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A B S T R A C T

Titre: Schéma en groupes fondamental de quelques variétés connexes
par courbes et associées

Resumé

Dans ce travail de thèse on étudie le schéma en groupes fondamental
des variétés connexes par courbes ou qui sont associées à ces variétés.
Les variétés connexes par courbes sont la généralisation des variétés
rationnellement connexes, dont la définition a été conçu par J. Kollár.
Ces notions sont les plus proches en géométrie algébrique à la notion
de connexité par arcs en topologie, car sur un corps algébriquement
clos (non dénombrable), par deux points très généraux d’une variété
connexe par courbes (par chaînes resp.) il existe une courbe (chaîne
de courbes resp.) avec un morphisme vers la variété dont l’image con-
tient les deux points-ci considérés. En dépendant du type de courbes
qu’on considère, on a les notions de g-connexité (par chaînes resp.)
où on considère exclusivement des courbes (chaînes de courbes resp.)
où chaque composante irréductible est une courbe lisse et projective
de genre g, et la notion de la C-connexité pour une courbe fixe C où
par deux points très généraux on peut faire passer l’image d’un mor-
phisme depuis la courbe C.
En utilisant des résultats classiques et récents de la théorie des sché-
mas en groupes fondamentaux, qui classifient des torseurs sous l’action
d’un schéma en groupes affine, notamment le schéma en groupes fon-
damental de Nori et le S-schéma en groupes fondamental, on essaie à
décrire le schéma en groupes fondamental de Nori des certains types
des variétés connexes par courbes, dont le cas rationnellement con-
nexe est déjà connu, et ceux des certaines variétés associées.
Pour obtenir ces résultats, on utilise tous les aspects qui interviennent
dans la théorie du schéma en groupes fondamental: les schémas en
groupes affines, les catégories tannakiennes des fibrés vectoriels sur
des variétés propres et la théorie des torseurs affines. En plus, on con-
struit des nouveaux schémas en groupes fondamentaux associés aux
catégories tannakiennes des fibrés pour des variétés où tout pair de
points peut être connecté par des chaînes de courbes appartenant à
des familles arbitraires de courbes, ce qui généralise une construction
récente de I. Biswas, P.H. Hai et J.P. Dos Santos et qui pourrait fournir
un nouveau cadre pour l’étude des schémas en groupes fondamen-
taux des variétés connexes par courbes.
Plus spécifiquement, on propose deux approches différentes pour dé-
crire ces schémas en groupes fondamentaux, appliquer le nouveau ca-
dre des schémas en groupes fondamentaux décrit dans le paragraphe

iii



précédent aux variétés g-connexes, et utiliser la fibration rationnelle-
ment connexe maximale et décrire le comportement du schéma en
groupes fondamental sur cette fibration. Inspiré par la deuxième ap-
proche, on décrit le schéma en groupes fondamental des fibrations sur
des variétés abéliennes avec fibres rationnellement connexes, inspiré
par la description des variétés elliptiquement connexes en caractéris-
tique zéro par F. Gounelas. Ces variétés ne sont pas nécessairement
elliptiquement connexes en caractéristique positive, mais la descrip-
tion de ses schémas en groupes fondamentaux est possible avec la
suite exacte d’homotopie.

Mot clés: Géométrie algébrique, Schéma en groupes fondamental,
Catégories tannakiennes, Courbe algébrique, Variétés connexes par
courbes.

Title: Fundamental group-scheme of some curve-connected varieties
and associated ones

Abstract

In this thesis work we study the fundamental group-scheme of curve-
connected varieties or associated to them. Curve-connected varieties
are the generalization of rationally connected varieties, whose defini-
tion was conceived by J. Kollár. These notions are the closest ones in
algebraic geometry, to the notion of arc connectedness in topology, be-
cause over an algebraically closed field (uncountable), over any pair
of two very general points in a curve-connected variety (resp. chain-
connected), there exists a curve (resp. chain of curves) with a mor-
phism to the variety whose image contains the two points mentioned
before. Depending on the type of curves we consider, we have the
notions of g-connectedness (resp. chain g-connectedness) where we
consider exclusively curves (resp. chains of curves) with irreducible
components are smooth and projective curves of genus g, and the no-
tion of C-connectedness for a fixed curve C where over any two very
general points, we can contain them in the image of a morphism from
C to the variety.
Using classical and recent results from the theory of fundamental
group-schemes, which classifies torsors under the action of an affine
group-scheme, notably Nori fundamental group-scheme and the S-
fundamental group-scheme, we try to describe the Nori fundamental
group-scheme of certain types of curve-connected varieties, for which
the rationally connected case is known, and some associated varieties.
To obtain these results, we use all the aspects that play a role in the
theory of the fundamental group-scheme: affine group-schemes, tan-
nakian categories of vector bundles over proper varieties, and the
theory of affine torsors. Moreover, we build new fundamental group-
schemes associated to tannakian categories of vector bundles over
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varieties where we can join any pair of points by a chain of curves
belonging to arbitrary families of curves, generalizing a recent con-
struction of I.Biswas, P.H. Hai and J.P. Dos Santos which could pro-
vide a new framework for the study of fundamental group-schemes
of curve-connected varieties.
More specifically, we propose two different approaches to understand
these fundamental group-schemes, apply the new framework for fun-
damental group-schemes described in the paragraph above for g-
connected varieties and to utilize the maximal rationally connected
fibration and describe the behaviour of the fundamental group over
it. Inspired by the second approach, we describe the fundamental
group-scheme of fibrations over elliptic curves with rationally con-
nected fibers, inspired by the description of elliptically connected va-
rieties in characteristic zero made by F. Gounelas. These varieties are
not necessarily elliptically connected in positive characteristic, but the
description of their fundamental group-schemes is possible with the
homotopy exact sequence.

Keywords: Algebraic geometry, Fundamental group-scheme, Tan-
nakian categories, Algebraic curve, Curve-connected varieties.
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1
I N T R O D U C T I O N

In [52] and [53], M.V. Nori developed the fundamental group-scheme1

or Nori fundamental group-scheme to avoid confusion with other
fundamental group-schemes, a pro-finite affine group-scheme πN(X, x)
that classifies pointed finite torsors in terms of group-schemes by as-
sociating G-torsors with morphisms πN(X, x)→ G when G is a finite
group-scheme, over reduced and connected schemes over a field after
fixing rational point.
Not only that, but following the spirit of the étale fundamental group-
scheme of Grothendieck, it is also a “group-scheme of automorphisms
for the fiber functor”, under additional hypotheses for the base scheme.
By group-scheme automorphism we mean that the fundamental group-
scheme is the group-scheme associated to a neutral tannakian cate-
gory, and tannakian categories always come with a “fiber functor”
that defines a group-scheme in terms of automorphisms of this func-
tor. Thus, we see that the FGS sits in the confluence of three mathema-
tical objects: torsors, group-schemes and neutral tannakian categories.
The tannakian category we are considering in this case, is the category
of “essentially finite vector bundles”. The building blocks of essenti-
ally finite vector bundles are finite bundles, which are vector bundles
that satisfy polynomial identities p(E) ∼= q(E) where p(x) and q(x)
are two different polynomials with non-negative integer coefficients,
and sums and powers are interpreted as direct sums and tensor pro-
duct powers respectively. Essentially finite bundles are quotients of
sub-bundles of finite bundles, or kernels between vector bundle mor-
phisms between two finite bundles in more recent formulations of
the theory. Here we find a glaring issue: how are we so sure that es-
sentially finite bundles are indeed vector bundles? In the category of
vector bundles over a scheme X, with morphism of OX-modules as
morphisms, it is not always true that kernels and cokernels of mor-
phisms are again vector bundles, they are certainly quasi-coherent,
but we need additional information to obtain vector bundles.
Nori introduced a supplementary type of vector bundle, that inclu-
des finite bundles, and that serves as an abelian category environ-
ment for finite and essentially finite bundles. These vector bundles
are now called “Nori-semistable bundles”, and their definition hin-
ges on morphisms of curves over our base scheme, and the theory of
vector bundles over curves. A vector bundle E is Nori-semistable if for
any morphism f : C → X where C is a smooth projective connected
curve over k with f birational onto its image the pull-back f∗(E) is a

1 FGS for short.
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2 introduction

semi-stable vector bundle of slope zero, which is the original defini-
tion of Nori. Thus, category of Nori-semistable vector bundles over
a proper reduced and connected scheme is abelian, and as Nori sho-
wed, finite bundles are Nori-semistable, so essentially finite bundles
effectively exist as vector bundles.
More than 40 years later, many developments have strengthened the
theory and have led to some variants of fundamental group-schemes
coming from tannakian categories of vector bundles, like the cate-
gory of F-trivial bundles and the F-fundamental group-scheme [48],
the S-fundamental group-scheme [42, 43], the F-divided fundamen-
tal group-scheme [19] among others. More notably, N. Borne and A.
Vistoli conceived in [13] the fundamental gerbe of a fibered category,
a generalization of the fundamental group-scheme that allows for ex-
ample, to parameterize all finite torsors, pointed or not, over a scheme
or fibered category or stack, by extending the objects it parameterizes
to finite gerbes.
In the cases of the S-fundamental group-scheme and the fundamental
gerbe, two different approaches to consider essentially finite bundles
are given:

• For the S-fundamental group-scheme over a proper scheme, the
“birational onto its image” has been dropped and non-constant
morphisms f : C → X from a curve are considered, with the
same original definition of demanding the pull-back along f

to be semi-stable of slope zero, and thanks to a more develo-
ped theory of vector bundles over curves, the category of Nori-
semistable in this case is also neutral tannakian and it contains
the category of essentially finite bundles, so we obtain another
fundamental group-scheme πS(X, x) for which the Nori funda-
mental group-scheme is a quotient

πS(X, x)→ πN(X, x),

and we can see this as the category of essentially finite bundles
is more constrained than the category of Nori-semistable bund-
les so its automorphism group-scheme is “smaller”.

• In the case of the fundamental gerbe, we consider fibered cate-
gories X that are “pseudo-proper”, meaning that they are quasi-
compact over a field and for any vector bundle E over X the
vector space of global sections H0(X,E) is finitely dimensional.
This allows to conceive essentially finite bundles as kernels be-
tween morphisms of finite bundles, without the need of Nori-
semistable bundles. And the resulting category is tannakian if
and only if the base is “inflexible” which is essentially a condi-
tion equivalent to X having a fundamental gerbe that classifies
finite gerbes over X.

We see then, that outside the fundamental gerbe, curves over schemes
are essential in constructing the tannakian part of the theory of the



1.1 motivation and results 3

fundamental group-scheme, but by needing to add the proper hypot-
hesis each time. This is because a result of Ramanujan2 that shows
that over proper schemes any two points can be joined by the image
of a morphism f : C → X from a smooth projective and connected
curve, and this is the property needed to show that the category of
Nori-semistable bundles is abelian, and as mentioned before, this is
key when ensuring essentially finite bundles form a neutral tanna-
kian category.
This thesis has two objectives, related to the discussion above: Extend
the formulation of the Nori fundamental group-scheme, generalizing
a recent formulation by I. Biswas, P.H. Hai and J.P. Dos Santos [11,
§7] that centers on developing the S-fundamental group-scheme and
the Nori fundamental group-scheme for schemes where we suppose
that two points can be joined by curves, specifically a finite chain
of them, without supposing that the base scheme is proper. And se-
condly, to propose a road map to understand and characterize the
Nori fundamental group-schemes of schemes connected by curves,
which generalize the notion of “rationally connected varieties”, the
closest notion in algebraic geometry to path-connected topological
spaces. We intend to do this by using a wide array of results and
elements of the theory of fundamental group-schemes and their ge-
neralizations available to this day, and by showing generalizations
and constructions from these results to do so. Hoping they could be
of use in the future to widen the scope of what is possible to do with
the Nori fundamental group-scheme, and to describe the FGS of more
examples and families of schemes.

1.1 motivation and results

As mentioned in the introduction, we have two objectives:

(i) To generalize the construction of the FGS for schemes that are
“connected by chains of curves”.

(ii) Propose a road map to understand and describe the FGS of vari-
eties connected by curves, which are a series of generalizations
of the notion of rationally connected varieties, along with some
results in this direction. Using either the generalization of part
(i), or by utilizing results and element of the already established
theory of the FGS.

About point (i), I. Biswas, P.H. Hai and J.P. Dos Santos introduced in
[11, §7] the concept of CPC-schemes (Definition 3.3.60): schemes X over
a field k, such that any pair of points x,y ∈ X are contained in the
image

⋃n
i=1 Im(γi) coming from a proper chain of curves, a collection of

morphisms {γi : Ci → X}ni=1 where Ci is a curve, whose joint image

2 See Lemma 3.3.25.
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is connected, proper schemes are naturally CPC, so by not excluding
this case, we are generalizing the theory of the S-fundamental group-
scheme of Langer over proper varieties.
For CPC-schemes X with a given rational point x ∈ X(k), the ca-
tegory NSS(X) of Nori-semistable bundles over X is tannakian and
thus we can define essentially finite bundles over it, giving us a full
inclusion EF(X) ↪→ NSS(X) that induces a quotient morphism of asso-
ciated fundamental group-schemes πS(X, x)→ πN(X, x) by tannakian
correspondence (Corollary 2.4.137). Our generalization, consist on li-
miting the curves that could appear in the proper chains of curves
passing through any pair of points: If C is a non-empty family of
projective connected curves, not necessarily smooth, we say that a
scheme is C if any two points can be joined by a proper chain of cur-
ves {γi : Ci → X}ni=1 in which Ci ∈ C for all i = 1..n. In this case, we
consider as our model for Nori-semistable bundles vector bundles E

such that f∗(E) is semi-stable of slope zero, where f : Ĉ→ X is a non-
constant morphism from a curve Ĉ that is the normalization, thus
smooth, of a curve belonging to C . These vector bundles are called
C -Nori-semistable, see Definition 3.3.63.
The category of C -Nori-semistable bundles is thus neutral tannakian
(Proposition 3.3.65) and its corresponding FGS is called the (S,C )-
fundamental group-scheme πSC (X, x). Classical Nori-semistable bundles
are simply C -Nori-semistable over the family of all curves, so they
are less constrained and we thus obtain a natural quotient morphism

πSC (X, x)→ πS(X, x)

for any non-empty family C of projective connected curves. Moreover,
a similar quotient is obtained for any inclusion of families C ′ ⊂ C ,
and we can also consider vector bundles E for which the pull-back
over a morphism f : Ĉ → X from a normalized curve of family C is
essentially finite over Ĉ, also forms a tannakian category PB-EFC (X),
with a corresponding fundamental group-scheme πPBC (X, x) (Proposi-
tion 3.3.76).
Finally, the category of essentially finite vector bundles, with its cor-
responding fundamental group-scheme πN(X, x) is the category of
essentially finite objects (Definition 3.3.69) for all the categories menti-
oned above, and this implies by Proposition 3.3.71 that πN(X, x) con-
tains all the finite and pro-finite quotients of the other fundamental
group-schemes, so we say that πN(X, x) is the maximal pro-finite quo-
tient of the other FGS.
We finish this part by showing a diagram comparing all the funda-
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mental group-schemes describe and their relationships: for an inclu-
sion of families C ′ ⊂ C we have

πSC ′(X, x) //

��

πPB
C ′ (X, x)

�� %%
πSC (X, x) //

��

πPB
C (X, x)

��

// πN(X, x)

πS(X, x) // πPB(X, x)

88

where all the morphisms are natural with respect to morphisms X→
Y over schemes that are both C -CPC and C ′-CPC, all morphisms
in the diagram above are quotients, i.e., faithfully flat morphism of
group-schemes. This is all detailed in Subsection 3.3.2.
Now we can pass to part (ii). We consider generalizations of the con-
cept of rationally connected varieties. These generalizations were coi-
ned by F. Gounelas in [29] and there are of two types:

1. g-connected varieties or varieties connected by genus g > 0 curves,
where there exists a variety Y and a family C → Y of smooth
proper connected curves, with a morphism u : C → X, making
u(2) : C ×Y C → X×k X dominant. Notable cases here are ratio-
nally connected varieties (g = 0) and elliptically connected varieites
(g = 1).

2. C-connected varieties where C is a fixed proper connected curve,
where there exists a variety Y and a constant family C×k Y → Y

with a morphism u : C×k Y → X, such that the induced map
u(2) : C×k C×k Y → X×k X is dominant.

If u(2) is smooth at the generic point in any of the previous definiti-
ons, we call the corresponding varieties separably g-connected varieties
and separably C-connected varieties respectively.
If k is an uncountable algebraically closed field, a g-connected variety
X over k is the same as a variety for which any pair very general (Defi-
nition 4.2.8) points of X, there exists a smooth connected proper curve
C′ of genus g, with a morphism f : C′ → X whose image contains the
points. And the C-connected case is analogous by replacing C′ for C
and requiring that any pair of very general of points are connected
by C and C alone.
Very general is not enough for the C -CPC property described in the
previous point, so we cannot use smooth curves of genus g or a sin-
gle curve to define a corresponding FGS of the type πSC (X, x). The
only exception being rationally chain connected varieties, which are
P1k-CPC, i.e., for any pair of points there is a finite chain of proper
smooth rational curves, essentially P1k, connecting them, see [39, IV.3
Prop. 3.6].
To remedy this in the case of g-connected varieties, we extend the
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class of curves we consider to stable curves of arithmetic genus g
(Definition 4.3.4). By a result of Araujo and Kollár [5, Theorem 50]
families stable curves of arithmetic genus g over a projective scheme
X, with n marked points, posses a projective coarse moduli space
Mg,0(X), and using the fact that this moduli space is projective, we
show that projective g-connected varieties over an uncountable al-
gebraically closed field k are Curvk(g)-CPC where Curvk(g) is the
family of projective and irreducible curves of arithmetic genus 6 g,
see Proposition 4.3.14 and Corollary 4.3.15, so we can use chains of
curves of genus 6 g to connect any pair of points of a projective g-
connected variety.
This allows us to define the g-fundamental group-scheme πSg(X, x) for
projective g-connected varieties (Definition 4.3.16) for any g > 0. It is
not known if we can do the same for C-connected varieties, as it is
not clear that C-connected varieties are C-CPC, if it were the case, we
can also consider a special fundamental group-scheme that we called
the C-fundamental group-scheme πSC(X, x) (Definition 4.3.21).
Now we will outline a road map to understand the FGS of curve
connected varieties. First we will outline two important cases where
the FGS is fully described, the first example involves rationally con-
nected varieties: normal rationally connected proper varieties have a
finite fundamental group-scheme [2] and smooth proper separably
rationally connected varieties have a trivial one [9]. We a use result
of I. Biswas and J.P. Dos Santos [10] that directly show that πS0(X, x)
is trivial, see Remark 4.3.24. We believe (Problem 4.3.25) that we can
use πS0(X, x) to provide another proof for the description of the Nori
FGS in the rationally chain connected case, we would need to show
that πS0(X, x) is a finite group-scheme.
The second important example is the FGS of abelian varieties. If S is
an abelian variety, then we have

πN1 (S, 0) = lim
←
n

S[n]

where S[n] is the kernel of the n-th multiplication morphism mn :

S → S which is an isogeny, and a finite torsor over the neutral ele-
ment 0 ∈ S(k).
To understand the FGS of C-connected varieties and g-connected va-
rieties, let X be a normal and projective variery, we will use the MRC
sequence, which is a sequence of rational maps between normal varie-
ties

X := R0(X) 99K R1(X) 99K · · · 99K Rn(X) 99K · · ·

and each rational map in the chain is a maximal rationally connected
fibration or MRC fibration, it is a rational morphism X 99K Z such
that for an open dense subset U ⊂ X we have a proper morphism
f : U → Z such that f∗(OU) = OZ and the fibers of f are rationally
chain connected, and it is maximal in the sense if φ′ : X 99K Y is
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another rational map with the properties just described, there exists
a rational map g : Y 99K Z such that φ = g ◦φ′, making Z unique up
to birational equivalence, see Definitions 4.4.1 and 4.4.5.
We can show that the dimension of the members in the MRC se-
quence is decreasing and the sequence is eventually stationary, i.e.
Rj+1(X) ∼= Rj(X) for j > N where N is the least integer with this
property, and thus we will call the variety RN(X) is the end of the
MRC sequence. Moreover, if X is either g-connected or C-connected all
the Ri(X) will be too, so we can try to study the FGS of g-connected
and C-connected varieties of lower dimensions, given by the possible
ends of the sequence, and the morphisms πN(Ri(X))→ πN(Ri+1(X)),
we conjecture that these morphisms have finite kernel (Conjecture
4.4.18).
There are two cases where we can describe the end of the sequence:

• If X is C-connected, RN(X) is either a C-connected surface, a
non-rational curve C′ with a surjective morphism C → C′, or a
normal proper rationally connected variety, but without control
of its dimension. See Remark 4.4.20

• If X is elliptically connected, then RN(X) is either an elliptic
curve or a normal proper rationally connected variety of arbi-
trary dimension. See Remark 5.1.5.

And in this thesis, specifically in Chapter 5, we will study the FGS
in the case the end is a curve in both scenarios. If RN(X) is a curve
C′, then g : RN+1(X) → C′ is a proper faithfully flat globally defined
morphism with rationally connected fibers.
Thus, we can study a more general morphism: f : X → S is proper
faithfully flat morphism between a proper variety X and a smooth
projective connected curve, with geometrically connected and geome-
trically reduced geometric fibers, that have a finite FGS as the in the
case of the MRC sequence, the FGS of the rationally connected fibers
is finite.
To finish this section, we will mention the results obtained in Chap-
ter 5: for a general curve S we get the following partial result for the
induced morphism πN(f) : πN1 (X, x)→ πN1 (S, s) between their FGS.

Proposition (Proposition 5.2.19). Let k be an algebraically closed field,
X a proper variety over k and let S be a smooth and proper curve over k,
with a proper faithfully flat morphism f : X → S between them. We will
assume that all geometric fibers are reduced, connected and possess a finite
fundamental group-scheme.
Then, πN(f) : πN1 (X, x)→ πN1 (S, s) is faithfully flat and for any pure Nori-
reduced finite G-torsor t : T → X over X, the pull-back Tη̄ → Xη̄ to the
geometric generic fiber of f is Nori-reduced, where η̄ is the geometric generic
point of S.
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In the statement above, pure torsors (Definition 5.2.1) are torsors
that are not the pull-back of a torsor over the base S, and its non-
trivial quotients are not pull-backs either. They are related to the ker-
nel of πN(f), see Remark 5.2.2.
In the case S is an elliptic curve we obtain a complete description,
aided by the homotopy exact sequence (Theorem 5.5.2) applied to the
fundamental group-scheme:

Theorem (Theorem 5.5.1). Let k be an uncountable algebraically closed
field, let X be a proper variety over k and let S be an elliptic curve over k.
If f : X → S is a proper faithfully flat morphism, such that all geometric fi-
bers are reduced, connected and possess a finite fundamental group-scheme3.
Then, there exist rational points x ∈ X(k) and s ∈ S(k) such that f(x) = s
and the following sequence of group-schemes is exact:

πN1 (Xs, x)→ πN1 (X, x)→ πN1 (S, s)→ 1.

For a more detailed explanation of the proof of this results, see
Section 5.1.2.

1.2 organization of the manuscript

This thesis is divided in two parts: the preliminaries and the FGS of
curve connected varieties. Starting with the preliminaries:

• In Chapter 2 we will outline the main aspects that are the base
for the theory of the fundamental group-schemes that we will
consider in later chapters. It is divided in three main sections,
one devoted to each aspect:

– Section 2.2 presents the basics of the theory of group-schemes
over fields, with an emphasis on the existence of quotients
of group-schemes and the isomorphism theorem for group-
schemes, affine group-schemes and pro-finite group-schemes.

– Section 2.3 deals with the basic theory of torsors over sche-
mes, G-equivariant sheaves and their relationship with tor-
sors, and additional constructions like contracted products
and projective limits.

– Finally, Section 2.4, delves into the theory of neutral tanna-
kian categories, the equivalence between neutral tannakian
categories and affine group-schemes, called tannakian cor-
respondences. Which is obtained by studying the category
of finitely dimensional representations of group-schemes,
that also is covered in this subsection.

• Chapter 3 introduces the different notions of fundamental group-
schemes that will be used in later chapters. It is divided as fol-
lows:

3 For example, if X is normal and the fibers are rationally connected
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– Section 3.2 presents the non-tannakian part of the Nori
fundamental group-schemes, where πN(X, x) serves as the
group-scheme that classifies finite pointed torsors over sche-
mes.

– In Section 3.3, tannakian fundamental group-schemes asso-
ciated with neutral tannakian categories of vector bundles
are shown. This section is divided in two subsections:

* In Subsection 3.3.1 we conceive the tannakian catego-
ries of Nori-semistable and essentially finite vector bund-
les over schemes. We define and state the main proper-
ties of the associated group-schemes in Subsubsection
3.3.1.1 and in Subsubsection 3.3.1.2 we show how to
unify the non-tannakian and tannakian approaches to
the construction on fundamental group-schemes. Sho-
wing in particular that the non-tannakian Nori fun-
damental group-scheme and the fundamental group-
scheme associated with essentially finite bundles is the
same.

* In Subsection 3.3.2 the theory of tannakian fundamen-
tal group-schemes for schemes connected by chains of
proper curves is presented, along with basic results
and comparisons between the different FGS obtained.

– In the last section, Section 3.4, we will list all the more
advanced results for the FGS that we will use in the second
part of thesis, notably in Chapter 5. Descriptions for the
FGS of rationally connected varieties and abelian varieties
are given in Subsection 3.4.2.

In the second part we have:

• Chapter 4 we define our main notions of varieties connected by
curves, we construct adapted fundamental group-schemes over
them, using the approach of Subsection 3.3.2. It is divided in:

– In Section 4.2 we define and list the main properties of
curve-connected varieties, borrowing from Gounelas’ arti-
cle [29, §3].

– Section 4.3 shows how to construct the g-fundamental group-
scheme for g-connected varieties using stable curves, their
moduli, and the FGS of C -CPC schemes. We give some
basic properties of these fundamental group-schemes in
Subsection 4.3.3.

– The final section, Section 4.4, we define the MRC fibrati-
ona and we discuss its in Subsection 4.4.1. We follow with
Subsection 4.4.2 where we state properties and the general
behavior of the FGS along the MRC sequence and we state
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possible approaches to understand the FGS of C-connected
varieties.

• Chapter 5 makes a full description of a particular type of mor-
phism arising from the MRC sequence of elliptically connected
varieties. In Section 5.1 we introduce the problem by explaining
the MRC sequence of elliptically connected varieties and pos-
sible approaches to understand their FGS in Subsection 5.1.1
as motivation, followed by a summary of the main results and
Sections 5.2 through 5.5 in Subsection 5.1.2.

1.3 prerequisites

We will assume the reader is familiar with algebraic geometry at a
medium level, basic category theory and abstract algebra. A list of
concepts that will be assumed as understood are:

• Category theory: functor, Hom-set, natural transformation, equi-
valence of categories and (co)limits like projective and direct
limits.

• Algebraic geometry: Reduced, connected and irreducible sche-
mes over fields and their geometrical counterparts.
Noetherian and locally noetherian schemes.
Affine, finite, proper, projective, (faithfully) flat, normal and
smooth morphisms/schemes.
Varieties, basic cohomology (mostly H0).
Generic point/fiber, Geometric point/fiber.
Quasi-coherent sheaf, locally free sheaf, vector bundle.

• Abstract algebra: Groups, rings, vector spaces, R-modules, ide-
als, sub-modules, tensor product (of modules), k-algebras.

Besides these assumptions, this thesis intends to be as self-contained
as possible, detailing most of the results in Chapter 2 so they can be
consulted within this document, references are often given when ne-
cessary in later chapters.
Experts in the field may skip Chapter 2 completely, and even Section
3.2 and Subsection 3.3.1 to our recommended start from Subsection
3.3.2 onwards.
We finish by giving a list of general references for various introduc-
tory and advanced topics:

• Abstract algebra: Atiyah & Mc. Donald [8], Dummit & Foote
[20].

• Algebraic geometry: All the series “Éléments de Géométrie Al-
gébrique (EGA)”, Görtz & Wedhorn [27], Harthshorne [36], Liu
[45] and Stacks Project [63].
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• Category theory: Mac Lane [46].

• Group-schemes: Demazure & Gabriel [18], Milne [49] and Wa-
terhouse [68].

• Tannakian categories: Deligne & Milne [17] and Saavedra-Rivano
[59].

1.4 general conventions

1. All k-algebras we will consider will be commutative with unit
(1 6= 0).

2. By “variety over a field k”, we will mean an integral (thus
reduced and irreducible) separated scheme of finite type over
Spec(k).

3. We will use the words “curve” and “surface” when referring to
varieties of dimension 1 and 2 respectively.

4. Sometimes we will use the adjective “finite” instead of “finitely
dimensional” for k-vector spaces.

5. Tied to the last point, we will denote the category of k-vector
space as Vect(k) while we will denote the category of finitely
dimensional k-vector spaces as Vectfk.

6. By vector bundle over a scheme X we will mean a locally free
OX-module of finite rank. We will identify these bundles with
finite and flat morphisms f : Y → X locally of finite presentation
where f∗(OY) is a locally free OX-module of finite rank. If X
is locally noetherian, finite and flat suffice to ensure f∗(OY) is
locally free. See [63, Tag 02K9].

7. The last point is a particular case of the anti-equivalence be-
tween affine morphisms f : Y → X and quasi-coherent OX-
algebras, where Y ∼= Spec

X
(f∗(OY)) ([63, Tag 01S5]). For OX-

modules, an additional construction is needed, see [31, §1.7].
As we mentioned in the last point, vector bundles correspond
under this equivalence to finite and flat morphisms locally of
finite presentation.
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2.1 introduction

As the central object of this work, it is reasonable to ask: What is the
fundamental group-scheme?.
In short, it is a generalization of the étale fundamental group, develo-
ped by Grothendieck in [35, Exp. V] and [34, Exp. IX & X], which is
itself a generalization of the fundamental group of a path-connected
topological space. Of course, we cannot generalize the topological
fundamental group with paths, as the topology of schemes is far from
being path-connected. Instead, the approach Grothendieck used is the
approach of “coverings”: if X is a “nice” path-connected topological
space, we can define topological coverings p : Y → X and consider its
automorphism group Aut(Y|X) of homeomorphisms φ : Y → Y such
that p = p ◦φ, this group acts naturally on the pre-image p−1(x) of a
point x ∈ X, which is a discrete topological space. Moreover, we have
a universal cover u : X̂ → X that dominates all covers of X, i.e., for
any cover p : Y → X there is a unique continuous morphism X̂ → Y

which is itself a cover of Y and that factors through u. Finally, we can
recover the fundamental group of X as Aut(X̂|X), and automorphisms
groups Aut(Y|X) for intermediate covers are quotients of π1(X).
Now, for the étale fundamental group, let X be a connected scheme
over a field k, and let x̄ : Spec(Ω) → X (Ω̄ = Ω) be a geometric
point of X. For the étale fundamental group, the covers are étale co-
verings: finite and faithfully flat morphism such that the fiber Yx̄ is
a finite disjoint union of copies of Spec(Ω) for any geometric point
over x. Here we also have a group of automorphisms Aut(Y|X) that
acts of Yx̄, and thus when fixing a geometric point we get a functor
Fibx̄ : Ét(X)→ Set, called the fiber functor, that assigns a finite étale co-
ver Y → X its fiber Yx. Among étale covers of X there are those where
the action over the geometric fiber is transitive, such covers are called
Galois covers and any cover Y → X can be dominated (in the sense of
the last paragraph) by a Galois cover Z→ X, such that the morphism
Z→ Y is a Galois cover and Aut(Y|X) is a quotient of Aut(Z|X). In this
context, the étale fundamental group πét(X, x̄) is the group Aut(Fibx̄)
of automorphisms of the fiber functor, making Fibx̄ a functor valued
in sets with a continuous πét(X, x̄) action, such that Galois covers cor-
respond to finite quotients of πét(X, x̄). Alternatively, we can define
non-finite étale covers, so that we would have a universal one X̂→ X

with πét(X, x̄) = Aut(X̂|X) and Galois covers of X correspond to finite
quotients of this group. We will not go too deep into details, but we

15



16 the three aspects of the fgs

will refer to [64] when necessary in later chapters, the reader can also
consult [51].
Having described the theory of the étale fundamental group, we can
give a more complete answer to the question from the beginning of
this section. Firstly, the fundamental group-scheme of a scheme X
over a field k is a group-scheme, which is a scheme that behaves like
a group. As such, we need to define group-schemes and also how they
act on schemes, once that is done we can pass to describe coverings,
called pointed torsors, and then we can either conceive the fundamen-
tal group-scheme as a universal covering or some kind of “automor-
phism group-scheme” associated to a “fiber functor”. The “automor-
phism group-scheme" part holds in fact for any group-scheme, and
we can consider it in its full generality.
Finally, these two conceptions for the fundamental group-scheme must
also coincide in the case both apply to our base scheme X.
In short, we need the following:

(a) Group-schemes, that will be explained in Section 2.2.Ingedients needed
for the FGS

(b) Coverings, that will be discussed in Section 2.3.

(c) Express group-schemes as automorphism group-schemes asso-
ciated to a certain functor. This will be detailed in Section 2.4.

With these ingredients, the “universal covering” approach utilizes
points (a) and (b), while the “automorphism group-scheme” one uti-
lizes points (a) and (c). They also can be shown to coincide if both
approaches apply over the base scheme. This will be all explained in
Chapter 3.
The purpose of this chapter is to establish the basic concepts needed
for the FGS, we have divided these in three aspects, group-schemes,
torsors and tannakian categories, which are the contents of the next
three sections, following the order of the list just mentioned. Finally,
we must point out that tannakian categories are key in the construction
of the many fundamental group-schemes we will define in Section 3.3,
making it the most important section in this chapter.

2.2 group-schemes

In this section we will state the main concepts and properties of
group-schemes that we will need for later chapters, will borrow most
concepts and results from [49] and [68].

2.2.1 Basic Definitions

Let S be a scheme, the definition of group-scheme is the following:
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Definition 2.2.1. Group-schemesA group-scheme is a scheme G over S with morphisms
m : G×S G → G, e : S → G and i : G → G, called multiplication, unit
point and inverse resp., that satisfy the following commutative diagrams:

Associativity
axiom

G×S G×S G
(m,idG)//

(idG,m)
��

G×S G
m

��
G×S G m

// G

Unit element
axioms

S×S G ∼= G
(e,idG)//

idG
''

G×S G
m

��
G

G×S S ∼= G
(idG,e)//

idG
''

G×S G
m

��
G

Inverse axiomsG
(i,idG)//

��

G×S G
m

��
S

e
// G

G
(idG,i)//

��

G×S G
m

��
S

e
// G

The diagrams we just showed are the “diagrammatic” versions of
group axioms, which generalize the set-theoretic versions, and are
used to define group-objects in general categories with analogous dia-
grams. Group-schemes then, are group-objects in the category SchS of
schemes over S. To differentiate group-schemes from classical groups,
we will call the latter abstract groups from now on.
To define morphisms of group-schemes, we need a morphism of sche-
mes that preserves the structure of the group-schemes involved:

Definition 2.2.2. Morphisms of
group-schemes

A morphism of group-schemes is a morphism of S-
schemes φ : G → H between two group-schemes, such that φ ◦mG =

mH ◦ (φ,φ), meaning that φ commutes with the multiplication morphisms
of G and H, where mG and mH are the multiplication morphisms of G
and H respectively, and (φ,φ) : G×S G → H×S H is the morphism that
“applies φ on each coordinate" in the fibered product.

Remark 2.2.3. As in the case of abstract groups, the reader can easily verify
that if φ : G→ H is a morphisms of group-schemes, we have that φ ◦ eG =

eH and φ ◦ iG = iH, where the sub-index denotes if the unit point or inverse
morphism belong to G or H, meaning that φ also preserves the unit point
and inverse morphisms.

Remark 2.2.4. In this thesis, we will mostly work with group-schemes over
Spec(k) where k is a field. Also, most of the group-scheme we will consider
are affine group-schemes, i.e., affine k-schemes that are also group-schemes
over k.

Before introducing some examples, we must introduce an equiva-
lent definition of group-schemes over k.
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Definition 2.2.5.Functor of
points

Let Algk be the category of finitely generated k-algebras.
For a scheme X over k, we define its functor of points as the covariant
functor X̃ : Algk → Set given by

R 7→ HomSchk(Spec(R),X).

If X̃(R) is a group for any k-algebras R and for any morphism of k-algebras
R→ S, the morphism X̃(R)→ X̃(R) is a morphism of groups, we say that X̃
is a group-valued functor of points.

Convention 2.2.6. Without too deep into technicalities, as we are going to
cite many results utilizing functors of points from [49] we will follow the
convention of considering a small category of k-algebras: let Alg0k be the
small category of k-algebras of the form k[T1, · · · , Tn]/I where I is an ideal
and {Ti}i∈I is a countable set of symbols. The full inclusion of categories
Alg0k → Algk is an equivalence of categories, and thus we will identify
algebras of finite type with objects of Alg0k using this equivalence so that all
functors of points considered from here on will be defined over Alg0k.

To better understand the properties of functors of points for sche-
mes of finite type over k, we need the most essential “Yoneda’s lemma”
(see [46, III §2]):

Lemma 2.2.7.Yoneda’s lemma Let C be a category and F : C→ Set a functor. Then, for any
object c of C, we have that Nat(Hom(c, ·), F) ∼= F(c), where “Nat” denotes
the set of natural transformations between two functors. In particular, all
natural transformations Hom(c, ·) → Hom(d, ·) come from a unique mor-
phism f : d→ c so that it is defined by composition with f.

Remark 2.2.8. As a consequence of Yoneda’s lemma, for two schemes X, Y
over k, the only possible natural transformations X̃ → Ỹ are the natural
ones, i.e., those coming from a morphism of schemes f : X → Y over k. We
will denote the natural transformation induced by f by f̃ : X̃→ Ỹ.

This remark shows that we have a “functor of points” functor (̃·) :
Schk → Fun(Alg0k, Set) where the latter category is the category of
functors from Alg0k to Set, whose morphisms are natural transforma-
tions. Yoneda’s lemma shows that this functor is fully faithful, i.e, it
induces bijections between corresponding Hom sets under the func-
tor (̃·). Moreover, we have:

Proposition 2.2.9. The functor (̃·) : Schk → Fun(Alg0k, Set) induces an
equivalence of categories between Schk and a full sub-category of the cate-
gory Fun(Alg0k, Set) of functors between Alg0k and Set. In particular, sche-
mes of finite type over k are completely determined by their functors of
points.

Proof. This is a consequence of [21, Prop. VI-2], plus the fact that a
scheme of finite type over k is covered by affine open sets, correspon-
ding to k-algebras that are finitely generated over k.
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A natural question arises from this characterization, how we iden-
tify affine schemes of finite type? The following definition is the ans-
wer:

Definition 2.2.10. A covariant functor F : C → Set is representable if it
is of the form HomC(c, ·) where c is an object of c.

Applying this definition to functors from Alg0k, we have that a re-
presentable functor is of the form HomAlg0k

(A, ·) where A is a finitely
generated k-algebra, but from the properties of ring spectra we have
that HomAlg0k

(A, ·) = HomSchk(·, Spec(A)) showing that representable
functors of points correspond to affine schemes of finite type over k.
Now we can come back to group-schemes and their examples, as we
can characterize now their functors of points using Yoneda’s lemma
and Proposition 2.2.9:

Proposition 2.2.11. A scheme G of finite type over k is a group-scheme if
and only if G̃ is group-valued (Definition 2.2.5).

If G = Spec(A) is an affine group-scheme, which kind of proper-
ties should A satisfy that would make the functor of points R 7→
HomAlg0k

(A,R) group-valued? The short answer is that they are the
“opposite” of those outlined in Definition 2.2.1, as the functor

Spec(·) : A 7→ Spec(A)

is contravariant. The precise definition is:

Definition 2.2.12. Hopf algebrasA Hopf algebra is an algebra A with three k-algebra
morphisms ∆ : A → A ⊗k A, ε : A → k and S : A → A, called co-
multiplication, counit and antipode (or coinverse) resp., that satisfy the
following commutative diagrams:

Coassociativity
axiom

A
∆ //

∆
��

A⊗k A

(∆,idA)
��

A⊗k A
(idA,∆)

// A⊗k A⊗k A

Counit axiomsA
∆ //

idA %%

A⊗k A

(ε,idA)
��

k⊗k A ∼= A

A
∆ //

idA %%

A⊗k A

(idA,ε)
��

A⊗k k ∼= A

Antipode axiomsA
∆ //

ε

��

A⊗k A
mult(S,idA)
��

k // A

A
∆ //

ε

��

A⊗k A
mult(idA,S)
��

k // A

where mult : A ⊗k A → A is the natural multiplication on the tensor
product given by a⊗ b 7→ ab.
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As we mentioned before, using the fact that the functorA 7→ Spec(A)
is contravariant and using Yoneda’s lemma, we obtain the following:

Proposition 2.2.13. An affine scheme G = Spec(A) of finite type over k is
if and only if A is a Hopf algebra that is finitely generated over k.

Remark 2.2.14. If we consider general affine group-schemes over k, they are
still the spectra of Hopf algebras but not necessarily finitely generated. This
comes from the fact that Proposition 2.2.9 is valid for general schemes over
k, if we define functors of points over general k-algebras, not only finitely
generated ones.

Hopf algebras serve as a big source of examples of group-schemes,
we will show some now:

Example 2.2.15. Let us show some examples of group-schemes of finite type
over k:

1.General linear
group-scheme

Let V be a k-vector space, for any finitely generated k-algebra, we can
define the group-valued functor

R 7→ AutR−mod(V ⊗k R)

of R-module automorphisms of the tensor product V ⊗k R. This func-
tor is represented by an affine group-scheme, known as the General
linear group-scheme over V , that we will denote as GL(V). This
group-scheme will play an essential role in Subsection 2.4.2.
If V is finitely generated, it is not hard to see that GL(V) is of finite
type: as a Hopf algebra, after fixing a base of V , we can identify it with
kn and in that case we will denote GL(kn) as GLn(k), in that case
we have that GLn(k)(R) = HomAlg0k

(A,R) where

A = k[x11, x12, · · · , xnn, 1/det]

where each variable xij can be thought as a coordinate of a n×n ma-
trix, and det denotes the general formula for the determinant, which
is polynomial on the coordinates of the matrix. The Hopf algebra co-
operations of A come from matrix operations: ∆ comes the general
formula of matrix multiplication, defined over the base as

∆(xij) =

n∑
k=1

xkj ⊗ xik,

ε comes from the coordinates of the identity matrix ε(xij) = δij where
δij denotes the Kronecker delta, and the antipode S comes from the
general formula for the inverse of a n×n matrix M:

M−1 =
1

det(M)
adj(M)T .

The interested reader can write down S(xij) following the formula
above and verify the Hopf algebra axioms in this case.
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2. Commutative
group-schemes

A group-scheme G is commutative if the multiplication morphism
satisfies the identity m ◦ t = m, where t : G×k G → G×k G is
the morphism corresponding to the transposition of coordinates in the
fibered product.
If G = Spec(A) is affine, this implies that t ◦∆ = ∆ where t : A⊗kA
is the morphism that acts on elemental tensors as t(a⊗b) = b⊗a. In
short, G is commutative and affine if the formula for ∆ is symmetrical
with respect to the transposition of tensors. For example, ∆(x) = x⊗x
is symmetrical while ∆(x) = x⊗ 1 is not.
The next two examples are commutative group-schemes, along with
the last one, which justifies the name choice of “commutative” group-
schemes over “abelian” group-schemes.

3. Additive and
Multiplicative
group-schemes

The additive group-scheme Ga is the group-scheme representing
the functor R 7→ (R,+) that forgets the multiplicative structure over
a k-algebra R, resulting in the additive abelian group (R,+).
As an affine scheme, it is A1 = Spec(k[x]) with Hopf algebra struc-
ture given by: ∆(x) = x⊗ 1+ 1⊗ x, ε(x) = 0 and S(x) = −x.
A related example is the multiplicative group-scheme Gm, that re-
presents the group-valued functor R 7→ R∗ of units of R. Schematically
this group-scheme is Gm = A1\{0} = Spec(k[x, x−1]) with Hopf al-
gebra operations given by: ∆(x) = x⊗ x, ε(x) = 1 and S(x) = x−1.
We easily see that both of these group-schemes are commutative, but
they are diametrically opposite to each other: any morphism of group-
schemes Gm → Ga or Ga → Gm is trivial, i.e, they factor through
the unit morphism.

4. Two non-reduced
group-schemes

Let k be a field of positive characteristic p, we consider the group-
schemes αp and µp given by

αp = Spec(k[x]/xp), µp = Spec(k[x]/(xp − 1))

with the same Hopf algebra operations as Ga and Gm respectively.
These group-schemes represent the functors R 7→ {r ∈ R : rp = 0}

and R 7→ {r ∈ R : rp = 1}. We easily see that the Hopf algebras
associated to these group-schemes are not reduced, as either x or x− 1
are nilpotent. Moreover, these group-schemes have only one rational
point, corresponding to the unit point, and they are also connected.
We will characterize these kind of group-schemes in Subsection 2.2.3.

5. Constant
group-schemes

The theory of group-schemes extends the theory of abstract groups. To
consider an abstract group as a group-scheme, let Γ be a finite abstract
group, we define the constant group-scheme as the group-scheme
Spec(kΓ ) = Spec(

∏
g∈Γ kg) of ord(Γ) copies of k. After choosing a

base (eg)g∈Γ where eg ∈ kg\{0}, the Hopf algebra structure is given
by: ∆(eg) =

∑
hk=g eh ⊗ ek, ε(eg) = δug where u ∈ Γ is the unit

and S(eg) = eg−1 .
We will denote the constant group-scheme simply as Γ or as (Γ)k if
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confusion could arise. This group-scheme is highly disconnected, be-
cause as a scheme, it is a disjoint union of copies of Spec(k).

6.Abelian varieties An abelian variety is a proper variety over k that is also a connected
commutative group-scheme. It can be shown that these varieties are
projective and smooth over k [49, pp. 8.37 & 8.45] , abelian varieties
of dimension one are simply elliptic curves.
These group-scheme represent examples of anti-affine group-schemes
(see [49, §8e]), which are group-schemes G of finite type over k that sa-
tisfy H0(G,OG) = k like in the case of abelian varieties, the property
of being smooth over k is shared by all anti-affine group-schemes. They
can be considered as the opposite of affine group-schemes which satisfy
H0(G,OG) = A if G = Spec(A).

We continue with subgroup-schemes:

Definition 2.2.16.Subgroup-
schemes

Let G be a group-scheme over k, a subgroup-scheme
of finite type is a group-scheme H that is a sub-scheme of G, such that the
inclusion morphism i : H→ G is a morphism of group-schemes.

Remark 2.2.17. If H ⊂ G is a subgroup-scheme, then for any k-algebra
R of finite type we have a natural inclusion of groups H̃(R) ⊂ G̃(R), this
means that the functor of points H̃ is a sub-functor of G̃, we will denote
this relationship as H̃ ⊂ G̃. In short, the functor of points of a subgroup-
scheme is a group-valued sub-functor of the functor of points of the larger
group-scheme, but one must be careful as not all group-valued sub-functors
of G̃ correspond to subgroup-schemes of G.

Using this characterization as sub-functors, we can define normal
subgroup-schemes:

Definition 2.2.18. A subgroup-scheme N ⊂ G is normal if for any k-
algebra R of finite type, we have that Ñ(R) is a normal subgroup of G̃(R).
If N ⊂ G is normal we will denote it as N� G and likewise for normal
abstract subgroups.

In terms of schematic properties, subgroup-schemes satisfy the fol-
lowing:

Proposition 2.2.19 (Prop. 1.41 [49]). Subgroup-schemes of finite type of a
group-scheme of finite type over k are closed sub-schemes, i.e, the inclusion
i : H→ G is a closed immersion.

In the case of affine group-schemes we can characterize their subgroup-
schemes with the following:

Definition 2.2.20.Hopf Ideals Let A be a Hopf algebra over a field k. An ideal I ⊂ A
is a Hopf ideal if it satisfies the following properties:

(i) ∆(I) ⊂ I⊗A+ I⊗A.

(ii) S(I) ⊂ I.
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(iii) ε(I) = 0.

We can easily see that with these conditions, the quotient A/I has a natu-
ral structure of Hopf algebra inherited from A, that makes the projection
morphism π : A → A/I a morphism of Hopf algebras, i.e., a morphism of
k-algebras that preserves the co-operations ∆, ε and S.

Using Proposition 2.2.19 and the fact that closed sub-schemes of af-
fine schemes are given by quotients, we conclude the following corol-
lary:

Corollary 2.2.21. Let G = Spec(A) be an affine group-scheme of finite type
over k, and let H ⊂ G be a subgroup-scheme. Then, H = Spec(A/I) is an
affine group-scheme, where I is a Hopf ideal of A.

Remark 2.2.22. (a) Corollary 2.2.21 holds indeed for any affine group-
scheme, so we can drop “of finite type over k” for G in its statement.
We won’t prove this directly, but the curious reader can utilize Propo-
sition 2.2.94 and Proposition 2.2.97 together to sketch a proof.

(b) A Hopf ideal corresponding to a normal subgroup-scheme of an affine
group-scheme G = Spec(A) satisfies additional conditions, we leave
the reader to figure those out.

One of the most important normal subgroup-schemes is the kernel
of a morphism, which is defined as:

Definition 2.2.23. Kernel of a
morphism of
group-schemes

Let φ : G → H be a morphism of group-schemes. The
kernel of φ is the group-scheme defined as ker(φ) = G×H Spec(k), which
is the fiber over the unit point eH : Spec(k)→ H.

We easily see that k̃er(φ)(R) = ker(G(R)→ H(R)) for any finitely genera-
ted k-algebra, and thus ker(φ)�G.

Remark 2.2.24. Let φ : G → H be a morphism of affine group-schemes,
corresponding to a morphism of Hopf algebras f : B → A. The kernel of the
counit morphism Iε = ker(ε), which is a maximal ideal of A, is called the
augmentation ideal of A. From the properties of Hopf ideals (Definition
2.2.20(iii)), we see that all Hopf ideals are contained in the augmentation
ideal.
In this case, the kernel of φ corresponds to the quotient A/Iε′A ∼= A⊗B k
where ε′ is the counit morphism of B and thus Iε′ is the augmentation ideal
of B.

We have just shown subgroup-schemes, it would be fitting then,
that we show quotients, but before this we need another very impor-
tant concept:

Definition 2.2.25. Actions by
group-schemes

Let G be a group-scheme of finite type over k and let X
be a scheme of finite type over k. An action of G over X, or a G-action over
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X, is a morphism of schemes µ : G×k X → X that satisfies the following
commutative diagrams:

Group-scheme
action axioms

G×k G×k X
(idG,µ)//

(m,idX)
��

G×k X
µ

��
G×k X µ

// X

Spec(k)×k X

∼=
''

(e,idX)// G⊗k X
µ

��
X

.

Remark 2.2.26. We have, strictly speaking, left actions of group-schemes.
We could define right actions either directly, that we will leave as an exercise,
or by diagrammatically expressing the following trick for abstract groups: If
an abstract group G acts on the left a over set X, we can define an associated
right action X × G → X by setting x · g := g−1 · x. This kind of trick
can be used both ways to pass from left to right actions and vice versa, thus
obtaining a bijection between left and right and allowing us to compose right
and left actions if needed.

In terms of schematic properties for actions, we have:

Lemma 2.2.27. Let X be a k-scheme of finite type with an action µ : G×k
X → X. Then, µ is always faithfully flat, and if G is smooth, affine, proper,
or finite, then µ is smooth, affine, proper, or finite as well.

Proof. This comes from the following commutative diagram:

G×k X //

µ

��

G×k X
p2
��

X
idX

// X

Where the upper horizontal morphism is (idG,µ).
As both horizontal arrows are isomorphisms, because the top one
has the morphism (idG,µ(i, idX)) as inverse, where i : G → G is
the inverse morphism of G (Definition 2.2.1), we see that µ has the
same properties as the projection p2 : G×k X → X over the second
coordinate, which concludes the proof.

In terms of functors of points, we have:

Definition 2.2.28.Actions by
group-valued

functors

Let F : Alg0k → Set be a functor and let G : Alg0k → Grp
be a group-valued functor. An action of G over F is a natural transformation
µ : G× F → F such that for any k-algebra R the morphism µ(R) : G(R)×
F(R) → F(R) is an action of G(R) over F(R). The fact that µ is a natural
transformation implies that for any morphism R→ S of k-algebras, we have
the following commutative diagram

G(R)× F(R)
µ(R) //

��

F(S)

��
G(S)× F(S)

µ(S)
// F(S)

.
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By Yoneda’s lemma, a schematic action µ : G×k X → X yields an
action of functors µ̃ : G̃× X̃ → X̃ by taking functors of points. The
approach of functors of points permits to define further concepts and
properties around actions:

Definition 2.2.29. Let X be a k-scheme of finite type with an action µ :

G×k X→ X.

(a) The action is transitive if the morphism (p2,µ) : G×k X → X×k X
is faithfully flat where p2 : G×k X → X is the projection onto the
second coordinate.

(b) The action is free if (p2,µ) is a monomorphism, i.e., for any k-algebra
R the induced morphism G̃(R)× X̃(R)→ X̃(R)× X̃(R) is injective.

Definition 2.2.30. Let X and X′ be two schemes of finite type over k with
G-actions µ and µ′ respectively. A morphism f : X → X′ is equivari-
ant or a G-morphism if at the level of functors of points we have that
f̃(R)

(
µ̃(R)(g, x)

)
= µ̃′(R)(g, F̃(R)(x)) for any g ∈ G̃(R) and x ∈ X̃(R).

2.2.2 Quotients of Group-schemes and the Isomorphism Theorem

Now we will introduce quotients of group-schemes, mostly following
[49, Ch. 5 & Appendix B]. In algebraic geometry the concept of a
“quotient scheme” is a delicate one, but we must first define what we
will mean by quotient in this context:

Definition 2.2.31. Let C be a category that has products and fibered pro-
ducts. For objects X0,X1, Y of C, forming the following diagram:

X1
u0 //
u1
// X0

u // Y .

We say that Y is the cokernel in C of the pair (u0,u1) if the following
conditions hold:

• u ◦ u0 = u ◦ u1.

• The morphism u is universal in the sense that if v : X0 → Z is
another morphism such that v ◦ u0 = v ◦ u1, there exists a unique
arrow f : Y → Z such that the following diagram is commutative:

X1
u0 //
u1
// X0

u //

v
  

Y

f
��
Z

,

or in other words, for any object T of C, the following induced diagram
of Hom-sets

HomC(Y, T) // HomC(X0, T) //// HomC(X1, T)
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is an equalizer (c.f. [46, p. 70]), i.e,

HomC(Y, T) = {φ : X0 → T : φ ◦ u0 = φ ◦ u1}.

Remark 2.2.32. From its properties, we see that the cokernel of a pair of
morphisms is unique up to isomorphism.

Example 2.2.33. Let us consider the problem of the existence of the cokernel

of the diagram X1
u0 //
u1
// X0 in the category RingSp of ringed spaces, we

remark that this category contains the category of schemes, as any scheme is
a ringed space with extra conditions.
In this category, the cokernel of (u0,u1) exists: we take as Y the space where
we identify elements X0 when u0(x) = u1(x) for some x ∈ X1 and we give
Y the quotient topology.
In terms of the structural sheaf, from the quotient morphism u : X0 → Y,
we have the following diagram of shaves over Y:

u∗(OX0)
υ0 //
υ1
// u∗ ((u0)∗ (OX1)) = u∗ ((u1)∗ (OX1))

where the morphisms υ0 and υ1 are the direct images to Y of the sheaf-
level part of the morphisms u0 and u1 respectively. With this, we see that
we can define OY as the sub-sheaf of u∗(OX0) formed by the sections s ∈
u∗(OX0)(U), where U is an open set of Y, such that υ0(s) = υ1(s), making
the diagram

OY // u∗(OX0)
υ0 //
υ1
// u∗ ((u0)∗ (OX1)) = u∗ ((u1)∗ (OX1))

an equalizer.

The main diagram that we will consider in this part involves group-
scheme actions, so we will introduce a relevant concept:

Definition 2.2.34. Let X be a scheme of finite type over a field k, with an
action µ : G×k X → X from a group-scheme G of finite type over k. A
morphism f : X→ Y is G-invariant if f ◦ µ = f ◦ p2 where p2 : G×k X→
X is the projection over the second coordinate.
At the level of functors of points, f : X→ Y is G-invariant if

f̃(R)(µ̃(R)(g, x)) = f̃(R)(x)

for any k-algebra R, g ∈ G̃(R) and x ∈ X̃(R), or in other words, if x1, x2
are on the same orbit under the action of G̃(R), then f̃(R)(x1) = f̃(R)(x2).

Example 2.2.35. Let X be a scheme of finite type over a field k, with an
action µ : G×k X → X from a group-scheme G of finite type over k. For

the diagram G×k X
µ //
p2

// X , if the cokernel of the pair (µ,p2) exists as a

scheme over k, we will denote it as X/G and call it (by abuse of language)
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the quotient of X by the action µ (or by G if the action is clear). By
definition, the morphism π : X→ X/G is G-invariant, and by the universal
property of the cokernel, for any G-invariant morphism f : X→ Z there is a
unique morphism h : X/G→ Z such that f = h ◦ π.

The most important quotients by actions of group-schemes, coming
from this terminology are the following:

Definition 2.2.36. Let G be a group-scheme of finite type over k, a quotient
of a group-scheme G/H where H is a subgroup-scheme of G is the quotient
by the restricted multiplication action µH : H×k G → G when it exists as
a scheme over k.

Remark 2.2.37. We do not need for H to be normal to wonder if G/H exists,
but if G/H exists regardless of the subgroup-scheme chosen, G/H should be
a group-scheme when H is normal. We will show this later in Proposition
2.2.55.

Not all quotient by actions might exist as schemes, but all restricted
multiplication actions share the property of being free (Definition
2.2.29(b)), this brings a particular case of cokernel diagram:

Definition 2.2.38. A pair of morphisms u0,u1 : X1 → X0 in a category
C is an equivalence relation if for any object T of C, the induced mor-

phism of Hom-sets HomC(T ,X1)
(ũ0,ũ1)→ HomC(T ,X0)×HomC(T ,X0) is a

bijection between HomC(T ,X1) and the graph of an equivalence relation on
HomC(T ,X0).
More explicitly, if x, x′ ∈ HomC(T ,X0) are in the same equivalence class,
then there exists y ∈ HomC(T ,X1) such that u0(y) = x and u1(y) = x′.

Definition 2.2.39. Let X1
u0 //
u1
// X0 be an equivalence relation. A mor-

phism u : X0 → Y is an effective epimorphism if u is the cokernel of
(p1,p2) where p1 and p2 are the projection morphisms from the fibered pro-

duct X0 ×Y X0
p1 //
p2
// Y .

We say that the cokernel u of an equivalence relation (u1,u2) (or by abuse

of language Y) is a quotient if the morphism X1
(u0,u1)→ X0 ×Y X0 is an

isomorphism, implying that u is an effective epimorphism.

Now we will state the existence results for quotients that will allow
us to consider quotients of group-schemes over a field k, we must re-
mark that in the reference [49, Appendix B] we gave at the beginning
of this subsection, the problem of quotients is considered for schemes
over the spectra of noetherian rings, which requires more properties
to show that quotients of equivalence relations exist. The general idea
is to incrementally weaken the hypotheses of the morphisms in the

diagram X1
u0 //
u1
// X0 until we have established that quotients exist

for all group-schemes of finite type.
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The starting case is when X1 and X0 are affine, and u0 is a locally
free morphism, i.e., flat and finite over the base scheme for which the
quotient u : X0 → Y exists and is a locally free morphism [49, The-
orem B.18], followed by the case where X0 and X1 are of finite type
over the base, u0 is locally free and for any x ∈ X0 the set u0(u−11 (x))

representing the equivalence class of x, is contained in an affine sub-
scheme of X0. In this case, the quotient also exists and it is locally free
like the former case [49, Theorem B.26]. Applying this to the case of
an action of a finite group-scheme over a scheme X of finite type over
k, we obtain the following, with the statement taken mostly from [50,
§12 Theorem 1], that includes the case of a non-free actions:

Theorem 2.2.40.Quotients by
actions of finite
group-schemes

Let X be a scheme of finite type over k, with an action
µ : G×k X→ X of a finite group-scheme G.

For the diagram G×k X
µ //
p2

// X , let us suppose that for any point x ∈ X,

the set µ(p−12 (x)) 1 is contained in an affine sub-scheme of X.
Then, the cokernel π : X → Y of the pair (µ,p2) exists and is a finite
morphism over k. If we denote it as π : X → X/G, it satisfies the following
properties:

(i) Topologically X/G is a quotient space with the quotient topology.

(ii) π : X→ X/G is G-invariant (Definition 2.2.34) and any G-invariant
morphism f : X → Z factors through π, as explained in Example
2.2.35.

(iii) If OGX ⊂ π∗(OX) denotes the sheaf of sections s ∈ π∗(OX)(U) =

OX(π
−1(U)) such that µ∗(s) = p∗2(s), called G-invariant sections,

then we have an isomorphism OGX
∼= OX/G of sheaves over X/G.

If the action is moreover free (Definition 2.2.29(b)), and n = dimk(A)
where G = Spec(A), then π : X → X/G is surjective and locally free (flat
and finite) of rank n, i.e, π∗(OX) is a locally free sheaf over X/G of rank n,
and it is also a quotient according to Definition 2.2.39.

Applying this to group-schemes we obtain:

Corollary 2.2.41.Quotients by of
finite subgroup-

schemes

Let G be a group-scheme of finite type over k, and let
H ⊂ G be a finite subgroup-scheme. Then, the quotient G/H exists and
π : G → G/H is finite and faithfully flat. We also have an isomorphism
H×k G ∼= G×G/H G.

Now we will state the general theorem for quotients, followed
by the sketch of the proof for the existence of quotients for group-
schemes of finite type. In synthesis, under the right hypotheses, a
cokernel is defined over an open sub-scheme, and thus we need to
show that for group-schemes the cokernel is globally defined.

1 The reader can compare such set with the orbits of an abstract group action over a
set.
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Definition 2.2.42. Let X1
u0 //
u1
// X0 be a equivalence relation of schemes,

i.e., we have an equivalence relation at the level of functors of points

X̃1(R)
ũ0 //

ũ1

// X̃0(R)

for any k-algebra R (Definition 2.2.38). A sub-functor F ⊂ X̃0 is satura-
ted if the functor ũ1(ũ0

−1(F)) is a sub-functor of F itself, meaning that
F(R) is a union of equivalency classes of the form ũ1(R)

(
(ũ0(R))

−1 (x)
)

for x ∈ X̃0(R).
If U ⊂ X0 is a sub-scheme, we will say that U is saturated if its functor of
points Ũ ⊂ X̃0 is saturated.
Saturated sub-functors (sub-schemes) allows us to restrict equivalence relati-

ons by considering the diagram F1
u0 //
u1
// F where F1 = u−10 (F) = u−11 (F).

Now we can state the general cokernel theorem:

Theorem 2.2.43. Quotients by flat
equivalence
relations over
schemes of finite
type

Let X1
u0 //
u1
// X0 be a equivalence relation of schemes,

with u0 flat and X0 of finite type. Then, there exists a dense open sub-scheme
W of X for which the restricted equivalence relation has a quotient.

Remark 2.2.44. The statement of this theorem is [49, Theorem B.35] minus
the hypothesis of X0 being quasi-projective stated there, we will sketch the
proof of this result, but the proof of the theorem without the quasi-projective
assumption can be found in [6, Exp. V Théorème 8.1].

Sketch of the proof. There are two things to prove: the existence of W
and the fact that we have a quotient over it.
For the quotient part, in [49, Theorem B.32] is shown that an equi-

valence relation X1
u0 //
u1
// X0 that has a quasi-section possesses a quo-

tient u : X0 → Y which is surjective and u is open (resp. flat, univer-
sally closed) if u0 is. A quasi-section is a sub-scheme Y0 ⊂ X0 such
that the restriction of u1 to u−10 (Y0) is surjective and finite locally
free over X, and for any x ∈ Y0 the set u1(u−10 (x)) ∩ Y0 is contained
in an open affine sub-scheme of Y0. These two conditions together
imply that Y0 intersects every equivalence class u0(u−11 (x)) (x ∈ X0)
in a finite set, and that this intersection is contained in an open affine
sub-scheme of Y0. This allows us to induce an equivalence relation

Y1
v0 //
v1
// Y0 where Y1 = u−10 (Y0)∩u−11 (Y0) for which v0 is finite and

locally free, thus giving us a quotient by [49, Theorem B.26] and the
rest of the proof of [49, Theorem B.32] gives a quotient in the presence
of a quasi-section.
For the existence of W, it can be shown that for any closed point
z ∈ X0, there is a closed sub-scheme Z ⊂ X0 containing z such that
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the restriction of u1 to u−10 (Z) is flat at the points of u−11 (z) and
Z ∩ u1(u−10 (z)) is finite and non-empty. The latter property is easy
to obtain constructively with a decreasing sequence of closed sub-
schemes, and we can get the former property from this construction.
If we take the restriction u′1 : u−10 (Z) → Z, its fiber over z is finite by
construction, and if we consider the open sub-scheme U of u−10 (Z)

where u′1 is flat and quasi-finite, there is an open sub-scheme Wz of
u′1(U) which is the largest such that u′1 is flat and finite.
It can be shown that Wz contains the generic point of all irreducible
components of X0 containing z, it is saturated and

(
u′1
)−1

(Wz) =(
u′0
)−1

(U), and then by construction U is a quasi-section for the re-
stricted equivalence relation on Wz, showing the existence of a quo-
tient over Wz.
Finally, if the sub-scheme u−10 (X0\Z) is empty, Wz is the dense open
sub-scheme we we looking for, and thus we are done. If u−10 (X0\Z)

is not empty, it is saturated and we can find another closed point
z′ ∈ X0 and an open sub-scheme Wz′ containing z′ and all the ge-
neric points of the irreducible components that contain z′ for which
the restricted quotient exists. It is easy to show that Wz ∩Wz′ = ∅ for
different closed points and thus after taking a finite union of open
sets of the form Wz until we have covered all the (finitely many) ir-
reducible components of X0 we will obtain the desired dense open
sub-scheme with a quotient defined over it.

Applying this to actions of group-schemes, we obtain:

Corollary 2.2.45.Quotients by
free actions of

group-schemes of
finite type

Let X be a scheme of finite type over k, with an action
µ : G×k X → X of a finite group-scheme G. Then, there exists an open
dense sub-scheme U ⊂ X, that is saturated for the equivalence relation

G×k X
µ //
p2

// X and for which the quotient U/G by the restricted action

of G exists. The quotient morphism π : U → U/G is faithfully flat, and we
have an isomorphism G×k U ∼= U×U/G U.

Proof. This is a direct consequence of Theorem 2.2.43, plus the fact
that the action morphism µ : G×k X → X is faithfully flat (Lemma
2.2.27).

Corollary 2.2.46 (Theorem B.37 [49]).Quotients by
subgroup-

schemes, general
case

Let G be a group-scheme of finite
type over k, and let H ⊂ G be a subgroup-scheme. Then, the quotient G/H
exists and π : G → G/H is faithfully flat. We also have an isomorphism
H×k G ∼= G×G/H G.

Sketch of the proof. There are 3 steps involved. The first step is to show
that the quotient is globally defined after taking a finite extension of
k. If k′ ⊃ k is a finite extension of k, then we consider the open sub-
scheme U[k′] defined as the union of all open sub-schemes of Gk′ that
are closed under the action of Hk′ for which the quotient exists. From
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its maximal property, we see that U[k′] is stable under the action of
the group G(k′) and thus U[k] ⊂ G is dense from Corollary 2.2.45.
As such, U[k] must contain a closed point that we can assume to be
k-rational after considering a finite extension of k, thus U[k] ⊃ G(k)
and the same is true for any finite extension of k, thus U[k] = G by
[49, Lemma B.36].
The second part is to show that if we have a quotient π : G → G/H,
then any finite set of points of G/H is contained in an affine open
sub-scheme whose proof we will omit here, and thirdly, if K is a finite
extension of k for which the quotient GK/HK exists, then the quotient
G/K over k exists as the quotient of the pull-back ([49, Definition

B.4]) of the equivalence relation Spec(K⊗k K)
p1 //
p2

// Spec(K) by the

morphism GK/HK → Spec(K), using the second step of the proof
and the existence of a quotient for an equivalence relation with a
finite locally free morphism for which the equivalency classes are
contained in an open affine sub-scheme [49, Theorem B.32] for the
pulled-back relation.

Remark 2.2.47. The latter proof assumes G is quasi-projective. As we said
before, this property can be removed to obtain the same result. Otherwise,
for a proof of the fact that group-schemes of finite type over a field are quasi-
projective, see [49, B.38 & 8.43].

Now that we have established the existence of quotients of group-
schemes, we will proceed to their functional aspects and the isomor-
phism theorem. We start with a remark:

Remark 2.2.48. Let G be a group-scheme of finite type over k, and let
H ⊂ G be a subgroup-scheme. We can consider two quotients from the
action µ : H×k G → G, the schematic one π : G → G/H and the induced

quotient of functors of points, H̃× G̃
µ̃ //

p̃2

// G̃
u // Q . It is not hard to

see that Q(R) = G(R)/H(R) for any k-algebra R, in particular, Q is group-
valued if H � G, and its universal property is that for any morphism of
functors G̃→ F such that for any k-algebra R the function G̃(R)→ F(R) is
constant on the right cosets of G̃(R) by H̃(R), there exist a unique morphism
of functors Q→ F that factors G̃→ F.
This means that we have a natural transformation Q → G̃/H, and we will
see shortly that this is a special kind of sub-functor.

Definition 2.2.49. Let F : Alg0k → Set be a functor. A sub-functor D ⊂ F
is fat if for any k-algebra R and for any element x ∈ F(R), there exists a
faithfully flat R-algebra R → R′ such that the image x′ ∈ F(R′) of x lies in
D(R′).

Example 2.2.50. The functor R 7→ {rn : r ∈ R∗} is a fat sub-functor of
R 7→ R∗ as any unit r of R becomes a n-th power in R′ = R[T ]/(Tn − r)

which is a faithfully flat R-algebra.
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Fat sub-functors appear naturally between functors of points co-
ming from faithfully flat morphisms of schemes:

Lemma 2.2.51 (Prop. 5.7 [49]). Let f : X→ Y be a faithfully flat morphism
between schemes of finite type over a field k. Then, the functor R 7→ f̃(X̃(R))

is a fat sub-functor of Ỹ.

Corollary 2.2.52. Let G be a group-scheme of finite type over k, and let
H ⊂ G be a subgroup-scheme. Then, the functor R 7→ G̃(R)/H̃(R) is a fat
sub-functor of G̃/H.

Proof. Let us denote byQ the functor R 7→ G̃(R)/H̃(R). If π : G→ G/H

is the canonical morphism for the quotient group-scheme, we have
the following commutative diagram of functors

H̃× G̃
µ̃ //

p̃2

// G̃
u //

π̃   

Q

q

��

G̃/H

coming from the universal property ofQ (Remark 2.2.48). From Lemma
2.2.51, R 7→ π̃(G̃(R)) is a fat sub-functor of G̃/H. We also see from this
diagram that q is a sub-functor as for any k-algebra R, different ele-
ments of Q(R) correspond to disjoint cosets of G̃(R), and from the

isomorphism of schemes H×k G
(µ,p2)
∼= G×G/H G, we have at the le-

vel of functors of points that different cosets of G̃(R) have different
images in G̃/H(R) under π̃(R).
For the fat property, if x ∈ G̃/H(R), as π̃ is fat there exists a faithfully
flat R-algebra R → R′ such that the image x′ of x in G̃/H(R′) belongs
to π̃(R′)(G̃(R′)), if y′ ∈ G̃(R′) is a pre-image of x′, then z′ = u(R′)(x′)

is an element of Q̃(R′) such that q(R′)(z′) = x′, showing that Q is
fat.

Now we will show that if H ⊂ G is normal, then G/H is a group-
scheme.

Proposition 2.2.53 (5.10 & 5.11 [49]). Let X and Y be schemes of finite
type over k. If D is a fat sub-functor of X̃, then any morphism of functors
φ : D → Ỹ extends to a unique morphism X̃ → Ỹ, or equivalently by
Yoneda’s lemma, a morphism of schemes X→ Y.
In particular, if X and X′ are two schemes of finite type over k and we take
fat sub-functors D and D′ of X̃ and X̃′ respectively. Then, any isomorphism
D ∼= D′ extends to an isomorphism X ∼= X′.

Corollary 2.2.54. Let X be a scheme of finite type over k and let D be a fat
sub-functor of X̃. If D is group-valued, then its group structure extends to a
group-scheme structure over X.
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Proof. If D is group-valued, we have morphisms of functors m : D×
D → D, e : ˜Spec(k) → D and inv : D → D that satisfy the commuta-
tive diagrams of Definition 2.2.1.
As we can easily see that D×D is a fat sub-functor of X̃× X̃, we can
uniquely extend the morphisms m, e and inv to X̃ using Proposition
2.2.53 in a way that the commutative diagrams needed to give X̃ a
group structure hold as well. Thus, we conclude that the functor X̃ is
group-valued and thus X is group-scheme by Yoneda’s lemma.

Applying this to quotients of group-schemes, we obtain the follo-
wing:

Proposition 2.2.55. Let G be a group-scheme of finite type over k, and let
H ⊂ G be a subgroup-scheme. Then G/H is a group-scheme if and only if
H�G

Proof. If H is normal, then the functor R 7→ G̃(R)/H̃(R) is group-
valued, thus, from Corollary 2.2.52 and Corollary 2.2.54, we see that
G/H is a group-scheme.
For the opposite sense, if G/H is a group-scheme, then let K be the
kernel of π : G → G/H, we will show that K = H. From the diagram
of group-valued functors

G̃
π̃ // G̃/H̃

q // G̃/H

we see that ker(π̃) = H̃ ⊂ ker(q ◦ π̃) = K̃. On the other hand, as q is
a fat sub-functor, it is in particular injective for any k-algebra R, and
thus ker(q)(R) is trivial, meaning that the elements of ker(q ◦ π̃)(R)
that map to the identity of G̃/H(R) map to the identity element of
G̃(R)/H̃(R) via π̃. Thus, we conclude that H̃ = K̃ and then H is a
normal subgroup-scheme of G.

We know from the isomorphism theorem of abstract groups that
surjective morphisms of groups are the same as quotients by its ker-
nel. In the case of group-schemes, what constitutes a “surjective mor-
phism”? The answer is the following:

Definition 2.2.56. Quotient
morphisms of
group-schemes

Let φ : G → Q be a morphism of group-schemes over
a field k. We say that φ is a quotient or a quotient morphism if φ is
faithfully flat.

We will now show that “quotient” is an appropriate name, as quo-
tient morphisms are indeed the projection morphism to a quotient
by a subgroup-scheme, and we will show later after the isomorphism
theorem that surjective is not enough to get a quotient in Remark
2.2.69.
The first step to understand quotient morphisms is a corollary of Pro-
position 2.2.55:
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Corollary 2.2.57. Any normal subgroup-scheme N of a group-scheme G of
finite type over k is the kernel of a quotient morphism.

Proof. The projection π : G→ G/N is a quotient morphism as it is fait-
hfully flat by Corollary 2.2.46 and thus it is a quotient, and the proof
of Proposition 2.2.55 shows that N is the kernel of this morphism.

Now we will show that quotient morphisms are tied with their
kernels:

Proposition 2.2.58. Let φ : G → Q be a quotient morphism of group-
schemes of finite type over k and let N be its kernel. Then, if f : G → H is
a morphism of group-schemes such that ker(f) contains N, then there exists
a unique morphism of group-schemes g : Q → H such that the following
diagram is commutative:

G
φ //

f ��

Q

g

��
H

.

Proof. Let F be the functor R 7→ G̃(R)/Ñ(R), as the kernel of f contains

N, we easily we have a factorization G̃→ F
h→ H̃ of f̃.

On the other hand, as R 7→ φ̃(R)(G̃(R)) is a fat sub-functor of Q̃ and
we also have a similar factorization G̃→ F→ Q̃ of φ̃ from the isomor-
phism theorem for abstract groups, and it is not difficult to see that
this factorization makes F a fat sub-functor of Q̃. Thus, the morphism
h : F → H̃ extends uniquely to a morphism of functors g̃ : Q̃ → H̃,
that gives us the morphism g we were looking for.

Corollary 2.2.59. Let φ : G → Q be a quotient morphism between group-
schemes of finite type over k. If N is the kernel of φ, then Q ∼= G/N and φ
becomes the projection morphism π : G→ G/N under this isomorphism.

Proof. In this case we have morphisms Q → G/N and G/N → Q

coming from Proposition 2.2.58. We clearly see that both of their pos-
sible compositions are the identity, thus these group-schemes are iso-
morphic and then the conclusion follows.

Corollary 2.2.60. For any group-scheme G of finite type over k, there is
a one-to-one correspondence between quotient morphisms φ : G → Q and
normal subgroup-schemes of G.

One essential part of the isomorphism theorem involves morphisms
of group-schemes that have trivial kernel, in full generality these are:

Definition 2.2.61. Let f : X→ Y be a morphism of objects in a category C.
We call this morphism a monomorphism if for any object Z and any pair

of morphisms Z
g //

h
// X such that f ◦ g = f ◦ h, then g = h.

For group-schemes we have the following characterization:
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Proposition 2.2.62 (Prop. 5.31 [49]). Let φ : G → H be a morphism
of group-schemes of finite type over k. Then, the following statements are
equivalent:

(a) For any k-algebra R, the map φ̃(R) : G̃(R)→ H̃(R) is injective.

(b) ker(φ) is trivial.

(c) φ is a monomorphism in the category of group-schemes of finite type
over k.

(d) φ is a monomorphism in the category of schemes of finite type over k.

For abstract groups, the concepts of monomorphism and subgroup
are interchangeable, for group-schemes we have an analogous state-
ment:

Proposition 2.2.63. A morphism of group-schemes of finite type over k is
a monomorphism if and only if it is a closed immersion.

Proof. Let φ : G→ H be a morphism of group-schemes, we recall that
the kernel of φ is the fiber over the unit point of H (Definition 2.2.23).
If φ is a closed immersion, then the fiber over the unit point of H
must be a single point, the unit point of G, thus the kernel is trivial.
If φ : G → H is a monomorphism, then we have a quotient of
G corresponding to equivalence relation coming from the diagram

H×k G
µ //
p2
// G by Corollary 2.2.46, where the morphism µ : H×k

G→ H comes from the functor (h,g) 7→ hg defined for any k-algebra
where g ∈ G̃(R) and h ∈ H̃(R) considered as an element of G̃(R) using
the monomorphism φ and the property in Proposition 2.2.62(a).
If π : G → Q is this quotient, then it is not hard to see that the fiber
of Q over the unit point of G is H, as the unit point of G is closed,
we see that the image of φ is closed in G and thus φ is a closed
immersion.

The last result needed for the isomorphism theorem is the follo-
wing:

Proposition 2.2.64. A morphism of group-schemes that is a monomorphism
and a quotient morphism at the same time is an isomorphism.

Proof. See [49, Prop. 5.33].

Now we can state the isomorphism theorem:

Theorem 2.2.65. The isomorphism
theorem for
group-schemes

Let φ : G→ H be a morphism of group-schemes of finite
type over k. Then, this morphism uniquely factors as

G
q→ I

i→ H

where I is a group-scheme, q is a quotient morphism (in particular faithfully
flat) and i is a closed immersion.
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Proof. Let N be the kernel φ. Then q : G → G/N is a quotient mor-
phism and q factors through φ from Proposition 2.2.58, so we have a
factorization φ = i ◦ q where i : G/N → H is a monomorphism as it
has trivial kernel. The uniqueness is clear from this, so the conclusion
follows.

Definition 2.2.66. Let Let φ : G → H be a morphism of group-schemes
of finite type over k. The group-scheme I that appears in the middle of the
factorization in Theorem 2.2.65 is called the image of φ. We will denote
it as Im(φ) and it is the smallest subgroup-scheme of H trough which φ
factors.

With the definition of an image, we have an alternative diagram for
Theorem 2.2.65 for a morphism φ : G→ H:

G
φ //

q

��

H

G/N
∼=
// Im(φ)

i

OO

where N is the kernel of φ. With the isomorphism theorem, we can
completely characterize quotient morphisms of group-schemes and
the functor of points of the image subgroup-scheme:

Proposition 2.2.67 (Prop. 5.43 [49]). Let φ : G → Q be a morphism of
group-schemes of finite type over k. The following statements are equivalent:

(a) φ is a quotient morphism.

(b) The functor R 7→ φ(G̃(R)) is a fat sub-functor of Q̃.

(c) The induced morphism of sheaves OQ → φ∗(OG) determined by φ is
injective.

Corollary 2.2.68. Let φ : G→ H be a morphism of group-schemes of finite
type over k. If I is the image of φ, then the morphism q : G → I is a
quotient morphism and for any k-algebra R, Ĩ(R) consists of all the elements
of x ∈ H̃(R) whose image in H̃(R′) lies in φ̃(R′)(G(R′)) for a faithfully flat
R-algebra R→ R′.

Remark 2.2.69. If we would have known from the beginning that the image
of group-scheme morphism always existed, which was not clear until now, a
reasonable replacement for “surjective morphisms of abstract groups” would
be “a morphism φ : G → H such that Im(φ) = H”. The isomorphism theo-
rem shows that this is the case if and only if φ is a quotient morphism and
thus this is the correct notion of “surjective”.
On the other hand, surjective morphisms of schemes, i.e., morphisms of sche-
mes that induce a surjective morphisms of underlying topological spaces, are
not enough as a replacement: If k is a field of positive characteristic, the unit
morphism e : Spec(k) → µp is clearly surjective as the underlying space



2.2 group-schemes 37

of µp is just a point but it is not a quotient morphism as it is not faithfully
flat.
In any case, if φ : G→ H is surjective and H is reduced, then it is faithfully
flat ([49, Prop. 1.70]). Thus, the morphism of the last paragraph serves as a
counterexample when H is not reduced.

With images of morphisms of group-schemes, we can define exact
sequences:

Definition 2.2.70. A sequence of morphisms of group-schemes of finite type
over k

G
f→ H

g→ K

is exact if Im(f) = ker(g).
We will often use short exact sequences which are sequences of morphisms
of group-schemes

1→ G
f→ H

g→ K→ 1

where the “1” in sequence denotes the trivial group-scheme, that are exact
whenever possible, meaning from left to right that f : G → H is a closed
immersion, Im(f) = ker(g), and g : H → K is a quotient morphism. In the
future we will consider sequences where either the “1” on the left or the “1”
on the right is omitted in the sequence above. Those sequences will then be
exact if we have the same properties for the sequence above minus the closed
immersion one or the quotient morphism one depending of the omitted “1”
in the sequence.

In the case of affine group-schemes, the isomorphism theorem is
very easy to show from the following result:

Proposition 2.2.71 (Theorem §14.1 [68]). Any inclusion B ⊂ A of Hopf
algebras over a field k is faithfully flat.

Remark 2.2.72. From this proposition, if φ : Spec(A) → Spec(B) is a
morphism of affine group-schemes, by applying the isomorphism theorem for
algebras for the induced morphism ϕ : B → A and verifying that its kernel
is a Hopf ideal, we have a factorization B f→ C

g→ A with C a Hopf algebra,
f surjective and g injective, thus faithfully flat by Proposition 2.2.71. This
immediately gives us the isomorphism theorem after taking spectra on this
factorization.
Moreover, the isomorphism theorem holds for any affine group-scheme over
a field k, not necessarily of finite type, and we can consider Spec(C) as a
quotient scheme as long as they exist, we will characterize quotients of finite
affine group-schemes later.

Now we will present a slightly different definition of the quotient
by a subgroup-scheme, the existence of this alternative notion is also
assured by Corollary 2.2.46, but it adds aspects the we will need in
later chapters, more specifically in Subsection 5.2.3.
From now on, we will suppose that if H is a subgroup-scheme of a
group-scheme G of finite type over k, the multiplication action of H
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over G is on the right. This does not change any of the results we
have stated, but at the level of functors of points the functor R 7→
G̃(R)/H̃(R) is given by left cosets if H acts on the right rather than
right cosets if H acts on the left.

Definition 2.2.73.Alternative
version of the
quotient by a

subgroup-
scheme

Let G be a group-scheme of finite type over k and let
H be a subgroup-scheme. An M-quotient of G by H is a scheme X of finite
type over k equipped with an action µ : G×k X→ X, and a point o ∈ X̃(k)
such that for any k-algebra R the following properties hold:

(a) The non-empty fibers of the map g 7→ µ̃(R)(g,o) from G̃(R) to X̃(R)
are the (left) cosets of H̃(R) in G̃(R).

(b) Any element of x ∈ X̃(R) lies in G̃(R′) for a faithfully flat R-algebra
R→ R′ under the map mentioned before.

If X is a quotient of G by H under this definition, we will denote it as a triple
(X,µ,o).

Remark 2.2.74. Part (b) of the definition for the M-quotient is the same
as demanding that the morphism µo : G → X determined by the map of
part (a) makes the functor G̃/H̃ a fat sub-functor of X̃. Equivalently, we
can demand that the action of G on X contains at the level of functors of
points the multiplication action of G̃ on the left cosets of G̃/H̃ given by
g · g′H̃(R) = gg′H̃(R) for any k-algebra R and g,g ∈ G̃(R), and that any
element in the image of the action µ̃(R) is of the form mentioned above over
a faithfully flat R-algebra R→ R′.
From the last paragraph, and by the existence of the quotient of group-
schemes in the sense of Definition 2.2.36, stated in Corollary 2.2.46, together
with Corollary 2.2.52 we see that notions of quotient and M-quotient coin-
cide for group-schemes of finite type over a field, in particular any result
about quotients so far holds for the M-quotient and vice versa. Moreover,
the notion of an M-quotient adds a left action from G over a quotient of
group-schemes that we have not considered before.

The universal properties that can be derived directly from the defi-
nition of the M-quotient are:

Proposition 2.2.75. Let (X,µ,o) be an M-quotient of a group-scheme G of
finite type by a subgroup-scheme H. Then the following statements hold:

(a) Let φ : G → X′ be a morphism of schemes of finite type over k. If for
any k-algebra R the map φ̃(R) is constant on the cosets of H̃(R) in
G̃(R), then there exists a unique morphism X → X′ so that φ factors
trough µo : G→ X.

G
µo //

φ   

X

��
X′

.
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(b) If X′ is another scheme with an action µ′ of G, and o′ ∈ X′(k) is
a point fixed by H, then there is a unique G-equivariant morphism
X→ X′ making the following diagram commutative:

G
µo //

µ′0   

X

��
X′

.

Proof. Part (b) is a direct consequence of (a), and part (a) can be easily
deduced from the fact that G̃/H̃ is a fat sub-functor of X̃.

Now we will introduce another notion that rends the question of
the existence of a quotient of group-schemes easier. The answer for
this question is not easier in this context, but the presentation is, in
the opinion of the author, more straightforward.

Definition 2.2.76. Let F : Alg0k → Set be a functor. We say that F is a flat
sheaf if it satisfies the following properties:

(a) For any finite family of finitely generated k-algebras R1,R2, · · · ,Rn
we have an isomorphism

F(R1 × · · · × Rn) ∼= F(R1)× · · · × F(Rn).

In this case we say that F is local.

(b) For any k-algebra R and faithfully flat R-algebra R→ R′, the diagram
of sets

F(R) // F(R′) //// F(R′ ⊗R R′)

is an equalizer, where the parallel arrows are induced by the k-algebra
morphisms R→ R′ ⊗R R′ given by r 7→ r⊗ 1 and r 7→ 1⊗ r respecti-
vely. This property is called the descent property.

A morphism of flat sheaves is simply a natural transformation.

Remark 2.2.77. The notion of a flat sheaf is simply the notion of a fppf
sheaf, i.e., a sheaf over the category of schemes with the fppf topology. For
an introduction to these concepts, namely, Grothendieck topologies, sheaves,
topoi, etc. the interested reader can consult A. Vistoli’s notes, see [67].

Example 2.2.78. A representable functor F = HomAlg0k
(A, ·) is a flat sheaf

as the diagram
R // R′ //// R′ ⊗R R′

is an equalizer for any faithfully flat R-algebra R→ R′.
Moreover, if X is a scheme of finite type over k, its functor of points X̃ is a
flat sheaf by [49, Lemma 5.9]. If a flat sheaf F is isomorphic to the functor of
points of a scheme X of finite type over k, we will say that F is represented
by a scheme.
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Fat sub-functors of flat sheaves allows us to extend morphisms to
sheaves, extending Proposition 2.2.53 for flat sheaves:

Lemma 2.2.79. Let D be a fat sub-functor of a flat sheaf S. Then any mor-
phism of functors D→ S′ to a flat sheaves extends uniquely to a morphism
of sheaves S→ S′.

Proof. See the proof of [49, Lemma 5.10].

Like in the case of sheaves over topological spaces, we can associate
to any functor a flat sheaf, in the following sense:

Definition 2.2.80. Let F : Alg0k → Set be a functor. A pair (aF,α) is called
the sheaf associated to F, or sheafification of F if aF is a flat sheaf and
the morphism of functors α : F → aF is universal for all flat sheaves in the
sense that for any sheaf S and a morphism β : F → S, there exists a unique
morphism of sheaves aF→ S such that the following diagram commutative:

F
α //

β   

aF

∃!
��
S

.

If F possesses a sheafification, it is unique up to isomorphism.

Proposition 2.2.81 (Prop. 5.68 [49]). Any functor F : Alg0k → Set posses-
ses a sheafification (aF,α).

Remark 2.2.82. Let R be a k-algebra, a family (Ri)i∈I of R-algebras is
faithfully flat if the morphism R →

∏
i∈I Ri is a faithfully flat morphism

of k-algebras.
Let D ⊂ S be a sub-functor of a flat sheaf S. The pair (S,D ↪→ S) coming
from the inclusion is a sheafification ofD if for any k-algebra R and x ∈ S(R),
there exists a finite faithfully flat family of R-algebras (Ri)i∈I, such that the
image xi of x in S(Ri) lies in D(Ri) for all i ∈ I. Thus, the fat property is
a strong case of this property, for which we can select faithfully flat families
composed of a single R-algebra.
If moreover D is local (Definition 2.2.76 (a)) and separated, i.e., if for any
faithfully flat family of R-algebras (Ri)i∈I, the induced morphism F(R) →∏
i∈I F(Ri) is injective, the we can explicitly calculate its associated sheaf

as
(aF)(R) = lim

→
Eq
(
F(R′) // // F(R′ ⊗R R′ )

)
where R is a k-algebra, Eq(· · · ) denotes the equalizer of an equalizer diagram,
and the direct limit is taken over all faithfully flat R-algebras R→ R′.

Sheafifications are important to develop a theory of group-valued
functors that are flat sheaves:

Definition 2.2.83. A flat sheaf G : Alg0k → Set is a (flat) group-sheaf if
it is a group-valued functor (Definition 2.2.5).

Emulating the proof of Corollary 2.2.54 we obtain:
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Lemma 2.2.84. Let D be a group-valued functor. If G is the sheafification
of D, then G is a group-sheaf.

Definition-Remark 2.2.85. Lemma 2.2.84 allows us to transfer abstract
groups concepts to group-sheaves concepts:

(a) A morphism of group-sheaves is a morphism of group-sheaves φ :

G → H such that for any k-algebra R the morphism φ(R) : G(R) →
H(R) is a morphism of abstract groups.

(b) A subgroup-sheaf is a group-valued sub-sheaf H ⊂ G. H is normal
if H(R) is normal in G(R) for any k-algebra R.

(c) The kernel of a morphism of group-sheaves φ : G → H is the sheaf
R 7→ ker(φ(R)).

(d) The image of a morphism of group-sheaves φ : G → H is the sheaf
associated to the group-valued functor R 7→ φ(R)(G(R)) ⊂ H(R).

(e) The quotient of the group-sheaf G by a subgroup-sheaf H is the shea-
fification of the functor R 7→ G(R)/H(R) which is a group-sheaf if H
is normal.

It is not hard to see that all the results we have established for group-schemes,
for example the Isomorphism Theorem (Theorem 2.2.65), are valid for group-
sheaves. One can in fact argue that to establish these results it suffices to
take all the needed results for abstract groups and change them mutatis
mutandis to obtain the corresponding results for group-sheaves using the
translations given above.

From Corollary 2.2.46 and using either the definition of quotient of
Definition 2.2.39 or Definition 2.2.73, we can bridge the definition of
quotient group-sheaf with quotient of group-schemes:

Proposition 2.2.86. Quotients of
group-schemes
are quotient
group-sheaves

Let G be a group-scheme of finite type over k, and let
H ⊂ G be a subgroup-scheme. Then, the quotient sheaf Q associated to the
functor G̃/H̃ is representable by the scheme G/H (see Example 2.2.78).

Remark 2.2.87. The construction of a quotient sheaf is arguably easier con-
ceptually than the construction of the quotient scheme, modulo the know-
ledge of the fppf topology and fppf sheaves. For group-schemes over k that
are not of finite type, the more reasonable criteria for quotients is essentially
the statement of Proposition 2.2.86, demanding that the quotient scheme
G/H exists if and only if the flat sheaf associated to G̃/H̃ is represented by a
(unique) scheme.

To finish this section, we will characterize quotients of affine group-
schemes, not necessarily of finite type over a field:

Example 2.2.88. Quotients of
affine
group-schemes

Let G = Spec(A) be an affine group-scheme, and let
H = Spec(B) be a subgroup-scheme, then we have B = A/I where I is
a Hopf ideal of A according to Corollary 2.2.21. We would like to show that
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the quotient G/H exists if H is normal, that it is affine, and explicitly show
its corresponding Hopf algebra.
Let ∆ : A → A⊗k A be the comultiplication morphism of A (Definition
2.2.12), associated to the multiplication morphism m : G×k G → G. The
restricted multiplication from H (on the right), µH : G×k H → G corre-
sponds to ∆ modulo A⊗A/I that we will denote as τH : A → A⊗k A/I.
As ∆ is also a morphism of k-algebras we see that τH is a morphism of k-
algebras as well, it also satisfies the dualized versions of the commutative
diagrams we outlined for actions (Definition 2.2.25), this will appear again
when we will study representations in Subsection 2.4.2.
Let us suppose that H is normal, to obtain a quotient group-scheme G/H we
can consider the dualized diagram associated to the diagram 2

G×k H
µH //
p1
// G

which becomes

A
τH //

i1

// A⊗k A/I

where i1 is the morphism a 7→ a⊗ 1( mod A⊗kA/I). If a quotientQ exists
for the schematic diagram, we would like the projection morphism G → Q

to be a quotient morphism 2.2.56, and thus faithfully flat. As we mentioned
before, any inclusion of Hopf algebras is faithfully flat (Proposition 2.2.71)
so it suffices to show a Hopf sub-algebra C ⊂ A such that the diagram

C // A
τH //

i1

// A⊗k A/I

is commutative. This Hopf sub-algebra exists, and its called the algebra of
H-invariants, defined as AH = {a ∈ A : τH(a) = a⊗ 1( mod A⊗k A/I)}.
This is in fact a Hopf sub-algebra of A and if φ : G → Q is a quotient
morphism of affine group-schemes, then Q ∼= Spec(AN) where N = ker(φ)
[68, Lemma p.124] and any quotient of G by a normal subgroup-scheme is of
the form Spec(AH) [68, Theorem p.123], giving a one-to-one correspondence
analogous to Corollary 2.2.60.
In general, for any subgroup-scheme H we can still consider AH ⊂ A the
H-invariant elements under the action of τH, which is a sub-algebra ofA but
not a Hopf sub-algebra unless H is normal. This sub-algebra has additional
structure, related to G, and by proxy A (see Example 2.4.85(5)).

2.2.3 More Properties

The subject of group-schemes of finite type over a field is an enor-
mously ample one, in this subsection, we will state all the more spe-
cific properties and results that will be used in later chapters.
We will start with finite group-schemes:

2 The reader should notice the subtle change in the projection, as we are considering
right actions.
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Definition 2.2.89. Finite
group-schemes

A group-scheme G over a field k is finite if its structural
morphism G → Spec(k) is finite. Thus, G = Spec(A) is affine with A a
Hopf algebra that is a finitely generated k-vector space. If X = Spec(A) is a
finite scheme over k, the order of X is the integer ord(X) = dimk(A).

Orders of finite group-schemes behave as orders of abstract groups:

Proposition 2.2.90. Let G a finite group-scheme over k and let H ⊂ G be
a subgroup-scheme, thus H is finite. Then, we have the following identity

ord(G) = ord(H) · ord(G/H).

Proof. From the part of Theorem 2.2.40 about free actions from finite
group-schemes, the projection π : G → G/H is a locally free mor-
phism of rank ord(H), meaning that π∗(OG) is a locally free sheaf of
rank ord(H), as G/H is finite of order ord(G/H) over k, the conclusion
follows from the identity dimk(Γ(G,OG)) = dimk(Γ(G/H,π∗(OG))).

Having defined finite group-schemes, we can consider pro-finite
group-schemes, which are one of the most important group-schemes
we will work on later:

Definition 2.2.91. Pro-finite and
pro-algebraic
group-schemes

Let I be a totally ordered set and let (Gi)i∈I be a pro-
jective system of group-schemes, where all the morphisms in the system are
morphisms of group-schemes. If the projective limit of this system G =

lim
← i∈I

Gi exists, it is easy to see that it is a group-scheme by the univer-

sal properties of projective limits.
If all the group-schemes Gi are finite, we will say that G is pro-finite, and
if all the Gi are affine and of finite type over k, we will say that G is pro-
algebraic.

Notation 2.2.92. If (Gi)i∈I is a projective system of group-schemes, for
any pair i 6 j, we will denote the corresponding transition morphism of
group-schemes in the system as φij : Gj → Gi. Moreover, if the projective
limit G exists, the structural morphism to the i-ith object of the system will
be denoted as πi : G→ Gi.

Remark 2.2.93. In both the pro-finite and pro-algebraic case, the projective
limit G = lim

← i∈I
Gi exists as the transition arrows φij : Gj → Gi (i 6 j)

are affine morphisms over k by [33, Prop. 8.2.3].
Moreover, as all Gi = Spec(Ai) are affine where Ai is a Hopf algebra, these
algebras form an direct system (Ai)i∈I with transition arrows fij : Ai →
Aj corresponding to φij such that its direct limit A = lim

→ i∈I
Ai exists, it is

a Hopf algebra, and G = Spec(A). In particular, G is affine.

From now on, any projective limit of group-schemes we will consi-
der will be either pro-finite or pro-algebraic. As affine group-schemes
over k, we can consider morphisms between them, in particular quo-
tient morphisms (Definition 2.2.56) and monomorphisms (Definition
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2.2.61). For group-schemes that are not of finite type, it is not always
true that monomorphisms are closed immersions, however, for pro-
finite and pro-algebraic group-schemes this is true:

Proposition 2.2.94. Let φ : G → H a morphism of pro-finite (resp. pro-
algebraic) group-schemes. Then φ is a monomorphism if and only if it is a
closed immersion.

Proof. As a monomorphism of group-schemes has trivial kernel by
Proposition 2.2.62 and the isomorphism theorem holds for arbitrary
affine group-schemes (Remark 2.2.72), so the conclusion follows.

Now we will state a special property of pro-algebraic and pro-finite
group-schemes:

Proposition 2.2.95. Let G = lim
← i∈I

Gi be a pro-algebraic group-scheme.

Then, any morphism G→ H to an affine group-scheme of finite type over k
factors trough πi : G→ Gi for some i ∈ I.
If G is pro-finite, the same holds for H finite over k.

Proof. We have H = Spec(B) where B is a finitely generated Hopf
algebra, and the morphism G → H then becomes f : B → A where
G = Spec(A) is a direct limit of Hopf algebras finitely generated over
k. If (Ai)i∈I is the direct system defining A with Gi = Spec(Ai), we
need to factor f as f = ψi ◦ fi where ψi : Ai → A is the morphism
associated to πi and fi : B→ Ai.
As B is noetherian and finitely generated over k, it is finitely presen-
ted as

B ∼= k[x1, x2, · · · , xn]/(p1, · · · ,pm)

for some integers n,m where the pj are polynomials on the xl for all
j = 1 · · ·m.
If for some Ai the morphism fi is defined, this Hopf algebra at le-
ast must contain the images f(xl) (l = 1..n) of the generators of
B, and fi(pj) = 0 for all j = 1..m. As the system (Ai)i∈I is di-
rected we can easily find such an algebra, let it be AN (N ∈ I), then
we have a k-algebra morphism fN : B → AN that might not be a
morphism of Hopf algebras. If it was, we would have the identities
fN(S(xl)) = S(fN(xl)) and (fN, fN)(∆(xl)) = ∆(fN(xl)), if we denote
∆(xl) =

∑sl
p=1 apl⊗ bpl, we see , as f : B→ A is already a morphism

of Hopf algebras, that the elements f(apl) and f(bpl) are present in A
by using the identity (f, f)(∆(xl)) = ∆(f(xl)), so we can take a Hopf al-
gebra AM with a larger index M� N in the direct system so that the
elements f(xl), f(apl), f(bpl) and f(S(xl)) for l = 1..n and p = 1..sl
belong to AM. In that case, we have a morphism fM : B → AM of
Hopf algebras and thus we are done in the pro-algebraic case.
For the pro-finite case, B is a finitely generated k-vector space and if
(xi)

n
i=1 is a base then we can easily obtain the antipodes S(xl) and

the comultiplications ∆(xl) by obtaining the right coefficients over the
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base, this makes the problem of finding a Hopf algebra in the directed
system easier, as we only need that this Hopf algebra AM contains
f(xl) for i = 1..n, as AM is also a finitely generated k-vector space in
this case the conclusion follows as well.

Corollary 2.2.96. Let G = lim
← i∈I

Gi be a pro-algebraic group-scheme. The

natural transformation defined for any affine group-scheme H of finite type
over k as

lim
→ i∈I

Hom(Gi,H)→ Hom(G,H)

is an isomorphism of functors.

Proof. Proposition 2.2.95 gives an inverse to the natural transforma-
tion given in the statement.

Pro-algebraic group-schemes are pivotal to understand arbitrary
affine group-schemes over a field:

Proposition 2.2.97. Let G be an affine group-scheme over k, then it is pro-
algebraic and we can chose a directed family (Gi)i∈I where each Gi is of
finite type over k and a quotient of G.

Proof. Let G = Spec(A), the proof the statement of the proposition
is equivalent to show that A is a directed limit of Hopf sub-algebras
finitely generated over k, whose proof can be found in [68, §3.3]3 and
it comes from the fact that any finite set of elements of A is contained
in a Hopf sub-algebra, finitely generated over k which proof follows
the idea for the proof of Proposition 2.2.95.

Corollary 2.2.98. Any affine (or equivalently pro-algebraic) group-scheme
over k is the direct limit of its quotients of finite type.

Proof. Let G be an affine group-scheme over k, and let (Gj)j∈J be the
family of all quotients of G of finite type over k, which is directed
as for any pair of quotients πl : G → Hl (l = 1, 2) there is always a
third quotient π3 : G → H3 corresponding to the kernel of π3 being
ker(π3) = ker(π1 ∩ π2). From Proposition 2.2.97 G = lim

← i∈I
Gi, with

I ⊂ J a directed subset and any Gi is a quotient of G of finite type.
If we denoteQ = lim

← i∈I
Gi there is a natural morphism G→ Q as any

member of the limit forming Q is quotient of G, and Q → G coming
from the inclusions I ⊂ J. We can easily see that G → Q is faithfully
flat by looking at the Hopf algebras, and thus the composition G →
Q → G is the identity, making G → Q a monomorphism as well,
giving us an isomorphism by Proposition 2.2.64.

These results for pro-algebraic group-schemes imply their analo-
gues for pro-finite group-schemes

3 Alternatively, this is a consequence of Corollary 2.4.87 that is derived from the same
reference.
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Corollary 2.2.99. Let G be a pro-finite group-scheme. Then any quotient of
G of finite type over k is finite.

Proof. If we write G = Spec(A), a quotient of finite type of G cor-
responds to a Hopf sub-algebra B ⊂ A finitely generated over k. If
{b1,b2, · · · ,bn} generate B, we can find a finite group-scheme H =

Spec(C) belonging to the projective system defining G such that the
image of C on A contains the bi ∈ B (i = 1..n). But the image of
C has finite dimension as a vector space and it contains B, thus B is
finite.

Corollary 2.2.100. Let G be an pro-finite group-scheme over k, then we can
chose a directed family (Gi)i∈I where each Gi is finite and a quotient of G.

Proof. The proof of Corollary 2.2.99 implies this.

Corollary 2.2.101. Any pro-finite group-scheme over k is the direct limit
of its finite quotients.

Proof. The proof of this statement is similar to the proof of Corollary
2.2.98, using Corollary 2.2.100.

The final property that we will state for pro-finite group-schemes
is the following:

Proposition 2.2.102. A pro-finite group-scheme that is of finite type over k
is finite.

Proof. Let us suppose that G = Spec(A) is of finite type but not finite,
then its Hopf algebra contains a finite set of generators {a1,a2, · · · ,an}
that should be contained in a Hopf sub-algebra, finitely generated
over k, corresponding to a quotient of G. But from Corollary 2.2.101

this Hopf sub-algebra is a finitely dimensional k-vector space, thus A
is as well.

We will finish this subsection by characterizing étale group-schemes
and finite group-schemes in characteristic 0:

Definition-Proposition 2.2.103 (Prop. 1.5.6 [64]). The following state-
ments are equivalent for a k-algebra A finitely generated as a k-vector space:

• A ∼=
∏n
i=1 ki where ki is a finite separable extension of k for any

i = 1..n.

• A⊗k k̄ ∼= k̄n where k̄ is the algebraic closure of k.

• A⊗k k̄ is reduced or equivalently Spec(A) is geometrically reduced.

An algebra satisfying any of the equivalent conditions is called an étale
algebra.
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Étale algebras are intimately tied to the Galois pro-finite abstract
group Gal(ksep/k) where ksep is the separable closure of k. We recall
that pro-finite abstract groups are topological groups with the so cal-
led “Krull topology” (see [64, p. 12]), finite quotients of Gal(ksep/k)

are in bijection with the Galois groups of finite Galois extensions of
k.
The correspondence we have just mentioned, can be extended fully
to étale algebras:

Theorem 2.2.104 (Thm. 1.5.4 [64]). Galois
correspondence
for étale algebras

Let k be a field, the functor A 7→
Homk(A,ksep) (the latter set is finite) is an equivalence of categories, from
the category of étale k-algebras to the category of finite sets with a continuous
left action from the Galois group Gal(ksep/k)4.
Under this equivalence, finite separable extensions of k correspond to sets
with a transitive action and finite Galois extensions of k correspond to the
action of Gal(ksep/k) over its finite quotients.

Now we will define étale group-schemes:

Definition 2.2.105. Étale
group-schemes

A finite scheme X over k is étale if its corresponding k-
algebra is étale as in Definition-Proposition 2.2.103. A finite group-scheme
is étale if its corresponding Hopf algebra is étale.

Remark 2.2.106. Let G = Spec(A) an étale group-scheme. Then, we see
that Homk(A,ksep) = G̃(ksep) is an abstract group and the action of Gal(ksep/k)

over G̃(ksep) has the following special property: if γ ∈ Gal(ksep/k) the map
g 7→ γ · g for g ∈ G̃(ksep) is a morphism of abstract groups, in this case we
say that Gal(ksep/k) acts on G̃(ksep) by abstract group morphisms.
The inverse is true from the correspondence of Theorem 2.2.104: the func-
tor G 7→ G̃(ksep) establishes an equivalence between the category of étale
group-schemes and discrete finite abstract groups with a continuous action
of Gal(ksep/k) by abstract group morphisms.

Example 2.2.107. If Γ is a finite abstract group, it is easy to see that the
associated constant group-scheme (Γ)k (Example 2.2.15 (5)) is étale as its
associated Hopf algebra is reduced. Constant group-schemes correspond to
finite abstract groups with a trivial action from G̃(ksep) under the correspon-
dence of Theorem 2.2.104.

Étale group-schemes fully characterize finite group-schemes over
fields of characteristic zero, this is because of the following lemma:

Lemma 2.2.108 (Prop. 5.1.31 [64]). A finite scheme X = Spec(A) over k
is smooth over k if and only if A is étale.

and this strong result:

Proposition 2.2.109 (Cartier). Let k be a field of characteristic zero. Then
any affine group-scheme of finite type over k is smooth. In particular, all
finite group-schemes over k are étale.

4 In this case all these finite sets have the discrete topology.
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Proof. See [49, Theorem 3.23], the part about finite group-schemes
comes directly from Lemma 2.2.108.

2.3 torsors

2.3.1 Definition and basic Properties

Now we will study torsors over k-schemes, where k is a field. We
start with the main definition:

Definition 2.3.1.Torsors Let X be a scheme over k and let G be a group-scheme
over k. A scheme T with a faithfully flat morphism t : T → X is a G-torsor
if T possesses a right action µT : T ×XGX → T 5 where GX = G×k X, such
that t : T → X is GX-invariant (Definition 2.2.34) and the morphism

T ×X GX ∼= T ×k G
(idT ,µT )→ T ×X T

is an isomorphism.
If x ∈ X̃(k) is a fixed rational point, we say that a G-torsor t : T → X is
pointed if there exists a rational point y ∈ T(k) such that t(y) = x.

Remark 2.3.2. Let z be a point of X. If t : T → X is a G-torsor, it is
not hard to see that the fiber Tz has an action from Gκ(z) that is free and
transitive (Definition 2.2.29). In particular, if x ∈ X̃(k) is a rational point,
and t : T → X is pointed, we see that Tx can be identified with G after
selecting a k-point in T over x via t.

From the definition of a torsor, we can deduce the following reaso-
nable property:

Lemma 2.3.3.Base change of
torsors

Let X be a scheme over k and let G be a group-scheme over k.
If t : T → X is a G-torsor and Z → X is a morphism, then the base change
tZ : T ×X Z→ Z is a G-torsor as well.

Proof. It is not hard to see that tZ is GZ-invariant and faithfully flat.
Moreover, if we denote TZ = T ×X Z, the isomorphism T ×k G ∼=

T ×X T becomes TZ ×k G ∼= TZ ×Z TZ as both sides of the second iso-
morphism are just the base change to Z of the isomorphism coming
from the fact that t : T → X is a torsor.

Now we will introduce some examples of torsors:

Example 2.3.4. Let G be a group-scheme of finite type over k.

1.Trivial torsor The trivial torsor over a scheme X over k is the torsor GX = X×k
G→ X coming from the first projection, where GX acts on X×kG by
the natural multiplication actionmX : GX×XGX → GX which is the

5 The action here is simply Definition 2.2.25 but over the base scheme X instead of
Spec(k).
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base change of the multiplication m of G. As GX is a group-scheme, it
is easy to see that the morphism

GX ×X GX
(idGX ,mX)→ GX ×X GX

is an isomorphism, and thus we have a torsor. We also note that

(X×k G)×X GX ∼= X×k G×k G = GX ×k G.

2. Quotients of
group-schemes

If G and Q are group-schemes of finite type over k, then any quotient
morphism φ : G→ Q with kernelN ⊂ G is anN-torsor asQ ∼= G/N

(Corollary 2.2.59) and we have an isomorphismG×kN ∼= G×G/NG
(Corollary 2.2.46). In general, if p : X → Y a is a quotient by an

equivalence relation X×k G
p1 //
µ

// X (Definition 2.2.39), given by a

free and transitive group-scheme action is a G-torsor.

There are a few examples that we will show later, as we need the
to state an important property of torsors, but first we have to define
the following:

Definition 2.3.5. A morphism f : X → Y is fpqc6 if it is faithfully flat
and for any point x ∈ X, there exists a neighborhood U containing x such
that f(U) ⊂ Y is open and the restriction f|U : U → f(U) is a quasi-
compact morphism, i.e., the inverse image of any affine open subset of f(U)
is a quasi-compact topological space of U. A family of morphisms {fi : Ui →
X}i∈I is an fpqc cover if the induced morphism from the disjoint union
f :
∐
i∈IUi → X is fpqc.

Remark 2.3.6. Fpqc covers form what is known as a Grothendieck topo-
logy, we will not define it here, but we have mentioned another topology,
the fppf topology in Remark 2.2.77. We will refer to [67] when we will need
some results from the theory of Grothendieck topologies and descent. There
are many equivalent ways to define the second part of an fpqc morphism, see
[67, Prop. 2.33] for the equivalencies.

The main properties of fpqc morphisms are the following:

Proposition 2.3.7 (Prop. 2.35 [67]). Let f : X → Y and g : Y → Z be
morphisms of schemes.

(a) If both f and g are fpqc, then g ◦ f is fpqc.

(b) If there is an open covering {Vj}j∈J of Y such that all the restrictions
f|f−1(Vj) : f

−1(Vj)→ Vj are fpqc, then f is fpqc.

(c) If f is open and faithfully flat, then f is fpqc.

(d) If f : X → Y is fpqc and h : U → Y is a morphism, then the base
change morphism X×Y U→ U is fpqc.

6 Fpqc is an abbreviature of “fidèlement plat et quasi-compact”.
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(e) If f : X→ Y is fpqc and U ⊂ Y is a subset, then U is open if and only
if f−1(U) is open in X.

Fpqc covers also come with a handy property, known as descent:

Proposition 2.3.8 (Proposition 2.7.1 [32]).Fpqc descent Let g : Y → X be a morphism
of schemes and let {fi : Ui → X}i∈I be an fpqc cover. If for all i ∈ I the
base change morphism gi : Ui ×X Y → Ui satisfies one of the following
properties:

(a) Separated.

(b) Of finite type.

(c) Quasi-compact.

(d) Proper.

(e) Affine.

(f) Finite.

(g) Flat.

(h) Smooth.

(i) Étale.

(j) A closed immersion.

(k) Surjective.

(l) Isomorphism.

then so does g : Y → X.

The relationship between torsors and fqpc covers is the following:

Proposition 2.3.9. Let X be a scheme over k, G a group-scheme over k, and
let t : T → X be a scheme over X with an action of GX over T such that t
is GX-invariant. Then t : T → X is a G-torsor if and only if there exists an
fpqc cover {fi : Ui → X}i∈I of X Ui ×X T → Ui are trivial torsors.

Proof. If t : T → X is a G-torsor, then {t : T → X} is an fpqc cover
and the isomorphism T ×X GX ∼= T ×X T implies that T ×T T → T is a
trivial torsor.
For the other implication, let {fi : Ui → X}i∈I be a fpqc cover of X
such that the base changes Ui ×X T → Ui are trivial torsors. This
means that for any i ∈ I we have an isomorphism ψi : T ×X Ui →
Ui ×X GX ∼= Ui ×k G.
Now, as all base changes of t : T → X become p1 : Ui ×k G → Ui
and the latter morphism is faithfully flat for all i ∈ I, by fpqc descent
(Proposition 2.3.8(g) & (k)), we have that t is faithfully flat. Moreover,

the morphism T ×k G
(idT ,µT )→ T ×X T becomes an isomorphism after
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taking the base change over fi : Ui → X for any i ∈ I as T ×X Ui is a
torsor over Ui, thus the same result of fpqc descent implies that T ×k
G

(idT ,µT )→ T ×X T is an isomorphism, thus we have a G-torsor.

This result means that a G-torsor is locally trivial in the fpqc to-
pology, where by local means over the components of an fpqc co-
ver {fi : Ui → X}i∈I as one would to in topology by replacing the
morphisms fi by the inclusions by open subsets of a topological
space. This property is comparable to a topological cover, that can
be thought as a morphism of topological spaces that is locally an ho-
meomorphism.
Also, using this property we can give more examples:

Example 2.3.10. We will show two examples of torsors coming from the
locally trivial property:

1. Galois
extensions

Let L ⊃ k be a finite Galois extension of fields and let Gal(L/k) be its
Galois group. If we consider this group as a constant group-scheme,
we have an obvious action µL : Spec(L)×k Gal(L/k) → L and an
invariant faithfully flat morphism t : Spec(L)→ Spec(k).
This arrow is a torsor: by the primitive element theorem, L = k(α)

where α is an algebraic element over k. If p(x) ∈ k[x] is the minimal
polynomial of α, then we have L ∼= k[x]/(p(x)) and we can easily see
that

L⊗k L = L⊗k k[x]/(p(x)) = L[x]/(p(x))

but as L ⊃ k is Galois, all the roots of p(x) are contained in L, we
have that p(x) =

∏n
i=1(x−αi) with α1 = α and thus

L⊗k L =

n∏
i=1

L[x]/(x−αi) ∼=

n∏
i=1

L

and as Gal(L/k) permutes the roots of p(x), we have an isomorphism
Spec(L)×kGal(L/k) ∼= Spec(L)×k Spec(L), implying t : Spec(L)→
Spec(k) is a Gal(L/k)-torsor.

2. Étale coversLet f : Y → X is a finite étale covering, i.e., a finite faithfully flat
morphism such that for any point x ∈ X the fiber Y ×X Spec(κ(x)) is
the spectrum of an étale κ(x)-algebra (Definition-Proposition 2.2.103).
A finite faithfully flat f : Y → X is an étale cover if and only if there
exists finite and faithfully flat morphism U → X such that the base
change Y ×X U → U is a trivial étale covering, i.e., Y ×X U ∼=

∐
U

is a finite disjoint union of copies of U.
If f : Y → X is an étale cover, for a geometric point, i.e., a morphism
x̄ : Spec(Ω) → X where Ω is an algebraically closed field, we can
consider the geometric fiber Yx̄ that possesses a free action ([64, Coro.
5.3.3]) from the abstract group Γ = Aut(Y|X) of automorphisms of f.
If the action of Γ on Yx̄ is in addition transitive, we say that an étale
cover is Galois. In this case, we can chose a finite and faithfully flat
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morphism U→ X such that the base change is trivial and isomorphic
to U×k Γ , thus we see that in fact f : Y → X is a Γ -torsor7. The
inverse is also correct, a G-torsor with G a constant group-scheme is
a Galois étale cover, with G(k) = Aut(Y|X), as the property of being
an étale cover satisfies fpqc descent by Proposition 2.3.8(i).
In general, if G is an étale group-scheme (Definition 2.2.105), a G-
torsor t : T → X is not necessarily an étale cover, but it becomes one
after taking a finite separable extension L ⊃ k such that GL becomes
constant, in which case the base change TL → XL is an étale cover, see
[64, p. 5.3.16].

A few immediate consequences of the locally trivial property are
the following:

Lemma 2.3.11. Let X be a scheme over k and let G be a group-scheme
over k. Let t : T → X and t′ : T ′ → X be two G-torsors over X. If f :

T → T ′ is an equivariant morphism over X, i.e. a morphism that satisfies
(f, idGX) ◦ µT = µT ′ ◦ (f, idGX)8, then T ∼= T ′ over X.

Proof. It suffices to show that T is isomorphic to T ′ over an fpqc co-
vering using descent. Let {fi : Ui → X}i∈I be an fpqc cover such that
T ×XUi → Ui is trivial for any i ∈ I, then we have an GUi-equivariant
morphism T ×XUi → T ′×XUi. If T ′×XUi would be trivial, then any
GUi-equivariant morphism would be an isomorphism, but as T ′ → X

is also a torsor, we have another fpqc cover {gj : Vj → X}j∈J such that
T ′ ×X Vj is trivial.
Using the properties in Proposition 2.3.7, it is not hard to see that
for any i ∈ I, the family of morphisms {Wij = Vj ×X Ui → Ui}j∈J
is an fpqc cover of Ui. By construction, over any scheme Wij both
base changes of T and T ′ are trivial, thus isomorphic over Ui by fpqc
descent (Proposition 2.3.8(l)) for any i ∈ I, so the conclusion follows
from applying fpqc descent again to get an isomorphism over X.

This lemma is related to the following concept in category theory:

Definition 2.3.12. A category C is a groupoid if any arrow f : a → b is
invertible, meaning there exists another arrow g : b → a such that g ◦ f =
ida and f ◦ g = idb.

Example 2.3.13.Torsors over a
scheme form a

groupoid

Let X be a scheme. If TG(X) is the category of G-torsors
over X with GX-equivariant morphism as arrows, then by Lemma 2.3.11
this category is a groupoid.

A G-torsor t : T → X is trivial if it is isomorphism to the trivial
G-torsor (Example 2.3.4(1)). A corollary of Lemma 2.3.11 is the follo-
wing:

7 Where Γ is considered as a constant group-scheme.
8 In other words, Definition 2.2.30 but over X instead of a field.



2.3 torsors 53

Corollary 2.3.14. Let X be a scheme over k and let G be a group-scheme
over k. If t : T → X is a G-torsor that possesses a section, i.e. a morphism
s : X→ T such that t ◦ s = idX, then T is trivial.

Proof. If t : T → X has a section, then the morphism

X×k G
µT◦(s,idG)→ T

is a G-equivariant morphism from the trivial torsor, thus T is isomor-
phic to the trivial torsor.

There are still morphisms between torsors that are not isomor-
phisms, those are:

Definition 2.3.15. Morphisms of
torsors

Let X be a scheme over k. If t : T → X and t′ : T ′ → X

are a G-torsor and a G′-torsor respectively, a morphism of torsors is a
morphism f : T → T ′ over X together with a morphism of group-schemes
φ : G → G′, such that f intertwines the actions on the respective schemes
via φ, meaning that the following diagram

T ×X GX
µT //

(f,φ)
��

T

f
��

T ′ ×X G′X
µT ′ // T ′

is commutative.
If x ∈ X(k) is a fixed rational point and both T and T ′ are pointed torsors,
a morphism of pointed torsors f : T → T ′ is a morphism of torsors such
that if y ∈ T(k) and y′ ∈ T ′(k) are rational points over x, then f(t) = t′.

For Chapter 3, we will restrict ourselves to torsors over affine group-
schemes, which induce properties over their structural morphisms in
the following sense:

Proposition 2.3.16. Let t : T → X be a G-torsor. If G is affine, or of finite
type or finite or smooth or étale over k, then t : T → X is as well.

Proof. Let {fi : Ui → X}i∈I be an fpqc cover such that T ×X Ui → Ui
is trivial for any i ∈ I. If G has one of the properties mentioned in
the statement over k, then the first projection Ui ×X G → Ui has
the same property as all the properties mentioned are preserved by
base change, so the conclusion follows from fqpc descent (Proposition
2.3.8).

This result justifies attaching an adjective to a torsor, according to
the properties of its corresponding group-scheme. The names we will
use in this thesis are:

Definition 2.3.17. Let X be a scheme over k and let G be a group-scheme
over k. If t : T → X is a G-torsor, we will call the torsor:

(a) Finite torsorsFinite if G is finite over k.
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(b)Algebraic torsors Algebraic if G is of finite type over k.

(c)Affine torsors Affine if G is affine over k.

(d)Étale torsors Étale if G is étale (Definition 2.2.105) over k.

(e)Pro-finite/Pro-
algebraic torsors

Pro-finite if G is pro-finite or Pro-algebraic if G is pro-algebraic.

in accordance to Proposition 2.3.16.

2.3.2 G-Equivariant Sheaves

From now on, will be work over the following setting:

Setting 2.3.18. The scheme X will be of finite type over k and any G-torsor
t : T → X will be an affine torsor over X, in particular t will be always an
affine morphism by Proposition 2.3.16.

In this subsection, we want to study the pull-back of quasi-coherent
sheaves along a G-torsor t : T → X. We will denote the category of
quasi-coherent sheaves over X as QCoh(X).

Definition 2.3.19. We define the category QCoh as the category of pairs
(X,E) where X is a scheme and E is a quasi-coherent sheaf over X. A mor-
phism (X,E) → (Y,F) in this category is the datum of a morphism of sche-
mes f : X→ Y together with a morphism of sheaves g : E→ f∗(F), that we
will denote as a commutative diagram

E
g //

_

��

F_

��
X

f
// Y

.

Remark 2.3.20. There is a problem with Definition 2.3.19: categories need
compositions, and if we would have to do a composition

E
g //

_

��

F
g′ //

_

��

G_

��
X

f
// Y

f′
// Z

we have the choice to either consider a morphism E → (f′ ◦ f)∗(G) or a
morphism E → (f′)∗ (f∗(G)) as (f′ ◦ f)∗(G) and (f′)∗ (f∗(G)) are different
sheaves. Hopefully, they are canonically isomorphic so there is a way to solve
this issue.

Definition 2.3.21 (Definition 3.10 [67]).Pseudo-functors Let C be a category. A pseudo-
functor9 over C, denoted as Φ, is composed by the following layers of data:

9 Also known as a “lax 2-functor”.
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(a) For any object U of C, a category Φ(U).

(b) For any morphism f : U→ V , a functor f∗ : Φ(V)→ Φ(U).

(c) For any object U of C, an isomorphism of functors Φ(U) → Φ(U)

denoted as
εU : (idU)

∗ ∼= idΦ(U),

where the functor idΦ(U) : Φ(U) → Φ(U) is the functor that is the
identity on the objects and on the morphisms of the category Φ(U).

(d) For any pair of arrows U f→ V
g→W between objects of C, an isomor-

phism of functors Φ(V)→ Φ(U) denoted as

αf,g : f∗ ◦ g∗ ∼= (g ◦ f)∗.

For Φ to be a pseudo-functor, this data must additionally satisfy the follo-
wing properties:

(i) For any morphism f : U → V and any object η of Φ(V), we have the
following identity of objects in Φ(U):

αidU,f(η) = εU(f
∗(η))

giving the identity of natural transformations

αidU,f = εU(f
∗) : (idU)

∗ ◦ f∗ → f∗,

and also the identity

αf,idU(η) = f
∗(εV(η))

giving the identity of natural transformations

αf,idU = f∗(εV) : f
∗ ◦ (idV)∗ → f∗.

(ii) For any diagram of objects and morphisms of C

U
f // V

g //W
h // T

and any object θ ∈ Φ(T), we have that the following diagram

(f∗ ◦ g∗ ◦ h∗)(θ)
αf,g(h

∗)(θ)
//

f∗(αg,h)(θ)

��

((g ◦ f)∗ ◦ h∗) (θ)

αg◦f,h(θ)

��
(f∗ ◦ (h ◦ g)∗) (θ)

αf,h◦g(θ)
// (h ◦ g ◦ f)∗(θ)

is commutative.
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Remark 2.3.22. Let C be a category. If we have a pseudo-functor Φ over C,
we can construct a category F with a functor F : F → C: The elements of F
are pairs (U, ξ) where U is an object of C and ξ is an object of Φ(U), and
morphisms are pairs (f,a) : (U, ξ) → (V ,η) where f : U → V is a mor-
phism in C and a : ξ→ f∗(η) in Φ(U). The functor F : F → C is defined as
F(U, ξ) = U and F(f,a) = f for an arrow (f,a) : (U, ξ)→ (V ,η).
For F to be a category, we need to also define identity arrows and composi-
tions. Starting with compositions, for two arrows (f,a) : (U, ξ) → (V ,η)
and (g,b) : (V ,η) → (W, ζ), their composition is the arrow (g ◦ f,b · a) :
(U, ξ)→ (W, ζ) where b · a is given by the composition

b · a = ξ
a→ f∗(η)

f∗(b)→ f∗(g∗(ζ))
αf,g(ζ)→ (g ◦ f)∗(ζ)

in Φ(U), where αf,g is the natural transformation in Definition 2.3.21(d).
For the identity, if (U, ξ) is an object in F, we have an isomorphism εU(ξ) :

(idU)
∗(ξ) → ξ (Definition 2.3.21(c)), and thus we can define the identity

morphism of a pair id(U,ξ) : (U, ξ)→ (U, ξ) as (idU, ε−1U (ξ)).
Using the properties in Definition 2.3.21(i) and (ii), we can show that the
composition in F is associative and that id(U,ξ) is indeed a neutral element
for the composition, see [67, §3.1.3] for more details.

To see that the category Qcoh in Definition 2.3.19 is indeed a ca-
tegory, it suffices to show that we are in the presence of a pseudo-
functor:

Lemma 2.3.23. Let C = SchS be the category of schemes over a base scheme
S. The assignment X 7→ Qcoh(X) is a pseudo-functor with the pull-back of
sheaves functor and the obvious canonical isomorphisms for compositions
and the identity.

Proof. See [67, §3.2.1].

As a consequence of this lemma, there is a natural functor F :

Qcoh→ SchS sending a pair (X,F) to X, following Remark 2.3.22.
Now we can define G-equivariant sheaves:

Definition 2.3.24.G-equivariant
sheaves

Let S be a fixed base scheme, and let T be a scheme over S
with an action from an affine group-scheme G→ S (Recall Definition 2.2.1).
A G-equivariant sheaf over T is a quasi-coherent sheaf E over T , together
with an action of the abstract group G̃(Z) = HomS(Z,G), for any Z-point
Z→ T of T over S, on the set HomQcoh((Z,F), (T ,E)) for any quasi-coherent
sheaf F over Z in a commutative diagram

F //
_

��

E_

��
Z // T

that satisfy the following two conditions:
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(a) For any morphism of objects of Qcoh

G //
_

��

F_

��
Y

f
// Z

where f : Y → Z is a morphism of schemes over T , the induced map
f∗ : HomQcoh((Z,F), (T ,E)) → HomQcoh((Y,G), (T ,E)) intertwines
the respective actions with respect to the morphism of abstract groups
G̃(Z)→ G̃(Y).

(b) The functor HomQcoh((Z,F), (T ,E))→ HomSchS(Z, T) is G̃(Z)-equivariant
for every quasi-coherent sheaf F and any scheme Z over T .

We will denote the category of G-equivariant sheaves of T as QcohG(T).

Example 2.3.25. The structural sheaf of a scheme T over S with an action µ
from an affine group-scheme G is G-equivariant: if f : Z → T is an Z-point
of T , then for any quasi-coherent sheaf F over Z, we have a morphism in
Qcoh

F //
_

��

OT_

��
Z

f
// T

where the upper arrow is a morphism F → f∗(OT ) = OZ of sheaves over
Z. This allows us to define an action (on the right) from the abstract group
G̃(Z) for any element g ∈ G̃(Z) via the composition

F //
�

  

OZ //
_

��

OT_

��
Z

f·g
// T

.

where f · g denotes the morphism Z→ T obtained by taking the composition
µ(f,g).

There is another construction that will be important for the tan-
nakian aspect of the fundamental group-scheme, we will state it in
Section 3.3.

Remark 2.3.26. The classical definition of a G-equivariant sheaf E over T
with an action µ : T ×S G→ T is an isomorphism λ : p∗1(E)

∼= µ∗(E) such
that if µ0 : T ×S G×S G → T is the natural projection, µ1 = µ ◦ p12 :

T ×S G ×S G → T and µ2 = µ ◦ (µ, idG), then we have the following
commutative diagram of sheaves over T ×S G×S G

µ∗0(E)
(idT ,mG)

∗◦λ //

p∗12◦λ ##

µ∗2(E)

µ∗1(E)

(µ,idG)∗◦λ

;;
.
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This definition is equivalent to Definition 2.3.24, see [67, Prop. 3.49].

The main reason to introduce G-equivariant sheaves is the follo-
wing:

Theorem 2.3.27 (Theorem 4.46 [67]).Pull-back of
quasi-coherent

sheaves over an
affine torsor

Let G be an affine group-scheme
over k, and let X be a k-scheme. If t : T → X is a G-torsor, then any
pull-back of a quasi-coherent sheaf over X is G-equivariant under t, and the
functor t∗ : Qcoh(X)→ QcohG(T) is an equivalence of categories.

This theorem applied to vector bundles yields:

Corollary 2.3.28.Pull-back of
vector bundles
over an affine

torsor

Let G be an affine group-scheme over k, and let X be
a k-scheme. If t : T → X is a G-torsor, then the restriction of the functor
functor t∗ : Qcoh(X)→ QcohG(T) to the full sub-category Vect(X) of vector
bundles over X, is an equivalence of categories t∗ : Vect(X)→ VectG(T).

Proof. This stems directly from Theorem 2.3.27 by noting that the pro-
perty of being a locally free sheaf of finite rank satisfies fpqc descent
[32, Prop. 2.5.2]: if {fi : Ui → X}i∈I is an fpqc cover of X and E is
a quasi-coherent sheaf such that f∗i (E) is a locally free sheaf of finite
rank r > 1 over Ui for any i ∈ I, then E is locally free of rank r over
X.

2.3.3 Additional Constructions and Properties

Keeping the hypotheses of Setting 2.3.18, the first thing we would like
to show is that torsors are in fact quotients in the sense of Definition
2.2.39.
To this purpose we start with a property for schemes, related to fpqc
covers.

Definition 2.3.29. Let be U = {fi : Ui → X}i∈I an fpqc cover of a scheme
X. For another scheme Y, we will say that a collection of morphisms {gi :

Ui → Y}i∈I is a morphism from the cover U to Y, that we will denote as
an arrow U→ Y, if for any pair of elements i, j ∈ I, the following diagram

Ui ×X Uj //

��

Uj

gj

��
Ui gi

// Y

is commutative. We will denote the set of all morphism U→ Y as Hom(U, Y).

Remark 2.3.30. Let S be a base scheme. For any fpqc cover U = {fi : Ui →
X}i∈I of a scheme X over S, there is an obvious map HomSchS(X, Y) →
Hom(U, Y) that takes a morphism g : X→ Y to the morphism U→ Y given
by the set {g ◦ fi : Ui → Y}i∈I.

The functor HomSchS(X, ·) is representable, contravariant and it is a
special kind of functor, but first we have to introduce some suggesting
notation attached to it:
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Notation 2.3.31. Let S be a base scheme. If F : SchS → Set be a contrava-
riant functor, X is a scheme over S and U = {fi : Ui → X}i∈I is an fpqc
covering, we will denote for an element a ∈ F(X) its image on F(Ui) via
F(fi) as a|Ui for any i ∈ I.
Moreover, we can consider for any pair of indexes i, j ∈ I the image of a
section ak ∈ F(Uk) (k = i, j) on F(Ui ×X Uj) induced by the projection
pij,k : Ui ×X Uj → Uk as ak|Ui×XUj .

Definition 2.3.32. Let F : SchS → Set be a contravariant functor. Given a
scheme X over S and an fpqc covering U = {fi : Ui → X}i∈I, we say that
F satisfies the sheaf property for U if for any family (ai)i∈I with ai ∈
F(Ui) such that for any pair of elements i, j ∈ I, we have that ai|Ui×XUj =
aj
∣∣
Ui×XUj

, then there exists a unique element a ∈ F(X) such that ai =

a|Ui for all i ∈ I.
F is a fpqc sheaf if F satisfies the sheaf property for any fpqc cover over any
scheme.

Proposition 2.3.33 (Grothendieck). Representable
functors are fpqc
sheaves

Let S be a base scheme. For any scheme
X over S and any fpqc cover U = {fi : Ui → X}i∈I, the assignment of Re-
mark 2.3.30

HomSchS(X, Y)→ Hom(U, Y)

for a scheme Y defines a natural transformation HomSchS(X, ·)→ Hom(U, ·)
which is an isomorphism of functors.
In particular, any representable functor is an fpqc sheaf.

Proof. See [67, Theorem 2.55].

An easy consequence of this result that comes from applying the
sheaf property (Definition 2.3.32) over a single fpqc-morphism is:

Corollary 2.3.34. Any fpqc morphism (Definition 2.3.5) f : X → Y of
schemes over a base scheme S is an effective epimorphism (Definition 2.2.39)

This applies to torsors to obtain the following:

Proposition 2.3.35. Torsors are
quotients

Let X be a k-scheme and let G be an affine group-
scheme. If t : T → X is a G-torsor over X, then X = T/G by the equivalence

relation T ×k G
µT //
p1

// T in the sense of Definition 2.2.39. Moreover, we

have that OX = OGT is the sheaf of invariant sections, defined in Theorem
2.2.40(iii).

Proof. By the definition of torsor (Definition 2.3.1), t : T → X is G-
invariant, an effective epimorphism by Corollary 2.3.34 and we have
the isomorphism T ×k G ∼= T ×X T so the first part of the statement
holds.
The only property missing is at the level of structural sheaves: as t is
faithfully flat, we have that OX ⊂ t∗(OT ), if OGT ⊂ t∗(OT ) is the sheaf
of invariant sections, we clearly have that an inclusion OX ⊂ OGT so
we need to show that if s ∈ t∗(OT )(U) = OT (t

−1(U)) is G-invariant



60 the three aspects of the fgs

where U ⊂ X is an open sub-scheme, then s ∈ OX(U).
The fact that s isG-invariant can be expressed as the equality (µT )

∗(s) =

(p1)
∗(s) ∈ OT×kG(t

−1(U)×k G) but the latter scheme is isomorphic
to t−1(U) ×U t−1(U) and we see that it is the fibered product as-
sociated to the fpqc cover {t−1(U) → U} and the equality (µT )

∗(s) =

(p1)
∗(s) means that s ∈ OT (t

−1(U)) has equal restrictions to t−1(U)×U
t−1(U) under both canonical projections so we could use Proposition
2.3.33 to conclude that s ∈ OX(U). The only obstacle we have, is that
this proposition is stated for a representable functor, and s is a global
section of a sheaf. But this is not an issue as for any scheme, we have
the natural isomorphisms HomSchk(Y, A1) ∼= Γ(Y,OY) for any scheme
Y, that we can apply to all the sections considered so far, finishing the
proof.

We will finish this section by considering some constructions on
torsors, that are related to morphisms of group-schemes.

Definition 2.3.36.Sub-torsors Let t : T → X is a G-torsor over X with G affine. A
sub-torsor is an H-torsor f : V → T where H is a subgroup-scheme of G,
with a morphism of torsors (Definition 2.3.15) that is a closed immersion
V → T at the level of schemes and the inclusion morphism H → G at the
level of group-schemes.

Remark 2.3.37. We could have defined a sub-torsor with just an immer-
sion10 f : V → T at the level of schemes, but as G is affine, any subgroup-
scheme of G is closed and if {Ui → X}i∈I is an fpqc cover that trivializes
both T and V , which always exists following the proof of Lemma 2.3.11, then
f becomes Ui ×k H→ Ui ×k G over any Ui that is clearly a closed immer-
sion, thus f is a closed immersion by fpqc descent (Proposition 2.3.8(j)).

For pointed torsors, the notion of a sub-torsor must keep track of
the rational points on each scheme, so we have

Definition 2.3.38. Let X be a scheme over k and let x ∈ X(k) be a rational
point. If G is an affine group-scheme and t : T → X is a pointed G-torsor, a
pointed sub-torsor is a sub-torsor f : V → T that is a pointed morphism of
torsors, meaning that if y ∈ T(k) and v ∈ V(k) are the rational points of T
and V respectively, we have that f(v) = y.

Remark 2.3.39. We see from the definition of a pointed sub-torsor, that if
y ∈ T(k) is a fixed rational point, a general sub-torsor V → T might not be
a pointed sub-torsor, it is the case if the image of V on T contains the closed
point y, otherwise it cannot be a pointed sub-torsor. So a priori, there are
more sub-torsors than pointed sub-torsors for a given rational point of T .

The following type of torsor is the most important type of torsor
we will consider in this document:

10 An immersion of schemes is the composition of a closed immersion followed by an
open immersion.
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Definition 2.3.40. Nori-reduced
torsors

Let X be a scheme over k and let G be an affine group-
scheme. A G-torsor t : T → X is Nori-reduced if T does not posses any
sub-torsor apart from itself, or equivalently, any morphism of torsors T ′ → T

over X is faithfully flat.

We have just seen the first type of morphism between torsors that
is clearly related to subgroup-schemes of an affine group-scheme G.
But what about quotients or general morphisms φ : G → H? The
answer is the following:

Definition 2.3.41. Contracted
product

Let X be a scheme over k with a right action µX :

X ×k G → G from an affine group-scheme G. If φ : G → H is a mor-
phism of group-schemes, let µH : G×k H→ H be the left G-action induced
by φ, defined as µH = mH ◦ (φ, idH).
We define the contracted product of X by φ as the quotient11 of the product
X×k H by the left action of G given by µX(idX, iG) on the first coordinate
where iG is the inverse morphism of G, and µH on the second, if such quo-
tient exists, we will denote it as X×G H.

We have several remarks about this construction:

Remark 2.3.42. Under the hypotheses of Definition 2.3.41:

(a) At the level of the functor of points, the action of G over the product
X×k H looks as

g · (x,h) = (x · g−1, φ̃(R)(g)h)

for g ∈ G̃(R), h ∈ H̃(R), x ∈ X̃(R) and φ̃(R) : G̃(R) → H̃(R) is the
induced morphism coming from φ at the level of R-points, where R is
a k-algebra not necessarily of finite type as the schemes involved are
not of finite type over k in general.

(b) There is a natural right action from H over the contracted product
X×G H coming from the right action of H on X×k H by multiplica-
tion on the right over the second coordinate.

(c) The notion of quotient we have use in the definition of the contracted
product is in fact the cokernel associated to the diagram

G×k (X×k H)
µ //
p2
// X×k H ,

that we called quotient by an abuse of language in the case of an action
by a group-scheme. The main case we are interested in, is when we
have a G-torsor t : T → X where µT is free and transitive (Definition
2.2.29). From part (a), we see that in that case the action is always free,
and thus X×G H is a quotient by an equivalence relation (Definition
2.2.39) in this case.

11 In the sense of Example 2.2.35.
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(d) If we consider G acting on itself by multiplication on the right, it is
not hard to see that the contracted product exists, and G×G H ∼= H

as we have the commutative diagram

G×k (G×k H)
µ //
p2
// G×k H

µH // H

and we can verify the isomorphism at the level of functor of points.
This fact will be important when we will consider contracted products
of torsors.
Under this isomorphism, the action of H over the contracted product
described in part (b) is just the multiplication on the right.

Now we want to prove that contracted products of torsors exist, we
start with a lemma:

Lemma 2.3.43. Let X1
u0 //
u1
// X0 be an equivalence relation of schemes over

a base scheme S. Let us suppose that the quotient Y of this relation exists,
and that the projection morphism π : X0 → Y is an fpqc cover. Then, for any
morphism f : S′ → S, the base change Y ×S S′ is the quotient of the induced

equivalence relation X1 ×S S′
u′0 //

u′1

// X0 ×S S′ .

Proof. Let us denote X′0 = X0 ×S S′, X′1 = X1 ×S S′ and Y′ = Y ×S S′.
The base change π′ : X′0 → Y′ is an fpqc cover (Proposition 2.3.7(d))
and thus it is an effective epimorphism by Corollary 2.3.34. Moreover,
as Y is a quotient, we have an isomorphism X1 ∼= X0×Y X0 induced by
u0 and u1 that also holds over S′, and thus we have an isomorphism
X′1

∼= X′0 ×Y′ X′0 so the only thing we need to prove is that Y′ is a
cokernel.
Let Z be a scheme over S′ with a morphism g : X′0 → Z such that
g ◦ u′0 = g ◦ u′1, then from the last paragraph, we see that g ◦ p1 =

g ◦ p2 using the isomorphism, where p1 and p2 are the canonical
projections of X′0 ×Y′ X′0. Thus, the conclusion follows using either

the fact that Y′ is the cokernel of the diagram X′0 ×Y′ X′0
p1 //
p2

// X′0 or

either the sheaf property of the functor HomSchS′ (·, Y
′) (Proposition

2.3.33).

Corollary 2.3.44. Let X be a k-scheme, and let G,H be two affine group-
schemes with a morphism φ : G → H. Then, the contracted product (X×k
G)×G H exists and we have isomorphisms

(X×k G)×G H ∼= X×k (G×G H) ∼= X×k H

where X is considered with a trivial action from G.

Proof. We know that G×GH exists and that the projection G×kH→
H is an action (Remark 2.3.42(d)), thus this morphism is faithfully flat
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and affine (Lemma 2.2.27), thus it is an fpqc cover and the conclusion
follows from Lemma 2.3.43.

We will apply these results using the following: Let t : T → X be
a G-torsor and let U : {Ui → X}i∈I be an fpqc cover of X such that
T ×X Ui is a trivial torsor over Ui for all i ∈ I. As such, we have
T ×X Ui ∼= Ui ×k G and we easily see from Corollary 2.3.44 that for
any morphism φ : G→ H the contracted product exists for the trivial
torsor over any Ui. So, to obtain the contracted product for T over
X, we need a way to “recollect” all these contracted products into a
scheme over X and show that this is the quotient we are looking for.
Before defining this recollection process, we need a remark:

Remark 2.3.45. Let X be a scheme over a base scheme S, and let U : {Ui →
X}i∈I be an fpqc cover of X. If f : Y → X is a morphism of schemes over
S, we have the restrictions fi = f|Ui : Y ×X Ui → X and if we consider
the fibered products Uij = Ui ×X Uj for i, j ∈ I, we have isomorphisms
Uij ∼= Uji. We also have isomorphisms for any pair i, j ∈ I

ηij : Yji = Yj ×Uj Uij ∼= Yij = Yi ×Ui Uij.

as Yij = Y ×X Uij and likewise for Yji.
Out of these isomorphisms, we have the identities fj

∣∣
Yji

= fi|Yij ◦ ηij for
the restrictions of fi over Uij for any pair i, j ∈ I.
We have described what happens to f over any element of the fpqc cover, their
fibered products, and we can moreover describe what happens to Y over the
triple products Uijk = Ui ×X Uj ×X Uk for any triple of indexes i, j,k ∈ I.
If we consider the fibered products Yijk = Yij×Uij Uijk = Yi×Ui Uijk, we
have the so called cocycle condition

ηik|Ykji = ηij
∣∣
Yjki
◦ ηjk

∣∣
Ykji

. The cocycle
condition

In regard to the paragraph before the remark, if we consider a mor-
phism f : Y → X to be already recollected, the identities in the remark
give us the necessary definition for the data we would like to recol-
lect:

Definition 2.3.46. Affine descent
datums

Let X be a scheme over a base scheme S, and let U :

{Ui → X}i∈I be an fpqc cover of X. A family of affine morphisms ({fi}, {ηij})i,j∈I
where fi = Yi → Ui and ηij = Yji

∼→ Yij such that fj
∣∣
Yji

= fi|Yij ◦ ηij is
an affine descent datum on U if for any triple i, j,k ∈ I the family satisfies
the cocycle condition ηik|Ykji = ηij

∣∣
Yjki
◦ ηjk

∣∣
Ykji

.
A descent datum ({fi}, {ηij})i,j∈I over U is effective if there exists a scheme
Y with an affine morphism f : Y → X such that fi = f|Ui for any i ∈ I.
A morphism between two affine descent datums ({fi}, {ηij})i,j∈I and
({gi}, {θij})i,j∈I over U with gi : Zi → Ui, that we will denote as α :
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({fi}, {ηij})i,j∈I → ({gi}, {θij})i,j∈I, is a collection of morphisms αi : Yi →
Zi for i ∈ I such that the following diagram

Yi
αi //

fi   

Zi

gi~~
Ui

is commutative for any i ∈ I, and the following diagram

Yji

αj|Yji //

ηij

��

Zji

θij

��
Yij

αi|Yij

// Zij

is commutative for any pair i, j ∈ I.
The category of affine descent datums over U will be denoted as Aff(U).

Theorem 2.3.47 (Theorem 4.33 [67]).Effective descent
for affine
schemes

Let X be a scheme over a base scheme
S, and let U : {Ui → X}i∈I be an fpqc cover of X. Then, any affine descent
datum over U is effective.
In other words, if Aff(X) denotes the category of schemes affine over X with
affine morphisms, the functor Aff(X) → Aff(U) that takes a scheme affine
over f : Y → X to the affine the descent datum it defines, described in Remark
2.3.45, is an equivalence of categories.

Corollary 2.3.48. Let X be a scheme over k and let t : T → X be a G-
torsor over X with G an affine group-scheme. Then, for any morphism of
group-schemes φ : G → H the contracted product T ×G H exists and it is
an H-torsor over X.

Proof. Let us start with the second assertion: if T ×G H exists, let us
consider T ×k H and the projection p : T ×k H → T with the left G-
action described in Definition 2.3.41 and the right H-action described
in Remark 2.3.42(b), we see that the composition t ◦ p is invariant for
both G and H, as T is a torsor and p is H-invariant, thus the indu-
ced morphism from contracted product T ×G H → X is H-invariant.
Moreover, let U : {Ui → X}i∈I be an fpqc cover of X such that T beco-
mes trivial over any Ui, the morphism T → T ×G H over X becomes
Ui×k G→ Ui×kH, thus the contracted product is trivialized over U
as well and thus it is an H-torsor over X by Proposition 2.3.9.
For the existence of the contracted product, if T is trivialized by the
fpqc cover U, then for any Ui we can take the contracted product
T |Ui

∼= Ui ×k G → Ui ×k H that exists by Corollary 2.3.44. Then, if
we consider the affine descent datum ({ti}, {ηij})i,j∈I associated to T ,
given by ti : Ui ×k G→ Ui and ηij : Uji ×k G

∼→ Uji ×k G for i, j ∈ I
and subject to the cocycle condition ηik|Tkji = ηij

∣∣
Tjki
◦ ηjk

∣∣
Tkji

, we



2.3 torsors 65

see that we can take contracted products on any element of the des-
cent datum, again by Corollary 2.3.44, thus naturally obtaining an
affine descent datum ({ui}, {θij})i,j∈I with a morphism

π : ({ti}, {ηij})i,j∈I → ({ui}, {θij})i,j∈I.

Thus, by Theorem 2.3.47, there exists an scheme Y over X with a mor-
phism π : T → Y such that Y|Ui = Ui ×k H for any i ∈ I. Using
fpqc descent (Proposition 2.3.8) we can easily see that Y fits into the
commutative diagram

G×k (T ×k H)
µ //
p2
// (T ×k H)

q // Y

and that G×k (T ×k H) ∼= (T ×k H)×Y (T ×k H), so to obtain a quo-
tient according to Definition 2.2.39, we just need to show that Y is a
cokernel, but this is true over any Ui, so the conclusion follows by
using Proposition 2.3.33 for any scheme Z fitting into a commutative
diagram similar to Y’s to obtain a morphism Y → Z, finishing the
proof.

Now that we have established the existence of contracted products
of torsors, the main reason we introduced them is the following:

Proposition 2.3.49. Let X be a k-scheme and let T and T ′ be a G-torsor
and a H-torsor respectively. If f : T → T ′ is a morphism of torsors, for the
morphism at the level of group-schemes φ : G→ H associated to f, we have
T ′ ∼= T ×G H where the contracted product at the right is taken using φ.

Proof. There is a natural morphism T ×G H → T ′ as T ′ fits in the
commutative diagram

G×k (T ×k H)
µ //
p2
// (T ×k H)

g // T ′

where g = µH ◦ (f, idH) where µH : T ′ ×k H → T ′ is the action mor-
phism of T ′ and thus we obtain a morphism T ×G H → T ′ as T ×G H
is a cokernel. This morphism is also H-equivariant an thus we have
a morphism of H-torsors over X, that is an isomorphism by Lemma
2.3.11.

Using contracted products we can relate properties of morphisms
between group-schemes with properties of the canonical projection to
the contracted product, and thus properties of morphisms of torsors.

Remark 2.3.50. Let t : T → X be a G-torsor with G affine and X a k-
scheme. If φ : G → H makes G a subgroup-scheme of H, we can easily see
that the morphism of torsors f : T → T ×G H is a sub-torsor (Definition
2.3.36).
On the other extreme, if φ : G → G/N is a quotient with kernel N�G,
by using a similar argument for the existence of the contracted product in
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the proof of Corollary 2.3.48, we can show that the quotient T/N by the
restricted action of N over T exist, and thus the projection π : T → T/N

makes T a N-torsor over T/N. Moreover, T/N is a G/N-torsor over X as
T/N ∼= T ×G G/N by Proposition 2.3.49 and the scheme on the right is a
G/N-torsor.

The last paragraph of this remark allows us to define:

Definition 2.3.51.Quotient torsors Let t : T → X be a G-torsor with G affine and X a
k-scheme. If φ : G → Q is a quotient morphism (Definition 2.2.56) with
kernel N�G.
We will call the contracted product T ×GQ a quotient torsor of T . This is
equivalent to consider the quotient T/N by Corollary 2.2.59 as Q ∼= G/N.

Remark 2.3.50 and the isomorphism theorem for group-schemes
(Theorem 2.2.65), immediately yield:

Proposition 2.3.52.Decomposition
of a morphism of

torsors by the
isomorphism

theorem

Let X be a k-scheme and let T and T ′ be a G-torsor
and a H-torsor respectively. If f : T → T ′ is a morphism of torsors and
φ : G → H is its associated morphism at the level of group-schemes, then
f decomposes12 as f = i ◦ p where p : T → T/K is the quotient of T by
K = ker(φ) and i : T/K→ T ′ is a sub-torsor.

Remark 2.3.53. If we consider pointed torsors, it is not hard to see that the
contracted product of a pointed torsor is pointed, so all the results we have
considered so far also hold for pointed torsors.

Now we will state the last construction of torsors that we will need
for later chapters, for this purpose we will consider a scheme X of
finite type over k and a G-torsor t : T → X with G finite, thus t is a
finite and faithfully flat (thus locally free) morphism by Proposition
2.3.16.

Definition 2.3.54.Weak quotients
of torsors

Let X be a scheme of finite type over k and a G-torsor
t : T → X with G finite. If H ⊂ G is a subgroup-scheme that is not normal,
we can consider the restricted action of H over T . By Theorem 2.2.40 the
quotient by this action T/H exists and we will call it a weak quotient of T .

Remark 2.3.55. The projection morphism π : T → T/H is an H-torsor,
and the morphism T/H → X is faithfully flat and locally free of degree
ord(G)/ord(H).

2.3.4 Projective Limits of Torsors

Let k be any field and let X be a scheme over k. In this final subsection
about torsors, we will state the basic properties of projective limits of
affine torsors (Definition 2.3.17(c)) over X. As such, all group-schemes
considered in this part will be affine.
First, we will introduce some notation:

12 Modulo isomorphism of torsors over X.
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Notation 2.3.56. Let X be a scheme over k. If {Ti}i∈I is an inverse directed
system of affine torsors Ti → X over a partially ordered set I, where the
transition morphisms are torsor morphisms. The limit of this system will be
denoted as

T := lim
← i∈I

Ti.

We will also consider the associated inverse directed system of group-schemes
{Gi}i∈I, being Gi the group-scheme associated to Ti.
Finally, for the pointed case, if x ∈ X(k), the points ti (i ∈ I) and t will
denote respectively a rational point of Ti over x and a rational point of T
over x, clearly t is the inverse limit of the directed system formed by the ti.
When needed, we may add an index 0 to the set I such that T0 := X and
t0 := x.

The first question one should ask, is if general projective limits of
schemes exists. If all schemes over X are affine, this is indeed the
case, and if more hypotheses hold for X, we can obtain additional
properties:

Lemma 2.3.57. Properties of
affine projective
limits

Let X be a scheme (not necessarily over a field) and let
{Yi}i∈I and {Zi}i∈I be two inverse directed system of affine schemes over X
with the same indexes. We will denote as Y and Z the respective projective
limits if these exists as schemes. Then:

(a) Y and Z exist as schemes over X.

(b) The formation of projective limits commutes with base change.

(c) If X is quasi-compact and quasi-separated, for any scheme V → Y of
finite presentation13 over Y, there exists an index i ∈ I and a scheme
Vi of finite presentation over Yi, such that the following diagram is
cartesian:

V

��

// Y

��
Vi // Yi

.

(d) If X is quasi-compact and quasi-separated, and if every scheme Yi is
quasi-compact and quasi-separated over X and every Zi is locally of
finite presentation over X for all i ∈ I, then morphisms f : Y → Z

over X are in bijective correspondence with directed inverse systems of
morphisms fi : Yi → Zi over X for i ∈ I.

(e) If X is quasi-compact and quasi-separated, and if both Yi and Zi are
of finite presentation over X for every i ∈ I, then for any morphism
f : Y → Z over X, there exists an index i ∈ I such that the base change
of the morphism fi : Yi → Zi to Z is f.

13 See [63, Tag 01TO] for a definition and basic properties of morphisms of finite pre-
sentation.
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We recall that X is quasi-separated over S if the diagonal morphism
∆X/S : X→ X×S X is quasi-compact (Definition 2.3.5).

Proof. The proof for all parts of this lemma, can be found in [33].
The proof of part (a) is in Proposition 8.2.3 of the reference above
while part (b) stems from Proposition 8.2.5.
Finally, parts (c) and (d) correspond to parts (ii) and (i) of Théorème
8.8.2 respectively and part (e) is a direct consequence of the mentio-
ned theorem.

Together with the existence of projective limits, we need to relate
certain properties of morphisms between projective limits to the cor-
responding property for morphisms between schemes from the re-
spective inverse directed systems.

Lemma 2.3.58 (Théorème 8.10.5 [33]).Descent property
for affine

projective limits

Keeping the notation of Lemma
2.3.57. Let us suppose that X is quasi-compact and that for any i ∈ I the
schemes Yi and Zi are of finite presentation over X. If we have a given
morphism fj : Yj → Zj for some j ∈ I, with its respective base change
f : Y → Z. Then, for the following list of properties for morphisms:

(a) Closed immersion.

(b) Separated.

(c) Affine.

(d) Isomorphism.

(e) Surjective.

(f) Finite.

(g) Proper.

we have that f has one of the properties listed above if and only if there exists
an index k > j such that fk : Yk → Zk, the base change of fj over Zk,
possesses the same property. In this case all morphisms fl : Yl → Zl share
the same property for all l > k.
Moreover, if X is also quasi-separated, we have that f possess one property
from above if and only if there exists an index i ∈ I such that fi shares the
same property.

The last part of the lemma’s statement uses Lemma 2.3.57(e).

Remark 2.3.59. Let X be a quasi-compact scheme over k. Then, any alge-
braic torsor t : T → X is of finite presentation: this uses the fact that mor-
phisms of finite presentation are preserved by base change ([63, Tag 01TS])
and we can apply fpqc descent with them ([32, Prop. 2.7.1(vi)]).
As any algebraic group-scheme G over a field is of finite presentation because
Spec(k) is noetherian and being of finite presentation coincides with being
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of finite type in this case (see [63, Tag 01TX]), we have that the isomorphism
T ×X G ∼= T ×X T is equivalent to say that the commutative square

T ×X G
p1 //

µT
��

T

t
��

T
t

// X

is cartesian, and thus, as T ×XG is of finite presentation by base change, we
conclude that t : T → X is of finite presentation by fpqc descent.

Now we can establish the existence of projective limits of algebraic
torsors (Definition 2.3.17(b)):

Proposition 2.3.60. Existence of
projective limits
of algebraic
torsors

Let X be a quasi-compact scheme over k. If {Ti}i∈I is
a inverse directed system of algebraic torsors over X indexed by a partially
ordered set I. Then, the projective limit

T = lim
← i∈I

Ti

exists as a scheme over X, and moreover it is a G-torsor over X where G is
the projective limit to the associated inverse directed system of group-schemes
{Gi}i∈I. Moreover, if x ∈ X(k) is a rational point of X and all the torsors in
the system are pointed over X, then T → X is pointed too.

Proof. By Lemma 2.3.57(a) the projective limit t : T → X exists, so we
now need to proof that it is a G-torsor, recall that G is a group-scheme
by Remark 2.2.93.
Firstly, GX acts on T by using Lemma 2.3.57(b) and “passing to the
limit” the action of each (Gi)X over Ti. The same principle shows that
the morphism t : T → X is G-invariant (Definition 2.2.34).
The isomorphisms Ti ×k Gi ∼= Ti ×X Ti induce the isomorphism T ×k
G ∼= T ×X T over the corresponding limits using Lemma 2.3.58(d) as
the torsors Ti are of finite presentation over X (Remark 2.3.59).
To show that T is faithfully flat over X, we can use the fact that pro-
jective limits of flat schemes are flat (see [30, p. 6.1.2]) and that T → X

is surjective using Lemma 2.3.58(e).
Finally, the last part for pointed torsors can be easily verified.

Now that we have established the existence of projective limits for
algebraic torsors, we need to characterize torsor morphisms between
them, in the case X is quasi-separated we have some nice descent
properties, that we will use in Chapter 5:

Proposition 2.3.61. Descent of finite
torsors over
projective limits
of algebraic
torsors

Let T := lim
←
Ti be a projective limit of algebraic tor-

sors over a quasi-compact and quasi-separated scheme X over a field k. Let
V ,W → T be two finite torsors over T , where G and H are their correspon-
ding group-schemes respectively. Then:
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(a) There exist an index i ∈ I and a finite G-torsor Vi → Ti such that the
following diagram is cartesian

V

��

// Vi

��
T // Ti

.

In addition, if V is Nori-reduced, then so is Vi.

(b) If φ : V → W is a morphism of finite torsors over T , there exists an
index i ∈ I such that Vi and Wi are finite torsors over Ti, with a
morphism of torsors φi : Vi → Wi over Ti such that φ is the pull-
back of φi over T . In that case, φ is a sub-torsor (Definition 2.3.36), a
quotient of V , or an isomorphism if and only if for an index j > i the
pull-back of φi to Tj is of the same type.

If the torsors T , V and W are pointed, all morphisms above are of pointed
torsors.

Proof. For part (a), first we should note that T is separated and quasi-
compact over k, as all the torsors Ti are so we can apply Lemma
2.3.58(b).
Now, V is of finite presentation over T , and thus we can apply Lemma
2.3.57(c) so there exists an index i ∈ I and a scheme Vi over Ti such
that V ∼= Vi ×Ti T , moreover by taking a larger index if necessary the
morphism Vi → Ti is finite (Lemma 2.3.58(f)).
Vi is not necessarily a torsor over Ti, but the isomorphism V ×T
GT ∼= V ×T V implies that there exists a large enough index j > i

such that we have a finite group-scheme Gj and an isomorphism
Vj ×Tj Gj ∼= Vj ×Tj Vj by applying Lemma 2.3.58(d), making Vj → Tj
a Gj-torsor, Gj comes from applying Lemma 2.3.57(c) to the under-
lying morphism between the group-schemes associated to V and T . It
is easy to see that Vj is Nori-reduced if V is.
For part (b), we first chose two indexes i and j such that V descends
to Vi over Ti and W so does to Wj over Tj. We can assume i 6 j as
we can take another larger index to both i and j, in that case we can
take Vj = Vi ×Ti Tj. Both schemes satisfy the hypotheses of Lemma
2.3.57(d) and thus we have a bijection between T -morphisms between
V and W and the directed limit of the sets HomTl(Vl,Wl) where
l > j with Vl = Vk ×Tj Tl and Wl = Wk ×Tj Tl. This means that φ
can be seen as a directed system of morphisms φl : Vl → Wl and
by picking a possibly larger index we can assume that it is compati-
ble with the actions of the respective group-schemes, as we can ap-
ply Lemma 2.3.57(d) again to get a bijection for HomT (GT ,HT ) and
HomT (GT ×T V ,HT ×T W) and its corresponding directed system of
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Hom-sets for each respective Hom-set. This bijection allows us to con-
clude that the commutative diagram

GT × V

��

// HT ×W

��
V //W

that compatibilizes the actions descends to a diagram that makes the
actions compatible over a certain index, larger that j, which means
that we have a morphism of torsors over Tj. The final part of the sta-
tement in part (b) comes the decomposition for torsor morphisms by
the isomorphism theorem of group-schemes (Proposition 2.3.52) and
from Lemma 2.3.58 applied to isomorphisms and closed immersions
we have the desired result for sub-torsors and isomorphisms. In the
case of quotients, the same lemma tells us that V → T is surjective if
and only if Vj → Tj is surjective for an index j ∈ J large enough and
the flatness is induced in both ways by descent (Proposition 2.3.8(g))
and base change respectively.
The pointed part is trivial, by applying Lemma 2.3.57(c).

Among all the possible limits of torsors we can construct, we are
mostly interested in limits where all torsors in the inverse directed
system are Nori-reduced (Definition 2.3.40), Proposition 2.3.61 gives
us a handy corollary that we will use in subsequent sectios, notably
in Sections 3.3 and 5.3:

Corollary 2.3.62. Let X be a quasi-compact and quasi-separated scheme
over k. If {Ti}i∈I is a inverse directed system of algebraic torsors over X
indexed by a partially ordered set I. If all the torsors Ti are Nori-reduced,
then T = lim

← i∈I
Ti is Nori-reduced as well.

Proof. Let us suppose that T has a non-trivial and proper sub-torsor
V ↪→ T , then by using Lemma 2.3.58(a) and Proposition 2.3.61 we
can find an index i ∈ I such that V descends to a closed immersion
of torsors Vi → Ti, but as Ti is Nori-reduced, Vi is either trivial or
isomorphic to Ti, which implies by base change that V is of the same
type, contradicting our initial assumption.

2.4 tannakian categories

Let G be a compact topological abstract group. In [65] and [41], T.
Tannaka and M.G. Krein showed independently that G can be recove-
red from its category of finitely dimensional complex representations
RepC(G) in a functorial bijective way, and that there is a criterion in
order to show that a category of finitely dimensional complex vec-
tor spaces is the category of representations of a compact topological
abstract group. This duality principle between groups and represen-
tations is known as the Tannaka-Krein duality.
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Currently, there are many different flavors of this duality, and in this
part we will establish the duality associated to affine group-schemes
over a field and neutral tannakian categories. We will borrow most re-
sults from [17], [59] and [64].

2.4.1 Definition of Tannakian Categories

In order to define tannakian categories, we first need several con-
cepts from category theory, that we will outline them in this section.
We will start with abelian categories in Subsubsection 2.4.1.1, tensor
categories in Subsubsection 2.4.1.2 and we will finish with neutral
tannakian categories in Subsubsection 2.4.1.3. For this section, when
considering objects in a category C, we will often use the notation
x ∈ Obj(C).

2.4.1.1 Abelian Categories

We will now define abelian categories, following [46, Ch. VIII]. The
first step is to define zero objects and arrows, kernels and cokernels.

Definition 2.4.1.Zero object and
zero arrow

Let C be a category. An object z ∈ Obj(C) which is initial
and final at the same time is called a null (or zero) object of C.
If C has a null object z, then for any a,b ∈ Obj(C), we can consider the
unique canonical arrows a→ z and z→ b and their composition

0 = 0ba : a→ z→ b

that we will call the zero morphism (or zero arrow).

Remark 2.4.2. The composition of any arrow with a zero arrow is a zero
arrow, the zero object in a category C is unique up to isomorphism and the
zero arrow is independent of the choice of a zero object.

Example 2.4.3. In the category Grp of abstract groups, the trivial group {1}

is the zero object and for any pair of abstract groups G,H, the composition
G→ {1}→ H is the zero arrow between G and H.
Analogously, in the category Vect(k) of vector spaces over a field k, the zero
vector space {0} is the zero object and the composition V → {0}→W where
V and W are vector spaces is the zero arrow between them.

Definition 2.4.4.Kernel and
cokernel in a

category

Let C be a category with a null object, if f : a → b is a

morphism, the kernel of f is the equalizer s k // a
f //

0
// b .

For an arrow g : a→ b, the cokernel of f is the co-equalizer a
g //

0
// b

c
// t .

.

Remark 2.4.5. Let C be a category with a null object. If the kernel k : s→ a

of an arrow f : a → b exists, it is a monomorphism (Definition 2.2.61) in

C, meaning that if d
g //

h
// s are two arrows such that k ◦ g = k ◦ h, then
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g = h. This means that k can be canceled on the left.
As such kernels can be considered as sub-objects, like in the case of kernel of
morphisms of vector spaces, modules, abstract groups, etc. Or the kernel of
a morphism of group-schemes (Definition 2.2.23) in the category of group-
schemes over a field k with the trivial group-scheme Spec(k) as the zero
object, which are closed subgroup-schemes and thus sub-objects.

There are some easy identities that can be shown for kernels and
cokernels:

Proposition 2.4.6 (p. 189 [46]). Let C be a category with zero object, zero
arrows, and such that any arrow between objects of C has a kernel and a
cokernel. Then, for any arrow u of C, we have the following identities:

(a) ker(coker(ker(u))) = ker(u).

(b) coker(ker(coker(u))) = coker(u).

Moreover, the following properties hold:

1. An arrow g is a kernel in and only if g = ker(coker(g)).

2. Any arrow f : a → b has a unique factorization, f = m ◦ q where
m = ker(coker(f)).

Definition 2.4.7. Let f : a→ b be a morphism of objects in a category C. f

is an epimorphism if for any object c and any pair of morphisms b
g //

h
// c

such that g ◦ f = h ◦ f, then g = h.

The factorization given in Proposition 2.4.6 has special properties:

Lemma 2.4.8 (Lemma 1 p.189 [46]). Keeping the hypotheses of Proposi-
tion 2.4.6, if f : a→ b is a morphism of C and f = m′ ◦ q′ is a factorization
wherem′ is a kernel, then in the following commutative diagram there exists
a unique diagonal morphism t

a
q //

q′

��

c

m
��

∃!t

��
d

m′
// b

such that m = m′ ◦ t and q = t ◦ q′. Moreover, if C has equalizers and any
monomorphism is a kernel, then q is an epimorphism.

Now we will state the properties of Hom-sets in abelian categories.
The essential properties of Hom-sets in abelian categories come from
the categories of modules and abelian abstract groups.
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Definition 2.4.9.AB categories A category A is an Ab category if any pair of objects
a,b ∈ Obj(A), the set HomA(a,b) has the structure of an abelian abstract
group14, such that for any other object c ∈ Obj(A) the composition map

HomA(a,b)×HomA(b, c) → HomA(a, c)

(f,g) 7→ g ◦ f

is a biadditive morphism. In this case, the unit element of the abelian ab-
stract group HomA(a,b) is a morphism 0 : a → b, called the zero arrow,
which does not necessarily coincide with the null arrow of Definition 2.4.1
if for example the category A does not have a zero object. It is clear that the
composition of zero arrows is a zero arrow.

Remark 2.4.10. As abelian abstract groups are Z-modules, we have that
for any object a of an AB category A there is a canonical arrow Z →
HomA(a,a) such that the image of 1 ∈ Z is ida.
The biadditive property means that for any triple of objects a,b, c ∈ Obj(A)

and morphisms f, f′ ∈ HomA(a,b) and g,g′ ∈ HomA(b, c), we have that

(g+ g′) ◦ (f+ f′) = g ◦ f+ g ◦ f′ + g′ ◦ f+ g′ ◦ f′.

We can also express this property by considering HomA(b, c)⊗Z HomA(a,b),
writing the composition as

HomA(b, c)⊗Z HomA(a,b) → HomA(a, c)

g⊗ f 7→ g ◦ f

and demanding that it is Z-linear.

Functors between AB categories should preserve the abelian ab-
stract group structures on Hom-sets, these morphisms are called:

Definition 2.4.11.Additive
functors

Let A and B be two AB categories. A functor T :

A → B is additive if for any pair of objects a,a′ ∈ Obj(A), the map
HomA(a,a′)→ HomB(T(a), T(a′)) induced by T is a morphism of abelian
abstract groups.

Remark 2.4.12. Keeping the notations of Definition 2.4.11. We can consider
additive contravariant functors for which the morphism of abelian abstract
groups is HomA(a,a′)→ HomB(T(a′), T(a)).
It is clear that the composition of additive functors is additive.

To bridge AB categories with categories having a zero object, we
need the following proposition:

Proposition 2.4.13 (§VIII.2 Proposition 1 [46]). Let z be an object of an
AB category A. Then, the following assertions are equivalent:

(a) z is an initial object.

(b) z is a final object.

14 We will always use the additive notation for abelian abstract groups of morphisms.
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(c) idz = 0 ∈ HomA(z, z).

(d) The abelian abstract group HomA(z, z) is the zero abelian abstract
group.

In particular any initial (or final) object in an AB category is a zero object
(Definition 2.4.1).

One feature of the category of abelian abstract groups or modules,
is that the direct product coincides with the coproduct, the direct sum
⊕ being this special construction in these two categories.

Definition 2.4.14. BiproductsLet A be an AB category. A biproduct diagram is the
following type of diagram in A

a
i1

// c
p1oo p2 //

b
i2

oo

where p1 ◦ i1 = ida, p2 ◦ i2 = idb and i1 ◦ p1 + i2 ◦ p2 = idc.
In a biproduct diagram, the object c is called the biproduct of a and b.

The feature we mentioned before for abelian abstract groups and
modules can be expressed abstractly as:

Theorem 2.4.15 (§VIII.2 Theorem 2 [46]). Let A be an AB category and
let a,b be two objects of A. Then, the product of a and b exists if and
only if their coproduct exists, if and only if they possess a biproduct. More
specifically, given a biproduct diagram as in Definition 2.4.14, the object c
with the projections p1 and p2 is the product of a and b while the same c
with the inclusions i1 and i2 is the coproduct of a and b.

We can now consider categories on which all the properties consi-
dered so far hold, we will define them as:

Definition 2.4.16. Additive
categories

An additive category is an AB category A that has a
null object, where the biproduct of any pair of objects of A exists.

Proposition 2.4.17 (§VIII.2 Prop. 3 [46]). Let A be an additive category,
and let f, f′ : a→ b be two morphisms of A. Then, we have the identity

f+ f′ = δ̌b ◦ (f⊕ f′) ◦ δa

where δa : a→ a× a is the natural diagonal morphism of the product, and
δ̌b : b

∐
b→ b is the co-diagonal morphism of the coproduct.

Using this proposition, we can characterize additive functors bet-
ween additive categories in terms of biproducts.

Proposition 2.4.18 (§VIII.2 Prop. 4 [46]). Let A and B be two AB cate-
gories that have all biproducts, and let T : A → B be a functor. Then, T is
additive if and only if the image via T of any biproduct diagram of objects of
A is the biproduct diagram in B of their images.

Now we are ready to define abelian categories:
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Definition 2.4.19.Abelian
categories

An AB category (Definition 2.4.9) A is an abelian ca-
tegory if it satisfies the following conditions:

(a) A has a null object (Definition 2.4.1).

(b) The biproduct (Definition 2.4.14) of any pair of objects of A exists.

(c) Every morphism between objects of A has a kernel and a cokernel
(Definition 2.4.4).

(d) Every monomorphism is a kernel and every epimorphism is a cokernel.

Remark 2.4.20. Let A be an abelian category. Conditions (a) and (b) in
Definition 2.4.19 imply that A is an additive category (Definition 2.4.16). By
Proposition 2.4.13 we can replace “null object” with initial of final object in
condition (a) and by Theorem 2.4.15 we can replace “biproduct” by product
or coproduct in condition (b).
Condition (d) is powerful: a morphism f : a → b that is a monomorphism
and an epimorphism at the same time is an isomorphism as in this case
f = ker(g) where g : b → c is another morphism with domain b, which
implies that g ◦ f = 0 = 0 ◦ f, but as f is an epimorphism we can “cancel f
on the right” and thus g = 0, as the kernel the zero morphism from b is idb
we conclude that f is an isomorphism.

Example 2.4.21. Now we will give some examples of abelian categories:

1.Abelian abstract
groups

The category Ab of abelian abstract groups is an abelian category.
We should point out that if we consider the category of all abstract
groups Grp, this category is not abelian as not all morphisms of ab-
stract groups have cokernels, they do if the image is normal on the
codomain which is not always the case.

2.Modules Let R be a commutative ring with unit, then the category R− Mod of
R-modules is an abelian category.

3.Vector spaces Let k be a field. The category Vect(k) of vector spaces over k is an
abelian category in which we can easily see that Hom-sets are also
k-vector spaces, this property is important and we will define it later.

4.Commutative
group-schemes

If k is a field, the category of commutative group-schemes (Example
2.2.15(2)) of finite type over k is an abelian category, see [49, Theorem
5.62].

Applying Lemma 2.4.8 to abelian categories, we obtain the abstract
version of the isomorphism theorem that we can find on any of the
examples in Example 2.4.21.

Proposition 2.4.22 (§VIII.3 Prop. 1 [46]). Let A an abelian category. Then
any arrow f : a → b can be factored as f = m ◦ e where m is a monomor-
phism and e is an epimorphism and we moreover have m = ker(coker(f)) y
e = coker(ker(f)).
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If f′ = m′ ◦ e′ : c → d is the factorization of another arrow of A, and we
have a commutative diagram

a
f //

g

��

b

h
��

c
f′
// d

.

If q and q′ are the codomains of e and e′ respectively, there exist a unique
arrow k : q→ q′ such that the following diagram is commutative:

a

g

��

e //

f

""
q

m //

k
��

b

h
��

c
e′
//

f′

<<q′
m′
// d

.

Definition 2.4.23. Let A an abelian category, and let f : a→ b be an arrow.
If f = m ◦ e is the factorization of f given in Proposition 2.4.22, we call m
the image of f im(f) and e the coimage of f coim(f). By the aforementioned
proposition, the image and the coimage are unique up to isomorphism.

Remark 2.4.24. For any arrow f : a→ b in an abelian category A, we have
that its image is a “sub-object” and its coimage is a “quotient” which are in
short, equivalency classes of monomorphisms and epimorphisms respectively,
for the specific definitions of these see [46, §V.7].
For the usual abelian categories, those mentioned in Example 2.4.21, sub-
objects and quotients are well understood along with the existence of the
factorization of Proposition 2.4.22.

On abelian categories we can naturally define exactness:

Definition 2.4.25. Exactness in
abelian
categories

Let A an abelian category. We say that a pair of compo-
sable arrows

a
f→ b

g→ c

is exact at b o that we have exactness at b if im(f) ≡ ker(g) where the
equivalency is between sub-objects of b, or equivalently, that coker(f) ≡
coim(g) as an equivalency of quotients of b.

Remark 2.4.26. Let a f→ b
g→ c be a diagram in an abelian category A. We

note that im(f) 5 ker(g), meaning that the monomorphism im(f) factors
through ker(g), if and only if g ◦ f = 0 while im(f) = ker(g), meaning
that ker(g) factors through im(f), if and only if any morphism k such that
g ◦ k = 0 factors as k = m ◦ k′ where m is the monomorphism in the
factorization f = m ◦ e of Proposition 2.4.22.
The last paragraph applied to the usual abelian categories (abelian abstract
groups, modules, etc) implies that we have exactness at b if and only if
g ◦ f = 0 and any element of b that maps to 0 via g lies in the image of f.
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Definition 2.4.27.Short exact
sequences

Let A an abelian category. The diagram

0→ a
f→ b

g→ c→ 0,

where 0 denotes the null object of A, is a short exact sequences if we have
exactness at a, b and c.

Remark 2.4.28. Keeping the notation of Definition 2.4.27, the fact that the
sequence

0→ a
f→ b

g→ c→ 0

is exact means that f is a monomorphism, g is an epimorphism, f = ker(g)
and g = coker(f).
Related to this, if we just demand the equality h = coker(f), this is the same
as requiring that in the diagram

a
f→ b

h→ c→ 0

we have exactness at b and c. We will call this situation a right exact
sequence.
Analogously, if we have that k = ker(f), this is equivalent to say that the
sequence

0→ a
k→ b

f→ c

is exact at a and b, and we will call this a left exact sequence.
The factorization f = m ◦ e of Proposition 2.4.22 comes with two short exact
sequences, appearing in the upper horizontal part and the right vertical part
of the following commutative diagram

0 // k
ker(f) // a

coim(f)//

f ��

i

im(f)
��
b

coker(f)
��
q

��
0

.

The last concept associated to abelian categories we need, are the
functors that preserve exact sequences, these are:

Definition 2.4.29.Exact functors Let A and B be two abelian categories. A functor T :

A→ B is exact if it is additive and it preserves kernels and cokernels.
T is left exact if it is additive and it preserves kernels, and it is right exact
if it is additive and it preserves cokernels.

Remark 2.4.30. An equivalent definition for exact functors, is that of an
additive functor that preserves short exact sequences, meaning that if

0→ a
f→ b

g→ c→ 0



2.4 tannakian categories 79

is an exact sequence of objects of A, then the sequence

0→ T(a)
T(f)→ T(b)

T(g)→ T(c)→ 0

in B is exact15 if T is covariant, or the sequence

0→ T(c)
T(g)→ T(b)

T(f)→ T(a)→ 0

is exact if T is contravariant.
In the same vein, a left exact functor is the same as an additive functor that
preserves left exact sequences while a right exact functor is an additive one
that preserves right exact sequences.

2.4.1.2 Tensor Categories

The next step to define tannakian categories, is to define tensor cate-
gories. We will do so, following Deligne-Milne [17, Ch. 1].
The definition of a tensor category is charged with very complex axi-
oms, so we will define these first before defining tensor categories.

Definition 2.4.31. Let C be a category, and let ⊗ : C× C→ C be a functor,
for which we will use the notation (X, Y) 7→ X⊗ Y.

(a) Associativity
constraint

An associativity constraint for the pair (C,⊗) is a natural isomor-
phism of functors defined over C × C × C for any triple X, Y,X ∈
Obj(C) as

φX,Y,Z : X⊗ (Y ⊗Z)→ (X⊗ Y)⊗Z

that satisfies the so called pentagon axiom for any quadruple of ob-
jects, X, Y,Z, T ∈ Obj(C)

X⊗ (Y ⊗ (Z⊗ T))
idX⊗φY,Z,T

uu

φX,Y,Z⊗T

))
X⊗ ((Y ⊗Z)⊗ T)

φX,Y⊗Z,T
��

(X⊗ Y)⊗ (Z⊗ T)

φX⊗Y,Z,T
��

(X⊗ (Y ⊗Z))⊗ T
φX,Y,Z⊗idT

// ((X⊗ Y)⊗Z)⊗ T

.

(b) Commutativity
constraint

A commutativity constraint for the pair (C,⊗) is a natural isomor-
phism of functors defined over C× C for any pair X, Y ∈ Obj(C) as

ψX,Y : X⊗ Y → Y ⊗X

such that the compositionψY,X ◦ψX,Y : X⊗Y → X⊗Y is the identity
of X⊗ Y.

15 As T is additive, T(0) = 0.
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(c)Compatibility
between

associativity and
commutativity

constraints

We say that an associativity constraint φ and a commutativity con-
straint ψ for the pair (C,⊗) are compatible, if the following diagram,
called the hexagon diagram, is commutative:

X⊗ (Y ⊗Z)
φX,Y,Z //

idX⊗ψY,Z

ww

(X⊗ Y)⊗Z
ψX⊗Y,Z

''
X⊗ (Z⊗ Y)

φX,Z,Y ''

Z⊗ (X⊗ Y)

φZ,X,Yww
(X⊗Z)⊗ Y

ψX,Z⊗idY
// (Z⊗X)⊗ Y

.

(d)Identity object
for the tensor

product

A pair (U,u) where U ∈ Obj(C) and u : U → U ⊗ U is an iso-
morphism is a identity object for ⊗ if the functor U⊗ (·) : C → C

defined as X 7→ U⊗X is an equivalence of categories.

Remark 2.4.32. All of these outlined conditions can be traced back to Saavedra-
Rivano’s book “Catégories Tannakiennes” [59]. The associativity and com-
mutativity constraints can be found and §I.1 1.1 and §I.1 1.2 respectively,
in §I.2 2.1 the compatibility between the constraints is stated, and finally the
identity object appears in §I.1 1.3.

All of the conditions of Definition 2.4.31 put together form what
we will mean by tensor categories:

Definition 2.4.33.Tensor categories Let C be a category with a functor ⊗ : C × C → C.
A quadruple (C,⊗,φ,ψ) is a tensor (or monoidal) category if φ and ψ
are compatible associativity and commutative constraints respectively, and
C possesses an identity object (U,u) for ⊗.
If C is a tensor category, we will call ⊗ the tensor product of C.

Notation 2.4.34. We will often omit the constrains when referring to a
tensor category, meaning that we will either refer a tensor category by the
pair (C,⊗) or by simply C if the product ⊗ is clear from the context.

Example 2.4.35. For any commutative ring R with unit, the category of
R-modules R− Mod with the tensor product ⊗R is a tensor category, if U
is a free R-module of rank one, the pair (U,u) is the identity object of this
category where u : U → U ⊗ U is isomorphism sending the only basis
element u0 ∈ U to u0 ⊗ u0, all identity objects of R− Mod are of this type.
We will use the category of R-modules as our model for tensor categories.
If we would have considered R − Mod with the tensor product (x,y) 7→
−x ⊗R y, this functor does not satisfy the pentagon diagram (Definition
2.4.31(a)), even though the commutativity constraint is satisfied, so we do
not have a tensor category in this case.

In Definition 2.4.31(d) we have defined a seemingly left identity
object, and in Example 2.4.35 we have many identity objects in the
category of R-modules, though they are all isomorphic. The following
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propositions gives further properties for the identity object in a tensor
category to clarify these points:

Proposition 2.4.36 (Prop. 1.3 [17]). Let (C,⊗,φ,ψ) be a tensor category
and let (U,u) be an identity object. Then:

(a) For any X ∈ Obj(C) there exists a natural isomorphism lX : X →
U⊗X such that lU = u and both the diagram

X⊗ Y

lX⊗idY
��

X⊗ Y

lX⊗Y
��

(U⊗X)⊗ Y
φU,X,Y

// U⊗ (X⊗ Y)

and the diagram

X⊗ Y lX⊗idY //

idX⊗lY
��

(U⊗X)⊗ Y

ψU,X⊗idY
��

X⊗ (U⊗ Y)
φX,U,Y

// (X⊗U)⊗ Y

are commutative.

(b) If (U′,u′) is another identity object, there exists a unique isomorphism
a : U→ U′ making the following diagram

U

a
��

u // U⊗U
a⊗a
��

U′
u′
// U′ ⊗U′

commutative.

Remark 2.4.37. If (U,u) is an identity object in a tensor category (C,⊗),
then we have a functorial isomorphism rX : X→ X⊗U with analogous pro-
perties of those stated in Proposition 2.4.36(a). This isomorphism is defined
as rX = ψU,X ◦ lX, showing that the identity object is bilateral and unique
up to isomorphism. As such, we will from now on denote this object as the
pair (1, e).

We must point out that the notion of tensor category given here is
not standard. See [17, Remark 1.4] for other names given to Definition
2.4.33.

Remark 2.4.38. Extension of the
tensor product
over several
objects

Let (C,⊗) be a tensor category. By the associativity con-
straint there is an essentially unique way to consider the tensor product of
several objects of C, meaning that we have a functor⊗

i∈I
: CI → C
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for any finite set I representing the product of |I| elements of C so that any
permutation in the ordering of the elements appearing in the tensor product
indexed by I yields isomorphic objects of C. See [17, Proposition 1.5] for more
details.

Definition 2.4.39.Invertible
elements

Let (C,⊗) be a tensor category. An object L ∈ Obj(C)
is invertible if the functor C→ C given by X 7→ L⊗X is an equivalence of
categories.
If this is the case, there exists an object L′ such that L⊗ L′ = 1.
It is worth noting that the mere existence of L′ with the property listed above
is enough to get that L is invertible, so this is an equivalent way to define
invertible objects.
A pair (L′, δ) is an inverse of L if L′ ∈ Obj(C), and δ : L⊗ L′ → 1 is an
isomorphism, we will denote the inverse of L as L−1.

Remark 2.4.40. The definition of inverse element is symmetrical, meaning
that if (L′, δ) is an inverse of L, then (L, δ) is an inverse of L−1.
The inverse of any object L is unique up to isomorphism: if (L1, δ1) and
(L2, δ2) are inverses of L, then there exists a unique isomorphism α : L1 →
L2 such that δ2 ◦ (idL ⊗α) : L⊗ L1 → L⊗ L2 → 1 equals δ1.

Example 2.4.41. In the category of R-modules, free modules of rank 1 are
invertible see [59, p. I 0.2.2.2].
If X is a scheme over k, we see that the category Vect(X) of vector bundles
over X is tensorial by identifying vector bundles with locally free sheaves
over OX of finite rank. In Vect(X) line bundles, i.e., locally free sheaves of
rank 1 are invertible.

Another feature of categories like R− mod and Vect(X) is the exis-
tence of duals, so we would like to define a notion of dual on tensor
categories. We will start with the following:

Definition 2.4.42.Internal Hom Let (C,⊗) be a tensor category. If the functor T 7→
HomC(T ⊗X, Y) is representable, we will denote its representative by Hom(X, Y)
and call it the internal Hom-set of X and Y. Also, we will consider
evX,Y : Hom(X, Y) ⊗ X → Y the morphism corresponding to idHom(X,Y)
under the first functor mentioned, known as the evaluation morphism of
X over Y.

Remark 2.4.43. Immediately from the definition, if g : T ⊗ X → Y is a
morphism, there exists a unique morphism f : T → Hom(X, Y) such that
evX,Y ◦ (f⊗ idX) = g.
In other words, we have the commutative diagrams:

T

f
��

Hom(X, Y)

T ⊗X

f⊗idX
��

g

))Hom(X, Y)⊗X evX,Y
// Y

.
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Example 2.4.44. In the category R− Mod, the internal Hom of two objects
Hom(X, Y) always exists, and it is simply HomR−Mod(X, Y) with its natural
structure of R-module. This is indeed an internal Hom as for any triple of
R-modules T ,X, Y we have

HomR−Mod(T , HomR−Mod(X, Y)) ∼= HomR−Mod(T ⊗R X, Y).

Moreover, in this case the evaluation morphism evX,Y is simply given by
f⊗ x 7→ f(x).

We will now list several properties of internal Hom’s:

Remark 2.4.45. Let (C,⊗) be a tensor category and let us suppose that any
pair of objects of C possess an internal Hom-set.

(a) In this case we have a composition morphism for internal Hom-sets: if
X, Y,Z ∈ Obj(C) then we have a morphism

Hom(X, Y)⊗Hom(Y,Z)→ Hom(X,Z)

corresponding to the composition

(Hom(X, Y)⊗Hom(Y,Z))⊗X ev→ Hom(Y,Z)⊗ Y ev→ Z

which is a morphism of HomC (Hom(X, Y)⊗Hom(Y,Z)⊗X,Z), and
this set is isomorphic to HomC(Hom(X, Y)⊗Hom(Y,Z), Hom(X,Z))
by the definition of internal Hom (Definition 2.4.42), from which we
obtain the desired composition morphism of internal Hom’s.

(b) Along with the isomorphism HomC(Z, Hom(X, Y)) ∼= HomC(Z ⊗
X, Y) for any triple of objects X, Y,Z ∈ Obj(C), we also have the iso-
morphism

HomC(T , Hom(Z, Hom(X, Y))) ∼= HomC(T ⊗Z, Hom(X, Y))
∼= HomC(T ⊗Z⊗X, Y)
∼= HomC(T , Hom(Z⊗X, Y))

.

(c) If we apply the identity that characterizes the internal Hom-set to the
identity element of C, we obtain:

HomC(1, Hom(X, Y)) ∼= HomC(1⊗X, Y) ∼= HomC(X, Y)

.

Internal Hom-sets allows us to define a familiar concept in the ca-
tegory of R-modules or k-vector spaces in general:

Definition 2.4.46. Duals in tensor
categories

Let (C,⊗) be a tensor category. For any object X ∈
Obj(C), the dual of X is the object X∨ = Hom(X,1) when it exists.
The evaluation morphism (Definition 2.4.42) associated to a dual will be
denoted as evX : X∨ ⊗X→ 1.
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Remark 2.4.47. Keeping the notation of the definition, as the representative
of a functor, we have for any T ∈ C the natural isomorphism HomC(T ,X∨) ∼=

HomC(T ⊗X,1).
The assignment X 7→ X∨ can be extended to a contravariant functor (·)∨ :

C → C by assigning to a morphism f : X → Y, the morphism of duals
f∨ : Y∨ → X∨ defined as the only possible one that makes the following
diagram

Y∨ ⊗X
id
Y∨
⊗f
��

f∨⊗idX// X∨ ⊗X

evX
��

Y∨ ⊗ Y evY
// 1

commutative.

Example 2.4.48. Coming back to the example of the category of R-modules,
we know that in this category duals exists, they are defined as X∨ = Hom(X,R),
and in this case the morphism f∨ of Remark 2.4.47 is defined by the equa-
tion

〈
f∨(y), x

〉
X
= 〈y, f(x)〉Y where 〈·, ·〉X and 〈·, ·〉Y are alternative ways

to denote evX and evY respectively.

Let V be a vector space of finite dimension over a field k, we know
that the double dual V∨∨ is isomorphic to V itself, this behavior in
general is called:

Definition 2.4.49.Reflexive object
in a tensor

category

Let (C,⊗) be a tensor category and X ∈ Obj(C). Let
iX : X→ X∨∨ be the morphism coming from the composition evX ◦ψX,X∨ :

X⊗X∨ → 1. We will say that X is reflexive if iX is an isomorphism.

Remark 2.4.50. Let (C,⊗) be a tensor category. If an object X has an inverse
(Definition 2.4.39) (X−1, δ), then the morphism X−1 → X∨ induced by
δ : X⊗X−1 → 1 is an isomorphism, and thus we see that X is reflexive.

Remark 2.4.51.Finite products
of internal
Hom-sets

We have the following property for products of internal
Hom-sets of finite products: if (C,⊗) is a tensor category, and we have two
finite families (Xi)i∈I and (Yi)i∈I of objects of C, then we have a morphism:

⊗
i∈I

Hom(Xi, Yi)→ Hom

(⊗
i∈I

Xi,
⊗
i∈I

Yi

)

corresponding to⊗
i∈I

Hom(Xi, Yi)⊗
⊗
i∈I

Xi
∼=→
⊗
i∈I

(Hom(Xi, Yi)⊗Xi)
⊗i∈I ev→

⊗
i∈I

Yi

using the correspondence of Definition 2.4.42.
This morphism applied to duals yields a morphism

⊗
i∈I

X∨
i →

(⊗
i∈I

Xi

)∨
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and as a particular case of this, we obtain the morphism

X∨ ⊗ Y → Hom(X, Y)

by taking I = {1, 2}, X1 = X, X2 = 1 = Y1 and Y2 = Y.

We will now define tensor categories that have internal Hom-sets
for any pair of elements, and such that any object is reflexive, re-
sembling the behavior of the category of k-vector spaces in terms of
duals:

Definition 2.4.52. Rigid tensor
categories

Let (C,⊗) be a tensor category. We say that the category
C is rigid if it satisfies the following conditions:

(a) For any pair of objects X, Y ∈ Obj(C), their internal Hom-set Hom(X, Y)
(Definition 2.4.42) exists.

(b) For any quadruple X1,X2, Y1, Y2 of objects of C, the morphism bet-
ween the products of internal Homs, mentioned in Remark 2.4.51,

Hom(X1, Y1)⊗Hom(X2, Y2)→ Hom (X1 ⊗X2, Y1 ⊗ Y2)

is an isomorphism.

(c) Any object of C is reflexive (Definition 2.4.49).

Remark 2.4.53. Let (C,⊗) be a rigid tensor category.

(a) Condition (b) of Definition 2.4.52 implies by induction that for any
finite family (Xi)i∈I of objects of C, the morphism of Remark 2.4.51

⊗
i∈I

Hom(Xi, Yi)→ Hom

(⊗
i∈I

Xi,
⊗
i∈I

Yi

)

is an isomorphism.

(b) The functor X 7→ X∨ is an anti-equivalency of categories as it is con-
travariant, this is because this functor composed twice is isomorphic
to the identity as any object of C is reflexive.
Moreover, we have an isomorphism Hom(X, Y) ∼= Hom(Y∨,X∨) co-
ming from the composition

Hom(X, Y) ∼= X∨⊗ Y ∼= X∨⊗ Y∨∨ ∼= Y∨∨⊗X∨ ∼= Hom(Y∨,X∨).

(c) As any object X of C is reflexive, we have a morphism

Hom(X,X) ∼= X∨ ⊗X evX→ 1.

Composing this isomorphism with the functor Hom(1, ·) we obtain a
morphism EndC(X)→ EndC(1) using Remark 2.4.45(c).
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Definition 2.4.54.Trace and rank
in rigid tensor

categories

Let (C,⊗) be a rigid tensor category and let X be an
object of C. The morphism TrX : EndC(X) → EndC(1) of Remark 2.4.53(c)
is called the trace morphism of X.
The rank of X is rank(X) = TrX(idX) ∈ EndC(1).

Lemma 2.4.55 (I 5.1.4 [59]). Let (C,⊗) be a rigid tensor category and let
X,X′ be objects of C. Then, for any pair of endomorphisms f ∈ EndC(X) and
f′ ∈ EndC(X′) we have the identities

TrX⊗X′(f⊗ f′) = TrX(f) ◦ TrX′(f′)

Tr1(f) = f

and
rank(X⊗X′) = rank(X) ◦ rank(X′)

rank(1) = id1.

Example 2.4.56. Let k be a field. The category of k-vector spaces of finite
dimension Vectfk is rigid as for any pair of vector spaces V and W, their
Hom-set HomVectfk(V ,W) has a natural structure of k-vector spaces and
thus it is their internal Hom-set, we also have duals that are simply given
V∨ = HomVectfk(V ,k) as k is the identity element for the tensor product
here.
On the other hand, for a ring R the category R− Modf of finitely generated
modules is not rigid, even if we have internal Hom-sets (Example 2.4.44) as
not any finitely generated module has a dual.
In Vectfk, the trace of a vector space TrX : EndVectfk(V) → k becomes the
well known trace of matrices after choosing a base of V .

Now we will consider the functors and natural transformations bet-
ween tensor categories, they must preserve tensor category structures
and thus the definition is the following:

Definition 2.4.57.Tensor functors Let (C,⊗) and (C′,⊗′) be tensor categories. A tensor
functor between C and C′ is a pair (F, c) consisting in a functor F : C →
C′ along with an isomorphism of functors given for X, Y ∈ Obj(C) as cX,Y :

F(X)⊗′ F(Y)→ F(X⊗ Y) that satisfy the following properties:

(a) For any triple of objects X, Y,Z of C, the following diagram is commu-
tative

F(X)⊗′ (F(Y)⊗′ F(Z))
idF(X)⊗′cY,Z//

φ′F(X),F(Y),F(Z)
��

F(X)⊗′ (F(Y ⊗Z))
cX,Y⊗Z// F(X⊗ (Y ⊗Z))

F(φX,Y,Z)

��
(F(X)⊗′ F(Y))⊗′ F(Z)

cX,Y⊗′idF(Z)
// F(X⊗ Y)⊗′ F(Z)

cX⊗Y,Z
// F((X⊗ Y)⊗Z)

.

Where φ and φ′ are the isomorphisms coming from the associativity
constrains (Definition 2.4.31(a)) of C and C′ respectively.
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(b) For any pair of objects X, Y of C, the following diagram is commutative

F(X)⊗′ F(Y)
cX,Y //

ψ′F(X),F(Y)
��

F(X⊗ Y)

F(ψX,Y)

��
F(Y)⊗′ F(X)

cY,X
// F(Y ⊗X)

.

Where ψ and ψ′ are the isomorphisms coming from the commutativity
constrains (Definition 2.4.31(b)) of C and C′ respectively.

(c) If (U,u) is an identity object of C (Definition 2.4.31(d)), then the pair
(F(U), F(u)) is an identity object of C′.

We can make some initial remarks about these functors:

Remark 2.4.58. Let (F, c) be a tensor functor between two tensor categories
(C,⊗) and (C′,⊗′).

(a) For any finite family {Xi}i∈I of objects of C, we have a well defined
isomorphism

c :
⊗
i∈I

F(Xi)→ F

(⊗
i∈I

Xi

)
for the extensions of the tensor product over the family I (Remark
2.4.38), that can be seen as an extension of c in Definition 2.4.33 for
several objects instead of two.
In particular, F maps invertible objects (Definition 2.4.39) of C to in-
vertible objects of C′.

(b) If the internal Hom-set Hom(X, Y) of two objects X, Y of C exists, then
the morphism

F(evX,Y) : F(Hom(X, Y))⊗′ F(X)→ F(Y)

induces a morphism FX,Y : F(Hom(X, Y)) → Hom(F(X), F(Y)). In
particular, if the dual of an object X of C exists, then F induces a
morphism FX : F(X∨)→ F(X)∨.

For rigid tensor categories, the morphisms in part (b) of this remark
are isomorphisms:

Lemma 2.4.59 (Prop. 1.9 [17]). Let (C,⊗) and (C′,⊗′) be two rigid tensor
categories, and let (F, c) be a tensor functor. Then for any pair of objects X, Y
of C, the morphism discussed in Remark 2.4.58(b)

FX,Y : F(Hom(X, Y))→ Hom(F(X), F(Y))

is an isomorphism.
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Remark 2.4.60. Let (F, c) be a tensor functor between two rigid tensor
categories (C,⊗) and (C′,⊗′). Then, F induces a natural morphism FEnd :

EndC(1) → EndC′(1′) which in turn implies the following identities for
traces and ranks:

TrF(X)(FEnd(f)) = FEnd(TrX(f))

Rank(F(X)) = FEnd(Rank(X)).

Definition 2.4.61.Tensor
equivalences

Let (F, c) be a tensor functor between two tensor catego-
ries (C,⊗) and (C′,⊗′). We say that (F, c) is a tensor equivalence if F is
an equivalence of categories.

We can define equivalences of categories in terms of natural trans-
formations, and we would like a similar version of this while pre-
serving the tensor category structure in the categories involved for a
tensor equivalence. So now we will define these special natural trans-
formations:

Definition 2.4.62.Morphisms of
tensor functors

Let (F, c) and (G,d) be two tensor functors from the
tensor category (C,⊗) to the tensor category (C′,⊗′). A morphism of ten-
sor functors is a natural transformation λ : F→ G such that for any finite
family {Xi}i∈I of objects of C, the diagram⊗

i∈I F(Xi)
c //

⊗i∈IλXi
��

F
(⊗

i∈I Xi
)

λ⊗i∈IXi
��⊗

i∈IG(Xi) d
// G
(⊗

i∈I Xi
)

is commutative, along with the commutative diagram

1
∼= // F(1)

λ1
��

1
∼= // G(1)

which gives in particular an isomorphism between F(1) and G(1) as they
are both identity objects.
We will denote by Hom⊗(F,G) the set16 of morphisms of tensor functors
between F and G.
An isomorphism of tensor functors is a natural isomorphism that is a
morphism of tensor functors.

Now we can characterize tensor equivalences using morphisms of
tensor functors:

Proposition 2.4.63 (Ch. I §4.4 [59]). Let (F, c) : (C,⊗) → (C′,⊗′) be a
tensor equivalence between two tensor categories. Then, there exists a tensor
functor (F′, c′) : (C′,⊗′) → (C,⊗) such that the compositions F ◦ F′ and
F′ ◦ F are isomorphic as tensor functors to idC′ and idC respectively.

16 Most likely the class.
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Morphisms of tensor functors between rigid tensor categories share
the same property G-torsors, with G a fixed group-scheme, over sche-
mes do (See 2.3.11):

Proposition 2.4.64. Groupoid
property for
morphisms of
tensor functors
between rigid
tensor categories

Let (C,⊗) and (C′,⊗′) be two rigid tensor categories,
and let (F, c) and (G,d) be two tensor functors from C to C′. Then, any
morphisms λ : F→ G of tensor functors is an isomorphism.

Proof. By Lemma 2.4.59, for any object X of C we have an isomor-
phism F(X)∨ ∼= F(X∨) and the same holds for G. This allows us to
define a morphism µ : G → F of tensor functors that makes the dia-
gram

F(X∨)

∼=
��

λ
X∨ // G(X∨)

∼=
��

F(X)∨
(µX)

∨

// G(X)∨

commutative using the isomorphism of Remark 2.4.53(b).
This morphism of tensor functors is an inverse of λ in the sense of
Proposition 2.4.63, the proof of this fact is more subtle than it looks,
for more details see the proof made by Todd Trimble17 that arose from
a relevant question posed in mathoverflow18.

Example 2.4.65. Let k be a field, for any k-algebra R there is a canonical
tensor functor φR : Vectfk → R− Modf given by V 7→ V ⊗k R. If (C,⊗)
is a tensor category and (F, c), (G,d) : C → Vectfk are two tensor functors,
then we can define the functor Hom⊗(F,G) : Algk → Set given by

Hom⊗(F,G)(R) = Hom⊗(φR ◦ F,φR ◦G).

This example is important, as it will appear in Subsubsections 2.4.2.2 and
2.4.3.1 when we will talk about recovering an affine group-scheme from its
finite representations (Definition 2.4.78).

The last concept of tensor categories we need is tensor sub-categories:

Definition 2.4.66. Tensor
sub-categories

Let C′ be a strictly full sub-category of a tensor category
(C,⊗). We say that C′ is a tensor sub-category it C′ is closed under the
formation of finite tensor products of elements of C′ or equivalently, if C′

contains 1 and X⊗ Y whenever X, Y ∈ Obj(C′).
If (C,⊗) is moreover rigid, a rigid tensor sub-category is a tensor sub-
category C′ such that X∨ ∈ Obj(C′) when X ∈ Obj(C′).

Remark 2.4.67. If C′ is a tensor sub-category of a tensor category (C,⊗).
Then, the pair (C,⊗) is a tensor category, where ⊗ in this case denotes the
restriction of the tensor product over C to C′, which is well defined following
the definition of tensor sub-categories.
We easily see that the inclusion i : (C′,⊗)→ (C,⊗) is a tensor functor.

17 https://ncatlab.org/toddtrimble/published/Morphisms+between+tensor+functors
18 https://mathoverflow.net/questions/116104/functors-on-rigid-tensor-categories

https://ncatlab.org/toddtrimble/published/Morphisms+between+tensor+functors
https://mathoverflow.net/questions/116104/functors-on-rigid-tensor-categories
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2.4.1.3 Neutral Tannakian Categories

Now we will combine abelian categories and tensor categories in or-
der to define neutral tannakian categories towards the end. We will
always suppose that functors between additive categories (Definition
2.4.16) are additive (Definition 2.4.11).

Definition 2.4.68.Abelian tensor
categories

An additive (resp. abelian) tensor category is a ten-
sor category (C,⊗) such that C is an additive category (resp. abelian cate-
gory19) and the tensor product ⊗ is a biadditive functor20.

Now we will introduced some concepts exclusive to these hybrid
categories:

Definition 2.4.69. Let (C,⊗) be an abelian tensor category, we will denote
as ⊕ the biproduct in C (Definition 2.4.14).

(a)Sub-quotients A sub-quotient of an object X ∈ Obj(C) is a cokernel (quotient) V/V ′

where V ′ ⊂ V ⊂ X is a chain of sub-objects of X.

(b)Tensor
generating

families

A family (Xi)i∈I of objects of C is a tensor generating family if
every object of C is isomorphic to a sub-quotient of the element P(Xi)
where P(Ti) ∈ Z>0[x][Ti]i∈I is a polynomial with non-negative inte-
ger coefficients with variables indexed by I, and the object P(Xi) is the
object of C resulting from changing each sum between monomials for
⊕, and changing any monomial nTa1i1 · · · T

ak
ik

of P by

(X⊗a1i1
⊗ · · · ⊗X⊗akik

)⊕n

for n,k,ai > 0 where (·)⊕a is the biproduct of a > 0 copies of
an object, (·)⊗a is the tensor product of a copies of an object, with
the conventions (·)⊕0 = 0C where 0C is the zero object of C, and
(·)⊗0 = 1.

Remark 2.4.70. Let (C,⊗) be an abelian tensor category. If we denote
R = EndC(1), we have that R is a ring and for any object X of C, R acts
on X via the isomorphism lX : X

∼=→ 1⊗ X (Proposition 2.4.36(a)). We see
that this action commutes with any endomorphism, so in particular R is a
commutative ring.
If (1′, e′) is another unit, by Proposition 2.4.36(b) we have an isomorphism
a : (1, e)→ (1′, e′) so that R ∼= EndC(1′).

Definition 2.4.71. Let (C,⊗) be an additive tensor category. If R is a com-
mutative ring with unit, we say that C is R-linear if for any pair of objects
X, Y of C, the set HomC(X, Y) has a structure of R-module such that the
composition is R-bilinear21 and the tensor product is a R-bilinear functor so
it preserves the R-modules structure on Hom-sets.

19 Definition 2.4.19

20 Like in the case of the composition in AB categories, see Remark 2.4.10.
21 Which is the same property stated in Remark 2.4.10 over R instead of Z.
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By Remark 2.4.70, any abelian tensor category is R-linear where
R = End(1).

Remark 2.4.72. If (C,⊗) is an abelian rigid tensor category, and R =

EndC(1), then the trace morphism TrX : EndC(X)→ R is R-linear.

Now we will state some properties of abelian tensor categories:

Proposition 2.4.73 (Prop. 1.16 [17]). Let (C,⊗) be an rigid tensor cate-
gory. If C is moreover abelian, then ⊗ is a bilinear additive functor, that
commutes with direct and projective limits in both variables, in particular it
is exact (Definition 2.4.29) on each variable.

Proposition 2.4.74 (Prop. 1.17 [17]). Let (C,⊗) be an abelian rigid tensor
category. IfU is a sub-object of 1, then we have a decomposition 1 = U⊕U⊥
where U⊥ = ker(1 → U∨). In particular, if EndC(1) is a field then 1 is
simple, i.e. it does not possess any sub-object different from the zero object
and itself.

Remark 2.4.75. This proposition shows that there is a bijection between
sub-objects of 1 and idempotents elements in the ring EndC(1).
If e is an idempotent endomorphism of 1, then we can decompose C as C =

C′×C′′ where C′ and C′′ are tensor categories, and any object C is in C′ when
e acts like the identity on it, and in C′′ when 1− e acts like the identity. This
decomposition is comparable of the decomposition of affine schemes in the
presence of idempotents (see [36, II Exc. 2.19]).

Proposition 2.4.76 (Prop. 1.20 [17]). Let (C,⊗) and (C′,⊗′) be two abe-
lian rigid tensor categories. If 1 and 1

′ are identity objects of C and C′

respectively. If EndC(1) is a field and 1′ 6= 0, then any exact tensor functor
F : (C,⊗)→ (C′,⊗′) is faithful.

We finish this subsection with the definition of neutral tannakian
categories:

Definition 2.4.77. Neutral
tannakian
categories

Let k be a field and let C be a k-linear abelian rigid
tensor category. We say that C is a neutral tannakian category over k
if EndC(1) = k and C possesses an exact faithful tensor functor ω : C →
Vectfk. The functor ω is called the fiber functor of C.

In Subsection 2.4.2 we will define and study the model neutral
tannakian category, the category of representations of affine group-
schemes, followed by Subsection 2.4.3 where we show that any neu-
tral tannakian category over k is equivalent to a category of represen-
tations of an affine group-scheme over k.

2.4.2 Representations of Group-schemes

In this part we will study representations of group-schemes. All group-
schemes considered in this part will be affine. The main focus of this
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subsection is to study the category of all finitely dimensional repre-
sentations of an affine group-scheme, where the final goal is to show
that this category is neutral tannakian. This will be the content of
Subsubsection 2.4.2.1
Secondly, we will see in Subsubsection 2.4.2.2 how an affine group-
scheme can be recovered form its category of representations in a
functorial way.

2.4.2.1 Categories of comodules and representations

Definition 2.4.78.Representation
of affine

group-schemes

Let k be a field and let G be a group-scheme over k. A
representation of G (over V) is a morphism r : G → GL(V) where V
is k-vector space and GL(V) is the general linear group-scheme, defined in
Example 2.2.15 (1).
Let r : G→ GL(V) and s : G→ GL(W) be two representations of G, a mor-
phism of representations, is a morphism of group-schemes φ : GL(V) →
GL(W), coming from a k-linear morphism V →W, such that s = φ ◦ r.
A representation u : G→ GL(V) where V is a finitely dimensional k-vector
space will be called a finite or finitely dimensional representation. The
category of finite representations of a group-scheme G will be denoted as
Repk(G).

Remark 2.4.79. Let k be a field and let G be a group-scheme over k. A repre-
sentation r : G→ GL(V) of G equates to a functorial left action (Definition
2.2.28)

G̃(R)× (V ⊗k R)→ (V ⊗k R)

by R-linear morphisms, for any k-algebra R.

Definition 2.4.80.Faithful
representations

of group-schemes

Let k be a field and let G be a group-scheme over k.
If a representation r : G → GL(V) is a monomorphism of group-schemes
(Proposition 2.2.62), then we will say that the representation r is faithful.

Remark 2.4.81. If a group-scheme G possesses a finite faithful representa-
tion, we can easily conclude that G is of finite type as the representation
morphism r : G→ GL(V) is a closed immersion and GL(V) is of finite type
over k (see Example 2.2.15(1)). We will see later that the converse assertion
is also true, i.e., any group-scheme of finite type over a field has a faithful
finite representation (see Corollary 2.4.88).

If G = Spec(A) is an affine group-scheme, we can express represen-
tation r : G→ GL(V) of G in terms of the underlying Hopf algebra A
and V . In fact, we do not even need all the axioms of a Hopf algebra
to do so, so we will state the minimal properties we need to define
this expression.

Definition 2.4.82.Co-algebras and
comodules

A co-algebra over k is k-vector space C with two k-
linear morphisms ∆ : C → C⊗C and ε : C → k that satisfy the coassocia-
tivity and counit axioms stated in Definition 2.2.12.
If C is a co-algebra over k and V is a k-vector space, a comodule over C is a
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k-linear morphism ρ : V → V ⊗kC that satisfies the following commutative
diagrams

V
ρ //

idV %%

V ⊗k C

(idV ,ε)
��

V ⊗k k ∼= V

and
V

ρ //

ρ

��

V ⊗k C

(ρ,idC)
��

V ⊗k C
(idV ,∆)

// V ⊗k C⊗k C

.

Let ρ : V → V ⊗k C and σ : W → W ⊗k C be two comodules over C, a
morphism of comodules over C is a k-linear morphism of vector spaces
φ : V →W such that the following diagram is commutative:

V

φ

��

ρ // V ⊗k C

(φ,idC)
��

W
σ
//W ⊗k C

.

If V is a finitely dimensional k-vector space, we will call the corresponding
comodule a finite or finitely dimensional comodule. The category of all
finite comodules of a given co-algebra C will be denoted as Comodk(C).

Remark 2.4.83. If C is a co-algebra over k, then ∆ : C → C⊗k C makes
C a comodule over itself, the axioms we demanded for ∆ and ε in Definition
2.4.82 imply this. In particular, if A is a Hopf algebra A is a comodule over
itself by via its comultiplication morphism.

Now we can express representation of group-schemes with como-
dules:

Proposition 2.4.84. Correspondence
between
representations
and comodules

For any affine group-scheme G = Spec(A) over k,
there is a bijective and natural correspondence between representations r :

G→ GL(V) of G and comodules ρ : V → V ⊗k A over A.

Proof. We will only mention here how to go from a comodule to a
representation and vice versa, for more details see [68, Theorem §3.2].

If r : G → GL(V) is a representation of G, as G̃ and G̃L(V) are repre-
sentable functors of k-algebras, we can show using Yoneda’s lemma
(Lemma 2.2.7) that the natural transformation r̃, induced by r, is deter-
mined by the image of idG ∈ G̃(A) under r̃. This image is a member

of G̃L(V)(A) = AutA−mod(V ⊗k A) so it corresponds to an automor-
phism V ⊗k A → V ⊗k A that can be shown to be determined by its
restriction

V ∼= V ⊗k k ⊂ V ⊗k A→ V ⊗k A

giving us a comodule over A.
On the other hand, if V is a comodule over A, the morphism ρ :
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V → V ⊗k A determines a representation of G over V , that at the
level of functor of points, it is given for any k-algebra R and any
g : A→ R ∈ G̃(R), as an automorphism gV : V ⊗k R→ V ⊗k R whose
restriction to V is

V
ρ // V ⊗k A

(idV ,g)// V ⊗k R .

Now as we have established this bijection, we can show some ex-
amples of comodules/representations:

Example 2.4.85. Let G = Spec(A) be an affine group-scheme.

1.The regular
representation

As we mentioned in Remark 2.4.83, A is a comodule over itself via
the comultiplication morphism ∆ : A → A⊗k A. We will call this
representation the regular representation ofA (orG). We clearly see
that G is a finite group-scheme if and only its regular representation
is finite.

2.Actions of
group-schemes
and comodules

Let X = Spec(B) be an affine scheme of finite type over k, with a given
right action µ : X×k G → X. In this case, this action is the same as
considering a morphism of k-algebras ρ : B→ B⊗k A and we can ea-
sily see that by looking at the definition of an action (Definition 2.2.25)
and taking their corresponding axioms at the level of k-algebras, that
B is a comodule over A. If X is finite over k, then the corresponding
comodule is finite.

3.Sub-comodules
and sub-

representations

If ρ : V → V ⊗ C is a comodule over a co-algebra C, then a sub-
comodule of ρ is a sub-space W ⊂ V such that ρ(W) ⊂W ⊗k C, so
the restricted morphism ρ|W makes W a comodule over C.
In the same vein, for a representation r : G → GL(V) of a group-
scheme, a sub-representation is a representation s : G → GL(W)

over a sub-space W ⊂ V such that f(W ⊗ R) ⊂ W ⊗ R for any k-
algebra R and any automorphism f : V ⊗ R → V ⊗ R so we have
a well defined restriction morphism (·)|W : GL(V) → GL(W) with
s = r|W . Clearly, by the correspondence of Proposition 2.4.84W ⊂ V
is sub-comodule if and only if the corresponding representation over
W is a sub-representation.

4.Fixed
sub-comodule

Let C be a co-algebra and let ρ : V → V ⊗C be a comodule over C,
we define the fixed sub-comodule as the sub-comodule

VC = {v ∈ V : ρ(v) = v⊗ 1}.

When A is the Hopf algebra associated to an affine group-scheme G we
will denote this sub-comodule as VG. In this case this sub-comodule
can be equivalently defined as

VG = {v ∈ V : g · vR = vR for all k-algebras R and g ∈ G̃(R)}

where vR = v⊗ 1 ∈ V ⊗k R.
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5. Representation
associated to a
quotient of
group-schemes

In Example 2.2.88 we characterized quotients of affine group-schemes,
now we will relate this with representations of affine group-schemes.
Let H = Spec(B) be a subgroup-scheme, then we have B = A/I where
I is a Hopf ideal of A (Corollary 2.2.21). The action by multiplication
G×k H→ G yields a comodule τH : A→ A⊗k A/I over A/I.
Let us consider the quotient Q = G/H, as we mentioned in Example
2.2.88, Q = Spec(AH) is the spectrum of the fixed sub-comodule that
we defined in the last example (which is also a k-algebra) of A by τH,
i.e,

AH = {a ∈ A : τH(a) = a⊗ 1 (mod A⊗k A/I)}

Moreover, this quotient defines a representation of G from left action of
G over Q (recall Definition 2.2.73), that we will denote by µH : G→
GL(AH). We will consider again this representation in Subsection
5.2.3.

Coming back to the content of Proposition 2.4.84, it shows that for
an affine group-scheme G = Spec(A), the categories Repk(G) and
Comodk(A) are equivalent, but how equivalent are they?
It is not as clear at first glance that both these categories are ten-
sorial, and the equivalence between representations and comodules
might not come from a tensor functor, if we suppose Comodk(A) and
Repk(G) are tensorial in the first place, that we have not established
yet.
To obtain that Repk(G) is a neutral tannakian category over k, we will
study the properties of Comodk(C) starting from C as a co-algebra
up to a Hopf algebra, focusing on what we will add along the way as
we add more structure to the base co-algebra. In the following, each
time the reader sees a result about comodules, they should do the
mental exercise of figuring the corresponding property for represen-
tations, aided by the equivalence of categories in Proposition 2.4.84.
Before that, we will list some basic properties of comodules:

Lemma 2.4.86 (Prop. 2.3 [17], §3.3 [68]). Let C be a co-algebra and let
V be a comodule over C. Then every finite subset {v1, v2, · · · , vn} of V is
contained in a finite sub-comodule of V .

Tying this with and Proposition 2.4.84, we obtain:

Corollary 2.4.87 (Corollary 2.4 [17]). Let G = Spec(A) be an affine
group-schemes, then any representation of G is a directed union of its finite
sub-representations.

Corollary 2.4.88. An affine group-scheme G = Spec(A) is of finite type
over k if and only if it has a faithful finite representation.

Proof. The “only if” part was already established in Remark 2.4.81.
For the “if” part, let us suppose that G is of finite type over k. We
can write the regular representation r : G→ GL(A) of G as a directed
limit of finite sub-representations G → GL(Vi) for some indexes i
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belonging to an eventually infinite set I by Corollary 2.4.87. It is not
hard to see that the regular representation is faithful, so we have

{1} = ker(r) = ∩i∈I (ker(G→ GL(Vi)))

which is an intersection of closed sub-schemes of G. As G is noether-
ian, there should exists an index i0 ∈ I such that the kernel of the
corresponding representation G → GL(Vi0) is trivial, giving us the
desired faithful finite representation.

Now we will pivot to the study of the categories of finite como-
dules and representations. As we would like to obtain that Repk(G)
(and thus Comodk(A)) is a neutral tannakian categories, we need fi-
ber functors to the category Vectfk of finitely-dimensional k-vector
spaces, according to Definition 2.4.77, so we will start by defining
these functors:

Definition 2.4.89.Forgetful functor
of comodules and

representations

Let C be a co-algebra over k. The forgetful functor of
Comodk(C) is the functor ωC : Comodk(C) → Vectfk that takes a finite
comodule V over C and considers it solely as a k-vector space detached of its
comodule structure.
Let G be an affine group-scheme. The forgetful functor of Repk(G) is the
functor ωG : Repk(G) → Vectfk that takes a finite representation r : G →
GL(V) and sends it to the finite vector space V .

Remark 2.4.90. Let G = Spec(A) be an affine group-scheme. The equiva-
lence between finite comodules over A and finite representations over G in
Proposition 2.4.84 commutes with the forgetful functors of these categories.
This means that, if we denote as FRC : Comodk(A)→ Repk(G) is the functor
that takes a comodule and assigns it to its corresponding representation, as
we did in the proof of Proposition 2.4.84, then FRC(ωA) = ωG and the same
is valid if we take the inverse functor FCR : Repk(G) → Comodk(A), so we
have FCR (ωG) = ωC.

The first easy characterization of the category of comodules is:

Lemma 2.4.91. Let C be a co-algebra over k. Then, the category Comodk(C)
is additive (Definition 2.4.16). Moreover, the forgetful functors is additive
too (Definition 2.4.11).

Proof. The zero vector space clearly equips both Comodk(C) with a
zero object.
For the AB category structures, as any morphism of comodules re-
sts on morphism between k-vector spaces, Hom-sets of comodules
have natural structures of k-vector spaces as any sum or scalar mul-
tiplication of morphisms between comodules is again of the same
type. Also, it is not hard to see that compositions induce k-linear mor-
phisms between Hom-sets, so Comodk(C) is an AB category (Defini-
tion 2.4.9), and moreover, its Hom-sets are well-behaved k-vector spa-
ces. This discussion also implies that both forgetful functors are addi-
tive, and moreover, they induce k-linear morphism between Hom-sets



2.4 tannakian categories 97

of comodules and those of finite k-vector spaces.
Finally, if ρ : V → V ⊗k C and σ : W → W ⊗k C are two finite como-
dules, then the morphism

ρ⊕ σ : V ⊕W → (V ⊕W)⊗k C ∼= (V ⊗k C)⊕ (W ⊗k C)

shows that V ⊕W is a well-defined comodule over C and thus the
category Comodk(C) possesses biproducts, so it is additive.

Remark 2.4.92. Let C be a co-algebra over k, as Comodk(C) is not neces-
sarily tensorial, we cannot say that this category is k-linear in the sense of
Definition 2.4.71. We just have a better version of Remark 2.4.10 as we have
added scalar multiplication from k on the Hom-sets that behaves well with
respect to composition. We will call kind of category call a k-linear additive
AB category, if the category in question is additive or abelian, we will add
the adjective k-linear as well.
Functors F : C → D between k-linear AB, additive or abelian categories
that induce k-linear morphisms between Hom-sets will be called k-linear
functors.

Lemma 2.4.91 leads to:

Proposition 2.4.93. Finite comodules
form an abelian
category

LetC be a co-algebra over k. Then, the category Comodk(C)
is k-linear and abelian (Definition 2.4.19).
Moreover, ωC is exact (Definition 2.4.29), k-linear and faithful.

Proof. As morphisms of comodules have morphisms of vector spaces
included, it suffices to show that any morphism of finite comodules
has a kernel and a cokernel to conclude that Comodk(C) is an abelian
category. In fact, if V ,W are finite comodules over C, and f : V →
W is a morphism of comodules between them, we will show that
this morphism has a kernel and a cokernel, such that ωC(ker(f)) =

ker(ωC(f)) and ωC(coker(f)) = coker(ωC(f)).
We will start with the kernel. Let us denote the structural comodule
morphism of V and W as ρ : V → V ⊗k C and σ : W → W ⊗k C.
Now, let K = ker(f) ⊂ V be the kernel of f as a morphism of vector
spaces, if we show that K is a sub-comodule of V (Example 2.4.85(3))
we can conclude that K is a kernel as a comodule as well. For this
we just need to show that ρ(K) ⊂ K⊗k C. Indeed, if we take k ∈ K
and we denote ρ(k) =

∑
i vi ⊗ ci with vi ∈ V and ci ∈ C for all i,

we will suppose that ρ(k) does not possess any zero pure tensor in it,
meaning that ci 6= 0 for all i. As f is a morphism of comodules, we
that

σ(f(k)︸︷︷︸
0

) = 0 = (f, idC)(ρ(k)) =
∑
i

f(vi)⊗ ci

so for all i, f(vi) = 0 and thus vi ∈ K so K is effectively a sub-
comodule of V .
For the cokernel, if q : W → Q is the cokernel of f as a morphism of
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vector spaces, we simply need to show that Q has a comodule struc-
ture over C such that q becomes a morphism of comodules. As Q is
a quotient by im(f) and it is not hard to see that the image of f is
a sub-comodule of W, we will show in general that if U ⊂ W is a
sub-comodule, then W/U has a natural structure of comodule over C
such that the projection π : W → W/U is a morphism of comodules.
Let us define τ : W/U → W/U⊗k C as τ(w̄) = (π, idC)(σ(w)) for
w ∈ W, if τ is well-defined, W/U is a comodule over C and π beco-
mes a morphism of comodules. Let w,w′ ∈ W be two elements such
that w = w′ + u with u ∈ U so that w̄ = w̄′. Then we have that

σ(w) = σ(w′) + σ(u)︸︷︷︸
∈U⊗kC

thus after taking (π, idC) we obtain that (π, idC)(σ(w) = (π, idC)(σ(w′)
and thus W/U is indeed a comodule over C. This proves the first part
of the statement. For the second part, if f : V → W is the zero mor-
phism, then it is in particular the zero morphism of vector spaces, so
ωC is faithful. ωC is also exact as sub-comodules are sub-spaces of
course, and quotients of comodules are quotients of vector spaces, as
we showed in the last paragraph.

Remark-Definition 2.4.94.Quotients of
comodules

The second to last paragraph of the proof above
shows that if C is a co-algebra over a field k, V is a comodule over C and
U ⊂ V is a sub-comodule, then the quotient comodule exists and it is
simply the vector space quotient V/U with a natural comodule morphism
τ :W/U→W/U⊗k C coming from the quotient morphism π : V → V/U

at the level of vector spaces.

At the beginning of this section, we said that tannakian categories
allows us to recover an affine group-scheme from its finite represen-
tation, but what about its underlying Hopf algebra?
The short answer is that the Hopf algebra associated to a group-
scheme can be recovered from its category of finite comodules, which
makes sense if the reader takes the correspondence of Proposition
2.4.84 into consideration. In fact, this holds already for co-algebras,
but we need to introduce some notation first:

Notation 2.4.95. Let C be a co-algebra over k. If V is a fixed k-vector
space, we will denote the functor W 7→ ωC(W)⊗k V , where W is a finite
comodule over C, as ωC ⊗ V : Comodk(C)→ Vect(k).

Proposition 2.4.96. Let C be a co-algebra over k. For any k-vector space V ,
there is a natural isomorphism

HomVect(k)(C,V) ∼= Hom(ωC,ωC ⊗ V)

where the Hom-set on the right hand side denotes the set of all natural trans-
formations between ωC and ωC ⊗ V , viewed as functors from the category
ComodC to Vect(k). In particular, the functor

V 7→ Hom(ωC,ωC ⊗ V)
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is representable.

Proof. We will describe two natural transformations

Ψ : HomVect(k)(C, ·)→ Hom(ωC,ωC ⊗ (·))

and
Ξ : Hom(ωC,ωC ⊗ (·))→ HomVect(k)(C, ·),

that will establish the isomorphism of functors in the statement. For
the details showing that these are natural transformations, and that
the two compositions Ψ ◦ Ξ and Ξ ◦Ψ are the corresponding identity
natural transformation, see [60, Lemma 2.2.1] or [64, Prop. 6.2.1].
We will start with Ψ: there is a canonical natural transformation (of
functors over the category of arbitrary k-vector spaces)

Π : ωC → ωC ⊗C

induced by the comodule morphism ρ : W → W ⊗k C for any finite
comodule W over C, and if φ : C → V is any morphism of k-vector
spaces, we have a natural transformation (id,φ) : ωC ⊗C→ ωC ⊗ V
given by the morphism

ωC(W)⊗k C
(idωC(W),φ)
−→ ωC(W)⊗k V

for any finite comodule W. With this, we have that Ψ = (id,φ) ◦Π.
To define Ξ, let V be a fixed k-vector space and let ϕ : ωC → ωC ⊗ V
be a natural transformation. We need to provide a morphism C→ V ,
let us suppose for a moment that C is finitely dimensional, so we have
a morphism of k-vector spaces ϕ(C) : ωC(C) → ωC(C)⊗k V as C is
a comodule over itself. With this, we can easily define a morphism
Ξ(V) : C → V by taking Ξ(V) = (ε, idV) ◦ϕ(C) : C → V where ε is
the counit morphism of C.
In general, C is not finitely dimensional so we cannot do this di-
rectly. Instead, for any element c ∈ C, by Lemma 2.4.86 there ex-
ists a finite sub-comodule U containing c, thus we have a morphism
ϕ(U) : ωC(U) → ωC(U)⊗k V and we can try do define Ξ(V) over
c as ((ε|U , idV) ◦ϕ(U)) (c). This is well-defined as it is not hard to
verify that the value of this composition is independent of the choice
of the sub-comodule that contains c.

Corollary 2.4.97. Recovering a
co-algebra from
its comodules

Let C be a co-algebra k. C is determined up to a unique
isomorphism by the category ComodC and the functor ωC.

Proof. By Proposition 2.4.96 and Yoneda’s lemma (Lemma 2.2.7), C as
a vector space is determined by a unique isomorphism. To recover
the comultiplication ∆ : C→ C⊗k C, we use the isomorphism of sets

HomVect(k)(C,C⊗k C) ∼= Hom(ωC,ωC ⊗C⊗k C)
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from Proposition 2.4.96 and we identify ∆ with the natural transfor-
mation (Π, idC) ◦Π : ωC → ωC ⊗k C where Π is the natural transfor-
mation that used to describe the functor Ψ in the proof of Proposition
2.4.96.
Finally, to recover ε : C → k, we use the natural isomorphism of
functors ωC ∼= ωC ⊗ k.

This Corollary fully describes the category of finite comodules over
a co-algebra C. Now we will tackle the tensor structure in ComodC.
Let us consider two finite comodules V ,W over C, a tensor product of
these comodules should give ωC(V)⊗ωC(W) after taking the forget-
ful functor, as ωC must be a tensor functor (Definition 2.4.57) when
ComodC is a tensor category (Definition 2.4.33).
If ρ : V → V ⊗k C and σ :W →W ⊗k C are the structural morphisms
of V and W respectively, we can take

(ρ,σ) : V ⊗kW → (V ⊗k C)⊗k (W ⊗k C) ∼= (V ⊗kW)⊗ (C⊗k C)

so, if we would have a “multiplication morphism” m : C⊗k C → C

we could get a comodule structure on V ⊗kW by taking

(idV⊗kW ,m) ◦ (ρ,σ) : V ⊗kW → V ⊗kW ⊗C

but according to Definition 2.4.82 we need additional conditions that
should be imposed on this multiplication so we get comodule struc-
ture over the tensor product:

Definition 2.4.98.Compatible
multiplication

and tensor
product of
comodules

Let C be a co-algebra over a field k. A morphism m :

C⊗k C → C is a compatible multiplication if it commutes with both ∆
and ε.
If C is a co-algebra with a compatible multiplication, then the tensor product
of two comodules V ,W is a comodule with the structural morphism

τ = (idV⊗kW ,m) ◦ (ρ,σ) : V ⊗kW → V ⊗kW ⊗C

where ρ and σ are the structural morphisms of V and W respectively. We
will denote this comodule as V ⊗mW.

Remark 2.4.99. If C is a co-algebra with a compatible multiplication m :

C⊗k C → C, then for two comodules V ,W over C, we clearly have that
ωC(V ⊗mW) = ωC(V)⊗kωC(W). We have not supposed that m is as-
sociative or commutative, this is intentional as will show now the effect of
this properties have on the structure of ComodC.
The multiplication m is compatible if and only if m is a morphism of co-
algebras, i.e, it is a morphism that commutes with the respective comulti-
plications and counits, where the co-algebra structure of C⊗k C is simply
given by (∆,∆) and (ε, ε).

We want to establish an analog result to Proposition 2.4.96 for the
tensor product of comodules, for this we need to add some notation,
in the same vein as what we outlined in Notation 2.4.95:
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Notation 2.4.100. Let C be a co-algebra over k with a compatible multipli-
cationm. If V is a fixed k-vector space, we will denote the functorωC⊗ωC
as the functor

ωC ⊗ωC : Comodk(C)×Comodk(C)→ Vect(k)

that takes a pair of comodules (V ,W) over C and send it to

ωC ⊗ωC(V ,W) = ωC(V ⊗mW) = ωC(V)⊗kωC(W).

We will also consider the functor ωC⊗ωC⊗V , with the same domain and
codomain as before, defined as

(V ,W) 7→ ωC(V)⊗kωC(W)⊗k V .

As C⊗k C is a co-algebra if C has a compatible multiplication, we
can consider the category ComodC⊗kC, and using an analogous proof
to the proof of Proposition 2.4.96 we get:

Proposition 2.4.101. Let C be a co-algebra over a field k with compatible
multiplication m. Then, we have for any k-vector space V a natural isomor-
phism

HomVect(k)(C⊗k C,V) ∼= Hom(ωC ⊗ωC,ωC ⊗ωC ⊗ V).

Remark 2.4.102. Applying Proposition 2.4.101 with with C we obtain a
bijection

HomVect(k)(C⊗k C,C) ∼= Hom(ωC ⊗ωC,ωC ⊗ωC ⊗C)

that allows us to recover the compatible multiplicationm by taking two finite
comodules V and W over C and taking the natural transformation given by
the composition

ωC(V)⊗kωC(W)
∼→ ωC(V ⊗mW) → ωC(V ⊗mW)⊗k C

∼→ ωC(V)⊗kωC(W)⊗k C

where the second arrow in the composition comes from the comodule struc-
ture of V ⊗mW.

Using this idea, we can show the following:

Corollary 2.4.103. Properties of the
tensor of
comodules v/s
properties of the
multiplication

Let C be a co-algebra over a field k with compatible
multiplication m. Then,

(a) m is commutative if and only if the tensor product on ComodC defined
by it satisfies the commutativity constraint (Definition 2.4.31(b)), if
and only if for any two finite comodules V ,W over C, the natural
isomorphism

ωC(V)⊗kωC(W) ∼= ωC(W)⊗kωC(V)

coming from the commutativity constraint satisfied in the category
Vectfk comes from an isomorphism

V ⊗mW ∼=W ⊗m V

of comodules over C via ωC.
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(b) m is associative if and only if the tensor product on ComodC defined
by it satisfies the commutativity constraint (Definition 2.4.31(a)), if
and only if for any three finite comodules V ,W,U over C, the natural
isomorphism

(ωC(V)⊗kωC(W))⊗kωC(U) ∼= ωC(V)⊗k (ωC(W)⊗kωC(U))

coming from the associativity constraint satisfied in the category Vectfk
comes from an isomorphism

(V ⊗mW)⊗m U ∼= V ⊗m (W ⊗m U)

of comodules over C via ωC.

Moreover, if m is both commutative and associative, then the tensor product
in ComodC has compatible constraints, in the sense of Definition 2.4.31(c).

Proof. Let us start with the commutative property. m is commutative
if and only if m = m ◦ t where t : C⊗k C→ C⊗k C is the morphism
defined as t(a⊗ b) = b⊗ a for a,b ∈ C.
We can then consider for two comodules V ,W over C the two tensor
products V ⊗mW and V ⊗m◦tW and both m and m ◦m correspond
to two natural morphisms of k-vector spaces

ωC(V ⊗mW)→ ωC(V ⊗mW)⊗k C

and
ωC(V ⊗m◦tW)→ ωC(V ⊗m◦tW)⊗k C

respectively by Remark 2.4.102. Under this correspondence, m =

m ◦ t if and only if the morphisms of k-vector spaces outlined above
are the same, but by these morphisms are determined by the como-
dule structures on V ⊗mW and V ⊗m◦tW so these comodules are
isomorphic if and only if we have the equality of natural transforma-
tions, if and only if the multiplication of C is commutative.
The proofs for the associativity constraint and the compatibility if m
is both associative and commutative are analogous.

If a co-algebra B is also a k-algebra, it would not only have an as-
sociative and commutative compatible multiplication, but also a unit
by the conventions outlined in Section 1.4, so we also need to outline
the effect that having a compatible unit e ∈ B, that can be identified
with the image of 1 ∈ k under a morphism e : k → B, has on the
category of comodules. We will start by outlining what we mean by
“compatible” in the case of a unit:

Definition 2.4.104.Compatible unit
for comodules

with
multiplication

Let C be a co-algebra over a field k with compatible
multiplication m. A morphism of k-vector spaces e : k→ A that commutes
with m, is a compatible unit if e is a morphism of co-algebras where we
consider k as a co-algebra with the comultiplication 1 7→ 1 ⊗ 1 and the
identity as a counit.
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Proposition 2.4.105. Effect of a
compatible unit
over the category
of comodules

Let C be a co-algebra over a field k with compatible
multiplication m. Then C possesses a compatible unit e : k→ C if and only
if the morphism e makes k a comodule over C such that the tensor product
of comodules defined by m satisfies the identity object axiom (Definition
2.4.31(d) but on the right) in the category Comodk, if and only if for any
finite comodule V over C, the natural isomorphism

ωC(V)⊗k k ∼= ωC(V)

comes from an isomorphism

V ⊗m k ∼= V

of comodules over C.

Proof. For any finite comodule V over C, with structural morphism
ρ : V → V ⊗k C. The composition of morphisms of k-vector spaces

ωC(V) ∼= ωC(V)⊗k k
(ωC(ρ),e)→ ωC(V)⊗k A⊗k A

(id,m)→ ωC(V)⊗k A

defines a natural transformation ωC → ωC ⊗A that corresponds by
Proposition 2.4.96 to the morphism A→ A given by a 7→ m(a, e).
If the right identity axiom for the unit holds, then the natural trans-
formation above must be the same as the one given by the comodule
structures of finite comodules

ωC(V)
ωC(ρ)−→ ωC(V)⊗k A.

This should happen if and only if V ⊗m k ∼= V as comodules over C
so that they yield the canonical isomorphism ωC(V) ∼= ωC(V)⊗k k
after taking ωC.

The algebraic structure that is a comodule with multiplication and
unit, which encompasses all of the compatibility properties mentio-
ned in Definitions 2.4.98 and 2.4.104 is the following:

Definition 2.4.106. Bi-algebrasA bi-algebra over a field k is an algebra B that also has
a comodule structure, so that both the multiplication and unit morphisms of
B are compatible with it.

Putting together Corollary 2.4.103 and Proposition 2.4.105 and ap-
plying them to the category of finite comodules over a bi-algebra, we
obtain:

Proposition 2.4.107. Category of
comodules over a
bi-algebra

Let B be a bi-algebra over k. Then, the category
ComodB is a tensor category (Definition 2.4.33) where the tensor product
of comodules is given by the multiplication of B, according to Definition
2.4.98. Moreover, the forgetful functor ωB is a tensor functor (Definition
2.4.57).
Additionally, the converse is also true, i.e., if C is a co-algebra such that
ComodC is a tensor category and ωC is a tensor functor, then C is a bi-
algebra.
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Remark 2.4.108. Let B be a bi-algebra over k. It can easily be seen that
EndComodB(1) = k where 1 is simply k viewed as a comodule over B as
described in Proposition 2.4.105.
As ComodB is legitimately a tensor category, Definition 2.4.71 holds in this
case and as ComodB it is also abelian, we conclude from Remarks 2.4.70 and
2.4.92 that ComodB is a k-linear abelian tensor category.

If B is a bi-algebra over k. The difference between B and a Hopf
algebra A is that possesses an antipode morphism S : A → A (Defi-
nition 2.2.12) which is a morphism of k-algebras. On the category of
comodules’ side, the difference between ComodB and a tannakian ca-
tegory is that the latter is rigid. So, if the category of finite comodules
over a Hopf algebra ComodA was tannakian, it would be so because
the antipode of A makes this category rigid. This in indeed the case
as the antipode allows us to provide a comodule structure on duals
of vector spaces:

Definition 2.4.109.Comodule
structure for

duals of
comodules over a

Hopf algebra

Let A be a Hopf algebra over k, and let ρ : V →
V ⊗k A be a finite comodule over A. If we consider the dual vector space
V∨ (Definition 2.4.46), it has a comodule structure over A whose structural
morphism ρ∨ : V∨ → V∨ ⊗k A ∼= HomVect(k)(V ,A) is given for any
element φ ∈ V∨ ∼= HomVect(k)(V ,k) as the composition

ρ∨(φ) : V
ρ // V ⊗k A

(φ,S) // k⊗k A ∼= A .

Lemma 2.4.110. Let A be a Hopf algebra over k, and let ρ : V → V ⊗k
A be a finite comodule over A. The morphism ρ∨ defined in Definition
2.4.109 effectively makes V∨ a structure of comodule over A. Moreover, this
comodule structure makes the evaluation morphism

evV : V∨ ⊗m V → k

in Definition 2.4.46 a morphism of comodules over A where ⊗m denotes the
comodules structure over the tensor product V∨ ⊗k V with respect to the
multiplication m of A (Definition 2.4.98).

Proof. See [64, Lemma 6.2.6].

As we showed in Remark 2.4.102, Corollary 2.4.103 and Proposi-
tion 2.4.105, if the category of comodules has certain properties, we
can recover the operations or co-operations along with some of their
properties in the corresponding co-algebra or bi-algebra. This beha-
vior extends to duals in the category of comodules:

Proposition 2.4.111.Recovering the
antipode from

the existence of
duals of

comodules

LetA be a bi-algebra over k. If for any finite comodule
V over A, the dual vector space V∨ has a comodule structure ρ∨ : V∨ →
V∨ ⊗k A that makes the evaluation morphism

evV : V∨ ⊗m V → k

a morphism of comodules over A. Then, A has an antipode S : A → A so
that A is a Hopf algebra.
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Proof. We will only show how to obtain the antipode S : A→ A from
a natural transformation ωA → ωA⊗A using Proposition 2.4.96. For
details on how the morphism S conceived using this correspondence
is effectively an antipode, see [66, Theorem].
To define the natural transformation corresponding to S, let V be a
finite comodule over A. Firstly, we should note that we have the equa-
lity ωA(V∨) = ωA(V)

∨ and using it, we can define a natural mor-
phism ωA(V) → ωA(V)⊗k A using the following composition (we
will omit sub-indexes on identity morphisms):

ωA(V)
(δωA(V),id)
→ ωA(V)⊗kωA(V)∨ ⊗kωA(V)
= ωA(V)⊗kωA(V∨)⊗kωA(V)

(id,ρ∨,id)→ ωA(V)⊗kωA(V∨)⊗k A⊗kωA(V)
∼= ωA(V)⊗kωA(V∨)⊗kωA(V)⊗k A
= ωA(V)⊗kωA(V)∨ ⊗kωA(V)⊗k A

(id,εωA(V))→ ωA(V)⊗k A

where for any finitely dimensional k-vector space W, the morphism

δW : k→W ⊗kW∨

known as the co-evaluation morphism of W coming from the isomor-
phism ϕ : EndVectfk(W

∨) ∼= W ⊗kW∨ coming from the last mor-
phism in Remark 2.4.51, which is an isomorphism as W has finite di-
mension. This isomorphism induces a morphism δW : k→W⊗kW∨

defined as the only morphism that sends 1 ∈ k to ϕ(idW∨).

Let A be a Hopf algebra over k. The equality ωA(V∨) = ωA(V)
∨

for any finite comodule over A shows that ComodA is a rigid (Defini-
tion 2.4.52), so we have finally arrived to the desired characterization:

Theorem 2.4.112. Finite comodules
over a Hopf
algebra form a
neutral
tannakian
category

Let A be a Hopf algebra over k. Then, the category
ComodA of finite comodules over A, together with the forgetful functor
ωA : Comodk(A) → Vectfk is a neutral tannakian category over k (De-
finition 2.4.77).

Moreover, if G = Spec(A) is an affine group-scheme, using the cor-
respondence between comodules and representations in Proposition
2.4.84, we easily see that any additional structure (tensor, abelian, ri-
gid, etc) on the category ComodA transfers to Repk(G) and as the
correspondence commutes with the respective forgetful functors (Re-
mark 2.4.90), we obtain:

Theorem 2.4.113. Finite
representations
of an affine
group-scheme
form a neutral
tannakian
category

Let G be a an affine group-scheme over k. Then, the
category Repk(G) of finite representations of G, together with the forgetful
functor ωG : Repk(G) → Vectfk is a neutral tannakian category over k
(Definition 2.4.77).
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To finish this part, we will resume how the additional operations
given to a co-algebra C give additional structure to the category of
finite comodules up to a neutral tannakian category in the form of a
table:

Structure of C Properties of ComodfA References

C is a co-algebra

- The category is abelian
and ωC is exact and
faithful.

- Proposition 2.4.93

- The category is also
k-linear and ωC is a
k-linear functor.

- Remark 2.4.92

- Both C and ωG can be
recovered from the
category.

- Corollary 2.4.97

C has a compatible
multiplication m

- Comodules can be
tensored −⊗m −.

- Definition 2.4.98

- m can be recovered
from the category.

- Remark 2.4.102

m is commutative
−⊗m − satisfies the
commutativity
constraint

Corollary 2.4.103(a)

m is associative
−⊗m − satisfies the
associativity constraint.

Corollary 2.4.103(b)

C has a compatible unit
e

−⊗m − satisfies the
unit object axiom with k
as identity element.

Proposition 2.4.105

C is a bi-algebra

- The category is
tensorial. - Proposition 2.4.107

- ωC is a tensor functor.

- End(k) = k and the
category is k-linear.

- Remark 2.4.108

C is a bi-algebra with an
antipode S

- Any dual of a
comodule over C has a
comodule structure.

- Definition 2.4.109

- S can be recovered
from the category.

- Proposition 2.4.111

C is a Hopf algebra
The category together
with ωC is neutral
tannakian.

Theorem 2.4.112

Table 1: Properties of the category of comodules with respect to the operati-
ons in a co-algebra (with references).
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2.4.2.2 Recovering a group-scheme from its category of representations

Now that we have established that the category of finite representati-
ons of an affine group-scheme G over a field k is neutral tannakian.
We will now show how to recover G from the category Repk(G).
While, the last Subsubsection was mostly focused on comodules, now
we will shift attention to representations22.
To start, we will apply Example 2.4.65 to ωG : Repk(G) → Vectfk,
the forgetful functor of Repk(G). Meaning that we will consider the
functor

End⊗(ωG) = Hom⊗(ωG,ωG) : Algk → Set

that for any k-algebra R, it considers the set of tensor morphisms
(Definition 2.4.62), between φR ◦ωG and itself, where

φR : Vectfk → R− Modf

is the functor that takes any k-vector space W and tensors it with R.
The composition φR ◦ωG is simply the functor V 7→ ωG(V) ⊗k R
where V is the finite k-vector space corresponding to a representation
r : G→ GL(V).
As the category Repk(G) is rigid, we have:

Remark 2.4.114. The functor End⊗(ωG) is group-valued (Definition 2.2.5)
as Repk(G) is a rigid tensor category, for any k-algebra R the essential
image of φR ◦ωG is composed of finite and free R-modules so the full sub-
category of R− Modf they conform is rigid by [24, Exercise 2.10.16.], and
thus any morphism of tensor functors in End⊗(ωG)(R) is an isomorphism
(Proposition 2.4.64).

Notation 2.4.115. Let G be an affine group-scheme. For any k-algebra R,
we will denote the composition φR ◦ωG from the beginning of this sub-
subsection as ωG ⊗ R. Notice the similarity with the notation in Notation
2.4.95.

From Remark 2.4.114 the set End⊗(ωG) defined above this remark
is composed exclusively of automorphisms of the tensor functorωG⊗
R, so we will define:

Definition 2.4.116. Automorphism
functor of the
forgetful functor
of
representations

Let G be an affine group-scheme. The group-valued
functor

Aut⊗(ωG) : Algk → Grp

is called the automorphism functor of the forgetful functor associated
to G. If this functor is representable, it is represented by a group-scheme that
we will call the automorphism group-scheme of the forgetful functor
associated to G.

This functor is key for what we want to achieve:

22 Though the reader should always have the correspondence of Proposition 2.4.84 in
mind for any result we state here.
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Proposition 2.4.117.Recovering an
affine

group-scheme
from its finite

representations

Let G be an affine group-scheme. Then, we have an
isomorphism of functors G̃ ∼= Aut⊗(ωG).

Proof. Let us consider

End(ω) : Algk → Set

the functor that maps any k-algebra R to the set of natural transforma-
tions, that are not necessarily tensor morphisms, of ωG ⊗ R to itself.
We obviously have an inclusion Aut⊗(ωG)(R) ⊂ End(ω)(R) for any
k-algebra R.
The desired isomorphism of functors come from the more general
natural isomorphisms

End(ω)(R) ∼= HomR−Mod(A⊗k R,R) ∼= HomVect(k)(A,R)

for any k-algebra R, where A is the Hopf algebra associated to G. This
implies the desired isomorphism G̃ = HomAlgk(A, ·) ∼= Aut⊗(ωG) if
we show that under the isomorphism above Aut⊗(ωG)(R) ⊂ End(ω)(R)

corresponds to the subset of HomVect(k)(A,R) composed of all k-algebra
morphisms between A and R.
To establish the isomorphisms, let R be a k-algebra. Firstly we have
that HomR−Mod(A⊗k R,R) ∼= HomVect(k)(A,R) as any morphism of
R-modules f : A ⊗k R → R becomes a morphism of k-vector spa-
ces A → R by composing f with the morphism of k-vector spaces
i : A → A ⊗k R defined as i(a) = a ⊗ 1 for a ∈ A, and any mor-
phism of k-vector spaces g : A→ R induces a morphism of R-modules
f : A⊗k R→ R by the formula f(a⊗ r) = m(g(a)⊗ r) where m is the
multiplication morphism of R.
If we consider R solely as a vector space, we have an isomorphism
HomVect(k)(A,R) ∼= Hom(ωG,ωG ⊗ R) by Proposition 2.4.96

23 where
we are considering the natural transformations between the func-
tors ωG and ωG ⊗ R as functors of vector spaces by forgetting the
k-algebra structure of R. But as for any finite comodule V over A,
ωG(V)⊗k R is a k-algebra, we have by using the isomorphism in the
previous paragraph that

Homk(ωG,ωG ⊗ R) ∼= HomR(ωG ⊗ R,ωG ⊗ R) = End(ω)(R)

where the Hom-set with subscript kmeans “natural transformation of
functors of vector spaces” while the Hom-set with subscript R means
“natural transformation of functors of R-modules” so we have indeed
the natural isomorphism of functors

End(ω) ∼= HomVect(k)(A, ·)

mentioned in the beginning of the proof.
To finish the proof, we just need to show that for any k-algebra R,

23 We are identifying ωG with ωA by Proposition 2.4.84.
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any isomorphism of tensor functors Φ(R) : ωG ⊗ R → ωG ⊗ R corre-
sponds bijectively to a k-algebra morphism φ : A → R. The fact ΦR
that is a tensor functor implies that the following diagram of natural
transformations is commutative

ωG((·)⊗ (·))⊗ R ΦR //

��

ωG((·)⊗ (·))⊗ R

��
ωG(·)⊗ωG(·)⊗ R

(ΦR,ΦR)
// ωG(·)⊗ωG(·)⊗ R

but using Proposition 2.4.96, Proposition 2.4.101 and the isomorphism
from the beginning, we can conclude that this is equivalent to have
the following commutative diagram

A⊗k A
(φ,φ) //

mA

��

R⊗k R
mR

��
A

φ
// R

where φ : A → V is the morphism of k-vector spaces associated to
ΦR, which is precisely the condition we need to impose to φ in order
to show that it is a morphism of k-algebras.

This result will allows us to prove the tannakian correspondence in
Subsubsection 2.4.3.1, and relate properties ofG to properties Repk(G),
along with properties of morphisms of affine group-schemes in Sub-
subsection 2.4.3.2.
For both these purposes, we also need to relate morphisms of group-
schemes and the tensor functors these morphisms actually induce
between their categories of representations.

Definition 2.4.118. Pull-back of
representations
induced by
morphisms of
group-schemes

Let G,G′ be affine group-schemes over k. If φ : G →
G′ is a morphism of group-schemes, any finite representation r : G′ →
GL(V) induces a representation of G by taking the composition r ◦φ : G→
GL(V).
This defines a functor φ∗ : Repk(G

′) → Repk(G) called the pull-back
functor (of representations) induced by φ.

Remark 2.4.119. Let G,G′ be affine group-schemes over k and let φ : G→
G′ be a morphism of group-schemes. The pull-back functor φ∗ is a tensor
functor that clearly preserves the respective forgetful functors, i.e., ωG ◦
φ∗ = ω′G.

A corollary of Proposition 2.4.117 that relates to pull-back functors
is:

Corollary 2.4.120. Let G,G′ be affine group-schemes over k. There is a
bijective correspondence between morphisms of group-schemes φ : G → G′

and tensor functors F : Repk(G
′)→ Repk(G) that satisfy ωG ◦ F = ω′G.
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Proof. It suffices to show that the assignment φ 7→ φ∗ has an inverse.
Let F : Repk(G

′) → Repk(G) be a functor as in the statement, then
any tensor automorphism of ωG induces an automorphism of ωG′
via F, thus the same is true for ωG ⊗ R over ωG′ ⊗ R, so F induces a
morphism of group-valued functors

Aut⊗(ωG)→ Aut⊗(ωG′)

that becomes a morphism of group-schemes G → G′ by Proposition
2.4.117 and Yoneda’s lemma, which provides an inverse to the assig-
nment at the beginning of the proof.

2.4.3 Tannakian Correspondence

Now we have almost all the tools to show that any neutral tannakian
category over a field k is equivalent to the category of representations
of a group-scheme. We can actually show that we have a correspon-
dence between k-linear abelian categories with an exact and faithful
functor to the category of finitely dimensional k-vector spaces and
the category of finite comodules over co-algebra, in such a way that if
the corresponding co-algebra was a Hopf algebra the category must
be neutral tannakian and vice versa, this will be the content of Sub-
subsection 2.4.3.1. We will follow the approach of Serre in [61, §2.5]
with statements borrowed from [49, Sections 9d & 9e].
After this, in Subsubsection 2.4.3.2 we will combine the contents of
Subsubsection 2.4.2.2 together with tannakian correspondence to show
how some properties of an affine group-scheme are reflected on its
category of representations.

2.4.3.1 Proof of tannakian correspondence

Let C be a co-algebra over a field k. We know from Proposition 2.4.93

and Remark 2.4.92, that the category ComodC of finite comodules
over C is k-linear abelian. Moreover, the forgetful functor ωC is exact
and faithful. The opposite statement is true, and it is the main result
of this section:

Theorem 2.4.121.Correspondence
between k-linear

abelian
categories with a

fiber functor
with comodule

categories

Let C be a k-linear abelian category with a k-linear exact
and faithful functor ω : C→ Vectfk. Then, there exists a co-algebra C such
that C is equivalent to the category ComodC with the forgetful functor ωC.

A functor ω : C → Vectfk like the one described in the statement
of the theorem will be called a fiber functor, extending with Definition
2.4.77 outside neutral tannakian categories.

Remark 2.4.122. If C is a k-linear abelian category with a fiber functor ω.
We will always suppose that ω is in addition a tensor functor (Definition
2.4.57) when C is also a tensor category.
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We will proof Theorem 2.4.121 starting with an easier case of the
correspondence of Theorem 2.4.121, but first we need a definition:

Definition 2.4.123. Simple objects,
composition
series and length

Let A be an abelian category. A simple object in an
abelian category is an object S such that any monomorphism (or sub-object)
i : S′ → S is either the zero morphism or an isomorphism. In other words,
simple objects do not have sub-objects different from the zero object and
themselves.
Let X be an object of an abelian category, a composition series of X, is a
sequence of sub-objects

X = P0 ⊃ P1 ⊃ P2 ⊃ · · ·

such that for any i > 0 the quotient Pi/Pi+1 is a simple object , if such a
sequence exists.
X has finite length if it has a composition series with a finite amount of
members.

and some remarks:

Remark 2.4.124. Let C be a k-linear abelian category with a fiber functor
ω : C→ Vectfk.

(a) Any morphism u of C such thatω(u) is the zero morphism (Definition
2.4.1) of Vectfk is necessarily the zero morphism as ω is faithful.
As ω is also exact and using Definition 2.4.19(d), a morphism v of C
is a monomorphism or an epimorphism or an isomorphism if and only
if ω(v) has the corresponding property.
Another consequence of the faithfulness of ω is that for any pair of
objects X, Y of C, we have an inclusion of vector spaces HomC(X, Y) ⊂
HomVectfk(ω(X),ω(Y)), in particular HomC(X, Y) always have finite
dimension.

(b) The faithfulness and exactness ofω imply that the lattice of sub-objects
of any object X of C is injectively mapped to the sub-object lattice of
ω(X), where the sub-object lattice is defined by the relation f 6 f′,
where f : Y → X and f′ : Y′ → X are sub-objects of X, if and only if
there exists a unique morphism i : Y → Y′ such that f = f′ ◦ i.
This implies that any object of X has finite length as certainly ω(X)

must have finite length as it is a finitely dimensional k-vector space,
and ω preserves simple objects.
We should also note that the analogous lattice of quotients of X is also
injectively mapped to the quotient lattice of ω(X).

We also need to introduce a construction that we will be widely
use in the context of tannakian categories:

Definition 2.4.125. Generated
sub-category by
sub-quotients

Let A be an abelian category. If S is a set of sub-objects
of X, we will denote as 〈S〉 the full sub-category of A consisting of sub-
quotients (Definition 2.4.69(a)) of finite direct sums of objects of S, that we
will call the sub-category of sub-quotients generated by S. If A equals
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〈S〉 we will say that C is generated by sub-quotients of S.
In the special case we are considering a single object X, we will denote its
sub-category of sub-quotients generated by it by 〈X〉.

Now we can introduce a key simpler case of Theorem 2.4.121:

Proposition 2.4.126.Correspondence
for categories

generated by a
single element

Let C be a k-linear abelian category with a fiber func-
tor ω : C → Vectfk. If C = 〈X〉 is generated by sub-quotients of a single
object X. Then, there exists a co-algebra CX such that C is equivalent to the
category ComodCX with the forgetful functor ωCX .

Definition 2.4.127. Let C be a k-linear abelian category with a fiber functor
ω : C → Vectfk. Let X be an object of C, if S ⊂ ω(X) is a sub-object, the
minimal element24 of the lattice of sub-objects Y ⊂ X such that S ⊂ ω(Y)

will be called the sub-object of X generated by S, where we are using the
same ordering for sub-objects as the one described in Remark 2.4.124(b) .
A sub-object Y ⊂ X generated by a single element y ∈ ω(X) is called a
monogenic object.

Remark 2.4.128. Let C be a k-linear abelian category with a fiber functor
ω : C → Vectfk and let X be an object of C. Let Y ⊂ X be a monogenic
sub-object generated by y ∈ ω(X), Y being monogenic is equivalent to the
condition

Y′ ⊂ Y and y ∈ ω(Y′) =⇒ Y = Y′

for any sub-object Y′ of X.

Now let us suppose that our starting abelian k-linear category is
C = 〈X〉 generated by sub-quotients by a single element. The proof of
Proposition 2.4.126 lies on three lemmas, that we will present without
proof, the first being:

Lemma 2.4.129 (Lemma 9.33 [49]). Let C = 〈X〉 be a k-linear abelian
category with a fiber functor ω : C→ Vectfk. Let X be an object of C. Then,
for any monogenic sub-object Y ⊂ X we have

dimk(ω(Y)) 6 dimk(ω(X))2.

This lemma implies that the dimensions of monogenic sub-objects
of the generator by sub-quotients are always bounded. If such a di-
mension is maximal for a certain monogenic object, we have

Lemma 2.4.130 (Lemma 9.34 [49]). Let C = 〈X〉 be a k-linear abelian
category with a fiber functor ω : C → Vectfk and let P be a monogenic
sub-object of X such that dimk(ω(Y)) is the largest possible. Then, if the
object p ∈ ω(X) generates P, we have:

(a) For any object Z of C and any element z ∈ ω(Z), there exists a unique
morphism f : P → Z such that ω(f)(p) = x.

(b) The functor HomC(P, ·) is exact and faithful.

24 That exists by Zorn’s lemma.



2.4 tannakian categories 113

An object P of an abelian category for which the always left ex-
act functor HomC(P, ·) is exact is called projective, if this functor is
moreover faithful P is called a projective generator. Thus, the object P
described in Lemma 2.4.130 is a projective generator of C.
If we consider the set of endomorphisms of P, End(P)25, it has a na-
tural structure of an associative k-algebra with unit that is not neces-
sarily commutative. As P is a projective generator, we have

Lemma 2.4.131 (Lemma 9.35 [49]). Let C = 〈X〉 be a k-linear abelian
category with a fiber functor ω : C → Vectfk and let P be a projective
generator of C. Then, C is equivalent to the category of finite right End(P)-
modules in such a wayω becomes the forgetful functor of the latter category.

To finish the proof Proposition 2.4.126, we need the following re-
mark:

Remark 2.4.132. Let C be a co-algebra over k. If we consider C as a k-vector
space, we can consider its dual C∨ and in fact as the dual acts as a covariant
functor (Remark 2.4.47) the co-operations ∆ and ε become a multiplication
and a unit morphisms for C∨ so this dual is an associative k-algebra with
unit that is not necessarily commutative. If C∨ is commutative, we will say
that C is co-commutative.

Proof of Proposition 2.4.126. Let P be a projective generator of C = 〈X〉
which exists thanks to Lemmas 2.4.129 and 2.4.130.
By Lemma 2.4.131 C is equivalent to the category of right End(P)-
modules that carriesω to the forgetful functor of the latter, but we can
easily see that a right module over End(P) becomes a comodule over
End(P)∨. This establishes an equivalence of categories between finite
right End(P)-modules and finite comodules over End(P)∨, under this
equivalence the forgetful functor of one becomes the forgetful functor
of the other, thus we have

C ∼= ComodEnd(P)∨

as desired.

Remark 2.4.133. Canonical
comodule
associated to
abelian
categories
generated by a
single element

Let C = 〈X〉 be a k-linear abelian category with a fiber
functorω : C→ Vectfk. If P is a projective generator of C, Lemma 2.4.130(a)
is equivalent to say that P represents the fiber functor ω. This allows us to
canonically associate a co-algebra to an abelian category of the form 〈X〉 by
using Yoneda’s lemma, as we can easily see that we have an isomorphism of
associative k-algebras26 with unit

End(P) ∼= End(ω)

25 We have omitted the sub-script C for convenience.
26 Not necessarily commutative.
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where the set on the right is the set of natural transformations from ω to
itself. Thus, by Proposition 2.4.126 we have a canonical equivalence of cate-
gories

C ∼= ComodEnd(ω)∨

that carries ω to ωEnd(ω)∨ which is also independent of the choice of a
projective generator of C.

Notation 2.4.134. Following Remark 2.4.133, if C = 〈X〉 is a k-linear abe-
lian category with a fiber functor ω : C → Vectfk, it is canonically isomor-
phic to the category ComodEnd(ω)∨ , and thus, in this case we will denote the
algebra End(ω) and its dual End(ω)∨ as AX and CX respectively, so we
have

C = 〈X〉 ∼= ComodCX .

If X is an object of a k-linear abelian category D with fiber functor ω, not
necessarily generated by a single element by sub-quotients, we will also use
AX and CX to denote

AX = End
(
ω|〈X〉

)
and CX = A∨

X .

Remark 2.4.135. Let C be a k-linear abelian category with a fiber functor
ω : C→ Vectfk. If X is an object of C, we can consider the full sub-category
〈X〉 within C. We know that 〈X〉 ∼= ComodCX by Proposition 2.4.126.
Moreover AX acts on the k-vector space

(
ω|〈X〉

)
(Y) for any object Y in 〈X〉

so
(
ω|〈X〉

)
(Y) is an AX-module, or equivalently, a comodule over CX. In

short, the functor Y 7→
(
ω|〈X〉

)
(Y) establishes the equivalence of categories

between 〈X〉 and ComodCX of Proposition 2.4.126.

Now we are ready to proof the main result:

Proof of Theorem 2.4.121. Let C be a k-linear abelian category with a
fiber functor ω : C→ Vectfk. For any object X of C, we will denote as
[X] its isomorphism class in the skeletal category associated to C.
We can define a partial ordering on these classes by setting

[X] 6 [Y] ⇐⇒ 〈X〉 is a full sub-category of 〈Y〉 .

The set of these classes with this partial ordering is directed as for
any two classes [X], [Y] we have that [X], [Y] 6 [X⊕ Y]. Moreover, for
any pair of classes with [X] 6 [Y] we have a restriction morphism
AY → AX coming from the full inclusion 〈X〉 ⊂ 〈Y〉.
Thus, we have a projective system of k-algebras {AX}[X] and a direct
system of co-algebras {CX}[X], so we can consider the directed limit

C(ω) = lim
→
[X]

CX
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of these comodules27. By construction C(ω) acts on any k-vector
space ω(Z) where Z is an object of C so ω(Z) is a comodule over
C(ω), thus, in the same vein as Remark 2.4.135, the functor X 7→ ω(X)

establishes an equivalence between C and ComodC(ω), carrying ω to
ωC(ω), as desired.

Now we are almost ready to establish the tannakian correspon-
dence.

Remark 2.4.136. Let C be a neutral tannakian category over k, with fiber
functor ω (Definition 2.4.77). Following Example 2.4.65 and the first para-
graphs of Subsubsection 2.4.2.2, we have for any k-algebra R a functor

X 7→ ω(X)⊗k R

that we will denote as ω⊗ R following Notation 2.4.115. We can consider
the functor End⊗(ω) : C → R− Modf that assigns to each k-algebra R the
set of endomorphisms of ω⊗ R. As C is rigid, Remark 2.4.114 also holds
for C so End⊗(ω) is actually composed of tensor automorphisms and it is
group-valued. So we will denote it as Aut⊗(ω).

The correspondence we have established for comodules implies tan-
nakian correspondence by the contents of Subsubsection 2.4.2.1:

Corollary 2.4.137. Tannakian
correspondence

Let C be a neutral tannakian category over k, with fiber
functor ω. Then, the functor Aut⊗(ω) is represented by an affine group-
schemeG over k, such that the functor X 7→ ω(X) establishes an equivalence
between C and Repk(G) that carries ω to the forgetful functor ωG.

Definition 2.4.138. Fundamental
group-scheme of
a tannakian
category

Let C be a neutral tannakian category over k, with
fiber functor ω. The group-scheme G that makes C equivalent to Repk(G) is
called the fundamental group-scheme of C.

Proof of Corollary 2.4.137. We know by Theorem 2.4.121 and its proof,
that C is equivalent to the category of comodules ComodC(ω) via the
forgetful functor ω with

C(ω) = lim
→
[X]

CX

where the limit above is taken over the set of all isomorphism classes
of objects of C, and

CX = End
(
ω|〈X〉

)∨
.

Now C is not only an abelian category, but rather an abelian ten-
sor category, so if ComodC(ω) is a tensor category, and the equiva-
lence between C and ComodC(ω) is a tensorial functor, we would

27 Technically, we need that C is locally small so C(ω) exists. C is locally small if its Hom-
sets are effectively sets and not proper classes. We will suppose that this is the case
and move on, but it should be pointed out that this limit might not exists without
this assumption.
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obtain that C(ω) is in fact a Hopf algebra as its category of como-
dules would be tensorial (Proposition 2.4.107) and rigid (Proposition
2.4.111). This implies the corollary as C is then equivalent to Repk(G)
where G = Spec(C(ω)) using the correspondence between finite re-
presentations of group-schemes and finite comodules over Hopf al-
gebras (Proposition 2.4.84), and thus Aut⊗(ω) ∼= G̃ by Proposition
2.4.117.
To show that ComodC(ω) and ω : C → ComodC(ω) are tensorial,
we will use a correspondence between morphisms of co-algebras and
functors between their categories of comodules, in a similar fashion
to Corollary 2.4.120: there is a bijective correspondence between mor-
phisms of co-algebras f : C → C′ and functors F : ComodC →
ComodC′ such that ωC = ωC′ ◦ F, see [49, Lemma 9.43] for a proof of
this fact.
Now, as C is tensorial, the tensor functor ⊗ : C× C → C becomes a
morphism of co-algebras m : C(ω)⊗k C(ω)→ C(ω) as we can easily
see that C×C is equivalent to ComodC(ω)⊗kC(ω). In particular C pos-
sesses a compatible multiplication (Definition 2.4.98) and the tensor
category axioms of C, listed in Definition 2.4.31, translate into dia-
grams involving C(ω) and its multiplication that make it commuta-
tive and associative, together with the existence of a compatible unit
e : k → C(ω) (Definition 2.4.104). Finally, by Corollary 2.4.103 and
Proposition 2.4.105 we conclude that ComodC(ω) is a tensor category
and this easily implies that the equivalence ω : C → ComodC(ω) is
tensorial, finishing the proof.

Remark 2.4.139. It should be noted that the correspondence for k-liner abe-
lian categories of Theorem 2.4.121 we have just proven is highly dependent
of the fiber functor: the same k-linear abelian category C with two different
fiber functors ω and ω′ would yield a priori two different co-algebras C and
C′, so that C ∼= ComodC or C ∼= ComodC′ depending on which fiber func-
tor we are considering, this is a consequence of the characterization of the
co-algebras in the proof Theorem 2.4.121, as we have

C = lim
→
[X]

End
(
ω|〈X〉

)∨
and C′ = lim

→
[X]

End
(
ω′
∣∣
〈X〉

)∨
where the limit is taken over all the isomorphism classes of objects of C.
Clearly this extends to neutral tannakian categories over k: a priori, diffe-
rent choices of fiber functors yield different associated fundamental group-
schemes.

2.4.3.2 Properties of group-schemes v/s properties of categories of represen-
tations

We finish this chapter by showing some results about how properties
of affine group-schemes are reflect in the respective categories of fi-
nite representations. The categorical properties we will outline here
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hold as well for arbitrary neutral tannakian categories over a field k
by tannakian correspondence.
Also, from this point on, we will use “representation over a group-
scheme” and “comodule over a Hopf algebra” interchangeably by
the correspondence of Proposition 2.4.84.
Let G = Spec(A) be an affine group-scheme over a field k, we will
denote as ρG : A→ A⊗kA be its regular representation 2.4.85(1). We
will start with the case when G is finite:

Definition 2.4.140. Free comoduleLet G = Spec(A) be an affine group-scheme over a
field k and let V be a finitely dimensional k-vector space. The comodule

(idV ,∆) : V ⊗k A→ V ⊗k A⊗k A

over A is called the free comodule over V .

Remark 2.4.141. Let G = Spec(A) be an affine group-scheme over a field
k and let V be a finitely dimensional k-vector space. The choice of a base of
V characterizes the free comodule over V as a direct sum of n copies of ρG
where n = dimk(V), we will denote this direct sum as ρ⊕nG .

Lemma 2.4.142. Let G = Spec(A) be an affine group-scheme over a field k
and let V be a non-zero finite comodule over A. Then V is a sub-comodule
(Example 2.4.85(3)) of ρ⊕nG for some integer n > 1.

Proof. Let us consider ωA(V)⊗k V , the free comodule over ωA(V).
The fact that V is a comodule over A is equivalent to saying that the
structural morphism ρ : V → V ⊗k A is a morphism of comodules
if we consider the target vector space as the free comodule over V .
Moreover, ρ is injective as (idV , ε) ◦ ρ equals idV , implying the result
as V is then a sub-comodule of ρ⊕dimk(V)

G .

This result fully characterizes Repk(G) if G is finite.

Corollary 2.4.143. Category of
representations
of a finite
group-scheme

Let G = Spec(A) be an affine group-scheme over a
field k. Then, G is finite if and only if Repk(G) = 〈V〉 for some finite
representation V of G.

Proof. IfG is finite, ρG is a finite representation ofG and thus Repk(G) =
〈ρG〉 by Lemma 2.4.142.
On the other hand, if Repk(G) = 〈V〉 for some finite representa-
tion V of G, by Remark 2.4.133 we have that the Hopf algebra as-
sociated to G is the dual of the finitely dimensional k-vector space
EndComodA(P) ⊂ EndVectfk(P), where P is a projective generator of
ComodA, thus A is finitely dimensional.

Now we will characterize the category of representations of G =

Spec(A) group-scheme of finite type over k. Recall by Corollary 2.4.88

that G possesses a faithful finite representation ρ : V → V ⊗k A.
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Proposition 2.4.144.Category of
representations

of a
group-scheme of

finite type

Let G = Spec(A) be an affine group-scheme over a
field k. Then, G is of finite type over k if and only if there exists a finite
representation W such that Repk(G) is tensor generated by {W,W∨} (De-
finition 2.4.69(b)), or equivalently, any representation of G can be obtained
from W by taking tensor products, direct sums, duals and sub-quotients.

Proof. If G is of finite type over k, then it has a faithful finite repre-
sentation ρ : V → V ⊗k A and it can be shown that {V ,V∨} is a tensor
generating family for Repk(G), see [49, Thm. 4.14].
If Repk(G) is tensor generated by {W,W∨} where W is a finite repre-
sentation of G, let us suppose that G is of finite type and thatW is not
faithful, then its underlying representation morphism G → GL(W)

has a kernel N ⊂ G, the representation corresponding to W∨ would
have a kernel containing N too and so will any representation of the
form W⊕n ⊗

(
W∨

)⊕m for m,n > 0 and any finite sum of these, thus
Repk(G) would not contain any faithful representation, contradicting
the fact that G must have a faithful representation.

We would like to characterize the category of representations for
pro-finite and pro-algebraic group-schemes as well. For this purpose
we could use Corollaries 2.2.100 and 2.2.98 respectively, but this de-
mands the characterization of a quotient morphism (Definition 2.2.56)
of group-schemes q : G→ H in terms of the induced functor

q∗ : Repk(H)→ Repk(G)

of Definition 2.4.118 under the correspondence of Corollary 2.4.120.
Moreover, this characterization is useful on itself, so we will consider
this characterization and the corresponding one for monomorphisms
of group-schemes, that are closed immersions by Propositions 2.2.63

and 2.2.94.

Definition 2.4.145. Let F : C → D be a functor between two categories
C and D. We say that the essential image of F is closed by sub-objects if
for any object X of D and any sub-object Y ⊂ F(X) there exists a sub-object
Z ⊂ X such that F(Z) ∼= Y.

Proposition 2.4.146.Pull-back
functor of

representations
for quotient
morphisms

Let G,H be two affine group-schemes over k, and let
φ : G → H be a morphism of group-schemes over k. Then, φ is a quotient
morphism if and only if the induced pull-back functor of representations

φ∗ : Repk(H)→ Repk(G)

is fully faithful and the essential image of φ∗ is closed by sub-objects.

Proof. If φ is a quotient morphisms, by the universal property of
quotient morphisms 2.2.58, we can conceive Repk(H) a the full sub-
category of Repk(G) of representationsG→ GL(V) that factor through
H, thus the functor φ∗ clearly satisfies the properties in the statement.
Now let us suppose that φ∗ is fully faithful and its essential image
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is closed by sub-objects, then the former property implies that φ∗

induces an equivalence between Repk(H) and a full sub-category of
Repk(G), moreover, as the essential image of φ∗ is closed by sub-
objects, for any object X of Repk(H), the sub-category 〈X〉 genera-
ted by X by sub-quotients is equivalent to 〈φ∗(X)〉. If we write G =

Spec(A) and H = Spec(B), by Tannakian correspondence (Corollary
2.4.137) we have

A = lim
→
[X]

End
(
ωG|〈X〉

)∨
and B = lim

→
[Y]

End
(
ωH|〈Y〉

)∨
where the brackets [·] denote classes of isomorphisms of objects in the
respective categories.
Finally, as φ∗ preserves fiber functors, we have

B = lim
→
[Y]

End
(
ωH|〈Y〉

)∨
= lim
→
[Y]

End
(
ωG|〈φ∗(Y)〉

)∨
⊂ A

and thus we have an inclusion of Hopf algebras B ⊂ A that is fait-
hfully flat by Proposition 2.2.71, finishing the proof.

Remark 2.4.147. In an article by I. Biswas, P.H. Hai and J.P. Dos Santos,
Proposition 2.4.146 has been improved: in short, a morphism φ : G→ H of
affine group-schemes over k is faithfully flat if and only if φ∗ is fully fait-
hful and φ∗ satisfies one second condition from the list below, that replaces
the condition that the essential image of φ∗ is closed by sub-objects. These
conditions, which are equivalent to one another by taking duals, are:

(a) For any representation V of H and a sub-representation L ⊂ φ∗(V) of
G with dimk(L) = 1, then L is also a representation of H.

(b) For any representation V ofH and a quotient representation φ∗(V)→
L of G with dimk(L) = 1, then L is a representation of G and the
quotient morphism φ∗(V)→ L is a morphism of representations over
G.

Moreover, if H is pro-finite, then φ∗ begin faithfully flat is enough to esta-
blish the equivalence. See [11, Lemma 2.1].

Proposition 2.4.148. Pull-back
functor of
representations
for closed
immersions

Let G,H be two affine group-schemes over k, and let
φ : G → H be a morphism of group-schemes over k. Then, φ is a closed
immersion morphism if and only if any element of Repk(G) is isomorphic to
a sub-quotient of an element of the form φ∗(X) for some object X of Repk(H).

Proof. Let C be the full sub-category of Repk(G) generated by objects
of the form φ∗(X), where X is an object of Repk(H), by sub-quotients.
Thus, the condition of the statement is equivalent to say that Repk(G)
is equivalent to C.
We have a factorization of φ∗

Repk(H)→ C→ Repk(G)
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and as C has a fiber functor ωC = ωG|C and φ∗ preserves it, if we
write G = Spec(A), H = Spec(B), and we denote by C the co-algebra
corresponding to C by the correspondence of Theorem 2.4.121 and
using [49, Lemma 9.43], the factorization above becomes a composi-
tion of morphisms of co-algebras

B→ C→ A.

The same argument at the end of the proof of Proposition 2.4.146

shows that the morphism C → A is injective. On the other hand, the
other morphism B → C is surjective as for any object X of Repk(H)
the morphism

End
(
ωC|〈φ∗(X)〉

)
→ End

(
ωH|〈X〉

)
is injective, and thus by taking duals and direct limits we conclude
that B→ C is surjective.
This allows us to conclude the proof, because if φ is a closed immer-
sion, then the morphism B → A is surjective and thus A ∼= C, and
if Repk(G) is equivalent to C, then C ∼= A and thus the morphism
B→ A is surjective.

Using these results, we conclude the chapter by characterizing the
category of representations of pro-finite and pro-algebraic group-schemes:

Proposition 2.4.149.Category of
representations

of pro-
finite(algebraic)
group-schemes

LetG be an affine group-scheme over k. Then Repk(G)
is equivalent to the direct limit of full sub-categories of the form Repk(Gi)
with Gi is finite for any i if G is pro-finite or of finite type over k for any i
if G is pro-algebraic. In particular, any object X of Repk(G) is contained in
full sub-category of the form Repk(Gi).

Proof. This result is simply equivalent to Corollaries 2.2.100 and 2.2.98

at the level of categories of representations for pro-finite group-schemes
and pro-algebraic group-schemes respectively, by the characteriza-
tion of Proposition 2.4.146 for quotient morphism of group-schemes,
where the directed system of sub-categories here is given by the full
inclusions of categories induced by these quotients.

Remark 2.4.150.Tannakian
sub-category

generated by an
object

Let G be an affine group-scheme, for any object X of
Repk(G). Proposition 2.4.149 ensures the existence of a “smallest”28 tan-
nakian full sub-category of Repk(G) that contains X. We will denote this
category as 〈X〉⊗ and we will called the full tannakian sub-category ge-
nerated by X.
For an arbitrary object, this sub-category is a priori larger than 〈X〉, and if
we have the equality 〈X〉 = 〈X〉⊗, this is equivalent to say that group-scheme
associated to 〈X〉⊗ is finite by Corollary 2.4.143. In particular, if G is pro-
finite, all full tannakian sub-category generated by single objects satisfy this
property.

28 In the sense of full inclusions of categories.
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If G is a general affine group-scheme, it is pro-algebraic (Proposition 2.2.97),
and thus any tannakian full sub-category 〈X〉⊗ is tensor generated by {Y, Y∨}

where Y is some finite representation of G, but one must note that Y might
not be faithful as a representation of G, but it will as a representation of the
group-scheme associated to 〈X〉⊗.
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3.1 introduction

Now that we have established the three aspects of the fundamental
group-scheme in Chapter 2, we will put them together in this chapter
to conceive various fundamental group-schemes.
As we mentioned in Section 2.1, there are two approaches to conceive
fundamental group-schemes, as a “universal cover” and as an “auto-
morphism group-scheme”.
We will start in Section 3.2 with the classical theory of the FGS of
Nori, contained in [53, Ch. II] that considers the fundamental group-
scheme πN(X, x) of a scheme over a field k with a prescribed rational
point x ∈ X(k) as a universal covering, where the coverings we will
consider are pointed (pro-)finite torsors (Definition 2.3.17(a) & (e))
over X. Here we will show sufficient conditions for X that imply the
existence of the FGS, along with some basic results.
Then, in Section 3.3 we will consider fundamental group-schemes
as automorphism group-schemes, obtained by considering tannakian
categories of vector bundles over proper reduced and connected k-
schemes. Starting in Subsection 3.3.1, we will obtain two fundamen-
tal group-schemes, a tannakian way to ultimately conceive the funda-
mental group-scheme of Section 3.2, and another fundamental group-
scheme πS(X, x), called the S-fundamental group-scheme, first devi-
sed by I. Biswas, A.J. Parameswaran and S. Subramanian for proper
smooth curves in [12] and later generalized by A. Langer for proper
reduced and connected schemes over k in [42, 43]. We will also show
how to bridge the theory of fundamental group-schemes as universal
covers with the theory of tannakian fundamental group-schemes, en-
riching both theories.
For the second half of Section 3.3, we will show in Subsection 3.3.2 a
generalization of a new construction for fundamental group-schemes
over “varieties connected by proper chains” or CPC-varieties by I. Bis-
was, P.H. Hai and J.P. Dos Santos in [11, §7], that allows us to replace
the proper condition needed for the existence of the fundamental
group-schemes of Subsection 3.3.1. This new construction enriches
the theory tannakian fundamental group-schemes of vector bundles
over k-schemes, and puts the Nori fundamental group-scheme and
the S-fundamental group-scheme in a larger network of fundamental
group-schemes that could be used in future applications. This is the
theoretical base for the new fundamental group-schemes that we will
consider in Section 4.3.

123
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Finally, in Section 3.4 we will state more advanced results and proper-
ties, mostly for the Nori fundamental group-scheme, in Subsection
3.4.1 that we will use throughout this manuscript in later chapters,
along with examples of descriptions of fundamental group-schemes
in Subsection 3.4.2 for certain types of schemes that we will also use
later, specially in Chapter 5.
All torsors considered in this chapter will be affine (Definition 2.3.17(c))
and thus we will omit this adjective when referring to torsors, the
base field k will be of positive characteristic p > 0 unless stated other-
wise.

3.2 non-tannakian definition

3.2.1 Definition and existence

We will start by defining the category of torsors that we will use in
this subsection.

Definition 3.2.1.Category of
(pro-)finite

pointed torsors

Let X be a scheme over k with a rational point x ∈ X(k).
We will denote as FtorsX,x the category of finite pointed (over x) torsors
over X(Definition 2.3.17(a)) with morphisms of pointed torsors (Definition
2.3.15) as morphisms.
We will also consider the category PFTorsX,x of category of pro-finite
pointed (over x) torsors over X(Definition 2.3.15(e)) with the same kind
of morphisms.
There is a canonical full inclusion of categories FtorsX,x → PFTorsX,x.

Now we will state the main definition of this section:

Definition 3.2.2.Possessing a
FGS

Let X be a scheme over k with a rational point x ∈ X(k).
We say that X possesses a FGS if there exists a unique pro-finite group-
scheme πN1 (X, x) over k and a unique1 pointed πN1 (X, x)-torsor, denoted as
X̂→ X and called the universal torsor of X.
The torsor X̂ is universal in the sense that there exists a unique morphism of
torsors X̂→ T for any pointed (pro-)finite torsor T → X.
Equivalently, X possesses a FGS if for any (pro-)finite group-scheme G, there
exists a natural bijection of sets

{t : T → X : T is a pointed G-torsor over X} ∼→
{

Morphisms of group-schemes πN1 (X,x)→ G over k
}

.

The group-scheme πN(X, x) is called the (Nori) fundamental group-scheme.

We will write “Nori” before fundamental group-scheme if neces-
sary to avoid confusion with other fundamental group-schemes.

Remark 3.2.3. If X is a scheme over k with a rational point x ∈ X(k)
that possesses a FGS. The bijection of Definition 3.2.2 can be stated as an
isomorphism of functors

TX,x(·) ∼= HomPFGrp-Schk(π
N(X, x), ·)

1 Up to an unique isomorphism.
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where PFGrp-Schk denotes the category of pro-finite group-schemes over k,
and TX,x(·) denotes the functor that assigns to any pro-finite group-scheme
the set TX,x(G) of pointed G-torsors over X.
This bijection is given explicitly as the following: for any pointed G-torsor
t : T → X, the unique morphism from the universal torsor X̂→ T induces a
morphism of group-schemes πN(X, x)→ G by taking fibers over x (Remark
2.3.2). The inverse of this assignment, takes a morphism πN(X, x)→ G and
associates to it the contracted product X̂×πN(X,x)G (Definition 2.3.41) that
is a pointed G-torsor over X (Corollary 2.3.48). The fact that both assign-
ments are inverses of each other is supported on Proposition 2.3.49.
Finally, the fact that this bijection is natural means that for any morphism
φ : G→ H of pro-finite group-schemes, we have a commutative diagram2

TX,x(G)

��

// Hom(πN(X, x),G)

��
TX,x(H) // Hom(πN(X, x),H)

where the horizontal arrows are isomorphisms, and the left vertical is the
map TX,x(G) → TX,x(H) that associates any pointed G-torsor T over X to
the contracted product T ×G H that is a pointed H-torsor over X.

To effectively assess if a scheme X possesses a FGS, we will do it
by introducing a property of the category FtorsX,x whose presence is
equivalent to possessing a FGS:

Definition 3.2.4. Let X be a scheme over k with a rational point x ∈ X(k).
We say that the category FtorsX,x of finite pointed torsos over X is closed
by fibered products if for any pair of morphism of pointed torsors over X
fi : Ti → T (i = 1, 2) with fixed target, the fibered product T1 ×T T2, which
is a priori just a scheme over T , is also a finite pointed torsor over X, thus
this torsor belongs to FtorsX,x.

Remark 3.2.5. The reader must note that the fibered product T1 ×T T2 in
Definition 3.2.4 is different to the fibered product T1 ×X T2 which is in fact
a pointed torsor over the group-scheme G1 ×k G2 where Gi is the group-
scheme associated to Ti for i = 1, 2.
The scheme T1×T T2 has naturally an action from the group-scheme G1×G
G2 where G is the group-scheme associated to T . This implies that if T1 ×T
T2 is a torsor over X, it is a G1×GG2-torsor. Moreover, there is a morphism
T1 ×T T2 → T1 ×X T2 that commutes with the respective group-scheme
actions, coming from the natural morphism G1 ×G G2 → G1 ×k G2.
Finally, if both the torsors Ti are pointed for i = 1, 2 and T is pointed as well,
it is not hard to see that if T1 ×T T2 has morphism over X, it would have a
rational point over x even if it is not a torsor.

Using the fact that T1 ×X T2 is a torsor, we can conclude that the
action of G1 ×G G2 over T1 ×T T2 is free, so we could apply Theorem

2 From now on we will omit the subscript PFGrp-Schk for convenience.
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2.2.40 to obtain a quotient (Definition 2.2.39) T1 ×T T2 → Y that we
would like to be X, as T1×T T2 is clearly a torsor over Y. The complete
general property of this fibered product is:

Lemma 3.2.6. Keeping the notation of Definition 3.2.4 and Remark 3.2.5,
the scheme T1×T T2 is a pointed G1×GG2-torsor over a closed sub-scheme
Y ⊂ X that contains the rational point x ∈ X(k).

Proof. See [53, Ch. II Lemma 1] or [14, Prop. 4.4].

Now we will show how the fact that fibered products of torsors are
torsors implies the existence of the fundamental group-scheme:

Proposition 3.2.7.Criteria for
possessing a

FGS

Let X be a quasi-compact scheme over k with a rational
point x ∈ X(k). Then, X possesses a FGS if and only if the category FtorsX,x

is closed by fibered products.

Proof. If X possesses a FGS, the for any pair fi : Ti → T (i = 1, 2) of
morphisms of finite torsors over X, then we have a morphism X̂ →
T1×T T2 naturally, as for any i = 1, 2, we have morphisms φi : X̂→ Ti
that come from the universal property of X̂ and

f1 ◦φ1 = f2 ◦φ2 : X̂→ T

is the unique morphism from X̂ to T . Thus, we have a commutative
diagram

X̂

��

// T1 ×T T2

{{
X

but the morphism X̂→ X is faithfully flat while T1 ×T T2 → X factors
through a closed sub-scheme Y of X by Lemma 3.2.6, thus Y = X and
thus FtorsX,x is closed by fibered products.
If the category FtorsX,x is closed by finite products, its torsors {Ti}i∈I
and associated group-schemes {Gi}i∈I form inverse directed systems
of schemes over X and Spec(k) respectively, the system of torsors is
projective by the fact that FtorsX,x is closed by fibered products, while
{Gi}i∈I is always an inverse directed system, and its projective limits
exists as a pro-finite group-scheme G = lim

← i∈I
Gi over k (Remark

2.2.93), and thus we can form the projective limit given by these sy-
stems to obtain a universal torsor X̂ = lim

← i∈I
Ti using Proposition

2.3.60.

We see that if X is also quasi-separated, and X possesses a FGS,
then X̂ is a Nori-reduced pointed πN(X, x)-torsor by Corollary 2.3.62.
Now we will state the main result of this part, due to Nori, that esta-
blishes sufficient conditions for a scheme over k to possess a FGS.
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Proposition 3.2.8 (Proposition 2 [53]). Reduced and
connected
schemes possess
a FGS

Let X be a quasi-compact scheme
over k with a rational point x ∈ X(k). If X is reduced and connected, it
possesses a FGS.

Proof. By Proposition 3.2.7, it suffices to show that FtorsX,x is closed
by fibered products. Let fi : Ti → T (i = 1, 2) be two morphism of
finite pointed torsors over X, we will need to show that T1×T T2 is an
object of FtorsX,x as well.
By Lemma 3.2.6, T1×T T2 is a pointed torsor over a closed sub-scheme
Y ⊂ X with x ∈ Y(k). Let G be the finite group-scheme associated to

T , let pi (i = 1, 2) be the compositions T1 ×X T2 → Ti
fi→ T , the fact

that the action of G over T is free and transitive (Definition 2.2.29),
there exists a morphism z : T1 ×X T2 → G such that p1 = µT (p2, z)
where µT is the action morphism of G over T . With this notation, we
can see that T1 ×T T2 equals z−1(e) where e : Spec(k)→ G is the unit
morphism of G, in particular it is a closed sub-scheme of T1 ×X T2.
Now let G0 the connected component of the unit of G, which is a
subgroup-scheme of G as it is the kernel of the morphism π0 : G →
π0(G) where π0(G) is the scheme representing the connected compo-
nents of G, which is an étale group-scheme over k, corresponding to
the largest étale (Definition-Proposition 2.2.103) sub-algebra of A, if
G = Spec(A).
Because G is finite, G0 is clopen3 sub-scheme of G, thus z−1(G0) is a
clopen sub-scheme as well, and if t : T1 ×X T2 → X is the structural
morphism of X, as it is finite thus proper, and faithfully flat thus an
open immersion [32, Théorème 2.4.6], we have that t(z−1(G0)) ⊂ X is
clopen as well, thus t(z−1(G0)) = X as X is connected.
Finally, if we check the respective reduced sub-schemes for the ine-
quality above, we will obtain X on the right hand side as X is reduced,
while we will obtain Y on left hand side as

(
G0
)

red = Spec(k) is the
unit point of G by [49, p. 2.17], thus z−1

((
G0
)

red

)
= T1×T T2 in terms

of their underlying sets, taking t over this equality implies that Y = X

as sets and thus Y = X as schemes, finishing the proof.

Remark 3.2.9. The hypotheses of Proposition 3.2.8 is just a sufficient condi-
tion for possessing a FGS. If we consider for instance non-reduced quasi-
compact schemes over k, they could still possess a FGS, see Proposition
3.4.15 in Subsection 3.4.1 for an important example.
In general, non-reduced schemes over Dedekind schemes with a rational
point have a universal torsor, eventually a proper class of distinct univer-
sal torsors. This class is closed by fibered products in analogous sense to that
of Definition 3.2.4. See [3] for more details.

Now we will show the behavior of the FGS over morphisms of
schemes.

3 Closed and open.
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Definition 3.2.10.Induced
morphism of

FGS

Let X and Y be two schemes with rational points x ∈
X(k) and y ∈ Y(k). If f : X → Y is a morphism that f(x) = y we will
say that f is compatible with the respective rational points. In this case,
the pull-back to X of the universal torsor Ŷ → Y of Y is a pointed πN(Y,y)-
torsor over X. Thus, we have an unique morphism X̂ → Ŷ ×Y X of torsors
over X inducing a morphism

πN(f) : πN(X, x)→ πN(Y,y)

of group-schemes over X by taking fibers over x. The morphism πN(f) is
called the induced morphism of fundamental group-schemes induced
by f.

Notation 3.2.11. In case we have not specified rational points over two
schemesX and Y, we will say that a morphism f : X → Y induces a mor-
phism of FGS for compatible rational points if we have an induced mor-
phism πN(f) : πN(X, x)→ πN(Y,y) for some rational points x ∈ X(k) and
y ∈ Y(k) that are compatible under f, provided such rational points exist.

Remark 3.2.12. Let X and Y be two schemes over k, and let us suppose
that both these schemes possess a FGS. If a morphism f : X → Y induces
a morphism πN(f) : πN(X, x) → πN(Y,y) for compatible rational points,
then using the bijection of Definition 3.2.2, we see that for any pointed G-
torsor T → Y that corresponds to a morphism of group-schemes πN(Y,y)→
G, its pull-back T ×Y X to X is a pointed G-torsor over X (Lemma 2.3.3) and
it corresponds to the composition

πN(X, x)
πN(f)// πN(X, x) // G .

This will be important for the next subsection.

We finish this subsection with a remark:

Remark 3.2.13. In Proposition 3.2.7 we do not really need to exclusively
consider rational points, in fact we can take S-points x : S → X where
S is a non-empty scheme over k, thus we can have a FGS with S-points
πN(X, x;S).
A particular case of interest, is the case when we take geometric points x̄ :

Spec(Ω) → X where Ω is an algebraically closed field. The FGS obtained
with this type of points can be called the arithmetic FGS, that we can denote
as πN(X, x̄). The name arithmetic comes in part by the fact that if k is any
field, πN(Spec(k), x) is the trivial group-scheme while πN(X, x̄) is generally
not trivial if k is not algebraically closed and its pointed torsor are related to
extensions of k, separable and purely inseparable among them, alluding to
what some mathematicians call “arithmetic”.
On the other hand, πN(X, x) is “geometric” as many results and examples
of fundamental group-schemes are exclusive for schemes over algebraically
closed fields. We will see results of this kind throughout this manuscript. See
[70] for more details on the arithmetic FGS.
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3.2.2 Nori-reduced torsors revisited and induced morphisms of FGS

Let X be a scheme over k and let G be an affine group-scheme. Recall
that a G-torsor t : T → X is Nori-reduced if it does not possess pro-
per sub-torsors (Definition 2.3.40). If X possesses a FGS, Nori-reduced
pointed torsors are a key element of the theory of the FGS of X. In
this subsection we will show these torsors allow to characterize indu-
ced morphisms πN(f) : πN(X, x) → πN(Y,y) of FGS by morphisms
f : X → Y for compatible rational points when they are faithfully flat
or closed immersions, among other properties, like we did for tanna-
kian categories and morphisms of group-schemes in Subsubsection
2.4.3.2.
The main property of pointed Nori-reduced torsors for schemes pos-
sessing a FGS can be easily deduced from their definition and the
bijection of Definition 3.2.2, it is the following:

Lemma 3.2.14. Main
characterization
of Nori-reduced
torsors

Let X be a scheme over k with a rational point x ∈ X(k)
that possesses a FGS. Then a pointed G-torsor t : T → X is Nori-reduced if
and only if its corresponding arrow πN(X, x)→ G is faithfully flat.

Remark 3.2.15. Let X be a scheme over k with a rational point x ∈ X(k)
that possesses a FGS. If t : T → X is a pointed Nori-reduced torsor, by Re-
mark 2.3.50, the unique morphism X̂ → T from the universal torsor of X is
a K-torsor with K = ker(πN(X, x)→ G).
Let T ′ → X be a pointed H-torsor over X, if we apply the isomorphism
theorem for group-schemes (Theorem 2.2.65) to the associated morphism
πN(X, x) → H of group-schemes, we have that the image of this morphism
H′ ⊂ H corresponds to a sub-torsor V ⊂ T ′ of T ′ by the bijection of Defini-
tion 3.2.2, and V is a Nori-reduced H′-torsor over X. This is a reformulation
of Proposition 2.3.52 to the morphism X̂ → T ′ showing that for a scheme
that possesses a FGS, this proposition can be trivially deduced from the iso-
morphism theorem of group-schemes.

Definition 3.2.16. Canonical
Nori-reduced
sub-torsor

Let X be a scheme over k with a rational point x ∈ X(k)
that possesses a FGS. If t : T → X is a pointed G-torsor over X. Then,
the Nori-reduced pointed sub-torsor V ⊂ X corresponding to the image of
πN(X, x)→ G is called the canonical Nori-reduced sub-torsor of T .

Remark 3.2.17. Let X be a scheme over k with a rational point x ∈ X(k)
that possesses a FGS. If T → X is a pointed torsor over X, we can define a
partial order over the set of pointed sub-torsors of T by defining W 6 W′

for two sub-torsors W,W′ ⊂ T if and only if the closed immersion W ↪→ T

factors through the closed immersion of W′ ↪→ T .
If V is the canonical Nori-reduced sub-torsor of T , then V is the minimal
element under this partial ordering, i.e., V is the smallest sub-torsor of T .

Nori-reduced torsors are the most important for describing the FGS
of a scheme over k. The following proposition justifies this:
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Proposition 3.2.18. Let X be a scheme over k with a rational point x ∈
X(k) that possesses a FGS. Then, πN(X, x) is the projective limit of all its
quotients that are finite and Nori-reduced.

Proof. This is essentially the torsor version of Corollary 2.2.101, that
pro-finite group-schemes are the limit of its finite quotients. The only
non-trivial part is to show that the family of all pointed Nori-reduced
torsors over X is directed.
As the category FtorsX,x is closed by fibered products by Proposition
3.2.7, if fi : Ti → T (i = 1, 2) are two morphisms of Nori-reduced
torsors, then T1 ×T T2 is a finite pointed torsor over X but it might
not be Nori-reduced, so we need a Nori-reduced alternative, which
is simply the canonical Nori-reduced sub-torsor of T1×T T2, finishing
the proof.

This proposition allows us to characterize morphisms of FGS’s
πN(f) : πN(X, x) → πN(Y,y) induced morphisms f : X → Y for com-
patible rational points:

Proposition 3.2.19.Properties of
morphisms

between FGS’s
in terms of

Nori-reduced
torsors

Let X and Y be two schemes with rational points x ∈
X(k) and y ∈ Y(k) and let f : X→ Y be a morphism that is compatible with
the respective rational points. If both X and Y possess a FGS, and we consider
the induced morphism πN(f) : πN(X, x)→ πN(Y,y) then we have:

(a) πN(f) has trivial image if and only if the pull-back to X of any finite
Nori-reduced torsor T → Y is a trivial torsor (Example 2.3.4(1)) over
X.

(b) πN(f) is faithfully flat if and only if the pull-back of any finite Nori-
reduced torsor over Y is Nori-reduced over X.

(c) πN(f) is a closed immersion if and only if any finite Nori-reduced
torsor over X is a sub-torsor of the pull-back of a finite Nori-reduced
torsor over Y.

Proof. Let t : T → X be a finite Nori-reduced pointed G-torsor over X
and let u : U → Y be a finite Nori-reduced pointed H-torsor over Y,
for some finite group-schemes G and H. Then:

Proof of (a): If πN(f) factors through the trivial group-scheme, then for any
faithfully flat arrow πN(Y,y) → H the composition πN(X, x) →
πN(Y,y) → H has trivial image, and thus the corresponding
pull-back torsor is trivial by the bijection of Definition 3.2.2. On
the other hand, if any pull-back of a Nori-reduced torsor u :

U → Y is trivial over X, then U×Y X ∼= X×k H and thus if I is
a set that indexes Nori-reduced pointed torsors over Y, where
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Ui → Y for i ∈ I is a Nori-reduced Hi-torsor, using Proposition
3.2.18 we have

Ŷ ×Y X =

(
lim
← i∈I

Ui

)
×Y X

∼= lim
← i∈I

(X×Y Hi)

= X×Y
(

lim
← i∈I

Hi

)
= X×Y πN(Y,y)

that implies that πN(f) is trivial (Definition 3.2.10).

Proof of (b): If πN(f) is faithfully flat, as the morphism πN(Y,y)→ H is fait-
hfully flat as U is Nori-reduced (Lemma 3.2.14), then we con-
clude that the composition πN(X, x) → πN(Y,y) → H is also
faithfully flat. On the other hand, (b) is equivalent to say that
for any individual Nori-reduced H-torsor U → Y the composi-
tion πN(X, x) → πN(Y,y) → H individually, then by passing to
the limit over all arrows πN(X, x)→ H for Nori-reduced torsors
over Y, we will obtain that πN(X, x)→ πN(Y,y) is faithfully flat
by looking at the respective Hopf algebra morphisms, that are
all injective.

Proof of (c): If πN(f) is a closed immersion, for any Nori-reduced G-torsor
T → X let KG be KG = ker(πN(X, x)→ G), then we can consider
the subgroup-scheme πN(KG) ⊂ πN(Y,y) and NG the smal-
lest normal subgroup-scheme of πN(Y,y), that exists by Zorn’s
lemma. Thus, we have a commutative diagram

πN(X, x)

��

πN(f) // πN(Y,y)

��
G // H = πN(Y,y)/NG

where both vertical morphisms are faithfully flat, and both ho-
rizontal morphisms are closed immersions. As πN(f) is a clo-
sed immersion and G is not trivial, we cannot have that NG =

πN(Y,y) as H would be trivial in that case, and thus H is not
trivial. Finally, if H is finite, we are done, otherwise H is a pro-
finite quotient of πN(Y,y) and there exists a finite quotient H→
Q such that G → Q is a closed immersion by [33, Théorème
8.10.5(iv)].
For the opposite implication, let us suppose that any Nori-reduced
G torsor T → X is a sub-torsor of the pull-back of a Nori-
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reduced H-torsor V → Y, in this case we have a commutative
diagram

πN(X, x)

��

πN(f)// πN(Y,y)

��
G // H

where both vertical morphisms are faithfully flat, and the lower
horizontal morphism is a closed immersion. If K = ker(πN(f)
we can see by following the diagram that the composition

K ↪→ πN(X, x)→ G

has trivial image. As this holds for any finite quotient of πN(X, x),
by passing to the limit we see that the closed immersion K ↪→
πN(X, x) has trivial image, implying that K is trivial.

3.2.3 Comparison with the étale fundamental group

In this subsection we will compare the fundamental group-scheme
with the étale fundamental group. This will also show that over fields
of characteristic zero the non-tannakian FGS is redundant as it is es-
sentially the étale fundamental group.
Let X be a scheme over a field k, recall (Example 2.3.10(2)) that a fi-
nite and faithfully flat morphism Y → X is a finite étale covering if for
any point x ∈ X the fiber Y ×X Spec(κ(x)) is the spectrum of an étale
κ(x)-algebra (Definition-Proposition 2.2.103). For any geometric point
x̄ : Spec(Ω) → X, the abstract group Γ = Aut(Y|X) of automorphisms
of f acts freely over Yx̄, and if this action is moreover transitive, we
say that the étale cover Y → X is Galois.

Definition 3.2.20.Category of
finite étale covers
and fiber functor

Let X be a scheme over a field k, and let x̄ : Spec(Ω)→
X be a fixed geometric point of X. We will denote the category of finite
étale covers of X as FétX. Objects in this category are finite étale cover over
X, and morphisms are simply scheme morphism over X.
Moreover, we will consider the functor Fibx̄ : FétX → Set that assigns to
every étale cover Y → X the underlying set of its geometric fiber Yx̄. This
functor is known as the fiber functor over x̄.

With this, we can define the étale fundamental group:

Definition 3.2.21.Étale
fundamental

group

Let X be a scheme over a field k, and let x̄ : Spec(Ω)→
X be a fixed geometric point of X. The étale fundamental group is the
group π1(X, x̄) of natural automorphism of Fibx̄.

Remark 3.2.22. As an automorphism group for the functor Fibx̄, the étale
fundamental group π1(X, x̄) acts on each geometric fiber Yx̄, so the fiber
functor can be consider as a functor

Fibx̄ : FétX → π1(X, x̄) − Set
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where π1(X, x̄) − Set denotes the category of sets with a right action from
π1(X, x̄).

The main theorem, underlying the basic properties of the étale fun-
damental group is:

Theorem 3.2.23 (§V.7 [35]). Main properties
of the étale
fundamental
group

Let X be a connected scheme over a field k,
and let x̄ : Spec(Ω) → X be a fixed geometric point of X. If π1(X, x̄) is the
étale fundamental group of X with respect to x̄, then:

(a) The action of π1(X, x̄) on every geometric fiber is continuous4 and
the fiber functor Fibx̄ establishes an equivalence between FétX and the
category of finite sets with continuous right action of π1(X, x̄).

(b) Under the equivalence of the point above, connected étale coverings
of X correspond to sets with transitive actions of π1(X, x̄). Moreover,
connected Galois covers correspond to finite quotients of π1(X, x̄), i.e.,
for any Galois cover Y → X, Aut(Y|X) is a finite quotient of the étale
fundamental group.

(c) π1(X, x̄) is a pro-finite abstract group. It is the projective limit of all
the automorphism groups of connected Galois étale covers of X.

For a proof of this theorem, the reader can consult [64, Thm. 5.4.2
& Coro. 5.4.8].
This result allows us to to relate π1(X, x̄) with the fundamental group-
scheme πN(X, x) when the base field k is algebraically closed, using
the next definition:

Definition 3.2.24. Maximal pro-P
quotient

Let G be an affine group-scheme over k, and let P a
property of group-schemes, for example, finite or étale. We will suppose the
following supplementary property for set of quotients of G that satisfy pro-
perty P: ifQ,Q1 andQ2 are quotients of G that satisfy the property P, then
for any pair of faithfully flat morphisms qi : Qi → Q (i = 1, 2) that com-
mute with the quotients morphisms from G, the fibered product Q1 ×QQ2
also has property P.
Then, the projective limits of all these quotients is a quotient group-scheme
G→ GP that we will call the maximal pro-P quotient ofG. If the property
P is “finite” the resulting quotient will be called the maximal pro-finite
quotient of G that we will denote as Gpro-F and if P “étale” the correspon-
ding quotient will be called the maximal pro-étale quotient of G that we
will denote as Gét.

Remark 3.2.25. Let G be an affine group-scheme over k, and let P a pro-
perty of group-schemes, let us suppose that property P is always inherited
by subgroup-schemes. If G has a pro-P quotient GP, it has the following
universal property, using the Isomorphism Theorem for group-schemes (The-
orem 2.2.65): For any morphism of group-schemes over k, φ : G → H

4 Here the finite sets corresponding to the geometric fibers are considered with the
discrete topology.
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where H is a group-scheme that satisfies property P, then there exists a uni-
que morphism GP → H that factors through φ. If P does not get inherited
by all subgroup-schemes, then the universal property above only holds for
faithfully flat morphisms.

Proposition 3.2.26.Comparison
between the étale

fundamental
group and the

FGS

Let X be a reduced and connected scheme over an al-
gebraically closed field k, with a rational point x ∈ X(k). Then, the étale
fundamental group-scheme π1(X, x) is isomorphic to

(
πN(X, x)

ét
)
(k), the

set of k rational points of the maximal pro-étale quotient of the FGS.

Proof. By the Galois correspondences for étale algebras (Theorem 2.2.104)
and Example 2.2.107, if G is a finite étale group-scheme over an al-
gebraically closed field, it is necessarily the constant group-scheme
associated to a finite abstract group Γ . Constant group-schemes over
a field k are fully determined by their k̄-points, so as k is algebraically
closed, we have that(

πN(X, x)
ét
)
(k) = lim

← i∈I
Gi(k) ∼= lim

← i∈I
Γi

where I indexes the set of étale quotients of πN(X, x) and Γi is the
abstract group associated to Gi so it suffices to show that the pro-
jective limit on the right is π1(X, x). But as noted in Example 2.3.10(2),
Nori-reduced Gi-torsors over constant group-schemes are the same
as Galois étale covers with automorphism group Gi(k) = Γi, moreo-
ver they are connected, thus the desired isomorphism follows from
Theorem 3.2.23.

Remark 3.2.27.FGS is
characteristic

zero

If k is an algebraically closed field of characteristic zero
and X is a scheme over k that possesses a FGS, then πN(X, x) = πN(X, x)

ét

as any finite group-scheme over k is étale (Proposition 2.2.109), so there is
essentially no difference between the FGS and the étale fundamental group.
If k is not algebraically closed, πN(X, x) is a priori “larger” than π1(X, x)
as Nori-reduced torsors over non-constant étale group-schemes are not Ga-
lois étale covers, rather, they are geometrically so. See the last paragraph of
Example 2.3.10(2).

Remark 3.2.28. If now k has positive characteristic, then πN(X, x) is a pri-
ori larger than πN(X, x)

ét
as not all finite group-schemes over k are reduced,

for example the group-scheme

αp = Spec (k[x]/(xp))

that represents the group-valued functor of k-algebras R 7→ {r ∈ R : rp =

0} is highly non-reduced by looking at its underlying Hopf algebra. This
Hopf algebra is local, and group-schemes of these type are called local or
infinitesimal group-schemes (See [18, II §4.7] for more details). Thus, the
eventual presence of torsors over local group-schemes implies that πN(X, x)
is larger than πN(X, x)

ét
if X possesses such torsors. Moreover, if Y → X is

an étale cover of a reduced scheme, Y is reduced as well ([64, Prop. 5.2.12])
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but this might not longer true in positive characteristic for arbitrary finite
torsors over X, Nori-reduced or not.

3.3 tannakian fundamental group-schemes

3.3.1 Tannakian Nori and S FGS’s

Now we will construct two fundamental group-schemes out of neu-
tral tannakian categories over a field k of vector bundles over a scheme
X over k. There are two possible ways to construct these fundamen-
tal group-schemes, one is the construction for proper schemes that
combines Nori [53, Ch. I] and Langer [42] approaches by conside-
ring “finite bundles” over X and “semi-stable bundles” over proper
smooth curves. This will be the content of Subsubsection 3.3.1.1
The other approach is for “pseudo-proper” schemes, due to N. Borne
and A. Vistoli in [13] that extends beyond schemes and simplifies the
tannakian formulation of the Nori fundamental group-scheme.
We will focus more on the former approach in this subsection, but we
will briefly mention the key points and results for the pseudo-proper
approach at the end, see Remark 3.3.59.
We will also show how these tannakian approaches are related to the
fundamental group-scheme obtained out of pointed finite torsors in
Section 3.2, unifying both approaches in Subsubsection 3.3.1.2.
Throughout this subsection, Xwill be a proper (thus of finite type), re-
duced and connected scheme over a field k. In particular, X is noether-
ian and Γ(X,OX) = k. Thus, vector bundles E over X correspond to
schemes f : Y → X finite and flat over X with E ∼= f∗(OY) (Section
1.4(6)).

3.3.1.1 Nori-semistable and essentially finite vector bundles

We will start with some details about vector bundles, that we will
cover now.

Definition 3.3.1. Morphisms of
vector bundles

Let X be a proper, reduced and connected scheme over a
field k. If F and G are two vector bundles, that we will identify as finite
and flat morphisms f : Y → X and g : Z → X with f∗(OY) = F and
g∗(OZ) = G.
A morphism of vector bundles h : F → G is a morphism of schemes
h : Z → Y over X such that g = f ◦ h and for every geometric point
x̄ : Spec(Ω)→ X, the morphism Zx̄ → Yx̄ of fibers over x̄ is a morphism of
Ω-vector spaces of constant rank that is independent of the geometric point
x̄.

Remark 3.3.2. In practice, a morphism of vector bundles at the OX-module
level is a morphism of OX-modules h : F → G of constant rank over any
geometric point over X, i.e., the morphism of fibers over geometric points
Fx̄ → Gx̄ has a constant rank that is independent of the given geometric
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point, this is sustained by two facts: the first fact is that over a reduced
scheme a sheaf is locally free if and only if it has constant rank on all stalks,
the constancy of rank does not imply local freeness over non-reduced schemes,
thus the second fact [44, Prop. 1.7.2] ensures the kernel and the image are
vector bundles, but we could have used another version for the definition of
vector bundle morphisms from the literature with the same result.
We see then, that the conditions we impose on vector bundle morphisms are
stronger than the conditions required of a simple morphism of OX-modules,
as a morphism of vector bundles ensures the kernel and the image sheaves
are indeed vector bundles, which is not true in general if we only consider
morphisms of OX-modules.

Now we will introduce sub-bundles:

Definition 3.3.3.Sub-bundles Let X be a proper, reduced and connected scheme over a
field k and let F be a vector bundle over X. A quasi-coherent sub-sheaf E ⊂ F

is a sub-bundle if the inclusion morphism is a morphism of vector bundles.

Remark 3.3.4. Keeping the notation of Definition 3.3.3, as the image of an
inclusion of bundles i : E ↪→ F is a vector bundle, E has a complement
vector sub-bundle, i.e., there exists a sub-bundle E′ ⊂ F such that F =

E⊕ E′.

We finish the discussion of vector bundles with quotient bundles:

Definition 3.3.5.Quotient bundle Let X be a proper, reduced and connected scheme over a
field k, let F be a vector bundle over X and let E be sub-bundle of F. The
quotient bundle is the quotient sheaf F/E that is a vector bundle by Remark
3.3.4.

Now we will define the first main type of vector bundle we will
work with:

Definition 3.3.6.Finite bundles Let F be a vector bundle over X. We say that F is finite if
there exist two different polynomials f,g ∈ Z>0[x] such that f(F) ∼= g(F),
following the notation of Definition 2.4.69(b). We will denote the full sub-
category of Qcoh(X) whose objects are finite bundles as Fin(X).

This definition is due to Weil, so the name “Weil finite” is used too.

Example 3.3.7.Finite torsors
yield finite

vector bundles

Let t : T → X be a finite G-torsor over X. As t is finite
and faithfully flat, VT = t∗(OT ) is a locally free sheaf, moreover, the iso-
morphism T ×X GX ∼= T ×X T corresponds to the isomorphism of vector
bundles V⊕n ∼= V ⊗V = V⊗2, where n = ord(G) is the order of G (Defini-
tion 2.2.89). Thus, we see that VT is a finite bundle by using the polynomials
p(x) = nx and q(x) = x2.

We would like to study the category Fin(X) as a full sub-category
of the category Vect(X) of vector bundles of finite rank which we
will consider as a full sub-category of Qcoh(X), the category of quasi-
coherent sheaves over X, thus we are considering vector bundles with
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morphisms of OX-modules instead of vector bundle morphisms (De-
finition 3.3.1). It is not hard to see that Qcoh(X) is k-linear abelian,
tensorial but not rigid, while Vect(X) is a k-linear rigid tensor cate-
gory that is additive but not abelian, as kernels and cokernels of mor-
phisms of OX-modules between vector bundles might not be vector
bundles (Remark 3.3.2).
To better study Fin(X), we need an equivalent definition for finite
bundles, so we will introduce the following concepts:

Definition 3.3.8. Krull-Schmidt
categories

Let C be a k-linear5 additive category.

(a) An object I of C is indecomposable if I cannot be written as a direct
sum of two objects, i.e., if I = I1 ⊕ I2 then either I1 or I2 is the zero
object.

(b) Let X be an object of C. An endomorphism e ∈ EndC(X) is idem-
potent if e ◦ e = e. We say that an idempotent e ∈ EndC(X) of C
splits if there exists an object Y of C and morphisms f : X → Y and
g : Y → X such that g ◦ f = e and f ◦ g = idY .

(c) The category C is a Krull-Schmidt category if for any object X of C
idempotent endomorphisms e ∈ EndC(X) split.

Lemma 3.3.9. Decompositions
in Krull-Schmidt
categories

Let C be a k-linear additive category. If C is Krull-Schmidt
and Hom-sets are finitely dimensional over k, then every object X of C has a
finite decomposition in indecomposable objects

X ∼= E1 ⊕ E2 · · ·En

where Ei is indecomposable for any i = 1..n. This decomposition is unique
in the following sense: if

X ∼= E1 ⊕ E2 · · ·En ∼= F1 ⊕ F2 · · · Fm

are two decompositions of X, then m = n and Fi = Eσ(i) for some permuta-
tion σ ∈ Sn.

Over proper schemes, Hom-sets of vector bundles are finitely di-
mensional, so we have:

Proposition 3.3.10 (Atiyah [7]). Let X be a proper reduced and connected
scheme over a field k. Then, the category Vect(X) is Krull-Schmidt category,
in particular any vector bundle can be decomposed into a finite direct sum
of indecomposable vector bundles.

With this we can characterize finite vector bundles further:

Proposition 3.3.11. Let X be a proper reduced and connected scheme over
a field k. Let E be a vector bundle over X, and let I(E) denote the set of

5 In the sense of Remark 2.4.92.
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isomorphism classes of indecomposable vector bundles appearing in the de-
composition of E. Then, E is finite if and only if the set

S(E) =
⋃
n>1

I(E⊗n)

is finite.

Proof. See [64, Prop. 6.7.4].

Example 3.3.12.Finite line
bundles

Let X be a proper reduced and connected scheme over a
field k and let L be a line bundle, i.e., a vector bundle of rank 1.
In this case, L and its tensor powers are all line bundles, and thus indecom-
posable. So we have

S(E) = {L⊗n : n > 1},

and this allows us to conclude that L is finite if and only if it is a torsion
line bundle, i.e., L⊗m ∼= OX for some integer m > 1.

Using this proposition and by carefully working with the sets S(E),
we have:

Corollary 3.3.13. Let X be a proper reduced and connected scheme over
a field k. The category Fin(X) is stable under tensor products, duals, direct
sums and direct summands, thus it is a k-linear rigid additive Krull-Schmidt
tensor category.

Sadly, we have not arrived at an abelian category as we have the
same issue the category of vector bundles has with kernels and co-
kernel. We need to find an abelian, or better still, a neutral tannakian
category of vector bundles over X that contains Fin(X).
In any case, we need a fiber functor for a neutral tannakian category,
so we will define it now and then we will define the larger “good”
class of bundles that we will use.

Definition 3.3.14. Let X be a proper reduced and connected scheme over a
field k. If x ∈ X(k) is a rational point, we will consider the functor ωx that
assigns to each vector bundle V , associated to a morphism f : Spec(V)→ X,
its fiber over x : Spec(k) → X, that we will denote as Vx = Spec(V)×X
Spec(k).
It is not hard to see that Vx is a finitely dimensional vector space, so we have
a functor ωx : Vect(X)→ Vectfk.

Remark 3.3.15. Keeping the notations of Definition 3.3.14,ωx is a k-linear
additive tensor functor, moreover, it is fully faithful asωx(V) = 0 is the zero
vector space if and only if V is the zero vector bundle.
If C is a full sub-category of Vect(X) that is also abelian and such that any
morphism between elements of C is a vector bundle morphism, it is not hard
to see that ωx|C is also exact.
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Let C be a proper (thus projective) smooth curve over k, we will con-
sider a special family of vector bundles over curves to obtain an abe-
lian category of vector bundles over proper reduced and connected
schemes X that contains Fin(X).
But first, we need to introduce some concepts for vector bundles over
curves:

Definition 3.3.16. Let C be a proper smooth curve over k.

(a) DegreeLet E be a vector bundle over C of rank r > 1, the determinant of E
is the the r-th exterior power of E, det(E) =

∧r
E. It is a line bundle

over C. By [36, Ch. II 6.11 & 6.13], this line bundle corresponds to a
divisor DE =

∑s
i=1 nici (ni ∈ Z, ci ∈ C is a closed point for any i)

whose degree deg(DE) =
∑s
i=1 ni ∈ Z is called the degree of E, we

will denote it as deg(E).

(b) SlopeLet E be a vector bundle over C of rank r > 1, the slope of E is the
ratio

µ(E) =
deg(E)
r
∈ Q.

(c) Semi-stable
bundles

Let E be a vector bundle over C of rank r > 1, we say that E is
semi-stable if for every non-zero sub-bundle E′ ⊂ E we have

µ(E′) 6 µ(E)

if the inequality above is strict for every sub-bundle, we say that E is
stable.

Remark 3.3.17. Let C be a proper smooth curve over k. We have several
remarks related to Definition 3.3.16:

(a) For any pair of vector bundles E and F, we have that

µ (E⊗OC F) = µ(E) + µ(F).

(b) If E is a vector bundle. An equivalent definition of semi-stability for E
is that

µ(E) 6 µ(F)

for any non-zero quotient sheaf E→ F.

(c) Let
0→ E1 → E→ E2 → 0

be a short exact sequence of vector bundles over C with vector bundle
morphisms. If both E1 and E2 are semi-stable with the same slope µ,
then E is also semi-stable with slope µ, see [62, Corollaire 7].

(d) The property of being semi-stable is geometric, meaning that a vector
bundle E overC is semi-stable if and only if the pull-back of this bundle
over CL is semi-stable for any extension L of k. We will use this mostly
to affirm that semi-stable bundles remain so over Ck̄ where k̄ is the
algebraic closure of k. If we consider stable bundles, this property is
no longer true in general, see [38, pp. 1.3.8 & 1.3.9].
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The last point has in fact a stronger version:

Proposition 3.3.18 (Proposition 8 [62]). Let C be a proper smooth curve
over k and let f : E→ F be a morphism of OC-modules between two vector
bundles E and F with µ(E) = µ(F) = µ.
Then, f is a morphism of vector bundles and the bundles ker(f) and coker(f)
are semi-stable of slope µ.

This allows us to characterize the following category:

Definition 3.3.19.Category of
semi-stable
bundles of

constant slope

Let C be a proper smooth curve over k. For a fixed ra-
tional number µ, we will denote the category of semi-stable bundles of
slope µ over C as SSC(µ).

Due to Proposition 3.3.18, we can characterize the category SSC(µ)
as a corollary:

Corollary 3.3.20. Let C be a proper smooth curve over k and let µ be a fixed
rational number. Then, the category SSC(µ) is a k-linear abelian category.

What about the tensor product? By Remark 3.3.17(a) the only possi-
ble case where the category SSC(µ) could be tensorial is when µ = 0,
but the tensor product of semi-stable bundles of slope zero is not
necessarily semi-stable, we will show a little bit later a sufficient con-
dition for two semi-stable vector bundles of slope zero to have a semi-
stable tensor product.
We have introduced semi-stable bundles for two reasons, that the ca-
tegories SSC(µ) are all k-linear abelian, and:

Lemma 3.3.21.Finite bundles
are semi-stable of

slope zero

Let C be a proper smooth curve over k. If E is a finite vector
bundle over C, then it is semi-stable of slope zero.

Proof. See [64, Prop. 6.7.8].

With this we can define a better category containing Fin(X) for a
proper reduced and connected scheme X over k.

Definition 3.3.22.Nori-semistable
bundles

Let X be a proper reduced and connected scheme over a
field k. A vector bundle E over X is Nori-semistable if for any non-constant
morphism f : C→ X where C is a proper smooth curve over k the pull-back
bundle f∗(E) is semi-stable of slope zero. We will denote the category of Nori-
semistable bundles as NSS(X) and we will consider it as a full sub-category
Qcoh(X), thus morphisms in NSS(X) are a priori of OX-modules.

Remark 3.3.23. This definition of Nori-semistable bundles is not standard,
as there are other versions in the literature. For instance, Nori defined Nori-
semistable bundles as bundles E over X such that f∗(E) is semi-stable of
slope zero for any morphism f : C → X that is birational onto its image
([53, Definition p.81]), this hinders the possibility of a tensor structure over
NSS(X). A similar definition, is that f∗(E) is semi-stable of slope zero for any
normalization f : C̃ → C → X for any integral closed sub-scheme C ⊂ X
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of dimension 1 ([64, p.253]), this definition equally hinders a possible tensor
category structure in NSS(X).
The definition given here permits a richer structure for the category NSS(X)
that allows to define fundamental group-schemes different from πN(X, x),
that we will define shortly and in Subsection 3.3.2.

Regardless of the different definitions in the literature, they always
ensure the following property for the category of Nori-semistable
bundles:

Proposition 3.3.24. NSS(X) is
k-linear abelian

Let X be a proper reduced and connected scheme over
a field k. Then, the category NSS(X) is k-linear and abelian. Moreover, any
morphism of OX-modules between Nori-semistable bundles is a morphism of
vector bundles.

For the proof of this proposition, we need the following lemma:

Lemma 3.3.25. Let X be a proper reduced and connected scheme over a
field k. The for any pair of closed points x,y ∈ X there exists a finite set
of proper smooth curves {Ci}

n
i=1 with morphisms γi : Ci → X such that⋃n

i=1 Im(γi) is connected and contains these points.

The finite set of curves described above is called a chain of proper
curves, see Definition 3.3.60.

Proof. If X is projective, a sketch of the proof can be found in [45, Exc.
8.1.5].
If X is proper, we can use Chow’s lemma ([31, Théorème 5.6.1]) to get
a surjective birational morphism π : X′ → X where X′ is a projective
scheme. It can be shown that X′ is a reduced and connected as well,
so any pair of points in X′ can be joined by a chain of proper curves
by the last paragraph. Thus, as π is surjective, we obtain the same
property for any pair of points of X.

Proof of Proposition 3.3.24. By Remark 3.3.2, if any morphism f : E →
F of OX-modules between Nori-semistable bundles is a morphism
of vector bundles, then the kernel and cokernel of these morphisms
are Nori-semistable bundles as well. In effect, for any non-constant
morphism g : C → X from a smooth and proper curve, we have
g∗(ker(f)) = ker(g∗(f)) and g∗(coker(f)) = coker(g∗(f)), and as g∗(E)
and g∗(F) belong to the abelian category SSC(0) (Corollary 3.3.20),
we conclude that ker(f) and coker(f) are Nori-semistable if E and F

are Nori-semistable and f is a morphism of vector bundles.
Now let us show that f : E → F is a morphisms of vector bundles.
Let x̄, ȳ be any pair of geometric points of X such that their images
over X correspond to two closed points x,y respectively. By Lemma
3.3.25, X contains a curve C that contains x and y, so if we normalize
C we obtain a non-constant morphism g : C̃→ X. Thus, the pull-back
morphism g∗(f) : g∗(E) → g∗(E) is a morphism of vector bundles of
slope 0, thus the rank of f is constant over all geometric points along
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the image of C ⊂ X, in particular the rank is constant over x̄ and ȳ.
We can then conclude that the rank of f is constant over the fibers over
all closed points of X, thus it is everywhere constant as the rank is an
upper semi-continuous function over X (see [36, II Example 12.7.2]),
this concludes the proof.

Remark 3.3.26. Let X be a proper reduced and connected scheme over a
field k. If E is a finite bundle over X, then for any non-constant morphism
f : C → X from a smooth and proper curve f∗(E) is finite as the pull-
back commutes with tensor products and direct sums. By Lemma 3.3.21
we conclude that E is Nori-semistable. Thus, we have a full inclusion of
categories Fin(X) ⊂ NSS(X).
Another consequence of Proposition 3.3.24, is that any morphism between
finite vector bundles is a vector bundle morphism.

We have then, that the category of Nori-semistable bundles is a
good k-linear abelian category of vector bundles of X that contains
all finite bundles. As we have established a good “abelian master
category”for finite bundles, we can consider another important type
of vector bundles:

Definition 3.3.27.Essentially finite
bundles

Let X be a proper reduced and connected scheme over
a field k. A vector bundle E is essentially finite if it is a sub-quotient
(Definition 2.4.69(a)) of a finite bundle.
We will denote the category of essentially finite bundles over X as EF(X).

Remark 3.3.28. By definition, EF(X) is the category of sub-quotients gene-
rated by the category of finite bundles over X (Definition 2.4.125) as direct
sums of finite bundles are finite (Corollary 3.3.13). Thus, it is the “smallest”
k-linear abelian full sub-category of NSS(X) that contains Fin(X).
Thus, we have full inclusions of categories Fin(X) ⊂ EF(X) ⊂ NSS(X) and
all morphisms in these categories are vector bundle morphisms.

Now we will study the tensor category structure of the catego-
ries NSS(X) and EF(X). For the category of Nori-semistable bund-
les, it is not hard to see that the tensor product E ⊗OX F of two
Nori-semistable bundles stays Nori-semistable if the tensor product
f∗(E)⊗OC f

∗(F) is semi-stable of slope 0 for any non-constant mor-
phism f : C → X where C is a smooth and proper curve. But as we
mentioned before, in general the tensor product of two semi-stable
bundles over curves is not semi-stable.
A method to obtain such examples, is to consider the pull-backs of
vector bundles over curves under relative the Frobenius morphism
and its iterations, see [26] and [58, p. 4.1]. And in fact, a sufficient
condition to ensure tensor products of semi-stable bundles is related
to these pull-backs, but first we will fix notation for Frobenius mor-
phisms:
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Definition 3.3.29. Absolute and
relative
Frobenius
morphisms

Let k be a field of positive characteristic p > 0. Over
k we have the Frobenius morphism F : k → k given by a 7→ ap. We
can apply this to any k-algebra as well and thus we have the Frobenius
morphism F : A → A on A as well. This morphism is not k-linear as it
applies p-th powers on the elements of k, but we can consider the tensor
product A(p) = A⊗k,F k that corresponds to the diagram

k

F
��

// A

��
k // A⊗k,F k

and the morphism A(p) → A given by a⊗ c 7→ cap. This morphism is k-
linear and thus its corresponding morphism of schemes FSpec(A) : Spec(A)→
Spec(A(p)) := Spec(A)(p) is known as the relative Frobenius morphism.
The absolute Frobenius morphism of Spec(A) is the morphism of sche-
mes F : Spec(A)→ Spec(A) coming from the Frobenius morphism of A, it

factors as Spec(A)
FSpec(A)→ Spec(A)(p) → Spec(A).

For a general scheme X over k, the absolute Frobenius morphism of X is
the morphism σX : X→ X that is the identity on the underlying topological
spaces but such that for any open subset U ⊂ X, the morphism induced by
σX at the level of structural sheaves OX(U) → OX(U) is the absolute Fro-
benius morphism. The relative Frobenius morphism of X is the morphism
FX : X → X(p) where X(p) is the fibered product X×k k corresponding to
the cartesian diagram

X(p) //

��

X

��
Spec(k)

σSpec(k)
// k

and thus the relative Frobenius morphism is the morphism X → X(p) ap-
pearing in the factorization X → X(p) → X of σX. FX is a morphism of
k-schemes, while σX is not. For any integer n > 1 the n-th iterate of the
relative Frobenius morphism is denoted as FnX : X→ X(pn) coming from the
n-th iterate if the Frobenius morphism of k. It is essentially what we have
defined in previous paragraphs by replacing the Frobenius morphism with
a 7→ ap

n
over k and k-algebras.

Remark 3.3.30. We will state the main properties of the relative Frobenius
morphism without proof:

(a) The assignment X 7→ X(p) is functorial, meaning that for any mor-
phism f : X → Y of schemes over k we have a unique morphism
f(p) : X(p) → Y(p) making the following diagram commutative

X
f //

FX
��

Y

FY
��

X(p)

f(p)
// Y(p)

.



144 the fundamental group-scheme

(b) The formation of X(p) commutes with products, meaning that there
is a canonical isomorphism (X×k Y)(p) ∼= X(p) ×k Y(p) such that
FX×kY is FX × FY composed with this isomorphism.

(c) The relative Frobenius morphism FX : X → X(p) is compatible with
extensions of the base field, meaning that for any extension L of k,
(XL)

(p) is canonically isomorphic to (X(p))L so that F(XL)(p) becomes
(FX)L, the base change of FX to L, under this isomorphism.

(d) For any k-algebra R, we denote fR the algebra R but with the structu-
ral morphism from k given by the composition k F→ k

i→ R where i
is the original inclusion of k on R. With this, the functor of points of
X(p) is R 7→ X̃(fR).

(e) For any scheme X over k, FX induces a homeomorphism of underlying
topological spaces. If X is of finite type over k, then FX is also finite
[27, Exc. 4.17 & 12.5].

Now we can state a condition for bundles over curves, which is
stronger than semi-stability:

Definition 3.3.31.Strongly
semi-stable

bundles

Let C be a proper smooth curve over k. A semi-stable
bundle E over C is strongly semi-stable if for any n > 1, the pull-back(
FnC
)∗

(E) of E under the relative Frobenius morphism of C is semi-stable.

The following result, due to Ramanan and Ramanathan, is key to
establish the tensor category structure over NSS(X):

Proposition 3.3.32 (Theorem 3.23 [58]). Let C be a proper smooth curve
over k. If E and F are strongly semi-stable bundles over C, then the tensor
product E⊗OC F is semi-stable as well.

Now we can fully characterize the categories NSS(X) and EF(X).

Corollary 3.3.33. Let X be a proper reduced and connected scheme over a
field k. Then, the categories NSS(X) and EF(X) are k-linear rigid abelian
tensor categories. In particular, if x ∈ X(k) is a rational point, then these
categories together with the restricted fiber functor ωx over x (Definition
3.3.14) are neutral tannakian categories over k.

We will avoid denoting the restrictions of the functor ωx to NSS(X)
or EF(X) as ωx|NSS(X) or ωx|EF(X), we will simply denote the fiber
functor over these categories as ωx if no confusion should arise.

Proof. If the categories NSS(X) and EF(X) are effectively k-linear rigid
abelian tensor categories, then they are neutral tannakian after choo-
sing a rational point x ∈ X(k) as we can easily see that EndVect(X)(OX) =

k as Γ(X,OX) = k, and by using Remark 3.3.15 as morphisms of vector
bundles in these categories are vector bundle morphisms (Proposition
3.3.24).
As we already know the categories NSS(X) and EF(X) are k-linear
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abelian, it suffices to show that these categories are stable under ten-
sor products and duals.
Let us start with NSS(X). If E and F are Nori-semistable bundles over
X, then for any non-constant morphism f : C→ X from a smooth and
proper curve we have that f∗(E⊗OX F) = f∗(E)⊗OC f

∗(F) is a vector
bundle of slope 0, so by Proposition 3.3.32 it suffices to show that
f∗(E) and f∗(F) are strongly semi-stable of slope 0, but this is true as
we can pre-compose f with the relative Frobenius morphism FC or
any of its iterations to obtain that

(
FnC
)∗

(f∗(E)) is semi-stable of slope
0 for any n > 1 as E is Nori-semistable and the same holds for f∗(F).
Finally, as duals commute with pull-backs we just need to show that
the dual of a semi-stable vector bundle of slope 0 is of the same type.
The slope part is easy to see, and the semi-stability is a consequence
of Remark 3.3.17(b), thus NSS(X) has the desired properties.
For essentially finite bundles, if F1 and F2 are two sub-quotients of
the finite bundles E1 and E2 respectively, then F1 ⊗OX F2 is a sub-
quotient of E1 ⊗OX E2 and by Corollary 3.3.13 we conclude that the
tensor product F1⊗OX F2 is essentially finite. The same corollary app-
lied to duals shows that the dual of an essentially finite vector bundle
is essentially finite.

As we have just obtained two tannakian categories, by tannakian
correspondence (Corollary 2.4.137) we can define two new fundamen-
tal group-schemes:

Definition 3.3.34. S and EF
fundamental
group-schemes

Let X be a proper reduced and connected scheme over a
field k with a rational point x ∈ X(k). The fundamental group-schemes (De-
finition 2.4.138) associated to the tannakian categories NSS(X) and EF(X)
will be denotes as πS(X, x) and πEF(X, x) respectively and we will call them
the S-fundamental group-scheme and the essentially finite fundamen-
tal group-scheme (or EF-fundamental group-scheme).

Remark 3.3.35. Let X, Y be proper reduced and connected schemes over a
field k with a rational points x ∈ X(k) and y ∈ Y(k).

(a) The essentially finite FGS is none other that the fundamental group-
scheme πN(X, x) of Section 3.2, but for now we will use the different
notation for it as we have not established why πEF(X, x) is the same
as the Nori FGS.

(b) The full inclusion EF(X) ⊂ NSS(X) is clearly closed by sub-objects
(Definition 2.4.145) and thus by Corollary 2.4.146 we have a natural
faithfully flat morphism πS(X, x)→ πN(X, x).

(c) Also, it is not hard to see that if f : Y → X is a morphism of
schemes then for any Nori-semistable (resp. essentially finite) bundle
E, the pull-back f∗(E) is Nori-semistable (resp. essentially finite) as
well. Thus we have a tensor functor f∗ : NSS(X) → NSS(Y) (resp.
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f∗ : EF(X)→ EF(Y)) that for compatible rational points f(y) = x in-
duces morphisms of fundamental group-schemes πS(f) : πS(Y,y) →
πS(X, x) (resp. πEF(f) : πEF(Y,y)→ πEF(X, x)).

We will give more details about properties (b) and (c) over a more general
framework for tannakian fundamental group-schemes of vector bundles in
Subsection 3.3.2.

To show that πN(X, x) and πEF(X, x) coincide, we need to show how
we can associate representations of affine group-schemes with vector
bundles over schemes. We will show how to do this later in Subsub-
section 3.3.1.2, but we will state two properties of the fundamental
group-schemes we have just defined.
First, we will start by characterizing πS(C, c) when C is a proper and
smooth curve over k. For this, we need a general lemma about mor-
phisms between curves f : D → C. Recall that any non-constant mor-
phism between proper and smooth curves is finite and surjective [36,
II Prop. 6.8], moreover these morphisms are determined by the finite
extension of rational function fields K(D) ⊃ K(C). In positive charac-
teristic, finite field extensions are a mix of two flavors: separable and
purely inseparable, this influences morphisms between curves in the
following way:

Lemma 3.3.36. Let f : D→ C be a finite and surjective morphism between
two smooth and proper curves over k. Then, f decomposes as

D

f

((
FnD

// D(pn)
g
// C

where FD is the relative Frobenius morphism of D, and g is a separa-
ble morphism between smooth and proper curves, i.e., the field extension
K(D(pn)) ⊃ K(C) is separable.

Proof. See [36, pp. III 2.5 & 2.5.4] or [63, Tag 0CD2].

This allows us to fully characterize Nori-semistable bundles over
curves:

Proposition 3.3.37.Nori-semistable
bundles over

curves

Let C be a proper and smooth curve over k. Then, the
category NSS(C) coincides with the category of strongly semi-stable bundles
of slope 0 over C.

Proof. By taking the identity morphism of C and all its Frobenius
iterates, we see that any bundle V of NSS(C) is strongly semi-stable
of slope zero.
To conclude both categories are the same, we just need to show that
any strongly semi-stable bundle of degree zero is Nori-semistable: Let
f : D → C be a non-constant morphism from another proper smooth
and irreducible curve and let E be strongly semi-stable bundle of
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degree 0. Then, by Lemma 3.3.36 there exists an integer n > 0 such
that f factors as

D

f

((
FnD

// D(pn)
g
// C

where Fnr is the n-ith iterated relative Frobenius morphism over D
and g : D → C is separable. By [25, Lemma 1.1] g∗(E) is a semi-
stable bundle over D(pn). Moreover, by Remark 3.3.30(a), we see that
g∗(E) is strongly semi-stable over D(pn) if and only if E is strongly
semi-stable over C, as we have a commutative diagram

E
g //

FE
��

C

FC
��

E(p)
g(p)

// C(p)

where E = D(pn) and f(p) is separable as f is separable by tracing the
underlying rational function fields in the diagram above.
Thus, we see that f∗(E) =

(
FnD
)∗

(g∗(E)) is semi-stable as we wanted.

The second property we will show now, is that πEF(X, x) is pro-
finite, like πN(X, x) is:

Proposition 3.3.38. Let X be a proper reduced and connected scheme over
a field k with a rational point x ∈ X(k). Then, πEF(X, x) is pro-finite.

Proof. Let E be an essentially finite vector bundle over X. By defini-
tion, E belongs to a full-subcategory of the form 〈F〉 ⊂ EF(X) where
F is a finite vector bundle. We will show that for any finite bundle,
we have

〈
F̃
〉
= 〈F〉⊗ (Remark 2.4.150) for a certain essentially finite

vector bundle that depends on F, in particular this sub-category is
tannakian and it corresponds to a finite quotient πEF(X, x) → G by
Proposition 2.4.143, this implies πEF(X, x) is pro-finite.
For a finite vector bundle F, as the bundle F⊕ F∨ is finite by Corol-
lary 3.3.13, we have that the direct sum

F̃ =
⊕

Ei∈S(F⊕F∨)

Ei

has a finite amount of factors by Proposition 3.3.11 and thus it is a
finite bundle again by Corollary 3.3.13. Now if we consider the full-
subcategory

〈
F̃
〉

, by construction, this category contains any tensor

product of the form F⊗i ⊗
(
F∨
)⊗j for i, j > 0 by putting the appro-

priate indecomposable sub-bundles appearing in S(F⊕F∨) and thus
we can easily conclude that

〈
F̃
〉
= 〈F〉⊗ as the category on the left is

closed by tensor products and duals, finishing the proof.
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3.3.1.2 Unifying the non-tannakian and the tannakian approaches for FGS’s

Now we will show how to relate πN(X, x) with πEF(X, x): let G be
an affine group-scheme and let t : T → X be a G-torsor, if we recall
Theorem 2.3.27 and its particular version for vector bundles (Corol-
lary 2.3.28), the pull-back of any quasi-coherent sheaf (resp. vector
bundle) over X by t is a G-equivariant sheaf (resp. vector bundle) in
such a way we obtain an equivalence of categories, the reader may
go back to the definition of G-equivariant sheaves (Definition 2.3.24)
before continuing.
If we write the equivalence of the last paragraph as t∗ : Qcoh(X) →
QcohG(T) where QcohG(T) denotes the category of G-equivariant
sheaves over T , we could try the following to inject representations of
G into the mix: let r : G→ GL(V) be a finite representation of G, if we
could show a way to obtain a G-equivariant sheaf out of V , we could
eventually obtain a functor FG : Repk(G)→ QcohG(T) whose compo-
sition with the inverse of t∗ would yield a functor FG(T) : Repk(G)→
Qcoh(X) that is determined by the torsor T . And conversely, if we
consider an affine group-scheme G and a functor FG : Repk(G) →
Qcoh(X) that satisfies certain properties, could we get a G-torsor T
over X out of it in such a way FG is isomorphic to FG(T) as functors?
The answer to this question is yes, and we will outline how to obtain
torsors out of functors from Repk(G) to Qcoh(X), but first we will
explicitly define the functor FG(T) for any given G-torsor T and for
this purpose we will expand Example 2.3.25:

Example 3.3.39.The
G-equivariant
vector bundle

associated to a
representation

Let S be a base scheme and let T be a scheme over k with
with an action µ from an affine group-scheme G over k. We established in
Example 2.3.25 that the structural sheaf OT is G-equivariant, we will use
this to show that for any finite representation V of G the free vector bundle
V ⊗k OT is G-equivariant.
Let f : Z → T be a scheme over T and let F be a quasi-coherent sheaf.
We need to show that we have an action of G̃(Z) = HomS(Z,G) over
HomQcoh((Z,F), (T ,V ⊗k OT )). By Definition 2.3.19, an element of this
Hom-set is a commutative diagram

F
φ //

_

��

V ⊗k OT_

��
Z

f
// T

where the upper arrow corresponds to a morphism of quasi-coherent shea-
ves F → f∗ (V ⊗k OT ) = V ⊗k OZ. For convenience we will expand this
diagram as

F
φ //�

**

V ⊗k OZ
�

&&

id // V ⊗k OZ_

��

f∗ // V ⊗k OT_

��
Z

f
// T

.
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Over the sheaf V ⊗k OZ, any element g ∈ G̃(Z) acts V ⊗k OZ as follows:
for any open sub-set U ⊂ Z, the action of g over V induces a morphism
V ⊗k OZ(U) → V ⊗k OZ(U) which gives us a morphism of OZ-modules
ρg : V ⊗k OZ → V ⊗k OZ, now we combine this action with the action of
G̃(Z) coming from the fact that OT is G-equivariant to obtain an action over
V ⊗k OZ corresponding to the composition

F
φ //�

**

V ⊗k OZ
�

&&

ρg // V ⊗k OZ_

��

(f·g)∗ // V ⊗k OT_

��
Z

f·g
// T

.

In simpler terms, g roughly acts on a section v⊗k z of V ⊗k OZ on the right
as

(v⊗ z) · g = (g−1 · v)⊗ (z · g)6.

In particular, if V = k we will obtain the G-equivariant structure of OT of
Example 2.3.25.
Finally, it should be remarked that we can consider non-finite representations
of G in this construction, and in that case this yields quasi-coherent G-
equivariant OT -modules.

Remark 3.3.40. Keeping the notations of Example 3.3.39, if the scheme T
with an action of a group-scheme G is in fact a G-torsor t : T → X, then for
any representation V of G, not necessarily finite, and any scheme f : Z→ T

over T the action of G̃(Z) over HomQcoh((Z,F), (T ,V ⊗k OT )) is free.

Definition 3.3.41. Functor of
G-invariant
sheaves

Let X a scheme over k, let G be an affine group-scheme
over k and let t : T → X be a G-torsor. For a quasi-coherent sheaf E over
T , the sheaf of G-invariants is the sheaf EG ⊂ t∗(E) of sections s ∈
t∗(E)(U) = E(t−1(U)) such that µ∗T (s) = p∗1(s) where µT : T ×k G → T

denotes the action morphism of T and p1 is the projection of T ×k G over
the first coordinate.
The functor FT ,G : Repk(G)→ Qcoh(X) defined as

FT ,G(V) = (V ⊗k OT )G

for a finite representation V of G, will be called the functor of G-invariants
induced by T .

Remark 3.3.42. Keeping the notation of Definition 3.3.41, the functor FT ,G

is well-defined as X = T/G by Proposition 2.3.35 which implies that for any
quasi-coherent OT -module E, EG is a clearly a quasi-coherent OGT = OX-
module, this also extends to vector bundles, and thus we can consider FT ,G

as a functor of vector bundles by restricting this functor to Vect(T).
This functor provides an inverse to the functor t∗ : Qcoh(X) → QcohG(T)
that establishes the equivalences of Theorem 2.3.27 and Corollary 2.3.28 as

6 Here the action of G̃(Z) is on the left, recall Remark 2.4.79.
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clearly t∗(EG) is G-equivariant if we use the equivalent definition of G-
equivariant sheaf stated in Remark 2.3.26.
Finally, by if we consider the essential image of FT ,G as a full sub-category
of Vect(X) we see that it is composed of vector bundles E over X that are
trivialized by T as t∗(E) ∼= O⊕nT for some integer n > 0 as any vector
bundle of the form V ⊗k OT is trivial purely as a vector bundle.

Example 3.3.43. Keeping the notation of Definition 3.3.41, let us suppose
G = Spec(A) is finite. In this case, we can consider the regular representa-
tion ofG and the vector bundle ofG-invariants associated to it (A⊗k OT )G.
This vector bundle is in fact t∗(OT ): let {fi : Ui → X}i∈I be an fpqc cover
(Definition 2.3.5) of X such that the base changes ti : Ui ×X T → Ui are
trivial G-torsors (Proposition 2.3.9). We have that Ui ×X T ∼= Ui ×k G for
any i ∈ I, and the commutative diagram

Ui ×X T
ti
��

gi // T

t
��

Ui
fi

// X

.

We will use this diagram to compare (A⊗k OT )G and t∗(OT ) with their
pull-backs f∗i

(
(A⊗k OT )G

)
and f∗i (t∗(OT )) over each Ui. We can easily

see that
f∗i

(
(A⊗k OT )G

)
∼= (g∗i (A⊗k OT ))

G

using the equivalence of Theorem 2.3.27 and Remark 3.3.42, so to study the
right hand side above, we need to understand how the functor FUi×kG,G of
G-invariants behaves for the trivial torsor ti : Ui ×k G→ Ui. Let A be the
Hopf algebra associated to G, as a scheme locally free over Ui we easily see
that (ti)∗ (OUi×kG) = OUi ⊗k A ∼= O⊕nUi where n = ord(G) and for any
finite representation V of G, as G acts over OUi ×kG solely over the second
coordinate by multiplication we have

(V ⊗k OUi×kG)
G = OUi ⊗k (V ⊗A)

G

where the action of G over V ⊗A is roughly given over a pure tensor v⊗ a
as (v⊗ a) · g = (g−1 · v)⊗ (a · g). Applying this to g∗i (A⊗k OT ) = A⊗k
OUi×kG, we obtain that

(g∗i (A⊗k OT ))
G = OUi ⊗k (A⊗k A)

G

where the action of G over A⊗k A corresponds to the action induced by
multiplication by diagonal morphism ∆G : G→ G⊗kG on the right, which
looks set-theoretically as (g1,g2) · g = (g1 · g,g2 · g). As ∆G is a closed
immersion, we have that ∆G(G) is a subgroup-scheme of G×k G and as in
the case of abstract groups, we can easily show that (G×kG)/(∆G(G)) ∼= G

as schemes7, which implies

(g∗i (A⊗k OT ))
G = OUi ⊗k (A⊗k A)

G ∼= OUi ⊗k A = (ti)∗ (OUi×kG).

7 It can be shown that ∆G is normal in G×k G if and only if G is commutative, and
that the isomorphism becomes an isomorphism of group-schemes.
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To finally establish that t∗(OT ) ∼= (A⊗k OT )G, we have the isomorphism
f∗i (t∗(OT ))

∼= (ti)∗ (OUi×kG) as t is affine using [63, Lemma 02KG]. Thus,
we conclude that t∗(OT ) is isomorphic to (A⊗k OT )G as vector bundles
when pull-backed over Ui via fi for any i ∈ I, thus these vector bundles are
isomorphic by fpqc descent (Proposition 2.3.8(l)).

As FT ,G is the inverse of t∗ we can easily deduce some properties
of this functor:

Proposition 3.3.44. Let X a scheme over k, let G be an affine group-scheme
over k and let t : T → X be a G-torsor. Then, the functor FT ,G is a k-linear
exact tensor faithful functor.
Moreover, if G is finite and X is proper reduced and connected, the essential
image of FT ,G lies within the category of essentially finite bundles over X.

Proof. The properties of the functor FT ,G is an easy verification, so we
will only show the second part of the statement.
If G = Spec(A) is finite, then we can consider the regular represen-
tation A of G, we know from Example 3.3.43 that t∗(OT ) ∼= FT ,G(A)

and the former vector bundle is finite, as seen in Example 3.3.7. Mo-
reover, as G is finite we have that Repk(G) = 〈A〉 is the category of
sub-quotients of direct sums of finite copies of the representation A
(Corollary 2.4.143), thus the essential image of FT ,G is a sub-category
of 〈t∗(OT )〉 ⊂ Vect(X) but as t∗(OT ) is finite we conclude this sub-
category is fully contained in EF(X), finishing the proof.

The functor FT ,G shows that torsors yield neutral tannakian catego-
ries of vector bundles when X has a rational point x ∈ X(k), but we
can ask ourselves a question in the opposite sense: are k-linear exact
tensor faithful functors F : C → Vect(X) where C is a neutral tanna-
kian category over k naturally isomorphic to a functor of the form
FT ,G for some affine group-scheme G and a G-torsor T over X?
The following remark is key to answer this question:

Remark 3.3.45. Let X a scheme over k, let G be an affine group-scheme
over k and let t : T → X be a G-torsor. For any affine open sub-scheme
i : Spec(R)→ X, we can consider the restricted G-torsor

tR : TR = Spec(R)×X T → Spec(R).

It is not hard to see that i∗ ◦ FT ,G = FTR,G and the latter functor is ex-
plicitly given as FTR,G = ((V ⊗k R)⊗R OT )G where we are identifying
quasi-coherent sheaves over Spec(R) with R-modules via their global secti-
ons, which establishes an equivalence between quasi-coherent sheaves over
Spec(R) and R-modules (see [36, II Coro. 5.5]).
We can go further in this case, as we have a natural transformation of ten-
sor functors ωG ⊗ R → FTR,G, where ωG ⊗ R is the notation for the base
change to R of the forgetful functor ωG (see Notation 2.4.115). This natural
transformation is an isomorphism as the essential image of ωG ⊗ R lies on
the rigid sub-category of R−Modf of free R-modules by Remark 2.4.114 and
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so does FTR,G as vector bundles over Spec(R) correspond to free R-modules,
so Proposition 2.4.64 holds in this case.
Moreover, for any R-algebra S, by recalling from Proposition 2.4.117 that
the functor of points of G is related to its tannakian category of repre-
sentations as we have G̃ ∼= Aut⊗(ωG), and if we consider the functor
Hom⊗(ωG ⊗ R, FTR,G) that assigns for any R-algebra S, the set of natu-
ral transformations8 betweenωG⊗ S and FTR,G⊗ S ∼= FTS,G as in Example
2.4.65, where TS is the base change of TR to Spec(S) by the canonical mor-
phism R → S. The group-valued functor Aut⊗(ωG) acts of the functor
Hom⊗(ωG ⊗ R, FTR,G) by acting on ωG ⊗ S for any R-algebra S, thus we
have a functorial action of functors of R-algebras

Hom⊗(ωG ⊗ R, FTR,G)×Aut⊗(ωG)→ Hom⊗(ωG ⊗ R, FTR,G)

this action is free and transitive for each R-algebra.

The last part of the Remark is the key to obtain torsors out of k-
linear exact tensor faithful functors F : C → R− Modf, at least over
affine schemes. We will call these functors the following:

Definition 3.3.46.R-valued fiber
functors

Let C be a neutral tannakian category over k. For any
k-algebra R, an R-valued fiber functor over C is a k-linear exact tensor
faithful functor η : C → R − Modf whose essential image lies in the full
sub-category of finite and free R-modules.

Remark 3.3.47. Let C be a neutral tannakian category over k. If ω is the
fiber functor of C, we know by tannakian correspondence (Corollary 2.4.137),
that functor Aut⊗(ω) is the functor of points of an affine group-scheme G.
If η is an R-valued fiber functor, where R is a k-algebra, we can consider
the functor of natural transformations Hom⊗(ω⊗R,η), which is similar to
the functor we considered for the functor of G-invariant sheaves over affine
schemes in Remark 3.3.45 as for any R-algebra S, Hom⊗(ω⊗R,η)(S) is the
set of natural transformations between ω⊗ S and η⊗ S which are always
isomorphisms by Proposition 2.4.64. Moreover, we have a functorial action

Hom⊗(ω⊗ R,η)×Aut⊗(ω)→ Hom⊗(ω⊗ R,η)

as in the case of torsors over affine schemes.
Finally, if t : T → Spec(R) is a G-torsor, then FT ,G is clearly an R-valued
fiber functor over Repk(G).

Now we will show the following key result, which will allows us
to ultimately show that πEF(X, x) coincides with πN(X, x):

8 Which is rather Isom⊗(ωG ⊗ R, FTR,G) as for any R-algebra we have isomorphisms
between tensor functors, by what was mentioned in the last paragraph.
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Theorem 3.3.48. Bijective
correspondence
between affine
torsors over
affine schemes
and R-valued
functors of finite
representations

Let C be a neutral tannakian category over k. Then:

(a) For any R-valued fiber functor η : C→ R−Modf, the functor Hom⊗(ω⊗
R,η) is representable by a G-torsor over Spec(R) where G is the affine
group-scheme whose functor of points is Aut⊗(ω).

(b) The assignment η 7→ Hom⊗(ω⊗ R,η) establishes an equivalence of
categories between the category of R-valued fiber functors over C and
the category of G-torsors over Spec(R).

Remark 3.3.49. In part (b) above, morphisms between R-valued fiber func-
tors are simply natural transformations between them while morphisms of
G-torsors are G-equivariant morphisms (Definition 2.2.30) over Spec(R).
It must be noted that both these categories are groupoids (Definition 2.3.12),
R-valued fiber functors form a groupoid by Proposition 2.4.64 while the same
result for G-torsors over Spec(R) can be found in Lemma 2.3.11.

The proof of this result was inspired by the proof of [17, Theorem
3.2].

Proof of Theorem 3.3.48. For part (b), if part (a) is true then the assig-
nment T 7→ FT ,G, where T is a G-torsor over Spec(R), establishes an
inverse for η 7→ Hom⊗(ω⊗ R,η) as C is equivalent to Repk(G) by
tannakian correspondence, see the last paragraph of Remark 3.3.47.
For the proof of part (a), let X be an object of C, recall from Lemma
2.4.130 that the k-linear abelian full sub-category 〈X〉 generated by X
has a projective generator PX, i.e, for this object the functor HomC(PX, ·)
is exact and faithful, moreover 〈X〉 is equivalent to the category of fi-
nite comodules over End(PX)∨ (Lemma 2.4.131), and the restriction
ω|〈X〉 of the forgetful functor of C to becomes the forgetful functor of
this category. Following Notation 2.4.134 we will call this comodule
CX and AX its dual.
LetHom(ω|〈X〉⊗R, η|〈X〉) be the functor that assigns to each R-algebra
S the set

Hom(ω|〈X〉 ⊗ R, η|〈X〉)(S) = Hom(ω|〈X〉 ⊗R S, η|〈X〉 ⊗R S)

of natural transformations between the respective base changes. We
will show that this functor is representable. For this, we should recall
the natural bijections

HomVect(k)(CX,V) ∼= Hom(ωCX ,ωCX ⊗ V)

where ωCX is the forgetful functor of the category of comodules over
CX, and

HomR−Mod(CX ⊗k R,R) ∼= HomVect(k)(CX,R).

The first bijections comes from Proposition 2.4.96 and the second is
present in the proof of Proposition 2.4.117.
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Now, we would like to slightly modify this using η9: let S be an R-
algebra, thus the first bijection becomes

HomR−Mod(η(CX),S) ∼= Hom(ωCX ⊗R S,η⊗R S)

and the second becomes

HomS−Mod(η(CX)⊗R S,S) ∼= HomR−Mod(η(CX),S).

If we put these two bijections together, we will obtain for any R-
algebra S that

HomR−Mod(η(CX),S) ∼= Hom(ωCX ⊗R S,η⊗R S)

which shows that η(CX) represents the functor Hom(ω|〈X〉⊗R, η|〈X〉)
as we wanted.
The proof of the first modified bijection is a modified version of the
proof of the original corresponding bijection, that we will left as an
exercise for the reader. About the second bijection, we will show how
to get from one side of the bijection to the other, as we showed in the
proof of Proposition 2.4.96, we left the verification that these functors
are inverses of each other as another exercise.
Let us start with a morphism of R-modules f : η(CX) → S, if V is a
finite comodule over CX the structural comodule morphism φ : V →
V ⊗CX becomes

ωCX(V)⊗R S→ ωCX(V)⊗kωCX(CX)⊗R S

after applying ωCX ⊗R S and if we apply η over the image of this
morphism, we will obtain

ωCX(V)⊗R S→ η(V)⊗R η(CX)⊗R S

and thus after composing with f we will obtain a morphism

ωCX(V)⊗R S→ η(V)⊗R S.

For the other direction, given a natural transformation

F : ωCX ⊗R S→ η⊗R S,

then we can define a morphism η(CX)⊗R S → S by considering the
counit morphism ε : CX → k and applying ωCX ⊗R S over it to obtain
a morphism

ωCX(CX)⊗R S→ S

and by using F, we will thus obtain a morphism of S-modules

η(CX)⊗R S→ S

9 We will omit the restrictions over η in most instances from now on.
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as clearly η(k) = R that is equivalent to a morphism of R-modules
η(CX)→ S by the second modified bijection above.
To resume, for any object X the functor Hom⊗(ω⊗ R,η) restricted to
the abelian full sub-category 〈X〉 ⊂ C representable. With this, if we
consider

Q = lim
→
[X]

CX

where [X] denotes the isomorphism class of X we considered in the
proof of Theorem 2.4.121, then we have that Q is the underlying Hopf
algebra of the affine group-scheme G that established the equivalence
between C and Repk(G), see the proof of Corollary 2.4.137. Moreover,
we have for any R-algebra S that

Hom⊗(ω⊗ R,η)(S) = lim
←
[X]

Hom(ω|〈X〉 ⊗ R, η|〈X〉)(S)

= lim
←
[X]

Hom(ω|〈X〉 ⊗R S, η|〈X〉 ⊗R S)

= lim
←
[X]

HomR−Mod(η(CX),S)

= HomR−Mod(η(Q),S).

where η(Q) = lim
→
[X]

η(CX), thus Hom⊗(ω⊗ R,η) is representable.

To finish the proof, we just need to show that η(Q) is faithfully flat
over R, as the fact that Spec(η(Q)) is a G-torsor over Spec(R) will be
a consequence of Remark 3.3.47.
First, for any object X of C, the R-module η(CX) is finite and free,
we conclude that η(Q) is a flat R-module as flatness is preserved over
direct limits and each R-module η(CX) is flat. Moreover, the canonical
injection 1→ CX induces an exact sequence

0→ 1→ CX → CX/1→ 0

which become the exact sequence

0→ η(1)︸︷︷︸
=R

→ η(CX)→ η(CX/1)→ 0

after applying η as this functor is exact, which shows that η(CX) is
faithfully flat. Thus, we conclude that η(Q) is faithfully flat as well,
finishing the proof.

Remark 3.3.50. Let C be a neutral tannakian category over k. If R be a
k-algebra, and η : C→ R− Modf is a R-valued fiber functor over C, any ra-
tional point f : Spec(k)→ Spec(R) defines an k-linear exact tensor faithful
functor f∗ : R− Mod→ Vect(k).
Let Q ∈ C the object in the proof of Theorem 3.3.48 such that η(Q) re-
presents the functor Hom⊗(ω⊗ R,η). We have the composition η(Q)

f∗→
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f∗(η(Q)) → k as f∗(η(Q)) is a k-vector space10, which defines a rational
point for the G-torsor associated to η, in particular this torsor is pointed.

As a consequence of this result for affine schemes, we can deduce
a general result for any scheme over k. This result is due to Nori, see
[53, Ch.I Prop. 2.9].

Corollary 3.3.51.Bijective
correspondence
between affine

torsors and
functors of finite

representations
over vector

bundles

Let X a scheme over k and letG be an affine group-scheme
over k. Then, the category TG(X) of G-torsors over X is equivalent to the the
category of k-linear exact tensor faithful functors F : Repk(G)→ Vect(X).
Under this equivalence, if x ∈ X(k) is a rational point, then the torsor
corresponding to a functor F : Repk(G)→ Vect(X) is pointed over x.

Proof. If t : T → G is a G-torsor, then the functor of G-invariant bund-
les FT ,G is a k-linear exact tensor faithful functor (Proposition 3.3.44),
so it suffices to show that any k-linear exact tensor faithful functor
F : Repk(G)→ Vect(X) corresponds to a G-torsor over X.
Let F be such a functor, and let i : Spec(R) → X be an affine open
sub-scheme of X, thus the i∗ ◦ F is an R-valued fiber functor over
Repk(G) as vector bundles over Spec(R) correspond to finite and free
R-modules. Thus, this restricted functor corresponds to a G-torsor
tR : TR → Spec(R) by Theorem 3.3.48.
Let {Uj}j∈J be an open affine cover of X, if we denote as ij : Ui =

Spec(Ri) → X the respective open immersion for j ∈ J, it is not hard
to see that the family U = {ij : Uj → X}j∈J is an fpqc cover of X as
any ij is flat and affine. Thus, if tj : Tj → Uj is the G-torsor over
Uj induced by F, the family of morphisms {tj} induces and affine
descent datum over U (Definition 2.3.46), which is effective by Theo-
rem 2.3.47, thus we have an affine scheme t : T → X which is also
faithfully flat by fpqc descent (Proposition 2.3.8(g) & (k)). Additio-
nally, by applying effective descent for the action morphism of G over
each torsor Tj, we conclude that T is a G-torsor over X. Moreover, by
construction FT ,G = F as F restricted to each open sub-scheme Uj is
i∗j (FT ,G) = FTj,G for all j ∈ J, finishing the proof of the equivalence.
Finally, if x ∈ X(k) is a rational point, it will be a rational point over
at least one affine open sub-scheme of X, thus any torsor correspon-
ding to a functor k-linear exact tensor faithful functor F : Repk(G)→
Vect(X) will be pointed by applying Remark 3.3.50.

Having established the correspondences, we can make a few re-
marks:

Remark 3.3.52.Functorialty of
the

correspondence
between torsors

and functors

Let X a scheme over k. If t : T → X is an affine G-torsor
over X, with functor of G-invariants FT ,G.
If φ : G → H is a morphism of affine group-schemes, we can consider
the contracted product T ′ = T ×G H (Definition 2.3.41). Then, this torsor
comes with its own functor of H-invariants FT ′,H : Repk(H) → Vect(X)

10 Not necessarily finitely dimensional.
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and in fact, Nori showed in [53, I Lemma 2.9(c)] that in this case we have a
commutative diagram

Repk(H)

φ∗

��

FT ′ ,H

%%
Vect(X)

Repk(G)
FT ,G

99

where φ∗ : Repk(H)→ Repk(G) is the natural tensor functor induced by φ
(Definition 2.4.118). And conversely, using the correspondence of Corollary
3.3.51, we have that the diagram above corresponds to the natural morphism
of torsors T → T ′ (see Corollary 2.3.48).
This implies that for any morphism of torsors f : T → V with an underlying
morphism of group-schemes φ : G → H, we have a similar commutative
diagram as the one above

Repk(H)

φ∗

��

FV ,H

%%
Vect(X)

Repk(G)
FT ,G

99

as V ∼= T ×G H by Proposition 2.3.49.
Conversely, by the correspondence of Corollary 3.3.51, any commutative di-
agram of the form

Repk(H)

φ∗

��

F2

%%
Vect(X)

Repk(G)
F1

99

where F1 and F2 are k-linear exact tensor faithful functors, and φ∗ is the
natural functor of representations induced by a morphism of affine group-
schemes φ : G → H, corresponds to a morphism T → V of torsors over X
where T is the G-torsor associated to F1 and V is the H-torsor associated to
F2.
If we work with pointed torsors, then the morphisms between torsors above
are morphisms of pointed torsors.
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Remark 3.3.53.Universal
torsors

associated to
tannakian

categories of
vector bundles

Let X be a proper reduced and connected scheme over a
field k with a rational point x ∈ X(k). The full inclusions of categories
NSS(X) ⊂ Vect(X) and EF(X) ⊂ Vect(X) correspond by Corollary 3.3.51
to two torsors

X̂EF → X, X̂NSS → X

which are a pointed πEF(X, x)-torsor and a pointed πS(X, x)-torsor respecti-
vely.
Moreover, these torsors are Nori-reduced: let us suppose we have a proper
non-trivial pointed G-subtorsor T ⊂ X̂NSS, this corresponds at the level of
group-schemes to a closed immersion G ↪→ πS(X, x) which induces a com-
mutative diagram of functors

Repk(G)
FT ,G // Vect(X)

Repk(π
S(X, x)) ∼= NSS(X)

H

OO

F

55

where F is the functor of G-invariants associated to X̂NSS. As H is a func-
tor between neutral tannakian categories coming from a closed immersion,
by Proposition 2.4.148, every finite representation V of G is a sub-quotient
of a representation of the form H(W) where W is a finite representation
of πS(X, x), thus FT ,G(V) must belong to NSS(X) as it is clearly a sub-
quotient of the Nori-semistable bundle F(W) over X and thus the essential
image of FT ,G lies within NSS(X), thus we have FT ,G : Repk(G)→ NSS(X)
and this provides a pseudo-inverse to H, thus G = πS(X, x) and the proof in
the case of X̂EF is similar by changing NSS(X) for EF(X) when necessary.
We must also note that the quotient morphism πS(X, x) → πEF(X, x) co-
ming by the full-inclusion of categories EF(X) ⊂ NSS(X) (Remark 3.3.35(b))
induces a faithfully flat morphism of pointed torsors X̂NSS → X̂EF over X (see
Remark 3.3.52).
In general, if C is a full sub-category Vect(X) such that morphism of objects
of C are vector bundle morphisms and C is a neutral tannakian category with
the fiber functor ωx. We have a Nori-reduced pointed torsor X̂C associated
to this category that we will call the universal torsor associated to the
tannakian category C of vector bundles over X.

Remark 3.3.53 can be generalized to general neutral tannakian ca-
tegories of vector bundles, and they allows us to characterize Nori-
reduced torsors:

Proposition 3.3.54.Characterization
of Nori-reduced

torsors

Let X be a proper reduced and connected scheme over
a field k with a rational point x ∈ X(k). Let C be a full sub-category Vect(X)
such that morphism of objects of C are vector bundle morphisms and C is a
neutral tannakian category with the fiber functor ωx.
Let t : T → X be a pointed G-torsor over X with G affine over k such that its
functor of G-invariant bundles has its essential image within C. Then, the
following assertions are equivalent:
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(a) T is Nori-reduced.

(b) FT ,G : Repk(G)→ C is fully faithful.

Moreover, if G is finite, then we can add the equivalent assertion:

(c) Γ(T ,OT ) = k in particular T is geometrically connected.

In part (c), T is geometrically connected because it is proper as X is
proper, using fpqc descent (Proposition 2.3.8(d))

Proof. Before establishing the equivalencies, we should note that if
t : T → X is a G-torsor with FT ,G : Repk(G)→ C, there exists a unique
morphism X̂C → T of pointed torsors over X that corresponds to FT ,G

by Corollary 2.4.120, justifying the adjective “universal” for X̂C.
Now let us show (a) =⇒ (b), if T is Nori-reduced then the morphism
X̂C → T is faithfully flat, which translates at the level of categories of
representations that FT ,G is fully faithful by Proposition 2.4.146.
For (b) =⇒ (a), if FT ,G is fully faithful we will show that the mor-
phism X̂C → T is faithfully flat. Let H ⊂ G be the image of this
morphism, if GC is the group-scheme associated to C, then we have
an H-subtorsor T ′ ⊂ T and a commutative diagram of functors

Repk(H)
FT ′ ,H // C ∼= Repk(GC)

Repk(G)

F

OO

FT ,G

77
.

As FT ,G is fully faithful, so is F and the essential image of FT ′,H is
closed by sub-objects by Proposition 2.4.146, this allows us to show
that the essential image of F is closed by sub-objects too and thus the
inclusion H ⊂ G is faithfully flat to, finishing the proof.
Now let us suppose that G = Spec(A) is finite, in this case by Pro-
position 3.3.44 the essential image of FT ,G lies with EF(X) and thus
the universal torsor that dominates T is X̂EF, so we have a morphism
φ : X̂EF → T of pointed torsors over X.
Starting with (c) =⇒ (a), if Γ(T ,OT ) = k and we suppose that T is
not Nori-reduced, then if H ⊂ G is the image of φ, then if we consider
A as the regular representation of G as a representation of πEF(X, x)
using the morphism πEF(X, x)→ G we have:

Γ(T ,OT ) = Γ(X, t∗(OT ))

= Γ(X, FT ,G(A))

= Γ(X̂EF,A⊗k OX̂EF
)π
EF(X,x)

but as πEF(X, x) → G has image H, the fixed sub-algebra of A by the
action of πEF(X, x) is the same as AH (Example 2.2.88), and thus, as

O
πEF(X,x)
X̂EF

= OX we will obtain that

Γ(X̂EF,A⊗k OX̂EF
)π
EF(X,x) = AH ⊗k Γ(X,OX) ∼= k⊕ord(G/H)
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and this shows that dimk(Γ(T ,OT )) > 1 if T is not Nori-reduced.
To finalize the proof, we will show that (a) =⇒ (c): in this case the
morphism of group-schemes πEF(X, x)→ G is faithfully flat, in parti-
cular we have that Aπ

EF(X,x) = AG = kwhich shows that Γ(T ,OT ) = k
by using the the equality Γ(T ,OT ) = Γ(X̂EF,A⊗k OX̂EF

)π
EF(X,x) previ-

ously obtained.

Remark 3.3.55. Let X be a proper reduced and connected scheme over a
field k with a rational point x ∈ X(k). Let C be a full sub-category Vect(X)
such that morphism of objects of C are vector bundle morphisms and C is
a neutral tannakian category with the fiber functor ωx, we will denote its
corresponding fundamental group-scheme (Definition 2.4.138) as πC(X, x).
As X is a quasi-separated scheme11 over k, we can alternatively say that
the universal torsor X̂C is Nori-reduced by Corollary 2.3.62, as it is the
projective limit of Nori-reduced torsors, which are the quotients of finite type
of πC(X, x) by Proposition 2.2.97. These correspond to full tannakian sub-
categories of C (Proposition 2.4.146), and thus Nori-reduced torsors using
Proposition 3.3.54.

The fact that universal torsors associated to neutral tannakian ca-
tegories are Nori-reduced implies a very strong property for mor-
phisms between their respective fundamental group-schemes:

Proposition 3.3.56.Morphisms
between FGS’s of

neutral
tannakian

categories of
vector bundles in
full inclusion are
always quotients

Let X be a proper reduced and connected scheme over
a field k with a rational point x ∈ X(k). Let C and D be neutral tannakian
categories of vector bundles over X with vector bundle morphisms with the
common fiber functor ωx. We will denote as πC(X, x) and πD(X, x) the
respective associated fundamental group-schemes.
An exact additive tensor functor F : C → D is a full inclusion of categories
if and only if the induced morphism between fundamental group-schemes
πD(X, x)→ πC(X, x) is faithfully flat.

Proof. If the morphism πD(X, x) → πC(X, x) is faithfully flat then cle-
arly we have a full inclusion by Proposition 2.4.146.
On the other hand, the existence of a full inclusion F : C → D in-
duces a morphism between fundamental group-schemes πD(X, x)→
πC(X, x) and by extension, of universal torsors F̂ : X̂D → X̂C. But as
X̂C is Nori-reduced, F̂ is a quotient morphisms of torsors (Definition
2.3.51), in particular the underlying morphism of fundamental group-
schemes πD(X, x)→ πC(X, x) is faithfully flat as desired.

This proposition essentially states that full inclusions of neutral
tannakian categories of vector bundles always induces faithfully flat
morphisms between the associated fundamental group-schemes.
With Proposition 3.3.54, we can finally show that for a proper reduced
and connected scheme X over a field k with a rational point x ∈ X(k)

11 In fact, it is separated over k
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X with x ∈ X(k), the fundamental group-schemes πN(X, x) are the
canonically isomorphic πEF(X, x).

Corollary 3.3.57. The essentially
finite and Nori
FGS’s coincide

Let X be a proper reduced and connected scheme over a
field k with a rational point x ∈ X(k). Then, the Nori FGS πN(X, x) of
X (Definition 3.2.2) is canonically isomorphic to the essentially finite FGS
πEF(X, x) (Definition 3.3.34).

Proof. As both these group-schemes are pro-finite, using 2.2.101 we
will show that πN(X, x) and πEF(X, x) have the same finite quotients.
Let us start with the quotients of πN(X, x): any finite quotient πN(X, x)→
G corresponds to a pointed Nori-reduced finite G-torsor t : T → X by
Lemma 3.2.14. Thus, by the characterization of Proposition 3.3.54, the
functor of G-invariants FT ,G : Repk(G) → Vect(X) is fully faithful,
and as the essential image of this functor lies within EF(X) by Pro-
position 3.3.44. This easily implies that FT ,G : Repk(G) → EF(X) ∼=

Repk(π
EF(X, x)) is fully faithful and thus by applying Proposition

2.4.146 we obtain that G is also a quotient of πEF(X, x).
On the other hand, any finite quotient πEF(X, x) → H corresponds
to a fully faithful k-linear exact tensor functor F : Repk(H) → EF(X)
that can be thought as a full inclusion of tannakian categories of vec-
tor bundles, thus this inclusions corresponds to a pointed H-torsor
v : V → X by Corollary 3.3.51 which is Nori-reduced by applying
Proposition 3.3.54 once again, thus this corresponds to a quotient
πN(X, x) → H and thus the pro-finite group-schemes πN(X, x) and
πEF(X, x) are canonically isomorphic.

Remark 3.3.58. Keeping the hypotheses of Corollary 3.3.57, as the
S-fundamental group-scheme πS(X, x) of X is an affine group-scheme, it is
pro-algebraic (see Proposition 2.2.97) and thus any quotient πS(X, x) → G

of finite type over k corresponds using Proposition 3.3.54 to a pointed Nori-
reduced algebraic G-torsor t : T → X (Definition 2.3.17(b)) for which the
essential image of FT ,G can be identified with a full neutral tannakian sub-
category of NSS(X). Moreover, T is an algebraic quotient of the universal
torsor X̂NSS associated to πS(X, x) (Remark 3.3.53). It must be noted that
πS(X, x) DOES NOT contain in general all pointed Nori-reduced algebraic
torsors over X, unlike the case of πN(X, x) that contains all finite pointed
Nori-reduced torsors. πS(X, x) just contains a certain directed family of al-
gebraic Nori-reduced torsors that contains at least all the finite ones, and for
instance, we will show “larger” fundamental group-schemes in Subsection
3.3.2.
Also, Corollary 3.3.57 shows that the canonical quotient morphism πS(X, x)→
πN(X, x) mentioned in Remark 3.3.35(b) makes πN(X, x) the maximal pro-
finite quotient (Definition 3.2.24) of πS(X, x) as in the description of the last
paragraph, finite quotients of πS(X, x) correspond to finite Nori-reduced quo-
tients of X̂NSS, which are in turn quotients of the universal torsor X̂ = X̂EF.



162 the fundamental group-scheme

We finish this subsection with some commentary on the pseudo-
proper approach for fundamental group-schemes:

Remark 3.3.59.The
pseudo-proper

approach

Let X be a quasi-compact (see Definition 2.3.5) scheme
over k. We say that X is pseudo-proper if for any vector bundle E over
X we have Γ(X,E) = H0(X,E) is a finitely dimensional k-vector space.
Proper schemes over k are clearly pseudo-proper, but as far as the author
knows there are no known examples of quasi-compact schemes over k that
are pseudo-proper but not proper. An extreme example of the difference pro-
per does to global sections of vector bundles is the projective line P1k which
is clearly proper thus pseudo-proper, while A1

k ⊂ P1k is not pseudo-proper
as H0(A1

k,OA1
k
) = k[x] which is not finitely dimensional over k.

“Pseudo-properness” can be seen as a technical condition to generalize the
theory of the Nori-fundamental group-scheme beyond schemes, not only to
classify pointed finite torsors, but also non-pointed ones. In the case of poin-
ted torsors, Definition 3.2.2 shows that schemes suffice, under the right
hypotheses12, but if we fix an affine group-scheme G and we consider the
category of all G-torsors over k-schemes, we cannot longer use schemes to
get an “universal torsor”. Non-pointed G-torsors schemes over k-schemes
form a gerbe which is a special kind of fibered category (see [59, III §2]).
In [13] N. Borne and A. Vistoli generalized the theory of the Nori funda-
mental group-schemes to fibered categories, using what is called the “funda-
mental gerbe” that which is a gerbe ΠX/k associated to a fibered category
over k that classifies all (pro-)finite gerbes over X, in particular the gerbe
of (pro-)finite G-torsors over k-schemes. In the terminology of the funda-
mental gerbe, a fibered category X is inflexible if X essentially possesses a
fundamental gerbe, akin to our Definition 3.2.2. A sufficient condition if we
consider object “of finite type over k” is being geometrically connected and
geometrically reduced (see [13, Prop. 5.5]), which is comparable to the hypot-
heses of Proposition 3.2.8.
There is also a theory of tannakian categories associated to gerbes [17, Ch.
3], and for pseudo-proper inflexible fibered categories the fundamental gerbe
is the “tannakian fundamental gerbe” associated to the tannakian category
essentially finite bundles, see [13, §7]. In the same section, an equivalent and
simplified definition of essentially finite bundles (Definition 3.3.27) can be
found: they are the kernels of vector bundle morphisms between finite vector
bundles. See [14, Ch. 6] for an exposition on the tannakian theory of the
Nori fundamental group-scheme for pseudo-proper geometrically connected
and geometrically reduced schemes over k that offers an alternative approach
to this subsection. The S-fundamental group-scheme can also be generalized
to a gerbe, see [1, §4].

12 The hypotheses present in Proposition 3.2.8 serve as an example.
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3.3.2 New tannakian FGS’s for schemes connected by chains of proper cur-
ves

There is a third alternative to conceive tannakian categories of vector
bundles over non-proper k-schemes: Instead of considering a techni-
cal condition as pseudo-properness, we can impose that any two clo-
sed points can be joined by smooth and proper curves, which is key
to show that the category of Nori-semistable bundles is abelian and
thus neutral tannakian, see the proof of Proposition 3.3.24. And with
a larger neutral tannakian category of Nori-semistable bundles, we
can easily define essentially finite bundles.
This approach was developed recently by I. Biswas, P.H. Hai and J.P.
Dos Santos in [11, §7]. We will outline this approach in this subsection,
and generalize it further to allow restricted families of curves when
joining two points, which is the needed theoretical base to associate
to varieties that are proper and connected by curves of genus g, new
fundamental group-schemes that exploit the latter curve related pro-
perty, we will do this in Section 4.3.
We will obtain once again the S-fundamental group-scheme the and
Nori fundamental group-scheme that we conceived for proper sche-
mes in the last subsection, many more fundamental group-schemes
and certain properties that we haven’t considered so far in order to
show them in full generality, like what happens with to a FGS when
we change the base rational point, among others.
Throughout this subsection, Xwill be a reduced and connected scheme
of finite type over a perfect field k.

Definition 3.3.60. Chains of proper
curves and CPC
schemes

Let X be a k-scheme of finite type over k13. A chain of
proper curves on X is a finite family of morphisms {γi : Ci → X}ni=1 from
a finite set of proper and irreducible curves to X, such that the closed subset⋃n
i=1 Im(γi) is connected. We will also refer to the set

⋃n
i=1 Im(γi) as a

chain of proper curves.
We say that X is connected by proper chains, or CPC for short, if any two
points of X can be joined by a chain of proper curves. If C is a non empty
family of proper and irreducible curves14, we say that X is C -CPC if any pair
of points of X can be joined by a chain of proper curves {γi : Ci → X}ni=1
with Ci ∈ C for all i = 1..n.

We can outline some basic properties of CPC-schemes

Remark 3.3.61. If X is proper over k then it is CPC by Lemma 3.3.25.
The property of being CPC can be inherited: if f : Y → X is a surjective
k-morphism and Y is CPC, then X inherits the CPC property, and the same
holds for C -CPC schemes.
If X is projective and f is an open embedding with Y connected and big in

13 Here k can be any field, even of characteristic zero.
14 We will not require that curves are smooth when considering families of curves in

general.
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X, in which case we have that Y is CPC, see [11, pp. 7.2 & 7.3]. Outside the
latter example, it is not known if there are other non-proper CPC k-schemes,
but for any non-empty family C of proper and connected curves, the property
of being C -CPC is more restrictive than being proper and CPC.

Convention 3.3.62. From now on, we will focus on C -CPC schemes. Cle-
arly a CPC scheme is a C -CPC scheme where C = Curvk is the family of
all proper and irreducible curves over k, and thus it is enough to restrict
ourselves to C -CPC schemes. In any case, we will mention to the relevant
concept for CPC schemes each time we will define a new concept.
For the CPC case, we will omit the symbol C when defining objects for
C -CPC schemes.

Recall the definition of semi-stale bundle and slope Definition 3.3.16.
The first generalization we can make, is to Nori-semistable bundles:

Definition 3.3.63.C -Nori-
semistable

bundles

Let C be a non-empty family of irreducible and proper
curves and let X be a C -CPC scheme of finite type over k. We will say that a
vector bundle E over X is C -Nori-semistable if the pull-back of E over any
non-constant morphism g : Ĉ→ X, where Ĉ is the normalization of a curve
of the family C , is semi-stable of slope 0.
In the case C = Curvk we will simply say that a vector bundle E over X is
Nori-semistable and the definition above becomes Definition 3.3.22.
We will denote the category of C -Nori-semistable bundles as NSSC (X) and
the category of Nori-semistable bundles over X as NSS(X).

For the moment, morphisms between objects in the categories NSSC (X)

and NSS(X) are morphisms of OX-modules, but we will show later
that these are vector bundle morphisms like in the proper case (Pro-
position 3.3.24).

Remark 3.3.64.Inclusions of
curve families

induce full
inclusions of

NSS categories

Let X be a reduced and connected scheme of finite type over
k, and let C and C ′ be two non-empty families of proper and irreducible
curves.
If X is both C -CPC and C ′-CPC, and all curves of C belong to C ′, then
we have a full inclusion of categories NSSC ′(X) ↪→ NSSC (X). In particular
if X is CPC, as any family is contained in Curvk, we always have a full
inclusion NSS(X) ↪→ NSSC (X) for any family C .

Now let us suppose we have a rational point x ∈ X(k), we can then
consider the fiber functor over x ωx : Vect(X) → Vectfk (Definition
3.3.14). We will not use bars to denote restrictions.
The following result is the C -CPC version of Proposition 3.3.24 and
Corollary 3.3.33.

Proposition 3.3.65. Let X be a reduced and connected scheme of finite type
over k that is C -CPC, where C is a non-empty family of irreducible and
proper curves.
Then, if X has a rational point x ∈ X(k), morphism of C -Nori-semistable
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bundles are vector bundle morphisms and the category NSSC (X) is a neutral
tannakian category over k with fiber functor ωx.

Proof. We will start by showing that NSSC (X) is abelian and that mor-
phisms of C -Nori-semistable bundles are vector bundle morphisms
(Definition 3.3.1): let φ : E → F be a morphism between two C -Nori-
semistable bundles, we need to prove the rank of φ over any geome-
tric point of X is constant. This also shows that ker(φ) and coker(φ)
are C -Nori-semistable bundles, see Remark 3.3.2.
Let {γi : Ci → X}ni=1 be a chain of proper curves with Ci ∈ C , we can
always consider their normalizations, and thus we can suppose that
the curves Ci are normalizations of curves belonging to C .
As SSCi(0) is a k-linear abelian category where all morphisms are vec-
tor bundle morphisms (Corollary 3.3.20), for any i = 1..n, the rank of
the morphism γ∗i (φ) : γ∗i (E) → γ∗i (F) is constant and thus the rank
of φ is constant along the points of

⋃n
i=1 Im(γi) and the rest of the

proof is similar to the proof of Proposition 3.3.24.
The fact that NSSC (X) is abelian and morphisms are vector bundle
morphisms also shows that ωx : NSSC (X) → Vectfk is faithful, as for
any C -Nori-semistable bundle E we have that

H0(X,E) = HomOX(OX,E)

is a subspace of HomVectfk(k,ωx(E)) thus it is finitely dimensional,
and in particular we obtain that H0(X,OX) = k which is a required
property of a neutral tannakian category. ωx is also exact by Remark
3.3.15

For the tensor structure, we need to prove that for two C -Nori-semistable
bundles E,F and γ : C → X where C is the normalization of a curve
belonging to C , the tensor product γ∗(E)⊗OC γ

∗(F) belongs to SSC(0)
which is not a tensor category in general. In this case we have indeed
that the tensor product belongs to SSC(0), as we can easily see that
γ∗(E) and γ∗(F) are strongly semi-stable bundles (Definition 3.3.31),
and thus we can use Proposition 3.3.32.
Finally, we remark that NSSC (X) is closed by duals and those are
reflexive: if E is a C -Nori-semistable bundle and γ : C → X is a non-
constant morphism from a smooth, irreducible and projective curve
that is the normalization of a curve of C , then γ∗(E∨) = (γ∗(E))∨,
finishing the proof.

Remark 3.3.66. If X is a reduced and connected scheme of finite type over k
that is C -CPC, the proof above shows that for any C -Nori-semistable bundle
E its set of global sections HomOX(OX,E) is finitely dimensional.
Thus, we have a weaker version of pseudo-proper vector bundles for C -CPC
reduced and connected schemes of finite type over k: H0(X,E) is finitely
dimensional for any C -Nori-semistable bundle E while the pseudo-proper
property holds for any locally free sheaf over X.
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This will allows us to develop a theory of essentially finite bundles later, in a
parallel manner to the pseudo-proper approach (Remark 3.3.59).

Proposition 3.3.65 allows us to define new fundamental group-schemes:

Definition 3.3.67.(S,C )-
fundamental

group-scheme

Let X be a reduced and connected scheme of finite type
over k that is C -CPC, where C is a non-empty family of irreducible and pro-
per curves. Let x ∈ X(k) be a rational point, we define the (S,C )-fundamental
group-scheme as the fundamental group-scheme πSC (X, x) associated to
NSSC (X) with fiber functor ωx. If C = Curvk, we will denote the funda-
mental group-scheme associated to NSS(X) with fiber functorωx as πS(X, x)
and we will call it the S-fundamental group-scheme.

The S-fundamental group-scheme defined above is essentially the
same as the one defined in Definition 3.3.34.

Remark 3.3.68. Let X and Y be reduced and connected schemes of finite
type over k, with rational points x ∈ X(k) and y ∈ Y(k). And let C and C ′

be two non-empty families of proper and irreducible curves. Then:

(a) If X is both C -CPC and C ′-CPC, and C ′ ⊂ C , the full inclusion of ca-
tegories NSSC (X) ↪→ NSSC ′(X) mentioned in Remark 3.3.64 induces
a morphism of fundamental group-schemes πSC ′(X, x)→ πSC (X, x).
By Proposition 3.3.56 this morphism of group-schemes is faithfully
flat.

(b) If both X and Y are C -CPC and C ′-CPC. Let f : Y → X is a mor-
phism of k-schemes compatible with the respective rational points, as
both schemes have (S,C ′)-fundamental group-schemes and a (S,C )-
fundamental group-scheme, the pull-back of vector bundles induces
morphisms

πSC (f) : π
S
C (Y,y)→ πSC (X, x) and πSC ′(f) : π

S
C ′(Y,y)→ πSC ′(X, x).

Both morphism come from the pull-back functor

f∗ : NSSC (X)→ NSSC (Y) and f∗ : NSSC ′(X)→ NSSC ′(Y)

that is a tensor functor that preserves the respective fiber functors.
The pull-back f∗ commutes with the respective inclusions of categories,
and thus we have a commutative diagram with faithfully flat vertical
morphisms

πSC ′(Y,y)
πS

C ′(f)//

��

πSC ′(X, x)

��
πSC (Y,y)

πSC (f)

// πSC (X, x)

coming from the corresponding commutative diagram at the level of
tannakian categories of vector bundles which shows that the morphism
πSC ′(X, x)→ πSC (X, x) mentioned in point (a) is natural.
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(c) Applying this to Nori-semistable bundles, we have a faithfully flat
morphism of fundamental group-schemes πSC (X, x) → πS(X, x) such
that for any morphism of k-schemes f : Y → X compatible with the
respective rational points the diagram

πSC ′(Y,y)
πSC (f)

//

��

πSC ′(X, x)

��
πS(Y,y)

πS(f)

// πS(X, x)

is commutative with faithfully flat columns, thus we have a natural
transformation.

Now we will introduce essentially finite bundles, for this purpose
we will generalize the concept of essentially finite bundles to suitable
categories that resemble Vect(X): Let T be a small k-linear abelian ten-
sor category with finitely dimensional Hom-sets. The isomorphism
classes of objects of T form a set with a natural structure of a semi-
ring with the direct product as the addition (which lacks an additive
inverse) and the tensor product as the multiplication.
Following Nori in [53, I §2.3], we can consider the ring K(T) which is
the monoid of fractions for the addition of the semi-ring we defined
before, we must remark it is not the Grothendieck ring as we are not
expressing short exact sequences as sums.
Let us suppose that T is an Krull-Schmidt category (Definition 3.3.8(c)),
in this case the Lemma 3.3.9 holds for T: any object of T can be decom-
posed as a direct sum of indecomposable sub-objects that it is unique
modulo permutation of the direct summands. In this case, the set of
isomorphism classes of indecomposable objects is an additive base of
K(T).
Over T, integer polynomial evaluations of any object makes sense (see
Definition 2.4.69(b)), so we can define:

Definition 3.3.69. Finite and
essentially finite
objects

Let T be a small k-linear abelian tensor category with
finitely dimensional Hom-sets that is also a Krull-Schimdt category.

(a) An object V of T is finite if there exist two different polynomials
p(x),q(x) ∈ Z>0 such that p(V) ∼= q(V).

(b) An object W of T is essentially finite if W is a sub-quotient (see
Definition 2.4.69(a)) of a finite object. The full subcategory of T which
consists of the essentially finite objects will be denoted as EF(T).

Remark 3.3.70. Let T be a small k-linear abelian tensor category with fi-
nitely dimensional Hom-sets that is also a Krull-Schmidt category. Finite
objects can be characterized as being integral over the minimal prime ring
of K(T), in particular by applying known results for integral elements and
integral ring extensions [47, Theorem 9.1], we can see that tensor products,
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duals, direct sums and direct summands of finite objects are finite, as it was
the case for finite bundles (Lemma 3.3.13). Moreover, finite objects of Vect(X)
as defined in Definition 3.3.69 coincide with the previous definition of finite
bundles (Definition 3.3.6).
Finally, as an alternative equivalent definition for essentially finite object,
we can say that W is essentially finite if and only if it is the kernel of a mor-
phism φ : V → V ′ between finite objects of T, following the pseudo-proper
approach (Remark 3.3.59).

Before redefining essentially finite bundles for C -CPC schemes, we
will state some general properties of this construction when applied
to neutral tannakian categories. If G is an affine group-scheme, it is
not hard to see that Repk(G) is clearly a Krull-Schmidt category, thus
we can study its essentially finite elements:

Proposition 3.3.71 (Prop. 7.12 [11]).Essentially finite
elements in

neutral
tannakian
categories

Let G be an affine group-scheme over
k, we will denote as EFG the category EF(Repk(G)). Then, we have:

(a) The category EF(G) is closed under sub-objects, quotients, tensor pro-
ducts and duals.

(b) G is pro-finite if and only if EFG = Repk(G).

(c) Let ωEF
G : EFG → Vect(k) be the restriction of the forgetful functor

ωG to EFG. Then EFG is a neutral tannakian category with ωEF
G as

the fiber functor. If GEF is its associated group-scheme, it is pro-finite.

(d) Moreover, if φ : G → GEF is the morphism of group-schemes as-
sociated to the full inclusion functor EFG → Repk(G), then φ is
faithfully flat and it makes GEF the maximal pro-finite quotient (Defi-
nition 3.2.24) of G.

Proof. Parts (a) and (c) are easy verifications, similar to the verificati-
ons present in Corollary 3.3.33.
For part (b), let us start with the case when G is finite. In this case,
if we write G = Spec(A) and we consider A as the regular repre-
sentation of G, then the multiplication morphism m : G×k G → G

of G is clearly a G-torsor, thus applying Example 3.3.7 we see that
A⊗k A ∼= A⊕n where n = ord(G) in particular A is finite, thus we
clearly have EFG = Repk(G) by applying Lemma 2.4.142. If G is now
pro-finite, as any quotient of G is finite, then any object of Repk(G)
lies Repk(Q) where G → Q is a finite quotient of G, thus we obtain
the same conclusion as in the finite case.
Now let us suppose that G is just affine and EFG = Repk(G), it
suffices to show that any quotient φ : G → Q, that we can sup-
pose to be of finite type over k by Proposition 2.2.97 and Corollary
2.2.98. In this case Repk(Q) is tensor generated by V and V∨ (De-
finition 2.4.69) by Proposition 2.4.144, where V is a faithful repre-
sentation of Q (Corollary 2.4.88). Now φ induces a tensor functor
φ∗ : Repk(Q)→ Repk(G) and if we consider φ∗(V), as this element is
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essentially finite, we have that φ∗(V) is a sub-quotient of a finite object
W of Repk(G) and it is not hard to see that the same holds for φ∗(V∨),
in particular φ∗(V) and φ∗(V∨) belong to 〈W〉⊗ the neutral tannakian
category generated by W. Thus, as V and V∨ are tensor generators
and the essential image of φ∗ is closed by sub-objects (Proposition
2.4.146), then we conclude that Repk(Q) ⊂ 〈W〉⊗ and as the larger
neutral tannakian category corresponds to a finite group-scheme by
Corollary 2.4.143, we conclude that H is finite as we wanted.
Finally, for part (d), it is clear that EF(EFG) = EFG thus GEF is pro-
finite by part (b) and for any finite quotient H of G, as Repk(H) is the
full sub-category of Repk(G) composed of sub-quotients of a finite
representation, we easily conclude that we have a finer full inclusion
Repk(H) ⊂ EFG which effectively shows (d).

Now we can define essentially finite bundles by applying Defini-
tion 3.3.69 to the categories of C -Nori-semistable bundles of Defini-
tion 3.3.63:

Definition 3.3.72. Essentially finite
bundles for
C -CPC schemes

Let X be a reduced and connected scheme of finite type
over k that is C -CPC, where C is a non-empty family of irreducible and
proper curves. A vector bundle E belonging to EF(NSSC (X)) will be called
a C -essentially finite bundle. In the particular case of NSS(X), a bundle of
EF(NSS(X)) is called an essentially finite bundle.
We will also denote the categories EF(NSS(X)) and EF(NSSC (X)) as EF(X)
and EFC (X) respectively.

It is clear that finite and essentially finite bundles of NSS(X) as defi-
ned using Definition 3.3.69 are just the same bundles that we defined
in Definitions 3.3.6 and 3.3.27 in the approach where X is proper.
Moreover, the definition of C -essentially finite bundles is superflu-
ous:

Lemma 3.3.73. Let X be a reduced and connected scheme of finite type over
k that is C -CPC, where C is a non-empty family of irreducible and proper
curves. Then, EFC (X) = EF(X) and there is just one single category of
essentially finite bundles.

Proof. This stems from the fact that a finite C -Nori-semistable bundle
E is simply finite as in Definition 3.3.6, and in particular E is al-
ways Nori-semistable by Lemma 3.3.21, thus the natural full inclusion
EF(X) ⊂ EFC (X) that comes from the inclusion in Remark 3.3.64 is an
equality.

Definition 3.3.74. EF Fundamental
group-scheme for
C -CPC schemes

Let X be a reduced and connected scheme of finite type
over k with a rational point x ∈ X(k) that is C -CPC, where C is a non-
empty family of irreducible and proper curves. We will call the group-scheme
associated to the tannakian category EF(X) together with the functorωx the
essentially finite fundamental group-scheme of X and we will denote it
by πN(X, x).
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Recall that by Remark 3.3.53 and Corollary 3.3.51 that the funda-
mental group-schemes πSC (X, x), πS(X, x) and πN(X, x) have universal
torsors associated to them, and the group-scheme quotients of these
FGS’s correspond to pointed Nori-reduced torsors over X. Using this
together with Proposition 3.3.71, we have:

Lemma 3.3.75. Let X be a reduced and connected scheme of finite type over
k with a rational point x ∈ X(k) that is C -CPC, where C is a non-empty
family of irreducible and proper curves. Then, πN(X, x) is pro-finite and it
is the maximal pro-finite quotient of both πSC (X, x) and πS(X, x), moreover
it coincides with the Nori fundamental group-scheme of Definition 3.2.2

Proof. The first assertion of the statement is a direct consequence of
Proposition 3.3.71(c) & (d) while the second one is simply the content
of Corollary 3.3.57.

Now recall that for a smooth and proper curve C over k, by Proposi-
tion 3.3.37 the category NSS(C) coincides with the tannakian category
of strongly semi-stable bundles over C (Definition 3.3.31), this allows
us to consider a new kind of FGS:

Proposition 3.3.76.The tannakian
category of “EF

when
pulled-back”

bundles

Let X be a reduced and connected scheme of finite type
over k with a rational point x ∈ X(k) that is C -CPC, where C is a non-
empty family of irreducible and proper curves.
Let PB-EFC (X) be the full sub-category of vector bundles E of NSSC (X)

such that for any curve C, that is the normalization of a curve of the family
C , together with a non-constant morphism f : C → X the pull-back bundle
f∗(E) belongs to EF(C), then PB-EFC (X) with ωx is a neutral tannakian
category over k.
If πPB

C (X, x) is the affine group-scheme associated with PB-EFC (X), we have
a full inclusion of categories EF(X) → PB-EFC (X) inducing a faithfully
flat morphism of group-schemes πPB

C (X, x) → πN(X, x). Moreover, we have
EF(X) = EF (PB-EFC (X)).

Proof. It is not hard to see PB-EFC (X) is closed under direct sums,
tensor products, duals, kernels and cokernels, which shows these ca-
tegories are tannakian with ωx. The rest of the properties outlined in
the statement are easily verified.

Now we have defined all of the types of fundamental group-schemes,
so we will add this remark to recapitulate their relationships:

Remark 3.3.77.Relationships
between all the

fundamental
group-schemes

Let X be a reduced and connected scheme of finite type over
k, with a rational point x ∈ X(k). And let C and C ′ be two non-empty
families of proper and irreducible curves.
We note that the category PB-EFC (X) is a priori “larger” than the category
EFC (X). For the specific case of C = Curvk, we will drop the subscript C

and thus we have the tannakian category PB-EF(X) whose associated group-
scheme will be denoted as πPB(X, x).
Now let us suppose that X is both C -CPC and C ′-CPC, for any inclusion of
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families of curves C ′ ⊂ C , we have the following commutative diagram of
group-schemes where all arrows are faithfully flat:

πSC ′(X, x) //

��

πPB
C ′ (X, x)

�� %%
πSC (X, x) //

��

πPB
C (X, x)

��

// πN(X, x)

πS(X, x) // πPB(X, x)

88

These arrows come from the associated full inclusions of their respective tan-
nakian categories of bundles over X, and they are all faithfully flat by Propo-
sition 3.3.56.
If Y is another k-scheme with the same properties as X that has a rational
point y ∈ Y(k). For any f : Y → X morphism of k-schemes compatible
with the respective rational points we have induces morphisms between fun-
damental group-schemes

πSC (f) : πSC (Y,y) → πSC (X, x)

πSC ′(f) : πSC ′(Y,y) → πSC ′(X, x)

πS(f) : πS(Y,y) → πS(X, x)

πPB
C (f) : πPB

C (Y,y) → πPB
C (X, x)

πPB
C ′ (f) : πPB

C ′ (Y,y) → πPB
C ′ (X, x)

πPB(f) : πPB(Y,y) → πPB(X, x)

πN(f) : πN(Y,y) → πN(X, x)

that commute with all the respective morphisms in the analogue diagram
above for the fundamental group-schemes of Y and those over X, showing
that all these fundamental group-schemes are functorial for morphisms com-
patible with the respective rational points, and that the faithfully flat mor-
phisms between them over a fixed scheme are natural.

To finish this subsection, we will outline what happens to a tanna-
kian fundamental group-scheme of vector bundles changes when we
change rational points. For this purpose, we first need the following
definition:

Definition 3.3.78. Let G be a group-scheme of finite type over a field k.

(a) Inner
automorphism
induced by a
k-point

If g ∈ G(k), then g induces a group-scheme automorphism G→ G of
G given for x ∈ G̃(R) with R a k-algebra, as x 7→ gRxg

−1
R where gR

is the image of g via the canonical morphism k → R. We will denote
this automorphism of G as inn(g).

(b) Inner
automorphisms

An inner automorphism of G is an automorphism f : G → G that
after changing the base field to k̄, the algebraic closure of k, becomes
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inn(ḡ) for some element ḡ ∈ G(k̄). In other words, internal automor-
phisms become inner automorphisms by conjugation over the algebraic
closure of k.

(c)Inner forms An inner form of G is another group-scheme G′ of finite type over k,
such that over k̄ the base change G′

k̄
is isomorphic to Gk̄ via an inner

automorphism inn(ḡ) of Gk̄ for some ḡ ∈ G(k̄).

Remark 3.3.79. Let G be a group-scheme of finite type over a field k. As
in the case of abstract groups, we can define the center of G Z ⊂ G which
functions similarly to its abstract group counterpart, see [49, p. 34]. Internal
automorphisms of G are determined by Z(k̄) where Z is the center of G, thus,
if G is commutative any inner form is is equal to G itself [49, p. 17.63].

Proposition 3.3.80.Change of base
point for

tannakian
categories of

vector bundles

Let X be a reduced and connected scheme of finite type
over a field k. If x,y ∈ X(k) are rational points of X and G is an affine
group-scheme associated to a tannakian sub-category D of Vect(X) with fiber
functor ωx. Then D with ωy is also a tannakian category, and if G′ is its
associated group-scheme, then G′ is an inner form of G. In particular, if k
is algebraically closed, these group-schemes are isomorphic and differ by an
inner automorphism of G or they coincide if G is commutative.

Proof. As G is affine, it is pro-algebraic by Proposition 2.2.97. Let Gi
be a quotient of finite type of G, it corresponds to a full neutral tan-
nakian sub-category of D and also to a pointed (over x) Nori-reduced
Gi-torsor by applying Corollary 3.3.51.
Nori showed in [53, p. 88] that if Ti → X is the pointed (over x) Nori-
reduced Gi-torsor, we can construct a G′i-torsor T ′i → X pointed over
y where G′i is an inner form of Gi (see also [22, §2.1]). This induces
an equivalence of tannakian categories between Di with ωx and Di
with ωy. Then, passing to the projective limit yields the analogous
equivalence for D with the two different fiber functors, concluding
the proof by considering the associated group-schemes.

Remark 3.3.81. If k is algebraically closed, by Proposition 3.3.80, we will
sometimes omit rational points when writing fundamental group-schemes
as different rational points yield isomorphism fundamental group-schemes.
So for example, write fundamental group-schemes as πN(X) or πS(X) or
πNC (X), etc.

3.4 advanced properties and results

In this final section we will list many miscellaneous results, most of
them for the Nori fundamental group-scheme with some related to
the S-fundamental group-scheme, that we will use later, specially in
Chapter 5.
We will state them here without proof, with the corresponding cita-
tion, in Subsection 3.4.1. In Subsection 3.4.2 we will also outline some
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results that describe the specific properties of the FGS for certain ty-
pes of schemes, the main two types of schemes for which we will
describe their FGS are rationally connected varieties and abelian vari-
eties.

3.4.1 Properties and results

We will divide this subsection in several subsubsections to group the
results thematically.
To ease navigation, we will list the subsubsections here in sequential
order:

• Subsubsection 3.4.1.1: “Induced morphisms of FGS’s for open
immersions and birational invariance”.

• Subsubsection 3.4.1.2: “Global sections of essentially finite bund-
les and Grauert’s theorem for finite torsors”.

• Subsubsection 3.4.1.3: “Faithfully flat induced morphisms of
FGS’s and isomorphisms of FGS’s”.

• Subsubsection 3.4.1.4: “Towers of torsors and FGS of Nori-reduced
torsors”.

3.4.1.1 Induced morphisms of FGS’s for open immersions and birational
invariance

Let us start our list of results with open immersions:

Proposition 3.4.1 (p. 90 [53]). Induced
morphism of
FGS over open
immersions

Let X be a normal, connected, reduced and
of finite type over a field k. Let i : U → X be an open immersion, then for
rational points u ∈ U(k) and x ∈ X(k) that are compatible under i, the
induced morphisms between fundamental group-schemes

πN(i) : πN(U,u)→ πN(X, x)

is faithfully flat.
Moreover, if i is dominant and U is big, i.e, we have codim15(X−U) > 2 ,
then πN(i) is an isomorphism.

Now we will outline how the Nori and S-fundamental group-schemes
behave under birational equivalence:

Proposition 3.4.2. Birational
invariance for
the Nori and S
FGS’s

Let X and Y be smooth and projective varieties over
an algebraically closed field k. If X and Y are birationally equivalent, for
compatible rational points x ∈ X(k) and y ∈ Y(k) we have a isomorphisms
of fundamental group-schemes

πN(X, x) ∼= πN(Y,y)

πS(X, x) ∼= πS(Y,y).
15 See [36, Definition p.86] for a definition of codimension.
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Proof. The statement for the Nori fundamental group-scheme can be
found in [53, Ch. II Prop. 8] while the birational invariance for the
S-fundamental group-scheme can be found in [37].

3.4.1.2 Global sections of essentially finite bundles and Grauert’s theorem
for finite torsors

Now we will state some results about global sections of essentially fi-
nite bundles, so we could use the semi-continuity theorem and Grau-
ert’s theorem for vector bundles associated to pointed finite torsors
over proper and flat morphisms f : X → Y compatible with the re-
spective rational points in Subsubsection 3.4.1.3. For this, we need to
study global sections of essentially finite bundles. Let us start with a
general result for global sections of essentially finite bundles:

Lemma 3.4.3 (Lemma 2.2 [69]). Let X be a reduced and connected scheme
over a field k, with a rational point x ∈ X(k), that is either proper or C -CPC,
where C is a non-empty family of irreducible and proper curves.
If E is an essentially finite bundle over X, then the natural morphism

Γ(X,E)⊗k OX → E

is an embedding that makes Γ(X,E)⊗OX the maximal trivial sub-bundle of
E.

From this lemma, we can deduce the following as a corollary:

Corollary 3.4.4. Under the hypotheses of Lemma 3.4.3. If E is an essentially
finite bundle over X of rank r > 1, then

1 6 dimk(H0(X,E)) 6 r.

Moreover, E is trivial if and only if dimk(H0(X,E)) = r.

Lemma 3.4.3 also allows us to show:

Lemma 3.4.5.Global sections
of vector bundles

associated to
finite torsors

Let X be a reduced and connected scheme over a field k, with
a rational point x ∈ X(k), that is either proper or C -CPC, where C is a
non-empty family of irreducible and proper curves. If t : T → X is a finite
pointed torsor, corresponding to the morphism πN(X, x) → G and H ⊂ G
is the image of this morphism, then

dimk
(
H0(X, t∗(OT ))

)
= ord(G/H).

Proof. By Corollary 3.4.4 and Proposition 3.3.54, we can suppose that
T is neither trivial nor Nori-reduced, as the statement is already true
in those cases, so we will suppose that H ⊂ G is a non-trivial proper
subgroup-scheme of G.
Let FT ,G : Repk(G) → Repk(π

N
1 (X, x)) ∼= EF(X) be the functor of G-

invariants (Definition 3.3.41) associated to T . We know that t∗(OT )
is the image of ρG via this functor (Example 3.3.43). Now, if G =
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Spec(A) whereA is a Hopf algebra over k, we will writeH = Spec(A/I)
where I is a Hopf ideal. The quotient morphism A → A/I induces a
comodule structure over A, τH : A → A⊗A/I so A is a represen-
tation of H, see Example 2.4.85(5). Thus, we see that in the facto-
rization Repk(G) → Repk(H) → Repk(π

N
1 (X, x)) the representation

τH ∈ Repk(H) maps to t∗(OT ) as well.
Now let U ⊂ t∗(OT ) be the maximal trivial sub-bundle, as πN1 (X, x)→
H is faithfully flat, using Proposition 2.4.146, we can find a trivial sub-
representation of τH whose image in Repk(π

N
1 (X, x)) is isomorphic

to U. We can easily see that this the largest sub-representation of τH
with a trivial action of H and thus it corresponds to AH (Example
2.4.85(4)), finishing the proof.

Remark 3.4.6. If H is a normal subgroup-scheme of G, then the quotient
T/H is a trivial G/H-torsor and thus, if q : T/H → X is the canonical
morphism form the quotient T/H of T by H, we have that q∗(OT/H) ∼=

O
⊕ord(G/H)
X and this bundle is the maximal trivial sub-bundle of t∗(OT )

Now let X and Y be two connected and reduced schemes of finite
type over k, both with rational points x ∈ X(k) and y ∈ Y(k). If f :

X → Y is a proper and flat morphism compatible with the respective
rational points, and t : T → X is a finite pointed G-torsor over X, then
the semi-continuity theorem holds [50, Corollary p.50] for the vector
bundle t∗(OX), and by applying Grauert’s theorem in Corollary 2

p.50 in loc.cit. we obtain:

Proposition 3.4.7. Grauert’s
theorem for finite
torsors

Let X and Y be two connected and reduced schemes of
finite type over k, both with rational points x ∈ X(k) and y ∈ Y(k). If
f : X → Y is a proper and flat morphism compatible with the respective
rational points, and t : T → X is a finite pointed G-torsor over X such that
for any point y ∈ Y the pull-back of T to the fiber Xy is a trivial torsor.
Then, there exists a pointed finite G-torsor t′ : T ′ → Y such that T is
isomorphic to the pull-back T ′X = T ′ ×Y X.
Moreover, if we replace t∗(OT ) by an essentially finite bundle E over X with
the same property as above, then f∗(f∗(E)) ∈ EF(X).

Proof. This proof is due to Nori, see the proof of [53, Ch.II Prop 9]. In
this case by applying Grauert’s theorem we have that F = f∗(t∗(OT ))

is locally free and f∗(F) ∼= t∗(OT ). If t′ : T ′ → Y is the finite flat
morphism with (t′)∗(OT ′) = F, then we have that the composition

T → T ′
t′→ Y is the Stein factorization (see [36, II Coro. 11.5] or [63,

Tag 03H0]16.) of the composition T t→ X
f→ Y.

Finally, by applying the Stein factorization to the action morphism
µT : T ×X G→ T and the isomorphism T ×X G ∼= T ×X T and the fact
that the Stein factorization commutes with base change, we conclude

16 https://stacks.math.columbia.edu/tag/03H0

https://stacks.math.columbia.edu/tag/03H0
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that t′ : T ′ → Y is a pointed G-torsor whose pull-back to X is isomor-
phic to T .
In the case of an essentially finite bundle, Grauert’s theorem shows
that f∗(f∗(E)) ∼= E as we have a cartesian diagram

Z

u
��

g // Z′

u′

��
X

f
// Y

with finite and flat vertical arrows and u∗(OZ) = E and (u′)∗ (OZ′) =

f∗(E), so [36, II Prop. 9.3] applies as f is flat.

Remark 3.4.8. In Chapter 5 we will use Proposition 3.4.7 in a specific set-
ting: Let X and Y be two proper varieties over k, both with rational points
x ∈ X(k) and y ∈ Y(k).
Let f : X→ Y is a proper and flat morphism with reduced and connected ge-
ometric fibers, compatible with the respective rational points, we will denote
the generic point of Y as η : Spec(L) → Y and the geometric generic fiber
of X as Xη̄ where η̄ denotes the geometric generic point of Y. If t : T → X a
finite pointed G-torsor such that Tη̄ → Xη̄, its pull-back to Xη̄, is a trivial
torsor, then T is the pull-back of a G-torsor over Y.
This is a direct consequence of Grauert’s theorem for finite torsors as in this
case, if r is the rank of t∗(OT ), then by Corollary 3.4.4 we have that

dimk
(
H0
(
Xη̄, t∗(OT )|Xη̄

))
= r

thus the same equality holds for the generic fiber Xη, and by semi-continuity
we can easily deduce that for any point y ∈ Y, we will also have dimension
r for the global sections of t∗(OT )|Xy and thus we conclude that Proposition
3.4.7 applies in this case. For an essentially finite vector bundle E with trivial
restriction to Xη̄, Proposition 3.4.7 shows that f∗(f∗(E)) ∈ EF(X).

3.4.1.3 Faithfully flat induced morphisms of FGS’s and isomorphisms of
FGS’s

Now we will show a sufficient condition for an induced morphism of
fundamental group-schemes to be faithfully flat, in the proper case:

Proposition 3.4.9.Sufficient
condition for a

faithfully flat
morphism of

FGS’s

Let X and Y be proper, reduced and connected schemes
over a field k, both with rational points x ∈ X(k) and y ∈ Y(k). If f : X→ Y

is a faithfully flat morphisms with f∗(OX) = OY
17 that is compatible with

the respective rational points, then the induced morphisms of fundamental
group-schemes

πS(f) : πS(X, x) → πS(Y,y)

πN(f) : πN(X, x) → πN(Y,y).

are both faithfully flat.
17 This is equivalent to assume that the fibers of f are geometrically connected.
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Proof. For the S-fundamental group-scheme, this is [42, Lemma 8.1].
Thus, the conclusion for the Nori fundamental group-schemes deri-
ves from the commutative diagram

πS(X, x)
πS(f) //

��

πS(Y,y)

��
πN(X, x)

πN(f)

// πN(Y,y)

with faithfully flat vertical arrows and upper horizontal arrow, that
comes from combining Remark 3.3.35(b) & (c).

Remark 3.4.10. An older version of Proposition 3.4.9 that has stronger
hypotheses and only holds for the Nori fundamental group-scheme can be
found in the first corollary in [53, p. 90].
In the proof of [42, Lemma 8.1], Langer used the projection formula ([36, II
Excercise 5.1]) to show that the pull-back functor f∗ : NSS(Y)→ NSS(X) is
fully faithful, thus using the stronger version of Proposition 2.4.146 present
in Remark 2.4.147, we obtain a more general version of Proposition 3.4.9 for
the Nori fundamental group-scheme as only the hypothesis f∗(OX) = OY is
necessary to obtain a faithfully flat morphism

πN(f) : πN(X, x)→ πN(Y,y)

as these group-schemes are pro-finite, and this result holds in both the proper
and C -CPC approaches.

Now we will consider cases when we can obtain an isomorphism
of fundamental group-schemes:

Proposition 3.4.11. Sufficient
condition for an
isomorphism of
FGS’s

Let X and Y be proper, reduced and connected schemes
over a field k, both with rational points x ∈ X(k) and y ∈ Y(k). Let f :

X→ Y be a proper and flat morphism with reduced and connected geometric
fibers, that is compatible with the respective rational points. If either one of
the two following conditions hold:

(a) The geometric fibers of f have trivial fundamental group-schemes.

(b) Any Nori-reduced finite pointed G-torsor t : T → X becomes a trivial
torsor when pulled-back to the geometric generic fiber.

then, the induced morphism of Nori fundamental group-schemes

πN(f) : πN(X, x)→ πN(Y,y)

is an isomorphism.

Proof. The hypotheses imply that πN(f) is faithfully flat by Remark
3.4.10. So we just need to show that this morphism is a closed im-
mersion, and for both of the assumptions, this is an application of
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Proposition 3.4.7 and Proposition 3.2.19(c).
Let t : T → X be a Nori-reduced finite pointed G-torsor over X. If we
assume (a), we directly have that global sections of the restriction of
t∗(OT ) to all fibers of f have the same constant dimension by Corol-
lary 3.4.4 and thus Grauert’s theorem applies, and we would obtain
the result if we assume (b) as stated in Remark 3.4.8.

3.4.1.4 Towers of torsors and FGS of Nori-reduced torsors

In this final subsubsection, we will outline two results from the theory
of the Nori fundamental gerbe in the article [1] by M. Antei, I. Biswas,
M. Emsalem, F. Tonini and L. Zhang, in their simpler versions for
schemes and the fundamental group-scheme.
We will start by introducing towers of torsors:

Definition 3.4.12 (Definition 3.8 [1]).Towers of
torsors,

envelopes and
closures

Let X be a scheme over a field k
with x ∈ X(k), and let Z → Y and Y → X be finite pointed torsors18. A
tower of finite pointed torsors is simply a diagram Z→ Y → X.
If G and H are the finite group-schemes associated to Z → Y and Y → X

respectively, we say that a finite pointed K-torsor U → X is an envelope
of or that U envelops the tower Z → Y → X if we have morphisms of
group-schemes α : K → G and β : ker(α) → H, and a morphism U → Z

making the following diagram commutative

U

���� ��
Z // Y // X

so that we have a morphism of torsors U → Y over X that intertwines the
respective group-scheme actions via α, and a morphism of schemes U → Z

over W that intertwines the corresponding actions via β19 and the marked
rational point of U is mapped to the respective marked rational points of
the schemes in the tower. An envelope is Nori-reduced if U → X is Nori-
reduced.
Finally, if an envelope U is minimal in the sense that every other envelope
U′ possesses a canonical arrow U′ → U that is a morphism of torsors over
X, we say that U is the closure of the tower Z → Y → X. Closures, when
they exist, are unique up to isomorphism.

Now we can state the second result:

Theorem 3.4.13 (Theorem III [1]).Existence of
closures for

towers of torsors

Let X be a proper, reduced and con-
nected scheme over a field k, with a rational point x ∈ X(k). Then, any
tower of torsors over X possesses a Nori-reduced closure.
Moreover, if Z → Y → X is a tower of torsors over X and U → X is its
closure, the morphism U → Z is faithfully flat if and only if both members

18 This means that we have rational points y ∈ Y(k) and z ∈ Z(k) and z maps to y
while y maps to x.

19 A priori, this morphisms is not a morphisms of torsors.
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of the tower are Nori-reduced over its respective bases, and in that case, U is
a pointed Nori-reduced torsor over Z and Y.

Remark 3.4.14. Under the hypotheses and notations of Theorem 3.4.13, and
f : Z → X denotes the composition of the morphism in the tower of torsors
Z→ Y → X, we have that f∗(OZ) is an essentially finite bundle over X.

We also have a very strong result for finite Nori-reduced pointed
torsors:

Proposition 3.4.15 (Corollary I [1]). Nori-reduced
finite torsors
possess a FGS

Let X be a proper, reduced and con-
nected scheme over a field k, with a rational point x ∈ X(k). Then, a pointed
and finite G-torsor T → X possesses a FGS (Definition 3.2.2) if and only if
it is Nori-reduced, and in that case, for t ∈ T(k) over x, we have an exact
sequence of Nori fundamental group-schemes

1→ πN1 (T , t)→ πN1 (X, x)→ G→ 1.

Remark 3.4.16. Using Theorem 3.4.13, we can see that the universal torsor
of a Nori-reduced torsor T → X is X̂, the universal torsor of X.

3.4.2 Examples of descriptions of fundamental group-schemes

In this subsection, we will describe the Nori fundamental group-
scheme (and sometimes the S-FGS) for certain type of schemes. We
will use some results, namely the FGS of abelian varieties and the
FGS of rationally connected varieties, in Chapter 5.
We will start with projective spaces:

Proposition 3.4.17. FGS of
projective spaces

Let k be an algebraically closed field and n > 1, then
for any rational point x of Pn, both fundamental group-schemes πN(Pn, x)
and πS(Pn, x) are trivial.

Proof. By [42, Prop. 8.2], πS(Pn, x) is trivial, thus the result for the
Nori FGS follows.

A variety X over k is rational if it is birationally equivalent to a
projective space, thus by Proposition 3.4.2 we obtain:

Corollary 3.4.18 (Ch. II Prop. 8 [53]). FGS of proper
rational varieties

Let X be a proper and normal
rational variety over an algebraically closed field k. Then, for x ∈ X(k) we
have that πN(X, x) and πS(X, x) are trivial.

Now we will define rationally connected varieties and describe
their FGS, we will go deeper into this concept and its generalizati-
ons in Chapter 4.

Definition 3.4.19 (Definition 3.2 §IV.3 [39]). Rationally
connected
varieties

Let X be a variety over k. We
say for that X is rationally connected (resp. rationally chain connected),
if there exist a proper and flat family of curves C → Y where Y is a variety
over k, whose geometric fibers are proper smooth irreducible rational curves
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(resp. proper connected curves with smooth irreducible components that are
rational curves), such that there exists a morphism u : C → X, making

u(2) : C ×Y C → X×k X

a dominant morphism.
Moreover, if X is rationally connected (resp. rationally chain connected) and
u(2) is smooth at the generic point, we say that X is separably rationally
connected (resp. rationally chain connected).

We will sometimes abbreviate “rationally connected”, “rationally
chain connected”, “separably rationally connected” and “separably
rationally chain connected” as RC, RCC, SRC and SRCC respectively.

Remark 3.4.20. If char(k) = 0, by generic smoothness, a rationally con-
nected (resp. rationally chain connected) variety is also separably rationally
connected (resp. separably rationally chain connected), so these notions coi-
ncide. In positive characteristic, there are examples of rationally connected
varieties that are not separably rationally connected, see [39, Ch. V 5.19].

In terms of the FGS, we have the following result:

Proposition 3.4.21. Let X be a proper and normal variety over an algebrai-
cally closed field k, with a rational point x ∈ X(k). If X is rationally chain
connected, then πN1 (X, x) is finite.
If in addition, X is separably rationally connected and smooth, then πN1 (X, x)
is trivial.

Proof. For the first assertion, see [2]. The second one can be found in
[9].

Recall that a variety S over k is an abelian variety if S is a projective,
smooth and connected commutative group-scheme over k (Example
2.2.15(6)).

Definition 3.4.22.n-th power
morphisms of

group-schemes

Let G be a group-scheme of finite type over k and n > 1,
then the n-nth power morphism of G is the morphismsmn : G→ G that
is represented at the level of functors of points as the n-th power morphism
of abstract groups

G̃(R) → G̃(R)

g 7→ gn

for any k-algebra R.

Proposition 3.4.23 ([54]).FGS of an
abelian variety

Let S be an abelian variety over a perfect field k.
For n > 1, let S[n] be the kernel of the n-th power morphism mn : S → S,
which is a Nori-reduced S[n]-torsor. Then

πN1 (S, 0) = lim
←
n

S[n].
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Remark 3.4.24. In [54], Nori showed that if t : T → S is a pointed G-torsor
over 0, then there exists a unique integer N > 1 an a morphism of pointed
torsors p : S → T such that t ◦ p = mN, and thus we have a morphism of
group schemes S[N]→ G that commutes with the respective morphism from
πN(S, 0).
At the time Nori published this result, the Künneth formula for the FGS of
products of schemes was not yet established for the FGS, but he conjectu-
red the limit formula for πN1 (S, 0) if the result was true. Later, Mehta and
Subramanian showed the Künneth formula in [48].

Proposition 3.4.23 allows to fully describe pointed Nori-reduced
finite torsors over abelian varieties:

Corollary 3.4.25. Nori-reduced
torsors over
abelian varieties

Let S be an abelian variety over a perfect field k. If t :

T → S is a Nori-reduced finite torsor over S, pointed over 0, then T is an
abelian variety. When k is algebraically closed, and T a Nori-reduced finite
torsor over S, but is pointed over s ∈ S(k) different from 0, then T is a
smooth projective variety over k.

Proof. If t : T → S is pointed over S, then by Remark 3.4.24, there
exists a unique integer N > 1 an a morphism of pointed torsors p :

S → T such that t ◦ p = mN. If G is the group-scheme associated to
t, then G is quotient of S[N] and thus by using Proposition 2.3.49 we
have T ∼= S×S[N] G, and we can easily see that T ∼= S/K where K
is the kernel of the quotient morphism S[N] → G, and by applying
[49, Prop. 1.62(b)] we conclude that T is an abelian variety as finite
morphisms are projective.
If k is algebraically closed and T is pointed over s, by post-composing
t by a translation, we see that T is isomorphic to a Nori-reduced torsor
T ′ that is be pointed over 0, which concludes the proof.

Remark 3.4.26. The fact that pointed Nori-reduced finite torsors over abe-
lian varieties are abelian varieties themselves, or at least smooth projective
varieties is rare. In general, we cannot expect much regularity from Nori-
reduced pointed torsors, besides the fact that they are geometrically con-
nected.
For example, in [23, Remark 2.3 2)] an example of a non-reduced Nori-
reduced torsor is shown.
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4.1 introduction

The concept of curve-connected varieties started from the introduction
of rationally connected varieties (Definition 3.4.19). Independently, F.
Campana in [15] and J. Kollár, Y. Miyaoka and S. Mori in [40] in-
troduced the concept of rationally connected varieties motivated by
the study of Fano varieties of high dimension. One can think of the
concept of rationally connected as a rough generalization of uniruled
varieties: over uniruled varieties for any general point we can pass a
rational curve over it, while for rationally connected for any two very
general points we can pass a rational curve through them, at least if
the base field is algebraically closed. We can also think of rationally
connected varieties as an algebro-geometric analogue of “path con-
nectedness’ which is specially evident for complex varieties.
Nowadays, rationally connected varieties are an important part in the
study of higher-dimensional varieties, and the purpose of this chapter
is to introduce this concept and generalizations where we use curves
of higher genus or a fixed curve instead of just rational curves, along
with new fundamental group-schemes adapted to these varieties.
We will start in Section 4.2, where we will introduce the generalized
notions of curve-connected varieties, introduced by F. Gounelas in
[29] along with some basic results for these varieties. Then, in Section
4.3 we will show that g-connected varieties are C -CPC (Definition
3.3.60) varieties, where the family C depends on the genus of the cur-
ves, and thus we can attach new fundamental group-schemes to these
varieties following the CPC approach of Subsection 3.3.2.
Finally, in Section 4.4 we will apply the construction of the “maxi-
mal rationally connected fibration” to g-connected varieties and their
fundamental group-schemes, specially in the case of elliptically con-
nected varieties, which serves as a motivation for the results in Chap-
ter 5.
Most results from the theory of rationally connected varieties and g-
connected varieties will be stated without proof, with the respective
reference for the interested reader.

4.2 varieties connected by curves

In this section we will state the main notions of curve-connectedness
that we will work on in this chapter. These notions were defined by
F. Gounelas in [29] as a generalization of the notion of rationally con-
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nected varieties. In this section k will be a field of arbitrary characte-
ristic.

Definition 4.2.1 (Definition 3.1 [29]).g-connected
varieties

Let X be a variety over k. We say
for that X is connected by curves of genus g (resp. chain connected by
curves of genus g) for some g > 0, if there exists a proper and flat family
of curves C → Y where Y is a variety, whose geometric fibers are proper
irreducible curves of genus g (resp. proper connected schemes of dimension
1 whose irreducible components are smooth curves of genus g), such that
there exists a morphism u : C → X, making u(2) : C ×Y C → X×k X
dominant.
Moreover, if X is connected (resp. chain connected) by curves of genus g and
u(2) is smooth at the generic point, we say that X is separably connected
by curves of genus g (resp. chain connected by curves of genus g).
We will often use the shorter names (separable) g-connected, (separable)
g-chain connected.

Remark 4.2.2. Definition 4.2.1 is a generalization of the notion of (sepa-
rable) rationally (chain) connected varieties (Definition 3.4.19) which is of
course the latter definition with g = 0.
In the case g = 1, we will call 1-connected varieties elliptically connected
varieties.

There is another notion of curve-connected varieties that we will
consider, in which we will use a single curve instead of many curves
of a certain genus:

Definition 4.2.3 (Definition 3.3 [29]).C-connected
varieties

Let X be a variety over k. Let C
be a proper curve, we say that X is C-connected if there exist a variety
Y and a morphism u : C ×k Y → X, such that the induced map u(2) :

C×k C×k Y → X×k X is dominant.
Moreover, u(2) is smooth at the generic point, we say that X is separably
C-connected.

Clearly if X is a C-connected variety, then X is g-connected where
g is the genus of C.
The theory of curve-connected varieties diverges significantly depen-
ding on the characteristic:

Remark 4.2.4. If char(k) = 0, by generic smoothness (see [27, Exc. 10.40(a)]),
all the notions of curve-connectedness we have defined are automatically se-
parably connected, thus these terms coincide. In positive characteristic, the
“separably” condition is stronger. For example, in [39, Ch. V 5.19] Kollár
showed examples of rationally connected varieties that are not separably ra-
tionally connected.

Now we will outline some basic properties of g-connected varieties,
let us start with:

Lemma 4.2.5. Let X be a smooth and projective variety over k.

(a) There exists g > 0 such that X is g-connected.
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(b) If X is g-connected, then it is also g′-connected for any g′ > 2g− 1.

Proof. The proof of part (a) uses Bertini’s theorem ([36, II Thm. 8.18])
and can be found in [28, Lemma 2.20], while the proof of part (b) can
be found in [29, Lemma 3.2].

Another property for g-connected varieties, that will become very
handy in Section 4.4, is the following:

Lemma 4.2.6 (Lemma 3.4 (1) [29]). Induced curve-
connectedness
over rational
dominant maps

Let C be a smooth, irreducible and
projective curve and let X be a variety over k. Let us suppose we have a
rational dominant map X 99K Y to a proper variety Y. If X is connected by
genus g curves (resp. C-connected), then Y is connected by genus g curves
(resp. C-connected) as well.

Remark 4.2.7. The last two results hold for projective varieties. However,
Lemma 4.2.6 allows us to transfer results about projective curve-connected
varieties to proper curve-connected varieties by using Chow’s lemma: There
exists a projective variety X with a proper birational morphism X → X,
see [27, Theorem 13.100]. So, we can safely assume that a result of curve-
connectedness that holds for projective varieties hold for proper ones as well.

If we look back at Definition 4.2.1, it is not clear how we can pass
a curve over two points as we stated in the introduction. In fact, this
property is geometrical, i.e., it holds when k is algebraically closed.
To fully describe g-connected varieties over algebraically closed field,
we first need:

Definition 4.2.8. Let X be a variety over k. A point x ∈ X is very general
if belongs to a complement U = X\Z where Z is a countable union of proper
closed sub-varieties of X.

Proposition 4.2.9 (Lemma 3.4 (4) & (5) [29]). g-connected
varieties over
algebraically
closed fields

Let k be an uncountable
algebraically closed field, let X be a variety and let C be a smooth, irreducible
and projective curve. Then:

(a) X is C-connected, if and only if for any pair x1, x2 of very general
closed points of X, there exists a morphism C → X passing through
them.

(b) If k is an uncountable algebraically closed field, then X is g-connected
if and only if for two very general points of X there exist a smooth
irreducible curve of genus g with a morphism to X that contains these
points.

Remark 4.2.10. In Proposition 4.2.9 above, the hypothesis of k being un-
countable is necessary as a variety X might not have very general points at
all if k is countable or finite.

Sadly, this result is not enough to show that g-connected varieties
over uncountable algebraically closed fields are C -CPC as we would
need a smooth proper curve over any pair of two closed points. We
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will address this in the next section, but we will finish this section
with a result that serves as a starting point in the study of C-connected
varieties, and their FGS.

Proposition 4.2.11 (Proposition 3.5 [29]).C-connected
varieties arising
from generically

SRC fibrations

Let X be a projective and smooth
variety over an algebraically closed field k, and let f : X → C be a flat mor-
phism to a smooth and projective curve whose geometric generic fiber is
separably rationally connected. Then X is C-connected.

4.3 fundamental group-schemes for g-connected varie-
ties

4.3.1 Introduction and motivation

Let k be an uncountable algebraically closed field, and let X be a g-
connected variety. If C → Y is the family of curves, parameterized by
Y, the fact that we can join two very general points of X by a smooth
proper curve of genus g stems from the fact that the morphism u(2) :

C ×Y C → X×k X in Definition 4.2.1 is dominant, if u(2) would be
surjective instead, we would be able to connect any pair of points of X
using a curve in the family C, so X would be C -CPC and thus would
have a (S,C )-fundamental group-scheme πSC(X, x) for some rational
point x ∈ X(k) (Definition 3.3.67).
A sufficient condition for u(2) to be surjective is that C is proper, as
the morphism C → Y is clearly proper and then, we would obtain
that u(2) is a proper dominant morphism.
There is an obstacle for the family C to be proper: C is an irreducible
component of a moduli space of curves over X, namely, of curves that
pass through pair of points of X, and if we restrict ourselves to only
smooth proper curves of genus g, the corresponding moduli space is
not proper or projective. But as in the case of Remark 4.2.7 we can
try to “compactify the moduli”, so the newly obtain moduli space of
curves would be proper or projective, so that the closure C → Y of
C would be a new proper or projective family of curve so we would
effectively obtain a proper dominant morphism u(2) : C ×Y C →
X×k X.
For this purpose, we need to extend the types of curves we will allow
to form families with. These curves are called stable curves, and we
will show that we can effectively use them to connect any pair of
points of X, so X becomes C -CPC for a larger but reasonable family
of curves, that will allows us to define the desired fundamental group-
schemes for g-connected varieties.
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4.3.2 Stable curves and their moduli

Let us start by defining more precisely what we mean by families of
curves:

Definition 4.3.1. Curve familiesLet k be a field and let X be a k-scheme. For a finite
morphism Q→ Spec(k) a family of curves over X with marking Q is a
triple (C , f, ρ) where:

(a) We have a flat and proper morphism C → Y over a k-scheme Y whose
geometric fibers are proper connected schemes of dimension 1 whose
irreducible components are smooth curves.

(b) The morphism f : C → X×k Y is a morphism of schemes over Y.

(c) We have an embedding ρ : Q×k Y → C into the smooth locus1 of C

with disjoint images.

Remark 4.3.2. For such a family the arithmetic genus ([36, III Exc. 5.3])
g > 0 and degree of any geometric fiber is constant by [36, III Coro. 9.10]
as proper schemes of dimension 6 1 are projective.
If X is projective with a fixed ample bundle H, we can consider the de-
gree of the pull-back over a geometric fiber, that we will denote as d =

degC (f
∗(H)) > 0, which is constant in the family.

Before defining stable curves, it must be remarked that they are
not smooth in general, but their singularities are always “nodal” so
we need to define what we mean by it:

Definition 4.3.3. Nodal
singularities

Let X be a scheme locally of finite type over k and of
dimension 1.

(a) If k is algebraically closed, we say that a point x ∈ X is a node if
we consider mx the maximal ideal of the stalk OX,x, and the mx-adic
completion ÔX,x of OX,x (see [36, p. 193]), then we have that

ÔX,x ∼= k[[x,y]]/(xy)

where the double bracket denotes the k-algebra of formal power series.

(b) For general k, a point x ∈ X is a node if there exists a node x̄ ∈ Xk̄
that maps onto x via the base change morphism Xx̄ → X.

(c) X has at worst nodal singularities if any point x ∈ X is either a
node or smooth over k.

(d) A proper connected scheme of dimension 1 whose irreducible compo-
nents are curves will be called a nodal curve.

Now we can define stable curves:

1 The set of points of C that are smooth over Spec(k).
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Definition 4.3.4.Stable curve
families

Let k be a field and let X be a k-scheme. A family (C , f, ρ)
of curves over X with marking Q is stable if in addition to the conditions of
Definition 4.3.1 we have:

(d) All the geometric fibers in the family C → Y over an k-scheme Y are
nodal curves.

(e) For every rational point Spec(k) → Y, the curve Ck has at most a
finite amount of automorphisms such that, if fk : Ck → X is the
restriction of f to Ck, we have that fk = fk ◦ ρ and they fix the closed
points of ρ(Qk) where Qk is the respective restriction of Q.

Geometric stable
curves

We will call families of stable curves of arithmetic genus g with Spec(L) = Y
where L is an algebraically closed extension of k a geometric stable curve
of arithmetic genus g over L.

Remark 4.3.5. Definitions 4.3.1 and 4.3.4 are particular cases of [5, Defni-
nition 49] where there are no prescribed base points over X, that we do not
need for this thesis, and the base scheme is Spec(k).

Definition 4.3.6. Let X be a scheme over k, and let (C , f, ρ) and (C ′, f′, ρ′)
be two family, stable or otherwise, of curves over X with marking Q, para-
meterized by the same k-scheme Y.

(a)Isomorphisms of
curve families

An isomorphism of families between (C , f, ρ) and (C ′, f′, ρ′), is
an isomorphism φ : C → C ′ over Y such that that f′ ◦ φ = f and
φ ◦ ρ = ρ′.

(b)Pull-back of
curve families

If g : Z → Y is a morphism of schemes over k, the pull-back of
(C , f, ρ) under g is the family (CZ, fZ, ρ) that results of base chan-
ging the morphism f : C → X×k Y in Definition 4.3.1(b) via g. The
pull-back of a stable family is stable.

With this, we can define functors over schemes that we will attach
moduli spaces to:

Definition 4.3.7.Functors of
curve families

Let k be a field, g > 0 and let Q → Spec(k) be a fi-
nite morphism with n = |Q|, the functor of curve families of genus g
with marking Q is the functor Fg,d : Schk → Set that associates to each
scheme X over k the set of isomorphism classes of families of curves over X
of arithmetic genus g and marking Q and for any morphism g : Z → X

of schemes over k, Fg,d(g) maps a family (C , f, ρ) to its pull-back under g
(Definition 4.3.6(b)).
The analogous functor that associates to each scheme the set of isomorphism
classes of stable families of curves over X of arithmetic genus g and marking
Q will be denoted as Fg,d : Schk → Set, and called the functor of stable
curve families of genus g with marking Q.

Now we can define what we will mean by moduli space:
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Definition 4.3.8. Coarse moduli
spaces

Let k be a field, and let F : Schk → Set be a functor.
An algebraic space2 M over k, with a natural transformation τM : F →
Hom(·,M)3 that satisfies the following:

(a) For any algebraically closed field L, τM(Spec(L)) is an isomorphism.

(b) For any scheme N over k, and natural transformation τN : F →
Hom(·,N), there exists a unique morphism f : M → N such that
τN = τf ◦ τM where

τf : Hom(·,M)→ Hom(·,N)

is the natural transformation induced by composition with f.

And thus we can start with the coarse moduli of smooth curves:

Definition 4.3.9. Coarse moduli of
smooth curves of
genus g

Let X be a scheme over k. For g > 0 and a finite morphism
Q → Spec(k) with n = |Q|. The coarse moduli of smooth curves of
genus g over Xwith nmarked points is the coarse moduli spaceMg,n(X)

for the functor Fg,d : Schk → Set in Definition 4.3.7. The disjoint union for
of the moduli spaces Mg,n(X) for n > 0 we will denoted as Mg(X) and is
known as the coarse moduli of smooth curves of genus g over S, it is
quasi-projective.

Remark 4.3.10. If X is projective with a fixed ample bundle H, we can
consider the degree d = degC (f

∗(H)) > 0, which is constant in curve fami-
lies (Remark 4.3.2), and its respective coarse moduli space will be denoted as
Mg(X,d), this space can be further divided asMg(X,d) = tn>0Mg,n(X,d)
where each moduli space Mg,n(X,d) classifies the functor of isomorphism
classes of families of smooth and irreducible projective curves of degree d
over X with marking Q.

The compactification of these moduli spaces, associated to the func-
tor of stable curve families of genus g with marking Q, exists and we
have:

Theorem 4.3.11 (Theorem 50 [5]). Coarse moduli
space of stable
curves of
arithmetic genus
g

Let X be a projective scheme over kwith
an ample bundle H. For a finite morphism Q→ Spec(k) with |Q| = n and
integers g,d > 0 there exists a separated algebraic spaceMg,n(X,d) of finite
type over k that is a coarse moduli space for the functor Fg,d : Schk → Set
of stable curve families of genus g with marking Q (Definition 4.3.7), such
that degC (f

∗(H)) = d. Moreover, Mg,n(X,d) is projective over k.

2 See [57, Definition 5.1.10] for a definition of algebraic space, in short, it is a sheaf in
the big étale site of Schk whose diagonal is representable and is covered by an étale
morphism from a scheme.

3 In the big étale site schemes are representable functors, thus the Hom-set here deno-
tes the set of étale sheaf morphism.
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Remark 4.3.12.“Inclusion” of
the coarse

moduli space of
smooth curves
into the stable
moduli space

Let X be a projective scheme over kwith an ample bundleH.
It can be shown that for any g > 0 the coarse moduli space Mg,n(X,d) is a
scheme over k, and thus the obvious natural transformation ι : Fg,d → Fg,d

that comes from the inclusion of classes families smooth curves of genus g
over X with n marked points in a class of stable curve families, induces
a morphism ig,n,d : Mg,n(X,d) → Mg,n(X,d) that makes the following
diagram commutative of functors and natural transformations:

Fg,d

ι
��

τMg,n(X,d) // Hom(·,Mg,n(X,d))

τig,n,d
��

Fg,d τMg,n(X,d)

// Hom(·,Mg,n(X,d))

4.3.3 New fundamental group-schemes for curve-connected varieties

Now we are ready to define new fundamental group-schemes to g-
connected proper varieties. We start with the following observation:

Remark 4.3.13. Let k be a field, and let X be a g-connected variety.
If C → Y is the family of smooth proper curves of genus g that makes X
g-connected, by looking at Definition 4.2.1 we see that in fact the family is
a family of curves over X without marked points, meaning that it is related
to the coarse moduli space Mg,0(X,d) for a certain integer d > 0.
Moreover, the projection p2 : C ×Y C → C defines a family smooth proper
curves of genus g now parameterized by C that as a section, the diagonal
morphism ∆C of C over Y, thus we have a family with one marked point, as-
sociated toMg,1(X,d). In particular, as these are coarse moduli spaces, these
families correspond to points over them, such that the following diagram is
commutative:

C

��

//Mg,1(X,d)

��
Y //Mg,0(X,d)

where the morphism Mg,1(X,d) → Mg,0(X,d) arises from the natural
transformation that forgets the marking of a family of smooth proper cur-
ves of genus g, using Definition 4.3.8(b).
Moreover, there is a natural morphism evX : Mg,1(X,d) → X as for any
scheme Z over k, a family of smooth curves of genus g and degree parame-
terized by Z defines a morphism Z → X using the section provided by the
marking Q, in particular we have a natural transformation

Hom(·,Mg,1(X,d))→ X̃
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that corresponds to the morphism above, so we can complete the commutative
diagram as follows:

C

��

//

u

&&
Mg,1(X,d)

��

evX
// X

Y //Mg,0(X,d)

Thus, this diagram induces a dominant morphism

Mg,1(X,d)×Mg,0(X,d)Mg,1(X,d)→ X×k X

that gives us curves that pass through any pair of very general points if
k is algebraically closed by applying Definition 4.3.8(a). We can replace
Mg,1(X,d) and Mg,1(X,d) by Mg,1(X) and Mg,0(X) respectively in the
last morphism.

Proposition 4.3.14. Points in
projective
g-connected
varieties can be
connected by
stable curves of
genus g

Let k be an uncountable algebraically closed field, and
let X be a projective variety that is g-connected. Then, for any pair of points
x,y of X, there exist a geometric stable connected curve of arithmetic genus
g over k (Definition 4.3.4) and a morphism f : C→ X whose image contains
x and y.

Proof. By Lemma 4.2.6 we can assume X is projective.
As X is g-connected, applying Proposition 4.2.9 and Remark 4.3.13,
we have a dominant morphism Mg,1(X)×Mg,0(X)Mg,1(X)→ X×k X.
If C is a family of smooth projective and irreducible curves of genus
g that makes X g-connected, it induces a morphism C → Mg,1(X,d)
for some degree d > 0. Thus, by Remark 4.3.12, we have another do-
minant morphism Mg,1(X,d)×Mg,0(X,d)Mg,1(X,d)→ X×k X, but as
Mg,1(X,d) is projective, this morphism is surjective and by looking
at the k-points, by Definition 4.3.8(a) we obtain geometric stable cur-
ves of arithmetic genus g over k with morphisms over X that pass
through any pair of closed points.

Corollary 4.3.15. Projective curve
connected
varieties are
C -CPC

Let k be an algebraically closed field and let X be a pro-
jective variety that is g-connected (g > 0). Then X is Curvk(g)-CPC where
Curvk(g) is the family of projective and irreducible curves of arithmetic ge-
nus 6 g.

Proof. Let C → X be a geometric stable curve of arithmetic genus g
over k passing through two points of X, then any irreducible compo-
nent of C must have arithmetic genus 6 g and thus the conclusion
follows.

Thus, we can define an (S,C )-fundamental group-scheme for pro-
jective varieties. From this point on, k will be an uncountable alge-
braically closed field of positive characteristic.
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Definition 4.3.16.The
g-fundamental
group-scheme

Let X be a projective g-connected variety (g > 0) over
k, with a rational point x ∈ x(k). The g-fundamental group-scheme of
X is the (S,C)-fundamental group-scheme of Definition 3.3.67 associated
to the family Curvk(g). We will denote it as πSg(X, x). We can also define
the g-PB-fundamental group-scheme as the fundamental group-scheme of
Proposition 3.3.76 applied to the family of curves Curvk(g), we will denote
it as πPBg (X, x).

Remark 4.3.17. Let X be a projective g-connected variety (g > 0) over k,
with a rational point x ∈ x(k). To fix some notation, recall that πSg(X, x)
is the group-scheme associated to the tannakian category NSSg(X) (we will
use this notation instead of NSSCurvk(g)(X)) of vector bundles over X whose
pull-backs along morphisms from smooth, irreducible and projective curves
of genus 6 g are strongly semi-stable of degree 0. In the case of πPBg (X, x), it
is associated to the category PB-EFg(X) (as before, we will use this instead
of PB-EFCurvk(g)(X)) of vector bundles over X whose pull-backs along mor-
phisms from smooth, irreducible and projective curves of genus 6 g are
essentially finite.

Remark 4.3.18. If X is a g-connected projective variety over k, for any
genus g′ > g for which X is also g′-connected, we have a natural morphism
of fundamental group-schemes

πSg(X, x)→ πSg′(X, x)

coming from the full inclusion of categories NSSg′(X) ⊂ NSSg(X) (see Re-
mark 3.3.64). The same applies to πPBg (X, x) and πPBg′ (X, x).
As NSS(X) is fully included in NSSg(X) for any g > 0, we have a composi-
tion πSg(X, x)→ πS(X, x)→ πN(X, x) for any g that is faithfully flat4, and
likewise for the g-PB-fundamental group-scheme.

If we apply the properties in Lemma 4.2.5 to the g-fundamental
group-scheme, we will obtain:

Lemma 4.3.19. Let X be a smooth and projective variety over k, with a
rational point x ∈ x(k).

(a) There exists g > 0 such that X possesses a g-fundamental group-
scheme.

(b) If X is g-connected, for any g′ > 2g − 1, we have a morphism of
fundamental group-schemes πSg(X, x)→ πSg′(X, x).

We finish this sub-section by studying the 0-fundamental group-
scheme. To start, in the case of rationally connected variety, we do
not need to use Proposition 4.3.14:

4 The first morphism in this composition might not be faithfully flat though, see Re-
mark 3.3.68(a).
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Lemma 4.3.20 (IV.3 Corollary 3.5.1 [39]). Let X be a proper rationally
chain connected over an algebraically closed field k. Then, for any pair of
points of X there exists a curve C ⊂ X containing them, where all irreducible
components of C are rational.

Over algebraically closed fields, the only smooth proper rational
curves is P1k so we will introduce new notation in the case a scheme
is connected by chains of proper curves, with the same irreducible
component.

Definition 4.3.21. The
C-fundamental
group-scheme

Let C be a proper curve over k and let X be a scheme of
finite type over k, with a rational point. If we consider the singleton family
C = {C}, we will simply denote a C -CPC scheme X as C-CPC.
In this case we will denote the corresponding fundamental group-schemes as
πSC(X, x) and πPBC (X, x) and we will call them the C-fundamental group-
scheme and the C-PB-fundamental group-scheme respectively.

Lemma 4.3.20 yields:

Corollary 4.3.22. Proper rationally
chain connected
varieties are
P1k-CPC

Let X be a proper rationally chain connected variety over
an algebraically closed field k, not necessarily uncountable.
Then, X is P1k-CPC. Moreover, if X is rationally connected and k is uncoun-
table, for any pair of very general points x1, x2 of X, there exists a morphism
P1k → X from a single rational smooth curve whose image contains x1 and
x2.

Proof. By taking normalizations of the rational curves over points of
X, we easily see that X is P1k-CPC. The same can be applied to the
rationally connected case, using [39, IV.3 Prop. 3.6] to conclude the
second part.

Thus, for proper rationally chain connected varieties over k, the
fundamental group-schemes πS

P1k
(X, x) and πS0(X, x) coincide. We will

stick with the latter notation.
Using the fact that the FGS of P1k is trivial (Proposition 3.4.17), this
can be easily deduce the following:

Lemma 4.3.23. Let X be a projective (proper) rationally chain connected
variety over k. For any rational point x ∈ X(k) the fundamental group-
schemes πS0(X, x), πPB0 (X, x) and πN(X, x) coincide.

Remark 4.3.24. Recall Proposition 3.4.21. In [2] M. Antei and I. Biswas
showed that a normal rationally chain connected variety has finite FGS, and
so do πS0(X, x) and πPB0 (X, x) from Lemma 4.3.23.
For separably rationally connected varieties, I. Biswas in [9] showed that
πN(X) is trivial for a smooth separably rationally connected variety.
Another take on the latter result, is that with the same hypotheses, I. Biswas
and J.P. Dos Santos showed in [10] that any bundle over X that becomes tri-
vial under any non-constant morphism P1 → X is trivial. This implies that
πS0(X, x) is trivial, and thus πN(X, x) is as well from the natural faithfully
flat morphism πS0(X, x)→ πN(X, x).
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Finally, we state a problem associated to these FGS, that could pro-
vide a new approach to describe the FGS of rationally connected va-
rieties, independent from the proof of Proposition 3.4.21 by M. Antei
and I. Biswas in [2]:

Problem 4.3.25.0-FGS of RCC
varieties

Let X be a projective (proper) rationally chain connected
variety over k. Show independently that πS0(X, x) is a finite group-scheme.

4.4 the maximal rationally connected fibration

We finish this chapter with the maximal rationally connected fibra-
tion, or MRC fibration. We will define the MRC fibration a state some
properties of it in Subsection 4.4.1, followed by the study of this fibra-
tion for C-connected (Definition 4.2.3) proper normal varieties in Sub-
section 4.4.2. Finally, we discuss possible approaches to understand
the FGS for these varieties, see Remark 4.4.20.

4.4.1 Definition and properties

Let k be a field. We start by defining the MRC fibration:

Definition 4.4.1 (IV.5 5.1 [39]).Rationally
connected

fibration and the
MRC fibration

Let X be a variety over k a rationally
connected fibration or RC fibration is a rational morphism X 99K Z such
that for an open dense subset U ⊂ X we have a proper morphism f : U→ Z

such that f∗(OU) = OZ and the fibers of f are rationally chain connected.
A rationally connected fibration φ : X 99K Z is maximal or MRC if for
any other rationally connected fibration φ′ : X 99K Y, there exists a rational
map g : Y 99K Z such that φ = g ◦φ′, making Z unique up to birational
equivalence.

Remark 4.4.2. Let X be a variety over k. Let us suppose that X has an
MRC fibration X 99K Z, it is not hard to see that if Z is a point, then X is
rationally chain connected.

A variety might not have a MRC fibration or even a RC fibration in
general, but with sufficient hypotheses, we have:

Proposition 4.4.3 (IV.5 5.2 [39]).Existence of the
MRC fibration

Let X be a normal and proper variety,
then X has an MRC fibration f : X 99K Z. Moreover, if k is algebraically
closed and uncountable, it is characterized by the following property: For
any very general point z ∈ Z, if C ⊂ X is a rational curve over X that
intersects the fiber Xz, then C ⊂ Xz.

The main idea that shows the existence of the MRC fibration, is that
we can define an equivalence relation (Definition 2.2.38) over X: two
points x1 of x2 are related if there exists a chain of rational proper
smooth curves that connect them. Then, by a result that generalizes
Theorem 2.2.43 we obtain the MRC fibration, see [39, §IV.4 4.10 &
4.17].
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We will make some adjustments on MRC fibrations, so we can iterate
them:

Remark 4.4.4. If X is normal an proper, we will denote the MRC fibration
as X 99K R1(X). Kollár warned that the open subset U ⊂ X where the MRC
fibration is defined is not unique, so we will assume that we have an open
subset V ⊂ R1(X) with a morphism f : U → V satisfying the properties
of a rationally connected fibration in Definition 4.4.1. After getting rid of
the bad locus we will always assume that R1(X) is normal and proper after
normalizing V , taking its Nagata compactification V̄ (see [16]), and then
taking the normalization W → V̄ which is a finite and birational morphism.

Thus, under the assumptions of Remark 4.4.4 we can iterate MRC
fibrations using Lemma 4.4.3, to obtain:

Definition 4.4.5. The MRC
sequence

Let X be a normal and proper variety over k. The sequence
of rational maps

X := R0(X) 99K R1(X) 99K · · · 99K Rn(X) 99K · · ·

such that Ri+1(X) = R1(Ri(X)) is an MRC fibration over Ri(X) for i > 0

will be called the MRC sequence of X.
This sequence is eventually stationary, we will call the least member for
which the sequence stabilizes afterwards the end of the MRC fibration.

4.4.2 Towards a description of the FGS of C-connected varieties

Now we will show an approach to study and possibly describe the
fundamental group-scheme of C-connected varieties, where C is a
fixed smooth and proper curve. We will suppose that k is an uncoun-
table algebraically closed field for this subsection.
We will start with a neat feature of the MRC sequence, which is a
direct consequence of Lemma 4.2.6:

Lemma 4.4.6. Curve-
connectedness is
preserved along
the MRC
sequence

Let C be a smooth, irreducible and projective curve over k,
and let X be a normal proper variety over k. If X is g-connected (resp. C-
connected), then for any i > 1 and g > 1, Ri(X) is g-connected (resp.
C-connected) as well.

If X is a C-connected normal proper variety, then it could happen
that Ri(X) = X for all i > 1, so we would not get so much from
Lemma 4.4.6.
Thus, we need a way to ensure that the dimension of Ri(X) always de-
creases, up to a certain point for C-connected varieties. One sufficient
condition for this, is the following:

Definition 4.4.7. Let X be a variety over k with dim(X) = m. We say that
X is uniruled if there exists a variety Y of dimension m− 1 together with a
dominant morphism P1 ×k Y → X.

Uniruled varieties fulfill our needs, because:
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Remark 4.4.8. If X is a normal proper and uniruled variety over k and we
consider its MRC fibration X 99K R1(X), by the property that characterizes
the MRC over an algebraically closed field (Proposition 4.4.3), we see that
dim(R1(X)) < dim(X) and thus the dimensions of two consecutive vari-
eties Ri(X) 99K Ri+1(X) in the MRC sequence must decrease if Ri(X) is
uniruled.

Are C-connected varieties uniruled then? The answer is the follo-
wing:

Proposition 4.4.9 (Prop. 3.6 [29]). Let X be a C-connected variety of di-
mension at least 3. Then X is uniruled.

Applying this to the MRC sequence of a normal and proper C-
connected variety we obtain the following:

Proposition 4.4.10 (Prop. 3.7 [29]).MRC sequence
of C-connected

varieties

Let X be a normal and proper C-
connected variety over k, with C a smooth and proper curve. Then, all mem-
bers of the MRC sequence of X are C-connected and the sequence ends in
either a surface, a curve or a point.

This means that there exist n > 0 such that Rn(X) is a surface, a
curve or a point, and after that point the MRC sequence stabilizes.

Proof. The fact that all members are C-connected comes from Lemma
4.2.6.
For the end of the sequence part, if dim(X) < 3 there is nothing to
prove. If dim(X) > 3 then X is uniruled by Proposition 4.4.9 and
thus dim(R1(X)) < dim(X) as mentioned in Remark 4.4.8. By Lemma
4.2.6 we have that Ri(X) is C-connected for every i > 1, and thus
dim(Ri+1(X)) < dim(Ri(X)) as long as dim(Ri(X)) > 3.
As the dimension strictly decreases, there will be a point when Rn(X)
has dimension smaller than 3, thus the MRC fibration will either stabi-
lize after Rn(X) or further in the sequence, with an end of dimension
smaller than 3, finishing the proof.

If we briefly touch the case of characteristic zero, we have a com-
pletely different behavior in this case:

Lemma 4.4.11.MRC fibrations
in characteristic

zero

Let X be a normal proper variety over an algebraically closed
field of characteristic zero. Then, R1(X) is not uniruled.

Proof. This is a consequence of Proposition 4.2.11 applied to P1k: Any
flat morphism f : X→ Pk1 whose geometric generic fiber is separably
rationally connected is P1k-connected, thus X rationally connected. In
characteristic zero, “rationally connected” and “separably rationally
connected” are the same concept (Remark 3.4.20).
In short we have: if X is a normal property over k, with a flat mor-
phism f : X → Pk1 whose geometric generic fiber is rationally con-
nected, then X rationally connected. So we conclude that the MRC
fibration is not uniruled in this case by [39, §IV.5 Prop. 5.7].
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This lemma combined with Proposition 4.4.10 yields:

Corollary 4.4.12. MRC fibration
of a C-connected
variety in
characteristic
zero

Let X be a normal and proper C-connected variety over an
algebraically closed field of characteristic zero, with C a smooth and proper
curve. Then, R1(X) is either a point, a curve or a C-connected surface.
In the case, R1(X) is a curve C′, the MRC fibration of X is a globally defined
morphism f : X→ C′.

The last part of the corollary comes from [55, Remark 4].
Now we will begin the study of the FGS of a C-connected normal
proper variety over k, with a rational point x ∈ X(k) and k of positive
characteristic.
The easiest case to describe, is the one inspired by the MRC fibration
of a C-connected variety in characteristic zero, and is a corollary of
Proposition 4.2.11.

Corollary 4.4.13. Let X be a projective and smooth variety over an alge-
braically closed field k, and let f : X → C be a flat morphism to a smooth
and projective curve whose geometric generic fiber is separably rationally
connected, so X is C-connected. Then, the morphism f : X → C induces an
isomorphism of fundamental group-schemes πN(X) ∼= πN(C) for compati-
ble rational points.

Proof. In this case, as k is perfect the geometric generic fiber of f
is smooth and irreducible using [33, Théorème 12.1.6] and [27, Exc.
6.20], in particular it has a trivial FGS by Proposition 3.4.21, so the
conclusion follows from Proposition 3.4.11.

At the time of writing the description of the FGS for C-connected
varieties remains an open problem, but we will state here the best
guess the author has so far about it:

Definition 4.4.14. A morphism of affine group-schemes φ : G→ H over a
field k has finite index if for any faithfully flat morphism ρ : H → Q to a
group-scheme Q, such that the composition ρ ◦φ : G→ Q has finite image,
we have that Q is finite.

Conjecture 4.4.15. Conjecture: FGS
of C-connected
varieties

Let X be a projective (proper) normal and C-connected
variety over k, where C is a smooth projective curve. Let x ∈ X(k) be a
rational point, then there exists a non-constant morphism f : C→ X passing
trough x, such that the image of the induced morphism between fundamental
group-schemes πN(f) : πN(C, c) → πN(X, x) has finite index where c ∈
C(k) is a rational point over x.

Corollary 4.4.13 shows that, for the strong hypotheses of Proposi-
tion 4.2.11 the conjecture is true, and Proposition 3.4.21 shows that
the conjecture is true for rationally connected (i.e. P1k-connected) va-
rieties.
Before discussing some approaches to solve Conjecture 4.4.15, the fol-
lowing results detail the general behavior of the FGS along a MRC
sequence.
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Lemma 4.4.16. Let X be a normal and proper variety over k. Then if
X 99K R1(X) is the MRC fibration of X, defined over an open dense sub-
set U ⊂ X as f : U → V where V is an open subset of R1(X). Then
for x ∈ X(k) and z ∈ V(k) such that f(x) = z, the induced morphism
πN(f) : πN(U, x) → πN(V , z) is faithfully flat and so is the composition
πN(U, x)→ πN(R1(X), z).

This lemma is easily deduced from [53, II Prop. 6] and Proposition
3.4.1.

Remark 4.4.17. Keeping the hypotheses of Lemma 4.4.16, as X is normal
the open immersion U ↪→ X induces a faithfully flat morphism πN(U, x)→
πN(X, x) for x ∈ X(k) lying in U, we have the following diagram of FGSs
where all arrows are faithfully flat:

πN(X, x)

πN(U, x)
πN(f)

//

88

πN(V , z) // πN(R1(X), z)

.

For MRC fibrations we have the following conjecture:

Conjecture 4.4.18.Conjecture: FGS
along MRC

fibrations

Let X be a normal and proper variety over k, with a
rational point x ∈ X(k). If X is either C-connected, where C is a smooth
projective curve, or g-connected for g > 1, and X 99K R1(X) is the MRC
fibration of X, defined over an open dense subset U ⊂ X as f : U→ R1(X).
Then, for x ∈ X(k) and z ∈ R1(X)(k) such that f(x) = z, the induced
morphism πN(f) : πN(U, x)→ πN(R1(X), z) has finite kernel.

Remark 4.4.19. The conjecture might not be true, as there are examples
of varieties X for which the MRC sequence ends in a point, yet the étale
fundamental group of X is infinite, see [29, §8]. The example in question is
not curve-connected as demanded in Conjecture 4.4.18.

We finish this chapter by outlining two possible approaches to des-
cribe the FGS of C-connected varieties.

Remark 4.4.20.Two possible
approaches to

describe the FGS
of C-connected

varieties

Let X be a normal and proper C-connected variety over an
algebraically closed field k, with C a smooth and proper curve. If x ∈ X(k),
to describe πN(X, x) we could:

1. StudyC-CPC varieties and theC-fundamental group-scheme πCS (X, x)
(Definition 4.3.21), and show that C-connected varieties are C-CPC,
which is an open problem as we lack a projective/proper moduli space
to introduce in the dominant morphism

u(2) : C×k C×k Y → X×k X

in Definition 4.2.3, where Y is a variety. It can be shown that Y can be
taken to be a closed sub-variety of the Hom-scheme Homk(C,X) ([29,
Lemma 3.4 (2)]), but this scheme is quasi-projective.
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2. Use the MRC sequence: for simplicity, we will assume all the ratio-
nal maps in the MRC are globally defined morphisms, so we have a
sequence of morphisms

X := R0(X)→ R1(X)→ · · · → Rn(X)

where Rn(X) is the end of the sequence. Assuming Conjecture 4.4.18,
the problem of describing πN(X, x) may amount to study the mor-
phisms of fundamental group-schemes πN(Ri(X)) → πN(Ri+1(X))

and show that if Conjecture 4.4.15 is true for Ri+1(X), then it is also
true for Ri(X), so we can inductively show that πN(X, x) satisfies the
conjecture. Thus, from Proposition 4.4.10 we need to study three base
cases:

(a) If Rn(X) is a point, then Rn−1(X) is rationally chain connected
of arbitrary dimension and C-connected, so this case could be the
“wildcard” of the three as it is the most general.

(b) If Rn(X) is a surface, then we need to study C-connected surfa-
ces. An interesting example of this type, suggested by F. Goune-
las, is the where S is an abelian C-connected surface, as in this
case it can be shown that S is C-CPC and this extends to abelian
varieties of dimension > 2.

(c) If Rn(X) is a non-rational smooth proper curve C′, as this variety
is C connected, it comes with a prescribed morphism f : C→ C′

and a commutative diagram

Rn−1(X)

h

��

C

f $$

g
;;

C′

where h : Rn−1(X) → C′ is a proper faithfully flat morphism
with rationally chain connected, geometrically normal and geo-
metrically irreducible geometric fibers, by [33, Théorème 12.1.6]
and [27, Exc. 6.20]. The key here, would be describing

πN(h) : πN(Rn−1(X))→ πN(C′),

which is at least faithfully flat by Lemma 4.4.16, and

πN(f) : πN(C)→ πN(C′).

We conjecture πN(f) has finite index.
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5.1 introduction

In this chapter, we will apply the theory of the FGS, explained in
Chapters 2 and 3 to describe a the fundamental group-scheme of pro-
per varieties fibered over curves, with rationally connected fibers.
We will provide a complete description when the base curve is an
elliptical curve, and a partial one for arbitrary curves.
Let k be a field, and let f : X→ S be a faithfully flat proper morphism
over k between a proper normal variety and a smooth proper curve,
with geometrically connected fibers, we will call such a morphism a
fibration over a curve.
If k is algebraically closed of positive characteristic, and motivated by
the problem of describing the FGS of curve-connected varieties, for
instance, C-connected varieties (Definition 4.2.3), and as discussed
in Remark 4.4.20(2), it is necessary to study the FGS of “rationally
connected fibrations” over curves, where by rationally connected fi-
bration we mean a fibration over a curve with rationally (chain) con-
nected fibers.
In this case, the geometric fibers of f are also normal and geometri-
cally reduced by [33, Théorème 12.1.6] and [27, Exc. 6.20], in particu-
lar any fiber has a finite FGS by Proposition 3.4.18! A particular fiber
of interest is the geometric generic fiber Xη̄ where η̄ : Spec(L) → S is
the geometric generic point of Swhich has finite FGS in this case, and
the study of the relation between torsors over X and their pull-backs
to Xη̄ will be key through this chapter.
Another curve-connectedness property, that motivated the main re-
sult of this chapter, are elliptically connected varieties, that leads to
the study of rationally connected fibrations f : X → S where S is an
elliptic curve, see Remark 5.1.5 below. The FGS of abelian varieties is
well known (Proposition 3.4.23), and Nori-reduced torsors over abe-
lian varieties have strong properties (Corollary 3.4.25) that allows us
to have more tools at our disposal to describe the morphism of fun-
damental group-schemes πN(f) : πN(X)→ πN(S) for which we know
the fundamental group-schemes of both the base and the fibers.
Before introducing the main result, let us start with by describing
some properties of elliptically connected varieties.

203
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5.1.1 Motivation: Understanding the FGS of elliptically connected varie-
ties

Let k be an uncountable algebraically closed field of positive characte-
ristic, in this subsection we will study elliptically connected varieties
over k (see Remark 4.2.2), and the MRC sequences (Definition 4.4.5)
of these, in a similar fashion to what we did in Subsection 4.4.2 for
C-connected varieties.
At the end, we will mention two approaches we can undertake in or-
der to describe the FGS of these varieties, serving as motivation for
the main result in the next subsection.
In the case of C-connected varieties, in Proposition 4.4.10 we fully des-
cribed the MRC sequence using the fact that C-connected varieties of
dimension greater or equal than 3 are uniruled (Definition 4.4.7). We
have in fact a stronger description for elliptically connected varieties:

Proposition 5.1.1.MRC sequence
of elliptically

connected
varieties

Let X be a smooth and proper elliptically connected va-
riety over k. Then, all members of the MRC sequence of X

X := R0(X) 99K R1(X) 99K · · · 99K Rn(X) 99K · · ·

are elliptically connected and the sequence ends in either a curve or a point.

The proof of this proposition is similar to the proof of Proposition
4.4.10, but the ending of the MRC sequence in this case is more re-
stricted thanks to:

Proposition 5.1.2 (Prop. 6.1 [29]). Let X a smooth and proper elliptically
connected variety over k of dimension at least 2. Then X is uniruled.

With this, we can fully describe elliptically connected varieties when
k has characteristic zero, recall that in characteristic zero, for the MRC
fibration X 99K R1(X) the variety R1(X) cannot be uniruled (Lemma
4.4.11), and combining this with Proposition 5.1.1, we obtain:

Proposition 5.1.3 (Theorem 6.2 [29]).Elliptically
connected

varieties in
characteristic

zero

Let X be a smooth and projective
variety over an algebraically closed field of characteristic 0. Then X is ellipti-
cally connected if and only if it is either rationally connected or a rationally
connected fibration over an elliptic curve.

In the case of a rationally fibration f : X→ S, the geometric generic
fiber of f is separably rationally connected, but in characteristic zero
this is a given (Remark 3.4.20). But if we carry these hypotheses to
the positive characteristic case we obtain:

Proposition 5.1.4. Let X be a projective and smooth variety over an alge-
braically closed field k, and let f : X → S be a flat morphism to an elliptic
curve whose geometric generic fiber is separably rationally connected, so X
is S-connected1. Then, the morphism f : X → S induces an isomorphism of
fundamental group-schemes πN(X) ∼= πN(S) for compatible rational points.

1 And elliptically connected too
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which is a particular case of Corollary 4.4.13.
For general smooth proper elliptically connected varieties, we can
outline two approaches to understand their FGS.

Remark 5.1.5. Two possible
approaches to
describe the FGS
of elliptically
connected
varieties

Let X a smooth and projective proper connected variety over
k. If x ∈ X(k), we propose two approaches to describe πN(X, x):

1. We showed in Proposition 4.3.15 that if X is projective, it is Curvk(1)-
CPC where Curvk(1) is the family of projective and irreducible curves
of arithmetic genus 6 1.
Thus, X possesses an associated (S,C)-fundamental group-scheme of
Definition 3.3.67, called the 1-fundamental group-scheme, that will
denote as πS1(X, x), see Definition 4.3.16, and we can try to study the
faithfully flat natural morphism

πS1(X, x)→ πN(X, x).

One possible approach here, is to study in dept the categories NSS(E)
and EF(E) when E is an elliptic curve. Descriptions of vector bundles
over elliptic curves in positive characteristic are well known, see [56].

2. Use the MRC sequence: for simplicity, we will assume all the ratio-
nal maps in the MRC are globally defined morphisms, so we have a
sequence of morphisms

X := R0(X)→ R1(X)→ · · · → Rn(X)

where Rn(X) is the end of the sequence. Here make the same analysis
we did in Remark 4.4.20(2).
Thus, we need study two base cases, determined by Proposition 5.1.1,
which are:

(a) If Rn(X) is a point, then Rn−1(X) is rationally chain connected
of arbitrary dimension, and we are in the same situation as in
4.4.20(2a).

(b) If Rn(X) is a non-rational smooth proper curve S that is ellipti-
cally connected, and then it comes with a prescribed morphism
f : C → S where C is an elliptic curve. Thus, we must have
that S is an elliptic curve as well, and we have a commutative
diagram

Rn−1(X)

h

��

C

f
$$

g
;;

S

where h : Rn−1(X) → S is proper a rationally connected fibra-
tion over an elliptic curve. So we are in a similar situation to
Proposition 5.1.4 except the geometric generic fiber Xη̄ is just
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rationally connected.
It is not hard to show that

πN(f) : πN(C)→ πN(S)

has finite index (Definition 4.4.14) by using Remark 3.4.24 and
Proposition 3.4.15.
So we need to describe the morphism of fundamental group-schemes

πN(h) : πN(Rn−1(X))→ πN(S)

which is the main result of this chapter (see Theorem 5.5.10), this
morphism is a priori faithfully flat by Lemma 4.4.16.

5.1.2 Main results and summary

Motivated by Remark 5.1.5(2b), we would like to describe for a ra-
tionally connected proper fibration over an elliptic curve f : X → S,
the induced morphism πN(f) : πN(X, x) → πN(S, s) between funda-
mental group-schemes for compatible rational points x ∈ X(k) and
s ∈ S(k).
In this case, we know the FGS of both the base (an elliptic curve) and
the FGS of fibers, that are normal proper and rationally connected, so
we could use the “homotopy exact sequence” for the FGS (Theorem
5.5.2), that allows us to relate all of these fundamental group-schemes.
L.Zhang showed in [69] that this exact sequence holds if one of a set
of equivalent conditions hold. For a proper rationally connected fi-
bration over an elliptic curve f : X → S we can indeed show that this
exact sequence hold, and in fact we can prove this in a more general
situation:

Theorem (Theorem 5.5.1).Main theorem Let k be an uncountable algebraically closed
field, let X be a proper variety over k and let S be an elliptic curve over k.
If f : X → S is a proper faithfully flat morphism, such that all geometric fi-
bers are reduced, connected and possess a finite fundamental group-scheme2.
Then, there exist rational points x ∈ X(k) and s ∈ S(k) such that f(x) = s
and the following sequence of group-schemes is exact:

πN1 (Xs, x)→ πN1 (X, x)→ πN1 (S, s)→ 1.

First, we need to remark that if this exact sequence holds, as πN1 (Xs, x)
is finite, then the kernel ker(πN(f)) of πN(f) must be finite too. In fact,
we will show the opposite:

Proposition (Proposition 5.4.7). Under the hypotheses of the theorem
above3, ker(πN(f)) is finite.

2 For example, if X is normal and the fibers are rationally connected
3 Except the assumption that k is uncountable.



5.1 introduction 207

And this result implies the homotopy exact sequence. How is that
so? This is because we can conceive the kernel as a FGS: there is a
pro-finite pointed torsor X∗ → X, called the universal pull-back torsor
(Definition 5.3.8) that possesses a FGS in the sense of Definition 3.2.2,
and such that the canonical short exact sequence given by the kernel
of πN(f) becomes (Proposition 5.3.10)

1→ πN1 (X
∗, x∗)︸ ︷︷ ︸

ker(πN(f))

→ πN1 (X, x)→ πN1 (S, s)→ 1

which is in fact, a particular case of an extension of Proposition 3.4.15

for projective limits of finite Nori-reduced torsors, called pro-NR tor-
sors, see Proposition 5.3.4.
So, in order to prove that ker(πN(f)) is finite, we need to study finite
pointed Nori-reduced torsors over X∗, so we introduce a new termino-
logy for torsors over X that allows describe torsors over X∗, by diving
torsor in 3 three disjoint categories: pure4 torsors, pull-backs of tor-
sors over S, and “mixed” torsors, that are a combination of the first
two types (Definition 5.2.1) as Nori-reduced mixed torsors T → X can
be divided as:

T

��
f†(T)

f′ //

��

S′

��
X

f
// S

where f†(T) is the “largest” quotient of T that is a pull-back of a tor-
sor over S (S′ in the diagram above), see Remark 5.2.2(a). T as a torsor
over f†(T) is pure with respect to f′, and any finite Nori-reduced tor-
sor over X∗ descends to either a pure torsor over X or a torsor over X
that is pure over the pull-back of a Nori-reduced torsor over S (Propo-
sition 5.3.11) by applying a nice descent property satisfied by pro-NR
torsors stated in Subsection 2.3.4, see Proposition 2.3.61.
Thus, to show that πN(f) is finite, we will show that the order of the
finite group-scheme associated to any finite torsor over X∗ is boun-
ded (Lemma 5.4.6).
The main result that allows to bound these orders, which also works
for for any smooth proper curve giving a partial characterization of
for the morphism πN(f) : πN1 (X, x) → πN1 (S, s) for any proper fibra-
tion f : X→ S over a smooth curve S, is:

Proposition (Proposition 5.2.19). Let k be an algebraically closed field, X
a proper variety over k and let S be a smooth and proper curve over k, with
a proper faithfully flat morphism f : X → S between them. We will assume
that all geometric fibers are reduced, connected, so they possess a FGS. Let

4 With respect to a given morphism.
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t : T → X be a Nori-reduced pure G-torsor over X. Then, the pull-back
Tη̄ → Xη̄ to the geometric generic fiber of f is Nori-reduced, where η̄ is the
geometric generic point over S.

The proof of this result is in Subsection 5.2.2, and it uses some re-
sults coming from the theory of the FGS for schemes over Dedekind
schemes, see [4].
Coming back to the fibration over an elliptic curve, this result only
shows that pure torsors over X have bounded orders for their as-
sociated group-schemes. But as a special feature of elliptic curves
(Lemma 5.4.2), we can actually reuse the same result above for any
Nori-reduced torsor S′ → S over the pull-back f′ : X′ → S′ over X,
which allows us to also bound pure torsors over pull-back torsors, by
comparing these torsors over the respective geometric generic fibers
(of f and of f′), see Lemma 5.4.4.
Once we establish that the kernel is finite, we can tackle the homo-
topy exact sequence. The conditions needed for this exact sequence
to hold must be satisfied for any Nori-reduced torsors, and one of
them, the “base change condition”, is highly dependent on a rational
point s ∈ S(k) of our choosing (see Definition 5.5.3).
So, to satisfy the conditions for this exact sequence, we can show that
pull-back torsors always satisfy the conditions for the exact sequence,
and that for pure or mixed Nori-reduced torsor T there exists an open
dense subset UT ⊂ S such that T satisfies the conditions for the ho-
motopy exact sequence (see Subsection 5.5.2). In that case, we could
try to intersect all of these open subsets, for if we find a rational point
on this intersection, the homotopy exact sequence would finally hold.
But the problem with this, is that the intersection of all the sets UT
might not contain any rational points at all, as there might be “too
many” finite torsors over X.
Here is where the finite kernel steps in, as it is the FGS of the pro-
NR torsor X∗, which is the limit over all pull-backs of Nori-reduced
torsors over S, and using the fact that the universal torsor X̂ → X∗ is
finite. It descends to a finite Nori-reduced torsor X∗i → Xi where Xi
is the pull-back of a Nori-reduced torsor over S.
Depending on the torsor Xi where X∗ descends to, we have:

(a) If X∗ descends over X, then any pure and mixed Nori-reduced
torsors is essentially a quotient of this descent, and as an el-
liptic curve has a countable amount of isomorphism classes of
Nori-reduced finite torsors (see Proposition 3.4.23), we see that
X would posses a countable amount of isomorphism classes of
Nori-reduced finite torsors too, and then we can intersect all the
open dense subsets UT from previous paragraphs.
So, if k is uncountable, as this intersection is countable, we can
find a very general (Definition 4.2.8) point of S for which we can
establish the homotopy exact sequence, proving Theorem 5.5.1.
This is Lemma 5.5.9
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(b) If X∗ descends over a pull-back torsor Xi, if Si is the correspon-
ding torsor over S with a morphism fi : Xi → Si, then we are
in the situation above and the FGS of these schemes satisfy the
homotopy exact sequence

πN1 (Xi,s′ , x
′)→ π1(Xi, x′)→ πN1 (Si, s

′)→ 1

for some s′ ∈ Si(k) where Xi,s′ is the corresponding fiber, and
this allows us to indirectly obtain the homotopy exact sequence
for f : X→ S.

In synthesis, in order to obtain the homotopy exact sequence, we
need:

1. To divide torsors with respect to f, as pure, mixed or a pull-back.
This is done in Subsection 5.2.1.

2. To show that any Nori-reduced pure torsor over X remains Nori-
reduced when pulled-back over the geometric generic fiber Xη̄
that we show in Proposition 5.2.19, using the results in Subsecti-
ons 5.2.2, 5.2.3 and 5.2.4.

3. To study projective limits of Nori-reduced torsors, and genera-
lize the short exact sequence for finite Nori-reduced torsors of
Proposition 3.4.15. This is the content of Subsection 5.3.1.

4. To apply the previous point to the particular case of the family
of all torsor over X that are the pull-back of a Nori-reduced
torsor over S, whose limit is the universal pull-back torsor X∗,
that we will do in Subsection 5.3.2.

5. To show the kernel of πN(f) : πN1 (X, x) → πN1 (S, s) is finite in
Subsection 5.4.2 by:

(i) Bounding the order of group-schemes acting on pure Nori-
reduced torsors using point (2).

(ii) And then, do the same for mixed torsors T → X using
the nice properties of pull-backs to X of torsor over elliptic
curves (Lemma 5.4.2), so we can use point (2) once again
and bound the group-scheme acting on the pure part T →
f†(T)

f′→ S′ of T , where S′ is a Nori-reduced torsor over S
and compare the pull-backs to the geometric generic fibers
over S and over S′ in Subsection 5.4.1.

6. To simplify the conditions for the homotopy exact sequence,
that depend on a rational point of S and must be satisfied indi-
vidually for all Nori-reduced torsors over X. Finding that pull-
backs always satisfy the conditions, and that mixed and pure
torsors satisfy them generically, i.e., for any torsor T of the two
types mentioned before, there exist a dense open subset UT for
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which the conditions are satisfied over any rational point on UT .
We show this in Subsection 5.5.2.

7. And finally, using the finiteness of the kernel in part (4) we
obtain the homotopy exact sequence in Subsection 5.5.3, as we
can show that one of two cases hold:

(i) There is a countable amount of isomorphism classes of
mixed and pure torsors over X so we can use part (6) to
obtain a the homotopy exact sequence over a very general
point of S, in the intersection of all the opens subsets UT ,
for which the homotopy exact sequence is true.

(ii) Or X has a torsor X′ → S′ that is the pull-back of a Nori-
reduced torsor S′ → S, so X′ is in the situation above, and
thus we can indirectly show that the homotopy exact se-
quence is satisfied for f : X→ S.

5.2 pull-back of torsors to the geometric generic fiber

5.2.1 Pure, mixed and pull-back torsors

Let us start by introducing a new classification for torsors with re-
spect to a morphism of schemes:

Definition 5.2.1.Pull-back, pure
and mixed

torsors

Let X and be Y two schemes over k that both possess a
FGS, with rational points x ∈ X(k) and y ∈ Y(k) and a morphism f : X→
Y that is compatible with the respective rational points.
Let T be a G-torsor over X. We say that T is a pull-back torsor if there
exists a torsor S′ → S such that its pull-back along f, S′ ×S X → X is T ,
trivial torsors are considered pull-back torsors.
We say that a non-trivial torsor T is pure with respect to f if neither T nor
its non-trivial quotients (Definition 2.3.51) are the pull-back of a torsor over
S via f.
A torsor which is neither a pull-back nor a pure torsor is called a mixed
torsor.

Remark 5.2.2. Keeping the notation in Definition 5.2.1, let us consider the
induced morphism between fundamental group-schemes

πN(f) : πN1 (X, x)→ πN1 (S, s).

If we assume that πN(f) is faithfully flat, let T be a Nori-reduced G-torsor
over X, then we have the natural composition ker(πN(f)) → πN1 (X) → G

whose image we will be denoted as K ⊂ G, this is a normal subgroup-scheme
of G, and the relationship between this subgroup-scheme and G determines
the nature of T :



5.2 pull-back of torsors to the geometric generic fiber 211

(a) The maximal
pull-back
quotient

If K is a proper sub-group-scheme of G, the arrow πN1 (X) → G/K

factors through πN(f) and thus it corresponds to a G/K-torsor t′ :
X′ → X that is the pull-back of a Nori-reduced torsor p′ : S′ → S over
the same group-scheme, this pull-back quotient is the “largest”, in the
sense that any other quotient of T that is a pull-back is a quotient X′.
In the particular case when K is trivial, T itself is a pull-back.
We see that X′ is unique, so from now on, we will call the torsor X′

the maximal pull-back quotient of T and we will denote this torsor
as f†(T).
If we denote the quotient morphisms from T as q† : T → f†(T), we see
that T is a Nori-reduced K-torsor over f†(T).

(b) From the latter point, we observe that a Nori-reduced torsor is pure if
and only if K = G.

(c) A mixed G-torsor p : T → X is certainly not pure with respect to f,
but the torsor q† : T → f†(T) is pure with respect to the base change
of f to S′, f′ : f†(T)→ S′.

The objective of this section, is to study for a pure Nori-reduced
torsors for a proper faithfully flat morphism f : X → S between a
proper variety and a proper smooth curve S when we consider their
pull-backs to the geometric generic fiber of X, that we will denote as
Xη̄ where η̄ is the geometric generic point of S, the main result is
Proposition 5.2.19.

5.2.2 Descent of a quotient for pull-backs of pure torsors over the geometric
generic fiber

From this point on, we will work under the following setting:

Setting 5.2.3. The field k is an algebraically closed field, X is a proper va-
riety over k and S is a smooth and proper curve over k, with a proper fait-
hfully flat morphism f : X → S between them. We will denote its induced
morphism at the level of FGS as πN(f) : πN1 (X)→ πN1 (S).
We will further assume that all geometric fibers are reduced, connected, so
they possess a FGS (Definition 3.2.2). This includes the geometric generic
fiber Xη̄ where η is the generic point of S.

We start with a simple remark:

Remark 5.2.4. Let t : T → X be a G-torsor where G is a finite group-
scheme. Then, there exists a finite extension L of κ(η) such that the base
change TL → XL is pointed over L, and thus it corresponds to an arrow
πN(XL, x)→ GL for some x ∈ XL(L).

To shorten the length of the Proposition 5.2.9’s statement below, we
will introduce some notation:
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Notation 5.2.5. We will add to Setting 5.2.3 the following notations: If
t : T → X is a finite Nori-reduced G-torsor over X, not necessarily pointed,
we will denote as L the finite extension of κ(η) that makes tL : TL → XL a
pointed torsor (Remark 5.2.4).
Over L, we will consider n : S′ → S the normalization of S over L. It is
a proper Dedekind scheme ([27, p. 486]) and thus it is a smooth projective
curve over k, finite and ramified over S with generic point η′ = Spec(L).
Finally, we will consider the geometric generic fiber Xη̄ and the pull-back to
T to it tη̄ : Tη̄ → Xη̄. If T is not the pull-back of a Nori-reduced torsor over
S, then Tη̄ is not trivial by Remark 3.4.8, and thus Tη̄ possesses a canoni-
cal Nori-reduced sub-torsor V ⊂ Tη̄ (Definition 3.2.16) over a non-trivial
subgroup-scheme Hη̄ of Gη̄, corresponding to the image of the morphism
πN(Xη̄)→ Gη̄.

And a key lemma:

Lemma 5.2.6. Let S → Spec(k) be a smooth irreducible projective curve
over k. LetG be a finite group-scheme over k and letH be a subgroup-scheme
of GS that satisfies the following conditions:

(a) The structural morphism sH : H→ S is faithfully flat.

(b) The coherent OS-algebra (sH)∗ (OH) satisfies

h0(S, (sH)∗ (OH)) = rank((sH)∗ (OH)).

Then, if H → H′ → Spec(k) is the Stein factorization of the composition
H → S → Spec(k) or equivalently H ↪→ GS → G → Spec(k), then H′ is
a subgroup-scheme of G and H ∼= (H′)S.

Remark 5.2.7. For Stein factorization we mean the factorization of a proper
morphism f : X → Y into X g→ Z

h→ Y where g is a proper morphism
with geometrically connected fibers, Z = Spec((g)∗ (OX)), and h is the the
relative normalization of Y with in X, see [31, p. 6.3.5] or [63, Tag 035H].
As a relative normalization, the morphism g : X → Z factors trough any
factorization Y →W → Y when the second morphism is integral, i.e. affine
and universally closed, in the sense that there exists a unique morphism
Z→W such that the diagram

X
g
//

��

W

��
Z

h
//

∃!

>>

Y

is commutative (see [63, Tag 035I] for more details).
Finally, if Y is locally noetherian, then h is finite.

Proof of Lemma 5.2.6. Let us consider the cartesian diagram

GS
σS //

pS

��

S

p

��
G

σ
// Spec(k)
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we will start by showing that GS → G→ Spec(k) is the Stein factoriza-

tion of the arrow p ◦σS : GS → Spec(k). Let GS
gS // Y

g // Spec(k)
be the Stein factorization, we can easily see that the factorization
GS → G → Spec(k) has the properties described before as G is finite
over k, and thus we have a unique morphism h : Y → G of finite sche-
mes over k. Moreover, we have that the fibers of pS : GS → G are ge-
ometrically connected as for any K-valued point Spec(K)→ G with K
a field, the fiber of pS over this point is isomorphism to S×k Spec(K)
which geometrically connected as S is. Thus, (pS)∗ (OGS) = OG and
with this we can easily conclude that h∗(OY) = OG, implying that
Y ∼= G as we wanted.
Now let us consider H and H′ as in the statement of Lemma 5.2.6, we

will denote the Stein factorization of H as H
nS // H′

n // Spec(k) .
From the properties of Stein factorizations, we have a natural commu-
tative diagram

H
i //

nS
��

GS
σS //

pS

��

S

p

��
H′

j
// G

σ
// Spec(k)

where i is a closed immersion.
If we denote H′′ = (H′)S, we will start by showing thatH′′ ∼= H, notice
that this implies the morphism j in the diagram above is a closed
immersion as the diagram becomes cartesian, and we can apply fpqc
descent via the fpqc cover pS, more specifically Proposition 2.3.8(j).
The claimed isomorphism in the last paragraph follows firstly from
the morphism λ : HS → H′′ coming from nS and the composition
HS ↪→ GS → S, this yields the following commutative diagram

H

λ   

iS // GS

H′′

jS

OO

and as the upper horizontal arrow is a closed immersion, so is λ.
In second place, as both H and H′′ are finite and faithfully flat over
S, we have that they correspond to two vector bundles over S. If we
denote them as E and F for H and H′′ respectively, we know that E
is a locally free OS-module while F is a free OS-module. If we denote
their ranks as m and m′ respectively, we know that m 6 m′ because
of λ, so it suffices to show that m = m′. But from the commutative
diagram

H

nS
��

sH // S

p

��
H′

n
// Spec(k)
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we can deduce that p∗(E) = Γ(H′,OH′), but the left hand side is a
m-dimensional k-vector space by the hypothesis (b) in the statement
that we have imposed on E, while the right hand side has dimension
m′ so we have just have obtained the desired equality, and thus λ is
an isomorphism.
The last thing we need to show now, is that H′ is a subgroup-scheme
of G. First we will work with the multiplication morphism of H,
mH : H ×S H → H which commutes with the closed immersion
i : H → GS. We need to show that H′ possesses a multiplication
morphism m : H′ ×k H′ → H′ that commutes with j : H′ → G. Let
H×S H → N → Spec(k) be Stein factorization of p ◦ sH ◦mH, we cle-
arly have a morphism m : N → H′ by the way the Stein factorization
is defined, so it suffices to show that N ∼= H′ ×k H′. By the universal
property of N, we have a natural morphism N → H′ ×k H′ and from
the commutative diagram

H×S H

{{ &&
N // H′ ×k H′

where both diagonal morphisms are proper with geometrically con-
nected fibers, and the horizontal morphism is finite. Thus, the mor-
phism N→ H′ ×k H′ is finite with geometrically connected fibers, so
it is an isomorphism as we desired.
It is not hard to see that we can do the same procedure with H×S
H×SH and the associativity axiom for the multiplication of H, so we
conclude that the multiplication morphism of H′ is associative.
Finally, as the Stein factorization of p : S → Spec(k) is itself, we ea-
sily see that H′ possesses a unit k-point e′ : Spec(k) → H′ and by
considering invH, the inverse morphism of H, and the Stein factori-
zation of p ◦ sH ◦ invH, we will obtain an inverse morphism invH′ :
H′ → H′. The verification that these morphisms satisfy the necessary
group-scheme axioms is straightforward, so we have concluded the
proof.

Remark 5.2.8. The proof of Lemma 5.2.6 shows that for the subgroup-
scheme H in the statement, that (sH)∗ (OH) is a free OS-module.

Now we state the main result of this subsection:

Proposition 5.2.9.Descent of a
subgroup-

scheme over the
geometric

generic fiber

Let f : X→ S be a morphism as in Setting 5.2.3, and let
t : T → X be a finite Nori-reduced G-torsor over X, not necessarily pointed,
that is not the pull-back of a torsor over S. Keeping the notations outlined in
Notation 5.2.5, there exists a non-trivial subgroup-scheme H′ ⊂ G over k,
such that the base change of H′ to η̄ is isomorphic to Hη̄ ⊂ Gη̄.
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Proof. We recall that over a finite extension L of η, the generic point of
S, the pull-back of T over L is pointed (Remark 5.2.4). First, we claim
that κ(η) ⊃ L and the morphism

πN(Xη̄)→ πN(XL, xL)×k Spec(κ(η̄)),

that codifies the behavior of pointed torsors over XL when pulled-
back to Xη̄, is faithfully flat as for any Nori-reduced pointed finite
torsor Y → XL, if we consider the commutative diagram

Yη̄

��

// Y

��
Xη̄

��

// XL

��
Spec(L̄) // Spec(L)

that shows that

dimL̄(Γ(Yη̄,OYη̄)) = dimL(Γ(Y,OY)) = 1

so Yη̄ → Xη̄ is Nori-reduced by Proposition 3.3.54, and the claim is
proven.
Going back to the pull-back tL : TL → XL of T over L, we have that TL
cannot be trivial, otherwise Tη̄ would be trivial and thus T satisfies
the assumptions of Remark 3.4.8 and thus Grauert’s theorem for finite
torsors 3.4.7 applies, implying that T we would be the pull-back of a
torsor over S, contradicting our assumptions for T . Thus, there exists
a non-trivial subgroup-scheme HL ⊂ GL so TL possesses a canonical
pointed Nori-reduced HL-subtorsor (Definition 3.2.16) VL ⊂ TL. HL
corresponds then to the image of the morphism πN(XL, xL)→ GL for
some L-rational point xL that makes TL pointed.
As L corresponds to the generic point of S′, the normalization of S
over L as mentioned in Notation 5.2.5, if TS′ denotes the base change
of T over XS′ which is a pointed GS′-torsor, by [4, Prop. 3.1] TS′ pos-
sesses a pointed H-subtorsor where H is the schematic closure of HL
over S′, that we will denote as VS′ . We can easily see that this torsor
is the canonical Nori-reduced sub-torsor of TS′ and the base change
of H to η̄ is isomorphic to Hη̄.
To conclude the proof, we could apply Lemma 5.2.6 to obtain a subgroup-
scheme H′ ⊂ G over k such that H ∼= (H′)S′ that will have the desired
base change over η̄.
To satisfy the requirements of the lemma, first we see that the struc-
tural morphism of H, sH : H → S′, is faithfully flat and thus we just
need to show that (sH)∗ (OH), that we will denote as E, also satisfies
part (b) of the hypotheses on the statement of Lemma 5.2.6. Thus, if
n is the order of G over k, and m 6 n is the order of HL, which is the
order of Hη̄ and H as well, we would like to show that h0(S′,E) = m.
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Let us consider the quotient qL : QL = TL/HL → XL, by Lemma 3.4.5
applied to (tL)∗ (OTL), we have that (qL)∗ (OQL) = O⊕rXL , where r = n

m

is the order of the quotient group-scheme GL/HL over L, see Remark
3.4.6.
If we now consider the quotient of TS′ by H, we obtain morphism
qS′ : QS′ → XS′ with (qS′)∗ (OQS′ ) = O⊕rXS′

as this bundle is generi-
cally trivial. This morphism is pointed: we have morphisms S′ → XS′

and S′ → QS′ , such that the diagram

S′

}}   
QS′ qS′

// XS′

is commutative, and the fiber over the marked S′-point is isomorphic
to GS′/H.
Thus, this finite scheme over S′ corresponds to a free OS′-module
F ∼= O⊕rS′ . This implies the desired equality h0(S′,E) = m as the quo-
tient morphism GS′ → GS′/H is an H-torsor, and the isomorphism
GS′ ×S′ H ∼= GS′ ×GS′/H GS′ translates to the isomorphism of locally
free sheaves over OS′

G⊗OS′
E ∼= G⊗F G

where G is the free OS′-module of rank n corresponding to GS′ , and
by developing both sides of the isomorphism we will obtain

E⊕n ∼= O⊕n·mS′

and by comparing dimensions of global sections, we will obtain the
desired result.

Remark 5.2.10. Proposition 5.2.9 could also work if we replace the smooth
proper curve S with a Dedekind scheme with weaker properties.

From this we deduce the following corollary:

Corollary 5.2.11.Descent of a
quotient over the

geometric
generic fiber

Let f : X→ S be a morphism as in Setting 5.2.3, and let
t : T → X be a pointed Nori-reduced finite G-torsor over X, that is not the
pull-back of a torsor over S. Keeping the notations outlined in Notation 5.2.5,
the quotient Tη̄ → Tη̄/Hη̄ is the isomorphic to the pull-back of a quotient
T → T/H′ to Xη̄, for a certain subgroup-scheme H′ ⊂ G.

Proof. AsHη̄ is the image of the morphism of group-schemes πN(Xη̄)→
Gη̄, by applying Proposition 5.2.9 we can find a subgroup-scheme
H′ ⊂ G such that the base change of H′ to η̄ is isomorphic to Hη̄.
Thus, the quotient T/H′ becomes isomorphic to Tη̄/Hη̄ over η̄ by
Lemma 2.3.43, finishing the proof.
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5.2.3 Core of a subgroup-scheme

Let k be a field. In this subsection, we will generalize for finite group-
scheme the following: Now we will introduce a group-theoretic no-
tion:

Definition 5.2.12. Core of an
abstract
subgroup

Let Γ be an abstract group and let J ⊂ Γ be a subgroup.
The core of J is the subgroup of Γ defined as

CoreΓ (J) =
⋂
g∈Γ

gJg−1.

We can further characterize this abstract subgroup.

Proposition 5.2.13. Let Γ be an abstract group and let J ⊂ Γ be a subgroup.
Then, CoreΓ (J) is the largest normal subgroup of Γ contained in J, and if we
consider n = [Γ : J] the index of J, the core is also the kernel of the morphism
Γ → Sn associated to the action µ : Γ × Γ/J→ Γ/J of left multiplication by Γ
over the set of right J-cosets, where Sn is the symmetric group on n elements.
In particular, the core of J is trivial if and only if the action mentioned above
is faithful.

We leave the proof of this proposition to the reader.
We are going to construct an analogous notion of core at least for
finite group-schemes that satisfies the same properties of the core of
abstract subgroups.

Definition 5.2.14. Core of a
subgroup-
scheme

Let G be a finite group-scheme over k and H ⊂ G

a subgroup-scheme. As we mentioned in Example 2.2.88, AH is the k-
algebra associated to G/H and the G-action over this scheme a comodule
structure for A over AH, or equivalently, a morphism of group-schemes
µH : G → GL(AH), see Example 2.4.85(5). We define the core of H in G
as CoreG(H) := ker(µH).

It is clear from the definition that the core of a subgroup-scheme
H is trivial if and only if µH is a faithful representation (Definition
2.4.80). We recall that as a functor, we have GL(AH)(R) = AutR(AH⊗
R). The main property of the core that we will use later in the section
is:

Proposition 5.2.15. Main property of
the core for
subgroup-
schemes

Let G be a finite group-scheme over k and H ⊂ G a
subgroup-scheme. The core of H is the largest normal subgroup-scheme of G
contained in H.

Proof. Let F : Alg0k → Grp be the functor given by

F(R) = {g ∈ G̃(R) : ∀ R-algebra R→ S, gS ∈ Core
G̃(S)

(H̃(S))}

where gS is the image of g in G̃(S), it is clearly a sub-functor of H̃ and
for any k-algebra R, F(R)� G̃(R). Moreover, it contains any functor of
the form Ñ where N is a normal subgroup-scheme of G that is contai-
ned in H from Proposition 5.2.13. We will show that F is the functor
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of points of CoreG(H).
Let us denote the functor of points of CoreG(H) as C̃, and let us start
by showing that C̃ ⊂ F. If gR ∈ C̃(R) ⊂ G̃(R) we can easily see that
from the fact that it induces the identity R-automorphism of AH⊗k R,
this element acts like the identity over G̃/H(R) = Homk−alg(A

H,R),
in particular, it acts like the identity over G̃(R)/H̃(R) and thus gR ∈
Core

G̃(R)
(H̃(R)) and likewise over any R-algebra R → S, from which

we conclude that C̃ ⊂ F.
On the other hand, F acts trivially over G̃/H̃ and then using the pro-
perties of G̃/H as a sheafification (Proposition 2.2.86), we see that the
trivial action of F over G̃/H̃ can be lifted to a trivial action of F over
G̃/H = Homk−alg(A

H, ·), this can be viewed as a natural transfor-
mation of functors F → GL(AH) that has a trivial image over any
k-algebra. Thus, F ⊂ C̃ finishing the proof.

5.2.4 Pull-back of pure torsors over the geometric generic fiber (proof)

Now we are ready to prove the main result of the section (Proposition
5.2.19). But first, we need some lemmas, the first being:

Lemma 5.2.16. Let f : X → S be a morphism of proper, reduced and con-
nected schemes of finite type over k. We will further assume that the induced
morphism πN(f) : πN1 (X, x) → πN1 (S, s) is faithfully flat for compatible ra-
tional points.
Let E be an essentially finite bundle corresponding to a representation of
πN1 (X, x) that we suppose to lay inside a full subcategory Repk(G) for a
finite group-scheme G, such that the Nori-reduced G-torsor associated to the
morphism of group-schemes πN1 (X, x) → G is not the pull-back of a Nori-
reduced torsor over S.
Then, if E corresponds to a faithful representation of G, it cannot be of the
form f∗(F) for some F ∈ EF(S).

Proof. Let α : G → GL(Ex) be the representation morphism corre-
sponding to E, where Ex is the fiber of E over x. As a representation
of the FGS, it can be seen as the composition πN1 (X, x)→ G→ GL(Ex).
The image of this composition is isomorphic to G.
Let us suppose that E is the pull-back of an essentially finite bundle
F ∈ EF(S), this implies that we have a commutative diagram

πN1 (X, x) //

πN(f)
��

G
α // GL(Ex)

πN1 (S, s)

55

as πN(f) is faithfully flat, πN1 (S, s)→ GL(Ex) factors through G. From
this, we can easily see that if T → X is the G-torsor associated to
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πN1 (X, x)→ G, it is a pull-back from a G-torsor over S, a contradiction.

We can apply this to weak quotients (Definition 2.3.54) of pure tor-
sors as follows:

Lemma 5.2.17. Weak quotients
of pure NR
torsors are not
pull-backs

Let f : X → S be a morphism of proper, reduced and con-
nected schemes of finite type over k, where the induced morphism πN(f) :

πN1 (X, x)→ πN1 (S, s) is faithfully flat for compatible rational points.
Let t : T → X be a pure Nori-reduced G-torsor and let H be any non-trivial
subgroup-scheme of G. Then, for the morphism t′ : T/H→ X, the associated
essentially finite bundle (t′)∗ (OT/H) is not the pull-back of any essentially
finite bundle over S.

Proof. We will proceed by induction over ord(G), the case of order 1

is trivial. Let us now suppose ord(G) > 1 and let H be a subgroup-
scheme of G. If H is normal, there is nothing to prove as T is pure.
Otherwise, we consider the cover t′ : T/H → X corresponding in
terms of essentially finite bundles to the sub-representation AH of A
where G = Spec(A). Let K be the core of H (Definition 5.2.14), there
are two possibilities for K:

• If K is not trivial, then we can see T/H as a quotient of T/K
from Proposition 5.2.15, and thus result follows by applying the
induction hypothesis.

• If K is trivial, the representation corresponding to (t′)∗ (OT/H)

is faithful and thus it is not a pull-back from Lemma 5.2.16.

The last lemma we need is:

Lemma 5.2.18. Let f : X→ S be a faithfully flat morphism between proper,
reduced and connected k-schemes with f∗(OX) = OS and such that f(x) = s
for some x ∈ X(k) and s ∈ S(k). Let E ∈ Vect(S) be a vector bundle such
that f∗(E) is essentially finite, then E is essentially finite.

Proof. By 3.4.9, the induced morphism between S-fundamental group-
schemes πS(f) : πS1(X, x)→ πS1(S, s) is faithfully flat. This implies that
the pull-back functor f∗ : NSS(S) → NSS(X) is fully faithful and the
essential image of this functor is closed by sub-objects (Proposition
2.4.146).
Let us start by showing that E is Nori-semistable. For this purpose,
let v : C→ S be a non-constant morphism from a proper and smooth
curve, if we take the fibered product C×S X this is a reduced, proper
and connected scheme and we can always consider a morphism C′ →
C×S X with C′ a proper and smooth curve that passes through any
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pair of arbitrary points using Lemma 3.3.25. This gives us a morphism
w : C′ → X making the following diagram commutative

C′
c //

w
��

C

v
��

X
f
// S

and we can moreover chose the points on the fibered product such
that c : C′ → C is finite, surjective and w : C′ → X is non-constant.
Now, we have that w∗ (f∗(E)) = c∗ (v∗(E)) and as f∗(E) is essentially
finite, the left hand side of the equation is semi-stable of degree 0,
then so is v∗(E). Thus, E is Nori-semistable.
Finally, to prove that E is essentially finite, we need to show that it lies
in a full tannakian sub-category of NSS(S) associated to a finite group-
scheme. Let 〈f∗(E)〉⊗ be the full subcategory of NSS(X) generated
by f∗(E), see Remark 2.4.150. As f∗(E) is essentially finite, 〈f∗(E)〉⊗

is equivalent to Repk(H) where H is finite group-scheme, as it is a
quotient of πN(X, x). We can do the same for E so we can consider
〈E〉⊗ ∼= Repk(G) where G is a quotient of πS(X, x), a priori G of finite
type over k.
We can clearly restrict f∗ to get a tensor functor

f∗|Repk(G) : Repk(G)→ Repk(H)

that has the same properties of f∗ over NSS(S), thus this functor in-
duces a faithfully flat morphisms of group-schemes φ : H → G by
Corollary 2.4.120, so G is finite.

Now to the main result:

Proposition 5.2.19. Assuming the hypothesis and notation of Setting 5.2.3,
let t : T → X be a Nori-reduced pure G-torsor over X. Then, the pull-back
Tη̄ → Xη̄ to the geometric generic fiber of f is Nori-reduced, where η̄ is the
geometric generic point over S.

Proof. Recall from Remark 3.4.8 that for a G-torsor t : T → X, if the
restriction of vector bundle t∗(OT ) to Xη̄ is trivial, then T is the pull-
back of a G-torsor over S by Grauert’s theorem for finite torsors (Pro-
position 3.4.7). Also, as explained in these references, this also applies
to essentially finite bundles over X: if E is an essentially finite bundle
with trivial restriction to Xη̄, then E ∼= f∗(f∗(E)) is the pull-back of a
vector bundle over S, which is essentially finite by Lemma 5.2.18.
Now, if T is pure, the pull-back torsor Tη̄ of T corresponds to a mor-
phism of group-schemes πN1 (Xη̄) → Gη̄. Let Hη̄ ⊂ Gη̄ be the image
of this morphism and let us suppose that it is not equal to Gη̄: if it
is trivial, we will immediately get a contradiction, by the preceding
paragraph.
IfHη̄ is a non-trivial subgroup-scheme ofGη̄, then by Corollary 5.2.11,
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there exist a subgroup-scheme H ⊂ G such that the base change of
the quotient T/H to Xη̄ is isomorphic to Tη̄/Hη̄.
The essentially finite bundle (t′)∗ (OT/H) associated to t′ : T/H → X

has a trivial restriction to the geometric generic fiber (Remark 3.4.6),
so this bundle is the pull-back of an essentially finite bundle over S
as explained in the first paragraph, contradicting Lemma 5.2.17.

Remark 5.2.20. FGS of weak
quotients

As communicated to the author by M. Emsalem, it can be
shown that weak quotients of Nori-reduced torsors (Definition 2.3.54) pos-
sess fundamental group-schemes applying [1, Theorem I (1)]. This should
extend the bijection between pointed G-torsors and arrows πN1 (X, x) → G

to weak quotients on the right and weak quotients of torsors, where weak
quotients of torsors possess a FGS if and only if they are a quotient of a
Nori-reduced torsor.
With this, an alternative proof of Lemma 5.2.17 that does not require consi-
dering the core of a subgroup-scheme could be given.

5.3 pro-nr torsors and the universal pull-back torsor

5.3.1 Pro-NR torsors

Let k be any field, all group-schemes over k considered in this section
will be affine. Let us recall Notation 2.3.56 for the convenience of the
reader:

Notation 5.3.1. Let X be a scheme over k. If {Ti}i∈I is an inverse directed
system of affine torsors Ti → X over a partially ordered set I, where the
transition morphisms are torsor morphisms. The limit of this system will be
denoted as

T := lim
← i∈I

Ti.

We will also consider the associated inverse directed system of group-schemes
{Gi}i∈I, being Gi the group-scheme associated to Ti.
Finally, for the pointed case, if x ∈ X(k), the points ti (i ∈ I) and t will
denote respectively a rational point of Ti over x and a rational point of T
over x, clearly t is the inverse limit of the directed system formed by the ti.
When needed, we may add an index 0 to the set I such that T0 := X and
t0 := x.

We are interested in a particular type of projective limit of torsors:

Definition 5.3.2. Let {Ti}i∈I be a co-filtered family of finite pointed Nori-
reduced torsors over a quasi-compact scheme X over k. We will call its pro-
jective limit T := lim

←
Ti a pro-NR torsor. In the case we have compatible

rational points over any member of the limit, according to Notation 5.3.1,
we will say that this pro-NR torsor is pointed.

The existence of this projective limit is guaranteed by Proposition
2.3.60.
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We want to show that if X is of finite type, proper, reduced and con-
nected, any pro-NR torsor possesses a FGS with the same property in
terms of its FGS as in the case of Nori-reduced torsors (Proposition
3.4.15). We will extensively use Proposition 2.3.61 in order to handle
finite torsors over pro-NR torsors.

Remark 5.3.3. By Corollary 2.3.62, we see that pro-NR torsors are in fact
Nori-reduced.

The main result of this section is the following:

Proposition 5.3.4.Pro-NR torsors
possess a FGS

Let X be a reduced and proper scheme of finite type over
a field k with a rational point x ∈ X(k). Let {Ti}i∈I be a projective system of
pointed Nori-reduced torsors and let T be its projective limit with t ∈ T(k)
over x.
Then T possesses a FGS, as it has the same universal torsor as X, and we have
πN1 (T , t) = ker{πN1 (X, x) → lim

←
Gi} where Gi is the finite group-scheme

associated with to Ti.

To show this, we need an extension of Theorem 3.4.13

Lemma 5.3.5.Closure of
towers over

pro-NR torsors

Let X be a proper, reduced and connected scheme of finite type
over a field k with a rational point x ∈ X(k) and let T be a pro-NR torsor
with t ∈ T(k) over x. Then, if W → V → T is a tower of finite pointed
torsors, there exists a Nori-reduced closure U→ T of the tower that mimics
the properties of the closure of a tower of finite torsors over X, outlined in
Definition 3.4.12.

Proof. Let us start with the existence of an envelope for the tower
(Definition 3.4.12): Let W → V → T be a tower of torsors. Applying
Proposition 2.3.61(a) to V to obtain a cartesian square

V

��

// Vi

��
T // Ti

where i ∈ I and Vi → Ti is a torsor. Applying Lemma 2.3.57(c) to the
composition W → V → T we also get the following diagram in which
all possible squares are cartesian:

W //

��

Wi

��
V

��

// Vi

��
T // Ti

but it is not necessarily clear if Wi → Vi is a torsor. This is indeed the
case (over a possibly larger index) as we can consider the projective
system {Vj}j>i with base Vi and projective limit V (see [33, p. 8.2.5])
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and apply Proposition 2.3.61 for W → V .
Now we can utilize Theorem 3.4.13 over the tower of finite pointed
torsors Wi → Vi → Ti as all schemes are of finite type and Ti posses-
ses a FGS (Proposition 3.4.15), and thus we obtain a closure Ui of this
tower, giving us the commutative diagram

W //

��

Wi

��
V

��

// Vi

��

Ui

aa

oo

}}
T // Ti

If we denote by U the pull-back of Ui to T , we obtain the following
additional commutative diagram

W //

��

Wi

��
U

??

//

��

V

��

// Vi

��

Ui

aa

oo

}}
T // Ti

where we see that the left-hand side of the diagram shows the exis-
tence of a torsor that envelopes the tower W → V → T as Ui satisfies
the properties that we require for an envelope of a tower of torsors,
but U might not be a minimal torsor that envelops the tower. In any
case, this process shows how to obtain an envelope for the tower
W → V → T from the closure of a tower of torsors over the finite
torsor Ti → X.
Now let us assume that both W → V and V → T are Nori-reduced
and let us show the existence of a closure in this case. First, we notice
that as Ui is the closure of a tower of Nori-reduced torsor, we have
that Ui → Ti is Nori-reduced, but its pull-back U → T might not be.
At least, both arrows U → V and U → W are torsors and then, if we
take the canonical Nori-reduced sub-torsor (Definition 3.2.16) Ū ↪→ U,
we obtain a Nori-reduced envelope that additionally is a torsor over
W, so we can suppose from now on that U satisfies these properties.
The existence of a unique Nori-reduced closure in the case both tor-
sors in the tower W → V → T are Nori-reduced comes from applying
Zorn’s lemma to the (non-empty) set of isomorphism classes of Nori-
reduced envelopes of this tower, i.e., we are considering the skeletal
sub-category of the category of envelopes with morphisms of torsors
as arrows. We will abuse notation when considering classes and indi-
vidual torsors.
We consider over the classes, the partial ordering U 6 U′ iff there ex-
ists a morphism of torsors U→ U′ of over T . With this setting, Zorn’s
lemma holds as we have the following properties:
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(i)) Every chain of Nori-reduced envelopes has at most a finite amount
of members.

(ii) The poset of Nori-reduced envelopes is directed.

For i), if U 6 U′, let G be the group-scheme associated to U → T .
Then, as both torsors are Nori-reduced over T , U′ is of the form U/N

where N is a normal subgroup of G (Proposition 2.3.52). As there is
only a finite amount of quotients of G, there is a finite amount of en-
velopes greater than U.
To prove ii), let U,U′ be two Nori-reduced envelopes of the tower
W → V → T and let l ∈ I be an index such that both torsors U and
U′ descend to torsors Ul and U′l respectively, this is possible as I is
directed. In that case, these torsors envelop the tower Wl → Vl → Tl
that descends from the tower over T and thus if Zl is the closure of
this tower, we have morphisms of torsors Uk,U′k → Z which are quo-
tients in this case. This implies that the pull-back Z of Zk over T is a
Nori-reduced common quotient of U and U′ that envelops the tower
W → V → T , showing that the poset of Nori-reduced envelopes of
this tower is directed. This finished the proof when both members of
the tower are Nori-reduced.
For the general case, we first note that as long as V → T is Nori-
reduced, we will have a closure for the tower even if W → V is
not Nori-reduced from the last paragraph, but of course, this closure
might not longer be a torsor over W. This ties into the general case,
because if V → T is no longer Nori-reduced, any Nori-reduced en-
velope U of the tower is faithfully flat over V̄ ⊂ V , the canonical
Nori-reduced sub-torsor of V , and then, if U envelopes W → V → T ,
it will also envelope the tower W ×V V̄ → V̄ → T , so that we have a
commutative diagram

W ×V V̄

��

//W

��
U

;;

//

))

V̄ //

$$

V

��
T

and then we conclude that we have a closure for the initial given
tower on the right side of the diagram above, finishing the proof.

Now, we can prove the main result of this part:

Proof of Proposition 5.3.4. Let X̂ be the universal torsor of X and let Y
be a finite Nori-reduced pointed torsor over T , applying Proposition
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2.3.61(a), there exist an index i and a pointed torsor Yi → Ti making
a cartesian diagram

Y

��

// Yi

��
T // Ti

.

As Ti is Nori-reduced, from Proposition 3.4.15, X̂ is also the universal
torsor of Ti and thus we have an arrow X̂ → Yi. Combining this
arrow with the canonical arrow X̂ → T we obtain an arrow X̂ → Y ∼=

Yi ×Ti T and thus we conclude that all Nori-reduced torsors over T
are a quotient of X̂, this means that T possesses a universal pointed
torsor T̂ and we have a natural morphism of torsors over T , X̂→ T̂ .
To get an isomorphism, it suffices to prove that T̂ has a no non-trivial
Nori-reduced finite torsors: Let Z→ T̂ be a finite Nori-reduced torsor
over T̂ , applying Proposition 2.3.61(a) over T , which is quasi-compact
and quasi-separated over k because T is affine over k, there exist a
finite Nori-reduced torsor V → T and a finite Nori-reduced torsor
W → V fitting into a commutative diagram where all possible squares
are cartesian:

Z //

��

W

��
T̂

��

// V

��
T

.

From Lemma 5.3.5, there exists a Nori-reduced closure U → T of the
tower W → V → T , and thus we have a canonical arrow T̂ → U

which composed with the arrow U → W gives a section T̂ → Z =

W ×V T̂ , making Z a trivial torsor by Corollary 2.3.14 and finishing
the proof.

A particular case of the fact that the universal torsor T̂ does not
possess non-trivial finite Nori-reduced torsors coming from the proof
Proposition 5.3.4 is the following:

Corollary 5.3.6. Let X be a proper, reduced and connected scheme of finite
type over a field k with a rational point x ∈ X(k). Then, if X̂ is the universal
torsor of X, all finite Nori-reduced torsors over X̂ are trivial.

Proof. If Z→ X̂ is a finite Nori-reduced torsor, we can apply Proposi-
tion 2.3.61(a) to a commutative diagram

Z //

��

W

��
X̂

��

// V

��
X
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where W → V → X is a tower of torsors. From here, using Theorem
3.4.13 directly, we can argue analogously as we did in the proof of
Proposition 5.3.4 to obtain a section X̄→ Z.

Remark 5.3.7. Keeping the notation of Proposition 5.3.4, we get the follo-
wing short exact sequence for a pro-NR torsor

1→ πN1 (T , t)→ πN1 (X, x)→ lim
←
Gi → 1

for suitable rational points. Also, from Corollary 5.3.6, the universal torsor
X̂ of X has a trivial FGS.

5.3.2 The universal pull-back torsor

Now we will apply the results of the last sub-section to a particular
case:

Definition 5.3.8.The universal
pull-back torsor

Let X and be S two schemes over k, with rational points
x ∈ X(k) and s ∈ S(k) and such that both possess a FGS.
If f : X → S is a morphism that is compatible with the respective rational
points, and Ŝ denotes the universal torsor of S, we define the universal
pull-back torsor as the pointed πN(S, s)-torsor X∗ := Ŝ×S X over X.

We will introduced some specific notation for this torsor:

Notation 5.3.9. Let X and be S two schemes over k, with rational points
x ∈ X(k) and s ∈ S(k) and such that both possess a FGS.
If f : X → Y is a morphism that is compatible with the respective rational
points, we will denote

Ŝ = lim
← i∈I

Si

where the limit is taken over a directed set I of indexes, so we write

X∗ = lim
← i∈I

Xi

with Xi = Si ×S X. We will also add, according to Notation 5.3.1, an auxi-
liary index “0” such that X0 := X.

Proposition 5.3.10.FGS of the
universal

pull-back torsor

Let X and be S two proper, reduced and connected
schemes over a field k, with rational points x ∈ X(k) and s ∈ S(k).
If f : X → S is a morphism that compatible with the respective rational
points, such that the induced morphism πN(f) : πN1 (X, x) → πN1 (S, s)
is faithfully flat. Then, X∗ is a pro-NR torsor, and in that case, we have
πN1 (X

∗, x∗) = ker(πN(f)) where x∗ ∈ X∗(k) is a rational point over x.

Proof. Using Notation 5.3.9, let Si → S be a finite Nori-reduced torsor
over S, then its pull-back Xi := Si ×S X over X is Nori-reduced as
πN(f) is faithfully flat. As we mentioned before, X∗ is the projective
limit of the torsors Xi, thus it is pro-NR and it possesses a FGS which
is ker(πN(f)) by Proposition 5.3.4.
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Using Proposition 2.3.61, the main properties of this pro-NR torsor
are the following:

Proposition 5.3.11. Properties of the
universal
pull-back torsor

Under the hypotheses of Proposition 5.3.10, and using
Notation 5.3.1. Let T → X be a Nori-reduced torsor, T ′ its pull-back to X∗

and let V → X∗ be a finite Nori-reduced torsor over the universal pull-back
torsor. Then:

(a) If T is pure, T ′ is Nori-reduced.

(b) For any index i ∈ I for which V descends to a torsor Vi → Xi fitting
into a cartesian diagram

V //

��

Vi

��
X∗ // Xi

we have that the torsor Vi is pure with respect to the morphism of
schemes fi : Xi → Si where fi is the base change of f via the morphism
Si → S.

(c) If V does not descend to a torsor over X. There exist a large enough
index j ∈ I such that the descent of V over Xj, that we denote as Vj,
is the quotient of a mixed torsor W over X, for which f†(W) = Xj.

Proof. (a) follows from Remark 5.2.2. For (b), let fi : Xi → Si be the
base change of f that comes from Si → S, and let πN(fi) : πN1 (Xi) →
πN1 (Si) be the induced morphism between the corresponding FGS5.
We will show that ker(πN(fi)) = ker(πN(f)) which implies (b) also
from the last remark.
Firstly, from the commutative diagram of group-schemes

πN1 (Xi)
πN(fi)//

��

πN1 (Si)

��
πN1 (X)

πN(f)

// πN1 (S)

where the vertical arrows are closed immersions, we get the inclusion
ker(πN(fi)) ⊂ ker(πN(f)). And on the other hand, from the tower of
torsors

X∗ → Xi → X

we also have a commutative diagram where all the arrows are inclu-
sions of subgroup-schemes

πN1 (X
∗) = ker(πN(f)) //

((

πN1 (Xi)

��
πN1 (X)

5 We will not write the respective rational points in this proof.
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which implies, together with the diagram right above, that ker(πN(f)) ⊂
ker(πN(fi)), finishing the proof of (b).
Lastly, to prove (c), let us take one index i ∈ I with a descent Vi → Xi
of V → X∗. This gives us the tower of torsors Vi → Xi → X and
thus we can consider its closure (Definition 3.4.12) W, so we have the
following commutative diagram

Vi

��
Xi

��

W

``

oo

~~
X

.

All torsor forming the tower are Nori-reduced with respect to each
corresponding base. This last fact implies that Vi is a quotient of W
as a torsor over Xi.
We also see that W is a mixed torsor over X, but as such, its maximal
pull-back quotient (Remark 5.2.2(a)) is not necessarily Xi. Let W →
Xj = f†(W) be the maximal pull-back quotient of W, we have that
j > i and we can use the arrow W → Vi to get an arrow to the fibered
product W → Vi ×Xi Xj which is actually Vj, this arrow is a quotient
of torsors, finishing the proof of (c).

5.4 finiteness of the kernel

Using the results of previous sections, we are ready to show that
the kernel is finite for the induced morphism between FGS in the
following setting:

Setting 5.4.1. The field k is an algebraically closed field, X is a proper va-
riety over k and S is an elliptic curve over k, with a proper faithfully flat
morphism f : X→ S between them. We will denote its induced morphism at
the level of FGS as πN(f) : πN1 (X)→ πN1 (S).
We will further assume that all geometric fibers are reduced, connected and
possess a finite FGS. This includes the geometric generic fiber Xη̄ where η is
the generic point of S.

From this point on, we will denote the order of a finite scheme Q
over k as |Q|.

5.4.1 Comparison of geometric generic pull-backs of torsors

Going back to the assumptions of Setting 5.4.1. The fact that for our
fibration f : X→ S, S is an elliptic curve, implies the following:

Lemma 5.4.2. Let f : X → S be as in Setting 5.4.1. Then, let p′ : X′ → X

be a Nori-reduced G-torsor that is the pull-back of a Nori-reduced G-torsor



5.4 finiteness of the kernel 229

t′ : S′ → S, and let f′ : X′ → S′ be the base change to S′ of f. Then,
X′ is proper, reduced and connected, S′ is an elliptic curve and f′ is proper
faithfully flat with reduced and connected geometric fibers.

Proof. As stated in Corollary 3.4.25, S′ is either an elliptic curve or at
least is a smooth and projective variety over k.
Let us start by characterizing the fibers of f′. As k is algebraically
closed, we have the following property ([63, Tag 055E & Tag 0576]): If

YS = {s ∈ S : Xs is geometrically connected and reduced }

and YS′ is its counterpart for S′ and X′, then we have that

YS′ =
(
t′
)−1

(YS) .

Thus, as YS = S in our case and t′ is surjective, then we conclude that
YS′ = S′ and thus all fibers are geometrically reduced and geometri-
cally connected. In particular they all possess a FGS.
Finally, for the properties of X′, as f′ is a faithfully flat morphism bet-
ween schemes of finite type over a field, we conclude that the proper
scheme X′ is also reduced as S′ and all fibers of f′ are, which is a
consequence of the corollary under [47, Thm. 23.9]6. In second place,
for the conectedness of X′, we have that Γ(X′,OX′) = k by Proposition
3.3.54, so we conclude that X′ is connected as it is proper too.

Remark 5.4.3. This lemma implies that Proposition 5.2.19 holds for f′: If
ξ is the generic point of S′, then a pure Nori-reduced torsor over X′ has a
Nori-reduced pull-back to the geometric generic fiber X′

ξ̄
.

Now we will apply this to a special case: let p : T → X be a mixed Nori-
reduced G-torsor, and let p′ : X′ → X7. be its maximal pull-back quotient
where t′ : S′ → S is the H-torsor over S whose pull-back to X is X′, if
q : T → X′ is the quotient morphism, we have the following diagram with a
cartesian square within

T

q
��

p

��

X′
f′ //

p′

��

S′

t′

��
X

f
// S

If η and ξ are the generic points of S and S′ respectively, we have
the following comparison result for the pull-back of T to X′

ξ̄
:

6 The reader can alternatively consult [27, Prop. 14.57].
7 For this subsection, we will use X′ for the maximal pull-back quotient instead of
f†(T)
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Lemma 5.4.4.Comparison of
geometric

generic
pull-backs of
torsors (a.k.a
Lemma η-ξ)

Keeping the notations of Remark 5.4.3, the pull-back Tξ̄ of
T to the geometric generic fiber X′

ξ̄
is the pull-back of a Nori-reduced torsor

over Xη̄.

Proof. First, we have a natural morphism of geometric generic points
ξ̄ → η̄, and if we consider this morphism and the morphism ξ̄ → S′

we then have the following diagram

ξ̄ //

��

S′η̄
//

��

S′

t′

��
η̄ // S

where the square is cartesian and the triangle is commutative. As
t′ : S′ → S is a torsor, its geometric fiber is isomorphic to Hη̄, the
base change of the k-group-scheme H to the residue field of η̄. We
can chose this isomorphism in such a way that the morphism ξ̄ →
S′η̄ becomes the composition ξ̄ → η̄

εη̄→ Hη̄ under this isomorphism
where εη̄ is the unit rational point of the group-scheme Hη̄. Now if
we take the pull back of this diagram over f : X → S, we will obtain
the following commutative diagram

X×S ξ̄ //

%%

X×S Hη̄ //

��

X′

p′

��
Xη̄ // X

Notice that the product X×S Hη̄ is

X×S Hη̄ = X×S (S′ ×S η̄)
= (X×S S′)×S η̄
= X′ ×S η̄
= X′η̄.

In addition, If we call Xξ̄ the fibered product X×S ξ̄, we see that

X×S ξ̄ = (X×S S′)×S′ ξ̄
= X′ ×S′ ξ̄
= X′

ξ̄

and then we see that Xξ̄ is the geometric generic fiber of f′ : X′ → S′.
Since X′ is a pull-back torsor, we have that X′η̄ is a trivial torsor over
Xη̄ with a section sη̄ : Xη̄ → X′η̄ fitting into the following diagram:

X′
ξ̄

θ //

λ

��

X′η̄
p′η̄

��
Xη̄

sη̄

EE
. (1)
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where the triangle made by θ, λ and p′η̄ is commutative as well as the
triangle made by the first two morphisms mentioned before, but with
sη̄ instead of p′η̄ as the third morphism.
Now let us consider p : T → X and take its pull-back Tη̄ over Xη̄
and the pull-back Tξ̄ over X′

ξ̄
. From Proposition 5.2.19 we know that

Tξ̄ → X′
ξ̄

is Nori-reduced as q : T → X′ is pure with respect to f′ and
it is worth to point out that Tξ̄ over Xξ̄ is the pull-back along θ of
qη̄ : Tη̄ → X′η̄, which is the pull-back to Xη̄ of q.
Let z : Z → Xη̄ be the pull-back of the torsor qη̄ : Tη̄ → X′η̄ along sη̄.
As H is a quotient of G, if we call K the normal subgroup-scheme of
G such that H = G/K, we have that Z is K-torsor and from the last
commutative triangle, we see that its pull-back along λ is Tξ̄, but this
pull-back is Nori-reduced, and then so is Z, which is then the torsor
over Xη̄ we were looking for, finishing the proof.

Another consequence of the commutative diagram (1) in the proof
Lemma 5.4.4 is the following:

Corollary 5.4.5. Let p : T → X be a mixedG-torsor with maximal pull-back
quotient p′ : X′ → X, if H = G/K for a certain normal subgroup-scheme
K of G which is the group-scheme associated to q′ : T → X′. Then, the
canonical Nori-reduced sub-torsor (Definition 3.2.16) of pη̄ : Tη̄ → Xη̄ is a
K-torsor.

Proof. Firstly, as X′ becomes trivial when taking the pull-back over
Xη̄, we have that the composition

πN1 (Xη̄)→ G→ G/K

is trivial, and thus the image of the first arrow is contained in K.
Let V ⊂ Xη̄ be the canonical Nori-reduced sub-torsor of Xη̄ which is
not Nori-reduced, as its associated group-scheme corresponds to the
image of πN1 (Xη̄)→ G, we see that K is the largest possible subgroup-
scheme that could be associated to V .
Moreover, let us consider the Nori-reduced K-torsor z : Z→ Xη̄ from
the last proof, we will show that it is a sub-torsor of Tη̄ which implies
that V = Z. We have the following cartesian diagram

Z
i //

z

��

Tη̄

qη̄

��
Xη̄ sη̄

// X′η̄

and because sη̄ is a closed immersion, so is i, and the only thing we
need to show to get that Z is a sub-torsor, is the equality pη̄ ◦ i = z.
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From the cartesian diagram we see that sη̄ ◦ z = qη̄ ◦ i and if we
compose this equality with p′η̄ we obtain:

p′η̄ ◦ qη̄︸ ︷︷ ︸
=pη̄

◦i = p′η̄ ◦ sη̄︸ ︷︷ ︸
=idXη̄

◦z

pη̄ ◦ i = z

and effectively, Z is a sub-torsor of Xη̄ finishing the proof.

5.4.2 Proof of finiteness and consequences

Now we are ready to show that, under Setting 5.4.1, ker(πN(f)) is
finite.

Lemma 5.4.6. Let k be any field, and let X be a k-scheme possessing a FGS
with respect to the rational point x ∈ X(k). Let us suppose that for any
pointed Nori-reduced G-torsor over X, the order of G is bounded by a fixed
finite positive integer, then πN1 (X, x) is finite.

Proof. Let M ∈ N be the bound for the orders of the group-schemes
associated to all pointed Nori-reduced torsors over X.
Let M be the set of isomorphism classes of finite Nori-reduced torsors
over X, this set comes with a natural partial ordering V 6 V ′ iff there
exists a faithfully flat morphism V ′ → V between representatives over
X. In this case, we can use Zorn’s lemma to get a maximal element of
M that will be a finite Nori-reduced G-torsor over X with ord(G) 6
M.
Let {Vi}i∈I be a chain of elements of M. If the index set I is finite, we
can index the elements of the chain as {Vi}

n
i=1 and we have a chain of

finite group-schemes

G1 ← G2 ← · · · ← Gn

with faithfully flat arrows between them, that corresponds to a chain
of inclusions of Hopf-algebras

A1 ↪→ A2 ↪→ · · · ↪→ An

and all the Hopf-algebras on the chain have finite k-dimension, boun-
ded by M, and thus Vn is a maximal element for the chain of torsors.
We note as well that An is isomorphic to the directed limit of the
chain of Hopf-algebras.
If I is infinite, we will get a similar chain of Hopf-algebras

A0 ↪→ A1 ↪→ · · ·

and each Hopf-algebra Ai (i ∈ I) has finite k-dimension bounded by
M. As the k-dimension of the Hopf-algebras on the chain increases,
this chain must be eventually stationary, i.e., Ai ∼= Aj for i 6 j, after
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a finite amount of inclusions starting from Ai0 , if AN is the least
element that stabilizes the chain of Hopf-algebras, we see that the
direct limit lim

→
Ai is isomorphic to AN and thus to all Ai with i > N,

this means that we can take VN as the maximal element of the chain,
and the dimension of AN is bounded by M.
As we have assured the existence of finite aG-torsorU→ X (ord(G) 6
M), the supremum of M, we can see that for any finite Nori-reduced
torsor T over X, we have a faithfully flat arrow U → X. Thus, U ∼= X̂

by Proposition 3.2.18, finishing the proof.

Proposition 5.4.7. Finiteness of the
kernel

Let f : X→ S be as in Setting 5.4.1. Then, the kernel of
the induced morphism πN(f) : πN1 (X)→ πN1 (S) is finite.

Proof. Using Lemma 5.4.6, we will show that the order of the group-
scheme associated to a finite Nori-reduced torsor V → X∗ is bounded
by a fixed positive integer.
Keeping the notation of Notation 5.3.1, if V → X∗ is a Nori-reduced
torsor, there are two cases according to Proposition 5.3.11:

(a) If V descends to a finite Nori-reduced and pure torsor V0 over X,
then we see that the pull-back to Xη̄ is Nori-reduced by Propo-
sition 5.2.19 and thus the order of the group-scheme associated
to V is bounded by |πN1 (Xη̄)|, the order of πN1 (Xη̄).

(b) If V descends to a finite torsor Vi → Xi, that is pure with re-
spect to fi : Xi → Si, by Proposition 5.3.11(c), we can suppose
that there is a mixed torsor T → X such that Xi = f†(T) is its
maximal pull-back quotient and Vi is a quotient of T over Xi.
From Lemma 5.4.4 and Corollary 5.4.5, the order of T → Xi is
the order of the canonical Nori-reduced sub-torsor (Definition
3.2.16) of the pull-back Tη̄ over Xη̄, which is then again bounded
by |πN1 (Xη̄)|, finishing the proof.

Finally, we outline a strong consequence that stems from the finite-
ness of the kernel.

Corollary 5.4.8. Let f : X → S be as in Setting 5.4.1, and let us suppose
that ker(πN(f)) is finite. Then, there is a Nori-reduced torsor Xi → X that
is the pull-back of a Nori-reduced torsor Si → S, such that we have an
isomorphism

πN1 (Xi, xi) ∼= πN1 (Si, si)×k ker(πN(f))

for compatible rational points coming from the morphism Xi → Si.

Proof. As the kernel of πN(f) is finite, the torsor X̂ → X∗ is finite.
Using Proposition 2.3.61(a) as X∗ is pro-NR, X̂ → X∗ descends to a
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finite torsor X̂i → Xi where Xi → X is the pull-back of a Nori-reduced
torsor Si → S such that we have the following cartesian diagram

X̂ //

��

X̂i

��
X∗ // Xi

.

In particular, we have that X̂ = X∗ ×Xi X̂i and this implies for xi ∈
Xi(k) that πN1 (Xi, xi) = G× ker(πN(f)) is the product of the group-
schemes corresponding to X∗ and X̂i over Xi. To characterize G as
πN1 (Si, s

′), we see from the commutative diagram

X∗ //

��

Ŝ

��
Xi // Si

that Ŝ → Si and thus X∗ → Xi is a πN1 (Si, si)-torsor for some si ∈
Si(k) compatible with xi, finishing the proof.

Remark 5.4.9. In the case the torsor X̂ → X∗ descends to a torsor over X,
we will obtain that πN1 (X, x) = πN1 (S, s)×k ker(πN(f)) and thus we would
obtain a split short exact sequence

1→ ker(πN(f))→ πN1 (X, x)→ πN1 (S, s)→ 1.

5.5 proof of the main theorem

Keeping the hypotheses and the notation outlined in Setting 5.4.1, we
will restate the main theorem:

Theorem 5.5.1.Main theorem Let f : X → S be a fibration as in Setting 5.4.1, with k
an uncountable algebraically closed field. Then, there exists a rational point
s ∈ S(k) such that the following exact sequence:

πN1 (Xs, x)→ πN1 (X, x)→ πN1 (S, s)→ 1

is exact where x ∈ X(k) is a rational point of X over s.

5.5.1 The homotopy exact sequence for the FGS

Now we will state the homotopy exact sequence for the FGS, that we
will apply for our setting to prove the main theorem. Afterwards, we
will define one key condition in this result, the base change condi-
tion, that we will simplify according to the classification of torsors of
Definition 5.2.1 in Subsection 5.5.2.
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Theorem 5.5.2 ([69]). The homotopy
exact sequence
for the FGS

Let f : X → S be a proper morphism, with reduced
and connected geometric fibers, between two reduced and connected locally
noetherian schemes over a perfect field k. We additionally suppose that S is
irreducible and we take x ∈ X(k) and s ∈ S(k) such that f(x) = s. Then,
the following statements are equivalent:

1. The sequence

πN1 (Xs, x)→ πN1 (X, x)→ πN1 (S, s)→ 1

is exact.

2. For any Nori-reduced G-torsor t : T → X with G finite, the vector
bundle t∗(OT ) satisfies the base change condition at s and the image
of the composition πN1 (Xs, x)→ πN1 (X, x)→ G is a normal subgroup-
scheme of G.

3. For any Nori-reduced G-torsor t : T → X with G finite, the vector
bundle t∗(OT ) satisfies the base change condition at s and there exists
a Nori-reduced G′-torsor t′ : T ′ → S with an equivariant morphism
θ : T → T ′ such that the induced map (t′)∗ (OT ′)s → f∗ (t∗(OT ))s
of fibers over s coming from θ is an isomorphism.

Moreover, if X and S are proper, then we can add an additional equivalent
condition. Namely:

(4) For any Nori-reduced G-torsor t : T → X with G finite, the vector
bundle t∗(OT ) satisfies the base change condition at s and f∗ (t∗(OT ))
is essentially finite over S.

We see that all of these conditions require a condition over the
essentially finite bundle E = t∗(OT ) for all Nori-reduced torsors t :

T → X known as the “base change condition at s” for s ∈ S(k) and
another additional condition. Now we will define the base change
condition:

Definition 5.5.3. The base change
condition

Let f : X → S be a map of schemes, and F a coherent
sheaf of OX-modules. If s : Spec(κ(s)) → S is a point, then we have the
cartesian diagram:

Xs

g

��

i // X

f
��

Spec(κ(s))
s

// S

.

We say that F satisfies the base change condition at s if the canonical
map

s∗ (f∗(F))→ g∗ (i
∗(F))

is surjective.
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Remark 5.5.4. Keeping the notation of Definition 5.5.3, if f is proper, S is
locally noetherian, F is coherent and flat over S, then F satisfies the base
change condition at s if and only if the canonical map above is an isomor-
phism (see [36, III Thm. 12.11]).
The base change condition over a point is a particular case of the general base
change condition about the following cartesian diagram:

X′

g
��

v // X

f
��

S′
u
// S

.

and the canonical arrow

u∗ (f∗(F))→ g∗ (v
∗(F))

for a quasi-coherent sheaf F of X. For the condition to hold, we demand that
the former arrow to be surjective.
Under certain assumptions, this condition holds for a wide family of quasi-
coherent sheaves:

(a) If f is separated, of finite type and u : S′ → S is a flat morphism
of noetherian schemes the morphism above is an isomorphism for any
quasi-coherent sheaf F [36, III Prop. 9.3].

(b) We also have an isomorphism if f is affine for all quasi-coherent shea-
ves of OX-modules and for any u ([63, Lemma 02KG]).

For the particular case of the base change condition, we can make
a few remarks:

Remark 5.5.5. Keeping the notation of Definition 5.5.3.

(a)The base change
condition
unpacked

For our particular case, the base change condition over a point s of
S means that we have to prove that the following morphism of vector
spaces

f∗(F)s ⊗OS,s κ(s)→ Γ(Xs, F|Xs)

is surjective, and thus an isomorphism.

(b)Generic base
change condition

Also, as the generic point η : SpecL→ S of S is a flat morphism, the
base change condition is always generically satisfied. This implies for
a coherent sheaf F over X, that there is an open set UF, containing η,
such that for all closed points s ∈ UF, the base change condition is
also satisfied at s, see [36, III Thm. 12.11 (a)].

5.5.2 Simplifying the base change condition

Now let us take f : X → S as in Setting 5.4.1 and let t : T → X

be a pointed Nori-reduced finite G-torsor over X, corresponding to
a faithfully flat arrow πN1 (X) → G, we need to prove that the vector
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bundle E = t∗(OT ) satisfies the base change condition over a certain
rational point of S. We can separated this problem in three, depending
if T is pure, mixed or a pull-back.
The easiest case is when T is a pull-back:

Proposition 5.5.6. Base change
condition for
pull-back torsors

Under the hypotheses of Theorem 5.5.2 with S and X
proper, let t′ : X′ → X be a finite Nori-reduced G-torsor over X. Assume
that X′ is the pull-back of a G-torsor p : S′ → S, then it satisfies the base
change condition for all rational points of S.

Proof. From our hypotheses, we have the following cartesian diagram

X′

t′

��

f′ // S′

p′

��
X

f
// S

.

Here, we are in the situation of Remark 5.5.4(b) as the vertical arrows
are affine, in particular we see that f∗ ((p′)∗ (OS′)) ∼= (t′)∗ (OX′) = P

and for s ∈ S(k) we have that P|Xs is trivial as the torsor X′ is clearly
trivial over Xs, in particular

dimk(H0(Xs, P|Xs)) = rank(P) = rank(
(
p′
)
∗ (OS′))

by Corollary 3.4.4 which finishes the proof as this implies an isomor-
phism on the equation in Remark 5.5.5(a).

Now we will study pure torsors: Now we focus our attention to
pure torsors:

Proposition 5.5.7. Base change
condition for
pure torsors

Under Setting 5.4.1, let t : T → X be a pure Nori-
reduced torsor over X, there exists an open set UT ⊂ S, containing the
generic point of S, such that for any rational point s ∈ UT , the pull-back of
T to the fiber Xs is Nori-reduced and E = t∗(OT ) satisfies the base change
condition at s.

Proof. In this case, there exists an open set U ⊂ S that contains the
generic point of S in which the base change condition for E is satisfied
at all of the rational points of S contained within (Remark 5.5.5(b)).
Moreover, as the pull-back of T to the geometric generic fiber Xη̄ is
Nori-reduced by Proposition 5.2.19, we have h0(Xη̄, E|Xη̄) = 1 and by
the semi-continuity theorem [36, III Thm. 12.8], there exist an open
set U′ ⊂ S such that h0(Xη̄, E|Xη̄) = 1 for all s ∈ U′, which implies
that the pull-back of T to Xs is Nori-reduced, for s ∈ U′(k).
Thus, by taking UT = U∩U′ we finish the proof.

Finally, the only Nori-reduced torsors remaining are the mixed
ones:
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Proposition 5.5.8.Base change
condition for

mixed torsors

Under Setting 5.4.1, let t : T → X be a mixed Nori-
reduced finite G-torsor. If we write H = G/K where H is the group-scheme
corresponding to f†(T), the maximal pull-back quotient of T , there exists
an open set UT ⊂ S, containing the generic point of S, such that for any
s ∈ UT (k), the canonical Nori-reduced sub-torsor (Definition 3.2.16) of the
pull-back of T to Xs is a K-torsor, and E = t∗(OT ) satisfies the base change
condition at s.

Proof. There exists an open set U ⊂ S where E satisfies the base
change condition at any rational point of U (Remark 5.5.5(b)).
Moreover, as the canonical Nori-reduced sub-torsor of the pull-back
Tη̄ of T to the geometric generic fiber Xη̄ is a K-torsor by Corollary
5.4.5, as K is the image of the morphism πN1 (Xη̄)→ G.
Applying Lemma 3.4.5, we have that h0(Xη̄, E|Xη̄) = r where r =

ord(H), and for any s ∈ S(k) we have that h0(Xs, E|Xs) > r as the
image of πN1 (Xs) → G corresponding to the pull-back of T to Xs
has its image contained in K. Thus, by semi-continuity, there exists an
open set U′ where the canonical Nori-reduced sub-torsor of pull-back
torsor Ts → Xs is a K-torsor for any s ∈ U′(k).
Finally, by taking UT = U∩U′ we conclude the proof.

5.5.3 Proof of the exact sequence

We are ready to finish the proof of Theorem 5.5.1.
Now let f : X → S be as in Setting 5.4.1, first we recall that, for the
induced morphism πN(f) : πN1 (X) → πN1 (S), the kernel ker(πN(f))
is finite. Then, from Corollary 5.4.8, we can deduce the following
lemma:

Lemma 5.5.9.A direct proof of
the homotopy

exact sequence

Let f : X → S be as in Setting 5.4.1. Let us suppose that
k = k̄ is an uncountable field, the torsor X̂→ X∗ (Definition 5.3.8) is finite
and that it descends to a finite torsor X̂0 over X according to Proposition
2.3.61(a).
Then, there exists s ∈ S(k) such that for compatible points, the following
sequence

πN1 (Xs, x)→ πN1 (X, x)→ πN1 (S, s)→ 1

is exact.

Proof. Let t : T → X be a pure Nori-reduced finite torsor, as the pull-
back T ×X X∗ is Nori-reduced (Proposition 5.3.11(1)), we have a fait-
hfully flat morphism of torsors X̂ → T ×X X∗ over X∗ and thus a
faithfully flat morphism X̂0 → T over X. As both torsors are Nori-
reduced, T must be a quotient of X̂0 by a normal subgroup-scheme of
ker(πN(f)) and thus there is a finite amount of isomorphism classes
of pure Nori-reduced torsors in this case. This allows us to consider
the open set UP =

⋂
T∈PUT where P is the finite family of isomor-

phism classes of pure Nori-reduced torsors over X, and UT is the
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open set defined in Proposition 5.5.7. The finiteness of P implies that
UP is a dense open set of S as it contains its generic point and it has
rational points inside. Over any of such rational point p ∈ UP, all
pure Nori-reduced torsors satisfy the base change condition at p and
their pull-backs to the fiber Xp are Nori-reduced.
If t : T → X is mixed and Nori-reduced, assuming the notation of
Proposition 5.3.11, if f†(T) := Si ×S X is its maximal pull-back quo-
tient where Si → S is Nori-reduced, by using a similar argument to
the one we used for pure torsors, we see that T → f†(T) is a quotient
torsor of the pure torsor X̂i → f†(T), the descent of X̂ → X∗ over
f†(T), with respect to fi : f†(T) → Si. This implies there is a finite
amount of classes of isomorphic pure torsors over f†(T). As S is an el-
liptic curve, it possesses a countable amount of isomorphism classes
of Nori-reduced torsors (Proposition 3.4.23), and thus there is a coun-
table amount of isomorphism classes of pull-back torsors f†(T), so we
conclude that there is a countable amount of isomorphism classes of
mixed Nori-reduced torsors over X. If M is the family of such isomor-
phism classes, we see that the intersection UM =

⋂
T∈MUT where

UT is the open subset of S coming from Proposition 5.5.8 is a very ge-
neral (Definition 4.2.8) subset of S. As k is uncountable, we can find
rational points within and thus there exists m ∈ UM(k) such that any
mixed Nori-reduced torsor satisfies the base change condition at m
and the maximal Nori-reduced sub-torsor of any pull-back of a mixed
torsor over Xm is a torsor over the image ker(πN(f))→ πN1 (X, x)→ G

where G is the group-scheme associated to a mixed torsor T .
Finally, as pull-back torsors satisfy the base change condition at any
s ∈ S(k) by Proposition 5.5.6, by choosing a rational point s ∈ UP ∩
UM we have for x ∈ X(k) over s, that the sequence

πN1 (Xs, x)→ πN1 (X, x)→ πN1 (S, s)→ 1

is exact as we wanted, because we have chosen s ∈ S(k) such that
we satisfy one Zhang’s equivalent conditions for the homotopy exact
sequence to hold, more specifically the one stated in Theorem 5.5.2
(2).

Proof of Theorem 5.5.1. Proof of the
main theorem

We will obtain the homotopy exact sequence
indirectly: because kerπN(f) is finite, there exist a Nori-reduced tor-
sor Si → S and Xi → X its pull-back torsor, such that the finite
torsor X̂ → X∗ descends to a torsor X̂i → Xi, pure with respect to
fi : Xi → Si.
These schemes satisfy the hypotheses of Lemma 5.5.9 and thus for a
rational point s′ ∈ Si(k) with have an exact sequence

πN1 (Xi,s′ , x
′)→ π1(Xi, x′)→ πN1 (Si, s

′)→ 1
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where Xi,s′ is the fiber of fi over s′. Let s, x be the images of the points
s′ and x′ to X and S respectively, we see that we have a commutative
diagram

Xi,s′ //

��

Xi

��

fi // Si

��
Xs // X

f
// S

.

We can easily see that Xi,s′ → Xi is a pointed Nori-reduced torsor
and thus by taking the FGS of all the schemes involved we obtain the
following commutative diagram of group-schemes

πN1 (Xi,s′ , x
′) //

��

πN1 (Xi, x
′)

��

πN(fi)// πN1 (Si, s
′)

��
πN1 (Xs, x) // πN1 (X, x)

πN(f)

// πN1 (S, s)

where all the vertical arrows are closed immersions. From the proof
of Proposition 5.3.11, we see that ker(πN(f)) = ker(πN(fi)) and thus
we have additionally the following commutative diagram

πN1 (Xi,s′ , x
′)

��

'' ''

// πN1 (Xi, x
′)

��

ker(πN(f))

77

''
πN1 (Xs, x) //

77

πN1 (X, x)

.

From the homotopy exact sequence, the arrow πN1 (Xi,s′ , x
′)→ ker(πN(f))

is faithfully flat and as the arrow πN1 (Xi,s′ , x
′)→ πN1 (Xs, x) is a closed

immersion, we conclude that πN1 (Xs, x)→ ker(πN(f)) is faithfully flat,
finishing the proof.

5.5.4 Conclusion

With Theorem 5.5.1, we can characterize the morphism in Remark
5.1.5(2b), serving as a first stepping stone to the understanding of the
Nori fundamental group-scheme of elliptically connected varieties.

Theorem 5.5.10.FGS of a
rationally
connected

fibration over an
elliptic curve

Let k be an uncountable algebraically closed field, and
let X be a smooth projective variety over k. Assume there is a projective
fibration f : X → S where S is an elliptic curve such that all geometric
fibers are rationally connected. Then, there exists rational compatible points
x ∈ X(k) and s ∈ S(k) such that the following sequence of group-schemes
is exact:

πN1 (Xs, x)→ πN1 (X, x)→ πN1 (S, s)→ 1.
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Proof. This comes directly from Theorem 5.5.1: as the geometric fi-
bers of this morphism are rationally connected and normal by [33,
Théorème 12.1.6] and [27, Exc. 6.20], their FGS are finite (Proposition
3.4.21).
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