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abstract : Graph Representation Learning

aims to embed nodes in a low-dimensional space.

In this thesis, we tackle various challenging prob-

lems arising in the field.

Firstly, we study how to leverage the inherent

local community structure of graphs while learn-

ing node representations. We learn enhanced

community-aware representations by combining

the latent information with the embeddings.

Moreover, we concentrate on the expressive-

ness of node representations. We emphasize ex-

ponential family distributions to capture rich in-

teraction patterns. We propose a model that

combines random walks with kernelized matrix

factorization.

In the last part of the thesis, we study models

balancing the trade-off between efficiency and ac-

curacy. We propose a scalable embedding model

which computes binary node representations.
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R É S U M É

Les données structurées sous forme de graphes sont omniprésentes dans de
multiples domaines d’application comme les télécommunications, la biologie,
et les plateformes de réseaux sociaux. L’extraction d’informations pertinen-
tes à partir de graphes est une tâche cruciale pour traiter les problèmes
d’apprentissage en analyse de réseaux. L’objectif principal de l’Apprentissage
de Représentations sur Graphes (ARG) est de plonger les nœuds du graphe
dans un espace vectoriel de petite dimension, tout en préservant les pro-
priétés structurelles du réseau. Dans cette thèse, nous abordons plusieurs
enjeux liés à l’ARG. Pour cela, nous développons des algorithmes expressifs
et adaptatifs capables de tirer parti de la richesse sémantique structurelle
des graphes via des diffusions de marche aléatoires.

Tout d’abord, nous étudions comment exploiter l’existence de commu-
nautés structurelles locales inhérentes aux graphes tout en apprenant les
représentations. En particulier, nous introduisons les Topical Node Embed-
dings (TNE), un cadre générique pour améliorer les capacités prédictives des
modèles en s’appuyant sur des processus de marche aléatoire. Néanmoins, en
apprenant ces représentations, la plupart des modèles existants ignorent les
groupes de nœuds densément connectés. Notre modèle attribue une étiquette
de communauté latente à chaque nœud avec l’aide de divers modèles sta-
tistiques. Nous apprenons ensuite des représentations améliorées de la
communauté en combinant les informations latentes avec les représentations.
Nous démontrons que les TNE améliorent les capacités prédictives des
représentations.

Dans la deuxième partie de la thèse, nous nous concentrons sur l’expressivité
des représentations et nous mettons l’accent sur les distributions de familles
exponentielles pour saisir des modèles d’interaction riches entre les nœuds
dans des séquences de marche aléatoires. Nous introduisons le modèle Ex-
ponential Family Graph Embedding (EFGE), qui généralise les techniques
d’apprentissage de représentation de graphe à l’aide marche aléatoire, à des
familles de distributions exponentielles. Nous étudions trois exemples parti-
culiers de ce modèle qui correspondent à des distributions exponentielles
bien connues, nous analysons leurs propriétés et montons leurs liens avec
les modèles d’apprentissage non supervisé existants.
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Dans la troisième partie, nous étudions l’expressivité de l’ARG en nous con-
centrant sur les modèles de factorisation matricielle. De nombreuses appro-
ches reposant sur la factorisation matricielle apprennent les représentations
en décomposant une matrice décrivant les similitudes entre les nœuds.
Néanmoins, en raison de la structure complexe des graphes du monde réel,
les vecteurs appris préservent difficilement la proximité des nœuds, ent-
raı̂nant une perte de performances dans les tâches en aval. En outre, ces
algorithmes nécessitent des ressources de calcul et de mémoire élevées en
raison de la construction exacte de la matrice de similarité. Pour répondre
à ces défis, nous proposons kernelNE qui combine les marches aléatoires
avec une matrice de factorisation sous forme de noyau. Nous examinons une
formulation d’apprentissage à plusieurs noyaux qui permet une combinaison
linéaire de fonctions de noyau.

Dans la dernière partie de la thèse, nous étudions des modèles permettant
un bon compromis entre efficacité et précision. Au fur et à mesure que la
taille des réseaux augmente, les modèles classiques sont confrontés à des
défis de calcul pour s’adapter à de grands graphes. Malgré les nombreux
efforts récents pour concevoir des algorithmes adaptables sur les problèmes
d’apprentissage de nœuds, la plupart de ces algorithmes ont une faible
précision sur les tâches en aval. Nous proposons NodeSig, un modèle évolutif
qui calcule les représentations binaires. NodeSig exploite les probabilités
de diffusion de marche aléatoire via une méthode dite de “hashing”, pour
calculer efficacement les représentations.



A B S T R A C T

Graph-structured data is ubiquitous in many application domains such
as information technologies, biology, physics and social networks. The
problem of extracting meaningful information from graphs is a crucial task
for dealing with learning problems in network analysis. As a prominent
paradigm, Graph Representation Learning (GRL) aims to embed nodes
in a low-dimensional space, preserving the structural properties of the
network. In this thesis, we tackle various challenging problems arising in
GRL, developing expressive and scalable algorithms capable of leveraging
rich structural semantics of real-world graphs via random walk diffusions.

Firstly, we study how to leverage the inherent local community structure
of graphs while learning node representations. In particular, we introduce
Topical Node Embeddings (TNE), a generic framework to enhance node rep-
resentations’ predictive capabilities relying on random walk-based methods.
Most of the existing models are deprived of considering densely connected
node group patterns while learning representations. Our model assigns
a latent community label to each node with the favor of various statisti-
cal models and community detection algorithms. We then learn enhanced
community-aware representations by combining the latent information with
the embeddings. We demonstrate that TNE improves the predictive capabili-
ties of embeddings in various tasks.

In the second part of the thesis, we concentrate on the expressiveness
of node representations and we emphasize exponential family distribu-
tions to capture rich interaction patterns between nodes in random walk
sequences. We introduce the Exponential Family Graph Embedding (EFGE)
model, which generalizes random walk-based graph representation learn-
ing techniques to exponential family conditional distributions. We study
three particular instances of this model that correspond to well-known ex-
ponential family distributions, analyzing their properties and showing their
relationship to existing unsupervised learning models.

In the third part, we further study the expressiveness of GRL, focusing
on matrix factorization models. Many approaches that rely on matrix fac-
torization learn embeddings by decomposing a matrix designed to signify
similarities among nodes. Nevertheless, due to the complex structure of
real-world graphs, the learned embedding vectors cannot well preserve node
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proximity, causing a performance loss in downstream tasks. Additionally,
they require high computational and memory resources because of the exact
realization of the similarity matrix. To address such challenges, we propose
KernelNE, a model that combines random walks with kernelized matrix
factorization. To further improve the model’s performance, we examine a
multiple kernel learning formulation that allows a linear combination of
kernel functions.

In the last part of the thesis, we study models balancing the trade-off be-
tween efficiency and accuracy. As the size of networks increases, widely used
models face computational challenges to scale to large graphs. While there is
a recent effort towards designing algorithms that solely deal with scalability
issues in node representation learning, most of them behave poorly in terms
of accuracy on downstream tasks. Here, we propose NodeSig, a scalable
embedding model which computes binary node representations. NodeSig
exploits random walk diffusion probabilities via stable random projection
hashing, towards efficiently computing embeddings in the Hamming space.
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1
I N T R O D U C T I O N

W ith the advancements in information technologies, graphs have
become indispensable mathematical objects to model and rep-
resent the interactions among entities. They naturally emerge in

numerous disciplines, including physics, chemistry, social sciences, and all
related fields. Protein-protein interaction networks, recommender systems,
and friendship networks are only a few examples of these different domains
[New03]. They constitute ubiquitous elements not only for their ability to
model complex structures but they also provide an elegant framework to
analyze and study the intricate patterns composed by the individual units of
the network [AO04].

Graph analysis is important to gain insights into the network’s hidden
patterns and perform various predictive tasks by using the extracted infor-
mation. For instance, one might wish to estimate the protein function in
multi-omics data [GBB18], recommend new products to a customer [Lu+15],
and find a community of people sharing the same particular hobby in a
social network [For10]. Traditional techniques aim to carefully design feature
vectors by choosing essential graph measures concerning the task of interest,
relying on the network’s structural properties, such as clustering coefficient
and core number [Mal+20]. These handcrafted feature vectors are further
incorporated into machine learning models to carry out the desired tasks.

Although these graph measures provide information about the various
properties of a node, they are unable to capture the interactions among
nodes sufficiently—a critical point in learning and prediction tasks. For
instance, despite the fact that the degree of a node describes well the size of
its local neighborhood, it cannot reveal further structural properties related
to these neighbors and their interactions. Likewise, while the clustering
coefficient and k-core number can provide insights about the connectivity
patterns of a node, it is strenuous to properly leverage them towards inferring

1



2 introduction

relationships among nodes which could be utilized by a machine learning
model. Furthermore, features corresponding to node pairs can be extracted
through graph similarity-based algorithms, such as the Jaccard and Adamic-
Adar indices [LZ11]. Nevertheless, such features are often limited to specific
networks or downstream tasks (e.g. link prediction), and also might require
an extensive computational workload [LZ11].

Therefore, classical machine learning techniques on graphs that rely on
handcrafted features are not effective in practice, suffering also from high
space and computational cost. To this end, the research community have
inclined to alternative approaches, leading to the birth of learnable models
which mainly aim to automatically extract these features (representations)
from the underlying graphs [GF18; Ham20]. The core idea of Graph Rep-
resentation Learning (GRL) is to learn representations (also known as em-
beddings) of nodes in a lower-dimensional space, in which the embedding
vectors reflect properties of interest. Due to the superior performance of GRL
on various practical applications, recently we have witnessed an immense
increase in the number of relevant studies [Ham20].

Representation learning is not a new field; it has already been scrutinized
in various domains, such as signal processing, natural language processing,
and object recognition [BCV13]. Although the evolution of the graph repre-
sentation learning field [GF18; CZC18] has been highly influenced by studies
from diverse domains, developing an effective and efficient algorithm poses
plenty of challenges. Unlike other data structures, networks have additional
information indicating the relationships between pairs of nodes. Hence,
a GRL model should be able to capture various topological patterns and
underlying properties of the network. It is already well-known that real-
world networks do not emerge from random and irregular forms. In fact,
they share interesting and non-trivial characteristics, such as a heavy tail in
the degree distribution and community structures [AB02]. Therefore, such
topological properties should be properly leveraged in the learning procedure
[Fen+18; Wan+17]. Although plenty of approaches have been developed in
the literature, emphasizing different aspects of networks in the representation
learning process, most of them have commonly prioritized the algorithm’s
accuracy in downstream tasks, such as classification and link prediction.
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Graph representation learning approaches consider various characteristics
of networks in learning the representations. However, these features need
to be expressed under a suitable model in order to convey the extracted
information in the embeddings effectively. Therefore, the expressiveness of the
representations is another criterion influencing the quality of the embeddings.
On the other hand, the growing size of networks entails the need for scalable
techniques that can run on networks consisting of millions of nodes and
edges. Many previously proposed models are not practically applicable due
to the high computational resource demands—thus, algorithms balancing the
effectiveness and the scalability have become a prominent direction recently.

To that end, designing effective and efficient algorithms is of great sig-
nificance for applications that involve learning from graph-structured data.
Therefore, we consider the following challenges and points of interest, while
developing GRL models:

• How to explicitly incorporate information about the rich structural
semantics of real-world graphs in the GRL process.

• How to design models that could properly capture the complex inter-
actions and relationships among nodes, towards improving expressive-
ness.

• How to design scalable GRL models that can efficiently handle large
graphs.

1.1 thesis statement and overview of contributions

The dissertation’s crux motivation is to study network analysis with graph
representation learning approaches. In light of the challenges stated in the
previous section, we focus on developing representation learning methods
relying on random walks, in an unsupervised manner. Figure 1.1 gives an
overview of the contributions of this thesis, which can be summarized as
follows:

explicit integration of community information. How to incor-
porate the community structure of networks in learning node representations?
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Figure 1.1: Overview of the contributions of the thesis.

Many complex networks comprise groups of nodes having tight connections
than the rest of the network. These substructures naturally emerge during
the growth of networks. For instance, in social networks, people sharing
similar hobbies or interests tend to be closer to each other; similarly, proteins
interacting with each other are more likely to share the same cellular func-
tions forming densely connected groups. Although various algorithms have
been developed to detect these patterns, they are disregarded in the design
of GRL models. We introduce a novel approach, TNE (Topical Node Em-
beddings) [ÇM18; ÇM21], which aims to integrate the community structure
of a network in the embedding learning process. TNE is a general frame-
work that can be applied with various random walk-based methods to learn
community-aware embeddings. We examine the behavior of the proposed
framework by adapting various latent community detection algorithms. We
evaluate its performance in node classification and link prediction tasks
(Chapter 3).

modeling node interactions with exponential family. How
to model and capture the underlying pattern of node pairs properly within random
walks sequences?

Previously proposed random walk-based approaches, although applying
different strategies to generate node sequences, they mainly utilize the soft-



1.1 thesis statement and overview of contributions 5

max or sigmoid functions to model the distribution of nodes within random
walks. Nevertheless, this might prohibit to capture richer types of interac-
tion patterns among nodes that co-occur within a random walk. Here, we
introduce a family of models, called EFGE (Exponential Family Graph Em-
beddings) [ÇM19b; ÇM20], which generalizes the conventional approaches
with exponential family distributions. EFGE allows employing a wide range
of conditional distributions to interpret the complex relationships among
nodes; hence, we can learn more expressive embeddings conveying the in-
tricate patterns among nodes in the network. We also show the connection
between BigClam [YL13], a widely-used overlapping community detection,
and an instance of our proposed model, building a bridge between two
different graph mining applications (Chapter 4). Our extensive experimental
evaluation deomostrates that leveraging exponential family distributions can
further boost the predictive ability of the embeddings on downstream tasks.

a kernelized matrix factorization framework based on ran-
dom walks . How to augment the predictive capacity of random walk-based
matrix factorization methods with kernel functions?

Kernel functions are generally integrated with linear models to map the
data points into a higher-dimensional space, so that they are transformed
into a structure that can be expressed with linear approaches in the new
space. Although there are various graph representation learning approaches
relying on matrix factorization, they follow linear techniques to decompose
the designed target matrix. We propose a novel model, called KernelNE
(Kernel Node Embeddings) [ÇM19a; ÇSM21], which incorporates universal
kernels in learning representations. It bypasses the exact realization of the
target matrix through random walks, thereby alleviating the optimization
step’s computation burden. We further enhance the model’s capability with
MKernelNE, which allows combining multiple kernels. The experimental
evaluation demonstrates that the integration of kernels provides to the
proposed approach the ability to grasp the underlying patterns of complex
data, leading to more expressive node representations (Chapter 5).
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scalable node embeddings . How to develop an algorithm balancing
scalability and efficiency on downstream tasks?

Real-world networks have been continuously growing with newly added
links and nodes—thus, the algorithms dealing with large-scale networks
have become essential. Nevertheless, most of the previously proposed
approaches are not capable of dealing with large networks due to high
computational resource requirements. Recently, random projection-based
node embedding algorithms have received significant attention, even though
showing lower predictive capabilities on downstream tasks compared to
learning-based methods. Here, we propose NodeSig [ÇPM21], a model
which targets to balance the trade-off between efficiency and accuracy. It
brings together random walk diffusion and hashing techniques relying on α-
stable random projections. The design of the proposed methodology provides
efficient projections of target node vectors recursively. It computes binary
representations in the Hamming space, in which the pairwise distances
approximate the chi similarity among the initially designed node vectors
(Chapter 6). The experimental evaluation shows that NodeSig achieves good
accuracy on downstream tasks compared to recent highly-scalable models,
while at the same time being able to run within reasonable time.

1.2 outline of the thesis

The rest of the dissertation is organized as follows. In Chapter 2, we briefly
describe the fundamental elements of graph theory and probability theory.
We also summarize the methods developed in the graph representation
learning field. Later, we provide the details of the experimental evaluation
and a description of the networks used in the experiments. Chapter 3 shows
how to enhance node embeddings by means of the community structure of
networks with the TNE model. Chapter 4 introduces the EFGE model that
leverages exponential family distributions to better capture the underlying
interaction patterns of node pairs within the generated node sequences.
Chapter 5 presents KernelNE and MKernelNE, which combine kernel
functions with matrix factorization. Chapter 6 is devoted to NodeSig, the
proposed scalable model that computes binary node embeddings. Finally,



1.2 outline of the thesis 7

the arguments concluding the dissertation and possible future research
directions are stated in Chapter 7.





2
P R E L I M I N A R I E S A N D O V E RV I E W O F R E L AT E D W O R K

I n this chapter, we provide the fundamental concepts and background
materials necessary throughout the dissertation. In the beginning, we
describe the essential elements related to graph theory and probability

theory. Moreover, we provide a general overview concerning graph represen-
tation learning methods in a separate section. For more detailed information
on the field, the reader might refer to [Ray13; KT05; Tao13; Ham20; HYL17b;
Zha+20; GF18; CZC18]. Finally, we discuss the experiments that we perform
to evaluate the performance of the algorithms and the network datasets.
Throughout the dissertation, we will use the notation M to denote a matrix,
while the term M(i,j) points out the entry located at the i’th row and j’th
column of the matrix. M(i,:) and M[i] indicate the i’th row of the matrix.

2.1 basics of graph theory

Graphs are the key elements to study objects and the relationships among
them. Throughout the dissertation, we use the terms network and graph
interchangeably. More formally, a graph is defined as follows:

Definition 2.1. A graph is an ordered pair G = (V , E) consisting of non-empty
sets V and E ⊆ V × V . The elements of V are called the vertices or nodes of G, and
those of E the edges of G.

The edges of the graph might also indicate direction. A directed graph or
digraph is a graph G = (V , E) where E consists of the ordered pairs of nodes.
In this case, the pairs (u, v) and (v, u) do not represent the same edge. It
might be also allowed to have multiple edges or parallel edges which are two or
more edges joining the same pair of nodes, and the graph containing parallel
edges is called multigraph.

9
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a) Simple graph b) Directed graph c) Weighted graph d) Multigraph with loops

0.5

Figure 2.1: Illustration of different graph types. (a) A simple graph is an unweighted
and undirected graph without loops and multi edges; (b) For a directed graph,
edges indicate an orientation, and (c) edges can have weights in a weighted graph.
(d) In a multigraph, having multiple edges or loops are permitted.

Definition 2.2. A graph G = (V , E) is called weighted if there is a weight function
W : E → R assigning each edge to a real number.

Weighted graphs naturally arise in many applications, which enable the
edges to convey additional information. For instance, it can be used to
represent the distance or the cost of traveling between cities. The endpoints
of an edge can also be connected to the same node, and such an edge (v, v)

is called loop. In Figure 2.1, we depict various graph types to illustrate the
given definitions.

Definition 2.3. An unweighted, undirected graph containing no loops or multiple
edges is called simple graph.

Throughout the dissertation, we solely consider simple graphs to provide
consistency in the experiments unless stated otherwise. Nodes u and v are
adjacent or neighbours, if the pair (u, v) is an element of the edge set E . The
degree of a node is defined as the number of its neighbours.

Another representation of a graph is the matrix form, with the adjacency
matrix being the most commonly used.

Definition 2.4. The adjacency matrix of a simple graph G is the |V| × |V|-matrix
M with entries M(v,u) = 1 if (v, u) ∈ E and M(v,u) = 0 if (v, u) 6∈ E .

For a weighted graph, the entries indicate the corresponding weights of the
edges. Note that, the adjacency matrix is always symmetric for undirected
graphs according to its diagonal.
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Two graphs might have exactly the same structure, and they can have
different namings. More formally, we can express it in the following way:

Definition 2.5. Two graphs G = (VG, EG) and H = (VH, EH) are isomorphic
if there exits a bijection f : VG → VH such that (u, v) ∈ EG if and only if
( f (u), f (v)) ∈ EH for all v, u ∈ VG.

A graph might also be a part of the structure of another one or we might
be interested to consider only a part of a graph.

Definition 2.6. A graph H = (VH, EH) is a subgraph of G = (VG, EG) if VH ⊆
VG and EH ⊆ EG.

One might be interested in visiting a node by starting from one another,
but there must be a path from this pair of nodes. More formally, we define it
as follows:

Definition 2.7. Let w = (v1, . . . , vL) be sequence where vl ∈ V for all l ∈
{1, . . . ,L}. Then, it is called a walk of length L from node v1 to vL if (vl , vl+1) ∈ E
for all l ∈ {1, . . . ,L− 1}. A walk w = (v1, . . . , vL) is closed if v1 = vL. It is a
path if the nodes in the walk are distinct, i.e. vi 6= vj for all i 6= j. It is called cycle
if it is closed and vi 6= vj for i 6= j except that v1 = vL.

It is also possible to have several distinct paths between a pair of nodes.
However, It might also be important to find the shortest one since it can
provide the best solution for efficiency in many practical applications such
as transportation and robotics. Let G = (V , E) be a graph with a weight
function W : E → R. Then, the minimum distance dG(v, u, W) is defined by

min

{
L−1

∑
l=1

W[(vl , vl+1)]
∣∣∣ (v1, . . . , vl) is a walk such that v := v1 and u := vl

}
.

If there is no walk from v to u, the distance is defined by dG(v, u, W) := ∞.
There are several algorithms to compute the shortest paths in a graph such
as Dijkstra’s algorithm and Floyd–Warshall algorithm [Ray13; KT05]. If the
distance dG(v, u, W) < ∞ for all u, v ∈ V , then the graph G is called connected;
otherwise it is disconnected.
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2.2 basics of probability theory

In this section, we briefly present the essential elements of probability theory.
Let X be a non-empty set and let P(X) be its power set which consists of all
subsets of X.

Definition 2.8. A nonempty collection of subsets X ⊆ P(X) is σ-algebra (or
σ-field) if the following three conditions hold:

• X ∈ X ;

• if A ∈ X , then X\A ∈ X ;

• if a sequence of elements A1, A2,. . . ∈ X , then ∪i=1Ai ∈ X .

We follow the conventional approach and the σ-algebra B(X) for X is used
to denote its Borel σ-algebra, i.e., the smallest σ-algebra containing all open
sets in X [Tao13].

Definition 2.9. A measurable space (X,X ) is an ordered pair where X is a σ-
algebra of X, and the elements of X is called measurable sets.

Definition 2.10. A function µ from X to R̃ is called measure on (X,X ) if it
satisfies

• µ(∅) = 0;

• For all A ∈ X , µ(A) ≥ 0;

• For any finite or countable collections of pairwise disjoint sets Ai ∈ X , it
satisfies µ (∪i=1Ai) = ∑i=1 µ(Ai).

We use the notation R̃ to denote the extended real number system (R̃ :=
R∪ {−∞, +∞}). A probability measure µ : X → [0, 1] is a measure satisfying
µ(X) = 1. A probability space is an ordered pair (X,X , µ) where µ is a
probability measure defined on the measurable space (X,X ).

Definition 2.11. A mapping X from a probability space (X,X , µ) to a measurable
space (Y,Y) is called random variable if X is a measurable function, which means
that for every B ∈ Y its preimage X−1(B) = {a : X(a) ∈ B} is in X .
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Definition 2.12. For a random variable X : X → Y, the measure ν on (Y,Y)

defined by ν(B) := µ
(
X−1(B)

)
= µ {X ∈ B} for every B ∈ Y is called the

distribution of the random variable X.

Definition 2.13. A discrete-time stochastic process on a countable set Y is a col-
lection of Y-valued random variables {Xt : t ≥ 0} defined on a probability space
(X,X , µ). It is called Markov Chain if it satisfies

µ{Xt+1 = yt+1|Xt, . . . , X0} = µ{Xt+1 = yt+1|Xt},

for all yt+1 ∈ Y and t ≥ 0.

Definition 2.14. A Markov chain X = {Xt : t ≥ 0} with memory m is a stochastic
process satisfying

µ{Xt+1= yt+1|Xt= yt, . . . , X0= y0}= µ{Xt+1= yt+1|Xt= yt,. . ., Xt+1−m= yt+1−m}

for t ≥ m.

Definition 2.15. A Markov chain X = {Xt : t ≥ 0} is time-homogeneous if
µ (Xt+1 = s|Xt = r) = µ (Xt = s|Xt−1 = r) for all t ≥ 1 and s, r ∈ Y.

The transition probabilities can be also represented by a matrix P where
each entry is defined by P(s,r) := µ (Xt+1 = r|Xt = s). The dissertation
mainly considers the methods relying on random walks, and we define a
uniform random walk as follows:

Definition 2.16. A uniform random walk of length L on a graph G = (V , E) with
a root node v1 ∈ V as a time-homogeneous stochastic process with random variables
{Xl : 1 ≤ l ≤ L} such that X1 = v1 and Xl+1 is a node chosen uniformly at
random from the set of neighbors of Xl for each l ∈ {1, . . . ,L− 1}.

2.3 graph representation learning : an overview

The history of graph embeddings can be dated back to the 1900s, with the
initial works in the topological graph theory field studying the embedding of
graphs in surfaces [Arc96]. However, the graph representation learning field
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has shown impressive evolution and expansion during the past six years
as a subfield of machine learning, and recent studies have considered more
general types of problems. The intuition behind the approaches relies on
finding an embedding vector in a lower-dimensional space such that the
desired information in the network can be captured by the pairwise distances
in the new space. By following the definition provided in [HYL17b; Ham20],
it can be more formally stated in the following way.

Definition 2.17. Let G = (V , E) be a graph, (X, dX) be a metric space and sG(·, ·)
be a user-specified function showing the pairwise proximities among nodes, our aim
is to find a mapping E : V → X minimizing the function

1
|T| ∑

(v,u)∈T
`
(

dX
(
E[v], E[u]), sG(v, u)

))
, (2.1)

where ` is the error or loss function defined by the user to measure the discrepancy
between correct and the estimated proximity values, and T ⊆ V × V is the training
set.

By optimizing the above function, we can learn node representations E[v] ∈ X

for each node v ∈ V . An immediate and common choice for the embedding
space X is the real vector space Rd for many approaches and we will call d
embedding or representation size throughout the thesis. In the remaining
part of this section, we provide a brief overview and a categorization of
various notable instances in the graph representation learning field.

2.3.1 Dimensionality Reduction

The early works of graph embeddings have relied on classical dimensionality
reduction techniques. One of the first approaches is Principal Component
Analysis (PCA) [JC16], which projects the adjacency matrix of the network
or a designed data matrix into a latent space in which the variance of the
data is maximized. Linear Discriminant Analysis [Tha+17] is a supervised
method contrary to PCA and projects the data on a subspace in which
the class-separation is maximized. Multidimensional Scaling (MDS) [KW78]
targets to position a set of points by preserving given pairwise Euclidean
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distances. Since these methods assume that data lay on a linear subspace,
they might fail if the underlying data posses a highly nonlinear pattern.
Therefore, alternative ideas have arisen in order to overcome this problem.
Isometric Feature Mapping (Isomap) [TSL01] extends MDS by integrating with
the geodesic distances along the manifold. Locally Linear Embedding (LLE)
[RS00a] finds a projection of the data by maintaining distances within local
neighborhoods. Lastly, kernel methods or tricks [HSS08] are generally used
to map the non-linearly separable data points to a higher-dimensional space.
They allow computing the inner products in the new space without exactly
needing to know the mapping function so that the linear models can be
adapted to capture the intrinsic characteristic of the complex data points.

2.3.2 Matrix Factorization-Based Approaches

The approaches relying on matrix factorization learn representations by
decomposing a target matrix T ∈ R|V|×|V| designed based on a proximity
measure. The graph factorization algorithm [Ahm+13] is one of the earliest
works, which proposes an immediate and natural idea to learn embeddings
by minimizing the following objective function:

argmin
E

1
2 ∑

(v,u)∈E

(
T(v,u) − E[v] · E[u]>

)2
+

λ

2 ∑
v∈V
‖E[v]‖2,

where the target matrix T is chosen as the adjacency matrix of the given
graph and λ is the regularization parameter. TADW [Yan+15] combines text
features of nodes into network representation learning under the matrix
factorization framework as follows:

argmin
A,B

∥∥∥T−A>BX
∥∥∥+

λ

2
(
‖A‖2

F + ‖B‖2
F
)

.

Here, the text features corresponding to each node are represented by X ∈
R f×|V|. The target matrix is selected as T = 0.5 ·

(
W + W2) where f is

the feature vector size and W is the adjacency matrix. HOPE [Ou+16]
demonstrates that several high-order proximity measurements such as Katz
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v1 v2 v3 v4 v5 v6 v7 v8 v9

Context nodes

Center node

Figure 2.2: Illustration of context and center nodes for a window of size 2. The
nodes around v5 located inside the window are called context nodes.

index, Personalized Pagerank matrix, and Adamic-Adar index share a general
formulation that can be expressed as T = A−1B. The method obtains
embedding vectors by factorizing a high-order proximity matrix with an
efficient variation of Singular Value Decomposition (SVD) [Hoc09]. GraRep

[CLX15] extracts the embeddings by concatenating the factorizations of
positive k-step log probabilistic matrices obtained by SVD. NetMF [Qiu+18]
similarly applies SVD for the shifted Positive Pointwise Mutual Information
(PPMI) of the node co-occurrence matrix.

2.3.3 Random Walk-Based Approaches

The advancements in Graph Representation Learning have been highly
inspired by algorithms introduced in the Natural Language Processing (NLP)
field. One of the most prominent examples is the class of random walk-based
approaches. They generate a set of node sequences by following a random
walk strategy, as an analogy to the sentences in documents. Then, they learn
embedding vectors by means of a technique borrowed from the pioneering
work SkipGram [Mik+13a; Mik+13b]. The idea mainly relies on learning
representations by optimizing the likelihood of observing the nodes around
a given node. That generates similar embeddings for nodes tend to share
common surroundings in the walks.

For a walk w = (v1, . . . , vL) ∈ VL, the surrounding nodes vl−γ,. . ., vl−1,
vl+1, . . ., vl+γ located within a certain distance γ around center node vl
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composes the context set of node vl . The embeddings are further learned by
maximizing

Pr(vl−γ, . . . , vl−1, vl+1, . . . , vl+γ|vl).

By assuming conditional independence, the objective can be written as

F (Ω) = argmax
Ω

1
N ·L ∑

w∈W

L
∑
l=1

∑
−γ≤j≤γ

j 6=0

log Pr(vl+j|vl ; Ω), (2.2)

where w = (v1, . . . , vL) ∈ W is a walk of length L, γ is the window size,
N := |W| is the number of walks and Ω = (A, B) is the set of model pa-
rameters or representations. Here, A[v] is used for denoting the embedding
vector of v if it is considered as context node; otherwise B[v] indicates its
embedding if it is center node. A typical choice for the probability measure
is softmax function defined by

Pr(vl+j|vl) :=
exp

(
A[vl+j]

> · B[vl ]
)

∑v∈V exp (A[v]> ·B[vl ])
.

However, calculating Pr(vl+j, vl) for each pair (vl+j, vl) is not feasible due to
the normalization term so an approach such as Hierarchical Softmax [MH09]
can be applied to alleviate the computational complexity from O(|V|) to
O(log(|V|)). Another alternative is the so-called Negative Sampling technique
[Mik+13b],which is a variation of Noise Contrastive Estimation (NCE) [MT12;
MK13]. It defines the conditional probability in a different way and samples
negative instances for each center-context pair in order to approximate
Equation (2.2) with the sigmoid function:

F (Ω)=argmax
Ω

1
N ·L ∑

w∈W

L
∑
l=1

∑
−γ≤j≤γ

j 6=0

(
log Pr(vl+j|vl)+

k

∑
i=1

si∼p−

E
[

log(1− Pr(si|vl))
])

,

where k is the number of negative samples, the probability measure is chosen
as the sigmoid function σ(x) := (1 + exp(−x))−1 and p− is the user-specified
distribution to generate the negative instances.
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a) Initial network b) Generation of random walks
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Figure 2.3: Illustration of a random walk generation.

DeepWalk [PARS14] is the first proposed random walk-based approach.
It produces walks by uniformly choosing the next node at random from the
neighbors of the current one in which it resides. Node2Vec [GL16] leverages
the idea with additional parameters to control the behavior of the random
walk as Breadth First Search (BFS) or Depth First Search (DFS) explorations.
More precisely, it selects the next node with a probability proportional to the
coefficient πv,s = αp,q(u, s)W[v, s] where αp,q(u, s) is defined by

αp,q(u, s) =


1
p x ≤ d(u, s) = 0

1 0 ≤ x ≤ d(u, s) = 1
1
q d(u, s) = 2,

Each W[v, s] represents the weight of the edge, v is the current node in
which the walk resides, u is the previously visited node just before v, dG(u, s)
represents the distance between nodes u and s, and takes values from the
set {0, 1, 2}. For low values of return parameter p, the walk inclines to move
to already visited nodes, and it explores unvisited nodes for small values
of in-out parameter q. BiasedWalk [NM18] extends it by introducing an
additional parameter to estimate how far a candidate node is from the initial
node of each walk.

As the NetMF method presented earlier and it does not explicitly simulates
random walks, it can also be considered as a random walk based approach. In
fact, the authors of NetMF have shown that the objective function of various
random walk-based methods can be expressed as a matrix factorization task
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under certain conditions, drawing inspirations from Levy and Goldberg
[LG14]. In particular, NetMF learns embeddings by factorizing the shifted
PPMI matrix defined by

T := log

(
max

(
vol(G)

k · L
L
∑
l=1

P(l), 1

))
D−1,

where k is the number of negative samples, D is the diagonal matrix with
row sums of the adjacency matrix W of the graph, P := D−1W and vol(G)

is defined by ∑v,u∈V W(v,u).

2.3.4 Neural Network-Based Approaches

Neural networks are undoubtedly one of the most outstanding models in
recent years. They have been successfully applied in many fields, from
computer vision to NLP, with plenty of diverse architectures and designs
[GBC16]. Various methods relying on neural network architectures have
been proposed for graph-structured data. Here, we only name some of the
very well-known methods. SDNE [WCZ16] proposes a deep autoencoder
model under a semi-supervised architecture framework, jointly optimizing
the first-order and second-order proximities:

argmin
B

∥∥∥(X̂− X)� C
∥∥∥2

F
+α ∑

(v,u)∈V2

sv,u

∥∥∥H(L)
(:,v)
−H(L)

(:,u)

∥∥∥2

2
+

ν

2

L

∑
l=1

(
‖B(l)‖2

F + ‖B̂(l)‖2
F

)
Hl

(:,v) = σ(B(l)H(l−1)
(:,v)

+ C(l)) ∀ l ∈ {1, . . . , L} ∀v ∈ V and

H(0)
(:,v)

:= X(:,v) ∀v ∈ V ,

where B(l) is trainable weights and C is the bias term for layer l. The
adjacency matrix of the graph is considered as the input X of the model,
H(L)

(:,v)
indicates the final embedding vector of node v and X̂ represents

the reconstructed data. SDAE [CLX16] is another deep neural network
architectures extracting representations from the PPMI matrix by means of a
stacked denoising autoencoders [Vin+10].
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We can also learn representations by encoding the network structure and
node features together. The intuition relies on the message-passing frame-
work in which each node aggregates information from its local neighborhood
or from a determined set of nodes. Graph Convolutional Network (GCN)
[KW17] proposes a multi-layer convolutional architecture with the following
propagation rule:

H(l+1) = σ
(

D̃−0.5W̃D̃−0.5H(l)B(l)
)

and H(0) = X,

where W̃ = W + I is the adjacency matrix with added self-loops, D̃ is the
diagonal matrix for D̃(v,v) = ∑w∈V W̃(v,w) and X is a matrix of node features.
Similarly, B(l) is trainable weights for layer l and σ(·) indicates the activation
function such as ReLU(·) = max(0, ·). It is a semi-supervised approach
extracting the embeddings by encoding both graph structure and node
features. GraphSAGE [HYL17a] extends the former method for inductive
learning settings. It can efficiently generate node embeddings for previously
unseen nodes. The random walk-based approaches [GF18] can also be stated
as naive examples since they apply the shallow, two-layer neural networks for
the optimization step similar to SkipGram [Mik+13b] model. A plethora of
graph neural network models have recently been proposed [KBG19; Boj+20;
JB20]. The interested reader could refer to [HYL17b; Ham20].

2.3.5 Large Scale Embedding Approaches

The continuously growing size of networks has opened up a new direction
towards fast and accurate approaches. It is a promising and ascending field
since the high computational and resource requirements of many existing
techniques make them inapplicable for large scale networks consisting of
millions of nodes and links.

The random walk methods can also be included in this category since
they aim to approximate the proximity measures between nodes by gener-
ating node sequences. The LINE [Tan+15] method optimizes an objective
function that captures both first-order and second-order proximity of each
node. An advantage of it is that it can be applied to weighted networks as
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well. However, the main limitation of these methods is that they do not scale
well for large networks. They have focused on increasing the effectiveness
of data mining tasks (e.g., classification, link prediction, network recon-
struction), whereas the efficiency side has not received significant concern.
To address this problem, recent advances in graph representation learning
use random projection or hashing techniques (more specifically, variants of
locality-sensitive hashing [PJA10]) to boost performance, trying to maintain
effectiveness.

One of the first scalable approaches, RandNE [Zha+18], is based on
iterative Gaussian random projections, adapting to any desired proximity
level. The orthogonal projection of the weighted sum of the powers of the
adjacency matrix W gives the final representations E as shown in Equation
(2.3). Each term is recursively defined by El := W · El−1 for each l > 0 and
the initial term E0 is chosen as the orthogonal projection matrix:

E = α0E0 + α1E1 + · · ·+ αL−1EL−1 + αLEL, αl ∈ R, ∀l ∈ {0, . . . ,L}. (2.3)

In the same line, FastRP [Che+19] uses sparse Gaussian random projections.
It applies the same general formulation except it omits the initial term E0.

Recently, embedding techniques rely on hashing have emerged as a promis-
ing alternative to enable faster processing while, at the same time, retaining
good accuracy results. The NetHash [Wu+18] algorithm expands each node
of the graph into a rooted tree up to a predetermined depth, and then by us-
ing a bottom-up approach, encodes structural information as well as attribute
values into minhash [Bro97] signatures in a recursive manner. A similar
approach has been used in NodeSketch [Yan+19], which applies a recursive
sketching process. It learns integer-valued embeddings in Hamming space
in which the pairwise distances approximate the weighted Jaccard similarity
[Li15] among the initially designed node vectors.

2.3.6 Other Variants

In the literature, there are numerous graph representation learning ap-
proaches proposed for studying and analyzing a different aspect of networks.



22 preliminaries and overview of related work

We have briefly described a number of notable methods from each distinct
category, but there are still lots of exciting works deserving to be mentioned.
In this part, we name a couple of methods which cannot be exactly classified
as one of the types mentioned above.

A graph coarsening framework, HARP [Che+18], firstly extracts embed-
dings by running a method such as DeepWalk and LINE on the compressed
network, and then node representations are further prolonged for the initial
network. It essentially focuses on improving the scalability of representa-
tion learning algorithms. Another approach Struct2Vec [RSF17] aims to
capture the structural identity of nodes in learning node representations and
considers a hierarchical metric to measure similarities.

2.4 description of datasets

In this section, we describe the networks which are commonly used in most
of the experiments throughout the dissertation. We examine the performance
of algorithms on seven networks of different types and sizes. To be consistent
in the experiments, we consider each network as undirected and unweighted.

• CiteSeer [Che+18] is a citation network obtained from the CiteSeer
library, in which each node corresponds to a paper, and the edges indi-
cate reference relationships among papers. The node labels represent
the subjects of the paper.

• Cora [Sen+08] is another citation network constructed from the publica-
tions in the machine learning area; the documents are classified into
seven categories.

• DBLP [Per+17] is a co-authorship graph, where an edge exists between
nodes if two authors have co-authored at least one paper. The labels
represent the research areas.

• PPI [GL16] is a graph extracted from the protein-protein interaction
network for Homo Sapiens in which biological states are used as labels
of nodes.



2.5 machine learning tasks and evaluation metrics 23

|V| |E | |K| |C| Avg. Degree Type

CiteSeer 3,312 4,660 6 438 2.814 Citation
Cora 2,708 5,278 7 78 3.898 Citation

DBLP 27,199 66,832 4 2,115 4.914 Collaboration
PPI 3,890 38,739 50 35 19.917 Biological

AstroPh 17,903 19,7031 - 1 22.010 Collaboration
HepTh 8,638 24,827 - 1 5.7483 Collaboration

Facebook 4,039 88,234 - 1 43.6910 Social network
Gnutella 8,104 26,008 - 1 6.4186 Peer-to-peer

Table 2.1: Statistics of networks |V|: number of nodes, |E |: number of edges, |K|:
number of labels and |C|: number of connected components.

• AstroPh [LKF07] is a collaboration network built from the papers sub-
mitted to the ArXiv repository for the Astro Physics subject area, from
January 1993 to April 2003.

• HepTh [LKF07] is constructed in a similar way from the papers submit-
ted to ArXiv for the High Energy Physics - Theory category.

• Facebook [LM12] is a social network extracted from a survey conducted
via a Facebook application.

• Gnutella [RIF02] is the peer-to-peer file-sharing network constructed
from the snapshot collected in August 2002 in which nodes and edges
correspond to hosts and connections among them, respectively.

The detailed statistics of the datasets are provided in Table 2.1. The
networks in the first group have node labels so they are used in the node
classification experiments and the others are only used in the link prediction
experiments.

2.5 machine learning tasks and evaluation metrics

We mainly perform two types of experiments to evaluate and compare our
approaches to the baseline methods. We have implemented the experimental
setup in Python with the scikit-learn [Ped+11] package.
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Operator Symbol Definition

Average �
(
E[v]j + E[u]j

)
/2

Hadamard � E[v]j × E[u]j
Weighted L1 ‖ · ‖1

∣∣E[v]j − E[u]j
∣∣

Weighted L2 ‖ · ‖2
∣∣E[v]j − E[u]j

∣∣2
Table 2.2: Binary operators for constructing edge feature vectors. Each definition
corresponds to j-th component of node representations E[v] and E[v].

2.5.1 Node Classification

For the node classification task, we have access to the labels of a certain
fraction of nodes in the network (training set), and our goal is to predict the
labels of the remaining nodes (test set). After learning the representation
vectors for each node, we split them into varying sizes of training and testing
sets. Unless otherwise specified, the experiments are carried out by applying
a one-vs-rest logistic regression classifier with L2 regularization. In order to
provide more reliable experimental results, the same procedure is repeated
50 times. We report the average performance in terms of both micro-averaged
F1 and macro-averaged F1 scores [Vic79], which are defined by

Micro-F1 =
2PR

P + R
and Macro-F1 =

(
2PkRk

Pk + Rk

)

P :=
∑Kk=1 tpk

∑Kk=1 tpk + f pk

R :=
∑Kk=1 tpk

∑Kk=1 tpk + f nk

Pk :=
tpk

tpk + f pk
Rk :=

tpk
tpk + f nk

,

where K is the number of classes, tpk is the true positive, f nk is the false
negative and f pk is the false positive results for the corresponding class k.

2.5.2 Link Prediction

In the link prediction task, we have limited access to the edges of the network,
and our goal is to predict the missing (unseen) edges between nodes. We
divide the edge set of a given network into two parts to form training and test
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sets by randomly removing 50% of the edges (the network remains connected
during the process). The removed edges are later used as positive samples
in the test set. The same number of node pairs that do not exist in the initial
network is sampled to generate negative instances for each training and test
sets. The node embedding vectors E[v] and E[u] are converted into edge
feature vectors by applying the coordinate-wise operations given in Table 2.2,
as proposed by [GL16]. We perform experiments using the logistic regression
classifier with L2 regularization. We report the Area Under Curve (AUC)
[Alp10] score of the operators showing the best performance for each method.





3
T O P I C - AWA R E L AT E N T M O D E L S F O R R E P R E S E N TAT I O N
L E A R N I N G O N G R A P H S

R andom walk-based graph representation learning methods have re-
ceived particular attention over the last years thanks to their success
in several graph analysis problems, including node classification,

link prediction, and clustering. They transform the network into a collection
of node sequences, aiming to learn node representations by predicting the
context of each node within the sequence. In this chapter, we introduce TNE,
a generic framework to enhance the embeddings of nodes acquired by means
of random walk-based approaches with topic-based information. Similar to
the concept of topical word embeddings in Natural Language Processing,
the proposed model first assigns each node to a latent community with the
favor of various statistical graph models and community detection methods
and then learns the enhanced topic-aware representations. The experimental
results demonstrate that by incorporating node and community embeddings,
TNE outperforms widely-known baseline GRL models.

3.1 introduction

Initial studies in the field of graph representation learning have been inspired
by the advancements in the area of Natural Language Processing (NLP),
borrowing various ideas originally developed for computing word embeddings.
A prominent example here is the SkipGram architecture [Mik+13b], which
aims to find latent representations of words by estimating their context
within the sentences of a textual corpus. As we have discussed in Chapter
2, many pioneer studies in GRL [PARS14; GL16; NM18] utilize the idea of
random walks to transform graphs into a collection of sentences – as an
analogy to the area of natural language – and these sentences or walks are
later being used to learn node embeddings.

27
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Although random walk-based approaches are strong enough to capture
local connectivity patterns, they mainly suffer to sufficiently convey infor-
mation about more global structural properties. More precisely, real-world
networks have an inherent clustering (or community) structure, which can
be utilized to further improve the predictive capabilities of node embeddings.
One can interpret such structural information based on an analogy to the
concept of topics in a collection of documents. In a similar way as word
embeddings can be enhanced with topic-based information [Liu+15], here
we aim at empowering node embeddings by employing information about
the latent community structure of the network—that can be achieved by a
process similar to the one of topic modeling.

In this chapter, we propose Topical Node Embeddings (TNE), a framework
in which node embeddings are enhanced with topic (or community) infor-
mation towards learning topic-aware node representations—something that
leads to further improvements in the performance on downstream tasks.
Local clustering patterns are of great importance on many applications, en-
abling to grasp hidden information of the network properly. For instance,
consider two individuals sharing common friends or interests, that are not
yet represented by a direct link in the network. A careful analysis of the
local community structure can further help to infer the missing information
(e.g., missing links), and therefore boost the predictive capabilities of node
embeddings. Motivated by that, the proposed TNE framework aims to di-
rectly leverage the latent community structure of the graph while learning
node embedding vectors. The main contributions of the chapter can be
summarized as follows:

• Latent graph models and topic representations. We show how existing
latent space discovery models, such as community detection and topic
models, can be incorporated into the node representation learning
process.

• Node representation learning framework. We propose a new model, called
TNE, which first learns community embeddings from the graph and
then uses them to improve the node representations extracted by ran-
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dom walk-based methods. We examine various instances of this model,
studying their properties.

• Enriched feature vectors. We perform a detailed empirical evaluation
of the embeddings learned by TNE on the tasks of node classification
and link prediction. As the experimental results indicate, the proposed
model learns feature vectors which can boost the performance on
downstream tasks.

The rest of the chapter is organized as follows. Section 3.2 describes
several related works, and gives the fundamental concepts by formulating
the problem. In Section 3.3, we introduce the concept of topical node
representation learning. The proposed TNE model is described in Section
3.4. Section 3.5 presents the experimental results, and finally, we conclude
our work in Section 3.6.

source code . Our model has been implemented in Python and the
source code can be found at: https://abdcelikkanat.github.io/projects/TNE/.

3.2 background concepts and related work

In this section, we will first briefly review the objective of the random walk-
based approaches. We will also provide an overview of the community
detection problem, focusing on aspects that are useful for the presentation of
the proposed methodology.

3.2.1 Learning Node Embeddings with Random Walks

Let G = (V , E) be a graph with the vertex set V and the edge set E . As we
have discussed in Chapter 2, our goal is to find a mapping B : V → Rd,
where B[v] will correspond to the representation of node v in a lower-
dimensional space Rd; d is referred to as the embedding or dimension size,
and is much smaller than the cardinality of the vertex set. As we have
mentioned previously, graph representation learning methods based on
the popular SkipGram architecture (e.g., [Mik+13a; Mik+13b]) learn node

https://abdcelikkanat.github.io/projects/TNE/
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representations using node sequences produced by random walks over a
given network. They mainly target to maximize the log-likelihood of the
occurrences of nodes within a certain distance with respect to each other, as
follows:

FN(A, B) := argmax
Ω

∑
w∈W

L
∑
l=1

∑
−γ≤j≤γ

j 6=0

log Pr(vl+j | vl ; Ω), (3.1)

where Ω = (A, B) is the model parameters that we would like to learn,W
is the set of random walks w = (v1, . . . , vl , . . . , vL) ∈ VL of length L, and γ

refers to the window size. A common choice for the probability measure in
Equation (3.1) is the softmax or sigmoid function. (Please refer to Subsection
2.3.3 in Chapter 2 for a detailed explanation.) Note that, the nodes appearing
inside the window size of center node vl are referred to as context nodes.
We obtain two different representation vectors A[v] and B[v] for each node
v ∈ V but we will consider only B[v] in the experimental evaluation, which
corresponds to the vector when the node is interpreted as a center node.

3.2.2 Community Structure

The integration of community information in learning embedding can be
beneficial since it is one of the key elements of complex networks making
them distinct from arbitrary graph structures. In general, a set of nodes
having dense connections than the rest of the network is referred to as a
community, but the formal and precise definition might vary depending on
the context in which it is introduced. For instance, the notion of modularity
has been introduced to measure the quality of a division of the network
[New06]. Networks with high modularity represent the existence of clusters
of nodes having high intra-connections and sparse links between the nodes
from different clusters. It is formally defined by

modularity(G) :=
1

2vol(G) ∑
v,u∈V

[
W(u,v) −

mvmu

vol(G)

]
δ(zv, zu), (3.2)
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(a) No overlaps (b) Overlaps

Figure 3.1: Overlapping community structure types in a network.

where W(v,u) indicates the edge weight between nodes u and v, vol(G) is
1/2 ∑v,u∈V W(v,u), mv is defined by ∑u∈V W(v,u), and δzv,zu is Kronecker delta
function, which is equal to 1 if nodes v and u are assigned to the same
community (i.e., zu = zv), while δ(zv, zu) = 0 otherwise.

However, the optimization of modularity is computationally intractable,
so Blondel et al. [Blo+08] has proposed a greedy algorithm, namely Louvain,
to address this issue. The algorithm is initialized by assigning a distinct
community label to each node of the given network, so the number of
communities is proportional to the number of nodes at the beginning of
the procedure. Then, each node is assigned to the community label of its
neighbor producing the highest marginal gain, or it preserves its current
label if there is no more gain for any of its neighbors. The process is repeated
until no further improvement is feasible.

Real-world networks might also have an overlapping community structure
so that a node might be a member of multiple communities as shown in
Figure 3.1. Many methods have been proposed to deal with the overlapping
community detection problem [MV13; LFK09]. For instance, the BigClam

[YL13] approach models the latent interaction strength, X(k)
(v,u)

, between nodes
v and u in a community k ∈ {1, . . . ,K} by a Poisson distribution with mean
defined by F(k,v) · F(k,u) where each entry F(k,v) of the vector indicates a non-
negative weight and K is the number of communities. Therefore, the total
amount of interaction strength between nodes v and u is

X(v,u) :=
K
∑
k=1

X(k)
(v,u)

where X(k)
(v,u)
∼ Pois(F(k,v) · F(k,u)).
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In other words, if a pair of nodes shares many common communities, the
total amount of latent interactions, X(v,u), between them becomes high, and
it leads to high edge probability defined by Pr(Xv,u > 0). More formally and
compactly, the approach optimizes the following log-likelihood function:

argmax
F

∑
(v,u)∈E

log(Pr(X(v,u) > 0)) + ∑
(v,u) 6∈E

log(Pr(X(v,u) = 0)) (3.3)

= argmax
F

∑
(v,u)∈E

log(1− exp(−F>(:,v) · F(:,u)))− ∑
(v,u) 6∈E

F>(:,v) · F(:,u). (3.4)

After learning the affiliation factor, F(v,k), the BigClam model assigns node v
to community k if F(v,k) exceeds a certain threshold value.

In the following sections, we will present the proposed TNE model, which
independently learns node and community (topic) embeddings, and then
combines them to obtain expressive topical representations. We extract the
networks’ latent community structure by using the community detection
methods described above or various statistical models relying on random
walks. We will then leverage the extracted community information into
the learning procedure of community representations. To the best of our
knowledge, very few models benefit from the community structure of real
networks while learning embeddings. The ComE model [Cav+17] proposes
a closed-loop procedure among the encoding of communities, learning node
embeddings and community detection in the network. M-NMF [Wan+17]
targets to learn node representations by incorporating community structure
information in a non-negative matrix factorization formulation. COSINE
[ZLZ18] is a generative model learning the social network embeddings from
information diffusion cascades. A recent approach, GEMSEC [Roz+19],
learns node embeddings with an explicitly defined community preserving
objective function.

3.3 learning topic representations

As we have mentioned above, complex networks, such as those arising from
social or biological settings, consist of latent clusters of different sizes in
which the nodes are more likely to be connected to each other [GN02; LFK09;
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Figure 3.2: The topic-community assignments in Zachary’s Karate Club network.
Each node v is assigned to a community label z, maximizing the posterior probability
Pr(z|v) by using the TNE-Glda model.

MV13; HER09; Hen+]. Our main goal here is to use the latent clusters of a
network in order to obtain enriched representations. This can be achieved by
enhancing node embedding vectors with topic representations. By replacing a
node vl with its community label zl in a random walk, we learn community
embeddings by predicting the nodes in the context of a community label. More
formally, we can define our objective function to learn topic representations
as follows:

FT(Ã, B̃) := argmax
Ω̃=(Ã,B̃)

1
N·L ∑

w∈W

L
∑
l=1

∑
−γ≤j≤γ

j 6=0

log Pr(vl+j | zl ; Ω̃). (3.5)

By maximizing the log-probability above, we obtain the embedding vectors
corresponding to each community label zl ∈ {1, . . . ,K}. In this work, we
mainly use two approaches to detect latent communities. The first one is
based on novel combination of generative statistical models accompanied
with random walks, while the second one is based on traditional community
detection algorithms that utilize the network structure itself.
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Figure 3.3: Schematic representation of the TNE model. The final representations
are learned by combining node and topic embedding vectors. The representation
of a node is learned using random walks performed over the network; its topic
representation is similarly learned by assigning a topic/community label based
either on random walks (TNE-Glda, TNE-Ghmm) or network structure-based
approaches (TNE-Louvain, TNE-BigClam).
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Figure 3.4: Plate representations of random walk-based topic representation models.

3.3.1 Random Walks and Generative Graph Models

Most real-world networks can be expressed as a combination of nested
or overlapping communities [Pal+05]. Therefore, when a random walk
is initialized, it does not only visit neighboring nodes but also traverses
communities in the network (see Figure 3.3b). In that regard, we assume
that each random walk can be represented as random mixtures over latent
communities, and each community can be characterized by a distribution
over nodes. In other words, we can write the following generative model for
each walk over the network:

1. For each k ∈ {1, . . . ,K}
• φk ∼ Dir(b0)

2. For each walk w = (v1, . . . , vl , . . . , vL)

• θw ∼ Dir(a0)

• For each vertex vl ∈ w

– zl ∼ Multinomial(θw)

– vl ∼ Multinomial(φzl )

Here, N indicates the number of walks, a0, b0 ∈ R are the hyperparameters
of the symmetric Dirichlet prior distributions, and the vectors φk and θw

contain |V| and K components, respectively. If we consider each random
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walk as a document and the collection of random walks as a corpus, it can be
seen that the statistical process defined above corresponds to the well known
Latent Dirichlet Allocation (LDA) model [BNJ03]. Therefore, each community
corresponds to a distinct topic in the terminology of NLP (we use the terms
topic and community interchangeably in the rest of the chapter). We will refer
to this model as Glda (the plate representation is shown in Figure 3.4a).
As we show in Lemma 3.1, the relative frequency of the occurrences of a
node in the generated walks is proportional to its degree in the network for
large number of walks or walk lengths. This property was first empirically
demonstrated in the work of Perozzi, Al-Rfou, and Skiena [PARS14]. Here,
we provide a formal argument of this empirical observation.

Lemma 3.1. Let G = (V , E) be a connected graph, {Xl}l≥1 be a Markov chain
with state space V and P be a transition matrix, where P(v,u) is defined as 1/deg(v)

for each edge (v, u) ∈ E and 0 otherwise. If the Markov chain is aperiodic, then

lim
L→∞

1
LE

[
O(v)
L
]

=
deg(v)

2|E | ,

where O(v)
L is a random variable representing the number of occurrences of the node

v in a random walk of length L.

Proof. Since the graph is connected, each state can be accessed by any other
one. Thus, the Markov chain is also irreducible having a unique limiting
distribution π. Note that πv is equal to deg(v)/ ∑u∈V deg(u) since it satisfies
πP = π. Then, we can write:

lim
L→∞

1
LE

[
O(v)
L
]

= lim
L→∞

1
LE

[
L
∑
l=1

1{Xl=v}

]
= lim
L→∞

1
L
L
∑
l=1

E
[
1{Xl=v}

]
= lim
L→∞

1
L
L
∑
l=1

Pr (Xl = v) = πv =
deg(v)

∑u∈V deg(u)

=
deg(v)

2|E | ,

where the equality in the second line follows from Cesàro Theorem [DeV07],
since Pr(Xl = v) converges to πv as L goes to infinity.
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In the previous Glda model, the latent community assignment of each
node is independently chosen from the community label of the previous
node in the random walk. However, the hidden state of the current node can
play an important role towards determining the next vertex to visit, as the
random walk also traverses through communities. Therefore, we can write
the following generative process, by modifying the Glda model:

1. For each k ∈ {1, . . . ,K}
• φk ∼ Dir(b0)

• θk ∼ Dir(a0)

2. π ∼ Dir(p0)

3. For each walk w = (v1, . . . , vi, . . . , vL)

• z1 ∼ Dir(π)

• For each vertex vl ∈ w, for all 2 ≤ l < L

– vl ∼ Multinomial(φzl )

– zl+1 ∼ Multinomial(θzl )

• vL ∼ Multinomial(φzL)

Here, a0, b0, p0 ∈ R are the hyperparameters of the Dirichlet distributions,
and the vectors θk and φk contain K and |V| components, respectively.
The above model, in fact, corresponds to the well-known Hidden Markov
Model (HMM) with symmetric Dirichlet priors over transition and emission
distributions. In our experiments, we adopt the Infinite Hidden Markov
Model (IHMM) [VG+08] (we will refer to this model as Ghmm; the plate
representation is shown in Figure 3.4b). Note that, unlike the Glda model,
in the generation of each node sequence the same transition probabilities are
used.

3.3.2 Network Structure-Based Modeling

In the previous models, the generated random walks are used to detect the
community (or topic) assignment of each node in the given node sequence.
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Here, we utilize two additional community detection models described in
Section 3.2, which directly target to extract communities of nodes from
a given network. The first one corresponds to the well-known Louvain

algorithm by [Blo+08] that extracts communities based on modularity max-
imization, while the second one to the BigClam model for overlapping
community detection [YL13].

3.4 topical node embeddings

In this section, we will describe the proposed Topical Node Embedding
(TNE) model for learning topic-aware node representations. An overview
of the model is given in Figure 3.3. TNE aims to enhance node embeddings
using information about the underlying topics of the graph obtained by the
models described in Section 3.3. This can be achieved by learning node and
topic embedding vectors independently of each other, jointly maximizing
the objectives defined in Equations (3.1) and (3.5). Combining these two
objectives, we derive the following:

argmax
Ω,Ω̃

1
N·L ∑

w∈W

L
∑
l=1

∑
−γ≤j≤γ

j 6=0

[
log Pr

(
vl+j|vl ; Ω

)︸ ︷︷ ︸
node embedding

+ log Pr
(

vl+j|zl ; Ω̃
)

︸ ︷︷ ︸
community embedding

]
.

In our approach, we use the sigmoid function for the probability measure in
the above equation and we adopt the negative sampling strategy [Mik+13b],
in order to make our computations more efficient. After obtaining the node
and topic representations, our final step is to efficiently incorporate these two
feature vectors, B[v] and B̃[z] of node v and community label z respectively,
so as to obtain the final topic-enhanced node embedding. For this purpose,
we concatenate node embedding vector B[v] with the expected topic vector
with respect to the distribution Pr(·|v). Our strategy can be formulated as
follows:

B[v] ⊕ ∑
k∈{1,...,K}

Pr(k|v) · B̃[k], (3.6)
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Algorithm 3.1 Topical Node Embeddings (TNE)
Input: Graph: G = (V , E)

Number of walks: N
Walk length: L
Window size: γ
Number of communities: K
Topic representation learning method: T
Node embedding size: dn
Community embedding size: dt

Output: Embedding vectors of length: dn + dt
1: Perform N random walks of length L for each node
2: Learn node representations by optimizing Equation (3.1)
3: Learn topic representations by optimizing Equation (3.5), using any of

the models T of Section 3.3
4: Concatenate node and topic embeddings with Equation (3.6)

where ⊕ indicates the concatenation operation. We refer to the final vector
obtained after concatenating the node and topic feature vectors as topical
node embedding.

Algorithm 3.1 provides the pseudocode of the proposed TNE model. The
general structure of our framework as follows. First, we need a collection
of walks over the network to learn node and topic embeddings. We further
produce node-context pairs and use SkipGram to learn node embeddings
following Equation (3.1). Then, we choose a strategy (shown as T in Algo-
rithm 3.1) to learn topic representations. This step is quite flexible in the
formulation of TNE. One approach is to generate topic assignments zl of
each node vl ∈ V in the walk w ∈ W , based on the random walk-based
generative models Glda and Ghmm, defined in Section 3.3.1. Alternatively,
we can directly infer the latent clustering structure based on BigClam and
Louvain models, as described in Section 3.3.2. We learn topic representa-
tions by replacing the center node with its corresponding community label
through Equation 3.5. Lastly, we combine node and topic embeddings using
Equation (3.6) to obtain the final topical node embedding vectors. Depending
on the method used to learn topical representations, we will refer to the
corresponding instances of TNE as TNE-Glda, TNE-Ghmm, TNE-Louvain

and TNE-BigClam.
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3.4.1 Complexity Analysis

The time complexity of TNE varies depending on the algorithm used to
detect latent topics and communities. For a given node sequences and topic
assignments, the representations can be learned in the order of O(d · γ · k ·
|W| · L) with the negative sampling technique for k sampled instances because
we have |W| number of walks and there are 2 · γ · (k + 1) · L center-context
pairs for each walk. If the Louvain algorithm is chosen, the communities
can be detected in O

(
|V| · log2(|V|)

)
operations, while O (|V| · K) steps are

required for BigClam when the number of communities is high. The models
that rely on random walks and generative models (Glda, Ghmm), can be run
in O (W · L · K · I), where I is the number of iterations [Por+08; VG+08].

3.5 experimental evaluation

In this section, we present the experimental setup and parameter settings for
TNE and for the baseline models. The performance of the proposed model is
examined in two downstream tasks: node classification and link prediction.
We use eight different networks in our experiments as described in Section
2.4 and the statistics of the networks can be found in Table 2.1.

3.5.1 Baseline Methods

We consider seven baseline methods to compare the performance of our
approach. We have described most of them in Section 2, but we also provide
an overview here, including parameter settings:

(i) DeepWalk [PARS14] performs uniform random walks to generate the
set of node sequences; then, the SkipGram model [Mik+13a; Mik+13b]
is used to learn node representations.

(ii) Node2Vec [GL16] combines SkipGram with biased random walks,
using two extra parameters that control the walk in order to simulate a
BFS or DFS exploration. In the experiments, we set those parameters to
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1.0. As we have already mentioned, in our approach we sample context
nodes using this biased random walk strategy.

(iii) LINE [Tan+15] learns nodes embeddings relying on first- and second-
order proximity information of nodes.

(iv) HOPE [Ou+16] is a matrix factorization approach aiming at capturing
similarity patterns based on a higher-order node similarity measure.
In the experiments, we consider the Katz index, since it demonstrates
the best performance among other proximity indices.

(v) NetMF [Qiu+18] targets to factorize the matrix approximated by the
pointwise mutual information of center and context pairs. The exper-
iments have been conducted for large window sizes (γ = 10) with a
rank size of 256 due to its good performance.

(vi) GEMSEC [Roz+19] leverages the community structure of real-world
graphs, learning node embeddings and the cluster assignments simul-
taneously. We have performed parameter tuning to set the number of
communities from {5, 15, 20, 25, 50, 75, 100}.

(vii) Lastly, M-NMF [Wan+17] extracts node embeddings under a modularity-
based community detection framework based on non-negative matrix
factorization. We have observed that the algorithm poses good perfor-
mance by setting its parameters α = 0.1 and β = 5. We have performed
parameter tuning for the number of communities using values from
the following set: {5, 15, 20, 25, 50, 75, 100}.

3.5.2 Parameter Settings

The instances of TNE are fed with random walks generated by the Node2Vec

model. Throughout the thesis, we apply the same parameter values for the
random walk-based approaches, where the number of walks per node is
set to 80, the walk length to 10, and the window size to 10. Moreover, we
sample 5 negative instances for each center-context node pair. To speed up
the training process, we adopt the negative sampling [Mik+13b] strategy.
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Stochastic Gradient Descent (SGD) has been used for optimization, setting
the initial learning rate to 0.0025 and its minimum value to 10−5. We learn
topic and node embedding vectors of sizes 32 and 96, respectively, so as the
obtain feature vectors of length 128.

In the learning process of topic assignments of nodes with the TNE-Glda

model, we perform collapsed Gibbs sampling [GS04] for parameter estima-
tion and for inference. The Monte Carlo Markov Chain (MCMC) approach
is used for the parameter estimation of TNE-Ghmm, with beam sampling
for latent sequence resampling steps [VG+08]. The number of topics for
TNE-Glda is set to 100 for DBLP, 125 for Cora and set to 150 for the other
networks. The initial number of states for TNE-Ghmm is chosen as 20.

3.5.3 Node Classification

The detailed results for the different instances of TNE framework as well as
for the baseline methods are provided in Tables 3.1 to 3.4. Experiments are
reported for different ratios of training data (2%–90%). For each model, the
first row corresponds to Micro-F1 scores, while the second one to Macro-F1

scores.

As we can observe, the TNE-Louvain and TNE-BigClam models perform
quite well, outperforming most of the baseline methods for different train-
ing ratios. For instance, they have higher Macro-F1 scores around 4.55%
and 6.82% than the best baseline approach for 10% training ratio of the
PPI network. In the case of the Cora network, TNE-Glda performs better
especially for higher training ratios, with 1.33% performance gain in terms
of Micro-F1 score. It is also the best performing approach on the PPI network
for high training sizes. The overall better performance of the two network
structure-based instances TNE-Louvain and TNE-BigClam over random
walk-based models (e.g., TNE-Glda, TNE-Ghmm), can possibly be explained
by the way that latent communities are extracted. While with TNE-Glda

and TNE-Ghmm we are able to utilize random walks for both node and topic
representations, it seems that those random walk are not expressive enough
to recover the clustering structure as effectively as algorithms tailored to this
task, such as BigClam and Louvain.
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2% 4% 6% 8% 10% 30% 50% 70% 90%

0.421 0.462 0.488 0.502 0.517 0.569 0.587 0.596 0.597

DeepWalk

0.374 0.419 0.446 0.461 0.476 0.524 0.540 0.547 0.546

0.451 0.491 0.514 0.529 0.543 0.583 0.595 0.600 0.603

Node2Vec

0.397 0.443 0.466 0.483 0.497 0.535 0.546 0.549 0.550

0.300 0.353 0.384 0.407 0.418 0.476 0.494 0.505 0.512

LINE
0.243 0.303 0.334 0.357 0.367 0.423 0.440 0.448 0.454

0.197 0.204 0.207 0.208 0.216 0.253 0.276 0.299 0.316

HOPE
0.060 0.065 0.066 0.068 0.075 0.121 0.150 0.178 0.202

0.401 0.473 0.507 0.525 0.538 0.579 0.590 0.594 0.601

NetMF
0.346 0.421 0.454 0.474 0.487 0.528 0.538 0.542 0.548

0.384 0.439 0.459 0.479 0.491 0.532 0.545 0.552 0.558

GEMSEC
0.339 0.400 0.422 0.439 0.451 0.488 0.497 0.499 0.501

0.264 0.317 0.340 0.370 0.382 0.439 0.449 0.456 0.457

Ba
se

lin
es

M-NMF
0.161 0.229 0.261 0.293 0.306 0.370 0.381 0.390 0.390

0.395 0.451 0.493 0.514 0.535 0.593 0.610 0.616 0.618

Glda

0.352 0.411 0.454 0.474 0.494 0.548 0.562 0.568 0.567

0.407 0.474 0.502 0.518 0.526 0.568 0.583 0.583 0.594

Ghmm

0.360 0.425 0.457 0.473 0.481 0.521 0.534 0.533 0.543

0.453 0.496 0.517 0.537 0.551 0.604 0.619 0.627 0.638
Louvain

0.404 0.452 0.476 0.493 0.506 0.560 0.576 0.582 0.594
0.449 0.488 0.508 0.527 0.546 0.597 0.612 0.619 0.624

TN
E

BigClam

0.402 0.443 0.464 0.483 0.502 0.549 0.562 0.566 0.568

Table 3.1: Node classification for varying training sizes on Citeseer. For each method,
the rows indicates the Micro-F1 and Macro-F1 scores, respectively.

2% 4% 6% 8% 10% 30% 50% 70% 90%

0.617 0.688 0.715 0.732 0.747 0.799 0.815 0.825 0.832

DeepWalk

0.569 0.664 0.698 0.717 0.735 0.788 0.806 0.815 0.821

0.659 0.720 0.743 0.759 0.770 0.816 0.831 0.839 0.845

Node2Vec

0.612 0.694 0.724 0.743 0.755 0.804 0.820 0.828 0.832

0.416 0.498 0.546 0.581 0.609 0.701 0.728 0.741 0.747

LINE
0.306 0.425 0.492 0.543 0.578 0.691 0.720 0.733 0.738

0.284 0.301 0.301 0.302 0.302 0.302 0.302 0.304 0.306

HOPE
0.067 0.066 0.067 0.066 0.066 0.067 0.067 0.068 0.074

0.636 0.716 0.748 0.767 0.773 0.821 0.834 0.841 0.844

NetMF
0.591 0.694 0.731 0.751 0.760 0.811 0.824 0.832 0.835

0.470 0.530 0.568 0.587 0.601 0.674 0.714 0.735 0.744

GEMSEC
0.406 0.477 0.527 0.546 0.562 0.646 0.689 0.713 0.722

0.507 0.580 0.622 0.642 0.656 0.717 0.732 0.736 0.742

Ba
se

lin
es

M-NMF
0.459 0.550 0.598 0.622 0.638 0.706 0.722 0.728 0.734

0.612 0.672 0.710 0.731 0.751 0.817 0.840 0.850 0.856
Glda

0.575 0.650 0.694 0.715 0.738 0.807 0.829 0.837 0.841
0.624 0.697 0.734 0.749 0.762 0.809 0.824 0.828 0.834

Ghmm

0.585 0.672 0.715 0.734 0.746 0.798 0.812 0.816 0.823

0.679 0.721 0.743 0.756 0.765 0.815 0.835 0.846 0.850

Louvain

0.645 0.699 0.724 0.738 0.749 0.802 0.822 0.832 0.836

0.631 0.693 0.720 0.740 0.754 0.809 0.828 0.837 0.851

TN
E

BigClam

0.589 0.671 0.702 0.725 0.739 0.798 0.818 0.828 0.838

Table 3.2: Node classification for varying training sizes on Cora. For each method,
the rows indicates the Micro-F1 and Macro-F1 scores, respectively.
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2% 4% 6% 8% 10% 30% 50% 70% 90%

0.550 0.588 0.603 0.611 0.616 0.630 0.633 0.635 0.636

DeepWalk

0.496 0.527 0.540 0.547 0.551 0.563 0.565 0.566 0.567

0.575 0.599 0.612 0.618 0.623 0.636 0.639 0.641 0.641

Node2Vec

0.517 0.541 0.551 0.557 0.561 0.571 0.574 0.575 0.574

0.553 0.576 0.585 0.590 0.594 0.606 0.610 0.611 0.611

LINE
0.469 0.498 0.510 0.517 0.522 0.536 0.540 0.541 0.541

0.379 0.379 0.379 0.379 0.379 0.380 0.383 0.387 0.391

HOPE
0.137 0.137 0.137 0.137 0.138 0.140 0.146 0.152 0.160

0.577 0.589 0.596 0.601 0.605 0.617 0.620 0.623 0.623

NetMF
0.490 0.506 0.513 0.518 0.522 0.530 0.531 0.533 0.533

0.538 0.566 0.583 0.591 0.597 0.611 0.614 0.615 0.615

GEMSEC
0.477 0.501 0.513 0.519 0.523 0.534 0.535 0.537 0.536

0.501 0.527 0.540 0.545 0.551 0.568 0.574 0.577 0.579

Ba
se

lin
es

M-NMF
0.345 0.383 0.400 0.410 0.418 0.443 0.450 0.454 0.455

0.561 0.592 0.605 0.613 0.617 0.631 0.634 0.635 0.638

Glda

0.505 0.532 0.542 0.550 0.554 0.563 0.565 0.566 0.569

0.574 0.597 0.608 0.615 0.619 0.632 0.635 0.636 0.634

Ghmm

0.516 0.536 0.545 0.550 0.552 0.563 0.565 0.567 0.564

0.573 0.601 0.614 0.621 0.625 0.638 0.642 0.642 0.642
Louvain

0.517 0.543 0.555 0.562 0.564 0.574 0.577 0.578 0.576

0.568 0.598 0.612 0.620 0.625 0.638 0.641 0.643 0.642

TN
E

BigClam

0.516 0.542 0.553 0.561 0.566 0.576 0.578 0.579 0.579

Table 3.3: Node classification for varying training sizes on DBLP. For each method,
the rows indicates the Micro-F1 and Macro-F1 scores, respectively.

2% 4% 6% 8% 10% 30% 50% 70% 90%

0.110 0.131 0.143 0.151 0.156 0.188 0.206 0.218 0.226

DeepWalk

0.076 0.099 0.113 0.123 0.129 0.164 0.181 0.190 0.192

0.115 0.136 0.148 0.157 0.164 0.196 0.211 0.221 0.226

Node2Vec

0.078 0.101 0.116 0.125 0.132 0.167 0.180 0.188 0.190

0.109 0.133 0.149 0.162 0.170 0.210 0.226 0.235 0.242

LINE
0.063 0.084 0.099 0.111 0.120 0.164 0.181 0.191 0.192

0.068 0.069 0.069 0.070 0.069 0.071 0.077 0.086 0.093

HOPE
0.019 0.019 0.019 0.019 0.018 0.020 0.025 0.030 0.033

0.085 0.100 0.116 0.126 0.131 0.176 0.193 0.203 0.211

NetMF
0.045 0.064 0.080 0.090 0.095 0.137 0.152 0.161 0.160

0.078 0.082 0.085 0.087 0.089 0.112 0.131 0.143 0.151

GEMSEC
0.059 0.063 0.067 0.070 0.073 0.098 0.113 0.122 0.125

0.097 0.112 0.119 0.123 0.128 0.143 0.153 0.162 0.168

Ba
se

lin
es

M-NMF
0.071 0.089 0.097 0.103 0.108 0.125 0.135 0.141 0.141

0.117 0.139 0.152 0.164 0.173 0.214 0.233 0.245 0.251
Glda

0.085 0.111 0.125 0.137 0.147 0.183 0.200 0.207 0.207
0.119 0.138 0.152 0.163 0.172 0.210 0.227 0.234 0.238

Ghmm

0.088 0.111 0.125 0.137 0.144 0.178 0.192 0.196 0.191

0.119 0.141 0.158 0.170 0.178 0.212 0.226 0.234 0.240

Louvain

0.083 0.103 0.118 0.131 0.138 0.172 0.185 0.191 0.192

0.126 0.147 0.161 0.170 0.180 0.215 0.229 0.235 0.244

TN
E

BigClam

0.085 0.107 0.122 0.132 0.141 0.178 0.191 0.196 0.196

Table 3.4: Node classification for varying training sizes on PPI. For each method,
the rows indicates the Micro-F1 and Macro-F1 scores, respectively.
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Figure 3.5: Parameter sensitivity of TNE-Glda and TNE-Louvain models.

3.5.4 The Effect of Number of Topics and Topic Embedding Sizes

We have further analyzed the effect of the chosen number of topics K on the
performance of the TNE-Glda model on the CiteSeer network. As shown in
Figure 3.5a, the increase in the number of topics makes positive contribution
to the classification performance up to a certain level for TNE-Glda model,
reaching its highest F1-score for around K = 150. The chosen number of
topics seems to be a more crucial parameter especially for larger training
data sizes.

The size of the topic embedding vector learned by Equation (3.5) is another
factor affecting the performance of TNE. We examine the influence of the
topic embedding size on the TNE-Louvain model over the Citeseer network.
In the experiment, we have fixed the total embedding length to dn + dt to
128, and we vary the length of topic (dt) and node (dn) embeddings. As it
can be observed in Figure 3.5b, for small node embedding sizes, the scores
diminish drastically since topic embeddings alone do not convey sufficient
information to effectively represent the nodes On the contrary, when we
accurately balance the lengths of topic and node embeddings (for dt = 48
in this particular case), the contribution of topic-enhanced embeddings over
purely node embeddings is evident.
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Citeseer Cora DBLP PPI AstroPh HepTh Facebook Gnutella

DeepWalk 0.828 0.779 0.944 0.860 0.961 0.896 0.984 0.695

Node2Vec 0.827 0.781 0.944 0.861 0.961 0.896 0.983 0.694

LINE 0.739 0.696 0.930 0.878 0.969 0.844 0.967 0.839
HOPE 0.744 0.712 0.873 0.880 0.931 0.836 0.975 0.748

NetMF 0.780 0.745 0.910 0.785 0.872 0.858 0.974 0.654

GEMSEC 0.749 0.734 0.920 0.771 0.816 0.823 0.733 0.639

Ba
se

lin
es

M-NMF 0.751 0.714 0.891 0.886 0.948 0.861 0.977 0.755

Glda 0.809 0.775 0.958 0.772 0.977 0.903 0.993 0.728

Ghmm 0.793 0.806 0.959 0.872 0.979 0.908 0.993 0.796

Louvain 0.809 0.780 0.959 0.780 0.977 0.905 0.993 0.721TN
E

BigClam 0.795 0.767 0.958 0.844 0.977 0.904 0.993 0.723

Table 3.5: Area Under Curve (AUC) scores for the link prediction task.

3.5.5 Link Prediction

We also evaluate the performance of TNE variants in the link prediction
task by following the experimental setup described in Section 2. In Table
3.5, we provide the Area Under Curve (AUC) scores over various types of
networks. TNE-Ghmm model shows better performance; it outperforms the
baselines over almost every network, with gains in percentage ranging from
0.92% (Facebook) upto 3.16% (Cora) compared to the best baseline method.
The variations of TNE always obtain the first rank except Citeseer, PPI and
Gnutella networks. TNE-Louvain and TNE-BigClam also demonstrate very
close and comparable achievements to TNE-Ghmm. The variants of the TNE
model possess the highest score on Facebook.

3.5.6 Running Time

We have performed all the experiments on an Intel Xeon 2.4GHz CPU server
(32 Cores) with 60GB of memory. In order to examine the exact running
time of the TNE variants, we have performed an experiment on artificially
generated Erdös-Rényi random graphs [ER60] of varying sizes, ranging from
28 to 213 nodes. The running times are reported in Figure 3.6. As expected,
the TNE-Louvain is the most scalable instance, due to the efficient way to
infer the community structure.
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Figure 3.6: Running time analysis of the TNE model on Erdös-Rényi random graphs.

3.5.7 Further Empirical Analysis of TNE

We further analyze the behaviour of the various TNE instances on artificially
generated networks, focusing on controlled classification experiments. We
generate random graphs by following a similar approach as in the work
[BG19]. In particular, we use the Stochastic Block Model (SBM) to construct
graphs that consist of three clusters A, B and C, each one consists of 1, 000
nodes. Figure 3.7 provides a schematic representation of the process. An
intra-community link is added with probability p, while an edge between
communities A and B is added with probability q. We use an additional
parameter c in order to introduce asymmetry for inter-community links for
the community pairs A− C and B − C. We have constructed three networks
(G1, G2, G3) for parameters p = [0.06, 0.065, 0.07], q = [0.04, 0.035, 0.003] and
c = [1.25, 1.429, 1.667], respectively. In our classification experiments, node
labels correspond to community assignments.

Table 3.6 provides the Micro-F1 scores for different walk lengths on G1, G2

and G3, with 40% of the datasets used as training set. We perform uniform
random walks following DeepWalk’s strategy, and the instances of TNE are
fed with the same node sequences. As we can observe, the performance of
the models increases depending on the walk length, since by increasing the
number of center-context node pairs improves the ability of the models to
capture the structural properties of the graph. Comparing the extreme cases
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Figure 3.7: Link sampling in the Stochastic Block Model.

G1 G2 G3

Walk length, L 10 50 100 10 50 100 10 50 100

DeepWalk 0.708 0.721 0.720 0.859 0.856 0.861 0.914 0.931 0.936

TNE-Glda 0.708 0.750 0.759 0.860 0.875 0.876 0.913 0.938 0.944

TNE-Ghmm 0.707 0.752 0.762 0.861 0.877 0.875 0.916 0.938 0.944

TNE-Louvain 0.717 0.769 0.771 0.864 0.882 0.877 0.964 0.964 0.969
TNE-BigClam 0.710 0.749 0.757 0.856 0.873 0.872 0.912 0.933 0.940

Table 3.6: Classification on the SBM with Micro-F1 scores for 40% training set ratio.

of G1 and G3, the latter shows more distinguishable community structure.
Therefore, TNE has better performance on G3 since the community detection
algorithms are able to correctly assign topic-community labels. Among them,
TNE-Louvain is the best performing instance. It detects good modularity
communities from the graph structure itself, and thus, contrary to TNE-
Glda and TNE-Ghmm, it does not rely on the the generated random walk
sequences. Furthermore, it is more successful to find the clusters of the
stochastic block model graphs compared to TNE-BigClam, since BigClam

focuses on overlapping communities that do not appear on these artificially
generated graphs.

3.6 conclusion and future work

In this chapter, we have proposed TNE, a topic-aware family of models for
GRL. TNE takes advantage of the latent community structure of graphs,
leading to the concept of topical node embeddings. We have examined four
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instances of the proposed model, that either use random walks to learn
topic representations or rely on well-known community detection algorithms.
TNE is capable of producing enriched representations, compared to tradi-
tional random walk-based approaches or matrix factorization-based models,
leading to improved performance results in the tasks of node classification
and link prediction.

As future work, we are interested to extend the TNE model towards utiliz-
ing the hierarchical community structure of real-world networks, learning
hierarchical node representations. Furthermore, we plan to examine the
robustness of the learning representations with respect to changes on the
structure of the graph.





4
E X P O N E N T I A L FA M I LY G R A P H E M B E D D I N G S

Graph representation learning techniques relying on random walks generate
node sequences to capture the relationships among nodes. The extracted
information is further used in learning node embeddings with an approach
similar to the popular SkipGram model. This chapter emphasizes exponen-
tial family distributions to capture rich interaction patterns between nodes.
We introduce the generic exponential family graph embedding model that gen-
eralizes random walk-based network representation learning techniques
to exponential family conditional distributions. We study three particular
instances of this model, analyzing their properties and showing their relation-
ship to existing unsupervised learning models. Our experimental evaluation
on real-world datasets demonstrates that the proposed techniques outper-
form well-known baseline methods in two downstream machine learning
tasks: node classification and link prediction.

4.1 introduction

As we have discussed in Chapter 2, random walk-based approaches typically
sample a set of node sequences from the input graph. The main point that
essentially differentiates these methods from each other is their strategy to
generate (i.e., sample) these sequences. They construct center-context node
pairs by examining the occurrences of nodes in a certain distance with respect
to each other inside the walks. Then, widely used NLP models, such as the
SkipGram model [Mik+13b], are applied to learn latent node representations.

Although SkipGram approach models the conditional distribution of
nodes within a random walk based on the softmax function, it might pro-
hibit to capture rich interaction patterns among nodes. Motivated by the
limitation of current random walk-based GRL methodologies, we argue that

51



52 exponential family graph embeddings

considering more expressive conditional probability models might lead to more
informative latent node representations.

In particular, we capitalize on exponential family models to grasp interac-
tions between nodes in random walks, which are a mathematically conve-
nient parametric set of probability distributions allowing us to represent
relationships among entities flexibly. More precisely, we introduce the
concept of Exponential Family Graph Embeddings (EFGE), which generalizes
random walk-based GRL techniques to exponential family conditional distri-
butions. We study three particular instances of the proposed EFGE model
that correspond to widely known exponential family distributions, namely
the Bernoulli, Poisson, and Normal distributions. The extensive experimental
evaluation of the proposed models in the tasks of node classification and link
prediction suggests that the proposed EFGE approaches can further improve
the predictive capabilities of node embeddings, compared to traditional
SkipGram-based and other baseline methods. In addition, we further study
the objective function of the proposed parametric models, providing connec-
tions to well-known unsupervised graph learning models under appropriate
parameter settings.

The major contributions of the chapter can be summarized as follows:

• We introduce a novel representation learning model, called EFGE,
which generalizes classical SkipGram-based approaches to exponential
family distributions, towards more expressive GRL methods that rely
on random walks. We study three instances of the model, namely the
EFGE-Bern, EFGE-Pois, and EFGE-Norm models, that correspond to
well-known distributions.

• We show that the objective functions of existing unsupervised represen-
tation learning models, including word embedding in NLP [Mik+13a]
and overlapping community detection [YL13], can be re-interpreted
under the EFGE model.

• In a thorough experimental evaluation, we demonstrate that the pro-
posed exponential family graph embedding models generally outper-
form widely used baseline approaches in various learning tasks on
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graphs. In addition, the running time to learn the representations is
similar to other SkipGram-based models.

The rest of the chapter is organized as follows. In Section 4.2 we introduce
some preliminary and background concepts. Then, Section 4.3 introduces
the proposed approach. The experimental evaluation is presented in Section
4.4. Finally, we summarize and conclude our paper in Section 4.5.

source code . The implementation of the proposed models is provided
in the following adress: https://abdcelikkanat.github.io/projects/EFGE/.

4.2 background concepts and related work

In this section, we will briefly review some preliminary concepts related to
random-walk based approaches and exponential families.

4.2.1 Random Walk-based Node Embeddings

As we have discussed in the previous chapters, the objective function of
random walk-based node representation learning models is defined in the
following way:

argmax
Ω

1
N·L ∑

w∈W

L
∑
l=1

∑
v∈C(l)

γ (w)

log p
(

y(l)
w,v; Ω

)
, (4.1)

where y(l)
w,vj represents the relationship between the center wl and context

node v in the walk w = (w1, . . . , wL) ∈ W . Here, C(l)
γ (w) :=

{
wl+j :

max{1, l − γ} ≤ j 6= 0 ≤ min{l + γ,L}
}

denotes the set of context nodes of
node wl , N is the number of walks, L is walk length and Ω = (A, B) is the
model parameters. We consider A[v] to represent the embedding vector of v
in all downstream machine learning applications.

Random walk-based graph representation learning methods can use dif-
ferent approaches to sample the context of a particular node. For instance,
DeepWalk performs uniform truncated random walks, while Node2Vec

https://abdcelikkanat.github.io/projects/EFGE/
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is based on second-order random walks to capture context information.
Another crucial point related to SkipGram based models is the way that
how the relationship among center and context nodes in Equation (4.1) is
modeled. In particular, DeepWalk uses the softmax function to model the
conditional distribution p(·) of a context node for a given center, in such a
way that nodes occurring in similar contexts tend to get close to each other
in the latent representation space. In a similar way, Node2Vec adopts the
negative sampling strategy, where it uses the sigmoid function to model the
occurrence of a node in the context of another one. As we will present in
the following section, we rely on exponential family distributions in order
to further extend and generalize random-walk GRL models to conditional
probability distribution beyond the softmax function—towards capturing
richer types of node interaction patterns.

4.2.2 Exponential Families

We introduce the exponential family distributions, a parametric set of probability
distributions that include, among others, the Gaussian, Binomial, and Poisson
distributions. A class of probability distributions is called exponential family
distributions if they can be expressed as

p(y) = h(y) exp
(

ηT(y)− A(η)
)

, (4.2)

where h is the base measure, η is the natural parameter, T is the sufficient statistic
of the distribution and A(η) is the log-normalizer or log-partition function
[And70]. Different choices of base measure and sufficient statistics lead us
to obtain different probability distributions. For instance, the base measure
and sufficient statistic of the Bernoulli distribution are h(y) = 1 and T(y) = y
respectively, while for the Poisson distribution we have h(y) = 1/y! and
T(y) = y.

As we mentioned above, exponential families contain a wide range of
commonly used distributions, providing a general class of models by repa-
rameterizing distributions in terms of the natural parameters η. In the
related literature, exponential family distributions have been utilized to learn
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embeddings for high-dimensional data of different types (e.g., market basket
analysis) [Rud+16; Liu+17; Rud+17]. Our approach generalizes exponential
family embedding models to graphs by redefining the natural parameter ηv,u

as the product of context and center vectors in the following way:

ηv,u := f
(

A[v]> · B[u]
)

,

where f is called the link function. As we will present shortly in the following
section, we have many alternative options for the form of the link function.

4.3 learning node embeddings with exponential families

In this section, we propose the exponential family graph embedding models,
referred to as EFGE. The main idea behind this family of models is to utilize
the expressive power of exponential family distribution towards conditioning
context nodes with respect to the center node of interest. Initially, we will
describe the formulation of the general objective function of the EFGE model,
and then we will present particular instances of the model based on different
exponential family distributions.

LetW be a collection of node sequences generated by following a random
walk strategy over a given graph G, as defined in Chapter 2. Based on that,
we can define a generic objective function to learn node embeddings in the
following way:

L(A, B) := argmax
Ω

∑
w∈W

L
∑
l=1

∑
v∈V

log p(y(l)
(w,v)

; Ω) +
λ

2
(
‖A‖2

F + ‖B‖2
F
)

, (4.3)

where y(l)
(w,v)

is the observed value indicating the relationship between the
center wl and context node v. We incorporate the objective with the regular-
ization term to obtain more informative embedding, which also improves
the performance of the model in downstream tasks. The term λ refers to the
regularization parameter and ‖ · ‖F is the Frobenius norm. Here, we aim to
find embedding vectors (A, B) by maximizing the log-likelihood in Equation
(4.3). Note that, the objective function in Equation (4.3) is quite similar to the
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Figure 4.1: Visualization of the Dolphins network composed by 2 communities and
the corresponding embeddings for d = 2.

one of the SkipGram model [Mik+13a] presented in Equation (4.1), except
that we also include nodes that are not belonging to context sets.

Instead of restricting ourselves to the Sigmoid or Softmax functions in
order to model the probability in the objective function of Equation (4.3),
we provide a generalization assuming that each y(l)

w,v follows an exponential
family distribution. That way, the objective function used to learn node
embedding vectors Ω = (A, B) can be rewritten as follows:

argmax
Ω

∑
w∈W

L
∑
l=1

∑
v∈V

log h(y(l)
w,v) + ηwl ,vT(y(l)

w,v)− A(ηwl ,v) +R(A, B), (4.4)

where R(A, B) indicates the regularization term in Equation 4.3 and it will
be omitted in the rest of the chapter for simplicity. As we can observe,
Equation (4.4) which is the objective function of the generic EFGE graph
embeddings model, generalizes the classic models to exponential family
conditional distributions given in Equation (4.2). That way, the proposed
EFGE approaches have the additional flexibility to utilize a wide range of
exponential distributions, allowing them to capture more complex types
of node interactions beyond simple co-occurrence relationships. It is also
important to stress out that, the first term of Equation (4.4) does not depend
on parameter ηwl ,v; this brings an advantage during the optimization process.

A general overview of our proposed model is as follows: Initially, we
sample a set of N random walks relying on a chosen walk strategy. This
strategy can be any context sampling process, such as uniform random
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walks (as in DeepWalk [PARS14]) or biased random walks (as in Node2Vec

[GL16] or in BiaedWalk [NM18]). Then, based on the chosen instance of the
EFGE model, we learn center and context embedding vectors. In this chapter,
we examine three particular instances of the EFGE model, that represent
well known exponential family distributions. In particular, we utilize the
Bernoulli, Poisson, and Normal distributions leading to the corresponding
EFGE-Bern, EFGE-Pois and EFGE-Norm models. For illustration purposes,
Figure 4.1 depicts the Dolphins network composed by two communities and
the embeddings in two dimensions as computed by different models. As
we can observe, for this particular toy example, the proposed EFGE-Bern

and EFGE-Pois approches learn representations that are able to differentiate
nodes with respect to their communities. In the following sections, we
analyze the properties of these models in detail.

4.3.1 The EFGE-Bern Model

Our first model is the EFGE-Bern, in which we will model the occurrence
of a node in the context set of another one. Let Y(l)

w,v be a random variable
following a Bernoulli distribution which is equal to 1 if node v appears in
the context set C(l)

γ (w) of node wl . It can be written by Y(l)
(w,v)

= X(l−γ)
(w,v)

∨ · · ·
∨X(l−1)

(w,v)
∨ X(l+1)

(w,v)
∨ · · · ∨X(l+γ)

(w,v)
, where each X(l+j)

(w,v)
indicates the appearance

of v at the specific position l + j (−γ ≤ j 6= 0 ≤ γ) in the walk w ∈ W .
Here, we assume that X(l+j)

(w,v)
’s, are independent variables. We can express the

objective function of the EFGE-Bern model, LB(A, B), by dividing Equation
(4.4) into two parts with respect to the values of Y(w,v) and X(l+j)

(w,v)
:

LB(A, B)= argmax
Ω

∑
w∈W

L
∑
l=1

(
∑

v∈C(l)
γ (w)

log p(y(l)
(w,v)

) + ∑
v 6∈C(l)

γ (w)

log p(y(l)
(w,v)

)

)

= argmax
Ω

∑
w∈W

L
∑
l=1

∑
−γ≤j≤γ

j 6=0

(
log p(x(l+j)

(w,wl+j)
)+∑

v∈V
v 6=w(l+j)

log p(x(l+j)
(w,v)

)

)
. (4.5)

Note that, the exponential form of a Bernoulli distribution with a pa-
rameter π is equal to exp (ηx− A(η)), where the log-normalizer A(η)



58 exponential family graph embeddings

is log(1 + exp(η)) and the parameter π is the sigmoid function σ(η) =

1/
(
1− exp(−η)). Therefore, we can rewrite the objective function LB(A, B)

as follows:

LB(A, B) = argmax
Ω

∑
w∈W

L
∑
l=1

∑
−γ≤j≤γ

j 6=0

(
log σ(η(wl ,wl+j)) + ∑

v∈V
v 6=wl+j

log σ(−η(wl ,v))

)
.

We choose the identity map for the link function f (·), so ηwl ,v directly
becomes equal to the product of vectors A[v] and B[wl ].

4.3.1.1 Relationship to negative sampling

Although the negative sampling strategy [Mik+13b; MK13] was proposed to
approximate the objective function of the SkipGram model, any rigorous
theoretical argument showing the connection between them has not been
provided. In Lemma 4.1, we show that the log-likelihood LB(A, B) of the
EFGE-Bern model in fact can approximated by the objective function of
negative sampling given in Equation (4.6). In our implementation, we adopt
negative sampling in order to improve the efficiency of the computation.

Lemma 4.1. The log-likelihood function LB(A, B) can be approximated by

∑
w∈W

L
∑
l=1

∑
−γ≤j≤γ

j 6=0

(
log p

(
x(l+j)

(w,wl+j)

)
+

k

∑
r=1

E
s∼q−

[
log p

(
x(l+j)

(w,s)

)])
(4.6)

for large values of k.

Proof. Let q−(·|wl) be the true conditional distribution of a random walk
method for generating negative samples defined over V . Then, Equation 4.5
can be rewritten in the following way:

∑
w∈W

L
∑
l=1

∑
−γ≤j≤γ

j 6=0

(
log p(x(l+j)

(w,wl+j)
) +

k

∑
r=1

E
s∼q−

(
log p(x(l+j)

(w,s))
))

≈ ∑
w∈W

L
∑
l=1

∑
v∈C(l)

γ (w)

(
log p(y(l)

w,v) +
k

∑
r=1

E
s∼q−y

(
log p(y(l)

(w,s))
))
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= ∑
w∈W

L
∑
l=1

 ∑
v∈Cw(wl)

log p(y(l)
(w,v)

) +
|C(l)

γ (w)|
∑
c=1

k

∑
r=1

E
s∼q−y

(
log p(y(l)

(w,s))
)

≈ ∑
w∈W

L
∑
l=1

 ∑
v∈C(l)

γ (w)

log p(y(l)
(w,v)

) +
|C(l)

γ (w))|
∑
c=1

k

∑
r=1

1

|V\C(l)
γ (w)| ∑

v 6∈C(l)
γ (w)

log p(y(l)
(w,v)

)


= ∑

w∈W

L

∑
l=1

 ∑
v∈C(l)

γ (w)

log p(y(l)
(w,v)

) + ∑
v 6∈C(l)

γ (w)

log p(y(l)
(w,v)

)


= ∑

w∈W

L
∑
l=1

∑
v∈V

log p(y(l)
(w,v)

)

=LB(A, B),

where the fourth line follows from the law of large numbers for the sample
size of |V\C(l)

γ (w)|, and k is set to |V\C(l)
γ (w)|/|C(l)

γ (w)| in the fourth line.

4.3.2 The EFGE-Pois Model

In this model, we will use the Poisson distribution to capture the relationship
between context and center nodes in a random walk sequence. Let Y(l)

(w,v)

be a value indicating the number of occurrences of node v in the context
of wl . We assume that Y(l)

(w,v)
follows a Poisson distribution, with the mean

value λ̃(wl ,v) being the number of appearances of node v in the surroundings
of wl within the window size γ. Similar to the previous model, it can be
expressed as Y(l)

(w,v)
= X(l−γ)

(w,v)
+ · · · + X(l−1)

(w,v)
+ X(l+1)

(w,v)
+ · · · + X(l+γ)

(w,v)
, where

X(l+j)
(w,v)

∼ Pois(λ
(l+j)
(wl ,v)

) for −γ ≤ j 6= 0 ≤ γ. That way, we obtain λ̃(wl ,v) =

∑γ
j=−γ λ

(l+j)
(wl ,v)

, since the sum of independent Poisson random variables is also
Poisson. By plugging the exponential form of the Poisson distribution into
Equation (4.3), we can derive the objective function LP(A, B) of the model
as:

argmax
Ω

∑
w∈W

L
∑
l=1

∑
v∈V

(
log h(y(l)

(w,v)
) +
(

η̃(wl ,v)y
(l)
(w,v)
− exp(η̃(wl ,v))

))
,
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where the base measure h(y(l)
(w,v)

) is equal to 1/y(l)
(w,v)

!. Note that, the number

of occurrence y(l)
(w,v)

is equal to 0 if v does not appear in the context of wl ∈ V .
Following a similar strategy as in the EFGE-Bern model, the equation can
be split into two parts for the cases where y(w,v) > 0 and y(w,v) = 0. That
way, we can adopt the negative sampling strategy (given in Equation (4.6))
as follows:

∑
w∈W

L

∑
l=1

∑
−γ≤j≤γ

j 6=0

((
− log(x(l+j)

(w,wl+j)
!)+η(wl ,wl+j)x(l+j)

(w,wl+j)
− exp(η(wl ,wl+j))

)
+

k

∑
r=1

E
s∼q−

[
− exp(η(wl ,s))

])
.

Note that, in the EFGE-Pois model, we do not specify any particular link
function; thus, the natural parameter is equal to the product of the embed-
dings vectors.

4.3.2.1 Relationship to overlapping community detection

As we have discussed in Section 3.2 of Chapter 3, BigClam [YL13] is a
widely used overlapping community detection method. It can be seen that
an objective function similar to BigClam [YL13], can be obtained by unifying
the objectives of the EFGE-Bern and EFGE-Pois models. The relationship is
provided in Lemma 4.2. Besides, each entry of the node embedding vector
can be considered as a coefficient indicating the node’s membership strength
to the corresponding community. In this case of BigClam, the vector entries
are restricted to non-negative values.

Lemma 4.2. Let Z(l)
(w,v)

be independent random variables following Poisson distri-
bution with natural parameter η(wl ,v) which is defined by log(A[v]>·B[wl ]) and let

Y(l)
(w,v)

∼ Bern(π
(l)
(w,v)

). For a set, W , of walks of length 2 containing all distinct

node pairs, if the parameter π
(l)
(w,v)

is chosen by p(Z(l)
(w,v)

> 0), then the objective
function of EFGE-Bern model is equal to

2

(
∑

(u,v)∈E
log
(

1−exp
(
−A[v]> · B[wl ]

))
− ∑

(u,v) 6∈E
A[v]> · B[wl ]

)
.
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Proof. Let Y(l)
(w,v)

be Bernoulli distributions with parameter π(wl ,v) as defined
above. Then, the objective function LB(A, B) defined in Subsection 4.3.1 can
be divided into parts and it can be written as follows:
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The last line follows from the assumption that the set of walks,W , consists
of all distinct node pairs of length 2, which in fact corresponds to the edge
set of the graph, and the window size, γ, is set to 1.

4.3.3 The EFGE-Norm Model

If a node v appears in the context of wl more frequently with respect to
other nodes, we can say that v has a higher interaction with wl than the
rest of the nodes. Therefore, we will consider each y(l)

(w,v)
in this model as a

weight indicating the strength of the relationship between the nodes wl and
v. We assume that X(l+j)

(w,v)
∼ N (1, σ2

+) if v ∈ C(l)
γ (w), and X(l+j)

(w,v)
∼ N (0, σ2

−)
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otherwise. Hence, we can obtain that Y(l)
(w,v)

∼ N (µ̃, σ̃2) if we follow a similar

assumption Y(l)
(w,v)

= ∑γ
j=−γ X(l+j)

(w,v)
as in the previous model where µ̃ is the

number of occurrences of v in the context. The definition of the objective
function, LN(A, B), for the EFGE-Norm model is defined as follows:

LN(A, B) = ∑
w∈W

L
∑
l=1

∑
−γ≤j≤γ

j 6=0

((
log h(x(l+j)

(w,wl+j)
)+
(

x(l+j)
(w,wl+j)

η(wl ,wl+j)

σ+
−

η2
(wl ,wl+j)

2

))

+
k

∑
r=1

E
s∼q−

[
log h(x(l+j)

(w,s)) +
(

x(l+j)
(w,s)

η(wl ,s)

σ−
−

η2
(wl ,s)

2

)])
,

where the base measure h(x) is exp(−x2/2σ2)/
√

2πσ for known variance.
In this model, we choose the link function as f (x) = exp(−x), so η(wl ,v) is
defined as exp(−A[v]> · B[wl ]).

4.3.4 Optimization

For the optimization step of our models, we use Stochastic Gradient Descent
(SGD) [Bot91] to learn representations Ω = (A, B). Since it is computationally
costly to compute the gradients for each node pair, we take advantage of
the formulation of the objective function of each model. It can be divided
into two parts according to the values of X(l+j)

(w,v)
; thus, we adopt the negative

sampling strategy, setting sampling size to k = 5 in all the experiments. We
sample negative instances from the vertex set with respect to the number
of occurrences of nodes in the generated walks raised to the power of 0.75
similar to the approach described in [Mik+13b].

4.4 experimental evaluation

In this section, we evaluate the performance of the proposed approach in the
node classification and link prediction tasks. In the experimental evaluation
of the proposed approach, we have used the same datasets described in
Chapter 2. The baseline methods have been run with the same parameter
settings explained in Chapter 3. For the EFGE model, we set the regular-
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ization parameter, λ, to 0.01 for PPI network, and it is set to 0.1 for the
other networks in the classification experiments. For the link prediction, it is
simply considered as 0.01 for all cases.

4.4.1 Node Classification

experimental set-up. For the classification task, we apply the same
strategy described in the previous chapter. In brief, our goal is to predict the
correct labels of nodes in the test set with having access only to a limited
number of node labels in the training set. We split the nodes into a wide
range of training ratios varying from 2% up to 90% in order to evaluate the
models better. We perform our experiments applying a one-vs-rest logistic
regression classifier with L2 regularization.

experimental results . We report the results in Tables 4.1 to 4.4 in
which the first and the second rows of each method indicates the Micro-F1

and the Macro-F1 scores, respectively. The best and second best performing
models are indicated with bold and underlined text. As we have discussed in
Section 4.3, the EFGE-Bern approach models the occurrence of a node in the
context of one another node. The model shows superior performances over
Cora network, especially for small training ratios. For instance, the approach
has 5.90% Micro-F1 and 8.49% Macro-F1 gains in scores for 2% training ratio
concerning the highest baseline score and its performance gains are 1.71%
and 2.01% in terms of Micro-F1 and Macro-F1 scores for the training set size
of 10%. The model also holds the highest scores after EFGE-Pois model on
the DBLP network. The EFGE-Pois is the best performing approach among
the three EFGE instances in general. The percentage gain for Micro-F1 score
compared to the best baseline technique, varies from 3.93% up to 8.99% on
Citeseer and differs from 2.30% up to 6.39 on the DBLP network. Since the
approach models the number of appearances of a node in the context sets, it
is more sensitive to the occurrence counts.

The last instance of EFGE that we have employed is the EFGE-Norm

model, which utilizes normal distribution to represent the interaction weights
between nodes. The model presents comparable performances on Cora and
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DBLP networks and it is the best approach over the PPI network with up
to 12.08% Micro-F1 and 9.90% Macro-F1 gains. The approach possesses a
similar trend to EFGE-Pois model since the mean of the distribution depends
on the occurrence counts. If a node appears more frequently in the context
of a particular node, it will have a higher interaction weight with it.

Overall, the classification experiments show that the proposed EFGE-Pois

and EFGE-Norm models perform well, outperforming most baselines, es-
pecially on a limited number of training data. This can qualitatively be
explained by the fact that those exponential family distribution models en-
able to capture the number of occurrences of a node within the context of
another one while learning the embedding vectors. Of course, the structural
properties of the network, such as the existence of community structure,
might affect the performance of these models. For instance, as we have
seen in the toy example of Fig. 4.1, the existence of well-defined commu-
nities at the Dolphins network allows the EFGE-Pois model to learn more
discriminative embeddings with respect to the underlying communities (as
we expect to have repetitions of nodes that belong to the same community
while sampling the context of a node based on random walks).

4.4.2 Link Prediction

experimental set-up. For this experiment, we randomly remove half
of the edges of a given network, keeping the residual network connected.
Then, we learn node representations using the residual network, which are
further used to build edge feature vectors with various operators. Please
refer to Section 2.5 of Chapter 2 for more details about the link prediction
experiment, concerning the construction of training and test sets.

experimental results . Table 4.5 shows the Area Under Curve (AUC)
scores for the link prediction task. The performances of EFGE variants are
distinctive for the networks such as DBLP, AstroPh, HepTh and Facebook with
gains 1.34%, 0.82%, 1.17% and 0.77%, respectively and the models show
slightly better performance over Citeseer and Cora. Since we use the walks
produced by Node2Vec, the performance of the EFGE instances highly



4.4 experimental evaluation 65

2% 4% 6% 8% 10% 30% 50% 70% 90%

0.421 0.462 0.488 0.502 0.517 0.569 0.587 0.596 0.597

DeepWalk

0.374 0.419 0.446 0.461 0.476 0.524 0.540 0.547 0.546

0.451 0.491 0.514 0.529 0.543 0.583 0.595 0.600 0.603

Node2Vec

0.397 0.443 0.466 0.483 0.497 0.535 0.546 0.549 0.550

0.300 0.353 0.384 0.407 0.418 0.476 0.494 0.505 0.512

LINE
0.243 0.303 0.334 0.357 0.367 0.423 0.440 0.448 0.454

0.197 0.204 0.207 0.208 0.216 0.253 0.276 0.299 0.316

HOPE
0.060 0.065 0.066 0.068 0.075 0.121 0.150 0.178 0.202

0.401 0.473 0.507 0.525 0.538 0.579 0.590 0.594 0.601

NetMF
0.346 0.421 0.454 0.474 0.487 0.528 0.538 0.542 0.548

0.384 0.439 0.459 0.479 0.491 0.532 0.545 0.552 0.558

GEMSEC
0.339 0.400 0.422 0.439 0.451 0.488 0.497 0.499 0.501

0.264 0.317 0.340 0.370 0.382 0.439 0.449 0.456 0.457

Ba
se

lin
es

M-NMF
0.161 0.229 0.261 0.293 0.306 0.370 0.381 0.390 0.390

0.472 0.514 0.539 0.554 0.565 0.608 0.621 0.626 0.626

Bern

0.420 0.465 0.489 0.505 0.517 0.559 0.572 0.576 0.575

0.491 0.525 0.547 0.560 0.571 0.608 0.621 0.629 0.627
Pois

0.434 0.470 0.493 0.507 0.519 0.556 0.569 0.577 0.574
0.469 0.515 0.537 0.552 0.564 0.603 0.617 0.623 0.625

EF
G

E

Norm

0.412 0.460 0.486 0.500 0.513 0.554 0.566 0.571 0.571

Table 4.1: Node classification on Citeseer for varying training sizes . For each method,
the rows indicates the Micro-F1 and Macro-F1 scores, respectively.

2% 4% 6% 8% 10% 30% 50% 70% 90%

0.617 0.688 0.715 0.732 0.747 0.799 0.815 0.825 0.832

DeepWalk

0.569 0.664 0.698 0.717 0.735 0.788 0.806 0.815 0.821

0.659 0.720 0.743 0.759 0.770 0.816 0.831 0.839 0.845

Node2Vec

0.612 0.694 0.724 0.743 0.755 0.804 0.820 0.828 0.832

0.416 0.498 0.546 0.581 0.609 0.701 0.728 0.741 0.747

LINE
0.306 0.425 0.492 0.543 0.578 0.691 0.720 0.733 0.738

0.284 0.301 0.301 0.302 0.302 0.302 0.302 0.304 0.306

HOPE
0.067 0.066 0.067 0.066 0.066 0.067 0.067 0.068 0.074

0.636 0.716 0.748 0.767 0.773 0.821 0.834 0.841 0.844

NetMF
0.591 0.694 0.731 0.751 0.760 0.811 0.824 0.832 0.835
0.470 0.530 0.568 0.587 0.601 0.674 0.714 0.735 0.744

GEMSEC
0.406 0.477 0.527 0.546 0.562 0.646 0.689 0.713 0.722

0.507 0.580 0.622 0.642 0.656 0.717 0.732 0.736 0.742

Ba
se

lin
es

M-NMF
0.459 0.550 0.598 0.622 0.638 0.706 0.722 0.728 0.734

0.698 0.748 0.768 0.778 0.787 0.820 0.835 0.841 0.847
Bern

0.664 0.729 0.753 0.766 0.775 0.809 0.823 0.829 0.834

0.701 0.748 0.767 0.776 0.784 0.812 0.822 0.831 0.834

Pois

0.656 0.727 0.751 0.763 0.772 0.801 0.811 0.820 0.819

0.682 0.743 0.766 0.778 0.786 0.818 0.829 0.837 0.837

EF
G

E

Norm

0.639 0.721 0.751 0.765 0.774 0.808 0.818 0.826 0.825

Table 4.2: Node classification on Cora for varying training sizes. For each method,
the rows indicates the Micro-F1 and Macro-F1 scores, respectively.
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2% 4% 6% 8% 10% 30% 50% 70% 90%

0.550 0.588 0.603 0.611 0.616 0.630 0.633 0.635 0.636

DeepWalk

0.496 0.527 0.540 0.547 0.551 0.563 0.565 0.566 0.567

0.575 0.599 0.612 0.618 0.623 0.636 0.639 0.641 0.641

Node2Vec

0.517 0.541 0.551 0.557 0.561 0.571 0.574 0.575 0.574

0.553 0.576 0.585 0.590 0.594 0.606 0.610 0.611 0.611

LINE
0.469 0.498 0.510 0.517 0.522 0.536 0.540 0.541 0.541

0.379 0.379 0.379 0.379 0.379 0.380 0.383 0.387 0.391

HOPE
0.137 0.137 0.137 0.137 0.138 0.140 0.146 0.152 0.160

0.577 0.589 0.596 0.601 0.605 0.617 0.620 0.623 0.623

NetMF
0.490 0.506 0.513 0.518 0.522 0.530 0.531 0.533 0.533

0.538 0.566 0.583 0.591 0.597 0.611 0.614 0.615 0.615

GEMSEC
0.477 0.501 0.513 0.519 0.523 0.534 0.535 0.537 0.536

0.501 0.527 0.540 0.545 0.551 0.568 0.574 0.577 0.579

Ba
se

lin
es

M-NMF
0.345 0.383 0.400 0.410 0.418 0.443 0.450 0.454 0.455

0.603 0.619 0.629 0.634 0.639 0.651 0.655 0.656 0.656

Bern

0.545 0.562 0.572 0.577 0.581 0.590 0.593 0.594 0.594

0.614 0.626 0.632 0.637 0.640 0.652 0.655 0.656 0.658
Pois

0.552 0.566 0.573 0.578 0.581 0.591 0.593 0.594 0.596
0.610 0.624 0.631 0.636 0.640 0.653 0.656 0.657 0.658

EF
G

E

Norm

0.547 0.564 0.571 0.577 0.580 0.591 0.593 0.594 0.595

Table 4.3: Node classification on DBLP for varying training sizes. For each method,
the rows indicates the Micro-F1 and Macro-F1 scores, respectively.

2% 4% 6% 8% 10% 30% 50% 70% 90%

0.110 0.131 0.143 0.151 0.156 0.188 0.206 0.218 0.226

DeepWalk

0.076 0.099 0.113 0.123 0.129 0.164 0.181 0.190 0.192

0.115 0.136 0.148 0.157 0.164 0.196 0.211 0.221 0.226

Node2Vec

0.078 0.101 0.116 0.125 0.132 0.167 0.180 0.188 0.190

0.109 0.133 0.149 0.162 0.170 0.210 0.226 0.235 0.242

LINE
0.063 0.084 0.099 0.111 0.120 0.164 0.181 0.191 0.192

0.068 0.069 0.069 0.070 0.069 0.071 0.077 0.086 0.093

HOPE
0.019 0.019 0.019 0.019 0.018 0.020 0.025 0.030 0.033

0.085 0.100 0.116 0.126 0.131 0.176 0.193 0.203 0.211

NetMF
0.045 0.064 0.080 0.090 0.095 0.137 0.152 0.161 0.160

0.078 0.082 0.085 0.087 0.089 0.112 0.131 0.143 0.151

GEMSEC
0.059 0.063 0.067 0.070 0.073 0.098 0.113 0.122 0.125

0.097 0.112 0.119 0.123 0.128 0.143 0.153 0.162 0.168

Ba
se

lin
es

M-NMF
0.071 0.089 0.097 0.103 0.108 0.125 0.135 0.141 0.141

0.125 0.148 0.162 0.172 0.179 0.212 0.227 0.236 0.240

Bern

0.087 0.111 0.126 0.137 0.144 0.178 0.191 0.197 0.195

0.126 0.151 0.166 0.176 0.184 0.217 0.231 0.239 0.242

Pois

0.084 0.108 0.123 0.136 0.142 0.177 0.191 0.197 0.194

0.128 0.151 0.167 0.177 0.185 0.220 0.234 0.241 0.247

EF
G

E

Norm

0.085 0.109 0.124 0.135 0.143 0.179 0.193 0.198 0.197

Table 4.4: Node classification on PPI for varying training sizes . For each method,
the rows indicates the Micro-F1 and Macro-F1 scores, respectively.
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Citeseer Cora DBLP PPI AstroPh HepTh Facebook Gnutella

Ba
se

lin
es

DeepWalk 0.828 0.779 0.944 0.860 0.961 0.896 0.984 0.695

Node2Vec 0.827 0.781 0.944 0.861 0.961 0.896 0.983 0.694

LINE 0.739 0.696 0.930 0.878 0.969 0.844 0.967 0.839
HOPE 0.744 0.712 0.873 0.880 0.931 0.836 0.975 0.748

NetMF 0.780 0.745 0.910 0.785 0.872 0.858 0.974 0.654

GEMSEC 0.749 0.734 0.920 0.771 0.816 0.823 0.733 0.639

M-NMF 0.751 0.714 0.891 0.886 0.948 0.861 0.977 0.755

EF
G

E Bern 0.820 0.753 0.954 0.728 0.977 0.899 0.991 0.622

Pois 0.829 0.777 0.957 0.739 0.973 0.902 0.991 0.624

Norm 0.783 0.782 0.956 0.806 0.966 0.907 0.990 0.668

Table 4.5: Area Under Curve (AUC) scores for link prediction.

affected by these generated walks; this can be especially seen over Gnutella
network. The average clustering coefficients of Gnutella, PPI and Citeseer are
relatively small compared to the rest of the network and the scores reveal the
possible correlation between the clustering coefficient and the performance
of EFGE variants.

4.4.3 Parameter Sensitivity

In this subsection, we evaluate how the performance of our models is affected
under different parameter settings. In particular, we mainly examine the
effect of embedding dimension d and the effect of the window size γ used
to sample context nodes.

the effect of dimension size . The dimension size d of embedding
vectors is a crucial parameter affecting the performance of models. Therefore,
we have conducted experiments examining the influence of embedding
dimension d on the Citeseer network. As shown in Figure 4.2, the increase
in the dimension size has a positive impact for all models over Micro-F1

scores. When the dimension size increases from 32 up to 224, we observe a
gain of around 18% for EFGE-Bern, around 17% for EFGE-Pois and 14.43%
for EFGE-Norm model over the training set constructed from 50% of the
network. While there is a big leap in the scores from the dimension size
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Figure 4.2: Influence of the dimension size (d) over Citeseer the network.

64 to 96 for EFGE-Norm, the rest of the EFGE instances show a similar
characteristic between the dimension sizes 32 and 64. The impact of the
dimension size is more prominent for these variants of EFGE than for the
EFGE-Norm model.

the effect of window size . We examine our approach’s sensitivity
under various window sizes ranging from 2 to 18 over the Citeseer network.
Figure 4.3a depicts the Micro-F1 scores for the training set composed by 50%
of the network. As we can observe, the variants of the EFGE model tend to
show better performance around window size of 8. EFGE-Pois shows supe-
rior performance compared to the other models since it models the number
of occurrences of nodes within a random walk sequence, and potentially
are benefited by a large γ value. On the contrary, the performance of the
EFGE-Bern model (which in fact captures simple co-occurrence relation-
ships) deteriorates for large window sizes more. EFGE-Norm is the most
sensitive approach to the window size since possible outlier nodes occurring
in the context sets causes a significant drop in its performance.

the effect of standard deviation of efge-norm model . The
EFGE-Norm model has an extra parameter σ which can influence the perfor-
mance of the method. We examine the impact of σ, with five different values,
performing experiments over the CiteSeer network. Figure 4.3b depicts how
the Micro-F1 scores alter for various value. The results clearly indicate that
the model performs well for the value 0.5 of σ. For this reason, we have set



4.5 conclusion and future work 69

2 6 10 14 18
Window size (γ)

0.610

0.615

0.620

0.625

M
ic

ro
-F

1
Sc

or
es

EFGE-BERN EFGE-POIS EFGE-NORM

(a) Window size

0.4 0.45 0.5 0.55 0.6
Standart deviation (σ)

0.612

0.614

0.616

0.618

M
ic

ro
-F

1
Sc

or
es

EFGE-NORM

(b) Standard deviation

Figure 4.3: Influence of the window size (γ) and standard deviation (σ) of EFGE-
Norm on the CiteSeer network for the training set ratio of 50%.

this value for all the experiments conducted in the node classification and
link prediction tasks.

4.5 conclusion and future work

In this chapter, we introduced exponential family graph embeddings (EFGE),
proposing three instances (EFGE-Bern, EFGE-Pois and EFGE-Norm) that
generalize random walk approaches to exponential families. The benefit
of these models stems from the fact that they allow utilizing exponential
family distributions over center-context node pairs, going beyond simple
co-occurrence relationships. We have also examined how the objective
functions of the models can be expressed in a way that negative sampling
can be applied to scale the learning process. The experimental results have
demonstrated that instances of the EFGE model can outperform widely
used baseline methods. As future work, we further plan to generalize the
proposed model by integrating various topological properties of the network
and possible node features into the node representation learning procedure.





5
M U LT I P L E K E R N E L R E P R E S E N TAT I O N L E A R N I N G O N
G R A P H S

M atrix factorization and random walk-based methods have become
popular approaches for learning representations of nodes in
a lower-dimensional space. In this chapter, we aim to bring

together the best of both worlds, towards learning node embeddings. In
particular, we propose a weighted matrix factorization model that encodes
random walk-based information about nodes of the network. The benefit of
this novel formulation is that it enables us to utilize kernel functions without
realizing the exact proximity matrix so that it enhances the expressiveness
of existing matrix decomposition methods with kernels and alleviates their
computational complexities. We further extend the approach with a multiple
kernel learning formulation that provides the flexibility of learning the kernel
as the linear combination of a dictionary of kernels in data-driven fashion.
We perform an empirical evaluation on real-world networks, showing that
the proposed model outperforms baseline node embedding algorithms in
two downstream machine learning tasks.

5.1 introduction

As we have discussed in Chapter 2, the area of GRL has been highly impacted
by both traditional dimensionality reduction approaches [BN01; RS00b]
and by the field of NLP [Mik+13b]. Specifically, models relying on matrix
factorization techniques [BN01; CLX15; Ou+16] and random-walk based
embedding models have gained considerable attention (e.g., [PARS14; GL16;
ÇM20; CM20]).

In this part of the dissertation, we will examine how kernel functions can
be used to further enhance node embeddings. Kernel functions have of-
ten been introduced along with popular learning algorithms, such as PCA

71
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[SSM97], SVM [SS01], Spectral Clustering [DGK04], and Collaborative Filter-
ing [Liu+16], to name a few. Most traditional learning models are insufficient
to capture the underlying substructures of complex datasets, since they rely
on linear techniques to model nonlinear patterns existing in data. Kernel
functions [HSS08] on the other hand, allow to map non-linearly separable
points into a (generally) higher dimensional feature space, so that the inner
product in the new space can be computed without needing to compute
the exact feature maps—bringing further computational benefits. Besides,
to further reduce model bias, multiple kernel learning approaches have been
proposed to learn optimal combinations of kernel functions [GA11]. Never-
theless, despite their wide applications in various fields [HSS08; Wan+12],
kernel and multiple kernel methods have not been thoroughly investigated
for learning node embeddings.

In this chapter, we aim to combine matrix factorization and random walks
in a kernelized model for learning node embedding. The potential advantage
of such a modeling approach is that it allows to leverage and combine the
elegant mathematical formulation offered by that matrix factorization with
the expressive power of random walks to capture a notion of “stochastic”
node similarity in an efficient way. More importantly, this formulation
enables to leverage kernel functions in the node representation learning task.
Because of the nature of matrix factorization-based models, node similarities
can be viewed as an inner products of vectors lying in a latent space—which
allows to utilize kernels towards interpreting the embeddings in a higher
dimensional feature space using non-linear maps. Besides, multiple kernels
can be utilized to learn more discriminative node embeddings. Note that,
although graph kernels is a well-studied topic in graph learning [KJM20],
it mainly focuses on graph classification—a task outside of the scope of
this chapter. To the best of our knowledge, random walk-based multiple
kernel matrix factorization has not been studied before for learning node
embeddings.

The main contributions of the chapter can be summarized as follows:

• We propose KernelNE (Kernel Node Embeddings), a novel approach
for learning node embeddings by incorporating kernel functions with
models relying on weighted matrix factorization, encoding random
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walk-based structural information of the graph. We further examine
the performance of the model with different types of kernel functions.

• To further improve expressiveness, we introduce MKernelNE, a mul-
tiple kernel learning formulation of the model. MKernelNE extends
the kernelized weighted matrix factorization framework by learning a
linear combination of a predefined set of kernels.

• We demonstrate how both models (simple and multiple kernel learning)
leverage negative sampling to efficiently compute node embeddings.

• We extensively evaluate the proposed method’s performance in the
downstream tasks of node classification and link prediction. We show
that the proposed approaches generally outperform well-known base-
line methods on various real-world graph datasets. Besides, due to the
efficient model optimization mechanism, the running time is compara-
ble to the one of random walk models.

The rest of the chapter is organized as follows. We present the related
works of the field in Section 5.2 and then, the problem formulation is de-
scribed in Section 5.3. The proposed approach is introduced and experimen-
tal evaluations are carried out in Section 5.4. Finally, we conclude the paper
in Section 5.6.

source code . The implementation of the proposed methodology in C++
can be reached at the following address: https://abdcelikkanat.github.io/

projects/kernelNE/.

5.2 related work

Although most algorithms in the broader field of machine learning have
been developed for the linear case, real-world data often requires nonlinear
models capable of unveiling the underlying complex relationships towards
improving the performance on downstream tasks. To that end, kernel
functions allow computing the inner product among data points in a typically
high-dimensional feature space, in which linear models could still be applied,

https://abdcelikkanat.github.io/projects/kernelNE/
https://abdcelikkanat.github.io/projects/kernelNE/
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without explicitly computing the feature maps [HSS08]. Because of the
generality of the inner product, kernel methods have widely been used
in a plethora of models, including Support Vector Machine [SS01], PCA
[SSM97], spectral clustering [DGK04; AS10], collaborative filtering [Liu+16],
and nonnegative matrix factorization for image processing tasks [FHK14], to
name a few.

Undoubtedly, the most prominent application of kernels in network anal-
ysis concerns the definition of a graph kernel [KJM20]—a kernel function
that mainly targets to measure the similarity between a pair of graphs, with
direct applications in the graph classification task. Recent approaches have
also been proposed to leverage graph kernels for node classification, but in a
supervised manner [Tia+19]. Other related applications of kernel methods
on graphs include topology inference [SBG17; RIG17], signal reconstruction
[RMG17], and anomaly detection [Mat+19].

The expressiveness of kernel methods can further be enhanced using
multiple kernel functions in a way that the best possible combination of a
set of predefined kernels can be learned [BLJ04; GA11]. Besides improving
prediction performance, multiple kernels have also be used to combine
information from distinct heterogeneous sources (please see [GA11] and
[WZH21] for a detailed presentation of several multiple kernel learning
algorithms and their applications).

Despite the widespread applications of the kernel and multiple kernel
learning methods, utilizing them for learning node embeddings via ma-
trix factorization in an unsupervised way, is a problem that has not been
thoroughly investigated. Previously, works that are close to our problem
settings, which follow a methodologically different factorization approach
(e.g., leveraging nonnegative matrix factorization [Liu+16]), targeting differ-
ent application domains (e.g., collaborative filtering [AYC11]). The multiple
kernel framework for graph-based dimensionality reduction proposed by
Lin et al. [LLF11] is also close to our work. Nevertheless, their work focuses
mainly on leveraging multiple kernel functions to fuse image descriptors in
computer vision tasks properly.

As will be presented shortly, in this chapter, we propose novel unsuper-
vised models for node embeddings that implicitly perform weighted matrix
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decomposition in a higher-dimensional space through kernel functions. The
target pairwise node proximity matrix is properly designed to leverage infor-
mation from random walk sequences, and thus, our models do not require
the exact realization of this matrix. Both single and multiple kernel learning
formulations are studied. Emphasis is also put on optimization aspects to
ensure that node embeddings are computed efficiently.

5.3 modeling and problem formulation

Our goal is to find node representations in a latent space, preserving proper-
ties of the network. More formally, we define the general objective function
of our problem as a weighted matrix factorization [SJ03], as follows:

argmin
A,B

∥∥∥W� (M−AB>)
∥∥∥2

F︸ ︷︷ ︸
Error term

+
λ

2
(
‖A‖2

F + ‖B‖2
F
)

︸ ︷︷ ︸
Regularization term

, (5.1)

where M ∈ R|V|×|V| is the target matrix constructed based on the desired
properties of a given network, which is used to learn node embeddings
A, B ∈ R|V|×d, and ‖ · ‖F denotes the Frobenius norm. We will use R(A, B)

to denote the regularization term of Equation (5.1). Each element W(v,u) of
the weight matrix W ∈ R|V|×|V| captures the importance of the approxima-
tion error between nodes v and u, and � indicates the Hadamard product.
Depending on the desired graph properties that we are interested to encode,
there are many possible alternatives to choose matrix M; such include the
number of common neighbors between a pair of nodes, higher-order node
proximity based on the Adamic-Adar or Katz indices [Ou+16], as well lever-
aging multi-hop information [CLX15]. Here, we will design M as a sparse
binary matrix utilizing information of random walks over the network. Note
that, matrices M and W do not need to be symmetric.

LetW be a collection of walks of length L and γ be the window size. We
consider M(v,u) as a binary value which equals to 1 if node u appears in the
context of v in any walk. We set F(v,u) to 2 · γ · #(v), where #(v) indicates the
total number of occurrences of node v in the generated walks. Setting each
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term W(v,u) as the square root of F(v,u), the objective function in Equation
(5.1) can be expressed under a random walk-based formulation, as follows:

argmin
A,B

∥∥∥W�
(
M−AB>

)∥∥∥2

F
+R(A, B)

= argmin
A,B

∥∥∥√F�
(
M−AB>

)∥∥∥2

F
+R(A, B)

= argmin
A,B

∑
v∈V

∑
u∈V

F(v,u)

(
M(v,u) −

〈
A[u], B[v]

〉)2
+R(A, B)

= argmin
A,B

∑
w∈W

L
∑
l=1

γ

∑
j=−γ
j 6=0

∑
u∈V

(
1{wl+j}(u)−

〈
A[u], B[wl ]

〉)2
+R(A, B), (5.2)

where each w = (w1, . . . , wl , . . . , wL) ∈ VL indicates a random walk of
length L in the collection W , and R(A, B) is the regularization term. As
mentioned in the previous chapters, matrix A in Equation (5.2) indicates
the embedding vectors of nodes when they are considered as contexts; those
will be the embeddings that are used in the experimental evaluation. The
choice of matrix M and the reformulation of the objective function, offers
a computational advantage during the optimization step. Moreover, such
formulation also allows us to further explore kernelized version in order to
exploit possible nonlinearity of the model.

5.4 kernel-based node representation learning

Most matrix factorization techniques that aim to find latent low-dimensional
representations (e.g., [Qiu+18; Qiu+19; Ou+16]), adopt the Singular Value
Decomposition (SVD); it provides the best approximation of the objective
function stated in Equation (5.1), as long as the weight matrix is uniform
[EY36]. Nevertheless, in our case the weight matrix is not uniform, therefore
we need the exact realization of the target matrix in order to perform SVD.
To overcome this limitation, we leverage kernel functions to learn node
representations via matrix factorization.

Let (X, dX) be a metric space and H be a Hilbert space of real-valued
functions defined on X. A Hilbert space is called reproducing kernel Hilbert
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space (RKHS) if the point evaluation map over H is a continuous linear
functional. Furthermore, a feature map is defined as a function Φ : X → H

from the input space X into feature space H. Every feature map defines a
kernel K : X× X→ R as follows:

K(x, y) := 〈Φ(x), Φ(y)〉 ∀(x, y) ∈ X2.

It can be seen that K(·, ·) is symmetric and positive definite due to the
properties of an inner product space.

A function g : X → R is induced by K, if there exists h ∈ H such that
g = 〈h, Φ(·)〉 for a feature vector Φ of kernel K. Note that, this is independent
of the definition of the feature map Φ and space H [Ste02]. Let Iκ := {g :
X→ R | ∃h ∈H s.t. g = 〈h, Φ(·)〉} be the set of induced functions by kernel
K. Then, a continuous kernel K on a compact metric space (X, dX) is universal,
if the set Iκ is dense in the space of all continuous real-valued functions
C(X). In other words, for any function f ∈ C(X) and ε > 0, there exists
gh ∈ Iκ satisfying

‖ f − gh‖∞ ≤ ε,

where gh is defined as 〈h, Φ(·)〉 for some h ∈H.

In this chapter, we consider universal kernels, since we can always find h ∈
H satisfying |〈h, φ(xi)〉 − αi| ≤ ε for given {x1, . . . , xN} ⊂ X, {α1, ..., αN} ⊂
R and ε > 0 by Proposition 5.1. If we choose αi’s as the entries of a
row of our target matrix M, then the elements h and φ(xi) indicate the
corresponding column vectors of A and B, respectively. Then, we can obtain
a decomposition of the target matrix by repeating the process for each row.
However, the element h might not always be in the range of feature map Φ;
in this case, we will approximate the correct values of M.

Proposition 5.1 (Universal kernels [Ste02]). Let (X, dX) be a compact metric
space and K(·, ·) be a universal kernel on X. Then, for all compact and mutually
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disjoint subsets S1, . . . ,Sn ⊂ X, all α1, . . . , αn ∈ R, and all ε > 0, there exists a
function g induced by K with ‖g‖∞ ≤ maxi |αi|+ ε such that

‖g|S −
n

∑
i=1

αi1Si‖∞ ≤ ε,

where S :=
⋃n

i=1 Si and g|S is the restriction of g to S.

Universal kernels also provide a guarantee for the injectivity of the feature
maps, as shown in Lemma 5.1; therefore, we can always find y ∈ X, such that
Φ(y) = h if h ∈ Φ(X). Otherwise, we can learn an approximate pre-image
solution by using a gradient descent technique [HR11].

Lemma 5.1 ([Ste02]). Every feature map of a universal kernel is injective.

Proof. Let Φ(·) : X → H be a feature vector of the kernel K(·, ·). Assume
that Φ is not injective, so we can find a pair of distinct elements x, y ∈ X such
that Φ(x) = Φ(y) and x 6= y. By Proposition 5.1, for any given ε > 0, there
exists a function g = 〈h, Φ(·)〉 induced by K for some h ∈H, which satisfies∥∥g|S − (1S1 − 1S2)

∥∥
∞ ≤ ε,

where S := S1 ∪ S2 for the compact sets S1 = {x} and S2 = {y}. Then,
we have that |〈Φ(x), h〉 − 〈Φ(y), h〉)| ≥ 2− 2ε. In other words, we obtain
Φ(x) 6= Φ(y), which contradicts our initial assumption.

5.4.1 Single Kernel Node Representation Learning

Following the kernel formulation described above, we can now perform
matrix factorization in the feature space by leveraging kernel functions. In
particular, we can move the inner product from the input space X to the
feature space H, by reformulating Equation (5.2) as follows:

argmin
A,B

∑
w∈W

L
∑
l=1

γ

∑
j=−γ
j 6=0

∑
u∈V

(
1{wl+j}(u)−

〈
Φ(A[u]), Φ(B[wl ])

〉)2
+R(A, B)
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= argmin
A,B

∑
w∈W

L
∑
l=1

γ

∑
j=−γ
j 6=0

∑
u∈V

(
1{wl+j}(u)−K

(
A[u], B[wl ]

))2
+R(A, B). (5.3)

To this end, we obtain a kernelized matrix factorization model for node
embeddings based on random walks. For the numerical evaluation of our
method, we use the following universal kernels [MXZ06; Ste02]:

KG(x, y) = exp

(
−‖x− y‖2

σ2

)
σ ∈ R

KS(x, y) =
1(

1 + ‖x− y‖2
)σ σ ∈ R+,

where KG and KS correspond to the Gaussian and Schoenberg kernels re-
spectively. We will refer to the proposed kernel-based node embeddings
methodology as KernelNE (the two different kernels will be denoted by
Gauss and Sch). A schematic representation of the basic components of the
proposed model is given in Figure 5.1.

5.4.1.1 Model optimization

The estimation problem for both parameters A and B is, unfortunately,
non-convex. Nevertheless, when we consider each parameter separately by
fixing the other one, it turns into a convex problem. By taking advantage
of this property, we employ Stochastic Gradient Descent (SGD) [Bot91] in
the optimization step of each embedding matrix. Note that, for each center
node wl ∈ V in Equation (5.3), we have to compute the gradient for each
u ∈ V , which is computationally intractable. However, Equation (5.3) can be
divided into two parts concerning the values of 1{wl+j}(u)∈{0, 1}, as follows:

∑
u∈V

(
1{wl+j}(u)−K

(
A[u], B[wl ]

))2

=
(

1−K
(
A[wl+j], B[wl ]

))2
+ ∑

s−∈V\{wl+j}

(
K
(
A[s−], B[wl ]

))2
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≈
(

1−K
(
A[wl+j], B[wl ]

))2
+ |V\{wl+j}| E

s−∼ p−

[
K
(

A[s−], B[wl ]
)]2

=
( (

1−K
(
A[wl+j], B[wl ]

))2

︸ ︷︷ ︸
positive sample

+ k E
s−∼p−

[
K
(
A[s−], B[wl ]

)]2

︸ ︷︷ ︸
negative sample

,

where k is defined as |V| − 1. That way, we can apply negative sampling
[Mik+13b]. For each center node wl , we sample k negative instances s− from
the noise distribution p−. Then, we can rewrite the objective function of
Equation (5.3) in the following way:

FS := argmin
A,B

∑
w∈W

L
∑
l=1

γ

∑
j=−γ
j 6=0

((
1−K

(
A[wl+j], B[wl ]

)2
+

k

∑
r=1

s−r ∼p−

K
(
A[s−r ],B[wl ]

)2
)

+R(A, B). (5.4)

Equation (5.4) corresponds to the objective function of the proposed Ker-
nelNE model. In the following subsection, we will examine how this model
could be further extended to leverage multiple kernels.

5.4.2 Multiple Kernel Node Representation Learning

Selecting a proper kernel function K(·, ·) and the corresponding parame-
ters (e.g., the bandwidth of a Gaussian kernel) is a critical task during the
learning phase. Nevertheless, choosing a single kernel function might im-
pose potential bias, causing limitations on the performance of the model.
Having the ability to properly utilize multiple kernels could increase the
expressiveness of the model, capturing different notions of similarity among
embeddings [GA11]. Besides, learning how to combine such kernels, might
further improve the performance of the underlying model. In particular,
given a set of base kernels {Kj}K

j=1, we aim to find an optimal way to combine
the given kernels, as follows:

Kc(x, y) = fc
(
{Ki(x, y)}K

i=1|c
)
,
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Figure 5.1: Schematic representation of the KernelNE model. A set of node
sequences is firstly generated by following a random walk strategy. By using the
co-occurrences of node pairs within a certain window size, node representations are
learned by optimizing their maps in the feature space.
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where the combination function fc is parameterized on c ∈ RK that indi-
cates kernel weights. Due to the generality of the multiple kernel learning
framework, fc can be either a linear or nonlinear function.

In this paragraph, we examine how to further strengthen the proposed
kernelized weighted matrix factorization, by linearly combining multiple
kernels. More precisely, let K1, . . . ,KK be a set of kernel functions satisfying
the properties presented previously. Then, we restate the objective as follows:

FM := argmin
A,B,c

∑
w∈W

L
∑
l=1

γ

∑
j=−γ
j 6=0

( (
1−

K

∑
i=1

ciKi(A[wl+j], B[wl ])
)2

+
k

∑
r=1

s−r ∼p−

( K

∑
i=1

ciKi(A[s−r ], B[wl ])
)2
)

+
λ

2
(
‖A‖2

F + ‖B‖2
F
)

+
β

2
‖c‖2

2, (5.5)

where c = [c1, . . . , cK]> ∈ RK. Here, we introduce an additional parameter
cj representing the contribution of the corresponding kernel Ki. β > 0 is a
tradeoff parameter for the regularization term, and similarly, the coefficients
c1,. . .,cK are optimized by fixing the remaining model parameters A and B.
Equation (5.5) corresponds to the objective function of the proposed multiple
kernel learning model MKernelNE. Unlike the common usage of multiple
kernels [GA11], we do not constrain the coefficients to non-negative values.
We interpret each entry of the target matrix as a linear combination of inner
products of different kernels’ feature maps. As discussed in the previous
sections, our main intuition relies on obtaining more expressive embeddings
by moving the factorization step into a higher dimensional space.

Algorithm 5.1 provides the pseudocode of the proposed approach. For a
given collection of random walksW , we firstly determine the center-context
node pairs (wl , wl+j) in the node sequences. Recall that, for each center node
in a walk, its surrounding nodes within a certain distance γ, define its context.
Furthermore, the corresponding embedding vectors B[wl ] of center node wl

and A[wl+j] of context wl+j are updated by following the rules which we
describe in detail below. Note that, we obtain two different representations,
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A[v] and B[v], for each node v ∈ V since the node can have either a center or
context role in the walks. The gradients in Algorithm 5.2 are given below.
For notation simplicity, we denote each Ki(A[u], B[v]) by the term Ki(u, v).

∇
A[x]
FM := 1{u}(x)

(
− 2

K

∑
i=1

ci ∇
A[u]

Kj(u, v)
)(

1−
K

∑
i=1

ciKi(u, v)
)

+

2
k

∑
r=1

s−r ∼p−

1{s−r }(x)
( K

∑
i=1

ci ∇
A[s−r ]

Ki(s−r , v)Ki(s−r , v)
)

+ λA[x]

∇
B[v]
FM := −2

( K

∑
i=1

ci ∇
B[v]

Ki(u, v)
)(

1−
K

∑
i=1

ciKi(u, v)
)

+

2
k

∑
r=1

s−r ∼p−

( K

∑
i=1

ci ∇
B[v]

Ki(s−r , v)Ki(s−r , v)
)

+ λB[v]

∇
ct
FM = −2

(
1−

K

∑
i=1

ciKi(u, v)
)
Kt(u, v)+

2
k

∑
r=1

s−r ∼p−

( K

∑
i=1

ciKi(s−r , v)
)
Kt(s−r , v) + βct

5.4.3 Complexity Analysis

For the generation of walks, we apply the biased random walk strategy pro-
posed in Node2Vec, which can be performed in O(|W| · L) steps [GL16] for
the precomputed transition probabilities, where L indicates the walk length
and W denotes the set of walks. For the algorithm’s learning procedure,
we can carry out Line 5 of Algorithm 5.1 at most 2γ · |W| · L times for each
center-context pair, where γ represents the window size. The dominant
operation in Algorithm 5.2 is the multiplication operation of the update
rules in Lines 6, 7, and 9; the running time can be bounded by O(k · K · d),
where k is the number of negative samples generated per center-context
pair, K is the number of kernels, and d is the representation size. To sum
up, the overall running time of the proposed approach can be bounded by
O(γ · |W| · L · K · d · k) steps.
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Algorithm 5.1 MKernelNE
Input: Graph: G = (V , E)

Representation size: d
Set of walks: W
Window size: γ
Kernel function: K
Kernel parameter(s): σ

Output: Embedding matrix: A
1: Initialize matrices: A, B ∈ R|V|×d

/* Extract center-context node pairs */
2: for all w = (w1, . . . , wL) ∈ W do
3: for l ← 1 to L do
4: for j 6= 0← −γ to γ do
5: A, B, c← UpdateEmb(A, B, c, wl , wl+j,K, σ)
6: end for
7: end for
8: end for

5.5 experimental evaluation

In this section, we assess the performance of the proposed approach by
following the same experimental setup and network datasets that we have
employed in the previous sections.

5.5.1 Parameter Settings

The different instances of KernelNE and MKernelNE are fed with random
walks similar to those used in Node2Vec, setting hyper-parameters p, q
to 1.0. For the training process, we adopt the negative sampling strategy
[Mik+13a] as described in Subsection 5.4.1. For the kernel parameters, the
value of σ has been chosen as 2.0 for the single kernel version of the model
(KernelNE). For MKernelNE, we have considered three kernels and their
parameters are set to 1.0, 2.0, 3.0 and 1.0, 1.5, 2.0 for MkernelNE-Gauss and
MkernelNE-Sch, respectively. The regularization parameters are set to
λ = 10−2 and β = 0.1.
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Algorithm 5.2 UpdateEmb

Input: Embedding matrices: A and B
Kernel coefficients: c
Kernel function(s): K
Center and context nodes: v and u
Learning rate: η
Distribution for generating negative samples: p−

Output: Embedding matrix: A
1: node list← [u]

/* Extract negative samples */
2: for s← 1 to k do
3: node list← SampleNode( p−)
4: end for

/* Update embedding vectors */

5: for each x in node list do
6: A[x]← A[x]− η∇A[x]FM
7: B[v]← B[v]− η∇B[v]FM

/* Update individual kernel weights */

8: if number of kernels > 1 then
9: c← c− η∇cFM

10: end if
11: end for

5.5.2 Node Classification

experimental setup. In the node classification task, we have access to
the labels of a certain fraction of nodes in the network (training set), and our
goal is to predict the labels of the remaining nodes (test set). The experiments
are carried out by applying an one-vs-rest logistic regression classifier with
L2 regularization [Ped+11].

experimental results . Tables 5.1 to 5.4 report the Micro-F1 and Macro-
F1 scores of the classification task. With boldface and underline, we indicate
the best and second-best performing model, respectively. As we can observe,
the single and multiple kernel versions of the proposed methodology outper-
form the baseline models, showing different characteristics depending on the
graph dataset. While the Schoenberg kernel comes into prominence on PPI
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2% 4% 6% 8% 10% 30% 50% 70% 90%

0.421 0.462 0.488 0.502 0.517 0.569 0.587 0.596 0.597

DeepWalk

0.374 0.419 0.446 0.461 0.476 0.524 0.540 0.547 0.546

0.451 0.491 0.514 0.529 0.543 0.583 0.595 0.600 0.603

Node2Vec

0.397 0.443 0.466 0.483 0.497 0.535 0.546 0.549 0.550

0.300 0.353 0.384 0.407 0.418 0.476 0.494 0.505 0.512

LINE
0.243 0.303 0.334 0.357 0.367 0.423 0.440 0.448 0.454

0.197 0.204 0.207 0.208 0.216 0.253 0.276 0.299 0.316

HOPE
0.060 0.065 0.066 0.068 0.075 0.121 0.150 0.178 0.202

0.401 0.473 0.507 0.525 0.538 0.579 0.590 0.594 0.601

NetMF
0.346 0.421 0.454 0.474 0.487 0.528 0.538 0.542 0.548

0.384 0.439 0.459 0.479 0.491 0.532 0.545 0.552 0.558

GEMSEC
0.339 0.400 0.422 0.439 0.451 0.488 0.497 0.499 0.501

0.264 0.317 0.340 0.370 0.382 0.439 0.449 0.456 0.457

Ba
se

lin
es

M-NMF
0.161 0.229 0.261 0.293 0.306 0.370 0.381 0.390 0.390

0.465 0.504 0.528 0.543 0.555 0.600 0.611 0.616 0.620
Gauss

0.415 0.456 0.479 0.496 0.508 0.551 0.562 0.566 0.566
0.497 0.531 0.544 0.555 0.561 0.591 0.602 0.610 0.609

K
e
r

n
e
l

N
E

Sch

0.428 0.465 0.480 0.492 0.498 0.531 0.542 0.549 0.546

0.493 0.530 0.547 0.559 0.566 0.600 0.613 0.619 0.620
Gauss

0.434 0.473 0.491 0.504 0.511 0.546 0.559 0.566 0.565

0.500 0.538 0.553 0.563 0.570 0.597 0.609 0.614 0.615

M
K

e
r

n
e
l

N
E

Sch

0.433 0.475 0.490 0.500 0.508 0.537 0.550 0.557 0.556

Table 5.1: Node classification on Citeseer for varying training sizes. For each method,
the rows indicates the Micro-F1 and Macro-F1 scores, respectively.

network, the Gaussian kernel shows good performance for the rest networks.
We further observe that leveraging multiple kernels with MKernelNE often
has superior performance compared to the single kernel model, especially
for smaller training ratios. For instance, MKernelNE-Gauss provides an
increase in the Micro-F1 score ranging from 2.15% to 6.85% and improvement
in the Macro-F1 scores varying from 2.62% to 5.67% on the DBLP network.
In general, we have observed that the integration of Gaussian kernel ex-
hibits higher performance than the Schoenberg kernel in the classification
experiments.

5.5.3 Link Prediction

experimental set-up. As we have described in the previous chapters,
for the link prediction task, we remove half of the network’s edges by
retaining its connectivity, and we learn node embedding on the residual
network. For networks consisting of disconnected components, we consider



5.5 experimental evaluation 87

2% 4% 6% 8% 10% 30% 50% 70% 90%

0.617 0.688 0.715 0.732 0.747 0.799 0.815 0.825 0.832

DeepWalk

0.569 0.664 0.698 0.717 0.735 0.788 0.806 0.815 0.821

0.659 0.720 0.743 0.759 0.770 0.816 0.831 0.839 0.845

Node2Vec

0.612 0.694 0.724 0.743 0.755 0.804 0.820 0.828 0.832

0.416 0.498 0.546 0.581 0.609 0.701 0.728 0.741 0.747

LINE
0.306 0.425 0.492 0.543 0.578 0.691 0.720 0.733 0.738

0.284 0.301 0.301 0.302 0.302 0.302 0.302 0.304 0.306

HOPE
0.067 0.066 0.067 0.066 0.066 0.067 0.067 0.068 0.074

0.636 0.716 0.748 0.767 0.773 0.821 0.834 0.841 0.844

NetMF
0.591 0.694 0.731 0.751 0.760 0.811 0.824 0.832 0.835

0.470 0.530 0.568 0.587 0.601 0.674 0.714 0.735 0.744

GEMSEC
0.406 0.477 0.527 0.546 0.562 0.646 0.689 0.713 0.722

0.507 0.580 0.622 0.642 0.656 0.717 0.732 0.736 0.742

Ba
se

lin
es

M-NMF
0.459 0.550 0.598 0.622 0.638 0.706 0.722 0.728 0.734

0.696 0.739 0.759 0.772 0.780 0.820 0.837 0.846 0.851
Gauss

0.664 0.721 0.743 0.758 0.767 0.809 0.826 0.836 0.840
0.695 0.736 0.750 0.759 0.765 0.790 0.800 0.806 0.812

K
e
r

n
e
l
N

E

Sch

0.631 0.697 0.721 0.734 0.745 0.780 0.790 0.795 0.799

0.701 0.748 0.764 0.775 0.781 0.812 0.823 0.828 0.833

Gauss

0.656 0.723 0.746 0.761 0.769 0.801 0.813 0.818 0.820

0.699 0.742 0.757 0.767 0.772 0.797 0.806 0.812 0.818

M
K

e
r

n
e
l
N

E

Sch

0.637 0.708 0.733 0.749 0.756 0.787 0.796 0.802 0.804

Table 5.2: Node classification on Cora for varying training sizes. For each method,
the rows indicates the Micro-F1 and Macro-F1 scores, respectively.

2% 4% 6% 8% 10% 30% 50% 70% 90%

0.550 0.588 0.603 0.611 0.616 0.630 0.633 0.635 0.636

DeepWalk

0.496 0.527 0.540 0.547 0.551 0.563 0.565 0.566 0.567

0.575 0.599 0.612 0.618 0.623 0.636 0.639 0.641 0.641

Node2Vec

0.517 0.541 0.551 0.557 0.561 0.571 0.574 0.575 0.574

0.553 0.576 0.585 0.590 0.594 0.606 0.610 0.611 0.611

LINE
0.469 0.498 0.510 0.517 0.522 0.536 0.540 0.541 0.541

0.379 0.379 0.379 0.379 0.379 0.380 0.383 0.387 0.391

HOPE
0.137 0.137 0.137 0.137 0.138 0.140 0.146 0.152 0.160

0.577 0.589 0.596 0.601 0.605 0.617 0.620 0.623 0.623

NetMF
0.490 0.506 0.513 0.518 0.522 0.530 0.531 0.533 0.533

0.538 0.566 0.583 0.591 0.597 0.611 0.614 0.615 0.615

GEMSEC
0.477 0.501 0.513 0.519 0.523 0.534 0.535 0.537 0.536

0.501 0.527 0.540 0.545 0.551 0.568 0.574 0.577 0.579

Ba
se

lin
es

M-NMF
0.345 0.383 0.400 0.410 0.418 0.443 0.450 0.454 0.455

0.575 0.595 0.606 0.613 0.617 0.630 0.633 0.635 0.636

Gauss

0.517 0.536 0.545 0.551 0.554 0.564 0.566 0.567 0.569

0.609 0.617 0.621 0.624 0.627 0.635 0.637 0.638 0.640

K
e
r

n
e
l
N

E

Sch

0.531 0.546 0.552 0.556 0.559 0.568 0.570 0.571 0.572

0.614 0.624 0.630 0.633 0.636 0.646 0.648 0.650 0.650
Gauss

0.547 0.560 0.566 0.570 0.573 0.582 0.583 0.584 0.584
0.615 0.621 0.625 0.628 0.631 0.639 0.641 0.643 0.643

M
K

e
r

n
e
l
N

E

Sch

0.538 0.551 0.557 0.561 0.564 0.572 0.574 0.576 0.576

Table 5.3: Node classification on DBLP for varying training sizes. For each method,
the rows indicates the Micro-F1 and Macro-F1 scores, respectively.
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2% 4% 6% 8% 10% 30% 50% 70% 90%

0.110 0.131 0.143 0.151 0.156 0.188 0.206 0.218 0.226

DeepWalk

0.076 0.099 0.113 0.123 0.129 0.164 0.181 0.190 0.192

0.115 0.136 0.148 0.157 0.164 0.196 0.211 0.221 0.226

Node2Vec

0.078 0.101 0.116 0.125 0.132 0.167 0.180 0.188 0.190

0.109 0.133 0.149 0.162 0.170 0.210 0.226 0.235 0.242

LINE
0.063 0.084 0.099 0.111 0.120 0.164 0.181 0.191 0.192

0.068 0.069 0.069 0.070 0.069 0.071 0.077 0.086 0.093

HOPE
0.019 0.019 0.019 0.019 0.018 0.020 0.025 0.030 0.033

0.085 0.100 0.116 0.126 0.131 0.176 0.193 0.203 0.211

NetMF
0.045 0.064 0.080 0.090 0.095 0.137 0.152 0.161 0.160

0.078 0.082 0.085 0.087 0.089 0.112 0.131 0.143 0.151

GEMSEC
0.059 0.063 0.067 0.070 0.073 0.098 0.113 0.122 0.125

0.097 0.112 0.119 0.123 0.128 0.143 0.153 0.162 0.168

Ba
se

lin
es

M-NMF
0.071 0.089 0.097 0.103 0.108 0.125 0.135 0.141 0.141

0.102 0.121 0.134 0.142 0.148 0.180 0.192 0.200 0.203

Gauss

0.051 0.067 0.078 0.086 0.092 0.125 0.138 0.146 0.147

0.126 0.154 0.172 0.185 0.195 0.232 0.244 0.250 0.256

K
e
r

n
e
l

N
E

Sch

0.069 0.091 0.107 0.119 0.128 0.171 0.187 0.196 0.198

0.128 0.156 0.174 0.186 0.195 0.231 0.242 0.249 0.254

Gauss

0.071 0.094 0.109 0.122 0.131 0.172 0.187 0.195 0.197

0.128 0.156 0.173 0.186 0.194 0.230 0.241 0.247 0.251

M
K

e
r

n
e
l

N
E

Sch

0.071 0.094 0.110 0.122 0.130 0.169 0.184 0.192 0.193

Table 5.4: Node classification on PPI for varying training sizes. For each method,
the rows indicates the Micro-F1 and Macro-F1 scores, respectively.

the giant component among them as our initial graph. The removed edges
constitute the positive samples for the testing set; the same number of node
pairs that do not exist in the original graph is sampled at random to form the
negative samples. Then, the entries of the feature vector corresponding to
each node pair (u, v) in the test set are computed based on various element-
wise operations that we have described in Chapter 2. In the experiments, we
apply logistic regression with L2 regularization.

experimental results . Table 5.5 presents the Area Under Curve (AUC)
scores for the link prediction task. In the case of the single kernel model
KernelNE, the Schoenberg kernel (KernelNE-Sch) performs significantly
better than the Gaussian one. It has higher scores ranging from 0.74%
to 9.28% on most of the networks except PPI, Facebook, and Gnutella. We
observe that MKernelNE provides a performance gain of up to 0.12% for
the Schoenberg kernel and up to 5.29% for the Gaussian kernel. Since the
single kernel model, KernelNE-Sch is the best performing approach for
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Baselines KernelNE MKernelNE
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Citeseer 0.828 0.827 0.739 0.744 0.780 0.749 0.751 0.807 0.882 0.850 0.863

Cora 0.779 0.781 0.696 0.712 0.745 0.734 0.714 0.774 0.823 0.802 0.810

DBLP 0.944 0.944 0.930 0.873 0.910 0.920 0.891 0.950 0.960 0.961 0.960

PPI 0.860 0.861 0.878 0.880 0.785 0.771 0.886 0.846 0.801 0.768 0.788

AstroPh 0.961 0.961 0.969 0.931 0.872 0.816 0.948 0.963 0.970 0.979 0.970

HepTh 0.896 0.896 0.844 0.836 0.858 0.823 0.861 0.899 0.917 0.917 0.916

Facebook 0.984 0.983 0.967 0.975 0.974 0.733 0.977 0.990 0.988 0.989 0.989

Gnutella 0.695 0.694 0.839 0.748 0.654 0.639 0.755 0.816 0.673 0.653 0.671

Table 5.5: Area Under Curve (AUC) scores for link prediction.

most networks, the impact of adopting multiple kernels for the Gaussian case
is more distinctive than the Schoenberg kernel. The baselines surpass the
performance of our proposed models only on the PPI and Gnutella networks.
Although KernelNE and MKernelNE methods attain their highest scores
for the Weighted L2 operator that we have described in Chapter 2, KernelNE-
Gauss achieves a remarkable score with the average metric on Gnutella
network. Overall, both the KernelNE and MKernelNE approaches perform
well across different datasets compared to the rest of baseline models.

5.5.4 Parameter Sensitivity

In this subsection, we examine how the performance of the proposed models
is affected with respect to the choice of parameters.

the effect of dimension size . The dimension size is a critical param-
eter for node representation learning approaches since the desired properties
of networks are aimed to be preserved in a lower-dimensional space. Figure
5.2 depicts the Micro-F1 score of the proposed models for varying embedding
dimension sizes, ranging from d = 32 up to d = 224 over the Citeseer network.
As it can be seen, all the different node embedding instances, both single
and multiple kernel ones, have the same tendency with respect to d; the



90 multiple kernel representation learning on graphs

performance increases proportionally to the size of the embedding vectors.
Focusing on 10% training ratio, we observe that the performance gain almost
stabilizes for embedding sizes greater than 96.
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Training ratio: 10% Training ratio: 50% Training ratio: 90%

Figure 5.2: Influence of the dimension size (d) on the Citeseer network.

the effect of kernel parameters . We have further studied the
behavior of the kernel parameter σ of the Gaussian and Schoenberg kernel
respectively (as described in Section 5.4.1). Figure 5.3 show how the Micro
F1 node classification score is affected with respect to σ for various training
ratios on the Citeseer network. For the Gaussian kernel, we observe that
the performance is almost stable for σ values varying from 0.25 up to 2.0,
showing a sudden decrease after 4.0. For the case of the Schoenberg kernel,
we observe an almost opposite behavior. Recall that, parameter σ has
different impact on these kernels (Section 5.4.1). In particular, the Micro-F1

score increases for σ values ranging from 0.25 to 0.50, while the performance
almost stabilizes in the range of 4.0 to 8.0.
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Figure 5.3: Influence of kernel parameters on the Citeseer network.
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Figure 5.4: Comparison of running times of the KernelNE and MKernelNE models
with the baselines.

5.5.5 Running Time Comparison

For the running time comparison of the different models, we have generated
an Erdös-Rényi Gn,p graph model [ER60], by choosing the number of nodes
n = 105 and the edge probability p = 10−4. Figure 5.4 depicts the running
time (in seconds) for both the baseline and the proposed models.

For this particular experiment, we have run all the models on a machine
of 1TB memory with a single thread when it is possible. We do not report
the running time of GEMSEC, since the experiment did not manage to com-
plete within 2 days. As we can observe, both the proposed models have
comparable running time—utilizing multiple kernels with MKernelNE im-
proves performance on downstream tasks without heavily affecting efficiency.
Besides, KernelNE runs faster than LINE, while MKernelNE with three
kernels shows also a comparable performance. It is also important to note
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Figure 5.5: Running time analysis of the KernelNE and MKernelNE models on
Erdös-Renyi graphs of varying sizes.

that although NetMF is a well-performing baseline model (especially in
the task of node classification) which also relies on matrix factorization of
a random walk proximity matrix, the model is not very efficient because
of the way that the factorization is performed (please see Section. 5.2 for
more details). On the contrary, our kernelized matrix factorization models
are more efficient and scalable by leveraging negative sampling to improve
scalability.

In addition to the running time comparison of the proposed approach
against the different baseline models, we further examine the running time
of KernelNE and MKernelNE (using three base kernels) over Erdös-Rényi
graphs of varying sizes, ranging from 28 to 213 nodes. In the generation
of random graphs, we set the edge probabilities so that the expected node
degree of graphs is 10. Figure 5.5 shows the running time of the proposed
models. Since the Gaussian and Schoenberg kernels have similar perfor-
mance, we report the running time for the Gaussian kernel only. As we
observe, considering multiple kernels does not significantly affect the scala-
bility properties of the MKernelNE model.
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a) Ground Truth Labels

b) NODE2VEC c) KERNELNE-SCH d) KERNELNE-GAUSS

f) MKERNELNE-SCH g) MKERNELNE-GAUSSe) NETMF

Figure 5.6: Visualization of node embeddings of Dolphins in the 2D space. The node
colors indicate community labels, computed using the Louvain algorithm.

5.5.6 Visualization and Clustering of Embedding Vectors

As we have discussed in Chapter 3, Modularity is a measure designed to assess
the quality of the clustering structure of a graph [New10]. High modularity
implies good clustering structure—the network consists of substructures in
which nodes densely connected with each other to each other. Here, we
perform a simple visualization and clustering experiment to examine the
ability of the different node embedding models to capture the underlying
community structure, preserving network’s modularity in the embedding
space. Note that, to keep the settings of the experiment simple, we lever-
age the raw embedding vectors visualizing them in the two-dimensional
space (instead of performing visualization with t-SNE [MH08] or similar
algorithms).

We perform experiments on the Dolphins toy network, which contains 62
nodes and 159 edges. We use the Louvain algorithm [Blo+08] to detect the
communities in the network. Each of these detected five communities is
represented with a different color in Figure 5.6a. We also use the proposed
and the baseline models to learn node embeddings in two-dimensional space.

As we can observe in Figure 5.6, different instances of MKernelNE learn
embedding vectors in which nodes of the same community are better dis-
tributed in the two-dimensional space. Besides, to further support this obser-
vation, we run the k-means clustering algorithm [Ped+11] on the embedding



94 multiple kernel representation learning on graphs

vectors, computing the corresponding Normalized Mutual Information (NMI)
scores [MV13], assuming as ground-truth communities the ones computed
by the Louvain algorithm in the graph space. While the NMI scores for
Node2Vec and NetMF are 0.532 and 0.572 respectively, KernelNE-Sch

achieves 0.511 while for KernelNE-Gauss we have 0.607. The NMI scores
significantly increase in the case of the multiple kernel models MKernelNE-
Sch and MKernelNE-Gauss, which are 0.684 and 0.740 respectively.

5.6 conclusion and future work

In this chapter, we have studied the problem of learning node embeddings
with kernel functions. We have first introduced KernelNE, a model that aims
at interpreting random-walk based node proximity under a weighted matrix
factorization framework, allowing to utilize kernel functions. To further boost
performance, we have introduced MKernelNE, extending the proposed
methodology to the multiple kernel learning framework. Besides, we have
discussed how parameters of both models can be optimized via negative
sampling in an efficient manner. Extensive experimental evaluation showed
that the proposed kernelized models substantially outperform baseline GRL
methods in node classification and link prediction tasks.

The proposed kernelized matrix factorization opens up further research
directions in network representation learning that we aim to explore in future
work. To incorporate the sparsity property prominent in real-world networks,
a probabilistic interpretation [MS08] of the proposed matrix factorization
mode would be suitable. Besides, it would be interesting to examine how
the proposed models could be extended in the case of dynamic networks
[Kaz+20].

5.7 an overview of the proposed learning-based models

We have, so far, introduced three different graph representation learning
approaches addressing the same problem from different perspectives. We
have devised our models based on the generation of random walks in order
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to have a flexible architecture to learn node embeddings. In the next chapter,
we will present the last contribution of the dissertation, which focuses on a
different objective concerning the design of scalable algorithms. Therefore,
here we will briefly review and compare the methods proposed so far in this
thesis.

The first approach, TNE, has explicitly leveraged the extracted community
information in learning node representations. Later on, we have extended
the traditional SkipGram model by modeling node interactions with expo-
nential family distributions. Finally, we have proposed a random walk-based
kernelized matrix factorization method to learn more expressive embeddings.

We have mainly evaluated the performance of these approaches in two
downstream tasks: node classification and link prediction. For each network,
we report the score of the baseline method performing the best—so, the
chosen baseline model might differ depending on the dataset. The results
are depicted in Tables 5.6 to 5.9. In all tables, we use boldface to denote the
best performing model, while underline indicates the best score among the
variations of each method.
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Citeseer 0.543 0.535 0.526 0.551 0.546 0.565 0.571 0.564 0.555 0.561 0.566 0.570

Cora 0.773 0.751 0.762 0.765 0.754 0.787 0.784 0.786 0.780 0.765 0.781 0.772

DBLP 0.623 0.617 0.619 0.625 0.625 0.639 0.640 0.640 0.617 0.627 0.636 0.631

PPI 0.164 0.173 0.172 0.178 0.180 0.179 0.184 0.185 0.148 0.195 0.195 0.194

Table 5.6: Comparison of methods for node classification with 10% training ratio.
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Citeseer 0.595 0.610 0.583 0.619 0.612 0.621 0.621 0.617 0.611 0.602 0.613 0.609

Cora 0.834 0.840 0.824 0.835 0.828 0.835 0.822 0.829 0.837 0.800 0.823 0.806

DBLP 0.639 0.634 0.635 0.642 0.641 0.655 0.655 0.656 0.633 0.637 0.648 0.641

PPI 0.226 0.233 0.227 0.226 0.229 0.227 0.231 0.234 0.192 0.244 0.242 0.241

Table 5.7: Comparison of methods for node classification with 50% training ratio.
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Citeseer 0.603 0.618 0.594 0.638 0.624 0.626 0.627 0.625 0.620 0.609 0.620 0.615

Cora 0.845 0.856 0.834 0.850 0.851 0.847 0.834 0.837 0.851 0.812 0.833 0.818

DBLP 0.641 0.638 0.634 0.642 0.642 0.656 0.658 0.658 0.636 0.640 0.650 0.643

PPI 0.242 0.251 0.238 0.240 0.244 0.240 0.242 0.247 0.203 0.256 0.254 0.251

Table 5.8: Comparison of methods for node classification with 90% training ratio.
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Citeseer 0.828 0.809 0.793 0.809 0.795 0.820 0.829 0.783 0.807 0.882 0.850 0.863

Cora 0.781 0.775 0.806 0.780 0.767 0.753 0.777 0.782 0.774 0.823 0.802 0.810

DBLP 0.944 0.958 0.959 0.959 0.958 0.954 0.957 0.956 0.950 0.960 0.961 0.960

PPI 0.886 0.772 0.872 0.780 0.844 0.728 0.739 0.806 0.846 0.801 0.768 0.788

AstroPh 0.969 0.977 0.979 0.977 0.977 0.977 0.973 0.966 0.963 0.97 0.979 0.970

HepTh 0.896 0.903 0.908 0.905 0.904 0.899 0.902 0.907 0.899 0.917 0.917 0.916

Facebook 0.984 0.993 0.993 0.993 0.993 0.991 0.991 0.990 0.99 0.988 0.989 0.989

Gnutella 0.839 0.728 0.796 0.721 0.723 0.622 0.624 0.668 0.816 0.673 0.653 0.671

Table 5.9: Comparison of learning-based models in the link prediction task.

To have a comprehensive overview of the methods in terms of performance,
for the node classification task we report the Micro-F1 scores for training
ratios of 10%, 50%, and 90%. As we can observe in Tables 5.6 to 5.8, the
instances of EFGE become prominent for various networks—modeling the
node interactions with a proper distribution, produces more expressive
embeddings. This model performs especially well for 10% training size.
On the other hand, TNE and KerneNE show comparable results for larger
training sets.

In the link prediction experiments (Table 5.9), the KernelNE-Sch and
MKernelNE-Gauss variants show good performance—being the best per-
forming models over the four networks. KernelNE-Gauss is also the method
having the highest score over the PPI and Gnutella networks after the best-
performing baseline. We observe that the integration of community infor-
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mation positively contributes to the performance of the TNE instances, that
possess comparable scores.





6
R A N D O M WA L K D I F F U S I O N M E E T S H A S H I N G F O R
S C A L A B L E G R A P H E M B E D D I N G S

M ost widely used models face computational challenges to scale
to large networks, as the size of the networks increases. While
there is a recent effort towards designing algorithms that solely

deal with scalability issues, most of them behave poorly in terms of accuracy
on downstream tasks. In this chapter, we aim at studying models that
balance the trade-off between efficiency and accuracy. In particular, we
propose NodeSig, a scalable embedding model that computes binary node
representations. NodeSig exploits random walk diffusion probabilities via
stable random projection hashing towards efficiently computing embeddings
in the Hamming space. Our extensive experimental evaluation on various
graphs has demonstrated that the proposed model achieves a good balance
between accuracy and efficiency compared to well-known baseline models
on two downstream tasks.

6.1 introduction

As we have discussed in Chapters 2 to 5, the majority of the existing node
embedding approaches propose learning-based techniques relying either on
matrix factorization or on node context sampling to infer nodes proximities
[HYL17b]. However, the computational cost and the high memory usage
burden bring limitations to their applicability on large-scale networks. Recent
graph representation studies aim to improve running time complexity via
matrix sparsification techniques [Qiu+19] or capitalizing on hierarchical
graph representations [Blo+08] but the quality of the embeddings deteriorates
significantly.

Besides the computational burden of model optimization, most of the pro-
posed algorithms learn low-dimensional embeddings in the Euclidean space.
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Figure 6.1: Comparison of models on the DBLP network. NodeSig balances between
good accuracy and low running time.

A few recent studies have suggested learning discrete node representations
[Lia+18; Wu+18; Yan+19], in which Hamming distance is leveraged to com-
pute the pairwise similarity of embedding vectors very fast. The basic idea
builds upon fast sketching techniques for scalable similarity search, mainly
based on data-independent or data-dependent hashing techniques [Wan+18].
Although binary embeddings speedup distance measure computations, the
corresponding models often undergo computationally intensive learning
procedures, especially in the case of learning-to-hash models [Lia+18].

In this chapter, we propose NodeSig, a scalable model for computing
expressive binary node embeddings based on stable random projections.
NodeSig first leverages random walk diffusions to estimate higher-order
node proximity. Then, a properly defined sign random projection hashing
technique is applied to obtain binary node signatures in the Hamming space,
leading to an approximation of the chi similarity (χ) [PW10] between the
proximity vectors in the original space. Since these vectors are constructed
based on the occurrence frequencies of nodes within random walks, chi
similarity emerges as a natural choice of similarity metric, frequently used to
compare histograms in various areas including natural language processing
and computer vision [Ye+15; Huo+09].

Each component of NodeSig has been designed to ensure the scalability
of the model, while at the same time the accuracy on downstream tasks is
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not compromised or even improves compared to traditional models. Figure
6.1 positions NodeSig regarding accuracy and running time, providing
a comparison to different models on the DBLP network. As we observe,
NodeSig’s running time is comparable to that of models that focus solely
on scalability (e.g., NodeSketch, RandNE, LouvainNE), with improved
accuracy even higher than Node2Vec or HOPE in this particular dataset.
The main contributions of the chapter can be summarized as follows:

• We introduce NodeSig, a scalable and expressive model for binary node
embeddings based on stable random projection hashing of random
walk diffusion probabilities. NodeSig leverages higher-order proximity
information among nodes, while its design allows scaling to large
graphs without sacrificing accuracy.

• The distance computation between node signatures in the embedding
space is provided by the Hamming distance on bit vectors, which is
significantly more efficient than distance computations based on other
distance measures. Besides, NodeSig can easily be extended to deal
with dynamic networks since the computation of node embeddings
are entirely independent of each other. In other words, the embedding
of a particular node relies on local information without requiring
knowledge about other nodes’ representations.

• In a thorough experimental evaluation, we demonstrate that the pro-
posed binary embeddings achieve superior performance compared
to various baseline models on two downstream tasks. At the same
time, the running time required to compute node signatures allows the
model to scale on large graphs.

The rest of the chapter is organized as follows. Section 6.2 presents related
work in the field. Section 6.3 presents the proposed approach in detail.
Performance evaluation results are offered in Section 6.4, whereas Section
6.5 discusses the potential of the approach for dynamic networks. Finally,
we summarize the work in Section 6.6.

source code . The implementation of the proposed model in C++ can
be found at the address: https://abdcelikkanat.github.io/projects/nodesig/.

https://abdcelikkanat.github.io/projects/nodesig/
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6.2 related work

The main limitation of the conventional graph representation learning tech-
niques is that they do not scale well for large networks. The main focus
has been put on increasing the effectiveness of data mining tasks (e.g., clas-
sification, link prediction, network reconstruction) whereas the efficiency
dimension has not received significant attention. To attack this problem,
recent advances in GRL use random projection or hashing techniques (more
specifically, variants of locality-sensitive hashing) in order to boost perfor-
mance, trying to maintain effectiveness as well.

One of the first scalable approaches (RandNE) was proposed in [Zha+18].
RandNE is based on iterative Gaussian random projection, being able to
adapt to any desired proximity level. In the same line, FastRP was proposed
in [Che+19] which is faster than RandNE and also more accurate. Lou-
vainNE [Bho+20] suggested learning node representations by aggregating
the embeddings of nodes extracted at varying levels of the hierarchy.

Recently, embedding techniques based on hashing have emerged as a
promising alternative to enable faster processing while at the same time
retain good accuracy results. The NetHash algorithm, proposed in [Wu+18],
expands each node of the graph into a rooted tree, and then by using a
bottom-up approach encodes structural information as well as attribute
values into minhash signatures in a recursive manner. A similar approach
has been used in NodeSketch [Yan+19], where the context of every node
is defined in a different way whereas the embedding vector of each node
contains integer values and the weighted Jaccard similarity coefficient is
being used. Based on performance evaluation results reported in [Yan+19],
NodeSketch is extremely efficient managing to reduce the embedding cost
by orders of magnitude in comparison to baseline approaches. Moreover,
NodeSketch achieves comparable (or even better) F1 score in the node
classification task as well as comparable or better precision in the link
prediction task with respect to the baseline techniques.

Our proposed model, NodeSig, takes a different approach. First, it samples
weights from the Cauchy distribution in order to construct the projection
matrix. Then, it obtains the projected values by performing recursive update
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Figure 6.2: Schematic representation of the NodeSig model. Firstly, the weights
of the random projection matrix are sampled and then the projection of the prox-
imity matrix is performed via the weight propagation step. Finally, binary node
representations are obtained by combining the signs of the projected values.

rules instead of explicitly realizing the data matrix. Finally, a bit-vector is
generated, corresponding to the signature of the projected data. As we will
show shortly, NodeSig shows comparable or even better accuracy results
compared to NodeSketch, while at the same time, it can easily be adapted
to more demanding settings like dynamic or streaming environments.

6.3 proposed approach

In this section, we introduce the proposed approach, referred to as NodeSig,
which aims at representing the nodes of the network as fixed-length binary
codes. The model mainly relies on sign stable random projections of a
properly designed matrix that captures higher order proximity among nodes.
Initially, we describe how we construct this target matrix by using random
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walk diffusion probabilities, and then we demonstrate how the random
projections can efficiently be performed by propagating the sampled weights
without the need for the explicit realization of the target matrix. Finally,
we obtain the binary representations by incorporating a nonlinear mapping
through a simple sign function. An overview of the basic steps of NodeSig

is given in Figure 1.1.

6.3.1 Random Walk Diffusion for Node Proximity Estimation

In most cases, direct links among nodes are not sufficient to grasp various
inherent properties of the network that are related to node proximity. It is
highly probable that the network might have missing or noisy connections,
thus relying solely on first-order proximity can reduce the expressiveness of
the model. Random walk diffusions constitute an interesting way to leverage
higher-order information while computing embeddings. The underlying
idea relies on the co-occurrence frequencies of nodes up to a certain dis-
tance in the random walks; nodes appearing more frequently close to each
other within the random walks share similar characteristics, and therefore
should be placed close to each other in the embedding space. This idea has
been exploited by various representation learning models [PARS14; GL16]
and our works [ÇM20; ÇM19a; ÇM21] described in the previous chapters.
Nevertheless, sampling multiple random walks, as used in various models
significantly increases the training time causing scalability issues.

To overcome this problem, in this chapter we directly leverage random
walk diffusions, adopting a uniform random walking strategy to extract
information describing the structural roles of nodes in the network. Let
P used to denote the right stochastic matrix associated with the adjacency
matrix W of the graph, which is obtained by normalizing the rows of the
matrix. More formally, P can be written as P(v,u) := W(v,u)/ ∑x∈V W(v,x),
defining the transition probabilities of the uniform random walk strategy.
We use a slightly modified version of the transition matrix by adding a
self-loop on each node, in case it does not exist.

Note that the probability of visiting the next node depends only on the
current node that the random walk resides; therefore, node u can be visited
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starting from v by taking l steps with probability P(l)
(v,u)

, if there is a path
connecting them. For a given walk length L, we define the matrix M as

M := P + · · ·+ P(l) + · · ·+ P(L),

where P(l) indicates the l-order proximity matrix and each entry M(v,u) in
fact specifies the expectation of visiting u starting from node v within L
steps. By introducing an additional parameter α, M(α) can be rewritten by:

M(α) := αP + · · ·+ α(l)P(l) + · · ·+ α(L)P(L).

Higher order node proximities can be captured using longer walk lengths,
where the impact of the walk at different steps is controlled by the importance
factor α. As we will present in the next paragraph, matrix M(α) is properly
exploited by a random projection hashing strategy to efficiently compute
binary node representations.

6.3.2 Learning Binary Embeddings

Random projection methods [Vem01] have been widely used in a wide
range of machine learning applications that are dealing with large scale
data. They mainly target to represent data points into a lower dimensional
space by preserving the similarity in the original space. Here, we aim at
encoding each node of the network in a Hamming space H

(
dH, {0, 1}d);

we consider the normalized Hamming distance dH as the distance metric
[YCP15]. The benefit of binary representations is twofold: first, they will
allow us to perform efficient distance computation using bitwise operations,
and secondly reduce the required disk space to store the data.

Random projections are linear mappings; the binary embeddings though
require nonlinear functions to perform the discretization step, and a nat-
ural choice is to consider the signs of the values obtained by the Johnson-
Lindenstrauss (JL) [JLS86] transform. More formally, it can be written that

hW(x) := sign(x>W),
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where W is the projection matrix whose entries W(i,j) are independently
drawn from normal distribution and sign(x)j is equal to 1 if xj > 0 and 0
otherwise. The approach was first introduced by Goemans and Williamson
[GW95] for a rounding scheme in approximation algorithms, demonstrating
that the probability of obtaining different values for a single bit quantization
is proportional to the angle between vectors, as it is shown in Theorem 6.1.
The main idea relies on sampling uniformly distributed random hyperplanes
in Rd. Each column of the projection matrix, in fact, defines a hyperplane
and the arc between vectors x and y on the unit sphere is intersected if
hW(x)j and hW(y)j take different values.

Theorem 6.1 ([GW95]). For a given pair of vectors x, y ∈ Rn,

P
[
hW(x)j 6= hW(y)j

]
=

1
π

cos−1
(

x>y
‖x‖2‖y‖2

)
,

where W(i,j) ∼ N (0, 1) for 1 ≤ i, j ≤ N.

Although the signs of JL random projections allow us to approximate the
angle between the vectors in the original space, in our settings, we would
prefer to preserve a distance metric that can fit better the input data M(α).
Note that, the node proximity matrix M(α) contains non-negative elements
that are computed based on the occurrence frequencies of nodes within
random walks. Hence, we will focus on estimating distance metrics capable
of comparing histogram-type data by properly redesigning the projection
matrix. The stable random projections approach [LSH13] generalizes the
aforementioned idea by using a symmetric α-stable distribution with unit
scale in order to sample the elements of the projection matrix, for 0 < α ≤ 2.
Li et al. [LSH13] proposed the following upper bound

P
[
hW(x)j 6= hW(y)j

]
≤ 1

π
cos−1ρα (6.1)

for non-negative vectors (xi ≥ 0, yi ≥ 0, 1 ≤ i ≤ N), where ρα is defined by

ρα :=

(
∑m=1 xα/2

m yα/2
m√

∑m=1 xα
i

√
∑m=1 yα

m

)2/α

.
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It is well known that the bound is exact for α = 2, which also corresponds
to the special case in which normal random projections are performed. When
the vectors are chosen from the `1(R+) space (i.e., ∑i=1 xi = 1, ∑i=1 yi = 1),
it is easy to see that the χ2 similarity ρχ2 defined as ∑i=1(2xiyi)/(xi + yi) is
always greater or equal to ρ1, as suggested by Lemma 6.1.

Lemma 6.1. For given x, y ∈ Rd satisfying xi, yi ≥ 0 for all 1 ≤ i ≤ d and

∑i=1 xi = ∑i=1 yi = 1, then

ρ1 ≤ ρχ2 .

Proof.

ρ1=

(
∑i=1 x1/2

i y1/2
i√

∑i=1 xi
√

∑i=1 yi

)2

=

(
∑
i=1

√
xiyi

)2

=

(
∑
i=1

√
2xiyi√

xi + yi

√
xi + yi√

2

)2

≤ ∑
i=1

2xiyi

xi + yi
∑
i=1

xi + yi

2

= ∑
i=1

2xiyi

xi + yi
= ρχ2 ,

where the inequality follows from the Cauchy-Schwarz inequality.

Besides, it has been empirically shown [LSH13] that the collision proba-
bility for Cauchy random projections with unit scale can be well estimated,
especially for sparse data:

P
[
hW(x)j 6= hW(y)j

]
≈ 1

π
cos−1ρχ2 ≤ 1

π
cos−1ρ1. (6.2)

Note that, the matrix M(α) described in the previous paragraph consists of
non-negative values; its row sums are equal to ∑Ll=1 α(l) and M(α) is sparse
enough for small walk lengths. Therefore, we design the projection matrix
by sampling its entries from the Cauchy distribution, aiming to learn binary
representations preserving the chi-square similarity. The chi-square distance is
one of the measures used for histogram-based data, commonly used in the
fields of computer vision and natural language processing [Ye+15; Huo+09].
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As it is shown in Figure 6.2, the last step of NodeSig for obtaining binary
node representations is to utilize the signs of the projected data. In other
words, the embedding vector E[v] for each node v ∈ V is computed as
follows:

E[v] :=
[
sign

(
M(v,:)(α) W(:,1)

)
, . . . , sign

(
M(v,:)(α) W(:,d)

)]
.

Note that, the projection of the exact realization of M(α) can be computa-
tionally intensive, especially for large walks. Instead, it can be computed by
propagating the weights W(u,j) for each dimension j (1 ≤ j ≤ d), using the
following recursive update rule:

R(l+1)
(v,j) (α)← α ∑

u∈N (v)

P(v,u) ×
(

W(u,j) +R(l)
(u,j)(α)

)
, (6.3)

where N (v) refers to the set of neighbors of node v ∈ V and R(l)
(v,j) is equal

to the projected data, M(v,:)(α) ·W(:,j) for the walk length l, and R(0)
(v,j) is

initialized to zero. By Lemma 6.2, it can be seen that the projection of M(α)

can be computed with the recursive update rules defined in Equation 6.3.

Lemma 6.2. Let P be N × N a right stochastic matrix and M(L)(α) be the matrix
defined by αP + · · ·+ α(l)P(l) + · · ·+ α(L)P(L). For a given W ∈ RN×D , we have

M(L)(α)W :=
(

αP+· · ·+ α(l)P(l) + · · ·+α(L)P(L)
)

W =R(L), (6.4)

where each R(l)
(i,j) is recursively defined by αP(i,:)

(
W(:,j) +R(l−1)

(:,j)

)
for all l ∈

{1, . . . ,L}, i ∈ {1, . . . , N} and R(0) is set to 0.

Proof. For l = 1, we have that

R(1)
(i,j) = αP(i,:)

(
W(:,j) +R(0)

(:,j)

)
= αP(i,:)

(
W(:,j) + 0

)
= αP(i,:)W(:,j),

for all j ∈ {1, . . . , d}, and i ∈ {1, . . . , N} so the claim in Equation (6.4) holds.
Let us assume that it is true for n = l ≥ 1. Then,

R(n+1)
(i,j) = αP(i,:)

(
W(:,j) +R(n)

(:,j)

)
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= αP(i,:)

(
W(:,j) + αPW(:,j) + · · ·+ α(n)P(n)W(:,j)

)
= αP(i,:)W(:,j) + · · ·+ α(i+1)P(n+1)

(i,:) W(:,j)

=
(

αP(i,:) + · · ·+ α(i+1)P(n+1)
(i,:)

)
W(:,j)

= M(n+1)(α)W(:,j).

Thus, the claim holds for n+1= l. By the principle of induction, it satisfies
for all l ∈ {1, . . . ,L}.

Algorithm 6.1 provides the pseudocode of NodeSig. Firstly, we generate
the projection matrix by sampling the weights from the Cauchy distribution
with unit scale. The samples are further divided by ∑l=1 α(l), because the
row sums of M(α) must be equal to 1. Then, we compute the terms R(l)

(v,j) by
propagating the weights in Line 9 at each walk iteration l < L. Note that,
the term R in the pseudocode is a vector of length d, thus we obtain the final
representation of each node using the signs of R(L)

(v,j).

6.3.3 Time and Space Complexity

At the beginning of the algorithm, we need to sample a weight matrix of
size d · | · V|, and it can be formed in the order of O(d · |V|). As we observe
in Algorithm 6.1, the main cumbersome point of NodeSig is caused by
the update rule defined in Equation 6.3, which corresponds to Line 9 of
the pseudocode. The update rule must be repeated |N (v)| times for each
node v ∈ V , thus it requires 2 ·m · d multiplication operations at the walk
step l (1 ≤ l ≤ L) for a network consisting of m edges and for embedding
vectors of dimension d. Hence, the overall time complexity of the algorithm
is O ((d · |V|+ d ·m · L). During the running course of the algorithm, we
need to store a vector of size |V| in memory for the computation of each
dimension. Assuming, in the worst case, that we aim to retain the whole
projection matrix W in memory, we need O(d · |V|) space in total, since
each node requires d space for storing the R(l)

(v,j) values in the update rule of
Equation 6.3. Note that, the performance of the algorithm can be boosted
by using parallel processing for each dimension of embedding vectors or
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Algorithm 6.1 NodeSig

Input: Graph: G = (V , E) with the transition matrix P
Representation size: d
Walk length: L
Importance factor: α

Output: Embedding matrix: E
/* Initialization */

1: for each node v ∈ V do
2: R[v]← 0d = (0, . . . , 0)
3: W[v] ∼ Cauchy(0, 1)d / ∑Ll=1 αl

4: end for
/* Project the matrix with recursive update rules */

5: for l ← 1 to L do
6: for each node v ∈ V do
7: temp[v]← 0d = (0, . . . , 0)
8: for each neighbour node u ∈ N (v) do
9: temp[v]← temp[v] + P[v, u]× (W[u] +R[u])

10: end for
11: end for
12: for each node v ∈ V do
13: R[v]← α× temp[v]
14: end for
15: end for

/* Get the sign of each value */
16: for each node v ∈ V do
17: E[v]← sign(R[v])
18: end for

for Line 6, since the required computation for each node is completely
independent.

6.3.4 Discussion for Dynamic Networks

The majority of existing network representation learning models have been
developed for static networks. Nevertheless, most real-world networks
undergo structural changes and evolve over time with the addition and
removal of links and nodes [Kaz+20]. Therefore, being able to design models
that properly adapt to dynamic networks is an important point to investigate.
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As we discuss here, the proposed method allows for efficient updates of the
embeddings, without requiring any costly learning procedures.

More precisely, the key point in the dynamic case, is that the learned
embedding vectors should be efficiently updated instead of being recal-
culated from scratch. If an edge is added or removed for a pair of nodes
(u, v) ∈ V×V, the terms R(l)

(w,:) in Equation (6.3) for node w ∈ V are affected,
for all l > k := min{dist(w, u), dist(w, v)}—thus, it suffices to update only
these affected terms. The transition probabilities for nodes u and v also
change even though the remaining nodes are not affected, so all the terms
P(v,:) must be divided by ∑w∈N (v) P(v,w) in order to normalize the transition
probabilities and similarly the same procedure must also be applied to node
u after each edge insertion and deletion operation.

Evidently, more research is required towards this direction in order to
provide a method that scales well when the input data changes rapidly (i.e.,
in the form of a stream).

6.4 experimental evaluation

In this section, we report empirical evaluation results demonstrating the
effectiveness and efficiency of NodeSig compared to baseline algorithms. All
the experiments have been performed on an Intel Xeon 2.4GHz CPU server
(32 Cores) with 60GB of memory.

6.4.1 Datasets and Baseline Models

datasets . We perform experiments on networks of different scales and
types. In addition to the networks that we have described in Chapter 2,
we also use Blogcatalog [TL09a], which is a social network constructed by
using the relationships among bloggers, where node labels indicate the blog
categories specified by the blogger. The network contains 10, 312 nodes,
333, 893 edges and 39 labels. Youtube [TL09b] which has been crawled from
the corresponding video sharing platform. Node labels indicate categories of
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videos among 47 possible options and it exactly consists of 1, 138, 499 nodes
and 2, 990, 443 edges.

baseline models . We have considered six representative baseline meth-
ods in the evaluation. In particular, two of these methods (Node2Vec, LINE)
correspond to widely used node embedding models that we have also em-
ployed in previous chapters. The remaining ones constitute more recent
models aiming to address the scalability challenge, which we provide brief
information about them below. For all methods, we learn embedding vectors
of size 128.

• NetSMF [Qiu+19] is a sparse matrix factorization method, recently
proposed to deal with the scalability constraints of NetMF [Qiu+18]—a
model that relies on the pointwise mutual information of node co-occu-
rrences. In our experiments, we set the rank parameter to 512 and the
number of rounds to 10, 000 for all networks except PPI and Youtube in
which the model was unable to run. In these cases, the rank parameter
is set to 256, while the number of rounds to 1, 000 and 50 for PPI and
Youtube, respectively.

• RandNE [Zha+18] is an efficient method based on Gaussian random
projections, and one of the most widely applied scalable models. The
experiments were conducted by setting the parameters suggested by
the authors. In the case of node classification, the transition matrix
with parameter values q = 3 and weights = [1, 102, 104, 105] was used,
while the adjacency matrix with q = 2 and weights = [1, 1, 10−2] was
considered in the link prediction experiments.

• LouvainNE [Bho+20] constructs a hierarchical subgraph structure and
aggregates the node representations learned at each different level to
obtain the final embeddings. In our experiments, we have used the
recommended parameter settings and α was set to 0.01.

• NodeSketch [Yan+19] learns embeddings in the Hamming space, us-
ing minhash signatures. For the Cora network, we have performed
parameter tuning for the values of α and order k, which are set to 0.1
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and 20, respectively. For the remaining datasets, we have used the
best-performing settings recommended by the authors.

For simplicity, we set the importance factor α to 1 in all the experiments
of NodeSig, as we have observed that the algorithm shows comparable
performance for values close to 1; a detailed analysis of the behaviour of
NodeSig with respect to the importance factor is given in Section 6.4.4. The
walk length is set to 3 for Cora, and to 5 for all the other networks in the
classification experiment. For the link prediction task, the walk length is
chosen as 15 for all networks. We set the dimension size of the embedding
vectors to 8, 192 bits in order to be consistent with the experiments with
the baseline methods, since modern computer architectures use 8 Bytes for
storing floating point data types.

6.4.2 Multi-label Node Classification

The networks described previously consist of nodes having at least one or
more labels. In the classification task, our goal is to correctly infer the labels
of nodes chosen for the testing set, using the learned representations and the
labels of nodes in the rest of the network, namely the nodes in the training
set. The evaluation follows a strategy similar to the one used by baseline
models [Yan+19].

experimental set-up. The experiments are carried out by training an
one-vs-rest SVM classifier with a pre-computed kernel, which is designed
by computing the similarities of node embeddings. The similarity measure
is chosen depending on the algorithm that we use to learn representations.
More specifically, the Hamming similarity for NodeSketch and the Cosine
similarity for the rest baselines methods are chosen in order to build the
kernels for the classifier. For NodeSig, we use the chi similarity χ, defined as
1−

√
dχ2 , where dχ2 is equal to

dχ2 :=
d

∑
i=1

(xj − yj)
2

xj + yj
=

d

∑
j=1

(xj + yj)−
d

∑
m=1

4xjyj

xj + yj
= 2− 2ρχ2 ,
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2% 4% 6% 8% 10% 30% 50% 70% 90%

0.239 0.273 0.289 0.300 0.303 0.314 0.314 0.319 0.328

HOPE
0.085 0.100 0.107 0.113 0.117 0.116 0.117 0.120 0.125

0.285 0.322 0.332 0.335 0.342 0.348 0.354 0.355 0.350

Node2Vec

0.109 0.136 0.146 0.149 0.157 0.158 0.170 0.173 0.170

0.326 0.351 0.366 0.376 0.380 0.392 0.399 0.402 0.412

NetSMF
0.152 0.174 0.188 0.201 0.203 0.216 0.226 0.226 0.226

0.041 0.032 0.030 0.034 0.046 0.107 0.155 0.161 0.172

LouvainNE
0.022 0.020 0.020 0.019 0.023 0.031 0.039 0.040 0.041

0.258 0.289 0.310 0.312 0.322 0.340 0.339 0.340 0.349

RandNE
0.097 0.117 0.137 0.138 0.148 0.166 0.164 0.171 0.177

0.220 0.253 0.276 0.295 0.304 0.359 0.380 0.387 0.400

NodeSketch

0.074 0.101 0.115 0.130 0.144 0.211 0.237 0.248 0.259

0.266 0.319 0.338 0.354 0.361 0.398 0.410 0.419 0.430
NodeSig

0.108 0.144 0.165 0.182 0.196 0.249 0.270 0.281 0.287

Table 6.1: Node classification for varying training sizes on Blogcatalog. For each
method, the rows indicates the Micro-F1 and Macro-F1 scores, respectively.

for the vectors satisfying ∑j xj = ∑j yj = 1 and xj ≥ 0, yj ≥ 0 for all
1 ≤ j ≤ d. Hence, we apply a small transformation while constructing the
kernel matrix of the SVM in order to approximate the chi similarity, instead
of using cos−1ρχ2 /π in Equation (6.2), which is estimated directly via the
Hamming distance.

experimental results . For the multi-label node classification task,
Tables 6.1 to 6.5 report the average Micro-F1 and Macro-F1 scores over 10
runs, where the experiments are performed on different training set sizes.
The symbol ”-” is used to indicate that the corresponding algorithm is unable
to run due to excessive memory usage or because it requires more than one
day to complete. The best and second best performing models for each
training ratio (10%, 50%, and 90%) are indicated with bold and underlined
text, respectively.

As we observe, NodeSig consistently outperforms the baselines for higher
training ratios on the Blogcatalog and Cora networks, while the obtained
Macro-F1 score is very close to the performance of NetSMF for 10% training
ratio on Blogcatalog. In the case of the Cora network which corresponds to
the smallest one used in our study, Node2Vec shows better performance for
small training ratio of 10%. For the Youtube and DBLP networks, the proposed
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2% 4% 6% 8% 10% 30% 50% 70% 90%

0.474 0.560 0.632 0.654 0.687 0.763 0.780 0.787 0.803

HOPE
0.395 0.494 0.611 0.620 0.672 0.757 0.772 0.780 0.798

0.641 0.707 0.745 0.754 0.757 0.798 0.805 0.813 0.833

Node2Vec

0.581 0.663 0.723 0.736 0.742 0.786 0.791 0.798 0.821

0.670 0.732 0.753 0.773 0.778 0.813 0.826 0.839 0.830

NetSMF
0.636 0.701 0.743 0.763 0.769 0.806 0.817 0.832 0.817

0.577 0.656 0.675 0.685 0.691 0.710 0.717 0.724 0.745

LouvainNE
0.497 0.615 0.632 0.642 0.660 0.673 0.683 0.690 0.705

0.421 0.494 0.529 0.576 0.581 0.664 0.684 0.693 0.702

RandNE
0.312 0.443 0.486 0.552 0.558 0.659 0.683 0.690 0.694

0.474 0.604 0.654 0.696 0.710 0.807 0.842 0.860 0.882

NodeSketch

0.340 0.549 0.621 0.670 0.690 0.795 0.832 0.852 0.873

0.514 0.659 0.699 0.727 0.746 0.823 0.850 0.869 0.886
NodeSig

0.433 0.622 0.679 0.712 0.732 0.813 0.841 0.861 0.878

Table 6.2: Node classification for varying training sizes on Cora. For each method,
the rows indicates the Micro-F1 and Macro-F1 scores, respectively.

2% 4% 6% 8% 10% 30% 50% 70% 90%

0.568 0.597 0.610 0.619 0.621 0.629 0.634 0.632 0.633

HOPE
0.464 0.501 0.514 0.524 0.524 0.533 0.540 0.538 0.539

0.606 0.615 0.612 0.615 0.617 0.629 0.629 0.626 0.632

Node2Vec

0.503 0.522 0.491 0.493 0.495 0.535 0.528 0.524 0.532

0.597 0.618 0.629 0.628 0.626 0.644 0.648 0.647 0.650

NetSMF
0.511 0.536 0.548 0.543 0.521 0.565 0.578 0.578 0.580

0.490 0.511 0.502 0.508 0.497 0.504 0.510 0.511 0.515

LouvainNE
0.348 0.393 0.365 0.376 0.343 0.359 0.374 0.376 0.395

0.399 0.415 0.412 0.421 0.425 0.438 0.435 0.436 0.438

RandNE
0.201 0.232 0.224 0.242 0.241 0.257 0.254 0.255 0.253

0.516 0.584 0.615 0.645 0.666 0.791 0.848 0.881 0.902
NodeSketch

0.393 0.501 0.544 0.584 0.614 0.767 0.831 0.868 0.890
0.613 0.648 0.672 0.692 0.705 0.797 0.844 0.873 0.896

NodeSig

0.523 0.581 0.616 0.641 0.661 0.772 0.825 0.858 0.882

Table 6.3: Node classification for varying training sizes on DBLP. For each method,
the rows indicates the Micro-F1 and Macro-F1 scores, respectively.
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2% 4% 6% 8% 10% 30% 50% 70% 90%

0.084 0.100 0.107 0.122 0.133 0.162 0.152 0.142 0.151

HOPE
0.042 0.057 0.063 0.072 0.083 0.101 0.084 0.082 0.081

0.093 0.114 0.123 0.128 0.138 0.168 0.164 0.150 0.140

Node2Vec

0.048 0.066 0.074 0.078 0.082 0.100 0.089 0.079 0.069

0.063 0.064 0.064 0.065 0.067 0.065 0.063 0.058 0.053

NetSMF
0.016 0.016 0.016 0.016 0.018 0.016 0.016 0.015 0.014

0.059 0.046 0.049 0.046 0.041 0.048 0.060 0.052 0.060

LouvainNE
0.028 0.025 0.027 0.026 0.022 0.023 0.025 0.022 0.023

0.096 0.114 0.124 0.137 0.144 0.169 0.160 0.135 0.140

RandNE
0.053 0.064 0.075 0.080 0.088 0.100 0.090 0.081 0.080

0.072 0.098 0.122 0.131 0.153 0.205 0.224 0.234 0.237

NodeSketch

0.036 0.055 0.076 0.082 0.101 0.158 0.180 0.192 0.187

0.097 0.125 0.153 0.166 0.177 0.220 0.233 0.242 0.254
NodeSig

0.051 0.073 0.095 0.111 0.118 0.167 0.183 0.191 0.194

Table 6.4: Node classification for varying training sizes on PPI. For each method,
the rows indicates the Micro-F1 and Macro-F1 scores, respectively.

2% 4% 6% 8% 10% 30% 50% 70% 90%

0.346 0.353 0.348 0.344 0.341 0.341 0.344 0.344 0.345

HOPE
0.213 0.222 0.208 0.202 0.197 0.199 0.205 0.202 0.203

- - - - - - - - -
Node2Vec

- - - - - - - - -
0.371 0.384 0.387 0.381 0.386 0.373 0.373 0.360 0.364

NetSMF
0.254 0.271 0.275 0.266 0.265 0.248 0.249 0.239 0.236

0.179 0.247 0.236 0.249 0.249 0.252 0.249 0.249 0.254

LouvainNE
0.067 0.066 0.063 0.062 0.063 0.062 0.063 0.065 0.071

0.320 0.334 0.335 0.337 0.335 0.342 0.343 0.339 0.343

RandNE
0.196 0.207 0.212 0.212 0.204 0.218 0.222 0.218 0.221

0.399 0.416 0.427 0.433 0.440 0.459 0.467 0.471 0.472
NodeSketch

0.294 0.327 0.346 0.355 0.367 0.399 0.412 0.421 0.422
0.429 0.445 0.450 0.454 0.456 0.464 0.466 0.469 0.467

NodeSig

0.332 0.362 0.372 0.380 0.388 0.402 0.408 0.413 0.411

Table 6.5: Node classification for varying training sizes on Youtube. For each method,
the rows indicates the Micro-F1 and Macro-F1 scores, respectively.
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NodeSig model along with NodeSketch perform equally well. This is quite
surprising, since both these methods that correspond to data-independent
hashing techniques offer a clear performance gain over traditional models,
such as Node2Vec and HOPE. Lastly, for the PPI dataset, NodeSig ob-
tains consistently the highest scores for Micro-F1, while its main competitor,
NodeSketch, has close performance for the Macro-F1 score.

6.4.3 Link Prediction

The second downstream task used to assess the quality of node embeddings
is the one of link prediction.

experimental set-up. As we have described in the previous chapter,
half of the edges of a given network are removed by still keeping the residual
network connected. Node embeddings are learned on the rest of the graph.
As it has been described in Section 6.4.2, we build the features corresponding
to the node pair samples using the similarities between embedding vectors;
the similarity measure is chosen depending on the algorithm that we use to
extract the representations. Since the Youtube dataset is relatively larger than
the rest of the networks, we work on 7% of its initial size. We predict edges
by constructing the similarity list of edges, and we provide the Area Under
Curve (AUC) scores in Table 6.6.

experimental results . For the link prediction task, NodeSig acquires
the highest AUC scores on three datasets, while it is also the second best
performing model for the remaining two. In the case of the Youtube dataset,
all baselines demonstrate comparable results. Although Node2Vec shows
good performance across most datasets in the link prediction task, it does not
perform well on the Blogcatalog networks, mainly because of its high density.
On the other hand, NodeSig reaches the highest score on this dataset, with a
clear difference to its main competitor, NodeSketch.
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Blogcatalog Cora DBLP PPI Youtube

HOPE 0.517 0.662 0.769 0.524 0.514

Node2Vec 0.595 0.747 0.844 0.615 0.531

NetSMF 0.570 0.717 0.832 0.549 0.541
LouvainNE 0.501 0.698 0.785 0.575 0.529

RandNE 0.622 0.590 0.697 0.504 0.511

NodeSketch 0.703 0.710 0.714 0.512 0.510

NodeSig 0.822 0.740 0.860 0.655 0.536

Table 6.6: Area Under Curve (AUC) scores for link prediction.

6.4.4 Parameter Sensitivity

Next, we analyze how the behavior of the proposed NodeSig algorithm is
affected by the parameter setting. More specifically, we concentrate on the
influence of three parameters, namely walk length L, importance factor α

and dimension size d, examining the impact on the Cora network.

effect of walk length . In order to examine the influence of the walk
length on the performance, we perform experiments for varying lengths by
fixing the importance factor α to 1.0. Figure 6.3 depicts the Micro-F1 scores
for different training ratios. We observe a significant increase in performance
when the walk length increases, particularly for small training ratios and
walk lengths. Although it shows a wavy behavior for the largest training
ratio, there is a logarithmic improvement depending on the walk length.
NodeSig better captures the structural properties of the network in longer
walks, thus the low performance observed on small training ratios can be
compensated with longer walks.

effect of importance factor . The importance factor is another
parameter of NodeSig, which controls the impact of walks of different
lengths: the importance of the higher levels is increasing for α > 1, while it
can be diminished choosing α < 1. Figure 6.3 depicts the performance of
NodeSig on the Cora network, fixing the walk length value to 3. Although
we do not observe a steady behavior for the large training set, higher values
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Figure 6.3: Influence of various parameters of the NodeSig model in terms of
Micro-F1 score on the Cora network for varying training set.

of α, especially around 4, positively contribute to the performance; values
smaller than 1 have negative impact on the performance.

effect of dimension size . The dimension size is a crucial parameter
affecting the performance of the algorithm, since a better approximation
to the chi similarity measure can be obtained for larger dimension sizes,
following Hoeffding’s inequality [Hoe63]. Therefore, we perform experiments
for varying dimension sizes, by fixing the walk length to 3. Figure 6.3 depicts
the Micro-F1 scores of the classification experiment for different dimension
sizes ranging from 29 to 217. Although we have fluctuating scores on the large
training set due to the randomized behavior of the approach, the impact of
the dimension size can be observed clearly on the small training set size. On
the other hand, we observe an almost stable behavior for the training ratio
of 50%, encouraging the use of small embedding sizes towards reducing
storage requirements.

6.4.5 Running Time Comparison

The running time is of great importance, since the embedding models are
expected to scale and run in reasonable time on large graphs. We have
recorded the elapsed real (wall clock) time of all baseline models including
the one of NodeSig, and the results are provided in Table 6.7. The Random
network indicates the Gn,p Erdös-Renyi random graph model [ER60], using
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HOPE 89 26 185 32 9183 1117 1.8x
Node2Vec 1187 15 164 62 - 749 5.6x

NetSMF 2241 15 183 13 5399 454 1.4x
LouvainNE 0.29 0.06 0.21 0.13 5.70 1.2 0.001x

RandNE 3.18 1.50 6.22 2.02 161.8 23 0.03x
NodeSketch 106.84 13.46 21.93 9.26 2300 190 0.45x

NodeSig 120 4.38 41 14 5508 209 1.0x

Table 6.7: Running time (in seconds) and average speedup.

n = 100, 000 and p = 0.0001. All the experiments have been conducted on
the server whose specifications have been given in the beginning of Section
6.4. We use 32 threads for each algorithm, when it is applicable. If a model
cannot run due to excessive memory usage with the parameter settings
described in Section 6.4.1, the parameters are set to values closest to its
default parameters, which enables the models to run in reasonable time. For
NodeSig, the walk length is set to 5, and α to 1 in all experiments.

As we observe, NodeSig runs faster than HOPE, Node2Vec as well as
NetSMF. This is happening because HOPE requires an expensive matrix
factorization, while Node2Vec needs to simulate random walks to obtain
their exact realizations. Although NetSMF has been proposed as the scalable
extension of another matrix factorization model [Qiu+18], we have observed
that it requires high memory footprint; therefore, we could not run it with
the default parameters specified by the authors of the corresponding paper.
Furthermore, although the remaining baseline methods run faster compared
to NodeSig, as we have already presented, the proposed model generally
outperforms them both in classification and link prediction tasks. These
experiments further support the intuition about designing NodeSig, as an
expressive model that balances accuracy and running time.
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6.5 discussion for dynamic networks

The majority of existing network representation learning models have been
developed for static networks. Nevertheless, most real-world networks
undergo structural changes and evolve over time with the addition and
removal of links and nodes [Kaz+20]. Therefore, being able to design models
that properly adapt to dynamic networks is an important point to investigate.
As we discuss here, the proposed method allows for efficient updates of the
embeddings, without requiring any costly learning procedures.

More precisely, the key point in the dynamic case, is that the learned
embedding vectors should be efficiently updated instead of being recal-
culated from scratch. If an edge is added or removed for a pair of nodes
(u, v) ∈ V×V, the terms R(l)

(w,:) in Equation (6.3) for node w ∈ V are affected,
for all l > k := min{dist(w, u), dist(w, v)}—thus, it suffices to update only
these affected terms. The transition probabilities for nodes u and v also
change even though the remaining nodes are not affected, so all the terms
P(v,:) must be divided by ∑w∈N (v) P(v,w) in order to normalize the transition
probabilities and similarly the same procedure must also be applied to node
u after each edge insertion and deletion operation.

Evidently, more research is required towards this direction in order to
provide a method that scales well when the input data changes rapidly (i.e.,
in the form of a stream).

6.6 conclusions and future work

In this chapter, we have introduced NodeSig, an efficient binary node em-
bedding model. Each component of model has properly been designed to
improve scalability without sacrificing effectiveness on downstream tasks.
NodeSig exploits random walk diffusion probabilities via stable random
projection hashing, towards efficiently computing representations in the
Hamming space that approximate the chi similarity. The experimental results
have demonstrated that NodeSig outperformed in accuracy recent highly-
scalable models, being able to run within reasonable time duration, while
at the same time it shows comparable or even better accuracy with respect
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to widely used baseline methods in multi-label node classification and link
prediction. As future work, we plan to further study the properties of the
model for attributed and dynamic networks and also study the performance
of parallel/distributed alternatives.



7
C O N C L U S I O N

The appearance of graph-structured data in many application domains has
stirred the development of graph learning tools. In recent years, the focus of
research studies has shifted towards techniques that automatically extract
feature vectors, thereby encouraging the interest in graph representation
learning. These features are further used to perform various downstream
tasks, so numerous approaches have been developed targeting different
aspects of the problem. In this dissertation, we have considered methods
leveraging random walk diffusions to improve the effectiveness and efficiency
of node embedding methods.

7.1 summary of contributions

We have introduced several algorithms addressing various challenges prob-
lems in the field. The main contributions of the thesis can be compiled as
follows.

Explicit Integration of Community Information

The community structure is one of the key aspects of complex networks,
distinguishing them from random graph structures. A community is a group
of nodes having higher connections among them than the rest of the network,
where these nodes can share common characteristics. In light of this fact, in
Chapter 3 we have proposed a novel framework, Topical Node Embedding
(TNE), which explicitly incorporates the underlying community structure in
the representation learning process. TNE extracts the latent node commu-
nity assignments with various community detection methods and statistical
models relying on graphs. Then, it learns node and community embeddings
independently by means of the generated node sequences, leveraging the

123
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SkipGram model. The final representation of nodes is obtained by concate-
nating their embedding vectors with the community representations. The
extensive experimental evaluation has showed that the integration of commu-
nity information in learning embeddings enhances the node representations’
performance in downstream tasks.

Modeling Node Interactions with Exponential Family Distributions

Most of the random walk-based models presented in the literature, rely
on [Mik+13a] to model the interactions between nodes appearing in the
generated node sequences. Nevertheless, this could cause limitations con-
cerning the expressiveness of the model. To address this point, we have
introduced the EFGE model in Chapter 4, which leverages exponential family
conditional distributions. In particular, we have employed three instances of
exponential family distributions to represent the interactions among nodes
and learn their representations. We have further shown the connection be-
tween BigClam, a well-known overlapping community detection method,
and the variants of the EFGE model under appropriate parameter settings.
The experimental evaluation has demonstrated the benefit of exponential
family distributions on the performance of downstream tasks.

A Kernelized Matrix Factorization Framework Based on Random Walks

Kernel functions are generally applied on linear models to enhance their
modeling capacity, allowing them to capture complex non-linear structures
existing in data. In Chapter 5, we have adopted universal kernels under
a matrix factorization framework to learn node representations. We have
proposed KernelNE, a model which leverages random walks to mitigate
the computational burden of the optimization step and the exact realization
of the target matrix. To further strengthen the predictive capabilities, we
have introduced MKernelNE, a multiple kernel learning formulation of the
model. The experiments have shown that we could learn more expressive
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embedding vectors grasping the complex co-occurrence information patterns
of nodes within the random walks by means of kernel functions.

Scalable Graph Representation Learning

With the growing size of networks, many learning-based graph representa-
tion learning models become inapplicable to large-scale networks. Therefore,
in recent years, the research community has concentrated on developing
approaches that take advantage of sketching techniques to overcome this
problem. In Chapter 6, we have introduced a novel approach, NodeSig,
which is capable of handling networks consisting of millions of nodes and
edges. NodeSig learns binary representations in the Hamming space uti-
lizing sign α-stable random projections, which allows to approximate the
chi similarity between random walk-based node representations. We have
further developed an approach to carry out projections of the features in a
recursive way without the need of realizing the exact matrix. We have shown
that the proposed approach balances the trade-off between the performance
in downstream tasks and the computational burden for large-scale networks.

7.2 future directions

Although we have observed an immense increase in the number of research
studies in graph representation learning over the past few years, there are
still various subjects worthy of discussion. In this section, we will briefly
describe ongoing and possible research topics for future work.

Dynamic Networks

Most graph representation learning approaches have primarily focused on
static networks. Nevertheless, many real-world networks naturally undergo
changes over time. For instance, each time a new user joins a social network
platform, the connections that she makes to other users cause a change in the
network structure and contribute to the evolution of the network. Therefore,
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developing efficient representation learning techniques for dynamic networks
is of great significance. Classical representation learning methods can be
used for learning the embeddings of a dynamic network at each particular
state; the embedding vectors though should be updated concerning the
modifications occurring in the network. For instance, in the case of random
walk-based methods, which this dissertation also relies on, can be adapted
for dynamic networks. A possible idea might be to perform random walks
only for the nodes which have been affected by the change that happened
in the network, within a certain time interval. If a node is removed from
the network, then we can also remove the existing walks containing it, or
we can perform new random walks for an inserted node [Ngu+18; Kaz+20].
Then, the node representations can be updated based on this new set of
walks. Dynamic networks might also possess additional rich semantics,
including node and edge features, thereby taking this additional information
into account while updating the embeddings could constitute another future
research direction.

Scalable Algorithms

Networks consisting of millions of nodes and edges have recently become
ubiquitous in various disciplines, such as biology, recommender systems, and
social sciences—making scalability a core property in the algorithm design
process. As we have discussed in Chapter 2 and Chapter 6, approaches
relying on sketching techniques have recently become prominent in the field,
as they constitute a quite effective framework in computing embeddings.
The idea mainly relies on first constructing feature vectors corresponding to
the nodes of the graph; these vectors are then given as input to a hashing
algorithm to compute signatures, which are used as embeddings. The
input data for the sketching algorithms should also be carefully designed.
Choosing simple vectors, such as the rows of the adjacency matrix, might not
convey sufficient information about node proximity, thus causing limitations
on the predictions on downstream tasks. On the other hand, designing
higher-order proximity matrices requires high computational cost for large-
scale networks. Therefore, building informative node features in an efficient



7.2 future directions 127

way that can be used as input to hashing algorithms, is still a crucial problem
to investigate. It can be tackled with recursive techniques, provided that it is
allowed by the sketching scheme, as we have adopted in the NodeSig method
proposed in Chapter 6. Nevertheless, the chosen sketching technique should
also be compatible with the assumptions of the feature data, including the
distance measure.

There are mainly two different hashing techniques: locality sensitive
hashing (LSH) and learning to hash [Wan+18]. LSH algorithms are data-
independent, and have extensively been employed in various domains, rang-
ing from natural language processing to computer vision. A typical example
is the sign random projections technique, which learns binary representations
preserving the angular similarity of the input vectors [LSH13]. Although
graph representation learning methods relying on LSH propose fast sketch-
ing schemes, their performance is often limited compared to more traditional
learning-based models. Learning to hash approaches can be an alternative to
overcome this limitation, constituting a promising future research direction.
They aim to learn hash functions for a given dataset by minimizing the
discrepancy between the similarities in the original space and the embedding
space. Learning to hash enables to adapt a wide range of various hash
functions. For instance, one can incorporate kernel functions [HLC10] with
the data vectors of nodes in order to learn the projection matrix, leading to
better performance on downstream tasks. Moreover, as we have discussed
in the previous section, adapting such methods to compute embedding in
large-scale dynamic networks constitutes another interesting direction.

Graph Neural Networks

Graph Neural Networks (GNNs) [HYL17b; Ham20] provide effective tools for
graph analysis tasks by learning node or network embeddings in a lower-
dimensional space. They constitute powerful models enabling to incorporate
side information such as node features with the network structure in the
representation learning process. Nevertheless, GNNs require expensive
computational resources, especially for large networks—making scalability a
vital property to investigate.
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The early GNN models [KW17; Vel+18] have required the whole network
structure and the features in the memory during the optimization step.
Therefore, they were not very suitable especially for large-scale networks.
Furthermore, graph sampling strategies [HYL17a; Ham20] have become the
leading technique to cope with this problem. The idea basically relies on sam-
pling a fixed number of nodes from the k-hop neighborhood of each node.
It also acts as an edge dropout process and thus, enhancing performance
[Ron+20]. Nevertheless, on large-scale graphs, even the sampling process
itself is challenging. The number of nodes within the k-hop neighborhood
drastically increases even for small k values, since the graph structure is
non-Euclidean for many real-world networks. Node sampling might also
result in the loss of particular patterns of the network and the deprivation
of influential nodes. Therefore, as future work, it is interesting to examine
how to properly leverage random walks to address the scalability limitation
of GNN models [Yin+18], while at the same time, preserving key struc-
tural properties of the underlying graph that could impact the accuracy on
downstream tasks.

Although many GNNs relying on deep architectures [Wu+21] have been
developed, shallow models also demonstrate comparable performance with
less computational complexity [Wu+19]. Besides, higher number of lay-
ers also leads to over-smoothing. Therefore, a promising direction is to
investigate how to adapt shallow models with rich diffusion functions to-
wards designing scalable GNN models, without sacrificing the predictive
performance [KWG19; Fra+20].
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[PJA10] Loı̈c Paulevé, Hervé Jégou, and Laurent Amsaleg. Locality sensi-
tive hashing: a comparison of hash function types and querying
mechanisms. Pattern Recognition Letters 31:11 (2010), pp. 1348–
1358 (cit. on p. 21).

[Ped+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research 12 (2011), pp. 2825–2830

(cit. on pp. 23, 85, 93).

[PW10] Ofir Pele and Michael Werman. The Quadratic-Chi Histogram
Distance Family. In ECCV, 2010, pp. 749–762 (cit. on p. 100).

[PARS14] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. DeepWalk: On-
line Learning of Social Representations. In KDD, 2014, pp. 701–
710 (cit. on pp. 18, 27, 36, 40, 57, 71, 104).

[Per+17] Bryan Perozzi, Vivek Kulkarni, Haochen Chen, and Steven
Skiena. Don’T Walk, Skip!: Online Learning of Multi-scale Net-
work Embeddings. In ASONAM, 2017, pp. 258–265 (cit. on
p. 22).

[Por+08] Ian Porteous, David Newman, Alexander Ihler, Arthur Asun-
cion, Padhraic Smyth, and Max Welling. Fast Collapsed Gibbs
Sampling for Latent Dirichlet Allocation. In KDD, 2008, 569–577

(cit. on p. 40).

[Qiu+19] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Chi Wang, Kuansan
Wang, and Jie Tang. NetSMF: Large-Scale Network Embedding
as Sparse Matrix Factorization. In WWW, 2019, pp. 1509–1520

(cit. on pp. 76, 99, 112).



140 bibliography

[Qiu+18] Jiezhong Qiu et al. Network Embedding As Matrix Factorization:
Unifying DeepWalk, LINE, PTE, and Node2Vec. In WSDM, 2018,
pp. 459–467 (cit. on pp. 16, 41, 76, 112, 120).

[Ray13] Santanu Saha Ray. Graph Theory with Algorithms and its Applica-
tions. Springer India, 2013 (cit. on pp. 9, 11).

[RSF17] Leonardo F.R. Ribeiro, Pedro H.P. Saverese, and Daniel R. Figueiredo.
Struc2vec: Learning Node Representations from Structural Iden-
tity. In KDD, 2017, 385–394 (cit. on p. 22).

[RIF02] Matei Ripeanu, Adriana Iamnitchi, and Ian Foster. Mapping the
Gnutella Network. IEEE Internet Computing 6:1 (2002), pp. 50–57

(cit. on p. 23).

[RMG17] D. Romero, M. Ma, and G. B. Giannakis. Kernel-Based Recon-
struction of Graph Signals. IEEE Transactions on Signal Processing
65:3 (2017), pp. 764–778 (cit. on p. 74).

[RIG17] Daniel Romero, Vassilis N. Ioannidis, and Georgios B. Gian-
nakis. Kernel-Based Reconstruction of Space-Time Functions
on Dynamic Graphs. IEEE J. Sel. Top. Signal Process. 11:6 (2017),
pp. 856–869 (cit. on p. 74).

[Ron+20] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang.
DropEdge: Towards Deep Graph Convolutional Networks on
Node Classification. In ICLR, 2020 (cit. on p. 128).

[RS00a] Sam T. Roweis and Lawrence K. Saul. Nonlinear Dimensionality
Reduction by Locally Linear Embedding. Science 290:5500 (2000),
pp. 2323–2326 (cit. on p. 15).

[RS00b] Sam T. Roweis and Lawrence K. Saul. Nonlinear Dimensionality
Reduction by Locally Linear Embedding. Science 290:5500 (2000),
pp. 2323–2326 (cit. on p. 71).

[Roz+19] Benedek Rozemberczki, Ryan Davies, Rik Sarkar, and Charles
Sutton. GEMSEC: Graph Embedding with Self Clustering. In
ASONAM, 2019, pp. 65–72 (cit. on pp. 32, 41).



bibliography 141

[Rud+17] Maja Rudolph, Francisco Ruiz, Susan Athey, and David Blei.
Structured Embedding Models for Grouped Data. In NIPS, 2017,
pp. 251–261 (cit. on p. 55).

[Rud+16] Maja Rudolph, Francisco Ruiz, Stephan Mandt, and David Blei.
Exponential Family Embeddings. In NIPS, 2016, pp. 478–486

(cit. on p. 55).

[SSM97] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller.
Kernel principal component analysis. In ICANN, 1997, pp. 583–
588 (cit. on pp. 72, 74).

[SS01] Bernhard Scholkopf and Alexander J. Smola. Learning with Ker-
nels: Support Vector Machines, Regularization, Optimization, and
Beyond. MIT Press, 2001 (cit. on pp. 72, 74).

[Sen+08] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor,
Brian Gallagher, and Tina Eliassi-Rad. Collective classification
in network data. AI magazine (2008) (cit. on p. 22).

[SBG17] Y. Shen, B. Baingana, and G. B. Giannakis. Kernel-Based Struc-
tural Equation Models for Topology Identification of Directed
Networks. IEEE Transactions on Signal Processing 65:10 (2017),
pp. 2503–2516 (cit. on p. 74).

[SJ03] Nathan Srebro and Tommi Jaakkola. Weighted Low-rank Ap-
proximations. In ICML, 2003, pp. 720–727 (cit. on p. 75).

[Ste02] Ingo Steinwart. On the Influence of the Kernel on the Consis-
tency of Support Vector Machines. J. Mach. Learn. Res. 2 (2002),
pp. 67–93 (cit. on pp. 77–79).

[Sur21] Surabhi Jagtap, Abdulkadir Çelikkanat, Aurélie Pirayre, Fred-
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