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Le bruit fait peu de bien, le bien fait
peu de bruit.

Saint François de Sales



Exergue

“Durant le temps nécessaire à l’écriture de ce livre, le site d’observation américain de
Mauna Loa 1, à Hawaii, indique que la concentration de CO2 atmosphérique a franchi
la barre des 400, puis des 410 ppm. Cette mesure, qui enregistre la transformation du
climat d’origine humaine, prouve qu’à l’échelle d’une activité aussi minuscule que la
rédaction d’un ouvrage de philosophie, la réalité écologique se dégrade silencieusement
dans des proportions spectaculaires. Indiquons seulement que cette valeur était restée
sous la barre des 300 ppm pendant l’intégralité de l’histoire humaine préindustrielle et
que l’auteur de ces lignes est né à 340 ppm. Une étude allemande très médiatisée (Hall-
mann et al., 2017) a également montré que la biomasse d’insectes volants a été réduite
de 76 % en vingt-sept ans : malgré les mesures de protection et la création de zones natu-
relles, trois quarts des insectes ont disparus en quelques décennies. Et cela n’est encore
qu’un indice au milieu d’un vaste ensemble de recherches sur la dégradation des sols,
des eaux, des fonctions de pollinisation et d’entretien des écosystèmes, qui indiquent
que la transformation de la Terre se déroule désormais à un rythme commensurable
avec la durée d’une vie, et même d’un simple projet d’écriture.
Lors de la même période de cinq ans, le paysage politique mondial a subi des transfor-

mations tout aussi sidérantes. L’accession au pouvoir de Donald Trump aux Etats-Unis
en 2017, de Jair Bolsonaro au Brésil en 2019, mais aussi la victoire des partisans du
Brexit dès juin 2016 sont les repères les plus nets dans une série d’événements souvent
interprétés comme la désagrégation de l’ordre libéral. Un peu partout dans le monde,
un mouvement de retour aux frontières et de conservatisme social fédère certains per-
dants du globalisme désespérément à la recherche de nouveaux protecteurs et des élites
économiques décidées à entrainer les peuples dans le jeu de la rivalité entre nations
pour préserver l’accumulation de capital. Un peu plus tôt pourtant, les accords de Pa-
ris signés dans l’enthousiasme général en décembre 2015 laissaient entrevoir l’émergence
d’une diplomatie d’un nouveau genre, chargée de faire entrer dans l’ère climatique le
concert des nations. En dépit des faiblesses constitutives de cet accord, c’est à cette
articulation entre coopération diplomatique et politique climatique que se sont atta-
qués les nouveaux maitres du chaos : pas question en effet pour eux de fonder un ordre
mondial sur la limitation de l’économie.
Durant cette même période encore, nous avons pu assister à la multiplication des

fronts de contestation sociale qui mettent directement ou indirectement en question
l’état de la Terre. Les dernières corrections apportées à ce livre se sont faites au rythme
des mobilisations des Gilets jaunes en France, dont on ne peut oublier qu’elles ont été
déclenchées par un projet de taxe sur les carburants. L’invention d’un nouveau rapport
au territoire au sein de la ZAD de Notre-Dame-des-Landes, ou à l’occasion du conflit
entre les habitants de la réserve amérindienne de Standing Rock et le projet de pipeline
au Dakota, a débuté au moment ou je commençais, dans mes séminaires, à nouer des
liens entre l’histoire de la pensée politique moderne et la question des ressources, de
l’habitat et plus largement des conditions matérielles d’existence. L’actualité en somme,
confirme et alimente sans cesse l’idée d’une réorientation des conflits sociaux autour
des subsistances humaines. Mais à côté de tout cela, à côté des marches pour le climat,

1. gml.noaa.gov/ccgg/trends/
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des discours de Greta Thunberg, des opérations de désobéissance menées par Extinc-
tion Rebellion à Londres, il y avait aussi Haïti, Porto Rico, Houston : L’intensification
des ouragans tropicaux et la faillite des réponses gouvernementales ont fait de la vul-
nérabilité climatique le révélateur d’inégalités sociales de plus en plus politisées. La
distribution des richesses, des risques, des mesures de protection oblige à comprendre
dans un même geste la destinée des choses, des peuples, des lois et des machines qui les
assemblent.
Cinq ans suffisent donc à enregistrer des mutations capitales. Cinq ans suffisent à

regarder un passé pourtant proche comme un univers totalement différent de celui
dans lequel on évolue désormais, et vers lequel on ne reviendra jamais. La rapidité de
ces évolutions nous laisse aussi devant une question plus sombre : où en serons nous
quand cinq ans de plus se seront écoulés ?”

Pierre Charbonnier,
Introduction de Abondance et Liberté, 2020.





Résumé

La pollution sonore est un problème de santé publique bien identifié par les au-
torités sanitaires. Une exposition prolongée à des niveaux de bruit trop élevés peut
entraîner différents types de complications, qu’elles soient de natures psychiques ou
cardio-vasculaires. Dans une étude publiée en février 2019, Bruitparif, l’organisme de
surveillance du bruit en Île-de-France, a conclu qu’à l’échelle de l’agglomération pari-
sienne, ce sont 3 années de vie en bonne santé qui sont perdues à cause de la pollution
sonore.
Afin d’établir l’exposition au bruit des populations, des cartes de bruit sont réguliè-

rement générées à la demande des agglomérations et en conformité avec les réglementa-
tions de l’Union européenne. Ces cartes sont produites par des bureaux d’études, pour
les sources de bruit principales que sont les trafics routier, ferré et aérien, ainsi que
les principales industries. Pour le trafic routier, qui est reconnu comme étant la source
de bruit principale en milieu urbain, elles sont le résultat de simulations qui estiment
le niveau de bruit à partir des données de circulation, des données météorologiques,
de la topographie, de la distribution des bâtiments et de la végétation. Les données
qui varient dans le temps sont moyennées à l’échelle annuelle. Les cartes obtenues sont
donc une estimation de la distribution spatiale des niveaux de bruit moyens sur la zone
d’étude. Ces données sont en plus limitées dans l’espace, et il existe une incertitude qui
empêche de connaître précisément le trafic moyen annuel sur l’ensemble des voies de
la zone d’étude. Des estimations génériques complètent donc les mesures de trafic en
remplissant les zones non mesurées avec des données trafic qui sont des fonctions de
la nature de la voie. La précision des cartes de bruit est limitée aussi par la durée du
temps de calcul qui impose d’avoir des modèles assez simple de la propagation acous-
tique. Il est aussi à noter que lors de comparaisons à des mesures sonométriques, il peut
y avoir une différence importante par le fait que, dans le cadre de cette étude, seules les
données de bruit routier sont prises en compte dans la simulation. Enfin, le fait d’avoir
en général une carte annuelle interdit d’estimer l’évolution temporelle des niveaux de
bruit.
En plus de cartes de bruit, les parties prenantes réalisent parfois des campagnes

de mesures de niveaux de bruit à l’aide de sonomètres. Ils mesurent ainsi l’évolution
temporelle du niveau de bruit à une série d’endroits donnés. Ces données donnent un
reflet plus complet et réaliste du niveau sonore réel que les résultats des simulations de
cartes de bruit mais elles sont très locales. Dans le cas de mesures fixes, elles permettent
de ne connaître le niveau de bruit qu’à l’endroit où l’appareil de mesure est situé. Elles
sont également coûteuses, ce qui interdit un quadrillage extensif d’une zone avec un
réseau de capteurs.
Combiner les approches de la modélisation et des mesures permettrait d’augmenter la

quantité de données utiles pour la production des cartes de bruit. Une carte de bruit qui
combine les deux approches peut pallier les limitations de la simulation et des mesures,
et fournir une cartographie dynamique et en temps réel des niveaux sonores.
L’objectif de cette thèse est de mettre en oeuvre des méthodes dites d’assimilation

de données pour unir les bénéfices des deux approches, simulation et observation. Ces
méthodes utilisent à la fois un simulateur de cartes de bruit et les données d’obser-
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vation d’un réseau de capteurs de niveaux de bruit distribués sur l’ensemble d’une
zone d’étude donnée. La première méthode propose d’ajouter une couche de correction
aux simulations de cartes de bruit qui dépend des observations à un instant donné.
La seconde méthode propose une paramétrisation des données d’entrée du simulateur
qui utilise les niveaux de bruit observés. Afin de contourner la contrainte du temps
de calcul lié à la simulation numérique, il est possible de générer des cartes de bruits
en quelques millisecondes à partir de nouveaux paramètres à l’aide d’un méta-modèle,
c’est-à-dire d’un algorithme qui reproduit fidèlement le comportement du simulateur
sur une zone donnée grâce à des méthodes statistiques. Sa construction et l’étude de ses
performances est l’objet du chapitre II. La mise en application des méthodes d’assimi-
lation de données faisant usage du méta-modèle est l’objet des chapitres III et IV. Dans
le chapitre III, l’étude porte sur une méthode de correction d’une carte, générée par
le méta-modèle, en utilisant les niveaux de bruit observés. Cette méthode est appelée
BLUE pour Best Linear Unbiased Estimator. Le chapitre IV quant à lui, s’intéresse
à une méthode de modélisation, la modélisation inverse, dont le but est de générer
les paramètres d’entrée du méta-modèle grâce auxquels la carte simulée obtenue ap-
proche au mieux les données fournies par les sonomètres. Ce chapitre étudie également
une combinaison des méthodes de modélisation inverse et d’assimilation de données
BLUE avec une méthode appelée JSPE pour Joint State Parameter Estimation. De
plus , cette méthode permet, dans certaines conditions, de s’affranchir de l’acquisition
préalable de données trafic et météorologiques en temps réel. Ce travail de thèse se
termine par le chapitre V avec l’étude d’une méthode de diagnostic et d’estimation des
paramètres d’une matrice de covariance. En effet, pour mener à bien l’assimilation de
données, il est nécessaire d’introduire les matrices de covariance des erreurs d’ébauche
et d’observation. Les composantes de ces matrices dépendent d’un vecteur de para-
mètres inconnu. Il convient donc de diagnostiquer des paramètres estimés a priori. Les
ouvertures qu’amènent ces résultats sont mentionnés à la fin de la thèse :
— l’extension de l’application des méta-modèles à l’analyse de sensibilité ;
— l’enrichissement des méta-modèles avec un nombre de paramètres plus élévé afin

d’analyser plus finement la distribution des niveaux de bruits ;
— l’étude de l’optimisation de la distribution des réseaux de mesures destinés à

l’assimilation de données.



Abstract

Noise pollution is a public health problem well identified by health authorities. Pro-
longed exposure to excessively high noise levels can lead to various types of complica-
tions, both psychological and cardiovascular. In a study published in February 2019,
Bruitparif, the noise monitoring organization in the Paris region, concluded that in the
Paris metropolitan area, 3 years of healthy life are lost due to noise pollution.
In order to establish the noise exposure of populations, noise maps are regularly gen-

erated at the request of the agglomerations and in compliance with European Union
regulations. These maps are produced by engineering offices for the main sources of
noise such as road, rail and air traffic, as well as the main industries. For road traffic,
which is recognized as the main noise source in urban areas, they are the result of
simulations that estimate the noise level from traffic data, meteorological data, topog-
raphy, building distribution and vegetation. Data that vary over time are averaged on
an annual basis. The resulting maps are therefore an estimate of the spatial distri-
bution of average noise levels over the study area. These data are moreover spatially
limited, there exists some uncertainties which prevent to know precisely the annual
average traffic on all the roads in the study area. Generic estimates therefore com-
plement the traffic measurements by filling in the unobserved areas with traffic data
that are functions of the nature of the road. The accuracy of the noise maps is also
limited by the length of the computation time, which requires fairly simple models of
the acoustic propagation. It should also be noted that in comparisons with sonometric
measurements, there can be an important difference by the fact that in this study, only
road noise data are taken into account in the simulation. Finally, usually working on
an annual map makes it impossible to study the temporal evolution of noise levels.
In addition to noise maps, stakeholders sometimes carry out noise level measurement

campaigns using sound level meters. In this way, they measure the temporal evolution
of noise levels at a series of given locations. These data give a more complete and
realistic reflection of the actual noise level than the results of noise map simulations,
but they are very local, in the case of fixed measurements they allow to know the noise
level only at the level where the measuring device is placed. They are also expensive,
which prohibits an extensive gridding of an area with a network of sensors.
Combining modeling and measurement approaches would increase the amount of

data useful for the production of noise maps. A noise map that combines the two
approaches can overcome the limitations of simulation and measurement and provide
dynamic, real-time mapping of noise levels.
The objective of this thesis is to implement so-called data assimilation methods to

unite the benefits of both approaches, simulation and observation. These methods use
both a noise map simulator and observation data from a network of noise level sensors
distributed over a given study area. The first method proposes to add a correction
layer to noise map simulations that depends on the observations at a given time. The
second method proposes a parameterization of the simulator input data using the ob-
served noise levels. In order to circumvent the computation time constraint related to
numerical simulation, it is possible to generate noise maps in a few milliseconds from
new parameters using a meta-model, i.e. an algorithm that faithfully reproduces the
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simulator’s behavior over a given area using statistical methods. Its construction and
the study of its performance is the subject of chapter II. The implementation of data
assimilation methods using the meta-model is the subject of chapters III and IV. In
the chapter III, the study deals with a method for correcting a map, generated by the
meta-model, using the observed noise levels. This method is called BLUE for Best Lin-
ear Unbiased Estimator. As for the chapter IV, it deals with a modeling method, the
inverse modeling, whose goal is to generate the input parameters of the meta-model,
thanks to which the simulated map obtained approaches as well as possible the data
provided by the sound level meters. This chapter also studies a combination of inverse
modeling and BLUE data assimilation methods with a method called JSPE for Joint
State Parameter Estimation. In addition, this method allows, under certain conditions,
to dispense with the prior acquisition of traffic and meteorological data in real time.
This thesis work ends with the chapter V, which proposes a diagnostic and estimation of
the parameters of a covariance matrix. Indeed, in order to carry out data assimilation,
it is necessary to introduce the covariance matrices of the background and observation
errors. The components of these matrices depend on an unknown vector of parame-
ters. It is therefore necessary to diagnose estimated parameters a priori. The openings
brought by these results are mentioned at the end of the thesis:
— the extension of the application of meta-models to sensitivity analysis;
— the enrichment of the meta-models with a higher number of parameters in order

to analyze more finely the distribution of noise levels;
— the study of the optimization of the distribution of measurement networks for

data assimilation.
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Foreword

There is a growing need for city planners to monitor the noise pollution across their
administration area, in order to develop decision-making tools or to supervise the pop-
ulation exposed to this annoyance.
It is possible to harvest observed noise data with an array of sound level meters

scattered across a study area. This method provides very accurate data about the
noise levels at point locations. It can also be used for special events such as outdoor
concerts or public works. However, the noise level can only be known in the vicinity of
the sound level meter.
An other way to monitor the noise level distribution is to perform a noise map across

the study area. This map is computed with a noise mapping reference software which
takes as inputs traffic data, weather data, topographic data and sets as outputs the
resulting noise level for each element of a grid of receptors. These noise maps suffer
from a lack of accuracy due to the time and space approximations of the noise sources,
and the approximations in the sound propagation calculation.
A new study area is the production of dynamic noise maps which allows to compute

the noise distribution every hour to improve the noise exposure assessment. Dynamic
noise mapping requires the generation of a large amount of noise maps and thus moti-
vates the creation of techniques designed to reduce the necessary computation burden.
Statistical methods and supervised machine learning are promising tools and will help
to develop so-called meta-models which allow to quickly generate noise maps over a
defined study area.
Data assimilation allows to merge computed noise maps with noise observations.

The dynamic behavior of observed noise levels is very relevant and can provide useful
information which can be integrated to a noise map. The combination of meta-model
generated noise maps and observed noise levels give dynamic noise maps with a lower
RMSE than the simulation only.

Thesis Plan

Chapter I introduces the mathematical tools and concepts which will be used through-
out the thesis, data assimilation principles, meta-modeling principles, and the regular
statistical tools required for the study. In addition, some basic acoustics concepts are
defined in this section, metrics, noise measures and simulation principles. This section
has been written in order to make the document understandable for audiences with an
acoustical background as well as people with a mathematical background.
Chapter II exposes the construction process of the meta-model, latin hypercube

sampling, dimension reduction, interpolation (RBF and kriging). Once the meta-model
is built its performance is tested by comparing its outputs with the outputs of the
reference noise mapping software.
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Chapter III presents the data assimilation method BLUE applied to the outputs of
the meta-model when its inputs are the observed traffic and weather data. Its perfor-
mance is evaluated with a leave-one-out cross-validation process and an improvement
of 30 % of the root mean square error is observed between the noise map which uses
data assimilation and the output of the meta-model.
Chapter IV presents an inverse modeling method which helps finding the most ac-

curate input parameters of the parameters with respect to the observed noise levels.
A method called JSPE merges the results of the inverse modeling with the data as-
similation principles presented in Chapter III. These methods allow to reduce the root
mean square error even more than the BLUE data assimilation used in chapter III. In
addition, it can be performed in areas where no observation input is conducted.
Chapter V presents a new approch to perform a diagnosis of the parameterized

covariance matrices of the error between the predicted and observed noise levels used
in chapter III and IV. It is compared with the current diagnosis method called χ2

diagnosis. The extension of this method to parameters approximation is also presented.
Chapter VI concludes this study. It gives some perspectives on further uses of meta-

models such as sensitivity analysis, further refinements of the meta-model and opti-
mization of the distribution of the sound level meters applied to data assimilation.
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I. Introduction
We introduce in this chapter the notions of acoustics that will be used
throughout this manuscript. In particular, the means of calculation and ac-
quisition of noise levels will be presented, as well as the methods used for the
elaboration of noise maps. The second part of this chapter formally intro-
duces the elementary concepts of data assimilation. The third part presents
the meta-model and its underlying mathematical principles.
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20 I. Introduction

I.1. Environmental Acoustics

I.1.1. Acoustic waves and sound levels

Acoustics is the science that studies sounds and their propagation as longitudinal
pressure waves through elastic media. When an acoustic wave passes through a fluid
environment, the pressure, speed, temperature, entropy and volumic mass fields are
perturbed. The pressure field is written as follows:

P (X, t) = Patm + p1(X, t) (I.1)

With p1 � Patm. The pressure of the fluid at rest is the atmospheric pressure Patm,
and p1(X, t) represents the disturbance related to the passage of the wave. The sound
level at a point X is defined relative to the evolution of the value of p1(X, t) over time.
The space dependency will now be implied and omitted to simplify the notation, and
the perturbation will be noted p(t). Several noise characterizations can be defined, the
most commonly used being the SPL ("Sound Pressure Level"), expressed in decibels
(dB):

Lp = 10 log10

(
pRMS

p0

)2
= 20 log10

(
pRMS

p0

)
. (I.2)

This level describes the power ratio between on the one hand p, and on the other hand
a reference level set at p0 = 20 µPa. This reference level p0 is defined as the audibility
threshold. In this equation, pRMS is the RMS value of the pressure signal, calculated
through an RMS ("root-mean-square") average over a time interval of duration T :

pRMS =
√

1
T

∫ T

0
p2(t) dt. (I.3)

In practice, the mean RMS is estimated by measuring instruments through a discrete
sum

pRMS =

√√√√ 1
N

N∑
n=1

p2
n, (I.4)

where pn are instantaneous pressure levels, measured periodically at a given sampling
frequency.

The pressure levels associated with a p acoustic disturbance are very low compared to
the atmospheric pressure level. For example, for an overpressure of 1 Pa, corresponding
to a (high) level of 94 dB, the ratio is

1
1013.25·102 ' 1·10−5. (I.5)

The non-linear effects, associated with the products of the perturbation terms in the
fluid mechanics equations, are therefore quite negligible.
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I.1.1.1. Summing and averaging sound levels

The acoustic level Ltot resulting from the combination of two signals p1(t) and p2(t),
can be computed with equations (I.2) and (I.3). The RMS pressure pRMS of the signal
during a time period T is then:

ptotRMS =
√

1
T

∫ T

0
(p1 + p2)2(t) dt

=
√

1
T

∫ T

0
p2

1(t) + p2
2(t) + 2 (p1p2)(t) dt.

When p1 and p2 are not coherent signals, the last term of the sum is equal to zero, We
get:

Lptot = 10 log10

(
p1

2
RMS + p2

2
RMS

p2
0

)
. (I.6)

We then define the sum of two acoustic levels from non coherent signals as:

L1 ⊕ L2 = 10 log10(10L1/10 + 10L2/10). (I.7)

This equation can be generalised with N non coherent signals (pi)i∈J1, NK:

L∑ pi
= L1 ⊕ L2 ⊕ . . . LN = 10 log10

(
N∑
i=1

10Li/10
)
. (I.8)

I.1.1.2. Noise measures

The function of a measuring device is to convert the measured acoustic energy into
another form of energy (often electrical), as accurately as possible regarding the infor-
mation conveyed. Ideally, the acquired signal x is strictly proportional to the input
signal p, regardless of the frequency content of p. The reference instrument for mea-
suring the noise level is the sound level meter.

An audio aquisition device fulfills the following confitions:
— The frequency response, generally represented by the phase and amplitude trans-

fer functions between p(t) and x(t);
— The dynamic, i.e. the difference between the maximum amplitude of a signal

which can be recorded without being distorted and the background sound level
produced by the recording device;

— The correctness, i.e. the uncertainty level related with the recording;
— The precision, i.e. the reproducibility of a recording.
The reference instrument for measuring sound levels is the sound level meter. There

are international metrological standards for classifying industrial sound level meters
according to the expected measurement quality. These standards define minimum
accuracies that the sound level meter under evaluation must achieve when subjected to
standardized stimuli (pure sounds at predefined frequencies).
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I.1.1.3. Perception and frequency weighting

A sound signal is characterized by its amplitude and frequency content. The dy-
namic range of the human ear extends over approximately 140 dB, with a generally
accepted audible frequency range from 20 Hz to 20 kHz (Huber and Runstein, 2013).
The sensitivity of the hearing system is highly dependent on frequency.
Measured sound levels are often corrected by means of frequency weightings to ac-

count for this dependence. Psychoacoustic studies (Fletcher and Munson (1933)) aimed
at measuring sound, i.e. the loudness as perceived by listeners, have been used as a
basis for defining different weightings. The curves representing the A, B, C, and D
weightings, as described by ANSI S1.4 1 are presented in figure I.1. These weightings
are constructed on the basis of an estimation of the pitch of pure (sinusoidal) sounds.
For this reason, other weightings, such as the one described in Geddes (1968), seem
to be more suitable for a use of environmental nuisance measurement, composed of
complex sounds, but their use has remained very limited in practice compared to the
A-weighting. For this reason, we will use A-weighting throughout this manuscript, un-
less otherwise stated. Z-weighting (for “zero”, or linear “dB”, refers to a level calculated
without frequency weighting.

Figure I.1. – Gain (dB) of the usual weightings as a function of frequency.

I.1.1.4. frequency windowing

In this case study, the noise data is stored in octave band noise level. An octave
is a frequency interval [f1, f2] logarithmically centered around a frequency fc. The
logarithm means that log2(f1) = log2(fc) − 1

2 and log2(f2) = log2(fc) + 1
2 . Hence,

the interval of an octave around fc is [ fc√2 ,
√

2fc]. In order to get the noise level at a
given octave, the raw signal x(t) is dicretized to x(n) with a given timestep τ such that
x(n) = x(nτ). It is then filtered by a band pass filter to give the filtered signal y(n).
The general expression of the filter is:

1. https://law.resource.org/pub/us/cfr/ibr/002/ansi.s1.4.1983.pdf last consulted february
8, 2021

https://law.resource.org/pub/us/cfr/ibr/002/ansi.s1.4.1983.pdf
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y(n) =
∑̀
i=1

biy(n− i) +
k∑
i=0

aix(n− i) (I.9)

Its transfer function is given after a Z-transform as:

H(z) = Y (z)
X(z) =

∑k
i=0 aiz

−i

1−∑`
i=1 biz

−i
(I.10)

The simplest band pass filters are second order filter, i.e. ` = k = 2. It is possible to
study the harmonic behavior of these filters. The attenuation of the amplitude against
the frequency of the signal is given in figure I.2.
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Figure I.2. – Gain of the amplitude of an octave band pass filter

For each octave fi, we get a signal yfi(n) obtained by a band pass filter Hfi(z).

I.1.1.5. time windowing

The sound level meter calculates a moving average in real time in order to provide the
user with an overview of the evolution of the noise level. This is called the instantaneous
noise level. The duration (or number of samples) to be considered for this average must
be chosen with regard to perceptual aspects. For example, if the sounds measured are
very brief but of significant amplitude (shocks, detonations), it is better to use a short
duration window, in order to integrate the signal only during the period when it has a
significant power level. The use of a longer window would also integrate the part of the
signal of negligible power, and thus artificially reduce the value of the calculated noise
level. The calculation of a level with a time window is performed through the following
moving average:

Lfi,τ (ti) = 20 log10

√1
τ

∫ t

−∞

(
yfi(ξ)
p0

)2
exp

(
− t− ξ

τ

)
dξ

 , (I.11)

where yfi is the filtered signal for a given octave; τ is a time window. The time
constant used in this study is called F (Fast) and lasts 125 ms. When no time windowing
is applied, the signal power yfi is integrated for the entire measurement interval [0, T ].
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This is called the Leq,T level, or equivalent level: the level thus expressed is that of a
signal of constant power that would contain the same amount of energy as yfi during
the measurement interval.

I.1.1.6. construction of the noise level

The combination of the frequency and the time windowing gives for each time window
Y a set of noise levels for N octaves. It is possible to build the LAY noise level by
weighting the noise level of each frequency fi by its corresponding weight wfi . The
noise levels are shown in table I.1.

frequency fi (Hz) 63 125 250 500 1000 2000 4000 8000
weighting wfi (dB) -26.2 -16.1 -8.6 -3.2 0 1.2 1.0 -1.1

Table I.1. – attenuation table for the A weighting

The equivalent noise level at time t is built as follows:

LAτ (t) = 10 log10

(
N∑
i=1

10(Lfi,τ (t)+wfi )/10
)

(I.12)

With LAY (ti), it is possible to build an average noise level for a larger time period
Y ′, at a given time tj . with T = {ti|tj − τ ′ ≤ ti ≤ tj}, we get :

LAτ ′(tj) = 10 log10

(
1
|T |

∑
t∈T

10LAτ (t)/10
)

(I.13)

I.1.1.7. The Lden noise index

This level is an indicator expressing an overall average level over the whole day (
day, evening, night). Together with the Lnight level, it is one of the indicators recom-
mended in the diagnosis of population exposure by the European "Environmental Noise
Directive 2002/49/EC" (END). Its expression is as follows:

Lden = 10 log10

(12
2410Lday/10 + 4

2410(Levening+5)/10 + 8
2410(Lnight+10)/10

)
, (I.14)

where Lday, Levening and Lnight respectively represent an average level during the fol-
lowing 3 periods of the day:

day from 7am to 7pm;
evening from 7pm to 11pm;
night from 11pm to 7am.

Penalties of 5 dB and 10 dB are thus introduced to reflect the increased discomfort of
local residents during the evening and night periods. The timetables are given as an
indication, and can be defined at the discretion of the Member State.
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I.1.2. Acoustic models and noise maps

Modelling can be used in acoustics to study the impact of environmental noise. In
particular, it is useful during studies prior to environmental modifications likely to
change the exposure of populations. Such modifications are, for example: the installa-
tion of new infrastructures (buildings, noise barriers), changing the surface of a roadway,
changing the speed limit of traffic lanes, etc. Modelling is also an essential complement
to in situ measurement which, although potentially accurate, is extremely costly in
terms of time and human resources when the area under study is significant or when its
geometry or meteorological conditions result in an inhomogeneous acoustic field. The
product of a simulation is typically a noise map, representing an acoustic level, for a
given duration, over a certain geographical area.
Different modeling strategies can be adopted. Depending on the desired level of

precision and the technical and material constraints, the methods employed may use
simple heuristics, ray tracing type methods, or solve the acoustic equations on the
studied domain using finite element type numerical methods. Whichever method is
considered, the first stage of modelling consists in defining the sources of noise and the
environment in which its propagation takes place.
The sources are defined by their location, directivity, power and frequency profile

over time. The profile of the noise radiated by a source depends strongly on its na-
ture. For this reason, specific computation methods have been established for different
source categories: road traffic (Besnard et al., 2009; Abbaléa et al., 2009), rail traffic
(van Leeuwen, 2000), air traffic (CEAC, 1997), and industrial noise (ISO 8297 stan-
dard). As road traffic is one of the main sources of environmental noise in urban areas,
its estimation has a major influence on the results of a model. Traffic is sometimes
estimated by numerical simulation (Mai, 2006).
The environment corresponds to the propagation medium and to all the physical

elements that will be on an acoustic trajectory connecting a source to a receiver, i.e.
a point in space where a noise value is to be calculated. The geometry of the terrain,
the reflective or absorbent character of the materials constituting this terrain, the
meteorological conditions (wind direction and speed, temperature) are all parameters
that have a strong influence on the results. The propagation of acoustic energy can take
place directly between source and receiver, but it is necessary to consider the phenomena
of specular reflection or absorption by surfaces, diffraction at the boundaries of objects,
and atmospheric absorption.
The calculation of the noise level at a given receiver is performed by summing the

energy contributions (equation (I.8)) from the surrounding sources. The consideration
of interference phenomena, i.e. the coherent interaction of signals from the same source,
is generally limited to the rays propagating in the same vertical plane. In order to limit
the complexity of the calculations, the spatial extent considered around a source, as
well as the number of reflections and diffractions to be considered on the path of a ray
coming from this source are often limited.

I.1.2.1. Noise mapping reference software: NoiseModelling

The noise mapping software used all along this study is called NoiseModelling (Bocher
et al., 2019). This software follows the Common NOise aSSessements MethodS in
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Europe (CNOSSOS-EU) (European Commission, 2015) which is the standard reference
in the European Union. In order to compute a noise map, the software proceeds in two
steps:

Noise emission The only emission source considered in this thesis is the road traffic
source. It distinguishes light vehicles from heavy vehicles. The inputs are road
sections which are described as line sources. This step consists in breaking down
these sources into a series of point sources. The sound emission level of the points
are determined for a given frequency band according to the acoustic power level
per metre of a line source.

Noise propagation The sound propagation from a point source to a receiver is
submitted to various phenomena such as the geometrical spreading due to the
expansion of the wavefront and the atmospheric absorption that results from
the molecular relaxation effect. The propagation can be modelled by separating
the contributions of each phenomenon, which leads to consider the sound field
received at a given location as a combination of:
— the direct fields, which corresponds to the sound waves propagating directly

from the source to the receiver;
— the diffracted field, related to the diffraction of the sound waves around and

over the buildings;
— the reflected field, associated with the reflections on the ground and on the

buildings facades along the propagation path that can also include absorption
by these elements.

The reflected fields on vertical surfaces are modelled by introducing an order
of reflection which correspond to the number of reflections that are taken into
account from the source to the receiver. Diffraction is also taken into account.
An graphical exemple of the paths computed between a punctual source and the
receivers is shown in figure I.3

Figure I.3. – 3D example of the computed rays of a single source

I.1.2.2. Exposure and qualitative aspects

During the modeling, receptors are placed on the most exposed facades of residential
buildings (Kephalopoulos et al., 2012). By establishing a correspondence between the
number of inhabitants (previously estimated) of each building and the noise levels that
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are calculated at the receptors located on this building, an estimate of the overall
exposure of the urban population is obtained. Other associations are possible, for
example, Havard et al. (2011) calculates the exposure of the study participants by
considering the neighbourhood around their place of residence. This neighborhood is
defined by a circle of 250 m around the place of residence. The question of how the
neighbourhood is defined and the size of the neighbourhood to be considered has an
important influence on the estimated exposure levels (Tenailleau et al., 2015).
This measure of exposure is therefore purely quantitative and does not include per-

ceptual aspects. However, it is clear that annoyance is intrinsically linked to the nature
of the noise, beyond the energy it contains: a concert of music can be enjoyed when
the noise level is very high, while neighbourhood noise is the source of many com-
plaints, even though the level is often low. Soundscape studies, such as Lavandier and
Defréville (2006), seek to determine the links that may exist between objective (cal-
culated) acoustic indicators and the subjective judgements expressed by participants
exposed to a certain sound environment.
As an indication, the exposure levels not to be exceeded, as recommended by the

World Health Organization (WHO) are 53 dB(A) during the day (in Lday) and 40 dB(A)
in Ln equivalent level at night (Hurtley, 2009). Indeed, sensitivity and potential an-
noyance vary according to the activity under consideration, and therefore the time of
day. In this perspective, it would seem beneficial to have a representation of temporal
noise at a finer scale than the 3 periods defined in section I.1.1.7. Average levels such
as Lday, Levening and Lnight do not allow local dynamics to be detected. One of the
objectives of this thesis is to try to overcome this limitation through methods that
generate dynamic maps. This question is dealt with in the chapters III and IV of this
manuscript.

I.2. Why do environmental acoustics need data assimilation?

Environmental acoustics consists in studying the sound environment of a given area,
in this particular case study, in urban areas. Two common approaches have been
presented with differents advantages and drawbacks.
— The noise mapping approach: for a given area, with a given set of input data such

as traffic, weather, topographic data, etc. a noise mapping reference software
computes the resulting for the study area, i.e. for every reception point, noise
level in dB can be computed. However, the accuracy of the data may be flawed
and the computation time only allows to perform a limited amount of noise maps.
In other words, this method is useful when there is a need for a global result but
no need for studying the dynamics of the noise ditribution.

— The sound level meter approach: For a local point, the sound level meter gives
a precise and dynamical evolution of the noise level in dB.This approach is com-
plementary to the previous one since it is both local and dynamic.

At this point, we have two approaches, the first is global and static and the second
is local and dynamic. One may wonder if it is possible to combine the two antagonic
benefits of these methods, in other words, is it possible to get a method which gives
both global and dynamic distribution of the noise levels?
Implementing data assimilation principles in the solution presented in this work to
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merge the benefits of the two approaches and to get a dynamic noise map. The need
for dynamic noise maps is needed by urban planners to find the best traffic regulation
policies and for epidemiologists, to infer the influence of the noise pollution on some
health issues. Data assimilation principles are presented in section I.3.

I.3. Data Assimilation Principles
Data assimilation methods allow the products of a numerical model to be combined

with measurements. They were developed as early as the 1950s in the field of mete-
orology (Bergthörsson and Döös, 1955). Their objective is to estimate at each point
of the model, in the most realistic way possible, the value of one or more variables,
represented as a state vector. A review of classical data assimilation methods can be
found in Bouttier and Courtier (2002). The application of such methods results in the
computation of an analysis, which combines the theoretical knowledge of the studied
system and the knowledge derived from its observation. The section I.3.1 gives a gen-
eral formalization of the problem, the notion of error being detailed in section I.3.2.
We then present assimilation methods used in practice in sections I.3.3 and I.3.4.

I.3.1. Formalisation

State vector In the general case, the studied variable x is a vector field and belongs
to a space of infinite dimension B. Since the simulation calculations are based on
computer tools, we give a discrete representation of the state vector xt ∈ Rn (for
"true") of dimension n. Formally, this results in the following operation:

xt = Π(x), (I.15)

where Π : B → Rn is an operator to obtain a representation of x in Rn. Typically,
Π can operate the discretization of the studied spatial domain into a grid of regularly
spaced points.

Background The theoretical knowledge a priori of the system, also called background,
is noted xb ∈ Rn. It is a direct estimate of xt. This estimation is performed using the
output of the model.

Observations The observations of the system, represented by the vector y ∈ Rp,
reduce the error of the model. The comparison of the observations and the state vector
is not immediate:
— observations are not made at the model grid points;
— the observed quantities may not correspond to the variables making up the state

vector, but rather be more or less complex functions of these variables.
An observation operator H is therefore used, linking the space of the state vector to
that of the observations, thus allowing comparison:

H : Rn → Rp (I.16)
xt 7→ H(xt). (I.17)
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Usually, only a small portion of the system state variables are accessed through obser-
vation, and p� n.

Probabilistic interpretation As it will be developed in the next section, the state vec-
tor representations provided by the background and the observations are tainted by
unknown errors, which we represent by random vectors. The quality of the estimation
of the distributions associated with these random vectors conditions the relevance of
the analysis offered by data assimilation, which therefore inevitably takes on a statisti-
cal character, and is naturally formulated within the framework of Bayesian inference
(Cohn, 1997). Probability distributions P(x) and P(y) are associated with x and y.
According to Bayes’ formula, we have:

.P(x | y) = P(x)P(y | x)
P(y) ∝ P(x)P(y | x). (I.18)

In the previous equation, P(x) represents the a priori knowledge that we have of the
state vector, P(y | x) concerns the error committed during the comparison between
the observations and this state vector. The analysis phase corresponds to calculating
xa as an estimator of xt based on the conditional distribution P(x | y). The choice of
the estimator is not unique: it can be the conditional expectation xa = E(x | y) of the
distribution, but other choices are possible, such as the a posteriori maximum :

xa = max
x

P(x | y) = max
x

P(y | x)P(x)∫
ζ P(y | ζ) dζ = max

x
P(y | x)P(x). (I.19)

I.3.2. Errors

Various approximations and assumptions are made in order to estimate x, which
translates into errors associated with the variables previously described. In this section,
we describe the nature of the errors associated with each of the components of the
assimilation system, as well as the statistical properties expected for the production of
a xa analysis.

I.3.2.1. Errors categorisation

Observation errors There are several kinds of errors associated with observations. In
the previous section, the H operator was introduced to compare elements in the space
of the discretized state vector xt and those in the observations space. One may in
fact wish to compare y to the continuous state x, and not xt, through an operator
h : B. → Rp. On the other hand, any observation is associated with an instrumental
errorei, reflecting the metrological qualities of the measuring instrument used to make
this observation. Thus, we have:

y = h(x) + ei. (I.20)

Going from x to its discrete representation xt carries an additional error called rep-
resentativity error:

er = h(x)−H(xt) = h(x)−H(Π(x)). (I.21)
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Finally, we get an observation error eo wich is the sum of the latter errors:

y = h(x) + ei = H(xt) + er + ei (I.22)
= H(xt) + eo, (I.23)

In other terms:
eo = y−H(xt). (I.24)

Background and analysis errors Background and analysis errors respectively repre-
sent the deviation of the a priori and a posteriori estimates to xt

eb = xb − xt, (I.25)
ea = xa − xt. (I.26)

I.3.2.2. Errors statistics

Several methods can be used to obtain an analysis, depending on the characteristics
of the problem to be solved: its size, its dynamics, the available computer resources,
etc. Independently of the method used, the quality of the analysis will depend on the
ability to estimate the different errors and their statistical properties.
It is assumed that each error has a second order moment , i.e. a covariance matrix.

This is defined as follows:
— R = Var(eo) = E[eoeoT ] ∈ Rp×p The observation error covariance matrix. This

matrix is generally supposed to be diagonal, i.e. the observation errors are inde-
pendant from one another. This hypothesis is genrally condiered to be reasonable,
especially when different devices conduct the observation in different places as it
is the case in our studies.

— B = Var(eb) = E[ebebT ] ∈ Rn×n The background error covariance matrix. The
simulated noise level distribution error obeys a spatial covariance structure. The
extra diagonal term Bij = Cov(ebi , ebj) with i 6= j describes the covariance between
the background error at the points i and j of the state vector. The estimate of B
allows us to account for the spatial covariance of the error over the whole domain,
and thus conditions the correction brought by the analysis.

These matrices are supposed to be positive-definite. Hence every component of xb
of y is considered to be flawed.

I.3.3. BLUE analysis

This section presents the general principles of a static data assimilation technique
used in this study which aims at computing the state of the system at a given moment
combining both simulated and observed levels. this presentation relies on the following
works (Bouttier and Courtier, 2002; Gelb, 1974).
The method computes an analysis which is a observations based correction of the

background, it is a statistical interpolation. We want this interpolation to be optimal,
meaning that tr(Cov(ea)) is minimized. Here, we make the following assumptions:
— H is a linear operator noted H.
— The background and observation errors are unbiased: E[eb] = 0 and E[eo] = 0
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— The background and observation errors are uncorrelated: E[ebeo] = 0
We aim at building an analysis xa which has the following properties:
— A linear combination of the background and the observations:

xa = Lxb + Ky (I.27)

— unbiased:
E[xa] = 0 (I.28)

Since:

ea = Lxb + Ky− xt

= Lxb − Lxt + Lxt + Ky−KHxt + KHxt − xt

= Leb + Lxt + Keo + KHxt − xt,

and xb and y are unbiased:

E(ea) = 0 ⇐⇒ (L + KH− I)E(xt) = 0. (I.29)

This leads to L = I−KH, Hence:

xa = (I−KH)xb + Ky
xa = xb + K(y−Hxb). (I.30)

— Optimal, i.e. tr(Cov(ea)) is minimal. Starting with ea expressed as a linear
combination of the background and observation errors:

ea = xb + K(y−Hxb)− xt

= eb + K(eo −Heb)
= (I−KH)eb + Keo

ea = Leb + Keo. (I.31)

The analysis error covariance matrix AK satisfies:

AK = E[eaeaT ] = E
[
(Leb + Keo)(Leb + Keo)T

]
= E

[
LebebTLT + KeoeoTKT

]
= LBLT + KRKT

= (I−KH)B(I−KH)T + KRKT

Using E[ebeo] = 0 Let V be the variation of AK under the infinitesimal variation
δK:

V = AK+δK −AK. (I.32)

The optimum value of K must satisfy:

tr(AK+δK)− tr(AK) = tr(V) = 0, (I.33)
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Hence, we aim at finding the optimal matrix K? wich fulfills this condition:

V = −δKHB + δKHBHTKT −BHT δKT + KHBHT δKT − δKHBHT δKT

+ KRδKT + δKRδKT + δKTRK.

Neglecting the second order terms, with tr(M) = tr(MT ) and B and R symmet-
rical:

tr(V) = 2 tr
(
(−BHT + KHBHT + KR)δKT

)
, (I.34)

Hence:
tr(V) = 0 ⇐⇒ K?HBHT + K?R = BHT , (I.35)

In other terms
K? = BHT

(
HBHT + R

)−1
. (I.36)

Such estimator is called BLUE as “ Best Linear Unbiased Estimator”. The K matrix
is called gain matrix or Kalman matrix. Its terms depend on the guessed uncertainties
concerning the background and the observations, and their corresponding covariance
structures. In eqauation I.30, the term dob = y−Hxb is called the innovation vector and
represents the differences between the observation and the background at the observa-
tion points. The new vector dab = xa − xb between the background and the analysis is
the output of the Kalman matrix applied to the innovation vector. this vector depends
of covariance matrices structures, the spatial distribution of the observations and level
of confidence given to the background and the observations.
Consider the following toy model. Define a state vector of dimension 2 and an

observation of the second component of the state vector:

xb =
(
xb1
xb2

)
, H =

(
0 1

)
. (I.37)

Let σ2
b be the background error variance, σ2

o the observation error variance and
ρ ∈ [−1, 1] the correlation between the two component of the state vector xb. Hence,
the error matrices are expressed as follows:

B =
(
σ2
b ρσ2

b

ρσ2
b σ2

b

)
= σ2

b

(
1 ρ
ρ 1

)
, R = σ2

oI1 = σ2
o . (I.38)

Hence the Kalman matrix is expressed as:

K? = σ2
b

(
1 ρ
ρ 1

)(
0
1

)((
0 1

)
σ2
b

(
1 ρ
ρ 1

)(
0
1

)
+ σ2

o

)−1

= σ2
b

(
ρ
1

)
(σ2
b + σ2

o)−1

The analysis vector xa is then expressed as:

xa = xb + K∗(y −Hxb)

= xb + σ2
b

σ2
b + σ2

o

(
ρ
1

)
(y − xb2).
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Hence, the value of xa2 is a fonction of the innovation, weighted by the quantity
σ2
b

σ2
b + σ2

o

. Let consider two extreme scenarios:

— The level of confidence to the observation is high, i.e. σ2
o � σ2

b then:

xa2 ' xb2 + (y − xb2) = y; (I.39)

— The level of confidence to the observation is low, i.e. σ2
o � σ2

b then:

xa2 ' xb2 + 0× (y − xb2) = xb2, (I.40)

This consideration is also valid for the first component of xa but the increment is
weighted by ρ.

I.3.4. Variational approaches
The results shown in section I.3.3 can be also proven in a different approach which

involves the optimization of some cost function. This approach will be a key tool for
the study shown in chapter IV.
Using the notation of section I.3.3, define the following cost function:

J (x) = ‖x− xb‖2B−1 + ‖y−H(x)‖2R−1 (I.41)

where ‖x‖M =
√

xTMx. The gradient formula is

∇J (x) = 2B−1(x− xb)− 2HTR−1(y−H(x)) (I.42)

With H being the Jacobian matrix of H at x. If H is a linear function, then H et H
and J is convex since B and R are positive-definite. Hence, there is a uniquely defined
minimal value x? such that J (x?) = 0 which is:

x? = xb + (B−1 + HTR−1H)−1HTR−1(y−Hx) (I.43)

Lemma 1. Using the Sherman-Morrisson-Woodbury identity (Sherman and Morrison,
1950), we find:

(B−1 + HTR−1H)−1HTR−1 = BHT (HBHT + R)−1 (I.44)

Proof. The Sherman-Morrisson-Woodbury identity reads, for matrices with ad-hoc di-
mensions:

(A + UCV)−1 = A−1 −A−1U(C−1 + VA−1U)−1VA−1 (I.45)
Hence, using the matrices above

BHT (R + HBHT )−1 − (B−1 + HTR−1H)−1HTR−1

=BHT (R−1 −R−1H(B−1 + HTR−1H)−1HTR−1)− (B−1 + HTR−1H)−1HTR−1

=BHTR−1 −BHTR−1H(B−1 + HTR−1H)−1HTR−1 − (B−1 + HTR−1H)−1HTR−1

=BHTR−1 − (BHTR−1H + I)(B−1 + HTR−1H)−1HTR−1

=BHTR−1 −B (HTR−1H + B−1)(B−1 + HTR−1H)−1︸ ︷︷ ︸
I

HTR−1

=BHTR−1 −BHTR−1 = 0
(I.46)
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Hence, we have BHT (R + HBHT )−1 = (B−1 + HTR−1H)−1HTR−1 then the ma-
trices product found in (I.43) corresponds to the same Kalman matrix as described in
section I.3.3: K = BHT (R + HBHT )−1.

With
x? = xb + K(y−Hx) (I.47)

We find the same result as in the BLUE estimation used before. If the cost function
has non linear components, an optimal value can be found with Newton-like optimiza-
tion algorithms as shown in chapter IV. The algorithm wich consists in minimizing the
cost function is called 3D-VAR, in a linear framework, output is the same as BLUE.

I.4. Meta-modeling: General principles
I.4.1. Latin hypercube sampling
When sampling a high-dimensional set, a regular grid includes too many points for

the simulations to be carried out. For example, if the input set is [a, b]k, a regular
grid with r discretization points along each axis leads to a sample of size rk. Since the
number of simulations should be limited to about 2·103, with k = 7 (in our case), it is
impossible to have a regular grid. Even with only 4 points along each axis, the number
of simulations is too high (47 = 16384 � 2000). A randomly chosen sample with
a uniform distribution is also intractable since this method leads to some clustering
effects which prevent us to efficiently span the input space. In order to emulate a
relatively smooth function, an effective sampling method with a limited sample size
should guarantee a uniform distribution along each axis. The LHS is appropriate for
this task. The latin hypercube sampling method (LHS) (McKay et al., 1979) is a
sampling method that applies to an hypercubic input interval, say ILHS = [0, 1]k.
In our case, the parameters are proportionality coefficients or physical values I =
[min(p1)− δ1,max(p1) + δ1]×· · ·× [min(pk)− δk,max(pk) + δk], with a margin δi that
is used to avoid edge effects at the interpolation step of the meta-model. It is trivial
to go from I to ILHS with an affine transformation. To get a latin hypercube sample
of size r, we split I into rk hypercubes of equal size

[
i1
r ,

i1+1
r

]
× · · · ×

[
ik
r ,

ik+1
r

]
, with

{i1, . . . , ik} ∈ J0, r−1Kk, and then iteratively choose r points with the following rules:
— The first sample vector p(1) is randomly chosen in I1 = ILHS
— The i-th sample vector p(i) is randomly chosen in Ii which is recursively defined

as follows. p(i) is chosen in

H =
[
j1H
r
,
j1H + 1

r

]
× · · · ×

[
jkH
r
,
jkH + 1

r

]
∈ H′i (I.48)

with

H =
{[
i1
r
,
i1 + 1
r

]
× · · · ×

[
ik
r
,
ik + 1
r

]
,

{i1, · · · , ik} ∈ J0, r − 1Kk
} (I.49)

and
H′i = {x, x ∈ H ∧ x ⊂ Ii} (I.50)
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— Ii+1 is the remaining part of Ii after we removed H and all the hypercubes with
one interval in common with H, hence all the hypercubes in:

Ei =
{[
`1
r
,
`1 + 1
r

]
× · · · ×

[
`k
r
,
`k + 1
r

]
⊂ Ii,

{`1, · · · , `k} ∈ J0, r − 1Kk
∣∣

∃! m ∈ J1, kK, `m 6= jmH

} (I.51)

Ii+1 = Ii \ (Ei ∪Hi) (I.52)
With this strategy, we get a sample of values uniformly distributed along each axis.

An example of a LHS of size 10 in [0, 1]2 is shown in figure I.4.
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Figure I.4. – Example of a latin hypercube sampling (LHS) in dimension 2 and with
10 samples.

I.4.2. Dimension Reduction
Before the emulation step, which applies to scalar functions, we need to represent the

model outputs with a few scalars. Indeed, a direct application of the emulation to the
simulator output would imply to design an emulator for each receptor. With tens of
thousands of receptors, the overall computation time would be too high. The strategy
is to project x onto a subspace spanned by a reduced basis (Ψi)i∈J1,dK with d � n. If

Ψ = [Ψ1, . . . ,Ψd] ∈ Rn×d and x̄ =
1
r

r∑
i=1

x(i), we would expect that

x ' x̄ + ΨΨT (x− x̄) (I.53)

Since x̄ and Ψ are known, one would only have to generate d emulators for ΨTM(p) ∈
Rd instead of n emulators forM(p) ∈ Rn.
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The reduced basis is chosen so as to represent the variability of the noise level fields.
It is computed with the training set X = [x(1), . . . ,x(r)] obtained with the LHS strategy,
and it is determined by a principal component analysis (PCA). The components Ψ`

(` ∈ J1, nK) are sorted so that the i-th component accounts for the i-th largest variability
λi of the data. The total quadratic error of the approximations of the training set is

r∑
h=1
‖x(h) − x̄−

d∑
j=1

((x(h) − x̄)TΨj)Ψj‖22 =
n∑

`=d+1
λ` (I.54)

(x(h) − x̄)TΨj is the projection of x− x̄ in the direction Ψj .
If we call X̄ the centered training set X̄ = [x(1) − x̄, . . . ,x(r) − x̄], then for any

` ∈ J1, nK, the variability of the `-th components is defined with X̄X̄TΨ` = λ`Ψ`. The
part of the variance (of the training set) explained by the first d components is∑d

`=1 λ`∑n
`=1 λ`

(I.55)

A high explained variance, like 98 %, can be achieved with only a few vectors in the
reduced basis (about four, i.e., d = 4).

I.4.3. Emulation

For any p ∈ I, we now wish to emulate ΨTM(p) ∈ Rd. We denote αi(p) =
ΨT
iM(p) ∈ R, and α̂i its emulator which should satisfy ∀p ∈ I, α̂i(p) ' αi(p). If we

denote α̂ = (α̂1, . . . , α̂d) then

∀p ∈ I, α̂(p) ' ΨTM(p) (I.56)

The following sections will describe two methods usually used to generate an emulator
for a function with multidimensional inputs and scalar outputs:
— Radial basis functions;
— Kriging.

I.4.3.1. Radial Basis Function Interpolation

Once we computed the projections
{
ΨT
iM(p(1)), . . . ,ΨT

iM(p(r))
}
of the simulations

along each axis i, the next step is to find an approximation of ΨT
iM(p) for every

p in I, with an interpolation function. The radial basis function interpolator (RBF)
(Broomhead and Lowe, 1988) is an interpolator which demands very low computational
power. The idea is to define a distance Λ(·, ·) over the input space and to choose a
function φ : R+ → R. The resulting interpolator is a linear combination of the values
of the function applied to the distance between the input parameter p and the training
set inputs:

α̂i : I → R

p 7→
r∑
j=1

γi,jφ(Λ(p,p(j))) (I.57)
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Note that the distance Λ and the radial function φ could be different for different
components i, but in our case, we used the same for all d components. The weights are
chosen so that the predictions at the training points match the data, hence

∀j ∈ J1, rK, α̂i(p(j)) = αi(p(j)) = ΨT
iM(p(j)) (I.58)

If we denote
— Φ =

(
φ
(
Λ
(
p(i),p(j)

)))
(j,k)∈J1,rK2

∈ Rr×r;
— γi = (γi,1 · · · γi,r)T ∈ Rr;
— bi =

(
ΨT
iM(p(1)) · · ·ΨT

iM(p(r))
)T
∈ Rr;

The computation of the weights amounts to solving the linear system

Φγi = bi (I.59)
The offline computation of the emulator consists in solving d (one for each α̂i) linear

systems of size r. Usually, and as well in our case study, the distance chosen is the
Euclidean distance Λ(·, ·) = ‖ · − · ‖2 with scaling factors, and the radial function is
the cubic function φ : r → r3. The figure I.5 shows a visual example in 1d of the RBF
interpolation of the sine function
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Figure I.5. – RBF interpolation in 1D, the red curve is the weighted sum of the blue
curves (the cubic radial basis functions of the example)

I.4.3.2. Kriging

The Kriging emulator (Matheron, 1962) is a statistical interpolator which demands
a little more computational power than the RBF interpolator. Since it relies on a
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assumption on the statistical behavior of the function αi, the validity of this assumption
could improve the performance of the emulation, compared to the RBF approach. The
founding assumption is that we consider αi as a centered stationary stochastic process,
which follows a Gaussian distribution with a fixed variance σ2

i :

∀p ∈ I, αi(p) ∼ N (0, σi) (I.60)

and

∀(p1 · · ·pq) ∈ Iq,∃ Γ ∈ Rq×q,

(αi(p1) · · ·αi(pq))T ∼ N (0,Γ)
(I.61)

With this assumption, it is possible to build a unique estimator (Rasmussen and
Williams, 2005) with the following properties:
— linear—it is a linear combination of the training data;
— unbiased—the prediction matches the data at the training points;
— optimal—in the sense that it minimizes the variance of the prediction error

E
[
(α̂i(p)− αi(p))2

]
.

This interpolation method is known as universal Kriging. The Kriging interpolator
depends on the covariance function of the Gaussian process. More precisely, if we
denote
— Γ =

(
Cov

(
αi(p(j)), αi(p(k))

))
(j,k)∈J1,rK2

∈ Rr×r,

— γ(p) =
(
Cov

(
αi(p), αi(p(j))

))
j∈J1,rK

∈ Rr,

— λ =
(
αi(p(j))(ω)

)
j∈J1,rK

∈ Rr,
with ω being a random selection in Ω (the events space), λ being a random variable,
whereas Γ and γ(p) being deterministic.

The Kriging interpolator estimates the expected output, it is formulated as:

α̂i(p) = E[αi(p)|λ]

= λTΓ−1
[
γ(p) + 1r

1− 1Tr Γ−1γ(p)
1Tr Γ−11r

]
(I.62)

A key offline computation of the emulator consists in estimating the covariance kernel
of the Gaussian process. We assume the second-order stationarity of the Gaussian
process, which implies the covariance between two points only depends on the distance
separating them. In addition, for computing considerations, we choose a separable
kernel, i.e., a tensor product of k univariate functions, each depending on only one
parameter.
The regularity of the Gaussian process is a determining factor for the selection of

the covariance function.The Matérn function φν(r, θ) is a function whose parameter ν
represents the level of roughness of the process, and θ represents the parameters to
be tuned. The parameter ν goes from 1

2 for a non differentiable continuous process
(φ 1

2
is an exponentially decreasing function) to +∞ for an indefinitely differentiable

process (φ+∞ is a Gaussian function). φ 3
2
and φ 5

2
respectively describe once and twice

differentiable processes. θ = (σ `)T where σ2 represents the variance of the process and
` its characteristic distance.



I.5. Some useful statistical tools 39

The covariance kernel has the following form

∀(p1,p2) ∈ I2, Cov(αi(p1), αi(p2)) =
k∏
i=1

φν(|p1i − p2i |, θi) (I.63)

The covariance kernel is differentiable with respect to θ, hence it is possible to infer
θopt under the maximum likelihood estimation with a gradient descent algorithm for

(
αi(p(1)) · · ·αi(p(r))

)T
∼ N (0,Γ) (I.64)

The figure I.6 shows a visual example in 1d of the Kriging interpolation of the sine
function
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Figure I.6. – Kriging interpolation in 1D

I.5. Some useful statistical tools

All along this study several concepts related to the statistics are used. A brief
overview is presented in this section

I.5.1. The χ2 law

The χ2
n law with n degrees of freedom is a random distribution followed by ∑n

i=1X
2
i

where (Xi)i are random variables with a standard normal distribution. If Y = ∑n
i=1X

2
i ,

then E[Y ] = p. Different χ2 distributions are shown in figure I.7.
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Figure I.7. – probability density function of different χ2 laws

If ν is a random variable of dimension n such that ν ∼ N (0,Γ) then, following the
definition, νTΓ−1ν ∼ χ2

n. Then, we find the following propositions used in chapters III
and V

— E[νTΓ−1ν] = n
— If zα is a quantile of order 1− α of the law χ2

n, then

P(νTΓ−1ν ≤ zα) =
∫ zα

0
fχ2(x)dx = 1− α (I.65)

I.5.2. Maximum likelihood

I.5.2.1. Definition

The maximum likelihood estimator is a method used to estimate which parameters θ
of a distribution p maximizes the probability for a given sample ν to occur, i.e. where
the density p(ν,θ) is maximum.

The real function θ → pn((ν(k))k,θ) where pn((ν(k))k,θ) = ∏k
i=1 p(ν(i),θ) and

(ν(k))k fixed, is called the likelihood of the sample (ν(k))k. There exists a unique
θ̂n such that the likelihood is maximal. The random variable θ̂((ν(k))k) is called the
maximum likelihood estimator.
Define the log-likelihood as the logarithm of the likelihood:

θ → Ln((ν(k))k,θ) = log(pn(ν(k))k,θ) =
k∑
i=1

log(p(ν(i),θ)) (I.66)
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I.5.2.2. Application to a normal distribution

Suppose now that for all i, ν(i) follow a Gaussian distribution, ν(i) ∼ N (µ,Γ).
Hence, its probability density function is:

p(x) = 1
(2π)p/2

√
|Γ|

exp(−1
2(x− µ)TΓ−1(x− µ)) (I.67)

Hence, the log-likelihood of (µ,Γ) for a sample ν of size 1 is:

L(ν,µ,Γ) = −p2 log(2π)− 1
2 log |Γ| − 1

2(ν − µ)TΓ−1(ν − µ) (I.68)

In the case studied in chapter V, Γ is fixed and µ depends on a set of parameters θ
and is expressed as µ(θ), hence the maximum likelihood estimator minimizes the cost
function J defined as follow:

J (θ) = (ν − µ(θ))TΓ−1(ν − µ(θ)) (I.69)

I.5.3. Matérn function
The Matérn class of covariance functions is given by:

k(r) = 21−ν

Γ(ν)

(√
2νr
`

)ν
Kν

(√
2νr
`

)
(I.70)

with positive parameters ν and `, whereKν is a modified Bessel function (Abramowitz
and Stegun, 1964). Note that the scaling is chosen so that for ν → ∞ we obtain the
squared exponential covariance function e−r2/2`. For the Matérn class, the process is
k-times mean square differentiable (Soo, 1973) if and only if ν > k. The Matérn co-
variance functions become especially simple when ν is half-integer: ν = p+ 1/2, where
p is an integer. In this case the covariance function is a product of an exponential and
a polynomial of order p, of general expression

kν=p+1/2(r) = exp
(
−
√

2νr
`

)
Γ(p+ 1)
Γ(2p+ 1)

p∑
i=0

(p+ i)!
i!(p− i)!

(√
8νr
`

)p−i
(I.71)

The cases used in this study are ν = 3/2 and ν = 5/2 for which:

kν=3/2(r) =
(

1 +
√

3r
`

)
exp

(
−
√

3r
`

)
(I.72)

kν=5/2(r) =
(

1 +
√

5r
`

+ 5r2

3`2

)
exp

(
−
√

3r
`

)
(I.73)

When setting ν = 1/2, the the Matérn class gives the exponential covariance function
kν=1/2 = exp−r/`.
Figure I.8 shows the different covariance functions and figure I.9 shows an exemple

of their corresponding Gaussian processes for ` = 1.
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II. Meta-modeling for urban noise mapping
This chapter introduces the construction of a meta-model for urban noise
mapping. After explaining the principles of a meta-model, it justifies the
need for such a device for the noise mapping of urban areas and applies
it to the city of Lorient, France. Then, it evaluates its performance when
compared to the output of NoiseModelling, the noise mapping software it is
based on.
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This chapter is a transcription of the following article: Antoine Lesieur, Pierre Au-
mond, Vivien Mallet, and Arnaud Can. Meta-modeling for urban noise mapping. The
Journal of the Acoustical Society of America, 148(6):3671–3681, 2020. doi: 10.1121/10.
0002866. URL https://doi.org/10.1121/10.0002866.
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Abstract

Urban noise mapping generally consists of simulating the emission and attenuation
of noise in an area by following rules such as Common NOise aSSessment methOdS
(CNOSSOS-EU). The computational cost makes these models unsuitable for applica-
tions such as uncertainty quantification, where thousands of simulations may be re-
quired. One solution is to replace the model with a meta-model that reproduces the
expected noise levels with highly reduced computational costs. The strategy is to gen-
erate the meta-model in three steps. The first step is to generate a training sample
exploring the large dimension model’s inputs set. The second step is to reduce the di-
mension of the outputs. In the third step, statistical interpolators are defined between
the projected values of the training sample over the reduced space of the outputs. Ra-
dial basis functions or kriging are used as interpolators. The meta-model was built
using the open source software NoiseModelling. This study compares the proximity
of the meta-model outputs to the model outputs against the reduced basis, the class
of the kriging covariance function and the training sample size. Simulations using the
meta-model are more than 10 000 times faster than the model, while maintaining the
main behavior.

II.1. Introduction

Noise pollution is associated with multiple psychological and physical disorders such
as sleep disturbance, nervousness, cognitive impairment or hypertension (Basner et al.,
2014). It is a major challenge to tackle for urban areas. The World Health Organization
(WHO) recommends in its guideline, an outdoor night level of 40 dB(A) and a Lden of
65 dB(A) (Hurtley, 2009). However, 8 million European adults suffer sleep disturbance
due to environmental noise (European Environment Agency, 2014).
To diagnose sound environments, European cities with more than 100 000 inhabitants

are required to produce noise maps at least every five years. These maps should present
the distribution of Lden and Lnight indicators over the studied area, in such a way
that the exposure of dwellers to environmental noise can be estimated. These generic
approaches may help to prevent or reduce the harmful effects of noise.
A noise map is a representation of the equivalent average noise level field over an

urban area. A noise map which relies on annually averaged traffic and weather data
is usually represented in regulatory noise maps. In Europe, the attenuation rules obey
the European standard CNOSSOS (Kephalopoulos et al., 2012) which has become the
reference since the application of the directive 2015/996 (European Commission, 2015).
When this method is applied at the city level, it becomes computationally expensive
due to the high number of sources and receivers. The computation time makes this
process unsuitable for the generation of hourly or even daily noise maps.
Recent studies (Sevillano et al., 2016), have endeavored to enrich noise maps with

data from sensor networks. Even so, computational time constraints have been prob-
lematic. Too much computation time leads to the intractability of large Monte Carlo
simulations and prevents applications of advanced methods for uncertainty quantifica-
tion, data assimilation, inverse modeling or network design which can require tens of
thousands of calls to the model. These applications are nonetheless crucial to evaluate
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the range of validity of the model, or to carry out real-time generation of observation-
based noise maps.
Statistical models have been proposed to link noise levels to road traffic and urban

morphology variables, in order to reduce computation times to their minimum as in
Silva et al. (2013). Genaro et al. (2010) construct the estimated noise maps based on
a neural network and a set of 24 variables describing the sources (number of light ve-
hicles, etc.) and propagation conditions (building height, street width, etc.). However,
although useful for understanding the traffic and urban morphology variables that in-
fluence noise levels, these works are based on measurements and so cover only a small
area of the input parameters space.
A meta-model (also sometimes called surrogate model) is a tool used in several fields

to statistically reproduce the behavior of a reference simulation software. Iooss et al.
(2010) has proven the efficiency of a meta-model generation method for a wide class
of models that rely on Gaussian processes, Janon et al. (2014) has shown that the
meta-models are suitable to quickly perform sensitivity analysis on complex systems.
In applied sciences, meta-models reproduce the behavior of several systems to per-
form various studies. For instance Iooss and Marrel (2019) has performed uncertainty
quantification for a nuclear reactor using a meta-model by performing a substantial
amount of calls to the model. Mallet et al. (2018) has compared the accuracy of air
quality predictions with observations by generating a high amount of air quality maps
computed with a meta-model. Other studies have shown the efficiency of the use of a
meta-model for predicting noise level distribution, as Hart et al. (2016), which shows
the performance of a meta-model for blasts sounds in local areas. In this paper, the
authors propose the development and use of a meta-model for environmental acoustics
to predict the urban distribution of noise level indices such as LAeq, 1h.
A meta-model for noise mapping shall help to reproduce the main features of a noise

model while requiring negligible computational resources. On a given area with given
input data, a meta-model is a way to quickly generate a new noise map obtained by
slightly modifying the input data. This approach enables to determine the impact of
input data modifications on the noise map, e.g., if the traffic or weather conditions
change by a certain amount.
In this paper, the authors explain the construction of such meta-model based on (1)

dimension reduction and (2) interpolation methods applied to each projection coefficient
on the basis vectors of the reduced output space. The interpolation methods are kriging
and an interpolation based on Radial Basis Functions (RBF). Explanations about the
reduction and interpolation strategy are provided in section II.2. In section II.3, the case
study is described, results are given in section II.4. The paper concludes in sectionII.5
with several applications made possible by the substitution of the regular simulator by
a meta-model.

II.2. Generation of the noise mapping meta-model: Training
set, Reduction and interpolation

II.2.1. Vocabulary

In order to avoid any confusion, several terms used in this paper are described below:
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— A simulator: An algorithm that computes an output from inputs according to a
mathematical model of a physical phenomenon (here, noise emission and propa-
gation);

— A meta-model (also sometimes called surrogate model): An algorithm that com-
putes an output (in this study, a noise map) from inputs (in this study, traffic
and weather data) in order to mimic a simulator with much lower computational
requirements;

— A simulation: an output of the simulator for a given input;
— An interpolation: An output of the kriging or RBF method.

II.2.2. Purpose of the meta-model

In the noise context, a meta-model can be generated with a training sample of a
given amount of noise maps computed with the noise mapping software.
A meta-model M̂ generates the same type of outputs as the noise mapping modelM.

Once the meta-model is built, each call with new inputs takes a very small amount of
time, because it only consists in an interpolation between the projection of the outputs
of a training sample onto the vectors of a reduced basis. These reduced base vectors are
constructed to capture the behavior of the reference noise mapping software in spite of
a lower dimension. For every input p within the boundaries of the case study,

M̂(p) 'M(p) (II.1)

II.2.3. Description of the framework of the meta-modeling process

Noise mapping models use various input data:
— Road traffic distribution: flow rate and mean speed in road sections;
— Buildings distribution;
— Building absorption coefficient;
— Ground properties;
— General topography;
— Weather data.
A simulation is also characterized by a set of propagation parameters:
— propagation distance;
— number of reflections;
— whether or not to consider diffractions.
For a given set of parameters p let x = M(p) where M is a noise mapping model

that relates the model inputs p to the predicted noise levels x on a grid of receivers. If
each building and road section is considered separately, the noise mapping model can
have a very large number of inputs, the dimension of the input space is then very large.
A common way to describe the input data as a low dimension vector of k parameters
p = (p1 . . . pk)T for a given area is to apply the same multiplicative coefficient on
a given set of inputs. For instance, p1 can be a multiplicative coefficient applied to
the yearly averaged traffic flow rate in all roads of the study area, so that the total
traffic changes with the variations of p1—but the traffic cannot be changed in a single
specific road. By doing so, the degrees of freedom are reduced and so is the dimension
of the input parameters. p contains all the inputs that vary, e.g., all uncertain inputs
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if uncertainty quantification is carried out. See section II.3.3 for the list of parameters
pi considered in this paper.
A call to M̂ for a new set of parameters p, only implies the computation of an

interpolation function α̂(p). It consists in a short sequence of elementary operations.
Hence, a rather cheap computation power is involved.

II.2.4. Meta-model Generation
The present study relies on previous studies that have been done for urban air quality

models (Mallet et al., 2018) dealing with spatial distribution of pollutants such as NO2
and PM10.

II.2.4.1. General Formula

The training sample is composed of a set of input parameters and their corresponding
simulation outputs. As a toy example, one can imagine a really basic meta-model whose
output for a given input p would be the output corresponding to the nearest neighbor
to p in the training sample.

In this study, the generation of the meta-model is composed of three steps:
— The training sample is strategically generated with a LHS. From a random seed,

it generates a set of N input parameters (p(i))i∈J1, NK for the modelM(p). The
simulations

(
M(p(i))

)
i∈J1, NK

of a reference simulation software are carried out,

its outputs x(i) = M(p(i)) are the noise levels in dB(A) in a grid of receivers
whose input parameters correspond to an average for a given time interval. For
instance, if the input parameters correspond to the average traffic and weather
data at a given hour, the output will be a noise map of the corresponding LAeq, 1h
distribution;

— A dimension reduction algorithm is applied to select the output subspace that
gathers most of the variance of the outputs. From the outputs x(i) = M(p(i)),
the resulting output is Ψ, the projection matrix to the reduced subspace. This
matrix is computed with a Principal Component Analysis (PCA) (Jolliffe, 1986)
as explained in section II.2.4.3;

— An interpolation function is generated for each basis vector of the reduced sub-
space. The interpolation function α̂(p), whose input is p, interpolates its output,
the projected values of the outputs of the simulator onto the vectors of the reduced
basis. It is designed by an RBF algorithm or a kriging algorithm, as detailed in
section II.2.4.4.

Let x̄ = 1
N

∑N
i=1 x(i) be the mean value of the simulated noise maps of the N LHS

generated inputs.
The complete meta-model M̂ reads (Mallet et al., 2018):

M̂(p) = x̄ + Ψ(α̂(p)−ΨT x̄) (II.2)

II.2.4.2. Training sample

A training sample is generated using Latin Hypercube Sampling (LHS) McKay (1992)
in the input space and computing the corresponding simulations at the sample points.
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Since the dimension of the input space is relatively large, a Cartesian regular grid
would grow too rapidly with the step size. If the number of input parameters (i.e. the
dimension of the input space) is k = 15 as in this study, a Cartesian regular grid which
splits each axis in two parts would lead to a training sample of size 216 = 65536. This is
not compatible with the computation time allocated for this study which corresponds
to a sample size of ∼ 103. The latin hypercube sampling provides an adequate sampling
size that allows the implementation of the adapted interpolation strategies.

II.2.4.3. Dimension Reduction

Instead of considering the output of the model as a vector of n independent receivers,
it is represented as a linear combination of d vectors of size n, with d� n. Doing such
a reduction allows to design only a small number of interpolation functions. It signifi-
cantly reduces the complexity of the meta-model since the following section II.2.4.4 is
only applied to d vectors instead of n. The computation time, which is proportional to
the number of interpolators, is significantly reduced. The strategy is to project x onto
a subspace spanned by a reduced basis (Ψi)i∈J1,dK. If Ψ = [Ψ1, . . . ,Ψd] ∈ Rn×d, the
following result is expected

x ' x̄ + ΨΨT (x− x̄) (II.3)

Since x̄ and Ψ are known, one would only have to generate d interpolating functions
based on p as input and ΨTM(p) ∈ Rd as output—using the low-dimensional training
set (ΨTM(p(i)))i—instead of n interpolators with p as input and M(p) ∈ Rn as
output—using the high-dimensional (M(p(i)))i. In other words, the interpolation is
applied to basis vectors – i.e. noise maps of norm 1 – instead of individual receivers.
The reduced basis is chosen so as to represent the variability of sound levels at

receivers over the outputs of the training sample. It is computed with the training
sample X = [x(1), . . . ,x(r)] obtained with the LHS strategy, and it is determined by a
principal component analysis (PCA) (Jolliffe, 1986). The components Ψ` (` ∈ J1, nK)
are computed so that the first component accounts for the axis along which the largest
variability of the data is observed, the second for the largest variability in the orthogonal
complement, and so on. Note this PCA takes place in a n-dimensional vector space
where n is the number of receivers. The PCA is applied on the outputs of the model
(i.e., noise maps), each noise map being organized in a vector whose nth component is
the noise level at receiver n.

II.2.4.4. Interpolation

For any new set of parameters p ∈ I, the value ΨTM(p) ∈ Rd needs to be in-
terpolated. With the notation αi(p) = ΨT

iM(p) ∈ R, and α̂i its interpolator that
approximates αi(p), α̂ = (α̂1, . . . , α̂d):

α̂(p) ' ΨTM(p) (II.4)

Two common methods for an interpolation function with multidimensional inputs
and scalar outputs are used in this study:
— Radial Basis Functions interpolation (Broomhead and Lowe, 1988), a linear com-

bination of radial functions centered around the sample points;
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— Kriging (Matheron, 1962), a statistical interpolator which gives an expected value
based on a covariance function computed between the sample points.

The compared performance of these two methods is evaluated in section II.4.3.
The reader might be familiar with kriging in its classical geostatistical background

as it has been applied in some studies (Baume et al., 2009). However, contrary to
the usual kriging used in several acoustics applications using geographical data, this
paper applies kriging to the abstract vector space of the input parameters which has
no relation with the geographical 2D space.
The interpolation algorithms used in this paper, kriging and RBF, have been selected

because they fit with some characteristics which are specific to the case study, i.e., a
large dimension of the input space and a small training sample, which leads to a sparse
distribution of the training sample in the input space, as opposed to Cartesian regular
grids.

II.3. Meta-modeling of NoiseModelling applied to Lorient
(France)

II.3.1. Case study

This study is a part of a national research project called CENSE whose goal is
to characterize urban sound environments combining numerical predictions and local
observations. The case study of this article is the city of Lorient, France, which has
been selected by the CENSE project and for which we have access to a complete input
data set.
The receiver grid is a regular grid with a space step of 10 m where the points that are

inside the buildings have been removed. They are located 4 m above the ground, which
is approximately the height of the physical sensors. The total number of remaining
points is 9780.

II.3.2. Noise mapping reference software

NoiseModelling 1 (Aumond et al., 2020a) is an open source software designed to pro-
duce noise maps for evaluating the noise impact on urban mobility plans. It uses
traffic, topographic and meteorological data to generate noise maps. The noise calcu-
lation method implemented within NoiseModelling is based on the standard European
method CNOSSOS, as a reference method to be used under the Directive 2015/996 re-
lated to the assessment and management of environmental noise (Kephalopoulos et al.,
2012). The version used for this paper is sightly different than NoiseModelling v3.0 as
it has been especially designed to run multiple simulations.

The NoiseModelling software implements the CNOSSOS specifications. The CNOS-
SOS method is described in the reference document (Kephalopoulos et al., 2012). In
order to comply with the CNOSSOS specification, the process can be summed up by
the following steps: the input traffic data along each road is discretized into a set of
punctual noise sources, and the noise level field is represented as Cartesian regular

1. See http://noise-planet.org/noisemodelling.html
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grid. Noisemodelling computes the emissions. Then Noisemodelling uses the path find-
ing method designed by CNOSSOS which computes the transmission paths between
the sources and the receivers, taking into account the distance propagation, the num-
ber of reflections and diffactions. The software then computes the attenuation along
each path for a selected range of octave bands. The sound level at a receiver is finally
calculated from the contributions of all sources. Its output is a grid of receivers with
an attributed sound level value computed in dB.
The authors have chosen the CNOSSOS model over other models such as HAR-

MONOISE (Salomons et al., 2011) or NORD2000 (Jónsson and Jacobsen, 2008). Re-
gardless of the compared performance of each model, CNOSSOS is a reference across
the European Union since the application of the directive 2015/996. The case study of
this paper takes place within the EU area where the directive is applied. However, this
approach can be applied in practice for every type of model.

II.3.3. Input parameters

Table III.1 shows the list of the k = 15 coefficients in p.

Table II.1. – Input parameters and their input ranges for the meta-model. They are
all dimensionless multiplicative coefficients applied to the reference values
(i.e. the annually averaged traffic data of each road section), except the
temperature and absorption coefficient which are the actual values.

Parameter Minimum Maximum
Vehicle speed 0.1 2
Light vehicle flow in major roads 0.1 2
Medium vehicle flow in major roads 0.1 2
Two-wheeled vehicle flow in major roads 0.1 2
Heavy vehicle flow in major roads 0.1 2
Light vehicle flow in medium roads 0.1 2
Medium vehicle flow in medium roads 0.1 2
Two-wheeled vehicle flow in medium roads 0.1 2
Heavy vehicle flow in medium roads 0.1 2
Light vehicle flow in small roads 0.1 2
Medium vehicle flow in small roads 0.1 2
Two-wheeled vehicle flow in small roads 0.1 2
Heavy vehicle flow in small roads 0.1 2
Temperature (◦C) -5 30
Absorption coefficient 0 1

In addition, a few numerical parameters were kept fixed in the noise mapping calcu-
lation, although they were candidate parameters: the maximum propagation distance
(set to 250 m), the distance after reflection (set to 100 m), the number of reflections
(set to 1). The diffractions have been taken into account. These parameters have been
fixed, since they are usual propagation parameters for dense urban areas such as the
one studied in this paper. Other parameters have remained fixed whereas in future
research it might be interesting to tune them: the uncertainties in topography, the
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ground reflection, the height of the buildings and the height of the receivers.
The traffic data varies from street to street, but a strong correlation exists along

the road network, the traffic usually goes up or down at the same rate across the
entire area according to the time of the day. A proportionality coefficient can then be
applied globally to the traffic data (Wei et al., 2016). Two pieces of data are given
for traffic information, speed and flow rate. More variability can be captured if the
flows of each categories of vehicles are segregated. Studies suggest that in urban areas,
roads can be segregated into different categories with different traffic time evolutions
(Barrigón Morillas et al., 2005). The study segregates three categories of roads:
— Major roads with a flow rate > 1000 vehicles h−1;
— Medium roads with a flow rate between 300 vehicles h−1 and 1000 vehicles h−1;
— Small roads with a flow rate < 300 vehicles h−1.

The impact of temperature in noise emission and noise propagation is not negligible,
the minimum and maximum values of temperature were chosen to be typical of the
variation over a complete year at this site.
Some data used as inputs for noise mapping are sometimes roughly approximated

and may alter the noise map prediction. A degree of freedom has been added to monitor
the impact of these uncertainties on the reference noise mapping software output. For
this study, one parameter has been selected: the absorption coefficient of the walls.
For computational efficiency, parameters that have an impact on the matrix of rays

have been excluded, like the buildings height, the receivers height or the type of junc-
tion. The selected parameters only changed the emission or the attenuation, hence
there was no need to recompute the matrix of rays.

II.3.4. Reference Noise Map
The traffic inputs are derived from the daily average traffic data gathered by the

government department in charge of the application of noise directives and the city of
Lorient traffic department, the French national study center for territory development,
for the year 2016. Soil, topography and buildings data come from the French national
geographical institute (IGN 2) and the city of Lorient. The reference Lday noise map
of the city of Lorient is represented in figure II.1, as computed with the reference noise
mapping software and with the unperturbed input data (yearly averaged daily road
traffic and speed, average year temperature (15 ◦C) and an absorption coefficient of the
walls of 0.2).

II.3.5. Interpolation tools
The authors rely on the R package Dicekriging 1.5.5 (Roustant et al., 2012) to

fit the kriging covariance model and on the Python library SciPy 0.17.0 (Virtanen
et al., 2020) to compute the interpolation based on Radial Basis Functions. The radial
basis functions studied in this paper are called monomial functions φ : r → rk, k being
an integer. The kriging interpolation studied in this paper uses a covariance function
called the Matérn function of parameter ν (Rasmussen and Williams, 2005). If ν = 1

2 ,
the Matérn function is a decreasing exponential function, if ν =∞, the Matérn function
is a Gaussian function.

2. See http://professionnels.ign.fr/
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Figure II.1. – Simulation of the noise map of Lorient computed with the reference noise
mapping software and the unperturbed input data.

II.4. Results

II.4.1. Testing setup: Scores and testing sample

This section aims at evaluating the meta-model performance, by comparing ouputs
of the meta-model with outputs of the reference noise mapping software with the same
set of inputs. 90 noise maps have been generated with a new set of parameters called
testing sample. It depends on the original LHS, which has allowed to build the training
sample, and is a complementary sample whose points are chosen to be the farthest
from the original LHS. This strong constraint guarantees the validity of the produced
results. The testing part consists in comparing the meta-model output with the output
of the reference noise mapping software, and to observe its performance through the
following scores described in table IV.3:
— Bias (dB);



56 II. Meta-modeling for urban noise mapping

— Correlation coefficient (dimensionless quantity);
— Root Mean Square Error (RMSE) (dB).

Table II.2. – Scores for the performance evaluation of a model. (ci)i is the simulated
sequence. (oi)i is the corresponding reference sequence. n is the total
number of elements in the sequence. c̄ and ō are respectively the mean of
(ci)i and (oi)i.

Score Formula

Bias
1
n

n∑
i=1

(ci − oi)

Correlation
∑n
i=1(ci − c̄)(oi − ō)√∑n

i=1(ci − c̄)2
√∑n

i=1(oi − ō)2

RMSE

√√√√ 1
n

n∑
i=1

(ci − oi)2

The influences of the sample size (II.4.3.1), the dimension reduction (II.4.3.2), the
class of the covariance kernel (for kriging) (II.4.3.3) and radial basis function (II.4.3.4)
on the meta-model have been evaluated. Then the spatial distribution of the scores
are displayed to identify the area with a loss of performance (II.4.3.5). Finally, the
complete distributions of the scores will be analyzed (II.4.3.6).

II.4.2. Dimension Reduction

As explained in section II.2.4.3, dimension reduction is a key step to reduce the
complexity of the meta-model and to generate a small set of interpolating functions.
The PCA is applied to a training sample whose size is 2·103 (this size is shown to
be optimal in section II.4.3.1). Figure II.2 shows the remaining unexplained variance
in the training sample against the number of selected principal components. With 4
principal components, the remaining unexplained variance goes below 3 %. There is
little interest in selecting a higher number of principal components. Indeed, if a vector
Ψi conveys too little explained variance, the function αi : p→ ΨT

iM(p) would be too
random and meaningless, and also the interpolation function might not perform well.
The projection of a simulation over a basis composed of the 4 principal vectors of

the PCA efficiently reflects the actual spatial distribution of the noise map. Table II.3
displays the RMSE of the projection against the real simulations of the testing sample
under the number of selected principal components. The RMSE decreases quickly
with the first vectors, and slowly goes to zero as the number of principal components
increases. Figure II.3 clearly shows the huge decrease of the RMSE whether 3 or 4
vectors are used in the projection basis and the slow decrease of RMSE error as the size
of the basis increases (here with a basis of size 12). 4 vectors are kept in the following.
If the principal components Ψ1 and Ψ2 are displayed as spatial maps, some features

can be intuitively identified, as shown in figure II.4. High traffic areas stand out in the
first principal component as they are the main cause of variability. As the number of
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Figure II.2. – The unexplained variance (%) of the training sample against the size
of the projection basis d: over 97 % of the variance is explained with 4
principal components.

Table II.3. – Scores of the projection against the size of the basis. The simulation is
compared to its projection on the testing sample, at all the receivers.

Basis size 3 4 12 20 50 100
RMSE (dB) 0.75 0.40 0.11 5.6·10−2 1.5·10−2 5.9·10−3

projection vectors increases, it is noticeable that traffic remains the principal cause of
variation, nevertheless different zones in the map are highlighted, hence representing the
spatial variability due to part of the traffic or local propagation effects. The first vector
explains the noise distribution caused by raw traffic data. For the second component,
the variability remains related to the traffic, but occurs in the quieter areas with less
traffic.

II.4.3. Comparison of the meta-model with the reference simulation
software

II.4.3.1. Performance against the size of the training sample

The performance of the resulting meta-models is compared against the size of the
training sample. Since the interpolation functions need all the elements of the training
sample to compute their outputs, the larger the training sample is, the longer the meta-
model takes to generate a noise map. The performance of 4 meta-models generated
with different sample sizes is compared in table II.4. They have been generated on a
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Figure II.3. – RMSE representation in dB for the simulation of the whole test sample.
The simulation is compared to its projection on basis of size 3, 4 and 12.

reduced subspace of size d = 4 as defined in section II.2.4.3, with a Matérn 5
2 function

as the kriging covariance kernel and a cubic function for the RBF.

Table II.4. – Scores of the meta-model, with kriging and RBF, against the size of the
sample with a reduced basis of size 4. The reference software simulations
are compared to the meta-model results over the whole complementary
LHS sample, at all receivers.

sample size 103 2·103 3·103 104

kriging
Bias (dB) −3.5·10−2 9.2·10−3 4.6·10−3 −5.3·10−3

RMSE (dB) 0.94 0.70 0.76 0.61
RBF
Bias (dB) 9.2·10−2 16·10−2 7.8·10−2 4.8·10−2

RMSE (dB) 2.17 1.81 1.63 1.65

As expected, the RMSE decreases with the size of the training sample, whether
kriging or RBF interpolator is used. The RMSE decreases substantially from a training
size of 103 simulations to a training size of 2·103 simulations. The use of more than
2·103 simulations does not seem to improve the results significantly, hence a training
sample of size 2·103 will be selected for the rest of the study.

II.4.3.2. Performance against the size of the reduced basis

The performance of the kriging and RBF approaches are now compared on the com-
plete testing sample and over all the receivers against the size of the reduced basis. See
table II.5.
The performance slightly increases with the size of the basis. However, the increase
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Figure II.4. – This figure represents two of the selected basis vectors. The values rep-
resented on the figure are in dB but they have no physical meaning,
here the noise maps expressed as a vector are normalized so that their
norm is 1. Every noise map generated by the meta-model with a physical
meaning is the noise map x̄ plus a linear combination of these maps.

Table II.5. – Scores of the meta-model, with kriging and RBF, against the size of the
basis. The reference software simulations outputs are compared to the
meta-model results over the whole complementary LHS sample, at all
receivers.

Basis size 3 4 5 6 7 8
kriging
Bias (dB) 0.090 0.093 0.094 0.093 0.091 0.092
RMSE (dB) 0.94 0.70 0.68 0.65 0.63 0.61
RBF
Bias (dB) 0.16 0.16 0.16 0.16 0.16 0.16
RMSE (dB) 1.91 1.81 1.82 1.81 1.81 1.80

of performance is rather negligible. The performance is much more sensitive to the
interpolation method (kriging or RBF). In any case, the bias is very low: the kriging
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overestimates the mean noise level by 9.3·10−2 dB, and the RBF by 0.16 dB. The size
of the basis has virtually no impact on the bias since the PCA is computed on centered
data, the mean value of the simulation is retrieved from the output values.
The rest of the study will be carried out with a meta-model constructed with the

four first principal components vectors.

II.4.3.3. Performance against the covariance function for the kriging interpolator

Four classes of kernel covariance functions have been compared over the testing sam-
ple. The test has been performed with a reduced basis of size 4 and a training sample
of size 2·103. The performance of the resulting meta-models is summed up in table II.6.

Table II.6. – Scores of the kriging meta-model, against the class of covariance function,
with a reduced basis of size 4. The reference software simulations outputs
are compared to the meta-model results over the whole complementary
LHS sample, at all receivers.

Kernel Exponential Matérn 3
2 Matérn 5

2 Gaussian
ν 1

2
3
2

5
2 +∞

kriging
Bias (dB) 2.1·10−2 1.1·10−2 9.2·10−3 2.6·10−3

RMSE (dB) 1.82 0.72 0.70 0.75

The Matérn 5
2 kernel gives the best results with a global RMSE of 0.70 dB and

a resulting bias of 9.2·10−3 dB. Nonetheless, all kernels show low errors except the
exponential one (ν = 1

2).

II.4.3.4. Performance against the basis function for the RBF interpolator

Three monomial functions have been compared over the testing sample. The test
has been performed with a reduced basis of size 4 and a training sample of size 2·103.
The performance of the resulting meta-models is summed up in table II.7.

Table II.7. – Scores of the RBF meta-model, against the chosen monomial function,
with a reduced basis of size 4. The reference software simulations outputs
are compared to the meta-model results over the whole complementary
LHS sample, at all receivers.

φ(r) r r3 r5

RBF
Bias (dB) 0.59 0.16 0.13
RMSE (dB) 1.96 1.81 1.99

The r3 function gives the best results with a global RMSE of 1.18 dB and a resulting
bias of 0.15 dB. Nonetheless, all kernels show similar error rates higher than the kriging
ones.
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II.4.3.5. Spatialized scores

Figures II.5 and II.6 show the spatial distributions of the correlation and the RMSE
scores. The results show that the meta-models perform best in areas with low building
density where the influence of reflections and diffractions is lower. Hence in the regions
where the influence of the reflections and diffractions is higher, the fraction of acoustical
energy received from a direct field is lower, which leads to a higher variability. The
intensity of the noise sources seems to have little impact on the performance. The
spatial representation also shows that the kriging meta-model gives better results than
the RBF meta-model.
100 0 100 200 300 400 meters

RBF

100 0 100 200 300 400 meters

Kriging
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Figure II.5. – Maps of the correlation between the meta-models results and the refer-
ence noise mapping software simulation.

II.4.3.6. Scores distribution and local evolution

The distributions, over all the simulations of the testing sample, of the scores (com-
puted on an entire map for each simulation of the testing sample) are shown in figure
II.7. It reflects the distribution of bias, correlation and RMSE over the input parame-
ters space. The bias histogram shows that the majority of the error is centered around
0 dB and it has a very narrow error variation range. More than 90 % of the meta-models
outputs with kriging have a mean spatial bias lower than 1 dB, and 95 % of them have
a spatial RMSE below 1 dB. The average RMSE across all simulations is 0.51 dB.

In figure II.8, the reference noise mapping software outputs are compared with their
kriging meta-model equivalent, for a single simulation of the testing sample. This
simulation was chosen so that the RMSE score is similar to the average RMSE score



62 II. Meta-modeling for urban noise mapping

100 0 100 200 300 400 meters

RBF

100 0 100 200 300 400 meters

Kriging

 0.0-0.6 

 0.6-0.9

 0.9-1.2 

 1.2-1.5 

 1.5-1.8 

 >1.8 

(dB)

Figure II.6. – Maps of the RMSE between the meta-models results and the reference
noise mapping software simulation.

over the entire testing sample. The difference between the two maps is noticeable only
in a few quiet areas, as shown in figure II.9. The main patterns are preserved.

II.4.4. Computational costs: building and applying the meta-model

The 2·103 simulations have been fully run in parallel during 2 h on 192 cores. This
generated data allowed us to generate the reduced basis Ψ and the interpolation pa-
rameters for both RBF and kriging interpolators. The offline computation consists in
the building of the meta-model (mostly the computation of the simulations, hence 2 h).
The online computation consists in a call to the meta-model, which takes 35 ms with
RBF and 65 ms with kriging. This corresponds to 4.6·104 and 2.5·104 speedups ratio
compared to the reference noise mapping software respectively.

II.5. Conclusions
The meta-model results remain very close to the results of the reference noise mapping

software with an average RMSE of 0.96 dB. The meta-model has been carried out in
three steps: generation of a training sample, dimension reduction and interpolation.
The training sample has been carried out with a LHS, this sample sweeps the whole
input space with a limited size, even in high-dimensional spaces. With a training sample
of 2·103 simulations, satisfactory results have been obtained with respect to the bias,
correlation and RMSE scores when comparing the meta-model with the reference noise
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Figure II.7. – Distribution of the scores (per simulation of the testing sample) of the
meta-models. RBF is in blue and kriging is in cyan.

mapping software on a testing sample. With this training data, a reduced basis of size
4 has been generated, which explains 98 % of the variance. Then, the projections of the
noise maps have been interpolated on each basis vector.
The computational cost of the meta-model to generate one noise map is 65 ms with

kriging and 35 ms with RBF, compared to 27 min for the reference noise mapping
software, which corresponds to a speed-up of 2.5·104 to 4.6·104. The computation
time saving is the main benefit of the meta-model. With an offline computation cost
of 2·103 simulations and an acceptable loss of performance compared to the reference
noise mapping software, a very high amount of computation time has been gained
in online computations, which opens the way to many applications. In the context of
uncertainty quantification, the propagation of the uncertainties in the model can require
huge numbers of simulations in order to determine the sensitivity of the outputs to the
parameters i.e. the variability of the ouputs regarding the variability of an input.
Another useful application of the meta-model is for variance-based sensitivity analysis
such as Sobol procedures (Sobol, 1990). A very large amount of calls to the simulator
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Figure II.8. – Noise Maps of the city of Lorient. The noise levels are computed by the
reference noise mapping software on the left and by the kriging meta-
model on the right. This simulation was chosen in the testing sample,
so that the RMSE performance of the meta-model for that simulation is
similar to the performance over the entire testing sample.

is required to compute estimators of such Sobol indices (105 simulations or more). In
this case, a noise mapping software can advantageously be replaced by its meta-model
to conduct the evaluation of the indices. In the context of data assimilation, one may
need one or several maps every hour before correcting them with the observations
collected for the given time period, and around 104 noise maps to compute the so-
called background error covariance matrix. For data assimilation processes that use
inverse modeling, 40 to 50 calls to the meta-model can be required at each time step
in an optimization algorithm to find the optimal input parameters, hence this process
is impossible with a noise mapping software only. The performance of the meta-model
against observed values from local sensors in the same area should be carried out in
future work. The CENSE project, in which this study has been done, will provide these
data since a network of sensors is already installed in the area considered in this paper.
The meta-model has its least conclusive results in densely built-up areas. The hy-

pothesis formulated is the greater variability of outputs in these areas. It would be
interesting to test the construction of a metamodel on a training set with more ad-
vanced calculation parameters, to test whether this improves the model’s performance
in areas with high building density.
Finally, further studies shall investigate other machine learning algorithms applied

to reproduce the behavior of noise maps, such as random forests or neural networks,
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Figure II.9. – Difference between the simulated noise map and the meta-model output.

whether on a reduced subspace or directly on the computed noise maps.
A video published online 3 shows a real time application of the meta-model, where

the user manually tunes the parameters of the meta-model.
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III. Data assimilation for urban noise
mapping with a meta-model

This chapter is dedicated to the explanation of noise data assimilation prin-
ciples using a metamodel. After recalling the principles of meta-modeling
noise mapping simulator explained in chapter II, the construction of the in-
put parameters based on traffic and weather observation is explained. Then
the BLUE data assimilation process is explained and applied to the noise
mapping process. Finally the performance of the method is tested with a
leave-one-out in the results section, and shows that the observations allow
to display dynamic noise maps with a low RMSE.
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Abstract

Accurately predicting dynamic noise levels in urban environments is non-trivial. This
study aims to optimally combine both simulated and empirical data. Acoustic data
from microphone arrays, traffic and weather data was merged with a simulated noise
map, created with a statistical emulator tool (meta-model). Each hour, a noise map is
generated by the meta-model with the measured traffic and weather data. This map is
algorithmically merged with the measured readings to form a new composite map. The
resulting analyzed map is the best linear unbiased estimator under certain assumptions.
The performance is evaluated with leave-one-out cross-validation. The performance of
the method depends on the accuracy of the meta-model, the input parameters of the
meta-model and the structure of the error covariances between the simulated noise
level errors. With 16 microphones over an area of 3 km2, this new method achieves a
reduction of 30 % of the root-mean-square error when compared to a meta-model only.

III.1. Introduction

A regulatory noise map is a representation of the equivalent average noise level field
over an urban area. These maps are useful to evaluate scenarios for predictive appli-
cations, and are produced by many cities around the world. Within Europe, every
agglomeration with more than 100 000 inhabitants is required to produce a noise map
every 5 years. The standard reference for producing noise maps in the EU is CNOSSOS-
EU (Kephalopoulos et al., 2012), it is currently applied following the directive 2015/996
(European Commission, 2015).
Most urban scale noise maps use models similar to CNOSSOS-EU. They proceed

as follows, first, the emission algorithm is based on a discretization of the road. Each
road section is described by a set of point sources whose intensities depend on the road,
traffic (flow rate and speed) and weather data. Secondly, the propagation algorithm
determines the sound attenuation between each point source and each receiver based
on geometry and weather data, after a ray path calculation. When this method is
applied at a city scale, the high number of sources and receivers makes this method
computationally expensive. It is not adapted to the generation of hourly or even daily
noise maps: the computation time would be too high. This approach is limited by the
quality of the input data used to generate the noise map. Traffic data may only be
measured on a subset of roads, which may not provide an accurate representation of
wider situation.
Observation-based approaches have been developed to build maps solely from noise

measurements. (Wei et al., 2016) built an interpolating model based on observations
and a method to propagate the observed sound level. (Aumond et al., 2018) statis-
tically interpolated noise measurements with a kriging approach; this approach gave
satisfactory results in the vicinity of the measurement devices but suffered from the
lack of sensors when estimating the noise level over a wider range.
Several attempts have been made to enrich noise maps with observational data.

(Ventura et al., 2018) assimilated observations from mobile phone microphones in order
to improve a pre-calculated noise map. However this process is useful only when a large
number of mobile observations can be collected for this task. The DYNAMAP project
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(Zambon et al., 2016) updates noise maps by scaling the noise levels of pre-calculated
noise maps using the differences observed between measured and calculated original
grid data for different classes of roads. (De Coensel et al., 2015) speculated about
combining a noise mapping model with mobile noise measurements to increase the
resolution of the noise map and fixed measurements to allow a dynamic noise mapping.
These methods however purely rely on statistical methods (Least Mean Squares) and
do not take into account either error propagation or traffic dynamics models. (Eerden
et al., 2014) finally infers the noise mapping software inputs from noise observation
by estimating the emission sources from the observed noise measures in the vicinity of
the roads. This method uses a forecasting sequential approach rather than a spatial
approach.
The approach proposed in this paper offers (1) to use a dynamic noise mapping,

quickly generated by a meta-model (also called surrogate model) and based on real-
time weather and traffic input data, and (2) to spatially enrich the noise map with noise
observation data thanks to a data assimilation process which includes a simulation error
model.
The objective of this paper is to develop a strategy to display accurate hourly noise

maps, starting with:
— An open source noise mapping software,
— Annually averaged input data for the simulation,
— Hourly traffic and weather data from local sensors,
— A network of microphones spread across the study area.
The approach presented in this paper uses both meta-model outputs and observa-

tional data to allow a dynamic approach where 1-hour noise levels can be evaluated.
This provides a view on the city noise dynamics and a finer analysis of the exposure
to noise, at night and during peak hours and it is very fast to compute. This paper
proposes a three-step approach:

1. Meta-modeling: the noise map produced by a classical noise model is quickly
approximated using a meta-model. A meta-model is a replacement for a noise
model when only a limited number of selected input parameters are allowed to
change. The meta-model is trained with a sample of simulated noise maps, from
which it is possible to statistically represent the relation between the selected
input parameters and the corresponding noise maps.

2. Data assimilation design: the simulation error covariance matrix is computed
with some training observations.

3. Data assimilation process: the simulation is corrected anywhere in space by the
observation data.

A performance evaluation step will be executed with a leave-one-out cross validation
method.
This paper explains in section III.2 the framework where the study lies (section III.2.1),

the software and data used for the study (sections III.2.2 and IV.2), how the meta-model
is built (section III.2.4), how the data assimilation process works (section III.2.5) and
the method conducted to validate the process (section III.2.6). In section IV.4, the
performance of the data assimilation is evaluated.
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Figure III.1. – Functional diagram of the data assimilation process.

III.2. Methods

III.2.1. Description of the framework

The proposed approach consists in relying on a metamodel which reproduces the
outputs of a reference software in a very short computing time, and hourly traffic and
acoustic data, to produce hourly noise maps. This approach is inspired by a study done
for air quality simulation (Tilloy et al., 2013). All the steps of the data assimilation
process are summarized in figure III.1.
The approach has three steps:
— Build a meta-model from reference simulations (section III.2.4);
— Build a gain matrix K used in the data assimilation algorithm (appendix A);
— Build a data assimilation algorithm which corrects the results based on a error

covariance matrix (section III.2.5).
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III.2.2. Reference noise mapping software

III.2.2.1. Presentation

The simulator used in this study is NoiseModelling v3.0 (Bocher et al., 2019), an
open source software designed to produce noise maps for evaluating the noise impact
on urban mobility plans. Its input are traffic data, topographic data (buildings distri-
bution, altitude, surface types, ...) and meteorological data (temperature, hygrometry,
probability of occurrence of favorable atmospheric conditions ...). The version used in
this paper is especially designed to run multiple simulations (Aumond et al., 2020a).
A first call to the simulator computes a matrix of rays between the source/receiver
pairs, which is the longest step for a noise mapping software. Each call to the reference
noise mapping software with a new set of parameters is then much faster since it only
requires to compute the attenuation along each pre-computed path.
The input traffic data along each road is discretized into a set of point noise sources,

an emission value is assigned which depends on the speed, the flow rate and other traffic
parameters (type of road, type of vehicle, ...). The output noise level field is represented
by a regular grid of receivers. NoiseModelling uses a path finding method similar to the
one proposed by CNOSSOS-EU which computes the path taken by the acoustic waves
between the sources and the receivers, taking into account the propagation distance, the
number of reflections and whether the diffractions are taken into account or not. The
software then computes the attenuation along each path for a selected range of octave
bands (63 Hz, 125 Hz, 250 Hz, 500 Hz, 1 kHz, 2 kHz, 4 kHz and 8 kHz) in accordance
with the CNOSSOS-EU method. The sound level at a receiver is the sum of the
contributions of each source. The final output is a grid of receivers with an attributed
sound level value computed in dB(A).

III.2.2.2. Characteristics of the simulation

The simulated area is an area located in the 13th district of Paris, France. Its surface
is about 3 km2. The receivers, where noise levels will be calculated, are located on a
regular grid of step ∆x = 15 m. Receivers have also been located at the location of
the observation points. The total number of receivers is n = 8456. All these receivers
are positioned at a fixed height of 4 m. Note that the actual height of the microphones
does not always match the height of the simulation. The only available value for the
height of the microphone is the floor level where they were positioned, which is too
vague to be precisely set as an input value. The propagation parameters are: 250 m for
the propagation distance, 100 m for the distance after reflexion, one order of reflection
and one order of diffraction.

III.2.2.3. Standard noise map using annually averaged data

The nominal Lday field distribution given by the reference noise mapping software
with this input data is shown in figure IV.2. The nominal Levening and Lnight have also
been computed in the study.
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Figure III.2. – Lday level distribution over the study area

III.2.3. Observation data

III.2.3.1. Noise data

This study uses data collected in the 13th district of Paris, France during a mea-
surement campaign conducted in 2015 by (Lavandier et al., 2016). A network of 25
microphones has been deployed across the study area. 16 of them have been selected for
the present study, the ones that had simultaneously an exploitable set of data during
the entire time period. They have recorded the noise level Lfi in dB for every one-third
octave fi from 63 Hz to 20 kHz with a time step of ∆t = 125 ms, from January 1, 2015
to September 30, 2015. The indicator used in this study is LAeq1h

The spatial distribution of the sensors is shown in figure IV.1.

III.2.3.2. Annually averaged input data

The input files of the reference noise mapping software are the buildings distribution
and the annually averaged road traffic map during the daytime (between 06:00 and
18:00, local time), the evening (between 18:00 and 22:00) and the night (between 22:00
and 06:00) computed for the year 2014. These data are respectively given by the IGN
, the French national geographical institute, and the city of Paris. Data like ground
surface or altitude have been ignored in this study.
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Figure III.3. – Distribution of the sensors across the study area, the observation point
colored in black is the one which is displayed in figure III.4

III.2.3.3. Real-time 1 h traffic and weather data

The real-time 1 h traffic data on the main roadways of Paris during the case study
time period is available online on the city of Paris open data platform. For every
measured track section, at every hour, the hourly average flow F (t) (vehicles/h) and
the occupation rate R(t) (ratio of time during which the sensors detect an occupation)
are given. Given the track section length `t and assuming an average vehicle length of
`v = 4 m, it is possible to estimate the average vehicle speed S(t) on the track section
in km h−1:

S(t) = 3.6 · F (t) · `v
R(t) · `t

(III.1)

The real-time weather data has been taken from an open access source at the
Montsouris weather station near the study area. The weather station updates its
data every hour in real time. The reference noise mapping software only takes into
account the temperature but upcoming versions might also take into account the wind
intensity and direction, the temperature gradient, and more generally, the probability
of occurrence of favourable atmospheric conditions.
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III.2.4. Meta-model

This section introduces the tools built during the study and their justification: the
meta-model and the design of its parameters (III.2.4.4).

III.2.4.1. Construction of the meta-model

When a noise map is computed with annually averaged input data, one may won-
der how this noise map changes with a slight modification of the parameters, e.g, a
multiplicative coefficient applied to the traffic flow or a temperature variation in ◦C.

p ∈ Rk denotes the input vector of parameters andM(p) ∈ Rn is the output of the
reference noise mapping software. In order to speed up the computation of the hourly
maps, a meta-model M̂(p) which is very similar to M(p) but with a computational
time much lower (in this case, ∼ 100 ms versus ∼ 1 h) is built. M̂ is generated using
a training sample of size r = 2·103, {p(1), · · · ,p(r)} and the corresponding simulations
{M(p(1)), · · · ,M(p(r))}. M̂ is a weighted sum of a small number of maps obtained
with a dimension reduction algorithm described in section III.2.4.2, the weights are
computed by a kriging interpolation function based on the weights of the training set
described in section III.2.4.3.

III.2.4.2. Dimension reduction

A PCA (Principal Components Analysis) (Jolliffe, 1986) algorithm determines which
of the principal components explain most of the variance for the training sample. The
structure of the noise mapping behavior allows us to explain more than 97 % of the
variance with a short sequence of vectors {mapi}i∈J1,kK (k ' 3) as previously shown in
(Lesieur et al., 2020):

M(p) = x̄b +
k∑
i=1

wi(p)×mapi + ε, (III.2)

where x̄ is the average of the training set outputs:

x̄b = 1
r

r∑
i=1
M(p(i)), (III.3)

wi(p) is the projection coefficient of the centeredM(p) on mapi,
mapTi (M(p)− x̄b), and ε is the residual error.

III.2.4.3. Kriging

The reader might be familiar with kriging in its classical geostatistical background
as it has been applied in some studies (Baume et al., 2009). However, contrary to the
usual kriging employed in several acoustics applications using geographical data, this
paper applies kriging to the abstract vector space of the input parameters which has
no relation with the geographical 2D space.
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The goal of the second step is to obtain for each map i selected in section III.2.4.2 a
fast approximation of the weight function:

wi : Rk → R
p 7→ wi(p) (III.4)

where wi(p(j)) is known for every p(j) in the training sample. Kriging Matheron (1962)
is a technique which allows to determine an approximation ŵi(p) of wi(p) by interpo-
lating from the known values wi(p(j)).
Once the kriging interpolators are computed for every projection vector, the meta-

model M̂ is defined as follows:

M̂(p) = x̄b +
k∑
i=1

ŵi(p)×mapi (III.5)

M̂(p) is a short sequence of elementary operations, hence its computation is much
lower than the reference noise mapping software and then allows:

— A fast real-time computation of a noise map with the real-time input data;
— The generation of the statistical error covariance matrix Bstat with a Monte Carlo

method, which will be used in data assimilation (See III.2.5.2).

III.2.4.4. Design of the parameters

The parameters selected as inputs of the meta-model are shown in Table III.1 with
their respective amplitudes. For each input, the amplitude corresponds to the range of
values observed in real-time.

Table III.1. – Input parameters and their input ranges for the meta-model. They are all
dimensionless multiplicative coefficients applied to the reference values
(the annually averaged daily values) except the temperature which is the
actual value in ◦C.

Parameter Minimum value Maximum value
Light vehicle speed 0.1 2
Heavy vehicle speed 0.1 2
Light vehicle flow 0.1 2
Heavy vehicle flow 0.1 2
Temperature (◦C) -5 30

The goal of this section is to infer a value for the input coefficient from the real-time
traffic data. As seen in the beginning of section III.2.4.1, the input which represents
traffic variations in the meta-model is a multiplicative coefficient applied to the annually
averaged traffic data. It therefore models the variation in time of the traffic, and
assumes a constant spatial distribution. Regarding the flow rate and the speed, the
input data pi is the ratio between the average quantity on the observed roads at a given
time and the average quantity on the observed roads over one year.

Since the observed traffic data do not discriminate the heavy vehicles from the light
vehicles, the same coefficient is applied to the heavy and light vehicle input — in other
words, the fraction of heavy vehicle is assumed to be constant.
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Figure III.4 compares the time evolution of the measured noise level at an observation
point and the corresponding output value of the meta-model with the input parameters
built from the traffic and weather data. It shows that the meta-model fairly reproduces
the hourly noise level distribution.
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Figure III.4. – time evolution of the observed LAeq,1h and the meta-model output for
the sensor point colored in black in figure IV.1

III.2.5. Data assimilation
III.2.5.1. Presentation

The data assimilation algorithm which will be used in this paper is called BLUE,
for Best Linear Unbiased Estimator (Bouttier and Courtier, 2002). It makes use of the
output of the meta-model and applies a correction which depends on B, the covariance
matrix of the simulation error, R, the covariance matrix of the observational error, and
the discrepancy between observations and simulations at the observation location. Ma-
trices B and R characterize the spatial behavior of the model error and the observation
error respectively.
At each timestep, a nominal noise map xb = M̂(p) is computed. It is an estimation

of the real, exact state noise level distribution field xt. It is impossible to know the
exact vector xt, either from the erroneous simulation or the incomplete (and slightly
erroneous) observations. It would be the noise level field observed if each receiver had
an ideal microphone on it. The set of observations is denoted y ∈ Rp. Let:
— H ∈ Rp×n be the observation matrix which maps a state vector, e.g., xt, to

the observed values y, so that y can be compared to Hxt. In this case, each
observation point has a simulated counterpart, H is therefore a matrix in which
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each row is full of zeros except for a one in the column that corresponds to the
receiver located at the observation point. The elements [H]ij are equal to one if
and only if the jth receiver corresponds to the ith observation point;

— eb ∈ Rn be the simulation error xb − xt, a random vector, which is assumed to
be unbiased E[eb] = 0;

— eo ∈ Rp be the observation error y−Hxt, a random vector, which is assumed to
be unbiased E[eo] = 0;

— B = E[ebebT ] ∈ Rn×n be the covariance matrix of the simulation error,
— R = E[eoeoT ] ∈ Rp×p be the covariance matrix of the observation error.
Based on xb,B,y,R and H, an analysis state vector xa is computed as the “Best

Linear Unbiased Estimator” which is linearly dependent on xb and y, has unbiased error
ea = xa − xt, and has an error variance with minimum trace (Bouttier and Courtier,
2002). This estimator is uniquely defined as follows, under the assumption that the
simulation and observation errors are uncorrelated:

xa = xb + K(y−Hxb) (III.6)

where
K = BHT (HBHT + R)−1 (III.7)

K is called the gain matrix or the Kalman matrix. The observation errors at two
different receivers are not correlated. The observation error essentially depends on the
accuracy of the microphone which is described by its standard deviation σr, therefore:

R = σ2
rIp (III.8)

with Ip the identity matrix of dimension p. In the rest of the study, σr =1 dB2, which
corresponds to the industrial accuracy of the sensor.

III.2.5.2. Computation of the simulation error covariance matrix B

A good estimation of the covariance matrix B is crucial to perform an efficient data
assimilation. There are two approaches to compute the simulation error covariance
matrix: analytical and statistical. On the one hand, the analytical approach gives a
covariance formula based on the assumption that where there is an error on the noise
estimation at a given location, the traffic estimation is subject to similar errors in the
surrounding streets. On the other hand, the statistical approach generates an error
covariance matrix between the meta-model output and the ideal meta-model output,
with a large random selection of noise maps made possible by the short computation
time of the meta-model in a Monte Carlo algorithm.

Analytical covariance matrix Bana A parametrized simulation error covariance func-
tion has been successfully used in a previous work (Ventura et al., 2018). The simulation
error cross correlations between two receivers i and j are expressed in terms of:
— dij , the length of the shortest path along the road network between the projection

of receivers i and j on the closest road computed with a Johnson algorithm
(Johnson, 1977) and shown for a specific observation point in figure III.5,
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— the nominal noise field itself, through a correlation function ρ(xi, xj), where xi
and xj are the values of xb at points i and j as proposed by (Riishøjgaard, 2002).
The corresponding simulation error covariance between points i and j reads:

[Bana]ij = σ2
b exp

(
−dij
Ld

)
exp

(
−|xi − xj |

Lb

)
(III.9)

where σ2
b is the characteristic variance of each point, Ld is a characteristic distance

in m and Lb is a characteristic noise level value in dB.
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Figure III.5. – This map displays the distance along the road network between the
highlighted point and the other points of the simulated map

Figure III.6 shows the covariance between the same specific point and the other
points, using the analytic covariance function with σ2

b = 67 dB2(A), Ld = 500 m and
Lb = 6 dB (A = 1.03). These values were validated by a method called χ2 diagnosis
which checks whether the observations are consistent with the formulation of their
error covariance (see appendix A.1 for further details). These values are consistent
with other studies that computed the correlation length of the noise error distribution
such as (Aumond et al., 2018). It points out that the correlation is mostly significant
for the points located in the neighborhood of the selected point.

Statistical covariance matrix Bstat The meta-model allows to run a large number
of simulations. It is possible to compute the error covariance matrix between the
simulated noise map and the ideal meta-model output, within the subspace {mapi}i
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Figure III.6. – This map displays the analytical covariance between the highlighted
point and the other points of the simulated map

of the meta-model Bstat with a Monte Carlo algorithm (Fishman, 1996), sampling the
uncertainties. Let {p(1), · · · ,p(N)} be N random draws of a uniform distribution over
the input interval (in this case study, N = 3·104). Then, with:

x̄b = 1
N

N∑
k=1
M̂(p(k)) (III.10)

Bstat is defined by:

Bstat = 1
N − 1

N∑
k=1

(
M̂(p(k))− x̄b

) (
M̂(p(k))− x̄b

)T
(III.11)

Figure III.7 shows, for the same point as in figure III.6, the covariance function
computed with the Monte Carlo algorithm. Since the dimension of the subspace is
very low, it has a much more global distribution, the low ranking implies that an
error covariance at some receiver is likely to be correlated with an error covariance
of any receiver elsewhere in the study area. The point is not only correlated to its
neighborhood but with all the points of the map located near a roadway.

Sum of the analytical and statistical covariance matrices The covariance matrix
Bana built as in section III.2.5.2 has shown good results in studies where the data
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Figure III.7. – This map displays the statistical covariance of each point with the high-
lighted point

assimilation is computed on one fixed nominal noise map (Ventura et al., 2018). On
the other hand, the statistical matrix Bstat cannot be used alone for data assimilation
since it only applies on the reduced subspace and thus cannot be used to compute the
covariance of xb − xt. In the appendix A.2, the authors have shown that a good error
covariance matrix for a data assimilation process, performed on a noise map generated
with a meta-model, is the sum of the two previous covariance matrices: Bana + Bstat.

III.2.6. Validation method

The leave-one-out cross-validation consists in removing the observations of a given
microphone from the data assimilation process. Only the observations from the other
microphones are used to correct the noise level map. This procedure is carried out
for all microphones, one by one — only one microphone is removed at a time. At
the location of the removed microphone, the meta-model performance is compared to
the performance after assimilation of the observations of the other microphones. This
allows to check whether the assimilation properly propagates in space the corrections
that originate from the observed locations. The cross-validation evaluates the effects
of the data assimilation at locations without any observations.
The bias and RMSE indicators defined in table IV.3 are used to quantify the perfor-

mance of the simulations for the LAeq1h.
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Table III.2. – Scores for the performance evaluation of a model. (ci)i is the simulated
sample. (oi)i is the corresponding observed sample. n is the total number
of elements in the sample. c̄ and ō are respectively the mean of (ci)i and
(oi)i. RMSE stands for Root Mean Square Error.

Score Formula

Bias
1
n

n∑
i=1

(ci − oi)

RMSE

√√√√ 1
n

n∑
i=1

(ci − oi)2

III.3. Results

III.3.1. Cross validation

III.3.1.1. Dispersion

Figure IV.3 shows the error dispersion for all the indicators at every step of the data
assimilation process (meta-modeling, data assimilation with B = Bana, data assimila-
tion with B = Bana + Bstat). The distribution gets narrower as the precision of the
data assimilation process increases. This evolution is also presented in table IV.4 where
the evolution of the absolute bias is showed at each level of correction.

Table III.3. – Dispersion in dB(A) of the error between the observation and the sim-
ulation or the analysis in leave-on-out cross-validation for all the micro-
phones during all the measurement campaign

error amplitude (dB) [0, 1] [1, 3] [3, 5] > 5
meta-model 18 % 33 % 26 % 22 %
assimilation with B = Bana 26 % 41 % 22 % 10 %
assimilation with B = Bana + Bstat 30 % 44 % 18 % 8 %

In addition, Figure III.9 shows the time evolution of the observed and assimilated
sound levels at the same reception point and during the same time period as in fig-
ure III.4. The temporal evolution of sound levels is finely reproduced by the data
assimilation process.

III.3.1.2. RMSE

The root mean squared error of the LAeq,1h is displayed for each month in figure IV.4
and for each hour of the day in figure III.11 at every step of the data assimilation
process. The reduction of the error covariance is noticeable. At each step, the RMSE is
reduced and goes down to an average of 2.9 dB(A) at the final stage. The assimilation
process mostly improves the estimation during the night time when the noise level is
less correlated to the traffic flow rate.
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Figure III.8. – Dispersion in dB(A) of the error between the observation and the simu-
lation (blue) or the assimilation in leave-on-out cross-validation (green)
for all the microphones during all the measurement campaign.

As expected in section III.2.5.2, the matrix B = Bana + Bstat better characterize the
error covariance behavior and gives better results than Bana alone for both dispersion
and RMSE.

III.3.1.3. Distance to the network

This section proposes to connect the individual performance of the receiver with its
position in the road network. Table III.4 shows the performance of the data assimilation
process at each receiver.
Figure III.12 shows the RMSE reduction percentage ρ (equation (III.12)) in the leave-

one-out cross validation context with respect to the distance of the observation point
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Figure III.9. – time evolution of the observed LAeq,1h and the leave-one-out data assim-
ilation process output for the sensor point colored in black in figure IV.1

Table III.4. – Performance of the noise map and computed with the meta-model and
the assimilation regarding the observations at each microphone point,
the values are given in dB(A)

Node Bias meta-model Bias assimilation RMSE
251 -2.19 -0.16 1.97
252 -3.41 -1.79 3.72
254 -0.12 0.13 2.20
255 0.88 0.92 2.65
256 0.42 0.86 2.28
259 1.72 1.42 3.71
261 -2.65 -1.30 3.07
262 -0.37 0.67 2.07
264 3.00 0.93 3.17
265 1.71 0.72 3.22
266 -2.02 -0.59 1.75
268 -5.22 -2.31 4.08
270 -2.93 -0.46 1.87
272 -2.81 -1.04 2.62
274 -4.35 -1.60 2.90
275 -0.35 -0.05 3.25

to the network (i.e., the distance to the nearest microphone).

ρ = 100 · RMSEmeta−model−RMSEassimilation
RMSEassimilation

(III.12)
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Figure III.10. – RMSE in dB(A) of the error between the observation and the nominal
noise level values (blue) or the analysis in leave-on-out cross-validation
(green) for all the microphones, for each month of the measurement
campaign. It is noticeable to observe that the summer months have a
higher error rate, which is strongly corrected by the data assimilation.

The dependency on the distance to the network is mainly unnoticeable. This is
explained by the distribution of the Monte Carlo covariance matrix which is mainly
non-local. The RMSE reduction shows that an error covariance between two points of
the network depends on other factors than the distance between them or the difference
between their noise levels. Some future studies shall work on identifying these factors,
such as for instance, the nature of the roads linked to the receivers.
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Figure III.11. – RMSE in dB(A) of the error between the observation and the nominal
noise level values (blue) or the analysis in leave-on-out cross-validation
(green) for all the microphones, for each hour of the day.

III.3.2. Spatial analysis

Figure IV.6 shows how the correction due to the observations propagates across the
study area when B = Bana + Bstat. It follows the intuition that for every observation
point, the correction its neighborhood receives grows with the underestimation of its
sound level.

III.4. Discussion

The global RMSE reduction of all the points is noticeable and proves the efficiency of
this approach. Since B has been built partly under the assumption that the noise errors
are correlated along the road network, the data assimilation procedure shall apply in so
far as the traffic is the predominant source of noise pollution at the observation points,
and the bias remains low.
Amongst all the parameters shown in table III.1, the parameter “wall absorption

coefficient” is not taken into account in the data assimilation process. It has in fact
been set to 0.2 during the whole study. Another value would give better results on
some areas of the case study and worse results on others, since there is a variability
of the absorption coefficient along the buildings. The meta-model has been built this
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Figure III.12. – RMSE reduction rate versus the distance to the network for data as-
similation with the statistical covariance matrix Bstat

way for other analyses such as sensitivity analysis or inverse modeling, where more
parameters are necessary in the meta-model than the condition parameters (Le Gratiet
et al., 2017).
The number of parameters chosen for this study is restricted, some meta-models

segregate road categories into minor, medium and major roads due to their different
traffic dynamics (Barrigón Morillas et al., 2005). With a finer granularity, it is possible
to better seize the noise dynamics. However, in this study, the lack of traffic data out
of the major axes will preclude achieving higher levels of precision.
The observational data in this study have not been specifically collected for data

assimilation purposes. An interesting approach would be to explore how the spatial
distribution and the number of receivers affect the results of the data assimilation
procedure. The CENSE project aims to study this question by displaying a large
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Figure III.13. – This map displays an example of the correction induced by the assimi-
lation of the observations at a given time. The error disks are the eb at
the observation points, and the map represents the data assimilation
correction over the map. The chosen date is June, 21 at 22:00, during
a popular music festival (fête de la musique), hence the observation
error and the correction are rather high. The positively corrected area
is a lively neighborhood with a high density of bars and restaurants
(Butte-aux-Cailles).

amount of microphones across a study area in order to optimize the data assimilation
reference procedure for model and observation-based noise mapping design.

III.5. Conclusion

The data assimilation applied to noise maps generated through a meta-model im-
proves the performance of the generated noise map, from an average RMSE of 3.9 dB(A)
to 2.8 dB(A), and better grasps the hourly evolution of the noise level distribution across
the study area than a meta-model alone.
The process was carried out in three steps, the collection of data for the road traffic,

the generation of the meta-model (section III.2.4.1), and then the data assimilation
itself (section III.2.5.1)
This gain matrix K has been computed with the simulation error covariance matrix

B and the observation error covariance matrix R. B is the sum of two matrices Bstat
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and Bana.
— On the one hand, Bana is called the analytical covariance matrix and relies on

a simulation error propagation analytical model whose parameters have been
designed with a so-called χ2 diagnosis (section B.1.1). It takes into account the
physical behavior of a simulation error on a road network.

— On the other hand, Bstat has been statistically generated with a large number
of calls to the meta-model using a Monte Carlo algorithm (section III.2.5.2). It
describes the behavior of the error between the meta-model output given by the
traffic and weather observations and the ideal meta-model output.

New data assimilation techniques relying on a meta-model are yet to be explored.
The first among them is inverse modeling which aims at approaching the true input
parameters of the meta-model with the help of the noise observations. This method
requires an enrichment of the meta-model with more uncertain input data (height of
the building, ground absorption, topography uncertainty, etc.) in order to increase the
number of degrees of freedom. The distribution of the sensors across the network also
needs to be optimized, and further investigation will be dedicated to the optimization
of the network of sensors.
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IV. Meta-model aided inverse modelling
and Joint State Parameter Estimation
for noise data assimilation

This chapter is dedicated to the presentation of data assimilation tech-
niques called Inverse Modeling (IM) and Joint State Parameter Estiamtion
(JSPE). Thse methods allow to assimilate noise observation into meta-
model generated noise maps in order to perform a dynamic noise mapping
without the need of the traffic and weather observation as opposed as chap-
ter III. In this chapter, The new methods are derived, then their accuracy
is compared to the meta-model output and to the BLUE data assimilation
method developed in chapter III with a leave-one-out testing method.
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Abstract

This sudy aims to produce dynamic noise maps based on a noise model and acoustic
measurements. To do so, inverse modeling and joint state parameters methods are
proposed. These methods estimate the input parameters that optimize a given cost
function calculated with the resulting noise map and the noise observations. The accu-
racy of these two methods is compared with a noise map generated with a meta-model
and with a classical data assimilation method called Best Linear Unbiased Estimator.
The accuracy of the data assimilation processes is evaluated using a “leave-one-out”
cross-validation method. The most accurate noise map is generated computing a Joint
State Parameter Estimation algorithm without a priori knowledge about traffic and
weather and shows a reduction of approximately 26 % in the root mean square er-
ror from 3.5 dB to 2.6 dB compared to the reference meta-model noise map with 16
microphones over an area of 3 km2.

IV.1. Introduction

The growing awareness of the health effects of noise has made it a first-rate nuisance
that needs to be characterized and mitigated (Miedema et al., 2011). Many coun-
tries have implemented policies and strategies to reduce noise pollution, of which noise
mapping is a part. Directive 2002/49/EC requires for instance every European agglom-
eration with more than 100 000 inhabitants to produce a noise map every 5 years, as a
starting point for the implementation of action plans to reduce noise pollution, but also
as a tool for communicating between the different stakeholders (European Commission,
2002). As a response, model-based numerical engineering methods have been developed
and are currently widely used to make road traffic urban sound maps: CNOSSOS-EU in
Europe (European Commission, 2015), FHWA in USA (Fleming et al., 1995), ASJ-RTN
in Japan (Yamamoto, 2010) amongst others.
For instance, CNOSSOS-EU obeys the following method, which is in two steps. First,

road sections are discretized into a set of point noise sources whose emission parameters
depend on the given traffic, road pavement, weather data, etc. Secondly, propagation
paths are computed between each couple point source / receiver, on which the sound
attenuation are calculated based on atmospheric input data such as the temperature or
humidity, and physical input data such as the buildings layout and buildings absorption
coefficients. This method is known to provide a good compromise between accuracy and
computation time, and has made it possible to quantify the number of people exposed
in cities to noise levels associated with health impacts. It is however criticized on three
points. First, the quality of the input data and the accuracy of the model parameters
strongly affect the quality of the noise maps produced. Secondly, it focuses on noise
sources that are considered annoying, and does not reflect the diversity in sources of
the perceived sound mixtures, although research in soundscapes provides evidence on
the importance to characterize this diversity. Thirdly, this method is computationally
expensive; thus, it only allows for the elaboration of maps based on long-term indicators
and is not adapted to the production of time–evolving noise maps. The production of
such maps would be a strong asset to better characterize noise exposures and the
impacts of punctually noisy activities.



94 IV. Meta-model aided inverse modelling and Joint State Parameter Estimation for
noise data assimilation

To address these three shortcomings, noise observatories have been developed. They
enable to monitor sound levels evolution in urban areas with a fixed network of low cost
noise level meters. The possibility of relying on these observatories to build noise maps
recently emerged. (Aumond et al., 2018) statistically interpolated noise measurements
with a kriging approach; this approach gave satisfactory results in the vicinity of the
measurement devices but suffered from the lack of sensors when estimating the noise
level over a wider scope. An other study, (Segura Garcia et al., 2016), showed that
using similarly a kriging approach the residuals are spatially correlated except for the
[7:00 P.M.- 10 P.M.] period, probably because it entails specific noise behaviors (leisure
noise activities, etc.). Also, (Can et al., 2014) showed that interpolation methods were
defective when the spacing between sensors was too large. Finally, (Rey Gozalo and
Morillas, 2016) showed that a stratification of roads based on their functionality was
helpful before interpolating sound levels and (Wei et al., 2016) built an interpolating
model based on observations and a method to propagate the observed sound level.
More recently, studies propose to merge the benefits of the two approaches that is

combining the spatial information from the model-based approaches and the temporal
information from the observation-based approaches. (Ventura et al., 2018) assimilated
observations from mobile phone microphones in order to improve a pre-calculated noise
map. However, this process is useful only when a large number of mobile observations
can be collected for this task. (Eerden et al., 2014) inferred the noise mapping software
inputs from noise observation by estimating the emission sources from the observed
noise measurements in the vicinity of the roads by using a forecasting sequential ap-
proach rather than a more spatial approach. These methods can be adapted to estimate
either long-term or dynamic 1-hour maps. The Life project “Dynamap” updated 1-hour
noise maps by scaling the noise levels of pre-calculated noise maps using the observed
differences between measured and calculated original grid data for different classes of
roads (Zambon et al., 2016; Sevillano et al., 2016). However, the production of dynamic
maps requires that noise or road traffic data are available continuously, what can be
tedious.
The approach presented in this paper uses both model and observation data and then

allows a much more dynamic approach where 1-hour noise levels can be evaluated in
real time. The method aims at optimizing several cost functions designed to improve
the accuracy of the noise maps using the observations. Two classes of methods will be
discussed in this paper:
— Inverse modeling (IM) (Tarantola, 2004), a method which aims at finding the

most accurate noise map parameters that can explain the observed noise level at
the observed locations.

— Joint state–parameter estimation (JSPE) (Zayane et al., 2010), a method which
aims at finding both the most accurate noise map parameters and the corrected
noise map regarding the observations. This type of method corrects at the same
time the state (the output) and the parameters (the input) of the model.

Because of the large amount of calls to the model in the optimization algorithm and
the large time period where the inverse modeling needs to be processed, this method
is only made tractable after the substitution of the noise mapping software by a meta-
model, i.e., a statistical emulation of the noise mapping software which can compute
similar maps at a much lower computation cost. The construction of such meta-model
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is shown in (Lesieur et al., 2020)
Since the goal of the optimization algorithm is to compute input parameters for the

meta-model. The authors define a priori parameters as the input parameters obtained
by computing observed traffic and weather data as opposed to a posteriori parameters
which are the output of the optimisation algorithms.
The performance of these noise maps, generated using IM and JSPE, will be com-

pared with the performance of (1) the noise maps generated by the meta-model with
the given a priori parameters and (2) the noise maps corrected with a widely used
data assimilation technique called Best Linear Unbiased Estimator (BLUE). Some of
the optimization algorithms do not require knowing the a priori parameters values. If
the performance of IM and JSPE with and without a priori parameters are similar, it
could alleviate the work of noise maps designers to gather input observations such as
traffic and weather data to build their real time noise maps, and only rely instead on
noise observations.
The performance evaluation will be carried out with a leave-one-out cross validation

procedure, with measurements gathered over 8-months in Paris (Aumond et al., 2017)
during the ADEME project GRAFIC. Section IV.2 presents the material used in the
study, the available data, the measurement network and the metamodel, section IV.3
presents the inverse modeling methods and section IV.4 presents the results using the
cross validation method.

IV.2. Materials
IV.2.1. Case study
The study area is located in the 13th district of Paris, France and covers an area

of 3 km2. During the ADEME project GRAFIC, an array of 25 microphones has been
deployed across the study area in 2015 (Aumond et al., 2017), from which 16 have been
selected for the present study. The spatial distribution of the 16 sensors is shown in
Figure IV.1.

IV.2.2. Meta-model
IV.2.2.1. NoiseModelling and CNOSSOS-EU

The noise mapping software used in this study by which the meta-model is generated
is NoiseModelling 1 (Aumond et al., 2020a). It is an open source software designed to
produce noise maps. It uses traffic, topographic and meteorological data to generate
noise maps. The process can be summed up by the following steps: the input traffic
data along each road is discretized into a set of punctual noise sources. Noisemod-
elling computes the emissions. Then Noisemodelling computes the transmission paths
between the sources and the receivers, taking into account the distance propagation,
the number of reflections and diffractions. The software then computes the attenuation
along each path. The sound level at a receiver is finally calculated from the contribu-
tions of all sources. The emission and propagation laws are computed following the
CNOSSOS-EU guidelines (European Commission, 2015).

1. See http://noise-planet.org/noisemodelling.html
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Figure IV.1. – distribution of the sensors across the study area

IV.2.2.2. Meta-model method

Updating noise maps based on input data on an hourly basis is not tractable with
classical noise mapping software, which imply too high calculation times. To circumvent
this shortcoming, the proposed solution in (Lesieur et al., 2020) is to build a metamodel,
which generates the same type of outputs as the reference noise mapping software, which
is in this study Noisemodelling (Aumond et al., 2020b). The meta-model is built in
three steps:
— The generation of the training sample;
— The dimension reduction, through a PCA, aims to select a reduced amount of

maps that explain most of the variance of the noise maps of the training sample;
— The kriging, wich interpolates with a statistical method the projected values of

the training sample onto the basis vectors of the reduced subspace.
Once the meta-model is built, each call with new inputs takes a very small amount

of time (100 ms versus ∼ 1 h). For more details about the metamodel construction, the
reader can refer to (Lesieur et al., 2020).
The parameters selected as inputs of the meta-model are shown in table IV.1 with

their respective amplitudes. For each input, the amplitude corresponds to the range of
values observed on a given time period. These parameters have been selected because
the noise map software is mostly sensitive to these parameters (Aumond et al., 2020b).
Regarding the flow rate and the speed, the input data pi is the ratio between the
average quantity on the observed roads at a given time and the average quantity on



IV.2. Materials 97

the observed roads over one year.

Table IV.1. – Input parameters and their input ranges for the meta-model. They are
all dimensionless multiplicative coefficients applied to the reference values
(the annually averaged daily values) except the temperature which is the
actual value in ◦C.

Parameter Minimum value Maximum value
Light vehicle speed 0.1 2
Heavy vehicle speed 0.1 2
Light vehicle flow 0.1 2
Heavy vehicle flow 0.1 2
Temperature (◦C) -5 30

IV.2.2.3. Configuration of the meta-model

The simulated reception points is the union of a regular grid of step ∆x = 15 m and
the set of the geographical position of the acoustical noise measurement points. They
are all positioned at a fixed height of 4 m. The total amount of simulated points is
n = 8456. The propagation parameters are set to 250 m for the propagation distance
and one order of reflection.

IV.2.2.4. Input data for the meta-model

The input files of the noise mapping reference software are the buildings distribu-
tion and the annually averaged road traffic map during the daytime (between 06:00
and 18:00), the evening (between 18:00 and 22:00) and the night (between 22:00 and
05:00). These data are respectively given by the IGN 2, the French national geograph-
ical institute, and the city of Paris.
The computation of the noise maps with the original traffic input data, which is the

annually averaged hourly traffic count for daytime period give access to the so-called
Lday indicator. It is the A-weighted, equivalent continuous sound level, over the 12-hour
day period (06:00-18:00).
The nominal Lday field distribution given by NoiseModelling with this input data is

shown in figure IV.2. The nominal Levening and Lnight have also been computed in the
study.

IV.2.3. Real time observations
IV.2.3.1. Acoustic measurements

The microphones scattered across the study area have recorded the noise level Lfi in
dB for every one-third octave fi from 63 Hz to 20 kHz with a time step of ∆t = 125 ms,
from January 1, 2015 to September 30, 2015. In this study, all the noise data is given
in global value and in dB(A) because the meta-model is designed to give an output in
dB(A).

2. See http://professionnels.ign.fr/
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Figure IV.2. – Lday level distribution over the study area

Although the receptors were not all simultaneously active, this does not affect the
study because the small lack of data did not alter significantly the performance of the
chosen data assimilation algorithm.

IV.2.3.2. Real time 1-hour traffic and weather data

The real-time 1-hour traffic data on the main roadways of Paris is available online
on the city of Paris open data platform 3. For every measured track section, at every
hour, the hourly average flow F (t) (vehicles/h) and the occupation rate R(t) (ratio of
time where the sensors detect an occupation) are given. Given the track section length
`t and assuming an average vehicle length value `v = 4 m. It is possible to estimate the
average vehicle speed S(t) on the track section in km h−1

S(t) = 3.6 · F (t) · `v
R(t) · `t

(IV.1)

The real-time weather data has been taken from the Montsouris weather station
near the study area 4, it is also on open access online. The weather station updates
its data every hour in real time, the noise mapping software only takes into account
the temperature but upcoming versions might also take into account the probability of
occurence of favorable conditions for each direction of propagation.

3. See https://opendata.paris.fr/
4. See https://www.infoclimat.fr/
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IV.3. Data assimilation methods
IV.3.1. Purpose of the data assimilation
When noise measures are available, noise map designers wish to take this additional

data into account in the computation of the noise map. For instance, a BLUE (Best
Linear Unbiased Estimator) might be computed in order to add a correction layer to a
meta-model generated with a priori parameters as in section IV.2.2. The BLUE method
has already given staisfying results in a previous work conducted by the authors of this
paper (Lesieur et al., 2021). Its principle will be quickly reminded in section IV.3.2.1
with a variational approach because the IM and JSPE algorithm are derived from this
approach. The input parameters of the meta-model may be flawed, especially when
they aim at estimating the traffic in minor roads. Then, data assimilation methods
which allow a modification of the input parameters are proposed. Two methods will
then be discussed in this section. Section IV.3.2.2 will present the inverse modeling
technique. It consists in finding the parameters of the meta-model which give a noise
map which best approaches the observed values at the observation point the sense
of least squares. Section IV.3.2.3 will present the Joint state parameters approach.
It is a mixed approach of BLUE and Inverse modeling. It consists in finding the
parameters which gives a noise map which best fit the observed values at the observation
points when the BLUE correction is applied. A priori parameters might be available,
it is possible to take them into account in the process and to give new a posteriori
parameters. The functions associated with these 5 methods (BLUE, IM and JSPE
with and without a priori parameters) can be found in section IV.3.3.1

IV.3.2. Data assimilation methods
IV.3.2.1. Common data assimilation using the BLUE algorithm

This section shows a variational approach to find the BLUE for a fixed noise map
xb called background. The IM and JSPE algorithms respectively described in sec-
tions IV.3.2.2 and IV.3.2.3 wil be derived from this algorithm. At each timestep, a
nominal noise map xb = M̂(p) is computed. It is an estimation of the real, exact state
noise level distribution field xt. The set of observations is denoted y ∈ Rp.

It is impossible to know the exact vector xt, either from the erroneous simulation or
the incomplete (and slightly erroneous) observations. xt is then a random vector. The
set of observations is denoted y ∈ Rp. Let:
— H ∈ Rp×n be the observation matrix which maps a state vector, e.g., xt, to

the observed values y, so that y can be compared to Hxt. In this case, each
observation point has a simulated counterpart, H is therefore a matrix in which
each row is full of zeros except for a one in the column that corresponds to the
receiver located at the observation point. The elements [H]ij are equal to one if
and only if the jth receiver corresponds to the ith observation point.

— eb ∈ Rn be the simulation error xb − xt, a random vector, which is assumed to
be unbiased E[eb] = 0,

— eo ∈ Rp be the observation error y−Hxt, a random vector, which is assumed to
be unbiased E[eo] = 0,

— B = E[ebebT ] ∈ Rn×n be the covariance matrix of the simulation error,
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— R = E[eoeoT ] ∈ Rp×p be the covariance matrix of the observation error.
The BLUE output is the so-called analysis noise map xa which is a linear combination

of y and xb and minimizes the variance of the error ea = xa−xt. It can equivalently be
described with a variational approach, i.e. as an optimization problem over a functional
(Le Dimet and Talagrand, 1986) as shown below.
Let J be the following cost functional:

J (x) = (x− xb)TB−1(x− xb) + (y−Hx)TR−1(y−Hx)

=
∥∥∥x− xb

∥∥∥2

B−1
+ ‖y−Hx‖2R−1

(IV.2)

With
‖·‖A : Rn → R

x 7→
√

xTAx (IV.3)

where A is a positive definite matrix.
The purpose is to find xa such that

J (xa) = min
x∈Rn
{J (x)} (IV.4)

H, B and R are respectively the observation operator (matrix), the simulation error
covariance matrix and the observation error covariance matrix. They are described
more thoroughly in the appendix section B.1.

The expression of xa is found by solving ∇J (xa) = 0:

xa = xb + BHT (HBHT + R)−1︸ ︷︷ ︸
K

(y−Hxb)

= xb + K(y−Hxb)
(IV.5)

This is the BLUE found with a minimal variance approach (Bouttier and Courtier,
2002).

IV.3.2.2. Inverse Modeling

Starting with this method, the idea of the inverse modeling is to find a cost function
which is minimal when its inputs, the parameters set p?, minimize the RMSE of the
meta-model output, i.e. when they give the best xb = M̂(p?) with no data assimilation
process.

J (p) =
∥∥∥y−HM̂(p)

∥∥∥2

R−1
(IV.6)

In this case study where R is proportional to the identity matrix, this technique cor-
responds to the Least Mean Square (LMS) estimation applied with a gradient method,
J being differentiable.
The method selected in this case study is the BFGS (Broyden-Fletcher-Goldfarb-

Shanno) algorithm as implemented in the Scipy library v1.2.2 in the function “scipy.optimize.minimize”
with the method “L-BFGS-B” (Virtanen et al., 2020)
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IV.3.2.3. Joint State Parameter Estimation

Starting with the BLUE xa = xb+K(y−Hxb)︸ ︷︷ ︸
ε

, the goal of this method is to optimize

at the same time the correction layer ε = xa − xb, and the set of input parameters p?
so that xa = M̂(p?) + ε?.
The idea of the Joint State Parameter Estimation is to find a cost function which is

minimal when the parameters p? and the correction layer ε? minimize the RMSE of
xa, under the constraint that ε? has a covariance matrix B.
This is equivalent to optimizing the following cost function:

J (p, ε) =
∥∥∥y −H(M̂(p) + ε)

∥∥∥2

R−1
+ ‖ε‖2B−1 (IV.7)

Note that equation IV.7 is equivalent to equation IV.2, only the input parameters
change.
Define the following cost function

J ′(p) =
∥∥∥y−HM̂(p)

∥∥∥2

(I−HK)TR−1
(IV.8)

with the same K as defined in section IV.3.2.1
Appendix B.1.3 shows that minimizing this new cost function is equivalent to mini-

mizing J (p, ε) considering that ε = K(y−M̂(p)) is a necessary condition for J to be
optimal. Due to the structure of the meta-model, J ′ is differentiable. This optimization
problem can then be solved with a gradient method.
The method selected in this case study is the BFGS (Broyden-Fletcher-Goldfarb-

Shanno) algorithm as implemented in the Scipy library v1.2.2 in the function “scipy.optimize.minimize”
with the method “L-BFGS-B” (Virtanen et al., 2020)

IV.3.2.4. Consideration of the a priori about p

The ground observation of traffic and weather data gives an a priori about p called
pprior as shown in section IV.2.2. The a priori can be taken into account in the cost
function by adding the quantity ‖p− pprior‖2Q, which is analogous to a restoring force
that links p to its prior pprior.
For inverse modeling:

J (p) =
∥∥∥y−HM̂(p)

∥∥∥2

R−1
+ ‖p− pprior‖2Q−1 (IV.9)

For Joint State Parameter Estimation:

J (p, ε) =
∥∥∥y −H(M̂(p) + ε)

∥∥∥2

R−1
+ ‖ε‖2B−1 + ‖p− pprior‖Q−1 (IV.10)

For equation (IV.10), since this new term does not modify the reasoning which lead
to equation (IV.8), the new final cost function reads:

J ′(p) =
∥∥∥y−HM̂(p)

∥∥∥2

(I−HK)TR−1
+ ‖p− pprior‖Q−1 (IV.11)
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The Q matrix reflects the level of confidence we have in the a priori parameter. In
this study Q = diag(σ2

Q,1, · · · , σ2
Q,k) with σQ,i being the standard deviation of the

difference of two selections of the ith parameter assuming that they follow a uniform
distribution over its range defined in table IV.1. If the confidence on the value of pprior
is high, the value of σQ,i is low and the quantity which appears in the cost function
σ−2

Q,i(pi − pprior,i)2 weights more in the cost function, hence a significative difference
between pi and pprior,i has more weight in the cost function. Whether we have an a
priori or not about the input parameter changes the purpose of the application. On
the one hand, if input data are available, there is a need to compare the performance
of the joint state parameter estimation with regular data assimilation as studied in a
previous work to tell how relevant is this method regarding the previous works. On the
other hand, if good results are obtained with only sound level observations, this would
really ease the use of data assimilation in areas with no traffic observation data and
expand the area of noise level data assimilation.

IV.3.3. Compared interests of the different methods

IV.3.3.1. Sum up of the data assimilation algorithms

The following list sums up the different data assimilation algorithms studied in this
paper:
— The classical data assimilation: M̂(pprior) + K

(
y−HM̂(pprior)

)
;

— The inverse modeling: M̂(p?) with p? solution of
— min

p

{
J1(p) =

∥∥∥y−HM̂(p)
∥∥∥2

R−1

}
;

— min
p

{
J2(p) =

∥∥∥y−HM̂(p)
∥∥∥2

R−1
+ ‖p− pprior‖2Q−1

}
;

— The joint state parameter estimation: M̂(p?)+K(y−HM̂(p?)) with p? solution
of
— min

p

{
J3(p) =

∥∥∥y−HM̂(p)
∥∥∥2

(I−HK)TR−1

}
;

— min
p

{
J4(p) =

∥∥∥y−HM̂(p)
∥∥∥2

(I−HK)TR−1
+ ‖p− pprior‖Q−1

}
;

IV.3.3.2. Comparison of the different methods

Both methods, IM and JSPE, can work with or without prior knowledge of the input
parameters, four optimization algorithms are therefore analyzed. Table IV.2 sums up
the data necessary to perform the optimization algorithm for each cost function. If
satisfying results are obtained with optimization algorithms that do not need a pri-
ori parameters, then it is possible to expand the inverse modeling data assimilation
processes to a wider range of urban areas where the input parameters values are not
known. The JSPE may outperform the inverse modeling method thanks to the ad-
ditional piece of information given by the background error covariance matrix B. As
shown in (Lesieur et al., 2021) the computation of B requires an additional amount of
computation time in order to compute the parameters of the matrix with a so-called χ2

diagnosis and the computation of the statistical covariance which requires an order of
magnitude of 105 calls to the meta-model. Both methods, IM and JSPE, can work with



IV.4. Results 103

or without prior knowledge of the input parameters, four optimization algorithms are
therefore analyzed. Table IV.2 sums up the data necessary to perform the optimization
algorithm for each cost function. If satisfying results are obtained with optimization al-
gorithms that do not need a priori parameters, then it is possible to expand the inverse
modeling data assimilation processes to a wider range of urban areas where the input
parameters values are not known. The JSPE may outperform the inverse modeling
method thanks to the additional piece of information given by the background error
covariance matrix B. As shown in (Lesieur et al., 2021) the computation of B requires
an additional amount of computation time in order to compute the parameters of the
matrix with a so-called χ2 diagnosis and the computation of the statistical covariance
which requires an order of magnitude of 105 calls to the meta-model.

Table IV.2. – Synthesis table of the data necessary to compute each cost function and
thus to perform the corresponding optimization algorithm.

optimization algorithms a priori parameters p covariance matrices B and R
Inverse modeling 7 7

Inverse modeling with a priori parameters X 7

JSPE 7 X
JSPE with a priori X X

IV.4. Results
IV.4.1. Validation Methods
IV.4.1.1. Metrics

The indicators defined in table IV.3 are used to quantify the performance of the
outputs of the simulations, data assimilations, inverse modeling and JSPE.

Table IV.3. – Scores for the performance evaluation of a model. (ci)i is the simulated
sequence. (oi)i is the corresponding observed sequence. n is the total
number of elements in the sequence. c̄ and ō are respectively the mean
of (ci)i and (oi)i. RMSE stands for Root Mean Square Error.

Score Formula

Bias
1
n

n∑
i=1

(ci − oi)

RMSE

√√√√ 1
n

n∑
i=1

(ci − oi)2

IV.4.1.2. Leave-one-out cross validation

The leave-one-out cross-validation consists in removing the observations of a given
microphone from the data assimilation process. Only the observations from the other
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microphones are used to correct the noise level distribution. This procedure is carried
out for all microphones, one by one, where only one microphone is removed at a time.
At the removed station, the meta-model performance is compared to the performance
after assimilation of the observations of the other microphones. This enables to check
whether the assimilation properly distributes in space the corrections that originate
from the observed locations. The cross-validation evaluates the effects of the data
assimilation method at locations without any observations. It was carried out on the
data of the first 7 weeks of the year 2015.
In addition to the performance of these noise maps generated with a data assimilation

algorithm, the performance of the noise map generated by the meta-model only with
the a priori parameters M̂(pprior) will be tested. The evaluation of the performance of
the meta-model is not a leave-one-out cross validation, it simply consists in comparing
the meta-model output at an observation point at a given time and the corresponding
observation.

IV.4.2. Comparison of the methods

IV.4.2.1. Bias dispersion

Figure IV.3 shows the bias dispersion for all the receptors for every optimization
algorithm shown in section IV.3.3.1. The distribution of the bias is narrower for the
inverse modeling than for the the meta-model only. It is even narrower when the JSPE
is used. This evolution is also presented in table IV.4 where the evolution of the absolute
bias is showed at each level of correction. The table shows that the JSPE with pprior
gives the best results with 35 % of the 1-hour estimates within a margin error of 1 dB
and up to 79 % within a margin error of 3 dB. All the optimized cost function based
algorithms show better results than the regular BLUE data assimilation procedure for
both error margins 1 dB and 3 dB whether we consider the approach with or without
taking the pprior parameter.

Table IV.4. – Dispersion in dB(A) of the error between the observation and the sim-
ulation or the analysis in leave-on-out cross-validation for all the micro-
phones during all the measurement campaign

error amplitude (dB) [0, 1] ]1, 3] ]3, 5] > 5
meta-model 21 % 39 % 24 % 14 %
assimilation 30 % 45 % 17 % 7 %
Inverse modeling 31 % 44 % 17 % 7 %
Inverse modeling with pprior 31 % 44 % 17 % 7 %
JSPE 33 % 45 % 15 % 6 %
JSPE with pprior 35 % 44 % 15 % 6 %

IV.4.2.2. RMSE

In figure IV.4, the root mean squared error is displayed for each week, for each
optimization algorithm shown in section IV.3.3.1 and for the regular meta-model com-
putation and data assimilation. The reduction of the error variance is noticeable. The
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Figure IV.3. – Dispersion in dB(A) of the error between the observation and the sim-
ulation or the noise maps corrected by the data assimilation processes
for all the microphones during the first 7 weeks of the measurement
campaign.
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JSPE with a priori parameters shows the best results as it goes down from an average
of 3.3 dB(A) to an average of 2.5 dB(A) for the first week. It represents an improvement
of the performance of 25 % compared to the meta-model prediction. The inverse model-
ing shows an improvement of 21 % with a RMSE of 2.7 dB compared to the meta-model
prediction. These results are on average more efficient than the regular data assimila-
tion procedure. As explained in section IV.3.3, the better performance of the JSPE is
explained by the taking into account of the background error covariance matrix B.
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Figure IV.4. – RMSE in dB(A) of the error between the observation and the different
outputs of the nominal and corrected noise maps for all the microphones,
for the first 7 weeks of th measurement campaign.
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IV.4.3. Spatial analysis
IV.4.3.1. Visualization of the noise and correction maps

An example of the correction induced by the JSPE based on the observations at a
given time is diplayed in figures IV.5, IV.6 and IV.7. The emulation with the parameters
found by the JSPE M̂(p?) is represented in figure IV.5, figure IV.6 represents the
correction found by the JSPE ε? and finally figure IV.7 represents the resulting analysis
map M̂(p?) + ε?. The chosen date is June, 21 at 22:00, during a popular street music
festival (fête de la musique), hence the observation error and the correction are rather
high. The positively corrected area is a lively neighborhood with a high density of bars
and restaurants (Butte-aux-Cailles).

Figure IV.5. – Emulation map: M̂(p?) computed on June 21 at 10 P.M. during a
popular street music festival (fête de la musique)

IV.4.3.2. Compared performance at the observation points

The performance of the leave-one-out cross-validation at the reception points for the
inverse modeling and the JSPE without a priori parameters is shown in figure IV.8.
The figure shows that the performance of the observation points is not uniformally
distributed. A qualitative categorization of the roads has been done, the minor roads
observation points have been selected manually as observation points nearby the roads
visually classified as streets and the major roads are the remaining ones visually classi-
fied as roads. The performance seems to be connected to the nature of the road section
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Figure IV.6. – Correction map: ε? computed on June 21 at 10 P.M. during a popular
street music festival (fête de la musique)

associated to the observation point. It is shown in figure IV.8 and in table IV.5 that
minor roads perform better than major roads. These figures only show the results for
JSPE and IM without a priori parameters algorithms because we just aim at showing
a trend, the other algorithms with a priori perform in the same fashion. This is ex-
plained by the higher variability of the time evolution of the traffic and thus the noise
dynamic in these areas. In addition, in minor roads areas, since the traffic noise is not
predominant, other noise sources (public works, shoutings, shops and restaurants, etc.)
may increase the discrepancy between the simulated noise maps which only takes into
account traffic noise and the observed sound level.

One may wonder if the distance of the observation points to the sensors network
affects the performance of the RMSE with such distance between the observation points.
The scatter plots displayed in figures IV.9 and IV.10 show that there is no trend that
show a clear correlation between the distance to the network and the performance of the
observed points. Note that these trends are valid for both inverse modeling and JSPE
algorithms, not all reception points perform better with the JSPE rather than with
the inverse modeling but no external factor has been identified to explain the change
of performance. This lack of trend might be explained by the relatively large distance
between each reception points (the majority of the points are more than 250 m apart).
A tighter array of receptor might show a trend for reception points closer together.
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Figure IV.7. – Resulting analysis map: M̂(p?) + ε? computed on June 21 at 10 P.M.
during a popular street music festival (fête de la musique)

IV.4.4. Comparison of the a priori and a posteriori parameters

The a priori input parameters of the meta-model and the input parameters computed
with the JSPE algorithm are shown in figure IV.11. The two graphs follow the same
daily trend, however, the variability of the computed parameters is higher due to the
higher uncertainty of the observed sound levels. As these input parameters might seem
too bumpy an unrealistic, recall that they are designed to fit with the observed noise
data instead of reflecting the global trend of traffic intensity over the study area. This
is why here, only the trend matters to check if it complies with the order of magnitude.

IV.5. Discussion

IV.5.1. Implementation of the algorithms and computation time

As explained in table IV.4, The JSPE algorithm requires to computes a background
error covariance matrix B and thus requires additional knowledge of the state of the
studied area. However, when all the required data is gathered, the computation time
to process the optimization algorithm is the same for all the presented algorithm and
is on average 70 s. The number of iteration fluctuates around an average value of 30
iteration to reach the optimal value, and so does the computation time but the order
of magnitude is the same.
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Figure IV.8. – RMSE of the leave-one-out cross-validation of the IM (cyan) and the
JSPE (blue) without a priori parameters, the highest bar represents a
RMSE of 4.7 dB

IV.5.2. Frequency band

In this study, different noise sources with different noise spectra are mixed together
to give only one noise indicator, the LAeq,1h in dB(A). A new approach might be to
build several optimization algorithms for several frequency bands. With these tools it
might be possible to build a larger quantity of indicators and to give a more precise
description of the surrounding soundscape, for example by discriminating the type of
vehicles.

IV.5.3. Estimation of the parameters

The estimation of the parameters shown in figure IV.11 suggests that this method
might help to estimate the input parameters of the meta-model such as traffic data for
the study area. However, the estimated parameters are a proxy of the input parameter
and are not as useful as the resulting noise map. This method is not adapted to
reconstruct the input data with noise observation. Studies like (Eerden et al., 2014)
have been specifically designed to construct emission sources such as traffic data with
noise observations.
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Figure IV.9. – RMSE performance of the JSPE without a priori parameters algorithm
against the distance of the observation points to the network
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Figure IV.10. – RMSE performance of the IM without a priori parameters algorithm
against the distance of the observation points to the network
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Table IV.5. – Compared RMSE performance in dB(A)of the reception points when
categorized according to the road section they are attached to (minor
roads or major roads) for the JSPE and IM without a priori parameters
algorithm.

Algorithm Minor Roads Major Roads
IM 2.72 dB(A) 2.83 dB(A)
JSPE 2.50 dB(A) 2.63 dB(A)
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Figure IV.11. – a priori and a posteriori light vehicule flow of the meta-model.

IV.5.4. Complexity of the meta-model

The meta-model used for this study has been built with a low number of parameters.
It is possible to build a meta-model with a higher number of parameters, for example
by discriminating the roads sections into categories by traffic densities with major,
medium and minor road sections. Since it has been shown in (Barrigón Morillas et al.,
2005) that road categories have different hourly traffic profiles. This might improve the
accuracy of the process by giving different traffic parameters for each road sections.

IV.5.5. difference between the IM and the JSPE

This study has shown a slightly better accuracy of the JSPE algorithm. However, it
remains hard to tell what differs between the JSPE and the IM algorithms. The fact
that the JSPE takes into account B, the background error covariance matrix allows to
think that the JSPE may shows sensibly better results when the observed noise differs
a lot from the predicted noise. Since the IM algorithm is simpler to implement, it can
be recommanded to quickly perform the data assimilation process. However, the JSPE
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is more robust to high variation between noise predictions and observations.

IV.5.6. Network optimisation
The observation points have originally been distributed over the study area for an

other study, and then originally fulfilled an other purpose than the data assimilation
technique discussed in this paper. An insightful development following this paper would
be to discuss the optimal distribution of the network across the study area and see
whether some strategic locations significatively enhance the performance of the data
assimilation procedure.

IV.6. Conclusion
The inverse modeling (IM) and joint state parameter estimation (JSPE) without

a priori parameters improved the performance of the prediction of respectively 21 %
and 26 % compared to the regular meta-model prediction. The inverse modeling shows
similar results as the data assimilation method BLUE (Best Linear Unbiased Estimator)
only, whereas the JSPE always has a lower RMSE value than the state estimation only.
The performance of IM and JSPE without a priori parameters remains very similar to
the performance with these parameters. This means that the operators who wish to
obtain a dynamic noise mapping for a given area can get a satisfying level of accuracy
without the need to get real-time traffic and weather data, and extend the availability of
dynamic noise mapping to areas where no traffic measurement is available. The method
explored in this paper only requires a meta-model of a noise mapping software for the
study area and a set of observed noise levels at given locations. It is then possible to
compute dynamic noise maps with only a noise model and noise observations with no
a priori knowledge of the traffic and weather data.
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V. Estimation and diagnosis of the
parameters of a covariance matrix

This chapter is dedicated to the presentation of a new diagnosis method
whose goal is to evaluate the accuracy of the estimated parameters of a co-
variance matrix. The covariance matrix of the error between the predicted
and the observed noise level is a fonction which depends on unknown pa-
rameters. In chapter III, these parameters are the global variance σb, the
characteristic legth Lb and the characteristic noise level Ld. It is an en-
hancement of the so-called χ2 diagnosis which has been introduced in chap-
ter III. This new method, called canonical estimation of the parameters will
be introduced, a framing of its convergence speed will be proven. Then a
numerical test of the canonical estimation will be conducted and compared
to the current χ2 diagnosis on a toy model in order to highlight the benefits
of this new method compared to the limitations of the χ2 diagnosis.
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This chapter is a transcription of the following article: Antoine Lesieur, Vivien Mal-
let, and Julien Salomon. Estimation and diagnosis of the parameters of a covariance
matrix (submitted). Quarterly Journal of the Royal Meteorological Society, b.
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Abstract

Many data assimilation techniques based on the so-called best linear unbiased esti-
mator often use parametrized covariance matrices to describe the background errors
and the observational errors. The accuracy of the covariance matrices is often evalu-
ated by the so-called χ2 diagnosis which is computationally cheap but may give rise
to false positive. This paper proposes a new kind of diagnosis based on the canonical
estimation of the covariance matrix whose optimal value uniquely defines the associ-
ated parameters. In addition, we show that this approach allows to approximate the
parameters with an error of the form O( 1√

n
), when n observations are used. Finally, a

numerical study is carried out on a particular class of covariance matrices chosen to be
very sensitive to the method used, both for the approximation of the parameters and
for the diagnosis.

V.1. Introduction

In the data assimilation processes, a diagnosis of the covariance parameters is often
used to check the accuracy of a covariance matrix, using samples supposed to follow
a probability distribution with such covariance matrix. This numerical tool is crucial
in the design of data assimilation processes such as BLUE (Best Linear Unbiased Esti-
mator) (Liu et al., 2008). In this process, a key element, the Kalman matrix (Kalman,
1960), is often considered. Introduced in the 60’s, this tool is widely used in automatic
control. Since 1979 (Bryson et al., 1979), its application to data assimilation has also
been proposed. The Kalman matrix is built from the prediction error covariance ma-
trices. These matrices sometimes need to be appropriately parametrized in order to
guarantee the performance of the assimilation process. Several applications make use
of the covariance parameters diagnosis to tackle applications where data assimilation
is required, as ,e.g., in meteorology, for assimilation of tracers (Ménard and Chang,
2000) or 4DVAR meteorological forecasting approaches (Ménard and Daley, 1996), air
quality mapping (Tilloy et al., 2013), noise pollution mapping (Ventura et al., 2018),
The diagnosis used in all those works relies on the so-called χ2 diagnosis. This method

has a low computational cost, hence, allows the data assimilation operator to quickly
check the accuracy of the parameters she works with. However, this method suffers
from flaws which might result in a wrong evaluation of the matrix parameters. As an
example, the solution of the equation E[χ2(θ)] = p is not uniquely defined, though
at the basis of the approach. It follows that one might get a good score for a set of
parameters which actually poorly describes the covariance matrix.
In this paper, we circumvent this limitation by proposing an alternative method

which gives the best score only for the exact parameters of the covariance matrix and
thus guarantees that a good diagnosis score actually corresponds to accurate estimated
parameters. This method is inspired by the work presented in (Desroziers et al., 2005),
and relies on the canonical estimation of the covariance between the terms of the
covariance matrix itself. As a by-product, it can be adapted to find the best parameters
by means of an optimization algorithm. We will see that the χ2 is unable to fulfill this
task.
This paper is organized as follows. The case study is presented in section V.2. In
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section V.3, we recall the basics on χ2 Diagnosis and detail its strengths and weaknesses.
The canonical estimation method is presented in section V.4. We then illustrate the
performance of this method by numerical experiments in section V.5, where we compare
it to χ2 and test its robustness, study its convergence behavior for the parameters
estimation, and its reliability for the diagnosis.

Thorough out this paper, tr(M) denotes the trace of a matrix M, Cov(φ) denotes the
covariance matrix associated with a random sample φ. Given two integers k and k′, the
space of continuously differentiable function form Rk to Rk′ is denoted by C1(Rk, Rk′).
The set of real symmetric matrices of size p is denoted by Sp(R).

V.2. Presentation of the case study

Given n > 0, we consider a sequence (ν(k))k∈J1, nK of independent identically dis-
tributed random vectors of dimension p. For the sake of simplicity, we often denote by
ν any arbitrary ν(k), in what follows. Its distribution is unknown with E[ν] = 0. Let
us denote by S? its covariance matrix, i.e., S? := E[ννT ]. Assume the latter belongs
to a class of parametrized matrices S(θ) with a smooth dependence with respect to
θ ∈ R`, say S ∈ C1(R`, R

p(p+1)
2 ), since dim(ν) = p, S? ∈ Rp×p with S symetrical, hence

S? ∈ Sp(R) ↪→ R
p(p+1)

2 . We suppose moreover that there exists a unique θ? such that
S? = S(θ?). In the case where the sequence (ν(k))k∈J1, nK is associated with n observed
data, we aim at building two processes, namely
— Estimation: find the best estimation θ̂n of θ?;
— Diagnosis: for a given θ̃, check if it approaches well θ?.

In section V.3, we explain how χ2 diagnosis applies to the later issue and show that it
fails to tackle the former. We then present in section V.4 an alternative method which
outperforms the χ2 approach in both of these tasks.

V.3. State of the art: χ2 diagnosis

χ2 diagnosis has been introduced in (Dee, 1995) to test the so-called perfect-model
assumption for 4DVAR applications (Courtier et al., 1994) in atmospheric data assim-
ilation. For the sake of completeness, we recall how this approach proceeds.

V.3.1. Presentation of χ2 diagnosis

χ2 diagnosis is a method used in data assimilation to check the accuracy of estimated
covariance parameters. It proceeds as follows. For a sample of size n and a parameters
vector θ̃, define:

χ2
n(θ̃) := 1

n

n∑
k=1

ν(k)TS−1(θ̃)ν(k).

Lemma 2. Keeping the notation of section V.2, we have:

∀k ∈ N, E[ν(k)TS−1(θ?)ν(k)] = p. (V.1)
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The proof of this result is given in C.1.1.1. All ν(k) are i.i.d with an expected value
of 0, the use of Lemma 2 and the law of large numbers gives:

χ2
n(θ?) L−→ p.

The value χ2
n(θ̃)
p consequently reads as a score which indicates how the estimate param-

eters are compliant with the observed data. When this quantity is close to one, the
operator shall consider that the set of parameters θ̃ accurately reflects θ?. However,
the set E :=

{
θ|E[χ2(θ)]

p = 1
}

is generally not a singleton, but a manifold of dimen-
sion p − 1. Considering that En :=

{
θ|χ

2
n(θ)
p = 1

}
approaches E a n goes to infinity,

it follows that finding an element θ′ of En does not mean that the latter is close to
θ?, i.e., limn→∞ ‖θ′ − θ?‖ = 0, but that limn→∞ infx∈E ‖θ′ − x‖ = 0, with ‖ · ‖ the

Euclidian norm. For example, if S(θ?) =
(
θ?1 0
0 θ?2

)
, then E[νTS−1(θ?)ν] = 2. How-

ever, any parameter of the form θ′ = ( θ1
1+aθ1

θ2
1+bθ2

)T where aθ1 + bθ2 = 0 also satisfies
E[νTS−1(θ′)ν] = 2. Hence, a good score does not implies that θ̃ fairly approximates
θ?.

V.3.2. χ2 for parameter estimation
Besides diagnosis, one might try to use the χ2 diagnosis to estimate the parameter

associated with a random vector. This approach proceeds as follows. Starting with the
functional

Jn,χ2(θ) := (χ2
n(θ)− p)2,

one defines the approximation θ̂n of θ? as a minimizer of Jn,χ2 , i.e., in such a way
that χ2

n(θ̂n) is optimally close to p. Since θ 7→ S(θ) is assumed to be differentiable, a
Newton-like gradient algorithm such as BFGS ((Fletcher, 2013), (Bertsekas, 1997)) can
be applied to compute a minimum value. Recall that in such a procedure, the gradient
∇Jn,χ2 of the functional is required. In our case, it can be computed by

∇Jn,χ2(θ) = 2(χ2
n(θ)− p)∇χ̄2

n(θ)

= − 2
n

(χ2
n(θ)− p)

n∑
i=1
ν(k)TS(θ)−1∇S(θ)S(θ)−1ν(k).

(V.2)

Because of the above mentioned possible local minima, the final value may depend on
the initialization of the algorithm. This procedure is tested in section V.5.

V.4. A new approach: canonical estimation parametrization
In this section, we propose a new approach, the canonical estimation parametrization

whose purpose is to estimate accurately the parameters of the covariance matrix. This
approach proceeds in three steps, namely, the canonical estimation of the covariance
function, which is presented in section V.4.1, the computation of the covariance matrix
of the vectorized estimated covariance matrix, which is detailed in section V.4.2 and
the solving of a minimization problem in the framework of parameters estimation and
diagnosis. This last step is presented in section V.4.3.
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V.4.1. Canonical estimation the covariance matrix
Define S := Cov(ν,ν) and Ŝn its canonical estimation. Recall that (ν(k))k∈J1, nK

denotes a sequence of independent identically distributed random vectors of dimension
p, with an unknown distribution and a covariance matrix of the form S(θ?). We define
the canonical estimator Ŝn ∈ Sp(R) of S(θ?), by:

[Ŝn]i,j := 1
n− 1

n∑
k=1

(ν(k)
i − ν̄i)(ν

(k)
j − ν̄j), (V.3)

where ν(k)
i and ν̄i denotes the i-th components of ν(k) and ν̄ respectively, with ν̄ :=

1
n

∑n
k=1 ν

(k).

V.4.2. Expression and estimation of the covariance matrix of ŝn

Define the projection φ of Sp(R) onto R
p(p+1)

2 by:

φ : Sp(R) → R
p(p+1)

2

M 7→ m = ([M]ij)(i,j)∈J1,pK2

i6j

.

Introduce then s(θ) := φ(S(θ)) and ŝn := φ(Ŝn). We now wish to find an expression
of the covariance matrix of ŝn Γn := Cov(ŝn), in order to derive an approximation Γ̂n
based on the random sample (ν(k))k∈J1, nK.

V.4.2.1. Exact expression of Γn

Define the centralized random vector η(k) by:

∀(k, i) ∈ J1, nK× J1, pK, η(k)
i := ν

(k)
i − E[νi].

Given i, j, `,m ∈ J1, pK4, and a, b, c, d ∈ {0, 1}4, we introduce the notation:

σabcd :=
n∑
k=1

η
(k)a
i η

(k)b
j η

(k)c
` η(k)d

m ,

µabcd :=E[ηai ηbjηc`ηdm].

Assuming further that i 6 j and m 6 `, we define i′, j′ ∈ J1, p(p+1)
2 K such that

ŝn,i′ = Ŝn,i,j and ŝn,j′ = Ŝn,m,` and introduce:

Γn := Cov(ŝn) ∈ S p(p+1)
2

(R),

so that:
[Γn]i′j′ = Cov([ŝn]i′ , [ŝn]j′) = Cov([Ŝn]i,j , [Ŝn]m,`).

Lemma 3. The matrix Γn satisfies:

[Γn]i′j′ = −(n− 1)2

n3 µ1100µ0011 + n− 1
n3 (µ1001µ0110 +µ1010µ0101)+ (n− 1)2

n3 µ1111. (V.4)
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The proof is detailed in C.1.2. Thanks to (V.4), we see that Γn takes the form
Γn = A

n + B
n2 + C

n3 , where A, B and C are some given matrices. Here, A is called the
asymptotical covariance matrix. Because of (V.4), we get:

A := µ1111 − µ1100µ0011. (V.5)

We deduce that the inverse of Γn satisfies:

Γ−1
n = nA−1 −A−2B + o(1).

This expansion will be used in section V.4.3.1.

V.4.2.2. Canonical estimation of Γn

We now use (V.4) to define Γ̂n. Since the moments µabcd appearing in (V.4) are
unknown, we approximate them by their empirical approximation and introduce:

[Γ̂n]i′j′ := −(n− 1)2

n3 µ̂1100µ̂0011 + n− 1
n3 (µ̂1001µ̂0110 +µ̂1010µ̂0101)+ (n− 1)2

n3 µ̂1111 (V.6)

where:

µ̂abcd := 1
n− 1

n∑
k=1

(
ν

(k)
i − ν̄i

)a (
ν

(k)
j − ν̄j

)b (
ν

(k)
` − ν̄k

)c (
ν(k)
m − ν̄`

)d
.

As opposed to µabcd, µ̂abcd is computable from the random sample (ν(k))k∈J1, nK.
Let us now recall the Landau notation oP for the negligibility in probability. Given a

sequence of random variables (Xn)n and (un)n a sequence of real numbers, we consider
the formal following definition:

Xn = oP(un)⇔ ∀ε > 0, ∀η > 0, ∃n0 ∈ N, ∀n ≥ n0, P
( |Xn|
un

6 ε

)
> 1− η.

We then have Â = A + oP
(

1√
n

)
, B̂ = B + oP

(
1√
n

)
and Ĉ = C + oP

(
1√
n

)
, so that

Γ̂n = Γn + oP

( 1
n
√
n

)
, Γ̂−1

n = Γ−1
n + oP

( 1
n
√
n

)
= nA−1 + oP(n). (V.7)

V.4.3. Applications to parameters estimation and diagnosis
In this section, we present two kinds of uses of our canonical estimation: the param-

eters estimation in section V.4.3.1 and the diagnosis in section V.4.3.2.

V.4.3.1. Parameters estimation

As done with the χ2 approach in section V.3.2, we formulate the parameters esti-
mation problem in terms of an optimization problem. In this way, we introduce the
functional

Jn,I(θ) := ‖s(θ)− ŝn‖2, (V.8)
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that has to be minimized. This method aims at computing the θ̂n which satisfies
the Least Mean Square criterion regarding the estimated covariance matrix Ŝn. The
functional is differentiable, and the components of its gradient are:

∇Jn,I(θ)i =
(

2∂s(θ)
∂θi

T

(s(θ)− ŝn)
)
i

. (V.9)

It is then possible to compute θ̂ with a Newton-like gradient algorithm. However, this
method is not robust if the condition number is high, as observed in section V.5.1.2,
where a numerical experiment shows how this cost function is sensitive to the condition
number. Hence, a covariance matrix with a high condition number may lead to a poor
estimation of θ̂n.
Let us now consider:

J
n,Γ̂n

(θ) := (s(θ)− ŝn)T Γ̂−1
n (s(θ)− ŝn) .

The functional J
n,Γ̂n

is the usual log-likelihood of a Gaussian distribution N (s(θ), Γ̂n)
(Fisher, 1922), hence this estimation method is called the maximum likelihood estima-
tion. The associated minimization problem is a more sophisticated version of (V.8), in
the sense that it does take into account the covariance of ŝn, which is grasped in (V.8)
by Γ̂n. Note that estimating θ? using J

n,Γ̂n
is not as straightforward as using Jn,I

because it requires the computation of Γ̂n which is a dense matrix. As was the case
for the functionals Jn,χ2 and Jn,I, its gradient can also be computed explicitly. In this
case, its components are given by:

∇J
n,Γ̂n

(θ)i =
(

2∂s(θ)
∂θi

T

Γ̂−1
n (s(θ)− ŝn)

)
i

. (V.10)

As was the case for Jn,I, we can consequently make use of a steepest descent algorithm
to optimize J

n,Γ̂n
.

We now wish to bound the error θ̂n − θ?. Consider the confidence region:

Λαn =
{

s ∈ R
p(p+1)

2 |n(s− ŝn)TA−1(s− ŝn) 6 zα

}
, (V.11)

where A is defined by (V.5) and zα is the quantile of order 1 − α of the χ2 law with
p(p+1)

2 degrees of freedom.
The following preliminary results will be used in the proof of Theorem 1.
Define OP the Landau notation for the domination in probability by

Xn = OP(un)⇔ ∀η ∈ [0, 1], ∃Mη, ∀n ∈ N, P
(
Xn

un
6Mη

)
> 1− η,

where (Xn)n is a sequence of random variables and (un)n a sequence of real numbers.
We have the following result.

Lemma 4. Let s(θ) introduced in section V.4.2, Γ̂n defined in (V.6). If:

v :=
∂sT (θ)
∂θi

Γ̂−1
n∥∥∥∂sT (θ)

∂θi
Γ̂−1
n

∥∥∥
1
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then:

v = v1 + (θ − θ?)TDT
∂θis(θ

?)M(p) + ‖θ − θ?‖1vT2 + o(θ − θ?) +OP

( 1
n

)
with

— v1 :=
∂sT (θ?)
∂θi

A−1∥∥∥ ∂sT (θ?)
∂θi

A−1
∥∥∥

1

,

— M(p) := A−1∥∥∥ ∂sT (θ?)
∂θi

A−1
∥∥∥

1

— vT2 =

∣∣∣∣∣∣∣∣∣DT
∂θi

s(θ?)A−1
∣∣∣∣∣∣∣∣∣ ∂sT (θ?)

∂θi
A−1∥∥∥ ∂sT (θ?)

∂θi
A−1

∥∥∥2

1

.

The proof is given in C.1.3.1.

Lemma 5. Let (Pn)n, be a Boolean random variable. Define α ∈ [0, 1[, such that
∀n ∈ N, P(Pn = True) ≥ 1− α. Let (σ(n))n ∈ NN an increasing sequence of integers,
Xn be a real random variable and (un)n a real sequence such that

∀n ∈ N, (Pσ(n) = True⇒ Xσ(n) = OP(uσ(n))). (V.12)

Then
Xn = OP(un).

The proof is given in C.1.3.2.

Lemma 6. Let s : R` → Rp with p ≥ `. Define θ? ∈ R` such that s is differentiable at
θ? and whose Jacobian matrix Ds(θ?) satisfies dim(=(Ds(θ?))) = `. Then there exists
λ > 0 such that for all θ ∈ V(θ?) a neighborhood of θ?:

‖s(θ)− s(θ?)‖
‖θ − θ?‖

> λ. (V.13)

The proof is given in C.1.3.3. Let us now state our main result.

Theorem 1. Let (ν(k))k∈J1, nK be a sequence of random vectors i.i.d. of dimension p.
Let

{
S(θ),θ ∈ R`

}
be a class of parametrized covariance matrices, with θ 7→ S(θ) ∈

C1(R`,Sp(R)). Assume that there exists a unique θ? ∈ R`, such that S(θ?) is the
covariance matrix of the ν(k), and that the Jacobian matrix Ds(θ?) of s : θ → s(θ) is
invertible. Suppose finally that for some ε > 0, the sequence of approximations (θ̂n)n∈N
satisfies ‖∇J

n,Γ̂n
(θ̂n)‖ 6 ε.

Then:

‖θ̂n − θ?‖ = OP

( 1√
n

)
.

Proof. In view of (V.11), a direct application of the central limit theorem gives:

lim
n→∞

P(s(θ?) ∈ Λαn) = 1− α. (V.14)
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As a consequence, there exists (σ(n))n ∈ NN an increasing sequence of integers such
that

∀n ∈ N, s(θ?) ∈ Λασ(n),

and
lim
m→∞

P(∃n ∈ N, σ(n) = m) = 1− α.

In view of Lemma 5, the purpose of this demonstration is to show that:

∀n ∈ N, s(θ?) ∈ Λασ(n) ⇒ ‖θ̂σ(n) − θ?‖ = OP

(
1√
σ(n)

)

Let us then assume that ∀n ∈ N,m := σ(n), s(θ?) ∈ Λαm and define c :=
√
zαλmax

and

Im :=
p(p+1)

2∏
i=1

[
[ŝm]i −

c√
m
, [ŝm]i + c√

m

]
,

where λmax is the greatest eigenvalue of A (see (V.5)), hence Λαm ⊂ Im. Define also for
i ∈ J1, `K and m ∈ N:

aTm,i := 2
∂sT (θ̂m)
∂θi

Γ̂−1
m . (V.15)

In order to find a framing of the quantity ‖θ̂m−θ?‖, we start by framing of the quantity
aTm,i(s(θ̂m)− s(θ?)). This one can be decomposed as follows:

aTm,i(s(θ̂m)− s(θ?)) = aTm,i(s(θ̂m)− ŝm) + aTm,i(ŝm − s(θ?)).

Let us bound each of the two terms in the left-hand side. In view of (V.10) and
‖∇J

m,Γ̂m
(θ̂m)‖ 6 ε, the former can be bounded by:

∀i ∈ J1, `K,
∣∣∣aTm,i(s(θ̂m)− ŝm)

∣∣∣ 6 ε (V.16)

Given i ∈ J1, `K, consider now the term aTm,i(ŝm − s(θ?)). If the event s(θ?) ∈ Λαm
happens, since Λαm ⊂ Im,then the inner product of am,i with ŝm − s(θ?) satisfies:∣∣∣aTm,i(ŝm − s(θ?))

∣∣∣ 6 ‖am,i‖1 c√
m
. (V.17)

Combining equation (V.16) and (V.17), we get:∣∣∣aTm,i(s(θ̂m)− s(θ?))
∣∣∣ 6 ε+ ‖am,i‖1

c√
m
. (V.18)

As an illustration, a 2D representation of the confidence region Λαn is shown in Fig-
ure V.1. This region is an ellipse whose axes lengths are `i =

√
zαλi
m , where λi are the

eigenvalues of A and directions are the eigenvectors of A. Here, assume that the event
s(θ?) ∈ Λαm occurs. with (pi − ŝm)i the vertices of Im, d0 is the isolevel line of value
aTm,i(s(θ?) − ŝm), d−1 is the isolevel line of value aTm,i(p1 − ŝm) and d1 is the isolevel
line of value aTm,i(p3 − ŝm) for the function x→ aTm,ix.
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x1

x2

`1

`2

Λαn

I1

p1×
p2×

p3
×

p4
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d−1
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◦

◦
ŝn

Figure V.1. – 2D representation of the confidence region Λαn.

Then we have in figure V.1:

aTm,i(p1 − ŝn) ≤ aTm,i(s(θ?)− ŝm) ≤ aTm,i(p3 − ŝm) (V.19)

then for the equation (V.19):

aTm,i(p1 − ŝn) = −‖am,i‖1
c
√
m
, aTm,i(p3 − ŝn) = ‖am,i‖

c
√
m

Define now
dm := ‖am,i‖1 (V.20)

vm
T :=

aTm,i
dmc

=
2
dmc

∂sT (θ̂m)
∂θi

Γ̂−1
m . (V.21)

Equation (V.18) leads to the following inequalities concerning the inner product of vm
with ŝm − s(θ?): ∣∣∣vmT (s(θ̂m)− s(θ?))

∣∣∣ 6 ε

dm
+ 1√

m
(V.22)

On the other hand, we get from Lemma 4 that

cvTm = vT1 + (θ − θ?)TDT
∂θis(θ

?)M(p) + ‖θ − θ?‖1vT2 + o(θ − θ?) +OP

( 1
m

)
. (V.23)

We then consider the scalar product of each sides of (V.23) with (s(θ̂m) − s(θ?)). In
this way, let ζm ∈ [0, 2π[ be such that:

v1
T (s(θ̂m)− s(θ?)) = ‖v1

T ‖‖s(θ̂m)− s(θ?)‖ cos(ζm).
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Using the Cauchy-Schwarz inequality we have:(
(θ̂m − θ?)TDT

∂θis
(θ?)M + ‖θ̂m − θ?‖1vT2

)
(s(θ̂m)− s(θ?))

≤ ‖(θ̂m − θ?)TDT
∂θis

(θ?)M + ‖θ̂m − θ?‖1vT2 ‖‖s(θ̂m)− s(θ?)‖.

The definition of vm given by (V.21) gives:

cvm
T (s(θ̂m)− s(θ?)) = (v1

T + (θ̂m − θ?)TDT
∂θis

(θ?)M + ‖θ̂m − θ?‖1vT2 )(s(θ̂m)− s(θ?))+

o(θ̂m − θ?) +OP( 1
m

)

≤ ‖s(θ̂m)− s(θ?)‖(‖v1
T ‖ cos(ζm)+

‖(θ̂m − θ?)TDT
∂θis

(θ?)M + ‖θ̂m − θ?‖1vT2 ‖)

+ o(θ̂m − θ?) +OP( 1
m

)
(V.24)

Combining (V.15) and (V.20), we get dm =
∥∥∥∥2∂sT (θ̂m)

∂θi
Γ̂−1
m

∥∥∥∥. According to (V.7),

Γ̂−1
m = mA−1 + oP(m), with limm→∞

∂sT (θ̂m)
∂θi

= ∂sT (θ?)
∂θi

. It follows that we have
dm =

∥∥∥2∂sT (θ?)
∂θi

A−1m+ oP(m)
∥∥∥ = m+ oP(m). Hence

ε

dm
= oP

( 1
m

)
= OP

( 1
m

)
Combining this last equality with (V.22) and (V.24), we find that:

1
c
‖s(θ̂m)− s(θ?)‖(‖vT1 ‖ |cos(ζm)|+ ‖(θ̂m − θ?)TDT

∂θis
(θ?)M + ‖θ̂m − θ?‖1vT2 ‖ ||)

6
1√
m

+ o(θ̂m − θ?) +OP

( 1
m

)
.

(V.25)

Since ‖θ̂m − θ?‖ → 0 by construction of the output of the optimization algorithm, we
have lim

m→∞
‖(θ̂m − θ?)TDT

∂θis
(θ?)M + ‖θ̂m − θ?‖1vT2 ‖ = 0.Consider now the quantity

‖s(θ̂m)− s(θ?)‖‖v
T
m,1‖ cos(ζm)

2c (with 2 chosen arbitrarily). We have

‖s(θ̂m)− s(θ?)‖
‖vTm,1‖ |cos(ζm)|

2c
6 ‖s(θ̂m)− s(θ?)‖(‖vTm,1‖ |cos(ζm)|+ ‖(θ̂m − θ?)TDT

∂θis
(θ?)M + ‖θ̂m − θ?‖1vT2 ‖ ||).

(V.26)

Combining it with (V.25), we obtain

‖s(θ̂m)− s(θ?)‖
‖vTm,1‖ |cos(ζm)|

2c 6
1√
m

+ o(θ̂m − θ?) +OP

( 1
m

)
.
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Define Aφv1 = {x ∈ R, |(x,v1) − π
2 | ≤ φ} ⊂ R

p(p+1)
2 . Thanks to the properties of the

ellipsoid Λαn, we have

P(s(θ?) ∈ Λαn\Aφv1) ≥ P(s(θ?) ∈ Λαn\Aφvmin) = 1− α′,

with vmin the eigenvector associated with λmin, the smallest eigenvalue of A. Choose
σ(n) = m such that s(θ?) ∈ Λαm\A

φ
v1 , see (V.14), the previous calculation remains valid,

as well as the assumptions of Lemma 5. Using Lemma 6, combining (V.13) with (V.26)
and | cos(ζm)| ≥ cos(φ), with cos(φ) > 0, we obtain that for m large enough:

‖θ̂m − θ?‖ 6
‖s(θ̂m)− s(θ?)‖

λ
6

2
λ‖v1‖ cos(ζm)

√
m

+OP

( 1√
m

)
+ o(θ̂m − θ?)

6 OP

( 1√
m

)
+ o(θ̂m − θ?),

meaning that

‖θ̂m − θ?‖ = OP

( 1√
m

)
.

The result follows from Lemma 5.

V.4.3.2. Diagnosis

The canonical estimation diagnosis consists in quantifying the quality of θ̃, an es-
timation of θ?, by computing the value J

n,Γ̂n
(θ̃). This method has pros and cons

compared to χ2 diagnosis. On the one hand, the minimum is expected to be unique so
that a small score shall imply a vicinity with the global optimum. On the other hand,
the value 0 is an asymptotic expectation, by construction of JΓ̂n

, and the optimal value
with a finite sample size is unknown. An experimental comparison of the performance
of the two strategies is proposed in section V.5.

V.5. Performance
We first consider a case where ν ∈ R5, i.e., p = 5. The parameters are estimated

from a random sample (νi)i iid where ∀i, νi ∼ N (0,S(θ?)) where:

S(θ) :=


θ1 0 0 0 0
0 θ1 0 0 0
0 0 θ1 0 0
0 0 0 θ1 0
0 0 0 0 λθ1θ2

 ,
whose condition number is κ(S(θ)) = λθ2. We then fix θ? = (1, 1)T , λ = 105 and
set θinit = (20, 30)T as initialization parameters for the optimization procedure. The
random sample (νk)k∈J1, nK is obtained by a pseudo random number generatorwhich
simulates a Gaussian sample whose mean is set to 0 and covariance matrix is set to
S(θ?). We consider a sample of size n = 104. The choice of S(θ) is motivated by the
fact that J

n,Γ̂n
is sensitive to κ(S(θ)) whereas Jn,I does not depend on it, hence the

possibility to asset the influence κ(S(θ)) on the performance of the two approaches.
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V.5.1. Experimental Setup

The estimated value of θ is computed using BFGS algorithm, meaning that both
J
n,Γ̂n

(resp. Jn,I) and its gradient ∇J
n,Γ̂n

(resp. ∇Jn,I) are required. Recall that the
latter can be computed using the results of sections V.3.2 and V.4.3.1, see equations
(V.2), (V.10), (V.9). The implementation is carried out by means of the Python Scipy
library ((Virtanen et al., 2020)).
In this section, we first evaluate the robustness of the optimization algorithm with

respect to the initialization value θinit (see section V.5.1.1). We then compare the
efficiency of J

n,Γ̂n
and Jn,I regarding the performance of the respective optimization

algorithms, in term of
— condition number of the matrix κ(S(θ)), see section V.5.1.2,
— required size n of the random sample, see section V.5.1.3.

Finally, as a parameter diagnosis process, the accuracy of our new diagnosis is compared
to χ2 diagnosis in section V.5.2.

V.5.1.1. Robustness of the optimization algorithms

As an iterative process, the performance of the parameters identification algorithms
shall depend on its initialization θinit. The goal of our first test is to see how the
resulting approximation θ̂n is sensitive to θinit. In our tests, a random sample of 100
initialization parameters θinit has been picked with θinit following a uniform distribution
on ∏k

i=1[0, 2θ?i ]. The optimization algorithms have been applied to the same random
sample of (ν(k))k∈J1,nK with n = 103. The results for the first component |θ̂1 − θ?1| are
displayed in Figure V.2. We see that the canonical estimation method outperforms the
χ2 approach since the distribution of the error in the optimal value θ̂n is much more
narrow with the former. Similar results have been obtained with θ2.

V.5.1.2. Performance with respect to κ(S(θ))

In this section, we demonstrate the efficiency of our approach when dealing with large
values of κ(S(θ)), i.e., with poorly conditioned problems. Recall that in the considered
case, κ(S(θ)) = λθ2. Hence, if the order of magnitude of θ2 is 1, the order of magnitude
of the condition number κ(S(θ)) is equal to the order of magnitude of λ.

The functionals J
n,Γ̂n

and Jn,I have been designed using a fixed sample size n = 104

. The error obtained by both procedures is shown in Figure V.3, where we represent the
median and the interdecile interval for each value of λ and each optimization algorithm.
Recall that the initial parameter θinit is fixed in all this test to θinit = (20, 30)T . For
each evaluated condition number κ(S(θ)), 20 trials have been carried out with different
random samples with the same random seed (but with a different covariance matrix,
hence the samples are different), and the optimization algorithm has been run with the
same initilization value. We see that the performance (here measured by the error)
of the optimization algorithm based on the functional JΓ̂n

computed with Γ̂n remains
stable with respect to κ(S(θ)) whereas when using JI, the error increases when κ(S(θ))
increases.
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Figure V.2. – Distribution of the error |θ̂1 − θ?1| in the optimal parameter found with
the χ2 procedure and the canonical estimation method.
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Figure V.3. – Estimation error with respect to the condition number κ(S(θ)) of S, the
intervals correspond to the interdecile interval and the highlighted dots
represents the median values.

V.5.1.3. Rate of convergence

As shown is section V.4.3.1, the optimal value θ̂n found with the canonical estimation
approach converges toward the real parameters θ? at a rate dominated by OP

(
1√
n

)
.

The purpose of this test is to check numerically this bound and to compare it with
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the χ2 method. In addition, we compare the rate of convergence of the procedures
associated to each cost functional. For each fixed sample size, 20 random samples have
been tested for each optimization algorithm. The condition number κ(S(θ)) has been
fixed to 105. The convergence rate for every procedure is shown in Figure V.4, where
the median and the interdecile interval for each sample size and each optimization
algorithm are displayed. As opposed to section V.5.1.1 and as in the previous section,
the initialization parameter is the same for all the computations, with θinit = (20, 30)T .
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Figure V.4. – Estimation error against the sample size of ν for several optimization
algorithms

The χ2 method and the method based on Jn,I are not influenced by the size of the
sample regarding the accuracy of the results, whereas the accuracy of the method based
on Γ̂n improves as the sample size increases, which is inline with the convergence rate
obtained in Theorem 1.

V.5.2. Diagnosis

In this section, we aim at evaluating the benefit brought by J
n,Γ̂n

compared to
χ2 diagnosis only. In this way, we study the behavior of J

n,Γ̂n
(θ) and χ2(θ) in a

neighborhood of θ = θ?. Here, the sample size of (ν(k))k∈J1,nK and the condition
number κ(S(θ)) have been fixed to 103 and 105, respectively. The functionals Jn,χ2

and J
n,Γ̂n

are represented as functions of θ1 and θ2 in Figures V.5 and V.6.
On the one hand, the canonical estimation method shows much better results than

χ2 diagnosis. Contrary to the results obtained with χ2 diagnosis, the obtained values
are centered around the real value θ? and remain in a narrower domain of validity, as
shown in the figures by the blue areas. On the other hand, with this diagnosis, the
optimal value is not known a priori, whereas this value is dim(ν) with χ2 diagnosis.
As a consequence, we recommend to combine the two approaches as follows:
— First, test the value θ̃χ2 , which shall provide an a priori value based on the

knowledge of the problem we are studying. In this way, χ2 diagnosis enables to
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check if the diagnosed θ̃χ2 lies in an small enough interval, i.e., if χ2 diagnosis
value is close enough to dim(ν).

— Second, check with the canonical estimation method new values within a neighbor-
hood of θ̃χ2 with a sieve or an optimization algorithm. The smaller J

n,Γ̂n
(θ̃J

n,Γ̂n
),

the diagnosis result is, the closer the diagnosed parameter θ̃J
n,Γ̂n

is to θ?.

The canonical estimation method clearly appears as an improvement over the χ2

diagnosis. The shape of the functional observed in Figure V.6 shows that usual steep-
est descent algorithms will converge faster to the real value θ?. However, because
the optimal value of the functional JΓ̂n

is unknown, it cannot be a substitute of χ2

diagnosis.
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Figure V.5. – diagnosis value against the θ to be diagnosed with χ2 diagnosis. The
values are expressed as a percentage of their relative errors.
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Figure V.6. – diagnosis value against the θ to be diagnosed with the canonical estima-
tion method. The values are expressed as a percentage of their relative
errors.

V.6. Discussion

V.6.1. Use of Gaussian synthetic samples

Further studies are required to tackle actual data, as considered, e.g., in weather
forecasting. In the same way, the canonical estimation method should be tested with
other distributions since Gaussian distributions are thoroughly determined by their two
first moments. Indeed, the convergence rate of the estimation of the covariance matrix
Γ̂n, when ν is not a Gaussian vector, might be lower since the canonical estimator µ̂abcd
might have lower convergence rate when approximating the coefficients. However, it
remains dominated by 1√

n
.
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V.6.2. Use of the estimated covariance matrix of s

The use of Γ̂n rather than Γn is motivated by the fact that the probability distribution
of ν is never fully known by the operator, thus a functional using Γn would not have
any practical application. However, although Γ̂n converges toward Γn, the accuracy of
Γ̂n for a given sample size n is unknown. It is therefore impossible to fully evaluate
the accuracy of the estimated parameter θ̂ especially in the case where the probability
distribution of ν is unknown.

V.7. Conclusion
In this paper, we have shown how the limitations of χ2 diagnosis can be circumvented

by a new method that the authors called the canonical estimation method. In addition,
this method can be implemented in an algorithm that finds the optimal parameters for
covariance matrices. The study has shown that this parameters finding process has
a convergence speed dominated by 1√

n
which allows to evaluate the accuracy of the

estimated parameters regarding the sample size it is based on. However, χ2 diagnosis
is not outdated since the diagnosis phase which uses the canonical estimation is a
complement to χ2 diagnosis as shown in section V.5.2.

This study has been carried out on synthetic data with a set of i.i.d. random vectors
and a fixed covariance matrix. This simplification is not realistic regarding real life
observation, as, e.g. meteorological data. Some further study shall verify the validity
of this method for actual data. However, χ2 diagnosis is based on the same assumptions
and is still practically used, so this limitation does not undermine the validity of the
study.
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VI. Conclusions

VI.1. Thesis review

In this study, several ways of generating noise maps have been evaluated, in order
to take into account the influence of an observation network in the noise mapping
generation process. The first step, developed in this thesis in chapter II consists in
designing a meta-model built in order to reproduce the output of a noise mapping
software of a given area where the inputs are variations of the noise sources parameters,
such as the speed and the flow rate of the vehicles, or the noise propagation, such as
the reflection coefficient of the buildings or the temperature. It is generated by a
learning sample of input parameters and their resulting noise maps computed by the
noise mapping software. The resulting meta-model is a linear combination of a reduced
set of statistically significant normalized noise maps. Their weights are outputs of
interpolation functions generated with the projection of the output noise maps onto
the maps of the reduced basis. This method allows to fairly reproduce the outputs
of the noise mapping software with a much lower computation time, and then, among
other applications, to compute dynamic noise maps in real time.
The second step is to include the noise level observed through an array of noise

level meters scattered across the study area with different methods, the Best Linear
Unbiased Estimator (BLUE) in chapter III, and the inverse modeling and Joint State
Parameter Estimation in chapter IV.
The BLUE method shown in chapter III adds a correction layer to a noise map

generated by the meta-model, called background, whose input parameters are based on
ground traffic and weather observations. The correction layer is built with an estimation
of the background matrix B and the observation matrix R. The RMSE is reduced by
30 % when estimating the performance of this process through a leave-one-out cross-
validation method.
The inverse modeling is studied in chapter IV. This method uses an optimization

algorithm to compute the input parameters of the metamodel which best fit with the
observations of the sound level meters. This method generally gives better results than
the BLUE method at the cost of a longer computation time, due to the exploration
part of the optimization algorithm. In addition, this method is suitable for areas where
no traffic nor weather ground measurements are taken. It is then available for a wider
range of study areas.
Finally, chapter V proposes a new technique for diagnosing the parameters of a

covariance matrix, such as the matrix B used in chapters III and IV. This method is
a complement to the currently used χ2 diagnosis. In addition, it is possible to adapt
the process in order to estimate the parameters instead of performing a diagnosis, the
estimation being out of reach for the χ2 diagnosis. This method is more robust than
the χ2 diagnosis and offers new perspectives.
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VI.2. Perspectives

The study has been conducted for one specific type of noise indicator, the LAeq,1h
which has been described in (I.12). This indicator was chosen because it is recom-
mended for noise mapping by the END (European Commission, 2015). However, recent
works in sound perception have highlighted the limits of this indicator to characterize
the perceived quality of sound environments. Data assimilation could be conducted
for other type of indicators such as some frequency bands or the L10,1h and the L90,1h
which respectively correspond to the noise level of the first and last decile of the noise
distribution on a 1-hour period. These indicators cannot be estimated through regu-
lar noise mapping methods, but some studies have shown how to rely on regular noise
simulators to estimate these indicators (Aumond and Can, 2018). The covariance struc-
ture however may vary since a different phenomenon is observed. The highest centiles
of noise distributions are due indeed to close noise sources while background noise is
the accumulation of numerous but remote sound sources. Mixed noise indices such as
the harmonica index (Prascevic et al., 2015) could also be produced. In addition, the
sources used in this study were limited to the road traffic noise sources, acknowledged
as the most annoying noise sources in urban areas. However, the END also recommends
the production of noise maps for railway or aircraft noise. In addition, several sound
perception models emerged, in which sound sources such as birds or voices intervene
(Lavandier and Defréville, 2006). Hybridizing the data assimilation processes for dif-
ferent noise sources would be of great interest. This would be made possible because
recent works on noise observations have allowed to discriminate noise sources with deep
learning methods (Gontier et al., 2019). This will require some adaptation of the pro-
cedure, as the typology of sources considered most likely impacts the structure of the
covariance matrices. This is probably the case, for example, for air traffic because of
its elevation.
Finally, several new applications may emerge following the results of this study.
First, the meta-model created in chapter II which has been used for data assimilation

purposes can be used for several other applications which have not been explored yet in
this work. Some applications can be done in sensitivity analysis, and uncertainty prop-
agation in relation with other works such as Aumond et al. (2019, 2021). Indeed, the
extremely short computation time of the generation of a noise map allows to compute
the output of a very large number of parameters and to study the probability distri-
bution of some outputs based on the probability distribution of the inputs. An other
domain of sensitivity analysis requires a very large amount of calls to the model, the
variance based sensitivity analysis and the computation of the so-called Sobol indices
(Sobol, 1990). The Sobol indices of the input parameters of a noise mapping reference
software can only be computed with the help of a meta-model.
Second, the meta-model used in this study for data-assimilation only required a lim-

ited amount of input parameters (dim p = 7). However, it is possible to build a richer
meta-model with a larger amount of input parameters. For example, in chapter II
different types of roads whose traffic behaviors are uncorrelated, according to Bar-
rigón Morillas et al. (2005) have been ttreated separately, which led to an input vector
of higher dimension (dim p = 16). In addition, it is possible to enrich the weather
data. In this study, only the temperature has been considered as an input, but it is
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possible to add wind direction and intensity, hygrometry, probability of occurrence of
favorable atmospheric condition, etc.) which would lead to a much richer and more
complex meta-model and might better approach the real dynamic noise distribution.
The number of input should not affect the implementation of the meta-model, under
the condition that the interpolation functions still correctly approach the projection
over every basis vector of the reduced model. By treating separately different types of
roads, it should be possible to get better results since there is a strong correlation be-
tween the behavior of the different road sections of the same type and that the behavior
of the different types of roads are uncorrelated.
Third, in this study, the distribution of the observation points across the study

area was given as an input. One may wonder if, for a given quantity of noise level
meters, some distribution gives better results than others when conducting the data
assimilation process. For instance, the CENSE project which is currently conducting an
experimental campaign in the city of Lorient, France, in the area studied in chapter II,
has displayed a very large quantity of noise level meters in the area. For a given number
n of sensors, it might be possible to use a combinatorial approach to find the best subset
of sensors which gives the best results and to infer some qualitative characteristics over
the best distributions. This research could highlight the most relevant features to take
into account when an array of sound level meters is displayed across a study area, for
instance, the street typology, the building distribution or the density of sensors. In
addition it could be possible to find thresholds for the size of the subset, for instance
a number of sensors from which the performance drastically improves or on the other
side, where it stagnates and reaches a plateau.





A. Appendix:Data assimilation for urban
noise mapping with a meta-model

A.1. χ2 diagnosis
A.1.1. χ2 diagnosis

With dij and |xi − xj | known for all (i, j) ∈ J1, nK2, the characteristic values σb, Ld
and Lb must be tuned to optimize the efficiency of the analytical covariance matrix.

To do so, a χ2 diagnosis is carried out. It consists in checking the consistency between
the available innovations νt = yt −Htxbt and their variances St = HtBHT

t + Rt for
each time step t. This method has proved to be useful in the meteorology (Ménard and
Chang, 2000) and in other fields. Let χ2

t be the scalar:

χ2
t = νTt S−1

t νt (A.1)
Its expected value is

E[χ2
t ] = E[νTt S−1

t νt]
= tr(S−1

t E[ννT ])
= tr(S−1

t St) = tr(Ipt) = pt

(A.2)

pt being the dimension of yt −Htxbt at time t. The dimension of yt may vary in time
since the microphones may not be all simultaneously active, and so does Rt, Ht and
St. Let A be the value:

A = 1
|T |

∑
t∈T

χ2
t

pt
(A.3)

The parameters σb, Ld and Lb are chosen so that A is close to 1.

A.1.2. Note on the χ2 diagnosis
According to the definition of section III.2.5.2, the covariance matrix Bana is no

longer the simulation error covariance but the covariance of the vector ΨTΨxt − xt,
with Ψ the matrix which concatenates the basis vector of the reduced subspace. Hence
the characteristic parameters obtained with the χ2 diagnosis are ill defined. However,
since xb remains a fairly good approximation of ΨTΨxt, the orders of magnitude of
the characteristic parameters obtained with this method are still satisfying.

A.2. Sum of the analytical and statistical covariance matrices
By construction of the meta-model, xb lies in the subspace generated by the maps

set of the metamodel {mapi}i∈J1,kK with k � n. This suggests to decompose the
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Figure A.1. – Geometrical interpretation of the relation between the statistical and the
analytical covariance matrices

observation in two orthogonal components êb ∈ Im(ΨTΨ) and ẽb ∈ Im(ΨTΨ)⊥ as
illustrated in figure A.1. The current section shows that the construction of xb allows
that a new covariance matrix B can be generated by adding the analytical covariance
matrix defined in section B.1.1 Bana to a statistically defined covariance matrix Bstat.
The simulation error can be decomposed as follows: eb = êb + ẽb. êb is the mod-

eling error that grasps the error due to model approximations, and the discrepancy
between the estimated input parameters and the true parameters. ẽb is the fluctu-
ation error due to the noise level components which are not related to the traffic
noise. Its covariance matrix is expressed with the analytical covariance matrix described
in section B.1.1. Under the assumption that these two components are independent
(E[êbẽbT ] = E[ẽbêbT ] = 0), B can be expressed as

B = E[ebebT ] = E[(êb + ẽb)(êb + ẽb)T ]
= E[êbêbT + ẽbẽbT + ẽbêbT + êbẽbT ]
= Bstat + Bana + E[ẽbêbT + êbẽbT ]︸ ︷︷ ︸

=0

= Bstat + Bana

(A.4)

A way to check the validity of this assumption is to evaluate the norm of the projection
ΠIm(Bstat) of the eigenvectors of Bana onto Im(Bstat). In this case study, for each
eigenvector vi of Bana. The values remain low

‖ΠIm(Bstat)(vi)‖
‖vi‖

< 5 % (A.5)



B. Appendix:Meta-model aided inverse
modeling and Joint State Parameter
Estimation for noise data assimilation

B.1. Matrices descriptions

The cost functions defined in section IV.3.2.1 make use of the output of the meta-
model and apply a correction which depends on B, the covariance matrix of the simu-
lation error, R, the covariance matrix of the observational error, and the discrepancy
between observations and simulations at the observation location. The matrices B and
R seize the spatial behavior of the model error and the observation error respectively.

B.1.1. Description of the covariance matrix B

A parametrized simulation error covariance function has been successfully used in a
previous work (Ventura et al., 2018). The simulation error cross correlations between
two receivers i and j are expressed in terms of:

— dij , the length of the shortest path along the road network between the projection
of receivers i and j on the closest road computed with a Johnson algorithm
(Johnson, 1977)

— the nominal noise field itself, through a correlation function ρ(xi, xj), where xi
and xj are the values of xb at points i and j as proposed by (Riishøjgaard, 2002).
The corresponding simulation error covariance between points i and j reads:

[Bana]ij = σ2
b exp

(
−dij
Ld

)
exp

(
−|xi − xj |

Lb

)
(B.1)

where σ2
b is the characteristic variance of each point, Ld is a characteristic distance

in m and Lb is a characteristic noise level value in dB.

B.1.2. Description of the covariance matrix R

The observation errors at two different receivers are not correlated. The observation
error essentially depends on the accuracy of the microphone which is described by its
standard deviation σr, therefore:

R = σ2
rIp (B.2)

with Ip the identity matrix of dimension p. In this study, σr =1 dB2, which corresponds
to the indutrial accuracy of the sensor.
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B.1.3. Equivalence between J (p, ε) and J ′(p)

The following approach aims to find a new cost function which only involves p to
lower the computation time (dim(p) � dim(ε)). The first step is to decompose the
gradient in 2 vectors:

∇J (p?, ε?) = 0⇒


∇pJ (p?, ε?) = 0
∧
∇εJ (p?, ε?) = 0

(B.3)

∇εJ (p?, ε?) = 0⇒ 2HTR−1(y−HM̂(p?) + Hε?) + 2B−1ε? = 0
⇒ ε? = K(y−HM̂(p?))

(B.4)

With K = (HTR−1H + B−1)−1HTR−1 = BHT (HBHT + R)−1 using the Sherman-
Morrisson-Woodbury (SMW) identity (Sherman and Morrison, 1950)
With the substitution of ε by the expression of ε?

∇pJ (p, ε?) =
(

2
(
(I−HK)(y−HM̂(p)

)
R−1H∂M̂(p)

∂pj

)
j∈J1,kK

(B.5)

The optimisation problem is reformulated as

∇J ′(p) =
(

2
(
y−HM̂(p)

)T
(I−HK)TR−1H∂M̂(p)

∂pj

)
j∈J1,kK

(B.6)

The integration of this formula gives

J ′(p) =
∥∥∥y−HM̂(p)

∥∥∥2

(I−HK)TR−1
(B.7)

B.2. Differentiation of the metamodel

B.2.1. kriging

Formula of the interpolation function

∀i ∈ J1, kK, α̂i(p) = ai·γi+bi, ai = λTi Γ−1
i

[
Ir − 1r

1Tr Γ−1
i

1Tr Γ−1
i 1r

]
∈ Rr, bi = λTi Γ−1

i 1r
1Tr Γ−1

i 1r
∈ R

(B.8)
k is the dimension of the reduced basis
differentiation under pn

∂α̂i
∂pn

(p) = ai ·
∂γi

∂pn
(p) (B.9)

γi(p) =
(
γij(p)

)
j∈J1,rK

, r is the trainins sample size and γij(p) = ∏p
m=1 φ

(
|pm − p(j)

m |, θim
)
,

p is the number of parameters of the meta-model.



Hence:
∂γij
∂pn

= ∂φ

∂pn
(|pn − p(j)

n |, θin)
p∏

m=1
m 6=n

φ(|pm − p(j)
m |, θim) (B.10)

φ(r, θ) = σ2 exp(− r
` ), Hence

∂φ
∂r (r, θ) = −σ2

` exp(− r
` ) = −1

`φ(r, θ) and

∂γij
∂pn

(p) = −sgn(pn − p(j)
n )

`ij
γij(p) (B.11)

∂α̂

∂pn
(p) =

(
∂α̂1
∂pn

(p) · · · ∂α̂k
∂pn

(p)
)T

(B.12)

∂M̂
∂pn

(p) = Ψ ∂α̂

∂pn
(p) (B.13)

B.2.2. RBF

α̂i(p) =
r∑
j=1

γi,jφ(Λ(p,p(j))) (B.14)

α̂(p) = ΓΦ(p) (B.15)

with Γ = (γi,j)i,j ∈ Rk×r and Φ(p) =
(
φ
(
Λ
(
p,p(j)

)))
j
∈ Rr

∂Φi

∂pj
(p) = ∂Λ

∂pj
(p,p(i))φ′(Λ(p,p(i)))

= pj
Λ(p,p(i))

φ′(Λ(p,p(i)))
(B.16)

if φ(r) = r3, φ′(r) = 3r2 then

∂Φi

∂pj
(p) = 3pjΛ(p,p(i)) (B.17)

∂M̂
∂pj

(p) = ΨΓ∂Φ
∂pj

(p) = 3pjΨΓΛ(p) (B.18)

with Λ(p) = (Λ(p,p(i)))i ∈ Rr





C. Appendix: Estimation and diagnosis of
the parameters of a covariance matrix

C.1. Detailed calculus

C.1.1. Detailed calculus of section V.3.1

C.1.1.1. details of equation V.1

∀k ∈ N, E[ν(k)TS−1(θ?)ν(k)] = tr
(
E
[
ν(k)TS−1(θ?)ν(k)

])
= E

[
tr
(
ν(k)TS−1(θ?)ν(k))

)]
= E

[
tr
(

S(θ?)−1ν(k)ν(k)T
)]

= tr
(
E[S(θ?)−1ν(k)ν(k)T ]

)
= tr

(
S(θ?)−1E[ν(k)ν(k)T ]

)
= tr

(
S(θ?)−1S(θ?)

)
= tr(Ip) = p.
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C.1.2. Proof of Lemma 3

Γn,ijk` =E[( 1
n

n∑
m=1

ηi,mηj,m −
1
n2

n∑
m=1

ηi,m

n∑
m=1

ηj,m)

( 1
n

n∑
m=1

ηk,mη`,m −
1
n2

n∑
m=1

ηk,m

n∑
m=1

η`,m)]

− E[ 1
n

n∑
m=1

ηi,mηj,m −
1
n2

n∑
m=1

ηi,m

n∑
m=1

ηj,m]

E[ 1
n

n∑
m=1

ηk,mη`,m −
1
n2

n∑
m=1

ηk,m

n∑
m=1

η`,m]

=E[ 1
n2 (σ1100σ0011 −

1
n

(σ1100σ0010σ0001 + σ0011σ1000σ0100)

+ 1
n2σ1000σ0100σ0010σ0001)]

− 1
n2 (E[σ1100]− 1

n
E[σ1000σ0100])

(E[σ0011]− 1
n
E[σ0010σ0001])

= 1
n2E[σ1100σ0011]− 1

n3 (E[σ1100σ0010σ0001] + E[σ0011σ1000σ0100])

+ 1
n4E[σ1000σ0100σ0010σ0001]

− 1
n2 (E[σ1100]− 1

n
E[σ1000σ0100])

(E[σ0011]− 1
n
E[σ0010σ0001])

According to (V.3), we have:

[Γ]n,i′j′ = 1
n2E[σ1100σ0011]− 1

n3 (E[σ1100σ0010σ0001] + E[σ0011σ1000σ0100])

+ 1
n4E[σ1000σ0100σ0010σ0001]

− 1
n2 (E[σ1100]− 1

n
E[σ1000σ0100])(E[σ0011]− 1

n
E[σ0010σ0001]).

Γn,ijk` = 1
n2 (nµ1111 + n(n− 1)µ1100µ0011)− 2

n3 (nµ1111 + n(n− 1)µ1100µ0011)

+ 1
n4 (nµ1111 + n(n− 1)(µ1100µ0011 + µ1010µ0101 + µ1001µ0110))

−
(
n− 1
n

)2
µ1100µ0011

=− (n− 1)2

n3 µ1100µ0011 + n− 1
n3 (µ1001µ0110 + µ1010µ0101) + (n− 1)2

n3 µ1111



The result then follows from:

E[σ1100σ0011] =E[σ1100σ0010σ0001] = E[σ0011σ1000σ0100]
=nµ1111 + n(n− 1)µ1100µ0011

E[σ1000σ0100σ0010σ0001] =nµ1111 + n(n− 1)(µ1100µ0011 + µ1010µ0101 + µ1001µ0110)
E[σ1100] =E[σ1000σ0100] = nµ1100

E[σ0011] =E[σ0010σ0001] = nµ0011.

C.1.3. Detailed calculus of section V.4.3.1

C.1.3.1. proof of Lemma 4

By construction, since Γ = A
n + B

n2 + C
n3 and Â = A +OP

(
1√
n

)
, B̂ = B +OP

(
1√
n

)
and Ĉ = C +OP

(
1√
n

)
hence Γ̂n = Γn +OP

(
1

n
√
n

)
and Γ̂−1

n = Γ−1
n +OP

(
1

n
√
n

)

vT =
∂sT (θ)
∂θi

Γ̂−1
n∥∥∥∂sT (θ)

∂θi
Γ̂−1
n

∥∥∥
1

=

(
∂sT (θ?)
∂θi

+ (θ − θ?)TDT
∂θis

(θ?) + o(θ − θ?)
)

(nA−1 + A−2B + o(1) +OP
(

1
n
√
n

)
)∥∥∥(∂sT (θ?)

∂θi
+ (θ − θ?)DT

∂θis
(θ?) + o(θ − θ?)

)
(nA−1 + A−2B + o(1) +OP

(
1

n
√
n

)
)
∥∥∥

1

=
∂sT (θ?)
∂θi

A−1 + (θ − θ?)TDT
∂θis

(θ?)A−1∥∥∥∂sT (θ?)
∂θi

A−1 + (θ − θ?)TDT
∂θis

(θ?)A−1
∥∥∥

1

+ o(θ − θ?) +O
( 1
n

)
+OP

( 1
n2√n

)

Since O
(

1
n

)
= OP

(
1
n

)
and OP

(
1
n

)
+OP

(
1

n2√n

)
= OP

(
1
n

)

=
∂sT (θ?)
∂θi

A−1 + (θ − θ?)TDT
∂θis

(θ?)A−1∥∥∥∂sT (θ?)
∂θi

A−1
∥∥∥

1
c+

∥∥∥(θ − θ?)TDT
∂θis

(θ?)A−1
∥∥∥

1

+ o(θ − θ?) +OP

( 1
n

)

=
∂sT (θ?)
∂θi

A−1 + (θ − θ?)TDT
∂θis

(θ?)A−1

∥∥∥∂sT (θ?)
∂θi

A−1
∥∥∥

1
c

1 +

∥∥∥(θ−θ?)TDT
∂θi

s(θ?)A−1
∥∥∥

1∥∥∥ ∂sT (θ?)
∂θi

A−1
∥∥∥

1

 + o(θ − θ?) +OP

( 1
n

)

=
∂sT (θ?)
∂θi

A−1 + (θ − θ?)TDT
∂θis

(θ?)A−1∥∥∥∂sT (θ?)
∂θi

A−1
∥∥∥

1

1−

∥∥∥(θ − θ?)TDT
∂θis

(θ?)A−1
∥∥∥

1∥∥∥∂sT (θ?)
∂θi

A−1
∥∥∥

1

+ o(θ − θ?) +OP

( 1
n

)

=
∂sT (θ?)
∂θi

A−1∥∥∥∂sT (θ?)
∂θi

A−1
∥∥∥

1

+ (θ − θ?)T
DT
∂θis

(θ?)A−1∥∥∥∂sT (θ?)
∂θi

A−1
∥∥∥

1

− ‖θ − θ?‖1

∣∣∣∣∣∣∣∣∣DT
∂θis

(θ?)A−1
∣∣∣∣∣∣∣∣∣∂sT (θ?)

∂θi
A−1∥∥∥∂sT (θ?)

∂θi
A−1

∥∥∥2

1

+ o(θ − θ?) +OP

( 1
n

)



C.1.3.2. proof of Lemma 5

Define η ∈ [0, 1]. According to (V.12), if for every n ∈ N, Pσ(n) is true, then there
exists Mη such that for every n ∈ N

P(
Xσ(n)
uσ(n)

≤Mη) ≥ 1− η

Now for all n ∈ N, consider the quantity P(Xnun ≤Mη):

P(Xn

un
≤Mη) ≥ P(∃m ∈ N, σ(m) = n ∧

Xσ(m)
uσ(m)

≤Mη)

≥ P(∃m ∈ N, σ(m) = n)P(
Xσ(m)
uσ(m)

≤Mη)

≥ (1− α)(1− η)

With η′ := 1− (1− α)(1− η), we have

∀η′, ∀n ∈ N, P(Xn

un
≤Mη) ≥ 1− η′

C.1.3.3. proof of Lemma 6

Under the assumption of Lemma 6, it is possible to perform a Taylor expansion of s
around θ?:

s(θ? + x) = s(θ?) + Ds(θ?)x + o(x)
‖s(θ? + x)− s(θ?)‖ = ‖Ds(θ?)x‖+ o(‖x‖)

Let D′s(θ?) = Π=(Ds(θ?))Ds(θ?), ΠE being the canonical projection of Rp onto one of
its subspace E. For all x ∈ R`, ‖D′s(θ?)x‖ = ‖Ds(θ?)x‖. According to the assump-
tion of the Lemma, D′s(θ?) is invertible. Since D′s(θ?) in invertible, for all x ∈ R`,
‖D′s(θ?)x‖ 6= 0, in addition, the application x 7→ ‖D′s(θ?)x‖ is continuous as a compo-
sition of a linear application and a norm, which are both continuous in finite dimension.
Since the spheres are compact in finite dimension, m = min‖x‖=1 ‖D′s(θ?)x‖ exists and
is strictly positive. It can be shown that m =

√
min σ(D′Ts (θ?)D′s(θ?)) with σ(M(p))

being the spectrum ofM(p). And so

∀x ∈ R`\{0}, ‖Ds(θ?)x‖ ≥ m‖x‖

Hence for any ε > 0, there exists Vε(θ?) a neighborhood of θ? such that o(‖x‖) ≥ −ε‖x‖.
Hence if we choose ε such that |m| − ε > 0 we have

‖s(θ? + x)− s(θ?)‖ = ‖Ds(θ?)x‖+ o(‖x‖) ≥ (|m| − ε)‖x‖

Finally, with λ := |m| − ε and θ = θ? + x

‖s(θ)− s(θ?)‖
‖θ − θ?‖

> λ.
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