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Écoulements au voisinage d’interfaces molles : les rôles de l’élasticité, la capillarité & les fluctuations

Résumé : Dans ce manuscrit, nous étudions des écoulements au voisinage d’interfaces molles au travers de systèmes
divers. Dans une première partie, nous nous intéressons à la lubrification élastohydrodynamique, et analysons
le mouvement confiné d’une sphère rigide se déplaçant à proximité d’une surface déformable. Les interactions
hydrodynamiques entre une sphère oscillante et la déformation de la surface permettent de caractériser sans contact la
réponse mécanique complexe des matériaux, comme la viscoélastiticité, la poroélasticité ou la capillarité. Les résultats
théoriques sont confrontés à des expériences de microscopie à force atomique avec une sonde colloïdale, permettant de
mesurer la rhéologie d’élastomères et la tension de surface d’interfaces liquide-air en présence d’impuretés. Ensuite,
nous calculons les forces et couples qui s’appliquent sur des sphères ayant la liberté de se déplacer et de tourner dans
toutes les directions. La force de portance élastohydrodynamique, mesurée expérimentalement, est en accord avec les
prédictions théoriques pour des faibles déformations de la surface. Dans une deuxième partie, nous nous intéressons à
la dynamique de films visqueux mince. Au travers de travaux théoriques et expérimentaux sur le nivellement capillaire
de films de polymères, nous analysons la dynamique de films reposant sur un substrat élastique, de films bicouches
et de films suspendus. Une dernière partie est dédiée à la diffusion de sphères dans des écoulements cisaillés et au
voisinage d’une paroi. Nous analysons l’augmentation du coefficient de diffusion effectif induit par le couplage entre
diffusion et advection. Un intérêt particulier est porté sur la dynamique aux temps courts devant le temps de diffusion
et sur les interactions des particules avec le mur.
Mots-clés : Rhéologie, élasticité, capillarité, lubrification, films minces, diffusion.

Flows at soft interfaces: the roles of elasticity, capillarity & fluctuations

Abstract: In this manuscript, we study flows in the vicinity of soft interfaces through various systems. In a first part,
we focus on elastohydrodynamic lubrication, and analyze the confined motion of a rigid sphere moving close to a soft
surface. The hydrodynamic interactions between an oscillating sphere and the deformation of the surface allow us
to characterize without contact the complex mechanical response of materials, such as viscoelasticity, poroelasticity
or capillarity. Theoretical results are confronted with colloidal-probe atomic force microscopy experiments, allowing
us to measure the rheology of elastomers and the surface tension of liquid-air interfaces in the presence of impurities.
Then, we calculate the forces and torques that apply on spheres that are free to move and rotate in all directions. The
elastohydrodynamic lift force, measured experimentally, is in agreement with theoretical predictions for small surface
deformations. In a second part, we focus on the dynamics of thin films. Through theoretical and experimental work on
the capillary leveling of thin polymer films, we analyze the dynamics of films resting on an elastic substrate, bilayer
films and freestanding films. A last part is dedicated to the diffusion of spheres in shear flows and near a wall. We
analyze the enhancement of the effective diffusion coefficient induced by the coupling between diffusion and advection.
Particular interest is given to the dynamics at short times compared with the diffusion time and to the interactions of
the particles with the wall.
Keywords: Rheology, elasticity, capillarity, lubrication, thin films, diffusion.
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me risque pas à une liste exhaustive et je vais simplement vous remercier tous d’être
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Cette thèse de doctorat est l’aboutissement de mes recherches, que j’ai effectuées à la
fois au Laboratoire Ondes et Matière d’Aquitaine (Université de Bordeaux) et au laboratoire
Gulliver, sous la direction de Thomas Salez et Élie Raphaël. Nos travaux ont donné lieu
à la rédaction de huit articles [1, 2, 3, 4, 5, 6, 7, 8].

Contexte général

La matière molle est un terme popularisé par le physicien français Pierre Gilles de Gennes,
prix Nobel de physique 1991 [9]. Il désigne un domaine de recherche interdisciplinaire,
entre la physique, la chimie, la biologie, la mécanique et dans lequel s’inscrit ce tra-
vail doctoral. En particulier, la caractéristique principale de la matière molle, qui lui
sert parfois de définition, est que les énergies d’interaction entre ses éléments consti-
tutifs mésoscopiques sont du même ordre de grandeur que l’énergie thermique. Les
principales conséquences sont que la matière molle réagit fortement à de faibles sollic-
itations et que les fluctuations thermiques sont importantes. Par exemple, on observe
de nombreux réarrangements et transitions de phases en matière molle qui résultent
de changements infimes de la température ou la composition du système. Ce qui
nous intéresse dans cette thèse, est que la matière molle réagit fortement à des con-
traintes mécaniques, ce qui lui confère une faible rigidité, et des propriétés complexes
entre celles des fluides et des solides. On retrouve la matière molle dans une large
variété d’exemples, dans les objets du quotidien (plastiques, bulles de savon, gels,
cosmétiques, etc...), dans la nature (boues, sable, etc...), en biologie (cellules, vésicules,
membranes, etc...).

Dans cette thèse, nous nous intéressons à divers problèmes mêlants mécanique des
fluides et élasticité. En particulier, nous étudions des écoulements au voisinage d’interfaces
molles, qui sont intéressants et complexes du fait de la capacité des interfaces de la
matière molle à se déformer sous l’effet des contraintes mécaniques de l’écoulement.
Ainsi, la modification des interfaces induit une rétroaction sur l’écoulement. En outre,
au voisinage d’interfaces molles, les forces de surface (par exemple la capillarité) et les
fluctuations thermiques ont souvent un rôle important et seront également abordées. Les
outils développés ici sont principalement théoriques et numériques. Néanmoins, la
quasi-totalité des sujets traités accompagne des expériences réalisées par des collabo-
rateurs, ou est motivée par de potentielles futures expériences. Enfin, comme souvent
en physique, notre approche consiste à réduire la complexité au travers de systèmes
modèles. L’objectif est d’en dégager des principes simples et fondamentaux afin de
comprendre en profondeur les phénomènes en question.

Presentation et résumé du manuscrit

Ce manuscrit est articulé autour de trois parties indépendantes. La partie I est con-
stituée de deux chapitres traitant des interactions elastohydrodynamiques entre une
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sphère rigide et une surface molle.

Chapitre 1 : Rhéologie sans contact d’interfaces molles.
À des échelles micrométriques et nanométriques, la caractérisation des propriétés mécaniques
est un défi de taille car les forces de surface jouent souvent un rôle dominant. Pour ac-
complir cette tâche, nous présentons dans ce chapitre une méthode expérimentale sans
contact direct entre la sonde et la surface, et basée sur les interactions élastohydrodynamiques.
Une sphère est mise en mouvement et oscille dans la direction normale à une sur-
face molle. En mesurant la force nécessaire pour entretenir le mouvement, la réponse
mécanique de la surface peut être inférée. Nous développons un modèle pour prendre
en compte les propriétés viscoélastiques et poroélastiques du substrat, ainsi que la cap-
illarité de la surface du solide. Des expériences avec un microscope à force atomique
confirment la robustesse de la méthode et permettent de mesurer la viscoélasticité de
couches d’élastomères. Ensuite, nous utilisons la technique sans contact pour mesurer
la réponse mécanique d’une bulle déposée sur une surface. La taille de la bulle modi-
fie la réponse mécanique, et nous développons un modèle, basé sur un raccordement
asymptotique, pour prendre en compte les effets de taille finie. Cette méthode permet
de mesurer la tension de surface d’une interface liquide-air en présence d’impuretés.
Enfin, nous étudions l’influence de l’inertie du fluide, généralement négligée dans les
modèles.

Chapitre 2 : Interactions de lubrification entre une sphère rigide et un mur elastique.
Dans ce deuxième chapitre, nous nous intéressons aussi aux interactions hydrody-
namiques entre une sphère rigide et une surface molle. Nous développons un modèle
général, dans lequel une sphère est libre de se déplacer et dans les directions normales
et tangentielles à la surface, et de tourner. Les forces et couples élastohydrodynamiques
sont calculés par une méthode directe, en caractérisant l’écoulement, et par une méthode
indirecte en exploitant le théorème réciproque de Lorentz. Les calculs analytiques sont
réalisés dans la limite de faible déformation de la surface molle par rapport à la distance
entre la sphère et la surface. La réponse mécanique de la surface est calculée dans le
cadre de l’élasticité linéaire, pour des substrats élastiques plats et dans les cas-limites de
couches épaisses et minces. Une partie de ces résultats théoriques est confrontée avec
succès à des mesures expérimentales de la force de portance elastohydrodynamique.

La partie II de ce manuscrit discute de films minces de polymères autour de trois
chapitres. Nous étudions l’écoulement de films minces déposés sur des surfaces molles.
Une courte introduction présente le contexte de ce travail et résume les résultats obtenus
dans le groupe sur la dynamique des films minces en amont de cette thèse. Chaque
chapitre est constitué de la reproduction d’un article publié dans une revue scientifique.

Chapitre 3 : Elastocapillary levelling of thin viscous films on soft substrates.
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Dans ce chapitre, nous étudions la dynamique de nivellement d’un film mince placé
au-dessus d’une couche d’élastomère. Plus précisément, un film de polystyrène est
préparé à l’état vitreux dans une condition initiale en forme de marche d’escalier en su-
perposant deux films. En chauffant l’échantillon, le film s’écoule et nous nous intéressons
à la dynamique de relaxation de cette perturbation. Notons toutefois que les plus
grandes tailles caractéristiques en jeu sont micrométriques, de telle sorte que les forces
capillaires dominent devant la gravité et pilotent l’écoulement. De manière surprenante,
la dynamique de nivellement est très différente sur un substrat rigide ou sur la couche
d’élastomère. Aux premiers instants, la relaxation est plus rapide sur l’élastomère,
comme si celui-ci amortissait le choc initial. En revanche, aux temps longs, la dy-
namique est plus lente, et le profile de l’interface suit une loi de diffusion qui diffère de
celle sur substrat rigide. Plusieurs modèles sont développés, un dans l’approximation
de lubrification et l’autre en résolvant les équations de Stokes. Les modèles repro-
duisent certaines caractéristiques aux temps courts de la relaxation, mais la dynamique
lente au temps long n’est pas expliquée à ce jour.

Chapitre 4 : Capillary Levelling of Immiscible Bilayer Films.
Ce chapitre suit une méthode très similaire à celle du chapitre 3. Des films minces de
polymères sont préparés dans la configuration marche comme précédemment et placés
au dessus d’un autre type de substrat déformable : un autre film de polymère, liquide,
et non-miscible. Ce système bi-couche est un modèle simplifié de matériaux multi-
couches que l’on retrouve dans des objets du quotidien et dans les processus industriels
de coextrusion multicouche de polymères. Nous nous intéressons en particulier à des
systèmes dans lesquels le film du dessous est le moins visqueux, jouant le rôle d’un
lubrifiant effectif. Là aussi, le nivellement est modifié par la présence de la sous-couche
car celle-ci réagit à l’écoulement et se déforme. Contrairement au nivellement sur un
substrat rigide, nous n’observons pas de dynamique de relaxation de type diffusive
unique mais plutôt des transitions entre différents régimes. Un modèle asymptotique
est développé, en supposant des longues perturbations par rapport à l’épaisseur du
film, et ce dernier retrouve qualitativement les transitions entre différents régimes. En
étudiant la variation de l’énergie du système, nous interprétons ces transitions comme
des transitions entres les différents mécanismes de dissipation visqueuse du fait des
divers écoulements dans les deux films.

Chapitre 5 : Symmetrization of Thin Free-Standing Liquid Films via Capillary-Driven
Flow.
Dans le dernier chapitre de la partie, nous étudions des films minces de polymère sus-
pendus. Ces membranes liquides ont des applications dans des processus industrielles
(frabrication de verre flotté), mais aussi en géophysique (tectonique des plaques). Nous
observons la dynamique de relaxation d’une perturbation cylindrique nanométrique à
l’une des deux interfaces du film. Nous observons que la perturbation se symmétrise
dans un premier temps, avant de s’élargir et disparaı̂tre. Un modèle qui prend en
compte tous les termes des équations de Stokes est développé. La dynamique peut être
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décomposée en deux modes indépendants qui diffèrent par leur symétrie miroir. Le
mode antisymétrique, qui est analogue au mode de flexion visqueux dans les mem-
branes liquides, relaxe exponentiellement, confirmant les observations expérimentales.

La dernière partie de ce manuscrit comporte un chapitre et discute de la dispersion
de Taylor.

Chapitre 6 : Taylor-Aris dispersion.
A l’échelle microscopique, les particules diffusent sous l’effet du mouvement Brown-
ien. Le transport de particles dans un canal est induit à la fois par l’écoulement du
fluide et la diffusion. Le couplage entre ces deux modes de transport engendre une
augmentation de la dispersion des particules dans le sens de l’écoulement par rap-
port à la diffusion moléculaire. Le chapitre discute du phénomène associé appelé dis-
persion de Taylor. Nous analysons des données expérimentales obtenues en utilisant
une technique de microscopie en onde évanescente. Nous suivons les trajectoires de
nanoparticules dans un microcanal au voisinage de la paroi afin d’en extraire la dis-
persion. Dans un premier temps, nous nous concentrons sur la dispersion de Taylor
aux temps courts, c’est-à-dire pour des temps plus faibles que le temps de diffusion sur
la largeur du canal. Nous constatons que le coefficient de dispersion augmente avec
le temps et sature vers la loi de Taylor-Aris aux temps longs. De plus, la dispersion
aux temps courts dépend de la distribution initiale des particules, et croit linéairement
en temps pour une distribution des particules initialement étalée, et quadratiquement
en temps pour des particules ayant une position initiale identique. Nous discutons
de la condition au bords à employer théoriquement pour modéliser les expériences de
microscopie à ondes évanescentes, dans lesquelles les particules peuvent sortir de la
zone d’observation au cours de leur mouvement. Dans un second temps, nous nous
intéressons aux interactions entre les nanoparticules et la surface en verre qui délimite
le canal. D’une part, du fait de la répulsion électrostatique des particules par le mur,
les particules explorent une zone plus restreinte du canal ce qui réduit le coefficient
de dispersion. D’autre part, les interactions hydrodynamiques réduisent le coefficient
de diffusion car la friction augmente près du mur et les effets stériques interdisent les
premières couches de fluide proche de la surface. Combinant ces deux effets, la disper-
sion diminue à mesure que la taille des particules augmente.

Les deux annexes A et B apportent des résultats complémentaires aux chapitres 2 et
6. L’ annexe C décrit un projet toujours en cours. Nous nous interessons à une tech-
nique expérimentale, l’enduction par trempage (dip coating), largement répandue pour
déposer un film liquide sur une surface. En particulier, nous étudions l’influence de
la rigidité de la surface sur l’épaisseur du film déposé. L’annexe D de ce mémoire est



15

dédié à un projet annexe à ma thèse que j’ai effectué avec d’autres chercheurs du labo-
ratoire Gulliver. Nous étudions expérimentalement et théoriquement le mouvement de
gouttes auto-propulsées dans des capillaires de différentes sections.
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This doctoral dissertation is the outcome of my research, performed both in the
Laboratoire Ondes et Matière d’Aquitaine (Université de Bordeaux) and in the laboratory
Gulliver, under the supervision of Thomas Salez and Elie Raphaël. Our work led to
the writing of eight articles [1, 2, 3, 4, 5, 6, 7, 8], some of which are reproduced in the
manuscript.

Context

Soft matter is a term popularized by the French physicist Pierre Gilles de Gennes [9],
winner of the 1991 Nobel Prize in Physics. It designates a field of research at the in-
terface between physics, chemistry, biology, and mechanics and in which this thesis
is inscribed. In particular, the common feature that is shared by soft matter, which
is sometimes used as a definition, is that the interaction energies between its meso-
scopic constitutive elements is on the same order of magnitude as the thermal energy.
The main consequence is that soft matter reacts strongly to weak solicitations, and that
thermal fluctuations are significant. For example, we observe many rearrangements
and phase transitions in soft matter that result from minute changes in the temperature
or composition of the system. What is interesting to us in this thesis, is that soft mat-
ter reacts strongly to mechanical constraints, which gives it a low rigidity, and exhibits
complex properties between those of fluids and solids. Soft matter is found in a wide
variety of examples, in everyday life (plastics, soap bubbles, gels, cosmetics, etc.), in
nature (muds, sand, etc.), in biology (cells, vesicles, membranes, etc.).

In this thesis, we are interested in various problems mixing fluid mechanics and elastic-
ity. In particular, we study flows near soft interfaces, which are interesting and complex
because of the ability of the soft matter interfaces to deform under the mechanical stress
induced by the flow. Thus, the modification of the interfaces induces a feedback on the
flow. In addition, near soft interfaces, surface forces (e.g. capillarity) and thermal fluctu-
ations often play an important role and will also be discussed. The tools developed here
are mainly theoretical and numerical. Nevertheless, almost all of the topics treated are
related to experiments performed by collaborators, or are motivated by potential future
experiments. Finally, as is often the case in physics, our approach consists in reducing
the complexity through the use of model systems. The objective is to derive simple and
fundamental principles in order to understand in depth the phenomena in question.

Presentation of the manuscript

This manuscript is articulated around three independent parts. Part I consists of two
chapters dealing with elastohydrodynamic interactions between a rigid sphere and a
soft surface.

Chapter 1 : Contactless rheology of soft interfaces.
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At micro- and nanoscale scales, the characterization of mechanical properties is a major
challenge because surface forces often play a dominant role. To address this challenge,
we present an experimental method without direct contact between the probe and the
surface, and based on elastohydrodynamic interactions. A sphere is driven to oscillate
in the direction normal to a soft surface. By measuring the force required to maintain
the motion, the mechanical response of the surface can be inferred. We develop a model
to account for the viscoelastic and poroelastic properties of the substrate, as well as the
capillarity of the solid surface. Experiments with an atomic force microscope confirm
the robustness of the method and allow us to measure the rheology of elastomeric lay-
ers. Then, we use the contactless technique to measure the mechanical response of an
air bubble deposited on a surface. The size of the bubble modifies the mechanical re-
sponse, and we develop a model, based on asymptotic matching, to take into account
the finite size effects. This method allows us to robustly measure the surface tension
of an interface in presence of impurities. Finally, we study influence of fluid inertia,
usually neglected.

Chapter 2 : Soft-lubrication interactions between a rigid sphere and an elastic wall.
In this second chapter, we are also interested in hydrodynamic interactions between a
rigid sphere and a soft surface. We develop a general model, in which a sphere is free to
move in directions normal and tangential to the surface, and to rotate. The elastohydro-
dynamic forces and torques are computed from a direct method, by characterizing the
flow, and from an indirect method by exploiting the Lorentz reciprocal theorem. The
analytical calculations are performed in the limit of small deformation of the soft sur-
face with respect to the distance between the sphere and the surface. The mechanical
response of the surface is calculated in the linear-elasticity framework, for flat elastic
substrates and in the limiting cases of thick and thin layers. Some of these theoretical
results are successfully compared with experimental measurements of the elastohydro-
dynamic lift force.

The part II of this manuscript discusses polymer thin films around three chapters. We
study the flow of thin films deposited on soft surfaces. A short introduction presents
the context of this work and summarizes the results obtained in the group on thin film
dynamics prior to this thesis. Each chapter is a reproduction of a published article.

Chapter 3 : Elastocapillary levelling of thin viscous films on soft substrates.
In this chapter, we study the leveling dynamics of a thin film placed on top of an elas-
tomeric layer. Specifically, a polystyrene film is prepared in the glassy state in a stepped
initial condition by superimposing two films. By annealing the sample, the film flows
and we are interested in the relaxation dynamics of the perturbation. Note however
that the largest characteristic length scales of the system are micrometric, so that capil-
lary forces dominate over gravity and drive the flow. Surprisingly, the leveling dynam-
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ics is very different on a rigid substrate compared to the elastomeric layer. At the first
instants, the relaxation is faster on the elastomer, as if the substrate would absorb the
initial “shock”. On the other hand, at long times, the dynamics is slower, and the pro-
file of the interface follows a diffusion law which differs from that on a rigid substrate.
Several models are developed, one in the lubrication approximation and the other solv-
ing the Stokes equations. The models reproduce some characteristics at short times of
the relaxation, but the slow dynamics at long time is not explained at this time.

Chapter 4 : Capillary Levelling of Immiscible Bilayer Films.
This chapter follows a very similar method to that of chapter 3. Thin films of polymers
are prepared in the same stepped configuration as before and placed on top of another
type of deformable substrate: another immiscible liquid polymer film. This bilayer
system is a simplified model of multilayer materials found in everyday objects and in
industrial multilayer coextrusion processes. We are particularly interested in systems
in which the bottom film is the least viscous, playing the role of an effective lubricant.
Here too, the leveling is modified by the presence of the underlying layer because it re-
acts to the flow and deforms. Unlike the leveling on a rigid substrate, we do not observe
a single diffusive type of relaxation dynamics but rather transitions between different
regimes. An asymptotic model is developed, assuming long perturbations with respect
to the film thickness, and it qualitatively reproduces the transitions between different
regimes. By studying the energy variation in the system, we interpret these transitions
as transitions between the different viscous dissipation mechanisms of the system due
to the different flows in the two films.

Chapter 5 : Symmetrization of Thin Free-Standing Liquid Films via Capillary-Driven
Flow.
In the last chapter of the section, we study freestanding polymer thin films. These liq-
uid membranes have applications in industrial processes (fracturing of floating glass),
but also in geophysics (plate tectonics). We observe the relaxation dynamics of a nano-
metric cylindrical perturbation at one of the two interfaces of the film. At first, the
perturbation symmetrizes, before widening and disappearing. A model that takes into
account all the terms of the Stokes equations is developed. The dynamics can be de-
composed into two independent modes which differ by their symmetries. The antisym-
metric mode, which is analogous to the viscous bending mode in liquid membranes,
relaxes exponentially, confirming experimental observations.

The last part of this manuscript consists of a single chapter and discusses Taylor dis-
persion.

Chapter 6 : Taylor-Aris dispersion.
At the microscopic scale, particles diffuse because of Brownian motion. The transport
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of particles in a channel is induced by both flow and diffusion. The coupling between
these two modes of transport results in an increase in the dispersion of particles in
the direction of flow compared to simple molecular diffusion. The chapter discusses
the associated phenomenon called Taylor dispersion. We analyze experimental data
obtained using an evanescent-wave microscopy technique. We follow the trajectories
of nanoparticles in a microchannel near the surface in order to extract the dispersion.
First, we focus on Taylor dispersion at short times, i.e. for times smaller than the diffu-
sion time over the channel width. We find that the dispersion coefficient increases with
time and saturates towards the Taylor-Aris law at long times. Moreover, the dispersion
at short times depends on the initial particle distribution, and grows linearly in time
for a initially wide distribution of particles, and quadratically in time for particles with
identical initial position. We discuss the boundary condition to be used theoretically to
model evanescent-wave microscopy experiments, in which the particles may leave the
observation area during their motion. In a second step, we are interested in the inter-
actions between the nanoparticles and the glass surface that delimits the channel. On
the one hand, due to the electrostatic repulsion of the particles by the wall, the particles
explore a smaller area of the channel which reduces the dispersion coefficient. On the
other hand, hydrodynamic interactions reduce the diffusion coefficient because friction
increases near the wall and steric effects prohibit the first layers of fluid near the sur-
face from being accessible. Combining these two effects, the dispersion decreases as
the particle size increases.

The two appendices A and B provide complementary results to chapters 2 and 6 re-
spectively. The appendix C presents an ongoing project. We are interested in an exper-
imental technique, dip coating (dip coating), widely used to deposit a liquid film on a
surface. In particular, we study the influence of the surface stiffness on the thickness of
the deposited film. The appendix D of this thesis is dedicated to a project that I carried
out with other researchers of the laboratory Gulliver. We study experimentally and the-
oretically the motion of self-propelled droplets in capillaries of different sections.



Part I

Elastohydrodynamic
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Chapter 1

Contactless rheology of soft
interfaces

1.1 Introduction

1.1.1 Context: mechanical response of a soft interface

Elasticity

Finding the deformation of an object in response to a force is the paradigm of mechan-
ics. How much can I deform a material? What shape this material will adopt? Why are
some structures mechanically stable, and others not? These questions have been ad-
dressed for centuries and have been resolved using theoretical tools in mechanics such
as elasticity theories and many experimental techniques. Let us first describe one of
the simplest examples and probably the most emblematic one: the tensile test. Imagine
an elongated object like a rod of cross-sectional area A and of length L0, on which we
apply a traction force F . In response, the rod is extended and has a new length L0+∆L.
If the deformation is small, its deformation is linearly proportional to the force. To be
more quantitative, we define the strain ε, the dimensionless ratio ∆L/L0 and the stress
σ, as the force per unit area F/A, such that the mechanical law reads:

σ =
F

A
= E

∆L

L0
= Eε, (1.1)

where E denotes the Young’s modulus of the material, with the unit of a pressure. The
Young’s modulus is an elastic parameter, that characterizes the rigidity of the material,
ranging from ∼ 100 GPa for stiff materials such as metals, to ∼ 1 kPa for very soft
materials such as gels. Equation (1.1) is known as Hooke’s law, and was first enunciated
by Robert Hooke in 1678 [10]. It is very useful to illustrate the theory of elasticity but it
is quite useless in practice given that it is restricted to a 1d geometry.

A local generalization of Hooke’s law in 3d was first derived by Augustin-Louis
Cauchy in the early nineteenth century, yielding to modern continuum mechanics. In
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this continuum theory, strain and stress are space-dependent 2nd-rank tensor fields re-
lated via the linear relation σij = Cijklεij , where Einstein’s summation convention is
used. The strain tensor ε is related to the displacement field u of the elastic solid with
respect to a reference configuration, as ε = 1

2(∇u+(∇u)T ), where ∇ is the nabla oper-
ator and T is the transpose operator. The stress tensor σ characterizes the force within
the solid such that if we consider an infinitesimal surface dS oriented with a normal
vector n, then the force applied on the surface is given by n ·σdS. For a homogeneous
and isotropic material, the 4th-rank tensor Cijkl may be reduced to only two indepen-
dent parameters using symmetry arguments: the Young modulus E (previously intro-
duced), and a dimensionless parameter called the Poisson ratio and denoted ν here.
The latter gives information about the compressibility of the material that amounts to
answering the question: if we pull on a material along a given direction, how much
will it shrink in the others? We note that the generalized Hooke’s law can be written in
the following way:

σ = µ

(
∇u+ (∇u)T )

)
+ λ(∇ · u)I, (1.2)

where µ = E/(2(1 + ν)) and λ = Eν/((1 + ν)(1 − 2ν)) are the Lamé coefficients and I
is the identity tensor.

Viscoelasticity

Although elasticity theories describe the mechanical response of most solid materials,
it exists a class of material for which these theories fail at explaining the mechanical
behavior. As an example, toothpaste appears as an elastic solid in its tube but flows
once a large-enough pressure is applied on the tube. This state of matter, in between
fluid and solid, is often called viscoelastic materials and is widely spread in biology
(cells, blood, ...), in everyday life (creams, gels, foams, ...), and in nature (mug, lava,
...). A common feature of viscoelasticity is that the strain state is not only a function of
the instantaneous stress state at a given time, as in linear elasticity but also depends on
the “mechanical history” of the considered material. Mathematically, Hooke’s law (see
Eq. (1.1)) is modified to account for this property, as:

σ(t) =

∫ t

−∞
ψ(t− t′)ε̇(t′) dt′, (1.3)

where ψ is a response function and the dot denotes a time derivative. Notably, the
response of the material largely depends on the typical time scale of the excitation, or
its frequency. One example is cornstarch solution, which deforms elastically like a solid
for a quick excitation. However, for long-time excitation, the solution flows as a liquid.
Viscolastic materials are composed of macromolecules, colloids, droplets, or bubbles of
typical sizes ranging from a few nanometers to a micron, much larger than the atomic
scale (∼ 0.1 nm). These objects have a much larger intrinsic relaxation time, or slower
dynamics, than molecules for which the relaxation time is on the order of 1 − 10 ps.
Therefore, the constitutive law of viscoelastic materials (see Eq. (1.3)) emerges from
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the fact that the response depends on how the typical time scale of the macroscopic
excitation compares with the microscopic relaxation time of the individual compounds
of the material.

Capillarity

The cohesive property of the condensed states of matter comes from the attractive in-
teractions between the molecules. A molecule at an interface with another phase (e.g. a
liquid-gas interface) has fewer neighboring identical molecules, and therefore a higher
energy state than a molecule in the bulk. The direct consequence is that the creation
of an extra interface area is associated with an energy cost per unit of surface, which
is called surface tension and denoted γ. The physical phenomenon associated with
surface tension is called capillarity [11, 12]. As an example of consequences, liquid jets
break into droplets because the process decreases the surface and therefore the capil-
lary energy. When comparing capillarity to gravity, a length scale

√
γ/(ρg) emerges,

where ρ and g denote the density and gravity acceleration, respectively. This length is
called the capillary length and is on the order of 1 mm for standard liquids. It provides
the typical scale below which capillarity dominates.

Besides, a pressure difference ∆P is observed across a curved interface, which is
known as the Laplace law:

∆P = γκ, (1.4)

where κ is the mean curvature of the interface. The sign convention is set such that
curvature is positive for concave shapes. In other words, for a spherical interface like
a droplet, the pressure is large inside the droplet. This law characterizes the mechani-
cal response of capillary interfaces and is important to understand the deformation of
droplets, bubbles, and the dynamics of thin films (see Part II). Even though capillarity
may seem restricted to fluid-fluid interfaces, solid-fluid interfaces also have an energy
cost for the same reason as the one above [13]. Interestingly, here again, a length scale
emerges when comparing bulk elasticity to capillarity, γ/E, called the elastocapillary
length. Similarly, this length scale sets the typical length below which capillarity domi-
nates the mechanical response of a solid. For hard materials like metal this length scale
is ∼ 0.1 nm, on the same order as the atomic size, hence solid capillarity can be safely
neglected. Nevertheless, for very soft gels, this length may reach 10− 100µm and have
a potential impact on the mechanical response. For instance, capillarity smoothens out
corners of soft gels on a typical size γ/E [14] and drives mechanical instabilities [15, 16]
as it tends to minimize the surface energy.

Measurements

There are many existing methods to measure the mechanical response of a soft interface
and an exhaustive list is out of the scope of the current manuscript. Here, we quickly
review the main experimental techniques before introducing the methods discussed in
this chapter.
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As briefly discussed above, tensile testing is likely the most common technique in
mechanical engineering to measure the elastic response of a material. This method
also allows measuring the high-strain response of materials and the associated strain-
hardening and fracture properties [17]. Indentation-based hardness tests are the other
classical methods to assess the mechanical response. They consist in pressing a hard
tip, of known shape and mechanical properties, on a given sample and measuring the
deformation. Viscoelasticity and the associated frequency-dependent rheology of soft
solids are usually measured with conventional rheometers [18]. For instance, the sam-
ple is fixed in between two rotating plates, and a rotating displacement is imposed on
one plate while the applied torque is measured on the other one. Lastly, surface tension
is measured by a large variety of techniques: the pendant-drop method [19] and the
spinning-drop method exploit energy minimization principles while Wilhelmy plates
or du Noüy rings [20] measure capillary forces.

Towards nanomechanics

All these experimental methods involve a large volume of material and require a ho-
mogeneous and isotropic matter. Nevertheless, at mesoscopic scales, the constitutive
elements of soft condensed matter do not necessarily fulfill these conditions. An im-
portant example in living systems is cells which are composed of compartmentalized
regions, and combine multiple sources of elasticity (e.g. phospholipid membrane, cy-
toskeleton, ...). Moreover, the mechanical behavior of cells is intrinsically coupled to
the cell function [21] which raises important questions in biology.

Many progress has been made with the development in the 1980’s of optical tech-
niques in order to both manipulate and probe the mechanical response of microscopic
objects. For example, optical tweezers, which consist of a highly focused laser beam,
permit to trap micron-size particles like colloids and cells [22, 23]. The Surface Force
Apparatus and the Atomic Force Microscope are alternative experimental systems al-
lowing to achieve similar goals. These instruments are described in more detail in
section 1.1.2. Interestingly, the down-scaling toward micro and nanometers brings a lot
of questions and challenges for physicists. Notably, at such scales, the granularity/dis-
cretness of matter questions the continuum description of mechanics. Additionally, the
electronic interactions between molecules lead to forces such as electrostatic and van
der Walls forces which may become dominant at such scales.

Within this context, we present in the present chapter a method to measure the me-
chanical response of a soft interfaces, from the micro to the nanoscale. This experimen-
tal method is based on the elastohydrodynamic interactions between a spherical probe
and the soft surface. The advantages of the method are: i) it necessitates small stresses
and does not damage the sample, ii) the measurements are done with no contact, al-
lowing to get the mechanical response in the absence of possible adhesion between the
probe and the sample. In particular, we investigate how contactless colloidal-probe-
AFM method can be used to probe very soft elastomers in section 1.2, bubbles in sec-
tion 1.3 and we explore the effect of fluid inertia in section 1.4.



29

a) b)

White  
light

Spring

Mica  
surface

Spectrometer

Crossed cylinders Photodiode

Laser

Tip

Cantilever

Sampled surface

Piezo stage

Chap 8

Figure 1.1: a) Simplified schematic of the Surface Force Apparatus, in its original design
by J. Israelachvili. b) Simplified schematic of an Atomic Force Microscope.

1.1.2 Scientific instruments for contactless measurements

There are two main experimental tools, first developed for contact nanoscience and
that were then adapted to conduct contactless elastohydrodynamic measurements. We
briefly present the concept and the history of these devices and we encourage an inter-
ested reader to look at a more specific experimental review [24] or book [25] for further
experimental information.

Surface Force Apparatus

The surface Force Apparatus (SFA) is a scientific instrument first conceived by D. Tabor,
R. H. S. Winterton & J. Israelachvili in the 70’s in order to measure the interactions be-
tween two surfaces [26, 27]. The principle is to bring almost into contact two surfaces,
usually in a sphere-plan geometry, e.g. using two crossed cylinders of typical curvature
radius in the centimeter range (see Fig. 1.1a)). Piezoelectric positioning elements are
used to displace the surfaces with good accuracy and the separation distance between
the surfaces is measured through optical interferometry. One of the two surfaces is
connected to a spring, such that the deformation of the spring allows to have access to
the interaction forces between the surfaces. In the first experiments using SFA, the in-
teraction forces between two freshly cleaved mica surfaces were measured in vacuum,
revealing the van der Walls forces. Freshly cleaved mica surfaces are atomically smooth
over a wide area, which allows ont to reach separation distances as small as a nanome-
ter. Later on, the SFA has been adapted to a solvent environment such as water and
has been used to measure other static interaction forces like electrostatic double-layer
forces [28], adhesion and capillary forces, and even the forces due to the structural form
of liquids near surfaces [29].

Additionally, the SFA also provided a method to measure hydrodynamic forces of
confined liquids such as the friction forces between sheared surfaces [30] (see Chap. 2)
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and the hydrodynamic forces during the drainage of a liquid film when the surfaces
approach [31] to cite a few examples. More recently, a dynamic SFA apparatus [32]
was developed in the group of Elisabeth Charlaix to perform the contactless rheologi-
cal measurements that are discussed in this chapter. In such a setup, a sphere is driven
to oscillate normally to a planar surface. The force required to maintain the oscillatory
motion is measured through the displacement of a cantilever, which allows one to de-
termine the mechanical impedance of the system. Dynamic SFA has been used to mea-
sure the slip length of water over hydrophobic surfaces [33] and bubble mattresses [34],
the slip length of polyelectrolyte solutions [35], as well as the elastohydrodynamic in-
teractions between a sphere and soft polymer layers [36] or glasses [37].

Atomic Force Microscope

The Atomic Force Microscope (AFM) is another scientific instrument developed in 1985
by the Nobel laureates Gerd Binnig & Heinrich Rohrer1 [38]. They were working in a
laboratory of the IBM company and the AFM was commercialized soon after its design
in 1989 and is now widely spread in the research world.

An atomic force microscope is made of a flexible cantilever, with a sharp tip at the
end (see Fig. 1.1b)). The deflection of the cantilever is usually measured by reflecting
a laser beam on the tip and recording the deviation of the laser with a photodiode.
The sample is placed on a xyz piezo stage that allows moving the sample with respect
to the tip. The AFM is used in many contexts and disciplines ranging from biology
to solid-state physics [25]. For instance, it allows: i) to make topography imaging of
surfaces with a nanometric resolution in height and over an area ∼ 10 × 10µm2 (see
Part II), ii) to measure the interactions between a pair of molecules [39], and iii) to
manipulate and stretch a single polymer [40]. Besides, the AFM tip can be used as a
nano-indenter to measure the mechanical response of the sampled surface. The AFM
is usually used in three modes of operation: one static and two dynamic modes. In
the static mode (also called contact mode), the tip is in contact with the sample and the
measurement of the deflection of the cantilever allows to get the surface topography of
the sample. The dynamic modes exploit the fact that the AFM cantilever is a mechanical
resonator, with a certain resonance frequency. In particular, in the tapping mode (also
called amplitude modulation or AM-AFM), the cantilever is driven to oscillate near its
resonance frequency. The interactions of the AFM tip with the sampled surface induce
an additional deflection of the tip that is measured. This method is very similar to the
one used in dynamic SFA, and is discussed in the current manuscript. Lastly, the AFM
can be used in the frequency modulation mode (FM-AFM), where the cantilever is always
excited at its resonance frequency using a feedback loop. In that case, the modification
of the resonance properties of the cantilever allows measuring the interactions with the
sample.

The colloidal-probe technique, developed independently by Ducker [41] and Butt [42]

1They obtained a Nobel price in 1986 for their design of the scanning tunneling microscope, which is
an other scientific instrument to image a surface, and is based on the concept of quantum tunneling.
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in 1991, was largely employed in colloidal science since then. It consists of gluing a
smooth spherical probe on the tip of a cantilever, of typical radius ∼ 1 − 50µm, which
amplifies the magnitude of the interaction between the tip and the surface in order to
make quantitative measurements of surface forces with a higher resolution. The AFM
appears as a complementary device to SFA as it permits to measure intermolecular
forces (e.g. electrostatic or van der Walls) between colloids, or between colloids and
surfaces with the advantage of being more versatile and of smaller size. The typical
force resolution is of the order of 1 nN with the AFM and 1µN in SFA. This technique
has been adapted to measure hydrodynamic interactions, the slip length of water on
hydrophobic surfaces [43], interactions between bubbles [44, 45] or droplets [46, 47, 48].
We also stress that other probe shapes have been employed, such as nano-fibers in or-
der to measure wetting properties [49, 50, 51, 52, 53] and viscoelasticity [54, 55]. Lastly,
recent developments of tuning fork atomic force microscopes have been used to mea-
sure the rheological and tribilogical measurements of gold nanojunctions [56], ionic
liquids [57].

1.1.3 Contactless experimental setup

The experimental setup that is discussed in this section has been conceived by Ab-
delhamid Maali. The experiment results that are presented in the manuscript have
been obtained by Zaicheng Zhang, Muhammad Arshad, Samir Almohamad and Ab-
delhamid Maali.

The experiments are performed using an AFM (Bioscope, Bruker) equipped with
a liquid cell (DTFML-DD-HE). A spherical borosilicate particle (MO-Sci Corporation)
with a Rs = 54± 2 µm radius is glued at the edge of a silicon nitride cantilever (ORC8-
10, Bruker AFM Probes). The stiffness kc = 0.20± 0.01 N/m of the cantilever (with the
sphere attached to it) is determined from the drainage method [58]. The bulk resonance
frequency ω0/(2π) = 1240± 3 Hz and the bulk quality factor Q = 3.4± 0.1 are obtained
from the resonance spectrum at large distance [59]. A multi-axis piezo stage (NanoT se-
ries, Mad City Labs) is used to control the distance between the sphere and the sample,
by imposing a displacement to the substrate at very low velocity. The amplitude A and
phase ϕ of the cantilever’s deflection signal are measured by a lock-in amplifier (Model
7280, Signal Recovery), and are recorded versus the piezo displacement. Additionally,
the DC component of the cantilever’s deflection is also recorded and used to determine
the average gap distance D. We stress that the amplitude of the spherical probe’s oscil-
lation is a few nanometers, and always less than 3.5 nm, which is itself smaller than D,
fixed to be typically in the 10 nm - 20 µm range.

The schematic of the experimental setup is shown in Fig. 1.2a). The cantilever is
excited by the base oscillation R[Abeiωt], where ω and Ab are the angular frequency
and amplitude of the base vibration, respectively, whereR[.] denotes the real part and t
denotes time. The system essentially behaves as a damped oscillator, where the vertical
displacement Z(t) of the center of mass of the sphere with respect to its rest position
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Figure 1.2: a) Simplified schematic of an Atomic Force Microscope with a colloidal
probe in the tapping mode. b) Schematic of the model problem in section 1.1.4.

satisfies:

mcZ̈ + ΓbulkŻ + kcZ = Fd + F , (1.5)

with mc the effective mass (i.e. including the added fluid mass), Γbulk the damping co-
efficient in the bulk, kc the stiffness of the cantilever, Fd the driving force due to the im-
posed oscillation of the cantilever, and F = R[F ∗eiωt] the hydrodynamic force resulting
from the interaction between the oscillating sphere and the air-water interface. The dis-
placement Z(t) of the sphere includes the cantilever deflection R[Aei(ωt+ϕ)] measured
by AFM and the base displacement, and thus reads Z(t) = R[Aei(ωt+ϕ) + Abeiωt] =
R[Z∗eiωt], where A and Z∗ = Aeiϕ + Ab are real and complex amplitudes respec-
tively [59]. We further define the mechanical impedance G∗ = −F ∗/Z∗. Invoking
the complex version of Eq. (1.5), the impedance reads:

G∗ = −kc

[
1−

(
ω

ω0

)2

+ i
ω

ω0Q

]
Aeiϕ −A∞eiϕ∞

Aeiϕ +Ab
, (1.6)

where A∞ and ϕ∞ are respectively the amplitude (A) and phase (ϕ) measured far from
the surface (i.e. where F vanishes), ω0 =

√
kc/mc is the bulk resonance frequency,

and Q = mcω0/Γbulk is the bulk quality factor. Equation (1.6) provides a direct way to
measure G∗ experimentally from the cantilever’s deflection signal and thus assess the
mechanical response of the sample.

1.1.4 Linear elastohydrodynamic response to a vertical oscillation

This section is largely inspired by the work of Samuel Leroy & Elisabeth Charlaix pub-
lished in Ref. [60] with the aim to model the mechanical impedance G∗ in the AFM
colloidal probe experiments.
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Hydrodynamic

We consider the axisymmetric system composed of a rigid sphere located at an aver-
age distance D from a planar soft surface as schematized in Fig. 1.2b). The ensemble
is immersed in an incompressible Newtonian fluid with a dynamical shear viscosity η.
The spherical probe oscillates vertically with nanometric amplitude Z∗ and frequency
ω/(2π), and generates a drainage flow. In the experimental setup, the sphere-plan dis-
tance is smaller than the sphere radius, so that we employ the lubrication approxima-
tion. The Reynolds number is very small as the oscillation amplitude is nanometric and
the viscous penetration depth δ =

√
η/(ρω) is supposed to be larger than the sphere-

plan distance, i.e. δ � D, so that the flow is steady2 and the liquid-gap thickness profile,
denoted h(r, t), obeys the Reynolds equation [61]:

∂h(r, t)

∂t
=

1

12ηr

∂

∂r

[
rh3(r, t)

∂p(r, t)

∂r

]
, (1.7)

where r is the radial coordinate, p(r, t) is the excess hydrodynamic pressure field with
respect to the rest state. The no-slip boundary condition is assumed at both the sphere
and soft surfaces. Here, we are interested in hydrodynamic interactions, such that we
ignore the static equilibrium forces such as van der Walls or electrostatic double-layer
forces. In the regime of small sphere-plan distance with respect to the sphere radius, we
use the parabolic approximation of spherical contact, such that the liquid-gap thickness
reads:

h(r, t) = D + Z∗ cos(ωt) + r2/(2R) + u(r, t), (1.8)

where u(r, t) is the surface normal deflection (see Fig. 1.2b)). The oscillation amplitude
is supposed to be much smaller than the sphere-plan distance as well as the surface
deflection, so that the non-linear terms in Z∗ of Eq. (1.7) are neglected and we focus on
the linear response. The excess pressure and the surface deformation are supposed to
be harmonic functions of time and reads p(r, t) = R[p∗(r)eiωt] and u(r, t) = R[u∗(r)eiωt].
Introducing these expressions in Eq. (1.7), we find:

12iηωr(Z∗ + u∗(r)) =
d

dr

[
r

(
D +

r2

2R

)3 dp∗(r)

dr

]
, (1.9)

Surface mechanical response

The main goal of the elastohydrodynamic model is to quantify the influence of the sur-
face mechanical response u(r, t) on the mechanical impedance of the system. Because
of the lubrication approximation, the viscous shear stresses in the liquid film are neg-
ligible with respect to the normal stresses (ratio of order

√
D/R), the latter being ap-

proximated by σzz ≈ −p(r, t), where z denotes the vertical axis. Therefore, the surface
deformation can be found via the mechanical response of the sample to an axisymmet-
ric pressure p(r, t) acting on its surface. Leroy & Charlaix focused on the mechanical

2This assumption is discussed in details in section 1.4.
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response of an elastic layer of thickness hsub, and of infinite extent in the xy plane. The
substrate is assumed to follow the linear elasticity constitutive law of Eq. (1.2). The
stress tensor and displacement fields are denoted σsub and usub respectively. The in-
ertia of the solid is neglected, assuming that the working frequency is small enough
such that the stress is instantaneously distributed, with no acoustic wave. The sub-
strate is at mechanical equilibrium such that the stress tensor σsub follows the Navier
stress condition:

∇ · σsub = 0. (1.10)

Furthermore, the substrate is assumed to be rigidly attached at the bottom surface z =
−hsub leading to no displacement, i.e. usub(z = −hsub) = 0. The stress continuity at the
liquid-solid surface leads to the boundary conditions:

σsub,zz = −p(r, t), σsub,rz = 0, at z = 0. (1.11)

Within these assumptions, the normal surface deformation u(r, t) = −usub,z(z = 0) has
been computed analytically in Refs. [62, 63], using the Hankel transform framework
and the complex notation, and reads:

û∗(k) =
2

Ẽ

X(khsub)

k
p̂∗(k), (1.12)

where Ẽ = E/(1 − ν2) is the reduced Young’s modulus, X the response function that
reads:

X(khsub) =
ξ
(
1− e−4khsub

)
− 4khsube−2khsub

ξ (1 + e−4khsub) + (ξ2 + 1 + 4(khsub)2) e−2khsub
, ξ = 3− 4ν, (1.13)

and where the Hankel transforms of zeroth order are defined as:

û∗(k) =

∫ ∞

0
u∗(r) J0(kr) rdr, u∗(r) =

∫ ∞

0
û∗(k) J0(kr) kdk, (1.14a)

p̂∗(k) =

∫ ∞

0
p∗(r) J0(kr) rdr, p∗(r) =

∫ ∞

0
p̂∗(k) J0(kr) kdk, (1.14b)

where Jn is the Bessel function of the first kind and of index n. The set of Eqs. (1.9)
and (1.12) cannot be solved analytically but it may be written in the form of a Fredholm
equation of the second kind for the pressure field in Hankel space, for convenience. We
first integrate Eq. (1.9) with respect to r and replace u∗(r) with its Hankel transform:

dp∗(r)

dr
=

6iηωZ∗r

(D + r2

2R)3
+

24i

(D + r2

2R)3

ηω

Ẽ

∫ ∞

0

X(khsub)

k
p̂∗(k)J1(kr) dk, (1.15)

where the identity
∫ r

0 J0(kr′) r′dr′ = J1(kr)r/k has been used. Finally, introducing the
dimensionless variables:

x =
r√

2RD
, q = k

√
2RD, Hsub =

hsub√
2RD

, P ∗ =
ηωZ∗R

D2
p∗,

P̂ ∗ =
2ηωZ∗R2

D
p̂∗, Dc = 8R

(
ηω

Ẽ

)2/3

,

(1.16)
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and performing the first-order Hankel transform of Eq. (1.15), we obtain:

P̂ ∗(q) = −3i

2
qK1(q)− 3i

(
Dc

D

)3/2 ∫ ∞

0
P̂ ∗(q′)X(q′Hsub)M(q, q′) dq′ (1.17a)

M(q, q′) =

∫ ∞

0

J1(qx)J1(q′x)

qq′(1 + x2)3
xdx =

{
q2+q′2

8qq′ K1(q)I1(q′)− 1
4K2(q)I2(q′) if q > q′,

q2+q′2
8qq′ K1(q′)I1(q)− 1

4K2(q′)I2(q) if q < q′,

(1.17b)
where Ij (resp. Kj) is the modified Bessel functions of the first (resp. second) kind
and of index j. The typical elastohydrodynamic distance is denoted Dc. Lastly, the
mechanical impedance can be evaluated by computing the hydrodynamic force applied
on the sphere:

G∗ = −F
∗

Z∗
= − 1

Z∗

∫ ∞

0
p∗(r) 2πrdr = −4πηωR2

D
P̂ ∗(k = 0), (1.18)

which can be evaluated numerically by inverting Eq. (1.17). Interestingly, the mechani-
cal response function X of an elastic layer, which is plotted in Fig. 1.3a), exhibits three
asymptotic regimes:

• For large substrate thickness, i.e. hsub �
√

2RD, the response function does not
depend on the substrate thickness and is constant: X(khsub) = 1. In real space,
this leads to the relation:

u∗(r) =
(1− ν2)

E

∫

R2

p∗(r′)

|r′ − r| dr
′ =

4(1− ν2)

E

∫ ∞

0

r′

r + r′
K
(

4rr′

(r + r′)2

)
p∗(r′) dr′,

(1.19)
where r is the 2d position vector on the xy plane, with r = |r|, and K is the
complete elliptic integral of the second kind [64]. The second equality may be ob-
tained by integrating over the azimuthal angle [65]. Therefore, the EHD equation
Eq. (1.17) simplifies into:

P̂ ∗(q) = −3i

2
qK1(q)− 3i

(
Dc

D

)3/2 ∫ ∞

0
P̂ ∗(q′)M(q, q′) dq′. (1.20)

• For thin compressible layers, of Poisson ratio ν < 1/2 and with hsub �
√

2RD,
the response function isX(khsub) = khsub

1−2ν
2(1−ν)2

, leading to the so-called Winkler
foundation [66]:

u∗(r) =
hsub(1− 2ν)(1 + ν)

E(1− ν)
p∗(r), (1.21)

which is of the same form as the Hooke’s law for a spring. Therefore, the EHD
equation Eq. (1.17) simplifies into:

P̂ ∗(q) = −3i

2
qK1(q)− 3i

(
Dn

D

)2 ∫ ∞

0
q′P̂ ∗(q′)M(q, q′) dq′,

Dn =

(
8ηωRhsub(1− 2ν)(1 + ν)

E(1− ν)

)1/2

,

(1.22)
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where Dn is the relevant elastohydrodynamic distance scale in this limit.

• For thin incompressible layers, of Poisson ratio ν = 1/2 and with hsub �
√

2RD,
the response function is X(khsub) = 2/3(khsub)3 which leads to:

u∗(r) = −4h3
sub

3E
∇2

2dp
∗(r), (1.23)

where ∇2
2d is the Laplacian operator on the xy plane. Here, the EHD equation

Eq. (1.17) simplifies into:

P̂ ∗(q) = −3i

2
qK1(q)− 3i

(
Ds

D

)3 ∫ ∞

0
q′3P̂ ∗(q′)M(q, q′) dq′, Ds = hsub

(
4ηω

E

)1/3

(1.24)
where Ds is the relevant elastohydrodynamic distance scale in this regime.

Experimental results

In Figs. 1.3b)-d), we show experimental results, published in Ref. [36], of the EHD me-
chanical impedance G∗ = G′+ iG′′, measured using a dynamic surface force apparatus
versus the sphere-plan distance. It illustrates the three regimes of EHD discussed pre-
viously. The sampled surfaces are: a layer of polydimethylsiloxane (PDMS) elastomer
of thickness hsub = 1 mm (resp. 4.4µm) in Fig. 1.3b) (resp. Fig. 1.3c)) and a textured
hydrophobic surface covered with microbubbles in Fig. 1.3d). In each panel is plotted
the corresponding asymptotic EHD model: semi-infinite (see Eq. (1.20)) in b), thin-
incompressible (see Eq. (1.24)) in c) and thin-compressible (see Eq. (1.22)) in d). All
EHD models are in good agreement with the experimental data and display the same
qualitative features. At large distance, the viscous contribution G′′ dominates and fol-
lows a D−1 scaling law. In this regime, the flow is not large enough for the pressure
to significantly deform the substrate and can be approximated by the flow near a rigid
surface. Assuming no substrate deformation, the pressure fields can be integrated from
Eq. (1.15), and reads:

p∗(r) ' − 3iηZ∗ωR

(D + r2

2R)2
. (1.25)

Integrating the latter expression gives an imaginary (i.e. damping) part of the mechani-
cal impedanceG′′ ' 6πηωR2/D, in good agreement with the experimental data. Never-
theless, the deformation of the substrate leads to a non-zero real (i.e. elastic) component
G′ of the mechanical impedance, that follows a D−n scaling law, where the exponent n
differs in the three regimes of EHD: −5/2, −3, and −4 in the semi-infinite, Winkler and
thin-incompressible cases respectively. Interestingly, this difference among the various
models allows us to distinguish them and identify the properties of the sampled sur-
face. The existence of this power-law regime can be proven, including the exact prefac-
tor, by performing a perturbative expansion of the pressure field: p∗ = p∗0 + (Di/D)αp∗1,
where i and α should be adapted to the according regime, and p∗0 is the rigid solution
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Figure 1.3: a) Response function of an elastic layer of thickness hsub for differ-
ent Poisson ratios ν (see Eqs. (1.12) and (1.13)) versus dimensionless Hankel variable
khsub in log-log scale. Slope triangles indicate power-law behaviors. b-d) Mechanical
impedanceG∗ (real part in blue and imaginary part in red) versus sphere-plan distance
D measured in dynamic surface force apparatus experiments with a PDMS slab as a
sample in b)-c) and a textured hydrophobic surface covered with microbubbles in d).
In b) the PDMS thickness is 1 mm and larger than the hydrodynamic radius

√
2RD

in most of the distance range of the experiment. The model which accounts for finite
thickness is displayed in black solid lines and the semi-infinite model (see Eq. (1.20)) is
shown in dashed lines. In c) the PDMS thickness is hsub = 4.4µm, and smaller than the
hydrodynamic radius on most of the distance range of the experiment. The distance
in the x-axis is rescaled by an elastohydrodynamic distance Ds = hsub(4ηω/E) and the
solid lines display the model with the thin-incompressible response of Eq. (1.22). d)
The surface mechanical response is well described by a Winkler model Eq. (1.22), see
shown in solid lines. The panels b)-d) are adapted from Ref. [36].

of Eq. (1.25) (see [60]). At small distance, both G′ and G′′ saturate to constant values
that are independent of the sphere-plan distance. As the distance decreases, the magni-
tude of the pressure field increases (see Eq. (1.25)), and so does the surface deformation.
However, the surface deformation cannot exceed the oscillation amplitude of the spher-
ical probe, which leads to the saturation of G∗ at small distance. In this near-contact
regime, the sample deformation accommodates the sphere motion, and the liquid is no
longer expelled from the gap for radii smaller than r <

√
2RDc, and viscous flows only

occur outside this region. Here again, the precise value of the saturation mechanical
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impedance at small distance directly depends on the substrate response, and the ratio
between its real and imaginary part is different for each case of the EHD model, al-
lowing one to distinguish between the models. There is no analytic prediction for the
saturation mechanical impedance but it can be evaluated numerically.

The rest of the chapter is organized as follows: In section 1.2, we revisit the linear
EHD model presented here for substrates with a linear viscoelastic response in subsec-
tion 1.2.1, to poroelastic response in subsection 1.2.3 and an elastocapillary response in
subsection 1.2.4. Experimental results with a very soft PDMS surface are shown and
compared to the viscoelastic model. Then in section 1.3, we derive an EHD model for
the response of a bubble deposited on a surface and the model is compared to experi-
mental data. Lastly, the influence of fluid inertia via the unsteady-term of the Navier-
Stokes equation is discussed in section 1.4.

1.2 Characterization of the complex properties of the solid

As mentioned in the introduction, soft solids often exhibit a complex mechanical re-
sponse beyond linear elasticity. Here, we revisit the EHD models for several classical
types of soft mechanical response.

1.2.1 Viscoelastic substrate

The mechanical response of viscoelastic solids is characterized with a response function
(see Eq. (1.3) in the introduction). In particular, the mechanical response of a viscoelastic
material to an applied pressure field is characterized by both elastic and viscous parts.
Contactless experiments, using long-needle probe and AFM in frequency modulation
mode, have been introduced in the group of Penger Tong to measure the viscoelas-
tic properties of thin polymer films [54] and allow one to perform a mapping of the
viscoelastic properties of living cells [55]. Here, we assume that the substrate is an in-
compressible (Poisson ratio ν = 1/2) linear viscoelastic material, for which the stress
reads:

σi,j(x, t) =

∫ t

−∞
Ψ(t− t′)ε̇i,j(x, t′) dt′ − p(x, t)δi,j , (1.26)

where Ψ(t) is the shear relaxation function, δi,j the Kronecker symbol and p is the pres-
sure field, i.e. the isotropic part of the stress tensor. Using the complex notation intro-
duced in the previous section, we get:

σ∗i,j(x) = µ∗(ω)ε∗i,j(x)− p∗(x)δi,j , (1.27)

where µ∗(ω) is the complex shear modulus, that is related to the shear relaxation func-
tion via:

µ∗(ω) = iω

∫ ∞

0
Ψ(t)e−iωt dt = µ′(ω) + iµ′′(ω). (1.28)

For an incompressible material, the complex shear modulus is related to the complex
Young’s modulus via E∗ = 3µ∗ = E′ + iE′′ that is used in what follows. The real
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Figure 1.4: Viscoelasticity. Dimensionless mechanical impedance versus the dimen-
sionless sphere-plan distance for a semi-infinite viscoelastic substrate. The real (resp.
imaginary) part of the mechanical impedance is plotted in blue (resp. red). The ratio
between the imaginary and real parts of the complex modulus is 0 (elastic substrate)
in panel a) and 0.5 (resp. 1) in b) (resp. c)). In panel d) the dimensionless mechanical
impedance for various loss moduli are superimposed.

and imaginary parts are often called storage and loss moduli respectively. With the
complex notation, the constitutive law of a viscoelastic substrate is equivalent to the
one of a linear homogeneous incompressible substrate. Therefore, we can directly use
the results from section 1.1.4 and write the surface deformation of the substrate by
replacing the Young’s modulus by its complex version. This leads to:

û∗(k) =
2

Ẽ∗
X(khsub)

k
p̂∗(k). (1.29)

where Ẽ∗ = 4
3E
∗ is the complex reduced modulus for an incompressible material. Fol-

lowing section 1.1.4, the governing equation for the pressure field in Hankel space is:

P̂ ∗(q) = −3i

2
qK1(q)− 3i

(
Dc

D

)3/2 1− iB
1 +B2

∫ ∞

0
P̂ ∗(q′)X(q′Hsub)M(q, q′) dq′, (1.30)
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where B = E′′/E′ is the dimensionless ratio of imaginary to real parts of the complex

modulus. The critical distance is written here as Dc = 8R

(
3ηω/(4E′)

)2/3

and involves

the storage modulus only. As such, the viscoelasticity is entirely parametrized by the
term in B. At the end, the mechanical impedance takes the form:

G∗ (D) =
6πηR2ω

Dc
G∗
(
D

Dc
, B

)
, G∗

(
D

Dc
, B

)
= −4Dc

6D
P̂ ∗ (q = 0) , (1.31)

where G∗ is the dimensionless mechanical impedance.
In Fig. 1.4 is plotted the dimensionless mechanical impedance versus the dimen-

sionless distance. The substrate thickness is assumed to be large with respect to the
hydrodynamic radius

√
2RD such that we use the semi-infinite limit X(q′Hsub) = 1.

In Fig. 1.4a)-c) is plotted the mechanical impedance as a function of the distance for
three ratios of loss to storage moduli, respectively E′′/E′ = 0, 0.5 and 1. We observe
that the real part of the mechanical impedance decreases with increasing B while the
imaginary part increases. The substrate gets effectively stiffer and the dissipation in-
creases. In Fig. 1.4d), the mechanical impedances are superimposed on the same plot
for various E′′/E′. The asymptotic power-law decay at large distance is not affected by
viscoelasticity. The real (resp. imaginary) part decays with a power law D−5/2 (resp.
D−1). Interestingly, the prefactor of the power-law decay of the real part decreases with
B as the substrate becomes effectively stiffer and reads:

G∗ ' 81π3

32
√

2

η2ω2R7/2

D5/2

E′

E′2 + E′′2
+ i

6πηωR2

D
, (1.32)

forDc/D � 1, which is obtained following [60]. Furthermore, we observe that the limit
of the mechanical impedance at small distance depends largely on the ratio E′′/E′ and
may allow for a precise determination of the viscoelastic properties when comparing
the model with experimental data. In particular, for the numerical integration, we find:





G′ ≈ 6πηR2ω
Dc

(
2.01 − 0.77 E′′

E′

)

G′′ ≈ 6πηR2ω
Dc

(
1.16 + 1.34E

′′
E′

) (1.33)

for Dc/D � 1 and E′′/E′ < 1.

1.2.2 Viscoelastic measurements of PDMS layer

Setup

In the experiments, the AFM setup described in section 1.1.3 is used. The studied sam-
ples are PDMS substrates prepared as follows. First, uncrosslinked PDMS (Sylgard
184, Dow Corning) and a curing agent are mixed with a weight ratio of 71:1. Follow-
ing a degassing process in vacuum, a droplet of the mixture is spin-coated on a cover
slide with a size of 24 × 24 mm2 for a minute, in order to get a sample of thickness
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Figure 1.5: Normalized real and imaginary parts of the mechanical impedance as func-
tions of normalized distance for two oscillation frequencies, respectively 500 and 50 Hz
in a) and b). The solid lines are fitting curves using Eq. (1.31). In a), the extracted free
parameters are the storage and loss moduli, E′ = 3.2± 0.5 kPa and E′′ = 2.0± 0.2 kPa
respectively. b) Results for an oscillation frequency of 50 Hz. The extracted moduli are
E′ = 1.6± 0.4 kPa and E′′ = 0.69± 0.10 kPa.

hsub = 26 ± 3 µm. The sample is then annealed in an oven at 50◦C and for 24h, to
promote an efficient cross-linking. Using the method described in section 1.1.3, the
mechanical impedance G∗ of the system is measured through Eq. (1.6). The oscillation
frequency of the cantilever is varied in the experiments, ranging from 25 to 1500 Hz,
which allows to measure the frequency-dependent rheology of PDMS.

Contactless measurements

Fig. 1.5 shows the dimensionless mechanical impedance G∗Dc/(6πηR
2ω) as a function

of the dimensionless distance D/Dc for two frequencies. In Fig. 1.5a, the oscillation fre-
quency is set to ω/(2π) = 500 Hz. The solid black lines correspond to Eq. (1.31), where
the values of the storage modulus E′ = 3.2± 0.3 kPa and loss modulus E′′ = 2.1± 0.2
kPa are the fit parameters. Fig. 1.5b shows the results for the frequency ω/(2π) = 50
Hz. Similarly, we obtain the values of the storage modulus E′ = 1.6± 0.2 kPa and loss
modulus E′′ = 0.6± 0.1 kPa. The semi-infinite model is found to be in good agreement
with the experimental data over the full range of distance. In particular, the differ-
ent limiting behaviors, found in section 1.2.1 at large and small distance (respectively
Eqs. (1.32) and (1.33)), are recovered.

The extracted storage modulus E′ and loss modulus E′′ for various oscillation fre-
quencies are shown in Fig. 1.6. Both moduli increase as the frequency increases. In our
experiment, the PDMS sample is a soft elastomer, and the frequency dependence of its
complex Young’s modulus can be modeled by the Chasset–Thirion law [67, 68, 69]:

E∗ (ω) = E′ (ω) + iE′′ (ω) = E0 (1 + (jωτ)n) (1.34)
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Figure 1.6: Storage modulus E′(red) and loss modulus E′′ (blue) obtained from the fit
in Fig. 1.5 as functions of the oscillation frequency. The solid lines are fits from Eq.(1.34)
from which we get the free parameters: E0 = 1.0 ± 0.1 kPa, n = 0.50 ± 0.02 and
τ = 3.0± 0.2 ms.

where E0 indicates the static (ω = 0) Young’s modulus, τ is the relaxation time and
n is an exponent, which all depend on the sample preparation (i.e. curing procedure,
stoichiometric ratio between the PDMS and curing agent). The empirical exponent n
typically takes values between 1/2 and 2/3 [70]. In Fig. 1.6, the solid lines are the fitting
curves from Eq. (1.34) for both the storage and loss moduli, from which we obtain the
free parameters: E0 = 1.0± 0.1 kPa, n = 0.50± 0.02 and τ = 3± 0.2 ms. The obtained
relaxation time is close to the value obtained from the Kelvin-Voigt model: ηs/E0 ≈ 2−3
ms, where ηs ≈ 2− 3 Pa.s is the dynamic viscosity of the PDMS.

Indentation experiments

In order to check the validity of the method above for robust rheological characteri-
zation of soft materials, we have also performed an indentation experiment with the
AFM. The measured DC component of the cantilever’s deflection versus the piezo dis-
placement allows us to construct the force-indentation curve. The static force F is ob-
tained by multiplying the DC component of the deflection by the spring constant kc

of the cantilever. The indentation depth δ is obtained by subtracting the cantilever’s
deflection from the piezo displacement. The contact origin (δ = 0) is defined as the
position where the deflection increases sharply. To minimize the contributions of adhe-
sion and elastocapillary effects [71], which are important at small indentations for such
soft samples, we performed the analysis only: i) in advancing mode (i.e. increasing
indentation), as it is standard to avoid adhesive contributions in JKR (Johnson Kendall
Roberts) tests [71]; and ii) in the regime of large indentation depth, in order to max-
imize the ratio between the contact radius

√
Rδ and the elastocapillary length γ/E0,

where γ ≈ 3 mN/m is the substrate-liquid surface tension. However, since for large
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Figure 1.7: Indentation experiments. Measured static force F versus indentation depth
δ. The solid line shows the best fit to Eq.(1.35) for the large-δ range, from which we
obtain the static Young’s modulus E0 = 0.9± 0.1 kPa.

indentation depths the value of the contact radius becomes comparable to the thick-
ness hsub of the soft substrate, the traditional Hertz model for elastic indentation must
incorporate finite-size corrections [72]:

F =
16

9
E0R

1/2δ3/2

(
1 + 0.884χ+ 0.781χ2 + 0.386χ3 + 0.0046χ4

)
(1.35)

where χ =
√
Rδ/hsub. Fig. 1.7 shows the measured force F as a function of the inden-

tation depth δ. The solid line represents the best fit from Eq.(1.35), for a range of in-
dentation depths between 0.5 and 2 microns. From the fit, we obtain the static Young’s
modulus E0 = 0.9 ± 0.1 kPa as a single free parameter. This value is very close to the
value previously obtained from the contactless method, thus showing the robustness
of the latter.

We stress that the model used in Fig. 1.5 assumes an infinite thickness of the PDMS
sample, which is not strictly valid here. As a matter of fact, using the response func-
tion Eq. (1.13) of finite-size layer, we obtain slightly different fitting elastic moduli (not
shown here). Additional experiments, varying systematically the sample thickness,
would be necessary to validate further the results presented here.

1.2.3 Poroelasticity

The work presented in this subsection has been done in close collaboration with Car-
oline Kopecz-Muller during her master internship that I co-supervised with Joshua
McGraw and Thomas Salez, and followed during her PhD.
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Context

Soft gels are widely spread in biology (tissues, bones, cartilages, ...). Synthetic gels
(e.g. hydrogels) have a large range of applications in biology (cell culture, ...), medicine
(tissue engineering, contact lenses, ...), lab-on-a-chip design (e.g. stimuli-responsive
hydrogels to control microfluidic-chanel widths in situ). They are made of an elastic
network of cross-linked polymers swollen by a solvent. Interestingly, the mechanical
response of gels implies several mechanisms at the microscopic level. First, the polymer
network has a certain rigidity, leading to elastic properties. In synthetic hydrogels,
the cross-link density may be varied which yields a large range of Young’s moduli
from 10 Pa to 1 MPa. In addition, the polymer network may exhibit some viscoelastic
properties, as discussed in the previous section. Furthermore, the network is a porous
medium and the solvent may flow inside, leading to an extra source of dissipation.
The interplay between porous flow and matrix elasticity is usually called poroelasticity.
One challenge is to model such complex mechanical responses [73] and to separate
the different mechanisms of dissipation in hydrogels to understand their mechanical
behavior [74, 75]. Several methods using indentation tests and contact mechanics have
been introduced to measure the poroelasticity of gels [76, 77, 78, 79]. The question we
address in this section is whether contactless EHD experiments may help to measure
the poroelasticity of gels.

Poroelastic models, that combine Darcy law for porous media and Hooke law of
elasticity, have first been introduced by Maurice Biot in the 1940s in order to describe
soil consolidation [80], and wave propagation in porous media [81]. Such models are
also suitable to describe the mechanics of tissues, bones and soft gels.

Model

Here, we follow the paper from Zhao et al. [82] to compute the deformation of a poroe-
lastic layer due to an applied oscillating pressure fields. In contactless methods, the
magnitude of the stress applied to the substrate is low as it results from a nanometric
oscillation of the probe. Therefore we focus on the linear reponse. The poroelastic sub-
strate is characterized by a displacement field uporo of the polymer network, a solvent
concentration c and a chemical potential µc. The reference state is set with a given con-
centration c0 of solvent with a chemical potential µc,0 under no displacement. Out of
equilibrium, the solvent concentration follows the conservation law:

∂tc+ ∇ · j = 0, (1.36)

where j denotes the flux of solvent, assumed to follow the Darcy law:

j = −
(

kp

ηsΩ2

)
∇µc, (1.37)

where kp denotes the permeability, ηs the solvent viscosity and Ω the molar volume of
the solvent. The stress tensor σporo is related to the poroelastic strain tensor εporo via
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the poroelastic law:

σporo =
E

1 + ν

(
εporo +

ν

1− 2ν
Tr[εporo]I

)
− µc − µc,0

Ω
I, (1.38)

where Tr[.] denotes the trace of the tensor. The solvent and polymer network are as-
sumed to be incompressible such that the local volume variation within the network is
equal to the local variation of the solvent concentration, which gives:

Tr[εporo] = (c− c0)Ω. (1.39)

The mechanical equilibrium within the poroelastic substrate gives the Navier condition
∇ · σporo = 0. After combining all these equations, the solvent concentration follows a
diffusive-like law:

∂tc = D∗∇2c = 0, D∗ =
(1− ν)Ekp

(1 + ν)(1− 2ν)ηs
(1.40)

where D∗ is an effective diffusion constant. Assuming that the initial solvent concen-
tration is homogeneous, the displacement fields follows:

EΩ

2(1 + ν)

(
∇2uporo +

Ω

1− 2ν
∇c

)
= ∇µc. (1.41)

We assume that the poroelastic surface at z = 0 is subjected to an applied axisymmetric
and oscillating normal stress, σ∗zz(r, z = 0, t) = −p∗(r), where the complex notation is
used. For the sake on simplicity, we take a semi-infinite substrate and assume that it is
impermeable, J · n = 0 at z = 0, where n denotes the normal vector to the poroelastic
surface, which means ∂zµc = 0 at z = 0. Following the derivation in Ref. [82], the
deformation of the poroelastic surface reads:

û∗(k) =
1 + ν

Ek

[
1 +

1− 2ν

1− ν
k2D∗
iω

(
1√

1 + iω
k2D∗

− 1

)]−1

p̂∗(k). (1.42)

Using the dimensionless scales introduced before, we find:

û∗(q)

Z∗
=

1

16(1− ν)

(
Dc

D

)3/2 1

q

[
1+

1− 2ν

1− ν
q2ωc

iω

D

Dc

(
1√

1 + iω
q2ωc

D
Dc

−1

)]−1

P̂ ∗(q). (1.43)

where ωc = D∗/(2RDc) is a critical pulsation. Introducing this relation in the linear-
response theory in section 1.1.4, we can compute the mechanical impedance. In Fig. 1.8,
we display the poroelastic mechanical impedance, varying the permeability of the sub-
strate through the ratio ω/ωc between the pulsation and the critical pulsation. Here,
the Poisson ratio is fixed to ν = 0.3. All the curves are almost superimposed while the
pulsation ratio is varied over 4 orders of magnitude. In the right panel, we display a
zoom at large distance of the real part of the mechanical impedance. In addition, the
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Figure 1.8: Poroelasticity. Dimensionless mechanical impedance versus dimension-
less sphere-plan distance for a semi-infinite poroelastic substrate. The real (resp. imag-
inary) part of the mechanical impedance is plotted in blue (resp. red). Here, the sub-
strate is assumed to be impermeable and of Poisson ratio ν = 0.3. The inset shows
a zoom. The asymptotic law for an incompressible (resp. compressible) semi-infinite
elastic substrate of shear modulus E/(2(1 + ν)) is displayed in dashed black (resp.
dashed green).

large-distance asymptotic scaling law for G′, in the case of a semi-infinite incompress-
ible elastic substrate of shear modulus E/(2(1 + ν)), is found to be in good agreement
with the mechanical response of poroelastic substrates at large frequency. Similarly, the
large-distance asymptotic scaling law G′ for an elastic material (Eq. (1.19)) is plotted
in green dashed lines and is in good agreement with the low-frequency response of
poroelastic substrates. Indeed, taking the limit of the poroelastic response at small and
large frequencies, leads to:

u∗(k) =





1+ν
Ek p̂

∗(k), if ω →∞,

1+ν
Ek

1
1− 1

2
1−2ν
1−ν

p̂∗(k) = 2(1−ν2)
Ek p̂∗(k), if ω → 0.

(1.44)

We recover that the substrate deformation takes the same form as the one for semi-
infinite elastic substrates with a rescaled elastic modulus in both limits [83]. At large
frequency, the solvent has no time to migrate and the substrate deforms as an incom-
pressible solid. However, at long times, the stress has relaxed and the substrate deforms
as a compressible solid with no influence of the solvent.

Lastly, we note that we have done a similar study, assuming a permeable poroelastic
substrate, meaning the equality of the chemical potentials in the liquid and poroelastic
media, at the surface (i.e. µc(z = 0) = µc,0). This case is relevant if the gel is submerged
in its own solvent. Then, the mechanical impedance shows the exact same features (not
shown) as above, meaning that the affinity of the outer liquid with the gels does not
change drastically the mechanical response.
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Figure 1.9: Capillarity. Dimensionless mechanical impedance versus dimensionless
sphere-plan distance for a semi-infinite elastic substrate with a surface tension γ. The
real (resp. imaginary) part of the mechanical impedance is plotted in blue (resp. red).

1.2.4 Capillarity of soft solids

As briefly mentioned in the introduction, capillarity is not a concept restricted to fluid-
fluid interfaces, as solid-fluid interfaces also have an intrinsic interfacial energy. Cap-
illarity generates surface stresses that lead to surface deformations for soft solids. The
competition between elasticity and capillarity, called elastocapilarity, has been largely
investigated in the last decade [13, 84, 85, 86]. For example, solid capillarity tends to
smoothen out interfaces with high curvatures, as observed in the topography of soft
gels fabricated in molds with rectangular patterns [14]. It may also trigger mechan-
ical instabilities. One example is soft cylindrical gels that deform and adopt a com-
plex undulated shape to reduce their surface [15, 87]. This process is very similar to
the Rayleigh-Plateau instability. Additionally, a lot of interest has been devoted to the
wetting properties of droplets on soft solids. Significant departure from the classical
Young-Dupré law has been observed for small droplets, because surface stresses de-
form the solid and create a wetting ridge [88, 89].

Interestingly, a fundamental difference between solid and fluid capillarities is that
the surface stress of soft solids depends on the strain via the Shuttleworth equation:
Υ = γ + dγ

dε , where Υ is the surface stress [90]. Recently, several groups have tried to
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measure this dependence in stretched elastomers and gels, through the wetting prop-
erties [91, 92, 93]. The absolute determination of the surface tension of stretched gels is
challenging and the goal of this subsection is to investigate whether contactless method
may help to achieve this task. Therefore, we compute the mechanical impedance of an
EHD contact involving an elastic substrate including capillarity. To account for the cap-
illarity of soft solids, we need to modify the stress boundary condition at the substrate
surface and include the surface tension, as:

σ · n = f + γsκn, (1.45)

where f is the force distribution that is applied on the substrate, equal to the hydrody-
namic stress, γs denotes the solid-liquid surface tension and κ the interface curvature.
We further assume a linear deformation of the surface, small slopes, i.e. |∇2du| � 1,
and that the dominant hydrodynamic stress is the pressure term (see section 1.1.4).
Then, the stress boundary condition becomes

σzz = −p+ γ∇2
2du. (1.46)

Here again, for the sake of simplicity, we restrict ourselves to the case of a semi-infinite
material. The substrate deformation can be computed following section 1.1.4 and reads:

û∗ =
2

Ẽk + 2γsk2
p̂∗. (1.47)

Injecting this relation in the Eq. (1.9), we find that the pressure fields in Hankel space
follows, once again, a Fredholm equation of the second kind:

P̂ ∗(q) = −3i

2
qK1(q)− 3i

(
Dc

D

)3/2 1

1 + q
√
Dcap/D

∫ ∞

0
P̂ ∗(q′)M(q, q′) dq′,

Dcap =
2γ2

Ẽ2R
,

(1.48)

where Dcap is a distance scale emerging from the model. The mechanical impedance
can then be computed numerically through the inversion of Eq. (1.48). In Fig. 1.4, we
plot the dimensionless mechanical impedance versus the distance ratio D/Dc, varying
the surface tension to Young’s modulus ratio by changing Dcap/Dc. In Fig. 1.4 d), we
superimpose the impedances for severalDcap/Dc. At large distance, the real part of the
mechanical impedance decreases with increasing surface tension, as if the surface gets
effectively stiffer. Interestingly, for Dcap/Dc � 1, G′ follows a D−2 scaling law, which
differs from the elastic one, i.e. D−5/2. The latter is preserved at vanishing surface
tension. At small distance, the mechanical impedance increases, both for its real and
imaginary parts. However, the ratio between real to imaginary parts increases with γ.
Interestingly, the cross-over distance between the two regimes seems to decrease with
increasing capillarity.
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1.3 Viscocapillary response of a model liquid-air interface

The results presented in this section come from a collaborative work with Zaicheng
Zhang and Abdelhamid Maali in the LOMA laboratory at the University of Bordeaux.
All the experiments have been performed by Zaicheng Zhang.

1.3.1 Introduction

Surface active molecules – i.e. surfactants – are widely used to stabilize capillary in-
terfaces on purpose, e.g. in emulsions or foams, but are also inevitable due to pollu-
tion. These contaminants, which are usually adsorbed at the interface between two
immiscible fluids, lower the surface tension and are responsible for specific interfa-
cial rheological properties of the interface [94]. To understand the dynamics of soft
materials, the interaction between objects such as droplets and bubbles, or to quan-
tify the amount of interfacial contamination, capillary interfacial rheology is essential.
The interfacial rheology is usually measured with the Langmuir trough [95, 96, 97],
oscillating-disk devices [98, 99], particle tracking techniques [100, 101, 102, 103], os-
cillating pendant drop [104, 105, 106, 107] or through the measurement of capillary
waves [108, 109, 110, 111, 112].

The air-water interface is suitable to test EHD-like couplings, since the interface de-
formation has an elastic-like capillary restoring response. The interface deformation is
described in the framework of the Young-Laplace equation (see Eq. (1.4)) that couples
the hydrodynamic pressure and the capillary deformation of the interface. Importantly,
the EHD coupling at the air-water interface has a long-range lateral extent due to the
structure of the Young-Laplace equation. For large enough systems, the millimetric
capillary length

√
γ/(ρg) characterizes the lateral extent of the capillary deformation.

However, for systems with lateral extents narrower than the capillary length, the defor-
mation depends strongly on the system size [52]. Therefore, in the case of air bubbles
in water, we expect the bubble stiffness defined as the ratio between the hydrodynamic
force and bubble deformation to depend not only on the surface tension but also on the
bubble size.

1.3.2 Experimental setup

In the experiments, the AFM setup described in section 1.1.3 is used. The soft surface
is a microbubble as schematized in Fig 1.10. Air microbubbles are deposited onto spin-
coated polystyrene layers, within SDS solutions in water. The SDS concentrations C are
in the 0.2− 40 mM range. As measured with an optical microscope, the bubble radii Rb
are in the 0.2 − 0.6 mm range, and the contact angles θ (see definition in Fig. 1.10) are
in the 40− 90◦ range, with the exact value depending on C.
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Figure 1.10: A glass sphere attached to an AFM cantilever is driven to oscillate vertically
near an air bubble deposited on a polystyrene surface in a SDS solution at a frequency
of ω/(2π). θ is the contact angle of the SDS solution on polystyrene in air. The vertical
displacement of the sphere Z(t) = Aei(ωt+ϕ) +Abeiωt includes the cantilever deflection
Aei(ωt+ϕ) and the base displacement Abeiωt. The motion results in an axisymmetric
liquid-gap thickness profile h(r, t) depending on the radial distance r and time t, that
includes an axisymmetric vertical profile hb of the deformed bubble surface.

1.3.3 Model

We consider the axisymmetric system composed of the rigid sphere located at an av-
erage distance D from the apex of the undeformed air bubble (see Fig. 1.10). In this
subsection, the sphere radius is denoted with a subscript “s” to distinguish it from the
bubble curvature radius, defined with a subscript “b”. Here, the underformed surface
is not flat, such that we define the effective curvature radius Reff of the lubricated con-
tact from: R−1

eff = R−1
s + R−1

b . The experiments are done at low enough frequencies
so that we can assume a no-slip boundary condition at the air-water interface [113].
Therefore, the liquid-gap thickness, denoted h(r, t), obeys the Reynolds equation (1.7)
as in section 1.1.4. The liquid-gap thickness is modified with respect to :

h(r, t) = hs(r, t)− hb(r, t) ' D + Z(t) + r2/(2Rs)− hb(r, t) (1.49)

where hs and hb are the sphere and bubble surface profile respectively (see Fig. 1.10).
The bubble surface profile follows the Young-Laplace equation (see Eq. (1.4)), which is
expressed in cylindrical coordinates as:

γκ =
γ

r

∂

∂r


r

∂hb
∂r√

1 +
(
∂hb
∂r

)2


 = ∆P (t) + p(r, t) , (1.50)

where ∆P is the pressure drop across the interface. The Young-Laplace equation can be
obtained by minimizing the free energy of the system [47], and the pressure difference
∆P appears as the Lagrange multiplier associated with the volume conservation of
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the air bubble in this framework. At equilibrium, the pressure difference is −2γ/Rb
the bubble’s surface profile follows a spherical cap. In the following, we write the
pressure difference as ∆P (t) = −2γ/R̄(t), where R̄(t) is the mean curvature radius in
the presence of an excess hydrodynamic pressure field. In addition, we consider acute
contact angles θ, as is the case for an air bubble deposited onto a PS substrate within
water. Therefore, the bubble’s surface profile hb(r, t) is a multivalued function of r, and
Eq. (1.50) is valid only in the upper part of the bubble, corresponding to the z+ branch
in Fig. 1.11. One can integrate Eq. (1.50) with respect to r and get:

r∂hb/∂r√
1 + (∂hb/∂r)2

= − r2

R̄(t)
+

1

γ

∫ r

0
p(r′, t) r′ dr′ . (1.51)

The excess pressure field decays over a typical radial extent ∼ √2ReffD, that is the
usual hydrodynamic radius in lubrication problems, where Reff is the effective curva-
ture radius of the liquid-gap thickness between the sphere and the bubble. We focus
on the situations in which this typical hydrodynamic radius is small with respect to the
bubble size, yielding the scale separation:

√
2ReffD � Rb.

1.3.4 Asymptotic-matching method

Outer solution

r
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Figure 1.11: Schematic of the outer problem.

We use the method of matched asymptotic expansions [114], following specifically
Refs. [47, 115]. We first describe the outer solution (denoted with the subscript “out”,
which is a good approximation of the solution outside the hydrodynamic region, i.e. for
r � √2ReffD. In this limit, the integral 2π

∫ r
0 p(r

′, t) r′ dr′ does essentially not depend
on r and can be approximated by the hydrodynamic force F (t) = 2π

∫∞
0 p(r′, t) r′ dr′.

Therefore, the outer problem is equivalent to the one schematized in Fig. 1.11. The
solution is derived in Ref. [115], and we recall the main steps here. We drop the time
dependencies for conciseness, and the two interfacial branches are denoted z±, where
+ denotes the upper section of the bubble and − the lower section (see Fig. 1.11). The
functions z± are related to the bubble’s surface profile via the relation hb,out = z± −
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Rb(1 + cos θ). Equation (1.51) can be written conveniently for both branches as:

± r∂z±/∂r

[1 + (∂z±/∂r)2]1/2
= −r

2

R̄
+

F

2πγ
. (1.52)

The maximal lateral extent R+ of the bubble (see Fig. 1.11) can be found by taking the
limit ∂z±/∂r → ∓∞ in Eq. (1.52), and satisfies the polynomial equation:

R2
+/R̄−R+ = F/(2πγ) . (1.53)

Equation (1.52) can be integrated and the solution can be expressed using the elliptic
integrals of the first and second kinds, F and E respectively, and the constant R+ as:

z±(r) =±
[
R+E(K(r), q)− F

2πγ

R̄

R+
F(K(r), q)

]

∓
[
R+E (K (r1) , q)− F

2πγ

R̄

R+
F (K (r1) , q)

]
,

(1.54)

with:

K(r) = arcsin

(√
R2

+ − r2

R2
+ − ( F

2πγ )2R̄2/R2
+

)
, q2 = 1−

( F
2πγ )2R̄2

R4
+

, (1.55)

and where r1 denotes the contact radius of the bubble on the substrate (see Fig. 1.11).
We focus on situations in which the deviation of the bubble’s surface profile is small
with respect to the equilibrium spherical cap, i.e. in the small-force limit where F

2πγ �
Rb, which allows us to expand Eq. (1.54) at leading order in F/(2πγRb). In this limit, we
have q2 ≈ 1 and for r � R̄, the elliptic integrals can be approximated by E(K(r), 1) '
sin(K(r)) and F (K (r) , 1) ' 1

2 log(1+sin(K(r))
1−sin(K(r))), which yields to an expression for the

bubble interface profile near the apex of the bubble:

z+(r) 'R̄
[

1− r2

2R̄2
+

√
1− r2

1

R2
+

]

+
F

2πγ

[
1 +

√
1− r2

1

R2
+

+
1

2
log

(
r2

4R̄2

)
− log




1 +

√
1− r21

R2
+

1−
√

1− r21
R2

+





 .

(1.56)

To get a closed expression for the bubble’s surface profile near the apex, we need to
find the relations between R̄, R+, r1 and the force F . To do so, we expand the mean
curvature radius as:

R̄ = Rb + δR (1.57)

where δR is a perturbation with respect to the equilibrium value, which scales as ∼
F/(2πγ). Using Eq. (1.53), the maximal lateral extent of the bubble is expanded as:

R+ ' Rb + F/(2πγ) + δR . (1.58)
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Here, we assume that the contact line is pinned, which amounts to fix the contact radius
to a value r1 = Rb sin θ, where θ is the equilibrium contact angle. The relation between
δR and F can be found expressing the volume conservation of the bubble. The air vol-
ume inside the bubble can be evaluated at leading order in F/(2πγRb) using Eq. (1.54)
and reads:

Vb = 2π

∫ R+

r1

z−(r) rdr + 2π

∫ R+

0
z+(r) rdr

' πR̄3

[
2

3
+

1

3

√
1− r2

1

R2
+

(
2 +

r2
1

R̄2

)
+

F

2πγR̄

(
1 +

√
1− r2

1

R2
+

(
1 +

1

3

r2
1

R̄2

))]
.

(1.59)

Introducing the expansions of Eqs. (1.57) and (1.58) in Eq. (1.59), we write the volume
variation at leading order as:

Vb − Vb,0 '
πR2

b
cos θ

[
F

2πγ
(1 + cos θ) + δR(1 + cos θ)2

]
, (1.60)

where Vb,0 = πR3
b[2/3 + cos θ− cos3(θ)/3] is the equilibrium bubble volume. Assuming

that the bubble is incompressible, we get:

δR = − F

2πγ

1

1 + cos θ
. (1.61)

Therefore, the bubble’s surface profile reads:

z+(r) ' Rb

(
1 + cos θ − r2

2R2
b

)
+

F

2πγ

[
1 + log

(
r

2Rb

)
− log

(
1 + cos θ

1− cos θ

)]
, (1.62)

and, thus, the outer solution finally reads for r � Rb:

hb,out ' −
r2

2Rb
+

F

2πγ

[
1 + log

(
r

2Rb

)
− log

(
1 + cos θ

1− cos θ

)]
. (1.63)

Inner solution

We now focus on the inner asymptotic solution (denoted with the subscript “in”, in the
region near the apex of the bubble, for which the radial coordinate r is of the same order
as the hydrodynamic radius

√
2ReffD. In this region, the slope ∂rhb,in of the bubble’s

surface profile is small with respect to unity, such that Eq. (1.50) can be linearized into:

γ

r

∂

∂r

(
r
∂hb,in

∂r

)
= ∆P (t) + p(r, t) . (1.64)

Therefore, we can expand the bubble’s surface profile as the sum of a parabolic equilib-
rium shape and a deviation uin(r, t), i.e. :

hb,in(r, t) ' − r2

2Rb
− uin(r, t). (1.65)



54

Injecting the latter expression in Eq. (1.49), the liquid-gap thickness in the inner region
takes the same form as in section 1.1.4:

h(r, t) = D +
r2

2Reff
+ Z(t) + uin(r, t) . (1.66)

Using the expansion of the pressure difference ∆P (t) = −2γ
R̄
' −2γ/Rb + 2γδR(t)/R2

b,
with Eq. (1.61) and the linear properties of Eq. (1.64), we find:

− γ

r

∂

∂r

(
r
∂uin

∂r

)
= −F (t)

πR2
b

1

1 + cos θ
+ p(r, t) . (1.67)

The inner solution must match asymptotically the outer solution of Eq. (1.63), which
imposes the following asymptotic expression at r � √2ReffD:

uin ∼ −
F (t)

2πγ

[
1− log

(
1 + cos θ

1− cos θ

)
+ log

(
r

2Rb

)]
, (1.68)

which is used as a boundary condition in the model. As in section 1.1.4, the modulus
|Z∗| of the amplitude Z∗ of the vertical displacement Z of the sphere and the defor-
mation of the bubble are assumed to be much smaller than the average sphere-bubble
distanceD, so that we can neglect the contributions ofZ and uin in the non-linear (∝ h3)
factor within the Reynolds equation in Eq. (1.7). The complex version of the latter thus
becomes of the same form as Eq. (1.9), and reads:

12ηriω

[
Z∗ + u∗in(r)

]
=

d
dr

[
r

(
D +

r2

2Reff

)3 dp∗(r)
dr

]
. (1.69)

Similarly, Eq. (1.67) written with complex variables reads:

− γ

r

d
dr

(
r

du∗in
dr

)
=
G∗Z∗

πR2
b

1

1 + cos θ
+ p∗(r) . (1.70)

Finally, we introduce the dimensionless variables:

x =
r√

2ReffD
, U∗in =

u∗in
Z∗

, P ∗ =
p∗

ηReffZ∗ω
D2

,

G∗ =
G∗Dc

6πηωR2
eff
, Dc =

16R2
effηω

γ
,

(1.71)

such that Eqs. (1.69) and (1.70) become:

24i

[
1 + U∗in(x)

]
=

1

x

d
dx

[
x
(
1 + x2

)3 dP ∗(x)

dx

]
, (1.72)

− 1

x

d
dx

(
x

dU∗in
dx

)
=

2ReffD

R2
b

3

16

1

1 + cos θ
G∗ +

Dc

8D
P ∗(x). (1.73)



55

Then, Eqs. (1.72) and (1.73) are solved numerically using a standard finite-difference
scheme. The boundary conditions are set to:

dP ∗

dx
(0) = 0 , P ∗(xmax) = 0 , (1.74)

and:

U∗in(xmax) =
3

8
G∗
[
1− log

(
1 + cos θ

1− cos θ

)
+ log

(
rmax

2Rb

)]
, (1.75)

where xmax = rmax/
√

2ReffD and rmax are the dimensionless boundary and correspond-
ing real boundary of the numerical domain, respectively. The boundary condition of
Eq. (1.75) is set following the asymptotic expression in Eq. (1.68), which means that
rmax is a typical radius that matches the two asymptotic solutions. We checked that the
solution is not dependent on rmax, provided that

√
2ReffD � rmax � Rb.

Large-distance asymptotic expression

Here, we perform an asymptotic calculation at large distance in the inner model. We
assume thatDc/D is a small parameter, and we use the following first-order expansions
of the fields U∗in, P

∗ and of the mechanical impedance G∗:

U∗in(x) ' 0 +
Dc

D
U∗in,1(x) , (1.76)

P ∗(x) ' P ∗0 (x) +
Dc

D
P ∗1 (x) , (1.77)

G∗ ' G∗0 +
Dc

D
G∗1 . (1.78)

The zeroth-order term P ∗0 is given by Eq. (1.25) in the undeformed-bubble limit, and
reads:

P ∗0 (x) = − 3i

(1 + x2)2
, (1.79)

which gives to the viscous expression:

G∗0(x) = i
Dc

D
. (1.80)

Then, the first-order term U∗in,1 is found by inserting P ∗0 in Eq. (1.73), and by invoking
the boundary condition of Eq. (1.75). We find:

U∗in,1(x) =
2ReffD

R2
b

3i

32

(
x2

max − x2

)
1

1 + cos θ
− 3i

32

[
log
(
1 + x2

max
)
− log

(
1 + x2

)]

+
3i

16

[
1− log

(
1 + cos θ

1− cos θ

)
+ log

(
rmax

2Rb

)]
.

(1.81)
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Figure 1.12: Real (blue circles) and imaginary (red circles) parts of the measured me-
chanical impedance G∗ = G′ + iG′′ versus average sphere-bubble distance D, for a
surfactant concentration C = 1 mM, and frequencies ω/(2π) = 200 Hz (a), and 300 Hz
(b). The bubble radius is Rb = 346± 2 µm and the contact angle is θ = 81± 2◦. The best
fits to the model are displayed with solid black lines, using a single fitting parameter
γ = 54± 4 mN/m. The large-distance asymptotic solution for G′ (see Eq. (1.85)) is also
shown with green dashed lines. The slope triangles indicate power-law exponents.

In what follows, we neglect the first term of the right-hand side of Eq. (1.81) to keep the
leading order in the asymptotic-matching condition rmax/Rb. Then, introducing U∗in,1
in Eq. (1.72) allows us to express the first-order pressure:

P ∗1 (x) =
3

32

[−3− 6 log
(

1+cos θ
1−cos θ

)
− 6x2 + 6 log( rmax

Rb
)− 3 log 4− 3 log

(
1 + x2

max
)

(1 + x2)2
+ π2

− 6
log(1 + x2)

1 + x2
+ 3 log2(1 + x2) + 6Li2(−x2)

]
,

(1.82)

where Li2 denotes the dilogarithm function [64]. After some algebra, we find that:

G∗1 =
3

32

(
Dc

D

)[
− 3 + log(4)− 2 log

(
1 + cos θ

1− cos θ

)
− 2 log

(
rmax

Rb

)
+ log

(
1 + x2

max
) ]

.

(1.83)
Finally, assuming that the boundary coordinate xmax is much larger than unity, we get:

G∗1 '
3

32

(
Dc

D

)[
− 3 + log(4)− 2 log

(
1 + cos θ

1− cos θ

)
+ log

(
R2

b
2ReffD

)]
. (1.84)

1.3.5 Experimental results

The real and imaginary parts of the measured mechanical impedanceG∗ = G′+iG′′ are
plotted in Fig. 1.12, as functions of the average sphere-bubble distance D, for two fre-
quencies and a given surfactant concentration. Best fits to the model are also shown, in
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Figure 1.13: Dimensionless mechanical impedance versus dimensionless distance, for
three bubble sizes as indicated, a single frequency ω/(2π) = 200 Hz, and a single
surfactant concentration C = 1 mM. The experimental data are show in (a). The re-
sults of the model are plotted in (b), using the previously-obtained best-fit parameter
γ = 54 mN/m.

good agreement with the data, the air-water surface tension γ = 54±4 mN/m being the
only fitting parameter. Furthermore, two asymptotic regimes can be observed, at large
and small distances respectively. They crossover nearD ≈ 1000 nm, which corresponds
to the typical viscocapillary distance Dc = 16R2

effηω/γ emerging from the model, and
equal to 771 and 1160 nm in Figs. 1.12(a) and (b), respectively. At large distance, the vis-
cous contribution G′′ dominates and follows a ∼ D−1 scaling law, as expected from the
asymptotic expression G′′ ' 6πηR2

effω/D [60]. In contrast, the restoring contribution G′

due to the air-water capillary interface appears with an apparent ∼ D−2 scaling law at
large distance. We stress that the latter is not an exact scaling law, due to a logarithmic
correction:

G′(D) ' 9πη2R4
effω

2

γD2

[
− 3 + log(4)− 2 log

(
1 + cos θ

1− cos θ

)
+ log

(
R2

b
2ReffD

)]
. (1.85)

At small distance, both G′ and G′′ saturate to constant values, which is reminiscent of
elastohydrodynamic responses near soft substrates [36, 37, 60, 83, 116, 117], and might
be related to saturations in the deformation and pressure fields. At such small dis-
tances, the capillary deformation of the bubble surface essentially accommodates the
sphere’s oscillation, and the liquid is no longer expelled from the gap, which further
leads to a stronger capillary response than the viscous one.

In order to reveal the importance of finite-size effects in the viscocapillary response,
we introduce the dimensionless mechanical impedance G∗ = G∗Dc/(6πηωR

2
eff). In

Fig. 1.13, the experimental and theoretical dimensionless mechanical impedances are
plotted versus the dimensionless average sphere-bubble distance, for three bubble radii.
Except for the viscous contribution in the large-distance limit, the dimensionless impedance
is generally found to depend on the bubble size in a nontrivial way, which is correctly
reproduced by the model. This observation highlights the importance of finite-size ef-
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Figure 1.14: Real (a) and imaginary (c) parts of the amplitude of the dimensionless inner
deformation field as functions of the dimensionless radial coordinate, at a dimension-
less distance D/Dc = 0.3, for the three bubble radii of Fig. 1.13, as obtained from the
model Eqs. (1.72) and (1.73). Similarly, the real and imaginary parts of the amplitude of
the dimensionless excess pressure field are plotted in panels (b) and (d), respectively.
The insets display zooms near the symmetry axis.

fects in viscocapillary interactions, resulting from the long-range capillary deformation
of the air-water interface. We note that the logarithmic correction in the large-distance
asymptotic expression of the capillary contribution (see Eq. (1.85)) contains a bubble-
size dependence which cannot be resolved with the AFM sensitivity and the current
bubble-size range. At small distance, the size dependence is more pronounced and
both the real and imaginary parts of the dimensionless impedance decrease when in-
creasing the bubble size.

Having discussed the finite-size effects on the global hydrodynamic force, we now
investigate their influence on the amplitudes of the local excess pressure and deforma-
tion fields. To do so, we perform numerical integrations of Eqs. (1.72) and (1.73) using
the asymptotic expression for the inner deformation field. Figure 1.14 shows the re-
sults for D/Dc = 0.3, with the same parameters as in Fig. 1.13. We observe that the real
and imaginary parts of the dimensionless amplitude of the excess pressure field decay
rapidly on a typical distance ∼ √ReffD, and depend weekly on the bubble radius. In
sharp contrast, the real and imaginary parts of the dimensionless amplitude of the in-
ner deformation field largely depend on the bubble radius, as well as on the contact
angle (not shown).
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Figure 1.15: Air-water surface tension as a function of surfactant (SDS) concentration, as
obtained from fits (see Fig. 1.12) of the AFM experimental data by the model (red dots).
Statistical error bars associated with multiple measurements at different frequencies
are indicated. For comparison, independent measurements using the Wilhelmy-plate
method are provided (blue dots).

1.3.6 Tensiometry measurements

So far, the air-water surface tension was considered as a free parameter and was fixed
by fitting the AFM experimental data to the model. The fitted values of the surface ten-
sion as a function of the SDS concentration in water are shown in Fig. 1.15. We observe
that the surface tension globally decreases with increasing surfactant concentration, as
expected. At surfactant concentrations smaller than ∼ 0.5 mM, the surface tension is
close to the 72 mN/m value for pure water. At concentrations larger than ∼ 8 mM,
the surface tension saturates to a value on the order of 30 mN/m. The critical micellar
concentration (CMC) of SDS in water is estimated to be around 8 mM [118, 119], which
is in agreement with the latter observation. The uncertainty on the fitted values of the
surface tension is on the order of ±4 mN/m, which mainly results from the fact that
the experiments at different frequencies lead to slight variations.

Finally, we discuss the capacity of our method to be used as a robust tensiometer.
To do so, we perform independent tensiometry experiments on similar air-water-SDS
interfaces using the Wilhelmy-plate method [20]. The results are shown in Fig. 1.15,
and agree well with the ones obtained with our method. Possible systematic devia-
tions at the highest concentrations may result from a surfactant-induced depinning of
the contact line of the bubble on the substrate [120]. In such a scenario, the hydrody-
namic pressure would not only trigger a local capillary deformation (see Eq. (1.50)),
but would also induce a spreading-dewetting cycle of the bubble on the substrate. In
addition, the bubble resonance frequency being lower at lower surface tension, capil-
lary waves might be excited at the air-water interface at large surfactant concentrations.
Besides, at the smallest concentration (0.2 mM) used in the AFM experiment, the air-
water interface may not be entirely covered with an adsorbed surfactant layer, poten-
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tially resulting in slippage. In such a scenario, the surfactant advection induced by the
flow would add an elastic-like component to the mechanical response [113, 121], which
might explain the small deviations observed in Fig. 1.15.

1.4 Inertial effects

1.4.1 Introduction

The drag force exerted by a fluid on a moving particle is a fundamental quantity of
fluid mechanics. So far, we have been interested in the previous sections of the chap-
ter in the particular case of an inertia-less fluid, where viscous effects are dominant.
The dimensionless number of fluid mechanics that measures the relative importance
of inertial and viscous effects is the Reynolds number, Re = ρLV/η, where L and V
are the typical length and velocity scales of the flow. In the canonical case of an ob-
ject of size L, moving with a velocity V a bulk viscous medium, the drag force takes
different scalings in the two regimes of fluid mechanics: i) in the viscous-dominated
regime, i.e. at low Re, the drag follows the Stokes-like law ∼ ηLV ; ii) at high Re, the
drag reads ρSCDV

2/2, where S is the cross-sectional area of the object, and CD is the
so-called drag coefficient. In this section, we assume a small, but finite Re number and
we wonder how fluid inertia affects the flow in colloidal-probe methods.

In the small but finite Re limit, the convective term of the Navier-Stokes equation,
ρ(v · ∇)v, may generate non-trivial effects. As an example, for a particle moving in
a shear flow, the convective term induces a lift force normal to the velocity direction.
The inertial lift force has been widely investigated [122, 123, 124, 125, 126, 127], has im-
portant applications in microfluidics for droplet-sorting purposes [128, 129], and may
play a role in the migration of red blood cells in blood vessels [130]. Moreover, Cox
& Brenner have investigated the drainage flow generated by a spherical particle mov-
ing toward a planar surface with a constant velocity V⊥. They have derived the first
order correction to the Reynolds force, considering inertia as a small parameter and us-
ing asymptotic-matching methods in the small sphere-wall distance limit, which gives
6π/5ηRV⊥(1 + ρRV⊥

2η ) ln(R/D) [131]. Here, we focus on the situation of a small oscillat-
ing flow normal to the surface.

Transient, and oscillatory flows are often described using the unsteady Stokes’ equa-
tions, that neglect the nonlinear convective term, of the Navier-Stokes equation. The
time-derivative term, ρ∂tv, is significant when the typical time scale of the flow is
small or comparable to the diffusion time scale of vorticity, which scales as ∼ ρL2/η.
Such flows have been investigated to understand the short-time dynamics of Brownian
motions [132], the effect of inertia in wave propagation [133], in free-surface transient
flows [134], and in the locomotion of micro-organisms resulting from beating cilia [135]
to cite a few examples. Interestingly, in the sphere-plan geometry, the unsteady Stokes’
equations do not exhibit a series-expansion solution with the appropriate eigenvalues
in the bi-spherical coordinates, as for the Stokes equations [136, 137]. However, the so-
lution may be written in an integral form [138, 139], and exact results can be obtained
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asymptotically using methods such as the point-particle approximation [140] and the
method of reflections [141].

In contactless colloidal probe methods, fluid inertia is taken into account in the
equation of motion of the cantilever, via the effective mass (see Eq. (1.5) in section 1.1.3).
Indeed, a spherical particle, that moves with a time-dependent Lagrangian velocity
V (t) in an unbounded fluid at rest, is submitted to a force:

F = −6πηRV (t)− 6R2√πρη
∫ t

−∞

1√
t− τ

dV (τ)

dτ
dτ − 2πρR3

3

dV

dt
, (1.86)

where a small Reynolds number is assumed. Considering Newton’s second law for
the particle, the last term of the right hand side of Eq. (1.86) is equivalent to an inertial
term, where the added mass 2πρR3

3 is equal to half of the displaced fluid mass. The hand-
waving argument used to explain the origin of this term is that the particle must move
some fluid mass during its motion. The second term is called the Basset force and
depends on the history of the particle trajectory [142]. The standard procedure in the
colloidal-probe method is to calibrate the quality factor and resonance frequency of the
cantilever far from the surface which gives an estimation of the effective mass of the
cantilever, including the added mass. However, the fluid-inertia force varies with the
sphere-plan distance, which modifies the resonance properties of the cantilever and
affects the measurements [143]. Using dimensional analysis, we can write the force
applied on the sphere in the following scaling form:

F ∗ = ηRZ∗ωf∗
(
D

R
,
R2

δ2

)
, (1.87)

where δ =
√
η/(ρω) denotes the viscous penetration length, and f∗ is a dimensionless

function. Theoretical expressions have been derived in Ref. [139] in the case of a sphere
far from the substrate surface. In the joint limit where R� D and δ � D we have:

F ∗ =− 6iπηRZ∗
(

1 +
√
iRe +

iRe2

9

)

− 3iπηR4Z∗

2(D +R)3

(
1 +
√
iRe +

iRe

3

)[
1

3
+

3

2iRe
(1 +

√
iRe +

iRe

9
)

]
,

(1.88)

where the Reynolds number is defined here as Re = ρR2ω/η = (R/δ)2. The first term
of Eq. (1.88) corresponds to the Basset equation of Eq. (1.86) written in Fourier space (in
infinite space). In the limit of large Reynolds numbers, the added mass takes the form
2πρR3

3 (1 + 3R3

(R+D)3
), and decreases with increasing sphere-plan distance. The 1/D3 de-

pendance of the added mass has been observed in the shift of the resonance frequency
of the AFM in Ref. [143]. Interestingly, in the limit of large viscous penetration length,
where R� D � δ, the hydrodynamic force follows the asymptotic expression:

F ∗ = −6iπηRZ∗
(

1 +
9R

8(R+D)

)
+

9π

4
ρω2R2(R+D)Z∗, (1.89)
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with a space-dependent added mass 9π
4 ρR

2(R+D), that here increases with increasing
distance. Nevertheless, a complete description of the added mass and its dependence
on the sphere-plan distance is still missing and is the subject of the subsection.

In this section, we first describe the problem. Then, we derive a lubrication model
to describe the flow in the small sphere-plan distance limit. The force predicted by the
lubrication model diverges and should be regularized with the outer solution. Then,
we use the Lorentz reciprocal theorem to get an expression which is valid in the low-
Reynolds number limit only.

Model

We focus here on the effect of fluid inertia, such that the planar surface is taken to
be rigid and immobile. We consider the same settings of the section 1.1.4, and use
the linear response framework. The velocity v and pressure fields are harmonic and
written as v(r, t) = v∗(r)eiωt, and p(r, t) = p∗(r)eiωt respectively, and follows the linear
unsteady Stokes equations:

∇ · σ∗ = η∇2v∗ −∇p∗ = iρωv∗, ∇ · v∗ = 0, (1.90)

where σ∗ is the fluid stress tensor. We assume a no-slip boundary condition at both the
sphere and the plane surfaces denoted S0 and Sw. The velocity is assumed to vanish at
infinity, denoted as S∞. Therefore, the boundary conditions of the flow can be written
in a concise form as:

v∗ =

{
iωZ∗ ez, if r ∈ S0,
0, if r ∈ S∞ ∪ Sw,

(1.91)

where ez denotes the unit vector in the z direction.

1.4.2 Lubrication approximation

As a first approach, we use the lubrication approximation, assuming that the sphere-
plan distance is small with respect to the sphere radius, which is the main application
range of colloidal-probe methods. Therefore, there is a scale separation between the
lateral length scale of the flow

√
RD, and the vertical one D, which means a larger

lateral velocity than the vertical one through mass conservation. Expressing the cor-
responding scales, the viscous term of the Navier-Stokes equation is approximated by
the dominant shear term η∇2v∗ ≈ η∂2

zv
∗
rer, where the lateral velocity field is directed

along er because of the axisymmetry of the problem. Thus, the unsteady Stokes equa-
tions in Eq. (1.90) become:

iρωv∗r = −∂p
∗

∂r
+ η

∂2v∗r
∂z2

, (1.92a)

0 = −∂zp. (1.92b)
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Figure 1.16: Dimensionless mechanical impedance versus sphere-plan distance to vis-
cous penetration depth ratio resulting from the numerical integration of Eq. (1.94).
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expression Eq. (1.96).

We solve Eq.(1.92) using the boundary condition Eq. (1.91) and find the velocity field:

v∗r (z) =
δ2

iη

∂p∗

∂r

sinh(
√
iz
δ )− sinh(

√
ih
δ )− sinh(

√
i[z−h]
δ )

sinh(
√
ih
δ )

, (1.93)

Expressing the mass conservation, ∂h∂t = −1
r
∂
∂r (r

∫ h
0 vr(z, t)dz), and using the complex

notations, we find:

iωZ∗ =
1

r

d

dr

(
r
√
iδ3 2 cosh(

√
ih
δ )− 2−

√
ih
δ sinh(

√
ih
δ )

η sinh(
√
ih
δ )

dp∗

dr

)
. (1.94)

First, in the viscous limit where δ →∞, the ratio
√
iδ3 2 cosh(

√
ih
δ

)−2−
√
ih
δ

sinh(
√
ih
δ

)

η sinh(
√
ih
δ

)
is equiv-

alent to h3/(12η), such that we recover the viscous case of Eq. (1.9) with no surface
deformation. The Eq. (1.94) does not exhibit any analytical solution, and is solved nu-
merically using a finite-difference scheme. A uniform radial grid is introduced in the
range r ∈ [0, rmax], where rmax is the boundary of the numerical domain.

The real and imaginary parts of the mechanical impedance G∗, defined in sec-
tion 1.1.4, rescaled by the viscous impedance, are plotted in Fig. 1.16 as functions
of the dimensionless ratio between the sphere-plan distance and the viscous pene-
tration length. At small distance, or equivalently in the viscous limit, the imaginary
part of the mechanical impedance is dominant and we recover the viscous expression
G∗ = 6iπηR2ω/D. The real part of the mechanical impedance is negative with the sign
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convention ofG∗, and follows a scaling law−G′ ∼ δ−2 at small distances. The prefactor
of the scaling law is found to depend on the boundary of the numerical domain, and
increases with the latter.

To get further insight on this numerical result, we perform an asymptotic expan-
sion, assuming a small but finite ratio D/δ � 1, and assuming that the pressure field
vanishes at a given radius rmax. In this limit, the ratio in the bracket of Eq. (1.94) can

be expanded as
√
iδ3 2 cosh(

√
ih
δ

)−2−
√
ih
δ

sinh(
√
ih
δ

)

η sinh(
√
ih
δ

)
' h3

12η (1− i h2

10δ2
). Expanding the pressure

field as p∗ = p∗0 + (D/δ)2p∗1, and keeping the first-order term in D/δ, we find:

p∗ ' − 3iηRωZ∗

(D + r2

2R)2
+

3ηRωZ∗

5D2

(
D

δ

)2

ln

(
1 + r2

max/(2RD)

1 + r2/(2RD)

)
, (1.95)

leading to the asymptotic expression of the mechanical impedance:

G∗ ' 6iπηR2ω

D
− 6πηR2ω

5D

(
D

δ

)2[ r2
max

2RD
− ln

(
1 +

r2
max

2aD

)]

' 6iπηR2ω

D
− 6πρR2ω2D

5

[
r2

max

2RD
− ln

(
1 +

r2
max

2RD

)]
.

(1.96)

The asymptotic expression in Eq. (1.96) is plotted in Fig. 1.16 and is in agreement with
the numerical integration in the small D/δ limit.

Here, the flow in the lubrication model depends on the boundary rmax and diverges
as rmax → ∞. Therefore it cannot be used per se. One way to circumvent this problem
would be to write a correct asymptotic matching method in the small D/R limit, where
the lubrication solution would correspond to the inner problem that should be matched
to the outer solution, following Ref. [131]. This has not been done in the framework of
my thesis and is left for future work. In the following section, we use the Lorentz
reciprocal theorem to go beyond the lubrication model.

1.4.3 Generalized Lorentz reciprocal theorem

We refer to the section 2.4 for an introduction on the reciprocal theorem in fluid mechan-
ics. The Lorentz reciprocal theorem is written in Eq. (2.38) for viscous problems, gov-
erned by the Stokes equation [144]. It can be generalized in the presence of a body force
b∗, including the unsteady term of Navier-Stokes equations by choosing b∗ = −iωρv∗.
With this notation, the Eq. (1.90) becomes ∇ · σ∗ + b∗ = 0. The generalized Lorentz re-
ciprocal theorem states that for any model problem (denoted with a hat .̂) of the Stokes
equations on the same fluid domain with a body force b̂:

∇ · σ̂ + b̂ = 0, ∇ · v̂ = 0, (1.97)

then, the stress tensors and velocity fields of both problems follow the identity:
∫

S
n · σ∗ · v̂ dS −

∫

S
n · σ̂ · v∗ dS =

∫

V
v̂ · b∗ dV −

∫

V
v∗ · b̂dV (1.98)
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where S = S0 + Sw + S∞ denotes the surface integral over all the bounding surfaces,
with n being the normal unit vector directed toward the fluid, and V being the total
fluid volume. The great advantage of the reciprocal theorem is to compute surface
integrals such as the force applied on a sphere without the precise knowledge of the
complete fields. Here, we choose the problem of a sphere oscillating normally to plane
wall with a velocity v̂s = −ωZ∗eiωtez , with no external force or inertia, i.e. b̂ = 0.
Therefore the boundary conditions for the model problem, written with the complex
notations, are:

v̂∗ =

{
−ωZ∗ ez, if r ∈ S0,
0, if r ∈ S∞ ∪ Sw.

(1.99)

Applying the Lorenz reciprocal theorem yields:

− ωZ∗F ∗z − iωZ∗F̂z = −iωρ
∫

V
v̂∗ · v∗ dV, (1.100)

where F ∗z = ez ·
∫
S0 n ·σ

∗ dS is the vertical force that applies on the sphere, and F̂z the
one in the model problem. The drag force in the model problem has been computed ex-
actly in Ref. [136] for all distances using a spectral decomposition with the bi-spherical
coordinates and reads:

F̂z
6πηRZ∗ω

=
4

3
sinhα

∞∑

n=1

n(n+ 1)

(2n− 1)(2n+ 3)

[
2 sinh(2n+ 1)α+ (2n+ 1) sinh 2α

4 sinh2
(
n+ 1

2

)
α− (2n+ 1)2 sinh2 α

− 1

]
,

(1.101)
where coshα = 1 + D/R. Here, the Lorentz reciprocal theorem does not leads to an
expression for F ∗z in a closed form, as the r.h.s. of Eq. (1.100) depends on v∗, which
is unknown so far. Nevertheless, we can obtain an expression in the small-Reynolds-
number limit, as derived in the following section.

1.4.4 Low-Reynolds number expansion

In the rest of the section, we use dimensionless variables (unless explicitly written),
using ωZ∗, R, ηωZ∗/R and ηωZ∗R as velocity, length, pressure and force scales, and
we drop the ∗ for clarity. The unsteady Stokes equations of Eq. (1.90) become:

∇ · σ + b = ∇2v −∇p− iRev = 0, ∇ · v = 0. (1.102)

The Reynolds number is assumed to be small, i.e. Re � 1, and the fields are expanded
as: σ = σ0 + Reσ1 and v = v0 + Rev1 such that the linear Stokes equations becomes:

∇ · σ0 = 0, ∇ · v0 = 0, (1.103a)

∇ · σ1 − iv0 = 0, ∇ · v1 = 0. (1.103b)

Besides, the boundary conditions are:

v0 =

{
i ez, r ∈ S0

0, r ∈ S∞ ∪ Sw
(1.104a)
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v1 = 0, r ∈ S0 ∪ S∞ ∪ Sw. (1.104b)

The vertical force applied on the sphere is also expanded as Fz = Fz,0 + ReFz,1, such
that the Eq. (1.100) at leading order O(Re0), we get:

Fz,0 = −iF̂z, (1.105)

which is expected from the linearity of the Stokes equations, as we also have v0 = −iv̂.
At first order O(Re1), the inertial correction reads:

Fz,1 = i

∫

V
v̂ · v0 dV =

∫

V
v̂ · v̂ dV. (1.106)

We compute the integral Eq. (1.106) numerically using the exact solution with the
bi-spherical coordinates for the velocity field v̂ [136]. In cylindrical coordinates (r, θ, z),
the dimensionless integral reads:

∫

V
v̂ · v̂ dV =

∫

V
(v̂2
r + v̂2

z) rdrdzdθ. (1.107)

Introducing the stream function of the flow:

v̂r =
1

r

∂ψ

∂z
, v̂z = −1

r

∂ψ

∂r
, (1.108)

and using the bi-spherical coordinates (ξ, η̃3, θ):

r = sinh(α)
sin η̃

cosh ξ − cos η̃
, z = sinh(α)

sinh ξ

cosh ξ − cos η̃
. (1.109)

The fluid domain is defined by 0 < ξ < α, and 0 < η̃ < π. By using the chain rule of a
composite function, we find:

∂ψ

∂η̃
=
∂z

∂η̃

∂ψ

∂z
+
∂r

∂η̃

∂ψ

∂r
= rv̂r

∂z

∂η̃
− rv̂z

∂r

∂η̃
, (1.110)

∂ψ

∂ξ
=
∂z

∂ξ

∂ψ

∂z
+
∂r

∂ξ

∂ψ

∂r
= rv̂r

∂z

∂ξ
− rv̂z

∂r

∂ξ
. (1.111)

We can find a relation between the norm of the velocity field and the stream function
as follows:

(
∂ψ

∂η̃

)2

+

(
∂ψ

∂ξ

)2

=
r2(v̂2

r + v̂2
z) sinh2 α

(cosh ξ − cos η̃)2
=

(v̂2
r + v̂2

z) sinh4 α sin2 η̃

(cosh ξ − cos η̃)4
(1.112)

such that the Eq.(1.107) becomes:
∫

V
(v̂2
r + v̂2

z) dV =

∫

V

[(
∂ψ

∂ξ

)2

+

(
∂ψ

∂η̃

)2] (cosh ξ − cos η̃)4

sinh4 α sin2 η̃
dV. (1.113)

3Here, η̃ denotes the bi-spherical coordinates and should not be confused with the viscosity.
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Figure 1.17: Dimensionless inertial correction to the Reynolds force, obtained by inte-
grating numerically Eq. (1.106) (see Appendix A). The black dashed line displays the
asymptotic result at large distance, see Eq. (1.120), as derived in Ref. [139].

Evaluating the Jacobian of the bi-spherical change of variable, we find that the infinites-
imal volume element is dV = sinh3 α sin η̃/(cosh ξ − cos η̃)3 dξdη̃dθ, which yields:

∫

V
v̂.v̂ dV =

∫

V

[(
∂ψ

∂ξ

)2

+

(
∂ψ

∂η̃

)2] (cosh ξ − cos η̃)

sinhα sin η̃
dξdη̃dθ. (1.114)

In bi-spherical coordinates, the stream function can be expanded on a spectral basis as:

ψ(ξ, η̃) =
1

(cosh ξ − cos η̃)3/2

∑

n∈N
Un(ξ)C

−1/2
n+1 (cos η̃), (1.115)

Un(ξ) = an cosh(n− 1

2
)ξ+ bn sinh(n− 1

2
)ξ+ cn cosh(n+

3

2
)ξ+ dn sinh(n+

3

2
)ξ, (1.116)

and C
−1/2
n+1 is the Gegenbauer polynomial of order n + 1 and degree −1/2. Using the

boundary conditions of the velocity field, written in Eq. (1.99), one can find the coeffi-
cients an, bn, cn, dn as:

cn = −an =
n(n+ 1)(2n+ 1) sinh4 α√

2
[
4 sinh2

(
n+ 1

2

)
α− (2n+ 1)2 sinh2 α

] , (1.117)

dn = −(2n− 1)

(2n+ 3)
bn = −n(n+ 1) sinh2 α√

2(2n+ 3)

[
2 sinh(2n+ 1)α+ (2n+ 1) sinh 2α

4 sinh2
(
n+ 1

2

)
α− (2n+ 1)2 sinh2 α

− 1

]
.

(1.118)
The integral Eq. (1.106) is then computed numerically, by evaluating the stream

function on an uniform two-dimensional grid and using a Riemann summation. The
dimensionless inertial force is then plotted in Fig. 1.17 versus the sphere-plan-distance-
to-sphere-radius ratio. We observe that the dimensionless force has a finite limit as
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D/R→ 0, leading to a mechanical impedance:

G∗ ≈ i6πηR
2 ω

D
− 11.5ρR3ω2. (1.119)

The prefactor 11.5 is found numerically. Furthermore, the force increases with the dis-
tance to the wall, following a linear function with D/R at large distance. In Ref. [139],
using the method of reflections, the inertial force at large sphere-plan distance is found
to be:

F =
9π

4
ρR2ω2Z∗(R+D), (1.120)

which is in agreement with the numerical result in Fig. 1.17.

1.5 Conclusion

In the last fifteen years or so, contactless methods have been designed to measure the
mechanical response of soft interfaces and successfully applied to elastic layers. Specif-
ically, a spherical colloidal probe attached to the AFM cantilever is vibrated in a liquid
environment close and normally to a sample (e.g. a soft surface) in order to generate
a nanoscale lubrication flow. This viscous flow generates hydrodynamic stresses that
may deform the soft surface, leading to an elastohydrodynamic coupling. Measure-
ments of the mechanical impedance of the system permit to access the specific response
of the sample. We question in this chapter extensions of contactless methods to soft in-
terfaces that have a complex response.

Soft elastic materials often display dissipation within the material, resulting in a vis-
coelastic response. We investigate how the viscous character of elastic layers affects the
mechanical impedance. The global shape of the impedance-distance curve, including
the scaling with the probe-sample distance, is not modified by the presence of viscoelas-
ticity, but the prefactors of the scaling laws are, showing a non-trivial dependence with
the loss to storage modulus ratio. Such a model is then applied to experiments us-
ing PDMS elastomers as a sample. The frequency dependencies of the measured elastic
moduli were found to be in good agreement with the Chasset–Thirion law for viscoelas-
tic elastomers.

Soft gels are made of cross-linked networks, swollen by a solvent. Such materi-
als are considered as porous, as the solvent may flow within the network. Using a
linear poroelastic model for infinite-thickness substrate, we find that the mechanical
impedance is a function of the oscillation frequency relative to a typical frequency scale
that implies the permeability of the network, the solvent viscosity and the elastic mod-
ulus. Contactless methods are not suitable for the precise determination of the perme-
ability of semi-infinite poroelastic materials, because of the similarity of the response
in the full range of frequencies. The mechanical response of the poroelastic is very
closed to the response of an elastic layer, with a rescaled elastic modulus: incompress-
ible at large frequency and compressible at small frequency. As a perspective, it would
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be interesting to extend the analysis for substrates of finite thicknesses which display
different compressible and incompressible responses.

We then investigate the influence of the capillarity of the liquid-solid interface in
elastic layers of infinite thicknesses. The mechanical impedance of the sphere is found
to be largely affected by the capillarity of the soft substrate and via a specific depen-
dence in a typical distance scale `2ec/R, where `ec = γ/E is the elastocapillary length.
A new scaling regime of the elastic part of the mechanical impedance at large distance
(∼ D−2) is found when the capillary response is dominant. Interestingly, the typical
distance that emerges in the model, and that quantifies the magnitude of capillarity,
scales increases with decreasing probe radius. Therefore, using small probes might be
a good strategy to amplify capillary effects. Contactless methods appear as good can-
didate for an absolute determination of the capillarity of elastomers, and is a promising
tool to measure the strain dependence of surface stresses in such materials.

Motivated by our findings on the capillarity of soft elastic layers, we turn to fluid-
fluid interfaces. We have performed contactless experiments of the mechanical re-
sponse of an air bubble pinned on a surface, and immersed within a surfactant solution
in water. The mechanical impedance is found to depend on the bubble size. We also de-
veloped a model, coupling axisymmetric lubrication flow and capillary deformations,
and accounting for finite-size effects through an asymptotic-matching method. The ex-
perimental results were found to be in good agreement with the model, the air-water
surface tension being the single free parameter. Finally, from a comparison with inde-
pendent tensiometry measurements using the Wilhelmy-plate method, we discussed
the capacity of contactless methods to measure surface tensions robustly. The volume
of the liquid required in our method can be as small as tens of microliters. All together,
this work paves the way to contactless capillary rheology, with fundamental perspec-
tives in confined soft matter, and practical applications towards micro-monitoring of
water contamination.

In the low-Reynolds number limit, fluid inertia is known to induce a force on a
moving sphere that is proportional to the acceleration of the sphere, analogous to extra
inertia, and termed added mass. In the last section of the chapter, we focus on rigid sur-
faces, and compute the drag for applied on an oscillating sphere normally to a planar
surface as in contactless methods. Using the Lorentz reciprocal theorem, we compute
the added mass in the limit of a small Reynolds number, and find that the added mass
depends on the sphere-plan distance. In particular, near the contact, and counterintu-
itively perhaps when considering the restricted volume of flowing matter, the added
mass saturates to a value of 11.5ρR3, larger than its value 2πρR3/3 for a sphere in an
unbounded fluid domain. Furthermore, the added mass exhibits a non-monotonic de-
pendence with the sphere-plan distance, as it increases linearly with the distance for
R � D � δ, but decreases at much larger distances to reach the unbounded value. In
contactless experiments, the effective mass of the driven sphere probe (including the
added mass) is calibrated far from the surface. Nevertheless, in a typical contactless ex-
periments, when the sphere is bring close to the sampled surface, we can estimate the
variation of added mass for a sphere to be on the order of ∆m ≈ (11.5−2π/3)ρR3. As a
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result, it induces a variation of impedance on the cantilever on the order of ∼ 10ρR3ω2.
Using the numbers of the AFM experiments shown here, ω ' 200 Hz, R ' 50µm, and
ρ ' 103 kg/m3, we find a variation of the impedance on the order of 2 × 10−3 N/m.
However, we stress that if one works at a higher frequencies, typically the resonance
frequency of the AFM probe (' 1.2kHz), we find an impedance ∼ 0.07 N/m, which
is not much smaller than the stiffness of the spring ' 0.2 N/m. This indicates that
the added-mass dependence on the sphere-plan distance may perturb the contactless
measurements. Lastly, in this work, we only computed the unsteady force in the small
Reynolds number regime. Further work, e.g. solving the full unsteady Stokes equations
numerically, would be necessary to have a complete description of the added mass and
a more accurate prediction for its influence on contactless measurements.



Chapter 2

Soft-lubrication interactions
between a rigid sphere and an
elastic wall

2.1 Introduction

2.1.1 Context: interactions between flow and solids

An object or an interface moving in a fluid drags the molecules of the surrounding
fluid along with it which induces a flow. As a result, any deformation of a solid drives
a flow, and respectively, a flow may deform significantly a material. The so-called
fluid-structure interaction between flows and solids is a central question in continuum
mechanics, encountered at many length and velocity scales. To give a few examples,
birds and fish deform their body and the resulting flow induces a propelling force,
allowing them to fly or swim. Also, many objects are subjected to flows, either natural
flows driven by wind and ocean currents, or man-made flows in the industry. It is of
importance to understand the effects of flows on these objects in many situations, for
instance to extract energy from the wind in wind power plants, but also to avoid the
damaging of materials during extreme climate events or the wear of industrial devices.

Within the context of fluid-structure interactions, we focus in this chapter on the
interaction between flows and solid deformations of confined objects. We consider all
along the chapter the respective motion of two objects almost in contact, separated by
a liquid film.

2.1.2 Surfaces near contact: lubrication

Friction

Before discussing the effects of the flowing liquid film in this system, let us briefly
introduce the friction force between two surfaces in contact in a dry case. The classical
sketch of such a system is drawn on the top right corner of Fig. 2.1a) and can be found
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Figure 2.1: a) Drawing by Leonardo da Vinci in 1493 found in the Codex Madrid I. b)
Wall painting from Ancient Egypt found in the tomb of Djehutihotep dated in 1880 B.C.
The man circled in green is pouring liquid in front of the sliding support. c) Schematic
of a Striebeck curve (Adapted from Ref. [145]). The kinetic friction coefficient is plot-
ted versus the Hersey number He = ηV/P . Three regimes : Boundary, Mixed, and
Hydrodynamic are usually found and schematized. In my PhD thesis, I focus on the
hydrodynamic and elastohydrodynamic regimes of lubrication.

in most general physics textbooks. An object, here in a form of a rectangular cuboid, is
standing on a table, in contact with the latter via a normal load equal to its gravitational
weight. The observation that one can make is that there is a certain minimal lateral force
that must be applied to the object for it to be displaced laterally. Otherwise, it “sticks”
to the surface. In addition, the minimal force is proportional to the normal force, which
is known as the Amantons-Coulomb law in tribute to the French scientists Guillaume
Amontons & Charles-Augustin de Coulomb [146, 147, 148]. The drawing in Fig. 2.1a) was
made by Leonardo da Vinci in 1493 who is likely to be the actual pioneer of modern
tribology1. The proportionality factor between the normal load and the minimal lateral
force is called the static friction coefficient and usually denoted µs. In addition, the
friction coefficient does not depend on the apparent area of contact.

If the force applied to the object is exceeding the minimal force, the object moves
with a given velocity and is subjected to a frictional force that resists the motion. The
kinetic friction force is again proportional to the normal load, and the proportionality
factor is called the kinetic friction coefficient µk which is generally smaller than the
static one. Friction is an important quantity in contact mechanics, and designing sur-
faces with a well-controlled friction coefficient is a great challenge in material science.
Usually, for industrial purposes, the goal is to minimize friction as it causes heating and

1Tribology is the name for the science of interacting surfaces in contact, that includes friction, lubrica-
tion and wear.
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damaging of the object2.
The main way of reducing friction is the addition of a liquid film, called a lubricant,

in between the two contacting objects. This strategy is known at least since the Ancient
Egypt civilization as seen in Fig. 2.1b). On this wall painting dated 1880 B.C. and found
in the tomb of Djehutihotep, a man is pouring liquid on the sand to lubricate the con-
tact in order to facilitate the sliding of a giant statue. We notice that there is still a open
debate on the precise reason of the use of the liquid, and some archaeologists have in-
terpreted it as being purely ceremonial [150]. Later on in history, the discovery of oil
in the 1860s in Pennsylvania (US) had a major impact on society. Besides the amazing
features of oil as an energy source, its use as a lubricant is argued as being one of the
most important technological outbreak of history, replacing animal grease, and allow-
ing the development of modern industry in the late 19th century [151]. Lubricants are
now widely spread in industry and used in roller bearings, pistons, and gears [152].
Lubrication is also encountered in various natural contexts such as in faults [153], and
landslides [154].

Regimes of friction

The effect of a lubricant on the kinetic friction coefficient is usually explained through
Stribeck curves, as schematized in Fig. 2.1c). The kinetic friction coefficient is plotted
versus the so-called Hersey number He = ηV/P , where η denotes the lubricant vis-
cosity, V the sliding velocity, and P is the normal force per unit length. Three regimes
are found in the friction coefficient. At small velocities, or high loading, the two solid
surfaces are in direct contact at few points given by the asperities of the surfaces. This
regime is called boundary lubrication and the friction coefficient is independent of the
velocity and is equal to the dry kinetic friction discussed above. At the other limit, at
high velocity or moderate loading, there is no direct contact between the solids that
are separated by a continuous liquid film. The effective friction coefficient is smaller
than in the boundary lubrication and increases with the velocity3. This regime is called
hydrodynamic lubrication. Moreover, in some cases, the hydrodynamic pressure gen-
erated by the flow may be sufficient to deform the surfaces elastically in a so-called
elastohydrodynamic (EHD) lubrication regime [152, 155], which is the main concern of
this chapter. Lastly, in between these two regimes is a mixed lubrication regime where
regions of continuous liquid film and regions of direct contact co-exist along the contact
area.

Frictional properties are central to interfacial soft condensed matter, at very differ-
ent pressure and velocity scales with respect to industrial lubricants. Notably, several
biomaterials such as eyelids [156], cartilaginous joints [157, 158], as well as biomimetic
gels [159] are found to have a remarkably low friction coefficient (down to 10−6), which
triggers a lot of questions at the frontier between biology and materials science. Indus-

2The amount of energy lost via friction and wear is estimated to be about 20− 30% of the total energy
consumption [149].

3It may eventually become larger than the dry-friction coefficient at very large velocity.
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trial soft materials such as rubbers [160, 161, 162, 163] are also studied.

2.1.3 Particle dynamics near soft surfaces

Elastohydrodynamic interactions

Besides the lubricated sliding of surfaces in contact, the motion of particles in the vicin-
ity of soft boundaries leads to other types of elastohydrodynamic lubrication interac-
tions. We highlight some examples here. First, the approach of two surfaces, that occurs
e.g. in the front collision between two soft spheres or the rebound of a sphere on a pla-
nar surface, requires the drainage flow of a thin lubrication film which is affected by
the softness of the surfaces [65, 164, 165]. Similarly, the separation of two surfaces leads
to a so-called viscous adhesion altered by the elastic properties of the solid [166, 167].
Secondly, dense suspensions, composed of colloidal particles immersed in a solvent,
are widely spread in nature and industry (e.g. mug, cream, ...). The flow of such com-
plex fluids implies at the microscopic level the relative motion of neighboring particles.
A better understanding of the resulting hydrodynamic interactions between particles,
including the role of the elastic properties of the latter, will help to understand the
macroscopic rheology of suspensions [160, 168]. Thirdly, EHD interactions have a po-
tential impact on the transport of biological entities. Indeed, the in vivo world is full of
examples of particles that move in a confined environment, such as red blood cells in
blood capillaries or vesicles inside cells [169, 170]. Lastly, contactless rheological meth-
ods have been recently introduced to measure the mechanical properties of confined
liquids and soft surfaces using Atomic Force Microscopy or Surface Force Apparatus.
These methods are based on the EHD interactions between a probe and a surface of
interest and are discussed in Chapter 1.

Elastohydrodynamic lift force

Perhaps the most emblematic example of soft-lubrication interaction is the non-inertial
lift force predicted for a particle sliding near a soft boundary [160, 171, 173, 174, 175,
176]. The origin of such a lift force is highlighted in Fig. 2.2a). A symmetric object
sliding along and near a rigid boundary experiences no vertical force. This can be
explained by the time-reversal symmetry of the Stokes equations. The object gener-
ates an antisymmetric pressure field in its direction of motion. However, for a soft
interface, the hydrodynamic pressure field deforms the surface, breaking the fore-aft
contact symmetry and inducing a lift force. The associated dynamical repulsion from
an immersed soft interface has been studied experimentally only recently. A prelimi-
nary qualitative observation was reported in the context of smart lubricants and elas-
tic polyelectrolytes [177]. Then, a study involving the sliding of an immersed macro-
scopic cylinder along an inclined plane pre-coated with a thin layer of gel, showed
quantitatively an effective reduction of friction induced by the EHD lift force [116].
Subsequently, the same effect was observed in the trajectories of micrometric spherical
beads within a microfluidic channel coated with a biomimetic polymer layer [178], and
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a) b)

c) d) e)

Viscous sliding + soft boundary = emergent lift

Integrating (4)–(6) leads to the dimensionless Reynolds
equation [5]:

0 ! @X"6H #H3@XP$: (7)

Since the gap pressure is much larger than the ambient
pressure, we may approximate the boundary conditions
on the pressure field as

P"1$ ! P"%1$ ! 0: (8)

Next, we consider the deformation of the elastic layer of
thickness Hl that rests on a rigid support. Balance of
stresses in the solid leads to

r&! ! 0; (9)

with the stress given by

! ! G"ru#ruT$ # !r&uI; (10)

where u ! "ux; uz$ is the displacement field and G and !
are the Lamé constants for the solid, which is assumed to
be isotropic and linearly elastic. To calculate the increase
in gap thickness H"x$, we use the analog of the lubrication
approximation in the solid layer [6]. The length scale in
the z direction is Hl and the length scale in the x direction
is

!!!!!!!!!

h0R
p

. We take the thickness of the solid layer to be
small compared to the thickness of the contact zone,
!!!!!!!!!

h0R
p ' Hl, and consider a compressible elastic material,
G( !, to find the vertical force balance: @zzuz ! 0. The
boundary condition at the solid-fluid interface is !&n !
%pn, so that "2G# !$@zuz"x; 0$ ! %p"x$. Using the zero
displacement condition at the interface between the soft
and rigid solid, uz"x;%Hl$ ! 0 leads to the following
expression for the displacement of the surface:

uz"x; 0$ ! % Hlp"x$
2G# !

: (11)

The dimensionless version of the gap thickness, h !
h0"1# x2

2h0R
% uz"x;0$

h0
$, is

H"X$ ! 1# X2 # "P"X$; (12)

where " ! !h=h0 ! "
!!!!!!

2R
p

Hl#V$=)h5=20 "2G# !$* is the
dimensionless parameter governing the size of the de-
flection. Inspired by the some recent experiments [7]
in a similar geometry, we consider a cylinder of radius
R ! 10 cm coated with a rubber layer (Hl ! 0:1 cm,
G ! 1 MPa) moving through water (# ! 1 mPa s, V !
1 cm=s, h0 ! 10%3 cm). Then " ! 10%2 + 1, so that we
may use the perturbation expansion P ! P0 # "P1,
where P0 is the antisymmetric pressure distribution
corresponding to an undeformed layer, and P1 is the
symmetric pressure perturbation induced by elastic de-
formation. Substituting (12) into (7) leads to the following
equations for P0; P1:

"0:@X)6"1# X2$ # "1# X2$3@XP0* ! 0; (13)

"1:@X)6P0 # 3"1# X2$2P0@XP0 # "1# X2$3@XP1* ! 0;
(14)

subject to the boundary conditions P0"1$ ! P0"%1$ !
P1"1$ ! P1"%1$ ! 0. Solving (13) and (14) yields

P ! 2X
"1# X2$2 # "

3"3% 5X2$
5"1# X2$5 : (15)

Then the normal force is

F !
Z 1

%1
PdX ! 3$

8
"; (16)

In dimensional terms, F ! )"3
!!!

2
p

$$=4*f"#2V2HlR3=2$=
)h7=20 "2G# !$*g; whose scaling matches the result re-
ported in [8], but with a different prefactor. When " is
not small, we solve (7), (8), and (12) numerically. Figure 2
shows that as " increases the mean gap increases and its
profile becomes asymmetric, resembling the profile of a
rigid slider bearing, a configuration well known to gen-
erate lift forces [4]. In addition, this increase in the gap
size causes the peak pressure to decrease since p(
"#VR1=2$=h3=20 . These two competing effects produce a
maximum lift force when " ! 2:06.

The physical basis for the previous arguments can be
more easily understood using scaling and therefore allows
us to generalize these results to a variety of configurations
involving lubrication of soft contacts (Fig. 3; Table I).
Balancing the pressure gradient in the gap with the vis-
cous stresses yields

p
l
(#V

h2
! p(#VR1=2

h3=2
: (17)

Substituting h ! h0 # !h, with !h + h0, we find that
the lubrication pressure is

FIG. 1. A rigid cylinder moves at a velocity V a distance h0
above a rigid substrate coated with an elastic layer of thickness
Hl. Hl; h0 +

!!!!!!!!!

h0R
p ! l. We illustrate the steps of the pertur-

bation analysis. (b) An antisymmetric pressure distribution
pushes down on the gel in front of and pulls the gel up be-
hind the cylinder. (c) The fore-aft gap profile symmetry is
broken. (d) The new pressure field produces a normal force.
(a) and (b) correspond to an undeformed substrate, while (c)
and (d) correspond to solutions of (7), (8), and (12) for
" ! "!h$=h0 ! 10.
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Figure 2.2: a) Principle of the Elastohydrodynamic lift force. The pressure field p(x)
induced by the sliding (velocity V ) of a symmetric object (e.g. cylinder or sphere) near a
rigid surface (top left) is antisymmetric with respect to direction of motion, as drawn in
the top right panel. Thus, the normal force applied on the object is null, as the pressure
field pushes and pulls with the same magnitude. However, if the substrate is soft, it
gets deformed as in the bottom right panel. The deformation of the boundary modifies
the resulting pressure field that is no-longer antisymmetric (bottom left), resulting in a
net lift force. Adapted from Ref. [171]. b) The free dynamics of a rigid cylinder sliding
and sedimenting near a soft wall is studied in Ref. [172]. Some resulting trajectories
are reproduced in panels c)-e) with different slopes (45◦ in c) and 0◦ in d)-e) as shown
in the inset) and initial conditions. The initial velocity and angular velocity are drawn
with black arrows, the magnitude indicated through the linewidth. The trajectories are
shown in grey.
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through the sedimentation of a macroscopic sphere near a pre-tensed suspended elastic
membrane [179]. Finally, measurements of the stresses between two sheared mica sur-
faces coated with a microgel surface revealed an out-of-equilibrium shear contribution
attributed to elastohydrodynamic [180].

Inertia-like dynamic at zero Reynolds number

In a recent theoretical study by Salez & Mahadevan [172], the dynamics of an im-
mersed free cylinder sliding over a soft inclined plane has been investigated [172] (see
Fig. 2.2b)). By assuming: i) small liquid gap with respect to the cylinder radius, ii)
small deformation of the planar surface with respect to the gap distance, iii) that the
soft surface response follows the Winkler foundation (see section 2.6.1), they derived
the equations of motion for the cylinder’s trajectories including rotation. A numer-
ical integration of the equations leads to intriguing particle trajectories, that depend
on the slope of the plane and the initial conditions. As an illustration, we reproduce
some of these trajectories in Fig. 2.2c)-e): a cylinder sedimenting on a 45◦ angle plane
oscillates before reaching its steady position where the elastohydrodynamic lift force
balances buoyancy [116]. A cylinder sliding and rotating over a flat surface may lift up
(see Fig. 2.2d)), following a Magnus-like effect that is usually found in ball sports [181],
or may follow a so-called spin-induced reversal for large initial rotational speed and
change the direction of its lateral motion (see Fig 2.2e)). These features are widely
spread in high Reynolds-number flows, e.g. in aeronautics, and may be recovered anal-
ogously here for viscous fluids due the action of soft boundaries.

Despite the increasing number of EHD studies involving spherical probes, and their
relevance in colloidal science, the soft-lubrication interactions of a free spherical object
immersed in a viscous fluid and moving near an elastic substrate still have to be calcu-
lated. In this chapter, we aim at filling this gap by deriving a soft-lubrication perturba-
tion theory.

The present chapter is organized as follows. First, we introduce the soft-lubrication
framework for a sphere translating near a soft planar surface, both in the normal and
tangential directions. As a first step, the substrate deformation is assumed to follow
the constitutive response of a linear elastic semi-infinite material. We then use a per-
turbative approach, assuming the substrate deformation to be small with respect to
the fluid-gap thickness, which allows us to find the normal and tangential forces as
well as the torque experienced by the sphere, at first order in dimensionless compli-
ance. In complement, the EHD forces and torques are computed using the Lorentz
reciprocal theorem, allowing for analytical results. We discuss the effect of the rota-
tion of the sphere. In a second step, we focus on the compressible and incompressible
responses of thin materials and compute the corresponding EHD forces. Lastly, we
present some experimental measurements of the elastohydrodynamic lift force acting
on a sphere moving within a viscous liquid and along a soft substrate, under nano-
metric confinement, showing good agreement with the aforementioned theory in the
small-deformation limit. Some numerical calculations are introduced to discuss the
large-deformation regime observed experimentally.
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Figure 2.3: Schematic of the system. A rigid sphere of surface S0 is freely moving in a
viscous fluid, near a soft wall of surface Sw in the flat undeformed state. The lubrication
pressure field deforms the latter which induces an elastohydrodynamic coupling, with
forces and torque exerted on the sphere.

2.2 Elastohydrodynamic model

The system is depicted in Fig. 2.3. We consider a sphere of radius a, immersed in a New-
tonian fluid of dynamic shear viscosity η and density ρ. The sphere is moving with a
tangential velocity u(t) = u(t) ex directed along the x-axis (by definition of the latter
axis), where ej denotes the unit vector along j. In this first section, we assume that the
sphere does not rotate, i.e. the angular velocity reads Ω = 0. The sphere is placed at a
time-dependent distance d(t) (thus a ḋ ez vertical velocity of the sphere) of a isotropic
and homogeneous elastic substrate of Lamé coefficients λ and µ, with a reference un-
deformed flat surface in the xy plan at z = 0. We suppose that the sphere-wall distance
is small with respect to the sphere radius, such that the lubrication approximation is
valid. Fluid inertia is neglected here as we assume Re(d/a) � 1, where the Reynolds
number is Re = ρua/η. Furthermore, we suppose that the typical time scale of variation
of the sphere velocity is much larger than the diffusion time scale of vorticity that scales
as d2/(η/ρ), such that the fluid follows the steady Stokes equations. This amounts to
assume |ρu̇/u| � η/d2 and |ρd̈/ḋ| � η/d2. No-slip boundary conditions are assumed
at both the sphere and wall surfaces. Finally, the system is equivalent to a sphere at rest
near a wall translating with a −(d(t)ez + u(t)) velocity. In such a framework, the fluid
velocity field can be written as:

v(r, z, t) =
∇p(r, t)

2η
(z − h0(r, t))(z − δ(r, t))− u(t)

h0(r, t)− z
h0(r, t)− δ(r, t) , (2.1)

where r = (r, θ) is the position in the tangential plane xy, ∇ is the 2d gradient operator
on xy, δ(r, t) is the substrate deformation, and z = h0(r, t) is the sphere surface. Near
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contact, the latter can be approximated by its parabolic expansion h0(r, t) ' d(t) +
r2/(2a). Volume conservation further leads to the Reynolds equation:

∂th(r, t) = ∇ ·
(
h3(r, t)

12η
∇p(r, t) +

h(r, t)

2
u(t)

)
, (2.2)

where h(r, t) = h0(r, t)−δ(r, t) is the fluid-gap thickness. In the sections 2.2 to 2.5 of the
chapter, we assume that the constitutive elastic response is linear and instantaneous,
and that the substrate is a semi-infinite medium, such that the deformation reads:

δ(r, t) = − (λ+ 2µ)

4πµ(λ+ µ)

∫

R2

d2x
p(x, t)

|r − x| . (2.3)

We non-dimensionalize the problem through:

h(r, t) = d∗H(R, T ), r =
√

2ad∗R, d(t) = d∗D(T ), δ(r, t) = d∗∆(R, T ), (2.4)

p(r, t) =
ηc
√

2ad∗

d∗2
P (R, T ), u(t) = cU(T ) ex, v = cV , t =

√
2ad∗

c
T. (2.5)

where d∗ and c are characteristic fluid-gap distance and lateral velocity, respectively.
The governing equations are then:

12∂TH(R, T ) = ∇ ·
(
H3(R, T )∇P (R, T ) + 6H(R, T )U(T )

)
, (2.6)

H(R, T ) = D(T ) +R2 −∆(R, T ), (2.7)

and:

∆(R, T ) = −κ
∫

R2

d2X
P (X, T )

4π|R−X| , (2.8)

where we introduced the dimensionless compliance:

κ =
2ηca(λ+ 2µ)

d∗2µ(λ+ µ)
. (2.9)

The latter is the only dimensionless parameter in the problem. When κ is small with
respect to unity, it corresponds to the ratio between two length scales: the typical sub-
strate deformation δ ∼ 2ηca(λ+2µ)

d∗µ(λ+µ) induced by a lateral velocity c, and the typical fluid-
gap thickness d∗. In most of the present chapter, we focus on the small-deformation
regime of soft-lubrication where κ � 1 [182]. Some discussions on the intermediate-
to-large-deformation regime are provided in section 2.7.3 with numerical solutions of
Eqs. (2.2) and (2.3).
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2.3 Perturbation theory

We perform a perturbation analysis at small κ [160, 171, 172, 173, 174, 175, 176, 183, 184,
185], as follows:

H(R, T ) = H0(R, T ) + κH1(R, T ) +O(κ2), (2.10)

P (R, T ) = P0(R, T ) + κP1(R, T ) +O(κ2), (2.11)

where the subscript 0 corresponds to the solution for a rigid wall, with H0(R, T ) =
D(T ) +R2.

2.3.1 Zeroth-order solution

Equation (2.6) reads at zeroth order O(κ0):

12Ḋ = ∇ ·
(
H3

0∇P0 + 6H0U

)
. (2.12)

In polar coordinates, Eq. (2.12) can be rewritten as:

L.P0 = R2∂2
RP0+

(
R+

6R3

D +R2

)
∂RP0+∂2

θP0 =
R2

(D +R2)3

(
12Ḋ−12R cos θ U

)
, (2.13)

where L is a linear operator. We solve this equation, using an angular-mode decompo-
sition:

P0(R, T ) = P
(0)
0 (R, T ) + P

(1)
0 (R, T ) cos θ, (2.14)

where the two coefficients are solutions of the ordinary differential equations:

R2 d2P
(0)
0

dR2
+

(
R+

6R3

D +R2

)
dP (0)

0

dR
= 12

R2Ḋ

(D +R2)3
, (2.15)

R2 d2P
(1)
0

dR2
+

(
R+

6R3

D +R2

)
dP (1)

0

dR
− P (1)

0 = −12
R3U

(D +R2)3
. (2.16)

In accordance with the boundary conditions, P (R → ∞) = 0 and P (R = 0) < ∞, the
solution is thus:

P0(R, T ) = − 3Ḋ

2(D +R2)2
+

6RU cos θ

5(D +R2)2
. (2.17)

The substrate deformation H1 can then be computed from Eq. (2.8) at order O(κ):

H1(R, T ) =

∫

R2

d2X
P0(X, T )

4π|R−X| . (2.18)

Using e.g. the spatial Fourier transform H̃1(K) =
∫
R2 H1(R)e−iR·Kd2R, and the con-

volution theorem, we find:

H1(R, T ) = − 3Ḋ

8
√
D

E(−R2/D)

D +R2
+

3U

10R
√
D

(
−D E(−R2/D)

D +R2
+K(−R2/D)

)
cos θ, (2.19)
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Figure 2.4: Dimensionless deformation field on the xy plane, for a sphere at a unit
distance D = 1. In a), the sphere velocity is directed tangentially to the plane, along the
x-axis, with U = 1, as indicated by the black arrow. In b) the sphere is approaching the
plane with a unit velocity Ḋ = −1.

whereK and E are complete elliptic integrals of the first and second kinds [186]. The di-
mensionless hydrodynamically-induced substrate deformations are plotted in Fig 2.4.
In Fig 2.4a), the sphere is moving tangentially to the plane only with a unit velocity
U = 1. The deformation exhibits a “dipolar” symmetry with a negative component at
the front of the sphere. The isotropic term generated by a sphere moving perpendicu-
larly to the plane is shown in Fig. 2.4b). In particular, for a sphere approaching a soft
substrate, the deformation is negative, i.e. an indentation of the substrate.

2.3.2 First-order solution

We can now compute the pressure field P1, from Eq. (2.6) at order O(κ):

12∂TH1 = ∇ ·
(
H3

0∇P1 + 3H2
0H1∇P0 + 6H1U

)
. (2.20)

Invoking the same linear operator L as in Eq. (2.13), we can rewrite Eq. (2.20) as:

L.P1 =
R2

H3
0

(
12∂TH1 −∇ ·

[
3H2

0H1∇P0 + 6H1U

])
. (2.21)

We then expand all the terms in the right-hand side of Eq. (2.21), and we perform once
again the angular-mode decomposition:

L.P1 = F0(R, T ) + F1(R, T ) cos θ + F2(R, T ) cos 2θ, (2.22)
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where we have introduced the auxiliary functions:

F0(R, T ) =
18R2U2

25D1/2(D +R2)6

[
(−10D2 + 2DR2) E

(
−R

2

D

)

+ (8D2 + 7DR2 −R4)K
(
−R

2

D

)]

+
9R2Ḋ2

4D3/2(D +R2)6

[
(13D2 + 3R2D + 2R4) E

(
−R

2

D

)

+ (−4D2 − 5R2D −R4)K
(
−R

2

D

)]

−
9R2D̈ E

(
−R2

D

)

2D1/2(D +R2)4
,

(2.23)

and:

F1(R, T ) = − 27RUḊ

5D1/2(D +R2)6

[
(−2D2 + 7DR2 +R4) E

(
−R

2

D

)

+ 2(D +R2)(D −R2)K
(
−R

2

D

)]

− 18RU̇

5D1/2(D +R2)4

[
−D E

(
−R

2

D

)
+ (D +R2)K

(
−R

2

D

)]
.

(2.24)

Note that we have not provided the full expression of F2 as it does not contribute in the
forces and torque. Invoking the angular-mode decomposition P1(R, T ) = P

(0)
1 (R, T ) +

P
(1)
1 (R, T ) cos θ + P

(2)
1 (R, T ) cos 2θ, we get in particular:

R2 d2P
(0)
1

dR2
+

(
R+

6R3

D +R2

)
dP (0)

1

dR
= F0(R, T ), (2.25)

R2 d2P
(1)
1

dR2
+

(
R+

6R3

D +R2

)
dP (1)

1

dR
− P (1)

1 = F1(R, T ). (2.26)

Using scaling arguments, we can write the two relevant first-order pressure compo-
nents P (i)

1 as:

P
(0)
1 =

U2

D7/2
φU2(R/

√
D) +

Ḋ2

D9/2
φḊ2(R/

√
D) +

D̈

D7/2
φD̈(R/

√
D), (2.27)

and:

P
(1)
1 =

UḊ

D4
φUḊ(R/

√
D) +

U̇

D3
φU̇ (R/

√
D), (2.28)

where the φi are five dimensionless scaling functions that depend on the self-similar
variable R/

√
D only. Equations (2.27) and (2.28) can be solved numerically with a
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Figure 2.5: Scaling functions for P (0)
1 (see Eq. (2.27)), obtained from numerical in-

tegration of Eq. (2.25), with the boundary conditions ∂RP
(0)
1 (R = 0, T ) = 0 and

P
(0)
1 (R→∞, T ) = 0.
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Figure 2.6: Scaling functions for P (1)
1 (see Eq. (2.28)), obtained from numerical integra-

tion of Eq. (2.26), with the boundary conditions P (1)
1 (R = 0, T ) = 0 and P

(1)
1 (R →

∞, T ) = 0.

Runge-Kutta algorithm, and a shooting parameter in order to ensure the boundary con-
dition P1(R → ∞, θ, T ) = 0. All the scaling functions are plotted in Figs. 2.5 and 2.6.

As a remark, we recall that the surface deformation is induced by the flow, and
is linear in the velocity field (see Eq. (2.17)). Volume conservation equation involves
the time derivative of the fluid-layer thickness and therefore the time derivative ∂tδ of
the surface deformation (see Eq. (2.2)). Thus, solving for the first-order EHD pressure
field, we find terms proportional to the acceleration components of the sphere D̈ and
U̇ , despite considering a steady Stokes flow.

2.3.3 Resulting force

The force F exerted by the fluid on the sphere is given by:

F =

∫

S0
n · σ ds, (2.29)
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where σ = −pI + η(∇v + ∇vT) is the fluid stress tensor, n is the unit vector normal to
the sphere surface and pointing towards the fluid, and I is the identity tensor. Within
the lubrication approximation, the fluid stress tensor reads σ ' −pI + ηez∂zv. One can
then evaluate the vertical force as:

Fz =

∫

R2

p(r) d2r =− 6πηa2ḋ

d
+ 0.41623

η2u2(λ+ 2µ)

µ(λ+ µ)

(
a

d

)5/2

− 41.912
η2ḋ2(λ+ 2µ)

µ(λ+ µ)

(
a

d

)7/2

+ 18.499
η2d̈a(λ+ 2µ)

µ(λ+ µ)

(
a

d

)5/2

,

(2.30)

where the prefactors have been found numerically using Eq. (2.27). We recover the clas-
sical Reynolds force −6πηa2ḋ/d at zeroth order. Tangential motions do not induce any
vertical force at zeroth order in κ, as the corresponding pressure field is antisymmetric
in x (see Eq. (2.13)), but induce a lift force at first order in κ. Interestingly, vertical veloc-
ities generate a viscous adhesive force at first order in compliance [167]. Furthermore,
a EHD force proportional to the sphere vertical acceleration is also found as discussed
previously.

Similarly, at leading order in the lubrication parameter d/a, the tangential force
reads:

F‖ =

∫

R2

(
− p(r, t)r

a
− η∂zv

)

z=h0(r,t)

d2r. (2.31)

Using symmetry arguments, we can show that the tangential force is directed along
x, i.e. F‖ = Fx ex. At small κ, we further expand it as Fx ' Fx,0 + κFx,1, where Fx,0
is the viscous drag force applied on a sphere near a rigid plane wall, and κFx,1 is the
first-order EHD correction. The zeroth-order term cannot be evaluated using the lu-
brication model introduced in the previous section, because the integral in Eq. (2.31)
diverges, as the shear term η∂zv scales as ∼ r−2 at large r. An exact calculation has
been performed in Ref. [137] using bispherical coordinates and provides a solution in
the form of a series expansion. Asymptotic-matching methods have also been em-
ployed in order to get the asymptotic behavior at small d/a [187, 188], which reads

Fx,0 ≈ 6πηau

(
8
15 log

(
d
a

)
− 0.95429

)
(see [189] for high-precision expansion). We no-

tice that the sphere vertical velocity does not contribute to the zeroth-order lateral force
by symmetry. Nevertheless, the first-order EHD correction can be computed with the
present model, as the correction pressure field and shear stress scale as ∼ r−5, at large
r. It reads:

Fx,1 = 2πηca

∫ ∞

0

[
− 2RP

(1)
1 − H0

2

(
∂RP

(1)
1 +

P
(1)
1

R

)

− H
(1)
1

2
∂RP

(0)
0 − H

(0)
1

2

(
∂RP

(1)
0 +

P
(1)
0

R

)
+ 2

UH
(0)
1

H2
0

]
RdR,

(2.32)
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where H(i)
1 , with i = 0, 1, is the amplitude of the ith mode in the angular-mode decom-

position of H1. Evaluating the latter integral numerically, we find:

Fx ≈6πηau

(
8

15
log

(
d

a

)
− 0.95429

)

− 10.884
η2uḋ(λ+ 2µ)

µ(λ+ µ)

(
a

d

)5/2

+ 0.98661
η2u̇a(λ+ 2µ)

µ(λ+ µ)

(
a

d

)3/2

.

(2.33)

The torque exerted by the fluid on the sphere, with respect to its center of mass, is given
by:

T =

∫

S0
an× (n · σ) ds. (2.34)

The latter is directed along the y direction for symmetry reasons, i.e. T = Ty ey. At
small κ, we further expand it as Ty ' Ty,0 + κTy,1. For the same reason as with the
the viscous drag force near a rigid wall, the viscous torque near a rigid wall cannot be
computed within the lubrication model. Using asymptotic-matching methods [187], it

is found to be Ty,0 ≈ 8πηua2

(
− 1

10 log
(
d
a

)
− 0.19296

)
. However, the leading-order

EHD correction can be computed with the present model, and reads:

Ty,1 = −2ηca2π

∫ ∞

0

[
H0

2

(
∂RP

(1)
1 +

P
(1)
1

R

)
+
H

(1)
1

2
∂RP

(0)
0

+
H

(0)
1

2

(
∂RP

(1)
0 +

P
(1)
0

R

)
+ 2

UH
(0)
1

H2
0

]
RdR.

(2.35)

Evaluating the latter integral numerically, we find:

Ty ≈ 8πηua2

(
− 1

10
log

(
d

a

)
− 0.19296

)

+ 10.884
η2uaḋ(λ+ 2µ)

µ(λ+ µ)

(
a

d

)5/2

− 0.98661
η2u̇a2(λ+ 2µ)

µ(λ+ µ)

(
a

d

)3/2

.

(2.36)

So far, a numerical solution of the EHD flow has been obtained leading to a nu-
merical calculation of the force and torque applied on the sphere. However, recently,
an additional method has been introduced in the purpose of computing the force and
torque only, using the Lorentz reciprocal theorem [144, 179, 184, 190]. In the next sec-
tion, we introduce the Lorentz reciprocal theorem and show how it may be used in
order to get the prefactors of Eqs. (2.30), (2.33) and (2.36) analytically.

2.4 Reciprocal theorem

2.4.1 Introduction

Reciprocity is a general concept in physics. To give an idea of its meaning, we start
with a famous example in acoustic. The acoustic reciprocity principle states that the
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sound received by a receptor B from a source in A is identical to the one of the situ-
ation where the source and receptor are interchanged[191]. Said in a trivial way, “if
you can hear me, I can hear you”. The same principle holds in optics. However, reci-
procity is not restricted to the wave propagating problems cited above, and one can
find reciprocal theorems in other fields of physics and engineering such as : i) in elec-
tromagnetism via the Rayleigh-Carson reciprocity theorem [192, 193], ii) in elasticity via
the Maxwell–Betti reciprocal work theorem [194], iii) in heat and mass transport [144].
It is usually written as a relation between the fields of any couple of solutions of the
problem (e.g. Maxwell equations in electromagnetism) that share the same geometry.
In general, a reciprocal theorem applies in equilibrium systems, when the fields are
related through linear Hermitian operators.

A reciprocal theorem appeared in fluid mechanics in the late nineteenth century,
and is attributed to the Dutch physicist Hendrik Lorentz [195]. In particular, two theo-
rems exist in both low-Reynolds and high-Reynolds number flows and has been used
in many contexts. To give a few examples, the reciprocal theorem allowed to set the
basis for and develop the Boundary Element Methods to solve numerically the Stokes
equation [138], and is a fantastic tool to compute the force applied on a particle in a
flow including the effects of inertia, geometry, porosity, slip, self-propulsion, etc... See
the recent review by Masoud & Stone [144] for a complete description. The great ad-
vantage of the so-called Lorentz reciprocal theorem is the simplicity of the resulting
equation that consists of surface integrals on the boundary of the fluid domain. The
fluid mechanics equations are generally a boundary value problem, with well-defined
boundary conditions. Therefore, the Lorentz reciprocal theorem allows getting infor-
mation about surface integrals such as the force and torques that are exerted by the
fluid on an object, without the precise knowledge of the entire flow field. In particular,
such methods have been introduced recently in soft lubrication to compute the EHD
forces and torque on a cylinder and a sphere near a soft surface [179, 184, 190].

In the following subsections, we make use of the Lorentz reciprocal theorem for
Stokes flows to compute the leading-order EHD forces that apply to the sphere. In the
section 1.4.3, the Lorentz reciprocal theorem is used to investigate the influence of fluid
inertia on a sphere oscillating perpendicularly to a planar surface.

2.4.2 Normal force

In this first part, we focus on the normal force exerted on the particle, and the lateral
force is computed in section 2.4.3. To do so, we introduce the model problem of a sphere
moving in a viscous fluid and towards an immobile, rigid, planar surface. We note
V̂⊥ = −V̂⊥ez the velocity at the particle surface S0, and we assume a no-slip boundary
condition at the undeformed wall surface Sw located at z = 0 (see Fig. 2.3). The viscous
stress and velocity fields of the model problem follow the steady, incompressible Stokes
equations ∇ · σ̂⊥ = 0 and ∇ · v̂⊥ = 0, and we use the lubrication approximation. In
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this framework, the stress tensor is σ̂⊥ ' −p̂⊥I + ηez∂zv̂⊥, with:

p̂⊥(r) =
3ηV̂⊥a

ĥ2(r)
, v̂⊥(r, z) =

∇p̂⊥(r)

2η
z(z − ĥ(r)), ĥ(r) = d+

r2

2a
. (2.37)

The Lorentz reciprocal theorem states that:
∫

S
n · σ · v̂⊥ ds =

∫

S
n · σ̂⊥ · v ds, (2.38)

where S = S0 + Sw + S∞ is the total surface bounding the flow, and S∞ is the surface
located at r → ∞. The latter does not contribute here. Using the boundary conditions
for the model problem, we get:

V̂⊥ · F = −V̂⊥Fz =

∫

S
n · σ̂⊥ · v ds. (2.39)

To find the force exerted on the sphere in the real problem, one needs to specify the
boundary conditions for the velocity field v which is the only unknown here. We as-
sume that the sphere does not rotate, as in section 2.3, and we recall that the flow is
given in the translating frame of the particle. The no-slip boundary condition thus
reads v = 0 on S0. To perform the calculation here, we further assume a small de-
formation of the wall, so that the velocity field at the undeformed wall surface can be
obtained using the Taylor expansion:

v|z=0 ' v|z=δ − δ∂zv0|z=0

' −uex − ḋez + (∂t − u∂x)δez − δ∂zv0|z=0,
(2.40)

where v0 is the zeroth-order velocity field near a rigid surface and where the kine-
matic condition is used. The Taylor expansion performed above is equivalent to the
perturbation theory introduced in section 2.3. Using the zeroth-order flow computed
in section 2.3.1, we find:

∂zv0|z=0 = − 3ḋr

(d+ r2

2a)2
er +

2u

5(d+ r2

2a)

((
7− 6d

d+ r2

2a

)
cos θer − sin θeθ

)
. (2.41)

Combining Eqs. (2.37) and (2.39), we find the vertical force:

Fz =
1

V̂⊥

∫

R2

(
p̂⊥(−ḋ+ ∂tδ − u∂xδ) + η∂zv̂⊥|z=0 · ∂zv0|z=0δ

)
dr. (2.42)

The integrals are computed in Fourier space, using the Parseval’s theorem,
∫
R2 f(R)g(R)d2R =∫

R2 f̃(K)g̃∗(K)d2K/(2π)2, and we recover the same expression as in Eq. (2.30), that
reads:

Fz =− 6πηa2ḋ

d
+

243π3

12800
√

2

η2u2(λ+ 2µ)

µ(λ+ µ)

(
a

d

)5/2

− 3915π3

2048
√

2

η2ḋ2(λ+ 2µ)

µ(λ+ µ)

(
a

d

)7/2

+
27π3

32
√

2

η2d̈a(λ+ 2µ)

µ(λ+ µ)

(
a

d

)5/2

.

(2.43)
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Details of the calculations are provided in Appendix A. The prefactors found here are
in very good agreement with the numerical integration in section 2.3.3, confirming both
methods.

2.4.3 Lateral force

In order to compute the lateral force acting on the particle, we apply the Lorentz re-
ciprocal theorem, but introducing a different model problem with respect to the latter
section. We consider a sphere translating parallel to a rigid immobile plane, with a
velocity V̂‖ along the x-axis, with no-slip boundary conditions at both the sphere and
plane surfaces. The velocity and stress fields are denoted σ̂‖ and v̂‖ respectively and
are solutions of the Stokes equations. The lubrication approximation is used here, and
the solution reads:

p̂‖(r) =
6ηV̂‖r cos θ

5ĥ2(r)
, v̂‖(r, z) =

∇p̂‖(r)

2η
z(z − ĥ(r)) + V̂‖

z

ĥ(r)
, (2.44)

as shown in the section 2.3.1, for the same problem written in the reference frame of the
sphere. The Lorentz reciprocal theorem leads to:

V̂‖ · F = V̂‖Fx =

∫

S
n · σ̂‖ · v ds. (2.45)

Using the lubrication expression of the stress tensor of the model problem, σ̂‖ ' −p̂‖I+
ηez∂zv̂‖, we get an expression for the lateral force as:

Fx =
1

V̂‖

∫

R2

[
− η∂zv̂‖ · u(t)ex − p̂‖(∂t − u(t)∂x)δ − η(∂zv̂‖ · ∂zv0)δ

]
dr. (2.46)

For the same reason as the one invoked in section 2.3.3, the zeroth-order tangential drag
force (term in −η∂zv̂‖ · u(t)ex in Eq. (2.46)) cannot be computed here as the integral
diverges within the lubrication approximation. However, the first-order EHD force,
denoted Fx,1, converges and is computed in Fourier space using Parseval’s theorem.

κFx,1 = − 3177π3

6400
√

2

η2uḋ(λ+ 2µ)

µ(λ+ µ)

(
a

d

)5/2

+
9π3

200
√

2

η2u̇a(λ+ 2µ)

µ(λ+ µ)

(
a

d

)3/2

. (2.47)

The details of the calculation are provided in Appendix A, and the prefactors are in
very good agreement with the numerical calculations in section 2.3.3.

2.5 Rotation of the sphere

We now add the rotation of the sphere, with angular velocity Ω(t) in the xy plane (see
Fig. 2.3), to the previous translational motion. We define β as the angle between Ω and
the x-axis. We stress that Ω is not necessarily orthogonal (i.e. β = π/2) to the translation
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velocity. We discard the rotation along the z-axis (e.g. for a spinner), because it does
not induce any soft-lubrication coupling. Finally, the system is equivalent to a purely
rotating sphere with angular velocity Ω(t), near a wall translating with a−u(t) velocity.
In such a framework, the fluid velocity field at the sphere surface is v = −Ω× an, and
thus v ' Ω × aez at leading order in the lubrication parameter. All together, the fluid
velocity field is modified as:

v(r, z, t) =
∇p(r, t)

2η
(z − h0(r, t))(z − δ(r, t))− u(t)

h0(r, t)− z
h0(r, t)− δ(r, t)

+ aΩ(t)× ez
z − δ(r, t)

h0(r, t)− δ(r, t) ,
(2.48)

and the Reynolds equation becomes:

∂th(r, t) = ∇ ·
(
h3(r, t)

12η
∇p(r, t) +

h(r, t)

2

[
u(t)− aΩ(t)× ez︸ ︷︷ ︸

ũ

])
. (2.49)

The problem is thus formally equivalent to the one of a sphere that is purely translating
with effective velocity ũ(t) = u(t) − aΩ(t) × ez . Therefore, we can directly apply the
results from the previous sections, and write all the forces and torque exerted on the
sphere, as:

Fz =− 6πηa2ḋ

d
+

243π3
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η2|u− aΩ× ez|2
µ

(
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µ
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,

(2.50)

F‖ = 6πηau

[
8

15
log

(
d

a

)
− 0.95429

]
+ 6πηa2ez ×Ω

[
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]
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(2.51)

and:

T‖ = 8πηa2ez × u
[
− 1

10
log
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d

a

)
− 0.19296

]
+ 8πηa3Ω

[
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6400
√

2

η2(u− aΩ× ez)aḋ
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(2.52)

where we have invoked the force and torque induced by the rotation of a sphere near a
rigid wall [176, 188].
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Figure 2.7: Dimensionless deformation field on the xy plane for a thin substrate, using
the same representation as in Fig. 2.4. In a) and b) the soft surface mechanical response
follows the Winkler foundation of Eq. (2.53), while in c) and d) the surface mechanical
response is the one of a thin incompressible layer, see Eq. (2.64).

2.6 Response of thin-elastic layers

So far, we have focused on the situation where the mechanical response of the surface
is the one of a thick elastic material, modeled as a semi-infinite elastic medium. How-
ever, thin elastic materials such as polymer thin films (see Part II) are widely spread
in material sciences and biology. As a result, we investigate the EHD interactions ex-
erted on a sphere immersed in a viscous fluid and near a thin compressible substrate in
section 2.6.1 and a thin incompressible substrate in section 2.6.2 (see section 1.1.4).

2.6.1 Compressible elastic material

In this section, we derive the EHD interactions exerted on a sphere immersed in a vis-
cous fluid and near a thin compressible substrate of thickness hsub. The deformation
field follows the Winkler foundation [66]:

δ(r, t) = − hsub

(2µ+ λ)
p(r, t), (2.53)

which is valid for substrates of thickness smaller than the typical lateral extent of the
pressure field, namely the hydrodynamic radius

√
2ad [60, 196, 197]. We perform the

same asymptotic expansion as the one in section 2.3, defining the Winkler dimension-
less compliance as [172]:

κW =

√
2hsubηca

1/2

d∗5/2(2µ+ λ)
. (2.54)
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The substrate deformation, or equivalently here the zeroth-order pressure, reads:

HW
1 (R, T ) = P0(R, T ) =

3Ḋ

2(D +R2)2
+

6RU cos θ

5(D +R2)2
. (2.55)

The deformation field is plotted in Fig. 2.7a) and b) for lateral and vertical motions
of the sphere respectively. The deformation exhibits the same structure as the one in
Fig. 2.4 for semi-infinite substrates, but the lateral extent of the deformation is nar-
rower. This is expected as the deformation field induced by an applied load for a thin-
compressible layer is local (see Eq. (2.53)), while a semi-infinite substrate displays non-
local effects via its Green’s function (see Eq. (2.3)). The first-order pressure correction
follows the same type of equation as in section 2.3:

L.PW
1 = FW

0 (R, T ) + FW
1 (R, T ) cos θ + FW

2 (R, T ) cos 2θ, (2.56)

with:

FW
0 (R, T ) = − 144R2U2

25(D +R2)7

[
D2 − 6DR2 +R4

]
+

18R2Ḋ2

(D +R2)7

[
5D − 4R2

]
− 18R2D̈

(D +R2)5
,

(2.57)
and:

FW
1 (R, T ) =

216R3UḊ

5(D +R2)7

[
− 5D +R2

]
+

72RU̇

5(D +R2)5
. (2.58)

We note that FW
2 does not contribute for the forces and torque, as in section 2.3. The

isotropic component of the pressure can be found analytically, using polynomial frac-
tions, as:

P
W,(0)
1 (R, T ) =

9

125

7− 5Y 2

(1 + Y 2)5

U2

D4
− 3

40

71 + 55Y 2 + 30Y 4

(1 + Y 2)5

Ḋ2

D5
+

3

2

1

(1 + Y 2)3

D̈

D4
, (2.59)

where Y = R/D1/2 is the self-similar variable. However, the first angular component
of the pressure does not exhibit such an analytical solution, and is thus found as in
section 2.3 by numerical integration of two scaling functions:

P
W,(1)
1 (R, T ) =

UḊ

D9/2
φW
UḊ

(
R

D1/2

)
+

U̇

D7/2
φW
U̇

(
R

D1/2

)
. (2.60)

Following the same calculation as in section 2.3, we find the vertical force as:

FW
z = −6πηa2ḋ

d
+

48π
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η2u2hsub

a(2µ+ λ)
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. (2.61)

We stress that the prefactors 48π/125 and 6π are in agreement with the results obtained
in Refs. [175] and [60], respectively. Similarly, the force along x reads:

FW
x = 6πηau
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,

(2.62)
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which has been computed using the Lorentz reciprocal theorem following the sec-
tion 2.4.3. The torque can be evaluated as well, and reads:

TW
y = 8πηua2

(
− 1
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d
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)
− 0.19296

)
+
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(2µ+ λ)
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− 12π
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(2µ+ λ)

(
a

d

)2

.

(2.63)
Finally, following section 2.5, it is straightforward to generalize Eqs. (2.61), (2.62) and (2.63)
in order to incorporate rotation.

2.6.2 The incompressible limit

Here, we suppose that the substrate of thickness hsub is incompressible, i.e. of Poisson
ratio ν = λ

2(λ+µ) = 1/2, which means that the first Lamé coefficient λ is infinite. In this
situation, the Winkler foundation is not valid. Instead, the mechanical response of a
thin substrate follows the relation ([60, 196]):

δ(r, t) =
h3

sub
3µ

∇2p(r, t), (2.64)

where ∇2 denotes the 2d Laplacian operator. We perform the same asymptotic expan-
sion as the one in section 2.3, defining the thin-incompressible dimensionless compli-
ance as:

κt-i =
ηch3

sub

3
√

2µd∗7/2a1/2
. (2.65)

The substrate deformation reads:

H t-i
1 (R, T ) = −∇2P0(R, T ) = −12Ḋ(D − 2R2)

(D +R2)4
+

48RU(2D −R2) cos θ

5(D +R2)4
. (2.66)

The deformation fields is plotted in Figs. 2.7c) and d). The first-order pressure correc-
tion follows the same type of equation as in section 2.3:

L.P t-i
1 = F t-i

0 (R, T ) + F t-i
1 (R, T ) cos θ + F t-i

2 (R, T ) cos 2θ, (2.67)

with:

F t-i
0 (R, T ) =

1152R2U2
(
R2 − 2D

) (
+2D2 − 11R2D + 2R4

)

25 (D +R2)9
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(D +R2)7 ,

(2.68)

and:

F t-i
1 (R, T ) = −2592R3ḊU

(
7D2 − 12R2D +R4

)

5 (D +R2)9 − 576R3U̇
(
−2D +R2

)

5 (D +R2)7 . (2.69)
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We note that F t-i
2 does not contribute for the forces and torque, as in section 2.3. The

isotropic component of the pressure can be found analytically, using polynomial frac-
tions, as:

P
t-i,(0)
1 (R, T ) =

288
(
7Y 4 − 21Y 2 + 17
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875 (1 + Y 2)7
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D̈

D5
, (2.70)

where Y = R/D1/2 is the self-similar variable. However, the first angular component
of the pressure does not exhibit such an analytical solution, and is thus found as in
section 2.3 by numerical integration of two scaling functions:

P
t-i,(1)
1 (R, T ) =

UḊ
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. (2.71)

Following the same calculation as in section 2.3, we find the vertical force as:

F t-i
z = −6πηa2ḋ
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+
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(2.72)
We stress that the prefactor 12π/5 is consistent with the linear-response theory in [60].
Similarly, the force along x reads:

F t-i
x = 6πηau
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The torque can be evaluated as well, and reads:

T t-i
y = 8πηua2
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(2.74)
Here again, the prefactors of the lateral force and torque are found using the Lorentz re-
ciprocal theorem as discussed in section 2.4. We shall notice that the thin-incompressible
limit is valid mathematically for purely incompressible substrates, but its range of ap-
plication is limited in practice. Usual elastomers or gels, that are considered as almost
incompressible, have a Poisson ratio of order ν ' 0.49, and thus a tiny compressibil-
ity. In recent articles, it has been shown that the mechanical response of thin elastic
substrates is better described by the Winkler foundation derived in section 2.6.1 than
the thin-incompressible limit discussed here [196]. An empirical scaling, based on the
full numerical solution of the EHD lift coefficient has been derived and suggests that
the thin-incompressible model is valid for thicknesses that are comprised in the range√

7
3 (1/2 − ν)1/2 � hsub/

√
2ad ≤ 0.12 [197]. For ν = 0.49, the lower bound of the latter

window is 0.088, which confirms that the validity range of such models is quite limited.
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Figure 2.8: Schematic of the experimental setup. The soft PDMS sample is fixed to a
rigid piezo stage that is transversally oscillated along time t, at angular frequency ω,
and with amplitude A. A rigid borosilicate sphere is glued to an AFM cantilever and
placed near the substrate, with silicone oil or 1-decanol as a viscous liquid lubricant.
The normal force FN exerted on the sphere, at a gap distance d from the surface, is
directly measured from the deflection of the cantilever.

2.7 Experimental measurement of the EHD lift force

The experiments presented in this section have been performed by Zaicheng Zhang
and Muhammad Arshad under the supervision of Abdelhamid Maali in the LOMA
laboratory at the University of Bordeaux.

2.7.1 AFM setup

A schematic of the experimental setup is shown in Fig. 2.8. The experiment is per-
formed using an AFM (Bruker, Bioscope) equipped with a cantilever holder (DTFMLDD-
HE) that allows working in a liquid environment. We use a spherical borosilicate par-
ticle (MO-Sci Corporation) with a radius a = 60 ± 1µm and a roughness of 0.9 nm
measured over a 1µm2 surface area. That sphere is glued at the end of a silicon ni-
tride triangular shaped cantilever (DNP, Brukerafmprobes) using epoxy glue (Araldite,
Bostik, Coubert). The soft samples are fixed on a multiaxis piezo-system (NanoT se-
ries, Mad City Labs), which allows (i) to control and scan the gap distance d between
the sphere and the sample by displacing the sample vertically; and (ii) to vibrate the
sample transversally at a frequency f = ω/(2π) = 25 or 50 Hz, and with an amplitude
A ranging form 3.6 to 36µm. Note that, the normal displacement speed 20 nm/s being
much smaller than the smallest transversal velocity amplitude Aω = 0.36 mm/s, the
former can be neglected and a quasistatic description with respect to the normal motion
is valid. Using the drainage method [58], the effective stiffness kc = 0.21± 0.02 N/m of
the cantilever when the sphere is attached to it is determined using a rigid silicon wafer
as a substrate, and for large-enough gap distances (d = 200 − 20000 nm). The studied
polydimethylsiloxane (PDMS) substrates are prepared as follows. First, uncross-linked
PDMS (Sylgard 184, Dow Corning) and its curing agent are mixed into three differ-
ent solutions, with different mixing ratios (10:1, 20:1, 30:1). Following a preliminary
degassing process, a few droplets of each solution are spin-coated on a glass substrate
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during a minute to get a sample of thickness in the 25−30µm range. This is followed by
an annealing step, in an oven at 50◦C and during 24 h, in order to promote an efficient
cross-linking. The measured Young’s moduli E of the samples (10:1), (20:1), and (30:1)
are, respectively, (1455 ± 100 kPa.s), (600 ± 50 kPa.s), and (293 ± 20 kPa.s), where the
Poisson ratio is fixed to ν = 0.5 since crosslinked PDMS is an incompressible material to
a very good approximation. At the Young’s moduli and low frequencies studied here,
the loss modulus of PDMS is negligible [198]. We note that the viscoelastic properties
of the PDMS is be discussed in section 1.2.1. The viscous liquids employed are silicone
oil and 1-decanol with dynamic viscosities η = 96 mPa.s and 14.1 mPa.s, respectively.

2.7.2 Experimental results

Using the asymptotic theory derived in section 2.3, the lift force acting on a sphere im-
mersed in a viscous fluid and moving at time-dependent velocity u(t), near and parallel
to a semi-infinite incompressible elastic substrate of shear modulus µ = E/[2(1 + ν)]
placed at a given distance d is:

FN =
243π3

12800
√

2

η2V 2

µ

(
a

d

)5/2

≈ 0.416
η2V 2

µ

(
a

d

)5/2

, (2.75)

in the limit of small dimensionless compliance, i.e. κ = 2ηV a/(µd2) � 1. We recall
that, in this limit, κ corresponds to the ratio between substrate’s deformation and gap
distance, V being the velocity scale. Note also that, due to Galilean invariance, moving
the substrate at given velocity instead of the sphere leads to the same lift force which
justifies the use of the model of section 2.3. In view of the low frequencies at which
the substrate is oscillating, and since inertial effects are negligible for such a confined
viscous flow, this invariance and the expression of the lift force above remain excellent
approximations in our case - with the substitution u(t) = Aω sin(ωt) in Eq. (2.75). In ad-
dition, in all experiments, the hydrodynamic radius

√
2ad being much smaller than the

thickness of the soft substrate, the latter can indeed be described as semi-infinite. Inter-
estingly, with such a periodic driving, and since the lift force depends on the squared
velocity, it can be expressed as two additive components: (i) a time-independent one
∼ η2A2ω2a5/2/(2µd5/2); and (ii) a component oscillating at double frequency 2f . Fo-
cusing only on the former, it is measured though a temporal average F =< FN > of the
instantaneous normal force FN recorded by AFM (see Fig. 2.8).

Figure 2.9 shows the force F as a function of the gap distance d, for rigid (silicon
wafer) and soft (PDMS 20:1) substrates. To determine the gap distance, we take into
account the cantilever’s deflection induced by the normal force, by solving the equa-
tion: d = D + Z, where D is the raw gap distance imposed by the piezo, and Z is the
measured DC cantilever’s deflection. As a remark, in most cases studied here, the typ-
ical substrate’s deformation ∼ F/(µ

√
2ad) remains much smaller than the cantilever’s

deflection. For the rigid case, no finite force is detected above the current nanonew-
ton resolution, at all distances. This is expected, since for such a hard surface (Young’s
modulus in the 100 GPa range), the elastohydrodynamic effects occur at gap distances
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Figure 2.9: Temporal average F of the normal force FN (see Fig. 2.8) as a function of
the gap distance d to the substrate, for both rigid (silicon wafer) and soft (PDMS 20:1)
substrates. The liquid used is silicone oil with viscosity η = 96 mPa.s. The amplitude
of the velocity is Aω = 0.57 mm/s. The inset shows a log-log representation of the data
for the soft substrate, and the solid line therein indicates a −5/2 power law.

much smaller than the ones typically probed here [37]. As a remark, the fact that no
force - even purely hydrodynamic - is measured in this case is a direct confirmation for
the validity of the quasistatic description with respect to the imposed normal motion of
the sphere. In sharp contrast, for the soft case, a systematic nonzero force is measured,
and observed to increase as the gap distance is reduced. Furthermore, as shown in the
inset, the force asymptotically scales as F ∼ d−5/2 at large gap distances, in agreement
with the prediction of Eq. (2.75). Interestingly, at smaller gap distances, a saturation of
the lift effect is observed, as reported previously [174].

Having tested the asymptotic dependence of the force with the main geometrical
parameter, i.e., the gap distance, which showed a first evidence of the lift, we now turn
to the other key elastohydrodynamic parameters appearing in Eq. (2.75): the velocity
amplitudeAω, the viscosity η of the liquid, and the shear modulus µ of the substrate. To
test the dependences of the force with these three parameters, we introduce two dimen-
sionless variables: the dimensionless compliance κ, and the dimensionless force F/F ∗

with F ∗ = ηV R3/2/d1/2, where V is systematically replaced by its root-mean-squared
value Aω/

√
2 due to the temporal averaging introduced above. In such a represen-

tation, Eq. (2.75) becomes F/F ∗ = 243π3

12800
√

2
κ ≈ 0.416κ. In Fig. 2.10, we thus plot F

as a function of d, and in the rescaled form, F/F ∗ as a function of κ, for various sets
of parameters: two different oscillation amplitudes (Fig. 2.10(a)), two different oscilla-
tion frequencies (Fig. 2.10(b)), two different viscosities (Fig. 2.10(c)), and three different
shear moduli (Fig. 2.10(d)). In the inset of each of these panels, we first observe at small
κ that F/F ∗ is linear in κ, and that the curves for various values of the varied parameter
collapse with one another, which validates further Eq. (2.75). Moreover, around κ ∼ 1,
a deviation from the previous asymptotic behavior is observed, leading to a maximum
prior to an interesting decay at large κ. In addition, the collapse for various values of
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Figure 2.10: Measured temporal-averaged force F as a function of gap distance d to
the soft PDMS substrates, and (insets) dimensionless force F/F ∗ as a function of di-
mensionless compliance κ in logarithmic scales, for various sets of parameters. (a) Two
different velocity amplitudes (as indicated) obtained with different oscillation ampli-
tudes are investigated. The substrate is cross-linked PDMS (10:1), and the liquid is
1-decanol with viscosity η = 14.1 mPa.s; (b) two different velocity amplitudes (as indi-
cated) obtained with two different working frequencies are investigated. The substrate
is cross-linked PDMS (10:1), and the liquid is silicone oil with viscosity η = 96 mPa.s;
(c) two different liquids with different associated viscosities (as indicated) are inves-
tigated. The substrate is cross-linked PDMS (10:1), and the velocity amplitudes are
Aω = 0.36 mm/s and Aω = 2.32 mm/s for silicone oil (η = 96 mPa.s) and 1-decanol
(η = 14.1 mPa.s) respectively; (d) three different shear moduli (as indicated) of the sub-
strate are investigated. The liquid is silicone oil with viscosity η = 96 mPa.s, and the
velocity amplitude is Aω = 0.36 mm/s.
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Figure 2.11: Dimensionless force F/F ∗ as a function of dimensionless compliance κ
(see definitions in text) in logarithmic scales, as measured from force-distance data
(see Figs. 2.9 and 2.10), for all the experiments performed in this study (see Fig. 2.10).
The solid line corresponds to the theoretical prediction for F at low κ, obtained from
Eq. (2.75) where V is replaced by Aω/

√
2 due to the temporal averaging step. The

dashed lined indicates a −1/4 power law.

the varied parameter is maintained, indicating that even at large dimensionless com-
pliance κ, the dimensionless force F/F ∗ remains a function of κ only. This suggests that
the same physics, coupling lubrication flow and linear elasticity, is at play at large κ.

In order to test this prediction, we plot F/F ∗ as a function of κ in Fig. 2.11, for all
the experiments performed in this study. First, all the experimental data collapses on a
single nonmonotonic master curve, confirming further the results of Fig. 2.10. Second,
Eq. (2.75) is found to be in excellent agreement with the low-κ part of the data, with no
adjustable parameter. Finally, the behavior at large κ reveals the possible existence of a
power law: F/F ∗ ∼ κ−1/4, equivalent to F ∼ η3/4V 3/4µ1/4a5/4. This gap-independent
empirical scaling suggests that the lift force saturates at small enough distances, in
agreement with the observation made in Fig. 2.9. Such a result might tentatively be
attributed to a competition between the increase of the elastohydrodynamic symme-
try breaking and the decrease of the pressure magnitude due to the substrate’s defor-
mation, but further work is needed to quantify this hypothetical mechanism, and to
disentangle it from potential nonstationary effects [199].

The large-κ regime of soft lubrication corresponds to a situation where the substrate
deformation is typically larger than the liquid-film thickness. This physical situation
is relevant in many applications in engineering and geological settings, as discussed
in the introduction of the chapter. We note that elastohydrodynamic models in such
settings are usually written in a slightly different formalism than in section 2.2. A given
normal load, typically the weight of the object, is generally imposed at the contact and
the exact position of the base of the sphere is unknown [200]. The main interest in EHD
lubrication is the steady solution, where the velocity is constant, i.e. u(t) = V , which
is simpler to handle theoretically and relevant in most applications. In this context and
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in the large-deformation limit, the base of the sphere altitude can reach negative values
d < 0 with the definition of the z-axis in section 2.2.

In the absence of liquid, the deformation of an elastic material indented by a sphere
at a given load is well described by the Hertz contact theory [201, 202]. It predicts
a relation between the force and the substrate deformation: F = µ(λ+µ)

(λ+2µ)
16
3 Ea

1/2δ3/2.
In lubricated contact at large load and relatively small velocity, or equivalently small
shear stress with respect the normal one, the deformation of the material is close to the
one predicted by Hertz theory, which justifies that this regime of EHD lubrication is
usually called the Hertz limit. The liquid-film thickness for spherical contact has been
computed using a boundary-layer theory, that describes the flow at the inlet and outlet
of the contact, and that allows for a determination of the liquid-gap thickness and the
lateral friction force [162, 200]. In particular, a scaling relation between the lift force and
the velocity F ∼ (ηV )3/4µ1/4 is predicted, which is in good agreement with the dashed
line in Fig. 2.11, suggesting that the signature of the Hertz-limit of EHD lubrication may
be observed in the experiments [182].

2.7.3 Numerical results at large deformation for a steady sliding

To get further insights on the experimentally observed saturation if the lift force at
large κ (see Fig. 2.11), and its possible relation with the Hertz limit of EHD lubrica-
tion, we turn to numerical methods to solve the EHD model of section 2.2 defined
by the Eqs. (2.2) and (2.3) for arbitrary values of κ. Numerical methods are largely
employed in the EHD lubrication community to access the variety of regimes of soft
lubrication [203], and to model realistic lubricated contact. As an example, numeri-
cal models can investigate the rheological piezoviscous and thermoviscous properties
of industrial lubricants, namely the pressure dependence of viscosity and density that
is important at high load. In addition, one can use numerical models to verify the
asymptotic calculations in section 2.3. We present here some preliminary unpublished
numerical results to get the full non-linear curve F/F ∗ = f(κ), where f is a function,
that is shown in Fig. 2.11.

As a first attempt, we consider a steady flow u(t) = V , leaving aside the non-
stationary effects in the flow induced by the lateral oscillation of the spherical probe.
Written in dimensionless Cartesian coordinates, denoted with the capital letters (X,Y ),
the stationary versions of Eqs. (2.2) and (2.3) give:

∂X

(
H3∂XP

)
+ ∂Y

(
H3∂Y P

)
= 6∂XH, (2.76)

H(X,Y ) = 1+X2+Y 2−∆(X,Y ), ∆(X,Y ) = κ

∫

R2

G(X−X ′, Y−Y ′)P (X ′, Y ′) dX ′dY ′,

(2.77)
where G(X,Y ) = 1/(4π

√
X2 + Y 2) is the dimensionless Green’s function of the elastic

response. The X and Y dimensionless spatial coordinates are discretized on a uniform
grid, with i and j being the respective spatial indices and DX = DY the increments of
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the spatial grid. The differential operators are also discretized using a centered finite-
difference scheme, leading to:

1

DX2

[
H3
i+ 1

2
,j
Pi+1,j −

(
H3
i+ 1

2
,j

+H3
i− 1

2
,j

)
Pi,j +H3

i− 1
2
,j
Pi−1,j ,

+H3
i,j+ 1

2

Pi,j+1 −
(
H3
i,j+ 1

2

+H3
i,j− 1

2

)
Pi,j +H3

i,j− 1
2

Pi,j−1

]
= 12Xi − 6

∆i+1,j −∆i,j

DX
,

(2.78)

∆i,j = κ
∑

i′,j′
G (Xi −Xi′ , Yi − Yi′)Pi′,j′ , (2.79)

where we introduced the auxiliary function Hi+1/2,j = (Hi+1,j + Hi,j)/2. We then use
the same iterative technique as the one invoked by Ref. [174]: we first guess a displace-
ment field and compute the corresponding pressure field by solving Eq. (2.78). Then,
that pressure field is used to compute a new displacement field via Eq. (2.79). This pro-
cedure is iterated further until a difference of less than 1 ppm in the fields, between two
successive iterations, is reached.

A typical numerical pressure field Pnum for κ = 0.2 is plotted in Fig. 2.12(a), and is
found to be very close to the analytical prediction for a rigid wall (κ = 0, see Fig. 2.12(b)),
as expected. In Fig. 2.12(c) is plotted the difference between these two solutions, show-
ing a quasi-isotropic excess pressure field. In Fig. 2.12(d), we plot the asymptotic ana-
lytical expression for the isotropic part of the first-order pressure term (see Eq. (2.27)),
and we see similar spatial extent and features as in Fig. 2.12(c). The numerical deforma-
tion of the soft substrate ∆num is shown in Fig. 2.12(e), and agrees quantitatively with
the analytical prediction computed from our asymptotic soft-lubrication theory at first
order in κ (see Fig. 2.12(f)). All together, the proximity of numerical and asymptotic
expressions gives a good confidence in the numerical methods presented here.

In Fig. 2.13, we plot the resulting numerical lift force as a function of κ and add
for comparison the experimental data and the asymptotic soft-lubrication theory of
Fig. 2.11. The asymptotic prediction agrees well with the numerical result at small
κ, which again gives confidence to both the analytical asymptotic solution and the new
numerical method. Interestingly, at finite κ values, we find a larger numerical lift force
as compared to the experimental data. This suggests that transient terms associated
with the non-steady character of the oscillatory driving, are crucial at large compliances
and/or small gap thicknesses. Nevertheless, it is not the case in the small-deformation
regime, i.e. at small κ, as shown in section 2.3. The steady expression is still valid at
order 1 in κ, provided that one simply replaces the steady velocity by the transient one,
in a quasi-steady fashion.

We point out that the iterative algorithm described above does not converge within
reasonable time for values of κ larger than 16. As a sanity check, we have thus imple-
mented another, non-linear local relaxation method, based on the Gauss-Seidel scheme,
see Chap 2.10 in Ref. [203], and it self-consistently produces the same results. But again,
while the algorithm converges at intermediate κ values (up to 10), results at larger κ
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Figure 2.12: a) Pressure field Pnum resulting from the numerical integration of Eq. (2.78)
and (2.79) at κ = 0.2. The white arrow recalls the direction of the sphere motion.
b) Zeroth-order pressure from the analytical lubrication model Eq. (2.17), that corre-
sponds to the case of an immersed sphere sliding near and along a rigid wall. c) Dif-
ference between the numerical pressure field and the zeroth-order analytical pressure
field. d) Isotropic part of the asymptotic analytic expression of the first-order pressure
Eq. (2.27). e) Deformation of the soft substrate ∆num resulting from the numerical in-
tegration. f) First-order substrate deformation field from the analytical soft-lubrication
model Eq. (2.19).

Figure 2.13: Rescaled lift force as a function of dimensionless compliance, as com-
puted from the numerical solutions (“Numerical”) of the discretized soft-lubrication
equations (see Eqs. (2.78) and (2.79)). The asymptotic solution Eq. (2.75) is plotted for
comparison, as well as all the experimental data of Fig. 2.11.
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values are not accessible within reasonable time. Therefore, it was not possible to verify
the validity of the experimentally observed −1/4 power law in Fig. 2.11 at large κ and
its connection with the Hertz limit of steady lubrication. New numerical schemes, as
the ones described in Ref. [162], would be necessary to understand the role of transient
EHD lubrication and the Hertz limit.

2.8 Conclusion

We developed a soft-lubrication model in order to compute the EHD interactions ex-
erted on an immersed sphere undergoing both translational and rotational motions
near various types of elastic walls. The deformation of the surface was assumed to
be small, which allowed us to employ a perturbation analysis in order to obtain the
leading-order EHD forces and torque. The obtained interaction matrix exhibits a qual-
itatively similar form as the one found for a two-dimensional cylinder moving near a
thin compressible substrate [172]. In both cases, the EHD coupling is nonlinear and
generates quadratic terms in the sphere velocity, thus breaking the time-reversal sym-
metry of the Stokes equations. In addition, original inertial-like terms proportional
to the acceleration of the sphere are found – despite the assumption of steady flows.
Therefore, while the quantitative details such as numerical prefactors and exponents
differ in 3d and when using more realistic constitutive elastic responses, we expect that
the typical zoology of trajectories identified previously [172] will also hold for spherical
objects – and will even be extended with the added degree of freedom. As such, the
asymptotic predictions obtained here may open new perspectives in colloidal science
and biophysics, through the understanding and control of the emerging interactions
within soft confinement or assemblies.

Among these EHD interactions, we report experimental results demonstrating the
existence of the elastohydrodynamic lift force at the nanoscale. For the first time, the
force is directly measured using colloidal-probe atomic force microscopy. We observe
a collapse of all the data with amplitudes, frequencies, viscosities, shear moduli on a
single master curve, that is in good agreement with the asymptotic calculation in the
framework of soft lubrication. For large compliances, or equivalently at small confine-
ment length scales, a saturation of the lift force is observed and an empirical scaling
law is found and agrees with the Hertz model. A numerical finite-difference model is
developed, assuming stationary sliding, and predict a force about ten times larger than
the one measured with oscillating shear flow. In the future, focusing the efforts on the
resolution of the non linear problem at any dimensionless compliance, and including
non stationary terms associated with the driving oscillation, might help to explore fur-
ther the saturation regime. We anticipate important implications of the existence of the
elastohydrodynamic lift force at the nanoscale for nano-science and biology.
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Part II
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In this third part of the thesis, I present my work on the levelling dynamics of
thin liquid films. This work is the follow-up of a 10-year collaborative project in-
volving numerous researchers in Canada, France and Germany: Matilda Backholm,
Oliver Bäumchen, Michael Benzaquen, Yu Chai, Kari Dalnoki-Veress, James Forrest,
Paul Fowler, Mark Ilton, Carmen Lee, Joshua McGraw, John Niven, Élie Raphaël, Marco
Rivetti and Thomas Salez (in alphabetical order). The part is structured as follows. I
first give a brief introduction on thin liquid films and I review the main results obtained
in the collaborative network over the years. Then, each of the three following chapters
contains an article that I co-author. A preface sums up the main results and explains
my contribution to the project.

Context

Thin liquid films refer to a large variety of systems of various thicknesses from the
kilometer to the nanometer, and are encountered in many fields of science beyond soft-
matter physics such as geophysics, biophysics or engineering. As a result, the dynamics
of thin films is a rich field involving diverse physical processes. For instance, geolog-
ical films are driven by gravity, and examples are the continental ice-sheet dynamics
important within the context of climate change and the rise of sea level [204], but also
lava flows [205] and landslides [154]. In biology, micro-organisms (e.g. bacteria) often
aggregate at solid-air interfaces to form biofilms [206], and liquid films are also found
in vivo in lung airways [207], or in the eye [208]. In terms of engineering applications,
thin-liquid films enter in the fabrication process of various surface treatments [209].
Those are encountered in many contexts for their specific properties such as mechan-
ical (soft, brittle, malleable), optical (reflective, transparent), chemical (hydrophobic,
antioxidant), electronic (conductor, insulator) to cite a few. They have been involved
in a lot of technological outbreaks in the last century, like semiconductor devices, thin-
film solar cells, optical coatings. Lastly, thin films are also found in soft matter systems
such as soap films, Langmuir–Blodgett films, or through the wetting dynamics [210].

The dynamics of thin-liquid films is fascinating for applied mathematicians and
physicists. By exploiting the large aspect ratio of thin films, researchers have developed
asymptotic theories, performing long-wave expansion of the fluid dynamics equations [211].
This allows to reduce the complexity of the governing equations and boundary condi-
tions of the flow to a single conservative equation (or set of equations) for the film
thickness. This is done at the price of dealing with non-linear partial differential equa-
tions that are, in most cases, not solvable. Nevertheless, these theories are used to study
wave propagation, stability, pattern formation, dewetting dynamics, etc... [212]

In the general context of my thesis, i.e. flows at soft interfaces, I investigated the
dynamics of thin viscous films that are deposited on soft substrates. In particular, we
wondered how the deformation of the underlying interface modifies the thin-film dy-
namics.
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Capillary levelling as a rheological probe

We briefly present the spirit of the capillary-leveling method in the canonical case of a
thin liquid film supported on a rigid substrate.

Thin-film equation and full-Stokes models

In thin-viscous films, a perturbation of the liquid-air interface relaxes toward the flat
equilibrium state. We assume the lateral extent `0 of the perturbation of the interface to
be smaller than the capillary length `cap so that capillary forces dominate over gravity.
The curvature of the interface induces an excess Laplace pressure p with respect to the
ambient one that drives the flow. In this introduction, we suppose that the film is sup-
ported on an immobile substrate at z = 0, with a no-slip boundary condition. However,
through the following chapters, this condition is relaxed and we investigate the cases of
thin films supported on a soft elastic layer in chapter 3, an immiscible thin-liquid film in
chapter 4 and finally thin films in freestanding configurations in chapter 5. The liquid-
air interface is defined by z = h(r, t), where r denotes the position in the xy plane in
the tangential direction, t being the time. A no-stress boundary condition is assumed
at the liquid-air interface. The typical film thickness h0 (e.g. thickness at rest) is sup-
posed to be much smaller than the typical lateral extent `0 of the interface perturbation.
We use the standard long-wave expansion of the Stokes equations, assuming the ratio
ε = h0/`0 to be small with respect to unity [211], leading to the thin-film equation:

∂h

∂t
= ∇ ·

(
h3

3η
∇p

)
= −∇ ·

(
γh3

3η
∇(∇2h)

)
(2.80)

where ∇ is here the gradient in the tangential direction, and where we have used the
expression of the Laplace pressure p ' −γ∇2h in the small-slope limit. In chapter 3, we
provide a more detailed derivation of a long-wave expansion of the Stokes equations
for bilayer films. In the case considered here, the long-wave expansion is often called
lubrication approximation (see Part I).

In my thesis, I developed an additional method, termed full-Stokes model, to de-
rive the evolution equations of the film thickness without asymptotic long-wave ex-
pansions. Precisely, for symmetric film, the velocity can be expressed with the stream
function ψ(r, z), as v = ∇ × (ψej), where j = y for films invariant in the y direction,
and j = θ for axially invariant film (using the polar coordinates). The stream function

verifies the biharmonic equation:
(
∇2 + ∂2

∂z2

)2

ψ = 0. By introducing the Fourier trans-

form of the tangential variables, the general solution of the biharmonic equation can be
expressed with four parameters that are determined with the boundary conditions of
the flow. The evolution equation for the film thickness can be solved analytically only
for linearized liquid-air interface profiles. We stress that similar methods have already
been employed, e.g. to perform linear-stability analysis of thin films [213].
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Figure 2.14: a) Schematic of the initial stepped state of the polymer films. b) The
rescaled interface profile is plotted versus dimensionless self-similar variable that in-
volves the horizontal position x, rescaled by time with a 1/4 power, where γ, η,
h0 = h1 + h2/2 denote the surface tension, viscosity and equilibrium thickness. The
solid lines show a fit of the numerical solution of Eq. (2.80). The system is a polystyrene
(PS) stepped film, with a molecular weight Mw = 118 kg/mol and h1 = h2 = 89
nm, leveling on a silicon substrate. The annealing temperature is 140◦C. The figure is
adapted from Ref. [214]

Experimental system

Experimentally, thin polymer films are used, with thicknesses on the order of 100 nm.
We recall that polymers are macromolecules composed of many repeating subunits, up
to ∼ 105 units for synthetic polymers and up to ∼ 109 units for DNA. In particular,
typical polymer conformations take the form of a random coil, whose radius of gyra-
tion varies from few angströms to tens of nanometers. The polymers used here are
typically one million to one billion times more viscous than water, which justifies that
inertia is neglected here. Furthermore, polymer exhibit some viscoelastic properties
and are glassy [215]. Thin polymer films can be obtained in the glassy state by spin-
coating a polymer solution on a silicon wafer. The perturbation of the initial polymer
interface is done by superimposing two polymer films in the glassy state, resulting in
films in a stepped configuration, invariant along one direction. In this way, the initial
profile can be described by a Heavyside function H, as h(r, t = 0) = h1 + h2H(x) (see
Fig. 2.14a)). Then the sample is annealed above the glass-transition temperature for a
certain amount of time and the levelling process occurs, before the sample is quenched
back to the glassy state [216, 217]. Atomic force microscopy (see chapter 1) is used to
scan the topography of the polymer interface in the glassy state, and to obtain inter-
face profiles, as shown in Fig. 2.14b). Interestingly, along the levelling dynamics, the
interface profile displays self-similar properties [218], through the self-similar variable

x

(
3η
γh30t

)1/4

, where h0 = h1 + h2/2 is the average thickness. As shown in Ref. [217], the
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interface profiles at several annealing times collapse on a master curve when plotting
them versus the self-similar variables, and are in good agreement with numerical solu-
tions of Eq. (2.80) [214]. The capillary velocity γ/η being the only adjustable parameter,
the capillary-levelling method appears as a probe of the rheological properties of thin
viscous polymer films.

Apart from the stepped geometry, the capillary-levelling method has been used to
describe the relaxation dynamics of finite-size perturbations such as trenches [219], and
cylindrical holes [220]. In these examples, the relaxation dynamics also involves self-
similar solutions resulting from the structure of the thin-film equation [221, 222]. Lastly,
an extension of the method to freestanding films has also been developed, and the
resulting dynamics is also in good agreement with long-wave asymptotic models [223],
that differ from the thin-film equation. In the rest of the introduction, we illustrate the
capacity of the capillary-levelling method to measure interfacial properties of polymers.

Surface mobility of glassy polymer

Unlike the liquid-cristal phase transition, the glass transition is not defined based on
thermodynamical principles and depends on kinetic quantities such as the cooling rate.
It describes the drastic slowing down of the relaxation dynamics of amorphous materi-
als near a given temperature Tg, called the glass-transition temperature. The behaviour
is empirically described by the Vogel-Fulcher-Tammann (VFT) law, where the viscosity
follows:

η(T ) = η0 exp

(
A

T − Tg

)
, (2.81)

where T is the temperature and η0, A being constant factors. The capillary-levelling
method is used here above and below the glass-transition temperature of PS [224]. Sur-
prisingly, PS thin films flow, down to tens of degrees below the glass-transition temper-
ature. The levelling dynamics is consistent with the existence of a liquid mobile layer
(see Fig. 2.15a)) over which the flow is localized. Furthermore, the technique permits to
extract the mobility of the fluid layer (see Fig. 2.15b)), which is inversely proportional to
the viscosity. The latter seems to follow an Arrhenius-like law η ∼ exp(B/T ), where B
is a constant below Tg as for simple liquids, in contrast with Eq. (2.81) recovered above
Tg.

Interfacial slip

So far, we have been using a no-slip boundary condition at the solid-liquid surface,
meaning that the velocity fields vanish at the solid boundary. However, there are no
fundamental principles supporting that, and, as pointed out by Navier in 1823, the
boundary condition at solid surfaces may imply a non-zero tangential velocity [227].
By expressing the boundary condition as a stress balance between viscous shear and
the friction between fluid molecules and the wall, the boundary conditions is postu-
lated to be kv‖ = η

∂v‖
∂z , where v‖ denotes the tangential velocity of the fluid at the wall,
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b)

c) d)

a)

Figure 2.15: a) Schematic of the experiments in Ref. [224]. For a temperature range be-
low Tg, capillary levelling is observed in a surface layer. b) Liquid mobilityH3/(3η) ver-
sus inverse temperature. Above Tg (squares), the mobility follows the Vogel-Fulcher-
Tammann (VFT) law for supercooled liquids,H being the average film thickness. Below
Tg (circles), the flow is localized in a near-surface region, with H = hm, and seems to
follow an Arrhenius-like law, which is characteristic of simple liquids. c) Schematic of
the experiment in Ref. [225]. The interfacial slip causes a faster levelling. d) (left) Slip
length as a function of molecular weight, from capillary-levelling experiments (blue
circles) of polystyrene (PS) on Teflon (AF) substrates. For comparison, results from
PS dewetting experiments (orange squares, data from Ref. [226]]) on AF substrates are
also shown. Two equations with one free parameter (solid lines) describe both sets of
experiments: they assume adsorption of chains in the low-shear-rate levelling experi-
ments and no chain adsorption in the high-shear-rate dewetting experiments. d) (right)
The difference in the measured slip length between levelling (blue) and dewetting (or-
ange) experiments is confirmed using a different substrate, a self-assembled monolayer
(SAM).

and k being a friction coefficient. By rewriting this expression as v‖ = b
∂v‖
∂z , we intro-

duce the slip length b = η/k that scales as a ratio between viscosity (bulk-dependent
quantity) and a friction coefficient (surface-dependent quantity). If the no-slip assump-
tion has been proven to be valid at macroscopic scales, the emergence of micro and
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nanofluidics has shown the existence of slip lengths on the order of few nanometers
at most solid-liquid interfaces for simple fluids, in agreement with the order of magni-
tude expected [228]. In polymer melts, the viscosity is largely dependent on the size of
the macromolecules and increases by orders of magnitude with respect to simple fluid.
Therefore, as pointed out by P.G. de Gennes, the slip length is expected to increases by
the same amount, when considering polymer melts [229].

In Ref. [225], the capillary-levelling method has been employed to measure the slip
lengths of PS on both Teflon (AF) and self-assembled monolayer (SAM) surfaces as
shown in Figs. 2.15c)-d). The slip lengths are found to be much larger than for simple
fluids and to depend on the molecular weight of PS (hence, the viscosity). More in-
terestingly, the slip lengths measured through the levelling dynamics are found to be
significantly smaller than the ones measured in Ref. [226] using dewetting experiments
of PS thin films over the same surface. The experiments using dewetting methods re-
cover the molecular weight dependence of the slip length predicted by de Gennes. The
major difference between the two sets of experiments is the magnitude of the stress
involved. The difference in slip lengths measured in the two methods may be rational-
ized by considering adsorbed polymer chains at the surface [225].



Chapter 3

Elastocapillary levelling of thin
viscous films on soft substrates.

This chapter describes some of the work that I have done during my master internship
in the spring 2017. The experiments shown here have been carried out by Marco Rivetti,
with the help from Christine Linne and under the supervision of Oliver Bäumchen at
the Max Planck Institute in Göttingen, Germany.

We investigate the levelling dynamics of thin polystyrene films deposited on soft
PDMS layers. The initial state of the polystyrene films is a step configuration and
the interface topographies are scanned with an atomic force microscope. The flow is
driven by the Laplace pressure gradient and is mediated by viscosity. The Laplace
pressure also deforms the soft PDMS surface, and the latter alters the flow, leading to
“elasto-capillary-hydrodynamics” interactions. The relaxation dynamics of the initial
perturbation towards the flat equilibrium state follows diffusive-like law, where the
width w of the perturbation grows in time with a power law, w ∼ t1/6. Interestingly,
the associated 1/6 exponent differs from the classical one, 1/4, found in the thin-film
equation and in experiments with rigid substrates. Prior my internship, a first model,
based on linear elasticity to described the substrate deformation and the lubrication ap-
proximation for the liquid phase, has been derived by Thomas Salez, Maxence Arutkin
with inputs from Herbert Hui and Haibin Wu (Cornell University). My contribution to
the project was to derive the full Stokes model, in complement to the lubrication one. I
reproduce here an article, published in Physical Review Fluids [1], that I co-author.
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A thin liquid film with nonzero curvature at its free surface spontaneously flows to reach
a flat configuration, a process driven by Laplace pressure gradients and resisted by the
liquid’s viscosity. Inspired by recent progresses on the dynamics of liquid droplets on soft
substrates, we here study the relaxation of a viscous film supported by an elastic foundation.
Experiments involve thin polymer films on elastomeric substrates, where the dynamics of
the liquid-air interface is monitored using atomic force microscopy. A theoretical model
that describes the coupled evolution of the solid-liquid and the liquid-air interfaces is also
provided. In this soft-levelling configuration, Laplace pressure gradients not only drive
the flow, but they also induce elastic deformations on the substrate that affect the flow
and the shape of the liquid-air interface itself. This process represents an original example
of elastocapillarity that is not mediated by the presence of a contact line. We discuss
the impact of the elastic contribution on the levelling dynamics and show the departure
from the classical self-similarities and power laws observed for capillary levelling on rigid
substrates.

DOI: 10.1103/PhysRevFluids.2.094001

I. INTRODUCTION

Interactions of solids and fluids are often pictured by the flapping of a flag in the wind, the
oscillating motion of an open hosepipe, or that of a fish fin in water, a set of examples in which
the inertia of the fluid plays an essential role. In contrast, at small scales, and more generally for
low-Reynolds-number (Re) flows, fluid-solid interactions involve viscous forces rather than inertia.
Of particular interest are the configurations where a liquid flows along a soft wall, i.e., an elastic
layer that can deform under the action of pressure and viscous stresses. For instance, when a solid
object moves in a viscous liquid close to an elastic wall, the intrinsic symmetry of the Stokes
equations that govern low-Re flows breaks down. This gives rise to a qualitatively different—
elastohydrodynamical—behavior of the system in which the moving object may experience lift or
oscillating motion [1–3], and a swimmer can produce a net thrust even by applying a time-reversible
stroke [4], in apparent violation of the so-called scallop theorem [5]. This coupling of viscous
dynamics and elastic deformations is particularly significant in lubrication problems, such as the
aging of mammalian joints and their soft cartilaginous layers [6], or roll-coating processes involving
rubber-covered rolls [7], among others.

When adding a liquid-vapor interface, capillary forces may come into play, thus allowing for
elastocapillary interactions. The latter have attracted a lot of interest in the past decade [8–10]. In
order to enhance the effect of capillary forces, the elastic object has to be either slender or soft. The
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first case, in which the elastic structure is mainly bent by surface tension, has been explored to explain
and predict features like deformation and folding of plates, wrapping of plates (capillary origami) or
fibers around droplets, and liquid imbibition between fibers [11–18]. The second case involves rather
thick substrates, where capillary forces are opposed by bulk elasticity. A common example is that of
a small droplet sitting on a soft solid. Lester [19] has been the first to recognize that the three-phase
contact line can deform the substrate by creating a ridge. Despite the apparent simplicity of this
configuration, the substrate deformation close to the contact line represents a challenging problem
because of the violation of the classical Young’s construction for the contact angle, the singularity of
the displacement field at the contact line, and the difficulty to predict the exact shape of the capillary
ridge. In the last few years, several theoretical and experimental works have contributed to a better
fundamental understanding of this static problem [20–25], recently extended by the dynamical case
of droplets moving along a soft substrate [26–28].

Besides, another class of problems—the capillary levelling of thin liquid films on rigid substrates,
or in freestanding configurations—has been studied in the last few years using thin polymer films
featuring different initial profiles, such as steps, trenches, and holes [29–34]. From the experimental
point of view, this has been proven to be a reliable system due to systematic reproducibility of
the results and the possibility to extract rheological properties of the liquid [35,36]. A theoretical
framework, based on Stokes flow and the lubrication approximation, results in the so-called thin-film
equation [37], which describes the temporal evolution of the thickness profile. From this model,
characteristic self-similarities of the levelling profiles, as well as numerical [38] and analytical
[39,40] solutions have been derived, which were found in excellent agreement with the experimental
results. Furthermore, coarse-grained molecular dynamics models allowed us to extend the framework
of capillary levelling by offering local dynamical insights and probing viscoelasticity [41].

In this article, by combining the two classes of problems above—elastocapillarity and capillary
levelling—we design a dynamical elastocapillary situation free of any three-phase contact line.
Specifically, we consider a setting in which a thin layer of viscous liquid with a nonflat thickness
profile is supported onto a soft foundation. The liquid-air interface has a spatially varying curvature
that leads to gradients in Laplace pressure, which drive flow coupled to substrate deformation.
The resulting elastocapillary levelling might have practical implications in biological settings and
nanotechnology.

II. EXPERIMENTAL SETUP

First, polydimethylsiloxane (PDMS, Sylgard 184, Dow Corning) is mixed with its curing agent in
ratios varying from 10:1 to 40:1. In order to decrease its viscosity, liquid PDMS is diluted in toluene
(Sigma-Aldrich, Chromasolv, purity >99.9%) to obtain a 1:1 solution in weight. The solution is
then poured on a 15 × 15 mm Si wafer (Si-Mat, Germany) and spin-coated for 45 s at 12.000 RPM.
The sample is then immediately transferred to an oven and kept at 75 ◦C for 2 h. The resulting
elastic layer has a thickness s0 = 1.5 ± 0.2 μm, as obtained from atomic force microscopy (AFM,
Multimode, Bruker) data. The Young’s modulus of PDMS strongly depends on the ratio of base to
cross linker, with typical values of E = 1.7 ± 0.2 MPa for 10:1 ratio, E = 600 ± 100 kPa for 20:1,
and E = 50 ± 20 kPa for 40:1 [42,43].

In order to prepare polystyrene (PS) films exhibiting nonconstant curvatures, we employ a
technique similar to that described in [29]. Solutions of 34 kg/mol PS (PSS, Germany, polydispersity
<1.05) in toluene with typical concentrations varying between 2% and 6% are made. A solution
is then spin-cast on a freshly cleaved mica sheet (Ted Pella, USA) for about 10 s, with typical
spinning velocities on the order of a few thousands RPM. After the rapid evaporation of the solvent
during the spin-coating process, a thin (glassy) film of PS is obtained, with a typical thickness of
200–400 nm.

To create the geometry required for the levelling experiment, a first PS film is floated onto a
bath of ultrapure (MilliQ) water. Due to the relatively low molecular weight of the PS employed
here, the glassy film spontaneously ruptures into several pieces. A second (uniform) PS film on
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FIG. 1. (a) Schematics of the initial geometry: a stepped liquid polystyrene (PS) film is supported by an
elastic layer of polydimethylsiloxane (PDMS). (b) Schematics of the levelling dynamics: the liquid height h

depends on the horizontal position x and the time t . The elastic layer deforms due to the interaction with the
liquid. (c) Experimental profiles of the liquid-air interface during levelling at Ta = 140 ◦C on 10:1 PDMS. The
initial step has h1 = h2 = 395 nm. The inset shows a closeup of the dip region. (d) Experimental profiles during
levelling at Ta = 140 ◦C on the softer 40:1 PDMS. The initial step has h1 = h2 = 200 nm. The inset shows a
magnification of the bump region. Dashed lines in (c) and (d) indicate the initial condition.

mica is approached to the surface of water, put into contact with the floating PS pieces and rapidly
released as soon as the mica touches the water. That way a collection of PS pieces is transferred
onto the second PS film, forming a discontinuous double layer that is then floated again onto a
clean water surface. At this stage, a sample with the elastic layer of PDMS is put into the water and
gently approached to the floating PS from underneath. As soon as contact between the PS film and
the PDMS substrate is established, the sample is slowly released from the bath. Finally, the initial
configuration depicted in Fig. 1(a) is obtained. For a direct comparison with capillary levelling on
rigid substrates, we also prepared stepped PS films of the same molecular weight on freshly cleaned
Si wafers (Si-Mat, Germany) using the same transfer procedure.

Using an optical microscope we identify spots where isolated pieces of PS on the uniform PS
layer display a clean and straight interfacial front. A vertical cross section of these spots corresponds
to a stepped PS-air interface, which is invariant in the y dimension [see Fig. 1(a) for a sketch of this
geometry]. Using AFM, the 3D shape of the interface is scanned and a 2D profile is obtained by
averaging along y. From this profile the initial height of the step h2 is measured. The sample is then
annealed at an elevated temperature Ta = 120–160 ◦C (above the glass-transition temperature of PS)
using a high-precision heating stage (Linkam, UK). During this annealing period the liquid PS flows.
Note that on the experimental time scales and for the typical flow velocities studied here the PS is
well described by a Newtonian viscous fluid [29,31–34] (viscoelastic and non-Newtonian effects
are absent since the Weissenberg number Wi � 1 and the Deborah number De � 1). After a given
annealing time t , the sample is removed from the heating stage and quenched at room temperature
(below the glass-transition temperature of PS). The three-dimensional (3D) PS-air interface in the
zone of interest is scanned with the AFM and a 2D profile is again obtained by averaging along y.
This procedure is repeated several times in order to monitor the temporal evolution of the height
h(x,t) of the PS-air interface [defined with respect to the undeformed elastic-liquid interface; see
Fig. 1(b)]. At the end of each experiment, the thickness h1 of the uniform PS layer is measured
by AFM.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Profile evolution

The temporal evolutions of two typical profiles are reported in Figs. 1(c) and 1(d), corresponding
to films that are supported by elastic foundations made of 10:1 PDMS and 40:1 PDMS, respectively.
As expected, the levelling process manifests itself in a broadening of the initial step over time.
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In all profiles, three main regions can be identified (from left to right): a region with positive
curvature (negative Laplace pressure in the liquid), an almost linear region around x = 0 (zero
Laplace pressure), and a region of negative curvature (positive Laplace pressure in the liquid). These
regions are surrounded by two unperturbed flat interfaces exhibiting h = h1 and h = h1 + h2. In
analogy with earlier works on rigid substrates [31], we refer to the positive-curvature region of the
profile as the dip, and the negative-curvature region as the bump. Close-up views of those are given
in the insets of Figs. 1(c) and 1(d).

The decrease of the slope of the linear region is a direct consequence of levelling. A less intuitive
evolution is observed in the bump and dip regions. For instance, in the first profile of Fig. 1(c),
recorded after 10 min of annealing, a bump has already emerged while a signature of a dip cannot
be identified yet. As the interface evolves in time, a dip appears and both the bump and the dip
grow substantially. At a later stage of the evolution, the height of the bump and the depth of the dip
eventually saturate. This vertical evolution of the bump and the dip is at variance with what has been
observed in the rigid-substrate case [29,31], where the values of the maximum and the minimum
are purely dictated by h1 and h2 and stay fixed during the experimentally accessible evolution.
That specific signature of the soft foundation is even amplified for PS levelling on the softer (40:1
PDMS) foundation; see Fig. 1(d). The evolution of the bump and dip results from the interaction
between the liquid and the soft foundation. Indeed, the curvature gradients of the liquid-air interface
give rise to Laplace pressure gradients that drive the flow. The pressure and flow fields both induce
elastic deformations in the substrate. Intuitively, the negative Laplace pressure below the dip results
in a traction that pulls upwards on the PDMS substrate, while the positive Laplace pressure below
the bump induces a displacement in the opposite direction. In addition, a no-slip condition at the
solid-liquid interface coupled to the flow induces an horizontal displacement field in the PDMS
substrate. These displacements of the foundation act back on the liquid-air interface by volume
conservation. According to this picture, the displacement of the solid-liquid interface is expected to
tend to zero over time, since the curvature gradients of the liquid-air interface and the associated
flow decrease.

B. Temporal evolution of the profile width

The capillary levelling on a rigid substrate possesses an exact self-similar behavior in the variable
x/t1/4, leading to a perfect collapse of the rescaled height profiles of a given evolution [31].
In contrast, for a soft foundation, no collapse of the profiles is observed (not shown) when the
horizontal axis x is divided by t1/4.

To determine whether another self-similarity exists or not, we first quantify the horizontal
evolution of the profile by introducing a definition of its width [see Fig. 2(a), inset]: w(t) = x(h =
h1 + 0.6 h2) − x(h = h1 + 0.4 h2). With this definition, only the linear region of the profile matters
and the peculiar shapes of the dip and bump do not affect the value of w. The temporal evolution
of w was measured in several experiments, featuring different values of h1, h2 as well as three
stiffnesses of the soft foundation. First, the absolute value of w at a given time is larger for thicker
liquid films, as expected since more liquid can flow. Second, the data plotted in Fig. 2(a) clearly show
that in all these experiments the width increases as w ∼ t1/6. Equivalently, dividing the horizontal
axis x by t1/6 leads to a collapse of all the linear regions of the profiles, as shown in Figs. 2(b)
and 2(c). However, while allowing for the appreciation of the vertical evolution of the bump and
dip, the noncollapse of the full profiles indicates the absence of true self-similarity in the problem.
Nevertheless, we retain that for practical purposes associated with elastocapillary levelling, the
w ∼ t1/6 scaling encompasses most of the evolution in terms of flowing material.

C. Role of viscosity

The impact of the soft foundation on the levelling dynamics depends on two essential aspects:
the stiffness of the foundation and how strongly the liquid acts on it. The first aspect is constant, and
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FIG. 2. (a) Experimental evolution of the profile width w (proportional to the lateral extent of the linear
region as displayed in the inset) as a function of time t , in log-log scale, for samples involving different
liquid-film thicknesses and substrate elasticities. All datasets seem to exhibit a t1/6 power law. The slope
corresponding to a t1/4 evolution (rigid-substrate case) is displayed for comparison. (b) Experimental levelling
profiles on 10:1 PDMS from Fig. 1(c) with the horizontal axis rescaled by t−1/6. (c) Same rescaling applied for
the levelling profiles on 40:1 PDMS shown in Fig. 1(d).

controlled by both the Young’s modulus E and the thickness s0 of the (incompressible) PDMS layer,
the former being fixed by the base-to-cross-linker ratio. The second aspect is ultimately controlled
by the Laplace pressure, which is directly related to the curvature of the liquid-air interface. Even
for a single experiment, the amplitude of the curvature field associated with the profile evolves along
time, from large values at early times, to small ones at long times when the profile becomes almost
flat. Thus, we expect the relative impact of the soft foundation to change over time.

This time dependence can be explored by adjusting the PS viscosity. Indeed, the latter strongly
decreases for increasing annealing temperature, while the other quantities remain mostly unaffected
by this change. Hence, the levelling dynamics can be slowed down by performing experiments at
lower annealing temperature, in order to investigate the dynamics close to the initial condition, and
accelerated at higher annealing temperature in order to access the late-stage dynamics. Here, we
report on experiments at 120 ◦C (high viscosity) and 160 ◦C (low viscosity) and compare the results
to our previous experiments at 140 ◦C.

Following lubrication theory [37], the typical time scale of a levelling experiment is directly fixed
by the capillary velocity γ /η, where γ denotes the PS-air surface tension and η the PS viscosity,
as well as the thickness h0 = h1 + h2/2 of the PS film. In Fig. 3, the experimental profile width is
plotted as a function of γ h0

3t/η [31], for experiments involving different liquid film thicknesses,
substrate elasticities, and annealing temperatures. Samples with PS stepped films on bare (rigid) Si
wafers were used to measure the capillary velocity γ /η at different annealing temperatures [36].
In these calibration measurements, the profile width follows a t1/4 power law, as expected [31]. In
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FIG. 3. Experimental profile width w [see Fig. 2(a), inset] as a function of γ h0
3t/η (see definitions in text),

in log-log scale, for all the different samples and temperatures. Experiments for 10:1 (red), 20:1 (green), and
40:1 (blue) PDMS substrates, as well as annealing temperatures Ta = 120 ◦C (down triangle), 140 ◦C (circle),
160 ◦C (up triangle) are displayed. Most of the data collapses on a single curve of slope 1/6 (dashed line).
The data for capillary levelling on rigid substrates (black symbols) are shown for comparison and collapse
on a single curve of slope 1/4 (solid line). The inset displays a closeup of the early-time regime in linear
representation.

contrast, for the experiments on elastic foundations, two different regimes might be distinguished:
for γ h0

3t/η larger than ∼5 μm4, the width follows a t1/6 power law and all datasets collapse onto
a single master curve over three to four orders of magnitude on the horizontal scale; for values of
γ h0

3t/η smaller than ∼5 μm4, the evolution depends on the elastic modulus and it appears that the
softer the foundation the faster the evolution (see inset of Fig. 3).

D. Vertical evolution of the dip and bump

Guided by the previous discussion, we now divide the horizontal axis x of all the height profiles
in different experiments by the quantity (γ h0

3t/η)1/6. As shown in Fig. 4, this rescaling leads to a
collapse in the linear region of the profiles, while the dip and the bump regions display significant
deviations from a universal collapse.

In order to characterize these deviations, we introduce the Maxwell-like viscoelastic time η/E

and define the dimensionless time τ = Et/η. This dimensionless parameter quantifies the role of
the deformable substrate: experiments on softer foundations (lower E) or evolving slower (larger
η) correspond to smaller values of τ , and are therefore expected to show more pronounced elastic
behaviors. As seen in Fig. 4, we find a systematic trend when plotting the experimental levelling
profiles using the parameter τ . Profiles with large τ (dark green and black) display clear bumps and
dips, comparable in their vertical extents to the corresponding features observed on rigid substrates
(not shown). In contrast, profiles with small τ (yellow and bright green) feature large deviations
with respect to this limit.

The previous observation can be quantified by tracking the temporal evolution of the height of the
liquid-air interface hd(t) = h(xd,t) at the dip position xd, which we define as the (time-independent)
position at which the global minimum is located at the latest time of the levelling dynamics (see arrow
in Fig. 4). The inset of Fig. 4 displays the normalized difference between hd and the corresponding
value for a rigid substrate hd,rig, plotted as a function of τ . We find that the parameter τ allows
for a reasonable rescaling of the data. As anticipated, the difference between levelling on rigid and
soft substrates decreases monotonically as a function of this dimensionless time. For small τ , the
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FIG. 4. Rescaled experimental profiles for all data displayed in Fig. 3, color coded according to the
dimensionless time τ = tE/η. Inset: Evolution with τ of the normalized distance between the height hd of the
liquid-air interface at the dip position xd and the corresponding value hd,rig for the rigid case. Note that in all
the experiments h1 = h2. Symbols are chosen to be consistent with Fig. 3.

difference can be larger than 20% of the liquid film thickness, while for large τ it drops to less than
1%, which corresponds to the vertical resolution of the AFM.

IV. THEORETICAL MODELLING

A. Model and solutions

We consider an incompressible elastic slab atop which a viscous liquid film with an initial stepped
liquid-air interface profile is placed. The following hypotheses are retained: (i) the height h2 of the
step is small as compared to the thickness h0 = h1 + h2/2 of the (flat) equilibrium liquid profile;
(ii) the slopes at the liquid-air interface are small, such that the curvature of the interface can be
approximated by ∂ 2

x h; (iii) the lubrication approximation applies in the liquid, i.e., typical vertical
length scales are much smaller than horizontal ones; (iv) the components of the displacement field in
the elastic material are small compared to the thickness of the elastic layer (linear elastic behavior);
(v) the elastic layer is incompressible (valid assumption for PDMS). Note that the hypotheses (i)–(iii)
have been successfully applied in previous work on the levelling dynamics of a stepped perturbation
of a liquid film placed on a rigid substrate [39].

Below, we summarize the model, the complete details of which are provided in the Supplemental
Material [44]. The main difference with previous work [39] is the coupling of fluid flow and
pressure to elastic deformations of the substrate. The Laplace pressure is transmitted by the fluid
and gives rise to a vertical displacement δ(x,t) of the solid-liquid interface, and thus a horizontal
displacement us(x,t) of the latter by incompressibility. Consequently, the no-slip condition at the
solid-liquid interface implies that a fluid element in contact with the elastic surface will have a
nonzero horizontal velocity ∂tus. In addition, we assume no shear at the liquid-air interface. After
linearization, the modified thin-film equation reads

∂�

∂t
+ ∂

∂x

[
−h 3

0

3η

∂p

∂x
+ h0

∂us

∂t

]
= 0, (1)

where �(x,t) = h(x,t) − δ(x,t) − h0 is the excess thickness of the liquid layer with respect to the
equilibrium value h0. The excess pressure p(x,t) in the film, with respect to the atmospheric value,
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is given by the (small-slope) Laplace pressure:

p � −γ
∂2(� + δ)

∂x2
. (2)

Furthermore, the surface elastic displacements are related to the pressure field through

δ = − 1√
2πμ

∫ ∞

−∞
k(x − x ′)p(x ′,t) dx ′, (3)

us = − 1√
2πμ

∫ ∞

−∞
ks(x − x ′)p(x ′,t) dx ′, (4)

where μ = E/3 is the shear modulus of the incompressible substrate, and where k(x) and ks(x) are
the Green’s functions (see Supplemental Material [44]) for the vertical and horizontal surface
displacements, i.e., the fundamental responses due to a linelike pressure source of magnitude
−√

2πμ acting on the surface of the infinitely long elastic layer.
Equations (1)–(4) can be solved analytically using Fourier transforms (see Supplemental Material

[44]), and we obtain

�̃(λ,t) = − h2

2iλ

√
2

π
exp

[
−
(

γ λ4h 3
0

3η

)
t

1 + (γ λ2/μ)(k̃ + iλh0k̃s)

]
, (5)

δ̃ = −k̃

μ

γ λ2�̃

[1 + (γ λ2/μ)k̃]
, (6)

where ˜ denotes the Fourier transform of a function and λ is the conjugated Fourier variable, i.e.,
f̃ (λ) = 1√

2π

∫∞
−∞ f (x)eiλx dx. The vertical displacement h(x,t) − h0 of the liquid-air interface with

respect to its final state is then determined by summing the inverse Fourier transforms of Eqs. (5)
and (6).

Figure 5(a) displays the theoretical profiles of both the liquid-air interface z = h(x,t) and the
solid-liquid interface z = δ(x,t), for a stepped liquid film with thicknesses h1 = h2 = 2h0/3 =
120 nm, supported by a substrate of stiffness μ = 25 kPa and thickness s0 = 2 μm. The viscosity
η = 2.5 × 106 Pa s is adapted to the PS viscosity at the annealing temperature Ta = 120 ◦C in
the experiment. The PS-air surface tension is fixed to γ = 30 mN/m [45]. We find that the profiles
predicted by this model reproduce some of the key features observed in our experiments. In particular,
the evolutions of the bump and dip regions in the theoretical profiles (see Fig. 5 inset) qualitatively
capture the characteristic behaviors recorded in the experiment [see Fig. 1(c) inset].

An advantage of this theoretical approach is the possibility to extract information about the
deformation of the solid-liquid interface. As shown in Fig. 5, the substrate deforms mainly in the bump
and dip regions, as a result of their large curvatures. The maximal vertical displacement of the
solid-liquid interface in this example is ∼25 nm, and it reduces over time, due to the levelling of the
profile and the associated lower curvatures.

B. Evolution of the profile width

The temporal evolution of the width w [see Fig. 2(a), inset] of the profiles was extracted from our
theoretical model for a series of different parameters. Figure 6 shows the theoretical width w as a
function of the quantity γ h0

3t/η for all cases studied. With this rescaling, it is evident that the width
of the theoretical profile depends strongly on elasticity at early times, while all datasets collapse onto
a single curve at long times. Moreover, this master curve exhibits a slope of 1/4, and thus inherits
a characteristic signature of capillary levelling on a rigid substrate. The early-time data show that
the width is larger than on a rigid substrate, but with a slower evolution and thus a lower effective
exponent. These observations are in qualitative agreement with our experimental data. However,
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FIG. 5. (a) Theoretical profiles for the liquid-air interface z = h(x,t) and the solid-liquid interface z =
δ(x,t), both shifted vertically by −h1. Here, we employ s0 = 2 μm, h1 = h2 = 2h0/3 = 120 nm, μ = 25
kPa, γ = 30 mN/m, η = 2.5 × 106 Pa s. The inset displays a close-up of the dip region. (b) Finite-element
simulation (COMSOL) of the solid’s total displacement (black arrows) and its vertical component δ (color
code). The result has been obtained by imposing the Laplace pressure field corresponding to the first profile
in (a) to a slab of elastic material exhibiting comparable geometrical and mechanical properties as in (a). The
maximal displacement of 22 nm is in good agreement with the theoretical prediction shown in (a).

FIG. 6. Temporal evolution of the profile width [see definition in Fig. 2(a), inset], in log-log scale, as
predicted by the theoretical model, for different shear moduli, viscosities, and liquid-film thicknesses. The 1/4
power law corresponding to a rigid substrate is indicated.
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interestingly, we do not recover in the experiments the predicted transition to a long-term rigidlike
1/4 exponent, but instead keep a 1/6 exponent (see Fig. 3).

It thus appears that we do not achieve a full quantitative agreement between the theoretical
and experimental profiles. The initially sharp stepped profile could possibly introduce an important
limitation on the validity of the lubrication hypothesis. Indeed, while this is not a problem for the
rigid case since the initial condition is rapidly forgotten [40], it is not a priori clear if and how
elasticity affects this statement. We thus checked (see Supplemental Material [44]) that replacing the
lubrication approximation by the full Stokes equations for the liquid part does not change notably
the theoretical results. We also checked that the linearization of the thin-film equation is not the
origin of the aforementioned discrepancy: in a test experiment with h2 � h1 on a soft substrate we
observed the same characteristic features—and especially the 1/6 temporal exponent absent of the
theoretical solutions—as the ones reported for the h1 ≈ h2 geometry (see Supplemental Material
[44]). Besides, we note that while the vertical deformations of the elastic material (see Fig. 5) are
small compared to the thickness s0 of the elastic layer in the experimentally accessible temporal
range, the assumption of small deformations could be violated at earlier times without affecting the
long-term behavior at stake.

Finally, we propose a simplified argument to qualitatively explain the smaller transient exponent in
Fig. 6. We assume that the vertical displacement δ(x,t) of the solid-liquid interface mostly translates
the liquid above, such that the liquid-air interface displaces vertically by the same amount, following

h(x,t) = hr(x,t) + δ(x,t), (7)

where hr is the profile of the liquid-air interface that would be observed on a rigid substrate. Note that
this simplified mechanism does not violate conservation of volume in the liquid layer. By deriving
the previous equation with respect to x, and evaluating it at the center of the profile (x = 0), we
obtain an expression for the central slope of the interface:

∂xh(0,t) = ∂xhr(0,t) + ∂xδ(0,t). (8)

Due to the positive (negative) displacement of the solid-liquid interface in the region x < 0 (x > 0),
∂xδ(0,t) is always negative, as seen in Fig. 5. Therefore, we expect a reduced slope of the liquid-air
interface in the linear region, which is in agreement with the increased width observed on soft
substrates. Moreover, taking the second derivative of Eq. (7) with respect to x leads to

∂ 2
x h(x,t) = ∂ 2

x hr(x,t) + ∂ 2
x δ(x,t). (9)

In the dip region, hr(x,t) is convex in space (positive second derivative with respect to x), while
δ(x,t) is assumed to be concave in space (negative second derivative with respect to x) up to some
distance from the center (see Fig. 5). Therefore, the resulting curvature is expected to be reduced.
A similar argument leads to the same conclusion in the bump region. This effect corresponds to
a reduction of the Laplace pressure and, hence, of the driving force for the levelling process: the
evolution is slower which translates into a smaller effective exponent.

C. Finite-element simulations

To check the validity of the predicted shape of the solid-liquid interface, we performed finite-
element simulations using COMSOL Multiphysics. Starting from an experimental profile of the
liquid-air interface at a given time t , the curvature and the resulting pressure field p(x,t) were
extracted. This pressure field was used as a top boundary condition for the stress in a 2D slab
of an incompressible elastic material exhibiting a comparable thickness and stiffness as in the
corresponding experiment. The slab size in the x direction was chosen to be 20 μm, which is large
enough compared to the typical horizontal extent of the elastic deformation [see Fig. 5(a)]. The
bottom boundary of the slab was fixed (zero displacement), while the left and right boundaries were
let free (zero stress). The deformation field predicted by these finite-element simulations is shown
in Fig. 5(b) and found to be in quantitative agreement with our theoretical prediction.
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V. CONCLUSION

We report on the elastocapillary levelling of a thin viscous film flowing above a soft foundation.
The experiments involve different liquid film thicknesses, viscosities, and substrate elasticities. We
observe that the levelling dynamics on a soft substrate is qualitatively and quantitatively different
with respect to that on a rigid substrate. At the earliest times, the lateral evolution of the profiles
is faster on soft substrates than on rigid ones, as a possible result of the “instantaneous” substrate
deformation caused by the capillary pressure in the liquid. Immediately after, this trend reverses:
the lateral evolution of the profiles on soft substrates becomes slower than on rigid ones, which
might be related to a reduction of the capillary driving force associated with the elastic deformation.
Interestingly, we find that the width of the liquid-air interface follows a t1/6 power law over several
orders of magnitude on the relevant scale, in sharp contrast with the classical t1/4 law observed on
rigid substrates.

To the best of our knowledge, this system is a unique example of dynamical elastocapillarity
that is not mediated by the presence of a contact line, but only by the Laplace pressure inside the
liquid. Notwithstanding, this process is not trivial, since the coupled evolutions of both the liquid-air
and solid-liquid interfaces lead to an intricate dynamics. Our theoretical approach, based on linear
elasticity and lubrication approximation, is able to reproduce some observations, such as the typical
shapes of the height profiles and the dynamics at short times.

While some characteristic experimental features are captured by the model, a full quantitative
agreement is still lacking to date. Given the careful validation of all the basic assumptions underlying
our theoretical approach (i.e., lubrication approximation, linearization of the thin-film equation, and
linear elasticity), we hypothesize that additional effects are present in the materials or experiments.
For instance, it remains unclear whether the physicochemical and rheological properties at the
surface of PDMS films, which were prepared using conventional recipes, are correctly described by
bulk-measured quantities [9]. We believe that further investigations of the elastocapillary levelling
on soft foundations, using different elastic materials and preparation schemes, could significantly
advance the understanding of such effects and dynamic elastocapillarity in general.

Finally, we would like to stress that the signatures of elasticity in the elastocapillary levelling
dynamics are prominent even on substrates that are not very soft (bulk Young’s moduli of the PDMS
in the ∼MPa range) and for small Laplace pressures. In light of applications such as traction-force mi-
croscopy, where localized displacements of a soft surface are translated into the corresponding forces
acting on the material, the elastocapillary levelling on soft substrates might be an ideal model system
to quantitatively study surface deformations in soft materials with precisely controlled pressure fields.
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I. INTRODUCTION

As a reference state, we consider a thin viscous film of height h0 sitting on an incompressible elastic layer of thickness
s0 (see Fig. S1). The elastic layer is itself placed atop a rigid substrate. We use a Cartesian coordinate system (x, y,
z), with z being the vertical coordinate. We assume the system to be infinite in the x and y directions. The surface
tension of the air-liquid interface is denoted γ, the viscosity of the fluid (assumed to be Newtonian) η, and the shear
modulus of the elastic material (assumed incompressible, i.e. with a Poisson ratio of 1/2) µ. At initial time, t = 0, we
perturb the air-liquid interface by adding a step function h(x) = h2H(x) with H(x < 0) = −1/2 and H(x > 0) = 1/2.
We assume invariance in the y direction, and that the step height h2 is small compared with the reference height h0.

Supplementary Material 

 The initial un-deformed cross-section is shown in Figure S1 below.    

 

 

Figure S1:   Cross-section view of liquid and elastic layers of the reference equilibrium state to which will 
be superimposed at t = 0 a deformation of the liquid-air interface.     

A Cartesian coordinate system (x,y,z) is used.  For convenience of calculation, the origin O of the 
coordinate system is placed on the bottom of the elastic layer.  The liquid and the elastic layers are 
assumed to be infinite in the x and y directions and deformation is independent of y.   The elastic layer is 
assumed to be incompressible, with Poisson’s ratio equal to ½.  A summary of key notations is listed 
below. 

� 0s  is the thickness of elastic layer; the interface between elastic and fluid layer is located at z = 

0s  before perturbation is applied. 

� 0h  = thickness of fluid layer before perturbation is applied. 

� After perturbation is applied, the interface between elastic and fluid layer occupies � �EFz h x ,t 

, where t denotes time. 
� After perturbation is applied, the fluid/air interface occupies � �Fz h x ,t  

� � �u x ,z ,t  and � �v x ,z ,t  denote the horizontal and vertical displacements in the elastic layer.   

� � � � �0su x ,t u x ,z s ,t{   and � � � �0 0EFx ,t v x ,z s ,t h sG {   � denote the horizontal and vertical 
surface elastic displacements along the elastic/fluid interface.   

� � � � �F EFx t h x t h x t h' { � � 0( , ) , , = change in thickness of fluid layer. 

� � � � � 0 0( , ) ( , ) , ,Fd x t x t x t h x t h sG ' �  � � = displacement of fluid/air interface. 

� P  = shear modulus of the incompressible elastic layer 
� J  surface tension of the fluid/air interface  
� K  is the fluid viscosity 
� p(x,t) = pressure field in the fluid layer , with respect to the atmospheric pressure 

FIG. S1: Cross-sectional view of the reference equilibrium state, to which will be superimposed a deformation of the air-liquid
interface at initial time (t = 0).

II. CONTROL EXPERIMENT WITH A STEPPED PERTURBATION

The previous h2 � h0 condition is not verified in our experiments (where h2 = h1 = 2h0/3). However, we checked
that this simplification in the model does not affect our general conclusions and is not the source of some discrepancy
observed with the experiments. Indeed, in a test experiment with h2 � h0, we find that the profile width follows a
t1/6 power law with time t (see Fig. S2), consistently with the h1 = h2 experimental case (see Figs. 2 and 3), and in
contrast to the theoretical prediction (see Fig. 6).
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FIG. S2: Temporal evolution of the profile width w (defined in the inset of Fig. 2(a)), in log-log scale, for an experiment
with h2 � h1 (see inset). We used the same annealing temperature Ta and PDMS substrate (in grey in the inset) as in the
experiments reported in Figs. 1 and 2.

III. LUBRICATION-ELASTIC MODEL

A. Lubrication description of the liquid layer

As for the capillary levelling of a thin liquid film, of viscosity η, on a rigid substrate [39], we invoke the lubrication
approximation which assumes that the typical horizontal length scale of the flow is much larger than the vertical
one. As a result, at leading order, the vertical flow is neglected and the excess pressure field p (with respect to the
atmospheric pressure) does not depend on z. The incompressible Stokes’ equations thus reduce to:

∂p

∂x
= η

∂2vx
∂z2

, (S1)

which can be integrated in z to get the horizontal velocity vx. The main difference here with the previous model [39]
is that the pressure acts on the elastic layer, giving rise to vertical and horizontal displacements of the liquid-elastic
interface, δ(x, t) and us(x, t) respectively. In addition, the no-slip condition at the liquid-elastic interface implies
that a fluid particle in contact with the elastic surface will have a non-zero horizontal velocity ∂us/∂t. Using this
condition, the vanishing shear stress at the air-liquid interface, and invoking volume conservation, allow one to derive
the following equation:

∂∆

∂t
+

∂

∂x

[
− (h0 + ∆)3

3η

∂p

∂x
+ (h0 + ∆)

∂us
∂t

]
= 0 , (S2)

where ∆(x, t) = h(x, t)−δ(x, t)−h0 is the excess thickness of the liquid layer with respect to the equilibrium value h0,
and h(x, t) is defined in Fig. 1(b). Since the pressure is independent of z, it is fixed by the proper boundary condition,
i.e. the Laplace pressure at the air-liquid interface (we neglect the non-linear term of the curvature at small slopes):

p(x, t) = −γ ∂
2h

∂x2
= −γ ∂

2(∆ + δ)

∂x2
. (S3)

Finally, as the perturbation is assumed to be small (∆ � h0), one can linearize Eq. (S2) and get the governing
equation:

∂∆

∂t
+

∂

∂x

[
−h

3
0

3η

∂p

∂x
+ h0

∂us
∂t

]
= 0 . (S4)



3

B. Coupling with the elastic layer

The surface displacements of the liquid-elastic interface are given by:

δ(x, t) = − 1√
2πµ

∫ ∞

−∞
dx′ k(x− x′)p(x′, t) , (S5a)

us(x, t) = − 1√
2πµ

∫ ∞

−∞
dx′ ks(x− x′)p(x′, t) , (S5b)

where k and ks are the Green’s functions of the elastic problem (see Section III C), corresponding to the vertical and

horizontal displacements induced by a normal line load of magnitude −
√

2πµ. We introduce the Fourier transform f̃
of a function f with respect to its variable x as:

f̃(λ) =
1√
2π

∫ ∞

−∞
dx f(x)eiλx , (S6)

where λ is the Fourier variable (i.e. the angular wavenumber). Taking the Fourier transform of Eqs. (S3), (S4),
and (S5), we obtain:

δ̃ = − p̃k̃
µ

=
−k̃γλ2

µ(1 + k̃γλ2/µ)
∆̃ , (S7)

ũs = − p̃k̃s
µ

=
−k̃sγλ2

µ(1 + k̃γλ2/µ)
∆̃ , (S8)

∂∆̃

∂t
= −Ω(λ)∆̃ , (S9)

and:

Ω(λ) =
γλ4h30

3η

1

1 + (γλ2/µ)
(
k̃ + iλh0k̃s

) . (S10)

The solution of Eq. (S9) is:

∆̃(λ, t) = ∆̃(λ, 0) exp[−Ω(λ)t] = − h2
2iλ

√
2

π
exp[−Ω(λ)t] , (S11)

where we have used the initial conditions ∆(x, 0) = h2H(x) (see section I) and δ(x, 0) = 0. Finally, using Eq. (S7),
one has:

∆̃(λ, t) + δ̃(λ, t) =
∆̃(λ, t)

1 + k̃γλ2/µ
. (S12)

Therefore, once the Green’s functions k̃ and k̃s are determined (see Section III C), the displacement h(x, t) − h0 =
∆(x, t)+δ(x, t) of the air-liquid interface with respect to its equilibrium position can be obtained by taking the inverse
Fourier transform of Eq. (S12).

C. Green’s functions for the elastic layer

We consider an incompressible and linear elastic layer of thickness s0 supported on a rigid substrate (the latter
is located at z = −s0, see Fig. 1(a)). The deformation state of the elastic layer is that of plane strain, where the
out-of-plane (i.e. along y, see Fig. 1(a))) displacement is identically zero. The horizontal and vertical displacement
fields, ux(x, z, t) and uz(x, z, t) respectively, are both fixed to zero at the rigid substrate:

ux(x,−s0, t) = 0 , (S13a)
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uz(x,−s0, t) = 0 . (S13b)

On the other side of the layer, the liquid-elastic interface (located at z = 0 at zeroth order in the perturbation,
see Fig. 1(a)) is subjected to the lubrication pressure field p(x, t), but we assume no shear which is valid at leading
lubrication order. Therefore, one has:

σzz(x, 0, t) = −p(x, t) , (S14a)

σxz(x, 0, t) = 0 . (S14b)

In plane strain, the stresses are given by the Airy stress function φ(x, z, t) which satisfies the spatial biharmonic
equation. Specifically:

σxx =
∂2φ

∂z2
, σzz =

∂2φ

∂x2
and σxz = − ∂2φ

∂x∂z
. (S15)

The generalized Hooke’s law for an incompressible material in plane strain reads:

2µ∂zuz = σzz − Γ , (S16a)

2µ∂xux = σxx − Γ , (S16b)

µ(∂xuz + ∂zux) = σxz , (S16c)

where Γ(x, z, t) is the pressure needed to enforce incompressibility, that can be found using the incompressibility
condition:

∂xux + ∂zuz = 0 ⇒ Γ =
σxx + σzz

2
. (S17)

Combining the above, and using the same Fourier-transform convention as in the previous section, we find the following
relations:

σ̃xx = φ̃′′ , σ̃zz = −λ2φ̃ and σ̃xz = iλφ̃′ , (S18)

2µũ′z = − φ̃
′′ + λ2φ̃

2
, (S19a)

−2iλµũx =
φ̃′′ + λ2φ̃

2
, (S19b)

µ(−iλũz + ũ′x) = iλφ̃′ , (S19c)

where the prime denotes the partial derivative with respect to z. Taking the Fourier transform of the spatial biharmonic
equation results in a fourth-order ordinary differential equation:

λ4φ̃− 2λ2φ̃′′ + φ̃′′′′ = 0 , (S20)

whose general solution is:

φ̃(λ, z, t) = A(λ, t) cosh(λz) +B(λ, t) sinh(λz) + C(λ, t)z cosh(λz) +D(λ, t)z sinh(λz) . (S21)

The parameters A, B, C, D are determined using the boundary conditions (Eqs. (S13a), (S13b), (S14a), and (S14b))
and the relations between the Airy stress function and the stresses/displacements (Eqs. (S18) and (S19)). After some
algebra, we find:

A =
p̃

λ2
, B =

p̃

λ2
sinh(λs0) cosh(λs0)− λs0

cosh2(λs0) + (λs0)2
, C = −λB and D = − p̃

λ

cosh2(λs0)

cosh2(λs0) + (λs0)2
. (S22)
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Then, invoking Eqs. (S19b), (S19c), (S21) and (S22) the vertical displacement δ(x, t) = uz(x, 0, t) of the liquid-elastic
interface reads in Fourier space:

δ̃(λ, t) =
1

iλ

(
ũ′x −

iλφ̃′

µ

)
(λ, 0, t) = − p̃

2µλ

sinh(λs0) cosh(λs0)− λs0
cosh2(λs0) + (λs0)2

. (S23)

Using Eqs. (S7) and (S23), we find:

k̃(λ) =
1

2λ

sinh(λs0) cosh(λs0)− λs0
cosh2(λs0) + (λs0)2

. (S24)

In exactly the same way, the horizontal displacement us(x, t) = ux(x, 0, t) of the liquid-elastic interface reads in Fourier
space:

ũs(λ, t) = i
λ2φ̃+ φ̃′′

4µλ
(λ, 0, t) =

ip̃

2µ

λs20
cosh2(λs0) + (λs0)2

, (S25)

which gives:

k̃s(λ) =
1

2i

λs20
cosh2(λs0) + (λs0)2

. (S26)

IV. STOKES-ELASTIC MODEL

The previous lubrication-elastic model assumes that the typical vertical length scale of the flow is much smaller
than the horizontal one. However, the initial stepped interface and thus the early-time profiles are not compatible
with this criterion. Therefore, we now instead solve the incompressible Stokes’ equations for the liquid layer, in order
to go beyond the lubrication approximation.

A. Hydrodynamic description of the liquid layer

We introduce the 2D stream function ψ that is related to the velocity field ~v via the relation ~v = ~∇× (ψ ~ey) with

~ey the out-of-plane unit vector and ~∇× . the curl operator. Similarly to the Airy stress function, the stream function
verifies a biharmonic equation. The kinematic and no-slip conditions at the liquid-elastic interface (located at z = 0
at zeroth order in the perturbation, see Fig. 1(a)) imply, respectively:

vz(x, 0, t) = ∂xψ(x, 0, t) = ∂tuz(x, 0, t) = ∂tδ(x, t) , (S27a)

vx(x, 0, t) = −∂zψ(x, 0, t) = ∂tux(x, 0, t) = ∂tus(x, t) . (S27b)

In addition, at the air-liquid interface (located at z = h0 at zeroth order in the perturbation, see Figs. 1(a) and S1),
we assume no shear and the pressure is set by the Laplace pressure. The continuity of stress thus gives:

σxz(x, h0, t) = η(∂xxψ − ∂zzψ)(x, h0, t) = 0 , (S28a)

σzz(x, h0, t) = −P(x, h0, t) + 2η∂z(∂xψ)(x, h0, t) = −p(x, t) . (S28b)

with P(x, z, t) the excess pressure (with respect to the atmospheric pressure) in the liquid, and p(x, t) = −γ∂xxh
the Laplace pressure. Note that we neglect all nonlinear terms in ∂xh that come from the curvature in the Laplace
pressure and the projection of the normal and tangential vectors onto the x and z axes. Now, we employ a similar
method as the one developed in the previous lubrication-elastic model, and first take the Fourier transform of the
biharmonic equation satisfied by the stream function:

λ4ψ̃ − 2λ2ψ̃′′ + ψ̃′′′′ = 0 , (S29)
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whose general solution is:

ψ̃(λ, z, t) = A2(λ, t) cosh(λz) +B2(λ, t) sinh(λz) + C2(λ, t)z cosh(λz) +D2(λ, t)z sinh(λz) . (S30)

Taking the Fourier transforms of the boundary conditions (Eqs. (S27) and (S28)), we find:

−iλA2 = ∂tδ̃ . (S31a)

λB2 = − ip̃

2ηλ

sinh(λh0)λh0 + cosh(λh0)

cosh2(λh0) + (λh0)2
− i∂tδ̃

sinh(λh0) cosh(λh0)− λh0
cosh2(λh0) + (λh0)2

− ∂tũs
(λh0)2

cosh2(λh0) + (λh0)2
, (S31b)

C2 =
ip̃

2ηλ

sinh(λh0)λh0 + cosh(λh0)

cosh2(λh0) + (λh0)2
+ i∂tδ̃

sinh(λh0) cosh(λh0)− λh0
cosh2(λh0) + (λh0)2

− ∂tũs
cosh2(λh0)

cosh2(λh0) + (λh0)2
, (S31c)

D2 =
−ih0p̃

2η

cosh(λh0)

cosh2(λh0) + (λh0)2
− i∂tδ̃

cosh2(λh0)

cosh2(λh0) + (λh0)2
+ ∂tũs

λh0 + sinh(λh0) cosh(λh0)

cosh2(λh0) + (λh0)2
. (S31d)

Finally, we note that the pressure P(x, z, t) is entirely determined by the stream function. Indeed, in Fourier space,
and invoking the stream function, the x-projection of the Stokes’ equation reads:

iλP̃ = η
(
ψ̃′′′ − λ2ψ̃′

)
. (S32)

B. Coupling with the elastic layer

As in the previous lubrication-elastic model, we solve the elastic part of the problem by introducing the Airy stress
function φ given by Eq. (S21) in Fourier space. Assuming no displacement at the interface between the elastic layer
and the rigid substrate (located at z = −s0, see Fig. 1(a)), one has:

ux(x,−s0, t) = 0 , (S33a)

uz(x,−s0, t) = 0 . (S33b)

Equation (S19) can be used to relate the boundary conditions (Eq. (S33)) to the parameters A, B, C, D (Eq. (S21)).
After some algebra, one finds:

λA = 2µ
iũs(λs0)2 − δ̃[cosh(λs0) sinh(λs0) + λs0]

sinh2(λs0)− (λs0)2
, (S34a)

λB = −2µδ̃ , (S34b)

C = 2µ
−iũs[cosh(λs0) sinh(λs0)− λs0] + sinh2(λs0)δ̃

sinh2(λs0)− (λs0)2
, (S34c)

D = 2µ
−iũs sinh2(λs0) + δ̃[cosh(λs0) sinh(λs0) + λs0]

sinh2(λs0)− (λs0)2
. (S34d)

At the liquid-elastic interface (located at z = 0 at zeroth order in the perturbation, see Fig. 1(a)), the normal-stress
continuity reads:

−P(x, 0, t) + 2η∂z(∂xψ)(x, 0, t) = ∂xxφ(x, 0, t) , (S35)
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or, equivalently, in Fourier space:

P̃(λ, 0, t) + 2iληψ̃′(λ, 0, t) = λ2φ̃(λ, 0, t) . (S36)

Then, by taking the z → 0 limit of Eq. (S32) and by combining it with Eqs. (S21), (S30), and (S36), one obtains:

−2iηλ2B2 = −λ2A . (S37)

Invoking Eqs. (S22) and (S31), Eq. (S37) becomes:

− p̃ cosh(λh0) + λh0 sinh(λh0)

cosh2(λh0) + (λh0)2
− 2ηλ∂tδ̃

cosh(λh0) sinh(λh0)− λh0
cosh2(λh0) + (λh0)2

+ 2iηλ∂tũs
(λh0)2

cosh2(λh0) + (λh0)2

= 2λµ
−iũs(λs0)2 + δ̃[cosh(λs0) sinh(λs0) + λs0]

sinh2(λs0)− (λs0)2
.

(S38)

For simplicity, we neglect the terms of order T∂tδ̃ or T∂tũs with respect to the terms of order δ̃ or ũs, where
T = η/µ is a composite Maxwell-like viscoelastic time. This assumption essentially means that the elastic layer has
an instantaneous response to the applied stress, or that we decouple the fast and slow dynamics and focus on the
latter. This is relevant in our case since T is much smaller than the experimental time scale (see inset of Fig. 4).
Doing so, we get in Fourier space:

−p̃ cosh(λh0) + λh0 sinh(λh0)

cosh2(λh0) + (λh0)2
= 2λµ

−iũs(λs0)2 + δ̃[cosh(λs0) sinh(λs0) + λs0]

sinh2(λs0)− (λs0)2
. (S39)

Besides, the tangential-stress continuity reads:

η(∂xxψ − ∂zzψ)(x, 0, t) = −∂xzφ(x, 0, t) , (S40)

and thus, with a similar treatment, one gets in Fourier space:

p̃
λh0 cosh(λh0)

cosh2(λh0) + (λh0)2
= 2λµ

−iũs(cosh(λs0) sinh(λs0)− λs0) + δ̃(λs0)2

sinh2(λs0)− (λs0)2
. (S41)

By analogy with Eqs. (S5a) and (S5b) of the previous lubrication-elastic model, we introduce two new Green’s
functions k2(x) and ks2(x). Equations (S39) and (S41) thus lead to:

δ̃ = − p̃k̃2
µ

=
−p̃
2µλ

(λs0)2(λh0) cosh(λh0) + [sinh(λh0)λh0 + cosh(λh0)][cosh(λs0) sinh(λs0)− λs0]

[cosh2(λh0) + (λh0)2][cosh2(λs0) + (λs0)2]
, (S42)

ũs = − p̃k̃s2
µ

=
ip̃

2µλ

λh0 cosh(λh0)[cosh(λs0) sinh(λs0) + λs0] + [cosh(λh0) + sinh(λh0)λh0](λs0)2

[cosh2(λh0) + (λh0)2][cosh2(λs0) + (λs0)2]
, (S43)

with:

k̃2(λ) =
1

2λ

(λs0)2(λh0) cosh(λh0) + [sinh(λh0)λh0 + cosh(λh0)][cosh(λs0) sinh(λs0)− λs0]

[cosh2(λh0) + (λh0)2][cosh2(λs0) + (λs0)2]
, (S44)

k̃s2(λ) =
1

2iλ

λh0 cosh(λh0)[cosh(λs0) sinh(λs0) + λs0] + [cosh(λh0) + sinh(λh0)λh0](λs0)2

[cosh2(λh0) + (λh0)2][cosh2(λs0) + (λs0)2]
. (S45)

The two Green’s functions k2 and ks2 have forms that are quite similar to the ones of the previous lubrication-elastic
model, k and ks (see Eqs. (S24) and (S26)). Moreover, in the lubrication limit where λh0 → 0, k2 and ks2 tend
towards k and ks, respectively.
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C. Temporal evolution of the air-liquid interface

Let us write the mass conservation for the liquid layer:

∂t∆ = −∂x
∫ h(x,t)

δ(x,t)

dz vx(x, z, t) = ∂x

∫ h(x,t)

δ(x,t)

dz ∂zψ(x, z, t) = ∂xψ[x, h(x, t), t]− ∂xψ[x, δ(x, t), t] , (S46)

with ∆(x, t) = h(x, t)−δ(x, t)−h0 as in the previous lubrication-elastic model. At the lowest order in the perturbation,
this general expression becomes:

∂t∆ = ∂xψ(x, h0, t)− ∂xψ(x, 0, t) , (S47)

or, equivalently, in Fourier space:

∂t∆̃ + iλ[ψ̃(λ, h0, t)− ψ̃(λ, 0, t)] = 0 . (S48)

Using Eqs. (S3), (S42), and (S43), one gets:

δ̃ =
−k̃2γλ2

µ(1 + k̃2γλ2/µ)
∆̃ , (S49)

ũs =
−k̃s2γλ2

µ(1 + k̃2γλ2/µ)
∆̃ . (S50)

By injecting Eqs. (S30) and (S31) in Eq. (S48), one obtains the ordinary differential equation:

∂t∆̃ = −Ω2(λ)∆̃ , (S51)

with:

Ω2(λ) =
γλ

2η

A(λh0)

B(λh0) + γλ2

µ C(λh0)
, (S52)

and:

A(λh0) = cosh(λh0) sinh(λh0)− λh0 , (S53a)

B(λh0) = cosh2(λh0) + (λh0)2 , (S53b)

C(λh0) = k̃2 [cosh(λh0) + (λh0) sinh(λh0)] + ik̃s2λh0 cosh(λh0) . (S53c)

This differential equation can be solved with the initial condition (step of height h2, see Fig. 1(a)):

∆̃(λ, 0) = − h2
2iλ

√
2

π
, (S54)

thus leading to:

∆̃(λ, t) = − h2
2iλ

√
2

π
exp [−Ω2(λ)t] . (S55)

Then, using Eq. (S49), one has:

∆̃ + δ̃ =
∆̃

1 + γλ2k̃2/µ
. (S56)

Finally, the displacement h(x, t) − h0 = ∆(x, t) + δ(x, t) of the air-liquid interface with respect to its equilibrium
position can be obtained by taking the inverse Fourier transform of Eq. (S56). Figure S3 displays the temporal
evolutions of the profile width ω (see definition in the inset of Fig.2(a)), as derived from the two models presented in
this supplementary material. The Stokes-elastic model exhibits the same qualitative features as the lubrication-elastic
one. In particular, the width of the profile depends on elasticity only at early times, and rapidly tends to a 1/4 power
law – characteristic of the rigid-substrate case. This result suggests that the lubrication approximation, which is not
valid at early times, is not responsible for the discrepancy between the lubrication-elastic model and the experiments
reported in the main text.
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FIG. S3: Temporal evolution of the profile width (defined in the inset of Fig. 2(a)), in log-log scale, as predicted by both
theoretical models, for different shear moduli, viscosities and liquid-film thicknesses. The 1/4 power law corresponding to a
rigid substrate is indicated. The solid lines represent the lubrication-elastic model, and the dashed lines represent the Stokes-
elastic model. The shear moduli are given by the color code, which is identical to the one in Fig. 6. All the other parameters
are identical to the ones used in Fig. 6.
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Chapter 4

Capillary Levelling of Immiscible
Bilayer Films

The experiments presented here have been designed by Carmen Lee and Kari Dalnoki-
Veress at McMaster University, Canada. I have contributed to some experiments during
my stay in Canada in the spring 2018 and I lead the theoretical model.

In the same vein as in the previous chapter, we study the levelling dynamics of
stepped polymer thin films placed atop of other kind of “soft substrates”, namely im-
miscible polymer layers. Such a bilayer system can be seen as a minimal model of
multilayer thin films that are encountered in materials science. The levelling largely
depends on the viscosity ratio between the two liquids. In the bottom film is more
viscous than the top one, the levelling of the top film is similar to the classical level-
ling on a rigid substrate. In the opposite case, when the bottom film is less viscous,
the dynamics is more complex and does not exhibit clear self-similar properties. The
excess surface (proportional to the excess energy) decays to zero following a apparent
power-law regimes with time t−1/2 and t−1/4. We perform a long-wave expansion of
the Stokes equations to model the system and we find a good agreement with the ex-
perimental results. The model reveals a double cross-over in time, from Poiseuille flow,
to plug flow and finally Couette flow as the main source of dissipation. A full Stokes
model is also provided to support the asymptotic long-wave model. I include here an
article, published in Journal of Fluid Mechanics, that I co-wrote with Carmen Lee [4].

135



J. Fluid Mech. (2021), vol. 911, A13, doi:10.1017/jfm.2020.1045

Capillary levelling of immiscible bilayer films

Vincent Bertin1,2, Carmen L. Lee3, Thomas Salez1,4, Elie Raphaël2 and
Kari Dalnoki-Veress1,3,†
1Univ. Bordeaux, CNRS, LOMA, UMR 5798, 33405 Talence, France
2UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 75005 Paris, France
3Department of Physics and Astronomy, McMaster University, 1280 Main Street West,
Hamilton, ON L8S 4M1, Canada
4Global Station for Soft Matter, Global Institution for Collaborative Research and Education,
Hokkaido University, Sapporo, Japan

(Received 1 May 2020; revised 21 September 2020; accepted 18 November 2020)

Flow in thin films is highly dependent on the boundary conditions. Here, we study the
capillary levelling of thin bilayer films composed of two immiscible liquids. Specifically,
a stepped polymer layer is placed atop another, flat polymer layer. The Laplace pressure
gradient resulting from the curvature of the step induces flow in both layers, which
dissipates the excess capillary energy stored in the stepped interface. The effect of different
viscosity ratios between the bottom and top layers is investigated. We invoke a long-wave
expansion of the low-Reynolds-number hydrodynamics to model the energy dissipation
due to the coupled viscous flows in the two layers. Good agreement is found between the
experiments and the model. Analysis of the latter further reveals an interesting double
cross-over in time, from Poiseuille flow, to plug flow and finally to Couette flow. The
cross-over time scales depend on the viscosity ratio between the two liquids, allowing for
the dissipation mechanisms to be selected and finely tuned by varying this ratio.

Key words: capillary flows, thin films

1. Introduction

Flow in a thin film is affected by the boundary conditions of the film, especially
when the thickness of the film approaches that of the interfacial layer (Oron, Davis &
Bankoff 1997; Bocquet & Charlaix 2010). As an example, the presence of slippage at a
solid–liquid interface affects flows in thin films as observed in the dewetting dynamics
of thin polymer films (Kargupta, Sharma & Khanna 2004; Fetzer et al. 2005; Münch,
Wagner & Witelski 2005; Bäumchen & Jacobs 2009). The dynamics is more complex
in bilayer or stratified films, because the flow depends on the relative viscosities and

† Email address for correspondence: dalnoki@mcmaster.ca

© The Author(s), 2021. Published by Cambridge University Press 911 A13-1
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V. Bertin and others

interfacial energies of the two layers in addition to the interfacial boundary conditions
(Brochard-Wyart, Martin & Redon 1993; Pototsky et al. 2004; Merabia & Bonet Avalos
2008; Jachalski et al. 2014). Liquid–liquid interfaces, in particular those between two
polymers, often exhibit apparent slip (de Gennes 1989; Brochard-Wyart & de Gennes 1990;
de Gennes & Brochard-Wyart 1990), and have been studied with molecular dynamics
simulations (Koplik & Banavar 2006; Razavi, Koplik & Kretzschmar 2014; Poesio,
Damone & Matar 2017) and experiments (Lee et al. 2009; Xu, Zhang & Shi 2016).
Such an effective reduction of friction has important practical implications, e.g. for smart
liquid-impregnated surfaces (Howell 2015; Keiser et al. 2017). The stability and dewetting
of thin multilayer polymer films is also a subject of interest for physicists (Lambooy
et al. 1996; Segalman & Green 1999; Lal et al. 2017; Peschka et al. 2018), and finds
applications in industry e.g. materials manufactured from coextrusion processes (Zhao
& Macosko 2002; Ponting, Hiltner & Baer 2010; Bironeau et al. 2017; Chebil et al.
2018).

Capillary-driven levelling occurs when an excess of interfacial area is relaxed by
smoothing topographical perturbations, such as a thin film with a surface feature: a bump,
a valley, a hole, etc. Typically, the levelling is driven by the surface tension γ of the
liquid–vapour interface. The curvature of the free interface results in a Laplace pressure,
and a gradient in the curvature induces flow, thereby reducing the surface energy of the
system. The flow is mediated by the viscosity η of the liquid. Capillary-driven levelling
is a useful tool for studying fluid flow in nanofilms and can be used to investigate the
boundary conditions (de Gennes, Brochard-Wyart & Quéré 2003). With well-known initial
conditions, capillary-driven levelling has been used to study various interfacial polymeric
properties, such as glass transition anomalies, confinement effects and nanorheology
in thin polymers films (Buck et al. 2004; Fakhraai & Forrest 2008; Yang et al. 2010;
Rognin, Landis & Davoust 2011; Teisseire et al. 2011; Chai et al. 2014). Previous work on
nanorheology in thin films has shown that, in addition to the importance of surface tension
and viscosity, the flow is sensitive to the boundary conditions (Münch et al. 2005; Xu et al.
2011; Jachalski et al. 2014). The capillary-levelling technique was applied to a variety of
geometries and configurations, which range from imprinted nano-patterns (Stillwagon &
Larson 1988; Buck et al. 2004; Rognin et al. 2011; Teisseire et al. 2011), to steps (McGraw,
Jago & Dalnoki-Veress 2011), trenches (Bäumchen et al. 2013), holes (Backholm et al.
2014; Bertin et al. 2020) and inhomogeneous mixtures (McGraw et al. 2013).

In the present work, we focus on the influence of a deformable liquid–liquid interface
between two immiscible polymers by studying the capillary-driven levelling of a stepped
bilayer film. The latter is depicted schematically in figure 1(a). A stepped polymer film is
placed on a flat film of another, immiscible polymer supported on a rigid substrate. The
initial surface perturbation can be described as a Heaviside function, where the vertical
height profile varies abruptly from one thickness to another as the horizontal x-direction
is varied. The system is invariant in the other horizontal direction. During the subsequent
evolution, the height profile h(x, t) can be described as a function of both the horizontal
position x and time t. Furthermore, the dynamics is expected to depend on the relative
viscosities of the bilayer. Indeed, one can expect that, if the viscosity of the bottom flat
film is much higher than that of the top stepped film, then the former is much like a rigid
substrate: the top film can flow like a liquid film on a solid substrate. In contrast, if the
bottom film has a relatively negligible viscosity, then the top film can flow with little
hindrance at the bottom, akin to a freestanding liquid film. For these reasons, it is of value
to consider the two extreme cases of a single film on a solid substrate and a freestanding
film.
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Capillary levelling of immiscible bilayer films

h0
h2 (x, t)

h1 (x, t)
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PMMA

PS
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1
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n
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z

x y
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80 µm

2

Si

Air(b)(a)

Figure 1. (a) Schematic of the as-prepared sample, with the indicated materials. The upper portion of the
stepped film, the lower portion of the stepped film and the bottom film all have the same thickness h0.
(b) Atomic force microscopy profiles of the liquid–air interface and the liquid–liquid interface. The two scans
are shifted in the vertical direction to reconstruct the actual profile of the sample.

In the case of a thin liquid film on a solid substrate (McGraw et al. 2011, 2012; Salez
et al. 2012a), there is typically a no-slip boundary condition at the solid–liquid interface
and a no-shear-stress boundary condition at the liquid–air interface. Using the lubrication
approximation for Stokes flow, the interface profile follows the thin-film equation (Oron
et al. 1997) with a parabolic Poiseuille velocity profile. In earlier works on stepped films, it
was found that the thin-film equation admits a self-similar solution in the rescaled variable
x/t1/4 (McGraw et al. 2012; Salez et al. 2012a).

In contrast, for a freestanding film, there are no-shear-stress boundary conditions at
each of the two interfaces. As a consequence, the excess surface energy of a symmetric
topographical perturbation must be dissipated through elongational flow, instead of shear
flow, as was found in soap films (Acheson 1990). Within a long-wave approximation, the
flow profile is consistent with plug flow. The interface profile h(x, t) follows a system of
coupled partial differential equations (Erneux & Davis 1993) which admits a self-similar
solution in the rescaled variable x/t1/2 (Ilton et al. 2016). We note that freestanding films
are described by the same equations as that for supported films on slippery substrates with
an infinite slip length, since the absence of friction at the solid–liquid interface implies the
absence of any shear stress at that interface (Münch et al. 2005).

For a thin liquid film placed onto another, immiscible thin liquid film, the flow profile
depends on the viscosity ratio between the two films, as well as on the ratio between the
two relevant interfacial tensions. While the levelling of a liquid film atop a more viscous
liquid is expected to be similar to that of a liquid film atop a solid substrate, the opposite
case of liquid film atop a lower-viscosity liquid is non-trivial and is the primary focus of
the present article. Here, we use experiments and low-Reynolds-number hydrodynamics
in order to investigate the flow in such a geometry. Based on previous works on supported
and freestanding films, we expect the widths of the interfacial perturbations to follow
some combinations of the limiting ∼ t1/4 and ∼ t1/2 relaxation laws. We demonstrate that
the main viscous dissipative mechanism cross-overs in time from being Poiseuille like, to
elongational and then to Couette like, and that this double cross-over is tuneable with the
viscosity ratio.

2. Methods

2.1. Experiments
The sample preparation and experimental protocol follow modified versions of the ones
described in previous works (McGraw et al. 2011; Peschka et al. 2018). Figure 1(a) shows
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V. Bertin and others

a schematic of the sample, with a stepped film of poly(methyl methacrylate) (PMMA)
atop a polystyrene (PS) film supported on a silicon (Si) substrate. PS and PMMA are an
immiscible pair (Tanaka, Takahara & Kajiyama 1996). The thin polymer films are prepared
by spin coating PS or PMMA from solutions in toluene (Fisher Chemical, Optima), onto
1 cm × 1 cm Si wafers (University Wafer) and freshly cleaved mica sheets (Ted Pella,
Inc.), respectively. The PMMA molecular weight is Mw = 56 kg mol−1 (Polymer Source,
Inc., polydispersity index ≤1.08). The PS molecular weights are Mw = 53.3, 183 and
758.9 kg mol−1 (Polymer Source, Inc. and Scientific Polymer Products, Inc., polydispersity
index ≤1.06). After spin coating, all films are annealed at 150 ◦C, i.e. above the glass
transition temperatures of both polymers, for 10 minutes to remove any residual solvent
and to relax the polymer chains. The films of PMMA are then floated from the mica surface
onto a bath of ultra-pure water (18.2 MΩ cm). A floating film of PMMA is transferred off
the water surface onto the PS-coated Si substrate to create a flat bilayer film supported on
Si. The molecular weight of the PMMA is low enough such that the polymer chains are
not highly entangled: a thin film of this polymer easily fractures upon perturbation on the
surface of water, which results in portions with straight edges (Bäumchen et al. 2013). A
second film of PMMA is fractured and transferred onto the flat bilayer, the sharp, fractured
edge thus creating the step (see figure 1a). For each sample studied here, the upper
portion of the PMMA stepped film, the lower portion of the PMMA stepped film, and the
bottom PS film all have the same thickness, h0, within 10 % of each other, as confirmed
with ellipsometry (Accurion, EP3). The thicknesses used in this work are h0 = 100, 180
and 240 nm.

To examine the evolution of the step with time, the samples are annealed above the glass
transition temperature of both polymers (∼100 ◦C), with a temperature controlled stage
(Linkam). The samples are held at the elevated temperature for a given period of time,
during which flow and levelling occur, before being quenched back into the glassy state
at room temperature. Surface profiles of the liquid–air interface are obtained with atomic
force microscopy (AFM, Bruker). For some experiments, the liquid–liquid interface is
exposed by dissolving of the top PMMA layer with a selective solvent (∼67 % acetic acid
and ∼33 % ultra-pure water). This procedure allows for AFM profiles of the liquid–liquid
interface to be measured. Figure 1(b) shows typical AFM profiles of the liquid–air and
liquid–liquid interfaces taken at the same location on the sample. The actual profile of
the whole sample is reconstructed by vertically shifting the AFM profiles according to the
original layer thickness.

The dynamics of capillary-driven levelling depends on two dimensionless numbers: the
viscosity ratio μ = η1/η2 between the bottom (PS, 1) and top (PMMA, 2) layers, and the
interfacial tension ratio Γ = γ1/γ2 between the liquid–liquid and liquid–air interfaces.
The viscosity ratio is varied by changing the molecular weight of the bottom layer, as well
as by changing the annealing temperature; this results in the viscosity ratio varying over
6 orders of magnitude, from μ ≈ 5.3 × 10−5 to μ ≈ 1.4 × 101. The range of viscosity
ratios μ was fixed by the accessible experimental time scales, such that levelling was slow
enough to be monitored with AFM but fast enough to have reasonable experimental times.
The individual viscosities were measured independently through the capillary levelling
of simple stepped films of each single polymer, using the method described previously
(McGraw et al. 2011)(see table 1). Variations of the interfacial tension ratio over the
experimental temperature range are negligible, so that the ratio is taken to be Γ = 0.053
(Wu 1970); thus the liquid–air surface tension largely dominates that of the liquid–liquid
interface.
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Capillary levelling of immiscible bilayer films

Mw(PS) T μ μ

(kg mol−1) (◦C) (best fit) (independent)

53.3 150 1.1 × 10−4 5.3 × 10−5

53.3 165 1.5 × 10−3 3.0 × 10−4

53.3 180 7.1 × 10−3 7.1 × 10−4

183 150 8.5 × 10−3 4.2 × 10−3

183 165 7.4 × 10−3 2.0 × 10−2

183 180 4.6 × 10−2 4.6 × 10−2

758.9 150 1.7 × 10−1 6.9 × 10−1

758.9 165 1.2 × 100 5.8 × 100

758.9 180 1.5 × 100 1.4 × 101

Table 1. The viscosity ratios μ, between the bottom (PS) and top (PMMA) layers, for various PS molecular
weights Mw(PS), and annealing temperatures T . The viscosity ratios are obtained from: (i) a best fit of the
theory to the experimental excess capillary energy (‘best fit’); and (ii) the capillary levelling of simple stepped
films of each single polymer (‘independent’).

2.2. Theory
The system is modelled as two thin liquid layers atop each other, the ensemble being placed
on a rigid substrate, as sketched in figure 1(a), and Cartesian coordinates (x, y, z) are
used, as shown in figure 1(b). The system is assumed to be infinite in both the x-direction
and y-direction, and invariant by translation in the latter. The typical length scales of the
experiment are well below the capillary length, thus gravitational effects can be neglected.
In thin, highly viscous polymer films, with Reynolds and Mach numbers are much smaller
than 1, relaxation is driven by capillarity, and inertial and compressibility effects can be
neglected. Furthermore, the polymer melts may be treated as Newtonian liquids (McGraw
et al. 2012), since the typical viscoelastic times, under the present experimental conditions,
are of the order of a few seconds (Hirai et al. 2003) whereas the levelling time scales are
much larger (minutes to hours). Finally, the film thicknesses are chosen to be large enough
such that disjoining forces are weak in comparison with the Laplace pressure (Seemann,
Herminghaus & Jacobs 2001; Sharma & Verma 2004).

The velocity fields and excess pressure fields with respect to the atmospheric pressure
are denoted as ui = (ui, 0,wi) and pi, respectively. In the small-slope limit, the tangential
stress balance at the liquid–liquid interface reads η1(∂u1/∂z) = η2(∂u2/∂z) (Jachalski
et al. 2014). In the regime where μ � 1, this relation further leads to ∂u2/∂z = 0
to leading order. Together with a no-shear-stress boundary condition at the liquid–air
interface, these are consistent with plug flow in the top layer: much like in the freestanding
case discussed above. Within the lubrication approximation, the bottom layer is expected
to display a horizontal Poiseuille-like flow. Furthermore, we assume continuity of the
velocity field across the liquid–liquid interface, i.e. we impose a no-slip boundary
condition. As a result, we expect an additional linear term in z (like Couette flow for a
simple shear geometry) in the horizontal velocity field of the bottom layer.

Within this framework, and invoking the lubrication-like scale separation, the heights
hi(x, t) of both interfaces (see figure 1b) follow a set of nonlinear partial differential
equations (see appendix A for more details). We refer to this first model as the asymptotic
model. We note that a similar derivation was made for the non-Newtonian case for the
upper liquid using the Jeffreys model (Jachalski, Münch & Wagner 2015). The governing

911 A13-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
45

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 E

SP
CI

 E
co

le
 s

up
ér

ie
ur

e 
de

 p
hy

si
qu

e 
et

 d
e 

ch
im

ie
 in

du
st

ri
el

le
s,

 o
n 

25
 Ja

n 
20

21
 a

t 1
4:

06
:1

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.



V. Bertin and others

equations are

∂t(h2 − h1) = −[(h2 − h1)u2]′, (2.1a)

∂th1 = −
[
(γ2h′′′

2 + γ1h′′′
1 )

h3
1

12η1
+ h1u2

2

]′
= −

[
−p′

1
h3

1
12η1

+ h1u2

2

]′
, (2.1b)

γ2h′′′
2 (h2 − h1)+ (γ2h′′′

2 + γ1h′′′
1 )

h1

2
+ 4η2[u′

2(h2 − h1)]′ − η1
u2

h1
= 0, (2.1c)

where the prime indicates a derivative with respect to x. The excess pressure field
p1 = −γ1h′′

1(x)− γ2h′′
2(x) in the bottom film corresponds to the sum of the two interfacial

Laplace pressure jumps in the small-slope limit. Notably, (2.1c) has the same form as the
tangential stress balance for a single liquid film on a solid substrate with a large slip length
(Münch et al. 2005). The associated apparent slip length in our configuration is b ∼ h1/μ
(Jachalski et al. 2015), which is large if μ � 1, i.e. if the bottom layer is much less viscous
than the top one. We note that a similar analogy with flow over a slippery substrate has
been proposed to describe the flow of nanobubbles on hydrophobic surfaces (Lauga &
Brenner 2004).

The heights of the two interfaces can be further expressed as perturbations from the
equilibrium configuration: h1(x, t) = h̄1 + δh1(x, t) and h2(x, t) = h̄2 + δh2(x, t), where
h̄i denote the mean heights of the two interfaces: h̄1 = h0 and h̄2 = 5h0/2 in our specific
geometry. We then assume that δhi � h̄i, and keep only the leading-order linear terms.
We stress that this condition is not strictly valid at the liquid–air interface, but: (i) the
linearization allows us to obtain an analytical solution; and (ii) in both limiting cases of
freestanding and supported films, the linearization does preserve the self-similar structure
of the nonlinear problem (Salez et al. 2012a,b; Ilton et al. 2016). Therefore, our approach
is still expected to provide some relevant features for the experimental system.

Using the Fourier transform f̃ (k) of a function f (x), defined as f̃ (k) =
(1/

√
2π)

∫
dxf (x) exp(ikx), we find from the linearization of the governing equations

above, that

∂δ̃hi

∂t
= si,j(k)δ̃hj, (2.2)

with si,j representing the elements of the decay-rate matrix s associated with the mode
k (see appendix A). The Einstein summation convention is used in (2.2). The general
solution to this set of equations is

δ̃h1 = α exp (λ1t)+ β exp (λ2t), (2.3a)

δ̃h2 = αK1 exp (λ1t)+ βK2 exp (λ2t), (2.3b)

where (λ1, λ2) and (1,K1), (1,K2) are the eigenvalues and eigenvectors of s, respectively.
The two coefficients α and β can be found using the initial conditions: δh1(x, t = 0) = 0,
and δh2(x, t = 0) = h0[Θ(x)− 1/2], whereΘ denotes the Heaviside function (i.e.Θ(x >
0) = 1, Θ(x < 0) = 0).

We stress that the main assumption in the asymptotic model is the small-slope
approximation. However, the initial profile is sharp in the experiments, with large slopes.
Therefore, the early-time dynamics cannot be fully captured. To evaluate and extend
the validity of the asymptotic model described so far, a second model was developed
that does not assume any specific leading-order flow profiles in the two layers, and that
takes into account all the terms of the Stokes equations. Thus, this model includes the
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Capillary levelling of immiscible bilayer films
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Figure 2. (a) Experimental profiles h(x, t) = hi(x, t) of the liquid–liquid (i = 1, bottom) and liquid–air (i = 2,
top) interfaces of a PMMA (Mw = 56 kg mol−1) stepped layer on a PS (Mw = 53.3 kg mol−1) layer (see
figure 1), during levelling at T = 150◦C. The viscosity ratio for these samples is μ = 1.1 × 10−4 (see table 1).
The samples were fabricated with h0 = 180 nm. (b) Theoretical profiles calculated using the asymptotic model.
The times, rheological properties and geometry have been chosen to match the experimental conditions of the
data shown in (a).

contribution of vertical flow in the leading-order momentum balance, in contrast with the
asymptotic model. We refer to this second model as the full-Stokes model (see details in
appendix B). The stress boundary conditions are linearized in the profiles’ perturbations,
in order to get an analytical solution that can be compared with the asymptotic model.
As a result, the full-Stokes model exhibits governing equations similar to (2.2), with the
exception of the matrix elements sStokes

i,j , which are more complicated functions of k than
si,j. Excellent self-consistent agreement between the solutions of the two models is found
in the small-slope limit at small wavenumber (see appendix B).

3. Results and discussion

3.1. Interface profiles
In figure 2(a), we show the experimental profiles of the liquid–air and liquid–liquid
interfaces at different stages of evolution for the case of PMMA with Mw = 56 kg mol−1,
PS with Mw = 53 kg mol−1 and an annealing temperature of 150 ◦C. We note that each
pair of interface profiles at a given annealing time corresponds to a different sample, as
the top layer must be removed in order to image the buried liquid–liquid interface. Thus, a
series of equivalent samples was prepared in order to reconstruct the entire evolution. Each
sample was annealed for a given time, its liquid–air interface was imaged, the PMMA layer
removed, and finally the profile of the bottom layer at the same location was imaged. The
liquid–air interface develops a ‘bump’ on the upper side of the step with positive curvature
(i.e. negative second derivative of the profile), and a ‘dip’ on the lower side with negative
curvature. With increasing annealing time, the bump and dip spread apart horizontally
as the step levels. Furthermore, at late times, the bump and dip decrease in height. As
discussed previously (Salez et al. 2012a), the bump and dip develop to alleviate the large
gradients in Laplace pressure due to the highly curved corners of the original stepped
geometry. At early annealing times (t < 8 min), there is a sharp feature near the centre of
the step that seems to be a remnant of the initial corner of the step.

The liquid–liquid interface deforms significantly in response to the Laplace pressure
due to the stepped liquid–air interface. Remarkably, the deformation of the liquid–liquid
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interface initially grows vertically, before levelling out, which implies that while the
surface energy associated with the liquid–air interface decreases, it partially does so at
the cost of an increasing surface energy of the liquid–liquid interface. On either side of
the step one can observe features in the liquid–liquid interface which mimic that of the
bump and dip of the liquid–air interface. The deformation of the liquid–liquid interface
can be qualitatively understood by considering the interfacial tension ratio Γ = γ1/γ2,
as well as the viscosity ratio μ = η1/η2 (see § 3.2 for a detailed study of the latter)
introduced above. Since Γ � 1, the liquid–liquid interface is much more compliant than
the liquid–air interface, and hence the liquid–liquid interface adapts and follows the
liquid–air interface. Moreover, the total interfacial energy of the system is dominated by
the liquid–air contribution, as demonstrated quantitatively below (see § 3.3).

Figure 2(b) shows the theoretical profiles generated from the asymptotic model, with all
the physical parameters matching the experimental conditions of the data in figure 2(a).
The model captures the essential features observed in the experiments, with the exception
of a few early-time features (e.g. initial vertical growth of the liquid–liquid interface and
sharp feature near the step corner). In fact, at early times, the small-slope approximation
is violated since ∂h2/∂x|x=0 is of order one. We thus suspect vertical flows, which
were neglected in the leading-order momentum balance of the asymptotic model, to be
responsible for such features. The full-Stokes model, which accounts for vertical flow,
does capture these early-time details (see appendix B), which supports our suggestion.

3.2. Effect of the viscosity ratio
Figure 3(a) shows the experimental liquid–air (i.e. PMMA–air) interface profiles, at an
annealing temperature of 165 ◦C, for various annealing times and PS molecular weights.
For the experimental profiles in figures 2(a) and 3, μ is always much smaller than 1 –
except in the case of Mw(PS) = 758.9 kg mol−1 at 165 ◦C, for which μ is of order unity
(see table 1). As explained in § 3.1, the evolution of the system is mostly driven by the
gradients in Laplace pressure along the liquid–air interface. The resulting pressure field in
the top PMMA layer is transferred to the underlying PS layer, thereby inducing flow in the
latter and thus deformation of the liquid–liquid interface. Finally, it is immediately clear
from figure 3(a) that for samples having identical annealing temperatures, annealing times
and geometry, the lower the viscosity of the underlying PS layer, the faster the levelling of
the liquid–air interface. This highlights the importance of the bottom layer in the relaxation
of the top layer, and is in line with the discussion in § 2.2 about the apparent slip length
b ∼ h1/μ in our configuration (Jachalski et al. 2015).

As discussed in the introduction, the capillary levelling of thin liquid films can exhibit
self-similar regimes. For films supported on no-slip substrates and with the associated
Poiseuille flow, the self-similar variable is x/t1/4, while for freestanding films and plug
flow, x/t1/2 provides the appropriate rescaling. Figure 3(b) shows the same data as in
figure 3(a) with the horizontal axis rescaled as expected for a Poiseuille flow. For the
largest viscosity ratio, obtained with Mw(PS) = 758.9 kg mol−1, the rescaled profiles
collapse well with one another. This is consistent with the physical intuition that a
high enough viscosity in the bottom layer renders the situation analogous to capillary
levelling on a solid substrate. However, for the two smaller viscosity ratios, there is no
such collapse, which suggests that there is no ∼t1/4 self-similar behaviour within the
experimental temporal range. Similarly, rescaling the x-axis by t1/2 (not shown) does not
allow us to collapse the experimental profiles either. Therefore, in order to investigate
the temporal evolution in more detail, we consider in § 3.3 the evolution of the surface
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Figure 3. (a) Experimental liquid–air (i.e. PMMA–air) interface profiles, at an annealing temperature of
165 ◦C, for various annealing times and PS molecular weights, as indicated. (b) Same experimental data as
in (a), but with a rescaled horizontal axis. For both panels, the 53.3 and 758.9 kg mol−1 data have been shifted
horizontally and vertically for clarity.

energy of the system – i.e. a global observable linked to capillary levelling (McGraw et al.
2012).

3.3. Energetic considerations
The excess capillary energy Ei of interface i is proportional to the interfacial tension γi, as
well as to the difference between the interfacial area Si and the interfacial area S0

i of the
flat equilibrium state: Ei = γi(Si − S0

i ). Given the invariance of the system with respect to
the y-direction, and relating the interfacial lengths to the local profiles hi(x), we consider

the excess capillary energies per unit length defined as: Ei = γi
∫

dx (
√

1 + h′
i(x)

2 − 1).
In order to account for the different initial liquid–liquid interfacial lengths, resulting from
the different h0 values and thus step heights, the excess capillary energies per unit length
can be normalized by the corresponding initial values γ2h0 for the liquid–air interface.
In figure 4 the normalized excess capillary energy per unit length is plotted versus
dimensionless time for both the liquid–liquid (i = 1) and liquid–air (i = 2) interfaces,
from the data shown in figure 2(a), as well as from data obtained with two other thicknesses
h0. At dimensionless times tγ2/(h0η) larger than ∼ 10, one observes that the excess
capillary energies of both interfaces seem to decrease as t−1/2 power laws. In addition,
as expected and discussed in § 3.1, the contribution of the liquid–liquid interface is ∼ 7
times smaller than that of the liquid–air interface. This dominance of the liquid–air
excess interfacial energy to the total interfacial energy confirms the intuitive remark made
previously that the liquid–liquid interface deforms with a relatively little cost since Γ � 1.
In the following, we thus focus on the liquid–air interface alone. Conveniently, one can
then prepare a single sample and follow the evolution of the liquid–air interface through
repeated annealing, rather than having to sacrifice the sample by dissolving the top PMMA
layer. The excess capillary energies per unit length can be computed from the asymptotic
model, i.e. in the small-slope limit, with the approximation Ei 	 γi

∫
dx h′

i(x)
2/2. We

note that, under this approximation, if the profile of a given interface is self-similar, such
that hi(x, t) = fi(x/tα) with fi a function of a single variable, then Ei ∼ t−α . Therefore,
Ei ∼ t−1/4 or Ei ∼ t−1/2 indicate the dominance of Poiseuille or plug flows, respectively,
as discussed in § 3.2.

Figure 5(a–c) shows the normalized excess capillary energy per unit length E2 of the
liquid–air interface as a function of time t, for different annealing temperatures and PS
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10−1

100

E i
/
(γ

2
h 0

)

h0 = 100 nm

h0 = 240 nm

h0 = 180 nm

t−1/2

Figure 4. Normalized excess capillary energy per unit length of the liquid–liquid (i = 1, unfilled) and
liquid–air (i=2, filled) interfaces, for PMMA (Mw =56 kg mol−1) stepped films on PS (Mw =53.3 kg mol−1)
films, with three different values of the nominal thickness h0 (see figure 1) as indicated, and an annealing
temperature of 150 ◦C. The excess capillary energies per unit length have been normalized by the corresponding
initial values for the liquid–air interface. Long-term ∼t−1/2 behaviours are indicated with dashed lines.

molecular weights. For each panel, three identical samples were prepared and annealed
at different temperatures. The experimental data are overlaid with best fits to the excess
capillary energy per unit length E2 of the liquid–air interface obtained from the asymptotic
model, using the PS viscosity as the single free parameter. We note an excellent agreement
between experiments and theory, except at the earliest times for the sample made with a
53.3 kg mol−1 PS molecular weight and annealed at 150 ◦C. In that case, the experimental
values are substantially higher than predicted by the model, which is likely due to the sharp
feature observed at early times (see figure 2a), as noted in § 3.1. Indeed, this feature cannot
be captured by the asymptotic model (see figure 2b) which neglects any vertical flow in
the leading-order momentum balance (see appendix B), and it would elevate the capillary
energy compared to a profile without that feature. Finally, the viscosity ratios obtained
from the fits are in good agreement with independent measurements (see table 1) – both
approaches being within an order of magnitude of each other. We note that the viscosities
are highly dependent on temperature and that small temperature differences between
samples can have large effects on the measured viscosity ratio. Furthermore, as the driving
force for flow is surface energy, there is a possibility of trace contaminants reducing the
surface energy from what is assumed, thus modifying the capillary velocity of the system
(Hourlier-Fargette et al. 2017; Peaudecerf et al. 2017). However, this contribution to any
error in the capillary velocity is small in comparison to that related to the temperature
variation on the viscosity.

While the experimental data in figures 4 and 5(a) seem consistent with a E2 ∼ t−1/2

trend, the asymptotic model does not predict a well-defined regime with such a scaling
law. Instead, the model seems to exhibit a double cross-over, with a transient exponent
that changes smoothly from a value near −1/4, to a value near −1/2, before increasing
again towards −1/4, as seen in figure 5(a–c). The latter seems to correspond to a proper
long-term self-similar regime, valid for all viscosity ratios. Thus, the energy eventually
becomes independent of the viscosity η2 of the top film, which indicates that most
of the dissipation occurs in the bottom film at late times. This long-term self-similar
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Figure 5. (a–c) Normalized excess capillary energy per unit length E2/(γ2h0) of the liquid–air interface as a
function of time t, for PMMA (Mw = 56 kg mol−1) stepped layers on PS layers, annealed at 150 ◦C (◦), 165 ◦C
(
) and 180 ◦C (
). The PS molecular weights are: (a) Mw = 53.3 kg mol−1, (b) Mw = 183 kg mol−1 and
(c) Mw = 758.9 kg mol−1. The solid lines of corresponding colours indicate the normalized excess capillary
energy per unit length E2/(γ2h0) of the top interface calculated from the asymptotic model, with the PS
viscosity as a single fitting parameter. The bands span a variation in viscosity ratio from half of the best fit to
double of the best fit. The excess capillary energies per unit length have been normalized by the corresponding
initial values for the liquid–air interface. The t−1/2 and t−1/4 trends are indicated with dashed lines. (d–f )
Normalized viscous dissipation power per unit length Pη2/γ2 as a function of time t, calculated from the
asymptotic model, for the three viscous mechanisms of (3.1): plug (P = Pplug), Poiseuille (P = PPoiseuille) and
Couette (P = PCouette). For each panel, the viscosity ratio μ corresponds to the 165 ◦C (
) experimental data
in the panel above. The t−5/4 trend is indicated with dashed lines. (g–i) The fractional composition of the total
viscous dissipation displayed in the panel above.

regime is reached experimentally in some cases (see figure 5b,c), but is not accessible
for the smallest viscosity ratios due to the large experimental time scales involved. The
apparent E2 ∼ t−1/2 regime observed in figures 4 and 5(a) is thus a transient, intermediate
behaviour.

The asymptotic model can be used to gain further insight into the effect of the viscosity
ratio, by expressing the conservation of energy. As the films are thin, body forces may
be neglected. The capillary energy decreases primarily through viscous dissipation. The
rate of change of the total capillary energy per unit length can be written as the sum of
the three contributions to the viscous dissipation power induced by the characteristic flows
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V. Bertin and others

highlighted in § 2.2

∂tE = −
∫

dx4η2(h2 − h1)u′2
2︸ ︷︷ ︸

Pplug

−
∫

dx
p′2

1 h3
1

12η1︸ ︷︷ ︸
PPoiseuille

−
∫

dxη1
u2

2
h1︸ ︷︷ ︸

PCouette

. (3.1)

An explicit derivation of (3.1) is provided in appendix C. The first term (Pplug) is
related to a velocity profile that is invariant vertically through the top layer’s thickness,
corresponding to plug flow. The second term (PPoiseuille) is related to a parabolic velocity
profile, i.e. Poiseuille flow, caused by the horizontal Laplace pressure gradient in the
bottom layer. The third term (PCouette) corresponds to a linear variation in the velocity
profile of the bottom layer, as seen in a simple shear geometry or Couette flow.

Figure 5(d–f ) displays the normalized viscous dissipation power per unit length as a
function of the rescaled time, calculated from the asymptotic model, for the three viscous
mechanisms of (3.1). The normalized viscous dissipation power per unit length has been
calculated for the three experimentally relevant viscosity ratios, which correspond to
the experimental results from figure 5(a–c), respectively. Three main regimes can be
identified from the respective fractions of the total viscous dissipation power shown in
figure 5(g–i). At early times, the Poiseuille contribution dominates, which is associated
with a E ∼ t−1/4 behaviour (McGraw et al. 2012) and thus ∂tE ∼ t−5/4. At late times,
the Couette contribution dominates, but since the Couette flow in the bottom layer is
indirectly induced by the Laplace pressure gradient from the liquid–air interface, it also
exhibits a E ∼ t−1/4 power law like the Poiseuille flow. Therefore, at late times, we also
expect a ∂tE ∼ t−5/4 behaviour. Furthermore, we recover the result stated above that the
dissipation occurs mostly in the bottom film in this regime. Finally, at intermediate times,
in between these two extreme regimes, the plug contribution seems to dominate. This is
associated with a transient temporal exponent for the energy, passing by the −1/2 value
(Ilton et al. 2016). Taking into account the early, intermediate and late times discussed
above, we recover the non-monotonic trend for the temporal exponent from the theoretical
predictions (lines) in figure 5(a–c). The non-monotonic trend can be further characterized
as a Poiseuille-to-plug-to-Couette double cross-over.

In the case where μ ∼ 1, valid for PS with a molecular weight of 758.9 kg mol−1,
the shear stress at the liquid–liquid interface does not vanish and therefore shear terms
must be taken into account in the top layer. The asymptotic model should thus be
refined for bilayer films with such material properties (see the lubrication model in
appendix B.3). However, according to the asymptotic model, the late-time dissipation is
mainly dominated by the Couette contribution in the bottom layer (see figure 5f ), and this
model reproduces qualitatively the data and in particular the x/t1/4 self-similarity of the
profiles (see figure 3b). Nevertheless, we stress that the prefactor of the late-time scaling
law E2 ∼ t−1/4 from the asymptotic model is larger than the one from the lubrication
model, as observed in figure 8 (see appendix B.3). As a result, the fitting procedure leads
to a systematic underestimation of the viscosity of the bottom layer, as confirmed in table 1.

Finally, as stated in § 2.2, the set of equations (see (2.1a), (2.1b) and (2.1c)) that forms
the asymptotic model is reminiscent of the equations that describe capillary levelling on
a substrate with slip (Münch et al. 2005). For a nearly constant bottom layer thickness h1,
the Couette dissipation power per unit length Pplug = η1

∫
dxu2

2/h1 (see (3.1)) is indeed
similar to the power per unit length k

∫
dxu2

2 dissipated on a solid substrate through
friction, provided that the friction coefficient k is identified to η1/h1 and the slip velocity
to u2. As a consequence, the bottom film acts as a lubrication layer below the top stepped
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Capillary levelling of immiscible bilayer films

film, which leads to an apparent slip length given by b ∼ h1η2/η1. As such, our first (i.e.
Poiseuille-to-plug) cross-over mimics the one expected for a single film supported on a
rigid substrate with varying slip boundary condition (Münch et al. 2005; McGraw et al.
2016).

4. Conclusion

In this article, we examined the effect of a thin liquid substrate on the capillary levelling
of a thin liquid film placed atop. Specifically, we prepared stepped polymer layers that
were placed onto other, immiscible and flat polymer layers supported on solid substrates.
The bilayer films were observed to flow and relax towards a flat equilibrium configuration.
We showed that the liquid–liquid interface deforms substantially. In the samples studied,
the viscosity ratio between the two layers was varied over a large range, with the bottom
layer being less viscous, or as viscous as the top layer. We have shown that the viscosity
ratio has a major impact on the resulting dynamics. Unlike the capillary levelling of
simple stepped films on solid substrates, or freestanding films, the interfacial profiles do
not exhibit any clear, unique and stable self-similar behaviour. We have developed and
validated a thin-film model in which the governing flow in the top layer is plug like, and
flow in the bottom layer is a with a combination of Poiseuille and Couette flows. Using
an energetic treatment, we have shown that the excess capillary energy introduced by the
step, with respect to the flat equilibrium state, is dissipated by those three coupled viscous
mechanisms, thus leading to a novel Poiseuille-to-plug-to-Couette double cross-over. The
time scales in the process depend on the viscosity ratio between the bottom and top layers.
We have found that the bottom, less viscous layer is analogous to a solid substrate with a
certain finite slip length. The experimentally measured energy dissipation is in agreement
with that obtained from the model. The results presented illuminate the intricate dynamics
of viscous bilayer assemblies, and might find applications through friction control by
lubrication, self-assembly and stability of multilayer processes.
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Appendix A. Asymptotic model

A.1. Model
This appendix expands upon the asymptotic model discussed in § 2.2. Dimensionless
variables are denoted by capital letters

ui = uUi, wi = wWi = uεWi, x = lX, z = h0Z,

pi = pPi, t = l
u

T, hi = h0Hi, ε = h0

l
,

⎫⎬
⎭ (A1)
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V. Bertin and others

where ε is the ratio between the typical vertical scale h0 (see figure 1) and a horizontal
length scale l, P = γ2h0/l2 is the typical pressure scale set by the Laplace pressure and
u = γ2h0/η2l is the characteristic velocity which is chosen such that the leading-order
equation for the top layer is compatible with plug flow. We note that there is no intrinsic
horizontal length scale in our configuration. Therefore, the length scale l is the typical
extent of the non-zero Laplace pressure, which can be estimated as the width of the
levelling profile (McGraw et al. 2011). Thus, the asymptotic model is valid when this
length scale is much larger than the typical height h0. Experimentally, this condition
is not valid at early times (t < 10 min in figure 2a). We rescale the viscosity ratio as
M = ε−2μ for appropriate governing equations in the bottom layer (Jachalski et al. 2015).
Non-dimensionalization yields the governing Stokes equations for both viscous layers

0 = −ε2∂XP2 + ε2∂2
XU2 + ∂2

ZU2, (A2a)

0 = −∂ZP2 + ε2∂2
XW2 + ∂2

ZW2, (A2b)

∂XU2 + ∂ZW2 = 0, (A2c)

0 = −∂XP1 + M(ε2∂2
XU2 + ∂2

ZU1), (A2d)

0 = −∂ZP1 + M(ε4∂2
XW1 + ε2∂2

ZW1), (A2e)

∂XU1 + ∂ZW1 = 0. (A2f )

At the free interface, the boundary conditions are the stress balance and the kinematic
condition (Jachalski et al. 2014)

P2 + ∂2
XH2

[1+ε2(∂XH2)2]3/2 = 2
∂ZW2[1 − ε2(∂XH2)

2] − (∂ZU2+ε2∂XW2)∂XH2

1 + ε2(∂XH2)2
, Z =H2,

(A3a)

(∂ZU2 + ε2∂XW2)[1 − ε2(∂XH2)
2] = 4ε2∂XU2∂XH2, Z = H2, (A3b)

∂TH2 = W2 − U2∂XH2, Z = H2. (A3c)

The boundary conditions at the liquid–liquid interface are the stress balance and the
kinematic condition. Furthermore, we assume that there is no slip at the interface. All
together, these read

P1 − P2 + Γ
∂2

XH1

[1 + ε2(∂XH1)2]3/2 = 2
∂Z(Mε2W1 − W2)[1 − ε2(∂XH1)

2]
1 + ε2(∂XH1)2

− 2
[∂Z(Mε2U1 − U2)+ ε2∂X(Mε2W1 − W2)]∂XH1

1 + ε2(∂XH1)2
, Z = H1 (A4a)

[
∂Z(Mε2U1 − U2)+ ε2∂X(Mε2W1 − W2)

][
1 − ε2(∂XH2)

2]
= 4ε2∂X(Mε2U1 − U2)∂XH1, Z = H1 (A4b)

∂TH1 = W1 − ∂XH1, Z = H1 (A4c)

W2 − W1 = (U2 − U1)∂XH1, Z = H1 (A4d)

U2 − U1 + ε2(W2 − W1)∂XH1 = 0, Z = H1. (A4e)
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Capillary levelling of immiscible bilayer films

At the solid–liquid interface, we assume no-slip and impermeability boundary conditions

U1 = W1 = 0, Z = 0. (A5a,b)

We consider the flow in the top layer as a perturbation

(U2,W2,P2) = (
U(0)

2 ,W(0)
2 ,P(0)2

)+ ε2(U(1)
2 ,W(1)

2 ,P(1)2
)
. (A6)

The leading order can be described as

∂ZU(0)
2 (X, Z, T) = 0 → U(0)

2 (X, Z, T) = U2(X, T), (A7a)

W(0)
2 (X, Z, T) = −(Z − H1)∂XU2 + W1(Z = H1), (A7b)

P(0)2 (X, T) = −2∂XU2 − ∂2
XH2, (A7c)

∂ZP1(X, Z, T) = 0 → P1(X, T) = −∂2
XH2(X, T)− Γ ∂2

XH1(X, T) (A7d)

U1(X, Z, T) = − 1
2M

∂XP1
(
Z2 − ZH1

)+ U2(X, T)
Z

H1
. (A7e)

The in-plane component of the flow is described by a set of coupled nonlinear equations.
Invoking further the kinematic condition results in (2.1a)

∂t(H2 − H1) = − [(H2 − H1)U2]′ , (A8)

where the prime denotes the derivative with respect to X. The volume conservation of the
bottom layer gives (2.1b)

∂tH1 = −
(

−P′
1

H3
1

12M
+ H1U2

2

)′
= −

[
(H′′′

2 + ΓH′′′
1 )

H3
1

12M
+ H1U2

2

]′
. (A9)

The final equation that relates U2 to the other variables can be found by integrating the
horizontal component of the Stokes equation with respect to Z at the next leading order

∂2
ZU(1)

2 + ∂2
XU(0)

2 = ∂XP(0)2 → ∂ZU(1)
2 (Z = H2)− ∂ZU(1)

2 (Z = H1)

= (∂XP(0)2 − ∂2
XU2)(H2 − H1). (A10)

We find the last governing equation, (2.1c), by inserting the two tangential stress balances,
(A3b) and (A4b), at leading order into the previous equation

H′′′
2 (H2 − H1)+ (H′′′

2 + ΓH′′′
1 )H1/2 + 4[U′

2(H2 − H1)]′ − M
U2

H1
= 0. (A11)
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V. Bertin and others

A.2. Decay rates
The elements si,j of the decay-rate matrix s are found by taking the Fourier transforms of
the linearized governing equations

s1,1(k) = −γ1k4

[
h̄3

1
12η1

+ h̄3
1

4(η1 + 4η2k2h̄1h̄2)

]
,

s1,2(k) = −γ2k4

⎡
⎣ h̄3

1
12η1

+
h̄2

1h̄2

(
1 − h̄1

2h̄2

)
2(η1 + 4η2k2h̄1h̄2)

⎤
⎦ ,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A12a)

s2,1(k) = −γ1k4

⎡
⎣ h̄3

1
12η1

+
h̄2

1h̄2

(
1 − h̄1

2h̄2

)
2(η1 + 4η2k2h̄1h̄2)

⎤
⎦ ,

s2,2(k) = −γ2k4

⎡
⎢⎣ h̄3

1
12η1

+
h̄1h̄2

2

(
1 − h̄1

2h̄2

)2

(η1 + 4η2k2h̄1h̄2)

⎤
⎥⎦ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A12b)

The eigenvalues are the decay rates, and are given by

λi = Tr(s)±
√

Tr(s)2 − 4 Det(s)
2

. (A13)

The eigenvectors of s take the form (1,Ki) with

Ki = λi − s1,1

s1,2
. (A14)

Appendix B. Full-Stokes model

B.1. Model
To remove any assumption associated with pre-supposed flow types and the temporal
scalings of the capillary energies, we derive a model from the Stokes equations (Huang &
Suo 2002; Rivetti et al. 2017). The stream functions ψi of each layer (i = 1, 2) are defined
as

ui = −∂zψi, (B1a)

wi = ∂xψi. (B1b)

The velocity fields satisfy the Stokes equations. This in turn implies that the stream
functions are solutions of biharmonic equations

(∂4
x + 2∂2

x ∂
2
z + ∂4

z )ψi = 0. (B2)

We take the Fourier transforms (defined in the main text) with respect to the variable x,
of the biharmonic equations, through the Fourier transforms ψ̃i of the stream functions,
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Capillary levelling of immiscible bilayer films

which results in fourth-order ordinary differential equations
(

d
dz

)4

ψ̃i −
(

d
dz

)2

k2ψ̃i + k4ψ̃i = 0. (B3)

The general solutions are

ψ̃i(k, z) = Ai(k) cosh(kz)+ Bi(k) sinh(kz)+ Ci(k)z cosh(kz)+ Di(k)z sinh(kz). (B4)

The eight coefficients Ai,Bi,Ci,Di can be found using the boundary conditions: vanishing
velocity at the solid–liquid interface, continuity of velocity (including no slip) and stress
across the liquid–liquid interface and continuity of stress (including no shear stress) at
the liquid–air interface. The nonlinear terms of the curvature in the Laplace pressure
are neglected, as well as the nonlinear terms of the normal and tangential vectors to the
interfaces. This means that this model would be valid in the limit of small perturbation of
the interface. The boundary condition are listed below

w1 = 0 → ψ̃1 = 0, z = 0, (B5a)

u1 = 0 →
(

d
dz

)
ψ̃1 = 0, z = 0, (B5b)

w2 = w1 → −ikψ̃2 = −ikψ̃1, z = h1, (B5c)

u2 = u1 → −
(

d
dz

)
ψ̃1 = −

(
d
dz

)
ψ̃2, z = h1, (B5d)

η2(∂zu2 + ∂xw2) = η1(∂zu1 + ∂xw1) → η1

[(
d
dz

)2

ψ1 + k2ψ1

]

= η2

[(
d
dz

)2

ψ2 + k2ψ2

]
, z = h1. (B5e)

−( p1 − p2)+ 2∂z(η1w1 − η2w2) = −γ1∂
2
x h1 →

η1

[
3k2

(
d
dz

)
ψ̃1 −

(
d
dz

)3

ψ̃1

]
− η2

[
3k2

(
d
dz

)
ψ̃2 −

(
d
dz

)3

ψ̃2

]
= ik3γ1h̃1, z = h1.

(B5f )

η2(∂zu2 + ∂xw2) = 0 →
(

d
dz

)2

ψ2 + k2ψ2 = 0, z = h2. (B5g)

−p2 + 2η2∂zw2 = −γ2∂
2
x h2 → η2

[
3k2

(
d
dz

)
ψ̃2 −

(
d
dz

)3

ψ̃2

]

= ik3γ2h̃2, z = h2. (B5h)
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Figure 6. Dimensionless decay rates for the full-Stokes model (λStokes
i ) and asymptotic model (λi) versus the

dimensionless wavenumber kh0, in the experimental configuration where h̄2 = 5/2h̄1 = 5/2h0 (see schematic
in the top left inset). The bottom right inset displays a zoom of the same curves near kh0 = 1.5, and is plotted
with linear scales.

The Stokes equations in the x-direction read

∂xpi = ηi(∂
2
x ui + ∂2

z ui) → −ikp̃i = ηi

[
k2 d

dz
ψ̃i −

(
d
dz

)
ψ̃i

′′′
]
. (B6)

The governing equations for the temporal evolutions of the thickness profiles can be found
using the kinematic conditions

∂thi + ui∂xhi = wi, (B7)

where ui and wi are evaluated at z = hi. We further invoke small interfacial perturbations
and proceed to linearization as in the asymptotic model

∂tδ̃h1 = w̃1(z = h̄1) = sStokes
11 δ̃h1 + sStokes

12 δ̃h2, (B8a)

∂tδ̃h2 = w̃2(z = h̄1 + h̄2) = sStokes
21 δ̃h1 + sStokes

22 δ̃h2. (B8b)

These equations have the same general solutions as in the asymptotic model developed
in § 2.2. The elements sStokes

i,j of the decay-rate matrix are not written here but can be
found using a formal calculation software. It is then straightforward to write the solutions
as in (2.3) with the corresponding eigenvalues λStokes

i and eigenvectors (1,KStokes
i ).

Figure 6 displays the normalized decay rates as functions of the normalized wavenumber
in both the full-Stokes model and the asymptotic model, with the same dimensionless
parameters as in figure 2, i.e. μ = 1.1 × 10−4 and Γ = 0.053. The two models agree in
the small-wavenumber limit, kh0 → 0. At an intermediate wavenumber kh0 ∼ 1.544, the
determinant of the matrix sStokes changes sign and therefore one of the two eigenvalues,
λStokes

2 , becomes positive at larger wavenumbers (see bottom right inset of figure 6). Thus,
in the full-Stokes model, the large wavenumbers are unstable and grow with time: the
interface perturbation diverges as time increases. This is not physical as capillarity is the
only driving force and acts to stabilize the interface. We suspect that nonlinear terms in
the stress balances at interfaces – neglected so far – will regularize this behaviour.
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Figure 7. Comparison of the full-Stokes model and the asymptotic model in the specific case where h̄2 = 2h̄1.
(a) Dimensionless decay rates for the full-Stokes model (λStokes

i , dashed lines) and asymptotic model (λi, solid
lines) versus the dimensionless wavenumber kh0. (b) Normalized excess capillary energies per unit length
E2/(γ2h0) of the liquid–air interface, as functions of dimensionless time, as evaluated from the small-slope
expression E2 	 γ2

∫
dxδh′2

2 /2, for both models and for the same parameters as in figure 5(a) at 150 ◦C.
(c) (respectively (d)) Interface perturbation profiles δhi in the asymptotic model (respectively full-Stokes
model). The colours indicate the same experimental times as in figure 2.

B.2. Particular case: equal average layer thicknesses
We found empirically that the instability described in the previous section is not
present when the mean thicknesses of the two layers are equal, which amounts to h̄2 =
2h̄1. Therefore, we can compare in a more complete manner the two models in this
case. Figure 7(a) displays the normalized decay rates as functions of the normalized
wavenumber in both the full-Stokes model and the asymptotic model. We no longer
observe any positive decay rate in the full-Stokes model. At small wavenumber, which
means in the small-slope limit, we recover the previous statement which is that both
models are consistent with each other. In figure 7(b), the normalized excess capillary
energies per unit length of the liquid–air interface for both models are plotted as functions
of dimensionless time. In the long-time limit, when the step has levelled sufficiently such
that the typical slopes of the interfaces are much smaller than unity, we find an excellent
agreement between both models. However, at short times, the profile slopes are close
to unity and thus vertical flows and nonlinear terms play a significant role. Therefore,
at short times the full-Stokes model, which accounts for vertical flows, differs from the
asymptotic model. We point out that the excess capillary energies per unit length E2 of the
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100
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Full Stokes
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/
(γ

2
h 0

)

Figure 8. Normalized excess capillary energies per unit length E2 of the liquid–air interface as functions of
dimensionless time, as evaluated from the small-slope expression E2 	 γ2

∫
dxδh′2

2 /2, for the three models
indicated, and for μ = 14, γ = 0.053, with equal mean thicknesses h̄1 = h̄2.

liquid–air interface, from both models, are systematically computed with the small-slope
expression E2 	 γ2

∫
dxδh′2

2 /2 which is not necessarily valid at short times. The exact
expression should be used instead to make direct comparisons with experiments at short
times. The discrepancy between the two models at short times is illustrated on the interface
perturbation profiles in figures 7(c) and 7(d), that would correspond to an experiment with
the same material properties as in figure 2 but with equal mean thicknesses. Interestingly,
we observe similar short-term characteristics in the full-Stokes model as the one observed
experimentally: a small sharp feature near the step and the deformation growth of the
liquid–liquid interface.

B.3. Case of a large viscosity ratio
We consider the μ � 1 case. In figure 8, the normalized total excess capillary energies per
unit length as functions of dimensionless time are plotted for the two models described
above. We also add for comparison the perturbative solution of a two-layer lubrication
model (see Jachalski et al. (2014) for a complete derivation in a more general case with
weak slip)

∂h1

∂t
=
[
−γ2

h2
1(3h2 − h1)

6η1
h′′′

2 − γ1
h3

1
3η1

h′′′
1

]′
, (B9a)

∂(h2 − h1)

∂t
=
{

−γ2

[
(h2 − h1)

3

3η2
+ h1(h2 − h1)(h2 − h1/2)

η1

]
h′′′

2 − γ1
h2

1(h2 − h1)

2η1
h′′′

1

}′
.

(B9b)

We observe that the asymptotic model is no longer in accordance with the full-Stokes
model in the large-time limit, while the lubrication model is. Indeed, when the viscosity
of the bottom layer is comparable to or larger than the one of the top layer, i.e. μ � 1, the
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Capillary levelling of immiscible bilayer films

asymptotic model is no more valid as it neglects shear terms in the top layer with respect
to elongational ones.

Appendix C. Energy balance

In this section, we derive the energy balance in (3.1) from the asymptotic model. In the
limit of small slopes, the excess capillary energies per unit length of the two interfaces are

E2 = γ2

2

∫
dxh′

2(x)
2, (C1a)

E1 = γ1

2

∫
dxh′

1(x)
2. (C1b)

We can derive these quantities with respect to time and get

∂tE2 = γ2

∫
dxh′

2∂th′
2 = −γ2

∫
dxh′′

2∂th2, (C2a)

∂tE1 = γ1

∫
dxh′

1∂th′
1 = −γ1

∫
dxh′′

1∂th1. (C2b)

The second equalities are obtained after integrating by parts. We can then use (2.1a) and
(2.1b), which leads to

∂tE2 = −γ2

∫
dxh′′

2
{
∂th1 − [(h2 − h1)u2]′

}

= −γ2

∫
dxh′′

2

{
−
(

−p′
1

h3
1

12η1
+ h1u2

2

)′
− [(h2 − h1)u2]′

}
, (C3a)

∂tE1 = γ1

∫
dxh′′

1

(
−p′

1
h3

1
12η1

+ h1u2

2

)′
. (C3b)

We then integrate by parts

∂tE2 = γ2

∫
dxh′′′

2

{
−
(

−p′
1

h3
1

12η1
+ h1u2

2

)
− [(h2 − h1)u2]

}
, (C4a)

∂tE1 = −γ1

∫
dxh′′′

1

(
−p′

1
h3

1
12η1

+ h1u2

2

)
. (C4b)

Introducing the total excess capillary energy per unit length E = E1 + E2, one gets

∂tE = −
∫

dx
[
γ2h′′′

2 (h2 − h1)
]

u2 +
∫

dxp′
1

(
−p′

1
h3

1
12η1

+ h1u2

2

)
. (C5)

We can then use (2.1c) to replace the term in square brackets

∂tE = −
∫

dx
{
−p′

1h1

2
− 4η2[u′

2(h2 − h1)]′ + η1
u2

h1

}
u2

+
∫

dxp′
1

(
−p′

1
h3

1
12η1

+ h1u2

2

)
. (C6)
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This can be further simplified and after another integration by parts of the term in [u′
2(h2 −

h1)]′u2, one gets

∂tE = −
∫

dx4η2(h2 − h1)u′2
2 −

∫
dxη1

u2
2

h1
−
∫

dx
p′2

1 h3
1

12η1
. (C7)
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Chapter 5

Symmetrization of Thin
Free-Standing Liquid Films via
Capillary-Driven Flow

We present here experiments that have been designed and performed by John Niven,
under the supervision of Kari Dalnoki Veress in McMaster University, Canada. I devel-
oped the theoretical model used in the article after some discussions with John Niven
during my stay in Canada.

In this chapter, we examine the relaxation dynamics of a cylindrical perturbations
at one of the two interfaces of freestanding films. Interestingly, the films are observed
to undergo a rapid symmetrization of the perturbation to become mirror symmetric.
We derive a full Stokes model, revealing that the dynamics can be decomposed in two
independent modes that differ by their mirror symmetry. The antisymmetric mode,
that is analogous to the viscous bending mode in liquid sheets, relaxes exponentially
on a time scale h0η/γ, where h0 is the average film thickness, which agrees with the
experimental observations. The article reproduced here has been published in Physical
Review Letters [3].
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We present experiments to study the relaxation of a nanoscale cylindrical perturbation at one of the two
interfaces of a thin viscous freestanding polymeric film. Driven by capillarity, the film flows and evolves
toward equilibrium by first symmetrizing the perturbation between the two interfaces and eventually
broadening the perturbation. A full-Stokes hydrodynamic model is presented, which accounts for both the
vertical and lateral flows and which highlights the symmetry in the system. The symmetrization time is
found to depend on the membrane thickness, surface tension, and viscosity.
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Surface tension will smoothen interfacial perturbations
on a thin liquid film, since the curvature of the perturbation
profile induces a Laplace pressure that drives flow. This
capillary-driven leveling causes the brush strokes on paint
to flatten, or the spray of small droplets to form a uniform
film. Such flows have been studied in detail and much of
the framework is provided by the lubrication theory (a
simplified version of the Navier-Stokes equations appro-
priate for laminar thin-film flow), where one can assume
that flow in the plane of the film dominates and that the
velocity vanishes at the solid-liquid interface [1,2].
Freestanding liquid films do not support a shear-stress at
both liquid-air interfaces, which modifies the boundary
conditions and results in a different phenomenology [1].
These boundary conditions arise in biological membranes
[3], soap films [4–9], liquid-crystal films [10–12], frag-
mentation processes [13], or energy-harvesting technolo-
gies [14].
The dynamics of liquid sheets has been studied exten-

sively [15,16] and shows similarities with the mechanics of
elastic plates. The evolution can be described with two
dominant modes, which are the stretching and bending
modes associated with linear momentum and torque
balances. At macroscopic scales, a viscous sheet experi-
ences bending instabilities such as wrinkling [17–20] and
folding [21] when submitted to compression. Such viscous
buckling phenomena occur in tectonic-plate dynamics
[22,23] and industrial float-glass processes [24–27].
In thin freestanding films, surface tension is dominant

and stabilizes the interfaces against buckling [15]. Most
theoretical models in this context assume that the interfaces
are mirror symmetric and thus focus on the stretching
mode, also called the symmetric mode. This approach is

employed to study the rupture dynamics of films in the
presence of disjoining forces that destabilize long waves in
thin films [28–35]. Using nanometric freestanding poly-
styrene (PS) films, Ilton et al. observed that a film with
initially asymmetric interfaces symmetrized over short
timescales [36]. This symmetrization was attributed to
flow perpendicular to the film, but the dynamics was not
accessible experimentally.
Here we study the viscocapillary relaxation of a nano-

scale cylindrical perturbation initially present at one inter-
face of a thin freestanding PS film. Both the symmetric
(viscous stretching) and antisymmetric (viscous bending)
modes are probed with experiments (Fig. 1). Atomic force
microscopy (AFM) is used to obtain the profiles of the top
and bottom interfaces [Fig. 1(a)]. A full-Stokes flow linear
hydrodynamic model is developed to characterize the
dynamics of the two modes. To provide intuition for the
energy dissipation, we turn to the schematic excess surface
energy as a function of time, shown in Fig. 1(d). Initially,
the top interfacial profile, denoted hþ, has a high excess
energy due to the additional interface that forms the
perturbation, while the bottom interfacial profile h− is flat
and has no excess surface energy. The excess energy
resulting from the perturbation drives flow that is mediated
by viscosity η. As the film evolves, the total energy
dissipates as the excess interface decreases. With decreas-
ing global energy, the symmetrization process requires
energy transfer from the top interface to the bottom,
dominated by vertical flow. Once both interfaces are
symmetric, they relax in tandem, dominated by lateral
flow. Remarkably, the temporal evolution of the interfacial
profiles, when appropriately decomposed into their sym-
metric and antisymmetric components, obey power laws.
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We construct freestanding films with a nanometric
perturbation by stacking a film with small cylindrical pores
on a second thicker film that is intact, following a method
similar to that previously described [36,37]. This process
results in a film with a cylindrical hole at one interface. PS
with molecular weight Mw ¼ 183 kg=mol (Polymer
Source, polydispersity index ¼ 1.06) is dissolved in tol-
uene (Fisher Scientific, Optima) with concentrations of 2%
and 7.5% by weight. Films are prepared by spin coating
from solution onto freshly cleaved mica (Ted Pella) and
annealed at 130 °C in vacuum (1 × 10−5 mbar) for 24 h.
The films have thicknesses h1 ¼ 530 and h2 ¼ 80 nm, as
measured using ellipsometry (Accurion, EP3). The free-
standing films are prepared in a two-step process inspired
by Backholm et al. [37]. Films are floated from mica
substrates onto the surface of ultrapure water
(18.2 MΩ cm) and picked up on a thin circular steel washer
(thickness ¼ 0.1 mm, AccuGroup), creating a freestanding
film supported only at the edges of the washer. The thicker
film, with h1 ¼ 530 nm, is picked up on a washer with an
internal diameter of 3 mm and briefly heated above the
glass-transition temperature Tg ≈ 100 °C on a hot stage
(Linkam, UK), resulting in a smooth, taught film. Similarly,
the thinner film with h2 ¼ 80 nm is transferred from the
water to a washer with an internal diameter of 5 mm. This
film is heated (100 °C=min) to 125 °C under a microscope
for several seconds and holes are nucleated on small defects
in the film, which grow with time [34,38–40]. When the
holes become visible, the film is quenched to room temper-
ature, resulting in a freestanding film with randomly distrib-
utedholesofdiameter1–10 μm.The twofilmsare thenplaced
in contact and adhere through van der Waals forces, and the
larger diameterwasher canbe removed.Thisprocess results in
a freestanding film of thickness h0 ¼ h1 þ h2, with cylindri-
cal holes of depth h2 [Figs. 1(a) and (b)].
The films are annealed on the hot stage at T ¼ 130 °C

and covered with a coverslip to ensure a uniform temper-
ature with η ≈ 1.1 × 108 Pa s and surface tension γ ≈
30 mJ=m2 [41]. After some annealing time, the film is

quenched to room temperature, thus returning to the glassy
state where flow becomes arrested. The surface profiles of
three holes in the same film are then measured after each
annealing step using AFM (Bruker, Multimode). Since the
film is freestanding and has two polymer-air interfaces,
both the top and bottom profiles are measured. The angular-
averaged profiles are extracted at each time and provide a
cross section of the film as it evolves (Fig. 2).
Initially, the film has different curvature gradients at the

top and bottom interfaces, resulting in pressure gradients in
vertical and lateral directions. The initial response of the
film in the vicinity of the hole is for the bottom interface to
buckle downward, forming a small (∼10 nm) elastic bump.
This feature is not a result of a viscoelastic response to
interfacial forces [42], as this would generate an opposite
displacement. We speculate that this feature is the result of
residual stresses associated with sample preparation: it is
known that during hole formation the shear-strain rate near
the rim of the hole perturbs polymer chains from equilib-
rium [39,40]. Upon adhering the two films, the nonequili-
brium chains in the rim can impart a tension along the rim

FIG. 2. AFM profiles of the top and bottom interfaces of a
freestanding hole with h2 ¼ 80 nm, h0 ¼ 610 nm, and r0 ¼
4.2 μm (Fig. 1), at various annealing times texp as indicated.
An “elastic bump” is seen at texp ¼ 1 min due to the residual
stresses in the film from the sample preparation. The viscous
model takes the profiles at 5 min as initial profiles, in order to
ignore any prior elastic effect.

(a) (c)(b) (d)

FIG. 1. (a) AFM images of sample with surface perturbation with initial radius r0 ≈ 6.2 μm and depth h2 ≈ 80 nm (top) and after
500 min of annealing (bottom). (b) Schematic of an initial cylindrical hole of depth h2 and radius r0, on one side of a polystyrene
freestanding film, which evolves toward symmetric. (c) Symmetric-asymmetric decomposition of the interfacial profiles. A symmetric
profile leads to lateral flow, while an antisymmetric one leads to vertical flow. (d) Schematic of the evolution of the excess surface
energy. The top and bottom surface energies equalize before vanishing in tandem on larger timescales.
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acting to compress and buckle the sample. As the film is
annealed, the elastic bump relaxes on a timescale ∼5 min,
which is similar to the macromolecular relaxation time for
PS (the reptation time at T ¼ 130 °C is ∼13 min [43]).
After relaxation of the bump, the flow depends on

capillarity and viscosity. First, there is vertical flow to
equilibrate the Laplace pressures and symmetrize the top
and bottom interfaces. Indeed, two symmetric interfacial
profiles are observed at times larger than ∼200 min.
Subsequently, the symmetric interfaces evolve in tandem
through lateral flow and dissipate the excess surface energy
[30]. The film is annealed for ∼2000 min before rupturing.
We now turn to a theoretical description. The polymer is

assumed to be a Newtonian fluid with viscosity η. We
introduce cylindrical coordinates ðr; zÞ, as well as the
Hankel transforms [44] of the velocity field u⃗ðr; z; tÞ ¼
ður; uzÞ and of the interfacial profiles h�ðr;tÞ: ũrðk; z; tÞ ¼R
∞
0 drrurðr; z; tÞJ1ðkrÞ, ũzðk;z;tÞ¼

R
∞
0 drruzðr;z;tÞJ0ðkrÞ,

and h̃�ðk; tÞ ¼
R
∞
0 drrh�ðr; tÞJ0ðkrÞ, where t is time,

and the Ji are the Bessel functions of the first kind with
indices i ¼ 0, 1. Injecting these into the steady Stokes
equations, we find ∂3

z ũr þ k∂2
z ũz − k2∂zũr − k3ũz ¼ 0 and

∂zũz þ kũr ¼ 0, which gives

ũr ¼ −
1

k
ðkAþ kzCþDÞ sinhðkzÞ

−
1

k
ðkBþ kzDþ CÞ coshðkzÞ; ð1aÞ

ũz ¼ ðAþ zCÞ coshðkzÞ þ ðBþ zDÞ sinhðkzÞ; ð1bÞ

where AðtÞ, BðtÞ, CðtÞ, and DðtÞ are integration constants.
The depth of the hole is assumed to be small in comparison
with the thickness of the film, which is valid for the
experiments, and we linearize the problem by writing the
profiles ash� ¼ �h0=2þ δh�, where the perturbations δh�
are small compared to the film thickness h0. We assume no-
shear-stress boundary conditions at both fluid-air interfaces
and neglect nonlinearities from the scalar projections of the
normal and tangential vectors to the interface, which gives

�
�kAþ C

kh0
2

�
sinh

�
kh0
2

�

þ
�
kB�D

kh0
2

�
cosh

�
kh0
2

�
¼ � γk2

2η
δ̃h�; ð2aÞ

�
kA� C

kh0
2
þD

�
cosh

�
kh0
2

�

þ
�
�kBþD

kh0
2
� C

�
sinh

�
kh0
2

�
¼ 0: ð2bÞ

Finally, we invoke the linearized kinematic conditions
∂th̃� ¼ ũzðk; z ¼ �h0=2; tÞ and obtain a set of coupled
linear differential equations. The symmetric-antisymmetric

decomposition, through h̃sym ¼ δh̃þ − δh̃− and h̃anti ¼
δh̃þ þ δh̃− [see Fig. 1(c)], appears as the natural modal
decomposition for this system. These two modes relax
independently to equilibrium, with distinct decay rates
λsym and λanti, since

∂th̃sym ¼ −
γk
η

sinh2ðkh0
2
Þ

sinhðkh0Þ þ kh0
h̃sym ¼ −λsymh̃sym; ð3aÞ

∂th̃anti ¼ −
γk
η

cosh2ðkh0
2
Þ

sinhðkh0Þ − kh0
h̃anti ¼ −λantih̃anti: ð3bÞ

The dimensionless decay rates are plotted in Fig. 3 as a
function of the dimensionless wave number kh0. For
each rate, two asymptotic behaviors can be distinguished.
At large kh0, both rates exhibit the same asymptotic
behavior: λðkÞ ∼ γk=η. At small kh0, the symmetric rate
becomes identical to the one in the symmetric long-wave
freestanding film model: λsym ∼ γh0k2=ð8ηÞ [30,36], and
thus Eq. (3) reduces to a heatlike equation in Hankel space,
with a diffusion coefficient γh0=ð8ηÞ. In the same limit, the
antisymmetric rate has a different scaling law:
λanti ∼ 6γ=ðηh30k2Þ. Therefore, long waves are quickly
damped for the antisymmetric mode. We note that λanti
has a minimum at k ≃ 3.28=h0, corresponding to a slowest
mode, which sets the relaxation dynamics.
The model assumes a Newtonian fluid and must be

compared to experimental profiles corresponding to
annealing times longer than the polymeric relaxation time.
Thus, we take the experimental profiles at texp ¼ 5 min as
the initial conditions for the model (Fig. 2). Equations (3a)
and (3b) are solved, yielding

h̃sym=antiðk; tÞ ¼ h̃sym=antiðk; 0Þ exp½−λsym=antiðkÞt�; ð4Þ
where t ¼ texp − 5 min. The symmetric and antisymmetric
modes are shown in Fig. 4 and reveal a qualitative

FIG. 3. Dimensionless decay rates of the symmetric and
antisymmetric modes [Eqs. (3a) and (3b)] as a function of the
dimensionless wave number. The slope triangles indicate power-
law exponents.
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agreement between theory and experiment. Notably, the
symmetric mode exhibits a self-similar behavior when
plotted (not shown) as a function of the variable
ðr − r0Þ=t1=2. This result for freestanding films is to be
compared to the capillary leveling of a cylindrical hole
in a film supported on a substrate, which is self-similar in
ðr − r0Þ=t1=4 [37]. In contrast, the antisymmetric mode
vanishes, on a timescale on the order of ∼200 min,
resulting in top and bottom interfacial profiles that are
mirror symmetric, as observed in Fig. 2. The long waves
are damped more quickly than the short ones, in agreement
with the limiting scaling behaviors of λantiðkÞ (Fig. 3).
A measure of proximity to equilibrium lies in

the excess capillary energy, which is proportional to the
excess surface area S with respect to a flat film Si ¼
2π

R
∞
0 drrð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂rhiÞ2

p
− 1Þ, where i can refer to þ, −,

sym, or anti, depending on the profile or mode in question.
In the small-slope limit (valid at texp > 5 min), Si≃
π
R
∞
0 drrð∂rhiÞ2. Figure 5(a) shows the excess surface

areas of the top and bottom, normalized by the initial
value, as a function of dimensionless time γt=ðh0ηÞ for
three holes of different initial radii, r0 ¼ 2.3, 4.2, and
6.2 μm on the same film. The trends are consistent with the
intuition provided by Fig. 1(d), and the theoretical curves
are in excellent agreement with the experimental data,
which validates the hydrodynamic model. We further see
that the top interface, which has an initially high excess
surface area, exchanges energy with the bottom one,
causing the excess surface area of the latter to initially
increase. This happens through vertical flow, a process that
continues until the top and bottom interfaces are mirror
symmetric at γt=ðh0ηÞ ∼ 0.5, after which the excess surface
areas of both interfaces are equal. At later times, the surface
areas decrease as S ∝ t−1=2 because of the self-similar

properties of the heatlike equation that governs the sym-
metric mode.
One can define and plot the symmetric and antisym-

metric surface areas Ssym and Santi as functions of the
dimensionless time [Fig. 5(b)]. The symmetric mode
exhibits a long term Ssym ∝ t−1=2 scaling, as a result of
lateral flow. In contrast, the vertical flow in the antisym-
metric mode dissipates energy more quickly, with a time-
scale ∼ηh0=γ corresponding to the symmetrization time.
The experiments reveal that this symmetrization time does
not depend on the initial radius of the hole and is set by the
dynamics of the slowest relaxation mode, i.e., the Fourier-
Bessel mode k at which λantiðkÞ is minimal (Fig. 3) (the data
at long times for the antisymmetric mode deviate from
theory because of limitations in measuring a vanishing
excess surface area).
We note that the governing equation of the antisym-

metric mode is 1
6
ηh30∂t∇2hanti ¼ γhanti in the long-wave

limit. Upon taking the Laplacian of this expression, we
recover on the right-hand side the Laplace pressure δP ¼
γ∇2hanti across the film. Then, the midplane line H ¼
hanti=2 follows the equation 1

3
ηh30∇4∂tH ¼ δP. This equa-

tion corresponds to the torque balance in the liquid film
[15,26,27] and is the viscous analog of the Föppl–von
Kármán equation for an elastic membrane in pure bend-
ing, where the bending modulus is replaced by ηh30=3

experiment

theory

symmetric antisymmetric

(a) (b)

(d)(c)

FIG. 4. (a) Symmetric and (b) antisymmetric modes of the
experimental (angular-averaged) profiles for various times. The
colors correspond to the same times as in Fig. 2. (c) Symmetric
and (d) antisymmetric modes of the theoretical profiles, accord-
ing to Eq. (4), for various times, and with the experimental
profiles at texp ¼ 5 min as the initial conditions (t ¼ 0).

(a)

(b)

FIG. 5. Dimensionless excess surface area as a function of
dimensionless time. The experimental data for three different
holes are shown with different marker symbols, as indicated. The
corresponding theoretical data are shown with different line
styles, as indicated (fit parameter γ=η ≈ 4.6 × 10−5 μm=s [45]).
(a) The top and bottom interfacial profiles. (b) The symmetric and
antisymmetric modes. The slope triangles indicate power-law
exponents.
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and the deflection field is replaced by the deflection
rate ∂tH.
In conclusion, we have reported on the symmetrization

dynamics of cylindrical holes in freestanding polymer
films. The topographies of both interfaces of the films
were measured using AFM at various times, to track the
evolution while they were annealed above the glass-
transition temperature. The films were found to undergo
a rapid symmetrization process in order to equilibrate the
Laplace pressures of the two liquid-air interfaces. This
process transfers excess surface energy between the two
interfaces and eventually results in mirror-symmetric pro-
files on both sides of the film. A full-Stokes flow linear
hydrodynamic model was developed and shown to be
consistent with the observations. The model revealed the
important roles of two modes, which differ by their
symmetry with respect to the midplane of the film. The
antisymmetric mode is associated with vertical flow, driven
by the pressure gradient across the film, and exhibits faster
dynamics than the symmetric mode, associated with lateral
flow. The vertical symmetrization was found to occur on a
universal timescale ηh0=γ, while the symmetric mode
dominates at later times. Surprisingly, the evolutions of
the interfacial profiles, when decomposed into the sym-
metric and antisymmetric components, are found to obey
power laws, with the decrease in surface area of the
symmetric mode scaling as t−1=2, analogous to the heat
equation.
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Chapter 6

Taylor-Aris dispersion

6.1 Introduction

6.1.1 Context: transport of microscopic particles

Diffusion and Brownian motion

The concept of diffusion has been first introduced in physics, by the French physicist
and mathematician Joseph Fourier in 1822 to explain heat transfer, where he postulated
that the heat flux is proportional to the temperature gradient, the proportionality factor
being the heat conductivity [230]. In this way, he discovered the diffusion (or heat)
equation. A few decades later, by analogy with the work of Fourier on heat, Albert
Fick established in 1855 the diffusion law for particles, where the flux of particles j is
assumed to be proportional to the gradient of the concentration, i.e. j = −D0∇c, where
c denotes the concentration field andD0 the so-called diffusion constant [231]. Injecting
the flux in the conservation equation ∂c

∂t = −∇ ·j, we can derive the diffusion equation:

∂c

∂t
= D0∇2c. (6.1)

Interestingly, diffusion tends to homogenize the considered spatial distribution what-
ever the perturbation in the concentration field is, as the flux points toward the region
of low density. Furthermore, we point out that the Navier-Stokes equations, describing
the transport of a fluid, is also a type of diffusion equation for linear momentum, where
diffusion comes from the viscosity. As far as the dynamics is concerned, a common
and specific feature of diffusive processes is that spatial perturbations propagate in a
non-linear fashion with time. More specifically, if we imagine an initial and point-like
perturbation, that can be a concentration source (e.g. ink droplet in a glass of water), the
latter will propagate on a distance r following the diffusive law r =

√
2Dt1. This holds

1More specifically, one can show that the solution of this problem is the Green’s function of the diffusion
equation, which reads c(r) = 1/(4πDt)3/2 exp(−r2/(4Dt)) that exhibits self-similarity in the variable
r/
√
2Dt.
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at the macroscopic level, looking at fields in space, coarse-graining the microscopic dy-
namics.

Brownian motion describes the random motion of a particle in a fluid (liquid or
gas). This motion results from the collisions between the molecules of the fluid and the
particle itself. It was first observed under a microscope by the Scottish botanist Robert
Brown in 1827, revealing the endless and random motion of pollen grains at the sur-
face of water. The link between the Brownian dynamics at the microscopic level and
diffusion at the macroscopic level has been suggested much later, in the early twenti-
eth century, by the physicists Albert Einstein, Marian Smoluchowski and Paul Lanve-
gin [232, 233, 234]. They showed that the probability density function of the position
of a Brownian particle indeed follows the diffusion equation. The nature of the colli-
sions between the fluid molecules and a particle is isotropic, unpredictable, and it is
modeled by a force acting to the particle that has random direction and magnitude. In
response to this force, the particle experiences a random motion. To give a brief flavor
of the link between Brownian motion and diffusion, let us consider a simple example
which consists in a random walker in one dimension, e.g. on a line. At each time step
i, it performs a spatial step of length `i, that is either in the + or − direction . After
N time steps, the walker has been displaced by ∆XN =

∑N
i=1 `i, where `i is a random

variable that can take two values±`with equal probabilities. On average, the displace-
ment of the walker is zero: 〈∆XN 〉 = 〈∑N

i=1 `i〉 =
∑N

i=1〈`i〉 = 0. However, after N time
steps, the so-called mean square displacement is given by 〈∆X2

N 〉 = 〈(∑N
i=1 `i)

2〉 =∑N
i=1〈`2i 〉+2

∑
i 6=j 〈`i`j︸︷︷︸

0

〉 =
∑N

i=1 `
2 = N`2, where the cross term 〈`i`j〉 vanishes because

the steps are uncorrelated. As the number of steps N is proportional to time t, we re-
cover with this example a propagation of the form r2 ∼ D0t, r2 being the the mean
square displacement, which is characteristic of diffusive processes.

Advection

Diffusive processes are included in the wider class of transport phenomena, that con-
cern the spatial exchange of quantities such as mass, energy, momentum, etc... The
motion of fluids is another major source of transport. One example is thermal convec-
tion, which consists in the transport of energy by a fluid flow and that is ubiquitous in
geophysical systems (e.g. mantle, ocean, atmostphere, etc...) among others. In the same
way, the concentration fields tends to follow the streamlines of the flow, resulting in a
flux j = cv. Injecting the latter in the conservation law, we find the advection law:

∂c

∂t
= −∇ · (cv). (6.2)
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laser

microscope

Figure 6.1: a) Schematic of the Taylor-dispersion in a channel. It may represents either
a two-dimensional channel (i.e. in microfluidics) or the cross-section of a cylindrical
tube. A solute is initially dispersed uniformly on a band and both is advected by a
parabolic flow while diffusing too. b) Schematic of two Brownian colloids transported
by a near-surface shear flow in a microchannel illuminated by an evanescent wave. c)
Superposition of experimental images with lag time τ = 12.5 ms, showing successive
positions of a fluorescent 55 nm-radius nanoparticle. Two intensity profiles are shown
(arbitrary units) with the red and blue dots fitted by Gaussian profiles. The dashed
grey line is a guide to the eye. d) Schematic of the microfluidic channel used in the
experiment in section 6.2, highlighting the geometry and scales. P+ (resp. P−) are the
pressure at the entrance (resp. exit) of the channel, ∆P = P+ − P− being the pressure
drop.



174

6.1.2 Advection-diffusion coupling: Taylor-Aris dispersion

Diffusion in a shear flow

Most hydrodynamic theories assume a no-slip condition at solid-liquid interfaces, as
already encountered in the manuscript. Mathematically, this means that the fluid has
a zero velocity relative to the solid because of the the friction associated with the in-
teractions between fluid and solid particles. As a result, hydrodynamic flows typically
exhibit spatially varying velocity profiles. As an example, the flow in a rectangular
channel takes the form of a parabolic profile, as depicted in Fig. 6.1a), which is a solu-
tion of the Stokes equations called Poiseuille flow.

The transport of microscopic particles can be induced by both the advection of the
flow and molecular diffusion. Interestingly, in a closed environment, e.g. in a channel,
diffusion and advection result in a non-linear coupling that enhances the dispersion.
This coupling is the main topic of the present chapter. The associated phenomenon is
usually called Taylor-Aris dispersion or Taylor dispersion. We briefly explain the underly-
ing mechanism using hand-waving arguments. Let us imagine that a certain amount of
solute, colored in yellow in Fig. 6.1a), is dispersed uniformly in a band across the chan-
nel height at the initial time. In the absence of diffusion, the band of solute would have
been stretched by the flow, in an increasingly deep paraboloid shape. Alternatively, in
the absence of flow, the band of solute would have spread, following the diffusive law.
Here, diffusion acting to homogenize the solute concentration, it induces transverse
transports of the solute across the channel, thus enhancing the spreading of the solute
along the flow.

One other way of explaining Taylor Aris dispersion can be at the molecular level,
as depicted in Fig. 6.1b). Let us imagine two particles, leaving at the same instant from
the same position. The particles are advected in a linear shear flow and experience
Brownian motion. The two particles experience their own trajectories in the perpen-
dicular direction to the flow, such that even if they have started at the same position,
they may not have spent the same amount of time in the high-velocity region of the
channel. Therefore, they may not have been transported by the flow over the same
distance, resulting in a shear-induced dispersion. Brownian motions in the streamwise
direction is not necessary to observe this enhancement. The minimal ingredients to ob-
serve Taylor-Aris dispersion are: i) a shear flow and ii) transverse diffusion along the
velocity gradients.

G.I. Taylor’s theory: long-time dispersion in a tube

Quantitatively, the enhancement of dispersion in a shear flow was first described by
G.I. Taylor in 1953 [235]. We summarize here his original derivation that can be found
in many textbooks on fluid dynamics and transport phenomena [236, 237]. Taylor’s
theory considers a cylindrical tube of radius a, where a Poiseuille velocity profile is
established:

u(r) = 2u0

(
1− r2

a2

)
, (6.3)
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along the main axis of the tube (denoted x), where u0 denotes the mean velocity, r
being the radial coordinate. We assume that a given solute is initially dispersed at a
given position of the tube x = 0, and is described by its concentration field c(r, x, t).
For simplicity, the initial concentration is assumed to be uniform across the channel
(see Fig. 6.1a)), such that the solute concentration is axisymmetric at all times. The
solute diffuses and is advected by the flow, and thus follows the advection-diffusion
equation, obtained by combining Eqs. (6.1) and (6.2), as:

∂c

∂t
+ u(r)

∂c

∂x
= D0

(
1

r

∂

∂r

[
r
∂c

∂r

]
+
∂2c

∂x2

)
, (6.4)

with no flux at the boundary, i.e. ∂c
∂r (r = a, x, t) = 0. We introduce the cross-sectional

average operator of a radial function f , defined as 〈f〉S = 1
πa2

∫ a
0 f(r) 2πrdr, and we

decompose the concentration field as a sum of the average concentration and its devi-
ation c̃, i.e. c(r, x, t) = 〈c〉S(x, t) + c̃(r, x, t), such that the advection-diffusion equation
becomes:

∂〈c〉S
∂t

+
∂c̃

∂t
+ u(r)

∂〈c〉S
∂x

+ u(r)
∂c̃

∂x
= D0

(
1

r

∂

∂r

[
r
∂c̃

∂r

]
+
∂2〈c〉S
∂x2

+
∂2c̃

∂x2

)
. (6.5)

Taking the cross-sectional averaging of the latter and using the no-flux boundary con-
dition, we find:

∂〈c〉S
∂t

+ u0
∂〈c〉S
∂x

+

〈
u(r)

∂c̃

∂x

〉

S
= D0

∂2〈c〉S
∂x2

. (6.6)

Taylor theory focuses on the long-time transport of the average concentration field, that
is characterized by 〈c〉S . However, Eq. (6.6) is not written in a closed form as it depends
on the deviation c̃ via the term

〈
u(r) ∂c̃∂x

〉
S . The challenge is to estimate the latter, which

requires some assumptions. First, by subtracting Eq. (6.6) from Eq. (6.5), we get:

∂c̃

∂t
+

(
u(r)− u0

)
∂〈c〉S
∂x

+

(
u(r)

∂c̃

∂x
−
〈
u(r)

∂c̃

∂x

〉

S

)
= D0

(
1

r

∂

∂r

[
r
∂c̃

∂r

]
+
∂2c̃

∂x2

)
. (6.7)

We consider the limit of long times with respect to the typical diffusion time of a so-
lute particle across the channel which scales as a2/D0. On such time scales, solute
particles have explored all radii of the tube, such that the initial paraboloid concentra-
tion front generated by advection (see Fig. 6.1a)) has diffused transversely and became
homogeneous. We thus expect the deviation to be small with respect to the average

concentration, i.e. c̃ � 〈c〉S , so that we may neglect
(
u(r) ∂c̃∂x −

〈
u(r) ∂c̃∂x

〉
S

)
with re-

spect to
(
u(r) − u0

)
∂〈c〉S
∂x . Furthermore, on such long times, the system has reached a

steady state so that the time derivative term ∂c̃
∂t can be neglected. Lastly, we assume the

cylinder to be of large aspect ratio, such that the gradient ∂c̃/∂x in the x direction of the
deviation concentration is much smaller than the one in the radial direction, i.e. ∂c̃/∂r.
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With such assumptions, Eq. (6.7) reduces to:
(
u(r)− u0

)
∂〈c〉S
∂x

=
D0

r

∂

∂r

[
r
∂c̃

∂r

]
. (6.8)

Integrating the latter equation with Eq. (6.3), we find:

c̃(r, x, t) =
a2u0

24D0

∂〈c〉S
∂x

(
6
r2

a2
− 3

r4

a4
− 2

)
, (6.9)

where we have used the fact that c̃ is finite at r = 0 and of zero cross-sectional average.
Lastly, injecting the cross-sectional average

〈
u(r) ∂c̃∂x

〉
S in Eq. (6.6), we find:

∂〈c〉S
∂t

+ u0
∂〈c〉S
∂x

=

(
D0 +

u2
0a

2

48D0

)
∂2〈c〉S
∂x2

. (6.10)

Equation (6.10) is known as the Taylor-Aris law. Written in the translated frame x̃ =
x − u0t, it takes the form of a diffusion equation with an effective diffusion coefficient

Deff = D0 +
u20a

2

48D0
= D0

(
1 + Pe2

48

)
, where Pe = u0a/D0 is the Péclet number that mea-

sures the ratio between advection and diffusion. Since Taylor’s article, the validity of
this asymptotic calculation has been proven more rigorously using the center-manifold
description [238, 239, 240, 241].

Aris’ theory

In 1956, Rutherford Aris developed a theoretical framework to compute the moments
of the solute distribution [242]. This framework has been extended further, notably to
get the full time dependence of the first three moments [243], and has been adapted for
time-dependent flows [244, 245]. The idea of the method is to introduce the moments in
x of the distribution and to compute them recursively. Here again, we focus on the case
of the transport inside a cylindrical tube, with an initial condition that is uniformly
distributed over localized line at x = 0, such that c(r, x, t = 0) = δ(x), where a unit
mass is used, and δ denotes the Dirac distribution. The pth moment cp in x of the
concentration and its cross-sectional average mp are defined as:

cp(r, t) =

∫

R
xpc(r, x, t) dx and mp(t) =

∫ a

0
cp(r, t)

2πr

πa2
dr. (6.11)

We assume that the solute concentration vanishes at infinity in x, sufficiently rapidly
for the concentration field to verify the condition: limx→±∞ x

µ∂νxc = 0 for arbitrary
integers µ and ν, such that all the moments exist and are finite. Multiplying Eq. (6.4) by
xp and integrating it with respect to x on R, we have:

∂cp
∂t
− D0

r

∂

∂r

[
r
∂cp
∂r

]
= D0p(p− 1)cp−2 + u(r) p cp−1. (6.12)
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Then, taking the cross-sectional average and using the no-flux boundary condition
∂cp
∂r (r = a, t) = 0, which applies to each moment, we find:

dmp

dt
= p(p− 1)D0〈cp−2〉S + p 〈ucp−1〉S . (6.13)

For p = 0, Eq. (6.13) yields dm0
dt = 0, meaning that the zeroth moment is constant and

equal to the number of solute particles, i.e. m0(t) = 1. This condition expresses the
global conservation of matter in the tube. Eq. (6.12) for p = 0 reduces to the axisym-
metric heat equation that can be solved for any initial condition by expanding on the
spectral basis of the Laplacian (see section 6.3.2). Here, for the specific case of a uni-
form initial condition, the solution of the heat equation is trivial, and reads: c0(r, t) = 1.
Then, for p = 1, Eq. (6.13) reads:

dm1

dt
=

∫ a

0
u(r)c0(r, t)

2πr

πa2
dr =

∫ a

0
2u0

(
1− r2

a2

)
2πr

πa2
dr = u0. (6.14)

This means that the average concentration moves with the mean speed of the flow. The
first moment c1 follows the equation:

∂c1
∂t
− D0

r

∂

∂r

[
r
∂c1
∂r

]
= u(r)c0(r, t) = 2u0

(
1− r2

a2

)
. (6.15)

Given the form of the cross-sectional average momentm1 in Eq. (6.14), we search for so-
lution of the type: c1(r, t) = u0t+ δc1(r, t), δc1 being a function. Introducing this ansatz
in Eq. (6.15), we find that the steady-state solution for δc1 follows a similar equation
as the leading-order equation in Taylor’s theory (6.8) for the deviation to the average
concentration field. Then, we can write the general solution as:

c1(r, t) = u0t+
u0a

2

24D0

(
6
r2

a2
− 3

r4

a4
− 2

)
+

∞∑

n=1

AnJ0

(
αnr

a

)
exp

(
− α2

nD0t

a2

)
, (6.16)

where J0 is the Bessel function of the first kind and of order 0, αn is the nth zero of
dJ0
dx (x), and An is a coefficient that can be found through the initial condition c1(r, t =

0) = 0, and reads:

An = −8u0a
2

D0

1

α4
nJ0(αn)

. (6.17)

Aris was interested in the long-time asymptotic regime of the solute concentration dis-

tribution. From Eq. (6.16), the first moment follows: c1(r, t) = m1(t) + u0a2

24D0

(
6 r

2

a2
−

3 r
4

a4
− 2

)
+O(exp(−α2

1D0t/a
2)), where α1 ≈ 3.8317. Inserting the long-time asymptotic
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expression for c1 in Eq. (6.13) for p = 2, we find:

dm2(t)

dt
= 2D0〈c0〉S + 2 〈uc1〉S

' 2D0 + 2
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+O(exp(−α2
1D0t/a
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(6.18)

Then, for times much larger than the time for a solute molecule to diffuse across the
tube t� a2/D0, we find:

dm2(t)

dt
' 2D0 +

u2
0a

2

24D0
+ 2u2

0t. (6.19)

The long-time effective diffusion coefficient, defined as Deff = limt→∞
1
2

d
dt

[
m2(t) −

m2
1(t)

]
, can be computed and reads:

Deff = D0 +
u2

0a
2

48D0
= D0

(
1 +

Pe2

48

)
, (6.20)

where we recover the result from Taylor’s theory.
The theory of Taylor & Aris has been extended by Howard Brenner among others to

a more general framework called generalized Taylor dispersion, as reviewed in Ref. [246].
Lastly, the Taylor-Aris equation has been also recovered by using methods from non-
equilibrium statistical physics such as large-deviation theory [247, 248], or Green-Kubo
formulas [249, 250, 251, 252].

Applications

There are several applications of Taylor dispersion in various fields of science2, as the
combination of flow, confined space and transport is a generic feature to many sys-
tems. We give a brief overview here. In Earth sciences, Taylor dispersion influences
the spreading of pollutants in rivers and estuaries [253], and is significant in the trans-
port in porous and heterogeneous media [246, 254, 255]. Taylor dispersion enhances
diffusion and mixing which is important in “lab-on-a-chip” devices which often in-
volve the mixing of chemical reactants [256, 257]. It is also encountered in chromatog-
raphy for the separation of a mixture. Besides, Taylor dispersion is found in biological
transports such as in pulmonary circulation [258, 259], cerebrospinal-fluid mixing [260],
DNA and bacterial mobility [261, 262, 263], as well as in other contexts at micro- and
nano-scales [240, 264].

2The seminal article from G.I. Taylor [235] is the most cited one from the British professor (∼ 6300,
Google Scholar), which emphasizes the importance of Taylor dispersion in sciences and its numerous
applications.
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In this chapter, we address several problems related to Taylor dispersion. My inter-
est in this topic started from a collaborative work with the experimentalists Alexandre
Vilquin and Joshua McGraw as well as another theoretician PhD student Pierre Soulard.
The idea of the project is to observe the Brownian trajectories of nanoparticles near sur-
faces using a specific microscopy technique called total internal reflection fluorescence mi-
croscopy (TIRFM), which is described later in the chapter. In a first part, we focus on
Taylor dispersion at short times, meaning for times shorter than the diffusion time over
the channel width such that the Taylor-Aris law is not valid. This problem has already
been addressed theoretically [265] and the moment theory introduced by Aris has also
been generalized to access the full dynamics of Taylor dispersion [243]. The dispersion
coefficient is found to increases with time and saturates toward the Taylor-Aris law at
long times. Furthermore, the short-time regime of Taylor dispersion is found to cru-
cially depend on the particle concentration, and displays a quadratic dependence in
time for an initial point-like concentration (or a single particle), whereas an extended
initial spatial distribution leads to an additional contribution that is linear in time. Some
of the applications of Taylor dispersion in micro and nanoscience, such as drug delivery
from a suddenly ruptured cargo [266, 267] or the kinetics of nanoconfined chemical re-
actions [268, 269], should critically depend on the initial distribution of solutes [270]. In
a second part, we discuss the consequences of the interactions of the nanoparticles with
the surface of the channel in Taylor dispersion. Here, some specificity of the TIRFM de-
tection method are also discussed.

Organization

The rest of the chapter is structured as follows: section 6.2 is devoted to the experi-
mental work, mostly performed by our collaborators. We explain the TIRFM setup and
some of its limitations, before showing how it allows us to measure velocity profiles, as
well as dispersion. Then, in section 6.3, we review several existing theories to describe
Taylor dispersion for tracer-like particles in the full temporal range before comparing
them to the experiments. A discussion on the specific boundary condition in TIRFM is
also provided. Lastly, we discuss in section 6.4 the interactions between the nanoparti-
cles in TIRFM and the surface.

6.2 Experimental results

The experiments presented in this manuscript have been designed by Alexandre Vilquin
& Joshua McGraw with the help of Gabriel Guyard from the laboratory Gulliver at ES-
PCI Paris.
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6.2.1 Setup

Microfluidic channel

In the experiments, fluorescent nanoparticles with radius a = 55 or 100 nm are advected
along the x-direction of a pressure-driven flow (Fluigent MFCS-4C pressure controller)
in microchannels with a rectangular section (see Fig. 6.1(d)). The carboxylate-modified
fluorescent nanoparticles used are 55 nm-radius (Invitrogen F8803, Thermofisher) and
100 nm-radius (Invitrogen F8888 Thermofisher) latex microspheres used without fur-
ther modification besides dilution by a factor of 103 using ultra-pure water. Microflu-
idic chips are fabricated by soft lithography of poly(dimethyl siloxane) (Dow Chemical,
Sylgard 184) on a plasma-cleaned glass coverslip with 145 µm thickness constituting
the bottom surface. In the first section, the liquids used are ultra-pure water (18.2 MΩ
cm, MilliQ) and water-glycerol mixtures with Newtonian viscosities of η = 1 mPa s for
pure water, 2.1 and 7.6 mPa s for water-glycerol mixture, measured with a Couette-cell
rheometer (Anton Paar MCR 302) up to a shear rate of 1000 s−1. In section 6.4, sodium
chloride (NaCl) solutions of concentrations 5.4 and 54 mg/L are also used. The particle
volume fractions used are typically 10−5, providing sufficient statistics while avoid-
ing hydrodynamic interactions between the nanoparticles. Pressure drops ∆P in the
range 5-400 mbar are applied across the microchannels with height h = 18 µm, width
w = 180 µm, and length L = 8.8 cm.

Optical detection

Total internal reflection fluorescence microscopy (TIRFM) measurements [271, 272], are
realized by illuminating the near-surface shear flow with a laser source (Coherent Sap-
phire, wavelength λ = 488 nm, power in the range 15 to 150 mW) focused off the central
axis of, and on the back focal plane of a 100×microscope objective with a large numer-
ical aperture (NA = 1.46, Leica HCX PL APO), as depicted in Figs. 6.1b)-d). Thus,
incident angles θ larger than the critical angle, θc = arcsin(nl/ng), are reached, enabling
total reflection of the laser beam at the glass-liquid interface. Here, ng = 1.518 is the re-
fractive index of the glass coverslip, nl = {1.33, 1.33, 1.36, 1.40} is the refractive index
of the fluids for the water, NaCl solutions and the two water-glycerol mixtures, re-
spectively; the refractive indices of the four liquids are measured using a refractometer
(Atago PAL-RI). An evanescent wave propagates through the sample with an exponen-
tial decay lengths Π = λ/(4π)

(
n2

g sin2 θ − n2
f

)−1/2, with the angle measured in situ as
in Ref. [273]. The penetration depth is thus Π ≈ 100 nm. The images of 528 × 512
pixels (px), with a resolution of 22.9 px/µm, are recorded in 16-bit format (Andor Neo
sCMOS) with a frame rate of 400 Hz for a duration of 5 s. For each set of parame-
ters, typically five videos of 2000 frames each are recorded. After a centroid detection,
the intensity profile is fitted by a radially-symmetric Gaussian model for each frame as
shown in Fig. 6.1c). Thus the x and y coordinates give the particle position in the plane
parallel to the glass-water interface.

Given the exponentially decaying evanescent field, we call the apparent altitude of
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Figure 6.2: (a) Comparison between experimental and theoretical signal intensity dis-
tributions (SIDs). (b) Comparison between experimental and theoretical streamwise
mean velocity profiles. The experimental data is for 55 nm-radius particles for a pres-
sure drop of 30 mbar across the microchannel.

the center of mass of the particles z = a+Π ln(I0/I), I is the measured particle intensity,
as shown in Fig. 6.1c), and I0 is the fluorescence intensity of a particle with radius a in
contact with the solid-liquid boundary, the latter being defined as z = 0. Optical aber-
rations lead to small deviations from an exact exponential decay for the fluorescence
intensity (see section 6.2.2). Comparing subsequent images, sample trajectories as in
Fig. 6.1c) are constructed using home-built Matlab routines.

The experimental setup allows the observation of particles in a range of altitudes
a . z . 1 µm from the solid-liquid interface. In practice, for water and water-glycerol
mixture we do not observe particles for z . 200 nm as a result of electrostatic and
steric interactions [274, 275, 276]. The experiments in section 6.4 with NaCl solutions
allows us to observe particles closer to the wall. The camera sensitivity determines
the upper z-limit. In particular, we stress that the particle intensity must overcome
a certain threshold for it to be detected. Therefore, for particles moving away from
the wall, their intensity decreases, eventually below the threshold, so that the particles
effectively leave the observation area.

6.2.2 Signal intensity distribution

This section provides additional information about how the observed signal intensity
distributions (SID) [277], denoted PSID, and the corresponding velocity profiles can be
quantitatively described simultaneously. As also described in Ref. [272], fluorescent
nanoparticles detected display a range of intensities affected by several factors, the
most important ones being: i) electrostatic interactions which determine the probability
that a particle of a given radius is found at a certain distance from the wall according
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to a Boltzmann-like distribution; ii) particle size distribution; and iii) the optical setup
which, given the position and size of the particle, finally determines the associated col-
lected intensity. We now discuss each of these elements in detail.

i) The glass surface exerts an electrostatic repulsion on the particles according to the
fact that both surfaces are negatively charged. The details of such a repulsion are un-
derstood within the Debye–Hückel theory [274, 275] and are discussed further in sec-
tion 6.4.1. The electrostatic interaction energy, φel, describing the electric double-layer
repulsion between a particle with radius R and a flat wall [276], is given by:

φel (z) = 16εR

(
kBΘ

e

)2

tanh

(
eψp

4kBΘ

)
tanh

(
eψw

4kBΘ

)
exp

(
−z −R

lD

)
. (6.21)

Here, z, ε, e, kB, Θ, ψp, ψw and lD are respectively the position of the center of the par-
ticle, liquid permittivity, elementary charge, Boltzmann constant, temperature, particle
and wall electrostatic potentials and the Debye length. This interaction determines the
particle concentration at thermal equilibrium through the Boltzmann distribution:

cB(z) ∝ exp

(
−φel (z)

kBΘ

)
. (6.22)

As already observed in TIRFM experiments, the van der Waals interaction can be ne-
glected for pure water [272, 277]. Consequently, the typical distance between the bot-
tom surface (located at z = 0) and the particles is mainly determined by the Debye
length.

ii) All the particles do not have the same radius R. The radius distribution is described
by a Gaussian probability function:

PR (R) =
1√

2πσ 2
R

exp

(
−(R− a)2

2σ 2
R

)
, (6.23)

where a is the mean radius and σR the standard deviation.

iii) The fluorescence intensity I of an individual particle is determined by the optical
parameters of the TIRFM setup and the particle size, with I ∝ R3. The evanescent
wave has a penetration depth Π characterizing the exponential decrease of intensity.
The observed fluorescence intensity is also sensitive to the finite depth of field df of
the microscope objective. In our experiments, the depth of field has a value of 415 nm,
meaning that if particles are not located on the focal plane at zf (typically 400-500 nm
from the glass-liquid interface), they will be detected with a relatively low intensity.
Putting these elements together, the observed fluorescence intensity for an individual
particle is predicted [277] to be:

I (R, z)

I0
=

(
R

a

)3

exp

(
−z − a

Π

)[
1 +

(
z − a− zf

df

)2
]−1

, (6.24)
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where I0 is the intensity for a particle with radius R = a located at the bottom surface
z = a, and with the focal plane at zf = a.

Using a home-made MATLAB interface, we combine Eqs. (6.21)-(6.24) to generate
numerical SIDs. Practically, we determine the fraction of particles having an altitude z
and a radius R given by the weight W (z,R) = C(z)PR(R), and compute the associated
intensity given by Eq. (6.24). This procedure gives a list of weighted intensities shown
in Fig. 6.2(a), using a prefactor 16aε(kBΘ/e)2 tanh(eψp/(4kBΘ)) tanh(eψw/(4kBΘ)) =
2.9×10−21 J, as well as lD = 60 nm, σR = 5.5 nm, a = 55 nm and the optical parameters
as described above, along with the experimental histogram.

6.2.3 Velocity fields

Velocity versus apparent altitude

As schematically indicated in Fig. 6.1b), Taylor dispersion crucially depends on the lo-
cal shear rate for particles diffusing in a shear flow. In order to obtain mean velocity
profiles along the flow direction over a given lag time τ displacements ∆x(z(t), τ) =
x (z(t+ τ)) − x (z(t)) taking t as the initial observation time, are measured for each
pair of frames in which identical particles are detected. Figure. 6.1(c) shows an ex-
ample of particle trajectories. Since the particle intensity encodes the altitude, we first
sort the particles into a series of intensity bins, each bin corresponding to a range of
approximately 15 nm in the z-direction. Then, the streamwise mean velocity vx(z̄) =
〈∆x(z̄, τ)〉t/τ is determined. Here, 〈·〉t denotes ensemble averaging over ca. 105 parti-
cles. The notation ·̄ denotes averaging over all frames during the lag time.

Figure 6.3(a) shows the streamwise velocity profiles for 55 nm-radius particles in
water and several pressure drops. The solid lines show that the profiles are well ap-
proximated by linear functions. The spread of vx intercept values arises from the spread
of values for I0 at each pressure, z = 0 corresponding to the mean of a+Π ln I0 over the
different ∆P . The origin z = 0 is thus resolved within 20 nm of the solid-liquid inter-
face assuming no slip [272]. The low Reynolds number indicates a viscosity-dominated
flow for which vx (z̄) = ∆P

(
z̄2 − hz̄

)
/ (2ηL), i.e. a Poiseuille flow. In the region

z . 1 µm, and given the channel height h = 18 µm, the deviation of the Poiseuille
profile from linearity is expected to be less than 5 %. Therefore, at first order in z̄/h,
we have vx (z̄) ' γ̇z̄, with the shear rate defined by γ̇ = ∂z̄vx|0 = h|∆P |/ (2ηL) and ∂z̄
denoting the partial derivative with respect to z̄. In Fig. 6.3(b) are shown the shear rate
values as functions of the pressure drop extracted from the velocity profiles in part (a).
As highlighted by the dashed black line, the shear rate increases linearly with the pres-
sure drop. The slope, given by h/ (2ηL), provides a water viscosity η = 0.9± 0.1 mPa s
at 24 ◦C in agreement with the expected value [278], also measured with a Couette-
cell rheometer independently. We stress that a good agreement is also found for the
water-glycerol mixtures used here.
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Figure 6.3: (a) Velocity profiles vx = 〈∆x〉τ /τ for 55 nm-radius particles with a lag
time τ = 2.5 ms at several pressure drops. The plain lines indicate linear regressions,
providing the shear rate value γ̇. (b) Shear rate as a function of pressure drop across
the microfluidic channel. The dashed black line is a linear regression and the color code
applies also to (a).

Discussion on the optical aberrations

However, the mean streamwise velocity profile is not perfectly linear when using the
apparent altitude z = a + Π ln (I0/I) [272], particularly near the surface at z̄ ≈ 200 nm
in Fig. 6.3a). First, possible deviations may come from the hydrodynamic interactions
between the finite-size colloids and the wall. Indeed, a spherical particle located at
an altitude z from a planar wall in a shear flow rotates and has a mean streamwise
velocity that differs from the one of the flow and reads vx (z) = fBγ̇z, where fB is the
so-called “Brenner factor” [279]. For large z/a, the Brenner factor can be expressed as
fB ' 1− (5/16) (z/a)−3. For 55 nm-radius particles typically located at distances larger
than 200 nm due to electrostatic repulsion, the deviation from the linear velocity profile
is less than 1%.

Additionally, deviations from the linear velocity profile are induced by the op-
tical methods. Using a linear shear flow in conjunction with the intensity-altitude-
probability relations described in the previous section (Eqs. (6.21)-(6.24)), we follow
Zheng et al. [277] and predict the particle’s mean streamwise velocity as a function
of ln(I0/I). Such a prediction is made with γ̇ adjusted simultaneously to the physi-
cal and optical parameters of Eqs. (6.21)-(6.24). The result is shown together with the
experimental results in Fig. 6.2(b), showing good agreement and capturing the main
nonlinear features of the experimental data. The shear-rate values obtained with this
SID method are approximately 15% smaller than the ones directly obtained using a
linear regression of the velocity profiles of Fig. 6.3a) using the apparent altitude. This
discrepancy is mainly due to the particle polydispersity and to the finite depth of field
of the microscope objective.
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Figure 6.4: Probability density functions (PDFs) of particle displacements. (a) Trans-
verse and (b) streamwise displacement PDFs for several pressure drops indicated in
the yellow-red color bar. The black line in (a) indicates a Gaussian model P (∆y) =

exp
(
−∆y2/

(
2σ2

∆y

))
/
√

2πσ2
∆y. In (c) the ∆y-PDF for the largest pressure drop is de-

composed into PDFs for several z. Each green-black PDF corresponds to a z-range of
ca. 30 nm (some curves omitted for clarity), and the mean value of z is indicated by the
color scale of (d). The decomposed ∆x-PDFs for the smallest pressure drop (thinnest
green-black lines) and the largest pressure drop (thickest green-black lines), weighted
by the particle number for each z-range in proportion to the total particle number, are
shown in (d). All the displacements are measured for a time lag τ = 2.5 ms and concern
100 nm-radius particles in water.

6.2.4 Local distributions of particle displacement

Having discussed the mean velocity of the particles, we turn our attention to the dis-
placement distributions. Figures 6.4(a) and (b) show the probability density functions
(PDFs, here called P) of the transverse (∆y) and streamwise (∆x) displacements of 100
nm-radius particles in water over a duration τ = 2.5 ms and several pressure drops.
For Fig. 6.4 and in the following, we systematically take z = z(t), the altitude at the ini-
tial observation time. This initial altitude z(t) should be distinguished from the average
altitude z̄ over the lag time τ used in Fig. 6.3(a). The uncertainties on the initial altitude
are mainly determined by the average distance covered due to diffusion during the
frame-capture time τcapt, approximately equal to

√
D0τcapt where D0 is the bulk diffu-

sion coefficient. This average distance varies from 100 nm for the 55 nm-radius particles
in water to 30 nm for 100 nm-radius particles in the 50% water-glycerol mixture.

In Fig. 6.4(a), it is shown that the transverse displacement PDFs do not depend on
the pressure drop and are well described as Gaussian over two decades. The global
standard deviation provides an approximation for the unidimensional Brownian dif-
fusion coefficient σ2

∆y(τ)/ (2τ) ≈ 2.0 ± 0.3 µm2 s−1, where σ2
∆y(τ) = 〈∆y2〉 − 〈∆y〉2 is

the standard deviation of the displacements along y over the lag time τ . This estimate
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Figure 6.5: Spatio-temporal diffusion and dispersion coefficients. (a) Transverse dif-
fusion coefficients Dy and (b) streamwise dispersion coefficient Dx as functions the
apparent altitude and lag time τ for 100 nm-radius particles in pure water, and a pres-
sure drop corresponding to a shear rate γ̇ = 243 s−1. The z-range is typically 30 nm
for each initial altitude z. In (a), the plain black line corresponds to the the theo-
retical prediction Dy = D0

(
1− (9/16)Z−1 + (3/8)Z−3 − (45/256)Z−4 − (1/16)Z−5

)

with Z = z/a [136]. In (b) the dashed lines indicate the streamwise dispersion coeffi-
cient averaged in the range 650-1000 nm.

is close to the value predicted by the Stokes-Einstein relation, D0 = kBΘ/ (6πηa) ≈
2.2 ± 0.2 µm2 s−1 [232], for particles with a = 100 nm advected in water, where η is
taken from bulk rheology as ca. 0.9 mPa s at room temperature. Contrasting with the
transverse displacement PDFs, those for the streamwise direction in Fig. 6.4(b) are not
Gaussian, become broadened with the pressure drop, and exhibit some asymmetry as
reported in Refs. [280, 281].

The TIRFM setup provides the particle distance from the glass-liquid interface through
the detected intensity, allowing us to distinguish the contributions of particles at differ-
ent altitudes to the global PDFs. In the transverse direction, the local PDFs are shown
for the largest pressure drop in Fig. 6.4(c) and they are all Gaussian regardless of z. In
Fig. 6.4(d) are shown similar decompositions for the smallest and largest pressure drops
for streamwise displacements. These decompositions demonstrate that the asymmetry
of the global distributions is mainly due to the superposition of different mean dis-
placements at different altitudes. For the smallest pressure drop the local PDFs are
only slightly shifted with increasing z due to the relatively low mean velocities, cf.
Fig. 6.3(c). For the largest pressure drop, the mean values are shifted more strongly
with increasing z as a result of the higher shear rate. More importantly, the local PDFs
thus provide access to the transverse diffusion along y and streamwise dispersion along
x for different altitudes.
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6.2.5 Time- and space-dependent dispersion

A detailed study of the local Taylor dispersion as function of time and the various
physical parameters at stake is now described. In Figs. 6.5(a) and (b) are shown local
transverse diffusion coefficients:

Dy(z, τ) =
σ2

∆y(z)

2τ
, (6.25)

and streamwise dispersion coefficients:

Dx(z, τ) =
σ2

∆x(z)

2τ
. (6.26)

The latter comprise pure diffusive and advection effects, and are remarkably larger
(up to an order of magnitude) than the former. These data are obtained from altitude
decompositions as in Fig. 6.4 for several lag times τ . Figures 6.5(a) and (b) show that
there is a general increase with z of Dy and Dx until reaching a plateau at large z.
The variation with z in both directions is due to hydrodynamic interactions between
particles and the solid-liquid interface, leading to a hindered diffusion, as discussed in
detail elsewhere [136, 282, 283, 284, 285] (see section 6.4). Indeed, the z-dependence of
Dy is in agreement with the prediction resulting from the effective viscosity near a flat,
rigid wall [136]. As expected, the transverse diffusion is not dependent on the lag time
τ . In contrast, the dispersion coefficients, Dx, increase significantly with τ , as shown in
Fig. 6.5(b).

In Fig. 6.6(a), we show the lag-time dependence of the streamwise dispersion co-
efficient. To do so, we define Dx (τ) as the average value of Dx(z(t), τ) in the large-z
plateau for z(t) & H/2 whereH is the size of the observation zone, typically 1 µm. That
is, Dx (τ) is a conditional averaging for particles beginning their trajectories in the top
half of the observation zone, thus limiting the aforementioned lubrication effects. In
this figure, the bulk diffusion coefficient D0 is varied by changing the particle size and
the liquid viscosity. For the lowest values of D0, Dx continuously increases with time
and the temporal slope increases. By contrast, Dx saturates to a plateau for the largest
D0. As explained by Taylor [235], the time needed to reach the dispersion plateau cor-
responds approximately to the time needed to diffuse across the channel height. Here
the Taylor time is defined as:

τz =
H2

D0
. (6.27)

In a rectangular channel, the exact calculation [235] gives a characteristic diffusion time
τz/π

2. For the 55 nm-radius particles in water, assuming a length scaleH ≈ 700 nm, one
has τz/π2 ≈ 13 ms, in reasonable agreement with the corresponding data of Fig. 6.6(a),
with D0 = 3.9 ± 0.4 µm2 s−1. For smaller values of D0, the dispersion remains mainly
in the short-time, increasing-slope regime. Nevertheless, taking the longest-time data
(the data of Fig. 6.6(a) at τ = 50 ms, denotedDτmax) for each D0 value, we now examine
the shear-rate dependence of the dispersion.
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Figure 6.6: Shear rate and time dependances of the dispersion coefficients. (a) Stream-
wise dispersion coefficient Dx extracted from the dashed lines in Fig. 6.5(b) as a func-
tion of lag time. From yellow to dark green, the bulk diffusion coefficient increases.
In particular —from bottom to top— the shear rates, particle radii and viscosities
are {γ̇, a, η} = {110, 100, 7.6}, {91, 100, 2.1}, {90, 100, 1}, {165, 55, 1} in units {s−1, nm,
mPa s}; giving D0 = {0.28, 0.89, 2.1 3.9}µm2 s−1 determined from the Stokes-Einstein
relation. Marker shape indicates the liquid as water (�) or glycerol-water mixtures
(.). (b) Reduced late-time dispersion coefficient versus shear rate. Solid lines have a
slope 2 in this log-log representation. (c) Same data as in (a), with time rescaled using
τz = H2/D0, and reduced dispersion coefficient rescaled with Pe2. The dashed line
shows the long-time limit with a prefactor predicted by Eq. (6.28).

In Fig. 6.6(b) is shown the dependence of the reduced late-time dispersion coeffi-
cient, Dτmax/D0 − 1, for four D0 as functions of the shear rate. The solid lines (with
slope 2 in log-log representation) show that the reduced Dτmax increases quadratically
with the shear rate γ̇ for all D0 studied. To understand this result, we use the classical
Taylor-Aris calculation for a plane Couette flow [246] in a rectangular channel, that can
be derived using the Taylor model in section 6.1.2 for a velocity field vx(z) = γ̇z, and
reads:

Dx = D0

(
1 +

1

30
Pe2

)
τ � τz , (6.28)

for the infinite-time dispersion coefficient, with the Péclet number defined as:

Pe =
γ̇H2

2D0
=
γ̇τz
2

, (6.29)

where we have identified the mean velocity of the flow to u = γ̇H/2. Equations (6.28)
and (6.29) highlight the key role of velocity gradients in enhanced dispersion, and jus-
tify the quadratic shear-rate dependance of the data in Fig. 6.6(b) for the 55 nm-radius
particles in water. Applying Eq. (6.28) to this latter data, we extract a length scale
H ≈ 500 nm, consistent with the range of z observed in Fig. 6.3(a). Because the lower-
D0 data does not reach the infinite-time plateau, the prefactor for the linear regressions
does not reveal the corresponding size of the flow region H . However, as we show in
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the following, the quadratic shear rate dependence is preserved for all time regimes,
explaining the scaling of all the data in Fig. 6.6(b).

We now examine the detailed time dependence of the dispersion coefficient for all
the experimentally accessed times. Partly inspired by previous theoretical works [243,
244, 245, 286] and by the shear-rate dependence of Fig. 6.6(b), we show in Fig. 6.6(c)
the reduced Dx normalized by Pe2 as a function of the dimensionless lag time, τ/τz .
Remarkably, the data in Fig. 6.6(a) collapse onto a single master curve, suggesting the
existence of a universal function describing the reduced dispersion coefficient.

In Fig. 6.6, we considered particles beginning their trajectories in the top half of the
channel. However, this fraction can be generalized, with n representing the fraction of
the observation zone from which particles leave, and with 0 ≤ n ≤ 1. The reduced
dispersion is thus expected to follow a relation of the form

(D〈n〉
D0
− 1

)
Pe−2 = F〈n〉

(
τ

τz

)
. (6.30)

Examining Fig. 6.6(c), we note that the reduced Dx increases with time until a plateau.
According to Eq. (6.28), in the τ/τz → ∞ limit, F〈n〉 should reach 1/30. This value
is shown with the horizontal black dashed line and is in quantitative agreement with
the late-time data. We note furthermore that the crossover to this late-time regime oc-
curs when τ/τz ≈ 1. Concerning the data at the shortest dimensionless lag times in
Fig. 6.6(c), we find that they do not follow the typically predicted [287, 288, 289, 290,
291] and measured [292, 293, 294] early-time τ2 dependence. A key foundation of this
τ2 dependence is the assumption that each particle begins its trajectory at the same ini-
tial altitude. In general, however, particles may leave from a non-peaked distribution
of initial altitudes. This distribution is particularly relevant for Fig. 6.6(c), since the
plotted quantity is related to an average of particles leaving mainly from the top half of
the observation zone (indicated by the dashed lines in Fig. 6.5(b)).

6.3 Theoretical models for tracer particles

In the case of a non-peaked initial distribution, Chatwin [265] theoretically predicted
that dispersion coefficients are modified by an additional term linear in time affecting
the short-time regime. After, Barton, Vedel et al. [243, 244, 245] produced a moment the-
ory for all times that verifies this initial-concentration dependence and show plateaus
at long times when particles encounter the boundaries. In the following subsections,
we outline the results from these theories that allow us to recover the main experimen-
tal observations we have described in the previous sections, an to justify the form of
Eq. (6.30). We stress two limitations of this approach to describe the TIRFM experi-
ments. First, the classical Taylor dispersion theory suppose no-flux boundary condi-
tions at the solid-liquid interfaces. Nevertheless, in the experiments, the upper wall
position is determined by the resolution of the optical setup and is not a rigid planar
surface (see section 6.2.1), and particles may leave the observation zone. We discuss
the choice of boundary conditions at the fictive wall, located at z = H in section 6.3.6.
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Second, the particles are considered as tracers, neglecting the electrostatic and hydro-
dynamic interactions with the walls [295], which are found to alter both the distribution
of altitude (see Fig. 6.2(a)) and the diffusion constant (see Fig. 6.5).

6.3.1 Short-time asymptotics: Chatwin theory

We first focus on the short-time regime of dispersion and the effect of initial condi-
tions. While several works predicted [287, 288, 289, 290, 291] and measured [292,
293, 294] a quadratic time dependance for a sharply peaked initial spatial distribution,
Chatwin [265], recalling Saffmann [296], showed that for particles having an initial PDF
Pi (yi, zi) and advected with a steady flow velocity vx (yi, zi), the dispersion coefficient
at short times is given by:

Dx
D0
− 1 =

1

2

τ

D0

[∫∫
v2
xPidyidzi −

(∫∫
vxPidyidzi

)2
]

+

1

6
τ2

[∫∫ [
∇2v2

x + vx∇2vx
]
Pidyidzi − 3

(∫∫
vxPidyidzi

)(∫∫
vx∇2Pidyidzi

)]
,

(6.31)

where yi and zi are the coordinates for the initial distribution. The linear terms in time
originate from the initial variability of the particles velocity. Assuming a 2d problem in
the Oxz plane with an initial particle distribution Pz,i =

∫
Pidyi and a linear shear flow

vx (z) = γ̇z as justified by our experiments, Eq. (6.31) simplifies to:

Dx
D0
− 1 = γ̇2τ

〈
z2

i

〉
− 〈zi〉2

2D0
+

1

3
γ̇2τ2

[
1− 3

2
〈zi〉

(∫
zi∂

2
zi
Pz,idzi

)]
. (6.32)

This form for the dispersion coefficient clearly shows a quadratic shear-rate depen-
dence, as observed in Fig. 6.6(b). Furthermore, Eq. (6.32) shows that the linear temporal
term is weighted here by the variance of the initial spatial distribution of the particles.

Next, we make a the further simplifying assumption that particles are uniformly
distributed at the initial time. The particles are thus distributed over a vertical segment
of length nH and centered at altitude 〈zi〉. The initial PDF is therefore:

Pz,i (zi) =

{
0 if |zi − 〈zi〉| > nH/2
1/nH if |zi − 〈zi〉| 6 nH/2 . (6.33)

Injecting this distribution into Eq. (6.32), using the Péclet number of Eq. (6.29) and with
τz = H2/D0, the reduced dispersion coefficient of Eq. (6.30) for short times becomes:

F〈n〉
(
τ

τz

)
=
n2

6

(
τ

τz

)
+

4

3

(
τ

τz

)2

, τ � τz . (6.34)

This relation is valid for all n, and in particular, we name the n = {0, 1/2, 1} cases as
“dot”, “half-line”, and “line”. Before discussing the results of this early-time theory, we
first describe a general theory valid at all times.
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6.3.2 Moment theory

Given the asymptotic behaviors for both short and long times, we now use the frame-
work of Aris, Barton and Vedel et al. [242, 243, 244, 245] based on concentration mo-
ments to obtain the dispersion coefficient at all times for a linear shear flow, following
section 6.1.2. We consider the 2d problem of tracers with an initial concentration ci (z)
advected along x with a mean velocity U = 〈vx〉z . We nondimensionalize the variables
through C = c/ 〈ci〉z , X = x/H , Z = z/H , T = tD0/H

2, V (Z) = vx (z) /U and the
Péclet number Pe = UH/D0. The 2d advection-diffusion equation therefore becomes:

∂C

∂T
+ PeV (Z)

∂C

∂X
=
∂2C

∂X2
+
∂2C

∂Z2
, (6.35)

with the initial conditions C(X,Z, 0) = Ci(Z)δ(X). The pth concentration moment
Cp (Z, T ) and the corresponding vertical-average moment Mp (T ) are defined as:

Cp(Z, T ) =

∫

R
XpC(X,Z, T ) dX and Mp(T ) =

∫ 1

0
Cp(Z, T ) dZ. (6.36)

These definitions can be introduced into the advection-diffusion equation after multi-
plication by Xp and integration. Then, assuming no flux at the boundaries and that
limX→±∞X

µ∂νXC = 0 for arbitrary integers µ, ν, we recover the recursive equations of
section 6.1.2:

(
∂

∂T
− ∂2

∂Z2

)
Cp(Z, T ) = p(p− 1)Cp−2 + PeV (Z) pCp−1 , (6.37)

dMp

dT
= p(p− 1)〈1, Cp−2〉Z + Pe p 〈V,Cp−1〉Z , (6.38)

where the notation 〈F,G〉Z stands for the scalar product 〈F,G〉Z =
∫ 1

0 F (Z)G(Z)dZ.
These equations can be recursively solved to get the first moments and then, the di-
mensionless dispersion coefficient. For our purposes, this time-dependent dispersion
coefficient is defined as Dx/D0 =

(
M2 −M2

1

)
/ (2T ). We stress that this definition

is used to be consistent with the Chatwin theory described in Section 6.3.1 and our
experiments, even while the definition used in the work by Vedel et al. [244, 245] is
Dx/D0 = (1/2) ∂T

(
M2 −M2

1

)
.

As in section 6.1.2, the zeroth moment M0 is constant and equal to unity with the
normalization choice. The zeroth moment C0 follows the 1d heat equation:

∂C0

∂T
− ∂2C0

∂Z2
= 0, C0(Z, 0) = Ci(Z) (6.39)

that can be solved analytically by introducing the spectral basis of the 1d Laplacian
operator fk∈N(Z), which is itself solution of the eigenvalue problem:

(
λk +

d2

dZ2

)
fk(Z) = 0, f ′k(0) = f ′k(1) = 0. (6.40)
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The solutions are given by fk≥1(Z) =
√

2 cos(kπZ), λk = k2π2, f0(Z) = 1 and λ0 = 0.
The basis fk is orthonormal with respect to the scalar product, meaning that 〈fk, fj〉Z =
δk,j , where δk,j is the Kronecker symbol. The solution for C0 is:

C0(Z, T ) =
∑

k∈N
a0,kfk(Z) exp(−λkT ), a0,k = 〈fk, Ci〉Z . (6.41)

The first moment can be solved in the same manner, and follows the Eq.(6.37) for p = 1:

∂C1

∂T
− ∂2C1

∂Z2
= PeV (Z)C0(Z, T ), C1(Z, 0) = 0. (6.42)

Following Ref. [243], we seek solutions of the form:

C1(z, t) = Pe
∑

k∈N

[(
γ1,ka0,kT + a1,k

)
fk(Z) + a0,kφk(Z)

]
exp(−λkT ), (6.43)

where φk(Z) are solutions of the eigenvalue problem :

−
(
λk +

d2

dZ2

)
φk(Z) = (V (z)− γ1,k)fk(Z), φ′k(0) = φ′k(1) = 0. (6.44)

One possibility to find φk is to project it on the basis (fj)j∈N as φk(Z) =
∑

j∈N βj,kfj(Z).
After multiplying Eq. (6.44) by 〈fj , in the bra-ket framework, we can express the matrix
elements βj,k and γ1,k as:

βj,k = (1− δj,k)
〈fj , u, fk〉Z
λj − λk

, γ1,k = 〈fk, u, fk〉Z . (6.45)

Any values of the diagonal terms βk,k are allowed, such that they are set to zero without
loss of generality. Lastly, the coefficients a1,k can be found using the initial condition,
as a1,k = −∑j∈N a0,jβk,j . At the end, we can factorize C1 and write it with a double
sum as:

C1(Z, T ) = Pe
∑

k,j∈N2

[(
γ1,ka0,kT + a1,k

)
δk,j + a0,kβj,k

]
fj(Z) exp(−λkT ). (6.46)

The knowledge of the first two moments is sufficient to compute the dispersion co-
efficient. Integrating Eq. (6.38) to get M1(T ) and M2(T ), we can express the time-
dependent dispersion coefficient as:

(Dx
D0
− 1

)
Pe−2 = T−1

∑

k,j∈N2

[(
γ1,ka0,kT + a1,k

)
δj,k + a0,kβj,k

]
〈V, fj〉Z g1 (k, T )

− γ1,ka0,kδj,k 〈V, fj〉Z g2 (k, T )

− 1

2
a0,ka0,j 〈V, fk〉Z 〈V, fj〉Z g1 (k, T ) g1 (j, T ) ,

(6.47)
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where the auxiliary functions g1 (k, T ) and g2 (k, T ) are defined as:

g1 (k, T ) =

{
T

1−exp(−λkT )
λk

if k = 0

if k > 0
, (6.48)

g2 (k, T ) =

{
1
2T

2

T
λk

+ exp(−λkT )−1
λ2k

if k = 0

if k > 0
. (6.49)

The solution given by Eq. (6.47) is valid for any flow profile and any initial concentra-
tion profile in 1d. To calculate the particular solutions for a linear shear flow V (Z) = 2Z
and uniform distributions defined in Eq. (6.33) for the dot, half-line, and line conditions,
we inject V (Z) = 2Z, and find:

γ1,0 = 1 , and γ1,k≥1 =

∫ 1

0
2 cos2(πkZ) 2Z dZ = 1 , (6.50)

ψ0 = 〈V, f0〉Z = 1 , (6.51)

ψk≥1 = 〈V, fk〉Z =

∫ 1

0

√
2 cos(πkZ) 2Z dZ = −

2
√

2

(
1− (−1)k

)

π2k2
, (6.52)

β0,k =

∫ 1
0

√
2 cos(πkZ) 2Z dZ

λ0 − λk
= −ψk

λk
= −βk,0 , (6.53)

βj≥1,k≥1 =

∫ 1
0 2 cos(πkZ) cos(πjZ) 2Z dZ

λj − λk

= − 2

π2(j2 − k2)

[
1− (−1)j−k

π2(j − k)2
+

1− (−1)j+k

π2(j + k)2

]
.

(6.54)

Then, we can evaluate the coefficients a0,k and a1,k that depend on the initial concen-
tration field Ci (Z). Considering uniform distributions, we find:

a0,0 = 1 , a0,k>0 =
√

2 cos (kπ〈Zi〉Z) sinc

(
kπn

2

)
, a1,k = −

∑

j∈N
a0,jβk,j , (6.55)

where 〈Zi〉Z and n are defined as in Eq. (6.33) and sinc(x) = sin(x)/x. Inserting Eqs. (6.50),
(6.53), and (6.55) in Eq. (6.47) allows us to calculate the dispersion coefficients at all
times.
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6.3.3 Langevin simulations

The advection-diffusion equation (see Eq. (6.35)) corresponds to the Fokker-Planck equa-
tion associated with the stochastic differential equations for the position of the center of
mass of a particle, described with its coordinates X and Z. The stochastic differential
equations are:

dX

dt
= PeV (Z(T )) +

√
2ξX(T ) (6.56a)

dZ

dt
=
√

2ξZ(T ) (6.56b)

where ξX and ξZ are Gaussian white noises, such that 〈ξi(T )〉 = 0 and 〈ξi(T )ξj(T
′)〉 =

δi,jδ(T − T ′), where (i, j) = (X,Z). Here, we perform numerical integrations of over-
damped Langevin equations Eq. (6.56) as an alternative method to the short-time and
moment theories. The Langevin equations are first written in the Itô sense [297], and
we use the following discrete Euler scheme:

X (T + δT ) = X (T ) + PeV (Z(T ))δT +
√

2δT S (0, 1) (6.57a)

Z (T + δT ) = Z (T ) +
√

2δT S (0, 1) , (6.57b)

where S(0, 1) is a random variable drawn from a Gaussian distribution with zero mean
and unit variance, and δt is the numerical time step [298]. Reflective conditions are used
at the boundaries of the domain, i.e. Z = 0 and Z = 1. Typically, 104 trajectories are
generated to get large enough statistics, with a time step δT = 10−4, and the dispersion
coefficient is defined as Dx(τ) = var[Xk]/(2τ), where var is the variance of the particle
positions Xk, and τ is the simulation time. The insets in each panel of Fig. 6.7 illustrate
the Langevin simulations with initial conditions, trajectories and snapshots for several
particles, along with the reflecting boundaries.

6.3.4 Results

Figure 6.7 summarises the theoretical and computational results described above. First,
symbols show the reduced dispersion coefficients obtained from the Langevin simula-
tions for the (a) dot, (b) half-line and (c) line conditions. These results show an initial
increase with time, and a plateau reached at long times. This observation is consistent
with the general trends observed in the experimental results of Fig. 6.6(c). Horizon-
tal, black dashed lines show the asymptotic long-time limit for a linear shear flow, the
prefactor value of 1/30 shown in Eq. (6.28), also consistent with the experimental data.

The solid black lines show our implementations of the Chatwin theory expressed by
Eq. (6.34) for the values of n indicated in the insets. A null variance, the dot condition, of
the initial distribution arises if all particles start at the same altitude. For this condition,
the classical τ2 dependence [287, 288, 289, 290, 291, 292, 293, 294] for the reduced short-
time dispersion coefficient is recovered. This quadratic dependence reflects a steadily
increasing diversity of newly sampled velocities contributing to the enhanced disper-
sion. For non-vanishing initial variance, the early-time reduced dispersion coefficient
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Figure 6.7: Dispersion from theory and simulations. Reduced dispersion coefficients as
functions of dimensionless time obtained from the Langevin simulations, Eqs. (6.57a)
and (6.57b) studied for fractions (a) n = 0, (b) n = 1/2, and (c) n = 1 of the channel
height. The black dashed and solid lines respectively correspond to the asymptotic
behaviors for the long- and short-time regimes predicted by Eqs. (6.28) and (6.34). The
solid colored lines show the dispersion coefficients predicted by Eq. (6.47) from the
moment theory for the corresponding initial conditions. The insets schematically show
three instants of particle trajectories advected from the associated observation zone in a
linear shear flow and with diffusion in z. The slope triangles in (a) and (c) respectively
denote power-law exponents 2 and 1.

has a linear temporal evolution. This linear behavior for extended distributions re-
sults from particles at different altitudes transported over different distances by the
linear shear flow. At times longer than the crossover time τC = 3(〈z2

i 〉− 〈zi〉2)/(2D0) —
obtained by setting the linear and quadratic terms of Eq. (6.34) to be equal— a quadratic
time dependence is recovered. When the initial variance is small with respect to H2,
this crossover occurs before the Taylor plateau is reached.

Lastly, colored solid lines show the full dynamic using the moment theory, ex-
pressed in Eq. (6.47). For all initial conditions depicted in Fig. 6.7, the moment solu-
tion captures the full dynamics of the dispersion accessed by the Langevin simulations
and is consistent with the two asymptotic behaviors described by the long-time Tay-
lor description and the short-time Chatwin theory. While the moment theory has the
advantage to describe the dispersion for all time scales, we note that the asymptotic so-
lution based on Chatwin’s work [265] provides a simpler picture concerning the effect
of the initial conditions in the short-time regime.

6.3.5 Comparison with experiments

Having reported the theoretical predictions in the particular case of a linear shear flow,
we now compare them with our experimental measurements. In Fig. 6.8(a), we show
the reduced dispersion coefficientDx normalized by the squared Péclet number Pe2 as a
function of the dimensionless lag time, τ/τz . Remarkably, the data of Fig. 6.6(c), along
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Figure 6.8: Reduced dispersion coefficients as functions of dimensionless time for all
shear rates and D0 studied, and for fractions (a) n = 1/2, (b) n = 1, and (c) n = 0
of the observation zone. The bulk diffusion coefficients, D0, for the data from dark
green to yellow are identical to those in Figs. 6.4(c) and (d). The black dashed and solid
lines respectively correspond to the asymptotic behaviors for the long- and short-time
regimes predicted by Eqs. (6.28) and (6.34). The colored wide lines show the dispersion
coefficients predicted by Eq. (6.47) from the moment theory for the n = 1/2, n = 1 and
n = 0 conditions. (a) contains the three cases (b) and (c) only contain the corresponding
solution. The insets schematically show three instants of particle trajectories advected
from the associated observation zone in a linear shear flow and with diffusion in z. The
slope triangles in (a) denote power-law exponents 1 and 2.

with that for experiments implementing four other shear rates per D0, still collapse
onto a single master curve. As can be seen, there is a remarkable agreement between
the experimentally measured dispersion coefficient and the moment theory given by
Eq. (6.47) for the half-line condition, with n = 1/2. As explained in Section 6.2.5, the
average dispersion Dx is built with small z-ranges of 30 nm for a total z-range of ap-
proximatey 700 nm. Thus, it is perhaps surprising to find an agreement between a
nominal value of n = 30/700 ≈ 0.043 and the half-line condition. However, we recall
that a range of apparent altitudes defined by z = a + Π ln(I0/I) is selected, which are
not precisely the real altitudes. As detailed in section 6.2.2, the particle intensity is a
function of the altitude, depth of field and position of the objective, as well as the par-
ticle size. With such ingredients, we can show numerically that a narrow distribution
of apparent altitudes actually corresponds to a larger and non-uniform distribution of
real altitudes. For the case selected here, n = 1/2 gives the best description of the
data, in particular showing the power-law transition at early times and the long-time
saturation.
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In order to test the analytical models, we again leverage the depth resolution of the
TIRFM method to select different initial distributions. First, we choose the line condi-
tion illustrated in the inset of Fig. 6.8(b). We thus study the dispersion coefficients for
all observed particles, meaning that we consider the global distributions of Fig. 6.4(b).
The reduced dispersions measured for this condition, as shown in Fig. 6.8(b), are sys-
tematically above the previous half-line condition shown in Fig. 6.8(a). This confirms
the theoretical prediction that the short-time regime is modified because particles ini-
tially leave from an extended region of space. Moreover, the results are in quantitative
agreement with the full-time moment theory, and in particular demonstrates the early-
time, linear-power predicted by Chatwin [265]. Similarly, we consider particles leaving
from a narrow altitude range, thus approaching the dot condition (inset of Fig. 6.8(c)).
In Fig. 6.8(c) is shown the corresponding temporal evolution of the reduced dispersion
coefficient for particles leaving from zi/H = 0.21± 0.02. While the data does not reach
exactly the theoretical prediction at early times for the dot condition due to the poly-
dispersity of the particles (and thus non-unique altitudes for a given intensity [277], as
described above for the half-line condition), it is systematically below the one for the
half-line condition and approaches the τ2 asymptotic behavior predicted by Eq. (6.34)
and the moment theory with n = 0 in Eq. (6.55). The data analysis and analytical the-
ory, for three different initial particle distributions using the same measurement data,
demonstrate the crucial role of the initial particle distribution for the short-time disper-
sion.

6.3.6 Absorbing boundary condition at the top wall

So far, all the modeling was done under the assumption of reflecting boundary condi-
tions at both boundaries, i.e. z = 0, H , as if the particles were in a closed channel of
size H . This is an oversimplified view of the experiment as the trajectories that are cap-
tured by the TIRFM method only involve the particles that stay in the observation zone
within the observation time (see Fig. 6.1d)). Here, we discuss this simplification and we
study why the model captures the data so accurately. To do so, we perform Langevin
simulations using Eqs. (6.57), but modifying the boundary conditions. As a first at-
tempt, we run a simulation with Npart particles, and at each time step, all particles that
diffuse above the upper boundary, i.e. z(t + δt) > H , are removed. In this framework,
the number of particles is not conserved over time. The dispersion coefficient is then
computed with the particles that remain in the observation zone. The boundary condi-
tion at the top interface is therefore analogous to an absorbing condition.

Figure 6.9 compares the dispersion in the setting described in the latter paragraph
with the results from section 6.3.4 in a channel with reflecting boundary conditions at
both walls. The gray symbols show the reduced dispersion coefficients obtained from
the Langevin simulations with initial conditions identical to the ones in Figs. 6.7a)-
c) respectively, but with an absorbing condition at the boundary z = H . The solid
lines display the results from the moment theory of section 6.3.2, as in Fig. 6.7. The
dispersion coefficients with absorbing and reflecting conditions exhibit similar time
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Figure 6.9: Reduced dispersion coefficients as functions of dimensionless time ob-
tained from the Langevin simulations (gray dots), from Eqs. (6.57a) and (6.57b), for
fractions (a) n = 0, (b) n = 1/2, and (c) n = 1 of the channel height. Here, the particles
that leave the observation zone at z = H are systematically removed and the disper-
sion coefficient are computed with the particles that remain in [0, H]. The black dashed
lines correspond to the asymptotic behaviors for the long-time regime predicted by
Eqs. (6.28). The yellow dashed lines display a coefficient 1/120 that is found empirically
to fit the long-time regime of the absorbing condition. The solid colored lines show the
dispersion coefficients predicted by Eq. (6.47) from the moment theory with reflecting
boundary conditions at both boundaries and for the corresponding initial conditions,
as in Fig. 6.7. The inset in the top left corner of a) schematically shows three instants
of particle trajectories advected in a linear shear flow and with diffusion in z. The blue
solid (resp. dashed) lines represent reflecting (resp. absorbing) boundary conditions.
The insets in the bottom right corner display the same Langevin simulation data, where
the x and y axes are rescaled with an effective channel height H/

√
2.

dependencies. At short times, they follow a quadratic dependence with time for a dot
condition n = 0 in a), and a linear dependence for initial conditions with a non-zero
variance as in b) and c). At long times, the dispersion coefficients reach constant values
that do not depend on the initial condition and which are significantly smaller than
for the theoretical Taylor-Aris results, i.e. 1/30, that is shown with black dashed lines.
The yellow dashed lines display a 1/120 ≈ 0.008333 coefficient that is in fair agreement
with the long-time dispersion coefficients. We note that an exact calculation has been
performed by David Dean from Univ. Bordeaux (private communication) and predicts
a dispersion coefficient Dabs

x with an absorbing boundary condition, which reads:
(Dabs

x

D0
− 1

)
(Pe)−2 =

240− 12π2 − π4

3π6
≈ 0.00837526, (6.58)

where the superscript abs stands for absorbing. Equation. (6.58) is in agreement with
the numerical simulations.

We recall that both the Péclet number Pe and the diffusion time τz scale with H2,
such that the long-time dispersion coefficient actually scales with H4. Therefore, the
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long-time dispersion coefficient with absorbing conditions is roughly equivalent to the
one of a closed channel that has an effective height H̃ that follows H4/4 ≈ H̃4, or
equivalently H̃ = H/

√
2 ≈ 0.7H . In the bottom right insets of Figs. 6.9a)-c), we display

the same Langevin simulation data but with the x and y axes rescaled by the effective
height H̃ equal to 70% of the actual height. The theoretical solid lines are unchanged.
By construction, the long-time dispersion plateaus of the dispersion match in both re-
flecting and absorbing conditions. Furthermore, with this rescaled axis, the agreement
between both models on the full dynamics is fair. A small difference is observed in the
small-time asymptotic limit for the n = 1/2 and n = 1 initial conditions.

As a partial conclusion, the resemblance of the dispersion curves for the two pos-
sible boundary conditions at the top wall justifies that the model with an unphysical
reflecting boundary condition at z = H is acceptable to describe the experimental data
extracted from the TIRFM measurements. As a matter of fact, the channel height which
is fitted in Fig. 6.8 to rescale the experimental data is H ≈ 500 nm, which is smaller
than the actual size of the observation zone that is H ≈ 700 nm. This comforts the
statement that a closed channel with an effectively smaller height could describe the
TIRFM experiments.

6.4 Finite-size particles

In the previous section, the particles were considered as tracer particles that both dif-
fuse and are advected in a shear flow. However, as discussed previously in the chapter,
the dynamics of nanoparticles in the perpendicular directions to the wall is affected by
their interactions with the walls. In this section, we refine the theoretical description to
account for these interactions.

6.4.1 Dynamics of a colloid

In colloidal physics, electrostatic interactions often play a key role as colloidal parti-
cles often carry electrical charges. We consider that both the colloidal particles and
the glass surfaces are negatively charged in the TIRFM experiment. Notably, the elec-
trostatic repulsion is important in suspensions for the stabilization as it prevents the
aggregation of colloids. The standard way to describe electrostatic interactions in a sol-
vent is though the double-layer theory, in which the surface of interest is assumed to
carry a uniform surface charge and attracts the counter-ions surrounding the surface,
leading to a screening of the surface charge. The interaction between a charged spheri-
cal colloid and a planar surface can be described through Debye–Hückel theory via the
potential given in Eq. (6.21). The main feature is that the interaction potential takes the
form of an exponentially decaying function φel(z) ∝ exp(−(z−R)/lD), where the decay
length lD =

√
εkBΘ/(2cse2) is the Debye length, and cs is the salt concentration. Thus,

at a large salt concentration, the Debye length is small and the electrostatic repulsion
is effectively weak because of the large screening of the surface charges. As an exam-
ple, the addition of salt destabilizes colloidal suspensions, in which the particles make
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Figure 6.10: Schematic of a spherical colloid in a channel of apparent height H . In
the experimental system, both the nanoparticle and the glass surfaces are negatively
charged as indicted with blue circles, which results in electrostatic interactions be-
tween the surfaces. The interaction potential is described with the double layer theory,
in which counter ions (red circles) are adsorbed at the surface and screen the surface
charge. The shape of the interaction potential is shown in left and decays on a typical
length scale lD.

aggregates (a popular illustration of this phenomenon is e.g. the precipitation-induced
formation of fresh-water river deltas near salted seas and oceans). We stress that van
der Walls interactions between the surfaces may also play a role. These are attractive in
most practical cases and take the form of an additional interaction potential−AR/(6z),
where A is the Hamaker constant. However, van der Walls interactions are important
at small distances (typically few tens of nanometers). As a first step, we ignore them.

Besides, the Brownian dynamics of a colloidal particle is affected by the presence
of a boundary due to hydrodynamic interactions. As discussed in Chapter 2, in an in-
finite space, a spherical particle that moves in a fluid with a velocity U is submitted
to the Stokes drag force −6πηRU . Thus, a Brownian particle, that is displaced in an
unbounded fluid via thermal motion, dissipates thermal energy via friction. The dif-
fusion constant, which characterizes the intensity of the Brownian motion, follows the
Stokes-Einstein law D0 = kBΘ/(6πηR), reflecting the balance between thermal energy
and friction in the system. Close to a boundary, e.g. for a sphere near a plane wall, the
friction force: i) depends on the sphere-wall distance relative to the sphere radius and
increases as the sphere gets closer to the wall; ii) is anisotropic as it is more favorable for
a sphere to move tangentially to the wall instead of normally to the wall. Therefore, the
Brownian dynamics of a sphere near a wall can be described with two space-dependent
diffusion coefficients [285], that reads:

Dx (z)

D0
' 1− 9

16

R

z
+

1

8

(
R

z

)3

− 45

256

(
R

z

)4

− 1

16

(
R

z

)5

, (6.59a)

Dz (z)

D0
' 6(z −R)2 + 2(z −R)R

6(z −R)2 + 9(z −R)R+ 2R2
, (6.59b)

where z denotes the altitude of the center of the sphere with respect to the wall defined
by z = 0, and R is the sphere radius. In fact, there is no simple analytical expression for
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Figure 6.11: a) - c) Distributions of apparent altitudes of the particles in TIRFM ex-
periments. The distribution are not normalized and we plot the number of particles
detected in bins of size 15 nm, rescaled by the maximum number of particles in a bin.
The power of the laser is varied and indicated with the colorscale. The used fluids are
ultra-pure water in a) and sodium chloride (NaCl) solutions of concentration 5.4 and 54
mg/L in b) and c) respectively. d) - f) Reduced dispersion coefficients versus rescaled
time. The solid lines display the average dispersion coefficient over experiments with
5 shear-rates, and the shades indicate the spreading of the data.

the space-dependent diffusion coefficient, and exact solutions are only known in the
form of infinite series [136, 137]. Equations. (6.59) are Padé approximants of the actual
expression.

Altogether, the Taylor dispersion coefficient for finite-size charged solutes in a chan-
nel is a function of three length scales as schematized in Fig. 6.10, namely the radius of
the colloids, the Debye length and the channel height. A last parameter is the surface
electrical charges of the particles and the wall via the prefactor of the electrostatic po-
tential. By rewritting Eq. (6.21) as:

φel(z)

kBΘ
=

a

rel
exp

(
−z − a

lD

)
, (6.60)

with:

rel = kBΘ

[
16ε

(
kBΘ

e

)2

tanh

(
eψp

4kBΘ

)
tanh

(
eψw

4kBΘ

)]−1

. (6.61)
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We find another length scale rel in the system. As such, the Taylor dispersion coefficient
in a channel is a function of R, lD, rel, which adds a lot of complexity with respect to
the simple picture in section 6.3.

We performed additional experiments to investigate the interactions of the particle
with the wall, through the modification of some of these length scales. In Fig. 6.11,
we display some results of TIRFM experiments in both ultra-pure water (18.2 MΩ cm,
MilliQ) in panels a) and d) and in sodium chloride (NaCl) solutions of concentrations
5.4 and 54 mg/L in panels b), e) and c), f) respectively. The average nanoparticle ra-
dius is 55 nm. In Figs. 6.11a)-c), we show the distribution of the apparent altitude z
of the particles, as obtained by varying the power of the laser (which is indicated with
the color scale). We proceed as in Fig. 6.2: we first sort the particles into a series of
intensity bins, each bin corresponding to a spatial range of approximately 15 nm in the
z-direction, and we then plot the number of particles in each bin normalized by the
maximum number of particles in one bin. In this way, the distributions are not nor-
malized but we can observe a collapse of all distributions for all laser powers near the
wall, highlighting the electrostatic repulsion. As expected, the modification of the laser
intensity only affects the particle distribution near the upper limit of the channel. In-
terestingly, the distributions near the wall are altered by the salt concentration, in such
a way that particles closer to the wall are observed in concentrated solutions. Using
the method described in section 6.2.2, we can fit a potential Eq. (6.21) and find Debye
lengthes that are 60, 31.6 and 10 nm in a)-c) respectively. As expected, the Debye length
decreases with increasing salt concentration, and we find a good agreement with the
law lD = 0.304/

√
[NaCl], where lD and [NaCl] are expressed in nm and mol/L respec-

tively, which is valid for monovalent ions at room temperature [299]. Furthermore, the
laser power modifies the effective height of the observation zone. Indeed, a particle is
detected under the microscope if its fluorescence intensity exceeds a certain threshold
that is limited by the background noise and the sensitivity of the microscope. The fluo-
rescence intensity is proportional to the intensity of the laser, and thus decreases as the
laser power decreases, which limits the observation zone.

In Figs. 6.11d)-f), we display the reduced dispersion coefficient versus time with the
same color code as in Figs. 6.11a)-c). In contrast with Fig. 6.8, the dispersion coefficient
is not rescaled by a channel size H , but is rescaled by the squared shear rate of the flow.
In most of the time range of the experiments presented here, the dispersion coefficient
has reached the long-time plateau value and does not depend on time. We observe
that the dispersion coefficient systematically increases with the laser power. Indeed,
the size of the observation zone increases with the laser power, which results in a larger
range of accessible velocities for the particles and thus larger dispersion. Moreover, the
dispersion also increases with the salt concentration. Again, the strength of the electro-
static repulsion between the particle and the wall decreases with the salt concentration,
such that the particles access a larger range of altitudes and velocities.
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6.4.2 Moment theory for finite-size charged colloids

The moment theory has been very successful at describing the Taylor dispersion, in-
cluding the intermediate times. The advection-diffusion equation (see Eq. (6.4)) for the
solute concentration field is equivalent to the Fokker-Planck equation that describes
the dynamics of the probability density function of a particle. Here, we suppose that
the particles are spheres of radius a placed in a 2d closed channel. We assume that the
particle is advected in a shear flow of velocity field vx(z) = γ̇z, with an external po-
tential φ(z) (e.g. electrostatic interactions) and with a space and orientation dependent
diffusion coefficient. The Fokker-Planck equation describing such a process, written in
terms of solute concentration, reads [252, 295]:

∂c

∂t
+ vx(z)

∂c

∂x
= Dx(z)

∂2c

∂x2
+

∂

∂z

(
Dz(z)

[
∂c

∂z
+
φ′(z)

kBΘ
c

])
, (6.62)

To mimic the experimental system, we assume a rigid wall at z = 0, such that the
diffusion coefficients can be described with Eqs. (6.59). The impermeability condition
at the wall imposes that the flux vanishes, which reads:

Dz(z)

[
∂c

∂z
+
φ′(z)

kBΘ
c

]
= 0, (6.63)

at z = a, where the sphere is in contact with the bottom wall. At the top boundary, that
is defined by z = H we also assume no-flux for the sake of simplicity (see section 6.3.6).
We note that, at equilibrium, the steady state solution of the Fokker-Planck equation is
given by the Boltzmann distribution, which gives for the 1d concentration:

cB(z) =
exp

(
− φ(z)
kBΘ

)

∫ H
a exp

(
− φ(z)
kBΘ

)
dz
. (6.64)

We assume that the initial distribution is localized at a given x position, through c(x, z, t =
0) = ci(z)δ(x), and that the concentration vanishes at |x| → ∞ such that limx→±∞ x

µ∂νxc =
0 for arbitrary integers µ, ν. The moments of the distribution are defined in the same
way as in section. 6.3.2:

cp(z, t) =

∫

R
xpc(x, z, t) dx and mp(t) =

∫ H

a
cp(z, t) dz. (6.65)

The recursive equations satisfied by cp and mp can be obtained from Eq. (6.62) and are:
(
∂

∂t
− ∂

∂z

(
Dz(z)

[
∂

∂z
+
φ′(z)

kBΘ

]))
cp(z, t) = p(p− 1)Dx(z)cp−2(z, t) + pvx(z) cp−1(z, t),

(6.66)
dmp(t)

dt
= p(p− 1)〈Dx, cp−2〉z + p 〈vx, cp−1〉z . (6.67)
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Here again, the zeroth moment is constant. Without loss of generality, we assume the
initial concentration to be normalized such that m0(t) = 1, and c0 verifies the following
partial differential equation and initial condition:

(
∂

∂t
− ∂

∂z

(
Dz(z)

[
∂

∂z
+
φ′(z)

kBΘ

]))
c0(z, t) = 0, c0(z, t = 0) = ci(z). (6.68)

We search for a separable solution, and inject the ansatz c0(z, t) = f(z) exp(−λt) and
get: [

λ+
d

dz

(
Dz(z)

[
d

dz
+
φ′(z)

kBΘ

])]
f(z) = 0, (6.69)

together with the boundary conditions:

Dz(z)

[
d

dz
+ +

φ′(z)

kBΘ

]
f(z) = 0, z = a, H. (6.70)

The eigenvalue problem of Eqs. (6.69) and (6.70) form a Sturm-Liouville problem which
has a countable ensemble of solutions (λφ,k, fφ,k(z))k∈N, where the trivial solution λφ,0 =
0 is the Boltzmann distribution fφ,0(z) = cB(z), and where 0 < λφ,1 < λφ,2 < ... < ∞.
The eigenvalues are orthonormal under the definition of the scalar product 〈f, g〉φ =∫ H
a f(z)g(z)c−1

B (z) dz. Following the calculation in section 6.3.2, we get:

c0(z, t) =
∑

k∈N
a0,kfφ,k(z) exp(−λφ,kt), a0,k = 〈fφ,k, ci〉φ. (6.71)

Then, the governing equation for the first moment c1 is:

(
∂

∂t
− ∂

∂z

(
Dz(z)

[
∂

∂z
+
φ′(z)

kBΘ

]))
c1(z, t) = vx(z)c0(z, t), c1(z, t = 0) = 0. (6.72)

Following section 6.3.2, the latter equation can be solved using the same method and
reads:

c1(z, t) =
∑

k,j∈N2

[(
γ1,ka0,kt+ a1,k

)
δk,j + a0,kβj,k

]
fφ,j(z) exp(−λφ,kt), (6.73)

with:

βj,k = (1− δj,k)
〈fφ,j , vx, fφ,k〉φ
λφ,j − λφ,k

, γ1,k = 〈fφ,k, vx, fφ,k〉φ, a1,k = −
∑

j∈N
a0,jβk,j .

(6.74)
Finally, integrating Eq. (6.67) for p = 1 and p = 2, we can compute the dispersion
coefficient Dx(t) =

m2(t)−m2
1(t)

2t , and we get:
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Dx =
1

t

∑

k∈N
a0,k〈cBDx, fφ,k〉φg1 (k, t)

+
1

t

∑

k,j∈N2

[(
γ1,ka0,kt+ a1,k

)
δj,k + a0,kβj,k

]
〈cBvz, fφ,j〉φ g1 (k, t)

− γ1,ka0,kδj,k 〈cBvx, fφ,j〉φ g2 (k, t)

− 1

2
a0,ka0,j 〈cBvx, fφ,k〉φ 〈cBvx, fj〉φ g1 (k, t) g1 (j, t) .

(6.75)

6.4.3 Long-time dispersion coefficient

In the same way as for tracer particles, the dispersion coefficient reaches a constant
value at long times, when the particle have sampled all the positions of the channel.
Here, we use the generalized Taylor dispersion theory, following Ref. [295], to compute
an analytical expression for the long-time dispersion coefficient.

We can rewrite the zeroth moment of the concentration by extracting the steady-
state term, c0(z, t) = a0,kcB(z) +

∑
k∈N∗ a0,kfφ,k(Z) exp(−λφ,kT ). In the long-time limit,

which means here times larger than the slowest relaxing mode, i.e. t � 1
λφ,1

, the con-
centration can be approximated as:

c0(z, t) ' cB(z) +O[exp(−λφ,1t)], (6.76)

where we used a0,k = 1 so that it is consistent with the choice m0(t) = 1. Introducing
the approximate long-time expression in Eq. (6.72), we find:

(
∂

∂t
− ∂

∂z

(
Dz(z)

[
∂

∂z
+
φ′(z)

kBΘ

]))
c1(z, t) ' cB(z)vx(z) +O[exp(−λφ,1t)]. (6.77)

We search for solutions with a linear term in time, in the form c1(z, t) ' cB(z)

(
At +

B(z)

)
+O[exp(−λφ,1t)], and after some algebra, we find:

c1(z, t) 'cB(z)

(
v̄xt+

∫ z

a

dz′′

cB(z′′)Dz(z′′)

∫ z′′

a
[vx(z′)− v̄x]cB(z′)dz′ + Const.

)

+O[exp(−λφ,1t)],
(6.78)

where Const. is a numerical constant that is not relevant here, and v̄x =
∫ H
a vx(z)cB(z)dz

is the average speed in the channel for particles distributed with the Boltzmann weight.
Now, we can inject this steady solution in Eq. (6.67) for p = 1, 2 to get m1(t) and m2(t)
and find the long-term dispersion coefficient:

Dx = D̄x +

∫ H

a
dz

1

Dz(z)cB(z)

(∫ z

0
(vx(z′)− v̄x)cB(z′)dz′

)2

, (6.79)
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Figure 6.12: a) Long-time reduced dispersion coefficients versus the Debye length to
channel height ratio for spherical particles of radius a = 55 nm, with a Debye–Hückel
potential (see Eq. (6.21)) and hydrodynamic interactions with the wall (see Eqs. (6.59)).
The colors indicate the values of the Debye length corresponding to the experiment in
Fig. 6.11 where the salt concentration is varied. The solid lines show the generalized
Taylor dispersion results of Eq. (6.79), where the channel size is varied in the typical
range of the experiments. Circles shows the long-time reduced dispersion coefficient in
the experiments. b) Zoom of the experimental data.

where D̄x =
∫ H
a Dx(z)cB(z)dz is the average longitudinal diffusion coefficient. Equa-

tion. (6.79) agrees with the calculation in Ref. [252]. For tracer particles, i.e. a → 0,
and in the absence of external potential, one has Dx(z) = Dz(z) = D0, and cB(z) = 1.
Therefore, in a linear shear flow, i.e. vx(z) = γ̇z, we recover the Taylor-Aris result of
Eq. (6.28). Furthermore, Eq. (6.79) highlights that Taylor dispersion is not sensitive to
the mean flow as a transformation vx → vx + Const. does not modify the dispersion.
Lastly, in a linear shear flow, we find again that the reduced dispersion coefficient, that
is now defined as Dx/D̄x − 1, scales with the squared shear rate γ̇.

In Appendix B, we illustrate the different methods to compute the dispersion co-
efficient with an example. We consider a problem simpler than the one at stake here
to be analytically tractable. We consider point-like particles with a given mass and in
a gravitational field. The moment theory is found to be in very good agreement with
Langevin simulations in the full temporal range, as in section 6.3. The dispersion coef-
ficient is found to reach the generalized Taylor theory expression in the long-time limit,
as expected. Overall, the gravity tends reduce the Taylor dispersion, as the particles
sediment and explore a smaller range of velocities.

6.4.4 Comparison with experiments

Here, we compare the dispersion coefficient obtained with the TIRFM experiments
in Fig. 6.11 with the model that includes the interactions between the particles and
the wall. The short-time regime and the influence of the initial conditions have al-
ready been explored in section 6.3, so that we now focus on the long-time regime,
for which the initial condition is irrelevant. Thus, we take all the particles in the
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channel and assume an initial concentration distributed with a Boltzmann weight. In
Fig. 6.12a), we show the long-time reduced dispersion coefficient extracted from the
data in Figs 6.11d)-f) versus the ratio between the Debye length and the channel height.
Experimentally, the reduced dispersion coefficient is defined as (Dx/Dy−1)Pe−2, where
Dy is the effective transverse diffusion constant (see Fig. 6.5) in order to account for the
reduction of the effective diffusion constant in the channel resulting from the hydro-
dynamic interactions with the wall (see Eq. (6.79)), as we should have Dy = D̄x. The
experimental channel height is estimated through the apparent altitude of the minimal
detected intensity with the TIRFM, and the corresponding value is used in the defini-
tion of the Péclet number Pe = γ̇H2/(2D0). The particle radius a and the electrostatic
radius rel are fixed to 55 and 7.6 nm respectively. At a given lD/H ratio, the theoretical
curves do not collapse, as the dispersion also depends on the ratios lD/a and lD/rel in a
non-trivial way.

Qualitatively, we observe a good agreement between the experiments and the gen-
eralized Taylor theory. The long-time reduced dispersion globally decreases with in-
creasing lD/H . Nevertheless, for the experiments in ultra-pure water, i.e. lD = 60 nm,
the reduced dispersion coefficient seems to increases as the channel height decreases
in contrast with the theoretical results. We make several remarks that might explain
such deviations. First, the model assumes a reflecting boundary condition at the upper
boundary, which is an unphysical assumption with respect to the actual condition for
the TIRFM to detect a particle, as discussed in section 6.3.6. As a matter of fact, for tracer
particles with no interactions with the wall, the ratio between the long-time dispersion
coefficient in channels with absorbing and reflecting boundary conditions at the upper
boundary is on the order of a factor 4 (see section 6.3.6). Here, quantitatively, we find
roughly a factor 3-4 between the experiments and the generalized Taylor dispersion
model with a reflecting upper boundary. Thus a model with absorbing boundary con-
dition may give a more quantitative agreement. Second, the effective channel height is
constructed via the apparent altitude of the minimal detected intensity. However, the
latter might depend on the optical parameters (e.g. finite depth of field of the micro-
scope) of the TIRFM, which gives some significant uncertainties on the channel height.

6.5 Conclusion

We report on an experimental, theoretical, and numerical study of advection-enhanced
dispersion in 2d channels. By using evanescent wave microscopy, we make time-
dependent nanometrically resolved particle dispersion measurements varying nanopar-
ticle size, velocity gradient, salt concentration and viscosity in submicrometric near-
surface flows. The experiments provide the first experimental validation of analytical
models predicting the full time dynamics of Taylor dispersion. Our study particularly
highlights the crucial role of the initial condition in the short time regime, for times
shorter than the diffusion time. First, we experimentally demonstrate that the two
regimes share the same shear-rate dependence, the shear rate being particularly large
for near-surface transport. Furthermore, we reveal and characterize how the initial par-
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ticle distribution affects the short-time dispersion. Specifically, we observe for the first
time, the short-time, mixed-power-law behavior for the general case before reaching a
crossover to the well-known long-time saturation regime for linear shear flows. In the
extremal cases of i) full-channel observations, a linear approach in time of the disper-
sion coefficient to the long-time value is observed, while for ii) fine near-surface resolu-
tions a quadratic temporal tendency is approached. Altogether, the experimental data
are in agreement with the analytical predictions using the moment theory and results
from Langevin numerical simulations for tracer particles, fitting the channel height.

The nanoparticles and the channel surfaces being negatively charged and of parti-
cles being of finite size, it results in an electrostatic repulsion and an hindered diffusion
near the surface. The addition of salt in the channel screens the electrostatic interac-
tions, so that the particles access the very near-surface in concentrated solutions. The
increase of the accessible velocity-gradient region enhances the dispersion in qualita-
tive agreement with the generalized Taylor theory. In the rich context of particle trans-
port, such concepts should prove pertinent in quantitative prediction and observation
of time-dependent, near-surface nanoparticle and solute dispersion, with applications
related to microscopic biology and nanoscale technologies. This work thus sets the
basis for truly nanoscale investigations of Taylor dispersion.
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In this thesis, we have studied several soft matter problems by analyzing flows in
the vicinity of soft and fluctuating interfaces. Here, we summarize the main conclu-
sions and expand the perspectives of this work.

In chapter 1, we demonstrated that contactless rheological methods are efficient and
robust to probe soft interfaces at micro and nanometric scales. These new tools offer
great perspectives for both the modeling and the understanding of surface phenomena
at small scales. In particular, the surface tension of a liquid-air interface can be deter-
mined with the bubble method described in section 1.3. In this work, we assumed that
the interface response was only the result of surface tension. On the other hand, it is
known that in the presence of surfactants or impurities adsorbed on the surface, fluid-
fluid interfaces have a surface rheology [94, 300], which modifies multiphase flows (e.g.
in foams). It would be interesting to pursue this and investigate whether contactless
rheological methods are able to measure the interfacial rheology. Similarly, we have
shown that the capillarity of solids can be measured, offering new perspectives to char-
acterize the mechanical response of the surface of elastomers or gels and for example to
understand the surprising results of chapter 3 on the leveling of thin films. Moreover,
one could exploit these surface-stress measurements on a stretched elastomer to better
characterize the associated Shuttleworth effect.

Chapter 2 studied the hydrodynamic forces acting on a sphere moving in the vicin-
ity of a deformable surface. An experimental method, using colloidal-probe atomic
force microscopy, was introduced to directly measure the elastohydrodynamic lift force.
In viscous flows, such a lift force is allowed due to symmetry breaking of the lubri-
cated contact between the sphere and the surface. On the other hand, a symmetry
breaking can be induced by other phenomena such as slip inhomogeneity [301], or the
charge distribution in electrolytes [302]. Thus potential new nanoscale lift forces gener-
ated by flows could be revealed with atomic force microscopy. From an experimental
point of view, with the blooming of active matter, many designs of artificial microswim-
mers [303] have emerged in physics laboratories (see Appendix D for an example). The
elastohydrodynamic interactions may be studied experimentally, by analyzing the dy-
namics of such objects in the vicinity of deformable surfaces [304].

The part II of the manuscript has been devoted to the study of the dynamics of
polymer thin films and more particularly of capillary leveling in the vicinity of soft in-
terfaces. Many questions related to polymer physics are still open and have not been
addressed in this thesis. For example, we can mention the dynamics of confined thin
films for which the film thickness is on the same order of magnitude as, or smaller
than, the radius of gyration of polymers [305], glass transition temperature anoma-
lies in nanoscale films [306] or the destabilization of films by van der Walls interac-
tions [212]. Furthermore, at the nanoscale, thermal fluctuations (see chapter 6) are ex-
pected to dominate capillarity. Notably, fluctuations accelerate the fracture dynamics
of thin films [307]. A stochastic version of the thin film equation has been recently
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proposed, integrating the random constraints of the fluctuating hydrodynamics equa-
tions [308] with the lubrication approximation. Similarly, an interesting project could
be to establish a stochastic version of the model describing the liquid membranes stud-
ied in chapter 5.

In the last chapter of this manuscript, we looked at the Taylor dispersion and in
particular the dynamics at short times and the effect of particle-wall interactions. By
exploiting the results of part I of this thesis, we could complete our study on hydro-
dynamic interactions by adding the possible deformation of a soft wall in the Taylor
dispersion. Note however that in the presence of such interactions, the classical tools of
statistical physics may not be adapted anymore (for example the Fokker-Planck equa-
tion), and thus this prospective project would be a major theoretical challenge. More-
over, the Taylor dispersion has many applications and is involved in many soft matter
systems. For example, in binary mixtures, it has been shown that the dispersion of so-
lutes influences the dynamics of a drop that evaporates [309] or spreads [310] due to
buoyancy currents or Marangoni stresses, respectively.
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Dans cette thèse, nous avons étudié plusieurs problèmes de matière molle en analysant
des écoulements au voisinage d’interfaces molles et fluctuantes. Nous résumons les
principales conclusions et développons les perspectives de ce travail.

Dans le chapitre 1, nous avons démontré que les méthodes de rhéologie sans contact
étaient très efficaces et robustes pour venir sonder les interfaces molles à des échelles
micrométriques et nanométriques. Ces nouveaux outils offrent des perspectives intéressantes,
à la fois pour la modélisation et pour la compréhension des phénomènes de surface à
de petites échelles. En particulier, la tension de surface d’une interface liquide-air peut
être déterminée avec la méthode des bulles décrite à la partie 1.3. Dans cette partie,
nous avons supposé que la réponse de l’interface était seulement le résultat de la ten-
sion de surface. En revanche, il est connu qu’en présence de surfactants ou d’impuretés
adsorbées à la surface, les interfaces fluide-fluide ont une rhéologie de surface [94, 300],
ce qui modifie les écoulements multiphasiques (par exemple dans les mousses). Il serait
intéressant de poursuivre dans cette voie et de regarder si les méthodes de rhéologie
sans contact peuvent mesurer la rhéologie interfaciale. De même, nous avons montré
que la capillarité des solides peut être mesurée, offrant de nouvelles perspectives pour
caractériser la réponse mécanique de la surface d’élastomères ou de gels et par exemple
comprendre les résultats surprenant du chapitre 3 sur le nivellement des films minces.
En outre, on pourrait exploiter ces mesures de contraintes de surface sur un élastomère
étiré, afin de mieux caractériser l’effet Shuttleworth associé.

Le chapitre 2 a étudié les forces hydrodynamiques qui s’appliquent sur une sphère
se déplaçant au voisinage d’une surface déformable. Une méthode expérimentale util-
isant la microscopie à force atomique avec une sonde colloı̈dale a été introduite pour
mesurer directement la force de portance élastohydrodynamique. Dans des écoulements
visqueux, une telle force de portance est permise suite à la brisure de symétrie du con-
tact lubrifié entre la sphère et la surface. Par ailleurs, une brisure de symétrie peut être
induite par d’autres phénomènes comme une inhomogénéité du glissement [301], ou la
distribution de charge dans les électrolytes [302]. Ainsi de potentielles nouvelles forces
de portance à l’échelle nanométrique engendrées par des écoulements pourraient être
révélées avec la microscopie à force atomique. D’un point de vue expérimental, avec
l’avènement de la matière active, de nombreux désigns de micronageurs artificiels [303]
ont vu le jour dans les laboratoires de physique (voir Annexe D pour un exemple).
Nous pouvons espérer étudier expérimentalement les interactions élastohydrodynamiques
actives en analysant la dynamique de tels objets au voisinage de surface déformable [304].

La partie II du manuscrit a été consacrée à l’étude de la dynamique de films minces
de polymère et plus particulièrement du nivellement capillaire au voisinage d’interfaces
molles. De nombreuses questions relatives à la physique des polymères restent tou-
jours ouvertes et n’ont pas été abordées dans cette thèse. Par exemple, nous pouvons
citer la dynamique de films minces confinés pour lesquels l’épaisseur du film est du
même ordre de grandeur ou plus petit que le rayon de giration des polymères [305], les
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anomalies de la température de transition vitreuse dans les films nanométriques [306]
ou encore la déstabilisation des films par les interactions de van der Walls [212]. Par
ailleurs, à l’échelle nanométrique, on s’attend à ce que les fluctuations thermiques (voir
chapitre 6) dominent la capillarité. En particulier, les fluctuations accélèrent la dy-
namique de rupture des films minces [307]. Une version stochastique de l’équation
des films minces a été récemment proposée, en intégrant les contraintes aléatoires des
équations de l’hydrodynamique fluctuante [308] avec l’approximation de lubrification.
De la même manière, un projet intéressant pourrait être d’établir une version stochas-
tique des membranes liquides étudiées au chapitre 5.

Dans le dernier chapitre de ce manuscrit, nous avons regardé la dispersion de Tay-
lor et en particulier la dynamique aux temps courts et l’effet des interactions entre les
particules et le mur. En exploitant les résultats de la partie I de cette thèse, on pourrait
compléter notre étude sur les interactions hydrodynamiques et y ajouter la possible
déformation d’un mur souple dans la dispersion de Taylor. Notons toutefois qu’en
présence de telles interactions, les outils classiques de la physique statistique ne sont
plus adaptés en l’état (par exemple l’équation de Fokker-Planck), et donc ce possible
projet représente un défi théorique de taille. De surcroit, la dispersion de Taylor a de
nombreuses applications et intervient dans plusieurs systèmes de matière molle. Par
exemple, dans des mélanges binaires, il a été démontré que la dispersion des solutés
influençait la dynamique d’une goutte qui s’évapore [309] ou s’étale [310], respective-
ment à cause des courants de flottabilité ou des contraintes de Marangoni.



Appendix A

Elastohydrodynamic forces
computed with the Lorentz
reciprocal theorem

Normal force

In this Appendix, we use Parseval’s theorem to compute the integrals of Eqs. (2.42) and
(2.46). We first write the Fourier transform of the fields that are useful in the calculation.
We define ` =

√
2ad that denotes the hydrodynamic radius, which is the radial scale in

section 2.2 and the 2d dimensionless Fourier variable k is expressed in polar variables,
where k denotes the dimensionless radial coordinate and θ its angle. First, we recall the
expression: ∫ ∞

0

rαJα(kr)

(1 + r2)β+1
rdr =

kβKα−β(k)

2βΓ(β + 1)
(A.1)

for (α, β) ∈ N2 with 2β+ 3/2 > α, where Γ denotes the Gamma function, and where Ki

is the modified Bessel function of the second kind of order i [186] that is used in what
follows.

Using results from section 2.3.1, the deformation field can be written in Fourier
space as:

δ̃(k) = 2π
3ηḋ`4

2d3

`(λ+ 2µ)

2µ(λ+ µ)

1

k

kK1(k)

2
− (−2iπ)

6ηu(t)`3

5d2

`(λ+ 2µ)

2µ(λ+ µ)

1

k

kK0(k)

2
cos θ. (A.2)

Similarly, its time-derivative yields:

∂tδ̃(k) =2π
3ηd̈`4

2d3

`(λ+ 2µ)

2µ(λ+ µ)

1

k

kK1(k)

2
− 2π
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d4
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1

k
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− (−2iπ)
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k

kK0(k)

2
cos θ

+ (−2iπ)
12ηḋu(t)`3

5d3

`(λ+ 2µ)

2µ(λ+ µ)

1

k

k2K1(k)

8
cos θ.

(A.3)
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Here, we write the Fourier transform of the transverse model problem given in Eq. (2.37):

˜̂p⊥(k) = 2π
3ηV̂⊥`

4

2d3

kK1(k)

2
, (A.4)

and then the scalar product in Eq. (2.42) is:

η∂zv̂⊥·∂zv0|z=0(r) =
−3ηV̂⊥r

(d+ r2/(2a)2

3ḋr

(d+ r2/(2a))2
+

6ηV̂⊥u(t)

5(d+ r2/(2a))3

(
7− 6d

d+ r2

2a

)
cos θ,

(A.5)
such that the Fourier transform of the latter yields to:

η ˜∂zv̂⊥ · ∂zv0|z=0(k) =2π
−3ηV̂⊥`

d2

3ḋ`3

d2
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48
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cos θ

(A.6)

Introducing all these expressions into Eq. (2.42) and using Parseval’s theorem, we find
the vertical force in the form:

Fz =− 6πηa2ḋ

d
+A

η2u2(λ+ 2µ)

µ(λ+ µ)

(
a

d

)5/2

−Bη
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(
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d

)7/2

+ C
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(
a

d

)5/2

,

(A.7)

where the numerical coefficients A,B,C can be found analytically (using Mathematica
software) as:
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C = 18
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27π3

32
√

2
, (A.10)

which correspond to Eq. (2.43).
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Lateral force

We now write the pressure fields and the scalar product in Eq. (2.46) of the lateral model
problem in Fourier space as:

˜̂p‖(k) = (−2iπ)
6ηV̂‖`

3

5d2

kK0(k)

2
cos θ, (A.11)
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3

5d3

(
7k2K1(k)

8
− k3K2(k)

8

)
cos θ

+ 2π
4ηV̂‖u(t)`2

25d2

1

2

(
25kK1(k)− 21k2K2(k)

2
+

3k3K3(k)

4

)

− (2π)
4ηV̂‖u(t)`2

25d2

1

2
cos 2θ

∫ ∞

0

[
(7− 6

1 +R2
)2 − 1

]
J2(kR)RdR,

(A.13)

where the term in cos 2θ does not contribute to the integral Eq. (2.46) by symmetry.
Injecting all these expressions in Eq. (2.46), the EHD lateral force is found to be:
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which corresponds to Eq. (2.47).
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Appendix B

Taylor-dispersion in a rectangular
channel in the presence of a gravity
field

In this Appendix, we illustrate the capacity of the moment theory of section 6.4.2 and
the generalized Taylor dispersion of section 6.4.3 to describe the Taylor dispersion with
an external potential. We consider point-like particles with an isotropic diffusion, ad-
vected in a simple shear flow and in a gravity field in a 2d microchannel of height H .
The dimensionless gravity potential is taken as:

φ(z)

kBΘ
=
mgz

kBΘ
=

z

lB
, (B.1)

where m and g are the mass and the gravitational acceleration respectively, and lB de-
notes the Boltzmann length, which dictates the typical length over which gravity mod-
ifies the concentration of particles. In this example, the dispersion only depends on the
ratio between lB and the channel height. In Fig. B.1, we display the Boltzmann distri-
bution versus the altitude for three lB/H ratios. To use the moment theory, one needs
to find the solution of Eqs. (6.69) and (6.70). After some algebra, we find:

λφ,k≥1 =
D0(kπ)2

H2
+
D0

4l2B
, (B.2)

fφ,k≥1(z) =
1√

lB
H (1− exp(HlB ))

√
2

1 + H2

(2lBkπ)2

×
[

cos

(
kπ

z

H

)
− H

2lBkπ
sin

(
kπ

z

H

)]
exp(− z

2lB
).

(B.3)

Once the eigenvalues are found, the dispersion coefficients can be computed using
Eq. (6.75) for each time and initial condition. Furthermore, the long-time Taylor dis-
persion coefficient can be computed analytically for a gravitational potential, injecting
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Figure B.1: a) Boltzmann distribution in a gravity field defined by the external potential
Eq. (B.1). The ratio between the Boltzmann length and the channel height is indicated
with a color. b) Reduced dispersion coefficient versus dimensionless time for point-
like particles in a gravity field, where the colors are similar to a). The results of the
Langevin simulations are shown with colored points and the moment theory is plotted
with black solid lines. The black dashed lines show the Taylor-Aris limit, in the absence
of gravity, see Eq. (6.28). The circles display the long-time limit obtained analytically
with the generalized Taylor theory of Eq. (B.4). The inset in b) shows a schematic of the
system.

Eq. (B.1) into Eq. (6.79). Doing so, we get:

(Dx
D0
− 1

)
/Pe2 = 8

(
lB
H

)4

− lB
2H

sinh(HlB )

sinh4( H
2lB

)
. (B.4)

In Fig. B.1, we show the reduced dipersion coefficient versus the dimensionless time
resulting from the moment theory. In the long-time limit, the dispersion coefficient
converges toward the expected value from Eq. (B.4). Furthermore, we display Langevin
simulations using Eqs. (6.57a) and (6.57b) with an extra gravity term z

lB
δT in Eq. (6.57b).

Reflecting boundary conditions are used following Ref. [298] at both z = 0 and z = H .
In both the moment theory and the Langevin simulations, the initial condition is set
with the Boltzmann distribution. Interestingly, the dispersion decreases with increasing
gravity, or for a large channel size equivalently. For a small channel size, i.e. H � lB,
we recover the Taylor-Aris limit.

Besides the gravitational potential, there are few available analytical solutions of the
eigenvalue problem associated with the moment theory. Nevertheless, for an arbitrary
potential, numerical methods can be used. Notably, the eigenvalues can be found by
using the SLEIGN2 code described in Ref. [311] that is suitable for Sturm-Liouville
problems.



Appendix C

Enhanced Dip-Coating on a Soft
Substrate.

In this appendix, I present a theoretical work that I initiated at the beginning of my
PhD, that is not directly related to the main parts of the manuscript. I reproduce here a
draft that I wrote for a future publication.

In this project, we study the so-called dip-coating problem. In a few words, an solid
object withdrawn from a liquid bath entrains a thin liquid film. It is the strategy largely
employed in industry to deposit a liquid layer of a given thickness on a material. Here,
we study in influence of the softness of the material on the dip-coating process.
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A solid, withdrawn from a liquid bath, entrains a thin liquid film. This simple process, first
discussed by Landau, Levich and Derjaguin (LLD), is observed in everyday’s life and is widely used
in industry. However, the liquid flux entrained can be altered by various properties of the withdrawn
solid. Here, we develop a model that accounts for the additional presence of a soft solid layer atop
the rigid plate. For simplicity, a Winkler’s foundation is assumed as an elastic response. A new
power-law regime is found for the thickness of liquid entrained h∞ ∼

√
`ec`cap Ca1/2 (where Ca

denotes the capillary number, `cap the capillary length and `ec an elastocapillary length) at small

Ca. At large Ca, the classical LLD scaling law h∞ ∼ `cap Ca2/3 is recovered. The crossover between
the two regimes occurs when the substrate’s deformation is comparable to the thickness of the
entrained film.

Introduction. A solid object, withdrawn from a liq-
uid bath, entrains a thin liquid film via viscous forces.
Such a process is called dip-coating and is commonly used
in industry to cover materials with liquid coatings and
to modify the surface or optical properties [1, 2]. The
fundamental quantity of interest in the process is the
film thickness h∞ that is entrained (see Fig. 1). Sem-
inal works by Landau and Levich [3] and Derjaguin [4]
(LLD) have computed the thickness, using asymptotic
matching methods, where a dynamic meniscus solution
matches the static meniscus. Over the last decades, many
studies have extended the initial LLD description [5], by
adding the effect of fluid inertia [6, 7], surfactant at the
liquid-air interface [8], non-Newtonian properties [9, 10],
or the rugosity of the solid [11, 12] to cite a few. Perhaps
surprisingly, the effect of the softness of the withdrawn
object has not been investigated so far.

Nevertheless, soft gels (Young’s modulus E ∼ kPa) ex-
hibit rich wetting properties, as capillary forces deform
such materials, creating wetting ridges of typical length
scale γ/E, where γ denotes the surface tension [13, 14].
Therefore, we could expect that the Laplace pressure in-
duces deformation of the substrate of similar magnitude
in the dip-coating process.

In this letter, we study the influence of the elastic de-
formation of the plate on the thickness of fluid entrained
in dip coating. Our theoretical approach is based on the
classical LLD asymptotic matching, and the elastic de-
formation is model with a Winkler’s foundation.

Model. We consider a two-dimensional plate (see
Fig. 1), withdrawn with a velocity V from a liquid reser-
voir of viscosity η, density ρ. We assume the Weber num-
ber, We = ρV 2`cap/γ, where `cap =

√
γ/ρg is the cap-

illary length, and capillary number, Ca = ηV/γ, to be
small with respect to unity, so that we can neglect iner-
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Figure 1: Schematic of the dip-coating problem. The
inset exhibits a zoom in the dynamic meniscus zone where the
flow is localized. The liquid-air interface curvature induces a
negative Laplace pressure in the liquid that deforms the soft
substrate.

tia and perform a LLD-like asymptotic matching [3, 15].
Therefore, the flow is described in the dynamic meniscus
zone (see Fig. 1) and we use the lubrication approxima-
tion. Gravitational drainage is neglected in this regime,
so that the pressure field is set by the Laplace pres-
sure. The latter induces a normal deformation δ(z) of
the solid surface. We further assume a no-slip boundary
condition at the plate surface and a no-shear condition
at the liquid-air interface. Assuming a steady-state in-
terface profile, the governing equation for the liquid-air
interface profile h(z) is given by the following thin-film
equation [16]:

γ

3η
[h(z)− δ(z)]3h′′′(z) + V [h(z)− δ(z)] = V h∞ , (1)
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Figure 2: Thickness. Normalized entrained liquid thickness
versus capillary number in log-log scale, for different values of
the dimensionless softness parameter L = ρgs0/E. The black
dashed line represents the LLD scaling law Eq. (6), valid at
large Ca. Slope triangles indicate power-law.

where the prime denotes the spatial derivative with re-
spect to z, V h∞ being the liquid flux, where h∞ denotes
the thickness of the entrained liquid film. The liquid is
assumed to wet the solid surface (zero contact angle).
Thus, the matching condition to the static meniscus so-
lution imposes the boundary condition on the liquid-air
interface profile [15]:

lim
z→−∞

h′′(z) =

√
2

`cap
, (2)

where
√

2/`cap is the curvature of the meniscus at the
surface for wetting liquids [17]. The liquid-film thickness
reaches the thickness h∞ in the limit z → ∞, such that
the slope and curvature of the liquid-air interface profile
vanishes, as:

h(z →∞) = h∞, h′(z →∞) = h′′(z →∞) = 0. (3)

As a minimal description of the solid surface mechan-
ical response, we use the Winkler’s foundation [18]. The
solid surface behaves as a mattress of independent springs
– a situation relevant to thin compressible elastic materi-
als. Thus, the normal deformation is proportional to the
local Laplace pressure, which amounts to:

δ(z) =
s0γ

E∗
h′′(z), (4)

where s0 is a length scale and E∗ is an elastic modulus.
For thin compressible materials, s0 represents the ma-

terial thickness and E∗ = E(1−ν)
(1+ν)(1−2ν) , where ν denotes

the Poisson ratio. The length scale,
√
s0γ/E∗ = `ec, ap-

pearing here is called the elastocapillary length. There-
fore, a dimensionless softness parameter emerges from
this model, as the ratio between elastocapillary and cap-
illary lengths squared: L = (`ec/`cap)2 = ρgs0/E

∗. In-
jecting Eq. (4) into Eq. 1, we find an ordinary differential
equation:

h′′′(z) = 3Ca
h∞ − (h− `2ech′′(z))

(h− `2ech′′(z))3
. (5)

The Eq. (5) admits a trivial solution h(z) = h∞, corre-
sponding to the flat film. Assuming an uniform film at
z →∞, we linearize Eq. (5) as h(z) = h∞ + ε(z), where
ε(z) � h∞, which gives ε′′′(z) = 3Ca

h3
∞

[−ε(z) + `2ecε
′′(z)].

The solution compatible with a flat film at z → −∞ takes
the form ε(z) = ε0 exp(rz), where r is the root of the
polynomial expression: r3 + 3Ca

h3
∞

[−`2ecr2 + 1] = 0, with a

negative real part, and ε0 being a numerical constant. We
solve the initial value problem, defined by Eq. (5), and
the initial condition at z = 0 being the the linearized so-
lution of Eq. (5), with a 4th-order Runge-Kutta numerical
scheme. We stress that Eq. (5) is invariant by translation
along the z direction, and thus the z position of the ini-
tial condition is irrelevant here, provided that ε0/h∞ is
small. The solution is found to diverge for z → −∞ with
a finite second derivative, as observed in Fig. 3, what-
ever h∞. The entrained liquid thickness is found using a
shooting algorithm that ensures the curvature matching
condition Eq. (2).

Results. In Fig. 2, we plot the resulting entrained liq-
uid thickness versus capillary number, varying the soft-
ness parameter. Two distinct scaling regimes can be ob-
served. At large Ca, we recover the classical LLD law [3]:

h∞ = 0.946 `cap Ca2/3, (6)

obtained for rigid plates. Furthermore, as the soft layer
rigidity increasing (decreasing L), the entrained thickness
tends toward the one predicted by the LLD law. At small
Ca, the entrained thickness deviates from Eq. (6) and we
find a novel soft regime, as:

h∞ = 0.57 `capL1/4Ca1/2 = 0.57
√
`cap`ec Ca1/2, (7)

where more fluid is entrained. Therefore, at small veloc-
ity, the wall softness enhances the dip-coating efficiency
with respect to the classical LLD scenario. Balancing the
two limiting expressions Eqs. (6) and (7) at small and
large velocities, the transition between the two regimes
occurs at Ca ∼ L3/2.

In Fig. 3, we show the liquid-air interface profile and
the normal deformation of the solid surface versus the
vertical position. As discussed, the liquid-air interface
profile diverges at z → −∞, matching the static meniscus
Eq. (2). The normal deformation, which is proportional
to the curvature of the profile in the Winkler model,
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Figure 3: Profiles. Liquid-air interface (blue) and normal
deformation (orange) normalized by the entrained thickness
h∞ versus vertical axis, rescaled by the capillary length `cap
in the numerical integration of Eq. (5). The green dashed
lines display the difference between these two quantities. The
dimensionless softness parameter is set to L = 0.01. The
capillary number are Ca = 10−2, 10−3, 10−4 and 10−5 in (a)-
(d) respectively.

reaches a given value:

δ(z → −∞) =
√

2 `2ec/`cap, (8)

which is set by the matching condition, and can be ob-
tained by injecting Eq. (2) into Eq. (4). Interestingly,
typical normal deformation Eq. (8) does not depend on
the plate velocity, and increases relative to the liquid-film
thickness for decreasing capillary number. Furthermore,
we find that the balance between the thickness in the
LLD law Eq. (6) and the limiting normal deformation
Eq. (8) is equivalent to the transition between the two
scaling regimes of Fig. 2, i.e. Ca ∼ L3/2. Hence, it sug-
gests that the condition for the soft regime to be valid is
that the normal deformation is larger than the entrained
film thickness.

In the soft regime, we observe that a fluid thick-
ness h − δ is constant over a certain extent, while both
the liquid-air interface profile and the normal deforma-
tion increases (see Fig. 3(c) and (d)). From this ob-
servation, we introduce the similarity ansatz h(z) =

`capL1/4Ca1/2H(Z = z/`ec) into Eq. (5), where the z
scale `ec is set as being the typical scale of the constant-
fluid-thickness equation h − δ = h∞, together with the
Winkler law Eq. (4). The rescaling thickness is set by
the soft regime Eq. (7). Hence, the Eq. (5) becomes:

Ca1/2L−3/4 (H −H ′′)3
3

H ′′′ = H∞ −H +H ′′ (9)

where H∞ = h∞/(`capL1/4Ca1/2). In the soft regime,
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Figure 4: (a) Profiles. Liquid-air interface (blue) and normal
deformation (orange) normalized by the entrained thickness
h∞ versus vertical axis, rescaled by the capillary length `cap
as in Fig. 3. Here the capillary number is set to Ca = 10−6

and the softness parameter to L = 0.01. The dotted red
line shows the soft zone solution Eq. (10) at constant fluid-
thickness. The inset shows a zoom near the matching region.
(b) Schematic of the profile in the soft regime. A constant
fluid-thickness region matches smoothly the static meniscus.
The schematic is reversed with respect to Fig. 1, and the
arrow indicates the velocity.

the parameter Ca1/2L−3/4 is small, such that the so-
lution can be described by the constant-fluid-thickness
equation. Solving for this equation, we find:

h(z) = h∞ + α exp(−z/`ec), (10)

where α is an arbitrary prefactor. In Fig. 4(a), we
display the liquid-air interface profile and the normal
deformation in the soft regime for Ca = 10−6 and
L = 0.01, meaning Ca1/2L−3/4 ≈ 0.0316. The dot-
ted red lines show the constant-fluid-thickness solution
Eq. (10), which agrees with the interface profile over a
large range. At a given vertical position, the normal de-
formation smoothly deviates from Eq. (10) and reaches
its limiting value Eq. (8) (see in the inset of Fig. 4(a)).
The Fig. 4(b) exhibits a schematic of the constant-fluid-
thickness region that is found in the soft regime.

The soft regime scaling in Eq. (7) may be recovered
using the following scaling arguments. The balance of
the viscous and the pressure gradient terms of the Stokes
equation, leading to ηV

h2
∞
∼ γ

`cap
1
` , where ` denotes the

typical vertical scale of the dynamical meniscus (see



4

Fig. 1). In the classical LLD, the scaling of Eq. (6)
can be obtained through the balance of curvature in the
static and dynamical meniscus h∞

`2 ∼ 1
`cap

. However, for

the soft regime, the appropriate normal length scale for
the dynamical meniscus curvature is δ instead of h∞,
which gives δ

`2 ∼ 1
`cap

. Combining the latter scaling with

the hydrodynamic scaling, we find h∞ ∼ δ1/4`
3/4
capCa1/2.

If the normal deformation follows the Winkler’s founda-
tion, and scales as δ ∼ `2ec

`cap
(see Eq. (8)), then the scaling

law (7) is recovered.
In the case of a plate coated with a thick elastic layer,

the deformation does not dependent of the layer thick-
ness and scales as γ/E [14]. If the scenario presented
in this paper is robust to different elastic response (be-
yond Winkler’s foundation), the transition with the soft
regime occurs at a critical capillary number that scales
as ( δ

`cap
)3/2 ∼ ( γ

E`cap
)3/2. Using approximate values for

soft gels, i.e. `cap ≈ 1 mm and γ/E ≈ 10µm, we find a
critical capillary number on the order of 10−3, which is
in the range accessible experimentally [5].
Conclusion. To conclude, we have studied the effect

of the elasticity of the withdrawn solid in the dip-coating
process. We consider a soft elastic layer placed atop of
a rigid plate, and the Winkler’s fundation is assumed
for the substrate mechanical response. The Laplace
pressure in the meniscus deforms the solid surface, and
which enhances the entrained thickness. A scaling regime
h∞ ∼ Ca1/2 is found at small capillary number, a regime
in which the substrate deformation is larger than the en-
trained thickness. As a perspective, extensions of the
model to other forms of substrate mechanical responses
would be interesting to verify the robustness of the new
scaling regime. Viscoelastic properties of the soft solid
may affect the soft regime [19].

The displacement of liquid menisci on a wet solid oc-
curs in a other settings than the dip-coating process [20],
such as the motion of a confined bubbles in a channel [21],
or the spreading of a droplet on a surface [22], which
also involves LLD-like solutions. It would be interesting
to revisit these problems with soft boundaries with the
present soft-LLD approach [23].
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Appendix D

Swimming droplet in 1D
geometries, an active Bretherton
problem.

In this appendix, I present some work that I have performed in parallel to my main PhD
project under the supervision of Olivier Dauchot & Mathilde Reyssat at ESPCI Paris.
The experiments have been carried out by Charlotte de Blois and Saori Suda (Kyoto
University), and I lead the theoretical approach and I contributed to the writing of the
initial draft of an article, published in the journal Soft Matter [7].

Swimming droplets are artificial microswimmers, that have been introduced about 15
years ago [312], and which self-propelled in an arbitrary direction. Such a system has
been largely studied since then for many reasons: i) curiosity-driven, how can a sym-
metric spherical droplet self-propel, ii) it is promised to great applications in the context
of drug-delivery systems, iii) it is a good model for biological microswimmers that are
widely spread in organism (e.g. bacteria) or in the ocean (e.g. plankton), iv) as for many
active systems, it undergoes intriguing collective properties.

Experimentally, the studied system is made of water droplets immersed in a oil-
surfactant phase, where the surfactant concentration is far above the CMC. The system
is out of thermodynamics equilibrium and a spontaneous transfer of water from the
droplet to the micelles can be observed [313]. Furthermore, the water-oil interface is
active, as gradients in solute (i.e. micelles) drive Marangoni flows, which induce the
self-propulsion via a spontaneous symmetry-breaking instability. In this work, we in-
vestigate the swimming of droplets that are confined inside square and cylindrical cap-
illaries. The speed of the droplet decreases in the capillaries with respect to unbounded
space and saturates to a constant value for droplet larger than the capillary size. Inter-
estingly, droplets in stretched cylindrical capillaries (i.e. of varying cross-sectional area)
are observed to split into two droplets for large confinement. We develop a model,
that is based on the Bretherton model for passive droplet, including the activity of the
interfaces.
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We investigate experimentally the behavior of self-propelled water-in-oil droplets, confined in capillaries

of different square and circular cross-sections. The droplet’s activity comes from the formation of

swollen micelles at its interface. In straight capillaries the velocity of the droplet decreases with

increasing confinement. However, at very high confinement, the velocity converges toward a non-zero

value, so that even very long droplets swim. Stretched circular capillaries are used to explore even

higher confinement. The lubrication layer around the droplet then takes a non-uniform thickness which

constitutes a significant difference to usual flow-driven passive droplets. A neck forms at the rear of the

droplet, deepens with increasing confinement, and eventually undergoes successive spontaneous

splitting events for large enough confinement. Such observations stress the critical role of the activity of

the droplet interface in the droplet’s behavior under confinement. We then propose an analytical

formulation by integrating the interface activity and the swollen micelle transport problem into the

classical Bretherton approach. The model accounts for the convergence of the droplet’s velocity to a

finite value for large confinement, and for the non-classical shape of the lubrication layer. We further

discuss on the saturation of the micelle concentration along the interface, which would explain the

divergence of the lubrication layer thickness for long enough droplets, eventually leading to

spontaneous droplet division.

1 Introduction

Biological micro-swimmers exhibit a number of fascinating
swimming strategies, to compensate for the absence of inertia.
Even more intriguing is the way such organisms manage to
probe and explore their environment, probing the presence of
external fields such as temperature, nutriment concentration,
gravity, etc. In many cases, they also manage to explore narrow
channel-like passages, such as in soil1 or in the organism2 of
their host; or because they are placed in artificial micro-fluidic
channels3,4 to steer their motion5,6 with application in drug delivery.

Euglenids7 are a striking example of such microorganisms,
which are able to adapt their swimming strategy from flagellar
propulsion to crawling. During this transition, the euglenids
don’t touch the wall, and are sensitive to the confinement
through hydrodynamic interactions only. Another amazing
example is that of paramecium,8,9 when they take a cylindrical
shape to swim in narrow capillaries.

In the context of artificial micro-swimmers, a now classical
strategy is to exploit phoretic effects10,11 to ensure propulsion
by locally inducing gradients that generate a flow field around the
swimmer, which in turn ensures its propulsion. The gradient can
be induced by engineering an asymmetry in the swimming
body – the so called Janus particles – and thereby obtain auto-
phoretic swimmers (diffusio-phoresis,12 thermo-phoresis,13

electro-phoresis14). More recently, it was shown that sponta-
neous symmetry breaking of the flow field, non-linearly coupled
to the advection–diffusion of the scalar field, can also lead to
self-sustained propulsion.15,16 Swimming droplets, generating a
solute gradient around them, are the prototypical experimental
realization of this mechanism.17–20

The presence of walls or obstacle can alter the swimming
motion in different ways. The most common and unavoidable
one is the disturbance of the hydrodynamic flow field. The case
of weakly confined swimmers interacting with the boundaries
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only via the far-field hydrodynamics flow has been intensively
studied theoretically.21–28 In this situation, the flow field around
the swimmer is affected through the no-slip condition at the
boundaries. Theoretical studies for spherical swimmers23,24

demonstrated that the behavior of the swimmer (helical vs.
straight trajectory – attraction vs. repulsion by the boundary) then
strongly depends on its nature (pusher–puller–neutral). Experi-
mental investigations on biological swimmers29 have revealed the
diversity of the flow field developing around a micro-swimmer
under such confinement. In the case of the phoretic swimmers,
the transport of the scalar field will also be altered and thereby
modify the swimming motion. The way that a single flat boundary
(a wall) alters the swimmer motion has been documented both
theoretically and experimentally.30–34 In the case of the swimming
droplets the solute is composed of micelles, the diffusion of which
is way slower than molecular solutes. As a result, advection,
which cannot be neglected in the transport of the solute, leads
to a yet more complex situation because of the nonlinear
coupling between the flow field dynamics and the advection–
diffusion of the solute. The response of the swimmer motion to
the proximity of the wall then depends on the relative impor-
tance of the advection and the diffusion of the scalar field.
Quantitative measurements of the velocity field around a droplet
swimming close to a wall could recently be analyzed and described
theoretically,35 but little is known about the swimming motion in
more confined geometries such as micro-fluidic channels.36,37

In the present work, we study experimentally the motion of a
pure water swimming droplet,18 in square and cylindrical capillaries
with different levels of confinement. Amazingly, the droplet keeps
its ability to swim under very strong confinement L/(2h) = 10, where
2h is the width of the capillary and L is the length of the strongly
elongated droplet. This is not only observed for square capillaries,
but also for cylindrical ones, for which the droplet body is separated
from the lateral boundaries by a lubrication film of a few microns
in thickness. Furthermore, for even larger confinement, we
observe the spontaneous division of the droplet at its rear part.
Both observations stress the crucial role of the active stresses at
the droplet interface. The main goal of the present work is to
quantify these new features, qualitatively different from that of
flow-driven passive droplets and unveil the Marangoni-stress
driven mechanisms coupled to the interface dynamics, respon-
sible for them.

The paper is organized as follows. After a thorough description
of the experimental setting, we characterize the swimming motion
of the droplet in different channel-like geometries. We then propose
a theoretical description, which accounts for the main observations,
despite some important simplifications. Discussion about these
simplifications and perspective for future investigations conclude
the paper.

2 Experimental setting

The experimental system is made of a water droplet inside
a glass capillary, filled with a continuous oil–surfactant
phase, a squalane solution of mono-olein at a concentration

c = 25 mmol L�1, that is far above the critical micellar con-
centration (CMC C 5 mmol L�1).

In chambers18 of diameter and thickness much larger than
the droplet size and filled with the same oil–surfactant solution,
such water droplets of typical size a = 100 mm spontaneously start
swimming. The swimming motion results from the combination of
two ingredients. First, the system is far from its physico-chemical
thermodynamic equilibrium, which is a micro-emulsion made of
inverse micelles filled with water, in the oil phase. As a result, a flux
of water takes place continuously from the droplet to the inverse
micelles.38 Secondly, the resulting isotropic concentration field of
inverse swollen micelles happens to be unstable against an infini-
tesimal flow disturbance: in the presence of any tiny gradient of
swollen micelles in the vicinity of the interface, Marangoni
stresses and phoretic flows take place which induce the mobility
of the droplet towards regions of small concentration, and
therefore enhance the initial disturbance. For this instability
to take place,15,16,18 the Péclet number Pe = U*a/D must exceed
some critical value Pec = O(1), where a is the radius of the
droplet, D is the diffusion coefficient of the micelles and

U� ¼ AM

D
is the characteristic auto-phoretic velocity,11 with A

the activity of the droplet and M the motility of the micelles. In
other words, for self-propulsion to occur, the diffusion of the
micelles must be slow as compared to their advection by the
Marangoni flow.

Here we confine such droplets in micro-channels, of typical
length B2 cm much longer than the droplet size and with
different cross-sectional geometries of typical inner size h in the
range 40 mm o h o 200 mm, comparable to or smaller than the
droplet size. Three different 1D geometries are used: square
glass capillaries (Fig. 1(a)), h is then defined as half the inner
dimension of the capillary, circular glass capillaries (Fig. 1(c)), h
is then defined as the radius of the capillary, and stretched
circular capillaries (Fig. 4) whose inner radius varies continu-
ously along their length between h = 100 mm (at both ends), and
a constriction of radius hmin that ranges from 30 mm to 80 mm,
in the middle of the capillary, with a typical gradient of

diameter
dh

dx
’ �0:02. Then relative to the swimming of the

droplet, these capillaries present a convergent region followed
by a divergent one.

At the beginning of each experiment, one droplet is produced
at one end of a capillary previously filled with the oil-surfactant
solution. The droplet spontaneously starts swimming. Both
capillary ends are left open to the air. No external flow is
imposed, and we ensure that there is no global flow by checking
that the oil–air interface is not moving. This will be confirmed
in Section 3.2, through flow field measurements. During the
experiment, the droplet swims from one end of the capillary to
the other in typically one hour. Three sets of experiments are
conducted. The first set focuses on the shape detection and
the tracking of the droplet in square, circular and stretched
capillaries (Sections 3.1 and 3.4), with an image acquisition rate
of facq = 1 Hz. A second set of experiments is dedicated to the
study of the flow field around the droplet in circular capillaries
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using particle image velocimetry (PIV) (Section 3.2). The image
acquisition frequency is then facq = 10 Hz. For the third set of
experiments, a high-speed camera is used to capture the
dynamics of the rear of the droplet in stretched capillaries
during splitting events (Section 3.5), with an acquisition rate of
facq = 1 kHz or facq = 10 kHz. A complete description of the
materials and methods is given in Appendix A.

3 Experimental results

We start by conducting experiments in glass capillaries of
square or circular cross-sections of comparable inner size between
h = 40 mm and h = 200 mm. Upon production, in square capillaries,
all the droplets start swimming. In circular ones, droplets of size
up to six times the capillary diameter also swim. We observe that
the droplets produced with longer sizes spontaneously divide into
two droplets which each start swimming in opposite directions:
the one swimming toward the closest end of the capillary
immediately gets stuck on the oil–air interface, while the other
swims to the other end of the capillary. After less than a minute,
all swimming droplets reach a stationary state, and maintain a

persistent direction with the exception of the very small droplets,

essentially unconfined
L

2h
o 0:2

� �
, that sometimes change

direction. In the following, we focus on droplets swimming
persistently in one direction.

3.1 Droplet velocity vs. confinement

The behaviour of a swimming droplet strongly depends on the
confinement, but is similar for different capillary geometries.
A video of the swimming of three droplets of different sizes
(L = 50 mm, 90 mm or 400 mm) in circular capillaries of radius
h = 50 mm is provided in the electronic ESI.† Typical shapes
of droplets in square and circular capillaries are shown in
Fig. 1, together with the dependence of their velocity with the

confinement
L

2h
. For all droplets, we measure the velocity averaged

in time hV i, together with its standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hV2i � hVi2

p
.

Droplets smaller than the capillary inner size are spherical of

diameter L
L

2h
o 1

� �
. Such droplets oscillate between the two sides

of the channel (in the median plane perpendicular to gravity).

Fig. 1 Droplet velocity in square (top) and cylindrical (bottom) capillaries. (a) Sketch of a droplet in a square capillary, with snapshots of three droplets

under increasing confinement
L

2h
¼ 0:5;

L

2h
¼ 1;

L

2h
¼ 8:5 in a square capillary of half-width h = 100 mm. (b) Velocity V of droplets of various lengths L

swimming alone in square capillaries of different half-heights h, as a function of the confinement
L

2h
. (c) Sketch of a droplet in a circular capillary, and

snapshots of three droplets under increasing confinement
L

2h
¼ 0:5;

L

2h
¼ 1:5;

L

2h
¼ 4 in a circular capillary of radius h = 50 mm. (d) Velocity V of droplets of

various lengths L swimming alone in circular capillaries of different radii h, as a function of the confinement
L

2h
. The straight horizontal dotted line stresses

the fact that even for the largest confinement, the droplet velocity is non-zero. The inset is a zoom of the same data on the low velocity values.
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Because of buoyancy, they follow the bottom wall, thus performing
a 2D motion on the bottom plane of a square capillary, and a 3D
motion on the curved bottom surface of a circular capillary. The
velocity of the droplet varies during an oscillation: it is minimum
when the droplet reaches a side wall, and maximum far from the
walls. The variations of the velocity during an oscillation period
explain the large standard deviation of the velocity. Existing
theoretical works23,24 on the behavior of swimmers in channels
of circular section have predicted the existence of helical
trajectories for neutral squirmers. Identifying precisely whether
the observed oscillations pertain to this class of dynamics would
require extracting the 3D trajectories of the droplets, together
with their surrounding flow field, an interesting perspective for
future studies.

Droplets larger than the capillary inner size take an elongated
shape ended with two spherical caps. The total length of the

droplet is denoted L
L

2h
� 1

� �
. The elongated part of the droplet

is separated from the glass wall by a film of oil (the droplet is never
observed to wet the glass). Inside a square capillary, the gutters of
the square cross-section give space for the outer fluid to flow.
Inside a cylindrical capillary, the droplet is separated from the wall
by a lubrication film of up to a few micro-meters in thickness only.
We observe that the cross-section of the droplet has a radius that
varies along its length, reaching a local minimum at the rear of the
droplet. The region where the droplet radius is the thinnest is
called the neck in what follows.

As expected, the velocity decreases with increasing confinement.
More surprisingly, for confinement greater than 1 (elongated
droplets), the droplet velocity rapidly converges toward a small

but finite value. As a matter of fact, the velocity remains
constant while further increasing the confinement, up to
L

2h
¼ 9 in square capillaries and

L

2h
¼ 6:5 in circular capillaries.

This is all the more intriguing in the case of the cylindrical
capillaries, for which the mass conservation imposes that a
significant amount of fluid must be driven through the thin
lubrication film, leading to a potentially strong dissipation.

In the following, we focus on the behaviour of long droplets
L

2h
4 2

� �
in circular capillaries, the most intriguing situation

and also the simplest geometry to handle theoretically.

3.2 Flow field

We start with PIV measurements of the flow field around the
droplet. PIV is performed in the median plane, perpendicular
to the gravity, of droplets swimming in cylindrical capillaries of
radius h = 50 mm. Fig. 2 displays, from top to bottom, the
component ux and uy of the flow field and a few selected
streamlines around (a) a spherical droplet of typically the size

of the capillary,
L

2h
¼ 1, and (b) a long droplet of size

L

2h
¼ 3.

Note that, although the ux velocity component, strictly at the
apex of the droplet, is expected to be positive and equal to the
droplet velocity, we measure a slightly negative value for ux in
front of the droplet. It is likely that we do not resolve
well enough the velocity field at the interface of the droplet
because of the conjugated effects of the non-zero thickness of
the illumination plane, the resolution of the PIV, and the
3D recirculation flow that takes place close to the interface.

Fig. 2 PIV of the flow field around droplets swimming in circular capillaries: PIV around (a) a circular droplet
L

2h
¼ 1

� �
and (b) a long droplet

L

2h
¼ 3

� �
in

a circular capillary of radius h = 50 mm. The two first rows display the color-map of the velocities ux (direction of swimming) and uy around the droplet in
the reference frame of the lab. The black arrows point in the swimming direction of the droplet. The third row shows several streamlines around the
droplet, with blue arrows that show the local direction of the flow. The inside of the droplet, masked during the PIV, is delimited by black dashed lines. x is
the direction of swimming of the droplet, (xy) is the visualisation plane, orthogonal to the direction of the gravity z. The droplet’s mask used for the PIV
analysis is slightly smaller than the droplet size (for PIV requirement). As a result, the gap between the drop and the wall is seen larger than in reality in this
representation. The flow field is to be understood as being integrated over the thickness of the PIV depth of field of a few microns.
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This observation calls for a careful interpretation of our PIV
observations, which should be taken as a qualitative image of
the flow field, and not a quantitative 3D description as done
by some of us,35 when characterizing the dynamics of droplet
swimming above a bottom wall. Similarly, the resolution of the
PIV (10 mm per pixel), is not large enough to resolve the flux in
the lubrication film on the side of the droplet, and therefore
only gives a global indication of the flow direction, thanks to
the depth of field of the PIV setting.

This being said, the first crucial observation is that there is
no flow far from the droplet (although the two ends of the
capillary are left open to the air). All flows take place close to the
droplet interface, up to a distance of typically the droplet size.

In the case of spherical droplets, the flow is symmetric in y,
and two recirculating regions are observed at the front and back
of the droplet. The velocity of the fluid in these regions is
similar in magnitude to the droplet velocity (B3 mm s�1). It is
also worth noting that the dominant symmetry of the flow field
around the droplet is quadripolar, in contrast with the flow
field around 3D unconfined squirmers, where the dipolar
symmetry is dominant, and with that of swimming droplets
close to a wall,35 where the monopolar symmetry is dominant.

In the case of long droplets, a large recirculating region is
observed at the front of the droplet, breaking the symmetry

along the y axis. The direction of the recirculation is stable
during one experiment but switches between the two possible
directions from one experiment to another. The physical origin
of the recirculation remains unclear, but it may result from the
instability of the stagnation point of the flow at the apex of the
droplet. The velocity of the fluid in this region (ux B 10 mm s�1)
is larger than the droplet velocity (U B 3 mm s�1). Finally, we
notice that the PIV at the back of the droplet is disturbed by an
agglomeration of the tracers at a stagnation point located at the
extremity of the back cap, which makes the precise flow profile
not fully resolved in this region. One can still observe a strong
asymmetry between the front and rear in the amplitude of the
flow, contrasting with the case of the spherical droplets. A more
advanced interpretation of the above descriptions would
require a better knowledge of the flow field around a confined
active droplet, which is not the purpose of this paper, and is left
for future work.

3.3 Shape of the long droplets

Typical shapes for different droplet sizes are illustrated in
Fig. 3(a)–(c). The shape of a droplet is stable and averaged over
the duration of the experiment. Droplets smaller than the

capillary diameter
L

2h

� �
are spherical (a) while longer droplets

Fig. 3 Shape of an elongated droplet: (a–c), image and corresponding shape of droplets of size (a)
L

2h
¼ 0:5, (b)

L

2h
¼ 1:7, and (c)

L

2h
¼ 4. Long droplets

present a neck of radius rn located at a position ln from the back of the droplet. (d) Evolution of the dimensionless neck radius
rn

h
with the confinement

L

2h
.

(e) Evolution of the dimensionless neck position
ln

2h
with the confinement

L

2h
. The continuous black lines correspond to a linear regression of the data.
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take an elongated shape ((b) and (c)). This elongated
shape presents two particularities. First the thickness of the
lubrication film is not constant, but increases toward the back
of the droplet; this is a tiny but systematic effect. Second, for

confinement larger than
L

2h
¼ 1:5, a neck appears at the rear of

the droplet. Fig. 3(d) and (e) display the neck radius rn, and its
distance from the back of the droplet ln. At the smallest

confinement, the neck forms at a distance
ln

2h
’ 0:5. The neck

is then shallow,
rn

h
�o 1. As the confinement increases, the neck

goes further away from the rear of the droplet, and deepens. The
shape of the droplet rear hence depends on the droplet length.

The fact that the film thickens from the front to the rear of the
droplet and that the neck shape depends on the droplet length
contrasts with the standard Bretherton phenomenology,39 which
describes the shape and motion of passive droplets driven
externally. This underlines the conceptual difference with the
present case, where active droplets are driven by self-induced
local flows and calls for investigation at even higher confinement.

3.4 Further confinement

Very long droplets
L

2h
4 7

� �
in circular capillaries are not

stable at production and spontaneously divide into two or more
droplets. A way to explore higher confinement and to probe
continuously its effects on the droplet behavior, is to conduct
experiments in stretched circular capillaries. Such devices keep the
ideal circular cross-section and mimic perfectly situations where
real swimmers have to experience a confinement gradient.

Upon production at one end of the capillary (h = 50 mm),
the droplet (of typical length between 50 and 150 mm) starts
swimming. As it swims down the convergent part of the
capillary, the local radius of the capillary decreases and the
length of the droplet increases per conservation of the droplet

volume V L /V

h2

� �
, as does the confinement

L

2h
/V

h3

� �
. Two

different features are observed, a simple elongation of the
droplet followed by a contraction after the constriction, or
spontaneous successive divisions, presented respectively in
Fig. 4 and 6. A video of the swimming of two droplets in the
two cases is provided in the ESI.† For each experiment, the
droplet is tracked, and its shape detected along its motion. At
each time, the radius of the capillary h at the position of the

droplet center of mass (b), the confinement of the droplet
L

2h
(c), the velocity of the droplet V (d), the dimensionless neck
radius rn (e) and the dimensionless neck position ln (f) are
measured as a function of the position of the droplet center of
mass x.

Let us first focus on the simple elongation of the droplet.
Fig. 4 shows in (a) three snapshots of a droplet swimming in a
stretched circular capillary, when it is in the convergent region,
at the constriction, and when it is in the divergent region. Two
different experiments are shown in Fig. 4, corresponding to

different stretched capillaries, with a minimal radius of
hmin = 55 mm and hmin = 71 mm respectively. Throughout the
experiment, the droplet swims from one end of the capillary to
the other. We note a small variation of the droplet velocity and
a more significant dependence of the neck position and radius
with the confinement. More importantly, although the thick-
ness profiles of the stretched capillary in the converging and
diverging regions are symmetric, the shape and speed of the
droplet are not. This is further enlightened on Fig. 5, where we
compare the dependence on the confinement of (a) the velocity
of the droplet, (b) the neck radius and (c) the neck position
between the convergent and divergent part of the capillary for
the constriction, hmin = 55 mm (brown diamonds and circles)
and the straight circular capillaries (green squares).

The velocity slightly increases with the confinement, but
also presents an hysteresis between the convergent (brown
diamonds) and divergent (brown circles) regions of the capillary.
This variation is most likely due to the gradient of capillary
radius and would also exist for passive droplets: the difference
of curvature between the front and back meniscus induces a

Fig. 4 Elongation of a swimming droplet in a stretched capillary: (a) sketch
of the geometry and images of the droplet at three different times
corresponding to three positions in the stretched capillary. At 460 s, the
droplet is at the position where the confinement is the highest. (b–f) The
evolution of several quantities with the position x of the droplet in
the capillary. (b) Height of the capillary at the center of mass of the droplet,
(c) confinement of the droplet, (d) velocity of the droplet, (e) dimensionless
radius of the neck, (f) dimensionless distance of the neck from the front of
the droplet. The vertical black dashed line marks the position of the
minimum capillary diameter. The two colors correspond to two different
experiments made with different droplet sizes and capillary shapes.
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capillary-induced pressure gradient inside the droplet, which,
for passive droplets, makes the droplet move toward the highest
radius. For an active droplet, this effect slows down the droplet
in a convergent tube, while it accelerates it in a divergent
one. This effect remains however weak, and comparable in
magnitude to the variability of the velocity from one experiment
to another (see the inset of Fig. 1d).

Fig. 5(b) and (c) exhibit the dependence of the shape of the
droplet rear with the confinement: the radius of the neck decreases
linearly, and its position goes further away from the back of the
droplet, for increasing confinement. This evolution is reversible
when the confinement is decreasing in the divergent region,
indicating that the dynamics can safely be considered quasi-
static, and that the influence of the capillary-induced pressure
gradient is not significant here. Finally, further increasing the
confinement, the neck is expected to narrow, until the droplet
eventually divides spontaneously.

3.5 Spontaneous division of the droplet

The spontaneous division of droplets has been observed system-
atically for a dozen different experiments with a number of
successive divisions ranging from one to fourteen. For the sake
of conciseness, the results in this section are presented in Fig. 6
using the data from one typical experiment, but all following
observations are valid for all experiments. At first the droplet
swims and elongates as it moves toward the convergent region
of the capillary. This behavior is similar to the one observed in
the previous experiment described in Fig. 4. When the droplet

becomes ‘‘too confined’’ (at time t = 40 s in the presented
experiment and in the ESI† video), it undergoes a spontaneous
division at the position of the neck, as can be seen in Fig. 6(a).
The daughter droplet (formed by the previous rear of the
droplet) does not swim, which suggests that there is no fuel
anymore for propulsion, namely that all micelles present in its
environment have been saturated with water. The main droplet
that shrunk in volume keeps swimming in the same direction.
As the confinement of the droplet further increases, the droplet
eventually divides a second time or more. Once the main droplet
reaches the divergent region, its length decreases due to volume
conservation. No division is observed in the divergent region. The
behaviour of the droplet only differs from the simple elongation
case at the approach of a division event (B50 s before division).

Let us describe a succession of spontaneous divisions
(Fig. 6(b)–(f)). Right before the division, the neck rapidly shrinks
(e), until its radius reaches 0 at division. The confinement (c) at

Fig. 5 Convergent vs. divergent dynamics: evolution of (a) the droplet
velocity, (b) the dimensionless neck radius and (c) the dimensionless neck
position with the confinement; for droplets in straight circular capillaries of
half height h = 50 mm (green squares), for one droplet in a stretched
capillary, in the convergent section (dark brown filled diamond), and in the
divergent section (dark brown empty circles).

Fig. 6 Division of a droplet in a stretched capillary: (a) images of a droplet
at different positions in the stretched capillary: successive divisions occur.
(b)–(f) The evolution of quantities depending of the position x of the
droplet in the capillary, for the corresponding experiment. (b) Height of the
capillary at the center of mass of the droplet, (c) droplet confinement, (d)
droplet velocity, (e) dimensionless radius of the neck, and (f) dimensionless
distance of the neck from the front of the droplet. The pink dashed lines
correspond to a division. The black dashed line corresponds to the
position of the minimum height in the capillary.
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which the division occurs,
L

2h
� 10 for the presented experiment,

slightly decreases with the successive divisions. This last
observation has yet to be understood. We speculate that the
gradient of height of the capillary, which decreases slightly in
the area of division, could play a role. More generally for all
experiments, the divisions occur for a confinement level in the

range
L

2h
¼ ½8� 20�, where the disparity amongst experiments

can here also be attributed to variations in the imposed height
gradients, from one capillary to another.

In this series of experiments, the time and spatial resolutions
are not large enough to give access to the precise dynamics of a
division. Another series of experiments have thus been conducted,
using a microscope and a high-speed camera, and focusing on the
first division of a long droplet. Because the field of view is limited,
to a square of typical size 2h, the position of the neck ln cannot be
quantitatively resolved, but the radius of the neck rn is measured
precisely. The dynamical evolution of rn for two experiments are
presented in Fig. 7, one conducted at an acquisition frequency of
1000 Hz, with a spatial resolution of 1.692 mm per pix (orange top
oriented triangles), and another conducted at an acquisition
frequency of 10 000 Hz, with a spatial resolution of 0.840 mm per
pix (red down oriented triangles). Fig. 7 also shows the dynamical
evolution of rn for the first division of the droplet in the previous
experiment conducted at a frequency of 1 Hz (pink empty circles),
and the dynamical evolution of rn during an experiment without
division (dark brown full circles). In the figure, the time
t = 0 corresponds to the division time (evaluated with the
temporal resolution of each experiment). For the experiment
without division, it is set such that the neck radius matches in
the converging part of the capillary. Fig. 7(a) presents the
data in a linear plot, while Fig. 7(b) presents the same data in
a log–log plot.

The radius of the neck follows three successive regimes; the
first one (t t �10 s) corresponds to the adaptation of the droplet
shape to the confinement gradient, as discussed in Section 3.4. For
droplets that do not undergo division, this regime is reversible
when the confinement increases again. In this regime, the
evolution of the shape of the droplet is quasi-static, and controlled
by the geometry of the problem. The second and third regimes
lead to the division of the droplet. Once the droplet enters these
regimes, the division always takes place. The second regime is very
well characterized by a power-law dependence of the neck radius

with time �t,
rn

h
�4 0:1,

rn

h
� jtjb with b A [1/8 � 1/6] over almost 3

decades in time. For
rn

h
�o 0:1, the radius of the neck deviates from

the latter power law and deepens faster, entering a third regime

that also follows an apparent power-law
rn

h
� jtja with a A [2/3–1].

Such power-law behaviours are naturally found in the ultimate
fate of the break-up process for a droplet, because of the absence
of characteristic length-scale but also in transient regimes.40 The
value of the exponent is dictated by which effects dominate and
balance amongst surface tension, viscous and inertial forces.
Here, the viscosity of the outer fluids dominates, and one expects

the simple self-similar form to be broken by the presence of
logarithmic terms. Finally, the presence of active stresses is likely
to alter the already numerous possible scaling regimes. Investi-
gating such a fascinating question is beyond the scope of the
present paper. It would require an even faster acquisition rate,
and dedicated experiments. The exponents provided here should
be seen as indicative and a source of motivation for future work.

Let us recap our main findings, which we now aim to
capture theoretically, on the basis of the reformulation of the
classical Bretherton problem in the realm of active droplets.
Two unexpected phenomena have been observed: the convergence
of the droplet velocity towards a constant value when the droplet
becomes longer than the capillary height, and the spontaneous
division of the droplets under high confinement. In the
following section, we introduce a simple theoretical framework
that will allow one to grasp the physics at play behind such
observations.

Fig. 7 Dynamic evolution of the neck: (a) linear plot and (b) logarithmic
plot of the evolution of the dimensionless neck radius with time. The red
and orange triangles and the pink empty circles correspond to experi-
ments at different acquisition frequencies of droplet dividing, considering
only the data up to the first division. t = 0 corresponds to the time of
division. The brown full circles correspond to an experiment with no
division, t = 0 is then chosen so that the convergent part of the experiment
aligns with the others. The continuous black lines provide a lower and
upper bound for the power law behaviors of the two fast regimes.
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4 Theoretical approach
4.1 Introduction

The motion of confined droplets or bubbles under the action of
an external flow has been widely studied since its original
description by F. P. Bretherton in a cylindrical tube39 and is
usually called the Bretherton model in tribute to the British
professor. With the emergence of droplet-based microfluidics,
a particular interest has been devoted to square channels.41,42

Pressure, or gravity driven flows are not the only way to induce
droplet motions in a channel. Marangoni stresses can also
induce the migration of such confined droplets as described
and observed in the presence of external thermal gradients.43

In our case, the motion of the droplets is not externally driven,
neither by pressure nor by a temperature gradient as there is no
observable flow far from the droplet (UN = 0), but is the result of
local flows induced by the spontaneous establishment of solute
concentration gradients around the droplet. To the best of our
knowledge, such a problem has never been considered theoretically
before, and is the primary subject of the following section.

The flow around the droplet is driven by a combination of
phoretic and Marangoni effects: concentration gradients of all
present solute along the interface generates shear stress
(denoted s) and velocity (denoted u) jumps at the interface.10 For
simplicity, we consider in the following that the velocity and stress
jumps through the interface result only from the concentration
gradient in swollen micelles in the outer fluid, but one should keep
in mind that more complex and realistic models of the physico-
chemical interactions at the interface have been proposed,44

taking into account the surfactant concentration at the interface.
Then the velocity and stress jumps can be expressed as: soil,8 �
swater,8 = �Kr8c and uoil,8 � uwater,8 = Mr8c, where c is the solute
concentration field, r8 is the gradient operator tangent to the
interface, K E kBTl and M E kBTl2/Zoil where kBT is the thermal
energy, l is the typical interaction distance between the solute and
the interface and Zoil is the oil viscosity. Under the above assump-
tions, the Marangoni effects dominate with respect to the phoretic
ones,18 so that, in what follows, we will assume continuity of the
velocity across the interface and the presence of a stress jump at the
interface. We further notice that the magnitude of the viscous shear
stress in the water phase BZwaterv/h is much smaller than the one in
the oil phase BZoilv/e, where v is a typical velocity in the film and e is
a typical lubrication film thickness as the viscosity ratio Zwater/
Zoil E 1/40 and the film thickness to capillary height ratio is
small with respect to unity, e E 1 mm and h E 100 mm.
Therefore, the tangential stress balance simplifies to soil,8 =
s(x) = �Kr8c. We can thus focus on the flow in the oil phase
only, and we refer to the oil viscosity as Z to lighten the
notations. The peculiarity, and difficulty of this problem lies
in that the hydrodynamic and the transport of the chemical
species (surfactant molecules and swollen micelles) in the
solution are non-linearly coupled via the Marangoni stress
s(x), which varies along the interface.

The present theoretical description deals with highly elon-
gated droplets, swimming in cylindrical tubes that are axially
invariant, leaving aside the case of a squared channel.43,45

In such a confined environment, various lengths of different
magnitude are at play: the radius of the capillary h, the length
of the droplet L, the thickness of the lubrication film e(x) and,
at the microscopic level, the typical distance of interaction
between the solute and the interface l.10 Given the large scale
separation between these lengths, L 4 h c e c l, it is a
standard approach to separate the problem in different regions
and match the corresponding solutions asymptotically.39,43

Usually, five zones are distinguished, as exhibited in Fig. 8:
the front (I) and rear (V) caps that are supposed spherical, the
front (II) and rear (IV) dynamical menisci of variable curvature,
and in between the lubrication film (III) that is defined as the
limiting solution of the dynamical menisci with a uniform
thickness.

We propose to use here a similar approach. In Section 4.2,
we derive a lubrication model for the velocity field, coupled to the
transport of solute. Then, in Section 4.3, we focus on the
lubrication film dynamics (zone III) where capillary flows are
negligible behind Marangoni flows and we propose a numerical
resolution of the resulting system of equations. This allows us to
identify the typical scales of the Marangoni stress and the film
thickness in the problem. Lastly, in Section 4.4, we simplify the
equation in the dynamical meniscus by assuming a uniform
Marangoni stress, of typical magnitude equal to the one identi-
fied in zone III, and we find a Landau–Levich type equation. The
matching of this solution to the spherical cap allows us to obtain
a scaling relation of the droplet velocity, which we finally com-
pare to the experimental data.

4.2 Lubrication model in the zone II–III–IV

We consider the steady motion of a water droplet in oil that is
assumed to behave as a Newtonian fluid. The Reynolds number
Re = rVh/Z, where r is the oil density is much smaller than unity
so that fluid inertia is neglected. The water–oil interface position,
denoted e(x), depends on x and is almost parallel to the direction
of motion x in the regions II–III–IV so that one can use the
lubrication approximation to describe the flow. Therefore the
pressure field p is independent of the normal direction y and is
given by the Laplace pressure, via the normal stress continuity:

p(x) = ge00(x) � g/h, (1)

Fig. 8 Sketch of an elongated droplet in a circular capillary, in the lab
frame: the droplet is divided into five regions, two spherical caps (I) and (V)
of radius h, two dynamical menisci, the front dynamical meniscus (II) of
typical size c and the rear dynamical meniscus (IV) where a neck forms, and
a lubrication film (III) of variable thickness e(x), where a Marangoni stress
s(x) at the interface induces local flows of velocity v(x,y). The resulting
droplet velocity is denoted V. Far from the droplet, there is no flow UN = 0.
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where g denotes the water–oil interfacial tension. We have neglected
the non-linear terms in the curvature in accordance with the
lubrication approximation. We also suppose that the interfacial
tension is uniform, on the basis that the surface tension difference
resulting from the chemical activities is small (of the order of one
tenth) with respect to the equilibrium surface tension (gwater/oil-micelles C
2 mN m�1 and Dgactivity B 0.2 mN m�1). The momentum balance in
the direction of motion reduces to qxp = Zqy

2ux, where ux is the
velocity component in x. The shear-stress continuity at the water–oil
interface gives Zqyux|y=e(x) = s(x) at leading order in the lubrication
scaling, where s(x) is the Marangoni stress. In the reference frame of
the moving droplet, the no-slip boundary condition at the wall reads
ux|y=0 = �V. As a consequence of the global flux conservation, the
flux of water must balance the oil flux, which means that the typical
velocity in the film v is of the order of Vh/e, where e is the typical
lubrication film thickness. Hence, the typical velocity in the film is a
hundred times larger than the drop velocity and we can safely
approximate the no-slip boundary condition to ux|y=0 = 0. The
resulting flow is a linear combination of a Poiseuille and Couette
term and reads:

uxðx; yÞ ¼ p0ðxÞ
2Z

y2 � 2yeðxÞ� �þ sðxÞy
Z

; (2)

uyðx; yÞ ¼ �p
00ðxÞ
2Z

y3

3
� y2eðxÞ

� �
þ p0ðxÞe0ðxÞy2

2Z
� s0ðxÞy2

2Z
: (3)

Computing the pressure gradient from (1) and integrating the flow
in y allows us to express the flux conservation. We find:

ge3ðxÞe000ðxÞ
3Z

þ sðxÞe2ðxÞ
2Z

¼ �f; (4)

where the oil flux per unit of orthoradial length is denoted �f,
such that f is a positive quantity. The first term on the left hand
side of this equation corresponds to the driving by capillarity
and the second one to the Marangoni ones. The global mass
conservation in a plane perpendicular to the capillary axis
implies that the flux of advected oil in the lubrication layer must
balance the longitudinal water flux

ph2V = 2phf. (5)

The Marangoni stress originates microscopically from the gradients
of swollen micelles interacting with the interface. The transport of
swollen micelles obeys the stationary advection–diffusion equation

uxðx; yÞ@c
@x
þ uyðx; yÞ@c

@y
¼ D

@2c

@x2
þ @

2c

@y2

� �
� D

@2c

@y2
; (6)

where D is the diffusion constant of swollen micelles in solution and
c(x,y) denotes the concentration fields of solute. In what follows, the
diffusion terms in x are neglected with respect to the ones in y in
agreement with the lubrication approximation. The swollen micelles
are produced at the water–oil interface with a rate A, also called the
droplet activity, which is assumed to be constant, and gives the
boundary conditions at the water–oil interface

D
@c

@y

����
y¼eðxÞ

¼ A: (7)

The wall is assumed to be impermeable such that the diffusive

flux vanishes at the wall, i.e. �@c
@y

����
y¼0
¼ 0. The Marangoni stress

is induced by the concentration gradient tangent to the
interface as

sðxÞ ¼ �Kð~t 	 ~rÞc
���
y¼eðxÞ

¼ �Kð@x þ e0ðxÞ@yÞc
��
y¼eðxÞ: (8)

In the following we shall not solve the general lubrication
problem but focus on the dominant swimming mechanism
with the aim at identifying the scaling governing the droplet
velocity. In the next section, we focus on the solution in the
lubrication film, which corresponds to zone III in Fig. 8.

4.3 Scaling and numerical solution in zone III

In this region, the water–oil interface is nearly flat, although we
stress that the film thickness is not necessarily uniform in the
lubrication film zone, which is the major difference with
classical Bretherton models. The goal of this section is to
provide a solution of the lubrication model in zone III.

A first step is to identify the proper length and stress scales
at play. The dimensionless ratio f/D is the ratio between
horizontal and vertical transport scales. According to eqn (6),
ux/D B x*/e*2, where e* and x* denote the characteristic
thickness of the film and x scales, so that f/D B x*/e*. This
ratio compares advection to diffusion and is therefore analogous
to a local Péclet number. In the experiments presented here, its
typical magnitude is large Pe = f/D B 100 (see Appendix B). One

finds from eqn (7) a concentration scale c� ¼ A

D
e� and, from

eqn (8), a stress scale s� ¼ KA

PeD
¼ KA

f
. The length scale e* is

chosen such that the Marangoni driving dominates in eqn (4) so

that
s�e�2

Z
¼ f, and one obtains:

e� ¼ f

ffiffiffiffiffiffiffi
Z
KA

r
; x� ¼ e�f=D; s� ¼ KA

f
; c� ¼ f

D

ffiffiffiffiffiffi
AZ
K

r
; (9)

Coming back to eqn (4), we then find that the Marangoni driving

dominates as soon as s�e�2 
 ge�4

x�3
, or, in other words when

x* c c*, with ‘� ¼ e�
ffiffiffiffiffiffiffiffiffiffi
ZKA
p

g

� ��1=3
. One notices that the length

scale c* has a similar scaling form as the dynamical meniscus
length in the classical Landau–Levich–Derjaguin–Bretherton
problem. A nice way to see the analogy is to understand the ratio

Ca ¼
ffiffiffiffiffiffiffiffiffiffi
ZKA
p

g
as the ratio of two velocities, the Marangoni driving

velocity v� ¼
ffiffiffiffiffiffiffi
KA

Z

r
and the capillary one Vg ¼ g

Z
exactly as in the

classical problem where the driving velocity is externally set and
CaB = V/Vg = ZV/g. In the experimental system, the capillary
number is estimated as Ca B 10�3 (see Appendix B), which is
small with respect to unity. Therefore it justifies the use of the
Bretherton type scale separations in the present work.
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We introduce the dimensionless variables with e	 as
e(x) = e*ẽ(x̃), y = e*ỹ, x = x*x̃, c(x,y) = c*c̃(x̃,ỹ), s(x) = s*~s(x̃) and
eqn (4) and (6)–(8) become:

�2~y

~e2
@~c

@~x
þ 2~e0y2

~e3
@~c

@~y
¼ @2~c

@~y2
; (10)

@~c

@~y

����
~y¼~e

¼ 1;
@~c

@~y

����
~y¼0
¼ 0; (11)

~sð~xÞ ¼ � 2

~e2ðxÞ ¼ ð@~x þ ~e0ð~xÞ@~yÞ~c
��
~y¼~e
: (12)

The later equations are solved numerically using a volume-of-
fluid method.46 Eqn (10) is analogous to a 1D heat equation
where �x̃ represents time. Therefore, we set ‘‘initial
conditions’’ at x̃ = 0 and solve for negative x̃. In this model,
the initial conditions represent an arbitrary x position near the
boundary between zone II and III in Fig. 8. There we assume
that the solute has not diffused over the full lubrication film and
is localized near the water/oil interface. We proceed as follows:
we first choose an initial thickness ẽ(x̃ = 0) and we take the

initial concentration fields as ~cð~x ¼ 0; ~yÞ / exp
~eð~x ¼ 0Þ � ~y

L

� �
,

where L is a dimensionless length scale that would correspond
to the length over which the solute has diffused on the region
I–II in Fig. 8. The prefactor of the initial concentration is set to
be consistent with the flux boundary condition eqn (11).

Fig. 9 displays the numerical solution of eqn (10). We exhibit
four solutions with a subscript i = (1, 2, 3, 4) that differs via their
initial conditions, plotted in Fig. 9(a). Panel (b) shows the
evolution of the lubrication film thickness along the x-axis for
these four different initial conditions. The lubrication film
converges toward a uniform solution, with a constant thickness

e1 ’
ffiffiffi
2
p

e� ¼ ffiffiffi
2
p

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z=ðKAÞp

, a constant concentration gradient
qxc and a Marangoni stress sN = �s* = �KA/f, whatever the

initial film thickness and concentration. The exact prefactor
ffiffiffi
2
p

is obtained analytically in Appendix C, injecting a uniform
solution ansatz in eqn (6)–(8). The concentration field of
solution 1 is displayed in Fig. 9(c). As already stressed, the film
thickness is not uniform; the uniform solution is obtained only
for |x| \ x*, that is when the solute diffusing front reaches the
wall at y = 0. The concentration fields in this regime are in
very good agreement with the uniform solution computed in
Appendix C. At this stage the problem is not closed as the flux F
is still unknown.

4.4 Scaling of the droplet velocity

In this section, we aim at deriving a scaling law for the droplet
velocity using the aforementioned scales. Solving the lubrication
problem in zone II, requires the full resolution of eqn (4), which
has no simple or scaling solution. We therefore assume that the
Marangoni stress in zone II does not change much and we give it
a uniform value set by that of the uniform solution of the
lubrication film s(x) = sN = �s*. This is a strong assumption
which will only be validated by comparison with the experimental

data. Having done so, eqn (4) is written in a closed form and one

can then use e1 ¼
ffiffiffi
2
p

e� and c* as a thickness and x scale and
write the resulting flux conservation in a universal form using the

dimensionless variables EðXÞ ¼ eðxÞ=ð ffiffiffi2p e�Þ, X = x/c*:

2

3

d3E

dX3
¼ E2 � 1

2E3
: (13)

The latter equation admits a trivial solution E = 1, which
corresponds to the uniform film usually found in Bretherton
models and which is identical to the uniform solution found at
|x| 4 x* in the previous section. We solve eqn (13) numerically
following the standard Landau–Levich approach. We assume a

Fig. 9 (a) Initial conditions at x/x* = 0 for the concentration fields given by

~cð~x ¼ 0; ~yÞ / exp
~eð~x ¼ 0Þ � ~y

L

� �
. The initial thickness is set to ẽ(x̃ = 0) = 0.5

(resp. 1.8) in the initial conditions denoted 1–2 (resp. 3–4) and the
dimensionless length L = 0.05 (resp. 0.1) in 1–3 (resp. 2–4). (b) Evolution
of the non-dimensional film thicknesses along the x-axis in the numerical
simulation for the different initial conditions. The inset shows a zoom near
x = 0. (c) Colormap of the non-dimensional concentration field of solute
c(x,y)/c* resulting from the numerical integration with the initial condition
1. The thickness profile is highlighted in black.
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uniform film at X - �N, and linearize eqn (13) as E = 1 + e,

where e { 1, which gives
2

3
e000ðXÞ ¼ eðXÞ. The solution compa-

tible with the flat film at�N is eðXÞ ¼ e0 exp
3

2

� �1=3

X

 !
, where

e0 is an arbitrary constant. We then solve the initial value problem
defined by eqn (13) using a Runge–Kutta scheme of order 4 and
with the linear solution as an initial condition. The numerical
solution is found to diverge at X - N with a finite second

derivative, leading to lim
x!1 e00ðxÞ ¼ 2:125

e�
s�e�

g

� �2=3

for the dimen-

sional variables. The limit curvature must be matched to the

curvature of the spherical caps
1

h
in order to preserve the

continuity of the pressure in the region I and II, which yields
the following relationship

e�

h
¼ 2:125

s�e�

g

� �2=3

: (14)

Note that, although the right hand side term of eqn (13) differs
from the standard Landau–Levich–Derjaguin and Bretherton
one, the film thickness scaling law remains of the same form,
as s�e�=g ¼ ffiffiffiffiffiffiffiffiffiffi

ZKA
p

=g ¼ Ca. The reason is that the exponent 2/3
results from the presence of the third order derivative in the left
hand side of eqn (13) and the fact that the asymptotic matching
with the spherical caps involves the curvature, hence the second
derivative of e(x), two aspects which are common to our problem
and the classical one. The product of Marangoni stress and film
thickness appears as the relevant traction force that deforms the
interface, analogous to ZV in the standard Bretherton framework.
Finally, recalling the global mass conservation eqn (5), one finds

the swimming velocity V ¼ 2f=h ¼ s�e�

Z
e�

h
. Combining this

expression with eqn (14), we find:

V ¼ 2:125
s�e�

Z
s�e�

g

� �2=3

�
ffiffiffiffiffiffiffi
KA

Z

s ffiffiffiffiffiffiffiffiffiffi
ZKA
p

g

� �2=3

(15)

or, in a more compact form,

V

v�
� Ca2=3: (16)

A first validation of the present scaling relation is that it predicts
a swimming velocity which does not depend on the capillary
height h, as observed experimentally. Second, we can compute an
estimation of the ratio between the film thickness and capillary
radius e*/h B (s*e*/g)2/3 B 1/100, that implies a film thickness of
the order of 1 micron which is consistent with experimental
observation. Finally, a numerical evaluation (using the numerical
values given in Appendix B) leads to a droplet velocity in the
micron per second range, which is consistent with what is
observed in the experiments.

4.5 Saturation of the solute

The above description finds that the interface profile saturates
once the solute has diffused over the film, at a position�x B x*.

We evaluate
x�

2h
� 0:1. This contrasts with the experimental

observation of an increasingly deep neck with increasing

confinement, that leads to division for
L

2h
�4 10. Besides, we

observe experimentally that the daughter droplets that have
detached themselves at the rear of the main droplet don’t swim.
This suggests that there is no more fuel for the propulsion – all
micelles in solution have been saturated with water. We
speculate that the spontaneous division of the droplet is related
to this saturation of swollen micelles at the rear of the droplet,
an ingredient absent so far from our theoretical description.

As a matter of fact, one expects the presence of swollen
micelles near the water–oil interface to disturb the sorption
kinetic of the surfactant molecules and to slow down the
emission of swollen micelles.44 In the model, the lubrication

film thickness at large �x is found to scale as e1 / 1=
ffiffiffiffi
A
p

, and
thus is expected to increase as the emission rate decreases. A
precise description of the physico-chemistry that triggers the
saturation is beyond the scope of this paper, but as a minimal
description, the model is consistent with the scenario of a
growing lubrication film, at the rear of the droplet, where the
non-uniformity is now driven by the saturation of swollen
micelles.

Let us simply point out a few elements of thoughts. For
droplets that are not too long, we expect a continuous matching
between a modest increase of the lubrication film thickness
and the rear meniscus, where the active stresses have vanished.
In such cases, the dynamics remains steady and the evolution
of the droplet shape should be reversible when entering and
escaping a constriction zone, as observed experimentally. On
the contrary for very long droplets, the diverging lubrication
film thickness generates strong curvatures, which will eventually
trigger a Rayleigh–Plateau instability and lead to an irreversible
dynamical regime, the ultimate fate of which is the division of
the droplet.

5 Conclusions

In this work, we present first-of-a-kind experimental measurements
of the behavior of a swimming droplet in one-dimensional
capillaries of different geometries, namely square capillary,
circular capillaries and stretched circular capillaries. For high
enough confinement, the velocity of the droplet converges
toward a small but non-zero value, while the lubrication layer,
which separates the droplet from the wall, acquires non-
constant thickness and a neck forms at the rear of the droplet.
Under continuously increasing confinement, the deepening of
the neck is observed to lead to successive spontaneous divisions
of the droplet. A brief study of its dynamics shows rich
behaviors that can be the ground for future work.

We introduce a simplified model for the motion of such a
confined droplet following the standard Bretherton approach,
with the major difference that the flow is locally driven by solute
concentration gradient at the interface of the droplet. We focus
on the front dynamical meniscus and the lubrication layer.
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The latter is treated using the lubrication layer approximation,
and we find that the solute concentration converges toward a
uniform solution far from the front meniscus with a uniform
thickness. The front dynamical meniscus is only treated partially,
simplifying the transport equation and assuming a uniform
stress at the droplet interface. The matching of these two regions,
using the aforementioned uniform solution, allows us to find a
scaling relation for the emerging velocity of the droplet, which, as
observed experimentally, does not depend on the confinement.
Finally we argue that the saturation of the swollen micelles at the
rear of the droplet, decreases the solute emission flux, giving rise
to increasing film thickness, which ultimately is prone to induce
the spontaneous division of long enough droplets.

As the theoretical approach presented in this work was meant
to be kept simple, a certain number of hypothesis have been used.
Among them, the assumption of a uniform Marangoni stress in
the dynamical meniscus is the strongest one. Ideally one would
need to solve the advection–diffusion problem also in this region
to find the precise prefactor for the droplet velocity and check the
robustness of the scaling law derived here.

The experimental measurement of the flow field around a
confined swimming droplet, Fig. 2(b) shows that the hydrodynamics
in front of the droplet is also more complex than what we
considered theoretically. More specifically, we observe a large
re-circulation area, which breaks the axisymmetry of the problem.
How to capture this symmetry breaking and coupling it to the
above description is a completely open question. Not only does it
most likely alter the droplet velocity but is also bound to have
consequences on the interactions between two droplets.

Finally, the spontaneous division of the droplet under increasing
confinement is an unexpected consequence of the limited amount
of empty reverse micelles in solution. In this work, we kept the
initial concentration of micelles constant. In a complex environ-
ment where the concentration of reverse micelles could vary
with time and space, this instability would be triggered only in
the region where the ‘‘food’’ is scarce, an amazing behavior to
observe, especially in the perspective of using simple physical
systems in the design of probiotic systems.
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A Material and methods

The experimental system is a water droplet inside a glass capillary
filled with a continuous oil–surfactant phase consisting of a
surfactant mixed in squalane. The surfactant is the mono-olein,
a nonionic surfactant at a concentration c = 25 mmol L�1, which is
far above its critical micellar concentration (CMC C 5 mmol L�1).
The droplets are produced using Femtojet apparatus by injecting a
single droplet of controlled size in the micro-channel previously
filled with the oil-surfactant solution, and left opened at both ends.
The length of the droplet formed varies between 0.25 and 8 times
the capillary inner size (for reference, it would correspond to
equivalent spherical droplets of radius between 25 mm and
250 mm.) The droplets are made from a (Milli-Q) water solution
of 15 wt% NaCl. The continuous phase is a 25 mM mono-oleine
surfactant (MO; 1-oleoylrac-glycerol, 99%, Sigma-Aldrich) solution
in squalane (Sq; 99%, Sigma-Aldrich). The room temperature is
kept above 25 1C in order to avoid mono-oleine crystallization.47

Three different 1D geometries are used:
(1) Square glass capillaries (Fig. 3(a)) of length 5 cm, and of

four different inner sizes: 2h = 400 mm, 2h = 200 mm, 2h =
100 mm and 2h = 80 mm. The capillaries are either used native,
or silanized beforehand. h is then defined as half the inner
dimension of the capillary.

(2) Circular glass capillaries (Fig. 3(b)) of length 10 cm, and
of two different inner sizes: 2h = 200 mm and 2h = 100 mm, all
silanized. h is then defined as the radius of the capillary. To
make possible the imaging through the curved shape of these
capillaries, the observation section is immersed into glycerol
whose refractive index is close to glass.

(3) Stretched circular capillaries (Fig. 4) of length 3–5 cm,
whose inner radius varies continuously along their length
between 2h = 100 mm (at both ends), and a constriction of
diameter 2hmin, in the middle of the capillary, with a typical

gradient of diameter
dh

dx
’ �0:02. Thus they present a convergent

region followed by a divergent one. These capillaries are designed
from circular glass capillaries of inner size 2h = 100 mm that are
stretched by hand by locally heating and stretching a portion of
the capillary of typically 0.5 cm. These stretched capillaries are
silanized.

Three sets of experiments are conducted.
(i) For the first set of experiments, images of a droplet inside

a square or circular capillary are acquired using a AZ100 Nikon
macroscope, equipped with �1 air objective. The camera is a
black and white camera Dalsa Falcon II, with a resolution of
4096 � 3072 pixels, and an acquisition frequency of 1 Hz. The
macroscope has a continuous zoom between �1 and �8, and
thus has a variable resolution, which is measured before each
experiment by using a calibration slide. Typically, to visualize
an area of 1 cm in diameter, we use the �3 zoom, which gives a
resolution of 0.3 pix per mm. The droplet motion in the capillary
is then tracked in the frame of reference of the laboratory, and
its shape is detected using an intensity threshold algorithm.

(ii) A second set of experiments is conducted to measure the
flow field around a droplet inside a circular capillary, using a
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Particle Image Velocimetry (PIV) technique. Red fluorescent
colloids tracers (Fluoro-Maxt, 0.6 mm Red Fluorescent Polymer
Microspheres, Thermo scientific) are added in the oil phase.
The seeding is set to approximately 0.25 colloids per mm3,
which corresponds in an illumination plane of depth 5 mm to
little more than one colloid per mm2, or one colloid per
two pixels2. The images are acquired with a CCD camera (Andor
Zyla 5.5) in the median plane of the droplet using confocal
microscopy with a �10 objective, and a laser beam at 540 nm,
which is the absorption wavelength of the tracers. The acquisi-
tion frequency is 10 frames per s and the exposure time is
50 ms. The spatial resolution in the plane is 0.65 mm per pixel.
For each experiment, 100 images of the droplet and the
surrounding flow field are acquired. The PIV analysis is per-
formed using the PIVlab48 code on Matlab. Pre-processing is
done using a Wiener filter of window size 3 pixels. Then the PIV
is performed by using cross-correlation between two successive
images in two passes of respective interrogation areas of 64 pixels
and 32 pixels, (which corresponds typically to a window contain-
ing ten tracer particles) and with a window overleap of 50%. The
walls and the inside of the droplet are excluded from the PIV by
designing a moving mask for each image. The droplet’s mask is
designed to be slightly smaller than the droplet size, and is
moving with the droplet. Post-processing validation is not used.
The final spatial resolution of the mapping of the flow field is
then 16 mm per pixel. This provides us with the velocity field in
Cartesian coordinates attached to the lab frame at each time
step. We then average in time the instantaneous flow fields
obtained from PIV, thereby reducing the experimental noise.

(iii) Finally, a third set of experiments focus on the dynamics of
the rear of the droplet. Images are acquired using a Leica micro-
scope equipped with a �10 air objective, and a fast camera
Photron Fastcam SA3 with varying acquisition frequencies between
1000 Hz and 10 000 Hz. The same image processing as for the first
set of experiments is used to detect the droplet interface.

B Numerical applications

In this section, we give the numerical values used to do the
numerical applications done in the main text which are based
on the ones used in ref. 18.

Peclet number

Using a swollen micelle radius of d = 2 � 10�9 m, the oil viscosity
Z = 40 � 10�3 Pa s, the diffusion constant is evaluated

as D ¼ kT

6pZd
� 10�12 m2 s�1, kB = 1.38 � 10�23 J K�1 is the

Boltzmann constant and T = 300 K is the temperature. We

compute f ¼ Vh

2
¼ 1:5� 10�10 m2 s�1 using the experimental

parameters in Fig. 1, V = 3 mm s�1 being the velocity of the droplet
and h = 50 mm is the height of the channel. Then Pe = f/D B 100.

Capillary number

The surface tension of the water–oil interface is g = 1.7 �
10�3 Pa m, measured using the pendant drop method.49

The Marangoni constant K is derived from the relation
K = kBTl, where l = 10� 10�9 m is the typical distance of interaction
between the solute and the interface. Then K B 10�29 J m. The

activity, or surface flux A, is derived from the relation A ¼ 3

4p
k
d3

,

where k = 5 � 10�8 m s�1 is the decrease rate of the radius of an
unconfined droplet. Then A B 1018 m�2 s�1. Finally, the capillary

number can be evaluated as Ca ¼
ffiffiffiffiffiffiffiffiffiffi
ZKA
p

g
� 10�3.

C Uniform solution

In this section, we write the stationary solution of the solute
transport equations. We make the following ansatz for the
concentration field and thickness evolution

c̃(x̃,ỹ) = A0 + A1x̃ + A3ỹ3, ẽ(x̃) = E. (17)

Injecting this solution in eqn (6)–(8), one finds the following
coefficient

A1 ¼ �1; A3 ¼ 1

6
; E ¼

ffiffiffi
2
p

; (18)

and A0 is a free parameter.
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Thierry Ondarçuhu. Dynamics of anchored oscillating nanomenisci. Physical
Review Fluids, 2(10):102201, 2017.

[54] Dongshi Guan, Elisabeth Charlaix, Robert Z Qi, and Penger Tong. Noncontact
viscoelastic imaging of living cells using a long-needle atomic force microscope
with dual-frequency modulation. Physical Review Applied, 8(4):044010, 2017.

[55] Dongshi Guan, Elisabeth Charlaix, Robert Z Qi, and Penger Tong. Noncontact
viscoelastic imaging of living cells using a long-needle atomic force microscope
with dual-frequency modulation. Physical Review Applied, 8(4):044010, 2017.
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Salez, and Abdelhamid Maali. Direct measurement of the elastohydrodynamic
lift force at the nanoscale. Phys. Rev. Lett., 124:054502, 2020.

[118] Yoshikiyo Moroi, Kinsi Motomura, and Ryohei Matuura. The critical micelle con-
centration of sodium dodecyl sulfate-bivalent metal dodecyl sulfate mixtures in
aqueous solutions. Journal of Colloid and Interface Science, 46(1):111–117, 1974.
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Dalnoki-Veress. Self-similarity and energy dissipation in stepped polymer films.
Physical Review Letters, 109(12):128303, 2012.

[218] Grigory Isaakovich Barenblatt. Scaling, self-similarity, and intermediate asymptotics:
dimensional analysis and intermediate asymptotics. Number 14. Cambridge Univer-
sity Press, 1996.
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