 CHAPTER 13. EXTENSION TO DATA

remaining instances of l2?m1 on the multi-trace could each be interpreted as either of the three instances of

l2?m1 that are scheduled with par within the remaining interaction term.

We have already evoked this problem in our publication [93] where we used a partial high-level modeli-

sation of the MQTT telecommunication protocol (version 3.1.1) [23] as a use-case for global trace analysis.

The diagram representation of the corresponding interaction model is given on the left of Fig.13.3. This

model states that a communication session between a client and a broker starts with a sequential connection

phase and ends with a disconnection phase. In between, at any time, any number of instances of one of the

5 proposed subinteractions can be run concurrently. The use of loopP reflects that sessions can be opened

and run concurrently at any time.

Figure 13.3: Abstract model of the MQTT protocol (v.3.1.1) and analysis time on particular edge cases

In [93], we plotted the required time for the analysis of traces generated by a multithreaded Python

script which implemented this communication scheme. On the right of Fig.13.3 we present an updated and

simplified plot of similar data, obtained using a newer version of HIBOU. On this diagram we can see two

curves:

• The curve in blue (below) represent the time required for analyzing an accepted trace and all its prefixes.

The curve is indeed obtained by linear regression on the data points (blue dots), each representing the

time required for analyzing a prefix of that trace, with the right-most blue dot being the time required

to analyze the trace in its entirety. For collecting this data, we have used an analysis with a Depth

First Search strategy and we stopped whenever we obtained a Cov or TooShort local verdict (i.e. Pass

or WeakPass global verdict). In this data (in blue) we cannot see any increase of the time that is

13.1. AN ISSUE WITH ABSTRACTING EXCHANGED INFORMATION AS MESSAGES 305

required for the analysis w.r.t. the size of the trace because the time taken by the tool for parsing the

input files is more significant at this scale.

• Each data point in red (that make up the curve in red (above)) corresponds to the time required

for analyzing a mutant of a corresponding blue data point. This mutant is obtained by adding an

unexpected action at the end which guarantees that the trace is not an accepted trace nor a prefix of

one. As a result, each red data point corresponds to the analysis of a trace which returns Fail and

hence requires the exploration of the whole analysis graph (instead of stopping at the first Cov or

Short) as in Fig.13.2. In order to obtain this curve we have chosen a particular "worst-case" scenario,

with many overlapping instances of the passing of the pub_qos0 message. We can see, as could be

imagined given the example from Fig.13.2, that we have an exponential increase in the time required

to terminate the analysis.

13.1.2 Mitigating the problem with value passing

The problem which we have described in the previous section is specifically related to the use of loopP and to

the inability to distinguish between several instances of communications which are abstracted by the same

message "label". This limitation of "labelled interactions" i.e. interactions in which exchanged information is

abstracted as messages by labels can be mitigated by conserving more information when abstracting observed

communication.

In the particular case of communication protocols, such as the MQTT protocol presented in the ex-

ample from Fig.13.3, individual sessions of communication (for instance the publication of a message, a

subscription, etc.) are uniquely identified by an integer message identifier. By incorporating the information

of those message identifiers into the abstracted trace and interaction model we can therefore mitigate the

aforementioned effect.

Let us indeed consider the example analysis from Fig.13.5, which reproduces the analysis from Fig.13.2

but with the added information of unique message identifiers for instances of the message m1. We can see

on the vertex before the split that we have in the remaining interaction term three sub-interactions with a

reception of m1 that are scheduled with par, as in the previous case. However, the three messages expected

to be received can be distinguished from one another. In the top instance, m1(12) with the unique identifier

12 is expected while in the second instance it is m1(55) and in the third m1(76). Then, when analyzing the

three reception events that remain to be analyzed, those can be uniquely matched to specific instances of

the loopP . On Fig.13.5 the cases in which the concrete data in the message parameters do not match are

indicated by the "UNSAT" vertices.

As a result of having taken into account additional information for distinguishing instances of messages,

we can see that the resulting analysis graph is significantly reduced in size (from 19 vertices to 7 vertices).

This reduction in the size of the explored analysis graph is exponential with the size of the trace to analyze,

provided that the message identifiers are indeed unique (or at least that the use of identical identifiers is

306 CHAPTER 13. EXTENSION TO DATA

sparse enough so as not to incur ambiguities). This then allows us to avoid the worst case depicted by the

red curve on Fig.13.3.

Figure 13.4: Model of MQTT with value passing for message identifiers and analysis time on edge cases

In Fig.13.4 we have indeed applied the same process to compare the analysis time of traces enriched

with data against the MQTT model enriched with value passing for taking into account the unique message

identifiers. As in the previous case, we have used a multithreaded Python script to generate the input trace

and we have plotted two curves: one (in blue) describing the analysis time of the of the accepted trace and its

prefixes and the other (in red) describing the analysis time of corresponding mutants (defined by adding an

unexpected event at the end). we can observe that, by contrast to Fig.13.3, there is no exponential explosion

of the red curve. We have therefore successfully annulled the issue caused by the use of loopP .

Let us remark that the code for reproducing the results of this small experiment with a MQTT model

is available in [92]. With this experiment we have seen that taking into account value passing can improve

the quality of the analysis of multi-traces. However, we can go one step further by enriching the IL with

variables, guards and message parameters, which is the object of the following section.

13.1. AN ISSUE WITH ABSTRACTING EXCHANGED INFORMATION AS MESSAGES 307

Figure 13.5: Analysis with added information of unique message identifiers

308 CHAPTER 13. EXTENSION TO DATA

13.2 Introducing data

The Interaction Language which we have defined in Chap.4 can be canonically extended to include data.

Those interaction models enriched with data may involve (informally):

• "variables" that can be owned by specific lifelines and which values may vary during the execution of

the interaction. Variables are strongly typed and local to specific lifelines.

• "message parameters" i.e. the messages which are exchanged between lifelines are not simple labels

anymore but instead they can carry some values which can be computed on the fly (at the moment of

the emission) and transmitted between lifelines

• "assignments" which are basic operations that can accompany the observation of an event within the

interaction model (emission or reception) and modify the value of a given "variable". An instance of

this variable can be already owned by the lifeline on which the assignment occurs, and in this case,

its value is simply modified. If, on the other hand, an instance of the variable do not exist on the

lifeline, then it is created when evaluating the assignment. The value that is assigned to a variable by

an assignment is computed from a term that can be constructed from raw values, variables, message

parameters and typed operators.

• "guards", which are Boolean conditions on the expression of a certain events (emission or reception).

Those Boolean expressions constrain the variables (their current values) of the lifeline on which the

event occurs so that the event can only occur if those constraints are satisfiable.

Figure 13.6: Refinement of a labelled interaction into a symbolic interaction with data

On Fig.13.6, we illustrate how one can use those new concepts so as to refine a "labelled" interaction

model (on the left, without data), into a "symbolic" interaction model (on the right, with data). We can see

that the overall structure of the interaction remains the same. However, parameters are attached to messages

and statements accompany emission and reception events. Those blocks of statements are executed either

13.3. A DISCUSSION ON FORMALIZING INTERACTIONS WITH DATA 309

before the execution of the communication action (if they are drawn above) or after it (if they are drawn

below). Moreover, the interaction comes with the knowledge of which variables exist and which are their

values (for instance the key variable on lifeline pub1 has the value #2 which is here an unknown value

represented by an instantiated symbol) as well as constraints on those values (here there are no constraints

as indicated by π = > at the top). The reader should understand the use of the # sign as a call to the

creation of a new symbol (of symbolic execution) i.e. a new unknown of the problem while the signs #1, #2

and any #j (with j an integer value) represent already created symbols.

We can then use symbolic execution to animate those enriched interaction models. Instead of assigning

concrete values to variables, we assign terms build over data which may be abstracted as symbols. Those

symbols correspond to input data that may enter the system through any means (user input, random values,

etc.). The use of symbols in this manner reflects what is classically done in the symbolic execution of

programs [73, 33].

Using symbolic execution instead of concrete execution allows us to synthesize in a compact execution

tree (or analysis graph) explorations that would otherwise be far larger. Indeed, a constraint on a symbol (for

instance #1 > 0) might synthesize an arbitrarily large span of data (for instance positive 64 bits integers).

13.3 A discussion on formalizing interactions with data

In this section we discuss the formalisation of interactions with data. The contents of this sections do not

constitute a formalisation of interaction with data and of their semantics. We simply mean to discuss the

nature of those objects and to help the reader have a better understanding of their semantics.

As we have seen in the example from Fig.13.6, sequences of assignments and guards can form a preamble

or a postamble to the execution of specific communication actions. We can associate those sequences to

simple programs. Then, each small-step of the execution of an interaction with data may be understood as

the simultaneous execution of the interaction model and of those programs that share a global state.

13.3.1 Data signature and syntax of programs

Let us consider a data signature Σ = (S,Op) where S is a set of type names and Op is a set of typed

operations i.e. for any g ∈ Op, there exists an arity n ≥ 0 and types s1, · · · , sn+1 from S such that the

operation g is of profile s1 × · · · × sn → sn+1. Let us also remark that the definition of concrete values

for each type is also included in this definition, given that each concrete value (for instance integer 1) may

correspond to an operation of arity 0 (constant) of the corresponding type.

In the continuation of our concern for the distributed nature of behaviors, we also consider a set L of

lifelines for defining programs. Let us then also consider a set V of variables which is indexed by L i.e. such

that we have V =
⋃
l∈L Vl. Then:

• the set of typed terms TΣ(Vl) build over Vl w.r.t. Σ can be defined as is classically done (as presented

in Chap.4 but respecting the types signature of operators).

310 CHAPTER 13. EXTENSION TO DATA

• and the set of sentences SΣ(Vl) can be defined as the set of all equations on terms of TΣ(Vl) using

the rules of equational logic (as presented in Chap.4 but respecting types and with the rule for the

negation)

We can then define a program (P) as a (possibly empty) list of statements. Such a statement can either

be an assignment (A), the creation of a new symbol (F for "fresh"), or a guard (G). Assignments l : v := t

specify that the term t ∈ TΣ(Vl) must be assigned onto variable v ∈ Vl. In the context of an action occurring

on a lifeline l, we denote by v := # the creation of a new symbol and its assignment to variable v ∈ Vl.

Guards l : s specify that the Boolean condition expressed by s ∈ SΣ(Vl) must be satisfied. The program

language can therefore be defined as:
P ::= (A | F | G)∗

A ::= l : v := t

F ::= l : v := #

G ::= l : s

Now that we have defined the syntax of the language which represents what can be executed as a preamble

or postamble to communication actions, let us discuss the associated operational semantics.

13.3.2 Symbolic state & execution of programs

An operational semantics associated to this program language can be defined as a transition relation between

"states" which represent the state of the system.

By system we understand the set of lifelines from L, each of which may own variables which in turn

are associated to values, etc. In addition, given that we have discussed using symbolic execution instead

of concrete execution, those values are not concrete values but terms build over symbols. Let us therefore

define a universe X of symbols.

Then, this notion of state can be described by a "symbolic state" which is a triplet (X, η, π) where:

• X ⊂ X keeps track of the symbols which have already been introduced as input data during the

execution

• η : V → TΣ(X) associates to each variable its current value as a term build over the already introduced

symbols from X. η may be called the "interpretation".

• π ∈ SΣ(X) is an equation on the symbols from X which keeps track of the constraints on (the values

of) those symbols that may be introduced during the execution. π may be called the "path condition".

A symbolic state (X, η, π) is a representation of the current state of the system, which contains all the

information that we require. We can then define the semantics of the program language by relating the

execution of individual statements to a transition between two symbolic states.

Such a transition relation between symbolic states is defined on Fig.13.7. We indeed have that:

13.3. A DISCUSSION ON FORMALIZING INTERACTIONS WITH DATA 311

assignment
(X, η, π) l:v:=t−−−−→ (X, η[v ← η(t)], π)

symbol creation (x ∈ X \X)
(X, η, π) l:v:=#−−−−→ (X ∪ {x}, η[v ← x], π)

guard
(X, η, π) l:s−→ (X, η, π ∧ η(s))

empty program
(X, η, π) 〈〉−→ (X, η, π)

(X, η, π) s−→ (X ′, η′, π′) (X ′, η′, π′) P−→ (X ′′, η′′, π′′) non-empty program
(X, η, π) s;P−−→ (X ′′, η′′, π′′)

Figure 13.7: Symbolic execution of the program language

• whenever an assignment l : v := t is carried-out then we update the value of variable v in the inter-

pretation η with the current interpretation of the term t which is assigned to it. In other words, we

change the interpretation η into η[v ← η(t)]

• whenever a symbol creation l : v := # is carried-out, we must create a new symbol, which is not in X.

This is always possible given that X is infinite and X is finite. Hence, in the next symbolic state, we

have (X ∪ {x}, η[v ← x], π) because we keep track of x being introduced and of η being updated with

the new value assigned to v.

• whenever a guard l : s is evaluated, the constraint specified by s must be satisfied. As a result, in the

next step, we update the path condition π as π∧η(s) to keep track of the newly introduced constraints.

• the empty program i.e. the empty list of statements can be executed and does not change the symbolic

state

• we can then define the semantics of the program language as a transition relation such that for any

program P we have a certain (X, η, π) P−→ (X ′, η′, π′). This is described on Fig.13.7.

13.3.3 Informal illustrative examples

Let us consider the three examples illustrated on Fig.13.8. In the following we describe informally those three

examples which serves the two purposes of (1) helping the understanding of assignment, symbol creation and

guard and (2) introducing the concept of merging interaction models and programs of the program language.

Example on the left In the example displayed on the left of Fig.13.8, we have a single lifeline l, which,

initially (at the top) has a variable v of value #2 which is a symbol. Hence, the state of the system is a

certain (X0, η0, π0) in which #2 ∈ X0 and η0(v) = #2.

Then, we consider the successive executions of two transformations. The first one consists in the assign-

ment l : v := (1 + v). Given that η0(v) = #2, evaluating this assignment leads to (X1, η1, π1) such that

312 CHAPTER 13. EXTENSION TO DATA

Figure 13.8: Illustrating the notions of assignment, symbol creation and guard

X1 = X0, η1 = η0[v ← η0(1 + v)] and π1 = π0. Given that η0(1 + v) = 1 + η0(v) = 1 + #2 the evaluation of

that assignment is correctly illustrated on Fig.13.8.

The second step consists in the reception, on lifeline l, of a message which carries a concrete integer

value of "4". This reception is immediately followed by the evaluation of an assignment in which the term

(2 + v − $1) is assigned to v. Here, the symbol $1 refers to the first argument of the message, which, in this

context, is the concrete value "4". As a result, the evaluation of this transition yields to a symbolic state

(X2, η2, π2) in which η2 = η1[v ← η1(2 + v − $1)] and we have η1(2 + v − $1) = 2 + (1 + #2)− 4 = #2− 1

and hence the example is correctly illustrated on Fig.13.8.

Example on the middle In the second example, we illustrate the use of symbol creation. Let us suppose

we start from the symbolic state (X0 = ∅, η0 = [], π0 = >). We then consider the successive execution of two

symbol creations. The first one corresponds to creating a first symbol, which we denote #1 and assigning it

to v. As a result, we have:

(∅, [],>) l:v:=#−−−−→ ({#1}, [v ← #1],>)

Likewise, in the second transition, we create a new symbol #2 distinct from the first and assign it to v

so that:

({#1}, [v ← #1],>) l:v:=#−−−−→ ({#1,#2}, [v ← #2],>)

Example on the right The third example illustrates the use of guards. Let us suppose we start from a

symbolic state (X0, η0, π0) such that #2 ∈ X0 and η0(v) = #2 − 1. Then, the first transition displayed on

13.3. A DISCUSSION ON FORMALIZING INTERACTIONS WITH DATA 313

Fig.13.8 consists in the evaluation of a guard (v > 5). Hence, we have:

(X0, η0, π0) l:(v>5)−−−−→ (X0, η0, π0 ∧ (#2 > 4))

With the second transition, we receive a message carrying the concrete integer value "2" and immediately

after we use this value to formulate the guard (v ≤ 4 + $1). Hence we have:

(X0, η0, π0 ∧ (#2 > 4)) l:(v≤4+2)−−−−−−→ (X0, η0, π0 ∧ (#2 > 4) ∧ (#2 ≤ 5))

13.3.4 Symbolic actions and symbolic interactions

We can then define symbolic actions as triplets (P−, a, P+) such that P− and P+ are programs of the simple

program language and a is an action (enriched with message parameters). For instance, such a symbolic

action is illustrated on Fig.13.9, where we have P− being the empty program, a = l?message(4) and P+

containing the three statements that are represented.

Figure 13.9: A symbolic action

Then, we can define symbolic interactions in the same manner that we defined "labelled" interactions

in Chap.4 i.e. by induction on those base symbolic actions and using some constructors. In addition to

the previously described constructors, we may also add a scope constructor for defining unique instances of

variables.

The semantics of those objects can be characterized by an execution relation (similarly as labelled inter-

action) which can be roughly understood as follows:

lab(i) a@p−−→ lab(i′) (X, η, π) P−;P+−−−−→ (X ′, η′, π′)

(i,X, η, π) P−aP+@p−−−−−−−→ (i′, X ′, η′, π′)
where lab(i) is the labeled counterpart of i

Of course, in practice, this is more complicated, for two main reasons which are that: (1) we need to

specify the context in which program P+ is executed given that it might require taking values from parameters

of an incoming message and (2) computing the follow-up symbolic interaction i′ is not immediate, and, in

particular, we might need to update parameters of received messages to reflect their evaluation when the

message has been send.

314 CHAPTER 13. EXTENSION TO DATA

Indeed, in this section, we have simply discussed the nature of symbolic interactions. A full formalisation

and definition of a sound semantics may be the object of further work.

13.4 Exploration and analysis

In this section we discuss some more on the animation of symbolic interaction models in relation with the

exploration of their execution trees and analysis graphs.

13.4.1 Unsatisfiable paths

The execution tree of a symbolic interaction i is a refinement of the execution tree of the corresponding la-

belled interaction lab(i). Indeed, some paths that would be allowed in lab(i) may correspond to unsatisfiable

path conditions in the execution tree of i.

Figure 13.10: Example of an unsatisfiable path in a symbolic execution tree

We provide an example of such an unsatisfiable path on Fig.13.10. In this example, the lifeline l has

two variables x and y of initial values #5 and #6. Then, the first action that is executed adds the condition

13.4. EXPLORATION AND ANALYSIS 315

#5 < #6 to the path condition π. Then, two possible paths are explored depending on which branch of the

alternative is taken. On the one on the left the additional condition #5 > 0 is added to π whereas on the

one on the right, it is #5 < 0 which is added. Then, on both path we execute an action which adds the

condition #6 < 0. We can then see that from the left branch we have π = (#5 < #6)∧ (#5 > 0)∧ (#6 < 0)

which is an unsatisfiable formula. As a result, we add an UNSAT node to that path signifying that it is not

feasible. On the path on the right however, we can see that the resulting path condition is satisfiable.

With this example, we have seen that unsatisfiable paths could be detected in the execution tree of a

symbolic interaction i and therefore reduce its span with regards to the execution tree of the corresponding

labelled interaction lab(i). However, this notion of having unsatisfiable paths is particularly more useful

when considering the analysis of multi-traces given that we may detect incoherent data in the concrete values

provided as arguments of the analyzed multi-trace.

13.4.2 Message passing

As mentioned in Sec.13.3, whenever a message that is intended to carry data is send, we need to update the

carried values according to the current interpretation of variables on the emitting lifeline at the moment of

the emission. Let us consider for instance the example from Fig.13.11. We can see that initially, variable x

on lifeline l2 has a value set at #5. It is then this value #5 that is send with message m while the value of x

on l2 independently evolves to #5− 1. Then, it is the carried value #5 in message m that is used when the

message is received by l1 to assign its value to the new variable x on l1. Afterwards, we have two distinct

instances of variable x: the one on l2 of value #5 − 1 and the one on l1 of value 2 ∗#5. Likewise, in the

following step, when l1 broadcasts the m message to l2 and l3, the value that is carried is then (2 ∗#5)− 3.

Figure 13.11: Example of message passing during execution

316 CHAPTER 13. EXTENSION TO DATA

This mechanism of value passing ensures that, when a message is passed or broadcasted between lifelines,

the values of message parameters that are originally send by the emitter are indeed the same values that are

received by the receivers. With multi-trace analysis in mind, this allows the detection of foreign data being

introduced, for instance, in the case of a man-in-the-middle attack, where an attacker alters information

that is exchanged between parties.

13.4.3 Multi-trace analysis

Let us consider the example given on Fig.13.12. On the left is represented a symbolic interaction which

serves as a formal specification. On the right are represented three multi-traces that might be expressed by

the distributed system that is modelled.

The system is composed of two lifelines bob who is a user and cal which is a calculator. bob can request,

via the sending of a rq request message, that the cal calculator multiplies an integer value by 2 and returns

the result to him via a rp response message.

As a result, the first multi-trace at the top right of Fig.13.12 corresponds to an accepted behavior. Indeed,

here bob request having 4 being multiplied by 2. The cal indeed receives the value 4 and answers with the

value 8.

However, in the second multi-trace, cal also receives the value 4 but answers with the value 2, having

divided 4 by 2 instead of multiplying it. Hence, this multi-trace should yield a Fail verdict.

In the third multi-trace, even though bob sends the value 4, the value that is received by cal is 5. As

a result, even though the computation is correct, given that cal sends 10 back, this behavior should also

yield a Fail verdict. In practice, this could correspond to a man-in-the-middle attack, the transmitted data

having been tempered with.

Accepted behavior

Wrong computation

Man-in-the-middle

[bob] bob!rq(4);
[cal] cal?rq(4).cal!rp(8)

[bob] bob!rq(4);
[cal] cal?rq(4).cal!rp(2)

[bob] bob!rq(4);
[cal] cal?rq(5).cal!rp(10)

Figure 13.12: Symbolic interaction & various conform & non-conform behaviors

Those three multi-traces can be analyzed against the symbolic interaction of Fig.13.12 so as to detect

the non-conformities that we mentioned for the second and third multi-traces, as illustrated on Fig.13.13.

When analyzing a concrete multi-trace, additional constraints are introduced in the path condition π so as

to take into account the values of the concrete data:

• In the case of the first multi-trace, all the additional constraints are satisfiable and the path in the

execution tree yields a TooShort verdict and hence the analysis yields WeakPass.

13.4. EXPLORATION AND ANALYSIS 317

Figure 13.13: Analysis of the three multi-traces from Fig.13.12

• In the case of the second multi-trace, the concrete value 2 taken from message rp(2) does not satisfies

2 = 2 ∗ x given x = 4 and hence the path yields UNSAT. The analysis therefore yields a Fail verdict.

• In the case of the third multi-trace, as per the message passing mechanisms previously mentioned, we

have, in the second vertex of the analysis graph the reception of rq(4) that is expected to occur on

cal. However, we have cal?rq(5) on the multi-trace. The constraint 4 = 5 not being satisfiable, the

path yields UNSAT and hence the analysis yields Fail.

As exemplified in Fig.13.13, non-conformities related to the use of data in models can be detected. If we

had used labelled interactions in that case, all three concrete multi-traces would have been abstracted into

the same labelled multi-trace and no non-conformities would have been detected.

Conclusion

In this section we have motivated and described an extension of the core Interaction Language to data. We

define "symbolic" interactions i.e. interactions enriched with data, as a refinement of "labelled" interactions.

In such models, typed variables can be created and owned by individual lifelines. The execution of individual

communication actions can then be preceded or followed by the execution of a small program, consisting of

assignments and guards which may change the values of variables or constraints defined on their values while

constraining the execution of actions to those that satisfy those added constraints. As a result, the execution

318 CHAPTER 13. EXTENSION TO DATA

tree of a symbolic interaction is a refinement of that of the corresponding labelled interaction in so far as it

has the shape of one of its sub-trees. Likewise, the analysis of a multi-trace with data against a symbolic

interaction is a refinement of the analysis of the counterpart labelled multi-trace against the counterpart

labelled interaction, the symbolic analysis graph having the shape of a sub-graph of the labelled analysis

graph.

Chapter 14

The HIBOUX tool

Contents
14.1 Overview . 320

14.2 Entry language . 321

14.2.1 Header options & declarations . 321

14.2.2 Specifying symbolic interactions . 322

14.2.3 Specifying multi-traces with concrete data . 324

14.3 Proof of concept use case . 324

319

320 CHAPTER 14. THE HIBOUX TOOL

In this chapter we present an extension of the HIBOU tool which we have introduced in Chap.12. This

extension HIBOUX (for HIBOU with symbolic eXecution) allows the exploration of execution trees associated

to interaction models enriched with data as well as the analysis of multi-traces in which messages may carry

concrete data against such models. To do so, we use symbolic execution to execute those enriched interaction

models.

The plan of this chapter is as follows:

• in Sec.14.1 we quickly present the software and relevant parts of its user interface,

• in Sec.14.2 we describe the entry language of the tool,

• and in Sec.14.3, we quickly mention an industrial use case on which HIBOUX has been used, as part

of the FUI DisTA project.

14.1 Overview

HIBOUX (for HIBOU with symbolic eXecution) provides utilities for drawing and manipulating symbolic

interaction models, exploring their semantics and analysing multi-traces enriched with concrete data with

regards to formal specifications written as symbolic interaction models.

HIBOUX is also implemented in Rust [7]. Its full code is available in [90]. It contains (for version 0.1.1)

13657 lines in 120 files among which 10532 lines of code. The version of HIBOUX which we describe in this

chapter is version 0.1.1.

HIBOUX takes the form of an executable which offers a user Command Line Interface (CLI). Precompiled

binaries are available for Windows and Linux in [90].

The use of HIBOUX is associated to two kinds of input files:

• "hiboux specification files", in which symbolic interaction models are encoded and which correspond to

the ".hxsf" filename extension

• "hiboux trace file", in which traces or multi-traces with concrete data are encoded and which correspond

to the ".hxtf" filename extension

Then, the hiboux executable provides a CLI which includes (among others) the following commands:

• "hiboux draw <.hxsf file>" draws a symbolic interaction

• "hiboux explore <.hxsf file>" explores the semantics of a symbolic interaction

• "hiboux analyze <.hxsf file> <.hxtf file>" analyzes a multi-trace with data against a symbolic inter-

action

14.2. ENTRY LANGUAGE 321

14.2 Entry language

HIBOUX accepts ".hxsf" and ".hxtf" files for respectively specifying symbolic interactions and multi-traces

with concrete data. Those two file types are similar to the ".hsf" and ".htf" which we have seen in Chap.12.

In the following we provide some more details on the entry language of HIBOUX.

14.2.1 Header options & declarations

The option sections @explore_option and @analyze_option that can be defined in the headers of ".hxsf"

files are similar to those that we have seen in Chap.14 for the ".hsf" files of HIBOU.

Similarly to ".hsf" files, we declare in the headers of ".hxsf" files various components that participate in

the definition of the interaction term. On Fig.14.1 we provide an example. As in Chap.12, we declare lifelines

under a @lifeline section and messages under a @message section.

However, given that messages can have typed parameters, we declare the types (and hence number)

of those parameters in between parentheses as illustrated on Fig.14.1. The types supported by HIBOUX

include Bool and Integer as illustrated on Fig.14.1. The parameters of a message constitute an ordered

list, and, individual parameters can be referred to by their index on that list. For instance $0 may refer to

the parameter of index 0.

Profiles of variables can be declares under a dedicated @variable section, as illustrated in Fig.14.1. A

variable profile declares the type of variables that may be instantiated on some lifelines during execution

or before the start of the execution, in a dedicated initialization stage. A variable profile may correspond

to instances of variables that may exist on any lifeline. Let us recall that in HIBOUX there are no global

variables. All variables are locally defined and we may create new instances of variables during execution.

@message {
publish (Integer ,Integer , Integer);
puback (Integer ,Bool);
transmit (Integer)

}
@variable {

mkey : Integer ;
key : Integer ;
data : Integer ;
gdat : Integer ;
gkey : Integer ;
mid : Integer ;

}
@lifeline {

pub1;broker;sub1;sub2
}
@init {

broker.mkey = #;
pub1.key = #

}

Figure 14.1: Example header declaration in a ".hxsf" file

322 CHAPTER 14. THE HIBOUX TOOL

@loopH (
@scope {gkey,gdat,mid}(

@seq(
pub1

-- publish(#,#,key)
-> broker{mid:=$0;gdat:=$1;gkey:=$2},

@alt(
@seq(

[(gkey=mkey)]broker
-- puback(mid,>)
-> pub1,

broker
-- transmit(gdat)
-> (sub1{data:=$0}, sub2{data:=$0})

),
[(gkey!=mkey)]broker

-- puback(mid,⊥)
-> pub1

)
)

)
)

Figure 14.2: Encoding of a symbolic interaction (continuation of Fig.14.1)

The declaration of lifelines, messages and variables are all independent from one another. A declared

lifeline may emit or receive any declared message and own an instance of any declared variable.

In addition, we can initialize variables on some lifelines and set values to them. This can be done under

the dedicated @init section, as illustrated on Fig.14.1.

14.2.2 Specifying symbolic interactions

Symbolic interactions are encoded in ".hxsf" files in the same manner than labelled interactions are encoded

in ".hsf" files. We illustrate this encoding with the example interaction from Fig.14.3 which encoding is

presented in Fig.14.1 and on Fig.14.2.

We can remark that the overall structure of interaction terms is identical. The main difference comes

with the definition of actions in which:

• the associated message may carry data and:

– in the case of receptions this data may either be a raw value or a symbol # to signify random

input data

– in the case of emissions this data may be a term formulated on variables carried by the lifeline

• we may add some programs written in the language evoked in Chap.13 as either or both a preamble

or postamble.

• there is an additional scope constructor which serves as making variables unique and have a local

scope w.r.t. a certain sub-behavior.

14.2. ENTRY LANGUAGE 323

Figure 14.3: Symbolic interaction specified by the ".hxsf" file from Fig.14.1 and Fig.14.2

In the toy example from Fig.14.3, we describe a DS composed of four sub-systems pub1 which publishes

new information, broker which receives and may transmit this information and sub1 and sub2 which receive

the transmitted information.

The sending of new information by pub1 can be repeated; in the model we use a loopH constructor.

Concretely, pub1 sends a publish message to broker with three integer arguments which are a random

message identifier ($0), random data ($1) and its authentication key which serves as identifying it as an

certified published or information.

When the broker receives the message, it creates new temporary variables mid, gdat and gkey to store

the received message identifier, data ("got data") and key ("got key"). Those variables are uniquely defined

for each instantiation of the loopH thanks to the use of the scope constructor. For instance, if the pub1

sends two different publish messages and the broker receives them, it will create a mid_1 variable for the

message id of the first message and a mid_2 variable for the second.

In a given instance of the loop, after having received the publish message, the broker compares the key

that it received and stored in its temporary gkey variable to its master key mkey. Then:

• If they are equal then the publication is authenticated and the broker confirms it to pub1 by sending

puback with the corresponding message identifier mid and a Boolean > to signify success. Then, the

received data, stored in the temporary gdat variable is transmit to the subscribers sub1 and sub2 via

the transmit message.

• If they are different then the broker refuses to transmit the data and informs the publisher pub1 by

324 CHAPTER 14. THE HIBOUX TOOL

answering with a puback message that carries the corresponding message identifier mid and a Boolean

⊥ to signify failure.

14.2.3 Specifying multi-traces with concrete data

Multi-traces with concrete data are encoded in ".hxtf" files for use with HIBOUX. This encoding is similar

to the one used to encode labelled multi-traces in ".htf" files presented in Chap.12.

We provide an example on Fig.14.4. It suffices to add the raw values of concrete parameters in between

parenthesis after the name of the corresponding message.

{
[pub1] pub1!publish(1,999,456);
[broker] broker?publish(1,999,456).broker!puback(1,>);
[sub1,sub2]

}

Figure 14.4: Multi-trace with concrete data in a ".hxtf" file

14.3 Proof of concept use case

The thesis has been carried-out as part of the DisTA (Distributed Test Automation) project, financed as a

Fond Unique Interministériel (FUI) by the French Ministry of the Economy and Finance. This project is a

collaborative R&D project between several academic and industrial actors which are represented on Fig.14.5.

Figure 14.5: The DisTA project

As part of the thesis we worked closely with the CEA so as to implement the HIBOUX tool. As a proof

of concept, we have also participated in a use case with Thales. We used HIBOUX to test log files extracted

from a prototype distributed system made by Thales.

On Fig.14.7 is represented the interaction that models the prototype. It consists of three moving vehicles

hkb1, hkb2 and hkb3 which regularly transmit their positions (x and y coordinates) via a position message

to a station sta1. This station keeps track of the last known positions of each vehicle via the h1x, h1y,

14.3. PROOF OF CONCEPT USE CASE 325

h2x, h2y, h3x and h3y variables. Then, an operator ope1 may send a request to the sta1 station to put

to sleep for a given amount of time any vehicle that is within a specific square area. This square area is

delimited by four coordinates. Hence the message zsleep contains four arguments. When the station sta1

receives it, it stores the received values into temporary xmin, ymin, xmax, ymax and duration variables.

Then depending on whether or not each of the three vehicles are in the designated area (for instance we

must have (xmin ≤ h1x ≤ xmax) ∧ (ymin ≤ h1y ≤ ymax) satisfied for vehicle hkb1 to be in the area), a

sleep command hsleep, with the corresponding duration is transmitted to those that are. Any vehicle that

receives one such sleep command request confirmation to the operator ope1 before entering into sleep mode.

Figure 14.6: Parsing log files collected from the Thales prototype into multi-traces with data

In order to analyze the outputs of this distributed system with HIBOUX, we have collected log files

produced by each sub-system. Parts of two such log files are represented at the top of Fig.14.6 (the one

on the left corresponds to hkb2 and the one on the right corresponds to sta1). Those log files (".log"

format) consists in several thousands lines containing logging information, not all of which is pertinent to

our analysis. In order to transform those files into a multi-trace, we have written a parser in Python. Each

log file, corresponding to an individual lifeline is parsed and transformed into a local trace component. The

sum of those local trace component then is reconstituted into a multi-trace as shown on Fig.14.7.

Finally, those multi-traces were analyzed against the interaction model from Fig.14.7. In total we have

analyzed several multi-traces both accepted and with non-conformities (introduced willfully) and which sizes

(in total number of actions) varied between 408 and 572. As for the time required for the analysis, it ranged

from 16.67 seconds to 91.05 seconds on a Dell Latitude 7480 with a 2 cores 2.00GHz Intel i5-6360U processor.

Let us however remark, that more recent works on HIBOU such as the checking of local frontiers have not

been ported to HIBOUX at the time of those experiments.

326 CHAPTER 14. THE HIBOUX TOOL

Figure 14.7: Symbolic interaction model for the Thales prototype use case

14.3. PROOF OF CONCEPT USE CASE 327

Conclusion

In this chapter we have presented the HIBOUX tool, which extends HIBOU by handling data in interaction

models thanks to symbolic execution. We have notably used this tool as part of a prototype use case with

an industrial partner.

328 CHAPTER 14. THE HIBOUX TOOL

Chapter 15

Conclusion

15.1 Summary

In this thesis we have defined an Interaction Language (IL) for modelling the behavior of Distributed Systems

(DSs). This expressive language, formulated as a term algebra, includes operators for strict and weak

sequencing, alternative and parallel composition and four kinds of loops so as to express nuances in the

repetition of behaviors. The mathematical foundation of the meaning of that language is a trace semantics

formulated in denotational style as a homomorphism between the term algebra of interactions and an algebra

of sets of traces. Each interaction model is associated to a set of sequences of communication actions called

a trace. This formulation of the semantics serves as a reference and allows for proving interesting properties.

It is notably used to justify the definition of normal forms of interaction terms (computed via term rewriting)

which are unique, compact and minimal represent of classes of equivalence containing syntactically distinct

but semantically equivalent interaction terms.

However the denotational formulation of the semantics is cumbersome for use in some applications in

Formal Verification (FV). As a consequence, we define a structural operational semantics for our IL which

is inspired by that which can be found in the domain of process calculus. We then prove that this opera-

tional formulation is equivalent to the denotational formulation of the trace semantics of interactions, which

constitutes, as mentioned before, a mathematical foundation.

The operational semantics then enables the definition of various algorithms for analyzing partial and

distributed observations of the executions of DSs against formal specifications written as interaction models.

The distributed nature of the observation, with each sub-system producing their own logs, combined with the

absence of synchronization mechanism (or e.g. global clock), which prevents the global reordering of events,

makes so that the objects to analyze are sets of local traces that we call multi-traces. The partial nature

of observation makes so that we may need to analyze prefixes or slices (i.e. "sub-words") of multi-traces in

which, on each component traces, events may be missing at the beginning (due to the observation having

started too late) or at the end (due to the observation having ended too early). The various algorithms which

329

330 CHAPTER 15. CONCLUSION

we have defined for identifying and discriminating between those diverse cases of partial observation either

rely on simulation steps to complete missing events corresponding to unobserved behavior or on hiding steps.

Hiding steps consist in restricting the analysis of the multi-trace to a smaller interaction model. Instead of

continuing using the whole interaction specification, once a sub-system stops from being observed, we rather

use a sub-specification that only concerns the sub-systems that are still observed.

Using an algorithmization of the operational semantics called the "execution semantics", which we have

proven to be correct, we implemented the HIBOU tool which features most if not all the theoretical results

developed during the thesis. This includes the ability to specify, manipulate and draw interaction models,

compute their normal forms, explore their semantics and analyze multi-traces against them using any of the

multi-trace analysis algorithms which we defined.

In addition, in order to meet challenges presented by an industrial use-case, we have enriched our IL with

data via the implementation of the HIBOUX (HIBOU with symbolic eXecution) which allows the execution

of interaction models enriched with data in the form of variables, message parameters, guards and so on.

HIBOUX uses symbolic execution so as to treat in an efficient manner the analysis of multi-traces that

contains typed data as parameters of send and received messages. We have used this tool in order to test

outputs (sets of logs) of a prototype implementation provided by an industrial partner as part of the FUI

DisTA project.

15.2 Perspectives

The work presented in this thesis could be extended in various ways. It can also be related to more distant

research. In this section, we discuss research directions that could extend or benefit from our work.

15.2.1 Formalizing value passing & symbolic interactions

With the presentation of HIBOUX we have touched upon the notion of value passing because the data in a

message that is send must be the same when that message is received. In HIBOUX this is taken care of by

rewriting the symbolic interaction model so as to write the values computed when the message is send onto

the message arguments of the corresponding receptions. However we have not formalized those mechanisms

of value passing. Value passing can be defined and formalized independently of the addition of data or the

use of symbolic execution. As a result, a first step towards the formalization of the theory behind HIBOUX

could be to formalize an Interaction Language with value passing.

Then, of course, a follow-up research would be to propose a full formalisation of a symbolic interaction

language and its semantics.

15.2.2 Towards testing & extended formal verification

In this thesis, we have presented various algorithms as solutions to the membership problems associated

with specific semantics. Although the analysis of a multi-trace shares similarities with the notion of a test,

15.2. PERSPECTIVES 331

we have not explicitly touched upon this subject on the thesis. This can be explained by the absence of

a notion of conformance relation associated with interaction models and multi-traces, which naturally calls

for further work. Additionally, we have not yet discussed methods such as the automatic generation of test

cases which are associated to partices of model-based testing.

The application of other Formal Verification techniques to our approach could also be investigated.

This notably includes monitoring or online testing. In the context of this thesis, with multi-trace analysis,

we have carried out a form of passive testing, in which a pre-existing finite multi-trace, that is collected

after the execution of the DS, is analysed. With monitoring, the analysis occurs while the system is being

executed, with the monitor listening for the occurrence of new events so as to feed the execution of the formal

specification model which intends to reflect that of the concrete system implementation. This approach of

monitoring aims at making sure of the smooth running of deployed implementations. With online-testing,

the monitor is replaced by a tester, which also listens for the occurrence of events, but is also allowed to

interact with the system and stimulate its execution, for instance, so as to force the expression of a certain

behavior. Those two approaches of monitoring and online-testing could be the object of further work.

15.2.3 Enriching the interaction language

It is always possible to increase the expressivity of a language. This is therefore also the case for our

Interaction Language. As many different and sometimes incompatible extensions can be investigated, further

work related to the enrichment of the language with new constructs may be various and heterogeneous in

nature, maturity and potential interest. In the following we present some such extensions.

We have seen in Chap.11, with the co-region constructs, that other operators could be added to the

language for a gain in expressivity. In the particular case of co-regions, it would be interesting to explore

their inclusion into the core language. Moreover, the nature of co-regions as configurable scheduling operators

makes so that we could define an entirely new family of loops based around co-regions. In addition, given

that co-regions may coincide with both weak sequencing and interleaving, we could define a formalism in

which there are only co-regions. In this formalism, the two aforementioned operators would be included as

edge cases of the co-region operators.

In the language presented in this thesis, we have define loops as Kleene closures, which allow repetitions

up to any arbitrary high number of times. We could extend the IL so as to enable the restriction of loops in

several manners:

• either by specifying a maximum number of repetitions, a minimum number of repetitions or both

• or by defining "break" and "continue" constructs attached to the evaluation of actions and which

would destroy the current instance and (in the case of break) the initial loop when evaluated.

Another interesting extension to the IL would be the addition of modality. In UML-SD, modality takes

the form of the assert and negate combined fragments which allow the specification of valid and invalid

traces. However, as explained in [63, 100], this manner of defining modality comes with many issues. In

332 CHAPTER 15. CONCLUSION

[63] the notion of hot (universal) and cold (existential) modalities associated to individual actions is rather

proposed.

The language which we have presented has a static structure by nature. Indeed, any term is defined

up to a signature (L,M) which determines which messages and lifelines are defined. A possible extension

to the language would be to allow the creation and destruction of lifelines associated to the evaluation of

some actions. Lifeline "templates" could be defined so as to create new lifelines during execution, that are

expected to express specific behaviors.

Another possible extension to the IL would be that of considering groups of lifelines which contents could

vary in time. This can be linked to the previous point, with, for instance, newly created lifelines becoming

members of a certain group. Then, we could for instance define broadcasts that target members of these

groups. Instead of having an alternative to cover all cases of which lifelines may or may not receive the

broadcast, this would then be covered by the membership of the lifeline to a certain group.

Finally, in our IL we have only considered non-deterministic choice for the taking of alternative branches

or the instantiation of loops. This non-determinism however is in fact rather linked to the choice of which

action is fired rather than to the specific alt or loopk constructors. A possible extension to the language

would then be to consider probabilistic interactions (by analogy to probabilistic automata) in which the

execution of specific actions can be associated with probabilities.

15.2.4 Towards leaning interaction models

In this thesis, we have seen that we could analyse multi-traces collected from executions of a Distributed

System against a specification of that DS written as an interaction model. However, in practice, it might be

so that, on the one hand, we have no such interaction model, and, on the other hand, we might have a large

dataset of collected multi-traces. Then, reconstructing an interaction model from this set of multi-traces

would consists in a sort of reverse analysis. Doing so would then allow the automatic generation of models

which could, for instance, help the understanding of complex systems which were not designed but rather

emerged from the cooperation of various sub-systems.

An ideal tool for this kind of endeavour would be machine learning as it has already been used in the

literature for learning automata-like models from traces [110]. The works presented in this thesis would help

two aspects of learning interaction models:

• the multi-trace analysis algorithms that we have defined would constitute a criteria for whether or not

a generated model is valid

• with the normalization of interaction terms, a machine learning algorihtm would only need to search

for terms in the space of normal forms instead of the space of all interaction terms

On the first point, we could notably define a dedicated multi-trace analysis algorithm that is able to

analyse several multi-traces at once and stops if any one of them is not accepted.

Appendices

333

Appendix A

Synthèse en français

Le caractère distribué de certains systèmes complexifie les problématiques liées à leur modélisation et à la

vérification de leurs comportements. Dans le cadre de cette thèse nous nous intéressons à un type de formal-

isme particulier: les interactions, afin de modéliser le comportement de systèmes distribués. On y spécifie

les échanges asynchrones de messages pouvant être observés aux interfaces des différents sous-systèmes d’un

système distribué. Nous pouvons associer aux interactions une notation graphique intuitive qui permet une

compréhension et une prise en main facile. Dans cette thèse nous formalisons ce type de modèles avec un

Langage d’Interactions (LI) défini sous la forme d’une algèbre de termes. Ces termes sont construits à partir

d’interactions atomiques qui peuvent correspondre à un comportement vide ou l’expression d’évènements

de communication atomiques i.e. émissions ou réceptions de messages. Des opérateurs permettent la con-

struction de termes plus complexes par composition. Un opérateur de séquencement strict est utilisé pour

signifier qu’un évènement doit avoir lieu après un autre. Un opérateur de composition parallèle permet

à deux évènements d’avoir lieu dans n’importe quel ordre. Le séquencement faible, qui est particulier aux

systèmes distribués, consiste à ce que les évènements se produisent séquentiellement s’ils ont lieu sur le même

sous-système mais en parallèle dans le cas contraire. La composition alternative permet de spécifier un choix

non-déterministe entre deux comportements. Différentes nuances dans la répétitions de comportements

peuvent être exprimés en utilisant quatre opérateurs de boucle distincts.

Nous définissons ensuite une sémantique de trace, associant à chaque terme d’interaction un ensemble de

séquences d’évènements qui représentent les comportements pouvant être exprimés par le système distribué

qui est modélisé. Cette sémantique est formulée dans un premier temps de manière dénotationnelle. La

sémantique d’interactions complexes est définie par composition à partir de celles de ses sous-termes, com-

posées à l’aide d’opérateurs algébriques sur les ensembles de traces. Cette formulation prenant la forme d’un

morphisme d’algèbre nous pouvons ensuite utiliser les propriétés algébriques des opérateurs sur les ensembles

de traces (associativité, commutativité, etc.) pour obtenir des équations reliant des termes d’interactions

ayant la même sémantique. Grâce aux techniques de réécriture nous pouvons ensuite définir des formes nor-

males de terme d’interaction. Ces formes normales correspondent à des termes qui expriment d’une manière

335

336 APPENDIX A. SYNTHÈSE EN FRANÇAIS

la plus compacte possible, un certain comportement.

Dans un deuxième temps, nous proposons une formulation opérationnelle de la sémantique de trace, qui

permet de rendre les modèles d’interaction exécutables et ouvre la voie à des applications plus poussées

en vérification. Cette formulation opérationnelle consiste en la détermination de transformations qui, en

partant d’une interaction initiale, et via l’expression d’un certain évènement atomique, aboutie à une nouvelle

interaction qui spécifie exactement toutes les continuations des comportements exprimables par la première

et qui commencent par l’évènement en question. Ces deux formulations de la sémantique des interactions

sont prouvées équivalentes, la preuve étant supportée par le prouveur de théorème Coq.

Les exécutions d’un système distribué peuvent être observées au travers de logs des évènements de

communication collectés localement. Sans horloge globale il n’est pas possible de réordonner ces évènements

globalement. Analyser une exécution revient donc à analyser un ensemble de traces, chacune correspondant

à une observation locale, qu’on appelle une multi-trace. De plus, sur chaque composante locale, il se peut que

l’observation ait commencé trop tard ou ait cessé trop tôt. Ainsi, une multi-trace peut correspondre à une

observation partielle d’une exécution. Tirant parti de la formulation opérationnelle ainsi que de propriétés

et transformations prouvées par rapport à la formulation dénotationnelle nous proposons des algorithmes

d’analyse permettant d’identifier une multi-trace comme étant une observation d’un comportement spécifié

par une interaction.

Notre approche a été implémentée au sein d’un outil appelé HIBOU qui permet de spécifier et dessiner

des interactions, d’explorer leur sémantiques, de calculer des formes normales ou d’analyser des multi-traces.

Nous avons étendu notre LI pour inclure des données sous la forme de variables définies localement. Des

gardes, expressions booléennes sur les variables, peuvent conditionner l’exécution d’actions et les messages

peuvent porter des données exprimées à l’aide des variables. L’extension aux données a été implémentée en

utilisant les techniques d’exécution symbolique. Cet outil étendu a été utilisé pour un cas d’usage industriel

dans le cadre du projet FUI DisTA.

337

338 Notations

Notations

Trace Semantic Domain (basics)

L a set of lifelines

l a lifeline l element of L i.e. l ∈ L

M a set of messages

m a message m element of M i.e. m ∈M

Ω a signature Ω = (L,M)

! symbol for discrete emission

? symbol for discrete reception

∆ either of ! or ?

AΩ set of all actions AΩ = L× {!, ?} ×M up to signature Ω

a an action a element of AΩ i.e. a ∈ AΩ

θ(a) lifeline (in L) on which action a occurs i.e. a of the form θ(a)∆m

ε

empty word (in general)

or empty trace (empty word of TΩ)

or empty position (empty word of {1, 2}∗), etc.

. concatenation law on words

TΩ set of all (global) traces TΩ = A∗Ω up to signature Ω

t or ς we may denote by t or ς traces i.e. elements of TΩ

|t| length of a trace t

Trace Semantic Domain (algebraic operators)

t××l
predicate stating that a trace t has some conflict w.r.t. a lifeline l

i.e. contains actions occurring on l

t1; t2 strict sequencing of two traces t1 and t2

T1;T2 strict sequencing of two sets of traces T1 and T2

t1;×× t2 weak sequencing of two traces t1 and t2

T1;×× T2 weak sequencing of two sets of traces T1 and T2

339

340 Notations

t1||t2 interleaving of two traces t1 and t2

T1||T2 interleaving of two sets of traces T1 and T2

� any scheduling operator i.e. any of either ; or ;×× or ||

T ;∗ the strict Kleene closure of set of traces T

T ;××∗ the weak Kleene closure of set of traces T

T ||∗ the interleaving Kleene closure of set of traces T

t1;�×× t2 the restricted weak sequencing of two traces t1 and t2

T1;�×× T2 the restricted weak sequencing of traces T1 and T2

T ;�××∗ the weak Head-First closure of set of traces T

Interaction syntax & Denotational Semantics

IΩ set of all interactions up to a signature Ω

i an interaction i element of IΩ i.e. i ∈ IΩ

σd(i)
set of traces accepted by interaction i

according to the denotational semantics σd

Equational Logic

F =
⋃
n∈N Fn

a set of operation symbols of arities 0 (constants) or more (n > 0)

in particular it may refer to operation symbols of our interaction language

f ∈ Fn an operation symbol of arity n

X a set of variables

TF (X) the free term algebra associated to F and X

TF the ground term algebra associated to F

t ∈ TF (X) a term of the term algebra

pos(t) set of positions of the nodes of term t seen as a tree

p ∈ pos(t) the position of a node in the tree associated to t

t|p the sub-term of t at position p

t[s]p replacing the sub-term at position p in t by s

A = (A,FA)
a F-algebra of carrier A

in particular it may refer to A = (P(TΩ),FA) the F-algebra of sets of traces

fA ∈ FA the interpretation of a symbol f ∈ F in the F-algebra A

ρ a mapping ρ : X → A

ρ
an environment, extending a mapping ρ to terms

as a homomorphism between TF (X) and A

Notations 341

φ
a substitution φ : TF (X)→ TF (X), replacing within a term

all occurrences of some variables by some corresponding terms

x ≈ y an equation, relating two terms of a term algebra

E a set of equations on terms, called an axiom system

≈E congruence relation on terms induced by E through the rules of equational logic

=A congruence relation on terms induced by A through semantic equivalence

Term Rewriting

l ; r a rewrite rule

R a Term Rewriting System i.e. a set of rewrite rules

→R the one-step rewrite relation induced by R

E > an Ordered Rewriting System i.e. an axiom system E and a rewrite ordering >

→E> the one-step rewrite relation induced by E >

T an equational theory i.e. another name (in this context) for an axiom system

R/T a Class Rewriting System i.e. a TRS R and an equational theory T

→R/T the one-step rewrite relation induced by R/T

≺I a total rewrite ordering on (ground) interaction terms

R1(i) normal form modulo AC of interaction i w.r.t. phase 1 of the process

R2(i) normal form modulo AC of interaction i w.r.t. phase 2 of the process

R≺(i) normal form of interaction i w.r.t. the total order ≺ and rules of AC

R(i) normal form of interaction i with R(i) = R≺(R2(R1(i)))

Operational Semantics

i ↓ predicate stating that an interaction i terminates i.e. accepts the empty trace

i ↓×× l
predicate stating that an interaction i evades a lifeline l

i.e. accepts a trace t with no conflict w.r.t. l i.e. such that ¬(t××l)

i××
l−→ i′

predicate stating that i′ is the unique interaction that exactly accepts traces

t ∈ σd(i) s.t. ¬(t××l) of which there is at least one

i
a−→ i′

predicate stating that action a ∈ AΩ found at a certain leaf of i ∈ IΩ

is immediately executable

and that what remains to be executed is specified by interaction i′

σo(i) set of traces accepted by interaction i according to the operational semantics σo

Execution Semantics

p position i.e. word of {1, 2}∗ with ε the empty position

pos(i) set of the positions of the nodes of interaction i seen as a binary tree

342 Notations

i|p sub-interaction of i at position p ∈ pos(i)

prn(i, l) unique interaction such that i××l−→ prn(i, l)

frt(i) positions of all immediately executable actions in i (frontier of execution)

exe(i, p)
follow-up interaction that specifies what remains to be executed

after the execution of action i|p at position p ∈ frt(i)

i
a@p−−→ i′ short notation for p ∈ frt(i) and i|p = a and exe(i, p) = i′

empty(i) is the set {ε} if i ↓ and is the set ∅ if i 6↓

σe(i) set of traces accepted by interaction i according to the execution semantics σe

σn(i)
normalizing execution semantics i.e. variant of σe in which

we normalize intermediate terms using rewriting

prn≈(i, l) variant of "prn" with on-the-fly term simplification s.t. prn≈(i, l) ≈EI prn(i, l)

exe≈(i, p) variant of "exe" with on-the-fly term simplification s.t. exe≈(i, p) ≈EI exe(i, p)

σ≈
e
(i)

simplifying execution semantics i.e. variant of σe in which

we simplify intermediate terms on the fly when computing them

σ(i)
trace semantics of interaction i

according to any of σd, σo, σe, σn or σ≈
e
which are proven equivalent

Multi-traces (basics)

Part(L) set of all partitions of set L

Ľ the discrete partition of set L i.e. Ľ = {{l} | l ∈ L}

C a partition of set L i.e. C ∈ Part(L)

c a co-localization c element of a partition C i.e. c ∈ C

θC(a) co-localization (in C) on which a occurs i.e. unique c ∈ C s.t. θ(a) ∈ c

AΩ|c subset of AΩ containing actions a occurring on c i.e. such that θC(a) = c

TΩ|c trace components on co-localization c i.e. TΩ|c = A∗Ω|c

TΩ|C set of all multi-traces TΩ|C =
∏
c∈C TΩ|c up to signature Ω and partition C

µ a multi-trace µ element of TΩ|C i.e µ ∈ TΩ|C

µ|c the trace component µ|c of multi-trace µ on co-localization c i.e. µ = (µ|c)c∈C

µ[t]c substitution of the component µ|c of µ by t ∈ TΩ|c

εC empty multi-trace in TΩ|C i.e. εC = (ε)c∈C

Multi-traces (algebraic operators)
→
�C left concatenation law so that a

→
�C µ = µ[a.µ|θC(a)]θC(a)

←
�C right concatenation law so that µ

→
�C a = µ[µ|θC(a).a]θC(a)

�C concatenation law on multi-traces up to C

Notations 343

;©C strict sequencing operator on multi-traces

××©C weak sequencing operator on multi-traces

©C interleaving operator on multi-traces

;©C∗ strict Kleene closure on multi-traces
××©�
C∗ weak Head-First closure on multi-traces
××©C∗ weak Kleene closure on multi-traces

©C∗ interleaving Kleene closure on multi-traces

T prefix-closure of a set of traces or multi-traces T

T slice-closure of a set of multi-traces T

Morphisms between types

projC projection operator from traces to multi-traces up to C

hidec(i)
interaction where (actions occurring on) lifelines from c have been removed

from i by the hiding operator hidec

elimc

elimination operator on multi-traces

erases the trace component on co-localization c

Multi-trace semantics

σ|C(i) multi-traces exactly accepted by i (projections of accepted traces)

σ†|C(i) multi-traces that are projections of prefixes of traces accepted by i

σ|C(i)
multi-traces that are prefixes (in the sense of multi-traces)

of multi-traces accepted by i

σ|C(i)
multi-traces that are slices (in the sense of multi-traces)

of multi-traces accepted by i

σ©C(i) algebraic multi-trace semantics of i

σ©C(i) algebraic multi-prefix semantics of i

Analysis algorithms

G analysis graph, of which traversals constitute the analysis algorithm

V vertices of the analysis graph

v ∈ V a vertex of the analysis graph

v ; v′ a transition between two vertices in graph G

|v| measure of vertex v

ωC basic algorithm to recognize σ|C

ω©L algorithm with hiding steps to recognize σ|Ľ = σ©
Ľ

ωC algorithm with simulation steps to recognize σ|C

344 Notations

ω∗C

algorithm with simulation steps to recognize and discriminate between

elements of σ|C , σ†|C , σ|C and σ|C

Bibliography

[1] Official coq website. https://coq.inria.fr/, . Accessed: 2021-01-26.

[2] Official documentation on coq tactics. https://coq.inria.fr/refman/proof-engine/tactics.

html, . Accessed: 2021-01-26.

[3] Papyrus. https://www.eclipse.org/papyrus/, . Accessed: 2021-02-05.

[4] Planttext tool for drawing uml diagrams from plantuml. https://www.planttext.com/, . Accessed:

2021-02-09.

[5] Plantuml. https://plantuml.com/, . Accessed: 2021-02-09.

[6] Raspberry pi. https://www.raspberrypi.org/, . Accessed: 2021-05-26.

[7] Rust programming language. https://www.rust-lang.org/, . Accessed: 2021-05-26.

[8] STMicroelectronics. https://www.st.com/, . Accessed: 2021-05-26.

[9] Cinderella tool. http://www.cinderella.dk/, . Accessed: 2021-02-09.

[10] Diversity tool. https://projects.eclipse.org/projects/modeling.efm, . Accessed: 2021-02-09.

[11] Estelle tool. http://www-lor.int-evry.fr/idemcop/uk/est-lang/download/, . Accessed: 2021-

02-09.

[12] Jade tool. https://homepages.dcc.ufmg.br/~coelho/jade.html, . Accessed: 2021-02-09.

[13] Lotos tool. http://cadp.inria.fr/man/lotos.html, . Accessed: 2021-02-09.

[14] Opengeode tool. https://github.com/esa/opengeode, . Accessed: 2021-02-09.

[15] Pragmadev studio. https://www.pragmadev.com/product/studio.html, . Accessed: 2021-02-09.

[16] Spin tool. http://spinroot.com/spin/whatispin.html, . Accessed: 2021-02-09.

[17] Uppaal tool. https://uppaal.org/, . Accessed: 2021-02-09.

[18] Visual paradigm. https://www.visual-paradigm.com/, . Accessed: 2021-02-05.

345

https://coq.inria.fr/
https://coq.inria.fr/refman/proof-engine/tactics.html
https://coq.inria.fr/refman/proof-engine/tactics.html
https://www.eclipse.org/papyrus/
https://www.planttext.com/
https://plantuml.com/
https://www.raspberrypi.org/
https://www.rust-lang.org/
https://www.st.com/
http://www.cinderella.dk/
https://projects.eclipse.org/projects/modeling.efm
http://www-lor.int-evry.fr/idemcop/uk/est-lang/download/
https://homepages.dcc.ufmg.br/~coelho/jade.html
http://cadp.inria.fr/man/lotos.html
https://github.com/esa/opengeode
https://www.pragmadev.com/product/studio.html
http://spinroot.com/spin/whatispin.html
https://uppaal.org/
https://www.visual-paradigm.com/

346 BIBLIOGRAPHY

[19] Web service choreography business process execution language. http://docs.oasis-open.org/

wsbpel/2.0/wsbpel-v2.0.pdf, . Accessed: 2021-02-09.

[20] Web service choreography description language. https://www.w3.org/TR/ws-cdl-10/, . Accessed:

2021-02-09.

[21] Websequencediagrams tool for drawing diagrams. https://www.websequencediagrams.com/, . Ac-

cessed: 2021-02-09.

[22] Recommendation z.120 message sequence chart. Technical report, International Telecommunication

Union, 2 2011.

[23] MQTT version 3.1.1. Technical report, OASIS, 12 2015.

[24] Unified Modeling Language v2.5.1. omg.org/spec/UML/2.5.1/PDF, 12 2017.

[25] L. Aceto, W. Fokkink, A. Ingolfsdottir, and B. Luttik. Finite Equational Bases in Process Algebra:

Results and Open Questions, pages 338–367. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

ISBN 978-3-540-32425-6. doi: 10.1007/11601548_18.

[26] R. Alur, K. Etessami, and M. Yannakakis. Realizability and verification of MSC graphs. In F. Orejas,

P. G. Spirakis, and J. van Leeuwen, editors, Automata, Languages and Programming, 28th International

Colloquium, ICALP 2001, Crete, Greece, July 8-12, 2001, Proceedings, volume 2076 of Lecture Notes

in Computer Science, pages 797–808. Springer, 2001. doi: 10.1007/3-540-48224-5_65.

[27] C. Andrés, M. Cambronero, and M. Núñez. Formal passive testing of service-oriented systems. In

IEEE International Conference on Services Computing, SCC, pages 610–613. IEEE, 2010.

[28] F. Babich and L. Deotto. Formal methods for specification and analysis of communication protocols.

IEEE Communications Surveys Tutorials, 4(1):2–20, 2002. doi: 10.1109/COMST.2002.5341329.

[29] O. Badreddin and T. C. Lethbridge. Model oriented programming: Bridging the code-model divide. In

Proceedings of the 5th International Workshop on Modeling in Software Engineering, MiSE ’13, page

69–75. IEEE Press, 2013. ISBN 9781467364478.

[30] J. Baeten. A brief history of process algebra. Theoretical Computer Science, 335(2):131–146, 2005.

ISSN 0304-3975. doi: 10.1016/j.tcs.2004.07.036. Process Algebra.

[31] J. Baeten and J. Bergstra. Global renaming operators in concrete process algebra. Information and

Computation, 78(3):205 – 245, 1988. ISSN 0890-5401. doi: 10.1016/0890-5401(88)90027-2.

[32] T. Balabonski, P. Courtieu, R. Pelle, L. Rieg, S. Tixeuil, and X. Urbain. Continuous vs. Discrete

Asynchronous Moves: a Certified Approach for Mobile Robots. Research report, Sorbonne Université,

CNRS, Laboratoire d’Informatique de Paris 6, LIP6, F-75005 Paris, France, 2018.

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
https://www.w3.org/TR/ws-cdl-10/
https://www.websequencediagrams.com/
omg.org/spec/UML/2.5.1/PDF

BIBLIOGRAPHY 347

[33] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi. A survey of symbolic execution

techniques. ACM Comput. Surv., 51(3), May 2018. ISSN 0360-0300. doi: 10.1145/3182657.

[34] B. Bannour, C. Gaston, and D. Servat. Eliciting unitary constraints from timed sequence diagram

with symbolic techniques: Application to testing. In 2011 18th Asia-Pacific Software Engineering

Conference, pages 219–226, 2011.

[35] D. Basile, P. Degano, G. Ferrari, and E. Tuosto. Relating two automata-based models of orchestration

and choreography. Journal of Logical and Algebraic Methods in Programming, 85(3):425–446, 2016.

ISSN 2352-2208. doi: 10.1016/j.jlamp.2015.09.011. Interaction and Concurrency Experience.

[36] A. Bauer and Y. Falcone. Decentralised LTL monitoring. Formal Methods Syst. Des., pages 46–93,

2016.

[37] N. Benharrat, C. Gaston, R. M. Hierons, A. Lapitre, and P. Le Gall. Constraint-based oracles for timed

distributed systems. In N. Yevtushenko, A. R. Cavalli, and H. Yenigün, editors, Testing Software and

Systems, pages 276–292, Cham, 2017. Springer International Publishing. ISBN 978-3-319-67549-7.

[38] J. Bergstra and J. Klop. Process algebra for synchronous communication. Information and Control,

60(1):109–137, 1984. ISSN 0019-9958. doi: 10.1016/S0019-9958(84)80025-X.

[39] Y. Bertot and P. Castran. Interactive Theorem Proving and Program Development: Coq’Art The

Calculus of Inductive Constructions. Springer Publishing Company, 2010. ISBN 3642058809.

[40] S. Bishop, M. Fairbairn, M. Norrish, P. Sewell, M. Smith, and K. Wansbrough. Rigorous spec-

ification and conformance testing techniques for network protocols, as applied to tcp, udp, and

sockets. SIGCOMM Comput. Commun. Rev., 35(4):265–276, Aug. 2005. ISSN 0146-4833. doi:

10.1145/1090191.1080123.

[41] D. Brand and P. Zafiropulo. On communicating finite-state machines. J. ACM, 30(2):323–342, Apr.

1983. ISSN 0004-5411. doi: 10.1145/322374.322380.

[42] M. V. Cengarle and A. Knapp. An institution for uml 2.0 interactions. Technical report, Institut für

Informatik, Technische Universität München, 1 2008.

[43] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi.

Tree automata techniques and applications, 10 2007.

[44] E. Contejean, P. Courtieu, J. Forest, O. Pons, and X. Urbain. Automated certified proofs with cime3.

volume 10, pages 21–30, 01 2011. doi: 10.4230/LIPIcs.RTA.2011.21.

[45] M. Conti, N. Dragoni, and V. Lesyk. A survey of man in the middle attacks. IEEE Communications

Surveys Tutorials, 18(3):2027–2051, 2016. doi: 10.1109/COMST.2016.2548426.

348 BIBLIOGRAPHY

[46] V. Crespi, A. Galstyan, and K. Lerman. Top-down vs bottom-up methodologies in multi-agent system

design. Autonomous Robots, 24(3):303–313, 4 2008. ISSN 1573-7527. doi: 10.1007/s10514-007-9080-5.

[47] J. A. Custodio Soares, B. Lima, and J. Pascoal Faria. Automatic model transformation from uml

sequence diagrams to coloured petri nets. In Proceedings of the 6th International Conference on

Model-Driven Engineering and Software Development, MODELSWARD 2018, page 668–679, 2018.

ISBN 9789897582837. doi: 10.5220/0006731806680679.

[48] W. Damm and D. Harel. Lscs: Breathing life into message sequence charts. Formal Methods in System

Design, 19(1):45–80, 2001. ISSN 1572-8102.

[49] H. Dan and R. M. Hierons. Conformance testing from message sequence charts. In Fourth IEEE In-

ternational Conference on Software Testing, Verification and Validation, ICST, pages 279–288. IEEE,

2011.

[50] H. Dan and R. M. Hierons. The oracle problem when testing from mscs. Comput. J., 57(7):987–1001,

2014. doi: 10.1093/comjnl/bxt055.

[51] N. Dershowitz and J.-P. Jouannaud. Rewrite Systems, page 243–320. MIT Press, Cambridge, MA,

USA, 1991. ISBN 0444880747.

[52] C. Eichner, H. Fleischhack, R. Meyer, U. Schrimpf, and C. Stehno. Compositional semantics for uml

2.0 sequence diagrams using petri nets. In A. Prinz, R. Reed, and J. Reed, editors, SDL 2005: Model

Driven, pages 133–148, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. ISBN 978-3-540-31539-1.

[53] A. Engels, S. Mauw, and M. Reniers. A hierarchy of communication models for message sequence

charts. Science of Computer Programming, 44(3):253 – 292, 2002. ISSN 0167-6423. doi: 10.1016/

S0167-6423(02)00022-9.

[54] J. P. Faria and A. C. R. Paiva. A toolset for conformance testing against uml sequence diagrams based

on event-driven colored petri nets. International Journal on Software Tools for Technology Transfer,

18(3):285–304, 2016.

[55] T. Firley, M. Huhn, K. Diethers, T. Gehrke, and U. Goltz. Timed sequence diagrams and tool-based

analysis - A case study. In UML’99: The Unified Modeling Language - Beyond the Standard, volume

1723 of Lecture Notes in Computer Science, pages 645–660. Springer, 1999.

[56] F. Fondement, P.-A. Muller, L. Thiry, B. Wittmann, and G. Forestier. Big metamodels are evil.

In A. Moreira, B. Schätz, J. Gray, A. Vallecillo, and P. Clarke, editors, Model-Driven Engineering

Languages and Systems, pages 138–153, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. ISBN

978-3-642-41533-3.

[57] B. Ford. Parsing expression grammars: A recognition-based syntactic foundation. In Proceedings of

the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’04,

BIBLIOGRAPHY 349

page 111–122, New York, NY, USA, 2004. Association for Computing Machinery. ISBN 158113729X.

doi: 10.1145/964001.964011.

[58] M.-C. Gaudel. Software Testing Based on Formal Specification, pages 215–242. Springer Berlin Hei-

delberg, Berlin, Heidelberg, 2010. ISBN 978-3-642-14335-9. doi: 10.1007/978-3-642-14335-9_7.

[59] T. Gehrke, M. Huhn, A. Rensink, and H. Wehrheim. An algebraic semantics for message sequence

chart documents. 4 1999.

[60] B. Genest and A. Muscholl. Pattern matching and membership for hierarchical message sequence

charts. Theory Comput. Syst., 42(4):536–567, 2008. doi: 10.1007/s00224-007-9054-1.

[61] S. Gérard, C. Dumoulin, P. Tessier, and B. Selic. Papyrus: A UML2 Tool for Domain-Specific Language

Modeling, pages 361–368. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. ISBN 978-3-642-16277-

0. doi: 10.1007/978-3-642-16277-0_19.

[62] G. Gonthier. The Four Colour Theorem: Engineering of a Formal Proof, page 333. Springer-Verlag,

Berlin, Heidelberg, 2008. ISBN 9783540878261. doi: 10.1007/978-3-540-87827-8_28.

[63] D. Harel and S. Maoz. Assert and negate revisited: Modal semantics for UML sequence diagrams.

Software and Systems Modeling, 7(2):237–252, 2008.

[64] D. Harel and B. Rumpe. Modeling languages: Syntax, semantics and all that stuff, part i: The basic

stuff. Technical report, ISR, 2000.

[65] O. Haugen, K. E. Husa, R. K. Runde, and K. Stølen. STAIRS towards formal design with sequence

diagrams. Software and Systems Modeling, 4(4):355–367, 2005.

[66] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc., USA, 1985. ISBN

0131532715.

[67] M. Hussein, R. Nouacer, A. Radermacher, A. Puccetti, C. Gaston, and N. Rapin. An end-to-end

framework for safe software development. Microprocessors and Microsystems, 62:41 – 49, 2018. ISSN

0141-9331. doi: 10.1016/j.micpro.2018.07.004.

[68] M. Jantzen. Basics of Term Rewriting, pages 269–337. Springer Berlin Heidelberg, Berlin, Heidelberg,

1997. ISBN 978-3-642-59126-6. doi: 10.1007/978-3-642-59126-6_5.

[69] K. Jensen, L. M. Kristensen, and L. Wells. Coloured Petri Nets and CPN Tools for modelling and

validation of concurrent systems. International Journal on Software Tools for Technology Transfer, 9

(3):213–254, 6 2007. ISSN 1433-2787. doi: 10.1007/s10009-007-0038-x.

[70] J.-P. Jouannaud. Associative-commutative rewriting via flattening, 2005.

350 BIBLIOGRAPHY

[71] J.-P. Jouannaud. Higher-Order Rewriting: Framework, Confluence and Termination, pages 224–

250. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005. ISBN 978-3-540-32425-6. doi: 10.1007/

11601548_14.

[72] S. Kenneth and L. K. Barry. Formal syntax and semantics of programming languages - a laboratory

based approach. Addison-Wesley, 1995. ISBN 978-0-201-65697-8.

[73] J. C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–394, July 1976. ISSN

0001-0782. doi: 10.1145/360248.360252.

[74] C. Kirchner and H. Kirchner. Equational logic and rewriting. In D. M. Gabbay, J. H. Siekmann, and

J. Woods, editors, Handbook of the History of Logic, volume 9 of History of Logic and Computation in

the 20th Century. Elsevier, Mar. 2014. URL https://hal.inria.fr/hal-01183817.

[75] A. Knapp and T. Mossakowski. UML Interactions Meet State Machines - An Institutional Approach.

In 7th Conf. on Algebra and Coalgebra in Computer Science (CALCO 2017), volume 72 of Leibniz In-

ternational Proceedings in Informatics (LIPIcs), pages 15:1–15:15. Schloss Dagstuhl–Leibniz-Zentrum

fuer Informatik, 2017.

[76] M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean termination tool 2. In R. Treinen,

editor, Rewriting Techniques and Applications, pages 295–304, Berlin, Heidelberg, 2009. Springer Berlin

Heidelberg. ISBN 978-3-642-02348-4.

[77] L. Lamport. Time, clocks, and the ordering of events in a distributed system. In D. Malkhi, editor,

Concurrency: the Works of Leslie Lamport, pages 179–196. ACM, 2019.

[78] I. Lanese, C. Guidi, F. Montesi, and G. Zavattaro. Bridging the gap between interaction and process-

oriented choreographies. In 2008 Sixth IEEE International Conference on Software Engineering and

Formal Methods, pages 323–332, 2008. doi: 10.1109/SEFM.2008.11.

[79] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. International Journal on Software Tools

for Technology Transfer, 1(1):134–152, 12 1997. ISSN 1433-2779. doi: 10.1007/s100090050010.

[80] T. Leesatapornwongsa, J. F. Lukman, S. Lu, and H. S. Gunawi. Taxdc: A taxonomy of non-

deterministic concurrency bugs in datacenter distributed systems. SIGPLAN Not., 51(4):517–530,

Mar. 2016. ISSN 0362-1340. doi: 10.1145/2954679.2872374.

[81] X. Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107–115, 7 2009. ISSN

0001-0782. doi: 10.1145/1538788.1538814.

[82] J.-L. Lions, L. Luebeck, J.-L. Fauquembergue, G. Kahn, W. Kubbat, S. Levedag, L. Mazzini, D. Merle,

and C. O’Halloran. Ariane 5 flight 501 failure report by the inquiry board, 1996.

[83] D. Longuet. Global and local testing from message sequence charts. In Proceedings of the ACM

Symposium on Applied Computing, SAC 2012, pages 1332–1338. ACM, 2012.

https://hal.inria.fr/hal-01183817

BIBLIOGRAPHY 351

[84] M. S. Lund and K. Stølen. A fully general operational semantics for uml 2.0 sequence diagrams with

potential and mandatory choice. In J. Misra, T. Nipkow, and E. Sekerinski, editors, FM 2006: Formal

Methods, pages 380–395, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN 978-3-540-37216-5.

[85] M. S. Lund, A. Refsdal, and K. Stølen. 4 Semantics of UML Models for Dynamic Behavior, pages

77–103. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. ISBN 978-3-642-16277-0. doi: 10.1007/

978-3-642-16277-0_4.

[86] J. Mace, R. Roelke, and R. Fonseca. Pivot tracing: dynamic causal monitoring for distributed systems.

In Proceedings of the 25th Symposium on Operating Systems Principles, SOSP, pages 378–393. ACM,

2015.

[87] E. Mahe. Coq proof for the correctness of the multi-trace analysis algorithm. https://erwanm974.

github.io/coq_hibou_label_multi_trace_analysis/, . Accessed: 2021-02-21.

[88] E. Mahe. Coq proof for the equivalence of the semantics. https://erwanm974.github.io/coq_hibou_

label_semantics_equivalence/, . Accessed: 2021-02-21.

[89] E. Mahe. Example coq proof for a property on a toy process algebra. https://erwanm974.github.

io/coq_toy_process_algebra/, . Accessed: 2021-05-20.

[90] E. Mahe. Hiboux tool. https://github.com/erwanM974/hibou_efm, . Accessed: 2021-02-21.

[91] E. Mahe. Hibou tool. https://github.com/erwanM974/hibou_label, . Accessed: 2021-02-21.

[92] E. Mahe. Small experiment using hibou and hiboux on an example mqtt interaction. https://github.

com/erwanM974/hibou_mqtt_benchmark_experiment, . Accessed: 2021-05-20.

[93] E. Mahe, C. Gaston, and P. L. Gall. Revisiting semantics of interactions for trace validity analysis. In

H. Wehrheim and J. Cabot, editors, Fundamental Approaches to Software Engineering, pages 482–501,

Cham, 2020. Springer International Publishing. ISBN 978-3-030-45234-6.

[94] E. Mahe, B. Bannour, C. Gaston, A. Lapitre, and P. Le Gall. A small-step approach to multi-trace

checking against interactions. SAC ’21, page 1815–1822, New York, NY, USA, 2021. Association for

Computing Machinery. ISBN 9781450381048. doi: 10.1145/3412841.3442054.

[95] E. Mahe, C. Gaston, and P. Le Gall. A structural operational semantics for interactions with a look

at loops, 2021.

[96] C. Marché and X. Urbain. Modular and incremental proofs of ac-termination. Journal of Symbolic

Computation, 38(1):873–897, 2004. ISSN 0747-7171. doi: 10.1016/j.jsc.2004.02.003.

[97] S. Mauw and M. Reniers. An algebraic semantics of basic message sequence charts. The Computer

Journal, 37, 3 1996. doi: 10.1093/comjnl/37.4.269.

https://erwanm974.github.io/coq_hibou_label_multi_trace_analysis/
https://erwanm974.github.io/coq_hibou_label_multi_trace_analysis/
https://erwanm974.github.io/coq_hibou_label_semantics_equivalence/
https://erwanm974.github.io/coq_hibou_label_semantics_equivalence/
https://erwanm974.github.io/coq_toy_process_algebra/
https://erwanm974.github.io/coq_toy_process_algebra/
https://github.com/erwanM974/hibou_efm
https://github.com/erwanM974/hibou_label
https://github.com/erwanM974/hibou_mqtt_benchmark_experiment
https://github.com/erwanM974/hibou_mqtt_benchmark_experiment

352 BIBLIOGRAPHY

[98] S. Mauw and M. A. Reniers. High-level message sequence charts. In SDL ’97 Time for Testing, SDL,

MSC and Trends - 8th International SDL Forum, Proceedings, pages 291–306. Elsevier, 1997.

[99] S. Mauw and M. A. Reniers. Operational semantics for msc. Computer Networks, 31(17):1785–1799,

1999.

[100] Z. Micskei and H. Waeselynck. The many meanings of uml 2 sequence diagrams: a survey. Software

& Systems Modeling, 10(4):489–514, 2011.

[101] R. Milner. A Calculus of Communicating Systems. Springer-Verlag, Berlin, Heidelberg, 1982. ISBN

0387102353.

[102] Muan Yong Ng and M. Butler. Towards formalizing uml state diagrams in csp. In First International

Conference onSoftware Engineering and Formal Methods, 2003.Proceedings., pages 138–147, 2003. doi:

10.1109/SEFM.2003.1236215.

[103] F. Neves, N. Machado, and J. Pereira. Falcon: A practical log-based analysis tool for distributed

systems. In 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks,

DSN, pages 534–541. IEEE, 2018.

[104] H. N. Nguyen, P. Poizat, and F. Zaïdi. Passive conformance testing of service choreographies. In

Proceedings of the ACM Symposium on Applied Computing, SAC, pages 1528–1535. ACM, 2012.

[105] R. O’Connor. Essential incompleteness of arithmetic verified by coq. In J. Hurd and T. Melham,

editors, Theorem Proving in Higher Order Logics, pages 245–260, Berlin, Heidelberg, 2005. Springer

Berlin Heidelberg. ISBN 978-3-540-31820-0.

[106] R. M. O’Keefe and D. E. O’Leary. Expert system verification and validation: a survey and tutorial.

Artif. Intell. Rev., 7(1):3–42, 1993. doi: 10.1007/BF00849196.

[107] U. Ozeer, L. Letondeur, G. Salaün, F.-G. Ottogalli, and J.-M. Vincent. F3ARIoT: A Framework for

Autonomic Resilience of IoT Applications in the Fog. Internet of Things, pages 1–54, Dec. 2020. doi:

10.1016/j.iot.2020.100275.

[108] G. Pedroza, P. Le Gall, C. Gaston, and F. Bersey. Timed-model-based Method for Security Analy-

sis and Testing of Smart Grid Systems. In 19th International Symposium on Real-Time Distributed

Computing (ISORC) 2016, York, United Kingdom, May 2016. doi: 10.1109/isorc.2016.15.

[109] G. E. Peterson and M. E. Stickel. Complete sets of reductions for some equational theories. J. ACM,

28(2):233–264, Apr. 1981. ISSN 0004-5411. doi: 10.1145/322248.322251.

[110] A. Pferscher and B. K. Aichernig. Learning abstracted non-deterministic finite state machines. In

V. Casola, A. De Benedictis, and M. Rak, editors, Testing Software and Systems, pages 52–69, Cham,

2020. Springer International Publishing. ISBN 978-3-030-64881-7.

BIBLIOGRAPHY 353

[111] S. Pickin and J.-M. Jézéquel. Using uml sequence diagrams as the basis for a formal test description

language. In E. A. Boiten, J. Derrick, and G. Smith, editors, Integrated Formal Methods, pages 481–500,

Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. ISBN 978-3-540-24756-2.

[112] G. D. Plotkin. An operational semantics for CSP. In Formal Description of Programming Concepts

: Proceedings of the IFIP Working Conference on Formal Description of Programming Concepts- II,

pages 199–226. North-Holland, 1983.

[113] Z. Qiu, X. Zhao, C. Cai, and H. Yang. Towards the theoretical foundation of choreography. In

Proceedings of the 16th International Conference on World Wide Web, WWW, pages 973–982. ACM,

2007.

[114] M. Rocha, A. Simão, T. Sousa, and M. Batista. Test case generation by efsm extracted from uml

sequence diagrams. pages 135–140, 7 2019. doi: 10.18293/SEKE2019-133.

[115] J. E. Rooda, D. A. van Beek, and J. C. M. Baeten. Process algebra. In P. A. Fishwick, editor, Handbook

of Dynamic System Modeling. Chapman and Hall/CRC, 2007. doi: 10.1201/9781420010855.ch19.

[116] G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages, Vol. 1: Word, Language,

Grammar. Springer-Verlag, Berlin, Heidelberg, 1997. ISBN 3540604200.

[117] B. J. Sauser, R. R. Reilly, and A. J. Shenhar. Why projects fail? how contingency theory can provide

new insights – a comparative analysis of nasa’s mars climate orbiter loss. International Journal of

Project Management, 27(7):665–679, 2009. ISSN 0263-7863. doi: 10.1016/j.ijproman.2009.01.004.

[118] T. J. Schaefer. The complexity of satisfiability problems. In R. J. Lipton, W. A. Burkhard, W. J.

Savitch, E. P. Friedman, and A. V. Aho, editors, Proceedings of the 10th Annual ACM Symposium on

Theory of Computing, May 1-3, 1978, San Diego, California, USA, pages 216–226. ACM, 1978. doi:

10.1145/800133.804350.

[119] K. Sen, A. Vardhan, G. Agha, and G. Rosu. Efficient decentralized monitoring of safety in distributed

systems. In 26th International Conference on Software Engineering, ICSE, pages 418–427. IEEE, 2004.

[120] S. Sen, N. Moha, B. Baudry, and J.-M. Jézéquel. Meta-model pruning. In A. Schürr and B. Selic,

editors, Model Driven Engineering Languages and Systems, pages 32–46, Berlin, Heidelberg, 2009.

Springer Berlin Heidelberg. ISBN 978-3-642-04425-0.

[121] K. Shintani and N. Hirokawa. Coll: A confluence tool for left-linear term rewrite systems. In A. P. Felty

and A. Middeldorp, editors, Automated Deduction - CADE-25, pages 127–136, Cham, 2015. Springer

International Publishing. ISBN 978-3-319-21401-6.

[122] H. Störrle. Semantics of interactions in uml 2.0. In IEEE Symposium on Human Centric Computing

Languages and Environments, 2003. Proceedings. 2003, pages 129–136, 10 2003. doi: 10.1109/HCC.

2003.1260216.

354 BIBLIOGRAPHY

[123] J. Tretmans. Model Based Testing with Labelled Transition Systems, pages 1–38. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2008. ISBN 978-3-540-78917-8. doi: 10.1007/978-3-540-78917-8_1.

[124] H. Waeselynck, Z. Micskei, N. Rivière, Á. Hamvas, and I. Nitu. Termos: A formal language for

scenarios in mobile computing systems. In P. Sénac, M. Ott, and A. Seneviratne, editors, Mobile and

Ubiquitous Systems: Computing, Networking, and Services, pages 285–296, Berlin, Heidelberg, 2012.

Springer Berlin Heidelberg. ISBN 978-3-642-29154-8.

[125] G. Winskel. The Formal Semantics of Programming Languages: An Introduction. MIT Press, Cam-

bridge, MA, USA, 1993. ISBN 0262231697.

[126] A. Yamada, K. Kusakari, and T. Sakabe. Nagoya termination tool. In G. Dowek, editor, Rewriting

and Typed Lambda Calculi, pages 466–475, Cham, 2014. Springer International Publishing. ISBN

978-3-319-08918-8.

[127] H. Zankl, B. Felgenhauer, and A. Middeldorp. Csi – a confluence tool. In N. Bjørner and V. Sofronie-

Stokkermans, editors, Automated Deduction – CADE-23, pages 499–505, Berlin, Heidelberg, 2011.

Springer Berlin Heidelberg. ISBN 978-3-642-22438-6.

Titre: Sémantique opérationnelle des interactions pour la vérification d’exécutions partiellement ob-
servées de systèmes distribués
Mots clés: systèmes concurrents et distribués, sémantique dénotationnelle et opérationnelle, réécriture
de terme, analyse de logs distribués, observation partielle, exécution symbolique
Les interactions représentent des communications
asynchrones dans un contexte distribué et sont as-
sociées à des diagrammes qui sont faciles à prendre
en main tout en pouvant spécifier des comporte-
ments précis. Dans cette thèse nous formalisons
ce type de modèles avec un Langage d’Interactions
(LI) se présentant sous la forme d’une algèbre de
termes incluant des opérateurs pour le séquence-
ment strict et faible, la composition alternative et
parallèle ainsi que quatre boucles distinctes.

Notre LI est équipé d’une sémantique asso-
ciant à chaque interaction un ensemble de traces
(séquences d’évènements) pouvant être exprimées.
Nous proposons deux sémantiques dont nous avons
prouvé l’équivalence. La première formulation
dénotationnelle est donnée sous la forme d’un ho-
momorphisme d’algèbres, donnant accès aux tech-
niques de réécriture afin de définir des classes
d’équivalence et des formes normales. Une sec-
onde formulation, opérationnelle, permet diverses
applications en vérification formelle.

Les exécutions d’un système distribué peuvent
être observées au travers de logs des évènements
de communication collectés localement. Sans hor-
loge globale il n’est pas possible de réordonner

ces évènements globalement. Analyser une exécu-
tion revient donc à analyser un ensemble de traces
qu’on appelle une multi-trace. De plus, sur chaque
composante locale, il se peut que l’observation
ait commencé trop tard ou ait cessé trop tôt.
Ainsi, une multi-trace peut correspondre à une ob-
servation partielle d’une exécution. Tirant parti
de la sémantique opérationnelle nous proposons
des algorithmes d’analyse permettant d’identifier
une multi-trace comme étant une observation d’un
comportement spécifié par une interaction.

Notre approche a été implémentée au sein
d’un outil appelé HIBOU qui permet de spéci-
fier et dessiner des interactions, d’explorer leur
sémantiques, de calculer des formes normales ou
d’analyser des multi-traces. Nous avons étendu
notre LI pour inclure des données sous la forme de
variables définies localement. Des gardes, expres-
sions booléennes sur les variables, peuvent condi-
tionner l’exécution d’actions et les messages peu-
vent porter des données exprimées à l’aide des vari-
ables. L’extension aux données a été implémentée
en utilisant les techniques d’exécution symbolique.
Cet outil étendu a été utilisé pour un cas d’usage
industriel dans le cadre du projet FUI DisTA.

Title: An operational semantics of interactions for verifying partially observed executions of distributed
systems
Keywords: distributed and concurrent systems, denotational and operational semantics, term rewrit-
ing, distributed log analysis, partial observation, symbolic execution
Interactions represent asynchronous communica-
tions in a distributed context and can be repre-
sented graphically in an intuitive manner while al-
lowing the specification of precise scheduling poli-
cies for ordering events. In this thesis, we formalize
such models as an Interaction Language (IL) tak-
ing the form of a term algebra which includes strict
and weak sequencing, alternative and parallel com-
position and four semantically distinct loops to ex-
press nuances when repeating behaviors.

This IL is equipped with a semantics associ-
ating a set of traces (sequences of events) to each
interaction. A denotational formulation as a ho-
momorphism allows the use of rewriting to define
equivalence classes and normal forms. An opera-
tional formulation, proven equivalent to the first,
allows further applications in formal verification.

During the execution of a distributed system,
communication logs might be collected locally.
Without a global clock, events cannot be reordered
globally. Hence analyzing an execution comes back
to analyzing a set of local traces that we call a

multi-trace. In addition one might start the ob-
servation too late or end it too early on any local
component. As a result, a multi-trace might cor-
respond to a partially observed execution. Taking
advantage of the operational semantics we define
algorithms for identifying multi-traces as being ob-
servations of behaviors specified by an interaction
model.

We have implemented our approach in a for-
mal verification tool: HIBOU, which allows the
specification and drawing of interactions, the ex-
ploration of their semantics, the computation of
normal forms or the analysis of multi-traces. The
IL can be extended to include data in the form
of locally defined variables. Guards, formulated as
Boolean expressions on variables can condition the
execution of individual actions, while messages can
carry data. This extension has also been imple-
mented and we use symbolic execution to animate
models and perform the analyses. An industrial
case study has been carried out in the context of
the DisTA FUI project.

Maison du doctorat de l’Université Paris-Saclay
2ème étage aile ouest, Ecole normale supérieure Paris-Saclay
4 avenue des Sciences,
91190 Gif sur Yvette, France

	Introduction
	Verification & Validation and Formal Verification
	Modeling Distributed Systems
	Research questions & position of the thesis
	Outline

	Context
	Formal Languages and Formal Semantics
	Equational logic & rewriting
	Modeling Distributed Systems with Interaction Languages
	Process Algebras
	The Coq proof assistant

	On the semantics of Interaction Languages
	A discussion on a selection of papers
	A broader and shallower survey
	Conclusion and position of the thesis

	I The Interaction Language
	Syntax & Denotation
	Semantic domain
	Syntax & Denotational Semantics
	Normal forms of interactions

	A small-step operational semantics
	Definition of the Operational Semantics
	Proof of equivalence between o and d

	Some execution semantics
	Definition of the execution semantics
	Proof of equivalence between e and o
	Execution semantics with simplifications

	Multi-trace semantics
	Multi-traces up to a partition
	Projecting traces
	Semantics of accepted multi-traces
	Prefixes and slices of multi-traces

	II Multi-trace analysis
	 On observing and analyzing executions of distributed systems
	Recognizing accepted multi-traces
	Recognizing projections of prefixes of accepted traces
	Recognizing prefixes of accepted multi-traces
	Recognizing slices of accepted multi-traces

	Algorithm for recognizing accepted multi-traces
	Definition of the algorithm
	Proof of correctness of the multi-trace analysis algorithm
	Complexity class of the multi-trace analysis problem

	The hiding of interaction terms & applications
	Hiding and elimination
	A multi-trace analysis algorithm using hiding steps
	Local frontiers

	III Extensions & tools
	Immediate extensions
	Algorithms with simulation steps
	Co-regions
	Towards an implementation

	The HIBOU tool
	Overview
	Entry language for interaction terms & multi-traces
	Semantic exploration and heuristics
	Multi-trace analysis

	Extension to data
	An issue with abstracting exchanged information as messages
	Introducing data
	A discussion on formalizing interactions with data
	Exploration and analysis

	The HIBOUX tool
	Overview
	Entry language
	Proof of concept use case

	Conclusion
	Summary
	Perspectives

	Appendices
	Synthèse en français
	Notations

